
UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

November 03, 2004

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM

THE RECORDS OF THE UNITED STATES PA TENT AND TRADEMARK

OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT

APPLlCA TION THAT MET THE REQUlREMENTS TO BE GRANTED A

FILING DA TE UNDER 35 USC 111.

APPLICA TlON NUMBER: 601061,809

FILJNG DA TE: October 14, 1997

By Authority of the

COMMISSIONER OF PA TENTS AND T RADEMARJ{S

Certifying Officer

WISTRON CORP. EXHIBIT 1031.001

PTO/SB/16 (11195) (Modif.lti l...1tl/
Approved for use through·Ot/31198. OMB 0651-0037

Patent nnd Trademark Office; U.S. OEP ARTMENT OF COMMERCE
;:>: ,...= • ""!!:O:i
-35§ ._ r--

PROVISIONAL APPLICATION FOR PATENT COVER SHEET
(Large EntUy)

~~~is a request for filing a PROVISIONAL APPLICATION FOR PATENT under37CFR 1.53 (b)(2) • 
.,. p--

"'~ 
~~ ; ==== 

...-; 

........... 
= I Docket Number I I Type a plus sign 

ALA--001 
(+)inside Ibis~ 

TNVENTOR{1)1APPL1CANT(1) 

I + 

LJ.STl'IAMll ~NAME MIDl>L£ llCTllAI. IUSIDENCE (CITY AMI> UTIUJlSTAn: Olt FOR.EiC:. COUl'llllV) 

Boucher Laurence B. Saratoga, California 

Blightman Stephen E.J. San Jose, California 

Craft Peter K. San Francisco, California 
Higgin David A. Saratoga, California 

TITLE OFTlll: INVENTION (2&o cbancten max) 

INTELLIGENT NETWORK INTERFACE CARD AND SYSlCM FOR PROTOCOL PROCESSING 

CO~PONDENCE ADDRESS 

Mark Lauer Tel: (510)556-3500 
6850 Regional Street, Fax: (510 803-8189 
Suite250 
Dublin 

S'r .. TE I CA I ~coos I 94568 I CO~-rRY I USA 

ENCLOSED APPUCA TlON PARTS (check all tltat app(y) 

~ Sptcitiutlon Number of Patu 
130 

I ~ Dr1Win1(s) Nkmkro/Slt-
Included In 

~ S"""lflcatio 
Other (s eclfy) . ~~ngs are lncludeil within 

P • lflcatfon 

METHOD OF PAYMENT OF FU..ING FEES FOR TJllS l'ROVISlONAL A'PPLlCA TION FOR PATENT (dreck t>ne) 

-. ~ A tbeck or money onkr ls tndoSO>d to covu the Ollng ftu l!J.LING FEE 

I 

I 
AMOUNT $150-00 

D Tbt Commissioner is bereby authorlud to cbat1t I lilin& fees a nd credit D<90slt A«Ount Num~ 

The invention wu made by au a gene)' of the Unlud States Government or under a contract with an agency oflhe United States 

~ No. 

0 Yes, tbt name of the U.S. Gon1"11mtnt agency a.nd the Govttllmtnt oontract number 

Respectfully sublllltted, 

SIGNATURE 

TYPED or PRJNTED NAME Markuutr 

Date Octobet" 141997 

REGJSTRA TION NO. 
(if approprliue) 

·_rvi ~ Additional inventors are bel.ng named on separately numbered sheets attached hereto 

36,578 

USE ONLY FOR FILING A PROVISIONAL APPLICATION FOR PATENT 
SEND TO: Box Provisumal Application, Assistant Commissioner for Patelfts, Washington, 'DC 20231 

WISTRON CORP. EXHIBIT 1031.002

« PTO/SB/16 (11/95) vouPAY
Approved for use through 01/31/98. OMB 0651-0037

Patent and Trademark Office; U.S. DEPARTMENTOF COMMERCE

2= PROVISIONAL APPLICATION FOR PATENT COVER SHEET
*a (Large Entity)
==Sphis is a request for filing a PROVISIONAL APPLICATION FOR PATENTunder37 CFR 1.53 (b)(2).
=:
= = INVENTOR(s)/APPLICANT(s)

sano,|_RaWENGrTAw HARAOR FoRRGR COUNTY

Saratoga, California
San Jose, California
San Francisco, California
Saratoga, California

TITLE OF THE INVENTION(280 characters max)

INTELLIGENT NETWORK INTERFACE CARD AND SYSTEM FOR PROTOCOL PROCESSING

CORRESPONDENCE ADDRESS

Mark Lauer Tel: (610)556-3500
6850 RegionalStreet, Fax; (510 603-8189
Suite 250
Dublin

esfeeeewe
ENCLOSED APPLICATION PARTS (check all that apply)

x] Specification Number ofPages
7 included in 7 pone are Included within |Drawing(s) Number ofSheets pecificatio Other (specify) : ification vegan

METHOD OF PAYMENT OF FILING FEES FOR THIS PROVISIONAL APPLICATION FOR PATENT (check one)

x A check or money order is enclosed to cover the filing fees FILING FEEAMOUNT

The Commissioner is hereby authorized to charge[filing fees and credit Deposit Account Number:

The invention was made by an agency ofthe United States Government or under a contract with an agency of the United States
YS

CD Yes, the name of the U.S. Government agency and the Government contract number ee

 
us
e
aie
attee
ra3

 
Respectfully submitted,

swoxarune er bat
TYPED or PRINTED NAME—Mark Lauer REGISTRATION NO: 36,578

 —_fifappropriate)
“Kh

Additional inventors are being named on separately numbered sheets attached hereto

“USE ONLY FOR FILING A PROVISIONAL APPLICATION FOR PATENT

SEND TO: Box Provisional Application, Assistant Commissionerfor Patents, Washington, DC 20231 

Copyright 1995-97 Legalsoft {Page 1 of | PISLARGEMREVOS

WISTRON CORP.EXHIBIT 1031.002



PROVISIONAL APPLICATION FOR PATENT COVER SHEET 
(Large Entity) 

INVE.NTOR(s)/APPLICANT(s) 

US'Tl<AME Fll\Stx.ua MU)DU IMrT1AL iu:smi:xo: (crrv M1> J:l'T'OXRS't,\TI; 01' FOJU3Q< CO'IJNTl<'r) 

Philbrick Clive M. San Jose, California 
StarT Daryl 0. Milpl1as, California 

USE ONLY FOR FILING A PROVISIONAL APPLICATION FOR PATENT 
SEND TO: Box Provisional Application, As:ristant Commissioner for Patents, Washington, ,J>C 20231 

!Page 2 of 2) P18V.RGEIR£V02 

WISTRON CORP. EXHIBIT 1031.003

PROVISIONAL APPLICATION FOR PATENT COVER SHEET

(Large Entity)

  
  
 

INVENTOR(sVAPPLICANT(s)

[crx[rarersoournemat|nasiscr crv ioeanTAT Ox FoRSIGCOUNT
Philbrick San Jose, California

Star Milpitas, California
 

  
 

   

USE ONLY FOR FILING A PROVISIONAL APPLICATION FOR PATENT

SEND TO: Box Provisional Application, Assistant Commissioner for Patents, Washington,DC 20231

Copyright 1995 Legalzo? [Page 2 of 2] PIOLARGEREVO?

WISTRON CORP.EXHIBIT 1031.003



CERTIFICATE OF MAILING BY "EXPRESS MAIL" (37 CFR 1.10) 
Applicant(s): Laurence B. Boucher et al. 

Serial No. Filing Date Examiner 

Docket No. 

. ALA-001 

Group Art Unit 

Invention: INTELLIGENT NETWORK INTERFACE CARD AND SYSTEM FOR PROTOCOL PROCESSING 

I hereby certify that this PROVISIONAL PATENT APPJJCATIOr:Y, COVER SHEET & CHECK FOR St SO 00 
(ldtntify type of COTTnJH>ffdt1tU} 

is being deposited with the United States Postal Service "Express Mail Post Office to Addressee• service under 

37 CFR 1.10 in an envelope addressed to: The Assistant Commissioner for Patents, Washington, D.C. 20231 on 
October 14, 1997 

{Dlllt) 

Mark Lauer 
(Typ« or Printed Name of Ptnon Mallilfg Co"apo11dt1tce) 

(Signature of Pason Ma1Un1 CorraJH>1tdurce) 

EH75623Q105US 

Note: Each paper must have Its own certificate of malting. 

WISTRON CORP. EXHIBIT 1031.004

ACS
ry

ETi
ig

TEOE”
im
fw

 
[CERTIFICATE OF MAILING BY "EXPRESS MAIL”(37 CFR 1.10)pence Laurence B. Boucher et al.

invention: INTELLIGENT NETWORK INTERFACE CARD AND SYSTEM FOR PROTOCOL PROCESSING

[hereby certify that this PROVISIONAL PATENTAPPLICATION,COVERSHEET&CHECKFOR$150.00__
(Identify type ofcorrespondence)

is being deposited with the United States Postal Service "Express Mail Post Office to Addressee” service under

37 CFR 1.10 in an envelope addressed to: The Assistant Commissioner for Patents, Washington, D.C. 20231 on
October 14, 1997

(Date)

Mark Lauer
(Typed or Printed Name ofPerson Mailing Correspondence)
 

(Signature ofPerson Mailing Correspondence)

EH756230105US
("Express Mail” Mailing Label Number)

Note: Each paper must have its own certificate of mailing. 
Copyright 1995 Legaisott

WISTRON CORP.EXHIBIT 1031.004



Inventors: 

Assignee: 

INTELLIGENT NETWORK fNTERF ACE CARD 

AND SYSTEM FOR PROTOCOL PROCESSING 

Provisional Patent Application Under 35 U.S.C. § t 11 (b) 

Laurence B. Boucher 
Stephen E. J. Blightman 
Peter K. Craft 
David A. Higgin 
Clive M. Philbrick 
Daryl D. Starr 

Alacritecb Corporation 

1 Background of the Invention 

Network processing as it exists today is a costly and inefficient use of system resources. 
A 200 MHz Pentium-Pro is typically consumed simply processing network data from a 
1 OOMb/second-network connection. The reasons that this processing is so costly are 
described here. 

1.1 Too Many Data Moves 

When network packet arrives at a typical network interface card (NIC), the NJC moves 
the data into pre-allocated network buffers in system main memory. From there the data 
is read into the CPU cache so that it can be checkswnmed (assuming of course ~bat the 
protocol in use requires checksums. Some, like IPX, do not.). Once the data has been 
fully processed by the protocol stack, it can then be moved into its final destination in 
memory. Since the CPU is moving the data, and must read the destination cache line in 
before it can fill it and write it back out, this involves at a minimum 2 more trips across 
the system memory bus. In short, the best one can hope for is that the data will.get 
moved across the system memory bus 4 times before it arrives in irs final destination. It 
can, and does, get worse. If the data happens to get invalidated from system cache after it 
has been checksummed, then it must get pulled back across the memory bus before it can 
be moved to its final destination. Finally, on some systems, including Windows NT 4.0, 
the data gets copied yet another time while being moved up the protocol stack. In NT 
4.0, th.is occurs between the m.iniport driver interface and the protocol driver interface. 
This can add up to a whopping 8 trips across the system memory bus (the 4 trips 
described above, plus the move to replenish the cache, plus 3 more to copy from the 
miniport to the protocol driver). That's enough to bring even today's advanced memory 
busscs to their knees. 

Provisional Pat. App. of Afacritech, lac. 
Inventors Laurence B. Boucher et al. 

Express Mail label II EH75623010SUS 

WISTRON CORP. EXHIBIT 1031.005



" 

1.2 Too Much Processing by the CPU 

In all but the original move from the NIC to system memory, the system CPU is 
responsible for moving the data. This is particularly expensive because while the CPU is 
moving this data it can do nothing else. While moving the data the CPU is typically 
stalled waiting for the relatively slow memory to satisfy its read and write requests. A 
CPU, which can execute an instruction every 5 nanoseconds, must now wait as lt>ng as 
several hundred nanoseconds for the memory controller to respond before it can begin its 
next instruction. Even today's advanced pipelining technology doesn't help in ~ese 
situations because that relies on the CPU being able to do useful work while it waits for 
the memory controller to respond. If the only thing the CPU has to look forward to for 
the next several hundred instructions is more data moves, then the CPU ultimately gets 
reduced to the speed of the memory controller. 

Moving all this data with the CPU slows the system down even after the data has been 
moved. Since both the source and destination cache lines must be pulled into the CPU 
cache when the data is moved, more than 3k of instructions and or data resident ·in the 
CPU cache must be flushed or invalidated for every 1500 byte frame. This is of course 
assuming a combined instruction and data second level cache, as is the case with the 
Pentium processors. After the data has been moved, the former resident of the cache will 
likely need to be pulled back in, stalling the CPU even when we are not performing 
network processing. Ideally a system would never have to bring network frames into the 
CPU cache, instead reserving that precious commodity for instructions and data that are 
referenced repeatedly and frequently. 

But the data movement is not the only drain on the CPU. There is also a fair amount of 
processing that must be done by the protocol stack software. The most obvious expense 
is calculating the checksum for each TCP segment (or UDP datagram). Beyond this, 
however, there is other processing to be done as well. The TCP COIUlection object must 
be located when a given TCP segment arrives, IP header checksums must be calculated, 
there are buffer and memory management issues, and finally there is also the significant 
expense of interrupt processing which we will discuss in the following section. 

1.3 Too Many Interrupts 

A 64k SMB request (write or read-reply) is typically made up of 44 TCP segments when 
running over Ethernet (1500 byte MTU). Each of these segments may result in·an 
interrupt to the CP.U. Furthermore, since TCP must acknowledge all of this incoming 
data, it's possible to get another 44 transmit-complete interrupts as a result of sending out 
the TCP acknowledgements. While this is possible, it is not terribly likely. Delayed 
ACK timers allow us to acknowledge more than one segment at a time. And delays in 
interrupt processing may mean that we are able to process more than one incoming 
network frame per interrupt Nevertheless, even if we assume 4 incoming frames per 
input, and an acknowledgement for every 2 segments (as is typical per the ACK-every
other-segment property ofTCP), we are still left with 33 interrupts per 64k SMB request. 

Interrupts tend to be very costly to the system. Often when a system is interrupted, 
important infonnation must be flushed or invalidated from the system cache so that the 
interrupt routine instructions, and needed data can be pulled into the cache. Since the 

Provisional Pat. App. of AJacritcch, lnc. 
Inventors Laurence B. Boucher ct al. 

Express Mail Label# EH75623010SUS 

2 

WISTRON CORP. EXHIBIT 1031.006



-~ 

CPU will return to its prior location after the interrupt. it is likely that the infonnation 
flushed from the cache will immediately need to be pulled back into the cache. 

What's more, interrupts force a pipeline flush in today's advanced processors. While the 
processor pipeline is an extremely efficient way of improving CPU perfonnance, it can 
be expensive to get going after it has been flushed. 

Finally, each of these interrupts results in expensive register accesses across the 
peripheral bus (PCI). This is discussed more in the following section. 

1.4 Inefficient Use of the Peripheral Bus (PCI) 

We noted earlier that when the CPU has to access system memory, it may be stalled for 
several hundred nanoseconds. When it has to read from PCI, it may be stalled for many 
microseconds. This happens every time the CPU takes an interrupt from a stand.ard NIC. 
The first thing the CPU must do when it receives one of these interrupts is to read the 
NIC Interrupt Status Register (ISR) from PCI to determine the cause of the inter,:upt. The 
most troubling thing about this is that since interrupt lines are shared on PC-based 
systems, we may have to perform this expensive Per read even when the interrupt is not 
meant for us! 

There are other peripheral bus inefficiencies as well. Typical NICs operate using 
descriptor rings. When a frame arrives, the NlC reads a receive descriptor from system 
memory to determine where to place the data. Once the data has been moved to main 
memory, the descriptor is then written back out to system memory with status about the 
received frame. Transmit operates in a similar fashion. The CPU must notify that NlC 
that it has a new transmit The NIC will read the descriptor to locate the data, read the 
data itself, and then write the descriptor back with status about the send. Typically on 
transmits the NIC will then read the next expected descriptor to see if any more data 
needs to be sent. In short, each receive or transmit frame results in 3 or 4 separate PCI 
reads or writes (not counting the status register read). 

2 Summary of the Invention 

Alacritech was formed with the idea that the network processing described above could 
be offloaded onto a cost-effective Intelligent Network Interface Card (INIC). With the 
Alacritech INIC, we address each of the above problems, resulting in the following 
advancements: 
l. The vast majority of the data is moved directly from the INIC into its final 

destination. A single trip across the system memory bus. 
2. There is no header processing, little data copying, and no checksumming required by 

the CPU. Because of this, the data is never moved into the CPU cache, allowing the 
system to keep imponant instructions and data resident in the CPU cache. 

3. Intenupts are reduced to as little as 4 interrupts per 64k SMB read and 2 per 64k 
SMB write. 

4. There are no CPU reads over PCI and there are fewer PCl operations per receive or 
transmit transaction. 

In the remainder of this document we will describe how we accomplish the above. 

Provisional Pat .. App. of Alacritech, Inc. 
Inventors Laurence B. Boucher et al. 

Express Mail Label# EH756230105US 

3 

WISTRON CORP. EXHIBIT 1031.007



Cli 
c 
0 
0\ 

""' co 
0 
w 
• 

2.1 Perform Transport Level Processing on the INIC 

In order to keep the system CPU from having to process the packet headers or checksum 
the packet, we must perform this task on the INIC. This is a daunting task. Th~e are 
more than 20,000 lines of C code that make up the FreeBSD TCP/IP protocol stick. 
Clearly this is more code than could be efficiently handled by a competitively priced 
network card. Furthermore, as we've noted above, the TCP/IP protocol stack is . 
complicated enough to consume a 200 MHz Pentium-Pro. Clearly in order to perform 
this function on an inexpensive card, we need special network processing hardware as 
opposed to simply using a general purpose CPU. 

2.1.1 Only Support TCP/IP 

In this section we introduce the notion of a "context". A context is required to keep track 
of information that spans many, possibly discontiguous, pieces of information. When 
processing TCP/IP data, there are actually two contexts that must be maintained. The 
first context is required to reassemble IP fragments. It holds information about the status 
of the IP reassembly as well as any checksum information being calculated across the IP 
datagram (UDP or TCP). This context is identified by the IP _ID of the datagram as well 
as the source and destination IP addresses. The second context is required to hahdle the 
sliding window protocol of TCP. It holds information about which segments have been 
sent or received, and which segments have been acknowledged, and is identified by the 
IP source and destination addresses and TCP source and destination ports. 

lf we were to choose to handle both contexts in hardware, we would have to potentially 
keep track of many pieces of information. One such example is a case in which a single 
64k SMB write is broken down into 44 1500 byte TCP segments, which are in turn 
broken down into 131 576 byte IP fragments., all of which can come in any order (though 
the maximwn window size is likely to restrict the number of outstanding segments 
considerably). 

Fortunately, TCP performs a Maximum Segment Size negotiation at connection 
establishment time, which should prevent IP fragmentation in nearly all TCP 
connections. The only time that we should end up with fragmented TCP conn~tions is 
when there is a router in the middle of a connection which must fragment the s<;gments to 
support a smaller MTU. The only networks that use a smaller MTU than Ethernet are 
serial line interfaces such as SLIP and PPP. At the moment, the fastest of these 
connections only run at 128k (ISON) so even if we had 256 of these connections, we 
would still only need to support 34Mb/sec, or a little over three lObT connections worth 
of data. This is not enough to justify any performance enhancements that the INIC 
offers. If this becomes an issue at some point, we may decide to implement the MTU 
discovery algorithm, which should prevent TCP fragmentation on all connections (unless 
an ICMP redirect changes the connection route while the connection is established). 

With this in mind, it seems a worthy sacrifice to not attempt to handle fragmented TCP 
segments on the INIC. 

UDP is another matter. Since UDP does not support the notion of a Maximum Segment 
Size, it is the responsibility of IP to break down a UDP datagram into MTU sized 

Provisional Pat .. App. of Alacrilech, Inc. 
Inventors Laurence B. Boucher et al. 

Express Mail Label# EH756230105US 

4 

WISTRON CORP. EXHIBIT 1031.008



• 

packets. Thus, fragmented UDP datagrams are very common. The most common UDP 
application running today is NFSV2 over UDP. While this is also the most common 
version of NFS running today, the current version ofSolaris being sold by Sun 
Microsystems runs NFSV3 over TCP by defaulL We can expect to see the NFSV2/UDP 
traffic start to decrease over the coming years. 

In summary, we will only offer assistance to non-fragmented TCP connections on the 
INIC. 

2.1.2 Don't handle TCP "exceptions" 

As noted above, we won't provide support for fragmented TCP segments on the INIC. 
We have also opted to not handle TCP connection and breakdown. Here is a list of other 
TCP "exceptions" which we have elected to not handle on the INIC: 

Fragmented Segments - Discussed above. 

Retransmission Timeout - Occurs when we do not get an acknowledgement for 
previously sent data within the expected time period. 

Out of order segments - Occurs when we receive a segment with a sequence number 
other than the next expected sequence number. 

FIN segment - Signals the close of the connection. 

Since we have now eliminated support for so many different code paths, it might seem 
hardly worth the trouble to provide any assistance by the card at all. This is not the case . 
According to W. Richard Stevens and Gary Write in their book "TCP/IP Illustrated 
Volume 2", TCP operates without experiencing any exceptions between 97 and 100 
percent of the time in local area networks. As network, router, and switch reliability 
improve this number is likely to only improve with time. 

Provisional Pat. App. of Alacritech, lnc. 
Invent.ors Laurence B. Boucher et al. 

Express Mail Label# EH756230105US 

5 

WISTRON CORP. EXHIBIT 1031.009



~, 

2.1.3 Two modes ofoperation 

So the next question is what to do about the network packets that do not fit our criteria. 
The answer is to use two modes of operation: One in which the network frames are 
processed on the INIC through TCP and one in which the card operates like a typical 
dumb NIC. We call these two modes fast-path, and slow-path. In the slow-path·case, 
network frames are handed to the system at the MAC layer and passed up through the 
host protocol stack like any other network frame. In the fast path case, network data is 
given lo the host after the headers have been processed and stripped. 

CLIENT 
~H. INIC 

FAST-PATII TOI I NetBIOS 

TCP 
Tt..:.I' 

U' 
IP 

MAC SLOW-PATII 
Ml\.~ 

PHYSIC.•T 

bt11emet 
PCI 

The transmit case works in much the same fashion. In slow-path mode the packets are 
given to the INIC with all of the headers attached. The INIC simply sends these packets 
out as if it were a dumb NIC. In fast-path mode, the host gives raw data to the INIC 
which it must carve into MSS sized segments, add headers to the data, perform 
