
IFIP Transactions C:
Communication Systems

International Federation for Information Processing

Technical Committee 6

Communication Systems

IFIP Transactions Editorial Policy Board

The IFIP Transactions Editortal Policy Board is responsible for the overall scientific
quality of the IFIP Transactions through a stringent review and selection process

Chairman
G.J. Morris, UK
Members
D. Khakhar, Sweden
Lee Poh Aun, Malaysia
M. Tienari, Finland
P.C. Poole (TC2)
P. Bollerslev (TC3)
M. Tomljanov1ch (TC5)

0. Spaniel (TC6)
P. Thott-Chnstensen (TC?)
G.B. Davis (TC8)
K. Brunnstein (TC9)
G.L. Reijns (TC10)
W.J. Caelll (TC11}
R Meersman (TC12)
B. Shackel (TC13)
J. Gruska (SG14)

IFIP Transactions Abstracted/ Indexed m
INSPEC Information Services

C-14

HIGH
PERFORMANCE

NETWORKING, IV
Proceedings of the IFIP TC6/WG6.4 Fourth international Conference on

High Performance Networking
Liege. Belgium, 14-18 December 1992

Edited by

A. DANTHINE
lnstitut dElectric1te 828

Universite de Liege
Liege, Belgium

0. SPANIOL
RWTHAachen
fnformatik IV

Aachen. Germany

1993

NORTH-HOLLAND
AMSTERDAM • LONDON • NEW YORK • TOKYO

~1'7

II<
5/t?.?-.?

, :;?1?.?1/
/19?-

ELSEVIER SCIENCE PUBLISHERS BV.
Sara Burgerhartstraat 25

P.O. Box 211, 1000 AE Amsterdam, The Netherlands

Keywords are chosen from the ACM Computing Reviews Classification System, !01991, with permission.
Details of the full classification system are available from

ACM 11 West 42nd St., New York. NY 10036, USA

ISBN· 0 444 81481 7
ISSN· 0926-549X

<C 1993 IFIP. All rights reserved.
No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means. electronic, mechanical. photocopying, recording or otherwise. without the prior written permission of
the publisher, Elsevier Science Publishers B V., Copyright & Permissions Department, P.O. Box 521 . 1000 AM

Amsterdam, The Netherlands.

Special regulations for readers in the U.SA - This publlcallon has been registered with the Copyright Clearance
Center Inc. (CCC). Salem. Massachusetts. Information can be obtained from the CCC about conditions under
which photocopies of parts of this pubhcat1on may be made in the U.S.A. All other copyright questions, including
photocopying outside of the U.S A., should be referred to the publisher, Elsevier Science Publishers B.V., unless

otherwise specified.

No respons1b11ity 1s assumed by the publisher or by IFIP for any injury and/or damage to persons or property
as a matter of products liability, negligence or otherwise, or from any use or operation of any methods. products,

instructions or ideas contained in the material herein.

pp. 119-134, 199-218, 267-281 , 367-381 : Copyright not transferred

This book is printed on acid-free paper.

Printed in The Netherlands

vii

Table of Contents

h 92
pn

Preface v

Program Committee xi

List of Reviewers xii

Session A: MAC Layer Enhancements 1
Chair: Harmen van As, IBM Research, Switzerland

OQDB for Time Constrained Services 3
Guven Mercankosk, Z.L. Budrikis, QPSX Communications Ltd, Australia,
A. Cantoni, Australian Telecommunications Research Institute, Australia

A New Reservation Scheme for CRMA High-Speed Networks 15
Nan-Fu Huang, Chung-Ching Chiou, Chiung-Shien Wu,
National Tsing Hua University, Republic of China

A Host Interface Architecture for High-Speed Networks 31
Peter A. Steenkiste, Brian D. Zill, H.T. Kung, Steven J. Schlick, Carnegie
Mellon University, USA
Jim Hughes, Bob Kowalski, John Mullaney,
Network Systems Corporation, USA

Session B: Flow and Rate Control 47
Chair: Marjory Johnson, RIACS, USA

Dynamic Bandwidth Allocation and Access Control of Virtual Paths
In ATM Broadband Networks 49
Ibrahim Wahby Habib, Tarek N. Saadawi, City University of New York, USA

Congestion Control - Effective Bandwidth Allocation in ATM Networks 65
E.D. Sykas, K.M. Vlakos, K.P. Tsoukatos, E.N. Protonotarios,
National Technical University of Athens, Greece

viii

A High Speed Data Link Control Protocol
Ahmed N.Tantawy, IBM Res. Div., T.J. Watson Research Center, USA,
Hanafy Meleis, DEC, Reading, UK

Session C: Parallel Implementation and Transport
Protocols

Chair: Guy Pujolle, Universite P. et M. Curie, France

Parallel TCP/IP for Multiprocessor Workstations
Kurt Maly, S. Khanna, A. Mukkamala, C.M. Overstreet, A. Yerraballi,
E.C. Foudriat, B. Madan, Old Dominion University, USA

TCP/IP on the Parallel Protocol Engine
Erich AOtsche, Matthias Kaiserswerth,
IBM Research Division, Zurich Research Laboratory, Switzerland

A High-Speed Protocol Parallel Implementation: Design and Analysis
Thomas F. La Porta, AT& T Bell Laboratories, USA,
Mischa Schwartz, Columbia University, New York, USA

Session D: Multimedia Communication Systems
Chair: Radu Popescu-Zeletin, GMO FOKUS, Germany

Orchestration Services for Distributed Multimedia Synchronisation
Andrew Campbell, Geoff Coulson, Francisco Garcia, David Hutchison,
Lancaster University, UK

Towards an Integrated Quality of Service Architecture (OOS·AI f or
Distributed Multimedia Communications
Helmut Leopold, Alcatel ELIN Research, Austria
Andrew Campbell, David Hutchison, Lancaster University, UK,
Niklaus Singer, Alcatel ELIN Research, Austria

JVTOS - A Reference Model for a New Multimedia Service
Gabriel Dermler, University of Stuttgart, Germany
Konrad Froitzheim, University of Ulm, Germany

Experiences with the Heidelberg Multimedia Communication System:
Multicast, Rate Enforcement and Pertonnance
Andreas Cramer, Manny Farber, Brian McKellar, Ralf Steinmetz,
IBM European Networking Center, Germany

81

101

103

119

135

151

153

169

183

199

ix

Session E: QoS Semantics and Management 219
Chair: Martina Zitterbart, IBM Res. Div., Watson Research Center, USA

