
TCP/IP

The

Oa t
.evens

I

ifnet_addrs:

TOP/1P
Illustrated
Volume 2
The Implementation

Gary R. Wright
W. Richard Stevens

starting point

~ CLOSED

timeout
send: RST

appl: passive open
send: <nothing>

LISTEN

open

SYN_RCVD recv: SYN
send: SYN, ACK
simultaneous open

recv: FIN
send: ACK

SYN_SENT

active open

I
I
I
I

apph I close
send: ~ FIN

apph close
or timeout

appl" close

data transfer state

....
simultaneous close

recv" FIN ~.-
IN~FIN_WAIT_I~ s;~Vdf ~A~K

recv: ACK ~ ~ recv: ACK

" -~ recv: FIN
~FIN_WAIT_2~

sendl ACK ~\ TIME_ ’AIT)
2MSL timeout

"xl recv:ACK~ LAST_ACK .)~ send: <nothing>

passive close

active close

~ normal transitions for client
normal transitions for server
state transitions taken when application issues operation

recv: state transitions taken when segment received
send: what is sent for this transition

TCP state transition diagram.

arpcom
arphdr

bp f_d
bp f_hdr
bpf_if

cmsghdr

domain

ether_arp
ether_header
ether_multi

icmp
ifaddr
ifa_msghdr
ifconf
if_msghdr
ifnet
ifqueue
ifreq
igmp
in_addr
In_aliasreq
ln_ifaddr
in_multi
inpcb
lovec
~p
ipasfrag
~p_moptions
~p_mreq
~poption
ipovly
ipq
ip_srcrt
ip_timestamp

le_softc
igrplctl
linger
llinfo_arp

mbuf

Structure Definitions
80

682

1033
1029
1029

482

187

682
102
342

308
73

622
117
622
67
71
117
384
160
174
161
345
716
481
211
287
347
356
265
760
286
258
262

80
411
542
682

38

mrt 419
mrtctl 420
msghdr 482

osockaddr 75

pdevinit 78
protosw 188

radix_mask 578
radix_node 575
radix_node_head 574
rawcb 647
route 220
route_cb 625
rt_addrinfo 623
rtentry 579
rt_metrics 580
rt_msghdr 622

selinfo 531
sl_softc 83
sockaddr 75
sockaddr_dl 87
sockaddr_in 160
sockaddr_inarp 701
sockbuf 476
socket 438
socket_args 444
sockproto 626
sysent 443

tcpcb 804
tcp_debug 916
tcphdr 801
tcpiphdr 803
timeval 106

udphdr 759
udpiphdr 759
uio 485

vif 406
vifctl 407

walkarg 632

Praise for
TCP/IP Illustrated, Volume 1: The Protocols

"TCP/IP Illustrated has already become my most-likely-to-have-the-answer reference book, the first resource I turn
to with a networking question. The book is, all publisher hype aside, an instant classic, and I, for one, am thrilled
that something like this is now available."

-- Vern Paxson, ;login:, March/April 1994

"This is sure to be the bible for TCP/IP developers and users."

-- Robert A. Ciampa, Network Engineer, Synernetics, division of 3COM

"... the difference is that Stevens wants to show as well as tell about the protocols. His principal teaching tools are
straight-forward explanations, exercises at the ends of chapters, byte-by-byte diagrams of headers and the like, and
listings of actual traffic as examples."

m Waiter Zintz, Unix WorM, December 1993

"TCP/IP Illustrated, Volume 1 is based on practical examples that reinforce the theory -- distinguishing
this book from others on the subject, and making it both readable and informative."

-- Peter M. Haverlock, Consultant, IBM TCP/IP Development

"While all of Stevens’ books are excellent, this new opus is awesome. Although many books describe the TCP/IP
protocols, the author provides a level of depth and real-world detail lacking from the competition."

-- Steven Baker, Unix Review, March 1994

"TCP/IP Illustrated, Volume 1 is an excellent reference for developers, network administrators or anyone who needs
to understand TCP/IP technology."

-- Bob Williams, V.P. Marketing, NetManage, Inc.

"W. Richard Stevens has produced a fine text and reference work."

-- Scott Bradner, Consultant, Harvard University OIT/NSD

"Even marketing weenies (of a technical bent) will appreciate this book, as it is clearly written, and uses lots of
diagrams. I especially like the author’s thoughtful use of asides--set in smaller type and indented--to explain this
or that concept. "

~ Ron Jeffries, ATM USER, January 1994

"Stevens takes a subject that has been written about rather prolifically, TCP/IP, and does something fresh and useful
with it."

Jason Levitt, Open Systems Today, March 7, 1994

More Praise for
TCP/IP Illustrated, Volume 1: The Protocols

"This book is a stone jewel Written by W. Richard Stevens, this book probably provides the most comprehensive
view of TCP/IP available today in print."

~ Boardwatch, April/May 1994

"...you can’t get a better understanding of the workings of TCP/IP anywhere."

-- Tom Nolle, Netwatcher, January 1994

"The book covers all the basic TCP/IP applications, including Telnet, NFS (Network File System), FTP (file transfer
protocol) and TFTP (trivial FTP)."

~ Data Communications, January 21, 1994

"The diagrams he uses are excellent and his writing style is clear and readable. Please read it and keep it on your
bookshelf."

-- Elizabeth Zinkann, Sys Admin, November 1993

"Stevens’ Unix-oriented investigations will be invaluable to the network programmer or specialist who wishes to
really understand how the TCP/IP stack is put together."

-- Joel Snyder, Internet World, March/April 1994 issue

"All aspects of the transmission control protocol/Internet protocol (TCP/IP) are covered here, from link layer and
static/dynamic routing implementations to applications such as SNMP and Telnet."

~ Telecommunications, March 1994

"The author of TCP/IP Illustrated has succeeded in creating another indispensable tome of networking knowledge.
This is the most comprehensible and complete book I have read on TCP/IP. It takes a different slant than other
books, by presenting not only details of TCP, IP, ARP, ICMP, routing, etc., but actually shows these protocols (and
common Internet tools) in action."

~ Eli Charne, ConneXions, July 1994

"The word ’illustrated’ distinguishes this book from its many rivals."

~ Stan Kelly-Bootie, Unix Review, December 1993

TCP/IP Illustrated, Volume 2

Addison-Wesley Professional Computing Series
Brian W. Kernighan, Consulting Editor

Ken Arnold/John Peyton, A C User’s Guide to ANSI C
Tom Cargill, C++ Programming Style
William R. Cheswick/Steven M. Bellovin, Firewalls and Internet Security: Repelling the Wily Hacker
David A. Curry, UNIX® System Security: A Guide for Users and System Administrators
Erich Gamma/Richard Helm/Ralph Johnson/John Vlissides, Design Patterns: Elements of Reusable

Object-Oriented Software
John Lakos, Large-Scale C ++ Software Design
Scott Meyers, Effective C++: 50 Specific Ways to Improve Your Programs and Designs
Scott Meyers, More Effective C++: 35 New Ways to Improve Your Programs and Designs
Robert B. Murray, C++ Strategies and Tactics
David R. Musser/Atul Saini, STL Tutorial and Reference Guide: C++ Programming with the Standard

Template Library
John K. Ousterhout, Tcl and the Tk Toolkit
Craig Partridge, Gigabit Networking
J. Stephen Pendergrast Jr., Desktop KornShell Graphical Programming
Radia Perlman, Interconnections: Bridges and Routers
David Mo Piscitello/A. Lyman Chapin, Open Systems Networking: TCP/IP and OSI
Stephen A. Rago, UNIX® System V Network Programming
Curt Schimmel, UNIX® Systems for Modern Architectures: Symmetric Multiprocessing and

