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TO THE COMMISSIONER FOR PATENTS: -

U.Ul
)

Transmitted herewith is a patent application identified as follows: o=
First-named inventor: Laurence B. Boucher =
. . . A ==—=p
Assignee: Alacritech, Inc. 't_,) ——
Filing Date: September 27, 2002
Title: FAST-PATH APPARATUS FOR RECEIVING DATA CORRESPONDING TO A TCP CONNECTION

This application claims the benefit under 35 USC §120 (prior application not abandoned) of:

e - ~
[ Brior Application: “Fast-Path Apparatus For Receiving Data Corresponding to a TCP Connection’]
‘ "\ Serial No.: 10/092,967 |

“Filing Date: March 6, 2002

This application claims the benefit under 35 USC §120 of Application Serial No. 10/092,967, filed March 6,
2002, which in turn claims the benefit under 35 USC §120 of Application Serial No. 10/023,240, filed December
15, 2001, which in turn claims the benefit under 35 USC §120 of Application Serial No. 09/464,283, filed
December 15, 1999, which in turn claims the benefit under 35 USC §120 of Application Serial No. 09/439,603,
filed November 12, 1999, which in turn claims the benefit under 35 USC §120 of Application Serial No.
09/067,544, filed April 27, 1998, which in turn claims the benefit under 35 USC §119 of Provisional Application
Serial No. 60/061,809, filed October 14, 1997.

This application also claims the benefit under 35 USC §120 of Application Serial No. 09/384,792, filed
August 27, 1999, which in turn claims the benefit under 35 USC §120 of Application Serial No. 09/141,713, filed
August 28, 1998, which in turn claims the benefit under 35 USC §119 of Provisional Application Serial No.
60/098,296, filed August 27, 1998.

This application also claims the benefit under 35 U.S.C. §120 of the following:
U.S. Patent Application Serial No. 09/416,925 (ALA-005), filed October 13, 1999;
U.S. Patent Application Serial No: 09/514,425 (ALA-007), filed February 28, 2000;
U.S. Patent Application Serial No. 09/675,484 (ALA-010A), filed September 29, 2000;
U.S. Patent Application Serial No. 09/675,700 (ALA-010B), filed September 29, 2000;
U.S. Patent Application Serial No. 09/789,366 (ALA-013), filed February 20, 2001;
U.S. Patent Application Serial No. 09/801,488 (ALA-011), filed March 7, 2001;
U.S. Patent Application Serial No. 09/802,551 (ALA-012), filed March 9, 2001;
U.S. Patent Application Serial No. 09/802,426 (ALA-014), filed March 9, 2001;
U.S. Patent Application Serial No. 09/802,550 (ALA-015), filed March 9, 2001;
U.S. Patent Application Serial No. 09/855,979 (ALA-016), filed March 14, 2001; and
U.S. Patent Application Serial No. 09/970,124 (ALA-020), filed October 2, 2001.

(X) The specification contains a statement claiming priority under 35 USC § 120 and claiming the benefit under
35U.S.C. §119.

(X) The entire disclosure of each of the prior applications (10/092,967; 10/023,240; 09/464,283; 09/439,603;
09/067,544; 09/384,792; 09/141,713; 09/416,925; 09/514,425; 09/675,484; 09/675,700; 09/789,366;
09/801,488; 09/802,551; 09/802,426; 09/802,550; 09/855,979; 09/970,124) 1s considered as being part of the
disclosure of the accompanying application and is hereby incorporated by reference therein.

(X) The entire disclosure of each of the prior provisional applications (60/061,809; 60/098,296) is considered as
being part of the disclosure of the accompanying application and is hereby incorporated by reference therein.
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Enclosed are:

page Terminal Disclaimer Over A Prior Patent
A check for filing fee ($ 922.00)
Return Receipt Postcard

pages Application Transmittal Letter
145 pages Specification
pages Claims
1 page Abstract
89  pages Drawings
4 pages Declaration/Power of Attorney from prior
application 10/092,967 (signed - copy)
4 pages Declaration/Power of Attorney from prior
application 10/092,967 (signed - copy)
page CD Appendix Transmittal Letter
X CD Appendix (two copies)
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Newly Executed Declaration Not Required:

A newly executed declaration is not filed in this application because, under 37 CFR 1.63(d)(1), a newly executed
declaration is not required because: the prior application contained a declaration as prescribed by 37 CFR 1.63; the
continuation application (this application) is filed by all of the inventors named in the prior application; the specification
and drawings in the continuation application (this application) contain no matter that would have been new matter in the
prior application; and a copy of the executed declaration (there were two) in the prior application is being submitted in the
continuation application (this application).

The filing fee is calculated as follows:

CLAIMS AS FILED
FOR NO. FILED NO. EXTRA RATE FEE

Total Claims 24 4 $18.00 $ 72.00
Independent Claims 3 0 $84.00 $ 0.00
Multiple Dependent Claims (if applicable) $0.00
Assignment Recording Fee $0.00
Terminal Disclaimer Fee (37 CFR 1.20(d)) $110.00
Basic Filing Fee $740.00

Total Filing Fee $922.00
I hereby certify that this is being deposited with the U.S. Postal Respectfully submitted,
Service “Express Mail Post Office to Addressee” service under
37 CFR § 1.10 on the date indicated below and 1s addressed to: By: ﬁ—-

Mark Lauer

Box Patent Application
Assistant Commussioner for Patents
Washington, D.C. 20231

Attorney for Applicants
Reg. No. 36,578
{’J Customer No. 24,501

Date: 6"‘27—0.2

Correspondence Address:

By:

Typed Name: Mark Lauer

Express Mail Label No.: EL928548779US. Mark Lauer, Patent Attorney
. 7041 Koll Center Parkway, Suite 280
. g— —
Date of Deposit: 7= 2 7= 2, Pleasanton, California 94566

Phone: (925) 484-9295
Fax: (925) 484-9291

DELL Ex.1002.002



Inventors:

Filing Date:

Title:

Sir:

TO THE ASSISTANT COMMISSIONER FOR PATENTS:
Laurence B. Boucher, et al. Atty Docket: ALA-006E

September 27, 2002 Serial No.: Unknown

FAST-PATH APPARATUS FOR RECEIVING DATA CORRESPONDING TO
A TCP CONNECTION

Compact Disk Transmittal Letter per 37 CFR 1.52(e)3(ii))

Transmitted herewith are:

Two Labeled Compact Discs — Recordable (CD-R) — “Copy 17 and “Copy 2,” each in a

CD case and contained in a padded envelope.

The content on the two discs is identical

The machine format is: IBM-PC

The operating system is: MS-Windows
The creation date of the CDs is: September 26, 2002

The name, date and size of the files on the CDs are listed below:

There are three folders on each disc: 1) CD Appendix A,

2) CD Appendix B, and
3) CD Appendix C.

Folder Appendix A contains two files:
CD Appendix A Title Page.txt. Its size is 370 bytes. It was created 9/26/02.
Rcev.v. Its size is 84.4KB. It was created 1/7/99.

Folder Appenidix B contains two files:
CD Appendix B Title Page.txt. Its size is 495 bytes. It was created 9/26/02.
Microcode.txt. Its size is 105 KB. It was created 10/1/99.
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Folder Appendix C contains three files:
CD Appendix C Title Page.txt. Its size is 416 bytes. It was created 9/26/02.
atcpsource.wrd.txt. Its size is 778 KB. It was created (written to disc) 2/19/02.

Ve
simbasource.wrd.txt. Its size is 262 KB. It was created (written to disc) 2/19/02.

Respectfully submitted,

CERTIFICATE OF MAILING 2 %

I hereby certify that this correspondence 1s being deposited with Mark Lauer
the United States Postal Service as Express Mail Label No. Reg. No. 36,578
EL928365779US in an envelope addressed to: Box PATENT 7041 Koll Center
APPLICATION, Assistant Commissioner for Patents, Parkway
Washington, D.C. 20231, on September 27, 2002. Suite 280
%” Pleasanton, CA 94566
vy Date: 7 =27 €2 Tel:  (925) 484-9295
R Mark Lauer Fax: (925) 484-9291
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TERMINAL DISCLAIMER O‘IIER A PRIOR PATENT
: 10/03/2002 DTESSEM] 00000026 10260,
; 8
In re Application of: Laurence B. Boucher et al. 03 FL:148 78

110.00 op
Application No.: Unknown
Filed: September 27, 2002
Title: FAST-PATH APPARATUS FOR RECEIVING DATA

CORRESPONDING TO A TCP CONNECTION

Express Mail No.: EL.928365779US

The owner, Alacritech, Inc., of a one hundred percent interest in the instant

_ application hereby disclaims, except as provided below, the terminal part of the statutory
" term of any patent granted on the instant application, which would extend beyond the
expiration date of the full statutory term defined in 35 U.S.C. 154 to 156 and 173, as
presently shortened by any terminal disclaimer, of prior U.S. Patent Nos. 6,226,680 and
6,247,060. The owner hereby agrees that any patent so granted on the instant application
shall be enforceable only for and during such period that it and the prior patents are
commonly owned. This agreement runs with any patent granted on the instant application
and is binding upon the grantee, its successors or assigns.

In making the above disclaimer, the owner does not disclaim the terminal part of
any patent granted on the instant application that would extend to the expiration date of
the full statutory term as defined in 35 U.S.C. 154 to 156 and 173 of the prior patents, as
presently shortened by any terminal disclaimer, in the event that they later: expire for
failure to pay a maintenance fee, are held unenforceable, are found invalid by a court of
competent jurisdiction, are statutorily disclaimed in whole or terminally disclaimed under
37 CFR 1.321, have all claims canceled by a reexamination certificate, are reissued, or
are in any manner terminated prior to the expiration of its full statutory term as presently
shortened by any terminal disclaimer.

I hereby declare that all statements made herein of my own knowledge are true
and that all statements made on information and belief are believed to be true; and further
that these statements were made with the knowledge that willful false statements and the
like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title
18 of the United States Code and that such willful false statements may jeopardize the
validity of the application or any patent issued thereon.

The undersigned is an attorney or agent of record.

Date: 7"27"042 ZQ——"

Mark Lauer
Registration No. 36,578

The terminal disclaimer fee under 37 CFR 1.20(d) is included.
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FAST-PATH APPARATUS FOR RECEIVING DATA
CORRESPONDING TO A TCP CONNECTION

Laurence B. Boucher
5 Stephen E. J. Blightman
Peter K. Craft
David A. Higgen
Clive M. Philbrick
Daryl D. Starr
10
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims the benefit under 35 U.S.C. §120 of U.S. Patent Application Serial
No. 10/092,967, entitled “FAST-PATH APPARATUS FOR RECEIVING DATA
CORRESPONDING TO A TCP CONNECTION,” filed March 6, 2002, by Laurence B.
15  Boucher et al., which in turn claims the benefit under 35 U.S.C. §120 of U.S. Patent
Application Serial No. 10/023,240 (Attorney Docket No. ALA-006A), entitled “TRANSMIT
 FAST-PATH PROCESSING ON TCP/IP OFFLOAD NETWORK INTERFACE DEVICE,”
filed December 15, 2001, by Laurence B Boucher et al., which in turn claims the benefit
under 35 U.S.C. §120 of U.S. Patent Application Serial No. 09/464,283 (Attorney Docket No.
20  ALA-000), entitled “INTELLIGENT NETWORK INTERFACE DEVICE AND SYSTEM
FOR ACCELERATED COMMUNICATION?, filed December 15, 1999, by Laurence B.
Boucher et al., which in turn claims the benefit under 35 U.S.C. §120 of U.S. Patent
Application Serial No. 09/439,603 (Attorney Docket No. ALA-009), entitled “INTELLIGENT
NETWORK INTERFACE SYSTEM AND METHOD FOR ACCELERATED PROTOCOL
25 PROCESSING”, filed November 12, 1999, by Laurence B. Boucher et al., which in turn
claims the benefit under 35 U.S.C. §120 of U.S. Patent Application Serial No. 09/067,544
(Attorney Docket No. ALA-002), entitled “INTELLIGENT NETWORK INTERFACE
SYSTEM AND METHOD FOR ACCELERATED PROTOCOL PROCESSING”, filed April
27, 1998, which in turn claims the benefit under 35 U.S.C. § 119(¢e)(1) of the Provisional
30  Application filed under 35 U.S.C. §111(b) entitled “INTELLIGENT NETWORK
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INTERFACE CARD AND SYSTEM FOR PROTOCOL PROCESSING,” Serial No.
60/061,809 (Attorney Docket No. ALA-001), filed on October 14, 1997.

This application also claims the benefit under 35 U.S.C. §120 of U.S. Patent Application
Serial No. 09/384,792 (Attorney Docket No. ALA-008), entitled “INTELLIGENT

5 NETWORK INTERFACE DEVICE AND SYSTEM FOR ACCELERATED

COMMUNICATION,” filed August 27, 1999, which in turn claims the benefit under 35
U.S.C. §120 of U.S. Patent Application Serial No. 09/141,713 (Attorney Docket No. ALA-
003), entitled “INTELLIGENT NETWORK INTERFACE DEVICE AND SYSTEM FOR
ACCELERATED PROTOCOL PROCESSING”, filed August 28, 1998, which both claim the

10  benefit under 35 U.S.C. § 119(e)(1) of the Provisional Application filed under 35 U.S.C.
§111(b) entitled “INTELLIGENT NETWORK INTERFACE DEVICE AND SYSTEM FOR
ACCELERATED COMMUNICATION,” Serial No. 60/098,296 (Attorney Docket No. ALA-
004), filed August 27, 1998.

This application also claims the benefit under 35 U.S.C. §120 of U.S. Patent Application

15  Serial No. 09/416,925 (Attomey Docket No. ALA-005), entitled “QUEUE SYSTEM FOR

- MICROPROCESSORS,” filed October 13, 1999, U.S. Patent Application Serial No.
09/514,425 (Attorney Docket No. ALA-007), entitled “PROTOCOL PROCESSING STACK
FOR USE WITH INTELLIGENT NETWORK INTERFACE CARD,” filed February 28,
2000, U.S. Patent Application Serial No. 09/675,484 (Attorney Docket No. ALA-010A),

20 entitled “INTELLIGENT NETWORK STORAGE INTERFACE SYSTEM,” filed September
29, 2000, U.S. Patent Application Serial No. 09/675,700 (Attorney Docket No. ALA-010B),
entitled “INTELLIGENT NETWORK STORAGE INTERFACE DEVICE,” filed September
29, 2000, U.S. Patent Application Serial No. 09/789,366 (Attorney Docket No. ALA-013),
entitled “OBTAINING A DESTINATION ADDRESS SO THAT A NETWORK

25 = INTERFACE DEVICE CAN WRITE NETWORK DATA WITHOUT HEADERS
DIRECTLY INTO HOST MEMORY,” filed February 20, 2001, U.S. Patent Application
Serial No. 09/801,488 (Attorney Docket No. ALA-011), entitled “PORT AGGREGATION
FOR NETWORK CONNECTIONS THAT ARE OFFLOADED TO NETWORK
INTERFACE DEVICES,” filed March 7, 2001, U.S. Patent Application Serial No. 09/802,551

30 (Attorney Docket No. ALA-012), entitled “INTELLIGENT NETWORK STORAGE
INTERFACE SYSTEM,” filed March 9, 2001, U.S. Patent Application Serial No. 09/802,426

(Attorney Docket No. ALA-014), entitled “REDUCING DELAYS ASSOCIATED WITH
2
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INSERTING A CHECKSUM INTO A NETWORK MESSAGE,” filed March 9,2001, U.S.
Patent Application Serial No. 09/802,550 (Attorney Docket No. ALA-015), entitled
“INTELLIGENT INTERFACE CARD AND METHOD FOR ACCELERATED PROTOCOL
PROCESSING,” filed March 9, 2001, U.S. Patent Application Serial No. 09/855,979
(Attomey Docket No. ALA-016), entitled “NETWORK INTERFACE DEVICE

- EMPLOYING DMA COMMAND QUEUE,” filed March 14, 2001, U.S. Patent Application

Serial No. 09/970,124 (Attorney Docket No. ALA-020), entitled “NETWORK INTERFACE
DEVICE THAT FAST-PATH PROCESSES SOLICITED SESSION LAYER READ
COMMANDS,” filed October 2, 2001.

The subject matter of all of the above-identified patent applications (including the
subject matter in the Microfiche Appendix of U.S. Application Serial No. 09/464,283), and of

the two above-identified provisional applications, is incorporated by reference herein.

REFERENCE TO COMPACT DISC APPENDIX

The Compact Disc Appendix (CD Appendix), which is a part of the present disclosure,
includes three folders, designated CD Appendix A, CD Appendix B, and CD Appendix C on
the compact disc. CD Appendix A contains a hardware description language (verilog code)
description of an embodiment of a receive sequencer. CD Appendix B contains microcode
executed by a processor that operates in conjunction with the receive sequencer of CD
Appendix A. CD Appendix C contains a device driver executable on the host as well as ATCP
code executable on the host. A portion of the disclosure of this patent document contains
material (other than any portion of the “free BSD” stack included in CD Appendix C) which is
subject to copyright protection. The copyright owner of that material has no objection to the
facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears
in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright

rights.

TECHNICAL FIELD

The present invention relates generally to computer or other networks, and more
particularly to processing of information communicated between hosts such as computers

connected to a network.
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BACKGROUND
The advantages of network computing are increasingly evident. The convenience and

efficiency of providing information, communication or computational power to individuals at

- their personal computer or other end user devices has led to rapid growth of such network

computing, including internet as well as intranet devices and applications.

As is well known, most network computer communication is accomplished with the aid of
a layered software architecture for moving information between host computers connected to
the network. The layers help to segregate information into manageable segments, the general
functions of each layer often based on an international standard called Open Systems
Interconnection (OSI). OSI sets forth seven processing layers through which information may
pass when received by a host in order to be presentable to an end user. Similarly, transmission
of information from a host to the network may pass through those seven processing layers in
reverse order. Each step of processing and service by a layer may include copying the
processed information.. Another reference model that is widely implemented, called TCP/IP
(TCP stands for transport control protocol, while IP denotes internet protocol) essentially
employs five of the seven layers of OSI.

Networks may include, for instance, a high-speed bus such as an Ethernet connection or an
internet connection between disparate local area networks (LANS), each of which includes

multiple hosts, or any of a variety of other known means for data transfer between hosts.

According to the OSI standard, physical layers are connected to the network at respective

hosts, the physical layers providing transmission and receipt of raw data bits via the network.

A data link layer is serviced by the physical layer of each host, the data link layers providing

* frame division and error correction to the data received from the physical layers, as well as

processing acknowledgment frames sent by the receiving host. A network layer of each host is
serviced by respective data link layers, the network layers primarily controlling size and
coordination of subnets of packets of data.

A transport layer is serviced by each network layer and a session layer is serviced by each
transport layer within each host. Transport layers accept data from their respective session
layers and split the data into smaller units for transmission to the other host’s transport layer,
which concatenates the data for presentation to respective presentation layers. Session layers
allow for enhanced communication control between the hosts. Presentation layers are serviced

by their respective session layers, the presentation layers translating between data semantics
4
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and syntax which may be peculiar to each host and standardized structures of data
represéntation. Compression and/or encryption of data may also be accomplished at the
presentation level. Application layers are sefviced by respective presentation layers, the
application layers translating between programs particular to individual hosts and standardized
programs for presentation to either an application or an end user. The TCP/IP standard
includes the lower four layers and application layers, but integrates the functions of session
layers and presentation layers into adjacent layers. Generally speaking, application,
presentation and session layers are defined as upper layers, while transport, network and data
link layers are defined as lower layers.

The rules and conventions for each layer are called the protocol of that layer, and since the
protocols and general functions of each layer are roughly equivalent in various hosts, it is
useful to think of communication occurring directly between identical layers of different hosts,
even though these peer layers do not directly communicate without information transferring
sequentially through each layer below. Each lower layer performs a service for the layer

immediately above it to help with processing the communicated information. Each layer saves

'~ the information for processing and service to the next layer. Due to the multiplicity of

hardware and software architectures, devices and programs commonly employed, each layer is
necessary to insure that the data can make it to the intended destination in the appropriate
form; regardless of variations in hardware and software that may intervene. ‘

In preparing data for transmission from a first to a second host, some control data is added
at each layer of the first host regarding the protocol of that layer, the control data being
indistinguishable from the original (payload) data for all lower layers of that host. Thus an
application layer attaches an application header to the payload data and sends the combined
data to the presentation layer of the sending host, which receives the combined data, operates
on it and adds a presentation header to the data, resulting in another combined data packet.
The data resulting from combination of payload data, application header and presentation
header is then passed to the session layer, which performs required operations including
attaching a session header to the data and presenting the resulting combination of data to the
transport layer. This process continues as the information moves to lower layers, with a
transport header, network header and data link header and trailer attached to the data at each of
those layers, with each step typically including data moving and copying, before sending the

data as bit packets over the network to the second host.
5
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The receiving host generally performs the converse of the above-described process,
beginning with receiving the bits from the network, as headers are removed and data processed
in order from the lowest (physical) layer to the highest (application) layer before transmission
to a destination of the receiving host. Each layer of the receiving host recognizes and
manipulates only the headers associated with that layer, since to that layer the higher layer
control data is included with and indistinguishable from the payload data. Multiple interrupts,
valuable central processing unit (CPU) processing time and repeated data copies may also be
necessary for the receiving host to place the data in an appropriate form at its intended
destination.

The above description of layered protocol processing is simplified, as college-level
textbooks devoted primarily to this subject are available, such as Computer Networks, Third
Edition (1996) by Andrew S. Tanenbaum, which is incorporated herein by reference. As
defined in that book, a computer network is an interconnected collection of autonomous

computers, such as internet and intranet devices, including local area networks (LANs), wide

. area networks (WANSs), asynchronous transfer mode (ATM), ring or token ring, wired,

wireless, satellite or other means for providing communication capability between separate
processors. A computer is defined herein to include a device having both logic and memory

functions for processing data, while computers or hosts connected to a network are said to be

heterogeneous if they function according to different operating devices or communicate via

different architectures.

As networks grow increasingly popular and the information communicated thereby
becomes increasingly complex and copious, the need for such prdtocol processing has
increased. It is estimated that a large fraction of the processing power of a host CPU may be
devoted to controlling protocol processes, diminishing the ability of that CPU to perform other
tasks. Network interface cards have been developed to help with the lowest layers, such as the
physical and data link layers. It is also possible to increase protocol processing speed by
simply adding more processing power or CPUs according to conventional arrangements. This
solution, however, is both awkward and expensive. But the complexities presented by various
networks, protocols, architectures, operating devices and applications generally require

extensive processing to afford communication capability between various network hosts.
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SUMMARY OF THE INVENTION

The current invention provides a device for processing network communication that greatly

increases the speed of that processing and the efficiency of transferring data being
communicated. The invention has been achieved by questioning the long-standing practice of
performing multilayered protocol processing on a general-purpose processor. The protocol
processing method and architecture that results effectively collapses the layers of a connection-
based, layered architecture such as TCP/IP into a single wider layer which is able to send
network data more directly to and from a desired location or buffer on a host. This accelerated
processing is provided to a host for both transmitting and receiving data, and so improves
performance whether one or both hosts involved in an exchange of information have such a
feature.

The accelerated processing includes employing representative control instructions for a
given message that allow data from the message to be processed via a fast-path which accesses
message data directly at its source or delivers it directly to its intended destination. This fast-
path bypasses conventional protocol processing of headers that accompany the data. The fast-
path employs a specialized microprocessor designed for processing network communication,
avoiding the delays and pitfalls of conventional software layer processing, such as repeated
copying and interrupts to the CPU. In effect, the fast-path replaces the states that are
traditionally found in severél layers of a conventional network stack with a single state
machine encompassing all those layers, in contrast to conventional rules that require rigorous
differentiation and separation of protocol layers. The host retains a sequential protocol
processing stack which can be employed for setting up a fast-path connection or processing
message exceptions. The specialized microprocessor and the host intelligently choose whether
a given message or portion of a message is processed by the microprocessor or t/he host stack.
~ One embodiment is a method of generating a fast-path response to a packet received onto a
network interface device where the packet is received over a TCP/IP network connection and
where the TCP/IP network connection is identified at least in part by a TCP source port, a TCP
destination port, an IP source address, and an IP destination address. The method comprises:
1) Examining the packet and determining from the packet the TCP source port, the TCP
destination port, the IP source address, and the IP destination address; 2) Accessing an
appropriate template header stored on the network interface device. The template header has

TCP fields and IP fields; 3) Employing a finite state machine that implements both TCP
7
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protocol processing and IP protocol processing to fill in the TCP fields and IP fields of the
template header; and 4) Transmitting the fast-path response from the network interface device.
The fast-path response includes the filled in template header and a payload. The finite state
machine does not entail a TCP protocol processing layer and a discrete IP protocol processing
layer where the TCP and IP layers are executed one after another in sequence. Rather, the
finite state machine covers both TCP and IP protocol processing layers.

In one embodiment, buffer descriptors that point to packets to be transmitted are pushed
onto a plurality of transmit queues. A transmit sequencer pops the transmit queues and obtains
the buffer descriptors. The buffer descriptors are then used to retrieve the packets from buffers
where the packets are stored. The retrieved packets are then transmitted from the network
interface device. In one embodiment, there are two transmit queues, one having a higher
transmission priority than the other. Packets identified by buffer descriptors on the higher
priority transmit queue are transmitted from the network interface device before packets
identified by the lower priority transmit queue.

Other structures and methods are disclosed in the detailed description below. This

summary does not purport to define the invention. The invention is defined by the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a plan view diagram of a device of the present invention, including a host
computer having a communication-processing device for accelerating network
communication.

FIG. 2 is a diagram of information flow for the host of FIG. 1 in processing network
communication, including a fast-path, a slow-path and a transfer of connection context
between the fast and slow-paths.

FIG. 3 is a flow chart of message receiving according to the present invention.

FIG. 4A is a diagram of information flow for the host of FIG. 1 receiving a message packet
processed by the slow-path.

FIG. 4B is a diagram of information flow for the host of FIG. 1 receiving an initial message
packet processed by the fast-path.

FIG. 4C is a diagram of information flow for the host of FIG. 4B receiving a subsequent
message packet processed by the fast-path.
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FIG. 4D is a diagram of information flow for the host of FIG. 4C receiving a message
packet having an error that causes processing to revert to the slow-path.

FIG. 5 is a diagram of information flow for the host of FIG. 1 transmitting a message by
either the fast or slow-paths.