Client-Network Interactions in Quality of Service Communication
Environments 221
Domenico Ferrari , Jean Ramaekers, Giorgio Ventre, International
Computer Science Institute, USA

The OSI 95 Connection-mode Transport Service: The Enhanced QoS 235
Andre Danthine, Yves Baguette, Guy Leduc, Luc Leonard,
University of Liege, Belgium

QoS : From Definition to Management 253
Noemie Simoni, Simon Znaty, TELECOM Paris, France

Session F: Evaluation of High Speed Communication
Sy~ems ~5
Chair: Otto Spaniel, Technical University Aachen, Germany

ISO OSI FTAM and High Speed File Transfer: No Contradiction 267
Martin Bever, Ulrich Schaffer, Claus SchottmUller,
IBM European Networking Center, Germany

Analysis of a Delay Based Congestion Avoidance Algorithm 283
Walid Dabbous, INRIA, France

Performance Issues In Designing Network Interfaces : A Case Study 299
K.K. Ramakrishnan, Digital Equipment Corporation, USA

Session G: High Performance Protocol Mechanisms 315
Chair: Craig Partridge, BBN, USA

Multicast Provision for High Speed Networks
A.G . Waters, University of Essex, UK

Transport Layer Multicast: An Enhancement for XTP Bucket
Error Control
Harry Santoso, MASI, Universite P.et M. Curie, France,
Serge Fdida, MASI, Universite Rene Descartes, France

A Performance Study of the XTP Error Control
Arne A. Nilsson, Meejeong Lee,
North Carolina State University, USA

317

333

351

x

Session H: Protocol Implementation 365
Chair: SamirTohme, E.N.S.T. , France

ADAPTIVE An Object-Oriented Framework for Flexible and Adaptive
Communication Protocols 367
Donald F. Box, Douglas C. Schmidt, Tatsuya Suda,
University of California, Irvine, USA

HIPOD : An Architecture for High-Speed Protocol Implementations 383
A.S. Krishnakumar, J.G. Kneuer, A.J. Shaw, AT&T Bell Laboratories, USA

Parallel Transport System Design 397
Torsten Braun, University of Karlsruhe, Germany,
Martina Zitterbart, IBM Res. Div., T.J. Watson Research Center, USA

Session I: Network Interconnection 413
Chair: Augusto Casaca, INESC, Portugal

A Rate-based Congestion Avoidance Scheme for Interconnected
DQDB Metropolitan Area Networks 415
Nen-Fu Huang, Chiung-Shien Wu, Chung-Ching Chiou,
National Tsing Hua University, Rep.of China

Interconnection of LANs/802.6 Customer Premises Equipments {CPEs)
via SMDS on Top of ATM: a case description 431
W. Rozenblad, B. Li, R. Peschi,
Alcatel Bell Telephone, Research Centre, Belgium

Architectures for Interworking between B-ISDN and Frame Relay 443
J. Vozmediano, J. Berrocal, J. Vinyes,
ETSI Telecomunicacion, Spain

Author Index 455

Jilgh Performance Networking. IV (C-14)
A. Danthinc and 0. Spaniol (Editors)
Elsevier Science Publishers B.V. (North Holland)
1993 IFIP.

119

TCP/IP on the Parallel Protocol Engine
Erkh Riitschc and Mauh1a~ Kaiserswcrth

IBM Research Division, Zurich Research Laboratory
SaumcP.>tmsse 4, 8803 RiiM:hlikon, Switzerland

Abstract

In th" paper. a parallel 1111pkmentation of 1he TCP/JP pro1ocol ~u11e on the Parallel Pro1ocol En
gine (PPE), a mulliproccssor-based communication subsystem, is descnbed. The execution
time~ of the various protocol func1ions are used to analy1e the syMem 's performance in two see
nario,. In the fir\t ~cenario we execute the te\I application on the PPE; in the second we evaluate
the potential pcrfonnance of our TCP/lP implcmentallon when 111s driven hy an application on
the workstation. For the second scenario, the end-to-end performance of our 1111plemcntution on a
four-processor PPE system 1s more than 3300 TCP segments per \econd.

Keyword Codes. C. l.2; C.2.2; D. U
Keywords: Multiple Daw Stream Architectures (Multiprocessors); Network Protocols:

Concurrent Programming

1. INTRODUCTION

Progrc~s m high-speed net.,.. orkrng technologies such as fiber opucs have shifted the bottleneck
in communi<.:ations from 1hc limited bandwidth of the transmission media to protocol processing
and the operatmg system overhead in the workstation. So-called lightweight protocols and proto
col ollload to programmable adapter.. are two approaches proposed 10 cope with this problem.
Prott>l:Ols such as the Xpress Transfer Protocol (XTP)' !PEI 921 and VMTP !Cheriton 88] try 10
simplify the control mechanisms and packet \lructures such that the protocol implemcnlation be
come\ less complex and can possibly be done m hardware We took the second approach in build
mg the Parallel Protocol Engine (PPE) f Kaiserswenh 92J. a muluprocessor-bascd
communication adapter, upon which protocol processing can be omoaded from a host system.
The ~cctarCAB IAmould 891 and the V.MP Network Adapter Board (Kanak1a 881 are other pro
grammable adapters, each based on a single protocol processor. The XTP chipsct (Chesson 871 is
a very spec.:ialiied set of RISC processors designed to e;<ecute the XTP protocol. Our objective
was to 111vcstiga1e and exploit parallelism in many diffrrent protocols. Therefore we decided 10

de\ clop a gcnaal purpost communication subsystem capable of suppomng standard protocols
cfftc1cntly 111 software.

1
.\pre" Tran>lcr PrntlK:OI and XTP arc rcgl\tcrcd tradcmarh ol XTP Forum

120

In this paper our goal is to demonMrate that a careful 1mplementation of a Mandard tmnspon pro
tocol stack on a general-purpose multiprocessor architecture allows efficient use of the band
width availabk Ill today's high-,peed networks. A, an example, we chose to implement the
TCP/IP protocol l.uite on our -t-processor prototype of the PPE.

We implemented the \ockct interface and a test application directly on the PPE to facilitate our
performance measurements. In this tesr \Cenario we analyze the performance of TCP/IP and the
socl..ct layer. We also exanuncd a second scenario to unden.tand how our 1mplementauon would
pcrfonn when integrated into a workstation. where protocol processing up to the transport layer 15
perfom1ed on the PPE and applicauons can access the transpon service via the socket interface on
the:: workstation.

