
' .
5 .1.3 Register Usage

There will be 512 registers available. The first 256 will be used for process contexts. The
remaining 256 will be split between the 3 sequencers as follows:
257 - 320: 64 for RCV general processing I main loop.
321 - 384: 64 for XMT general processing I main loop.
385 - 512: 128 for 3rd sequencer use.

5.2 Receive Processing

5.2.l Main Loop
The following is a summary of the main loop of Receive:

forever {
while there are any Receive events {

if(anew event) {

}

}

if(no new context available)
ignore the event;

call appropriate event handler to service the event;
this may make a waiting process runnable or set up
a new process to be run (get free context, hddr buffer,
TCB buffer, set the context up).

while any process contexts are runable {

}

run them by jumping to the start/resume address;
if (process complete)

free the context;

5.2.2 Receive Events
The events that will be processed on a given context are:
• accept a context
• release a context command (from the host via Transmit)
• release a context request (from Transmit)
• receive a valid frame; this will actually become 2 events based on the received frame
- receive an ACK, receive a segment
• receive an "invalid" frame i.e. one that causes the TCB to be flushed to the host
• a valid ACK needs to be sent (delayed ACK timer expiry).
• There are expected to be the following sources of events:

l. Receive input queue: it is expected that hardware will automatically DMA arriving
frames into frame buffers and queue an event into a RCV-event queue.

2. Timer event queue: expiration of a timer will queue an event into this queue.
3. Transmit sequencer queue: for requests from the transmit processor.

Provisional Pat. App. of Alacritech, Inc. 52
Inventors Laurence B. Boucher el al .

Express Mail Label# EH756230105US

WISTRON CORP. EXHIBIT 1031.056

For the sake of brevity the following only discusses receive-frame processing .

5.2.3 Receive Details - Valid Context

The base for the receive processing done by the INIC on an existing context is the fast
path or "header prediction" code in the FreeBSD release. Thus the processing is divided
into 3 parts: header validation and checksumming, TCP processing and subsequent SMB
processing.

5.2.3.1 Header Validation
There is considerable hardware assist here. The first step in receive processing is to dma
the frame header into an SRAM header buffer. It is useful for header validation to be
implemented in conjunction with this dma by scanning the data as it flies by. The
following tests need to be "passed":
• MAC header: destination address is our MAC address (not MC or BC too), the
Ethertype is IP.
• IP header: header checksum is valid, header length = 5, IP length > header length,
protocol = TCP, no fragmentation, destination IP is our IP address.
• TCP header: checkswn is valid (incl. pseudo-header), header length = 5 or 8
(timestamp option), length is valid, dest port = SMB or FTP data, no
FIN/SYN/URG/PSWRST bits set, timestamp option is valid if present, segment is in
sequence, the window size did not change, this is not a retransmission, it is a pure ACK
or a pure receive segment, and most important, a valid context exists. The valid-context
test is non-trivial in the amount of work involved to detennine it. Also note that·for pure
ACKs, the window-size test will be relaxed. This is because initially the output PERSIST
state is to be handled on the INIC.
Many but perhaps not all of these tests will be performed in hardware - depending upon
the embodiment

5.2.3.2 TCP Processing

Once a frame has passed the header validation tests, processing splits based on whether
the frame is a pure ACK or a pure received segment.

5.2.3.2.1 Pure RCV Packet

The design is to split off headers into a small header buffer and pass the aligned data in
separate large buffers. Since a frame bas been received, eventually some receiver process
on the host will need to be informed. In the case of FTP, the frame is pure data and it is
passed to the host immediately. This involves getting large buffers and dmaing the data
into them, then setting the appropriate details in a small buffer that is used to notify the
host. However for SMB, the INIC is performing reassembly of data when the fiiame
consists of headers and data. So there may not yet be a complete SMB to pass to the host.
In this case, a small buffer will be acquired and the header moved into it. If the received
segment completes an SMB, then the procedures are pretty much as for FTP. Ifiit does
not, then the scheme is to at least move the received data (not the headers) to the host to
free the INIC buffers and to save latency. The list of in-progress host buffers is
maintained in the TCB and moved to the header buffer when the SMB is complete.

Provisional Pat. App. of AJacrit.ech, Inc. 53
Inventors Laurence B. Boucher el al.

Express Mail Label# EH756230105US

WISTRON CORP. EXHIBIT 1031.057

..

..
F"'

The final part of pure-receive processing is to fire off the delayed ACK timer for this
segment.

S.2.3.2.2 Pure ACK

Pure ACK processing implies this TCB is the sender, so there may be transmit buffers
that can be returned to the host. If so, send an event to the Transmit processor (or do the
processing here). If there is more output available, send an event to the transmit .
processor. Then appropriate actions need to be taken with the retransmission tin:ler.

5.2.3.3 SMB Processing
The following is the format of the SMB header of an SMB frame:

31
NetBIOS header

TYPE FLAGS f- LENGTH ~

SMB header OxFF "S" "M" "B"

COM RCLS REH ERR ...

.... ERR REB /FLG Reserved

Rese ~ed

Resc tved

Rese tved

TID PID

UID MID

WCT I VWV[)

BCC Data

Notes (interesting fields):
LENGTII 17 bit Length ofSMB message (0 - 128K)
COM SMB command
WCT Count (16 bit) of parameter words in VWV[]
VWV Variable number of parameter words
BCC Bytes of data following

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.

Express Mail Label# EH756230105US

0

54

WISTRON CORP. EXHIBIT 1031.058

2bEOeeSyoyey

Thefinal part ofpure-receive processingis to fire off the delayed ACK timerfor this
segment.

5.2.3.2.2 Pure ACK

Pure ACK processing implies this TCB is the sender, so there may be transmit buffers
that can be returned to the host. If so, send an event to the Transmit processor (or dothe
processing here). If there is more output available, send an event to the transmit
processor. Then appropriate actions need to be taken with the retransmission timer.

5.2.3.3 SMB Processing

The following is the format ofthe SMB header of an SMB frame:

NetBIOS header

SMB header

Notes (interesting fields):
LENGTH 17 bit Length of SMB message (0 — 128K)
COM SMB command

WCT Count (16 bit) ofparameter words in VWV[]
VWV Variable numberofparameter words
BCC Bytes of data following

Provisional Pat. App. of Alacritech, Inc. 54
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

WISTRON CORP.EXHIBIT 1031.058

..

•

The LENGTH field oftbe NetBIOS header will be used to determine when a complete
SMB has been received and the header buffer with appropriate details can be posted to
the host.
The interesting commands are the write commands: SMBwrite (OxB), SMBwriteBraw
(OxlD), SMBwriteBmpx {OxlE), SMBwriteBs (OxlF), SMBwriteclose {Ox2C),
SMBwriteX (Ox2F). SMBwriteunlock (Ox14). These are interesting because they will
have data to be aligned in host memory. The point to note about these commands is that
they each have a different WCT field, so that the start offset of the data depends:on the
command type. SMB processing will thus need to be cognizant of these types.

5.2.4 Receive Details - No Valid Context

The design here is to provide as much assist as possible. Frames will be checksummed
and the TCPIP headers may be split off.

5.2.5 Receive Notes

l . PRU_ RCVD or the equivalent in Microsoft language: the host application has to
tell the INIC when he has accepted the received data that has been queued. This is
so that the INIC can update the receive window. It is an advantage for this
mechanism to be efficient This may be accomplished by piggybacking these on
transmit requests (not necessarily for the same TCB).

2. Keepalive Timer: for a INIC~ontrolled TCB, the INIC will not maintain this
timer. This leaves the host with the job of detenn.ining that the TCB is still active.

3. Timestamp option: it is useful to support this option in the fast path because the
BSD implementation does. Also, it can be very helpful in getting a much better
estimate of the round-trip time (RTT) which TCP needs to use.

4. Idle timer: the INIC will not maintain this timer (see Note 2 above).
5. Frame with no valid context: The INIC may split TCP/IP headers into a s'eparate

header buffer.

Provisional Pat. App. of Alacricech, Inc.
Inventors Laurence B. Boucher et al.

Express Mail Label II EH756230105US

55

WISTRON CORP. EXHIBIT 1031.059

ZGnTOR*&®OeaTsooo

The LENGTH field ofthe NetBIOS header will be used to determine when a complete
SMBhas been received and the header buffer with appropriate details can be posted to
the host.

The interesting commandsare the write commands: SMBwrite (0xB), SMBwriteBraw
(0x1D), SMBwriteBmpx (0x1E), SMBwriteBs (0x1F), SMBwriteclose (0x2C),
SMBwriteX (0x2F), SMBwriteunlock (0x14). These are interesting because they will
have data to be aligned in host memory. The point to note about these commands is that
they each have a different WCT field, so that the start offset of the data depends on the
command type. SMB processing will thus need to be cognizant of these types.

5.2.4 Receive Details ~ No Valid Context

The design here is to provide as muchassist as possible. Frames will be checksummed
and the TCPIP headers maybesplit off.

5.2.5 Receive Notes

1. PRU_RCVD orthe equivalent in Microsoft language:the host application has to
tell the INIC when he has accepted the received data that has been queued. This is
so that the [NIC can update the receive window.It is an advantage for this
mechanism to be efficient. This may be accomplished by piggybacking these on
transmit requests (not necessarily for the same TCB).

2. Keepalive Timer: for a INIC-controlled TCB, the INIC will not maintain this
timer. This leaves the host with the job of determining that the TCB isstill active.

3. Timestamp option:it is useful to support this option in the fast path because the
BSD implementation does. Also, it can be very helpful in getting a much better
estimate of the round-trip time (RTT) which TCP needsto use.

. Idle timer: the INIC will not maintain this timer (see Note 2 above).

. Frame with no valid context: The INIC may split TCP/IP headers into a separate
header buffer.

wv

Provisional Pat. App. of Alacritech, Inc. 55
Inventors Laurence B, Boucher etal.

Express Mail Label # EH75623010SUS

WISTRON CORP. EXHIBIT 1031.059

• <

5.3 Transmit Processing

5.3. l Main Loop.

The following is a summary of the main loop of Transmit:

forever {
while there are any Transmit events {

if (a new event) {

}

}

if(no new context available)
ignore the event;

call appropriate event handler to service the event;
this may make a waiting process runnable or set up
a new process to be run (get free context, hddr buffer,
TCB buffer, set the context up).

while any process contexts are runable {

}

run them by jumping to the start/resume address;
if (process complete)

free the context;

5.3.2 Transmit Events

The events that will be processed on a given context and their sources are:
• accept a context (from the Host).
• release a context command (from the Host).
• release a context command (from Receive).
• valid send request and window> 0 (from host or RCV sequencer).
• valid send request and window= 0 (from host or RCV sequencer).
• send a window update (host has accepted data).
• persist timer expiration (persist timer).
• context-release event e.g. window shrank (XMT processing or retransmission timer).
• receive-release request ACK(from RCV sequencer).

5.3.3 Transmit Details - Valid Context

The following is an overview of the transmit flow:

The host posts a transmit request to the INIC by filling in a command buffer with
appropriate data pointers etc and posting it to the INIC via the Command Buffer Address
register. Note that there is one host command buffer queue, but there are 4 phys.ical
transmit lines. So each request needs to include an interface number as well as the context
number. The INIC microcode will dma the command in and place it in l of 4 internal
command queues which the transmit sequencer will work on. This is so that transmit
processing can round-robin service these 4 queues to keep all 4 interfaces busy, and not

Provisional Pat. App. of Alacritech, Inc. 56
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230l05US

WISTRON CORP. EXHIBIT 1031.060

• t

let a highly-active interface lock out the others (which would happen with a single
queue).
The transmit request may be a segment that is less than the MSS, or it may be as.much as
a full 64K SMB READ. Obviously the fonner request will go out as one segment, the
latter as a number ofMSS-sized segments. The transmitting TCB must hold on tp the
request until all data in it has been transmitted and acked. Appropriate pointers to do this
will be kept in the TCB. A large buffer is acquired from the free buffer fifo, and the MAC
and TCP/IP headers are created in it. It may be quicker/simpler to keep a basic frame
header set up in the TCB and either dma directly this into the frame each time. Then data
is dmad from host memory into the frame to create an MSS-sized segment. This dma also
checksums the data. Then the checksum is adjusted for the pseudo-header and placed into
the TCP header, and the frame is queued to the MAC transmit interface which may be
controlled by the third sequencer. The final step is to update various window fieids etc in
the TCB. Eventually either the entire request will have been sent and acked, or a
retransmission timer will expire in which case the context is flushed to the host. In either
case, the INIC will place a command response in the Response queue containing the
command buffer handle from the original transmit command and appropriate st&tus.
The above discussion has dealt how an actual transmit occurs. However the real
challenge in the transmit processor is to determine whether it is appropriate to transmit at
the time a transmit request arrives. There are many reasons not to transmit: the receiver's
window size is <= 0, the Persist timer has expired, the amount to send is less thap a full
segment and an ACK is expected I outstanding, the receiver's window is not half-open
etc. Much of the transmit processing will be in determining these conditions.

5.3.4 Transmit Details - No Valid Context

The main difference between this and a context-based transmit is that the queued request
here will already have the appropriate MAC and TCP/IP (or whatever) headers in the
frame to be output. Also the request is guaranteed not to be greater than MSS-sized in
length. So the processing is fairly simple. A large buffer is acquired and the frame is
dmad into it, at which time the checksum is also calculated. If the frame is TCP/IP, the
checkswn will be appropriately adjusted ifnecessary (pseudo-header etc) and pfaced in
the TCP header. The frame is then queued to the appropriate MAC transmit intepace.
Then the command is immediately responded to with appropriate status through the
Response queue.

5.3.5 Transmit Notes

1. Slow-start: the INIC will handle the slow-start algorithm that is now a part of the
TCP standard. This obviates waiting until the connection is sending a full-rate
before passing it to the INIC.

2. Window Probe vs Window Update: an explanation for posterity
A Window Probe is sent from the sending TCB to the receiving TCB, and it means the
sender has the receiver in PERSIST state. Persist state is entered when the receiver
advertises a zero window. It is tbus the state of the transmitting TCB. In this state, be
sends periodic window probes to the receiver in case an ACK from the receiver bas been
lost The receiver will return his latest window size in the ACK.

Provisional Pat. App. of Alacritech, Inc. 57
Inventors Laurence B. Boucher et al.

Express Mail Label# EH756230105US

WISTRON CORP. EXHIBIT 1031.061

A Window Update is sent from the receiving TCB to the sending TCB, usually to tell him
that the receiving window has altered. It is mostly triggered by the upper layer when it
accepts some data. This probably means the sending TCB is viewing the receiving TCB
as being in PERSIST state.

3. Persist state: it is designed to handle Persist state on the INIC. It seems
unreasonable to throw a TCB back to the host just because its receiver advertised a
zero window. This would nonnally be a transient situation, and would tent-1 to
happen mostly with clients that do not support slow-start. Alternatively, tl:i.e code
can easily be changed to throw the TCB back to the host as soon as a receiver
advertises a zero window.

4. MSS-sized frames: the INIC code will expect all transmit requests for which it has
no TCB to not be greater than the MSS. If any request is, it will be dropped and an
appropriate response status posted.

S. Silly Window avoidance: as a receiver, the INIC will do the right thing here and
not advertise small windows - this is easy. However it is necessary to also do
things to avoid this as a sender, for the cases where a stupid client does advertise
small windows. Without getting into too much detail here, the mechanism requires
the INIC code to calculate the largest window advertisement ever advertised by the
other end. It is an attempt to guess the size of the other end's receive buffer and
assumes the other end never reduces the size of its receive buffer. See Stevens Vol.
l pp. 325-326.

6 The Utility Processor

6.1 Summary

The following is a summary of the main functions of the utility sequencer of the
microprocessor:

• look at the event queues: Eventl3Type & Event23Type (we assume there will be an
event status bit for this - USE_EV13 and USE_EV23) in the events register; these
are events from sequencers 1 and 2; they will mainly be XMIT requests from the XMT
sequencer. Dequeue request and place the frame on the appropriate interface.
• RCV-frame support: in the model, RCV is done through VinicReceiveO which is
registered by the lower-edge driver, and is called at dispatch-level. This routine calls
VinicTransferDataCompleteO to check if the xfer (possibly DMA) of the frame into host
buffers is complete. Tue latter rtne is also called at dispatch level on a DMA-coi;npletion
interrupt. It queues complete buffers to the RCV sequencer via the nonnal queue
mechanism.
• Other processes may also be employed here for supporting the RCV sequencer.
• service the following registers: (this will probably involve micro-interrupts)

Header Buffer Address register:
buffers are 256 bytes long on 2?6-byte boundaries.
31-8 - physical addr in host of a set of

contiguous hddr buffers
7-0 - number ofhddr buffers passed.
Use contents to add to SmallHType queue

Provisional Pat. App. of Alacritech, Inc. 58
Inventors Laurence B. Boucher et al.

Express Mail Label# EH75623010SUS

WISTRON CORP. EXHIBIT 1031.062

...

Data Buffer Handle & Data Buffer Address registers:
buffers are 4K long aligned on 4K boundaries ...
Use contents to add to the FreeType queue.

Command Buffer Address register:
buffers are multiple of32 bytes up to lK long (2**5 • 32)
31-5 - physical add.r in host of cmd buffer
4-0 - length of cmd in bytes/32

(i.e. multiples of32 bytes)
Points to host cmd; get FreeSType buffer and move
command into it; queue to Xmit0-Xmit31'ype queues.

