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TCP/IP on the Parallel Protocol Engine 
Erkh Riitschc and Mauh1a~ Kaiserswcrth 

IBM Research Division, Zurich Research Laboratory 
SaumcP.>tmsse 4, 8803 RiiM:hlikon, Switzerland 

Abstract 

In th" paper. a parallel 1111pkmentation of 1he TCP/JP pro1ocol ~u11e on the Parallel Pro1ocol En 
gine (PPE), a mulliproccssor-based communication subsystem, is descnbed. The execution 
time~ of the various protocol func1ions are used to analy1e the syMem 's performance in two see 
nario,. In the fir\t ~cenario we execute the te\I application on the PPE; in the second we evaluate 
the potential pcrfonnance of our TCP/lP implcmentallon when 111s driven hy an application on 
the workstation. For the second scenario, the end-to-end performance of our 1111plemcntution on a 
four-processor PPE system 1s more than 3300 TCP segments per \econd. 

Keyword Codes. C. l.2; C.2.2; D. U 
Keywords: Multiple Daw Stream Architectures (Multiprocessors); Network Protocols: 

Concurrent Programming 

1. INTRODUCTION 

Progrc~s m high-speed net.,.. orkrng technologies such as fiber opucs have shifted the bottleneck 
in communi<.:ations from 1hc limited bandwidth of the transmission media to protocol processing 
and the operatmg system overhead in the workstation. So-called lightweight protocols and proto
col ollload to programmable adapter.. are two approaches proposed 10 cope with this problem. 
Prott>l:Ols such as the Xpress Transfer Protocol (XTP)' !PEI 921 and VMTP !Cheriton 88] try 10 
simplify the control mechanisms and packet \lructures such that the protocol implemcnlation be
come\ less complex and can possibly be done m hardware We took the second approach in build 
mg the Parallel Protocol Engine (PPE) f Kaiserswenh 92J. a muluprocessor-bascd 
communication adapter, upon which protocol processing can be omoaded from a host system. 
The ~cctarCAB IAmould 891 and the V.MP Network Adapter Board (Kanak1a 881 are other pro
grammable adapters, each based on a single protocol processor. The XTP chipsct (Chesson 871 is 
a very spec.:ialiied set of RISC processors designed to e;<ecute the XTP protocol. Our objective 
was to 111vcstiga1e and exploit parallelism in many diffrrent protocols. Therefore we decided 10 

de\ clop a gcnaal purpost communication subsystem capable of suppomng standard protocols 
cfftc1cntly 111 software. 

1 
.\pre" Tran>lcr PrntlK:OI and XTP arc rcgl\tcrcd tradcmarh ol XTP Forum 
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In this paper our goal is to demonMrate that a careful 1mplementation of a Mandard tmnspon pro
tocol stack on a general-purpose multiprocessor architecture allows efficient use of the band
width availabk Ill today's high-,peed networks. A, an example, we chose to implement the 
TCP/IP protocol l.uite on our -t-processor prototype of the PPE. 

We implemented the \ockct interface and a test application directly on the PPE to facilitate our 
performance measurements. In this tesr \Cenario we analyze the performance of TCP/IP and the 
socl..ct layer. We also exanuncd a second scenario to unden.tand how our 1mplementauon would 
pcrfonn when integrated into a workstation. where protocol processing up to the transport layer 15 
perfom1ed on the PPE and applicauons can access the transpon service via the socket interface on 
the:: workstation. 

In Section 2 our hardware platform, the PPE. is presented. Section 3 introduces TCP/IP. In the 
follm-.mg secuon we C\pl<tin our approach to parallt:I protoc.:ol unplementation. Section 5 prc\
e111s the results and discusses the impact of the hardware and software architecture on perfor
mance. The last section gives the condusion and an outlook on our furure work. 

2. THE PARALLEL PROTOCOL El'IGJ~E 

The PPE is to be pre~ented only hriefly hen.!. It is described in greater detail in [Wicki 90J and 
( Kat,erswenh 91 . 921 We "Will first concentrate on the hardware and then present the program· 
ming environment. 

The PPE is a hybrid \ha.red-memory/message-passing multiprocessor. Message passing is used 
for \ym.:hron1zation. whereas shared memor} is used to store sen.ice primitives and protocol 
frumcs. Figul"I! I shows the archnecture of the PPE ;ind ns u~e as a commumcation subsystem. 