In Section 2 our hardware platform, the PPE. is presented. Section 3 introduces TCP/IP. In the
follm-.mg secuon we C\pl<tin our approach to parallt:I protoc.:ol unplementation. Section 5 prc\
e111s the results and discusses the impact of the hardware and software architecture on perfor
mance. The last section gives the condusion and an outlook on our furure work.

2. THE PARALLEL PROTOCOL El'IGJ~E

The PPE is to be pre~ented only hriefly hen.!. It is described in greater detail in [Wicki 90J and
(Kat,erswenh 91 . 921 We "Will first concentrate on the hardware and then present the program·
ming environment.

The PPE is a hybrid \ha.red-memory/message-passing multiprocessor. Message passing is used
for \ym.:hron1zation. whereas shared memor} is used to store sen.ice primitives and protocol
frumcs. Figul"I! I shows the archnecture of the PPE ;ind ns u~e as a commumcation subsystem.

The PPE u!>es two separate memories. one for tran~mitting. one for receiving data. Both of these
memories an:: mapped mto the address space of the worhtallon. (n our tmplementation. four
T425 transputer\ [IN MOS 89] arc used as protocol processors. On each stde of the adapter, two
T425s have access to the shared memory. Each processor uses private memory to store its pro
gram and local data. We decided against using a single shared memory for storing both inbound
and outbound protocol data, although this would make the adapter more flexible and facilitate
programming, for the following reason. lligh-speed network interfaces work in a synchronous
fashion.with data be111g docl..ed in and out of memory. possibly at the same time, ::11 the transml\
!>ion speed of the physical network. Splitting the adapter mto -.cparate receive and transmit parts
accommodates simultaneous transmission and reeepuon and only requires memory wtth half the
speed of that required for a smgle-memory solution. This architecture results in significant cost
savings. especially when transmiss10n speeds exceed 100 Mb/s

The network interface has read access to the transmit side and write access to the n::cetve side of
the adapter We emulate a physical network by means of an 8 bit wide parallel interface, which
allows a po1nt-to-pomt connec11011 between two PPE \ystems operaung with a b1directional
transrmssion rate of up to 120 Mb/s. The transputer links are used exclusively for signalling and
control message transfer within the PPE and to and from the ho~t system.

The program111111g language wh11:h best dt:~l:nbcs the transputer\ programrrung model is OC
CAM [Pounta1n 881. It 1s based on the theory of Cum111w1icaii111{ Sequential Proasses (CSP) de
veloped hy lloare I Hoare 781. The structuring elements are processes that communicate and
synd1romze \ 'lit mes~gcs :\1essage transfer" unbuffered communicating processes must reach

Application I Protocol Layers

Micro
Channel
Interface

Shared TRANSMIT Memory
' ---......... -.. -.. -------- .. - -- ... - ...

.. --- - ... -.... -..... -........... -...... -...... -.. -.. -.. . ' .---~~~~~~~~~~~~~--.

Shared RECEIVE Memory

Figure 1 Architecture of the PPE

121

Physical Layer

a rendl sous before the message is copied dire1.:tly from the sender's 10 the m.:eiver's address
space l"his behavior maps direr tly to the transputer's register mtxlel and microcode, wh11.:h sup
port efficient context switches and transparent message passing via four external links and any
numhcrof internaJ soft channels. However because OCCAM discourages the use of pointers and
shared memory between different processes and offers very ltttlc suppo11 of user-defined struc
tured da1a types, we chose IO do our implementation in the C programming language I LS-C 891.
Access 10 the transputer specific facilities, such as synchronous message passing and process
contml, I!> provided through library funrnons, which c.:an. in pan. also be generated as more effi
cient rnline code hy the compiler.

3. THE TCP/IP PROTOCOL STACK

We tmplemenred the full TCP/IP prmocol stack on the PPE. It conststs of the lmernet Protocol
OP), the f111eme1 Conrro/ Mes.\aRe Protocol (lCMP), and the Transrmssion Control Protocol
<TCP> \pplicanons interface to the protocol implementation vi,1 <>ockets. >irrnlar 10 the BSD ver
~ion of Unix2.

lino\ ''a rc1p,1cml irackmarl. of ,\T&T on t.hl' Unncd Stal~' and other rnun111c\.

122

IP is a datagram protocol that implements functions similar to those of the OSI Connec11onless
Network Protocol (\LNP). ICMP, wluch is an integral part of lP. is used to exchange control mes
>ages between internet clients, e.g., it generates a destination unreachable mesi.age when the ad
dressing infomiation in a received datagram does not allow forwarding or local delivery. TCP,
w h1ch roughly implements the ISO Transpon Layer functions, provides an error and now-con
trolled end to-end transport connecuoo between applications. TCP thus builds reliable data trans
mission services on top of the unreliable IP datagram service. A TCP connection is specified
through the pairof Internet addresses and the TCP pon identifiers of the two communicating part
ners. The socket 1s the local end point of a TCP/IP connection. The application program accesses
sockets through local idcntifit:rs, similar to file descriptors in Unix.

As we did not \\.'am to implcmcnr TCP/JP from scratch. we based our work on a version of TCP/IP
for MS/DOS from the University of Maryland IUM 901 .

.i. PARALLEL IMPLEMENTATI01' OF TCP/IP

To develop a parallel solution one needs to partition the problem 111to a sci of subproblerm that can
be executed 1n parallel. The algorithms solvrng these subproblems arc typically encapsulated m
cooperating processes which are mapped to the parallel-processor hardware. Depending on the
underlying hardware and the implementation model chosen. these processes communicate and
synchro1111c via shart:d memory or message pa~sing.

Application

Transmission
Control
Protocol

Internet
Protocol

Buff er

Buffer

ii? send 'I< I

I dnver send I

I Procedure I (Process)

Figure 2. MS/DOS IP Process Structure

user_task

tcp_task

Network Adapter

123

The source code, which served as a basi' for lhis implemen1a11on, was already struc1urcd imo
111ul11plc processes 1ha1 run on 1op of a simple, non-precmp1ive mullimskmg kemcl. Figure 2
shew•' 1he original spli1into 1hree processes and one in1errupt service routine. Having such a pro
ce5S s1ruc1ure a11m~t:d us 10 May fairly close to the original source.