Response Buffer Address register:
buffers are 32 bytes long on 32-byte boundaries
31-8 - physical addr in host of a set of

contiguous resp buffers
7-0 - number of resp buffers passed.
Use contents to add to the ResponseType queue.

• low buffer threshold support: set approp bits in the ISR when the available-buffers
count in the various queues filled by the host falls below a threshold.

6.2 Further Operations of the Utility Processor

The utility processor of the microprocessor housed on the INIC is responsible for setting
up and implementing all configuration space and memory mapped operations, and also as
described below, for managing the debug interface.

All data transfers, and other INlC initiated transfers will be done via OMA.
Configuration space for both the network processor function and the utility processor
function will define a single memory space for each. This memory space will d~fine the
basic commwtlcation structure for the host. In general, writing to one of these memory
locations will perform a request for service from the INIC. This is detailed in t.l1e
memory description for each function. This section defines much of the operatibn of the
Host interface, but should be read in conjunction with the Host lnterface Strategy for the
Alacritech INIC to fully define the Host/INIC interface.

Two registers, DMA hardware and an interrupt function comprise the INIC interface to
the Host through PCI. The interrupt function is implemented via a four bit register
(PCl_INT) tied to the PCI interrupt lines. This register is directly accessed by the
microprocessor.

THE MICROPROCESSOR uses two registers, the PCI_Data_Reg and the
PCI_Address_Reg, to enable the Host to access Configuration Space and the memory
space allocated to the INIC. These registers are not available to the HosL but are used by
THE MICROPROCESSOR to enable Host reads and writes. The function of these two
registers is as follows.

Provisional Pat. App. of Alacritecb, Inc. 59
Inventors Laurence B. Boucher et al .

Express Mail Label# EH756230105US

WISTRON CORP. EXHIBIT 1031.063

PCl_ Data_ Reg

This register can be both read and written by THE MICROPROCESSOR. On write
operations from the host. this register contains the data being sent from the host. . On read
operations, this register contains the data to be sent to the host.

PCT_ Address_ Reg

This is the control register for memory reads and writes from the host. The structure of
the register is as follows:

Bit 31 - 24 Byte enable 7 - 0. Only the low order four bits are
valid for 32 bit addressing mode.

Bit 23 - 0 Memory access
1 Configuration access

Bit 22 - 0 Read (to Host)
I Write (from Host)

1 Bit 21 - 1 Data Valid

Bit 20 - 16 Reserved
Bit 15 - 0 Address

During a write operation from the Host the PCI_Data_Reg contains valid data after Data
Valid is set in the PCI_Address_Reg. Both registers are locked until THE
MICROPROCESSOR writes the PCI_Data_Reg, which resets Data Valid.

All read operations will be direct from SRAM. Memory space based reads will return 00.
Configuration space reads will be mapped as follows:

Confi~on Space 1
00

SMM Adciress Offset
00

04
08
oc
10
3C

Confii'Jration Space 2

00
04
08
oc
10
3C

All other reads to configuration space will return 00.

Provisional Pat. App. of Alacritecb, Inc.
Inventors Laurence B. Boucher et al.

Express Mail Label fl EH75623010SUS

04
08
oc
10
14

00
18
08
IC
20
24

60

WISTRON CORP. EXHIBIT 1031.064

Z£6h707"6DBTSoOO9

PCLDataReg

This register can be both read and written by THE MICROPROCESSOR. On write
operations from the host, this register contains the data being sent from the host. On read
operations, this register contains the data to be sent to the host.

PCLAddressReg

This is the control register for memory reads and writes from the host. The structure of
the register is as follows:

Bit31— 24 Byte enable 7-0. Only the low order four bits are
valid for 32 bit addressing mode.

Bit 23-— 0 Memory access
1 Configuration access

Bit22— 0 Read (to Host)
1 Write (from Host)

1 Bit 21 —- 1 Data Valid

Bit20~ 16 Reserved
Bit15— 0 Address

During a write operation from the Host the PCI_Data_Reg contains valid data after Data
Valid is set in the PCI_AddressReg. Both registers are locked until THE
MICROPROCESSORwrites the PCL_Data_Reg, which resets Data Valid.

All read operations will be direct from SRAM. Memory space based reads will return 00.
Configuration space reads will be mapped as follows:

ConfigurationSpace1SRAMAddressOffset
00 00

04 04
08 08
oc 0c
10 10

3C 14

ConfigurationSpace2

00 00
04 18
08 08

oc 1C

10 20
3C 24

All other reads to configuration space will return 00.

Provisional Pat. App. of Alacritech, Inc. 60
Inventors Laurence B. Boucher etal.

Express Mail Label # EH756230105US

WISTRON CORP.EXHIBIT 1031.064

..
6.2.l CONFIGURATION SPACE

The INIC is implemented as a multi-function device. The first device is the network
controller, and the second device is the debug interface. An alternative production
embodiment may implement only the network controller function. Both configuration
space headers will be the same, except for the differences noted in the following'
description.

Vendor ID -This field will contain the Alacritech Vendor ID. One field will be•used for
both functions. The Alacritech Vendor ID is hex 139A.

Device ID - Chosen at Alacritech on a device specific basis. One field will be used for
both functions.

Command - Initialized to 00. All bits defined below as not enabled (0) will remain 0.
Those that are enabled will be set to 0 or 1 depending on the state of the system: Each
function (network and debug) will have its own command field.

Bit 0 - 0 1/0 accesses are not enabled
Bit 1 - 1 Memory accesses are enabled
Bit 2 - 1 Bus master is enabled
Bit 3 - 0 Special Cycle is not enabled
Bit 4 - l Memory Write and Invalidate is enabled
Bit 5 - 0 VGA palette snooping is not enabled
Bit 6 - 1 Parity checking is enabled
Bit 7 - 0 Address data stepping is not enabled
Bit 8 - SERR# is enabled
Bit 9 - 0 Fast back to back is not enabled

Status - This is not initialized to zero. Each function will have its own field. The
configuration is as follows:

Bit 5 - 1 66 MHz capable is enabled. This bit will be set if the INIC
Detects the system running at 66 MHz on reset

Bit 6 - 0 User Definable Features is not enabled
Bit 7 - I Fast Back-to-Back slave transfers enabled
Bit 8 - 1 Parity Error enabled - This bit is initialized to 0
Bit 9,10 - 00 - Fast device select will be set if we are at 33 MHz

01 - Medium device select will be set if we are at

Bit 11 - 1
Bit 12 - 1
Bit 13 - 1
Bit 14 - 1
Bit 15 - 1

66MHz
Target Abort is implemented. Initialized to 0.
Target Abort is implemented. Initialized to 0.
Master Abort is implemented. Initialized to 0.

· SERR# is implemented. Initialized to 0.
Parity error is implemented. Initialized to O.

Revision ID - The revision field will be shared by both functions.

Class Code - This is 02 00 00 for the network controller, and for the debug interface.
The field will be shared.

Provisional Pat. App. of Alacritecb, Inc.
Inventors Laurence B. Boucher et al.

Express Mail Label# EH756230105US

61

WISTRON CORP. EXHIBIT 1031.065

2SIaEO"eseeycbcy

6.2.1 CONFIGURATION SPACE

The INIC is implemented as a multi-function device. The first device is the network
controller, and the second device is the debug interface. An alternative production
embodiment may implement only the network controller function. Both configuration
space headers will be the same, except for the differences noted in the following’
description.

Vendor ID — Thisfield will contain the Alacritech Vendor ID. One field will beused for
both functions. The Alacritech VendorID is hex 139A.

Device ID — Chosen at Alacritech on a device specific basis. Onefield will be used for
both functions.

Command — Initialized to 00. All bits defined below as not enabled (0) will remain 0.
Those that are enabled will be set to 0 or 1 depending on thestate ofthe system. Each
function (network and debug) will have its own commandfield.

BitO-0 JO accesses are not enabled

Bitl1—1 Memory accesses are enabled
Bit2-—1 Bus master is enabled

Bit3-0 Special Cycle is not enabled
Bit4—1|Memory Write and Invalidate is enabled
BitS-0 VGA palette snooping is not enabled
Bit6—1 Parity checking is enabled
Bit7—0 Address data stepping is not enabled
Bit 8 —- SERR# is enabled

Bit9-0 Fast back to back is not enabled

Status — This is notinitialized to zero. Each function will haveits own field. The

configuration is as follows:
Bit 5-1 66 MHz capableis enabled. Thisbit will be set if the INIC

Detects the system running at 66 MHz onreset
Bit 6-0 User Definable Features is not enabled

Bit7—1 Fast Back-to-Back slave transfers enabled

Bit8-—1 Parity Error enabled — Thisbitis initialized to 0
Bit 9,10 — 00 — Fast device select will be set if we are at 33 MHz

01 — Medium device select will be set ifwe are at
66 MHz

Bitl1—1 Target Abort is implemented. Initialized to 0.
Bit12—1 Target Abort is implemented. Initialized to 0.
Bitl13—1 Master Abort is implemented. Initialized to 0.
Bitl14-—1 SERR#is implemented. Initialized to 0.
Bit15—1 Parity error is implemented. Initialized to 0.

Revision ID — The revision field will be shared by both functions.

Class Code — This is 02 00 00 for the network controller, and for the debug interface.
The field will be shared.

Provisional Pat. App. of Alacritech, Inc. 6l
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

WISTRON CORP.EXHIBIT 1031.065

•

Cache Line Size -This is initialized to zero. Supported sizes are 16, 32, 64 and ·128
bytes. This hardware register is replicated in SRAM and supported separately for each
function, but THE MICROPROCESSOR will implement the value set in Configuration
Space l (the network processor).

Latency Timer - This is initialized to zero. The function is supported. This hardware
register is replicated in SRAM. Each function is supported separately, but THE '
MICROPROCESSOR will implement the value set in Configuration Space I (the
network processor).

Header TYPe -This is set to 80 for both functions, but will be supported separately.

BIST - Is implemented. In addition to responding to a request to run self test, if test after
reset fails, a code will be set in the BISI register. This will be implemented separately
for each function.

Base Address Register - A single base address register is implemented for each function.
It is 64 bits in length, and the bottom four bits are configured as follows:

Bit 0 - 0 Indicates memory base address
Bit 1,2 - 00 Locate base address anywhere in 32 bit memory space
Bit 3 - 1 Memory is prefetchable

CardBus CIS Pointer - Not implemented- initialized to 0.

Subsystem Vendor ID - Not implemented-initialized to 0.

Subsystem ID - Not implemented-initialized to 0 .

Expansion ROM Base Address - Not implemented-initialized to 0.

Interrupt Line - Implemented-initialized to 0. Thls is implemented separately for each
function.

Interrupt Pin - This is set to 01, corresponding to INTA# for the network controller, and
02, corresponding to INTB# for the debug interface. This is implemented separately for
each function.

Min_ Ont - This can be set at a value in the range of 10, to allow reasonably long bursts
on the bus. This is implemented separately for each function.

Max _Lat - This can be set to 0 to indicate no particular requirement for frequency of
access to PCI. This is implemented separately for each function.

6.2.2 MEMORY SPACE

Because each of the following functions may or may not reside in a single location, and
may or may not need to be in SRAM at all, the address for each is really only used as an
identifier (label). There is, therefore, no control block anywhere in memory that
represents this memory space. When the host writes one of these registers, the utility

Provisional Pat. App. of Alacritech, Inc. 62
Inventors Laurence B. Boucher et al.

Express Mail Label# EH756230105US

WISTRON CORP. EXHIBIT 1031.066

chOEaeSSySy

Cache Line Size — Thisis initialized to zero. Supported sizes are 16, 32, 64 and 128
bytes. This hardware register is replicated in SRAM and supported separately for each
function, but THE MICROPROCESSORwill implementthe value set in Configuration
Space 1 (the network processor).

Latency Timer — Thisis initialized to zero. The function is supported. This hardware
register is replicated in SRAM. Each function is supported separately, but THE
MICROPROCESSORwill implementthe value set in Configuration Space 1 (the
network processor).

Header Type — Thisis set to 80 for both functions, but will be supported separately.

BIST —Is implemented. In addition to responding to a request to run self test, if test after
reset fails, a code will be set in the BIST register. This will be implemented separately
for each function.

Base Address Register — A single base address register is implemented for each function.
It is 64 bits in length, and the bottom four bits are configured as follows:

BitO— 0 Indicates memory base address
Bit 1,2-—00 Locate base address anywhere in 32 bit memory space
Bit3— 1 Memory is prefetchable

CardBus CIS Pointer — Not implemented—nitialized to 0.

Subsystem Vendor ID — Not implemented—initialized to 0.

Subsystem ID — Not implemented—initialized to 0.

Expansion ROM Base Address — Not implemented—initialized to 0.

Interrupt Line — Implemented—initialized to 0. This is implemented separately for each
function.

Interrupt Pin — This is set to 01, corresponding to INTA# for the network controller, and
02, corresponding to INTB# for the debuginterface. This is implemented separately for
each function.

Min_Gnt— This can be set at a value in the range of 10, to allow reasonably long bursts
on the bus. This is implemented separately for cach function.

Max_Lat — This can be set to 0 to indicate no particular requirement for frequency of
access to PCI. This is implemented separately for each function.

6.2.2 MEMORY SPACE

Because each ofthe following functions may or may not reside in a single location, and
may or may not need to be in SRAM atall, the address for each is really only used as an
identifier (label). There is, therefore, no control block anywhere in memory that
represents this memory space. When the host writes one ofthese registers, the utility

Provisional Pat. App. of Alacritech, Inc. 62
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

WISTRON CORP. EXHIBIT 1031.066

WISTRON CORP. EXHIBIT 1031.067

LohTOT"ensraooag

processorwill construct the data required and transfer it. Reads to this memory will
generate 00 for data.

6.2.2.1 Network Processor

The following four byte registers, beginning at location h00 of the network processor’s
allocated memory, are defined.

00— Interrupt Status Pointer -- Initialized by the host to point to a four byte area
wherestatus is stored

04— Interrupt Status — Returned status from host. Sent after one or more
status conditions have been reset. Also an interlock for storing any
new status. Oncestatus has been stored at the Interrupt Status Pointer
location, no new status will be stored until the host writes the Interrupt
Status Register. New status will be ored with any remaining
uncleared status (as defined by the contents of the returned status)
and stored again at the Interrupt Status Pointer location. Bits are
as follows:

Bit 31- ERR -- Errorbits are set
Bit 30 — RCV — Receive has occurred

Bit 29 — XMT — Transmit command complete
Bit 25 —- RMISS — Receive drop occurred due to no buffers

08— Interrupt Mask — Written by the host. Interrupts are masked for each
ofthe bits in the interrupt status when the samebit in the mask
register is set. When the Interrupt Mask register is written and as
a result a status bit is unmasked, an interruptis generated. Also,
whenthe Interrupt Status Register is written, enabling new status
to be stored, when it is stored if a bit is stored that is not masked

by the Interrupt Mask,an interrupt is generated.

OC— Header Buffer Address — Written by host to pass a set ofheader buffers to the
INIC.

10- Data Buffer Handle — First register to be written by the Hostto transfer a receive
data buffer to the INIC. This data is Host reference data. It is not used by the
INIC,it is returned with the data buffer. However,to insure integrity of the
buffer, this register must be interlocked with the Data Buffer Addressregister.
Once the Data Buffer Addressregister has been written, neither register can be
written until after the Data Buffer Handle register has been read by THE
MICROPROCESSOR.

14— Data Buffer Address -— Pointer to the data buffer being sent to the INIC by the
Host. Must be interlocked with the Data Buffer Handle

register.

{8~ Command Buffer Address XMTO0 ~ Pointer to a set of command

buffers sent by the Host. THE MICROPROCESSORwill DMA the buffers to
local DRAM found on the FreeSType queue and queue the Command

Provisional Pat, App. of Alacritech, Inc. 63
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

WISTRON CORP. EXHIBIT 1031.067

WISTRON CORP. EXHIBIT 1031.068

eeaa|

Buffer Address XMTO with the local address replacing the host
Address.

1C— Command Buffer Address SMT1

20— Command Buffer Address SMT2

24-— Command Buffer Address SMT3

28— Response Buffer Address -- Pointer to a set ofresponse buffers sent
by the Host. These will betreated in the same fashion as the
Command Buffer Address registers.

6.2.2.2 Utility Processor

Ending status will be handled by theutility processorin the samefashion as it is handled
by the network processor. At present two ending status conditions are defined B31 —
command complete, and B30 -— error. Whenendstatus is stored an interrupt is
generated.

Two additional registers are defined, Command Pointer and Data Pointer. The Host is
responsible for insuring that the Data Pointer is valid and points to sufficient memory
before storing a commandpointer. Storing a command pointer initiates command decode
and execution by the debug processor. The Host must not modify either command or
Data Pointer until ending status has been received, at which point a new command may
be initiated. Memory space is write only by the Host, reads will receive 00. The format
is as follows:

00-— InterruptStatus Pointer -- Initialized by the host to pointto a four byte area
where status is stored

04— Interrupt Status — Returned status from host. Sent after one or more
status conditions have been reset. Also an interlock for storing any
new status. Once status has been stored at the Interrupt Status Pointer
location, no new status will be stored until the host writes the Interrupt
Status Register. New status will be ored with any remaining
uncleared status (as defined by the contents of the returned status)
and stored again at the Interrupt Status Pointer location. Bits are
as follows:

Bit 31 — CC —- Command Complete
Bit 30 - ERR -- Error
Bit29 — Transmit Processor Halted

Bit28 — Receive Processor Halted

Bit27 — Utility Processor Halted

08— Interrupt Mask — Written by the host. Interrupts are masked for each
of the bits in the interrupt status when the samebit in the mask
register is set. When the Interrupt Mask register is written and as
a result a status bit is unmasked, an interrupt is generated. Also,

Provisional Pat. App. of Alacritech, Inc. 64
Inventors Laurence B. Boucheretal.

