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IP Fragmentation and

Reassembly

10.1 Introduction

In this chapter we describe the IP fragmentation and reassembly processing that we
postponed in Chapter 8.

IP has an important capability of being able to fragment a packet when it is too
large to be transmitted by the selected hardware interface. The oversized packet is split
into two or more IP fragments, each of which is small enough to be transmitted on the
selected network. Fragments may be further split by routers farther along the path to
the final destination. Thus, at the destination host, an IP datagram can be contained in a
single IP packet or, if it was fragmented in transit, it can arrive in multiple IP packets.
Because individual fragments may take different paths to the destination host, only the
destination host has a chance to see all the fragments. Thus only the destination host
can reassemble the fragments into a complete datagram to be delivered to the appropri-
ate transport protocol.

Figure 8.5 shows that 0.3% (72, 786/27, 881,978) of the packets received were frag-
ments and 0.12% (260,484/(29,447,726-796,084)) of the datagrams sent were frag-
mented. On wor~_c~, s~d. corn, 9.5% of the packets received were fragments.
has more NFS activity, which is a common source of IP fragmentation.

Three fields in the IP header implement fragmentation and reassembly: the identifi-
cation field (±p_±d), the flags field (the 3 high-order bits of ±p_o f f), and the offset field
(the 13 low-order bits of ±p_o£f). The flags field is composed of three 1-bit flags. Bit 0
is reserved and must be 0, bit I is the "don’t fragment" (DF) flag, and bit 2 is the "more
fragments" (MF) flag. In Net/3, the flag and offset fields are combined and accessed by
±p_off, as shown in Figure 10.1.
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ip_o f f I 0 IDF~vI~             fragment offset

1 1 1 13 bits
Figure 10.1 ip_o £ f controls fragmentation of an IP packet.

Net/3 accesses the DF and MF bits by masking ip_o f f with I P_DF and I P_MF respec-
tively. An IP implementation must allow an application to request that the DF bit be set
in an outgoing datagram.

Net/3 does not provide application-level control over the DF bit when using UDP or TCP.

A process may construct and send its own IP headers with the raw IP interface (Chapter 32).
The DF bit may be set by the transport layers directly such as when TCP performs path MTU
discovery.

The remaining 13 bits of ip_off specify the fragment’s position within the original
datagram, measured in 8-byte units. Accordingly, every fragment except the last must
contain a multiple of 8 bytes of data so that the following fragment starts on an 8-byte
boundary. Figure 10.2 illustrates the relationship between the byte offset within the
original datagram and the fragment offset (low-order 13 bits of ip_off) in the frag-
ment’s IP header.

IP header
ip_off =0 MF=0

20 bytes          :

IP header
ip_off =0 MF=I

20 bytes 8 bytes i

IP header
ip_off=l MF=I

20 bytes 8 bytes

IP header
ip_off=2 MF=I

20 bytes

maximum datagram ~1

7 8 15 16     23 24 65511 ~,~65514

8bytes ¯ 8bytes 8bytes 8bytes " 3
bytes

8 bytes

[

IP header

~ip_of f = 8189 MF=0
20 bytes 3

bytes

8 bytes

IP header
i~_off =8188 MF=I

20 bytes

Figure 10.2 Fragmentation of a 65535-byte datagram.
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Figure 10.2 shows a maximally sized IP datagram divided into 8190 fragments.
Each fragment contains 8 bytes except the last, which contains only 3 bytes. We also
show the MF bit set in all the fragments except the last. This is an unrealistic example,
but it illustrates several implementation issues.

The numbers above the original datagram are the byte offsets for the data portion of
the datagram. The fragment offset (±p_o f f) is computed from the start of the data por-
tion of the datagram. It is impossible for a fragment to include a byte beyond offset
65514 since the reassembled datagram would be larger than 65535 bytes--the maxi-
mum value of the ±p_len field. This restricts the maximum value of ±p_off to 8189
(8189 x 8 = 65512), which leaves room for 3 bytes in the last fragment. If IP options are
present, the offset must be smaller still.

Because an IP internet is connectionless, fragments from one datagram may be
interleaved with those from another at the destination. ±p_id uniquely identifies the
fragments of a particular datagram. The source system sets ip_±d in each datagram to
a unique value for all datagrams using the same source (±p_arc), destination
(±p_dst), and protocol (±p_p) values for the lifetime of the datagram on the internet.

To summarize, ±p_±d identifies the fragments of a particular datagram, J_p_off
positions the fragment within the original datagram, and the MF bit marks every frag-
ment except the last.

10.2 Code Introduction

The reassembly data structures appear in a single header. Reassembly and fragmenta-
tion processing is found in two C files. The three files are listed in Figure 10.3.

File Description

net inet / ip_var, h reassembly data structures
net inet / ip_output, c fragmentation code
net inet / ip_input, c reassembly code

Figure 10.3 Files discussed in this chapter.

Global Variables

Only one global variable, ±pq, is described in this chapter.

~.Variable Type Description

~.pq struct ipq * reassemblylist

Figure 10.4 Global variable introduced in this chapter.
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Statistics

The statistics modified by the fragmentation and reassembly code are shown in Fig-
ure 10.5. They are a subset of the statistics included in the ±pstat structure described
by Figure 8.4.

ipstat member Description

ips_cant frag #datagrams not sent because fragmentation was
required but was prohibited by the DF bit

ips_odropped     #output packets dropped because of a memory shortage
ips_o fragment s #fragments transmitted
ips_fragmented #packets fragmented for output

Figure 10.5 Statistics collected in this chapter.

10.3

253 261

Fragmentation

We now return to ip_output and describe the fragmentation code. Recall from Fig-
ure 8.25 that if a packet fits within the MTU of the selected outgoing interface, it is trans-
mitted in a single link-level frame. Otherwise the packet must be fragmented and
transmitted in multiple frames. A packet may be a complete datagram or it may itself
be a fragment that was created by a previous system. We describe the fragmentation
code in three parts:

¯ determine fragment size (Figure 10.6),
¯ construct fragment list (Figure 10.7), and
¯ construct initial fragment and send fragments (Figure 10.8).

253 /*
254 * Too large for interface; fragment if possible.
255 * Must be able to put at least 8 bytes per fragment.
256 */
257 if (ip >ip_off & IP_DF) {
258 error = EMSGSIZE;
259 ipstat.ips_cantfrag++;
260 goto bad;
261 }
262 fen : (ifp >if_mtu    hlen) & -7;
263 if (len < 8) {
264 error - EMSGSIZE;
265 goto bad;
266 }

Figure 10.6 ip_output function: determine fragment size.

ip_output.c

ip_output.c

The fragmentation algorithm is straightforward, but the implementation is compli-
cated by the manipulation of the mbuf structures and chains. If fragmentation is
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262--266

267--269

270--276

277--284

285--290

291--297

298

299--305

prohibited by the DF bit, ip_output discards the packet and returns EMSGSIZE. If the
datagram was generated on this host, a transport protocol passes the error back to the
process, but if the datagram is being forwarded, ip_forward generates an ICMP desti-
nation unreachable error with an indication that the packet could not be forwarded
without fragmentation (Figure 8.21).

Net/3 does not implement the path MTU discovery algorithms used to probe the
path to a destination and discover the largest transmission unit supported by all the
intervening networks. Sections 11.8 and 24.2 of Volume 1 describe path MTU discovery
for UDP and TCP.

len, the number of data bytes in each fragment, is computed as the MTU of the
interface less the size of the packet’s header and then rounded down to an 8-byte
boundary by clearing the low-order 3 bits (& -7). If the MTU is so small that each frag-
ment contains less than 8 bytes, ip_output returns EMSGSIZE.

Each new fragment contains an IP header, some of the options from the original
packet, and at most fen data bytes.

The code in Figure 10.7, which is the start of a C compound statement, constructs
the list of fragments starting with the second fragment. The original packet is converted
into the initial fragment after the list is created (Figure 10.8).

The extra block allows mhlen, firstlen, and mnext to be declared closer to their
use in the function. These variables are in scope until the end of the block and hide any
similarly named variables outside the block.

Since the original mbuf chain becomes the first fragment, the for loop starts with
the offset of the second fragment: hJ_en + 3_en. For each fragment ip_output takes the
following actions:

Allocate a new packet mbuf and adjust its re_data pointer to leave room for a
16-byte link-layer header (max_linkhdr). If ip_output didn’t do this, the
network interface driver would have to allocate an additional mbuf to hold the
link header or move the data. Both are time-consuming tasks that are easily
avoided here.

Copy the IP header and IP options from the original packet into the new packet.
The former is copied with a structure assignment, ip_optcopy copies only
those options that get copied into each fragment (Section 10.4).

Set the offset field (ip_off) for the fragment including the MF bit. If MF is set
in the original packet, then MF is set in all the fragments. If MF is not set in the
original packet, then MF is set for every fragment except the last.

Set the length of this fragment accounting for a shorter header (ip_optcopy
may not have copied all the options) and a shorter data area for the last frag-
ment. The length is stored in network byte order.

Copy the data from the original packet into this fragment, re_copy allocates
additional mbufs if necessary. If re_copy fails, ENOBUFS is posted. Any mbufs
already allocated are discarded at sendorfree.
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267

268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
3OO
301
302
303
304
3O5
306
307
3O8
309
310
311
312
313
314

ip_output.c

int mhlen, firstlen = len;
struct mbuf **mnext = &m->m_nextpkt;

* Loop through length of segment after first fragment,
* make new header and copy data of each part and link onto chain.

m0 - m;
mhlen - sizeof(struct ip);
for (off = hlen + len; off < (u_short) ip->ip_len; off +- len) {

MGETHDR(m, M_DONTWAIT, MT_HEADER);
if (m -= 0) {

error - ENOBUFS;
ipstat.ips_odropped++;
goto sendorfree;

]
m >m_data +- max_linkhdr;
mhip - mtod(m, struct ip *);

if (hlen > sizeof(struct ip)) {
mhlen = ip_optcopy(ip, mhip) + sizeof(struct ip);
mhip->ip_hl - mhlen >> 2;

}
m->m_len - mhlen;
mhip->ip_off = ((off - hlen) >> 3) + (ip->ip_off & -IP_MF);
if (ip->ip_off & IP_MF)

mhip->ip_off I: IP_MF;
if (off + len >= (u_short) ip->ip_len)

len = (u_short) ip->ip_len - off;
else

mhip->ip_off I= IP_MF;
mhip->ip_len = htons((u_short) (len + mhlen));
m->m_next - m_copy(m0, off, len);
if (m->m next == 0) {

(void) m_free(m);
error - ENOBUFS; /* ??? */
ipstat.ips_odropped++;
goto sendorfree;

}
m->m_~kthdr.len = mhlen + fen;
m->m~kthdr.rcvif = (struct ifnet *) 0;
mhip->ip_off = htons((u_short) mhip->ip_off);
mhip->ip_sum = 0;
mhip->ip_sum - in_cksum(m, mhlen);
*mnext : m;
mnext : &m->m nextpkt;
ipstat.ips_ofragments++;

}

Figure 10.7 ip_output function: construct fragment list.

ip_output.c
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306--314 Adjust the mbuf packet header of the newly created fragment to have the correct
total length, clear the new fragment’s interface pointer, convert ip_o£ f to net-
work byte order, compute the checksum for the new fragment, and link the frag-
ment to the previous fragment through m_nextpkt.

315--325

326--338

In Figure 10.8, ip_output constructs the initial fragment and then passes each
fragment to the interface layer.

315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335

/.                                                             ip_outpuLc

* Update first fragment by trilnming what’s been copied out
* and updating header, then send each fragment (in order).
*/

m = mO;
m_adj(m, hlen + firstlen    (u_short) ip->ip_len);
m >m_pkthdr.len - hlen + firstlen;
ip->ip_len = htons((u_short) m->m_pkthdr.len);
ip->ip_off = htons((u_short) (ip->ip_off I IP_MF));
ip->ip_sum = O;
ip->ip_sum = in_cksum(m, hlen);

sendorfree:
for (m = mO; m; m - mO) {

mO = m->m nextpkt;
m->m nextpkt : O;
if (error == O)

error = (*ifp->if_output)

else
m_freem(m);

(ifp, m,
(struct sockaddr *) dst, ro->ro_rt);

336 if (error == O)
337 ipstat.ips_fragmented++;
398 }

Figure 10.8 ip_output function: send fragments.

ip_output.c

The original packet is converted into the first fragment by trimming the extra data
from its end, setting the MF bit, converting ip_! en and ip_o f f to network byte order,
and computing the new checksum. All the IP options are retained in this fragment. At
the destination host, only the IP options from the first fragment of a datagram are
retained when the datagram is reassembled (Figure 10.28). Some options, such as
source routing, must be copied into each fragment even though the option is discarded
during reassembly.

At this point, ip_output has either a complete list of fragments or an error has
occurred and the partial list of fragments must be discarded. The for loop traverses
the list either sending or discarding fragments according to error. Any error encoun-
tered while sending fragments causes the remaining fragments to be discarded.
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10.4 ip_optcopy Function

During fragmentation, ip_optcopy (Figure 10.9) copies the options from the incoming
packet (if the packet is being forwarded) or from the original datagram (if the datagram
is locally generated) into the outgoing fragments.

395 int
396 ip_optcopy(ip, jp)
397 struct ip *ip, *jp;
398 {
399 u_char *cp, *dp;
400 int opt, optlen, cnt;

ip_output.c

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

cp : (u_char *) (ip + i);
dp : (u_char *) (jp + i);
cnt : (ip >ip_hl << 2)    sizeof(struct ip);
for (; cnt > 0; cnt = optlen, cp +: optlen) {

opt - cp[0];
if (opt -= IPOPT_EOL)

break;
if (opt :: IPOPT_NOP) {

/* Preserve for IP mcast tunnel’s LSRR alignment. */
*dp++ - IPOPT_NOP;
optlen - i;
continue;

} else
optlen - cp[IPOPT_OLEN];

/* bogus lengths should have been caught by ip_dooptions */
if (optlen > cnt)

optlen = cnt;
if (IPOPT_COPIED(opt))

bcopy((caddr_t) cp,
dp += optlen;

}
}
for (optlen = dp - (u_char *)

*dp++ : IPOPT_EOL;
return (optlen);

{
(caddr_t) dp, (unsigned) optlen);

(jp + i); optlen & 0x3; optlen++)

Figure 10.9 ip_optcopy function.
ip_output.c

The arguments to ip_optcopy are: ip, a pointer to the IP header of the outgoing
packet; and j p, a pointer to the IP header of the newly created fragment, i p_olot c
initializes cp and dp to point to the first option byte in each packet and advances cp
and dp as it processes each option. The first for loop copies a single option during
each iteration stopping when it encounters an EOL option or when it has examined all
the options. NOP options are copied to preserve any alignment constraints in the sub-
sequent options.

The Net/2 release discarded NOP options.
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423-426

If IPOPT_COPIED indicates that the copied bit is on, ip_optcopy copies the option
to the new fragment. Figure 9.5 shows which options have the copied bit set. If an
option length is too large, it is truncated; ip_dooptions should have already discov-
ered this type of error.

The second for loop pads the option list out to a 4-byte boundary. This is required,
since the packet’s header length (ip_hlen) is measured in 4-byte units. It also ensures
that the transport header that follows is aligned on a 4-byte boundary. This improves
performance since many transport protocols are designed so that 32-bit header fields are
aligned on 32-bit boundaries if the transport header starts on a 32-bit boundary. This
arrangement increases performance on CPUs that have difficulty accessing unaligned
32-bit words.

Figure 10.10 illustrates the operation of ip_optcopy.

IP header LSRR option

20 bytes 11 bytes

I ~_end-of-listIP header
]~ option

20 bytes 1

Figure 10.10

timestamp option

12 bytes ..

LSRR option

11 bytes

Not all options are copied during fragmentation.

In Figure 10.10 we see that ip_optcopy does not copy the timestamp option (its
copied bit is 0) but does copy the LSRR option (its copied bit is 1). ip_optcopy has also
added a single EOL option to pad the new options to a 4-byte boundary.

10.5

271 --279

280--286

Reassembly

Now that we have described the fragmentation of a datagram (or of a fragment), we
return to ipintr and the reassembly process. In Figure 8.15 we omitted the reassembly
code from ipintr and postponed its discussion, ipintr can pass only entire data-
grams up to the transport layer for processing. Fragments that are received by ipintr
are passed to il~_reass, which attempts to reassemble fragments into complete data-
grams. The code from ipintr is shown in Figure 10.11.

Recall that ip_off contains the DF bit, the MF bit, and the fragment offset. The DF
bit is masked out and if either the MF bit or fragment offset is nonzero, the packet is a
fragment that must be reassembled. If both are zero, the packet is a complete datagram,
the reassembly code is skipped and the else clause at the end of Figure 10.11 is exe-
cuted, which excludes the header length from the total datagram length.

ra_pul lup moves data in an external cluster into the data area of the mbuf. Recall
that the SLIP interface (Section 5.3) may return an entire IP packet in an external cluster
if it does not fit in a single mbuf. Also ra_devget can return the entire packet in a clus-
ter (Section 2.6). Before the mtod macros will work (Section 2.6), m_pullup must move
the IP header from the cluster into the data area of an mbuf.
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ipjnput.c
271 ours:
272 /*
273 * If offset or IP_I~F are set, must reassemble.
274 * Otherwise, nothing need be done.
275 * (We could look in the reassembly q%teue to see
276 * if the packet was previously fragmented,
277 * but it’s not worth the time; just let them time out.)
278 */
279 if (ip->ip_off & -IP_DF) {
280 if (m->m_flags & M_EXT) {    /* XXX */
281 if ((m : m pullup(m, sizeof(struct ip))) := 0) {
282 ipstat.ips_toosmall++;
283 goto next;
284 }
285 ip : mtod(m, struct ip *);
286 }
287 /*
288 * Look for queue of fragments
289 * of this datagram.
290 */
291 for (fp : ipq.next; fp !- &ipq; fp ~ fp->next)
292 if (ip->ip_id == fp >ipq_id &&
293 ip->ip_src.s_addr == fp->ipq_src.s_addr &&
294 ip->ip_dst.s_addr -= fp->ipq_dst.s_addr &&
295 ip->ip_p := fp->ipq_p)
296 goto found;
297 fp = 0;
298 found:

999
300
301
302
303
304
305
306
307
308

309
310
311
312
313
314
315
316
317
318
319
320
321
322

* Adjust ip_len to Not reflect header,
* set ip_mff if more fragments are expected,
* convert offset of this to bytes.
*/

ip->ip_len -: hlen;
((struct ipasfrag *) ip)->ipf_mff &=
if (ip->ip_off & IP_MF)

((struct ipasfrag *) ip)->ipf_mff I= i;
ip->ip_off <<= 3;

* If datagram marked as having more fragments
* or if this is not the first fragment,
* attempt reassembly; if it succeeds, proceed.
./

if (((struct ipasfrag *) ip)->ipf_mff & 1 I I ip >ip_off)
ipstat.ips_fragments++;
ip = ip_reass((struct ipasfrag *) ip, fp);
if (ip =: 0)

goto next;
ipstat.ips_reassembled++;
m = dtom(ip);

} else if (fp)
ip_freef(fp);
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323
324

} else
ip->ip_len -: hlen;

Figure 10.11 ipintr function: fragment processing.

ip_input.c

287 297 Net/3 keeps incomplete datagrams on the global doubly linked list, ipq. The name
is somewhat confusing since the data structure isn’t a queue. That is, insertions and
deletions can occur anywhere in the list, not just at the ends. We’ll use the term list to
emphasize this fact.

ipintr performs a linear search of the list to locate the appropriate datagram for
the current fragment. Remember that fragments are uniquely identified by the 4-tuple:
{ip_id, ip_src, ip_dst, ip_p}. Each entry in ipq is a list of fragments and fp points
to the appropriate list if ipintr finds a match.

298 303

Net/3 uses linear searches to access many of its data structures. While simple, this method can
become a bottleneck in hosts supporting large numbers of network connections.

At found, the packet is modified by ipintr to facilitate reassembly:

304

305--307

¯ ipintr changes ip_len to exclude the standard IP header and any options.
We must keep this in mind to avoid confusion with the standard interpretation
of ip_len, which includes the standard header, options, and data. ip_len is
also changed if the reassembly code is skipped because this is not a fragment.

¯ ipintr copies the MF flag into the low-order bit of ipf_mff, which overlays
ip_tos (&- -1 clears the low-order bit only). Notice that ip must be cast to a
pointer to an ipasfrag structure before ipf_mff is a valid member Sec-
tion 10.6 and Figure 10.14 describe the ipas frag structure.

308

Although RFC 1122 requires the IP layer to provide a mechanism that enables the transport
layer to set ip_tos for every outgoing datagram, it only recommends that the IP layer pass
ip_tos values to the transport layer at the destination host. Since the low-order bit of the
TOS field must always be 0, it is available to hold the MF bit while ip_of f (where the MF bit
is normally found) is used by the reassembly algorithm.

ip_of f can now be accessed as a 16-bit offset instead of 3 flag bits and a 13-bit
offset.

ip_of f is multiplied by 8 to convert from 8-byte to 1-byte units.

309--322

323--324

ipf_mff and ip_off determine if ipintr should attempt reassembl~. Fig-
ure 10.12 describes the different cases and the corresponding actions. Remember that
fp points to the list of fragments the system has previously received for the datagram.
Most of the work is done by ip_reass. "

If ip_reass is able to assemble a complete datagram by combining the current
fragment with previously received fragments, it returns a pointer to the reassembled
datagram. If reassembly is not possible, ip_reass saves the fragment and ipintr
jumps to next to process the next packet (Figure 8.12).

This e ! s e branch is taken when a complete datagram arrives and ip_hl en is mod-
ified as described earlier This is the normal flow, since most received datagrams are not
fragments.
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ip_off

0
0
any

any

nonzero
nonzero

ipf_mf f fp

false null
false nonnull
true null

true nonnull

false null
false nonnull

Description

complete datagram
complete datagram
fragment of new datagram

fragment of incomplete datagram

tail fragment of new datagram
tail fragment of incomplete datagram

Action

no assembly required
discard the previous fragments
initialize new fragment list

with this fragment
insert into existing fragment

list, attempt reassembly
initialize new fragment list
insert into existing fragment

list, attempt reassembly

Figure 10.12 IP fragment processing in ipintr and ip_reass.

If a complete datagram is available after reassembly processing, it is passed up to
the appropriate transport protocol by ip i n t r (Figure 8.15):

(*inetsw[ip_protox[ip->ip_p]].pr_input) (m, hlen);

10.6

52--60

ip_reass Function

ipintr passes ip_reass a fragment to be processed, and a pointer to the matching
reassembly header from ipqo ip_reass attempts to assemble and return a complete
datagram or links the fragment into the datagram’s reassembly list for reassembly when
the remaining fragments arrive. The head of each reassembly list is an ipq structure,
show in Figure 10.13.

52 struct ipq {
53
54
55
56
57
58
59
60 };

struct ipq *next, *prev; /* to other reass headers */
u_char ipq_ttl; /* time for reass q to live */
u_char ipq_p; /* protocol of this fragment */
u_short ipq_id; /* sequence id for reassembly */
struct ipasfrag *ipq_next, *ip~_prev;
/* to ip headers of fragments */
struct in_addr ipq_src, ipq_dst;

Figure 10.13 ipq structure.

ip_var.h

ip_var.h

The four fields required to identify a datagram’s fragments, ip_id, ip_l~, ip_src,
and ip_dst, are kept in the i~)q structure at the head of each reassembly list. Net/3
constructs the list of datagrams with next and prey and the list of fragments with
ipq_next and ipq_prev.

The IP header of incoming IP packets is converted to an ipasfrag structure (Fig-
ure 10.14) before it is placed on a reassembly list.
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ip_var.h
struct ipas frag {
#if BYTE_ORDER-- LITTLE_ENDIAN

u_char ip_hl : 4,
ip_v: 4 ;

#endif
#if BYTE_ORDER == BIG_ENDIAN

66--86

66
67
68
69
7O
71
72
73
74
75
76
77
78
79
8O
81
82
83
84
85
86

u_char ip_v:4,
ip_hl:4;

#endif
u_char ipf_mff;

short
u_short
short
u_char
u_char
u_short
struct
struct

;

ip_len;
ip_id;
ip_off;
ip_ttl;
ip_p;
ip_sum;
ipasfrag *ipf_next;
ipasfrag *ipf_prev;

XXX overlays ip_tos: use low bit
to avoid destroying tos;
copied from (ip_off&IP_MF) */

/* next fragment */
/* previous fragment */

Figure 10.14 ipasfrag structure.

ip_var.h

3_p_reass collects fragments for a particular datagram on a circular doubly linked
list joined by the ilof_next and ipf_prev members. These pointers overlay the
source and destination addresses in the IP header. The ipf_mff member overlays
ip_tos from the ip structure. The other members are the same.

Figure 10.15 illustrates the relationship between the fragment header list (ipq) and
the fragments (ipas frag),

Down the ]eft side of Figure 10.15 is the list of reassembly headers. The first node in
the list is the global ipq structure, ipq. It never has a fragment list associated with it.
The i~q list is a doubly linked list used to support fast insertions and deletions. The
next and ~rev pointers reference the next or previous ipq structure, which we have
shown by terminating the arrows at the corners of the structures.

Each i~oq structure is the head node of a circular doubly linked list of ipas frag
structures. Incoming fragments are placed on these fragment lists ordered by their frag-
ment offset. We’ve highlighted the pointers for these lists in Figure 10.15.

Figure 10.15 still does not show all the complexity of the reassembly structures. The
reassembly code is difficult to follow because it relies so heavily on casting pointers to
three different structures on the underlying mbuf. We’ve seen this technique already,
for example, when an ip structure overlays the data portion of an mbuf.

Figure 10.16 illustrates the relationship between an mbuf, an ipq structure, an
ipas frag structure, and an ip structure.



288 IP Fragmentation and Reassembly Chapter 10

re_data [ ]

ip~{ } [

ipq:

to end
of list

next
prey

ipq_next
ipq_prev

next    -
--    prey

-- ipq_prev

ipq{}
next    -

--    prey

ipq_next
-- ipq__prev

to start
of list

head of reassembly list;
fragments are ever

linked to this structure

......... f~agment l!sts,.0{de[Pd.by, fr.agmen~ pffse~ ..... ,,
ipas frag{ ) ipas frag{ }

~ fragments
~ for one
~ datagram~ ipf_next - ~ ipf_next

ipf_prev ~ ~

ipasf rag { }

ipf_prev

received
fragments
for one
datagram

Figure 10.15 The fragment header list, ipq, and fragments.

next prev ipq_next ipq__prev

ipasfrag{}

~hl

ip{}~~    ip_src ip_dst

Figure 10.16 An area of memory can be accessed through multiple structures.
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A lot of information is contained within Figure 10.16:

All the structures are located within the data area of an mbuf.
The ipq list consists of ipq structures joined by next and prey. Within the
structure, the four fields that uniquely identify an IP datagram are saved
(shaded in Figure 10.16).
Each ipq structure is treated as an ipasfrag structure when accessed as the
head of a linked list of fragments. The fragments are joined by ipf_next and
ipf_prev, which overlay the ipq structures’ ipq_next and ipq_prev mem-
bers.

Each ipasfrag structure overlays the ip structure from the incoming frag-
ment. The data that arrived with the fragment follows the structure in the mbuf.
The members that have a different meaning in the ipasfrag structure than
they do in the ip structure are shaded.

Figure 10.15 showed the physical connections between the reassembly structures
and Figure 10.16 illustrated the overlay technique used by ip_reass. In Figure 10.17
we show the reassembly structures from a logical point of view: this figure shows the
reassembly of three datagrams and the relationship between the ipq list and the
ipas frag structures.

ipq : I

fp

ip_id : 5

~ ip_id = 6

ip~{}
~ ip_id = 7

ipasfrag{}~           ~ ipasfrag{) ~ ipasfrag{ } 1

271£[i~ii$~;i<$$~<.:~<...,544~;{~!~ MF 815 816    1031

~ ipasfrag{} ~ ipasfrag{} ~

~ ipasfra~{} ~

~ 816         1031

Figure 10.17 Reassernbly of three IP datagrams.

The head of each reassembly list contains the id, protocol, source, and destination
address of the original datagram. Only the ip_id field is shown in the figure. Each
fragment list is ordered by the offset field, the fragment is labeled with MF if the MF bit
is set, and missing fragments appear as shaded boxes. The numbers within each frag-
ment show the starting and ending byte offset for the fragment relative to the data
portion of the original datagram, not to the IP header of the original datagram.

The example is constructed to show three UDP datagrams with no IP options and
-1024 bytes of data each. The total length of each datagram is 1052 (20 + 8 + 1024) bytes,
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343--358

which is well within the 1500-byte MTU of an Ethernet. The datagrams encounter a
SLIP link on the way to the destination, and the router at that link fragments the data-
grams to fit within a typical 296-byte SLIP MTU. Each datagram arrives as four frag-
ments. The first fragment contain a standard 20-byte IP header, the 8-byte UDP header,
and 264 bytes of data. The second and third fragments contain a 20-byte IP header and
272 bytes of data. The last fragment has a 20-byte header and 216 bytes of data
(1032 = 272 x 3 + 216).

In Figure 10.17, datagram 5 is missing a single fragment containing bytes 272
through 543. Datagram 6 is missing the first fragment, bytes 0 through 271, and the end
of the datagram starting at offset 816. Datagram 7 is missing the first three fragments,
bytes 0 through 815.

Figure 10.18 lists ±p_reass. Remember that ±p±ntr calls ±p_reass when an IP
fragment has arrived for this host, and after any options have been processed.

337 /*
338 * Take incoming datagram fragment and try to
339 * reassemble it into whole datagram~ If a chain for
340 * reassembly of this datagram already exists, then it
341 * is given as fp; otherwise have to make a chain.
342 */
343 struct ip *
344 ip_reass(ip, fp)
345 struct ipasfrag *ip;
346 struct ipq *fp;
347 {
348 struct mbuf *m = dtom(ip);
349 struct ipasfrag *q;
350 struct mbuf *t;
351 int hlen = ip->ip_hl << 2;
352 int i, next;

353 /*
354 * Presence of header sizes in mbufs
355 * would confuse code below.
356 */
357 m->m_data +- hlen;
358 m->m len -- hlen;

ip_input.c

/* reassembly code */

465 dropfrag:
466 ipstat.ips_fragdropped++;
467 m_freem(m);
468 return (0);
469 ]

Figure 10.18 ip_reass function: datagram reassembly.

ip_input.c

When ip_reass is called, ip points to the fragment and fp either points to the
matching ±pq structure or is null.
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465--469

Since reassembly involves only the data portion of each fragment, ip_reass
adjusts re_data and m_len from the mbuf containing the fragment to exclude the IP
header in each fragment.

When an error occurs during reassembly, the function jumps to dropfrag, which
increments il~s_fragdropped, discards the fragment, and returns a null pointer.

Dropping fragments usually incurs a serious performance penalty at the transport
layer since the entire datagram must be retransmitted. TCP is careful to avoid fragmen-
tation, but a UDP application must take steps to avoid fragmentation on its own. [Kent
and Mogul 1987] explain why fragmentation should be avoided.

All IP implementations must to be able to reassemble a datagram of up to 576 bytes.
There is no general way to determine the size of the largest datagram that can be
reassembled by a remote host. We’ll see in Section 27.5 that TCP has a mechanism to
determine the size of the maximum datagram that can be processed by the remote host.
UDP has no such mechanism, so many UDP-based protocols (e.g., RIP, TFTP, BOOTP,
SNMP, and DNS) are designed around the 576-byte limit.

We’ll show the reassembly code in seven parts, starting with Figure 10.19.

359 /*
360 * If first fragment to arrive, create a reassembly queue.
361 */
362 if (fp :: 0)
363 if
364 goto dropfrag;
365 fp : mtod(t, struct ipq *);
366 insque(fp, &ipq);
367 fp->ipq_ttl : IPFRAGTTL;
368 fp->ipq_p = ip->ip_p;
369 fp >ipq_id - ip->ip_id;
370 fp->ipq_next = fp->ipq_3orev -
371 fp->ipq_src = ((struct ip *)
372 fp->ipq_dst - ((struct ip *)
373 q = (struct ipasfrag *) fp;
374 goto insert;
375

{
( (t : m_get (M_DONTWAIT, MT_FTABLE) ) := NULL)

(struct ipasfrag *) fp;
ip) >ip_src;
ip)->ip_dst;

Figure 10.19 ip_reas s function: create reassembly list.

ip_input.c

ip_input.c

359--366

Create reassembly list

When fp is null, ip_reass creates a reassembly list with the first fragment of the
new datagram. It allocates an mbuf to hold the head of the new list (an ipq structure),
and calls insque to insert the structure in the list of reassembly lists.

Figure 10.20 lists the functions that manipulate the datagram and fragment lists.

The functions insque and remque are defined in machdep, c for the 386 version of Net/3.
Each machine has its own machdelo, c file in which customized versions of kernel functions
are defined, typically to improve performance. This file also contains architecture-dependent
functions such as the interrupt handler support, cpu and device configuration, and memory
management functions.
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Function Description

±nsque Insert node just after prev.

void i~sq’t~e(void *node, void *prey);

remque Remove node from list.

void a:~e(void *node);

ip_enq Insert fragment p just after fragment prev.

void i~_~n~I(struct ipasfrag *p, struct ipasfrag *prev);

ip_deq Remove fragment p.

void i~_d~i(struct ipasfrag *p);

Figure 10.20 Queueing functions used by ip_reass.

367

insque and remque exist primarily to maintain the kernel’s run queue. Net/3 can use them
for the datagram reassembly list because both lists have next and previous pointers as the first
two members of their respective node structures. These functions work for any similarly struc-
tured list, although the compiler may issue some warnings. This is yet another example of
accessing memory through two different structures.

In all the kernel structures the next pointer always precedes the previous pointer (Figure 10.14,
for example). This is because the insque and remque functions were first implemented on
the VAX using the insque and remque hardware instructions, which require this ordering of
the forward and backward pointers.

The fragment lists are not joined with the first two members of the ipasfrag structures (Fig-
ure 10.14) so Net/3 calls ip_deq and ip_enq instead of insque and remque.

Reassembly timeout
The time-to-live field (J_pcJ._t t l) is required by RFC 1122 and limits the time Net/3

waits for fragments to complete a datagram. It is different from the TTL field in the IP
header, which limits the amount of time a packet circulates in the internet. The IP
header TTL field is reused as the reassembly timeout since the header TTL is not needed
once the fragment arrives at its final destination.

In Net/3, the initial value of the reassembly timeout is 60 (TPFRAGTTr.). Since
ipq_ttl is decremented every time the kernel calls ip_slowgirao and the kernel calls
±p_slowt±mo every 500 ms, the system discards an IP reassembly list if it hasn’t
assembled a complete IP datagram within 30 seconds of receiving any one of the data-
gram’s fragments. The reassembly timer starts ticking on the first call to ip_s l owg ±rao
after the list is created.

RFC 1122 recommends that the reassembly time be between 60 and 120 seconds and
that an ICMP time exceeded error be sent to the source host if the timer expires and the
first fragment of the datagram has been received. The header and options of the other
fragments are always discarded after reassembly and an ICMP error must contain the
first 64 bits of the erroneous datagram (or less if the datagram was shorter than 8 bytes).
So, if the kernel hasn’t received fragment 0, it can’t send an ICMP message.
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368 375

376--381

Net/3’s timer is a bit too short and Net/3 neglects to send the ICMP message when a fragment
is discarded. The requirement to return the first 64 bits of the datagram ensures that the first
portion of the transport header is included, which allows the error message to be returned to
the application that generated it. Note that TCP and UDP purposely put their port numbers in
the first 8 bytes of their headers for this reason.

Datagram identifiers
ip_reass saves ip_p, ip_id, ip_src, and ip_dst in the ipq structure allocated

for this datagram, points the ipq_next and ipq_prev pointers to the ipq structure
(i.e., it constructs a circular list with one node), points q at this structure, and jumps to
insert (Figure 10.25) where it inserts the first fragment, ip, into the new reassembly
list.

The next part of ip_reass, shown in Figure 10.21, is executed when fp is not null
and locates the correct position in the existing list for the new fragment.

376 /,
ip_input.c

377 * Find a fragment which begins after this one does.
378 */
379 for (q = fp->ipq_next; q !: (struct ipasfrag *) fp; q = q->ipf_next)
380 if (q->ip_off > ip->ip_off)
3 81 break;

ip_input.c

Figure 10.21 ip_reass function: find position in reassembly list.

Since fp is not null, the for loop searches the datagram’s fragment list to locate a
fragment with an offset greater than ip_o f f.

The byte ranges contained within fragments may overlap at the destination. This
can happen when a transport-layer protocol retransmits a datagram that gets sent along
a route different from the one followed by the original datagram. The fragmentation
pattern may also be different resulting in overlaps at the destination. The transport
protocol must be able to force IP to use the original ID field in order for the datagram to
be recognized as a retransmission at the destination.

Net/3 does not provide a mechanism for a transport protocol to ensure that IP ID fields are
reused on a retransmitted datagram, ip_output always assigns a new value by incrementing
the global integer ip_id when preparing a new datagram (Figure 8.22). Nevertheless, a
Net/3 system could receive overlapping fragments from a system that lets the transport layer
retransmit IP datagrams with the same ID field.

Figure 10.22 illustrates the different ways in which the fragment may overlap with
existing fragments. The fragments are numbered according to the order in which they
arrive at the destination host. The reassembled fragment is shown at the bottom of Fig-
ure 10.22 The shaded areas of the fragments are the duplicate bytes that are discarded.

In the following discussion, an earlier fragment is a fragment that previously arrived
at the host.
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382--396

397 412

413 426

427--440

fragment I fragment 2 fragment 3 fragment 4

fragment 5 fragment 7 fragment 6~

reassembled datagram                                 ~1

Figt~re 10.22 The byte range of fragments may overlap at the destination.

The code in Figure 10.23 trims or discards incoming fragments.
ip_reass discards bytes that overlap the end of an earlier fragment by trimming

the new fragment (the front of fragment 5 in Figure 10.22) or discarding the new frag-
ment (fragment 6) if all its bytes arrived in an earlier fragment (fragment 4).

The code in Figure 10.24 trims or discards existing fragments.
If the current fragment partially overlaps the front of an earlier fragment, the dupli-

cate data is trimmed from the earlier fragment (the front of fragment 2 in Figure 10.22).
Any earlier fragments that are completely overlapped by the arriving fragment are dis-
carded (fragment 3).

In Figure 10.25, the incoming fragment is inserted into the reassembly list.
After trimming, ip_enq inserts the fragment into the list and the list is scanned to

determine if all the fragments have arrived. If any fragment is missing, or the last frag-
ment in the list has i p f_mf f set, i l~_rea s s returns 0 and waits for more fragments.

When the current fragment completes a datagram, the entire list is converted to an
mbuf chain by the code shown in Figure 10.26.

If all the fragments for the datagram have been received, the while loop recon-
structs the datagram from the fragments with m_cat.

Figure 10.27 shows the relationships between mbufs and the ipq structure for a
datagram composed of three fragments.

The darkest areas in the figure mark the data portions of a packet and the lighter
shaded areas mark the unused portions of the mbufs. We show three fragments each
contained in a chain of two mbufs; a packet header, and a cluster. The m_data pointer
in the first mbuf of each fragment points to the packet data, not the packet header.
Therefore, the mbuf chain constructed by m_cat includes only the data portion of the
fragments.

This is the typical scenario when a fragment contains more than 208 bytes of data
(Section 2.6). The "frag" portion of the mbufs is the IP header from the fragment. The
m_data pointer of the first mbuf in each chain points beyond "opts" because of the
code in Figure 10.18.

Figure 10.28 shows the reassembled datagram using the mbufs from all the frag-
ments. Notice that the. IP header and options from fragments 2 and 3 are not included
in the reassembled datagram.
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/.                                                                   ip_input.c

* If there is a preceding fragment, it may provide some of
* our data already. If so, drop the data from the incoming
* fragment. If it provides all of our data, drop us.
*/

if (q >ipf_prev !- (struct ipasfrag *) fp) {
i : q >ipf~rev->ip_off + q->ipf~rev >ip_len - ip->ip_off;
if (i > O) {

if (i >= ip->ip_len)
goto dropfrag;

m_adj(dtom(ip), i);
ip >ip_off +- i
ip->ip_len - i

}

382
383
384
385
386
387
388
389
390
391
392
393
394
395
396

397
398
399
4OO
401
402
403
404
4O5
406
407
408
409
410
411
412

Figure 10.23 ±p_rea$ s function: trim incoming packet.
ip_input.c

/.                                                                   ip_input.c

* While we overlapsucceeding fragments trim them or,
* if they are completely covered, dequeue them.
*/

while (q !: (struct ipasfrag *) fp && ip->ip_off + ip->ip_len > q->ip_off)
i - (ip->ip_off + ip->ip_len)    q->ip_off;
if (i < q >ip_len) {

q->ip_len = i;
q->ip_off += i;
m_adj(dtom(q), i);
break;

}
q - q->ipf_next;
m freem(dtom(q->ipf~rev));
ip_deq(q->ipf_prev);

}

Figure 10.24 ip_reass function: trim existing packets.
ip_input.c

ip input.c
413    insert:                                                                                   -
414 /*
415 * Stick new fragment in its place;
416 * check for complete reassembly.
417 */
418 ip_enq(ip, q >ipf_prev);
419 next = O;
420 for (q - fp->ipu_next; q [= (struct ipasfrag *) fp; q = q->ipf_next) {
421 if (q->ip_off != next)
422 return (0);
423 next +: q->ip_len;
424 }
425 if (q->ipf~rev->ipf_mff & i)
426 return {0) ;

ip_input.c
Figure 10.25 ip_reass function: insert packet.
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42v /*
ip_input.c

428 * Reassembly is complete; concatenate fragments.
429 */
430 q - fp->ipq_next;
431 m - dtom(q);
432 t - m->m_next;
433 m >m next - O;
434 m cat(m, t);
435 q - q->ipf_next;
436 while (q != (struct ipasfrag *) fp) {
437 t = dtom(q);
438 q = q->ipf_next;
439 m_cat(m, t);
44 o }

ip_input.c

Figure 10.26 ip_reass function: reassemble datagram.

iDq{)

m_data

cluster

cluster

m_data

cluster

m_data

Figure 10.27 re_cat reassembles the fragments within mbufs.

IFragment I

Fragment 2

IFragment 3
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cluster

m

ip

cluster

k

IP header and
options from fragment I

Figure 10.28 The reassembled datagram.

cluster

The header of the first fragment is still being used as an ipasfrag structure. It is
restored to a valid IP datagram header by the code shown in Figure 10.29.

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464

* Create header for new ip packet by
* modifying header of first packet;
* dequeue and discard fragment reassembly header.
* Hake header visible.
*/

ip : fp->ipq_next;
ip->ip_len : next;
ip->ipf_mff &=
((struct ip *) ip)->ip_src - fp->ipq_src;
((struct ip *) ip)->ip_dst = fp->ipq_dst;
remque(fp);
(void) m_free(dtom(fp));
m - dtom(ip);
m->m_len += (ip->ip_hl << 2);
m >m data -= (ip->ip_hl << 2);
/* some debugging cruft by sklower, below, will go away soon */
if (m >m_flags & M_PKTHDR) {      /* XXX this should be done elsewhere */

int plen : 0;
for (t = m; m; m = m->m_next)

plen += m->m_len;
t->m_pkthdr.len : plen;

}
return ((struct ip *) ip);

Figure 10.29 ip_reass function: datagram reassembly.

ip_input.c

ip_input.c
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441--456

457--464

Reconstruct datagram header
ip_reass points ip to the first fragment in the list and changes the ipasfrag

structure back to an ip structure by restoring the length of the datagram to ip_len, the
source address to ip_src, the destination address to ip_dst; and by clearing the low-
order bit in ipf_mff. (Recall from Figure 10.14 that ipf_mff in the ipasfrag struc-
ture overlays ipf_tos in the ip structure.)

ip_reass removes the entire packet from the reassembly list with remque, dis-
cards the ipq structure that was the head of the list, and adjusts m_len and m_data in
the first mbuf to include the previously hidden IP header and options from the first
fragment.
Compute packet length

The code here is always executed, since the first mbuf for the datagram is always a
packet header The for loop computes the number of data bytes in the mbuf chain and
saves the value in m_pkthdr, fen.

The purpose of the copied bit in the option type field should be clear now. Since the
only options retained at the destination are those that appear in the first fragment, only
options that control processing of the packet as it travels toward its destination are
copied. Options that collect information while in transit are not copied, since the infor-
mation collected is discarded at the destination when the packet is reassembled.

10.7

515--534

470--486

ip_s lowt imo Function

As shown in Section 7.4, each protocol in Net/3 may specify a function to be called
every 500 ms. For IP, that function is ip_slowtimo, shown in Figure 10.30, which
times out the fragments on the reassembly list.

ip_slowtimo traverses the list of partial datagrams and decrements the reassem-
bly TTL field, ip_freef is called if the field drops to 0 to discard the fragments associ-
ated with the datagram, ip_slowtimo runs at splnet to prevent the lists from being
modified by incoming packets.

ip_freef is shown in Figure 10.31.
ip_freef removes and releases every fragment on the list pointed to by fp and

then releases the list itself.

ip_drain Function

538--545

In Figure 7.14 we showed that IP defines ip_drain as the function to be called when
the kernel needs additional memory. This usually occurs during mbuf allocation, which
we described with (Figure 2.13). ip_drain is shown in Figure 10.32.

The simplest way for IP to release memory is to discard all the IP fragments on the
reassembly list. For IP fragments that belong to a TCP segment, TCP eventually retrans-
mits the data. IP fragments that belong to a UDP datagram are lost and UDP-based
protocols must handle this at the application layer
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515 void                                                                     ip_input.c
516 ip_slowtimo (void)
517 {
518 struct ipq *fp;
519 int s = splnet();

520
521
522
523
524
525
526
527
528
529
530
531
532
533
534

fp = ipq.next;
if (fp := O) {

splx(s);
return;

}
while (fp != &ipq)

--fp->ipq_ttl;
fp = fp->next;
if (fp->prev->ipq_ttl := O) {

ipstat.ips_fragtimeout++;
ip_freef(fp->prev);

]
}
splx(s);

Figure 10.30 ip_s lowt imo function.

474 void
475 ip_freef(fp)
476 struct ipq *fp;
477 {
478 struct ipasfrag *q,

479
480
481
482
483
484
485
486

*p;

for (q = fp->ipq_next; q != (struct ipasfrag *) fp; q = p)
p : q->ipf_next;
ip_deq(q) ;
m_freem(dtom(q));

}
remque(fp);
(void) m_free(dtom(fp));

Figure 10.31 ip_freef function.

538 void
539 ip_drain()
54O {

541
542
543
544
545 ]

while (ipq.next !: &ipq) {
ipstat.ips_fragdropped++;
ip_freef(ipq.next);

}

Figure 10.32 ip_drain function.

ip_input.c

ip_input.c

ip_input.c

ip_input.c

ip_input.c
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10.8 Summary

In this chapter we showed how ip_output splits an outgoing datagram into fragments
if it is too large to be transmitted on the selected network. Since fragments may them-
selves be fragmented as they travel toward their final destination and may take multiple
paths, only the destination host can reassemble the original datagram.

ito_reass accepts incoming fragments and attempts to reassemble datagrams. If it
is successful, the datagram is passed back to ipintr and then to the appropriate trans-
port protocol. Every IP implementation must reassemble datagrams of up to 576 bytes.
The only limit for Net/3 is the number of mbufs that are available, ip_slowtimo dis-
cards incomplete datagrams when all their fragments haven’t been received within a
reasonable amount of time.

Exercises

10.1 Modify ip_slowtirao to send an ICMP time exceeded message when it discards an
incomplete datagram (Figure 11.1).

10.2 The recorded route in a fragmented datagram may be different in each fragment. When a
datagram is reassembled at the destination host, which return route is available to the
transport protocols?

10.3 Draw a picture showing the mbufs involved in the ipq structure and its associated frag-
ment list for the fragment with an ID of 7 in Figure 10.17.

10.4 [Auerbach 1994] suggests that after fragmenting a datagram, the last fragment should be
sent first. If the receiving system gets that last fragment first, it can use the offset to allo-
cate an appropriately sized reassembly buffer for the datagram. Modify ip_output to
send the last fragment first.

10.5

[Auerbach 1994] notes that some commercial TCP/IP implementations have been known to
crash if they receive the last fragment first.

Use the statistics in Figure 8.5 to answer the following questions. What is the average
number of fragments per reassembled datagram? What is the average number of frag-
ments created when an outgoing datagram is fragmented?

10.6 What happens to a packet when the reserved bit in ilo_o f f is set?
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ICMP: Internet Control

Message Protocol

11.1 Introduction

ICMP communicates error and administrative messages between IP systems and is an
integral and required part of any IP implementation. The specification for ICMP
appears in RFC 792 [Postel 1981b]. RFC 950 [Mogul and Postel 1985] and RFC 1256
[Deering 1991a] define additional ICMP message types. RFC 1122 [Braden 1989a] also
provides important details on ICMP.

ICMP has its own transport protocol number (1) allowing ICMP messages to be car-
ried within an IP datagram. Application programs can send and receive ICMP mes-
sages directly through the raw IP interface discussed in Chapter 32.

We can divide the ICMP messages into two classes: errors and queries. Query mes-
sages are defined in pairs: a request and its reply. ICMP error messages always include
the IP header (and options) along with at least the first 8 bytes of the data from the ini-
tial fragment of the IP datagram that caused the error. The standard assumes that the 8
bytes includes any demultiplexing information from the transport protocol header of
the original packet, which allows a transport protocol to deliver an ICMP error to the
correct process.

TCP and UDP port numbers appear within the first 8 bytes of their respective headers.

Figure 11.1 shows all the currently defined ICMP messages. The messages above
the double line are ICMP requests and replies; those below the double line are ICMP
errors.

301
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type and code

ICMP ECHO
ICMP ECHOREPLY
ICMP_ TSTAMP

ICMP TSTAMPREPLY

ICMP MASKREQ
ICMP MASKREPLY

ICMP_IREQ
ICMP IREQREPLY

ICMP_ROUTERADVERT
ICMP ROUTERSOLICIT

ICMP REDIRECT
ICMP_REDIRECT_NET
ICMP_REDIRECT_HOST
ICMP REDIRECT_TOSNET
ICMP_REDIRECT_ TOSHOST
other

ICMP UNREACH
ICMP_UNREACH NET
ICMP_UNREACH HOST
I CMP_ UNR EA CH_PR OTOC OL
ICMP_ UNREACH_ PORT

ICMP_UNREACH SRCFAIL
ICMP_ UNREACH NEEDFRAG
I CMP_ UNREA CH_NET-- UNKNOWN
I CMP_ UNREA CH_HO S T_ UNKNOWN
ICMP_UNREACH_ISOLATED

I CMP_ UNREA CH_NET_PR O HIB

I CMP_ UNREACH_ HOST_ PROHIB

ICMP_ UNREACH_ TOSNET
ICMP_UNREACH TOSHOST
13

14
15
other

ICMP_TIMXCEED

PRC_Description

echo request
echo reply
timestamp request
timestamp reply
address mask request
address mask reply

information request (obsolete)
information reply (obsolete)
router advertisement
router solicitation

better route available
better route available for network
better route available for host
better route available for TOS and network
better route available for TOS and host
unrecognized code

destination unreachable
network unreachable
host unreachable
protocol unavailable at destination
port inactive at destination
source route failed
fragmentation needed and DF bit set
destination network unknown
destination host unknown
source host isolated
communication with destination network

administratively prohibited
communication with destination host

administratively prohibited
network unreachable for type of service
host unreachable for type of service
communication administratively

prohibited by filtering
host precedence violation
precedence cutoff in effect
unrecognized code

time exceeded
IP time-to-live expired in transit
reassembly time-to-live expired
unrecognized code

problem with IP header
unspecified header error
required option missing
byte offset of invalid byte

request to slow transmission
unrecognized type

PRC_REDIRECT_HOST
PRC_REDIRECT_HOST
PRC_REDIRECT_HOST
PRC_REDIRECT_HOST

PRC_UNREACH NET
PRC_UNREACH HOST
PRC_UNREACH_PROTOCOL
PRC_UNREACH_PORT
PRC_UNREACH_SRCFAIL
PRC_MSGSIZE
PRC_UNREACH_NET
PRC_UNREACH_HOST
PRC_UNREACH_HOST
PRC_UNREACH_NET

PRC_UNREACH_HOST

PRC_UNREACH_NET
PRC_UNREACH_HOST

ICMP_ TIMXCEED_ INTRANS PRC_T I MXC EED_INTRANS
ICMP_TIMXCEED_REASS PRC_TIMXCEED_REAS S
other

ICMP_PARAMPROB
0 PRC_PARAMPROB
ICMP_PARAMPROB_OPTABSENT PRC_PARAMPROB
other

ICMP SOURCEQUENCH PRC_QUENCH

other

Figt~re 11.1 ICMP message types and codes.
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type and code

ICMP_ECHO
ICMP ECHOREPLY

ICMP_TSTAMP

ICMP_TSTAMPREPLY

ICMPMASKREQ
ICMPMASKREPLY

ICMP IREQ
ICMP_IREQREPLY

ICMP_ROUTERADVERT
ICMP ROUTERSOLICIT

ICMP REDIRECT
ICMP REDIRECT_NET
ICMP REDIRECT_HOST
ICMP_REDIRECT_TOSNET
ICMP_REDIRECT_TOSHOST
other

ICMP_UNREACH
ICMP UNREACH_NET
ICMP UNREACH_HOST
ICMP_UNREACH_PROTOCOL
ICMP UNREACH_PORT
ICMP UNREACH_SRCFAIL
ICMP UNREACH NEEDFRAG
ICMP_UNREACH NET UNKNOWN
ICMP_UNREACH HOST_UNKNOWN

ICMP UNREACH_ISOLATED
ICMP UNREACH NET PROHIB

ICMP_UNREACH HOST_PROHIB

ICMP UNREACH_TOSNET
ICMP UNREACH_TOSHOST
13

14
15
other

ICMP TIMXCEED

icmp_input UDP TCP errno

icmp_reflect
rip_input

icmp_reflect
rip_input

icmp_reflect
rip_input

rip_input
rip_input

rip_input
rip_input

pfctlinput
pfctlinput
pfctlinput
pfctlinput
rip_input

pr_ctlinput
pr_ctlinput
pr_ctlinput
pr_ctlinput
pr_ctlinput
pr_ctlinput
pr_ctlinput
pr_ctlinput
pr_ctlinput
pr_ctlinput

pr_ctlinput

pr_ctlinput
pr_ctlinput
rip_input

rip_input
rip_input
rip_input

in_rtchange
in_rtchange
in_rtchange
in_rtchange

udp_notify
udp_notify
udp_notify
udp_notify
udp_notify
udp_notify
udp_notify
udp_notify
udp_notify
udp_notify

udp_notify

udp_notify
udp_notify

in_rtchange
in_rtchange
in_rtchange
in_rtchange

tcp_notify
tcp_notify
tcp_notify
tcp_notify
tcp_notify
tcp_notify
tcp_notify
tcp_notify
tcp_notify
tcp_notify

tcp_notify

tcp_notify
tcp_notify

EHOSTUNREACH
EHOSTUNREACH
ECONNREFUSED
ECONNREFUSED
EHOSTUNREACH
EMSGSIZE
EHOSTUNREACH
EHOSTUNREACH
EHOSTUNREACH
EHOSTUNREACH

EHOSTUNREAcH

EHOSTUNREACH
EHOSTUNREACH

Figure 11.2 ICMP message types and codes (continued).

ICMP_TIMXCEED__INTRANS pr_ctlinput udp_notify tcp_notify
ICMP_TIMXCEED REASS pr_ctlinput udp_notify tcp_notify
other rip_input

ICMP_PARAMPROB
0 pr_ctlinput udp_notify tcp_notify    ENOPROTOOPT
ICMP_PARAMPROB_OPTABSENTpr_ctlinput udp_notify tcp_notify ENOPROTOOPT
other rip_input

ICMP_SOURCEQUENCH pr_ctlinput udp_notify tcp_quench

other rip_input
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Figures11.1 and 11.2 contain a lot of information:

The PRC_ column shows the mapping between the ICMP messages and the
protocol-independent error codes processed by Net/3 (Section 11.6). This col-
umn is blank for requests and replies, since no error is generated in that case. If
this column is blank for an ICMP error, the code is not recognized by Net/3 and
the error message is silently discarded.

Figure 11.3 shows where we discuss each of the functions listed in Figure 11.2.

Function

icmp_reflect
in_rtchange
pfctlinput
pr_ctlinput
rip_input
tcp_notify
tcp_quench
udp_notify

Description

generate reply to ICMP request
update IP routing tables
report error to all protocols
report error to the protocol associated with the socket
process unrecognized ICMP messages
ignore or report error to process
slow down the output
report error to process

Reference

Section 11.12
Figure 22.34
Section 7.7
Section 7.4
Section 32.5
Figure 27.12
Figure 27.13
Figure 23.31

Figure 11.3 Functions called during ICMP input processing.

¯ The icmp_input column shows the function called by icmp_input for each
ICMP message.

¯ The UDP column shows the functions that process ICMP messages for UDP
sockets.

¯ The TCP column shows the functions that process ICMP messages for TCP sock-
ets. Note that ICMP source quench errors are handled by tcp_quench, not
t cp_not i fy.

¯ If the errno column is blank, the kernel does not report the ICMP message to
the process.

¯ The last line in the tables shows that unrecognized ICMP messages are delivered
to the raw IP protocol where they may be received by processes that have
arranged to receive ICMP messages.

In Net/3, ICMP is implemented as a transport-layer protocol above IP and does not
generate errors or requests; it formats and sends these messages on behalf of the other
protocols. ICMP passes incoming errors and replies to the appropriate transport proto-
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col or to processes that are waiting for ICMP messages. On the other hand, ICMP
responds to most incoming ICMP requests with an appropriate ICMP reply< Figure 11.4
summarizes this information.

ICMP
message type Incoming Outgoing

request kernel responds with reply generated by a process
reply passed to raw IP generated by kernel
error passed to transport protocols and raw IPgenerated by IP or transport protocols
unknown passed to raw IP generated by a process

Figure 11.4 ICMP message processing.

11.2 Code Introduction

The two files listed in Figure 11.5 contain the ICMP data structures, statistics, and pro-
cessing code described in this chapter.

File

net inet / ip_icmp, h

netinet/ip_icmp, c

Figure 11.5

Description

ICMP structure definitions
ICMP processing

Files discussed in this chapter.

Global Variables

The global variables shown in Figure 11.6 are introduced in this chapter.

Variable Type Description

icmpmaskrepl int enables the return of ICMP address mask replies
icmpstat struct icmpstat ICMP statistics (Figure 11.7)

Figure 11.6 Global variables introduced in this chapter,
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Statistics

Statistics are collected by the members of the icmpstat structure shown in Figure 11.7.

i crop s t at member Description Used by
SNMP

icps_o ldicmp #errors discarded because datagram was an ICMP message
icps_oldshort #errors discarded because IP datagram was too short ¯

icps_badcode #ICMP messages discarded because of an invalid code
icp s_badl en #ICMP messages discarded because of an invalid ICMP body
icps_checksum #ICMP messages discarded because of a bad ICMP checksum°
icps_tooshort #ICMP messages discarded because of a short ICMP header °

icps_outhi s t [ ] array of output counters; one for each ICMP type ¯
icps_inhi st [ ] array of input counters; one for each ICMP type ¯

icps_error #of calls to icmp_error (excluding redirects)
icps_re flect #1CMP messages reflected by the kernel

Figure 11.7 Statistics collected in this chapter.

We’ll see where these counters are incremented as we proceed through the code.
Figure 11.8 shows some sample output of these statistics, from the netstat -s

command.

netstat -s output
84124 calls to icmp_error
0 errors not generated ’cuz old message was icmp
Output histogram:

echo reply: 11770
destination unreachable: 84118
time exceeded: 6

6 messages with bad code fields
0 messages < minimum length
0 bad checksums
143 messages with bad length
Input histogram:

echo reply: 793
destination unreachable: 305869
source quench: 621
routing redirect: 103
echo: 11770
time exceeded: 25296

11770 message responses generated

icmpstat member

icps_error

icps_oldicmp
icps_outhist[]

ICMP_ECHOREPLY

ICMP_UNREACH
ICMP_TIMXCEED

icps_badcode
icps_badlen
icps_checksum
icps_tooshort
icps_inhist[]

ICMP_ECHOREPLY
ICMP_UNREACH

ICMP_SOURCEQUENCH
ICMP_REDIRECT
ICMP_ECHO
ICMP_TIMXCEED

icps_reflect

Figure 11.8 Sample ICMP statistics.

SNMP Variables

Figure 11.9 shows the relationship between the variables in the SNMP ICMP group and
the statistics collected by Net/3.
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SNMP variable ± crop s ¢ at member Description

± crnp T n~ls g s see text #ICMP messages received
icmplnErrors icps_badcode + #ICMP messages discarded because of an error

icps_badlen +
icps_checksum +
icps_¢ooshort

icmpInDestUnreachs
icmpInTimeExcds
icmpInParmProbs
icmpInSrcQuenchs
icmpInRedirects
icmpInEchos
icmpInEchoReps
icmpInTimestamps
icmpInTimestampReps
icmpInAddrMasks
icmpInAddrNaskReps

icmpOutMsgs
icmpOutErrors

icmpOutDestUnreachs
icmpOutTimeExcds
icmpOutParmProbs
icmpOutSrcQuenchs
icmpOutRedirecCs
icmpOutEchos
icmpOutEchoReps
icmpOutTimestamps
icmpOutTimestampReps
icmpOutAddrMasks
icmpOutAddrNaskReps

icps_inhist [ ] counter #ICMP messages received for each type

see text #ICMP messages sent
icps_oldicmp + #ICMP errors not sent because of an error
icps_oldshort

icps_outhist [ ] counter #ICMP messages sent for each type

Figure 11.9 Simple SNMP variables in ICMP group.

icmplnMsgs is the sum of the counts in the icps_inhist array and
icmpInErrors, and icmpOutMsgs is the sum of the counts in the icps_outhist
array and icmpOutErrors.
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11.3 icmp Structure

Net/3 accesses an ICMP message through the ±crap structure shown in Figure 11.10.

ip_icmp.h
42 struct icmp {
43
44
45
46
47
48
49
50
51
52
53

u_char icmp_type; /* type of message, see below */
u_char icmp_code; /* type sub code */
u_short icmp_cksum; /* ones complement cksum of struct */
union {

u_char ih_pptr;           /* ICMP_PARAMPROB */
struct in_addr ih_gwaddr; /* ICHP_REDIRECT */
struct ih_idseq {

n_short icd_id;
n_short icd_seq;

} ih_idseq;
int ih_void;

54 /* ICMP_UNREACH_NEEDFRAG -- Path MTU Discovery (RFCII91) */
55 struct ih_pmtu {
56 n_short ipm void;
57 n_short ipm_nextmtu;
58 } ih_pmtu;
59 } icmp_hun;
60 #define icmp_pptr    icmp_hun.ih_pptr
61 #define icmp_gwaddr icmp hun.ih_gwaddr
62 #define icmp_id icmp hun.ih_idseq.icd_id
63 #define icmp_seq icmp_hun.ih_idseq.icd_seq
64 #define icmp_void icmp_hun.ih_void
65 #define icmp_pmvoid icmp_hun.ih_pmtu.ipm_void
66 #define icmp_nextmtu     icmp_hun.ih_pmtu.ipm_nextmtu
67 union {
68 struct id_ts {
69 n_time its_otime;
70 n_time its_rtime;
71 n_time its_ttime;
72 } id_ts;
73 struct id_ip {
74 struct ip idi_ip;
75 /* options and then 64 bits of data */
76 } id_ip;
77 u_long id_mask;
78 char     id_data[l];
79 icmp_dun;
80 #define icmp_otime icmp_dun.id_ts.its_otime
81 #define icmp_rtime icmp_dun.id_ts.its_rtime
82 #define icmp_ttime icmp_dun.id_ts.its_ttime
83 #define icmp_ip icmp_dun.id_ip.idi_ip
84 #define icmp mask icmp_dun.id_mask
85 #define icmp_data icmp_dun.id_data
86 };

Figure 11.10 icmp structure.

ip_icmp .h
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42--45

46--79

80-86

icmp_type identifies the particular message, and icmp_code further specifies the
message (the first column of Figure 11.1). icmp_cksum is computed with the same
algorithm as the IP header checksum and protects the entire ICMP message (not just the
header as with IP).

The unions icmp_hun (header union) and icmp_dun (data union) access the vari-
ous ICMP messages according to icmp_type and icmp_code. Every ICMP message
uses icmp_hun; only some utilize icmp_dun. Unused fields must be set to 0.

As we have seen with other nested structures (e.g., mbuf, le_softc, and
ether_arp) the #de f ine macros simplify access to structure members.

Figure 11.11 shows the overall structure of an ICMP message and reiterates that an
ICMP message is encapsulated within an IP datagram. We show the specific structure
of each message when we encounter it in the code.

IPheader

ICMP message

type code contents depends oncksum
type and code

1 1 2 bytes

IP datagram

Figure 11.11 An ICMP message (±crap_ omitted).

11.4 ICMP protosw Structure

The protosw structure in inetsw[4] (Figure 7.13) describes ICMP and supports both
kernel and process access to the protocol. We show this structure in Figure 11.12.
Within the kernel, incoming ICMP messages are processed by icmp_input. Outgoing
ICMP messages generated by processes are handled by rip_output. The three func-
tions beginning with rip_ are described in Chapter 32.

Member inet sw [ 4 ]

pr_type
pr_domain
pr_protocol
pr_flags
pr_input
pr_output
pr_ctlinput
pr_ctloutput
pr_usrreq
pr_init
pr_fasttimo
pr_slowtimo
pr_drain
pr_sysctl

SOCK_RAW
&inetdomain
IPPROTO_IC~P (I)
PR ATOMIC/PR_ADDR
icmp input
rip_output
0
rip_ctloutput
rip_usrreq
0
0
0
0
0

Description

ICMP provides raw packet services
ICMP is part of the Internet domain
appears in the ip_p field of the IP header
socket layer flags, not used by ICMP
receives ICMP messages from the IP layer
sends ICMP messages to the IP layer
not used by ICMP
respond to administrative requests from a process
respond to communication requests from a process
not used by ICMP
not used by ICMP
not used by ICMP
not used by ICMP
not used by ICMP

Figure 11.12 ICMP inetsw entry.
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11.5 Input Processing: icmp_input Function

Recall that ipintr demuttiplexes datagrams based on the transport protocol number,
J_p_p, in the IP header. For ICMP messages, ip_~ is 1, and through ±~o_~roto×, it
selects ±n÷tsw [ 41 ¯

ip_protox [ ] :
o 5 o
1 4 - 1

3
4
5
6

255 3

inetsw[]:

ICMP

Figure 11.13 An ip_p value of 1 selects inet sw [ 4 ].

The IP layer calls icmp_input indirectly through the pr_input function of
inetsw [ 4 ] when an ICMP message arrives (Figure 10.11).

We’ll see in icmlo_input that each ICMP message may be processed up to three
times: by icmp_input, by the transport protocol associated with the IP packet within
an ICMP error message, and by a process that registers interest in receiving ICMP mes-
sages. Figure 11.14 shows the overall organization of ICMP input processing.

transport
protocols

ICMP errors

~ICMP

Applications ]

@~ror °wri<’ rdePsl~[ Sg’e s

ICMP =~ ICMP output
replies -I processing

(Figure 11.29)

Figure 1.1.14 ICMP input processing.