FIG. 6 is a diagram of information flow for a first embodiment of an intelligent network
interface card (INIC) associated with a client having a TCP/IP processing stack.

FIG. 7 is a diagram of hqrdware logic for the INIC embodiment shown in FIG. 6, including

a packet control sequencer and a fly-by sequencer.

FIG. 8 is a diagram of the fly-by sequencer of FIG. 7 for analyzing header bytes as they are
received by the INIC.

FIG. 9 is a diagram of information flow for a second embodiment of an INIC associated
with a server having a TCP/IP processing stack.
FIG. 10 is a diagram of a command driver installed in the host of FIG. 9 for creating and
controlling a communication control block for the fast-path.

FIG. 11 is a diagram of the TCP/IP stack and command driver of FIG. 10 configured for
NetBios communications.

FIG. 12 is a diagram of a communication exchange between the client of FIG. 6 and the
server of FIG. 9.

FIG. 13 is a diagram of hardware functions included in the INIC of FIG. 9.

FIG. 14 is a diagram of a trio of pipelined microprocessors included in the INIC of FIG. 13,
including three phases with a processor in each phase. |

FIG. 15A is a diagram of a first phase of the pipelined microprocessor of FIG. 14.

FIG. 15B is a diagram of a second phase of the pipelined microprocessor of FIG. 14.

FIG. 15C is a diagram of a third phase of the pipelined microprocessor of FIG. 14.

FIG. 16 is a diagram of a plurality of queue storage units that interact with the
microprocessor of FIG. 14 and include SRAM and DRAM.

FIG. 17 is a diagram of a set of status registers for the queues storage unité of FIG. 16.

FIG. 18 is a diagram of a queue manager, which interacts, with the queue storage units and
status registers of FIG. 16 and FIG. 17.

FIGs. 19A-D are diagrams of various stages of a least-recently-used register that is

employed for allocating cache memory.
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FIG. 20 is a diagram éf the devices used to operate the least-recently-used register of FIGs.
19A-D.

FIG. 21 is another diagram of Intelligent Network Interface Card (INIC) 200 of Figure 13.

FIG. 22 is a diagram of the receive sequencer of FIG. 21.

FIG. 23 is a diagram illustrating a “fast-path” transfer of data of a multi-packet message
from INIC 200 to a destination 2311 in hést 20.

FIGS. 24-107 are associated with the description below entitled “Disclosure From

Provisional Application 60/061,809.”

DETAILED DESCRIPTION

FIG. 1 shows a host 20 of the present invention connected by a network 25 to a remote host
22. The increase in processing speed achieved by the present invention can be provided with
an intelligent network interface card (INIC) that is easily‘ and affordably added to an existing
host, or with a communication processing device (CPD) that is integrated into a host, in either
case freeing the host CPU from most protocol processing and allowing improvements in other

tasks performed by that CPU. The host 20 in a first embodiment contains a CPU 28 and a

- CPD 30 connected by a host bus 33. The CPD 30 includes a microprocessor designed for

processing communication data and memory buffers controlled by a direct memory access

(DMA) unit. Also connected to the host bus 33 is a storage device 35, such as a

semiconductor memory or disk drive, along with any related controls.

Referring additionally to FIG. 2, the host CPU 28 controls a protocol processing stack 44
housed in storage 35, the stack including a data link layer 36, network layer 38, transport layer
40, upper layer 46 and an upper layer interface 42. The upper layer 46 may represent a
session, presentation and/or application layer, depending upon the particular protocol being
employed and message communicated. The upper layer interface 42, along with the CPU 28
and any related controls can send or retrieve a file to or from the upper layer 46 or storage 35,
as shown by arrow 48. A connection context 50 has been created, as will be explained below,
the conte);t summarizing various features of the connection, such as protocol type and source
and destination addresses for each protocol layer. The context may be passed between an

interface for the session layer 42 and the CPD 30, as shown by arrows 52 and 54, and stored as

a communication control block (CCB) at either CPD 30 or storage 35.

10
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When the CPD 30 holds a CCB defining a particular connection, data received by the CPD
from the network and pertaining to the connection is referenced to that CCB and can then be
sent directly to storage 35 according to a fast-path 58, bypassing sequential protocol
processing by the data link 36, network 38 and transport 40 layers. Transmitting a message,
such as sending a file from storaée 35 to remote host 22, can also occur via the fast-path 58, in
which case the context for the file data is added by the CPD 30 referencing a CCB, rather than
by sequentially adding headers during processing by the transport 40, network 38 and data link
36 layers. The DMA controllers of the CPD 30 perform these transfers between CPD and
storage 35.

The CPD 30 collapses multiple protocol stacks each having possible separate states into a
single state machine for fast-path processing. As a result, exception conditions may occur that
are not provided for in the single state machine, pﬁmaxily because such conditions occur
infrequently and to deal with them on the CPD would provide little or no performance benefit
to the host. Such exceptions can be CPD 30 or CPU 28 initiated. An advantage of the
invention includes the manner in which unexpected situations that occur on a fast-path CCB

are handled. The CPD 30 deals with these rare situations by passing back or flushing to the

~ host protocol stack 44 the CCB and any associated message frames involved, via a control

negotiation. The exception condition is then processed in a conventional manner by the host
protocol stack 44. At some later time, usually directly after the handling of the exception

condition has completed and fast-path processing can resume, the host stack 44 hands the CCB

_ back to the CPD.

This fallback capability enables the performance-impacting functions of the host protocols
to be handled by the CPD network microprocessor, while the exceptions are dealt with by the
host stacks, the exceptions being so rare as to negligibly effect overall performance. The
custom designed network microprocessor can have independent processors for transmitting
and receiving network information, and further processors for assisting and queuing. A
preferred microprocessor embodiment includes a pipelined trio of receive, transmit and utility
processors. DMA controllers are integrated into the implementation and work in close concert
with the network microprocessor to quickly move data between buffers adjacent to the .
controllers and other locations such as long term storage. Providing buffers logically adjacent

to the DMA controllers avoids unnecessary loads on the PCI bus.

11
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FIG. 3 diagrams the geﬁeral flow of messages received according to the current invention.
A large TCP/IP message such as a file transfer may be received by the host from the network
in a number of separate; approximately 64 KB transfers, each of which may be split into many,
approximately 1.5 KB frames or packets for transmission over a network. Novell NetWare
5  protocol suites running Sequenced Packet Exchange Protocol (SPX) or NetWare Core Protocol
(NCP) over Infemetwork Packet Exchange (IPX) work in a similar fashion. Another form of
data communication which can be handled by the fast-path is Transaction TCP (hereinafter
T/TCP or TTCP), a version of TCP which initiates a connection with an initial transaction
request after whicﬁ areply containing data may be sent according to the connection, rather
10" than initiating a connection via a several-message initialization dialogue and then transferring
data with later messages. In any of the transfers typiﬁed by these protocols, each packet
conventionally includes a portion of the data being transferred, as well as headers for each of
the protocoi layers and markers for positioning the packet relative to the rest of the packets of
this message. |
175 When a message packet or frame is received 47 from a network by the CPD, it is first
validated by a hardware assist. This includes determining the protocol types of the various
layers, verifying relevant checksums, and summarizing 57 these findings into a status word or
words. Included in these words is an indication‘ whether or not the frame is a candidate for
fast-path data flow. Selection 59 of fast-path candidates is based on whether the host may
20  benefit from this message connection being handled by the CPD, which includes determining
‘whether the packet has header bytes indicating particular protocols, such as TCP/IP or
SPX/IPX for example. The small percenf of frames that are not fast-path candidates are sent
61 to the host protocol stacks for slow-path protocol processing. Subsequent network
microprocessor work with each fast-path candidate determines whether a fast-path connection
25  such as a TCP or SPX CCB is already extant for that candidate, or whether that candidate may
beused to setup a new fast-path connection, such as for a TTCP/IP transaction. The
validation provided by the CPD provides acceleration whether a frame is processed by the fast-
path or a slow-path, as only error free, validated frames are processed by the host CPU even
for the slow-path processing.
30 All received message frames which have been determined by the CPD hardware assist to be
fast-path candidates are examined 53 by the network microprocessor or INIC comparator

circuits to determine whether they match a CCB held by the CPD. Upon confirming such a
12
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match, the CPD removes lower layer headers and sends 69 the remaining application data from
the frame directly into its final destination in the host using direct memory access (DMA) units
of the CPD. This operation may occur immediately upon receipt of a message packet, for
example when a TCP connection already exists and destination buffers have been negotiated,
or it may first be necessary to process an initial header to acquire a new set of final destination
addresses for this transfer. In this latter case, the CPD will queue subsequent message packets
while waiting for the destination address, and then DMA the queued application data to that
destination.

A fast-path candidate that does not match a CCB may be used to set up a new fast-path
connection, by sending 65 the frame to the host for sequential protocol processing. In this
case, the host uses this frame to create 51 a CCB, which is then passed to the CPD to control
subsequent frames on that connection. The CCB, which is célched 67 in the CPD, includes
control and state information pertinent to all protocols that would have been processed had
conventional software layer processing been employed. The CCB also contains storage space
for per-transfer information used to facilitate moving application-level data contained within
subsequent related message packets directly to a host application in a form available for

immediate usage. The CPD takes command of connection processing upon receiving a CCB

for that connection from the host.

As shown more specifically in FIG. 4A, when a message packet is received from the remote
host 22 via network 25, the packet enters hardware receive logic 32 of the CPD 30, which
checksums headers and data, and parses the headers, creating a word or words which identify

the message packet and status, storing the headers, data and word temporarily in memory 60.

" As well as validating the packet, the receive logic 32 indicates with the word whether this

packet is a candidate for fast-path processing. FIG. 4A depicts the case in which the packet is
not a fast-path candidate, in which case the CPD 30 sends the validated headers and data from
memory 60 to data link layer 36 along an internal bus for processing by the host CPU, as
shown by arrow 56. The packet is processed by the host protocol stack 44 of data link 36,
network 38, transport 40 and session 42 layers, and data (D) 63 from the packet may then be

~ sent to storage 35, as shown by arrow 65.

FIG. 4B, depicts the case in which the receive logic 32 of the CPD determines that a
message packet is a candidate for fast-path processing, for example by deriving from the

packet’s headers that the packet belongs to a TCP/IP, TTCP/IP or SPX/IPX message. A
13
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processor 55 in the CPD 30 then checks to see whether the word that summarizes the fast-path
candidate matches a CCB held in a cache 62. Upon finding no match for this packet, the CPD
sends the validated packet from memory 60 to the host protocol stack 44 for processing. Host
stack 44 may use this packet to create a connection context for the message, including finding
and reserving a destination for data from the message associated with the packet, the context
taking the form of a CCB. The present embodiment employs a single specialized host stack 44
for processing both fast-path and non-fast-path candidates, while in an embodiment described
below fast-path candidates are processed by a different host stack than non-fast-path
candidates. Some data (D1) 66 from that initial packet may optionally be sent to the
destination in storage 35, as shown by arrow 68. The CCB is then sent to the CPD 30 to be
saved in cache 62, as shown by arrow 64. For a traditional connection-based message such as
typified by TCP/IP, the initial packet may be part of a connection initialization dialogue that
transpires between hosts before the CCB is created and passed to the CPD 30.

Referring now to FIG. 4C, when a subsequent packet from the same connection as the
initial packet is received from the network 25 by CPD 30, the pa;:ket headers and data are
validated by the receive logic 32, and the headers are parsed to create a summary of the
message packet and a hash for finding a corresponding CCB, the summary and hash contained
in a word or words. The word or words are temporarily stored in memory 60 along with the
packet. The processor 55 checks for a matéh between the hash and each CCB that is stored in
the cache 62 and, finding a match, sends the data (D2) 70 via a fast-path directly to the
destination in storage 35, as shown by arrow 72, bypassing the session layer 42, transport layer
40, network layer 38 and data link layer 36. The remaining data packets from the message can
also be sent by DMA directly to storage, avoiding the relatively slow protocol layer processing
and repeated copying by the CPU stack 44.

FIG. 4D shows the procedure for handling the rare instance when a message for which a
fast-path connection has been established, such as shown in FIG. 4C, has a packet that is not
casily handled by the CPD. In this case the packet is sent to be processed by the protocol stack
44, which is handed the CCB for that message from cache 62 via a control dialogue with the
CPD, as shown by arrow 76, signaling to the CPU to take over processing of that message.
Slow-path processing by the protocol stack then results in data (D3) 80 from the packet being
sent, as shown by arrow 82, to storage 35. Once the packet has been processed and the error

situation corrected, the CCB can be handed back via a control dialogue to the cache 62, so that
14
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payload data from subsequent packets of that message can again be sent via the fast-path of the
CPD 30. Thus the CPU and CPD together decide whether a given message is to be processed
according to fast-path hardware processing or more conventional software processing by the
CPU. '

Transmission of a message from the host 20 to the network 25 for delivery to remote host 22
also can be processed by either sequential protocol software processing via the CPU or
accelerated hardware processing via the CPD 30, as shown in FIG. 5. « A message (M) 90 that
is selected by CPU 28 from storage 35 can be sent to session layer 42 for processing by stack
44, as shown by arrows 92 and 96. For the situation in which a connection exists and the CPD
30 already has an appropriate CCB for the message, however, data packets can bypass host
stack 44 and be sent by DMA directly to memory 60, with the processor 55 adding to each

data packet a single header containing all the appropriate protocol layers, and sending the

, resulting packets to the network 25 for transmission to remote host 22. This fast-path

transmission can greatly accelerate processing for even a single packet, with the acceleration
multiplied for a larger message.

A message for which a fast-path connection is not extant thus may benefit from creation of
aCCB withl appropriate control and state information for guiding fast-path transmission. For a
traditional connection-based message, such as typified by TCP/IP or SPX/IPX, the CCB is
created during connection initialization dialogue. For a quick-connection message, such as

typified by TTCP/IP, the CCB can be created with the same transaction that transmits payload

"data. In this case, the transmission of payload data may be a reply to a request that was used to

set up the fast-path connection. In any case, the CCB provides protocol and status information
regarding each of the protocol layers, including which user is involved and storage space for
pef—transfer information. The CCB is created by protocol stack 44, which then passes the CCB
to the CPD 30 by writing to a command register of the CPD, as shown by arrow 98. Guided
by the CCB, the processor 55 moves network frame-sized portions of the data from the source
in host memory 35 into its own memory 60 using DMA, as depicted by arrow 99. The
processor 55 then prepends appropriate headers and checksums to the data portions, and
transmits the resulting frames to the network 25, consistent with the restrictions of the
associated protocols. After the CPD 30 has received an acknowledgement that all the data has

reached its destination, the CPD will then notify the host 35 by writing to a response buffer.

15
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Thus, fast-path transmission of data communications also relieves the host CPU of per-frame
processing. A vast majority of data transmissions can be sent to the network by the fast-path.
Both the input and output fast-paths attain a huge reduction in interrupts by functioning at an
upper layer level, i.e., session level or higher, and interactions between the network
microprocessor and the host occur using the ﬁJll transfer sizes which that upper layer wishes to
make. For fast-path communications, an interrupt only occurs (at the most) at the beginning
and end of an entire upper-layer message transaction, and there are no interrupts for the
sending of receiving of each lower layer portion or packet of that transaction.

A simplified intelligent network interface card (INIC) 150 is shown in FIG. 6 to provide a
network interface for a host 152. Hardware logic 171 of the INIC 150 is connected to a
network 155, with a peripheral bus (PCI) 157 connecting the INIC and host. The host 152 in
this embodiment has a TCP/IP protocol stack, which provides a slow-path 158 for sequential
software processing of message frames received from the network 155. The host 152 protocol
stack includes a data link layer 160, network layer 162, a transport layer 164 and an
application layer 166, which provides a source or destination 168 for the communication data
in the host-152. Other layers which are not shown, such as session and presentation layers,
may also be included in the host stack 152, and the source or destination may vary depending
upon the nature of the data and may actually be the application layer.

The INIC 150 has a network processor 170 which chooses between processing messages
along a slow-path 158 that includes the protocol stack of the host, or along a fast-path 159 that
bypasses the protocol stack of the host. Each received packet is processed on the fly by
hardware logic 171 contained in INIC 150, so that all of the protocol headers for a packet can
be processed without copying, moving or storing the data between protocol layers. The
hardware logic 171 processes the headers of a given packet at one time as\packet bytes pass
through the hardware, by categorizing selected header bytes. Results of processing the
selected bytes help to determine which other bytes of the packet are categorized, until a
summafy of the packet has been created, including checksum validations. The processed
headers and data from the received packet are then stored in INIC storage 185, as well as the
word or words summarizing the headers and status of the packet. For a network storage
configuration, the INIC 150 may be connected to a peripheral storage device such as a disk

drive which has an IDE, SCSI or similar interface, with é file cache for the storage device

16
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rcsiding on the memory 185 of the INIC 150. Several such network interfaces may exist for a
host, with each interface having an associated storage device.

The hardware processing of message packets received by INIC 150 from network 155 is
shown in more detail in FIG. 7. A received message packet first enters a media access -
controller 172, which controls INIC access to the network and receipt of packets and can
provide statistical information for network protocol management. From there, data flows one
byte at a time into an assembly register 174, which in this example is 128 bits wide. The data
is categorized by a fly-by sequencer 178, as will be explained in more detail with regard to
FIG. 8, which examines the bytes of a packet as they fly by, and generates status from those
bytes that will be used to summarize the packet. The status thus created is merged with the

data by a multiplexor 180 and the resulting data stored in SRAM 182. A packet control

“sequencer 176 oversees the fly-by sequencer 178, examines information from the media access

controller 172, counts the bytes of data, generates addresses, moves status and manages the
movement of data from the assembly register 174 to SRAM 182 and eventually DRAM 188.
The packet control sequencer 176 manages a buffer in SRAM 182 via SRAM controller 183,
and also indicates to a DRAM controller 186 when data needs to be moved from SRAM 182 to
a buffer in DRAM 188. Once data movement for the packet has been completed and all the
data has been moved to the buffer in DRAM 188, the packet control sequencer 176 will move
the status that has been generated in the fly-by sequencer 178 out to the SRAM 182 and to the
beginning of the DRAM 188 buffer to be prépended to the packet data. The packet control
sequencer 176 then requests a queue manager 184 to enter a receive buffer descriptor into a
receive queue, which in turn notifies the processor 170 that the packet has been processed by
hardware logic 171 and its status summarized.

FIG. 8 shows that the fly-by sequencer 178 has several tiers, with each tier generally

.focusing on a particular portion of the packet header and thus on a particular protocol layer, for

" generating status pertaining to that layer. The fly-by sequencer 178 in this embodiment

includes a media access control sequencer 191, a network sequencer 192, a transport sequencer
194 and a session sequencer 195. Sequencers pertaining to higher protocol layers can
additionally be provided. The fly-by sequencer 178 is reset by the packet control sequencer
176 and given pointers by the packet control sequencer that tell the fly-by sequencer whether a
given byte is available from the assembly register 174. The media access control sequencer

191 determines, by looking at bytes 0-5, that a packet is addressed to host 152 rather than or in
17
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addition to another host. Offsets 12 and 13 of the packet are also processed by the media
access control sequencer 191 to determine the type field, for example whether the packet is
Ethernet or 802.3. If the type field is Ethernet those bytes also tell the media access control
sequencer 191 the packet’s network protocol type. For the 802.3 case, those bytes instead
indicate the length of the entire frame, and the media access control sequencer 191 will check
eight bytes further into the packet to determine the network layer type.

For most packets the network sequencer 192 validates that the header length received has
the correct length, and checksums the network layer header. For fast-path candidates the
network layer header is known to be IP or IPX from analysis done by the media access control
sequencer 191. Assuming for example that the type field is 802.3 and the network protocol is
IP, the network sequencer 192 analyzes the first bytes of the network layer header, which will
begin at byte 22, in order to determine IP type. The first bytes of the IP header will be
processed by the network sequencer 192 to determine what IP type the packet involves.
Determining that the packet involves, for example, IP version 4, directs further processing by
the network sequencer 192, which also looks at the protocol type located ten bytes into the IP
header for an indication of the transport header protocol of the packet. For example, for IP
over Ethernet, the IP header begins at offset 14, and the protocol type byte is offset 23, which
will be processed by network logic to determine whether the transport layer protocol is TCP,
for example. From the length of the network layer header, which is typically 20-40 bytes, .
network sequencer 192 determines the beginning of the packet’s transport layer header for
validating the transport layer header. Transport sequencer 194 may generate checksums for
the transport layer header and data, which may include information from the IP header in the
case of TCP at least.

Continuing with the example of a TCP packet, transport sequencer 194 also analyzes the
first few bytes in the transport layer portion of the header to determine, in part, the TCP source
and destination ports for the message, such as whether the packet is NetBios or other
protocols. Byte 12 of the TCP header is processed by the transport sequencer 194 to determine
and validate the TCP header length. Byte 13 of the TCP header contains flags that may, aside

from ack flags and push flags, indicate unexpected options, such as reset and fin, that may

_cause the processor to categorize this packet as an exception. TCP offset bytes 16 and 17 are

the checksum, which is pulled out and stored by the hardware logic 171 while the rest of the

frame is validated against the checksum.
18
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Session sequencer 195 determines the length of the session layer header, which in the case
of NetBios is only four bytes, two of which tell the length of the NetBios payload data, but
which can be much larger for other protocols. The session sequencer 195 can also be used to
categorize the type of message as read or write, for example, for which the fast-path may be
particularly beneficial. Further upper layer logic processing, depending upon the message
type, can be performed by the hardware logic 171 of packet control sequencer 176 and fly-by
sequencer 178. Thus hardware logic 171 intelligently directs hardware processing of the
headers by categorization of selected bytes from a single stream of bytes, with the status of the
packet being built from classifications determined on the fly. Once the packet control
sequencer 176 detects that all of the packet has been processed by the fly-by sequencer 178,

the packet control sequencer 176 adds the status information generated by the fly-by sequencer

- 178 and any status information generated by the packet control sequencer 176, and prepends

(adds to the front) that status information to the packet, for convenience in handling the packet
by the processor 170. The additional status information generated by the packet control
sequencer 176 includes media access controller 172 status information and any errors
discovered, orl data overflow in either the assembly register or DRAM buffer, or other
miscellaneous information regarding the packet. The packet control sequencer 176 also stores
entries into a receive buffer queue and a receive statistics queue via the queue manager 184.
An advantage of processing a packet by hardware logic 171 is that the packet does not, in
contrast with conventional sequential software protocol processing,'have to be stored, moved,
copied or pulled from storage for processing each protocol layer header, offering dramatic
increases in processing efficiency and savings in processing time for each packet. The packets
can be processed at the rate bits are received from the network, for example 100

megabits/second for a 100 baseT connection. The time for categorizing a packet received at

this rate and having a length of sixty bytes is thus about 5 microseconds. The total time for

processing this packet with the hardware logic 171 and sending packet data to its host
destination via the fast-path may be about 16 microseconds or less, assuming a 66 MHz PCI
bus, whereas conventional software protocol processing by a 300 MHz Pentium II® processor
may take as much as 200 microseconds in a busy device. More than an order of magnitude
decrease in processing time can thus be achieved with fast-path 159 in comparison with a
high-speed CPU employing conventional sequential software protocol processing,

demonstrating the dramatic acceleration provided by processing the protocol headers by the
19
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hardware logic 171 and processor 170, without even considering the additional time savings
afforded by the reduction in CPU interrupts and host bus bandwidth savings.

The processor 170 chooses, for each received message packet held in storage 185, whether
that packet is a candidate for the fast-path 159 and, if so, checks to see whether a fast-path has
already been set up for the connection that the packet belongs to. To do this, the processor 170
first checks the header status summary to determine whether the packet headers are of a
protocol defined for fast-path candidates. If not, the processor 170 commands DMA
controllers in the INIC 150 to send the packet to the host for slow-path 158 processing. Even
for a slow-path 158 processing of a message, the INIC 150 thus performs initial procedures
such as validation and determination of message type, and passes the validated message at
least to the data link layer 160 of the host.

For fast-path 159 candidates, the processor 170 checks to see whether the header status
summary matches a CCB held by the INIC. If so, the data from the packet is sent along fast-
path 159 to the destination 168 in the host. If'the fast-path 159 candidate’s packet summary
does not match a CCB held by the INIC, the packet may be sent to the host 152 for slow-path
processing to create a CCB for the message. Employment of the fast-path 159 may also not be
needed or desirable for the case of fragmented messages or other complexities. For the vast
majority of messages, however, the INIC fast-path 159 can greatly accelerate message
processing. The INIC 150 thus provides a single state machine processor 170 that decides
whether to send data directly to its destination, based upon information gleaned on the fly, as
opposed to the conventional employment of a state machine in each of several protocol layers
for determining the destiny of a given packet.

In processing an indication or packet received at the host 152, a protocol driver of the host
selects the processing route based upon whether the indication is fast-path or slow-path. A
TCP/IP or SPX/IPX message has a connection that is set up from which a CCB is formed by
the driver and passed to the INIC for matching with and guiding the fast-path packet to the

connection destination 168. For a TTCP/IP message, the driver can create a connection

~ context for the transaction from processing an initial request packet, including locating the

message destination 168, and then passing that context to the INIC in the form of a CCB for
providing a fast-path for a reply from that destination. A CCB includes connection and state
information regarding the protocol layers and packets of the message. Thus a CCB can

include source and destination media access control (MAC) addresses, source and destination
20
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IP or IPX addresses, source and destination TCP or SPX ports, TCP variables such as timers,
receive and transmit windows for sliding window protocols, and information indicating the
session layer protocol.

Caching the CCBs in a hash table in the INIC provides quick comparisons with words
summarizing incoming packets to determine whether the packets can be processed via the fast-
path 159, while the full CCBs are also held in the INIC for processing. Other ways to
accelerate this comparison include software processes such as a B-tree or hardware assists
such as a content addressable memory (CAM). When INIC microcode or comparator circuits
detect a match with the CCB, a DMA controller places the data from the packet in the
destination 168, without any interrupt by the CPU, protocol processing or copying. Depending
upon the type of message received, the destination of the data may be the session, presentation
or application layers, or a file buffer cache in the host 152.