Express Mail Label # EH756230105US

WISTRON CORP. EXHIBIT 1031.068

WISTRON CORP. EXHIBIT 1031.069

i

Zaher"oRese

when the Interrupt Status Register is written, enabling new status
to be stored, when itis stored if a bit is stored that is not masked

by the Interrupt Mask, an interrupt is generated.

0C— CommandPointer — Points to commandto be executed. Storing
this pointer initiates command decode and execution.

10-— Data Pointer — Points to the data buffer. This is used for both read and write data,

determined by the command function.

7 Debug Interface

In order to provide a mechanism to debug the microcode running on the microprocessor
sequencers, a debug process has been defined which will run on the utility sequencer.
This processor will interface with a control program on the host processor over PCI.

71 PCI Interface

This interface is defined in the combination ofthe Utility Processor and the Host
Interface Strategy sections, above.

7.2 Command Format

The first byte of the command, the commandbyte,defines the structure of the remainder
of the command. The first five bits of the command byte are the commanditself. The
nextbit is used to specify an alternate processor, and thelast two bits specify which
processors are intended for the command.

7.2.1. Command Byte

7-3 2 1-0
Command Alt. Proc. Processor

7.2.2 Processor Bits

00 — Any Processor
01 — Transmit Processor
10 — Receive Processor

11 — Utility Processor

Provisional Pat. App. of Alacritech, Inc. 65
Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

WISTRON CORP. EXHIBIT 1031.069

WISTRON CORP. EXHIBIT 1031.070

FaSHHa
q a

seae"ey

7.2.3 Alternate Processor

This bit defines which processor should handle debug processingifthe utility processor
is defined as the processor in debug.

0— Transmit Processor

1 — Receive Processor

7.24 Single Byte Commands

00 — Halt

This command asynchronously halts the processor.

08 — Run

This commandstarts the processor.

10 —Step

This command steps the processor.

7.2.5 Eight Byte Commands

18 — Break

0 1 2-3 4-7

Command Reserved Count Address

This command sets a stop at the specified address, A count of 1 causes the specified
processorto halt the first time it executes the instruction. A count of 2 or more'causes the
processorto halt after that number of executions. The processoris halted just before
executing the instruction. A count of 0 doesnot halt the processor, but causes a sync
signal to be generated. If a second processoris set to the same break address, the count
data from the first break request is used, and eachtime either processor executes the
instruction the count is decremented.

20 — Reset Break

Command Reserved Address

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B, Boucheretal.

Express Mail Label # EH756230105US

66

WISTRON CORP. EXHIBIT 1031.070

WISTRON CORP. EXHIBIT 1031.071

bhTOT"GOSTSta

This command resets a previously set break point at the specified address. Reset break
fully resets that address. Ifmultiple processors were setto that break point, all will be
reset.

28 — Dump

0 1 2-3 4-7

Command Descriptor Count Address

This commandtransfers to the host the contents of the descriptor. For descriptors larger
than four bytes, a count, in four byte increments is specified. For descriptors utilizing an
address the address field is specified.

7.2.6 Descriptor

00 — Register

This descriptor uses both countand addressfields. Both fields are four byte based (a
count of 1 transfers four bytes).

01—Sram

This descriptor uses both count and address fields. Count is in four byte blocks. Address
is in bytes, butif it is not four byte aligned, it is forced to the lower four byte aligned
address.

02 —Dram

This descriptor uses both count and address fields. Countis in four byte blocks. Address
is in bytes, but if it is not four byte aligned, it is forced to the lower four byte aligned
address

03 — Cstore

This descriptor uses both count and address fields. Countis in four byte blocks. Address
is in bytes, but if it is not four byte aligned,it is forced to the lower four byte aligned
address

Stand-alone descriptors:

The following descriptors do not use either the count or address fields. They transfer the
contents of the referenced register.

04 —-CPU_STATUS

05-PC

Provisional Pat. App. of Alacritech, Inc. 67
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

WISTRON CORP. EXHIBIT 1031.071

WISTRON CORP. EXHIBIT 1031.072

ACSAOC"UESoo

06 —- ADDR_REGA

07 -ADDR_REGB

08 -RAM_BASE

09 — FILE_BASE

0A-—INSTR_REGL

0B —-INSTR_REGH

0C~MAC_DATA

0D —DMA_EVENT

OE ~ MISC_EVENT

OF -Q_IN_RDY

10~QOUT_RDY

11-LOCK STATUS

12 — STACK- This returns 12 bytes

13—Sense_ Reg

This register contains four bytes of data. If error status is posted for a command, if the
next commandthat is issued reads this register, a code describing the error in more detail
may be obtained. If any commandother than a dumpofthis register is issued after error
status, sense information will be reset.

30 — Load

0 1 2-3 4-7

Command Descriptor Count Address

This commandtransfers from the host the contents of the descriptor. For descriptors
larger than four bytes, a count, in four byte increments is specified, For descriptors
utilizing an address the address field is specified.

7.2.7 Descriptor

00 — Register

This descriptor uses both countand address fields. Both fields are four byte based.

Provisional Pat. App. of Alacritech, Inc. i 68
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

WISTRON CORP.EXHIBIT 1031.072

WISTRON CORP. EXHIBIT 1031.073

AisTOT"SOSTfaooS

01 -—Sram

This descriptor uses both count and address fields. Countis in four byte blocks. ; Address
is in bytes, but if it is not four byte aligned,it is forced to the lowerfour byte aligned
address.

02 - Dram

This descriptor uses both count and addressfields. Count is in four byte blocks. Address
is in bytes, but if it is not four byte aligned, it is forced to the lower four byte aligned
address

03 — Cstore

This descriptor uses both count and address fields. Count is in four byte blocks. Address
is in bytes, but if it is not four byte aligned, it is forced to the lower four byte aligned
address. This applies to WCS only.

Stand-alone descriptors:

The following descriptors do not use either the count or address fields. They transfer the
contents of the referenced register.

04—- ADDR_REGA

05 —- ADDR_REGB

06-RAM_BASE

07 —- FILE_BASE

08 -MAC_DATA

09~QIN_RDY

0A-Q_OUT_RDY

0B —- DBG_ADDR

38 — Map

This commandallowsan instruction in ROMto be replaced byan instruction in WCS.
The new instruction will be located in the Host buffer. It will be stored in the first eight
bytes of the buffer, with the high bits unused. To reset a mappedout instruction, map it
to location 00.

0 T=3 4-7
Command Address to Address to

Map To Map Out

Provisional Pat, App. of Alacritech, Inc. 69
Inventors Laurence B. Boucheretal.

Express Mail Label # EH756230105US

WISTRON CORP. EXHIBIT 1031.073

WISTRON CORP. EXHIBIT 1031.074

4

T°OEPSire
afeinFE

8 HARDWARE SPECIFICATION

FEATURES

* Peripheral Component Interconnect (PCI) Interface

- Universal PCI interface supports both 5,0V and 3,3¥ signaling environments,

- Supports both 32-bit and 64 bit PCI interface.

- Supports PCI clock frequencies from 15MHz to 66MHz

- High performance bus mastering architecture.

- Host memory based communications reduce register accesses,

- Host memory based interruptstatus word reduces register reads.

- Plug and Play compatible.

- PCIspecification revision 2.1 compliant.

- PCIbursts up to 512 bytes.

- Supports cache line operations up to 128 bytes.

- Both big-endian andlittle-endian byte alignments supported.

- Supports Expansion ROM.

« Network Interface

- Four internal 802.3 and ethernet compliant Macs.

- Media Independent Interface (MII) supports external PHYs.

- 1OBASE-T, 100BASE-TX/FX and 100BASE-T4 supported.

- Full and half-duplex modes supported.

~ Automatic PHY status polling notifies system of status change.
~ Provides SNMPsialistics counters.

- Supports broadcast and multicast packets.

- Provides promiscuous mode for network monitoring or multiple unicast address detection.

- Supports “huge packets” up to 32KB.

- Mac-layer loop-back test mode.

- Supports auto-negotiating Phys.

Provisional Pat. App. of Alacritech, Inc. 70
Inventors Laurence B. Boucheretal.

Express Mail Label # EH756230105US

WISTRON CORP.EXHIBIT 1031.074

WISTRON CORP. EXHIBIT 1031.075

HeheCa"meERESpipSy
i 0

he

* Memory Interface

- External Dram buffering of transmit and receive packets.

- Buffering configurable as 4MB, 8MB, 16MB or 32MB.

- 32-bit interface supports throughput of 224MB/s

- Supports external FLASH ROM upto 4 MB, for diskless boot applications.

~ Supports external serial EEPROM for custom configuration and Mac addresses,

* Protocol Processor

- High speed, custom, 32-bit processor executes 66 million instructions per second.

- Processes IP, TCP and NETBIOSprotocols.

- Supports up to 256 resident TCP/IP contexts.

- Writable control store (WCS)allows field updates for feature enhancements.

« Power

- 3.3V chip operation.

- PCI controlled 5.0V/3.3V I/O cell operation.

¢ Packaging

- 272-pin plastic ball grid array.

- 91 PCIsignals.

- 68 MII signals.

- 58 external memory signals.

- 1 clock signal.

- 54 signals split between power and ground.

- 272 total pins.

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

71

WISTRON CORP. EXHIBIT 1031.075

WISTRON CORP. EXHIBIT 1031.076

BraooS
oh

LonFOE"€

GENERAL DESCRIPTION

The microprocessor is a 32-bit, full-duplex, four channel, 10/100-Megabit per second (Mbps),Intelligent
Network Interface Controller, designed to provide high-speed protocol processing for server applications.It
combines the functions of a standard network interface controller and a protocol processor within a single
chip. Although designed specifically for server applications, The microprocessor can be used by: PCs,
workstations and routers or anywhere that TCP/IP protocols are being utilized.

When combined with four 802.3/MII compliant Phys and Synchronous Dram (SDram), the INIC comprises
four complete ethernet nodes. It contains four 802.3/ethernet compliant Macs, a PCI Bus Interface Unit (BIU),
a Memory controller, transmit fifos, receive fifos and a custom TCP/IP/NETBIOSprotocol processor. The
INIC supports 10Base-T , 100Base-TX, 100Base-FX and 100Base-T4 via the MII interface attachment of
appropriate Phys.

The INIC Macs provide statistical information that may be used for SNMP. The Macs operate in promiscuous
mode allowing the [NIC to function as a network monitor, receive broadcast and multicast packets and
implement multiple Mac addresses for each node.

Any 802.3/MII compliant PHY can be utilized, allowing the INIC to support 1OBASE-T, 1OBASE-T2,
100BASE-TX, 100Base-FX and 100BASE-T4 as well as future interface standards. PHY identification and

initialization is accomplished through host driver initialization routines. PHY status registers can be polled
continuously by the INIC and detected PHY status changes reported to the host driver. The Mac can be
configured to support a maximum frame size of 1518 bytes or 32768 bytes.

The 64-bit, multiplexed BIU provides a direct interface to the PCI busfor both slave and master functions.
The INICis capable of operating in either a 64-bit or 32-bit PCI environment, while supporting 64-bit
addressing in either configuration. PCI bus frequencies up to 66MHz are supported yielding instantaneous bus

. transfer rates of 533MB/s. Both 5.0V and 3.3V signaling environments can be utilized by the INIC.
Configurable cache-line size up to 256B will accommodate future architectures, and Expansion ROM/Flash
support allows for diskless system booting. Non-PC applications are supported via programmablebig and little
endian modes. Host based communication has been utilized to provide the best system performance possible.

The INIC supports Plug-N-Play auto-configuration through the PCI configuration space. External pull-up and
pull-down resistors, on the memory I/Opins, allow selection of various features during chip reset. Support of
an external eeprom allows for local storage of configuration information such as Mac addresses.

External SDram provides frame buffering, which is configurable as 4MB, 8MB, 16MB or 32MB usingthe
appropriate SIMMs. Use of -10 speed grades yields an external buffer bandwidth of 224MB/s. The buffer
provides temporary storage of both incoming and outgoing frames. The protocol processor accesses the frames
within the buffer in order to implement TCP/IP and NETBIOS. Incoming frames are processed, assembled
then transferred to host memory under the control of the protocol processor. For transmit, data is moved from
host memory to buffers where various headers are created before being transmitted out via the Mac.

Provisional Pat. App. of Alacritech, Inc. 72
Inventors Laurence B. Boucheretal.

Express Mail Label # EH756230105US

WISTRON CORP. EXHIBIT 1031.076

WISTRON CORP. EXHIBIT 1031.077

OEESeSy
a

BLOCK DIAGRAM

MITA MIIB MIIC

XmtA XmtB XmtC

& & &
RevA RevB RevC

Sec Seq Seq

1KB X 128 Sram

uPROC & DMACtrl
PCI BUS

INTERFACE UNIT

PCI BUS

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucheretal.

Express Mail Label # EH756230105US

MIID

XmtD

RevD

Seq

EXTERNAL

MEMORY

BUS

73

WISTRON CORP. EXHIBIT 1031.077

WISTRON CORP. EXHIBIT 1031.078

LhOE"60abkao0a

OUTLINE

e Cores/Cells

LSI Logic Ethernet-110 Core, 100Base & 10Base Mac with MII interface.

LSI Logic single port Sram,triple port Sram and ROM available.

LSI Logic PCI 66MHz, 5V compatible I/O cell.

LSI Logic PLL

Die Size / Pin Count

LSI Logic G10 process.

MODULE DESCR AREA

Scratch RAM, 1Kx128 sport, 4.37 ns nom., 06.77 mm?

Wcs, 8Kx49 sport, 6.40 ns nom., 18.29 mm*

MAP, 128x7 sport, 3.50 ns nom., 00.24 mm?

ROM, 1Kx49 32col, 5.00 ns nom., 00.45 mm?

REGs, 512x32 tport, 6.10 ns nom., 03.49 mm*

Macs, .75 mm’ x 4 = 03.30 mm?

PLL, 5mm = 00.55 mm?

MISC LOGIC, 117,260 gates / (5035 gates /mm? = 23.29 mm?

TOTAL CORE 56.22 mm

(Core side)* = 56.22 mm’
Core side = 07.50 mm

Die side = core side + 1.0mm (I/O cells) = 08.50 mm

Die area = 8.5 mmx 8.5 mm = 72.25 mom

Pads needed = 220 signals x 1.25 (vss, vdd) = 275 pins

LSI PBGA = 272 pins

Provisional Pat. App. of Alacritech, Inc. 74
Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

WISTRON CORP.EXHIBIT 1031.078

WISTRON CORP. EXHIBIT 1031.079

we

£@hTOT"esosTrsog

e Datapath Bandwidth

(10MB/s/100Base) x 2 (full duplex) x 4 connections = 80 MB/s

Average frame size = 512B

Frame rate = 80MB/s / 512B = 156,250 frames / 5

Cpu overhead / frame = (256 B context read) + (64B header read) +
(128B context write) + (128B misc.) = 512B / frame

Total bandwidth = (512B in) + (512B out) + (512B Cpu) ~ 1536B / frame

Dram Bandwidth required = (1536B/frame) x (156,250 frames/s) = 240MB/s

Dram Bandwidth @ 60MHz = (32 bytes / 167ns) = 202MB/s

Dram Bandwidth @ 66MHz = (32 bytes / 150ns) = 224MB/s

PCI Bandwidth required = 80MB/s

PCI Bandwidth available @ 30 MHz, 32b, average = 46MB/s

PCI Bandwidth available @ 33 MHz, 32b, average = SOMB/s

PCI Bandwidth available @ 60 MHz, 32b, average 92MB/s

PCI Bandwidth available @ 66 MHz, 32b, average = 100MB/s

PCI Bandwidth available @ 30 MHz, 64b, average = 92MB/s

PCI Bandwidth available @ 33 MHz, 64b, average = 100MB/s

PCI Bandwidth available @ 60 MHz, 64b, average - 184MB/s

PCI Bandwidth available @ 66 MHz, 64b, average = 200MB/s

e Cpu Bandwidth

Receive frame interval = 512B / 40MB/s 12.8us

Instructions / frame @ GOMHz = (12.8us/frame) / (50ns/instruction) = 256

instructions/frame

Instructions / frame @ 66MHz = (12.8us/frame) / (45ns/instruction) = 284

instructions/frame

Required instructions / frame (per Clive) = 250 instructions/frame

Provisional Pat. App. of Alacritech, Inc. 75
Inventors Laurence B. Boucher etal.

Express Mail Label # EH756230105US

WISTRON CORP. EXHIBIT 1031.079

WISTRON CORP. EXHIBIT 1031.080

e Performance Features

- 512 registers improve performance through reduced scratch ram accesses and reduced instructions.

- Register windowing eliminates context-switching overhead.

- Separate instruction and data paths eliminate memory contention.

- Totally resident control store eliminates stalling during instruction fetch.

- Multiple logical processors eliminate context switching and improve real-time response.

- Pipelined architecture increases operating frequency.

- Shared register and scratch ram improve inter-processor communication.

- Fly-by state-Machine assists address compare and checksum calculation.

- TCP/TP-context caching reduces latency.