As we: wan1ed to execute the IP layer on d1ffert:n1 processors dwn the TCP layer, we first isolated
the IP rclcvan1 functions from bo1h tcp_task and ip_task into separate processes. Because of the
f um:tional division of the PPE 11110 a rransmit and receive side, we 1hen spli11hc remainder, i.e. !he
core ol the TCP protocol, of tcp_task and lp_task vemcallr m10 three processes (rtask,
tcp_recv running on the receive side and xtask running on 1hc 1ransmi1 side). We will describe
1he func11ons of 1hc various pro1ocol processes, 1hu1 implemen1 IP, TCP and tht: socket layer in
1urn. Pigurt: 3 shows the high-level process struc1ure we derived for our implcmenta1ion.

Application

Socket Layer

Transmission
Control
Protocol

Internet
Protocol

Media
Access Control

Transmit Side

[>roeedurel (Process)

Network Adapter

Figure 3. High-Level Process Structure

Receive Side

ip_demux

ip_intersvc

In lh..: followmg we presen1 our parnllel soluuon in a 1op-down approach, fir..t 'howing the high
h:vel process graph of the main processes m our implementalion. These processes have access to
data shared between 1he transmit and receive side and can interac1 with one another via high-level
Pnmi11ves such as remote procedure calls (RPC) and queues. In a second step, we will then show
ho"' the~e services, m particular shared dala between the receive and tramm11 side as well as
RPC~ from the receive to 1he transmit side, have been realized on the PPE.

124

4.1 IP and ICMP

Becau~e IP is a datagram protocol, the normal flow of data through IP in an end-system requires
no interaction betwet:n the receiving and transmitting part. Routing infom1ation and exception
handling, however, require a data exchange. The handling of exception and control messages is
the function of ICMP. We therefore partitioned IP into two independent processes lcmp_demu1e
and lp_demux. To guarantee the timely handling of incoming packeis, we dedicated a separate
proces\ on the receive side of the PPE to the handling of the physical network interface.

The rouung table 1s shared between both processes on the Lransmit and receive side of the PPE. An
RPC 1~ used if lcmp_demux needs to send out an ICMP message.

4.2 TCP

Splitting the PPE hardware into a i.eparate send and receive side had more impact on how \.\-e had
to deal with TCP, the socket layer, and application layer, than it had on IP.

We dedded to split the finite \tale machine (FSM) responsible for implementing a TCP connec
tion into two separate FSMl> once the connectton is in the data phase. The actions of these FSMs
are implemented on the receive side through two processes, rtask and tcp_recv. On the transmit
side one process xtask implements the FSM. Owing to the duplex nature of TCP and the piggy
backing of control information in data packets, these processes need to share the protocol's send
and receive ~rate vanables maintained in the transmil:.ion conrrol block (fCB).

tcp_recv demultiplexes incoming TCP segments, locates the appropriate TCB and executes the
required action for the FSM state. Header prediction is used Lo speed up packet handling for pack
ets amving con~cutively on the same connection. Correctly received segments are appended to
the rece1 ve queue and the application process waiting on this connccuon is then woken up to move
the data to its own buffers. When the received data exceeds the c1cknowledgement threshold,
which is specified as a percentage of the advertised receive window, tcp_recv makes an RPC to
the transmit side to generate an acknowledgement. The acknowledgement is sent a.<; a separate
packt:t, unless this information can be piggybacked onto an outgoing data segment.

rtask 1s drivi=n by two timers, one responsible for delayed acknowledgements, the other for keep
alive messages. In steady state data transmission, rtask should never generate an acknowledge
ment, as tcp_recv already generates ackno\.\-ledgernents \.\-hile data are received. Only when the
timer runs out and new unacknowledged data have been received since the last acknowledgement
will rtask generate an acknowledgement. Similarly, keep-alive messages are also sent only when
no acnvity has taken place on a rnnnection for some time. Again, both acknowledgements and
keep-ahvc messages are gencrntcd via RPCs to the trJllSIIllt Mde.

On the transmit side the process xtask manages the trnnsmit queue and the retransmission timers.
To send data, xtask creates the TCP header and fills in the necessary infonnatlon from the TCB.
<;uch as addresses and sequence number.. for the data and acknowledgements. The header and a
pointer to the d;ua are then pas'.>Cd ro the IP process (procedure lp_send), which embeds this in
fonnataon into an IP datagram.

4.3 Socket Layer and AppliC<1tion

To fac1lttate our cxpenments wuh TCP/IP, we decided as a first Mep t0 implement the entire sock
et layer us well as the test applicanon on the PPE. A detailed description of the interaction~ be-

125

tween an application on the hose i.yMem and a protocol on the PPE can be found in [Kaiserswcnh
92].

In our implementation, the socket layer, although tighdy coupled with TCP, is part of the applica
tion process. It is m:cessed via a procedural tnterfacc. used to create a socket, btnd an address to it
and establish a TCP connection w11h a remutc socket. As the FSM logic to establish connecuons is
also pan oftcp_recv, we decided t0 place the socket and the application code on the receive side.
Because we wanted to avoid moving data to be sent from the receive side to the transmit side via a
iran~puter lmk3. we ah.o allow the apphcauon to U\e buffers on the transmit side of the PPE.
When data is to be transmitted, the send procedure simply makes an RPC with the buffer address
on the transmit side, thus causing the write process to copy the data from this application buffer co
che TCP send queue. When the application wants to receive data, the receive procedure checks
the receive queue for this connecuon and blocks the application process if the queue is empty.

4A Low-Level Primilives

Before givmg an example of how TCP data segments are sent and received. we describe how we
maintatn shared TCBs and muung tables on the PPE. which docs not have shared memory be
tween its transmit and receive side, and how we realize RPCs from the receive to the transmit side.
Figure 4 shows the process &rraph of the additional processes required to implcmem these fu nc
tions.

rpc_process Arty Process

wnte rpc_dernux

Any Process peek_poke

peek_poke Any Process

Transmit Side
..._ dedicated Transputer Link <J-- internal Channel

Figure 4. Low-Level Primitives

Receive Side

We implement dwrifJwed shared memory between the transmit and receive side by placing the
data struciurcs that arc to be shared at identical physical addresses tn the local memories of the two
processors\\ ht ch a<.:<.:ess the data structure. Whenever a value is wntten onto the local copy of the
data structure. die address of the variable and its value are sent via a dedicated transputer link to a
~erver process. peek poke. on the remote ~idc. This process then updates the memory area iden
t1f1ed thruugh the address \.l.ith the accompanying value. The peek_poke processes run at high
priori!) to ensure 1hat the exchange of a message with a remote process takes place immediately
and is not delayed by scheduling overhead, which would then also delay the remote process be
cause of the transputer's synchronous message passing. Serializing write accesses co the shared
data structures is nor necessary m our case. Ea<.:h replicated data structure fall~ tnto two parts, one

3 We nw;:i,urcd an cftcwvc Lhroughput r.ite of approx1ma1cly 14 \1b/s aero'~ a ltallsputcr link, clearly much
lo"' er thJn 'ta our h1gh-,pccd parullcl 1111crfacc.

