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Abstract 

This paper introduces the notion of “universal interaction,” allowing 
a device to adapt its functionality to exploit services it discovers as 
it moves into a new environment. 

Users wish to invoke services - such as controlling the lights, 
printing locally, or reconfiguring the location of DNS servers - 
from their mobile devices. But aptiotistandardizationof interfaces 
and methods for service invocation is infeasible. Thus, the challenge 
is to develop a new service architecture that supports heterogeneity 
in client devices and controlled objects, and which makes minimal 
assumptions about standard interfaces and control protocols. 

There are five components to a comprehensive solution to this 
problem: 1) allowing device mobility, 2) augmenting controllable 
objects to make them network-accessible, 3) building an underlying 
discovery architecture, 4) mapping between exported object inter- 
faces and client device controls, and 5) building complex behaviors 
from underlying composableobjects. 

We motivate the need for these components by using an ex- 
ample scenario to derive the design requirements for our mobile 
services architecture. We then present a prototype implementation 
of elements of the architecture and some example services using 
it, including controls to audio/visual equipment, extensible map- 
ping, server autoconfiguration, location tracking, and local printer 
access. 

1 Introduction 

Researchers have predicted that wireless access coupled with user 
mobility will soon be the norm rather than the exception, allow- 
ing users to roam in a wide variety of geographically distributed 
environments with seamless connectivity [3q. 

This ubiquitous computing environment is characterized by a 
number of challenges, each illustrating the need for adaptation: 
continuously available but varying network connectivity, with high 
handoff rates exacerbated by the demands of spectrum reuse; vari- 
ability in end clients, making it necessary to push computation into 
the local infrastructure; and variability in available services as the 
environment changes around the client. 
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This paperinvestigates novel uses of a ubiquitous network, focus- 
ing on variable network services in the face of changing connectivity 
and heterogeneous devices. We propose that providing an “IP dial- 
tone” isn’t enough; we must add additional service infrastructure 
to augment basic IP connectivity. Specifically, we describe an ar- 
chitecture for adaptive network services allowing users and their 
devices to control their environment. 

The challenge in the design is developing an open service archi- 
tecture that allows heterogeneous client devices to discover what 
they can do in a new environment, and yet which makes minimal 
assumptions about standard interfaces and control protocols. 

The key elements of the architectore we have developed include: 
1) augmented mobility beacons providing location information and 
security features, 2) an interface definition language allowing ex- 
ported object interfaces to be mapped to client device control inter- 
faces, and 3) client interfaces that maintain a layer of indirection, 
allowing elements to be remapped as server locations change and 
object interactions to be composed into complex behaviors. 

Additionally, we have designed, implemented, and deployed in 
our Computer Science building the following example services: 

untethered interaction with lights, video and slide projectors, 
a VCR, an audio receiver, and an AN routing switcher from 
a wirelessly connected laptop computer; 

automatic “on-the-move” reconfiguration for use of local 
DNS, NTP, and SMTP servers; HTTP proxies; and RTP and 
multicast-to-unicast gateways; 

audited local printer access; 

interactive floor maps with a standardized interface for adver- 
tising object locations; 

tracking of users and other mobile objects with privacy control. 

The testbed for our experiments [18] includes Intel-based lap- 
top computers with access to a multi-tier overlay network including 
room-sized infrared cells (IBM IR), floor-sized wireless LAN cells 
(AT&T WaveLAN), and a wide-area RF packet radio network (Met- 
ricom Richocet). We also leverage facilities in a seminar room aug- 
mented with devices that can be accessed and controlled through a 
workstation. The physical components of the testbed are illustrated 
iii Figure 1. 

Our infrastructure builds on the substantial work in mobility sup- 
port provided by the networking research community. The Mobile- 
IP working group of the IETF [24] has made great strides in the 
routing aspects of the problem. Overlay networking [3 l] has demon- 
strated the feasibility of seamless handoff between Internet service 
providers and interfaces. The developing Service Location Protocol 
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Figure 1: Project operating environment 

[34] addresses resource discovery and management. Such efforts 
have been instrumental in motivating this work. 