- Hardware implemented queues reduce Cpu overhead and latency.

- Horizontal microcode greatly improves instruction efficiency.
- Automatic frame DMA and status between Mac and dram buffer.

- Deterministic architecture coupled with context switching eliminates processorstalls.

ShitOERADceooo

Provisional Pat. App. of Alacritech, Inc. 76
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

WISTRON CORP.EXHIBIT 1031.080

WISTRON CORP. EXHIBIT 1031.081

A

OSSa
nie"

PROCESSOR

The processoris a convenient means to provide a programmable state-machine which is capable of processing
incoming frames, processing host commands,directing networktraffic and directing PCIbus traffic. Three
processors are implemented using shared hardware in a three-level pipelined architecture which launches and
completes a single instruction for every clock cycle. The instructions are executed in three distinct phases
corresponding to each of the pipeline stages where each phase is responsible for a different function.

The first instruction phase writes the instruction results of the last instruction to the destination operand,
modifies the program counter (Pc), selects the address source for the instruction to fetch, then fetches the
instruction from the control store. The fetched instruction is then stored in the instruction register at the end of
the clock cycle.

The processorinstructions reside in the on-chip control-store, which is implemented as a mixture of ROM and
Sram. The ROM contains 1K instructions starting at address 0x0000 and aliases each 0x0400 locations
throughoutthe first 0x8000of instruction space. The Sram (WCS)will hold up to 0x2000 instructions starting
at address 0x8000 and aliasing each 0x2000 locations throughoutthe last 0x8000 of instruction space. The
ROMand Sram are both 49-bits wide accounting for bits [48:0] of the instruction microword. A separate
mapping ram provides bits [55:49] of the mictoword (MapAddr) to allow replacementof faulty ROM based
instructions. The mapping ram has a configuration of 128x7 which is insufficient to allow a separate map
address for each of the 1K ROM locations. To allow re-mappingof the entire 1K ROM space, the map ram
address lines are connected to the address bits Fetch[9:3]. Theresult is that the ROM is re-mapped in blocks
of 8 contiguous locations.

The second instruction phase decodes the instruction which was stored in the instruction register.It is at this
point that the map address is checked for a non-zero value which will cause the decoder to force a Jmp
instruction to the map address. If a non-zero value is detected then the decoder selects the source operands for
the Alu operation based on the values of the OpdASel, OpdBSel and AluOp fields. These operands are then
stored in the decoderegister at the end of the clock cycle. Operands may originate from File, Sram,or flip-
flop based registers. The second instruction phase is also where theresults of the previous instruction are
written to the Sram.

The third instruction phase is when the actual Alu operation is performed, the test condition is selected and the
Stack push and pop are implemented. Results of the Alu operation are stored in the results register at the end
of the clock cycle.

Following is a block diagram which shows the hardware functions associated with each ofthe instruction
phases. Note that various functions have been distributed across the three phases of the instruction execution in
order to minimize the combinatorial delays within any given phase.

Provisional Pat. App. of Alacritech, Inc. q7
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

WISTRON CORP. EXHIBIT 1031.081

WISTRON CORP. EXHIBIT 1031.082

Tsoo09t i

ihFOE"fos
Cpu BLOCK-DIAGRAM

coca:LOAD "' a caLOADte

STOREa.
addr inc c a

INSTRUCTION DECODER
AND

OPERAND MULTIPLEXER

 ts asLIT STAck
Cul SBASE

Provisional Pat. App. of Alacritech, Inc. 78
Inventors Laurence B. Boucheretal.

Express Mail Label # EH75623010SUS

WISTRON CORP.EXHIBIT 1031.082

WISTRON CORP. EXHIBIT 1031.083

AhPoe"aoereSS

INSTRUCTION SET

The micro-instructions are divided into six types according to the program control directive. The micro-
instruction is further divided into sub-fields for which the definitions are dependent upon the instruction type.
The six instruction types are listed below.

ANSTRUCTION-WORDFORMAT

TXRE AS55149) [48:47] (46:42)_[41:53]___132:24) [23:16] [15:00]
Jce ob0000000 oboo, Aluop, OpdAsel, Opdssel, TstSel, Literal
Jap oboo00000 Obol. Aluop, Opdasel, OpdBsel, Flgsel, Literal
Jsr 0b0000000 Ob10, AluOp, OpdAsel, OpdBgel, FlgSel, Literal

Rts Odbooo0000 Ob11, Aluop, OpdAsel, OpdBsel, Ohfé, Literal
Nxt 0b0000000 Obll, Aludp, OpdAsel, OpdBsel, ¥FlgSel, Literal
Map MapAddr Obxx, ObIKX, ObXXXXXXXKX, ObXXXXXXXXX, Ohxx, Ohnxxxx

All instructions include the Alu operation (AluOp), operand “A” select (OpdASel), operand “B” select
(OpdBSel) and Literal fields. Other field usage depends upon the instruction type.

The “jump condition code” (Jec) instruction causes the program counter to be altered if the condition selected
by the “test select” (TstSel) field is asserted. The new program counter (Pc) value is loaded from either the
Literal field or the AluOut as described in the following section and the Literal field may be used as a source
for the Alu or the ram address if the new Pe value is sourced by the Alu.

The “jump” (Jmp)instruction causes the program counter to be altered unconditionally. The new program
counter (Pc) value is loaded from either the Literal field or the AluOut as described in the following section.
The format allowsinstruction bits 23:16 to be used to perform a flag operation and the Literal field may be
used as a source for the Alu or the ram address if the new Pe value is sourced by the Alu.

The “jump subroutine” (Jsr) instruction causes the program counterto be altered unconditionally. The new
program counter (Pe) value is loaded from either the Literal field or the AluOut as described in the following
section. The old program counter value is stored on the top location of the Pc-Stack which is implemented as a
LIFO memory. The formatallows instruction bits 23:16 to be used to perform a flag operation ‘and the Literal
field may be used as a source for the Alu or the ram addressif the new Pe value is sourced by the Alu.

The “Nxt” (Nxt) instruction causes the program counter to increment. The format allows instruction bits
23:16 to be used to perform a flag operation and the Literal field may be used as a source for the Alu or the
ram address.

The “return from subroutine” (Rts) instruction is a special form of the Nxt instruction in which the “flag
operation” (FlgSel) field is set to a value of Ohff. The current Pe value is replaced with the last value stored in
the stack. The Literal field may be used as a source for the Alu or the ram address.

The Mapinstruction is provided to allow replacement of instructions which have been stored in ROM and is
implemented any time the “map enable” (MapEn) bit has been set and the contentof the “map address”
(MapAddr)field is non-zero. The instruction decoder forces a jump instruction with the Alu operation and
destination fields set to pass the MapAddr field to the program control block.

The program control is determined by a combination of PgmCtrl, DstOpd, FlgSel and TstSel. The behavior
of the program controlis defined with the following "C-like" description.

Provisional Pat. App. of Alacritech, Inc. 719
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

WISTRON CORP.EXHIBIT 1031.083

WISTRON CORP. EXHIBIT 1031.084

heOE*EESache
we

2ps

if (MapEn & (MapAddr != 0b0000000)){ //re-map instr
Stackec = Stackc;
StackB = StackB;
StackA = StackA;

ImstrAddr = oh8000 | Pe[2:0] | (MapAddr << 3);
Pc = InstrAddr + (Execute & -DbgMd) ;

Petch = DbgMd ? DbgAddr: InstrAddr;
DbgAddr = pbgAddr + (Execute & DbgMd);}

else if (PgmCtrl == Jac) { //conditional jump
Stacke = Stackc;
StackB = StackB;
StackA = Stacka;

InstrAddr = -Tst@TstSel ? Pc:(AluDst==Pc) ? AluOut:Literal;
Pe = InstrAddr + (Execute & ~DbgMd)

Fetch = DbgMd ? DbgAddr:InstrAddr;
DbgAddr = DbgAddr + (Execute & DbgMd);}

else if (PgmCtrl == Imp) { //jamp
Stacke = Stackc;
StackB = StackB;
StackA = StackaA;

InstrAddr = (AluDst == Pc) ? AluOut:Literal;
Pe = ImstrAddr + (Execute & ~DbgMd)

Petch = DbgMd ? DbgAddr:InstrAddr;
DbgaAddr = DbgAddr + (Execute & DbgMd);}

else if (PgmCtrl == Jar) { //jump subroutine
Stacke = StackB;
StackB = StackA;
StackA = Pa;

Instraddr = (AluDst == Pc) ? AluOut:Literal;
Pe = ImstrAddr + (Execute & -DbgMd)

else

else

Fetch = DbgMd ? DbgAddr: InstrAddr;
Dbgaddr = DbgAddx + (Execute & DbgMd);}

if (FlgSel == Rts) { //return subroutine
InstrAddr = StackA;

StackA = StackB;
StackB = Stackc;
Stackc = ErrvVec;

Pe = InstrAddr + (Execute & ~DbgMd)
Fetch = DbgMd ? DbgAddr:InstrAddr;

DbgAddx = DbhgAddr + (Execute & DbgMd);}

{
InstrAddr = Pc; //continue

StackA = StackA;
StackB = StackB;
Stacke = Stackc;

Poe = InstrAddr + (Execute & ~DbgMd)
Fetch = DbgMd ? DbgAddr:InstrAddr;

DbgAddx = DbgAddr + (Execute & DbgMd) ;}

Provisional Pat, App. of Alacritech, Inc. 80
Inventors Laurence B. Boucher etal.

Express Mail Label # EH756230105US

WISTRON CORP.EXHIBIT 1031.084

WISTRON CORP. EXHIBIT 1031.085

“CEEESSONCeay
vieEeOe
i sd

ALU_OPERATIONS

AluOQp=QPERATIONUU

obooo000

o0b00001

obo0010

0b00011

0b00100

Oboo1ol

oboo110

obo0111

0b01000

obo1001

Obo1010

0b01011

0b01100

0b01101

0b01110

Ob01111

A a

> i

aQa iouu
AQ LI

»» f)wou
Fd "

(A & ~(1 << B));
0; Vi= (B >= 32) ? 1:0;

(A & B);
= 0; V = 0;

= (Literal & B);
0; V= 0;

(-Literal & B);
0; Ve O;

= (A | (1 << B));
0; V= (B == 32) ? 1:0;

(A | B);
O; Va 6;

(Literal | B);
0; V=0;

(-Literal | B);
= 0; Ve= OQ;

(i=31; i>=0; i--) if B[i] continue; A=i;
0; V = (B) ? O:1;

(A * B);
= 0; V = 0;

({Literal} * B);
O; Ws 0;

({-Literal} * B);
O; Ves O;

=e 0; V= 0;

//bit clear

//legical and

/{/legical and

//legical and not

//bit set

/flegical or

/flegical or

/flegical or not

//priority enc

//logical xor

/flegical xor

//logical xor not

/fmove

B(31:24] * B[23:16] * B{15:08] * B[07:00) ;//hash
QO; V= 0;

{B[23:16],B[31:24],B(07:00],B[15:08] };
Oo; V = 0;

{B(15:00], B[31:16]};
0; V= 0;

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher etal.

Express Mail Label # EH756230105US

//swap bytes

//swap doublets

81

WISTRON CORP.EXHIBIT 1031.085

WISTRON CORP. EXHIBIT 1031.086

cotAA

coeeee|
tt

i

AluOp FUNCTION

0b10000 = (A + B); /fadd B
= (A + B)(32]; V = oO;

0b10001 = (A + B + C); /fadd B, carry
= (A + B+ C) (32); V = 0;

0b10010 = (Literal + B); /fada constant
= (Literal + B) (32); Vv = 0;

0b10011 = (-Literal + B); //sub constant
= (-Literal + B) [32]; Vv = 0;

0b10100 = (A - B); //sub B
= (A - B) (32); V = 0;

0b10101 = (A - B - -C); //sub B, borrow
= (A - B - ~C)(32]; V = 0;

0b10110 = (-A + B); /fsub A
= (-A + B)(32); V = 0;

0b10111 = (-A + B - +C); //sub A, borrow
= (-A + B - -C)(32); V = 0;

0b11000 = (A << B); //fshift left A
= A(31); V = (B >= 32) ? 0:1;

0611001 = (B << Literal); //shift left B
B[31]; V = (Literal s= 32) ? 0:1;

0b11010 = (B << 1); //shift left B
= B[31]); V = 0;

0b11011 = (A - B); //compare
= (A - B) (32); V = 0;

6b11100 = (A >> B); //shift right A
= A(O); V = (B >= 32) ? 1:0;

0b11101 = (B >> Literal); //shift right B
A[O]l; V = (Literal >s= 32) ? 1:0;

0b11110 = (B >> 1); //shift right B
= A[O); V = 0;

0b11111 = (B - A); //compare
= (B - A}(32]; V = 0;

Provisional Pat. App. of Alacritech, Inc. 82
Inventors Laurence B. Boucheretal.

Express Mail Label # EH756230105US

WISTRON CORP.EXHIBIT 1031.086

WISTRON CORP. EXHIBIT 1031.087

1SS

fhieeFe
@
a,

Opdsel__

Ob0000aaaaa

Obo00laaaaa

ObOOLXXXXXX

0b0100000KX

0b0100001xx

060100010xXxX

ObO100011XX

ObO1001XxXxx

0b010100000

SELECTEDOPERANDS

File File@(OpdSel[4:0] | FileBase);
Allows paged access to any part of the register file.

CpuReg File@{2'bll, Cpuld, Opdsel [4:0] };
Allows direct access to Cpu specific registers.

reserved Reserved for future expansion.

CpuStatus 0b0000000000000BHDODONO0OD000000CC
This is a read-only register providing information about the Cpu executing
(OpdSel[1:0)) cycles after the current cycle. "CC" represents a value
indicating the Cpu. Currently, only Cpuld values of 0, 1 and 2 are returned.
“H" represents the current state of Hit, "D* indicates DbgMd and “B"
indicates BigMd. Writing this register has no effect.

reserved Reserved for future expansion.

Pe OxO000AAAA

Writing to this address causes the program controllogic to use AluOut as the
new Pe value in the event of a Jmp, Jee or Jsr instruction for the Cpu
executing during the current cycle. If the current instruction is Nxt, Map, or
Rts, the register write has no effect. Reading this register returns the value in
Pe for the Cpu executing (OpdSel[1:0]) cycles after the current cycle.

DbgAddr OxDOOOAAAA
Writing to this register alters the contents of the debug address register
(DbgAddr)for the Cpu executing (OpdSel[1:0]) cycles after the current
cycle. DbgAddr provides the fetch address for the control-store when
DbgMdhas been selected and the Cpu is executing. DbgAddr is also used
as the control-store address when performing a WrWcs@DbgAddr or
RdWes@DbgAddr operation. “D” represents bit 31 of the register. It is a general
purpose flag that is used for event indication during simulation. Reading this
register returns a value of 0x00000000.

reserved Reserved for future expansion.

RamAddr {0b1CCC, 0x000, Ob1, AAAA}
RamAddr = AluOut[15] ? AluOut : (AluOut | RamBase);
PrevCC = AluOut(31]7CCC : AluCC;

A read/write register. When reading this register, the Alu condition codes from the previous
instruction are returned together with RamAddr.

Dit ameAlways 1.
30 PrevC Previous Alu Carry.
29 PrevV Previous Alu Overflow.
28 PrevZ Previous Alu Zero.
27:16 Always 0.
15 Always 1.
14:0 RamAddr Contents of last Sram address used.

When writing this register, if alu_out(31] is set, the previous condition codes will be overwritten with
bits 30:28 of AluOut. If AluOut[15] is set, bits 14:0 will be written to the RamAddr, If AluOut [15]
is not set, bits 14:0 will be ored with the contents of the RamBase and written to the RamAddr.

Provisional Pat. App. of Alacritech, Inc, 83
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

WISTRON CORP. EXHIBIT 1031.087

WISTRON CORP. EXHIBIT 1031.088

wae
thes

ralOT"Boiaego
u

OpdSel____

06010100001

SELECTEDOPERANDS

AddrRegA Ox0000AAAA
AddrRegA = AluOut;

A read/write operand which loads AddrRegA used to provide the address for read and write

the

06010100010

When AddrRegaA(15]is set, the contents will be presented directly to the ram. When AddrRegA[l5]is
reset, the contents will first be ored with the contents of the RamBase register before presentation to

ram, Writing to this register takes priority over Literal loads using FlgOp. Reading this! register returns
the current value of the register.

AddrRegB OxOO000AAAA
AddrRegB = AluOut;

A read/write operand which loads AddrRegB used to provide the address for read and write
operations.

the

060190100011

read

0b010100100

0b010100101

0b010100110

0b010100111

no

When AddrRegB[15]is set, the contents will be presented directly to the ram, When AddrRegB[15]is
reset, the contents will first be ored with the contents of the RamBaseregister before presentation to

tam. Writing to this register takes priority over Literal loads using FigOp. Reading this register returns
the current value ofthe register.

AddrRegAb OxOOOOAAAA
AddrRegA = AluOut; AddrRegB = AluOut;

A destination only operand which loads AddrRegB and AddrRegA used to provide the address for

and write operations Writing to this register takes priority over Literal loads using FlgOp. Reading this
register returns the value 0x00000000.