126

wri11en only from the receive side (e.g .. the updated tnu1~mi1 w111dow), and 1hc other wrirten only
from the tr;111smi1 ~idc (e.g .. the la\t -,end sequence number).

Since we do not have a lockrng protocol for acces\mg shared data structures. It is possible thill for
a brief period after chc local update and before the remote update has been propagated, the \atnc
field in the shared data siructure contains 1wo different values. Because of the properties of TCP
and the way we have 'Pill the proto.:ol onto the cran\mll and receive side of the PPE, this inconMs
tency will only be of importance if 111s 1he reason for the protocol Mate to change. As an example
consider the following: assume the n:transrnission timer (it is abo maintained in the TCB) in

xtask cxpin:s and, because the acknowledgement field in the TCB docs not indica1e reception of
an acknowledgemc111, xtask decides 10 retransmit the unacknowledged TCP \Cgments. On the
recdve side. ho\\ ever. ;m at·i-nowlcdgemem has been received in the meantime which makes this
retransm1s\lon unnecessary4. To avoid this problem, before actually going 10 a retransmit state,
xtask will reread the acknowledgement field, now however with the value on the receive side, to
make sure that a retransmission is warranted. Reading a remote field is similar tu writing; a mes
~age with the address and stze of the variable is sent to tht remote peek_poke process, which then
returns the value of that field.

RPCs from the receive to the transmtl side have been implemented as follows: any process on the
receive side can fom1a1 an RPC message, whit·h is then sent via a dedicated transputer link to the
rpcJlrocess. This process will then execute the remole procedure. or 111 the case of transmission
request,, pa\s the request via a local (internal) channel 10 the appropriate write process. one of
.,.. hich exists for each TCP connection Return values are sent, agarn via a dedicated transputer
ltnk. bac~ to the receive side to rpc_demux, which forwards these values over a local channel to
the proccs' 1hat had iniuatt:d the RPC. Upon receiving 1he return value. the calli.:r becomes ready
again and can continue its e"ecution.

4.5 Example

Sending u TCP dam sewne111: The normal data flow is shown in hgure 3. The send data are in a
remotely al located buffer on the transmit side. The application creates a socket ;ind establishes a
TCP connccuon. The socket send call causes an RPC to the n:mote write process which in tum
copies the data into the TCP send buffer. xtask then controls the tran~mission and eventual re
transmissions of the data. The send procedure builds the TCP segment and fory.ards the pointer to
the segmen1 and the assocmted control block to lp_send. Here the IP header is placed in front of
the TCP segment and then the packet is sent to the network. The data is copied twice: first from the
applicauon buffer 10 the -.end queue in ~hared memory and from there to the network.

Receiving a rep datll .\t'f.lmem: Upon receipt the data IS also copied twice: first from the network
to the receive queue and from there 10 the application buffer. The interrupt handler process serves
tbe physical interface and forwards poinlers to received datagrams 10 lp_demux, which checks
the header and forward~ the packet depending on us type to tcp_recv or lcmp demux.

tcp_recv analyzes the TCP header and calls the appropriate handler function for a given protcxol
~ late. To ~end an acknowle<lgement or a control packet, tcp_recv uses RPCs to the transmit side
Correctly received segments are appended to the receive queue. rtask wakes up the application
process which b blocked in the socket receive procedure. This procedure then fill~ the user buffer
with data from the receive queue.

4 Note: lhc logK of I.he prolornl would allow for a re1rnnsm1~s1on many case.

127

4.6 Configuration

On each side of the PPE only ont: of the two processors 1s physically able to control the 111terfacc m
the network. Thus we placed the tlevicc driver and the IP layer processes on those two processors.
TCP. the ".><.:ket layer. and the application executc.> on the second processor on each side of the
PPE.

4.7 Memory Management

The buffer memory 111 the protocol!> and the socket is managed in an mbuf like linked list There is
only one buffer size to simplify these func11ons. The buffer size determines the maximum TCP
segment ~ize. Provided there is sufficient physical memory (up to 4 MB on each side of the PPE)
large fl\Ctl-sizcd buffers help avoid costly memory managemem functions. Buffer queues and the
free but fer lt~t an: protected by semaphores to seriali1c access to the data structures from different
processes on the same processor.

The data and control flow in the PPE is organized such that only one processor requests buffers
and the other only releases buffers. We ensure that one buffer element always remain~ 111 the
queue, thus one processor can always append to the end of the buffer queue and the other proces
sor can consume the first clement without requiring any addJiional queue access protocol between
the two processors

5. PERFORMANCE

5.1 1esl Setup

To mea~ure the pcrformanc<: of the TCP/IP 1mplementat1on "'e used a .,1mple te~t driver running
on the PPE: a source proct:s~ on one system that sends data over a !;OCket and TCP/IP to a sink
process on the other sy~tem which receives the da1a. TI1e setup 1> ~hown in Figure 5.

Source

Transmit Side I Socket !TCP I
Application

Receive Side Socket rrcP

Figure 5 Test Environment

Su'oll

Socket !TCP Transmit Side

Applica1ion Receive Side
Socket /TCP

As 1hc final goal of this work i., to offload protocol processing from the workstation to the adapter,
we examined the following two \Ccnarios:

Scenario I. The complete socket layer is unplemented on the subsystem. Upon receipt, a contigu
ous block of data 1s copied from the socket layer to the test applicauon. It 1i. gathered from the
linked lil>t of buffers that holds the received TCP segments. For sending, the write process copies
the dara from the application\ buffer to the send queue. The application aJlocates and controls its
bufferi. on the receive and the transmi1 :.ide of the PPE. In this ~enario we can measure the
throughput between Mx:ket:. on two PPEs.

