
~ter 12

value?

by the

)n one
tlticast

of the

aod to

multi-

~ce has
)K?
.tion is

~sed to

13.1

13

IGMP: Internet Group

Management Protocol

Introduction

IGMP conveys group membership information between hosts and touters on a local
network. Routers periodically multicast IGMP queries to the all-hosts group. Hosts
respond to the queries by multicasting IGMP report messages. The IGMP specification
appears in RFC 1112. Chapter 13 of Volume 1 describes the specification of IGMP and
provides some examples.

From an architecture perspective, IGMP is a transport protocol above IP. It has a
protocol number (2) and its messages are carried in IP datagrams (as with ICMP).
IGMP usually isn’t accessed directly by a process but, as with ICMP, a process can send
and receive IGMP messages through an IGMP socket. This feature enables multicast
routing daemons to be implemented as user-level processes.

Figure 13.1 shows the overall organization of the IGMP protocol in Net/3.
The key to IGMP processing is the collection of in_mul t i structures shown in the

center of Figure 13.1. An incoming IGMP query causes igmp_input to initialize a
countdown timer for each in_multi structure. The timers are updated by
igmp_fasttimo, which calls igmp_sendreport as each timer expires.

We saw in Chapter 12 that ip_setmopt ions calls igmp_j o ingroup when a new
in_multi structure is created, igmp_joingroup calls igmp_sendreport to
announce the new group and enables the group’s timer to schedule a second announce-
ment a short time later, igmp_sendreport takes care of formatting an IGMP message
and passing it to ip_output.

On the left and right of Figure 13.1 we see that a raw socket can send and receive
IGMP messages directly.

381

Ex.1013.407DELL

382 IGMP: Internet Group Management Protocol Chapter 13

Figure 13.1 Summary of IGMP processing.

13.2 Code Introduction

The IGMP protocol is implemented in four files listed in Figure 13.2.

File Description

ne¢ ± ne¢ / J_gmp. h IGMP protocol definitions
nee±n÷� / ±gmp_var.h IGMP implementation definitions
ne ~ ±net / ±n_var. h IP multicast data structures
n e ~ ± ne ~ / ± ~mp. c IGMP protocol implementation

Figure 13.2 Files discussed in this chapter.

Global Variables

Three new global variables, shown in Figure 13.3, are introduced in this chapter.

Statistics

IGMP statistics are maintained in the J_grapstat variables shown in Figure 13.4.

Secti~

SNMP

Ex.1013.408DELL

:r 13 Section 13.2 Code Introduction 383

Variable

igmp. all hosts_group
igmp_timers_are_running
igmpstat

Data~pe

u_long
int
struct igmpstat

Description

all-hosts group address in network byte order
true if any IGMP timer is active, false otherwise
IGMP statistics (Figure 13.4).

Figure 13.3 Global variables introduced in this chapter.

igmpstat member

igps_rcv_badqueries
igps_rcv_badreports
igps_rcv_badsum
igps_rcv_ourreports
igps_rcv_queries
igps_rcv_reports
igps_rcv_tooshort
igps_rcv_total
igps_snd_reports

Description

#messages received as invalid queries
#messages received as invalid reports
#messages received with bad checksum
#messages received as reports for local groups
#messages received as membership queries
#messages received as membership reports
#messages received with too few bytes
total #IGMP messages received
#messages sent as membership reports

Figure 13.4 IGMP statistics.

Figure 13.5 shows some sample output of these statistics, from the nets¢a¢ -p
igmp command on vangogh, cs. berkeley, edu.

netstat -p igmp output

18774 messages received
0 messages received with too few bytes
0 messages received with bad checksum
18774 membership queries received
0 membership queries received with invalid field(s)
0 membership reports received
0 membership reports received with invalid field(s)
0 membership reports received for groups to which we belong
0 membership reports sent

igmps tat member

igps_rcv_total
igps_rcv_tooshort
igps_rcv_badsum
igps_rcv_queries
igps_rcv_badqueries
igps_rcv_reports
igps_rcv_badreports
igps_rcv_ourreports
igps_snd_reports

Figure 13.5 Sample IGMP statistics.

From Figure 13.5 we can tell that vangogh is attached to a network where IGMP is
being used, but that vangogh is not joining any multicast groups, since
igps_snd_reporCs is 0.

SNMP Variables

There is no standard SNMP MIB for IGMP, but [McCloghrie and Farinacci 1994a]
describes an experimental MIB for IGMP.

Ex.1013.409DELL

384

13.3

43--44

13.4

IGMP: Internet Group Management Protocol Chapter 13

45--46

47-48

igmp Structure

An IGMP message is only 8 bytes long. Figure 13.6 shows the ±gmp structure used by
Net/3.

igmp.h
43 struct igmp {
44 u_char igmp_type; /* version & type of IGMP message */
45 u_char igmp_code; /* unused, should be zero */
46 u_short igmp_cksum; /* IP-style checksum */
47 struct in_addr igmp_group; /* group address being reported */
48 }; /* (zero for queries) */

~mp.h

Figure 13.6 igmp structure.

A 4-bit version code and a 4-bit type code are contained within igmp_type. Fig-
ure 13.7 shows the standard values.

Version

1
1
1

Type igmp_type

1 Oxll (IGMP_HOST_MEMBERSHIP_QUERY)
2 0x12 (IGMP_HOST_MEMBERSHIP_REPORT)
3 0x13

Description

membership query
membership report
DVMRP message (Chapter 14)

Figure 13.7 IGMP message types.

Only version 1 messages are used by Net/3. Multicast routers send type 1
(IGMP_HOST_MEMBERSHI P_QUERY) messages to solicit membership reports from hosts
on the local network. The response to a type 1 IGMP message is a type 2
(IGMP_HOST_MEMBERSHIP_REPORT) message from the hosts reporting their multicast
membership information. Type 3 messages transport multicast routing information
between routers (Chapter 14). A host never processes type 3 messages. The remainder
of this chapter discusses only type I and 2 messages.

igmp_code is unused in IGMP version 1, and igmp_cksum is the familiar IP
checksum computed over all 8 bytes of the IGMP message.

igmp_group is 0 for queries. For replies, it contains the multicast group being
reported.

Figure 13.8 shows the structure of an IGMP message relative to an IP datagram.

IGMP protosw Structure

Figure 13.9 describes the protosw structure for IGMP.
Although it is possible for a process to send raw IP packets through the IGMP

protosw entry, in this chapter we are concerned only with how the kernel processes
IGMP messages. Chapter 32 discusses how a process can access IGMP using a raw
socket.

Ex.1013.410DELL

,ter 13

_~d by

!gmp.h

igmp.h

. Fig-

rpe 1
hosts
zpe 2
lticast
~ation
tinder

iar IP

being

IGMP
.cesses
a raw

Section 13.4
IGMP protosw Structure 385

IGMP message

cksum] group

2 bytes 4 bytes

IP header

IP datagram

Figure 13.8 An IGMP message (igmp_ omitted).

Member

Dr_type
pr_domain
Dr_protocol
Dr_flags
pr_input
pr_output
pr_ctlinput
pr_ctloutput
pr_usrreq
pr_init
Pr_fasttimo
pr_slowtimo
pr_drain
pr_sysctl

inetsw[5]

SOCK_RAW
&inetdomain
IPPROTO_IGMP (2)
PR_ATOMIC[PR__ADDR
igmp_input
rip_output
0
rip_ctloutput
rip_usrreq
igmp_init
igmp_fasttimo
0
0
o I

Description
IGMP provides raw packet services
IGMP is part of the Internet domain
appears in the ip_p field of the IP header
socket layer flags, not used by protocol processing
receives messages from IP layer
sends IGMP message to IP layer
not used by IGMP
respond to administrative requests from a process
respond to communication requests from a process
initialization for IGMP
process pending membership reports
not used by IGMP
not used by IGMP
not used by IGMP

Figure 13.9 The IGMP protosw structure.

There are three events that trigger IGMP processing:

¯ a local interface has joined a new multicast group (Section 13.5),
¯ an IGMP timer has expired (Section 13.6), and
¯ an IGMP query is received (Section 13.7).

There are also two events that trigger local IGMP processing but do not result
any messages being sent:

¯ an IGMP report is received (Section 13.7), and
¯ a local interface leaves a multicast group (Section 13.8).

These five events are discussed in the following sections.

Ex.1013.411DELL

386 IGMP: Internet Group Management Protocol

13.5

Chapter 13

Joining a Group: Kg~p_joKngroup Function

We saw in Chapter 12 that igmp_joingroup is called by in_addmulti when a new
in_multi structure is created. Subsequent requests to join the same group only
increase the reference count in the i n_mu 1 t i structure; igmp_J o ingroup is not called.
igmp_j oingroup is shown in Figure 13.10 igmp.c

164 void
165 igmp_j oingroup (inm)
166 struct in_multi *inm;
167 {
168 int s = splnet();

169 if (inm->inm_addr.s_addr == igmp_all_hosts_group I I

170 inm->inm_ifP == &loif)

171 into- >inm_t imer = 0;

172 else {

173 igmp_sendreport (inm) ;

174 inm->inm_timer = IGMP_RANDOM_DELAY (inm- >inm_addr) ;

175 igmp_timers_are_running : 1 ;

176 }
177 splx (s) ;
178 } igmp.c

Figure 13.10 igmp_joingroup function.

164--178

59--73

into points to the new in_multi structure for the group. If the new group is the
all-hosts group, or the membership request is for the loopback interface, inm_t imer is
disabled and igmp_joingroup returns. Membership in the all-hosts group is never
reported, since every multicast host is assumed to be a member of the group. Sending a
membership report to the loopback interface is unnecessary, since the local host is the
only system on the loopback network and it already knows its membership status.

In the remaining cases, a report is sent immediately for the new group, and the
group timer is set to a random value based on the group. The global flag
igmp_timers_are_running is set to indicate that at least one timer is enabled.
i gmp_f a st t imo (Section 13.6) examines this variable to avoid unnecessary processing.

When the timer for the new group expires, a second membership report is issued.
The duplicate report is harmless, but it provides insurance in case the first report is lost
or damaged. The report delay is computed by IGMP_RANDOM_DELA¥ (Figure 13.11).

According to RFC 1122, report timers should be set to a random time between 0 and
10 (IGMP_MAX_HOST_REPORT_DELAY) seconds. Since IGMP timers are decremented
five (PR_FASTHZ) times per second, IGMP_RANDOM_DELAY must pick a random value
between 1 and 50. If r is the random number computed by adding the total number of
IP packets received, the host’s primary IP address, and the multicast group, then

0 < (r rood 50) < 49

and
1 < (r rood 50)+1 _< 50

Sectio

13.6

123--i~

154--i~

170-1;

Ex.1013.412DELL

te

.~r
a
te

te

Lg
d.
g.

Ld

le

of

Section 13.6 igmp_fas t timo Function 387

13.6

123--126

154-169

170-177

5 9 /* ~mp_vanh
60 * Macro to compute a random timer value between 1 and (IGMP_MAX_REPORTING_
61 * DELAY * countdown frequency). We generate a "random" number by adding
62 * the total number of IP packets received, our primary IP address, and the
63 * multicast address being timed-out. The 4.3 random() routine really
64 * ought to be available in the kernel!
65 */
66 #define IGMP_RANDOM_DELAY(multiaddr) \
67 /* struct in_addr multiaddr; */ \
68 ((ipstat.ips_total + \
69 ntohl(IA_SIN(in_ifaddr)->sin_addr.s_addr) + \
70 ntohl((multiaddr).s_addr) \
71) \
72 % (IGMP_MAX_HOST_REPORT_DELAY * PR_FASTHZ) + 1 \
73)

Figure 13.11 IGMP_RANDOM_DELAY function.
igmp_var.h

Zero is avoided because it would disable the timer and no report would be sent.

igmp_fastt imo Function

Before looking at igmp_fasttimo, we need to describe the mechanism used to tra-
verse the in_mul t i structures.

To locate each in_multi structure, Net/3 must traverse the in_multi list for each
interface. During a traversal, an in_multistep structure (shown in Figure]3.12)
records the position.

123 struct in_multistep {
124 struct in_ifaddr *i_ia;
125 struct in_multi *i_inm;
126 ;

Figure 13.12 in_multistep function.

in_var.h

in_var.h

~__ia points to the next in_i faddr interface structure and i_inm points to the next
in_mul t i structure for the current interface.

The IN_FIRST_MULTI and IN_NEXT_MULTI macros (shown in Figure 13.13) tra-
verse the lists.

If the in_mult i list has more entries, i_inm is advanced to the next entry. When
IN_NEXT_MULTI reaches the end of a multicast list, i_ia is advanced to the next inter-
face and i_inm to the first in_multi structure associated with the interface. If the
interface has no multicast structures, the while loop continues to advance through the
interface list until a11 interfaces have been searched.

The in_multistep array is initialized to point to the first in_i faddr structure in
the in_ifaddr list and i_inm is set to null. IN_NEXT_MULTI finds the first
i n_mu i t i structure.

Ex.1013.413DELL

388

187--198

199--213

IGMP: Internet Group Management Protocol Chapter 13

147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

170
171
172
173
174
175
176
177

in vanh
/*

* Macro to step through all of the in_multi records, one at a time.
* The current position is remembered in "step", which the caller must
* provide. IN_FIRST_MULTI(), below, must be called to initialize "step"
* and get the first record. Both macros return a NULL "inm" when there
* are no remaining records.
*/

#define IN_NEXT_MULTI(step, inm) \
/* struct in_multistep step; */ \
/* struct in_multi *inm; */ \

{ \
if (((inm) = (step).i_inm) != NULL) \

(step).i_inm : (inm)->inm_next; \
else \

while ((step).i_ia != NULL) { \
(inm) = (step).i_ia->ia_multiaddrs; \
(step) .i_ia = (step) .i_ia->ia_next; \
if ((inm) != NULL) { \

(step) .i_inm = (inm)->inm_next; \
break; \

} \
} \

#define IN_FIRST_MULTI(step,

{ \

inm) \
/* struct in_multistep step; */ \
/* struct in_multi *inm; */ \

(step).i_ia : in_ifaddr; \
(step).i_inm : NULL; \
IN_NEXT_MULTI((step), (inm)); \

Figure 13.13 IN_FIRST_MULTI and IN_NEXT_MULTI structures.

in_var.h

We know from Figure 13.9 that igmp_fasttimo is the fast timeout function for
IGMP and is called five times per second, igmp_fasttimo (shown in Figure 13.14)
decrements multicast report timers and sends a report when the timer expires.

If igmp_timers_are_running is false, igmp_fasttimo returns immediately
instead of wasting time examining each timer.

igmp_fasttimo resets the running flag and then initializes step and into with
IN_FIRST_MULTI. The igmp_fasttimo function locates each in_multi structure
with the whi le loop and the IN_NEXT_MULTI macro. For each structure:

If the timer is 0, there is nothing to be done.
If the timer is nonzero, it is decremented. If it reaches 0, an IGMP membership
report is sent for the group.
If the timer is still nonzero, then at least one timer is still running, so
igmp_timers_are_running is set to 1.

2]

23

24~

Ex.1013.414DELL

ier 13

z var.h

)n for
13.14)

[iately

with
,tcture

arship

lg, so

Section 13.6 ±gmp_£ast t imo Function 389

187 void
188 igmp_fasttimo ()
189 {
190 struct in_multi *inm;
191 int s;
192 struct in_multistep step;

193
194
195
196
197
198

199
2OO
201
202
203
204
205
206
207
208
209
210
211
212
213

* Quick check to see if any work needs to be done, in order
* to minimize the overhead of fasttimo processing.
*/

if (!igmp_timers are running}
return;

s = splnet();
igmp_timers_are_running : 0;
IN_FIRST_MULTI(step, inm);
while (inm != NULL) {

if (inm->inm_timer -= 0)
/* do nothing */

} else if (--inm->inm_timer == 0)
igmp_sendreport(inm);

} else {
igmp_timers_are_running = i;

}
IN_NEXT_MULTI(step, inm);

splx(s);

Figure 13.14 igmp_fast t imo function.

igmp.c

igmp_sendreport Function

214--232

233-245

246--260

The igmp_sendreport function (shown in Figure 13.15) constructs and sends an
IGMP report message for a single multicast group.

The single argument into points to the in_multi structure for the group being
reported, igmp_sendretoort allocates a new mbuf and prepares it for an IGMP mes-
sage. igmp_sendreport leaves room for a link-layer header and sets the length of the
mbuf and packet to the length of an IGMP message.

The IP header and IGMP message is constructed one field at a time. The source
address for the datagram is set to INADDR_ANY, and the destination address is the
multicast group being reported, ip_output replaces INADDR_ANY with the unicast
address of the outgoing interface. Every member of the group receives the report as
does every multicast router (since multicast routers receive all IP multicasts).

Finally, igmp_sendreport constructs an ip_mopt ions structure to go along with
the message sent to ip_output. The interface associated with the in_mul t i structure
is selected as the outgoing interface; the TTL is set to 1 to keep the report on the local
network; and, if the local system is configured as a router, multicast loopback is enabled
for this request.

Ex.1013.415DELL

390 IGMP: Internet Group Management Protocol Chapter 13

214 static void
215 igmp_sendreport(inm)
216 struct in_multi *inm;
217 {
218 struct mbuf *m;
219 struct igmp *igmp;
220 struct ip *ip;
221 struct ip_moptions *imo;
222 struct ip_moptions simo;

223
224
225
226
227
228
229
230
231
232

233
234
235
236
237
238
239

240
241
242
243
244
245

246
247
248
249

250
251
252
253
254
255
256
257
258

259
260

MGETHDR(m, M_DONTWAIT, MT_HEADER) ;
if (m == NULL)

return;
/*

* Assume max_linkhdr + sizeof(struct ip) + IGMP_MINLEN
* is smaller than mbuf size returned by MGETHDR.
*/

m->m_data += max_linkhdr;
m->m_len = sizeof(struct ip) + IGMP_MINLEN;
m->m~kthdr.len = sizeof(struct ip) + IGMP_MINLEN;

ip : mtod(m, struct ip *);
ip->ip_tos : 0;
ip->ip_len = sizeof(struct ip) + IGMP_MINLEN;
ip->ip_off = 0;
ip->ip_p = IPPROTO_IGMP;
ip->ip_src.s_addr = INADDR_ANY;
ip->ip_dst = inm->inm_addr;

igmp = (struct igmp *) (ip + i);
igmp->igmp_type = IGMP_HOST_MEMBERSHIP_REPORT;
igmp->igmp_code = 0;
igmp->igmp_group = inm->inm_addr;
igmp->igmp_cksum = 0;
igmp->igmp_cksum = in_cksum(m, IGMP_MINLEN);

imo = &simo;
bzero((caddr_t) imo, sizeof(*imo));
imo->imo_multicast_ifp = inm->inm_ifp;
imo->imo_multicast_ttl = i;

* Request loopback of the report if we are acting as a multicast
* router, so that the process-level routing demon can hear it.
*/

extern struct socket *ip_mrouter;
imo->imo_multicast_loop = (ip_mrouter != NULL);

ip_output(m, NULL, NULL, 0, imo);

++igmpstat.igps_snd_reports

Figure 13.15 lgmp_sendreport function.

igmp.c

igmp.c

Ex.1013.416DELL

Section 13.7 Input Processing: igmp_input Function 391

The process-level multicast router must hear the membership reports. In Section 12.14 we saw
that IGMP datagrams are always accepted when the system is configured as a multicast router.
Through the normal transport demultiplexing code, the messages are passed to igmp_inpu<
the p r_i npu t function for IGMP (Figure 13.9).

13.7 Input Processing: igmp_input Function

52--96

157-163

In Section 12.14 we described the multicast processing portion of ipintr. We saw that
a multicast router accepts any IGMP message, but a multicast host accepts only IGMP
messages that arrive on an interface that is a member of the destination multicast group
(i.e., queries and membership reports for which the receiving interface is a member).

The accepted messages are passed to igmp_input by the standard protocol demul-
tiplexing mechanism. The beginning and end of igmp_input are shown in Fig-
ure 13.16. The code for each IGMP message type is described in following sections.
Validate IGMP message

The function ipintr passes ra, a pointer to the received packet (stored in an mbuf),
and iphlen, the size of the IP header in the datagram.

The datagram must be large enough to contain an IGMP message (IGMP MINLEN),
must be contained within a standard mbuf header -(m_pu 1 lup), and must hav~ a correct
IGMP checksum. If any errors are found, they are counted, the datagram is silently dis-
carded, and igmp_input returns.

The body of igmp_input processes the validated messages based on the code in
igrap_type. Remember from Figure 13.6 that igmp_type includes a version code and
a type code. The switch statement is based on the combined value stored in
igmp_type (Figure 13.7). Each case is described separately in the following sections.
Pass IGMP messages to raw IP

There is no default case for the switch statement. Any valid message (i.e., one
that is properly formed) is passed to rip_input where it is delivered to any process
listening for IGMP messages. IGMP messages with versions or types that are unrecog-
nized by the kernel can be processed or discarded by the listening processes.

The mrouted program depends on this call to rip_input so that it receives membership
queries and reports.

Membership Query: IGMP_HOST_MEMBERSHIP_QUERY

RFC 1075 recommends that multicast routers issue an IGMP membership query at least
once every 120 seconds. The query is sent to group 224.0.0.1 (the all-hosts group). Fig-
ure 13.17 shows how the message is processed by a host.

Ex.1013.417DELL

392 IGMP: Internet Group Management Protocol Chapter 13

52
53
54
55
56
57
58
59
60
61
62
63
64

65

66
67

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
9O
91
92
93
94
95

96

157

void
igmp_input(m, iphlen)
struct mbuf *m;
int iphlen;

igmp.c

struct igmp *igmp;
struct ip *ip;
int igmplen;
struct ifnet *ifp = m->m_pkthdr.rcvif;
int minlen;
struct in_multi *inm;
struct in_ifaddr *ia;
struct in_multistep step;

++igmpstat.igps_rcv_total;

ip = mtod(m, struct ip *);
igmplen = ip->ip_len;

* Validate lengths

if (igmplen < IGMP_MINLEN) {
++igmpstat.igps_rcv_tooshort;
m_freem{m);
return;

}
minlen = iphlen + IGMP_MINLEN;
if ((m->m_flags & M_EXT I I m->m_len < minlen) &&

(m = m_pullup(m, minlen)) == 0) {
++igmpstat.igps_rcv_tooshort;
return;

]
/*

* Validate checksum
*/

m->m_data += iphlen;
m->m_len -= iphlen;
igmp = mtod(m, struct igmp *);
if (in_cksum{m, igmplen)) {

++igmpstat.igps_rcv_badsum;
m_freem(m);
return;

}
m->m_data -: iphlen;

m->m_ien +: iphlen;

ip : mtod(m, struct ip *);

switch

97.

Ex.1013.418DELL

Section 13.7 Input Processing: igmp_input Function 393

158
159
160
161
162
163 }

* Pass all valid IGMP packets up to any process(es)
* on a raw IGMP socket.
*/

rip_input(m);

Figure13.16 igmp_input function.

listening

97--122

97
98

99
I00

i01
102
103
104
105
106
107
108
109
Ii0
IIi
112
113
114
115
116
117
118
119
120
121

case IGMP_HOST_MEMBERSHIP_QUERY:
++igmpstat.igps_rcv_queries;

if (ifp == &loif)
break;

if (ip->ip_dst.s_addr !: igmp_all_hosts_group) {
++igmpstat igps_rcv_badqueries;
m_freem(m)
return;

}
/*

* Start the timers in all of our membership records for
* the interface on which the query arrived, except those
* that are already running and those that belong to the
* "all-hosts" group.
*/

IN_FIRST_MULTI(step, inm);
while (irtm !: NULL) {

if (inm->inm_ifp := ifp && inm->inm_timer =- 0 &&
inm->inm_addr.s_addr != igmp_all_hosts_group) {
inm->inm_timer :

IGMP_RANDOM_DELAY(inm->inm_addr);
igmp_timers_are_running = i;

}
IN_NEXT_MULTI(step, inm);

}

122 break;

Figure 13.17 Input processing of the IGMP query message.

igmp.c

igmp.c

Queries that arrive on the loopback interface are silently discarded (Exercise 13.1).
Queries by definition are sent to the all-hosts group. If a query arrives addressed to a
different address, it is counted in igps_rcv_badqueries and discarded.

The receipt of a query message does not trigger an immediate flurry of IGMP mem-
bership reports. Instead, igmp_input resets the membership timers for each group
associated with the interface on which the query was received to a random value with
IGMP_RANDOM_DELAY. When the timer for a group expires, igmp_fasttimo sends a
membership report. Meanwhile, the same activity is occurring on all the other hosts
that received the IGMP query. As soon as the random timer for a particular group
expires on one host, it is multicast to that group. This report cancels the timers on the

Ex.1013.419DELL

. IGMP: Internet Group Management Protocol Chapter 13

other hosts so that only one report is multicast to the network. The routers, as well as
any other members of the group, receive the report.

The one exception to this scenario is the all-hosts group. A timer is never set for this
group and a report is never sent.

Membership Report: IGMP_HOST_MEMBERSHIP_REPORT

The receipt of an IGMP membership report is one of the two events we mentioned in
Section 13.1 that does not result in an IGMP message. The effect of the message is local
to the interface on which it was received. Figure 13.18 shows the message processing.

123
124

case IGMP_HOST_MEMBERSHIP_REPORT:
++igmpstat.igps_rcv_reports;

igrnp.c

125 if (ifp :: &loif)
126 break;

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

if (!IN_MULTICAST(ntohl(igmp->igmp_group.s_addr))
igmp->igmp_group.s_addr !: ip->ip_dst.s_addr)
++igmpstat.igps_rcv_badreports;
m_freem(m);
return;

]
/*

if

II
{

KLUDGE: if the IP source address of the report has an
unspecified {i.e., zero) subnet number, as is allowed for
a booting host, replace it with the correct subnet number
so that a process-level multicast routing demon can

* determine which subnet it arrived from. This is necessary
* to compensate for the lack of any way for a process to
* determine the arrival interface of an incoming packet.
*/

((ntohl(ip->ip_src.s_addr) & IN_CLASSA_NET) == 0) {
IFP TO IA(ifp, ia);
if (ia)

ip->ip_src.s_addr = htonl(ia->ia_subnet);
}
/*

* If we belong to the group being reported, stop
* our timer for that group.
*/

IN_LOOKUP_MULTI(igmp->igmp_group, ifp, inm);
if (inm != NULL) {

inm->inm_timer = 0;
++igmpstat.igps_rcv_ourreports;

}
break;

Figure 13.18 Input processing of the IGMP report message.

igmp.c

Ex.1013.420DELL

13

n

Section 13.8
Leaving a Group: igmp_leavegroup Function

395

Reports sent to the loopback interface are discarded, as are membership reports sent
to the incorrect multicast group. That is, the message must be addressed to the group
identified within the message.

The source address of an incompletely initialized host might not include a network
or host number (or both). ±gml~_report looks at the class A network portion of the
address, which can only be 0 when the network and subnet portions of the address are
0. If this is the case, the source address is set to the subnet address, which includes the
network ID and subnet ID, of the receiving interface. The only reason for doing this is
to inform a processqevel daemon of the receiving interface, which is identified by the
subnet number.

If the receiving interface belongs to the group being reported, the associated report
timer is reset to 0. In this way the first report sent to the group stops any other hosts
from issuing a report. It is only necessary for the router to know that at least one inter-
face on the network is a member of the group. The router does not need to maintain an
explicit membership list or even a counter.

13.8 Leaving a Group: igmp_leavegroup Function

We saw in Chapter 12 that in_delmulti calls igmp_leavegroup when the last refer-
ence count in the associated in_mul t i structure drops to 0.

179 void
180 igmp_leavegroup(inm) @mp.c
181 struct in_multi *inm;
182 {
183 /*
184 * No action required on leaving a group.
185 */
186)

Figure 13.19 igmp_leavegroup function. ¯ igmp.c

179-:86 As we can see, IGMP takes no action when an interface leaves a group. No explicit
notification is sent--the next time a multicast router issues an IGMP query, the interface
does not generate an IGMP report for this group. If no report is generated for a group,
the multicast router assumes that all the interfaces have left the group and stops for-
warding multicast packets for the group to the network.

If the interface leaves the group while a report is pending (i.e., the group’s report
timer is running), the report is never sent, since the timer is discarded by in_delmul t i
(Figure 12.36) along with the in_multi structure for the group when
i cmp_l eavegroup returns.

Ex.1013.421DELL

396

13.9

IGMP: Internet Group Management Protocol Chapter 13

Summary

In this chapter we described IGMP, which communicates IP multicast membership
information between hosts and routers on a single network. IGMP membership reports
are generated when an interface joins a group, and on demand when multicast routers
issue an IGMP report query message.

The design of IGMP minimizes the number of messages required to communicate
membership information:

¯ Hosts announce their membership when they join a group.
¯ Response to membership queries are delayed for a random interval, and the first

response suppresses any others.
¯ Hosts are silent when they leave a group.
¯ Membership queries are sent no more than once per minute.

Multicast routers share the IGMP information they collect with each other (Chapter 14)
to route multicast datagrams toward remote members of the multicast destination
group.

Exercises

13.1 Why isn’t it necessary to respond to an IGMP query on the loopback interface?

13.2 Verify the assumption stated on lines 226 to 229 in Figure 13.15.

13.3 Is it necessary to set random delays for membership queries that arrive on a point-to-point
network interface?

14,"

Ex.1013.422DELL

r 13

~hip
orts
tters

.cate

first

..r 14)
ation

,-point

14.1

ld

IP Multicast Routing

Introduction

The previous two chapters discussed multicasting on a single network. In this chapter
we look at multicasting across an entire internet. We describe the operation of the
mrou~ed program, which computes the multicast routing tables, and the kernel func-
tions that forward multicast datagrams between networks.

Technically, multicast packets are forwarded. In this chapter we assume that every multicast
packet contains an entire datagram (i.e., there are no fragments), so we use the term datagram
exclusively. Net/3 forwards IP fragments as well as IP datagrams.

Figure 14.1 shows several versions of mroue÷d and how they correspond to the
BSD releases. The m~vou~ed releases include both the user-level daemons and the
kernel-level multicast code.

mrouged
version Description

1.2 modifies the 4.3BSD Tahoe release
2.0 included with 4.4BSD and Net/3
3.3 modifies SunOS 4.1.3

Figure 14.1 mrou~ed and IP multicasting releases.

IP multicast technology is an active area of research and development. This chapter
discusses version 2.0 of the multicast software, which is included in Net/3 but is consid-
ered an obsolete implementation. Version 3.3 was released too late to be discussed fully
in this text, but we will point out various 3.3 features along the way.

397

Ex.1013.423DELL

398 IP Multicast Routing
Chapter 14

Because commercial multicast routers are not widely deployed, multicast networks
are often constructed using multicast tunnels, which connect two multicast routers over
a standard IP unicast internet. Multicast tunnels are supported by Net/3 and are con-
structed with the Loose Source Record Route (LSRR) option (Section 9.6). An improved
tunneling technique encapsulates the IP multicast datagram within an IP unicast data-
gram and is supported by version 3.3 of the multicast code but is not supported by
Net/3.

As in Chapter 12, we use the generic term transport protocols to refer to the protocols
that send and receive multicast datagrams, but UDP is the only Internet protocol that
supports multicasting.

14.2 Code Introduction

The three files listed in Figure 14.2 are discussed in this chapter.

File Description

ne¢inet / ip mroute, h multicast structure definitions

net±net / ip_mrou t e. c mulficast routing functions
net ine t / raw_ip, c multicast routing options

Figure 14.2 Files discussed in this chapter.

Global Variables

The global variables used by the multicast routing code are shown in Figure 14.3.

Variable

cached_mrt
cached_origin
cached_originmask
mrtstat
mrttable
numvifs
viftable

DataWpe

struct mrt
u_long
u_long
struct mrtstat
struct mrt *[]
vifi_t
struct vif[]

Description

one-behind cache for multicast routing
multicast group for one-behind cache
mask for multicast group for one-behind cache
multicast routing statistics
hash table of pointers to multicast routes
number of enabled multicast interfaces
array of virtual multicast interfaces

Figure 14.3 Global variables introduced in this chapter.

Statistics

All the statistics collected by the multicast routing code are found in the mr t s t at struc-
ture described by Figure 14.4. Figure 14.5 shows some sample output of these statistics,
from the net s t at - g s command.

Ex.1013.424DELL

~ter 14

a, orks
~ over
,~ con-
roved
data-
ed by

tocols
that

t struc-
atistics,

Section 14.3 Output Multicast Processing Revisited 399

mrtstat member Description Used by
SNMP

mrts_mrt_lookups
mrts_mrt_misses
mrts_grp_lookups
mrts_grp_misses
mrts no route
mrts_bad_tunnel
mrts_cant_tunnel

#multicast route Iookups
#multicast route cache misses
#group address lookups
#group address cache misses
#multicast route lookup failures
#packets with malformed tunnel options
#packets with no room for tunnel options

Figure 14.4 Statistics collected in this chapter.

mrtstat membersnetstat -gs output
multicast routing:

329569328 multicast route lookups
9377023 multicast route cache misses

242754062 group address lookups
159317788 group address cache misses

65648 datagrams with no route for origin
0 datagrams with malformed tunnel options
0 datagrams with no room tot tunnel options

mrts_mrt_lookups
mrts_mrt_misses
mrts_grp_lookups
mrts_grp_misses
mrts no route
mrts_bad_tunnel
mrts_cant_tunnel

Figure 14.5 Sample IP multicast routing statistics.

These statistics are from a system with two physical interfaces and one tunnel inter-
face. These statistics show that the multicast route is found in the cache 98% of the time.
The group address cache is less effective with only a 34% hit rate. The route cache is
described with Figure 14.34 and the group address cache with Figure 14.21.

SNMP Variables

There is no standard SNMP MIB for multicast routing, but [McCloghrie and Farinacci
1994a] and [McCloghrie and Farinacci 1994b] describe some experimental MIBs for
multicast touters.

14.3 Multicast Output Processing Revisited

In Section 12.15 we described how an interface is selected for an outgoing multicast
datagram. We saw that ip_output is passed an explicit interface in the ip_moptions
structure, or ip_output looks up the destination group in the routing tables and uses
the interface returned in the route entry.

If, after selecting an outgoing interface, ip_output loops back the datagram, it is
queued for input processing on the interface selected for output and is considered for
forwarding when it is processed by ipintr. Figure 14.6 illustrates this process.

Ex.1013.425DELL

4OO IP Multicast Routing Chapter 14

[Transport I
Transport

Protocols Protocols

ipintr

~~

ipintrq:

Tunnel Ethernet

Figure 14.6 Multicast output processing with loopback.

In Figure 14.6 the dashed arrows represent the original outgoing datagram, which
in this example is multicast on a local Ethernet. The copy created by ip_mloopback is
represented by the thin arrows; this copy is passed to the transport protocols for input.
The third copy is created when J_p_m£orward decides to forward the datagram
through another interface on the system. The thickest arrows in Figure 14.6 represents
the third copy, which in this example is sent on a multicast tunnel.

If the datagram is not looped back, ip_output passes it directly to ip_mforward,
where it is duplicated and also processed as if it were received on the interface that
ip_output selected. This process is shown in Figure]4.7.

Transport
Protocols

Tunnel Ethernet

Figure 14.7 Multicast output processing with no loopback.

Whenever ip_mforward calls ip_output to send a multicast datagram, it sets the
IP_FORWARDING flag so that ip_output does not pass the datagram back to
ip_mforward, which would create an infinite loop.

ip_mloopback was described with Figure 12.42. ip_mforward is described in
Section 14.8.

Ex.1013.426DELL

Section 14.4 mrouted Daemon 401

14.4

173--187

mrouted Daemon

Multicast routing is enabled and managed by a user-level process: the mrouted dae-
mon. mrouted implements the router portion of the IGMP protocol and communicates
with other multicast routers to implement multicast routing between networks. The
routing algorithms are implemented in mrouted, but the multicast routing tables are
maintained in the kernel, which forwards the datagrams.

In this text we describe only the kernel data structures and functions that support
mrouted--we do not describe mrouted itself. We describe the Truncated Reverse Path
Broadcast (TRPB) algorithm [Deering and Cheriton 1990], used to select routes for
multicast datagrams, and the Distance Vector Multicast Routing Protocol (DVMRP),
used to convey information between multicast routers, in enough detail to make sense
of the kernel multicast code.

RFC 1075 [Waitzman, Partridge, and Deering 1988] describes an old version of
DVMRR mrouted implements a newer version of DVMRP, which is not yet docu-
mented in an RFC. The best documentation for the current algorithm and protocol is
the source code release for mrouted. Appendix B describes where the source code can
be obtained.

The rarouted daemon communicates with the kernel by setting options on an
IGMP socket (Chapter 32). The options are summarized in Figure 14.8.

optname

DVMRP_INIT

DVMRP_DONE
DVMRP ADD VIF

DVMRP DEL VIF
DVMRP ADD LGRP
DVMRP DEL LGRP
DVMRP ADD MRT

DVMRP DEL MRT

optval type

struct vifctl
vifi_t
struct igrplctl
struct lgrplctl
struct mrtctl
struct in_addr

Function

ip_mrouter_init
ip_mrouter_done
add_vi£
del_vif
add_igrp
del_igrp
add_mrt
del_mrt

Description

mrouted is starting
mrou ted is shutting down
add virtual interface
delete virtual interface
add multicast group entry for an interface
delete multicast group entry for an interface
add multicast route
delete multicast route

Figure 14.8 Multicast routing socket options.

The socket options shown in Figure 14.8 are passed to rip_ctloutput (Section 32.8)
by the setsockope system call. Figure 14.9 shows the portion of r±p_ctlouepue
that handles the DVIvIRP_xxx options.

When s÷esockope is called, o~ equals PRCO_SETOPT and all the options are
passed to the ±p_rnrou~er_crad function. For the getsockopt system call, o~ equals
PRCO_GETOPT and EINVAL is returned for all the options.

Figure 14.10 shows the ip_mrouter_cmd function.

These "options" are more like commands, since they cause the kernel to update various data
structures. We use the term command throughout the rest of this chapter to emphasize this fact.

Ex.1013.427DELL

402 IP Multicast Routing Chapter 14

173 case DVMRP_INIT:
174 case DVMRP_DONE:
175 case DVMRP_ADD_VIF:
176 case DVMRP_DEL_VIF:
177 case DVMRP_ADD_LGRP:
178 case DVHRP_DEL_LGRP:
179 case DVHRP_ADD_MRT:
180 case DVMRP_DEL_MRT:
181 if (op == PRCO_SETOPT) {
182 error = ip_mrouter_cmd(optname,
183 if (*m)
184 (void) m_free(*m);
185] else
186 error = EINVAL;
187 return (error);

so, *m);

Figure 14.9 rip_ctloutput func~on: DVMRP_xxx socket options.

84 in[
85 ip_mrouter_cmd(cmd, so, m)
86 int cmd;
87 struct socket *so;
88 struct mbuf *m;
89 {
90 int error = 0;

91
92
93
94

95
96
97

98
99

i00

i01
102
103
104
105
106

107
108
109
ii0
iii
112

if (cmd !: DVMRP_INIT && so != ip_mrouter)
error = EACCES;

else
switch (cmd) {

case DVMRP_INIT:
error = ip_mrouter_init(so);
break;

case DVMRP_DONE:
error = ip_mrouter_done();
break;

case DVMRP_ADD_VIF:
if (m == NULL I I m->m_len < sizeof(struct vifctl))

error = EINVAL;
else

error = add_vif(mtod(m, struct vifctl *));
break;

case DVMRP_DEL_VIF:
if (m == NULL I I m->m_len < sizeof(short))

error = EINVAL;
else

error = del_vif(mtod(m, vifi_t *));
break;

raw_ip.c

raw_ip.c

ip_mroute.c

Ex.1013.428DELL

Section 14.4
mrouted Daemon 40,%

84--92

94--142

146--157

113
114
115
116
117
118

119
120
121
122
123
124

125
126
127
128
129
130

131
132
133
134
135
136

137
138
139
140
141
142 }

case DVMRP ADD LGRP
if (m == NULL II m->m_len < sizeof(struct igrplctl))

error = EINVAL;
else

error = add_igrp(mtod(m, struct igrplctl *));
break;

case DVMRP_DEL_LGRP:
if (m == NULL II m->m_len < sizeof(struct igrplctl))

error = EINVAL;
else

error = del_igrp(mtod(m, struct igrplctl *));
break;

case DVMRP_ADD_MRT:
if (m == NULL II m->m_len < sizeof(struct mrtctl))

error = EINVAL;
else

error = add_mrt(mtod(m, struct mrtctl *));
break;

case DVMRP_DEL_MRT:
if (m :: NULL I J m->m_len < sizeof(struct in_addr))

error : EINVAL;
else

error = del_mrt(mtod(m, struct in_addr *));
break;

default:
error = EOPNOTSUPP;
break;

}
return (error);

Figure 14.10 ip_mrouter_cmd function.
ip_mroute.c

The first command issued by mrouted must be DVMRP INIT. Subsequent com-
mands must come from the same socket as the DVMRP IN~-T command. EACCES is
returned when other commands are issued on a different ~-ocket.

Each case in the switch checks to see if the right amount of data was included
with the command and then calls the matching function. If the command is not recog-
nized, EOPNOTSUPP is returned. Any error returned from the matching function is
posted in error and returned at the end of the function.

Figure 14.11 shows ip_mrouter_init, which is called when mrouted issues the
DVMRP_INIT command during initialization.

If the command is issued on something other than a raw IGMP socket, or if
DVMRP_INIT has already been set, EOPNOTSUPP or EADDRINUSE are returned respec-
tively. A pointer to the socket on which the initialization command is issued is saved in
the global ip_mrouter. Subsequent commands must be issued on this socket. This
prevents the concurrent operation of more than one instance of mrouted.

Ex.1013.429DELL

404

14.5

IP Multicast Routing Chapter 14

146
147
148
149
150
151
152

static int
ip_mrouter_init(so)
struct socket *so;
{

if (so->so_type != SOCK_RAW I I
so->so_proto->pr_protocol != IPPROTO_IGMP)
return (EOPNOTSUPP)

153 if (ip_mrouter != NULL)
154 return (EADDRINUSE)

155

156
157

ip_mroute.c

ip_mrouter : so;

return {0);

Figure 14.11 ip_mrouter_init function: DV}4RP_INIT command.

ip_mroute.c

The remainder of the DVMRP_XXX commands are described in the following sections.

Virtual Interfaces

When operating as a multicast router, Net/3 accepts incoming multicast datagrams,
duplicates them and forwards the copies through one or more interfaces. In this way,
the datagram is forwarded to other multicast routers on the internet.

An outgoing interface can be a physical interface or it can be a multicast tunnel.
Each end of the multicast tunnel is associated with a physical interface on a multicast
router. Multicast tunnels allow two multicast routers to exchange multicast datagrams
even when they are separated by routers that cannot forward multicast datagrams. Fig-
ure 14.12 shows two multicast routers connected by a multicast tunnel.

Network A

tunnel T~

Network Barbitrary collection of unicast
IP routers that implement LSRR

W
src = HS
dst = T~

IP unicast
LSRR = ITS,G}

mf
src = HS src = HS

IP dst = G dst = G
datagra hardware multicast hardware multicast

no LSRR no LSRR

Figure 14.12 A multicast hannel.

In Figure 14.12, the source host HS on network A is multicasting a datagram to group G.
The only member of group G is on network B, which is connected to network A by a
multicast tunnel. Router A receives the multicast (because multicast routers receive al!

Ex.1013.430DELL

Section 14.5 Virtual Interfaces 405

multicasts), consults its multicast routing tables, and forwards the datagram through
the multicast tunnel.

The tunnel starts on the physical interface on router A identified by the IP unicast
address T s. The turmel ends on the physical interface on router B identified by the IP
unicast address, T e. The tunnel itself is an arbitrarily complex collection of networks
connected by IP unicast routers that implement the LSRR option. Figure 14.13 shows
how an IP LSRR option implements the multicast tunnel.

IP header
System

ip_src ip_ds t

HS HS G
Ts HS Te
Te HS G
Te HS G

Source route option
offset addresses Description

on network A
8 Ts ¯ G !on tunnel

12 Ts see text ¯ after ip_dooptions on router B
after ip_mforward on router B

Figure 14.13 LSRR multicast tunnel options.

The first line of Figure 14.13 shows the datagram sent by HS as a multicast on net-
work A. Router A receives the datagram because multicast routers receive all multi-
casts on their locally attached networks.

To send the datagram through the tunnel, router A inserts an LSRR option in the IP
header. The second line shows the datagram as it leaves A on the tunnel. The first
address in the LSRR option is the source address of the tunnel and the second address is
the destination group. The destination of the datagram is Te--the other end of the tun-
nel. The LSRR offset points to the destination group.

The tunneled datagram is forwarded through the internet unti! it reaches the other
end of the tunnel on router B.

The third line of the figure shows the datagram after it is processed by
ip_dooptions on router B. Recall from Chapter 9 that ip_dooptions processes the
LSRR option before the destination address of the datagram is examined by ipintr.
Since the destination address of the datagram (Te) matches one of the interfaces on
router B, ip_dooptions copies the address identified by the option offset (G in this
example) into the destination field of the IP header. In the option, G is replaced with the
address returned by ip_rtaddr, which normally selects the outgoing interface for the
datagram based on the IP destination address (G in this case). This address is irrele-
vant, since ip_mforward discards the entire option. Finally, ip_dooptions advances
the option offset.

The fourth line in Figure 14.13 shows the datagram after ipintr calls
ip_raforward, where the LSRR option is recognized and removed from the datagram
header. The resulting datagram looks like the original multicast datagram and is pro-
cessed by ip_raforward, which in our example forwards it onto network B as a multi-
cast datagram where it is received by HG.

Multicast ttmnels constructed with LSRR options are obsolete. Since the March
1993 release of rnrouted, tunnels have been constructed by prepending another IP
header to the IP multicast datagram. The protocol in the new IP header is set to 4 to
indicate that the contents of the packet is another IP packet. This value is documented

Ex.1013.431DELL

406 IP Multicast Routing Chapter 14

in RFC 1700 as the "IP in IP" protocol.
of mrouted for backward compatibility.

LSRR tunnels are supported in newer versions

Virtual Interface Table

105--110

111--116

For both physical interfaces and tunnel interfaces, the kernel maintains an entry in a
virtual interface table, which contains information that is used only for multicasting.
Each virtual interface is described by a v± f structure (Figure 14.14). The global variable
viftable is an array of these structures. An index to the table is stored in a vifi_t
variable, which is an unsigned short integer.

105 struct vif {
ip_mroute.h

106 u_char v_flags; /* VIFF_ flags */
107 u_char v_threshold; /* min ttl required to forward on vif */
108 struct in_addr v_icl_addr; /* local interface address */
109 struct in_addr v_rmt_addr; /* remote address (tunnels only) */
ii0 struct ifnet *v_ifp; /* pointer to interface *!
Iii struct in_addr *v Icl .grps; /* list of local grps (phyints only) */
112 int v icl .grps_max; /* malloc’ed number of v_Icl_grps */
113 int v icl .grps_n; /* used number of v_Icl_grps */
114 u_long v_cached_group; /* last grp looked-up (phyints only) */
115 int v_cached_result; /* last look-up result (phyints only) */
116 };

ip_mroute.h
Figure 14.14 vif structure.

The only flag defined for v_flags is VIFF_TUNNEL. When set, the interface is a
tunnel to a remote multicast router. When not set, the interface is a physical interface on
the local system, v_threshold is the multicast threshold, which we described in Sec-
tion 12.9. v_lcl_addr is the unicast IP address of the local interface associated with
this virtual interface, v_rmt_addr is the unicast IP address of the remote end of an IP
multicast tunnel. Either v_lcl_addr or v_rmt_addr is nonzero, but never both. For
physical interfaces, v_ifp is nonnull and points to the ifnet structure of the local
interface. For tunnels, v_i fp is null.

The list of groups with members on the attached interface is kept as an array of IP
multicast group addresses pointed to by v_lcl_grps, which is always null for tunnels.
The size of the array is in v_lcl_grps_max, and the number of entries that are used is
in v_lcl_grps_n. The array grows as needed to accommodate the group membership
list. v_cached_group and v_cached_result implement a one-entry cache, which
contain the group and result of the previous lookup.

Figure 14.15 illustrates the viftable, which has 32 (MAXVIFS) entries.
viftable [2] is the last entry in use, so numvifs is 3. The size of the table is fixed
when the kernel is compiled. Several members of the vi f structure in the first entry of
the table are shown, v_ifp points to an ifnet structure, v_lcl_grps points to an
array of in_addr structures. The array has 32 (v_lcl_grps_max) entries, of which
only 4 (v_lcl_grps_n) are in use.

Ex.1013.432DELL

is

a

le
_e

’.h

a
)n

th
[P
or

al

IP

ip
:h

of
in

ch

Section 14.5 Virtual Interfaces 407

numvi f s: [3

viftable[0]

viftable[l]

viftable[2]

viftable[3]
through

viftable[31]

viftable []

v_ifp

v_icl_grps

v_ic l_grps_max
v_ 1 c l_g rp s _n

vif{}

vif{}

in_addr{}
in_addr{}
in_addr{}
in_addr{}

0
1
2
3

31

~[ifnet{}

Figure 14.15 viftable array.

mrouted maintains viftable through the DVNRP_ADD_VI F and
DVlVIRP_DEL_VTF commands. Normally all multicast<apable interfaces on the local
system are added to the table when rarouted begins. Multicast tunnels are added
when mrouted reads its configuration file, usually/etc/rarouted, conf. Commands
in this file can also delete physical interfaces from the virtual interface table or change
the multicast information associated with the interfaces.

A v±fcel structure (Figure 14.16) is passed by rarouted to the kernel with the
DVMRP ADD_VTF command. It instructs the kernel to add an interface to the table of
virtual interfaces.

76 struct vifctl {
77
78
79
8O
81
82 };

ip_mmute.h

vifi_t vifc_vifi; /* the index of the vif to be added */
u_char vifc_flags; /* VIFF_ flags (Figure 14.14) */
u_char vifc_threshold; /* min ttl required to f~rward on vif */
struct in_addr vifc icl addr; /* local interface address */
struct in_addr vifc_rmt_addr; /* remote address (tunnels only) */

ip_mroute.h
Figure 14.16 vifctl structure.

Ex.1013.433DELL

408 IP Multicast Routing Chapter 14

76-82 vifc_vifi identifies the index of the virtual interface within viftable. The
remaining four members, vifc_flags, vifc_threshold, vifc_lcl_addr, and
vi fc_rmt_addr, are copied into the vi f structure by the add_vi f function.

add_vi f Function

Figure 14.17 shows the add_vi f function.

202 static int
203 add_vif(vifcp)
204 struct vifctl *vifcp;
205 {
206 struct vif *vifp : viftable + vifcp->vifc_vifi;
207 struct ifaddr *ira;
208 struct ifnet *ifp;
209 struct ifreq ifr;
210 int error, s;
211 static struct sockaddr_in sin =
212 {sizeof(sin), AF_INET};

213
214
215
216

217
218
219
220
221

222

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

if (vifcp->vifc_vifi >_ MAXVIFS)
return (EINVAL);

if (vifp->v icl addr.s_addr != 0)
return (EADDRINUSE);

/* Find the interface with an address in AF_INET family */
sin.sin_addr - vifcp >vifc_Icl_addr;
ifa = ifa_ifwithaddr((struct sockaddr *) &sin);
if (ifa == 0)

return (EADDRNOTAVAIL);

s : splnet();

if (vifcp->vifc_flags & VIFF_TUNNEL)
vifp->v_rmt_addr = vifcp->vifc_rmt_addr;

else {
/* Make sure the interface supports multicast *!
ifp = ifa->ifa_ifp;
if ((ifp->if_flags & IFF_MULTICAST) == 0) {

splx(s);
return (EOPNOTSUPP);

}
/*

* Enable promiscuous reception of all IP multicasts
* from the interface.
*/

satosin(&ifr.ifr_addr)->sin_family = AF_INET;
satosin(&ifr.ifr_addr)->sin_addr.s_addr = INADDR_ANY;
error = (*ifp->if_ioctl) (ifp, SIOCADDMULTI, (caddr_t) & ifr);
if (error) {

splx(s);
return (error);

}
}

ip_mroute.c

Ex.1013.434DELL

14

he

Section 14.5 Virtual Interfaces

244
245
246
247

248
249
250

251
252
253

vifp->v_flags = vifcp->vifc_flags;
vifp->v_threshold : vifcp->vifc_threshold;
vifp->v_icl_addr = vifcp->vifc_icl_addr;
vifp->v_ifp : ifa->ifa_ifp;

/* Adjust numvifs up if the vifi is higher than numvifs */
if (numvifs <= vifcp->vifc_vifi)

numvifs = vifcp->vifc_vifi + i;

splx(s);
return (0);

Figure 14.17 add_vif function: DVMRP_ADD_VIF command.

409

202-216

217--221

222-224

225--243

244--253

Validate index

ip_mroute.c

If the table index specified by mrouted in vifc_vifi is too large, or the table
entry is already in use, EINVAL or EADDRINUSE is returned respectively.
Locate physical interface

i fa_ifwithaddr takes the unicast IP address in vifc_icl_addr and returns a
pointer to the associated i fnet structure. This identifies the physical interface to be
used for this virtual interface. If there is no matching interface, EADDRNOTAVAIL is
returned.

Configure tunnel interface

For a tunnel, the remote end of the tunnel is copied from the vifctl structure to
the vi f structure in the interface table.

Configure physical interface

For a physical interface, the link-level driver must support multicasting. The
SIOCADDMULTI command used with INADDR_ANY configures the interface to begin
receiving all IP multicast datagrams (Figure 12.32) because it is a multicast router.
Incoming datagrams are forwarded when ipintr passes them to ip_mforward.
Save multicast information

The remaining interface information is copied from the vi fct i structure to the vi f
structure. If necessary, numvifs is updated to record the number of virtual interfaces
in use.

del_vif Function

The function del_vi f, shown in Figure 14.18, deletes entries from the virtual interface
table. It is called when mrouted sets the DVMRP_DEL_VIF command.

Validate index

If the index passed to del_vi f is greater than the largest index in use or it refer-
ences an entry that is not in use, EINVAL or EADDRNOTAVAIL is returned respectively.

257-268

Ex.1013.435DELL

410

269-278

279-286

IP Multicast Routing Chapter 14

257
258
259
260
261
262
263
264

265
266
267
268

269

270
271
272
273
274
275
276
277
278

279
28O
281
282
283

284
285
286

static int
del_vif(vifip)
vifi_t *vifip;

struct vif *vifp = viftable + *vifip;
struct ifnet *ifp;
int i, s;
struct ifreq ifr;

if (*vifip >= numvifs)
return (EINVAL);

if (vifp->v Icl addr.s_addr == 0)
return (EADDRNOTAVAIL);

s : splnet() ;

if (! (vifp->v_flags & VIFF_TUNNEL)) {
if (vifp->v icl .grps)

free(vifp->v_Icl_grps, M_MRTABLE);
satosin(&ifr.ifr_addr)->sin_family = AF_INET;
satosin(&ifr.ifr_addr)->sin_addr.s_addr = INADDR ANY;
ifp = vifp->v_ifp;
(*ifp->if_ioctl) (ifp, SIOCDELMULTI, (caddr_t) & ifr);

}
bzero((caddr_t) vifp, sizeof(*vifp));

/* Adjust numvifs down *!
for (i = numvifs - I; i >= 0; i--)

if (viftable[i].v_icl_addr.s_addr != 0)
break;

numvifs : i + i;

splx(s);
return (0);

Figure 14.18 del_vif function: DVMRP DEL VIF command.

ip_mroute.c

ip_mroute.c

Delete interface
For a physical interface, the local group table is released, and the reception of all

multicast datagrams is disabled by SIOCDELMULTI. The entry in vi ftable is cleared
by bzero.
Adjust interface count

The for loop searches for the first active entry in the table starting at the largest
previously active entry and working back toward the first entry. For unused entries, the
s_addr member of v_lcl_addr (an in_addr structure) is 0. numvifs is updated
accordingly and the function returns.

SectioJ

14.6

87-~_

add_:

291-3~

302--3~

Ex.1013.436DELL

Section 14.6 IGMP Revisited 411

14.6 IGMP Revisited

87-90

Chapter 13 focused on the host part of the IGMP protocol, mrouted implements the
router portion of this protocol. For every physical interface, mrouted must keep track
of which multicast groups have members on the attached network, mrouted multicasts
an IGMP_HOST_MEMBERSHIP_QUERY datagram every 120 seconds and compiles the
resulting IGMP_HOST_MEMBERSHI P_REPORT datagrams into a membership array asso-
ciated with each network. This array is not the same as the membership list we
described in Chapter 13.

From the information collected, mrouted constructs the multicast routing tables.
The list of groups is also used to suppress multicasts to areas of the multicast internet
that do not have members of the destination group.

The membership array is maintained only for physical interfaces. Tunnels are
point-to-point interfaces to another multicast router, so no group membership informa-
tion is needed.

We saw in Figure 14.14 that v_lcl_grps points to an array of IP multicast groups.
mrouted maintains this list with the DVMRP_ADD_LGRP and DVMRP DEL LGRP com-
mands. An lgrplctl (Figure 14.19) structure is passed with both conS~man~s.

87 struct igrplctl {
88 vifi_t igc_vifi;
89 struct in_addr lgc_gaddr;
90 };

Figure 14.19 igrplctl structure.

ip_mroute.h

ip_mroute.h

The {interface, group} pair is identified by lgc_vi fi and lgc_gaddr. The inter-
face index (lgc_vifi, an unsigned short) identifies a virtual interface, not a physical
interface.

When an IGMP_HOST_MEMBERSHIP_REPORT datagram is received, the functions
shown in Figure 14.20 are called.

add_igrp Function

291-301

302-326

mrouted examines the source address of an incoming IGMP report to determine which
subnet and therefore which interface the report arrived on. Based on this information,
mrouted sets the DVMRP_ADD_LGRP command for the interface to update the member-
ship table in the kernel. This information is also fed into the multicast routing algo-
rithm to update the routing tables. Figure 14.21 shows the add_lgrp function.
Validate add request

If the request identifies an invalid interface, ETtWAL is returned. If the interface is
not in use or is a tunnel, EADDRNOTAVAIL is returned.

If needed, expand group array

If the new group won’t fit in the current group array, a new array is allocated. The
first time add_lgrp is called for an interface, an array is allocated to hold 32 groups.

:[

Ex.1013.437DELL

412 IP Multicast Routing Chapter 14

I mrouted

pro_ce_ss_ _ _~_ ~

~ ~ADD__LGRP option

IGMP_HOST_MEMBERSHI P_REPORT
datagram

Figure 14.20 IGMP report processing.

Each time the array fills, add_lgrp allocates a new array of twice the previous size.
The new array is allocated by malloc, cleared by bzero, and filled by copying the old
array into the new one with bcopy. The maximum number of entries,
v_lcl_grps_raax, is updated, the old array (if any) is released, and the new array is
attached to the vi f entry with v_lc l_grps.

The "paranoid" comment points out there is no guarantee that the memory allocated by
malloc contains all 0s.

327--332

Add new 9roup

The new group is copied into the next available entry and if the cache already con-
tains the new group, the cache is marked as valid.

The lookup cache contains an address, v_cached_group, and a cached lookup
result, v_cached_result. The grplst_raember function always consults the cache
before searching the membership array. If the given group matches v_cached_group,
the cached result is returned; otherwise the membership array is searched.

del_igrp Function

Group information is expired for each interface when no membership report has been
received for the group within 270 seconds, mrouted maintains the appropriate timers
and issues the DVMRP_DEL_LGRP command when the information expires. Figure 14.22
shows del_igrp.

Ex.1013.438DELL

~S~
is

by

)n-

.up
:he
t.lD,

k22

Section 14.6

291 static int
292 add_igrp(gcp)
293 struct igrplctl *gcp;
294 {
295 struct vif *vifp;
296 int s;

297 if (gcp->igc_vifi >: numvifs)
298 return (EINVAL);

299
3OO
301

302
303
304
305
306

307
308
309
310"
311
312
313
314
315
316
317
318
319
320

321
322
323
324

325
326
327

328
329

IGMP Revisited 413

330
331
332

ip_mroute.c

vifp : viftable + gcp->igc_vifi;
if (vifp->v_icl_addr.s_addr :: 0] I (vifp->v_flags & VIFF_TUNNEL))

return (EADDPdqOTAVAIL);

/* If not enough space in existing list, allocate a larger one */
s = splnet() ;
if (vifp->v_icl_grps_n + 1 >= vifp->v_icl_grps_max)

int num;
struct in_addr *ip;

num= vifp->v_icl_grps_max;
if (hum <= 0)

num= 32; /* initial number */
else

num += num; /* double last number */
ip = (struct in_addr *) malloc(num * sizeof(*ip)

M MRTABLE, M_NOWAIT);
if (ip :: NULL) {

splx(s);
return (ENOBUFS);

}
bzero((caddr_t) ip, num* sizeof(*ip)); /* XXX paranoid */
bcopy((caddr_t) vifp->v_icl_grps, (caddr_t) ip,

vifp->v_icl_grps_n * sizeof(*ip) ;

vifp->v icl .grps_max =num;
if (vifp->v_icl_grps)

free(vifp->v_icl_grps, M_MRTABLE)
vifp->v_icl_grps = ip;

splx(s);
]
vifp->v_icl_grps[vifp->v_lcl_grps_n++] = gcp->igc_gaddr;

if (gcp->igc_gaddr.s_addr =: vifp->v_cached_group)
vifp->v_cached_result = i;

splx(s);
return (0);

Figure 14.21 add_igrp function: process DVMRP ADD LGRP command.

ip_mroute.c

Ex.1013.439DELL

414 IP Multicast Routing Chapter 14

337-347

348-350

351--364

337 static int
338 del_igrp(gcp)
339 struct igrplctl *gcp;
340 {
341 struct vif *vifp;

342 int i, error, $;

343 if (gcp->igc_vifi >: numvifs)
344 return (EINVAL);
345 vifp = viftable + gcp->igc_vifi;
346 if (vifp->v_Icl_addr.s_addr =- 0 I I (vifp->v_flags & VIFF_TUNNEL))
347 return (EADDRNOTAVAIL);

348 s = splnet();

349
350

if (gcp->igc_gaddr.s_addr == vifp->v_cached_group)
vifp >v_cached_result : 0;

ip_mroute.c

351 error : EADDRNOTAVAIL;
352 for (i - 0; i < vifp->v_icl_grps_n; ++i)
353 if (same(&gcp->igc_gaddr, &vifp->v_icl_grps[i])) {
354 error = 0;
355 vifp->v_icl_grps_n--;
356 bcopy((caddr_t) & vifp->v_icl_grps[i + i],
357 (caddr_t) & vifp->v_icl_grps[i],
358 {vifp->v_icl_grps_n - i) * sizeof(struct in_addr));
359 error - 0;
360 break;
361 }
362 splx(s);
363 return (error);
364]

Figure 14.22 del_igrp function: process DVMRP_DEL_LGRP command.

ip_mroute.c

Validate interface index
If the request identifies an invalid interface, EINVAL is returned. If the interface is

not in use or is a tunnel, EADDRNOTAVAIL is returned.

Update lookup cache
If the group to be deleted is in the cache, the lookup result is set to 0 (false).

Delete group

EADDRNOTAVAIL is posted in error in case the group is not found in the member-
ship list. The for loop searches the membership array associated with the interface. If
same (a macro that uses bcmp to compare the two addresses) is true, error is cleared
and the group count is decremented, bcopy shifts the subsequent array entries down
to delete the group and del_lgrp breaks out of the loop.

If the loop completes without finding a match, EADDRNOTAVAIL is returned; other-
wise 0 is returned.

Ex.1013.440DELL

~r 14

,ute.c

~oute.c

ace is

rnber-
Lce. If
:eared
down

other-

Section 14.6 IGMP Revisited 415

grpl st_member Function

During multicast forwarding, the membership array is consulted to avoid sending data-
grams on a network when no member of the destination group is present.
grpl s t_meraber, shown in Figure 14.23, searches the list looking for the given group
address.

368 static int
369 grplst_member(vifp, gaddr)
370 struct vif *vifp;
371 struct in_addr gaddr;
372 {
373 int i, s;
374 u_long addr;

375 mrtstat.mrts_grp_lookups++;

376 addr : gaddr.s_addr;
377 if (addr =: vifp->v_cached_group)
378 return (vifp->v_cached_result);

379 mrtstat.mrts_grp_misses++;

380 for (i : O; i < vifp->v icl .grps_n; ++i)
381 if (addr :: vifp->v icl .grps[i].s_addr) {
382 s = splnet();
383 vifp->v_cached_group = addr;
384 vifp->v_cached_result _ i;
385 splx(s);
386 return (i);
387 }
388 s = splnet();
389 vifp->v_cached_group = addr;
390 vifp->v_cached_result = O;
391 splx(s);
392 return (0);
393 }

Figure 14.23 grplst_member function.

ip_mroute.c

ip_mroute.c

368-379

380-393

Check the cache

If the requested group is located in the cache, the cached result is returned and the
membership array is not searched.
Search the membership array

A linear search determines if the group is in the array. If it is found, the cache is
updated to record the match and one is returned. If it is not found, the cache is updated
to record the miss and 0 is returned.

Ex.1013.441DELL

416 IP Multicast Routing

14.7 Multicast Routing

Chapter 14

As we mentioned at the start of this chapter, we will not be presenting the TRPB algo-
rithm implemented by rnrouted, but we do need to provide a general overview of the
mechanism to describe the multicast routing table and the multicast routing functions in
the kernel. Figure 14.24 shows the sample multicast network that we use to illustrate
the algorithms.

tunnel

Figure 14.24 Sample multicast network.

In Figure 14.24, routers are shown as boxes and the ellipses are the multicast net-
works attached to the routers. For example, router D can multicast on network D and
C. Router C can multicast to network C, to routers A and .B through point-to-point
interfaces, and to E through a multicast tunnel.

The simplest approach to multicast routing is to select a subset of the internet topol-
ogy that forms a spanning tree. If each router forwards multicasts along the spanning
tree, every router eventually receives the datagram. Figure 14.25 shows one spanning
tree for our sample network, where host S on network A represents the source of a
multicast datagram.

For a discussion of spanning trees, see [Tanenbaum 1989] or [Perlman 1992].

tunnel

Figure 14.25 Spanning tree for network A.

