
Demultiplexing on the ATM Adapter: Experiments
with Internet Protocols in User Space �

Ernst W. Biersack, Erich Rütsche
B.P. 193

06904 Sophia Antipolis, Cedex
FRANCE

e-mail: erbi@eurecom.fr, rue@zh.xmit.ch

Abstract

We took a public domain implementation of the TCP/IP protocol stack and
ported into user space. The user space implementation was then optimized by a
one-to-one mapping of transport connections onto ATM connections and a packet
filter. We describe the user space implementation and compare its latency and
throughput performance with the existing kernel implementation.

�Published in: Journal on High Speed Networks, Vol. 5, No. 2, May 1996

WISTRON CORP. EXHIBIT 1016.001f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

1 Introduction

Processing of protocols has been perceived as a major bottleneck in the communication
performance. To get around this bottleneck various approaches have been examined.
The offloading of entire protocols or protocol functions onto adapters or communication
subsystems was not successful because the I/O interface of the workstations limited
the performance gained by the subsystem. Experiments with newer, so called light-
weight protocols showed that improved protocols could add functionality but their
performance did not give sufficient evidence to replace traditional protocols such as
TCP/IP. However, in the implementation of protocols still a considerable gain can
be achieved by better interfaces to the network adapters [DALT 93] and by better
integration of the protocol stack and its application.

We investigate user level protocol implementation that takes advantage of the de-
multiplexing functions being implemented on todays high-speed ATM adapters. A
second argument for a user level implementation is to provide the application with a
dedicated implementation of the protocol stack that allows better control over protocol
processing to guarantee the QoS of the networked data [THEK 93, EDWA 94].

2 Concept

ATM (Asynchronous Transmission Mode) and its Adaptation Layer (AAL) offer a
technology for the physical layer and the link layer of high-speed LANs and WANs.
The AAL offers a connection-oriented frame transfer service on top of ATM. The AAL
functions to reassemble a frame out of ATM cells are simple and must be executed
at high speed. Therefore, the AAL is often implemented by dedicated processors
on network adapters that offer the AAL service to the host system. Higher layer
protocols can be implemented by mapping several higher layer connections onto a
single AAL connection or by mapping each higher layer connection onto a dedicated
AAL connection (direct mapping). This mapping can be done based on the number of
possible AAL connections or based on performance and QoS criteria of the higher layer
connection and application.

In this paper we examine the advantages of a direct mapping of a transport layer
connection onto an AAL connection. We did the experiments with an implementation
of the Internet protocols in the user space.

In a normal stack protocol, processing is done in a tree-like way. On each level
branches are taken to demultiplex incoming PDUs to the correct higher layer protocol.
The sum of these demultiplexing operations can take a considerable amount of time
because in each layer the header must be parsed and the right connection control
information must be found. While these operations are necessary to open a connection
in a protocol stack, the normal dataflow case allows an optimized protocol handling.
In the normal case, the protocol headers have the same format, no errors happen and
consecutive PDUs for the same protocol belong to the same connection [CLAR 90].
If we assume that a protocol stack of a single connection is mapped directly onto a
dedicated AAL connection then additional simplifications for protocol processing can
be made.

1

WISTRON CORP. EXHIBIT 1016.002f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

All address information is known a-priori by the direct mapping. Therefore protocol
handling can be simplified to the processing of the parameters that change and to
exception handling. The stacked protocol headers are compared to a precomputed
filter that looks for exception handling and for precomputed window information. If
an exception is detected or if the header does not match the expected format, then the
slow standard processing path is taken. If the filter matches an optimized processing
path is taken that processes only the necessary steps, e.g., acknowledgments and timers.
To allow an optimal matching of the filter the protocol parameters must be set to prevent
segmentation.

3 Implementation

3.1 Multiplexed Protocol Stack in User Space

The internet protocol stack has been implemented in two steps. In the first step the code
of IP, UDP, and TCP of the 4.3BSD has been ported to the user space of a Sun SPARC
with SunOS Version 4.1.3. The goal was to build a library such that any application
could chose either the system protocol stack or our library without any change. This
implementation still multiplexes multiple transport connections onto a single ATM
connection (see figure 1). The ATMcl layer in figure 1 performs the necessary adaptation
between the connection-less IP and the connection-oriented ATM. Before the first IP
datagram can be sent, an ATM connection is established. The ATM connection is
released under timer control when no more IP datagrams are transmitted.