FIG. 9 shows an INIC 200 connected to a host 202 that is employed as a file server. This
INIC provides a network interface for several network connections employing the 802.3u
standard, commonly known as Fast Ethernet. The INIC 200 is connected by a PCI bus 205 to
the server 202, which maintains a TCP/IP or SPX/IPX protocol stack including MAC layer
212, network layer 215, transport layer 217 and application layer 220, with a
source/destination 222 shown above the application layer, although as mentioned earlier the
application layer can be the source or destination. The INIC is also connected to network lines
210, 240, 242 and 244, which are preferably Fast Ethernet, twisted pair, fiber optic, coaxial
cable or other lines each allowing data transmission of 100 Mb/s, while faster énd slower data
rates are also possible. Network lines 210, 240, 242 and 244 are each connected to a dedicated
row of hardware circuits which can each validate and summarize message packets received
from their respective network line. Thus line 210 is connected with a first horizontal row of
sequencers 250, line 240 is connected with a second horizontal row of sequencers 260, line
242 is connected with a third horizontal row of sequencers 262 and line 244 is connected with
a fourth horizontal row of sequencers 264. After a packet has been validated and summarized
by one of the horizontal hardware rows it is stored along with its status summary in storage
270.

A network processor 230 determines, based on that summary and a comparison with any
CCBs stored in the INIC 200, whether to send a packet along a slow-path 231 for processing

by the host. A large majority of packets can avoid such sequential processing and have their
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data portions sent by DMA along a fast-path 237 directly to the data destination 222 in the
server according to a matching CCB. Similarly, the fast-path 237 provides an avenue to send
data directly from the source 222 to any of the network lines by processor 230 division of the
data into packets and addition of full headers for network transmission, again minimizing CPU
processing and interrupts. For clarity only horizontal sequencer 250 is shown active; in
actuality each of the sequencer rows 250, 260, 262 and 264 offers full duplex communication,
concurrently with all other sequencer rows. The specialized INIC 200 is much faster at
working with message packets than even advanced general-purpose host CPUs that processes
those headers sequentially according to the software protocol stack. ‘

One of the most commonly used network protocols for large messages such as file transfers
is server message block (SMB) over TCP/IP. SMB can operate in conjunction with redirector
software that determines whether a required resource for a particular operation, such as a
printer or a disk upon which a file is to be written, resides in or is associated with the host from
which the operation wés generated or is located at another host connected to the network, such
as a file server. SMB and server/redirector are conventionally serviced by the transport layer;
in the present invention SMB and redirector can instead be serviced by the INIC. In this case,
sending data by the DMA controllers from the INIC buffers when receiving a large SMB
transaction may‘greatly reduce interrupts that the host must handle. Moreover, this DMA
generally moves the data to its final destination in the file device cache. An SMB transmission
of the present invention follows essentially the reverse of the above described SMB receive,

with data transferred from the host to the INIC and stored in buffers, while the associated

~ protocol headers are prepended to the data in the INIC, for transmission via a network line to a

remote host. Processing by the INIC of the multiple packets and multiple TCP, IP, NetBios
and SMB protocol layers via custom hardware and without repeated interrupts of the host can
greatly increase the speed of transmitting an SMB message to a network line.

As shown in FIG. 10, for controlling whether a given message is processed by the host 202
or by the INIC 200, a message command driver 300 may be installed in host 202 to work in
concert with a host protocol stack 310. The command driver 300 can intervene in message
reception or transmittal, create CCBs and send or receive CCBs from the INIC 200, so that
functioning of the INIC, aside from improved performance, is transparent to a user. Also
shown is an INIC memory 304 and an INIC miniport driver 306, which can direct message

packets received from network 210 to either the conventional protocol stack 310 or the
22
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command protocol stack 300, depending upon whether a packet has been labeled as a fast-path
candidate. The conventional prot9061 stack 310 has a data link layer 312, a network layer 314
and a transport layer 316 for conventional, lower layer processing of messages that are not
labeled as fast-path candidates and therefore not processed by the command stack 300.
Residing above the lower layer stack 310 is an upper layer 318, which represents a session,
presentation and/or application layer, depending upon the message communicated. The
command driver 300 similarly has a data link layer 320, a network layer 322 and a transport
layer 325. |

The driver 300 includes an upper layer interface 330 that determines, for transmission of
messages to the network 210, whether a message transmitted from the upper la};er 318 is to be
processed by the command stack 300 and subsequently the INIC fast-path, or by the
conventional stack 310. When the upper layer interface 330 receives an appropriate message
from the upper layer 318 that would conventionally be intended for transmission to the
network after protocol processing by the protocol stack of the host, the message is passed to
driver 300. The INIC then acquires network-sized portions of the message data for that
transmission via INIC DMA units, prepends headers to the data portions and sends the
resulting message packets down the wire. Conversely, in receiving a TCP, TTCP, SPX or
similar message packet from the network 210 to be used in setting up a fast-path connection,
miniport driver 306 diverts that message packet to command driver 300 for processing. The
driver 300 processes the message packet to create a context for that message, with the driver
302 passing the context and command instructions back to theé INIC 200 as a CCB for sending
data of subsequent messages for the same connection along a fast-path. Hundreds of TCP,
TTCP, SPX or similar CCB connections may be held indefinitely by the INIC, although a least
recently used (LlRU) algorithm is employed for the case when the INIC cache is full. The
driver 300 can also create a connection context for a TTCP request which is passed to the INIC
200 as a CCB, allowing fast-path transmission of a TTCP reply to the request. A message
having a protocol that is not accelerated can be processed conventionally by protocol stack
310.

FIG. 11 shows a TCP/IP implementation of command driver software for Microsoft®
protocol messages. A conventional host protocol stack 350 includes MAC layer 353, IP layer
355 and TCP layer 358. A command driver 360 works in concert with the host stack 350 to

process network messages. The command driver 360 includes a MAC layer 363, an IP layer
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366 and an Alacritech TCP (ATCP) layer 373. The conventional stack 350 and command
driver 360 share a network driver interface specification (NDIS) layer 375, which interacts
with the INIC miniport driver 306. The INIC miniport driver 306 sorts receive indications
for processing by either the conventional host stack 350 or the ATCP driver 360. A TDI filter
driver and upper layer interface 380 similarly determines whether messages sent from a TDI
user 382 to the network are diverted to the command driver and perhaps to the fast-path of the
INIC, or processed by the host stack.

FIG. 12 depicts a typical SMB exchange between a client 190 and server 290, both of
which have communication devices of the present invention, the communication devices each
holding a CCB defining their connection for fast-path movement of data. The client 190
includes INIC 150, 802.3 compliant data link layer 160, IP layer 162, TCP layer 164, NetBios
layer 166, and SMB layer 168. The client has a slow-path 157 and fast-path 159 for
communication processing. Similarly, the server 290 includes INIC 200, 802.3 compliant data
link layer 212, IP layer 215, TCP layer 217, NetBios layer 220, and SMB 222. The server is
connected to network lines 240, 242 and 244, as well as line 210 which is connected to client
190. The server also has a slow-path 231 and fast-path 237 for communication processing.
Assuming that the client 190 wishes to read a 100KB file on the server 290, the client may
begin by sending a Read Block Raw (RBR) SMB command across network 210 requesting the
first 64 KB of fhat file on the server 290. The RBR command may be only 76 bytes, for

. example, so the INIC 200 on the server will recognize the message type (SMB) and relatively

small message size, and send the 76 bytes directly via the fast-path to NetBios of the server.
NetBios will give the data to SMB, which processes the Read request and fetches the 64KB of
data into server data buffers. SMB then calls NetBios to send the data, and NetBios outputs
the data for the client. In a conventional host, NetBios woﬁld call TCP output and pass 64 KB
to TCP, which would divide the data into 1460 byte segments and output each segment via IP
and eventually MAC (slow-path 231). In the present case, the 64KB data goes to the ATCP
driver along with an indication regarding the client-server SMB connection, which indicates a
CCB held by the INIC. The INIC 200 then proceeds to DMA 1460 byte segments from the
host buffers, add the appropriate headers for TCP, IP and MAC at one time, and send the
completed packets on the network 210 (fast-path 237). The INIC 200 will repeat this until the

whole 64KB transfer has been sent. Usually after receiving acknowledgement from the client
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that the 64KB has been received, the INIC will then send the remaining 36KB also by the fast-
path 237.

With INIC 150 operating on the client 190 when this reply arrives, the INIC 150 recognizes
from the first frame received that this connection is receiving fast-path 159 processing
(TCP/IP, NetBios, matching a CCB), and the ATCP may use this first frame to acquire buffer
space for the message. This latter case is done by passing the first 128 bytes of the NetBios
portion of the frame via the ATCP fast-path directly to the host NetBios; that will give
NetBios/SMB all of the frame’s headers. NetBios/SMB will analyze these headers, realize by
matching with a request ID that this is a reply to the original RawRead connection, and give
the ATCP a 64K list of buffers into which to place the data. At this stagé only one frame has
arrived, although more may arrive while this processing is occurring. As soon as the client
buffer list is given to the ATCP, it passes that transfer information to the INIC 150, and the
INIC 150 starts DMAing any frame data that has acqumulated into those buffers.

FIG. 13 provides a simplified diagram of the INIC 200, which combines the functions of a

network interface controller and a protocol processor in a single ASIC ¢hip 400. The INIC

- 200 in this embodiment offers a full-duplex, four channel, 10/100-Megabit per second (Mbps)

intelligent network interface controller that is designed for high speed protocol processing for
server applications. Although designed specifically for server applications, the INIC 200 can
be connected to personal computers, workstations, routers or other hosts anywhere that
TCP/IP, TTCP/IP or SPX/IPX protocols are being utilized.

The INIC 200 is connected with four network lines 210, 240, 242 and 244, which may
transport data along a number of different conduits, such as twisted pair, coaxial cable or/
optical fiber, each of the connections providing a media independent interface (MII) via
commercially available physical layer chips, such as model 80220/80221 Ethernet Media
Interface Adapter from SEEQ Technology Incorporated, 47200 Bayside Parkway, Fremont,
CA 94538. The lines preferably are 802.3 compliant and in connection with the INIC )
constitute four complete Ethernet nodes, the INIC supporting 10Base-T, 10Base-T2, 100Base-
TX, 100Base-FX and 100Base-T4 as well as future interface standards. Physical layer
identification and initialization is accomplished through host driver initialization routines. The
connection between the network lines 210, 240, 242 and 244 and the INIC 200 is controlled by
MAC units MAC-A 402, MAC-B 404, MAC-C 406 and MAC-D 408 which contain logic

circuits for performing the basic functions of the MAC sublayer, essentially controlling when
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the INIC accesses the network lines 210, 240, 242 and 244. The MAC units 402-408 may act
in promiscuous, multicast or unicast modes, allowing the INIC to function as a network
monitor, receive broadcast and multicast packets and implement multiple MAC addresses for
each node. The MAC units 402-408 also provide statistical information that can be used for
simple network management protocol (SNMP).

The MAC units 402, 404, 406 and 408 are each connected to a transmit and receive
sequencer, XMT & RCV-A 418, XMT & RCV-B 420, XMT & RCV-C 422 and XMT &
RCV-D 424, by wires 410, 412, 414 and 416, respectively. Each of the transmit and receive
sequencers can perform several protocol processing steps on the fly as message frames pass
through that sequencer. In combination with the MAC units, the transmit and receive
sequencers 418-422 can compile the packet status for the data link, network, transport, session
and, if appropriate, presentation and application layer protocols in hardware, greatly reducing
the time for such protocol processing compared to conventional sequential software engines.
The transmit and receive sequencers 410-414 are connected, by lines 426, 428, 430 and 432 to
an SRAM and DMA controller 444, which includes DMA controllers 438 and SRAM
controller 442. Static random access memory (SRAM) buffers 440 are coupled with SRAM
controller 442 by line 441. The SRAM and DMA controllers 444 interact across line 446 with
ex’;emal memory control 450 to send and receive frames via external memory bus 455 to and
from dynamic random access memory (DRAM) buffers 460, which is located adjacent to the
IC chip 400. The DRAM buffers 460 may be configured as 4 MB, 8 MB, 16 MB or 32 MB,
and may optionally be disposed on the chip. The SRAM and DMA controllers 444 are
connected via line 464 to a PCI Bus Interface Unit (BIU) 468, which manages the interface
between the INIC 200 and the PCI interface bus 257. The 64-bit, multiplexed BIU 468

provides a direct interface to the PCI bus 257 for both slave and master functions. The INIC

200 is capable of operating in either a 64-bit or 32-bit PCI environment, while supporting 64-
bit addressing in either configuration.

A microprocessor 470 is connected by line 472 to the SRAM and DMA controllers 444,
and connected via line 475 to the PCI BIU 468. Microprocessor 470 instructions and register
files reside in an on chip control store 480, which includes a writable on-chip control store
(WCS) of SRAM and a read only memory (ROM), and is connected to the microprocessor by
line 477. The microprocessor 470 offers a programmable state machine which is capable of

processing incoming frames, processing host commands, directing network traffic and
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directing PCI bus traffic. Three processors are implemented using shared hardware in a three
level pipelined architecture that launches and completes a single instruction for every clock
cycle. A receive processor 482 is primarily used for receiving communications while a
transmit processor 484 is primarily used for transmitting communications in order to facilitate
full duplex communication, while a utility processor 486 offers various functions including
overseeing and controlling PCI register access. .

The instructions for the three processors 482, 484 and 486 reside in the on-chip control-
store 480. Thus the functions of the three processors can be easily redefined, so that the
microprocessor 470 can adapted for a given environment. For instance, the amount of
processing required for receive functions may outweigh that required for either transmit or
utility functions. In this situation, some receive functions may be performed by the transmit
processor 484 and/or the utility processor 486. Alternatively, an additional level of pipelining
can be created to yield four or more virtual processors instead of three, with the additional
level devoted to receive functions.

The INIC 200 in this embodiment can support up to 256 CCBs which are maintained in a
table in the DRAM 460. There is also, however, a CCB index in hash order in the SRAM 440
to save sequential searching. Once a hash has been generated, the CCB is cached in SRAM,
with up to sixteen cached CCBs in SRAM in this example. Allocation of the sixteen CCBs
cached in SRAM is handled by a least recently used register, described below. These cache
locations are shared between the transmit 484 and receive 486 processors so that the processor

with the heavier load is able to use more cache buffers. There are also eight header buffers

- and eight command buffers to be shared between the sequencers. A given header or command

buffer is not statically linked to a specific CCB buffer, as the link is dynamic on a per-frame
basis.

FIG. 14 shows an overview of the pipelined microprocessor 470, in which instructions for
the receive, transmit and utility processors are executed in three alternating phases according
to Clock increments I, II and III, the phases corresponding to each of the pipeline stages. Each
phase is responsible for different functions, and each of the three processors occupies a
different phase during each Clock increment. Each processor usually operates upon a different
instruction stream from the control store 480, and each carries its own program counter and

status through each of the phases.
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In general, a first instrucﬁon phase 500 of the pipelined microprocessors completes an
instruction and stores the result in a destination operand, fetches the next instruction, and
stores that next instruction in an instruction register. A first register set 490 provides a number
of registers including the instruction register, and a set of controls 492 for first register set
provides the controls for storage to the first register set 490. Some items pass through the first
phase without modification by the controls 492, and instead are simply copied into the first
register set 490 or a RAM file register 533. A second instruction phase 560 has an instruction
decoder and operand multiplexer 498 that generally decodes the instruction that was stored in
the instruction register of the first register set 490 and gathers any operands which have been
generated, which are then stored in a decode register of a second register set 496. The first
register set 490, second register set 496 and a third register set 501, which is.employed in a
third instruction phase 600, include many of the same registers, as will be seen in the more

detailed views of FIGs. 15A-C. The instruction decoder and operand multiplexer 498 can read

* from two address and data ports of the RAM file register 533, which operates in both the first

phase 500 and second phase 560. A third phase 600 of the processor 470 has an arithmetic
logic unit (ALU) 602 which generally performs any ALU operations on the operands from the
second register set, storing the results in a results register included in the third register set 501.
A stack exchange 608 can reorder register stacks, and a quéue manager 503 can arrange
queues for the processor 470, the results of which are stored in the third register set.

The instructions continue with the first phase then following the third phase, as depicted by a
circular pipeline 505. Note that various functions have been distributed across the three phases
of the instruction execution in order to minimize the combinatorial delays within any given
phase. With a frequency in this embodiment of 66 MHz, each Clock increment takes 15
nanoseconds to complete, for a total of 45 nanoseconds to complete one instruction for each of
the three processors. The rotating instruction phases are depicted in more detail in FIGs. 15A-
C, in which each phase is shown in a different figure.

More particularly, FIG. 15A shows some specific hardware functions of the first phase 500,
which generally includes the first register set 490 and related controls 492. The controls for the
first register set 492 includes an SRAM control 502, which is a logical control for loading
address and write data into SRAM address and data registers 520. Thus the output of the ALU
602 from the third phase 600 may be placed by SRAM control 502 into an address register or

data register of SRAM address and data registers 520. A load control 504 similarly provides
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controls for writing a context for a file to file context register 522, and another load control
506 provides controls for storing a variety of miscellaneous data to flip-flop registers 525.
ALU condition codes, such as whether a carried bit is set, get clocked into ALU condition
codes register 528 without an operation performed in the first phase 500. Flag decodes 508
can perform various functions, such as setting locks, that get stored in flag registers 530.

The RAM file register 533 has a single write port for addresses and data and two read ports
for addresses and data, so that more than one register can be read from at one time. As noted
above, the RAM file register 533 essentially straddles the first and second phases, as it is
written in the first phase 500 and read from in the second phase 560. A control store
instruction 510 allows the reprogramming of the processors due to new data in from the
control store 480, not shown in this figure, the instructions stored in an instruction register
535. The address for this is generated in a fetch control register 511, which determines which
address to fetch, the address stored in fetch address register 538. Load control 515 provides
instructions for a program counter 540, which operates much like the fetch address for the
control store. A last-in first-out stack 544 of three registers is copied to the first register set
without undergoing other operations in this phase. Finally, a load control 517 for a debug
address 548 is optionally included, which allows correction of errors that may occur.

FIG. 15B depicts the second microprocessor phase 560, which includes reading addresses
and data out of the RAM file register 533. A scratch SRAM 565 is written from SRAM
address and data register 520 of the first register set, which includes a register that passes
through the first two phases to be incremented in the third. The scratch SRAM 565 is read by
the instruction decoder and operand multiplexer 498, as are most of the registers from the first
register set, with the exception of the stack 544, debug address 548 and SRAM address and
data register mentioned above. The instruction decoder and operand multiplexer 498 looks at
the various registers of set 490 and SRAM 565, decodes the instructions and gathers the
operands for operation in the next phase, in particular determining the operands to provide to
the ALU 602 below. The outcome of the instruction decoder and operand multiplexer 498 is
stored to a number of registers in the second register set 496, including ALU operands 579 and
582, ALU condition code register 580, and a/qucue channel and command 587 register, which
in this embodiment can control thirty-two queues. Sevéral of the registers in set 496 are
loaded fairly directly from the instruction register 535 above without substantial decoding by

the decoder 498, including a program control 590, a literal field 589, a test select 584 and a
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flag select 585. Other registers such as the file context 522 of the first phase 500 are always
stored in a file context 577 of the second phase 560, but may also be treated as an operand that

_is gathered by the multiplexer 572. The stack registers 544 are simply copied in stack register

594. The program counter 540 is incremented 568 in this phase and stored in register 592.
Also incremented 570 is the optional debug address 548, and a load control 575 may be fed
from the pipeline 505 at this point in order to allow error control in each phase, the reéult
stored in debug address 598.

FIG. 15C depicts the third microprocessor phase 600, which includes ALU and queue
operations. The ALU 602 includes an adder, priority encoders and other standard logic
functions. Results of the ALU are stored in registers ALU output 618, ALU condition codes
620 and destination operand results 622. A file context register 616, flag select register 626
and literal field register 630 are simply copied from the previous phase 560. A test multiplexer
604 is provided to determine whether a conditional jump results in a jump, with the results
stored in a test results register 624. The test multiplexer 604 may instead be performed in the
first phase 500 along with similar decisions such as fetch control 511. A stack exchange 608
shifts a stack up or down by fetching a program counter from stack 594 or putting a program
counter onto that stack, results of which are stored in program control 634, program counter
638 and stack 640 registers. The SRAM address may optionally be incremented in this phase
600. Another load control 610 for another debug address 642 may be forced from the pipeline
505 at this pomt in order to allow error control in this phase also. A QRAM & QALU 606,
shown together in this figure, read from the queue channel and command register 587, store in
SRAM and rearrange queues, adding or removing data and pointers as needed to manage the
queues of data, sending results to the test multiplexer 604 and a queue flags apd queue address
register 628. Thus the QRAM & QALU 606 assume the duties of managing queues for the
three processors, a task conventionally performed sequentially by software on a CPU, the
queue manager 606 instead providing accelerated and substantially parallel hardware queuing.

FIG. 16 depicts two of the thirty-two hardware queues that are managed by the queue
manager 606, with each of the queues having an SRAM head, an SRAM tail and the ability to
queue information in a DRAM body as well, allowing expansion and individual configuration
of each queue. Thus FIFO 700 has SRAM storage units, 705, 707, 709 and 711, each
containing eight bytes for a total of thirty-two bytes, although the number and capacity of

these units may vary in other embodiments. Similarly, FIFO 702 has SRAM storage units
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- 713,715,717 and 719. SRAM units 705 and 707 are the head of FIFO 700 and units 709 and

711 are the tail of that FIFO, while units 713 and 715 are the head of FIFO 702 and units 717
and 719 are the tail of that FIFO. Information for FIFO 700 may be written into head units
705 or 707, as shown by arrow 722, and read from tail units 711 or 709, as shown by arrow
725. A particular entry, however, may be both written to and read from head units 705 or 707,
or may be both written to and read from tail units 709 or 71’1, minimizing data movement and
latency. Similarly, information for FIFO 702 is typically written into head units 713 or 715, as
shown by arrow 733, and read from tail units 717 or 719, as shown by arrow 739, but may
instead be read from the same head or tail unit to which it was written.

The SRAM FIFOS 700 and 702 are both connected to DRAM 460, which allows virtually
unlimited expansion of those FIFOS to handle situations in which the SRAM head and tail are
full. For example a first of the thirty-two queues, labeled Q-zero, méy queue an entry in
DRAM 460, as shown by arrow 727, by DMA units acting under direction of the queue
manager, instead of being queued in the head or tail of FIFO 700. Entries stored in DRAM
460 return to SRAM unit 709, as shown by arrow 730, extending the length and fall-through
time of that FIFO. Diversion from SRAM to DRAM is typically reserved for when the SRAM
is full, since DRAM is slower and DMA movement causes additional latency. Thus Q-zero
may comprise the entries stored by queue manager 606 in both the FIFO 700 and the DRAM
460. Likewise, information bound for FIFO 702, which may correspond to Q-twenty-seven,
for example, can be moved by DMA into DRAM 460, as shown by arrow 735. The capacity
for queuing in cost-effective albeit slower DRAM 460 is user-definable during initialization,
allowing the queues to change in size as desired. Information queued in DRAM 460 is
returned to SRAM unit 717, as shown by arrow 737.

Status for each of the thirty-two hardware queues is conveniently maintained in and
accessed from a set 740 of four, thirty-two bit registers, as shown in FIG. 17, in which a
specific bit in each register corresponds to a specific queue. The registers are labeled Q-
Ouf_Ready 745, Q-In_Ready 750, Q-Empty 755 and Q-Full 760. If a particular bit is set in
the Q-Out_Ready register 750, the queue corresponding to that bit contains information that is
ready to be read, while the setting of the same bit in the Q-In_Ready 752 register means that
the queue is ready to be written. Similarly, a positive setting of a specific bit in the Q-Empty
register 755 means that the queue corresponding to that bit is empty, while a positive setting of

a particular bit in the Q-Full register 760 means that the queue corresponding to that bit is full.
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Thus Q-Out_Ready 745 contains bits zero 746 thrbugh thirty-one 748, including bits twenty-
seven 752, twenty-cight 754, twenty-nine 756 and thirty 758. Q-In_Ready 750 contair;s bits
zero 762 through thirty-one 764, including bits twenty-seven 766, twenty-eight 768, twenty-
nine 770 and thirty 772. Q-Empty 755 contains bits zero 774 through thirty-one 776,
including bits twenty-seven 778, twenty-eight 780, twenty-nine 782 and thirty 784, and Q-full
760 contains bits zero 786 through thirty-one 788, including bits twenty-seven 790, twenty-
eight 792, twenty-nine 794 and thirty 796.

Q-zero, corresponding to FIFO 700, is a free buffer queue, which holds a list of addresses
for all available buffers. This queue is addressed when the microprocessor or other devices
need a free buffer address, and so commonly includes appreciable DRAM 460. Thus a device

needing a free buffer address would check with Q-zero to obtain that address. Q-twenty-

seven, corresponding to FIFO 702, is a receive buffer descriptor queue. After processing a

received frame by the receive sequencer the sequencer looks to store a descriptor for the frame
in Q-twenty-seven. If a location for such a descriptor is immediately available in SRAM, bit
twenty-seven 766 of Q-In_Ready 750 will be set. If not, the sequencer must wait for the queue
manager to initiate a DMA move from SRAM to DRAM, thereby freeing space to store the
receive descriptor.

Operation of the queue manager, which manages movement of queue entries between
SRAM and the processor, the transmit and receive sequencers, and also between SRAM and
DRAM, is shown in more detail in FIG. 18. Requests which utilize the queues include
Processor Request 802, Transmit Sequencer Request 804, and Receive Sequencer Request
806. Other requests for the queues are DRAM to SRAM Request 808 and SRAM to DRAM
Request 810, which operate on behalf of the queue manager in moving data back and forth
between the DRAM and the SRAM head or tail of the queues. Determining which of these
various requests will get to use the queue manager in the next cycle is handled by priority logic
Arbiter 815. To enable high frequency operation the queue manager is pipelined, with
Registér A 818 and Register B 820 providing temporary storage, while Status Register 822
maintains status until the next update. The queue manager reserves even cycles for DMA,
receive and transmit sequencer requests and odd cycles for processor requests. Dual ported
QRAM 825 stores variables regarding each of the queues, the variables for each queue

including a Head Write Pointer, Head Read Pointer, Tail Write Pointer and Tail Read Pointer
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corresponding‘ to the queue’s SRAM condition, and a Body Write Pointer and Body Read
Pointer corresponding to the queue’s DRAM condition and the queue’s size.