Caching for Kernel Programmers
W. Richard Stevens, Advanced Programming in the UNIX® Environment
W. Richard Stevens, TCP/IP Illustrated, Volume 1: The Protocols
W. Richard Stevens, TCP/IP Illustrated, Volume 3: TCP for Transactions, HTTP, NNTP, and the

UNIX Domain Protocols
Gary R. Wright/W. Richard Stevens, TCP/IP Illustrated, Volume 2: The Implementation

TCP/IP Illustrated, Volume 2
The Implementation

Gary R. Wright
W, Richard Stevens

¯
VV

ADDISON-WESLEY PUBLISHING COMPANY
Reading, Massachusetts Menlo Park, California New York

Don Mills, Ontario Wokingham, England Amsterdam
Bonn Sydney Singapore Tokyo Madrid San Juan

Seoul Milan Mexico City Taipei

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book and Addison-
Wesley was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

The programs and applications presented in this book have been included for their instruc-
tional value. They have been tested with care, but are not guaranteed for any particular pur-
pose. The publisher does not offer any warranties or representations, nor does it accept any
liablities with respect to the programs or applications..

The publisher offers discounts on this book when ordered in quantity for special sales. For
more information please contact:

Corporate & Professional Publishing Group
Addison-Wesley Publishing Company
One Jacob Way
Reading, Massachusetts 01867

Library of Congress Cataloging-in-Publication Data
(Revised for vol. 2)

Stevens, W. Richard.
TCP/IP illustrated.

(Addison-Wesley professional computing series)
Vol. 2 by Gary R. Wright, W. Richard Stevens.
Includes bibliographical references and indexes.
Contents: v. 1. The protocols -- v. 2. The

implementation
1. TCP]IP (Computer network protocol) I. Wright,

Gary R. II. Title. III. Series.
TK5105.55.$74 1994 004.6’2 93-40000
ISBN 0-201-63346-9 (v. 1)
ISBN 0-201-63354-X (v. 2)

The BSD Daemon used on the cover of this book is reproduced with the permission of
Marshall Kirk McKusick.

Copyright © 1995 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without the prior consent of the publisher. Printed in
the United States of America. Published simultaneously in Canada.

Text printed on recycled and acid-free paper

ISBN 0-201-63354-X
3 4 5 6 7 8 9 10 11-CRW-99989796
Third printing, March 1996

To my parents and my sister,
for their love and support.

--G.R. W.

To my parents,
for the gift of an education,

and the example of a work ethic.
--W.R.S.

Contents

Preface

Chapter 1.

1.1
1.2
1.3
1.4
1.5
1.6
1,7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15

Chapter 2.

2,1
2,2
2.3
2.4
2.5
2.6

Introduction
Introduction 1
Source Code Presentation 1
History 3
Application Programming Interfaces 5
Example Program 5
System Calls and Library Functions 7
Network Implementation Overview 9
Descriptors 10
Mbufs (Memory Buffers) and Output Processing
Input Processing 19
Network Implementation Overview Revisited
Interrupt Levels and Concurrency 23
Source Code Organization 26
Test Network 28
Summary 29

22

Mbufs: Memory Buffers

Introduction 31
Code Introduction 36
Mbuf Definitions 37
mbu~ Structure 38
Simple Mbuf Macros and Functions
~_devgeL and ~_pu~_~_up Functions

40
44

15

xix

1

31

Jx

x TCP/IP Illustrated Contents

2.7
2.8
2.9
2.10
2.11

Chapter 3.

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3,12
3.13

Summary of Mbuf Macros and Functions 51
Summary of Net/3 Networking Data Structures
re_copy and Cluster Reference Counts 56
Alternatives 60
Summary 60

Interface Layer
Introduction 63
Code Introduction 64
±fn÷~ Structure 65
ifaddr Structure 73
sockaddr Structure 74
ifneL and ifaddrSpecialization
Network Initialization Overview
Ethemet Initialization 80
SLIP Initialization 82
Loopback Initialization 85
i f_aLLach Function 85
4. finit Function 93
Summary 94

Chapter 4. Interfaces: Ethernet

4.1 Introduction 95
4.2 Code Introduction 96
4.3 Ethernet Interface 98
4.4 ioctl System Call 114
4.5 Summary 125

Chapter 5.
5.1
5.2
5.3
5.4
5.5

Chapter 6.

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

77
76

Interfaces: SLIP and Loopback

Introduction 127
Code Introduction 127
SLIP Interface 128
Loopback Interface 150
Summary 153

IP Addressing

Introduction 155
Code Introduction 158
Interface and Address Summary
sockaddr_in Structure 160
±n_± faddr Structure 161
Address Assignment 161
Interface ±ocL1 Processing 177
Internet Utility Functions 181
ifneL Utility Functions 182
Summary 183

158

54

63

95

127

155

TCP/IP Illustrated Contents xi

Chapter 7.
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10

Chapter 8.
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10

Chapter 9.

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11

Chapter 10.

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

Domains and Protocols
Introduction 185
Code Introduction 186
doma±n Structure 187
proLosw Structure 188
IP doraa±n and proLosw Structures 191
pff±nd#roLo and #ff±ndLy#÷ Functions
#fcLl±~puL Function 198
IP Initialization 199
syscr_l System Call 201
Summary 204

196

IP: Internet Protocol
Introduction 205
Code Introduction 206
IP Packets 210
Input Processing: ±~i~L~ Function 212
Forwarding: ±~_~o~ward Function 220
Output Processing: ±#_ouLpuL Function 228
Internet Checksum: ±~_cksum Function 234
seLsockopL and getsockopt System Calls
i~_syscL1 Function 244
Summary 245

239

IP Option Processing
Introduction 247
Code Introduction 247
Option Format 248
±p_doopL±ons Function 249
Record Route Option 252
Source and Record Route Options
Timestamp Option 261
ip_inserLopLioms Function 265
ip_pcbopL s Function 269
Limitations 272
Summary 272

254

IP Fragmentation and Reassembly

Introduction 275
Code Introduction 277
Fragmentation 278
ip_opt copy Function 282
Reassembly 283
i#_reass Function 286
ip_slowLimo Function 298
Summary 300

185

205

247

275

xii TCP/IP Illustrated Contents

Chapter 11

11.1
11.2
11.3
11.4
11.5
11.6
11.7.
11.8
11.9
11.10
11.11
11.12
11.13
11.14
11.15

Chapter 12.

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10
12.11
12.12
12.13
12.14
12.15
12.16
12.17

Chapter 13.

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9

ICMP: Internet Control Message Protocol

Introduction 301
Code Introduction 305
±crop Structure 308
ICMP protosw Structure 309
Input Processing: ±cm~_±n~ut Function 310
Error Processing 313
Request Processing 316
Redirect Processing 321
Reply Processing 323
Output Processing 324
icmp_error Function 324
icmp_ref lect Function 328
icmp_send Function 333
icmp_sysct l Function 334
Summary 335

IP Multicasting

Introduction 337
Code Introduction 340
Ethernet Multicast Addresses 341
ether_multi Structure 342
Ethernet Multicast Reception 344
in_multi Structure 345
i~_mopt ions Structure 347
Multicast Socket Options 348
Multicast TTL Values 348
ip_seLmopLions Function 351
Joining an IP Multicast Group 355
Leaving an IP Multicast Group 366
ip_geLmopLions Function 371
Multicast Input Processing: i~intr Function 373
Multicast Output Processing: ip_ouLpuL Function
Performance Considerations 379
Summary 379

IGMP: Internet Group Management Protocol

Introduction 381
Code Introduction 382
igmp Structure 384
IGMP #rotosw Structure 384
Joining a Group: ±gm~_joingrou# Function
igmp_fasL Limo Function 387
Input Processing: igmp_input Function 391
Leaving a Group: igmp_leavegroup Function
Summary 396

375

386

395

301

337

381

TCP/IP Illustrated Contents xiii

Chapter 14.