We discuss icmp_input in five sections: (1) verification of the received message,
(2) ICMP error messages, (3) ICMP requests messages, (4) ICMP redirect messages, (5)
ICMP reply messages. Figure 11.15 shows the first portion of the icrap_input
function.
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ip_icmp.c
131 static struct sockaddr_in icmpsrc : { sizeof (struct sockaddr_in), AF_INET };
132 static struct sockaddr_in icmpdst : { sizeof (struct sockaddr_in), AF_INET };
133 static struct sockaddr_in icmpgw - { sizeof (struct sockaddr_in), AF_INET };
134 struct sockaddr_in icmpmask = { 8, 0 };

135
136
137
138
139
140
141
142
143
144
145
146
147

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

171
172
173
174
175

void
icmp_input(m, hlen)
struct mbuf *m;
int hlen;
{

struct icmp *icp;
struct ip *ip = mtod(m, struct ip *);
int icmplen - ip->ip_len;
int i;
struct in_ifaddr *ia;
void (*ctlfunc) (int, struct sockaddr *, struct ip *) ;
int code;
extern u_char ip_protox[];

*/
if

}
i =
if

Locate icmp structure in mbuf, and check
that not corrupted and of at least minimum length.

(icmplen < ICMP_MINLEN) {
icmpstat.icps_tooshort++;
goto freeit;

hlen + min(icmplen, ICMP_ADVLENHIN);
(m->m_len < i && (m = m~oullup(m, i)) == 0)
icmpstat.icps_tooshort++;
return;

ip - mtod(m, struct ip *);
m->m_len -- hlen;
m->m_data += hlen;
icp - mtod(m, struct icmp *);
if (in_cksum(m, icmplen)) {

icmpstat.icps_checksum++;
goto freeit;

}
m >m_len +- hlen;
m->m_data -= hlen;

if (icp->icmp_type > ICMP_MAXTYPE)
goto raw;

icmpstat.icps_inhist[icp->icmp_type]++;
code : icp->icmp_code;
switch (icp->icmp_type) {

/* ICMP message processing */
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317 default:
318 break;
319 }
320 raw:
321 rip_input(m);
322 return;

323 freeit:
324 m_freem(m);
325 }

Figure 11.15 icmp_input function.

ip_icmp.c

131--134

135--139

140--160

Static structures
These four structures are statically allocated to avoid the delays of dynamic alloca-

tion every time ±cmp_±npue is called and to minimize the size of the stack since
±crap_±npue is called at interrupt time when the stack size is limited, icmp_±nput
uses these structures as temporary variables.

The naming of icmpsrc is misleading since icmp_input uses it as a temporary
sockaddr_in variable and it never contains a source address. In the Net/2 version of
icmp_input, the source address of the message was copied to icrapsrc at the end of the
function before the message was delivered to the raw IP mechanism by the raw_input func-
tion. Net/3 calls rip_input, which expects only a pointer to the packet instead of
raw_input. Despite this change, icmpsrc retains its name from Net/2.

Validate message
icmp_input expects a pointer to the datagram containing the received ICMP mes-

sage (ra) and the length of the datagram’s IP header in bytes (hlen). Figure 11.16 lists
several constants that simplify the detection of invalid ICMP messages in i cmp_inpue.

Constant/Macro

ICMP_MINLEN
ICMP_TSLEN
ICMP MASKLEN
ICMP ADVLENMIN

ICMP_ADVLEN(p)

Value

8
20
12
36

36 + optsize

Description

minimum size of an ICMP message
size of ICMP timestamp messages
size of ICMP address mask messages
minimum size of an ICMP error (advise) message

(IP + ICMP + BADIP = 20 + 8 + 8 = 36)
size of an ICMP error message including optsize bytes of IP

options from the invalid packet p.

Figure 11.16 Constants referenced by ICMP to validate messages.

icmp_input pulls the size of the ICMP message from ip_len and stores it in
icmplen. Remember from Chapter 8 that ipintr excludes the length of the header
from ip_len. If the message is too short to be a valid ICMP message, icps_tooshort
is incremented and the message discarded. If the ICMP header and the IP header are
not contiguous in the first mbuf, m_pu!lup ensures that the ICMP header and the IP
header of any enclosed IP packet are in a single mbuf.
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161-170

171-175

317-325

Verity checkeum
icmp_input hides the IP header in the mbuf and verifies the ICMP checksum with

in_cksum. If the message is damaged, icps_checksum is incremented and the mes-
sage discarded.
Verify type

If the message type (icmp_type) is out of the recognized range, icmp_input
jumps around the switch to raw (Section 11.9). If it is in the recognized range,
icmp_input duplicates icmp_code and the switch processes the message according
to icmp_type.

After the processing within the ICMP switch statement, icmp_input sends ICMP
messages to rip_input where they are distributed to processes that are prepared to
receive ICMP messages. The only messages that are not passed to rip_input are dam-
aged messages (length or checksum errors) and ICMP request messages, which are han-
dled exclusively by the kernel. In both cases, icmp_ir~put returns immediately,
skipping the code at raw.

Raw ICMP input
icmp_input passes the incoming message to rip_input, which distributes it to

listening processes based on the protocol and the source and destination addresses
within the message (Chapter 32).

The raw IP mechanism allows a process to send and to receive ICMP messages
directly, which is desirable for several reasons:

¯New ICMP messages can be handled by a process without having to modify the
kernel (e.g., router advertisement, Figure 11.28).

¯Utilities for sending ICMP requests and processing the replies can be imple-
mented as a process instead of as a kernel module (ping and traceroute).

¯A process can augment the kernel processing of a message. This is common with
the ICMP redirect messages that are passed to a routing daemon after the kernel
has updated its routing tables.

11.6 Error Processing

We first consider the ICMP error messages. A host receives these messages when a
datagram that it sent cannot successfully be delivered to its destination. The intended
destination host or an intermediate router generates the error message and returns it to
the originating system. Figure 11.17 illustrates the format of the various ICMP error
messages.-
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unreachable I I I
time exceeded ~
source quench

need
fragmentation type len

parameter
problem l type len

I 1

cksum
void ip

(must be O) (IP header from bad packet)
4 bytes

cksum
pmvoid ip

(must be 0) nextmtu (IP header from bad packet)
2 bytes 2 bytes

pptr
ip

cksum (must be 0)          (IP header from bad packet)

2 bytes     1        3 bytes                     8 bytes
Figure 11.17 ICMP error messages (icmp_ omitted).

176
177
178
179
180
181
182
183
184

185
186
187

188
189
190
191
192

193
194
195
196
197
198

199
200
201
202

203
204
205
206
207

The code in Figure 11.18 is from the switch shown in Figure 11.15.

case ICMP_UNREACH:
switch (code) {
case ICMP UNREACH_NET:
case ICMP_UNREACH_HOST:
case ICMP_UNREACH_PROTOCOL:
case ICMP_UNREACH_P~RT:
case ICMP UNREACH_SRCFAIL:

code +: PRC_UNREACH_NET;
break;

case ICMP_UNREACH_NEEDFRAG:
code = PRC_MSGSIZE;
break;

case ICMP_UNREACH NET UNKNOWN:
case ICMP_UNREACH NET PROHIB:
case ICMP_UNREACH_TOSNET:

code : PRC_UNREACH_NET;
break;

case ICMP_UNREACH_HOST_UNKNOWN:
case ICMP_UNREACH_ISOLATED:
case ICMP_UNREACH_HOST_PROHIB:
case ICMP_UNREACH_TOSHOST:

code = PRC_UNREACH_HOST;
break}

default:
goto badcode;

}
goto deliver;

case ICMP_TIMXCEED:
if (code > i)

goto badcode;
code +: PRC_TIMXCEED_INTRANS;
goto deliver;

ip_icmp.c
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176--216

217--225

226--231

232--234

208 case ICMP_PARAMPROB:
209 if (code > i)
210 goto badcode;
211 code : PRC_PARAMPROB;
212 goto deliver;

213 case ICMP_SOURCEQUENCH:
214 if (code)
215 goto badcode;
216 code : PRC_QUENCH;

217 deliver:
218 /*
219 * Problem with datagram; advise higher level routines.
220 */
221 if (icmplen < ICMP_ADVLENMIN I I icmplen < ICMP_ADVLEN(icp)
222 icp->icmp_ip.ip_hl < (sizeof(struct ip) >> 2)) {
223 icmpstat.icps_badlen++;
224 goto freeit;
225 }
226 NTOHS(icp->icmp_ip.ip_len);
227 icmpsrc.sin_addr : icp->icmp_ip.ip_dst;
228 if (ctlfunc = inetsw[ip_protox[icp->icmp_ip.ip_p]].pr_c.tlinput)
229 (*ctlfunc) (code, (struct sockaddr *) &icmpsrc,
230 &icp->icmp_ip);
231 break;

232 badcode:
233 icmpstat.icps_badcode++;
234 break;

Figure 11.18 icmp_input function: error messages.

ip_icmp.c

The processing of ICMP errors is minimal since responsibility for responding to
ICMP errors lies primarily with the transport protocols, icmp_±nput maps
±crop_type and ±cmp_cofle to a set of protocol-independent error codes represented
by the PRC_ constants. There is an implied ordering of the PRC_ constants that matches
the ICMP code values. This explains why code is incremented by a PRC_ constant.

If the type and code are recognized, ±trap_input jumps to deliver. If the type
and code are not recognized, icmp_input jumps to badcode.

If the message length is incorrect for the error being reported, icps_badlen is
incremented and the message discarded. Net/3 always discards invalid ICMP mes-
sages, without generating an ICMP error about the invalid message. This prevent an
infinite sequence of error messages from forming between two faulty implementations.

icmp_input calls the pr_ct i input function of the transport protocol that created
the original IP datagram by demultiplexing the incoming packets to the correct transport
protocol based on ip_p from the original datagram, pr_ct 1 input (if it is defined for
the protocol) is passed the error code (code), the destination of the original IP datagram
(icmpsrc), and a pointer to the invalid datagram (icmp_ip). We discuss these errors
with Figures 23.31 and 27.12.

i cps_badcode is incremented and control breaks out of the swi t ch statement.
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Constant

PRC_HOSTDEAD
PRC_IFDOWN

PRC_MSGSIZE
PRC_PARAMPROB
PRC_QUENCH

PRC_QUENCH2
PRC_REDIRECT_HOST
PRC_REDIRECT_NET
PRC_REDIRECT_TOSHOST
PR C_REDIRECT__ TOSNET
PR C_R OUTEDEAD
PRC_ TIMXCEED_ INTRANS
PRC_TIMXCEED_REASS
PRC_ UNREACH_HOST
PRC_ UNREACH_NET

PRC_UNREACH PORT
PRC_UNREACH PROTOCOL
PRC_ UNREACH_SRCFAIL

Description

host appears to be down
network interface shut down
invalid message size
header incorrect
someone said to slow down
congestion bit says slow down
host routing redirect
network routing redirect
redirect for TOS and host
redirect for TOS and network
select new route if possible
packet lifetime expired in transit
fragment lifetime expired during reassembly
no route available to host
no route available to network
destination says port is not active
destination says protocol is not available
source route failed

Figure 11.19 The protocol-independent error codes.

While the PRC_ constants are ostensibly protocol independent, they are primarily based on the
Internet protocols. This results in some loss of specificity when a protocol outside the Internet
domain maps its errors to the PRC_ constants.

11.7 Request Processing

Net/3 responds to properly formatted ICMP request messages but passes invalid ICMP
request messages to r±p_±nput. We show in Chapter 32 how ICMP request messages
may be generated by an application process.

Most ICMP request messages received by Net/3 generate a reply message, except
the router advertisement message. To avoid allocation of a new mbuf for the reply,
±cmp_J_nput converts the mbuf containing the incoming request to the reply and
returns it to the sender. We discuss each request separately.

Echo Query: ICMP_ECHO and ICMP_ECHOREPLY

For all its simplicity, an ICMP echo request and reply is arguably the single most power-
ful diagnostic tool available to a network administrator. Sending an ICMP echo request
is called pinging a host, a reference to the p±ng program that most systems provide for
manually sending ICMP echo requests. Chapter 7 of Volume I discusses p±ng in detail.

The program ping is named after sonar pings used to locate objects by listening for the echo
generated as the ping is reflected by the other objects. Volume 1 incorrectly described the
name as standing for Packet InterNet Groper.
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Figure 11.20 shows the structure of an ICMP echo and reply message.

7 8 15 16 31
icmp_type

icmp_code icmp_cksum
ICMP_ECHO 0 checksum

ICMP ECHOREPLY

icmp_id icmp_seq
identifier sequence number

icmp_data [ ]
optional data

8 bytes

Figure 11.20 ICMP echo request and reply.

icmp_code is always 0. icmp_id and icmp_seq are set by the sender of the
request and returned without modification in the reply. The source system can match
requests and replies with these fields. Any data that arrives in icrap_data is also
reflected. Figure 11.21 shows the ICMP echo processing and also the common code in
i crop_input that implements the reflection of ICMP requests.

235
236
237

case ICMP_ECHO:
icp->icmp_type : ICMP_ECHOREPLY;
goto reflect;

ip_icmp.c

/* other ICMP request processing */

277
278
279
280
281
282

reflect:
ip->ip_len += hlen; /* since ip_input deducts this */
icmpstat.icps_reflect++;
icmpstat,icps_outhist[icp->icmp_type]++;
icmp_reflect(m);
return;

Figure 11.21 icmp_input function: echo request and reply.

ip_icmp.c

235--237

277 282

icmp_input converts an echo request into an echo reply by changing icmp_type

to ICMP_ECHOREPLY and iumping to reflect to send the reply.
After constructing the reply for each ICMP request, icmp_input executes the code

at reflect. The correct datagram length is restored, the number of requests and the
type of ICMP messages are counted in icps_reflect and icps_outhist [], and
icrap_reflect (Section 11.12) sends the reply back to the requestor.
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Timestamp Query: ICMP_TSTAMP and ICMP_TSTAMPREPLY

The ICMP timestamp message is illustrated in Figure 11.22.

238--246

0 7 8 15 16
icmp_type

icmp_code                       icmp_cksum
ICMP_TSTAMP

0                            checksum
ICMP TSTAMPREPLY

icmp_id icmp_seq
identifier sequence number

icmp_otime
32-bitoriginatetimestamp

icmp_rtime
32~itreceivetimestamp

icmp_ttime
32-bittransmittimestamp

31

20 bytes

1
Figure 11.22 ICMP timestamp request and reply.

icmp_code is always 0. icmp_id and icmp_seq serve the same purpose as those
in the ICMP echo messages. The sender of the request sets icmp_otime (the time the
request originated); i crap_rt im÷ (the time the request was received) and i crap_t tim÷
(the time the reply was transmitted) are set by the sender of the reply. All times are in
milliseconds since midnight UTC; the high-order bit is set if the time value is recorded
in nonstandard units, as with the IP timestamp option.

Figure 11.23 shows the code that implements the timestamp messages.

238 case ICHP_TSTAMP:
239 if (icmplen < ICHP_TSLEN) {
240 icmpstat.icps_badlen++;
241 break;
242 }
243 icp >icmp_type - ICMP_TSTAMPREPLY;
244 icp->icmp_rtime = iptime();
245 icp->icmp_ttime = icp->icmp_rtime;
246 goto reflect;

/* bogus, do later! */

Figure 11.23 icmp_input function: timestamp request and reply.

ip_icmp.c

ip_icmp.c

icmp_input responds to an ICMP timestamp request by changing icmp_type to
TCMP_TSTANPREPLY, recording the current time in ±crap_rtJ_rae and J_cmp_t~±ra÷,
and jumping to r÷f2ect to send the reply.

It is difficult to set ±crap_rtJ_m÷ and ±crap_ttJ_ra÷ accurately. When the system
executes this code, the message may have already waited on the IP input queue to be
processed and ±crap_r~±rae is set too late. Likewise, the datagram still requires
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processing and may be delayed in the transmit queue of the network interface so
±cmp_ttJ_rae is set too early here. To set the timestamps closer to the true receive and
transmit times would require modifying the interface drivers for every network to
understand ICMP messages (Exercise 11.8).

Address Mask Query: ICMP_MASKREQ and ICMP_MASKREPLY

The ICMP address mask request and reply are illustrated in Figure 11.24.

247--256

257--267

7 8 15 16 31
icmp_type

icmp_code                       icmp_cksum
ICMP_MASKREQ

0 checksum
ICMPMASKREQREPLY

icmp_id icmp_seq
identifier sequence number

icmp_mask
32-bitsubnet mask

12 bytes

Figure 11.24 ICMP address request and reply.

RFC 950 [Mogul and Postel 1985] added the address mask messages to the original
ICMP specification. They enable a system to discover the subnet mask in use on a net-
work.

RFC 1122 forbids sending mask replies unless a system has been explicitly config-
ured as an authoritative agent for address masks. This prevents a system from sharing
an incorrect address mask with every system that sends a request. Without administra-
tive authority to respond, a system should ignore address mask requests.

If the global integer icmpmaskrepl is nonzero, Net/3 responds to address mask
requests. The default value is 0 and can be changed by icmp_sysctl through the
sysct 1(8) program (Section 11.14).

In Net/2 systems there was no mechanism to control the reply to address mask requests. As a
result, it is very important to configure Net/2 interfaces with the correct address mask; the
information is shared with any system on the network that sends an address mask request.

The address mask message processing is shown in Figure 11.25.
If the system is not configured to respond to mask requests, or if the request is too

short, this code breaks out of the switch and passes the message to rip_input (Fig-
ure 11.15).

Net/3 fails to increment icps_badlen here. It does increment icps_badlen for all other
ICMP length errors.

Select subnet mask
If the request was sent to 0.0.0.0 or 255.255.255.255, the source address is saved in

i cmpdst where it is used by i f aof_i fpforaddr to locate the i n_i f addr structure
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case ICMP_MASKREQ:                                                        ip_icmp.c
#define satosin(sa) ((struct sockaddr_in *) (sa))

if (icmpmaskrepl == 0)
break;

/*
* We are not able to respond with all ones broadcast
* unless we receive it over a point to-point interface.
*/

if (icmplen < ICMP_MASKLEN)
break;

switch (ip->ip_dst.s_addr)

269-270

271-276

247
248
249
250
251
252
253
254
255
256
257

258
259
260
261

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

case INADDR_BROADCAST:
case INADDR ANY:

icmpdst.sin_addr - ip->lp_src;
break;

default:
icmpdst.sin_addr : ip >ip_dst;

}
ia = (struct in_ifaddr *) ifaof_ifpforaddr(

(struct sockaddr *) &icmpdst, m->m~kthdr.rcvif);
if {ia -- 0)

break;
icp->icmp_type : ICMP_MASKREPLY;
icp->icmp_mask = ia->ia_sockmask.sin_addr.s_addr;
if (ip->ip_src.s_addr == 0) {

if (ia->ia_ifp->if_flags & IFF_BROADCAST)
ip >ip_src = satosin(&ia->ia_broadaddr)->sin_addr;

else if (ia->ia_ifp->if_flags & IFF_POINTOPOINT)
ip->ip_src = satosin(&ia->ia_dstaddr)->sin_addr;

}

Figure 11.25 icmp_input function: address mask request and reply.

ip_icmp.c

on the same network as the source address. If the source address is 0.0.0.0 or
255.255.255.255, i faof_i fpforaddr returns a pointer to the first IP address associated
with the receiving interface.

The de f au 1 t case (for unicast or directed broadcasts) saves the destination address
for i fao f_i fp foraddr.

Convert to reply
The request is converted into a reply by changing icmp_type and by copying the

selected subnet mask, i a_s o c kma s k, into i cmp_ma s k.

Select destination address

If the source address of the request is all 0s ("this host on this net," which can be
used only as a source address during bootstrap, RFC 1122), then the source does not
know its own address and Net/3 must broadcast the reply so the source system can
receive the message. In this case, the destination for the reply is ia_broadaddr or
ia_dstaddr if the receiving interface is on a broadcast or point-to-point network,
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respectively, icmp_input puts the destination address for the reply in ip_src since
the code at reflect (Figure 11.21) reverses the source and destination addresses. The
addresses of a unicast request remain unchanged.

Information Query: ICMP_TREQ and ICMP_IREQREPLY

The ICMP information messages are obsolete. They were intended to allow a host to
discover the number of an attached IP network by broadcasting a request with 0s in the
network portion of the source and destination address fields. A host responding to the
request would return a message with the appropriate network numbers filled in. Some
other method was required for a host to discover the host portion of the address.

RFC 1122 recommends that a host not implement the ICMP information messages
because RARP (RFC 903 [Finlayson et al. 1984]), and BOOTP (RFC 951 [Croft and
Gilmore 1985]) are better suited for discovering addresses. A new protocol, the
Dynamic Host Configuration Protocol (DHCP), described in RFC 1541 [Droms 1993],
will probably replace and augment the capabilities of BOOTP. It is currently a proposed
standard.

Net/2 did respond to ICMP information request messages, but Net/3 passes them on to
rip_input.

Router Discovery: ICMP_ROUTERADVERT and ICMP_ROUTERSOLICI~

RFC 1256 defines the ICMP router discovery messages. The Net/3 kernel does not pro-
cess these messages directly but instead passes them, by rip_input, to a user-level
daemon, which sends and responds to the messages.

Section 9.6 of Volume I discusses the design and operation of these messages.

11.8 Redirect Processing

Figure 11.26 shows the format of ICMP redirect messages.

7 8 15 16

icmp_type icmp_code icmp_cksum
ICMP_REDIRECT 0 -3 checksum

i cmp_gwaddr
IP address of preferred router

icmp_ip

IP header (including options) and at least first 8 bytes of original IP datagram data

31

8 bytes

Figure 11.26 ICMP redirect message.
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The last case to discuss in icmp_input is ICMP_REDIRECT. As discussed in Sec-
tion 8.5, a redirect message arrives when a packet is sent to the wrong router. The
router forwards the packet to the correct router and sends back a ICMP redirect mes-
sage, which the system incorporates into its routing tables.

Figure 11.27 shows the code executed by icmp_input to process redirect messages.

283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306

ip_icmp.c
case ICMP_REDIRECT:

if (code > 3)
goto badcode;

if (icmplen < ICMP_ADVLENMIN I I icmplen < ICMP_ADVLEN(icp)
icp->icmp_ip.ip_hl < (sizeof(struct ip) >> 2)) {
icmpstat.icps_badlen++;
break;

]
/,

* Short circuit routing redirects to force
* immediate change in the kernel’s routing
* tables. The message is also handed to anyone
* listening on a raw socket (e.g. the routing
* daemon for use in updating its tables).
*/

lcmpgw.sin_addr = ip->ip_src;
icmpdst.sin_addr - icp->icmp_gwaddr;
icmpsrc.sin_addr = icp->icmp_ip.ip_dst;
rtredirect((struct sockaddr *) &icmpsrc,

(struct sockaddr *) &icmpdst,
(struct sockaddr *) 0, RTF_GATEWAY I RTF_HOST,
(struct sockaddr *) &icmpgw, (struct rtentry **) 0);

pfctlinput(PRC_REDIRECT_HOST, (struct sockaddr *) &icmpsrc);
break;

ip_icmp.c

Figure11.27 icmp_inputfunction:redirect messages.

283--290

291--300

Validate

icmp_input jumps to badcode (Figure 11.18, line 232) if the redirect message
includes an unrecognized ICMP code, and drops out of the switch if the message has an
invalid length or if the enclosed IP packet has an invalid header length. Figure 11.16
showed that 36 (ICMP_ADVLENMIN) is the minimum size of an ICMP error message,
and ICMP_ADVLEN (icp) is the minimum size of an ICMP error message including any
IP options that may be in the packet pointed to by icp.

icmp_input assigns to the static structures icmpgw, icmpdst, and icmpsrc, the
source address of the redirect message (the gateway that sent the message), the recom-
mended router for the original packet (the first-hop destination), and the final destina-
tion of the original packet.

Here, icmpsrc does not contain a source address--it is a convenient location for holding the
destination address instead of declaring another sockaddr structure.
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301--306

Update routes
Net/3 follows RFC 1122 recommendations and treats a network redirect and a host

redirect identically. The redirect information is passed to rtredirect, which updates
the routing tables. The redirected destination (saved in icmpsrc) is passed to
pfctlinput, which informs all the protocol domains about the redirect (Section 7.7).
This gives the protocols an opportunity to invalidate any route caches to the destina-
tion.

According to RFC 1122, network redirects should be treated as host redirects since they may
provide incorrect routing information when the destination network is subnetted. In fact,
RFC 1009 requires routers not to send network redirects when the network is subnetted.
Unfortunately, many routers violate this requirement. Net/3 never sends network redirects.

ICMP redirect messages are a fundamental part of the IP routing architecture.
While classified as an error message, redirect messages appear during normal opera-
tions on any network with more than a single router. Chapter 18 covers IP routing
issues in more detail.

11.9

307--322

Reply Processing

The kernel does not process any of the ICMP reply messages. ICMP requests are gener-
ated by processes, never by the kernel, so the kernel passes any replies that it receives to
processes waiting for ICMP messages. In addition, the ICMP router discovery messages
are passed to rip_input.

307 /*
308 * No kernel processing for the following;
309 * just fall through to send to raw listener.
310 */
311 case ICMP_ECHOREPLY:
312 case ICMP_ROUTERADVERT:
313 case ICMP_ROUTERSOLICIT:
314 case ICMP_TSTAMPREPLY:
315 case ICMP_IREQREPLY:
316 case ICMP_MASKREPLY:
317 default:
318 break;
319 }
320 raw:
321 rip_input(m);
322 return;

Figure 11.28 icmp_input function: reply messages.

ip_icmp.c

ip_icmp.c

No actions are required by the kernel for ICMP reply messages, so execution contin-
ues after the switch statement at raw (Figure 11.15). Note that the default case for
the switch statement (unrecognized ICMP messages) also passes control to the code at
raw.
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11.10 Output Processing

Outgoing ICMP messages are generated in several ways. We saw in Chapter 8 that IP
calls icrap_error to generate and send ICMP error messages. ICMP reply messages
are sent by ±crap_reflect, and it is possible for a process to generate ICMP messages
through the raw ICMP protocol. Figure 11.29 shows how these functions relate to ICMP
output processing.

IIP and transport
protocols

- ICMP input
processing

(Figure 11.15)

ICMP errors

ICMP replies

Application

ICMP

Figure 11.29 ICMP output processing.

11.11

46--57

58--75

icmp_error Function

The ±cmp_error function constructs an ICMP error message at the request of IP or the
transport protocols and passes it to ±crap_reflec¢, where it is returned to the source
of the invalid datagram. The function is shown in three parts:

¯ validate the message (Figure 11.30),
¯ construct the header (Figure 11.32), and
¯ include the original datagram (Figure 11.33).

The arguments are: n, a pointer to an mbuf chain containing the invalid datagram;
type and code, the ICMP error type and code values; dest, the next-hop router
address included in ICMP redirect messages; and des�± fp, a pointer to the outgoing
interface for the original IP packet, ratod converts the mbuf pointer n to o±p, a pointer
to the ±p structure in the mbufo The length in bytes of the original IP packet is kept in
oiplen.

All ICMP errors except redirect messages are counted in icps_error. Net/3 does
not consider redirect messages as errors and icps_error is not an SNMP variable.
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46
47
48
49
5O
51
52
53
54
55
56
57

void
icmp_error(n, type, code, dest, destifp)
struct mbuf *n;
int      type, code;
n_long dest;
struct ifnet *destifp;

struct ip *oip : mtod(n, struct ip *), *nip;
unsigned oiplen - oip->ip_hl << 2;
struct icmp *icp;
struct mbuf *m;
unsigned icmplen;

ip_icmp.c

58 if
59
60 /*
61 *
62 *
63 *
64 */
65 if
66
67 if
68
69
7O
71
72 }
73 /*
74 if
75

(type != ICMP_REDIRECT)
icmpstat.icps_error++;

Don’t send error if not the first fragment of message.
Don’t error if the old packet protoco! was ICMP
error message, only known informational types.

(oip->ip_off & -(IP_MF I IP_DF))
goto freeit;

(oip->ip_p :: IPPROTO_ICMP && type != ICMP_REDIRECT &&
n >m_len >: oiplen + ICMP_MINLEN &&
!ICMP_INFOTYPE(((struct icmp *) ((caddr_t) oip + oiplen))->icmp_type)) {
icmpstat.icps_oldicmp++;
goto freeit;

Don’t send error in response to a multicast or broadcast packet */
(n->m_flags & (M_BCAST I M_MCAST))
goto freeit;

ip_iomp.c
Figure11.30 icmp_errorfunction:validation.

~_cmp_error discards the invalid datagram, oip, and does not send an error
message if:

¯ some bits of ip_off, except those represented by IP_MF and IP_DF, are
nonzero (Exercise 11.10). This indicates that oip is not the first fragment of a
datagram and that ICMP must not generate error messages for trailing frag-
ments of a datagram.

¯ the invalid datagram is itself an ICMP error message. ICMP_INFOTYPE returns
true if icmp_type is an ICMP request or response type and false if it is an error
type. This rule avoids creating an infinite sequence of errors about errors.

Net/3 does not consider ICMP redirect messages errors, although RFC 1122 does.

the datagram arrived as a link-layer broadcast or multicast (indicated by the
M_BCAST and M_MCAST flags).
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76--106

ICMP error messages must not be sent in two other circumstances:

The datagram was sent to an IP broadcast or IP multicast address.

The datagram’s source address is not a unicast IP address (i.e., the source
address is a 0 address, a loopback address, a broadcast address, a multicast
address, or a class E address)

Net/3 fails to check for the first case. The second case is addressed by the
±cmp_refl÷c¢ function (Section 11.12).

Interesl;ingly, the Deering multicast extensions to Net/2 do discard datagrams of the first type.
Since the Net/3 multicast code was derived from the Deering multicast extensions, it appears
the test was removed.

These restrictions attempt to prevent a single broadcast datagram with an error
from triggering ICMP error messages from every host on the network. These broadcast
storms can disrupt communication on a network for an extended period of time as all
the hosts attempt to send an error message simultaneously.

These rules apply to ICMP error messages but not to ICMP replies. As RFCs 1122
and 1127 discuss, responding to broadcast requests is allowed but neither recommended
nor discouraged. Net/3 responds only to broadcast requests with a unicast source
address, since ip_ou¢~ut will drop ICMP messages returned to a broadcast address
(Figure 11.39).

Figure 11.31 illustrates the construction of an ICMP error message.

olp~

datagramwith

error,~

ICMP error /
message |

IP header        IP options    ~8 bytes ~    Data

ICMPIP header
Iheader I

IP header IP options 8 bytes

~ ~ invalid datagram "~I
Icp ~

Figure 11.31 The construction of an ICMP error message.

The code in Figure 11.32 builds the error message.
i cmp_error constructs the ICMP message header in the following way:

¯ m_gethdr allocates a new packet header mbuf. MH_ALIGN positions the mbuf’s
data pointer so that the ICMP header, the IP header (and options) of the invalid
datagram, and up to 8 bytes of the invalid datagram’s data are located at the end
of the mbuf.



Section 11.11 icmp_error Function    327

7 6 /,
ip_icmp.c

77 * First, formulate icmp message
78 */
79 m - m_gethdr(M_DONTWAIT, MT_HEADER);
80 if (m -- NULL)
81 goto freeit;
82 icmplen - oiplen + min(8, oip->ip_len);
83 m->m_len : icmplen + ICMP_MINLEN;
84 MH_ALIGN(m, m >m_len);
85 icp - mtod(m, struct icmp *);
86 if ((u_int) type > ICMP_MAXTYPE)
87 panic("icmp_error");
88 icmpstat.icps_outhist[type]++;
89 icp->icmp_type : type;
90 if (type -- ICMP_REDIRECT)
91 icp->icmp_gwaddr.s_addr : dest;
92 else {
93 icp->icmp_void - 0;
94 /*
95 * The following assignments assume an overlay with the
96 * zeroed icmp_void field.
97 */
98 if (type == ICMP_PARANPROB) {
99 icp->icmp~ptr = code;

i00 code - 0;
i01 } else if (type -= ICMP_UNREACH &&
102 code =- ICMP_UNREACH_NEEDFRAG && destifp) {
103 icp->icmp_nextmtu - htons(destifp->if_mtu);
104
105    }
106 icp->icmp_code - code;

Figure 11.32 icmp_error function: message header construction.

ip_icmp.c

107--125

icmp_type, icmp_code, i cmp_gwaddr (for redirects), icmp_ppt r (for param-
eter problems), and icmp_nextmtu (for the fragmentation required message) are
initialized. The icmp_nextmtu field implements the extension to the fragmenta-
tion required message described in RFC 1191. Section 24.2 of Volume 1 describes
the path MTU discovery algorithm, which relies on this message.

Once the ICMP header has been constructed, a portion of the original datagram
must be attached to the header, as shown in Figure 11.33.

The IP header, options, and data (a total of ±craplen bytes) are copied from the
invalid datagram into the ICMP error message. Also, the header length is added back
into the invalid datagram’s ip_l en.

In udp_usrreq, UDP also adds the header length back into the invalid datagram’s ip_len.
The result is an ICMP message with an incorrect datagram length in the IP header of the
invalid packet. The authors found that many systems based on Net/2 code have this bug.
Net/1 systems do not have this problem.
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126--129

107 bcopy((caddr_t) oip, (caddr_t) & icp >icmp_ip, icmplen);
108 nip = &icp->icmp_ip;
109 nip->ip_len = htons((u_short) (nip->ip_len + oiplen));

ii0 /*
Iii * Now, copy old ip header (without options)
112 * in front of icmp message.
113 */
114 if (m->m_data - sizeof(struct ip) < m->m_pktdat)
115 panic("icmp fen");
116 m->m_data -- sizeof(struct ip);
117 m->m len +- sizeof(struct ip);
118 m->m_pkthdr.len - m->m_len;
119 m->m_pkthdr.rcvif = n >m_pkthdr.rcvif;
120 nip = mtod(m, struct ip *);
121 bcopy((caddr_t) oip, (caddr_t) nip, sizeof(struct ip));
122 nip->ip_len = m->m fen;
123 nip->ip_hl = sizeof(struct ip) >> 2;
124 nip->ip_p - IPPROTO_ICHP;
125 nip->ip_tos - 0;
126 icmp_reflect(m);

127 freeit:
128 m_freem(n);
129 }

Figure 11.33 i cmp_error function: including the original datagram.

ip_icmp.c

ip_icmp.c

Since MH_ALIGN located the ICMP message at the end of the mbuf, there should be
enough room to prepend an IP header at the front. The IP header (excluding options) is
copied from the invalid datagram to the front of the ICMP message.

The Net/2 release included a bug in this portion of the code: the last bcopy in the function
moved oiplen bytes, which includes the options from the invalid datagram. Only the stan-
dard header without options should be copied.

The IP header is completed by restoring the correct datagram length (ip_len),
header length (ip_hl), and protocol (ip_p), and clearing the TOS field (ip_tos).

RFCs 792 and 1122 recommend that the TOS field be set to 0 for ICMP messages.

The completed message is passed to icmp_reflect, where it is sent back to the
source host. The invalid datagram is discarded.

11.12 icmp_reflect Function

icmp_reflect sends ICMP replies and errors back to the source of the request or back
to the source of the invalid datagram. It is important to remember that i cmp_re f 1 ect
reverses the source and destination addresses in the datagram before sending it. The
rules regarding source and destination addresses of ICMP messages are complex. Fig-
ure 11.34 summarizes the actions of several functions in this area.
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3£9 345

346--371

Function

icmp_input

icmp_error

icmp_reflect

ip_output

Figure11.34 ICMP discard andaddresssummar~

Summary

Replace an all-0s source address in address mask requests
with the broadcast or destination address of the
receiving interface.

Discard error messages caused by datagrams sent as link-
level broadcasts or multicasts. Should discard (but
does not) messages caused by datagrams sent to IP
broadcast or multicast addresses.

Discard messages instead of returning them to a multicast or
experimental address.

Convert nonunicast destinations to the address of the
receiving interface, which makes the destination
address a valid source address for the return message.

Swap the source and destination addresses.
Discards outgoing broadcasts at the request of ICMP (i.e.,

discards errors generated by packets sent to a broadcast
address)

We describe the icmp_reflect function in three parts: source and destination
address selection, option construction, and assembly and transmission. Figure 11.35
shows the first part of the function.

Set destination address
icmp_reflect starts by making a copy of ip_dst and moving ip_src, the

source of the request or error datagram, to ip_dst, icmp_error and icmp_reflect
ensure that ip_src is a valid destination address for the error message, ip_output
discards any packets sent to a broadcast address.

Select source address
icmp_re f i e ct selects a source address for the message by searching i n_i f addr

for the interface with a unicast or broadcast address matching the destination address of
the original datagram. On a multihomed host, the matching interface may not be the
interface on which the datagram was received. If there is no match, the in_ifaddr
structure of the receiving interface is selected or, failing that (the interface may not be
configured for IP), the first address in in_ifaddr. The function sets ip_src to the
selected address and changes ip_tt 1 to 255 (MAXTTL) because the error is a new data-
gram.

RFC 1700 recommends that the TTL field of all IP packets be set to 64. Many systems, how-
ever, set the TTL of ICMP messages to 255 nowadays.

There is a tradeoff associated with TTL values. A small TTL prevents a packet from circulating
in a routing loop but may not allow a packet to reach a site far (many hops) away. A large TTL
allows packets to reach distant hosts but lets packets circulate in routing loops for a longer
period of time.



330 ICMP: Internet Control Message Protocol Chapter 11
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void
icmp_reflect(m)
struct mbuf *m;
{

struct ip *ip - mtod(m, struct ip *)
struct in_ifaddr *ia;
struct in_addr t;
struct mbuf *opts = 0, *ip_srcroute();
int       optlen = (ip->ip_hl << 2) - sizeof(struct ip);

ip_icmp.c

if (!in_canforward(ip->ip_src) &&
((ntohl(ip->ip_src.s_addr) & IN_CLASSA_NET) !=

(IN_LOOPBACKNET << IN_CLASSA_NSHIFT))) {
m_freem(m); /* Bad return address */
goto done; /* Ip_output() will check for broadcast */

)
t = ip->ip_dst;
ip->ip_dst = ip->ip_src;
/*

* If the incoming packet was addressed directly to us,
* use dst as the src for the reply. Otherwise (broadcast
* or anonymous), use the address which corresponds
* to the incoming interface.
*/

for (ia = in_ifaddr; ia; ia = ia->ia_next) {
if (t.s_addr :- IA_SIN(ia)->sin_addr.s_addr)

break;
if ((ia->ia_ifp->if_flags & IFF_BROADCAST) &&

t.s_addr == satosin(&ia->ia_broadaddr)->sin_addr.s_addr)
break;

}
icmpdst.sin_addr : t;
if (ia == (struct. in_ifaddr *) 0)

ia = (struct in_ifaddr *) ifaof_ifpforaddr(
(struct sockaddr *) &icmpdst, m->m_pkthdr.rcvif);

/*
* The following happens if the packet was not addressed to us,
* and was received on an interface with no IP address.
*/

if (ia == (struct in_ifaddr *) 0)
ia = in_ifaddr;

t = IA_SIN(ia)->sin_addr;
ip->ip_src = t;
ip->ip_ttl = MAXTTL;

Figure 11.35 icmp_reflect function: address selection.

ip_icmp.c

RFC 1122 requires that source route options, and recommends that record route and
timestamp options, from an incoming echo request or timestamp request, be attached to
a reply. The source route must be reversed in the process. RFC 1122 is silent on how
these options should be handled on other types of ICMP replies. Net/3 applies these
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rules to the address mask request, since it calls icmp_reflect (Figure 11.21) after con-
structing the address mask reply.

The next section of code (Figure 11.36) constructs the options for the ICMP message.

372 if (optlen > 0) {
373 u_char *cp;
374 int      opt, cnt;
375 u_int    len;

ip_icmp.c

376
377
378
3?9
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
4O8
409
410
411
412
413
414
415
416

* Retrieve any source routing from the incoming packet;
* add on any record-route or timestamp options.

*/
cp : (u_char *) (ip + i);
if ((opts = ip_srcroute()) -- 0 &&

(opts = m_gethdr(M_DONTWAIT, MT_HEADER))) {
opts->m_len : sizeof(struct in_addr);
mtod(opts, struct in_addr *)->s_addr = 0;

}
if (opts) {

for (cnt : optlen; cnt > 0; cnt -- len, cp +- len) {
opt : cp[IPOPT_OPTVAL];
if (opt == IPOPT_EOL)

break;
if (opt :: IPOPT_NOP)

len = i;
else {

len = Cp[IPOPT_OLEN];
if (len <= 0 I I len > cnt)

break;
}
/.

* Should check for overflow, but it "can’t happen"
*/
f (opt == IPOPT_RR I I opt == IPOPT_TS I I

opt := IPOPT_SECURITY) {
bcopy((caddr_t) cp,

mtod(opts, caddr_t) + opts->m_len, len);
opts->m_len +: len;

}
}
/* Terminate & pad, if necessary */
if (cnt = opts->m_len % 4) {

for (; cnt < 4; cnt++) {
*(mtod(opts, caddr_t) + opts->m_len)

IPOPT_EOL;
opts->m fen++;

}
}

}

Figure 11.36 icmp_reflect function: option construction.

ip_icmp.c
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372-385

386--416

Get reversed source route
If the incoming datagram did not contain options, control passes to line 430 (Fig-

ure 11.37). The error messages that J_cra;)_÷rror sends to ±cra;)_r÷N_÷ct never have
IP options, and so the following code applies only to ICMP requests that are converted
to replies and passed directly to ±cra;)_reflect

c;) points to the start of the options for the reply. ±;)_srcrout÷ reverses and
returns any source route option saved when ±;)intr processed the datagram. If
i;)_srcroute returns 0, the request did not contain a source route option so
±cm;)_r÷N_÷ct allocates and initializes an mbuf to serve as an empty ±;)o;)t±on struc-
ture.

Add record route and timestamp options
If o;)ts points to an mbuf, the for loop searches the options from the original IP

header and appends the record route and timestamp options to the source route
returned by ip_srcroute.

The options in the original header must be removed before the ICMP message can
be sent. This is done by the code shown in Figure 11.37.

417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435

* Now strip out original options by copying rest of first
* mbuf’s data back, and adjust the IP length.
*/

ip->ip_len -: optlen;
ip >ip_hl = sizeof(struct ip) >> 2;
m->m_len -- optlen;
if (m->m_flags & M_PKTHDR)

m->m_pkthdr.len -= optlen;
optlen +: sizeof(struct ip);
bcopy((caddr_t) ip + optlen, (caddr_t) (ip + i),

(unsigned) (m->m_len    sizeof(struct ip)));

}
m->m_flags &- -(M_BCAST I M_MCAST);
icmp_send(m, opts);

done:
if (opts)

(void) m_free(opts);

Figure 11.37 icmp_reflect function: finalassembly.

ip_icmp.c

ip_icmp.c

417--429

430-435

Remove original options
± cra;)_r e f l e c t removes the options from the original request by moving the ICMP

message up to the end of the IP header. This is shown in Figure 11.38). The new
options, which are in the mbuf pointed to by o;)t s, are reinserted by ±;)_out;)ut
Send message and cleanup

The broadcast and multicast flags are explicitly cleared before passing the message
and options to ±cra;)_s÷nd, after which the mbuf containing the options is released.
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11.13

d40 457

discarded

bcopy mbuf    pkt

I

IPoptionsbefore header hdr IP header (opt len bytes) data

after bcopy    mbuf pkt
header hdr IP header data

Figure 11.38 icmp_reflect: removalof options.

icmp_send Function

icm~o_send (Figure 11.39) processes all outgoing ICMP messages and computes the
ICMP checksum before passing them to the IP layer.

440 void
441 icmp_send(m, opts)
442 struct mbuf *m;
443 struct mbuf *opts;
444 {
445 struct ip *ip = mtod(m,
446 int hlen;
447 struct icmp *icp;

struct ip *);

ip_icmp.c

448 hlen = ip->ip_hl << 2;
449 m->m_data +: hlen;
450 m->m_len : hlen;
451 icp = mtod(m, struct icmp *);
452 icp->icmp_cksum = 0;
453 icp->icmp_cksum = in_cksum(m, ip->ip_len - hlen);
454 m->m_data -= hlen;
455 m >m_len +: hlen;
456 (void) ip_output(m, opts, NULL, 0, NULL);
457 }

Figure 11.39 icmp_send function.

ip_icmp.c

As it does when checking the ICMP checksum in icmp_input, Net/3 adjusts the
mbuf data pointer and length to hide the IP header and lets in_cksum look only at the
ICMP message. The computed checksum is placed in the header at icml~_cksum and
the datagram and any options are passed to ip_outl~ut. The ICMP layer does not
maintain a route cache, so icmp_send passes a null pointer to ilo_outlout instead of a
route entry as the third argument, icmp_send also does not pass any control flags to
ip_output (the fourth argument). In particular, IP_ALLOWBROADCAST isn’t passed,
so ip_output discards any ICMP messages with a broadcast destination address (i.e.,
the original datagram arrived with an invalid source address).
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11.14 icmp_sysctl Function

The i cmp_sys c t 1 function for IP supports the single option listed in Figure 11.40. The
system administrator can modify the option through the sysc t 1 (8) program.

sysct 1 constant Net/3 variable                 Description

ICMPCTL_MASKREPL icmpmaskrepl Should system respond to ICMP
address mask requests?

Figure 11.40 icmp_sysc t 1 parameters.

Figure 11.41 shows the i cmp_sy s c t 1 function.

467 int
468 icmp_sysctl(name, namelen, oldp, oldlenp, newp, newlen)
469 int *name;
470 u_int namelen;
471 void *oldp;
472 size_t *oldlenp;
473 void *new]n;
474 size_t newlen;
475 {

476
477
478

479
480
481
482
483
484
485
486

ip_icmp.c

/* All sysctl names at this level are terminal. */
if (namelen [~ i)

return (ENOTDIR);

switch (name[0]) {
case ICMPCTL_MASKREPL:

return (sysctl_int(oldp, oldlenp, newp, newlen, &icmpmaskrepl));
default:

return (ENOPROTOOPT) ;
}
/* NOTREACHED */

ip_icmp.c

Figure 11.41 icmp_sysctl function.

~67 478 ENOTDIR is returned if the required ICMP sysctl name is missing.
¢79 ¢86 There are no options below the ICMP level, so this function calls sysctl_int to

modify icmpmaskrep! or returns ENOPROTOOPT if the option is not recognized.
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11.15 Summary

The ICMP protocol is implemented as a transport layer above IP, but it is tightly inte-
grated with the IP layer. We’ve seen that the kernel responds directly to ICMP request
messages but passes errors and replies to the appropriate transport protocol or applica-
tion program for processing. The kernel makes immediate changes to the routing tables
when an ICMP redirect message arrives but also passes redirects to any waiting pro-
cesses, typically a routing daemon.

In Sections 23.9 and 27.6 we’ll see how the UDP and TCP protocols respond to
ICMP error messages, and in Chapter 32 we’ll see how a process can generate ICMP
requests.

Exercises

11.1

11.2

11.3

What is the source address of an ICMP address mask reply message generated by a request
with a destination address of 0.0.0.0?

Describe how a link-level broadcast of a packet with a forged unicast source address can
interfere with the operation of another host on the network.

RFC 1122 suggests that a host should discard an ICMP redirect message if the new first-
hop router is on a different subnet from the old first-hop router or if the message came
from a router other than the current first-hop router for the final destination included in
the message. Why should this advice be followed?

11.4 If the ICMP information request is obsolete, why does ±cmp_±nput pass it to
instead of discarding it?

11.5 We pointed out that Net/3 does not convert the offset and length field of an IP packet to
network byte order before including the packet in an ICMP error message. Why is this
inconsequential in the case of the IP offset field?

11.6

11.7

11.8

11.9

11.10

11.11

Describe a situation in which ifaof_ifpforaddr from Figure 11.25 returns a null
pointer.

What happens to data included after the timestamps in a timestamp query?

Implement the following changes to improve the ICMP timestamp code:

Add a timestamp field to the mbuf packet header. Have the device drivers record the exact
time a packet is received in this field and have the ICMP timestamp code copy the value
into the icmp_rtime field.

On output, have the ICMP timestamp code store the byte offset of where in the packet to
store the current time in the timestamp field. Modify a device driver to insert the time-
stamp right before sending the packet.

Modify icmp_error to return up to 64 bytes (as does Solaris 2.x) of the original datagram
in ICMP error messages.

In Figure 11.30, what happens to a packet that has the high-order bit of ip_of f set?

Why is the return value from ip_output discarded in Figure 11.39?
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IP Multicasting

12.1 Introduction

Recall from Chapter 8 that class DIP addresses (224.0.0.0 to 239.255.255.255) do not
identify individual interfaces in an internet but instead identify groups of interfaces.
For this reason, class D addresses are called multicast groups. A datagram with a class D
destination address is delivered to every interface in an internet that has joined the cor-
responding multicast group.

Experimental applications on the Internet that take advantage of multicasting
include audio and video conferencing applications, resource discovery tools, and shared
whiteboards.

Group membership is determined dynamically as interfaces join and leave groups
based on requests from processes running on each system. Since group membership is
relative to an interface, it is possible for a multihomed host have different group mem-
bership lists for each interface. We’ll refer to group membership on a particular inter-
face as an {interface, group} pair.

Group membership on a single network is communicated between systems by the
IGMP protocol (Chapter 13). Multicast routers propagate group membership informa-
tion using multicast routing protocols (Chapter 14), such as DVMRP (Distance Vector
Multicast Routing Protocol). A standard IP router may support multicast routing, or
multicast routing may be handled by a router dedicated to that purpose.

Networks such as Ethernet, token ring, and FDDI directly support hardware multi-
casting. In Net/3, if an interface supports multicasting, the IFF_I~UL2~-CAS2~ bit is on
in ± f_f ~_ ags in the interface’s ± fnet structure (Figure 3.7). We’ll use Ethernet to illus-
trate hardware-supported IP multicasting, since Ethernet is in widespread use and
Net/3 includes sample Ethernet drivers. Multicast services are trivially implemented
on point-to-point networks such as SLIP and the loopback interface.

337
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IP multicasting services may not be available on a particular interface if the local
network does not support hardware-level multicast. RFC 1122 does not prevent the
interface layer from providing a software-level multicast service as long as it is transpar-
ent to IP.

RFC 1112 [Deering 1989] describes the host requirements for IP multicasting. There
are three levels of conformance:

Level 0

Level I

Level 2

The host cannot send or receive IP multicasts.

Such a host should silently discard any packets it receives with a class D
destination address.

The host can send but cannot receive IP multicasts.

A host is not required to join an IP multicast group before sending a data-
gram to the group. A multicast datagram is sent in the same way as a uni-
cast datagram except the destination address is the IP multicast group.
The network drivers must recognize this and multicast the datagram on
the local network.

The host can send and receive IP multicasts.

To receive IP multicasts, the host must be able to join and leave multicast
groups and must support IGMP for exchanging group membership infor-
mation on at least one interface. A multihomed host may support multi-
casting on a subset of its interfaces.

Net/3 meets the level 2 host requirements and can additionally act as a multicast
router. As with unicast IP routing, we assume that the system we are describing is a
multicast router and we include the Net/3 multicast routing code in our presentation.

Well-Known IP Multicast Groups

As with UDP and TCP port numbers, the Internet Assigned Numbers Authority (IANA)
maintains a list of registered IP multicast groups. The current list can be found in
RFC 1700. For more information about the IANA, see RFC 1700. Figure 12.1 shows
only some of the well-known groups.

Group

224.0.0.0
224.0.0.1
224.0.0.2
224.0.0.3
224.0.0.4
224.0.0,255

224.0.1.1
224.0.1,2

Description

reserved
all systems on this subnet
all routers on this subnet
unassigned
DVMRP routers
unassigned
NTP Network Time Protocol
SGI-Dogfight

Net/3constant

INADDR_UNSPEC_GROUP
INADDR_ALLHOSTS_GROUP

INADDR_MAX_LOCAL_GROUP

Figure 12.1 Some registered IP multicast groups.
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The first 256 groups (224.0.0.0 to 224.0.0.255) are reserved for protocols that imple-
ment IP unicast and multicast routing mechanisms. Datagrams sent to any of these
groups are not forwarded beyond the local network by multicast routers, regardless of
the TTL value in the IP header.

RFC 1075 places this requirement only on the 224.0.0.0 and 224.0.0.1 groups but mrouted, the
most common multicast routing implementation, restricts the remaining groups as described
here. Group 224.0.0.0 (INA]gDR UNSPEC_GROUP) is reserved and group 224.0.0.255
(INADDR_MAX_LOCAL_GROUP) marks the last local multicast group.

Every level-2 conforming system is required to join the 224.0.0.1
(INADDR ALLHOSTS_GROUP) group on all multicast interfaces at system initialization
time (Figure 6.17) and remain a member of the group until the system is shut down.
There is no multicast group that corresponds to every interface on an internet.

Imagine if your voice-mail system had the option of sending a message to every voice mailbox
in your company. Maybe you have such an option. Do you find it useful? Does it scale to
larger companies? Can anyone send to the "all-mailbox" group, or is it restricted?

Unicast and multicast routers may join group 224.0.0.2 to communicate with each
other. The ICMP router solicitation message and router advertisement messages may
be sent to 224.0.0.2 (the all-routers group) and 224.0.0.1 (the all-hosts group), respec-
tively, instead of to the limited broadcast address (255.255.255.255).

The 224.0.0.4 group supports communication between multicast routers that imple-
ment DVMRP. Other groups within the local multicast group range are similarly
assigned for other routing protocols.

Beyond the first 256 groups, the remaining groups (224.0.1.0-239.255.255.255) are
assigned to various multicast application protocols or remain unassigned. Figure 12.1
lists two examples, the Network Time Protocol (224.0.1.1), and SGI-Dogfight (224.0.1.2).

Throughout this chapter, we note that multicast packets are sent and received by the
transport layer on a host. While the multicasting code is not aware of the specific trans-
port protocol that sends and receives multicast datagrams, the only Internet transport
protocol that supports multicasting is UDP.



340 IP Multicasting Chapter 12

12.2 Code Introduction

The basic multicasting code discussed in this chapter is contained within the same files
as the standard IP code. Figure 12.2 lists the files that we examine.

File Description

netinet / i f_ether, h Ethernet multicasting structure and macro definitions
net in e t / i n. h more Internet multicast structures
net ine t / in_var, h Internet multicast structure and macro definitions
net ine t / ip_var, h IP multicast structures
net/i f_ethersubr, c Ethernet multicast functions
net ine t / in. c group membership functions
netinet / ip_input, c input multicast processing
netinet / ip_output, c output multicast processing

Figure 12.2 Files discussed in this chapter.

Global Variables

Three new global variables are introduced in this chapter:

Variable                 Datatype Description

ether_ipmulticast_min u_char [ ] minimum Ethernet multicast address reserved for IP

ether_ipmul ticas t_max u_char [ ] maximum Ethernet multicast address reserved for IP

ip_mrouter struct socket * pointer to socket created by multicast routing daemon

Figure 12.3 Global variables introduced in this chapter.

Statistics

The code in this chapter updates a few of the counters maintained in the global ipstat
structure.

ips tat member                           Description

ips_forward        #packets forwarded by this system
ips_cant forwarcl #packets that cannot be forwarded--system is not a router
ips_noroute #packets that cannot be forwarded because a route is not

available

Figure 12.4 Multicast processing statistics.

Link-level multicast statistics are collected in the i fnet structure (Figure 4.5) and
may include multicasting of protocols other than IP.
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12.3 Ethernet Multicast Addresses

An efficient implementation of IP multicasting requires IP to take advantage of hard-
ware-level multicasting, without which each IP datagram would have to be broadcast to
the network and every host would have to examine each datagram and discard those
not intended for the host. The hardware filters unwanted datagrams before they reach
the IP layer.

For the hardware filter to work, the network interface must convert the IP multicast
group destination to a link-layer multicast address recognized by the network hard-
ware. On point-to-point networks, such as SLIP and the loopback interface, the map-
ping is implicit since there is only one possible destination. On other networks, such as
Ethernet, an explicit mapping function is required. The standard mapping for Ethernet
applies to any network that employs 802.3 addressing.

Figure 4.12 illustrated the difference between a Ethernet unicast and multicast
address: if the low-order bit of the high-order byte of the Ethernet address is a 1, it is a
multicast address; otherwise it is a unicast address. Unicast Ethernet addresses are
assigned by the interface’s manufacturer, but multicast addresses are assigned dynami-
cally by network protocols.

IP to Ethernet Multicast Address Mapping

Because Ethernet supports multiple protocols, a method to allocate the multicast
addresses and prevent conflicts is needed. Ethernet addresses allocation is adminis-
tered by the IEEE. A block of Ethernet multicast addresses is assigned to the IANA by
the IEEE to support IP multicasting. The addresses in the block all start with
Ol:O0:5e.

The block of Ethernet unicast addresses starting with 0 0 : 0 0 : 5 ÷ is also assigned to the IANA
but remains reserved for future use.

Figure 12.5 illustrates the construction of an Ethernet multicast address from a
class D IP address.

identifies Ethernet must be 0; 1 is

~8 multicast address ("- reserved by the IANA

0 15 16 23~ 31 32                   39 40 47       48-bit

I_0 0 0 0 0 0 0 110 0 0 0 0 0 0 010 1 0 1 1 1 1 010

<~\\\\ i~x~ I,

,~, Ethernet

,,, I , , , <,,, I,,, ) ,,, I,, ,_1 <,, I .......... I ....
,\address

~ \\ // ~/~ uhused \~ \

IANA reserved
Ethernet prefix ]4 32-bit class DIP address                 ~I

Figure 12.5 Mapping between IP and Ethernet addresses.

The mapping illustrated by Figure 12.5 is a many-to-one mapping. The high-order
9 bits of the class DIP address are not used when constructing the Ethernet address.
32 IP multicast groups map to a single Ethernet multicast address (Exercise 12.3). In
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Section 12.14 we’ll see how this affects input processing. Figure 12.6 shows the macro
that implements this mapping in Net/3.

61
62
63
64
65
66
67
68
69
7O
71

#define ETHER_FLAP IP MULTICAST(ipaddr, enaddr) \
/* struct in_addr *ipaddr; */ \
/* u_char enaddr[6];          */ \

{ \
(enaddr) [0] = 0x01; \
(enaddr) [i] = 0x00; \
(enaddr) [2] = 0xSe; \
(enaddr) [3] : ((u_char *)ipaddr) [i] & 0x7f;
(enaddr) [4] = ((u_char *)ipaddr) [2]; \
(enaddr) [5] = ((u_char *)ipaddr) [3]; \

if_ether.h

Figure 12.6 ETHER_t4AP IP MULTICASTmacro.
iJ<_ether.h

61--71

IP to Ethernet multicast mapping
ETHER_MAP IP MULTICAST implements the mapping shown in Figure 12.5.

ipaddr points to the class D multicast address, and the matching Ethernet address is
constructed in enaddr, an array of 6 bytes. The first 3 bytes of the Ethernet multicast
address are 0x01, 0x0 0, and 0x5 e followed by a 0 bit and then the low-order 23 bits of
the class DIP address.

12.4 ether_multi Structure

For each Ethernet interface, Net/3 maintains a list of Ethernet multicast address ranges
to be received by the hardware. This list defines the multicast filtering to be imple-
mented by the device. Because most Ethernet devices are limited in the number of
addresses they can selectively receive, the IP layer must be prepared to discard data-
grams that pass through the hardware filter. Each address range is stored in an
ether_multi structure:

147 struct ether_multi {
148 u_char enm_addrlo[6]; /* low or only address of range *
149 u_char enm_addrhi[6]; /* high or only address of range *
150 struct arpcom *enm_ac; /* back pointer to arpcom */
151 u_int    enm_refcount; /* no. claims to this addr/range *
152 struct ether multi *enm_next;    /* ptr to next ether_multi */
153 };

if_ether.h

if_ether.h
Figure 12.7 ether_multi structure.

iq7--153

Ethernet multicast addresses
enm_addrl o and enm_addrhi specify a range of Ethernet multicast addresses that

should be received. A single Ethernet address is specified when enm_addrlo and
enm_addrhi are the same. The entire list of ether_multi structures is attached to the
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arpcom structure of each Ethernet interface (Figure 3.26). Ethernet multicasting is inde-
pendent of ARP--using the arpeom structure is a matter of convenience, since the
structure is already included in every Ethernet interface structure.

We’ll see that the start and end of the ranges are always the same since there is no way in
Net/3 for a process to specify an address range.

enm_ae points back to the ar~com structure of the associated interface and
enm_refcount tracks the usage of the ether_multi structure. When the reference
count drops to 0, the structure is released, enm_next joins the ether_multi struc-
tures for a single interface into a linked list. Figure 12.8 shows a list of three
ether_multi structures attached to le_softc [0], the i fnet structure for our sam-
ple Ethernet interface.

le_softc [ O] :

arpcom{} {
ifaet{~}

ac ~drs

I le softc{}

~ ~~ ~enmen~e~ountI
enm_next ~ enm_next ~ enm_next ~

Figure 12.8 The LANCE interface with three ether_multi structures.

In Figure 12.8 we see that:

¯ The interface has joined three groups. Most likely they are: 224.0.0.1 (all-hosts),
224.0.0.2 (all-routers), and 224.0.1.2 (SGI-dogfight). Because the Ethernet to IP
mapping is a one-to-many mapping, we cannot determine the exact IP multicast
groups by examining the resulting Ethernet multicast addresses. The interface
may have joined 225.0.0.1,225.0.0.2, and 226.0.1.2, for example.

¯ The most recently joined group appears at the front of the list.
¯ The enm_ac back-pointer makes it easy to find the beginning of the list and to

release an ether_multi structure, without having to implement a doubly
linked list.

The ether_multi structures apply to Ethernet devices only. Other multicast
devices may have a different multicast implementation.

The ETHER_LOOKUP_MULTI macro, shown in Figure 12.9, searches an ether_multi

list for a range of addresses.
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if_ether.h
166 #define ETHER_LOOKUP_MULTI(addrlo, addrhi, ac, enm) \
167 /* u_char addrlo[6] ; */ \
168 /* u_char addrhi[6] ; */ \
169 /* struct arpcom *ac; */ \
170 /* struct ether_multi *ernn; */ \
171 { \
172 for ((enm) = (ac)->ac_multiaddrs; \
173 (enm) != NULL && \
174 (bcmp((enm) >enm_addrlo, (addrlo), 6) != 0 I I \
175 bcmp((enm) >enm_addrhi, (addrhi), 6) != 0); \
176 (enm) = (enm)->enm_next); \
177 }

if_ether.h

Figure 12.9 ETHER_LOOKUP_MULTI macro.

166-177

Ethernet multicast Iookups
addrlo and addrhi specify the search range and ac points to the arpcom struc-

ture containing the list to search. The for loop performs a linear search, stopping at the
end of the list or when enm_addrlo and enm_addrhi both match the supplied
addrlo and addrhi addresses. When the loop terminates, enm is null or points to a
matching e t her_mu 1 t i structure.

12.5

440--446

Ethernet Multicast Reception

After this section, this chapter discusses only IP multicasting, but it is possible in Net/3
to configure the system to receive any Ethernet multicast packet. Although not useful
with the IP protocols, other protocol families within the kernel might be prepared to
receive these multicasts. Explicit multicast configuration is done by issuing the i oct !
commands shown in Figure 12.10.

Command Argument Function Description

SIOCADDMULTI struct i freq * i fioct 1 add multicast address to reception list
SIOCDELMULTI struct ifreq * i fioctl delete multicast address from reception list

Figure 12.10 Multicast ioctl commands.

These two commands are passed by i f ioct 1 (Figure 12.11) directly to the device
driver for the interface specified in the i freq structure (Figure 6.12).

If the process does not have superuser privileges, or if the interface does not have
an if_ioctl function, ifioctl returns an error; otherwise the request is passed
directly to the device driven
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12.6

440
441
442
443
444
445
446

case SIOCADDMULTI:
case SIOCDELMULTI:

if (error : suser(p->p_ucred, &p->p_acflag))
return (error);

if (ifp->if_ioctl =- NULL)
return (EOPNOTSUPP);

return ((*ifp >if_ioctl) (ifp, cmd, data));

Figure 12.11 ifioctl function: multicast commands.

if.c

in_multi Structure

The Ethernet multicast data structures described in Section 12.4 are not specific to IP;
they must support multicast activity by any of the protocol families supported by the
kernel. At the network level, IP maintains a list of IP multicast groups associated with
each interface.

As a matter of implementation convenience, the IP multicast list is attached to the
in_ifaddr structure associated with the interface. Recall from Section 6.5 that this
structure contains the unicast address for the interface. There is no relationship
between the unicast address and the attached multicast group list other than that they
both are associated with the same interface.

This is an artifact of the Net/3 implementation. It is possible for an implementation to support
IP multicast groups on an interface that does not accept IP unicast packets.

Each IP multicast {interface, group} pair is described by an i n_mu 1 t i structure shown
in Figure 12.12.

iii struct in_multi {
112
113
114
115
116
117
118 };

struct in_addr inm_addr;
struct ifnet *inm_ifp;
struct in_ifaddr *inm_ia;

/* IP multicast address */

/* back pointer to ifnet */

/* back pointer to in_ifaddr */

in_var.h

u_int    inm refcount; /* no. membership claims by sockets */
u_int    inm_timer; /* IGMP membership report timer */
struct in_multi *inm_next; /* ptr to next multicast address */

in_var.h
Figure 12.12 in_multi structure.

111--118

IP multicast addresses
inm_addr is a class D multicast address (e.g., 224.0.0.1, the all-hosts group).

inm_ifp points back to the i fnet structure of the associated interface and inm_ia
points back to the interface’s in_i faddr structure.
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An in_mul t i structure exists only if at least one process on the system has notified
the kernel that it wants to receive multicast datagrams for a particular {interface, group}
pair. Since multiple processes may elect to receive datagrams sent to a particular pair,
inm_refcount keeps track of the number of references to the pair. When no more pro-
cesses are interested in the pair, inm_refcount drops to 0 and the structure is released.
This action may cause an associated e ther_mul t i structure to be released if its refer-
ence count also drops to 0.

inm_timer is part of the IGMP protocol implementation described in Chapter 13.
Finall)¢ i nm_next points to the next in_mu 1 t i structure in the list.

Figure 12.13 illustrates the relationship between an interface, its IP unicast address,
and its IP multicast group list using the le_softc [ 0 ] sample interface.

ifnet:

~ le_softc][0] :

~ ifnet{}

[ le softc{}

1 , in_ifaddr{}
ifa_ifp
ifa_next

ia_next

lia multiaddrs

~ ~ in_ifaddr: ]

Figure 12.13

in multi{} iti{}    //in_multi{}

inm_ifp     I{ ~-- .inm_ifp     ~( ~

i nim%eifacount ~imeif<ount I~~t
inm timerI    I.

into- t imer I    I ~nm--timer I

inm next --~ inm_ next -~ inm_next

An IP multicast group list for the le interface.