checksums on the segment, and then send it out on the wire. 

2.1.4 The TCB cache 

Consider a situation in which a TCP connection is being bandied by the card and a 
fragmented TCP segment for that connection arrives. In this situation, it will be 
necessary for the card to tum control of this connection over to the host. 

This introduces the notion of a Transmit Control Block (TCB) cache. A TCB is a 
structure that contains the entire context associated with a connection. This includes the 
source and destination IP addresses and source and destination TCP ports that d~fine the 
connection. It also contains information about the connection itself such as the current 
send and receive sequence numbers, and the first-hop MAC address, etc. The complete 
set ofTCBs exists in host memory, but a subset of these may be "owned" by the card at 
any given time. This subset is the TCB cache. The INIC can own up to 256 TCBs at any 
given time. 

TCBs are initialized by the host during TCP connection setup. Once the connection has 
achieved a "steady-state" of operation, its associated TCB can then be turned over to the 
INIC, putting us into fast-path mode. From this point on, the INIC owns the connection 
until either a FIN arrives signaling that the connection is being closed, or until an 

Provisional Pat. App. of AJacriteeh, Inc. 
Inventors Laurence B. Boucher et al. 

Express Mail Label# EH756230105US 

6 

WISTRON CORP. EXHIBIT 1031.010

ihTO"6seos

2.1.3 Two modes ofoperation

So the next question is what to do about the network packets that do notfit our criteria.
The answer is to use two modes of operation: One in which the network frames are
processed on the INIC through TCP and one in which the card operates like a typical
dumb NIC. Wecall these two modes fast-path, and slow-path. In the slow-path case,
network frames are handed to the system at the MAC layer and passed up through the
host protocol stack like any other network frame. In the fast path case, network data is
given to the host after the headers have been processed and stripped.

  FAST-PATH

 

 
SLOW-PATH

 
PCI

The transmit case works in much the samefashion. In slow-path mode the packets are
given to the INIC with all of the headers attached. The INIC simply sends these packets
out as if it were a dumb NIC.In fast-path mode, the host gives raw data to the INIC
which it must carve into MSS sized segments, add headers to the data, perform
checksums on the segment, and then sendit out on the wire.

2.1.4 The TCB cache

Consider a situation in which a TCP connection is being handled by the card and a
fragmented TCP segmentforthat connection arrives. In this situation, it will be
necessary for the card to turn control of this connection over to the host.

This introduces the notion ofa Transmit Control Block (TCB) cache. A TCB is a
structure that contains the entire context associated with a connection. This includes the
source and destination IP addresses and source and destination TCP ports that define the
connection. It also contains information about the connection itself such as the current

send and receive sequence numbers,andthefirst-hop MAC address, etc. The complete
set of TCBsexists in host memory, but a subset ofthese may be "owned" by the card at
any given time. This subset is the TCB cache. The INIC can own up to 256 TCBsat any
given time.

TCBsareinitialized by the host during TCP connection setup. Once the connection has
achieved a “steady-state” of operation, its associated TCB can then be turned overto the
INIC,putting us into fast-path mode. From this point on, the INIC owns the connection
until either a FIN arrives signaling that the connection is being closed, or until an

Provisional Pat. App. of Alacritech, Inc. 6
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

WISTRON CORP.EXHIBIT 1031.010



I! 

exception occurs which the INIC is not designed to handle (such as an out of order 
segment). When any of these conditions occur, the INIC will then flush the TCB back to 
host memory, and issue a message to the host telling it that it has relinquished c~ntrol of 
the connection, thus putting the connection back into slow-path mode. From thi~ point 
on, the IN1C simply hands incoming segments that are destined for this TCB off: to the 
host with all of the headers intact. 

Note that when a connection is owned by the INIC, the host is not allowed to reference 
the corresponding TCB in host memory as it will contain invalid information about the 
state of the connection. 

2.1.5 TCP hardware assistance 

When a frame is received by the IN1C, it must verify it completely before it even 
detennines whether it belongs to one of its TCBs or not. This includes all header 
validation (is it IP, IPV 4 or V 6, is the IP header checksum correct, is the TCP checksum 
correct, etc). Once this is done it must compare the source and destination IP aqdress and 
the source and destination TCP port with those in each of its TCBs to determine if it is 
associated with one of its TCBs. This is an expensive process. To expedite thi~, we have 
added several features in hardware to assist us. The header is fully parsed by hardware 
and its type is summarized in a single status word. The checksum is also verified 
automatically in hardware, and a hash key is created out of the IP addresses and'. TCP 
ports to expedite TCB lookup. For full details on these and other hardware optimizations, 
refer to the INIC Hardware Specification sections (Heading 8). 

With the aid of these and other hardware features, much of the work associated with TCP 
is done essentially for free. Since the card will automatically calculate the checksum for 
TCP segments, we can pass this on to the host, even when the segment is for a TCB that 
the INIC does not own. 

2.1.6 TCP Summary 

By moving TCP processing down to the INIC we have offioaded the host of a large 
amount of work. The host no longer bas to pull the data into its cache to calculate the 
TCP checksum. It does not have to process the packet headers, and it does not have to 
generate TCP ACKs. We have achieved most of the goals outlined above, but we are not 
done yet. 

2.2 Tra.nsport Layer Interface 

This section defines the INIC's relation to the hosts transport layer interface (Called TDI 
or Transport Driver Interface in Windows NT). For full details on this interface, refer to 
the Alacritech TCP (ATCP) driver specification (Heading 4). 

2.2.1 Receive 

Simply implementing TCP on the INIC does not allow us to achieve our goal oflanding 
the data in its final destination. Somehow the host has to tell the IN1C where to put the 
data. This is a problem in that the host can not do this without knowing what the data 

Provisional PaL App. of Alacritech, Inc. 
lnventors Laurence B. Boucher et al. 

Express Mail Label# EH756230I05US 

7 

WISTRON CORP. EXHIBIT 1031.011



., 

actually is. Fortunately, NT has provided a mechanism by which a transport driver can 
"indicate" a small amount of data to a client above it while telling it that it has more data 
to come. The client, having then received enough of the data to know what it is,!is then 
responsible for allocating a block of memory and passing the memory address or 
addresses back down to the transport driver, which is in turn responsible for movtng the 
data into the provided location. 

We will make use of this feature by providing a small amount of any received data to the 
host, with a notification that we have more data pending. When this small amount of data 
is passed up to the client, and it returns with the address in which to put the rem:iinder of 
the data, our host transport driver will pass that address to the INIC which will DMA the 
remainder of the data into its final destination. 

Clearly there are circumstances in which this does not make sense. When a small amount 
of data (500 bytes for example), with a push flag set indicating that the data must be 
delivered to the client immediately, it does not make sense to deliver some of the data 
directly while waiting for the list of addresses to DMA the rest. Under these 
circumstances, it makes more sense to deliver the 500 bytes directly to the host, and 
allow the host to copy it into its final destination. While various ranges are feasible, it is 
currently preferred that anything less than a segment's (1500 bytes) worth of data will be 
delivered directly to the host, while anything more will be delivered as a small piece 
which may be128 bytes, while waiting until receiving the destination memory address 
before moving the rest. 

The trick then is knowing when the data should be delivered to the client or not. As 
we've noted, a push flag indicates that the data should be delivered to the client 
immediately, but this alone is not sufficient. Fortunately, in the case ofNetBIOS 
transactions (such as SMB), we are explicitly told the length of the session message in the 
NetBIOS header itself With this we can simply indicate a small amount of data to the 
host immediately upon receiving the first segment. The client will then allocat~ enough 
memory for the entire NetBIOS transaction, which we can then use to DMA the 
remainder of the data into as it arrives. In the case ofa large (56k for example) NetBIOS 
session message, all but the first couple hundred bytes will be DMA'd to their final 
destination in memory. 

But what about applications that do not reside above NetBIOS? In this case we can not 
rely on a session level protocol to tell us the length of the transaction. Under these 
circumstances we will buffer the data as it arrives until A) we have receive some 
predetermined number ofbytes such as 8k, or B) some predetermined period of time 
passes between segments or C) we get a push flag. If after any of these conditions occur 
we will then indicate some or all of the data to the host depending on the amount of data 
buffered. If the data buffered is greater than about 1500 bytes we must then also wait for 
the memory address to be returned from the host so that we may then DMA the 
remainder of the data. 

2.2.2 Transmit 

The transmit case is much simpler. In this case the client (NetBIOS for example) issues a 
TDI Send with a list of memory addresses which contain data that it wishes to send along 

Provisional Pat. App. of Alacritech, Inc. 8 
Inventors Laurence B. Boucher et al. 

Express Mail Label# EH75623010SUS 

WISTRON CORP. EXHIBIT 1031.012



, 

with the length. The host can then pass this list of addresses and length off to the INIC. 
The INIC will then pull the data from its source location in host memory, as it needs it, 
until the complete TOI request is satisfied. 

2.2.3 Affect on interrupts 

Note that when we receive a large SMB transaction, for example, that there are two 
interactions between the INIC and the host. The first in which the INIC indicates a small 
amount of the transaction to the host, and the second in which the host provides the 
memory location(s) in which the JNIC places the remainder of the data This results in 
only two interrupts from the INIC. The first when it indicates the small amount of data 
and the second after it has finished filling in the host memory given to it. A drastic 
reduction from the 33/64k SMB request that we estimate at the beginning of this section. 

On transmit, we actually only receive a single interrupt when the send command that has 
been given to the INIC completes. 

2.2.4 Transport Layer Interface Summary 

Having now established our interaction with Microsoft's TDI interface, we have achieved 
our goal of landing most of our data directly into its final destination in host memory. 
We have also managed to transmit all data from its original location on host memory. 
And finally, we have reduced our interrupts to 2 per 64k SMB read and 1 per 64k SMB 
write. The only thing that remains in our list of objectives is to design an efficient host 
(PCI) interface. 

2.3 Host (PCI) Interface 

In this section we define the host interface. For a more detailed description, refer to the 
"Host Interface Strategy for the Alacritech JNIC" section (Heading 3). 

2.3.1 Avoid PCI reads 

One of our primary objectives in designing the host interface of the INIC was to 
eliminate PC! reads in either direction. PC! reads are particularly inefficient in that they 
completely stall the reader until the transaction completes. As we noted above, this could 
hold a CPU up for several microseconds, a thousand times the time typically required to 
execute a single instruction. PCl writes on the other hand, are usually buffered by the 
memory-bus¢> PCI-bridge allowing the writer to continue on with other instructions. 
This technique is known as "posting". 

2.3.1.1 Memory-based status register· 

The only PCI read that is required by most NICs is the read of the interrupt status 
register. This register gives the host CPU infonnation about what event has caused ~ 
inteilllpt (if any). In the design of our INIC we have elected to place this necessary status 
register into host memory. Thus, when an event occurs on the INIC, it writes the status 

register to an agreed upon location in host memory. The correspondihg driver on the host 
reads this local register to determine the cause of the interrupt. The interrupt lines are 

Provisional Pat. App. of Alacritech. Inc. 9 
Inventors Laurence B. Boucher et al. 

Express Mail Label II EH756230105US 

WISTRON CORP. EXHIBIT 1031.013



held high until the host clears the interrupt by writing to the INIC's Interrupt Clear 
Register. Shadow registers are maintained on the INIC to ensure that events are )lot lost. 

2.3.1 .2 Buffer Addresses are pushed to the INIC 

Since it is imperative that our INIC operate as efficiently as possible, we must also avoid 
PCl reads from the INlC. We do this by pushing our receive buffer addresses to the 
INIC. A$ mentioned at the beginning of this section, most NICs work on a descriptor 
queue algorithm in which the NIC reads a descriptor from main memory in order to 
detennine where to place the next frame. We will instead write receive buffer addresses 
to the INIC as receive buffers are filled. In order to avoid having to write to the lNJC for 
every receive frame, we instead allow the host to pass off a pages worth (4k) of buffers in 
a single write. 

2.3.2 Support small and large buffers on receive 

In order to reduce further the number of writes to the INIC, and to reduce the amount of 
memory being used by the host, we support two different buffer sizes. A small buffer 
contains roughly 200 bytes of data payload, as well as extra fields containing status about 
the received data bringing the total size to 256 bytes. We can therefore pass 16 of these 
small buffers at a time to the INIC. Large buffers are 2k in size. They are used to 
contain any fast or slow-path data that does not fit in a small buffer. Note that when we 
have a large fast-path receive, a small buffer will be used to indicate a small piece of the 
data. while the remainder of the data will be DMA'd directly into memory. Large 
buffers are never passed to the host by themselves, instead lbey are always accompanied 
by a small buffer which contains status about the receive along with the large buffer 
address. By operating in the manner, the driver must only maintain and process the small 
buffer queue. Large buffers are returned to the host by virtue of being attached to small 
buffers. Since large buffers are 2k in size they are passed to the INIC 2 buffers at a time. 

2.3.3 Command and response buffers 

tn addition to needing a manner by which the INIC can pass incoming data to us, we also 
need a manner by which we can instruct the INIC to send data. Plus, when the INIC 
indicates a small amount of data in a large fast-path receive, we need a method of passing 
back the address or addresses in which to put the remainder of the data. We accomplish 
both of these with the use of a command buffer. Sadly, the command buffer is the only 
place in which we must violate our rule of only pushing data across PCI. For the 
command buffer, we write the address of command buffer to the INIC. The INIC then 
reads the contents of the command buffer into its memory so that it can execute the 
desired command. Since a command may take a relatively long time to complete, it is 
unlikely that command buffers will complete in order. For this reason we also maintain a 
response buffer queue. Like the small and large receive buffers, a page worth of response 
buffers is passed to the INIC at a time. Response buffers are only 32 bytes, so we have to 
replenish the INIC's supply of them relatively infrequently. The response buffers only 
purpose is to indicate the completion of the designated command buffer, and to pass 
status about the completion. 

Provisional Pat. App. of Alacritccb, lnc. 10 
Inventors Laurence B. Boucher et al. 

Express Mail Label# EH756230105US 

WISTRON CORP. EXHIBIT 1031.014



2.4 Examples 

In this section we will provide a couple of examples describing some of the differing data 
flows that we might see on the Alacritech INJC. 

2.4. l Fast-path 56k NetBIOS session message 

Let's say a 56k NetBIOS session message is received on the INIC. The first segment will 
contain the NetBIOS header, which contains the total NetBIOS length. A small chunk of 
this first segment is provided to the host by filling in a small receive buffer, modifying 
the interrupt status register on the host, and raising the appropriate interrupt line. Upon 
receiving the interrupt, the host will read the ISR, clear it by writing back to the INIC's 
Interrupt Clear Register, and will then process its small receive buffer queue looking for 
receive buffers to be processed. Upon finding the small buffer, it will indicate the small 
amount of data up to the client to be processed by NetBIOS. It will also, if necessary, 
replenish the receive buffer pool on the INIC by passing off a pages worth of small 
buffers. Meanwhile, the NetBIOS client will allocate a memory pool large eno4gh to 
hold the entire NetBIOS message, and will pass this address or set of addresses Clown to 
the transport driver. The transport driver will allocate an INIC command buffer, fill it in 
with the list of addresses, set the command type to tell the INIC that this is whei:e to put 
the receive data, and then pass the command off to the INIC by writing to the command 
register. When the INIC receives the command buffer, it will DMA the remainder of the 
NetBIOS data, as it is received, into the memory address or addresses designated by the 
host. Once the entire NetBIOS transaction is complete, the INIC will complete the 
command by writing to the response buffer with the appropriate status and command 
buffer identifier. 

In this example, we have two interrupts, and all but a couple hundred bytes are DMA'd 
directly to their final destination. On PCI we have two interrupt status register writes, 
two interrupt clear register writes, a command register write, a command read, and a 
response buffer write. · 

With a standard NIC this would result in an estimated 30 interrupts, 30 interrupt register 
reads, 30 interrupt clear writes, and 58 descriptor reads and writes. Plus the data will get 
moved anywhere from 4 to 8 times across the system memory bus. 

2.4.2 Slow-path receive 

If the INIC receives a frame that does not contain a TCP segment for one of its TCB's, it 
simply passes it to the host as if it were a dumb NIC. If the frame fits into a small buffer 
(-200 bytes or less), then it simply fills in the small buffer with the data and notifies the 
host. Otherwise it places the data in a large buffer, writes the address of the large buffer 
into a small buffer, and again notifies the host. The host, having received the ~terrupt 
and found the completed small buffer, checks to see if the data is contained in ¢.e small 
buffer, and if not, locates the large buffer. Having found the data, the host will then pass .( 
the frame upstream to be processed by the standard protocol stack. It must also replenish 
the INIC's small and large receive buffer pool if necessary. 

Provisional Pat. App. of Alacritech, Inc. 11 
Inventors Laurence B. Boucher et al. 

Express Mail Label# EH756230105US 

WISTRON CORP. EXHIBIT 1031.015



• 

With the INIC, this will result in one interrupt, one interrupt status register write and one 
interrupt clear register write as well as a possible small and or large receive buffer 
register write. The data will go through the normal path although if it is TCP data then 
the host will not have to perform the checksum. 

With a standard NIC this will result in a single interrupt, an interrupt status register read, 
an interrupt clear register write, and a descriptor read and write. The data will get 
processed as it would by the INIC, except for a po:>sible extra checkswn. 

2.4.3 Fast-path 400 byte send 

In this example, lets assume that the client has a small amount of data to send. It will 
issue the TOI Send to the transport driver which will allocate a command buffer, fill it in 
with the address of the 400 byte send., and set the command to indicate that it is a 
transmit. It will then pass the command off to the INIC by writing to the command 
register. The INIC will then DMA the 400 bytes into its own memory, prepare a frame 
with the appropriate checksums and headers, and send the frame out on the wire. After it 
has received the acknowledgement it will then notify the host of the completion by 
writing to a response buffer. 

With the lNIC, this will result in one interrupt, one interrupt status register write, one 
interrupt clear register write, a command buffer register write a command buffer read, 
and a response buffer write. The data is DMA'd directly from the system memory. 

With a standard NIC this will result in a single interrupt, an interrupt status register read, 
an interrupt clear register write, and a descriptor read and write. The data would get 
moved across the system bus a minimum of 4 times. The resulting TCP ACK of the data, 
however, would add yet another interrupt, another interrupt status register read, interrupt 
clear register write, a descriptor read and write, and yet more processing by the host 
protocol stack. 

3 Host Interface Strategy for the Alacritecb INIC 

This section describes the host interface strategy for the Alacritech Intelligei:it Network 
Interface Card (INIC). The goal of the Alacritech INIC is to not only process network 
data through TCP, but also to provide zero-copy support for the SMP upper-laypr 
protocol. It achieves this by supporting two paths for sending and receiving data, the fast