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9
14.10

Chapter 15.

15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9
15.10
15.11
15.12
15.13
15.14
15.15
15.16

Chapter 16.

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9
16.10
16.11
16.12
16.13
16.14

IP Multicast Routing

Introduction 397
Code Introduction 398
Multicast Output Processing Revisited 399
mrouted Daemon 401
Virtual Interfaces 404
IGMP Revisited 411
Multicast Routing 416
Multicast Forwarding: ±p_m£orward Function
Cleanup: ip_mroute~_done Function 433
Summary 434

424

Socket Layer

Introduction 435
Code Introduction 436
soek÷L Structure 437
System Calls 441
Processes, Descriptors, and Sockets
soekeL System Call 447
getsock and sockargs Functions
bind System Call 453
!±sLen System Call 455
Lsleep and wakeup Functions 456
accept System Call 457
sonewconn and soisconnecLed Functions
connect System call 464
shutdown System Call 468
close System Call 471
Summary 474

445

451

461

Socket I/0

Introduction 475
Code Introduction 475
Socket Buffers 476
write, writev, sendto, and sendmsg System Calls
sendmsg System Call 483
sendit Function 485
sosend Function 489
read, readv, recvfrom, and recvmsg System Calls
recvmsg System Call 501
recvit Function 503
soreceive Function 505
soreceive Code 510
select System Call 524
Summary 534

480

5OO

397

435

475

xiv TCP/IP Illustrated Contents

Chapter 17.

17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8

Chapter 18.

18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9
18.10
18,11
18.12

Chapter 19.

19,1
19,2
19.3
19,4
19.5
19,6
19.7
19.8
19.9
19.10
19.11
19.12
19.13
19.14
19.15
19.16
19.17

Chapter 20.

20,1
20.2
20.3

Socket Options

Introduction 537
Code Introduction 538
s÷LsockopL System Call 539
g÷LsockopL System Call 545
fcnL1 and ±ceLl System Calls
geLsockname System Call 554
g÷Lpeername System Call 554
Summary 557

548

Radix Tree Routing Tables

Introduction 559
Routing Table Structure 560
Routing Sockets 569
Code Introduction 570
Radix Node Data Structures 573
Routing Structures 578
Initialization: route_init and rtable_init Functions
Initialization: rn_init and rn_inithead Functions
Duplicate Keys and Mask Lists 587
rn_maL ch Function 591
rn_search Function 599
Summary 599

Routing Requests and Routing Messages

Introduction 601
rtalloc and rtallocl Functions 601
RTFRSE Macro and rLfree Function 604
rLrequesL Function 607
rL_seLgaLe Function 612
rLiniL Function 615
rLredirecL Function 617
Routing Message Structures 621
rt_missmsg Function 625
rt_ifmsg Function 627
rt_newaddrmsg Function 628
rt_msgl Function 630
rL_msg2 Function 632
syscL !_rLable Function 635
sysct l_dumpentry Function 640
sysctl_iflist Function 642
Summary 644

Routing Sockets

Introduction 645
rouLedomain and protosw Structures
Routing Control Blocks 647

646

581
584

537

559

601

645

TCP/IP Illustrated Contents xv

20.4
20.5
20.6
20.7
20.8
20.9
20.10
20.11
20.12

Chapter 21.
21.1
21.2
21.3
21.4
21.5
21.6
21.7
21.8
21.9
21.10
21.11
21.12
21.13
21.14
21.15

Chapter 22.

22.1
22.2
22.3
22.4
22.5
22.6
22.7
22.8
22.9
22.10
22.11
22.12
22.13

Chapter 23.

23.1
23.2
23.3

raw_init Function 647
route_output Function 648
r t_xaddrs Function 660
rt_setmetrics Function 661
raw_input Function 662
route_usrreq Function 664
raw_usrreq Function 666
raw_attach, raw_detach, and raw_disconnect Functions
Summary 672

ARP: Address Resolution Protocol
Introduction 675
ARP and the Routing Table 675
Code Introduction 678
ARP Structures 681
arpwhohas Function 683
arprequest Function 684
arpintr Function 687
in_arpinput Function 688
ARP Timer Functions 694
arpresolve Function 696
arplookup Function 701
Proxy ARP 703
arp_rtrequest Function 704
ARP and Multicasting 710
Summary 711

Protocol Control Blocks
Introduction 713
Code Introduction 715
inpcb Structure 716
in_pcballoc and in~cbdeLach Functions 717
Binding, Connecting, and Demultipiexing 719
in_pcblookup Function 724
in_pcbbind Function 728
in_pcbconnecL Function 735
in_pcbdisconnecL Function 741
in_setsockaddr and in_setpeeraddr Functions 741
in_pcbnotify, in_rtchange, and in_losing Functions
Implementation Refinements 750
Summary 751

UDP: User Datagram Protocol
Introduction 755
Code Introduction 755
UDP protosw Structure 758

671

675

713

742

755

xvi TCP/IP Illustrated Contents

23.4
23.5
23.6
23.7
23.8
23.9
23.10
23.11
23.12
23.13

Chapter 24.

24.1
24.2
24.3
24.4
24.5
24.6
24.7
24.8
24.9

Chapter 25.

25.1
25.2
25.3
25.4
25.5
25.6
25.7
25.8
25.9
25.10
25.11
25.12
25.13

Chapter 26.

26.1
26.2
26.3
26.4
26.5
26.6
26.7
26.8
26.9
26.10

UDP Header 759
udp_init Function 760
udp_output Function 760
udp_input Function 769
udp_saveopt Function 781
udp_cL linpuL Function 782
udp_usrreq Function 784
ud~)_sysct 1 Function 790
Implementation Refinements 791
Summary 793

TCP: Transmission Control Protocol

Introduction 795
Code Introduction 795
TCP toroLosw Structure 801
TCP Header 801
TCP Control Block 803
TCP State Transition Diagram 805
TCP Sequence Numbers 807
tcp_init Function 812
Summary 815

TCP Timers
Introduction 817
Code Introduction 819
tcp_cancelLimers Function 821
Lcp_fasLLimo Function 821
tcm_slowLimo Function 822
Lcp_Limers Function 824.
Retransmission Timer Calculations 831
tcp_newt cpcb Function 833
tcp_setpersist Function 835
L cp_xmiL_L imer Function 836
Retransmission Timeout: top_timers Function
An RTT Example 846
Summary 848

TCP Output

Introduction 851
tc~_ouLput Overview 852
Determine if a Segment Should be Sent
TCP Qptions 864
Window Scale Option 866
Timestamp Option 866
Send a Segment 871
Lcp_LemplaLe Function 884
tcp_respond Function 885
Summary 888

852

841

795

817

851

TCP/IP Illustrated Contents xvii

Chapter 27.

27.1
27.2
27.3
27.4
27.5
27.6
27.7
27.8
27.9
27.10
27.11

Chapter 28.

28.1
28.2
28.3
28.4
28.5
28.6
28.7
28.8
28.9
28.10
28.11
28.12

Chapter 29.