Ex.1013.442DELL

pter 14

~ algo-
of the
.ons in
istrate

st net-
D and
,-point

topol-
Lnning
Lnning
:e of a

Section 14.7
Multicast Routing 417

We constructed the tree based on the shortest reverse path from every network back
to the source in network A. In Figure 14.25, the link between routers B and C is omitted
to form the spanning tree. The arrows between the source and router A, and between
router C and D, emphasize that the multicast network is part of the spanning tree.

If the same spanning tree were used to forward a datagram from network C, the
datagram would be forwarded along a longer path than needed to get to a recipient on
network B. The algorithm described in RFC 1075 computes a separate spanning tree for
each potential source network to avoid this problem. The routing tables contain a net-
work number and subnet mask for each route, so that a single route applies to any host
within the source subnet.

Because each spanning tree is constructed to provide the shortest reverse path to the
source of the datagram, and every network receives every multicast datagram, this pro-
cess is called reverse path broadcasting or RPB.

The RPB protocol has no knowledge of multicast group membership, so many data-
grams are unnecessarily forwarded to networks that have no members in the destina-
tion group. If, in addition to computing the spanning trees, the routing algorithm
records which networks are leaves and is aware of the group membership on each net-
work, then routers attached to leaf networks can avoid forwarding datagrams onto the
network when there there is no member of the destination group present. This is called
truncated reverse path broadcasting (TRPB), and is implemented by version 2.0 of
mrouted with the help of IGMP to keep track of membership in the leaf networks.

Figure 14.26 shows TRPB applied to a multicast sent from a source on network C
and with a member of the destination group on network B.

tunnel

Figure 14.26 TRPB routing for network C.

We’ll use Figure 14.26 to illustrate the terms used in the Net/3 multicast routing
table. In this example, the shaded networks and routers receive a copy of the multicast
datagram sent from the source on network C. The link between A and B is not part of
the spanning tree and C does not have a link to D, since the multicast sent by the source
is received directly by C and D.

In this figure, networks A, B, D, and E are leaf networks. Router C receives the
multicast and forwards it through the interfaces attached to routers A, B, and E--even

Ex.1013.443DELL

418 IP Multicast Routing
Chapter 14

though sending it to A and E is wasted effort. This is a major weakness of the TRPB
algorithm.

The interface associated with network C on router C is called the parent because it is
the interface on which router C expects to receive multicasts originating from network
C. The interfaces from router C to routers A, B, and E, are child interfaces. For router A,
the point-to-point interface is the parent for the source packets from C and the interface
for network A is a child. Interfaces are identified as a parent or as a child relative to the
source of the datagram. Multicast datagrams are forwarded only to the associated child
interfaces, and never to the parent interface.

Continuing with the example, networks A, D, and E are not shaded because they
are leaf networks without members of the destination group, so the spanning tree is
truncated at the routers and the datagram is not forwarded onto these networks.
Router B forwards the datagram onto network B, since there is a member of the destina-
tion group on the network. To implement the truncation algorithm, each multicast
router that receives the datagram consults the group table associated with every virtual
interface in the router’s v J_ ftable.

The final refinement to the multicast routing algorithm is called reverse path
multicasting (RPM). The goal of RPM is to prune each spanning tree and avoid sending
datagrams along branches of the tree that do not contain a member of the destination
group. In Figure 14.26, RPM would prevent router C from sending a datagram to A and
E, since there is no member of the destination group in those branches of the tree.
Version 3.3 of mrouted implements RPM.

Figure 14.27 shows our example network, but this time only the routers and net-
works reached when the datagram is routed by RPM are shaded.

Figure 14.27 RPM routing for network C.

To compute the routing tables corresponding to the spanning trees we described,
the multicast routers communicate with adjacent multicast routers to discover the
multicast internet topology and the location of multicast group members. In Net/3,
DVMRP is used for this communication. DVMRP messages are transmitted as IGMP
datagrams and are sent to the multicast group 224.0.0.4, which is reserved for DVMRP
communication (Figure 12.1).

In Figure 12.39, we saw that incoming IGMP packets are always accepted by a

Ex.1013.444DELL

14

PB

: is
~rk
A,
Ice

:he
ild

tey
~ is
ks.
[la-

ast
ual

ath
ing
ion
md
:ee.

~et-

~ed,
the
t/3,
.MP

,y a

Section 14.7 Multicast Routing 419

multicast router. They are passed to ±gmp_±nput, to r±p_±nput, and then read by
mrouted on a raw IGMP socket, mroueed sends DVMRP messages to other multicast
routers on the same raw IGMP socket.

For more information about RPB, TRPB, RPM, and the DVMRP messages that are
needed to implement these algorithms, see [Deering and Cheriton 1990] and the source
code release of mrouted.

There are other multicast routing protocols in use on the Internet. Proteon routers
implement the MOSPF protocol described in RFC 1584 [Moy 1994]. PIM (Protocol Inde-
pendent Multicasting) is implemented by Cisco routers, starting with Release 10.2 of
their operating software. PIM is described in [Deering et al. 1994].

Multicast Routing Table

We can now describe the implementation of the multicast routing tables in Net/3. The
kernel’s multicast routing table is maintained as a hash table with 64 entries
(MRTHASHSTZ). The table is kept in the global array mrttable, and each entry points
to a linked list of tort structures, shown in Figure 14.28.

120
121
122
123
124
125
126
127

struct mrt {

};

~_mmute.h
struct in_addr mrt_origin; /* subnet origin of-multicasts */
struct in_addr mrt_originmask; /* subnet mask for origin */
vifi_t mrt_parent; /* incoming vif */
vifbitmap_t mrt_children; /* outgoing children vifs */
vifbitmap_t mrt_leaves; /* subset of outgoing children vifs */
struct mrt *mrt_next; /* forward link */

Figure 14.28 mrt structure.
ip_mroute.h

120--127 mrtc_origin and mrtc_originmask identify an entry in the table,
mrtc_parent is the index of the virtual interface on which all multicast datagrams
from the origin are expected. The outgoing interfaces are identified within
mrtc_ch±ldren, which is a bitmap. Outgoing interfaces that are also leaves in the
multicast routing tree are identified in mrec_leaves, which is also a bitmap. The last
member, mre_nex~, implements a linked list in case multiple routes hash to the same
array entry.

Figure 14.29 shows the organization of the multicast routing table. Each tort struc-
ture is placed in the hash chain that corresponds to return value from the nethash
function shown in Figure 14.31.

The multicast routing table maintained by the kernel is a subset of the routing table
maintained within mroueed and contains enough information to support multicast for-
warding within the kernel. Updates to the kernel table are sent with the
DVMRP_ADD_MRT command, which includes the mrtctl structure shown in Fig-
ure 14.30.

Ex.1013.445DELL

420 IP Multicast Routing
Chapter 14

mrttable [] : tort{}
mrt_origin

mrt_originmask
mrt_parent

mrt_children ~

mrt_leaves
mrt_next -

63 mrt_next mrt_next

95--101

Figure 14.29 Multicast routing table.

ip_mroute.h
95 struct mrtctl {
96 struct in_addr mrtc_origin; /* subnet origin of multicasts */

97 struct in_addr mrtc_origirumask; /* subnet mask for origin */

98 vifi_t mrtc_parent; /* incoming vif */

99 vifbitmap_t mrtc_children; /* outgoing children vifs */

i00 vifbitmap_t mrtc_leaves; /* subset of outgoing children vifs */

101 } ; ip_mroute.h

Figure 14.30 mrtctl structure.

The five members of the mrtctl structure carry the information we have already
described (Figure 14.28) between mrouted and the kernel.

The multicast routing table is keyed by the source IP address of the multicast data-
gram. nethash (Figure 14.31) implements the hashing algorithm used for the table. It
accepts the source IP address and returns a value between 0 and 63 (MRTHASHSIZ - 1).

ip_mroute.c
398 static u_long
399 nethash (in)
400 struct in_addr in;
401 {
402 u_long n;

403 n = in_netof(in);
404 while ((n & 0xff) == 0)
405 n >>= 8;
406 return (MIRTHAS}{MOD(n));
407 }

Figure 14.31 nethash function.

Ex.1013.446DELL

.h

ty

:e.c

te.c

Section 14.7 Multicast Routing 421

398-407 in_netof returns in with the host portion set to all 0s leaving only the class A, B,
or C network of the sending host in n. The result is shifted to the right until the low-
order 8 bits are nonzero. MRTHASHMOD is

#define MRTHASH~IOD(h) ((h) & (MRTHASHSIZ - i))

The low-order 8 bits are logically ANDed with 63, leaving only the low-order 6 bits,
which is an integer in the range 0 to 63.

Doing two function calls (nethash and in_netof) to calculate a hash value is an expensive
algorithm to compute a hash for a 32-bit address.

del_mrt Function

The mrou¢ed daemon adds and deletes entries in the kernel’s multicast routing table
through the DVMRP_ADD_MRT and DVMRP_DEL_MRT commands. Figure 14.32 shows
the de l_mr¢ function.

451 static int
452 del_mrt(origin)
453 struct in_addr *origin;
454 {
455 struct mrt *rt, *prev_rt;
456 u_long hash = nethash(*origin);
457 int s;

458 for (prev_rt : rt : mrttable[hash]; rt; prev_rt : rt,
459 if (origin->s_addr == rt->mrt_origin.s_addr)
460 break;
461 if (!rt)
462 return (ESRCH);

463 s : spinet();

464 if (rt :: cached_mrt)
465 cached_mrt : NULL;

466 if (prev_rt -: rt)
467 mrttable[hash] = rt->mrt_next;
468 else
469 prev_rt->mrt_next = rt->mrt_next;
470 free(rt, M_MRTABLE);

471 splx(s);
472 return (0);
473 }

Figure 14.32 del_mrt function: process DVMRP DEL MRT command

ip_mroute.c

rt : rt->mrt_next)

ip_mroute.c

Find route entry
The for loop starts at the entry identified by hash (initialized in its declaration

from he�hash). If the entry is not located, ESRCH is returned.

Ex.1013.447DELL

422 IP Multicast Routing
Chapter 14

463-473

Delete route entry
If the entry was stored in the cache, the cache is invalidated. The entry is unlinked

from the hash chain and released. The ± £ statement is needed to handle the special case
when the matched entry is at the front of the list.

add_mr t Function

The add_tort function is shown in Figure 14.33.

411 static int
412 add_mrt(mrtcp)
413 struct mrtctl *mrtcp;
414 {
415 struct mrt *rt;
416 u_long hash;

417 int s;

418
419
420
421
422
423
424
425
426
427

428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444

if (rt : mrtfind(mrtcp->mrtc_origin)) {
/* Just update the route */
s = splnet();
rt->mrt_parent = mrtcp->mrtc~arent;
ViFM_COPY(mrtcp->mrtc_children, rt->mrt_children);
ViFM_COPY(mrtcp->mrtc_leaves, rt->mrt_leaves);
splx(s);
return (0);

445
446
447

spinet();

rt = (struct mrt *) malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
if (rt :: NULL) {

splx(s);
return (ENOBUFS);

}
/*

* insert new entry at head of hash chain

*/
rt->mrt_origin = mrtcp->mrtc_origin;
rt->mrt_originmask : mrtcp->mrtc_originmask;
rt->mrt~arent : mrtcp->mrtc~arent;
ViFM_COPY(mrtcp->mrtc_children, rt->mrt_children);
ViFM_COPY(mrtcp->mrtc_leaves, rt->mrt_leaves);
/* link into table */
hash = nethash(mrtcp->mrtc_origin);
rt->mrt_next = mrttable[hash];
mrttable[hash] = rt;

splx(s);
return (0);

Figure 14.33 add_tort function: process DVMRP_ADD_MRT command.

ip_mroute.c

ip_mroute.c

Ex.1013.448DELL

Section 14.7 Multicast Routing 423

411--427

428-447

Update existing route
If the requested route is already in the routing table, the new information is copied

into the route and add_tort returns.

Allocate new route
An rnrt structure is constructed in a newly allocated mbuf with the information

from mrtct 1 structure passed with the add request. The hash index is computed from
mr t c_origin, and the new route is inserted as the first entry on the hash chain.

tort find Function

The multicast routing table is searched with the mrt find function. The source of the
datagram is passed to tort find, which returns a pointer to the matching tort structure,
or a null pointer if there is no match.

477 static struct mrt *
478 mrtfind(origin)
479 struct in_addr origin;
48O {
481 struct mrt *rt;
482 u_int hash;
483 int s;

ip_mroute.c

484 mrtstat.mrts_mrt_lookups++;

485
486
487

if (cached_mrt != NULL &&
(origin.s_addr & cached_originmask) :: cached_origin)
return (cached_mrt);

488 mrtstat.mrts mrt misses++;

489 hash : nethash(origin);
490 for (rt : mrttable[hash]; rt; rt : rt >mrt_next)
491 if ((origin.s_addr & rt->mrt_originmask.s_addr) ==
492 rt->mrt_origin.s_addr) {
493 s = splnet();
494 cached_mrt = rt;
495 cached_origin = rt->mrt_origin.s_addr;
496 cached_originmask = rt->mrt_originmask.s_addr;
497 splx(s);
498 return (rt);
499 }
500 return (NULL);
501 }

Figure 14.34 tort find function.

ip_mroute.c

Check route lookup cache
477-488 The given source IP address (origin) is logically ANDed with the origin mask in

the cache. If the result matches cached_origin, the cached entry is returned.

Ex.1013.449DELL

424

489-501

14.8

IP Multicast Routing
Chapter 14

Check the hash table
nethash returns the hash index for the route entry. The for loop searches the

hash chain for a matching route. When a match is found, the cache is updated and a
pointer to the route is returned. If a match is not found, a null pointer is returned.

Multicast Forwarding: ip_mforward Function

Multicast forwarding is implemented entirely in the kernel. We saw in Figure 12.39 that
±p±ntr passes incoming multicast datagrams to ±p m£orward when ±p rarouter is
nonnull, that is, when mrout ed is running.

We also saw in Figure 12.40 that ip_output can pass multicast datagrams that
originate on the local host to ip m forward to be routed to interfaces other than the one
interface selected by ip_output.

Unlike unicast forwarding, each time a multicast datagram is forwarded to an inter-
face, a copy is made. For example, if the local host is acting as a multicast router and is
connected to three different networks, multicast datagrams originating on the system
are duplicated and queued for output on all three interfaces. Additionally, the datagram
may be duplicated and queued for input if the multicast loopback flag was set by the
application or if any of the outgoing interfaces receive their own transmissions.

Figure 14.35 shows a multicast datagram arriving on a physical interface.

Transport
Protocols

accepted by ’~

discarded datagrams
(Figure 14.39)

ipintrq:

incoming
multicast

Tunnel Ethernet

Figure 14.35 Multicast datagram arriving on physical interface.

In Figure 14.35, the interface on which the datagram arrived is a member of the des-
tination group, so the datagram is passed to the transport protocols for input process-
ing. The datagram is also passed to ip_mforward, where it is duplicated and

Ex.1013.450DELL

apter 14

:hes the
and a

2.39 that
)uter is

~ms that
the one

an inter-
:er and is
.e system
Jatagram
;et by the

Ethernet

c of the des-
)ut process-
licated and

Section 14.8 Multicast Forwarding: ip_mforward Function 425

forwarded to a .physical interface and to a tunnel (the thick arrows), both of which must
be different from the receiving interface.

Figure 14.36 shows a multicast datagram arriving on a tunnel.

Transport
Protocols]

t packet accepted only when it ~

~a physical inter~ ~

discarded datagrams
(Figure 14.39)

¯ packet arrived on tunnel ~ ~
II

and is now qu.eue.d for input
, on the phymcal mterface

/
tncommg
multicas t Tunnel

Figure 14.36 Multicast datagram arriving on a multicast tunnel.

In Figure 14.36, the datagram arriving on a physical interface associated with the
local end of the tunnel is represented by the dashed arrows. It is passed to
ip_mforward, which as we’ll see in Figure 14.37 returns a nonzero value because the
packet arrived on a tunnel. This causes ipintr to not pass the packet to the transport
protocols.

ip_mforward strips the tunnel options from the packet, consults the multicast
routing table, and, in this example, forwards the packet on another tunnel and on the
same physical interface on which it arrived, as shown by the thin arrows. This is OK
because the multicast routing tables are based on the virtual interfaces, not the physical
interfaces.

In Figure 14.36 we assume that the physical interface is a member of the destination
group, so ip_output passes the datagram to ip_mloopback, which queues it for pro-
cessing by ipintr (the thick arrows). The packet is passed to ip_raforward again,
where it is discarded (Exercise 14.4). ip_mforward returns 0 this time (because the
packet arrived on a physical interface), so ipintr considers and accepts the datagram
for input processing.

We show the multicast forwarding code in three parts:

¯ tunnel input processing (Figure 14.37),
¯ forwarding eligibility (Figure 14.39), and
¯ forward to outgoing interfaces (Figure 14.40).

Ex.1013.451DELL

426 IP Multicast Routing Chapter 14

516 int
517 ip_mforward(m, ifp)
518 struct mbuf *m;
519 struct ifnet *ifp;
52O {
521 struct ip *ip = mtod(m, struct ip *);
522 struct mrt *rt;
523 struct vif *vifp;
524 int vifi;
525 u_char *ipoptions;
526 u_long tunnel_src;

ip_mroute.c

527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565

if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 I I
(ipoptions = (u_char *) (ip + i)) [I] !: IPOPT_LSRR)
/* Packet arrived via a physical interface. */
tunnel_src : 0;

} else
/*

Packet arrived through a tunnel.
A tunneled packet has a single NOP option and a
two-element loose-source-and-record-route (LSRR)
option immediately following the fixed-size part of
the IP header. At this point in processing, the IP
header should contain the following IP addresses:

original source in the source address field
destination group in the destination address field

* remote tunnel end-point in the first element.of LSRR
* one of this host’s addrs - in the second element of LSRR

* NOTE: RFC-1075 would have the original source and
* remote tunnel end-point addresses swapped. However,
* that could cause delivery of ICMP error messages to
* innocent applications on intermediate routing
* hosts! Therefore, we hereby change the spec.
*/

/* Verify that the tunnel options are well-formed.
if (ipoptions[0] != IPOPT_NOP I I

ipoptions[2] != ii I I /* LSRR option length */
ipoptions[3] != 12 I I /* LSRR address pointer */
(tunnel_src = *(u_long *) (&ipoptions[4])) == 0) {
mrtstat.mrts_bad_tunnel++;
return (I);

]
/* Delete the tunnel options from the packet. */
ovbcopy((caddr_t) (ipoptions + TUNNEL_LEN), (caddr_t) ipoptions,

(unsigned) (m->m_len - (IP HDR LEN + TUNNEL_LEN)));
m->m_len -= TUNNEL_LEN;
ip->ip_len -: TUNNEL_LEN;
ip->ip_hl -= TUNNEL_LEN >> 2;

ip_mroute.c

Figure 14.37 ip_mforward function: tunnelarrival.

Ex.1013.452DELL

r 14

~te.c

Section 14.8 Multicast Forwarding: ±p_m£orward Function 427

516--526

527--530

531--558

The two arguments to ip_mforward are a pointer to the mbuf chain containing the
datagram; and a pointer to the ± fnet structure of the receiving interface.
Arrival on physical interface

To distinguish between a multicast datagram arriving on a physical interface and a
tunneled datagram arriving on the same physical interface, the IP header is examined
for the characteristic LSRR option. If the header is too small to contain the option, or if
the options don’t start with a NOP followed by an LSRR option, it is assumed that the
datagram arrived on a physical interface and tunnel_src is set to 0.
Arrival on a tunnel

If the datagram looks as though it arrived on a tunnel, the options are verified to
make sure they are well formed. If the options are not well formed for a multicast tun-
nel, ip_mforward returns 1 to indicate that the datagram should be discarded. Fig-
ure 14.38 shows the organization of the tunnel options.

I
NOP
~- LSRR
/ ,’-11 (length)

~ ~ ~-12 (offset)

IP header tunneldestination datasource group
20 bytes 1 1 1 1 4bytes 4bytes.

tunnel’~p~ions ~

~ 9q

IP header data

20 bytes 10 bytes
Figure 14.38 Multicast tunneloptions.

lFoute.c

559-565

In Figure 14.38 we assume there are no other options in the datagram, although that is not
required. Any other IP options will appear after the LSRR option, which is always inserted
before any other options by the multicast router at the start of the tunnel.

Delete tunnel options
If the options are OK, they are removed from the datagram by shifting the remain-

ing options and data forward and adjusting m_len in the mbuf header and ±p_3_en and
±p_hl in the IP header (Figure 14.38).

±p_mforward often uses tunnel_source as its return value, which is only
nonzero when the datagram arrives on a tunnel. When ±~_ra£orward returns a
nonzero value, the caller discards the datagram. For ±~±ntr this means that a data-
gram that arrives on a tunnel is passed to ±p_mforward and discarded by ±~±ntr.
The forwarding code strips out the tunnel information, duplicates the datagram, and
sends the datagrams with ±p_o~t~u~, which calls ±p_raloo~back if the interface is a
member of the destination group.

Ex.1013.453DELL

428 IP Multicast Routing Chapter 14

The next part of ip_mforward, shown in Figure 14.39, discards the datagram if it is
ineligible for forwarding.

ip_mroute.c
566
567
568
569
570
571
572

* Don’t forward a packet with time-to-live of zero or one,
* or a packet destined to a local-only group.

ntohl(ip->ip_dst.s_addr) <: INADDR MAX LOCAL_GROUP)
return ((int) tunnel_src);

573
574
575
576
577
578
579
58O
581
582
583
584
585
586
587
588
589
59O
591
592

* Don’t forward if we don’t have a route for the packet’s origin.

if (!(rt = mrtfind(ip->ip_src)))
mrtstat.mrts no route++;
return ((int) tunnel_src);

}

* Don’t forward if it didn’t arrive

vifi = rt->mrt_parent;
if (tunnel_src == 0) {

if ((viftable[vifi].v_flags & VIFF_TUNNEL)
viftable[vifi].v_ifp != ifp)
return ((int) tunnel_src);

} else {
if (!(viftable[vifi].v_flags & VIFF_TUNNEL)

from the parent vif for its origin.

viftable[vifi].v_rmt_addr.s_addr !: tunnel_src)
return ((int) tunnel_src);

Figure 14.39 ip_mforward function: forwarding eligibility checks.

ip_mroute.c

566-572

573--579

Expired TTL or local multicast
If ip_ttl is 0 or 1, the datagram has reached the end of its lifetime and is not for-

warded. If the destination group is less than or equal to INADDR_MAX_LOCAL_GROUP
(the 224.0.0.x groups, Figure 12.1), the datagram is not allowed beyond the local net-
work and is not forwarded. In either case, tunnel_src is returned to the caller.

Version 3.3 of mrouted supports administrative scoping of certain destination groups. An
interface can be configured to discard datagrams addressed to these groups, similar to the
automatic scoping of the 224.0.0.x groups.

No route available
If mrt find cannot locate a route based on the source address of the datagram, the

function returns. Without a route, the multicast router cannot determine to which inter-
faces the datagram should be forwarded. This might occur, for example, when the
multicast datagrams arrive before the multicast routing table has been updated by
mrouted.

Sec

58~

593-

Ex.1013.454DELL

e

Section 14.8 Multicast Forwarding: ip_mforward Function 429

580 592

Arrived on unexpected interface

If the datagram arrived on a physical interface but was expected to arrive on a tun-
nel or on a different physical interface, ±p_mforward returns. If the datagram arrived
on a tunnel but was expected to arrive on a physical interface or on a different tunnel,
±p_m£orward returns. A datagram may arrive on an unexpected interface when the
routing tables are in transition because of changes in the group membership or in the
physical topology of the network.

The final part of ip_mforward (Figure 14.40) sends the datagram on each of the
outgoing interfaces specified in the multicast route entry.

593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613

!, ip_mroute.c
* For each vif, decide if a copy of the packet should be forwarded.
* Forward if:
* - the ttl exceeds the vif’s threshold AND
* - the vif is a child in the origin’s route AND
* (the vif is not a leaf in the origin’s route OR
* the destination group has members on the vif)

* (This might be speeded up with some sort of cache -- someday.)
*/

for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++) {
if (ip->ip_ttl > vifp->v_threshold &&

VIFM_ISSET(vifi, rt->mrt_children) &&
(!VIFM_ISSET(vifi, rt->mrt_leaves)
grplst_member(vifp, ip->ip_dst))) {

if (vifp->v_flags & VIFF_TUNNEL)
tunnel_send(m, vifp);

else
phyint_send(m, vifp);

}
}

614
615

return ((int tunnel_src)

Figure 14.40 ip_mforward function: forwarding.

ip_mroute.c

593-615 For each interface in vi ftable, a datagram is sent on the interface if

¯ the datagram’s TTL is greater than the multicast threshold for the interface,
¯ the interface is a child interface for the route, and
¯ the interface is not connected to a leaf network.

If the interface is a leaf, the datagram is output only if there is a member of the des-
tination group on the network (i.e., g rpl s t_member returns a nonzero value).

tunnel_send forwards the datagram on tunnel interfaces; phyint_send is used
for physical interfaces.

Ex.1013.455DELL

430 IP Multicast Routing Chapter 14

phyint_send Function

To send a multicast datagram on a physical interface, phy±nt_send (Figure 14.41)
specifies the output interface explicitly in the ip_mopt±ons structure it passes to
ip_output.

616 static void
617 phyint_send(m, vifp)
618 struct mbuf *m;
619 struct vif *vifp;
620 (
621 struct ip *ip = mtod(m, struct ip *);
622 struct mbuf *mb_copy;
623 struct ip_moptions *imo;
624 int error;
625 struct ip_moptions simo;

626 mb_copy = m_copy(m, 0, M_COPYALL);
627 if (mb_copy :: NULL)
628 return;

629
630
631
632

633
634

imo = &simo;
imo->imo_multicast_ifp : vifp->v_ifp;
imo->imo_multicast_ttl = ip->ip_ttl - i;
imo->imo_multicast_loop : i;

error = ip_output(mb_copy, NULL, NULL, IP_FORWARDING, imo);

Figure 14.41 phyint_send function.

ip_mroute.c

ip_mroute.c

616-634 m_copy duplicates the outgoing datagram. The ip_moptions structure is set to
force the datagram to be transmitted on the selected interface. The TTL value is decre-
mented, and multicast loopback is enabled.

The datagram is passed to ip_output. The IP_FORWARDING flag avoids an infi-
nite loop, where ip_output calls ip_mforward again.

~ mbuf

-~ header options and data

20 bytes
Figure 14.42 Inserting tunnel options.

mbufpacket : ..~ii i’:iii:ii ’ IPheader Ot~Dtr~oel

28 bytes
~,~ 20 by.tes 12 bytes

IP header op~iPons data

20 bytes

~

Ex.1013.456DELL

[4

1)

e.C

to
:e-

fi-

Section 14.8 Multicast Forwarding: ip_mforward Function 431

tunnel_send Function

To send a datagram on a tunnel, tunnel_send (Figure 14.43) must construct the appro-
priate tunnel options and insert them in the header of the outgoing datagram. Fig-
ure 14.42 shows how tunnel_send prepares a packet for the tunnel.

635 static void
636 tunnel_send(m, vifp)
637 struct mbuf *m;
638 struct vif *vifp;
639 {
640 struct ip *ip = mtod(m, struct ip *);
641 struct mbuf *mb_copy, *mb_opts;
642 struct ip *ip_copy;
643 int error;
644 u_char *cp;

ip_mrou te.c

645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672

* Make sure that adding the tunnel options won’t exceed the
* maximum allowed number of option bytes.

if (ip->ip_hl > (60 - TUNNEL_LEN) >> 2) {
mrtstat.mrts_cant_tunnel++;
return;

}

* Get a private copy of the IP header so that changes to some
* of the IP fields don’t damage the original header, which is
* examined later in ip_input.c.

mb_copy = m_copy(m, IP_HDR_LEN, M COPYALL);
if (mb_copy == NULL)

return;
MGETHDR(rob_opts, M_DONTWAIT, MT_HEADER);
if (mb_opts :: NULL) {

m_freem(mb_copy);
return;

}

* Make mb_opts be the new head of the packet chain.
* Any options of the packet were left in the old packet chain head

mb_opts->m_next = mb_copy;
mb_opts->m_len = IP_HDR_LEN + TUNNEL_LEN;
mb_opts->m_data += MSIZE - mb_opts->m_len;

ip_mroute.c

Figure14.43 tunnel_sendfunction:veri~ and allocate new headen

635--652

Will the tunnel options fit?
If there is no room in the IP header for the tunnel options, tunnel_send returns

immediately and the datagram is not forwarded on the tunnel. It may be forwarded on
other interfaces.

Ex.1013.457DELL

432 IP Multicast Routing Chapter 14

653-672

Duplicate the datagram and allocate mbuf for new header and tunnel options
In the call to re_copy, the starting offset for the copy is 20 (IP_HDR_LV.N). The

resulting mbuf chain contains the options and data for the datagram but not the IP
header, mb_opts points to a new datagram header allocated by MGETHDR. The data-
gram header is prepended to rob_copy. Then re_Ken and m_data are adjusted to
accommodate an IP header and the tunnel options.

The second half of tunnel_send, shown in Figure 14.44, modifies the headers of
the outgoing packet and sends the packet.

ip_mroute.c
673 ip_copy = mtod(mb_opts, struct ip *);
674 /*
675 * Copy the base ip header to the new head mbuf.
676 */
677 *ip_copy = *ip;

678 ip_copy->ip_ttl--;
679 ip_copy->ip_dst = vifp->v_rmt_addr; /* remote tunnel end-point */

680 /*
681 * Adjust the ip header length to account for the tunnel options.
682 */
683 ip_copy->ip_hl +- TUNNEL_LEN >> 2;
684 ip_copy->ip_len += TUNNEL_LEN;
685 /*
686 * Add the NOP and LSRR after the base ip header
687 */
688 cp = (u_char *) (ip_copy + i);
689 *cp++ = IPOPT_NOP;
690 *cp++ = IPOPT_LSRR;
691 *cp++ = ii; /* LSRR option length */

692 *cp++ = 8; /* LSSR pointer to second element */

693 *(u_long *) cp = vifp->v_icl_addr.s_addr; /* local tunnel end-point */
694 cp += 4;
695 *(u_long *) cp = ip->ip_dst.s_addr; /* destination group */

696
697

error : ip_output(mb_opts, NULL, NULL, IP_FORWARDING, NULL);

Figure 14.44 tunnel_send function: construct headers and send.

ip_mroute.c

673-679

680-664

Modify IP header
The original IP header is copied from the original mbuf chain into the newly allo-

cated mbuf header. The TTL in the header is decremented, and the destination is
changed to be the other end of the tunnel.

Construct tunnel options
ip_hl and ip_len are adjusted to accommodate the tunnel options. The tunnel

options are placed just after the IP header: a NOP, followed by the LSRR code, the
length of the LSRR option (11 bytes), and a pointer to the second address in the option (8
bytes). The source route consists of the local tunnel end point followed by the destina-
tion group (Figure 14.13).

Se(

66

14

Ex.1013.458DELL

~r 14

The
e IP
~ata-
] to

¯ s of

ute.c

- ./

ute.c

dlo-
n is

~nel
the

n (8
ina-

Section 14.9 Cleanup: ip_mrouter_done Function 433

665--697

14.9

Send the tunneled datagram
ip_output sends the datagram, which now looks like a unicast datagram with an

LSRR option since the destination address is the unicast address of the other end of the
tunnel. When it reaches the other end of the tunnel, the tunnel options are stripped off
and the datagram is forwarded at that point, possibly through additional tunnels.

Cleanup: ip_mrouter_done Function

When rarouted shuts down, it issues the DVNRP_DONE command, which is handled by
the ip_mrouter_done function shown in Figure 14.45.

161 int
162 ip_mrouter_done()
163 {
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198 }

vifi_t vifi;
int i;
struct ifnet *ifp;
int s;
struct ifreq ifr;
s - splnet();
/*

* For each phyint in use, free its local group list and
* disable promiscuous reception of all IP multicasts.
*/

for (vifi 0; vifi < numvifs; vifi++) {
if (viftable[vifi].v_icl_addr.s_addr != 0 &&

! (viftable[vifi].v_flags & VIFF_TUNNEL))
if {viftable[vifi].v_icl_grps)

free(viftable[vifi].v_icl_grps, M MRTABLE);
satosin(&ifr.ifr_addr)->sin_family = AF_INET;
satosin(&ifr.ifr_addr)->sin_addr.s_addr = INADDR ANY;
ifp = viftable[vifi].v_ifp;
(*ifp->if_ioctl) (ifp, SIOCDELMULTI, (caddr_t) & ifr);

}
}
bzero((caddr_t) viftable, sizeof(viftable));
numvifs - 0;
/*

* Free any multicast route entries
*/

for (i - 0; i < MRTHASHSIZ; i++)
if (mrttable[i])

free(mrttable[i], M_MRTABLE);
bzero((caddr_t) mrttable, sizeof(mrttable));
cached_mrt = NULL;
ip_mrouter = NULL;
splx(s);
return (0);

Figure 14.45 ip_mrouter_done function: DVMRP_DONE command.

ip_mroute.c

ip_mroute.c

Ex.1013.459DELL

434 IP Multicast Routing Chapter 14

161-186

187-198

This function runs at splnet to avoid any interaction with the multicast forward-
ing code. For every physical multicast interface, the list of local groups is released and
the $IOCDELMULTT command is issued to stop receiving multicast datagrams (Exer-
cise 14.3). The entire vi f t abl e array is cleared by b zero and numv ± f s is set to 0.

Every active entry in the multicast routing table is released, the entire table is
cleared with bzero, the cache is cleared, and ip_mrouter is reset.

Each entry in the multicast routing table may be the first in a linked list of entries. This code
introduces a memory leak by releasing only the first entry in the list.

14.10 Summary

In this chapter we described the general concept of internetwork multicasting and the
specific functions within the Net/3 kernel that support it. We did not discuss the imple-
mentation of mrouted, but the source is readily available for the interested reader.

We described the virtual interface table and the differences between a physical
interface and a tunnel, as well as the LSRR options used to implement tunnels in Net/3.

We illustrated the RPB, TRPB, and RPM algorithms and described the kernel tables
used to forward multicast datagrams according to TRPB. The concept of parent and leaf
networks was also discussed.

Exercises

14.1 In Figure 14.25, how many multicast routes are needed?

14.2 Why is the update to the group membership cache in Figure 14.23 protected by splnet
and splx?

14.3 What happens when SIOCDELMULTI is issued for an interface that has explicitly joined a
multicast group with the IP_ADD MEMBERSHIP option?

14.4 When a datagram arrives on a tunnel and is accepted by ip_mforward, it may be looped
back by ip_output when it is forwarded to a physical interface. Why does
ip_mforward discard the looped-back packet when it arrives on the physical interface?

14.5 Redesign the group address cache to increase its effectiveness.

15.1 Intl

This
abst
face
CUS~

fron

fron
crea

netv
grat.
acce
thro
wri
wor

not ~
tion~
grar.

prot

Ex.1013.460DELL

.e

i1

~8

a

15.1

15

Socket Layer

Introduction

This chapter is the first of three that cover the socket-layer code in Net/3. The socket
abstraction was introduced with the 4.2BSD release in 1983 to provide a uniform inter-
face to network and interprocess communication protocols. The Net/3 release dis-
cussed here is based on the 4.3BSD Reno version of sockets, which is slightly different
from the earlier 4.2 releases used by many Unix vendors.

As described in Section 1.7, the socket layer maps protocol-independent requests
from a process to the protocol-specific implementation selected when the socket was
created.

To allow standard Unix I/O system calls such as read and wr± te to operate with
network connections, the filesystem and networking facilities in BSD releases are inte-
grated at the system call level. Network connections represented by sockets are
accessed through a descriptor (a small integer) in the same way an open file is accessed
through a descriptor. This allows the standard filesystem calls such as read and
write, as well as network-specific system calls such as sendmsg and recv-msg, to
work with a descriptor associated with a socket.

Our focus is on the implementation of sockets and the associated system calls and
not on how a typical program might use the socket layer to implement network applica-
tions. For a detailed discussion of the process-level socket interface and how to pro-
gram network applications see [Stevens 1990] and [Rago 1993].

Figure 15.1 shows the layering between the socket interface in a process and the
protocol implementation in the kernel.

435

Ex.1013.461DELL

Chapter 15 ~436 Socket Layer

application]

l function call

[sYs~talls]

process

_ls~vst e_m call

]~eFn~l

socket system call]
implementations j

l function call

I s°cketlayer 1functions

[\
[TCP calls via pr_usrreg or pr_ctloutpu¢ [TP4]

[UDP] "" I SPP

Figure 15.1 The socket layer converts generic requests to specific protocol operations.

splnet Processing

The socket layer contains many paired calls to spln÷e and splx. As discussed in Sec-
tion 1.12, these calls protect code that accesses data structures shared between the socket
layer and the protocol-processing layer. Without calls to splne~, a software interrupt
that initiates protocol processing and changes the shared data structures will confuse
the socket-layer code when it resumes.

We assume that readers understand these calls and we rarely point them out in our
discussion.

15.2 Code Introduction

The three files listed in Figure 15.2 are described in this chapter.

Global Variables

The two global variable covered in this chapter are described in Figure 15.3.

Ex.1013.462DELL

Section 15.3 socket Structure 437

File Description

sys / socke tvar. h socket structure definitions
kern/uipc_syscal ls. c system call implementation
kern/uipc_socket, c socket-layer functions

Figure 15.2 Files discussed in this chapter.

Variable Datatype Description

socketops struct fileops socket implementation of I/O system calls
sysent struct sysent [] array of system call entries

Figure 15.3 Global variable introduced in this chapter.

15.3

41--42

43

socket Structure

A socket represents one end of a communication link and holds or points to all the
information associated with the link. This information includes the protocol to use,
state information for the protocol (which includes source and destination addresses),
queues of arriving connections, data buffers, and option flags. Figure 15.5 shows the
definition of a socket and its associated buffers.

so_type is specified by the process creating a socket and identifies the communica-
tion semantics to be supported by the socket and the associated protocol, so_type
shares the same values as pr_type shown in Figure 7.8. For UDP, so_type would be
SOCK_DGRAM and for TCP it would be SOCK_STREAM.

so_options is a collection of flags that modify the behavior of a socket. Fig-
ure 15.4 describes the flags.

Kernel
so_options only Description

SO_ACCEPTCONIV ¯

SO_BROADCAST
SO_ DEB UG
SO_DONTROUTE
SO_KEEPALIVE
SO_OOBINLINE
SO_REUSEADDR
SO_REUSEPORT
SO-- USELOOPBACK

socket accepts incoming connections
socket can send broadcast messages
socket records debugging information
output operations bypass routing tables
socket probes idle connections
socket keeps out-of-band data inline
socket can reuse a local address
socket can reuse a local address and port
routing domain sockets only; sending process receives its

own routing requests

Figure 15.4 so_options values.

A process can modify all the socket options with the getsockopt and setsockopt system
calls except SO_ACCEPTCONN, which is set by the kernel when the listen system call is
issued on the socket.

Ex.1013.463DELL

438 Socket Layer Chapter 15

socketvar.h
41 struct socket {
42 short so_type; /* generic type, Figure 7.8 */
43 short so_options; /* from socket call, Figure 15.4 */
44 short so_linger; /* time to linger while closing */
45 short so_state; /* internal state flags, Figure 15.6 */
46 caddr_t so~cb; /* protocol control block */
47 struct protosw *so~roto; /* protocol handle */
48 /*
49 * Variables for connection queueing.
50 * Socket where accepts occur is so_head in all subsidiary sockets. !,.,
51 * If so_head is 0, socket is not related to an accept.
52 * For head socket so_q0 queues partially completed connections,
53 * while so_q is a queue of connections ready to be accepted...
54 * If a connection is aborted and it has so_head set, then
55 *it has to be pulled out of either so_q0 or so_q.
56 * We allow connections to queue up based on current queue lengths
57 * and limit on number of queued.connections for this socket.
58 */
59 struct socket *so_head; /* back pointer to accept socket */
60 struct socket *so_q0; /* queue of partial connections */
61 struct socket *so_q; /* queue of incoming connections */
62 short so_q01en; /* partials on so_q0 */
63 short so_qlen; /* number of connections on so_q */
64 short so_qlimit; /* max number queued connections ./
65 short so_timeo; /* connection timeout */
66 u_short so_error; /* error affecting connection */
67 pid_t so~gid; /* pgid for signals */
68 u_long so_oobmark; /* chars to oob mark */
69 /*
70 * Variables for socket buffering.
71 */
72 struct sockbuf [
73 u_long sb_cc; /* actual chars in buffer */ !]~!
74 u_long sb_hiwat; /* max actual char count */
75 u_long sb_mbcnt; /* chars of mbufs used */
76 u_long sb_mbmax; /* max chars of mbufs to use */
77 long sb_lowat; /* low water mark */
78 struct mbuf *sb_mb; /* the mbuf chain */
79 struct selinfo sb_sel; /* process selecting read/write */
8O short sb_flags; /* Figure 16.5 */
81 short sb_timeo; /* timeout for read/write */

~::.: ~
82] so_rcv, so_snd;
83 caddr_t so_tpcb; /* Wisc. protocol control block XXX */
84 void (*so_upcall) (struct socket * so, caddr_t arg, int waitf);
85 caddr_t so_upcallarg; /* Arg for above */
86];

socketvar.h
Figure 15.5 struct socket definition.

Ex.1013.464DELL

Section 15.3 socket Structure 439

so_l inger is the time in clock ticks that a socket waits for data to drain while clos-
ing a connection (Section 15.15).

so_state represents the internal state and additional characteristics of the socket.
Figure 15.6 lists the possible values for so_state.

Kernels o_s t a t e
only Description

SS_ASYNC
SS_NBIO

SS_CANTRCVMORE
SS_CANTSENDMORE

SS_ ISCONFIRMING
SS_ ISCONNECTED
SS_ ISCONNECTING

SS_ISDISCONNECTING
SS NOFDREF
SS_PRIV

SS_RCVATMARK

socket should send asynchronous notification of I/O events
socket operations should not block the process
socket cannot receive more data from peer
socket cannot send more data to peer
socket is negotiating a connection request
socket is connected to a foreign socket
socket is connecting to a foreign socket
socket is disconnecting from peer
socket is not associated with a descriptor
socket was created by a process with superuser privileges
process has consumed all data received before the most

recent out-of-band data was received

Figure 15.6 so_state values.

In Figure 15.6, the middle column shows that SS_ASYNC and SS_NBIO can be
changed explicitly by a process by the fcnt 1 and ioct i system calls. The other flags
are implicitly changed by the process during the execution of system calls. For exam-
ple, if the process calls connect, the SS_ISCONNECTED flag is set by the kernel when
the connection is established.

SS_NBIO and SS_ASYNC Flags

By default, a process blocks waiting for resources when it makes an I/O request. For
example, a read system call on a socket blocks if there is no data available from the net-
work. When the data arrives, the process is unblocked and read returns. Similarly,
when a process calls writ e, the kernel blocks the process until space is available in the
kernel for the data. If SS_NBIO is set, the kernel does not block a process during I/O on
the socket but instead returns the error code EWOULDBLOCK.

If SS_ASYNC is set, the kernel sends the SIGIO signal to the process or process
group specified by so_pgid when the status of the socket changes for one of the fol-
lowing reasons:

¯ a connection request has completed,
¯ a disconnect request has been initiated,
¯ a disconnect request has completed,
¯ half of a connection has been shut down,
¯ data has arrived on a socket,
¯ data has been sent from a socket (i.e., the output buffer has free space), or

an asynchronous error has occurred on a UDP or TCP socket.

Ex.1013.465DELL

440

46

Socket Layer Chapter 15

so~cb points to a protocol control block that contains protocol-specific state infor-
mation and parameters for the socket. Each protocol defines its own control block
structure, so so_pcb is defined to be a generic pointer. Figure 15.7 lists the control
block structures that we discuss.

so_pcb never points to a ¢cpcb structure directly; see Figure 22.1.

Protocol Control block Reference

UDP scru¢¢ inpcb Section 22.3
struct inpcb Section 22.3

TCP struct tcpcb Section 24.5

ICMP, IGMP, raw IP struct inpcb Section 22.3

Route struct rawcb Section 20.3

Figure 15.7 Protocol control blocks.

47

48-64

65

66

67

68

69-82

so_proto points to the protosw structure of the protocol selected by the process
during the s ocket system call (Section 7.4).

Sockets with $O_ACCEPTCONN set maintain two connection queues. Connections
that are not yet established (e.g., the TCP three-way handshake is not yet complete) are
placed on the queue so q0. Connections that are established and are ready to be
accepted (e.g., the TCP three-way handshake is complete) are placed on the queue
so_q. The lengths of the queues are kept in so_q01en and so_qlen. Each queued
connection is represented by its own socket, so_head in each queued socket points to
the original socket with SO_ACCEPTCONN set.

The maximum number of queued connections for a particular socket is controlled
by so_qlimit, which is specified by a process when it calls listen. The kernel
silently enforces an upper limit of 5 (SOMAXCONN, Figure 15.24) and a lower limit of 0.
A somewhat obscure formula shown with Figure 15.29 uses so_qlimit to control the
number of queued connections.

Figure 15.8 illustrates a queue configuration in which three connections are ready to
be accepted and one connection is being established.

so_timeo is a wait channel (Section 15.10) used during accept, connect, and
c 1 o s e processing.

so_error holds an error code until it can be reported to a process during the next
system call that references the socket.

If ss ASYNC is set for a socket, the SIGIO signal is sent to the process (if so_pgid
is greater than 0) or to the progress group (if so_pgid is less than 0). so_pgid can be
changed or examined with the SIOCSPGRP and SIOCGPGRP ioctl commands. For
more information about process groups see [Stevens 1992].

so_oobmark identifies the point in the input data stream at which out-of-band data
was most recently received. Section 16.11 discusses socket support for out-of-band data
and Section 29.7 discusses the semantics of out-of-band data in TCP.

Each socket contains two data buffers, so_rcv and so_snd, used to buffer incom-
ing and outgoing data. These are structures contained within the socket structure, not

Ex.1013.466DELL

Section 15.4 System Calls 441

socket(}

so_head

so_q

sockets move to this queue / "
when TCP SYN is ACKed, [
accept removes sockets

from this queue

socket { }
so_head

--.1 :oO<0

socket{}
so_head
so_qO
so_q

sockets start on this queue
when TCP SYN arrives

socket{}] socket{} ~

so_q0 I/ I !

Figure 15.8 Socket connection queues.

83-86

pointers to structures. We describe the organization and use of the socket buffers in
Chapter 16.

so_tpcb is not used by Net/3. so_upcall and so_upcallarg are used only by
the NFS software in Net/3.

NFS is unusual. In many ways it is a process-level application that has been moved into the
kernel. The so_upcall mechanism triggers NFS input processing when data is added to a
socket receive buffer. The t s l eep and wakeup mechanism is inappropriate in this case, since
the NFS protocol executes within the kernel, not as a process.

The files socketvar.h and uipc_socket2, c define several macros and func-
tions that simplify the socket-layer code. Figure 15.9 summarizes them.

15.4 System Calls

A process interacts with the kernel through a collection of well-defined functions called
system calls. Before showing the system calls that support networking, we discuss the
system call mechanism itself.

The transfer of execution from a process to the protected environment of the kernel
is machine- and implementation-dependent In the discussion that follows, we use the
386 implementation of Net/3 to illustrate implementation specific operations.

In BSD kernels, each system call is numbered and the hardware is configured to
transfer control to a single kernel function when the process executes a system call. The
particular system call is identified as an integer argument to the function. In the 386
implementation, syscall is that function. Using the system call number, syscall
indexes a table to locate the sysent structure for the requested system call. Each entry
in the table is a sysent structure:

Ex.1013.467DELL

442 Socket Layer Chapter 15

Name

sosendallatonce

soisconnecting

soisconnected

soreadable

sowriteable

socantsendmore

socantrcvmore

sodisconnect

soisdisconnecting

soisdisconnected

soqinsque

soqremque

Description

Does the protocol associated with so require each send system call to result in a
single protocol request?

int sosemdallatonce(struct socket *SO);

Set the socket state to SS_ISCONNECTING.

int soiseom~ectimg(struct socket *so);

See Figure 15.30.

~AF111 a read on so re~urn information without blocking?

int soreadable(struct socket *so);

Will a write on so return without blocking?

int sowrlteable(struct socket *so);

Set the SS_CANTSENDMORE flag. Wake up any processes sleeping on the send
buffer.

int socamtsendmore(struct socket *so);

Set the SS_CANTRCVMORE flag. Wake up processes sleeping on the receive
buffer.

int socantrcvmore(struct socket *so);

Issue the PRU_DISCONNECT request.

int sodisconnect(struct socket *so);

-Clear the SS_ISCONNECTING flag. Set SS_ISDISCONNECTING,
SS_CANTRCVMORE, and SS_CANTSENDMORE flags. Wake up any processes
selecting on the socket.

int soisdlscom-necting(struct socket *so);

Clear the SS_ISCONNECTING, SS_ISCONNECTED, and SS_ISDISCONNECTING
flags. Set the SS_CANTRCVMORE and SS_CANTSENDMORE flags. Wake up any
processes selecting on the socket or waiting for close to complete.

int soisdiscoranected(struct socket *so);

Insert so on a queue associated with head. If q is 0, the socket is added to the end
of so_q0, which holds Incomplete connections. Otherwise, the socket is added
to the end of so_q, which holds connections that are ready to be accepted.
Net/1 incorrectly placed sockets at the front of the queue.

int soqinsque(struct socket *head, struct socket *s0, int q);

Remove so from the queue identified by q. The socket queues are located by
following so->so_head.

int so~Iremque(struct socket *so, int q);

Figure 15.9 Socket macros and functions.

Ex.1013.468DELL

.5 Section 15.4
System Calls 443

struct sysent {
int sy_narg;
int (*sy_call)

};

Here are several
kern/init_sysent.c.

/* number of arguments */
(); /* implementing function */

/* system call table entry */

entries from the sysent arrazwhich

struct sysent sysent[] = {

/* ... */
{ 3, recvmsg },
{ 3, sendmsg },
{ 6, recvfrom },
{ 3, accept },
{ 3, getpeername },
{ 3, getsockname },
/* ... */

]

/* 27 = recvmsg */
/* 28 : sendmsg */
/* 29 = recvfrom */
/* 30 = accept */
/* 31 = getpeername */
/* 32 = getsockname */

is defined in

For example, the recvmsg system call is the 27th entry in the system call table, has
three arguments, and is implemented by the recvmsg function in the kernel.

syscall copies the arguments from the calling process into the kernel and allo-
cates an array to hold the results of the system call, which syscall returns to the pro-
cess when the system call completes, syscal i dispatches control to the kernel function
associated with the system call. In the 386 implementation, this call looks like:

struct sysent *callp;
error = (*callp->sy_call) (p, args, rval);

where cal lp is a pointer to the relevant sysent structure, p is a pointer to the process
table entry for the process that made the system call, args represents the arguments to
the system call as an array of 32-bit words, and rval is an array of two 32-bit words to
hold the return value of the system call. When we use the term system call, we mean the
function within the kernel called by syscal 1, not the function within the process called
by the application.

syscal 1 expects the system call function (i.e., what sy_cal 1 points to) to return 0
if no errors occurred and a nonzero error code otherwise. If no error occurs, the kernel
passes the values in rva i back to the process as the return value of the system call (the
one made by the application). If an error occurs, syscall ignores the values in rval
and returns the error code to the process in a machine-dependent way so that the error
is made available to the process in the external variable errno. The function called by
the application returns -1 or a null pointer to indicate that errno should be examined.

The 386 implementation sets the carry bit to indicate that the value returned by
syscall is an error code. The system call stub in the process stores the code in errno
and returns -1 or a null pointer to the application. If the carry bit is not set, the value
returned by syscal 1 is returned by the stub.

To summarize, a function implementing a system call "returns" two values: one for
the syscall function, and a second (found in rval) that syscall returns to the call-
ing process when no error occurs.

Ex.1013.469DELL

444 Socket Layer Chapter 15

Example

The prototype for the socket system call is:

int socket(int domain, int type, int protocol);

The prototype for the kernel function that implements the system call is

struct socket_args {
int domain;
int type ;
int protocol;

];
socket(struct proc *p, struct socket_args *uap, int *retval);

args [0] args [i] args [2] ... args [7]

domain type protocol

process socket (

arguments copied from
user space to kernel space

syscall (

kernel socket (

domain] type

socket_args{}

Figure 15.10 socket argument processing.

As illustrated by socket, each kernel function that implements a system call
declares args not as a pointer to an array of 32-bit words, but as as a pointer to a struc-
ture specific to the system call.

The implicit cast is legal only in traditional K&R C or in ANSI C when a prototype is not in
effect. If a prototype is in effect, the compiler generates a warning.

syscall prepares the return value of 0 before executing the kernel system call
function. If no error occurs, the system call function can return without clearing
*retval and syscall returns 0 to the process.

System Call Summary

Figure 15.11 summarizes the system calls relevant to networking.

When an application calls socket, the process passes three separate integers to the
kernel with the system call mechanism, syseal 1 copies the arguments into an array of
32-bit values and passes a pointer to the array as the second argument to the kernel ver-
sion of socket. The kernel version of socket treats the second argument as a pointer
to an socket_args structure. Figure 15.10 illustrates this arrangement.

Ex.1013.470DELL

Section 15.5 Processes, Descriptors, and Sockets 445

Category Name Function
socket

setup

server

client

15.5

input

output

I/O

termination

administration

bind

listen
accept

connect

read
ready
recv
recvfrom
recvmsg

write
writev
send
sendto
sendmsg

select

shutdown
close

fcntl
ioctl
setsockopt
getsockopt
getsockname
getpeername

create a new unnamed socket within a specified communication
domain

assign a local address to a socket
prepare a socket to accept incoming connections
wait for and accept connections
establish a connection to a foreign socket
receive data into a single buffer
receive data into multiple buffers
receive data specifying options
receive data and address of sender
receive data into multiple buffers, control information, and receive the

address of sender; specify receive options
send data from a single buffer
send data from multiple buffers
send data specifying options
send data to specified address
send data from multiple buffers and control information to a specified

address; specify send options
wait for I/O conditions
terminate connection in one or both directions
terminate connection and release socket
modify I/O semantics
miscellaneous socket operations
set socket or protocol options
get socket or protocol options
get local address assigned to socket
get foreign address assigned to socket

Figure 15.11 Networking system calls in Net/3.

We present the setup, server, client, and termination calls in this chapter. The input
and output system calls are discussed in Chapter 16 and the administrative calls in
Chapter 17.

Figure 15.12 shows the sequence in which an application might use the calls. The
I/O system calls in the large box can be called in any order. This is not a complete state
diagram as some valid transitions are not included; just the most common ones are
shown.

Processes, Descriptors, and Sockets

Before describing the socket system calls, we need to discuss the data structures that tie
together processes, descriptors, and sockets. Figure 15.13 shows the structures and
members relevant to our discussion. A more complete explanation of the file structures
can be found in [Leffler et al. 1989].

Ex.1013.471DELL

446 Socket Layer Chapter 15 ~

proc { }

p __I ~ . p_fd ~

protosw{}

writev ready
sendto

select readfrom
sendmsg readmsg

Figure 15.12 Network system call flowchart.

filedesc{ }

socket{}

so_type
so_proto

*file{) []

file{}

f_ops
f data

Figure 15.13 Process, file, and socket structures.

socketops:
~ soo_read

soo_write
soo_ioctl
soo_select
soo_close

Ex.1013.472DELL

pter 15

ops :
.~ad
:ire
)ctl
~.lect
Lose

Section 15.6 socket System Call 447

The first argument to a function implementing a system call is always p, a pointer to
the proc structure of the calling process. The proc structure represents the kernel’s
notion of a process. Within the proc structure, t~_fd points to a filedesc structure,
which manages the descriptor table pointed to by f d_o files. The descriptor table is
dynamically sized and consists of an array of pointers to file structures. Each f i le
structure describes a single open file and can be shared between multiple processes.

Only a single file structure is shown in Figure 15.13. It is accessed by
p->p_fd->fd_ofiles I fall. Within the file structure, two members are of interest to
us: f_ops and f_data. The implementation of I/O system calls such as read and
write varies according to what type of I/O object is associated with a descriptor.
f_ops points to a fileotos structure containing a list of function pointers that imple-
ment the read, write, ioctl, select, and close system calls for the associated I/O
object. Figure 15.13 shows f_ops pointing to a global f ileops structure, socketops,
which contains pointers to the functions for sockets.

f_data points to private data used by the associated I/O object. For sockets,
f_data points to the socket structure associated with the descriptor. Finally, we see
that so_.proto in the socket structure points to the protosw structure for the proto-
col selected when the socket is created. Recall that each protosw structure is shared by
all sockets associated with the protocol.

We now proceed to discuss the system calls.

15.6

42-55

56--60

60--69

socket System Call

The socket system call creates a new socket and associates it with a protocol as speci-
fied by the domain, type, and protocol arguments specified by the process. The
function (shown in Figure 15.14) allocates a new descriptor, which identifies the socket
in future system calls, and returns the descriptor to the process.

Before each system call a structure is defined to describe the arguments passed from
the process to the kernel. In this case, the arguments are passed within a socket_args
structure. All the socket-layer system calls have three arguments: p, a pointer to the
proc structure for the calling process; uap, a pointer to a structure containing the argu-
ments passed by the process to the system call; and retval, a value-result argument
that points to the return value for the system call. Normally, we ignore the p and
retval arguments and refer to the contents of the structure pointed to by uap as the
arguments to the system call.

falloc allocates a new file structure and slot in the fd_ofiles array (Fig-
ure 15.13). fp points to the new structure and fd is the index of the structure in the
fd_ofiles array, socket enables the file structure for read and write access and
marks it as a socket, socketops, a global f ileops structure shared by all sockets, is
attached to the file structure by f_ops. The socketops variable is initialized at
compile time as shown in Figure 15.15.

socreate allocates and initializes a socket structure. If socreate fails, the error
code is posted in error, the file structure is released, and the descriptor slot cleared.
If socreate succeeds, f_data is set to point to the socket structure and establishes

Ex.1013.473DELL

Chapter 15 Se
448 Socket Layer

42
43
44
45
46

47
48
49
5O
51

53
54
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69 }

struct socket_args {
int domain;

int type;

int protocol;

};
socket(p, uap, retval)
struct proc *p;
struct socket_args *uap;
int *retval;

{

uipc_syscalls.c

struct filedesc *fdp = p->p_fd;
struct socket *so;
struct file *fp;
int fd, error;

if (error = falloc(p, &fP, &fd))
return (error);

fp->f_flag = FREAD I FWRITE;
fp->f_type : DTYPE_SOCKET;
fp->f_ops = &socketops;
if (error = socreate(uap->domain, &so, uap->type, uap->protocol))

fdp->fd_ofiles[fd] = 0;
ffree(fp);

} else {
fp->f_data = (caddr_t) so;
*retval = fd;

}
return (error);

uipc_syscalls.c

Figure 15.14 socket system call.

I
Member

/ Value
fo_read soo_read

fo write soo_wri[e

fo ioctl soo_ioctl

fo select soo_select

fo close soo_close

Figure15.15 socketops:theglobalfileopsstructurefors°ckets’

the association between the descriptor and the socket, fd is returned to the process
through *retval. socket returns 0 or the error code returned by socreate.

socreate Function

Most socket system calls are divided into at least two functions, in the same way that
socket and socreate are. The first function retrieves from the process all the data

Ex.1013.474DELL

er 15

alls.c

~lls.c

:ess

hat
.ata

socket System Call 449

43-52

53--60

required, calls the second soxxx function to do the work, and then returns any results to
the process. This split is so that the second function can be called directly by kernel-
based network protocols, such as NFS. soereate is shown in Figure 15.16.

43 socreate(dom, aso, type, proto)
44 int dom;
45 struct socket **aso;
46 int type;
47
48
49
5O
51
52

int proto;
{

struct proc *p : curproc;
struct protosw *prp;
struct socket *so;
int error;

/* XXX */

uipc_socket.c

53 if (proto)
54 prp = pffindproto(dom, proto, type);
55 else
56 prp = pffindtype(dom, type);
57 if (prp =- 0 I I prp->pr_usrreq == 0)
58 return (EPROTONOSUPPORT);
59 if (prp->pr_type [- type)
60 return (EPROTOTYPE);
61 MALLOC(so, struct socket * sizeof(*so), M_SOCKET, M_WAIT);
62 bzero((caddr_t) so, sizeof(*so));
63 so->so_type - type;
64 if (p->p_ucred->cr_uid -: 0)
65 so->so_state = SS_PRIV;
66 so->so~roto : prp;
67 error =
68 (*prp->pr_usrreq) (so, PRU_ATTACH,
69 (struct mbuf *) 0, (struct mbuf *} proto, (struct mbuf *) 0);
70 if (error) {
71 so->so_state I= SS_NOFDREF;
72 sofree(so);
73 return (error);
74 }
75 *aso : so;
76 return (0);
77 }

uipc_socket.c
Figure 15.16 socreate function.

The four arguments to socreate are: dom, the requested protocol domain (e.g.,
PF_INET); aso, in which a pointer to a new socket structure is returned; type, the
requested socket type (e.g., SOCK_STREAM); and proto, the requested protocol.
Find protocol switch table

If proto is nonzero, pffindproto looks for the specific protocol requested by the
process. If proto is 0, pffindtype looks for a protocol within the specified domain
with the semantics specified by type. Both functions return a pointer to a protosw
structure of the matching protocol or a null pointer (Section 7.6).

Ex.1013.475DELL

450 Socket Layer
Chapter 15

61-66

67-69

70-77

Allocate and initialize socket structure
socreate allocates a new socket structure, fills it with 0s, records the type, and,

if the calling process has superuser privileges, turns on SS_PRIV in the socket structure.

~’RU ~TTACH request
~he first example of the protocol-independent socket layer making a protocol-

specific request appears in soereate. Recall from Section 7.4 and Figure 15.13 that
so->so_proto->pr_usrreq is a pointer to the user-request function of the protocol
associated with socket so. Every protocol provides this function in order to handle
communication requests from the socket layer. The prototype for the function is:

int pr_usrreq(struct socket *so, int req, struct mbuf *mO, *ml, *m2);

The first argument, so, is a pointer to the relevant socket and req is a constant identi-
fying the particular request. The next three arguments (mO, ml, and m2) are different for
each request. They are always passed as pointers to mbuf structures, even if they have
another type. Casts are used when necessary to avoid warnings from the compiler.

Figure 15.17 shows the requests available through the pr_usrreq function. The
semantics of each request depend on the particular protocol servicing the request.

Arguments
Request mO

~
~RU ABORT
PR U_A CCEPT address
PRU_ATTACH protocol "

PRU_BIND address
PRU_CONNECT address
PRU._CONNECT2 socket2

PRU_DETACH
pRU_DISCONNECT
PRU_LISTEN
PRU_PEERADDR buffer
PR U_ RCVD flags
PR U_R CVOOB flags
PRU_SEND I data

address control

PRU_SENDOOB

I data

address control

PR U_ SHUTDOWN

i PRU_SOCgADDR
buffer [

Description

abort any existing connection
wait for and accept a connection
a new socket has been created
bind the address to the socket
establish association or connection to address
connect two sockets together
socket is being closed
break association between socket and foreign address
begin listening for connections
return foreign address associated with socket
process has accepted some data
receive OOB data
send regular data
send OOB data
end communication with foreign address
return local address associated with socket

Figure 15.17 pr_usrreq requests.

PRU_CONNECT2 is supported only within the Unix domain, where it connects two local sock-
ets to each other. Unix pipes are implemented in this way.

Cleanup and return
Returning to socreate, the function attaches the protocol switch table to the new

socket and issues the PRU ATTACH request to notify the protocol of the new end point.
This request causes most protocols, including TCP and UDP, to allocate and initialize
any structures required to support the new end point.

Ex.1013.476DELL

Section 15.7 getsock and sockargs Functions

Superuser Privileges

Figure 15.18 summarizes the networking operations that require superuser access.

Function

in_control

in_control
in_pcbbind
ifioctl
ifioctl
rip_usrreq
slopen

Superuser
Process Socket Description

interface address, netmask, and destination
address assignment

broadcast address assignment
binding to an Internet port less than 1024
interface configuration changes
multicast address configuration (see text)
creating an ICMP, IGMP, or raw IP socket
associating a SLIP device with a tty device

Reference

Figure 6.14

Figure 6.22
Figure 22.22
Figure 4.29
Figure 12.11
Figure 32.10
Figure 5.9

Figure 15.18 Superuser privileges in Net/3.

451

The multicast ioctl commands (SIOCADDMULTI and SIOCDELMULTI) are accessible to non-
superuser processes when they are invoked indirectly by the IP_ADD_MEMBERSHIP and
IP_DROP_MEMBERSHI P socket options (Sections 12.11 and 12.12).

15.7

754-767

768-783

In Figure 15.18, the "Process" column identifies requests that must be made by a
superuser process, and the "Socket" column identifies requests that must be issued on a
socket created by a superuser process (i.e., the process does not need superuser privi-
leges if it has access to the socket, Exercise 15.1). In Net/3, the suser function deter-
mines if the calling process has superuser privileges, and the SS_PRIV flag determines
if the socket was created by a superuser process.

Since rip_usrreq tests SS_PRIV immediately after creating the socket with
socreate, we show this function as accessible only from a superuser process.

getsock and sockargs Functions

These functions appear repeatedly in the implementation of the socket system calls.
getsock maps a descriptor to a file table entry and sockargs copies arguments from
the process to a newly allocated mbuf in the kernel. Both functions check for invalid
arguments and return a nonzero error code accordingly.

Figure 15.19 shows the get sock function.
The function selects the file table entry specified by the descriptor fdes with fdp, a

pointer to the filedesc structure, getsock returns a pointer to the open file structure
in fpp or an error if the descriptor is out of the valid range, does not point to an open
file, or does not have a socket associated with it.