131--146

We’ve omitted the corresponding e the r_mu i t i structures for clarity (but see Fig-
ure 12.34). If the system had two Ethernet cards, the second card would be managed
through le_softc [1] and would have its own multicast group list attached to its
arpcom structure. The macro IN_L00KUP_MULTI (Figure 12.14) searches the IP multi-
cast list for a particular multicast group.
IP multicast Iookups

IN_L00KUP_MULTI looks for the multicast group addr in the multicast group list
associated with interface ifp. IFP TO TA searches the Internet address list,
in_ifaddr, for the in_ifaddr structure associated with the interface identified by
ifp. If IFP TO IA finds an interface, the for loop searches its IP multicast list. After
the loop, inm is null or points to the matching in_mult i structure.
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12.7

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

#define IN_LOOKUP MULTI (addr, ifp, inm) \
/* struct in_addr addr; */ \
/* struct ifnet *ifp; */ \
/* struct in_multi *inm; */ \

{ \

in_var.h

struct in_ifaddr *ia; \

IFP TO IA((ifp), ia); \
if (ia := NULL) \

(inm) : NULL; \
else \

for ((inm) = ia->ia_multiaddrs; \
(inm) != NULL && (inm)->inm_addr.s_addr != (addr).s_addr; \

(inm) : inm->inm_next) \
continue; \

in_var.h

Figure 12.14 IN_L00KUP_MULTI macro.

ip_mopt ions Structure

The ip_moptions structure contains the multicast options through which the trans-
port layer controls multicast output processing. For example, the UDP call to
ip_output is:

error : ip_output(m, inp->inp_options, &inp->inp_route,
inp->inp_socket->so_options & (SO_DONTROUTEISO_BROADCAST),
inp->inp_moptions);

In Chapter 22 we’ll see that inp points to an Internet protocol control block (PCB) and
that UDP associates a PCB with each socket created by a process. Within the PCB,
inp_moptions is a pointer to an ip_moptions structure. From this we see that a dif-
ferent ip_moptions structure may be passed to ip_output for each outgoing data-
gram. Figure 12.15 shows the definition of the ip_mopt i ons structure.

i00 struct ip_moptions {                                                               ip_var.h
i01
102
103
104
105
106 };

struct ifnet *imo_multicast_ifp; /* ifp for outgoing multicasts */
u_char imo_multicast_ttl; /* TTL for outgoing multicasts */

u_char imo_multicast_loop; /* 1 => hear sends if a member */
u_short imo_num memberships; /* no. memberships this socket */ "
struct in_multi *imo_membership[IP_MAX_MEMBERSHIPS];

ip_var.h

Figure 12.15 ip_mopt±ons structure.

100--106

Multicast options
ip_output routes outgoing multicast datagrams through the interface pointed to

by imo_mult icast_i fp or, if imo_multicast_i fp is null, through the default inter-
face for the destination multicast group (Chapter 14).
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imo_multicast_ttl specifies the initial IP TTL value for outgoing multicasts.
The default is 1, which causes multicast datagrams to remain on the local network.

If irao_multicast_loop is O, the multicast datagram is not looped back and
delivered to the transmitting interface even if the interface is a member of the multicast
group. If imo_multicast_loop is 1, the multicast datagram is looped back to the
transmitting interface if the interface is a member of the multicast group.

Finally, the integer imo_num_memberships and the array imo_membership
maintain the list of {interface, group} pairs associated with the structure. Changes to the
list are communicated to IP, which announces membership changes on the locally
attached network. Each entry in the imo_membership array is a pointer to an
in_mu 1 t i structure attached to the in_i f a ddr structure of the appropriate interface.

12.8 Multicast Socket Options

Several IP-level socket options, shown in Figure 12.10, provide process-level access to
±p_mopt ± ons structures.

Command

IP_MULTICAST_IE

IP_MULTICAST_TTL

IP_MUL TICAST_LOOP

IP ADD MEMBERSHIP
IP_DR OP_MEMBERSHIP

Argument

struct in_addr

u_char

u_char

struct ip rareq
struct ip_mreq

Function

ip_ctloutput

ip_ctloutput

ip_ctloutput

ip_ctloutput
ip_ctloutput

Description

select default interface for outgoing
multicasts

select default TTL for outgoing
multicasts

enable or disable loopback of outgoing
multicasts

join a multicast group
leave a multicast group

Figure 12.16 Multicast socket options.

In Figure 8.31 we looked at the overall structure of the ip_ctloutput function. Fig-
ure 12.17 shows the cases relevant to changing and retrieving multicast options.

All the multicast options are handled through the ip_setmoptions and
ip_getraoptions functions. The ip_moptions structure passed by reference to
ilo_getraoptions or to ip_setraoptions is the one associated with the socket on
which the i o c t 1 command was issued.

The error code returned when an option is not recognized is different for the get and set cases.
ENOPROTOOPT is the more reasonable choice.

12.9 Multicast TTL Values

Multicast TTLvalues are difficult to understand because they have two purposes. The
primary purpose of the TTL value, as with all IP packets, is to limit the lifetime of the
packet within an internet and prevent it from circulating indefinitely. The second pur-
pose is to contain packets within a region of the internet specified by administrative
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ip output.c
448            case PRCO_SETOPT:                                                            --
449 switch (optname) {

486
487
488
489
490
491
492
493
494
495
496
497
498
499
5OO

501
502

/* other set cases *

case IP_MULTICAST_IF:
case IP_MULTICAST_TTL:
case IP_MULTICAST_LOOP:
case IP_ADD MEMBERSHIP:
case IP_DROP_MEHBERSHIP:

error - ip_setmoptions(optname, &inp->inp_moptions,
break;

freeit:
default:

error : EINVAL;
break;

}
if (m)

(void) m_free(m);
break;

case PRCO_GETOPT:
switch (optname) {

m);

539
540
541
542
543
544
545

/* other get cases */

case IP_MULTICAST_IF:
case IP_MULTICAST_TTL:
case IP_MULTICAST_LOOP:
case IP ADD MEMBERSHIP:
case IP_DROP_MEHBERSHIP:

error : ip_getmoptions(optname,
break;

546 default:
547 error = ENOPROTOOPT;
548 break;
549 }

inp->inp_moptions, mp);

Figure 12.17 ip_ctloutput function: multicast options.

ip_output.c

boundaries. This administrative region is specified in subjective terms such as "this
site," "this company," or "this state," and is relative to the starting point of the packet.
The region associated with a multicast packet is called its scope.

The standard implementation of RFC 1112 multicasting merges the two concepts of
lifetime and scope into the single TTL value in the IP header. In addition to discarding
packets when the IP TTL drops to 0, multicast routers associate with each interface a TTL
threshold that limits multicast transmission on that interface. A packet must have a
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TTL greater than or equal to the interface’s threshold value for it to be transmitted on
the interface. Because of this, a multicast packet may be dropped even before its TTL
value reaches 0.

Threshold values are assigned by an administrator when configuring a multicast
router. These values define the scope of multicast packets. The significance of an initial
TTL value for multicast datagrams is defined by the threshold policy used by the
administrator and the distance between the source of the datagram and the multicast
interfaces.

Figure 12.18 shows the recommended TTL values for various applications as well as
recommended threshold values.

ip_tt i

o

~2

64
95

~27

~9]

Application

local event video

local event audio

IETF channel 2 video
IETF channel 1 video

IETF channel 2 audio
IETF channel I audio
IETF channel 2 low-rate audio
IETF channel 1 low-rate audio

unrestricted in scope

Scope

same interface
same subnet

same site

same region

same continent

Figure 12.18 TTL values for IP multicast datagrams.

The first column lists the starting value of J-D_tt 1 in the IP header. The second col-
umn illustrates an application specific use of threshold values ([Casner 1993]). The
third column lists the recommended scopes to associate with the TTL values.

For example, an interface that communicates to a network outside the local site
would be configured with a multicast threshold of 32. The TTL field of any datagram
that starts with a TTL of 32 (or less) is less than 32 when it reaches this interface (there is
at least one hop between the source and the router) and is discarded before the router
forwards it to the external network--even if the TTL is still greater than 0.

A multicast datagram that start with a TTL of 128 would pass through site inter-
faces with a threshold of 32 (as long as it reached the interface within 128- 32 = 96
hops) but would be discarded by intercontinental interfaces with a threshold of 128.

The MBONE

A subset of routers on the Internet supports IP multicast routing. This multicast back-
bone is called the MBONE, which is described in [Casner 1993]. It exists to support
experimentation with IP multicasting--in particular with audio and video data
streams. In the MBONE, threshold values limit how far various data streams propa-
gate. In Figure 12.18, we see that local event video packets always start with a TTL of
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31. An interface with a threshold of 32 always blocks local event video. At the other
end of the scale, IETF channel 1 low-rate audio is restricted only by the inherent IP TTL
maximum of 255 hops. It propagates through the entire MBONE. An administrator of
a multicast router within the MBONE can select a threshold value to accept or discard
MBONE data streams selectively.

Expanding-Ring Search

Another use of the multicast TTL is to probe the internet for a resource by varying the
initial TTL value of the probe datagram. This technique is called an expanding-ring
search ([Boggs 1982]). A datagram with an initial TTL of 0 reaches only a resource on the
local system associated with the outgoing interface. A TTL of I reaches the resource if it
exists on the local subnet. A TTL of 2 reaches resources within two hops of the source.
An application increases the TTL exponentially to probe a large internet quickly.

RFC 1546 [Partridge, Mendez, and Milliken 1993] describes a related service called anycasting.
As proposed, anycasting relies on a distinguished set of IP addresses to represent groups of
hosts much like multicasting. Unlike multicast addresses, the network is expected to propa-
gate an anycast packet until it is received by at least one host. This simplifies the implementa-
tion of an application, which n(~ longer needs to perform expanding-ring searches.

12.10

650--664

665 679

680--860

ip__setmoptions Function

The bulk of the ip_setmopt ions function consists of a switch statement to handle
each option. Figure 12.19 shows the beginning and end of ip_setmopt±ons. The
body of the switch is discussed in the following sections.

The first argument, optname, indicates which multicast option is being changed.
The second argument, imop, references a pointer to an ip_moptions structure. If
*imop is nonnull, ip_setmoptions modifies the structure it points to. Otherwise,
ip_setmoptions allocates a new ip_moptions structure and saves its address in
*imop. If no memory is available, ip_setmoptions returns ENOBUFS immediately.
Any subsequent errors that occur are posted in error, which is returned to the caller at
the end of the function. The third argument, m, points to an mbuf that contains the data
for the option to be changed (second column of Figure 12.16).

Construct the defaults
When a new ip_mopt ions structure is allocated, ip_s etmopt ions initializes the

default multicast interface pointer to null, initializes the default TTL to 1
(IP_DEFAULT_MULTICAST_TTL), enables the loopback of multicast datagrams, and
clears the group membership list. With these defaults, ip_output selects an outgoing
interface by consulting the routing tables, multicasts are kept on the local network, and
the system receives its own multicast transmissions if the outgoing interface is a mem-
ber of the destination group.
Process options

The body of ip_setmoptions consists of a switch statement with a case for each
option. The default case (for unknown options) sets error to EOPNOTSUPP.
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650 int                                                                         ip_output.c
651 ip_setmoptions(optname, imop, m)
652 int      optname;
653 struct ip_moptions **imop;
654 struct mbuf *m;
655 {
656 int error = O;

657 u_char loop;

658 int i;
659 struct in_addr addr;

660 struct ip_mreq *mreq;

661 struct ifnet *ifp;
662 struct ip moptions *imo = *imop;

663 struct route ro;
664 struct sockaddr_in *dst;

665 if (imo == NIJLL) {
666 /*
667 * No multicast option buffer attached to the pcb;
668 * allocate one and initialize to default values.
669 */
670 imo = (struct ip_moptions *) malloc(sizeof(*imo), M_IPMOPTS,
671 M WAITOK);

672 if (imo == NULL)
673 return (ENOBUFS);
674 *imop = imo;
675 imo->imo_multicast_ifp : NULL;
676 imo->imo multicast_ttl = IP_DEFAULT MULTICAST_TTL;
677 imo->imo multicast_loop : IP_DEFAULT MULTICAST_LOOP;
678 imo->imo num memberships = 0;
679 }
680 switch (optname) {

857
858
859
860

861
862
863
864
865
866
867
868
869
87O
871
872

default:
error = EOPNOTSUPP;
break;

}
/.

* If all options have default values, no need to keep the structure.
*/

if (imo->imo_multicast_ifp :: NULL &&
imo->imo_multicast_ttl =: IP_DEFAULT_MULTICAST_TTL &&
imo->imo multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
imo->imo_num_memberships == 0) {
free(*imop, M_IPMOPTS);
*imop : NULL;

}
return (error);

ip_output.c
Figure 12.19 ip_setmoptions function.
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861--872

Discard structure if defaults are OK
After the switch statement, ip_setraoptions examines the ip_moptions struc-

ture. If all the multicast options match their respective default values, the structure is
unnecessary and is released, ip_setmoptions returns 0 or the posted error code.

Selecting an Explicit Multicast Interface: IP_MULTICAST_IF

When optname is IP_MULTICAST_IF, the mbuf passed to ip_setmoptions contains
the unicast address of a multicast interface, which specifie~ the particular interface for
multicasts sent on this socket. Figure 12.20 shows the code for this option.

681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
7OO
701
702
703
704
705
706
707
7O8
709
710

case IP_MULTICAST_IF:
/*

* Select the interface for outgoing multicast packets.
*/

if (m == NULL I I m->in_len !: sizeof(struct in_addr)) {
error = EINVAL;
break;

]
addr = *(mtod(m, struct in_addr *));
/*

* INADDR_ANY is used to remove a previous selection.
* When no interface is selected, a default one is
* chosen every time a multicast packet is sent.
*/

if (addr.s_addr == INADDR_ANY) {
imo->imo_multicast_ifp = NULL;
break;

}
/.

* The selected interface is identified by its local
* IP address. Find the interface and confirm that
* it supports multicasting.
*/

INADDR TO IFP(addr, ifp);
if (ifp == NULL I I (ifp->if_flags & IFF_MULTICAST) =: 0)

error = EADDRNOTAVAIL;
break;

}
imo->imo multicast_ifp = ifp;
break;

Figure 12.20 ip_setmoptions function: selecting a multicast output interface.

ip_output.c

ip_output.c

681--698

Validation
If no mbuf has been provided or the data within the mbuf is not the size of an

in_addr structure, ip_setmoptions posts an EINVAL error; otherwise the data is
copied into addr. If the interface address is INADDR_ANY, any previously selected
interface is discarded. Subsequent multicasts with this ip_moptions structure are
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699 710

routed according to their destination group instead of through an explicitly named
interface (Figure 12.40).

Select the default interface
If addr contains an address, INADDR TO IFP locates the matching interface. If a

match can’t be found or the interface does not support multicasting, EADDRNOTAVAIL
is posted. Otherwise, i fp, the matching interface, becomes the multicast interface for
output requests associated with this ±p__mopt ions structure.

Selecting an Explicit Multicast TTL: TP_MULTTCAST_TTL

When optname is I P_MULTICAST_TTL, the mbuf is expected to contain a single byte
specifying the IP TTL for outgoing multicasts. This TTL is inserted by ip_output into
every multicast datagram sent on the associated socket. Figure 12.21 shows the code for
this option.

711 case IP_MULTICAST_TTL:
712 /*
713 * Set the IP time-to-live for outgoing multicast packets.
714 */
715 if (m -- NULL i I m->m_len !- i) {
716 error = EINVAL;
717 break;
718 }
719 imo->imo_multicast_ttl - *(mtod(m, u_char *));
720 break;

Figure 12.21 ip_setmopt ions function: selecting an explicit multicast TTL.

ip_output.c

ip_output.c

Validate and select the default TTL
7:1--720 If the mbuf contains a single byte of data, it is copied into imo_raulticast_ttl.

Otherwise, EINVA~, is posted.

Selecting Multicast Loopbacks: TP_~L~TCAS~_~,OOP

In general, multicast applications come in two forms:

¯ An application with one sender per system and multiple remote receivers. In
this configuration only one local process is sending datagrams to the group so
there is no need to loopback outgoing multicasts. Examples include a multicast
routing daemon and conferencing systems.

¯ An application with multiple senders and receivers on a system. Datagrams
must be looped back so that each process receives the transmissions of the other
senders on the system.

The T P__~U~,T~CA$~_~.OO~ option (Figure 12.22) selects the loopback policy associ-
ated with an ip_mopt ions structure.
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ip_output.c
721 case IP_MULTICAST_LOOP:
722 /*
723 * Set the loopback flag for outgoing multicast packets.
724 * Hust be zero or one.
725 */
726 if (m =- NULL
727 (loop - *(mtod(m, u_char *))) > i) {
728 error : EINVAL;
729 break;
730
731 imo->imo_multicast_loop = loop;
732 break;

ip_output.c

721 732

Figure 12.22 ip_setmoptions function: selecting multicast loopbacks.

Validate and select the Ioopback policy

If ra is null, does not contain 1 byte of data, or the byte is not 0 or 1, EINVAL is
posted. Otherwise, the byte is copied into irao_multicast_loop. A 0 indicates that
datagrams should not be looped back, and a i enables the loopback mechanism.

Figure 12.23 shows the relationship between, the maximum scope of a multicast
datagram, imo_multicast_ttl, and imo_multicast_loop.

Recipients
imo_mul t icast -

Local      Remote
Network? Networks?

Outgoing
_loop _ttl Interface?

1 0 ¯
1 1 ¯
1 >1 ¯

Other
Intgrfaces?

see text

Figure 12.23 Loopback and TTL effects on multicast scope.

Figure 12.23 shows that the set of interfaces that may receive a multicast packet
depends on what the loopback policy is for the transmission and what TTL value is
specified in the packet. A packet may be received on an interface if the hardware
receives its own transmissions, regardless of the loopback policy. A datagram may be
routed through the network and arrive on another interface attached to the system
(Exercise 12.6). If the sending system is itself a multicast router, outgoing packets may
be forwarded to the other interfaces, but they will only be accepted for input processing
on one interface (Chapter 14).

12.11 Joining an IP Multicast Group

Other than the IP all-hosts group, which the kernel automatically joins (Figure 6117),
membership in a group is driven by explicit requests from processes on the system. The
process of joining (or leaving) a multicast group is more involved than the other



356 IP Multicasting Chapter 12

148--151

multicast options. The in_multi list for an interface must be modified as well as any
link-layer multicast structures such as the ether_mul t i list we described for Ethernet.

The data passed in the mbuf when optname is IP_ADD_MEMBERSHTP is an
ip_mreq structure shown in Figure 12.24.

in.h
148 struct ip_mreq {
149 struct in_addr imr_multiaddr;
150 struct in_addr imr_interface;

/* IP multicast address of group */
/* local IP address of interface */

151 };
in.h

Figure 12.24 ip_mreq structure.

imr_multiaddr specifies the multicast group and imr_interface identifies the
interface by its associated unicast IP address. The i~o_mreq structure specifies the
{interface, group} pair for membership changes.

Figure 12.25 illustrates the functions involved with joining and leaving a multicast
group associated with our example Ethernet interface.

Figure 12.25 Joining and leaving a multicast group.
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We start by describing the changes to the ip_moptions structure in the
IP_ADD_MEMBERSHIP case in ip_setmoptions (Figure 12.26). Then we follow the
request down through the IP layer, the Ethernet driver, and to the physical device--in
our case, the LANCE Ethernet card.

733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
75O
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774

case IP ADD MEMBERSHIP:
/*

* Add a multicast group membership.
* Group must be a valid IP multicast address.
*/

if (m -= NULL I I m->m_len != sizeof(struct ip_mreq) {
error : EINVAL;
break;

}
mreq = mtod(m, struct ip_mreq *);
if (!IN MULTICAST(ntohl(mreq->imr_multiaddr.s_addr))) {

error : EINVAL;
break;

* If no interface address was provided, use the interface of
* the route to the given multicast address.
*/

if (mreq->imr_interface.s_addr =: INADDR_ANY) {
ro.ro_rt : NULL;
dst = (struct sockaddr_in *) &ro.ro_dst;
dst->sin_len = sizeof(*dst);
dst->sin_family : AF_INET;
dst->sin_addr : mreq->imr_multiaddr;
rtalloc(&ro);
if (ro.ro_rt == NULL) {

error = EADDRNOTAVAIL;
break;

}
ifp = ro.ro_rt->rt_ifp;
rtfree(ro.ro_rt);

] else {
INADDR TO IFP(mreq->imr_interface, ifp);

}
/.

* See if we found an interface, and confirm that it
* supports multicast.
*/

if (ifp :: NULL I I (ifp->if_flags & IFF_MULTICAST) =- 0) {
error : EADDRNOTAVAIL;
break;

}

ip_output.c
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775 /*
776 * See if the membership already exists or if all the
777 * membership slots are full.
778 */
779 for (i = 0; i < imo->imo_num_memberships; ++i) {
780 if (imo >imo membership[i] >inm_ifp == ifp &&
781 imo >imo membership[i] >inm_addr.s_addr
782 -- mreq->imr_multiaddr.s_addr)
783 break;
784 }
785 if (i < imo >imo_num_memberships) {
786 error = EADDRINUSE;
787 break;
788 }
789 if (i == IP_MAX_MEMBERSHIPS) {
790 error : ETOOMANYREFS;
791 break;
792 }

793 /*

794 * Everything looks good; add a new record to the multicast

795 * address list for the given interface.

796 */

797 if ((imo->imo_membership[i] :

798 in_ad~nulti(&mreq->imr_multiaddr, ifp)) == NULL}

799 error = ENOBUFS;

800 break;
s01 }
802 ++imo >imo_num_memberships;
803 break;

Figure 12.26 ip_setmoptions function: joining a mul~icast group.

ip_output.c

733--746

747 774

Validation
ip_setmoptions starts by validating the request. If no mbuf was passed, if it is

not the correct size, or if the address (imr_multiaddr) within the structure is not a
multicast group, then ip_setmoptions posts EINVAL. mreq points to the valid
ip_mr eq structure.

Locate the interface
If the unicast address of the interface (imr_interface) is INADDR ANY,

ip_setmoptions must locate the default interface for the specified group. A route
structure is constructed with the group as the desired destination and passed to
rtal loc, which locates a route for the group. If no route is available, the add request
fails with the error EADDRNOTAVAIL. If a route is located, a pointer to the outgoing
interface for the route is saved in i fp and the route entry, which is no longer needed, is
released.

If imr_interface is not INADDR_ANY, an explicit interface has been requested.
The macro INADDR TO IFP searches for the interface with the requested unicast
address. If an interface isn’t found or if it does not support multicasting, the request
fails with the error EADDRNOTAVAIL.
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775--792

793--803

We described the route structure in Section 8.5. The function rtalloc is described in Sec-
tion 19.2, and the use of the routing tables for selecting multicast interfaces is described in
Chapter 14.

Already a member?
The last check performed on the request is to examine the imo_membership array

to see if the selected interface is already a member of the requested group. If the for
loop finds a match, or if the membership array is full, EADDRINUSE or ETOOMANYREFS
is posted and processing of this option stops.
Join the group

At this point the request looks reasonable, i n_addmul t i arranges for IP to begin
receiving multicast datagrams for the group. The pointer returned by in_addmulti
points to a new or existing in_multi structure (Figure 12.12) in the interface’s multi-
cast group list. It is saved in the membership array and the size of the array is incre-
mented.

in_addmult i Function

in_addmulti and its companion in_delmult i (Figures 12.27 and 12.36) maintain the
list of multicast groups that an interface has joined. Join requests either add a new
i n_mul t i structure to the interface list or increase the reference count of an existing
structure.

469 struct in_multi *
470 in_addmulti(ap, ifp)
471 struct in_addr *ap;
472 struct ifnet *ifp;
473 {
474 struct in_multi *inm;
475 struct ifreq ifr;
476 struct in_ifaddr *ia;
477 int s = splnet();

478 /*
479 * See if address already in list.
480 */
481 IN_LOOKUP_MULTI(*ap, ifp, inm) ;
482 if (inm !: NULL) {
483 /*
484 * Found it; just increment the reference count.
485 */
486 ++inm->irm~ refcount;
487 } else {

in.c

Figure 12.27 in_addmulti function: first half.

Already a member
469 487 ip_setmoptions has already verified that ap points to a class D multicast address

and that i fp points to a multicast-capable interface. IN_LOOKUP_MULTI (Figure 12.14)
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determines if the interface is already a member of the group. If it is a member,
±n_addmul t ± updates the reference count and returns.

If the interface is not yet a member of the group, the code in Figure 12.28 is exe-
cuted.

487
488
489
490
491
492
493
494
495
496
497
498
499
5OO
501
502
503
504
5O5
5O6
5O7
5O8
5O9
510
511
512
513
514
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516
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520
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522
523
524
525
526
527
528
529
530 }

} else {
/*

* New address; allocate a new multicast record
* and link it into the interface’s multicast list.
*/

inm = (struct in_multi *) malloc(sizeof(*inm),
M_IPI~IADDR, M NOWAIT);

if (iNm == NULL) {
splx(s);
return (NULL);

}
inm->inm addr - *ap;
inm->inm_ifp = ifp;
inm->inm_refcount : i;
IFP_TO_IA(ifp, ia);
if (ia -- NULL) {

free(inm, M_IPMADDR);
splx(s);
return (NULL);

}
inm->inm_ia = ia;
inm >inm_next - ia->ia_multiaddrs;
ia->ia_multiaddrs = inm;
/*

* Ask the network driver to update its multicast reception
* filter appropriately for the new address.
*/
((struct sockaddr_in *) &ifr.ifr_addr) >sin_family - AF_INET;
((struct sockaddr_in *) &ifr.ifr_addr)->sin_addr = *ap;
if ((ifp->if_ioctl == NULL) I I

(*ifp->if_ioctl) (ifp, SIOCADDFIULTI, (caddr_t) & ifr) !- 0)
ia->ia_multiaddrs - inm->inm_next;
free(inm, M_IPMADDR);
splx(s);
return (NULL);

* Let IGMP know that we have joined a New IP multicast group.
*/

lgmp_joingroup(in~);
}
splx(s);
return (inm);

Figure 12.28 in_addmulti function: second half.

ir/.C

iF!.C
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487--509

510--530

Update the in_multi list
If the interface isn’t a member yet, i n_addmult i allocates, initializes, and inserts

the new ±n_malt± structure at the front of the ±a_mult±addrs list in the interface’s
±n_± faddr structure (Figure 12.13).

Update the interface and announce the change
If the interface driver has defined an i f_± o c t 3_ function, i n_addmu 1 t i constructs

an i fr÷q structure (Figure 4.23) containing the group address and passes the
SIOCADDMULTI request to the interface. If the interface rejects the request, the
in__mu 1 t i structure is unlinked from the interface and released. Finally, in_addmu 1 t i
calls igmp_joingroup to propagate the membership change to other hosts and
routers.

in_addmulti returns a pointer to the in_malt± structure or null if an error
occurred.

slioctl and loioctl Functions: SI0CADDMULTI and SIOCDELMULTI

Multicast group processing for the SLIP and loopback interfaces is trivial: there is noth-
ing to do other than error checking. Figure 12.29 shows the SLIP processing.

673 case SIOCADDMULTI:
674 case SIOCDELMULTI:
675 ifr - (struct ifreq *) data;
676 if (ifr == 0) {
677 error : EAFNOSUPPORT;
678 break;
679 }
680 switch (ifr->ifr_addr.sa_family)

/* XXX */

if_sl.c

681 case AF_INET:
682 break;

683 default:
684 error : EAFNOSUPPORT;
685 break;
686 }
687 break;

Figure 12.29 s 1 ioct 1 function: multicast processing.

673--687    EAFNOSUPPORT is returned whether the request is empty or not for the AF_INET
protocol family.

152-166

Figure 12.30 shows the loopback processing.
The processing for the loopback interface is identical to the SLIP code in Fig-

ure 12.29. ~.AFNOSUPPORT is returned whether the request is empty or not for the
AF_TN~.T protocol family.
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152
153
154
155
156
157
158
159

case SIOCADDMULTI:
case SIOCDELMULTI:

ifr : (struct ifreq *) data;
if (ifr == 0) {

error : EAFNOSUPPORT; /* XXX *!
break;

}
switch (ifr->ifr_addr.sa_family) {

160 case AF_INET:
161 break;

162 default:
163 error = EAFNOSUPPORT;
164 break;
165 }
166 break;

Figure 12.30 loioctl function: multicast processing.

if_loop.c

if_loop.c

leioctl Function: SIOCADDMULTI and SIOCDELMULTI

Recall from Figure 4.2 that 1 e i o c t 1 is the i f_i oct 1 function for the LANCE Ethernet
driver. Figure 12.31 shows the code for the SIOCADDMULTI and SIOCDELMULTI
options.

657
658
659
660
661
662

case SIOCADDMULTI:
case SIOCDELMULTI:

/* Update our multicast list */
error = (cmd =: SIOCADDMULTI) ?

ether_addmulti((struct ifreq *) data, &le->sc_ac)
ether_delmulti((struct ifreq *) data, &le->sc_ac);

if_le.c

663 if (error == ENETRESET) {
664 /*
665 * Multicast list has changed; set the hardware
666 * filter accordingly.
667 */
668 lereset(ifp->if_unit);
669 error = 0;
670 }
671 break;

Figure 12.31 1 eioc t 1 function: multicast processing.

if_le.c

657-671 leioctl passes add and delete requests directly to the ether_addmulti or
ether_delmulti functions. Both functions return ENETRESET if the request changes
the set of IP multicast addresses that must be received by the physical hardware. If this
occurs, leioctl calls lereset to reinitialize the hardware with the new multicast
reception list.
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We don’t show lereset, as it is specific to the LANCE Ethernet hardware. For multicasting,
lereset arranges for the hardware to receive frames addressed to any of the Ethernet multi-
cast addresses contained in the ether_mult i list associated with the interface. The LANCE
driver uses a hashing mechanism if each entry on the multicast list is a single address. The
hash code allows the hardware to receive multicast packets selectively. If the driver finds an
entry that describes a range of addresses, it abandons the hash strategy and configures the
hardware to receive all multicast packets. If the driver must fall back to receiving all Ethernet
multicast addresses, the IFF_ALLMULTI flag is on when lereset returns.

ether_adclmult i Function

Every Ethernet driver calls ether_adclmulti to process the SIOCADDHULTI request.
This function maps the IP class D address to the appropriate Ethernet multicast address
(Figure 12.5) and updates the et h er_mu i t i list. Figure 12.32 shows the first half of the
et her_adclmu i t i function.

366-399

Initialize address range
First, ether_addmulti initializes a range of multicast addresses in addrlo and

addrhi (both are arrays of six unsigned characters). If the requested address is from
the AF_UNSPEC family, ether_addmult i assumes the address is an explicit Ethernet
multicast address and copies it into addrlo and addrhi. If the address is in the
AF_INET family and is INADDR_ANY (0.0.0.0), ether_addmulti initializes addrlo to
ether_ipmulticast_min and addrhi to ether_ipmulticast_max. These two
constant Ethernet addresses are defined as:

u_char ether_ipmulticast_min[6] : { OxOl, OxO0, Ox5e, OxO0, OxO0, OxO0 };
u_char ether_ipmulticast_max[6] = { OxOl, OxO0, Ox5e, Ox7f, Oxff, Oxff ];

As with etherbroadcastaddr (Section 4.3), this is a convenient way to define a 48-bit con-
stant.

IP multicast routers must listen for all IP multicasts. Specifying the group as
INADDR_AN¥ is considered a request to join every IP multicast group. The Ethernet
address range selected in this case spans the entire block of IP multicast addresses allo-
cated to the IANA.

The mrouted(8) daemon issues a SIOCADDMULTI request with INADDR_ANY when it begins
routing packets for a multicast interface.

ETHER MAP IP MULTICAST maps any other specific IP multicast group to the
appropriate Ethernet multicast address. Requests for other address families are rejected
with an EAFNOSUPPORT error.

While the Ethernet multicast list supports address ranges, there is no way for a pro-
cess or the kernel to request a specific range, other than to enumerate the addresses,
since addrlo and addrhi are always set to the same address.

The second half of ether_addmulti, shown in Figure 12.33, verifies the address
range and adds it to the list if it is new.
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366 ±nt                                                                   if_ethersubr.c
367 ether_addmulti (ifr, ac)
368 struct ifreq *ifr;
369 struct arpcom *ac;
370 {
371 struct ether_multi *enm;
372 struct sockaddr_in *sin;
373 u_char addrlo [6] ;
374 u_char addrhi [6] ;
375 int s = splimp() ;

400--418

q19--441

376 switch (ifr >ifr_addr.sa_family) {

377
378
379
380

case AF_UNSPEC:
bcopy(ifr->ifr_addr.sa_data, addrlo,
bcopy(addrlo, addrhi, 6);
break;

6);

381
382
383
384
385
386
387
388
389
390
391
392
393
394
395

case AF_INET:
sin - (struct sockaddr_in *) &(ifr->ifr_addr);
if (sin->sin_addr.s_addr =: INADDR_ANY) {

/*
* An IP address of INADDR_ANY means listen to all
* of the Ethernet multicast addresses used for IP.
* (This is for the sake of IP multicast routers.
*/

bcopy(ether_ipmulticast_min, addrlo, 6);
bcopy(ether_ipmulticast_max, addrhi, 6);

} else {
ETHER_I~AP IP MULTICAST(&sin->sin_addr, addrlo);
bcopy(addrlo, addrhi, 6);

}
break;

396 default:
397 splx(s);
398 return (EAFNOSUPPORT);
399 }

Figure 12.32 ether_addmulti function: first half.

īf_ethersubr.c

Already receiving
ether_addmulti checks the multicast bit (Figure 4.12) of the high and low

addresses to ensure that they are indeed Ethernet multicast addresses.
ETHER_LOOKUP_MULT I (Figure 12.9) determines if the hardware is already listening for
the specified multicast addresses. If so, the reference count (enm_refcount) in the
matching ether_mult i structure is incremented and ether_addmult i returns 0.

Update etI~er_mnlt± list
If this is a new address range, a new ether_multi structure is allocated, initial-

ized, and linked to the ae_multiaddrs list in the interfaces arpcom structure (Fig-
ure 12.8). If EN~.TRESET is returned by ether_addmul t i, the device driver that called
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4OO
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if_ethersubr.c

* Verify that we have valid Ethernet multicast addresses.
*/

if ((addrlo[0] & 0x01) != i I I (addrhi[0] & 0x01) != i) {
splx(s);
return (EINVAL);

}
/*

* See if the address range is already in the list.
*/

ETHER_LOOKUP_MULTI(addrlo, addrhi, ac, enm);
if (enm !- NULL) {

/*
* Found it; just increment the reference count.
*/

++enm->enm_refcount;
splx(s);
return (0);

]
/*

* New address or range; malloc a new multicast record
* and link it into the interface’s multicast list.
*/

enm : (struct ether_multi *) malloc(sizeof(*enm), M_IFMADDR, M NOWAIT);
if (enm == NULL) {

splx(s);
return (ENOBUFS);

]
bcopy(addrlo, enm->enm_addrlo, 6);
bcopy(addrhi, enm->enm_addrhi, 6);
enm->enm_ac - ac;
enm->enm_refcount : i;
enm->enm next : ac->ac_multiaddrs;
ac->ac multiaddrs - enm;
ac >ac_multicnt++;
splx(s);
/*

* Return ENETRESET to inform the driver that the list has changed
* and its reception filter should be adjusted accordingly.
*/

return (ENETRESET);

if_ethersubr.c

Figure12.33 ÷ther_adc~ult±function:second half.

the function knows that the multicast list has changed and the hardware reception filter
must be updated.

Figure 12.34 shows the relationships between the ±p__mop¢±ons, ±n_mul¢±, and
÷¢her__raul¢± structures after the LANCE Ethernet interface has joined the all-hosts
group.
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ifnet:

arpcom{}~

]
le_softc[0]:

ifnet()

ac_multiaddrs

le_softc{}

in_ifaddr{}

Figure 12.34

ether_multi

in multi{ }
224.0.0.1
inm_i fp
inm_ia

inm_re fcount
inm_timer
into_next

Overview of multicast data structures.

in_moptions{
multicast_ifp

_membership[0]

membership[19]

12.12

804--830

831--856

Leaving an IP Multicast Group

In general, the steps required to leave a group are the reverse of those required to join a
group. The membership list in the ip_moptions structure is updated, the in_multi
list for the IP interface is updated, and the ether_multi list for the device is updated.
First, we return to ip_setmoptions and the IP_DROP_MEMBERSHIP case, which we
show in Figure 12.35.

Validation
The mbuf must contain an ip_mreq structure, within the structure

imr_multiaddr must be a multicast group, and there must be an interface associated
with the unicast address imr_interface. If these conditions aren’t met, EINVAL or
EADDRNOTAVAIL is posted and processing continues at the end of the switch.

Delete membership references
The for loop searches the group membership list for an in_multi structure with

the requested {interface, group} pair. If a match isn’t found, EADDRNOTAVAIL is posted.
Otherwise, in_delmulti updates the in_multi list and the second for loop removes
the unused entry in the membership array by shifting subsequent entries to fill the gap.
The size of the array is updated accordingly.
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case IP_DROP_MEMBERSHIP :                                             ip_output.c

* Drop a multicast group membership.
* Group must be a valid IP multicast address.
*/

if (m == NULL I I m >m_len !- sizeof(struct ip mreq)) {
error = EINVAL;
break;

}
mreq - mtod(m, struct ip_mreq *);
if (!IN_MULTICAST(ntohl(mreq->imr_multiaddr.s_addr))) {

error : EINVAL;
break;

}
/.

* If an interface address was specified, get a pointer
* to its ifnet structure.
*/

if (mreq->imr_interface.s_addr == INADDR ANY)
ifp = NULL;

else {
INADDR TO IFP(mreq->imr_interface, ifp);
if (ifp =- NULL) {

error : EADDRNOTAVAIL;
break;

}
}
/.

* Find the membership in the membership array.
*/

for (i - 0; i < imo->imo_num memberships; ++i) {
if ((ifp == NULL I I

imo->imo_membership[i]->inm_ifp == ifp) &&
imo->imo_membership[i]->inm_addr.s_addr ==
mreq->imr_multiaddr.s_addr)
break;

}
if (i == imo->imo_num memberships) {

error : EADDRNOTAVAIL;
break;

}
/*

* Give up the multicast address record to which the
* membership points.
*/

ln_delmulti(imo->imo_membership[i]);
/*

* Remove the gap in the membership array.
*/

for (++i; i < imo->imo num memberships; ++i)
imo->imo_membership[i - i] = imo->imo_membership[i];

--imo >imo hum memberships;
break;
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Figure 12.35 ip_setmoptions function: leaving a multicast group.

ip_output.c
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in_delmult i Function

Since many processes may be receiving multicast datagrams, calling in_delmul t i
(Figure 12.36) results only in leaving the specified group when there are no more refer-
ences to the in_rau 1 ¢ i structure.

534 int
535 in_delmulti(inm)
536 struct in_multi *inm;
537 {
538 struct in_multi **p;
539 struct ifreq ifr;
540 int s = splnet();

i;I.C

541
542
543
544
545
546
547
548
549
55O
551
552
553
554
555
556
557
558
559
56O
561
562
563
564
565
566
567

if (--inm->inm_refcount -- 0) {
/*

* NO remaining claims to this record; let IGMP know that
* we are leaving the multicast group.
*/

igmp_leavegroup(inm);
/*

* Unlink from list.
*/

for (p : &inm->inm ia->ia_multiaddrs;
*p !: inm;
p - &(*p)->inm_next)

continue;
*p = (*p)->inm next;
/*

* Notify the network driver to update its multicast reception
* filter.
*/
((struct sockaddr_in *) &(ifr.ifr_addr))->sin_family = AF_INET;
((struct sockaddr_in *) &(ifr.ifr_addr))->sin_addr =

inm->inm_addr;
(*inm->inm_ifp->if_&octl) (inm >inm_ifp, SIOCDELMULTI,

(caddr_t) & ifr);
free(inm, M_IPNADDR);

}
splx(s);

itl.C

Figure 12.36 in_delmulti function.

534-567

Update in_multi structure

i n_de lmu 1 t i starts by decrementing the reference count of the in_mu 1 t i struc-
ture and returning if the reference count is nonzero. If the reference count drops to O,
there are no longer any processes waiting for the multicast datagrams on the specified
{interface, group} pair. igmp_leavegroup is called, but as we’ll see in Section 13.8, the
function does nothing.
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The £or loop traverses the linked list of in_multi structures until it locates the
matching structure.

The body of this for loop consists of the single continue statement. All the work is done by
the expressions at the top of the loop. The continue is not required but stands out more
clearly than a bare semicolon.

The ETHER_LOOKUP_MULTI macro in Figure 12.9 does not use the continue and the bare
semicolon is almost undetectable.

After the loop, the matching in_multi structure is unlinked and in_delmulti
issues the $ I OCDELMULTI request to the interface so that any device-specific data struc-
tures can be updated. For Ethernet interfaces, this means the ether_multi list is
updated. Finally, the in_mul t i structure is released.

The SIOCDELMULT~ case for the LANCE driver was included in Figure 12.31 where we also
discussed the s IOCADDMULTI case.

ether_delmult i Function

445--479

480--494

495--511

When IP releases an i n_mul t i structure associated with an Ethernet device, the device
may be able to release the matching ether_multi structure. We say may because IP
may be unaware of other software listening for IP multicasts. When the reference count
for the ether__multi structure drops to 0, it can be released. Figure 12.37 shows the
ether_delmulti function.

ether_delmulti initializes the addrlo and addrhi arrays in the same way as
ether_addmul t i does.

Locate ether multi structure
ETHER_LOOKUP_MULTI locates a matching ether_multi structure. If it isn’t

found, ENXIO is returned. If the matching structure is found, the reference count is
decremented and if the result is nonzero, ether_delmulti returns immediately. In
this case, the structure may not be released because another protocol has elected to
receive the same multicast packets.

Delete ether_multi structure
The for loop searches the ether_multi list for the matching address range. The

matching structure is unlinked from the list and released. Finally, the size of the list is
updated and ENETRESET is returned so that the device driver can update its hardware
reception filter.
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445 ±nt                                                                   if_ethersubr.c
446 ether_delmulti(ifr, ac)
447 struct ifreq *ifr;
448 struct arpcom *ac;
449 {
450 struct ether_multi *enm;
451 struct ether multi **p;
452 struct sockaddr_in *sin;
453 u_char addrlo[6];
454 u_char addrhi[6];
455 int s = splimp();

456 switch (ifr->ifr_addr.sa_family) {

457 case AF_UNSPEC:
458 bcopy(ifr->ifr_addr.sa_data, addrlo, 6);
459 bcopy(addrlo, addrhi, 6);
460 break;

461
462
463
464
465
466
467
468
469
470
471
472
473
474
475

476
477
478
479

480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

case AF_INET:
sin = (struct sockaddr_in *) &(ifr->ifr_addr);
if (sin->sin_addr.s_addr == INADDR_ANY) {

/*
* An IP address of INADDR_ANY means stop listening
* to the range of Ethernet multicast addresses used
* for IP.
*/

bcopy(ether_ipmulticast_min, addrlo, 6);
bcopy(ether_ipmulticast_max, addrhi, 6);

] else {
ETHER MAP IP MULTICAST(&sin->sin_addr, addrlo);
bcopy(addrlo, addrhi, 6);

}
break;

default:
splx(s);
return (EAFNOSUPPORT) ;

}

* Look up the address in our list.
*/

ETHER_LOOKUP_MULTI(addrlo, addrhi, ac, enm);
if (enm := NULL) {

splx(s);
return (ENXIO);

}
if (--enm->enm_refcount != 0) {

/*
* Still some claims to this record.
*/

splx(s);
return (0);
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495
496
497
498
499
500
501
502
503
504
505
506
507
508
5O9
510
511

* No remaining claims to this record; unlink and free it.
*/

for (p = &enm->enm_ac->ac multiaddrs;
*p !: enm;
p = &(*p)->enm_next)

continue;
*p = (*p)->enm_next;
free(enm, M_IFMADDR);
ac->ac_multicnt--;
splx(s);
/*

* Return ENETRESET to inform the driver that the list has changed
* and its reception filter should be adjusted accordingly.
*/

return (ENETRESET);

if_ethersubr.c
Figure 12.37 ether_delmulti function.

12.13

876--914

ip_getmoptions Function
Fetching the current option settings is considerably easier than setting them. All the
work is done by ip_getmoptions, shown in Figure 12.38.

Copy the option data and return
The three arguments to ip_getmoptions are: optname, the option to fetch; imo,

the ip_moptions structure; and mp, which points to a pointer to an mbuf. m_get allo-
cates an mbuf to hold the option data. For each of the three options, a pointer (addr,
tt 1, and loop, respectively) is initialized to the data area of the mbuf and the length of
the mbuf is set to the length of the option data.

For IP_MULTICAST_IF, the unicast address found by IFP TO IA is returned or
INADDR_ANY is returned if no explicit multicast interface has been selected.

For IP_HULTICAST_TTL, imo_multicast_ttl is returned or if an explicit multi-
cast TTL has not been selected, ] (I P_DEFAULT_MULTICAST_TTL) is returned.

For IP_MULTICAST_LOOP, imo_multicast_loop is returned or if an explicit
multicast loopback policy has not been selected, 1 (IP_DEFAULT_MULTICAST_LOOP) is
returned.

Finally, EOPNOTSUPP is returned if the option isn’t recognized.
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876 int
877 ip_getmoptions(optname, imo, mp)
878 int      optname;
879 struct ip_moptions *imo;
880 struct mbuf **mp;
881 {
882 u_char *ttl;
883 u_char *loop;
884 struct in_addr *addr;
885 struct in_ifaddr *ia;

886 *mp = m_get(M_WAIT, MT_SOOPTS);

887 switch (optname) {

888
889
890
891
892
893
894
895
896
897
898

899
900
901
902
903
904

905
906
907
908
909
910

911
912
913
914

case IP_MULTICAST_IF:
addr = mtod(*mp, struct in_addr *);
(*mp)->m_len = sizeof(struct in_addr);
if (imo =- NULL I I imo->imo_multicast_ifp == NULL)

addr->s_addr = INADDR ANY;
else {

IFP TO IA(imo->imo_multicast_ifp, ia);
addr->s_addr : (ia == NULL) ?. INADDR_ANY

: IA_SIN(ia)->sin_addr.s_addr;
}
return (0);

case IP_MULTICAST_TTL:
ttl = mtod(*mp, u_char *);
(*mp)->m_len = i;
*ttl = (imo :: NULL) ? IP_DEFAULT_MULTICAST_TTL

: imo->imo multi~ast_ttl;
return (0);

case IP_MULTICAST_LOOP:
loop = mtod(*mp, u_char *);
(*mp)->m_len = i;
*loop : (imo -- NULL) ? IP_DEFAULT_MULTICAST_LOOP

: imo->imo_multicast_loop;
return (0) ;

default:
return (EOPNOTSUPP);

}

Figure 12.38 ip_getmoptions function.

ip_output.c

ip_output.c
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12.14

214--245

246--257

Multicast Input Processing: ipintr Function

Now that we have described multicast addressing, group memberships, and the various
data structures associated with IP and Ethernet multicasting, we can move on to multi-
cast datagram processing.

In Figure 4.13 we saw that an incoming Ethernet multicast packet is detected by
ether_input, which sets the ~_MCAST flag in the mbuf header before placing an IP
packet on the IP input queue (ipintrq). The ipintr function processes each packet
in turn. The multicast processing code we omitted from the discussion of ipintr
appears in Figure 12.39.

The code is from the section of ipintr that determines if a packet is addressed to
the local system or if it should be forwarded. At this point, the packet has been checked
for errors and any options have been processed, ip points to the IP header within the
packet.

Forward packets if configured as multicast router
This entire section of code is skipped if the destination address is not an IP multicast

group. If the address is a multicast group and the system is configured as an IP multi-
cast router (ip_mrouter), ip_id is converted to network byte order (the form that
ip_mforward expects), and the packet is passed to ip_mforward. If ip_mforward
returns a nonzero value, an error was detected or the packet arrived through a multicast
tunnel. The packet is discarded and ips_eant forward incremented.

We describe multicast tunnels in Chapter 14. They transport multicast packets between multi-
cast routers separated by standard IP routers. Packets that arrive through a tunnel must be
processed by ip_mforward and not ipintr.

If ip_mforward returns 0, ip_id is converted back to host byte order and ipintr
may continue processing the packet.

If ip points to an IGMP packet, it is accepted and execution continues at ours
(ipintr, Figure 10.11). A multicast router must accept all IGMP packets irrespective of
their individual destination groups or of the group memberships of the incoming inter-
face. The IGMP packets contain announcements of membership changes.

The remaining code in Figure 12.39 is executed whether or not the system is config-
ured as a multicast router. IN_LOOKUP_MULTI searches the list of multicast groups that
the interface has joined. If a match is not found, the packet is discarded. This occurs
when the hardware filter accepts unwanted packets or when a group associated with
the interface and the destination group of the packet map to the same Ethernet multi-
cast address.

If the packet is accepted, execution continues at the label ours in ipintr (Fig-
ure 10.11).
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214
215
216

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257

if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
struct in multi *inm;
extern struct socket *ip mrouter;

ip_input.c

if (ip_mrouter) {
/*

* If we are acting as a multicast router, all
* incoming multicast packets are passed to the
* kernel-level multicast forwarding function.
* The packet is returned (relatively) intact; if
* ip_mforward() returns a non-zero value, the packet
* must be discarded, else it may be accepted be!ow.

* (The IP ident field is put in the same byte order
* as expected when ip_mforward() is called from
* ip_output().)
*/

ip->ip_id - htons(ip->ip_id);
if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {

ipstat.ips_cantforward++;
m_freem(m);
goto next;

}
ip->ip_id = ntohs(ip->ip_id);

* The process-level routing demon needs to receive
* all multicast IGMP packets, whether or not this
* host belongs to their destination groups.
*/

if (ip->ip_p == IPPROTO_IGMP)
goto ours;

ipstat.ips_forward++;

}
/.

* See if we belong to the destination multicast group on the
* arrival interface.
*/

IN_LOOKUP MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
if (inm -- NULL) {

ipstat.ips_cantforward++;
m_freem(m);
goto next;

}
goto ours;

ip_input.c
Figure 12.39 ipintr function: multicast input processing.
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12.15 Multicast Output Processing: ip_output Function

When we discussed ip_©utput in Chapter 8, we postponed discussion of the mp argu-
ment to ip_output and the multicast processing code. In ip_output, if mp points to
an ±p_moptions structure, it overrides the default multicast output processing. The
omitted code from ip_output appears in Figures 12.40 and 12.41. ip points to the out-
going packet, m points to the mbuf holding the packet, and i fp points to the interface
selected by the routing tables for the destination group.

129 if
130
131

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
~65
166
167

(IN_MULTICAST(ntohI(ip >ip_dst.s_addr))) {
struct in_multi *inm;
extern struct ifnet loif;

m->m flags I- M_HCAST;
/*

* IP destination address is multicast. Make sure "dst"
* still points to the address in "to". (It may have been
* changed to point to a gateway address, above.
*/

dst - (struct sockaddr_in *) &ro->ro_dst;
/*

* See if the caller provided any multicast options
*/

if (imo !- NULL) {
ip->ip_ttl - imo->imo multicast_ttl;
if (imo->imojnulticast_ifp != NULL)

ifp - imo->imo_multicast_ifp;
else

ip->ip_ttl - IP_DEFAULT_MULTICAST_TTL;
/*

* Confirm that the outgoing interface supports multicast.
*/

if ((ifp->if_flags & IFF_MULTICAST) =- 0) {
ipstat.ips_noroute++;
error = ENETUNREACH;
goto bad;

}
/.

* If source address not specified yet, use address
* of outgoing interface.
*/

if (ip->ip_src.s_addr == INADDR_ANY) {
struct in_ifaddr *ia;

for (ia : in_ifaddr; ia; ia = ia->ia_next)
if (ia->ia_ifp =- ifp) {

ip >ip_src = IA_SIN(ia)->sin_addr;
break;

}

Figure 12.40 ip_outpnt function: defaults and source address.

ip_output.c

ip_output.c
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129--155

156--167

Establish defaults

The code in Figure 12.40 is executed only if the packet is destined for a multicast
group. If so, ±p_output sets ~ ~CAST in the mbuf and d~t is reset to the final desti-
nation as it may have been set to the next-hop router earlier in ±p_ou¢pu~ (Fig-
ure 8.24).

If an ±p_mopt±ons structure was passed, ±13_~_ and ± f~ are changed accord-
ingly. Otherwise, ip_ttl is set to 1 (IP_DEFAULT_MULTICAST_TTL), which prevents
the multicast from escaping to a remote network. The interface selected by consulting
the routing tables or the interface specified within the ip_moptions structure must
support multicasting. If they do not, ip_output discards the packet and returns
ENETUNREACH.

Select source address
If the source address is unspecified, the £o~ loop finds the Internet unicast address

associated with the outgoing interface and fills in ±p_src in the IP header.

Unlike a unicast packet, an outgoing multicast packet may be transmitted on more
than one interface if the system is configured as a multicast router. Even if the system is
not a multicast router, the outgoing interface may be a member of the destination group
and may need to receive the packet. Finally, we need to consider the multicast loopback
policy and the loopback interface itself. Taking all this into account, there are three
questions to consider:

¯ Should the packet be received on the outgoing interface?
¯ Should the packet be forwarded to other interfaces?
¯ Should the packet be transmitted on the outgoing interface?

Figure 12.41 shows the code from ip_output that answers these questions.

168--176

178--197

Loopback or not?

If IN_LOOKUP_MULTI determines that the outgoing interface is a member of the
destination group and imo_r~ulticast_loop is nonzero, the packet is queued for
input on the output interface by ip_mloopback. In this case, the original packet is not
considered for forwarding, since the copy is forwarded during input processing if nec-
essary.

Forward or not?

If the packet is not looped back, but the system is configured as a multicast router
and the packet is eligible for forwarding, ip_mforward distributes copies to other
multicast interfaces. If ip_mforward does not return 0, ip_output discards the
packet and does not attempt to transmit it. This indicates an error with the packet.

To prevent infinite recursion between ip_mforward and ip_output,
ip_mforward always turns on IP_FORWARDING before calling ip_output. A data-
gram originating on the system is eligible for forwarding because the transport proto-
cols do not turn on I P_FORWARDING.
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198--209

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
20O
201
202
203
204
205
206
207
208
209
210
211

IN_LOOKUP_MULTI(ip->ip_dst, ifp,
if (inm != NULL &&

else

inm);

(imo := NULL I I imo->imo_multicast_loop)) {
/*

* If we belong to the destination multicast group
* on the outgoing interface, and the caller did not
* forbid loopback, loop back a copy.

*/
ip_mloopback(ifp, m, dst);

{

If we are acting as a multicast router, perform
multicast forwarding as if the packet had just
arrived on the interface to which we are about
to send. The multicast forwarding function
recursively calls this function, using the

* IP_FORWARDING flag to prevent infinite recursion.

* Hulticasts that are looped back by ip_mloopback(),
* above, will be forwarded by the ip_input() routine,
* if necessary.
*/

extern struct socket *ip_mrouter;
if (ip_mrouter && (flags & IP_FORWARDING) == 0) {

if (ip_mforward(m, ifp) != 0) {
m_freem(m);
goto done;

}

}
/*

* Hulticasts with a time-to-live of zero may be looped-
* back, above, but must not be transmitted on a network.
* Also, multicasts addressed to the loopback interface
* are not sent -- the above call to ip_mloopback() will
* loop back a copy if this host actually belongs to the
* destination group on the loopback interface.
*/

if (ip->ip_ttl == 0 I I ifp == &loif) {
m_freem(m);
goto done;

]
goto sendit;

Figure 12.41 ip_output function: loopback, forward, and send.

ip_output.c

ip_output.c

Transmit or not?

Packets with a TTL of 0 may be looped back, but they are never forwarded
(ip_mforward discards them) and are never transmitted. If the TTL is 0 or if the out-
put interface is the loopback interface, ip_output discards the packet since the TTL
has expired or the packet has already been looped back by ip_mloopback.
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210--211

Send packet
If the packet has made it this far, it is ready to be physically transmitted on the out-

put interface. The code at s÷nd±¢ (±p_ouCpu¢, Figure 8.25) may fragment the data-
gram before passing it (or the resulting fragments) to the interface’s
function. We’ll see in Section 21.10 that the Ethernet output function,
calls arpr÷solv÷, which calls ETHER_MAP IP MULTICAST to construct an Ethernet
multicast destination address based on the IP multicast destination address.

ip_mloopback Function

ip_mloopback relies on looutput (Figure 5.27) to do its job. Instead of passing a
pointer to the loopback interface to looutput, ip_mloopback passes a pointer to the
output multicast interface. The ip_mloopback function is shown in Figure 12.42.

935 static void
ip_output.c

936 ip_mloopback(ifp, m, dst)
937 struct ifnet *ifp;
938 struct mbuf *m;
939 struct sockaddr_in *dst;
940 {
941 struct ip *ip;
942 struct mbuf *copym;

943
944
945
946
947
948
949
95O
951
952
953
954
955
956

copym : m_copy(m, 0, M_COPYALL);
if (copym !: NULL) {

/*
* We don’t bother to fragment if the IF length is greater
* than the interface’s MTU. Can this possibly matter?
*/

ip - mtod(copym, struct ip *);
ip >ip_len - htons((u_short) ip->ip_len);
ip->ip_off - htons((u_short) ip->ip_off);
ip->ip_sum = 0;
ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
(void) looutput(ifp, copym, (struct sockaddr *) dst, NULL);

}

ip_output.c
Figure 12.42 ip_mloopback function.

929--956

Duplicate and queue packet

Copying the packet isn’t enough; the packet must look as though it was received on
the output interface, so ip_ml oopback converts ip_l en and ip_o f f to network byte
order and computes the checksum for the packet, looutput takes care of putting the
packet on the IP input queue.
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12.16 Performance Considerations

The multicast implementation in Net/3 has several potential performance bottlenecks.
Since many Ethernet cards do not support perfect filtering of multicast addresses, the
operating system must be prepared to discard multicast packets that pass through the
hardware filter. In the worst case, an Ethernet card may fall back to receiving all multi-
cast packets, most of which must be discarded by ±p±ntr when they are found not to
contain a valid IP multicast group address.

IP uses a simple linear list and linear search to filter incoming IP datagrams. If the
list grows to any appreciable length, a caching mechanism such as moving the most
recently received address to the front of the list would help performance.

12.17 Summary

In this chapter we described how a single host processes IP multicast datagrams. We
looked at the format of an IP class D address and an Ethernet multicast address and the
mapping between the two.

We discussed the in_multi and ÷ther_multi structures, and we saw that each
IP multicast interface maintains its own group membership list and that each Ethernet
interface maintains a list of Ethernet multicast addresses.

During input processing, IP multicasts are accepted only if they arrive on an inter-
face that is a member of their destination group, although they may be forwarded to
other interfaces if the system is configured as a multicast router.

Systems configured as multicast routers must accept all multicast packets on every
interface. This can be done quickly by issuing the SIOCADDMU~,TI command for the
INADDR_ANY address.

The ip_moptions structure is the cornerstone of multicast output processing. It
controls the selection of an output interface, the TTL field of the multicast datagram,
and the loopback policy. It also holds references to the in_multi structures, which
determine when an interface joins or leaves an IP multicast group.

We also discussed the two concepts implemented by the multicast TTL value:
packet lifetime and packet scope.

Exercises

12.1 What is the difference between sending an IP broadcast packet to 255.255.255.255 and
sending an IP multicast to the all-hosts group 224.0.0.1?

12.2 Why are interfaces identified by their IP unicast addresses in the multicasting code? What
must be changed so that an interface could send and receive multicast datagrams but not
have a unicast IP address?

12.3 In Section 12.3 we said that 32 IP groups are mapped to a single Ethernet address. Since
9 bits of a 32-bit address are not included in the mapping, why didn’t we say that 512 (29)
IP groups mapped to a single Ethernet address?
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12.4

12.5

12.6

12.7

12.8

12.9

12.10

12.11

12.12

12.13

Why do you think IP_MAX_MEMBERSHIPS is set to 20? Could it be set to a larger value?
Hint: Consider the size of the ip_mopt i_ons structure (Figure 12.15).

What happens when a multicast datagram is looped back by IP and is also received by the
hardware interface on which it is transmitted (i.e., a nonsimplex interface)?

Draw a picture of a network with a multihomed host so that a multicast packet sent on one
interface may be received on the other interface even if the host is not acting as a multicast
router.

Trace the membership add request through the SLIP and loopback interfaces instead of the
Ethernet interface.

How could a process request that the kernel join more than I P_MAX_MEMBERSHI PS?

Computing the checksum on a looped back packet is superfluous. Design a method to
avoid the checksum computation for loopback packets.

How many IP multicast groups could an interface join without reusing an Ethernet multi-
cast address?

The careful reader might have noticed that in_delmulti assumes that the interface has
defined an ioctl function when it issues the SIOCDELHULTI request. Why is this OK?

What happens to the mbuf allocated in i~_getmo~tions if an unrecognized option is
requested?

Why is the group membership mechanism separate from the binding mechanism used to
receive unicast and broadcast datagrams?
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IGMP: Internet Group

Management Protocol

13.1 Introduction

IGMP conveys group membership information between hosts and routers on a local
network. Routers periodically multicast IGMP queries to the all-hosts group. Hosts
respond to the queries by multicasting IGMP report messages. The IGMP specification
appears in RFC 1112. Chapter 13 of Volume 1 describes the specification of IGMP and
provides some examples.

From an architecture perspective, IGMP is a transport protocol above IP. It has a
protocol number (2) and its messages are carried in IP datagrams (as with ICMP).
IGMP usually isn’t accessed directly by a process but, as with ICMP, a process can send
and receive IGMP messages through an IGMP socket. This feature enables multicast
routing daemons to be implemented as user-level processes.

Figure 13.1 shows the overall organization of the IGMP protocol in Net/3.
The key to IGMP processing is the collection of in_mul ti structures shown in the

center of Figure 13.1. An incoming IGMP query causes igmp_input to initialize a
countdown timer for each in_mult± structure. The timers are updated by
igmp_fasttimo, which calls igmp_sendreport as each timer expires.

We saw in Chapter 12 that ip_setmoptions calls igmp_j oingroulo when a new
in_multi structure is created, igmp_joingroup calls igmp_sendreport to
announce the new group and enables the group’s timer to schedule a second announce-
ment a short time later, igm~_sendreport takes care of formatting an IGMP message
and passing it to ip_outmut.

On the left and right of Figure 13.1 we see that a raw socket can send and receive
IGMP messages directly.

381
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~ input

Figure 13.1 Summary of IGMP processing.

13.2 Code Introduction

The IGMP protocol is implemented in four files listed in Figure 13.2.

File Description

net inet / igmp. h IGMP protocol definitions
netinet/ igmp_var, h IGMP implementation definitions
net ire t / in_vat, h IP multicast data structures
net inet / i gmp. c IGMP protocol implementation

Figure 13.2 Files discussed in this chapter.

Global Variables

Three new global variables, shown in Figure 13.3, are introduced in this chapter.

Statistics

IGMP statistics are maintained in the i gmp s t at variables shown in Figure 13.4.
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Variable

igmp_all_hosts_group
igmp_timers are running
igmpstat

Datatype

u_long
int
struct igmpstat

Description

all-hosts group address in network byte order
true if any IGMP timer is active, false otherwise
IGMP statistics (Figure 13.4).

Figure 13.3 Global variables introduced in this chapter.

igmpstat member

igps_rcv badqueries
igps_rcv_badreports
igps_rcv_badsum
igps_rcv_ourreports
igps_rcv_queries
igps_rcv_reports
igps_rcv_tooshort
igps_rcv_total
igps_snd_reports

Description

#messages received as invalid queries
#messages received as invalid reports
#messages received with bad checksum
#messages received as reports for local groups
#messages received as membership queries
#messages received as membership reports
#messages received with too few bytes
total #IGMP messages received
#messages sent as membership reports

Figure 13.4 IGMP statistics.

Figure 13.5 shows some sample output of these statistics, from the n÷tstat -p
igmp command on vangogh, cs. berkeley, edu.

netstat -p igmp output
18774 messages received
0 messages received with too few bytes
0 messages received with bad checksum
18774 membership queries received
0 membership queries received with invalid field(s)
0 membership reports received
0 membership reports received with invalid field(s)
0 membership reports received for groups to which we belong
0 membership reports sent

igmpstat member

igps_rcv_total
igps_rcv_tooshort
igps_rcv badsum
igps_rcv_queries
igps_rcv badqueries
igps_rcv_reports
igps_rcv badreports
igps_rcv_ourreports
igps_snd_reports

Figure 13.5 Sample IGMP statistics.

From Figure 13.5 we can tell that vangogh is attached to a network where IGMP is
being used, but that vangogh is not joining any multicast groups, since
igps_snd_reports is O.

SNMP Variables

There is no standard SNMP MIB for IGMP, but [McCloghrie and Farinacci 1994a]
describes an experimental MIB for IGMP.
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13.3

43 44

45-q6

47-48

Structure

An IGMP message is only 8 bytes long. Figure 13.6 shows the igral~ structure used by
Net/3.

43 struct igmp {
~mp.h

44 u_char igmp_type; /* version & type of IGMP message */
45 u_char igmp_code; /* unused, should be zero */
46 u_short igmp_cksum; /* IP style checksum */
47 struct in_addr igmp_group; /* group address being reported */
48 }; /* (zero for queries) */

~mp.h

Figure 13.6 igmp structure.

A 4-bit version code and a 4-bit type code are contained within igmp_type. Fig-
ure 13.7 shows the standard values.

Version Type igmp_type Description
1 1 0xll (IGMP_HOST_MEMBERSHIP_QUERY) membership query
1 2 0x12 (IGNP_HOST_NEMBERSHIP_REPORT) membership report
1 3 0x13 DVMRP message (Chapter 14)

Figure 13.7 IGMP message types.

Only version 1 messages are used by Net/3. Multicast routers send type 1
(IGMP_HOST_MEMBERSHI P_QUERY) messages to solicit membership reports from hosts
on the local network. The response to a type 1 IGMP message is a type 2
(IGMP_HOST_MEMBERSHIP_REPORT) message from the hosts reporting their multicast
membership information. Type 3 messages transport multicast routing information
between routers (Chapter 14). A host never processes type 3 messages. The remainder
of this chapter discusses only type I and 2 messages.

igmp_code is unused in IGMP version 1, and igrap_cksura is the familiar IP
checksum computed over all 8 bytes of the IGMP message.

igrap_groul~ is 0 for queries. For replies, it contains the multicast group being
reported.

Figure 13.8 shows the structure of an IGMP message relative to an IP datagram.

13.4 IGMP protosw Structure

Figure 13.9 describes the protosw structure for IGMP.
Although it is possible for a process to send raw IP packets through the IGMP

protosw entry, in this chapter we are concerned only with how the kernel processes
IGMP messages. Chapter 32 discusses how a process can access IGMP using a raw
socket.
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t~,’~p e code
1     1

IGMP message

cksum group

2 bytes 4 bytes

IP header

Figure 13.8

IP datagram

An IGMP message (igmp_ omitted).

Member

pr_type
pr_domain
pr_protocol
pr_flags
pr_input
pr_output
pr_ctlinput
pr_ctloutput
pr_usrreq
pr_init
pr_fasttimo
pr_slowtimo
pr_drain
pr_sysctl

inetsw[5]

SOCK RAW
&inetdomain
IPPROTO_IGMP (2)
PR ATOMIC[PR ADDR
igmp_input
rip_output
0
rip_ctloutput
rip_usrreq
igmp_init
igmp fasttimo
0
0
0

Description

IGMP provides raw packet services
IGMP is part of the Internet domain
appears in the ip_p field of the IP header
socket layer flags, not used by protocol processing
receives messages from IP layer
sends IGMP message to IP layer
not used by IGMP
respond to administrative requests from a process
respond to communication requests from a process
initialization for IGMP
process pending membership reports
not used by IGMP
not used by IGMP
not used by IGMP

Figure 13.9 The IGMPprotosw structure.