Scenario 2. In the 'ocket interface all copy calls are replaced by a null call. The test applicauon is
mere I) used to dnve the socket and the TCP/IP implementation This scenario,., used to evaluate

128

the po'sible pcrformam:c in case the socket-based application programming interface (A Pl) were
implemented on 1he worbtation. The socket layer would Lhen be split in10 two pans. The upper
hall resides in the worhtauon. Calls to the API result 111 conrrol flows to and from the lower half
of the sock.et laycr, \\ h1ch runs on thc PPE. Copying data to and fmm the TCP layer must be done
by the workstatH)n processor, because the current PPE only functions as a bus slave. Therefore the
copy opemtions in the socket layer can be combined with the copy between the workstation and
the PPE. In th1\ 'ccnario we measure the throughput between the lower half of the '><>Ck.et layer on
tv,.o PPEs. The results of scenario 2 provide ;1n upper bound for the expected performance of such
an integrated system. As such they are valid if one manages- as shown for our implemcmarion of
the ISO 8802.2 Logical Link Control protocol [Kaherswerth 911 to fully overlap 1hc copy op
ernuons and thc ex.change of control between the work.station and the PPE with the protocol
execu1 ion on the PPE.

We did not implement TCP checbummmg, because 11 ~hould really be done in hardware
I Lumley 92]. To do software checksum calculation on the transputer "'ould cost 3 µs per 16-bit
word. We did, however, implement IP header checksumming

The Zjhlmonuor'* (ZM'*> I Dauphm 91] monuoring and tracing system was used to record execu
tion rrat.:es of the PPE subsystem. ZM'* allow~ gathering of trace events from multiple proce!>sof!>.
The~c events arc timesiamped with a global clock opernting with a resolution of 100 ns. A power
ful too bet I Mohr 91 I provides trace analysis and visualization

5.2 Measureml'nls

Becau\e we v.anted to sec the effect~ of pipehnmg and parallel execution of the protocol, we mea·
sured the time 'pent in the vanous parts of the device driver, IP. TCP and the socket layer. To judge
Lhe performance of our implementation we measured the number of TCP segments Lhe imple
mentation can handle per second. Given the segment ~i ze, the expected maximum throughput can
easily be cakulated

µs/Segment µs/32-bit word

Process (Procedure) on Receiver
tcp recv 235

user task (socket recv/copy) 31 0.545

ip 1ntrsvc 9
ip demux 23

Process (Procedure) on Transmitter
write 30 0.545

tcp_snd_data 147 ,_ ,____
ip send 23

'- - L-

driver send 17 0.27

Access to Shared Memory (poke call) 18.6 2.4

Table 1 Measured Execution Times

Table I hsts the e11ecution times of the major processes of our impkmemation. We used segments
of 4096 bytes in these measurements. The times are reported for the first test scenario. The execu
tion times per segmem are approximately 41)1- lower for the second ~enario because of reduced
contention for accesses to the shared memory. The times per 32-blt word for user_task and write

129

are the dura11on of a 32-bit copy operation from shared memory to shared memory. If we assume
that forever) 11 segments an aclnowledgemem must be sent, we can use the following fom1Ula 10

calculate the execuuon time per TCP segment m a single processor implementallon:

l = max[[L r, + ~ L r,] [* L r, + L r,]]
1 E lrl'cetvepmol iE ffrClnsmitpror.sJ 1 E !receive procsl 1 E [1m11.111111pron]

The calculated \\Orst ca~ throughput for n=2 " 2150 -.egmen1'/s in the 'econd scenario

To "ilculatc the expected perfomrnnce of our implementation in TCP scgments/s from the num
bcrs reponcd m Table I for scenano 1, we need to consider the sequence m which the processes
exei:ute on the various proccs~ors of the PPE.

1p 1ntrsvc
Transputer 1

9

Transputer 2

Transputer 3

Transputer 4

Network Interface

1cp recv

235
user _task(so_recv)

612

send
24

·cfrivei'_seiid · · · -- · - · ·
17

Figure 6. Pipelined Protocol Execution on Sink (Scenario 1) • Times in tlS

Figure 6, for example. shows the pipelined handling of an inconung packet and the sending of the
acknowledgement \\hich occurs because the aclnowledgement threshold has been reached. The
Urnt- spen11n tcp_recv 1s 235 ~h. The processmg m user _task (612 ~ts) donunates the send mg of
the aclnowlcdgemen1. These two processes sum up to 847 µsand form the most expensive pipe
line \tage, which limns the expected throughput lo 1180 TCP segments/s. On the sender xtask,
lcp snd_data . and write add up to 75 l µs5 in 1he hmiung stage of the execution pipeline. The
tra11\mitter is therefore expected to be able to send 1331 segments/s. The receiver b thus the bott·
le11ed. in our implt:mentation.

We venfied these perfom1ance predicuons by measunng the actual throughput for a transfer of
~everal MB lxtween our two test sy~tcms. We obtained a somewhat lower throughput of 1100
\egrnenL~/~. The difference between the measurement and the e:\pected 1180 segmentSl's i!> due to
the slow-Man algomhm and 1he eventual retransmission of los1 packets, and to process schcdul
mg overhead not captured in our measurements.

16 I'- (Xlask) + 147 Ll' (tcp_snd_data) +JO µs (write)+ 10:?4 x 0.545 µs (COp}tng 4096 byte'> m write)=
Hiµ.~

130

For scenario 2 one can again apply Lhe same model IO analyze the expected perfom1ance. For ex.
ample. in Figure 7 we show Lhe proce\\ execution on Lhe sending PPE.

xtask
Transputer 3

16
tcp snd data

147

················ ···+-...-~~~-,-~~~,---~~~--1 ~~~~~-
drtver_send

Transputer 4
17 + 274

····-· -· ······· ·· ····· +-~~~~~~~~~~-+

Network Interlace send (4096 bytes)
274

·····················- ~~~~~~~~~~~~ --------------

Figure 7. Send Pipelined on Source (Scenario 2), Times in µs

Depending on the segment size. either the TCP layer. which cost\ 163 ~ts, or the IP layer6 is 1he
hm1Lmg factor of our execuuon pipeline. In this example Lhe segmenl size is 4096 bytes. There
fore IP and the netv.ork interface are 1he limiting pipeline Mage. lp_send and driver _send make
up 314 11s, which leads to an expected 1hroughput of 3185 TCP segments/s. The time spent in

driver_send is Lhe sum of Lhe time to control the transmission process, i.e., to sci up Lhe DMA
transfer and wait for its completion (17 i1s) and the actual transmission time, which depends on
1he networi.. speed. At 120 Mb/s Lhe transnmsion of a 32-bit '-"Ord lakes 0.27 11s When sending
4096 bytes the total time spent 111 driver_send add' up to 291 i1,.