Figure 15.20 shows the sockargs function.
The mechanism described in Section 15.4 copies pointer arguments for a system call

from the process to the kernel but does not copy the data referenced by the pointers,
since the semantics of each argument are known only by the specific system call and not

Ex.1013.477DELL

452 Socket Layer
Chapter 15

754 getsock(fdP, fdes, fpP)
755 struct filedesc *fdp;
756 int fdes;
757 struct file **fPP;
758 {
759

760
761
762
763
764
765
766
767]

struct file *fp;

if ((unsigned) fdes >= fdp->fd_nfiles II
(fp : fdp->fd_ofiles[fdes]) :: NULL)

return (EBADF);
if (fp->f_type }= DTYPE_SOCKET)

return (ENOTSOCK);
*fpp = fp;
return (0);

Figure 15.19 getsock function.

768
769
770
771
772
773
774
775

776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794

sockargs(mp, buf, buflen, type)
struct mbuf **mp;
caddr_t buf;
int buflen, type;

{
struct sockaddr *sa;
struct mbuf *m;
int error;

if ((u_int) buflen > MLEN) {
return (EINVAL);

]
m : m_get(M_WAIT, type);
if (m =: NULL)

return (ENOBUFS);
m->m_len = buflen;
error = copyin(buf, mtod(m, caddr_t),

if (error)
(void) m_free(m);

else {
*mp = m;
if (type == MT_SONAME) {

sa = mtod(m, struct sockaddr
sa->sa_len = buflen;

]
return (error);

(u_int) buflen);

Figure 15.20 sockargs function.

uipc_syscalls.c

uipc_syscalls.c

uipc_syscalls.c

uipc_syscalls.c

by the generic system call mechanism. Several system calls use sockargs to follow the
pointer arguments and copy the referenced data from the process into a newly allocated
mbuf within the kernel. For example, sockargs copies the local socket address
pointed to by bind’s second argument from the process to an mbuf.

Seci

784

786

15.

Ex.1013.478DELL

Section 15.8 bind System Call 453

784-785

786-794

15.8

70--82

83-90

If the data does not fit in a single mbuf or an mbuf cannot be allocated, sockargs
returns EINVAL or ENOBUFS. Note that a standard mbuf is used and not a packet
header mbuf. copyin copies the data from the process into the mbuf. The most com-
mon error from copyin is EACCES, returned when the process provides an invalid
address.

When an error occurs, the mbuf is discarded and the error code is returned. If there
is no error, a pointer to the mbuf is returned in mp, and sockargs returns 0.

If type is MT_SONAME, the process is passing in a sockaddr structure, sockargs
sets the internal length, sa_len, to the length of the argument just copied. This ensures
that the size contained within the structure is correct even if the process did not initial-
ize the structure correctly.

Net/3 does include code to support applications compiled on a pre-4.3BSD Reno system,
which did not have an sa_len member in the sockaddr structure, but that code is not shown
in Figure 15.20.

bind System Call

The bind system call associates a local network transport address with a socket. A
process acting as a client usually does not care what its local address is. In this case, it
isn’t necessary to call bind before the process attempts to communicate; the kernel
selects and implicitly binds a local address to the socket as needed.

A server process almost always needs to bind to a specific well-known address. If
so, the process must call bind before accepting connections (TCP) or receiving data-
grams (UDP), because the clients establish connections or send datagrams to the well-
known address.

A socket’s foreign address is specified by connect or by one of the write calls that
allow specification of foreign addresses (sendto or sendmsg).

Figure 15.21 shows bind.
The arguments to bind (passed within a bind_args structure) are: s, the socket

descriptor; name, a pointer to a buffer containing the transport address (e.g., a
sockaddr_in structure); and namelen, the size of the buffer.

getsock returns the file structure for the descriptor, and sockargs copies the
local address from the process into an mbuf, sobind associates the address specified by
the process with the socket. Before bind returns sobind’s result, the mbuf holding the
address is released.

Technically, a descriptor such as s identifies a f i 1 e structure with an associated socket struc-
ture and is not itself a socket structure. We refer to such a descriptor as a socket to simplify
our discussion.

We will see this pattern many times: arguments specified by the process are copied
into an mbuf and processed as necessary, and then the mbuf is released before the sys-
tem call returns. Although mbufs were designed explicitly to facilitate processing of
network data packets, they are also effective as a general-purpose dynamic memory
allocation mechanism.

Ex.1013.479DELL

454 Socket Layer
Chapter 15

uipc_syscalls.c

70 struct bind_args {
71 int s;
72 caddr_t name;
73 int namelen;

74 };

75 bind(p, uap, retval)
76 struct proc *p;
77 struct bind_args *uap;
78 int
79 {
8O
81
82

83
84
85
86
87
88
89
90 }

*retval;

struct file *fp;
struct mbuf *nam;
int error;

if (error = getsock(p->p_fd, uap->s, &fP))
return (error);

if (error = sockargs(&nam, uap->name, uap->namelen, MT_SONAME))
return (error);

error = sobind((struct socket *) fp->f_data, ham);

m_freem(nam);
return (error);

uipc_syscalls.c

Figure 15.21 bind function.

sobind Function

Another pattern illustrated by bind is that retval is unused in many system calls.
In Section 15.4 we mentioned that retval is always initialized to 0 before syscall
dispatches control to a system call. If 0 is the appropriate return value, the system calls
do not need to change retval.

sobind, shown in Figure 15.22, is a wrapper that issues the PRU_BIND request to the
protocol associated with the socket.

uipc_socket.c
78 sobind(so, nam)
79 struct socket *so;
80 struct mbuf *nam;
81 {
82 int s = splnet();
83 int error;

84 error =
85 (*so->so_proto->pr_usrreq) (so, PRU_BIND,

86 (struct mbuf *) 0, nam,

87 splx(s);
88 return (error);
89 }

(struct mbuf *) 0);

uipc_socket.c

Figure 15.22 sobind function.

Ex.1013.480DELL

15

’Is.c

Its.
.ii
~lls

the

:et.c

’~et.c

Section 15.9 listen System Call 455

sobind issues the PRU_BIND request. The local address, nam, is associated with
the socket if the request succeeds; otherwise the error code is returned.

15.9 listen System Call

91--98

99-105

The listen system call, shown in Figure 15.23, notifies a protocol that the process is
prepared to accept incoming connections on the socket. It also specifies a limit on the
number of connections that can be queued on the socket, after which the socket layer
refuses to queue additional connection requests. When this occurs, TCP ignores incom-
ing connection requests. Queued connections are made available to the process when it
calls accept (Section 15.11).

91 struct listen_args {
92 int s;
93 int backlog;
94 };

95 listen(p, uap, retval)
96 struct proc *p;
97 struct listen_args *uap;
98 int *retval;
99 {

i00 struct file *fp;
i01 int error;

102 if (error : getsock(p->p_fd, uap >s, &fp))
103 return (error);
104 return (solisten((struct socket *) fp->f_data,
105 }

Figure 15.23 listen system call.

uipc_syscalls.c

uap->backlog)) ;

uipc_syscalls.c

The two arguments passed to 1 i s ten specify the socket descriptor and the connec-
tion queue limit.

g e t s o c k returns the f i 1 e structure for the descriptor, s, and s o 1 i s ten passes the
listen request to the protocol layer.

Bolisten Function

90--I 09

This function, shown in Figure 15.24, issues the PRU_LISTEN request and prepares the
socket to receive connections.

After solisten issues the PRU_LISTEN request and pr_usrreq returns, the
socket is marked as ready to accept connections. SS_ACCEPTCONN is not set if a con-
nection is queued when pr_usrreq returns.

The maximum queue size for incoming connections is computed and saved in
so_qlimit. Here Net/3 silently enforces a lower limit of 0 and an upper limit of 5
(SOMAXCONN) backlogged connections.

Ex.1013.481DELL

456 Socket Layer Chapter 15

15.10

90 solisten(so, backlog)
91 struct socket *so;
92 int backlog;

93 {
94 int s = splnet(),

uipc_socket.c

95
96
97
98
99

i00
i01
102
103
104
105
106
107
108
109

error;

error :
(*so->so_proto->pr_usrreq)

(struct mbuf *) 0,
if (error) {

splx(s);
return (error);

(so, PRU_LISTEN,
(struct mbuf *) 0, (struct mbuf *) 0);

]
if (so->so_q := 0)

so->so_options I= SO_ACCEPTCONN;
if (backlog < 0)

backlog = 0;
so->so_qlimit = min(backlog, SOMAXC0NN);
splx(s);
return (0);

uipc_socket.c

Figure 15.24 solisten function.

tsleep and wakeup Functions

When a process executing within the kernel cannot proceed because a kernel resource is
unavailable, it waits for the resource by calling tsleep, which has the following proto-
type:

int tsleep(caddr_t chart, int pri, char *mesg, int timeo);

The first argument to tsleep, chan, is called the wait channel. It identifies the par-
ticular resource or event such as an incoming network connection, for which the process
is waiting. Many processes can be sleeping on a single wait channel. When the
resource becomes available or when the event occurs, the kernel calls wakeup with the
wait channel as the single argument. The prototype for wakeup is:

void wakeup (caddr_t chan) ;

All processes waiting for the channel are awakened and set to the run state. The
kernel arranges for t s 1 e ep to return when each of the processes resumes execution.

The pri argument specifies the priority of the process when it is awakened, as well
as several optional control flags for tsleep. By setting the PCATCH flag in pri, tsleep
also returns when a signal arrives, mesg is a string identifying the call to tsleep and is
included in debugging messages and in ps output, timeo sets an upper bound on the
sleep period and is measured in clock ticks.

Figure 15.25 summarizes the return values from t s 1 e ep.

A process never sees the ERESTART error because it is handled by the syscall h.unction and
never returned to a process.

E)

15

Ex.1013.482DELL

r 15 Section 15.11 accept System Call 457

~t.c
tsleep()

0
EWOULDBLOCK

ERESTART

EINTR

Description
The process was awakened by a matching call to wakeuD.
The process was awakened after sleeping for timeo clock ticks and before

the matching call to wakeup.
A signal was handled by the process during the sleep and the pending

system call should be restarted.
A signal was handled by the process during the sleep and the pending

system call should fail.

Figure 15.25 t s 1 eep re~urn values.

’ket.c

:e is
oto-

par-
cess
the

t the

The

well
.eep
~d is
~ the

a and

Because all processes sleeping on a wait channel are awakened by wakeup, we
always see a call to tsleep within a tight loop. Every process must determine if the
resource is available before proceeding because another awakened process may have
claimed the resource first. If the resource is not available, the process calls t s 1 eep once
again.

It is unusual for multiple processes to be sleeping on a single socket, so a call to
wakeup usually causes only one process to be awakened by the kernel.

For a more detailed discussion of the sleep and wakeup mechanism see [Leffier et
al. 1989].

Example

One use of multiple processes sleeping on the same wait channel is to have multiple
server processes reading from a UDP socket. Each server calls recvfrom and, as long
as no data is available, the calls block in tsleep. When a datagram arrives on the
socket, the socket layer calls wakeup and each server is placed on the run queue. The
first server to run receives the datagram while the others call tsleep again. In this
way, incoming datagrams are distributed to multiple servers without the cost of starting
a new process for each datagram. This technique can also be used to process incoming
connection requests in TCP by having multiple processes call accept on the same
socket. This technique is described in [Comer and Stevens 1993].

15.11 accept System Call

After calling listen, a process waits for incoming connections by calling accept,
which returns a descriptor that references a new socket connected to a client. The origi-
nal socket, s, remains unconnected and ready to receive additional connections.
accept returns the address of the foreign system if name points to a valid buffer.

The connection-processing details are handled by the protocol associated with the
socket. For TCP, the socket layer is notified when a connection has been established
(i.e., when TCP’s three-way handshake has completed). For other protocols, such as
OSI’s TP4, tsleep returns when a connection request has arrived. The connection is
completed when explicitly confirmed by the process by reading or writing on the
socket.

Ex.1013.483DELL

458 Socket Layer Chapter 15

Figure 15.26 shows the implementation of accept.

106 struct accept_args {
107 int s;
108 caddr_t name;
109 int *anamelen;
ii0];

uipc_syscalls.c

iii accept(p, uap, retval)
112 struct proc *p;
113 struct accept_args *uap;
114 int *retval;
115
116 struct file *fp;
117 struct mbuf *nam;
118 int namelen, error, s;
119 struct socket *so;

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

if (uap->name && (error = copyin((caddr_t) uap->anamelen,
(caddr_t) & namelen, sizeof(namelen))))

return (error);
if (error = getsock(p->p_fd, uap->s, &fp))

return (error);
s = splnet();
so = (struct socket *) fp->f_data;
if ((so->so_options & SO_ACCEPTCONN) == 0) {

splx(s);
return (EINVAL);

)
if ((so->so_state & SS_NBIO) && so->so_qlen == 0) {

splx(s);
return (EWOULDBLOCK);

)
while (so->so_qlen == 0 && so->so_error == 0) {

if (so->so_state & SS_CANTRCVMORE) {
so->so_error = ECONNABORTED;
break;

}
if (error = tsleep((caddr_t) & so->so_timeo, PSOCK I PCATCH,

netcon, 0) {
splx(s);
return (error);

}
)
if (so->so_error)

error : so->so_error;
so->so_error : 0;
splx(s);
return (error);

)
if (error = falloc(p, &fp, retval)) {

splx(s);
return (error);

)

Ex.1013.484DELL

Section 15.11 accept System Call 459

156
157
158
159
160

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

{ struct socket *aso = so->so_q;
if (soqremque(aso, i) := O)

panic("accept");
SO : aso;

}

fp->f_type = DTYPE_SOCKET;
fp->f_flag = FREAD I FWRITE;
fp->f_ops = &socketops;
fp->f_data = (caddr_t) so;
ham = m_get(M_WAIT, MT_SONAME);
(void) soaccept(so, nam);
if (uap->name) {

if (namelen > nam->m_len)
namelen = nam->m_len;

/* SHOULD COPY OUT A CHAIN HERE */
if ((error = copyout(mtod(nam, caddr_t), (caddr_t) uap->name,

(u_int) namelen)) == 0)
error = copyout((caddr_t) & namelen,

(caddr_t) uap->anamelen, sizeof(*uap->anamelen));
]
m_freem(nam);
splx(s);
return (error);

uipc_syscalls.c
Figure 15.26 accept system call.

106--114

116--134

135--145

146--151

The three arguments to accept (in the accept_args structure) are: s, the socket
descriptor; name, a pointer to a buffer to be filled in by accept with the transport
address of the foreign host; and anamelen, a pointer to the size of the buffer.
Validate arguments

accept copies the size of the buffer (*anamelen) into namelen, and getsock
returns the file structure for the socket. If the socket is not ready to accept connec-
tions (i.e., listen has not been called) or nonblocking I/O has been requested and no
connections are queued, E INVAL or EWOULDBLOCK are returned respectively.

Wait for a connection

The while loop continues until a connection is available, an error occurs, or the
socket can no longer receive data. accept is not automatically restarted after a signal is
caught (tsleep returns EINTR). The protocol layer wakes up the process when it
inserts a new connection on the queue with sonewconn.

Within the loop, the process waits in t s 1 e ep, which returns 0 when a connection is
available. If tsleep is interrupted by a signal or the socket is set for nonblocking
semantics, accept returns EINTR or EWOULDBLOCK (Figure 15.25).
Asynchronous errors

If an error occurred on the socket during the sleep, the error code is moved from the
socket to the return value for accept, the socket error is cleared, and accept returns.

Ex.1013.485DELL

460 Socket Layer Chapter 15

152--164

7--1 79

It is common for asynchronous events to change the state of a socket. The protocol
processing layer notifies the socket layer of the change by setting so_error and wak-
ing any process waiting on the socket. Because of this, the socket layer must always
examine so_error after waking to see if an error occurred while the process was
sleeping.
Associate socket with descriptor

falloc allocates a descriptor for the new connection; the socket is removed from
the accept queue by soq~eraque and attached to the £± le structure. Exercise 15.4 dis-
cusses the call to pan±c.

Protocol processing

accept allocates a new mbuf to hold the foreign address and calls soaccept to do
protocol processing. The allocation and queueing of new sockets created during con-
nection processing is described in Section 15.12. If the process provided a buffer to
receive the foreign address, copyout copies the address from nam and the length from
namelen to the process. If necessary, copyout silently truncates the name to fit in the
process’s buffer. Finally, the mbuf is released, protocol processing enabled, and accept
returns.

Because only one mbuf is allocated for the foreign address, transport addresses
must fit in one mbuf. Unix domain addresses, which are pathnames in the filesystem
(up to 1023 bytes in length), may encounter this limit, but there is no problem with the
16-byte sockadd~_in structure for the Internet domain. The comment on line 170
indicates that this limitation could be removed by allocating and copying an mbuf
chain.

soaccept Function

soaccept, shown in Figure 15.27, calls the protocol layer to retrieve the client’s address
for the new connection.

184 soaccept(so, nam)
185 struct socket *so;
186 struct mbuf *nam;
187 {
188 int s = splnet();
189 int error;

190
191
192
193
194
195
196
197

if ((so->so_state & SS_NOFDREF) :: 0)
panic("soaccept: [NOFDREF");

so->so_state &= -SS_NOFDREF;
error = (*so->so_proto->pr_usrreq) (so, PRU_ACCEPT,

(struct mbuf *) 0, nam,
splx(s);
return (error);

Figure 15.27 soaccept function.

uipc_socket.c

(struct mbuf *) 0);

uipc_socket.c

Ex.1013.486DELL

Section 15.12 sonewconn and soisconnected Functions 461

!84-197 soaccept ensures that the socket is associated with a descriptor and issues the
PRU_ACCEPT request to the protocol. After pr_usrreq returns, ham contains the name
of the foreign socket.

15.12 sonewconn and soisconnected Functions

In Figure 15.26 we saw that accept waits for the protocol layer to process incoming
connection requests and to make them available through so_q. Figure 15.28 uses TCP
to illustrate this process.

accept

wait for incomi_ng_ connection request

socket{}

so qO_ ;

socket{}

.: ~onnecdon iI

accept

socket { }

complete
connection

send SYN and ACK

~
wait forA~Kt-

incoming TCP SYN final ACK of
TCP handshake

Figure 15.28 Incoming TCP connection processing.

In the upper left corner of Figure 15.28, accept calls tsleep to wait for incoming
connections. In the lower left, tcp_input processes an incoming TCP SYN by calling
sonewconn to create a socket for the new connection (Figure 28.7). sonewconn queues
the socket on so_q0, since the three-way handshake is not yet complete.

Ex.1013.487DELL

Chapter 15 Se{
462 Socket Layer

When the final ACK of the TCP handshake arrives, tcp_±nput calls
so±seonnected (Figure 29.2), which updates the new socket, moves it from so_q0 to
so_q, and wakes up any processes that had called accept to wait for incoming con-
nections.

The upper right comer of the figure shows the functions we described with Fig-
ure 15.26. When tsleep returns, accept takes the connection off so_q and issues the
PRU_ATTACH request. The socket is associated with a new file descriptor and returned

to the calling process.
Figure 15.29 shows the sonewconn function.

123 struct socket *
124 sonewconn(head, connstatus)
125 struct socket *head;
126 int
127 {
128
129

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157 }

connstatus;

u ipc_socket 2 .c

struct socket *so;
int soqueue = connstatus ? 1 : 0;

if (head->so_qlen + head->so_q01en > 3 * head->so_qlimit / 2)
return ((struct socket *) 0);

MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_DONTWAIT) ;
if (so == NULL)

return ((struct socket *) 0);
bzero((caddr_t) so, sizeof(*so));
so->so_type = head->so_type;
so->so_options = head->so_options & ~SO_ACCEPTCONN;
so->so_linger = head->so_linger;
so->so_state = head->so_state I SS_NOFDREF;
so->so~roto = head->so_proto;
so->so_timeo = head->so_timeo;
so->so~gid = head->so~gid;
(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
soqinsque(head, so, soqueue);
if ((*so->so~roto->pr_usrreq) (so, PRU_ATTACH,

(struct mbuf *) 0, (struct mbuf *) 0,

(void} soqremque(so, soqueue);
(void} free((caddr_t) so, M_SOCKET);
return ((struct socket *) 0);

}
if (connstatus) {

sorwakeup(head);
wakeup((caddr_t) & head->so_timeo);
so->so_state I= connstatus;

}
return (so);

Figure 15.29 soneweonn function.

(struct mbuf *) 0)) {

uipc_socket2.c

123-129 The protocol layer passes head, a pointer to the socket that is accepting the incom-
ing connection, and connstatus, a flag to indicate the state of the new connection. For
TCP, connstatus is always 0.

13

13

14

14

15

Ex.1013.488DELL

sonewconn and soisconnected Functions 463

130--131

132--143

144

145--150

151--157

78--87

For TP4, connstatus is always SS_ISCONFIRMING. The connection is implicitly confirmed
when a process begins reading from or writing to the socket.

Limit incoming connections
son~wconn prohibits additional connections when the following inequality is true:

3 x so_qlimit
so_qlen+ so_q01en >

2
This formula provides a fudge factor for connections that never complete and guaran-
tees that l isten(fd, 0) allows one connection. See Figure 18.23 in Volume 1 for an
additional discussion of this formula.

Allocate new socket
A new socket structure is allocated and initialized. If the process calls

setsockopt for the listening socket, the connected socket inherits several socket
options because so_options, so_linger, so_pgid, and the sb_hiwat values are
copied into the new socket structure.

Queue connection
soqueue was set from connstatus on line 129. The new socket is inserted onto

so_q0 if soqueue is 0 (e.g., TCP connections) or onto so_q if connstatus is nonzero
(e.g., TP4 connections).
Protocol processing

The PRU_ATTACH request is issued to perform protocol layer processing on the new
connection. If this fails, the socket is dequeued and discarded, and sonewconn returns
a null pointer.
Wakeup processes

If connstatus is nonzero, any processes sleeping in accept or selecting for read-
ability on the socket are awakened, connstatus is logically ORed with so_state.
This code is never executed for TCP connections, since connstatus is always 0 for
TCP.

Protocols, such as TCP, that put incoming connections on so_q0 first, call
soisconnected when the connection establishment phase completes. For TCP, this
happens when the second SYN is ACKed on the connection.

Figure 15.30 shows sei sconnec ted.
Queue incomplete connections

The socket state is changed to show that the connection has completed. When
soisconnected is’called for incoming connections, (i.e., when the local process is call-
ing accept), head is nonnull.

If soqremque returns 1, the socket is queued on so_q and sorwakeup wakes up
any processes using select to monitor the socket for connection arrival by testing for
readability. If a process is blocked in accept waiting for the connection, wakeup
causes the matching t s 1 e ep to return.

Ex.1013.489DELL

464 Socket Layer

88--93

78 soisconnected(so)
79 struct socket *so;
80 {
81 struct socket *head = so->so_head;

82 so->so_state &= -(SS_ISCONNECTING
83 so->so_state I= SS_ISCONNECTED;
84 if (head && soqremque(so, 0)) {
85 soqinsque(head, so, I);

86 sorwakeup(head);
87 wakeup((caddr_t) & head->so_timeo);
88] else {
89 wakeup((caddr_t) & so->so_timeo);

90 sorwakeup(so);
91 sowwakeup(so);
92]
93]

SS_ISDISCONNECTING

Figure 15.30 soisconnected function.

uipc_socket2.c

] SS_ISCONFIRMING);

uipc_socket2.c

Wakeup processes waiting for new connection
If head is null, soqremque is not called since the process initiated the connection

with the connect system call and the socket is not on a queue. If head is nonnull and
soqremque returns 0, the socket is already on so_q. This happens with protocols such
as TP4, which place connections on so_q before they are complete, wakeup awakens
any process blocked in connect, and sorwakeup and sowwakeup take care of any
processes that are using select to wait for the connection to complete.

15.13 connect System call

A server process calls the listen and accept system calls to wait for a remote process
to initiate a connection. If the process wants to initiate a connection itself (i.e., a client),
it calls connect.

For connection-oriented protocols such as TCP, connect establishes a connection to
the specified foreign address. The kernel selects and implicitly binds an address to the
local socket if the process has not already done so with bind.

For connectionless protocols such as UDP or ICMP, connect records the foreign
address for use in sending future datagrams. Any previous foreign address is replaced
with the new address.

Figure 15.31 shows the functions called when connect is used for UDP or TCR
The left side of the figure shows connect processing for connectionless protocols,

such as UDP. In this case the protocol layer calls soisconnected and the connect
system call returns immediately.

The right side of the figure shows connect processing for connection-oriented pro-
tocols, such as TCP. In this case, the protocol layer begins the connection establishment
and calls soisconnecting to indicate that the connection will complete some time in
the future. Unless the socket is nonblocking, soconnect calls tsleep to wait for the

Ex.1013.490DELL

G) ;

t

Section 15.13 connect System call 465

180--188

189--200

201--208

_ ECT request -

TCP beglns three-way
~ ihandshake ~

TCP three-way
handshake completes

....... -T~i ~ connection
establishment

Figure 15.31 connect processing.

connection to complete. For TCP, when the three-way handshake is complete, the
protocol layer calls soisconnected to mark the socket as connected and then calls
wakeup to awaken the process and complete the connect system call.

Figure 15.32 shows the connect system call.
The three arguments to connect (in the connect_args structure) are: s, the

socket descriptor; name, a pointer to a buffer containing the foreign address; and
name 1 en, the length of the buffer.

getsock returns the socket as usual. A connection request may already be pend-
ing on a nonblocking socket, in which case EALREADY is returned, sockargs copies
the foreign address from the process into the kernel.

Start connection processing
The connection attempt is started by calling soconnec t. If soconnect reports an

error, connect jumps to bad. If a connection has not yet completed by the time
soconnect returns and nonblocking I/O is enabled, EINPROGRESS is returned imme-
diately to avoid waiting for the connection to complete. Since connection establishment

Ex.1013.491DELL

Socket Layer Chapter 15 Se

180 struct connect_args {
181 int s;
182 caddr_t name;
183 int namelen;
184];

uipc_syscalls.c

185 connect(p, uap, retval)
186 struct proc *p;
187 struct connect_args *uap;
188 int *retval;
189 {
190 struct file *fp;
191 struct socket *so;
192 struct mbuf *nam;
193 int error, s;

194
195
196
197
198
199
200

if (error = getsock(p->p_fd, uap->s, &fp))
return (error);

so = (struct socket *) fp->f_data;
if ((so->so_state & SS_NBIO) && (so->so_state & SS_ISCONNECTING))

return (EALREADY);
if (error = sockargs(&nam, uap->name, uap->namelen, MT_SONAME))

return (error);

201
2O2
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

error : Soconnect(so, nam);
if (error)

goto bad;
if ((so->so_state & SS_NBIO) && (so->so_state & SS_ISCONNECTING))

m_freem(nam);
return (EINPROGRESS);

}
s = splnet();
while ((so->so_state & SS_ISCONNECTING) && so->so_error =: 0)

if (error = tsleep((caddr_t) & so->so_timeo, PSOCK I PCATCH,
netcon, 0))

break;
if (error == 0) {

error : so->so_error;
so->so_error : 0;

}
splx(s);

bad:
so->so_state &= ~SS_ISCONNECTING;
m_freem(nam);
if (error == ERESTART)

error = EINTR;
return (error);

uipc_syscalls.c
Figure 15.32 connect system call.

2O

2.1

Ex.1013.492DELL

ler 15 Section 15.13 connect System call 467

:alls.c

alls.c

208--21 7

218--224

normally involves exchanging several packets with the remote system, it may take a
while to complete. Further calls to connect return EALREADY until the connection
completes. ~.T SCONN is returned when the connection is complete.

Wait for connection establishment
The wh±le loop continues until the connection is established or an error occurs.

splnet prevents connect from missing a wakeup between testing the state of the
socket and the call to tsleep. After the loop, error contains 0, the error code from
t s 3_eep, or the error from the socket.

The SS_TSCONN~.CTING flag is cleared since the connection has completed or the
attempt has failed. The mbuf containing the foreign address is released and any error is
returned.

soconnect Function

This function ensures that the socket is in a valid state for a connection request. If the
socket is not connected or a connection is not pending, then the connection request is
always valid. If the socket is already connected or a connection is pending, the new
connection request is rejected for connection-oriented protocols such as TCP. For con-
nectionless protocols such as UDP, multiple connection requests are OK but each new
request replaces the previous foreign address.

Figure 15.33 shows the soconnee t function.

198 soconnect(so, ham)
199 struct socket *so;
200 struct mbuf *nam;
201 {
202 int s;
203 int error;

uipc_socket.c

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

if (so->so_options & SO_ACCEPTCONN)
return (EOPNOTSUPP);

s = splnet();
/*

* If protocol is connection-based, can only connect once.
* Otherwise, if connected, try to disconnect first.
* This allows user to disconnect by connecting to, e.g.,
* a null address.
*/

if (so >so_state & (SS_ISCONNECTED I SS_ISCONNECTING) &&
((so->so_proto->pr_flags & PR_CONNREQUIRED) I I

(error = sodisconnect(so))))
error = EISCONN;

else
error : (*so->so_proto->pr_usrreq} (so, PRU_CONNECT,

(struct mbuf *) 0, ham, (struct mbuf *) 0);
splx(s);
return (error);

uipc_socket.c
Figure 15.33 soconnect function.

Ex.1013.493DELL

468 Socket Layer Chapter 15

198-222 soconnect returns EOPNOTSUPP if the socket is marked to accept connections,
since a process cannot initiate connections if listen has already been called for the
socket. EISCONN is returned if the protocol is connection oriented and a connection has
already been initiated. For a connectionless protocol, any existing association with a
foreign address is broken by sodi sconnect.

The PRU_CONNECT request starts the appropriate protocol processing to establish
the connection or the association.

Breaking a Connectionless Association

For connectionless protocols, the foreign address associated with a socket can be dis-
carded by calling connect with an invalid name such as a pointer to a structure filled
with 0s or a structure with an invalid size. sodisconnect removes a foreign address
associated with the socket, and PRU_CONNECT returns an error such as EAFNOSUPPORT
or EADDRNOTAVAIL, leaving the socket with no foreign address. This is a useful,
although obscure, way of breaking the association between a connectionless socket and
a foreign address without replacing it.

15.14 shutdown System Call

The shutdown system call, shown in Figure 15.34, closes the write-half, read-half, or
both halves of a connection. For the read-half, shutdown discards any data the process
hasn’t yet read and any data that arrives after the call to shutdown. For the write-half,
shutdown lets the protocol specify the semantics. For TCP, any remaining data will be
sent followed by a FIN. This is TCP’s half-close feature (Section 18.5 of Volume 1).

To destroy the socket and release the descriptor, close must be called, close can
also be called directly without first calling shutdown. As with all descriptors, close is
called by the kernel for sockets that have not been closed when a process terminates.

550 struct shutdown_args { uipc_syscalls.c

551 int s;
552 int how;
553 } ;

554 shutdown(p, uap, retval)
555 struct proc *p;
556 struct shutdown_args *uap;
557 int *retval;
558 {
559 struct file *fp;
560 int error;

561 if (error : getsock(p->p_fd, uap->s, &fp))
562 return (error);
563 return (soshutdown((struct socket *) fp->f_data, uap->how));
564 }

Figure 15.34 shutdown system call.

uipc_syscalls.c

Ex.1013.494DELL

15

.S,

le
is

a

;h

)r

;s

f,

n

.¢

Section 15.14 shutdown System Call 469

550-557 In the shutdown_args structure, s is the socket descriptor and how specifies
which halves of the connection are to be closed. Figure 15.35 shows the expected values
for how and how++ (which is used in Figure 15.36).

how how+ + Description

0 FREAD shut down the read-half of the connection
1 FWRITE shut down the write-half of the connection
2 FREAD/FWRITE shut down both halves of the connection

Figure 15.35 shutdown system call options,

Notice that there is an implicit numerical relationship between how and the constants FREAD
and FWRITE.

558-564 shutdown is a wrapper function for soshutdown. The socket associated with the
descriptor is returned by getsock, soshutdown is called, and its value is returned.

soshutdown and sorflush Functions

The shut down of the read-half of a connection is handled in the socket layer by
sorflush, and the shut down of the write-half of a connection is processed by the
PRU_SHUTDOWN request in the protocol layer. The soshutdown function is shown in
Figure 15.36.

720 soshutdown(so, how)
721 struct socket *so;
722 int how;
723 {
724 struct protosw *pr = so->so~Droto;

uipc_socket.c

725
726
727
728
729
730
731
732

how++;
if (how & FREAD)

sorflush(so);
if (how & FWRITE)

return (*pr->pr_usrreq) (so, PRU_SHUTDOWN,
(struct mbuf *) 0, (struct mbuf *)

return (0);
O, (struct mbuf *) 0)) ;

uipc_socket, c
Figure 15.36 soshutdown function.

720--732

733--747

If the read-half of the socket is being closed, sorflush, shown in Figure 15.37, dis-
cards the data in the socket’s receive buffer and disables the read-half of the connection.
If the write-half of the socket is being closed, the PRU_SHUTDOWN request is issued to
the protocol.

The process waits for a lock on the receive buffer. Because of SB_NOINTR, sblock
does not return when an interrupt occurs, splimp blocks network interrupts and
protocol processing while the socket is modified, since the receive buffer may be
accessed by the protocol layer as it processes incoming packets.

Ex.1013.495DELL

47O Socket Layer Chapter 15

748-751

733 sorflush(so)
734 struct socket *so;
735 {
736 struct sockbuf *sb = &so->so_rcv;
737 struct protosw *pr = so->so_proto;
738 int s;
739 struct sockbuf asb;

740 sb->sb_flags]: SB_NOINTR;
741 (void) sblock(sb, M_WAITOK);
742 s = splimp();
743 socantrcvmore(so);
744 sbunlock(sb);
745 asb = *sb;
746 bzero((caddr_t) sb, sizeof(*sb));
747 splx(s);

748
749
750
751

if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
(*pr >pr_domain->dom_dispose) (asb.sb_mb);

sbrelease(&asb);

Figure 15.37 sorflush function.

uipc_socket.c

uipc_socket.c

socantrcvmore marks the socket to reject incoming packets. A copy of the
sockbuf structure is saved in asb to be used after interrupts are restored by splx.
The original sockbuf structure is cleared by bzero, so that the receive queue appears
to be empty.
Release control mbufs

Some kernel resources may be referenced by control information present in the
receive queue when shutdown was called. The mbuf chain is still available through
sb_mb in the copy Of the sockbuf structure.

If the protocol supports access rights and has registered a dora_dispose function,
it is called here to release these resources.

In the Unix domain it is possible to pass descriptors between processes with control messages.
These messages contain pointers to reference counted data structures. The dora_dispose
function takes care of discarding the references and the data structures if necessary to avoid
creating an unreferenced structure and introducing a memory leak in the kernel. For more
information on passing file descriptors within the Unix domain, see [Stevens 1990] and [Leffier
et al. 1989].

Any input data pending when shutdown is called is discarded when sbrelease
releases any mbufs on the receive queue.

Notice that the shut down of the read-half of the connection is processed entirely by
the socket layer (Exercise 15.6) and the shut down of the write-half of the connection is
handled by the protocol through the PRU_SHUTDOWN request. TCP responds to the
PRU_SHUTDOWN by sending all queued data and then a FIN to close the write-half of the
TCP connection.

Ex.1013.496DELL

Section 15.15 close System Call 471

15.15 close System Call

The close system call works with any type of descriptor. When fd is the last descrip-
tor that references the object, the object-specific c 1 o s e function is called:

error = (*fp->f_ops->fo_close) (fp, p) ;

As shown in Figure 15.]3, fp->f_ops->fo_close for a socket is the function
soo_close.

soo_close Function

This function, shown in Figure 15.38, is a wrapper for the soclose function.

152 soo_close(fp, p)
153 struct file *fp;
154 struct proc *p;
155 {
156 int error = 0;

157
158
159
160
161

if (fp->f_data)
error : soclose((struct socket *) fp->f_data);

fp->f_data = 0;
return (error);

Figure 15.38 soo_close function.

sys_socket.c

sys_socket.c

If a socket structure is associated with the file structure, soclose is called,
f_data is cleared, and any posted error is returned.

soclose Function

129--141

This function aborts any connections that are pending on the socket (i.e., that have not
yet been accepted by a process), waits for data to be transmitted to the foreign system,
and releases the data structures that are no longer needed.

soclose is shown in Figure 15.39.
Discard pending connections

If the socket was accepting connections, soc!ose traverses the two connection
queues and calls soabort for each pending connection. If the protocol control block is
null, the protocol has already been detached from the socket and s oc lose jumps to the
cleanup code at d±scard.

soabort issues the PRU_ABORT request to the socket’s protocol and returns the result.
soabort is not shown in this text. Figures 23.38 and 30.7 discuss how UDP and TCP handle
this request.

Ex.1013.497DELL

472 Socket Layer
Chapter 15

uipc_socket.c

/* conservative */

129 soclose(so)
130 struct socket *so;
131 {
132 int s : splnet();
133 int error = 0;

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173 }

if so->so_options & SO_ACCEPTCONN) {
while (so->so_q0)

(void) soabort(so->so_q0);
while (so->so_q)

(void) soabort(so->so_q);

]
if (so->so_pcb == 0)

goto discard;
if (so->so_state & SS_ISCONNECTED) {

if ((so->so_state & SS_ISDISCONNECTING) == 0) {
error = sodisconnect(so);
if (error)

goto drop;

}
if (so->so_options & SO_LINGER) {

if ((so->so_state & SS_ISDISCONNECTING) &&
(so->so_state & SS_NBIO))
goto drop;

while (so >so_state & SS_ISCONNECTED)
if (error = tsleep((caddr_t) & so->so_timeo,

PSOCK 1 PCATCH, netcls, so->so_linger)

break;

}
}

drop:
if (so->so_pcb) {

int error2 :
(*so->so_proto->pr_usrreq) (so, PRU_DETACH,

(struct mbuf *) 0, (struct mbuf *) 0, (struct mbuf *) 0)
if (error == 0)

error = error2;
}

discard:
if (so->so_state & SS_NOFDREF)

panic("soclose: NOFDREF");
so->so_state [= SS_NOFDREF;
sofree(so);
splx(s);
return (error);

uipc_socket.c

Figure 15.39 soclose function.

Ex.1013.498DELL

Section 15.15 close System Call 473

142-157

158-173

Break established connection or association

If the socket is not connected, execution continues at drop; otherwise the socket
must be disconnected from its peer. If a disconnect is not in progress, sodisconnect
starts the disconnection process. If the SO_LINGER socket option is set, soclose may
need to wait for the disconnect to complete before returning. A nonblocking socket
never waits for a disconnect to complete, so soclose jumps immediately to drop in
that case. Otherwise, the connection termination is in progress and the SO_LINGER
option indicates that soclose must wait some time for it to complete. The whi le loop
continues until the disconnect completes, the linger time (so_l inger) expires, or a sig-
nal is delivered to the process.

If the linger time is set to 0, tsleep returns only when the disconnect completes (perhaps
because of an error) or a signal is delivered.

Release data structures

If the socket still has an attached protocol, the PRU_DETACH request breaks the con-
nection between this socket and the protocol. Finally the socket is marked as not having
an associated file descriptor, which allows s o free to release the socket.

The sofree function is shown in Figure 15.40.

ll0"sofree(so)
iii struct socket *so;
112 {

113 if (so->so_pcb [I (so->so_state & SS_NOFDREF) == 0)

114 return;
115 if (so->so_head)
116 if (!soqremque(so, 0) && !soqremque(so, i))
117 panic("sofree dq");
118 so->so_head = 0;
119 }
120 sbrelease(&so->so_snd);
121 sorflush(so) ;
122 FREE(so, M_SOCKET);
123 }

uipc_socket.c

uipc_socket.c

Figure 15.40 sofree function.

110--114

115--119

Return if socket still in use
If a protocol is still associated with the socket, or if the socket is still associated with

a descriptor, sofree returns immediately.

Remove from connection queues
If the socket is on a connection queue (so_head is nonnull), soqremque is called

to remove the socket. An attempt is made to remove the socket from the incomplete
connection queue and if this fails, then from the completed connection queue. One of
the removals must succeed or the kernel panics, since so_head was nonnull, so_head
is cleared.

Ex.1013.499DELL

474 Socket Layer
Chapter 15

Discard send and receive queues
:20-:23 sbrelease discards any buffers in the send queue and sorflush discards any

buffers in the receive queue. Finally, the socket itself is released.

15.16 Summary

In this chapter we looked at all the system calls related to network operations. The sys-
tem call mechanism was described, and we traced the calls until they entered the proto-
col processing layer through the pr_usrreq function.

While looking at the socket layer, we avoided any discussion of address formats,
protocol semantics, or protocol implementations. In the upcoming chapters we tie
together the link-layer processing and socket-layer processing by looking in detail at the
implementation of the Internet protocols in the protocol processing layer.

Exercises

15.1 How can a process without superuser privileges gain access to a socket created by a super-
user process?

15.2 How can a process determine if the sockaddr buffer it provides to accept was too small
to hold the foreign address returned by the call?

15.3 A feature proposed for IPv6 sockets is to have accept and recvfrom return a source
route as an array of 128-bit IPv6 addresses instead of a single peer address. Since the array
will not fit in a single mbuf, modify accept and recvfrom to handle an mbuf chain from
the protocol layer instead of a single mbuf. Will the existing code work if the protocol
layer returns the array in an mbuf cluster instead of a chain of mbufs?

15.4 Why is panic called when soqrernque returns a null pointer in Figure 15.26?

15.5 Why does sorflush make a copy of the receive buffer?

15.6 What happens when additional data is received after sorflush has zeroed the socket’s
receive buffer? Read Chapter 16 before attempting this exercise.

Ex.1013.500DELL

16.1

16.2

Global

Socket I/0

Introduction

In this chapter we discuss the system calls that read and write data on a network con-
nection. The chapter is divided into three parts.

The first part covers the four system calls for sending data: wr±te, wr±tev,
senc]to, and sendmsg. The second part covers the four system calls for receiving data:
read, ready, recvfrom, and recvmsg. The third part of the chapter covers the
select system call, which provides a standard way to monitor the status of descriptors
in general and sockets in particular.

The core of the socket layer is the sosend and soreceive functions. They handle
all I/O between the socket layer and the protocol layer. As we’ll see, the semantics of
the various types of protocols overlap in these functions, making the functions long and
complex.

Code Introduction

The three headers and four C files listed in Figure 16.1 are covered in this chapter.

Variables

The first two global variables shown in Figure 16.2 are used by the se]_ect system call.
The third global variable controls the amount of memory allocated to a socket.

475

Ex.1013.501DELL

476 Socket I/O Chapter 16

File Description

sys/s o eke t. h structures and macro for sockets API
sys/socketvar, h socket structure and macros
sys / ui o. h u i o structure definition

kern/uipc_syscalls, c socket system calls
kern/uipc_socket, c socket layer processing
kern/sys_generic, c select system call
kern / sys_s ocke t. c s e I ec t processing for sockets

Figure 16.1 Files discussed in this chapter.

Variable Datatype Description

selwai t int wait channel for select
nselcol i int flag used to avoid race conditions in select
sb max u_l ong maximum number of bytes to a11ocate for a socket receive or send buffer

Figure 16.2 Global variables introduced in this chapter.

16.3

72--78

Socket Buffers

Section 15.3 showed that each socket has an associated send and receive buffer. The
sockbuf structure definition from Figure 15.5 is repeated in Figure 16.3.

72 struct sockbuf {
73 u_long sb_cc;
74 u_long sb_hiwat;
75 u_long sb_mbcnt;
76 u_long sb_mbmax;
77 long sb_lowat;
78 struct mbuf *sb_mb;
79 struct selinfo sb_sel;
80 short sb_flags;
81 short sb_timeo;
82 } so_rcv, so_snd;

/* actual chars in buffer */
/* max actual char count */
/* chars of mbufs used */
/* max chars of mbufs to use */
/* low water mark */
/* the mbuf chain */
/* process selecting read/write */
/* Figure 16.5 */
/* timeout for read/write */

socketvar.h

socketvar.h

Figure 16.3 sockbuf structure.

Each buffer contains control information as well as pointers to data stored in mbuf
chains, sb mb points to the first mbuf in the chain, and sb_cc is the total number of
data bytes contained within the mbufs, sb_hiwat and sb_lowat regulate the socket
flow control algorithms, sb_mbcnt is the total amount of memory allocated to the
mbufs in the buffer.

Recall that each mbuf may store from 0 to 2048 bytes of data (if an external cluster is
used), sb_mbmax is an upper bound on the amount of memory to be allocated as

Ex.1013.502DELL

Section 16.3 Socket Buffers 477

mbufs for each socket buffer. Default limits are specified by each protocol when the
PRU_ATTACH request is issued by the socket system call. The high-water and low-
water marks may be modified by the process as long as the kernel-enforced hard limit
of 262,144 bytes per socket buffer (sb_max) is not exceeded. The buffering algorithms
are described in Sections 16.7 and 16.12. Figure 16.4 shows the default settings for the
Internet protocols.

Protocol s o_snd s o_r cv
sb_hiwat sb_lowat sb_mbraax sb_hiwat sb lowat sb mbmax

UDP 9 x 1024 2048 (ignored) 2 x sb_hiwat 40 x (1024 + 16) 1 2 x sb_hiwat
TCP 8 x 1024 2048 2 x sb_hiwat 8 x I024 1 2xsb hiwat
raw IP
ICMP 8 x 1024 2048 (ignored) 2 x sb_hiwat 8 x 1024 1 2 x sb_hiwat
IGMP

79

80

Figure 16.4 Default socket buffer limits for the Internet protocols.

Since the source address of each incoming UDP datagram is queued with the data
(Section 23.8), the default UDP value for sb_hiwat is set to accommodate 40 1K data.-
grams and their associated sockaddr_in structures (16 bytes each).

sb_sel is a selinfo structure used to implement the select system call (Sec-
tion 16.13).

Figure 16.5 lists the possible values for sb_f lags.

sb_flags Description

SB_LOCK a process has locked the socket buffer
SB_WANT a process is waiting to lock the buffer
SB_WAIT a process is waiting for data (receive) or space (send) in this buffer
SB SEL one or more processes are selecting on this buffer
SB_ASYNC generate asynchronous I/O signal for this buffer
S~__NOINTR signals do not cancel a lock request
SB NOTIFY (SB_WAIT I SB_SEL I SB_ASYNC)

a process is waiting for changes to the buffer and should be notified by
wakeup when any changes occur

Figure 16.5 sb_flags values.

81--82 sb_timeo is measured in clock ticks and limits the time a process blocks during a
read or write call. The default value of 0 causes the process to wait indefinitely.
sb_timeo may be changed or retrieved by the SO_SNDTIMEO and SO_RCVTIMEO
socket options.

Socket Macros and Functions

There are many macros and functions that manipulate the send and receive buffers
associated with each socket. The macros and functions in Figure 16.6 handle buffer
locking and synchronization.

Ex.1013.503DELL

478 Socket I/O Chapter 16

Name

sblock

sbunlock

sbwait

sowakeup

sorwakeup

sowwakeup

Description

Acquires a lock for sb; If wfis M_WAITOK, the process sleeps waiting for the lock;
otherwise EWOULDBLOCK is returned if the buffer cannot be locked
immediately. EINTR or ERESTART is returned if the sleep is interrupted by
a signal; 0 is returned otherwise.

int sblock(struct sockbuf *sb, int wf);

Releases the lock on sb. Any other process waiting to lock sb is awakened.

void sbunlock(struct sockbuf *sb);

Calls tsleep to wait for protocol activity on sb. Returns result of tsleep.

int sbwait(struct sockbuf *sb);

Notifies socket of protocol activity. Wakes up matching call to sbwai t or to
tsleep if any processes are selecting on

void sowakeup(struct socket *so, struct sockbuf

Wakes up any process waiting for read events on so and sends the SIGIO signal
if a process requested asynchronous notification of I/O.

void sorwakeup(struct socket

Wakes up any process waiting for write events on so and sends the SIGIO signal
if a process requested asynchronous notification of I/O.

void sowwakeup(struct socket

Figure 16.6 Macros and functions for socket buffer locking and synchronization.

Figure 16.7 includes the macros and functions used to set the resource limits for
socket buffers and to append and delete data from the buffers. In the table, m, mO, n,
and control are all pointers to mbuf chains, sb points to the send or receive buffer for a
socket.

Name

sbspace

sballoc

sbfree

Description

The number of bytes that may be added to sb before it is considered full:
min((sb_hiwat - sb_cc) , (sb_mbmax - sb_mbcnt)).

long sbspace(struct sockbuf *sb);

m has been added to sb. Adjust sb_cc and sb_mbcnt in sb accordingly.

void sballoc(struct sockbuf *sb, struct mbuf *m);

m has been removed from sb. Adjust sb_cc and sb_mbcnt in sb accordingly.

int sbfree(struct sockbuf *sb, struct mbuf *rn);

Ex.1013.504DELL

Section 16.3 Socket Buffers 479

Name

sbappend

sbappendrecord

sbappendaddr

sbappendcontrol

sbinsertoob

sbcompress

sbdrop

sbdroprecord

sbrelease

sbflush

soreserve

sbreserve

Description
Append the mbufs in m to the end of the last record in sb. Call sbcompress.

int sbaI~pend(struct sockbuf *sb, struct mbuf *m);

Append the record in mO after the last record in sb. Call sbcompress.

int sbappendrecord(struct sockbuf *sb, struct mbuf *toO);

Put address from asa m an mbuf. Concatenate address, control, and toO. Append
the resulting mbuf chain after the last record in sb.

int sbappendaddr(struct sockbuf *sb, struct sockaddr *asa,
struct mbuf *m0, struct mbuf *control);

Concatenate control and toO. Append the resulting mbuf chain after the last
record in sb.

int sI~appendcontrol(struct sockbuf *sb, struct mbuf *mO,
struct mbuf *control);

Insert mO before first record in sb without out-of-band data. Call sbcompress.

int sbinsertoob(struct sockbuf *sb, struct mbuf *m0);

Append m to n squeezing out any unused space.

void sbcompress(struct sockbuf *sb, struct mbuf *m,

struct mbuf

Discard len bytes from the front of sb.

void sbdrop(struct sockbuf *sb, intlen);

Discard the first record in sb. Move the next record to the front.

void sbdroprecord(struct sockbuf *sb);

Call sbflush to release all mbufs in sb. Reset sb_hiwat and sb_mbmax values
to 0.

void sbrelease(struct sockbuf *sb);

Release all mbufs in sb.

void sbflush(struct sockbuf *sb);

Set high-water and low-water marks. For the send buffer, call sbreserve with
sndcc. For the receive buffer, call sbreserve with rcvcc. Initialize sb lowat in
both buffers to default values, Figure 16.4. ENOBUFS is returned if an;limits are
exceeded.

±nt soreserve(struct socket *so, int sndcc, int rcvcc);

Set high-water mark for sb to cc. Also drop low-water mark to cc. No memory is
allocated by this function.

int sbreserve(struct sockbuf *sb, int cc);

Figure 16.7 Macros and functions for socket buffer allocation and manipulation.

Ex.1013.505DELL

480

16.4

Socket I/O Chapter 16

write, writev, sendto, and sendmsg System Calls

These four system calls, which we refer to collectively as the write system calls, send data
on a network connection. The first three system calls are simpler interfaces to the most
general request, sendmsg.

All the write system calls, directly or indirectly, call sosend, which does the work
of copying data from the process to the kernel and passing data to the protocol associ-
ated with the socket. Figure 16.8 summarizes the flow of control.

"On

process
kernel

PRU_SENDorPRU_SEND00B
~rou~hpr_usrreq

Figure 16.8 All socket output is handled by sosend.

In the following sections, we discuss the functions shaded in Figure 16.8. The other
four system calls and soo_wr±te are left for readers to investigate on their own.

Figure 16.9 shows the features of these four system calls and a related library func-
tion (send).

In Net/3, send is implemented as a library function that calls sendto. For binary compatibil-
ity with previously compiled programs, the kernel maps the old send system call to the func-
tion osend, which is not discussed in this text.

From the second column in Figure 16.9 we see that the write and writev system
calls are valid with any descriptor, but the remaining system calls are valid only with
socket descriptors.

Ex.1013.506DELL

t6

[a

:k

~r

c-

il-

Section 16.4 write, writev, sendto, and sendmsg System Calls481

Function

write
writev
send
sendto
sendmsg

Type of
descriptor

any
any

socket only
socket only
socket only

Number of
buffers

1
[I..uIO_MAXIOV]

1
1

[1..UIO_MAXIOVI

Specify
destination address?

Flags? I Control

information?

Figure 16.9 Write system calls.

The third column shows that writer and sendmsg accept data from multiple
buffers. Writing from multiple buffers is called gathering. The analogous read operation
is called scattering. In a gather operation the kernel accepts, in order, data from each
buffer specified in an array of iovec structures. The array can have a maximum of
UIO_MAXIOV elements. The structure is shown in Figure 16.10.

41 struct iovec {
42 char *iov_base;
43 size_t iov_len;
44 ;

/* Base address */
/* Length */

Figure 16.10 iovec structure.

uio.h

ufo.h

41--44 3_ov_base points to the start of a buffer of iov_len bytes.
Without this type of interface, a process would have to copy buffers into a single

larger buffer or make multiple write system calls to send data from multiple buffers.
Both alternatives are less efficient than passing an array of iovec structures to the ker-
nel in a single call. With datagram protocols, the result of one writer is one datagram,
which cannot be emulated with multiple writes.

Figure 16.11 illustrates the structures as they are used by writer, where iovp
points to the first element of the array and iovcnt is the size of the array.

iovp -~°l
iovcnt

iov_len iov_base] ~ no bytes

; n~ bytes~

niovcnt-1]

nio~cn~_l bytes

Figure 16.11 iovec arguments to writev.

Datagram protocols require a destination address to be associated with each write
call. Since write, writer, and send do not accept an explicit destination, they may be
called only after a destination has been associated with a connectionless socket by call-
ing connect. A destination must be provided with sendto or sendmsg, or connect
must have been previously called.

Ex.1013.507DELL

482

228-236

251-256

Socket I/O Chapter 16

The fifth column in Figure 16.9 shows that the sendxxx system calls accept optional
control flags, which are described in Figure 16.12.

f lags Description Reference

MSG_DONTROUTE bypass routing tables for this message Figure 16.23
MSG_DONTWAIT do not wait for resources during this messageFigure 16.22
MSG~EOR data marks the end of a logical record Figure 16.25
MSG_OOB send as out-of-band data Figure 16.26

Figure 16.12 sendxxx system calls: flags values.

As indicated in the last column of Figure 16.9, only the sendmsg system call sup-
ports control information. The control information and several other arguments to
sendmsg are specified within a msghdr structure (Figure 16.13) instead of being passed
separately.

228 struct msghdr {
229 caddr_t msg_name;
230 u_int msg_namelen;
231 struct iovec *msg_iov;
232 u_int msg_iovlen;
233 caddr_t msg_control;
234 u_int msg_controllen;
235 int msg_flags;
236 };

/* optional address */
/* size of address */
/* scatter/gather array */
/* # elements in msg_iov */
/* ancillary data, see below */
/* ancillary data buffer len */
/* Figure 16.33 *!

socket.h

socket.h
Figure 16.13 msghdr structure.

msg_name should be declared as a pointer to a sockaddr structure, since it contains a net-
work address.

The msghdr structure contains a destination address (msg_name and
msg_namelen), a scatter/gather array (msg_iov and msg_iovlen), control informa-
tion (msg_control and msg_controllen), and receive flags (msg_flags). The con-
trol information is formatted as a cmsghdr structure shown in Figure 16.14.

251 struct cmsghdr {
252 u_int cmsg_len;
253 int cmsg_level;
254 int cmsg_type;
255 /* followed by u_char
256];

/* data byte count, including hdr */
/* originating protocol */
/* protocol-specific type */

cmsg_data[]; */

socket.h

socket.h
Figure 16.14 cmsghdr structure.

The control information is not interpreted by the socket layer, but the messages are
typed (cmsg_type) and they have an explicit length (cmsg_len). Multiple control
messages may appear in the control information mbuf.

Ex.1013.508DELL

;ection 16.5
sendmsg System Call 483

Example

16.5

307--321

322--334

¯

Figure 16.15 shows how a fully specified msghdr structure might look during a call to
senctmsg.

msghdr{}
msg_name
msg_namelen
msg_iov
msg_iovlen

<~ sockaddr{) I
-msg_namelen ~

msg_control - ~

~ 2[

"---~ cmsg len

Figure 16.15

iov_len iov_base
no
n]
n2

nO

]

[cmsg_level] cmsg_type I data
msg_control i en

msghdr structure for sendmsg system call.

sendmsg System Call

Only the sendmsg system call provides access to all the features of the sockets API
associated with output. The sendmsg and sendit functions prepare the data struc-
tures needed by sosend, which passes the message to the appropriate protocol. For
SOCK_DGRAM protocols, a message is a datagram. For SOCK_STREAM protocols, a mes-
sage is a sequence of bytes. For SOCK_SEQPACKET protocols, a message could be an
entire record (implicit record boundaries) or part of a larger record (explicit record
boundaries). A message is always an entire record (implicit record boundaries) for
SOCK_RDM protocols.

Even though the general sosend code handles SOCK_SEQPACKET and SOCK RDM protocols,
there are no such protocols in the Internet domain. -

Figure 16.16 shows the sendmsg code.
There are three arguments to sendmsg: the socket descriptor; a pointer to a msghdr

structure; and several control flags. The copyin function copies the msghdr structure
from user space to the kernel.

Copy iov array

An iovec array with eight entries (UIO_SMALLIOV) is allocated automatically on
the stack. If this is not large enough, sendmsg calls MALLOC to allocate a larger array. If

Ex.1013.509DELL

484 Socket I/O Chapter 16

307 struct sendmsg_args
308 int s;
309 caddr_t msg;
310 int flags;
311];

312 sendmsg(p, uap, retval)
313 struct proc *p;
314 struct sendmsg_args *uap;
315 int *retval;
316 {
317 struct msghdr msg;
318 struct iovec aiov[UIO_SMALLIOV],
319 int error;

uipc_syscalls.c

320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340

*iov;

if (error = copyin(uap->msg, (caddr_t) & msg, sizeof(msg)))
return (error);

if ((u_int) msg.msg_iovlen > UIO_SMALLIOV) {
if ((u_int) msg.msg_iovlen >= UIO_MAXIOV)

return (EMSGSIZE);
MALLOC(iov, struct iovec *

sizeof(struct iovec) * (u_int) msg.msg_iovlen, M_IOV,
M_WAITOK);

} else
iov : aiov;

if (msg.msg_iovlen &&
(error - copyin{(caddr_t) msg.msg_iov, (caddr_t) iov,

(unsigned) (msg.msg_iovlen * sizeof(struc[iovec))))
goto done;

msg.msg_iov iov;
error - sendit(p, uap->s, &msg, uap->flags, retval);

done:
if (iov != aiov)

FREE(iov, M_IOV);
return (error);

Figure 16.16 $endmsg system call.

uipc_syscalls.c

335-340

the process specifies an array with more than 1024 (UIO_MAXIOV) entries, EMSGSIZE is
returned, copyin places a copy of the iovec array from user space into either the
array on the stack or the larger, dynamically allocated, array.

This technique avoids the relatively expensive call to malloc in the most common case of
eight or fewer entries.

sendit and cleanup
When sendit returns, the data has been delivered to the appropriate protocol or

an error has occurred, sendmsg releases the iovec array (if it was dynamically allo-
cated) and returns s end i t’s result.

Ex.1013.510DELL

sendit Function 485

16.6 sendit Function

sendit is the common function called by sendto and sendmsg, s endi t initializes a
uio structure and copies control and address information from the process into the ker-
nel. Before discussing sosend, we must explain the uiomove function and the uio
structure.

uiomove Function

45--61

The prototype for this function is:

int uiomove(caddr_t cp, int n, struct uio *uio);

The uiomove function moves n bytes between a single buffer referenced by cp and the
multiple buffers specified by an iovec array in uio. Figure 16.17 shows the definition of
the uio structure, which controls and records the actions of the uiomove function.

45 enum uio_rw {
46 UIO_READ, UIO_WRITE
47 };

uio,h

48 enum uio_seg { /* Segment flag values */
49 UIO_USERSPACE, /* from user data space */
50 UIO_SYSSPACE, /* from system space */
51 UIO_USERISPACE /* from user instruction space */
52 };

53 struct uio {
54 struct iovec *uio_iov;
55 int uio_iovcnt;
56 off_t uio_offset;
57 int uio_resid;
58 enum uio_seg uio_segflg;
59 enum uio_rw uio_rw;
60 struct proc *uio_procp;
61 };

/* an array of iovec structures */
/* size of iovec array */
/* starting position of transfer */
/* remaining bytes to transfer */
/* location of buffers *!
/* direction of transfer */
/* the associated process */

Figure 16.17 uio structure.
uio.h

In the uio structure, uio_iov points to an array of iovec structures, uio_offset
counts the number of bytes transferred by u±omove, and u±o_res±d counts the num-
ber of bytes remaining to be transferred. Each time u±omove is called, u±o_offset
increases by n and u±o_res±d decreases by n. u±omove adjusts the base pointers and
buffer lengths in the u±o_±ov array to exclude any bytes that u±oraove transfers each
time it is called. Finally, u±o_±ov is advanced through each entry in the array as each
buffer is transferred, u±o_segflg indicates the location of the buffers specified by the
base pointers in the u±o_±ov array and u±o_rw indicates the direction of the transfer.
The buffers may be located in the user data space, user instruction space, or kernel data
space. Figure 16.18 summarizes the operation of u±oraove. The descriptions use the
argument names shown in the u ± omove prototype.

Ex.1013.511DELL

486 Socket I/O Chapter 16

Example

uio --

uio_segflg

UIO_USERSPACE

UIO_USERISPACE

UIO_USERSPACE

UIO_USERISPACE

UIO_SYSSPACE

uio_rw

UIO_READ

UIO_WRITE

UIO_READ

UIO_WRITE

Description

scatter n bytes from a kernel buffer cp to process
buffers

gather n bytes from process buffers into the kernel
buffer cp

scatter n bytes from the kernel buffer cp to
multiple kernel buffers

gather n bytes from multiple kernel buffers into
the kernel buffer cp

Figure 16.18 uiomove operation.

Figure 16.19 shows a uio structure before uiomove is called.

kernel

uio{}
uio_iov
uio_iovcnt
uio_offset
uio_resid
uio_segflg
uio_rw
uio_procp

uio_resid

ov

0 n2
n0+nl+n 2
UIO_ USERSPACE

UIO_WRITE

~ process

Figure 16.19 uiomove:before.

uio_iov points to the first entry in the iovec array. Each of the iov_base point-
ers point to the start of their respective buffer in the address space of the process.
uio_of fset is O, and uio_resid is the sum of size of the three buffers, cp points to a
buffer within the kernel, typically the data area of an mbuf. Figure 16.20 shows thei
same data structures after

uiomove(cp, n, uio);

is executed where n includes all the bytes from the first buffer and only some of
bytes from the second buffer (i.e., no < n < no + nl).

Ex.1013.512DELL

he

he

Section 16.6 send±t Function 487

uio

processl~eFn~l

uio{}
uio_iov -
uio_iovcnt
uio_offset
uio_resid
uio_segflg
uio_rw
uio_procp -

iov_len
0

~
H0+HI_~

~2
(no + nl + n2) - n
UIO_USERSPACE

UIO_WRITE

uio_resid ~]

process

~----~uio_offset~
op

Figure 16.20 uiomove: after.

After uiomove, the first buffer has a length of 0 and its base pointer has been
advanced to the end of the buffer, uio_iov now points to the second entry in the
iovec array. The pointer in this entry has been advanced and the length decreased to
reflect the transfer of some of the bytes in the buffer, uio_offset has been increased
by n and uio_resid has been decreased by n. The data from the buffers in the process
has been moved into the kernel’s buffer because uio_rw was UIO_WRITE.

sendit Code

341-368

369-385

We can now discuss the sendit code shown in Figure 16.21.
Initialize auio

sendit calls getsock to get the file structure associated with the descriptor s
and initializes the uio structure to gather the output buffers specified by the process
into mbufs in the kernel. The length of the transfer is calculated by the for loop as the
sum of the buffer lengths and saved in uio_resid. The first if within the loop
ensures that the buffer length is nonnegative. The second i f ensures that uio_resid
does not overflow, since uio_resid is a signed integer and iov_len is guaranteed to
be nonnegativeo

Copy address and control information from the process
sockargs makes copies of the destination address and control information into

mbufs if they are provided by the process.

Ex.1013.513DELL

488 Socket I/O Chapter 16

341
342
343
344
345
346
347
348
349
350
351
352

353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393

sendit(p, s, mp, flags, retsize)
struct proc *p;
int s;
struct msghdr *mp;
int flags, *retsize;

{

uipc_syscalls.c

struct file *fp;
struct uio auio;
struct iovec *iov;
int i;
struct mbuf *to, *control;
int len, error;

if (error = getsock(p->p_fd, s, &fp))
return (error);

auio.uio_iov : mp->msg_iov;
auio.uio_iovcnt : mp->msg_iovlen;
auio.uio_segflg = UIO_USERSPACE;
auio.uio_rw : UIO_WRITE;
auio.uio~rocp = P;
auio.uio_offset = 0; /* XXX */
auio.uio_resid = 0;
iov = mp->msg_iov;
for (i = 0; i < mp->msg_iovlen; i++, iov++) {

if (iov->iov_len < 0)
return (EINVAL);

if ((auio.uio_resid += iov->iov_len) < 0)
return (EINVAL);

]
if (mp->msg_name) {

if (error : sockargs(&to, mp->msg_name, mp->msg_namelen,
MT_SONA~IE))

return (error);
] else

to = 0;
if (mp->msg_control) {

if (mp->msg_controllen < sizeof(struct cmsghdr)
{

error : EINVAL;
goto bad;

}
if (error = sockargs(&control, mp->msg_control,

mp->msg_controllen, MT_CONTROL)
goto bad;

} else
control = 0;

len = auio.uio_resid;
if (error = sosend((struct socket *) fp->f_data, to, &aulo,

(struct mbuf *) 0, control, flags)) {
if (auio.uio_resid != len && (error == ERESTART II

error == EINTR I I error == EWOULDBLOCK))
error = 0;

if (error == EPIPE)
psignal(p, SIGPIPE);

Ex.1013.514DELL

Section 16.7 sosend Function 489

386-401

16.7

394 }
395 if (error :: O)
396 *retsize = fen -
397 bad:
398 if (to)
399 m_freem(to);
400 return (error);
401 }

auio.uio_resid;

Figure 16.21 sendit function.
uipc_syscalls.c

Send data and cleanup

uio_resid is saved in len so that the number of bytes transferred can be calcu-
lated if sosend does not accept all the data. The socket, destination address, uio struc-
ture, control information, and flags are all passed to sosend. When sosend returns,
s endi t responds as follows:

¯ If sosend transfers some data and is interrupted by a signal or a blocking condi-
tion, the error is discarded and the partial transfer is reported.