29.1
29.2
29.3
29.4
29.5
29.6
29.7
29.8
29.9
29.10
29.11
29.12
29.13
29.14

Chapter 30.

30.1
30.2
30.3
30.4

TCP Functions
Introduction 891
Lcp_d~:a±n Function 892
Lcp_d~:o;) Function 892
Lc]9_c]_ose Function 893
Lc;)_mss Function 897
Lclo_C L]_ ±nlouL Function 904
Lclb_noL ± :[y Function 904
Leap_quench Function 906
<rCP_RSASS Macro and Lcp_z:eass Function
Lcp_L~-ace Function 916
Summary 920

906

TCP Input

Introduction 923
Preliminary Processing 925
tcp_dooptions Function 933
Header Prediction 934
TCP Input: Slow Path Processing 941
Initiation of Passive Open, Completion of Active Open
PAWS: Protection Against Wrapped Sequence Numbers
Trim Segment so Data is Within Window 954
Self-Connects and Simultaneous Opens 960
Record Timestamp 963
RST Processing 963
Summary 965

TCP Input (Continued)

Introduction 967
ACK Processing Overview 967
Completion of Passive Opens and Simultaneous Opens
Fast Retransmit and Fast Recovery Algorithms 970
ACK Processing 974
Update Window Information 981
Urgent Mode Processing 983
Lcp_pul louLo fband Function 986
Processing of Received Data 988
FIN Processing 990
Final Processing 992
Implementation Refinements 994
Header Compression 995
Summary 1004

TCP User Requests

Introduction 1007
tcp_usz:~:eq Function 1007
tcp_at Lach Function 1018
tcp_disconnect Function 1019

942
951

967

891

923

967

1007

xviii TCP/IP Illustrated Contents

30.5
30.6
30.7

Chapter 31,

31.1
31.2
31.3
31.4
31.5
31.6
31.7

tcp_usrclosed Function
tcp_ctloutput Function
Summary 1025

1021
1022

BPF: BSD Packet Filter
Introduction 1027
Code Introduction 1028
bpf_i f Structure 1029
bpf_d Structure 1032
BPF Input 1040
BPF Output 1046
Summary 1047

Chapter 32. Flaw IP

32.1 Introduction 1049
32.2 Code Introduction 1050
32.3 Raw IP protosw Structure 1051
32.4 rip_init Function 1053
32.5 rip_input Function 1053
32.6 rile_out!out Function 1056
32.7 rip_usrreq Function 1058
32.8 rip_eL lout#ut: Function 1063
32.9 Summary 1065

Epilogue

Appendix A.

Appendix B.

Appendix C.
C.1
C.2
C.3
C.4
C.5
C.6
C.7
C.8
C.9
C.10
C.11

Bibliography

Index

Solutions to Selected Exercises

Source Code Availability

RFC 1122 Compliance

Link-Layer Requirements 1097
IP Requirements 1098
IP Options Requirements 1102
IP Fragmentation and Reassembly Requirements
ICMP Requirements 1105
Multicasting Requirements 1110
IGMP Requirements 1111
Routing Requirements 1111
ARP Requirements 1113
UDP Requirements 1 t 13
TCP Requirements 1115

1104

1027

1049

1067

1069

1093

1097

1125

1133

Preface

Introduction

This book describes and presents the source code for the common reference implemen-
tation of TCP/IP: the implementation from the Computer Systems Research Group
(CSRG) at the University of California at Berkeley. Historically this has been distributed
with the 4.x BSD system (Berkeley Software Distribution). This implementation was
first released in 1982 and has survived many significant changes, much fine tuning, and
numerous ports to other Unix and non-Unix systems. This is not a toy implementation,
but the foundation for TCP/IP implementations that are run daily on hundreds of thou-
sands of systems worldwide. This implementation also provides router functionality,
letting us show the differences between a host implementation of TCP/IP and a router.

We describe the implementation and present the entire source code for the kernel
implementation of TCP/IP, approximately 15,000 lines of C code. The version of the
Berkeley code described in this text is the 4.4BSD-Lite release. This code was made pub-
licly available in April 1994, and it contains numerous networking enhancements that
were added to the 4.3BSD Tahoe release in 1988, the 4.3BSD Reno release in 1990, and
the 4.4BSD release in 1993. (Appendix B describes how to obtain this source code.) The
4.4BSD release provides the latest TCP/IP features, such as multicasting and long fat
pipe support (for high-bandwidth, long-delay paths). Figure 1.1 (p. 4) provides addi-
tional details of the various releases of the Berkeley networking code.

This book is intended for anyone wishing to understand how the TCP/IP protocols
are implemented: programmers writing network applications, system administrators
responsible for maintaining computer systems and networks utilizing TCP/IP, and any
programmer interested in understanding how a large body of nontrivial code fits into a
real operating system.

xix

xx TCP/IP Illustrated Preface

Organization of the Book

The following figure shows the various protocols and subsystems that are covered. The
italic numbers by each box indicate the chapters in which that topic is described.

Chap. 2 7 15, 16, 17 22

24, 25, 26
23 27, 28, 29, 30 32

18, 19, 20 14

~L~ta~3, 4, 5

media

We take a bottom-up approach to the TCP/IP protocol suite, starting at the data-link
layer, then the network layer (IP, ICMP, IGMP, IP routing, and multicast routing), fol-
lowed by the socket layer, and finishing with the transport layer (UDP, TCP, and raw
IP).

Intended Audience

This book assumes a basic understanding of how the TCP/IP protocols work. Readers
unfamiliar with TCP/IP should consult the first volume in this series, [Stevens 1994],
for a thorough description of the TCP/IP protocol suite. This earlier volume is referred
to throughout the current text as Volume 1. The current text also assumes a basic under-
standing of operating system principles.

We describe the implementation of the protocols using a data-structures approach.
That is, in addition to the source code presentation, each chapter contains pictures and
descriptions of the data structures used and maintained by the source code. We show
how these data structures fit into the other data structures used by TCP/IP and the ker-
nel. Heavy .use is made of diagrams throughout the text--there are over 250 diagrams.

This data-structures approach allows readers to use the book in various ways.
Those interested in all the implementation details can read the entire text from start to
finish, following through all the source code. Others might want to understand how the

TCP/IP Illustrated Preface xxi

protocols are implemented by understanding all the data structures and reading all the
text, but not following through all the source code.

We anticipate that many readers are interested in specific portions of the book and
will want to go directly to those chapters. Therefore many forward and backward refer-
ences are provided throughout the text, along with a thorough index, to allow individ-
ual chapters to be studied by themselves. The inside back covers contain an
alphabetical cross-reference of all the functions and macros described in the book and
the starting page number of the description. Exercises are provided at the end of the
chapters; most solutions are in Appendix A to maximize the usefulness of the text as a
self-study reference.

Source Code Copyright

All of the source code presented in this book, other than Figures 1.2 and 8.27, is from the
4o4BSD-Lite distribution. This software is publicly available through many sources
(Appendix B).

All of this source code contains the following copyright notice.

* Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994
* The Regents of the University of California. All rights reserved.

* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* I. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.

* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ~’AS IS’’ AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.

xxii TCP/IP Illustrated Preface

Acknowledgments

We thank the technical reviewers who read the manuscript and provided important
feedback on a tight timetable: Ragnvald Blindheim, Jon Crowcroft, Sally Floyd, Glen
Glater, John Gulbenkian, Don Hering, Mukesh Kacker, Berry Kercheval, Brian W.
Kemighan, Ulf Kieber, Mark Laubach, Steven McCanne, Craig Partridge, Vern Paxson,
Steve Rago, Chakravardhi Ravi, Peter Salus, Doug Schmidt, Keith Sklower, Ian Lance
Taylor, and G. N. Ananda Vardhana. A special thanks’ to the consulting editor, Brian
Kernighan, for his rapid, thorough, and helpful reviews throughout the course of the
project, and for his continued encouragement and support.