path and the slow-path. The fast path data flow corresponds to connections that are 
maintained on the NIC, while slow-path traffic corresponds to network data for which the 
NlC does not have a connection. The fast-path flow works by passing a header to the host 
and subsequently holding further data for that connection on the card until the host 
responds via an INIC command with a set of buffers into which to place the accumulated 
data. In the slow-path data flow, the INIC will be operating as a "dumb" NIC, so that 
these packets are simply dumped into frame buffers on the host as they arrive. To do 
either path requires a pool of smaller buffers to be used for headers and a pool of data 
buffers for frames/data that are too large for the header buffer, with both pools being 
managed by the INIC. This section discusses how these two pools of data are managed 
as well as bow buffers are associated with a given context. 

Provisional Pat. App. of Alacritech, Inc. 12 
Inventors Laurence B. Boucher et al. 

Ex.press Mail Label# EH75623010SUS 

WISTRON CORP. EXHIBIT 1031.016



• 

3.1 Receive Interface 

The varying requirements of the fast and slow paths and a desire to save PCI bandwidth 
are the driving forces behind the host interface that is described herein. As mentioned 
above, the fast-path flow puts a header into a header buffer that is then foiwarded to the 
host. The host uses the header to detennine what further data is following, allocates the 
necessary host buffers, and these are passed back to the INIC via a command to the INIC. 
The INIC then fills these buffers from data it was accumulating on the card and notifies 
the host by sending a response to the command. Alternatively, the fast-path may receive 
a header and data that is a complete request, but that is also too large for a header buffer. 
This results in a header and data buffer being passed to the host. This latter flow is 
identical to the slow-path flow, which also puts all the data into the header buffer or, if 
the header is too small, uses a large (2K) host buffer for all the data. This means that on 
the unsolicited receive path, the host will only see either a header buffer or a header and 
at most, one data buffer. Note that data is never split between a header and a data buffer. 
The diagram below illustrates both situations: 

Header buffer descriptors 

Header a 

Headab 

Header buffers 

Status 

t TCP / SMB 
Headers 

(fast·path) 

Status 

DA A 
buffer handle 

(slow·path} 

Data buffers 

Data buffer descriptors 
DATA 

Since we want to fill in the header buffer with a single DMA, the header must be the last 
piece of data to be written to the host for any received transaction. 

3.1. l Receive Interface Details 

' 
3.1.2 Header Buffers · 

Header buffers in host memory are 256 bytes long, and are aligned on 256 byte 
boundaries. There will be a field in the header buffer indicating it bas valid data. This 
field will initially be reset by the host before passing the buffer descriptor to the INIC. A 

Provisional Pat. App. of Alacritecb, lnc. 13 
Inventors Laurence B. Boucher et al. 

Express Mail Label# EH756230105US 

WISTRON CORP. EXHIBIT 1031.017

{6hTOT*&0ard005

3.1 Receive Interface

The varying requirements ofthe fast and slow paths and a desire to save PC] bandwidth
are the driving forces behind the host interface that is described herein. As mentioned
above, the fast-path flow puts a header into a header buffer that is then forwarded to the
host. The host uses the header to determine what further data is following, allocates the
necessary host buffers, and these are passed back to the INIC via a commandto the INIC.
The INIC then fills these buffers from data it was accumulating on the card and notifies
the host by sending a response to the command. Alternatively, the fast-path may receive
a header and data that is a complete request, but that is also too large for a header buffer.
This results in a header and data buffer being passed to the host. This latter flow is
identical to the slow-path flow, which also puts all the data into the header buffer or, if
the headeris too small, uses a large (2K) host buffer for all the data. This means that on
the unsolicited receive path, the host will only see either a header buffer or a header and
at most, one data buffer. Note that data is never split between a header andadata buffer.
The diagram belowillustrates both situations:

Header buffer descriptors Header buffers

 
Since we wantto fill im the header buffer with a single DMA, the header must bethe last
piece of data to be written to the host for any received transaction.

3.1.1 Receive Interface Details

3.1.2 Header Buffers ©

Header buffers in host memory are 256 bytes long,and are aligned on 256 byte
boundaries. There will be a field in the header buffer indicating it has valid data. This
ficld will initially be reset by the host before passing the buffer descriptor to the INIC. A

Provisional Pat. App. of Alacritech, Inc. 13
Inventors Laurence B. Boucher etal.

Express Mail Label # EH736230105US

WISTRON CORP.EXHIBIT 1031.017



• 

set of header buffers are passed from the host to the INIC by the host writing to tbe 
Header Buffer Address Register on the INIC. This register is defined as follows: 

Bits 31-8 Physical address in host memory of the first of a set of contiguous 
header buffers 
Bits 7-0 Number of header buffers passed. 
In this way the host can, say, allocate 16 buffers in a 4K page, and pass all 16 buffers to 
the INIC with one register write. The INIC will maintain a queue of these header 
descriptors in the SmalllIType queue in it's own local memory, adding to the end of the 
queue every time the host writes to the Header Buffer Address Register. Note tliat the 
single entry is added to the queue; the eventual dequeuer will use the count after 
extracting that entry. 

Tbe header buffers, will be used and returned to the host in the same order that they were 
given to the INIC. The valid field will be set by the INIC before returning the buffer to 
the host. In this way a PCI interrupt, with a single bit in the interrupt register, may be 
generated to indicate that there is a header buffer for the host to process. When servicing 
this interrupt, the host will look at its queue of header buffers, reading the valid field to 
determine how many header buffers are to be processed. 

3 .1.3 Receive Data Buffers 

Receive data buffers in host memory are aligned to page boundaries, assumed here to be 
2K bytes long and aligned on 4K page boundaries, 2 buffers per page. In order to pass 
receive data buffers to the INIC, the host must write to two registers on the INlC. The 
first register to be written is the Data Buffer Handle Register. The buffer handle is not 
significant to the INIC, but will be copied back to the host to return the buffer to the host. 
The second register written is the Data Buffer Address Register. This is the physical 
address of the data buffer. When both registers have been written, the INIC wiU add the 
contents of these two registers to FreeType queue of data buffer descriptors. Note that 
the INIC host driver sets the handle register first, then the address register. There needs to 
be some mechanism put in place to ensure the reading of these registers does not get out 
of sync with writing them. Effectively the INlC can read the address register fir.st and 

. save its contents, then read the handle register. It can then lock the register pair in some 
manner such that another write to the handle register is not permitted until the e<urrent 
contents have been saved. Both addresses extracted from the registers are to be written to 
the FreeType queue. The INIC will extract 2 entries each time when dequeuing. 

Data buffers will be allocated and used by the INIC as needed. For each data buffer used 
by a slow-path transaction. the data buffer handle will be copied into a header buffer. 
Then the header buffer will be returned to the host. 

3.2 Transmit Interface 

3.2. l Transmit Interface Overview 

The transmit interface, like the receive interface, bas been designed to minimize the 
amount of PCI bandwidth and latencies. In order to transmit data, the host will transfer a 
command buffer to the INIC. This collUl1and buffer will include a command buffer 

Provisional Pat. App. of Alacritccb, lnc. 
!oven.tors Laureo.ce B. Boucher et al. 

Ex.press Mail Label# EH756230l05US 

14 

WISTRON CORP. EXHIBIT 1031.018



• 

handle, a command field, possibly a TCP context identification, and a list ofphysicaJ data 
pointers. The command buffer handle is defined to be the first word of the command 
buffer and is used by the host to identify the command. This word will be passed back to 
the host in a response buffer, since commands may complete out of order, and the host 
will need to know which command is complete. Commands will be used for many 
reasons, but primarily to cause the INIC to transmit data, or to pass a set of buffers to the 
INIC for input data on the fast-path as previously discussed. 

Response buffers are physical buffers in host memory. They arc used by the JNIC in the 
same order as they were given to it by the host. This enables tho host to know which 
response buffer(s) to next look at when the INIC signals a command completion. 

Command 
buffer queue Comxnand buffers 

j Command pointer ~._ ___ __..,. > Command 
buffer handle ' I Command pointer 

Command pointer 

_J 

... 
TCP context .... 

identifier ' 
Command ,. 

Data pointers 
,. , 

/ 

, , 
Command 

buffer handle 

TCP context 
identifier 

Command 

Data pointers 
/ 

I 
I 

I 

Command 
buffer handle 

TCP context 
identifier 

Command 

Data pointers 

Provisional Pat. App. of Alacritech, Inc. 
Inventors Laurence B. Boucher et al. 

Express Mail label# EH756230105US 

Response 
Buffer queue 

I Command 

;I buffer handle 

Status 

"· I 
Command 

buffer handle 

Status 

Command 

I 
buffer handle 

Status , 
/ 

15 

WISTRON CORP. EXHIBIT 1031.019

ohntTOor’enersaons

handle, a command field, possibly a TCP context identification, andalist ofphysical data
pointers. The command buffer handle is defined to be the first word of the command
buffer and is used by the host to identify the command. This word will be passed back to
the host in a response buffer, since commands may complete outoforder, and the host
will need to know which command is complete. Commands will be used for many
reasons,but primarily to cause the INIC to transmit data, or to pass a sct of buffers to the
TNIC for input data on the fast-path as previously discussed.

Response buffers are physical buffers in host memory. They are used by the [NIC in the
same order as they were given to it by the host, This enables the host to know which
response buffer(s) to next look at when the INIC signals a command completion.

Response
Buffer queue 

 
 

| Commandj
A buffer handle

7 / —

 
Provisional Pat. App.of Alacritech, Inc. 15

Inventors Laurence B. Boucher et al.

Express Mail Label # EH75623010SUS

WISTRON CORP. EXHIBIT 1031.019



" 

3.2.2 Transmit Interface Details 

3.2.2.1 Command Buffers 

Command buffers in host memory are a multiple of 32 bytes, up to a maximum of lK 
bytes, and are aligned on 32 byte boundaries. A command buffer is passed to the INIC 
by writing to one of 5 Command Buffer Address Registers. These registers are defined as 
follows: 

Bits 31-5 
Bits 4-0 
32 bytes) 

Physical address in host memory of the command buffer. 
Length of command buffer in bytes I 32 (i.e. number of multiples of 

This is the physical address of the command buffer. The register to which the command 
is written predetermines the XMT interface number, or if the command is for the RCV 
CPU; hence there will be 5 of them, 0- 3 for XMT and 4 for RCV. When one of these 
registers has been written, the INIC will add the contents of the register to it's own 
internal queue of command buffer descriptors. The first word of all command buffers is 
defined to be the command buffer handle. It is the job of the utility CPU to extract a 
command from its local queue, DMA the command into a small INIC buffer (from the 
FreeSType queue), and queue that buffer into the Xmit#Type queue, where# is 0 - 3 
depending on the interface, or the appropriate RCV queue. The receiving CPU will 
service the queues to perform the commands. When that CPU has completed a command, 
it extracts the command buffer handle and passes it back to the host via a response buffer. 

3.2.2.2 Response Buffers 

Response buffers in host memory are 32 bytes long and aligned on 32 byte boundaries. 
They are handled in a very similar fashion to header buffers. There will be a field in the 
response buffer indicating it has valid data. This field will initially be reset by the host 
before passing the buffer descriptor to the INIC. A set of response buffers are passed 
from the host to the INIC by the host writing to the Response Buffer Address Register on 
the INIC. This register is defined as follows: 

Bits 31-8 Physical address in host memory of the first of a set of contiguous 
response buffers 
Bits 7-0 Number of response buffers passed. 

In this way the host can, say, allocate 128 buffers in a 4K page, and pass all 12~ buffers 
to the INIC with one register write. Tue INIC will maintain a queue of these header 
descriptors in it's ResponseType queue, adding to the end of the queue every time the 
host writes to the Response Buffer Address Register. The INIC writes the extracted 
contents including the count. to the queue in exactly the same manner as for the header 
buffers. 

The response buffers can be used and returned to the host in the same order that they 
were given to the INIC. The valid field will be set by the INIC before returning the buffer 

• Provisional Pat. App. of Alacritecb, l.nc. 16 
Inventors Laurence B. Boucbe.r et al. 

Express Mail Label II EH756230105US 

WISTRON CORP. EXHIBIT 1031.020



• 

to the host. In this way a PCI interrupt, with a single bit in the interrupt register, may be 
generated to indicate that there is a response buff er for the host to process. When 
servicing this interrupt, the host will look at its queue of response buffers, reading the 
valid field to determine how many response buffers are to be processed. 

3.2.3 Interrupt Status Register I Interrupt Mask Register: 

The fo llowing is the general format of this register: 

ERR 
RCV 
XMT 

31 

I I 

RMISS ----

Error bits are set 
RCV has occurred. 
Command bas been completed 

Rev drop occurred due to no buffers 

0 

The setting of any bits in the ISR will cause an interrupt, provided the corresponding bit 
in the Interrupt Mask Register is set. The default setting for the CMR is 0. 

The IN1C is configured so that the host should never need to directly read the ISR from 
the INIC. To support this, it is important for the host/INIC to arrange a buffer area in host 
memory into which the ISR is dumped. The address and size of that area ca be passed to 
the INIC via a command on the XMT interface. That command will also specify the 
setting for the IMR. Until the INIC receives this command, it will not DMA the ISR to 
host memory, and no events will cause an interrupt. The host could if necessary, read the 
ISR directly from the INIC in this case. 

For the host to never have to actually read the register from the INIC itself, it is necessary 
for the INIC to update this host copy of the register whenever anything in it changes. The 
host will Ack (or deassert) events in the register by writing the register with O's in 
appropriate bit fields . So that the host does not miss events, the following scheme has 
been developed: 

The INIC keeps a local copy of the register whenever it DMAs it to the host i.e. after 
some event{s). Call this COPY A Then the INIC starts accumulating any new events not 
reflected in the host copy in a separate word. Call this NEWA. As the host clears bits by 
writing the register back with those bits set to zero, the INIC clears these bits in COPY A 
(or the host write-back goes directly to COPY A). If there are new events in NEW A, it 

Provisional Pat. App. of A1acri1ech, lnc. 17 
Inventors Laurence B. Boucher et al. 

Express Mail Label# BH756230105US 

WISTRON CORP. EXHIBIT 1031.021

AoFOP?6pargqouog

to the host. In this way a PCIinterrupt, with a single bit in the interrupt register, may be
generated to indicate that there is a response buffer for the host to process. When
servicing this interrupt, the host will look at its queue of response buffers, reading the
valid field to determine how manyresponse buffers are to be processed.

3.2.3 Interrupt Status Register / Interrupt Mask Register:

The followingis the general format of this register:

COCR0
Error bits are set

RCV has occurred.

Commandhas been completed

RMISS ———— Rev drop occurred dueto no buffers

Thesetting of any bits in the ISR will cause an interrupt, provided the corresponding bit
in the Interrupt Mask Register is set. The default setting for the [MR is 0.

The INIC is configured so that the host should never need to directly read the ISR from
the INIC. To support this, it is important for the host/INIC to arrange a buffer area in host
memory into which the ISR is dumped. The address and size of that area ca be passed to
the INIC via a commandon the XMT interface. That commandwill also specify the
setting for the IMR. Until the INIC receives this command, it will not DMA the ISR to
host memory, and no events will cause an interrupt. The host could if necessary, read the
ISR directly from the INIC in this case.

For the hostto never have to actually read the register from the INICitself, it is necessary
for the INIC to update this host copyofthe register whenever anything in it changes. The
host will Ack (or deassert) events in the register by writing the register with 0’s in
appropriate bit fields. So that the host does not miss events, the following scheme has
been developed:

The INIC keepsa local copyof the register whenever it DMAs it to the hosti.e. after
some event(s). Call this COPYA Then the INICstarts accumulating any new events not
reflected in the host copy in a separate word. Call this NEWA.As thehost clears bits by
writing the register back with those bits set to zero, the INIC clears these bits in COPYA
(or the host write-back goes directly to COPYA).Ifthere are new events in NEWA,it

Provisional Pat. App. of Alacritech, Inc. 17
Inventors Laurence B. Boucher et al,

Express Mail Label # EH756230105US

WISTRON CORP. EXHIBIT 1031.021



" 

ORs them with COPY A, and DMAs this new ISR to the host. This new ISR then replaces 
COPY A, NEW A is cleared and the cycle then repeats. 

3.2.4 Register Addresses 

For the sake of simplicity, in this example the registers are at 4-byte increments from 
whatever the base address is. Hence: 

ISR 
IMR 
HBAR 
DBHR. 
OBAR 
CB ARO 
CBARl 
CBAR2 
CBAR3 
CBAR4 
RBAR 

OxO 
Ox4 
Ox8 
OxC 
OxlO 

Ox28 

Ox14 
Oxl8 
OxlC 
Ox20 
Ox24 

Interrupt Status 
Interrupt Mask 
Header Buffer Address 
Data Buffer Handle 
Data Buffer Address 

Command Buffer Address XMTO 
Command Buffer Address XMTl 
Command Buffer Address XMT2 
Command Buffer Address XMT3 
Command Buffer Address RCV 

Response Buffer Address 

4 Alacritech TCP (ATCP) Design Specification 

This section outlines the design specification for the Alacritech TCP (ATCP) transport 
driver. The ATCP driver consists of three components: 

1. The bulk of the protocol stack is based on the FreeBSD TCP/IP protocol stack. 
This code performs the Ethernet, ARP, IP, ICMP, and (slow path) TCP processing 
for the driver. 

2. At the top of the protocol stack we introduce an NT filter driver used to intercept 
TDI requests destined for the Microsoft TCP driver. 

3. At the bottom of the protocol stack we include an NDIS protocol-driver interface 
which allows us to communicate with the INIC mini port NDIS driver beneath the 
ATCP driver. 

This section covers each of these topics, as well as issues common to the entire ATCP 
driver. 

4.1 Coding style 

In order to ensure that our ATCP driver is written in a consistent manner, we have 
adopted a set of coding guidelines. These guidelines are introduced with the philosophy 
that we should write code in a Microsoft style since we are introducing an NT-pased 
product. The guidelines below apply to all code that we introduce into our driver. Since 
a very large portion of our ATCP driver will be based on FreeBSD, and since we are 
somewhat time-constrained on our driver development, the ported FreeBSD co:de will be 
exempt from these guidelines. 

Provisional Pat. App. of Alacritcch, Inc. 18 
Inventors Laurence 8 . Boucher et al. 

Express Mail Label# EH756230105US 

WISTRON CORP. EXHIBIT 1031.022



1. Global symbols - All function names and global variables in the ATCP driver 
should begin with the "ATK" prefix (ATKSendO for instance). 

2. Variable names - Microsoft seems to use capital letters to separate multi-word 
variable names instead of underscores (VariableName instead ofvariable_.:name). 
We should adhere to this style. 

3. Structure pointers - Microsoft typedefs all of their structures. The structure types 
are always capitals and they typedef a pointer to the structure as "P"<nam~ as 
follows: 

typedef struct _FOO { 
INT bar; 

} FOO, *PFOO; 
We will adhere to this style. 

4. Function calls - Microsoft separates function call arguments on separate lines: 
X=foobar( 

argument!, 
argument2, 
); 

We will adhere to this style. 

5. Comments - While Microsoft seems to alternatively use II and/* *I comment 
notation, we will exclusively use the/* *I notation. 

6. Function comments - Microsoft includes comments with each function that 
describe the function, its arguments, and its return value. We will also include 
these comments, but will move them from within the function itself to just prior to 
the function for better readability. 

7. Function arguments - Microsoft includes the keywords IN and OUT when 
defining function arguments. These keywords denote whether the function 
argument is used as an input parameter, or alternatively as a placeholder for an 
output parameter. We will include these keywords. 

8. Function prototypes- We will include function prototypes in the most logical 
header file corresponding to the .c file. For example, the prototype for function 
foo{) found in foo.c will be placed in foo.b. 

9. Indentation - Microsoft code fairly consistently uses a tabstop of 4. We will do 
likewise. 

10. Header file #ifndef - each header file should contain a #ifndefl#defi.ne/#endif 