RamBase Ox0000AAAA
RamBase = AluOut;

A read/write register which provides the base address for ram read and write cycles. When
RamAddr[15] is set, the contents will not be used, When RamAddr[15] is reset, the contents will first
be ored with the contents of the RamBase register before presentation to the ram. Reading this register
returns the value for the current Cpu,

FileBase ObO0000000000000000000000AAAAAAAAA
FileBase = AluOut;
FileAddr = OpdSel[8] ? OpdSel:(OpdSel + FileBase);

A read/write register which provides the base address for file read and write cycles. When OpdSel[8]
is

set, the contents will not be used and OpdSel will be presented directly to the address lines ofthe file.
When OpdSel[8] is reset, the contents will first be ored with the contents of the FileBase register
before presentation to the file. Reading this register returns the value for the current Cpu.

InstrRegL OxITIIIIII
This is a read-only register which returns the contents of InstrReg[31;0]. Writing to this register has no
effect.

InstrRegH OxOOIIIIII
This is a read-only register which returns the contents of InstrReg[55:32]. Writing to this register has

effect.

Provisional Pat. App. of Alacritech, Inc. 84
Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

WISTRON CORP.EXHIBIT 1031.088

WISTRON CORP. EXHIBIT 1031.089

a

HO4

BeTY"eeES

OpdSel__.SELECTEDOPERANDs

0b010101000

0bO10101001

0b010101010

0b010101011

0b010101100

Minus1 Oxffffftft

This is a read-only register which supplies a value Oxffffffff.. Writing to this
register has no effect.

FreeTime A free-running timer with a resolution of 1.00 microseconds and a maximum count
of 71 minutes. This timer is cleared during reset.

LiteralL, Instr[15:0]
A read-only register. Writing to this register has no effect

LiteralH Instr[15:0] < < 16;
A read-only register. Writing to this register has no effect

MacData - Writing to this address loads the AluOutdata into the MacData register for use
during Mac operations. The Mac operation, resulting from writing to the MacOp register,
determines the definition of the MacData register contents as follows.

MacOpMacDatadefinition
Mstop ODXXXXXGOCHANAXAAKKKKIKKMANAKAKERK

MacData is not used for the StopM operation.

WrMefg hrstl, revd, rsvd, ercen, fulld, hrstl, hugen, nopre, paden, prtyl, xdl10, ipgr1(6-:0),
ipgr2[6-0], ipgt{6:0].
Loads the MacCfg register with the contents of the MacData register. Refer to LSI Logic's
Ethernet-110 Core Technical Manual for detailed definitions of these bits.

WrMrng OMOQRCOOTONQUONGOUGKAXSSSSSSSSSSS
Loads seed[10:0) into the Mac's random number generator.

RdPhy ObXXXXRRRRXXXXPPPPXXAKXNKNAKKAMMKKN
Reads register[R] of phy[P].

WrPhy ObXXXXRRRRXXXXPPPEDDDDDDDDDDDDDDDD
Writes register[R} of phy[P} with MacData(15:0).

Reading this register returns prsd[15:0] of Mac0 which contains phy status data returned to the
Mac at the completion of a RdPhy command. This data is invalid while MacBsy is asserted
as a result of a RdPhy command. Refer to the appropriate phy technical manual for a —
definition of the phy register contents.

Provisional Pat. App. of Alacritech, Inc. 85
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

WISTRON CORP.EXHIBIT 1031.089

WISTRON CORP. EXHIBIT 1031.090

Ahhe”Boekoo

OpdSel__.SELECTEDOPERANDS

0b010101101

0b010101110

flag.

0b010101110

0b010101111

MacOp- A write only register. Writing to this address loads the MacSel register and staRts
execution of the specified operation as follows.

AlvOut description
02cGOCKxXOxXM Mstop - Halts execution of a MacOp for Mac[M]. The user must wait for MacBsy tw be

deasserted before issaing another command or changing the contents of MacData.
OxXXXXK1KM WrMcfg - Writes the contents of MacData to the MacCfg register of Mac[M]. The user

must wait for MacBsy to be deasserted before issuing another command or changing the
contents of MacData.

OxKXXXK2KM WrMing - Writes the contents of MacData to the seed register of Mac[M]. The user must
wait for MacBsy to be deasserted before issuing another command or changing the contents
of MacData.

OxXXXXX3XM RdPhy - Reads the contents of reg{R) for phy[P] on the MII management bus of Mac[M].
The contents may be read from MacData after MacBsy has been de-asserted.

OxXXKXX4KM WrPhy ~ Writes the contents of MacData{15:0] to the reg(R] of phy[P] on the MIT
management bus of Mac{M]. The user must wait for MacBsy to be deasserted before issuing
another command or changing the contents of MacData.

OxXXKXX8XM WrAddrAL - Writes the contents of MacData[)5:0] to MacAddrA[15:0) for Mac[M].
OxXKXKK9XM WrAddrAd - Writes the contents of MacData[1 1:0) to MacAddrA[47:16] for Mac[M).
OxXXXXXaXM WrAddrBL - Writes the contents of MacData[15:0] to MacAddrB[15:0] for. Mac{M].
07900KXbxM WrAddrBH - Writes the contents of MacData{11:0] to MacAddrB[47:16] for Mac[M].

ChCmd A write-only register,

bit=mame_ ipti —
3411 reserved Data written to these bits is ignored.
10:8 command 0 - Stops execution ofthe current operation and clears the corresponding event

1 - Transfer data from ExtMem to ExtMem.
2 - Transfer data from Pci to ExtMem.
3 - Transfer data from ExtMem to Pei.
4 - Transfer data from Sram to ExtMem.
5 - Transfer data from ExtMem to Sram.
6 - Transfer data from Pei to Sram.
7 - Transfer data from Sram to Pci.

07:05 reserved Data written to these bits is ignored.
04:00 Chid Provides the channel number for the channel command.

ChEvnt A read-only register.

bit__ pame_ Sess
31:00 ChDn Each bit represents the done flag for the respective dma channel. These

bits are set by a dma sequencer upon completion of the channel
command. Cleared when the processor writes 0 to the corresponding
ChCmdregister.

GenEvot A read-only register.

bit name__. -
31 PciRdEvat Indicates that a PCI initiator is attempting to read a proc. register.
30 PciWrEvat Indicates that a PC] initiator has posted a write to a pproc. register.
29 TimeEvnt An event which occurs once every 2.00 milliseconds.
28:00=reserved Reserved for future use.

Provisional Pat. App. of Alacritech, Inc. 86
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

WISTRON CORP.EXHIBIT 1031.090

WISTRON CORP. EXHIBIT 1031.091

4a

tedEC
=

VE"tak
7Ha

eh

06010110000

0b010110001

9b010110010

0b010110011

when

0b010110100

0bO10110101

QCtrl

bit_
31:11
10:8

TS

4:0

Lru

Mru

A write-only register used to select and manipulate a Q.

namie__
reserved Data written to these bits are ignored.
QSz Used only during InitQ operations to specify the size of the QBdy in Dram.

7 ~ Queue depth is 32K entries (128KB).
6 - Queue depth is 16K entries (64KB).
5 - Queuedepth is 8K entries (32K5).
4 - Queue depth is 4K entries (16KB).
3 - Queue depth is 2K entries (SKB).
2 - Queue depth is 1K entries (4KB).
1 - Queue depth is 512 entries (2KB).
0 - Queue depth is 256 entries (IKB).

QOp=Specifies the queue operation to perform.
7-DbIQ Disables all queues.
6-EnQ~~Enables all queues.
5—RdBdy Increments the QBdyRdPtr and incremenis the QTIWrPtr.
4 —- WrBdy Decrements the QBdyWrPtr amd increments the QHdRdPtr.
3-RdQ Returns a queue entry in register QData..
2-rsvd Reserved. Not to be used.

1-InitQ Set the queue status to empty and initializes QSz.
O-SeQ Selects the Qld to be utilized during writes 1 QData.

Qld Specifies the queue on which to perform all operations except DbIQ or EnQ.

A read/write register. Writing this register will result in the data being pushed on to
the selected queue, Reading this register fetches queue data popped off during the
previous RdQ operation.

Reserved for future expansion.

A write-only register used to enable and disable Mac transmit and receive
sub-channels.

name.
reserved Data written to these bits are ignored.
enable Whenset, indicates to the Mac transmit or receive sequencer that the subchannel

contains a transmit or receive descriptor.
reserved Data written to these bits is ignored.
RevCh Selects a Mac receive subchannel when set. Selects a Mac transmit subchannel

cleared,

reserved Data written to this bit are ignored.
SubCh Selects subchannel B when set or A when reset.
Macld Provides the Mac number for the subchannel enable bit.

Ox0000000A

A read/write operand indicating which ofthe 16 entries is least recently used. When
Reading This register the least recently used entry is returned,after which it is
automatically made the most recently used entry. This register should only be read
in conjunction with a Move’ operation of the ALU,else the results are
unpredictable. Writing to this register forces the addressed entry to become the least
recently used entry.

Ox0000000A

A write only operand forcing the addressed entry to become the most recently used
entry.

Provisional Pat. App. of Alacritech, Inc. a7
Inventors Laurence B. Boucher etal.

Express Mail Label # EH756230105US

WISTRON CORP. EXHIBIT 1031.091

WISTRON CORP. EXHIBIT 1031.092

io
‘

hot"Sostsoo9

0b010111000

0b010111001

065010111010

0b010111011

0b0101111xx

0b0110XxXxXxx

ObO1LLLOXXXX

QInRay

Constants

reserved

A read-only register comprising QHdnot full flags for each of the 32 queues.

A read-only register comprising QTI not empty flags for each of the 32 queues.

A read-only register comprising QEmpty flags for cach of the 32 queues.

A read-only register comprising QFull flags for each of the 32 queues.

Reserved for future expansion.

{0b000, OpdSel[4:0] }

Reserved for future expansion.

Provisional Pat. App. of Alacritech, Inc. 88
Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

WISTRON CORP.EXHIBIT 1031.092

WISTRON CORP. EXHIBIT 1031.093

=]

Chg

ieCESBSuehal

me

feteEi

OpdSel___--«SELECTEDOPERANDs

ODO1111XXxXXSramOPERATIONS

Opdsel[3l=§PostAddrOp
0 nop
i

Opdsel(21transposeCtrl
o don't transpose
Z transpose bytes

Qpdsel(1:0)Ramopdsz
o quadlet
iL triplet
2 doublet
3 byte

=RAM_READATTRIBUTES

endian trans- byte Sram
~Mode. pose. offs data
little o 0 abed
little o 1 abcX
little 0 a abxx
little 0 3 ak
little a: 0 abed
little 1 2 abcx
little L 2 abxx
little 1 3 axxxt

BIG 9 6 abed
BIG 0 i Xbed
BIG 0 2 ¥Xed.
BIG 9 3 xxxXd
BIG 2 9 abed
BIG 1 ZL Xbed
BIG 1 2 xXed
BIG 1 3 KXXd

—RAM_WRITEATTRIBUTES

endian trans- Opd Alu
mode. pose size out
little 0 Q abed
little 0 T Xbed
little 0 DB XXed
little o B *XXd
little 1 Q abed
little 1 T Xbed
little 1 D XXed
little 1 B xkKXd
big o Q abed
big 0 T Xbed
big 0 Bo XXed
big 0 B xxXxd
big L Q abed
big 1 T Xbed
big 1 D xXed
big 1 Bo xXxxd

Oblaaaaaaaa Vile File@OpdSel (9:0) ;
Allows direct, non-paged, access 10 the top half ofthe register file.

RamAddr = RamAddr + (OpdSel([1:01]) ;

———SOUBSE,OPERAN_____.

az=0 SzsT Si=D S258
abed Obed 00ca 000d
trap Qabc 00bc o00c
trap trap Q0ab 000b
trap trap trap oo0a
deba Odeb 00de 000d
trap Ocha o0cb 000c
trap trap 00ba 000b
trap trap trap o00a
abed dabe O0ab 000a
trap Obed o0bc 900b
trap trap 00cd 000c
trap trap trap oood
dcba Ocha o0ba 000a
trap Odcb o0cb o00b
trap trap o0dc 900c
trap trap trap 000d

SOURCE_OPERAND

OF=0 OF=1 OF=2 Qr=3
abcd trap trap trap
-bed bed- trap trap
--ed -cd- cd-~- trap
=-=d. --d- -d-- a---
dcba trap trap trap
-dcb dcb- trap trap
--de -de- de-- trap
---d --d- -d-- a---
abed trap trap trap
bed- -bed trap trap
ed-- -ced- --ed trap
d--- -i-- --i- ---d
deba trap trap trap
deb- -deb trap trap
de-- -de- --de trap
d--- -d-- --d- ---d

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

89

WISTRON CORP.EXHIBIT 1031.093

WISTRON CORP. EXHIBIT 1031.094

i
tt“ne”ue1

SnAket
iy

aEee
ha

TstSel__-SBLECTEDTEST0111111

ObXOOXXAKE Tst = TstSel[7] *~ AluOut(TstSel[4:0)] //Alu bit

Obx0100000 Tst = TstSel(7) * c //carry

Obx0100001 Tst = TstSel(7] ~ Vv //error

ObxX0100010 Tst = TstSel[(7] “~ 2 /fzere

0bX0100011 Tst = TstSel(7] ~ (Zz | ~¢c) //less or equal

0bx0100100 Tst = TstSel(7]) * Prevc //previous carry

0bx0100101 Tst = TstSel(7] ~ PrevV //previous error

0bx0100110 Tst = TstSel[7] ~ PrevZ /{previous zero

ObxX0100111 Tst = TstSel[7] * (PrevZ & 2) //64b zero

ObxX0101000 Tst = TstSel[7] * QOpDn //queue op okay

ObxX0101001 Tst - reserved

0bx010101x% Tat = reserved

ObXO1011XX Tat = reserved

ObXO1LLOXXX Tst = Tstgel(7) ~ Lock([TstSel[2:0)) /ftests the current value of
Lock(TstSel[2:0]) = 1; f/the Lock then set it.

ObXO111XXX Tst = TstSel(7] * Lock{TstSel(2:0)] //tests the value of Lock.

ObXOLAXXKX Tst reserved

ObxX10002 Tat = reserved

Figsel_.

0b00000000 _No operation.

Obooo00001~—SelfRst Forces a self reset for the entire chip excluding the PCI configuration
registers

obo0000010«=SelBigEnd Selects big-endian mode for ram accesses for the current Cpu.

oboco00011=SelLitEnd Selects little-endian mode for ram accesses for the current Cpu.

0b00000100 DbiMap Disable instruction re-mapping for the current Cpu.

0600000101 EnbMap Enable instruction re-mapping for the current Cpu.

ObooooO1L1LA reserved

ObOOGOLAAX reserved

Ob00010XxXxX Clrick Lock[FlgSel[2:0]] = 0;
Clears the semaphore register bit for the current Cpu only.

ObOOOLILXKK reserved

Provisional Pat. App. of Alacritech, Inc. 90
Inventors Laurence B. Boucher etal.

Express Mail Label # EH756230105US

WISTRON CORP.EXHIBIT 1031.094

WISTRON CORP. EXHIBIT 1031.095

“aBhTOE"BOSTacs

ObOO10xXXxX

ObOO11XXXXK

0b01000000

60b01000001

Obo1000010

0601000011

Obo1000100

ObO1L0001KX

ObOLOOGLOXX

0b010011xx

0b010100Xx

0b010101xxX

0b01011Xxx

ObO11XXXxX

ObLXXxXXxXxx

RamAddr = Literal{15] ? Literal : (Literal | RamBase);0

1 RamAddr = AddrRegA(I5]_ 7 AddrRegA : (AddrRegA | RamBase);
z RamAddr = AddrRegB(i5] 7? AddrRegB : (AddrRegB | RamBase),
3 if (OpdA = = RamAddr)

RamAddr = AluOut[15) ? AluOnt : (AlnOut | RamBase);
ele if (OpdA == ram)

RamAddr = AddrRegB(15] ? AddrRegB : (AddrRegB | RamBase);else
RamAddr = AddrRegA[15] ? AddrRegA : (AddrRegA | RamBase);

Flasel(1:01addrreqload
° nop
1 AddrRegA = Literal;
2 AddrRegB = Literal;
3 AddrRegA = Literal; AddrRegB = Literal;

note: When specifying the same register for both the load and select fields, the currentvalue ofthe
register, before it is loaded with the new value, will be used for the ram address.

reserved

WrWesL@Dbg Causes the bits [31:0] of the control-store at address DbgAddr to be
written with the current AluOut data.

WrWesH@Dbg Causes the bits (63:32] of the control-store at address DbgAddr to be
written with the current AluOut data then increments DbgAddr.

RdWesL@Dbg Causes the bits [31:0] of the control-store at address DbgAddr to be
moved to file address Ox1 ff.

RdWesH@Dbg=Causes the bits [63:32] of the control-store at address DbgAddr to be
moved to file address Ox1 ff then increments DbgAddr.

reserved

Step Allows the Cpu (FigSel[1:0)) cycles after the current cycle to execute a single
instruction. There is no effect if the Cpu is not halted. Anoffset of 0 is not allowed.

PeMd Selects the Pe as the address source for the control-store during
instruction fetches for the Cpu (FlgSel{1:0)) cycles after the current cycle.

DbgMd Selects the DbgAddr address register as the address source for the
control-store during instruction fetches for the Cpu (FlgSel[1:0])
cycles after the current cycle.

“Hit Halts the Cpu (FigSel[1:0]) cycles after the current cycle.

Run Clears Halt for the Cpu (FlgSel[1:0]) cycles after the current cycle.

reserved

reserved

reserved

Provisional Pat. App. of Alacritech, Inc. 91
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

WISTRON CORP.EXHIBIT 1031.095

WISTRON CORP. EXHIBIT 1031.096

2hTE"obORTes

DATA FLOW

Provisional Pat. App. of Alacritech, Inc.

Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

WISTRON CORP. EXHIBIT 1031.096

WISTRON CORP. EXHIBIT 1031.097

PhTOT"eoF9IoOnNy
rai

SRAM CONTROL SEQUENCER (SramCtrl)

Sram is the nexus for data movementwithin the INIC. A hierarchy of sequencers, working in concert,
accomplish the movement of data between dram, Sram, Cpu, ethernet and the Pci bus. Slave sequencers,
provided with stimulus from master sequencers, request data movement operations by way of the Sram, Pci
bus, Dram and Flash. The slave sequencers prioritize, service and acknowledge the requests

The preceding block diagram shows all of the master and slave sequencers of the INIC product. Request
information such as r/w, address, size, endian and alignment are represented by each request line.
Acknowledge information to master sequencers include only the size of the transfer being acknowledged.

The following block diagram illustrates how data movement is accomplished for a Pci slave write to Dram.
Note that the Psi (Pci slave in) module functions as both a master sequencer. Psi sends a write request to the
SramCtri module. Psi requests Xwr to move data from Sram to dram. Xwr subsequently sends a read request
to the SramCtrl module then writes the data to the dram via the Xetrl module. As each piece of data is moved
from the Sram to Xwr, Xwr sends an acknowledge to the Psi module.

PCI BUS

93Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

WISTRON CORP. EXHIBIT 1031.097

WISTRON CORP. EXHIBIT 1031.098

AonTOE*SOReStraon

SRAM CONTROL SEQUENCER(SramCtrl)

Addy fae Addr/
ReqQ see eee Req N Cr Cri

Data 0 Data N

133MHz CLK

Arbiter

\/ VV

133MHz_ pa

Register

Align

d DIN

Sram

133MHz

Registeri
Partial Align

133MHz

Register

Partial Align

Ack Sram
/ Rd

Ack_sz Data

N-)a
Provisional Pat. App. of Alacritech, Inc.

Inventors Laurence B. Boucheret al.

Express Mail Label # EH75623010SUS

WISTRON CORP.EXHIBIT 1031.098

WISTRON CORP. EXHIBIT 1031.099

ihTOE"SHORTSno
oe

The Sram control sequencer services requests to store to, or retrieve data from an Sram organized as 1024
locations by 128 bits (16KB). The sequencer operates at a frequency of 133MHz, allowing both a Cpu access
and a dma access to occur during a standard 66MHz Cpu cycle. One 133MHz cycle is reserved for Cpu
accesses during each 66MHz cycle while the remaining 133MHz cycle is reserved for dma accesses on a
prioritized basis.

The preceding block diagram shows the major functions of the Sram control sequencer. A slave sequencer
begins by asserting a request along with r/w, ram address, endian, data path size, data path alignment and
request size. SramCtrl prioritizes the requests. The request parameters are then selected by a multiplexer
which feeds the parameters to the Sram via a register, The requestor provides the Sram address which when
coupled with the other parameters controls the input and outputalignment. Sram outputs are fed to the output
aligner via a register. Requests are acknowledged in parallel with the returned data.

Following is a timing diagram depicting two ram accesses during a single 66MHz clock cycle.

ee_CLOCK

lLCLOCK

Doee XXXttKKK
DMA

Gnt | | |
Stam

CLOCK

{ CyuPemem SELECTED | (GRANTTO IM DMA SEQUENCER 2CpePeeems SELECTED SRA TO 7OABRONTE,i i i i LACT
I | akANT Ask SED FOLpe i Aah AND AstSEOALA Bing | duh AND Ack EEE FOR Cpe,

: | i i i
1 APPLY 1 Ops Adair i APPLY \"" DAA Addr APPLY TED Crs Adie i ARLY 7°DMA Ac i| AUCH #1 CpaIXPUT Dain { ALOR [DMASEPT Baia ALIGN INDCpe BOUT fin i ALON BSA FUT Dee it READ O8 WHTTE 1 Cpe Dm I REALIOVR, WHITE (DMA Date READ OR WHITE F*Cps (iam READOR WATE FORANmi i i
. 5 ALSO ANE RETURN cps Daw ! ALICE ANT UETIR OF" Chad Dems ALSO AUNEH RETURN3Cp Di

Provisional Pat. App. of Alacritech, Inc. 95
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

WISTRON CORP. EXHIBIT 1031.099

WISTRON CORP. EXHIBIT 1031.100

ASEE"ekeooo

EXTERNAL MEMORY CONTROL(Xctrl)

Xctrl provides the facility whereby Xwr, Xrd, Defg and Eectrl access external Flash and Dram. Xetrl
includes an arbiter, i/o registers, data multiplexers, address multiplexers and control multiplexers. Ownership
of the external memory interface is requested by each block and granted to each of the requesters by the
arbiter function. Once ownership has been granted the multiplexers select the address, data and control signals
from owner, allowing access to external memory.

A rbiter

XrdReq
XrdAddr

XrdState
XrdCirl

XrdData

XwrReq
XwrAddr
XwrState

XwrCtrl
XwrData

DefgReq
DefgAddr
DefgState

DefgCtrl
DefgData

EectriReq
EectrlAddr
EectriState
RectriCtrl

EectriData
XCul

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.

Express Mail Label # EH75623010SUS

WISTRON CORP.EXHIBIT 1031.100

WISTRON CORP. EXHIBIT 1031.101

% EhCEE°

MACY

iyCEESEy

EXTERNAL MEMORY READ SEQUENCER(Xrd)

The Xrd sequencer acts only as a slave sequencer. Servicing requests issued by master sequencers, the Xrd
sequencer moves data from external sdram or flash to the Sram,via the Xctrl module, in blocks of 32 bytes
orless. The nature of the sdram requires fixed burst sizes for each ofit's internal banks with ras precharge
intervals between each access. By selecting a burst size of 32 bytes for sdram reads and interleaving bank
accesses on a 16 byte boundary, we can ensure that the ras precharge interval for the first bank is. satisfied
before burst completion for the second bank,allowing us to re-instruct the first bank and continue with
uninterrupted dram access. Sdrams require a consistent burst size be utilized each and every time'the sdram is
accessed. For this reason, if an sdram access does not begin or end on a 32 byte boundary, sdram bandwidth
will be reduced due to less than 32 bytes of data being transferred during the burst cycle.

The following block diagram depicts the major functional blocks of the Xrd sequencer. The first step in
servicing a request to move data from sdram to Sram is the prioritization of the master sequencer requests.
Next the Xrd sequencer takes a snapshotof the dram read address and applies configuration information to
determine the correct bank, row and column address to apply. Once sufficient data has been read, the Xrd
sequencerissues a write request to the SramCtrl sequencer which in turn sends an acknowledge to the Xrd
sequencer. The Xrd sequencer passes the acknowledge alongto the level two master with a size code
indicating how much data was written during the Sram cycle allowing the update of pointers and'counters. The
dram read and Sram write cycles repeat until the original burst request has been completed at which point the
Xrd sequencerprioritizes any remaining requests in preparation for the next burst cycle,

Contiguous dram burst cycles are not guaranteed to the Xrd sequencer as an algorithm is implemented which
ensures highest priority to refresh cycles followed by flash accesses, dram writes then dram reads,

Following is a timing diagram illustrating how data is read from sdram. The dram has been configured for a
burst of four with a latency of two clock cycles. Bank A is first selected/activated followed by a read
command two clock cycles later. The bank select/activate for bank B is next issued as read data begins
returning two clocks after the read command was issued to bank A. Two clock cycles before we need to
receive data from bank B we issue the read command. Once all 16 bytes have been received from bank A we
begin receiving data from bank B.

come TLL

controls wrb sela rda selb tdb

read dat KNXTKAXEKOXNYKEKEY

write data KX TKXHY XXX)

Provisional Pat. App.of Alacritech, Inc. . 97
Inventors Laurence B. Boucher etal.

Express Mail Label # EH756230105US

WISTRON CORP. EXHIBIT 1031.101

WISTRON CORP. EXHIBIT 1031.102

OhFOE"&OseGoce

EXTERNAL MEMORY READ SEQUENCER(Xrd)

D2p
D2s

D2d

D2q

XetrlDin
XetriGnt

SramGnt

SramAck

Sram AckSz

»Grant

XAddr

.XData

isXCtr]

SEQ
State

pTOVIsional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

aye Z

To Requester

To Xcetrl

ptSramGnt
SramData

To Xctrl

To Xctrl

Ack To requester

XetrlReg

SramReq

SramGnt

SramParams

98

WISTRON CORP.EXHIBIT 1031.102

WISTRON CORP. EXHIBIT 1031.103

“EEEOSugey
Wa

ull
He

veea
ipaf

i

vii

EXTERNAL MEMORYWRITE SEQUENCER (Xwr)

The Xwr sequencer is a slave sequencer, Servicing requests issued by master sequencers, the Xwr sequencer
moves data from Sram to the external sdram orflash, via the Xctrl module, in blocks of 32 bytesjorless while
accumulating a checksum of the data moved. The nature of the sdram requires fixed burst sizes for each ofit's
internal banks with ras precharge intervals between each access. By selecting a burst size of 32 bytes for
sdram writes and interleaving bank accesses on a 16 byte boundary, we can ensure that the ras prechage
interval for the first bank is satisfied before burst completion for the second bank, allowing us to re-instruct
the first bank and continue with uninterrupted dram access. Sdrams require a consistent burst size be utilized
each and every time the sdram is accessed. Forthis reason,if an sdram access does not begin or end on a 32
byte boundary, sdram bandwidth will be reduced due to less than 32 bytes of data being transferred during the
burst cycle.

The following block diagram depicts the major functional blocks of the Xwr sequencer. The first step in
servicing a request to move data from Sram to sdram is the prioritization of the level two master requests.
Next the Xwr sequencer takes a Snapshot of the dram write address and applies configuration information to
determine the correct dram, bank, row and column address to apply. The Xwr sequencer immediately issues a
read command to the Sram to which the Sram responds with both data and an acknowledge. TheXwr
sequencer passes the acknowledgeto the level two master along with a size code indicating how much data
was read during the Sram cycle allowing the update of pointers and counters. Once sufficient data has been
read from Sram, the Xwr sequencer issues a write command to the dram starting the burst cycle and
computing a checksum as the data flies by. The Sram read cycle repeats until the original burst request has
been completed at which point the Xwr sequencer prioritizes any remaining requests in preparation for the
next burst cycle.

Contiguous dram burst cycles are not guaranteed to the Xwr sequenceras an algorithm is implemented which
ensures highestpriority to refresh cycles followed by flash accesses then dram writes.

Following is a timing diagram illustrating how data is written to sdram. The dram has been configured for a
burst of four with a latency of two clock cycles. Bank A is first selected/activated followed by a write
command two clock cycles later. The bank select/activate for bank B is next issued in preparation for issuing
the second write command. As soon as the first 16 byte burst to bank A completes we issue the write
command for bank B and begin supplying data.

controls 3e wra sel sela a Se rdb

==. KKXeXE KOKEXPXEN

read data. XDOYPIYHEY KeXX)

Provisional Pat. App. of Alacritech, Lac. 99
inventors Laurence B. Boucheret al.

Express Mail Label # BH756230105US

WISTRON CORP.EXHIBIT 1031.103

WISTRON CORP. EXHIBIT 1031.104

."hlsoonS
i

“behet

EXTERNAL MEMORY WRITE SEQUENCER (Xwr)

P2d

S2d

D2d

Q2d
Psi
RevA

RevB

RevC

RevD

XcetriGnt

SramGnt
SramAck

Sram AckSz
SramRdData

2a

XDatapfepeXCul

P2dChkSum

ional Pat, App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

TO Requester

TO Xctr]

TO Xetrl

TO Xetrl

TO D2d

TO P2d

TO Xcetrl

Ack TO requester

XctrlReq

SramReq

SramGnt

SramParams

100

WISTRON CORP.EXHIBIT 1031.104

WISTRON CORP. EXHIBIT 1031.105

AhPOT"oeraCs

PCI MASTER-OUT SEQUENCER (Pmo)

The Pmo sequencer acts only as a slave sequencer. Servicing requests issued by master sequencers, the Pmo
sequencer moves data from an Sram based fifo to a Pci target, via the PeiMstrIO module, in bursts of up to
256 bytes. The nature of the PCI bus dictates the use of the write line command to ensure optimal system
performance. The write line command requires that the Pmo sequencerbe capable of transferring a whole
multiple (1X, 2X, 3X, ...) of cache lines of which the size is set through the Pci configuration registers. To
accomplish this end, Pmo will automatically perform partial bursts until it has aligned the transfers on a cache
line boundary at which time it will begin usage of the write line command. The Sram fifo depth, of 256 bytes,
has been chosen in order to allow Pmo to accommodate cache line sizes up to 128 bytes. Provided the cache
line size is less than 128 bytes, Pmo will perform multiple, contiguous cacheline bursts until it has exhausted
the supply of data.

Pmo receives requests from two separate sources; the dram to Pci (D2p) module and the Sram to Pci (S2p)
module. An operation first begins with prioritization of the requests where the S2p module is given highest
priority. Next, the Pmo module takes a Snapshot of the Sram fifo address and uses this to generate read
requests for the SramCtrl sequencer. The Pmo modulethen proceeds to arbitrate for ownership of the Pci bus
via the PeiMstrIO module. Once the Pmo holding registers have sufficient data and Pci bus mastership has
been granted, the Pmo module begins transferring data to the Pci target. For each successful transfer, Pmo
sends an acknowledge and encoded size to the master sequencer, allow it to update it’s internal pointers,
counters and status. Once the Pci burst transaction has terminated, Pmo parks on the Pci bus unless another
initiator has requested ownership. Pmo again prioritizes the incoming requests and repeats the process.

PCI BUS

101
Provisional Pat. App. of Alacritech, Inc.

Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

WISTRON CORP.EXHIBIT 1031.105

WISTRON CORP. EXHIBIT 1031.106

CySh

HiteTE"Beet

PCI MASTER-IN SEQUENCER(Pini)

The Pmi sequencer acts only as a slave sequencer. Servicing requests issued by master sequencers, the Pmi
sequencer moves data from a Pcitarget to an Sram based fifo, via the PeiMstrIO module, in bursts of up to
256 bytes, The nature of the PCI bus dictates the use of the read multiple commandto ensure optimal system
performance. The read multiple command requires that the Pmi sequencer be capable of transferring a cache
line or more of data. To accomplish this end, Pmi will automatically perform partial cache line bursts untilit
has aligned the transfers on a cache line boundary at which timeit will begin usage of the read multiple
command. The Sram fifo depth, of 256 bytes, has been chosen in order to allow Pmi to accommodate cache
line sizes up to 128 bytes. Provided the cache line size is less than 128 bytes, Pmi will perform multiple,
contiguous cacheline bursts until it has filled the fifo.

Pmi receive requests from two separate sources; the Pci to dram (P2d) module and the Pci to Sram (P2s)
module. An operation first begins with prioritization of the requests where the P2s moduleis given highest
priority. The Pmi module then proceeds to arbitrate for ownership of the Pci bus via the PeiMstrIO module.
Once the Pci bus mastership has been granted and the Pmi holding registers have sufficient data, the Pmi
module begins transferring data to the Sram fifo. For each successful transfer, Pmi sends an acknowledge and
encoded size to the master sequencer, allowing it to update it's internal pointers, counters and status. Once the
Pci burst transaction has terminated, Pmi parks on the Pci bus unless another initiator has requested
ownership. Pmi again prioritizes the incoming requests and repeats the process.

PCI BUS

102Provisional Pat. App. of Alacritech, Inc,
Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

WISTRON CORP.EXHIBIT 1031.106

WISTRON CORP. EXHIBIT 1031.107

AhTOE"eeeS

Dram TO PCI SEQUENCER (D2p)

The D2p sequencer acts is a master sequencer. Servicing channel requests issued by the Cpu, the D2p
sequencer Manages movement of data from dram to the Pci bus by issuing requests to both the Xrd sequencer
and the Pmo sequencer. Data transfer is accomplished using an Sram based fifo through which data is staged.

D2p can receive requests from any ofthe processor's thirty-two dma channels. Once a command ‘request has
been detected, D2p fetches a dma descriptor from an Sram location dedicated to the requesting channel] which
includes the dram address, Pci address, Pci endian and request size. D2p then issues a request to the D2s
sequencer causing the Sram based fifo to fill with dram data. Once the fifo contains sufficient data for a Pei
transaction, D2s issues a request to Pmo which in turn moves data from the fifo to a Pci target. The process
repeats until the entire request has been satisfied at which time D2p writes ending status in to the Sram dma
descriptor arca andsets the channel done bit associated with that channel. D2p then monitors the dma channels
for additional requests. Following is an illustration showing the major blocks involved in the movementof data
from dram to Pcitarget.

103
Provisional Pat. App. of Alacritech, Inc.

Inventors Laurence B, Boucher et al.