For the receiver, TCP handling n.:mains the same, but the execution lime of user_task drops to 31
i1s because wt' do not copy the received data on Lhe PPE tcp_recv and user _task together add up
to 267 µs. v.hich means an expected performance of 374.5 -.egmemv\. Given the transmission rate
of 120 Mb/s the sender 1s the bonlened. in this case. The actual performance we measured was
3089 segmcnts/s. The difference from the predicted pcrfom1ance is due again to process schedul·
ing overhead not captured in our measurements.

Scenario 1 Scenario2
SegmentsJs Segmentsls

Calculated Throughput Of Receiver 1180 3745

Calculated Throughput Of Sender 1331 3185

Measured Throughput 1100 3089

Table 2. Measured and Calculated Throughput for Both Scenarios Assuming a Segment Size
of 4096 Bytes

Table 2 surnmanzes the predicted and measured performance of our implementation and Figure l!
compares the performan<.:e of Lhe two scenarios for different segment sizes.

For unidirc<.:tional transmission one observes a speedup of 1.4 when running on four processors
instead of one. The reason 1s uneven load balancing. IP and TCP run on two processors each. As
the processing requirements of TCP an: much higher than Lhose of IP (8.3 to I for reception and
4A to I for transmission) t'AO of the four processors are only very hghtl) loaded. The parallehsm
between the sending and the receiving side, however, can be fully uuliled in duplex transmission

6 The urnc spent in the IP layer ts 23 µs + 17 µ, + 0.27 µs x packcl :,izc (in 32-bit words)

IJ I

The speedup is 2. 15, because the sending and receiving sides of the PPE are equally loaded. An
optimal speedup of 1. 7 could be expected for the TCP/IP implementation when only two proccs
~or... one for the transmit and one for the re<.:civc side of the PPE, "ere u~ed m full duplex trans
mbs1on.

4500

4000

3500
Senario 2 4 Processors Network bandwidth

3000[
j 2>00 f

¥-- -+-----+-.... ---
~ ::~r-

1000

500
~

oL_.
0

·x.. . -----....._ -------
Scenario 2: 1 processor --· ----' X- - - -

\---x--------------- ·->E -------
Scenario 1: 4 Processors /

____.______._ --.J-' _._
~

1024 2048 3072 4096 5120 6144 7168

Unidirectional Traffic
Bidirectional Traffic

Segment Size in Bytes

4 Processors x
1 Processor +

Figure 8. Performance 1n Segments/s of the Two Scenarios

The 11npact of having implemented our distributed shared memory via the peek_poke process is
the same rn absolute numbers in both scenarios, but different compared to the limiting pipeline
stage. The peek_ poke call <.:osts 0.6 µs per byte plus a fixed overhead of 18.6 µsin an unloaded
system A 20-byte caJI from the receiver only takes 30 µs because the transmitter is immediately
read} to handle the call. Handling rhe distributed shared memory costs about 12~ of the 235 ~ts
spent in tcp_recv. Thb overhead on the receiver is important m the second scenario, but it is
small l'Ompared to the copying costs 111 rhe first s<.:enario. For the transmiuer the poke call induces
an el.tpst'.d time of 57 i" because of the system load and the context swilchc\ involved on the re
cei~t. processor Although this is 46~ of the tcp_snd_data, it has no impac1 on the throughput,
becau~ceithcr lp_send and driver_send or tcp_recv and user_task will be the limiting stage~.

132

The prototype PPE interface to the workstation (I BM Rise System/6000) allows a copy lhrough.
pu1ofonly33 Mb/s 7. lf the application were 10 be executed on the workstation, all copying would
be done from the workstation's processor and if we assume code similar 10 the second lcSL \Cenar.
10 running on the PPE, then the hmlled copy throughput rather than the protocol processing will
be the bottleneck and we should expect the perfonnancc of the integra1cd system to be around 30
Mb/s.

6. CONCLUSIONS

Our measuremenh show that a full 1mplementarion of TCP/IP on the PPE can cope wnh data rates
1n the range of 100 Mb/s. The 1hroughput is much higher than the bandwidth of our hardv.are
1111erface to 1he workstaiion.

II turns out, however, 1hat using a total of four processors, two for 1P and two for TCP offers only
very little improvement over a 1wo-processor solution, because of the vastly different process mg
requirements in the two protocol layer\ For full duplc!x traffic, however, the split onto a receiver
and a transmiuer processor improves protocol performance by a factor of 1.7. Panitioning proto
cob to obtain even load and linear speedup is a hard problem, in pa11icular for protocols which
clearly were not designed with para I lei execution in mind. [Zirterbart 911. for example, reports
even poorer i.peedup factors. With an 8 transputer implementation of the OSI CLNP she only
achieves a performance increase 3.73 over the single.: processor version.

Having used a DOS implementation of TCP/IP a' the basis for our parallel 1mplementanon was a
sound deci!>ion Our 1mplementauon runs efficiently, when one compares It with other transpo11
prowcol implementations. For example, Zitterbart dcscnbes a parnllel implementation of OSI
TP4 written for a system of8 transpu1ers which was able lo process 460 PDUs/s I Zitterbart 91]. ln
I Braun 91) a parallel 1mplementa11on of XTP is described, there the perfonnance is 1330 PDUs/s.

Once new faster proces.,ors. such as the I 00 MIPS T9000 transputer, become available, the gains
for pipelined execuuon of protocob "ill have to be reevaluated. While the T9000 will be 10 ume~
as fa~L as the T425. the delays for interprocessor commumcation will not have shrunk by the .,ame
fac tor. Therefore the relative overhead for pipelining the protocol execution within a layer and
even between layers will grow. We claim, however, that the parallel execution of transmit and
receive functions is sllll a suitable fom1 of parallelism to increase protocol throughput Distrib
uted 'hared memory. implemented "uh transputer hnks easily allow\ protocol state informanon
LO he shared between tl1e two side~ of the adapter and impacts the perfonnance of the trnnspon
protocol much less than expected. First evaluations of a new architecture, which is based on t\\O
T9000s supported by dedicated hardware for checksumming and extraction of header infom1a
tion, indicate a performance of over 30000 TCP segments/s.