The rest of this paper is structured as follows. In Section 2, we 
discuss the key problem characteristics and provide a framework for 
a service provision architecture’s core functionality. This is moti- 
vated by a scenario with a set of high-level functional requirements 
to be achieved. In Section 3, we detail our architecture’s prototype 
implementation and the protocols that allow mobile clients to access 

the infrastructure. In Section 4, we describe the suite of example 
ad-hoc mobile services incorporated into it. In Section 5, we unify 
the design and implementation with some discussion of interrela- 
tionships, dependencies, and a layered view of the components. In 
Section 6, we discuss the relevant related work. In Section 7, we 
summarize future and continuing work, and finally in Section 8, we 
present our concIusions.. 

2 Designing a Service Interaction Ar- 
chitecture 

We motivate our architecture for mobile services with the following 
scenario: 

You are on your way to give an invited lecture. 

After parking on campus, you take out your PDA with 
wireless connectivity, checking the list of local services 
available to you. You click on the map icon, and are 
presented with a campus-widemap that includes a rough 
indication of where you are. You select “Computer Sci- 
ence Division” from a list, and a building near you b 
highlighted. You walk toward it. 

As you enter the building, you glance down at your client 
device and the list of available services changes. Addi- 
tionally, the campus map is replaced with the building 
floolplan. 

Using the new map, you find and enter the lecture hall, 
In preparation for your talk, you select “audio/visual 
equipment” and “lights” from the list of services, caus- 
ing a user interface for each to appear. Your selections 
also cause the rooms’ equipment to be located on the 
floorplan. You walk to the VCR and insert a tape. 

The lecture begins. As you finish the introduction, you 
dim the lights and start the VCR with taps on yourPDA. 
At that moment, you realize you’ve forgotten your lecture 
notes. Using your personalized printer user interface, 
you retrieve a file from your home machine and instruct 
the closestprinter to print the file. The printer’s location 
appears on the floorplan. 

A minute later, you are notified the print job has com- 
pleted, retrieve your printout, and reNm to finish the 
lecture as the videotape completes. 

From this scenario, we can derive a set of required or desirable 
functions, presented in the next subsection. 

2.1 Requirements Analysis 

The problem is that users wish to invoke services - such as con- 
trolling the lights, printing locally, or reconfiguring the location of 
DNS servers - from their mobile devices. But it is difficult to 
obtain wide-spread agreement on “standard” interfaces and mcth- 
ods for such service invocation. The challenge is to develop an 
open service architecture that allows heterogeneous client devices 

To discover what they can do in a new environment, making minimal 
assumptions about standard interfaces and control protocols, 

Implementing such a service architecture makes it posdble to 
Nm client devices into “universal intemctors!’ An inferacror is, 
broadly, a device that allows a user to interact with and modify 
his or her environment. Examples include electronic cquipmcnt 
remote controls and thermostats. A universal inleruclor is a device 
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that adapts itself to control many devices - if it can discover their 
control interface. A universal interactor thus exploits what it finds 
in the environment, and varies its abilities as a function of location. 
It is not a particular hardware component, but instead a way of using 
an existing device. 

Realizing such a capability requires (at least) five technical com- 
ponents: 1) device mobility, 2) network-accessiblecontrollable ob- 
jects, 3) an underlying discovery architecture, 4) mapping between 
exported object interfaces and client device control interfaces, and 
5) composing complex behaviors from underlying primitive objects. 
These are now described in detail in the following subsections. 

2.2 Device Mobility 

A critical component of the scenario is device mobility. The client 
moves from a wide-area network to a local-area network, and be- 
tween points in the local-area. 

This functionality is available through Mobile-IP [24] and net- 
work overlays [ 173. The former supplies IP-level transparency to 
changes in location, and the latter augments this functionality with a 
policy layer for managing connectivity to multiple available network 
interfaces and a mechanism for seamless (low-latency) hand-off. We 
build upon this network-layer functionality directly. 

On top of this, we only require the ability to detect changes in 
connectivity with an event-delivery mechanism. Such a mechanism 
is required to implement automatic reconfiguration: when the client 
device discovers it has moved, it should check (or be notified) if a 
local instantiation of a remote service is available, and should auto- 
configure to use the local service in this case. Concrete examples 
include DNS, NTP, and SMTl? 