Our thanks (again) to the National Optical Astronomy Observatories (NOAO),
especially Sidney Wolff, Richard Wolff, and Steve Grandi, for providing access to their
networks and hosts. Our thanks also to the U.C. Berkeley CSRG: Keith Bostic and Kirk
McKusick provided access to the latest 4.4BSD system, and Keith Sklower provided the
modifications to the 4.4BSD-Lite software to run under BSD/386 V1ol.

G.R.W. wishes to thank John Wait, for several years of gentle prodding; Dave
Schaller, for his encouragement; and Jim Hogue, for his support during the writing and
production of this book.

W.R.S. thanks his family, once again, for enduring another "small" book project.
Thank you Sally, Bill, Ellen, and David.

The hardwork, professionalism, and support of the team at Addison-Wesley has
made the authors’ job that much easier. In particular, we wish to thank John Wait for
his guidance and Kim Dawley for her creative ideas.

Camera-ready copy of the book was produced by the authors. It is only fitting that
a book describing an industrial-strength software system be produced with an indus-
trial-strength text processing system. Therefore one of the authors chose to use the
Groff package written by James Clark, and the other author agreed begrudgingly.

We welcome electronic mail from any readers with comments, suggestions, or bug
fixes: tcp±p±v2-book@aw, cora. Each author will gladly blame the other for any
remaining errors.

Gary R. Wright
http : //www. connix, com/~gwright
Middletown, Connecticut

November 1994

W. Richard Stevens
http : //www. noao. edu/~rstevens

Tucson, Arizona

Introduction

1.1 Introduction

This chapter provides an introduction to the Berkeley networking code. We start with a
description of the source code presentation and the various typographical conventions
used throughout the text. A quick history of the various releases of the code then lets us
see where the source code shown in this book fits in. This is followed by a description
of the two predominant programming interfaces used under both Unix and non-Unix
systems to write programs that use the TCP/IP protocols.

We then show a simple user program that sends a UDP datagram to the daytime
server on another host on the local area network, causing the server to return a UDP
datagram with the current time and date on the server as a string of ASCII text. We fol-
low the datagram sent by the process all the way down the protocol stack to the device
driver, and then follow the reply received from server all the way up the protocol stack
to the process. This trivial example lets us introduce many of the kernel data structures
and concepts that are described in detail in later chapters.

The chapter finishes with a look at the organization of the source code that is pre-
sented in the book and a review of where the networking code fits in the overall organi-
zation.

1.2 Source Code Presentation

Presenting 15,000 lines of source code, regardless of the topic, is a challenge in itself.
The following format is used for all the source code in the text:

1

2 Introduction Chapter 1

381 void tcp_subnc
382 tcp_quench(inp, errno)
383 struct inpcb *inp;
384 int errno;
385 {
386 struct tcpcb *tp : intotcpcb(inp);

387 if (tp)
388 tp->snd_cwnd = tp->t_maxseg;
389

tcp_subr.c

387--388

Set congestion window to one segment
This is the tcp_quench function from the file tcp_subr, c. These source file-

names refer to files in the 4.4BSD-Lite distribution, which we describe in Section] 1.13.
Each nonblank line is numbered. The text describing portions of the code begins with
the starting and ending line numbers in the left margin, as shown with this paragraph.
Sometimes the paragraph is preceded by a short descriptive heading, providing a sum-
mary statement of the code being described.

The source code has been left as is from the 4.4BSD-Lite distribution, including
occasional bugs, which we note and discuss when encountered, and occasional editorial
comments from the original authors. The code has been run through the GNU Indent
program to provide consistency in appearance. The tab stops have been set to four-
column boundaries to allow the lines to fit on a page. Some #ifdef statements and
their corresponding #endif have been removed when the constant is always defined
(e.g., GATEWAY and MROUTING, since we assume the system is operating as a router and
as a multicast router). All register specifiers have been removed. Sometimes a com-
ment has been added and typographical errors in the comments have been fixed, but
otherwise the code has been left alone.

The functions vary in size from a few lines (tcp_quench shown earlier) to
tcp_inl~ut, which is the biggest at 1100 lines. Functions that exceed about 40 lines are
normally broken into pieces, which are shown one after the other. Every attempt is
made to place the code and its accompanying description on the same page or on facing
pages, but this isn’t always possible without wasting a large amount of paper.

Many cross-references are provided to other functions that are described in the text.
To avoid appending both a figure number and a page number to each reference, the
inside back covers contain an alphabetical cross-reference of all the functions and
macros described in the book, and the starting page number of the description. Since
the ~ource code in the book is taken from the publicly available 4.4BSD-Lite release, you
can easily obtain a copy: Appendix B details various ways. Sometimes it helps to have
an on-line copy to search through [e.g., with the Unix grelo(1) program] as you follow
the text.

Each chapter that describes a source code module normally begins with a listing of
the source files being described, followed by the global variables, the relevant statistics
maintained by the code, some sample statistics from an actual system, and finally the
SNMP variables related to the protocol being described. The global variables are often

Section 1.3 History 3

defined across various source files and headers, so we collect them in one table for easy
reference. Showing all the statistics at this point simplifies the later discussion of the
code when the statistics are updated. Chapter 25 of Volume I provides all the details on
SNMP. Our interest in this text is in the information maintained by the TCP/IP routines
in the kernel to support an SNMP agent running on the system.

Typographical Conventions

In the figures throughout the text we use a constant-width font for variable names and
the names of structure members (m_next), a slanted constant-width font for names that
are defined constants (NULL) or constant values (522), and a bold constant-width font
with braces for structure names (mbuf { }). Here is an example:

mbuf { }
m_next ~ NULL
m_len / 512

In tables we use a constant-width font for variable names and the names of struc-
ture members, and the slanted constant-width font for the names of defined constants.
Here is an example:

Im_f lags Description

M_BCAST sent/received as link-level broadcast

We normally show all #define symbols this way. We show the value of the symbol if
necessary (the value of M_BCAST is irrelevant) and sort the symbols alphabetically,
unless some other ordering makes sense.

Throughout the text we’ll use indented, parenthetical notes such as this to describe historical
points or implementation minutae.

We refer to Unix commands using the name of the command followed by a number
in parentheses, as in grep(1). The number in parentheses is the section number in the
4.4BSD manual of the "manual page" for the command, where additional information
can be located.

-1.3 History

This book describes the common reference implementation of TCP/IP from the Com-
puter Systems Research Group at the University of California at Berkeley. Historically
this has been distributed with the 4.x BSD system (Berkeley Software Distribution) and
with the "BSD Networking Releases." This source code has been the starting point for
many other implementations, both for Unix and non-Unix operating systems.

Figure 1.1 shows a chronology of the various BSD releases, indicating the important
TCP/IP features. The releases shown on the left side are publicly available source code
releases containing all of the networking code: the protocols themselves, the kernel

4 Introduction Chapter i

BSD Networking Software
Release 1.0 (1989): Net/1

BSD Networking Software
Release 2.0 (1991): Net/2

4.4BSD-Lite (1994)
referred to in text as Net!3

4.2BSD (1983)
first widely available

release of TCP/IP

4.3BSD (1986)
TCP performance improvements

4.3BSD Tahoe (1988)
slow start,

congestion avoidance,
fast retransmit

4.3BSD Reno (1990)
fast recovery,

TCP header prediction,
SLIP header compression,

routing table changes

4.4BSD (1993)
multicasting,

long fat pipe modifications

Figure 1.1 Various BSD releases with important TCP/IP features.

routines for the networking interface, and many of the applications and utilities (such as
Telnet and FTP).