After Arbiter 815 has selected the next operation to be performed, the variables of QRAM
825 are fetched and modified according to the selected operation by a QALU 828, and an
SRAM Read Request 830 or an SRAM Write Request 840 may be generated. The variables
are updated and the updated status is stored in Status Register 822 as well as QRAM 825. The
status is also fed to Arbiter 815 to signal that the operation previously requested has been
fulfilled, inhibiting duplication of requests. The Status R‘egister 822 updates the four queue
registers Q-Out_Ready 745, Q-In_Ready 750, Q-Empty 755 and Q-Full 760 to reflect the new
status of the queue that was accessed. Similarly updated are SRAM Addresses 833, Body
Write Request 835 and Body Read Requests 838, which are accessed via DMA to and from
SRAM head and tails for that queue. Alternatively, various processes may wish to write to a
queue, as shown by Q Write Data 844, which are selected by multiplexor 846, and pipelined to
SRAM Write Request 840. The SRAM controller services the read and write requests by
writing the tail or reading the head of the accessed queue and returning an acknowledge. In
this manner the various queues are utilized and their status updated. ’

FIGs. 19A-C show a least-recently-used register 900 that is employed for choosing which
contexts or CCBs to maintain in INIC cache memory. The INIC in this embodiment can cache

up to sixteen CCBs in SRAM at a given time, and so when a new CCB is cached an old one

. must often be discarded, the discarded CCB usually chosen according to this register 900 to be

the CCB that has been used least recently. In this embodiment, a hash table for up to two
hundred fifty-six CCBs is also maintained in SRAM, while up to two hundred fifty-six full
CCBs are held in DRAM. The least-recently-used register 900 contains sixteen four-bit blocks
labeled RO-R15, each of which corresponds to an SRAM cache unit. Upon initialization, the
blocks are numbered 0-15, with number 0 arbitrérily stored in the block representing the least
recently used (LRU) cache unit and number 15 stored in the block representing the most
recently used (MRU) cache unit. FIG. 19A shows the register 900 at an arbitrary time when
the LRU block RO holds the number 9 and the MRU block R15 holds the number 6.

When a different CCB than is currently being held in SRAM is to be cached, the LRU
block RO is read, which in FIG. 19A holds the number 9, and the new CCB is stored in the

SRAM cache unit corresponding to number 9. Since the new CCB corresponding to number

‘9 is now the most recently used CCB, the number 9 is stored in the MRU block, as shown in
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'FIG. 19B. The other numbers are all shifted one register block to the left, leaving the number

1 in the LRU block. The CCB that had previously been cached in the SRAM unit
corresponding to number 9 has been moved to slower but more cost-effective DRAM.

FIG. 19C shows the result when the next CCB used had already been cached in SRAM. In
this example, the CCB was cached in an SRAM unit corresponding to number 10, and so after
employment of that CCB, number 10 is stored in the MRU block. Only those numbers which
had previously been more recently used than number 10 (register blocks R9-R15) are shifted
to the left, leaving the number 1 in the LRU block. In this manner the INIC maintains the
most active CCBs in SRAM cache.

In some cases a CCB being used is one that is not desirable to hold in the limited cache
memory. For example, it is preferable not to cache a CCB for a context that is known to be
closing, so that other cached CCBs can remain in SRAM longer. In this case, the number
representing the cache unit holding the decacheable CCB is stored in the LRU block RO rather
than the MRU block R15, so that the decacheable CCB will be replaced immediately upon
employment of a new CCB that is cached in the SRAM unit corresponding to the number held
in the LRU block RO. FIG. 19D shows the case for which number 8 (which had been in block
R9 in FIG. 19C) correspbnds to a CCB that will be used and then closed. In this case number
8 has been removed from block R9 and stored in the LRU block RO. All the numbers that had
previously been stored to the left of block R9 (R1-R8) are then shifted one block to the right.

FIG. 20 shows some of the logical units employed to operate the least-recently-used
register 900. An array of sixteen, three or four input multiplexors 910, of which only
multiplexors MUX0, MUX7, MUX8, MUX9 and MUX15 are shown for clarity, have outputs
fed into the corresponding sixteen blocks of least-recently-used register 900. For example, the
output of MUXO is stored in block RO, the output of MUX7 is stored in block R7, etc. The
value of each of the register blocks is connected to an input for its corresponding multiplexor
and also into inputs for both adjacent multiplexors, for use in shifting the block numbers. For
instance, the number stored in R8 is fed into inputs for MUX7, MUX8 and MUX9. MUXO0
and MUX15 each have only one adjacent block, and the extra input for those multiplexors is
used for the selection of LRU and MRU blocks, respectively. MUX15 is shown as a four-
input multiplexor, with input 915 providing the number stored on RO.

An array of sixteen comparators 920 each receives the value stored in the corresponding

block of the least-recently-used register 900. Each comparétor also receives a signal from
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processor 470 along line 935 so that the register block having a number matching that sent by
processor 470 outputs true to logic circuits 930 while the other fifteen comparators output
false. Logic circuits 930 control a pair of select lines leading to each of the multiplexors, for
selecting inputs to the multiplexors and therefore controlling shifting of the register block
numbers. Thus select lines 939 control MUXO, select lines 944 control MUX7, select lines
949 control MUXS, select lines 954 control MUX9 and select lines 959 control MUX15.
When a CCB is to be used, processor 470 checks to see whether the CCB matches a CCB
currently held in one of the siz(teen cache units. If a match is found, the processor sends a
signal along line 935 with the block number corresponding to that cache unit, for exami)le

number 12. Comparators 920 compare the signal from that line 935 with the block numbers

and comparator C8 provides a true output for the block R8 that matches the signal, while all

the other comparators output false. Logic circuits 930, under control from the processor 470,
use select lines 959 to choose the input from line 935 for MUX15, storing the number 12 in the
MRU block R15. Logic circuits 930 also send signals along the pairs of select lines for MUXS8
and higher multiplexors, aside from MUX135, to shift their output one block to the left, by
selecting as inputs to each multiplexor MUXS8 and higher the value that had been stored in
register blocks one block to the right (R9-R15). The outputs of multiplexors that are to the left
of MUXS are selected to be constant.

If processor 470 does not find a match for the CCB among the sixteen cache units, on the
other hand, the proéessor reads from LRU block RO along line 966 to identify the cache
éorresponding to the LRU block, and writes the data stored in that ca;che to DRAM. The
number that was stored in RO, in this case number 3, is chosen by’select lines 959 as input 915

to MUX15 for storage in MRU block R15. The other fifteen multiplexors output to their

- respective register blocks the numbers that had been stored each register block immediately to

the right.-

For the situation in which the processor wishes to remove a CCB from the cache after use,
the LRU block RO rather than the MRU block R15 is selected for placement of the number
corresponding to the cache unit holding that CCB. The number corresponding to the CCB to
be placed in the LRU block RO for removal from SRAM (for example number 1, held in block
R9) is sent by processor 470 along line 935, which is matched by comparator C9. The
processor instructs logic circuits 930 to input the number 1 to RO, by selecting with lines 939

input 935 to MUXO. Select lines 954 to MUX9 choose as input the number held in register
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block R, so that the number from R8 is stored in R9. The numbers held by the other register
blocks between R0 and R9 are similarly shifted to the right, whereas the numbers in register
blocks to the right of R9 are left constant. This frees scarce cache memory from maintaining
closed CCBs for many cycles whileT their identifying numbers move through register blocks
from the MRU to the LRU blocks.

Figure 21 is another diagram of Intelligent Network Interface Card (INIC) 200 of Figure
13. INIC card 200 includes a Physical Layer Interface (PHY) chip 2100, ASIC chip 400 and
Dynamic Random Access Memory (DRAM) 460. PHY chip 2100 couples INIC card 200 to
network line 210 via a network connector 2101. INIC card 200 is coupled to the CPU of the
host (for example, CPU 28 of host 20 of Figure 1) via card edge connector 2107 and PCI bus
257. A;SIC chip 400 includes a Media Access Control (MAC) unit 402, a sequencers block
2103, SRAM control 442, SRAM 440, DRAM control 450, a queue manager 2103, a

- processor 470, and a PCI bus interface unit 468. Structure and operation of queue manager

2103 is described above in connection with Figure 18 and in U.S. Patent Application Serial
Number 09/416,925, entitled “Queue System For Microprocessors”, attorney docket no. ALA-
005, filed October 13, 1999, by Daryl D. Starr and Clive M. Philbrick (the subject matter of
which is incorporated herein by reference). Sequencers block 2102 includes a transmit
sequencer 2104, a receive sequencer 2105, and configuration registers 2106. A MAC
destination address is stored in confi guration register 2106. Part of the program code executed

by processﬂor 470 is contained in ROM (not shown) and part is located in a writéable control

" store SRAM (not shown). The program is downloaded into the writeable control store SRAM

at initialization from the host 20.

Figure 22 is a more detailed diagram of receive sequencer 2105. Receive sequencér 2105
includes a data synchronization buffer 2200, a packet synchronization sequencer 2201, a data
assembly register 2202, a protocol analyzer 2203, a packet processing sequencer 2204, a queue
manager interface 2205, and a Direct Memory Access (DMA) control block 2206. The packet
synchronization sequencer 2201 and data synchronization buffer 2200 utilize a network-
synchronized clock of MAC 402, whereas the remainder of the receive sequencer 2105 utilizes
a fixed-frequency clock. Dashed liﬁe 2221 indicates the clock domain boundary.

CD Appendix A contains a complete hardware description (verilog code) of an embodiment
of receive sequencer 2105. Signals in the verilog code are named to designate their functions.

Individual sections of the verilog code are identified and labeled with comment lines. Each of
36
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these sections describes hardware in a block of the receive sequencer 2105 as set forth below

in Table 1.

SECTION OF VERILOG CODE BLOCK OF FIG. 22
Synchronization Interface 2201
| Sync-Buffer Read-Ptr Synchronizers 2201
Packet-Synchronization Sequencer 2201
Data Synchronization Buffer 2201 and 2200
Synchronized Status for Link-Destination-Address 2201
Synchronized Status-Vector 2201
Synchronization Interface 2204
Receive Packet Control and Status ‘ ' 2204
Buffer-Descriptor ' 2201
Ending Packet Status 2201
AssyReg shift-in. Mac -> AssyReg. 2202 and 2204
Fifo shift-in. AssyReg -> Sram Fifo 2206
Fifo ShiftOut Burst. SramFifo -> DramBuffer . 2206
Fly-By Protocol Analyzer; Frame, Network and Transport Layers | 2203
Link Pointer 2203
| Mac address detection 2203
Magic pattern detection 2203
Link layer and network layer detection 2203
| Network counter 2203
Control Packet analysis 2203
Network header analysis | 2203
Transport layer counter 2203
Transport header analysis 2203
Pseudo-header stuff 2203
Free-Descriptor Fetch 2205 \
Receive-Descriptor Store 2205
Receive-Vector Store 2205
Queue-manager interface-mux 2205
37
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Pause Clock Generator 2201
Pause Timer 2204

TABLE 1

Operation of receive sequencer 2105 of Figures 21 and 22 is now described in connection
with the receipt onto INIC card 200 of a TCP/IP packet from network line 210. At
initialization time, processor 470 partitions DRAM 460 into buffers. Receive sequencer 2165
uses the buffers in DRAM 460 to store incoming network packet data as well as status
information for the packet. Processor 470 creates a 32-bit buffer descriptor for each buffer. A
buffer descriptor indicates the size and location in DRAM of its associated buffer. Processor
470 places these buffer descriptors on a “free—buffer queue” 2108 by writing the descriptors to
the queue manager 2103. Queue manager 2103 maintains multiple queues including the “free-
buffer queue” 2108. In this implementation, the heads and tails of the various queues are
located in SRAM 440, whereas the middle portion of the queues are located in DRAM 460.

Lines 2229 comprise a request mechanism invdlving arequest line and address lines.
Similarly, lines 2230 comprise a request mechanism involving a request line and address lines.
Queue manager 2103 uses lines 2229 and 2230 to issue requests to transfer queue information
from DRAM to SRAM or from SRAM to DRAM.

The queue manager interface 2205 of the receive sequencer always attempts to maintain a
free buffer descriptor 2207 for use by the packet processing sequencer 2204. Bit 2208 is a
ready bit that indicates that free-buffer descriptor 2207 is available for use by the packet
processing sequencer 2204. If queue manager interface 2205 does not have a free buffer
descriptor (bit 2208 is not set), then queue manager interface 2205 requests one from queue
manager 2103 via request line 2209. (Requesft line 2209 is actually a bus which communicates
the request, a queue 1D, a read/write signal and data if the operation is a write to the queue.)

In response, queue manager 2103 retrieves a free buffer descriptor from the tail of the “free
buffer queue” 2108 and then alerts the queue manager interface 2205 via an acknowledge
signal on acknowledge line 2210. When queue manager interface 2205 receives the
acknowledge signal, the queue manager interface 2205 loads the free buffer descriptor 2207
and sets the ready bit 2208. Because the free buffer descriptor was in the tail of the free buffer
queue in SRAM 440, the queue manager interface 2205 actually receives the free buffer
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descriptor 2207 from the read data bus 2228 of the SRAM control block 442. Packet
processing sequencer 2204 requests a free buffer descriptor 2207 via request line 2211. When
the queue manager interface 2205 retrieves the free buffer descriptor 2207 and the free buffer
descriptor 2207 is available for use by the packet processing sequencer, the queue manager
interface 2205 informs the packet processing sequencer 2204 via grant line 2212. By this
process, a free buffer descriptor is made available for use by the packet processing sequencer
2204 and the receive sequencer 2105 is ready to processes an incoming packet.

Next, a TCP/IP packet is received from the network line 210 via network connector 2101
and Physical Layer Interface (PHY) 2100. PHY 2100 supplies the packet to MAC 402 via a
Media Independent Interface (MII) parallel bus 2109. MAC 402 begins processing the packet
and asserts a “start of packet* signal on line 2213 indicating that the beginning of a packet is
being received. When a byte of data is received in the MAC and is available at the MAC
outputs 2215, MAC 402 asserts a “data valid” signal on line 2214. Upon receiving the “data
valid” signal, the packet synchronization sequencer 2201 instru&s the data synchronization
buffer 2200 via load signal line 2222 to load the received byte from data lines 2215. Data
synchronization buffer 2200 is four bytes deep. The packet synchronization sequencer 2201
then increments a data synchronization buffer write pointer. This data synchronization buffer
write pointer is made available to the packet processing sequencer 2204 via lines 2216.
Consecutive bytes of data from data lines 2215 are clocked into the data synchronization
buffer 2200 in this way.

A data synchronization buffer read pointer available on lines 2219 is maintained by the
packet processing sequencer 2204. The packet processing sequencer 2204 determines that
data is available in data synchronization buffer 2200 by comparing the data synchronization
buffer write pointer on lines 2216 with the data synchronization buffer read pointer on lines
2219. ‘

Data assembly register 2202 contains a sixteen-byte long shift register 2217. This register
2217 is loaded serially a single byte at a time and is unloaded in parallel. When data is loaded
into register 2217, a write pointer is incremented. This write pointer is made available to the
packet processing sequencer 2204 via lines 2218. Similarly, when data is unloaded from
register 2217, a read pointer maintained by packet processing sequencer 2204 is incremented.

This read pointer is available to the data assembly register 2202 via lines 2220. The packet
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processing sequencer 2204 can therefore determine whether room is available in register 2217
by comparing the write pointer on lines 2218 to the read pointer on lines 2220. |

If the packet processing sequencer 2204 determines that room is available in register 2217,
then packet processing sequencer 2204 instructs data assembly register 2202 to load a byte of
data from data synchronization buffer 2200. The data assembly register 2202 increments the
data assembly register write pointer on lines 2218 and the packet processing sequencer 2204
increments the data synchronization buffer read pointer on lines 2219. Data shifted into
register 2217 is examined at the register outputs by protocol analyzef 2203 which verifies
checksums, and generates “status” information 2223.

DMA control block 2206 is responsible for moving information from register 2217 to
buffer 2114 via a sixty-four byte receive FIFO 2110. DMA control block 2206 implements
receive FIFO 2110 as two thirty-two byte ping-pong buffers using sixty-four bytes of SRAM
440. DMA control block 2206 implements the receive FIFO using a write-pointer and a read-
pointer. When data to be transferred is available in register 2217 and space is available in
FIFO 2110, DMA control block 2206 asserts an SRAM write request to SRAM controller 442
via lines 2225. SRAM controller 442 in turn moves data from register 2217 to FIFO 2110 and
asserts an acknowledge signal back to DMA control block 2206 via lines 2225. DMA control

block 2206 then increments the receive FIFO write pointer and causes the data assembly

register read pointer to be incremented.

When thirty-two bytes of data has been deposited into receive FIFO 2110, DMA control
block 2206 presents a DRAM write request to DRAM controller 450 via lines 2226. This
write request consists of the free buffer descriptor 2207 ORed with a “buffer load count” for
the DRAM request address, and the receive FIFO read pointer for the SRAM read address.
Using the receive FIFO read pointer, the DRAM controller 450 asserts a read requést to
SRAM controller 442. SRAM controller 442 responds to DRAM controller 450 by returning
the indicated data from the receive FIFO 2110 in SRAM 440 and asserting an acknowledge
signal. DRAM controller 450 stores the data in a DRAM write data register, stores a DRAM
request address in a DRAM address register, and asserts an acknowledge to DMA control
block 2206. The DMA control block 2206 then decrements the receive FIFO read pointer.
Then the DRAM controller 450 moves the data from the DRAM write data register to buffer
2114. In this way, as consecutive thirty-two byte chunks of data are stored in SRAM 440,

DRAM control block 2206 moves those thirty-two byte chunks of data one at a time from
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SRAM 440 to buffer 2214 in DRAM 460. Transferring thirty-two byte chunks of data to the
DRAM 460 in this fashion allows data to be written into the DRAM using the relatively
efficient burst mode of the DRAM.

Packet data continues to flow from network line 210 to buffer 2114 until all packet data has
been received. MAC 402 then indicates that the incoming packet has completed by asserting
an “end of frame” (i.e., end of packet) signal on line 2227 and by presenting final packét status
(MAC packet status) to packet synchronization sequencer 2204. The packet processing
sequencer 2204 then moves the status 2223 (also called “protocol analyzer status”) and the
MAC packet status to register 2217 for eventual transfer to buffer 2114. After all the data of
the packet has been placed in buffer 22 114, status 2223 and the MAC packet status is
transferred to buffer 2214 so that it is stored prepended to the associated data as shown in
Figure 22.

After all data and status has been transferred to buffer 2114, packet processing sequencer

2204 creates a summary 2224 (also called a “receive packet descriptor”) by concatenating the

free buffer descriptor 2207, the buffer load-count, the MAC ID, and a status bit (also called an

“attention bit”). If the attention bit is a one, then the packet is not a “fast-path candidate”;
whereas if the attention bit is a zero, then the packet is a “fast-path candidate”. The value of
the attention bit represents the result of a significant amount of ﬁrocessing that processor 470
would otherwise have to do to determine whether the packet is a “fast-path candidate”. For
example, the attention bit being a zero indicates that the packet employs both TCP protocol
and IP protocol. By carrying out this significant amount of processing in hardware beforehand
and then encoding the result in the attention bit, subsequent decision making by processor 470
as to whether the packet is an actual “fast-path packet” is accelerated. A complete logical
description of the attention bit in verilog code is set forth in CDAppendix A in the lines
following the heading “Ending Packet Status”.

Packet processing sequencer 2204 then sets a ready bit (not shown) associated with
summary 2224 and presents summary 2224 to queue manager interface 2205. Queue manager
interface 2205 then requests a write to the head of a “summary queue” 2112 (also called the
“receive descriptor queue”). The queue manager 2103 receivés the request, writes the
summary 2224 to the head of the summary queue 2212, and asserts an acknowledge signal
back to queue manager interface via line 2210. When queue manager interface 2205 receives

the acknowledge, queue manager interface 2205 informs packet processing sequencer 2204
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that the summary 2224 is in summary queue 2212 by clearing the ready bit associated with the
summary. Packet processing sequencér 2204 also generates additional status information (also
called a ““vector”) for the packet by concatenating the MAC packet status and the MAC ID.
Packet processing sequencer 2204 sets a ready bit (not shown) associated with this vector and
5  presents this vector to the queue manager interface 2205. The queue manager interface 2205
and the queue manager 2103 then cooperate to write this vector to the head of a “vector queue”
2113 in similar fashion to the way summary 2224 was written to the head of summary queue
2112 as described above. When the vector for the packet has been written to vector queue
2113, queue manager interface 2205 resets the ready bit associated with the vector.
10 Once summary 2224 (including a buffer descriptor that points to Buffer 2114) hasbeen
placed in summary queue 2112 and the packet data has been placed in buffer 2144, processor
470 can retrieve summary 2224 from summary queue 2112 and examine the “attention bit”.
If the attention bit frorﬁ summary 2224 is a digital one, then processor 470 determines that
the packet is not a “fast-path candidate” and processor 470 need not examine the packet
15 headers. Only the status 2223 (first sixteen bytes) from buffer 2114 are DMA transferred to ‘
SRAM so processor 470 can examine it. If the status 2223 indicates that the packet is a type
of packet that is not to be transferred to the host (for example, a multicast frame that the host is
not registered to receive), then the packet is discarded (i.e., not passed to the host). If status
2223 does not indicate that the packet is the type of packet that is not to be transferred to the
20  host, then the entire packet (headers and data) is passed to a buffer on host 20 for “slow-path”
transport and network layer processing by the protocol stack of host 20.

If, on the other hand, the attention bit is a zero, then processor 470 determines that the
packet is a “fast-path candidate”. If processor 470 determines that the packet is a “fast-path
candidate”, then processor 470 uses the buffer descriptor from the summary to DMA transfer

25 the first approximately 96 bytes of information from buffer 2114 from DRAM 460 into a
portion of SRAM 440 so processor 470 can examine it. This first approximately 96 bytes
contains status 2223 as well as the IP source address of the IP header, the IP destination
address of the IP header, the TCP source address of the TCP header, and the TCP destination
address of the TCP header. The IP source address of the IP header, the IP destination address

30 of the IP header, the TCP source address of the TCP header, and the TCP destination address
of the TCP header together uniquely define a single connection context (TCB) with which the

packet is associated. Processor 470 examines these addresses of the TCP and IP headers and
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determines the connection context of the packet. Processor 470 then checks a list of
connection contexts that are under the control of INIC card 200 and determines whether the
packet is associated with a connection context (TCB) under the control of INIC card 200.

If the connection context is not in the list, then the “fast-path candidate” packet is
determined not to be a “fast-path packet.” In such a case, the entire packet (headers and data)
is transferred to a buffer in host 20 for “slow-path” processing by the protocol stack of host 20.

If, on the other hand, the connection context is in the list, then software executed by
processor 470 including software state machines 2231 and 2232 checks for one of numerous
exception conditions and determines whether the packet is a “fast-path packet” or is not a
“fast-path packet”. These exception conditions include: 1) IP fragmentation is detected; 2) an
IP option is detected; 3) an unexpected TCP flag (urgent bit set, reset bit set, SYN bit set or
FIN bit set) is detected; 4) the ACK field in the TCP header is before the TCP window, or the
ACK field in the TCP header is after the TCP window, or the ACK field in the TCP header
shrinks the TCP window; 5) the ACK field in the TCP header is a duplicate ACK and the
ACK field exceeds the duplicate ACK count (the duplicate ACK count is a user settable

. value); and 6) the sequence number of the TCP header is out of order (packet is received out of

sequence).' If the software executed by processor 470 detects one of these exception
conditions, then processor 470 determines.that the “fast-path candidate” is not a “fast-path
packet.” In such a case, the connection context for the packet is “flushed” (the connection
context is passed back to the host) so that the connection context is no longer present in the list
of connection contexts under control of INIC card 200. The entire packet (headers and data) is
transferred to a buffer in host 20 for “slow-path” transport layer and network layer processing
by the protocol stack of host 20.

If, on the other hand, processor 470 finds no such exception condition, then the “fast-path
candidate” packet is determined to be an actual “fast-path packet”. The receive state machine
2232 then processes of the packet through TCP. The data portion of the packet in buffer 2114
is then transferred by another DMA controller (not shown in Figure 21) from buffer 2114 to a
host-allocated file cache in storage 35 of host 20. In one embodiment, host 20 does no
analysis of the TCP and IP headers of a “fast-path packet”. All analysis of the TCP and IP
headers of a “fast-path packet” is done on INIC card 20.

Figure 23 is a diagram illustrating the transfer of data of “fast-path packets” (packets of a

64k-byte session layer message 2300) from INIC 200 to host 20. The portion of the diagram
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to the left of the dashed line 2301 represents INIC 200, whereas the portion of the diagram to
the right of the dashed line 2301 represents host 20. The 64k-byte session layer message 2300
includes approximately forty-five packets, four of which (2302, 2303, 2304 and 2305) are
labeled on Figure 23. The first packet 2302 includes a portion 2306 containing transport and
network layer headers (for example, TCP and IP headers), a portion 2307 containing a session
layer header, and a portion 2308 containing data. In a first step, porﬁon 2307, the first few
bytes of data from portion 2308, and the connection context identifier 2310 of the packet 2300
are transferred from INIC 200 to a 256-byte buffer 2309 in host 20. In a second step, host 20
examines this information and returns to INIC 200 a destination (for example, the location of a
file cache 2311 in storage 35) for the data. Host 20 also copies the first few bytes of the data
from buffer 2309 to the beginning of a first part 2312 of file cache 2311. In a third step, INIC
200 transfers the remainder of the data from portion 2308 to host 20 such that the remainder of
the data is stored in the remainder of first part 2312 of file cache 2311. No network, transport,
or session layer headers are stored in first part 2312 of file cache 2311. Next, the data portion
2313 of the second packet 2303 is transferred to host 20 such that the data portion 2313 of the
second packet 2303 is stored in a second part 2314 of file cache 2311. The transport layer and
network layer header portion 2315 of second packet 2303 is not transferred to host 20. There
is no network, transport, or session layer header stored in file cache 2311 between the data
portion of first packet 2302 and the data portion of second packet 2303. Similarly, the data
portion 2316 of the next packet 2304 of the session layer message is transferred to file cache
2311 so that there is no network, transport, or session layer headers between the data portion
of the second packet 2303 and the data portion of the third packet 2304 in file cache 2311. In
this way, only the data portions of the packets of the session layer message are placed in the
file cache 2311. The data from the session layer message 2300 is present in file cache 2311 as
a block such that this block contains no network, transport, or session layer headers.