The PPE u!>es two separate memories. one for tran~mitting. one for receiving data. Both of these 
memories an:: mapped mto the address space of the worhtallon. (n our tmplementation. four 
T425 transputer\ [IN MOS 89] arc used as protocol processors. On each stde of the adapter, two 
T425s have access to the shared memory. Each processor uses private memory to store its pro
gram and local data. We decided against using a single shared memory for storing both inbound 
and outbound protocol data, although this would make the adapter more flexible and facilitate 
programming, for the following reason. lligh-speed network interfaces work in a synchronous 
fashion.with data be111g docl..ed in and out of memory. possibly at the same time, ::11 the transml\
!>ion speed of the physical network. Splitting the adapter mto -.cparate receive and transmit parts 
accommodates simultaneous transmission and reeepuon and only requires memory wtth half the 
speed of that required for a smgle-memory solution. This architecture results in significant cost 
savings. especially when transmiss10n speeds exceed 100 Mb/s 

The network interface has read access to the transmit side and write access to the n::cetve side of 
the adapter We emulate a physical network by means of an 8 bit wide parallel interface, which 
allows a po1nt-to-pomt connec11011 between two PPE \ystems operaung with a b1directional 
transrmssion rate of up to 120 Mb/s. The transputer links are used exclusively for signalling and 
control message transfer within the PPE and to and from the ho~t system. 

The program111111g language wh11:h best dt:~l:nbcs the transputer\ programrrung model is OC
CAM [Pounta1n 881. It 1s based on the theory of Cum111w1icaii111{ Sequential Proasses (CSP) de
veloped hy lloare I Hoare 781. The structuring elements are processes that communicate and 
synd1romze \ 'lit mes~gcs :\1essage transfer" unbuffered communicating processes must reach 
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Physical Layer 

a rendl sous before the message is copied dire1.:tly from the sender's 10 the m.:eiver's address 
space l"his behavior maps direr tly to the transputer's register mtxlel and microcode, wh11.:h sup
port efficient context switches and transparent message passing via four external links and any 
numhcrof internaJ soft channels. However because OCCAM discourages the use of pointers and 
shared memory between different processes and offers very ltttlc suppo11 of user-defined struc
tured da1a types, we chose IO do our implementation in the C programming language I LS-C 891. 
Access 10 the transputer specific facilities, such as synchronous message passing and process 
contml, I!> provided through library funrnons, which c.:an. in pan. also be generated as more effi
cient rnline code hy the compiler. 

3. THE TCP/IP PROTOCOL STACK 

We tmplemenred the full TCP/IP prmocol stack on the PPE. It conststs of the lmernet Protocol 
OP), the f111eme1 Conrro/ Mes.\aRe Protocol (lCMP), and the Transrmssion Control Protocol 
<TCP> \pplicanons interface to the protocol implementation vi,1 <>ockets. >irrnlar 10 the BSD ver
~ion of Unix2. 

lino\ ''a rc1p,1cml irackmarl. of ,\T&T on t.hl' Unncd Stal~' and other rnun111c\. 
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IP is a datagram protocol that implements functions similar to those of the OSI Connec11onless 
Network Protocol (\LNP). ICMP, wluch is an integral part of lP. is used to exchange control mes 
>ages between internet clients, e.g., it generates a destination unreachable mesi.age when the ad
dressing infomiation in a received datagram does not allow forwarding or local delivery. TCP, 
w h1ch roughly implements the ISO Transpon Layer functions, provides an error and now-con
trolled end to-end transport connecuoo between applications. TCP thus builds reliable data trans
mission services on top of the unreliable IP datagram service. A TCP connection is specified 
through the pairof Internet addresses and the TCP pon identifiers of the two communicating part
ners. The socket 1s the local end point of a TCP/IP connection. The application program accesses 
sockets through local idcntifit:rs, similar to file descriptors in Unix. 

As we did not \\.'am to implcmcnr TCP/JP from scratch. we based our work on a version of TCP/IP 
for MS/DOS from the University of Maryland IUM 901 . 

.i. PARALLEL IMPLEMENTATI01' OF TCP/IP 

To develop a parallel solution one needs to partition the problem 111to a sci of subproblerm that can 
be executed 1n parallel. The algorithms solvrng these subproblems arc typically encapsulated m 
cooperating processes which are mapped to the parallel-processor hardware. Depending on the 
underlying hardware and the implementation model chosen. these processes communicate and 
synchro1111c via shart:d memory or message pa~sing. 

Application 

Transmission 
Control 
Protocol 

Internet 
Protocol 

Buff er 

Buffer 

ii? send 'I< I 

I dnver send I 

I Procedure I ( Process ) 

Figure 2. MS/DOS IP Process Structure 

user_task 

tcp_task 

Network Adapter 
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The source code, which served as a basi' for lhis implemen1a11on, was already struc1urcd imo 
111ul11plc processes 1ha1 run on 1op of a simple, non-precmp1ive mullimskmg kemcl. Figure 2 
shew•' 1he original spli1into 1hree processes and one in1errupt service routine. Having such a pro
ce5S s1ruc1ure a11m~t:d us 10 May fairly close to the original source. 