2.3 Controllable Objects 

Most objects can be controlled. Doors and windows open; lights 
turn on; coffee-makers brew. Most physical objects provide only 
manual controls. A controllable object, on the other hand, is one 
that exposes the interface to which it responds to control requests or 
transmits status information. Additionally, it makes this interface 
accessible over a network. 

To fit into our architecture, it is crucial that objects be augmented 
with an ability for network-based control, Open issues include ad- 
dressability, naming, and aggregation of objects into a controllable 
unit. Individual controllable objects may be too numerous or the 
expense of individual control may be too high. For example, while 
it is possible to make every lightbulb its own controllable object, the 
sheernumber of them in a typical building, the expense of assigning 
processing to each one, the difficulty of wiring each to the network, 
etc., would mitigate such a decision. Instead, control functionality 
could be assigned to a bank of lights, and what is augmented is 
the switch bank rather than all of the individual lightbulbs. In gen- 
eral, this means that the current infrastructure for naming - DNS 
- must be extended to include objects that do not have (or need) 
IP addresses. An alternative is to develop a separate infrastructure 
to match this need rather than overloading DNS. In the latter case, 
we can take advantage of the fact that instantiations of these name 
servers need only have a local, rather than global, scope. 

Another approach for interacting with objects is to use video cap- 
ture augmented with image processing (“computer vision”) where 
applicable. Example uses of this approach include fine-grain object 
tracking, directionality sensing, and event triggers keyed to partic- 

ular circumstances [22]. E.g., a camera can be used to detectthe 
opening of a door or window. In this case, it is the camera that 
exports the control interface. 

2.4 Resource Discovery 

The function of a resource discovery protocol is to maintain dynamic 
repositories of service information and make this information avail- 
able through scoped attribute queries. In contrast with DNS, the 
repositories’ information is specifically local in nature. 

We couch our discussion of resource discovery in the context of 
the Service Location Protocol [34], under development by the IETF 
Service Location working group. Although there are open issues in 
this domain, we avoid duplicating much of the relevant discussion 
here. Interested readers are pointed to the Internet draft and the 
Service Location working group mailing list. 

From our local-area network perspective, the only mechanism 
we require is a function to allow mobiles to query the server for a 
mapping from strings to strings. We describe our own mechanisms 
for finding the correct local server and initializing the string map- 1 

pings. Finding the a correct local server is similar to delivering the 
correct SCOPE attribute to the mobile host in SLP 1 

2.5 lkansduction Protocols 

A transduction protocol maps a discovered object interface to one 
thatis expected by a given client device. It supports interoperabiity 

I . 

by adapting the client device’s interface to match the controllable I 

object’s interface. 
The issue with transduction protocols is how to map control 

functions into a UI supported by the portable device. As an example, 
assumea client device has a two-position switch widget for use with 
the local light controller. At a visited location, the light controller 
supports continuous dimming. In this case, the client may substitute 
a slider widget for the switch. Ifit cannotdo this (or choosesnot to), 
then the purpose of the transduction protocol is to map the on/off 
settings of the UI to one of the two extremes of the actual dimmer 
control. 

Our solution is to transfer an entire GUI to the client in a lan- 
guage it understands, and when possible, augment the GUI with an 
interface description that starts with base data types and allows them 
to be extended hierarchically. A transducer that doesn’t understand 
a level in the hierarchy can use elements below it. Alternatively, 
the interface description can be used directly to generate a rough 
GUI when no language implementation appropriate for the client is 
available. 

The interface descriptions not only allow for data type transduc- 
ers between client and server; they also provide a critical layer of 
indirection exactly where it is needed: underneath the user inter- 
face, allowing widgets to be transparently remapped to new servers 
in a new environment. This function is required to allow custom 
user interfaces for ad-hoc services, such as allowing a virtual “light 
switch” on the client device’s control panel to always control the 
closest set of lights. 

2.6 Complex Behaviors 

Objects have individualized behaviors. We wish to couple and com- 
pose these individual behaviors to obtain more complex behaviors 
within the environment. For example, consider a scenario where 

. 
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music follows you as you move around a building. One behavior of 
the sound system is to route music to specific speakers. A behavior 
of location tracking services is to identify where specific objects are 
located, such as the user. A “complex” behavior allows us to com- 
pose these more primitive behaviors of sound routing and location 
tracking to obtain the desired effect of ‘following” music. 

of base stations in geographic proximity could be associated with a 
single SII? Beaconing daemons (beacond) run at each base station. 