In the case of a shorter, single-packet session layer message, portions 2307 and 2308 of the
session layer message are transferred to 256-byte buffer 2309 of host 20 along with the
connection context identifier 2310 as in the case of the longer session layer message described
above. In the case of a single-packet session layer message, however, the transfer is completed
at this point. Host 20 does not return a destination to INIC 200 and INIC 200 does not transfer

subsequent data to such a destination.
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CD Appendix B includes a listing of software executed by processor 470 that determines
whether a “fast-path candidate” packet is or is not a “fast-path packet”. An example of the
instruction set of processor 470 is found starting on page 79 of the Provisional U.S. Patent
Application Serial No. 60/061,809, entitled “Intelligent Network Interface Card And System
For Protocol Processing”, filed October 14, 1997 (the subject matter of this provisional
application is incorporated herein by reference).

CD Appendix C includes device driver software executable on host 20 that interfaces the
host 20 to INIC card 200. There is also ATCP code that executes on host 20. This ATCP
code includes: 1) a “frec BSD” stack (available from the University of California, Berkeley)
that has been modified slightly to make it run on the NT4 operating system (the “free BSD”
stack normally runs on a UNIX machine), and 2) code added to the free BSD stack between
the session layer above and the device driver below that enables the BSD stack to carry out
“fast-path” processing in conjunction with INIC 200.

TRANSMIT FAST-PATH PROCESSING: The following is an overview of one
embodiment of a transmit fast-path flow once a command has been posted (for additional
information, see provisional application 60/098,296, filed August 27, 1998). The transmit
request may be a segment that is less than the MSS, or it méy be as much as a full 64K session
layer packet. The former request will go out as one segment, the latter as a number of MSS-
sized segments. The transmitting CCB must hold on to the request until all data in it has been
transmitted and ACKed. Appropriate pointers to do this are kept in the CCB. To create an
output TCP/IP segment, a large DRAM buffer is acquired from the Q FREEL queue. Then
data is DMAAJ from host memory into the DRAM buffer to create an MSS-sized segment.
This DMA also checksums the data. The TCP/IP header is created in SRAM and DMAJ to

- the front of the payload data. It is quicker and simpler to keep a basic frame header (i.c., a

template header) permanently in the CCB and DMA this directly from the SRAM CCB buffer
into the DRAM buffer each time. Thus the payload checksum is adjusted for the pseudo-
header (i.e., the template header) and placed into the TCP header prior to DMAing the header
from SRAM. Then the DRAM buffer is queued to the appropriate Q UXMT transmit queue.
The final step is to update various window fields etc in the CCB. Eventually either the entire
request will have been sent and ACKed, or a retransmission timer will expire in which case the

context is flushed to the host. In either case, the INIC will place a command response in the
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response queue containing the command buffer from the original transmit comrﬁand and
appropriate status.

The above discussion has dealt with how an actual transmit occurs. However the real
challenge in the transmit processor is to determine whether it is appropriate to transmit at the
time a transmit request arrives, and then to continue to transmit for as long as the transport
protocol permits. There are many reasons not to transmit: the receiver’s window size is less
than or equal to zero, the persist timer has expired, the amount to send is less than a full
segment and an ACK is expected/outstanding, the receiver’s window is not half-open, etc.
Much of transmit processing will be in determining these conditions.

The fast-path is implemented as a finite state machine (FSM) that covers at least three
layers of the protocol stack, i.e., IP, TCP, and Session. The following summarizes the steps
involved in normal fast-path transmit command processing: 1) get control of the associated
CCB (gotten from the command): this involves locking the CCB to stop other processing (e.g.
Receive) from altering it while this transmit processing is taking place. 2) Get the CCB into
an SRAM CCB buffer. There are sixteen of these buffers in SRAM and they are not flushed to
DRAM until the buffer space is needed by other CCBs. Acquisition and flushing of these
CCB buffers is controlled by a hardware LRU mechanism. Thus getting into a buffer may

“involve flushing another CCB from its SRAM buffer. 3) Process the send command

(EX_SCMD) event against the CCB’s FSM.

Each event and state intersection provides an action to be executed and a new state. The
following is an example of the state/event transition, the action to be executed and the new
state for the SEND command while in transmit state IDLE (SX IDLE). The action from this
state/event intersection is AX NUCMD and the next state is XMIT COMMAND ACTIVE
(SX_XMIT). To summarize, a command to transmit data has been received while transmit is
currently idle. The action performs the following steps: 1) Store details of the command into
the CCB. 2) Check that it is okay to transmit now (e.g. send window is not zero). 3) If output
is not possible, send the Check Output event to Q_ EVENT1 queue for the Transmit CCB’s
FSM and exit. 4) Get a DRAM 2K-byte buffer from the Q-FREEL queue into which to move
the payload data. 5) DMA payload data from the addresses in the scatter/gather lists in the
command into an offset in the DRAM buffer that leaves space for the frame header. These
DMAs will provide the checksum of the payload data. 6) Concurrently with the above DMA,

fill out variable details in the frame header template in the CCB. Also get the IP and TCP
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header checksums while doing this. Note that base IP and TCP headers checksums are kept in
the CCB, and these are simply updated for fields that vary per frame, viz. IP Id, IP length, IP
checksum, TCP sequence and ACK numbers, TCP window size, TCP flags and TCP
checksum. 7) When the payload is complete, DMA the frame header from the CCB to the
front of the DRAM buffer. 8) Queue the DRAM buffer (i.e., queue a buffer descriptor that
points to the DRAM buffer) to the appropriate Q UXMT queue for the interface for this CCB.
9) Determine if there is more payload in the command. If so, save the current command
transfer address details in the CCB and send a CHECK OUTPUT event via the Q EVENT]1
queue to the Transmit CCB. If not, send the ALL COMMAND DATA SENT (EX ACDS)
event to the Transmit CCB. 10) Exit from Transmit FSM processing.

Code that implements an embodiment of the Transmit FSM (transmit software state
machin’e 2231 of Figure 21) is found in CD Appendix B. In one embodiment, fast-path
transmit processing is controlled using write only transmit configuration register (XmtCfg).
Register XmtCfg has the following portions: 1) Bit 31 (namé: Reset). Writing a o‘ne (1) will
force reset asserted to the transmit sequencer of the channel selected by XcvSel. 2) Bit 30
(name: XmtEn). Writing a one (1) allows the transmit sequencer to run. Writing a zero (0)
causes the transmit sequéncer to halt after completion of the current packet. 3) Bit 29 (name:
PauseEn). Writing a one (1) allows the transmit sequencer to stop packet transmission, after
completion of the current packet, whenever the receive sequencer detects an 802.3X pause
command packet. 4) Bit 28 (name: LoadRng). Writing a one (1) causes the data in
RcvAddrB([10:00] to be loaded in to the Mac’s random number register for use during
collisionjback-offs. 5) Bits 27:20 (name: Reserved). 6) Bit§ 19:15 (name: FreeQId). Selects
the queue to which the freed buffer descriptors will be written once the packet transmission
has been terminated, either successfully or unsuccessfully. 7) Bits 14:10 (name: XmtQId).
Selects the queue from which the transmit buffer descriptors will be fetched for data packets.
8) Bits 09:05 (name: CtrlQId). Selects the queue from which the transmit buffer descriptors
will be fetched for control packets. These packets have transmission priority over the data
packets and will be exhausted before data packets will be transmitted. 9) Bits 04:00 (name:
VectQIld). Selects the queue to which the transmit vector data is written after the completion

of each packet transmit. In some embodiments, transmit sequencer 2104 of Figure 21 retrieves

~ buffer descriptors from two transmit queues, one of the queues having a higher transmission

priority than the other. The higher transmission priority transmit queue is used for the
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transmission of TCP ACKs, whereas the lower transmission priority transmit queue is used for
the transmission of other types of packets. ACKs may be transmitted in accordance with
techniques set forth in U.S. Patent Application Serial No. 09/802,426 (the subject matter of
which is incorporated herein by reference). In some embodiments, the processor that executes
the Transmit FSM, the receive and transmit sequencers, and the host processor that executes
the protocol stack are all realized on the same printed circuit board. The printed circuit board
may, for example, be a card adapted for coupling to another computer.

All told, the above-described devices and systems for processing of data communication
result in dramatic reductions in the time and host resources required for processing large,
connection-based messages. Protocol processing speed and efficiency is tremendously
accelerated by specially designed protocol processing hardware as compared with a general
purpose CPU running conventional protocol software, and interrupts to the host CPU are also
substantially reduced. These advantages can be provided to an existing host by addition of an
intelligent network interface card (INIC), or the protocol processing hardware méy be
integrated with the CPU. In either case, the protocol processing hardware and CPU
intelligently decide which device processes a given message, and can change the allocation of

that processing based upon conditions of the message.

DISCLOSURE FROM PROVISIONAL APPLICATION 60/061.809.

BACKGROUND OF THE INVENTION.

Network processing as it exists today is a costly and inefficient use of system
resources. A 200 MHz Pentium-Pro is typically consumed simply processing network data
from a 100Mb/second-network connection. The reasons that this processing is so costly are

described here.

TOO MANY DATA MOVES.

When network packet arrives at a typical network interface card (NIC), the NIC moves
the data into pre-allocated network buffers in system main memory. From there the data is
read into the CPU cache so that it can be checksummed (assuming of course that the protocol
in use requires checksums. Some, like IPX, do not.). Once the data has been fully processed

by the protocol stack, it can then be moved into its final destination in memory. Since the
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CPU is mo.ving the data, and must read the destination cache line in before it can fill it and
write it back out, this involves at a minimum two more trips across the system memory bus. In
short, the best one can hope for is that the data will get moved across the system memory bus
four times before it arrives in its final destination. It can, and does, get worse. If the data
happens to get invalidated from system cache after it has been checksummed, then it must get
pulled back across the memory bus before it can be moved to its final destination. Finally, on

some systems, including Windows NT 4.0, the data gets copied yet another time while being

moved up the protocol stack. In NT 4.0, this occurs between the miniport driver interface and

the protocol driver interface. This can add up to a whopping eight trips across the system
memory bus (the four trips described above, plus the move to replenish the cache, plus three
more to copy from the miniport to the protocol driver). That’s enough to bring even today’s

advanced memory busses to their knees.

TOO MUCH PROCESSING BY THE CPU. : A

In all but the original move from the NIC to system mémory, the system CPU is
responsible for moving the data. This is particularly expensive because while the CPU is
moving this data it can do nothing else. While moving the data the CPU is typically stalled

waiting for the relatively slow memory to satisfy its read and write requests. A CPU, ‘which

* can execute an instruction every 5 nanoseconds, must now wait as long as several hundred

nanoseconds for the memory controller to respond before it can begin its next instruction.
Even today’s advanced pipelining technology doesn’t help in these situations because that
relies on the CPU being able to do useful work while it waits for the memory controller to
respond. If the only thing the CPU has to look forward to for the next several hundred
instructions is more data moves, then the CPU ultimately gets reduced to the speed of the
memory controller.

Moving all this data with the CPU slows the system down even after the data has been
moved. Since both the source and destination cache lines must be pulled into the CPU cache
when the data is moved, more than 3k of instructions and or data resident in the CPU cache
must be flushed or invalidated for every 1500 byte frame. This is of course assuming a
combined instruction and data second level cache, as is the case with the Pentium processors.
After the data has been moved, the former resident of the cache will likely need to be pulled

back in, stalling the CPU even when we are not performing network processing. Ideally a
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system would never have to bring network frames into the CPU cache, instead reserving that
precious commodity for instructions and data that are referenced repeatedly and frequently.
But the data movement is not the only drain on the CPU. There is also a fair amount of
processing that must be done by the protocol stack software. The most obvious expense is
calculating the checksum for each TCP segment (or UDP datagram). Beyond this, however,
there is other processing to be done as well. The TCP connection object must be located when
a given TCP segment arrives, [P header checksums must be calculated, there are buffer and
memory management issues, and finally there is also the significant expense of interrupt

processing which we will discuss in the following section.

TOO MANY INTERRUPTS.

A 64k SMB request (write or read-reply) is typically made up of 44 TCP segments
when running over Ethernet (1500 byte MTU). Each of these segments may result in an
interrupt to the CPU. Furthermore, since TCP must acknowledge all of this incoming data, it’s
possible to get another 44 transmit-complete interrupts as a result of sending out the TCP
acknowledgements. While this is possible, it is not terribly likely. Delayed ACK timers allow

us to acknowledge more than one segment at a time. And delays in interrupt processing may

mean that we are able to process more than one incoming network frame per interrupt.

Nevertheless, even if we assume four incoming frames per input, and an acknowledgement for
every two segments (as is typical per the ACK-every-other-segment property of TCP), we are
still left with 33 interrupts per 64k SMB request.

Interrupts tend to be very costly to the system. Often when a system is interrupted,
important information must be flushed or invalidated from the system cache so that the
interrupt routine instructions, and needed data can be pulled into the cache. Since the CPU
will return to its prior location after the interrupt, it is likely that the information flushed from
the cache will immediately need to be pulled back into the cache.

What’s more, interrupts force a pipeline flush in today’s advanced processors. While
the processor pipeline is an extremely efficient way of improving CPU performance, it can be
expensive to get going after it has been flushed.

Finally, each of these interrupts results in expensive register accesses across the

peripheral bus (PCI). This is discussed more in the following section.
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INEFFICIENT USE OF THE PERIPHERAL BUS (PCI).

We noted earlier that when the CPU has to access system memory, it may be stalled for
several hundred nanoseconds. When it has to read from PCI, it may be stalled for many
microseconds. This happens every time the CPU takes an interrupt from a standard NIC. The
first thing the CPU must do when it receives one of these interrupts is to read the NIC Interrupt
Status Register (ISR) from PCI to determine the cause of the interrupt. The most troubling
thing about this is that since interrupt lines are shared on PC-based systems, we may have to
perform this expensive PCI read even when the interrupt is not meant for us.

J There are other peripheral bus inefficiencies as well. Typical NICs operate using
descriptor rings. When a frame arrives, the NIC reads a receive descriptor from system
memory to determine where to place the data. Once the data has been moved to main
memory, the descriptor is then written back out to system memory with status about the
received frame. Transmit operates in a similar fashion. The CPU must notify that NIC that it
has a new transmit. The NIC will read the descriptor to locate the data, read the data itself, and
then write the descriptor back with status about the send. Typically on transmits the NIC will
then read the next expected descriptor to see if any more data needs to be sent. In short, each
receive or transmit frame results in 3 or 4 separate PCI reads or writes (not counting the status

register read)..

SUMMARY OF THE INVENTION.

Alacritech was formed with the idea that the network processing described above could
be offloaded onto a cost-effective Intelligent Network Interface Card (INIC). With the
Alacritech INIC, we address each of the above problems, resulting in the following
advancements: 7

1. The vast majority of the data is moved directly from the INIC into its final
destination. A single trip across the system memory bus.

2. There is no header processing, little data copying, and no checksumming
required by the CPU. Because of this, the data is never moved into the CPU cach/e, allowing
the system to keep important instructions and data resident in the CPU cache.

3. . Interrupts are reduced to as little as 4 interrupts per 64k SMB read and 2 per
64k SMB write.

51

DELL Ex.1002.056




ALA-006E

10

15

20

25

30

4. There are no CPU reads over PCI and there are fewer PCI operations per
receive or transmit transaction.

In the remainder of this document we will describe how we accomplish the above.

PERFORM TRANSPORT LEVEL PROCESSING ON THE INIC.

In order to keep‘ the system CPU from having to process the packet headers or
checksum the packet, we must perform this task on the INIC. This is a daunting task. There
are more than 20,000 lines of C code that make up the FreeBSD TCP/IP protocol stack.
Clearly this is more code than could be efficiently handled by a competitively priced network
card. Furthermore, as noted above, the TCP/IP protocol stack is complicated enough to
consume a 200 MHz Pentium-Pro. Clearly in order to perform this function on an inexpensive
card, we need special network processing hardware as opposed to simply using a general

purpose CPU.

ONLY SUPPORT TCP/IP.

In this section we introduce the notion of a "context". A context is required to keep
track of information that spans many, possibly discontiguous, pieces of information. When
processing TCP/IP data, there are actually two contexts that must be maintained. The first
context is required to reassemble IP fragments. It holds information about the status of the IP
reassembly as well as any checksum information being calculated across the IP datagram
(UDP or TCP). This context is identified by the IP_ID of the datagram as well as the source
and destination IP addresses. The second context is required to handle the sliding window
protocol of TCP. It holds information about which segments have been sent or received, and
which segments have been acknowledged, and is identified by the IP source and destination
addresses and TCP source and destination ports.

If we were to choose to handle both contexts in hardware, we would have to potentially
keep track of many pieces of information. One such example is a case in which a single 64k
SMB write is broken down into 44 1500 byte TCP segments, which are in turn broken down
into 131 576 byte IP fragments, all of which can come in any order (though the maximum
window size is likely to restrict the number of outstanding segments considerably).

Fortunately, TCP performs a Maximum Segment Size negotiation at connection

establishment time, which should prevent IP fragmentation in nearly all TCP connections. The
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only time that we should end up with fragmented TCP connections is when there is a router in
the middle of a connection which must fragment the segments to support a smaller MTU. The
only networks that use a smaller MTU than Ethernet are serial line interfaces such as SLIP and
PPP. At the moment, the fastest of these connections only run at 128k (ISDN) so even if we
had 256 of these connections, we would still only need to support 34Mb/sec, or a little over
three 10bT connections worth of data. This is not enough to justify any performance
enhancements that the INIC offers. If this becomes an issue at some point, we may decide to
implement the MTU discovery algorithm, which should prevent TCP fragmentation on all
connections (unless an ICMP redirect changes the connection route while the connection is
established).

With this in mind, it seems a worthy sacrifice to not attempt to handle fragmented TCP
segments on the INIC. UDP is another matter. Since UDP does not support the notion of a
Maximum Segment Size, it is the responsibility of IP to break down a UDP datagram into
MTU sized packets. Thus, fragmented UDP datagrams are very common. The most common
UDP application running today is NFSV2 over UDP. While thl:S is also the most common
version of NFS running today, the current version of Solaris being sold by Sun Microsystems
runs NFSV3 over TCP by default. We can expect to see the NFSV2/UDP traffic start to
decrease over the coming years. In summary, we will only offer assistance to non-fragmented

TCP connections on the INIC.

DON’T HANDLE TCP “EXCEPTIONS”.

As noted above, we won’t provide support for fragmented TCP segments on the INIC.
We have also opted to not handle TCP connection and breakdown. Here is a list of other TCP
“exceptions” which we have elected to not handle on the INIC:

Fragmented Segments —Discussed above. (

Retransmission Timeout — Occurs when we do not get an acknowledgement for
previously sent data within the expected time period. '

Out of order segments — Occurs when we receive a segment with a sequence number
other than the next expected sequence number.

FIN segment — Signals the close of the connection.

Since we have now eliminated support for so many different code paths, it might seem

hardly worth the trouble to provide any assistance by the card at all. This is not the case.
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According to W. Richard Stevens and Gary Write in their book “TCP/IP Illustrated Volume
27, TCP operates without experiencing any exceptions between 97 and 100 percent of the time
in local area networks. As network, router, and switch reliability improve this number is likely

to only improve with time.

TWO MODES OF OPERATION.

So the next question is what to do about the network packets that do not fit our criteria.
The answer shown in Fig. 24 is to use two modes of operation: One in which the network
frames are processed on the INIC through TCP and one in which the card operates like a
typical dumb NIC. We call these two modes fast;path, and slow-path.' In the slow-path case,
network frames are handed to the system at the MAC layer and passed up through the host

protocol stack like any other network frame. In the fast path case, network data is given to the

_ host after the headers have been processed and stripped.

The transmit case works in much the same fashion. In slow-path mode the packets are
given to the INIC with all of the headers vattached. The INIC simply sends these packets out as
if it were a dumb NIC. In fast-path mode, the host gives raw data to the INIC which it must
carve into MSS sized segments, add headers to the data, perform checksums on the segment,

and then send it out on the wire.

THE TCB CACHE.

Consider a situation in which a TCP connection is being handled by the card and a
fragmented TCP segment for that connection arrives. In this situation, it will be necessary for
the card to turn control of this connection over to the host.

This introduces the notion of a Transmit Control Block (TCB) cache. A TCB is a
structure that contains the entire context associated with a connection. This includes the
source and destination IP addresses and source and destination TCP ports that define the
connection. It also contains information about the connection itself such as the current send
and receive sequence numbers, and the first-hop MAC address, etc. The complete set of TCBs
exists in host memory, but a subset of these may be "owned" by the card at any given time.
This subset is the TCB cache. The INIC can own up to 256 TCBs at any given time.

TCBs are initialized by the host during TCP connection setup. Once the connection has

achieved a “steady-state” of operation, its associated TCB can then be turned over to the INIC,
54

DELL Ex.1002.059




e T
g e

ALA-006E

10

15

20

25

30

putting us into fast-path mode. ‘From this point on, the INIC owns the connection until either a
FIN arrives signaling that the connection is being closed, or until an exception occurs which
the INIC is not designed to handle (such as an out of order segment). When any of these
conditions occur, the INIC will then flush the TCB back to host memory, and issue a message
to the host telling it that it has relinquished control of the connection, thus putting the
connection back into slow-path mode. From this point on, the INIC simply hands incoming
segments that are destined for this TCB off to the host with all of the headers intact.

Note that when a connection is owned by the INIC, the host is not allowed to reference

the corresponding TCB in host memory as it will contain invalid information about the state of

" the connection.

TCP HARDWARE ASSISTANCE.

When a frame is received by the INIC, it must verify it completely before it even .
determines whether it belongs to one of its TCBs or\ not. This includes all header validation (is
it IP, IPV4 or V6, is the IP header checksum correct, is the TCP checksum correct, etc). Once
this is done it must compare the source and destination IP address and the source and
destination TCP port with those in each of its TCBs to determine if it is associated with one of
its TCBs. This is an expensive process. To expedite this, we have added several features in
hardware to assist us. The header is fully parsed by hardware and its type is summarized in a
single status word. The checksum is also verified automatically in hardware, and a hash key is
created out of the IP addresses and TCP ports to expedite TCB lookup. For full details on
these and other hardware optimizations, refer to the INIC Hardware Specification sections
(Heading 8).

With the aid of these and other hardware features, much of the work associated with
TCP is done essentially for free. Since the card will automatically calculate the checksum for
TCP segments, we can pass this on to the host, even when the segment is for a TCB that the ‘

INIC does not own.

TCP SUMMARY. ’
By moving TCP processing down to the INIC we have offloaded the host of a large

amount of work. The host no longer has to pull the data into its cache to calculate the TCP
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checksum. It does not have to process the packet headers, and it does not have to generate

TCP ACKs. We have achieved most of the goals outlined above, but we are not done yet.

TRANSPORT LAYER INTERFACE.

This section defines the INIC’s relation to the hosts transport layer interface (Called
TDI or Transport Driver Interface in Windows NT). For full details on this interface, refer to
the Alacritech TCP (ATCP) driver specification (Heading 4).

RECEIVE.

Simply implementing TCP on the INIC does not allow us to achieve our goal of landing
the data in its final destination. Somehow the host has to tell the INIC where to put the data.
This is a problem in that the host cannot do this without knowing what the data actually is.
Fortunately, NT has provided a mechanism by which a transport driver can “indicate” a small
amount of data to a client above it while telling it that it has more data to come. The client,
having then received enough of the data to know what it is, is then responsible for allocating a
block of memory and passing the memory address or addresses back down to the transport
driver, which is in turn responsible for moving the data into the provided location.

We will make use of this feature by providing a small amount of any received data to
the host, with a notification that we have more data pending. When this small amount of data
is passed up to the cliént, and it returns with the address in which to put the remainder of the
data, our host transport driver will pass that address to the INIC which will DMA the
remainder of the data into its final destination.

Clearly there are circumstances in which this does not make sense. When a small

amount of data (500 bytes for example), with a push flag set indicating that the data must be

-delivered to the client immediately, it does not make sense to deliver some of the data directly

while waiting for the list of addresses to DMA the rest. Under these circumstances, it makes
more sense to deliver the 500 bytes directly to the host, and allow the host to copy it into its
final destination. While various ranges are feasible, it is currently preferred that anything less
than a segment’s (1500 bytes) worth of data will be delivered directly to the host, while
anything more will be delivered as a small piece which may bel28 bytes, while waiting until

receiving the destination memory address before moving the rest.
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The trick then is knowing when the data should be delivered to the client or not. As
we’ve noted, a push flag indicates that the data should be delivered to the client immediately,
but this alone is not sufficient. Fortunately, in the case of NetBIOS transactions (such as
SMB), we are explicitly told the length of the session message in the NetBIOS header itself.
With this we can simply indicate a small amount of data to the host immediately upon
receiving the first segment. The client will then allocate enough memory for the entire
NetBIOS transaction, which we can then use to DMA the remainder of the data into as it
arrives. In the case of a large (56k for example) NetBIOS session message, all but the first
couple hundred bytes will be DMA’d to their final destination in memory.

But what about applications that do not reside above NetBIOS? In this case we can not
rely on a session level protocol to tell us the length of the transaction. Under these

circumstances we will buffer the data as it arrives until A) we have receive some

-predetermined number of bytes such as 8k, or B) some predetermined period of time passes

between segments or C) we get a push flag. If after any of these conditions occur we will then

indicate some or all of the data to the host depending on the amount of data buffered. If the
data buffered is greater than about 1500 bytes we must then also wait for the memory address

to be returned from the host so that we may then DMA the remainder of the data.

- TRANSMIT.

The transmit case is much simpler. In this case the client (NetBIOS for example) issues
a TDI Send with a list of memory addresses which contain data that it wishes to send along
with the length. The host can then pass this list of addresses and length off to the INIC. The
INIC will then pull the data from its source location in host memory, as it needs it, until the

complete TDI request is satisfied.

AFFECTS ON INTERRUPTS.

Note that when we receive a large SMB transaction, for example, that there are two
interactions between the INIC and the host. The first in which the INIC indicates a small
amount of the transaction to the host, and the second in which the host provides the memory
location(s) in which the INIC places the remainder of the data. This results in only two
interrupts from the INIC. The first when it indicates the small amount of data and the second

after it has finished filling in the host memory given to it. A drastic reduction from the 33/64k
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SMB request that we estimate at the beginning of this section. On transmit, we actually only

receive a single interrupt when the send command that has been given to the INIC completes.

TRANSPORT LAYER INTERFACE SUMMARY.