There are three events that trigger IGMP processing:

¯ a local interface has joined a new multicast group (Section 13.5),
¯ an IGMP timer has expired (Section 13.6), and
¯ an IGMP query is received (Section 13.7).

There are also two events that trigger local IGMP processing but do not result in
any messages being sent:

¯ an IGMP report is received (Section 13.7), and
¯ a local interface leaves a multicast group (Section 13.8).

These five events are discussed in the following sections.
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13.5 Joining a Group: igmp_joingroup Function

164-178

We saw in Chapter 12 that igmp_j oingroup is called by in_addmulti when a new
in_multi structure is created. Subsequent requests to join the same group only
increase the reference count in the in_mu 1 t i structure; i gmp_j o i n group is not called.
igmp_j oingroup is shown in Figure 13.10

164 void
165 igmp_joingroup (inm)
166 struct in multi *inm;
167 {
168 int s - splnet () ;

169
170
171
172
173
174
175
176
177
178

if (inm->inm_addr.s_addr :: igmp_all_hosts_group J I
inm->inm_ifp -- &loif)
inm->inm_timer - 0;

else {
igmp_sendreport(inm);
inm->inm_timer - IGMP_RANDOM_DELAY(inm->inm_addr);
igmp_timers are running : i;

}
splx(s);

Figure 13.10 igmp_joingroup function.

inm points to the new in_multi structure for the group. If the new group is the
all-hosts group, or the membership request is for the loopback interface, inm_t imer is
disabled and igmp_j oingrqup returns. Membership in the all-hosts group is never
reported, since every multicist host is assumed to be a member of the group. Sending a
membership report to the loopback interface is unnecessary, since the local host is the
only system on the loopback network and it already knows its membership status.

In the remaining cases, a report is sent immediately for the new group, and the
group timer is set to a random value based on the group. The global flag
igmp_timers_are_running is set to indicate that at least one timer is enabled.
i gmp_ f a s t t imo (Section 13.6) examines this variable to avoid unnecessary processing.

59-73

When the timer for the new group expires, a second membership report is issued.
The duplicate report is harmless, but it provides insurance in case the first report is lost
or damaged. The report delay is computed by IGMP_RANDOM_DELAY (Figure 13.11).

According to RFC 1122, report timers should be set to a random time between 0 and
10 (IGMP_MAX_HOST_REPORT_DELAY) seconds. Since IGMP timers are decremented
five (PR_FASTHZ) times per second, IGMP_RANDOM_DELAY must pick a random value
between 1 and 50. If r is the random number computed by adding the total number of
IP packets received, the host’s primary IP address, and the multicast group, then

0 < (r mod 50) < 49

and

1 _< (r mod 50) + 1 < 50
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13.6

123--126

154--i 69

170--177

59
6O
61
62
63
64
65
66
67
68
69
70
71
72
73

/.                                                                               ~mp_var.h
* Macro to compute a random timer value between i and (IGMP_MAX_REPORTING_
* DELAY * countdown frequency). We generate a "random" number by adding
* the total number of IP packets received, our primary IP address, and the
* multicast address being timed-out. The 4.3 random() routine really
* ought to be available in the kernel!

*/
#define IGMP_RANDOM_DELAY(multiaddr) \

* struct in_addr multiaddr; */ \
(ipstat.ips_total + \
ntohl(IA_SIN(in_ifaddr)->sin_addr.s_addr) + \
ntohl((multiaddr).s_addr) \

)\
% (IGMP MAX_HOST_REPORT_DELAY * PR_FASTHZ) + 1 \

igmp_var.h
Figure 13.11 IGMP_RANDOM_DELAY function.

Zero is avoided because it would disable the timer and no report would be sent.

igmp_fastt imo Function

Before looking at igmp_fasttimo, we need to describe the mechanism used to tra-
verse the in_mu i t i structures.

To locate each in_mu i t i structure, Net/3 must traverse the in mu i t i list for each
interface. During a traversal, an in_multistep structure (shown in Figure 13.12)
records the position.

123 struct in_multistep {
124 struct in_ifaddr *i_ia;
125 struct in_multi *i_inm;
126 };

Figure 13.12 in_multistep function.

in_var.h

in_var:h

i_ia points to the next in_i faddr interface structure and i_inm points to the next
in_mu 1 t i structure for the current interface.

The IN_FIRST_MULTI and IN_NEXT_MULTI macros (shown in Figure 13.13) tra-
verse the lists.

If the in_multi list has more entries, i_inm is advanced to the next entry. When
IN_NEXT_MULTI reaches the end of a multicast list, i_ia is advanced to the next inter-
face and i_inm to the first in_multi structure associated with the interface. If the
interface has no multicast structures, the while loop continues to advance through the
interface list until all interfaces have been searched.

The i n_mul t i s t ep array is initialized to point to the first in_i f addr structure in
the in_ifaddr list and i_inm is set to null IN_NEXT_MULTI finds the first
in_mu i t i structure.
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147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

170
171
172
173
174
175
176
177

in var.h
--

* Macro to step through all of the in_multi records, one at a time.
* The current position is remembered in "step", which the caller must
* provide. IN_FIRST_MULTI(), below, must be called to initialize "step"
* and get the first record. Both macros return a NULL "inm" when there
* are no remaining records.
*/

#define IN_NEXT_MULTI(step, inm) \
/* struct in_multistep step; */ \
/* struct in_multi *inm; */ \

{ \
if (((inm) - (step).i_inm) !: NULL) \

(step).i_inm : (inm) >inm_next; \
else \

while ((step).i_ia [-NULL) { \
(inm) = (step).i_ia->ia_multiaddrs;
(step) .i_ia = (step) .i_ia->ia_next;
if ((inm) !: NULL) { \

(step) .i_inm = (inm)->inm_next;
break; \

} \
} \

#define IN_FIRST_MULTI(step, inm)

{ \

/* struct in_multistep step; */ \
/* struct in_multi *inm; */ \

(step).i_ia : in_ifaddr; \
(step).i_inm = NULL; \
IN_NEXT_MULTI((step), (inm)); \

Figure 13.13 IN_FIRST_MULTI and IN_NEXT_MULTI structures.
in_var.h

187 198

199--213

We know from Figure 13.9 that igmp_fasttimo is the fast timeout function for
IGMP and is called five times per second, igmp_fasttimo (shown in Figure 13.14)
decrements multicast report timers and sends a report when the timer expires.

If igmp_timers_are_running is false, igmp_fasttimo returns immediately
instead of wasting time examining each timer.

igmp_fasttimo resets the running flag and then initializes step and into with
IN_FIRST_MULTI. The igmp_fasttimo function locates each in_multi structure
with the while loop and the IN NEXT_MULTI macro. For each structure:

¯ If the timer is 0, there is nothing to be done.
¯ If the timer is nonzero, it is decremented. If it reaches 0, an IGMP membership

report is sent for the group.
¯ If the timer is still nonzero, then at least one timer is still running, so

igmp_t imers_are_running is set to 1.
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187 void                                                                            ~mp.c
188 igmp_fasttimo ()
189 {
190 struct in_multi *inm;
191 int s;
192 struct in_multistep step;

193 /*
194 * Quick check to see if any work needs to be done, in order
195 * to minimize the overhead of fasttimo processing.
196 */
197 if ([igmp_timers_are_running)
198 return;

199 s - splnet();
200 igmp_timers_are_running - 0i
201 IN_FIRST_MULTI(step, inm);
202 while (inm !- NULL) {
203 if (inm->inm timer == 0) {

.204 /* do nothing */
205 } else if (--inm->inm_timer -- 0) {
206 igmp_sendreport(inm);
207 ] else {
208 igmp_timers_are_running = i;
209 }
210 IN NEXT_MULTI(step, inm);
211
212 splx(s);
BiB }

~mp.c

Figure 13.14 igmp_fasttimo function.

igmp_sendreport Function

214 232

233--245

246--260

The igmp_sendreport function (shown in Figure 13.15) constructs and sends an
IGMP report message for a single multicast group.

The single argument into points to the in_multi structure for the group being
reported, igmp_sendreport allocates a new mbuf and prepares it for an IGMP mes-
sage. igmp_sendreport leaves room for a link-layer header and sets the length of the
mbuf and packet to the length of an IGMP message.

The IP header and IGMP message is constructed one field at a time. The source
address for the datagram is set to INADDR_ANY, and the destination address is the
multicast group being reported, ip_output replaces INADDR_ANY with the unicast
address of the outgoing interface. Every member of the group receives the report as
does every multicast router (since multicast routers receive all IP multicasts).

Finally, igmp_sendreport constructs an ip_moptions structUre to go along with
the message sent to ip_output. The interface associated with the in_mul t i structure
is selected as the outgoing interface; the TTL is set to 1 to keep the report on the local
network; and, if the local system is configured as a router, multicast loopback is enabled
for this request.
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igmp.c
214 static void
215 igmp_sendreport (into)
216 struct in multi *inm;
217 {
218 struct mbuf *m;
219 struct igmp *igmp;
220 struct ip *ip;
221 struct ip_moptions *imo;
222 struct ip_moptions simo;

223
224
225
226
227
228
229
230
231
232

233
234
235
236
237
238
239

240
241
242
243
244
245

246
247
248
249

250
251
252
253
254
255
256
257
258

259
260

HGETHDR(m, M_DONTWAIT, MT_HEADER);
if (m =- NULL)

return;
/*

* Assume max_linkhdr + sizeof(strucE ip) + IGMP_HINLEN
* is smaller than mbuf size returned by MGETHDR.
*/

m->m data += max_linkhdr;
m->m_len = sizeof(struct ip) + IGMP_~INLEN;
m->m~kthdr.len - sizeof(struct ip) + IGMP_MINLEN;

ip = mtod(m, struct ip *);
ip->ip_tos = 0;
ip->ip_len = sizeof(struct ip) + IGMP_MINLEN;
ip->ip_off = 0;
ip->ip~ = IPPROTO_IGMP;
ip->ip_src.s_addr : INADDR_ANY;
ip->ip_dst = inm->inm_addr;

igmp = (struct igmp *) (ip + i);
igmp- >igmp_type - IGMP_HOST_MEMBERSHI P_REPORT ;
igmp >igmp_code : 0;
igmp->igmp_group : inm->inm_addr ;
igmp->igmp_cksum = 0;
igmp->igmp_cksum - in_cksum(m, IGMP_MINLEN);

imo = &simo;
bzero((caddr_t) imo, sizeof(*imo));
imo->imo.jnulticast_ifp - inm >inm_ifp;
imo->imo_multicast_ttl - i;

* Request loopback of the report if we are acting as a multicast
* router, so that the process level routing demon can hear it.
*/

extern struct socket *ip_mrouter;
imo >imo_multicast_loop - (ip_mrouter != NULL);

lp_output(m, NULL, NULL, 0, imo);

++igmpstat.igps_snd_reports;

Figure 13.15 igmp_sendreport function.
igmp.c
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The process-level multicast router must hear the membership reports. In Section 12.14 we saw
that IGMP datagrams are always accepted when the system is configured as a multicast router.
Through the normal transport demultiplexing code, the messages are passed to igmp_input,
the pr_input function for IGMP (Figure 13.9).

13.7 Input Processing: igmp_input Function

52 96

157--163

In Section 12.14 we described the multicast processing portion of ipintr. We saw that
a multicast router accepts any IGMP message, but a multicast host accepts only IGMP
messages that arrive on an interface that is a member of the destination multicast group
(i.e., queries and membership reports for which the receiving interface is a member).

The accepted messages are passed to igmp_input b~, the standard protocol demul-
tiplexing mechanism. The beginning and end of igmp_input are shown in Fig-
ure 13.16. The code for each IGMP message type is described in following sections.

Validate IGMP message
The function ipintr passes m, a pointer to the received packet (stored in an mbuf),

and iphl en, the size of the IP header in the datagram.
The datagram must be large enough to contain an IGMP message (IGMP_~INLEN),

must be contained within a standard mbuf header (m_pu! lup), and must have a correct
IGMP checksum. If any errors are found, they are counted, the datagram is silently dis-
carded, and igmp_input returns.

The body of igmp_±nput processes the validated messages based on the code in
igmp_type. Remember from Figure 13.6 that igmp_type includes a version code and
a type code. The switch statement is based on the combined value stored in
igmp_type (Figure 13.7). Each case is described separately in the following sections.

Pass IGMP messages to raw IP
There is no default case for the switch statement. Any valid message (i.e., one

that is properly formed) is passed to rip_input where it is delivered to any process
listening for IGMP messages. IGMP messages with versions or types that are unrecog-
nized by the kernel can be processed or discarded by the listening processes.

The mrouted program depends on this call to rip_input so that it receives membership
queries and reports.

Membership Query: IGMP_HOST_MEMBERSHIP_QUERY

RFC 1075 recommends that multicast routers issue an IGMP membership query at least
once every 120 seconds. The query is sent to group 224.0.0.1 (the all-hosts group). Fig-
ure 13.17 shows how the message is processed by a host.
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igmp.c
52 void
53 igmp_input(m, iphlen)
54 struct mbuf *m;
55 int iphlen;
56 {
57 struct igmp *igmp;
58 struct ip
59 int igmplen;
60 struct ifnet *ifp = m >m_pkthdr.rcvif;
61 int minlen;
62 struct in_multi *inm;
63 struct in_ifaddr *ia;
64 struct in_multistep step;

65 ++igmpstat.igps_rcv_total;

66 ip = mtod(m, struct ip *);
67 igmplen - ip->ip_len;

68 /*
69 * Validate lengths
70 */
71 if (igmplen < IGMP_MINLEN) {
72 ++igmpstat.igps_rcv_tooshort;
73 m_freem(m);
74 return;
75 }
76 minlen : iphlen + IGMP_MINLEN;
77 if ((m->m_flags & ~_EXT I I m->m_len < minlen) &&
78 (m - m pullup(m, minlen)) -- 0) {
79 ++igmpstat.igps_rcv_tooshort;
80 return;
81 }
82 /*
83 * Validate checksum
84 */
85 m->m_data +- iphlen;
86 m->m_len -= iphlen;
87 igmp - mtod(m, struct igmp *);
88 if (in_cksum(m, igmplen)) {
89 ++igmpstat.igps_rcv_badsum;
90 m_freem(m};
91 return;
92 }
93 m->m_data -- iphlen;
94 m >m_len += iphlen;
95 ip = mtod(m, struct ip *);

96 switch (igmp->igmp_type) {

/* switch cases */

157    }
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158
159
160
161
162
163 ]

* Pass all valid IGMP packets up to any process(es) listening
* on a raw IGMP socket.
*/

rip_input(m);

Figure 13.16 igmp_input function.

97--122

97
98

99
i00

i01
102
103
104
105
106
107
108
109
ii0
iii
112
113
114
115
116
117
118
119
120
121

case IGMP_HOST_HEMBERSHIP_QUERY:
++igmpstat.igps_rcv_queries;

if (ifp == &loif)
break;

if (ip >ip_dst.s_addr != igmp. all hosts_group) {
++igmpstat.igps_rcv_badqueries;
m_freem(m);
return;

}
/*

* Start the timers in all of our membership records for
* the interface on which the query arrived, except those
* that are already running and those that belong to the
* "all-hosts" group.
*/

IN_FIRST_MULTI(step, inm);
while (inm !- NULL) {

if (inm->inm_ifp =: ifp && inm->inm_timer := 0 &&
inm->inm addr.s_addr != igmp_all_hosts_group) {
inm->inm_timer -

IGMP_RANDOM_DELAY(inm->inm_addr);
igmp_timers_are_running - i;

}
IN NEXT_MULTI(step, inm);

}

122 break;

Figure 13.17 Input processing of the IGMP query message.

Queries that arrive on the loopback interface are silently discarded (Exercise 13.1).
Queries by definition are sent to the all-hosts group. If a query arrives addressed to a
different address, it is counted in igps_rcv_badqueries and discarded.

The receipt of a query message does not trigger an immediate flurry of IGMP mem-
bership reports. Instead, igmp_input resets the membership timers for each group
associated with the interface on which the query was received to a random value with
IGMP_RANDOM_DELAY. When the timer for a group expires, igmp_fasttimo sends a
membership report. Meanwhile, the same activity is occurring on all the other hosts
that received the IGMP query. As soon as the random timer for a particular group
expires on one host, it is multicast to that group. This report cancels the timers on the
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other hosts so that only one report is multicast to the network. The routers, as well as
any other members of the group, receive the report.

The one exception to this scenario is the all-hosts group. A timer is never set for this
group and a report is never sent.

Membership Report: IGMP_HOST_MEMBERSHIP_REPORT

The receipt of an IGMP membership report is one of the two events we mentioned in
Section 13.1 that does not result in an IGMP message. The effect of the message is local
to the interface on which it was received. Figure 13.18 shows the message processing.

igmp.c
123 case IGMP_HOST_MEHBERSHIP_REPORT :
124 ++igmpstat. igps_rcv_repor t s ;

125 if (ifp :: &loif)
126 break;

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

if (!IN_MULTICAST(ntohI(igmp >igmp_group.s_addr)) II
igmp->igmp_group.s_addr !: ip >ip_dst.s_addr) {
++igmpstat.igps_rcv badreports;
m_freem(m);
return;

KLUDGE: if the IP source address of the report has an
unspecified (i.e., zero) subnet number, as is allowed for
a booting host, replace it with the correct subnet number
so that a process-level multicast routing demon can
determine which subnet it arrived from. This is necessary
to compensate for the lack of any way for a process to
determine the arrival interface of an incoming packet.

}
/*

*/
if ((ntohl(ip->ip_src.s_addr) & IN_CLASSA NET) == 0)

IFP TO IA(ifp, ia);
if (ia)

ip->ip_src.s_addr - htonl(ia->ia_subnet);

}
/*

* If we belong to the group being reported, stop
* our timer for that group.
*/

IN_LOOKUP_MULTI(igmp->igmp_group, ifp, inm);
if (inm !- NULL) {

inm->inm_timer = 0;
++igmpstat.igps_rcv_ourreports;

}
break;

Figure 13.18 Input processing of the IGMP report message.

igmp.c
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123--146 Reports sent to the loopback interface are discarded, as are membership reports sent
to the incorrect multicast group. That is, the message must be addressed to the group
identified within the message.

The source address of an incompletely initialized host might not include a network
or host number (or both), igmp_report looks at the class A network portion of the
address, which can only be 0 when the network and subnet portions of the address are
0. If this is the case, the source address is set to the subnet address, which includes the
network ID and subnet ID, of the receiving interface. The only reason for doing this is
to inform a process-level daemon of the receivinZ interface, which is identified by the
subnet number

If the receiving interface belongs to the group being reported, the associated report
timer is reset to 0. In this way the first report sent to the group stops any other hosts
from issuing a report. It is only necessary for the router to know that at least one inter-
face on the network is a member of the group. The router does not need to maintain an
explicit membership list or even a counter

13.8

179--186

Leaving a Group: igmp_leavegroup Function

We saw in Chapter 12 that in_delmulti calls igmp_leavegroup when the last refer-
ence count in the associated in_mu ! t i structure drops to 0.

179 void
180 igmp_leavegroup(inm)
181 struct in multi *inm;
182 {
183 /*
184 * No action required on leaving a group.
185 */
186 }

Figure 13.19 igmp_leavegroup function.

igmp.c

As we can see, IGMP takes no action when an interface leaves a group. No explicit
notification is sent--the next time a multicast router issues an IGMP query, the interface
does not generate an IGMP report for this group. If no report is generated for a group,
the multicast router assumes that all the interfaces have left the group and stops for-
warding multicast packets for the group to the network.

If the interface leaves the group while a report is pending (i.e., the group’s report
timer is running), the report is never sent, since the timer is discarded by in_delmult i
(Figure 12.36) along with the in_multi structure for the group when
icmp_leavegroup returns.
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13.9 Summary

In this chapter we described IGMP, which communicates IP multicast membership
information between hosts and routers on a single network. IGMP membership reports
are generated when an interface joins a group, and on demand when multicast routers
issue an IGMP report query message.

The design of IGMP minimizes the number of messages required to communicate
membership information:

¯ Hosts announce their membership when they join a group.
¯ Response to membership queries are delayed for a random interval, and the first

response suppresses any others.
¯ Hosts are silent when they leave a group.
¯ Membership queries are sent no more than once per minute.

Multicast routers share the IGMP information they collect with each other (Chapter 14)
to route multicast datagrams toward remote members of the multicast destination
group.

Exercises

13.1 Why isn’t it necessary to respond to an IGMP query on the loopback interface?
13.2 Verify the assumption stated on lines 226 to 229 in Figure 13.15.
13.3 Is it necessary to set random delays for membership queries that arrive on a point-to-point

network interface?



IP Multicast Routing

14.1 Introduction

The previous two chapters discussed multicasting on a single network. In this chapter
we look at multicasting across an entire interneto We describe the operation of the
mrout÷d program, which computes the multicast routing tables, and the kernel func-
tions that forward multicast datagrams between networks.

Technicall)~ multicast packets are forwarded. In this chapter we assume that every multicast
packet contains an entire datagram (i.e., there are no fragments), so we use the term datagram
exclusively. Net/3 forwards IP fragments as well as IP datagrams.

Figure 14.1 shows several versions of mrout÷d and how they correspond to the
BSD releases. The mrout÷d releases include both the user-level daemons and the
kernel-level multicast code.

mrouted
version Description

1.2 modifies the 4.3BSD Tahoe release
2.0 included with 4.4BSD and Net/3
3.3 modifies SunOS 4.1.3

Figure 14.1 mrout ed and IP multicasting releases.

IP multicast technology is an active area of research and development. This chapter
discusses version 2.0 of the multicast software, which is included in Net/3 but is consid-
ered an obsolete implementation. Version 3.3 was released too late to be discussed fully
in this text, but we will point out various 3.3 features along the way.

397
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Because commercial multicast routers are not widely deployed, multicast networks
are often constructed using multicast tunnels, which connect two multicast routers over
a standard IP unicast internet. Multicast tunnels are supported by Net/3 and are con-
structed with the Loose Source Record Route (LSRR) option (Section 9.6). An improved
tunneling technique encapsulates the IP multicast datagram within an IP unicast data-
gram and is supported by version 3.3 of the multicast code but is not supported by
Net/3.

As in Chapter 12, we use the generic term transport protocols to refer to the protocols
that send and receive multicast datagrams, but UDP is the only Intemet protocol that
supports multicasting.

14.2 Code Introduction

The three files listed in Figure 14.2 are discussed in this chapter.

File Description

net ±net / ±p_mrou¢ e. h multicast structure definitions
net ±net / ±p_rarouCe. c multicast routing functions
net ±net / raw_±p, c multicast routing options

Figure 14.2 Files discussed in this chapter.

Global Variables

The global variables used by the multicast routing code are shown in Figure 14.3.

Variable

cached_mrt
cached_origin
cached_originmask
mrtstat
mrttable
numvifs
viftable

Datatype

struct mrt

u_long

u_long

struct mrtstat

struct tort * []

vifi_t

struct villi

Description

one-behind cache for multicast routing
multicast group for one-behind cache
mask for multicast group for one-behind cache
multicast routing statistics
hash table of pointers to multicast routes
number of enabled multicast interfaces
array of virtual multicast interfaces

Figure 14.3 Global variables introduced in this chapter.

Statistics

All the statistics collected by the multicast routing code are found in the raft s t at struc-
ture described by Figure 14.4. Figure 14.5 shows some sample output of these statistics,
from the netstat -gs command.
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mrtstat member Description Used by
SNMP

mrts mrt lookups
mrts_mrt_misses
mrts_grp_lookups
mrts_grp_misses
mrts no route
mrts_bad_tunnel
mrts_cant_tunnel

#multicast route Iookups
#multicast route cache misses
#group address lookups
#group address cache misses
#multicast route lookup failures
#packets with malformed tunnel options
#packets with no room for tunnel options

Figure 14.4 Statistics collected in this chapter.

netstat -gs output

multicast routing:
329569328 multicast route lookups

9377023 multicast route cache misses
242754062 group address lookups
159317788 group address cache misses

65648 datagrams with no r6ute for origin
0 datagrams with malformed tunnel options
0 datagrams with no room for tunne! options

mrtstat members

mrts_~art_lookups
mrts_m}t_misses
mrts_grp_lookups
mrts_grp_misses
mrts no route
mrts_bad_tunnel
mrts_cant_tunnel

Figure 14.5 Sample IP multicast routing statistics.

These statistics are from a system with two physical interfaces and one tunnel inter-
face. These statistics show that the multicast route is found in the cache 98% of the time.
The group address cache is less effective with only a 34% hit rate. The route cache is
described with Figure 14.34 and the group address cache with Figure 14.21.

SNMP Variables

There is no standard SNMP MIB for multicast routing, but [McCloghrie and Farinacci
1994a] and [McCloghrie and Farinacci 1994b] describe some experimental MIBs for
multicast routers.

14.3 Multicast Output Processing Revisited

In Section 12.15 we described how an interface is selected for an outgoing multicast
datagram. We saw that ±p_output is passed an explicit interface in the ±p_mopt
structure, or ±p_output looks up the destination group in the routing tables and uses
the interface returned in the route entry.

If, after selecting an outgoing interface, ±p_output loops back the datagram, it is
queued for input processing on the interface selected for output and is considered for
forwarding when it is processed by ipintr. Figure 14.6 illustrates this process.
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Transport
Protocols] !

TranspOrt
Protocols

ipintrq:

~ ~---~

Tunnel Ethernet

Figure 14.6 Multicast output processing with loopback.

In Figure 14.6 the dashed arrows represent the original outgoing datagram, which
in this example is multicast on a local Ethernet. The copy created by ±p_mloopback is
represented by the thin arrows; this copy is passed to the transport protocols for input.
The third copy is created when ip_mforward decides to forward the datagram
through another interface on the system. The thickest arrows in Figure 14.6 represents
the third copy, which in this example is sent on a multicast tunnel.

If the datagram is not looped back, ip_output passes it directly to ip_mforward,

where it is duplicated and also processed as if it were received on the interface that
J_p_output selected. This process is shown in Figure 14.7.

Transport
Protocols ]

Tunnel Ethernet

Figt~re 14.7 Multicast output processing with no loopback.

Whenever ip_mforward calls ip_output to send a multicast datagram, it sets the
IP_FORWARDING flag so that ip_output does not pass the datagram back to
ip_mforward, which would create an infinite loop.

ip_mloopback was described with Figure 12.42. ip__mforward is described in
Section 14.8.
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14.4

173--187

mrouted Daemon

Multicast routing is enabled and managed by a user-level process: the mrouted dae-
mon. mrout ed implements the router portion of the IGMP protocol and communicates
with other multicast routers to implement multicast routing between networks. The
routing algorithms are implemented in mrouted, but the multicast routing tables are
maintained in the kernel, which forwards the datagrams.

In this text we describe only the kernel data structures and functions that support
mrouted--we do not describe mrouted itself. We describe the Truncated Reverse Path
Broadcast (TRPB) algorithm [Deering and Cheriton 1990], used to select routes for
multicast datagrams, and the Distance Vector Multicast Routing Protocol (DVMRP),
used to convey information between multicast routers, in enough detail to make sense
of the kernel multicast code.

RFC 1075 [Waitzman, Partridge, and Deering 1988] describes an old version of
DVMRP. mrouted implements a newer version of DVMRP, which is not yet docu-
mented in an RFC. The best documentation for the current algorithm and protocol is
the source code release for mrouted. Appendix B describes where the source code can
be obtained.

The mrouted daemon communicates with the kernel by setting options on an
IGMP socket (Chapter 32). The options are summarized in Figure 14.8.

optname
DVMRP_INIT

D VMR P_DONE
DVMRP ADD VIF
DVMRP_DEL_VIF
I~VMRP_ADD LGRP
DVMRP_DEL LGRP
DVMRP ADD MRT
DVMRP DEL MRT

optval type

struct vifctl
vifi_t
struct igrplctl
struct igrplctl
struct mrtctl
struct in_addr

Function

ip_mrouter_init
ip_mrouter_done
add_vif
del_vif
add_igrp
del_igrp
add mrt
del_mrt

Description

mrout ed is starting
mrout ed is shutting down
add virtual interface
delete virtual interface
add multicast group entry for an interface
delete multicast group entry for an interface
add multicast route
delete multicast route

Figure 14.8 Multicast routing socket options.

The socket options shown in Figure 14.8 are passed to rip_ctloutput (Section 32.8)
by the setsockopt system call. Figure 14.9 shows the portion of rip_ctloutput
that handles the DVMRP_XXX options.

When setsockopt is called, op equals PRCO_SETOPT and all the options are
passed to the ip_mrouter_cmd function. For the getsockopt system call, op equals
PRCO_GETOPT and EINVAL is returned for all the options.

Figure 14.10 shows the ip_mrout er_cmd function.

These "options" are more like commands, since they cause the kernel to update various data
structures. We use the term command throughout the rest of this chapter to emphasize this fact.
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r~w ~.c
case DVMRP_INIT:                                                                       -

174 case DVMRP_DONE:
175 case DVMRP_ADD_VIF:
176 case DVMRP_DEL_VIF:
177 case DVMRP_ADD_LGRP:
178 case DVMRP_DEL_LGRP:
179 case DVIVIRP_ADD_MRT:
180 case DVMRP_DEL_MRT:
181 if (op := PRCO_SETOPT) {
182 error = ip_mrouter_cmd(optname, so, *m);
183 if (*m)
184 (void) m_free(*m);
185 ] else
186 error - EINVAL;
187 return (error);

raw_ip.c
Figure 14.9 rip_ctloutput function: DVMRP_xXX socket options.

84 int
85 ip_mrouter_cmd(cmd, so, m)
86 int      cmd;
87 struct socket *so;
88 struct mbuf *m;
89 {
90 int error : 0;

91 if (cmd !: DVMRP_INIT && so !: ip_mrouter)
92 error = EACCES;
93 else
94 switch (cmd) {

95 case DVMRP_INIT:
96 error = ip_mrouter_init(so);
97 break;

98 case DVMRP_DONE:
99 error = ip_mrouter_done();

i00 break;

i01
102
103
104
105
106

107
108
109
ii0
iii
112

case DVMRP_ADD VIF:
if (m -= NULL I [ m->m_len < sizeof(struct vifctl))

error : EINVAL;
else

error = add vif(mtod(m, struct vifctl *));
break;

case DVMRP_DEL_VIF:
if (m =: NULL II m->m_len < sizeof(short))

error = EINVAL;
else

error = del_vif(mtod(m, vifi_t *));
break;

ip_mroute.c
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84--92

146--157

113
114
115
116
117
118

119
120
121
122
123
124

125
126
127
128
129
130

131
132
133
134
135
136

137
138
139
140
141
142

case DVHRP ADD LGRP:
if (m == NULL I I m->m_len < sizeof(struct igrplctl))

error = EINVAL;
else

error = add_igrp(mtod(m, struct igrplctl *));
break;

case DVMRP DEL LGRP:
if (m :: NULL II m->m_len < sizeof(struct igrplctl))

error - EINVAL;
else

error = del_igrp(mtod(m, struct igrplctl *));
break;

case DVMRP ADD MRT:
if (m == NULL I I m->m_len < sizeof(struct mrtctl))

error = EINVAL;
else

error = add_mrt(mtod(m, struct mrtctl *));
break;

case DVMRP DEL MRT:
if (m == NULL I I m->m_len < sizeof(struct in_addr))

error = EINVAL;
else

error = del_mrt(mtod(m, struct in_addr *));
break;

default:
error = EOPNOTSUPP;
break;

}
return (error);

Figure 14.10 ip_mrouter_cmd function.

ip_mroute.c

The first command issued by mrouted must be DITMRP_INIT. Subsequent com-
mands must come from the same socket as the DVMRP_INIT command. EACCES is
returned when other commands are issued on a different socket.

Each case in the switch checks to see if the right amount of data was included
with the command and then calls the matching function. If the command is not recog-
nized, EOPNOTSUPP is returned. Any error returned from the matching function is
posted in error and returned at the end of the function.

Figure 14.11 shows ip_mrouter_init, which is called when mrouted issues the
DVMRP_INIT command during initialization.

If the command is issued on something other than a raw IGMP socket, or if
DVMRP_INIT has already been set, EOPNOTSUPP or EADDRINUSE are returned respec-
tively. A pointer to the socket on which the initialization command is issued is saved in
the global ip_mrouter. Subsequent commands must be issued on this socket. This
prevents the concurrent operation of more than one instance of mrout ed.
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146
147
148
149
150
151
152

static int
ip mrouter_init(so)
struct socket *so;
{

if (so->so_type !: SOCK_RAW I I
so->so~roto->pr~rotocol !- IPPROTO_IGHP)
return (EOPNOTSUPP);

153 if (ip_mrouter != NULL)
154 return (EADDRINUSE);

155 ip_mrouter : so;

156 return (0);
157 }

Figure 14.11 ip_mrouter_init function: DVMRP_INIT command.

ip_mroute.c

ip_mroute.c

The remainder of the DV~RP_xxx commands are described in the following sections.

14.5 Virtual Interfaces

When operating as a multicast router, Net/3 accepts incoming multicast datagrams,
duplicates them and forwards the copies through one or more interfaces. In this way,
the datagram is forwarded to other multicast routers on the internet.

An outgoing interface can be a physical interface or it can be a multicast tunnel.
Each end of the multicast tunnel is associated with a physical interface on a multicast
router. Multicast tunnels allow two multicast routers to exchange multicast datagrams
even when they are separated by routers that cannot forward multicast datagrams. Fig-
ure 14.12 shows two multicast routers connected by a multicast tunnel.

Network A

tunnel T e

Network Barbitrary collection of unicast
IP routers that i~mplement LSRR

src = HS
dst = Te

IP unicast
LSRR = {TS,G}

ml
src : HS src = HS

IP dst = G dst = G
datagra hardware multicast hardware multicast

no LSRR no LSRR

Figure 14.12 A multicast tunnel.

In Figure 14.12, the source host HS on network A is multicasting a datagram to group G.
The only member of group G is on network B, which is connected to network A by a
multicast tunnel. Router A receives the multicast (because multicast routers receive all
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multicasts), consults its multicast routing tables, and forwards the datagram through
the multicast tunnel.

The tunnel starts on the physical interface on router A identified by the IP unicast
address T~. The tunnel ends on the physical interface on router B identified by the IP
unicast address, Te. The tunnel itself is an arbitrarily complex collection of networks
connected by IP unicast routers that implement the LSRR option. Figure 14.13 shows
how an IP LSRR option implements the multicast tunnel.

IP header Source route option
System ip_src ip_dst

offset addresses
Description

HS HS G
Ts HS Te 8    Ts ¯
Te HS G 12    Ts
Te HS G

on network A
G on tunnel

see text ¯ after ip_dooptions on router B
after ip_mforward on router B

Figure 14.13 LSRR multicast tunnel options.

The first line of Figure 14.13 shows the datagram sent by HS as a multicast on net-
work A. Router A receives the datagram because multicast touters receive all multi-
casts on their locally attached networks.

To send the datagram through the tunnel, router A inserts an LSRR option in the IP
header. The second line shows the datagram as it leaves A on the tunnel. The first
address in the LSRR option is the source address of the tunnel and the second address is
the destination group. The destination of the datagram is Te-the other end of the tun-
nel. The LSRR offset points to the destination group.

The tunneled datagram is forwarded through the internet until it reaches the other
end of the tunnel on router B.

The third line of the figure shows the datagram after it is processed by
i[3_dooptions on router B. Recall from Chapter 9 that ip_dooptions processes the
LSRR option before the destination address of the datagram is examined by ipintr.
Since the destination address of the datagram (Te) matches one of the interfaces on
router B, ip_dooptions copies the address identified by the option offset (G in this
example) into the destination field of the IP header. In the option, G is replaced with the
address returned by ip_rtaddr, which normally selects the outgoing interface for the
datagram based on the IP destination address (G in this case). This address is irrele-
vant, since ip_mforward discards the entire option. Finally, ip_dooptions advances
the option offset.

The fourth line in Figure 14.13 shows the datagram after ipintr calls
ip__mforward, where the LSRR option is recognized and removed from the datagram
header. The resulting datagram looks like the original multicast datagram and is pro-
cessed by ilv_rnforward, which in our example forwards it onto network B as a multi-
cast datagram where it is received by HG.

Multicast tunnels constructed with LSRR options are obsolete. Since the March
1993 release of rarouted, tunnels have been constructed by prepending another IP
header to the IP multicast datagram. The protocol in the new IP header is set to 4 to
indicate that the contents of the packet is another IP packet. This value is documented
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in RFC 1700 as the "IP in IP" protocol. LSRR tunnels are supported in newer versions
of rarouted for backward compatibility.

Virtual Interface Table

105--110

111--116

For both physical interfaces and tunnel interfaces, the kernel maintains an entry in a
virtual interface table, which contains information that is used only for multicasting.
Each virtual interface is described by a vi f structure (Figure 14.14). The global variable
viftable is an array of these structures. An index to the table is stored in a
variable, which is an unsigned short integer.

105 struct vif {
ip_mroute.h

106 u_char v_flags; /* VIFF_ flags */
107 u_char v_threshold; /* min ttl required to forward on vif */
108 struct in_addr v_icl_addr; /* local interface address */
109 struct in_addr v_rmt_addr; /* remote address (tunnels only) */
ii0 struct ifnet *v_ifp; /* pointer to interface */
iii struct in_addr *v_icl_grps; /* list of loca! grps (phyints only) */
112 int v_icl_grps_max; /* malloc’ed number of v_Icl_grps */
113 int v_Icl_grps_n; /* used number of v_icl_grps */
114 u_long v_cached_group; /* last grp looked-up (phyints only) */
115 int v_cached_result; /* last look-up result (phyints only) */
116 };

ip_mroute.h
Figure 14.14 vi f structure.

The only flag defined for v_flags is VIFF_TUNNEL. When set, the interface is a
tunnel to a remote multicast router. When not set, the interface is a physical interface on
the local system, v_threshold is the multicast threshold, which we described in Sec-
tion 12.9. v_lcl_addr is the unicast IP address of the local interface associated with
this virtual interface, v_rrat_addr is the unicast IP address of the remote end of an IP
multicast tunnel. Either v_icl_addr or v_rmt_addr is nonzero, but never both. For
physical interfaces, v_ifp is nonnull and points to the i fnet structure of the local
interface. For tunnels, v’_i fp is null.

The list of groups with members on the attached interface is kept as an array of IP
multicast group addresses pointed to by v_l c l_grps, which is always null for tunnels.
The size of the array is in v_icl_grps_max, and the number of entries that are used is
in v_lcl_grps_n. The array grows as needed to accommodate the group membership
list. v_cached_group and v_cached_result implement a one-entry cache, which
contain the group and result of the previous lookup.

Figure 14.16 illustrates the viftable, which has 32 (MAXVIFS) entries.
viftable [2] is the last entry in use, so nuravifs is 3. The size of the table is fixed
when the kernel is compiled. Several members of the vi f structure in the first entry of
the table are shown, v_ifp points to an ifnet structure, v_lcl_grps points to an
array of in_addr structures. The array has 32 (v_lcl_grl~s_raax) entries, of which
only 4 (v_icl_grps_n) are in use.
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numvifs:I 3

viftable[0] I

viftable[l]

viftable[2]

viftable[3]
through

viftable[31]

viftable [ ] :

v_ifp

v_icl_grps     --

v_icl_grps_max

v_ic l_grps_n

vif{}

vif{}

_       C in addr{}
in_addr{}
in_addr{}
in_addr{}

0
1
2
3

31

ifnet{}

Figure 14.15 viftable array.

mr o u t e d maintains vi f t ab i e through the DVMRP_ADD_V I F and
DV-MRP_DEL_VIF commands. Normally all multicast-capable interfaces on the local
system are added to the table when rarouted begins. Multicast tunnels are added
when mrouted reads its configuration file, usually /etc/mrouted. conf. Commands
in this file can also delete physical interfaces from the virtual interface table or change
the multicast information associated with the interfaces.

A vifctl structure (Figure 14.16) is passed by mrouted to the kernel with the
DVMRP_ADD_VIF command. It instructs the kernel to add an interface to the table of
virtual interfaces.

76 struct vifctl {
77
78
79
8O
81
82 };

ip_mroute.h

vifi_t vifc_vifi; /* the index of the vif to be added */
u_char vifc_flags; /* VIFF_ flags (Figure 14.14) */
u_char vifc_threshold; /* min ttl required to forward on vif */
struct in_addr vifc_icl_addr;    /* local interface address */
struct in_addr vifc_rmt_addr;    /* remote address (tunnels only) */

ip_mroute.h

Figure 14.16 vifctl structure.
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76-8J vifc_vifi identifies the index of the virtual interface within viftable. The
remaining four members, vifc_flags, vifc_threshold, vifc_lcl_addr, and
vi fc_rmt_addr, are copied into the vi f structure by the add_vi f function.

add_vi f Function

204
2O5
206
207
208
209
210
211
212

Figure 14.17 shows the add_vi f function.

202 static int
203 add vif(vifcp)

struct vifctl *vifcp;

213
214
215
216

217
218
219
220
221

222

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

ip_mroute.c

struct vif *vifp = viftable + vifcp->vifc_vifi;
struct ifaddr *ifa;
struct ifnet *ifp;
struct ifreq ifr;
int error, s;
static struct sockaddr_in sin =
{sizeof(sin), AF_INET};

if (vifcp->vifc_vifi >- MAXVIFS)
return (EINVAL);

if (vifp->v_icl_addr.s_addr != 0)
return (EADDRINUSE);

/* Find the interface with an address in AF_INET family */
sin.sin_addr = vifcp->vifc_icl_addr;
ifa = ifa_ifwithaddr((struct sockaddr *) &sin);
if (ifa == 0}

return (EADDRNOTAVAIL);

s : splnet() ;

if (vifcp >vifc_flags & VIFF_TUNNEL)
vifp->v_rmt_addr = vifcp->vifc rmt addr;

else {
/* Make sure the interface supports multicast */
ifp - ifa->ifa_ifp;
if ((ifp >if_flags & IFF_MULTICAST) -: 0) {

splx(s);
return (EOPNOTSUPP);

}
/.

* Enable promiscuous reception of all IP multicasts
* from the interface.
*/

satosin(&ifr.ifr_addr)->sin_family : AF_INET;
satosin(&ifr.ifr_addr)->sin_addr.s_addr : INADDR_ANY;
error = (*ifp->if_ioctl) (ifp, SIOCADDMULTI, (caddr_t) & ifr);
if (error) {

splx(s);
return (error);

}
}
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244
245
246
247

248
249
250

251
252
253

vifp->v_flags - vifcp >vifc_flags;
vifp->v_threshold : vifcp->vifc_threshold;
vifp >v_icl_addr = vifcp->vifc_icl_addr;
vifp >v_±fp = ifa->ifa_ifp;

/* Adjust numvifs up if the vifi is higher than numvifs */
if (numvifs <= vifcp->vifc_vifi)

numvifs = vifcp->vifc_vifi + i;

splx(s);
return (0) ;

Figure 14.17 add_vi f function: DVMRP_ADD_VIF command.

ip_mroute.c

202--216

217--221

222--224

225--243

244--253

Validate index
If the table index specified by mrouted in vifc_vifi is too large, or the table

entry is already in use, EINVAL or EADDRINUSE is returned respectively.
Locate physical interface

i fa_i fwithaddr takes the unicast IP address in vi f c_icl_addr and returns a
pointer to the associated i fnet structure. This identifies the physica] interface to be
used for this virtual interface. If there is no matching interface, EADDRNOTAVAIL is
returned.

Configure tunnel interface
For a tunnel, the remote end of the tunnel is copied from the vi fctl structure to

the vi f structure in the interface table.
Configure physical interface

For a physical interface, the link-level driver must support multicasting. The
S IOCADDMULTI command used with INADDR_ANY configures the interface to begin
receiving all IP multicast datagrams (Figure 12.32) because it is a multicast router.
Incoming datagrams are forwarded when ipintr passes them to il~_mforward.

Save multicast information
The remaining interface information is copied from the vi fc t 1 structure to the vi f

structure. If necessary, nuravi fs is updated to record the number of virtual interfaces
in use.

del_vif Function

The function del_vi f, shown in Figure 14.18, deletes entries from the virtual interface
tabIe. It is called when mrouted sets the DVMRP_DEL_VIF command.
Validate index

257--268 If the index passed to d÷l_vif is greater than the largest index in use or it refer-
ences an entry that is not in use, EINVAL or EADDRNOTAVAIL is returned respectivel]a
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269--278

279 286

257 static int
258 del_vif(vifip)
259 vifi_t *vifip;
260 {
261 struct vif *vifp : viftable + *vifip;
262 struct ifnet *ifp;
263 int i, s;
264 struct ifreq ifr;

265
266
267
268

269

270
271
272
273
274
275
276
277
278

279
280
281
282
283

if (*vifip >: numvifs)
return (EINVAL) ;

if (vifp >v_icl_addr.s_addr :: 0)
return (EADDRNOTAVAIL);

s : splnet() ;

if (! (vifp->v_flags & VIFF_TUNNEL)) {
if (vifp->v_icl_grps)

free(vifp->v_icl_grps, M_MRTABLE);
satosin(&ifr.ifr_addr) >sin_family - AF_INET;
satosin(&ifr.ifr_addr) >sin_addr.s_addr = INADDR_ANY;
ifp _ vifp->v_ifp;
{*ifp->if_ioctl) (ifp, SIOCDELMULTI, (caddr_t) & ifr);

]
bzero((caddr_t) vifp, sizeof(*vifp));

/* Adjust numvifs down */
for (i = numvifs - i; i >= 0; i--)

if (viftable[i].v_icl_addr.s_addr [- 0)
break;

numvifs - i + i;

284 splx(s);
285 return (0) ;
286 }

Figure 14.18 del_vif function: DVMRP_DEL_VIF command.

ip_mroute.c

ip_mroute.c

Delete interface

For a physical interface, the local group table is released, and the reception of all
multicast datagrams is disabled by SIOCDELI~IULTI. The entry in vi ftable is cleared
by bzero.

Adjust interface count

The for loop searches for the first active entry in the table starting at the largest
previously active entry and working back toward the first entry. For unused entries, the
s_addr member of v_icl_addr (an in_addr structure) is 0. numvifs is updated
accordingly and the function returns.
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14.6 IGMP Revisited

Chapter 13 focused on the host part of the IGMP protocol, mrouted implements the
router portion of this protocol. For every physical interface, mrouted must keep track
of which multicast groups have members on the attached network, mrouted multicasts
an IGMP_HOST_HEMBERSHIP_QUERY datagram every 120 seconds and compiles the
resulting IGMP_HOST_MEMBERSHIP_REPORT datagrams into a membership array asso-
ciated with each network. This array is not the same as the membership list we
described in Chapter 13.

From the information collected, mrouted constructs the multicast routing tables.
The list of groups is also used to suppress multicasts to areas of the multicast internet
that do not have members of the destination group.

The membership array is maintained only for physical interfaces. Tunnels are
point-to-point interfaces to another multicast router, so no group membership informa-
tion is needed.

We saw in Figure 14.14 that v_lcl_grps points to an array of IP multicast groups.
mrouted maintains this list with the DVMRP_ADD_LGRP and DVMRP_DEL_LGRP com-
mands. An lgrplct 1 (Figure 14.19) structure is passed with both commands.

87 struct igrplctl {
88 vifi_t igc_vifi;
89 struct in_addr igc_gaddr;
90 };

ip_mroute.h

ip_mroute.h

Figure 14.19 Igrplctl structure.

87--90 The {interface, group} pair is identified by Igc_vi fi and igc_gaddr. The inter-
face index (lgc_vifi, an unsigned short) identifies a virtual interface, not a physical
interface.

When an IGMP_HOST_MEMBERSHIP_REPORT datagram is received, the functions
shown in Figure 14.20 are called.

add_igrp Function

291--301

302--326

mrouted examines the source address of an incoming IGMP report to determine which
subnet and therefore which interface the report arrived on. Based on this information,
mrouted sets the DVMRP_ADD_LGRP command for the interface to update the member-
ship table in the kernel. This information is also fed into the multicast routing algo-
rithm to update the routing tables. Figure 14.21 shows the add_lgrp function.

Validate add request
If the request identifies an invalid interface, EINVAT, is returned. If the interface is

not in use or is a tunnel, EADDRNOTAVAIL is returned.

If needed, expand group array
If the new group won’t fit in the current group array, a new array is allocated. The

first time add_lgrp is called for an interface, an array is allocated to hold 32 groups.
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mrouted ]

~ DD_LGRP option

IGNP_HOST_NENBERSHIP_REPORT
datagram

Figure 14.20 IGMP report processing.

Each time the array fills, add_lgrp allocates a new array of twice the previous size.
The new array is allocated by malloc, cleared by bzero, and filled by copying the old
array into the new one with bcopy. The maximum number of entries,
v_lcl_grps_max, is updated, the old array (if any) is released, and the new array is
attached to the vi f entry with v_icl_grps.

The "paranoid" comment points out there is no guarantee that the memory allocated by
mal 1 oc contains all 0s.

327--332

Add new group
The new group is copied into the next available entry and if the cache already con-

tains the new group, the cache is marked as valid.
The lookup cache contains an address, v_cached_group, and a cached lookup

result, v_cached_result. The grplst_raeraber function always consults the cache
before searching the membership array. If the given group matches v_cached_group,
the cached result is returned; otherwise the membership array is searched.

del_igrp Function

Group information is expired for each interface when no membership report has been
received for the group within 270 seconds, mrouted maintains the appropriate timers
and issues the DV-MRP_DEL_LGRP command when the information expires. Figure 14.22
shows del_igrp.
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291 static int
292 add_igrp(gcp)
293 struct igrplctl *gcp;
294 {
295 struct vif *vifp;
296 int s;

297
298

299
300
301

302
303
304
305
306

307
3O8
309
310
311
312
313
314
315
316
317
318
319
320

321
322
323
324

325
326
327

328
329

330
331
332

if (gcp->igc_vifi >= numvifs)
return (EINVAL) ;

vifp : viftable + gcp->igc_vifi;
if (vifp->v lcl addr.s_addr == 0 I I (vifp->v_flags & VIFF_TUNNEL))

return (EADDRNOTAVAIL);

/* If not enough space in existing list, allocate a larger one */
s - splnet();
if (vifp >v_icl_grps_n + i >- vifp->v_icl_grps_max) {

int hum;
struct in_addr *ip;

hum : vifp->v_lcl_grps_max;
if {hum <= 0)

num= 32; /* initial number */
else

hum += hum; /* double last number */
ip = (struct in_addr *) malloc(num * sizeof(*ip),

H_HRTABLE, M_NOWAIT);
if (ip :: NULL) {

splx(s);
return (ENOBUFS) ;

}
bzero((caddr_t) ip, hum * sizeof(*ip)); /* XXX paranoid */
bcopy((caddr_t) vifp->v_icl_grps, (caddr_t) ip,

vifp->v icl .grps_n * sizeof(*ip));

vifp >v_icl_grps ~nax : hum;
if (vifp->v_icl_grps)

free(vifp->v_Icl_grps, M MRTABLE);
vifp->v_icl_grps = ip;

splx(s);

ip_mroute.c

vifp->v_icl_grps[vifp->v_icl_grps_n++] - gcp->igc_gaddr;

if (gcp->igc_gaddr.s_addr -- vifp->v_cached_group)
vifp->v_cached_result = i;

splx(s);
return (0);

Figure 14.21 add_lgrp function: process DVMRP ADD LGRP command.

ip_mroute.c
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337 static int                                                                    ip_mroute.c
338 del_igrp (gcp)
339 struct igrplctl *gcp;
340 {
341 struct vif *vifp;
342 int i, error, s;

337--347

348--350

351--364

343 if (gcp->igc_vifi >= numvifs)
344 return (EINVAL);
345 vifp = viftable + gcp->igc_vifi;
346 if (vifp->v_icl_addr.s_addr -- 0
347 return (EADDRNOTAVAIL);

I I (vifp->v_flags & VIFF_TUNNEL))

348 s : splnet();

349
350

if (gcp->lgc_gaddr.s_addr == vifp >v_cached_group)
vifp >v_cached_result = 0;

351
352
353
354
355
356
357
358
359
360
361
362
363
364 }

error : EADDRNOTAVAIL;
for (i = 0; i < vifp->v_icl_grps_n; ++i)

if (same(&gcp->igc_gaddr, &vifp->v icl .grps[i])) {
error : 0;
vifp->v_icl_grps_n--;
bcopy((caddr_t) & vifp->v_icl_grps[i + i],

(caddr_t) & vifp->v_icl_grps[i],
(vifp->v icl .grps_n - i) * sizeof(struct in_addr) ;

error = 0;
break;

]
splx(s);
return (error);

ip_mroute.c
Figure 14.22 del_lgrp function: process DVMRP DEL LGRP command.

Validate interface index
If the request identifies an invalid interface, EINVAL is returned. If the interface is

not in use or is a tunnel, EADDRNOTAVAIL is returned.
Update lookup cache

If the group to be deleted is in the cache, the lookup result is set to 0 (false).

Delete group
EADDRNOTAVAIL is posted in error in case the group is not found in the member-

ship list. The for loop searches the membership array associated with the interface. If
same (a macro that uses bcmp to compare the two addresses) is true, error is cleared
and the group count is decremented, bcopy shifts the subsequent array entries down
to delete the group and del_lgrp breaks out of the loop.

If the loop completes without finding a match, EADDRNOTAVAIL is returned; other-
wise 0 is returned.
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grlol st_member Function

During multicast forwarding, the membership array is consulted to avoid sending data-
grams on a network when no member of the destination group is present.
grpl s t_roerober, shown in Figure 14.23, searches the list looking for the given group
address.

368 static int
369 grplst_member(vifp, gaddr)
370 struct vif *vifp;
371 struct in_addr gaddr;
372 {
373 int      i, s;
374 u_long addr;

ip_mroute.c

375 mrtstat.mrts_grp_lookups++;

376 addr = gaddr.s_addr;
377 if (addr :: vifp->v_cached_group)
378 return (vifp->v_cached_result);

379 mrtstat.mrts_grp_misses++;

380 for (i - O; i < vifp->v_icl_grps_n; ++i)
381 if (addr :: vifp->v_icl_grps[i].s_addr) {
382 s = splnet();
383 vifp->v_cached_group = addr;
384 vifp->v_cached_result - i;
385 splx(s);
386 return (i);
387 }
388 s = splnet();
389 vifp->v_cached_group = addr;
390 vifp->v_cached_result = O;
391 splx(s);
392 return (0);
393

Figure 14.23 grplst_member function.

ip_mroute.c

368-379

380 393

Check the cache
If the requested group is located in the cache, the cached result is returned and the

membership array is not searched.
Search the membership array

A linear search determines if the group is in the array. If it is found, the cache is
updated to record the match and one is returned. If it is not found, the cache is updated
to record the miss and 0 is returned.
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14.7 Multicast Routing

As we mentioned at the start of this chapter, we will not be presenting the TRPB algo-
rithm implemented by mrou~÷d, but we do need to provide a general overview of the
mechanism to describe the multicast routing table and the multicast routing functions in
the kernel. Figure 14.24 shows the sample multicast network that we use to illustrate
the algorithms.

tunnel

Figure 14.24 Sample multicast network.

In Figure 14.24, routers are shown as boxes and the ellipses a.re the multicast net-
works attached to the routerso For example, router D can multicast on network D and
C. Router C can multicast to network C, to routers A and B through point-to-point
interfaces, and to E through a multicast tunnel.

The simplest approach to multicast routing is to select a subset of the internet topol-
ogy that forms a spanning tree. If each router forwards multicasts along the spanning
tree, every router eventually receives the datagram. Figure 14.25 shows one spanning
tree for our sample network, where host S on network A represents the source of a
multicast datagram.

For a discussion of spanning trees, see [Tanenbaum 1989] or [Perlman 1992].

tunnel

Figure 14.25 Spanning tree for network A.
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We constructed the tree based on the shortest reverse path from every network back
to the source in network A. In Figure 14.25, the link between routers B and C is omitted
to form the spanning tree. The arrows between the source and router A, and between
router C and D, emphasize that the multicast network is part of the spanning tree.

If the same spanning tree were used to forward a datagram from network C, the
datagram would be forwarded along a longer path than needed to get to a recipient on
network B. The algorithm described in RFC 1075 computes a separate spanning tree for
each potential source network to avoid this problem. The routing tables contain a net-
work number and subnet mask for each route, so that a single route applies to any host
within the source subnet.

Because each spanning tree is constructed to provide the shortest reverse path to the
source of the datagram, and every network receives every multicast datagram, this pro-
cess is called reverse path broadcasting or RPB.

The RPB protocol has no knowledge of multicast group membership, so many data-
grams are unnecessarily forwarded to networks that have no members in the destina-
tion group. If, in addition to computing the spanning trees, the routing algorithm
records which networks are leaves and is aware of the group membership on each net-
work, then touters attached to leaf networks can avoid forwarding datagrams onto the
network when there there is no member of the destination group present. This is called
truncated reverse path broadcasting (TRPB), and is implemented by version 2.0 of
r~z-outec~ with the help of IGMP to keep track of membership in the leaf networks.

Figure 14.26 shows TRPB applied to a multicast sent from a source on network C
and with a member of the destination group on network B.

tunDo]

Figure 14.26 TRPB routing for network C.

We’ll use Figure 14.26 to illustrate the terms used in the Net/3 multicast routing
table. In this example, the shaded networks and routers receive a copy of the multicast
datagram sent from the source on network C. The link between A and B is not part of
the spanning tree and C does not have a link to D, since the multicast sent by the source
is received directly by C and D.

In this figure, networks A, B, D, and E are leaf networks. Router C receives the
multicast and forwards it through the interfaces attached to routers A, B, and E--even
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though sending it to A and E is wasted effort. This is a major weakness of the TRPB
algorithm.

The interface associated with network C on router C is called the parent because it is
the interface on which router C expects to receive multicasts originating from network
C. The interfaces from router C to routers A, B, and E, are child interfaces. For router A,
the point-to-point interface is the parent for the source packets from C and the interface
for network A is a child. Interfaces are identified as a parent or as a child relative to the
soui~ce of the datagram. Multicast datagrams are forwarded only to the associated child
interfaces, and never to the parent interface.

Continuing with the example, networks A, D, and E are not shaded because they
are leaf networks without members of the destination group, so the spanning tree is
truncated at the routers and the datagram is not forwarded onto these networks.
Router B forwards the datagram onto network B, since there is a member of the destina-
tion group on the network. To implement the truncation algorithm, each multicast
router that receives the datagram consults the group table associated with every virtual
interface in the router’s vi ftable.

The final refinement to the multicast routing algorithm is called reverse path
multicasting (RPM). The goal of RPM is to prune each spanning tree and avoid sending
datagrams along branches of the tree that do not contain a member of the destination
group. In Figure 14.26, RPM would prevent router C from sending a datagram to A and
E, since there is no member of the destination group in those branches of the tree.
Version 3.3 of mrouted implements RPM.

Figure 14.27 shows our example network, but this time only the routers and net-
works reached when the datagram is routed by RPM are shaded.

Figure 14.27 RPM routing for network C.

To compute the routing tables corresponding to the spanning trees we described,
the multicast routers communicate with adjacent multicast routers to discover the
multicast internet topology and the location of multicast group members. In Net/3,
DVMRP is used for this communication. DVMRP messages are transmitted as IGMP
datagrams and are sent to the multicast group 224.0.0.4, which is reserved for DVMRP
communication (Figure 12.1).

In Figure 12.39, we saw that incoming IGMP packets are always accepted by a
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multicast router. They are passed to igmp_input, to rip_input, and then read by
mrouted on a raw IGMP socket, mrouted sends DVMRP messages to other multicast
routers on the same raw IGMP socket.

For more information about RPB, TRPB, RPM, and the DVMRP messages that are
needed to implement these algorithms, see [Deering and Cheriton 1990] and the source
code release of mrouted.

There are other multicast routing protocols in use on the Internet. Proteon routers
implement the MOSPF protocol described in RFC 1584 [Moy 1994]. PIM (Protocol Inde-
pendent Multicasting) is implemented by Cisco routers, starting with Release 10.2 of
their operating software. PIM is described in [Deering et al. 1994].

Multicast Routing Table

120
121
122
123
124
125
126
127

We can now describe the implementation of the multicast routing tables in Net/3. The
kernel’s multicast routing table is maintained as a hash table with 64 entries
(MRTHASHSIZ). The table is kept in the global array mrttable, and each entry points
to a linked list of tort structures, shown in Figure 14.28.

ip_mroute.h
struct mrt {

struct in_addr mrt_origin; /* subnet origin of multicasts */
struct in_addr mrt_originmask; /* subnet mask for origin */
vifi_t mrt_parent; /* incoming vif */
vifbitmap_t mrt_children; /* outgoing children vifs */

);

vifbitmap_t mrt_leaves;
struct mrt *mrt_next;

/* subset of outgoing
/* forward link */

Figure 14.28 mrt structure.

children vifs */

ip_mroute.h

120--127 mrtc_origin and mrtc_originmask identify an entry in the table.
mrtc_parent is the index of the virtual interface on which all multicast datagrams
from the origin are expected. The outgoing interfaces are identified within
mrtc_children, which is a bitmap. Outgoing interfaces that are also leaves in the
multicast routing tree are identified in mrtc_leaves, which is also a bitmap. The last
member, tort_next, implements a linked list in case multiple routes hash to the same
array entry.

Figure 14.29 shows the organization of the multicast routing table. Each mrt struc-
ture is placed in the hash chain that corresponds to return value from the nethash
function shown in Figure 14.31.

The multicast routing table maintained by the kernel is a subset of the routing table
maintained within mrout ed and contains enough information to support mu]ticast for-
warding within the kernel. Updates to the kernel table are sent with the
DVMRP_ADD_MRT command, which includes the mrtctl structure shown in Fig-
ure 14.30.
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95--.1 O1

0
1
2
3
4

63

mrttable [ ] : mzt{}

~ nmask

mrt_leaves

mrt_next

mzt{}

~t{}

mrt_next

mzt{}

mrt_next

mrt_next

Figure 14.29 Multicast routing table.

95 struct mrtctl {
96
97
98
99

i00
i01 ];

ip_mroute.h

struct in_addr mrtc_origin; /* subnet origin of multicasts */
struct in_addr mrtc_originmask;       /* subnet mask for origin */
vifi_t mrtc_parent; /* incoming vif */
vifbitmap_t mrtc_children; /* outgoing children vifs */
vifbitmap_t mrtc_leaves; /* subset of outgoing children vifs */

ip_mroute.h

Figure 14.30 mrtctl structure.

The five members of the mrtctl structure carry the information we have already
described (Figure 14.28) between rarouted and the kernel.

The multicast routing table is keyed by the source IP address of the multicast data-
gram. nethash (Figure 14.31) implements the hashing algorithm used for the table. It
accepts the source IP address and returns a value between 0 and 63 (MRTHASHSIZ - 1).

398 static u_long
399 nethash(in)
400 struct in_addr in;
401 {
402 u_long n;

403
404
405
406
407

n : in netof(in);
while ((n & 0xff) := 0)

n >>= 8;
return (MRTHASHMOD(n});

Figure 14.31 nethash function.

ip_mroute.c

ip_mroute.c
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398--407 ±n_netof returns in with the host portion set to all 0s leaving only the class A, B,
or C network of the sending host in n. The result is shifted to the right until the low-
order 8 bits are nonzero. MRTHASHMOD is

#define MRTHASHMOD(h)     ((h) & (MRTHASHSIZ - i))

The low-order 8 bits are logically ANDed with 63, leaving only the low-order 6 bits,
which is an integer in the range 0 to 63.

Doing two function calls (nethash and in_nero f) to calculate a hash value is an expensive
algorithm to compute a hash for a 32-bit address.

del_mrt Function

The mrouted daemon adds and deletes entries in the kernel’s multicast routing table
through the DVMRP_ADD_MRT and DVMRP_DEL_MRT commands. Figure 14.32 shows
the de l_mrt function.

451 static int
452 del_mrt(origin)
453 struct in_addr *origin;
454.{
455
456
457

458
459
460
461
462

463

464
465

466
467
468
469
470

471
472
473 }

ip_mroute.c

struct mrt *rt, *prev_rt;
u_long hash = nethash(*origin);
int s;

for (prev_rt - rt = mrttable[hash]; rt; prev_rt = rt, rt = rt->mrt_next)
if (origin->s_addr == rt->mrt_origin.s_addr)

break;
if (!rt)

return (ESRCH);

s = splnet();

if (rt == cached_mrt)
cached_mrt = NULL;

if (prev_rt := rt)
mrttable[hash] - rt->mrt_next;

else
prev_rt->mrt_next : rt->mrt_next;

free(rt, M_MRTABLE);

splx(s);
return (0);

Figure 14.32 del_mrt function: process DVMRP DEL HRT command.

ip_mroute.c

Find route entry
45!-462 The for loop starts at the entry identified by hash (initialized in its declaration

from nethash). If the entry is not located, ESRCH is returned.
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4 63-4 73

Delete route entry
If the entry was stored in the cache, the cache is invalidated. The entry is unlinked

from the hash chain and released. The ± f statement is needed to handle the special case
when the matched entry is at the front of the list.

add_mr t Function

The add_mrt function is shown in Figure 14.33.

411
412
413
414
415
416
417

418
419
420
421
422
423
424
425
426
427

428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444

445
446
447

static int
add mrt(mrtcp)
struct mrtctl *mrtcp;

struct mrt *rt;
u_long hash;
int s;

if (rt - mrtfind(mrtcp->mrtc_origin)) {
/* Just update the route */
s - splnet(};
rt->mrt~arent = mrtcp->mrtc_parent;
VIFH_COPY(mrtcp->mrtc_children, rt->mrt_children);
VIFM_COPY(mrtcp->mrtc_leaves, rt->mrt_leaves);
splx(s);
return (0);

spinet();

rt : (struct mrt *) malloc(sizeof(*rt), M MRTABLE, M_NOWAIT);
if (rt -- NULL) {

splx(s);
return (ENOBUFS);

}
/.

* insert new entry at head of hash chain
*/

rt->mrt_origin - mrtcp >mrtc_origin;
rt >mrt_originmask : mrtcp >mrtc_originmask;
rt->mrt~arent = mrtcp->mrtc~arent;
VIFM_COPY(mrtcp->mrtc_children, rt->mrt_children);
VIFM_COPY(mrtcp->mrtc_leaves, rt >mrt_leaves);
/* link into table */
hash - nethash(mrtcp->mrtc_origin);
rt->mrt_next - mrttable[hash];
mrttable[hash] - rt;

splx(s);
return (0);

Figure 14.33 add_tart function: process DVMRP_ADD_MRT command.

ip_mroute.c

ip_mroute.c
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422--427

428--4d7

Update existing route
If the requested route is already in the routing table, the new information is copied

into the route and add_mrL returns.

Allocate new route
An tort structure is constructed in a newly allocated mbuf with the information

from mrL c t 1 structure passed with the add request. The hash index is computed from
mrtc_orig±n, and the new route is inserted as the first entry on the hash chain.

tort find Function

The multicast routing table is searched with the inrt find function. The source of the
datagram is passed to tort f±nd, which returns a pointer to the matching mrt structure,
or a null pointer if there is no match.