As we: wan1ed to execute the IP layer on d1ffert:n1 processors dwn the TCP layer, we first isolated 
the IP rclcvan1 functions from bo1h tcp_task and ip_task into separate processes. Because of the 
f um:tional division of the PPE 11110 a rransmit and receive side, we 1hen spli11hc remainder, i.e. !he 
core ol the TCP protocol, of tcp_task and lp_task vemcallr m10 three processes (rtask, 
tcp_recv running on the receive side and xtask running on 1hc 1ransmi1 side). We will describe 
1he func11ons of 1hc various pro1ocol processes, 1hu1 implemen1 IP, TCP and tht: socket layer in 
1urn. Pigurt: 3 shows the high-level process struc1ure we derived for our implcmenta1ion. 

Application 

Socket Layer 

Transmission 
Control 
Protocol 

Internet 
Protocol 

Media 
Access Control 

Transmit Side 

[>roeedurel ( Process ) 

Network Adapter 

Figure 3. High-Level Process Structure 

Receive Side 

ip_demux 

ip_intersvc 

In lh..: followmg we presen1 our parnllel soluuon in a 1op-down approach, fir..t 'howing the high
h:vel process graph of the main processes m our implementalion. These processes have access to 
data shared between 1he transmit and receive side and can interac1 with one another via high-level 
Pnmi11ves such as remote procedure calls (RPC) and queues. In a second step, we will then show 
ho"' the~e services, m particular shared dala between the receive and tramm11 side as well as 
RPC~ from the receive to 1he transmit side, have been realized on the PPE. 
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4.1 IP and ICMP 

Becau~e IP is a datagram protocol, the normal flow of data through IP in an end-system requires 
no interaction betwet:n the receiving and transmitting part. Routing infom1ation and exception 
handling, however, require a data exchange. The handling of exception and control messages is 
the function of ICMP. We therefore partitioned IP into two independent processes lcmp_demu1e 
and lp_demux. To guarantee the timely handling of incoming packeis, we dedicated a separate 
proces\ on the receive side of the PPE to the handling of the physical network interface. 

The rouung table 1s shared between both processes on the Lransmit and receive side of the PPE. An 
RPC 1~ used if lcmp_demux needs to send out an ICMP message. 

4.2 TCP 

Splitting the PPE hardware into a i.eparate send and receive side had more impact on how \.\-e had 
to deal with TCP, the socket layer, and application layer, than it had on IP. 

We dedded to split the finite \tale machine (FSM) responsible for implementing a TCP connec
tion into two separate FSMl> once the connectton is in the data phase. The actions of these FSMs 
are implemented on the receive side through two processes, rtask and tcp_recv. On the transmit 
side one process xtask implements the FSM. Owing to the duplex nature of TCP and the piggy
backing of control information in data packets, these processes need to share the protocol's send 
and receive ~rate vanables maintained in the transmil:.ion conrrol block (fCB). 

tcp_recv demultiplexes incoming TCP segments, locates the appropriate TCB and executes the 
required action for the FSM state. Header prediction is used Lo speed up packet handling for pack
ets amving con~cutively on the same connection. Correctly received segments are appended to 
the rece1 ve queue and the application process waiting on this connccuon is then woken up to move 
the data to its own buffers. When the received data exceeds the c1cknowledgement threshold, 
which is specified as a percentage of the advertised receive window, tcp_recv makes an RPC to 
the transmit side to generate an acknowledgement. The acknowledgement is sent a.<; a separate 
packt:t, unless this information can be piggybacked onto an outgoing data segment. 

rtask 1s drivi=n by two timers, one responsible for delayed acknowledgements, the other for keep
alive messages. In steady state data transmission, rtask should never generate an acknowledge
ment, as tcp_recv already generates ackno\.\-ledgernents \.\-hile data are received. Only when the 
timer runs out and new unacknowledged data have been received since the last acknowledgement 
will rtask generate an acknowledgement. Similarly, keep-alive messages are also sent only when 
no acnvity has taken place on a rnnnection for some time. Again, both acknowledgements and 
keep-ahvc messages are gencrntcd via RPCs to the trJllSIIllt Mde. 

On the transmit side the process xtask manages the trnnsmit queue and the retransmission timers. 
To send data, xtask creates the TCP header and fills in the necessary infonnatlon from the TCB. 
<;uch as addresses and sequence number.. for the data and acknowledgements. The header and a 
pointer to the d;ua are then pas'.>Cd ro the IP process (procedure lp_send), which embeds this in
fonnataon into an IP datagram. 

4.3 Socket Layer and AppliC<1tion 

To fac1lttate our cxpenments wuh TCP/IP, we decided as a first Mep t0 implement the entire sock
et layer us well as the test applicanon on the PPE. A detailed description of the interaction~ be-
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tween an application on the hose i.yMem and a protocol on the PPE can be found in [ Kaiserswcnh 
92]. 