Having now established our interaction with Microsoft’s TDI interface, we have
achieved our goal of landing most of our data directly into its final destination in host memory.
We have also managed to transmit all data from its original location on host memory. And
finally, we have reduced our interrupts to 2 per 64k SMB read and 1 per 64k SMB write. The

only thing that remains in our list of objectives is to design an efficient host (PCI) interface.

HOST (PCI) INTERFACE.
In this section we define the host interface. For a more detailed description, refer to the

“Host Interface Strategy for the Alacritech INIC” section (Heading 3).

AVOID PCI READS.

One of our primary objectives in designing the host interface of the INIC was to
eliminate PCI reads in either direction. PCI reads are particularly inefficient in that they
completely stall the reader until the transaction completes. As noted above, this could hold a
CPU up for several microseconds, a thousand times the time typically required to execute a
single instruction. PCI writes on the other hand, are usually buffered by the memory-

bus<>PCI-bridge allowing the writer to continue on with other instructions. This technique is

" known as “posting”.

MEMORY-BASED STATUS REGISTER.
The only PCI read that is required by most NICs is the read of the interrupt status

register. This register gives the host CPU information about what event has caused an

interrupt (if any). In the design of our INIC we have elected to place this necessary status
register into host memory. Thus, when an event occurs on the INIC, it writes the status
register to an agreed upon location in host memory. The corresponding driver on the host
reads this local register to determine the cause of the interrupt. The interrupt lines are held
high until the host clears the interrupt by writing to the INIC’s Interrupt Clear Register.

Shadow registers are maintained on the INIC to ensure that events are not lost.
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the INIC 2 buffers at a time.

BUFFER ADDRESSES ARE PUSHED TO THE INIC.

Since it is imperative that our INIC operate as efficiently as possible, we must also
avoid PCI reads from the INIC. We do this by pushing our receive buffer addresses to the
INIC. As mentioned at the beginning of this section, most NICs work on a descriptor queue
algorithm in which the NIC reads a descriptor from main memory in order to determine where
to place the next frame. We will instead write receive buffer addresses to the INIC as receive .
buffers are filled. In order to avoid having to write to the INIC for every receive frame, we

instead allow the host to pass off a pages worth (4k) of buffers in a single write.

SUPPORT SMALL AND LARGE BUFFERS ON RECEIVE.

In order to reduce further the number of writes to the INIC, and to reduce the amount of
memory being used by the host, we support two different buffer sizes. A small buffer contains
roughly 200 bytes of data payload, as well as extra fields containing status about the received
data bringing the total size to 2‘56 bytes. We can therefore pass 16 of these small buffers at a
time to the INIC. Large buffers are 2k in size. They are used to contain any fast or slow-path
data that does not fit in a small buffer. Note that when we have a large fast-path receive, a
small buffer will be used to indicate a small piece of the data, while the remainder of the data
will be DMA’d directly into memory. Large buffers are never passed to the host by
themselves, instead they are always accompanied by a small buffer which contains status about

the receive along with the large buffer address. By operating in the manner, the driver must

~ only maintain and process the small buffer queue. Large buffers are returned to the host by

virtue of being attached to small buffers. Since large buffers are 2k in size they are passed to

COMMAND AND RESPONSE BUFFERS.

In addition to needing a manner by which the INIC can pass incoming data to us, we
also need a manner by which we can instruct the INIC to send data. Plus, when the INIC
indicates a small amount of data in a large fast-path receive, we need a method of passing back
the address or addresses in which to put the remainder of the data. We accomplish both of
these with the use of a command buffer. Sadly, the command buffer is the only place in which

we must violate our rule of only pushing data across PCI. For the command buffer, we write
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the address of command buffer to the INIC. The INIC theﬁ reads the contents of the command
buffer into its memory so that it can execute t‘he desired command. Since a command may
take a relatively long time to complete, it is unlikely that command buffers will complete in
order. For this reason we also maintain a response buffer queue. Like the small and large
receive buffers, a page worth of response buffers is passed to the INIC at a time. Response
buffers are only 32 bytes, so we have to replenish the INIC’s supply of them relatively
infrequently. The response buffers only purpose is to indicate the completion of the

designated command buffer, and to pass status about the completion.

EXAMPLES.
In this section we will provide a couple of examples describing some of the differing

data flows that we might see on the Alacritech INIC.

FAST-PATH 56K NETBIOS SESSION MESSAGE.

Let’s say a 56k NetBIOS session message is received on the INIC. The first segment
will contain the NetBIOS header, which contains the total NetBIOS length. A small chunk of
this first segment is provided to the host by filling in a small receive buffer, modifying the
interrupt status register on the host, and raising the appropriate interrupt line. Upon receiving
the interrupt, the host will read the ISR, clear it by writing back to the INIC’s Interrupt Clear
Register, and will then process its small receive buffer queue looking for receive buffers to be
processed. Upon finding the small buffer, it will indicate the small amount of data up to the
client to be processed by NetBIOS. It will also, if necessary, replenish the receive buffer pool
on the INIC by passing off a pages worth of small buffers. Meanwhile, the NetBIOS client
will allocate a memory pool large enough to hold the entire NetBIOS message, and will pass
this address or set of addresses down to the transport driver. The transport driver will allocate
an INIC command buffer, fill it in with the list of addresses, set the command type to tell the
INIC that this is where to put the receive data, and then pass the command off to the INIC by
writing to the command register. When the INIC receives the command buffer, it will DMA
the remainder of the NetBIOS data, as it is received, into the memory address or addresses
designated by the host. Once the entire NetBIOS transaction is complete, the INIC will
complete the command by writing to the response buffer with the appropriate status and

command buffer identifier.
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In this example, we have two interrupts, and all but a couple hundred bytes are DMA’d.
directly to their final destination. On PCI we have two interrupt status register writes, two

interrupt clear register writes, a command register write, a command read, and a response

“buffer write.

With a standard NIC this would result in an estimated 30 interrupts, 30 interrupt register
reads, 30 interrupt clear writes, and 58 descriptor reads and writes. Plus the data will get
moved anywhere from 4 to 8 times across the system memory bus.

\
SLOW-PATH RECEIVE.

If the INIC receives a frame that does not contain a TCP segment for one of its TCB’s,
it simply passes it to the host as if it were a dumb NIC. If the frame fits into a small buffer
(~200 bytes or less), then it simply fills in the small buffer with the data and notifies the host.
Otherwise it places the data in a large buffer, writes the address of the large buffer into a small
buffer, and again notifies the host. The host, having received the interrupt and found the
completed small buffer, checks to see if the data is contained in the small buffer, and if not,
locates theilarge buffer. Having found the data, the host will then pass the frame upstream to

be processed by the standard protocol stack. It must also replenish the INIC’s small and large

" receive buffer pool if necessary.

With the INIC, this will result in one interrupt, one interrupt status register write and
one interrupt clear register write as well as a possible small and or large receive buffer register
write. The data will go through the normal path although if it is TCP data then the host will
not have to perform the checksum.

With a standard NIC this will result in a single interrupt, an interrupt status register read,
an interrupt clear register write, and a descriptor read and write. The data will get processed as

it would by the INIC, except for a possible extra checksum.

FAST-PATH 400 BYTE SEND.

In this example, lets assume that the client has a small amount of data to send. It will
issue the TDI Send to the transport driver which will allocate a command buffer, fill it in with
the address of the 400 byte send, and set the command to indicate that it is a transmit. It will
then pass the command off to the INIC by writing to the command register. The INIC will

then DMA the 400 bytes into its own memory, prepare a frame with the appropriate
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checksums and headers, and send the frame out on the wire. After it has received the
acknowledgement it will then notify the host of the completion by writing to a response buffer.

With the INIC, this will result in one interrupt, one interrupt status register write, one
interrupt clear register write, a command buffer register write a command buffer read, and a
response buffer write. The data is DMA’d directly from the system memory.

With a standard NIC this will result in a single interrupt, an interrupt status register read,
an interrupt clear register write, and a descriptor read and write. The data would get moved
across the system bus a minimum of 4 times. The resulting TCP ACK of the data, however,
would add yet another interrupt, another interrupt status register read, interrupt clear register

write, a descriptor read and write, and yet more processing by the host protocol stack.

HOST INTERFACE STRATEGY FOR THE ALACRITECH INIC.

This section describes the host interface strategy for the Alacritech Intelligent Network
Interface Card (INIC). The goal of the Alacritech INIC is to not only process network data
through TCP, but also to provide zero-copy support for the SMP upper-layer protocol. It
achieves this by supporting two paths for sending and receiving data, the fast-path and the
slow-path. The fast path data flow corresponds to connections that are maintained on the NIC,
while slow-path traffic corresponds to network data for which the NIC does not have a
connection. The fast-path flow works by passing a header to the host and subsequently holding
further data for that connection on the card until the host responds via an INIC command with
a set of buffers into which to place the accumulated data. In the slow-path data flow, the INIC
will be operating as a “dumb” NIC, so that these packets are simply dumped into frame buffers
on the host as they arrive. To do either path requires a pool of smaller buffers to be used for
headers and a pool of data buffers for frames/data that are too large for the header buffer, with
both pools being managed by the INIC. This section discusses how these two pools of data are

managed as well as how buffers are associated with a given context.

RECEIVE INTERFACE.
The varying requirements of the fast and slow paths and a desire to save PCI bandwidth
are the driving forces behind the host interface that is described herein. As mentioned above,

the fast-path flow puts a header into a header buffer that is then forwarded to the host. The host

uses the header to determine what further data is following, allocates the necessary host
62 .

DELL Ex.1002.067



B NP R DR SR
W2 B e B el

ALA-006E

10

15

20

25

30

buffers, and these are passed back to the INIC via a command to the INIC. The INIC then fills
these buffers from data it was accumulating on the card and notifies the host by sending a
response to the command. Alternatively, the fast-path may receive a header and data that is a
complete request, but that is also too large for a header buffer. This results in a header and data
buffer being passed to the host. This latter flow is identical to the slow-path flow, which also
puts all the data into the header buffer or, if the header is too small, uses a large (2K) host
buffer for all the data. This means that on the unsolicited receive path, the host will only see
either a header buffer or a header and at most, one data buffer. Note that data is never split
between a header and a data buffer.

Fig. 25 illustrates both situations. Since we want to fill in the header buffer with a
single DMA, the header must be the last piece of data to be written to the host for any received

transaction.

RECEIVE INTERFACE DETAILS.
HEADER BUFFERS.

Header buffers in host memory are 256 bytes long, and are aligned on 256 byte
boundaries. There will be a field in the header buffer indicating it has valid data. This field
will initially be reset by the host before passing the buffer descriptor to the INIC. A set of
header buffers are passed from the host to the INIC by the host writing to the “Header Buffer
Address Register” on the INIC. This register is defined as follows:

Bits 31-8 Physical address in host memory of the first of a set of contiguous
header buffers.
Bits 7-0 Number of header buffers passed.

In this way the host can, say, aliocate 16 buffers in a 4K page, and pass all 16 buffers to
the INIC with one register write. The INIC will maintain a queue of these header descriptors
in the SmallHType queue in'it’s own local memory, adding to the end of the queue every time
the host writes to the Header Buffer Address Register. Note that the single entry is added to
the queue; the eventual dequeuer will use the count after extracting that entry.

The header buffers, will be used and returned to the host in the same order that they
were given to the INIC. The valid field will be set by the INIC before returning the buffer to
the host. In this way a PCI interrupt, with a single bit in the interrupt register, may be

generated to indicate that there is a header buffer for the host to process. When servicing this
63

DELL Ex.1002.068




R S R be 3T G Bea

A b RPN RD 0%

ALA-006E

10

15

20

25

30

interrupt, the host will look at its queue of header buffers, reading the valid field to determine

how many header buffers are to be processed.

RECEIVE DATA BUFFERS.

Receive data buffers in host memory are aligned to page boundaries, assumed here to be
2K bytes long and aligned on 4K page boundaries, 2 buffers per page. In order to pass receive
data buffers to the INIC, the host must write to two registers on the INIC. The first register to
be written is the “Data Buffer Handle Register.” The buffer handle is not significant to the
INIC, but will be copied back to the host to return the buffer to the host. The second register
written is the Data Buffer Address Register. This is the physical address of the data buffer.
When both registers have been written, the INIC will add the contents of these two registers to
FreeType queue of data buffer descriptors. Note that the INIC host driver sets the handle
register first, then the address register. There needs to be some mechanism put in place to
ensure the reading of these registers does not get out of sync with writing them. Effectively the
INIC can read the address register first and save its contents, then read the handle register. It
can then lock the register pair in some manner such that another write to the handle register is
not permitted until the current contents have been saved. Both addresses extracted from the
registers are to be written to the FreeType queue. The INIC will extract 2 entries each time
when dequeuing.

Data buffers will be allocated and used by the INIC as needed. For each data buffer
used by a slow-path transaction, the data buffer handle will be copied into a header buffer.

Then the header buffer will be returned to the host.

TRANSMIT INTERFACE.
TRANSMIT INTERFACE OVERVIEW.

The transmit interface shown in Fig. 26, like the receive interface, has been designed to
minimize the amount of PCI bandwidth and latencies. In order to transmit data, the host will
transfer a command buffer to the INIC. This command buffer will include a command buffer
handle, a command field, possibly a TCP context identification, and a list of physical data
pointers. The command buffer handle is defined to be the first word of the command buffer
and is used by the host to identify the command. This word will be passed back to the host in

a response buffer, since commands may complete out of order, and the host will need to know
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which command is complete. Commands will be used for many reasons, but primarily to cause
the INIC to transmit data, or to pass a set of buffers to the INIC for input data on the fast-path
as previously discussed.

Response buffers are physical buffers in host memory. They are used by the INIC in the
same order as they were given to it by the host. This enables the host to know which response

buffer(s) to next look at when the INIC signals a command completion.

TRANSMIT INTERFACE DETAILS.
COMMAND BUFFERS.

Command buffers in host memory are a multiple of 32 bytes, up to a maximum of 1K
bytes, and are aligned on 32 byte boundaries. A command buffer is passed to the INIC by

writing to one of five “Command Buffer Address Registers.” These registers are defined as

follows:
Bits 31-5 Physical address in host memory of the command buffer.
. Bits 4-0 Length of command buffer in bytes / 32 (i.e. number of multiples of 32
bytes).

This is the physical address of the command buffer. The register to which the command
is written predetermines the XMT interface number, or if the command is for the RCV CPU;
hence there will be 5 of them, 0 — 3 for XMT and 4 for RCV. When one of these registers has
been written, the INIC will add the contents of the registcf to it’s own internal queue of
command buffer descriptors. The first word of all command buffers is defined to be the
command buffer handle. It is the job of the utility CPU to extract a command from its local

queue, DMA the command into a small INIC buffer (from the FreeSType queue), and queue

~ that buffer into the Xmit#Type queue, where # is 0 — 3 depending on the interface, or the

appropriate RCV queue. The receiving CPU will service the queues to perform the commands.
When that CPU has completed a command, it extracts the command buffer handle and passes

it back to the host via a response buffer.

RESPONSE BUFFERS.
Response buffers in host memory are 32 bytes long and aligned on 32 byte boundaries.
They are handled in a very similar fashion to header buffers. There will be a field in the

response buffer indicating it has valid data. This field will initially be reset by the host before
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passing the buffer descriptor to the INIC. A set of response buffers are passed from the host to
the INIC by the host writing to the “Response Buffer Address Register” on the INIC. This
register is defined as follows:

Bits 31-8 Physical address in host memofy of the first of a set of contiguous
response buffers. '

Bits 7-0 Number of rééponse buffers passed.

In this way the host can, say, allocate 128 buffers in a 4K page, and pass all 128 buffers
to the INIC with one register write. The INIC will maintain a queue of these header
descriptors in it’s ResponseType queue, adding to the end of the queue every time the host
writes to the “Response Buffer Address Register”. The INIC writes the extracted contents
including the count, to the queue in exactly the same manner as for the header buffers.

The response buffers can be used and returned to the host in the same order that they
were given to the INIC. The valid field will be set by the INIC before returning the Buffer to
the host. In this way a PCI interrupt, with a single bit in the interrupt register, may be
generated to indicate that there is a response buffer for the host to process. When servicing
this interrupt, the host will look at its queue of response buffers, reading the valid field to

determine how many response buffers are to be processed.

INTERRUPT STATUS REGISTER / INTERRUPT MASK REGISTER.

Fig. 27 shows the general format of this register. The setting of any bits in the ISR will
cause an interrupt, provided the corresponding bit in the Interrupt Mask Register is set. The
default setting for the IMR is 0.

The INIC is configured so .that the host should never need to directly read the ISR from
the INIC. To support this, it is important for the host/INIC to arrange a buffer area in host
memory into which the ISR is dumped. The address and size of that area ca be passed to the
INIC via a command on the XMT interface. That command will also specify the setting for the
IMR. Until the INIC receives this command, it will not DMA the ISR to host memory, and no
events will cause an interrupt. The host could if necessary, read the ISR directly from the INIC
in this case.

For the host to never have to actually read the register from the INIC itself, it is
necessary for the INIC to update this host copy of the register whenever anything in it changes.

. The host will Ack (or deassert) events in the register by writing the register with 0’s in
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appropriate bit fields. So that the host does not miss events, the following scheme has been
developed:

The INIC keeps a local copy of the register whenever it DMA s it to the host i.e. after
some event(s). Call this COPYA Then the INIC starts accumulating any new events not
reflected in the host copy in a separate word. Céll this NEWA. As the host clears bits by
writing the register back with those bits set to zero, the INIC clears these bits in COPYA (or
the host write-back goes directly to COPYA). If there are new events in NEWA, it ORs them
with COPY A, and DMAs this néw ISR to the host. This new ISR then replaces COPYA,
NEWA is cleared and the cycle then repeats.

REGISTER ADDRESS.
For the sake of simplicity, in this example of Fig. 28 the registers are at 4-byte

increments from whatever the base address is.

ALACRITECH TCP (ATCP) DESIGN SPECIFICATION.
| This section outlines the design specification for the Alagritech TCP (ATCP) transport
driver. The ATCP driver consists of three components:

1. The bulk of the protocol stack is based on the FreeBSD TCP/IP protocol stack.
This code performs the Ethernet, ARP, IP, ICMP, and (slow path) TCP processing for the
driver.

2. At the top of the protocol stack we introduce an NT filter driver used to
intercept TDI requests destined for the Microsoft TCP driver.

3. At the bottom of the protocol stack we include an NDIS protocol-driver
interface which allows us to communicate with the INIC miniport NDIS driver beneath the
ATCEP driver.

This section covers each of these topics, as well as issues common to the entire ATCP

driver.

CODING STYLE.

In order to ensure that our ATCP driver is written in a consistent manner, we have
adopted a set of coding guidelines. These guidelines are introduced with the philosophy that
we should write code in a Microsoft style since we are introducing an NT-based product. The
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guidelines below apply to all code that we introduce into our driver. Since a very large portion
of our ATCP driver will be based on FreeBSD, and since we are somewhat time-constrained
on our driver development, the ported FreeBSD code will be exempt from these guidelines.

1. Global symbols - All function names and global variables in the ATCP driver

5  should begin with the “ATK” prefix (ATKSend() for instance).

2. Variable names — Microsoft seems to use capital letters to separate multi-word
variable names instead of underscores (VariableName instead of variable name). We should
adhere to this style.

3. Structure pointers — Microsoft typedefs all of their structures. The structure

10  types are always capitals and they typedef a pointer to the structure as “P”’<name> as follows:
typedef struct FOO { |
INT  bar;
} FOO, *PFOO;
We will adhere to this style.

15 4, Function calls — Microsoft separates function call arguments on separate lines:
X = foobar(
argumentl,
argument?2,
);
20 We will adhere to this style. .
5. Comments — While Microsoft seems to alternatively use // and /* */ comment

notation, we will exclusively use the /* */ notation.

6. Function comments — Microsoft includes comments with each function that
describe the function, its arguments, and its return value. We will also include these

25  comments, but will move them from within the function itself to just prior to the function for

better readability.

7. Function arguments — Microsoft includes the keywords IN and OUT when
defining function arguments. These keywords denote whether the function argument is used
as an input parameter, or alternatively as a placeholder for an output parameter. We will

30 include these keywords.
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8. Function prototypes — We will include function prototypes in the most logical
header file corresponding to the .c file. For example, the prototype for function foo() found in
foo.c will be placed in foo.h.

9. Indentation — Microsoft code fairly consistently uses a tabstop of 4. We will

S  dolikewise.
10. Header file #ifndef — each header file should contain a #ifndef/#define/#endif
which is used to prevent recursive header file includes. For example, foo.h would include:
#ifndef FOO H
#define FOO H
10 <foo.h contents..>
#endif /* _FOO _H__ */
Notethe NAME H  format.
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11. Each file must contain a comment at the beginning which includes the $1d$ as
follows:
¥ '
* $1d$
*/
CVS (RCS) will expand this keyword to denote RCS revision, timestamps, author, etc.

SMP

This section describes the process by which we will make the ATCP driver SMP safe.
The basic rule for SMP kernel code is that any access to a memory variable muét be protected
by a lock that prevents a competing access by code running on another processor. Spinlocks |
are the normal lock'ing method for code paths which do not take a long time to execute (and
which do not sleep.)

In general each instance of a structure will include a spinlock, which must be acquired
before members of that structure are accessed, and held while a function is accessing that
instance of the structure. Structures which are logically grouped together may be protected by
a single spinlock: for example, the ‘in_pcb’ Stmcmre, ‘tcpeb’ structure, and ‘socket’ structure
which together constitute the administrative information for a TCP connection will probably
be collectively managed by a single spinlock in the ‘socket’ structure.

In addition, every global data structure such as a list or hash table must also have a
protecting spinlock which must be held whﬂe the structure is being accessed or modified. The
NT DDK in fact provides a number of convenient primitives for SMP-safe list manipulation,
and it is recommended that these be used for any new lists. Existing list manipulations in the
FreeBSD code can probably be left as-is to minimize code disturbance, except of course that
the necessary spinlock acquisition and release must be added around them.

Spinlocks should not be held for long periods of time, and most especially, must not be
held during a sleep, since this will lead to deadlocks. There is a significant deficiency in the
NT kernel support for SMP systems: it does not provide an operation which allows a spinlock
to be exchanged atomically for a sleep lock. This would be a serious problem in a UNIX
environment where much of the processing occurs in the context of the user process which
initiated the operation. (The spinlock would have to be explicitly released, followed by a

separate acquisition of the sleep lock: creating an unsafe window.)
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The NT approach is more asynchronous, however: IRPs are simply marked as

‘PENDING’ when an operation cannot be completed immediately. The calling thread does

'NOT sleep at that point: it returns, and may go on with other processing. Pending IRPs are

later completed, not by waking up the thread which initiated them, but by an
“IoCompleteRequest” call which typically runs at DISPATCH level in an afbitrary context.
Thus we have not in fact used sleep locks anywhere in the design of the ATCP driver,

hoping the above issue will not arise.

DATA FLOW OVERVIEW.

The ATCP driver supports two paths fbr sending and receiving data, the fast-path and
the slow-path. The fast-path data flow corresponds to connections that are maintained on the
INIC, while slow-path traffic corresponds to network data for which the INIC does not havea ¢
connection. In order to set some groundwork for the rest of this section, these two data paths

are summarized here.

.FAST-PATH INPUT DATA FLOW.

There are 2 different cases to consider:

1. NETBIOS traffic (identifiable by port number.)

2. Everything else.

i
NETBIOS INPUT.

. As soon as the INIC has received a segment containing a NETBIOS header, it will
forward it up to the TCP driver, along with the NETBIOS length from the header. (In
principle the host could get this from the header itself, but since the INIC has already done the
decode, it seem reasonable to just pass it.)

From the TDI spec, the amount of data in the buffer actually sent must be at least 128
bytes. For small SMBs, all of the received SMB should be forwarded; it will be absorbed
directly by the TDI client without any further MDL exchange. Experiments tracing the TDI
data flow show that the NETBIOS client directly absorbs up to 1460 bytes: the amount of
payload data in a single Ethernet frame. Thus the initial system specifies that the INIC will
indicate anything up to a complete segment to the ATCP driver. [See note (1)].
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Once the INIC has passed up an indication with an NETBIOS length greater than the
amount of data in the packet it passed, it will continue to accumulate further incoming data in
DRAM on the INIC. Overflow of INIC DRAM buffers will be avoided by using a receive
window on the INIC at this point, which can be 8K. ‘

On receiving the indicated packet, the ATCP driver will call the receive handler
registered by the TDI client for the connection, passing the actual size of the data in the packet
from the INIC as "bytes indicated" and the NETBIOS length as "bytes available." [See note
)]

In the "largé data input" case, where "bytes available" exceeds the packet length, the
TDI client will then provide an MDL, associated with an IRP, which must bé completed when
this MDL is filled. (This IRP/MDL may come back either in the response to TCP's call of the
receive handler, or as an explicit TDI_RECEIVE request.)

The ATCP driver will bujld a “receive request” from the MDL information, and pass
this to the INIC. This request will contain:

. 1) The TCP context:identifier; 2) Size and offset information; 3) A list of physical
addresses corresponding to the MDL pages; 4) A context field to allow the ATCP driver to
identify the request on completion; and 5) “Piggybacked” window update information.

Note: the ATCP driver must copy any remaining data (which was not taken by the
receive handler) from the segment indicated by the INIC to the start of the MDL, and must
adjust the size & offset information in the request passed to the INIC to account for this.

The INIC will fill the given page(s) with incoming data up to the requested amount,
and respond to the ATCP driver when this is done [See note (3)]. If the MDL is large, the INIC
may open up its advertised receive window for improved throughput while filling the MDL.
On receiving the response from the INIC, the ATCP driver will complete the IRP associated
with this MDL, to tell the TDI client that the data is available. At this point the cycle of events

is complete, and the ATCP driver is now waiting for the next header indication.

OTHER TCP INPUT.
In the general case we do not have a higher-level protocol header to enable us to

predict that more data is coming. So on non-NETBIOS connections, the INIC will just

" accumulate incoming data in INIC DRAM up to a quantity of 8K in this example. Again, a
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maximum advertised window size, which may be 16K, will be used to prevent overflow of
INIC DRAM buffers.

When the prescribed amount has been accumulated, or when a PSH flag is seen, the
INIC will indicate a small packet which may be.128 bytes of the data to the ATCP driver,
along with the total length of the data accumulated in INIC DRAM.

On receiving the indicated packet, the ATCP driver will call the receive handler
registered by the TDI client for the connection, passing the actual size of the data in the packet
from the INIC as "bytes indicated" and the total INIC-buffer length as "bytes available."