477 static struct mrt *
478 mrtfind(origin)
479 struct in_addr origin;
480 {
481 struct mrt *rt;
482 u_int    hash;
483 int s;

ip_mroute.c

484 mrtstat.mrts mrt lookups++;

485
486
487

if (cached_mrt != NULL &&
(origin.s_addr & cached_originmask) :: cached_origin)
return (cached_mrt);

488 mrtstat.mrts mrt misses++;

489 hash - nethash(origin);
490 for (rt - mrttable[hash] ; rt; rt - rt->mrt_next)
491 if ((origin.s_addr & rt->mrt_originmask.s_addr) ==
492 rt->mrt_origin.s_addr) {
493 s - s©inet();
494 cached mrt = rt;
495 cached_origin = rt >mrt_origin.s_addr;
496 cached_originmask = rt->mrt_originmask.s_addr;
497 splx(s);
498 return (rt);
499 }
500 return (NULL);
501 }

Figure 14.34 tort find function.

ip_mroute.c

Check route lookup cache
477--488 The given source IP address (origin) is logically ANDed with the origin mask in

the cache. If the result matches cached_origin, the cached entry is returned.
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489--501

Check the hash table
nethash returns the hash index for the route entry. The for loop searches the

hash chain for a matching route. When a match is found, the cache is updated and a
pointer to the route is returned. If a match is not found, a null pointer is returned.

14.8 Multicast Forwarding: ip_mforward Function

Multicast forwarding is implemented entirely in the kernel. We saw in Figure 12.39 that
±p±ntr passes incoming multicast datagrams to ±p_mforward when ±p_mrout÷~ is
nonnull, that is, when mrout÷d is running.

We also saw in Figure 12.40 that ±p_output can pass multicast datagrams that
originate on the local host to ±p_m£o~wa~d to be routed to interfaces other than the one
interface selected by ±p_ou~put.

Unlike unicast forwarding, each time a multicast datagram is forwarded to an inter-
face, a copy is made. For example, if the local host is acting as a multicast router and is
connected to three different networks, multicast datagrams originating on the system
are duplicated and queued for output on all three interfaces. Additionally, the datagram
may be duplicated and queued for input if the multicast loopback flag was set by the
application or if any of the outgoing interfaces receive their own transmissions.

Figure 14.35 shows a multicast datagram arriving on a physical interface.

accepted by ~~

discarded datagrams
(Figure 14.39)

,’
ipintrq:

incoming
multicast Tunnel Ethernet

Figure 14.35 Multicast datagram arriving on physical interface.

In Figure 14.35, the interface on which the datagram arrived is a member of the des-
tination group, so the datagram is passed to the transport protocols for input process-
ing. The datagram is also passed to ip_mforward, where it is duplicated and



Section 14.8 Multicast Forwarding: ip_mforward Function    425

forwarded to a physical interface and to a tunnel (the thick arrows), both of which must
be different from the receiving interface.

Figure 14.36 shows a multicast datagram arriving on a tunnel.

Transport
Protocols J

~~packet
accepted only when it                  . ~ ~physical inter~ ~

~

discarded datagrams I I
(Figure 14.39) ~ ~

~P~-n~rq:A ~’~    packet arrived on tunnel     ~~
i and is now queued for input / ~I on the physical interface / \incoming

multicast Tunnel Ethernet

Figure 14.36 Multicast datagram arriving on a multicast tunnel.

In Figure 14.36, the datagram arriving on a physical interface associated with the
local end of the tunnel is represented by the dashed arrows. It is passed to
±13__m£orwarct, which as we’ll see in Figure 14.37 returns a nonzero value because the
packet arrived on a tunnel. This causes ±t~±ntr to not pass the packet to the transport
protocols.

±p__m£orwarct strips the tunnel options from the packet, consults the multicast
routing table, and, in this example, forwards the packet on another tunnel and on the
same physical interface on which it arrived, as shown by the thin arrows. This is OK
because the multicast routing tables are based on the virtual interfaces, not the physical
interfaces.

In Figure 14.36 we assume that the physical interface is a member of the destination
group, so ±Z3_outz3ut passes the datagram to ±p_mJ_ooz3back, which queues it for pro-
cessing by ±p±ntr (the thick arrows). The packet is passed to ±~_m£orward again,
where it is discarded (Exercise 14.4). ±~_ra£o~fwaz-d returns 0 this time (because the
packet arrived on a physical interface), so ±p±n~r considers and accepts the datagram
for input processing.

We show the multicast forwarding code in three parts:

¯ tunnel input processing (Figure 14.37),
¯ forwarding eligibility (Figure 14.39), and
¯ forward to outgoing interfaces (Figure 14.40).
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ip mroute.c
516 int                                                                                   -
517 ip_mforward(m, ifp)
518 struct mbuf *m;
519 struct ifnet *ifp;
520 {
521 struct ip *ip = mtod(m, struct ip *) ;
522 struct mrt *rt;
523 struct vif *vifp;
524 int vifi;
525 u_char *ipoptions;
526 u_long tunnel_src;

527
528
529
530
531
532
533
534
535
536
537
538
539
54O
541
542
543
544
545
546
547
548
549
55O
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565

if (ip >ip_hl < (IP HDR LEN + TUNNEL_LEN) >> 2 I I
(ipoptions - (u_char *) (ip + i)) [i] !- IPOPT_LSRR) {
/* Packet arrived via a physical interface. */
tunnel_src : 0;

} else {

Packet arrived through a tunnel.
A tunneled packet has a single NOP option and a
two-element loose-source-and-record-route (LSRR)
option immediately following the fixed-size part of
the IP header. At this point in processing, the IP
header should contain the following IP addresses:

original source in the source address field
* destination group in the destination address field
* remote tunnel end-point in the first element of LSRR
* one of this host’s addrs - in the second element of LSRR

* NOTE: RFC-1075 would have the original source and
* remote tunnel end point addresses swapped. However,
* that could cause delivery of ICMP error messages to
* innocent applications on intermediate routing
* hosts! Therefore, we hereby change the spec.
*/

/* Verify that the tunnel options are well-formed. */
if (ipoptions[0] !- IPOPT_NOP } I

ipoptions[2] !- ii I I /* LSRR option length    */
ipoptions[3] != 12 I I /* LSRR address pointer */
(tunnel_src : *(u_!ong *) (&ipoptions[4])) -- 0) {
mrtstat.mrts bad tunnel++;
return (i);

}
/* Delete the tunnel options from the packet. */
ovbcopy((caddr_t) (ipoptions + TUNNEL_LEN), (caddr_t) ipoptions,

(unsigned) (m->m_len’- (IP_HDR_LEN + TUNNEL_LEN)));
m >m_len -= TUNNEL_LEN;
ip->ip_len -- TUNNEL_LEN;
ip->ip_hl -: TUNNEL_LEN >> 2;

ip_mroute.c
Figure 14.37 ip_mforward function: tunnel arrival.
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51 6--526

527--530

531--558

The two arguments to ip_mforward are a pointer to the mbuf chain containing the
datagram; and a pointer to the i fnet structure of the receiving interface.
Arrival on physical interface

To distinguish between a multicast datagram arriving on a physical interface and a
tunneled datagram arriving on the same physical interface, the IP header is examined
for the characteristic LSRR option. If the header is too small to contain the option, or if
the options don’t start with a NOP followed by an LSRR option, it is assumed that the
datagram arrived on a physical interface and tunnel_src is set to 0.

Arrival on a tunnel

If the datagram looks as though it arrived on a tunnel, the options are verified to
make sure they are well formed. If the options are not well formed for a multicast tun-
nel, i~o_mforward returns 1 to indicate that the datagram should be discarded. Fig-
ure 14.38 shows the organization of the tunnel options.

~
NOP
{- LSRR
/ ,-11 (length)

~ ~ ~-12 (offset)

IP headersource                  tunnel destination      group
data ~I

20 bytes 1 1 1 1 4bytes 4bytes

tunnel’~ptions     [ ~

¯ ..        ~gq......- " "

IP header

20 bytes
Figure 14.38

data

10 bytes
Multicast tunnel options.

559--565

In Figure 14.38 we assume there are no other options in the datagram, although that is not
required. Any other IP options will appear after the LSRR option, which is always inserted
before any other options by the multicast router at the start of the tunnel.

Delete tunnel options

If the options are OK, they are removed from the datagram by shifting the remain-
ing options and data forward and adjusting m_len in the mbuf header and ip_len and
i~o_hl in the IP header (Figure 14.38).

ip_mforward often uses tunnel_source as its return value, which is only
nonzero when the datagram arrives on a tunnel. When ip_mforward returns a
nonzero value, the caller discards the datagram. For ipintr this means that a data-
gram that arrives on a tunnel is passed to ip_mforward and discarded by ipintr.
The forwarding code strips out the tunnel information, duplicates the datagram, and
sends the datagrams with ip_output, which calls ip_mloopback if the interface is a
member of the destination group.
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566 572

5 7 3 -5 7 9

The next part of ip_mforward, shown in Figure 14.39, discards the datagram if it is
ineligible for forwarding.

566
567
568
569
57O
571
572

* Don’t forward a packet with time-to-live of zero or one,
* or a packet destined to a local-only group.
*/

if (ip->ip_ttl <: i II
ntohl(ip->ip_dst.s_addr) <= INADDR MAX_LOCAL_GROUP)
return ((int) tunnel_src);

ip_mroute.c

573
574
575
576
577
578
579
58O
581
582
583
584
585
586
587
588
589
59O
591
592

* Don’t forward if we don’t have a route for the packet’s origin.
*/

if (! (rt = mrtfind(ip->ip_src)))
mrtstat.mrts no route++;
return ((int) tunnel_src);

}
/.

* Don’t forward if it didn’t arrive
*/

vifi : rt->mrt_loarent;
if (tunnel_src -= 0) {

if

} else
if

from the parent vif for its origin.

(viftable[vifi].v_flags & VIFF_TUNNEL) I I
viftable[vifi].v_ifp != ifp)
return ((int) tunnel_src);

! (viftable[vifi].v_flags & VIFF_TUNNEL) I I
viftable[vifi].v_rmt_addr.s_addr !: tunnel_src)
return ((int) tunnel_src);

Figure 14.39 ip_mforward function: forwarding eligibility checks.

ip_mroute.c

Expired TTL or local multicast
If ip_ttt is 0 or 1, the datagram has reached the end of its lifetime and is not for-

warded. If the destination group is less than or equal to INADDR_IvLAX_LOCAL_©ROUP
(the 224.0.0.x groups, Figure 12.1), the datagram is not allowed beyond the local net-
work and is not forwarded. In either case, tunnel_src is returned to the caller.

Version 3.3 of mrouted supports administrative scoping of certain destination groups. An
interface can be configured to discard datagrams addressed to these groups, simiIar to the
automatic scoping of the 224.0.0.x groups.

No route available

If tort f ind cannot locate a route based on the source address of the datagram, the
function returns. Without a route, the multicast router cannot determine to which inter-
faces the datagram should be forwarded. This might occur, for example, when the
multicast datagrams arrive before the multicast routing table has been updated by
mrouted.
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580-592

Arrived on unexpected interface

If the datagram arrived on a physical interface but was expected to arrive on a tun-
nel or on a different physical interface, ilo_mforward returns. If the datagram arrived
on a tunnel but was expected to arrive on a physical interface or on a different tunnel,
ip_mforward returns. A datagram may arrive on an unexpected interface when the
routing tables are in transition because of changes in the group membership or in the
physical topology of the network.

The final part of ip_mforward (Figure 14.40) sends the datagram on each of the
outgoing interfaces specified in the multicast route entry.

593
594
595
596
597
598
599
6OO
601
602
603
604
6O5
606
607
6O8
609
610
611
612
613

ip_mroute.c

* For each vif, decide if a copy of the packet should be forwarded.
* Forward if:
* the ttl exceeds the vif’~ threshold AND
* - the vif is a child in the origin’s route AND
* - ( the vif is not a leaf in the origin’s route OR
* the destination group has members on the vif )

* (This might be speeded up with some sort of cache -- someday.)
*/

for (vifp - viftable, vifi - 0; vifi < numvifs; vifp++, vifi++
if (ip->ip_ttl > vifp->v_threshold &&

VIFM_ISSET(vifi, rt->mrt_children) &&
(!VIFM_ISSET(vifi, rt->mrt_leaves) I I
grplst_member(vifp, ip->ip_dst))) {

if (vifp >v_flags & VIFF_TUNNEL)
tunnel_send(m, vifp);

else
phyint_send(m, vifp);

}

614
615

return ((int) tunnel_src);

Figure 14.40 ip mforward function: forwarding.

~p_mroute.c

593--615 For each interface in vi ftable, a datagram is sent on the interface if

¯ the datagram’s TTL is greater than the multicast threshold for the interface,
¯ the interface is a child interface for the route, and
¯ the interface is not connected to a leaf network.

If the interface is a leaf, the datagram is output only if there is a member of the des-
"tination group on the network (i.e., grpl st_member returns a nonzero value).

tunnel_send forwards the datagram on tunnel interfaces; phyint_send is used
for physical interfaces.
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phyint_send Function

To send a multicast datagram on a physical interface, phy±nt_send (Figure 14.41)
specifies the output interface explicitly in the ±p_mopt±ons structure it passes to
ip_output.

616 static void
617 phyint_send(m, vifp)
618 struct mbuf *m;
619 struct vif *vifp;
620 {
621 struct ip *ip : mtod(m, struct ip *);
622 struct mbuf *mb_copy;
623 struct ip_moptions *imo;
624 int error;
625 struct ip_moptions simo;

ip_mroute.c

626
627
628

mb_copy : m_copy(m, O, M_COPYALL);
if (mb_copy == NULL)

return;

629
630
631
632

imo = &simo;
imo->imo_multicast_ifp : vifp->v_ifp;
imo->imo_mnlticast_ttl : ip->ip_ttl - i;
imo->imo multicast_loop = i;

633 error : ip_output(mb_copy, NULL, NULL, IP_FORWARDING, imo);
694 }

Figure 14.41 phyint_send function.
-ip_mroute.c

61 6--63 4 re_copy duplicates the outgoing datagram. The ip_moptions structure is set to
force the datagram to be transmitted on the selected interface. The TTL value is decre-
mented, and multicast loopback is enabled.

The datagram is passed to ip_output. The IP_FORWARDING flag avoids an infi-
nite loop, where ip_output calls ip_mforward again.

mbuf packet tunnel
header IP header options

28 bytes ~;4 20 bytes 12 bytes

IPIP header
options

data

20 bytes

~

mbuf
header options and data

20 bytes
Figure 14.42 Inserting tunnel options.
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tunnel_send Function

To send a datagram on a tunnel, tunnel_send (Figure 14.43) must construct the appro-
priate tunnel options and insert them in the header of the outgoing datagram. Fig-
ure 14.42 shows how tunnel_send prepares a packet for the tunnel.

635 static void
636 tunnel_send(m, vifp)
637 struct mbuf *m;
638 struct vif *vifp;
639 {
640 struct ip *ip : mtod(m, struct ip *) ;
641 struct mbuf *mb_copy, *mb opts;
642 struct ip *ip_copy;
643 int error;
644 u_char *cp;

ip_mroute.c

645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672

* Make sure that adding the tunnel options won’t exceed the
* maximum allowed ntumber of option bytes.

*/
if (ip->ip_hl > (60 - TUNNEL_LEN) >> 2) {

mrtstat.mrts_cant_tunnel++;
return;

]
/.

* Get a private copy of the IP header so that changes to some
* of the IP fields don’t damage the original header, which is
* examined later in ip_input.c.
*/

mb_copy : m_copy(m, IP_HDR_LEN, M_COPYALL);
if (mb_copy =: NULL)

return;
MGETHDR(mb_opts, M_DONTWAIT, MT_HEADER);
if (mb_opts := NULL) {

m_freem(mb_copy);
return;

}
/.

* Make mb_opts be the new head of the packet chain.
* Any options of the packet were left in the old packet chain head

*/
mb_opts->m_next = mb_copy;
mb_opts->m_len : IP_HDR_LEN + TUNNEL_LEN;
mb_opts->m_data +: MSIZE - mb_opts->m_len;

~_mroute.c

Figure14.43 tunnel_sendfunction:veri~ and allocatenewheaden

635--652

Will the tunnel options fit?

If there is no room in the IP header for the tunnel options, tunnel_send returns
immediately and the datagram is not forwarded on the tunnel. It may be forwarded on
other interfaces.
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653-672

673--679

680--664

Duplicate the datagram and allocate mbuf for new header and tunnel options
In the call to re_copy, the starting offset for the copy is 20 (IP_HDR_LEN). The

resulting mbuf chain contains the options and data for the datagram but not the IP
header, rob_opts points to a new datagram header allocated by MGETHDR. The data-
gram header is prepended to rob_copy. Then m_len and m_data are adjusted to
accommodate an IP header and the tunnel options.

the

673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695

696
697

The second half of tunnel_send, shown in Figure 14.44, modifies the headers of
outgoing packet and sends the packet.

ip_mroute.c
ip_copy : mtod(mb_opts, struct ip *);
/*

* Copy the base ip header to the new head mbuf.
*/

*ip_copy = *ip;
ip_copy->ip_ttl--;
ip_copy->ip_dst = vifp->v_rmt_addr;       /* remote tunnel end-point */

* Adjust the ip header length to account for the tunnel options.
*/

ip_copy->ip_hl += TUNNEL_LEN >> 2;
ip_copy->ip_len +- TUNNEL_LEN;
/*
* Add the NOP and LSRR after the base ip header
*/

cp = (u_char *) (ip_copy + i);
*cp++ : IPOPT_NOP;
*cp++ - IPOPT_LSRR;
*cp++ = ii; /* LSRR option length */
*cp++ = 8; /* LSSR pointer to second element */
*(u_long *) cp = vifp->v_icl_addr.s_addr;    /* local tunnel end-point */
cp +- 4;
*(u_long *) cp = ip >ip_dst.s_addr;       /* destination group */

error = ip_output(mb_opts, NULL, NULL, IP_FORWARDING, NULL);

Figure 14.44 tunnel_send function: construct headers and send.

ip_mroute.c

Modify IP header
The original IP header is copied from the original mbuf chain into the newly allo-

cated mbuf header. The TTL in the header is decremented, and the destination is
changed to be the other end of the tunnel.

Construct tunnel options
ip_hl and ip_len are adjusted to accommodate the tunnel options. The tunnel

options are placed just after the IP header: a NOP, followed by the LSRR code, the
length of the LSRR option (11 bytes), and a pointer to the second address in the option (8
bytes). The source route consists of the local tunnel end point followed by the destina-
tion group (Figure 14.13).
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665--697

14.9

Send the tunneled datagram

ip_output sends the datagram, which now looks like a unicast datagram with an
LSRR option since the destination address is the unicast address of the other end of the
tunnel. When it reaches the other end of the tunnel, the tunnel options are stripped off
and the datagram is forwarded at that point, possibly through additional tunnels.

Cleanup: ip_mrouter_done Function

When mrouted shuts down, it issues the DVMRP_DONE command, which is handled by
the ip_mrout er_done function shown in Figure 14.45.

161 int
162 ip_mrouter_done()
163 {
164 vifi_t vifi;
165 int i;
166 struct ifnet *ifp;
167 int s;
168 struct ifreq ifr;
169 s = splnet();
170 /*
171 * For each phyint in use, free its local group list and
172 * disable promiscuous reception of all IP multicasts.
173 */
174 for (vifi = 0; vifi < numvifs; vifi++) {
175 if (viftable[vifi].v_icl_addr.s_addr != 0 &&
176 ! (viftable[vifi].v_flags & VIFF_TUNNEL)) {
177 if (viftable[vifi].v_icl_grps)
178 free(viftable[vifi].v_icl_grps, M_MRTABLE);
179 satosin(&ifr.ifr_addr)->sin_family = AF_INET;
180 satosin(&ifr.ifr_addr)->sin_addr.s_addr = INADDR ANY;
181 ifp = viftable[vifi].v_ifp;
182 (*ifp->if_ioctl) (ifp, SIOCDELMULTI, (caddr_t) & ifr);
183 }
184 }
185 bzero((caddr_t) viftable, sizeof(viftable));
186 numvifs = 0;
187 /*
188 * Free any multicast route entries.
189 */
190 for (i : 0; i < MRTHASHSIZ; i++)
191 if (mrttable[i])
192 free(mrttable[i], M_MRTABLE);
193 bzero((caddr_t) mrttable, sizeof(mrttable));
194 cached_mrt = NULL;
195 ip_mrouter = NULL;
196 splx(s);
197 return (0);
198 }

Figure 14.45 ip_mrouter_done function: DVMRP_DONE command.

ip_mroute.c

ip_mroute.c
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161--186

187--198

This function runs at splnet to avoid any interaction with the multicast forward-
ing code. For every physical multicast interface, the list of local groups is released and
the $IOCDELMULTI command is issued to stop receiving multicast datagrams (Exer-
cise 14.3). The entire v± ftabl÷ array is cleared by bzero and numv± fs is set to 0.

Every active entry in the multicast routing table is released, the entire table is
cleared with bz÷ro, the cache is cleared, and ±p_mrou¢÷r is reset.

Each entry in the multicast routing table may be the first in a linked list of entries. This code
introduces a memory leak by releasing only the first entry in the list.

14.10 Summary

In this chapter we described the general concept of internetwork multicasting and the
specific functions within the Net/3 kernel that support it. We did not discuss the imple-
mentation of mrou¢ ÷d, but the source is readily available for the interested reader.

We described the virtual interface table and the differences between a physical
interface and a tunnel as well as the LSRR options used to implement tunnels in Net/3.

We illustrated the RPB, TRPB, and RPM algorithms and described the kernel tables
used to forward multicast datagrams according to TRPB. The concept of parent and leaf
networks was also discussed.

Exercises

14.1

14.2

14.3

14.4

In Figure 14.25, how many multicast routes are needed?

Why is the update to the group membership cache in Figure 14.23 protected by splne¢
and

What happens when SIOCDELMULTI is issued for an interface that has explicitly joined a
multicast group with the I P_ADD_MEMBERSHI P option?

When a datagram arrives on a tunnel and is accepted by ip_mforward, it may be looped
back by ip_outpu¢ when it is forwarded to a physical interface. Why does
ip_mforward discard the looped-back packet when it arrives on the physical interface?

14.5 Redesign the group address cache to increase its effectiveness.
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Socket Layer

15.1 Introduction

This chapter is the first of three that cover the socket-layer code in Net/3. The socket
abstraction was introduced with the 4.2BSD release in 1983 to provide a uniform inter-
face to network and interprocess communication protocols. The Net/3 release dis-
cussed here is based on the 4.3BSD Reno version of sockets, which is slightly different
from the earlier 4.2 releases used by many Unix vendors.

As described in Section 1.7, the socket layer maps protocol-independent requests
from a process to the protocol-specific implementation selected when the socket was
created.

To allow standard Unix I/O system calls such as reac~ and wr±te to operate with
network connections, the filesystem and networking facilities in BSD releases are inte-
grated at the system call level. Network connections represented by sockets are
accessed through a descriptor (a small integer) in the same way an open file is accessed
through a descriptor. This allows the standard filesystem calls such as ~cead and
wr±te, as well as network-specific system calls such as s÷ndr~sg and ~:÷cvmsg, to
work with a descriptor associated with a socket.

Our focus is on the implementation of sockets and the associated system calls and
not on how a typical program might use the socket layer to implement network applica-
tions. For a detailed discussion of the process-level socket interface and how to pro-
gram network applications see [Stevens 1990] and [Rago 1993].

Figure 15.1 shows the layering between the socket interface in a process and the
protocol implementation in the kernel.

435
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process

application

~function call

socket
system calls

1 s_ys_tem call

socket system call/implementations

~function call

socket layer
functions

TCP     ] calls via pr_usrreq or pr_ctloutput [     TP4

Figure 15.1 The socket layer converts generic requests to specific protocol operations.

splnet Processing

The socket layer contains many paired calls to splnet and splx. As discussed in Sec-
tion 1.12, these calls protect code that accesses data structures shared between the socket
layer and the protocol-processing layer. Without calls to spJ_net, a software interrupt
that initiates protocol processing and changes the shared data structures will confuse
the socket-layer code when it resumes.

We assume that readers understand these calls and we rarely point them out in our
discussion.

15.2 Code Introduction

The three files listed in Figure 15.2 are described in this chapter.

Global Variables

The two global variable covered in this chapter are described in Figure 15.3.
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File Description

sys/socketvar, h socket structure definitions
kern/uipe_syscalls, c system call implementation
kern/uipc_socket, c socket-layer functions

Figure 15.2 Files discussed in this chapter.

Variable Datatype Description

socketops struct fileops socket implementation of I/O system calls
sysent struct sysent [ ] array of system call entries

Figure 15.3 Global variable introduced in this chapter.

15.3

41--42

43

socket Structure

A socket represents one end of a communication link and holds or points to all the
information associated with the link. This information includes the protocol to use,
state information for the protocol (which includes source and destination addresses),
queues of arriving connections, data buffers, and option flags. Figure 15.5 shows the
definition of a socket and its associated buffers.

so_type is specified by the process creating a socket and identifies the communica-
tion semantics to be supported by the socket and the associated protocol, so_type
shares the same values as pr_type shown in Figure 7.8. For UDP, so_type would be
SOCK_DGRAN and for TCP it would be SOCK_STREAM.

so_options is a collection of flags that modify the behavior of a socket. Fig-
ure 15.4 describes the flags.

Kernel
so_opt ions only Description

SO_ACCEPTCONN ¯
SO_BROADCAST
SO_DEBUG
SO_DONTROUTE
SO_KEEPALIVE
SO-- OOBINLINE
SO_REUSEADDR
SO-REUSEPORT
SO- USELOOPBACK

socket accepts incoming connections
socket can send broadcast messages
socket records debugging information
output operations bypass routing tables
socket probes idle connections
socket keeps out-of-band data inline
socket can reuse a local address
socket can reuse a local address and port
routing domain sockets only; sending process receives its

own routing requests

Figure 15.4 so_options values.

A process can modify all the socket options with the getsockopt and setsockopt system
calls except SO_ACCEPTCONN, which is set by the kernel when the listen system call is
issued on the socket.
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socketvar.h
41
42
43
44
45
46
47
48
49
5O
51
52
53
54
55
56
57
58
59
6O
61
62
63
64
65
66
67
68
69
7O
71
72
73
74
75
76
77
78
79
8O
81
82
83
84
85
86

struct socket {
short so_type;
short so_options;
short so_linger;
short so_state;
caddr_t so_pcb;
struet protosw *so_proto;

};

/* generic type, Figure 7.8 */
/* from socket call, Figure 15.4 */
/* time to linger while closing */
/* internal state flags, Figure 15.6 */
/* protocol control block */
/* protocol handle */

* Variables for connection queueing.
* Socket where accepts occur is so_head in all subsidiary sockets.
* If so_head is 0, socket is not related to an accept.
* For head socket so_q0 queues partially completed connections,
* while so_q is a queue of connections ready to be accepted.
* If a connection is aborted and it has so_head set, then
* it has to be pulled out of either so_q0 or so_q.
* We allow connections to queue up based on current queue lengths
* and limit on number of queued connections for this socket.
*/

struct socket *so_head;
struct socket *so_q0;
struct socket *so_q;
short so_q01en;
short so_qlen;
short so_qlimit;
short so_timeo;
u_short so_error;
pid_t so_pgid;
u_long so_oobmark;

/* back pointer to accept socket */
/* queue of partial connections */
/* queue of incoming connections */
/* partials on so_q0 */
/* number of connections on so_q */
/* max number queued connections */
/* connection timeout *!
/* error affecting connection */
/* pgid for signals */
/* chars to cob mark */

* Variables for socket buffering.
*/

struct sockbuf {
u_long sb_cc;
u_long sb_hiwat;
u_long sb mbcnt;
u_long sb_mbmax;
long sb_lowat;
struct mbuf *sb rill);
struct selinfo sb_sel;
short sb_flags;
short sb_timeo;

] so_rcv, so_snd;
caddr_t so_tpch;
void      (*so_upcall)
caddr_t so_upcallarg;

/* actual chars in buffer */
/* max actual char count */
/* chars of mbufs used */
/* max chars of mbufs to use */
/* low water mark */
/* the mbuf chain */
/* process selecting read/write */
/* Figure 16.5 */
/* timeout for read/write */

/* Wisco protocol control block XXX */
(struct socket * so, caddr_t arg, int waitf);

/* Arg for above */

socketvar.h
Figure 15.5 struct socket definition.
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so_l inger is the time in clock ticks that a socket waits for data to drain while clos-
ing a connection (Section 15.15).

45 so_state represents the internal state and additional characteristics of the socket.
Figure 15.6 lists the possible values for so_state.

Kernels o_s t a t e only Description

SS_ASYNC
SS_NBIO

SS_CANTRCVMOI{E ¯
SS_ CANTSENDMORE ¯
SS_ ISCONFIRMING ¯

S~_ ISCONNECTED ¯

SS_ ISCONNECTING ¯

SS_ ISDISCONNECTING ¯

SS_NOFDREF ¯
SS_PRIV ¯

S S_R CVA TMARK ¯

socket should send asynchronous notification of I/O events
socket operations should not block the process
socket cannot receive more data from peer
socket cannot send more data to peer
socket is negotiating a connection request
socket is connected to a foreign socket
socket is connecting to a foreign socket
socket is disconnecting from peer
socket is not associated with a descriptor
socket was created by a process with superuser privileges
process has consumed all data received before the most

recent out-of-band data was received

Figure 15.6 so_state values.

In Figure 15.6, the middle column shows that SS_ASYNC and SS_NBIO can be
changed explicitly by a process by the fcnt 1 and ioct 1 system calls. The other flags
are implicitly changed by the process during the execution of system calls. For exam-
ple, if the process calls connect, the SS_ISCONNECTED flag is set by the kernel when
the connection is established.

SS_NBIO and SS_ASYNC Flags

By default, a process blocks waiting for resources when it makes an I/O request. For
example, a read system call on a socket blocks if there is no data available from the net-
work. When the data arrives, the process is unblocked and read returns. Similarly,
when a process calls wr i t e, the kernel blocks the process until space is available in the
kernel for the data. If SS_NBIO is set, the kernel does not block a process during I/O on
the socket but instead returns the error code EWOULDBLOCK.

If SS_ASYNC is set, the kernel sends the SIGIO signal to the process or process
group specified by so~ogid when the status of the socket changes for one of the fol-
lowing reasons:

¯ a connection request has completed,
¯ a disconnect request has been initiated,
¯ a disconnect request has completed,
¯ half of a connection has been shut down,
¯ data has arrived on a socket,
¯ data has been sent from a socket (i.e., the output buffer has free space), or
¯ an asynchronous error has occurred on a UDP or TCP socket.
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46 s o_peb points to a protocol control block that contains protocol-specific state infor-
mation and parameters for the socket. Each protocol defines its own control block
structure, so so_pcb is defined to be a generic pointer. Figure 15.7 lists the control
block structures that we discuss.

so_pcb never points to a tcpcb structure directly; see Figure 22.1.

Protocol Control block Reference

UDP struct inpcb Section 22.3
struct inpcb Section 22.3

TCP struct tcpcb Section 24.5

ICMP, IGMP, raw IP struct inpcb Section 22.3
Route struct rawcb Section 20.3

Figure 15.7 Protocol control blocks.

47

48--64

65

66

67

68

69--82

so_proto points to the protosw structure of the protocol selected by the process
during the socket system call (Section 7.4).

Sockets with SO_ACCEPTCONN set maintain two connection queues. Connections
that are not yet established (e.g., the TCP three-way handshake is not yet complete) are
placed on the queue so_q0. Connections that are established and are ready to be
accepted (e.g., the TCP three-way handshake is complete) are placed on the queue
so_q. The lengths of the queues are kept in so_q01en and so_qlen. Each queued
connection is represented by its own socket, so_head in each queued socket points to
the original socket with SO_ACCEPTCONN set.

The maximum number of queued connections for a particular socket is controlled
by so_qlirait, which is specified by a process when it calls listen. The kernel
silently enforces an upper limit of 5 (SOMAXCONN, Figure 15.24) and a lower limit of 0.
A somewhat obscure formula shown with Figure 15.29 uses s o_qlirai t to control the
number of queued connections.

Figure 15.8 illustrates a queue configuration in which three connections are ready to
be accepted and one connection is being established.

so_tiraeo is a wait channel (Section 15.10) used during accept, connect, and
close processing.

so_error holds an error,code until it can be reported to a process during the next
system call that references the socket.

If SS_ASYNC is set for a socket, the STGIO signal is sent to the process (if so_pgid
is greater than 0) or to the progress group (if so_pgid is less than 0). so_pgid can be
changed or examined with the sIOCSPGRP and SIOCGPGRP ioctl commands. For
more information about process groups see [Stevens 1992].

so_oobmark identifies the point in the input data stream at which out-of-band data
was most recently received. Section 16.11 discusses socket support for out-of-band data
and Section 29.7 discusses the semantics of out-of-band data in TCP.

Each socket contains two data buffers, so_rcv and so_snd, used to buffer incom-
ing and outgoing data. These are structures contained within the socket structure, not
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socket{}
so_head
so_qO
so_q

socket{}
so_head
so_qO
so_q

sockets start on this queue
when TCP SYN arrives

when TCP SYN is ACKed, socket{ } socket{ } socket { }
accept removes sockets | so_head so_head so_head

from this queue so_qO so_qO so_qO
~ k~ so_q so_q so_q

Figure 15.8 Socket connection queues.

83--86

pointers to structures. We describe the organization and use of the socket buffers in
Chapter 16.

so_tpcb is not used by Net/3. so_upcall and so_upcallarg are used only by
the NFS software in Net/3.

NFS is unusual. In many ways it is a process-level application that has been moved into the
kernel. The so_upca!l mechanism triggers NFS input processing when data is added to a
socket receive buffer. The tsleep and wakeup mechanism is inappropriate in this case, since
the NFS protocol executes within the kernel, not as a process.

The files socketvar.h and uipc_socket2 .c define several macros and func-
tions that simplify the socket-layer code. Figure 15.9 summarizes them.

15.4 System Calls

A process interacts with the kernel through a collection of well-defined functions called
system calls. Before showing the system calls that support networking, we discuss the
system call mechanism itself.

The transfer of execution from a process to the protected environment of the kernel
is machine- and implementation-dependent. In the discussion that follows, we use the
386 implementation of Net/3 to illustrate implementation specific operations.

In BSD kernels, each system call is numbered and the hardware is configured to
transfer control to a single kernel function when the process executes a system call. The
particular system call is identified as an integer argument to the function. In the 386
implementation, sysca!l is that function. Using the system call number, syscall
indexes a table to locate the sysent structure for the requested system call. Each entry
in the table is a sysent structure:
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Name

sosendallatonce

soisconnecting

soisconnected

soreadable

sowriteable

socantsendmore

socantrcvmore

sodisconnect

soisdisconnecting

soisdisconnected

soqinsque

soqremque

Description

Does the protocol associated with so require each send system call to result in a
single protocol request?

int sosendallatonce(struct socket *S0);

Set the socket state to SS_ISCONNECTING.

int soiscom_necting(struct socket *so);

See Figure 15.30.
Will a read on so return information without blocking?

int soreadable(struct socket *so);

Will a write on so return without blocking?

int so~rriteable(struct socket *so);

Set the SS_CANTSENDMORE flag. Wake up any processes sleeping on the send
buffer.

int socantsendmore(struct socket *so);

Set the SS_CANTRCVMORE flag. Wake up processes sleeping on the receive
buffer.

int socantrc~n~ore(struct socket *SO);

Issue the PRU_DISCONNECT request.

int sodiscom_neot(struct socket *s0);

Clear the SS_ISCONNECTING flag. Set SS_ISDISCONNECTING,
SS_CANTRCVMORE, and SS_CANTSENDMORE flags. Wake up any processes
selecting on the socket.

int soisdlsco~.~ectimg(struct socket *s0);

Clear the SS_ISCONNECTING, SS_ISCONNECTED, and SS_ISDISCONNECTING
flags. Set the SS_CANTRCVMORE and SS_CANTSENDMORE flags. ~Vake up any
processes selecting on the socket or waiting for close to complete.

int solsdisco~-~ected(struct socket *so);

Insert so on a queue associated with head. If q is 0, the socket is added to the end
of. so_q0, which ho]ds incomplete connections. Otherwise, the socket is added
to the end of so_% which holds connecHons that are ready to be accepted.
Net/] incorrectly placed sockets at the front of the queue.

int soqins~e(struct socket *head, struct socket *so, int q);

Remove so from the queue identified by q. The socket queues are located by
following so->so_head.

int soqrem~e(struct socket *so, int q);

Figure 15.9 Socket macros and functions.
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struct sysent {
int sy_narg; /* number of arguments */
int (*sy_call) (); /* implementing function */

}; /* system call table entry *!

Here are several entries from the sysent arra~ which is defined in
kern/init_sysent.c.

struct sysent sysent[] = {
/* ... */
{ 3, recv~sg },
{ 3, sendmsg ],
{ 6, recvfrom },
{ 3, accept },
{ 3, getpeername },
{ 3, getsockname },
I* ... *I

/* 27 : recvmsg */
/* 28 : sendmsg */
/* 29 - recvfrom */
/* 30 - accept */
/* 31 = getpeername */
/* 32 - getsockname */

For example, the recvmsg system call is the 27th entry in the system call table, has
three arguments, and is implemented by the recvmsg function in the kernel.

syscall copies the arguments from the calling process into the kernel and allo-
cates an array to hold the results of the system call, which syscal i returns to the pro-
cess when the system call completes, syscal 1 dispatches control to the kernel function
associated with the system call. In the 386 implementation, this call looks like:

struct sysent *callp;
error : (*callp->sy_call) (p, args, rval);

where c a 1 l p is a pointer to the relevant sys e nt structure, p is a pointer to the process
table entry for the process that made the system call, args represents the arguments to
the system call as an array of 32-bit words, and rval is an array of two 32-bit words to
hold the return value of the system call. When we use the term system call, we mean the
function within the kernel called by sys ca 11, not the function within the process called
by the application.

syscal 1 expects the system call function (i.e., what sy_cal 1 points to) to return 0
if no errors occurred and a nonzero error code otherwise. If no error occurs, the kernel
passes the values in rval back to the process as the return value of the system call (the
one made by the application). If an error occurs, syscall ignores the values in rval
and returns the error code to the process in a machine-dependent way so that the error
is made available to the process in the external variable errno. The function called by
the application returns -1 or a null pointer to indicate that errno should be examined.

The 386 implementation sets the carry bit to indicate that the value returned by
syscall is an error code. The system call stub in the process stores the code in errno
and returns -1 or a null pointer to the application. If the carry bit is not set, the value
returned by syscal 1 is returned by the stub.

To summarize, a function implementing a system call "returns" two values: one for
the syscall function, and a second (found in rval) that syscall returns to the call-
ing process when no error occurs.
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Example

The prototype for the socket system call is:

int socket(int domain, int type, int protocol);

The prototype for the kernel function that implements the system call is
struct socket_arts {

int domain;
int type ;
int protocol;

};
socket(struct proc *p, struct socket_arts *uap, int *retval) ;

When an application calls socket, the process passes three separate integers to the
kernel with the system call mechanism, sysca! 1 copies the arguments into an array of
32-bit values and passes a pointer to the array as the second argument to the kernel ver-
sion of socket. The kernel version of socket treats the second argument as a pointer
to an socket_args structure. Figure 15.10 illustrates this arrangement.

arguments copied from
user space to kernel space

syscall ( )    arts [0] arts [i] arts [2] . . . arts [7]

kernel socket ( ) domain type protocol

v

socket_args{}

Figure 15.10 socket argument processing.

As illustrated by socket, each kernel function that implements a system call
declares args not as a pointer to an array of 32-bit words, but as as a pointer to a struc-
ture specific to the system call.

The implicit cast is legal only in traditional K&R C or in ANSI C when a prototype is not in
effect. If a prototype is in effect, the compiler generates a warning.

syscall prepares the return value of 0 before executing the kernel system call
function. If no error occurs, the system call function can return without clearing
*retval and syscal! returns 0 to the process.

System Call Summary

Figure 15.11 summarizes the system calls relevant to networking.
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Category Name Function

socket
setup

server

client

Processes, Descriptors, and Sockets    445

input

output

I/O

termination

administration

bind

listen
accept

connect

read
readv
recv
recvfrom
recvmsg

write
writev
send
sendto
sendmsg

select

shutdown
close

fcntl
ioctl
setsockopt
getsockopt
getsockname
getpeername

create a new unnamed socket within a specified communication
domain

assign a local address to a socket
prepare a socket to accept incoming connections
wait for and accept connections
establish a connection to a foreign socket
receive data into a single buffer
receive data into multiple buffers
receive data specifying options
receive data and address of sender
receive data into multiple buffers, control information, and receive the

address of sender; specify receive options
send data from a single buffer
send data from multiple buffers
send data specifying options
send data to specified address
send data from multiple buffers and control information to a specified

address; specify send options
wait for I/O conditions
terminate connection in one or both directions
terminate connection and release socket
modify I/O semantics
miscellaneous socket operations
set socket or protocol options
get socket or protocol options
get local address assigned to socket
get foreign address assigned to socket

Figure 15.11 Networking system calls in Net/3.

We present the setup, server, client, and termination calls in this chapter. The input
and output system calls are discussed in Chapter 16 and the administrative calls in
Chapter 17.

Figure 15.12 shows the sequence in which an application might use the calls. The
I/O system calls in the large box can be called in any order. This is not a complete state
diagram as some valid transitions are not included; just the most common ones are
shown.

15.5 Processes, Descriptors, and Sockets

Before describing the socket system calls, we need to discuss the data structures that tie
together processes, descriptors, and sockets. Figure 15.13 shows the structures and
members relevant to our discussion. A more complete explanation of the file structures
can be found in [Leffier et al. 1989].
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write
writev
sendto select

s end[flsg

read     ]
ready

readfrom
readmsg

Figure 15.12 Network system call flowchart.

proc{}

p_fd

filedesc { }

protosw{}

socket{}

so_type
so_proto

*file{} []

file{}

f_ops

f_data socketops:

~

soo_read
soo_write
soo_ioctl
soo_select
soo_close

Figure 15.13 Process, file, and socket structures.
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The first argument to a function implementing a system call is always p, a pointer to
the proc structure of the calling process. The proc structure represents the kernel’s
notion of a process. Within the proc structure, p_fd points to a filedesc structure,
which manages the descriptor table pointed to by f d_o f i 1 e s. The descriptor table is
dynamically sized and consists of an array of pointers to f i 1 e structures. Each f i 1 e
structure describes a single open file and can be shared between multiple processes.

Only a single file structure is shown in Figure 15.13. It is accessed by
p->p_fd->fd_ofiles [fd]. Within the file structure, two members are of interest to
us: f_ops and f_data. The implementation of I/O system calls such as read and
write varies according to what type of I/O object is associated with a descriptor.
f_ops points to a f ileops structure containing a list of function pointers that imple-
ment the read, write, ioctl, select, and close system calls for the associated I/O
object. Figure 15.13 shows f_ops pointing to a global f i l eops structure, socketops,
which contains pointers to the functions for sockets.

f_data points to private data used by the associated I/O object. For sockets,
f_data points to the socket structure associated with the descriptor. Finally, we see
that so_proto in the socket structure points to the protosw structure for the proto-
col selected when the socket is created. Recall that each protosw structure is shared by
all sockets associated with the protocol.

We now proceed to discuss the system calls.

15.6

42--55

56--60

60--69

socket System Call

The socket system call creates a new socket and associates it with a protocol as speci-
fied by the domain, type, and protocol arguments specified by the process. The
function (shown in Figure 15.14) allocates a new descriptor, which identifies the socket
in future system calls, and returns the descriptor to the process.

Before each system call a structure is defined to describe the arguments passed from
the process to the kernel. In this case, the arguments are passed within a socket_args
structure. All the socket-layer system calls have three arguments: p, a pointer to the
proc structure for the calling process; ual~, a pointer to a structure containing the argu-
ments passed by the process to the system call; and retval, a value-result argument
that points to the return value for the system call. Normally, we ignore the p and
retval arguments and refer to the contents of the structure pointed to by uap as the
arguments to the system call.

falloc allocates a new file structure and slot in the fd_ofiles array (Fig-
ure 15.13). fp points to the new structure and fd is the index of the structure in the
fd_ofiles array, socket enables the file structure for read and write access and
marks it as a socket, socketops, a global fileops structure shared by all sockets, is
attached to the file structure by f_ops. The socketops variable is initialized at
compile time as shown in Figure 15.15.

socreate allocates and initializes a socket structure. If socreate fails, the error
code is posted in error, the f i 1 e structure is released, and the descriptor slot cleared.
If socreate succeeds, f_data is set to point to the socket structure and establishes
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42 struct socket_args {
43 int domain;
44 int type;
45 int protocol;
46 };

47 socket(p, uap, retval)
48 struct proc *p;
49 struct socket_args *uap;
50 int     *retval;
51 {
52 struct filedesc *fdp - p >p_fd;
53 struct socket *so;
54 struct file *fp;
55 int fd, error;

uipc_syscalls.c

56
57
58
59
60
61
62
63
64
65
66
67
68
69

if (error = falloc(p, &fp, &fd))
return (error);

fp->f_flag : FREAD I FWRITE;
fp->f_type : DTYPE_SOCKET;
fp->f_ops : &socketops;
if (error = socreate(uap->domain, &so, uap->type, uap->protocol)) {

fdp->fd_ofiles[fd] - 0;
ffree(fp) ;

] else {
fp >f_data - (caddr_t) so;
*retval - fd;

}
return (error);

Figure 15.14 socket system call.

uipc_syscalls.c

Figure 15.15

Member Value

fo_read soo_read
fo_write soo_write
fo_ioctl soo_ioctl
fo_select soo_select
fo_close soo_close

$ocketops: the global fileops structure for sockets.

the association between the descriptor and the socket, fd is returned to the process
through *retval. socket returns 0 or the error code returned by socreate.

socreate Function

Most socket system calls are divided into at least two functions, in the same way that
socket and socreate are. The first function retrieves from the process all the data
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43-52

53--60

required, calls the second soxxx function to do the work, and then returns any results to
the process. This split is so that the second function can be called directly by kernel-
based network protocols, such as NFS. socreate is shown in Figure 15.16.

43
44
45
46
47
48
49
50
51
52

socreate(dom, aso, type, proto)
int      dom;
struct socket **aso;
int type;
int proto;
{

struct proc *p : curproc;
struct protosw *prp;
struct socket *so;
int error;

/* XXX */

53 if (proto)
54 prp : pffindproto(dom, proto, type);
55 else
56 prp = pffindtype(dom, type);
57 if (prp :: 0 I I prp->pr_usrreq =- 0)
58 return (EPROTONOSUPPORT);
59 if (prp >pr_type != type)
60 return (EPROTOTYPE);
61 MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M WAIT);
62 bzero((caddr_t) so, sizeof(*so));
63 so->so_type = type;
64 if (p->p_ucred->cr_uid -= 0)
65 so->so_state - SS_PRIV;
66 so->so~roto : prp;
67 error :
68 (*prp->pr_usrreq) (so, PRU ATTACH,
69 (struct mbuf *) 0, (struct mbuf *) proto,
70 if (error) {
71 so->so_state I: SS_NOFDREF;
72 sofree(so);
73 return (error);
74 }
75 *aso = so;
76 return (0) ;
77 }

Figure 15.16 socreate function.

uipc_socket.c

(struct mbuf *) 0);

uipc_socket.c

The four arguments to socreate are: dom, the requested protocol domain (e.g.,
PF_INET); aso, in which a pointer to a new socket structure is returned; type, the
requested socket type (e.g., SOCK_STREAM); and prot o, the requested protocol.
Find protocol switch table

If p r o t o is nonzero, p f f indpr o t o looks for the specific protocol requested by the
process. If proto is 0, pffindtype looks for a protocol within the specified domain
with the semantics specified by type. Both functions return a pointer to a protosw
structure of the matching protocol or a null pointer (Section 7.6).
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61-66

67-69

Allocate and initialize socket structure
socreate allocates a new socket structure, fills it with 0s, records the type, and,

if the calling process has superuser privileges, turns on S$_PRIV in the socket structure.

PRU ATTACH request
The first example of the protocol-independent socket layer making a protocol-

specific request appears in socr÷a¢÷. Recall from Section 7.4 and Figure 15.13 that
so->so_~oroto->pr_usrr÷q is a pointer to the user-request function of the protocol
associated with socket so. Every protocol provides this function in order to handle
communication requests from the socket layer. The prototype for the function is:

int pr_usrreq(struct socket *so, int req, struct mbuf *mO, *ml, *m2) ;

The first argument, so, is a pointer to the relevant socket and req is a constant identi-
fying the particular request. The next three arguments (mO, ml, and m2) are different for
each request. They are always passed as pointers to mbuf structures, even if they have
another type. Casts are used when necessary to avoid warnings from the compiler.

Figure 15.17 shows the requests available through the lor_usrr÷q function. The
semantics of each request depend on the particular protocol servicing the request.

Arguments
Request

mO ml m2
Description

PR U_AB OR T
PRU_ACCEPT
PRU_ATTACH
PR U_B IND
PR U_ CONNECT
PR U_ CONNECT2
PRU_DETACH
PR U_DISCONNECT
PRU_LISTEN
PRU_PEERADDR
PRU_RCVD
PRU_RCVOOB

PRU_SEND
PRU_SENDOOB
PR U_SHUTDOWN

PR U_SOCKADDR

address
protocol
address
address
socket2

b~ff~r
flags

buffer flags
data address control
data address control

b~ff~r

abort any existing connection
wait for and accept a connection
a new socket has been created
bind the address to the socket
establish association or connection to address
connect two sockets together
socket is being closed
break association between socket and foreign address
begin listening for connections
return foreign address associated with socket
process has accepted some data
receive OOB data
send regular data
send OOB data
end communication with foreign address
return local address associated with socket

Figure 15.17 pr_usrreq requests.

70--77

PRU_CONNECT2 is supported only within the Unix domain, where it connects two local sock-
ets to each other. Unix pipes are implemented in this way.

Cleanup and return
Returning to socreate, the function attaches the protocol switch table to the new

socket and issues the PRU_ATTACH request to notify the protocol of the new end point.
This request causes most protocols, including TCP and UDP, to allocate and initialize
any structures required to support the new end point.
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Superuser Privileges

Figure 15.18 summarizes the networking operations that require superuser access.

Function

in_control

in_control
in pcbbind
ifioctl
ifioctl
rip_usrreq
slopen

Superuser
Process Socket Description

interface address, netmask, and destination
address assignment

broadcast address assignment
binding to an Internet port less than 1024
interface configuration changes
multicast address configuration (see text)
creating an ICMP, IGMP, or raw IP socket
associating a SLIP device with a try device

Reference

Figure 6.14

Figure 6.22
Figure 22.22
Figure 4.29
Figure 12.11
Figure 32.10
Figure 5.9

Figure 15.18 Superuser privileges in Net/3.

The multicast ioctl commands (SIOCADD}4ULTI and SIOCDELMULTI) are accessible to non-
superuser processes when they are invoked indirectly by the IP_ADD_MEMBERSHIP and
IP_DROP_MEMBERSHIP socket options (Sections 12.11 and 12.12).

In Figure 15.18, the "Process" column identifies requests that must be made by a
superuser process, and the "Socket" column identifies requests that must be issued on a
socket created by a superuser process (i.e., the process does not need superuser privi-
leges if it has access to the socket, Exercise 15.1). In Net/3, the suser function deter-
mines if the calling process has superuser privileges, and the SS_PRIV flag determines
if the socket was created by a superuser process.

Since rip_usrreq tests SS_PRIV immediately after creating the socket with
socreate, we show this function as accessible only from a superuser process.

15.7

754--767

768--783

getsock and sockargs Functions

These functions appear repeatedly in the implementation of the socket system calls.
getsock maps a descriptor to a file table entry and sockargs copies arguments from
the process to a newly allocated mbuf in the kernel. Both functions check for invalid
arguments and return a nonzero error code accordingly.

Figure 15.19 shows the get sock function.
The function selects the file table entry specified by the descriptor fdes with fdp, a

pointer to the f i 1 ede s c structure, get sock returns a pointer to the open file structure
in fpp or an error if the descriptor is out of the valid range, does not point to an open
file, or does not have a socket associated with it.

Figure 15.20 shows the sockargs function.
The mechanism described in Section 15.4 copies pointer arguments for a system call

from the process to the kernel but does not copy the data referenced by the pointers,
since the semantics of each argument are known only by the specific system call and not
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754 getsock(fdp, fdes, fpp)
755 struct filedesc *fdp;
756 int fdes;
757 struct file **fpp;
758 {
759 struct file *fp;

760 if ((unsigned) fdes >: fdp->fd_nfiles
761 (fp = fdp->fd_ofiles[fdes]) :: NULL)
762 return (EBADF);
763 if (fp->f_type !: DTYPE_SOCKET)
764 return (ENOTSOCK);
765 *fpp = fp;
766 return (0);
767 }

768
769
770
771
772
773
774
775

776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794

Figure 15.19 getsock function.

sockargs(mp, buf, buflen, type)
struct mbuf **mp;
caddr_t buf;
int      buflen, type;

struct sockaddr *sa;
struct mbuf *m;
int error;

if ((u_int) buflen > MLEN) {
return (EINVAL);

]
m = m_get(M_WAIT, type);
if (m :: NULL)

return (ENOBUFS) ;
m->m_len : buflen;
error : copyin(buf, mtod(m, caddr_t),
if (error)

(void) m_free(m);
else {

*mp = m;
if (type == MT_SONAME) {

sa = mtod(m, struct sockaddr *);
sa->sa_len : buflen;

}
]
return (error);

(u_int) buflen);

Figure 15.20 $ockargs function.

uipc_syscalls.c

uipc_syscalls.c

uipc_syscalls.c

uipc_syscalls.c

by the generic system call mechanism. Several system calls use soekargs to follow the
pointer arguments and copy the referenced data from the process into a newly allocated
mbuf within the kernel. For example, soekargs copies the local socket address
pointed to by b±nd’s second argument from the process to an mbuf.
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784 785

786--794

If the data does not fit in a single mbuf or an mbuf cannot be allocated, Sockargs
returns ETNVAr, or ENOBUFS. Note that a standard mbuf is used and not a packet
header mbuf. copyin copies the data from the process into the mbuf. The most com-
mon error from copyin is EACCES, returned when the process provides an invalid
address.

When an error occurs, the mbuf is discarded and the error code is returned. If there
is no error, a pointer to the mbuf is returned in rap, and sockargs returns 0.

If type is MT_SONANE, the process is passing in a sockaddr structure, sockargs
sets the internal length, sa_len, to the length of the argument just copied. This ensures
that the size contained within the structure is correct even if the process did not initial-
ize the structure correctly.

Net/3 does include code to support applications compiled on a pre-4.3BSD Reno system,
which did not have an sa_len member in the sockaddr structure, but that code is not shown
in Figure 15.20.

15.8

70--82

83--90

bind System Call

The bind system call associates a local network transport address with a socket. A
process acting as a client usually does not care what its local address is. In this case, it
isn’t necessary to call bind before the process attempts to communicate; the kernel
selects and implicitly binds a local address to the socket as needed.

A server process almost always needs to bind to a specific well-known address. If
so, the process must call bind before accepting connections (TCP) or receiving data-
grams (UDP), because the clients establish connections or send datagrams to the well-
known address.

A socket’s foreign address is specified by connect or by one of the write calls that
allow specification of foreign addresses (sendto or sendmsg).

Figure 15.21 shows bind.
The arguments to bind (passed within a bind_args structure) are: s, the socket

descriptor; name, a pointer to a buffer containing the transport address (e.g., a
sockaddr_in structure); and namelen, the size of the buffer.

getsock returns the file structure for the descriptor, and sockargs copies the
local address from the process into an mbuf, sobind associates the address specified by
the process with the socket. Before bind returns sobind’s result, the mbuf holding the
address is released.

Technically, a descriptor such as s identifies a £ i ! e structure with an associated s o cke t struc-
ture and is not itself a socket structure. We refer to such a descriptor as a socket to simplify
our discussion.

We will see this pattern many times: arguments specified by the process are copied
into an mbuf and processed as necessary, and then the mbuf is released before the sys-
tem call returns. Although mbufs were designed explicitly to facilitate processing of
network data packets, they are also effective as a general-purpose dynamic memory
allocation mechanism.
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uipc syscalls.c
70 struct bind_args {                                                                    -
71 int s;
72 caddr_t name;
73 int namel en ;
74 };

75 bind(p, uap, retval)
76 struct proc *p;
77 struct bind_args *uap;
78 int *retval;
79 {
80 struct file *fp;
81 struct mbuf *nam;
82 int error;

83
84
85
86
87
88
89
90

if (error - getsock(p->p_fd, uap->s, &fp))
return (error);

if (error - sockargs(&nam, uap >name, uap >namelen, MT_SONAME))
return (error);

error = sobind((struct socket *) fp->f_data, nam);
m_freem(nam);
return (error);

. uipc_sysca!ls.c

Figure 15.21 bind function.

Another pattern illustrated by bind is that retval is unused in many system calls.
In Section 15.4 we mentioned that retva! is always initialized to 0 before syscall
dispatches control to a system call. If 0 is the appropriate return value, the system calls
do not need to change retval.

sobind Function

sobind, shown in Figure 15.22, is a wrapper that issues the PRU_BIND request to the
protocol associated with the socket.

78 sobind(so, ham)
79 struct socket *so;
80 struct mbuf *nam;
81 {
82 int      s = splnet{);
83 int error;

uipc_socket.c

84 error :
85 (*so->so_~)roto->pr_usrreq) (so, PRU_BIND,
86 (struct mbuf *) O, ham,
87 splx(s);
88 return (error);
89 }

Figure 15.22 sobind function.

(struct mbuf *) 0);

uipc_socket.c
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78-89 sobind issues the PRU_BIND request. The local address, ham, is associated with
the socket if the request succeeds; otherwise the error code is returned.

15.9 listen System Call

The listen system call, shown in Figure 15.23, notifies a protocol that the process is
prepared to accept incoming connections on the socket. It also specifies a limit on the
number of connections that can be queued on the socket, after which the socket layer
refuses to queue additional connection requests. When this occurs, TCP ignores incom-
ing connection requests. Queued connections are made available to the process when it
calls accept (Section 15.11).

91 struct listen_args {
92      int s;
93 int backlog;

uipc_syscalls.c

94 };

95 listen(p, uap, retval)
96 struct proc *p;
97 struct listen_args *uap;
98 int     *retval;
99 {

i00 struct file *fp;
i01 int error;

102 if (error = getsock(p->p_fd, uap->s, &fp))
103 return (error);
104 return (solisten((struct socket *) fp >f_data, uap->backlog));
l O 5 }

uipc_syscalls.c

Figure 15.23 listen system call.

91--98

99 105

The two arguments passed to 1 i sten specify the socket descriptor and the connec-
tion queue limit.

getsock returns the file structure for the descriptor, s, and solisten passes the
listen request to the protocol layer.

solisten Function

90--109

This function, shown in Figure 15.24, issues the PRU_LISTEN request and prepares the
socket to receive connections.

After solisten issues the PRU_LISTEN request and pr_usrreq returns, the
socket is marked as ready to accept connections. SS_ACCEPTCONN is not set if a con-
nection is queued when pr_usrreq returns.

The maximum queue size for incoming connections is computed and saved in
so_qlimit. Here Net/3 silently enforces a lower limit of 0 and an upper limit of 5
(SOMAXCONN) backlogged connections.
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90 solisten(so, backlog)                                                          uipc_socket.c

91 struct socket *so;
92 int backlog;
93 {
94 int s : splnet(), error;

95
96
97
98
99

i00
i01
102
103
104
105
106
107
108
109

error =
(*so->so_proto->pr_usrreq)

(struct mbuf *) 0,
if (error) {

splx(s);
return (error);

(so, PRU_LISTEN,
(struct mbuf *)

]
if (so->so_q :: 0)

so->so_options I= SO_ACCEPTCONN;
if (backlog < 0)

backlog : 0;
so->so_qlimit : min(backlog, SOMAXCONN);
splx(s);
return (0);

0, struct mbuf *) 0);

uipc_socket, c

Figure 15.24 solisten function.

15.10 tsleep and wakeup Functions

When a process executing within the kernel cannot proceed because a kernel resource is
unavailable, it waits for the resource by calling tsleep, which has the following proto-
type:

int tsleep(caddr_t chan, int pri, char *mesg, int timeo);

The first argument to tsleep, chan, is called the wait channel. It identifies the par-
ticular resource or event such as an incoming network connection, for which the process
is waiting. Many processes can be sleeping on a single wait channel. When the
resource becomes available or when the event occurs, the kernel calls wakeup with the
wait channel as the single argument. The prototype for wakeup is:

void wakeup (caddr_t chan);

All processes waiting for the channel are awakened and set to the run state. The
kernel arranges for t s 1 e ep to return when each of the processes resumes execution.

The pri argument specifies the priority of the process when it is awakened, as well
as several optional control flags for tsleep. By setting the PCATCH flag in pri, tsleep
also returns when a signal arrives, mesg is a string identifying the call to t s 1 e ep and is
included in debugging messages and in ps output, timeo sets an upper bound on the
sleep period and is measured in clock ticks.

Figure 15.25 summarizes the return values from tsleep.

A process never sees the ERESTART error because it is handled by the syscall function and
never returned to a process.
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tsleep()

0
EWOULDBLOCK

ERESTART

EINTR

D̄escription

The process was awakened by a matching call to wakeup.
The process was awakened after sleeping for timeo clock ticks and before

the matching call to wakeup.
A signal was handled by the process during the sleep and the pending

system call should be restarted.
A signal was handled by the process during the sleep and the pending

system call should fail.

Figure 15.25 tsleep return values.

Because all processes sleeping on a wait channel are awakened by wakeup, we
always see a call to tsleep within a tight loop. Every process must determine if the
resource is available before proceeding because another awakened process may have
claimed the resource first. If the resource is not available, the process calls t s 1 eep once
again.

It is unusual for multiple processes to be sleeping on a single socket, so a call to
wakeup usually causes only one process to be awakened by the kernel.

For a more detailed discussion of the sleep and wakeup mechanism see [Leffier et
al. 1989].

Example

One use of multiple processes sleeping on the same wait channel is to have multiple
server processes reading from a UDP socket. Each server calls recvfrom and, as long
as no data is available, the calls block in tsleep. When a datagram arrives on the
socket, the socket layer calls wakeup and each server is placed on the run queue. The
first server to run receives the datagram while the others call tsleep again. In this
way, incoming datagrams are distributed to multiple servers without the cost of starting
a new process for each datagram. This technique can also be used to process incoming
connection requests in TCP by having multiple processes call accept on the same
socket. This technique is described in [Comer and Stevens 1993].

15.11 accept System Call

After calling listen, a process waits for incoming connections by calling accept,
which returns a descriptor that references a new socket connected to a client. The origi-
nal socket, s, remains unconnected and ready to receive additional connections.
accept returns the address of the foreign system if name points to a valid buffer.

The connection-processing details are handled by the protocol associated with the
socket. For TCP, the socket layer is notified when a connection has been established
(i.e., when TCP’s three-way handshake has completed). For other protocols, such as
OSI’s TP4, tsleep returns when a connection request has arrived. The connection is
completed when explicitly confirmed by the process by reading or writing on the
socket.



488 Socket Layer Chapter 15

Figure 15.26 shows the implementation of accept.

106 struct accept_args {
107 int s;
108 caddr_t name;
109 int      *anamelen;
ii0 };

uipc_syscalls.c

iii accept(p, uap, retval)
112 struct proc *p;
113 struct accept_args *uap;
114 int     *retval;
115 {
116 struct file *fp;
117 struct mbuf *nam;
118 int namelen, error, s;
119 struct socket *so;

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

if (uap->name && (error - copyin((caddr_t) uap->anamelen,
(caddr_t) & namelen sizeof(namelen))))

return (error);
if (error - getsock(p->p_fd, uap->s, &fp))

return (error);
s - splnet();
so : (struct socket *) fp->f_data;
if ((so->so_options & SO_ACCEPTCONN) := 0) {

splx(s);
return (EINVAL);

}
if ((so->so_state & SS_NBIO) && so->so_qlen =- 0)

splx(s);
return (EWOULDBLOCK);

}
while (so->so_qlen == 0 && so >so_error == 0) {

if (so->so_state & SS_CANTRCVMORE) {
so->so_error = ECONNABORTED;
break;

}
if (error = tsleep((caddr_t) & so->so_timeo, PSOCK I PCATCH,

netcon, 0)) {
splx(s);
return (error);

}
}
if (so->so_error) {

error : so->so_error;
so->so_error - 0;
splx(s);
return (error);

}
if (error = falloc(p, &fp, retval)) {

splx(s);
return (error);

}



Section 15.11 accept System Call    459

156
157
158
159
160

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

{ struct socket *aso : so->so_q;
if (soqremque(aso, i) == 0)

panic("accept");
SO : aSO;

}

fp >f_type - DTYPE_SOCKET;
fp->f_flag = FREAD I FWRITE;
fp->f_ops : &socketops;
fp->f_data = (caddr_t) so;
nam: m_get(M_WAIT, MT_SONAME);
(void) soaccept(so, nam);
if (uap->name) {

if (namelen > nam->m_len)
namelen : nam->m_len;

/* SHOULD COPY OUT A CHAIN HERE */
if ((error = copyout(mtod(nam, caddr_t), (caddr_t) uap->name,

(u_int) namelen)) == 0)
error = copyout((caddr_t) & namelen,

(caddr_t) uap->anamelen, sizeof(*uap->anamelen));

!
m_freem(nam);
splx(s);
return (error);

uipc_syscalls.c

Figure 15.26 accept system call.

106--114

116--134

135--145

146--151

The three arguments to accept (in the accept_args structure) are: s, the socket
descriptor; name, a pointer to a buffer to be filled in by accept with the transport
address of the foreign host; and anamelen, a pointer to the size of the buffer.

Validate arguments
accept copies the size of the buffer (*anamelen) into namelen, and getsock

returns the f i 1 e structure for the socket. If the socket is not ready to accept connec-
tions (i.e., listen has not been called) or nonblocking I/O has been requested and no
connections are queued, EINVAL or EWOULDBLOCK are returned respectively.

Wait for a connection
The while loop continues until a connection is available, an error occurs, or the

socket can no longer receive data. accept is not automatically restarted after a signal is
caught (tsleep returns EINTR). The protocol layer wakes up the process when it
inserts a new connection on the queue with sonewconn.

Within the loop, the process waits in t s 1 eep, which returns 0 when a connection is
available. If tsleep is interrupted by a signal or the socket is set for nonblocking
semantics, accept returns EINTR or EWOULDBLOCK (Figure 15.25).
Asynchronous errors

If an error occurred on the socket during the sleep, the error code is moved from the
socket to the return value for accept, the socket error is cleared, and accept returns.
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152--1 64

167--179

It is common for asynchronous events to change the state of a socket. The protocol
processing layer notifies the socket layer of the change by setting so_error and wak-
ing any process waiting on the socket. Because of this, the socket layer must always
examine so_error after waking to see if an error occurred while the process was
sleeping.
Associate socket with descriptor

fal loc allocates a descriptor for the new connection; the socket is removed from
the accept queue by soqremque and attached to the file structure. Exercise 15.4 dis-
cusses the call to panic.