In our implementation, the socket layer, although tighdy coupled with TCP, is part of the applica
tion process. It is m:cessed via a procedural tnterfacc. used to create a socket, btnd an address to it 
and establish a TCP connection w11h a remutc socket. As the FSM logic to establish connecuons is 
also pan oftcp_recv, we decided t0 place the socket and the application code on the receive side. 
Because we wanted to avoid moving data to be sent from the receive side to the transmit side via a 
iran~puter lmk3. we ah.o allow the apphcauon to U\e buffers on the transmit side of the PPE. 
When data is to be transmitted, the send procedure simply makes an RPC with the buffer address 
on the transmit side, thus causing the write process to copy the data from this application buffer co 
che TCP send queue. When the application wants to receive data, the receive procedure checks 
the receive queue for this connecuon and blocks the application process if the queue is empty. 

4A Low-Level Primilives 

Before givmg an example of how TCP data segments are sent and received. we describe how we 
maintatn shared TCBs and muung tables on the PPE. which docs not have shared memory be
tween its transmit and receive side, and how we realize RPCs from the receive to the transmit side. 
Figure 4 shows the process &rraph of the additional processes required to implcmem these fu nc
tions. 

rpc_process Arty Process 

wnte rpc_dernux 

Any Process peek_poke 

peek_poke Any Process 

Transmit Side 
..._ dedicated Transputer Link <J-- internal Channel 

Figure 4. Low-Level Primitives 

Receive Side 

We implement dwrifJwed shared memory between the transmit and receive side by placing the 
data struciurcs that arc to be shared at identical physical addresses tn the local memories of the two 
processors\\ ht ch a<.:<.:ess the data structure. Whenever a value is wntten onto the local copy of the 
data structure. die address of the variable and its value are sent via a dedicated transputer link to a 
~erver process. peek poke. on the remote ~idc. This process then updates the memory area iden
t1f1ed thruugh the address \.l.ith the accompanying value. The peek_poke processes run at high 
priori!) to ensure 1hat the exchange of a message with a remote process takes place immediately 
and is not delayed by scheduling overhead, which would then also delay the remote process be
cause of the transputer's synchronous message passing. Serializing write accesses co the shared 
data structures is nor necessary m our case. Ea<.:h replicated data structure fall~ tnto two parts, one 

3 We nw;:i,urcd an cftcwvc Lhroughput r.ite of approx1ma1cly 14 \1b/s aero'~ a ltallsputcr link, clearly much 
lo"' er thJn 'ta our h1gh-,pccd parullcl 1111crfacc. 
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wri11en only from the receive side (e.g .. the updated tnu1~mi1 w111dow), and 1hc other wrirten only 
from the tr;111smi1 ~idc (e.g .. the la\t -,end sequence number). 

Since we do not have a lockrng protocol for acces\mg shared data structures. It is possible thill for 
a brief period after chc local update and before the remote update has been propagated, the \atnc 
field in the shared data siructure contains 1wo different values. Because of the properties of TCP 
and the way we have 'Pill the proto.:ol onto the cran\mll and receive side of the PPE, this inconMs
tency will only be of importance if 111s 1he reason for the protocol Mate to change. As an example 
consider the following: assume the n:transrnission timer (it is abo maintained in the TCB) in 

xtask cxpin:s and, because the acknowledgement field in the TCB docs not indica1e reception of 
an acknowledgemc111, xtask decides 10 retransmit the unacknowledged TCP \Cgments. On the 
recdve side. ho\\ ever. ;m at·i-nowlcdgemem has been received in the meantime which makes this 
retransm1s\lon unnecessary4. To avoid this problem, before actually going 10 a retransmit state, 
xtask will reread the acknowledgement field, now however with the value on the receive side, to 
make sure that a retransmission is warranted. Reading a remote field is similar tu writing; a mes
~age with the address and stze of the variable is sent to tht remote peek_poke process, which then 
returns the value of that field. 

RPCs from the receive to the transmtl side have been implemented as follows: any process on the 
receive side can fom1a1 an RPC message, whit·h is then sent via a dedicated transputer link to the 
rpcJlrocess. This process will then execute the remole procedure. or 111 the case of transmission 
request,, pa\s the request via a local (internal) channel 10 the appropriate write process. one of 
.,.. hich exists for each TCP connection Return values are sent, agarn via a dedicated transputer 
ltnk. bac~ to the receive side to rpc_demux, which forwards these values over a local channel to 
the proccs' 1hat had iniuatt:d the RPC. Upon receiving 1he return value. the calli.:r becomes ready 
again and can continue its e"ecution. 

4.5 Example 

Sending u TCP dam sewne111: The normal data flow is shown in hgure 3. The send data are in a 
remotely al located buffer on the transmit side. The application creates a socket ;ind establishes a 
TCP connccuon. The socket send call causes an RPC to the n:mote write process which in tum 
copies the data into the TCP send buffer. xtask then controls the tran~mission and eventual re
transmissions of the data. The send procedure builds the TCP segment and fory.ards the pointer to 
the segmen1 and the assocmted control block to lp_send. Here the IP header is placed in front of 
the TCP segment and then the packet is sent to the network. The data is copied twice: first from the 
applicauon buffer 10 the -.end queue in ~hared memory and from there to the network. 