As in the NETBIOS case, if "bytes available" exceeds "bytes indicated", the TDI client
will provide an IRP with an MDL. The ATCP driver will pass the MDL to the INIC to be
filled, as before. The INIC will reply to the ATCP driver, which in turn will complete the IRP
to the TDI client.

Using an MDL from the client avoids a copy step. However, if we can only buffer 8K
and delay indicating to the ATCP driver until we have done so, a question arises regarding
further segments coming in, since INIC DRAM is a scarce resource. We do not want to ACK
with a zero-size window advertisement: this would cause the transmitting end to go into persist
state, which is bad for throughput. If the transmitting end is also our INIC, this results in
having to implement the persist timer on the INIC, which we do not wish to do. Instead for
large transfers (i.e. no PSH flag seen) we will not send an ACK until the host has provided the
MDL, and also, to avoid stopping the transmitting end, we will use a receive window of twice
the amount we will buffer before calling the host. Since the host comes back with the MDL
quite quickly (measured at < 100 microseconds), we do not expect to experience significant

overruns.

INIC RECEIVE WINDOW UPDATES.

If the INIC “owns” an MDL provided by the TDI client (sent by ATCP as a receive
request), it will treat this as a “promise” by the TDI client to accept the data placed in it, and
may therefore ACK incoming data as it is filling the pages.

However, for small requests, there will be no MDL returned by the TDI client: it
absorbs all of the data directly in the receive callback function. We need to update the INIC’s

view of data which has been accepted, so that it can update its receive window. In order to be
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able to do this, the ATCP driver will accumulate a count of data which has been accepted by
the TDI client receive callback function for a connection. ‘

From the INIC’s point of view, though, segments sent up to the ATCP driver are just
“thrown over the wall”; there is no explicit reply path. We will therefore “piggyback™ the
update on requests sent out to the INIC. Whenever the ATCP driver has O;thoing data for that
connection, it will place this count in a field in the send request (and then clear the counter.)
Any receive request (passing a receive MDL to the INIC) may also be used to transport
window update info in the same way.

Note: we will probably also need to design a message path whereby the ATCP driver

* can explicitly send an update of this “bytes consumed” information (either when it exceeds a

preset threshold or if there are no requests going out to the INIC for more than a given time

interval), to allow for possible scenarios in which the data stream is entirely one-way.

NOTES.

1) The PSH flag can help to identify small SMB requests that fit into one segment.

2) Actually, the observed "bytes available" from the NT TCP driver to its client's callback
in this case is always 1460. The NETBIOS-aware TDI client presumably calculates the size of

" the MDL it will return from the NETBIOS header. So strictly speaking we do not need the

NETBIOS header length at this point: just an indication that this is a header for a "large" size.
However, we *do* need an actual "bytes available" value for the non-NETBIOS case, so we
may as well pass it.

3) We observe that the PSH flag is set in the segment completing each NETBIOS transfer.
The INIC can use this to determine when the current transfer is complete and the MDL should
be returned. It can, at least in a debug mode, sanity check the amount of received data against

what is expected, though.

FAST-PATH OUTPUT DATA FLOW.

The fast-path output data flow is similar to the input data-flow, but simpler. In this
case the TDI client will provide a MDL to the ATCP driver along with an IRP to be completed
when the data is sent. The ATCP driver will then give a request (corresponding to the MDL)
to the INIC. This request will contain: ‘
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1) The TCP context identiﬁer; 2) Size and offset information; 3) A list of physical
addresses corresponding to the MDL pages; 4) A context field to allow the ATCP driver to
identify the request on completion; 5) “Piggybacked” window update information (as
discussed in section 6.1.3.)

The INIC will copy the data from the given physical location(s) as it sends the
corresponding network frames onto the network. When all of the data is sent, the INIC will
notify the host of the completion, and the ATCP driver will complete the IRP.

Note that there may be multiple output requests pending at any given time, since SMB

allows multiple SMB requests to be simultaneously outstanding.

SLOW-PATH DATA FLOW.

For data for which there is no connection being maintained on the INIC, we will have

_to perform all of the TCP, IP, and Ethernet processing ourselves. To accomplish this we will

port the FreeBSD protocol stack. In this mode, the INIC will be operating as a “dumb NIC”;
the packets which pass over the NDIS interface will just contain MAC-layer frames.

The MBUFs in the incoming direction will in fact be managing NDIS-allocated
packets. In the outgoing direction, we need protocol-allocated MBUFs in which to assemble
the data and headers. The MFREE macro must be cognizant of the various types of MBUFs,
and “do the right thing” for each type. |

We will retain a (modified) socket sfructure for each connection, containing the socket
buffer fields expected by the FreeBSD code. The TCP code that operates on socket buffers
(adding/removing MBUFs to & from queues, indicating acknowledged & received data etc)
will remain essentially unchanged from the FreeBSD base (though most of the socket
functions & macros used to do this will need to be modified; these are the functions in
kern/uipc_socket2.c)

The upper socket layer (kern/uipc_socket.c), where the overlying OS moves data in and
out of socket buffers, must be entirely re-implemented to work in TDI terms. Thus, instead of
sosend(), there will be a function that copies data from the MDL provided in a TDI_SEND call
into socket buffer MBUFs. Instead of soreceive(), there will be a handler that calls the TDI
client receive callback function, and also copies data from socket buffer MBUFs into any
MDL provided by the TDI client (either explicitly with the callback response or as a separate

TDI_RECEIVE call.)
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We must note that there is a semantic difference between TDI _SEND and a write() on
a BSD socket. The latter may complete back to its caller as soon as the data has been copied
into the socket buffer. The completion of a TDI_SEND, however, implies that the data has
actually been sent on the connection. Thus we will need to keep the TDI_SEND IRPs (and
associated MDLs) in a queue on the socket until the TCP code indicates that the data from

them has been ACK’d.

. DATA PATH NOTES:

1. There might be input data on a connection object for which there is no receive handler
function registered. This has not been observed, but we can probably just ASSERT for a
missing handler for the moment. If it should happen, however, we must assume that the TDI
client will be doing TDI_RECEIVE calls on the connection. If we can’t make a callup at the
time that the indication from the INIC appears, we can queue the data and handle it when a
TDI_RECEIVE does appear.

2. NT has a notion of "canceling" IRPs. It is possible for us to get a "cancel" on an IRP

corresponding to an MDL which has been “handed” to the INIC by a send or receive request.

" We can handle this by being able to force the context back off the INIC, since IRPs will only

‘get cancelled when the connection is being aborted.

CONTEXT PASSING BETWEEN ATCP AND INIC.
FROM ATCP TO INIC.

There is a synchronization problem that must be addressed here. The ATCP driver will
make a decision on a given connection that this connection should now be passed to the INIC.
It builds and sends a command identifying this connection to the INIC.

Before doing so, it must ensure that no slow-path outgoing data is outstanding. This is
not difficult; it simply pends and queues any new TDI SEND requests and waits for any
unacknowledged slow path output data to be acknowledged before initiating the context pass
operation.

The problem arises with incoming slow-path data. If we attempt to do the context-pass
in a single command handshake, there is a window during which the ATCP driver has send the
context command, but the INIC has not yet seen this (or has not yet completed setting up its

context.) During this time, slow-path input data frames could arrive and be fed into the slow-
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path ATCP processing code. Should that happen, the context information which the ATCP
driver passed to the INIC is no longer correct. We can simply abort the outward pass of the
context in this event, but it seems better to have a reliable handshake.

Therefore, the command to pass context from ATCP driver to INIC will be split into
two halves, and there will be a two-exchange handshake.

The initial command from ATCP to INIC expresses an “intention” to hand out the -
context. It will include the source and destination IP addresses and ports, which will allow the
INIC to establish a “provisional” context. Once it has this “provisional” context in place, the
INIC will not send any more slow-path input frames for that src/dest IP/port combination (it
will queue them, if any are received.)

When the ATCP driver receives the response to this initial “intent” command, it knows
that the INIC will send no more slow-path input. The ATCP driver then waits for any
remaining unconsumed slow-path input data for this connection to be consumed by the client.
(Generally speaking there will be none, since the ATCP driver will not initiate a context pass
while there is unconsumed slow-path input data; the handshake is simply to close the
crossover window.) ‘

Once any such data has been consumed, we know things are in a quiescent state. The
ATCP driver can then send the second, “commit” command to hand out the context, with
confidence that the TCB values it is handing out (sequence numbers etc) are reliable.

Note 1: it is conceivable that there might be situations in which the ATCP driver
decides, after having sent the original “intention” command, that the context is not to be
passed after all. (E.g. the local client issues a close.) So we must allow for the possibility that
the second command may be a “abort”, which should cause the INIC to deallocate and clear up
its “provisional” context.

Note 2: to simplify the logic, the ATCP driver will guarantee that only one context may
be in process of being handed out at a time: in other words, it will never issue another initial

“intention” command until it has completed the second half of the handshake for the first one.

FROM INIC TO ATCP.

There are two possible cases for this: a context transfer may be initiated either by the
ATCP driver or by the INIC. However the machinery will be very similar in the two cases. If

the ATCP driver wishes to cause context to be flushed from INIC to host, it will send a "flush"
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message to the INIC specifying the context number to be flushed. Once the INIC receives
this, it will proceed with the same steps as for the case where the flush is initiated by the INIC
itself: | |

1) The INIC will send an error response to any current outstanding receive request it is
working on (corresponding to an MDL into which data is being placed.) Before sending the
response, it updates the receive command “length” field to reflect the amount of data which
has actually been placed in the MDL buffers at the time of the flush.

2) Likewise it will send an error response for any current send request, again reporting
the amount of data actually sent from the request.

3) The INIC will DMA the TCB for the context back to the host. (Note: part of the
information provided with a context must be the address of the TCB in the host.)

4) The INIC will send a “flush” indication to the host (very preferably via the regular
input path as a special type of frame) identifying the context which is being flushed. Sending‘
this indication via the regular input path ensures that it will arrive before any following slow-
path frames.

At this point, the INIC is no longer doing fast-path processing, and any further
incoming frames for the connection will simply be sent to the host as raw frames for the slow

input path. The ATCP driver may not be able to complete the cleanup operations needed to

' resume normal slow path processing immediately on receipt of the “flush frame”, since there

may be outstanding send and receive requests to which it has not yet received a response. If
this is the case, the ATCP driver must set a “pend incoming TCP frames” flag in its per-
connection context. The effect of this is to change the behavior of tcp_input(). This runs as a

function call in the context of ip_input(), and normally returns only when incoming frames

“have been processed as far as possible (queued on the socket receive buffer or out-of-sequence

reassembly queue.) However, if there is a flush pending and we have not yet completed
resynchronization, we cannot do TCP processing and must instead qheue input frames for TCP
on a “holding queue” for the connection, to be picked up later when context flush is complete
and normal slow path processing resumes. (This is why we want to send the “flush” indication
via the normal input path: so that we can ensure it is seen before any following frames of slow-
path input.)

Next we need to wait for any outstanding “‘send” requests to be errored off: -

-
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1) The INIC maintains its context for the connection in a “zombie” state. As “send”
requests for this connection come out of the INIC queue, it sends error responses for them
back to the ATCP driver. (It is apparently difficult for the INIC to identify all command
requests for a given context; simpler for it to just continue processing them in order, detecting
ones that are for a “zombie” context as they appear.)

2) The ATCP driver has a count of the number of outstanding requests it has sent to
the INIC. As error responses for these are received, it decrements this count, and when it
reaches zero, the ATCP driver sends a “flush complete” message to the INIC.

3) When the INIC receives the “flush complete” message, it dismantles its “zombie”
context. From the INIC perspective, the flush is now completed.

4) When the ATCP driver has received error responses for all outstanding requests, it
has all the information needed to complete its cleanup. This involves completing any IRPs

corresponding to requests which have entirely completed and adjusting fields in partially-

- completed requests so that send and receive of slow path data will resume at the right point in

the byte streams.

5) Once all this cleanup is complete, the ATCP driver will loop pulling any “pended”
TCP input frames off the “pending queue” mentioned above and feeding them into the normal
TCP input processing. Once all input frames on this queue have been cleared off, the “pend
incoming TCP frames” flag can be cleared for the connection, and we are back to normal

slow-path processing.

" FREEBSD PORTING SPECIFICATION.

The largest portion of the ATCP driver is either derived, or directly taken from the
FreeBSD TCP/IP protocol stack. This section defines the issues associated with porting this

_ code, the FreeBSD code itself, and the modifications required for it to suit our needs.

PORTING PHILOSOPHY.

FreeBSD TCP/IP (current version referred to as Net/3) is a general purpose TCP/IP
driver. It contains code to handle a variety of interface types and many different kinds of
protocols. To meet this requirement the code is often written in a sometimes confusing, over-
complex manner. General-purpose structures are overlaid with other interface-specific

structures so that different interface types can coexist using the same general-purpose code.
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For our purposes much of this complexity is unnecessary since we are only supporting a single
interface type and a few specific protocols. It is therefore tempting to modify the code and
data structures in an effort to make it more readable, and perhaps a bit more efficient. There
are, however, some problems with doing this. First, the more we modify the original
FreeBSD, the more changes we will have to make. This is especially true with regard to data
structures. If we collapse two data structures into one we might improve the cleanliness of the
code a bit, but we will then have to modify every reference to that data structure in the entire
protocol stack. Another problem with attempting to “clean up” the code is that we might later
discover that we need something that we had previously thrown away. Finally, while we
might gain a small performance advantage in cleaning up the FreeBSD code, the FreeBSD
TCP code will mostly only run in the slow-path connections, which are not our primary focus.
Our priority is to get the slow-path code functional and reliable as quickly as possible.

For the reasons above we have adopted the philosophy that we should initially keep the
data structures and code at close to the original FreeBSD implementation as possible. The
code will be modified for the following reasons:

1) Asrequired for NT interaction — Obviously we can’t cxpéct to simply “drop-in” the
FreeBSD code as is. The interface of this code to the NT system will require some significant
code modifications. This will mostly occur at the topmost and bottommost portions of the
protocol stack, as well as the “ioctl” sections of the code. Modifications for SMP issues are
also needed. A A

2) Unnecessary code can be removed — While we will keep the code as close to the
original FreeBSD as possible, we will nonetheless remove code that will never be used (UDP

is a good example of this).

UNIX <> NT CONVERSION.

The FreeBSD TCP/IP protocol stack makes use of many Unix system services. These
include beopy to copy memory, malloc to allocate memory, timestamp functions, etc. These
will not be itemized in detail since the conversion to the corresponding NT calls is a fairly
trivial and mechanical operation.

An area which will need non-trivial support redesign is MBUFs.
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NETWORK BUFFERS. .

Under FreeBSD, network buffers are mapped using mbufs. Under NT network buffers
are mapped using a combination of packet descriptors and buffer descriptors (the buffer
descriptors are really MDLs). There are a couple of problems with the Microsoft method.
First it does not provide the necessary fields which allow us to easily strip off protocol
headers. Second, converting all of the FreeBSD protocol code to speak in terms of buffer
descriptors is an unnecessary amount of overhead. Instead, in our port we will allocate our
own mbuf structures and remap the NT packets as shown in Fig. 29.

The mbuf structure will provide the standard fields provided in the FreeBSD mbuf
including the data pointer, which points to the current location of the data, data length fields
and flags. In addition each mbuf will point to the packet descriptor which is associated with
the data being mapped. Once an NT packet is mapped, our transport driver should never have
to refer to the packet or buffer descriptors for any information except when we are finished and
are preparing to return the packet.

There are a couple of things to note here. We have designed our INIC such that a
packet header should never be split across multiple buffers. Thus, we shéuld never require the
equivalent of the “m_pullup” routine included in Unix. Also note that there are circumstances
in which we will be accepting data that will also be accepted by the Microsoft TCP/IP. One
such example\of this is ARP frames. We will need to build our own ARP cache by looking at
ARP replies as they come off the network. Under these circumstances, it is absolutely
imperative that we do not modify the data, or the packet and buffer descriptors. We will
discuss this further in the following sections.

We will allocate a pool of mbuf headers at ATCP initialization time. It is important to
remember that unlike other NICs, we can not simply drop data if we run out of the system
resources required to manage/map the data. The reason for this is that we will be receiving
data from the card that has already been acknowledged by TCP. Because of this it is essential
that we never run out of mbuf headers. To solve this problem we will statically allocate mbuf
headers for the maximum number of buffers that we will ever allow to be outstanding. By
doing so, the card will run out of buffers in which to put the data before we will run out of
mbufs, and as a result, the card will be forced to drop data at the link layer instead of us
dropping it at the transport layer. DhXXX: as we’ve discussed, I don’t think this is really true

anymore. The INIC won’t ACK data until either it’s gotten a window update from ATCP to
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tell it the data’s been accepted, or it’s got an MDL. Thus it seems workable, though
undesirable, if we can’t accept a frame from the INIC & return an error to it saying it was not
taken.

We will also require a pool of actual mbufs (not just headers). These mbufs are
required in order to build transmit protocol headers for the slow-path data path, as well as
other miscellaneous purposes such as for building ARP requests. We will allocate a pool of
these at initialization time and we will add to this pool dynamically as needed. Unlike the
mbuf headers described above, which will be used to map acknowledged TCP data coming

from the card, the full mbufs will contain data that can be dropped if we can not get an mbuf.

' THE CODE.

In this section we describe each section of the FreeBSD TCP/IP port. These sections
include Interface Initialization, ARP, Route, IP, ICMP, and TCP.

INTERFACE. INITIALIZATION.
STRUCTURES. |

There are a variety of structures, which represent a single interface in FreeBSD. These
structures include: ifnet, arpcom, ifaddr, in_ifaddr, sockaddr, sockaddr in, and sockaddr dI.
Fig. 30 shows the relationship between all of these structures:

In the example of Fig. 30 we show a single interface with a MAC address of
00:60:97:DB:9B:A6 configured with an IP address of 192.100.1.2. As illustrated above, the
in_ifaddr is actually an ifaddr structure with some extra fields tacked on to the end. Thus the
ifaddr structure is used to represent both a MAC address and an IP address. Similarly the
sockaddr structure is recast as a sockaddr_dl or a sockaddr_in depending on its address type.
An interface can be configured to multiple IP addresses by simply chaining in_ifaddr
structures after the in_ifaddr structure shown in Fig. 30.

As mentioned in the Porting Philosophy section, many of the above structures could
likely be collapsed into fewer structures. In order to avoid making unnecessary modifications
to FreeBSD, for the time being we will leave these structures mostly as is. We will however
eliminate the fields from the structure that will never be used. These structure modifications

are discussed below.
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We also show above a structure called iface. This is a structure that we define. It
contains the arpcom structure, which in turn contains the ifnet structure. It also contains fields
that enable us to blend our FreeBSD implementation with NT NDIS requirements. One such

example is the NDIS binding handle used to call down to NDIS with requests (such as send).

THE FUNCTIONS.

FreeBSD initializes the above structures in two phases. First when a network interface
is found, fhe ifnet, arpcom, and first ifaddr structures are initialized first by the network layer
driver, and then via a call to the if_attach routine. The subsequent in_ifaddr structure(s) are
initialized when a user dynamically configures the interface. This occurs in the in_joctl and
the in_ifinit routines. Since NT allows dynamic configuration of a network interface we will
continue to perform .the interface initialization in two phases, but we will consolidate these two

phases as described below:

- IFINIT.

The IfInit routine will be called from the ATKProtocolBindAdapter function. The
IfInit function will initialize the Iface structure and associated arpcom and ifnet structures. It

will then allocate and initialize an ifaddr structure in which to contain link-level information

~about the interface, and a sockaddr dl structure to contain the interface name and MAC

address. Finally it will add a pointer to the ifaddr structure into the ifnet_addrs array (using
the if_index field of the ifnet structure) contained in the extended device object. Iflnit will

then call IfConfig for each IP address that it finds in the registry entry for the interface.

IFCONFIG.

IfConfig is called to configure an IP address for a given interface. It is passed a pointer
to the ifnet structure for that interface along with all the information required to configure an
IP address for that interface (such as IP address, netmask and broadcast info, etc). IfConfig
will allocate an in_ifaddr structure to be used to configure the interface. It will chain it to the
total chain of in_ifaddr structures contained in the extended device object, and will then
configure the structure with the information given to it. After that it will add a static route for
the newly configured network and then broadcast a gratuitous ARP request to notify others of

our.Mac/IP address and to detect duplicate IP addresses on the net.
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ARP.

We will port the FreeBSD ARP code to NT mostly as-is. For some reason, the
FreeBSD ARP code is located in a file called if ether.c. While the functionality of this file
will remain the same, we will rename it to a more logical arp.c. The main structures used by
ARP are the llinfo_arp structure and the rtentry structure (actually part of route). These
structures will not require major modifications. The functions that will require modification

are defined here.

IN_ARPINPUT.

This function is called to process an incoming ARP frame. An ARP frame can either

" be an ARP request or an ARP reply. ARP requests are broadcast, so we will see every ARP

request on the network, while ARP replies are directed so we should only see ARP replies that
are sent to us. This introduces the following possible cases for an incoming ARP frame:

1. ARP request trying to resolve our IP address — Under normal circumstances, ARP
would reply to this ARP request with an ARP reply containing our MAC address. Since ARP
requests will also be passed up to the Microsoft TCP/IP driver, we need not reply. Note
however, that FreeBSD also creates or updates an ARP cache entry with the information
derived from the ARP request. It does this in anticipation of the fact that any host that wishes
to know our MAC address is likely to wish to talk to us soon. Since we will need to know his
MAC address in order to talk back, we might as well add the ARP information now rather than
issuing our own ARP request later.

2. ARP request trying to resolve someone else’s IP address — Since ARP requests are
broadcast, we see every one on the network. When we receive an ARP request of this type, we
simply check to see if we have an entry for the host that sent the request in our ARP cache. If
we do, we check to see if we still have the correct MAC address associated with that host. Ifit
is incorrect, we update our ARP cache entry. Note that we do not create a new ARP cache
entry in this case.

3. ARP reply — In this case we add the new ARP entry to our ARP cache. Having
resolved the address, we check to see if there is any transmit requests pending for the resolve

IP address, and if so, transmit them.
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Given the above three possibilities, the only major change to the in_arpinput code is
that we will remove the code which generates an ARP reply for ARP requests that are meant

for our interface.

ARPINTR.
This is the FreeBSD code that delivers an incoming ARP frame to in_arpinput. We
will be calling in_arpinput directly from our ProtocolReceiveDPC routine (discussed in the

NDIS section below) so this function is not needed.

ARPWHOHAS.
This is a single line function that serves only as a wrapper around arprequest. We will

remove it and replace all calls to it with direct calls to arprequest.

ARPREQUEST.
This code simply allocates a mbuf, fills it in with an ARP header, and then passes it

" down to the ethernet output routine to be transmitted. For us, the code remains essentially the

same except for the obvious changes related to how we allocate a network buffer, and how we

send the filled in request.

ARP_IFINIT.

This is simply called when an interface is initialized to broadcast a gratuitous ARP
request (described in the interface initialization section) and to set some ARP related fields in
the ifaddr structure for the interface. We will simply move this functionality into the interface

initialization code and remove this function.

ARPTIMER.
This is a timer-based function that is called every 5 minutes to walk through the ARP

table looking for entries that have timed out. Although the time-out period for FreeBSD is 20

minutes, RFC 826 does not specify any timer requirements with regard to ARP so we can
modify this value or delete the timer altogether to suit our needs. Either way the function
won’t require any major changes. All other functions in if ether.c will not require any major

changes.
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ROUTE.

On first thought, it might seem that we have no need for routing support since our
ATCP driver will only receive IP datagrams whose destination IP address matches that of one
of our own interfaces. Therefore, we will not “route” from one interface to another. Instead,
the MICROSOFT TCP/IP driver will provide that service. We will, however, need to maintain
an up-to-date fouting table so that we know a) whether an outgoing connection belongs to one
of our interfaces, b) to which interface it belongs, and ¢) what the first-hop IP address
(gateway) is if the destination is not on the local network.

We discuss four aspects on the subject of routing in this section. They are as follows:
The mechanics of how routing information is stored.
The manner in which routes are added or deleted from the route table.

‘When and how route information is retrieved from the route table.

o

Notification of route table changes to interested parties.

THE ROUTE TABLE.

In FreeBSD, the route table is maintained using an algorithm known as PATRICIA
(Practical Algorithm To Retrieve Information Coded in Alphanumeric). This is a complicated
algorithm that is a bit costly to set up, but is very efficient to reference. Since the routing table
should contain the same information for both NT and FreeBSD, and since the key used to
search for an entry in the routing table will be the same for each (the destination IP address),
we should be able to port the routing table software to NT without any major changes.

The software which implements the route table (via the PATRICIA algorithm) is
located in the FreeBSD file, radix.q. This file will be ported directly to the ATCP driver with

no significant changes required.

ADDING AND DELETING ROUTES.

Routes can be added or deleted in a number of different ways. The kernel adds or
deletes routes when the state of an interface changes or when an ICMP redirect is received.
User space programs such as the RIP daemon, or the route command also modify the route

table.
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For kemel-based route changes, the changes can be made by a direct call to the routing
software. The FreeBSD software that is responsible for the modification of route table entries
is found in route.c. The primary routine for all route table changes is called rtrequest(). It
takes as its arguments, the request type (ADD, RESOLVE, DELETE), the destination IP
address for the route, the gateway for the route, the netmask for the route, the flags for the
route, and a pointer to the route structure (struct rtentry) in which we will place the added or
resolved route. Other routines in the route.c file include rtinit(), which is called during
interface initialization time to add a static route to the network, rtredirect, which is called by
ICMP when we receive a ICMP redirect, and an assortment of support routines used for the
modification of route table entries. All of these routines found in route.c will be ported with
no major modifications.

For user-space-based changes, we will have to be a bit more clever. In FreeBSIj, route
changes are sent down to the kernel from user—spaée applications via a special route socket.
This code is found in the FreeBSD file, rtsock.c. Obviously this will not work for our ATCP
driver. Instead the filter driver portion of our driver will intercept route changes destined for
the Microsoft TCP driver and will apply those modifications to our own route table via the
rtrequest routine described above. In order to do this, it will have to do some format

translation to put the data into the format (sockaddr in) expected by the rtrequest routine.

Obviously, none of the code from rtsock.c will be ported to the ATCP driver. This same

procedure will be used to intercept and process explicit ARP cache modifications.

CONSULTING THE ROUTE TABLE.