which is used to prevent recursive header file includes. For example, foo:h would 
include: 

#ifndef _FOO _H_ 
#define _FOO_H_ 
<foo.h contents .. > 
#endif /* _ FOO_H_ */ 

Note the NAME H format. 
11. Each file must contain a comment at the beginning which includes the $1~$ as 

follows: 
I* 
*$Id$ 
*I 

Provisional Pat. App. of Alacriteeh, Inc. 
Inventors Laurence B. Boucher et al . 

Express Mail Label# EH756230105US 

19 

WISTRON CORP. EXHIBIT 1031.023



. \ 

CVS (RCS) will expand this keyword to denote RCS revision. timestamps, author, 
etc. 

4.2 SMP 

This section describes the process by which we will make the ATCP driver SMP safe. 

The basic rule for SMP kernel code is that any access to n memory variable must be 
protected by a lock that prevents a competing access by code running on another 
processor. Spinlocks are the normal locking method for code paths which do not take a 
long time lo execute (and which do not sleep.) 

In general each instance of a structure will include a spinlock. which must be acquired 
before members of that structure are accessed, and held while a function is accessing that 
instance of the structure. Structures which are logically grouped together may be 
protected by a single spinlock: for example, the 'in_pcb' structure, 'tcpcb' structure, and 
'socket' structure which together constitute the administrative information for a TCP 
connection will probably be collectively managed by a single spinlock in the 'socket' 
structure. 

In addition, every global data structure such as a list or bash table must also have a 
protecting spinlock which must be held while the structure is being accessed or modified. 
The NT DOK in fact provides a number of convenient primitives for SMP-safe list 
manipulation, and it is recommended that these be used for any new lists. Existing list 
manipulations in the FreeBSD code can probably be left as-is to minimize code 
disturbance, except of course that the necessary spinlock acquisition and release must be 
added around them. 

Spinlocks should not be held for long periods of time, and most especially, must not be 
held during a sleep, since this will lead to deadlocks. There is a significant deficiency in 
the NT kernel support for SMP systems: it does not provide an operation which allows a 
spinlock to be exchanged atomically for a sleep lock. Thjs would be a serious problem in 
a UNIX environment where much of the processing occurs in the context of the user 
process which initiated the operation. (The spinlock would have to be explicitly released, 
followed by a separate acquisition of the sleep lock: creating an unsafe window.) 

The NT approach is more asynchronous, however: IRPs are simply marked as 
'PENDING' when an operation cannot be completed immediately. The calling thread 
does NOT sleep at that point: it returns, and may go on with other processing. Pending 
IRPs are later completed, not by waking up the thread which initiated them, bul by an 
'IoCompleteRequest' call which typically runs at DISPATCH level in an arbitrary 
context. 

Thus we have not in fact used sleep locks anywhere in the design of the ATCP driver, 
hoping the above issue will not arise. 

4.3 Data Oow overview 

Provisional Pat. App. of Alacritccb, Inc. 
Inventors Laurence B. Boucher el al. 

Express Mail Label# EH7S623010SUS 

20 

WISTRON CORP. EXHIBIT 1031.024



.. 

• 

The ATCP driver supports two paths for sending and receiving data, the fast-path and the 
slow-path. The fast-path data flow corresponds to connections that are maintained on the 
INIC, while slow-path traffic corresponds to network data for which the INlC does not 
have a connection. In order to set some groundwork for the rest of this section, these two 
data paths are summarized here. 

4.3.1 Fast-path input data flow 

There are 2 different cases to consider: 

l. NETBIOS traffic (identifiable by port number.) 
2. Everything else. 

4.3. l.1 NETBIOS input 

As soon as the INlC has received a segment containing a NETBIOS header, it will 
forward it up to the TCP driver, along with the NETBIOS length from the header. (In 
principle the host could get this from the header itself, but since the INIC bas already 
done the decode, it seem reasonable to just pass it) 

From the TOI spec, the amount of data in the buffer actually sent must be at least 128 
bytes. For small SMBs, all of the received SMB should be forwarded; it will be absorbed 
directly by the TDI client without any further MDL exchange. Experiments tracing the 
TDI data flow show that the NETBIOS client directly absorbs up to 1460 bytes: the 
amount of payload data in a single Ethernet frame. Thus the initial system specifies that 
the INIC will indicate anything up to a complete segment to the ATCP driver. [See note 
(1 )] 

Once the INIC has passed up an indication with an NETBIOS length greater than the 
amount of data in the packet it passed, it will continue to accumulate further incoming 
data in DRAM on the INIC. Overflow ofINIC DRAM buffers will be avoided by using 
a receive window on the INIC at this point, which can be 8K. 

On receiving the indicated packet, the ATCP driver will call the receive bandier 
registered by the TD! client for the connection, passing the actual size of the data in the 
packet from the INIC as "bytes indicated" and the NETBIOS length as "bytes available." 
[See note (2)). 

In the "large data input" case, where "bytes available" exceeds the packet length, the TOI 
client will then provide an MDL, associated with an IRP, which must be completed when 
this MDL is filled. (This IRP/MDL may come back either in the response to TCP's call of 
the receive handler, or as an explicit TOI_ RECEIVE request.) 

The ATCP driver will build a "receive request" from the MDL information, and pass this 
to the INIC. This request will contain: 

• The TCP context identifier. 
• Size and offset information. 
• A list of physical addresses corresponding to the MDL pages. 

Provisional Pat. App. of Alacritech, Inc. 21 
Inventors Laurence B. Boucher ct al. 

Express Mail Label II EH756230105US 

WISTRON CORP. EXHIBIT 1031.025



m 
a 
0 
en 
1-1-
o; 
0 
J) 

• A context field to allow the ATCP driver to identify the request on completion. 
• "Piggybacked" window update information (this will be discussed in section 6.1.3.) 

Note: the ATCP driver must copy any remaining data (which was not taken by the 
receive handler) from the segment indicated by the INlC to the start of the MDL, and 
must adjust the size & offset information in the request passed to the INIC to account for 
this. 

The INlC will fill the given page(s) with incoming data up to the requested amount, and 
respond to the ATCP driver when this is done [see note (3)). If the MDL is large, the 
INIC may open up its advertised receive window for improved throughput while filling 
the MDL. 

On receiving the response from the INIC, the ATCP driver will complete the IRP 
associated with this MDL, to tell the TDI client that the data is available. 

At this point the cycle of events is complete, and the ATCP driver is now waiting for the 
next header indication. 

4.3.1.2 Other TCP input. 

In the general case we do not have a higher-level protocol header to enable us to predict 
that more data is coming. So on non-NETBIOS connections, the INIC will just 
accumulate incoming data in INIC DRAM up to a quantity of 8K in this example. Again, 
a maximum advertised window size, which may be 16K., will be used to prevent overflow 
ofJNIC DRAM buffers. 

When the prescribed amount bas been accumulated, or when a PSH flag is seen, the INIC 
will indicate a small packet which may be 128 bytes of the data to the ATCP driver, 
along with the total length of the data accumulated in INIC DRAM. 

On receiving the indicated packet, the ATCP driver will call the receive handler. 
registered by the IDI client for the connection, passing the actual size of the data in the 
packet from the INIC as "bytes indicated" and the total INIC-buffer length as "bytes 
available." 

As in the NETBIOS case, if"bytes available" exceeds "bytes indicated", the TDI client 
will provide an !RP with an tvIDL. The ATCP driver will pass the MDL to the INIC to 
be filled, as before. The INIC will reply to the ATCP driver, which in tum will complete 
the IRP to the TDI client. 

Using an MDL from the client avoids a copy step. However, if we can only buffer 8K 
and delay indicating to the ATCP driver until we have done so, a question arises 
regarding further segments coming in, since INIC DRAM is a scarce resource. We do not 
want to ACK with a zero-size window advertisement: this would cause the transmitting 
cod to go into persist state, which is bad for throughput. If the transmitting end is also our 
INIC, this results in having to implement the persist timer on the INIC, which we do not 
wish to do. Instead for large transfers (i.e. no PSH flag seen) we will not send an ACK 

Provisional Pal. App. of Alacrilech, Inc. 22 
Inventors Laurence B. Boucher et al. 

Express Mail Label# EH75623010SUS 

WISTRON CORP. EXHIBIT 1031.026



. . 
until the host has provided the MDL, and also, to avoid stopping the transmitting end, we 
will use a receive window of twice the amount we will buffer before calling the host. 
Since the host comes back with the MDL quite quickly (measured at< 100 
microseconds), we do not expect to experience significant overruns. 

4.3. l .3 INIC Receive window updates 

If the INIC "owns" an MDL provided by the TD! client (sent by ATCP as a receive 
request), it will treat this as a "promise" by the TOI client to accept the data placed in it, 
and may therefore ACK incoming data as it is filling the pages. 

However, for small requests, there will be no "MDL returned by the TOI client: it absorbs 
all of the data directly in the receive callback function. We need to update the INIC's 
view of data which has been accepted, so that it can update its receive window. in order 
to be able to do this, the ATCP driver will accumulate a count of data which has·been 
accepted by the TOI client receive callback function for a connection. 

From the INIC's point of view, though, segments sent up to the ATCP driver are just 
"thrown over the wall"; there is no explicit reply path. We will therefore "piggyback" the 
update on requests sent out to the INIC. Whenever the ATCP driver has outgoing data 
for that connection, it will place this count in a field in the send request (and then clear 
the counter.) Any receive request (passing a receive MDL to the INIC) may also be used 
to transport window update info in the same way. 

Note: we will probably also need to design a message path whereby the ATCP driver can 
explicitly send an update of this ''bytes consumed" information (either when it exceeds a 
preset threshold or if there are no requests going out to the INIC for more than a given 
time interval), to allow for possible scenarios in which the data stream is entirely one
way. 

4.3.1.4 Notes 

1) The PSH flag can help to identify small S1-ffi requests that fit into one segn:;ient. 

2) Actually, the observed "bytes available" from the NT TCP driver to its client's 
callback in this case is always 1460. The NETBIOS-aware TOI client presu,mably 
calculates the size of the MDL it will return from the NETBIOS header. So strictly 
speaking we do not need the NETBIOS header length at this point: just an indication 
that this is a header for a "large" size. However, we *do"' need an actual "bytes 
available" value for the non-NETBIOS case, so we may as well pass it. 

3) We observe that the PSH flag is set in the segment completing each NETBIOS 
transfer. The INIC can use this to determine when the current transfer is complete 
and the MDL should be returned. It can, at least in a debug mode, sanity check the 
amount of received data against what is expected, though. 

Provisional Pat. App. of Alacritech, Ille. 
Inventors Laurence B. Boucher el al. 

Express Mail Label# EH756230105US 

23 

WISTRON CORP. EXHIBIT 1031.027



4.3.2 Fast-path output data flow 

The fast-path output data flow is similar to the input data-flow, but simpler. In this case 
the TDI client will provide a MDL to the ATCP driver along with an IRP to be C9IDpleted 
when the data is sent. The ATCP driver will then give a request (corresponding to the 
MDL) to the INIC. This request will contain: 

• The TCP context identifier. 
• Size and offset information. 
• A list of physical addresses corresponding to the MDL pages. 
• A context field to allow the ATCP driver to identify the request on completion. 
• "Piggybacked" window update information (as discussed in section 6.1.3.) 

The INIC will copy the data from the given physical location(s) as it sends the 
corresponding network frames onto the network. When all of the data is sent, the INIC 
will notify the host of the completion, and the ATCP driver will complete the IRP. 

Note that there may be multiple output requests pending at any given time, since SMB 
allows multiple SMB requests to be simultaneously outstanding. 

4 .3.3 Slow-path data flow 

For data for which there is no connection being maintained on the INIC, we will have to 
perform all of the TCP, IP, and Ethernet processing ourselves. To accomplish this we 
will port the FreeBSD protocol stack. 
1n this mode, the INIC will be operating as a "dumb NlC"; the packets which pass over 
the NDIS interface will just contain MAC-layer frames. 

The MBUFs in the incoming direction will in fact be managing NDJS-allocated, packets. 
In the outgoing direction. we need protocol-allocated MBUFs in which to assemble the 
data and headers. The MFREE macro must be cognizant of the various types of MBUFs, 
and "do the right thing" for each type. (See more extensive discussion ofMBUFs in 
section XXX.) 

We will retain a (modified) socket structure for each connection. containing the socket 
buffer fields expected by the FreeBSD code. The TCP code that operates on socket 
buffers (adding/removing MBUFs to & from queues, indicating acknowledged·& 
received data etc) will remain essentially unchanged from the FreeBSD base (though 
mosl of the socket functions & macros used to do this will need to be modified; these are 
the functions in kern/uipc_socket2.c) 

The upper socket layer (kem/uipc_socket.c), where the overlying OS moves data in and 
out of socket buffers. must be entirely re-implemented to work in TDT terms. Thus, 
instead of sosendQ, there will be a function that copies data from the MDL provided in a 
TDI_SEND call into socket buffer MBUFs. Instead ofsoreceivcQ, there will be a handler 
that calls the TDl client receive callback function, and also copies data from socket buffer 

Provisional PaL App. of Alacriiech, lnc. 24 
Inventors Laurence B. Boucher et al. 

Eirpress Mail Label ti EH756230105US 

WISTRON CORP. EXHIBIT 1031.028



MBUFs into any MDL provided by the TDI client (either explicitly with the callback 
response or as a separate TDI_RECENE call.) 

We must note that there is a semantic difference between TDI_SEND and a writeO on a 
BSD socket. The latter may complete back to ~ts caller as soon as the data has been 
copied into the socket buffer. The completion of a TDI_SEND, however, implies that the 
data has actually been sent on the connection. Thus we will need to keep the TDI_SEND 
IRPs (and associated MDLs) in a queue on the socket until the TCP code indicates that 
the data from them has been ACK'd. 

4.3.4 Data Path Notes 

l . There might be input data on a connection object for which there is no receive 
handler function registered. This has not been observed, but we can probably just 
ASSERT for a missing handler for the moment. If it should happen, however, we 
must assume that the TDI client will be doing TOI_ RECEIVE calls on the 
connection. Ifwe can't make a callup at the ti.me that the indication from the INIC 
appears, we can queue the data and handle it when a TDl_RECEIVE does appear. 

2. NT has a notion of "canceling" IRPs. It is possible for us to get a "cancel" on an IRP 
corresponding to an MDL which bas been "handed" to the INIC by a send or receive 
request. We can handle this by being able to force the context back off the INlC, 
since IRPs will only get cancelled when the connection is being aborted. 

4.4 Context Passing Between ATCP and INIC 

4.4. l From ATCP to INlC 

There is a synchronization problem that must be addressed here. The ATCP driver will 
make a decision on a given connection that this connection should now be passed to the 
INJC. It builds and sends a command identifying this connection to the INIC. 

Before doing so, it roust ensure that no slow-path outgoing data is outstanding. This is 
not difficult; it simply pends and queues any new TDI_SEND requests and waits for any 
unacknowledged slow path output data to be acknowledged before initiating thb context 
pass operation. 

The problem arises with incoming slow-path data. If we attempt to do the context-pass in 
a single command handshake, there is a window during which the ATCP driver has send 
the context command, but the INIC has not yet seen this (or has not yet completed setting 
up its context.) During this time, slow-path input data frames could arrive and be fed into 
the slow-path A TCP processing code. Should that happen, the context information which 
the ATCP driver passed to the INIC is no ~,onger correct. We can simply abort the 
outward pass of the context in this event, but it seems better to have a reliable handshake. 

Therefore, the command to pass context from ATCP driver to INIC will be split into two 
halves, and there will be a two-exchange handshake. 

Provisional Pat. App. of Alacritecb, Inc. 25 
Inventors Laurence B. Boucher ct al. 

Express Mail Label# EH756230105US 

WISTRON CORP. EXHIBIT 1031.029



The initial command from ATCP to INIC expresses an "intention" to hand out the 
context. It will include the source and destination IP addresses and ports, which will 
allow the INIC to establish a "provisional" context. Once it has this "provisional'~ context 
in place, the INIC will not send any more slow-path input frames for that src/dest IP/port 
combination (it will queue them. if any are received.) 

When the ATCP driver receives the response to this initial "intent" command, it knows 
that the INIC will send no more slow-path input. The ATCP driver then waits for any 
remaining unconsumed slow-path input data for this connection to be consumed iby the 
client. (Generally speaking there will be none, since the ATCP driver will not initiate a 
context pass while there is unconsumed slow-path input data; the handshake is simply to 
close the crossover window.) 

Once any such data has been consumed, we know things are in a quiescent state. The 
ATCP driver can then send the second, "commit" command to hand out the context, with 
confidence that the TCB values it is handing out (sequence numbers etc) are reliable. 

Note l: it is conceivable that there might be situations in which the ATCP driver decides, 
after having sent the original "intention" command, that the context is not to be passed 
after all. (E.g. the local client issues a close.) So we must allow for the possibility that 
the second command may be a "abort", which should cause the INIC to deallocate and 
clear up its "provisional" context. 

Note 2: to simplify the logic, the ATCP driver will guarantee that only one context may 
be in process of being handed out at a time: in other words, it will never issue another 
initial "intention" command until it has completed the second half of the handshake for 
the first one. 

4.4.2 From INIC to ATCP 

There are two possible cases for this: a context transfer may be initiated either by the 
ATCP driver or by the IN1C. 

However the machinery will be very similar in the two cases. If the ATCP driver wishes 
to cause context to be flushed from INIC to host, it will send a "flush" message, to the 
INIC specifying the context number to be flushed. Once the INIC receives this, it will 
proceed with the same steps as for the case where the flush is initiated by the INIC itself: 

• The INIC will send an error response to any current outstanding receive request it is 
working on (corresponding to an MDL into which data is being placed.) Before 
sending the response, it updates the receive command "length" field to reflect the 
amount of data which has actually been placed in the MDL buffers at the time of the 
flush. 

• Likewise it will send an error response for any current send request, again reporting 
the amount of data actually sent from the request. 

• The INIC will DMA the TCB for the context back to the host. (Note: part of the 
information provided with a context must be the address of the TCB in the host.) 

Provisional Pat. App. of Alacriteeb, loc. 26 
Inventors Laurence B. Boucher ct al. 

Eitpress Mail Label# EH756230105US 

WISTRON CORP. EXHIBIT 1031.030



• The INIC will send a "flush" indication to the host (very preferably via the regular 
input path as a special type of frame) identifying the context which is being flushed. 
Sending this indication via the regular input path ensures that it will arrive before any 
following slow-path frames. 

At this point, the INIC is no longer doing fast-path processing, and any further mcoming 
frames for the connection will simply be sent to the host as raw frames for the slow input 
path. 

The ATCP driver may not be able to complete the cleanup operations needed to resume 
normal slow path processing immediately on receipt of the "flush frame", since t;here may 
be outstanding send and receive requests to which it has not yet received a response. 

If this is the case, the ATCP driver must set a ')>end incoming TCP frames" flag in its 
per-connection context. The effect of this is to change the behavior oftcp_inputO. This 
runs as a function call in the context of ip_inputO, and normally returns only when 
incoming frames have been processed as far as possible (queued on the socket receive 
buffer or out-of-sequence reassembly queue.) However, if there is a flush pending and 
we have not yet completed resynchronization, we cannot do TCP processing and must 
instead queue input frames for TCP on a "holding queue" for the connection, to be picked 
up later when context flush is complete and normal slow path processing resumes. (This 
is why we want to send the "flush" indication via the normal input path: so that we can 
ensure it is seen before any following frames of slow-path input.) 

Next we need to wait for any outstanding "send" requests to be errored off: 

• The INIC maintains its context for the connection in a "zombie" state. As "send" 