Receiving a rep datll .\t'f.lmem: Upon receipt the data IS also copied twice: first from the network 
to the receive queue and from there 10 the application buffer. The interrupt handler process serves 
tbe physical interface and forwards poinlers to received datagrams 10 lp_demux, which checks 
the header and forward~ the packet depending on us type to tcp_recv or lcmp demux. 

tcp_recv analyzes the TCP header and calls the appropriate handler function for a given protcxol 
~ late. To ~end an acknowle<lgement or a control packet, tcp_recv uses RPCs to the transmit side 
Correctly received segments are appended to the receive queue. rtask wakes up the application 
process which b blocked in the socket receive procedure. This procedure then fill~ the user buffer 
with data from the receive queue. 

4 Note: lhc logK of I.he prolornl would allow for a re1rnnsm1~s1on many case. 
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4.6 Configuration 

On each side of the PPE only ont: of the two processors 1s physically able to control the 111terfacc m 
the network. Thus we placed the tlevicc driver and the IP layer processes on those two processors. 
TCP. the ".><.:ket layer. and the application executc.> on the second processor on each side of the 
PPE. 

4.7 Memory Management 

The buffer memory 111 the protocol!> and the socket is managed in an mbuf like linked list There is 
only one buffer size to simplify these func11ons. The buffer size determines the maximum TCP 
segment ~ize. Provided there is sufficient physical memory (up to 4 MB on each side of the PPE) 
large fl\Ctl-sizcd buffers help avoid costly memory managemem functions. Buffer queues and the 
free but fer lt~t an: protected by semaphores to seriali1c access to the data structures from different 
processes on the same processor. 

The data and control flow in the PPE is organized such that only one processor requests buffers 
and the other only releases buffers. We ensure that one buffer element always remain~ 111 the 
queue, thus one processor can always append to the end of the buffer queue and the other proces
sor can consume the first clement without requiring any addJiional queue access protocol between 
the two processors 

5. PERFORMANCE 

5.1 1esl Setup 

To mea~ure the pcrformanc<: of the TCP/IP 1mplementat1on "'e used a .,1mple te~t driver running 
on the PPE: a source proct:s~ on one system that sends data over a !;OCket and TCP/IP to a sink 
process on the other sy~tem which receives the da1a. TI1e setup 1> ~hown in Figure 5. 

Source 

Transmit Side I Socket !TCP I 
Application 

Receive Side Socket rrcP 

Figure 5 Test Environment 

Su'oll 

Socket !TCP Transmit Side 

Applica1ion Receive Side 
Socket /TCP 

As 1hc final goal of this work i., to offload protocol processing from the workstation to the adapter, 
we examined the following two \Ccnarios: 

Scenario I. The complete socket layer is unplemented on the subsystem. Upon receipt, a contigu
ous block of data 1s copied from the socket layer to the test applicauon. It 1i. gathered from the 
linked lil>t of buffers that holds the received TCP segments. For sending, the write process copies 
the dara from the application\ buffer to the send queue. The application aJlocates and controls its 
bufferi. on the receive and the transmi1 :.ide of the PPE. In this ~enario we can measure the 
throughput between Mx:ket:. on two PPEs. 

Scenario 2. In the 'ocket interface all copy calls are replaced by a null call. The test applicauon is 
mere I) used to dnve the socket and the TCP/IP implementation This scenario,., used to evaluate 
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the po'sible pcrformam:c in case the socket-based application programming interface (A Pl) were 
implemented on 1he worbtation. The socket layer would Lhen be split in10 two pans. The upper 
hall resides in the worhtauon. Calls to the API result 111 conrrol flows to and from the lower half 
of the sock.et laycr, \\ h1ch runs on thc PPE. Copying data to and fmm the TCP layer must be done 
by the workstatH)n processor, because the current PPE only functions as a bus slave. Therefore the 
copy opemtions in the socket layer can be combined with the copy between the workstation and 
the PPE. In th1\ 'ccnario we measure the throughput between the lower half of the '><>Ck.et layer on 
tv,.o PPEs. The results of scenario 2 provide ;1n upper bound for the expected performance of such 
an integrated system. As such they are valid if one manages- as shown for our implemcmarion of 
the ISO 8802.2 Logical Link Control protocol [Kaherswerth 911 to fully overlap 1hc copy op
ernuons and thc ex.change of control between the work.station and the PPE with the protocol 
execu1 ion on the PPE. 