In FreeBSD, the route table is consulted in ip_output when an TP datagfarn is being
sent. In order to avoid a complete route table search for every outgoing datagram, the route is
stored into the in_pcb for the connection. For subsequent calls to ip_output, the route entry is
theﬁ simply checked to ensure validity. While we will keep this basic operation as is, we will
require a slight modification to allow us to coexist with the Microsoft TCP driver. When an
active connection is being set up, our filter driver will have to determine whether the
connection is going to be handled by one of the INIC interfaces. To do this, we will have to
consult the route table from the filter driver portion of our driver. This is done via a call to the

rtalloc1 function (found in route.c). If a valid route table entry is found, then we will take
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control of the connection and set a pointer to the rtentry structure returned by rtallocl in our

- in_pcb structure.

WHAT TO DO WHEN A ROUTE CHANGES.

When a route table entry changes, there may be connections that have pointers to a

stale route table entry. These connections will need to be notified of the new route. FreeBSD

is no longer valid, its reference to the stale route table entry is removed, and an attempt is
made to allocate a new route to the destination. For our slow path, this will work fine.
Unfortunately, since our IP processing is handled by the INIC for our fast path, this sanity

check method will not be sufficient. Instead, we will need to perform a review of all of our

our connection, we will need to advise the INIC with a new first-hop address, or if the

destination is no longer reachable, close the connection entirely.

ICMP.

Like the ARP code above, we will need to process certain types of incoming ICMP

. solves this by checking the validity of a route entry during every call to ip_output. If the entry

“fast path connections during every route table modification. If the route table change affects

frames. Of the 10 possible ICMP message types, there are only three that we need to support.
These include ICMP_REDIRECT, ICMP_UNREACH, and ICMP_SOURCEQUENCH. Any

FreeBSD code to deal with other types of ICMP traffic will be removed. Instead, we will
simply return NDIS_STATUS_NOT_ACCEPTED for all but the above ICMP frame types.

This section describes how we will handle these ICMP frames.

ICMP_REDIRECT.
Under FreeBSD, an ICMP REDIRECT causes two things to occur. First, it causes t

he

route table to be updated with the route given in the redirect. Second, it results in a call back

to TCP to cause TCP to flush the route entry attached to its associated in_pcb structures. By

doing this, it forces ip_output to search for a new route. As mentioned in the Route section
above, we will also require a call to a routine which will review all of the TCP fast-path
connections, and update the route entries as needed (in this case because the route entry has

been zeroed). The INIC will then be notified of the route changes.
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ICMP_UNREACH.
In both FreeBSD and Microsoft TCP, the' ICMP_UNREACH results in no more than a

simple statistic update. We will do the same.

ICMP_SOURCEQUENCH.

A source quench is sent to cause a TCP sender to close its congestion window to a
single segment, thereby putting the sender into slow-start mode. We will keep the FreeBSD
code as-is for slow-path connections. For fast path connections we will send a notification to
the card that the congestion window for the given connection has been reduced. The INIC will

then be responsible for the slow-start algorithm.

IP.

The FreeBSD IP code should require few modifications when porting to the ATCP

driver. What few modifications will be required will be discussed in this section.

IP INITIALIZATION.

During initialization time, ip_init is called to initialize the array of protosw structures.
These structures contain all the information needed by IP to be able to pass incoming data to
the correct protocol above it. For example, when a UDP datagram arrives, IP locates the
protosw entry corresponding to the UDP protocol type value (0x11) and calls the input routine
specified in that protosw entry. We will keep the array of protosw structures intact, but since
we are only handling the TCP and ICMP protocols above IP, we will strip the protosw array

down substantially.

IP INPUT.

Following are the changes required for IP input (function ip_intr()).

NO IP FORWARDING.
Since we will only be handling datagrams for which we are the final destination, we
should never be required to forward an IP datagram. All references to IP forwarding, and the

ip_forward function itself, can be removed.
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IP OPTIONS.

The only options supported by FreeBSD at this time include record route, strict and
loose source and record route, and timestamp. For the timestamp option, FreeBSD only logs
the current time into the IP header so that before it is forwarded. Since we will not be
forwarding IP datagrams, this seems to be of little use to us. While FreeBSD supports the
remaining options, NT essentially does nothing useful with therh. For the moment, we will not

bother dealing with IP options. They will be added in later if needed.

~ IP REASSEMBLY.

There is a small problem with the FreeBSD IP reassembly code. The re‘assembly code

~ reuses the IP header portion of the IP datagram to contain IP reassembly queue information. It

can do this because it no longer requires the original IP header. This is an absolute no-no with

7 . the NDIS 4.0 method of handling network packets. The NT DDK explicitly states that we
. must not modify packets given to us by NDIS. This is not the only place in which the

FreeBSD code modifies the contents of a network buffer. It also does this when performing

_endian conversions. At the moment we will leave this code as is and violate the DDK rules.

We believe we can do this because we are going to ensure that no other transport driver looks

" at these frames. If this becomes a problem we will have to modify this code substantially by

‘moving the IP reassembly fields into the mbuf header.

IP OUTPUT.

There are only two modifications required for IP output. The first is that since, for the
moment, we are not dealing with IP options, there is no need for the code that inserts the IP
options into the IP header. Second, we may discover that it is impossible for us to ever receive
an output request that requires fragmentation. Since TCP performs Maximum Segment Size
negotiation, we should theoretically never attempt to send a TCP segment larger than the

MTU.

NDIS PROTOCOL DRIVER.
This section defines protocol driver portion of the ATCP driver. The protocol driver
portion of the ATCP driver is defined by the set of routines registered with NDIS via a call to

NdisRegisterProtocol. These routines are limited to those that are called (indirectly) by the
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INIC miniport driver beneath us. For example, we register a ProtocolReceivePacket routine so
that when the INIC driver calls NdisMIndicateReceivePacket it will result in a call from NDIS
to our driver. Strictly speaking, the protocol driver portion of our driver does not include the

method by which our driver calls down to the miniport (for example, the method by which we

- send network packets). Nevertheless, we will describe that method here for lack of a better

place to put it. That said, we cover the following topics in this section of the document: 1)
Initialization; 2) Receive; 3) Transmit; 4) Query/Set Information; 5) Status indications;

6) Reset; and 7) Halt.

INITIALIZATION.

The protocol driver initialization occurs in two phases. The first phase occurs when the

ATCP DriverEntry routine calls ATKProtoSetup. The ATKProtoSetup routine performs the

following:

1. Allocate resources — We attempt to allocate many of the required resources as soon
as possible so that we are more likely to get the memory we want. This mostly applies to
allocating and initializing our mbuf and mbuf header pools. *

2. Register Protocol — We call NdisRegisterProtocol to register our set of protocol
driver routines.

3. Locate and initialize bound NICs — We read the Linkage parameters of the registry
to determine which NIC devices we are bound to. For each of these devices we allocate and

initialize a IFACE structure (defined above). We then read the TCP parameters out of the

, registry for each bound device and set the corresponding fields in the IFACE structure.

After the underlying INIC devices have completed their initialization, NDIS will call
our driver’s ATKBindAdapter function for each underlying device. It will perform the
following:

1. Open the device specified in the call the ATKBindAdapter.

2. Find the IFACE structure that was created in ATKProtoSetup for this device.

3. Query the miniport for adapter information. This includes such things as link speed
and MAC address. Save relevant information in the IFACE structure.

4. Perform the interface initialization as specified in the section on Interface

Initialization.

91

DELL Ex.1002.096




s e La, vaia it WEray el ¢ iy o
L AR
wlles BLH Buls ®

PSR o B e i o mE el

{
W
e

t

ALA-006E

RECEIVE.
Receive is handled by the protocol driver routine ATKReceivePacket. Before we
- describe this routine, it is important to consider each possible receive type and how it will be

handled.

RECEIVE OVERVIEW.
Our INIC miniport driver will be bound to our transport driver as well as the generic
Microsoft TCP driver (and possibly others). The ATCP driver will be bound exclusively to
INIC devices, while the Microsoft TCP driver will be bound to INIC devices as well as other
10  types of NICs. This is illustrated in Fig. 31. By binding the driver in this fashion, we can
- choose to direct incoming network data to our own ATCP transport driver, the Microsoft TCP
driver, or both. We do this by playing with the ethernet “type” field as follows.
To NDIS and the transport drivers above it, our card is going to be registered as a
normal ethernet card. When a transport driver receives a packet from our driver, it will expect
15  the data to start with an ethernet header, and consequently, expects the protocol type field to be
in byte offset 12. If Microsoft TCP finds that the protocol type field is not equal to either IP,
or ARP, it will not accept the packet. So, to deliver an incoming packet to our driver, we must
simply map the data such that byte 12 contains a non-recognized ethernet type field. Note that
we must choose a value that is greater than 1500 bytes so that the transport drivers do not
20 - confuse it with an 802.3 frame. We must also choose a value that will not be accepted by
other transport driver such as Appletalk or IPX. Similarly, if we want to direct the data to
Microsoft TCP, we can then simply leave the ethernet type field set to IP (or ARP). Note that
since we will also see these frames we can choose to accept or not-accept them as necessary.
Incoming packets are delivered as follows:
25  A. Packets delivered to ATCP only (not accepted by MSTCP):

1. All TCP packets destined for one of our IP addresses. This includes both slow-
path frames and fast-path frames. In the slow-path case, the TCP frames are given in there
entirety (headers included). In the fast-path case, the ATKReceivePacket is given a header
buffer that contains status information and data with no headers (except those above TCP).

30  More on this later.
B. Packets delivered to Microsoft TCP only (not accepted by ATCP):

1. All non-TCP packets.
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2. All packets that are not destined for one of our interfaces (packets that will be
routed). Continuing the above example, if there is an IP address 144.48.252.4 associated with
the 3com interface, and we receive a TCP connect with a destination IP address of
144.48.252.4, we will actually want to send that request up to the ATCP driver so that we
create a fast-path connection for it. This means that we will need to know every IP address in
the system and filter frames based on the destination IP address in a given TCP datagram.
This can be done in the INIC miniport driver. Since it will be the ATCP driver that learns of
dynamic IP address changes in the system, we will need a method to notify the INIC miniport
of all the IP addresses in the system. More on this later.

C. Packets delivered to both:
1. All ARP frames.
2. All ICMP frames.

TWO TYPES OF RECEIVE PACKETS.

There are several circumstances in which the INIC will need to indicate extra |
information about a receive packet to the ATCP driver. One such example is a fast path
receive in which the ATCP driver will need to be notified of how much data the card has
buffered. To accomplish this, the first (and sometimes only) buffer in a received packet will
actually be an INIC header buffer. The header buffer contains status information about the
receive packet, and may or may not contain network data as well. The ATCP driver will
recognize a header buffer by mapping it to an ethernet frame and inspecting the type field
found in byte 12. We will indicate all TCP frames destined for us in this fashion, while frames
that are destined for both our driver and the Microsoft TCP driver (ARP, ICMP) will be

~ indicated without a header buffer. Fig. 32 shows an example of an incoming TCP packet. Fig.

33 shows an example of an incoming ARP frame.

NDIS 4 PROTOCOLRECEIVEPACKET OPERATION.

NDIS has been designed such that all packets indicated via
NdisMIndicateReceivePacket by an underlying miniport are delivered to the
ProtocolReceivePacket routine for all protocol drivers bound to it. These protocol drivers can

choose to accept or not accept the data. They can either accept the data by copying the data

- out of the packet indicated to it, or alternatively they can keep the packet and return it later via
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a call to NdisReturnPackets. By implementing it in this fashion, NDIS allows more than one
protocol driver to accept a given packet. For this reason; when a packet is delivered to a
protocol driver, the contents of the packet descriptor, buffer descriptors and data must all be
treated as read-only. At the moment, we intend to violate this rule. We choose to violate this
because much of the FreeBSD code modifies the packet headers as it examines them (mostly
for endian conversion purposes). Rather than modify all of the FreeBSD code, we will instead
ensure that no other transpoft driver accepts the data by making sure that the ethernet type field

is unique to us (no one else will want it). Obviously this only works with data that is only

~ delivered to our ATCP driver. For ARP and ICMP frames we will instead copy the data out of

the packet into our own buffer and return the packet to NDIS directly. While this is less

- efficient than keeping the data and returning it later, ARP and ICMP traffic should be small

enough, and infrequent enough, that it doesn’t matter.
The DDK specifies that when a protocol driver chooses to keep a packet, it should
return a value of 1 (or more) to NDIS in its ProtocolReceivePacket routine. The packet is then

later returned to NDIS via the call to NdisReturnPackets. This can only happen after the

'ProtocolReceivePacket has returned control to NDIS. This requires that the call to

NdisReturnPackets must occur in a different execution context. We can accomplish this by
scheduling a DPC, scheduling a system thfead, or scheduling a kernel thread of our own. For
brevity in this section, we will assume it is a done through a DPC. In any case, we will require
a queue of pending receive buffers on which to place and fetch receive packets.

After a receive packet is dequeued by the DPC it is then either passed to TCP directly
for fast-path processing, or it is sent through the FreeBSD path for slow-path processing. Note
that in the case of slow-path processing, we may be working on data that needs to be returned
to NDIS (TCP data) or we may be working on our own copy of the data (ARP and ICMP).
When we finish with the data we will need to figure out whether or not to return the data to
NDIS or not. This will be done via fields in the mbuf header used to map the data. When the
mfreem routine is called to free a chain of mbufs, the fields in the mbuf will be checked and, if

required, the packet descriptor pointed to by the mbuf will be returned to NDIS.
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MBUF < PACKET MAPPING.

As noted in the section on mbufs above, we will map incoming data to mbufs so that
our FreeBSD port requires fewer modifications. Depending on the type of data received, this
mapping will appear differently. Here are some examples:

In Fig. 34A, we show incoming data fof a TCP fast-path connection. In this example,
the TCP data is fully contained in the header buffer. The header buffer is mapped by the mbuf
and sent upstream for fast-path TCP processing. In this case it is required that the header
buffer be mapped and sent upstream because the fast-path TCP code will need information
contained in the header buffer in order to perform the processing. When the mbuf in this
example is freed, the mfreem routine will determine that the mbuf maps a packet that is owned
by NDIS and will then free the mbuf header only and call NdisReturnPackets to free the data.

In Fig. 34B, we show incoming data for a TCP slow-path connection. In this example

the mbuf points to the start of the TCP data directly instead of the header buffer. Since this

)

buffer will be sent up for slow-path FreeBSD processing, we can not have the mbuf pointing to
a header buffer (FreeBSD would get awfully confused). Again, when mfreem is called to free
the mbuf, it will discover the mapped packet, free the mbuf header, and call NDIS to free the
packet and return the underlying buffers. Note that even though we do not directly map the
header buffer with the mbuf we dd not lose it because of the link from the packet descriptor.
Note also that we could alternatively have the INIC miniport driver only pass us the TCP data
buffer when it receives a slow-path receive. This would work fine except that we have
determined that even in the case of slow-path connections we are going to attempt to offer

some assistance to the host TCP driver (most likely by checksum processing only). In this

‘case there may be some special fields that we need to pass up to the ATCP driver from the

INIC driver. Leaving the header buffer connected seems the most logical way to do this.
Finally, in Fig. 34C, we show a received ARP frame. Recall that for incoming ARP
and ICMP frames we.are going to copy the incoming data out of the packet and return it
directly to NDIS. In this case the mbuf simply points to our data, with no corresponding
packet descriptor. When we free this mbuf, m&eem will discover this and free not only the

mbuf header, but the data as well.
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OTHER RECEIVE PACKETS.
We use this receive mechanism for other purposes besides the reception of network
data. It is also used as a method of communication between the ATCP driver and the INIC.
One such example is a TCP context flush from the INIC. When the INIC determines, for
5  whatever reason, that it can no longer manage a TCP connqction, it must flush that connection

to the ATCP driver. It will do this by filling in a header buffer with appropriate status and
delivering it to the INIC driver. The INIC driver will in turn deliver it to the protocol driver
which will treat it essentially like a fast-path TCP connection by mapping the header buffer
with an mbuf header and delivering it to TCP for fast-path processing. There are two

10 - advantages to communicating in this manner. First, it is already an established path, so no
extra coding or testing is required. Second, since a context flush comes in, in the same manner
as received frames, it will prevent us from getting a slow-path frame before the context has

been flushed.

15 | SUMMARY
Having covered all of the various types of receive data, following are the steps that are
taken by the ATKProtocolReceivePacket routine.
1. Map incoming data to an ethernet frame and check the type field;
2. If the type field contains our custom INIC type then it should be TCP;

20 3. If the header buffer specifies a fast-path connection, allocate one or more mbufs headers
to map the header and possibly data buffers. Set the packet descriptor field of the mbuf
y;to point to the packet descriptor, set the mbuf flags appropriately, queue the mbuf, and
return 1;

4. If the header buffer specifies a slow-path connection, allocate a single mbuf header to

25 map the network data, set the mbuf fields to map the packet, queue the mbuf and return
1. Note that we design the INIC such that we will never get a TCP segment split across
more than one buffer; '

5. If the type field of the frame indicates ARP or ICMP;
v 6. Allocate a mbuf with a data buffer. Copy the contents of the packet into the mbuf.
30 Queue the mbuf, and return 0 (not accepted); and
7. If the type field is not either the INIC type, ARP or ICMP, we don’t want it. Return 0.
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The receive processing will continue when the mbufs are dequeued. At the moment
this is done by a routine called ATKProtocolReceiveDPC. It will do the following:
1. Dequeue a mbuf from the queue; and
2. Inspect the mbuf flags. If the mbuf is meant for fast-path TCP, it will call the fast-path
routine directly. Otherwise it will call the ethernet input routine for sldw-path

processing.

TRANSMIT.

In this section we discuss the ATCP transmit path.

" NDIS 4 SEND OPERATION.

The NDIS 4 send operation works as follows. When a transport/protocol driver wishes

. to send one or more packets down to an NDIS 4 miniport driver, it calls NdisSendPackets with

an array of packet descriptors to send. As soon as this routine is called, the transport/protocol
driver relinquishes ownership of the packets until they are returned, one by one in any order,
via a NDIS call to the ProtocolSendComplete routine. Since this routine is called
asynchronously, our ATCP driver must save any required context into the packet descriptor
header so that the appropriate resources can be freed. This is discussed further in the

following sections.

TYPES OF “SENDS”.

Like the Receive path described above, the transmit path is used not only to send

network data, but is also used as a communication mechanism between the host and the INIC.

Here are some examples of the types of sends performed by the ATCP driver.

FAST-PATH TCP SEND.

When the ATCP driver receives a transmit request with an associated MDL, it will
package up the MDL physical addresses into a command buffer, map the command buffer
with a buffer and packet descriptor, and call NdisSendPackets with the corresponding packet.
The underlying INIC driver will issue the command buffer to the INIC. When the
corresponding response buffer is given back to the host, the INIC miniport will call
NdisMSendComplete which will result in a call to the ATCP ProtocolSendComplete
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(ATKSendComplete) routine, at which point the resources associated with the send can be
freed. We will allocate and use a mbuf to hold the command buffer. By doing this we can
store the context necessary in order to clean up after the send completes. This context includes
a pointer to the MDL and presumably some other connection context as well. The other
advantage to using a mbuf to hold the command buffer is that it eliminates having another
special set of code to allocate and return command buffer. We will store a pointer to the mbuf
in the reserved section of the packet descriptor so we can locate it when the send is complete.
Fig. 35 illustrates the relationship between the client’s MDL, the command buffer, and the

buffer and packet descriptors.

FAST-PATH TCP RECEIVE.

As described in the Fast-Path Input Data Flow section above, the receive process
typically occurs in two phases. First the INIC fills in a host receive buffer with a relatively
small amount of data, but notifies the host of a large amount of pending data (either through a
large amount of buffered data on the card, or through a large amount of expected NetBios
data). This small amount of data is delivered to the client through the TDI interface. The
client will then respond with a MDL in which the data should be placed. Like the Fast-path
TCP send process, the receive portion of the ATCP driver will then fill in a command buffer
with the MDL information from the client, map the buffer with packet and buffer descriptors
and send it to the INIC via a call to NdisSendPackets. Again, when the response buffer is
returned to the INIC miniport, the ATKSendComplete routine will be called and the receive
will complete. This relationship between the MDL, command buffer and buffer and packet

descriptors are the same as shown in the Fast-path send section above.

SLOW-PATH (FREEBSD).

Slow-path sends pass through the FreeBSD stack until the ethernet header is prepended
in ether_output and the packet is ready to be sent. At this point a command buffer will be
filled with pointers to the ethernet frame, the command buffer will be mapped with a packet
and buffer descriptor and NdisSendPackets will be called to hand the packet off to the
miniport. Fig. 36 shows the relationship between the mbufs, command buffer, and buffer and

packet descriptors. Since we will use a mbuf to map the command buffer, we can simply link
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the data mbufs directly off of the command buffer mbuf. This will make the freeing of

resources much simpler.

NON-DATA COMMAND BUFFER.

The transmit path is also used to send non-data commands to the card. As shown in
Fig. 37, for example, the ATCP driver gives a context to the INIC by filling in a command
buffer, mapping it with a packet and buffer descriptdr, and calling NdisSendPackets.

ATKPROTOCOLSENDCOMPLETE.
Given the above different types of sends, the ATKProtocolSendComplete routine will

perform various types of actions when it is called from NDIS. First it must examine the

- reserved area of the packet descriptor to determine what type of request has completed. In the

case of a slow-path completion, it can simply free the mbufs, command buffer, and descriptors
and return. In the case of a fast-path completion, it will need to notify the TCP fast path

routines of the completion so TCP can in turn complete the client’s IRP. Similarly, when a

. non-data command buffer completes, TCP will again be notified that the command sent to the

INIC has completed.

TDI FILTER DRIVER.

In a first embodiment of the product, the INIC handles only simple-case data transfer
operations on a TCP connection. (These of course constitute the large majority of CPU cycles
consumed by TCP processing in a conventional driver.)

There are many other complexities of the TCP protocol which must still be handled by
host driver software: connection setup and breakdown, out-of-order data, nonstandard flags,
etc.

The NT OS contains a fully functional TCP/IP driver, and one solution would be to
enhance this so that it is able to detect our INIC and take advantage of it by "handing off" data-
path processing where appropriate.

Unfortunately, we do not have access to NT source, let alone permission to modify NT.
Thus the solution above, while a goal, cannot be done immediately. We instead provide our
own custom driver software on the host for those parts of TCP processing which are not

handled by the INIC.
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This presents a challenge. The NT network driver framework does make provision for

’ multiple types of protocol driver: but it does not easily allow for multiple instances of drivers

handling the SAME protocol.

For example, there are no "hooks" into the Microsoft TCP/IP driver which would allow
for routing of IP packets between our driver (handling our INICs) and the Microsoft driver
(handling other NICs). '

Our approach to this is to retain the Microsoft driver for all non-TCP network
processing (even for traffic on our INICs), but to invisibly "steal" TCP traffic on our

connections and handle it via our own (BSD-derived) driver. The Microsoft TCP/IP driver is

unaware of TCP connections on interfaces we handle.

The network "bottom end" of this artifice is described earlier in the document. In this
section we will discuss the "top end": the TDI interface to higher-level NT network client
software.

We make use of an NT facility called a filter driver. NT allows a special type of driver
("filter driver") to attach itself "on top" of another driver in the system. The NT I/O manager

then arranges that all requests directed to the attached driver are sent first to the filter driver;

' this arrangement is invisible to the rest of the systerﬁ.

The filter driver may then either handle these requests itself, or pass them down to the
underlying driver it is attached to. Provided the filter driver completely replicates the
(externally visible) behavior of the underlying driver when it handles requests itself, the
existence of the filter driver is invisible to higher-level software.

The filter driver attaches itself on top of the Microsoft TCP/IP driver; this gives us the
basic mechanism whereby we can intercept requests for TCP operations and handle them in
our driver instead of the Microsoft driver.

However, while the filter driver concept gives us a framework for what we want to
achieve, there are some significant technical problems to be solved. The basic issue is that
setting up a TCP connection involves a sequence of several requests from higher-level
software, and it is not always possible to tell, for requests early in this sequence, whether the
connection should be handled by our driver or by the Microsoft driver.

Thus for many requests, we store information about the request in case we need it later,
but also allow the request to be passed down to the Microsoft TCP/IP driver in case the

connection ultimately turns out to be one which that driver should handle.
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Let us look at this in more detail, which will involve some examination of the TDI
interface: the NT interface into the top end of NT network protocol drivers. Higher-lével TDI
client software which requires services from a protocol driver proceeds by creating various
types of NT FILE OBJECTs, and then making various DEVICE 10 _CONTROL requests on
these FILE  OBJECTs.

There are two types of FILE_OBIJECT of interest here. Local IP addresses that are
represented by ADDRESS objects, and TCP connections that are represented by
CONNECTION objects. The steps involved in setting up a TCP connection (from the "active"
client side, for a CONNECTION obiject) are:

1) Create an ADDRESS object; 2) Create a CONNECTION object; 3) Issue a
TDI_ASSOCIATE_ADDRESS io-control to associate the CONNECTION object with the
ADDRESS object; and 4) Issue a TDI CONNECT io-control on the CONNECTION object,
specifying the remote address and port for the connection.

Initial thoughts were that handling this would be straightforward: we would tell‘, on the
basis of the address given when creating the ADDRESS object, whether the connection is for
one of our interfaces or not. After which, it would be easy to arrange for handling entirely by
our code, or entirely by the Microsoft code: we would simply examine the ADDRESS object
to see if it was "one of ours" or not. .

There are two main difficulties, however. First, when the CONNECTION object is
created, no address is specified: it acquires a local address only later when the
TDI_ASSOCIATE ADDRESS is done. Also, when a CONNECTION object is created, the
caller supplies an opaque "context cookie" which will be needed for later communications

with that caller. Storage of this cookie is the responsibility of the protocol driver: it is not

. directly derivable just by examination of the CONNECTION object itself. If we simply

passed the "create" call down to the Microsoft TCP/IP driver, we would have no way of
obtaining this cookie later if it turns out that we need to handle the connection. Therefore, for
every CONNECTION object which is created we allocate a structure to keep track of ‘
information about it, and store this structure in a hash table keyed by the address of the
CONNECTION object itself, so that we can locate it if we later need to process requests on
this object. We refer to this as a "shadow" object: it replicates information about the object
stored in the Microsoft driver. (We must, of course, also pass the create request down to the

Microsoft driver too, to allow it to set'up its own administrative information about the object.)
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A second major difficulty arises with ADDRESS objects. These are often created