requests for this connection come out of the INIC queue, it sends error responses for 
them back to the ATCP driver. (It is apparently difficult for the INIC to identify all 
command requests for a given context; simpler for it to just continue processing them 
in order, detecting ones that are for a "zombie" context as they appear.) 

• The ATCP driver has a count of the number of outstanding requests it has sent to the 
INIC. As error responses for these are received, it decrements this count, and when it 
reaches zero, the ATCP driver sends a "flush complete" message to the INIC. 

• When the INIC receives the "flush complete" message, it dismantles its "zombie" 
context. From the lNIC perspective, the flush is now completed. 

• When the ATCP driver has received error responses for all outstanding requests, it 
bas all the information needed to complete its cleanup. This involves completing any 
IRPs corresponding to requests which have entirely completed and adjusting fields in 
partially-completed requests so that send and receive of slow path data will Tesume at 
the right point in the byte streams. 

• Once all this cleanup is complete, the ATCP driver will loop pulling any "pended" 
TCP input frames off the "pending queue" mentioned above and feeding them into 
the normal TCP input processing. Once all input frames on this queue have·been 
cleared off, the "pend incoming TCP frames" flag can be cleared for the connection, 
and we are back to normal slow-path processing. 

Provisional Pat. App. of Alacritech, Inc. 27 
Inventors Laurence B. Boucher et al. 

Express Mail Label # EH756230105US 

WISTRON CORP. EXHIBIT 1031.031



4.S FreeBSD Porting Specification 

The largest portion of the ATCP driver is either derived, or directly taken from the 
FreeBSD TCP/IP protocol stack. This section defines the issues associated with porting 
this code, the FreeBSD code itself, and the modifications required for it to suit our needs. 

4.5. l Porting philosophy 

FrceBSD TCP/IP (current version referred to as Net/3) is a general purpose TCP/IP 
driver. It contains code to handle a variety of interface types and many different kinds of 
protocols. To meet this requirement the code is often written in a sometimes confusing, 
over-complex manner. General-purpose structures arc overlaid with other interface
specific structures so that different interface types can coexist using the same general
purpose code. For our purposes much of this complexity is unnecessary since we are 
only supporting a single interface type and a few specific protocols. It is therefore 
tempting to modify the code and data structures in an effort to make it more readable, and 
perhaps a bit more efficient. There are, however, some problems with doing this. First, 
the more we modify the original FreeBSD, the more changes we will have to make. This 
is especially true with regard to data structures. Ifwe collapse two data structures into 
one we might improve the cleanliness of the code a bit, but we will then have to modify 
every reference to that data structure in the entire protocol stack. Another problem with 
attempting to "clean up" the code is that we might later discover that we need something 
that we had previously thrown away. Finally, while we might gain a small performance 
advantage in cleaning up the FreeBSD code, the FreeBSD TCP code will mostly only run 
in the slow-path connections, which are not our primary focus. Our priority is to get the 
slow-path code functional and reliable as quickly as possible. 

For the reasons above we have adopted the philosophy that we should initially keep the 
data structures and code at close to the original FreeBSD implementation as possible. 
The code will be modified for the following reasons: 

5. As required for NT interaction - Obviously we can't expect to simply "drop-in" the 
FreeBSD code as is. The interface of this code to the NT system will require some 
significant code modifications. This will mostly occur at the topmost and 
bottommost portions of the protocol stack, as well as the "ioctl" sections of the code. 
Modifications for SMP issues are also needed. 

6. Unnecessary code can be removed - While we will keep the code as close to the 
original FrceBSD as possible, we will nonetheless remove code that will never be 
used (UDP is a good example of this). 

4-5.2 Unix~ NT conversion 

The FreeBSD TCP/IP protocol stack makes use of many Unix system services. These 
include bcopy to copy memory, malloc to allocate memory, timestamp functions, etc. 
These will uot be itemized in detail since the couversjou to the corresponding NT calls is 
a fairly trivial and mechanical operation. 

An area which will need non-trivjal support redesign is MBUFs. 

Provisional Pat. App. of Alacritech, Inc. 28 
Inventors Laurence B. Boucher et al. 

Express Mail Label# EH756230105US 

WISTRON CORP. EXHIBIT 1031.032

£GohTOT"6089n0n0a

4.5 FreeBSD Porting Specification

Thelargest portion ofthe ATCP driver is either derived, or directly taken from the
FreeBSD TCP/IP protocol stack. This section defines the issues associated with porting
this code, the FreeBSD codeitself, and the modifications required forit to suit our needs.

4.5.1 Porting philosophy

FreeBSD TCP/IP (current version referred to as Net/3) is a general purpose TCP/IP
driver. It contains code to handle a variety of interface types and many different kinds of
protocols, To meet this requirementthe code is often written in a sometimes confusing,
over-complex manner. General-purposestructures are overlaid with other interface-
specific structures so that differentinterface types can coexist using the same general-
purpose code. For our purposes muchofthis complexity is unnecessary since we are
only supporting a single interface type and a few specific protocols.It is therefore
tempting to modify the code and data structures in an effort to make it more readable, and
perhaps a bit moreefficient. There are, however, some problems with doing this. First,
the more we modify the original FreeBSD, the more changes we will have to make. This
is especially true with regard to data structures. Ifwe collapse twodata structures into
one we might improve the cleanliness of the codeabit, but we will then have to:modify
every reference to that data structure in the entire protocol stack. Another problem with
attempting to “clean up” the code is that we mightlater discover that we need something
that we had previously thrown away. Finally, while we might gain a small performance
advantage in cleaning up the FreeBSD code, the FreeBSD TCP code will mostly only run
in the slow-path connections, which are not our primary focus. Our priority is to get the
slow-path code functional and reliable as quickly as possible.

For the reasons above we have adopted the philosophy that we should initially keep the
data structures and code at close to the original FreeBSD implementation as possible.
The code will be modified for the following reasons:

5. As required for NT interaction — Obviously we can’t expect to simply “drop-in” the
FreeBSD code as is. The interface of this code to the NT system will require some
significant code modifications. This will mostly occur at the topmost and
bottommost portions of the protocol stack, as well as the “ioctl” sections of the code.
Modifications for SMP issues are also needed.

6. Unnecessary code can be removed — While we will keep the code as close to the
original FreeBSDas possible, we will nonetheless remove code that will never be
used (UDPis a good exampleofthis).

4.5.2 Unix © NT conversion

The FreeBSD TCP/IP protocol stack makes use of many Unix system services. These
include beopy to copy memory, malloc to allocate memory,timestamp functions, etc.
These will not be itemized in detail since the conversion to the corresponding NT calls is
a fairly trivial and mechanical operation.

An area which will need non-trivial support redesign is MBUFs.

Provisional Pat. App. of Alacritech, Inc. 28
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

WISTRON CORP.EXHIBIT 1031.032



.. 

" 

4.5.2. 1 Network buffers 

Under FreeBSD, network buffers are mapped using mbufs. Under NT network buffers 
are mapped using a combination of packet descriptors and buffer descriptors (the buffer 
descriptors are really MDLs). There are a couple of problems with the Microsoft 
method. First it does not provide the necessary fields which allow us to easily strip off 
protocol headers. Second, converting all of the FreeBSD protocol code to speak:in terms 
of buffer descriptors is an unnecessary amount of overhead. Instead, in our port we will 
allocate our own mbuf structures and remap the NT packets as follows: 

Mbuf Mbuf 

~ . 
~ -

,. Packet Desc BufferDesc BufferDcsc 

. ~ . 

~ ~ . + . r 

uata u ata 

The mbuf structure will provide the standard fields provided in the FreeBSD mbuf 
including the data pointer, which points to the current location of the data, data length 
fields and flags. In addition each mbufwill point to the packet descriptor which is 
associated with. the data being mapped. Once an NT packet is mapped, our tranwort 
driver should never have to refer to the packet or buffer descriptors for any information 
except when we are finished and are preparing to return the packet. 

There are a couple of things to note here. We have designed our INIC such that a packet 
header should never be split across multiple buffers. Thus, we should never require the 
equivalent of the ••m_pullup" routine included in Unix. Also note that there are 
circumstances in which we will be accepting data that will also be accepted by the 
Microsoft TCP/IP. One such example of this is ARP frames. We will need to build our 
own ARP cache by looking at ARP replies as they come off the network. Under these 
circumstances, it is absolutely imperative that we do not modify the data, or the packet 
and buffer descriptors. We will discuss this further in the following sections. 

Provisiooal Pat. App. of Alacrilecb, Inc. 
Inventors Laurence B. Boucher et aL 

Express Mail Label# EH756230!05US 

29 

WISTRON CORP. EXHIBIT 1031.033

L£fhTOT"4089009

4.5.2.1 Network buffers

Under FreeBSD, network buffers are mapped using mbufs. Under NT network buffers
are mapped using a combination of packet descriptors and buffer descriptors (the buffer
descriptors are really MDLs). There are a couple ofproblems with the Microsoft
method. First it does not provide the necessary fields which allow us to easily strip off
protocol headers. Second, converting all ofthe FreeBSD protocol code to speak in terms
ofbuffer descriptors is an unnecessary amount of overhead. Instead, in our port wewill
allocate our own mbufstructures and remap the NT packets as follows:

 
The mbuf structure will provide the standard fields provided in the FreeBSD mbuf
including the data pointer, which points to the current location of the data, data length
fields and flags. In addition each mbufwill point to the packet descriptor which is
associated with the data being mapped. Once an NT packet is mapped,our transport
driver should never have to refer to the packet or buffer descriptors for any information
except when weare finished and are preparing to return the packet.

There are a couple of things to note here. We have designed our INIC suchthat a packet
header should never be split across multiple buffers. Thus, we should never require the
equivalentof the “m_pullup”routine included in Unix. Also note that there are
circumstances in which we will be accepting data that will also be accepted by the
Microsoft TCP/IP. One such example ofthis is ARP frames. We will need to build our
own ARP cache by looking at ARP replies as they comeoff the network. Under these
circumstances,it is absolutely imperative that we do not modify the data, or the packet
and buffer descriptors. We will discuss this further in the following sections.

Provisional Pat. App. of Alacritech, Inc. 29
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

WISTRON CORP.EXHIBIT 1031.033



. . 

en 
0 
0 
tn 
..... 
O'J 
0 
11'i 

We will allocate a pool ofmbufbeaders at ATCP initialization time. It is important to 
remember that unlike other NI Cs, we can not simply drop data if we run out of the system 
resources required to manage/map the data. The reason for this is that we will be 
receiving data from the card that has already been acknowledged by TCP. Because of 
this it is essential that we never run out of mbuf headers. To solve this problem we will 
statically allocate mbuf headers for the maximum number of buffers that we will ever 
allow to be outstanding. By doing so, the card will run out of buffers in which to put the 
data before we will run out of mbufs. and as a result. the card will be forced to drop data 
at the link layer instead of us dropping it at the transport layer. 
DhXXX: as we've discussed, I don't think this is really true anymore. The INIC won't 
ACK data until either it's gotten a window update from ATCP to tell it the data's been 
accepted, or it's got an MDL. 
Thus it seems workable, though undesirable, if we can't accept a frame from the INIC & 
return an error to it saying it was not taken. 

We will also require a pool of actual mbufs (not just headers). These mbufs are required 
in order to build transmit protocol headers for the slow-path data path, as well as other 
miscellaneous purposes such as for building ARP requests. We will allocate a pool of 
these at initialization time and we will add to this pool dynamically as needed. Unlike 
the mbuf headers described above, which will be used to map acknowledged TCP data 
coming from the card, the full mbufs will contain data that can be dropped if we can not 
get an mbuf. 

4.5.3 The code 

In this section we describe each section of the FreeBSD TCP/IP port. These sections 
include Interface Initialization, ARP, Route, IP, ICMP, and TCP. 

4.5.3.l Interface initialization 

4.5.3.1.l Structures 
There are a variety of structures, which represent a single interface in FreeBSD. These 
structures include: 
ifnet, arpcom, ifaddr, in_ifaddr, sockaddr, sockaddr_in, and sockaddr_dl. The following 
illustration shows the relationship between all of these structures: 

arpcom 

If ace ifaddr 

: ------.-------~ . : 
• ifnet : 
I 
I 
I 
I 
I 
I 

in_ifaddr 

ifaddr 

---------1.____~ 

Provisional Pat. App. of AJacriteeb, Joe. 
Inventors Laurence B. Boucher el al. 

Express Mail Label# EH75623010SUS 

sockaddr _ dl 

00:60:97:DB:9B:A6 

sockaddr_in 

192.100.1.2 

30 

WISTRON CORP. EXHIBIT 1031.034

ZA6hTOT"&0eaTagog

Wewill allocate a pool ofmbufheaders at ATCP initialization time. It is importantto
remember that unlike other NICs, we can not simply drop data if we run outofthe system
resources required to manage/map the data. The reason forthis is that we will be
receiving data from the card that has already been acknowledged by TCP. Because of
this it is essential that we never run out ofmbufheaders. To solve this problem wewill
statically allocate mbuf headers for the maximum number of buffers that we will ever
allow to be outstanding. By doing so, the card will run out ofbuffers in which to put the
data before we will run out ofmbufs, and as a result, the card will be forced to drop data
at the link layer instead of us droppingit at the transport layer.
DhXXX: as we’ve discussed, I don’t think this is really true anymore. The INIC won’t
ACKdata until either it’s gotten a window update from ATCPto tell it the data’s been
accepted,or it’s got an MDL.
Thus it seems workable, though undesirable, ifwe can’t accept a frame from the INIC &
return an error to it saying it was not taken.

Wewill also require a poolofactual mbufs (notjust headers). These mbufs are required
in order to build transmit protocol headers for the slow-path data path, as well as other
miscellaneous purposes such as for building ARP requests. Wewill allocate a pool of
these at initialization time and wewill add to this poo] dynamically as needed. Unlike
the mbufheaders described above, which will be used to map acknowledged TCP data
coming from the card, the full mbufs will contain data that can be dropped if we can not
get an mbuf.

45.3 The code

In this section we describe each section ofthe FreeBSD TCP/IP port. These sections
include Interface Initialization, ARP, Route, IP, ICMP, and TCP.

4.5.3.1 Interface initialization

4.5.3.1.1 Structures

There are a variety of structures, which represent a single interface in FreeBSD. These
structures include:

ifnet, arpcom, ifaddr, in_ifaddr, sockaddr, sockaddr_in, and sockaddr_dl. The following
illustration showsthe relationship between all ofthese structures:

Iface ifaddr
sockaddr dl

00:60:97:DB:9B:A6
arpcom  

 
 

sockaddr_in

| See
Provisional Pat. App. of Alacritech, Inc. 30

Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

  

WISTRON CORP.EXHIBIT 1031.034



.. 
In this example we show a single interface with a MAC address of00:60:97:DB:9B:A6 
configured with an IP address of 192.l 00.1.2. As illustrated above, the in_ifaddr is 
actually an ifaddr structure with some extra fields tacked on to the end. Thus the- ifaddr 
structure is used to represent both a MAC address and an IP address. Similarly the 
sockaddr structure is recast as a sockaddr _ dl or a sockaddr _in depending on its address 
type. An interface can be configured to multiple IP addresses by simply chaining 
in_ifaddr structures after the in_ifaddr structure shown above. 

As mentioned in the Porting Philosophy section, many of the above structures cduld 
likely be collapsed into fewer structures. In order to avoid making unnecessary 
modifications to FreeBSD, for the time being we will leave these structures mostly as is. 
We will however eliminate the fields from the structure that will never be used. These 
structure modifications are discussed below. 

We also show above a structure called iface. This is a structure that we define. It 
contains the arpcom structure, which in turn contains the ifnet structure. It also contains 
fields that enable us to blend our FreeBSD imple-mentation with NT NDIS requirements. 
One such example is the NDIS binding handle used to call down to NDIS with requests 
(such as send). 

4.5.3.1.2 The functions 
FreeBSD initializes the above structures in two phases. First when a network interface is 
found, the ifnet, arpcom, and first ifaddr structures are initialized first by the network 
layer driver, and then via a call to the if_att.ach routine. The subsequent in_ifaddr 
structure(s) are initialized when a user dynamically configures the interface. This occurs 
in the in_ioctl and the in_ifinit routines. Since NT allows dynamic configuration ofa 
network interface we will continue to perform the interface initialization in two phases, 
but we will consolidate these two phases as described below: 

4.5.3.J.2.J ljlniJ 

The Iflnit routine will be called from the A TK.ProtocolBindAdapter function. The lflnjt 
function will initialize the !face structure and associated arpcom and ifuet structures. It 
will then allocate and initialize an ifaddr structure in which to contain link-level 
information about the interface, and a sockaddr_dl structure to contain the interface name 
and MAC address. Finally it will add a pointer to the ifaddr structure into the ifnet_addrs 
array (using the if_index field of the ifnet structure) contained in the extended device 
object. Iflnit will then call IfConfig for each IP address that it finds in the registry entry 
for the interface. 

4.5.3./.2.2 IfConfig 

IfConfig is called to configure an IP address for a given interface. It is passed a pointer 
to the ifuet structure for that interface along with all the information required to configure 
an IP address for that interface (such as JP address, netmask and broadcast info, etc). 
IfConfig will allocate an in_ifaddr structure to be used to configure the interface. It will 
chain it to the total chain ofin_ifaddr structures contained in the extended device object, 
and will then configure the structure \vith the information given to it. After that it will 
add a static route for the newly configured network and then broadcast a graruitous ARP 
request to notify others of our Mac/IP address and to detect duplicate IP addresses on the 
net. 

Provisional Pat. App. of Alacrit.ech, Inc. 31 
Inventors Laurence B. Boucher et al . 

Express Mail Label# EH7S623010SUS 

WISTRON CORP. EXHIBIT 1031.035



• 

4.5.3.2 ARP 

We will port the FreeBSD ARP code to NT mostly as-is. For some reason, the FreeBSD 
ARP code is located in a file called if_ether.c. While the functionality of this file will 
remain the same, we will rename it to a more logical arp.c. The main structures used by 
ARP are the llinfo_arp structure and the rtentry structure (actually part of route). These 
structures will not be require major modifications. The functions that will requir,e 
modification are defined here. 

4.S.3.2.1 In_arpinput 

This function is called to process an incoming ARP frame. An ARP frame can either be 
an ARP request or an ARP reply. ARP requests are broadcast, so we will see every ARP 
request on the network, while ARP replies are directed so we should only see ARP 
replies that are sent to us. This introduces the following possible cases for an incoming 
ARP frame: 

1. ARP request trying to resolve our IP address - Under normal circumstances, ARP 
would reply to this ARP request with an ARP reply containing our MAC address. 
Since ARP requests will also be passed up to the Microsoft TCP/IP driver, we 
need not reply. Note however, that FreeBSD also creates or updates an ARP cache 
entry with the information derived from the ARP request. It does this in 
anticipation of the fact that any host that wishes to know our MAC address is 
likely to wish to talk to us soon. Since we will need to know his MAC address in 
order to talk back, we might as well add the ARP information now rather than 
issuing our own ARP request later. 

2. ARP request trying to resolve someone else's IP address - Since ARP requests are 
broadcast, we see every one on the network. When we receive an ARP ~uest of 
this type, we simply check to see if we have an entry for the host that sent the 
request in our ARP cache. lfwe do, we check to see if we still have the correct 
MAC address associated with that host. If it is incorrect, we update our ARP 
cache entry. Note that we do not create a new ARP cache entry in this case. 

3. ARP reply- In this case we add the new ARP entry to our ARP cache. Having 
resolved the address, we check to see if there is any transmit requests pending for 
the resolve IP address, and if so, transmit them. 