We did not implement TCP checbummmg, because 11 ~hould really be done in hardware 
I Lumley 92]. To do software checksum calculation on the transputer "'ould cost 3 µs per 16-bit 
word. We did, however, implement IP header checksumming 

The Zjhlmonuor'* (ZM'*> I Dauphm 91] monuoring and tracing system was used to record execu
tion rrat.:es of the PPE subsystem. ZM'* allow~ gathering of trace events from multiple proce!>sof!>. 
The~c events arc timesiamped with a global clock opernting with a resolution of 100 ns. A power
ful too bet I Mohr 91 I provides trace analysis and visualization 

5.2 Measureml'nls 

Becau\e we v.anted to sec the effect~ of pipehnmg and parallel execution of the protocol, we mea· 
sured the time 'pent in the vanous parts of the device driver, IP. TCP and the socket layer. To judge 
Lhe performance of our implementation we measured the number of TCP segments Lhe imple 
mentation can handle per second. Given the segment ~i ze, the expected maximum throughput can 
easily be cakulated 

µs/Segment µs/32-bit word 

Process (Procedure) on Receiver 
tcp recv 235 

user task (socket recv/copy) 31 0.545 

ip 1ntrsvc 9 
ip demux 23 

Process (Procedure) on Transmitter 
write 30 0.545 

tcp_snd_data 147 ,_ ,____ 
ip send 23 

'- - L-

driver send 17 0.27 

Access to Shared Memory (poke call) 18.6 2.4 

Table 1 Measured Execution Times 

Table I hsts the e11ecution times of the major processes of our impkmemation. We used segments 
of 4096 bytes in these measurements. The times are reported for the first test scenario. The execu 
tion times per segmem are approximately 41)1- lower for the second ~enario because of reduced 
contention for accesses to the shared memory. The times per 32-blt word for user_task and write 
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are the dura11on of a 32-bit copy operation from shared memory to shared memory. If we assume 
that forever) 11 segments an aclnowledgemem must be sent, we can use the following fom1Ula 10 

calculate the execuuon time per TCP segment m a single processor implementallon: 

l = max[[ L r, + ~ L r, ] [ * L r, + L r, ]] 
1 E lrl'cetvepmol iE ffrClnsmitpror.sJ 1 E !receive procsl 1 E [1m11.111111pron] 

The calculated \\Orst ca~ throughput for n=2 " 2150 -.egmen1'/s in the 'econd scenario 

To "ilculatc the expected perfomrnnce of our implementation in TCP scgments/s from the num
bcrs reponcd m Table I for scenano 1, we need to consider the sequence m which the processes 
exei:ute on the various proccs~ors of the PPE. 

1p 1ntrsvc 
Transputer 1 

9 

Transputer 2 

Transputer 3 

Transputer 4 

Network Interface 

1cp recv 

235 
user _task(so_recv) 

612 

send 
24 

·cfrivei'_seiid · · · -- · - · · 
17 

Figure 6. Pipelined Protocol Execution on Sink (Scenario 1) • Times in tlS 

Figure 6, for example. shows the pipelined handling of an inconung packet and the sending of the 
acknowledgement \\hich occurs because the aclnowledgement threshold has been reached. The 
Urnt- spen11n tcp_recv 1s 235 ~h. The processmg m user _task (612 ~ts) donunates the send mg of 
the aclnowlcdgemen1. These two processes sum up to 847 µsand form the most expensive pipe
line \tage, which limns the expected throughput lo 1180 TCP segments/s. On the sender xtask, 
lcp snd_data . and write add up to 75 l µs5 in 1he hmiung stage of the execution pipeline. The 
tra11\mitter is therefore expected to be able to send 1331 segments/s. The receiver b thus the bott· 
le11ed. in our implt:mentation. 

We venfied these perfom1ance predicuons by measunng the actual throughput for a transfer of 
~everal MB lxtween our two test sy~tcms. We obtained a somewhat lower throughput of 1100 
\egrnenL~/~. The difference between the measurement and the e:\pected 1180 segmentSl's i!> due to 
the slow-Man algomhm and 1he eventual retransmission of los1 packets, and to process schcdul
mg overhead not captured in our measurements. 

16 I'- (Xlask) + 147 Ll' (tcp_snd_data) +JO µs (write)+ 10:?4 x 0.545 µs (COp}tng 4096 byte'> m write)= 
Hiµ.~ 
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For scenario 2 one can again apply Lhe same model IO analyze the expected perfom1ance. For ex. 
ample. in Figure 7 we show Lhe proce\\ execution on Lhe sending PPE. 