¯ If sosend returns EPIPE, the SIGPIPE signal is sent to the process, error is
not set to 0, so if a process catches the signal and the signal handler returns, or if
the process ignores the signal, the write call returns EPI PE.

¯ If no error occurred (or it was discarded), the number of bytes transferred is cal-
culated and saved in *retsize. Since sendit returns 0, syscall (Sec-
tion 15.4) returns * ret s i z e to the process instead of returning the error code.

¯ If any other error occurs, the error code is returned to the process.

Before returning, sendit releases the mbuf containing the destination address.
sosend is responsible for releasing the control mbuf.

sosend Function

sosend is one of the most complicated functions in the socket layer. Recall from Fig-
ure 16.8 that all five write calls eventually call sosend. It is sosend’s responsibility to
pass the data and control information to the pr_usrreq function of the protocol associ-
ated with the socket according to the semantics supported by the protocol and the buff-
er limits specified by the socket, sosend never places data in the send buffer; it is the
protocol’s responsibility to store and remove the data.

The interpretation of the send buffer’s sb_hiwat and sb_lowat values by
sosend depends on whether the associated protocol implements reliable or unreliable
data transfer semantics.

Ex.1013.515DELL

490 Socket I/O Chapter 16

Reliable Protocol Buffering

For reliable protocols, the send buffer holds both data that has not yet been transmitted
and data that has been sent, but has not been acknowledged, sb_cc is the number of
bytes of data that reside in the send buffer, and 0 < sb_cc < s~_h±wat.

may temporarily exceed sb_h±wat when out-of-band data is sent.

It is sosend’s responsibility to ensure that there is enough space in the send buffer
before passing any data to the protocol layer through the p~:_usrz-ec~ function. The
protocol layer adds the data to the send buffer, sosenc~ transfers data to the protocol in
one of two ways:

¯ If PR_ATO~IIC is set, sosenct must preserve the message boundaries between
the process and the protocol layer. In this case, sosenc~ waits for enough space
to become available to hold the entire message. When the space is available, an
mbuf chain containing the entire message is constructed and passed to the~
protocol in a single call through the p~:_usz-~ec~ function. RDP and SPP areii
examples of this type of protocol. .i~,

¯ If PR_ATOMIC is not set, sosenct passes the message to the protocol one mbuf atiil
a time and may pass a partial mbuf to avoid exceeding the high-water mark.
This method is used with $OCK_$TREAFI protocols such as TCP and
SOCK_$EQPACKET protocols such as TP4. With TP4, record boundaries are indi-~;
cated explicitly with the I~ISG_~.OR flag (Figure 16.12), so it is not necessary for
the message boundaries to be preserved by sosencL

With unreliable protocols (e.g., UDP), no data is ever stored in the send buffer and no
acknowledgment is ever expected. Each message is passed immediately to the protocol
where it is queued for transmission on the appropriate network device. In this case,
s~_cc is always 0, and s~_h±wat specifies the maximum size of each write and indi-
rectly the maximum size of a datagram.

Unreliable Protocol Buffering

TCP applications have no control over the size of outgoing TCP segments. For
example, a message of 4096 bytes sent on a TCP socket will be split by the socket layer
into two mbufs with external clusters, containing 2048 bytes each, assuming there is
enough space in the send buffer for 4096 bytes. Later, during protocol processing, TCP
will segment the data according to the maximum segment size for the connection,
which is normally less than 2048.

When a message is too large to fit in the available buffer space and the protocol
allows messages to be split, sosenct still does not pass data to the protocol until the free
space in the buffer rises above sb_lowa~. For TCP, sb_~_owa~ defaults to 2048 (Fig-
ure 16.4), so this rule prevents the socket layer from bothering TCP with small chunks of
data when the send buffer is nearly full.

Ex.1013.516DELL

[

Section 16.7
sosend Function 491

Figure 16.4 shows that sb_h±wat defaults to 9216 (9 x 1024) for UDP. Unless the
process changes sb_h±wat with the SO_SNDBUF socket option, an attempt to write a
datagram larger than 9216 bytes ~eturns with an error. Even then, other limitations of
the protocol implementation may prevent a process from sending large datagrams. Sec-
tion 11.10 of Volume 1 discusses these defaults and limits in other TCP/IP implementa-
tions.

9216 is large enough for a NFS write, which often defaults to 8192 bytes of data plus protocol
headers.

sosend Code

271--278

279-304

305-308

309--341

342--350

Figure 16.22 shows an overview of the sosend function. We discuss the four
shaded sections separately.

The arguments to sosend are: so, a pointer to the relevant socket; addr, a pointer
to a destination address; u±o, a pointer to a u±o structure describing the I/O buffers in
user space; top, an mbuf chain that holds data to be sent; control, an mbuf that holds
control information to be sent; and flags, which contains options for this write call.

Normally, a process provides data to the socket layer through the u±o mechanism
and top is null. When the kernel itself is using the socket layer (such as with NFS), the
data is passed to sosend as an mbuf chain pointed to by top, and u±o is null.

The initialization code is described separately.
Lock send buffer

sosend’s main processing loop starts at restart, where it obtains a lock on the
send buffer with sblock before proceeding. The lock ensures orderly access to the
socket buffer by multiple processes.

If MSG_DONTWAIT is set in flags, then SBLOCKWAIT returns M NOWAIT, which
tells sblock to return EWOULDBLOCK if the lock is not available immedi-ately.

MSG_DONTWAIT is used only by NFS in Net/3.

The main loop continues until sosend transfers all the data to the protocol (i.e.,
resid =: 0).

Check for space

Before any data is passed to the protocol, various error conditions are checked and
sosend implements the flow control and resource control algorithms described earlier.
If sosend blocks waiting for more space to appear in the output buffer, it jumps back to
res tart before continuing.

Use data from top

Once space becomes available and sosend has obtained a lock on the send buffer,
the data is prepared for delivery to the protocol layer. If uio is null (i.e., the data is in
the mbuf chain pointed to by top), sosend checks MSG_EOR and sets M EOR in the
chain to mark the end of a logical record. The mbuf chain is ready for the protocol layer.

Ex.1013.517DELL

492 Socket I/O
Chapter 16

271 sosend(so, addr, uio, top, control, flags)

272 struct socket *so;
273 struct mbuf *addr;

274 struct uio *uio;
275 struct ~tbuf *top;
276 struct mbuf *control;
277 int flags;

278 {

uipc_socket.c

305 restart:
306
307 goto out;
308 do {

342
343
344
345
346
347
348
349
350
351

396

412
413

414
415
416
417
418
419
420
421
422 }

if (error = sblock(&so->so_snd, SBLOCKWAIT(flags)))

/* main loop, until resid == 0 */

do (
if (uio =: NULL) {

/*
* Data is prepackaged in "top".
*/

resid = 0;
if (flags & MSG_EOR)

top->m_flags I = M_EOR;

} else
do {

} while (space > 0 && atomic);

} while (resid && space > 0) ;
} while (resid);

release:
sbunlock(&so->so_snd)

out:
if (top)

m_freem(top);
if (control)

m_freem(control)
return (error);

uipc_socket.c

Figure 16.22 sosend function: overview.

Ex.1013.518DELL

~r 16 Section 16.7 sosend Function 493

ket.c

cket.c

351-396

397-413

414--422

279-284

285-297

298-303

304

Copy data from process

When uio is not null, sosend must transfer the data from the process. When
PR_ATOMIC is set (e.g., UDP), this loop continues until all the data has been stored in a
single mbuf chain. A break, which is not shown in Figure 16.22, causes the loop to ter-
minate when all the data has been copied from the process, and sosend passes the
entire chain to the protocol.

When PR_ATOMIC is not set (e.g., TCP), this loop is executed only once, filling a sin-
gle mbuf with data from uio. In this case, the mbufs are passed one at a time to the
protocol.
Pass data to the protocol

For PR_ATOMIC protocols, after the mbuf chain is passed to the protocol, resid is
always 0 and control falls through the two loops to release. When PR_ATOMIC is not
set, sosend continues filling individuals mbufs while there is more data to send and
while there is still space in the buffer. If the buffer fills and there is still data to send,
sosend loops back and waits for more space before filling the next mbuf. If all the data
is sent, both loops terminate.
Cleanup

After all the data has been passed to the protocol, the socket buffer is unlocked, any
remaining mbufs are discarded, and sosend returns.

The detailed description of sosend is shown in four parts:

¯ initialization (Figure 16.23),
¯ error and resource checking (Figure 16.24),
¯ data transfer (Figure 16.25), and
¯ protocol dispatch (Figure 16.26).

The first part of sosend shown in Figure 16.23 initializes various variables.
Compute transfer size and semantics

atomic is set if sosendallatonce is true (any protocol for which PR_ATOMIC is
set) or the data has been passed to sosend as an mbuf chain in top. This flag controls
whether data is passed to the protocol as a single mbuf chain or in separate mbufs.

resid is the number of bytes in the iovec buffers or the number of bytes in the
top mbuf chain. Exercise 16.1 discusses why resid might be negative.

If requested, disable routing

dontroute is set when the routing tables should be bypassed for this message only.
clen is the number of bytes in the optional control mbuf.

The macro snderr posts the error code, reenables protocol processing, and jumps
to the cleanup code at out. This macro simplifies the error handling within the func-
tion.

Figure 16.24 shows the part of sosend that checks for error conditions and waits
for space to appear in the send buffer.

Ex.1013.519DELL

494 Socket I/O Chapter 16

279
280
281
282
283
284

309

310--311

312-313

314--318

319-321

uipc_socket.c
struct proc *p = curproc; /* XXX */

struct mbuf **mp;
struct mbuf *m;
long space, len, resid;

int clen = O, error, s, dontroute, mlen;
int atomic : sosendallatonce(so) II top;

285 if (uio)
286 resid : uio->uio_resid;
287 else
288 resid = top->m_pkthdr.len;
289 /*
290 * In theory resid should be unsigned.
291 * However, space must be signed, as it might be less than 0

292 * if we over-committed, and we must use a signed comparison

293 * of space and resid. On the other hand, a negative resid

294 * causes us to loop sending 0-length segments to the protocol.

295 */
296 if (resid < 0)
297 return (EINVAL);
298 dontroute =
299 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE)

300 (so->so~Droto->pr_flags & PR_ATOMIC);

301 p->p_stats->p_ru.ru_msgsnd++;

302 if (control)
303 clen = control->m_len;
304 #define snderr(errno) { error = errno; splx(s); goto release; }

Figure 16.23 sosend function:initialization.

:= 0 &&

uipc_socket.c

Protocol processing is suspended to prevent the buffer from changing while it is
being examined. Before each transfer, sosend checks several conditions:

¯ If output from the socket is prohibited (e.g., the write-half of a TCP connection
has been closed), ~.PT PE is returned.

¯ If the socket is in an error state (e.g., an ICMP port unreachable may have been
generated by a previous datagram), so_error is returned, send±t discards
the error if some data has been sent before the error occurs (Figure 16.21, line
389).

¯ If the protocol requires connections and a connection has not been established or
a connection attempt has not been started, ENOTCONN is returned, sosend per-
mits a write consisting of control information and no data even when a connec-
tion has not been established.

The Internet protocols do not use this feature, but it is used by TP4 to send data with a
connection request, to confirm a connection request, and to send data with a disconnect
request.

If a destination address is not specified for a connectionless protocol (e.g., the
process calls send without establishing a destination with connect),
EDESTADDREQ is returned.

4".

3~

Ex.1013.520DELL

Section 16.7

322-324

325-327

sosend Function 495

309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341

s : splnet();
if (so->so_state & SS_CANTSENDMORE)

snderr(EPIPE);
if (so->so_error)

snderr(so->so_error);
if ((so->so_state & SS_ISCON]qECTED) == 0) {

if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
if ((so->so_state & SS_ISCONFIRMING) == 0 &&

! (resid == 0 && clen != 0))
snderr(ENOTCONN);

} else if (addr == 0)
snderr(EDESTADDRREQ);

]
space = sbspace(&so->so_snd);
if (flags & MSG_OOB)

space += 1024;
if (atomic && resid > so->so_snd.sb_hiwat

clen > so->so_snd.sb_hiwat)
snderr(EMSGSIZE);

if (space < resid + clen && uio &&
(atomic I I space < so->so_snd.sb_lowat
if (so->so_state & SS_NBIO)

snderr(EWOULDBLOCK);
sbunlock(&so >so_snd);
error = sbwait(&so->so_snd);
splx(s);
if (error)

goto out;
goto restart;

}
splx(s);
mp = ⊤
space -: clen;

Figure 16.24 sosend function: error and resource checking.

uipc_socket.c

space < clen)) {

uipc_socket.c

Compute available space
sbspace computes the amount of free space remaining in the send buffer. This is

an administrative limit based on the buffer’s high-water mark, but is also limited by
sb mbmax to prevent many small messages from consuming too many mbufs (Fig-
ur~-16.6), sosend gives out-of-band data some priority by relaxing the limits on the
buffer size by 1024 bytes.

Enforce message size limit
If atomic is set and the message is larger than the high-water mark, EMSGSIZE is

returned; the message is too large to be accepted by the protocol--even if the buffer
were empty. If the control information is larger than the high-water mark, EMSGSIZE is
also returned. This is the test that limits the size of a datagram or record.

Ex.1013.521DELL

496 Socket I/O Chapter 16 i,i;,

328-329

330-338

339--341

351-360

Wait for more space?
If there is not enough space in the send buffer, the data is from a process (versus

from the kernel in top), and one of the following conditions is true, then sosend must
wait for additional space before continuing:

¯ the message must be passed to protocol in a single request (atomic is set), or
¯ the message may be split, but the free space has dropped below the low-water

mark, or
¯ the message may be split, but the control information does not fit in the avail-

able space.

When the data is passed to sosend in top (i.e., when uio is null), the data is
already located in mbufs. Therefore sosend ignores the high- and low-water marks
since no additional mbuf allocations are required to pass the data to the protocol.

If the send buffer low-water mark is not used in this test, an interesting interaction
occurs between the socket layer and the transport layer that leads to performance
degradation. [Crowcroft et al. 1992] provides details on this scenario.
Wait for space

If sosend must wait for space and the socket is nonblocking, ~WOULDBLOCK is
returned. Otherwise, the buffer lock is released and sosend waits with sbwait until
the status of the buffer changes. When sbwait returns, sosend reenables protocol pro-
cessing and jumps back to restart to obtain a lock on the buffer and to check the error
and space conditions again before continuing.

By default, sbwait blocks until data can be sent. By changing sb_timeo in the
buffer through the SO_SNDTIMEO socket option, the process selects an upper bound for
the wait time. If the timer expires, sbwait returns EWOULDBLOCK. Recall from Fig-
ure 16.21 that this error is discarded by sendit if some data has already been trans-
ferred to the protocol. This timer does not limit the length of the entire call, just the
inactivity time between filling mbufs.

At this point, sosend has determined that some data may be passed to the proto-
col. splx enables interrupts since they should not be blocked during the relatively long
time it takes to copy data from the process to the kernel, mp holds a pointer used to con-
struct the mbuf chain. The size of the control information (clen) is subtracted from the
space available before sosend transfers any data from the process.

Figure 16.25 shows the section of sosend that moves data from the process to one
or more mbufs in the kernel.
Allocate packet header or standard mbuf

When atomic is set, this code allocates a packet header during the first iteration of
the loop and standard mbufs afterwards. When atomic is not set, this code always
allocates a packet header since top is always cleared before entering the loop.

Ex.1013.522DELL

~r 16

?sus
~ust

ater

zail-

~rks

tion
lnce

K is
intil
pro-
,rror

the
| for
Fig-
ans-
the

’oto-
long
con-
t the

one

,n of
rays

Section 16.7

351
352
353
354
355
356
357
358
359
360

361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
38O
381
382

383
384
385
386
387
388
389
390
391
392
393
394
395
396

sosend Function 497

do {
if (top :: 0) {

MGETHDR(m, M_WAIT, MT_DATA);
mlen - MHLEN;
m->m_pkthdr.len = 0;
m->m~kthdr.rcvif = (struct

} else {
MGET(m, M_WAIT, MT_DATA);
mlen : MLEN;

}

ifnet *) 0;

uipc_socket.c

if (resid >= MINCLSIZE && space >= MCLBYTES)
MCLGET(m, M_WAIT);
if ((m->m_flags & M_EXT) == 0)

goto nopages;
mlen : MCLBYTES;
if (atomic && top == 0) {

len = min(MCLBYTES - max_hdr, resid)
m->m_data += max_hdr;

} else
len - min(MCLBYTES, resid);

space -- MCLBYTES;
) else {

nopages:
fen - min(min{mlen, resid), space);
space -- len;
/*

* For datagram protocols, leave room
* for protocol headers in first mbuf.
*/

if (atomic && top == 0 && len < mlen)
MH_ALIGN(m, fen);

}

error = uiomove(mtod(m, caddr_t),
resid = uio->uio_resid;
m->m_len = len;
*mp : m;
top->m_pkthdr.len += len;
if (error)

goto release;
mp = &m->m_next;
if (resid <= 0) {

if (flags & MSG_EOR)
top->m_flags I= M_EOR;

break;
}

} while (space > 0 && atomic);

Figure 16.25 sosend function: data transfer.

(int) fen, uio);

uipc_socket.c

Ex.1013.523DELL

498

361-371

372-382

383-395

396

Socket I/O Chapter 16

If possible, use a cluster
If the message is large enough to make a cluster allocation worthwhile and space

is greater than or equal to MCLBYTE$, a cluster is attached to the mbuf by MCLGET.
When space is less than MCLBYTES, the extra 2048 bytes will break the allocation limit
for the buffer since the entire cluster is allocated even if resid is less than MCLBYTES.

If MCLGET fails, sosend jumps to nopages and uses a standard mbuf instead of an
external cluster.

The test against MINCLSIZE should use >, not >:, since a write of 208 (MINCLSIZE) bytes fits
within two mbufs.

When atomic is set (e.g., UDP), the mbuf chain represents a datagram or record
and ma×_hdr bytes are reserved at the front of the first cluster for protocol headers.
Subsequent clusters are part of the same chain and do not need room for the headers.

If atomic is not set (e.g., TCP), no space is reserved since sosend does not know
how the protocol will segment the outgoing data.

Notice that space is decremented by the size of the cluster (2048 bytes) and not by ,
len, which is the number of data bytes to be placed in the cluster (Exercise 16.2).
Prepare the mbuf

If a cluster was not used, the number of bytes stored in the mbuf is limited by the
smaller of: (1) the space in the mbuf, (2) the number of bytes in the message, or (3) the
space in the buffer.

When atomic is set, MH_ALIGN locates the data at the end of the buffer for the first
buffer in the chain. MH_ALIGN is skipped if the data completely fills the mbuf. This
may or may not leave enough room for protocol headers, depending on how much data
is placed in the mbuf. When atomic is not set, no space is set aside for the headers.
Get data from the process

uiomove copies len bytes of data from the process to the mbuf. After the transfer,
the mbuf length is updated, the previous mbuf is linked to the new mbuf (or top points
to the first mbuf), and the length of the mbuf chain is updated. If an error occurred auK-
ing the transfer, sosend jumps to release.

When the last byte is transferred from the process, M_EOR is set in the packet if the
process set MSG_EOR, and sosend breaks out of this loop.

MSG_EOR applies only to protocols with explicit record boundaries such as TPd, from the OSI
protocol suite. TCP does not support logical records and ignores the MSG_EOR flag.

Fill another buffer?
If atomic is set, sosend loops back and begins filling another mbuf.

The test for space > 0 appears to be extraneous, space is irrelevant when atomic is not set
since the mbufs are passed to the protocol one at a time. When atomic is set, this loop is
entered only when there is enough space for the entire message. See also Exercise 16.2.

The last section of sosend, shown in Figure 16.26, passes the data and control
mbufs to the protocol associated with the socket.

Se(

39

40~

so~

Ex.1013.524DELL

)ter 16

pace
LGET.
t limit

of an

,,tes fits

:ecord
aders.
.~rs.
know

aot by

by the
’,3) the

~e first
This

h data
CS.

ansfer,
points
.d dur-

t if the

the OSI

not set
loop is

control

Section 16.7 sosend Function 499

397-405

406-413

397
398
399
40O
401
402
403
404
405
406
407
408
409
410
411
412
413

if (dontroute)
so->so_options I: SO_DONTROUTE;

s = splnet(); /* XXX */
error = (*so->so~roto->pr_usrreq) (so,

uipc_socket.c

(flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
top, addr, control)

splx(s);
if (dontroute)

so->so_options
clen = 0;
control = 0;
top = 0;
mp = ⊤
if (error)

goto release;
} while (resid && space > 0);

while (resid);

&= -SO_DONTROUTE;

Figure 16.26 sosend function: protocol dispatch.

uipc_socket.c

The socket’s SO_DO~TROUTE option is toggled if necessary before and after passing
the data to the protocol layer to bypass the routing tables on this message. This is the
only option that can be enabled for a single message and, as described with Fig-
ure 16.23, it is controlled by the MSG_DONTROUTE flag during a write.

pr_usrreq is bracketed with splnet and splx to block interrupts while the
protocol is processing the message. This is a paranoid assumption since some protocols
(such as UDP) may be able to do output processing without blocking interrupts, but this
information is not available at the socket layer.

If the process tagged this message as out-of-band data, sosend issues the
PRU_SENDOOB request; otherwise it issues the PRU_SEND request. Address and control
mbufs are also passed to the protocol at this time.

clen, control, top, and mp are reset, since control information is passed to the
protocol only once and a new mbuf chain is constructed for the next part of the mes-
sage. resid is nonzero only when atomic is not set (e.g., TCP). In that case, if space
remains in the buffer, sosend loops back to fill another mbuf. If there is no more space,
sosend loops back to wait for more space (Figure 16.24).

We’ll see in Chapter 23 that unreliable protocols, such as UDP, immediately queue
the data for transmission on the network. Chapter 26 describes how reliable protocols,
such as TCP, add the data to the socket’s send buffer where it remains until it is sent to,
and acknowledged by, the destination.

sosend Summary

sosend is a complex function. It is 142 lines long, contains three nested loops, one loop
implemented with goto, two code paths based on whether PR_ATOMIC is set or not,
and two concurrency locks. As with much software, some of the complexity has accu-
mulated over the years. NFS added the MSG_DONTWAIT semantics and the possibility

Ex.1013.525DELL

500 Socket I/O
Chapter 16

of receiving data from an mbuf chain instead of the buffers in a process. The
$$_TSCONFTRMTNG state and MSG_~.OR flag were introduced to handle the connection
and record semantics of the OS! protocols.

A cleaner approach would be to implement a separate sosend function for each
type of protocol and dispatch through a pr_senfl pointer in the protosw entry. This
idea is suggested and implemented for UDP in [Partridge and Pink 1993].

Performance Considerations

As described in Figure 16.25, sosend, when possible, passes message in mbuf-sized
chunks to the protocol layer. While this results in more calls to the protocol than build-
ing and passing an entire mbuf chain, [Jacobson 1988a] reports that it improves perfor-
mance by increasing parallelism.

Transferring one mbuf at a time (up to 2048 bytes) allows the CPU to prepare a
packet while the network hardware is transmitting. Contrast this to sending a large
mbuf chain: while the chain is being constructed, the network and the receiving system
are idle. On the system described in [Jacobson 1988a], this change resulted in a 20%
increase in network throughput.

It is important to make sure the send buffer is always larger than the bandwidth-
delay product of a connection (Section 20.7 of Volume 1). For example, if TCP discovers
that the connection can hold 20 segments before an acknowledgment is received, the
send buffer must be large enough to hold the 20 unacknowledged segments. If it is too
small, TCP will run out of data to send before the first acknowledgment is returned and
the connection will be idle for some period of time.

16.8 read, readv, recvfrom, and recvmsg System Calls

These four system calls, which we refer to collectively as read system calls, receive data
from a network connection. The first three system calls are simpler interfaces to the
most general read system call, recvmsg. Figure 16.27 summarizes the features of the
four read system calls and one library function (recv).

Function

read
ready
recv
recvfrom
recvmsg

Type of
descriptor

any
any

sockets only
sockets only
sockets only

Number of
buffers

1
[1.. UIO_MAXIOV]

1
1

[1.. UIO_MAXIOV]

Return sender’s
address?

Flags?
Return control
information?

Figure 16.27 Read system calls.

In Net/3, recv is implemented as a library function that calls recvfrom. For binary compati-
bility with previously compiled programs, the kernel maps the old recv system call to the
function orecv. We discuss only the kernel implementation of recvfrom.

Ex.1013.526DELL

Section 16.9 recvmsg System Call 501

The read and ready system calls are valid with any descriptor, but the remaining
calls are valid only with socket descriptors.

As with the write calls, multiple buffers are specified by an array of iovec struc-
tures. For datagram protocols, reevfrom and recvmsg return the source address asso-
ciated with each incoming datagram. For connection-oriented protocols, getpeername
returns the address associated with the other end of the connection. The flags associ-
ated with the receive calls are shown in Section 16.11.

As with the write calls, the receive calls utilize a common function, in this case
soreceive, to do all the work. Figure 16.28 illustrates the flow of control for the read
system calls.

(.... recv >
~

library ~unc~ion

processl~eFn-dl

PRU_RCVD or PRU_RCVOOB
through pr_usrreq

~DP-] "’i i... ICMP]

Figure 16.28 All socket input is processed by soreceive.

We discuss only the three shaded functions in Figure 16.28. The remaining functions are
left for readers to investigate on their own.

16.9 recvmsg System Call

The recv-msg function is the most general read system call. Addresses, control infor-
mation, and receive flags may be discarded without notification if a process uses one of
the other read system calls while this information is pending. Figure 16.29 shows the
recvmsg function.

Ex.1013.527DELL

502

433-445

446--461

Socket I/O
Chapter 16

433 struct rec~msg_args {
434 int s;
435 struct msghdr *msg;
436 int flags;
437 };

uipc_syscalls.c

438 recvmsg(p, uap, retval)
439 struct proc *p;
440 struct recvmsg_args *uap;
441 int *retval;
442 {
443 struct msghdr msg;
444 struct iovec aiov[UIO_SMALLIOV], *uiov,
445 int error;

*iov;

446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470]

}
done :

if

if (error = copyin((caddr_t) uap->msg, (caddr_t) & msg, sizeof(msg))
return (error);

if ((u_int) msg.msg_iovlen >= UIO_SMALLIOV) {
if ((u_int) msg.msg_iovlen >= UIO_MAXIOV)

return (EMSGSIZE);
MALLOC(iov, struct iovec *

sizeof(struct iovec) * (u_int) msg.msg_iovlen, M_IOV,
M_WAITOK);

] else
iov = aiov;

msg.msg_flags = uap >flags;
uiov = msg.msg_iov;
msg.msg_iov = iov;
if error = copyin((caddr_t) uiov, (caddr_t) iov,

(unsigned) (msg.msg_iovlen * sizeof(struct iovec)
goto done;

if (error = recvit(p, uap->s, &msg, (caddr_t) 0, retval)) == 0) {
msg.msg_iov = uiov;
error = copyout(caddr_t) & msg, (caddr_t) uap->msg, sizeof(msg)

iov !: aiov)
FREE(iov, M_IOV)

return (error);

Figure 16.29 recvmsg system call.
uipc_syscalls.c

The three arguments to recvmsg are: the socket descriptor; a pointer to a msghdr
structure; and several control flags.
Copy ±or array

As with sendmsg, recvmsg copies the msghdr structure into the kernel, allocates a
larger iovec array if the automatic array aiov is too small, and copies the array entries
from the process into the kernel array pointed to by iov (Section 16.4). The flags pro-
vided as the third argument are copied into the msghdr structure.

471--5

Ex.1013.528DELL

dls.c

’Is.c

sa

ies
tO-

Section 16.10 recvit Function 503

462-470

16.10

471-500

recvit and cleanup

After recvit has received data, the msghdr structure is copied back into the pro-
cess with the updated buffer lengths and flags. If a larger iovec structure was allo-
cated, it is released before recvmsg returns.

recvit Function

The recvit function shown in Figures 16.30 and 16.31 is called from recv, recv£rom,
and r÷cvrasg. It prepares a uio structure for processing by soreceJ_ve based on the
msghdr structure prepared by the r÷cvxxx calls.

471
472
473
474
475
476
477
478
479
480
481
482
483

recvit(p, s, mp, namelenp, retsize)
struct proc *p;
int s;
struct msghdr *mp;
caddr_t namelenp;
int *retsize;

struct file *fp;
struct uio auio;
struct iovec *iov;
int i;
int len, error;
struct mbuf *from = 0, *control : O;

uipc_syscalls.c

484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
5OO

if (error : getsock(p->p_fd, s, &fp))
return (error);

auio.uio_iov = mp->msg_iov;
auio.uio_iovcnt = mp->msg_iovlen;
auio.uio_segflg = UIO_USERSPACE;
auio.uio_rw = UIO_READ;
auio.uio_procp = p;
auio.uio_offset = 0; /* XXX */
auio.uio_resid = 0;
iov = mp->msg_iov;
for (i = 0; i < mp->msg_iovlen; i++, iov++) {

if (iov->iov_len < 0)
return (EINVAL);

if ((auio.uio_resid += iov->iov_len) < 0)
return (EINVAL);

}
len = auio.uio_resid;

Figure 16.30 recvit function: initialize uio structure.
uipc_syscalls.c

get sock returns the f i l e structure for the descriptor s, and then r e c v J_ t initial-
izes the uio structure to describe a read transfer from the kernel to the process. The
number of bytes to transfer is computed by summing the rasg_iovlen members of the
iovec array. The total is saved in uio_resid and in len.

The second half of recvit, shown in Figure 16.31, calls soreceive and copies the
results back to the process.

Ex.1013.529DELL

5O4 Socket I/O Chapter 16

501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
52O
521
522
523
524
525
526
527
528
529
53O
531
532
533
534
535
536
537
538
539
54O
541
542
543
544
545
546
547
548
549]

uipc_syscalls.c

if (error : soreceive((struct socket *) fp->f_flata, &from, &auio,
(struct mbuf **) 0, mp->msg_control ? &control : (struct mbuf **) 0,

&mp->msg_flags)) {
if (auio.uio_resid != len && (error == ERESTART II

error == EINTR II error :: EWOULDBLOCK))
error - 0;

]
if (error)

goto out;
*retsize = len - auio.uio_resid;
if (mp->msg_name) {

len = mp->msg_namelen;
if (len <= 0 II from == 0)

len = 0;
else {

if (len > from->m_len)
len = from->m_len;

/* else if len < from->m_len ??? *!
if (error = copyout(mtod(from, caddr_t),

(caddr_t) mp->msg_name, (unsigned) len))
goto out;

}
mp->msg_namelen = fen;
if (namelenp &&

(error = copyout((caddr_t) & len, namelenp, sizeof(int)))) {
goto out;

}

if (mp->msg_control) {
len = mp->msg_controllen;
if (len <= 0 I I control -= 0)

len = 0;
else {

if (len >= control->m_len)
len = control->m_len;

else
mp->msg_flags I: MSG_CTRUNC;

error = copyout((caddr_t) mtod(control, caddr_t),
(caddr_t) mp->msg_control, (unsigned) len);

}
mp->msg_controllen = len;

}
OUt:

if (from)
m_freem(from);

if (control)
m_freem(control);

return (error);

Figure 16.31 recvit function: re~urn results.

uipc_syscalls.c ~i

Section "

501--510

511--542

543--549

16.11

Out-of-E

Ex.1013.530DELL

Section 16.11 soreceive Function 505

501-510

511-542

543-549

Call soreceive

soreceive implements the complex semantics of receiving data from the socket
buffers. The number of bytes transferred is saved in *retsize and returned to the
process. When an signal arrives or a blocking condition occurs after some data has been
copied to the process (len is not equal to uio_resid), the error is discarded and the
partial transfer is reported.

Copy address and control information to the process
If the process provided a buffer for an address or control information or both, the

buffers are filled and their lengths adjusted according to what soreceive returned.
An address may be truncated if the buffer is too small. This can be detected by the pro-
cess if it saves the buffer length before the read call and con-tpares it with the value
returned by the kernel in the namelenp variable (or in the length field of the sockaddr
structure). Truncation of control information is reported by setting MSG_CTRUNC in
msg_flags. See also Exercise 16.7.

Cleanup
At out, the mbufs allocated for the source address and the control information are

released.

16.11 soreceive Function

This function transfers data from the receive buffer of the socket to the buffers specified
by the process. Some protocols provide an address specifying the sender of the data,
and this can be returned along with additional control information that may be present.
Before examining the code, we need to discuss the semantics of a receive operation, out-
of-band data, and the organization of a socket’s receive buffer.

Figure 16.32 lists the flags that are recognized by the kernel during soreceive.

f 1 ag s Description Reference

MSG_DONTWAIT do not wait for resources during this call Figure 16.38
MSG_OOB receive out-of-band data instead of regular dataFigure 16.39
MSG_PEEK receive a copy of the data without consuming itFigure 16.43
MSG_WAITALL wait for data to fill buffers before returning Figure 16.50

Figure 16.32 recvxxx system calls: flag values passed to kernel.

recwnsg is the only read system call that returns flags to the process. In the other
calls, the information is discarded by the kernel before control returns to the process.
Figure 16.33 lists the flags that recvmsg can set in the msghdr structure.

Out-of-Band Data

Out-of-band (OOB) data semantics vary widely among protocols. In general, protocols
expedite OOB data along a previously established communication link. The OOB data
might not remain in sequence with previously sent regular data. The socket layer

Ex.1013.531DELL

506 Socket I/O Chapter 16

r~ s g_ £]_ ag s Description Reference

t4,gG_C[PRUNC the control information received was larger than the buffer provided Figure 16.31

MSG._EO!{ the data received marks the end of a logical record Figure 16.48

!~SG._OO!3 the buffer(s) contains out-of-band data Figure 16.45

!~SG 7~RUNC the message received was larger than the buffer(s) provided Figure 16.51

Figure 16.33 recva~sg system call: rns~_£]_a~ values returned by kernel.

supports two mechanisms to facilitate handling OOB data in a protocol-independent
way: tagging and synchronization. In this chapter we describe the abstract OOB mecha-
nisms implemented by the socket layer. UDP does not support OOB data. The relation-
ship between TCP’s urgent data mechanism and the socket OOB mechanism is
described in the TCP chapters.

A sending process tags data as OOB data by setting the MSG_OO~3 flag in any of the
sendxxx calls, sosend passes this information to the socket’s protocol, which provides
any special services, such as expediting the data or using an alternate queueing strategy.

When a protocol receives OOB data, the data is set aside instead of placing it in the
socket’s receive buffer. A process receives the pending OOB data by setting the
r4sG_oo~3 flag in one of the recvxxx calls. Alternatively, the receiving process can ask
the protocol to place OOB data inline with the regular data by setting the
SO_OOBTNLINE socket option (Section 17.3). When SO_OOBTNL]SNE is set, the protocol
places incoming OOB data in the receive buffer with the regular data. In this case,
I~SG_OOB is not-used to receive the OOB data. Read calls return either all regular data
or all OOB data. The two types are never mixed in the input buffers of a single input
system call. A process that uses recvmsg to receive data can examine the MSG_OOB flag
to determine if the returned data is regular data or OOB data that has been placed
inline.

The socket layer supports synchronization of OOB and regular data by allowing the
protocol layer to mark the point in the regular data stream at which OOB data was
received. The receiver can determine when it has reached this mark by using the
SIOCATMARK ioctl command after each read system call. When receiving regular
data, the socket layer ensures that only the bytes preceding the mark are returned in a
single message so that the receiver does not inadvertently pass the mark. If additional
OOB data is received before the receiver reaches the mark, the mark is silently
advanced.

Example

Figure 16.34 illustrates the two methods of receiving out-of-band data. In both exam-
ples, bytes A through I have been received as regular data, byte J as out-of-band data,
and bytes K and L as regular data. The receiving process has accepted all data up to but
not including byte A.

In the first example, the process can read bytes A through I or, if MSG_OOB is set,
byte J. Even if the length of the read request is more than 9 bytes (A-I), the socket layer

Ex.1013.532DELL

~t

te

~s

y.

~k
~e
ol
;e~

ta
ut

~d

he
as

he
.ar
ta

~al

.ta,
)ut

~et,
~er

Section 16.11 soreceive Function 507

consumed receive buffer

~ A B C D E F G H I K L ~

~ out-of-band data ~--- mark

consumed receive buffer

A B C D E F G H I i K L

~---- mark and out-of-band data

Figure 16.34 Receiving out-of-band data.

returns only 9 bytes to avoid passing the out-of-band synchronization mark. When byte
I is consumed, s TOCAqPMARK is true; it is not necessary to consume byte J for the process
to reach the out-of-band mark.

In the second example, the process can read only bytes A through I, at which point
STOCATMARK is true. A second call can read bytes J through L.

In Figure 16.34, byte J is not the byte identified by TCP’s urgent pointer. The urgent
pointer in this example would point to byte K. See Section 29.7 for details.

Other Receive Options

A process can set the MSG_PEEK flag to retrieve data without consuming it. The data
remains on the receive queue until a read system call without MSG_PEEK is processed.

The I~ISG_WAITALL flag indicates that the call should not return until enough data
can be returned to fulfill the entire request. Even if sorece±ve has some data that can
be returned to the process, it waits until additional data has been received.

When MSG_WAITALL is set, soreceive can return without filling the buffer in the
following cases:

¯ the read-half of the connection is closed,
¯ the socket’s receive buffer is smaller than the size of the read,
¯ an error occurs while the process is waiting for additional data,
¯ out-of-band data becomes available, or
¯ the end of a logical record occurs before the read buffer is filled.

NFS is the only software in Net/3 that uses the MSG_WAITALL and MSG_DONTWAIT flags.
MSG_DONTWAIT can be set by a process to issue a nonblocking read system call without select-
ing nonblocking I/O with ioctl or fcntl.

Ex.1013.533DELL

508 Socket I/O Chapter 16

Receive Buffer Organization: Message Boundaries

For protocols that support message boundaries, each message is stored in a single chain
of mbufs. Multiple messages in the receive buffer are linked together by m_nextpkt to
form a queue of mbufs (Figure 2.21). The protocol processing layer adds data to the
receive queue and the socket layer removes data from the receive queue. The high-
water mark for a receive buffer restricts the amount of data that can be stored in the
buffer.

When PR_ATOMIC is not set, the protocol layer stores as much data in the buffer as
possible and discards the portion of the incoming data that does not fit. For TCP, this
means that any data that arrives and is outside the receive window is discarded. When
PR_ATOMIC is set, the entire message must fit within the buffer. If the message does not
fit, the protocol layer discards the entire message. For UDP, this means that incoming
datagrams are discarded when the receive buffer is full, probably because the process is
not reading datagrams fast enough.

Protocols with PR_ADDR set use sbapp÷ndaddr to construct an mbuf chain and
add it to the receive queue. The chain contains an mbuf with the source address of the
message, 0 or more control mbufs, followed by 0 or more mbufs containing the data.

For SOCK_SEQPACKET and SOCK_RDM protocols, the protocol builds an mbuf chain
for each record and calls sbappendrecord to append the record to the end of the
receive buffer if PR_ATOMTC is set. If PR_ATOMIC is not set (OSI’s TP4), a new record is
started with sbapp÷ndrecord. Additional data is added to the record with
sbappend.

It is not correct to assume that PR_ATOMIC indicates the buffer organization. For example, TP4
does not have PR_ATOI~ITC set, but supports record boundaries with the ~_EOR flag.

Figure 16.35 illustrates the organization of a UDP receive buffer consisting of 3
mbuf chains (i.e., three datagrams). The re_type value for each mbuf is included.

In the figure, the third datagram has some control information associated with it.
Three UDP socket options can cause control information to be placed in the receive buff-
er. See Figure 22.5 and Section 23.7 for details.

For PR_ATOMIC protocols, sb_lowat is ignored while data is being received.
When PR_ATOMIC is not set, sb_lowat is the smallest number of bytes returned in a
read system call. There are some exceptions to this rule, discussed with Figure 16.41.

Receive Buffer Organization: No Message Boundaries

When the protocol does not maintain message boundaries (i.e., SOCK_STREAM protocols
such as TCP), incoming data is appended to the end of the last mbuf chain in the buffer
with sbappend. Incoming data is trimmed to fit within the receive buffer, and
sb_lowat puts a lower bound on the number of bytes returned by a read system call.

Figure 16.36 illustrates the organization of a TCP receive buffer, which contains only
regular data.

Ex.1013.534DELL

Section 16.11 soreceive Function

datagram~l -

so_rcv

MT_ADDR --~ MT__CONTROL--~[MT_DATA

datagram 2

datagram 3

Figure 16.35 UDP receive buffer consisting of three datagrams.

MT_DA TA ~

socket

M~__DATA @~ MT_DA TA

MT_DA TA

Figure 16.36 so_rcvbuffer for TCR

MT_DA TA --~_

Control Information and Out-of-band Data

Unlike TCP, some stream protocols support control information and call
sbappendcontrol to append the control information and the associated data as a new
mbuf chain in the receive buffer. If the protocol supports inline OOB data,
sb±nsertoob inserts a new mbuf chain just after any mbuf chain that contains OOB
data, but before any mbuf chain with regular data. This ensures that incoming OOB
data is queued ahead of any regular data.

509

Ex.1013.535DELL

510

16.12

439--446

Socket l/O
Chapter 16

Figure 16.37 illustrates the organization of a receive buffer that contains control
information and OOB data.

socket{)

SO__rCV

MT_DA TA --~

Figure 16.37 so_rcv buffer with control and OOB data.

The Unix domain stream protocol supports control information and the OSI TP4
protocol supports MT_OOBDATA mbufs. TCP does not support control data nor does it
support the FIT_OOBDATA form of out-of-band data. If the byte identified by TCP’s
urgent pointer is stored inline (SO_OOBINLINE is set), it appears as regular data, not
OOB data. TCP’s handling of the urgent pointer and the associated byte is described in
Section 29.7.

soreceive Code

We now have enough background information to discuss soreceive in detail. While
receiving data, soreceive must respect message boundaries, handle addresses and
control information, and handle any special semantics identified by the read flags (Fig-
ure 16.32). The general rule is that soreceive processes one record per call and tries to
return the number of bytes requested. Figure 16.38 shows an overview of the function.

soreceive has six arguments, so is a pointer to the socket. A pointer to an mbuf
to receive address information is returned in *paddr. If rap0 points to an mbuf pointer,
soreceive transfers the receive buffer data to an mbuf chain pointed to by *rap0. In
this case, the uio structure is used only for the count in uio_resid. If rap0 is null,
soreceive copies the data into buffers described by the uio structure. A pointer to
the mbuf containing control information is returned in *controlp, and soreceive
returns the flags described in Figure 16.33 in * f lagsp.

Ex.1013.536DELL

rol

’P4
~ it
P’s
lot
in

tile
nd
ig-
, to
l.

)uf
:er,
In
~11,
to
ve

Section 16.12 soreceive Code 511

447-453

454-461

483-487

488--541

542--545

546--590

591--597

598-692

693--719

soreceive starts by setting pr to point to the socket’s protocol switch structure
and saving uio_resid (the size of the receive request) in orig_resid. If control
information or addressing information is copied from the kernel to the process,
orig_resid is set to 0. If data is copied, uio_resid is updated. In either case,
orig_resid will not equal uio_resid. This fact is used at the end of soreceive
(Figure 16.51).

*paddr and *controlp are cleared. The flags passed to soreceive in *flagsp
are saved in flags after the MSG_EOR flag is cleared (Exercise 16.8). flagsp is a
value-result argument, but only the recvmsg system call can receive the result flags. If
flagsp is null, flags is set to 0.

Before accessing the receive buffer, sbloek locks the buffer, soreceive waits for
the lock unless MSG_DONTWAIT is set in flags.

This is another side effect of supporting calls to the socket layer from NFS within the kernel.

Protocol processing is suspended, so soreceive is not interrupted while it exam-
ines the buffer, ra is the first mbuf on the first chain in the receive buffer.
If necessary, wait for data

soreceive checks several conditions and if necessary waits for more data to arrive
in the buffer before continuing. If soreceive sleeps in this code, it jumps back to
restart when it wakes up to see if enough data has arrived. This continues until the
request can be satisfied.

soreeeive jumps to dontb!ock when it has enough data to satisfy the request. A
pointer to the second chain in the receive buffer is saved in nextrecord.
Process address and control information

Address information and control information are processed before any other data is
transferred from the receive buffer.
Setup data transfer

Since only OOB data or regular data is transferred in a single call to soreceive,
this code remembers the type of data at the front of the queue so soreceive can stop
the transfer when the type changes.
Mbuf data transfer loop

This loop continues as long as there are mbufs in the buffer (ra is not null), the
requested number of bytes has not been transferred (uio_resid > 0), and no error has
occurred.

Cleanup

The remaining code updates various pointers, flags, and offsets; releases the socket
buffer lock; enables protocol processing; and returns.

Ex.1013.537DELL

512 Socket I/O
Chapter 16

uipc_socket.c
439 soreceive(so, paddr, uio, mp0, controlp, flagsp)
440 struct socket *so;
441 struct mbuf **paddr;
442 struct uio *uio;
443 struct mbuf **mp0;
444 struct mbuf **controlp;
445 int
446 {
447
448
449
45O
451
452

*flagsp;

struct mbuf *m, **mp;
int flags, len, error, s, offset;

struct protosw *pr : so->so__proto;
struct mbuf *nextrecord;
int moff, type;
int orig_resid = uio->uio_resid;

453
454
455
456
457
458
459
460
461

483
484
485
486
487

mp : mp0;
if (paddr)

*paddr : 0;
if (controlp)

*controlp : 0;
if (flagsp)

flags = *flagsp & ~MSG_EOR;
else

flags = 0;

./* MSG_OOB processing
~./~ implicit connectlon, gonflrmat10

restart :
if (error = sblock(&so->so_rcv, SBLOCKWAIT(flags))

return (error) ;
s = splnet () ;
m = so->so_rcv, sb_mb;

: i " ~*~i~ ne~essary, i:Wait fo~ data

542
543
544
545

591
592
593
594
595
596
597

dontblock:
if (uio->uio_procp)

uio_>uio_procp->p_stats->p_ru.ru_msgrcv++;
nextrecord = m->m_nextpkt;

.... /* .process address a~d control info

if (m) {
if ((flags & MSG_PEEK) :: 0)

m->m_nextpkt = nextrecord;
type = m->m_type;
if (type == MT_OOBDATA)

flags I= MSG_OOB;

Ex.1013.538DELL

16.12 soreceive Code 513

693

/* process data */

/* while more data and more space to fill *!

715
716
717
718
719 }

/* cleanup */

release:
sbunlock(&so->so_rcv);
splx(s);
return (error);

Figure 16.38 soreceive function: overview.

uipc_socket.c

462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477

In Figure 16.39, soreceive handles requests for OOB data.

if (flags & MSG_OOB) {
m - m_get(M_WAIT, MT_DATA);
error = (*pr->pr_usrreq) (so, PRU_RCVOOB,

m, (struct mbuf *) (flags & MSG_PEEK), (struct mbuf *) 0);
if (error)

goto bad;
do {

error = uiomove(mtod(m, caddr_t),
(int) min(uio->uio_resid, m->m_len), uio);

m - m_free(m);
] while (uio >uio_resid && error == 0 && m);

bad:
if (m)

m_freem(m);
return (error);

}

Figure 16.39 soreceive function: out-of-band data.

uipc_socket.c

uipc_socket.c

Receive OOB data

Since OOB data is not stored in the receive buffer, soreceive allocates a standard
mbuf and issues the PRU_RCVOOB request to the protocol. The while loop copies any
data returned by the protocol to the buffers specified by uio. After the copy,
soreceive returns 0 or the error code.

UDP always returns EOPNOTSUPP for the PRU_RCVOOB request. See Section 30.2
for details regarding TCP urgent processing. In Figure 16.40, soreceive handles con-
nection confirmation.

Ex.1013.539DELL

514 Socket I/O Chapter 16

uipc_socket.¢
478 if (mp)
479 *mp : (struct mbuf *) 0;
480 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
481 (*pr->pr_usrreq) (so, PRU_RCVD, (struct mbuf *) 0,
482 (struct mbuf *) 0, (struct mbuf *) 0);

Figure 16.40 soreceive function: connection confirmation.

uipc_socket.c

478-482

488-504

Connection confirmation
If the data is to be returned in an mbuf chain, *mp is initialized to null. If the socket

is in the so_I SCONFIRMING state, the PRU_RCVD request notifies the protocol that the
process is attempting to receive data.

The SO_ISCONFIRMING state is used only by the OSI stream protocol, TP4. In TP4, a connec-
tion is not considered complete until a user-level process has confirmed the connection by
attempting to send or receive data. The process can reject a connection by calling shutdown
or close, perhaps after calling getpeername to determine where the connection came from.

Figure 16.38 showed that the receive buffer is locked before it is examined by the
code in Figure 16.41. This part of soreceive determines if the read system call can be
satisfied by the data that is already in the receive buffer.

488
489
490
491
492
493
494
495
496
497
498
499
5OO
501
5O2
503
5O4

* If we have less data than requested, block awaiting more
* (subject-to any timeout) if:
* i. the current count is less than the low water mark, or
* 2. MSG_WAITALL is set, and it is possible to do the entire
* receive operation at once if we block (resid <= hiwat).
* 3. MSG_DONTWAIT is not set

* If MSG_WAITALL is set but resid is larger than the receive buffer,
* we have to do the receive in sections, and thus risk returning
* a short count if a timeout or signal occurs after we start.
*/

if (m == 0 I I ((flags & MSG_DONTWAIT) == 0 &&
so->so_rcv.sb_cc < uio->uio_resid)

(so->so_rcv.sb_cc < so->so_rcv.sb_lowat
((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&

m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0) {
uipc_socket.c

Figure16.41 soreceivefuncdon:enough data?

Can the call be satisfied now?

The general rule for soreceive is that it waits until enough data is in the receive
buffer to satisfy the entire read. There are several conditions that cause an error or less
data than was requested to be returned.

If any of the following conditions are true, the process is put to sleep to wait for
more data to arrive so the call can be satisfied:

Ex.1013.540DELL

apter 16

:_socket.c

:_socket.c

e socket
that the

connec-
Lection by
:hutdown

from.

t by the
[1 can be

.c socket.c

ffer,
g

t)) &&

~c socket.c

e receive
)r or less

wait for

Section 16.12 soreceive Code 515

505--534

505--512

513--518

519-523

524--528

529--534

535--541

There is no data in the receive buffer (m equals 0).

There is not enough data to satisfy the entire read (sb_cc < uio_res±d and
MSG_DONTWAIT is not set), the minimum amount of data is not available
(sb_cc < sb_lowat), and more data can be appended to this chain when it
arrives (ra_nex¢pkt is 0 and PR_ATOMTC is not set).

There is not enough data to satisfy the entire read, a minimum amount of data
is available, data can be added to this chain, but MSG_WATTALL indicates that
sorece±ve should wait until the entire read can be satisfied.

If the conditions in the last case are met but the read is too large to be satisfied with-
out blocking (u±o_res±d > sb_h±wat), sorece±ve continues without waiting for
more data.

If there is some data in the buffer and MSG_DONTWAIT is set, soreceive does not
wait for more data.

There are several reasons why waiting for more data may not be appropriate. In
Figure 16.42, sorece±ve checks for these conditions and returns, or waits for more
data to arrive.

Wait for more data?
At this point, soreceive has determined that it must wait for additional data to

arrive before the read can be satisfied. Before waiting it checks for several additional
conditions:

¯ If the socket is in an error state and empty (m is null), soreceive returns the
error code. If there is an error and the receive buffer also contains data (ra is
nonnull), the data is returned and a subsequent read returns the error when
there is no more data. If MSG_PEEK is set, the error is not cleared, since a read
system call with MSG_PEEK set should not change the state of the socket.

¯ If the read-half of the connection has been closed and data remains in the
receive buffer, sosend does not wait and returns the data to the process (at
dontblock). If the receive buffer is empty, soreceive jumps to release
and the read system call returns 0, which indicates that the read-half of the con-
nection is closed.

¯ If the receive buffer contains out-of-band data or the end of a logical record,
soreceive does not wait for additional data and jumps to dontblock.

¯ If the protocol requires a connection and it does not exist, ENOTCONN is posted
and the function jumps to release.

¯ If the read is for 0 bytes or nonblocking semantics have been selected, the func-
tion jumps to release and returns 0 or EWOULDBLOCK, respectively.

Yes, wait for more data
soreceive has now determined that it must wait for more data, and that it is rea-

sonable to do so (i.e., some data will arrive). The receive buffer is unlocked while the
process sleeps in sbwait. If sbwait returns because of an error or a signal,

Ex.1013.541DELL

516 Socket I/O Chapter 16

505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
52O
521
522
523
524
525
526
527
528
529
53O
531
532
533
534
535
536
537
538
539
540
541

uipc_socket.c

}
if (uio->uio_resid =: 0)

goto release;
if ((so->so_state & SS_NBIO) I I (flags & MSG_DONTWAIT)) {

error : EWOUL~BLOCK;
goto release;

sbunlock (&so->so_rcv) ;
error = sbwait(&so->so_rcv) ;
splx (s) ;
if (error)

return (error) ;
goto restart;

} uipc_socket.c

Figure 16.42 soreceive function: wait for more data?

s o r e c e iv e returns the error; otherwise the function jump s to r e s t a r t to determine if
the read can be satisfied now that more data has arrived.

As in sosend, a process can enable a receive timer for sbwait with the 4~{
SO_RCVTIMEO socket option. If the timer expires before any data arrives, sbwait ~’
re~urns EWOULDBLOCK.

The effect of this timer is not what one would expect. Since the timer gets reset every time
there is activity on the socket buffer, the timer never expires if at least 1 byte arrives within the
timeout interval. This can delay the return of the read system call for more than the value of
the timer, sb_timeo is an inactivity timer and does not put an upper bound on the amount of
time that may be required to satisfy the read system call.

if (so->so_error) {
if (m)

goto dontblock;
error = so->so_error;
if ((flags & MSG_PEEK) == 0)

so->so_error = 0;
goto release;

}
if (so->so_state & SS_CANTRCVMORE) {

if (m)
goto dontblock;

else
goto release; ill

]
for (; m; m = m->m_next)

if (a->re_type :: MT_OOBDATA I[(a->re_flags & M_EOR)) {

m = so->so_rcv, sb_mb;
goto dontblock;

}
if ((so->so_state & (SS_ISCONNECTED I SS_ISCONNECTING)) == 0 &&

(so->so_ioroto->pr_flags & PR_CONNREQUIRED)) {
error : ENOTCONN; .
goto release; .!

Ex.1013.542DELL

.~if

:he

!Tie

the
~ of
t of

Section 16.12 soreceive Code 517

At this point, soreceive is prepared to transfer some data from the receive buffer.
Figure 16.43 shows the transfer of any address information.

542 dontblock:
543 if (uio->uio_procp)
544 uio->uio_procp->p_stats->p_ru.ru_msgrcv++;
545 nextrecord : m->m_nextpkt;
546 if (pr->pr_flags & PR_ADDR) {
547 orig_resid = 0;
548 if (flags & MSG_PEEK) {
549 if (paddr)
550 *paddr = m_copy(m, 0, m->m_len);
551 m = m->m_next;
552 } else {
553 sbfree(&so-~so_rcv, m);
554 if (paddr) {
555 *paddr = m;
556 so->so_rcv.sb_mb = m->m_next;
557 m->m_next = 0;
558 m = so->so_rcv.sb_mb;
559 } else {
560 MFREE(m, so->so_rcv.sb_mb);
561 m = so->so_rcv.sb_mb;
562 }
563 }
564 }

Figure 16.43 soreceive function: return address information.

uipc_socket.c

uipc_socket.c

542--545

546--564

565-590

dontblock

nextrecord maintains a reference to the next record that appears in the receive
buffer. This is used at the end of soreceive to attach the remaining mbufs to the
socket buffer after the first chain has been discarded.
Return address information

If the protocol provides addresses, such as UDP, the mbuf containing the address is
removed from the mbuf chain and returned in *paddr. If paddr is null, the address is
discarded.

Throughout soreceive, if MSG_PEEK is set, the data is not removed from the
buffer.

The code in Figure 16.44 processes any control mbufs that are in the buffer.
Return control information

Each control mbuf is removed from the buffer (or copied if MSG_PEEK is set) and
attached to *controlp. If controlp is null, the control information is discarded.

If the process is prepared to receive control information, the protocol has a
dom_external i ze function defined, and if the control mbuf contains a SCM_RIGHTS
(access rights) message, the dora_external i z e function is called. This function takes
any kernel action associated with receiving the access rights. Only the Unix protocol

Ex.1013.543DELL

518 Socket I/O
Chapter 16

565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
58O
581
582
583
584
585
586
587
588
589
59O

uipc_socket.c
while (m && m->m_type == MT_CONTROL && error == 0) {

if (flags & MSG_PEEK) {
if (controlp)

*controlp = m_copy(m, 0, m->m_len);
m = m->m_next;

} else {
sbfree(&so->so_rcv, m) ;
if (controlp) {

if (pr->pr_domain->dom_externalize &&
mtod(m, struct cmsghdr *)->cmsg_type =-
SCM_RIGHTS)

error = (*pr->pr_domain->dom_externalize)
*controlp =
so->so_rcv.sb_mb = m->m_next;
m->m_next : 0;
m = so->so_rcv.sb_mb;

} else {
MFREE(m, so->so_rcv.sb_mb);
m - so->so_rcv.sb_mb;

]
}
if (controlp) {

orig_resid = 0;
controlp = &(*controlp)->m_next;

}

Figure 16.44 soreceive function: control information.

(m) ;

uipc_socket.c

domain supports access rights, as discussed in Section 7.3. If the process is not prepared
to receive control information (controlp is null) the mbuf is discarded.

The loop continues while there are more mbufs with control information and no
error has occurred.

For the Unix protocol domain, the dora_externalize function implements the semantics of
passing file descriptors by modifying the file descriptor table of the receiving process.

591-597

After the control mbufs are processed, in points to the next mbuf on the chain. If the
chain does not contain any mbufs after the address, or after the control information, m is
null. This occurs, for example, when a 0-length UDP datagram is queued in the receive
buffer. In Figure 16.45 soreceive prepares to transfer the data from the mbuf chain.

Prepare to transfer data
After the control mbufs have been processed, the chain should contain regular, out-

of-band data mbufs or no mbufs at all. If m is null, sorece±ve is finished with this
chain and control drops to the bottom of the wh± le loop. If m is not null, any remaining!
chains (nextrecord) are reattached to m and the type of the next mbuf is saved in
type. If the next mbuf contains OOB data, MSG_OOB is set in flags, which is lateri

Ex.1013.544DELL

~r 16

:et.c

:ed

no

s of

:he
~ is
[ve

ut-
his
ng
in

Section 16.12
soreceive Code 519

591 if (m) {
592 if ((flags & MSG_PEEK) :: 0)
593 m->m_nextpkt = nextrecord;
594 type = m->m_type;
595 if (type == MT_OOBDATA)
596 flags I= MSG_OOB;
597 }

Figure 16.45 soreceive function: mbuf transfer setup.

uipc_socket.c

uipc_socket.c

returned to the process. Since TCP does not support the MT_OOBDATA form of out-of-
band data, MSG_OOB will never be returned for reads on TCP sockets.

Figure 16.47 shows the first part of the mbuf transfer loop. Figure 16.46 lists the
variables updated within the loop.

Vari_~able
moff
offset
uio resid

Description

the offset of the next byte to transfer when MSG_PEEK is set
the offset of the OOB mark when MSG PEEK is set
the number of bytes remaining to be transferred
the number of bytes to be transferred from this mbuf; may be less than

m_len if uio_resid is small, or if the OOB mark is near

Figure 16.46 soceceive function: loop variables.

598-600

600--605

606--611

612--625

During each iteration of the while loop, the data in a single mbuf is transferred to
the output chain or to the uio buffers. The loop continues while there are more mbufs,
the process’s buffers are not full, and no error has occurred.

Check for transition between OOB and regular data
If, while processing the mbuf chain, the type of the mbuf changes, the transfer

stops. This ensures that regular and out-of-band data are not both returned in the same
message. This check does not apply to TCP.
Update OOB mark

The distance to the oobmark is computed and limits the size of the transfer, so the
byte before the mark is the last byte transferred. The size of the transfer is also limited
by the size of the mbuf. This code does apply to TCP.

If the data is being returned to the uio buffers, uiomove is called. If the data is
being returned as an mbuf chain, uio resid is adjusted to reflect the number of bytes
moved. -

To avoid suspending protocol processing for a long time, protocol processing is
enabled during the call to uiomove. Additional data may appear in the receive buffer
because of protocol processing while uiomove is running.

The code in Figure 16.48 adjusts all the pointers and offsets to prepare for the next
mbuf.

Ex.1013.545DELL

520 Socket I/O Chapter 16

uipc socket.c
598 moff = 0; --
599 offset = 0;
600 while (m && uio->uio_resid > 0 && error == 0) {
601 if (m->m_type := MT_OOBDATA) {
602 if (type !: MT_OOBDATA)
603 break;
604] else if (type :: MT_OOBDATA)
605 break;
606 so->so_state &= -SS_RCVATMARK;
607 len = uio->uio_resid;
608 if (so->so_oobmark && len > so->so_oobmark - offset)
609 len = so->so_oobmark - offset;
610 if (len > m->m_len - moff)
611 len = m->m_len - moff;
612 /*
613 * If mp is set, just pass back the mbufs.
614 * Otherwise copy them out via the uio, then free.
615 * Sockbuf must be consistent here (points to current mbuf,
616 * it points to next record) when we drop priority;
617 * we must note any additions to the sockbuf when we
618 * block interrupts again.
619 */
620 if (mp == 0) {
621 splx(s);
622 error = uiomove(mtod(m, caddr_t) + moff, (int) len, uio);
623 s = splnet() ;
624 } else
625 uio->uio_resid -= len;

Figure 16.47 soreceive function: uiomove.
uipc_socket.c

626--646

647-657

Finished with mbuf?

If all the bytes in the mbuf have been transferred, the mbuf must be discarded or the
pointers advanced. If the mbuf contained the end of a logical record, MSG_EOR is set. If
HSG_PEEK is set, sorece±ve skips to the next buffer. If HSG_P~’.~’.K is not set, the buffer
is discarded if the data was copied by u±oraove, or appended to mp if the data is being
returned in an mbuf chain.

More data to process

There may be more data to process in the mbuf if the request didn’t consume aH the
data, if so_oobmark cut the request short, or if additional data arrived during
uiomove. If MSG PEEK is set, moff is updated. If the data is to be returned on an
mbuf chain, fen bytes are copied and attached to the chain. The mbuf pointers and the
receive buffer byte count are updated by the amount of data that was transferred.

Figure 16.49 contains the code that handles the OOB offset and the MSG_EOR pro-
cessing.

Ex.1013.546DELL

e

ction 16.12

626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
65O
651
652
653
654
655
656
657

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672

Code 521

uipc_socket.c
if (len == m->m_len - moff) {

if (m->m_flags & M_EOR)
flags I= MSG_EOR;

if (flags & MSG_PEEK) {
m = m->m_next;
moff = 0;

} else {
nextrecord : m->m_nextpkt;
sbfree(&so->so_rcv, m);
if (mp) {

*mp : m;
mp : &m->m_next;
so->so_rcv.sb_mb : m : m->m_next
*mp = (struct mbuf *) 0;

else
MFREE(m, so->so_rcv.sb_mb);
m = so->so_rcv.sb_mb;

}
if (m)

m->m_nextpkt : nextrecord;
}

else {
if (flags & MSG_PEEK)

moff += len;
else {

if (mp}
*mp = m_copym(m, 0, fen, M_WAIT)

m->m_data += len;
m->m_len -: len;
so >so_rcv.sb_cc -= men;

}

Figure16.48 soreceivefunction:updatebuffen

if (so->so_oobmark)
if ((flags & MSG_PEEK) :: 0) {

so->so_oobmark -: len;
if (so->so_oobmark == 0)

so->so_state I: SS_RCVATMARK;
break;

}
} else {

offset += len;
if (offset == so->so_oobmark)

break;
}

}
if (flags & MSG_EOR)

break;

Figure 16.49 soreceive function: out-of-band data mark,

uipc_socket.c

uipc_socket.c

uipc_socket.c

Ex.1013.547DELL

522 Socket I/O Chapter 16

658-670

671-672

Update OOB mark
If the out-of-band mark is nonzero, it is decremented by the number of bytes trans

ferred. If the mark has been reached, $S_RCVATMARK is set and sorece±ve breaks outii! ~
of the while loop. If MSG_PEEK is set, o f f set is updated instead of so oobmark. ¯

End of logical record .~!.

If the end of a logical record has been reached, soreceive breaks out of the mbuf
processing loop so data from the next logical record is not returned with this message.

673-681

682-683

684-689

The loop in Figure 16.50 waits for more data to arrive when MSG_WAITALL is set
and the request is not complete.

673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693

]
}

MSG_WAITALL

If MSG_WAITALL is set, there is no more data in the receive buffer (m equals 0), the
caller wants more data, sosendallatonce is false, and this is the last record in the
receive buffer (nextrecord is null), then soreceive must wait for additional data.
Error or no more data will arrive

If an error is pending or the connection is closed, the loop is terminated.
Wait for data to arrive

sbwait returns when the receive buffer is changed by the protocol layer. If the
wait was interrupted by a signal (error is nonzero), sosend returns immediately.

/* while more data and more space uipc_socket.ct° fill */ i!i:/.

Figure 16.50 soreceive function: MSG_WAITALL processing. :!!i~!17

/, uipc_socket.c
* If the MSG_WAITALL flag is set (for non-atomic socket),
* we must not quit until "uio->uio_resid == 0" or an error
* termination. If a signal/timeout occurs, return
* with a short count but without error.
* Keep sockbuf locked against other readers.
*/

while (flags & MSG_WAITALL && m :: 0 && uio->uio_resid > 0
!sosendallatonce(so) && !nextrecord) {

if (so->so_error I I so->so_state & SS_CANTRCVMORE)
break;

error : sbwait(&so->so_rcv);
if (error) {shunlock I&so->so_rcv ;

splx(s);
return (0);

if (m = so->so_rcv.sb_mb)
nextrecord : m->m_nextpkt;

Ex.1013.548DELL

Section 16.12 soreceive Code 523

ns-
out

bur
oo

set

ket.c

1 */
cket.c

,, the
~ the

f the

690-692

693

694-698

699-706

Synchronize m and nextrecord with receive buffer
m and nextrecord are updated, since the receive buffer has been modified by the

protocol layer. If data arrived in the mbuf, m will be nonzero and the whi 1 e loop termi-
nates.