Protocol processing
accept allocates a new mbuf to hold the foreign address and calls soaccept to do

protocol processing. The allocation and queueing of new sockets created during con-
nection processing is described in Section 15.12. If the process provided a buffer to
receive the foreign address, cepyeut copies the address from ham and the length from
namelen to the process. If necessary, copyout silently truncates the name to fit in the
process’s buffer. Finally, the mbuf is released, protocol processing enabled, and accept
returns.

Because only one mbuf is allocated for the foreign address, transport addresses
must fit in one mbuf. Unix domain addresses, which are pathnames in the filesystem
(up to 1023 bytes in length), may encounter this limit, but there is no problem with the
16-byte sockaddr_in structure for the Internet domain. The comment on line 170
indicates that this limitation could be removed by allocating and copying an mbuf
chain.

soaccept Function

soacc÷lot, shown in Figure 15.27, calls the protocol layer to retrieve the client’s address
for the new connection.

184 soaccept(so, ham)
185 struct socket *so;
186 struct mbuf *ham;
187 {
188 int      s - splnet();
189 int error;

190 if ((so->so_state & SS_NOFDREF) :: 0)
191 panic("soaccept: [NOFDREF");
192 so >so_state &= -SS_NOFDREF;
193 error = (*so->so_proto->pr_usrreq) (so, PRU_ACCEPT,
194 (struct mbuf *) 0, ham,
195 splx(s);
196 return (error);
197 }

Figure 15.27 soaccept function.

uipc_socket.c

(struct mbuf *) 0);

uipc_socket.c
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184-197 soaccept ensures that the socket is associated with a descriptor and issues the
PRU_ACCEPT request to the protocol. After pr_uSrrec! returns, ham contains the name
of the foreign socket.

15.12 sonewconn and soisconnected Functions

In Figure 15.26 we saw that accept waits for the protocol layer to process incoming
connection requests and to make them available through so_q. Figure 15.28 uses TCP
to illustrate this process.

socket{}

incomplete
connection

sonewconn

send SYN and ACK
wait for ACK

wait for incomi_ng_ connection request

socket{)

so_qO
so_q

accept

socket { }

incoming TCP SYN

complete
connection

~soqr emque~ ~ wakeup >

final ACK of
TCP handshake

Figure 15.28 Incoming TCP connection processing.

In the upper left corner of Figure 15.28, accept calls tsleep to wait for incoming
connections. In the lower left, tcp_±nput processes an incoming TCP SYN by calling
sonewconn to create a socket for the new connection (Figure 28.7). sonewconn queues
the socket on so_c!0, since the three-way handshake is not yet complete.
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123--129

When the final ACK of the TCP handshake arrives, tc©_input calls
so ± s connect ed (Figure 29.2), which updates the new socket, moves it from so_q0 to
so_q, and wakes up any processes that had called accept to wait for incoming con-
nections.

The upper right corner of the figure shows the functions we described with Fig-
ure 15.26. When tsleep returns, accept takes the connection off so_q and issues the
PRU_ATTACH request. The socket is associated with a new file descriptor and returned
to the calling process.

Figure 15.29 shows the sonewconn function.

123 struct socket *
124 sonewconn(head, connstatus)
125 struct socket *head;
126 int connstatus;
127 {
128 struct socket *so;
129 int soqueue = connstatus ? 1

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

: 0;

uipc_socket2.c

if (head->so_qlen + head->so_q01en > 3 * head >so_qlimit / 2)
return ((struct socket *) 0);

MALLOC(so, struct socket *, sizeof(*so), ~_SOCKET, M_DONTWAIT);
if (so =: NULL)

return ((struct socket *) 0) ;
bzero((caddr_t) so, sizeof *so));
so->so_type = head->so_type;
so->so_options : head->so_options & -SO_ACCEPTCONN;
so->so_linger - head >so_linger;
so->so_state - head >so_state I SS_NOFDREF;
so >so_proto - head->so~roto;
so->so_timeo = head->so_timeo;
so->so~gid = head->so~gid;
(void) soreserve(so, head->so_snd.sb hiwat, head->so_rcv.sb_hiwat)
soqinsque(head, so, soqueue);
if ((*so->so~roto->pr_usrreq) (so, PRU_ATTACH,

(struct mbuf *) 0, (struct mbuf *) 0,
(void) soqremque(so, soqueue);
(void) free((caddr_t) so, M_SOCKET);
return ((struct socket *) 0) ;

}
if (connstatus) {

sorwakeup(head);
wakeup((caddr_t) & head >so_timeo);
so->so_state I- connstatus;

}
return (so);

Figure 15.29 sonewconn function.

(struct mbuf *) 0)) {

uipc_socket 2 .c

The protocol layer passes head, a pointer to the socket that is accepting the incom-
ing connection, and connstatus, a flag to indicate the state of the new connection. For
TCP, connstatus is always 0.
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130--131

132--143

144

145-150

151 157

78-87

For TP4, connstatus is always SS_ISCONFIRMING. The connection is implicitly confirmed
when a process begins reading from or writing to the socket.

Limit incoming connections
sonewconn prohibits additional connections when the following inequality is true:

3 x so_qlimit
so_qlen + so_q01en >

2
This formula provides a fudge factor for connections that never complete and guaran-
tees that listen(fd, 0) allows one connection. See Figure 18.23 in Volume ] for an
additional discussion of this formula.

Allocate new socket

A new socket structure is allocated and initialized. If the process calls
setsockopt for the listening socket, the connected socket inherits several socket
options because so_options, so_linger, so_pgid, and the sb_hiwat values are
copied into the new socket structure.

Queue connection
soqueue was set from connstatus on line 129. The new socket is inserted onto

so_q0 if soqueue is 0 (e.g., TCP connections) or onto so_q if connstatus is nonzero
(e.g., TP4 connections).

Protocol processing
The PRU_ATTACH request is issued to perform protocol layer processing on the new

connection. If this fails, the socket is dequeued and discarded, and sonewconn returns
a null pointer.
Wakeup processes

If connstatus is nonzero, any processes sleeping in accept or selecting for read-
ability on the socket are awakened, connstatus is logically ORed with so_state.
This code is never executed for TCP connections, since connstatus is always 0 for
TCP.

Protocols, such as TCP, that put incoming connections on so_qo first, call
soisconnected when the connection establishment phase completes. For TCP, this
happens when the second SYN is ACKed on the connection.

Figure 15.30 shows soisconnected.
Queue incomplete connections

The socket state is changed to show that the connection has completed. When
s o i s c onnec ted is called for incoming connections, (i.e., when the local process is call-
ing accept), head is nonnull.

If soqremque returns I, the socket is queued on so_q and sorwakeup wakes up
any processes using s el ect to monitor the socket for connection arrival by testing for
readability. If a process is blocked in accept waiting for the connection, wakeup
causes the matching t s i eep to return.
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uipc_socket2.c
78 soisconnected (so)
79 struct socket *so;
8O {
81 struct socket *head : so->so_head;

88--93

82 so->so_state &: -(SS_ISCONNECTING I
83 so->so_state I: SS_ISCONNECTED;
84 if (head && soqremque(so, 0)) {
85 soqinsque(head, so, i);
86 sorwakeup(head);
87 wakeup((caddr_t) & head->so_timeo);
88 } else {
89 wakeup((caddr_t) & so->so_timeo);
90 sorwakeup(so);
91 sowwakeup(so);
92 }
93 }

SS_ISDISCONNECTING

Figure 15.30 soisconnectedfunction.

I SS_ISCONFIRMING);

uipc_soeket 2.c

Wakeup processes waiting for new connection
If head is null, soqremque is not called since the process initiated the connection

with the connect system call and the socket is not on a queue. If head is nonnull and
soqremque returns 0, the socket is already on so_q. This happens with protocols such
as TP4, which place connections on so_q before they are complete, wakeup awakens
any process blocked in connect, and sorwakeup and sowwakeup take care of any
processes that are using select to wait for the connection to complete.

15.13 connect System call

A server process calls the listen and accept system calls to wait for a remote process
to initiate a connection. If the process wants to initiate a connection itself (i.e., a client),
it calls connect.

For connection-oriented protocols such as TCP, connect establishes a connection to
the specified foreign address. The kernel selects and implicitly binds an address to the
local socket if the process has not already done so with bind.

For connectionless protocols such as UDP or ICMP, connect records the foreign
address for use in sending future datagrams. Any previous foreign address is replaced
with the new address.

Figure 15.31 shows the functions called when connect is used for UDP or TCP.
The left side of the figure shows connect processing for connectionless protocols,

such as UDP. In this case the protocol layer calls soisconnected and the connect
system call returns immediately.

The right side of the figure shows connect processing for connection-oriented pro-
tocols, such as TCP. In this case, the protocol layer begins the connection establishment
and calls soisconnecting to indicate that the connection will complete some time in
the future. Unless the socket is nonblocking, soconnect calls tsleep to wait for the
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180-188

189-200

201--208

~ NECT request

TCP b~aginn~

TCP connection
establishment

wakeup

TCP three-way
handshake completes

Figure 15.31 connect processing.

connection to complete. For TCP, when the three-way handshake is complete, the
protocol layer calls soisconnected to mark the socket as connected and then calls
wakeup to awaken the process and complete the connect system call.

Figure 15.32 shows the connect system call.
The three arguments to connect (in the connect_args structure) are: s, the

socket descriptor; name, a pointer to a buffer containing the foreign address; and
namelen, the length of the buffer.

getsock returns the socket as usual. A connection request may already be pend-
ing on a nonblocking socket, in which case EALREADY is returned, sockargs copies
the foreign address from the process into the kernel.

Start connection processing
The connection attempt is started by calling soconnect. If soconnect reports an

error, connect jumps to bad. If a connection has not yet completed by the time
soconnect returns and nonblocking I/O is enabled, ’EINPROGRESS is returned imme-
diately to avoid waiting for the connection to complete. Since connection establishment
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180 struct connect_args {
181 int s;
182 caddr_t name;
183 int namelen;
184 };

uipc_syscalls.c

185 connect(p, uap, retval)
186 struct proc *p;
187 struct connect_args *uap;
188 int     *retval;
189 {
190 struct file *fp;
191 struct socket *so;
192 struct mbuf *ham;
193 int error, s;

194
195
196
197
198
199
2OO

if (error = getsock(p->p_fd, uap->s, &fp))
return (error);

so = (struct socket *) fp->f_data;
if ((so >so_state & SS_NBIO) && (so->so_state & SS_ISCONNECTING))

return (EALREADY);
if (error = sockargs(&nam, uap->name, uap->namelen, HT_SONAME))

return (error);

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224 }

error - soconnect(so, nam);
if (error)

goto bad;
if ((so->so_state & SS_NBIO) && (so->so_state & SS_ISCONNECTING

m_freem(nam);
return (EINPROGRESS);

}
s - splnet();
while ((so->so_state & SS_ISCONNECTING) && so->so_error := 0)

if (error = tsleep((caddr_t) & so >so_timeo, PSOCK I PCATCH
netcon, 0))

break;
if (error -- 0) {

error = so->so_error;
so->so_error : 0;

}
splx(s);

bad:
so->so_state &- -SS_ISCONNECTING;
m_freem(nam);
if (error =: ERESTART)

error = EINTR;
return (error);

) {

uipc_syscalls.c
Figure 15.32 connect system call.
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208--217

218--224

normally involves exchanging several packets with the remote system, it may take a
while to complete. Further calls to connect return EALREADY until the connection
completes. E I $CONN is returned when the connection is complete.
Wait for connection establishment

The while loop continues until the connection is established or an error occurs.
spinet prevents connect from missing a wakeup between testing the state of the
socket and the call to tsleep. After the loop, error contains 0, the error code from
t s 1 eep, or the error from the socket.

The SS_ISCONNECTING flag is cleared since the connection has completed or the
attempt has failed. The mbuf containing the foreign address is released and any error is
returned.

soconnect Function

This function ensures that the socket is in a valid state for a connection request. If the
socket is not connected or a connection is not pending, then the connection request is
always valid. If the socket is already connected or a connection is pending, the new
connection request is rejected for connection-oriented protocols such as TCP. For con-
nectionless protocols such as UDP, multiple connection requests are OK but each new
request replaces the previous foreign address.

Figure 15.33 shows the soconnect function.

198 soconnect(so, nam)
199 struct socket *so;
200 struct mbuf *nam;
201 {
202 int      s;
203 int error;

204 if (so->so_options & SO_ACCEPTCONN)
205 return (EOPNOTSUPP);
206 s = splnet();
207 /*
208 * If protocol is connection based, can only connect once.
209 * Otherwise, if connected, try to disconnect first.
210 * This allows user to disconnect by connecting to, e.g.,
211 * a null address.
212 */
213 if (so->so_state & (SS_ISCONNECTED I SS_ISCONNECTING) &&
214 ((so->so_proto->pr_flags & PR_CONNREQUIRED)
215 (error : sodisconnect(so))))
216 error : EISCONN;
217 else
218 error = (*so->so~proto->pr_usrreq) (so, PRU_CONNECT,
219 (struct mbuf *) 0, nam, (struct mbuf *)
220 splx(s);
221 return (error);
222 }

u ipc_socket.c

0);

uipc_socket.c

Figure 15.33 soconnect function.
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198--222 soconnect returns EOPNOTSUPP if the socket is marked to accept connections,
since a process cannot initiate connections if listen has already been called for the
socket. EISCONN is returned if the protocol is connection oriented and a connection has
already been initiated. For a connectionless protocol, any existing association with a
foreign address is broken by s odi s c onne c t.

The PRU_CONNECT request starts the appropriate protocol processing to establish
the connection or the association.

Breaking a Connectionless Association

For connectionless protocols, the foreign address associated with a socket can be dis-
carded by calling connect with an invalid name such as a pointer to a structure filled
with 0s or a structure with an invalid size. sodisconnect removes a foreign address
associated with the socket, and PRU_CONNECT returns an error such as EAFNOSUPPORT
or EADDRNOTAVAIL, leaving the socket with no foreign address. This is a useful,
although obscure, way of breaking the association between a connectionless socket and
a foreign address without replacing it.

15.14 shutdown System Call

The shutdown system call, shown in Figure 15.34, closes the write-halL read-half, or
both halves of a connection. For the read-halL shutdown discards any data the process
hasn’t yet read and any data that arrives after the call to shutdown. For the write-halL
shutdown lets the protocol specify the semantics. For TCP, any remaining data will be
sent followed by a FIN. This is TCP’s half-close feature (Section 18.5 of Volume 1).

To destroy the socket and release the descriptor, close must be called, close can
also be called directly without first calling shutdown. As with all descriptors, close is
called by the kernel for sockets that have not been closed when a process terminates.

uipc_syscalls.c
550 struct shutdown_a~gs {
551
552
553

554
555
556
557
558
559
56O

561
562
563
564

int s;
int how;

};
shutdown(p, uap, retval)
struct proc *p;

struct shutdown_args *uap;
int     *retval;

struct file *fp;
int error;

if (error : getsock(p->p_fd, uap->s, &fp))
return (error);

return (soshutdown((struct socket *) fp->f_data, uap->how));

Figure 15.34 shutdown system call.

uipc_syscalls.c
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550--557 In the shutdown_args structure, s is the socket descriptor and how specifies
which halves of the connection are to be closed. Figure 15.35 shows the expected values
for how and how++ (which is used in Figure 15.36).

how how+ + Description

0 FREAD shut down the read-half of the connection
1 FWRITE shut down the write-half of the connection
2 FREAD/FWRITE shut down both halves of the connection

Figure 15.35 shutdown system call options.

558--564

Noticethatthereisanimplicitnumericalrelationship between how and the constants FREAD
and FWRITE.

shutdown is a wrapper function for soshutdown. The socket associated with the
descriptor is returned by getsock, soshutdown is called, and its value is returned.

soshutdown and sorflush Functions

The shut down of the read-half of a connection is handled in the socket layer by
sorflush, and the shut down of the write-half of a connection is processed by the
PRU_SHUTDOWN request in the protocol layer. The soshutdown function is shown in
Figure 15.36.

720 soshutdown(so, how)
721 struct socket *so;
722 int how;
723 {
724 struct protosw *pr = so->so~roto;

uipc_socket.c

725 how++;
726 if (how & FREAD)
727 sorflush(so);
728 if (how & FWRITE)
729 return ((*pr->pr_usrreq) (so, PRU_SHUTDOWN,
730 (struct mbuf *) 0, (struct mbuf *) 0,
731 return (0) ;
732 }

Figure 15.36 soshutdown function.

(struct mbuf *) 0));

u~c_socket.c

720--732

733-747

If the read-half of the socket is being closed, sorflush, shown in Figure 15.37, dis-
cards the data in the socket’s receive buffer and disables the read-half of the connection.
If the write-half of the socket is being closed, the PRU_SHUTDOWN request is issued to
the protocol.

The process waits for a lock on the receive buffer. Because of SB_NOINTR, sblock
does not return when an interrupt occurs, splimp blocks network interrupts and
protocol processing while the socket is modified, since the receive buffer may be
accessed by the protocol layer as it processes incoming packets.
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sorflush(so)                                                                 uipc_socket.c
struct socket *so;

748--751

733
734
735
736
737
738
739

740
741
742
743
744
745
746
747

struct sockbuf *sb    &so >so_rcv;
struct protosw *pr : so->so_proto;
int      s;
strict sockb,af

sb->sb_flags I= SB_NOINTR;
(void) sblock(sb, M WAITOK);
s - splimp();
socantrcvmore(so);
sbunlock(sb);
asb : *sb;
bzero((caddr_t) sb, sizeof(*sb));
splx(s);

748 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
749 (*pr->pr_domain->dom_dispose) (asb.sb_mb);
750 sbrelease(&asb);
751 }

Figure 15.37 sorflush function.

uipc_socket.c

socantrcvmore marks the socket to reject incoming packets. A copy of the
sockbuf structure is saved in ash to be used after interrupts are restored by splx.
The original sockbuf structure is cleared by bzero, so that the receive queue appears
to be empty.

Release control mbufs

Some kernel resources may be referenced by control information present in the
receive queue when shutdown was called. The mbuf chain is still available through
sb_mb in the copy of the sockbuf structure.

If the protocol supports access rights and has registered a dom_dispose function,
it is called here to release these resources.

In the Unix domain it is possible to pass descriptors between processes with control messages.
These messages contain pointers to reference counted data structures. The dora_dispose
function takes care of discarding the references and the data structures if necessary to avoid
creating an unreferenced structure and introducing a memory leak in the kernel. For more
information on passing file descriptors within the Unix domain, see [Stevens 1990] and [Leffler
et al. 1989].

Any input data pending when shutdown is called is discarded when sbrelease
releases any mbufs on the receive queue.

Notice. that the shut down of the read-half of the connection is processed entirely by
the socket layer (Exercise 15.6) and the shut down of the write-half of the connection is
handled by the protocol through the PRU_SHUTDOWN request. TCP responds to the
PRU_SHUTDOWN by sending all queued data and then a FIN to close the write-half of the
TCP connection.
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15.15 close System Call

The close system call works with any type of descriptor. When fd is the last descrip-
tor that references the object, the object-specific c 1 o s e function is called:

error : (*fp >f_ops->fo_close) (fp, p) ;

As shown in Figure 15.13, fp->f_ops->fo_close for a socket is the function
soo_close.

soo_close Function

This function, shown in Figure 15.38, is a wrapper for the soclose function.

152 soo_close(fp, p)
153 struct file *fp;
154 struct proc *p;
155 {
156 int error - O;

157 if (fp->f_data)
158 error - soclose((struct socket *) fp->f_data);
159 fp->f_data = O;
160 return (error);
161 }

Figure 15.38 soo_close function.

sys_socket.c

sys_socket.c

i52-161 If a socket structure is associated with the file structure, soclose is called,
f_data is cleared, and any posted error is returned.

soclose Function

129--141

This function aborts any connections that are pending on the socket (i.e., that have not
yet been accepted by a process), waits for data to be transmitted to the foreign system,
and releases the data structures that are no longer needed.

soclose is shown in Figure 15.39.
Discard pending connections

If the socket was accepting connections, soclose traverses the two connection
queues and calls soabort for each pending connection. If the protocol control block is
null, the protocol has already been detached from the socket and soelose jumps to the
cleanup code at dis card.

soabort issues the PRU_ABORT request to the socket’s protocol and returns the result.
soabort is not shown in this text. Figures 23.38 and 30.7 discuss how UDP and TCP handle
this request.
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129 soclose(so)
130 struct socket *so;
131 {
132 int s = splnet();
133 int error = 0;

/* conservative */

uipc_socket.c

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173 ]

if (so->so_options & SO_ACCEPTCONN) {
while (so->so_q0)

(void) soabort(so->so_q0);
while (so->so_q)

(void) soabort(so->so_q);
}
if (so->so_pcb == 0)

goto discard;
if (so->so_state & SS_ISCONNECTED) {

if ((so->so_state & SS_ISDISCONNECTING) == 0) {
error = sodisconnect(so);
if (error)

goto drop;
}
if (so->so_options & SO_LINGER) {

if ((so->so_state & SS_ISDISCONNECTING) &&
(so->so_state & SS_NBIO))
goto drop;

while (so->so_state & SS_ISCONNECTED)
if (error = tsleep((caddr_t) & so->so_timeo,

PSOCK I PCATCH, netcls, so->so_linger)
break;

}
}

drop:
if (so >so_pcb) {

int error2 :
(*so->so_proto->pr_usrreq) (so, PRU_DETACH,

(struct mbuf *) 0, (struct mbuf *) 0, (struct mbuf *) 0)
if (error :: 0)

error = error2;
}

discard:
if (so->so_state & SS_NOFDREF)

panic("soclose: NOFDREF");
so->so_state I: SS_NOFDREF;
sofree(so);
splx(s);
return (error);

uipc_socket.c
Figure 15.39 soclose function.
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142--157

158--1 73

110--114

115--119

120--123

Break established connection or association
If the socket is not connected, execution continues at drop; otherwise the socket

must be disconnected from its peer. If a disconnect is not in progress, sodisconnect
starts the disconnection process. If the SO_LINGER socket option is set, s oc lose may
need to wait for the disconnect to complete before returning. A nonblocking socket
never waits for a disconnect to complete, so soclose jumps immediately to drop in
that case. Otherwise, the connection termination is in progress and the $O_LINGEF’~
option indicates that s o c 1 o s e must wait some time for it to complete. The whi 1 e loop
continues until the disconnect completes, the linger time (so_l inger) expires, or a sig-
nal is delivered to the process.

If the linger time is set to 0, tsleep returns only when the disconnect completes (perhaps
because of an error) or a signal is delivered.

Release data structures
If the socket still has an attached protocol, the PRU_DET~CH request breaks the con-

nection between this socket and the protocol. Finally the socket is marked as not having
an associated file descriptor, which allows sofree to release the socket.

The sofree function is shown in Figure 15.40.

ii0 sofree(so)
iii struct socket *so;
112 {

113 if (so->so_pcb I I (so->so_state
114 return;
115 if (so->so_head) {
116 if (!soqremque(so, 0) &&
117 panic("sofree dq");
118 so->so_head = 0;
119 }
120 sbrelease(&so >so_snd);
121 sorflush(so);
122 FREE(so, M_SOCKET);
123 }

& SS_NOFDREF)    :: 0)

!soqremque(so, i))

Figure 15.40 sofree function.

uipe_socket;c

uipc_socket.c

Return if socket still in use
If a protocol is still associated with the socket, or if the socket is still associated with

a descriptor, sof~ee returns immediately.
Remove from connection queues

If the socket is on a connection queue (so_h÷ad is nonnull), the socket’s queues
should be empty. If they are not empty, there is a bug in the socket code and the kernel
panics. If they are empty, so_head is cleared.

Discard send and receive queues
sbrelease discards any buffers in the send queue and sorflush discards any

buffers in the receive queue. Finally, the socket itself is released.
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15.16 Summary

In this chapter we looked at all the system calls related to network operations. The sys-
tem call mechanism was described, and we traced the calls until they entered the proto-
col processing layer through the pr_u s r r ÷c~ function.

While looking at the socket layer, we avoided any discussion of address formats,
protocol semantics, or protocol implementations. In the upcoming chapters we tie
together the link-layer processing and socket-layer processing by looking in detail at the
implementation of the Internet protocols in the protocol processing layer.

Exercises

15.1 How can a process without superuser privileges gain access to a socket created by a super-
user process?

15.2 How can a process determine if the soc~:ac~c~r buffer it provides to accept was too small
to hold the foreign address returned by the call?

15.3 A feature proposed for IPv6 sockets is to have acc÷pt and recv£~o~a return a source
route as an array of 128-bit IPv6 addresses instead of a single peer address. Since the array
will not fit in a single mbuf, modify accept and ~ecv£roin to handle an mbuf chain from
the protocol layer instead of a single mbuf. Will the existing code work if the protocol
layer returns the array in an mbuf cluster instead of a chain of mbufs?

15.4 Why is pan±c called when soc~ren~ciue returns a null pointer in Figure 15.26?

15.5 Why does so~s~ make a copy of the receive buffer?

15.6 What happens when additional data is received after so~£1ush has zeroed the socket’s
receive buffer? Read Chapter 16 before attempting this exercise.
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16.1 Introduction

In this chapter we discuss the system calls that read and write data on a network con-
nection. The chapter is divided into three parts.

The first part covers the four system calls for sending data: wrJ_te, wr±t÷v,
sei~dto, and s÷ndinsg. The second part covers the four system calls for receiving data:
read, ready, recvfrom, and recvmsg. The third part of the chapter covers the
s e 1 e c t system call, which provides a standard way to monitor the status of descriptors
in general and sockets in particular.

The core of the socket layer is the sosend and soreceive functions. They handle
all I/O between the socket layer and the protocol layer. As we’ll see, the semantics of
the various types of protocols overlap in these functions, making the functions long and
complex.

16.2 code Introduction

The three headers and four C files listed in Figure 16.1 are covered in this chapter.

Global Variables

The first two global variables shown in Figure 16.2 are used by the se]_ec~ system call.
The third global variable controls the amount of memory allocated to a socket.

475
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File Description

sys/socket, h structures and macro for sockets API
sys / socketvar, h socket structure and macros
sys/uio, h uio structure definition
kern/uipc_syscalls, c socket system calls
kern/uipc_socket, c socket layer processing
kern/sys_generic, c select system call
kern / sys_s o c ke t. c s e i e c t processing for sockets

Figure 16.1 Files discussed in this chapter.

Variable Datatype Description

selwait int wait channel for select
nselcoll int flag used to avoid race conditions in select
sb max u_long    maximum number of bytes to allocate for a socket receive or send buffer

Figure 16.2 Global variables introduced in this chapter.

16.3

72--78

Socket Buffers

Section 15.3 showed that each socket has an associated send and receive buffer. The
sockbuf structure definition from Figure 15.5 is repeated in Figure 16.3.

72 struct sockbuf {
73 u_long sb_cc;
74 u_long sb_hiwat;
75 u_long sb_mbcnt;
76 u_long sb_mbmax;
77 long sb_lowat;
78 struct mbuf *sb m b;
79 struct selinfo sb_sel;
80 short sb_flags;
81 short sb_timeo;
82 } so_rcv, so_snd;

/* actual chars in buffer */
/* max actual char count */
/* chars of mbufs used */
/* max chars of mbufs to use */
/* low water mark */
/* the mbuf chain */
/* process selecting read/write */
/* Figure 16.5 */
/* timeout for read/write */

Figure 16.3 sockbuf structure.

socketvar.h

socketvar.h

Each buffer contains control information as well as pointers to data stored in mbuf
chains, sb mb points to the first mbuf in the chain, and sb_cc is the total number of
data bytes contained within the mbufs, sb_hiwat and sb_lowat regulate the socket
flow control algorithms, sb_mbcnt is the total amount of memory allocated to the
mbufs in the buffer.

Recall that each mbuf may store from 0 to 2048 bytes of data (if an external cluster is
used), sb mbmax is an upper bound on the amount of memory to be allocated as
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mbufs for each socket buffer. Default limits are specified by each protocol when the
PRU_ATTACH request is issued by the socket system call. The high-water and low-
water marks may be modified by the process as long as the kernel-enforced hard limit
of 262,144 bytes per socket buffer (sb_max) is not exceeded. The flow control alg0-
rithms are described in Sections 16.4 and 16.8. Figure 16.4 shows the default settings for
the Internet protocols.

so_snd                                         so_rcv
Protocol

sb_hiwat sb_lowat sb_mbmax sb_hiwat sb_lowat sb_mbmax

UDP       9 x 1024 2048 (ignored) 2 x sb hiwat 40 x (1024 + 16) 1 2 x sb_hiwat
TCP 8 x 1024 2048 2 x sb_hiwat 8 x 1024 1 2 x sb_hiwat

raw IP
ICMP 8 x 1024 2048 (ignored) 2 x sb_hiwat 8 x 1024 1 2 x sb_hiwat
IGMP

Figure 16.4 Default socket buffer limits for the Internet protocols.

79

80

Since the source address of each incoming UDP datagram is queued with the data
(Section 23.8), the default UDP value for sb_l~iwat is set to accommodate 40 1K data-
grams and their associated sockaddr_in structures (16 bytes each).

sb_sel is a selinfo structure used to implement the select system call (Sec-
tion 16.13).

Figure I6.5 lists the possible values for sb_flags.

s b_f 1 ag s Description

SB_LOCK a process has locked the socket buffer
SB WANT a process is waiting to lock the buffer
SB WAIT a process is waiting for data (receive) or space (send) in this buffer
SB SEL one or more processes are selecting on this buffer
SB ASYNC generate asynchronous I/O signal for this buffer
SB_NOINTR signals do not cancel a lock request
SB_NOTIFY ( SB WAIT I SB_SEL I SB_ASYNC )

a process is waiting for changes to the buffer and should be notified by
wakeup when any changes occur

Figure 16.5 sb_flags values.

81--82 sb_t imeo is measured in clock ticks and limits the time a process blocks during a
read or write call. The default value of 0 causes the process to wait indefinitely.
sb_timeo may be changed or retrieved by the SO_SNDTIMEO and SO_RCVTIMEO
socket options.

Socket Macros and Functions

There are many macros and functions that manipulate the send and receive buffers
associated with each socket. The macros and functions in Figure 16.6 handle buffer
locking and synchronization.
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Name

sblock

sbunlock

sbwait

sowakeup

sorwakeup

sowwakeup

Description

Acquires a lock for sb. If wfis M_WAITOI<, the process sleeps waiting for the lock;
otherwise EWOULDBLOCK is returned if the buffer cannot be locked
immediately. EINTR or ERESTART is returned if the sleep is interrupted by
a signal; 0 is returned otherwise.

int sblock(struct sockbuf *sb, int wf);

Releases the lock on sb. Any other process waiting to lock sb is awakened.

void sbunloc}~(struct sockbuf *sb);

Calls tsleep to wait for protoco] activity on sb. Returns result of tsleep.

int sbwait(struct sockbuf *sb);

Notifies socket of protocol activity. Wakes up matching call to sbwait or to
t s 1 eep if any processes are selecting on s b.

void sowakeup(struct socket *so, struct sockbuf *sb);

Wakes up any process waiting for read events on s b and sends the s IG IO signal
if a process requested asynchronous notification of I/O.

void sorwa]~eul~(struct socket *so);

Wakes up any process waiting for write events on sb and sends the SIGIO signal
if a process requested asynchronous notification of I/O.

void ~owwakeul~(struct socket *so);

Figure 16.6 Macros and functions for socket buffer locking and synchronization.

Figure 16.7 includes the macros and functions used to set the resource limits for
socket buffers and to append and delete data from the buffers. In the table, m, mO, n,
and control are all pointers to mbuf chains, sb points to the send or receive buffer for a
socket.

Name

sbspace

sballoc

sbfree

Description

The number of bytes that may be added to sb before it is considered full:
min(sb_hiwat - sb_cc), (sb_rabmax - sb_mbcnt).

long ~b~pame(struct sockbuf *sb);

m has been added to sb. Adjust sb_cc and sb_mbcnt in sb accordingly.

void sballoc(struct sockbuf *sb, struct mbuf *m);

m has been removed from sb. Adjust sb_cc and sb_mbcnt in sb accordingly.

int sbfree(struct sockbuf *sb, struct mbuf *m);
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Name

sbappend

sbappendrecord

sbappendaddr

sbappendcontrol

sbinsertoob

sbcompress

sbdrop

sbdroprecord

sbrelease

sbflush

soreserve

sbreserve

Description

Append the rebuts in m to the end of the last record in sb.

int sbappend(struct sockbuf *sb, struct mbuf *m);

Append the record in rnO after the last record in sb. Call sbcompress.

int sbappendrecord(struct sockbuf *sb, struct mbuf *toO);

Put address from asa in an rebut. Concatenate address, control, and mO. Append
the resulting mbuf chain after the last record in sb.

int ~bappendaddr(struct sockbuf *sb, struct sockaddr *asa,
struct mbuf *toO, struct mbuf *control);

Concatenate control and toO. Append the resulting mbuf chain after the last
record in sb.

int ~bappendcontrol(struct sockbuf *sb, struct mbuf *mO,
struct mbuf *control);

Insert mO before first record in sb without out-of-band data.

int sb±n~ertoob(struct sockbuf *sb, struct mbuf *toO);

Append m to n squeezing out any unused space.

void sbcompre~s(struct sockbuf *sb, struct mbuf *m,
struct mbuf *n);

Discard len bytes from the front of sb.

void ~bdrop(struct sockbuf *sb, intlen);

Discard the first record in sb. Move the next record to the front.

void ~bdroprecord(struct sockbuf *sb);

Ca]] sbflush to release all mbufs in sb. Reset sb_hiwat and sb mbmax values
to 0.

void sbrelease(struct sockbuf *sb);

Release all mbufs in sb.

void sbflush(struct sockbuf *sb);

Set high-water and low-water marks. For the send buffer, call sbreserve with
sndcc. For the receive buffer, call sbreserve with rcvcc. Initialize sb_lowat in
both buffers to default vaIues, Figure 16.4. ENOBUFS is returned if any limits are
exceeded.

int soreserve(struct socket *so, int sndcc, int rcvcc);

Set high-water mark for sb to cc. Also drop low-water mark to cc. No memory is
allocated by this function.

int sbreserve(struct sockbuf *sb, int cc);

Figure 16.7 Macros and functions for socket buffer allocation and manipulation.
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16.4 write, writev, sendto, and sendmsg System Calls

These four system calls, which we refer to collectively as the write system calls, send data
on a network connection. The first three system calls are simpler interfaces to the most
general request, s endms g.

All the write system calls, directly or indirectly, call sosend, which does the work
of copying data from the process to the kernel and passing data to the protocol associ-
ated with the socket. Figure 16.8 summarizes the flow of control.

kernelPr°cess ~~       ~ library function

TCP ] PRU_SEND or PRU_SENDOOB [ TP41
through p~:_usrreq

[ UDP ] ... i ICMP

Figure 16.8 All socket output is handled by sosend.

In the following sections, we discuss the functions shaded in Figure 16.8. The other
four system calls and soo_write are left for readers to investigate on their own.

Figure 16.9 shows the features of these four system calls and a related library func-
tion (send).

In Net/3, send is implemented as a library function that calls sendto. For binary compatibil-
ity with previously compiled programs, the kernel maps the old send system call to the func-
tion osend, which is not discussed in this text.

From the second column in Figure 16.9 we see that the write and wz-itev system
calls are valid with any descriptor, but the remaining system calls are valid only with
socket descriptors.
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Function

write
writev
send
sendto
sendmsg

Type of
descriptor

any
any

socket only
socket only
socket only

Number of
buffers

1
[1..UIO_MAXIOV]

1
1

[I..uIO_MAXIOV]

Specify Flags? Control
destination address? information?

Figure 16.9 Write system calls.

The third column shows that writev and sendmsg accept data from multiple
buffers. Writing from multiple buffers is called gathering. The analogous read operation
is called scattering. In a gather operation the kernel accepts, in order, data from each
buffer specified in an array of iovec structures. The array can have a maximum of
UIO_MAXIOV elements. The structure is shown in Figure 16.10.

uio.h
41 struct iovec {
42 char    *iov_base; /* Base address */
43 size_t iov_len; /* Length */
44 ;

uio.h

Figure 16.10 iovec structure.

41--44 lov_base points to the start of a buffer of iov_len bytes.
Without this type of interface, a process would have to copy buffers into a single

larger buffer or make multiple write system calls to send data from multiple buffers.
Both alternatives are less efficient than passing an array of iovec structures to the ker-
nel in a single call. With datagram protocols, the result of one writer is one datagram,
which cannot be emulated with multiple writes.

Figure 16.11 illustrates the structures as they are used by writer, where iovp
points to the first element of the array and iovcnt is the size of the array.

iovp ~ iov_len iov_base

!iovcnt - I ?!iovcnt-1 [

’,~~    no bytes

nl bytes--~

~/iovcnt-1 bytes

Figure 16.11 iovec arguments to writev.

Datagram protocols require a destination address to be associated with each write
call. Since write, writer; and send do not accept an explicit destination, they may be
called only after a destination has been associated with a connectionless socket by call-
ing connect. A destination must be provided with sendto or sendmsg, or connect
must have been previously called.
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The fifth column in Figure 16.9 shows that the s÷ndxxx system calls accept optional
control flags, which are described in Figure 16.12.

f i ag s Description Reference

MSG_DONTROUTEbypass routing tables for this message Figure 16.23
MSG_DONTWAIT do not wait for resources during this messageFigure 16.22
MSG_SOR data marks the end of a logical record Figure 16.25
MSG_OOB send as out-of-band data Figure 16.26

Figure 16.12 sendxxx system calls: flags values.

As indicated in the last column of Figure 16.9, only the sendmsg system call sup-
ports control information. The control information and several other arguments to
sendmsg are specified within a msghdr structure (Figure 16.13) instead of being passed
separately.

228 struct msghdr {
229 caddr_t msg_name; /* optional address */
230 u_int    msg_namelen; /* size of address */
231 struct iovec *msg_iov; /* scatter/gather array */
232 u_int    msg_iovlen; /* # elements in msg_iov */
233 caddr_t msg_control; /* ancillary data, see below */
234 u_int    msg_controllen; /* ancillary data buffer len */
235 int msg_flags; /* Figure 16.33 */
236 };

socket.h

socket.h

Figure 16.13 msghdr structure.

228--236

251 256

msg_name should be declared as a pointer to a sockaddr structure, since it contains a net-
work address.

The msghdr structure contains a destination address (msg_name and
msg_namelen), a scatter/gather array (msg_iov and msg_iovlen), control informa-
tion (msg_contro! and msg_controllen), and receive flags (msg_flags). The con-
trol information is formatted as a cmsghdr structure shown in Figure 16.14.

251 struct cmsghdr {
252 u_int cmsg_len;
253 int cmsg_level
254 int cmsg_type;
255 /* followed by u_char
256 };

/* data byte count, including hdr */
/* originating protocol */
/* protocol-specific type */

cmsg_data[]; */

socket.h

socket.h

Figure 16.14 cmsghdr structure.

The control information is not interpreted by the Socket layer, but the messages are
typed (cmsg_type) and they have an explicit length (cmsg_len). Multiple control
messages may appear in the control information mbuf.
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Example

Figure 16.15 shows how a fully specified msghdr structure might look during a call to
sendmsg.

msghdr{}
msg_name
msg_namelen
msg_iov
msg_iovlen
msg_control

msg_flags

~ sockaddr{ } I
~ msg_namelen ~

3 ] iov_len

t/2

iov_base S ~ no

I-~ n2

I’~ msg_cont rol fen m=l

Figure 16.15 msghdr structure for sendmsg system call.

16.5

307-319

320-334

sendmsg System Call

Only the sendmsg system call provides access to all the features of the sockets API
associated with output. The sendmsg and sendit functions prepare the data struc-
tures needed by sosend, which passes the message to the appropriate protocol. For
SOCK_DGRAM protocols, a message is a datagram. For SOCK_STREAM protocols, a mes-
sage is a sequence of bytes. For SOCK_SEQPACKET protocols, a message could be an
entire record (implicit record boundaries) or part of a larger record (explicit record
boundaries). A message is always an entire record (implicit record boundaries) for
SOCK_RDM protocols.

Even though the general sosend code handles SOCK_SEQPACKET and SOCK_RDM protocols,
there are no such protocols in the Internet domain.

Figure 16.16 shows the sendmsg code.
There are three arguments to sendmsg: the socket descriptor; a pointer to a rasghdr

structure; and several control flags. The copyin function copies the msghdr structure
from user space to the kernel.

Copy iov array
An iovec array with eight entries (UIO_SMALLIOV) is allocated automatically on

the stack. If this is not large enough, sendmsg calls I~ALLOC to allocate a larger array. If
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307 struct sen~nsg_args {
308 int s;
309 caddr_t msg;
310 int flags;
311 };

312 sendmsg(p, uap, retval)
313 struct proc *p;
314 struct sendmsg_args *uap;
315 int *retval;
316 {
317 struct msghdr msg;
318 struct iovec aiov[UIO_SMALLIOV], *iov;
319 int error;

uipc_syscalls.c

320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340

if (error = copyin(uap->msg, (caddr_t) & msg, sizeof(msg)))
return (error);

if ((u_int) msg.msg_iovlen >: UIO_SMALLIOV) {
if ((u_int) msg.msg_iovlen >= UIO_MAXIOV)

return (EHSGSIZE);
MALLOC(iov, struct iovec *,

sizeof(struct iovec) * (u_int) msg.msg_iovlen, M_IOV,
H WAITOK);

] else
iov : aiov;

if (msg.msg_iovlen &&
(error - copyin((caddr_t) msg.msg_iov, (caddr_t) iov,

(unsigned) (msg.msg_iovlen * sizeof(struct iovec))))
goto done;

msg.msg_iov - iov;
error - sendit(p, uap >s, &msg, uap->flags, retval);

done:
if (iov [= aiov)

FREE(iov, M_IOV);
return (error);

uipc_syscalls.c
Figure 16.16 sendmsg system call.

335-340

the process specifies an array with more than 1024 (UIO_MAXIOV) entries, EMSGS I ZE is
returned, copyin places a copy of the iovec array from user space into either the
array on the stack or the larger, dynamically allocated, array.

This technique avoids the relatively expensive call to malloc in the most common case of
eight or fewer entries.

sendit and cleanup

When sendit returns, the data has been delivered to the appropriate protocol or
an error has occurred, sendmsg releases the iovec array (if it was dynamically allo-
cated) and returns sendit’s result.
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16.6 sendit Function

sendit is the common function called by sendto and sendrasg, sendit initializes a
ui o structure and copies control and address information from the process into the ker-
nel. Before discussing sosend, we must explain the uiomove function and the uio
structure.

uiomove Function

The prototype for this function is:
int uiomove(caddr_t cp, int n, struct uio *uio);

The uiomove function moves n bytes between a single buffer referenced by cp and the
multiple buffers specified by an iovec array in uio. Figure 16.17 shows the definition of
the u i o structure, which controls and records the actions of the uioraove function.

uio.h
45 enum uio_rw {
46 UIO_READ,    UIO_WRITE
47 };

48 enum uio_seg {
49 UIO_USERSPACE,
50 UIO_SYSSPACE,
51 UIO_USERISPACE
52 );

/* Segment flag values */
/* from user data space */
/* from system space */
/* from user instruction space */

53 struct uio {
54 struct iovec *uio_iov;
55 int uio_iovcnt;
56 off_t uio_offset;
57 int uio_resid;
58 enum uio_seg uio_segflg;
59 enum uio_rw uio_rw;
60 struct proc *uio_procp;
61 };

/* an array of iovec structures */
/* size of iovec array */
/* starting position of transfer */
/* remaining bytes to transfer *
/* location of buffers */
/* direction of transfer */
/* the associated process */

uio.h
Figure 16.17 uio structure.

45--61 In the ui o structure, u i o_i ov points to an array of i ore c structures, u z o_o f f s e t
counts the number of bytes transferred by u iomove, and u io_res i d counts the num-
ber of bytes remaining to be transferred. Each time uiomove is called, uio_offset
increases by n and uio_res id decreases by n. uiomove adjusts the base pointers and
buffer lengths in the uio_iov array to exclude any bytes that uioraove transfers each
time it is called. Finally, uio_iov is advanced through each entry in the array as each
buffer is transferred, uio_segflg indicates the location of the buffers specified by the
base pointers in the uio_iov array and uio_rw indicates the direction of the transfer.
The buffers may be located in the user data space, user instruction space, or kernel data
space. Figure 16.18 summarizes the operation of uioraove. The descriptions use the
argument names shown in the ui omove prototype.
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uio_segflg

UIO_USERSPACE

UIO_USERISPACE

UIO_USERSPACE

UIO_USERISPACE

UIO_SYSSPACE

uio_rw

UIO_READ

UIO_WRITE

UIO_READ

UIO_WRITE

Description

scatter n bytes from a kernel buffer cp to process
buffers

gather n bytes from process buffers into the kernel
buffer cp

scatter n bytes from the kernel buffer cp to
multiple kernel buffers

gather n bytes from multiple kernel buffers into
the kernel buffer cp

Figure 16.18 uiomove operation.

Example

Figure 16.19 shows a uio structure before u±omove is called.

process
kernel

uio ---~
uio{}

uio_iov
uio_iovcnt
uio_offset
uio_resid
uio_segflg
uio_rw
uio_procp -i

uio_resid

3 n~
0
no + nI + n2
UIO_USERSPACE
UIO_WRITE

....... ~ process

-I

Figure 16.19 uiomove:before.

uio_iov points to the first entry in the iovec array. Each of the iov_base point-
ers point to the start of their respective buffer in the address space of the process.
uio_offset is 0, and uio_resid is the sum of size of the three buffers, cp points to a
buffer within the kernel, typically the data area of an mbuf. Figure 16.20 shows the
same data structures after

uiomove(cp, n, uio);

is executed where n includes all the bytes from the first buffer and only some of the
bytes from the second buffer (i.e., no < n < no + nl).
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process
kernel

b io_offset

uio{} iov_len
uio_iov --~ 0
uio_iovcnt 2 ~ no + nI - n
uio_of fset n n2
uio_resid (no+n1+n2)-n
uio_segflg UIO_USERSPACE
uio_rw ~O_WRITE
uio_procp ........ m process

uio_resid          ~I

cp

~ uio_offset~

Figure 16.20 uiomove: after.

After uiomove, the first buffer has a length of 0 and its base pointer has been
advanced to the end of the buffer, uio_iov now points to the second entry in the
iov÷c array. The pointer in this entry has been advanced and the length decreased to
reflect the transfer of some of the bytes in the buffer, uio_offs÷t has been increased
by n and uio_r÷sid has been decreased by n. The data from the buffers in the process
has been moved into the kernel’s buffer because uio_rw was UIO__WRIT~..

sendit Code

341--368

369 385

We can now discuss the sendit code shown in Figure 16.21.

Initialize auio

s endi t calls get sock to get the f i 1 e structure associated with the descriptor s
and initializes the u±o structure to gather the output buffers specified by the process
into mbufs in the kernel. The length of the transfer is calculated by the for loop as the
sum of the buffer lengths and saved in uio_r÷sid. The first if within the loop
ensures that the buffer length is nonnegative. The second i f ensures that uio_resid
does not overflow, since u io_r÷s i d is a signed integer and i ov_l e n is guaranteed to
be nonnegative.
Copy address and control information from the process

sockargs makes copies of the destination address and control information into
mbufs if they are provided by the process.
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341 sendit(p, s, rap, flags, retsize)                                        uipc_syscalls.c

342 struct proc *p;
343 int      s;
344 struct msghdr *mp;
345 int flags, *retsize;
346 {

347
348
349
350
351
352

353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393

struct file *fp;
struct uio auio;
struct iovec *iov;
int i;
struct mbuf *to, *control;
int len, error;

if (error - getsock(p->p_fd, s, &fp))
return (error);

auio.uio_iov = mp->msg_iov;
auio.uio_iovcnt = mp >msg_iovlen;
auio.uio_segflg : UIO_USERSPACE;
auio.uio_rw - UIO_WRITE;
auio.uio_procp - p;
auio.uio_offset = 0; /* XXX */
auio.uio_resid = 0;
iov - mp->msg_iov;
for (i - 0; i < mp->msg_iovlen; i++, iov++) {

if (iov->iov_len < 0)
return (EINVAL);

if ((auio.uio_resid +: iov >iov_len) < 0)
return (EINVAL);

}
if (mp >msg_name) {

if (error = sockargs(&to, mp->msg_name, mp->msg_namelen,
HT_SONAHE))

return (error);
} else

to = 0;
if (mp->msg_control) {

if (mp->msg_controllen < sizeof(struct cmsghdr)
){

error - EINVAL;
goto bad;

}
if (error = sockargs(&control, mp->msg_control,

mp->msg_controllen, MT_CONTROL)
goto bad;

} else
control : 0;

len = auio.uio_resid;
if (error - sosend((struct socket *) fp->f_data, to, &aulo,

(struct mbuf *) 0, control, flags)) {
if (auio.uio_resid != len && (error := ERESTART I I

error :: EINTR I I error := EWOULDBLOCK))
error - 0;

if (error == EPIPE)
psignal(p, SIGPIPE);
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394 }
395 if (error -- O)
396 *retsize - len
397 bad:
398 if (to)
399 m freem(to);
400 return (error);
401 }

- auio.uio_resid;

Figure 16.21 sendit function.

uipc_syscalls.c

386--401

Send daIa and cleanup
uio_resid is saved in len so that the number of bytes transferred can be calcu-

lated if sosend does not accept all the data. The socket, destination address, uio struc-
ture, control information, and flags are all passed to sosend. When sosend returns,
sendi.t responds as follows:

¯ If sosend transfers some data and is interrupted by a signal or a blocking condi-
tion, the error is discarded and the partial transfer is reported.

¯ If sosend returns EPIPE, the SIGPIPE signal is sent to the process, error is
not set to 0, so if a process catches the signal and the signal handler returns, or if
the process ignores the signal, the write call returns EPI PE.

If no error occurred (or it was discarded), the number of bytes transferred is cal-
culated and saved in *retsize. Since sendit returns 0, syscall (Sec-
tion 15.4) returns * ret s i z e to the process instead of returning the error code.

¯ If any other error occurs, the error code is returned to the process.

Before returning, sendit releases the mbuf containing the destination address.
sosend is responsible for releasing the control mbuf.

16.7 ¯ ~osend Function

sosend is one of the most complicated functions in the socket layer. Recall from Fig-
ure 16.8 that all five write calls eventually call sosend. It is sosend’s responsibility to
pass the data and control information to the pr_usrreq function of the protocol associ-
ated with the socket according to the semantics supported by the protocol and the buff-
er limits specified by the socket, sosend never places data in the send buffer; it is the
protocol’s responsibility to store and remove the data.

The interpretation of the send buffer’s sb_hiwat and sb_lowat values by
sosend depends on whether the associated protocol implements reliable or unreliable
data transfer semantics.



490 Socket I/O Chapter 16

Reliable Protocol Buffering

For reliable protocols, the send buffer holds both data that has not yet been transmitted
and data that has been sent, but has not been acknowledged, sb_¢c is the number of
bytes of data that reside in the send buffer, and 0 _< sb_cc < sb_h±wat.

may temporarily exceed sb_l~±wat when out-of-band data is sent.

It is sos÷rice’s responsibility to ensure that there is enough space in the send buffer
before passing any data to the protocol layer through the pr_usrrec~ function. The
protocol layer adds the data to the send buffer, sosend transfers data to the protocol in
one of two ways:

¯ If PR A~2OFIIC is set, sosenct must preserve the message boundaries between
the process and the protocol layer. In this case, sosenct waits for enough space
to become available to hold the entire message. When the space is available, an
mbuf chain containing the entire message is constructed and passed to the
protocol in a single call through the pr_us~c~÷c~ function. RDP and SPP are
examples of this type of protocol.

¯ If PR_A~POM~C is not set, sos÷nc~ passes the message to the protocol one mbuf at
a time and may pass a partial mbuf to avoid exceeding the high-water mark.
This method is used with $OCK_$TREA~I protocols such as TCP and
SOCK~S~.QPACKE2~ protocols such as TP4o With TP4, record boundaries are indi-
cated explicitly with the MS~_~.OR flag (Figure 16.12), so it is not necessary for
the message boundaries to be preserved by s o s encL

TCP applications have no control over the size of outgoing TCP segments. For
example, a message of 4096 bytes sent on a TCP socket will be split by the socket layer
into two mbufs with external clusters, containing 2048 bytes each, assuming there is
enough space in the send buffer for 4096 bytes. Later, during protocol processing, TCP
will segment the data according to the maximum segment size for the connection,
which is normally less than 2048.

When a message is too large to fit in the available buffer space and the protocol
allows messages to be split, so~÷nc~ still does not pass data to the protocol until the free
space in the buffer rises above s~_~_owa~. For TCP, ~_~owat defaults to 2048 (Fig-
ure 16.4), so this rule prevents the socket layer from bothering TCP with small chunks of
data when the send buffer is nearly full.

Unreliable Protocol Buffering

With unreliable protocols (e.g., UDP), no data is ever stored in the send buffer and no
acknowledgment is ever expected. Each message is passed immediately to the protocol
where it is queued for transmission on the appropriate network device. In this case,
s~_cc is always 0, and sb_h±wa~ specifies the maximum size of each write and indi-
rectly the maximum size of a datagram.
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Figure 16.4 shows that sb_hiwat defaults to 9216 (9 x 1024) for UDP. Unless the
process changes sb_hiwat with the SO_SNDBUF socket option, an attempt to write a
datagram larger than 9216 bytes returns with an error. Even then, other limitations of
the protocol implementation may prevent a process from sending large datagrams. Sec-
tion 11.10 of Volume 1 discusses these defaults and limits in other TCP/IP implementa-
tions.

92!6 is large enough for a NFS write, which often defaults to 8192 bytes of data plus protocol
headers.

271--278

279--304

305--308

309 341

342--350

Figure 16.22 shows an overview of the sosend function. We discuss the four
shaded sections separately.

The arguments to sosend are: so, a pointer to the relevant socket; addr, a pointer
to a destination address; uio, a pointer to a uio structure describing the I/O buffers in
user space; top, an mbuf chain that holds data to be sent; control, an mbuf that holds
control information to be sent; and f 1 ags, which contains options for this write call.

Normally, a process provides data to the socket layer through the uio mechanism
and top is null. When the kernel itself is using the socket layer (such as with NFS), the
data is passed to sosend as an mbuf chain pointed to by top, and uio is null.

The initialization code is described separately.

Lock send buffer

sosend’s main processing loop starts at restart, where it obtains a lock on the
send buffer with sb!ock before proceeding. The lock ensures orderly access to the
socket buffer by multiple processes.

If MSG_DONTWAIT is set in flags, then SBLOCKWAIT returns M_NOWAIT, which
tells sblock to return EWOULDBLOCK if the lock is not available immediately.

MSG_DONTWAIT iS used only by NFS in Net/3.

The main loop continues until sosend transfers all the data to the protocol (i.e.,
resid == 0).

Check for space
Before any data is passed to the protocol, various error conditions are checked and

sosend implements the flow control and resource control algorithms described earlier
If sosend blocks waiting for more space to appear in the output buffer, it jumps back to
r e s tar t before continuing.
Use data from top

Once space becomes available and sosend has obtained a lock on the send buffer,
the data is prepared for delivery to the protocol layer. If uio is null (i.e., the data is in
the mbuf chain pointed to by top), sosend checks MSG_EOR and sets M_EOR in the
chain to mark the end of a logical record. The mbuf chain is ready for the protocol layer
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271 sosend(so, addr, uio, top, control, flags)                                 uipc_socket.c
272 struct socket *so;
273 struct mbuf *addr;
274 struct uio *uio;
275 struct mbuf *top;
276 struct mbuf *control
277 int flags;
278 {

3O5
306
307
3O8

342
343
344
345
346
347
348
349
350
351

restart :
if (error = sblock(&so->so_snd, SBLOCKWAIT(flags)) )

goto out ;
do {                                 /* main loop, until resid == 0 */

do {
if (uio :: NULL) {

/*
* Data is prepackaged in "top".
*/

resid = 0;
if (flags & MSG_EOR)

top->m_fSags I= M_EOR;
] else

do {

396 ] while (space > 0 && atomic);

412
413

414
415
416
417
418
419
420
421
422 }

} while (resid && space > 0) ;
} while (resid);

release:
sbunlock(&so->so_snd);

out:
if (top)

m_freem(top);
if (control)

m_freem(control);
return (error);

Figure 16.22 sosend function: overview.

uipc_socket.c
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351--396

395 414

414--422

Copy data from process
When uio is not null, sosend must transfer the data from the process. When

PR_ATOMIC is set (e.g., UDP), this loop continues until all the data has been stored in a
single mbuf chain. A break, which is not shown in Figure 16.22, causes the loop to ter-
minate when all the data has been copied from the process, and sosend passes the
entire chain to the protocol.

When PR_ATOMIC is not set (e.g., TCP), this loop is executed only once, filling a sin-
gle mbuf with data from uio. In this case, the mbufs are passed one at a time to the
protocol.

Pass data to the protocol

For PR ATOMIC protocols, after the mbuf chain is passed to the protocol, resid is ¯
always 0 and control falls through the two loops to release. When PR_ATOMIC is not
set, sosend continues filling individuals mbufs while there is more data to send and
while there is still space in the buffer. If the buffer fills and there is still data to send,
sosend loops back and waits for more space before filling the next mbuf. If all the data
is sent, both loops terminate.
Cleanup

After all the data has been passed to the protocol, the socket buffer is unlocked, any
remaining mbufs are discarded, and sosend returns.

The detailed description of sosend is shown in four parts:

¯ initialization (Figure 16.23),
¯ error and resource checking (Figure 16.24),
¯ data transfer (Figure 16.25), and
¯ protocol dispatch (Figure 16.26).

279--284

285-297

298-303

304

The first part of so s end shown in Figure 16.23 initializes various variables.

Compute transfer size and semantics

atomic is set if sosendallatonce is true (any protocol for which PR_ATOHIC is
set) or the data has been passed to sosend as an mbuf chain in top. This flag controls
whether data is passed to the protocol as a single mbuf chain or in separate mbufs.

resid is the number of bytes in the iovec buffers or the number of bytes in the
top mbuf chain. Exercise 16.1 discusses why res id might be negative.

If requested, disable routing

dontroute is set when the routing tables should be bypassed for this message only.
c 1 en is the number of bytes in the optional control mbuf.

The macro snderr posts the error code, reenables protocol processing, and jumps
to the cleanup code at out. This macro simplifies the error handling within the func-
tion.

Figure 16.24 shows the part of sosend that checks for error conditions and waits
for space to appear in the send buffer.
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309

310-311

312-313

31q-318

319 321

279 struct proc *p - curproc; /* XXX */
280 struct mbuf **mp;
281 struct mbuf *m;
282 long space, len, resid;
283 int clen : 0, error, s, dontroute, mlen;
284 int atomic - sosendallatonce(so) I I top;

285 if (uio)
286 resid - uio->uio_resid;
287 else
288 resid : top->m_pkthdr.len;
289 /*
290 * In theory resid should be unsigned.
291 * However, space must be signed, as it might be less than 0
292 * if we over committed, and we must use a signed comparison
293 * of space and resid. On the other hand, a negative resid
294 * causes us to loop sending 0-length segments to the protoco!.
295 */
296 if (resid < 0)
297 return (EINVAL);
298 dontroute =
299 (flags & MSG_DONTROUTE) && (so >so_options & SO_DONTROUTE)
300 (so->so_proto->pr_flags & PR_ATOMIC);
301 p >p_stats->p_ru.ru_msgsnd++;
302 if (control)
303 clen = control->m_len;
304 #define snderr(errno)     { error - errno; splx(s); goto release~; ]

Figure 16.23 sosend function: initialization.

uipc_socket.c

:: 0 &&

uipc_socket.c

Protocol processing is suspended to prevent the buffer from changing while it is
being examined. Before each transfer, sosend checks several conditions:

If output from the socket is prohibited (e.g., the write-half of a TCP connection
has been closed), EPIPE is returned.
If the socket is in an error state (e.g., an ICMP port unreachable may have been
generated by a previous datagram), so_error is returned, sendit discards
the error if some data has been received before the error occurs (Figure 16.21,
line 389).
If the protocol requires connections and a connection has not been established or
a connection attempt has not been started, ENOTCONN is returned, sosend per-
mits a write consisting of control information and no data even when a connec-
tion has not been established.

The Internet protocols do not use this feature, but it is used by TP4 to send data with a
connection request, to confirm a connection request, and to send data with a disconnect
request.

If a destination address is not specified for a connectionless protocol (e.g., the
process calls send without establishing a destination with connect),
EDESTADDREQ is returned.
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uipc socket.cs = spinet();                                                             -
if (so->so_state & SS_CANTSENDMORE)

snderr(EPIPE);
if (so->so_error)

snderr(so >so_error);
if ((so->so_state & SS_ISCONNECTED) -- 0) {

if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
if ((so->so_state & SS_ISCONFIRMING) -- 0 &&

[ (resid -- 0 && clen !- 0))
snderr(ENOTCONN) ;

} else if (addr =- 0)
snderr(EDESTADDRREQ) ;

}
space - sbspace(&so->so_snd);
if (flags & MSG_OOB)

space +- 1024;
if (atomic && resid > so->so_snd.sb_hiwat

clen > so->so_snd.sb_hiwat)
snderr(EHSGSIZE);

if (space < resid + clen && uio &&
(atomic I I space < so->so_snd.sb_lowat
if (so->so_state & SS_NBIO)

snderr(EWOULDBLOCK);
sbunlock(&so >so_snd);
error = sbwait(&so->so_snd);
splx(s);
if (error)

goto out;
goto restart;

}
splx(s);
mp - &top;
space -- clen;

322--324

325--327

309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341

Figure 16.24 sosend function: error and resource checking.

space < clen)) {

uipc_socket.c

Compute available space
sbspace computes the amount of free space remaining in the send buffer. This is

an administrative limit based on the buffer’s high-water mark, but is also limited by
sb_mbmax to prevent many small messages from consuming too many mbufs (Fig-
ure 16.6). sosend gives out-of-band data some priority by relaxing the limits on the
buffer size by 1024 bytes.
Enforce message size limit

If atomic is set and the message is larger than the high-water mark, EMSGSIZE is
returned; the message is too large to be accepted by the protocol--even if the buffer
were empty. If the control information is larger than the high-water mark, EMSGSIZE is
also returned. This is the test that limits the size of a datagram or record.
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328--329

330--338

339--341

351--360

Wait for more space?
If there is not enough space in the send buffer, the data is from a process (versus

from the kernel in top), and one of the following conditions is true, then sosend must
wait for additional space before continuing:

¯ the message must be passed to protocol in a single request (at om± c is set), or
¯ the message may be split, but the free space has dropped below the low-water

mark, or
¯ the message may be split, but the control information does not fit in the avail-

able space.

When the data is passed to sosend in top (i.e., when uio is null), the data is
already located in mbufs. Therefore sosend ignores the high- and low-water marks
since no additional mbuf allocations are required to pass the data to the protocol.

If the send buffer low-water mark is not used in this test, an interesting interaction
occurs between the socket layer and the transport layer that leads to performance
degradation. [Crowcroft et al. 1992] provides details on this scenario.
Wait for space

If sosend must wait for space and the socket is nonblocking, EWOULDBLOCK is
returned. Otherwise, the buffer lock is released and sosend waits with sbwait until
the status of the buffer changes. When sbwait returns, sosend reenables protocol pro-
cessing and jumps back to restart to obtain a lock on the buffer and to check the error
and space conditions again before continuing.

By default, sbwait blocks until data can be sent. By changing sb_timeo in the
buffer through the SO_SNDTIMEO socket option, the process selects an upper bound for
the wait time. If the timer expires, sbwait returns EWOULDBLOCK. Recall from Fig-
ure 16.21 that this error is discarded by sendit if some data has already been trans-
ferred to the protocol. This timer does not limit the length of the entire call, just the
inactivity time between filling mbufs.

At this point, sosend has determined that some data may be passed to the proto-
col. splx enables interrupts since they should not be blocked during the relatively long
time it takes to copy data from the process to the kernel, mp holds a pointer used to con-
struct the mbuf chain. The size of the control information (clen) is subtracted from the
space available before sosend transfers any data from the process.

Figure 16.25 shows the section of sosend that moves data from the process to one
or more mbufs in the kernel.
Allocate packet header or standard mbuf

When atomic is set, this code allocates a packet header during the first iteration of
the loop and standard mbufs afterwards. When atomic is not set, this code always
allocates a packet header since top is always cleared before entering the loop.
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351
352
353
354
355
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38O
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384
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387
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391
392
393
394
395
396

do {
if (top :- 0) {

HGETHDR(m, M_WAIT, MT_DATA);
mlen - HHLEN;
m->m~kthdr.len = 0;
m->m_pkthdr.rcvif - (struct ifnet *) 0;

else {
MGET(m, M_WAIT, MT_DATA);
mlen = MLEN;

}

uipc_socket.c

if (resid >= MINCLSIZE && space >- MCLBYTES)
MCLGET(m, M_WAIT);
if ((m->m_flags & M_EXT) := 0)

goto nopages;
mlen - MCLBYTES;
if (atomic && top -- 0) {

len - min(MCLBYTES - max_hdr, resid);
m->m_data += max hdr;

} else
fen = min(HCLBYTES, resid);

space -- MCLBYTES;
] else {

nopages:
len = min(min(mlen, resid), space);
space -- len;
/*

* For datagram protocols, leave room
* for protocol headers in first mbuf.
*/

if (atomic && top == 0 && len < mlen)
MH_ALIGN(m, len);

error = uiomove(mtod(m, caddr_t),
resid - uio->uio_resid;
m->m_len - len;
*mp - m;
top->m_pkthdr.len += len;
if (error)

goto release;
mp : &m->m next;
if (resid <- 0) {

if (flags & MSG_EOR)
top->m_flags I= M_EOR;

break;
}

} while (space > 0 && atomic);

Figt~re 16.25 sosend function: data transfer.

(int) fen, uio);

uipc_socket.c
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361-371

3 72-382

383-395

396

If possible, use a cluster
If the message is large enough to make a cluster allocation worthwhile and space

is greater than or equal to MCI,]3YTES, a cluster is attached to the mbuf by MCLGET.
When space is less than MCLBYTE$, the extra 2048 bytes will break the allocation limit
for the buffer since the entire cluster is allocated even if res id is less than MCLBYT~.S.

If MCLGET fails, sosend jumps to nopages and uses a standard mbuf instead of an
external cluster.

The test against IvdINCLSIZE should use >, not >:, since a write of 208 (MINCLSIZE) bytes fits
within two mbufs.

When atomic is set (e.g., UDP), the mbuf chain represents a datagram or record
and max_hdr bytes are reserved at the front of the first cluster for protocol headers.
Subsequent clusters are part of the same chain and do not need room for the headers.

If atomic is not set (e.g., TCP), no space is reserved since sosend does not know
how the protocol will segment the outgoing data.

Notice that space is decremented by the size of the cluster (2048 bytes) and not by
len, which is the number of data bytes to be placed in the cluster (Exercise 16.2).

Prepare the mbuf

If a cluster was not used, the number of bytes stored in the mbuf is limited by the
smaller of: (1) the space in the mbuf, (2) the number of bytes in the message, or (3) the
space in the buffer.

When atomic is set, MH_ALIGN locates the data at the end of the buffer for the first
buffer in the chain. MH_ALIGN is skipped if the data completely fills the mbuf. This
may or may not leave enough room for protocol headers, depending on how much data
is placed in the mbuf. When atomic is not set, no space is set aside for the headers.