We changed the memory management of the protocol stack to use the mbuf struc-
tures on memory blocks allocated via a malloc system call. Our socket interface copies
the user data to be sent into these memory structures where the subsequent protocol
processing takes place. The protocols build packets by chaining the data and the head-
ers in mbufs. Data to be sent are passed via a standard I/O interface to the AAL that is
implemented on a SBA200 board from FORE Systems. Aselect call signals the recep-
tion of data on the same interface. Our network driver reads these data and hands them
to IP, which forwards the transport layer PDU to TCP or UDP. The socket receive
call gets the data from the transport layer and copies them to the user buffer. We use
the Pthread library [MUEL 93] to implement a parallel timer thread that watches all
outstanding timers.

3.2 Optimized Protocol Stack in User Space

In the second step we optimized the user space protocol implementation by a direct
mapping between a transport connection and an AAL connection and a packet filter.

Each TCP connection is mapped onto a different ATM connection. The demulti-
plexing then takes only place at the ATM layer. This architecture is depicted in figure
2.

The packet filter looks for all the fields in the PDU that can be precomputed once the
connection is established. As the addresses are known a priori, the filter matches only
the fields that can change, e.g, IP segmentation and options, TCP flags and window,

2

WISTRON CORP. EXHIBIT 1016.003f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Mbufs

Pthreads

APP

SO

Physical Link

KERNEL
ATM
Dr iver

SO*

ForeRunner SBA-200

ATMcl

SO SO

UDP TCP

IP

APP APP

SO*

SO*

ATMcl ATMcl

Figure 1: Architecture of the multiplex protocol stack in user space.

UDP flags. The algorithm is close to the header prediction algorithm of TCP by
McCanne and Jacobson [MCCA 93] but is enhanced by the filtering of the IP header.

To implement the filter, the code for the receiver side of the IP and TCP/UDP was
modified to distinguish between two different cases, the execution of which leads to
two different paths (see figure 3):

� If the precomputed filter does not match, the standard path is executed that imple-
ments the full IP and TCP/UDP and can handle all options.

� If the precomputed filter does match, the fast path is executed, implementing
a reduced version of IP and TCP/UDP. Here, a number of functions are sup-
pressed, such as connection lookup, option processing, window adaptation, PCB-
searching, or IP segmentation and checksum computation.

The decision which of the 2 paths to execute is taken by the filter that checks a
certain number of fields in the header of IP and TCP/UDP. For IP and TCP these fields
are highlighted in figure 4.

In the IP header, the filter checks if

� VERS == 4, i.e. the current version of IP is used

� HLEN == 20, i.e. the header is 20 bytes long and does not contain any IP options

� SERVICE == 0, i.e. there are no particular QOS requirements

3

WISTRON CORP. EXHIBIT 1016.004f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Physical Link

M b u f s

P t h r e a d s

APP

SO

TCP
IP
ATM

APP

SO

APP

SO

TCP
IP
ATM

TCP
IP
ATM

ATM
Driver

KERNEL

Figure 2: Architecture of the optimized protocol stack in user space.

� FLAGS == 0, i.e. there is no fragmentation

� FRAGMENT-OFFSET == 0, i.e. the IP datagram is not fragmented. We avoid
fragmentation by choosing the maximum size for the TCP PDU such that it fits
into a single AAL-5 PDU of 4096 Bytes.

� PROTOCOL == 6, to verify that TCP is used as transport protocol.

The filter matches on the TCP header iff

� The header does not contain any options (check of HLEN)

� The Flags URG, SYS, FIN, and RST are not set (check of CODE-BITS)

� The window size was not changed by the receiver (check of WINDOW).

If the standard path is taken, a filter adaptation is necessary when the window size was
changed. In this case, the filter is adjusted to retain the new value of WINDOW. When
the next PDU arrives, it can again become eligible for the fast path, provided that all
the other predicates checked by the filter match.
Figure 5 shows that the fast path allows to suppress a certain number of functions.

When taking the fast path, at IP level

4

WISTRON CORP. EXHIBIT 1016.005f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