Given the above three possibilities, the only major change to the in_arpinpul code is that 
we witl remove the code which generates an ARP reply for ARP requests that are meant 
for our interface. 

4.S.3.2.2 J\rpintr 
This is the FreeBSD code that delivers an incoming ARP frame to in_arpinput. We will 
be calling in_arpinput directly from our Protoco!ReceiveDPC routine (discussed in the 
NDIS section below) so this function is not needed. 

Provisional Pat. App. of Alacritcch, Inc. 32 
Inventors Laurence B. Boucher et al . 

Express Mail Label II EH756230105US 

WISTRON CORP. EXHIBIT 1031.036



!! 

4.5.3.2 .3 Arpwhohas 

This is a single line function that serves only as a wrapper around arprequest. We will 
remove it and replace all calls to it with direct calls to arprequest. 

4.5.3.2.4 Arprequest 

This code simply allocates a mbuf, fills it in with an ARP header, and then passes it down 
to the ethemet output routine to be transmitted. For us, the code remains essentially the 
same except for the obvious changes related to how we allocate a network buffer, and 
how we send the filled in request. 

4.5 .3.2.5 Arp_ifinit 

This is simply called when an interface is initialized to broadcast a gratuitous ARP 
request (described in the interface initialization section) and to set some ARP related 
fields in the ifaddr structure for the interface. We will simply move this functionality into 
the interface initialization code and remove this function. 

4.5.3.2 .6 Arptimer 

This is a timer-based function that is called every 5 minutes to walk through the ARP 
table looking for entries that have timed out. Although the time-out period for FreeBSD 
is 20 minutes, RFC 826 does not specify any timer requirements with regard to ARP so 
we can modify this value or delete the timer altogether to suit our needs. Either way the 
function won't require any major changes. 

All other functions in if_ ether.c will not require any major changes. 

4.5.3 .3 Route 

On 6rst thought, it might seem that we have no need for routing support since our ATCP 
driver will only receive IP datagrams who's destination IP address matches that of one of 
our own interfaces. Therefore, we will not "route" from one interface to another. 
Instead, the MICROSOFT TCP/IP driver will provide that service. We will, however, 
need to maintain an up-to-date routing table so that we know a) whether an outgoing 
connection belongs to one of our interfaces, b) to which interface it belongs, and c) what 
the first-hop IP address (gateway) is if the destination is not on the local network. 

We discuss four aspects on the subject ofrouting in this section. They are as follows: 

1. The mechanics of how routing information is stored 

2. The manner in which routes are added or deleted from the route table. 

3. When and how route information is retrieved from the route table. 

4. Notification of route table changes lo interested parties. 

Provisional Pat. App. of Alacritech, Inc. 33 
Inveotots Laurence B. Boucher et al. 

Express Mail Label# EH756230105US 

WISTRON CORP. EXHIBIT 1031.037



4.5.3.3. l The route table 

In FreeBSD, the route table is maintained using an algorithm known as PATRICIA 
(Practical Algorithm To Retrieve lnfonnation Coded in Alphanumeric). This is a 
complicated algorithm that is a bit costly to set up, but is very efficient to refere~ce. 
Since the routing table should contain the same information for both NT and FreeBSD, 
and since the key used to search for an entry in the routing table will be the same for each 
(the destination IP address), we should be able to port the routing table software to NT 
without any major changes. 

The software which implements the route table (via the PATRICIA algorithm) is located 
in the FreeBSD file, radix.c. This file will be ported directly to the ATCP driver with no 
significant changes required. 

4.5.3.3.2 Adding and deleting routes 

Routes can be added or deleted in a number of different ways. The kernel adds or deletes 
routes when the state of an interface changes or when an ICMP redirect is received. User 
space programs such as the RIP daemon, or the route command also modify the route 
table. 

For kernel-based route changes, the changes can be made by a direct call to the routing 
software. The FreeBSD software that is responsible for the modification of route table 
entries is found in route.c. The primary routine for all route table changes is called 
rtrequestQ. It takes as its arguments, the request type (ADD, RESOLVE, DELETE), the 
destination IP address for the route, the gateway for the route, the netmask for the route, 
the flags for the route, and a pointer to the route structure (struct rtentry) in which we will 
place the added or resolved route. Other routines in the route.c file include rtinil(), which 
is called during interface initialization time to add a static route to the network. rtredirect, 
whkh is called by ICMP when we receive a ICMP redirect, and an assortment of support 
routines used for the modification ofroute table entries. All of these routines found in 
route.c will be ported with no major modifications. 

For user-space-based changes, we will have to be a bit more clever. 1n FreeBSD, route 
changes are sent down to the kernel from user-space applications via a special route 
socket. This code is found in the FreeBSD file, rtsock.c. Obviously this will not work 
for our ATCP driver. Instead the filter driver portion of our driver will intercept route 
changes destined for the Microsoft TCP driver and will apply those modifications to our 
own route table via the rtrequest routin~ described above. In order to do this, it will have 
to do some fonnat translation to put the data into the format (sockaddr_in) expected by 
the rtrequest routine. Obviously, none of the code from rtsock.c will be ported to the 
ATCP driver. This same procedure will be used to intercept and process explicit ARP 
cache modifications. 

4.5.3.3.3 Consulting the route table 

In FreeBSD. the route table is consulted in ip_output when an IP datagram is being sent. 
In order to avoid a complete route table search for every outgoing datagram, the route is 
stored into the in_pcb for the connection. For subsequent call.s to ip_output, the route 
entry is then simply checked to ensure validity. While we will keep this basic operation 
as is, we will require a slight modification to allow us to coexist with the Microsoft TCP 

Provisional Pat. App. of Alacritech, lnc. 34 
Inventors Laurence B. Boucher et al. 

Express Mall Label # EH756230105US 

WISTRON CORP. EXHIBIT 1031.038



driver. When an active connection is being set up, our filter driver will have to determine 
whether the connection is going to be handled by one of the INIC interfaces. To 'do tills, 
we will have to consult the route table from the filter driver portion of our driver. This is 
done via a call to the rtallocl function (found in route.c). If a valid route table e~try is 
found, then we will take control of the connection and set a pointer to the rtentry ,structure 
returned by rtallocl in our in_pcb structure. 

4.5.3.3.4 What to do when a route changes. 

When a route table entry changes, there may be connections that have pointers to a stale 
route table entry. These connections will need to be notified of the new route. FreeBSD 
solves tills by checking the validity of a route entry during every call to ip _output. If the 
entry is no longer valid, its reference to the stale route table entry is removed, and an 
attempt is made to allocate a new route to the destination. For our slow path, tills will 
work fine. Unfortunately, since our IP processing is handled by the INIC for our fast 
path, this sanity check method will not be sufficient. Instead, we will need to perform a 
review of all of our fast path connections during every route table modification. If the 
route table change affects our connection, we will need to advise the INIC with a new 
first-hop address, or if the destination is no longer reachable, close the connection 
entirely. 

4.5.3.4 ICMP 

Like the ARP code above, we will need to process certain types of incoming ICMP 
frames. Of the 10 possible ICMP message types, there are only three that we need to 
support. These include ICMP _REDIRECT, ICMP _ UNREACH, and 
ICMP _SOURCEQUENCH. Any FreeBSD code to deal with other types ofICMP traffic 
will be removed. Instead, we will simply return NDIS_STATUS_NOT_ACCEPTED for 
all but the above ICMP frame types. This section describes bow we will handle these 
ICMP frames. 

4.5.3.4. l ICMP_REDIRECT 

Under FreeBSD, an ICMP _REDIRECT causes two things to occur. First, it causes the 
route table to be updated with the route given in the redirect. Second, it results ;in a call 
back to TCP to cause TCP to flush the route entry attached to its associated in_pcb 
structures. By doing this, it forces ip_output to search for a new route. As mentioned in 
the Route section above, we will also require a call to a routine which will Tevi<?W all of 
the TCP fast-path connections, and update the route entries as needed (in tills c!15e 
because the route entry has been zeroed). The INIC will then be notified of the route 
changes. 

4.5.3.4.2 ICMP_UNR:EPt.CH 

In both FreeBSD and Microsoft TCP, the ICMP _UNREACH results in no mor.e than a 
simple statistic update. We will do the same. 

4.5.3.4.3 ICMP _SOURCEQUENCH 
A source quench is sent to cause a TCP sender to close its congestion window to a single 
segment, thereby putting the sender into slow-start mode. We will keep the FreeBSD 
code as-is for slow-path connections. For fast path connections we will send a 
notification to the card that the congestion window for the given connection has been 
reduced. The INIC will then be responsible for the slow-start algorithm. 

Provisional Pat. App. of Alacritech, Inc. 35 
Inventors Laurence B. Boucher et al. 

Express Mail Label# EH756230105US 

WISTRON CORP. EXHIBIT 1031.039



. . .. 
4.5.3.5 IP 
The FreeBSD IP code should require few modifications when porting to the ATCP 
driver. What few modifications will be required will be discussed in this section. 

4.5.3.5.l IP initialization 
During initialization time, ip_init is called to initialize the array ofprotosw structures. 
These structures contain all the information needed by IP to be able to pass incoming data 
to the correct protocol above it. For example, when a UDP datagram arrives, IP iocates 
the protosw entry corresponding to the UDP protocol type value (Oxl 1) and calls the 
input routine specified in that protosw entry. We will keep the array of protosw 
structures intact, but since we are only handling the TCP and ICMP protocols above IP, 
we will strip the protosw array down substantially. 

4.5.3.5.2 IP input 

Following are the changes required for IP input (function ip_intrO). 

4.5.3.5.2.1 No IP forwarding 

Since we will only be handling datagrams for which we are the final destination, we 
should never be required to forward an IP datagram. All references to IP forwarding, and 
the ip_forward function itself, can be removed. 

4.5.3.5.2.2 IP options 

The only options supported by FreeBSD at this time include record route, strict and loose 
source and record route, and timestamp. For the timestarnp option, FreeBSD only logs 
the current time into the IP header so that before it is forwarded. Since we will not be 
forwarding IP datagrams, this seems to be of little use to us. While FreeBSD supports the 
remaining options, NT essentially does nothing useful with them. For the moment, we 
will not bother dealing with IP options. They will be added in later if needed. 

4.5.3.5.2.3 IP reassembly 

There is a small problem with the FreeBSD IP reassembly code. The reassembly code 
reuses the IP header portion of the IP datagram to contain IP reassembly queue 
information. It can do this because it no longer requires the original IP header. This is an 
absolute no-no with the NDIS 4.0 method of handling network packets. The NT DDK 
explicitly states that we must not modify packets given to us by NDJS. This is not the 
only place in which the FreeBSD code modifies the contents of a network buffer. It also 
does this when performing endian conversions. At the moment we will leave th.is code as 
is and violate the DDK rules. We believe we can do this because we are going.to ensure 
that no other transport driver looks at these frames. If this becomes a problem we will 
have to modify this code substantially by moving the IP reassembly fields into the mbuf 
header. 

4.5.3.5.3 IP output 
There are only two modifications required for IP output. The first is that since, for the 
moment, we are not dealing with IP options, there is no need for the code that inserts the 
IP options into the IP header. Second, we may discover that it is impossible for us to ever 
receive an output request that requires fragmentation. Since TCP performs Maximum 
Segment Size negotiation, we should theoretically never attempt to send a TCP segment 
larger than the MTU .. 

Provisional Pat. App. of Alacrltech, Inc. 36 
Inventors Laurence B. Boucher et al. 

Express Mail Label# EH756230l05US 

WISTRON CORP. EXHIBIT 1031.040



4.6 NDIS Protocol Driver 

This section defines protocol driver portion of the ATCP driver. The protocol drjver 
portion of the ATCP driver is defined by the set ofroutines registered with NDIS via a 
call to NdisRegisterProtocol. These routines are limited to those that are called 
(indirectly) by the INIC miniport driver beneath us. For example, we register a 
ProtocolReceivePacket routine so that when the INIC driver calls 
NdisMindicateReceivePacket it will result in a call from NDIS to our driver. S~ctly 
speaking, the protocol driver portion of our driver does not include the method b'.y which 
our driver calls down to the miniport (for example, the method by which we send 
network packets). Nevertheless, we will describe that method here for lack of a better 
place to put it. That said, we cover the following topics in this section of the document: 

1. Initialization 
2. Receive 
3. Transmit 
4. Query/Set Information 
5. Status indications 
6. Reset 
7. Halt 

4.6. l Initialization 

The protocol driver initialization occurs in two phases. The first phase occurs when the 
ATCP DriverEntry routine calls ATKProtoSetup. The ATKProtoSetup routine:performs 
the following: 

1. Allocate resources - We attempt to allocate many of the required resour9es as soon 
as possible so that we are more likely to get the memory we want. This mostly 
applies to allocating and initializing our mbuf and mbuf header pools. 

2. Register Protocol - We call NdisRegisterProtocol to register our set ofp!otocol 
driver routines. 

3. Locate and initialize bound NICs - We read the Linkage parameters of the registry 
to determine which NIC devices we are bound to. For each of these devices we 
allocate and initialize a IF ACE structure (defined above). We then readithe TCP 
parameters out of the registry for each bound device and set the corresponding 
fields in the IF ACE structure. 

After the underlying INIC devices have completed their initialization, NDIS will call our 
driver's ATKBindAdapter function for each underlying device. It will perform the 
following: 

l. Open the device specified in the call the ATKBindAdapter 
2. Find the IF ACE structure that was created in A TK.ProtoSetup for this device. 
3. Query the miniport for adapter information. This includes such things as link 

speed and MAC address. Save relevant information in the IF ACE structure. 
4. Perform the interface initialization as specified in section 4.5.3. l Interface 

initialization 

Provisional Pat. App. of Alacritech, Inc. 
Inventors Laurence B. Boucher et al. 

Express Mail Label II EH756230105US 

37 

WISTRON CORP. EXHIBIT 1031.041

eeOEEeeeCy

4.6 NDIS Protocol Driver

This section defines protocoldriver portion of the ATCP driver. The protocol driver
portion of the ATCP driver is defined by the set ofroutines registered with NDIS viaa
call to NdisRegisterProtecol. These routines are limited to those that are called
(indirectly) by the INIC miniport driver beneath us. For example, we register a
ProtocolReceivePacket routine so that when the INIC driver calls

NdisMIndicateReceivePacket it will result in a call from NDIS to our driver. Strictly
speaking, the protocol driver portion of our driver does not include the method by which
our driver calls down to the mimiport (for example, the method by which we send
network packets). Nevertheless, we will describe that method herefor lack of a better
place to putit. That said, we cover the following topics in this section of the document:

1. Initialization

Receive
Transmit

Query/Set Information
Status indications
Reset
Halt

SAWRYN
4.6.1 Initialization

The protocol driverinitialization occurs in two phases. Thefirst phase occurs when the
ATCPDriverEntry routine calls ATKProtoSetup. The ATKProtoSetup routineperforms
the following:

1. Allocate resources — We attemptto allocate many ofthe required resources as soon
as possible so that we are morelikely to get the memory we want. This mostly
applies to allocating andinitializing our mbuf and mbuf header pools.

2. Register Protocol — We call NdisRegisterProtocol to register our set ofprotocol
driver routines.

3. Locate and initialize bound NICs— Weread the Linkage parameters ofthe registry
to determine which NIC devices we are bound to. For each ofthese devices we

allocate and initialize a IFACE structure (defined above). We then read'the TCP
parameters out ofthe registry for each bound device and set the corresponding
fields in the IFACE structure.

After the underlying INIC devices have completed their initialization, NDIS will call our
driver's ATKBindAdapter function for each underlying device. {t will perform the
following:

1. Open the device specified in the call the ATKBindAdapter
2. Find the IFACEstructure that was created in ATKProtoSetup for this device.
3. Query the miniport for adapter information. This includes such things as link

speed and MACaddress. Save relevantinformation in the IFACE structure.
4. Perform the interfaceinitialization as specified in section 4.5.3.1 Interface

initialization

Provisional Pat. App. of Alacritech, Inc. 37
Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

WISTRON CORP. EXHIBIT 1031.041



' I • 

li 

4.6.2 Receive 

Receive is handled by the protocol driver routine ATKReceivePacket. Before we 
describe this routine, it is important to consider each possible receive type and how it will 
be handled. 

4.6.2.l Receive overview 
Our INIC miniport driver will be bowtd to our transport driver as well as the gen!lfic 
Microsoft TCP driver (and possibly others). The ATCP driver will be bound excJusively 
to INIC devices, while the Microsoft TCP driver will be bound to INIC devices as well as 
other types ofNICs. This is illustrated below: 

Filter Driver 

ATCP 
Microsoft Driver 
TCP/IP 
Driver 

I I I 
3COM INIC 
Miniport Miniport 
Driver Driver 

By binding the driver in this fashion, we can choose to direct incoming network data to 
our own ATCP transport driver, the Microsoft TCP driver, or both. We do this by 
playing with the ethemet "type" field as follows. 

To NDIS and the transport drivers above it, our card is going to be registered as a normal 
ethemet card. When a transport driver receives a packet from our driver, it will expect 
the data to start with an ethernet header, and consequently, expects the protocol type field 
to be in byte offset 12. If Microsoft TCP finds that the protocol type field is not equal to 
either IP, or ARP, it will not accept the packet. So, to deliver an incoming packet to our 
driver, we must simply map the data such that byte 12 contains a non-recognized ethernet 
type field . Note that we must choose a value that is greater than 1500 bytes so that the 
transport drivers do not confuse it with an 802.3 frame. We must also choose a value that 
will not be accepted by other transport driver such as Appletalk or IPX. Similarly, if we 
want to direct the data to Microsoft TCP, we can then simply leave the ethemet type field 
set to IP (or ARP). Note that since we will also see these frames we can choose to accept 
o~ not-accept them as necessary. 

Provisional Pat. App. of Alacritecb, Inc. 38 
Inventors Laurence B. Boucher et al . 

Express Mail Label# EH756230105US 

WISTRON CORP. EXHIBIT 1031.042

LOhnTHT"GOATIONS

4.6.2 Receive

Receive is handled by the protocol driver routine ATKReceivePacket. Before we
describe this routine, it is important to consider each possible receive type and how it will
be handled.

4.6.2.1 Receive overview

Our ENIC miniport driver will be bound to our transport driver as well as the generic
Microsoft TCP driver (and possibly others). The ATCP driver will be bound exclusively
to INIC devices, while the Microsoft TCP driver will be bound to [NIC devices as well as
other types of NICs. This is illustrated below:

 
Bybinding the driver in this fashion, we can choose to direct incoming network data to
our own ATCP transport driver, the Microsoft TCP driver, or both. We dothis by
playing with the ethernet “type” field as follows.

To NDISandthe transport drivers aboveit, our card is going to be registered as a normal
ethernet card. When a transport driver receives a packet from our driver, it will expect
the data to start with an ethernet header, and consequently, expects the protocol type field
to be in byte offset 12. IfMicrosoft TCP finds that the protocol type field is not equal to
cither IP, or ARP,it will not accept the packet. So, to deliver an incoming packet to our
driver, we must simply map the data such that byte 12 contains a non-recognized ethernet
type ficld, Note that we must choose a value that is greater than 1500 bytes so that the
transport drivers do not confuse it with an 802.3 frame. We must also choose a value that
will not be accepted by other transport driver such as Appletalk or [PX. Similarly, ifwe
want to direct the data to Microsoft TCP, we can then simply leave the ethemet type field
set to IP (or ARP), Note that since we will also see these frames we can choose to accept
or not-accept them as necessary.

Provisional Pat. App. of Alacritech, Inc. 38
Inventors Laurence B. Boucher et al,

Express Mail Label # EH756230105US

WISTRON CORP.EXHIBIT 1031.042



Incoming packets are delivered as follows: 

Packets delivered to ATCP only (not accepted by MSTCP): 

1. AJI TCP packets destined for one of our IP addresses. This includes both slow
path frames and fast-path frames. In the slow-path case, the TCP frames are given 