xtask 
Transputer 3 

16 
tcp snd data 

147 

················ ···+-...-~~~-,-~~~,---~~~--1 ....... ~~~~~-
drtver_send 

Transputer 4 
17 + 274 

····-· -· ······· ·· ····· +-~~~~~~~~~~-+ 

Network Interlace send (4096 bytes) 
274 

·····················- ~~~~~~~~~~~~ --------------

Figure 7. Send Pipelined on Source (Scenario 2), Times in µs 

Depending on the segment size. either the TCP layer. which cost\ 163 ~ts, or the IP layer6 is 1he 
hm1Lmg factor of our execuuon pipeline. In this example Lhe segmenl size is 4096 bytes. There
fore IP and the netv.ork interface are 1he limiting pipeline Mage. lp_send and driver _send make 
up 314 11s, which leads to an expected 1hroughput of 3185 TCP segments/s. The time spent in 

driver_send is Lhe sum of Lhe time to control the transmission process, i.e., to sci up Lhe DMA 
transfer and wait for its completion ( 17 i1s) and the actual transmission time, which depends on 
1he networi.. speed. At 120 Mb/s Lhe transnmsion of a 32-bit '-"Ord lakes 0.27 11s When sending 
4096 bytes the total time spent 111 driver_send add' up to 291 i1,. 

For the receiver, TCP handling n.:mains the same, but the execution lime of user_task drops to 31 
i1s because wt' do not copy the received data on Lhe PPE tcp_recv and user _task together add up 
to 267 µs. v.hich means an expected performance of 374.5 -.egmemv\. Given the transmission rate 
of 120 Mb/s the sender 1s the bonlened. in this case. The actual performance we measured was 
3089 segmcnts/s. The difference from the predicted pcrfom1ance is due again to process schedul· 
ing overhead not captured in our measurements. 

Scenario 1 Scenario2 
SegmentsJs Segmentsls 

Calculated Throughput Of Receiver 1180 3745 

Calculated Throughput Of Sender 1331 3185 

Measured Throughput 1100 3089 

Table 2. Measured and Calculated Throughput for Both Scenarios Assuming a Segment Size 
of 4096 Bytes 

Table 2 surnmanzes the predicted and measured performance of our implementation and Figure l! 
compares the performan<.:e of Lhe two scenarios for different segment sizes. 

For unidirc<.:tional transmission one observes a speedup of 1.4 when running on four processors 
instead of one. The reason 1s uneven load balancing. IP and TCP run on two processors each. As 
the processing requirements of TCP an: much higher than Lhose of IP ( 8.3 to I for reception and 
4A to I for transmission) t'AO of the four processors are only very hghtl) loaded. The parallehsm 
between the sending and the receiving side, however, can be fully uuliled in duplex transmission 

6 The urnc spent in the IP layer ts 23 µs + 17 µ, + 0.27 µs x packcl :,izc (in 32-bit words) 
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The speedup is 2. 15, because the sending and receiving sides of the PPE are equally loaded. An 
optimal speedup of 1. 7 could be expected for the TCP/IP implementation when only two proccs 
~or... one for the transmit and one for the re<.:civc side of the PPE, "ere u~ed m full duplex trans
mbs1on. 

4500 
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3500 
Senario 2 4 Processors Network bandwidth 

3000[ 
j 2>00 f 

¥-- -+-----+-.... ---
~ ::~r-

1000 

500 
~ 

oL_. 
0 

·x.. . -----....._ -------
Scenario 2: 1 processor --· ----' X- - - -

\---x--------------- ·->E -------
Scenario 1: 4 Processors / 

____.__ ....____._ --.J-' _._ 
~ 

1024 2048 3072 4096 5120 6144 7168 

Unidirectional Traffic 
Bidirectional Traffic 

Segment Size in Bytes 

4 Processors x 
1 Processor + 

Figure 8. Performance 1n Segments/s of the Two Scenarios 

The 11npact of having implemented our distributed shared memory via the peek_poke process is 
the same rn absolute numbers in both scenarios, but different compared to the limiting pipeline 
stage. The peek_ poke call <.:osts 0.6 µs per byte plus a fixed overhead of 18.6 µsin an unloaded 
system A 20-byte caJI from the receiver only takes 30 µs because the transmitter is immediately 
read} to handle the call. Handling rhe distributed shared memory costs about 12~ of the 235 ~ts 
spent in tcp_recv. Thb overhead on the receiver is important m the second scenario, but it is 
small l'Ompared to the copying costs 111 rhe first s<.:enario. For the transmiuer the poke call induces 
an el.tpst'.d time of 57 i" because of the system load and the context swilchc\ involved on the re
cei~t. processor Although this is 46~ of the tcp_snd_data, it has no impac1 on the throughput, 
becau~ceithcr lp_send and driver_send or tcp_recv and user_task will be the limiting stage~. 
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The prototype PPE interface to the workstation (I BM Rise System/6000) allows a copy lhrough. 
pu1ofonly33 Mb/s 7. lf the application were 10 be executed on the workstation, all copying would 
be done from the workstation's processor and if we assume code similar 10 the second lcSL \Cenar. 
10 running on the PPE, then the hmlled copy throughput rather than the protocol processing will 
be the bottleneck and we should expect the perfonnancc of the integra1cd system to be around 30 
Mb/s. 