Although the official name of the software described in this text is the 4.4BSD-Lite
distribution, we’ll refer to it simply as Net/3.

While the source code is distributed by U. C. Berkeley and is called the Berkeley Soft-
ware Distribution, the TCP/IP code is really the merger and consolidation of the works
of various researchers, both at Berkeley and at other locations.

Throughout the text we’ll use the term Berkeley-derived implementation to refer to
vendor implementations such as SunOS 4.x, System V Release 4 (SVR4), and AIX 3.2,
whose TCP/IP code was originally developed from the Berkeley sources. These imple-
mentations have much in common, often including the same bugs!

Not shown in Figure 1.1 is that the first release with the Berkeley networking code was actu-
ally 4.1cBSD in 1982. 4.2BSD, however, was the widely released version in 1983.

Section 1.5 Example Program

BSD releases prior to 4.1cBSD used a TCP/IP implementation developed at Bolt Beranek and
Newman (BBN) by Rob Gurwitz and Jack Haverty. Chapter 18 of [Salus 1994] provides addi-
tional details on the incorporation of the BBN code into 4.2BSD. Another influence on the
Berkeley TCP/IP code was the TCP/IP implementation done by Mike Muuss at the Ballistics
Research Lab for the PDP~11.

Limited documentation exists on the changes in the networking code from one release to the
next. [Karels and McKusick 1986] describe the changes from 4.2BSD to 4.3BSD, and [Jacobson
1990d] describes the changes from 4.3BSD Tahoe to 4.3BSD Reno.

1.4 Application Programming Interfaces

Two popular application programming interfaces (APIs) for writing programs to use the
Internet protocols are sockets and TLI (Transport Layer Interface). The former is some-
times called Berkeley sockets, since it was widely released with the 4.2BSD system (Fig-
ure 1.1). It has, however, been ported to many non-BSD Unix systems and many non-
Unix systems. The latter, originally developed by AT&T, is sometimes called XT!
(X/Open Transport Interface) in recognition of the work done by X/Open, an interna-
tional group of computer vendors who produce their own set of standards. XTI is effec-
tively a superset of TLI.

This is not a programming text, but we describe the sockets interface since sockets
are used by applications to access TCP/IP in Net/3 (and in all other BSD releases). The
sockets interface has also been implemented on a wide variety of non-Unix systems.
The programming details for both sockets and TLI are available in [Stevens 1990].

System V Release 4 (SVR4) also provides a sockets API for applications to use,
although the implementation differs from what we present in this text. Sockets in SVR4
are based on the "streams" subsystem that is described in [Rago 1993].

1.5 Example Program

We’ll use the simple C program shown in Figure 1.2 to introduce many features of the
BSD networking implementation in this chapter.

i /*
2 * Send a UDP datagram to the daytime server on some other host,
3 * read the reply, and print the time and date on the server.
4 */

5 #include <sys/types.h>
6 #include <sys/socket.h>
7 #include <netinet/in.h>
8 #include <arpa/inet.h>
9 #include <stdio.h>

10 #include <stdlib.h>
ii #include <string.h>

12 #define BUFFSIZE 150 /* arbitrary size */

6 Introduction Chapter i

13 int
14 main()
15 {
16 struct sockaddr_in serv;
17 char buff[BUFFSIZE];
18 int sockfd, n;

19 if ((sockfd := socket(PF_INET, SOCK_DGRAM, 0)) < 0)
20 err_sys("socket error");

21
22
23
24

25
26
27

28
29
30
31
32

bzero((char *) &serv, sizeof(serv));
serv.sin_family = AF_INET;
serv.sin_addr.s_addr = inet_addr("140.252.1.32");
serv.sin~Dort = htons(13);

if (sendto(sockfd, buff, BUFFSIZE, 0,
(struct sockaddr *) &serv, sizeof(serv))

err_sys("sendto error");

if ((n = recvfrom(sockfd, buff, BUFFSIZE, 0,
(struct sockaddr *) NULL, (int

err_sys("recvfrom error");
buff[n - 2] = 0; /* null terminate */
printf("%s\n", buff);

33 exit(O);
34]

!= BUFFSIZE)

*) NULL)) < 2)

Figure 1.2 Example program: send a datagram to the UDP daytime server and read a response.

19--20

21--24

Create a datagram socket

socket creates a UDP socket and returns a descriptor to the process, which is
stored in the variable sockfd. The error-handling function err_sys is shown in
Appendix B.2 of [Stevens 1992]. It accepts any number of arguments, formats them
using vsprint f, prints the Unix error message corresponding to the errno value from
the system call, and then terminates the process.

We’ve now used the term socket in three different ways. (1) The API developed for 4.2BSD to
allow programs to access the networking protocols is normally called the sockets API or just the
sockets interface. (2) socket is the name of a function in the sockets API. (3) We refer to the
end point created by the call to socket as a socket, as in the comment "create a datagram
socket."

Unfortunately, there are still more uses of the term socket. (4) The return value from the
socket function is called a socket descriptor or just a socket. (5) The Berkeley implementation of
the networking protocols within the kernel is called the sockets implementation, compared to the
System V streams implementation, for example. (6) The combination of an IP address and a
port number is often called a socket, and a pair of IP addresses and port numbers is called a
socket pair. Fortunately, it is usually obvious from the discussion what the term socket refers to.

Fill in sockaddr_in structure with server’s address

An Internet socket address structure (sockaddr_in) is filled in with the IF address
(140.252.1.32) and port number (13) of the daytime server. Port number 13 is the stan-
dard Internet daytime server, provided by most TCP/IP implementations [Stevens 1994,

Section 1.6 System Calls and Library Functions 7

25--27

28--32

Fig. 1.9]. Our choice of the server host is arbitrary--we just picked a local host (Fig-
ure 1.17) that provides the service.

The function inet_addr takes an ASCII character string representing a
dotted-decimal IP address and converts it into a 32-bit binary integer in the network byte
order. (The network byte order for the Internet protocol suite is big endian. [Stevens
1990, Chap. 4] discusses host and network byte order, and little versus big endian.) The
function htons takes a short integer in the host byte order (which could be little endian
or big endian) and converts it into the network byte order (big endian). On a system
such as a Sparc, which uses big endian format for integers, htons is typically a macro
that does nothing. In BSD/386, however, on the little endian 80386, h~ons can be either
a macro or a function that swaps the 2 bytes in a 16-bit integer.
Send datagram to server

The program then calls sendto, which sends a 150-byte datagram to the server.
The contents of the 150-byte buffer are indeterminate since it is an uninitialized array
allocated on the run-time stack, but that’s OK for this example because the server never
looks at the contents of the datagram that it receives. When the server receives a
datagram it sends a reply to the client. The reply contains the current time and date on
the server in a human-readable format.

Our choice of 150 bytes for the client’s datagram is arbitrary. We purposely pick a
value greater than 100 and less than 208 to show the use of an mbuf chain later in this
chapter. We also want a value less than 1472 to avoid fragmentation on an Ethernet.

Read datagram returned by server
The program reads the datagram that the server sends back by calling recvfrom.