Process next mbuf

This is the end of the mbuf processing loop. Control returns to the loop starting on
line 600 (Figure 16.47). As long as there is data in the receive buffer, more space to fill,
and no error has occurred, the loop continues.

When soreceive stops copying data, the code in Figure 16.51 is executed.

694 if
695
696
697
698 }
699 if
700
701
702
703
704
705
706 }
707 if
708
709
710
711
712 }
713 if
714

(m && pr->pr_flags & PR_ATOMIC)
flags I: MSG_TRUNC;
if ((flags & MSG_PEEK) == 0)

(void) sbdroprecord(&so->so_rcv);

((flags & MSG_PEEK) :: 0) {
if (m :: 0)

so->so_rcv.sb_mb = nextrecord;
if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)

(*pr->pr_usrreq) (so, PRU_RCVD, (struct mbuf *) 0,
(struct mbuf *) flags, (struct mbuf *)
(struct mbuf *) 0) ;

uipc_socket.c

(orig_resid :: uio->uio_resid && orig_resid &&
(flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
sbunlock(&so->so_rcv);
splx(s);
goto restart;

(flagsp)
*flagsp I: flags;

Figure 16.51 soreceive function: cleanup.

uipc_socket.c

Truncated message
If the process received a partial message (a datagram or a record) because its receive

buffer was too small, the process is notified by setting MSG_TRUNC and the remainder of
the message is discarded. MSG_TRUNC (as with all receive flags) is available only to a
process through the recvmsg system call, even though soreceive always sets the
flags.
End of record processing

If MSG_PEEK is not set, the next mbuf chain is attached to the receive buffer and, if
required, the protocol is notified that the receive operation has been completed by issu-
ing the PRU_RCVD protocol request. TCP uses this feature to update the receive win-
dow for the connection.

Ex.1013.549DELL

524 Socket I/O Chapter 16

707-712

713--724

Nothing transferred
If sorece±ve runs to completion, no data is transferred, the end of a record is not

reached, and the read-half of the connection is still active, then the buffer is unlocked
and sorece±ve jumps back to restart to continue waiting for data.

Any flags set during sorece±ve are returned in * £1agsp, the buffer is unlocked,
and soreceive returns.

Analysis

soreceive is a complex function. Much of the complication is because of the intricate
manipulation of pointers and the multiple types of data (out-of-band, address, control,
regular) and multiple destinations (process buffers, mbuf chain).

Similar to sosend, soreceive has collected features over the years. A specialized
receive function for each protocol would blur the boundary between the socket layer
and the protocol layer, but it would simplify the code considerably.

[Partridge and Pink 1993] describe the creation of a custom soreceive function for
UDP to checksum datagrams while they are copied from the receive buffer to the pro-
cess. They note that modifying the generic soreceive function to support this feature
would "make the already complicated socket routines even more complex."

16.13 select System Call

In the following discussion we assume that the reader is familiar with the basic opera-
tion and semantics of select. For a detailed discussion of the application interface to
select see [Stevens 1992].

Figure 16.52 shows the conditions detected by using select to monitor a socket.

Description

data available for reading
read-half of connection is closed
i i s ten socket has queued connection
socket error is pending
space available for writing and a

connection exists or is not required
write-half of connection is closed
socket error is pending

OOB synchronization mark is pending

Detected by selecting for:

reading writing exceptions

Figure 16.52 select system call: socket events.

We start with the first half of the s e 1 e c t system call, shown in Figure 16.53.

Ex.1013.550DELL

i6

[e

,d

)r
]-

re

;ection 16.13 select System Call 525

390-410

411--418

419--438

439--442

443-444

445--451

Validation and setup

Two arrays of three descriptor sets are allocated on the stack: ibits and obits.
They are cleared by bzero. The first argument, nd, must be no larger than the maxi-
mum number of descriptors associated with the process. If nd is more than the number
of descriptors currently allocated to the process, it is reduced to the current allocation.
ni is set to the number of bytes needed to store a bit mask with nd bits (1 bit for each
descriptor). For example, if the maximum number of descriptors is 256 (FD_SETSIZE),

fd_set is represented as an array of 32-bit integers (NFDBITS), and nd is 65, then:

ni : howmany (65, 32) x 4 = 3 x 4 = 12

where howmany (x, y) returns the number of y-bit objects required to store x bits.

Copy file descriptor sets from process
The getbits macro uses copyin to transfer the file descriptor sets from the pro-

cess to the three descriptor sets in ibits. If a descriptor set pointer is null, nothing is
copied from the process.
Setup timeout value

If tv is null, timo is set to 0 and select will wait indefinitely. If tv is not null, the
timeout value is copied into the kernel and rounded up to the resolution of the hard-
ware clock by itimerfix. The current time is added to the timeout value by
timevaladd. The number of clock ticks until the timeout is computed by hzto and
saved in timo. If the resulting timeout is 0, timo is set to 1. This prevents select
from blocking and implements the nonblocking semantics of an all-0s timeval struc-
ture.

The second half of select, shown in Figure 16.54, scans the file descriptors indi-
cated by the process and returns when one or more become ready, or the timer expires,
or a signal occurs.

Scan file descriptors
The loop that starts at retry continues until select can return. The current value

of the global integer nselcoll is saved and the P_SELECT flag is set in the calling pro-
cess’s control block. If either of these change while selscan (Figure 16.55) is checking
the file descriptors, it indicates that the status of a descriptor has changed because of
interrupt processing and select must rescan the descriptors, selscan looks at every
descriptor set in the three input descriptor sets and sets the matching descriptor in the
output set if the descriptor is ready.
Error or some descriptors are ready

Return immediately if an error occurred or if a descriptor is ready.
Timeout expired?

If the process supplied a time limit and the current time has advanced beyond the
timeout value, return immediately.

Ex.1013.551DELL

526 Socket I/O Chapter 16

sys_~eneric.c
390 struct select_args {
391 u_int nd;
392 fd_set *in, *ou, *ex;
393 struct timeval *tv;
394];

395 select(p, uap, retval)
396 struct proc *p;
397 struct select_args *uap;
398 int *retval;
399 {
400 fd_set ibits[3], obits[3];
401 struct timeval atv;
402 int s, ncoll, error = 0, timo;
403 u_int hi;

404
4O5
406
407
4O8
409
410

bzero((caddr_t) ibits, sizeof(ibits));
bzero((caddr_t) obits, sizeof(obits));
if (uap >nd> FD_SETSIZE)

return (EINVAL);
if (uap->nd > p->p_fd->fd_nfiles)

uap->nd = p->p_fd->fd_nfiles; /* forgiving; slightly wrong */
ni = howmany(uap->nd, NFDBITS) * sizeof(fd_mask)

411 #define getbits(name, x) \
412 if (uap->name && \
413 (error = copyin{(caddr_t)uap->name, (caddr_t
414 goto done;
415 getbits(in, 0);
416 ~etbits(ou, i);
417 getbits(ex, 2);
418 #undef getbits

&ibits[x], ni))) \

419 if {uap->tv) {
420 error = copyin((caddr_t) uap->tv, (caddr_t
421 sizeof(atv));
422 if (error)
423 goto done;
424 if (itimerfix(&atv)) {
425 error = EINVAL;
426 goto done;
427
428 s = splclock();
429 timevaladd(&atv, (struct timeval *) &time)
430 timo = hzto(&atv);
431 /*
432 * Avoid inadvertently sleeping forever.
433 */
434 if (timo == 0)
435 timo = i;
436 splx(s);
437 } else
438 timo = 0;

Figure 16.53 select function: initialization.

& atv,

sys~eneric.c

Ex.1013.552DELL

ter 16

~eric.c

~eneric.c

Section 16.13

439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468

select System Call 527

469
470
471
472
473

sysdeneric.c
retry:

ncoll = nselcoll;
p >p_flag 1= P_SELECT;
error = selscan(p, ibits, obits, uap->nd, retval);
if (error II *retval

goto done;
s = splhigh();
/* this should be tlmercmp(&time, &atv, >=) */
if (uap->tv && (time.tv_sec > atv.tv_sec I l

time.tv_sec == atv.tv_sec && time.tv_usec >= atv.tv_usec))
splx(s);
goto done;

}
if ((p->p_flag & P_SELECT) == 0 II nselcoll != ncoll) {

PCATCH, "select", timo)

*/

(caddr_t)uap->name, ni))

splx(s);
goto retry;

}
p->p_flag &= -P_SELECT;
error = tsleep((caddr_t) & selwait, PSOCK
splx(s);
if (error =: 0)

goto retry;
done:

p->p_flag &= -P_SELECT;
/* select is not restarted after signals..
if (error == ERESTART)

error = EINTR;
if (error -: EWOULDBLOCK)

error : 0;
#define putbits(name, x) \

if (uap->name && \
(error2 = copyout((caddr_t)&obits[x],
error : error2;

if (error == 0) {
int error2;

474 putbits(in, 0);
475 putbits(ou, i);
476 putbits(ex 2);
477 #undef putbits
478 }
479 return (error)
48O } sys_generic.c

Figure 16.54 select function: second half.

Ex.1013.553DELL

528 Socket I/O Chapter 16

452--455

456--460

461--480

Status changed during selscan

selscan can be interrupted by protocol processing. If the socket is modified dur-
ing the interrupt, P_SELECT and nselcoll are changed and select must rescan the
descriptors.

Wait for buffer changes
All processes calling select use selwait as the wait channel when they call

tsleep. With Figure 16.60 we show that this causes some inefficiencies if more than
one process is waiting for the same socket buffer. If tsleep returns without an error,
select jumps to retry to rescan the descriptors.

Ready to return
At done, P_SELECT is cleared, ERESTART is changed to EINTR, and EWOULDBLOCK

is changed to 0. These changes ensure that EINTR is returned when a signal occurs dur-
ing select and 0 is returned when a timeout occurs.

The output descriptor sets are copied back to the process and select returns.

selscan Function

481--496

497--500

501--504

505--510

The heart of select is the selscan function shown in Figure 16.55. For every bit set
in one of the three descriptor sets, selscan computes the descriptor associated with
the bit and dispatches control to the fo_select function associated with the descrip-
tor. For sockets, this is the soo_select function.
Locate descriptors to be monitored

The first for loop iterates through each of the three descriptor sets: read, write, and
exception. The second for loop interates within each descriptor set. This loop is exe-
cuted once for every 32 bits (NFDBITS) in the set.

The inner while loop checks all the descriptors identified by the 32-bit mask
extracted from the current descriptor set and stored in bits. The function f f s returns
the position within bits of the first 1 bit, starting at the low-order bit. For example, if
bits is 1000 (with 28 leading 0s), ffs (bits) is 4.
Poll descriptor

From i and the return value of f fs, the descriptor associated with the bit is com-
puted and stored in fd. The bit is cleared in bits (but not in the input descriptor set),
the f i 1 e structure associated with the descriptor is located, and f o_s e 1 ec t is called.

The second argument to fo_select is one of the elements in the flag array, rusk
is the index of the outer for loop. So the first time through the loop, the second argu-
ment is FREAD, the second time it is FWRITE, and the third time it is 0. EBADF is
returned if the descriptor is not valid.

Descriptor is ready

When a descriptor is found to be ready, the matching bit is set in the output descrip-
tor set and n (the number of matches) is incremented.

The loops continue until all the descriptors are polled. The number of ready
descriptors is returned in * retval.

Ex.1013.554DELL

Section 16.13 select System Call 529

481
482
483
484 int
485 {
486
487
488
489
490
491
492

selscan(p, ibits, obits, nfd, retval)
struct proc *p;
fd_set *ibits, *obits;

nfd, *retval;

struct filedesc *fdp = p->p_fd;
int msk, i, j, fd;
fd mask bits;
struct file *fp;
int n = 0;
static int flag[3] =
{FREAD, FWRITE, 0};

493
494
495
496
497
498
499
500
501
502
503
504
5O5
506
5O7
5O8
5O9
510

for (msk = 0; msk < 3; msk++) {
for (i = 0; i < nfd; i += NFDBITS) {

bits = ibits[msk].fds_bits[i / NFDBITS];
while ((j = ffs(bits)) && (fd : i + --j)

bits &: -(i << j);
fp = fdp->fd_ofiles[fd];
if (fp :: NULL)

return (EBADF);
if ((*fp->f_ops->fo_select)

FD_SET(fd, &obits[msk]);
n++;

}
}

}
}
*retval = n;
return (0);

< nfd)

(fp, flag[msk], p)) {

Figure 16.55 selscan function.

sys_generic.c

sys_generic.c

soo_select Function

105-112

For every descriptor that selscan finds in the input descriptor sets, it calls the function
referenced by the fo_select pointer in the fileops structure (Section 15.5) associ-
ated with the descriptor. In this text, we are interested only in socket descriptors and
the soo_select function shown in Figure 16.56.

Each time soo_select is called, it checks the status of only one descriptor. If the
descriptor is ready relative to the conditions specified in which, the function returns 1
immediately. If the descriptor is not ready, selrecord marks either the socket’s
receive or send buffer to indicate that a process is selecting on the buffer and then
soo_select returns 0.

Figure 16.52 showed the read, write, and exceptional conditions for sockets. Here
we see that the macros soreadable and sowriteable are consulted by
soo_select. These macros are defined in sys/socketvar, h.

Ex.1013.555DELL

530 Socket I/O Chapter 16

113-120

105 soo_select(fp, which, p)
106 struct file *fp;
107 int which;
108 struct proc *p;
109 {
Ii0 struct socket *so = (struct socket *

iii int s = splnet();

112 switch (which) {

113 case FREAD:
114 if (soreadable(so)) {
115 splx(s);

116 return (i);
117]
118 selrecord(p, &so->so_rcv.sb_sel)

119 so->so_rcv.sb_flags I: SB_SEL;

120 break;

121
122
123
124
125
126
127
128

129
130
131
132
133
134
135
136
137
138
139
140 }

fp->f_data;

case FWRITE:
if (sowriteable(so)) {

splx(s);
return (i);

}
selrecord(p, &so->so_snd.sb_sel);
so->so_snd.sb_flags : SB_SEL;
break;

case 0:
if (so->so_oobmark (so->so_state & SS_RCVATMARK))

splx(s);
return (i);

]
selrecord(p, &so->so_rcv.sb_sel);
so->so_rcv.sb_flags I= SB_SEL;
break;

}
splx(s);
return {0);

Figure 16.56 soo_select function.

sys_socket.c

sys_socket.c

Is socket readable?
The soreadable macro is:
#define soreadable(so) \

((so)->so_rcv.sb_cc >= (so)->so_rcv.sb_lowat I I \
((so)->so_state & SS_CANTRCVMORE) I I \
(so)->so_qlen II (so)->so_error)

Since the receive |ow-wa[er mark for UDP and TCP defaults to] (Figure]6.4), the
socket is readable if any data is in the receive buffer, if the read-half of the connection is
closed, if any connections are ready to be accepted, or if there is an error pending.

Ex.1013.556DELL

Section 16.13 select System Call 531

121--128

129-140

Is socket writeable?
The sowriteable macro is:

#define sowriteable(so) \
(sbspace(&(so)->so_snd) >= (so)->so_snd.sb_lowat && \
(((SO)->SO_State&SS_ISCONNECTED) I I \

((so)->so_Droto->Dr_flags&PR_CONNREQUIRED)==0) II \
((so)->so_state & SS_CANTSENDMORE) I I \
(so)->so_error)

The default send low-water mark for UDP and TCP is 2048. For UDP, sowriteable is
always true because sbspace is always equal to sb_hiwat, which is always greater
than or equal to sb_lowat, and a connection is not required.

For TCP, the socket is not writeable when the free space in the send buffer is less
than 2048 bytes. The other cases are described in Figure 16.52.
Are there any exceptional conditions pending?

For exceptions, so_oobmark and the SS_RCVATMARK flags are examined. An
exceptional condition exists until the process has read past the synchronization mark in
the data stream.

selrecord Function

Figure 16.57 shows the definition of the selinfo structure stored with each send and
receive buffer (the sb_sel member from Figure 16.3).

select.h
41 struct selinfo
42 pid_t si~Did; /* process to be notified */
43 short si_flags; /* 0 or SI_COLL */
44];

Figure 16.57 selinfo structure.

select.h

41--44 When only one process has called select for a given socket buffer, si_pid is the
process ID of the waiting process. When additional processes call select on the same
buffer, SI_COLL is set in si_flags. This is called a collision. This is the only flag cur-
rently defined for s i_f 1 ags.

522--531

The selrecord function shown in Figure 16.58 is called when soo_select finds
a descriptor that is not ready. The function records enough information so that the pro-
cess is awakened by the protocol processing layer when the buffer changes.

Already selecting on this descriptor

The first argument to selrecord points to the proc structure for the selecting pro-
cess. The second argument points to the selinfo record to update (so_snd. sb_sel
or so_rcv, sb_sel). If this process is already recorded in the selinfo record for this
socket buffer, the function returns immediately. For example, the process called
select with the read and exception bits set for the same descriptor.

Ex.1013.557DELL

532 Socket I/O Chapter 16

522 void
523 selrecord(selector, sip)
524 struct proc *selector;
525 struct selinfo *sip;
526 {
527 struct proc *p;
528 pid_t mypid;

529 mypid = selector->p_pid;
530 if (sip->si_pid == mypid)
531 return;
532 if (sip->si_pid && (p = pfind(sip->si_pid))
533 p->p_wchan == (caddr_t) & selwait)
534 sip->si_flags I: SI_COLL;
535 else
536 sip->si_pid = mypid;
537]

&&

Figure 16.58 selrecord function.

sys_generic.c

sys_generic.c

532-534

535-537

Select collision with another process?
If another process is already selecting on this buffer, S I_C©LL is set.

No collision
If there is no other process already selecting on this buffer, si_pid is 0 so the ID of

the current process is saved in si_pid.

selwakeup Function

When protocol processing changes the state of a socket buffer and only one process is
selecting on the buffer, Net/3 can immediately put that process on the run queue based
on the information it finds in the sel info structure.

When the state changes and there is more than one process selecting on the buffer
(SI_COLL is set), Net/3 has no way of determining the set of processes interested in the
buffer When we discussed the code in Figure 16.54, we pointed out that every process
that calls select uses selwait as the wait channel when calling tsleep. This means
the corresponding wakeup will schedule all the processes that are blocked in
select--even those that are not interested in activity on the buffer.

Figure 16.59 shows how selwakeup is called.
The protocol processing layer is responsible for notifying the socket layer by calling

one of the functions listed at the bottom of Figure 16.59 when an event occurs that
changes the state of a socket. The three functions shown at the bottom of Figure 16.59
cause selwakeup to be called and any process selecting on the socket to be scheduled
to run.

selwakeup is shown in Figure 16.60.
541-548 If si_pid is 0, there is no process selecting on the buffer and the function returns

immediately.

Ex.1013.558DELL

16

of

is

~er

.~ss
ns
in

ng
tat
59
ed

16.13 select System Call

Figure 16.59 selwakeup processing.

541 void
542 selwakeup(sip)
543 struct selinfo *sip;
544 {
545 struct proc *p;
546 int s;

547 if (sip->si_pid == O)
548 return;
549 if (sip->si_flags & SI_COLL) {
550 nselcoll++;
551 sip->si_flags &= -SI_COLL;

552 wakeup{(caddr_t) & selwait);
553 }
554 p = pfind(sip->si_pid);
555 sip->si_pid = 0;
556 if (p != NULL) {
557 s = splhigh();
558 if (p->p_wchan == (caddr_t) & selwait) {
559 if (p->p_stat == SSLEEP)
560 setrunnable(p);
561 else
562 unsleep(p);
563 } else if (p->p_flag & P_SELECT)
564 p->p_flag &= ~P_SELECT;
565 splx(s);
566 }
567 }

Figure 16.60 selwakeup function.

533

sys_generic.c

sys_generic.c

Ex.1013.559DELL

534 Socket I/O Chapter 16

549-553

554-567

Wake all processes during a collision
If more than one process is selecting on the affected socket, nselcoll is incre-

mented, the collision flag is cleared, and every process blocked in s e 1 e c t is awakened.
As mentioned with Figure 16.54, nselcoll forces select to rescan the descriptors if
the buffers change before the process has blocked in t s i eep (Exercise 16.9).

If the process identified by s±_p±d is waiting on selwait, it is scheduled to run.
If the process is waiting on some other wait channel, the P_SELECT flag is cleared. The
process can be waiting on some other wait channel if selrecorfl is called for a valid
descriptor and then selsean finds a bad file descriptor in one of the descriptor sets.
selscan returns EBADF, but the previously modified selinfo record is not reset.
Later, when selwakeup runs, selwakeup may find the process identified by sel_pid
is no longer waiting on the socket buffer so the sel info information is ignored.

Only one process is awakened during selwakeup unless multiple processes are
sharing the same descriptor (i.e., the same socket buffers), which is rare. On the
machines to which the authors had access, n s e 1 co 11 was always 0, which confirms the
statement that select collisions are rare.

16.14 Summary

In this chapter we looked at the read, write, and select system calls for sockets.
We saw that sosend handles all output between the socket layer and the protocol

processing layer and that soreeeive handles all input.
The organization of the send buffer and receive buffers was described, as well as the

default values and semantics of the high-water and low-water marks for the buffers.
The last part of the chapter discussed the implementation of select. We showed

that when only one process is selecting on a descriptor, the protocol processing layer
will awaken only the process identified in the selinfo structure. When there is a colli-
sion and more than one process is selecting on a descriptor, the protocol layer has no
choice but to awaken every process that is selecting on any descriptor.

Exercises

16.1 What happens to resid in sosend when an unsigned integer larger than the maximum
positive signed integer is passed in the write system call?

16.2 When sosend puts less than MCLBYTES of data in a cluster, space is reduced by the full
MCLBYTES and may become negative, which terminates the loop that fills mbufs for
atomic protocols. Is this a problem?

16.3 Datagram and stream protocols have very different semantics. Divide the sosend and
soreceive functions each into two functions, one to handle messages, and one to handle
streams. Other than making the code clearer, what are the advantages of making this
change?

16.4 For PR ATOMIC protocols, each write call specifies an implicit message boundary. The

Ex.1013.560DELL

Chapter 16

16.5

16.6

16.7

16.8

16.9

16.10

Exercises 535

socket layer delivers the message as a single unit to the protocol. The MSG_EOR flag allows
a process to specify explicit message boundaries. Why is the implicit technique insuffi-
cient?

What happens when sosend cannot immediately acquire a lock on the send buffer when
the socket descriptor is marked as nonblocking and the process does not specify
MSG_DONTWAIT?

Under what circumstances would sb_cc < sb_hiwat yet sbspace would report no free
space? Why should a process be blocked in this case?

Why isn’t the length of a control message copied back to the process by recvit as is the
name length?

Why does soreceive clear MSG_EOR?

What might happen if the nselcoll code were removed from select and selwakeup?

Modify the select system call to return the time remaining in the timer when select
returns.

Ex.1013.561DELL

Ex.1013.562DELL

DELL Ex.1013.562

Socket Options

Introduction

We complete our discussion of the socket layer in this chapter by discussing several sys-
tem calls that modify the behavior of sockets.

The setsockot3t and ge~sockopt system calls were introduced in Section 8.8,
where we described the options that provide access to IP features. In this chapter we
show the implementation of these two system calls and the socket-level options that are
controlled through them.

The ±oct]_ function was introduced in Section 4.4, where we described the proto-
col-independent ±oct]_ commands for network interface configuration. In Section 6.7
we described the IP specific ± o c t 1 commands used to assign network masks as well as
unicast, broadcast, and destination addresses. In this chapter we describe the imple-
mentation of J_oct]_ and the related features of the font 1 function.

Finally, we describe the getsockname and getpeername system calls, which
return address information for sockets and connections.

Figure 17.1 shows the functions that implement the socket option system calls. The
shaded functions are described in this chapter.

537

Ex.1013.563DELL

538 Socket Options Chapter 17

9r_c t i output

~cp_ct loutpu~ ~ip_c t loutpu~

Figure 17.1 setsockopt and getsockopt system calls.

17.2 Code Introduction

The code in this chapter comes from the four files listed in Figure 17.2.

File Description

kern/kern_descrip, c fcntl system call
kern/uipc_syscalls, c setsockopt, getsockopt, getsockname, and

ge tpeername system calls
kern/uipc_socket, c socket layer processing for setsockopt and getsockopt
kern/sys_socket, c i oct i system call for sockets

Figure 17.2 Files discussed in this chapter.

Global Variables and Statistics

No new global variables are introduced and no statistics are collected by the system
calls we describe in this chapter.

Ex.1013.564DELL

:er 17

tern

17.3

565-597

17.3 setsockopt System Call 539

setsockopt System Call

Figure 8.29 listed the different protocol levels that can be accessed with this function
(and with getsockop¢). In this chapter we focus on the SOL_SOCKET level options,
which are listed in Figure 17.3.

optname

SO-- SNDBUF
SO_RCVBUF

SO- SNDLOWA T
SO_RCVLOWAT

SO_SNDTIMEO
SO-RCVTIMEO
SO-DEBUG
SO-REUSEADDR
SO_REUSEPOR T

SO_KEEPALIVE
SO-DONTROUTE
SO-BROADCAST
SO-- USELOOPBACK

SO-OOBINLINE
SO-LINGER
SO-ERROR
SO-TYPE
other

optval type

int
±nt
int.
±nt
struct timeval
struct t imeval
int
int
int
int
int
int
int

int
struct linger
int
int

Variable

so_snd, sb_hiwa t
so_rcv, sb_hiwat
so_snd, sb_lowat
so_rcv, sb_lowat
so_snd, sb_t imeo
so_rcv, sb_t imeo
so_options
so_options
so_options
so_options
so_options
so_options
so_options

so_options
so_linger
so_error
so_type

Description

send buffer high-water mark
receive buffer high-water mark
send buffer low-water mark
receive buffer low-water mark
send timeout
receive timeout
record debugging information for this socket
socket can reuse a local address
socket can reuse a local port
protocol probes idle connections
bypass routing tables
socket allows broadcast messages
routing domain sockets only; sending

process receives its own routing
messages

protocol queues out-of-band data inline
socket lingers on close
get error status and clear; ge tsockopt only
get socket type; getsockopt only
ENOPROTOOPT returned

Figure 17.3 setsockopt and getsockopt options.

The prototype for setsockopt is
int setsockopt(int s, int level, int optname, void *optval, int optlen);

Figure 17.4 shows the code for this system call.
getsock locates the file structure for the socket descriptor. If val is nonnull,

valsize bytes of data are copied from the process into an mbuf allocated by re_get.
The data associated with an option can be no more than MLEN bytes in length, so if
valsize is larger than MLEN, then EINVAL is returned, sosetopt is called and its
value is returned.

Ex.1013.565DELL

540 Socket Options Chapter 17

565 struct setsockopt_args {
566 int s;
567 int level;

568 int name;

569 caddr_t val;
570 int valsize;

571 };

setsockopt(p, uap, retval)
struct proc *p;
struct setsockopt_args *uap;

*retval;int
{

572
573
574
575
576
577
578
579

struct file *fp;

struct mbuf *m = NULL;
int error;

580 if (error : getsock(p->p_fd, uap->s, &fp))
581 return (error);
582 if (uap->valsize > MLEN)
583 return (EINVAL);
584 if (uap->val) {
585 m - m_get(M_WAIT, MT_SOOPTS);
586 if (m == NULL)
587 return (ENOBUFS);
588 if (error = copyin(uap->val, mtod(m, caddr_t),
589 (u_int) uap->valsize)) {

590 {void) m_free(m);
591 return (error);
592 }
593 m->m_len = uap->valsize;
594]
595 return (sosetopt((struct socket *) fp->f_data, uap >level,

596 uap->name, m));

597]

Figure 17.4 setsockopt system call.

uipc_syscalls.c

uipc_syscalls.c

sosetopt Function

752-764

765

841-844

This function processes all the socket-level options and passes any other options to the
pr_ct loutput function for the protocol associated with the socket. Figure 17.5 shows
an overview of the function.

If the option is not for the socket level (SOL_SOCKET), the PRCO_SETOPT request is
issued to the underlying protocol. Note that the protocol’s pr_ctloutput function is
being called and not its pr_usrreq function. Figure 17.6 shows which function is
called for the Internet protocols.

The switch statement handles the socket-level options.
An unrecognized option causes ENOPROTOOPT to be returned after the mbuf hold-

ing the option is released.

Ex.1013.566DELL

pter 17

/scalls.c

_syscalls.c

is to the
.5 shows

equest is
nction is
nction is

)uf hold-

17.3

845-855

seLsockopL System Call 541

752 sosetopt(so, level, optname, m0)
753 struct socket *so;
754 int level, optname;
755 struct mbuf *m0;
756 {
757
758

759
760
761
762
763
764
765

841
842
843
844
845
846
847
848
849
850
851
852
853
854
855 }

uipc_socket.c

int error : 0;
struct mbuf *m = m0;

if (level != SOL_SOCKET) {
if (so->so_proto && so->so_proto->pr_cLloutpuL)

return ((*so->so_proto->pr_ctloutput)
(PRCO_SETOPT, so, leve!, optname, &m0));

error = ENOPROTOOPT;
} else {

switch (optname) {

default:
error = ENOPROTOOPT;
break;

}
if (error := 0 && so->so_proto && so->so_proto->pr_ctloutput) {

(void) ((*so->so_proto->pr_ctloutput)
(PRCO_SETOPT, so, level, optname, &m0));

m = NULL; /* freed by protocol */

}
bad:

if (m)
(void) m_free(m);

return (error);

Figure 17.5 sosetopt function.

uipc_socket.c

Protocol pr_ct loutput Function Reference

UDP ip_c t loutput Section 8.8

TCP t Cp_C t ioutpu t Section 30.6

ICMP
IGMP rip_ctloutput and ip_ctloutput Section 8.8 and Section 32.8

raw IP

Figure 17.6 pr_ctloutput functions.

Unless an error occurs, control always falls through the switch, where the option
is passed to the associated protocol in case the protocol layer needs to respond to the
request as well as the socket layer. None of the Internet protocols expect to process the
socket-level options.

Ex.1013.567DELL

542 Socket Options

766--772

773--789

Notice that the return value from the call to the pr_ctloutput function is explic-
itly discarded in case the option is not expected by the protocol, m is set to null to avoid
the call to re_free, since the protocol layer is responsible for releasing the mbuf.

Figure 17.7 shows the linger option and the options that set a single flag in the
socket structure.

766
767
768
769
770
771
772

773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789

case SO_LINGER:
if (m :: NULL I[m->m_len !: sizeof(struct linger))

error = EINVAL;
goto bad;

]
so->so_linger = mtod(m, struct linger *)->l_linger;
/* fall thru... */

case SO_DEBUG:
case SO_KEEPALIVE:
case SO_DONTROUTE:
case SO_USELOOPBACK
case SO_BROADCAST:
case SO_REUSEADDR:
case SO_REUSEPORT:
case SO_OOBINLINE:

if (m == NULL I m->m_len < sizeof(int))
error = EINVAL;
goto bad;

}
if (*mtod(m, int *))

so->so_options I= optname;
else

so->so_options &: -optname;
break;

Figure 17.7 sosetopt function: linger and flag options.

uipc_socket.c

{

uipc_socket.c

The linger option expects the process to pass a iinger structure:
struct linger [

int l_onoff;
int l_linger;

};

/* option on/off */
/* linger time in seconds */

After making sure the process has passed data and it is the size of a linger struc-
ture, the l_linger member is copied into so_linger. The option is enabled or dis-
abled after the next set of case statements, so_linger was described in Section 15.15
with the close system call.

These options are boolean flags set when the process passes a nonzero value and
cleared when 0 is passed. The first check makes sure an integer-sized object (or larger)
is present in the mbuf and then sets or clears the appropriate option.

Ex.1013.568DELL

apter 17

explic-
o avoid

~ in the

:_socket.c

,c_socket.c

er struc-
d or dis-
ion 15.15

alue and
~r larger)

Section 17.3

Figure 17.8 shows the socket buffer options.

se¢sockopt System Call 543

790 case SO_SNDBUF:
791 case SO_RCVBUF:
792 case SO_SNDLOWAT:
793 case SO_RCVLOWAT:
794 if (m := NULL II m->m_len < sizeof(int))
795 error = EINVAL;
796 goto bad;
797 }
798 switch (optname) {

790--815

816--824

825-830

799 case SO_SNDBUF:
800 case SO_RCVBUF:
801 if (sbreserve(optname := SO_SNDBUF ?
802 &so->so_snd : &so->so_rcv,
803 (u_long)

804 error = ENOBUFS;
805 goto bad;

806 }
807 break;

808 case SO_SNDLOWAT:
809 so->so_snd.sb_lowat = *mtod(m, int *);
810 break;
811 case SO_RCVLOWAT:
812 so->so_rcv.sb_lowat : *mtod(m, int *);
813 break;
814]
815 break;

Figure 17.8 sosetopt function: socket buffer options.

uipc_socket.c

uipc_socket.c

This set of options changes the size of the send and receive buffers in a socket. The
first test makes sure the required integer has been provided for all four options. For
SO_SNDBUF and SO_RCVBUF, sbreserve adjusts the high-water mark but does no
buffer allocation. For SO_SNDLOWAT and SO_RCVLOWAT, the low-water marks are
adjusted.

Figure 17.9 shows the timeout options.
The timeout value for SO_SNDTIMEO and SO_RCVTIMEO is specified by the process

in a timeval structure. If the right amount of data is not available, EINVAL is
returned.

The time interval stored in the timeval structure must be small enough so that
when it is represented as clock ticks, it fits within a short integer, since sb_timeo is a
short integer.

The code on line 826 is incorrect. The time interval cannot be represented as a short
integer if:

Ex.1013.569DELL

544 Socket Options Chapter 17

831--840

816
817
818
819
820

821
822
823
824
825
826
827
828
829
830

case SO_SNDTIMEO:
case SO_RCVTIMEO:

{
struct timeval *tv;
short val;

if (m :: NULL [[m->m_len < sizeof(*tv)) {
error = EINVAL;
goto bad;

]
tv = mtod(m, struct timeval *);
if (tv->tv_sec > SHRT_MAX / hz - hz) {

error : EDOM;
goto bad;

]
val = tv->tv_sec * hz + tv->tv_usec / tick;

831 switch (optname) {

832 case SO_SNDTIMEO:
833 so->so_snd.sb_timeo = val;
834 break;
835 case SO_RCVTIMEO:
836 so->so_rcv.sb_timeo : val;
837 break;
838 }
839 break;
840

Figure 17.9 sosetopt function: timeout options.

uipc_socket.c

uipc_socket.c

where

tv_usec
tv_sec×hz+ > SHRT_MAX

tick

1,000, 000
tick - and SHRT_MAX : 32767hz

So EDOM should be returned if
SHRT_MAX tv_usec SHRT_MAX tv_usec

tv_sec > -
hz tick X hz hz 1,000, 000

The last term in this equation is not hz as specified in the code. The correct test is

if (tv->tv_sec*hz + tv->tv_usec/tick > SHRT_MAX)

but see Exercise 17.3 for more discussion.
The converted time, val, is saved in the send or receive buffer as requested.

sb_timeo limits the amount of time a process will wait for data in the receive buffer or
space in the send buffer. See Sections 16.7 and 16.12 for details.

The timeout values are passed as the last argument to tsleep, which expects an integer, so the
process is limited to 65535 ticks. At 100 Hz, this less than 11 minutes.

Ex.1013.570DELL

17.4

598-633

17.4 getsockopt System Call 545

getsockopt System Call

getsockopt returns socket and protocol options as requested. The prototype for this
system call is

fnt getsockopt(int s, int level, int name, caddr_t val, int *valsize);

The code is shown in Figure 17.10.

598 struct getsockopt_args {
599 int s;
600 int level;
601 int name;
602 caddr_t val;
603 int *avalsize;
604 };

605 getsockopt{p, uap, retval)
606 struct proc *p;
607 struct getsockopt_args *uap;
608 int *retval;
609 {
610 struct file *fp;
611 struct mbuf *m = NULL;
612 int valsize, error;

613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633]

if (error : getsock(p->p_fd, uap->s, &fp))
return (error);

if (uap->val) {
if (error = copyin((caddr_t) uap->avalsize, (caddr_t) & valsize,

sizeof(valsize)))
return (error);

} else
valsize = 0;

if ((error sogetopt((struct socket *) fp >f_data, uap->level,
uap->name, &m)) == 0 && uap->val && valsize && m !: NULL)

if (valsize > m->m_len)
valsize = m->m_len;

error = copyout(mtod(m, caddr_t), uap->val, (u_int) valsize)
if (error == 0)

error = copyout((caddr_t) & valsize,
(caddr_t) uap->avalsize, sizeof(valsize) ;

}
if (m != NULL)

(void) m_free(m);
return (error);

uipc_syscalls.c

Figure 17.10 getsockopt system call.

uipc_syscalls.c

The code should look pretty familiar by now. getsock locates the socket, the size
of the option buffer is copied into the kernel, and sogetopt is called to get the value of
the requested option. The data returned by sogetopt is copied out to the buffer in the
process along with the possibly new length of the buffer. It is possible that the data will

Ex.1013.571DELL

546 Socket Options Chapter 17

be silently truncated if the process did not provide a large enough buffer. As usual, the
mbuf holding the option data is released before the function returns.

sogetopt Function

As with sosetopt, the sogetopt function handles the socket-level options and passes
any other options to the protocol associated with the socket. The beginning and end of
the function are shown in Figure 17.11.

uipc_socket.c
856 sogetopt(so, level, optname, mp)
857 struct socket *so;
858 int level, optname;
859 struct mbuf **mp;
860 {
861 struct mbuf *m;

862 if (level != SOL_SOCKET) {
863 if (so->so_proto && so->so_proto->pr_ctloutput) {
864 return ((*so->so~roto->pr_ctloutput)
865 (PRCO_GETOPT, so, level, optname, mp));
866 } else
867 return (ENOPROTOOPT);
868 } else {
869 m = m_get(M_WAIT, MT_SOOPTS);
870 m->m_len : sizeof(int);

856-871

918--925

871 switch (optname) {

918 default :
919 (void) ~free(m);
920 return (ENOPROTOOPT) ;

921
922 *mp = m;
923 return (0);
924 }
925 } uipc_socket.c

Figure 17.11 sogetopt function: overview.

As with sosetopt, options that do not pertain to the socket level are immediately
passed to the protocol level through the PRCO_GETOPT protocol request. The protocol
returns the requested option in the mbuf pointed to by *mp.

For socket-level options, a standard mbuf is allocated to hold the option value,
which is normally an integer, so m_len is set to the size of an integer. The appropriate
option is copied into the mbuf by the code in the switch statement.

If the default case is taken by the switch, the mbuf is released and
ENOPROTOOPT returned. Otherwise, after the switch statement, the pointer to the

Ex.1013.572DELL

~er 17

the

asses
nd of

9cket.c

.socket.c

diately
rotocol

value,
opriate

.d and
to the

Section 17.4 getsockopt System Call 547

mbuf is saved in *rap. When this function returns, getsockopt copies the option from
the mbuf to the process and releases the mbuf.

In Figure 17.12 the linger option and the options that are implemented as boolean
flags are processed.

872
873
874
875
876
877

case SO_LINGER:
m->m_len : sizeof(struct linger);
mtod(m, struct linger *)->l_onoff =

so->so_options & SO_LINGER;
mtod(m, struct linger *)->l_linger = so->so_linger;
break;

uipc_socket.c

878
879
880
881
882
883
884
885
886
887

case SO_USELOOPBACK:
case SO_DONTROUTE:
case SO_DEBUG:
case SO_KEEPALIVE:
case SO_REUSEADDR:
case SO_REUSEPORT:
case SO_BROADCAST:
case SO_OOBINLINE:

*mtod(m, int *) = so->so_options & optname;
break;

Figure 17.12 sogetopt function: SO_LINGER and boolean options.

uipc_socket.c

872-877

878-887

The SO_LINGER option requires two copies, one for the flag into l_onoff and a
second for the linger time into 1_1 inger.

The remaining options are implemented as boolean flags, so_opt ions is masked
with optname, which results in a nonzero value if the option is on and 0 if the option is
off. Notice that the return value is not necessarily I when the flag is on.

In the next part of sogetopt (Figure 17.13), the integer-valued options are copied
into the mbuf.

uipc_socket.c
888 case SO_TYPE:
889 *mtod(m, int *) - so->so_type;

890 break;

891 case SO_ERROR:
892 *mtod(m, int *) : so->so_error;
893 so->so_error = 0;
894 break;

895 case SO_SNDBUF:
896 *mtod(m, int *) : so->so_snd.sb_hiwat;
897 break;

898 case SO_RCVBUF:
899 *mtod(m, int *) : so->so_rcv.sb_hiwat;
900 break;

Ex.1013.573DELL

548 Socket Options
Chapter 17

901
902
903

case S0_SNDLOWAT:
*mtod(m, int *) = so->so_snd.sb_lowat;
break;

888--906

907--917

904 case SO_RCVLOWAT:
905 *mtod(m, int *) = so->so_rcv.sb_lowat;

906 break; uipc_socket.c

Figure 17.13 sogetopt function: integer valued options.

Each option is copied as an integer into the mbuf. Notice that some of the options
are stored as shorts in the kernel (e.g., the high-water and low-water marks) but
returned as integers. Also, so_error is cleared once the value is copied into the mbuf.
This is the only time that a call to getsockopt changes the state of the socket.

The fourth and last part of sogetopt is shown in Figure 17.14, where the
SO_SNDTIMEO and SO_RCVTIMEO options are handled.

-uipc_socket.c
907 case SO_SNDTIMEO:
908 case SO_RCVTIMEO:
909
910 int val = (optname == SO_SNDTIMEO ?
911 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);

912
913
914
915
916
917

m->m_len : sizeof(struct timeval);
mtod(m, struct timeval *)->tv_sec : val / hz;
mtod(m, struct timeval *)->tv_usec :

(val % hz) / tick;
break;

uipc_socket.c

Figure 17.14 sogetopt function: timeout options.

The sb timeo value from the send or receive buffer is copied into val. A

timeval structure is constructed in the mbuf based on the clock ticks in val.

There is a bug in the calculation of tv_usec. The expression should be

"(val % hz) * tick".

17.5 fcntl and £octl System Calls
ue more to history than intent, several features of the sockets API can be accessedD ~ . ¯ m ~

from either ±oct3 or fcnt3. We have already dtscussed many of the zoctl co -
mands and have mentioned f cnt 1 several times. ~-~i

Figure 17.15 highlights the functions described in this chapter¯

Sec

Ex.1013.574DELL

Section 17.5 fcntl and ioctl System Calls549

~.t.c

)ns
but
~uf.

the

cet.c

[et.c

A

be

;sed
om-

~pr_usrreq

if_ioctl

Figure 17.15 fcntl and ioctl functions.

The prototypes for ioctl and fcntlare:

int ioctl (int fd, unsigned long result, char *argp);

int fcntl(int fd, int cmd /* int arg */);

Figure 17.16 summarizes the features of these two system calls as they relate to sockets.
We show the traditional constants in Figure 17.16, since they appear in the code. For
Posix compatibility, O_NONBLOCK can be used instead of FNONBLOCK, and O_ASYNC
can be used instead of FASYNC.

Ex.1013.575DELL

550 Socket Options
Chapter 17

Description
enable or disable nonblocking semantics by

turning SS_NBIO on or off in so_state

enable or disable asynchronous notification
by turning SB_ASYNC on or off in
sb_flags

set or get so_pgid, which is the target
process or process group for $ I GIO and
S IGURG signals

get number of bytes in receive buffer; return
so_rcv, sb_cc

return OOB synchronization mark; the
SS RCVATMARK flag in so state

fcntl

FNONBLOCK file status flag

FASYNC file status flag

F_SETOWN or F_GETOWN

FIONBIO command

F IOASYNC command

SIOCSPGRPOr
SIOCGPGRP
commands

FIONREAD

SIOCATMARK

Figure 17.16 fcntl and ioctl commands.

fcntl Code

Figure 17.17 shows an overview of the fcntl function.

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150
151
152
153

struct fcntl_args {
int fd;
int cmd;
int arg;

};
/* ARGSUSED */
fcntl(p, uap, retval)
struct proc *p;
struct fcntl_args *uap;
int *retval;
{

struct filedesc *fdp = p->p_fd;
struct file *fp;
struct vnode *vp;
int i, tmp, error, flg = F_POSIX;

struct flock fl;
u_int newmin;
if ((unsigned) uap->fd >= fdp->fd_nfiles II

(fp = fdp->fd_ofiles[uap->fd]) == NULL)
return (EBADF)

switch (uap->cmd)

/* command processing */

253
254
255
256
257 }

default:
return (EINVAL);

}
/* NOTREACHED */

Figure 17.17 fcnt i system call: overview.

kern_descrip.c

kern_

Ex.1013.576DELL

r17

,scrip.c

_descrip.c

17.5

133-153

253-257

fcntl and ioctl System Calls 551

After verifying that the descriptor refers to an open file, the switch statement pro-
cesses the requested command.

If the command is not recognized, fcnt i returns EINVAL.

168
169
170

171
172
173

174
175
176
177

178
179
180
181

182
183
184
185

186
187
188
189
190
191
192
193
194

195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

Figure 17.18 shows only the cases from £ cnt 1 that are relevant to sockets.
kern_descrip.c

case F_GETFL:
*retval = OFLAGS(fp->f_flag);
return (0);

case F_SETFL:
fp->f_flag &= -FCNTLFLAGS;
fp->f_flag I: FFLAGS(uap->arg) & FCNTLFLAGS;

tmp : fp->f_flag & FNONBLOCK;
error : (*fp->f_ops->fo_ioctl)
if {error)

return (error);

(fp, FIONBIO, (caddr_t) & tmp, p);

tmp : fp->f_flag & FASYNC;
error : (*fp->f_ops->fo_ioctl)
if (!error)

return (0);

(fp, FIOASYNC, (caddr_t) &tmp, p);

fp->f_flag &: -FNONBLOCK;
tmp = 0;
{void) (*fp->f_ops->fo_ioctl) (fP, FIONBIO,
return (error);

(caddr_t) & tmp, p);

case F_GETOWN:
if (fp->f_type =: DTYPE_SOCKET) {

*retval = ((struct socket *) fp->f_data)->so_pgid;
return (0);

}
error = (*fp->f_ops->fo_ioctl)

(fp, (int) TIOCGPGRP, (caddr_t) retval, p);
*retval = *retval;
return (error);

case F_SETOWN:
if (fp->f_type :: DTYPE_SOCKET) {

((struct socket *) fp->f_data)->so_pgid = uap->arg;
return (0);

}
if (uap->arg <- 0) {

uap->arg = -uap->arg;
} else {

struct proc *pl = pfind(uap->arg);
if (pl := 0)

return (ESRCH);
uap->arg : pl->p_pgrp->pg_id;

}
return ((*fp->f_ops->fo_ioctl)

(fp, (int} TIOCSPGRP, (caddr_t) & uap->arg, P)); kern_descrip.c

Figure 17.18 fcnt i system call: socket processing.

Ex.1013.577DELL

552 Socket Options
Chapter 17

168-185

186-209

ioctl

55-68

69--79

80-88

89-92

F GETFL returns the current file status flags associated with the descriptor and
F_SETFL sets the flags. The new settings for FNONBLOCK and FASYNC are passed to the
associated socket by calling fo ioctl, which for sockets is the soo_ioctl function
described with Figure 17.20. Th~ third call to fo_ioctl is made only if the second call
fails. It clears the FNONBLOCK flag, but should instead restore the flag to its original set-
ting.

F GETOWN returns so__pgid, the process or process group associated with the
socket. For a descriptor other than a socket, the TIOCGPGRP ioctl command is passed
to the associated fo_ioctl function. F_SETOWN assigns a new value to so_pgid.

For a descriptor other than a socket, the process group is checked in this function,
but for sockets, the value is checked just before a signal is sent in sohasoutofband
and in sowakeup.

Code

We skip the ioctl system call itself and start with soo_ioctl in Figure 17.20, since
most of the code in ioctl duplicates the code we described with Figure 17.17. We’ve
already shown that this function sends routing commands to rtioctl, interface com-
mands to i f i oct l, and any remaining commands to the pr_usrreq function of the

underlying protocol.
A few commands are handled by soo_ioctl directly. FIONBIO turns on non-

blocking semantics if *data is nonzero, and turns them off otherwise. As we have
seen, this flag affects the accept, connect, and close system calls as well as the vari-

ous read and write system calls.
FIOASYNC enables or disables asynchronous I/O notification. Whenever there is

activity on a socket, sowakeup gets called and if SS_ASYNC is set, the SIGIO signal is

sent to the process or process group.
FIONREAD returns the number of bytes available in the receive buffer. SIOCSPGRP

sets the process group associated with the socket, and SIOCGPGRP gets it. so_pgid is
used as a target for the SIGIO signal as we just described and for the SIGURG signal
when out-of-band data arrives for a socket. The signal is sent when the protocol layer

calls the sohasoutofband function.
SIOCATMARK returns true if the socket is at the out-of-band synchronization mark,

false otherwise.
ioctl commands, the FIOxXX and SIOxXX constants, have an internal structure

illustrated in Figure 17.19.

f
input

outputvoi
length group number

13 bits 8 bits 8 bits

Figure 17.19 The structure of an ioctl command.

Ex.1013.578DELL

17

~d
he

all
et-

he

)n,
nd

nee

)m-
the-

toil-
.ave
°aft-

:e is
al is

GRP

_d is
gnal
ayer

lark,

:ture

fcntl and ioctl System Calls 553

55 soo_ioctl(fp, cmd, data, p)
56 struct file *fp;
57 int cmd;
58 caddr_t data;
59 struct proc *p;
6O {
61 struct socket *so = (struct socket *) fp->f_data;

sys_socket.c

62 switch (cmd) {
63 case FIONBIO:
64 if (*(int *) data)
65 so->so_state I= SS_NBIO;
66 else
67 so->so_state &= ~SS_NBIO;
68 return (0);

69
70
71
72
73
74
75
76
77
78
79

case FIOASYNC:
if (*(int *) data) {

so->so_state I= SS_ASYNC;
so->so_rcv.sb_flags I- SB_ASYNC;
so->so_snd.sb_flags I= SB_ASYNC;

} else {
so->so_state &= -SS_ASYNC;
so->so_rcv.sb_flags &= -SB_ASYNC;
so->so_snd.sb_flags &= ~SB_ASYNC;

}
return (0);

8O
81
82

case FIONREAD:
*(int *) data = so->so_rcv.sb_cc;
return (0);

83
84
85

case SIOCSPGRP:
so >so_pgid = *(int *) data;
return (0);

86
87
88

case SIOCGPGRP:
*(int *) data = so->so_pgid;
return (0);

89
90
91
92
93
94
95
96
97
98
99

i00
i01
102
103
104 }

case SIOCATMARK:
*(int *) data = (so->so_state & SS_RCVATMARK) != 0;
return (0) ;

}
/*

* Interface/routing/protocol specific ioctls:
* interface and routing ioctls should have a
* different entry since a socket’s unnecessary
*/
if (IOCGROUP(cmd) == ’i’)

return (ifioctl(so, cmd, data, p))
if (IOCGROUP(cmd) == ’r’)

return (rtioctl(cmd, data, p)) ;
return ((*so->so_proto->pr_usrreq) (so PRU_CONTROL,

(struct mbuf *) cmd, (struct mbuf *) data, (struct mbuf *) 0));

sys_socket.c

Figure 17.20 soo_ioctl function.

¯

i!:i’

Ex.1013.579DELL

554 Socket Options

Chapter 17

93-104

17.6

682--715

17.7

If the third argument to ioctl is used as input, input is set. If the argument is used
as output, output is set. If the argument is unused, void is set. length is the size of the
argument in bytes. Related commands are in the same group but each command has its
own number within the group. The macros in Figure 17.21 extract the components of an
ioctl command.

~~0C Macr~opARM_LEN (cmd)

CBASECMD (cmd)
CGROUP (cmd)

Description
~the length from cm~

the command with length set to 0

lthe group from cmd

Figure 17.21 ioctl command macros.

The macro IOCGROUP extracts the 8-bit group from the command. Interface com-
mands are handled by i£±octh Routing commands are processed by rt±octl. All
other commands are passed to the socket’s protocol through the pRU_CONTROT, request.

As we describe in Chapter 19, Net/2 introduced a new interface to the routing tables in which
messages are passed to the routing subsystem through a socket created in the PF_ROUTE
domain. This method replaces the ioctl method shown here. rtioctl always returns
ENOTSUPP in kernels that do not have compatibility code compiled in.

getsockname System Call

The prototype for this system call is:
int getsockname(int fd, caddr_t asa, int *alert) ;

getsockname retrieves the local address bound to the socket fd and places it in the ~"~
buffer pointed to by asa. This is useful when the kernel has selected an address during
an implicit bind or when the process specified a wildcard address (Section 22.5) during
an explicit call to b±nd. The getsocknarne system call is shown in Figure 17.22.

ge~sock locates the £ 5_1e structure for the descriptor. The size of the buffer speci-
fied by the process is copied from the process into len. This is the first call to
m__~etclr that we’ve seen--it allocates a standard mbuf and clears it with bzero. The
protocol processing layer is responsible for returning the local address in m when the
PRU_SOCKADDR request is issued.

If the address is larger than the buffer specified by the process, it is silently trun-
cated when it is copied out to the process. *alen is updated to the number of bytes ~i
copied out to the process. Finally, the mbuf is released and getsockname returns.

~etpeername System Call

The prototype for this system call is:
int getpeername(int /d, caddr_t asa, int *alert) ;

Ex.1013.580DELL

~st.

~ich

the
ring
ring

~eci-
] to
The
~ the

~ytes

682 struct getsockname_args {
683 int fdes;
684 caddr_t asa;
685 int *alen;
686 };

687
688
689
690
691
692
693
694
695

getpeername System Call 555

696
697
698
699

uipc_syscalls.c

700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715

getsockname(p, uap, retval)
struct proc *p;
struct getsockname_args *uap;
int *retval;
{

struct file *fp;
struct socket *so;
struct mbuf *m;
int len, error;

if
return (error);

if (error = copyin((caddr_t) uap->alen,
return (error);

so = (struct socket *) fp->f_data;
m = m_getclr(M_WAIT, MT_SONAME);
if (m :: NULL)

return (ENOBUFS);
if (error = (*so->so~roto->pr_usrreq) (so, PRU_SOCKADDR, 0, m, 0)

goto bad;
if (len > m->m_len)

len = m->m_len;
error = copyout(mtod(m, caddr_t), (caddr_t) uap->asa, (u_int) len)

if (error == 0)
error : copyout((caddr_t) & len, (caddr_t) uap->alen,

sizeof(len));

bad:
m_freem(m);
return (error);

(error = getsock(p->p_fd, uap->fdes, &fp))

(caddr_t) & len, sizeof(len)))

uipc_syscalls.c

Figure 17.22 getsockname system call.

The getpeername system call returns the address of the remote end of the connec-
tion associated with the specified socket. This function is often called when a server is
invoked through a fork and exec by the process that calls accept (i.e., any server
started by inetd)o The server doesn’t have access to the peer address returned by
accept and must use getpeername. The returned address is often checked against an
access list for the application, and the connection is closed if the address is not on the
list.

Some protocols, such as TP4, utilize this function to determine if an incoming con-
ne~tion should be rejected or confirmed. In TP4, the connection associated with a socket
returned by accept is not yet complete and must be confirmed before the connection
completes. Based on the address returned by getpeername, the server can close the
connection or implicitly confirm the connection by sending or receiving data. This

Ex.1013.581DELL

556 Socket Options Chapter 17

719--753

feature is irrelevant for TCP, since TCP doesn’t make a connection available to accept
until the three-way handshake is complete. Figure 17.23 shows the getpeername func-
tion.

719 struct getpeername_args {
720 int fdes;
721 caddr_t asa;
722 int *alen;
723 };

uipc_syscalls.c

724 getpeername(p, uap, retval)
725 struct proc *p;
726 struct getpeername_args *uap;
727 int *retval;
728 {
729 struct file *fp;
730 struct socket *so;
731 struct mbuf *m;
732 int len, error;

733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
75O
751
752
753

if

so

return (ENOTCONTq) ;
if (error : copyin((caddr_t) uap->alen,

return (error);
m = m_getclr(M_WAIT, MT_SONAME);
if (m == NULL)

return (ENOBUFS);
if (error = (*so >so_proto->pr_usrreq)

goto bad;
if (len > m->m_len)

len : m->m_len;

(error = getsock(p->p_fd, uap->fdes, &fp))
return (error);

= (struct socket *) fp->f_data;
((so->so_state & (SS_ISCONNECTED I SS_ISCONFIRMING)) -= 0)

(caddr_t) & len, sizeof(len)))

(so, PRU_PEERADDR, 0, m, 0))

if (error = copyout(mtod(m, caddr_t), (caddr_t) uap->asa, (u_int) fen))
goto bad;

error = copyout((caddr_t) & len, (caddr_t) uap >alen, sizeof(len));
bad:

m_freem(m);
return (error);

uipc_syscalls.c
Figure 17.23 getpeername system call.

The code here is almost identical to the getsockname code. getsock locates the
socket and ENOTCONN is returned if the socket is not yet connected to a peer or if the
connection is not in a confirmation state (e.g., TP4). If it is connected, the size of the
buffer is copied in from the process and an mbuf is allocated to hold the address. The
PRU_PEERADDR request is issued to get the remote address from the protocol layer. The
address and the length of the address are copied from the kernel mbuf to the buffer in
the process. The mbuf is released and the function returns.

Ex.1013.582DELL

Chapter 17 Exercises 557

17.8 Summary

In this chapter we discussed the six functions that modify the semantics of a socket.
Socket options are processed by setsockopt and getsockopt. Additional options,
some of which are not unique to sockets, are handled by fcnt3, and ±oct,_. Finally,
connection information is available through geesockname and geepeernarae.

Exercises

17.1 Why do you think options are limited to the size of a standard mbuf (MHLEI~, 128 bytes)?

17.2 Why does the code at the end of Figure 17.7 work for the SO_T.TNGER option?

17.3 There is a problem with the suggested code used to test the t±meval_ structure in Fig-
ure 17.9 since tv->tv_sec * hz may cause an overflow. Suggest a change to the code to
solve this problem.

;.C

~e
~e
~e
~e
~e
in

Ex.1013.583DELL

Ex.1013.584DELL

DELL Ex.1013.584

18

Radix Tree Routing Tables

18.1 Introduction

The routing performed by IP, when it searches the routing table and decides which
interface to send a packet out on, is a routing mechanism. This differs from a routing pol-
icy, which is a set of rules that decides which routes go into the routing table. The
Net/3 kernel implements the routing mechanism while a routing daemon, typically
~outed or gated, implements the routing policy. The structure of the routing table
must recognize that the packet forwarding occurs frequently--hundreds or thousands
of times a second on a busy system--while routing policy changes are less frequent.

Routing is a detailed issue and we divide our discussion into three chapters.

¯ This chapter looks at the structure of the radix tree routing tables used by the
Net/3 packet forwarding code. The tables are consulted by IP every time a
packet is sent (since IP must determine which local interface receives the packet)
and every time a packet is forwarded.

¯ Chapter 19 looks at the functions that interface between the kernel and the radix
tree functions, and also at the routing messages that are exchanged between the
kernel and routing processes--normally the routing daemons that implement
the routing policy. These messages allow a process to modify the kernel’s rout-
ing table (add a route, delete a route, etc.) and let the kernel notify the daemons
when an asynchronous event occurs that might affect the routing policy (a re-
direct is received, an interface goes down, and so on).

¯ Chapter 20 presents the routing sockets that are used to exchange routing mes-
sages between the kernel and a process.

559

Ex.1013.585DELL

56O

18.2

Radix Tree Routing Tables Chapter 18

Routing Table Structure

Before looking at the internal structure of the Net/3 routing table, we need to under-
stand the type of information contained in the table. Figure 18.1 is the bottom half of
Figure 1.17: the four systems on the author’s Ethernet.

BSD/386 1.1

slip ~1.13.6 5

Internet

BSD/386 1.1 Solaris 2.3 ~.1.29

SLIP ~ bsdi sun.13.66

Ethernet, 140.252.13.32
Figure 18.1 Subnet used for routing table example.

SVR4

svr4

T.13.34

Figure 18.2 shows the routing table for bsd± in Figure 18.1.
bsdi $ netstat -rn
Routing tables

Internet:
Destination Gateway Flags Refs Use Interface
default 140.252.13.33 UG S 0 3 le0
127 127.0.0.1 UG S R 0 2 lo0
127.0.0.1 127.0.0.1 U H 1 55 lo0
128.32.33.5 140.252.13.33 UGHS 2 16 le0
140.252.13.32 link#1 U C 0 0 le0
140.252.13.33 8:0:20:3:f6:42 U H L ii 55146 le0
140.252.13.34 0:0:c0:c2:9b:26 U H L 0 3 le0
140.252.13.35 0:0:c0:6f:2d:40 U H L 1 12 io0
140.252.13.65 140.252.13.66 U H 0 41 sl0
224 link#1 U C 0 0 le0
224.0.0.1 link#1 U H L 0 5 le0

Figure 18.2 Routing table on the host bsd±.

We have modified the "Flags" column from the normal netstat output, making it eas-
ier to see which flags are set for the various entries.

The routes in this table were entered as follows. Steps 1, 3, 5, 8, and 9 are performed
at system initialization when the /etc/netstart shell script is executed.

A default route is added by the route command to the host sun
(140.252.13.33), which contains a PPP link to the Internet.

The entry for network 127 is typically created by a routing daemon such as
gated, or it can be entered with the route command in the/etc/netstart
file. This entry causes all packets sent to this network, other than references to
the host 127.0.0.1 (which are covered by the more specific route entered in the
next step), to be rejected by the loopback driver (Figure 5.27).

Ex.1013.586DELL

pter 18

half of

g it eas-

rformed

)st sun

such as
tstart
’ences to
!d in the

~ection 18.2
Routing Table Structure 561

3. The entry for the loopback interface (127.0.0.1) is configured by i £conf ±g.

4. The entry for vangogh, ca. berkeley, edu (128.32.33.5) was created by hand
using the route command. It specifies the same router as the default route
(140.252.13.33), but having a host-specific route, instead of using the default
route for this host, allows routing metrics to be stored in this entry. These met-
rics can optionally be set by the administrator, are used by TCP each time a
connection is established to the destination host, and are updated by TCP
when the connection is closed. We describe these metrics in more detail with
Figure 27.3.

5. The interface le0 is initialized using the ±fcon£ig command. This causes the
entry for network 140.252.13.32 to be entered into the routing table.

6. The entries for the other two hosts on the Ethernet, sun (140.252.13.33) and
svr4 (140.252.13.34), were created by ARP, as we describe in Chapter 21.
These are temporary entries that are removed if they are not used for a certain
period of time.

7. The entry for the local host, 140.252.13.35, is created the first time the host’s
own IP address is referenced. The interface is the loopback, meaning any IP
datagrams sent to the host’s own IP address are looped back internally. The
automatic creation of this entry is new with 4.4BSD, as we describe in Sec-
tion 21.13.

8. The entry for the host 140.252.13.65 is created when the SLIP interface is config-
ured by i f conf ig.

9. The route command adds the route to network 224 through the Ethernet
interface.

10. The entry for the multicast group 224.0.0.1 (the all-hosts group) was created by
running the Ping program, pinging the address 224.0.0.1. This is also a tempo-
rary entry that is removed if not used for a certain period of time.

The "Flags" column in Figure 18.2 needs a brief explanation. Figure 18.25 provides a
list of all the possible flags.

The route is up.

The route is to a gateway (router). This is called an indirect route. If this flag is
not set, the destination is directly connected; this is called a direct route.

The route is to a host, that is, the destination is a complete host address. If this
flag is not set, the route is to a network, and the destination is a network address:
a network ID, or a combination of a network ID and a subnet ID. The netstat
command doesn’t show it, but each network route also contains a network
mask. A host route has an implied mask of all one bits.

The route is static. The three entries created by the route command in Fig-
ure 18.2 are static.

Ex.1013.587DELL

562 Radix Tree Routing Tables Chapter 18

R

The route is cloned to create new routes. Two entries in this routing table have
this flag set: (1) the route for the local Ethernet (140.252.13.32), which is cloned
by ARP to create the host-specific routes of other hosts on the Ethernet, and (2)
the route for multicast groups (224), which is cloned to create specific multicast
group routes such as 224.0.0.1

The route contains a link-layer address. The host routes that ARP clones from
the Ethernet network routes all have the link flag set. This applies to unicast and
multicast addresses.

The loopback driver (the normal interface for routes with this flag) rejects all
datagrams that use this route.

The ability to enter a route with the "reject" flag was provided in Net/2. It provides a
simple way of preventing datagrams destined to network 127 from appearing outside the
host. See also Exercise 6.6.

Before 4.3BSD Reno, two distinct routing tables were maintained by the kernel for
IP addresses: one for host routes and one for network routes. A given route was
entered into one table or the other, based on the type of route. The default route was
stored in the network routing table with a destination address of 0.0.0.0. There was an
implied hierarchy: a search was made for a host route first, and if not found a search
was made for a network route, and if still not found, a search was made for a default
route. Only if all three searches failed was the destination unreachable. Section 11.5 of
[Leffier et alo 1989] describes the hash table with linked lists used for the host and net-
work routing tables in Net/1.

Major changes took place in the internal representation of the routing table with
4.3BSD Reno [Sklower 1991]. These changes allow the same routing table functions to
access a routing table for other protocol suites, notably the OSI protocols, which use
variable-length addresses, unlike the fixed-length 32-bit Internet addresses. The inter-
nal structure was also changed, to provide faster lookups.