6. CONCLUSIONS 

Our measuremenh show that a full 1mplementarion of TCP/IP on the PPE can cope wnh data rates 
1n the range of 100 Mb/s. The 1hroughput is much higher than the bandwidth of our hardv.are 
1111erface to 1he workstaiion. 

II turns out, however, 1hat using a total of four processors, two for 1P and two for TCP offers only 
very little improvement over a 1wo-processor solution, because of the vastly different process mg 
requirements in the two protocol layer\ For full duplc!x traffic, however, the split onto a receiver 
and a transmiuer processor improves protocol performance by a factor of 1.7. Panitioning proto
cob to obtain even load and linear speedup is a hard problem, in pa11icular for protocols which 
clearly were not designed with para I lei execution in mind. [Zirterbart 911. for example, reports 
even poorer i.peedup factors. With an 8 transputer implementation of the OSI CLNP she only 
achieves a performance increase 3.73 over the single.: processor version. 

Having used a DOS implementation of TCP/IP a' the basis for our parallel 1mplementanon was a 
sound deci!>ion Our 1mplementauon runs efficiently, when one compares It with other transpo11 
prowcol implementations. For example, Zitterbart dcscnbes a parnllel implementation of OSI 
TP4 written for a system of8 transpu1ers which was able lo process 460 PDUs/s I Zitterbart 91 ]. ln 
I Braun 91) a parallel 1mplementa11on of XTP is described, there the perfonnance is 1330 PDUs/s. 

Once new faster proces.,ors. such as the I 00 MIPS T9000 transputer, become available, the gains 
for pipelined execuuon of protocob "ill have to be reevaluated. While the T9000 will be 10 ume~ 
as fa~L as the T425. the delays for interprocessor commumcation will not have shrunk by the .,ame 
fac tor. Therefore the relative overhead for pipelining the protocol execution within a layer and 
even between layers will grow. We claim, however, that the parallel execution of transmit and 
receive functions is sllll a suitable fom1 of parallelism to increase protocol throughput Distrib
uted 'hared memory. implemented "uh transputer hnks easily allow\ protocol state informanon 
LO he shared between tl1e two side~ of the adapter and impacts the perfonnance of the trnnspon 
protocol much less than expected. First evaluations of a new architecture, which is based on t\\O 
T9000s supported by dedicated hardware for checksumming and extraction of header infom1a
tion, indicate a performance of over 30000 TCP segments/s. 

1 The rcawn \\h}' lh" interlace 1' so ~10\\ , 1' that the clocks on the "ork~lfilJon and th.: PPE run as}'nchronou,ly 
When arbitrating an acccs\ from the \,11cro Channel tO the shared memory on the PPF. we arc forced tu u.-e 
me Micro Channel'~ A 1ynchronous £xu•ndrd cyc le [IBM 901 tif al least 300 ns. T111s cycle then m:l)' even need 
10 be extended hy up to 487 ns IO match 11 with the appropriate access cycle of the PPE shared memory. In 
.i new design for the Micro Channel interface this problem would be addressed b> l1ulfcnng m the interface 
"'h1Lh would allow \\ntc-bchmd and rcad ·ahcad. For con-.ccuU\C accesses, Lill! arb1trauon C)dc for the nc>.l 
"ord accc_,~ tu the 'h.IJ'cd mcmOf) could then he overlapped "1th !he cum;nt "Ord aL-ccss cycle. 1hu' being 
ahk to u-.e regular I\ hero Channel C)dC' or 200 ns. an<l conscqucntl) mcrca,mg the throughpul to more thJn 
~O Mb/~. A bu,ma\tcr interface U\mg the Micro Channel\ o;trcammg mode woulcl ;11low give higher through
put 
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our measurements arc in line with Clark's observation [Clark 891 that the actual protocol proces
sing i' notthe reason for poor protocol perfom1ance. In rhe PPE. buff er copying and management 
cost rw1ce as much as the prow~ol processing. The second :;cenano shows how 1hroughpu1 can be 
tripled 1f the u'cr data were copied by the workstation processor overlapped 10 the protocol execu
tion lln the PPC. ln a future design of rhe PPE, we will concentrate on improving the interface 10 
the shared memory for the prorocol pn.x:essor8 and the workstanon. 

We also plan 10 work on the design of efficient software interfaces between our subsystem and the 
host system. A' can bc seen from resuhs published for the t\ectar CAB and our own work, cross
ing the software interface between the host processor and the communication :,ubsyMem is a cost
J:r orxration. Many re::.earchcrs who advocate the ofnoading of protocol functions into a 
dedicated sub~yslem ignore this i:.sue. For our TCP/IP implementauon onl) a hosr AP! based on 
~ockets will be acceptable, as this interface has become the de· fa cm standard. These sockets musr 
be lightweight enough to provide effic1cn1 pipelined execution between the communication sub
syMem and the hosr processor 10 exploit the full po"' er of the PPE. 
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