An example SIC screenshot is shown in Figure 2. SIP and 
beacond use configuration files and command-line switches, and 
thus user interfaces are not shown. 

A key problem is that there is no common control interface for 
individual components. Furthermore, some behaviors may require 
maintenance of state that is independent of both subcomponents. 
An example of the latter is instructing the coffee maker to brew only 
the first time each morning that the office door opens. Another issue 
is the policy-level difficulty implied by this scenario: resolution of 
incompatible behaviors. If another user considers music to be noise, 
the visiting user’s music may or may not be turned off in their pres- 
ence, depending on seniority, social convention, explicit heuristics, 
or otherwise. At a minimum, the system must guarantee that it will 
detect such incompatibilities and notify the user(s) involved in order 
to avoid instability (e.g., music pulsing on and off as each individual 
behavior is interpreted). 

Service 

Our solution is to use interface discovery, (i.e. any method 
through which new objects’ input/output data types are learned) 
paired with the aforementioned data type transducers to allow ob- 
jects to be cascaded much like UNM pipes to achieve the desired 
complex behaviors. Additionally, we allow intermediate entities 
(“proxies”) to maintain state that is independent of the constituent 
subcomponents. This allows for the incorporation of such features 
as conditional statements and timing information. 

11 register callback 11 dlsconnectad 

UCB Service Index Client ~0.1 

In ourprototype,complex behaviors are written as scripts invoked 
by the delivery of particular events. These events are generated 
(when necessary) by the datatypetransducers that translate between 
the client user interface invocations and the RFC! commands sent to 
a service daemon.’ 

Figure 2: Tire SIC application GUI is currently a series of 
buttons that can be used to retrieve and invoke application 

interfaces. 

3 Implementing Service Interaction 

This section describes implementation details of the serviceintemc- 
tion proxy (SIP), the service interaction client (SIC), and beaconing 
daemon (beacond) programs. These prototypes implement selected 
components of our overall mobile services architecture. 

The prototypes allows a mobile host to enter a cell, bootstrap the 
local resource discovery server location, and acquire and display 
a list of available services. They also allows users to maintain 
a database of scripts to be executed when particular services are 
discovered for use in autoconfiguration, local state updates, and to 
trigger location-dependent actions. 

Each SIP process maintains a database of the services and scr~icc 
elements that it provides to mobile hosts. An example startup file 
for such a database is listed in Figure 3. It contains three types of 
entries: SERVICES, VALUES, and PROPERTIES. VALUeS are used for 
generic (key, value) lookups. Theseareuseful for, e.g., detecting the 
need to update server addresses. SERVICES and PROPERTIES are used 
to specify what, where, and how services are available from that 
partlcularlocation. EachSWJICE has auniquenamc, and mninlnins 
PROPERTIES such as the version number, a pointer to an associated 
IDL file’, pointers to particular language implementations of User 
interfaces for the service, and the geographic location (if any) for use 
with maps. VALUES andPROPERTIEs mayjust be pointers to another 
SIP, allowing simple incremental deployment to subdomains and 
yielding a notion of topology. 

If a user wishes to use a service it does not understand, the client 
first automatically searches its local cache for an interface to that 
service; if it is not there, the infrastructure is automatically notified 
and it attempts to send an interface description and GUI to the client. 

3.2 Message-level Detail 

3.1 Setup 

A single copy of the “service interaction client” (SIC) prcgrarn runs 
at each client device. Copies of the “serverinteraction proxy” (SIP) 
program run at domain-specific granularities. For example, a set 

The client enters a cell with a beaconing daemon. Thedaemon sends 
periodic broadcasts that contain the bootstrap address and port num- 
berof that cell’s SE? The client automatically registers with the base 
station to establish IF’ connectivity. It then requests the well-known 
me&service INDEX, which returns a list of the services availnblc. 
Based on the contents of the reply, the client renders labellcd UI 
buttons for unknown services, remaps the location of running ser- 
vices, and executes scripts in a database to enable autoconncclion 