The Net/3 routing table uses a Patricia tree structure [Sedgewick 1990] to represent
both host addresses and network addresses. (Patricia stands for "Practical Algorithm to
Retrieve Information Coded in Alphanumeric.") The address being searched for and
the addresses in the tree are considered as sequences of bits. This allows the same func-
tions to maintain and search one tree containing fixed-length 32-bit Internet addresses,
another tree containing fixed-length 48-bit XNS addresses, and another tree containing
variable-length OSI addresses.

The idea of using Patricia trees for the routing table is attributed to Van Jacobson in [Sklower
1991]. These are actually binary radix tries with one-way branching removed.

An example is the easiest way to describe the algorithm. The goal of routing lookup
is to find the most specific address that matches the given destination: the search key.
The term most speci~’c implies that a host address is preferred over a network address,
which is preferred over a default address.

Each entry has an associated network mask, although no mask is stored with a host
route; instead host routes have an implied mask of all one bits. An entry in the routing
table matches a search key if the search key logically ANDed with the network mask of

Ex.1013.588DELL

er 18

lave
)ned
J (2)
icast

!tom

:s all

ides a
Je the

.4 for
was

was

~s an
torch
~fault
t.5 of
net-

with
ns to
~ use
Enter-

esent
lrn to
and

func-
~sses,
ining

~ower

~okup
~ key.
dress,

host
,uting
~sk of

Section 18.2 Routing Table Structure 563

the entry equals the entry itself. A given search key might match multiple entries in the
routing table, so with a single table for both network route and host routes, the table
must be organized so that more-specific routes are considered before less-specific
routes.

Consider the examples in Figure 18.3. The two search keys are 127.0.0.1 and
127.0.0.2, which we show in hexadecimal since the logical ANDing is easier to illustrate.
The two routing table entries are the host entry for 127.0.0.1 (with an implied mask of
0×£ f f f f f f f) and the network entry for 127.0.0.0 (with a mask of 0xf f 000 0 00).

host route

1 search key ? £ 000002
2 routing table key V£000001
3 routing table mask f f f f f f f f

4 logical AND of I and 3 v f 000002

2 and 4 equal? no

search key = 127.0.0.1
hostroute netroute

VfO00001 7go00001

7fO00001 7fO00000
ffffffff frO00000

7fO00001 7fO00000

yes yes

search key =127.0.0.2
netroute

7f000002
7fO00000
ffO00000
7fO00000

yes

Figure 18.3 Example routing table lookups for the two search keys 127.0.0.1 and 127.0.0.2.

Since the search key 127.0.0.1 matches both routing table entries, the routing table must
be organized so that the more-specific entry (127.0.0.1) is tried first.

Figure 18.4 shows the internal representation of the Net/3 routing table correspond-
ing to Figure 18.2. This table was built from the output of the netstat command with
the -A flag, which dumps the tree structure of the routing tables.

off.on

127.0.0.0
0xff000000

off~ on

!40.252.13.32
OxffffffeO

127.0.0.1 128.32.33.5~ ~ $ 0xff00000~_~

140.252.13.33 140.252.13.34 140.252.13.35

Figure 18.4 Net/3 routing table corresponding to Figure 18.2.

Ex.1013.589DELL

564 Radix Tree Routing Tables Chapter 18

The two shaded boxes labeled "end" are leaves with special flags denoting the end
of the tree. The left one has a key of all zero bits and the right one has a key of all one
bits. The two boxes stacked together at the left, labeled "end" and "default," are a spe-
cial representation used for duplicate keys, which we describe in Section 18.9.

The square-cornered boxes are called internal nodes or just nodes, and the boxes with
rounded corners are called leaves. Each internal node corresponds to a bit to test in the
search key, and a branch is made to the left or the right. Each leaf corresponds to either
a host address or a network address. If there is a hexadecimal number beneath a leaf,
that leaf is a network address and the number specifies the network mask for the leaf.
The absence of a hexadecimal mask beneath a leaf node implies that the leaf is a host
address with an implied mask of

Some of the internal nodes also contain network masks, and we’ll see how these are
used in backtracking. Not shown in this figure is that every node also contains a
pointer to its parent, to facilitate backtracking, deletion, and nonrecursive walks of the
tree.

The bit comparisons are performed on socket address structures, so the bit positions
given in Figure 18.4 are from the start of the socket address structure. Figure 18.5 shows
the bit positions for a sockac~flr_±n structure.

bit: 0 32 63
len family[sockaddr_~-n: (16) (2) port IP address (all 0)

1 byte 1 2 4 8

Figure 18.5 Bit offsets in Internet socket address structure.

The highest-order bit of the IP address is at bit position 32 and the lowest-order bit is at
bit position 63. We also show the length as 16 and the address family as 2
as we’ll encounter these two values throughout our examples.

To work through the examples we also need to show the bit representations of the
various IP addresses in the tree. These are shown in Figure 18.6 along with some other
IP addresses that are used in the examples that follow. The bit positions used in Fig-
ure 18.4 as branching points are shown in a bolder font.

We now provide some specific examples of how the routing table searches are per-
formed.

Example--Host Match

Assume the host address 127.0.0.1 is the search key--the destination address being
looked up. Bit 32 is off, so the left branch is made from the top of the tree. Bit 33 is on,
so the right branch is made from the next node. Bit 63 is on, so the right branch is made
from the next node. This next node is a leaf, so the search key (127.0.0.1) is compared to
the address in the leaf (127.0.0.1). They match exactly so this routing table entry is
returned by the lookup function.

Ex.1013.590DELL

r 18

¢ith
the
:her
.eaf,
.eaf.
lost

~ are
ls a

the

ions
ows

is at
IET),

f the
~ther
Fig-

per-

~eing
s on,
nade
ed to
:ry is

Section 18.2 Routing Table Structure 565

32-bit IP address (bits 32-63) dotted-decimal

bit: 3333 3333 4444 4444 4455 5555 5555 6666

2345 6789 0123 4567 8901 2345 6789 0123

0000 i010 0000 0001 0000 0010 0000 0011

0111 0000 0000 0000 0000 0000 0000 0001

0111 iiii 0000 0000 0000 0000 0000 0000

0111 iiii 0000 0000 0000 0000 0000 0001

0111 iiii 0000 0000 0000 0000 0000 0011

i000 0000 0010 0000 0010 0001 0000 0101

i000 0000 0010 0000 0010 0001 0000 0110

i000 ii00 iiii II00 0000 ii01 0010 0000

i000 ii00 iiii ii00 0000 ii01 0010 0001

i000 ii00 Iiii ii00 0000 Ii01 0010 0010

i000 Ii00 iiii ii00 0000 ii01 0010 0011

1000 ii00 iiii Ii00 0000 ii01 0100 0001

iii0 0000 0000 0000 0000 0000 0000 0000

iii0 0000 0000 0000 0000 0000 0000 0001

10.1.2.3
112.0.0.1
127.0.0.0
127.0.0.1
127.0.0.3
128.32.33.5
128.32.33.6
140.252.13.32
140.252.13.33
140.252.13.34
140.252.13.35
140.252.13.65
224.0.0.0
224.0.0.1

Figure 18.6 Bit representations of the IP addresses in Figures 18.2 and 18.4.

ExampleDHost Match

Next assume the search key is the address 140.252.13.35. Bit 32 is on, so the right
branch is made from the top of the tree. Bit 33 is off, bit 36 is on, bit 57 is off, bit 62 is on,
and bit 63 is on, so the search ends at the leaf on the bottom labeled 140.252.13.35. The
search key matches the routing table key exactly.

Example--Network Match

The search key is 127.0.0.2. Bit 32 is off, bit 33 is on, and bit 63 is off so the search ends
up at the leaf labeled 127.0.0.0. The search key and the routing table key don’t match
exactly, so a network match is tried. The search key is logically ANDed with the net-
work mask (0x£ f 00 0 00 0) and since the result equals the routing table key, this entry is
considered a match.

ExampleDDefault Match

The search key is 10.1.2.3. Bit 32 is off and bit 33 is off, so the search ends up at the leaf
with the duplicate keys labeled "end" and "default." The routing table key that is
duplicated in these two leaves is 0.0.0.0. The search key and the routing table key don’t
match exactly, so a network match is tried. This match is tried for all duplicate keys that
have a network mask. The first key (the end marker) doesn’t have a network mask, so it
is skipped. The next key (the default entry) has a mask of 0x00000000. The search
key is logically ANDed with this mask and since the result equals the routing table key
(0), this entry is considered a match. The default route is used.

Ex.1013.591DELL

566 Radix Tree Routing Tables
Chapter 18

Example--Network Match with Backtracking

The search key is 127.0.0.3. Bit 32 is off, bit 33 is on, and bit 63 is on, so the search ends
up at the leaf labeled 127.0.0.1. The search key and the routing table key don’t match
exactly. A network match cannot be attempted since this leaf does not have a network
mask. Backtracking now takes place.

The backtracking algorithm is to move up the tree, one level at a time. If an internal
node is encountered that contains a mask, the search key is logically ANDed with the
mask and another search is made of the subtree starting at the node with the mask,
looking for a match with the ANDed key. If a match isn’t found, the backtrack keeps
moving up the tree, until the top is reached.

In this example the search moves up one level to the node for bit 63 and this node
contains a mask. The search key is logically ANDed with the mask (0x£ £ 0 0 00 0 0), giv-
ing a new search key of 127.0.0.0. Another search is made starting at this node for
127.0.0.0. Bit 63 is off, so the left branch is taken to the leaf labeled 127.0.0.0. The new
search key is compared to the routing table key and since they’re equal, this leaf is the
match.

Example--Backtracking Multiple Levels

The search key is 112.0.0.1. Bit 32 is off, bit 33 is on, and bit 63 is on, so the search ends
up at the leaf labeled 127.0.0.1. The keys are not equal and the routing table entry does
not have a network mask, so backtracking takes place

The search moves up one level to the node for bit 63, which contains a mask. The
search key is logically ANDed with the mask of 0xff000000 and another search is
made starting at that node. Bit 63 is off in the new search key, so the left branch is made
to the leaf labeled 127.0.0.0. A comparison is made but the ANDed search key
(112.0.0.0) doesn’t equal the search key in the table.

Backtracking continues up one level from the bit-63 node to the bit-33 node. But
this node does not have a mask, so the backtracking continues upward. The next level
is the top of the tree (bit 32) and it has a mask. The search key (112.0.0.1) is logically
ANDed with the mask (0x00000000) and a new search started from that point. Bit 32
is off in the new search key, as is bit 33, so the search ends up at the leaf labeled "end"
and "default." The list of duplicate keys is traversed and the default key matches the
new search key, so the default route is used.

As we can see in this example, if a default route is present in the routing table, when
the backtrack ends up at the top node in the tree, its mask is all zero bits, which causes
the search to proceed to the leftmost leaf in the tree for a match with the default.

Example--Host Match with Backtracking and Cloning

The search key is 224.0.0.5. Bit 32 is on, bit 33 is on, bit 35 is off, and bit 63 is on, so the
search ends up at the leaf labeled 224.0.0.1. This routing table key does not equal the
search key, and the routing table entry does not contain a network mask, so backtrack-
ing takes place.

Ex.1013.592DELL

18

rk

~al
he

ps

ds
~es

he

is
de
:ey

lut
~el
lly
32
d"

:he

Len
~es

the
the
ck-

18.2 Routing Table Structure 567

The backtrack moves one level up to the node that tests bit 63. This node contains
the mask 0xff000000, so the search key ANDed with the mask yields a new search
key of 224.0.0.0. Another search is made, starting at this node. Since bit 63 is off in the
ANDed key, the left branch is taken to the leaf labeled 224.0.0.0. This routing table key
matches the ANDed search key, so this entry is a match.

This route has the "clone" flag set (Figure 18.2), so a new leaf is created for the
address 224.0.0.5. The new routing table entry is

Destination Gateway Flags Refs Use Interface
224.0.0.5 link#1 UHL 0 0 le0

and Figure 18.7 shows the new arrangement of the right side of the routing table tree
from Figure 18.4, starting with the node for bit 35. Notice that whenever a new leaf is
added to the tree, two nodes are needed: one for the leaf and one for the internal node
specifying the bit to test.

~ ~224’0"0"~ ~’5

224.0.0.0 224.0.0.1
0xff000000

Figure 18.7 Modification of Figure 18.4 after inserting entry for 224.0.0.5.

This newly created entry is the one returned to the caller who was searching for
224.0.0.5.

The Big Picture

Figure 18.8 shows a bigger picture of all the data structures involved. The bottom por-
tion of this figure is from Figure 3.32.

There are numerous points about this figure that we’ll note now and describe in
detail later in this chapter.

¯ rt_tables is an array of pointers to radix_node_head structures. There is one
entry in the array for each address family, rt_tables [AF_INET] points to the top
of the Internet routing table tree.

Ex.1013.593DELL

568 Radix Tree Routing Tables Chapter 18

0
]

AF_INET : 2

25

rt_tables []

mask_rnhead :

[

ifnet:

ifnet_addrs :

radix_node_head,

radix_node{}
(lehend)

radix_node{}-
(bit32)

radix_node{}
(hghtend)

radix_node_head { }

radix_node { }

radix_node { }

radix_node { }

/
le soft_ c [0~] _.’_/ ~

le softc{]

i f addr { }

rtentry{}
radix_node{}

(]27.0.0.])

radix_node{)
(bit 33)

rtentry{}
radix node{}

(]40.252.13.32)

radix_node{}
(bit 33)

sl_softc[O]:

ifnet{}

sl_softc{}

ifaddr{}

Isockaddr_dl{)

sockaddr_dl{}

inpcb{}

route{}

inpcb{}

route{}

inpcb{]

route{}

loif:

ifnet{} ~

ifaddr{}

sockaddr_dl{}

sockaddr_dl{}

Figure 18.8 Data structures involved with routing tables.

Ex.1013.594DELL

18.3 Routing Sockets ~69

¯ The radix_node_head structure contains three radix_node structures. These
structures are built when the tree is initialized and the middle of the three is the top
of the tree. This corresponds to the top box in Figure 18.4, labeled "bit 32." The first
of the three radix_node structures is the leftmost leaf in Figure 18.4 (the shared
duplicate with the default route) and the third of the three is the rightmost leaf. An
empty routing table consists of just these three radix_node structures; we’ll see
how it is constructed by the rn_inithead function.

¯ The global mask_rnhead also points to a radix_node_head structure. This is the
head of a separate tree of all the masks. Notice in Figure 18.4 that of the eight masks
shown, one is duplicated four times and two are duplicated once. By keeping a sep-
arate tree for the masks, only one copy of each unique mask is maintained.

¯ The routing table tree is built from rtentry structures, and we show two of these in
Figure 18.8. Each rtentry structure contains two radix_node structures, because
each time a new entry is inserted into the tree, two nodes are required: an internal
node corresponding to a bit to be tested, and a leaf node corresponding to a host
route or a network route. In each rtentry structure we also show which bit test the
internal node corresponds to and the address contained in the leaf node.

The remainder of the rtentry structure is the focal point of information for this
route. We show only a single pointer from this structure to the corresponding
ifnet structure for the route, but this structure also contains a pointer to the
i faddr structure, the flags for the route, a pointer to another rtentry structure if
this entry is an indirect route, the metrics for the route, and so on.

¯ Protocol control blocks (Chapter 22), of which one exists for each UDP and TCP
socket (Figure 22.1), contain a route structure that points to an rtentry structure.
The UDP and TCP output functions both pass a pointer to the route structure in a
PCB as the third argument to ip_out~)ut, each time an IP datagram is sent. PCBs
that use the same route point to the same routing table entry.

18.3 Routing Sockets

When the routing table changes were made with 4.3BSD Reno, the interaction of pro-
cesses with the routing subsystem also changed--the concept of routing sockets was
introduced. Prior to 4.3BSD Reno, fixed-length ioct ls were issued by a process (such
as the route command) to modify the routing table. 4.3BSD Reno changed this to a
more generalized message-passing scheme using the new PF_ROUTE domain. A pro-
cess creates a raw socket in the PF_ROUTE domain and can send routing messages to
the kernel, and receives routing messages from the kernel (e.g., redirects and other asyn-
chronous notifications from the kernel).

Figure 18.9 shows the 12 different types of routing messages. The message type is
the rtm_type field in the rt_msghdr structure, which we describe in Figure 19.16.
Only five of the messages can be issued by a process (a write to a routing socket), but all
12 can be received by a process.

We’ll defer our discussion of these routing messages until Chapter 19.

Ex.1013.595DELL

570 Radix Tree Routing Tables Chapter 18

18.4

rtm_type

RTM_ADD
RTM_CHANGE
RTM_DELADDR
RTM_DELETE
RTM_GET
RTM_IFINFO
RTM_LOCK
RTM_LOSING
RTM_MISS
RTM_NEWADDR
RTM_REDIRECT
RTM RESOLVE

To
kernel?

From

kernel?
Description

add route
change gateway, metrics, or flags
address being removed from interface
delete route
report metrics and other route information
interface going up, down, etc.
lock specified metrics
kernel suspects route is failing
lookup failed on this address
address being added to interface
kernel told to use different route
request to resolve destination to link-layer address

Figure 18.9 Types of messages exchanged across a routing socket.

Structure
~pe

rt_msghdr
rt_msghdr
ifa_msghdr
rt_msghdr
rt_msghdr
if_msghdr
rt_msghdr
rt_msghdr
rt_msghdr
ifa_msghdr
rt_msghdr
rt_msghdr

Code Introduction

Three headers and five C files define the various structures and functions used for rout-
ing. These are summarized in Figure 18.10.

File Description

net /radix. h radix node definitions
net / raw_cb, h routing control block definitions
net / rout e. h routing structures

net/radix, c radix node (Patricia tree) functions
net/raw_cb, c routing control block functions
net/raw_usrreq, c routing control block functions
net / route, c routing functions
net / r t s o c k. c routing socket functions

Figure 18.10 Files discussed in this chapter.

We use the term routing control blocks instead of raw control blocks in all the routing chapters,
even though the files and functions begin with the prefix raw. This is to avoid confusion with
the raw IP control blocks and functions, which we discuss in Chapter 32. Although the raw
control blocks and their assodated functions are used for more than just routing sockets in
Net/3 (one of the raw OSI protocols uses these structures and functions), our use in this text is
only with routing sockets in the PF_ROUTE domain.

Figure 18.11 shows the primary routing functions and their relationships. The
shaded ellipses are the ones we cover in this chapter and the next two. We also show
where each of the 12 routing message types are generated.

In general, the prefix rn_ denotes the radix node functions that search and manipulate
the Patricia trees, the raw_ prefix denotes the routing control block functions, and the
three prefixes rout e_, rt_, and rt denote the general routing functions.

Ex.1013.596DELL

:er 18

hdr
ghdr I

hdr

:hdr
ihdr
fhdr
~hdr
~ghdr
~hdr
;hdr

¯ rout-

[pulate
.nd the

:hapters,
;ion with
the raw

~ckets in
~is text is

,S. The
o show

Section 18.4 Code Introduction

[-

sysct i socket
system call receive buffer

system initialization

net_sysctl

arp, gated, route, I
routed, and rwhod programs I

socket (PF_ROUTE, SOCK_RAW, protocol) J

various
system calls

’RU_SEND

rt ifmsg fiewaddrms’

interface status called by various
has changed ioctls to add and

delete routes when
interfaces taken
up and down

_walktree

in_losing

icmp_input

4th consecutive ICMP redirect called by TCP/IP
retransmission protocols to find
on a given TCP a route to a

connection destination

delete

Figure 18.11 Relationships between the various routing functions.

571

Ex.1013.597DELL

572 Radix Tree Routing Tables
Chapter 18

rtal]_oc is the function called by the Internet protocols to look up routes to desti-
nations. We’ve already encountered rtalloc in the ±p_rtaddr, ip_£orward,
j_p_output, and ±p_setmoptions functions. We’ll also encounter it later in the
in_pcbconnect and top_ross functions.

We also show in Figure 18.11 that five programs typically create sockets in the rout-

ing domain:

¯ arp manipulates the ARP cache, which is stored in the IP routing table in Net/3

(Chapter 21),

¯ gated and routed are routing daemons that communicate with other routers

and manipulate the kerne1’s routing table as the routing environment changes

(touters and links go up or down),

¯ route is a program typically executed by start-up scripts or by the system

administrator to add or delete routes, and

¯ rwhod issues a routing sysctl on start-up to determine the attached interfaces.

Naturally, any process (with superuser privilege) can open a routing socket to send and
receive messages to and from the routing subsystem; we show only the common system
programs in Figure 18.11.

Global Variables

The global variables introduced in the three routing chapters are shown in Figure 18.12.

VaNable

rt_tables
mask_rnhead
rn mkfreelist
max_keylen
rn_zeros
rn_ones
maskedKey

rtstat
rttrash

rawcb
raw_recvspace
~^7 ~ndsDsce

-~ooute_cb
route_dst
route_src
route_proto

struct
struct
struct

int
char *
char *
char *

struct
int

struct
u_long

u long

struct
struct
struct
struct

Data~pe

radix_node_head * []
radix_node_head *
radix mask *

rtstat

rawcb

route_cb
sockaddr
sockaddr
sockproto

t~Ll ~ption

array of pointers to heads of routing tables
pointer to head of mask table
head of linked list of available radix_mask struct~
longest routing table key, in bytes
array of all zero bits, of length max_key 1 en
array of all one bits, of length max_key 1 en
array for masked search key, of length max_keyle~

routing statistics (Figure 18.13)
#routes not in table but not freed
head of doubly linked list of routing control blocks
default size of routing socket receive buffer, 8192 bytes
default size of routing socket send buffer, 8192 byt~

#routing socket listeners, per protocol, and total
temporary for destination of routing message
temporary for source of routing message
temporary for protocol of routing message

Figure 18.12 Global variables in the three routing chapters.

Ex.1013.598DELL

Section 18.5 Radix Node Data Structures 573

Statistics

Some routing statistics are maintained in the global structure r t s t a t, described in Fig-
ure 18.13.

rtstat member

rts_badredirect
rts_dynamic
rts_newgateway
rts_unreach
rts_wildcard

Used byDescription SNMP

#invalid redirect calls
#routes created by redirects
#routes modified by redirects
#1ookups that failed
#1ookups matched by wildcard (never used)

Figure 18.13 Routing statistics maintained in the rtstat structure.

We’ll see where these counters are incremented as we proceed through the code. None
are used by SNMP.

Figure 18.14 shows some sample output of these statistics from the net star
command, which displays this structure.

netstat -rs ou~ut rtstat member

1029 bad routing redirects rts_badredirect
0 dynamically created routes rts_dynamic
0 new gateways due to redirects rts_newgateway
0 destinations found unreachable rts_unreach
0 uses of a wildcard route rts_wildcard

Figure 18.14 Sample routing statistics.

SNMP Variables

Figure 18.15 shows the IP routing table, named ipRouteTable, and the kernel vari-
ables that supply the corresponding value.

For ipRouteType, if the RTF_GATEWAY flag is set in rt_flags, the route is
remote (4); otherwise the route is direct (3). For ipRouteProto, if either the
RTF_DYNAMIC or RTF_MODIFIED flag is set, the route was created or modified by
ICMP (4), otherwise the value is other (1). Finally, if the rt_mask pointer is null, the
returned mask is all one bits (i.e., a host route).

18.5 Radix Node Data Structures

In Figure 18.8 we see that the head of each routing table is a radix_node_head and all
the nodes in the routing tree, both the internal nodes and the leaves, are radix_node
structures. The radix_node_head structure is shown in Figure 18.16.

Ex.1013.599DELL

574 Radix Tree Routing Tables Chapter 18

SNMP variable

ipRout eDest

ipRouteIfIndex
ipRouteMetricl

ipRouteMetric2
ipRouteMetric3
ipRouteMetric4
ipRouteNextHop
ipRouteType

ipRouteProto

ipRouteAge

ipRouteMask

IP routing table, index : < ipRouteDest >
Variable Description

-~_key Destination IP address. A value of 0.0.0.0 indicates a default
entry.

rt_i fp- i f_index Interface number: i f Index.
-i Primary routing metric. The meaning of the metric depends

on the routing protocol (ipRouteProto). A value of
-1 means it is not used.

-i Alternative routing metric.

-i Alternative routing metric.

-i Alternative routing metric.

rt_gateway IP address of next-hop router.

(see text) Route type: I = other, 2 = invalidated route, 3 = direct,
4 = indirect.

(see text) Routing protocol: 1 = other, 4 = ICMP redirect, 8 = RIP,
13 = OSPF, 14 = BGP, and others.

(not implemented) Number of seconds since route was last updated or
determined to be correct.

r t_mask Mask to be logically ANDed with destination IP address
before being compared with ipRout eDe s t.

- 1 Alternative routing metric.

NULL Reference to MIB definitions specific to this particular
routing protocol.

ipRouteMetric5
ipRoutelnfo

Figure 18.15 IP routing table: ipRouteTable.

radix.h

91 struct radix_node_head {
92
93
94
95
96
97
98
99

i00
i01
102
103
104
105
106
107
108
109
ii0

iii
112 };

struct radix_node *rnh_treetop;
int rnh_addrsize; /* (not currently used) */

int rnh_pktsize; /* (not currently used) */

struct radix_node *(*rnh_addaddr) /* add based on sockaddr */
(void *v, void *mask,
struct radix_node_head * head, struct radix_node nodes[]);

struct radix_node *(*rnh_addpkt) /* add based on packet hdr */

(void *v, void *mask,
struct radix_node_head * head, struct radix_node nodes[]);

struct radix_node *(*rnh_deladdr) /* remove based on sockaddr */
(void *v, void *mask, struct radix_node_head * head);

struct radix_node *(*rnh_delpkt) /* remove based on packet hdr */
(void *v, void *mask, struct radix_node_head * head);

struct radix_node *(*rnh_matchaddr) /* locate based on sockaddr */
(void *v, struct radix_node_head * head);

struct radix_node *(*rnh_matchpkt) /* locate based on packet hdr */

(void *v, struct radix_node_head * head);
int (*rnh_walktree) /* traverse tree */

(struct radix_node_head * head, int (*f) (), void *w);

struct radix_node rnh_nodes[3]; /* top and end nodes */

radix.h

Figure 18.16 radix_node_head structure: the top of each routing tree.

Ex.1013.600DELL

Section 18.5 Radix Node Data Structures 575

92

93-94

95-110

111-112

rnh_treetop points to the top radix_node structure for the routing tree. Notice
that three of these structures are allocated at the end of the radix_node_head, and the
middle one of these is initialized as the top of the tree (Figure 18.8).

rnh_addr s i z e and rnh_pk t s i z e are not currently used.

rnh_addrsize is to facilitate porting the routing table code to systems that don’t have a
length byte in the socket address structure, rnh_pktsize is to allow using the radix node
machinery to examine addresses in packet headers without having to copy the address into a
socket address structure.

The seven function pointers, rnh_addaddr through rnh_walktree, point to func-
tions that are called to operate on the tree. Only four of these pointers are initialized by
rn_ini thead and the other three are never used by Net/3, as shown in Figure 18.17.

Member

rnh_addaddr
rnh_addpkt
rnh_deladdr
rnh_delpkt
rnh_matchaddr
rnh_matchpkt
rnh_walktree

Inifialkedto
~y rn_inithead)

rn_addroute
NULL
rn_delete
NULL
rn_match
NULL
rn_walktree

Figure 18.17 The seven function pointers in the radix_node_head structure.

Figure 18.18 shows the radix_node structure that forms the nodes of the tree. In
Figure 18.8 we see that three of these are allocated in the radix_node_head and two
are allocated in each rtentry structure.

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

struct radix_node {

};

radix.h

struct radix_mask *rn_mklist;
struct radix_node *rn_p;
short rn_b;
char rn_bmask;
u_char rn_flags;
union (

struct {
caddr_t rn_Key;
caddr_t rn_Mask;

/* parent pointer */
/* bit offset; -l-index(netmask)
/* node: mask for bit test */
/* Figure 18.20 */

/* list of masks contained in subtree */

*/

/* leaf only data: rn_b < 0 */
/* object of search */
/* netmask, if present */

struct radix_node *rn_Dupedkey;
} rn_leaf;
struct { /* node only data: rn_b >= 0 */

int rn_Off; /* where to start compare */
struct radix_node *rn_L; /* left pointer */
struct radix_node *rn_R; /* right pointer */

} rn_node;
} rn_u;

59 #define rn_dupedkey rn_u.rn_leaf.rn_Dupedkey
60 #define rn_key rn_u.rn_leaf.rn_Key

Ex.1013.601DELL

576 Radix Tree Routing Tables Chapter 18

41--45

41--42

43

61 #define rn_mask
62 #define rn_off
63 #define rn_l
64 #define rn_r

rn_u.rn_leaf.rn_Mask
rn_u.rn_node.rn_Off
rn_u.rn_node.rn_L
rn_u.rn_node.rn_R radix.h

Figure 18.18 radix_node structure: the nodes of the routing tree.

The first five members are common to both internal nodes and leaves, followed by a
union defining three members if the node is a leaf, or a different three members if the
node is internal. As is common throughout the Net/3 code, a set of #define state-
ments provide shorthand names for the members in the union.

rn_mklist is the head of a linked list of masks for this node. We describe this field
in Section 18.9. rn__p points to the parent node.

If rn b is greater than or equal to 0, the node is an internal node, else the node is a
leaf. For-~he internal nodes, rn_b is the bit number to test: for example, its value is 32
in the top node of the tree in Figure 18.4. For leaves, rn_b is negative and its value is -1
minus the index of the network mask. This index is the first bit number where a 0 occurs.
Figure 18.19 shows the indexes of the masks from Figure 18.4.

00000000:
ff000000:
ffffffe0:

32-bitIP mask ~its32-63) l index
rn_b

3333 3333 4444 4444 4455 5555 5555 6666

2345 6789 0123 4567 8901 2345 6789 0123

0000 0000 0000 0000 0000 0000 0000 0000 0 -I

iiii iiii 0000 0000 0000 0000 0000 0000 40 --41

1111 iiii Iiii Iiii iiii Iiii iii0 0000 59 -60

Figure 18.19 Example of mask indexes.

As we can see, the index of the all-zero mask is handled specially: its index is 0, not 32.
44 rn_bmask is a 1-byte mask used with the internal nodes to test whether the corre-

sponding bit is on or off. Its value is 0 in leaves. We’ll see how this member is used
with the rn_o f f member shortly.

45 Figure 18.20 shows the three values for the rn_f 1 ags member.

Constant Description

RNF_ACTIVE
RNF_NORMAL
RNF ROOT

this node is alive (for rtfree)
leaf contains normal route (not currently used)
node is in the radix_node_head structure

Figure 18.20 rn_flags values.

The RNF_ROOT flag is set only for the three radix nodes in the radix_node_head
structure: the top of the tree and the left and right end nodes. These three nodes can
never be deleted from the routing tree.

Ex.1013.602DELL

by a
f the
.tate-

field

_~isa
is 32
is -1
:curs.

-32.
2orre-
used

_head
es can

ion 18.5

48--49

50-51

52-58

Radix Node Data Structures 577

For a leaf, rn_key points to the socket address structure and rn_mask points to a
socket address structure containing the mask. If rn_mask is null, the implied mask is
all one bits (i.e., this route is to a host, not to a network).

Figure 18.21 shows an example corresponding to the leaf for 140.252.13.32 in Fig-
ure 18.4.

radix_node{}
/~--rn_mklist

rn_p

rn_b
rn_bmask
rn_flags
rn_key
rn_mask
rn_dupedkey

radix_mask{

~
rm_off
rm_unused
rm_flags
rm_mklist
rm_mask
rm_refs

to radix_node { }
for bit 63

_)
-60

I o

~ 8 10 t 12f5f5i2fS~i2f[~i 2e2~1

o

sockaddr_in{}

Figure 18.21 radix_node structure corresponding to leaf for 140.252.13.32 in Figure 18.4.

This example also shows a radix_mask structure, which we describe in Fig-
ure 18.22. We draw this latter structure with a smaller width, to help distinguish it as a
different structure from the radix_node; we’ll encounter both structures in many of
the figures that follow. We describe the reason for the radix_mask structure in Sec-
tion 18.9.

The rn b of -60 corresponds to an index of 59. rn_key points to a sockaddr_in,
with a leng~-h of 16 and an address family of 2 (AF_INET). The mask structure pointed
to by rn_mask and rm mask has a length of 8 and a family of 0 (this family is
AF UNSPEC, but it is never even looked at).

-The rn_dupedkey pointer is used when there are multiple leaves with the same
key. We describe these in Section 18.9.

We describe rn_of f in Section 18.8. rn_l and rn_r are the left and right pointers
for the internal node.

Figure 18.22 shows the radix_mask structure.

Ex.1013.603DELL

578 Radix Tree Routing Tables Chapter 18

76-83

18.6

76 extern struct radix_mask {
77 short rm_b; /* bit offset; -l-index(netmask)

78 char rm_unused; /* cf. rn_bmask */

79 u_char rm_flags; /* cf. rn_flags */

80 struct radix_mask *rm_mklist; /* more masks to try *!

81 caddr_t rm_mask; /* the mask */

82 int rm_refs; /* # of references to this struct */

83 } *rn_mkfreelist;

radix.h

Each of these structures contains a pointer to a mask: rm_mask, which is really a
pointer to a socket address structure containing the mask. Each rad±x_node structure
points to a linked list of rad±×_raask structures, allowing multiple masks per node:
rn_rak]_ ± s t points to the first, and then each rra_mkl ± st points to the next. This struc-
ture definition also declares the global rn rakfreel±st, which is the head of a linked
list of available structures.

Routing Structures

The focal points of access to the kernel’s routing information are

1. the rtal]_oc function, which searches for a route to a destination,

2. the route structure that is filled in by this function, and

3. the rtentry structure that is pointed to by the route structure.

Figure 18.8 showed that the protocol control blocks (PCBs) used by UDP and TCP
(Chapter 22) contain a route structure, which we show in Figure 18.23.

route.h
46 struct route {
47 struct rtentry *ro_rt; /* pointer to struct with information */

48 struct sockaddr ro_dst; /* destination of this route */
49] ; route.h !i

Figure 18.23 route structure.

ro_dst is declared as a generic socket address structure, but for the Internet protocols
it is a sockaddr_in. Notice that unlike most references to this type of structure,
ro_dst is the structure itself, not a pointer to one.

At this point it is worth reviewing Figure 8.24, which shows the use of these routes
every time an IP datagram is output.

If the caller passes a pointer to a route structure, that structure is used. Other-
wise a local route structure is used and it is set to 0, setting ro_rt to a null
pointer. UDP and TCP pass a pointer to the route structure in their PCB to
ip_output.

radix.h

Ex.1013.604DELL

pter 18 Section 18.6 Routing Structures 579

radix.h

-radix.h

eally a
%,cture
¯ node:
; struc-
linked

td TCP

- route.h

*/

- route.h

rotocols
ructure,

e routes

Other-
o a null
PCB to

83--84

86

85

If the route structure points to an rtentry structure (the ro_rt pointer is
nonnull), and if the referenced interface is still up, and if the destination address
in the route structure equals the destination address of the IP datagram, that
route is used. Otherwise the socket address structure ro_dst is filled in with
the destination IP address and rtalloe is called to locate a route to that desti-
nation. For a TCP connection the destination address of the datagram never
changes from the destination address of the route, but a UDP application can
send a datagram to a different destination with each sendto.
If rtalloc returns a null pointer in ro_rt, a route was not found and
ip_output returns an error.

If the RTF_GATEWAY flag is set in the rtentry structure, the route is indirect
(the G flag in Figure 18.2). The destination address (ds t) for the interface output
function becomes the IP address of the gateway, the rt_gateway member, not
the destination address of the IP datagram.

Figure 18.24 shows the rtentry structure.

83 struct rtentry {
84 struct radix_node rt_nodes[2]; /* a leaf and an internal node */

route.h

85
86
87
88
89
90
91
92
93
94
95 };

struct sockaddr *rt_gateway;
short rt_flags;
short rt_refcnt;
u_long rt_use;
struct ifnet *rt_ifp;
struct ifaddr *rt_ifa;
struct sockaddr *rt_genmask;
caddr_t rt_llinfo;
struct rt_metrics rt_rr0x;
struct rtentry *rt_gwroute;

/* value associated with rn_key */
* Figure 18.25 */
* #held references */
* raw #packets sent */
* interface to use */
* interface address to use */

/* for generation of cloned routes */
* pointer to link level info cache */
* metrics: Figure 18.26 */
* implied entry for gatewayed routes */

96 #define rt_key(r) ((struct sockaddr *) ((r)->rt_nodes->rn_key))
97 #define rt_mask(r) ((struct sockaddr *) ((r)->rt_nodes->rn_mask))

route.h

Figure 18.24 rtentrystructure.

Two radix_node structures are contained within this structure. As we noted in
the example with Figure 18.7, each time a new leaf is added to the routing tree a new
internal node is also added¯ rt_nodes [0] contains the leaf entry and rt_nodes [1]
contains the internal node. The two #define statements at the end of Figure 18.24 pro-
vide a shorthand access to the key and mask of this leaf node.

Figure 18.25 shows the various constants stored in r t_f lags and the correspond-
ing character output by netstat in the "Flags" column (Figure 18.2).

The RTF_BLACKHOLE flag is not output by netstat and the two with lowercase
flag characters, RTF_DONE and RTF_MASK, are used in routing messages and not nor-
mally stored in the routing table entry.

If the RTF_GATEWAY flag is set, rt_gatewa¥ contains a pointer to a socket address
structure containing the address (e.g., the IP address) of that gateway. Also,

Ex.1013.605DELL

580 Radix Tree Routing Tables Chapter 18

n e t s t a t DescriptionConstant flag

RTF_BLACKHOLE
RTF_CLONING
RTF_DONE
RTF_DYNAMIC
R TF_GA TEWA Y
RTF_HOST
RTF_LLINFO
RTF_MASK

R TF_MODIFIED
RTF_PROTOI
RTF_PROT02
RTF_REJECT
RTF_STATIC
RTF_UP

RTF XRESOLVE

c
d
D
G
H
L
m
M
1
2
R
S
U
X

discard packets without error (loopback driver: Figure 5.27)
generate new routes on use (used by ARP)
kernel confirmation that message from process was completed
created dynamically (by redirect)
destination is a gateway (indirect route)
host entry (else network entry)
set by ARP when rt_llinfo pointer valid
subnet mask present (not used)
modified dynamically (by redirect)
protocol-specific routing flag
protocol-spedfic routing flag (ARP uses)
discard packets with error (loopback driver: Figure 5.27)
manually added entry (route program)
route usable
external daemon resolves name (used with X.25)

Figure 18.25 rt_flags values.

89-90

rt_gwroute points to the rtentry for that gateway. This latter pointer was used in
ether_output (Figure 4.15).

87 rt_refcnt counts the "held" references to this structure. We describe this counter
at the end of Section 19.3. This counter is output as the "Refs" column in Figure 18.2.

88 rt_use is initialized to 0 when the structure is allocated; we saw it incremented in
Figure 8.24 each time an IP datagram was output using the route. This counter is also
the value printed in the "Use" column in Figure 18.2.

rt i fp and rt_i fa point to the interface structure and the interface address struc-
ture, r~-spectively. Recall from Figure 6.5 that a given interface can have multiple
addresses, so minimally the rt i fa is required.

92 The rt 1 l info pointer al]-ows link-layer protocols to store pointers to their proto-
col-specific]tructures in the routing table entry. This pointer is normally used with the
RTF_LLINFO flag. Figure 21.1 shows how ARP uses this pointer.

route.h
54 struct rt_metrics {
55 u_long rmx_locks; /* bitmask for values kernel leaves alone */

56 u_long rmx_mtu; /* MTU for this path */

57 u_long rmx_hopcount; /* max hops expected */

58 u_long rmx_expire; /* lifetime for route, e.g. redirect *!

59 u_long rmx_recvpipe; /* inbound delay-bandwith product */

60 u_long rmx_sendpipe; /* outbound delay-bandwith product */

61 u_!ong rmx_ssthresh; /* outbound gateway buffer limit */

62 u_long rmx_rtt; /* estimated round trip time */

63 u_long rmx_rttvar; /* estimated RTT variance *!
64 u_long rmx_pksent; /* #packets sent using this route */

65 } ;
mute.h

Figure 18.26 rt_metrics structure.

Ex.1013.606DELL

18

~ter

J in
~lso

iple

oto-
the

~ute.h

Section 18.7 LrdHalization: route_init and rtable_init FuncHons 581

93

54-65

Figure 18.26 shows the rt_metrics structure, which is contained within the
rtentry structure. Figure 27.3 shows that TCP uses six members in this structure.

rrcx_locks is a bitmask telling the kernel which of the eight metrics that follow
must not be modified. The values for this bitmask are shown in Figure 20.13.

rmx_expire is used by ARP (Chapter 21) as a timer for each ARP entry. Contrary
to the comment with rmx_expire, it is not used for redirects.

Figure 18.28 summarizes the structures that we’ve described, their relationships,
and the various types of socket address structures they reference. The rtentry that we
show is for the route to 128.32.33.5 in Figure 18.2. The other radix_node contained in
the rtentry is for the bit 36 test right above this node in Figure 18.4. The two
sockaddr_dl structures pointed to by the first ifaddr were shown in Figure 3.38.
Also note from Figure 6.5 that the ifnet structure is contained within an le_softc
structure, and the second i faddr structure is contained within an in_ifaddr struc-
ture.

18.7 Initialization: route_init and rtable_init Functions

The initialization of the routing tables is somewhat obscure and takes us back to the
domain structures in Chapter 7. Before outlining the function calls, Figure 18.27 shows
the relevant fields from the domain structure (Figure 7.5) for various protocol families.

Member

dom_family
dom_init
dom_rtattach
dom_rtoffset
dom_maxrtkey

OSI
value

AF_ISO
0
rn_ini thead
48
32

~ternet
value

AF_INET
0
rn_inithead
32
16

Routing Unix XNS
value value value

PF_ROUTE AF_UNIX AF_NS
route_init 0 0
0 0 rn_ini thead
0 0 16
0 0 16

Comment

in bits
in bytes

Figure 18.27 Members of domain structure relevant to routing.

The PF_ROUTE domain is the only one with an initialization function. Also, only the
domains that require a routing table have a dom_rtattach function, and it is always
rn_inithead. The routing domain and the Unix domain protocols do not require a
routing table.

The dom_rtoffset member is the offset, in bits, (from the beginning of the
domain’s socket address structure) of the first bit to be examined for routing. The size
of this structure in bytes is given by dom_maxrtkey. We saw earlier in this chapter that
the offset of the IP address in the sockaddr_in structure is 32 bits. The
dora maxrtkey member is the size in bytes of the protocol’s socket address structure:
16 for sockaddr_in.

Figure 18.29 outlines the steps involved in initializing the routing tables.

Ex.1013.607DELL

582

o

Radix Tree Routing Tables Chapter 18

Figure 18.28 Summary of routing structures.

Ex.1013.608DELL

Section 18.7 Initialization: route_init and rtable_init Functions 583

main ()
{

/* kernel initialization */

ifinit () ;
i.o.ma in in i t

domaininit ()

();

/* Figure 7.15 */

ADDDOMAIN(unix);
ADDDOMAIN(route);
ADDDOMAIN(inet);
ADDDOMAIN(osi);

for (dp = all domains) {
(*dp->dom_init) ();
for (pr : allpmtocoNforth~dorrmin)

*pr->pr_init) ();

raw_init() /* pr_init() function for SOCK RAW/PF ROUTE protocol */

initialize head of routing protocol control blocks;

route_init() /* dom_init() function for PF ROUTE domain */-

/~rn init () ;

~
--rt~ble_init () ;

_init ()

for (dp = all domains)
if (dp->dom_maxrtkey > max_keylen)

max keylen = dp->dom maxrtkey;allocate and initialize rn zeros, rn on.es, masked key;

i~
rn_inithead(&mask_rnhead); / allocate and init tree for masks */

table init()

for (dp = all domains)

~ (*dp->dom_rtattach) (&rt_tables [dp->dom_family]) ;

rn_inithead() /* dom_rtattach() function for all protocol families */

allocate and initialize one radix_node_head structure;

Figure 18.29 Steps involved in initialization of routing tables.

Ex.1013.609DELL

584 Radix Tree Routing Tables
Chapter 18

floma±n±nit is called once by the kernel’s main function when the system is ini-
tialized. The linked list of domain structures is built by the ADDDOMAIN macro and the
linked list is traversed, calling each domain’s dom_in±t function, if defined. As we
saw in Figure 18.27, the only dom_ini¢ function is rouCe_ini~, which is shown in
Figure 18.30.

route.c
49 void
50 route_init ()
51 {
52 rn_init () ; /* initialize all zeros, all ones, mask table */

53 rtable_init (void **) rt_tables);
54 } route.

Figure 18.30 route_init function.

The function rn_ini t, shown in Figure 18.32, is called only once.
The function rtable init, shown in Figure 18.31, is also called only once. It in

turn calls all the dom_rt at t a ch functions, which initialize a routing table tree for that
domain.

route.c
39 void
40 rtable_init(table)
41 void **table;
42 {
43 struct domain *dom;
44 for (dom = domains; dom; dom = dom->dom_next)
45 if (dom->dom_rtattach)
46 dom->dom_rtattach(&table[dom->dom_family],

47 dom >dom_rtoffset);

48) route.c

Figure 18.31 rtable_init function: call each domain’s dom_rtattach function.

We saw in Figure 18.27 that the only dom_rtattach function is rn_inithead,

which we describe in the next section.

18.8 Initialization: rn_init and rn_inithead Functions
The function rn_init, shown in Figure 18.32, is called once by route_init to initial-
ize some of the globals used by the radix functions.

radix.c
750 void
751 rn_init ()
752
753 char *cp, *cplim;
754 struct domain *dom;

Ex.1013.610DELL

18

~e.c

~te.c

tin
:hat

~te.c

ute.c

_~ad,

itial-

~dix.c

Section 18.8 Initialization: rn_init and rn_inithead Functions585

750--761

762-769

755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

770
771
772

for (dom = domains; dom; dom : dom->dom_next)
if (dom->dom_maxrtkey > max_keylen)

max_keylen = dom >dom_maxrtkey;
if (max_keylen == 0) {

printf("rn_init: radix functions require max_keylen be set\n");
return;

}
R_Malloc(rn_zeros, char *, 3 * max_keylen);
if (rn_zeros -= NULL)

panic("rn_init");
Bzero(rn_zeros, 3 * max_keylen);
rn_ones : cp = rn_zeros + max_keylen;
maskedKey = cplim = rn_ones + max_keylen;
while (cp < cplim)

¯ cp++ : -i;

if (rn_inithead((void **) &mask_rnhead, 0) == 0)
panic("rn_init 2");

radix.c

Figure 18.32 rn_init function.

Determine max_keylen

All the domain structures are examined and the global max_keylen is set to the
largest value of dom_maxrtkey. In Figure 18.27 the largest value is 32 for AF_ISO, but
in a typical system that excludes the OSI and XNS protocols, max_keylen is]6, the size
of a sockaddr_in structure.

Allocate and initialize rn_zeros, rn_ones, and maskedKey

A buffer three times the size of max_keylen is allocated and the pointer stored in
the global rn_zeros. R_Malloc is a macro that calls the kernel’s malloc function,
specifying a type of M_RTABLE and M_DONTWAIT. We’ll also encounter the macros
Bcmp, Bcopy, Bzero, and Free, which call kernel functions of similar names, with the
arguments appropriately type cast.

This buffer is divided into three pieces, and each piece is initialized as shown in Fig-
ure 18.33.

max_key i en bytes ~!.~ max_key i en bytes -= ~ max_key i en bytes

rn_zeros rn_ones maskedKey

Figure 18.33 rn_zeros, rn_ones, and maskedKey arrays.

rn_zeros is an array of all zero bits, rn_ones is an array of all one bits, and
maskedKey is an array used to hold a temporary copy of a search key that has been
masked.

Ex.1013.611DELL

586 Radix Tree Routing Tables

770-772

Chapter 18

Initialize tree of masks iil}i:
The function rn_inithead is called to initialize the head of the routing tree for the

address masks; the radix node head structure pointed to by the global ~:i~i

mask_rnhead in Figure 18.8. ’~"~
From Figure 18.27 we see that rn_inithead is also the dora_attach function for ~::;

all the protocols that require a routing table. Instead of showing the source code for this :<~’~:
function, Figure 18.34 shows the radix_node_head structure that it builds for the ,
Internet protocols.

0
1

AF_INET = 2

25

rt_tables[] : radix_node_head{}
rnh_treetop
rnh_addrsize
rnh~pktsize

_addaddr
~ddpkt

~nh_deladdr

-nh_matchaddr
_matchpkt

rnh_walktree
rn_mklist

-rn_p
rn_b

_bmask
rn_flags
rn_key
rn_mask
rn_dupedkey
rn_mklist
rn_p
rn_b

_bmask
rn_flags

rn_off
rn_l
rn_r
rn_mklist
rn_p

rn_b
rn_bmask
rn_flags
rn_key

rn_mask
rn_dupedkey

0
0
rn_addroute
NULL
rn_delroute
~ULL
rn_match
NULL
rn_walktree

’~ULL

-33
0
ACTIVEIROOT
rn_zeros
NULL
NULL
~ULL

32
)x80
~CTIVEIROOT

-33
0
ACTIVE] ROOT
rn_ones
NULL
NULL

radix_node { }
rnh_nodes [0]
(leftmost leaO

radix_node{]
rnh_nodes[l]

’(internalnode)
top of~ee

radix_node {)
, rnh_nodes [2]
(rightmost leaf)

Figure 18,34 radix_node_head structure built by rn_inithead for Internet protocols.

The three radix node structures form a tree: the middle of the three is the top (it is
pointed to by rnh_t~eetop), the first of the three is the leftmost leaf of the tree, and

Ex.1013.612DELL

the
bal

for

:his
the

)
]

:}
_1
)

{}

(it is
.and

Section 18.9

18.9

Duplicate Keys and Mask Lists 587

the last of the three is the rightmost leaf of the tree. The parent pointer of all three
nodes (rn_p) points to the middle node.

The value 32 for rnh_nodes [3_] . rn_b is the bit position to test. It is from the
dom_~t o f f set member of the Internet doma±n structure (Figure 18.27). Instead of
performing shifts and masks during forwarding, the byte offset and corresponding byte
mask are precomputed. The byte offset from the start of a socket address structure is in
the rn_off member of the radix_node structure (4 in this case) and the byte mask is
in the rn_bmask member (0x8 0 in this case). These values are computed whenever a
radix_node structure is added to the tree, to speed up the comparisons during for-
warding. As additional examples, the offset and byte mask for the two nodes that test
bit 33 in Figure 18.4 would be 4 and 0x40, respectively. The offset and byte mask for
the two nodes that test bit 63 would be 7 and 0x03_.

The value of -33 for the rn_b member of both leaves is negative one minus the
index of the leaf.

The key of the leftmost node is all zero bits (rn_zeros) and the key of the right-
most node is all one bits (rn_ones).

All three nodes have the RNF_ROOT flag set. (We have omitted the RNF_ prefix.)
This indicates that the node is one of the three original nodes used to build the tree.
These are the only nodes with this flag.

One detail we have not mentioned is that the Network File System (NFS) also uses the routing
table functions. For each mount point on the local host a radix_node_head structure is allo-
cated, along with an array of pointers to these structures (indexed by the protocol family), sim-
ilar to the rt_tables array. Each time this mount point is exported, the protocol address of
the host that can mount this filesystem is added to the appropriate tree for the mount point.

Duplicate Keys and Mask Lists

Before looking at the source code that looks up entries in a routing table we need to
understand two fields in the radix_node structure: rn_dupedkey, which forms a
linked list of additional radix_node structures containing duplicate keys, and
rn_mklist, which starts a linked list of radix_mask structures containing network
masks.

We first return to Figure 18.4 and the two boxes on the far left of the tree labeled
"end" and "default." These are duplicate keys. The leftmost node with the RNF_ROOT
flag set (rnh_nodes [0] in Figure 18.34) has a key of all zero bits, but this is the same
key as the default route. We would have the same problem with the rightmost end
node in the tree, which has a key of all one bits, if an entry were created for
255.255.255.255, but this is the limited broadcast address, which doesn’t appear in the
routing table. In general, the radix node functions in Net/3 allow any key to be dupli-
cated, if each occurrence has a unique mask.

Figure 18.35 shows the two nodes with a duplicate key of all zero bits. In this figure
we have removed the RNF_ prefix for the rn_flags and omit nonnull parent, left, and
right pointers, which add nothing to the discussion.

Ex.1013.613DELL

588 Radix Tree Routing Tables Chapter 18

left pointer
from bit 33

node

radix_node{

I
rn_mklist

rn_b
rn bmask

rn_key
rn mask

radix_node{}
rn_mklist
rn_p
rn_b
rn_bmask
rn_flags
rn_key
rn_mask
rn_duDedkey

~
radix_mask{}
rm_off
rm_unused
rm_flags
rm_mklist
rm_mask
rm_refs

radix_node{}
rn_mklist
rn_p
rn_b
rn_bmask
rn_flags

rn_off
rn_left
rn_right

32
Ox80
ACTIVEIROOT
4

head of routing tree:
node for bit 32 at
top of Figure 18.4

}
NULL

-33
0
ACTIVE I ROOT

NULL ~rn_zeros:

-i
0
ACTIVE

NULL

-i

~
ULL

o I

0.0.0.0

4161 2I 0 [00100]001001

sockaddr_in

Figure 18.35 Duplicated nodes with a key of all zero bits.

The top node is the top of the routing tree--the node for bit 32 at the top of Fig-
ure 18.4. The next two nodes are leaves (their rn_b values are negative) with the
rn_dupedkey member of the first pointing to the second. The first of these two leaves
is the rnh_nodes [0] structure from Figure 18.34, which is the left end marker of the
tree--its RNF_ROOT flag is set. Its key was explicitly set by rn_±n±thead to
rn_zeros.

The second of these leaves is the entry for the default route. Its rn_key points to a
sockaddr_±n with the value 0.0.0.0, and it has a mask of all zero bits. Its rn_mask
points to rn_zeros, since equivalent masks in the mask table are shared.

Ex.1013.614DELL

18

~a

Section 18.9 Duplicate Keys and Mask Lists 589

Normally keys are not shared, let alone shared with masks. The rn_key pointers of the two
end markers (those with the RNF_ROOT flag) are special since they are built by rn_±n±thead
(Figure 18.34). The key of the left end marker points to rn_zeros and the key of the right end
marker points to rn_ones.

The final structure is a radix_mask structure and is pointed to by both the top
node of the tree and the leaf for the default route. The list from the top node of the tree
is used with the backtracking algorithm when the search is looking for a network mask.
The list of radix_mask structures with an internal node specifies the masks that apply
to subtrees starting at that node. In the case of duplicate keys, a mask list also appears
with the leaves, as we’ll see in the following example.

We now show a duplicate key that is added to the routing tree intentionally and the
resulting mask list. In Figure 18.4 we have a host route for 127.0.0.1 and a network
route for 127.0.0.0. The default mask for the class A network route is 0xf£000000, as
we show in the figure. If we divide the 24 bits following the class A network ID into a
16-bit subnet ID and an 8-bit host ID, we can add a route for the subnet 127.0.0 with a
mask of OxffffffO0:

bsdi $ route add 127.0.0.0 -netmask OxffffffO0 140.252.13.33

Although it makes little practical sense to use network 127 in this fashion, our interest is
in the resulting routing table structure. Although duplicate keys are not common with
the Internet protocols (other than the previous example with the default route), dupli-
cate keys are required to provide routes to subnet 0 of any network.

There is an implied priority in these three entries with a network ID of 127. If the
search key is 127.0.0.1 it matches all three entries, but the host route is selected because
it is the most specific: its mask (0xf£f~fff£) has the most one bits. If the search key is
127.0.0.2 it matches both network routes, but the route for subnet 0, with a mask of
0xffffff00, is more specific than the route with a mask of 0xff000000. The search
key 127.1.2.3 matches only the entry with a mask of 0xf f 000000.

Figure 18.36 shows the resulting tree structure, starting at the internal node for bit
33 from Figure 18.4. We show two boxes for the entry with the key of 127.0.0.0 since
there are two leaves with this duplicate key.

~ 12Z0~1

127.0.0.0
OxffffffO0
OxffO00000

Figure 18.36 Routing tree showing duplicate keys for 127.0.0.0.

Ex.1013.615DELL

590 Radix Tree Routing Tables Chapter 18

Figure 18.37 shows the resulting radix_node and radix_mask structures.

radix_node{

l
r n_mklist
rn_p
rn_b
rn_bmask
rn_flags
rn_key

rn_mask
rn_dupedkey

radix_node{}
rn mklist-
rn_p
rn_b
rn_bmask
rn_flags
rn_key
rn_mask
rn_dupedkey

radix_node{}
rn_mklist
rn_p
rn_b
rn_bmask
rn_flags

rn_off
rn_left
rn_right

-57
0
ACTIVE

63
OxOl
ACTIVE
7

node for bit 63

radix_node { } for 127.0.0.1

-41
0
ACTIVE

sockaddr_in

]27. 0 . 0 . 0
~161 2 I o 17flooloolool o I

7101010 Ifflfflfflool o I

radix_mask{}

~
rm_off -57
rm unused 0
rm_flags 0
rm mklist
rm mask ~

rm refs 0

radix_mask{

~
rm_off
rm_unused
rm_flags
rm_mklist
rm_mask
rm_refs

-41
0
0
NULL

sockaddr_in

]27.0-.0.0
l~flooloolool o I

5101010 I=~1°°1°°1°°1 o ~

Figure 18.37 Example routing table structures for the duplicate keys for network 127.0.0.0.

Sec

18

Ex.1013.616DELL

[8 Section 18.10 rn_mat ch Function 591

18.10

First look at the linked list of radix_mask structures for each radix_node. The mask
list for the top node (bit 63) consists of the entry for 0xffffff00 followed by
0xff000000. The more-specific mask comes first in the list so that it is tried first. The
mask list for the second radix_node (the one with the rn_b of -57) is the same as that
of the first. But the list for the third radix_node consists of only the entry with a mask
of 0xff000000.

Notice that masks with the same value are shared but keys with the same value are
not. This is because the masks are maintained in their own routing tree, explicitly to be
shared, because equal masks are so common (e.g., every class C network route has the
same mask of 0 x f f f f f f 00), while equal keys are infrequent.

rn_~at c~_ Function

We now show the rn_mat ch function, which is called as the rnh_matchaddr function
for the Internet protocols. We’ll see that it is called by the rtallocl function, which is
called by the rtal loc function. The algorithm is as follows:

1. Start at the top of the tree and go to the leaf corresponding to the bits in the
search key. Check the leaf for an exact match (Figure 18.38).

2. Check the leaf for a network match (Figure 18.40).

3. Backtrack (Figure 18.43).

Figure 18.38 shows the first part of rn_match.

135 struct radix_node *
136 rn_match(v_arg, head)
137 void *v_arg;
138 struct radix_node_head *head;
139 (
140 caddr_t v - v_arg;
141 struct radix_node *t = head->rnh_treetop, *x;
142 caddr_t cp = v, cp2, cp3;
143 caddr_t cplim, mstart;
144 struct radix_node *saved_t, *top = t;
145 int off = t->rn_off, vlen = *(u_char *) cp, matched_off;

146
147
148
149
150
151
152
153
154
155

* Open code rn_search(v, top) to avoid overhead of extra
* subroutine call.
*/

for (; t->rn_b >: 0;) {
if (t->rn_bmask & cp[t->rn_off])

t = t->rn_r; /* right if bit on */
else

t = t->rn_l; /* left if bit off */

radix.c

Ex.1013.617DELL

592 Radix Tree Routing Tables Chapter 18

135-145

146-155

156-164

156 /*
157 * See if we match exactly as a host destination
158 */
159 cp += off;
160 cp2 = t->rn_key + off;
161 cplim = v + vlen;
162 for (; cp < cplim; cp++, cp2++)
163 if (*cp != *cp2)
164 goto onl;
165 /*
166 * This extra grot is in case we are explicitly asked
167 * to look up the default. Ugh!
168 */
169 if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
170 t = t->rn_dupedkey;
171 return t;
172 onl:

Figure 18.38 rn_match function: go down tree, check for exact host match.

radix.c

The first argument v_arg is a pointer to a socket address structure, and the second
argument head is a pointer to the radix_node_head structure for the protocol. All
protocols call this function (Figure 18.17) but each calls it with a different head argu-
ment.

In the assignment statements, o f f is the rn_o f f member of the top node of the tree
(4 for Internet addresses, from Figure 18.34), and vlen is the length field from the
socket address structure of the search key (16 for Internet addresses).

Go down the tree to the corresponding leaf
This loop starts at the top of the tree and moves down the left and right branches

until a leaf is encountered (rn_b is less than 0). Each test of the appropriate bit is made
using the precomputed byte mask in rn_braask and the corresponding precomputed
offset in rn_of f. For Internet addresses, rn_of f will be 4, 5, 6, or 7.

Check for exact match
When the leaf is encountered, a check is first made for an exact match. All bytes of

the socket address structure, starting at the rn_off value for the protocol family, are
compared. This is shown in Figure 18.39 for an Internet socket address structure.

vlen

off = 4 d |

Jell .
sockaddr_in: (16) famlly

l] byte
1

v_arg

Figure 18.39

port IP address (all zero)

2 4 8

these 12 bytes are compared

Variables during comparison of sockaddr_in structures.

As soon as a mismatch is found, a jump is made to onl.

Ex.1013.618DELL

Section 18.10 rn_match Function 593

165-172

Normally the final 8 bytes of the sockaddr_in are 0 but proxy ARP (Section 21.12) sets one of
these bytes nonzero. This allows two routing table entries for a given IP address: one for the
normal IP address (with the final 8 bytes of 0) and a proxy ARP entry for the same IP address
(with one of the final 8 bytes nonzero).

The length byte in Figure 18.39 was assigned to vlen at the beginning of the func-
tion, and we’ll see that r tal l oc 1 uses the family member to select the routing table to
search. The port is never used by the routing functions.
Explicit check for default

Figure 18.35 showed that the default route is stored as a duplicate leaf with a key of
0. The first of the duplicate leaves has the RNF_ROOT flag set. Hence if the RNF_ROOT
flag is set in the matching node and the leaf contains a duplicate key, the value of the
pointer rn_dupedkey is returned (i.e., the pointer to the node containing the default
route in Figure 18.35). If a default route has not been entered and the search matches
the left end marker (a key of all zero bits), or if the search encounters the right end
marker (a key of all one bits), the returned pointer t points to a node with the
RNF_ROOT flag set. We’ll see that rtallocl explicitly checks whether the matching
node has this flag set, and considers such a match an error.

At this point in rh_match a leaf has been reached but it is not an exact match with
the search key. The next part of the function, shown in Figure 18.40, checks whether the
leaf is a network match.

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

matched_off : cp - v;
saved_t = t;
do {

i£ (t->rn_mask) {
/*

* Even if we don’t match exactly as a host;
* we may match if the leaf we wound up at is
* a route to a net.
*/

cp3 = matched_off + t->rn_mask;
cp2 = matched_off + t->rn_key;
for (; cp < cplim; cp++)

if ((*cp2++ ^ *cp) & *cp3++)
break;

if (cp -= cplim)
return t;

cp = matched_off + v;
}

} while (t - t->rn_dupedkey);
t - saved_t;

radix.c

radix.c

Figure 18.40 rn_match function: check for network match.

73--1 74

75--1 83

c p points to the unequal byte in the search key. mat c hed_o f f is set to the offset of
this byte from the start of the socket address structure.

The do while loop iterates through all duplicate leaves and each one with a net-
work mask is compared. Let’s work through the code with an example. Assume we’re

Ex.1013.619DELL

594 Radix Tree Routing Tables
Chapter 18

184--190

looking up the IP address 140.252.13.60 in the routing table in Figure 18.4. The search
will end up at the node labeled 140.252.13.32 (bits 62 and 63 are both off), which con-
tains a network mask. Figure 18.41 shows the structures when the for loop in Fig-
ure 18.40 starts executing.

140. 252. 13 . 60
searchkey:I 16 I [~ .] 8c I fc I 0d [3c [

matched_off = 7 I

v c~

-60 cp20

255 . 255 . 255 . 224

cp3

cplim

Figure 18.41 Example for network mask comparison.

0

radix node{)
rn_mklist
rn_p
rn_b
rn_bmask
rn_flags
rn_key
rn_mask
rn_dupedkey

The search key and the routing table key are both sockaddr_in structures, but the
length of the mask is different. The mask length is the minimum number of bytes con-
taining nonzero values. All the bytes past this point, up through max_keylen, are 0.

The search key is exclusive ORed with the routing table key, and the result logically
ANDed with the network mask, one byte at a time. If the resulting byte is ever nonzero,
the loop terminates because they don’t match (Exercise 18.1). If the loop terminates nor-
mally, however, the search key ANDed with the network mask matches the routing
table entry. The pointer to the routing table entry is returned.

Figure 18.42 shows how this example matches, and how the IP address
140.252.13.188 does not match, looking at just the fourth byte of the IP address. The
search for both IP addresses ends up at this node since both addresses have bits 57, 62,
and 63 off.

search key = 140.252.13.188

1011 1100 : bc
0010 0000 : 20
i001 ii00
1110 0000 = eO

1000 0000

search key = 140.252.13.60

search key byte (*cP): 0011 1100 = 3c
routing table key byte (*cp2): 0010 0000 = 20

exclusive OR: 0001 1100
network maskbyte(*cp3): 1110 0000 : eO

logical AND: 0000 0000

Figure 18.42 Example of search key match using network mask.

The first example (140.252.13.60) matches since the result of the logical AND is 0 (and all
the remaining bytes in the address, the key, and the mask are all 0). The other example
does not match since the result of the logical AND is nonzero.

Sec

19;

19.

19,

19

Ex.1013.620DELL

9ter 18

;earch
COn-

Fig-

~pl im

it the
con-

~0.

ically
uzero,

nor-
.uting

.dress
The

.7, 62,

~d all
mple

Section 18.10 rn_match Function 595

191

193-195

196

197-210

If the routing table entry has duplicate keys, the loop is repeated for each key.

ing

193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

The final portion of rn_match, shown in Figure 18.43, backtracks up the tree, look-
for a network match or a match with the default.