in there entirety (headers included). In the fast-path case, the ATKReceivePacket 
is given a header buffer that contains status infonnation and data with no headers 
(except those alx>ve TCP). More on this later. 

Packets delivered to Microsoft TCP only (not accepted by ATCP): 

1. All non-TCP packets. 

2. All packets that are not destined for one of our interfaces (packets that will be 
routed). Continuing the above example, ifthere is an IP address 144.48.252.4 
associated with the 3com interface, and we receive a TCP connect with a 
destination IP address of 144.48.252.4, we will actually want to send that· request 
up to the ATCP driver so that we create a fast-path connection for it. This means 
that we will need to know every IP address in the system and filter frames based 
on the destination IP address in a given TCP datagram. Titis can be done in the 
INIC miniport driver. Since it will be the ATCP driver that learns of dynamic IP 
address changes in the system, we will need a method to notify the INIC rniniport 
of all the IP addresses in the system. More on this later. 

Packets delivered to both: 

1. All ARP frames 

2. AH ICMP frames 

4.6.2.2 Two types ofreceive packets 

There are several circumstances in which the INIC will need to indicate extra information 
about a receive packet to the ATCP driver. One such example is a fast path receive in 
which the ATCP driver will need to be notified of how much data the card has .buffered. 
To accomplish this, the first (and sometimes only) buffer in a received packet will 
actually be an INIC header buffer. The header buffer contains status information about 
the receive packet, and may or may not contain network data as well. The A TCP driver 
will recognize a header buffer by mapping it to an ethemet frame and inspecting the type 
field found in byte 12. We wili indicate all TCP frames destined forus in this fashion, 
while frames that are destined for both our driver and the Microsoft TCP driver (ARP, 
ICMP) will be indicated without a header buffer. 

Provisional Pat. A.pp. of Alactitech, Inc. 
lnventors Laurence B. Boucher et al. 

Express Mail Label# E.H756230105US 

39 

WISTRON CORP. EXHIBIT 1031.043



PacketDesc 

BufferDcsc 

Header 
Buffer 

BufferDesc 

TCP Packet 

Ex~le of incoming TCP pkt 

PacketDesc 

BuffcrDesc 

E.xample of incornixlg ARP Frame 

4.6.2.3 NDIS 4 ProtocolReceivePacket operation 

NDIS has been designed such that all packets indicated via NdisMlndicateReceivePacket 
by an underlying miniport are delivered to the ProtocolReceivePacket routine for all 
protocol drivers bound to it. These protocol drivers can choose to accept or not :accept 
the data. They can either accept the data by copying the data out of the packet indicated 
to it, or alternatively they can keep the packet and return it later via a call to 
NdisRetumPackets. By implementing it in this fashion, NDIS allows more than one 
protocol driver to accept a given packet. For this reason. when a packet is deliv,ered to a 
protocol driver, the contents of the packet descriptor, buffer descriptors and data must all 
be treated as read-only. At the moment, we intend to violate this rule. We choose to 
violate this because much of the FreeBSD code modifies the packet headers as it 
examines them (mostly for endian conversion purposes). Rather than modify all of the 
FreeBSD code, we will instead ensure that no other transport driver accepts the data by 
making sure that the ethemet type field is unique to us (no one else will want it). 
Obviously this only works with data that is only delivered to our ATCP driver. For ARP 
and ICMP frames we will instead copy the data out of the packet into our own buffer and 
return the packet to NDIS directly. While this is less efficient than keeping the data and 
returning it later, ARP and ICMP traffic should be small enough, and infrequel).t enough, 
that it doesn't matter. 

The DDK specifies that when a protocol driver chooses to keep a packet, it should return 
a value of 1 (or more) to NDIS in its ProtocolReceivePacket routine. The packet is then 
later returned to NDIS via the call to Nd.i.sReturnPackets. This can only happen after the 
ProtocolReceivePacket has returned control to NDIS. This requires that the call to 
NdisReturnPackets must occur in a different execution context. We can accomplish this 
by scheduling a DPC, scheduling a system thread, or scheduling a kernel thre~d of our 
own. For brevity in this section, we will assume it is a done through a DPC. In any case, 
we will require a queue of pending receive buffers on which to place and fetch receive 
packets. 

After a receive packet is dequeued by the DPC it is then either passed lo TCP ilireclly for 
fast-path processing, or it is sent through the FreeBSD path for slow-path processing. 
Note that in the case of slow-path processing, we may be working on data that needs to 
be returned to NDIS (TCP data) or we may be working on our own copy of the data 

Provisional Pat. App. of Alacriteeh, Inc. 40 
Inventors Laurence B. Boucher et al. 

Express Mail Label# EH756230105US 

WISTRON CORP. EXHIBIT 1031.044

ABATOC"60HToaoo9

rae

 
Example ofincoming TCP pkt Example ofincoming ARP Frame

4.6.2.3 NDIS 4 ProtocolReceivePacket operation

NDIShas been designed such thatall packets indicated via NdisMIndicateReceivePacket
by an underlying miniport are delivered to the ProtocolReceivePacket routine forall
protocol drivers boundto it. These protocol drivers can choose to accept or not accept
the data. They can either accept the data by copying the data outof the packet indicated
to it, or alternatively they can keep the packet andreturn it later via a call to
NdisReturnPackets. By implementingit in this fashion, NDIS allows more than one
protocol driver to accept a given packet. For this reason, when a packetis delivered to a
protocol driver, the contents ofthe packet descriptor, buffer descriptors and data mustall
be treated as read-only. At the moment, we intend to violate this rule. We choose to
violate this because much ofthe FreeBSD code modifies the packet headers as it
examines them (mostly for endian conversion purposes). Rather than modify all of the
FreeBSD code, we will instead ensure that no other transport driver accepts the data by
making sure that the ethernet type field is unique to us (no one else will wantit).
Obviously this only works with data that is only delivered to our ATCP driver. For ARP
and ICMP frames we will instead copy the data outofthe packet into our own buffer and
return the packet to NDIS directly. While this is less efficient than keeping the data and
returning it later, ARP and ICMP traffic should be small enough, and infrequent enough,
that it doesn’t matter.

The DDKspecifies that when a protocol driver chooses to keepapacket, it should return
a value of 1 (or morc) to NDISin its ProtocolReceivePacket routine. The packetis then
later returned to NDISviathe call to NdisReturnPackets. This can only happen after the
ProtocolReceivePacket has returned control to NDIS. This requires that the call to
NdisReturnPackets must occur in a different execution context. We can accomplish this
by scheduling a DPC, scheduling a system thread, or scheduling a kernel thread ofour
own. Forbrevity in this section, we will assumeit is a done through a DPC. In anycase,
wewill require a queueofpendingreceive buffers on whichto place and fetch receive
packets.

After a receive packet is dequeued by the DPCit is then either passed to TCP directly for
fast-path processing,orit is sent through the FreeBSD path for slow-path processing.
Note thatin the case of slow-path processing, we may be working on data that needs to
be returned to NDIS (TCP data) or we may be working on our own copyofthe data

Provisional Pat. App. of Alacritech, Inc. 40
Inventors Laurence B. Boucher ¢tal.

Express Mail Label # EH756230105SUS

WISTRON CORP.EXHIBIT 1031.044



(ARP and ICMP). When we finish with the data we will need to figure out whether or 
not to return the data to NDIS or not. This will be done via fields in the mbuf helµier 
used to map the data. When the mfreem routine is called to free a chain of mbufs, the 
fields in the mbufwill be checked and, if required, the packet descriptor pointed to by the 
mbufwill be returned to NDIS. 

4.6.2.4 Mbuf ¢> Packet mapping 

As noted in the section on mbufs above, we will map incoming data to mbufs so that our 
FreeBSD port requires fewer modifications. Depending on the type of data received, this 
mapping will appear differently. Here are some examples: 

Data 
Next ~O 

Bu II er 

Header 
Buffer 

Example A. 
TCP Fast-path 

Header 
buffer 

A dr 
PacketdCS<: 

E)(all)ple B. 

Data 
Buffer 

TCP Slow-path 

Data 
Buffer 

Example C. 
ARP Frame 

In Example A, we show incoming data for a TCP fast-path connection. In this example, 
the TCP data is fully contained in the header buffer. The header buffer is mapped by the 
mbuf and sent upstream for fast-path TCP processing. In this case it is required that the 
header buffer be mapped and sent upstream because the fast-path TCP code wi:ll need 
infonnation contained in the header buffer in order to pe.rfonn the processing. When the 
mbufin this example is freed, the mfreem routine will determine that the mbufmaps a 
packet that is owned by NDIS and will then free the mbufbeader only and call 
NdisReturnPackets to free the data. 

In Example B, we show incoming data for a TCP slow-path connection. In this example 
the mbuf points to the start of the TCP data directly instead of the header buffer. Since 
this buffer will be sent up for slow-path FreeBSD processing, we can not have the mbuf 
pointing to a header buffer (FreeBSD would get awfully confused). Again, when mfteem 

Provisional Pat. App. of Alacritccb, Inc. 41 
Iovcnto~ Laurence B. Boucher el al. 

Express Mail Label fl EH756230105US 

WISTRON CORP. EXHIBIT 1031.045

ohCOT"Satanos 
(ARP and ICMP). When wefinish with the data we will need to figure out whether or
not to return the data to NDIS or not. This will be done via fields in the mbufheader
used to map the data. When the mfreem routineis called to free a chain ofmbufs, the
fields in the mbuf will be checked and, if required, the packet descriptor pointed to by the
mbufwill be returned to NDIS.

4.6.2.4 Mbuf + Packet mapping

Asnoted in the section on mbufs above, we will map incoming data to mbufs so that our
FreeBSD port requires fewer modifications. Depending on the type of data received, this
mapping will appear differently. Here are some examples:

Example B.
TCP Fast-path TCP Slow-path

 
In Example A, we show incoming data for a TCP fast-path connection. In this example,
the TCP data is fully contained in the header buffer. The header buffer is mapped by the
mbuf and sent upstream for fast-path TCP processing. In this caseit is required that the
header buffer be mapped andsent upstream becausethe fast-path TCP code will need
information contained in the header buffer in order to perform the processing. When the
mbufin this example is freed, the mfreem routine will determine that the mbuf maps a
packet that is owned by NDIS and will then free the mbufheader only andcall
NdisReturnPackets to free the data.

In Example B, we show incoming data for a TCP slow-path connection. In this example
the mbufpoints to the start of the TCP data directly instead ofthe header buffer. Since
this buffer will be sent up for slow-path FreeBSD processing, we can not have the mbuf
pointing to a header buffer (FreeBSD would get awfully confused). Again, when mfreem

Provisional Pat. App. of Alacritech, Inc. 41
Inventors Laurence B. Boucher etal.

Express Mail Label # EH756230105US

WISTRON CORP. EXHIBIT 1031.045



" 

is called to free the mbuf, it will discover the mapped packet, free the mbufheader, and 
call NDIS to free the packet and return the underlying buffers. Note that even though we 
do not directly map the header buffer with the mbufwe do not lose it because ofihe link 
from the packet descriptor. Note also that we could alternatively have the INIC Itliniport 
driver only pass us the TCP data buffer when it receives a slow-path receive. This would 
work fine except that we have determined that even in the case of slow-path collI!ectfons 
we are going to attempt to offer some assistance to the host TCP driver (most lik~ly by 
checksum processing only). In this case there may be some special fields that we need to 
pass up to the ATCP driver from the INIC driver. Leaving the header buffer conhected 
seems the most logical way to do this. 

Finally, in Example C, we show a received ARP frame. Recall that for incoming ARP 
and ICN.tP frames we are going to copy the incoming data out of the packet and ~turn it 
directly to NDIS. In thls case the mbuf simply points to our data, with no corresponding 
packet descriptor. When we free this mbuf, mfreem will discover thls and free not only 
the mbufheader, but the data as well. 

4.6.2.S Other receive packets 

We use this receive mechanism for other purposes besides the reception of network data. 
It is also used as a method of communication between the ATCP driver and the INIC. 
One such example is a TCP context flush from the INIC. When the IN1C deten:ilines, for 
whatever reason, that it can no longer manage a TCP connection, it must flush that 
connection to the ATCP driver. It will do this by filling in a header buffer with 
appropriate status and delivering it to the INIC driver. The INIC driver will in t,um 
deliver it to the protocol driver which will treat it essentially like a fast-path TCP 
connection by mapping the header buffer with an mbuf header and delivering it to TCP 
for fast-path processing. There are two advantages to communicating in this manner. 
First, it is already an established path, so no extra coding or testing is required. Second, 
since a context flush comes in, in the same manner as received frames, it will prevent us 
from getting a slow-path frame before the context has been flushed. 

4.6.2.6 Summary 

Having covered all of the various types of receive data, following are the steps that are 
taken by the ATK.ProtocolReceivePacket routine. 

I. Map incoming data to an ethemet frame and check the type field. 
2. If the type field contains our custom INIC type then it should be TCP 
3. If the header buffer specifies a fast-path connection, allocate one or more mbufs 

headers to map the header and possibly data buffers. Set the packet descriptor 
field of the mbufto point to the packet descriptor, set the mbuffJags appropriately, 
queue the mbuf, and return 1. 

4. If the header buffer specifies a slow-path connection, allocate a single mbufheader 
to map the network data, set the rnbuf fields to map the packet, queue the mbuf 
and return l . Note that we design the INIC such that we will never get a TCP 
segment split across more than one buffer. 

Provisional Pat. App. of Alacritech. Inc. 42 
Inventors Laurence B. Boucher et al . 

Express Mail Label# EH756230105US 

WISTRON CORP. EXHIBIT 1031.046



• 

5. If the type field of the frame indicates ARP or ICMP 
6. Allocate a mbufwith a data buffer. Copy the contents of the packet into the mbuf. 

Queue the mbuf, and return 0 (not accepted). 
7. If the type field is not either the INIC type, ARP or ICMP, we don' t want it. 

RetumO. 

The receive processing will continue when the mbufs are dequeued. At the moment this 
is done by a routine called ATKProtocolReceiveDPC. It will do the following: 

1. Dequeue a mbuffrom the queue. 
2. Inspect the mbufflags. If the mbufis meant for fast-path TCP, it will call the fast

palh routine directly. Otherwise it will call the ethemet input routine for slow-path 
processing. 

4.6.3 Transmit 

In this section we discuss the ATCP transmit path. 

4.6.3. l NDIS 4 send operation 

The NDIS 4 send operation works as follows. When a transport/protocol driver wishes to 
send one or more packets down to an NDIS 4 rniniport driver, it calls NdisSendPackets 
with an array of packet descriptors to send. As soon as this routine is called, the 
transport/protocol driver relinquishes ownership of the packets until they are returned, 
one by one in any order, via a NDIS call to the ProtocolSendComplete routine. Since this 
routine is called asynchronously, our ATCP driver must save any required context into 
the packet descriptor header so that the appropriate resources can be freed. This is 
discussed further in the following sections. 

4.6.3.2 Types of"sends" 

Like the Receive path described above, the transmit path is used not only to send network 
data, but is also used as a communication mechanism between the host and the INIC. 
Here are some examples of the types of sends performed by the ATCP driver. 

4.6.3.2.1 Fast-path TCP send 

When the ATCP driver receives a transmit request with an associated MDL, it will 
package up the MDL physical addresses into a command buffer, map the command 
buffer with a buffer and packet descriptor, and call NdisSendPackets with the 
corresponding packel The underlying INIC driver will issue the command buffer to the 
INIC. When the corresponding response buffer is given back to the host, the INIC 
miniport will call NdisMSendComplete which will result in a call to the ATCP 
ProtoeolSendComplete (ATKSendComplete) routine, at which point the resources 
associated with the send can be freed. We will allocate and use a mbufto bold the 
command buffer. By doing this we can store the context necessary in order to clean up 
after the send completes. This context includes a pointer to the MDL and presumably 
some other connection context as well. The other advantage to using a mbuf to hold the 
command buffer is that it eliminates having another special set of code to allocate and 
return command buffer. We will store a pointer to the mbuf in the reserved section of the 

Provisional Pat. App. of Alacritcch, Inc. 43 
Inventors Laurence B. Boucher el al . 

Express Mail Label# BH756230105US 

WISTRON CORP. EXHIBIT 1031.047



.. 
packet descriptor so we can locate it when the send is complete. The following diagram 
illustrates the relationship between the client's MDL, the command buffer, and the buffer 
and packet descriptol'S. 

Packet 
Desc 

Command 
Buffer Buffer 
Desc. Data 

4.6.3.2.2 Fast-path TCP Receive 

As described in section 4.3.1 above, the receive process typically occurs in two phases. 
First the INIC fills in a host receive buffer with a relatively small amount of data, but 
notifies the host of a large amount of pending data (either through a large amount of 
buffered data on the card, or through a large amount of expected NetBios data). This 
small amount of data is delivered to the client through the TDI interface. The client will 
then respond with a MDL in which the data should be placed. Like the Fast-path TCP 
send process, the receive portion of the ATCP driver will then fill in a command buffer 
with the :rvIDL information from the client, map the buffer with packet and buffer 
descriptors and send it to the INIC via a call to NdisSendPackets. Again, when the 
response buffer is returned to the INIC miniport, the ATKSendComplete routine will be 
called and the receive will complete. This relationship between the MDL, cora.µiand 
buffer and buffer and packet descriptors are the same as shown in the Fast-path:send 
section above. 

4.6.3.2.3 Slow-path (FreeBSD) 

Slow-path sends pass through the FreeBSD stack until the ethernet header is prepended in 
ether_output and the packet is ready to be sent. At this point a command buffet will be 
filled with pointers to the ethernet frame, the command buffer will be mapped with a 
packet and buffer descriptor and NdisSendPackets will be called to hand the packet off to 
the m.in.iport. In the illustration below we show the relationship between the mbufs, 
command buffer, and buffer and packet descriptors. Since we will use a mbuf to map the 
command buffer, we can simply link the data mbufs directly off of the command buffer 
mbuf. This will make the freeing of resources much simpler. 

Packet 
Desc 

Buffer 
Desc. 

Provisional Pai. App. of Alacritech, Inc. 
lnveotors Laurence B. Boucher et al . 

Bit.press Mail Label# EH75623010SUS 

44 

WISTRON CORP. EXHIBIT 1031.048

£6hTO"eoasrsoo09

packet descriptor so we can locate it when the send is complete. The following diagram
illustrates the relationship between the client’s MDL, the commandbuffer, and the buffer
and packet descriptors.

 
4.6.3.2.2 Fast-path TCP Receive

As described in section 4.3.1 above, the receive process typically occurs in two phases.
First the INIC fills in a host receive buffer with a relatively small amountofdata, but
notifies the host of a large amount of pending data (cither through a large amount of
buffered data on the card, or through a large amount of expected NetBios data). This
small amountofdata is delivered to the client through the TDI interface. The client will
then respond with a MDL in which the data should be placed. Like the Fast-path TCP
send process, the receive portion of the ATCP driver will then fill in a command buffer
with the MDL information from the client, map the buffer with packet and buffer
descriptors and sendit to the INIC via a call to NdisSendPackets. Again, when the
responsebuffer is returned to the INIC miniport, the ATKSendComplete routine will be
called and the receive will complete. This relationship between the MDL, command
buffer and buffer and packet descriptors are the same as shown in the Fast-path send
section above.

4.6.3.2.3  Slow-path (FreeBSD)

Slow-path sends pass through the FreeBSD stack until the ethernet header is prepended in
ether_output and the packet is ready to be sent. At this point a commandbuffer will be
filled with pointers to the ethernet frame, the commandbuffer will be mapped with a
packet and buffer descriptor and NdisSendPackets will be called to hand the packetoffto
the miniport. In the illustration below we show the relationship between the mbufs,
command buffer, and buffer and packet descriptors. Since we will use a mbuf to map the
command buffer, we can simply link the data mbufs directly offofthe command buffer
mbuf. This will make the freeing of resources much simpler.

 
Provisional Pat. App. of Alacritech, Inc. 44

Inventors Laurence B. Boucheretal.

Express Mail Label # EH756230105US

WISTRON CORP.EXHIBIT 1031.048



• 

4.6.3.2.4 Non-data command buffer 

The transmit path is also used to send non-data commands to the card. For example, the 
ATCP driver gives a context to the INIC by filling in a command buffer, mapping it with 
a packet and buffer descriptor, and calling Nd.isSendPackets. 