‘Thus,eveninthecasewherenohanslationisnecess~,anulltransducer *Use of the Interface Definition Language (IDL), a generic format for 
must be interposed in orderto allow detection of invocations. In otberwords. service interfaces similar in concept to a model-based UI, is described In 
the transduction layer is t.be layer that provides the indirection. Section 3.6 
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Soda 405: High-Tech Seminar Room 
1 
set sERvIcRs ( 

INDM lights (A/V equipment) map printer (location tracking) 
I 
set VALUES c 

DNS (128.32.33.24 128.32.33.25) 
NTP (orodruin.cs.berkeley.edu harad-dur.cs.berkeley.edu) 
SMTP [mailspool.cs.berkeley.edu) 

1 
set PROPERTIES C 

lights iIDLfile ../helpers/lights.idl version 0.01 \ 
location (132 210) appName-tk ../helpers/lights.tk \ 
appArchive-tk ../helpers/405/lights405.tar.uue 
appName-tcl ../helpers/lights.tcl \ 
appfuchive-tcl ../helpers/405/lights4OStcl.tar.uue) 

(A/V equipment) (IDLfile ../helpers/htsr.idl location (132 180) \ 
version 0.01 appName-tk htsr.tcl \ 
appArchive-tk '../helpers/405/HTSR.tar.uue'1 

. . . 

Figure 3: An abridged SIP services database example 

and composed actions3 When a user requests a particular service, 
the client software checks its local cache of applications. If an 
interface supporting the requested application is not there, it asks 
the SIP for the service’s “properties.” This is a list of available 
interface descriptions and/or implementations. It also receives any 
service metadata (such as version numbers). It then chooses either 
to download a particular interface implementation (e.g., as a Java 
applet) or the generic interface description. The SIC then unpacks 
the received archives, transduces the interface description to match 
the device characteristics, and finally executes the GUI. 

An example exchange of protocol messages for a client moving 
between SIP servers is illustrated in Figure 4. 

3.3 Bootstrap 

For a client to use services, it must first find the address of the local 
resource discovery server. In our architecture, this bootstrap above 
IP is minimal: there is an indirection embedded in the mobility 
beacons. This minimal bootstrap standardizes the interface for 
sending service advertisements without constraining the item to 
which it points. In general, it could point to any type of name 
server, thereby allowing variation in resource discovery protocols if 
this were desired. 

3.4 Beaconing 

Beaconing is required in a system to facilitate notification of 
mobility-based changes in the relative position of system compo- 
nents. Its use is motivated by inherent availability of physical-level 
hardware broadcast in many cellular wireless networks and the need 
to track mobiles to provide connectivity. 

3Tbedatabbasecurrentlyresidesontbeclient, butcouldadditionallybe 
retrieved fmmelsewherebyaproxyserverto addressclientcomputational 
limitations. 

‘Rvo issues arise once the decision to beacon has been made. 
The first is which direction to send them: uplink or downlink. The 
second is what information to put on the beacons, if any at all. 
(An empty beacon acts as a simple notification of the base station 
address, available in the packet header.) These are discussed in the 
following subsections. 

3.4.1 Beaconing Direction 

In terms of choosing whether to have client devices or infrastructure 
servers beacon, existing systems can be found which have made 
either choice. Client beaconing is used in both the Active Badge 
[I31 and PARCTAB systems [26], while server beaconing was used 
in Columbia Mobile IP [14]. lETF Mobile IP utilizes both periodic 
advertisements and periodic solicitations. 

One might expect the application-level framing [9] argument to 
hold here: different policies optimize for different applications’ 
operating modes. This is indeed the case: there are trade-offs in 
such a decision, as it varies allowances for privacy, anonymity, 
particular protocols’ performance, and scalability. 

Specifically, some benefits of base station beaconing include: 

l less power is consumed at the mobile by periodically listening 
than by periodically transmitting; 

l finding a base station requires only a single message rather 
than a broadcast/responsepaic 

l mobiles need not transmit to detect when contact is lost; 

l detection of multiple beacons can be used to assist handoff; 

l anonymity of location is preserved for non-transmitting mo- 
biles; 

l allows possibility of “anonymous”access to some data known 
to the infrastructure (at a cost of management overhead and 
increased beacon size due to the piggybacking); 
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