Express Mail Label # EH756230105US

WISTRON CORP.EXHIBIT 1031.107

WISTRON CORP. EXHIBIT 1031.108

oACET
FtmyJ

AhhEBE

Dram TO PCI SEQUENCER (D2p)

CHANNEL

TO Xrd

TO Pmo

a5
3

5 COUNT
RD_Ptr

XrdAck

FIFO

WR_Ptr TO Xrd

Xrd Status

XFR
OPTIONS

Pmo Ack

SEQ
State

Pmo Status
FifoCnt

Pmo Req

Sram Ack Xrd Req
SramReq

EN

t#—_—_From Sram

Sram Rd Data ‘SramParams

Provisional Pat. App. of Alacritech, Inc. 104
Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

WISTRON CORP.EXHIBIT 1031.108

WISTRON CORP. EXHIBIT 1031.109

aeESTCCycy
LierLOVE"E

PCI TO DRAM SEQUENCER(P2d)

The P2d sequencer acts as both a slave sequencer and a master sequencer. Servicing channel requests issued
by the Cpu, the P2d sequencer manages movementof data from Pci bus to dram by issuing requests to both
the Xwr sequencer and the Pmi sequencer. Data transfer is accomplished using an Sram based fifo through
which data is staged.

P2d can receive requests from any of the processor's thirty-two dma channels. Once a command request has
been detected, P2d, operating as a slave sequencer, fetches a dma descriptor from an Sram location dedicated
to the requesting channel which includes the dram address, Pei address, Pci endian and request size. P2d then
issues a request to Pmo which in turn moves data from the Pci target to the Sram fifo. Next, P2d issues a
request to the Xwr sequencer causing the Sram based fifo contents to be written to the dram. The process
repeats until the entire request has been satisfied at which time P2d writes ending stats in to the Sram dma
descriptor area and sets the channel done bit associated with that channel. P2d then monitors the dma channels
for additional requests. Followingis an illustration showing the major blocks involved in the movement ofdata
from a Pci target to dram.

Provisional Pat, App. of Alacritech, Inc.
Toventors Laurence B, Boucher etal-

Express Mail Label # BH756230105US

WISTRON CORP. EXHIBIT 1031.109

105

WISTRON CORP. EXHIBIT 1031.110

PCI TO DRAM SEQUENCER (P2d)

CHANNEL
ID

 EF XwrChksum

_ XwrAck

ae XwrStatus
G
4 XFR

: OPTIONS

PmiAck

PmiStatus

SramAck

SramRdData

Provisional Pat. App. of Alacritech, Inc. 106

Inventors Laurence B. Boucheretal.

Express Mail Label # EH756230105US

WISTRON CORP.EXHIBIT 1031.110

WISTRON CORP. EXHIBIT 1031.111

PRTeh|
= aad

{GhEO”OORT

SRAM TO PCI SEQUENCER(S2p)

The SZp sequencer acts as both a slave sequencer and a master sequencer. Servicing channel requests issued
by the Cpu, the $2p sequencer manages movement of data from Sram to the Pci bus by issuing requests to the
Pmo sequencer

S2p can receive requests from any of the processor's thirty-two dma channels. Once a command request has
been detected, S2p, operating as a slave sequencer. fetches a dma descriptor from an Sram location dedicated
to the requesting channel which includes the Sram address, Pci address, Pci endian and request size. S2p then
issues a request to Pmo which in turn moves data from the Sram to a Pci target. The process repeats until the
entire request has been satisfied at which time S2p writes ending status in to the Sram dma descriptor area and
sets the channel done bit associated with that channel. S2p then monitors the dma channels for additional
requests. Followingis an illustration showing the major blocks involved in the movementof data from Sram to
Pci target.

107Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

WISTRON CORP. EXHIBIT 1031.111

WISTRON CORP. EXHIBIT 1031.112

CS)
ae”EeEY
thi
e

SRAM TO PCI SEQUENCER(S2p)

PmoAck

PmoStatus

SramAck

SramRdData

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

108

WISTRON CORP.EXHIBIT 1031.112

WISTRON CORP. EXHIBIT 1031.113

ar

SobTOE”SOBkong

PCI TO SRAM SEQUENCER(P2s)

The P2s sequencer acts as both a slave sequencer and a master sequencer. Servicing channel requests issued by
the Cpu, the P2s sequencer manages movement of data from Pei bus to Sram by issuing requests to the Pmi
sequencer,

P2s can receive requests from any of the processor's thirty-two dma channels. Once a command request has
been detected, P2s, operating as a slave sequencer, fetches a dma descriptor from an Sram location dedicated
to the requesting channel which includes the Sram address, Pci address, Pci endian and request size. P2s then
issues a request to Pmo which in turn moves data from the Pci target to the Sram. The process repeats until
the entire request has been satisfied at which time P2s writes ending status in to the dma descriptor area of
Sram and sets the channel! done bit associated with that channel. P2s then monitors the dma channels for
additional requests. Following is an illustration showing the major blocks involved in the movementof data
from a Pci target to dram.

199Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105U8

WISTRON CORP.EXHIBIT 1031.113

WISTRON CORP. EXHIBIT 1031.114

6hTOE"sogragay

PCI TO SRAM SEQUENCER(P2s)

PmiAck

PmiStatus

SramAck

SramRdData

Provisional Pat, App. of Alacritech, Inc.
Inventors Laurence B. Boucher etal.

Express Mail Label # EH756230105US

110

WISTRON CORP.EXHIBIT 1031.114

WISTRON CORP. EXHIBIT 1031.115

DRAM TO SRAM SEQUENCER(D2s)

The D2s sequencer acts as both a slave sequencer and a master sequencer. Servicing channel requests issued
by the Cpu, the D2s sequencer manages movement of data from dram to Sram by issuing requests to the Xrd
sequencer,

D2s can receive requests from any ofthe processor's thirty-two dma channels. Once a command request has
been detected, D2s, operating as a slave sequencer, fetches a dma descriptor from an Sram location dedicated
to the requesting channel which includes the dram address, Sram address and request size. D2s then issues a
request to the Xrd sequencer causing the transfer of data to the Sram. The process repeats until the entire
request has been satisfied at which time D2s writes ending status in to the Sram dma descriptor area and sets
the channel done bit associated with that channel. D2s then monitors the dma channels for additional requests.
Following is an illustration showing the major blocks involved in the movement of data from dram to Sram.

 ifua

zg
izbs
a]feo

a2Vo
nd

Provisional Pat. App. of Alacritech, Inc. 111
Inventors Laurence B. Boucher etal.

Express Mail Label # EH756230105US

WISTRON CORP.EXHIBIT 1031.115

WISTRON CORP. EXHIBIT 1031.116

LaOT!Beeons

DRAM TO SRAM SEQUENCER (D2s)

CHANNEL

XrdAck

XrdStatus

SramAck

SramRdData

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

112

WISTRON CORP.EXHIBIT 1031.116

WISTRON CORP. EXHIBIT 1031.117

CSSito
i

HE

ABeinCE"&

SRAM TO DRAM SEQUENCER(82d)

The S2d sequencer acts as both a slave sequencer and a master sequencer. Servicing channel requests issued
by the Cpu, the $2d sequencer manages movement of data from Sram to dram by issuing requests to the Xwr
sequencer.

S2d can receive requests from any of the processor's thirty-two dma channels. Once a command request has
been detected, S2d, operating as a slave sequencer, fetches a dma descriptor from an Sram location dedicated
to the requesting channel which includes the dram address, Sram address, checksum reset and requestsize.
$2d then issues a request to the Xwr sequencer causing the transfer of data to the dram. The process repeats
until the entire request has been satisfied at which time S2d writes ending status in to the Sram dma descriptor
area and sets the channel done bit associated with that channel, $2d then monitors the dma channels for

additional requests. Following is an illustration showing the major blocks involved in the movementof data
from Sram to dram,

113
Provisional Pat. App. of Alacritech, Inc.

Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

WISTRON CORP.EXHIBIT 1031.117

WISTRON CORP. EXHIBIT 1031.118

OSooo
20ShyFe*

SRAM TO DRAM SEQUENCER(S2d)

CHANNEL

XwrAck

XwrStatus

SramAck

SramRdData

Provisional Pat. App. of Alacritech, Inc. 114

Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

WISTRON CORP.EXHIBIT 1031.118

WISTRON CORP. EXHIBIT 1031.119

AOe"ASESeoo

PCI SLAVE INPUT SEQUENCER(Psi)

The Psi sequencer acts as both a slave sequencer and a master sequencer. Servicing requests issued by a Pei
master, the Psi sequencer manages movementof data from Pci bus to Sram and Pci bus to dram via Sram by
issuing requests to the SramCtrl and Xwr sequencers.

Psi manages write requests to configuration space, expansion rom, dram, Sram and memory mapped registers.
Psi separates these Pci bus operations in to two categories with different action taken for each. Dram accesses
result in Psi generating write request to an Sram buffer followed with a write request to the Xwr|sequencer.
Subsequent write or read dram operations are retry terminated until the buffer has been emptied. An event
notification is set for the processor allowing message passing to occur through dram space.

All other Pci write transactions result in Psi posting the write information including Pci address, Pci byte
marks and Pci data to a reserved location in Sram, then setting an event flag which the event processor
monitors. Subsequent writes or reads of configuration, expansion rom, Sram or registers are terminated with
retry until the processor clears the eventflag. This allows the INIC to keep pipelining levels to a minimum for
the posted write and give the processor ample time to modify data for subsequent Pci read operations.

The following diagram depicts the sequence of events when Psi is the target of a Pci write operation. Note that
events 4 through 7 occur only when the write operation targets the dram.

EVENT NOTIFY

EVENT CLEAR
+» PCI BUS

Provisional Pat. App. of Alacritech, Inc. 115
Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

WISTRON CORP.EXHIBIT 1031.119

WISTRON CORP. EXHIBIT 1031.120

5hTOT"Soareaoog

PCI SLAVE OUTPUT SEQUENCER(Pso)

The Pso sequencer acts as both a slave sequencer and a master sequencer. Servicing requests issued by a Pci
master, the Pso sequencer manages movement ofdata to Pci bus form Sram and to Pci bus from dram via
Sram by issuing requests to the SramCtrl and Xrd sequencers.

Pso manages read requests to configuration space, expansion rom, dram, Sram and memory mapped registers.
Pso separates these Pci bus operations in to two categories with different action taken for each, Dram accesses
result in Pso generating read request to the Xrd sequencer followed with a read request to Sram buffer.
Subsequent write or read dram operations are retry terminated until the buffer has been emptied.

All other Pci read transactions result in Pso posting the read request information including Pci address and Pci
byte marks to a reserved location in Sram,then setting an event flag which the event processor monitors.
Subsequent writes or reads of configuration, expansion rom, Sram orregisters are terminated with retry until
the processorclears the eventflag. This allows the INIC to use a microcoded response mechanism to return
data for the request. The processor decodes the request information, formulates or fetches the requested data
and stores it in Sram then clears the event flag allowing Pso to fetch the data and return it on the Pci bus.

The following diagram depicts the sequence of events when Pso is the target of a Pci read operation.

EVENT NOTIFY
EVENT CLEAR

PCI BUS

116Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucheretal.

Express Mail Label # EH756230105US

WISTRON CORP.EXHIBIT 1031.120

WISTRON CORP. EXHIBIT 1031.121

Pr"8086ooo9
"eh Hadithe

ah,Een

FRAME RECEIVE SEQUENCER(RevX)

The receive sequencer (RevSeq) analyzes and managesincoming packets,stores the result in dram
buffers, then notifies the processor through the receive queue (RevQ) mechanism. The process begins
whena buffer descriptor is available at the outputof the FreeQ. RevSeq issues a request to the Qmg
which responds by supplying the buffer descriptor to RevSeq. RevSeq then waits for a receive packet.
The Mac, network, transport and session information is analyzed as each byte is received and stored
in the assembly register (AssyReg). Whenfourbytes of information is available, RevSeq requests a
write of the data to the Sram. When sufficient data has been stored in the Sram based receivefifo, a

dram write requestis issued to Xwr, The process continues until the entire packet has been received
at which point RevSeqstores the results of the packet analysis in the beginning of the dram buffer.
Once the buffer and status have both been stored, RcvSeq issues a write-queue request to Qmg.
Qmgrespondsbystoring a buffer descriptor provided by RevSeq. The process then repeats.If
RevSeq detects the arrival of a packetbefore a free buffer is available,it ignores the packet and sets
the FrameLoststatusbit for the next received buffer.

The following diagram depicts the sequence of events for successful reception of a packet followed By
a definition of the receive buffer and the buffer descriptor as stored on the RevQ.

Mac Ctrl
OPTIONS

Provisional Pat. App. of Alacritech, Inc, 117

Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

WISTRON CORP. EXHIBIT 1031.121

WISTRON CORP. EXHIBIT 1031.122

=i

HACE
ey“a

ohEEei

FRAME RECEIVE SEQUENCER(RevX)

MacDataIn

MacCtrlin

MacStatus_IN

MacAddrA

MacAddrB

SramAck

SramRdData

FREEQID

RCV_QID

Ctrl_Q_ID

PauseDetEn

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

118

WISTRON CORP.EXHIBIT 1031.122

WISTRON CORP. EXHIBIT 1031.123

reSACoy
Ee"©oe

ia

ee

RECEIVE BUFFER DESCRIPTOR

bit_ mame___..._—- ddeseription
31:30 reserved
29:28 size
27:00 address

A copy ofthe bits in the FreeBufDscr.
Represents the last address +1 to which frame data was transferred. The address
wraps around at the boundary dictated by the S bits. This can be used to determine
the size of the frame received.

RECEIVE BUFFER FORMAT

FRAMEStatus A

bit_ name___
31 attention

30 CompositeErr

29 CtrlFrame

28 IpDn
27 802.3Dn
26 MacADet
25 MacBDet
24 MacMest
23 MacBest

22 IpMcst
21 IpBest
20 Frag
19 IpOffst
18 IpFlgs
17 IpOpts
16 TepFigs
15 TepOpts
14 TepUrg
13 CarrierEvnt

12 LongEvnt
ll FrameLost

10 reserved
10 NoAck

09:08 FrameTyp
07:06 NwkTyp
05:04 TrnsptTyp
03 NetBios
02 reserved
01:00 channel

OFFSET 0x0000:0x0003

Indicates one or more ofthe following: CompositeErr, !IpDn, !MacADet &
!MacBDet, IpMest, IpBest, !ethernet & !802.3Snap, 'Ip4, !Tcp .
Set when any of the error bits of ErrStatus are set or if frame processing stops
while receiving a Tcp or Udp header.
A control frame was received at our unicast or special MltCst address.
Frame processing Hlted due to exhaustion of the IP4 length counter.
Frame processing Hited due to exhaustion of the 802.3 length counter.
Frame's destination address matched the contents of MacAddrA.
Frame's destination address matched the contents of MacAddrB.
The Mac detected a MltCst address.
The Mac detected a BrdCst address.

The frame processor detected an IP MltCst address.
The frame processor detected an IP BrdCst address.
The frame processor detected a Frag IP datagram.
The frame processor detected a non-zero IP datagram offset.
The frame processor detected flags within the IP datagram.
The frame processor detected a header length greater than 20 for the IP datagram.
The frame processor detected an abnormal header flag for the TCP segment.
The frame processor detected a header length greater than 20 for the TCP segment.
The frame processor detected a non-zero urgent pointer for the TCP segment.
Refer to E/10 Technical Manual.
Refer to EJ10 Technical Manual,

Set when an incoming frame could not be processed as a result of an outstanding
frame completion event not yet serviced by the utility processor.

The frame processor detected a
00- Reserved. 01- ethernet. 10 - 802.3. 11 - 802.3 Snap.
00- Unknown, 01- Ip4, 10 - Ip6 11 - ip other.
00- Unknown. 01- reserved. 10 - Tep 11 - Udp
A NetBios frame was detected.

The Mac on whichthis frame was received.

Provisional Pat. App. of Alacritech, Inc. 1g
Inventors Laurence B. Boucher etal.

Express Mail Label # EH756230105US

WISTRON CORP.EXHIBIT 1031.123

WISTRON CORP. EXHIBIT 1031.124

LPO"suerago9

FRAMEStatus B

bit
31 802.3Shrt

30 BufOvr
29 BadPkt
28 InvidPrmbl
27 CreErr
26 DrbINbbl
25 CodeErr

24 IpHadrShrt
3 IpIncmplt
22 JpSumErr
21 TepSumErr
20‘ TepHdrShrt
19:16 PressCd

15:08 MacHsh
07:00 CtxHsh

TIME STAMP

bit_. name.
31:00 RevTime

CHECKSUM

15:00 TepChksum

RESERVED

FRAMEData

OFFSET 0x0004:0x0007

End of frame was encountered before the 802.3 length count was exhausted.
The frame length exceded the buffer space available.
Refer to EJJO Technical Manual.
Refer to EJ JO Technical Manual.
Refer to EJJO Technical Manual.
Refer to E710 Technical Manual.
Refer to E110 Technical Manual.

The IP4 header length field contained a value less than Ox5.
The frame terminated before the IP length counter was exhausted.
The IP header checksum was not Oxffff at the completion of the IP header read.
The session checksum was not Oxffff at the termination of session processing.
The TCP header length field contained a value less than 0x5.
The state of the frame processorat the time the frame processing terminated.
0b0000 Processing Mac header.
0b0001 Processing 802.3 LLC header.
O0b0010 Processing 802.3 SNAP header.
0b0011 Processing unknown network data.
0b0100 Proceasing IP header.
0b0101 Processing IP data (unknown transport) .
0b0110 Processing transport header (IP data).
0b0111 Processing transport data (IP data).
0b1000 Processing IP processing complete.Ob1001 Reserved.
Obi01x Reserved.
Oblixx Reserved.
The Mac destination-address hash. Refer to E710 Technical Manual.

The 8-bit context-hash generated by exclusive-oring all bytes of the IP source
address, IP destination-address, transport source port and the transport destination
port.