Packet 
Desc 

Buffer 
Desc. 

4.6.3.3 ATKProtoco!SendComplete 

Given the above different types of sends, the ATKProtocolSendComplete routine wi II 
perform various types of actions when it is called from NDIS. First it must examine the 
reserved area of the packet descriptor to determine what type of request has completed. 
In the case of a slow-path completion, it can simply free the mbufs, command buffer, and 
descriptors and return. In the case of a fast-path completion, it will need to notify the 
TCP fast path routines of the completion so TCP can in turn complete the client's IRP. 
Similarly, when a non-data command buffer completes, TCP will again be notified that 
the command sent to the INIC has completed. 

4.7 TDI Filter Driver 

In a first embodiment of the product, the INIC handles only simple-case data transfer 
operations on a TCP connection. (These of course constitute the large majority of CPU 
cycles consumed by TCP processing in a conventional driver.) 

There are many other complexities of the TCP protocol which must still be handled by 
host driver software: connection setup and breakdown. out-of-order data. nonstandard 
flags, etc. 

The NT OS contains a fully functional TCP/IP driver, and one solution would be to 
enhance this so that it is able to detect our INIC and take advantage of it by "handing oft" 
data-path processing where appropriate. 

Unfortunately, we do not have access to NT source, let alone permission to modify NT. 
Thus the solution above, while a goal, cannot be done immediately. We instead provide 
our own custom driver software on the host for those parts ofTCP processing which are 
not handled by the INIC. 

This presents a challenge. The NT network driver framework does make provision for 
multiple types of protocol driver: but it does not easily allow for multiple instances of 
drivers handling the SAME protocol. 

Provisional Pat. App. of Alacritech, l.oc. 
inventors Laurence B. Boucher et al . 

&press Mail Label# EH756230105US 

45 

WISTRON CORP. EXHIBIT 1031.049

ABhEOT’6NOBToo09

4.6.3.2.4 Non-data command buffer

The transmit path is also used to send non-data commands to the card. For example, the
ATCP driver gives a context to the INIC byfilling in a command buffer, mappingit with
a packet and buffer descriptor, and calling NdisSendPackets.

 
4.6.3.3 ATKProtocolSendComplete

Given the above different types ofsends, the ATKProtocolSendComplete routine will
perform varioustypes ofactions when it is called from NDIS. First it must cxamine the
reserved area ofthe packet descriptor to determine whattype ofrequest has completed.
In the case of a slow-path completion, it can simply free the mbufs, commandbuffer, and
descriptors and return. In the case ofa fast-path completion,itwill need to notify the
TCP fast path routines of the completion so TCP can in turn complete the client’s IRP.
Similarly, when a non-data command buffer completes, TCP will again be notified that
the command sentto the [NIC has completed.

4.7 TDI Filter Driver

Ina first embodiment ofthe product, the [NIC handles only simple-case data transfer
operations on a TCP connection. (These ofcourse constitute the large majority of CPU
cycles consumed by TCP processing in a conventional driver.)

There are many other complexities of the TCP protocol which must still be handled by
host driver software: connection setup and breakdown, out-of-order data, nonstandard
flags, etc.

The NT OScontains a fully functional TCP/IP driver, and one solution would be to
enhancethis so that it is able to detect our INIC and take advantageof it by "handingoff"
data-path processing where appropriate.

Unfortunately, we do not have access to NT source, let alone permission to modify NT.
Thus the solution above, while a goal, cannot be done immediately. We instead provide
our own custom driver software on the host for those parts ofTCP processing whichare
not handled by the INIC.

This presents a challenge. The NT networkdriver framework does make provision for
multiple types ofprotoco] driver: but it does not easily allow for multiple instances of
drivers handling the SAME protocol.

Provisional Pat. App. of Alacritech, Inc. 45
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

WISTRON CORP. EXHIBIT 1031.049



For example, there are no "hooks" into the Microsoft TCP/IP driver which would allow 
for routing of IP packets between our driver (handling our INICs) and the Microsoft 
driver (handling other NICs). 

Our approach to this is to retain the Microsoft driver for all non-TCP network p~cessing 
(even for traffic on our INICs), but to invisibly "steal" TCP traffic on our connections and 
handle it via our own (BSD-derived) driver. The Microsoft TCP/IP driver is unaware of 
TCP connections on interfaces we handle. 

The network "bottom end" of this artifice is described earlier in the document . In this 
section we will discuss the "top end": the TDI interface to higher-level NT network client 
software. · 

We make use of an NT facility called a filter driver. NT allows a special type of driver 
("filter driver") to attach itself"on top" of another driver in the system. The NT 110 
manager then arranges that all requests directed to the attached driver are sent first to the 
filter driver; this arrangement is invisible to the rest of the system. 

The filter driver may then either handle these requests itself, or pass them down to the 
underlying driver it is attached to. Provided the filter driver completely replicates the 
(externally visible) behavior of the underlying driver when it handles requests itself, the 
existence of the filter driver is invisible to higher-level software. 

The filter driver attaches itself on top of the Microsoft TCP/IP driver; this gives us the 
basic mechanism whereby we can intercept requests for TCP operations and handle them 
in our driver instead of the Microsoft driver. 

However, while the filter driver concept gives us a framework for what we want to 
achieve, there are some significant technical problems to be solved. The basic issue is 
that setting up a TCP connection involves a sequence of several requests from higher
level software, and it is not always possible to tell, for requests early in this sequence, 
whether the connection should be handled by our driver or by the Microsoft driver. 

Thus for many requests, we store information about the request in case we need it later, 
but also allow the request to be passed down to the Microsoft TCP/IP driver ht case the 
connection ultimately turns out to be one which that driver should handle. 

Let us look at this in more detail, which will involve some examination of the TDI 
interface: the NT interface into the top end of NT network protocol drivers. Hiiher-level 
TDI client software which requires services from a protocol driver proceeds by creating 
various types of NT FILE_ OBJECTs, and then making various DEVICE_IO _CONTROL 
requests on these FILE_OBJECTs. 

There are two types of FILE_ OBJECT of interest here. Local IP addresses that are 
represented by ADDRESS objects, and TCP connections that are represented by 
CONNECTION objects. The steps involved in setting up a TCP connection (from the 
"active", client, side) are: 

Provisional Pat. App. of AJacritech, Inc. 
Inventors Laurence B. Boucher et al. 

Express Mail Label# EH756230105US 

46 

WISTRON CORP. EXHIBIT 1031.050



.. 
(for a CONNECTION object) 

1) Create an ADDRESS object. 
2) Create a CONNECTION object. 
3) Issue a TDI_ASSOCIATE_ADDRESS io-control to associate the CONNECTION 
object with the ADDRESS object. 
4) Issue a TDI_CONNECT io-control on the CONNECTION object, specifying the 
remote address and port for the connection. 

Initial thoughts were that handling this would be straightforward: we would tell, on the 
basis of the address given when creating the ADDRESS object, whether the connection is 
for one of our interfaces or not. After which, it would be easy to arrange for handling 
entirely by our code, or entirely by the Microsoft code: we would simply examine the 
ADDRESS object to see if it was "one of ours" or not. 

There are two main difficulties, however. 

First, when the CONNECTION object is created, no address is specified: it acqµires a 
local address only later when the TDI_ASSOCIATE_ADDRESS is done. Also, when a 
CONNECTION object is created, the caller supplies an opaque "context cookie" which 
will be needed for later communications with that caller. Storage of this cookie is the 
responsibility of the protocol driver: it is not directly derivable just by examination of the 
CONNECTION object itself. Ifwe simply passed the "create" call down to the Microsoft 
TCP/IP driver, we would have no way of obtaining this cookie later if it turns out that we 
need to handle the connection. 

Therefore, for every CONNECTION object which is created we allocate a struc~e to 
keep track of information about it, and store this structure in a hash table keyed by the 
address of the CONNECTION object itself, so that we can locate it if we later need to 
process requests on this object. We refer to this as a "shadow" object: it replicates 
information about the object stored in the Microsoft driver. (We must, of course, also 
pass the create request down to the Microsoft driver too, to allow it to set up its 'own 
administrative information about the object.) 

A second major difficulty arises with ADDRESS objects. These are often created with 
the TCP/IP "wildcard" address (all zeros); the actual local address is assigned only later 
during connection setup (by the protocol driver itself.) Of course, a "wildcard" address 
does not allow us to determine whether connections that will be associated with this 
ADDRESS object should be handled by our driver or by the Microsoft one. Also, as with 
CONNECTION objects, there is "opaque" data associated with ADDRESS objects that 
cannot be derived just from examination of the object itself. (In this case addresses of 
callback functions set on the object by TDI_SET_EVENT io-controls.) 

Thus, as in the CONNECTION object case, we create a "shadow" object for each 
ADDRESS object which is created with a wildcard address. In this we store information 
(principally addresses of callback functions) which we will need if we are handling 
connections on CONNECTION objects associated with this ADDRESS object. We store 
similar information, of course, for any ADDRESS object which is explicitly for one of 

Provisional Pat. App. of Alacritech, Inc. 47 
Inventors Laurence B. Boucher et al. 

Express Mail Label# EH756230105US 

WISTRON CORP. EXHIBIT 1031.051



.. 

• 

our interface addresses; in this case we don't need to also pass the create request down to 
the Microsoft driver. 

With this concept of"shadow" objects in place, let us revisit the steps involved in setting 
up a connection, and look at the processing required in our driver. 

First, the TOI client makes a call to create the ADDRESS object. Assuming that this is a 
"wildcard" address, we create a "shadow'' object before passing the call down to the 
Microsoft driver. 

The next step (omitted in the earlier list for brevity) is normally that the client makes a 
number of TD!_ SET_ EVENT io-control calls to associate various callback functions 
with the ADDRESS object. These are functions that should be called to notify the TDI 
client when certrun events (such arrival of data or disconnection requests etc) occur. We 
store these callback function pointers in our "shadow" address object, before passing the 
call down to the Microsoft driver. 

Next, the TOI client makes a call to create a CONNECTION object. Again. we create 
our "shadow" of this object. 

Next, the client issues the TOI_ASSOCIATE_ADDRESS io-control to bind the 
CONNECTION object to the ADDRESS object. We note the association in our 
"shadow" objects, and also pass the call down to the Microsoft driver. 

Finally the TOI client issues a TOI_ CONNECT io-control on the CONNECTION object, 
specifying the remote fP address (and port) for the desired connection. At this point, we 
examine our routing tables (see section XXX for details of routing) to determine if this 
connection should be handled by one of our interfaces, or by some other NIC. If it is 
ours, we mark the CONNECTION object as "one of ours" for future reference (using an 
opaque field which NT FILE_ OBJECTS provide for driver use.) W c then 
proceed with connection setup and handling in our driver, using information stored in our 
"shadow" objects. The Microsoft driver does not see the connection request or any 
subsequent traffic on the connection. 

If the connection request is NOT for one of our interfaces, we pass it down to the 
Microsoft driver. Note carefully, however, that we can not simply discard our "shadow" 
objects at this point. The TOI interface allows re-use of CONNECTION objects: on 
tennination of a connection, it is legal for the TOI client to dissociate the 
CONNECTION object from its current . Thus our "shadow" objects must be retained for 
the lifetime ADDRESS object, re-associate it with another, and use it for another 
connection of the NT FILE_OBJECTS: the subsequent connection could tum out to be 
via one of our interfaces! 

Provisional Pai_ App. of Alacritech, Inc. 48 
Inventors Laurence B. Boucher et al. 

Express Mail Label# EH756230105US 

WISTRON CORP. EXHIBIT 1031.052



' . 
4.7.1 Timers 

4.7.1.1 Keepalive Timer 

We don't want to implement keepalive timers on the INIC. It would in any case be a 
very poor use of resources to have an INIC context sitting idle for two hours. 

4.7 .1.2 Idle Timer 

We will keep an idle timer in the ATCP driver for connections that are managed by the 
INIC (resetting it whenever we see activity on the connection), and cause a flush of 
context back to the host if this timer expires. We may want to make the threshold 
substantially lower than 2 hours, to reclaim rNIC context slots for useful work sooner. 
May also want to make that dependent on the number of contexts which have actually 
been handed out: don't need to reclaim them if we haven't banded out the max. 

5 Receive & Transmit Microcode Design 

This section provides a general description oftbe design of the microcode that 
will execute on two of the sequencers of the Protocol Processor on the INIC. The overall 
philosophy of the JNJC is discussed in other sections. This section will discuss the INIC 
microcode in detail. 

5.1 Design Overview 

As specified in other sections, the INIC supplies a set of3 custom processors that 
will provide considerable hardware-assist to the microcode running thereon. The 
following lists the main hardware-assist features: 
• header processing with specialized DMA engines to validate an input header and 

generate a context hash, move the header into fast memory and do header 
comparisons on a DRAM-based TCP control block. 

• DRAM fifos for free buffer queues (large & small), receive-frame queues, event 
queues etc. 

• header compare logic 
• checksum generation 
• multiple register contexts with register access controlled by simply setting a context 

register. The Protocol Processor will provide 512 SRAM-based registers to be shared 
among the 3 sequencers. 

• automatic movement of input frames into DRAM buffers from the MAC Fifos. 
• run receive processing on one sequencer and transmit processing on the other. This 

was chosen as opposed to letting both sequencers run receive and transmit. One of the 
main reasons for this is that the header-processing hardware can not be shared and 
interlocks would be needed to do this. Another reason is that interlocks would be 
needed on the resources used exclusively by receive and by transmit. 

• The 1N1C will support up to 256 TCP connections (TCB's). A TCB is associated with 
an input frame when the frame's source and destination IP addresses and source and 
destination ports match that of the TCB. For speed of access, the TCB's will be 

Provisional Pat. App. of Alacritecb, Inc. 49 
Inventors Laurence B. Boucher et al. 

Express Mail Label # EH756230105US 

WISTRON CORP. EXHIBIT 1031.053



.. 

• 

maintained in a hash table in NIC DRAM to save sequential searching. There will 
however, be an index in hash order in SRAM. Once a hash has been generated, the 
TCB will be cached in SRAM. There will be up to 8 cached TCBs in SRAM. These 
cache locations can be shared between both sequencers so that the sequencei: with the 
heavier load will be able to use more cache buffers. There will also be 8 header 
buffers to be shared between the sequencers. Note that each header buffer is not 
statically linked to a specific TCB buffer. In fact the link is dynamic on a per-frame 
basis. The need for thls dynamic linking will be explained in late.r sections. Suffice to 
say here that if there is a free header buffer, then somewhere there is also a free TCB 
SRAM buffer. 

• There were 2 basic implementation options considered here. The first was single
stack and the second was a process model. The process model was chosen here 
because the custom processor design is providing zero-cost overhead for context 
switching through the use of a context base register, and because there will tie more 
than enough process slots (or contexts) available for the peak load. It is also expected 
that all " local" variables will be held permanently in registers whilst an event is being 
processed. 

• The features that provide this are: 
256 of the 512 SRAM-based registers will be used for the register contexts. This 
can be divided up into 16 contexts (or processes) of 16 registers each. Then 8 of 
these will be reserved for receive and 8 for transmit. A Little's Law analysis has 
shown that in order to support 512 byte frames at maximum arrival rate of 4 * 100 
Mb its, requires more than 8 jobs to be in process in the NIC. However each job 
requires an SRAM buffer for a TCB context and at present, there are onfy 8 of 
these currently specified due to SRAM space limits. So more contexts (e.g. 32 * 8 
regs each) do not seem worthwmle. Refer to Appendix A for more details oftms 
analysis . 
A context switch simply involves reloading the context base register based on the 
context to be restarted, and jumping to the appropriate address for reslllllJ>tion. 

• To better support the process model chosen, the code will lock an active TCB into an 
SRAM buffer while either sequencer is operating on it. This implies there will be no 
swapping to and from DRAM of a TCB once it is in SRAM and an operation is 
started on it. More specifically, the TCB will not be swapped after requesting that a 
OMA be performed for it. Instead, the system will switch to another active ''process". 
Then it will resume the former process at the point directly after where the OMA was 
requested. This constitutes a zero-cost switch as mentioned above. 

• individual TCB state machines will be run from within a "process". There will be a 
state machine for the receive side and one for the transmit side. The current TCB 
states will be stored in the SRAM TCB index table entry. 

• The INIC will have 16 MB of DRAM. The current specification calls for dividing a 
large portion ofthls into 2K buffers and control allocation I deallocation of these 
buffers through one of the DRAM fifos mentioned above. These fifos will also be 
used to control small host buffers, large host buffers, command buffers and command 
response buffers. 

• For events from one sequencer to the other (i.e. RCV ~ XMT), the current 
specification calls for using simple SRAM CIO buffers, one for each direction. 

• Each sequencer handles its own timers independently of the others. 
• Contexts will be passed to the INIC through the Transmit command and response 

buffers. INIC-initiated TCB releases will be handled through the Receive small 
Provisional Pat. App. of Alacritech, lnc. 50 

Inventors Laurence B. Boucher et al. 
Express Mail Label # EH756230105US 

WISTRON CORP. EXHIBIT 1031.054



.. 
buffers. Host-initiated releases will use the Command buffers. There needs to be strict 
handling of the acquisition and release of contexts to avoid windows where for 
example, a frame is received on a context just after the context was passed to the 
INIC, but before the INIC has "accepted" it. 

• T/fCP (Transaction TCP): the initial INIC will not handle TtrCP connectio(ls. This 
is because they are typically used for the HTTP protocol and the client for that 
protocol typically connects, sends a request and disconnects in one segment. 'Tue 
server sends the connect confirm, reply and disconnect in his first segment. Then the 
client confirms the disconnect. This is a total of 3 segments for the life of a Context. 
Typical data lengths are on the order of 300 bytes from the client and 3K from the 
server. The IN1C will provide as good an assist as seems necessary here by 
checksumming the frame and splitting headers and data. The latter is only likely when 
data is forwarded with a request such as when a filled-in form is sent by the client. 

5.1. l SRAM Requirements 

The following are SRAM requirements for the Receive and Transmit engines: 
TCB buffers 256 bytes * 16 4096 
Header buffers 128 bytes* 16 2048 
TCB hash index 16 bytes* 256 4096 
Timers 128 
DRAM Fifo queues 128 bytes• 16 ~ 

- 12K bytes 

Depending upon the available space, the number ofTCB buffers may be increased to 16. 

5.1.2 General Philosophy 

The basic plan is to have the host determine when a TCP connection is able to b.e banded 
to the INIC, setup the TCB and pass it to the card via a command in the Transmit queue. 
TCBs that the INIC owns can be handed back to the host via a request from the Receive 
or Transmit sequencers or from the host itself at any time. 

When the INIC receives a frame, one of its immediate tasks is to determine if the frame is 
for a TCB that it controls. If not, the frame is passed to the host on a generic interface 
TCB. On transmit, the transmit request will specify a TCB hash number if the request is 
on a INIC-controlled TCB. Thus the initial state for the INIC will be transparent mode in 
which all received frames·are directly passed through and all transmit requests will be 
simply thrown on the appropriate wire. This state is maintained until the host P¥ses 
TCBs to the INIC to control. Note that frames received for which the INIC has no TCB 
(or it is with the host) will still have the TCP checksum verified if TCP/IP, and may split 
the TCPIP header off into a separate buffer. 

Provisional Pat. App. of Alacritecb, Inc. 51 
Inventors Laurence B. Boucher et al. 

El({>rCSS Mail Label# EH756230105US 

WISTRON CORP. EXHIBIT 1031.055