Unix servers typically send back a 26-byte string of the form

Sat Dec ii 11:28:05 1993\r\n

where \r is an ASCII carriage return and \n is an ASCII linefeed. Our program over-
writes the carriage return with a null byte and calls printf to output the result.

We go into lots of detail about various parts of this example in this and later chap-
ters as we examine the implementation of the functions socket, sendto, and
recvfrom.

1.6 System Calls and Library Functions

All operating systems provide service points through which programs request services
from the kernel. All variants of Unix provide a well-defined, limited number of kernel
entry points known as system calls. We cannot change the system calls unless we have
the kernel source code. Unix Version 7 provided about 50 system calls, 4.4BSD provides
about 135, and SVR4 has around 120.

The system call interface is documented in Section 2 of the Unix Programmer’s Man-
ual. Its definition is in the C language, regardless of how system calls are invoked on
any given system.

8 Introduction Chapter 1

The Unix technique is for each system call to have a function of the same name in
the standard C library. An application calls this function, using the standard C calling
sequence. This function then invokes the appropriate kernel service, using whatever
technique is required on the system. For example, the function may put one or more of
the C arguments into general registers and then execute some machine instruction that
generates a software interrupt into the kernel. For our purposes, we can consider the
system calls to be C functions.

Section 3 of the Unix Programmer’s Manual defines the general purpose functions
available to programmers. These functions are not entry points into the kernel,
although they may invoke one or more of the kernel’s system calls. For example, the
printf function may invoke the write system call to perform the output, but the
functions strcpy (copy a string) and atoi (convert ASCII to integer) don’t involve the
operating system at all.

From an implementor’s point of view, the distinction between a system call and a
library function is fundamental. From a user’s perspective, however, the difference is
not as critical. For example, if we run Figure 1.2 under 4.4BSD, when the program calls
the three functions socket, sendto, and recvfrom, each ends up calling a function of
the same name within the kernel. We show the BSD kernel implementation of these
three system calls later in the text.

If we run the program under SVR4, where the socket functions are in a user library
that calls the "streams" subsystem, the interaction of these three functions with the ker-
nel is completely different. Under SVR4 the call to socket ends up invoking the ker-
nel’s open system call for the file /dev/udp and then pushes the streams module
sockmod onto the resulting stream. The call to sendto results in a putmsg system call,
and the call to recvfrom results in a getmsg system call. These SVR4 details are not
critical in this text. We want to point out only that the implementation can be totally
different while providing the same API to the application.

This difference in implementation technique also accounts for the manual page for
the socket function appearing in Section 2 of the 4.4BSD manual but in Section 3n (the
letter n stands for the networking subsection of Section 3) of the SVR4 manuals.

Finally, the implementation technique can change from one release to the next. For
example, in Net/1 send and sendto were implemented as separate system calls within
the kernel. In Net/3, however, send is a library function that calls sendto, which is a
system call:

send(int s, char *msg, int len, int flags)
{

return(sendto(s, msg, len, flags, (struct sockaddr *) NULL, 0)) ;

}

The advantage in implementing send as a library function that just calls sendto is a
reduction in the number of system calls and in the amount of code within the kernel.
The disadvantage is the additional overhead of one more function call for the process
that calls send.

Since this text describes the Berkeley implementation of TCP/IP, most of the func-
tions called by the process (socket, bind, connect, etc.) are implemented directly in
the kernel as system calls.

Section 1.7 Network Implementation Overview 9

1.7 Network Implementation Overview

Net/3 provides a general purpose infrastructure capable of simultaneously supporting
multiple communication protocols. Indeed, 4.4BSD supports four distinct communica-
tion protocol families:

o

TCP/IP (the Internet protocol suite), the topic of this book.

XNS (Xerox Network Systems), a protocol suite that is similar to TCP/IP; it was
popular in the mid-1980s for connecting Xerox hardware (such as printers and
file servers), often using an Ethernet. Although the code is still distributed with
Net/3, few people use this protocol suite today, and many vendors who use the
Berkeley TCP/IP code remove the XNS code (so they don’t have to support it).

The OSI protocols [Rose 1990; Piscitello and Chapin 1993]. These protocols were
designed during the 1980s as the ultimate in open-systems technology, to
replace all other communication protocols. Their appeal waned during the
early 1990s, and as of this writing their use in real networks is minimal. Their
place in history is still to be determined.
The Unix domain protocols. These do not form a true protocol suite in the sense
of communication protocols used to exchange information between different
systems, but are provided as a form of interprocess communication (IPC).

The advantage in using the Unix domain protocols for IPC between two pro-
cesses on the same host, versus other forms of IPC such as System V message
queues [Stevens 1990], is that the Unix domain protocols are accessed using the
same API (sockets) as are the other three communication protocols. Message
queues, on the other hand, and most other forms of IPC, have an API that is
completely different from both sockets and TLI. Having IPC between two pro-
cesses on the same host use the networking API makes it easy to migrate a
client-server application from one host to many hosts. Two different protocols
are provided in the Unix domain--a reliable, connection-oriented, byte-stream
protocol that looks like TCP, and an unreliable, connectionless, datagram proto-
col that looks like UDP.

Although the Unix domain protocols can be used as a form of IPC between two processes on
the same host, these processes could also use TCP/IP to communicate with each other. There
is no requirement that processes communicating using the Internet protocols reside on differ-
ent hosts.

The networking code in the kernel is organized into three layers, as shown in Fig-
ure 1.3. On the right side of this figure we note where the seven layers of the OSI refer-
ence model [Piscitello and Chapin 1994] fit in the BSD organization.

The socket layer is a protocol-independent interface to the protocol-dependent
layer below. All system calls start at the protocol-independent socket layer. For
example, the protocol-independent code in the socket layer for the b±ncl system
call comprises a few dozen lines of code: these verify that the first argument is a

10 Introduction Chapter i

7: application
process 6: presentation

5: session

callsT(socket, k~±nd, connect, etc.)system

socket layer

protocol layer
(TCP/IP, XNS, OSI, Unix)

interface layer
(Ethernet, SLIP, loopback, etc.)

media

4: transport
3: network

2: data link

1: physical

Figure 1.3 The general organization of networking code in Net/3.

valid socket descriptor and that the second argument is a valid pointer in the
process. The protocol-dependent code in the layer below is then called, which
might comprise hundreds of lines of code.

2. The protocol layer contains the implementation of the four protocol families that
we mentioned earlier (TCP/IP, XNS, OSI, and Unix domain). Each protocol
suite may have its own internal structure, which we don’t show in Figure 1.3.
For example, in the Internet protocol suite, IP is the lowest layer (the network
layer) with the two transport layers (TCP and UDP) above IP.

3. The interface layer contains the device drivers that communicate with the net-
work devices.

1.8 Descriptors

Figure 1.2 begins with a call to socket, specifying the type of socket desired. The com-
bination of the Internet protocol family (PF_TNET) and a datagram socket
($OCK_DGRAM) gives a socket whose protocol is UDP.

The return value from socket is a descriptor that shares all the properties of other
Unix descriptors: read and write can be called for the descriptor, you can dup it, it is
shared by the parent and child after a call to fork, its properties can be modified by
calling fcnt~L, it can be closed by calling c~_ose, and so on. We see in our example that
the socket descriptor is the first argument to both the sendto and recvfrorn functions.
When our program terminates (by calling exit), all open descriptors including the
socket descriptor are closed by the kernel.

Section 1.8 Descriptors

We now ~troduce the data structures that are created by the kernel when the pro-
cess calls socket. We describe these data structures in more detail in later chapters.