OFFSET 0x0008:0x000B

The contents of FreeClk at the completion of the frame receive operation.

OFFSET 0x000C:0x000F

eSCrlLDULlOn

Reflects the value of the IP header checksum at frame completion or IP header

completion. If an IP datagram was notdetected, the checksum provides a total for
the entire data portion of the received frame. The data area is defined as those bytes
received after the type field of an ethernet frame, the LLC header of an 802.3 frame
or the SNAP header of an 802.3-SNAP frame.

Reflects the value of the transport checksum at IP completion or frame completion.
If IP was detected but session was unknown, the checksum will not include the

psuedo-header. If IP was not detected, the checksum will be 0x0000.

OFFSET 0x0010:0x0011

OFFSET 0x0012:END OF BUFFER

Provisional Pat. App. of Alacritech, Inc. 120
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

WISTRON CORP.EXHIBIT 1031.124

WISTRON CORP. EXHIBIT 1031.125

ohTOE"Bieraga

FRAME TRANSMIT SEQUENCER(Xmtx)

The transmit sequencer (XmtSeq) analyzes and manages outgoing packets, using buffer descriptors
retrieved from the transmit queue (XmtQ)then storing the descriptor for the freed buffer in the free
buffer queue (FreeQ). The process begins when a buffer descriptoris available at the outputof the
XmtQ. XmtSeq issues a request to the Qmg which responds by supplying the buffer descriptor to
XmtSeq. XmtSeq then issues a read request to the Xrd sequencer. Next, XmtSeq issues a read
request to SramCtri then instructs the Mac to bagin frame transmission. The Mac accepts data from
XmtSeq which analyzes the packet asit flys-by in order to generate checksumstoinsert in the data
stream. Once the frame transmission has completed, XmtSeqstores the buffer descriptor on the
FreeQ thereby recycling the buffer.

The following diagram depicts the sequence of events for successful transmission of a packet followed
by a definition of the receive buffer and the buffer descriptor as stored on the XmtQ.

Provisional Pat. App, of Alacritech, Inc,

Inventors Laurence B, Boucher etal.

Express Mail Label # EH756230105US

WISTRON CORP.EXHIBIT 1031.125

WISTRON CORP. EXHIBIT 1031.126

dTSoe
w44i

ahEo"ks

FRAME TRANSMIT SEQUENCER(XmtX)

MacData_IN

MacCtrlIN

MacStatus_IN

MacAddrA

MacAddrB

SramAck

SramRdData

FREEQID

ctrl_QID

XmtQ_ID

PauseCir

PauseDet

Cpu_PauseReq

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

122

WISTRON CORP.EXHIBIT 1031.126

WISTRON CORP. EXHIBIT 1031.127

£ahTOC"S§oOBEeSoo04

 bit_ mame____ iptio a a
31 ChksumEn When set, XmtSeq will insert a calculated checksum. When reset, XmtSeq will

not alter the outgoing data stream.
30 reserved

29:28 size Represents the size of the buffer by indicating at what boundary the buffer should
start and terminate. This is used in combination with EndAddr to determine the
starting address of the buffer :

S=0 256B boundary. A[7:0) ignored.
S=1 2KB boundary. A[10:0) ignored.
S=2 4KB boundary. A[11:0) ignored,
S=3 32KB boundary. A[14:0) ignored.

27:00 EndAddr The address of the last byte to transmit plus one.

TRANSMIT BUFFER FORMAT

CHECKSUM PRIMER OFFSET 0x0000:0x0003

bit name. description
31:00 Primer A value to be added during checksum accumulation. For [PV4., this should include

the psuedo-header values, protocol and Tep-length.

RESERVED OFFSET 0x0004:0x0005

FRAMEData OFFSET 0x0006:END OF BUFFER

TRANSMIT Status VECTOR

bi a
31 LokErr Indicates that a link status error occured before or during transmit,
30:15 reserved
14 ExcessDeferral Refer to EI]0 Technical Manual.
13 LateAhort Refer to E110 Technical Manual.
12 ExcessColl Refer to E110 Technical Manual.
11 UnderRun Refer to E110 Technical Manual.

10 ExcessLgth Refer to E110 Technical Manual.
09 Okay Refer to E110 Technical Manual.
08 deferred Refer to E] 10 Technical Manual.
07 BrdCst Refer to E110 Technical Manual.
06 MitCst Refer to E110 Technical Manual.
0s CreErr Refer to £110 Technical Manual.
04 LateColl Refer to £10 Technical Manual.
03:00 CollCnt Refer to E110 Technical Manual.

Provisional Pat. App. of Alacritech, Inc. 123
Inventors Laurence B. Boucher et al.

Express Mail Label # BH756230105US

WISTRON CORP.EXHIBIT 1031.127

WISTRON CORP. EXHIBIT 1031.128

AREE“isCeSag

QUEUE MANAGER (Qmg)
The INIC includes special hardware assist for the implementation ofmessage and pointer queues. The

hardware assistis called the queue manager (Qmg) and manages the movementof queueentries between Cpu
and Sram, between dma sequencers and Sram as well as between Sram and dram. Queues comprise three distinct
entities; the queue head (QHd), the queuetail (QT) and the queue body (QBdy). QHdresides in 64 bytes of
scratch ram and provides the area to which entries will be written (pushed). QTI resides in 64 bytes ofscratch
ram and contains queuelocations from whichentries will be read (popped) . QBdy resides in dram and contains
locations for expansion of the queue in order to minimize the Sram space requirements. The QBdy size depends
upon the queue being accessed and the initialization parameters presented during queue initialization.

Qmg accepts operations from both Cpu and dma sources. Executing these operations at a frequency of
133MHz, Qmg reserves even cycles for dma requests and reserves odd cycles for Cpu requests. Valid Cpu
operations includeinitialize queue (InitQ), write queue (WrQ) and read queue (RdQ). Valid dma requests
include read body (RdBdy) and write body (WrBdy). Qmg working in unison with Q2d and D2q generate
requests to the Xwr and Xrd sequencers to control the movement of data between the QHd, QT] and QBdy.

The preceding block diagram shows the major functions of Qmg. The arbiter selects the next operation to be
performed. The dual-ported Sram holds the queue variables HdWrAddr, HdRdAddr, TlWrAddr,
TIRdAddr, BdyWrAddr, BdyRdAddr and QSz. Qmg accepts an operation request, fetches the queue
variables from the queue ram (Qram), modifies the variables based on the current state and the requested
operation then updates the variables and issues a read or write request to the Sram controller, The Sram
controller services the requests by writing the tail or reading the head and returning an acknowledge.

MHz. DmaQmeReq AND QmgDmaAck AND
CLK Panties

' 1 Return Qdata

| Rew QdsraforCpn | for Da

tics | ; wine | i eei Qduafor | i | i
Ctr | i oe | j Dm

i SramQmg Grant for Cpu SramQmg Grant for Dma | j
i | Srammng Ack forCpa | SramQmg Ack forDmn |

eeaeeeeeeeeeeet
133MHz

CLK

ca aiefepeen ee pnee ne en eeeerenee
| Gre Fer for CpuOp | QmySramteq for pup | QmaSramReq forDmaQp | ' i
i i i “ i ‘ i

Poof fo] ff ep PP |i i i ' ite i for i |
Qmg | i i : poop | | Dmudp { i

| |
j i : '|66MHz —_CLK! penis,

Provisional Pat. App. of Alacritech, Inc. 124
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

WISTRON CORP.EXHIBIT 1031.128

WISTRON CORP. EXHIBIT 1031.129

GreSEE
“fhkbge”

QUEUE MANAGER(Qmg)

D2qg Q2d Xm Q

— Seq Seq SEQ poy Write
“q Req Req Req SEQ Data

Mux

Req

PRIORITIZE

a
register

ade OUT

~ Qram

eae register

133M

| Qmg ALU

133MHz register

Sram Sram Q Q Q Q BODY BODY Sram
Req Addr Empty Full IN OUT WR_ RD Write

RDY RDY Req Req Data

Provisional Pat. App. of Alacritech, Inc. 125
Inventors Laurence B. Boucher et al,

Express Mail Label # EH756230105US

WISTRON CORP.EXHIBIT 1031.129

WISTRON CORP. EXHIBIT 1031.130

-

“AESo
eo

ohEnte

DMA OPERATIONS

DMAoperations are accomplished through a combination of thirtytwo dma channels (DmaCh) and seven dma
sequencers (DmaSeq). Each dma channel provides a mechanism whereby a Cpu can issue a command to any
of the seven dma sequencers. Where as the dma channels are multi-purpose, the dma sequencers they
command are single purpose as follows.

dmaseq#name i
0 none This is a no operation address.
1 D2dSeq Moves data from ExtMem to ExtMem.
2 D2sSeq Moves data from ExtMem bus to sram.
3 D2pSeq Moves data from ExtMem to Pci bus.
4 §2dSeq Moves data from sram to ExtMem.
5 S2pSeq Moves data from sram to Pci bus.
6 P2dSeq Moves data from Pci bus to ExtMem.
7 P2sSeq Moves data from Pci bus to sram.

The processors manage dma in the following way. The processor writes a dma descriptor to an Sram location
reserved for the dma channel. The format of the dma descriptor is dependent upon the targeted dma sequencer.
The processor then writes the dma sequencer number to the channel command register.

Each of the dma sequencers polls all thirtytwo dma channelsin search of commands to execute. Once a
command request has been detected, the dma sequencer fetches a dma descriptor from a fixed location in
Sram. The Sram location is fixed and is determined by the dma channel number. The dma sequencer loads the
dma descriptor in to it's own registers, executes the command, then overwrites the dma descriptor with ending
Status. Once the command has halted, due to completion or error, and the ending status has been written, the
dma sequencer sets the done bit for the current dma channel.

The done bit appears in a dma event register which the Cpu can examine. The Cpu fetches ending status from
Sram, then clears the done bit by writing zeroes to the channel command (ChCmd)register. The channel is
now ready to accept another command.

The format of all channel command registersis as follows.

bit_ name___. i
31:11 reserved Data written to these bits is ignored.
10:8 ChCmd 0 - Stops execution of the current operation and clears the corresponding event flag.

1 - Transfer data from ExtMem to ExtMem.
2 - Transfer data from ExtMem busto sram.
3 - Transfer data from ExtMem to Pci bus.
4- Transfer data from sram to ExtMem.
5 - Transfer data from sram to Pci bus.
6 - Transfer data from Pci bus to ExtMem.
7 - Transfer data from Pei bus to Sram.

07:05 reserved Data written to these bits is ignored.
04:00 Chid Provides the channel number for the channel command.

Provisional Pat, App. of Alacritech, Inc. 126
Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

WISTRON CORP.EXHIBIT 1031.130

WISTRON CORP. EXHIBIT 1031.131

a

-

i

2iTae*
SUEcay

el

The format of the P2d or P2s descriptoris as follows.

127;96 PciAddrH Bits [63:32] of the Pci address.
95:64 PeiAddrL Bits [31:00] of the Pci address.
59:32, MemAddr Bits [27:00] of the ExtMem address orbits [15:00] of the Sram address,
31 PciEndian Whenset, selects big endian mode for Pci transfers.
30 WideDbl Whenset, disables Pci 64-bit mode.

22 DstFlash Selects Flash for the external memory destination of P2d.
15:00 XfrSz Bits [15:00] of the requested dma size expressed in bytes.

The format of the S2p or D2p descriptoris as follows.

bit name___ i
123:96 MemAddr Bits [27:00] of the ExtMem address or bits [15:00] of the Sram address.
95:64 PciAddrH Bits [63:32] of the Pci address.
63:32 PeiAddrL Bits [31:00] of the Pci address.

30 SreFlash Selects Flash for the external memory source of D2p.
23 PciEndian When set, selects big endian mode for Pci transfers.
22 WideDbl When set, disables Pci 64-bit mode.
15:00 XfrSz Bits [15:00] of the requested dma size expressed in bytes.

The format of the S2d, D2d or D2s descriptoris as follows.

bit mame.—deseription
127:124 reserved Reserved for future use.
123:06 SreAddr Bits [27:00] of the ExtMem address or bits [15:00] of the Sram address.
95:60 reserved Reserved for future use.

59:32 DstAddr Bits [27:00] of the ExtMem address orbits [15:00] of the Sram address.
30 FlashSel Selects Flash for the external memory source of D2d or D2s.
2 FlashSel Selects Flash for the external memory destination of S2p or D2d.
15:00 XfrSz Bits [15:00] of the requested dma size expressed in bytes.

The format of the endingstatus or all channels is as follows.

bit_ nameI
127:64 reserved Not used.

63:32. ChkSum Represents the 1's compliment sum ofall halfwords transferred during a P2d or D2d
operation only.

31:24 reserved Reserved for future use.
23:20=SreStatus TED.
19:16 DstStatus TBD,

15:00 XfrSz Bits [15:00] of the residual dma size expressed in bytes. This value will be zero if the dma
operation was successful

The format of the ChEvntregister is as follows.

bit__ name____. i i
31:00 ChDn Each bit represents the done flag for the respective dma channel, These bits are set by a

dma sequencer upon completion of the channel command. Cleared when the processor
writes 0 to the corresponding ChCmdregister ChCmdOp field.

Provisional Pat, App. of Alacritech, Inc. 127
Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

WISTRON CORP. EXHIBIT 1031.131

WISTRON CORP. EXHIBIT 1031.132

YOEESac
hWt

Bee

MAC CONTROL (Macctrl)

Mic BUSY TO Cpu

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

128

WISTRON CORP.EXHIBIT 1031.132

WISTRON CORP. EXHIBIT 1031.133

£6hTOT"BORTIOOS

Appendix A

The following load calculations are based on the following basic formulae:

N=X*R (Little’s Law) where
N = numberofjobsin the system (either in progressor in a queue),
X = system throughput,
R = response time (which includes time waiting in queues).

U=X* § (from Little’s Law) where
S = service time,
U = utilization.

R=S/(1-V) for exponential service times (which is the worst-case assumption).

A 256 byte frame at 100Mb/sec takes 20 pssec per frame.
4 * 100 Mbit ethernets receiving at full framerateis:

51200 (4 * 12800) frames/sec @ 1024 bytes/frame
102000 frames/sec @ 512 bytes/frame
204000 frames/sec @ 256 bytes/frame.

The following calculations assume 250 instructions/frame, 45nsec clock. Thus
S = 250 * 45 nsecs = 11.2 psecs.

Ay. Frame Size Thruput Utilization Response Nbr. in system
(xX) (R) (N)

1024 51200 57 26 usecs 1.3
512 102000 >] - _
256 204000 >1 - --

Lets look at it for varying instructions per frame assuming 512 bytes per frame average.

Instns Service Thruput Utilization Response Nbr.in system
Per Frame Time(S) (xX) (U) (R) (N)
250 11.2usec 102000 >1 -- =

250 11.2 85000 (*) .95 224 usecs 19
250 11.2 80000 (**) .89 101 8
225 10 102000 1.0 -- ~

225 10 95000(*) 95 200 19
225 10 89000 (**) .89 90 8
200 9 102000 5 90 9
150 6.7 102000 68 20 2,

(*) shows what frame rate can be supported to get a utilization of less than 1.
(**) shows what frame rate can be supported with 8 SRAM TCB buffers and at least 8
process contexts.

Provisional Pat. App. of Alacritech, Inc. 129
Inventors Laurence B. Boucheretal.

Express Mail Label # EH756230105US

WISTRON CORP.EXHIBIT 1031.133

WISTRON CORP. EXHIBIT 1031.134

ASTE"SasGog

If 100 instructions/ frame is used, S = 100 * 45 nsecs = 4.5 usecs, and we can support
256 byte frames:
100 4.5 204000 91 50 10

Firstly note that these calculations assume that response times increase exponentially as
utilization increases. This is the worst-case assumption, and probably may notbe true for
our system.
The figures show that to support a theoretical full 4 * 100 Mbit receive load withan
average frame size of 512 bytes, there will need to be 19 active “jobs” in the system,
assuming 250 instructions per frame. Due to SRAM limitations, the current design
specifies 8 SRAM buffers for active TCBs, and not to swap a TCB out of SRAM onceit
is active. So underthese limitations, the INIC will not be able to keep up with the full
frame rate. Note that the initial implementationis trying to use only 8KB of SRAM,
although 16KB maybe available, in which case 19 TCB SRAM buffers could be used.
This is a cost trade-off.

Thereal point here is the effect of instructions/frame on the throughput that can be
maintained. If the instructions/frame drops to 200, then the INIC is capable of handling
the full theoretical load (102000 frames/second) with only 9 active TCBs. If it drops to
100 instructions per frame, then the INIC can handle full bandwidth at 256 byte frames
(204000 frames/second) with 10 active TCBs. The bottom lineis that ALL hardware-
assist that reduces the instructions/frameis really worthwhile. If header-assist hardware
can save us 50 instructions per framethen it goes straight to the throughput bottom line.

CERTIFICATE OF MAILING UNDER37 CFR 1.10

[herebycertify that this Provisional Patent Application is being deposited with the
United States Postal Service as “Express Mail Post Office to Addressee”, label number
EH756230105US,in an envelope addressed to: Assistant Commissionerfor Patents,
Washington, D.C. 20231, on October 14, 1997.

Date:ber 41957 KEE
Mark Lauer

(person mailing Application)

Provisional Pat. App. of Alacritech, Inc. 130
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

WISTRON CORP.EXHIBIT 1031.134