Get data from the process
uiomove copies len bytes of data from the process to the mbuf. After the transfer,

the mbuf length is updated, the previous mbuf is linked to the new mbuf (or top points
to the first mbuf), and the length of the mbuf chain is updated. If an error occurred dur-
ing the transfer, sosend jumps to release.

When the last byte is transferred from the process, M_E01~ is set in the packet if the
process set HSG_EOR, and sosend breaks out of this loop.

HSG_EOR applies only/to protocols with explicit record boundaries such as TP4, from the OSI
protocol suite. TCP does not support logical records and ignores the MSG_EOR flag.

Fill another buffer?
If atomic is set, sosend loops back and begins filling another mbuf.

The test for space > 0 appears to be extraneous, space is irrelevant when atomic is not set
since the mbufs are passed to the protocol one at a time. When atomic is set, this loop is
entered only when there is enough space for the entire message. See also Exercise 16.2.

The last section of sosend, shown in Figure 16.26, passes the data and control
mbufs to the protocol associated with the socket.
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397--405

406--413

397 if (dontroute)
uipc_socket.c

398 so->so_options I: SO_DONTROUTE;
399 s - splnet(); /* XXX */
400 error - (*so->so_proto->pr_usrreq) (so,
401 (flags & HSG_OOB) ? PRU_SENDOOB : PRU_SEND,
402 top, addr, control);
403 splx(s);
404 if (dontroute)
405 so->so_options &= -SO_DONTROUTE;
406 clen - 0;
407 control : 0;
408 top : 0;
409 mp = &top;
410 if (error)
411 goto release;
412 } while (resid && space > 0);
413 } while (resid);

uipc_socket.c
Figure 16.26 sosend function: protocol dispatch.

The socket’s SO_DONTROUTE option is toggled if necessary before and after passing
the data to the protocol layer to bypass the routing tables on this message. This is the
only option that can be enabled for a single message and, as described with Fig-
ure 16.23, it is controlled by the MSG_DONTROUTE flag during a write.

pr_usrreq is bracketed with splnet and splx to block interrupts while the
protocol is processing the message. This is a paranoid assumption since some protocols
(such as UDP) may be able to do output processing without blocking interrupts, but this
information is not available at the socket layer.

If the process tagged this message as out-of-band data, sosend issues the
PRU_SENDOOB request; otherwise it issues the PRU_SEND request. Address and control
mbufs are also passed to the protocol at this time.

clen, control, top, and mp are reset, since control information is passed to the
protocol only once and a new mbuf chain is constructed for the next part of the mes-
sage. resid is nonzero only when atomic is not set (e.g., TCP). In that case, if space
remains in the buffer, sosend loops back to fill another mbuf. If there is no more space,
sosend loops back to wait for more space (Figure 16.24).

We’ll see in Chapter 23 that unreliable protocols, such as UDP, immediately queue
the data for transmission on the network. Chapter 26 describes how reliable protocols,
such as TCP, add the data to the socket’s send buffer where it remains until it is sent to,
and acknowledged by, the destination.

sosend Summary

sosend is a complex function. It is 142 lines long, contains three nested loops, one loop
implemented with goto, two code paths based on whether PR_ATOMIC is set or not,
and two concurrency locks. As with much software, some of the complexity has accu-
mulated over the years. NFS added the MSG_D©NTWAIT semantics and the possibility
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of receiving data from an mbuf chain instead of the buffers in a process. The
SS_ISCONFIRMING state and MSG_EOR flag were introduced to handle the connection
and record semantics of the OSI protocols.

A cleaner approach would be to implement a separate sosend function for.each
type of protocol and dispatch through a pr_send pointer to the protosw entry. This
idea is suggested and implemented for UDP in [Partridge and Pink 1993].

Performance Considerations

As described in Figure 16.25, sosend, when possible, passes message in mbuf-sized
chunks to the protocol layer. While this results in more calls to the protocol than build-
ing and passing an entire mbuf chain, [Jacobson 1988a] reports that it improves perfor-
mance by increasing parallelism.

Transferring one mbuf at a time (up to 2048 bytes) allows the CPU to prepare a
packet while the network hardware is transmitting. Contrast this to a sending a large
mbuf chain: while the chain is being constructed, the network and the receiving sy.stem
are idle. On the system described in [Jacobson 1988a], this change resulted in a 20%
increase in network throughput.

It is important to make sure the send buffer is always larger than the bandwidth-
delay product of a connection (Section 20.7 of Volume 1). For example, if TCP discovers
that the connection can hold 20 segments before an acknowledgment is received, the
send buffer must be large enough to hold the 20 unacknowledged segments. If it is too
small, TCP will run out of data to send before the first acknowledgment is returned and
the connection will be idle for some period of time.

16.8 read, ready, recvfrom, and recvmsg System Calls

These four system calls, which we refer to collectively as read system calls, receive data
from a network connection. The first three system calls are simpler interfaces to the
most general read system call, recvmsg. Figure 16.27 summarizes the features of the
four read system calls and one library function (recv).

Function

read
meadv
recv
recvfrom
rec~msg

Type of
descriptor

any
any

sockets only
sockets only
sockets only

Number of
buffers

1
[1..UIO_MAXIOV]

1
1

[1..UIO_MAXIOV]

Return sender’s Return control
address? Flags? information?

Figure 16.27 Read system calls.

In Net/3, recv is implemented as a library function that calls recvfrom. For binary compati-
bility with previously compiled programs, the kernel maps the old reev system call to the
function orecv. We discuss only the kernel implementation of recvfrom.
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The read and ready system calls are valid with any descriptor, but the remaining
calls are valid only with socket descriptors.

As with the write calls, multiple buffers are specified by an array of iovec struc-
tures. For datagram protocols, recvfrora and recvmsg return the source address asso-
ciated with each incoming datagram. For connection-oriented protocols, getpeername
returns the address associated with the other end of the connection. The flags associ-
ated with the receive calls are shown in Section 16.11.

As with the write calls, the receive calls utilize a common function, in this case
soreceive, to do all the work. Figure 16.28 illustrates the flow of control for the read
system calls.

C recv ~.~ library function

through pr_usrreq

Figure 16.28 All socket input is processed by soreceive.

We discuss only the three shaded functions in Figure 16.28. The remaining functions are
left for readers to investigate on their own.

16.9 recvmsg System Call

The recvmsg function is the most general read system call. Addresses, control infor-
mation, and receive flags may be discarded without notification if a process uses one of
the other read system calls while this information is pending. Figure 16.29 shows the
recvmsg function.
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u~c_syscalls.c
433 struct recvmsg_args {
434 int s;
435 struct msghdr *msg;
436 int flags;
437 ];

433--445

446--461

438 recvmsg(p, uap, retval)
439 struct proc *p;
440 struct rec~nsg_args *uap;
441 int     *retval;
442 {
443 struct msghdr msg;
444 struct iovec aiov[UIO_SHALLIOV], *uiov, *iov;
445 int error;

446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470

if (error - copyin((caddr_t) uap->msg, (caddr_t) & msg, sizeof(msg))
return (error);

if ((u_int) msg.msg_iovlen >- UIO_SMALLIOV) {
if ((u_int) msg.msg_iovlen >- UIO_HAXIOV)

return (EMSGSIZE);
M_hLLOC(iov, struct iovec *

sizeof(struct iovec) * (u_int) msg.msg_iovlen, M_IOV,
M_WAITOK);

} else
iov - aiov;

msg.msg_flags = uap->flags;
uiov = msg.msg_iov;
msg.msg_iov = iov;
if (error - copyin((caddr_t) uiov, (caddr_t) iov,

(unsigned) (msg.msg_iovlen * sizeof(struct iovec)
goto done;

if ((error = recvit(p, uap->s, &msg, (caddr_t) 0, retval)) -- 0) {
msg.msg_iov - uiov;
error - copyout((caddr_t) & msg, (caddr_t) uap->msg, sizeof(msg)

}
done:

if (iov != aiov)
FREE(iov, M_IOV);

return (error);

))

uipc_syscalls.c
Figure 16.29 recvmsg system call.

The three arguments to recvmsg are: the socket descriptor; a pointer to a msghdr
structure; and several control flags.

Copy ~.ov array
As with sendmsg, recvmsg copies the msghdr structure into the kernel, allocates a

larger iovec array if the automatic array aiov is too small, and copies the array entries
from the process into the kernel array pointed to by iov (Section 16.4). The flags pro-
vided as the third argument are copied into the msghdr structure.
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462 470

16.10

471--500

recvit and cleanup
After recvit has received data, the rasghdr structure is copied back into the pro-

cess with the updated buffer lengths and flags. If a larger iovec structure was allo-
cated, it is released before reevmsg returns.

recvit Function

The recvit function shown in Figures 16.30 and 16.31 is called from recv, recvfrora,

and recvrasg. It prepares a uio structure for processing by soreceive based on the
rasghdr structure prepared by the recvxxx calls.

471 recvit(p, s, mp, namelenp, retsize)
472 struct proc *p;
473 int      s;
474 struct msghdr *mp;
475 caddr_t namelenp;
476 int     *retsize;
477 {
478 struct file *fp;
479 struct uio auio;
480 struct iovec *iov;
481 int i;
482 int len, error;
483 struct mbuf *from : 0, *contro! = 0;

484 if (error = getsock(p->p_fd, s, &fp))
485 return (error);
486 auio.uio_iov - mp >msg_iov;
487 auio.uio_iovcnt = mp->msg_iovlen;
488 auio.uio_segflg - UIO_USERSPACE;
489 auio.uio_rw = UIO_READ;
490 auio.uio_procp - p;
491 auio.uio_offset = 0; /* XXX */
492 auio.uio_resid = 0;
493 iov - mp->msg_iov;
494 for (i = 0; i < mp->msg_iovlen; i++, iov++) {
495 if (iov->iov_len < 0)
496 return (EINVAL);
497 if ((auio.uio_resid += iov->iov_len) < 0)
498 return (EINVAL);
499 }
500 fen = auio.uio_resid;

Figure 16.30 recvit function: initialize uio structure.

uipc_syscalls.c

uipc_syscalls.c

getsock returns the file structure for the descriptor s, and then recvit initial-
izes the uio structure to describe a read transfer from the kernel to the process. The
number of bytes to transfer is computed by summing the msg_iovlen members of the
iovec array. The total is saved in uio_resid and in len.

The second half of recvit, shown in Figure 16.31, calls soreceive and copies the
results back to the process.



504 Socket I/O Chapter 16

501
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524
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527
528
529
53O
531
532
533
534
535
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538
539
54O
541
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544
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547
548
~49

uipc_syscalls.c
if (error : soreceive((struct socket *) fp->f_data, &from, &auio,

(struct mbuf **) 0, mp->msg_control ? &control : (struct mbuf **) 0,
&mp >msg_flags)) {

if (auio.uio_resid != len && (error -= ERESTART
error -- EINTR I I error =: EWOULDBLOCK))

error : 0;
}
if (error)

goto out;
*retsize : len - auio.uio_resid;
if (mp->msg_name) {

fen - mp->msg_namelen;
if (len <= 0 I I from == 0)

len - 0;
else {

if (len > from->m_len)
len : from->m_len;

/* else if len < from >m_len ??? */
if (error - copyout(mtod(from, caddr_t),

(caddr_t) mp->msg_name, (unsigned) len))
goto out;

}
mp->msg_namelen : len;
if (namelenp &&

(error = copyout((caddr_t) & len, namelenp, sizeof(int)))) {
goto out;

}
}
if (mp->msg_control) {

len = mp->msg_controllen;
if (fen <- 0 I I control -- 0)

len = 0;
else {

if (len >= control->m_len)
fen : control->m_len;

else
mp->msg_flags I= MSG_CTRUNC;

error = copyout((caddr_t) mtod(control, caddr_t),
(caddr_t) mp->msg_control, (unsigned) len);

}
mp >msg controllen = len;

}
out:

if (from)
m_freem(from);

if (control)
m_freem(control);

return (error);

uipc_syscalls.c
Figure 16.31 reevit function: return results.
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501-510

511-542

543--549

Call soreceive
sorece±ve implements the complex semantics of receiving data from the socket

buffers. The number of bytes transferred is saved in *re¢s±ze and returned to the
process. When an signal arrives or a blocking condition occurs after some data has been
copied to the process (len is not equal to uio_resid), the error is discarded and the
partial transfer is reported.

Copy address and control information to the process
If the process provided a buffer for an address or control information or both, the

buffers are filled and their lengths adjusted according to what soreceive returned.
An address may be truncated if the buffer is too small. This can be detected by the pro-
cess if it saves the buffer length before the read call and compares it with the value
returned by the kernel in the namelenp variable (or in the length field of the sockaddr
structure). Truncation of control information is reported by setting MSG_CTRUNC in
msg_flags. See also Exercise 16.7.

Cleanup
At out, the mbufs allocated for the source address and the control information are

released.

16.11 soreceive Function

This function transfers data from the receive buffer of the socket to the buffers specified
by the process. Some protocols provide an address specifying the sender of the data,
and this can be returned along with additional control information that may be present.
Before examining the code, we need to discuss the semantics of a receive operation, out-
of-band data, and the organization of a socket’s receive buffer.

Figure 16.32 lists the flags that are recognized by the kernel during soreceive.

f iag s Description Reference

MSG_DONTWAIT do mot wait for resources during this call Figure 16.38
MSG_OOB receive out-of-band data instead of regular dataFigure 16.39
MSG_PEEK receive a copy of the data without consuming itFigure 16.43
MSG_WAITALL wait for data to fill buffers before returning Figure 16.50

Figure 16.32 recvxxx system calls: flag values passed to kernel

recvmsg is the only read system call that returns flags to the process. In the other
calls, the information is discarded by the kernel before control returns to the process.
Figure 16.33 lists the flags that recvmsg can set in the msghdr structure.

Out-of-Band Data

Out-of-band (OOB) data semantics vary widely among protocols. In general, protocols
expedite OOB data along a previously established communication link. The OOB data
might not remain in sequence with previously sent regular data. The socket layer
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msg_flags

MSO_CTRUNC
MS~_EOR

MS~_OOB

MS ~_ TR UNC

Description

the control information received was larger than the buffer provided
the data received marks the end of a logical record
the buffer(s) contains out-of-band data
the message received was larger than the buffer(s) provided

Figure 16.33 recvmsg system call: msg_£~_ag values returned by kernel.

Reference

Figure 16.31
Figure 16.48
Figure 16.45
Figure 16.51

supports two mechanisms to facilitate handling OOB data in a protocol-independent
way: tagging and synchronization. In this chapter we describe the abstract OOB mecha-
nisms implemented by the socket layer. UDP does not support OOB data. The relation-
ship between TCP’s urgent data mechanism and the socket OOB mechanism is
described in the TCP chapters.

A sending process tags data as OOB data by setting the MSG_OOB flag in any of the
sendxxx calls, sos÷rid passes this information to the socket’s protocol, which provides
any special services, such as expediting the data or using an alternate queueing strategy.

When a protocol receives OOB data, the data is set aside instead of placing it in the
socket’s receive buffer. A process receives the pending OOB data by setting the
MSG_OOB flag in one of the r÷cvxxx calls. Alternatively, the receiving process can ask
the protocol to place OOB data inline with the regular data by setting the
SO_OOBTNLINE socket option (Section 17.3). When SO_OOBINLTNE is set, the protocol
places incoming OOB data in the receive buffer with the regular data. In this case,
M~G_OOB is not used to receive the OOB data. Read calls return either all regular data
or all OOB data. The two types are never mixed in the input buffers of a single input
system call. A process that uses r÷cvmsg to receive data can examine the MSG_OOB flag
to determine if the returned data is regular data or OOB data that has been placed
inline.

The socket layer supports synchronization of OOB and regular data by allowing the
protocol layer to mark the point in the regular data stream at which OOB data was
received. The receiver can determine when it has reached this mark by using the
SIOCATMARK ioctl command after each read system call. When receiving regular
data, the socket layer ensures that only the bytes preceding the mark are returned in a
single message so that the receiver does not inadvertently pass the mark. If additional
OOB data is received before the receiver reaches the mark, the mark is silently
advanced.

Example

Figure 16.34 illustrates the two methods of receiving out-of-band data. In both exam-
ples, bytes A through I have been received as regular data, byte J as out-of-band data,
and bytes K and L as regular data. The receiving process has accepted all data up to but
not including byte A.

In the first example, the process can read bytes A through I or, if MSG_OOB is set,
byte J. Even if the length of the read request is more than 9 bytes (A-I), the socket layer
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consumed receive buffer

consumed

~out-of-band data

receive buffer

mark

Figure 16.34 Receiving out-of-band data.

mark and out-of-band data

returns only 9 bytes to avoid passing the out-of-band synchronization mark. When byte
I is consumed, SIOCATMARK is true; it is not necessary to consume byte J for the process
to reach the out-of-band mark.

In the second example, the process can read only bytes A through I, at which point
SIOCATIqARK is true. A second call can read byteslthrough L.

In Figure 16.34, byte J is not the byte identified by TCP’s urgent pointer. The urgent
pointer in this example would point to byte K. See Section 29.7 for details.

Other Receive Options

A process can set the MSG_PEEK flag to retrieve data without consuming it. The data
remains on the receive queue until a read system call without MSG_PEEK is processed.

The MSG_WAITALL flag indicates that the call should not return until enough data
can be returned to fulfill the entire request. Even if soreceive has some data that can
be returned to the process, it waits until additional data has been received.

When MSG_WAITALL is set, soreceive can return without filling the buffer in the
following cases:

¯ the read-half of the connection is closed,
¯ the socket’s receive buffer is smaller than the size of the read,
¯ an error occurs while the process is waiting for additional data,
¯ out-of-band data becomes available, or
¯ the end of a logical record occurs before the read buffer is filled.

NFS is the only software in Net/3 that uses the MSG_WAITALL and MSG_DONTWAIT flags.
MSG_DONTWAIT can be set by a process to issue a nonblocking read system call without select-
ing nonblocking I/O with ioctl or fcntl.
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Receive Buffer Organization: Message Boundaries

For protocols that support message boundaries, each message is stored in a single chain
of mbufs. Multiple messages in the receive buffer are linked together by m_n÷xtpkt to
form a queue of mbufs (Figure 2.21). The protocol processing layer adds data to the
receive queue and the socket layer removes data from the receive queue. The high-
water mark for a receive buffer restricts the amount of data that can be stored in the
buffer.

When P~t_ATOMIC is not set, the protocol layer stores as much data in the buffer as
possible and discards the portion of the incoming data that does not fit. For TCP, this
means that any data that arrives and is outside the receive window is discarded. When
PR_ATOMIC is set, the entire message must fit within the buffer. If the message does not
fit, the protocol layer discards the entire message. For UDP, this means that incoming
datagrams are discarded when the receive buffer is full, probably because the process is
not reading datagrams fast enough.

Protocols with PR_ADDR set use sbappendaddr to construct an mbuf chain and
add it to the receive queue. The chain contains an mbuf with the source address of the
message, 0 or more control mbufs, followed by 0 or more mbufs containing the data.

For SOCK_SEQPACKET and SOCK_RDM protocols, the protocol builds an mbuf chain
for each record and calls sbappendrecord to append the record to the end of the
receive buffer if PR_ATOMIC is set. If PR_ATOMIC is not set (OSI’s TP4), a new record is
started with sbappendrecord. Additional data is added to the record with
sbappend.

It is not correct to assume that PR_ATOMIC indicates the buffer organization. For example, TP4
does not have PR_ATOMIC set, but supports record boundaries with the M_EOR flag.

Figure 16.35 illustrates the organization of a UDP receive buffer consisting of 3
mbuf chains (i.e., three datagrams). The m_type value for each mbuf is included.

In the figure, the third datagram has some control information associated with it.
Three UDP socket options can cause control information to be placed in the receive buff-
er. See Figure 22.5 and Section 23.7 for details.

For PR_ATOMIC protocols, sb_lowat is ignored while data is being received.
When PR_ATOMIC is not set, sb_lowat is the smallest number of bytes returned in a
read system call. There are some exceptions to this rule, discussed with Figure 16.41.

Receive Buffer Organization: No Message Boundaries

When the protocol does not maintain message boundaries (i.e., SOCK_STREAM protocols
such as TCP), incoming data is appended to the end of the last mbuf chain in the buffer
with sbappend. Incoming data is trimmed to fit within the receive buffer, and
sb_lowat puts a lower bound on the number of bytes returned by a read system call.

Figure 16.36 illustrates the organization of a TCP receive buffer, which contains only
regular data.
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Figure 16.35 UDP receive buffer consisting of three datagrams.
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Figure 16.36 so_rcvbuffer for TCR

Control Information and Out-of-band Data

Unlike TCP, some stream protocols support control information and call
sbappendcontrol to append the control information and the associated data as a new
mbuf chain in the receive buffer. If the protocol supports inline OOB data,
sbinsertoob inserts a new mbuf chain just after any mbuf chain that contains OOB
data, but before any mbuf chain with regular data. This ensures that incoming OOB
data is queued ahead of any regular data.
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Figure 16.37 illustrates the organization of a receive buffer that contains control
information and OOB data.

socket{}

SO_rCV

MT_DA TA ~

Figure 16.37 so_rcv buffer with control and OOB data.

The Unix domain stream protocol supports control information and the OSI TP4
protocol supports MT_OOBDATA mbufs. TCP does not support control data nor does it
support the MT_OOBDATA form of out-of-band data. If the byte identified by TCP’s
urgent pointer is stored inline (SO_OOBINLINE is set), it appears as regular data, not
OOB data. TCP’s handling of the urgent pointer and the associated byte is described in
Section 29.7.

16.12

439--446

soreceive Code

We now have enough background information to discuss soreceive in detail. While
receiving data, soreceive must respect message boundaries, handle addresses and
control information, and handle any special semantics identified by the read flags (Fig-
ure 16.32). The general rule is that soreceive processes one record per call and tries to
return the number of bytes requested. Figure 16.38 shows an overview of the function.

soreceive has six arguments, so is a pointer to the socket. A pointer to an mbuf
to receive address information is returned in *paddr. If rap0 points to an mbuf pointer,
soreceive transfers the receive buffer data to an mbuf chain pointed to by *rap0. In
this case, the uio structure is used only for the count in uio_resid. If rap0 is null,
soreceive copies the data into buffers described by the uio structure. A pointer to
the mbuf containing control information is returned in *controlp, and soreceive
returns the flags described in Figure 16.33 in * flagsp.
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483--487

488 541
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591--597

598 692

693 719

soreceive starts by setting pr to point to the socket’s protocol switch structure
and saving uio_resid (the size of the receive request) in orig_resid. If control
information or addressing information is copied from the kernel to the process,
orig_resid is set to 0. If data is copied, uio_resid is updated. In either case,
orig_resid will not equal uio_resid. This fact is used at the end of soreceive
(Figure 16.51).

*paddr and *controlp are cleared. The flags passed to soreceive in *flagsp
are saved in flags after the MSG_EOR flag is cleared (Exercise 16.8). flagsp is a
value-result argument, but only the recvmsg system call can receive the result flags. If
flagsp is null, flags is set to 0.

Before accessing the receive buffer, sblock locks the buffer, soreceive waits for
the lock unless MSG_DONTWAIT is set in flags.

This is another side effect of supporting calls to the socket layer from NFS within the kernel.

Protocol processing is suspended, so sorece±ve is not interrupted while it exam-
ines the buffer, m is the first mbuf on the first chain in the receive buffer.

If necessary, wait for data
soreceive checks several conditions and if necessary waits for more data to arrive

in the buffer before continuing. If soreceive sleeps in this code, it jumps back to
restart when it wakes up to see if enough data has arrived. This continues until the
request can be satisfied.

soreceive jumps to dontb!ock when it has enough data to satisfy the request. A
pointer to the second chain in the receive buffer is saved in nextrecord.

Process address and control information
Address information and control information are processed before any other data is

transferred from the receive buffer.

Setup data transfer

Since only OOB data or regular data is transferred in a single call to soreceive,
this code remembers the type of data at the front of the queue so soreceive can stop
the transfer when the type changes.
Mbuf data transfer loop

This loop continues as long as there are mbufs in the buffer (m is not null), the
requested number of bytes has not been transferred (uio_res id > 0), and no error has
occurred.
Cleanup

The remaining code updates various pointers, flags, and offsets; releases the socket
buffer lock; enables protocol processing; and returns.
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uipc_socket.c
soreceive(so, paddr, uio, mp0, controlp, flagsp)
struct socket *so;
struct mbuf **paddr;
struct uio *uio;
struct mbuf **mp0;
struct mbuf **controlp;
int      *flagsp;

439
44O
441
442
443
444
445
446
447
448
449
450
451
452

453
454
455
456
457
458
459
460
461

struct mbuf *m, **mp;
int      flags, len, error, s, offset;
struct protosw *pr : so->so_proto;
struct mbuf *nextrecord;
int moff, type;
int orig_resid = uio->uio_resid;

mp = mp0;
if (paddr)

*paddr - 0;
if (controlp)

*controlp = 0;
if (flagsp)

flags : *flagsp & -MSG_EOR;
else

flags - 0;

/* MSG_OOB processing and */
/* implicit connection confirmation */

483 restart:
484 if (error - sblock(&so->so_rcv, ~BLOCKWAIT(flags)))
485 return (error);
486 s = splnet();
487 m - so->so_rcv.sb_mb;

/* if necessary, wait for data to arrive */

542 dontblock:
543 if (uio->uio_procp)
544 uio->uio~rocp->p_stats->p ru.ru msgrcv++;
545 nextrecord - m->m_nextpkt;

/* process address and control information */

591 if (m) {
592 if ((flags & HSG_PEEK) == 0)
593 m->m nextpkt - nextrecord;
594 type = m->m_type;
595 if (type := HT_OOBDATA)
596 flags I: MSG_OOB;
597 }
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693

/* process data */

/* while more data and more space to fill */

715
716
717
718
719 }

/* cleanup */

release:
sbunlock(&so >so_rcv);
splx(s);
return (error);

Figure 16.38 soreceive function: overview.

uipc_socket.c

462--477

In Figure 16.39, soreceive handles requests for OOB data.
uipc socket.c

462      if (flags & MSG_OOB) {                                                 --
463 m : m_get(M WAIT, MT_DATA);
464 error = (*pr->pr_usrreq) (so, PRU_RCVOOB,
465 m, (struct mbuf *) (flags & MSG_PEEK), (struct mbuf *) 0);
466 if (error)
467 goto bad;
468 do {
469 error = uiomove(mtod(m, caddr_t),
470 (int) min(uio->uio_resid, m >m_len), uio);
471 m = m_free(m);
472 } while (uio->uio_resid && error =- 0 && m);
473 bad:
474 if (m)
475 m_freem(m);
476 return (error);
477 ]

uipc_sooket.c
Figure 16.39 soreceive function: out-of-band data.

Receive OOB data
Since OOB data is not stored in the receive buffer, soreceive allocates a standard

mbuf and issues the PRU_RCVOOB request to the protocol. The whi l e loop copies any
data returned by the protocol to the buffers specified by uio. After the copy,
soreceive returns 0 or the error code.

UDP always returns EOPNOTSUPP for the PRU_RCVOOB request. See Section 30.2
for details regarding TCP urgent processing. In Figure 16.40, soreceive handles con-
nection confirmation.
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q78 q82

478
479
48O
481
482

if (mp)
*mp - (struct mbuf *) 0;

if (so >so_state & SS_ISCONFIRMING && uio >uio_resid)
(*pr >pr_usrreq) (so, PRU_RCVD, (struct mbuf *) 0,

(struct mbuf *) 0, (struct mbuf *) 0);

Figure 16.40 soreceive function: connection confirmation.

uipc_socket.c

uipc_socket.c

Connection confirmation
If the data is to be returned in an mbuf chain, *rap is initialized to null. If the socket

is in the SO_ISCONFIRMING state, the PRU_RCVD request notifies the protocol that the
process is attempting to receive data.

The SO_ISCONFIRMING state is used only by the OSI stream protocol, TP4. In TP4, a connec-
tion is not considered complete until a user-level process has confirmed the connection by
attempting to send or receive data. The process can reject a connection by calling shutdown
or c!ose, perhaps after calling getpeernarae to determine where the connection came from.

Figure 16.38 showed that the receive buffer is. locked before it is examined by the
code in Figure 16.41. This part of soreceive determines if the read system call can be
satisfied by the data that is already in the receive buffer.

488
489
490
491
492
493
494
495
496
497
498
499
50O
501
5O2
5O3
504

/.                                                                    uipc_socket.c

* If we have less data than requested, block awaiting more
* (subject to any timeout) if:
* i. the current count is less than the low water mark, or
* 2. HSG_WAITALL is set, and it is possible to do the entire
* receive operation at once if we block (resid <- hiwat).
* 3. MSG_DOHTWAIT is not set

* If MSG WAITALL is set but resid is larger than the receive buffer,
* we have to do the receive in sections, and thus risk returning
* a short count if a timeout or signal occurs after we start.
*/

if (m == 0 I I ((flags & MSG_DONTWAIT) == 0 &&
so->so_rcv.sb_cc < uio->uio_resid) &&

(so->so_rcv.sb_cc < so->so_rcv.sb_lowat I I
((flags & MSG WAITALL) && uio->uio_resid <- so->so_rcv.sb_hiwat)) &&

m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOHIC) == 0) {
uipc_soc~t.c

Figure16.41 soreceivefunction:enough data?

488--504

Can the call be satisfied now?

The general rule for soreceive is that it waits until enough data is in the receive
buffer to satisfy the entire read. There are several conditions that cause an error or less
data than was requested to be returned.

If any of the following conditions are true, the process is put to sleep to wait for
more data to arrive so the call can be satisfied:
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505--534

505--512

513--518

519--523

524--528

529 534

535--541

¯ There is no data in the receive buffer (m equals 0).
¯ There is not enough data to satisfy the entire read (sb_cc < uio resid) and

MSG_DONTWAIT is not set, the minimum amount of data is not available
(sb_cc < sb_lowat), and more data can be appended to this chain when it
arrives (m_nextpkt is 0 and PR_ATOMIC is not set).

¯ There is not enough data to satisfy the entire read, a minimum amount of data
is available, data can be added to this chain, but MSG_WAITALL indicates that
soreceive should wait until the entire read can be satisfied.

If the conditions in the last case are met but the read is too large to be satisfied with-
out blocking (uio_resid_< sb_hiwat), soreceive continues without waiting for
more data.

If there is some data in the buffer and MSG_DONTWAIT is set, soreceive does not
wait for more data.

There are several reasons why waiting for more data may not be appropriate. In
Figure 16.42, soreceive checks for these conditions and returns, or waits for more
data to arrive.

Wait for more data?
At this point, soreceive has determined that it must wait for additional data to

arrive before the read can be satisfied. Before waiting it checks for several additional
conditions:

¯ If the socket is in an error state and empty (in is null), soreceive returns the
error code. If there is an error and the receive buffer also contains data (in is
nonnull), the data is returned and a subsequent read returns the error when
there is no more data. If MSG_PEEK is set, the error is not cleared, since a read
system call with MSG_PEEK set should not change the state of the socket.

¯ If the read-half of the connection has been closed and data remains in the
receive buffer, sosend does not wait and returns the data to the process (at
dontblock). If the receive buffer is empty, soreceive jumps to release
and the read system call returns 0, which indicates that the read-half of the con-
nection is closed.

¯ If the receive buffer contains out-of-band data or the end of a logical record,
soreceive does not wait for additional data and jumps to dontblock.

¯ If the protocol requires a connection and it does not exist, ENOTCONN is posted
and the function jumps to release.

¯ If the read is for 0 bytes or nonblocking semantics have been selected, the func-
tion jumps to release and returns 0 or EWOULDBLOCK, respectively.

Yes, wait for more data
soreceive has now determined that it must wait for more data, and that it is rea-

sonable to do so (i.e., some data will arrive). The receive buffer is unlocked while the
process sleeps in sbwait. If sbwait returns because of an error or a signal,
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5O5
5O6
5O7
5O8
509
510
511
512
513
514
515
516
517
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52O
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523
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525
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528
529
530
531
532
533
534
535
536
537
538
539
540
541

if

}
if

}
for

if

if

(so->so_error) {
if (m)

goto dontblock;

if ((flags & MSG_PEEK)

goto release;

-- 0)

(so >so_state & SS_CANTRCVMORE)
if (m)

goto dontblock;
else

goto release;

(; m; m - m->m_next)
if (m->m_type -- MT_OOBDATA I[ (m->m_flags & M_EOR})

m = so->so_rcv.sb_mb;
goto dontblock;

}
((so->so_state & (SS_ISCONNECTED I SS_ISCONNECTING)) == 0 &&
(so->so_proto->pr_flags & PR_CONNREQUIRED)) {
error - ENOTCONN;
goto release;

uipc_socket.c

(uio->uio_resid -- 0)
goto release;

((so->so_state & SS_NBIO)
error - EWOULDBLOCK;
goto release;

sbunlock(&so->so_rcv);
error = sbwait(&so->so_rcv);
splx(s);
if (error)

return (error);
goto restart;

(flags & MSG_DONTWAIT)) {

uipc_socket.c
Figure 16.42 $oreceive function: wait for more data?

sor÷ce~_v÷ returns the error; otherwise the function jumps to restart to determine if
the read can be satisfied now that more data has arrived.

As in sosend, a process can enable a receive timer for sbwa±¢ with the
SO_RCVTTMEO socket option. If the timer expires before a data arrives, sbwa±¢ returns
EWOULDBLOCK.

The effect of this timer is not what one would expect. Since the timer gets reset every time
there is activity on the socket buffer, the timer never expires if at least 1 byte arrives within the
timeout interval. This can delay the return of the read system call for more than the value of
the timer, sb_t imeo is an inactivity timer and does not put an upper bound on the amount of
time that may be required to satisfy the read system call.
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542--545

546--564

565--590

At this point, soreceive is prepared to transfer some data from the receive buffer.
Figure 16.43 shows the transfer of any address information.

542 dontblock:
543 if (uio->uio_procp)
544 uio->uio_procp->p_stats->p_ru.ru_msgrcv++;
545 nextrecord : m >m_nextpkt;
546 if (pr->pr_flags & PR_ADDR) {
547 orig_resid - 0;
548 if (flags & MSG_PEEK) {
549 if (paddr)
550 *paddr : m_copy(m, 0, m->m_len);
551 m = m->m next;
552 } else {
553 sbfree(&so >so_rcv, m);
554 if (paddr) {
555 *paddr = m;
556 so->so_rcv.sb_mb : m->m_next;
557 m->m_next = 0;
558 m = so->so_rcv.sb_mb;
559 } else {
560 MFREE(m, so->so_rcv.sb mb);
561 m = so->so_rcv.sb_mb;
562 }
563 }
564 }

Figure 16.43 soreceive function: return address information.

uipc_soeket.c

uipc_socket.c

dontblock

nextrecord maintains a reference to the next record that appears in the receive
buffer. This is used at the end of soreceive to attach the remaining mbufs to the
socket buffer after the first chain has been discarded.

Return address information
If the protocol provides addresses, such as UDP, the mbuf containing the address is

removed from the mbuf chain and returned in *paddr. If 10addr is null, the address is
discarded.

Throughout soreceive, if MSG_PEEK is set, the data is not removed from the
buffer.

The code in Figure 16.44 processes any control mbufs that are in the buffer.

Return control information
Each control mbuf is removed from the buffer (or copied if FISG_PEE~< is set) and

attached to *controlp. If controlp is null, the control information is discarded.
If the process is prepared to receive control information, the protocol has a

dom_ext e rna 1 i z e function defined, and if the control mbuf contains a S CM_RI GI~TS
(access rights) message, the dom__ext e rnal i z e function is called: This function takes
any kernel action associated with receiving the access rights. Only the Unix protocol
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565
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568
569
570
571
572
573
574
575
576
577
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579
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while (m && m->m_type :: MT_CONTROL && error - 0)
if (flags & MSG_PEEK) {

if (controlp)
*controlp - m_copy(m, 0, m->in_len) ;

m : m->m_next;
else {

sbfree(&so->so_rcv, m);
if (controlp) {

if (pr >pr_domain->dom_externalize &&
mtod(m, struct cmsghdr *)->cmsg_type
SCM_RIGHTS)

error - (*pr->pr_domain >dom_externalize)
*controlp - m;
so->so_rcv.sb_mb = m->m_next;
m->m_next = 0;
m = so->so_rcv.sb_mb;

} else {
MFREE(m, so->so_rcv.sb_mb);
m = so >so_rcv.sb_mb;

}
}
if (co~trolp) {

orig_resid = 0;
controlp : &(*controlp)->m_next;

}
}

Figure 16.44 sorece±v÷ function: controlinfo*fnation.

uipc_socket.c

(m) ;

uipc_socket.c

domain supports access rights, as discussed in Section 7.3. If the process is not prepared
to receive control information (c ont r o lp is null) the mbuf is discarded.

The loop continues while there are more mbufs with control information and no
error has occurred.

For the Unix protocol domain, the dom_ext e rnal i z e function implements the semantics of
passing file descriptors by modifying the file descriptor table of the receiving process.

59~-597

After the control mbufs are processed, m points to the next mbuf on the chain. If the
chain does not contain any mbufs after the address, or after the control information, m is
null. This occurs, for example, when a 0-length UDP datagram is queued in the receive
buffer. In Figure 16.45 soreceive prepares to transfer the data from the mbuf chain.
Prepare to transfer data

After the control mbufs have been processed, the chain should contain regular, out-
of-band data mbufs or no mbufs at all. If m is null, so:ceceive is finished with this
chain and control drops to the bottom of the whi 1 e loop. If m is not null, any remaining
chains (nextreeord) are reattached to m and the type of the next mbuf is saved in
type. If the next mbuf contains OOB data, MSG_OOB is set in flags, which is later
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uipc socket.c
591     if (m) {                                                             -
592 if ((flags & MSG_PEEK) =- 0)
593 m >ra_nextpkt - nextrecord;
594 type = m >m_type;
595 if (type == NT_OOBDATA)
596 flags I: MSG_OOB;
5 9 7 }

uipc_sooket.c
Figure 16.45 soreceive function: mbuf transfer setup.

598--600

600--605

606 611

612--625

returned to the process. Since TCP does not support the MT_OOBDATA form of out-of-
band data, MSG_OOB will never be returned for reads on TCP sockets.

Figure 16.47 shows the first part of the mbuf transfer loop. Figure 16.46 lists the
variables updated within the loop.

Variable Description

roof f the offset of the next byte to transfer when MSG_PEEK is set
offset the offset of the OOB mark when MSG_PEEK is set
uio_res id the number of bytes remaining to be transferred
1 en the number of bytes to be transferred from this mbuf; may be less than

m_len if uio_resid is small, or if the OOB mark is near

Figure 16.46 soreceive function: loop variables.

During each iteration of the white loop, the data in a single mbuf is transferred to
the output chain or to the uio buffers. The loop continues while there are more mbufs,
the process’s buffers are not full, and no error has occurred.

Check for transition between OOB and regular data
If, while processing the mbuf chain, the type of the mbuf changes, the transfer

stops. This ensures that regular and out-of-band data are not both returned in the same
message. This check does not apply to TCP.

Update OOB mark
The distance to the oobmark is computed and limits the size of the transfer, so the

byte before the mark is the last byte transferred. The size of the transfer is also limited
by the size of the mbuf. This code does apply to TCP.

If the data is being returned to the uio buffers, uiomove is called. If the data is
being returned as an mbuf chain, uio_resid is adjusted to reflect the number of bytes
moved.

To avoid suspending protocol processing for a long time, protocol processing is
enabled during the call to uiomove. Additional data may appear in the receive buffer
because of protocol processing while uiomove is running.

The code in Figure 16.48 adjusts all the pointers and offsets to prepare for the next
mbuf.



520 Socket I/O Chapter 16

uipc_socket.c
598      moff : 0;
599 offset = 0;
600 while (m && uio->uio_resid > 0 && error =: 0) {
601 if (m->m_type := MT_OOBDATA) {
602 if (type !: MT_OOBDATA)
603 break;
604 } else if (type =: MT_OOBDATA)
605 break;
606 so->so_state &= -SS_RCVATMARK;
607 len : uio->uio_resid;
608 if (so->so_oobmark && len > so->so_oobmark - offset)
609 len : so->so_oobmark - offset;
610 if (len > m->m_len - moff)
611 len = m->m_len - moff;
612 /*
613 * If mp is set, just pass back the mbufs.
614 * Otherwise copy them out via the uio, then free.
615 * So6kbuf must be consistent here (points to current mbuf,
616 * it points to next record) when we drop priority;
617 * we must note any additions to the sockbuf when we
618 * block interrupts again.
619 */
620 if (mp == 0) {
621 splx(s);
622 error : uiomove(mtod(m, caddr_t) + moff, (int) len, uio);
623 s : splnet() ;
624 } else
625 uio->uio_resid -: len;

uipc_socket.c
Figure 16.47 soreceive function: uiomove.

626--646

647--657

Finished with mbuf?

If all the bytes in the mbuf have been transferred, the mbuf must be discarded or the
pointers advanced. If the mbuf contained the end of a logical record, MSG_EOR is set. If
MSG_PEEK is set, soreceive skips to the next buffer. If MSG_PEEK is not set, the buffer
is discarded if the data was copied by uiomove, or appended to mp if the data is being
returned in an mbuf chain.

More data to process
There may be more data to process in the mbuf if the request didn’t consume all the

data, if so_oobmark cut the request short, or if additional data arrived during
uioinove. If MSG_PEEK is set, moff is updated. If the data is to be returned on an
mbuf chain, len bytes are copied and attached to the chain. The mbuf pointers and the
receive buffer byte count are updated by the amount of data that was transferred.

Figure 16.49 contains the code that handles the OOB offset and the MSG_EOR pro-
cessing.
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uipc_socket.c
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
65O
651
652
653
654
655
656
657

658
659
66O
661
662
663
664
665
666
667
668
669
670
671
672

if (fen -- m->m_len    moff) {
if (m >m_flags & M_EOR)

flags I= I~SG_EOR;
if (flags & MSG_PEEK) {

m = m->m next;
moff : 0 ;

} else {
nextrecord - m >m_nextpkt;
sbfree (&so->so_rcv, m) ;
if (mp) {

*mp : m;
mp = &m->m_next;
so->so_rcv.sb_mb - m = m->m next;
*rap - (struct mbuf *] 0;

else {
MFREE(m, so->so_rcv.sb mb) ;
m = so >so_rcv. sb_mb;

]
if (m)

m >m nextpkt - nextrecord;

}
} else {

if (flags & MSG_PEEK)
moff +- len;

else {
if (mp)

*mp - m_copym(m, 0, len, ~I WAIT) ;
m->m_data +- leE;
m->m_len -: len;
so->so_rcv.sb_cc -- fen;

}
}

Figure 16.48 soreceive function: update buffer.

if (so->so_oobmark) {
if ((flags & MSG_PEEK) -- 0) {

so >so_oobmark -- len;
if (so >so_oobmark -- 0) {

so->so_state I: SS_RCVATMARK;
break;

}
} else

offset +: fen;
if (offset == so >so_oobmark)

break;
}

}
if (flags & MSG_EOR)

break;

Figure 16.49 soreceive function: out-of-band data mark.

uzpc_socket.c

mpc_socket.c

uipc_socket.c
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658--670

671--672

Update OOB mark
If the out-of-band mark is nonzero, it is decremented by the number of bytes trans-

ferred. If the mark has been reached, S$_RCVATMARK is set and sorec÷±ve breaks out
of the wh±le loop. If MSG_PVV.K is set, offset is updated instead of so_oobmark.
End of logical record

If the end of a logical record has been reached, sorece±ve breaks out of the mbuf
processing loop so data from the next logical record is not returned with this message.

673--681

682--683

684--689

The loop in Figure 16.50 waits for more data to arrive when MSG_WAITALL is set
and the request is not complete.

673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693

/,                                                            uipc_socket.c
¯* If the MSG WAITALL flag is set (for non-atomic socket),

¯ we must not quit until "uio->uio_resid == 0" or an error
¯ termination. If a signal/timeout occurs, return
¯ with a short count but without error.
¯ Keep sockbuf locked against other readers.
*/

while (flags & MSG_WAITALL && m -- 0 && uio->uio_resid > 0 &&
!sosendallatonce(so) && !nextrecord) {

if (so->so_error I I so->so_state & SS_CANTRCVMORE)
break;

error - sbwait(&so->so_rcv);
if (error) {

sbunlock(&so->so_rcv);
splx(s);
return (0);

]
if (m : so->so_rcv.sb_mb)

nextrecord = m->m_nextpkt;

}
/* while more data and more space to fill */

u~c_socket.c
Figure16.50 sorec÷ivefunction:MSG_WAITALLprocessing.

MSG_WAITALL

If MSG_WAITALL is set, there is no more data in the receive buffer (m equals 0), the
caller wants more data, sosendallatonce is false, and this is the last record in the
receive buffer (nextrecord is null), then soreceive must wait for additional data.

Error or no more data will arrive
If an error is pending or the connection is closed, the loop is terminated.

Wait for data to arrive
sbwait returns when the receive buffer is changed by the protocol layer. If the

wait was interrupted by a signal (error is nonzero ), sosend returns immediately.
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690--692

693

694--698

699--706

Synchronize m and nextrecord with receive buffer
m and nextreeord are updated, since the receive buffer has been modified by the

protocol layer. If data arrived in the mbuf, m will be nonzero and the while loop termi-
nates.

Process next mbuf

This is the end of the mbuf processing loop. Control returns to the loop starting on
line 600 (Figure 16.47). As long as there is data in the receive buffer, more space to fill,
and no error has occurred, the loop continues.

694
695
696
697
698
699
700
701
702
703
704
705
706
707
7O8
709
710
711
712
713
714

When soreceive stops copying data, the code in Figure 16.51 is executed.

if (m && pr->pr_flags & PR_ATOMIC) {                               u~c_socket.c
flags I: MSG_TRUNC;
if ((flags & MSG_PEEK) := 0)

(void) sbdroprecord(&so->so_rcv);
}
if ((flags & MSG_PEEK) =- 0) {

if (m :: 0)
so->so_rcv.sb_mb : nextrecord;

if (pr->pr_flags & PR_WANTRCVD && so->so~cb)
(*pr->pr_usrreq) (so, PRU_RCVD, (struct mbuf *) 0,

(struct mbuf *) flags, (struct mbuf *) 0,
(struct mbuf *) 0);

}
if (orig_resid == uio->uio_resid && orig_resid &&

(flags & MSG_EOR) := 0 && (so->so_state & SS_CANTRCVMORE) == 0)
sbunlock(&so->so_rcv);
splx(s);
goto restart;

}
if (flagsp)

*flagsp I- flags;

Figure 16.51 soreceive function: cleanup.

uipc_socket.c

Truncated message
If the process received a partial message (a datagram or a record) because its receive

buffer was too small, the process is notified by setting MSG_TRUNC and the remainder of
the message is discarded. ZSG_TRUNC (as with all receive flags) is available only to a
process through the recvmsg system call, even though soreceive always sets the
flags.
End of record processing

If MSG_PEEK is not set, the next mbuf chain is attached to the receive buffer and, if
required, the protocol is notified that the receive operation has been completed by issu-
ing the PRU_RCVD protocol request. TCP uses this feature to update the receive win-
dow for the connection.
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707--722

713--714

Nothing transferred
If soreceive runs to completion, no data is transferred, the end of a record is not

reached, and the read-half of the connection is still active, then the buffer is unlocked
and soreee±ve jumps back to restart to continue waiting for data.

Any flags set during sorece±ve are returned in *flags~), the buffer is unlocked,
and soreceive returns.

Analysis

soreceive is a complex function. Much of the complication is because of the intricate
manipulation of pointers and the multiple types of data (out-of-band, address, control,
regular) and multiple destinations (process buffers, mbuf chain).

Similar to sosend, soreceive has collected features over the years. A specialized
receive function for each protocol would blur the boundary between the socket layer
and the protocol layer, but it would simplify the code considerably.

[Partridge and Pink 1993] describe the creation of a custom soreceive function for
UDP to checksum datagrams while they are copied from the receive buffer to the pro-
cess. They note that modifying the generic soreceive function to support this feature
would "make the already complicated socket routines even more complex."

16.13 select System Call

In the following discussion we assume that the reader is familiar with the basic opera-
tion and semantics of select. For a detailed discussion of the application interface to
select see [Stevens 1992].

Figure 16.52 shows the conditions detected by using select to monitor a socket.

Description

data available for reading
read-half of connection is closed
1 i s ten socket has queued connection
socket error is pending
space available for writing and a

connection exists or is not required
write-half of connection is closed
socket error is pending
OOB synchronization mark is pending

Detected by selecting for:
reading writing exceptions

Figure 16.52 select system call: socket events.

We start with the first half of the select system call, shown in Figure 16.53.
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390--410

411--418

419--438

439--442

443--444

445--451

Validation and setup
Two arrays of three descriptor sets are allocated on the stack: ibits and obits.

They are cleared by bzero. The first argument, nd, must be no larger than the maxi-
mum number of descriptors associated with the process. If nd is more than the number
of descriptors currently allocated to the process, it is reduced to the current allocation.
n± is set to the number of bytes needed to store a bit mask with nd bits (1 bit for each
descriptor). For example, if the maximum number of descriptors is 256 (FD_SETSZZ~.),
fd_se¢ is represented as an array of 32-bit integers (NFDBTTS), and nd is 65, then:

ni = howInany (65, 32) x 4 = 3 x 4 = 12

where howraany (x, y) returns the number of y-bit objects required to store x bits.

Copy file descriptor sets from process
The getbits macro uses copy±n to transfer the file descriptor sets from the pro-

cess to the three descriptor sets in ±bits. If a descriptor set pointer is null, nothing is
copied from the process.

Setup timeout value
If tv is null, timo is set to 0 and seXect will wait indefinitely. If tv is not null, the

timeout value is copied into the kernel and rounded up to the resolution of the hard-
ware clock by i¢±raer£ix. The current time is added to the timeout value by
eiraevaXadd. The number of clock ticks until the timeout is computed by hzto and
saved in tirao. If the resulting timeout is 0, timo is set to 1. This prevents select
from blocking and implements the nonblocking semantics of an all-0s t±raevaX struc-
ture.

The second half of seXect, shown in Figure 16.54, scans the file descriptors indi-
cated by the process and returns when one or more become ready, or the timer expires,
or a signal occurs.
Scan file descriptors

The loop that starts at retry continues until select can return. The current value
of the global integer nseXcoXX is saved and the P_SELECT flag is set in the calling pro-
cess’s control block. If either of these change while seXscan (Figure 16.55) is checking
the file descriptors, it indicates that the status of a descriptor has changed because of
interrupt processing and select must rescan the descriptors, seXscan looks at every
descriptor set in the three input descriptor sets and sets the matching descriptor in the
output set if the descriptor is ready.

Error or some descriptors are ready
Return immediately if an error occurred or if a descriptor is ready.

Timeout expired?
If the process supplied a time limit and the current time has advanced beyond the

timeout value, return immediately.
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sys_generic.c
390 struct select_args {
391 u_int    nd;
392 fd_set *in, *ou, *ex;
393 struct timeval *tv;
394 };

395 select(p, uap, retval)
396 struct proc *p;
397 struct select_args *uap;
398 int      *retval;
399 {
400 fd_set ibits[3], obits[3];
401 struct timeval atv;
402 int      s, ncoll, error - 0, timo;
403 u_int    hi;

404
4O5
406
407
408
409
410

bzero((caddr_t) ibits, sizeof(ibits));
bzero((caddr_t) obits, sizeof(obits));
if (uap->nd > FD_SETSIZE)

return (EINVAL);
if (uap->nd > p->p_fd->fd_nfiles)

uap->nd = p->p_fd->fd_nfiles;    /* forgiving; slightly wrong */
ni : howmany(uap->nd, NFDBITS) * sizeof(fd_mask);

419 if (uap->tv) {
420 error = copyin((caddr_t) uap->tv, (caddr_t) & atv,
421 sizeof(atv));
422 if (error)
423 goto done;
424 if (itimerfix(&atv)) {
425 error = EINVAL;
426 goto done;
427 ]
428 s = splclock();
429 timevaladd(&atv, (struct timeval *) &time);
430 timo = hzto(&atv);
431 /*
432 * Avoid inadvertently sleeping forever.
433 */
434 if (timo =- 0)
435 timo - i;
436 splx(s);
437 } else
438 timo = 0;

Figure 16.53 select function: initialization.

sys_generic.c

411 #define getbits(name, x) \
412 if (uap-mname && \
413 (error o- copyin((caddr_t)uap->name, (caddr_t)&ibits[x], hi))) \
414 goto done;
415 getbits(in,
416 getbits(ou, i);
417 getbits(ex, 2);
418 #undef getbits
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sys_generic.c
retry:

ncoll - nselcoll;
p->p_flag I- P_SELECT;

error : selscan(p, ibits, obits, uap->nd, retval);

if (error I I *retval)

goto done;

s : splhigh();
/* this should be timercmp(&time, &atv, >-) */

if (uap->tv && (time.tv_sec > atv.tv_sec I l

time.tv_sec :- atv.tv_sec && time.tv_usec >= atv.tv_usec}) {

splx(s);
goto done;

}
if ((p->p_flag & P_SELECT) := @ I I nselcoll !: ncoll)

splx(s);

goto retry;

}
p->p_flag &- -P_SELECT;

error - tsleep((caddr_t) & selwait, PSOCK 1 PCATCH, "select", timo);

splx(s);
if (error -= O)

goto retry;
done:

p >p_flag &= -P_SELECT;
/* select is not restarted after signals... */
if (error -- ERESTART)

error - EINTR;
if (error =- EWOULDBLOCK)

error = 0;

439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468 #define putbits(name, x) \
469 if (uap >name && \
470 (error2 - copyout((caddr_t)&obits[x], (caddr_t)uap->name, ni))) \
471 error = error2;
472 if (error -= 0) {
473 int error2;

474 putbits(in, 0);
475 putbits(ou, i);
476 putbits(ex, 2);
477 #undef putbits
478 }
479 return (error);
480 }

Figure 16.54 select function: second half.

sys~eneric.c
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452--455

~56-460

461--480

Status changed during selscan

selscan can be interrupted by protocol processing. If the socket is modified dur-
ing the interrupt, P_SELECT and nselcoll are changed and select must rescan the
descriptors.
Wait for buffer changes

All processes calling select use selwait as the wait channel when they call
tsleep. With Figure 16.60 we show that this causes some inefficiencies if more than
one process is waiting for the same socket buffer. If tsleep returns without an error,
select jumps to retry to rescan the descriptors.
Ready to return

At done, P_SELECT is cleared, ERESTART is changed to EINTR, and EWOULDBLOCK
is changed to 0. These changes ensure that EINTR is returned when a signal occurs dur-
ing select and 0 is returned when a timeout occurs.

The output descriptor sets are copied back to the process and select returns.

selscan Function

The heart of select is the selscan function shown in Figure 16.55. For every bit set
in one of the three descriptor sets, selscan computes the descriptor associated with
the bit and dispatches control to the fo_select function associated with the descrip-
tor. For sockets, this is the soo_select function.

481--496

497--500

501--504

505--510

Locate descriptors to be monitored
The first for loop iterates through each of the three descriptor sets: read, write, and

exception. The second for loop interates within each descriptor set. This loop is exe-
cuted once for every 32 bits (NFDBITS) in the set.

The inner while loop checks all the descriptors identified by the 32-bit mask
extracted from the current descriptor set and stored in bits. The function f f s returns
the position within bits of the first 1 bit, starting at the low-order bit. For example, if
bits is 1000 (with 28 leading 0s), ffs (bits) is 4.
Poll descriptor

From i and the return value of ffs, the descriptor associated with the bit is com-
puted and stored in fd. The bit is cleared in bits (but not in the input descriptor set),
the file structure associated with the descriptor is located, and fo_select is called.

The second argument to fo_select is one of the elements in the flag array, msk
is the index of the outer for loop. So the first time through the loop, the second argu-
ment is FREAD, the second time it is FWRITE, and the third time it is 0. EBADF is
returned if the descriptor is not valid.

Descriptor is ready
When a descriptor is found to be ready, the matching bit is set in the output descrip-

tor set and n (the number of matches) is incremented.
The loops continue until all the descriptors are polled. The number of ready

descriptors is returned in * retval.
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481
482
483
484
485
486
487
488
489
490
491
492

493
494
495
496
497
498
499
5O0
501
502
503
504
5O5
506
5O7
5O8
509
510

selscan(p, ibits, obits, nfd, retval)
struct proc *p;
fd_set *ibits, *obits;
int nfd, *retval;

struct filedesc *fdp = p->p_fd;
int      msk, i, j, fd;
fd mask bits;
struct file *fp;
int      n : 0;
static int flag[3] =
{FREAD, FWRITE, 0};

for (msk = 0; msk < 3; msk++) {
for (i = 0; i < nfd; i += NFDBITS) {

bits : ibits[msk].fds_bits[i / NFDBITS];
while ((j = ffs(bits)) && (fd : i + --j) < nfd) {

bits &= -(i << j);
fp = fdp->fd_ofiles[fd];
if (fp :: NULL)

return (EBADF);
if ((*fp->f_ops->fo_select) (fp, flag[msk], p))

FD_SET(fd, &obits[msk]) ;
n++;

}
}

}
}
*retval = n;
return (0);

Figure 16.55 selscan function.

sys__generic.c

sys_generic.c

soo_select Function

105--112

For every descriptor that s e 1 s can finds in the input descriptor sets, it calls the function
referenced by the fo_seleet pointer in the fileops structure (Section 15.5) associ-
ated with the descriptor. In this text, we are interested only in socket descriptors and
the soo_select function shown in Figure 16.56.

Each time soo_select is called, it checks the status of only one descriptor. If the
descriptor is ready relative to the conditions specified in which, the function returns 1
immediately. If the descriptor is not ready, selrecord marks either the socket’s
receive or send buffer to indicate that a process is selecting on the buffer and then
soo_select returns 0.

Figure 16.52 showed the read, write, and exceptional conditions for sockets. Here
we see that the macros soreadable and sowriteable are consulted by
soo_select. These macros are defined in sys/socketvar, h.
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113--120

105 soo_select(fp, which, p)
106 struct file *fp;
107 int      which;
108 struct proc *p;
109 {
ii0 struct socket *so : (struct socket *) fp->f_data;

iii int s = splnet();

112 switch (which)

113 case FREAD:
114 if (soreadable(so)) {
115 splx(s);
116 return (i);
117 }
118 selrecord(p, &so->so_rcv.sb_sel);
119 so->so_rcv.sb_flags I= SB_SEL;
120 break;

121
122
123
124
125
126
127
128

129
130
131
132
133
134
135
136
137
138
139
140

case FWRITE:
if {sowriteable(so)) {

splx(s);
return (i);

}
selrecord(p, &so->so_snd.sb_sel);
so->so_snd.sb_flags : SB_SEL;
break;

case 0:
if {so->so_oobmark

splx(s);
return (i);

}
selrecord(p, &so->so_rcv.sb_sel);
so->so_rcv.sb_flags I: SB_SEL;
break;

}
splx(s);
return (0);

(so->so_state & SS_RCVATMARK)) {

Figure 16.56 soo_select function.

sys_socket.c

sys_socket.c

Is socket readable?
The soreadable macro is:
#define soreadable(so) \

((so)->so_rcv.sb_cc >: (so)->so,rcv.sb_lowat I I \
((so)->so_state & SS_CANTRCVMORE) I I \
(so)->so_qlen If (so)->so_error)

Since the receive low-water mark for UDP and TCP defaults to 1 (Figure 16.4), the
socket is readable if any data is in the receive buffer, if the read-half of the connection is
closed, if any connections are ready to be accepted, or if there is an error pending.
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121--128

129--140

Is socket writeable?
The sowriteable macro is:

#define sowriteable(so) \
(sbspace(&(so)->so_snd) >: (so)->so_snd.sb_lowat && \
(((so)->so_state&SS_ISCONNECTED) I I \

((so)->so_proto->pr_flags&PR_CONNREQUIRED)==0) I I \
((so)->so_state & SS_CANTSENDMORE) I I \
(so)->so_error)

The default send low-water mark for UDP and TCP is 2048. For UDP, sowriteable is
always true because sbspace is always equal to sb_hiwat, which is always greater
than or equal to sb_lowat, and a connection is not required.

For TCP, the socket is not writeable when the free space in the send buffer is less
than 2048 bytes. The other cases are described in Figure 16.52.
Are there any exceptional conditions pending?

For exceptions, so_oobmark and the SS_RCVATMARK flags are examined. An
exceptional condition exists until the process has read past the synchronization mark in
the data stream.

selrecord Function

Figure 16.57 shows the definition of the s e 1 i nfo structure stored with each send and
receive buffer (the sb_sel member from Figure 16.3).

select.h
41 struct selinfo {
42 pid_t    si_pid; /* process to be notified */
43 short    si_flags; /* 0 or SI_COLL */
44 };

select.h

Figure 16.57 selinfo structure.

41--44

522--531

When only one process has called select for a given socket buffer, sl_pid is the
process ID of the waiting process. When additional processes call select on the same
buffer, SI_COLL is set in sl_flags. This is called a collision. This is the only flag cur-
rently defined for sl_flags.

The selrecord function shown in Figure 16.58 is called when soo_select finds
a descriptor that is not ready. The function records enough information so that the pro-
cess is awakened by the protocol processing layer when the buffer changes.
Already selecting on this descriptor

The first argument to selrecord points to the proc structure for the selecting pro-
cess. The second argument points to the selinfo record to update (so_snd. sb_sel
or so_rcv, sb_sel). If this process is already recorded in the selinfo record for this
socket buffer, the function returns immediately. For example, the process called
select with the read and exception bits set for the same descriptor.
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522 void                                                                      sys_generic.c
523 selrecord(selector, sip)
524 struct proc *selector;
525 struct selinfo *sip;
526 {
527 struct proc *p;
528 pid_t mypid;

529 mypid : selector->p_pid;
530 if (sip >si_pid -- mypid)
531 return;
532 if (sip->si_pid && (p = pfind(sip->si_pid))
533 p->p_wchan =: (caddr_t) & selwait)
534 sip->si_flags I= SI_COLL;
535 else
536 sip->si_pid - mypid;
537 }

&&

Figure 16.58 selrecord function.

sys_generic.c

532-534

535 537

Select collision with another process?
If another process is already selecting on this buffer, SI_COLL is set.

No collision
If there is no other process already selecting on this buffer, si_pid is 0 so the ID of

the current process is saved in si__pid.

selwakeup Function

When protocol processing changes the state of a socket buffer and only one process is
selecting on the buffer, Net/3 can immediately put that process on the run queue based
on the information it finds in the s el in f o structure.

When the state changes and there is more than one process selecting on the buffer
(SI_COLL is set), Net/3 has no way of determining the set of processes interested in the
buffer. When we discussed the code in Figure 16.54, we pointed out that every process
that calls select uses selwait as the wait channel when calling tsleep. This means
the corresponding wakeup will schedule all the processes that are blocked in
select--even those that are not interested in activity on the buffer.

Figure 16.59 shows how selwakeup is called.
The protocol processing layer is responsible for notifying the socket layer by calling

one of the functions listed at the bottom of Figure 16.59 when an event occurs that
changes the state of a socket. The three functions shown at the bottom of Figure 16.59
cause selwakeup to be called and any process selecting on the socket to be scheduled
to run.

selwakeup is shown in Figure 16.60.
541-548 If si_pid is 0, there is no process selecting on the buffer and the function returns

immediately.
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~aOsB dataarrived Treceive buffer lsend buffer
has changed

/has changed

Figure 16.59 selwakeup processing.

541 void
542 selwakeup(sip)
543 struct selinfo *sip;
544 {
545 struct proc *p;
546 int s;

547
548
549
550
551
552
553
554
555
556
557
558
559
56O
561
562
563
564
565
566
567

if (sip->si_pid :: 0)
return;

if (sip->si_flags & SI_COLL) {
nselcoll++;
sip->si_flags &: -SI_COLL;
wakeup((caddr_t) & selwait);

}
p - pfind(sip >si~id);
sip->si_pid = 0;
if (p !: NULL) {

s = splhigh();
if (p->p_wchan == (caddr_t) & selwait)

if (p->p_stat :: SSLEEP)
setrunnable(p);

else
unsleep(p);

] else if (p->p_flag & P_SELECT)
p->p_flag &= -P_SELECT;

splx(s);

Figure 16.60 selwakeup function.

sys_generic.c

sys~eneric.c
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549 553

554--567

Wake all processes during a collision
If more than one process is selecting on the affected socket, nseleoll is incre-

mented, the collision flag is cleared, and every process blocked in select is awakened.
As mentioned with Figure 16.54, nselcoll forces select to rescan the descriptors if
the buffers change before the process has blocked in t s i e ep (Exercise 16.9).

If the process identified by si_p±d is waiting on selwait, it is scheduled to run.
If the process is waiting on some other wait channel, the P_SELECT flag is cleared. The
process can be waiting on some other wait channel if s÷lr÷cord is called for a valid
descriptor and then selscan finds a bad file descriptor in one of the descriptor sets.
selscan returns EBADF, but the previously modified sel±nfo record is not reset.
Later, when selwakeup runs, selwakeup may find the process identified by sel_pid
is no longer waiting on the socket buffer so the s e 1 ± n f o information is ignored.

Only one process is awakened during selwakeup unless multiple processes are
sharing the same descriptor (i.e., the same socket buffers), which is rare. On the
machines to which the authors had access, n s e 1 col 1 was always 0, which confirms the
statement that select collisions are rare.

16.14 Summary

In this chapter we looked at the read, write, and select system calls for sockets.
We saw that sosend handles all output between the socket layer and the protocol

processing layer and that soreceive handles all input.
The organization of the send buffer and receive buffers was described, as well as the

default values and semantics of the high-water and low-water marks for the buffers.
The last part of the chapter discussed the implementation of select. We showed

that when only one process is selecting on a descriptor, the protocol processing layer
will awaken only the process identified in the sel info structure. When there is a colli-
sion and more than one process is selecting on a descriptor, the protocol layer has no
choice but to awaken every process that is selecting on any descriptor.

Exercises

16.1 What happens to resid in sosend when an unsigned integer larger than the maximum
positive signed integer is passed in the wr i t e system call?

16.2 When sosend puts less than MCLBYTES of data in a cluster, space is reduced by the full
MCLBYTES and may become negative, which terminates the loop that fills mbufs for
atomic protocols. Is this a problem?

16.3 Datagram and stream protocols have very different semantics. Divide the sosend and
soreceive functions each into two functions, one to handle messages, and one to handle
streams. Other than making the code clearer, what are the advantages of making this
change?

16.4 For PR_ATOMIC protocols, each write call specifies an implicit message boundary. The
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16.5

16.6

16.7

16.8

16.9

16.10

socket layer delivers the message as a single unit to the protocol. The MSG_EOR flag allows
a process to specify explicit message boundaries. Why is the implicit technique insuffi-
cient?

What happens when sos÷rid cannot immediately acquire a lock on the send buffer when
the socket descriptor is marked as nonblocking and the process does not specify
MSG_DONTWAIT?

Under what circumstances would sb_cc < sb_hiwat yet sbspace would report no free
space? Why should a process be blocked in this case?

Why isn’t the length of a control message copied back to the process by recvit as is the
name length?

Why does soreceive clear MSG_EOR?

What might happen if the nselcoll code were removed from select and selwakeup?

Modify the select system call to return the time remaining in the timer when select
returns.