};

/* start searching up the tree */
do {

struct radix_mask *m;
t = t->rn_p;
if (m = t->rn_mklist)

/*
* After doing measurements here, it may
* turn out to be faster to open code
* rn_search_m here instead of always
* copying and masking.
*/

off = min(t->rn_off, matched_off);
mstart = maskedKey + off;
do {

cp2 = mstart;
cp3 = m->rm_mask + off;
for (cp = v + off; cp < cplim;)

*cp2++ = *cp++ & *cp3++;
x = rn_search(maskedKey, t);
while (x && x->rn_mask [= m->rm_mask)

x = x->rn_dupedkey;
if (x &&

(Bcmp(mstart, x->rn_key + off,
vlen - off) == 0))

return x;
} while (m = m->rm_mklist);

}
} while (t != top);
return 0;

Figure 18.43 rn_match function: backtrack up the tree.

radix.c

radix.c

The do while loop continues up the tree, checking each level, until the top has
been checked.

The pointer t is replaced with the pointer to the parent node, moving up one level.
Having the parent pointer in each node simplifies backtracking.

Each level is checked only if the internal node has a nonnull list of masks.
rn_mklist is a pointer to a linked list of radix_mask structures, each containing a
mask that applies to the subtree starting at that node. The inner do while loop iterates
through each radix_mask structure on the list.

Using the previous example, 140.252.13.188, Figure 18.44 shows the various data
structures when the innermost for loop starts. This loop logically ANDs each byte of
the search key with each byte of the mask, storing the result in the global maskedKey.
The mask value is 0xffffffe0 and the search would have backtracked from the leaf
for 140.252.13.32 in Figure 18.4 two levels to the node that tests bit 62.

Ex.1013.621DELL

596 Radix Tree Routing Tables Chapter 18

211

radix_node{}
rn_mklist
rn~D
rn_b
rn_bmask
rn_flags
rn_off
rn_left
rn_right

140.252. 13 .188
search key:l 16]] 18clfcl0dlbcl

matched_off = 7 ~]

cp

62
2
RNF_ACTIVE
7

radix_mask{}

m~

rmrm--°ffrefs I060

rm_unused
rm_flags
rm_mklist INULL 255.255.255.224
rm_mask ~ 8 I I I ff Iff Iff Ieo

- ’I rn_off : 7

o I

maskedKey:l I

mstart
cp2

Figure18.44 Preparation[osearchazain using masked search key.

cplim

Once the for loop completes, the masking is complete, and rn_search (shown in Fig-
ure 18.48) is called with maskedKey as the search key and the pointer t as the top of the
subtree to search. Figure 18.45 shows the value of maskedKey for our example.

maskedKey:1

off = 7 ~I

mstart

Figure 18.45 maskedKey when rn_search is called.

Thebyte 0xa0 is the logical AND of 0xbc (188, the search key) and 0xe0 (the mask).
rn_search proceeds down the tree from its starting point, branching right or left

depending on the key, until a leaf is reached. In this example the search key is the 9
bytes shown in Figure 18.45 and the leaf that’s reached is the one labeled 140.252.13.32
in Figure 18.4, since bits 62 and 63 are off in the byte 0xa0. Figure 18.46 shows the data
structures when Bcmp is called to check if a match has been found.

Ex.1013.622DELL

plim

he

;ft
9

32
ta

Section 18.10 rn_mat ch Function 597

212-221

radix_node{}
rn_mklist
rn_p

rn_b
rn_bmask
rn_flags
rn_key
rn_mask
rn_dupedkey

-60
0
RNF_ACTIVE 140. 252. 13 . 32

.~ 16 [".[l: 8e [£c I I

rastart

Figure 18A6 CompaNson o~ maskedKeg and new leaf.

0

vlen - off=9

Since the 9-byte strings are not the same, the comparison fails.
This while loop handles duplicate keys, each with a different mask. The only key

of the duplicates that is compared is the one whose rn_mask pointer equals
re->tin_mask. As an example, recall Figures 18.36 and 18.37. If the search starts at the
node for bit 63, the first time through the inner do while loop m points to the
radix_mask structure for 0xf f f f f f 0 0. When rn_search returns the pointer to the

first of the duplicate leaves for 127.0.0.0, the tin_mask of this leaf equals re->tin_mask,
so Bcmp is called. If the comparison fails, m is replaced with the pointer to the next
radix_mask structure on the list (the one with a mask of 0xff000000) and the do
while loop iterates around again with the new mask. rn_search again returns the
pointer to the first of the duplicate leaves for 127.0.0.0, but its rn_mask does not equal
m->rm_mask. The while steps to the next of the duplicate leaves and its rn_mask is
the right one.

Returning to our example with the search key of 140.252.13.188, since the search
from the node that tests bit 62 failed, the backtracking continues up the tree until the top
is reached, which is the next node up the tree with a nonnull rn_mk I i s t.

Figure 18.47 shows the data structures when the top node of the tree is reached. At
this point maskedKey is computed (it is all zero bits) and rn_search starts at this
node (the top of the tree) and continues down the two left branches to the leaf labeled
"default" in Figure 18.4.

When rn_search returns, x points to the radix_node with an rn_b of -33,
which is the first leaf encountered after the two left branches from the top of the tree.
But x->rn_mask (which is null) does not equal m->rm_mask, so x is replaced with
x->rn_dupedkey. The test of the while loop occurs again, but now x->rn_mask
equals m->rm_mask, so the while loop terminates. Bcmp compares the 12 bytes of 0
starting at mstart with the 12 bytes of 0 stating at x->rn_key plus 4, and since they’re
equal, the function returns the pointer x, which points to the entry for the default route.

Ex.1013.623DELL

598 Radix Tree Routing Tables

radix_node{}
.rn_mklist
rn_p
rn_b
rn_bmask
rn_flags
rn_off
rn_left
rn_right

140. 252. 13 . 188
searchkey:l 16] I "] 8c] fc J 0d[bc!

I
matched_off = 7 ~l

v

32
OxSO

ACTIVEIROOT
4

radix_mask { }

~<~_unuse~ I 0

~ ~NULL rn zeros:
rm_mas k -’ 0--

~~ In_~f=4~ maskedKey:J

/radix_node{} I
o j

vlen - off : 12 ~
rn mklist
rn_p
rn_b
rn_bmask
rn_flags

~-rn_key

~rn_mask

NULL

-33
0
ACTIVE[ROOT

NULL

mstart

radix_node{}
-rn_mklist

rn_p
rn_b
rn_bmask
rn_flags
rn_key

-rn_mask
rn_dupedkey

-i
0
Ac~v~ 0. 0.0. o
~ 161 I 100] 00100 100 J

NULL [off=4 ~

0 ~

Figure 18.47 Backtrack to top of tree and rn_sea~_-ch that locates default leaf.

Chapter 18

J

cplim

18

Ex.1013.624DELL

r 18 Section 18.12 Summary 599

18.11 rn search Function

rn_search was called in the previous section from rn_match to search a subtree of
the routing table.

79 struct radix_node *
80 rn_search(v_arg, head)
81 void *v_arg;
82 struct radix_node *head;
83 (
84 struct radix_node *x;
85 caddr_t v;

86
87
88
89
90
91
92
93

for (x = head, v = v_arg; x->rn_b >= 0;) {
if (x->rn_bmask & v[x->rn_off])

x = x->rn_r; /* right if bit on */
else

x = x->rn_l; /* left if bit off */
}
return (x);

};

Figure 18.48 rn_search function.

radix.c

radix.c

This loop is similar to the one in Figure 18.38. It compares one bit in the search key
at each node, branching left if the bit is off or right if the bit is on, terminating when a
leaf is encountered. The pointer to that leaf is returned.

18.12 Summary

Each routing table entry is identified by a key: the destination IP address in the case of
the Internet protocols, which is either a host address or a network address with an asso-
ciated network mask. Once the entry is located by searching for the key, additional
information in the entry specifies the IP address of a router to which datagrams should
be sent for the destination, a pointer to the interface to use, metrics, and so on.

The information maintained by the Internet protocols is the route structure, com-
posed of just two elements: a pointer to a routing table entry and the destination
address. We’ll encounter one of these route structures in each of the Internet protocol
control blocks used by UDP, TCP, and raw IP.

The Patricia tree data structure is well suited to routing tables. Routing table
lookups occur much more frequently than adding or deleting routes, so from a perfor-
mance standpoint using Patricia trees for the routing table makes sense. Patricia trees
provide fast lookups at the expense of additional work in adding and deleting. Mea-
surements in [Sklower 1991] comparing the radix tree approach to the Net/1 hash table
show that the radix tree method is about two times faster in building a test tree and four
times faster in searching.

Ex.1013.625DELL

600 Radix Tree Routing Tables Chapter 18

Exercises

18.1 We said with Figure 18.3 that the general condition for matching a routing table entry is
that the search key logically ANDed with the routing table mask equal the routing table
key. But in Figure 18.40 a different test is used. Build a logic truth table showing that the
two tests are the same.

18.2 Assume a Net/3 system needs a routing table with 20,000 entries (IP addresses). Approxi-
mately how much memory is required for this, ignoring the space required for the masks?

18.3 What is the limit imposed on the length of a routing table key by the ract±x_node struc-
ture?

Ex.1013.626DELL

:er 18

try is
table

at the

vroxi-
.sks?
struc-

19.1

19.2

Routing Requests and

Routing Messages

Introduction

The various protocols within the kernel don’t access the routing trees directly, using the
functions from the previous chapter, but instead call a few functions that we describe in
this chapter: rtalloc and rta3_~_oc3_ are two that perform routing table lookups,
rtrequest adds and deletes routing table entries, and rt ±n±t is called by most inter-
faces when the interface goes up or down.

Routing messages communicate information in two directions. A process such as
the route command or one of the routing daemons (~ou~ed or gated) writes routing
messages to a routing socket, causing the kernel to add a new route, delete an existing
route, or modify an existing route. The kernel also generates routing messages that can
be read by any routing socket when events occur in which the processes might be inter-
ested: an interface has gone down, a redirect has been received, and so on. In this chap-
ter we cover the formats of these routing messages and the information contained
therein, and we save our discussion of routing sockets until the next chapter.

Another interface provided by the kernel to the routing tables is through the
sysc~l system call, which we describe at the end of this chapter. This system call
allows a process to read the entire routing table or a list of all the configured interfaces
and interface addresses.

rtalloc and rtallocl Functions

rtalloc and rtallocl are the functions normally called to look up an entry in the
routing table. Figure 19.1 shows rtal loc.

601

Ex.1013.627DELL

602 Routing Requests and Routing Messages

Chapter 19

58 void
59 rtalloc(ro) mute.c
60 struct route *ro;
61 {
62 if (ro->ro_rt && ro->ro_rt->rt_ifp && (ro->ro_rt->rt flags & RTF UP))
63 return;

/* XXX */ -- --64 ro->ro_rt = rtallocl(&ro->ro dst, i);
65 } -

58--65

66-76

77-78

94--10l

79

Figure 19.1 rtalloc function. route.c

The argument ro is often the pointer to a route structure contained in an lnternet
PCB (Chapter 22) which is used by UDP and TCP. If ro already points to an rtentry
structure (ro_rt is nonnull), and that structure points to an interface structure, and the
route is up, the function returns. Otherwise rtallocl is called with a second argu-
ment of 1. We’ll see the purpose of this argument shortly.

rtallocl, shown in Figure 19.2, calls the rnh_matchaddr function, which is
always rn_mat ch (Figure 18.17) for Internet addresses.

The first argument is a pointer to a socket address structure containing the address
to search for The sa_fami ly member selects the routing table to search.

Call rn_mat ch

If the following three conditions are met, the search is successful.

1. A routing table exists for the protocol family,
2. rn_match returns a nonnull pointer, and
3. the matching radix_node does not have the RNF_ROOT flag set.

Remember that the two leaves that mark the end of the tree both have the RNF_ROOT ’
flag set.

Search fails
If the search fails because any one of the three conditions is not met, the statistic

rts_unreach is incremented and if the second argument to rtallocl (report) is
nonzero, a routing message is generated that can be read by any interested processes on
a routing socket. The routing message has the type RTM ZISS, and the function returns
a null pointer _

If all three of the conditions are met, the lookup succeeded and the pointer to the
matching radix_node is stored in rt and newrt. Notice that in the definition of the
rt entry structure (Figure 18.24) the two radix_node structures are at the beginning,
and, as shown in Figure 18.8, the first of these two structures contains the leaf node.
Therefore the pointer to a radix_node structure returned by rn_raatch is really a
pointer to an rtentry structure, which is the matching leaf node.

Ex.1013.628DELL

Section 19.2 rtalloc and rtallocl Functions 603

ute.c

ute.c

rnet
try
. the
rgu-

h is

.ress

OOT

istic
:) is
S on
lrns

the
: the
:ing,
ode.
ly a

80--82

66
67
68
69
70
71
72
73
74
75
76

77
78
79
8O
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

i00
i01
102
103
104

struct rtentry *
rtallocl(dst, report)
struct sockaddr *dst;
int report;
{

struct radix_node_head *rnh = rt_tables[dst->sa_family]
struct rtentry *rt;
struct radix_node *rn;
struct rtentry *newrt = 0;
struct rt_addrinfo info;
int s = splnet(), err : 0, msgtype = RTM MISS;

if (rnh && (rn = rnh->rnh_matchaddr((caddr_t) dst, rnh)
((rn->rn_flags & RNF_ROOT) == 0)) {
newrt = rt = (struct rtentry *) rn;
if (report && (rt->rt_flags & RTF_CLONING)) (

err = rtrequest(RTM_RESOLVE, dst, SA(0),
SA(0), 0, &newrt);

if (err) {
newrt : rt;
rt->rt_refcnt++;
goto miss;

}
if ((rt = newrt) && (rt->rt_flags & RTF_XRESOLVE))

msgtype : RTM_RESOLVE;
goto miss;

}
} else

rt->rt_refcnt++;
} else {

rtstat.rts_unreach++;
miss:if (report) {

bzero((caddr_t) & info, sizeof(info));
info.rti_info[RTAX_DST] = dst;
rt_missmsg(msgtype, &info, 0, err);

}
]
splx (s) ;
return (newrt);

Figure 19.2 rtallocl function.

&&

route.c

route.c

Create clone entries
If the caller specified a nonzero second argument, and if the RTF_CLONING flag is

set, rtrequest is called with a command of RTM_RESOLVE to create a new rtentry
structure that is a clone of the one that was located. This feature is used by ARP and for
multicast addresses.

Ex.1013.629DELL

604 Routing Requests and Routing Messages Chapter 19

83-87

88--91

92-93

19.3

209--213

Clone creation fails
If rtrequest returns an error, newrt is set back to the entry returned by

rn_match and its reference count is incremented. A jtunp is made to miss where an
RTM_MISS message is generated.
Check for external resolution

If rtrequest succeeds but the newly cloned entry has the RTF_XRESOLVE flag set,
a jump is made to miss, this time to generate an RTM_RESOLVE message. The intent of
this message is to notify a user process when the route is created, and it could be used
with the conversion of IP addresses to X.121 addresses.

Increment reference count for normal successful search
When the search succeeds but the RTF_CLONING flag is not set, this statement

increments the entry’s reference count. This is the normal flow through the function,
which then returns the non_null pointer.

For a small function, rtallocl has many options in how it operates. There are
seven different flows through the function, summarized in Figure 19.3.

entry not found

entry found

report RTF_-
argument CLONING

flag
0
I

0
0
1 1
I 1
1 1

RTM_- RTF_-
RESOLVE XRESOLVE

re~rn flag

OK
OK
error

0
1

routing
message
generated

RTM_MISS

RTM_RESOLVE

RTM_MISS

rt_refcnt

++

++

++

++

++

return
value

null
null

ptr
ptr
ptr
ptr
ptr

Figure 19.3 Summary of operation of rtallocl.

We note that the first two rows (entry not found) are impossible if a default route exists.
Also we show rt_refcnt being incremented in the fifth and sixth rows when the call
to rtrequest with a command of RTM_RESOLVE is OK. The increment is done by
rtrequest.

RTFREE Macro and rtfree Function

The RTFREE macro, shown in Figure 19.4, calls the rtfree function only if the refer-
ence count is less than or equal to 1, otherwise it just decrements the reference count.

The rtfree function, shown in Figure 19.5, releases an rtentry structure when
there are no more references to it. We’ll see in Figure 22.7, for example, that when a
protocol control block is released, if it points to a routing entry, rt free is called.

Ex.1013.630DELL

hapter 19

cned by
~here an

flag set,
intent of
be used

atement
unction,

here are

return
value

null
null

ptr
ptr
ptr
ptr
ptr

e exists.
the call
lone by

te refer-
unt.
e when
when a

Section 19.3 RTFREE Macro and rtfree Function 605

209 #define RTFREE(rt) \
210 if ((rt)->rt_refcnt <= i)
211 rtfree(rt); \
212 else \
213 (rt)->rt_refcnt--; /* no need for function call */

Figure 19.4 RTFREE macro.

route.h

route.h

105--115

116

117--122

105 void
106 rtfree(rt)
107 struct rtentry *rt;
108 {
109 struct ifaddr *ifa;

ii0 if (rt == 0)
iii panic("rtfree");
112 rt->rt_refcnt--;
113 if (rt->rt_refcnt <= 0 && (rt->rt_flags & RTF_UP) == 0)
114 if (rt->rt_nodes->rn_flags & (RNF_ACTIVE I RNF_ROOT))
115 panic("rtfree 2");
116 rttrash--;
117 if (rt->rt_refcnt < 0)
118 printf("rtfree: %x not freed (neg refs)\n", rt);
119 return;
120
121 ifa = rt->rt_ifa;
122 IFAFREE(ifa);
123 Free(rt_key(rt));
124 Free(rt);
125 }
126 }

Figure 19.5 rtfree function: release an rtentry structure.

- route.c

route.c

The entry’s reference count is decremented and if it is less than or equal to 0 and the
route is not usable, the entry can be released. If either of the flags RNF_ACTIVE or
RNF_ROOT are set, this is an internal error. If RNF_ACTIVE is set, this structure is still
part of the routing table tree. If RNF_ROOT is set, this structure is one of the end mark-
ers built by rn_ini thead.

rttrash is a debugging counter of the number of routing entries not in the routing
tree, but not released. It is incremented by rtrequest when it begins deleting a route,
and then decremented here. Its value should normally be 0.

Release interface reference
A check is made that the reference count is not negative, and then IFAFREE decre-

ments the reference count for the i faddr structure and releases it by calling i fafree
when it reaches 0.

Ex.1013.631DELL

606 Routing Requests and Routing Messages Chapter 19

123--124

Release routing memory

The memory occupied by the routing entry key and its gateway is released. We’ll
see in rt_setgate that the memory for both is allocated in one contiguous chunk,
allowing both to be released with a single call to Free. Finally the rtentry structure
itself is released.

Routing Table Reference Counts

The handling of the routing table reference count, rt_~efcnt, differs from most other
reference counts. We see in Figure 18.2 that most routes have a reference count of 0, yet
the routing table entries without any references are not deleted. We just saw the reason
in rt free: an entry with a reference count of 0 is not deleted unless the entry’s RTF UP
flag is not set. The only time this flag is cleared is by rtrequest when a rou~e is
deleted from the routing tree.

Most routes are used in the following fashion.

If the route is created automatically as a route to an interface when the interface
is configured (which is typical for Ethernet interfaces, for example), then
rt ini t calls rtrequest with a command of RTM_ADD, creating the new entry
and setting the reference count to 1. rtinit then decrements the reference
count to 0 before returning.

A point-to-point interface follows a similar procedure, so the route starts with a
reference count of 0.

If the route is created manually by the route command or by a routing daemon,
a similar procedure occurs, with route_output calling rtrequest with a
command of RTM_ADD, setting the reference count to 1. This is then decre-
mented by route_output to 0 before it returns.

Therefore all newly created routes start with a reference count of 0.

When an IP datagram is sent on a socket, be it TCP or UDP, we saw that
ip_output calls rtalloc, which calls rtallocl. In Figure 19.3 we saw that
the reference count is incremented by rt a 11 oc 1 if the route is found.

The located route is called a held route, since a pointer to the routing table entry
is being held by the protocol, normally in a route structure contained within a
protocol control block. An rtentry structure that is being held by someone
else cannot be deleted, which is why rt free doesn’t release the structure until
its reference count reaches 0.

A protocol releases a held route by calling RTFREE or rtfree. We saw this in
Figure 8.24 when ip_output detects a change in the destination address. We’ll
encounter it in Chapter 22 when a protocol control block that holds a route is
released.

Part of the confusion we’ll encounter in the code that follows is that rtallocl is
often called to look up a route in order to verify that a route to the destination exists, but

Ex.1013.632DELL

,ter 19

We’ll
.~unk,
tcture

other
0, yet
eason
’F_UP
ute is

erface
then

entry
,~rence

,vith a

emon,
vith a
decre-

v that
~vthat

,entry
ithin a
neone
~ until

this hn
We’ll

)ute is

ocl is
;ts, but

Section 19.4 rtrequest Function 607

when the caller doesn’t want to hold the route. Since rtallocl increments the
counter, the caller immediately decrements it.

Consider a route being deleted by rtrequest. The RTF_UP flag is cleared, and if
no one is holding the route (its reference count is 0), rtfree should be called. But
rtfree considers it an error for the reference count to go below 0, so rtrequest
checks whether its reference count is less than or equal to 0, and, if so, increments it and
calls rt free. Normally this sets the reference count to 1 and rt free decrements it to
0 and deletes the route.

19.4 rtrequest Function

The rtrequest function is the focal point for adding and deleting routing table entries.
Figure 19.6 shows some of the other functions that call it.

Figure 19.6 Summary of functions that call rtrequest.

rtrequest is a switch statement with one case per command: RTM_ADD,
RTM_DELETE, and RTM_RESOLVE. Figure]9.7 shows the start of the function and the
RTM_DELETE command.

290 int
291 rtrequest(req, dst, gateway, netmasko flags, ret_nrt)
292 int req, flags;
293 struct sockaddr *dst, *gateway, *netmask;
294 struct rtentry **ret_nrt;
295 {
296 int s = splnet();
297 int error = 0;
298 struct rtentry *rt;
299 struct radix_node *rn;
300 struct radix_node_head *rnh;
301 struct ifaddr *ira;
302 struct sockaddr *ndst;
303 #define senderr(x) { error = x ; goto bad; }

route.c

304
305
306
307

if ((rnh : rt_tables[dst->sa_family]) =: 0)
senderr(ESRCH);

if (flags & RTF_HOST)
netmask = 0;

Ex.1013.633DELL

608 Routing Requests and Routing Messages
Chapter 19

290-307

309--315

316--320

321--322

323--330

308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

switch (req)
case RTM_DELETE:

if ((rn = rnh->rnh_deladdr(dst, netmask, rnh)) == 0)
senderr(ESRCH);

if (rn->rn_flags & (RNF_ACTIVE I RNF_ROOT))

panic("rtrequest delete");
rt = (struct rtentry *) rn;
rt->rt_flags &= ~RTF_UP;
if (rt->rt_gwroute) {

rt = rt->rt_gwroute;
RTFREE(rt);
(rt = (struct rtentry *) rn)->rt_gwroute = 0;

}
if ((ifa = rt->rt_ifa) && ifa->ifa_rtrequest)

ifa->ifa_rtrequest(RTM_DELETE, rt, SA(0));
rttrash++;
if (ret_nrt)

*ret_nrt : rt;
else if (rt->rt_refcnt <= 0) {

rt->rt_refcnt++;
rtfree(rt);

}
break;

Figure 19.7 rtrequest function: RTM_DELETE command.
route.c

The second argument, dst, is a socket address structure specifying the key to be
added or deleted from the routing table. The sa faraily from this key selects the rout-
ing table. If the flags argument indicates a h~st route (instead of a route to a net-
work), the netmask pointer is set to null, ignoring any value the caller may have
passed.

Delete from routing tree
The rnh_deladdr function (rn_delete from Figure 18.17) deletes the entry from

the routing table tree and returns a pointer to the corresponding rtentry structure.
The RTF_UP flag is cleared.

Remove reference to gateway routing table entry
If the entry is an indirect route through a gateway, RTFREE decrements the

rt_refcnt member of the gateway’s entry and deletes it if the count reaches 0. The
rt_gwroute pointer is set to null and rt is set back to point to the entry that was
deleted.
Call interface request function

If an ifa_rtrequest function is defined for this entry, that function is called. This
function is used by ARP, for example, in Chapter 21 to delete the corresponding ARP
entry.
Return pointer or release reference

The rttrash global is incremented because the entry may not be released in the
code that follows. If the caller wants the pointer to the rtentry structure that was

Ex.1013.634DELL

19

be
It-
.~t-
ve

he

Lis

he

as

331-339

340--342

343--348

,349-352

rtrequest Function 609

deleted from the routing tree (if ret_nrt is nonnull), then that pointer is returned, but
the entry cannot be released: it is the caller’s responsibility to call rt free when it is fin-
ished with the entry. If ret_nrt is null, the entry can be released: if the reference count
is less than or equal to 0, it is incremented, and rt free is called. The break causes the
function to return.

Figure 19.8 shows the next part of the function, which handles the RTM_RESOLVE
command. This function is called with this command only from rtallocl, when a
new entry is to be created from an entry with the RTF_CLONING flag set.

331 case RTM_RESOLVE:
332 if (ret_nrt :: 0 I I (rt = *ret_nrt) =- 0)
333 senderr(EINVAL);
334 ifa = rt->rt_ifa;
335 flags = rt->rt_flags & ~RTF_CLONING;
336 gateway = rt->rt_gateway;
337 if ((netmask = rt->rt_genmask) == 0)
338 flags I= RTF_HOST;
339 goto makeroute;

Figure 19.8 rtrequest function: RTM_RESOLVE command.

route.c

route.c

The final argument, ret_nrt, is used differently for this command: it contains the
pointer to the entry with the RTF_CLONING flag set (Figure 19.2). The new entry will
have the same rt_ifa pointer, the same flags (with the RTF_CLONING flag cleared),
and the same rt_gateway. If the entry being cloned has a null rt_genmask pointer,
the new entry has its RTF_HOST flag set, because it is a host route; otherwise the new
entry is a network route and the network mask of. the new entry is copied from the
rt_genraask value. We give an example of cloned routes with a network mask at the
end of this section. This case continues at the label makeroute, which is in the next
figure.

Figure 19.9 shows the RTM_ADD command.

Locate corresponding interface
The function i fa_i fwithroute finds the appropriate local interface for the desti-

nation (ds t), returning a pointer to its i faddr structure.

Allocate memory for routing table entry
An rtentry structure is allocated. Recall that this structure contains both the two

radix_node structures for the routing tree and the other routing information. The
structure is zeroed and the rt_flags are set from the caller’s flags, including the
RTF_UP flag.
Allocate and copy gateway address

The rt_setgate function (Figure 19.11) allocates memory for both the routing
table key (dst) and its gateway. It then copies gateway into the new memory and
sets the pointers rt_key, rt_gateway, and rt_gwroute.

Ex.1013.635DELL

610

353-357

Routing Requests and Routing Messages
Chapter 19

340
341
342

343
344
345
346
347
348
349
35O
351
352
353
354
355
356
357

358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
38O
381
382
383 }

case RTM_ADD:

if ((ifa = ifa_ifwithroute(flags, dst, gateway)) == 0)
senderr(ENETUNREACH);

makeroute:
R_Malloc(rt, struct rtentry *, sizeof{*rt));
if (rt == 0)

senderr(ENOBUFS);
Bzero(rt, sizeof(*rt));
rt->rt_flags = RTF_UP I flags;
if (rt_setgate(rt, dst, gateway)) {

Free(rt);
senderr(ENOBUFS);

}
ndst = rt_key(rt);
if (netmask) {

rt_maskedcopy(dst, ndst, netmask);
] else

Bcopy(dst, ndst, dst->sa_len);

rn = rnh->rnh_addaddr((caddr_t) ndst, (caddr_t) netmask,

rnh, rt->rt_nodes);
if (rn == 0) {

if (rt->rt_gwroute)

rtfree(rt->rt_gwroute);
Free(rt_key(rt));
Free(rt);
senderr(EEXIST);

}
ifa->ifa_refcnt++;
rt->rt_ifa = .ifa;
rt->rt_ifp = ifa->ifa_ifp;
if (req == RTM_RESOLVE)

rt->rt_rmx = (*ret_nrt)->rt_rmx;
/* copy metrics */if (ifa->ifa_rtrequest)

ifa->ifa_rtrequest(req, rt, SA(ret nrt v *ret nrt : 0));
if (ret_nrt) { -- " --

*ret_nrt : rt;
rt->rt_refcnt++;

}
break;

}
bad:

splx(s);
return (error);

Figure 19.9 rtrequest function: RTM_ADDcommand. -- route.c

Copy destination address
The destination address (the routing table key dst) must now be copied into the

memory pointed to by rn_key. If a network mask is supplied, rt_maskedcopy logi-
cally ANDs dst and netmask, forming the new key. Otherwise dst is copied into the

route.c

Ex.1013.636DELL

r 19

oute.c

o the
logi-
o the

rtrequest Function 611

new key. The reason for logically ANDing dst and netmask is to guarantee that the
key in the table has already been ANDed with its mask, so when a search key is com-
pared against the key in the table only the search key needs to be ANDed. For example,
the following command adds another IP address (an alias) to the Ethernet interface le0,
with subnet 12 instead of 13:

bsdi $ ifconfig le0 inet 140.252.12.63 netmask 0xffffffe0 alias

The problem is that we’ve incorrectly specified all one bits for the host ID. Neverthe-
less, when the key is stored in the routing table we can verify with netstat that the
address is first logically ANDed with the mask:

Destination Gateway Flags Refs Use Interface

140.252.12.32 link#1 U C 0 0 le0

358-366

367--369

370-371

372--373

374-378

Add entry to routing tree
The rnh_addaddr function (rn_addroute from Figure 18.17) adds this rtentry

structure, with its destination and mask, to the routing table tree. If an error occurs, the
structures are released and EEXIST returned (i.e., the entry is already in the routing
table).
Store interface pointers

The ifaddr structure’s reference count is incremented and the pointers to its
i faddr and i fnet structures are stored.
Copy metrics for newly cloned route

If the command was RTM_RESOLVE (not RTM_ADD), the entire metrics structure is
copied from the cloned entry into the new entry. If the command was RTM_ADD, the
caller can set the metrics after this function returns.

Call interface request function
If an ifa_rtrequest function is defined for this entry, that function is called.

ARP uses this to perform additional processing for both the RTM_ADD and
RTM_RESOLVE commands (Section 21.13).

Return pointer and increment reference count
If the caller wants a copy of the pointer to the new structure, it is returned through

ret_nrt and the rt_refcnt reference count is incremented from 0 to 1.

Example: Cloned Routes with Network Masks

The only use of the rt_genmask value is with cloned routes created by the
RTM_RESOLVE command in rtrequest. If an rt_genmask pointer is nonnu[l, then
the socket address structure pointed to by this pointer becomes the network mask of the
newly created route. In our routing table, Figure 18.2, the cloned routes are for the local
Ethernet and for multicast addresses. The following example from [Sklower 1991] pro-
vides a different use of cloned routes. Another example is in Exercise 19.2.

Consider a class B network, say 128.1, that is behind a point-to-point link. The sub-
net mask is 0xf f f f f f 0 0, the typical value that uses 8 bits for the subnet ID and 8 bits

Ex.1013.637DELL

612 Routing Requests and Routing Messages Chapter 19

19.5

for the host ID. We need a routing table entry for all possible 254 subnets, with a gate-
way value of a router that is directly connected to our host and that knows how to reach
the link to which the 128.1 network is connected.

The easiest solution, assuming the gateway router isn’t our default router, is a single
entry with a destination of 128.1.0.0 and a mask of 0xff£f0000. Assume, however,
that the topology of the 128.1 network is such that each of the possible 254 subnets can
have different operational characteristics: RTTs, MTUs, delays, and so on. If a separate
routing table entry were used for each subnet, we would see that whenever a connec-
tion is closed, TCP would update the routing table entry with statistics about that
route--its RTT, RTT variance, and so on (Figure 27.3). While we could create up to 254
entries by hand using the route command, one per subnet, a better solution is to use
the cloning feature.

One entry is created by the system administrator with a destination of 128.1.0.0 and
a network mask of 0xffff0000. Additionally, the RTF_CLONTNG flag is set and the
genmask is set to 0xfff£ff00, which differs from the network mask. If the routing
table is searched for 128.1.2.3, and an entry does not exist for the 128.1.2 subnet, the
entry for 128.1 with the mask of 0x f f f f 00 00 is the best match. A new entry is created
(since the RTF_CLON1NG flag is set) with a destination of 128.1.2 and a network mask of
0x f f f f f f 0 0 (the genmask value). The next time any host on this subnet is referenced,
say 128.1.2.88, it will match this newly created entry.

rt_setgate Function

384-391

Each leaf in the routing tree has a key (rt_key, which is just the rn_key member of the
radix_node structure contained at the beginning of the rtentry structure), and an
associated gateway (rt_gateway). Both are socket address structures specified when
the routing table entry is created. Memory is allocated for both structures by
rt setgate, as shown in Figure 19.10.

-This example shows two of the entries from Figure 18.2, the ones with keys of
127.0.0.1 and 140.252.13.33. The former’s gateway member points to an Internet socket
address structure, while the latter’s points to a data-link socket address structure that
contains an Ethernet address. The former was entered into the routing table by the
route system when the system was initialized, and the latter was created by ARP.

We purposely show the two structures pointed to by rt_key one right after the
other, since they are allocated together by rt_setgate, which we show in Figure 19.11.

Set lengths from socket address structures
dlen is the length of the destination socket address structure, and glen is the

length of the gateway socket address structure. The ROUNDUP macro rounds the value
up to the next multiple of 4 bytes, but the size of most socket address structures is
already a multiple of 4.

Ex.1013.638DELL

gle
ler,
2an
"ate
tec-
hat
254
uge

~nd
the
:ing
the

Lted
k of
_’ed,

: the
t an
hen
by

s of
cket
that
the

’ the
9.11.

the
alue
es is

Section 19.5 rt_setgate Function 613

rtentry{ }

rt-key

rt_gateway

radix_node {]
’(leaf)

radix_node
(node)

127. 0. 0. 1
~16[2] 0]7f]O0]O0[O1]0

127. 0. 0. 1

sockaddr_in

1161 2I 0 Ivqoolooloq

socka~dr_in

rtentry{ }

rt_key

r t_gat eway

Ir adix_node{}
(leaf)

Ir adix_node{}
(node)

140.252. 13.33
416[2I 0 18clfc10d1211 0 0 I

v
sockaddr_in

Figure 19.10

/-sdl_family
h [f-sdl_index
] | [/-sdl_tyme

I / r / ~sdl alen

~ ~ ~ ~ ~ I~ ~thernetaddr ~l
1201~81 1 16101610 1081001aolo31~61a21

socka~dr_dl

Exampleofroutingtablekeysandassoda[edga[e~ays.

392-397

398-401

Allocate memory

If memory has not been allocated for this routing table key and gateway yet, or if
glen is greater than the current size of the structure pointed to by rt_gateway, a new
piece of memory is allocated and rn_key is set to point to the new memory.
Use memory already allocated for key and gateway

An adequately sized piece of memory is already allocated for the key and gateway,
so new is set to point to this existing memory.

Ex.1013.639DELL

614

~02

403-406

407--412

Routing Requests and Routing Messages Chapter 19

384 int
385 rt_setgaLe(rt0, dst, gale)
386 struct rtentry *rt0;
387 struct sockaddr *dst, *gate;
388 {
389 caddr_t new, old;
390 int dlen = ROUNDUP(dst->sa_len), glen = ROUNDUP(gate->sa_len)
391 struct rtentry *rt = rt0;

392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
4O8
409
410
411
412
413
414
415
416
~17 }

route.c

if (rL->rt_gateway :: 0 II glen > ROUNDUP(rt->rt_gateway->sa_len)
old = (caddr_t) rt_key(rt);
R_Malloc(new, caddr_t, dlen + glen);
if (new == 0)

return i;
rt->rt_nodes->rn_key : new;

] else {
new = rt->rt_nodes->rn_key;
old = 0;

}
Bcopy{gate, (rt->rt_gateway = (struct sockaddr *)
if (old) {

Bcopy(dst, new, dlen);
Free{old);

}
if (rt->rt_gwroute) {

rt = rt->rt_gwroute;
RTFREE(rt) ;
rt =
rt->rt_gwroute = 0;

if (rt->rt_flags & RTF_GATEWAY) {
rt->rL_gwroute = rtallocl(gate, i);

}
return 0;

(new + dlen)), glen);

Figure 19.11 rt_setgate function.
;’ol~te.c

Copy new gateway

The new gateway structure is copied and rt_gateway is set to point to the socket
address structure.

Copy key from old memory to new memory

If a new piece of memory was allocated, the routing table key (dst) is copied right
before the gateway field that was just copied. The old piece of memory is released.

Release gateway routing pointer
If the routing table entry contains a nonnull rt_gwroute pointer, that structure is

released by RTFREE and the rt_gwroute pointer is set to null.

Ex.1013.640DELL

Chapter 19

-- route.

~n) ;

~.n)) {

glen);

-- route.c

,the socket

opied right
rased.

structure is

19.6

413-415

19.6

453-459

460-469

470-4 73

rtinit Function 615

Locate and store new gateway routing pointer

If the routing table entry is an indirect route, rta!locl locates the entry for the
new gateway, which is stored in r t_gwroute. If an invalid gateway is specified for an
indirect route, an error is not returned by rt_setgate, but the rt_gwroute pointer
will be null.

rtinit Function

There are four calls to r t i ni t from the Internet protocols to add or delete routes associ-
ated with interfaces.

in_control calls rtinit twice when the destination address of a point-to-
point interface is set (Figure 6.21). The first call specifies RTM_DELETE to delete
any existing route to the destination; the second call specifies RTM_ADD to add
the new route.

¯ in_ifinit calls rtinit to add a network route for a broadcast network or a
host route for a point-to-point link (Figure 6.19). If the route is for an Ethernet
interface, the RTF_CLONING flag is automatically set by in_i f ini t.

¯ in_i fscrub calls rt init to delete an existing route for an interface.

Figure 19.12 shows the first part of the r t init function. The c md argument is always
RTM_ADD or RTM_DELETE.

Get destination address for route

If the route is to a host, the destination address is the other end of the point-to-point
link. Otherwise we’re dealing with a network route and the destination address is the
unicast address of the interface (masked with i fa_netmask).
Mask network address with network mask

If a route is being deleted, the destination must be looked up in the routing table to
locate its routing table entry. If the route being deleted is a network route and the inter-
face has an associated network mask, an mbuf is allocated and the destination address
is copied into the mbuf by rt_maskedcopy, logically ANDing the caller’s address with
the mask. dst is set to point to the masked copy in the mbuf, and that is the destination
looked up in the next step.

Search for routing table entry
rtallocl searches the routing table for the destination address. If the entry is

found, its reference count is decremented (since r tal l ocl incremented the reference
count). If the pointer to the interface’s i faddr in the routing table does not equal the
caller’s argument, an error is returned.

Process request
rtrequest executes the command, either RTM_ADD or RTM_DELETE. When it

returns, if an mbuf was allocated earlier, it is released.

Ex.1013.641DELL

616 Routing Requests and Routing Messages
Chapter 19

441 int
442 rtinit(ifa, cmd, flags)

443 struct ifaddr *ifa;
444 int
445 {
446
447
448
449
450
451

452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473

cmd, flags;

struct rtentrY *rt;
struct sockaddr *dst;
struct sockaddr *deldst;
struct mbuf *m = 0;
struct rtentry *nrt : 0;

int error;

dst = flags & RTF_HOST ? ifa->ifa_dstaddr : ifa->ifa_addr;

if (cmd == RTM_DELETE) {if ((flags & RTF_HOST) == 0 && ifa->ifa_netmask) {

m : m_get(M_WAIT, MT_SONAME);
deldst = mtod(m, struct sockaddr *);
rt_maskedcopy(dst, deldst, ifa->ifa_netmask) ;

dst = deldst;
}
if (rt = rtallocl(dst, 0)) {

rt->rt_refcnt--;
if (rt->rt_ifa != ifa) {

if (m)
(void) m_free(m);

return (flags & RTF_HOST ? EHOSTUNREACH
¯ ENETUNREACH);

}
}

]
error = rtrequest(cmd, dst, ifa->ifa_addr, ifa->ifa_netmask,

flags I ifa->ifa_flags, &nrt);

if (m)
(void) m_free(m) ;

Figure 19.12 rtinit function: call rtrequest to handle command.

route.

474--480

route.c

481-482

Su¢cesslui add
If a route was added, and rtrequest returned 0 along with a pointer to the

rtentry structure that was added (in nrt), the reference count is decremented (since

rtrequest incremented it).

Figure 19.13 shows the second half of rt init.

Generate routing message on successful delete
If a route was deleted, and rtrequest returned 0 along with a pointer to the

rtentry structure that was deleted (in nrt), a routing socket message is generated by
rt_newaddrmsg. If the reference count is less than or equal to 0, it is incremented and

the route is released by rt free.

Ex.1013.642DELL

te

te
2e

Section 19.7 rtredirect Function 617

483-494

495

474 if (cmd =: RTM_DELETE && error :: 0 && (rt = nrt)) {
475 rt_newaddrmsg(cmd, ifa, error, nrt);
476 if (rt->rt_refcnt <= 0) {
477 rt->rt_refcnt++;
478 rtfree(rt);
479 }
48O }
481 if (cmd == RTM_ADD && error == 0 && (rt = nrt)) {
482 rt->rt_refcnt--;
483 if (rt->rt_ifa != ifa)
484 printf("rtinit: wrong ifa (%x) was (%x)\n", ira,
485 rt->rt_ifa);
486 if (rt->rt_ifa->ifa_rtrequest)
487 rt->rt_ifa->ifa_rtrequest(RTM_DELETE, rt, SA(0));
488 IFAFREE(rt->rt_ifa);
489 rt >rt_ifa = ifa;
490 rt->rt_ifp = ifa->ifa_ifp;
491 ifa->ifa_refcnt++;
492 if (ifa->ifa_rtrequest)
493 ifa >ifa_rtrequest(RTM_ADD, rt, SA(0));
494 }
495 rt_newaddrmsg(cmd, ifa, error, nrt);
496 }
497 return (error);
498 }

Figure 19.13 rtinit function: second half.

route.c

route.c

Incorrect interface

If the pointer to the interface’s i faddr in the new routing table entry does not
equal the caller’s argument, an error occurred. Recall that r t request determines the
i fa pointer that is stored in the new entry by calling i fa_i fwi throute (Figure 19.9).
When this error occurs the following steps take place: an error message is output to the
console, the ifa_rtrequest function is called (if defined) with a command of
RTM_DELETE, the i faddr structure is released, the rt_i fa pointer is set to the value
specified by the caller, the interface reference count is incremented, and the new inter-
face’s i fa_rtrequest function (if defined) is called with a command of RTM_ADD.

Generate routing message
A routing socket message is generated by rt_newaddrmsg for the RTM_ADD com-

mand.

19.7 rtredirect Function

When an ICMP redirect is received, icmp_input calls rtredirect and then calls
p fct 1 input (Figure 11.27). This latter function calls udp_ct linput and
t c p_c t 1 input, which go through all the UDP and TCP protocol control blocks. If the

Ex.1013.643DELL

618 Routing Requests and Routing Messages
Chapter 19 :ii~i~

PCB is connected to the foreign address that has been redirected, and if the PCB holds a
route to that foreign address, the route is released by r¢£ree. The next time any of
these control blocks is used to send an IP datagram to that foreign address, rtalloc
will be called and the destination will be looked up in the routing table, possibly finding

a new (redirected) route.
The purpose of r¢red±re¢¢, the first half of which is shown in Figure 19.14, is to

validate the information in the redirect, update the routing table immediately, and then

generate a routing socket message. -

147 int
148 rtredirect(dst, gateway, netmask, flags, arc, .rtp)
149 struct sockaddr *dst, *gateway, *netmask, *arc;

150 int flags;
151 struct rtentry **rtp;
152 {
153 struct rtentry *rt;

154 int error = 0;
155 short *stat = 0;
156 struct rt_addrinfo info;
157 struct ifaddr *ira;

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

Figure 19.14 rtredirect function: validate received redirect.

/* verify the gateway is directly reachable */
if ((ifa : ifa_ifwithnet(gateway)) == 0) {

error : ENETUNREACH;
goto out;

}
rt = rtallocl(dst, 0);
/*

* If the redirect isn’t from our current router for this dst,
..:-

* it’s either old or wrong. If it redirects us to ourselves,
* we have a routing loop, perhaps as a result of an interface

* going down recently-
* i o)

#define equal(al, a2) (bcmp((caddr_t) (al) (caddr_t) (a2), (al)->sa_len) ==
if (l (flags & RTF_DONE) && rt &&

(!equal(arc, rt->rt_gateway) II rt->rt_ifa != ira))

error : EINVAL;
else if (ifa_ifwithaddr(gateway))

error = EHOSTUNREACH;
if (error)

goto done;
/*

* Create a new entry if we just got back a wildcard entry
* or if the lookup failed. This is necessary for hosts
* which use routing redirects generated by smart gateways

* to dynamically build the routing tables.

if ((rt == 0) II (rt_mask(rt) && rt_mask(rt)->sa_len < 2))
goto create; [0~£’~

Ex.1013.644DELL

~pter 19

holds a
any of
.allot

finding

[4, is to
ad then

-- Foute.c

147-157

158-162

163-i 77

19.7 rtredirect Function 619

The arguments are dst, the destination IP address of the datagram that caused the
redirect (HD in Figure 8.18); gateway, the IP address of the router to use as the new
gateway field for the destination (R2 in Figure 8.18); netmask, which is a null pointer;
flags, which is RTF_GATEWAY and RTF_HOST; src, the IP address of the router that
sent the redirect (R1 in Figure 8.18); and rtp, which is a null pointer. We indicate that
netmask and rtp are both null pointers when called by icmp_input, but these argu-
ments might be nonnull when called from other protocols.
New gateway must be directly connected

The new gateway must be directly connected or the redirect is invalid.
Locate routing table entry for destination and validate redirect

rtallocl searches the routing table for a route to the destination. The following
conditions must all be true, or the redirect is invalid and an error is returned. Notice
that icmp_input ignores any error return from rtredirect. ICMP does not generate
an error in response to an invalid redirect--it just ignores it.

¯ the RTF_DONE flag must not be set;
¯ r t a 11 oc must have located a routing table entry for d s t;
¯ the address of the router that sent the redirect (src) must equal the current

r t_gat eway for the destination;
¯ the interface for the new gateway (the ifa returned by ifa_ifwithnet) must

equal the current interface for the destination (rt_i fa), that is, the new gate-
way must be on the same network as the current gateway; and

¯ the new gateway cannot redirect this host to itself, that is, there cannot exist an
attached interface with a unicast address or a broadcast address equal to
gateway.

en) == O)

-- route.c

178--185

186-195

Must create a new route

If a route to the destination was not found, or if the routing table entry that was
located is the default route, a new entry is created for the destination. As the comment
indicates, a host with access to multiple routers can use this feature to learn of the cor-
rect router when the default is not correct. The test for finding the default route is
whether the routing table entry has an associated mask and if the length field of the
mask is less than 2, since the mask for the default route is rn_zeros (Figure 18.35).

Figure 19.15 shows the second half of this function.

Create new host route
If the current route to the destination is a network route and the redirect is a host

redirect and not a network redirect, a new host route is created for the destination and
the existing network route is left alone. We mentioned that the f 1 ag s argument always
specifies RTF_HOST since the Net/3 ICMP considers all received redirects as host redi-
rects.

Ex.1013.645DELL

620 Routing Requests and Routing Messages Chapter 19 i~

186 /*
187 * Don’t listen to the redirect if it’s
188 * for a route to an interface.
189 */
190 if (rt->rt_flags & RTF_GATEWAY) {
191 if (((rt->rt_flags & RTF_HOST) == 0) && (flags & RTF_HOST)) {
192 /*
193 * Changing from route to net => route to host.
194 * Create new route, rather than smashing route to net.
195 */
196 create:
197 flags I= RTF_GATEWAY I RTF_DYNAMIC;
198 error = rtrequest((int) RTM_ADD, dst, gateway,
199 netmask, flags,
200 (struct rtentry **) 0);
201 stat = &rtstat.rts_dynamic;
202 } else {
203 /*
204 * Smash the current notion of the gateway to
205 * this destination. Should check about netmask!!!
206 */
207 rt->rt_flags I= RTF_MODIFIED;
208 flags I= RTF_MODIFIED;
209 stat : &rtstat.rts_newgateway;
210 rt_setgate(rt, rt_key(rt), gateway);
211]
212] else
213 error : EHOSTUNREACH;
214 done:
215 if (rt) {
216 if (rtp&& !error)
217 *rtp : rt;
218 else
219 rtfree(rt);
220 }
221 out:
222 if (error)
223 rtstat.rts_badredirect++;
224 else if (stat != NULL)
225 (*stat)++;

226 bzero((caddr_t) & info, sizeof(info));
227 info.rti_info[RTAX_DST] = dst;
228 info.rti_info[RTAX_GATEWAY] = gateway;
229 info.rti_info[RTAX_NETMASK] = netmask;
230 info.rti_info[RTAX_AUTHOR] = src;
231 rt_missmsg(RTM_REDIRECT, &info, flags, error);
232 }

route.c

route.c

Figure 19.15 rtredirect function: second half.

Ex.1013.646DELL

)ter 19

route.c

route.c

196-201

202-211

212-213

214-225

226-232

19.8

Routing Message Structures 621

Create route

rtrequest creates the new route, setting the RTF_GATEWAY and RTF_DYNAMIC
flags. The netmask argument is a null pointer, since the new route is a host route with
an implied mask of all one bits. stat points to a counter that is incremented later.

Modify existing host route

This code is executed when the current route to the destination is already a host
route. A new entry is not created, but the existing entry is modified. The
RTF_MODIFIED flag is set and rt_setgate changes the rt_gateway field of the rout-
ing table entry to the new gateway address.

Ignore if destination is directly connected

If the current route to the destination is a direct route (the RTF_GATEWAY flag is not
set), it is a redirect for a destination that is already directly connected. EHOSTUNREACH
is returned.

Return pointer and increment statistic
If a routing table entry was located, it is either returned (if rtp is nonnull and there

were no errors) or released by rt free. The appropriate statistic is incremented.
Generate routing message

An rt_addrinfo structure is cleared and a routing socket message is generated by
rt_missmsg. This message is sent by raw_input to any processes interested in the
redirect.

Routing Message Structures

Routing messages consist of a fixed-length header followed by up to eight socket
address structures. The fixed-length header is one of the following three structures:

¯ rt_msghdr
¯ if_msghdr
¯ ifa_msghdr

Figure 18.11 provided an overview of which functions generated the different messages
and Figure 18.9 showed which structure is used by each message type. The first three
members of the three structures have the same data type and meaning: the message
length, version, and type. This allows the receiver of the message to decode the mes-
sage. Also, each structure has a member that encodes which of the eight potential
socket address structures follow the structure (a bitmask): the rtm_addrs, i fm_addrs,

and i fam_addrs members.
Figure 19.16 shows the most common of the structures, rt_msghdr. The

RTM_IFINFO message uses an if_msghdr structure, shown in Figure 19.17. The
RTM_NEWADDR and RTM_DELADDR messages use an i fa_msghdr structure, shown in
Figure 19.18.

Ex.1013.647DELL

Routing Requests and Routing Messages Chapter 19

139 struct rt_msghdr {
140 u_short rtm_msglen;
141 u_char rtm_version;
142 u_char rtm_type;

143 u_short rtm_index;
144 int rim_flags;

145 int rtm_addrs;
146 pid_t rtm_pid;

147 int rtm_seq;

148 int rtm_errno;
149 int rtm_use;
150 u_long rtm_inits;
151 struct rt_metrics rtm_rmx;
152 };

235 struct if_msghdr {
236 u_short ifm_msglen;
237 u_char ifm version;
238 u_char ifm_type;

route.h

/* to skip over non-understood messages */
/* future binary compatibility */
/* message type */

/* index for associated ifp */
/* flags, incl. kern & message, e.g. DONE */
/* bitmask identifying sockaddrs in msg */
/* identify sender */
/* for sender to identify action *!
/* why failed *!
/* from rtentry */
/* which metrics we are initializing */

/* metrics themselves */

route.h

Figure 19.16 rt_msghdr structure.

239 int ifm_addrs;
240 int ifm_flags;
241 u_short ifm_index;
242 struct if_data ifm_data;
243 };

!* to skip over non-understood messages */
/* future binary compatability */
/* message type */

/* like rtm_addrs */
/* value of if_flags */
/* index for associated ifp */
/* statistics and other data about if */

Figure 19.17 if_msghdr structure.

248 struct ifa_msghdr {
249 u_short ifam_msglen;
250 u_char ifam_version
251 u_char ifam_type;

/* to skip over non-understood messages */
/* future binary compatability *!
/* message type */

252 int ifam_addrs;
253 int ifam_flags;
254 u_short ifam_index;
255 int ifam_metric
256 };

/* like rtm_addrs */
/* value of ira_flags */
/* index for associated ifp */
/* value of ifa_metric */

Figure 19.18 ifa_msghdr structure.

Note that the first three members across the three different structures have the same
data types and meanings.

The three variables rtm_addrs, i fm_addrs, and i fam_addrs are bitmasks defin-
ing which socket address structures follow the header. Figure 19.19 shows the constants
used with these bitmasks.

R~
R~
R~
R~

R9
R9

Ex.1013.648DELL

,ter 19

route.h

same

defin-
lstants

19.8

Bitmask

< onstant

RTA_DST
RTA_GATEWA Y
RTA_NETMASK

RTA_GENMASK
RTA_IFP
RTA_IFA
RTA_AUTHOR
RTA_BRD

Routing Message Structures 623

Value

Array index

Constant

0x01 RTAX_DST
0x02 RTAX_GATEWAY
0x04 RTAX_NETMASK
0x08 RTAX_GENMASK
0xl0 RTAX_IFP
0x20 RTAX_IFA
0x40 RTAX_AUTHOR
0x80 RTAX BRD

RTAX MAX

Value

0
1
2
3
4
5
6
7
8

Namein
rtsock.c

dst
gate
netmask
genmask
ifpaddr
ifaaddr

brdaddr

Description

destination socket address structure
gateway socket address structure
netmask socket address structure
cloning mask socket address structure
interface name socket address structure
interface address socket address structure
socket address structure for author of redirect
broadcast or point-to-point destination address
#elements in an rti_info [] array

Figure 19.19 Constants used to refer to members of r~i_info array.

The bitmask value is always the constant 1 left shifted by the number of bits specified
by the array index. For example, 0x20 (RTA_IFA) is 1 left shifted by five bits
(RTAX_IFA). We’ll see this fact used in the code.

The socket address structures that are present always occur in order of increasing
array index, one right after the other. For example, if the bitmask is 0x87, the first
socket address structure contains the destination, followed by the gateway, followed by
the network mask, followed by the broadcast address.

The array indexes in Figure 19.19 are used within the kernel to refer to its
rt_addrinfo structure, shown in Figure 19.20. This structure holds the same bitmask
that we described, indicating which addresses are present, and pointers to those socket
address structures.

route.h
199 struct rt_addrinfo {
200 int rti_addrs; /* bitmask, same as rtm_addrs */

20]. struct sockaddr *rti_info[RTAX_MAX];
202 } ;

Figure 19.20

route.h

r ~_addr ±n f o structure: encode which addresses are present and pointers to them.

For example, if the RTA_GATEWAY bit is set in the rti_addrs member, then the mem-
ber rti_info [RTAX_GATEWAY] is a pointer to a socket address structure containing
the gateway’s address. In the case of the Internet protocols, the socket address structure
is a sockaddr_in containing the gateway’s IP address.

The fifth column in Figure 19.19 shows the names used for the corresponding mem-
bers of an r t i_in f o array throughout the file r t sock. c. These definitions look like

#define dst info.rti_info[RTAX_DST]

We’ll encounter these names in many of the source files later in this chapter. The
RTAX_AUTHOR element is not assigned a name because it is never passed from a process
to the kernel.

We’ve already encountered this rt_addrinfo structure twice: in rtallocl (Fig-
ure 19.2) and rtredirect (Figure 19.14). Figure 19.21 shows the format of this

Ex.1013.649DELL

624 Routing Requests and Routing Messages
Chapter 19

203-208

structure when built by rtallocl, after a routing table lookup fails, when
rt_mi ssmsg is called.

rt_addrinfo{}
rti_addrs
rti_info[RTAX_DST]
rti_info[RTAX_GATEWAY
rti_info[RTAX_NETMASK
rti_info[RTAX_GENMASK
rti_info[RTAX_IFP]
rti_info[RTAX_IFA]
rti_info[RTAX_AUTHOR]
rti_info[RTAX_BRD]

NULL
NULL
NULL
NULL
NULL
NULL
NULL

sockaddr_in{}
IP addressthat wasnotfound

Figure 19.21 rt_addrinfo structure passed by rtallocl to rt_missmsg.

All the unused pointers are null because the structure is set to 0 before it is used. Also
note that the rti_addrs member is not initialized with the appropriate bitmask
because when this structure is used within the kernel, a null pointer in the rt i_info
array indicates a nonexistent socket address structure. The bitmask is needed only for
messages between a process and the kernel.

Figure 19.22 shows the format of the structure built by rtredirect when it calls
rt_missmsg.

0

NULL

NULL

sockaddr_in { }
destination IP address that caused redirect

sockaddr_in{)
IPaddressofnew gatewaytouse]

sockaddr_in{)
IPaddressofrouterthatgeneratedredirect

rt_addrinfo{}
rti_addrs
rti_info[RTAX_DST]
rti_info[RTAX_GATEWAY
rti_info[RTAX_NETMASK
rti_info[RTAX_GENMASK
rti_info[RTAX_IFP]
rti_info[RTAX_IFA]
rti_info[RTAX_AUTHOR]
rti_info[RTAX_BRD]

Figure 19.22 rt_addrinfo structure passed by rtredirect to rt_missmsg.

The following sections show howthese structures are placed into the messages sent
to a process.

Figure 19.23 shows the route_cb structure, which we’ll encounter in the following
sections. It contains four counters; one each for the IP, XNS, and OSI protocols, and an
"any" counter. Each counter is the number of routing sockets currently in existence for
that domain.

By keeping track of the number of routing socket listeners, the kernel avoids build-
ing a routing message and calling raw_input to send the message when there aren’t
any processes waiting for a message.

Ex.1013.650DELL

~r

nt

~g
~n

or

Section 19.9 r t_missmsg Function 625

203 struct route_cb {
204 int ip_count;
205 int ns_count;
206 int iso_count;
207 int any_count;
208];

/* IP */
/* XNS */
/* ISO */
/* sum of above three counters */

Figure 19.23 route_cb structure: counters of routing socket listeners.

route.h

route.h

19.9 rt_missmsg Function

The function rt_missmsg, shown in Figure 19.24, takes the structures shown in Fig-
ures 19.21 and 19.22, calls rt_msgl to build a corresponding variable-length message
for a process in an mbuf chain, and then calls raw_input to pass the mbuf chain to all
appropriate routing sockets.

rtsock.c
516 void
517 rt_missmsg(type, rtinfo, flags, error)
518 int type, flags, error;
519 struct rt_addrinfo *rtinfo;
52O {
521 struct rt_msghdr *rtm;
522 struct mbuf *m;
523 struct sockaddr *sa : rtinfo->rtf_info[RTAX_DST]

524 if (route_cb.any_count :: 0)
525 return;

526 m : rt_msgl(type, rtinfo);
527 if (m :: 0)
528 return;

529
530
531
532

533
534
535 }

rtm : mtod(m, struct rt_msghdr *);
rtm >rtm_flags : RTF_DONE I flags;
rtm->rtm_errno = error;
rtm->rtm_addrs - rtinfo >rti_addrs;

route_proto.sp_protocol = sa ? sa->sa_family : 0
raw_input(m, &route_proto, &route_src, &route_dst);

rtsock.c

Figure 19.24 rt_missmsg function.

516-525

526-528

If there aren’t any routing socket listeners, the function returns immediately.
Build message in mbuf chain

rt_msgl (Section 19.12) builds the appropriate message in an mbuf chain, and
returns the pointer to the chain. Figure 19.25 shows an example of the resulting mbuf
chain, using the rt_addrinfo structure from Figure 19.22. The information needs to
be in an mbuf chain because raw_input calls sbappendaddr to append the mbuf
chain to a socket’s receive buffer.

Ex.1013.651DELL

626 Routing Requests and Routing Messages Chapter 19

mbuf()
m_next
m_nextpkt

im_len
m_data
m_type
m_flags
m_pkthdr.len

m_pkthdr.rcvif

r t_msghdr {)
(76 bytes)

sockaddr_in{}
(]6by~s)

sockaddr_in{]
(firsthali 8bytes)

next mbuf in chain

NULL
100

MT_DATA ~
M_PKTHDR
124

NULL

mbuf{}
m_next
m_nextpkt

m_len
-m_data
m_type
m_flags

sockaddr_in{}
(last half, 8 bytes)

sockaddr_in{}
(16bytes)

NULL
NULL
24

MT_DATA

0

Figure 19.25 Mbuf chain built by rt_msgl corresponding to Figure 19.22.

529-532

533-534

Finish building message

The two members rtm_flags and rtm_errno are set to the values passed by the
caller. The rtm_addrs member is copied from the rti_addrs value. We showed this
value as 0 in Figures 19.21 and 19.22, but rt_msgl calculates and stores the appropriate
bitmask, based on which pointers in the rt i_info array are nonnull.

Set protocol of message, call raw_input:,>

The final three arguments to raw_input specify the protocol, source, and destina-
tion of the routing message. These three structures are initialized as

struct sockaddr route_dst = { 2, PF_ROUTE, };
struct sockaddr route_src : { 2, PF_ROUTE, }; ~!
struct sockproto route_proto : [PF_ROUTE,];

The first two structures are never modified by the kernel. The sockproto structure,
shown in Figure 19.26, is one we haven’t seen before.

socket.h
128 struct sockproto {
129 u_short sp_family; /* address family */
130 u_short sp_protocol; /* protocol */
131 } ;

socket.h

Figure 19.26 sockproto structure.

Ex.1013.652DELL

.ter 19

.y the
~l this
~riate

stina-

~c~t.h

19.10

19.10 rt_i fmsg Function 627

The family is never changed from its initial value of PF_ROUTE, but the protocol is
set each time raw_input is called. When a process creates a routing socket by calling
socket, the third argument (the protocol) specifies the protocol in which the process is
interested. The caller of raw_input sets the sp_protocol member of the
route_proto structure to the protocol of the routing message. In the case of
rt_missmsg, it is set to the sa_family of the destination socket address structure (if
specified by the caller), which in Figures 19.21 and 19.22 would be AF_INET.

547--548

549--552

rt_ifmsg Function

In Figure 4.30 we saw that i f_up and i f_down both call rt_i fmsg, shown in Fig-
ure 19.27, to generate a routing socket message when an interface goes up or down.

rtsock.c
540 void
541 rt_ifmsg(ifp)
542 struct ifnet *ifp;
543 {
544 struct if_msghdr *ifm;
545 struct mbuf *m;
546 struct rt_addrinfo info;

547 if (route_cb.any_count :: 0)
548 return;

549 bzero((caddr_t) & info, sizeof(info));
550 m : rt_msgI(RTM_IFINFO, &info);
551 if (m == 0)
552 return;

553
554
555
556
557

ifm : mtod(m, struct if_msghdr *);
ifm->ifm_index = ifp->if_index;
ifm->ifm_flags = ifp->if_flags;
ifm->ifm_data = ifp->if_data; /*
ifm->ifm_addrs = 0;

structure assignment */

558 route_proto.sp_protocol = 0;
559 raw_input(m, &route_proto, &route_src, &route_dst);
560 }

Figure 19.27 rt_ifmsg function.

rtsock.c

If there aren’t any routing socket listeners, the function returns immediately.

Build message in mbuf chain
An rt_addrinfo structure is set to 0 and rt_msgl builds an appropriate message

in an mbuf chain. Notice that all socket address pointers in the rt_addrinfo structure
are null, so only the fixed-length i f_msghdr structure becomes the routing message;
there are no addresses.

Ex.1013.653DELL

628 Routing Requests and Routing Messages Chapter 19

553-557

558-559

Finish building message
The interface’s index, flags, and i f_data structure are copied into the message in

the mbuf and the i fm_addrs bitmask is set to 0.

Set protocol of message, call raw_input

The protocol of the routing message is set to 0 because this message can apply to all
protocol suites. It is a message about an interface, not about some specific destination.
raw_input delivers the message to the appropriate listeners.

19.11 rt_newaddrmsg Function i!~ii

In Figure 19.13 we saw that rt±nit calls rt_newaddrmsg with a command of }!i:ii
RTM_ADD or RTN_DELETE when an interface has an address added or deleted. Fig- .:i:/
ure 19.28 shows the first half of the function.,.:,::}~

rtsock.c .:~.~.
569 void
570 rt_newaddrmsg(cmd, ifa, error, rt)
571 int cmd, error;
572 struct ifaddr *ifa;
573 struct rtentry *rt;
574 {
575 struct rt_addrinfo info;
576 struct sockaddr *sa;
577 int pass;
578 struct mbuf *m;
579 struct ifnet *ifp = ifa->ifa_ifp;

580 if (route_cb.any_count :: 0)
581 return;

582
583
584
585
586
587

for (pass - i; pass < 3; pass++) {
bzero((caddr_t) & info, sizeof(info));
if ((cmd == RTM_ADD && pass == i) I I

(cmd == RTM_DELETE && pass == 2)) {
struct ifa_msghdr *ifam;
int ncmd : cmd :: RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;

ifaaddr : sa : ifa->ifa_addr;
ifpaddr : ifp->if_addrlist->ifa_addr;
netmask = ifa->ifa_netmask;
brdaddr = ifa->ifa_dstaddr;
if ((m = rt_msgl(ncmd, &info)) == NULL)

continue;
ifam = mtod(m, struct ifa_msghdr *);
ifam->ifam_index = ifp->if_index;
ifam->ifam_metric = ifa->ifa_metric;
ifam->ifam_flags = ifa->ifa_flags;
ifam->ifam_addrs = info.rti_addrs;

rtsock.c

588
589
590
591
592
593
594
595
596
597
598
599

Figure 19.28 rt_newaddrmsg function: first half: create i fa_msghdr message.