1 The rcawn \\h}' lh" interlace 1' so ~10\\ , 1' that the clocks on the "ork~lfilJon and th.: PPE run as}'nchronou,ly
When arbitrating an acccs\ from the \,11cro Channel tO the shared memory on the PPF. we arc forced tu u.-e
me Micro Channel'~ A 1ynchronous £xu•ndrd cyc le [IBM 901 tif al least 300 ns. T111s cycle then m:l)' even need
10 be extended hy up to 487 ns IO match 11 with the appropriate access cycle of the PPE shared memory. In
.i new design for the Micro Channel interface this problem would be addressed b> l1ulfcnng m the interface
"'h1Lh would allow \\ntc-bchmd and rcad ·ahcad. For con-.ccuU\C accesses, Lill! arb1trauon C)dc for the nc>.l
"ord accc_,~ tu the 'h.IJ'cd mcmOf) could then he overlapped "1th !he cum;nt "Ord aL-ccss cycle. 1hu' being
ahk to u-.e regular I\ hero Channel C)dC' or 200 ns. an<l conscqucntl) mcrca,mg the throughpul to more thJn
~O Mb/~. A bu,ma\tcr interface U\mg the Micro Channel\ o;trcammg mode woulcl ;11low give higher through
put

133

our measurements arc in line with Clark's observation [Clark 891 that the actual protocol proces
sing i' notthe reason for poor protocol perfom1ance. In rhe PPE. buff er copying and management
cost rw1ce as much as the prow~ol processing. The second :;cenano shows how 1hroughpu1 can be
tripled 1f the u'cr data were copied by the workstation processor overlapped 10 the protocol execu
tion lln the PPC. ln a future design of rhe PPE, we will concentrate on improving the interface 10
the shared memory for the prorocol pn.x:essor8 and the workstanon.

We also plan 10 work on the design of efficient software interfaces between our subsystem and the
host system. A' can bc seen from resuhs published for the t\ectar CAB and our own work, cross
ing the software interface between the host processor and the communication :,ubsyMem is a cost
J:r orxration. Many re::.earchcrs who advocate the ofnoading of protocol functions into a
dedicated sub~yslem ignore this i:.sue. For our TCP/IP implementauon onl) a hosr AP! based on
~ockets will be acceptable, as this interface has become the de· fa cm standard. These sockets musr
be lightweight enough to provide effic1cn1 pipelined execution between the communication sub
syMem and the hosr processor 10 exploit the full po"' er of the PPE.

7. REFERENCES

(Arnould 891

[Braun 91)

[Che,son 871

(Cheriton 881

!Clark 891

I Clark 901

I Dauphin 91 J

[HoJre 7XI

Arnould. E. A .. Bitz, F. J., Cooper. E. C., Kung, H. T .• Sansom, R. D .•
Srt:enkiste. P. A .• The Design of Nectar: A Network Backplane for
I leterogcneous Multicomputers, Proceedings of ASPLOS-rll. pp
205-216, April 1989.

Br.iua, T .. Zinerhart. M .. A Parallel Implementation of XTP on
Transputer~. Proc. 16th Annual Conf. on Local Compu1er Networks.
\1mneapohs. Oct 1991.

Chesson. G., The Protocol Engine Project, Unix Rev1e"". Vol.5 'lo.9.
Sept. 1987, pp.70-77.

Cheriton. D.R .. VMTP: Ver~arile Me~sagc Transaction Protocol -
Protocol Specificauon. Network Working Group, Request For
Comments. RFC 1045, February 1988.

Clark,D. Lambert, M.L., Romkey. J., Sal wen, H., An Analy"s of the
TCP Proce~sing Overhead. lEEE Communications Magazine, Vol. 27,

o. 6 (June 1989). pp. 23-29.

Clark, D .• Tennenhouse, D., Architectural Consideration~ for a New
Generation of Protocols. Proceedings of the SIGCOMM' 10 Symposium.
Sept 1990, pp. 200 208.

Dauphin, P .• Hofmann. R .• Klar, R .• Mohr. B .• Quick, A.,Siegle, M .•
Soctz. F. lM4/SlMPLE: A General Approach ro
Performance-Measurement and -Evaluation of Distnbuted Systems.
Technical Report 1/91, Erlangen, January 1991.

Hoare. C.A.R .. Communicating Sequential Processt.:s. Communications
of the ACM. Vol.21, No 8, August 1978, pp. 666-677

In Ilic PPE a 'hared memory cycle of I.he 11anspu1er is lw1ce a local memory cycle

134

I IBM 90] LBM RISC System/6000 POWERstation and POWERserver Hardware
Technical Reference - Micro Chrurnel Architecture, 1990.

llNMOS 891 lnmos Limited, The Transputer Databook. First Ed. 1989, Document
No. 72 TRN 20300, pp. 23-43 and 113-179.

I Kaiserswerth 91 J Kaiscrswerth, M., A Parallel Implementation of the ISO 8802.2-2 LLC
Protocol, TEEE Tricornm '91 - Communications for Distributed
Applications and Systems, Chapel Hill NC. April 17-19, 1991.

I Kaiser~werth 921 Kaiserswenh, M .. The Parallel Protocol Engine, IBM Research Report,
RZ 2298 (#77818), March 1992.

I Kanakia 881 Kanakia, H., Cheriton, D.R., The VMP Network Adapter Boirrd (NAB):
High Performance Network Communication on Multiprocessors, ACM
SIGCOMM 88, pp. 175-187.

[Lumley 92] Lumley, J. , A High-Throughput Network Interface to a RISC
Worksuuion, Proceedings of the IEEE Workshop on the Architecture
and Implementation of High Performances Communication Subsystems,
Tucson, AZ, Feb. 17- 19. 1992.

ILS-C 891 Logical Systems, TransputcrToolset. Version 88.4 Feb. 1989.

[Mohr 911 Mohr, B., SIMPLE: A Performance Evaluation Tool Environment for
Parallel and Distributed Systems, in A. Bode, Editor, Distributed
Memory Computing, 2nd European Conference, EDMCC2, pp. 80-89,
Munich, Germany, April 1991 , Springer Verlag Berlin LNCS 487.

!PEI 921 Protocol Engines Incorporated, XTP Protocol Definition, Revision 3.6.,
Edited by Protocol Engines Mountain View, CA , January 11, 1992.

[Pountain 881 Pountain, D., May, D., A Tutorial on OCCAM2, BSP Professional
Books London 1988.

[UM 90] LBM Corporation, University of Maryland. Network Communications
Package. Milford 1990.

[Wicki 90] Wicki, T., A Multiprocessor -Based Controller Architecture for
High-Speed Communication Protocol Processing, Doctoral Thesis, IBM
Research Report, RZ 2053 (#72078), Vol 6, 1990.

[Ziuerbart 911 Zitterbart, M., Funktionsbezogene Parallelitat in transportorientierten
Kommunikationsprotokollen, Dissertation, VOi-Reihe 10 Nr. 183,
Diisseldorf: VDI-Verlag 1991.