17

Socket Options

17.1 Introduction

We complete our discussion of the socket layer in this chapter by discussing several sys-
tem calls that modify the behavior of sockets.

The s÷~sockop~ and g÷¢soc~:o~t system calls were introduced in Section 8.8,
where we described the options that provide access to IP features. In this chapter we
show the implementation of these two system calls and the socket-level options that are
controlled through them.

The ±oc¢l function was introduced in Section 4.4, where we described the proto-
col-independent ±oct ~_ commands for network interface configuration. In Section 6.7
we described the IP specific ± o c t K commands used to assign network masks as well as
unicast, broadcast, and destination addresses. In this chapter we describe the imple-
mentation of ± o c t ~_ and the related features of the £ cnt ~_ function.

Finally, we describe the getsoc~:nam÷ and ~e~peernarae system calls, which
return address information for sockets and connections.

Figure 17.1 shows the functions that implement the socket option system calls. The
shaded functions are described in this chapter.

537
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)r_ctloutout

Figure 17.1 setsockopt and getsockopt system calls.

17.2 Code Introduction

The code in this chapter comes from the four files listed in F~gure 17.2.

File Description

kern/kern_descrip, c fcntl system call
kern/uipc_syscal is. c setsockopt, get sockopt, getsockname, and

getpeername system calls
kern/uipc_socket, c socket layer processing for setsockopt and getsockopt
kern/sys_socket, c ioctl system call for sockets

Figure 17.2 Files discussed in this chapter.

Global Variables and Statistics

No new global variables are introduced and no statistics are collected by the system
calls we describe in this chapter.
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17.3

565--597

setsockopt System Call

Figure 8.29 listed the different protocol levels that can be accessed with. this function
(and with getsockopt). In this chapter we focus on the SOL_SOCI<ET level options,
which are listed in Figure 17.3.

optname

S O_ SND B UF
SO_RCVBUF
SO_SNDLOWA T
SO_RCVLOWAT
SO_SNDTIMEO

SO_RCVTIMEO
SO_DEBUG
SO_REUSEADDR
SO_REUSEPOR T
SO_KEEPALIVE

SO_DONTROUTE
SO_BROADCAST
SO_USELOOPBACK

SO_ OOB INL INE
SO_LINGER
SO_ERROR
SO_TYPE
other

optval type

int
int
int
±nt
struct timeval
struct timeval
int
int
int
int
int
int
int

int
struct
int
int

linger

Variable

sb_snd.sb_hiwat
so_rcv.sb_hiwat
so_snd.sb_lowat
so_rcv.sb_lowat
so_snd.sb_timeo
so_rcv.sb_timeo
so_options
so_options
so_options
so_options
so_options
so_options
so_options

so_options
so_linger
so_error
so_type

Description

send buffer high-water mark
receive buffer high-water mark
send buffer low-water mark
receive buffer low-water mark
send timeout
receive timeout
record debugging information for this socket
socket can reuse a local address
socket can reuse a local port
protocol probes idle connections
bypass routing tables
socket allows broadcast messages
routing domain sockets only; sending

process receives its own routing
messages

protocol queues out-of-band data inline
socket lingers on close
get error status and clear; get sockopt only
get socket type; get s ockopt only
ENOPROTOOPT returned

Figure 17.3 setsockopt and getsockopt options.

The prototype for setsockopt is

int setsockopt(int s, int level, int optname, void *optval, int optlen);

Figure 17.4 shows the code for this system call.
getsock locates the file structure for the socket descriptor. If val is nonnull,

valsize bytes of data are copied from process into an mbuf allocated by re_get. The
data associated with an option can be no more than MLEN bytes in length, so if va 1 s i z e
is larger than MLEN, then EINVAL is returned, sosetopt is called and its value is
returned.
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565
566
567
568
569
57O
571

572
573
574
575
576
577
578
579

58O
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597

struct setsockopt_args
int s;
int level;
int name;
caddr_tval;
int valsize;

;

setsockopt(p, uap, retval)
struct proc *p;
struct setsockopt_args *uap;
int     *retval;
{

struct file *fp;
struct mbuf *m : NULL;
int error;

if

if

if

(error - getsock(p->p_fd, uap >s, &fp))
return (error);

(uap->valsize > MLEN)
return (EINVAL);

(uap->val) {
m - m_get(M_WAIT, MT_SOOPTS);
if (m :: NULL)

return (ENOBUFS);
if (error - copyin(uap->val, mtod(m, caddr_t),

(u_int) uap->valsize)) {
(void) m_free(m);
return (error);

}
m->m_len - uap >valsize;

}
return (sosetopt((struct socket *)

uap->name, m));
fp->f_data, uap->level,

Figure 17.4 setsockopt system call.

uipc_syscalls.c

uipc_syscalls.c

sosetopt Function

752--764

765

841--844

This function processes all the socket-level options and passes any other options to the
p r_c t 1 output function for the protocol associated with the socket. Figure 17.5 shows
an overview of the function.

If the option is not for the socket level (SOL_SOCKET), the PRCO_SETOPT request is
issued to the underlying protocol. Note that the protocol’s pr_ctloutput function is
being called and not its pr_usrreq function. Figure 17.6 shows which function is
called for the Internet protocols.

The swit ch statement handles the socket-level options.
An unrecognized option causes ENOPROTO©PT to be returned after the mbuf hold-

ing the option is released.
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845--855

752 sosetopt(so, level, optname, m0)
753 struct socket *so;
754 int level, optname;
755 struct mbuf *m0;
756 {
757 int error - 0;
758 struct mbuf *m = m0;

759
760
761
762
763
764
765

if (level ! SOL_SOCKET) {
if (so->so_proto && so->so_proto->pr_ctloutput)

return ((*so >so_proto >pr_ctloutput)
(PRCO_SETOPT, so, level, optname, &m0));

error : ENOPROTOOPT;
} else {

switch (optname) {

uipc_socket.c

/* socket option processing */

841
842
843
844
845
846
847
848
849
85O
851
852
853
854
855

default:
error = ENOPROTOOPT;
break;

}
if (error == 0 && so->so_proto && so >so_proto >pr_ctloutput)

(void) ((*so >so~oroto >pr_ctloutput)
(PRCO_SETOPT, so, level, optname, &m0));

m - NULL; /* freed by protocol */
}

}
bad:

if (m)
(void) m free(m);

return (error);

Figure 17.5 sosetopt function.

uipc_socket.c

Protocol pr_ct loutput Function Reference
UDP ip_ct loutput Section 8.8
TCP t cp_c t 1 output Section 30.6
ICMP
IGMP rip_ctloutput and ip_ctloutput Section 8.8 and Section 32.8
raw IP

Figure 17.6 pr_ctloutput functions.

Unless an error occurs, control always falls through the switch, where the option
is passed to the associated protocol in case the protocol layer needs to respond to the
request as well as the socket layer. None of the Internet protocols expect to process the
socket-level options.
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766-772

773-789

Notice that the return value from the call to the ~or_ct loutput function is explic-
itly discarded in case the option is not expected by the protocol, m is set to null to avoid
the call to m_£ tee, since the protocol layer is responsible for releasing the mbuf.

Figure 17.7 shows the l±nger option and the options that set a single flag in the
socket structure.

766
767
768
769
770
771
772

773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789

case SO_LINGER:
if (m -- NULL II m >m_len !: sizeof(struct linger))

error - EINVAL;
goto bad;

}
so >so_linger = mtod(m, struct linger *)->l_linger;
/* fall thru... */

case SO_DEBUG:
case SO_KEEPALIVE:
case SO_DONTROUTE:
case SO_USELOOPBACK:
case SO_BROADCAST:
case SO_REUSEADDR:
case SO_REUSEPORT:
case SO_OOBINLINE:

if (m :- NULL II m->m_len < sizeof(int))
error = EINVAL;
goto bad;

}
if (*mtod(m, int *))

so->so_options I- optname;
else

so->so_options &: -optname;
break;

Figure 17.7 sosetopt function: linger and flag options.

uipc_socket.c

{

uipc_soeket.c

The linger option expects the process to pass a 1 inger structure:
struct linger {

int l_onoff; /* option on/off */
int !_linger; /* linger time in seconds */

};

After making sure the process has passed data and it is the size of a linger struc-
ture, the l_linger member is copied into so_linger. The option is enabled or dis-
abled after the next set of case statements, so_linger was described in Section 15.15
with the c 1 o s e system call.

These options are boolean flags set when the process passes a nonzero value and
cleared when 0 is passed. The first check makes sure an integer-sized object (or larger)
is present in the mbuf and then sets or clears the appropriate option.
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790--815

816--824

825--830

Figure 17.8 shows the socket buffer options.

790 case SO_SNDBUF:
791 case SO_RCVBUF:
792 case SO_SNDLOWAT:
793 case SO_RCVLOWAT:
794 if (m :: NULL I I m->m_len < sizeof(int)) {
795 error = EINVAL;
796 goto bad;
797 }
798 switch (optname) {

799 case SO_SNDBUF:
800 case SO_RCVBUF:
801 if (sbreserve(optname == SO_SNDBUF ?
802 &so->so_snd : &so->so_rcv,
803 (u_long) * mtod(m, int *)) =: 0)
804 error = ENOBUFS;
805 goto bad;
806 }
807 break;

808 case SO_SNDLOWAT:
809 so->so_snd.sb_lowat : *mtod(m, int *);
810 break;
811 case SO_RCVLOWAT:
812 so->so_rcv.sb_lowat = *mtod(m, int *);
813 break;
814
815 break;

Figure 17.8 sosetopt function: socket buffer options.

uipc_socket, c

uipc_socket.c

This set of options changes the size of the send and receive buffers in a socket. The
first test makes sure the required integer has been provided for all four options. For
SO_SNDBUF and SO_RCVBUF, sbreserve adjusts the high-water mark but does no
buffer allocation. For SO_SNDLOWAT and SO_RCVLOWAT, the low-water marks are
adjusted.

Figure 17.9 shows the timeout options.
The timeout value for SO_SNDTIMEO and SO_RCVTIMEO is specified by the process

in a timeval structure. If the right amount of data is not available, EINVAL is
returned.

The time interval stored in the timeval structure must be small enough so that
when it is represented as clock ticks, it fits within a short integer, since sb_timeo is a
short integer.

The code on line 826 is incorrect. The time interval cannot be represented as a short
integer if:
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uipc socket.c
816            case SO_SNDTIMEO:                                                            --
817 case SO_RCVTIMEO:
818 {
819 struct timeval *tv;
820 short val;

831--840

821 if (m := NULL II m->m_len < sizeof(*tv)) {
822 error = EINVAL;
823 goto bad;
824 }
825 tv = mtod(m, struct timeval *);
826 if (tv->tv_sec > SHRT_MAX / hz - hz) {
827 error = EDOM;
828 goto bad;
829 }
830 val = tv->tv_sec * hz + tv->tv_usec / tick;

831 switch (optname) {

832 case SO_SNDTIMEO:
833 so->so_snd.sb_timeo = val;
834 break;
835 case SO_RCVTIMEO:
836 so->so_rcv.sb_timeo = val;
837 break;
838 }
839 break;
840 }

Figure 17.9 sosetopt function: timeout options.

uipc_socket.c

where

t~_usec
tv_sec x hz + > SHRT_MAX

tick

1,000, 000
tick - and SHRT_MAX = 32767

hz

So EDOM should be returned if
SHRT_MAX

tv_sec >
hz

tv_usec SHRT_MAX tv_usec
tick x hz hz 1, 000, 000

The last term in this equation is not hz as specified in the code. The correct test is

if (tv->tv_sec*hz + tv->tv_usec/tick > SHRT_MAX)

but see Exercise 17.3 for more discussion.
The converted time, val, is saved in the send or receive buffer as requested.

sb_timeo limits the amount of time a process will wait for data in the receive buffer or
space in the send buffer. See Sections 16.7 and 16.11 for details.

The timeout values are passed as the last argument to tsleep, which expects an integer, so the
process is limited to 65535 ticks. At 100 Hz, this less than 11 minutes.
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17.4

598--633

getsockopt System Call

getsockopt returns socket and protocol options as requested. The prototype for this
system call is

int getsockopt (int s, int level, int name, caddr_t val, int *valsize);

The code is shown in Figure 17.10.

598 struct getsockopt_args {
599 int s;
600 int level;
601 int name;
602 caddr_t val;
603 int      *avalsize;
604 };

605 getsockopt(p, uap, retval)
606 struct proc *p;
607 struct getsockopt_args *uap;
608 int     *retval;
609 {
610 struct file *fp;
611 struct mbuf *m : NULL;
612 int valsize, error;

uipc_syscalls.c

613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633

if (error - getsock(p >p_fd, uap->s, &fp))
return (error);

if (uap->val) {
if (error = copyin((caddr_t) uap->avalsize, (caddr_t) & valsize,

sizeof(valsize)))
return (error)

} else
valsize = 0;

if ((error = sogetopt( struct socket *) fp->f_data, uap->level,
uap->name, &m)) -- 0 && uap->val && valsize && m !- NULL)

if (valsize > m->m_len)
valsize : m->m_len;

error = copyout(mtod(m, caddr_t), uap->val, (u_int) valsize);
if (error == 0)

error - copyout((caddr_t) & valsize,
(caddr_t) uap->avalsize, sizeof(valsize));

}
if (m [- NULL)

(void) m_free(m);
return (error);

uipc_syscalls.c
Figure 17.10 getsockopt system call.

The code should look pretty familiar by now. get sock locates the socket, the size
of the option buffer is copied into the kernel, and sogetopt is called to get the value of
the requested option. The data returned by sogetopt is copied out to the buffer in the
process along with the possibly new length of the buffer. It is possible that the data will
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be silently truncated if the process did not provide a large enough buffer. As usual, the
mbuf holding the option data is released before the function returns.

sogetopt Function

As with sosetopt, the sogetolot function handles the socket-level options and passes
any other options to the protocol associated with the socket. The beginning and end of
the function are shown in Figure 17.11.

856 sogetopt(so, level, optname, mp)
857 struct socket *so;
858 int level, optname;
859 struct mbuf **mp;
860 {
861 struct mbuf *m;

862 if (level !: SOL_SOCKET) {
863 if (so >so_proto && so->so~roto->pr_ctloutput) {
864 return ((*so->so~roto->pr_ctloutput)
865 (PRCO_GETOPT, so, level, optname, mp));
866 } else
867 return (ENOPROTOOPT);
868 } else {
869 m : m_get(M WAIT, MT_SOOPTS);
870 m->m_len = sizeof(int);

uipc_socket.c

871 switch (optname) {

856-871

918-925

/* socket option processing */

918 default:
919 (void) m_free(m);
920 return (ENOPROTOOPT);
921 }
922 *mp - m;
923 return (0);
924 }
925 }

Figure 17.11 sogetopt function: overview.

uipc_socket.c

As with sosetopt, options that do not pertain to the socket level are immediately
passed to the protocol level through the PRCO_GETOPT protocol request. The protocol
returns the requested option in the mbuf pointed to by mp.

For socket-level options, a standard mbuf is allocated to hold the option value,
which is normally an integer, so m_len is set to the size of an integer. The appropriate
option is copied into the mbuf by the code in the switch statement.

If the default case is taken by the switch, the mbuf is released and
ENOPROTOOPT returned. Otherwise, after the switch statement, the pointer to the
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872--877

878--887

mbuf is saved in *rap. When this function returns, get sockopt copies the option from
the mbuf to the process and releases the mbuf.

In Figure 17.12 the linger option and the options that are implemented as boolean
flags are processed.

872
873
874
875
876
877

case SO_LINGER:
m->m_len : sizeof(struct linger);
mtod(m, struct linger *)->l_onoff -

so->so_options & SO_LINGER;
mtod(m, struct linger *)->l_linger = so >so_linger;
break;

878 case SO_USELOOPBACK:
879 case SO_DONTROUTE:
880 case SO_DEBUG:
881 case SO_KEEPALIVE:
882 case SO_REUSEADDR:
883 case SO_REUSEPORT:
884 case SO_BROADCAST:
885 case SO_OOBINLINE:
886 *mtod(m, int *)
887 break;

: so->so_options & optname;

Figure 17.12 sogetopt function: SO_LINGER and boolean options.

uipc_socket.c

uipc_socket.c

The SO_LINGER option requires two copies, one for the flag into l_onoff and a
second for the linger time into 1_1 inger.

The remaining options are implemented as boolean flags, so_options is masked
with optname, which results in a nonzero value if the option is on and 0 if the option is
off. Notice that the return value is not necessarily I when the flag is on.

In the next part of sogetopt (Figure 17.13), the integer-valued options are copied
into the mbuf.

888 case SO_TYPE:
889 *mtod(m, int *) : so >so_type;
890 break;

uipc_socket.c

891 case SO_ERROR:
892 *mtod(m, int *) -
893 so->so_error = 0;
894 break;

so->so_error;

895 case SO_SNDBUF:
896 *mtod(m, int *) : so->so_snd.sb_hiwat;
897 break;

898 case SO_RCVBUF:
899 *mtod(m, int *) : so->so_rcv.sb_hiwat;
900 break;
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888--906

907--917

901
902
903

904
905
906

case SO_SNDLOWAT:
*mtod(m, int *) : so->so_snd.sb_lowat;
break;

case SO_RCVLOWAT:
*mtod(m, int *) = so->so_rcv.sb_lowat;
break;

Figure 17.13 sog@topt function: integer valued options.

uipc_socket.c

Each option is copied as an integer into the mbuf. Notice that some of the options
are stored as shorts in the kernel (e.g., the high-water and low-water marks) but
returned as integers. Also, so_error is cleared once the value is copied into the mbuf.
This is the only time that a call to getsockopC changes the state of the socket.

The third and last part of sogetopt
SO_SNDTTMEO and SO_RCVTIMEO options are handled.

907 case SO_SNDTIMEO:
908 case SO_RCVTIMEO:
909 {
910 int
911

912
913
914
915
916
917 }

is shown in Figure 17.14, where the

uipc_soeket.c

val : (optname =: SO_SNDTIMEO ?
so->so_snd.sb_timeo : so->so_rcv.sb_timeo);

m->m_len : sizeof(struct timeval);
mtod(m, struct timeval *)->tv_sec : val / hz;
mtod(m, struct timeval *) >tv usec =

(val % hz) / tick;
break;

uipc_socket.c

Figure 17.14 sogetopt function: timeout options.

The sb_timeo value from the send or receive buffer is copied into var. A
t imeval structure is constructed in the mbuf based on the clock ticks in val.

There is a bug in the calculation of tv_usec. The expression should be
"(val % hz) * tick".

17.5 fcntl and ioctl System Calls

Due more to history than intent, several features of the sockets API can be accessed
from either ioctl or fcntl. We have already discussed many of the ioctl com-
mands and have mentioned fcnt 1 several times.

Figure 17.15 highlights the functions described in this chapter.
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system calls <
~ ~

~ d~lt    ~

~
u~rreq

if_ioctl

Figure 17.15 fcntl and ioctl functions.

The prototypes for ioct 1 and fcnt lare:

int ioctl(int fd, unsigned long result, char *argp);

int fcntl(int fd, int cmd .... /* int arg */);

Figure 17.16 summarizes the features of these two system calls as they relate to sockets.
We show the traditional constants in Figure 17.16, since they appear in the code. For
Posix compatibility, O_NONBLOCK can be used instead of FNONBLOCK, and O_ASYNC
can be used instead of FASYNC.
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Description f c nt 1 i o c t 1

enable or disable nonblocking semantics byFNONBLOCK file status flag FIONBIO command
turning SS_NBIO on or off in so_state

enable or disable asynchronous notification FASYNC file status flag FIOASYNC command
by turning SB_ASYNC on or off in
sb_flags

set or get so~gid, which is the target F_SETOWN or F_GETOWN SIOCSPGRP or
process or process group for S IGIO and S IOCGPGRP
S IGURG signals commands

get number of bytes in receive buffer; return F I ONREAD
so_rcv, sb_cc

return OOB synchronization mark; the s IOCATMARK
S S_RCVATMARK flag in s o_s t a t e

Figure 17.16 fcntl and ioctl commands.

fcntl Code

Figure 17.17 shows an overview of the f c n t 1 function.

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150
151
152
153

struct fcntl_args {
int fd;
int cmd;
int arg;

};
/* ARGSUSED */
fcntl(p, uap, retval)
struct proc *p;
struct fcntl_args *uap;
int      *retval;
{

struct filedesc *fdp - p >p_fd;
struct file *fp;
struct vnode *vp;
int       i, tmp, error, flg - F_POSIX;
struct flock fl;
u_int    newrain;

if ((unsigned) uap->fd >- fdp >fd_nfiles I I
(fp _ fdp->fd_ofiles[uap >fd]) == NULL)
return (EBADF);

switch (uap->cmd) {

kern_descrip.c

/* command processing */

253
254
255
256
257

default:
return (EINVAL);

}
/* NOTREACHED */

Figure 17.17 fcntl system call: overview.

kern_descrip.c
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133--153

253--257

After verifying that the descriptor refers to an open file, the switch statement pro-
cesses the requested command.

If the command is not recognized, fcnt ! returns EINVAL.

Figure 17.18 shows only the cases from font 1 that are relevant to sockets.

kern_descrip.c
168       case F_GETFL:
169 *retval : OFLAGS(fp->f_flag);
170 return (0);

171
172
173

174
175
176
177

178
179
180
181

182
183
184
185

186
187
188
189
190
191
192
193
194

195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

case F_SETFL:
fp->f_flag &- ~FCNTLFLAGS;
fp->f_flag I- FFLAGS(uap->arg)

tmp - fp->f_flag & FNONBLOCK;
error = (*fp->f_ops->fo_ioctl)
if (error)

return (error);

tmp: fp->f_flag & FASYNC;
error - (*fp->f_ops->fo_ioctl)
if (!error)

return (0);

fp->f_flag &: -FNONBLOCK;
tmp - 0;
(void) (*fp->f_ops->fo_ioctl)
return (error);

& FCNTLFLAGS;

(fp,    FIONBIO,

(fp, FIOASYNC,

(fp, FIONBIO,

(caddr_t) & tmp, p);

(caddr_t) & tmp, p);

(caddr_t) & tmp, p) ;

case F_GETOWN:
if (fp->f_type :: DTYPE_SOCKET) {

*retval - ((struct socket *) fp->f_data)->so_pgid;
return (0};

}
error = (*fp->f_ops->fo_ioctl)

(fp, (int) TIOCGPGRP, (caddr_t) retval, p);
*retval = -*retval;
return (error);

case F_SETOWN:
if (fp->f_type =- DTYPE_SOCKET) {

((struct socket *) fp->f_data)->so_pgid = uap->arg;
return (0);

}
if (uap->arg <- 0) {

uap >arg - -uap->arg;
} else {

struct proc *pl : pfind(uap->arg) ;
if (pl =- 0)

return (ESRCH);
uap->arg : pl >p_pgrp->pg_id;

}
return ((*fp->f_ops->fo_ioctl)

(fp, (int) TIOCSPGRP, (caddr_t) & uap->arg, p));

Figure 17.18 fcntl system call: socket processing.

kern_descrip.c
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1 68--185

186--194

F_G~.TFL returns the current file status flags associated with the descriptor and
F_$ETFL sets the flags. The new settings for FNOI’~BLOCK and FASYNC are passed to the
associated socket by calling £o_±octl, which for sockets is the soo_±oetl function
described with Figure 17.20. The third call to fo_±oetl is made only if the second call
fails. It clears the FNONB~.OCK flag, but should instead restore the flag to its original set-
ring.

F_G~.TOW~ returns so~t~g±d, the process or process group associated with the
socket. For a descriptor other than a socket, the TTOCGP~RP ±oc~l command is passed
to the associated fo_±oc~l function. F_S~.~ow~ assigns a new value to

For a descriptor other than a socket, the process group is checked in this function,
but for sockets, the value is checked just before a signal is sent in sohasouto£band
and in s owak÷u~.

ioctl Code

55--68

69-79

80--88

89--92

We skip the ioctl system call itself and start with soo_ioctl in Figure 17.20, since
most of the code in ±oe¢l duplicates the code we described with Figure 17.17. We’ve
already shown that this function sends routing commands to r~±o~K, interface com-
mands to ±f±oe¢l, and any remaining commands to the ~_~sr~eq function of the
underlying protocol.

A few commands are handled by soo_±oc~ directly. FIONBTO turns on non-
blocking semantics if *da~a is nonzero, and turns them off otherwise. As we have
seen, this flag affects the acce~t, connect, and close system calls as well as the vari-
ous read and write system calls.

FTOASYNC enables or disables asynchronous I/O notification. Whenever there is
activity on a socket, sowakeu~ gets called and if ~8__ASYN¢ is set, the 8I~TO signal is
sent to the process or process group.

FTONR~AD returns the number of bytes available in the receive buffer.
sets the process group associated with the socket, and STOC~R~ gets it. so~±cl is
used as a target for the 8TGTO signal as we just described and for the ST~UR~ signal
when out-of-band data arrives for a socket. The signal is sent when the protocol layer
calls the sohasoutofband function.

~TOCA~MARK returns true if the socket is at the out-of-band synchronization mark,
false otherwise.

±octl commands, the FTOXXX and 8TOXXX constants, have an internal structure
illustrated in Figure 17.19.

input
F output

 -voi 
length group                number

13 bits 8 bits 8 bits
Figure 17.19 The structure of an ioctl command.
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sys_socket.c
55 soo_ioctl(fp, cmd, data, p)
56 struct file *fp;
57 int      cmd;
58 caddr_t data;
59 struct proc *p;
60 {
61

62
63
64
65
66
67
68

69
7O
71
72
73
74
75
76
77
78
79

8O
81
82

83
84
85

86
87
88

89
9O
91
92
93
94
95
96
97
98
99

i00
i01
102
103
104 }

struct socket *so - (struct socket *) fp->f_data;

switch (cmd) {
case FIONBIO:

if (*(int *) data)
so->so_state I= SS_NBIO;

else
so->so_state &- -SS_NBIO;

return (0);

case FIOASYNC:
if (*(int *) data) {

so->so_state I- SS_ASYNC;
so->so_rcv.sb_flags I: SB_ASYNC;
so->so_snd.sb_flags I: SB_ASYNC;

} else {
so->so_state &: -SS_ASYNC;
so->so_rcv.sb_flags &= -SB_ASYNC;
so->so_snd.sb_flags &= -SB_ASYNC;

}
return (0);

case FIONREAD:
*(int *) data = so->so_rcv.sb_cc;
return (0);

case SIOCSPGRP:
so->so_pgid - *(int *) data;
return (0);

case SIOCGPGRP:
*(int *) data = so->so_pgid;
return (0);

case SIOCATMARK:
*(int *) data - (so->so_state & SS_RCVATMARK != 0;
return (0);

}
/*

* Interface/routing/protocol specific ioctls:
* interface and routing ioctls should have a
* different entry since a socket’s unnecessary
*/

if (IOCGROUP(cmd) -- ’i’)
return (ifioctl(so, cmd, data, p));

if (IOCGROUP(cmd) :- ’r’)
return (rtioctl(cmd, data, p));

return ((*so->so_proto->pr_usrreq) (so, PRU_CONTROL,
(struct mbuf *) cmd, (struct mbuf *) data, (struct mbuf *) 0));

sys_socket.c
Figure 17.20 soo_ioctl function.
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93--104

If the third argument to ioct 1 is used as input, input is set. If the argument is used
as output, output is set. If the argument is unused, void is set. length is the size of the
argument in bytes. Related commands are in the same group but each command has its
own number within the group. The macros in Figure 17.21 extract the components of an
ioct i command.

Macro Description

IOCPARM_LEN (cmd) the length from cmd
IOCBASECMD (cmd) the command with length set to 0
IOCGROUP (cmd) the group from cmd

Figure 17.21 ioctl command macros.

The macro IOCGROUP extracts the 8-bit group from the command. Interface com-
mands are handled by ifioctl. Routing commands are processed by rtioctl. All
other commands are passed to the socket’s protocol through the PRU_CONTROL request.

As we described in Chapter 19, Net/2 introduced a new interface to the routing tables in
which messages are passed to the routing subsystem through a socket created in the
PF_ROUTE domain. This method replaces the ioctl method shown here. rtioctl always
returns ENOTSUPP in kernels that do not have compatibility code compiled in.

17.6

682--715

getsockname System Call

The prototype for this system call is:
int getsockname(int fd, caddr_t asa, int *alen);

getsockname retrieves the local address bound to the socket fd and places it in the
buffer pointed to by asa. This is useful when the kernel has selected an address during
an implicit bind or when the process specified a wildcard address (Section 22.5) during
an explicit call to bind. The get sockname system call is shown in Figure 17.22.

get sock locates the f i 1 e structure for the descriptor. The size of the buffer speci-
fied by the process is copied from the process into len. This is the first call to
re_get c 1 r that we’ve seen--it allocates a standard mbuf and clears it with b zero. The
protocol processing layer is responsible for returning the local address in m when the
PRU_SOCKADDR request is issued.

If the address is larger than the buffer specified by the process, it is silently trun-
cated when it is copied out to the process. *alen is updated to the number of bytes
copied out to the process. Finally, the mbuf is released and getsockname returns.

17.7 getpeername System Call

The prototype for this system call is:
int getpeername(int fd, caddr_t asa, int *alert);
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682 struct getsockname_arg$ {
683 int fdes;
684 caddr_t asa;
685 int     *alen;
686 };

uipc_syscalls.c

687 getsockname(p, uap, retval)
688 struct proc *p;
689 struct getsockname_args *uap;
690 int     *retval;
691 {
692 struct file *fp;
693 struct socket *so;
694 struct mbuf *m;
695 int len, error;

696 if (error : getsock(p->p_fd, uap->fdes, &fp))
697 return (error);
698 if (error = copyin((caddr_t) uap->alen, (caddr_t) & fen, sizeof(len)))
699 return (error);
700 so : (struct socket *) fp >f_data;
701 m : m_getclr(M WAIT, MT_SONAME);
702 if (m =: NULL)
703 return (ENOBUFS);
704 if (error = (*so >so_proto->pr_usrreq) (so, PRU_SOCKADDR, 0, m, 0))
705 goto bad;
706 if (len > m->m_len)
707 len : m->m_len;
708 error = copyout(mtod(m, caddr_t), (caddr_t) uap->asa, (u_int) len);
709 if (error == 0)
710 error = copyout((caddr_t) & len, (caddr_t) uap->alen,
711 sizeof(len));
712 bad:
713 m_freem(m);
714 return (error);
715 ]

uipc_syscalls.c
Figure 17.22 getsockname system call.

The getpeername system call returns the address of the remote end of the connec-
tion associated with the specified socket. This function is often called when a server is
invoked through a fork and exec by the process that calls accept (i.e., any server
started by inetd). The server doesn’t have access to the peer address returned by
accept and must use getpeername. The returned address is often checked against an
access list for the application, and the connection is closed if the address is not on the
list.

Some protocols, such as TP4, utilize this function to determine if an incoming con-
nection should be rejected or confirmed. In TP4, the connection associated with a socket
returned by accept is not yet complete and must be confirmed before the connection
completes. Based on the address returned by getpeername, the server can close the
connection or implicitly confirm the connection by sending or receiving data. This
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719--753

feature is irrelevant for TCP, since TCP doesn’t make a connection available to accept
until the three-way handshake is complete. Figure 17.23 shows the getpeername func-
tion.

719 struct getpeername_args
720 int fdes;
721 caddr_t asa;
722 int      *alen;
723 };

724 getpeername(p, uap, retval)
725 struct proc *p;
726 struct getpeername_args *uap;
727 int      *retval;
728 {
729 struct file *fp;
730 struct socket *so;
731 struct mbuf *m;
732 int fen, error;

uipc_syscalls.c

733 if (error - getsock(p->p_fd, uap >fdes, &fp))
734 return (error);
735 so - (struct socket *) fp >f_data;
736 if ((so >so_state & (SS_ISCONNECTED I SS_ISCONFIRMING)) =- 0)
737 return (ENOTCONN);
738 if (error - copyin((caddr_t) uap >alen, (caddr_t] & fen, sizeof(len)))
739 return (error);
740 m - m_getclr(M WAIT, MT_SONAME);
741 if (m == NULL)
742 return (ENOBUFS);
743 if (error - (*so->so~roto >pr_usrreq) (so, PRU_PEERADDR, 0, m, 0))
744 goto bad;

745 if (len > m->m_len)
746 fen - m->m_len;
747 if (error - copyout(mtod(m, caddr_t), (caddr_t) uap->asa, (u_int) len))
748 goto bad;
749 error - copyout((caddr_t) & fen, (caddr_t) uap->alen, sizeof(len));
750 bad:
751 m freem(m);
752 return (error);
7 5 3 ]

uipc_syscalls.c

Figure 17.23 getpeername system call.

The code here is almost identical to the getsockname code. getsock locates the
socket and ENOTCONN is returned if the socket is not yet connected to a peer or if the
connection is not in a confirmation state (e.g., TP4). If it is connected, the size of the
buffer is copied in from the process and an mbuf is allocated to hold the address. The
PRU_PEERA]gDR request is issued to get the remote address from the protocol layer. The
address and the length of the address are copied from the kernel mbuf to the buffer in
the process. The mbuf is released and the function returns.
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17.8 Summary

In this chapter we discussed the six functions that modify the semantics of a socket.
Socket options are processed by setsoe]copt and getsoekop¢. Additional options,
some of which are not unique to sockets, are handled by fcn¢3, and ±oe~_. Finally,
connection information is available through getsocknarae and ~e~eez’name.

Exercises

17.1

17.2

17.3

Why do you think options are limited to the size of a standard mbuf (I~II-IL~.I,~, 128 bytes)?

Why does the code at the end of Figure 17.7 work for the $O_~.:~I,1G1~R option?

There is a problem with the suggested code used to test the t±raeva3_ structure in Fig-
ure 17.9 since tv->~v_see * l~z may cause an overflow. Suggest a change to the code to
solve this problem.
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Radix Tree Routing Tables

18.1 Introduction

The routing performed by IP, when it searches the routing table and decides which
interface to send a packet out on, is a routing mechanism. This differs from a routing pol-
icy, which is a set of rules that decides which routes go into the routing table. The
Net/3 kernel implements the routing mechanism while a routing daemon, typically
rout÷d or gat÷d, implements the routing policy. The structure of the routing table
must recognize that the packet forwarding occurs frequently--hundreds or thousands
of times a second on a busy system--while routing policy changes are less frequent.

Routing is a detailed issue and we divide our discussion into three chapters.

This chapter looks at the structure of the radix tree routing tables used by the
Net/3 packet forwarding code. The tables are consulted by IP every time a
packet is sent (since IP must determine which local interface receives the packet)
and every time a packet is forwarded.

Chapter 19 looks at the functions that interface between the kernel and the radix
tree functions, and also at the routing messages that are exchanged between the
kernel and routing processes--normally the routing daemons that implement
the routing policy. These messages allow a process to modify the kernel’s rout-
ing table (add a route, delete a route, etc.) and let the kernel notify the daemons
when an asynchronous event occurs that might affect the routing policy (a re-
direct is received, a interface goes down, and so on).

Chapter 20 presents the routing sockets that are used to exchange routing mes-
sages between the kernel and a process.

559
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18.2 Routing Table Structure

Before looking at the internal structure of the Net/3 routing table, we need to under-
stand the type of information contained in the table. Figure 18.1 is the bottom half of
Figure 1.17: the four systems on the author’s Ethernet.

BSD/386 1.1

-lip t.13.65

Internet

BSD/386 1.1 Solaris 2.3 1.1.29

SLIP

.13.66~ bsdi~
sun"

1.13.35
T.13.33

Ethernet, 140.252.13.32
Figure 18.1 Subnet used for routing table example.

SVR4

svr4

T.13.34

Figure 18.2 shows the routing table for bsd± in Figure 18.1.

~Sd± $ netstat -rn
Routing tables

Internet:
Destination
default
127
127 0.0.i
128 32.33.5
140 252.13.32
140 252.13.33
140 252.13.34
140 252.13.35
140 252.13.65
224
224.0.0.1

Gateway Flags Refs
140.252.13.33 UG S 0
127.0.0.1 UG S R 0
127.0.0.1 U H 1
140.252.13.33 UGHS 2
link#1 U C 0
8:0:20:3:f6:42 U H L ii
0:0:c0:c2:9b:26 U H L 0
0:0:c0:6f:2d:40 U H L 1
140.252.13.66 U H 0
link#1 U C 0
link#1 U H L 0

Use Interface
3 le0
2 io0

55 io0
16 le0
0 le0

55146 le0
3 le0

12 io0
41 sl0

0 le0
5 le0

Figure 18.2 Routing table on the host bsdi.

We have modified the "Flags" column from the normal netstat output, making it eas-
ier to see which flags are set for the various entries.

The routes in this table were entered as follows. Steps 1, 3, 5, 8, and 9 are performed
at system initialization when the / e t c / net s tar t shell script is executed.

A default route is added by the route command to the host sun
(140.252.13.33), which contains a PPP link to the Internet.

The entry for network 127 is typically created by a routing daemon such as
gated, or it can be entered with the route command in the/et¢/netstart
file. This entry causes all packets sent to this network, other than references to
the host 127.0.0.1 (which are covered by the more specific route entered in the
next step), to be rejected by the loopback driver (Figure 5.27).
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o

10.

The entry for the loopback interface (127.0.0.1) is configured by i fconfig.

The entry for vangogh, c s. berke 1 ey. edu (128.32.33.5) was created by hand
using the route command. It specifies the same router as the default route
(140.252.13.33), but having a host-specific route, instead of using the default
route for this host, allows routing metrics to be stored in this entry. These met-
rics can optionally be set by the administrator, are used by TCP each time a
connection is established to the destination host, and are updated by TCP
when the connection is closed. We describe these metrics in more detail with
Figure 27.3.

The interface le0 is initialized using the i fconfig command. This causes the
entry for network 140.252.13.32 to be entered into the routing table.

The entries for the other two hosts on the Ethernet, sun (140.252.13.33) and
svr4 (140.252.13.34), were created by ARP, as we describe in Chapter 21.
These are temporary entries that are removed if they are not used for a certain
period of time.

The entry for the local host, 140.252.13.35, is created the first time the host’s
own IP address is referenced. The interface is the loopback, meaning any IP
datagrams sent to the host’s own IP address are looped back internally. The
automatic creation of this entry is new with 4.4BSD, as we describe in Sec-
tion 21.13.

The entry for the host 140.252.13.65 is created when the SLIP interface is config-
ured by i fconfig.

The route command adds the route to network 224 through the Ethernet
interface.

The entry for the multicast group 224.0.0.1 (the all-hosts group) was created by
running the Ping program, pinging the address 224.0.0.1. This is also a tempo-
rary entry that is removed if not used for a certain period of time.

The "Flags" column in Figure 18.2 needs a brief explanation. Figure 18.25 provides a
list of all the possible flags.

U The route is up.

The route is to a gateway (router). This is called an indirect route. If this flag is
not set, the destination is directly connected; this is called a direct route.

The route is to a host, that is, the destination is a complete host address. If this
flag is not set, the route is to a network, and the destination is a network address:
a network ID, or a combination of a network ID and a subnet ID. The netstat
command doesn’t show it, but each network route also contains a network
mask. A host route has an implied mask of all one bits.

The route is static. The three entries created by the route command in Fig-
ure 18.2 are static.
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The route is cloned to create new routes. Two entries in this routing table have
this flag set: (1) the route for the local Ethernet (140.252.13.32), which is cloned
by ARP to create the host-specific routes of other hosts on the Ethernet, and (2)
the route for multicast groups (224), which is cloned to create specific multicast
group routes such as 224.0.0.1

The route contains a link-layer address. The host routes that ARP clones from
the Ethernet network routes all have the link flag set. This applies to unicast and
multicast addresses.

The loopback driver (the normal interface for routes with this flag) rejects all
datagrams that use this route.

The ability to enter a route with the "reject" flag was provided in Net/2. It provides a
simple way of preventing datagrams destined to.network 127 from appearing outside the
host. See also Exercise 6.6.

Before 4.3BSD Reno, two distinct routing tables were maintained by the kernel for
IP addresses: one for host routes and one for network routes. A given route was
entered into one table or the other, based on the type of route. The default route was
stored in the network routing table with a destination address of 0.0.0.0. There was an
implied hierarchy: a search was made for a host route first, and if not found a search
was made for a network route, and if still not found, a search was made for a default
route. Only if all three searches failed was the destination unreachable. Section 11.5 of
[Leffier et al. 1989] describes the hash table with linked lists used for the host and net-
work routing tables in Net/1.

Major changes took place in the internal representation of the routing table with
4.3BSD Reno [Sklower 1991]. These changes allow the same routing table functions to
access a routing table for other protocol suites, notably the OSI protocols, which use
variable-length addresses, unlike the fixed-length 32-bit Internet addresses. The inter-
nal structure was also changed, to provide faster lookups.

The Net/3 routing table uses a Patricia tree structure [Sedgewick 1990] to represent
both host addresses and network addresses. (Patricia stands for "Practical Algorithm to
Retrieve Information Coded in Alphanumeric.") The address being searched for and
the addresses in the tree are considered as sequences of bits. This allows the same func-
tions to maintain and search one tree containing fixed-length 32-bit Internet addresses,
another tree containing fixed-length 48-bit XNS addresses, and another tree containing
variable-length OSI addresses.

The idea of using Patricia trees for the routing table is attributed to Van Jacobson in [Sklower
1991].

An example is the easiest way to describe the algorithm. The goal of routing lookup
is to find the most specific address that matches the given destination: the search key.
The term most specific implies that a host address is preferred over a network address,
which is preferred over a default address. -

Each entry has an associated network mask, although no mask is stored with a host
route; instead host routes have an implied mask of all one bits. An entry in the routing
table matches a search key if the search key logically ANDed with the network mask of
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the entry equals the entry itself. A given search key might match multiple entries in the
routing table, so with a single table for both network route and host routes, the table
must be organized so that more-specific routes are considered before less-specific
routes.

Consider the examples in Figure 18.3. The two search keys are 127.0.0.1 and
127.0.0.2, which we show in hexadecimal since the logical ANDing is easier to illustrate.
The two routing table entries are the host entry for 127.0.0.1 (with an implied mask of
0xf f f f f f f f) and the network entry for 127.0.0.0 (with a mask of 0xf f 0 0 0 00 0).

host route

1 search key 7£000002
2 routing table key V£000001
3 routing table mask f f £ f £ £ £ £
4 logical AND of 1 and 3 7 ~: 000002

2 and 4 equal? no

search key = 127.0.0.1
host route net route

7fO00001 7fO00001
7fO00001 7fO00000
ffffffff ffO00000
7fO00001 7fO00000

yes yes

search key =127.0.0.2
netroute

7f000002
7fO00000
ffO00000
7fO00000

yes

Figure 18.3 Example routing table lookups for the two search keys 127.0.0.1 and 127.0.0.2.

Since the search key 127.0.0.1 matches both routing table entries, the routing table must
be organized so that the more-specific entry (127.0.0.1) is tried first.

Figure 18.4 shows the internal representation of the Net/3 routing table correspond-
ing to Figure 18.2. This table was built from the output of the netstat command with
the -A flag, which dumps the tree structure of the routing tables.

off ~ on

~ OxOOOOOOOO
~

off on
~

[default] I0xff000000] ~ ~

000000000
127.0.0.0 127.0.0.1 128.32.33.5~1       [ 0xff000000 ]oxffOOOOOO ~~ ~~

( OxffffffeO 140.252.13.65 224.0.0.0 224.0.0.1

140.252.13.32 140.252.13.33 140.252.13.34 140.252.13.35
OxffffffeO

Figure 18.4 Net/3 routing table corresponding to Figure 18.2.
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The two shaded boxes labeled "end" are leaves with special flags denoting the end
of the tree. The left one has a key of all zero bits and the right one has a key of all one
bits. The two boxes stacked together at the left, labeled "end" and "default," are a spe-
cial representation used for duplicate keys, which we describe in Section 18.9.

The square-cornered boxes are called internal nodes or just nodes, and the boxes with
rounded corners are called leaves. Each internal node corresponds to a bit to test in the
search key, and a branch is made to the left or the right. Each leaf corresponds to either
a host address or a network address. If there is a hexadecimal number beneath a leaf,
that leaf is a network address and the number specifies the network mask for the leaf.
The absence of a hexadecimal mask beneath a leaf node implies that the leaf is a host
address with an implied mask of 0 x f f f f ~ ~ ~ f.

Some of the internal nodes also contain network masks, and we’ll see how these are
used in backtracking. Not shown in this figure is that every node also contains a
poifiter to its parent, to facilitate backtracking, deletion, and nonrecursive walks of the
tree.

The bit comparisons are performed on socket address structures, so the bit positions
given in Figure 18.4 are from the start of the socket address structure. Figure 18.5 shows
the bit positions for a sockaddr_in structure.

bit: 0                     32 63
,fen familyIsoe~:aclclr_in: t(16) (2) I port IP address                      (all0)

I byte 1 2 4 8

Figure 18.5 Bit offsets in Internet socket address structure.

The highest-order bit of the IP address is at bit position 32 and the lowest-order bit is at
bit position 63. We also show the length as 16 and the address family as 2
as we’ll encounter these two values throughout our examples.

To work through the examples we also need to show the bit representations of the
various IP addresses in the tree. These are shown in Figure 18.6 along with some other
IP addresses that are used in the examples that follow. The bit positions used in Fig-
ure 18.4 as branching points are shown in a bolder font.

We now provide some specific examples of how the routing table searches are per-
formed.

ExamplemHost Match

Assume the host address 127.0.0.1 is the search key--the destination address being
looked up. Bit 32 is off, so the left branch is made from the top of the tree. Bit 33 is on,
so the right branch is made from the next node. Bit 63 is on, so the right branch is made
from the next node. This next node is a leaf, so the search key (127.0.0.1) is compared to
the address in the leaf (127.0.0.1). They match exactly so this routing table entry is
returned by the lookup function.
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dotted-decimal

bit:

32~itIPaddress(bits32-63)

3333 3333 4444 4444 4455 5555 5555 6666
2345 6789 0123 4567 8901 2345 6789 0123

0000 i010 0000 0001 0000 0010 0000 0011
0111 0000 0000 0000 0000 0000 0000 0001
0111 iiii 0000 0000 0000 0000 0000 0000
0111 iiii 0000 0000 0000 0000 0000 0001
0111 iiii 0000 0000 0000 0000 0000 0011
i000 0000 0010 0000 0010 0001 0000 0101
1000 0000 0010 0000 0010 0001 0000 0110
i000 ii00 iiii 1100 0000 ii01 0010 0000
i000 ii00 iiii ii00 0000 ii01 0010 0001
i000 ii00 iiii ii00 0000 ii01 0010 0010
i000 ii00 iiii ii00 0000 ii01 0010 0011
1000 1100 iiii ii00 0000 ii01 0100 0001
iii0 0000 0000 0000 0000 0000 0000 0000
iii0 0000 0000 0000 0000 0000 0000 0001

10.1.2.3
112.0.0.1
127.0.0.0
127.0.0.1
127.0.0.3
128.32.33.5
128.32.33.6
140.252.13.32
140.252.13.33
140.252.13.34
140.252.13.35
140.252.13.65
224.0.0.0
224.0.0.1

Figure 18.6 Bit representations of the IP addresses in Figures 18.2 and 18.4.

Example--Host Match

Next assume the search key is the address 140.252.13.35. Bit 32 is on, so the right
branch is made from the top of the tree. Bit 33 is off, bit 36 is on, bit 57 is off, bit 62 is on,
and bit 63 is on, so the search ends at the leaf on the bottom labeled 140.252.13.35. The
search key matches the routing table key exactly.

ExamplemNetwork Match

The search key is 127.0.0.2. Bit 32 is off, bit 33 is on, and bit 63 is off so the search ends
up at the leaf labeled 127.0.0.0. The search key and the routing table key don’t match
exactly, so a network match is tried. The search key is logically ANDed with the net-
work mask (0xf f 0 0 0 0 00) and since the result equals the routing table key, this entry is
considered a match.

Example--Default Match

The search key is 10.1.2.3. Bit 32 is off and bit 33 is off, so the se .~,.ch ends up at the leaf
with the duplicate keys labeled "end" and "default." The routing table key that is
duplicated in these two leaves is 0.0.0.0. The search key and the routing table key don’t
match exactly, so a network match is tried. This match is tried for all duplicate keys that
have a network mask. The first key (the end marker) doesn’t have a network mask, so it
is skipped. The next key (the default entry) has a mask of 0x00000000. The search
key is logically ANDed with this mask and since the result equals the routing table key
(0), this entry is considered a match. The default route is used.
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ExamplemNetwork Match with Backtracking

The search key is 127.0.0.3. Bit 32 is off, bit 33 is on, and bit 63 is on, so the search ends
up at the leaf labeled 127.0.0.1. The search key and the routing table key don’t match
exactly. A network mask cannot be attempted since this leaf does not have a network
mask. Backtracking now takes place.

The backtracking algorithm is to move up the tree, one level at a time. If an internal
node is encountered that contains a mask, the search key is logically ANDed with the
mask and another search is made of the subtree starting at the node with the mask,
looking for a match with the ANDed key. If a match isn’t found, the backtrack keeps
moving up the tree, until the top is reached.

In this example the search moves up one level to the node for bit 63 and this node
contains a mask. The search key is logically ANDed with the mask (0xf f 00 0 0 0 0), giv-
ing a new search key of 127.0.0.0. Another search is made started at this node for
127.0.0.0. Bit 63 is off, so the left branch is taken to the leaf labeled 127.0.0.0. The new
search key is compared to the routing table key and since they’re equal, this leaf is the
match.

ExamplemBacktracking Multiple Levels

The search key is 112.0.0.1. Bit 32 is off, bit 33 is on, and bit 63 is on, so the search ends
up at the leaf labeled 127.0.0.1. The keys are not equal and the routing table entry does
not have a network mask, so backtracking takes place.

The search moves up one level to the node for bit 63, which contains a mask. The
search key is logically ANDed with the mask of 0x~000000 and another search is
made starting at that node. Bit 63 is off in the new search key, so the left branch is made
to the leaf labeled 127.0.0.0. A comparison is made but the ANDed search key
(112.0.0.0) doesn’t equal the search key in the table.

Backtracking continues up one level from the bit-63 node to the bit-33 node. But
this node does not have a mask, so the backtracking continues upward. The next level
is the top of the tree (bit 32) and it has a mask. The search key (112.0.0.1) is logically
ANDed with the mask (0x0 0 0 0 0 0 0 0) and a new search started from that point. Bit 32
is off in the new search key, as is bit 33, so the search ends up at the leaf labeled "end"
and "default." The list of duplicate keys is traversed and the default key matches the
new search key, so the default route is used.

As we can see in this example, if a default route is present in the routing table, when
the backtrack ends up at the top node in the tree, its mask is all zero bits, which causes
the search to proceed to the leftmost leaf in the tree for a match with the default.

ExamplemHost Match with Backtracking and Cloning

The search key is 224.0.0.5. Bit 32 is on, bit 33 is on, bit 35 is off, and bit 63 is on, so the
search ends up at the leaf labeled 224.0.0.1. This routing table key does not equal the
search keN and the routing table entry does not contain a network mask, so backtrack-
ing takes place.
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The backtrack moves one level up to the node that tests bit 63. This node contains
the mask 0×ff000000, so the search key ANDed with the mask yields a new search
key of 224.0.0.0. Another search is made, starting at this node. Since bit 63 is off in the
ANDed key, the left branch is taken to the leaf labeled 224.0.0.0. This routing table key
matches the ANDed search key, so this entry is a match.

This route has the "clone" flag set (Figure 18.2), so a new leaf is created for the
address 224.0.0.5. The new routing table entry is

Destination Gateway                Flags       Refs       Use Interface
224.0.0.5 link#1               UHL          0         0 le0

and Figure 18.7 shows the new arrangement of the right side of the routing table tree
from Figure 18.4, starting with the node for bit 35. Notice that whenever a new leaf is
added to the tree, two nodes are needed: one for the leaf and one for the internal node
specifying the bit to test.

224.0.0.0 224.0.0.1
0xff000000

Figure 18.7 Modification of Figure 18.6 after inserting entry for 224.0.0.5.

This newly created entry is the one returned to the caller who was searching for
224.0.0.5.

The Big Picture

Figure 18.8 shows a bigger picture of all the data structures involved. The bottom por-
tion of this figure is from Figure 3.32.

There are numerous points about this figure that we’ll note now and describe in
detail later in this chapter.

¯ rt_tables is an array of pointers to radix_node_head structures. There is one
entry in the array for each address family, rt_tables [AF_INET] points to the top
of the Internet routing table tree.
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0
1

AF_INET : 2

rt_t ab i e s [ ] radix_node_head { } rt entry { }

S radix_node { }
(127.0.0.1)

~ radix_node{ }
radix_node { } (bit 33)

(left end)

radix_node { }..ef~
25 (bit 32)

radix_node { }
(right end)

mask_rnhead : radix_node_head { }

1 ~--~ rtentry { }
radix_node { }
(140.252.13.32)

radix_node { }    k~ radix_node ( }
(bit 33)

radix_node {

radix_node { ]    /

I ifnet: ~ le_softc[O] :~ sl soft~[O_

]_."

ifnet{} ~ 1 ifnet{} i

ifnet addrs~ le softc{} I/

[ ~    Iifaddr(}    I ifaddr{}

sockaddr dl { }
sockaddr dl {

inpcb(}

route(}

inpcb{}

route{}

inpcb{}

route{}

loif:

ifnet{} ?

ifaddr{]

sockaddr_dl{

sockaddr_dl{

Figure 18.8 Data structures involved with routing tables.
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The radix_node_head structure contains three radix_node structures. These
structures are built when the tree is initialized and the middle of the three is the top
of the tree. This corresponds to the top box in Figure 18.4, labeled "bit 32." The first
of the three radix_node structures is the leftmost leaf in Figure 18.4 (the shared
duplicate with the default route) and the third of the three is the rightmost leaf. An
empty routing table consists of just these three rad±x_node structures; we’ll see
how it is constructed by the rn_inithead function.

The global mask_rnhead also points to a radix_node_head structure. This is the
head of a separate tree of all the masks. Notice in Figure 18.4 that of the eight masks
shown, one is duplicated four times and two are duplicated once. By keeping a sep-
arate tree for the masks, only one copy of each unique mask is maintained.
The routing table tree is built from rtentry structures, and we show two of these in
Figure 18.8. Each rtentry structure contains two radix_node structures, because
each time a new entry is inserted into the tree, two nodes are required: an internal
node corresponding to a bit to be tested, and a leaf node corresponding to a host
route or a network route. In each rtentry structure we also show which bit test the
internal node corresponds to and the address contained in the leaf node.

The remainder of the rtentry structure is the focal point of information for this
route. We show only a single pointer from this structure to the corresponding
i frier structure for the route, but this structure also contains a pointer to the
i faddr structure, the flags for the route, a pointer to another rtentry structure if
this entry is an indirect route, the metrics for the route, and so on.

Protocol control blocks (Chapter 22), of which one exists for each UDP and TCP
socket (Figure 22.1), contain a route structure that points to an rtentry structure.
The UDP and TCP output functions both pass a pointer to the route structure in a
PCB as the third argument to ip_output, each time an IP datagram is sent. PCBs
that use the same route point to the same routing table entry.

18.3 Routing Sockets

When the routing table changes were made with 4.3BSD Reno, the interaction of pro-
cesses with the routing subsystem also changed--the concept of routing sockets was
introduced. Prior to 4.3BSD Reno, fixed-length ioc t l s were issued by a process (such
as the route command) to modify the routing table. 4.3BSD Reno changed this to a
more generalized message-passing scheme using the new PF_}~OUTE domain. A pro-
cess creates a raw socket in the PF_ROUTE domain and can send routing messages to
the kernel, and receives routing messages from the kernel (e.g., redirects and other asyn-
chronous notifications from the kernel).

Figure 18.9 shows the 12 different types of routing messages. The message type is
the rtm_type field in the rt_msghdr structure, which we describe in Figure 19.16.
Only five of the messages can be issued by a process (a write to a routing socket), but all
12 can be received by a process.

We’ll defer our discussion of these routing messages until Chapter 19.
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18.4

rtm_type      kernel?

RTM_ADD

RTM CHANGE
RTM DELADDR
RTM DELETE
RTM_GET
RTM_ IFINFO

RTM LOCK
RTM LOSING
RTM MISS
R TM_NEWADDR
R TM_REDIRECT
RTM RESOLVE

From

kernel? Description

add route
change gateway, metrics, or flags
address being removed from interface
delete route
report metrics and other route information
interface going up, down, etc.
lock specified metrics
kernel suspects route is failing
lookup failed on this address
address being added to interface
kernel told to use different route
request to resolve destination to link-layer address

Structure
~pe

rt_msghdr
rt_msghdr
ifa_msghdr
rt_msghdr
rt_msghdr
if_msghdr
rt_msghdr
rt_msghdr
rt_msghdr
ifa_msghdr
rt_msghdr
rt_msghdr

Figure 18.9 Types of messages exchanged across a routing socket.

Code Introduction

Three headers and five C files define the various structures and functions used for rout-
ing. These are summarized in Figure 18.10.

File Description

net / radix, h radix node definitions
net / raw_cb, h routing control block definitions
net / rout e. h routing structures

net !radix. c radix node (Patricia tree) functions
net/raw_cb, c routing control block functions
net/raw_usrreq, c routing control block functions
net/route, c routing functions
n e t / r t s o c k. c routing socket functions

Figure 18.10 Files discussed in this chapter.

In general, the prefix rn_ denotes the radix node functions that search and manipulate
the Patricia trees, the raw_ prefix denotes the routing control block functions, and the
three prefixes rout e_, rt_, and rt denote the general routing functions.

We use the term muting control blocks instead of raw control blocks in all the routing chapters,
even though the files and functions begin with the prefix raw. This is to avoid confusion with
the raw IP control blocks and functions, which we discuss in Chapter 32. Although the raw
control blocks and their associated functions are used for more than just routing sockets in
Net/3 (one of the raw OSI protocols uses these structures and functions), our use in this text is
only with routing sockets in the PF_ROUTE domain.

Figure 18.11 shows the primary routing functions and their relationships. The
shaded ellipses are the ones we cover in this chapter and the next two. We also show
where each of the 12 routing message types are generated.
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arp, gated, route,
rout ed, and rwhod programs

socket (PF_ROUTE, SOCK_RAW, protocol)

Sys c t 1 socket various
system call receive buffer system calls

~ route_

raw_input

PRU_SEND

r t_newaddrms

~     in_losin!

called by various ~
ioct ls to add and
delete routes when

interfaces taken
up and down      4th consecutive

retransmission
on a given TCP

connection

icmp_input

ICMP redirect

rn_match

rtallocl

rtalloc

called by TCP/IP
protocols to find

a route to a
destination

rtrequest

rn_delete

Figure 18.11 Relationships between the various routing functions.
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rtalloc is the function called by the Internet protocols to look up routes to desti-
nations. We’ve already encountered rtalloc in the ip_rtaddr, ip_forward,
ip_output, and ip_setmoptions functions. We’ll also encounter it later in the
in_pcbconnect and tcp mss functions.

We also show in Figure 18.11 that five programs typically create sockets in the rout-
ing domain:

arp manipulates the ARP cache, which is stored in the IP routing table in Net/3
(Chapter 21),

gated and routed are routing daemons that communicate with other routers
and manipulate the kernel’s routing table as the routing environment changes
(routers and links go up or down),

route is a program typically executed by start-up scripts or by the system
administrator to add or delete routes, and

rwhod issues a routing sysct 1 on start-up to determine the attached interfaces.

Naturally, any process (with superuser privilege) can open a routing socket to send and
receive messages to and from the routing subsystem; we show only the common system
programs in Figure 18.11.

Global Variables

The global variables introduced in the three routing chapters are shown in Figure 18.12.

Variable Datatype Description

rt_tables struct radix_node_head *[ ] array of pointers to heads of routing tables
mask_rnhead struct radix_node_head * pointer to head of mask table
rn_mkfreelist struct radix_mask * head of linked list of available radix_mask structures
max_keylen int longest routing table key, in bytes
rn_zeros char * array of all zero bits, of length max_keylen
rn_ones char * array of all one bits, of length max_keylen
maskedKey char * array f’or masked search key, of length max_keyl en
rtstat struct rtstat routing statistics (Figure 18.13)
rt t rash int #routes not in table but not freed
rawcb struct rawcb head of doubly linked list of routing control blocks
raw_recvspace u_long default size of routing socket receive buffer, 8192 bytes
raw_sendspace u_long default size of routing socket send buffer, 8192 bytes
route_cb struct rout e_cb #routing socket listeners, per protocol, and total
route_dst struct sockaddr temporary for destination of routing message
rout e_src struct sockaddr temporary for source of routing message
route_Droto struct sockproto temporary for protocol of routing message

Figure 18.12 Global variables in the three routing chapters.
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Statistics

Some routing statistics are maintained in the global structure r t s t at, described in Fig-
ure 18.13.

rt s t at member Description Used by
SNMP

rts_badred±rect #invalid redirect calls
rt s_dynami c #routes created by redirects
rt s_newgateway #routes modified by redirects
rt s_unreach #1ookups that failed
rts_wildcard #1ookups matched by wildcard (never used)

Figure 18.13 Routing statistics maintained in the rt seat structure.

We’ll see where these counters are incremented as we proceed through the code. None
are used by SNMP.

Figure 18.14 shows some sample output of these statistics from the netstat -rs
command, which displays this structure.

netstat -rs output rtstat member

1029 bad routing redirects rts_badredirect
0 dynamically created routes rts_dynamic
0 new gateways due to redirects rts_newgateway
0 destinations found unreachable rts_unreach
0 uses of a wildcard route rts_wildcard

Figure 18.14 Sample routing statistics.

SNMP Variables

Figure 18.15 shows the IP routing table, named ipRouteTable, and the kernel vari-
ables that supply the corresponding value.

For ipRouteType, if the RTF_GATEWAY flag is set in rt_flags, the route is
remote (4); otherwise the route is direct (3). For ipRouteProto, if either the
RTF_DYNAMIC or RTF_MODIFIED flag is set, the route was created or modified by
ICMP (4), otherwise the value is other (1). Finally, if the rt_mask pointer is null, the
returned mask is all one bits (i.e., a host route).

18.5 Radix Node Data Structures

In Figure 18.8 we see that the head of each routing table is a radix_node_head and all
the nodes in the routing tree, both the internal nodes and the leaves, are radix_node
structures. The radix_node_head structure is shown in Figure 18.16.
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91
92
93
94
95
96
97
98
99

i00
i01
102
103
104
105
106
107
108
109
ii0

iii
112

SNMP variable

ipRout eDest

ipRouteIfIndex
ipRouteMetricl

ipRouteMetric2
ipRouteMetric3
ipRouteMetric4
ipRouteNextHop
ipRouteType

ipRouteProto

ipRouteAge

ipRouteMask

ipRouteMetric5
ipRouteInfo

rt_key

rt_ifp.if_index
-i

-i
-i
-i
rt_gateway
(see text)

(see text)

(not implemented)

rt_mask

-I
NULL

IP routing table, index : < ipRouteDest >
Variable Description

Destination IP address. A value of 0.0.0.0 indicates a default
entry.

Interface number: i fIndex.
Primary routing metric. The meaning of the metric depends

on the routing protocol (ipRouteProto). A value of
-1 means it is not used.

Alternative routing metric.
Alternative routing metric.
Alternative routing metric.
IP address of next-hop router.
Route type: 1 = other, 2 = invalidated route, 3 = direct,

4 = indirect.
Routing protocol: 1 = other, 4 = ICMP redirect, 8 = RIP,

13 = OSPF, 14 = BGP, and others.
Number of seconds since route was last updated or

determined to be correct.
Mask to be logically ANDed with destination IP address

before being compared with ipRouteDest.
Alternative routing metric.
Reference to MIB definitions specific to this particular

routing protocol.

Figure 18.15 IP routing table: ipRouteTable.

radix.h
struct radix_node_head {

struct radix_node *rnh_treetop;
int rnh_addrsize; /* (not currently used) */
int rnh pktsize; /* (not currently used) */
struct radix_node *(*rnh_addaddr)     /* add based on sockaddr */

(void *v, void *mask,
struct radix_node_head * head, struct radix_node nodes[]);

struct radix_node *(*rnh_addpkt) /* add based on packet hdr */
(void *v, void *mask,
struct radix_node_head * head, struct radix_node nodes[]);

struct radix_node *(*rnh_deladdr)     /* remove based on sockaddr */
(void *v,

struct radix_node
(void *v,

struct radix_node
(void *v,

struct radix_node

int

void *mask, struct radix_node_head * head);
¯ (*rnh_delpkt) /* remove based on packet hdr */
void *mask, struct radix_node_head * head);
¯ (*rnh_matchaddr) /* locate based on sockaddr */
struct radix_node_head * head);
¯ (*rnh_matchpkt) /* locate based on packet hdr */

(void *v, struct radix_node_head * head);
(*rnh_walktree) /* traverse tree */
(struct radix_node_head * head, int (*f) (), void *w);

};

struct radix_node rnh_nodes[3]; /* top and end nodes */

Figure 18.16 radix_node_head structure: the top of each routing tree.

radix.h
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92

93-94

95-110

111-112

rnh_treetop points to the top radix_node structure for the routing tree. Notice
that three of these structures are allocated at the end of the radix_node_head, and the
middle one of these is initialized as the top of the tree (Figure 18.8).

rnh_a ddr s i z e and rnh_pk t s i z e are not currently used.

rnh_addrsize is to facilitate porting the routing table code to systems that don’t have a
length byte in the socket address structure, rnh_pktsize is to allow using the radix node
machinery to examine addresses in packet headers without having to copy the address into a
socket address structures.

The seven function pointers, rnh_addaddr through rnh_walktree, point to func-
tions that are called to operate on the tree. Only four of these pointers are initialized by
rn_inithead and the other three are never used by Net/3, as shown in Figure 18.17.

Member

rnh_addaddr
rnh_addpkt
rnh_deladdr
rnh_delpkt ,
rnh matchaddr
rnh matchpkt
rnh walktree

Initialized to
(by rn_inithead)

rn addroute
NULL
rn_delete
NULL
rn mat ch
NULL
rn_walktree

Figure 18.17 The seven function pointers in the radix_node_head structure.

Figure 18.18 shows the radix_node structure that forms the nodes of the tree. In
Figure 18.8 we see that three of these are allocated in the radix_node_head and two
are allocated in each rtentry structure.

40 struct radix_node {
41 struct radix_mask *rn mklist;
42 struct radix_node *rn_p; /*
43 short rn_b; /*
44 char rn_bmask; /*
45 u_char rn_flags; /*
46 union {
47 struct { /*
48 caddr_t rn_Key; /*
49 caddr_t rn_Hask; /*
50 struct
51 ] rn_leaf;
52 struct {
53 int
54 struct
55 struct
56 } rn_node;
57 } rn_u;
58 };

radix.h

/* list of masks contained in subtree */
parent pointer */
bit offset; 1 index{netmask) */
node: mask for bit test */
Figure 18.20 */

leaf only data: rn_b < 0 */
object of search */
netmask, if present */

radix_node *rn_Dupedkey;

/* node only data: rn_b >= 0 */
rn_Off; /* where to start compare */

radix_node *rn_L; /* left pointer */
radix_node *rn_R; /* right pointer */

59 #define rn_dupedkey rn_u.rn_leaf.rn_Dupedkey
60 #define rn_key        rn_u.rn_leaf.rn_Key