Ex.1013.654DELL

~hapter 19

-~ssage in

ply to all
;tination.

mand of
:ed. Fig-

-- rtsock.c

-- rtsock.c

Section 19.11 r t_newaddrmsg Function 629

580-581

582

583

588--591

600--609

616--619

If there aren’t any routing socket listeners, the function returns immediately.

Generate two routing messages
The for loop iterates twice because two messages are generated. If the command is

RTM_ADD, the first message is of type RTM NEWADDR and the second message is of type
RTM_ADD. If the command is RTM_DELETE, the first message is of type RTM_DELETE
and the second message is of type RTM_DELADDR. The RTM__NEWADDR and
RTM_DELADDR messages are built from an i fa_msghdr structure, while the RTM_ADD
and RTM_DELETE messages are built from an rt_msghdr structure. The function gen-
erates two messages because one message provides information about the interface and
the other about the addresses.

An rt_addrinfo structure is set to 0.

Generate message with up to four addresses
Pointers to four socket address structures containing information about the inter-

face address that has been added or deleted are stored in the rti_info array. Recall
from Figure 19.19 that i faaddr, i fpaddr, netmask, and brdaddr reference elements
in the rti_info array in info. rt_msgl builds the appropriate message in an mbuf
chain. Notice that sa is set to point to the ifa_addr structure, and we’ll see at the end
of the function that the family of this socket address structure becomes the protocol of
the routing message.

Remaining members of the i fa_msghdr structure are filled in with the interface’s
index, metric, and flags, along with the bitmask set by r t_msgl.

Figure 19.29 shows the second half of rt_newaddrmsg, which creates an
rt_msghdr message with information about the routing table entry that was added or
deleted.

Build message

Pointers to three socket address structures are stored in the rti_info array: the
rt_mask, rt_key, and rt_gateway structures, sa is set to point to the destination
address, and its family becomes the protocol of the routing message, rt_msgl builds
the appropriate message in an mbuf chain.

Additional fields in the rt_msghdr structure are filled in, including the bitmask set
by rt_msgl.

Set protocol of message, call raw_ix~];>ut
The protocol of the routing message is set and raw_input passes the message to

the appropriate listeners. The function returns after two iterations through the loop.

Ex.1013.655DELL

630 Routing Requests and Routing Messages
Chapter 19

600 if ((cmd =: RTM_ADD && pass := 2) I I

601 (cmd :: RTM_DELETE && pass =: i)) {

602 struct rt_msghdr *rtm;

603 if (rt == 0)
604 continue;

605 netmask - rt_mask(rt);

606 dst = sa = rt_key(rt);

607 gate = rt->rt_gateway;

608 if ((m = rt_msgl(cmd, &info)) == NULL)

609 continue;

610 rtm = mtod(m, struct rt_msghdr *);

611 rtm->rtm_index = ifp->if_index;

612 rtm->rtm_flags I= rt >rt_flags;

613 rtm->rtm_errno : error;

614 rtm->rtm_addrs = info.rti_addrs;

615 }
616 route_proto.sp_protocol = sa ? sa->sa_family : 0;

617 raw_input(m, &route_proto, &route_src, &route_dst);

618]
619]

Figure 19.29 rt_newaddrmsg function: second half, create rt_msghdr message.

rtsock.c

- rtsock.c

19.12

399-422

423-424

425-428

rt_msgl Function

The functions described in the previous three sections each called rt_msgl to build the
appropriate routing message. In Figure 19.25 we showed the mbuf chain that was built
by rt_msgl from the rt_msghdr and rt_addrinfo structures in Figure 19.22. Fig-

ure 19.30 shows the function.

Get mbuf and determine fixed size of message
An mbuf with a packet header is obtained and the length of the fixed-size message

is stored in len. Two of the message types in Figure 18.9 use an ±£a_msghdr structure,
one uses an ± £_rasghdr structure, and the remaining nine use an rt_rasghdr structure.

Verify structure fits in mbuf
The size of the fixed-length structure must fit entirely within the data portion of the

packet header mbuf, because the mbuf pointer is cast to a structure pointer using mtod
and the structure is then referenced through the pointer. The largest of the three struc-
tures is ± £_ms~hdr, which at 84 bytes is less than MHbEN (100).

Initialize mbuf packet header and zero structure
The two fields in the packet header are initialized and the structure in the mbuf is

set to 0.

Se(

Ex.1013.656DELL

:r 19

;ock.c

~ the
built
Fig-

;sage
’.ture,
’.ture.

~f the
ntod
~truc-

)uf is

Section 19.12

399 static struct mbuf *
400 rt_msgl(type, rtinfo)
401 int type;
402 struct rt_addrinfo *rtinfo;
403 {
404 struct rt_msghdr *rtm;
405 struct mbuf *m;
406 int i;
407 struct sockaddr *sa;
408 int fen, dlen;

rt_msgl Function

409 m = m_gethdr(M_DONTWAIT, MT_DATA);
410 if (m == 0)
411 return (m);
412 switch (type) {

413 case RTM_DELADDR:
414 case RTM_NEWADDR:
415 len = sizeof(struct
416 break;

ifa_msghdr)

417 case RTM_IFINFO:
418 len = sizeof(struct if_msghdr)
419 break;

420
421
422
423
424
425
426
427
428

429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445 }

default:
len = sizeof(struct rt_msghdr)

}
if (len > MHLEN)

panic("rt_msgl");
m->m~kthdr.len = m->m_len = len;
m->m_pkthdr.rcvif = 0;
rtm : mtod(m, struct rt_msghdr *)
bzero((caddr_t) rim, len);

for (i : 0; i < RTAX_MAX; i++) {
if ((sa : rtinfo->rti_info[i]

continue;
rtinfo->rti_addrs I= (i << i)
dlen = ROUNDUP(sa->sa_len);
m_copyback(m, len, dlen,
fen += dlen;

}
if (m->m~kthdr.len !: fen) {

m_freem(m);
return (NULL);

}
rtm->rtm_msglen = len;
rtm->rtm_version = RTM_VERSION;
rtm->rtm_type = type;
return {m);

:= NULL)

(caddr_t) sa)

Figure 19.30 rt_msgl function: obtain and initialize mbuf.

631

rtsock.c

rtsock.c

Ex.1013.657DELL

632

429--436

437--440

441--445

19.13

Routing Requests and Routing Messages
Chapter 19

Copy socket address structures into mbuf chain
The caller passes a pointer to an rt_addrinfo structure. The socket address struc-

tures corresponding to all the nonnull pointers in the rti_info are copied into the
mbuf by m_copyback. The value 1 is left shifted by the RTAX_xxx index to generate
the corresponding RTA_XXX bitmask (Figure 19.19), and each individual bitmask is logi-
cally ORed into the rti_addrs member, which the caller can store on return into the
corresponding member of the message structure. The ROUNDUP macro rounds the size
of each socket address structure up to the next multiple of 4 bytes.

If, when the loop terminates, the length in the mbuf packet header does not equal
len, the function ra_copyback wasn’t able to obtain a required mbuf.

Store length, version, and type
The length, version, and message type are stored in the first three members of the

message structure. Again, al! three xxx_msghdr structures start with the same three
members, so this code works with all three structures even though the pointer rtra is a
pointer to an rt msghdr structure.

rt_msg2 Function

rt rasgl constructs a routing message in an mbuf chain, and the three functions that
cal]-ed it then called raw_input to append the mbuf chain to one or more socket’s
receive buffer, rt_rasg2 is different--it builds a routing message in a memory buffer,
not an mbuf chain, and has as an argument a pointer to a walkarg structure that is
used when rt_msg2 is called by the two functions that handle the sysctl system call
for the routing domain, rt_msg2 is called in two different scenarios:

I. from route_output to process the RTM_GET command, and

2. from sysctl_dumpentry and sysctl_iflist to process a sysctl system
ca!!.

Before looking at rt_msg2, Figure 19.31 shows the walkarg structure that is used
in scenario 2. We go through a!l these members as we encounter them.

rtsock.c

/* NET RT xxx */
/* RTF_xxx for FLAGS, if_index for IFLIST */
/* size of process’ buffer */
/* #bytes actually needed (at end) */
/* size of buffer pointed to by w_tmem */
/* ptr to process’ buffer (maybe null) */
/* ptr to our malloc’ed buffer */

41 struct walkarg {
42 int w_op;
43 int w_arg;
44 int w_given;

45 int w_needed;
46 int w_tmemsize;
47 caddr_t w_where;
48 caddr_t w_tmem;
49];

Figure 19.31 walkarg structure: used with the Sysctl system call in the routing domain.

rtsock.c

Figure 19.32 shows the first half of the rt_msg2 function. This portion is similar to
the first half of rt_msgl.

Ex.1013.658DELL

TUC-

the
:rate
togi-
~ the
size

qual

f the
hree
~isa

that
ket’s
~ffer,
Lat is

call

stem

used

sock.c

ST */

*/
*/

~sock.c

lar to

Section 19.13 rv_msg2 Function 633

rtsock.c

446--455

446 static int
447 rt_msg2(type, rtinfo, cp, w)
448 int type;
449 struct rt_addrinfo *rtinfo;
450 caddr_t cp;
451 struct walkarg *w;
452 {
453 int i;
454 int len, dlen, second_time - 0;
455 caddr_t cp0;

456 rtinfo->rti_addrs = 0;
457 again:
458 switch (type) {

459 case RTM_DELADDR:
460 case RTM_NEWADDR:
461 len = sizeof(struct ifa_msghdr);
462 break;

463 case RTM_IFINFO:
464 len = sizeof(struct if_msghdr);
465 break;

466 default:
467 len = sizeof(struct rt_msghdr);
468 }
469 if (cp0 = cp)
470 cp +- len;
471 for (i = 0; i < RTAX_MAX; i++) {
472 struct sockaddr *sa;

473 if ((sa = rtinfo->rti_info[i]) == 0)
474 continue;
475 rtinfo->rti_addrs l= (i << i);
476 dlen = ROUNDUP(sa->sa_len);
477 if (cp) {
478 bcopy((caddr_t) sa, cp, (unsigned)
479 cp += dlen;
480 }
481 len += dlen;
482)

dlen);

Figure 19.32 rt_msg2 function: copy socke[address structures.

rtsock.c

Since this function stores the resulting message in a memory buffer, the caller speci-
fies the start of that buffer in the cp argument. It is the caller’s responsibility to ensure
that the buffer is large enough for the message that is generated. To help the caller
determine this size, if the cp argument is null, rt_msg2 doesn’t store anything but pro-
cesses the input and returns the total number of bytes required to hold the result. We’ll
see that route_output uses this feature and calls this function twice: first to determine
the size and then to store the result, after allocating a buffer of the correct size. When
rt_msg2 is called by route_output, the final argument is null. This final argument is
nonnull when called as part of the sys c t i system call processing.

Ex.1013.659DELL

634 Routing Requests and Routing Messages

458-470

471-482

Chapter 19

Determine size of structure
The size of the fixed-length message structure is set based on the message type. If

the ep pointer is nonnull, it is incremented by this size.

Copy socket address structures
The for loop goes through the rt i_info array, and for each element that is a non-

null pointer it sets the appropriate bit in the rti_addrs bitmask, copies the socket
address structure (if ep is nonnull), and updates the length.

Figure 19.33 shows the second half of rt_msg2, most of which handles the optional

walkarg structure.
rtsock.c

483 if (cp :: 0 && w !: NULL && !second_time) {
484 struct walkarg *rw = w;

485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
50O
501
502
503

rw->w_needed +: len;
if (rw->w_needed <= 0 && rw->w_where) {

if (rw->w_tmemsize < len) {
if (rw->w_tmem)

free(rw->w_tmem, M_RTABLE);

if (rw->w_tmem = (caddr_t)
malloc(len, M_RTABLE, M NOWAIT))
rw->w_tmemsize : len;

(rw->w_tmem) {
cp = rw->w_tmem;
second_time = I;
goto again;

else
rw->w_where = 0;

(cp) {
struct rt_msghdr *rtm = (struct rt_msghdr *) cp0;

504 rtm->rtm_version = RTM_VERSION;
505 rtm->rtm_type : type;
506 rtm->rtm_msglen = len;

5O7
508 return (len) ;
509 } rtsock.c

483-484

485-486

Figure 19.33 rt_msg2 function: handle optional walkarg argument.

This if statement is true only when a pointer to a walkarg structure was passed
and this is the first loop through the function. The variable second_time was initial-
ized to 0 but can be set to I within this i £ statement, and a jump made back to the label
again in Figure 19.32. The test for cp being a null pointer is superfluous since when-
ever the w pointer is nonnull, the cp pointer is null, and vice versa.

Check if data to be storedw needed is incremented by the size of the message. This variable is initialized to
0 minus the size of the user’s buffer to the sysetl function. For example, if the buffer

Ex.1013.660DELL

~r 19

~on-
cket

onal

;ock.c

"tsock.c

~assed
nitial-
~ label
when-

zed to
buffer

Section 19.14 sysct l_rtable Function 635

size is 500 bytes, w_needed is initialized to -500. As long as it remains negative, there
is room in the buffer, w_where is a pointer to the buffer in the calling process. It is null
if the process doesn’t want the result--the process just wants sgsct ! to return the size
of the result, so the process can allocate a buffer and call sysctl again, rt_msg2
doesn’t copy the data back to the process--that is up to the caller--but if the w where
pointer is null, there’s no need for rt_msg2 to malloc a buffer to hold the result and
loop back through the function again, storing the result in this buffer. There are really
five different scenarios that this function handles, summarized in Figure 19.34.

called from cp w w. w_where

null null
route_output

nonnull null

null nonnull null
sysctl_rtable nullnonnull nonnull

nonnull nonnull nonnull

second_time

0
0
1

Description

wants return length
wants result

process wants return length
first time around to calculate length
second time around to store result

Figure 19.34 Summary of different scenarios for rt_msg2.

487--493

494--499

502-509

Allocate buffer first time or if message length increases
w_tmemsize is the size of the buffer pointed to by w_tmem. It is initialized to 0 by

sysctl_rtable, so the first time rt_msg2 is called for a given sysctl request, the
buffer must be allocated. Also, if the size of the result increases, the existing buffer must
be released and a new (larger) buffer allocated.
Go around again and store result

If w_tmem is nonnull, a buffer already exists or one was just allocated, cp is set to
point to this buffer, second_time is set to 1, and a jump is made to again. The if
statement at the beginning of this figure won’t be true during this second pass, since
second_time is now 1. If w_tmem is null, the call to malloc failed, so the pointer to
the buffer in the process is set to null, preventing anything from being returned.
Store length, version, and type

If cp is nonnull, the first three elements of the message header are stored. The func-
tion returns the length of the message.

19.14 sysctl_rtable Function

This function handles the sysctl system call on a routing socket. It is called by
net_sysct 1 as shown in Figure 18.11.

Before going through the source code, Figure 19.35 shows the typical use of this sys-
tem call with respect to the routing table. This example is from the arp program.

The first three elements in the mib array cause the kernel to call sysctl_rtable
to process the remaining elements.

Ex.1013.661DELL

636 Routing Requests and Routing Messages Chapter 19

int mib [6] ;
size_t needed;
char *buf, *lim, *next;
struct rt_msghdr *rtm;

mib[0] = CTL_NET;
mib[l] = PF_ROUTE;
mib[2] = 0;
mib[3] = AF_INET; /* address family; can be 0 */

m±b[4] = NET RT FLAGS; /* operation */
mib[5] = RTF_LLINFO; /* flags; can be 0 */

if (sysctl(mib, 6, NULL, &needed, NULL, 0) < 0)
quit("sysctl error, estimate");

if ((buf : malloc(needed)) := NULL)
quit("malloc");

if (sysctl(mib, 6, bur, &needed, NULL, 0) < 0)
quit("sysctl error, retrieval");

lim = buf + needed;
for (next = buf; next < lim; next +: rtm->rtm_msglen)

rtm = (struct rt_msghdr *)next;
/* do whatever */

]

Figure 19.35 Example of sysc t 1 with routing table.

mib [4] specifies the operation. Three operations are supported.

1. NET RT DUMP: return the routing table corresponding to the address family
specified by mib [3]. If the address family is 0, all routing tables are returned.

An RTM_GET routing message is returned for each routing table entry contain-
ing two, three, or four socket address structures per message: those addresses
pointed to by rt_key, rt_gateway, rt_netmask, and rt_genmask. The
final two pointers might be null.

2. NET RT FLAGS: the same as the previous command except mib [5] specifies an
RTF_xxx flag (Figure 18.25), and only entries with this flag set are returned.

3. NET RT IFLIST: return information on all the configured interfaces. If the
mib[5] value is nonzero it specifies an interface index and only the interface
with the corresponding i f_index is returned. Otherwise all interfaces on the
i fnet linked list are returned.

For each interface one RTM IFINFO message is returned, with information
about the interface itself, followed by one RTM_NEWADDR message for each
i faddr structure on the interface’s if addrlist linked list. If the mib[3]
value is nonzero, RTM_NEWADDR messages are returned for only the addresses

Ex.1013.662DELL

aily

~in-
sses
The

~ an

the
face
the

tion
inch
[3]
sses

Section 19.14 sysct l_rtable Function 637

with an address family that matches the mib [3] value. Otherwise mib [3] is 0
and information on all addresses is returned.

705--719

720-721

This operation is intended to replace the SIOCGIFCONF ioct i (Figure 4.26).

One problem with this system call is that the amount of information returned can
vary, depending on the number of routing table entries or the number of interfaces.
Therefore the first call to sysctl typically specifies a null pointer as the third argu-
ment, which means: don’t return any data, just return the number of bytes of return
information. As we see in Figure 19.35, the process then calls malloc, followed by
sy s c t 1 to fetch the information. This second call to sy s c t 1 again returns the number
of bytes through the fourth argument (which might have changed since the previous
call), and this value provides the pointer 1 im that points just beyond the final byte of
data that was returned. The process then steps through the routing messages in the
buffer, using the rtm msglen member to step to the next message.

Figure 19.36 shows the values for these six mib variables that various Net/3 pro-
grams specify to access the routing table and interface list.

mib[]

0
1
2
3
4
5

arp

CTL_NET
PF_ROUTE
0
AF_INET
NET RT FLAGS
RTF_LLINFO

route

CTL_NET
PF_ROUTE
0
0
NET RT DUMP
0

netstat

CTL_NET
PF_ROUTE
0
0
NET RT DUMP
0

routed

CTL_NET
PF_ROUTE
o
AF_INET
NET RT IFLIST

Io

gated

CTL_NET
PF_ROUTE
0
0
NET RT IFLIST
0

rwhod

CTL_NET
PF_ROUTE
0
AF_INET
NET RT IFLIST
0

Figure 19.36 Examples of programs that call sysct 1 to obtain routing table and interface list.

The first three programs fetch entries from the routing table and the last three fetch the
interface list. The routed program supports only the Internet routing protocols, so it
specifies a mib[3] value of AF_INET, while gated supports other protocols, so its
value for mib [3] is 0.

Figure 19.37 shows the organization of the three sysctl_xxx functions that we
cover in the following sections.

Figure 19.38 shows the sysct l_rtable function.
Valklate arguments

The new argument is used when the process is calling sysctl to set the value of a
variable, which isn’t supported with the routing tables. Therefore this argument must
be a null pointer.

namelen must be 3 because at this point in the processing of the system call, three
elements in the name array remain: name[0], the address family (what the process
specifies as mib [3]); name [1], the operation (mib [4]); and name [2], the flags
(mib [5]).

Ex.1013.663DELL

638 Routing Requests and Routing Messages

sysctl
system call

~’~&~/ I for each
| selected

~O~ r t_msg2 <

builds routing message
in buffer and copies

back to process

Figure 19.37 Functions that support the sysct i system call for routing sockets.

705 int
706 sysctl_rtable(name, namelen, where, given, new, newlen)
707 int *name;
708 int namelen;
709 caddr_t where;
710 size_t *given;
711 caddr_t *new;
712 size_t newlen;
713 {
714 struct radix_node_head *rnh;
715 int i, s, error = EINVAL;
716 u_char af;
717 struct walkarg w;

718 if (new)
719 return (EPERM);

Chapter 19

Ex.1013.664DELL

~apter 19

-- rtsock.c

19.14 sysct l_rtable Function 639

720
721
722
723
724
725
726
727
728

729
730

731
732
733
734
735
736
737
738

739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754

if (namelen !: 3)
return (EINVAL) ;

af = name[0];
Bzero(&w, sizeof(w));
w.w_where = where;
w.w_given : *given;
w.w_needed - 0 - w.w_given;
w.w_op = name[l];
w.w_arg = name[2];

s = splnet();
switch (w.w_op) {

case NET RT DUMP:
case NET RT FLAGS:

for (i = i; i <= AF_MAX; i++)
if ((rnh = rt_tables[i]) && (af == 0 I I af == i) &&

(error = rnh->rnh_walktree(rnh,
sysctl_dumpentry, &w)))

break;
break;

case NET_RT_IFLIST:
error = sysctl_iflist(af, &w);

}
splx(s);
if (w.w_tmem)

free(w.w_tmem, M_RTABLE);
w.w_needed += w.w_given;
if (where) {

*given = w.w_where - where
if {*given < w.w_needed)

return (ENOMEM);
} else {

*given = (ii * w.w_needed / i0;

}
return (error);

Figure 19.38 sysctl_rtable function: process sysctl system call requests.

rtsock.c

723--728

731-738

Initialize walkarg structure
A walkarg structure (Figure 19.31) is set to 0 and the following members are ini-

tialized: w_where is the address in the calling process of the buffer for the results (this
can be a null pointer, as we mentioned); w_given is the size of the buffer in bytes (this
is meaningless on input if w_where is a null pointer, but it must be set on return to the
amount of data that would have been returned); w_needed is set to the negative of the
buffer size; w_op is the operation (the NET RT xxx value); and w_arg is the flags value.

Dump routing table
The NET RT DUMP and NET RT FLAGS operations are handled the same way: a

loop is made through all the routing tables (the rt_tables array), and if the routing

Ex.1013.665DELL

640

739--740

743--744

745

746--749

750-752

19.15

Routing Requests and Routing Messages
Chapter 19

table is in use and either the address family argument was 0 or the address family argu-
ment matches the family of this routing table, the rnh_walktree function is called to
process the entire routing table. In Figure 18.17 we show that this function is normally
rn walktree. The second argument to this function is the address of another function
tha~ is called for each leaf of the routing tree (sysctl_dumpentry). The third argu-
ment is just a pointer to anything that rn_walktree passes to the
sysctl_dumpentry function. This argument is a pointer to the walkarg structure
that contains all the information about this sysctl call.

Return interface list
The NET RT IFLIST operation calls the function sysctl_iflist, which goes

through all the i fnet structures.

Release buffer
If a buffer was allocated by rt msg2 to contain a routing message, it is now

released.

Update w_needed

The size of each message was added to w_needed by rt_msg2. Since this variable
was initialized to the negative of w_given, its value can now be expressed as

w_needed = 0 - w_given + totalbytes

where totalbytes is the sum of all the message lengths added by rt_msg2. By
adding the value of w_given back into w_needed, we get

w_needed = 0 - w_given + totalbytes + w_given
totalbytes

the total number of bytes. Since the two values of w_given in this equation end up
canceling each other, when the process specifies w where as a null pointer it need not
initialize the value of w_given. Indeed, we see in Figure 19.35 that the variable
needed was not initialized.

Return actual size of message
If where is nonnull, the number of bytes stored in the buffer is returned through the

given pointer. If this value is less than the size of the buffer specified by the process,
an error is returned because the return information has been truncated.
Return estimated size of message

When the where pointer is null, the process just wants the total number of bytes
returned. A 10% fudge factor is added to the size, in case the size of the desired tables
increases between this call to sysctl and the next.

Sysct l_dumpentry Function

In the previous section we described how this function is called by rn_walktree,
which in turn is called by sysctl_rtable. Figure 19.39 shows the function.

Sect

623

631

633

Ex.1013.666DELL

~r 19

rgu-
’d to
~ally
:t-ion
r~l-

the
:ture

goes

now

iable

¸. By

td up
d not
riable

~h the
ocess,

bytes
tables

.tree,

Section 19.15

623 int
624 sysctl_dumpentry(rn, w)
625 struct radix_node *rn;
626 struct walkarg *w;
627 {
628 struct rtentry *rt = (struct rtentry *) rn;
629 int error = 0, size;
630 struct rt_addrinfo info;

631
632
633
634
635
636
637
638
639
640

623-630

631-632

633-638

sysc t l_dumpent ry Function 641

641
642
643
644
645
646
647
648
649
650
651
652
653

if (w->w_op :- NET RT FLAGS && ! (rt->rn_flags & w->w_arg))
return 0;

bzero((caddr_t) & info, sizeof(info));
dst - rt_key(rt);
gate = rt->rt_gateway;
netmask = rt_mask(rt);
genmask - rt->rt_genmask;
size = rt_msg2(RTM_GET, &info, 0, w);
if (w->w_where && w->w_tmem) {

struct rt_msghdr *rtm: (struct rt_msghdr *) w->w_tmem;

rtm->rtm_flags = rt->rt_flags;
rtm->rtm_use = rt->rt_use;
rtm >rtm_rmx = rt->rt_rmx;
rtm->rtm_index - rt->rt_ifp->if_index;
rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0;
rtm->rtm_addrs - info.rti_addrs;
if (error = copyout((caddr_t) rtm, w >w_where, size))

w->w_where : NULL;
else

w->w_where += size;
}
return (error);

Figure 19.39 sysct l_dumpentry function: process one routing table entry.

rtsock.c

rtsock.c

Each time this function is called, its first argument points to a radix_node struc-
ture, which is also a pointer to a rtentry structure. The second argument points to the
walkarg structure that was initialized by sysct t_rtable.
Check flags of routing table entry

If the process specified a flag value (mib [5]), this entry is skipped if the rt_flags

member doesn’t have the desired flag set. We see in Figure 19.36 that the arp program
uses this to select only those entries with the RTF_LLINFO flag set, since these are the
entries of interest to ARR

Form routing message
The following four pointers in the rti_info array are copied from the routing

table entry: dst, gate, netmask, and genmask. The first two are always nonnull, but
the other two can be null. rt_msg2 forms an RTM_GET message.

Ex.1013.667DELL

642

639-651

19.16

Routing Requests and Routing Messages Chapter 19

Copy message back to process

If the process wants the message returned and a buffer was allocated by rt_msg2,
the remainder of the routing message is formed in the buffer pointed to by w_tmem and
copyout copies the message back to the process. If the copy was successful, w_where
is incremented by the number of bytes copied.

sysctl_iflist Function

This function, shown in Figure 19.40, is called directly by sysct l_rtabl e to return the
interface list to the process.

654 int
655 sysctl_iflist(af, w)
656 int af;
657 struct walkarg *w;
658 {
659 struct ifnet *ifp;
660 struct ifaddr *ira;
661 struct rt_addrinfo info;
662 int fen, error : O;

663
664
665
666
667
668
669
670
671
672

673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690

bzero((caddr_t) & info, sizeof(info));
for (ifp = ifnet; ifp; ifp = ifp->if_next) {

if (w->w_arg && w->w_arg != ifp->if_index)
continue;

ifa = ifp->if_addrlist;
ifpaddr = ifa->ifa_addr;
fen = rt_msg2(RTM_IFINFO, &info, (caddr_t) 0, w);
ifpaddr = 0;
if (w->w_where && w->w_tmem) {

struct if_msghdr *ifm;

ifm : (struct if_msghdr *) w->w_tmem;
ifm->ifm_index : ifp->if_index;
ifm->ifm_flags = ifp->if_flags;
ifm->ifm_data = ifp->if_data;
ifm->ifm_addrs = info.rti_addrs;
if (error = copyout((caddr_t) ifm, w->w_where, len))

return (error);
w->w_where +: len;

}
while (ifa = ifa->ifa_next) {

if (af && af != ifa->ifa_addr->sa_family)
continue;

ifaaddr = ifa->ifa_addr;
netmask = ifa->ifa_netmask;
brdaddr = ifa->ifa_dstaddr;
len = rt_msg2(RTM_NEWADDR, &info, 0, w);
if (w->w_where && w->w_tmem) {

struct ifa_msghdr *ifam;

rtsock.c

Ex.1013.668DELL

Chapter 19

rt_msg2,
_tmem and
w_where

. return the

-- rtsock.c

Section 19.16

6 91

694
695
696
6 9 7

?00

654--666

667--670

671--681

682--684

685--688

689--699

701

sysctl_iflist Function 643

ifam = (struct ifa_msghdr *) w->w_tmem;
ifam->ifam_index = ifa->ifa_ifp->if_index;
ifam->ifam_flags = ifa->ifa_flags;
ifam->ifam_metric = ifa->ifa_metric;
ifam->ifam_addrs = info.rti_addrs;
if (error = copyout(w->w_tmem, w->w_where, len))

return (error);
w->w_where += len;

]
}
ifaaddr = netmask = brdaddr = O;

}
return (0);

Figure 19.40 sysctl_i flist function: return list of interfaces and their addresses.

rtsock.c

This function is a for loop that iterates through each interface starting with the one
pointed to by ifnet. Then a while loop proceeds through the linked list of ifaddr
structures for each interface. An RTM_IFINFO routing message is generated for each
interface and an RTM_NEWADDR message for each address.

Check interface index

The process chn specify a nonzero flags argument (mib [5] in Figure 19.36) to select
only the interface with a matching i f_index value.

Build routing message
The only socket address structure returned with the RTM_IFINFO message is

ifpaddr. The message is built by rt_msg2. The pointer ifpaddr in the info struc-
ture is then set to 0, since the same info structure is used for generating the subsequent
RTM_NEWADDR messages.
Copy message back to process

If the process wants the message returned, the remainder of the i f_msghdr struc-
ture is filled in, copyout copies the buffer to the process, and w_where is incremented.
Iterate through address structures, check address family

Each i faddr structure for the interface is processed and the process can specify a
nonzero address family (mib[3] in Figure 19.36) to select only the interface addresses
of the given family.
Build routing message

Up to three socket address structures are returned in each RTM_NEWADDR message:
i faaddr, netmask, and brdaddr. The message is built by rt_msg2.

Copy message back to process
If the process wants the message returned, the remainder of the i fa_msghdr struc-

ture is filled in, copyout copies the buffer to the process, and w__where is incremented.
These three pointers in the info array are set to 0, since the same array is used for

the next interface message.

Ex.1013.669DELL

644 Routing Requests and Routing Messages Chapter 19

19.17 Summary

Routing messages all have the same format--a fixed-length structure followed by a
variable number of socket address structures. There are three different types of mes-
sages, each corresponding to a different fixed-length structure, and the first three ele-
ments of each structure identify the length, version, and type of message. A bitmask in
each structure identifies which socket address structures follow the fixed-length struc-
ture.

These messages are passed between a process and the kernel in two different ways.
Messages can be passed in either direction, one message per read or write, across a rout-
ing socket. This allows a superuser process complete read and write access to the ker-
nel’s routing tables. This is how routing daemons such as routed and gatec]
implement their desired routing policy.

Alternatively any process can read the contents of the kernel’s routing tables using
the s!~s¢¢]- system call. This does not involve a routing socket and does not require
special privileges. The entire result, normally consisting of many routing messages, is
returned as part of the system call. Since the process does not know the size of the
result, a method is provided for the system call to return this size without returning the
actual result.

Exercises

19.1 What is the difference in the RTF_DYNAMIC and RTF_MODIFIED flags? Can both be set for
a given routing table entry?

19.2 What happens when the default route is entered with a command of the form
bsdi $ route add default -cloning -genmask 255.255.255.255 sun

19.3 Estimate the space required by sysctl to dump a routing table that contains 15 ARP
entries and 20 routes.

Ex.1013.670DELL

19

a

in

~S.
]t-

ed

ng
ire
, is
:he
.he

for

2O

Routing Sockets

Introduction

A process sends and receives the routing messages described in the previous chapter by
using a socket in the routing domain. The socket system call is issued specifying a fam-
ily of PF_ROUTE and a socket type of SOCK_RAW.

The process can then send five routing messages to the kernel:

1. RTM_ADD: add a new route.

2. RTM_DELETE: delete an existing route.

3. RTM_GET: fetch all the information about a route.

4. RTM_CHANGE: change the gateway, interface, or metrics of an existing route.

5. RTM_LOCK: specify which metrics the kernel should not modify.

Additionally, the process can receive any of the other seven types of routing messages
that are generated by the kernel when some event, such as interface down, redirect
received, etc., occurs.

This chapter looks at the routing domain, the routing control blocks that are created
for each routing socket, the function that handles messages from a process
(route_output), the function that sends routing messages to one or more processes
(raw_input), and the various functions that support all the socket operations on a
routing socket.

645

Ex.1013.671DELL

646

20.2

Chapter 20

routedomain and protosw Structures

Before describing the routing socket functions, we need to discuss additional details
about the routing domain; the SOCK_RAW protocol supported in the routing domain;
and routing control blocks, one of which is associated with each routing socket.

Figure 20.1 lists the domain structure for the PF_ROUTE domain, named
rout edomain.

Member

--~omom_family

dom_name

dom_init

dom_externalize
dom_dispose

dom_protosw
dom_protoswNPROTOSW

dom_next

dom_rtattach

dom_rtoffset
dom_maxrtkey

value

PF_ROUTE
route
route_init
0
0
routesw

o
o
0

Description

protocol family for domain
name
domain initialization, Figure 18.30
not used in routing domain
not used in routing domain
protocol switch structure, Figure 20.2
pointer past end of protocol switch structure
filled in by domaininit, Figure 7.15
not used in routing domain
not used in routing domain
not used in routing domain

Figure 20.1 routedomain structure.

Unlike the Internet domain, which supports multiple protocols (TCP, UDP, ICMP,
etc.), only one protocol (of type SOCK_RAW) is supported in the routing domain. Fig-
ure 20.2 lists the protocol switch entry for the PF ROUTE domain ~:.~.

Member Description

raw socket
part of the routing domain

socket layer flags, not used by protocol processing
this entry not used; raw_input called directly
called for PRU_SEND requests
control input function
not used
respond to communication requests from a process
initialization
not used
not used
not used
for sysctl(8) system call

routesw[O]

SOCK_RAW
&routedomain
0
PR_ATOMIC]PR_ADDR
raw_input
route_output
raw_ctlinput

0
rout e_usrreq
raw_init
0
0
0
sysctl_rtable

pr_type
pr_domain
pr_protocol
pr_flags
pr_input
pr_output
pr_ctlinput
pr_ctloutput
pr_usrreq
pr_init
pr_fasttimo
pr_slowtimo
pr_drain
pr_sysctl

Figure 20.2 The routing protocol protosw structure.

Ex.1013.672DELL

20.4 raw_init Function 647

1.3 Routing Control Blocks

20.4

39--47

38-42

Each time a routing socket is created with a call of the form

socket (PF_ROUTE, SOCK_RAW, protocol) ;

the corresponding PRU_ATTACH request to the protocol’s user-request function
(route_usrreq) allocates a routing control block and links it to the socket structure.
The protocol can restrict the messages sent to the process on this socket to one particular
family. If a protocol of AF_INET is specified, for example, only routing messages con-
taining Internet addresses will be sent to the process. A protocol of 0 causes all routing
messages from the kernel to be sent on the socket.

Recall that we call these structures routing control blocks, not raw control blocks, to avoid confu-
sion with the raw IP control blocks in Chapter 32.

Figure 20.3 shows the definition of the rawcb structure.

39 struct rawcb {
40 struct rawcb *rcb_next; /* doubly linked list */

41 struct rawcb *rcb~rev;
42 struct socket *rcb_socket; /* back pointer to socket */
43 struct sockaddr *rcb_faddr; /* destination address *!
44 struct sockaddr *rcb_laddr; /* socket’s address */
45 struct sockproto rcb~roto; /* protocol family, protocol */

46 };

raw_cb.h

47 #define sotorawcb(so) ((struct rawcb *)(so)->so_pcb) raw_cb.h

Figure 20.3 rawcb structure.

Additionally, a global of the same name, rawcb, is allocated as the head of the dou-
bly linked list. Figure 20.4 shows the arrangement.

We showed the sockproto structure in Figure 19.26. Its sp_family member is
set to PF_ROUTE and its sp_protocol member is set to the third argument to the
socket system call. The rcb_faddr member is permanently set to point to
route_src, which we described with Figure 19.26. rcb_laddr is always a null
pointer.

raw_init Function

The raw init function, shown in Figure 20.5, is the protocol initialization function in
the protosw structure in Figure 20.2. We described the entire initialization of the rout-
ing domain with Figure 18.29.

The function initializes the doubly linked list of routing control blocks by setting the
next and previous pointers of the head structure to point to itself.

Ex.1013.673DELL

648 Routing Sockets Chapter 20

rawcb:

descriptor descriptor

file{] file{}

DTYPE_SOCKET f_type

rawcb { }
1 ~ rawcb { } _ rawcb { }rob_next : l

i
1 ~ rcb_socket rcb_socket

’ I I rcb_faddr
rcb_faddr

I I rcb_proto rcb_prot o

doubly linked circular list of
all routing control blocks

Figure 20.4 Relationship of raw protocol control blocks to other data structures.

socket layer
protocol layer

38 void
39 raw_init ()
40 {

yaw_

41
42]

rawcb.rcb_next : rawcb.rcb_prev = &rawcb;

raw_usrreq.c

Figure 20.5 raw_init function: initialize doubly linked list of routing control blocks.

20.5 route_output Function

As we showed in Figure 18.11, route_output is called when the PRU_SEND
issued to the protocol’s user-request function, which is the result of a write o
a process to a routing socket. In Figure 18.9 we indicated that five different types of
routing messages are accepted by the kernel from a process.

Since this function is invoked as a result of a write by a process, the data from theli
process (the routing message to process) is in an mbuf chain from sosend. Figure

Ex.1013.674DELL

route_output Func[ion 649

shows an overview of the processing steps, assuming the process sends an RTM_ADD
command, specifying three addresses: the destination, its gateway, and a network mask
(hence this is a network route, not a host route).

data written
by process’

mbuf chain

"’~.-°o

rtm_addrs

destination
IP address

sockaddr_in { }

gateway
IP address

sockaddr_in { }

network
mask

sockaddr_in { }

process

I processes
selected by
raw_input

mbuf chain

0x0 7

i
rt_msghdr { }

rt_addrinfo{}
rti_addrs
rti_info[DST]
rti_info[GATEWAY]
rti_info[NETMASK]
rti_info[GENMASK]
rti_info[IFP]
rti_info[IFA]
rti_info[AUTHOR]
rti_info[BRD]

Ox07

NULL

NULL

NULL

NULL
NULL

Iarray of pointers formed

brYt ~t;dad<<r ~iftrm°a~k

Figure 20.6 Example processing of an RTM_ADD command from a process.

There are numerous points to note in this figure, most of which we’ll cover as we pro-
ceed through the source code for route_output. Also note that, to save space, we
omit the RTAX_ prefix for each array index in the rt_addrinfo structure.

Ex.1013.675DELL

650 Routing Sockets
Chapter 20

¯ The process specifies which socket address structures follow the fixed-length
rt_msghdr structure by setting the bitmask rtm_addrs. We show a bitmask
of 0x0V, which corresponds to a destination address, a gateway address, and a
network mask (Figure 19.19). The RTM_ADD command requires the first two; the
third is optional. Another optional address, the genmask specifies the mask to
be used for generating cloned routes.

¯ The wr±te system call (the sosenc] function) copies the buffer from the process
into an mbuf chain in the kernel.

¯ m_copydata copies the mbuf chain into a buffer that route_output obtains
using real loc. It is easier to access all the information in the structure and the
socket address structures that follow when stored in a single contiguous buffer
than it is when stored in an mbuf chain.

¯ The function rt_xaddrs is called by route_output to take the bitmask and
build the rt_addrinfo structure that points into the buffer. The code in
route_output references these structures using the names shown in the fifth
column in Figure 19.19. The bitmask is also copied into the rti_addrs mem-
ber.

¯ route_output normally modifies the rt_msghdr structure. If an error occurs,
the corresponding errno value is returned in rtm_errno (for example,
EEXIST if the route already exists); otherwise the flag RTF_DONE is logically
ORed into the rtm_f 1 ags supplied by the process.

¯ The rt_msghdr structure and the addresses that follow become input to 0 or
more processes that are reading from a routing socket. The buffer is first con-
verted back into an mbuf chain by m_copyback, raw_input goes through all
the routing PCBs and passes a copy to the appropriate processes. We also show
that a process with a routing socket receives a copy of each message it writes to
that socket unless it disables the SO_USELOOPBACK socket option.

To avoid receiving a copy of their own routing messages, some programs, such as route,
call shutdown with a second argument of 0 to prevent any data from being received on
the routing socket.

We examine the source code for route_output in seven parts. Figure 20.7 shows a
overview of the function.

int
route_output()

{
R_Malloc() to allocate buffer;
m_copydata() to copy from mbuf chain into buffer;
rt_xaddrs() to build rt_addrinfo{};

switch (message type) {
case RTM_ADD:

rtrequest (RTM_ADD) ;
rt_setmetrics () ;
break;

Ex.1013.676DELL

~hapter 20

:d-length
bitrnask

ss, and a
: two; the
. mask to

e process

- obtains
.~ and the
us buffer

nask and
code in

. the fifth
r s mere-

)r occurs,
example,
logically

zt to 0 or
first con-
rough all
dso show
writes to

.~ as route,
received on

shows an

Section 20.5

113--136

137--242

143--146

147--149

route_output Function 651

case RTM_DELETE:
rtrequest(RTM_DELETE);
break;

case RTM_GET:
case RTM_CHANGE:
case RTM_LOCK:

rtallocl();

switch (message type) {
case RTM_GET:

rt_msg2(RTM_GET);
break;

case RTM CHANGE:
change appropriate fields;
/* fall through */

case RTM_LOCK:
set rmx_locks;
break;

}
break;

}

m_copyback()

raw_input();

rim_error if error, else set RTF_DONE flag;

to copy from buffer into mbuf chain;

/* mbuf chain to appropriate processes */

Figure 20.7 Summary of route_output processing steps.

The first part of route_output is shown in Figure 20.8.
Check mbuf for validity

The mbuf chain is checked for validity: its length must be at least the size of an
rt_msghdr structure. The first longword is fetched from the data portion of the mbuf,
which contains the rtm_msglen value.

Allocate buffer
A buffer is allocated to hold the entire message and m_copydata copies the mes-

sage from the mbuf chain into the buffer.

Check version number
The version of the message is checked. In the future, should a new version of the

routing messages be introduced, this member could be used to provide support for
older versions.

The process ID is copied into rtm_pid and the bitmask supplied by the process is
copied into info.rti_addrs, a structure local to this function. The function
rt_xaddrs (shown in the next section) fills in the eight socket address pointers in the
info structure to point into the buffer now containing the message.

Ex.1013.677DELL

Chapter 20
652 Routing Sockets

113 int
114 route_output(m, so)
115 struct mbuf *m;
116 struct socket *so;
117 {
118
119
120
121
122
123
124

struct rt_msghdr *rtm= 0;
struct rtentry *rt = 0;
struct rtentz-y *saved_nrt : 0;
struct rt_addrinfo info;
int len, error = 0;
struct ifnet *ifp = 0;
struct ifaddr *ifa = 0;

125 #define senderr(e) { error = e; goto flush;}
126 if (m == 0 II ((m >m_len < sizeof(long)) &&
127 (m = m__pullup(m, sizeof long))) == 0))

128 return (ENOBUFS);
129 if ((m->m_flags & M_PKTHDR) == 0)
130 panic("route_output");
131 len = m->m_pkthdr.len;
132 if (fen < sizeof(*rtm) II
133 len != mtod(m, struct rt_msghdr *)->rtm_msglen) {
134 dst = 0;
135 senderr(EINVAL);
136 }
137 R_Malloc(rtm, struct rt_msghdr *, len);
138 if (rtm == 0) {
139 dst = 0;
140 senderr(ENOBUFS);
141 }
142 m_copydata(m, 0, len, (caddr_t) rtm);
143 if (rtm->rtm_version != RTM_VERSION) {
144 dst = 0;
145 senderr(EPROTONOSUPPORT);
146 }
147 rtm->rtm_pid : curproc->p_pid;

148
149

info.rti_addrs = rtm->rtm_addrs;
rt_xaddrs((caddr_t) (rtm + i), len + (caddr_t) rtm, &info);

150 if (dst == 0)
151 senderr(EINVAL);

152
153
154
155
156
157
158
159

if (genmask) {
struct radix_node *t;
t = rn_addmask((caddr_t) genmask, i, 2);
if (t && Bcmp(genmask, t->rn_key, *(u_char *) genmask) == 0)

genmask = (struct sockaddr *) t->rn_key);

else
senderr(ENOBUFS) ;

}

Figure 20.8 route_output function: initial processing, copy message from mbuf chain.

rtsock.c

rtsock.c

Ex.1013.678DELL

apter 20

- rtsock.c

-- rtsock.c

Section 20.5 route_output Function 653

150-151

152-159

Destination address required
A destination address is a required address for all commands. If the

±nfo. rti_info [RTAX_DST] element is a null pointer, EINVAL is returned. Remem-
ber that dst refers to this array element (Figure 19.19).

Handle optional genmask

A genmask is optional and is used as the network mask for routes created when the
RTF_CLONTRG flag is set (Figure 19.8). rn_addmask adds the mask to the tree of
masks, first searching for an existing entry for the mask and then referencing that entry
if found. If the mask is found or added to the mask tree, an additional check is made
that the entry in the mask tree really equals the genmask value, and, if so, the genmask
pointer is replaced with a pointer to the mask in the mask tree.

Figure 20.9 shows the next part of route_output, which handles the RTM_ADD
and RTM_DELETE commands.

rtsock.c
160 switch (rtm->rtm_type) {

161 case RTM_ADD:
162 if (gate =- 0)

163 senderr(EINVAL);
164 error = rtrequest(RTM_ADD, dst, gate, netmask,
165 rtm->rtm_flags, &saved_nrt);

166 if (error == 0 && saved_nrt} {
167 rt_setmetrics(rtm->rtm_inits,
168 &rtm->rtm_rmx, &saved_nrt >rt_rmx);

169 saved_nrt->rt_re£cnt--;
170 saved_nrt->rt_genmask = genmask;
171 }
172 break;

173 case RTM_DELETE:
174 error : rtrequest(RTM_DELETE, dst, gate, netmask,
175 rtm->rtm_flags, (struct rtentry **)

176 break;

0);

Figure 20.9 route_output function: process RTM_ADD and RTM_DELETE commands.

rtsock.c

1 62--1 63

164--165

66--i 72

73--1 76

An RTM_ADD command requires the process to specify a gateway.
rtrequest processes the request. The netmask pointer can be null if the route

being entered is a host route. If all is OK, the pointer to the new routing table entry is
returned through saved_rift.

The rt metrics structure is copied from the caller’s buffer into the routing table
entry. The ~-eference count is decremented and the genmask pointer is stored (possibly
a null pointer).

Processing the RTM_DELETE command is simple because all the work is done by
rtrequest. Since the final argument is a null pointer, rtrequest calls rt free if the
reference count is 0, deleting the entry from the routing table (Figure 19.7).

Ex.1013.679DELL

654 Routing Sockets Chapter 20

The next part of the processing is shown in Figure 20.10, which handles the com-
mon code for the RTM_GET, RTM_CHANGE, and RTM_LOCK commands.

rtsock.c
177 case RTM_GET:
178 case RTM_CHANGE:
179 case RTM_LOCK:
180 rt = rtallocl(dst, 0);
181 if (rt == 0)
182 senderr(ESRCH);
183 if (rtm->rtm_type !- RTM_GET) {
184 struct radix_node *rn;
185 extern

/* XXX: too grotty */

struct radix_node_head *mask_rnhead;

186
187
188
189
190
191
192
193
194
195
196
197

Figure 20.10

if (Bcmp(dst, rt_key(rt), dst->sa_len) != 0)
senderr(ESRCH);

if (netmask && (rn = rn_search(netmask,
mask_rnhead->rnh_treetop)))

netmask = (struct sockaddr *) rn->rn_key;
for (rn = rt->rt_nodes; rn; rn = rn->rn_dupedkey)

if (netmask == (struct sockaddr *) rn->rn_mask)
break;

if (rn =- 0)
senderr(ETOOMANYREFS);

rt = (struct rtentry *) rn;

rtsock.c

route_outputfunction:common processing ~rRTM GET, RTM_CHANGE, and RTM_LOCK.

177-182

183-187

188-193

Locate existing entry
Since all three commands reference an existing entry, r t al 1 o c 1 locates the entry. If

the entry isn’t found, ESRCH is returned.
Do not allow network match

For the RTM_CHANGE and RTM_LOCK commands, a network match is inadequate: an
exact match with the routing table key is required. Therefore, if the dst argument
doesn’t equal the routing table key, the match was a network match and ESRCH is
returned.

Use network mask to find correct entry
Even with an exact match, if there are duplicate keys, each with a different network

mask, the correct entry must still be located. If a netmask argument was supplied, it is
looked up in the mask table (mask_rnhead). If found, the netmask pointer is replaced
with the pointer to the mask in the mask tree. Each leaf node in the duplicate key list is
examined, looking for an entry with an rn_mask pointer that equals netmask. This
test compares the pointers, not the structures that they point to. This works because all
masks appear in the mask tree, and only one copy of each unique mask is stored in this
tree. In the common case, keys are not duplicated, so the for loop iterates once. If a
host entry is being modified, a mask must not be specified and then both netmask and
rn_mask are null pointers (which are equal). But if an entry that has an associated
mask is being modified, that mask must be specified as the netmask argument.

Ex.1013.680DELL

~apter 20

he corn-

- rtsock.c

~)

entry. If

luate: an
rgument
:SRCH is

network
lied, it is
replaced
.ey list is
~k. This
:ause all
d in this
ace. If a
ask: and
~sociated

20.5

194-195

route_output Function 655

If the for loop terminates without finding a matching network mask,
ETOONANYREFS is returned.

The comment xxx is because this function must go to all this work to find the desired entry.
All these details should be hidden in another function similar to rtallocl that detects a net-
work match and handles a mask argument.

The next part of this function, shown in Figure 20.11, continues processing the
RTM_GET command. This command is unique among the commands supported by
route_output in that it can return more data than it was passed. For example, only a
single socket address structure is required as input, the destination, but at least two are
returned: the destination and its gateway. With regard to Figure 20.6, this means the
buffer allocated for m_copydata to copy into might need to be increased in size.

rtsock.c
198 switch (rtm->rtm_type) {

199
200
201
202
203
204
205
206
207
2O8
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

case RTM_GET:
dst : rt_key(rt);
gate = rt->rt_gateway;
netmask = rt_mask(rt);
genmask - rt->rt_genmask;

if (rtm->rtm_addrs & (RTA_IFP I RTA_IFA))
if (ifp = rt->rt_ifp) {

ifpaddr = ifp->if_addrlist->ifa_addr;
ifaaddr - rt->rt_ifa->ifa_addr;
rtm->rtm_index = ifp->if_index;

else {
ifpaddr = 0;
ifaaddr = 0;

}
len : rt_msg2(RTM_GET, &info, (caddr_t) 0,

(struct walkarg *) 0);
if (len > rtm->rtm_msglen) {

struct rt_msghdr *new_rtm;
R_Malloc(new_rtm, struct rt_msghdr *, len);

if (new_rtm == 0)
senderr(ENOBUFS);

Bcopy(rtm, new_rtm, rtm->rtm_msglen);
Free(rtm);
rtm = new_rtm;

}
(void) rt_msg2(RTM_GET, &info, (caddr_t) rtm,

(struct walkarg *) 0);

rtm->rtm_flags = rt->rt_flags;
rtm->rtm_rmx : rt->rt_rmx;
rtm->rtm_addrs = info.rti_addrs;
break;

Figure 20.11 route_output function: RTN_GET processing.

rtsock.c

Ex.1013.681DELL

656 Routing Sockets Chapter 20

198-203

204--213

214--224

225-230

231-233

234-244

245--256

257--258

Return destination, gateway, and masks
Four pointers are stored in the rti_info array: dst, gate, netmask, and

genmask. The latter two might be null pointers. These pointers in the info structure
point to the socket address structures that will be returned to the process.

Return interface information
The process can set the masks RTA_IFP and RTA_IFA in the rtm_flags bitmask.

If either or both are set, the process wants to receive the contents of both the i faddr
structures pointed to by this routing table entry: the link-level address of the interface
(pointed to by rt_ifp->if_addrlist) and the protocol address for this entry
(pointed to by r t_i fa-> i f a_addr). The interface index is also returned.
Construct reply

rt_msg2 is called with a null third pointer to calculate the length of the routing
message corresponding to RTM_GET and the addresses pointed to by the info struc-
ture. If the length of the result message exceeds the length of the input message, then a
new buffer is allocated, the input message is copied into the new buffer, the old buffer is t
released, and rtm is set to point to the new buffer. .~

rt_msg2 is called again, this time with a nonnull third pointer, which builds the
result message in the buffer. The final three members in the rt_msghdr structure are
then filled in. ~.

Figure 20.12 shows the processing of the RTM_CHANGE and RTM_LOCK commands.
Change gateway

If a gate address was passed by the process, rt_setgate is called to change the
gateway for the entry.

Locate new interface
The new gateway (if changed) can also require new rt_i fp and rt_i fa pointers.

The process can specify these new values by passing either an i £paddr socket address
structure or an ± £aaddr socket address structure. The former is tried first, and then the
latter. If neither is passed by the process, the rt ifp and rt ±fa pointers are left

Check if interface changed

If an interface was located (ifa is nonnull), then the existing rt_ifa pointer for
the route is compared to the new value. If it has changed, new values for rt_i fp and
rt_ifa are stored in the routing table entry. Before doing this the interface request
function (if defined) is called with a command of RTM DELETE. The delete is required
because the link-layer information from one type of network to another can be quite dif-
ferent, say changing a route from an X.25 network to an Ethernet, and the output rou-
tines must be notified.

Update metrics
The metrics in the routing table entry are updated by rt_setmetrics.

Ex.1013.682DELL

259-260

route_output Function 657

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
25O
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272

273
274
275

rtsock.c
case RTM_CHANGE:

if (gate && rt_setgate(rt, rt_key(rt), gate))
senderr(EDQUOT);

/* new gateway could require new ifaddr, ifp; flags may also be
different; ifp may be specified by II sockaddr when protocol
address is ambiguous */

if (ifpaddr && (ira = ifa_ifwithnet(ifpaddr)) &&
(ifp = ifa->ifa_ifp})
ifa = ifaof_ifpforaddr(ifaaddr ? ifaaddr : gate,

ifp);
else if ((ifaaddr && (ifa = ifa_ifwithaddr(ifaaddr))

(ifa = ifa_ifwithroute(rt->rt_flags,
rt_key(rt), gate }

ifp = ifa->ifa_ifp;
if (ira) {

struct ifaddr *oifa = rt >rt_ifa;
if (oifa != ira) {

if (oifa && oifa->ifa_rtrequest)
oifa->ifa_rtrequest(RTM_DELETE,

rt, gate);
IFAFREE(rt->rt_ifa);
rt->rt_ifa = ifa;
ifa->ifa_refcnt++;
rt->rt_ifp = ifp;

}

rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx,
&rt->rt_rmx);

if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest)
rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, gate)

if (genmask)
rt->rt_genmask = genmask;

/*
* Fall into
*/

case RTM_LOCK:
rt->rt_rmx.rmx_locks &=-(rtm >rtm_inits);
rt->rt_rmx.rmx_locks

(rtm->rtm_inits & rtm->rtm_rmx.rmx_locks);
break;

}
break;

default:
senderr(EOPNOTSUPP);

}

Figure 20.12 route_output function: RTM_CHANGE and RTM_LOCK processlng.

rtsock.c

Call interface request function
If an interface request function is defined, it is called with a command of RTM_ADD.

Ex.1013.683DELL

658 Routing Sockets
Chapter 20 __Se’

261 --262

266--270

Store clone generation mask
If the process specifies the genmask argument, the pointer to the mask that was

obtained in Figure 20.8 is saved in r t_genmask.

Update bitmask of locked metrics
The RTM LOCK command updates the bitmask stored in rt_rmx, rmx_locks. Fig-

ure 20.13 shows the values of the different bits in this bitmask, one value per metric.

273--275

Constant

RTV_MTU
RTV_HOPCOUIVT

RTV_EXPIRE
RTV_RPIPE
RTV_SPIPE
R TV_ SSTHRESH
RTV_RTT
RTV_RTTVAR

Value

OxOl
Ox02
Ox04
Ox08
OxlO
Ox20
Ox40
Ox80

Description

initialize or lock rmx_mtu
initialize or lock rrax_hopcount
initialize or lock rmx_expire
initialize or lock rmx_recvpipe
initialize or lock rmx_sendpipe
initialize or lock rmx_ssthresh
initialize or lock rmx_r tt
initialize or lock rmx_r t tvar

Figure 20.13 Constants to initialize or lock metrics.

The rmx locks member of the rt_metrics structure in the routing table entry is the
bitmask ~-elling the kernel which metrics to leave alone. That is, those metrics specified
by rmx_locks won’t be updated by the kernel. The only use of these metrics by the
kernel is with TCP, as noted with Figure 27.3. The rmx_pksent metric cannot be
locked or initialized, but it turns out this member is never even referenced or updated
by the kernel.

The rtm_inits value in the message from the process specifies the bitmask of
which metrics were just initialized by rt_setmetrics. The rtm_rmx, rmx_locks
value in the message specifies the bitmask of which metrics should now be locked. The
value of rt_rmx, rmx_locks is the bitmask in the routing table of which metrics are
currently locked. First, any bits to be initialized (rtm_inits) are unlocked. Any bits
that are both initialized (rtm_inits) and locked (rtm_rmx. rmx_locks) are locked.

This default is for the switch at the beginning of Figure 20.9 and catches any of
the routing commands other than the five that are supported in messages from a pro-
cess.

The final part of route_output, shown in Figure 20.14, sends the reply to
raw_input.

Ex.1013.684DELL

apter 20

~at was

:s. Fig-
ric.

’y is the
pecified
; by the
¯not be
lpdated

nask of
_locks
~d. The
~rics are
kny bits
cked.
s any of
~ a pro-

’eply to

276-282

283--284

20.5 route_output Function 659

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
3OO
301
302
303
304
305
306
307
3O8
309
310
311
312
313

flush:
if (rtm)

}
if

{
if (error)

rtm->rtm_errno : error;
else

rtm->rtm_flags I= RTF_DONE;

(rt)
rtfree(rt);

struct rawcb *rp = 0;
/*

* Check to see if we don’t want our own messages.

*/
if ((so->so_options & SO_USELOOPBACK) := 0) {

if (route_cb.any_count <= i) {
if (rtm)

Free(rtm);
m_freem(m);
return (error);

}
/* There is another listener, so construct message */
rp : sotorawcb(so);

}
if (rtm)

m_copyback(m, 0, rtm->rtm_msglen, (caddr_t) rtm);
Free(rtm);

}
if (rp)

rp->rcb_proto.sp_family = 0; /* Avoid us */

if (dst)
route_proto.sp~orotocol = dst->sa_family;

raw_input(m, &~oute_proto, &route_src, &route_dst);
if (rp)

rp->rcb_proto.sp_family = PF_ROUTE;

}
return (error);

Figure 20.14 route_output function: pass results to raw_input.

rtsock.c

rtsock.c

Return error or OK
f lush is the label jumped to by the senderr macro defined at the beginning of the

function. If an error occurred it is returned in the rtm_errno member; otherwise the
RTF_DONE flag is set.

Release held route
If a route is being held, it is released. The call to rtallocl at the beginning of Fig-

ure 20.10 holds the route, if found.

Ex.1013.685DELL

660 Routing Sockets Chapter 20

285-296

297-299

300-303

304-305

306-308

309-313

No process to receive message

The SO_USELOOPBACK socket option is true by default and specifies that the send-
ing process is to receive a copy of each routing message that it writes to a routing
socket. (If the sender doesn’t receive a copy, it can’t receive any of the information
returned by RTM_GET.) If that option is not set, and the total count of routing sockets is
less than or equal to 1, there are no other processes to receive the message and the
sender doesn’t want a copy. The buffer and mbuf chain are both released and the func-
tion returns.

Other listeners but no Ioopback copy
There is at least one other listener but the sending process does not want a copy.

The pointer rp, which defaults to null, is set to point to the routing control block for the
sender and is also used as a flag that the sender doesn’t want a copy.
Convert buffer into mbuf chain

The buffer is converted back into an mbuf chain (Figure 20.6) and the buffer
released.

20.6

Avoid Ioopback copy
If rp is set, some other process might want the message but the sender does not

want a copy. The sp_family member of the sender’s routing control block is tem-
porarily set to 0, but the sp_family of the message (the route_proto structure,
shown with Figure 19.26) has a family of PF_ROUTE. This trick prevents raw_input
from passing a copy of the result to the sending process because raw_input does not
pass a copy to any socket with an sp_fami ly of 0.

Set address family of routing message
If dst is a nonnull pointer, the address family of that socket address structure

becomes the protocol of the routing message. With the Internet protocols this value
would be PF_INET. A copy is passed to the appropriate listeners by raw_input.

If the sp_family member in the calling process was temporarily set to 0, it is reset
to PF_ROUTE, its normal value.

rt_xaddrs Function

The rt_xaddrs function is called only once from route_output (Figure 20.8) after
the routing message from the process has been copied from the mbuf chain into a buffer
and after the bitmask from the process (rtm_addrs) has been copied into the
rti_info member of an rt_addrinfo structure. The purpose of rt_xaddrs is to
take this bitmask and set the pointers in the rt i_info array to point to the correspond"
ing address in the buffer. Figure 20.15 shows the function.

330 #define ROUNDUP(a) \
331 ((a) > 0 ? (i + (((a) - i) i (sizeof(long) i))) : sizeof(long))
332 #define ADVANCE(x, n) (x += ROUNDUP((n)->sa_Ien))

rtsock.c

!,...<.

Ex.1013.686DELL

Chapter 20

that the send-
to a routing

~ information
Ling sockets is
;sage and the
and the func-

want a copy.
1 block for the

nd the buffer

nder does not
block is tem-
~to structure,
:s raw_input
~put does no[

[ress structure
:ols this value
_input.
to 0, it is reset

,ure 20.8) after
in into a buffer
pied into the
_xaddrs is to
ae correspond-

-- rtsock.c

(long))

20.7 rt_setmetrics Function 661

333 static void
334 rt_xaddrs(cp, cplim, rtinfo)
335 caddr_t cp, cplim;
336 struct rt_addrinfo *rtinfo;
337 {
338 struct sockaddr *sa;
339 int i;

340 bzero(rtinfo->rti_info, sizeof(rtinfo->rti_info));
341 for (i = 0; (i < RTAX_MAX) && (cp < cplim); i++) {

342 if ((rtinfo->rti_addrs & (i << i)) == 0)
343 continue;
344 rtinfo->rti_info[i] = sa = (struct sockaddr *) cp;

345 ADVANCE(cp, sa);

346]
347 }

Figure 20.15 rt_xaddrs function: fill rti_into array with pointers.

rtsock.c

330--340

341--347

The array of pointers is set to 0 so all the pointers to address structures not appear-
ing in the bitmask will be null.

Each of the 8 (RTAX_MAX) possible bits in the bitmask is tested and, if set, a pointer
is stored in the rti_info array to the corresponding socket address structure. The
ADVANCE macro takes the sa_len field of the socket address structure, rounds it up to
the next multiple of 4 bytes, and increments the pointer cp accordingly.

20.7

314--318

319--329

rt_setmetrics Function
This function was called twice from route_output: when a new route was added and
when an existing route was changed. The rtm_init s member in the routing message
from the process specifies which of the metrics the process wants to initialize from the
rtm rmx array. The bit values in the bitmask are shown in Figure 20.13.

~otice that both r tm_addr s and r tm_ini t s are bitmasks in the message from the
process, the former specifying the socket address structures that follow, and the latter
specifying which metrics are to be initialized. Socket address structures whose bits
don’t appear in rtm_addrs don’t even appear in the routing message, to save space.
But the entire rt_metrics array always appears in the fixed-length rt_msghdr
structure--elements in the array whose bits are not set in rtm_inits are ignored.

Figure 20.16 shows the rt_setmetrics function.
The which argument is always the rtm_inits member of the routing message

from the process, in points to the rt_metrics structure from the process, and out
points to the rt_metrics structure in the routing table entry that is being created or
modified.

Each of the 8 bits in the bitmask is tested and if set, the corresponding metric is
copied. Notice that when a new routing table entry is being created with the RTM_ADD
command, route_output calls rtrequest, which sets the entire routing table entry
to 0 (Figure 19.9). Hence, any metrics not specified by the process in the routing mes-
sage default to 0.

Ex.1013.687DELL

662 Routing Sockets Chapter 20

20.8

314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

void
rt_setmetrics(which, in, out)
u_long which;
struct rt_metrics *in, *out;
{
#define metric(f, e) if (which & (f)) out->e

metric(RTV_RPIPE, rmx_recvpipe);
metrlc(RTV_SPIPE, rmx_sendpipe);
metrlc(RTV_SSTHRESH, rmx_ssthresh)
metrlc(RTV_RTT, rmx_rtt);
metrlc(RTV_RTTVAR, rmx_rttvar);
metrzc(RTV_HOPCOUNT, rmx_hopcount)
metr~c(RTV_MTU, rmx_mtu);
metr~c(RTV_EXPIRE, rmx_expire);

#undef metric
}

: in->e;

Figure 20.16 rt_setmetrics function: set elements of the rt_metrics structure.

rtsock.c

rtsock.c

raw_input Function

All routing messages destined for a process--those that originate from within the ker-
nel and those that originate from a process--are given to raw_input, which selects the
processes to receive the message. Figure 18.11 summarizes the four functions that call
raw_input.

When a routing socket is created, the family is always PF_ROUTE and the protocol,
the third argument to socket, can be 0, which means the process wants to receive all
routing messages, or a value such as AF_INET, which restricts the socket to messages
containing addresses of that specific protocol family. A routing control block is created
for each routing socket (Section 20.3) and these two values are stored in the sp_fami ly
and sp_protoc.ol members of the rcb_proto structure.

Figure 20.17 shows the raw_input function.
raw_usrreq.c

51 void
52 raw_input(m0, proto, src, dst)
53 struct mbuf *m0;
54 struct sockproto *proto;
55 struct sockaddr *src, *dst;
56 {
57 struct rawcb *rp;
58 struct mbuf *m = m0;
59 int sockets = 0;
60 struct socket *last;

Ex.1013.688DELL