Everything starts with the process table entry for the process. One of these exists
for each process during its lifetime.

A descriptor is an index into an array within the process table entry for the process.
This array entry points to an open file table structure, which in turn points to an i-node
or v-node structure that describes the file. Figure 1.4 summarizes this relationship.

proc { ~]/

fdi --~

file{}

file{}

vnode{}

socket{}

Figure 1.4 Fundamental relationship between kernel data structures starting with a descriptor.

In this figure we also show a descriptor that refers to a socket, which is the focus of this
text. We place the notation proc { } above the process table entry, since its definition in
C is

struct proc {

andwe use this notation for structures in our figures throughout the text.
[Stevens 1992, Sec. 3.10] shows how the relationships between the descriptor, file

table structure, and i-node or v-node change as the process calls ctup and fork. The
relationships between these three data structures exists in all versions of Unix, although
the details change with different implementations. Our interest in this text is with the
socket structure and the Internet-specific data structures that it points to. But we need
to understand how a descriptor leads to a socket structure, since the socket system
calls start with a descriptor.

Figure 1.5 shows more details of the Net/3 data structures for our example pro-
gram, if the program is executed as

a. out

without redirecting standard input (descriptor 0), standard output (descriptor 1), or
standard error (descriptor 2). In this example, descriptors 0, 1, and 2 are connected to
our terminal, and the lowest-numbered unused descriptor is 3 when socket is called.

12 Introduction Chapter 1

udb :
inpcb{}

inp_next
inp_prev

inp_faddr
inp_fport
inp_laddr
inp_iport
inp_socket

soo_read
soo_write
soo_ioctl
soo_select
soo_close

inpcb{]
inp_next
inp_prev
inp_faddr
inp_fport
inp_laddr
inp_iport
inp_socket-

filedesc{}

fd_ofileflags-
fd_ofiles

char []
0
0
0

[3] : 0

fileops{}
fo_read
fo_write
fo_ioctl
fo_select
fo_close

socket{]

*file{} []
[o]
[i] :
[2] :
[3]:

file{]

f_ops
f_data
f_type DTYPE_SOCKET

so_type
so_pcb

SOCK_DGRAM

doubly linked circular list of all UDP
Int~rnet l~r~t6-c~l ~o~ffo~ l~16-cl~s - ~"

vn_read
vn write
vn ioctl
vn_select
vn_close

fileops{}
fo_read
fo_write
fo_ioctl
fo_select
fo_close

rhode{}

file{}

- f_ops
- f_data

f_type DTYPE_VIVODE

Figure 1.5 Kernel data structures after call to socket in example program.

Section 1.8 Descriptors 13

When a process executes a system call such as socket, the kernel has access to the
process table structure. The entry p_fd in this structure points to the f i ledesc struc-
ture for the process. There are two members of this structure that interest us now:
fd_ofileflags is a pointer to an array of characters (the per-descriptor flags for each
descriptor), and f d_o f i l es is a pointer to an array of pointers to file table structures.
The per-descriptor flags are 8 bits wide since only 2 bits can be set for any descriptor:
the close-on-exec flag and the mapped-from-device flag. We show all these flags as 0o

We purposely call this section "Descriptors" and not "File Descriptors" since Unix descriptors
can refer to lots of things other than files: sockets, pipes, directories, devices, and so on. Never-
theless, much of Unix literature uses the adjectiveJ~le when talking about descriptors, which is
an unnecessary qualification. Here the kernel data structure is called filedesc{ } even
though we’re about to describe socket descriptors. We’ll use the unqualified term descriptor
whenever possible.

The data structure pointed to by the fd_ofiles entry is shown as *file{ } []
since it is an array of pointers to file structures. The index into this array and the
array of descriptor flags is the nonnegative descriptor itself: 0, 1, 2, and so on. In Fig-
ure 1.5 we show the entries for descriptors 0, 1, and 2 pointing to the same file struc-
ture at the bottom of the figure (since all three descriptors refer to our terminal). The
entry for descriptor 3 points to a different f i 1 e structure for our socket descriptor.

The f_type member of the file structure specifies the descriptor type as either
DTYPE_SOCKET or DTYPE_VNODE. V-nodes are a general mechanism that allows the
kernel to support different types of filesystems--a disk filesystem, a network filesystem
(such as NFS), a filesystem on a CD-ROM, a memory-based filesystem, and so on. Our
interest in this text is not with v-nodes, since TCP/IP sockets always have a type of
DTYPE_SOCKET.

The f_data member of the file structure points to either a socket structure or a
rhode structure, depending on the type of descriptor. The f_ops member points to a
vector of five function pointers. These function pointers are used by the read, ready,
write, writer, ioctl, select, and close system calls, since these system calls
work with either a socket descriptor or a nonsocket descriptor. Rather than look at the
f_type value each time one of these system calls is invoked and then jump accord-
ingly, the implementors chose always to jump indirectly through the corresponding
entry in the f i 1 e ops structure instead.

Notationally we use a fixed-width font (fo_read) to show the name of a structure
member and a slanted fixed-width font (soo_read) to show the contents of a structure
member. Also note that sometimes we show the pointer to a structure arriving at the
top left corner (e.g., the filedesc structure) and sometimes at the top right corner
(e.g., both file structures and both fileops structures). This is to simplify the fig-
ures.

Next we come to the socket structure that is pointed to by the file structure
when the descriptor type is DTYPE_SOCKET. In our example, the socket type
(SOCK_DGRAM for a datagram socket) is stored in the so_type member. An Internet
protocol control block (PCB) is also allocated: an inpcb structure. The so_pcb member
of the socket structure points to the inpcb, and the inp_socket member of the

14 Introduction Chapter i

inpcb structure points to the socket structure. Each points to the other because the
activity for a given socket can occur from two directions: "above" or "below."

When the process executes a system call, such as sendto, the kernel starts with
the descriptor value and uses fd_ofiles to index into the vector of file
structure pointers, ending up with the file structure for the descriptor. The
f i 1 e structure points to the s o cke t structure, which points to the inpcb struc-
ture.

When a UDP datagram arrives on a network interface, the kernel searches
through all the UDP protocol control blocks to find the appropriate one, mini-
mally based on the destination UDP port number and perhaps the destination
IP address, source IP address, and source port numbers too. Once the inpcb
structure is located, the kernel finds the corresponding socket structure
through the inp_socket pointer.

The members inp_faddr and inp_laddr contain the foreign and local IP
addresses, and the members inp_fport and inp_iport contain the foreign and local
port numbers. The combination of the local IP address and the local port number is
often called a socket, as is the combination of the foreign IP address and the foreign port
number.

We show another inpcb structure with the name udb on the left in Figure 1.5. This
is a global structure that is the head of a linked list of all UDP PCBs. We show the two
members inp_next and inp_prev that form a doubly linked circular list of all UDP
PCBs. For notational simplicity in the figure, we show two parallel horizontal arrows
for the two links instead of trying to have the heads of the arrows going to the top cor-
ners of the PCBs. The inp_prev member of the inpcb structure on the right points to
the udb structure, not the inp_prev member of that structure. The dotted arrows from
udb. inp_prev and the inp_next member of the other PCB indicate that there may be
other PCBs on the doubly linked list that we don’t show.

We’ve looked at many kernel data structures in this section, most of which are
described further in later chapters. The key points to understand now are:

The call to socket by our process ends up allocating the lowest unused
descriptor (3 in our example). This descriptor is used by the process in all sub-
sequent system calls that refer to this socket.

The following kernel structures are allocated and linked together: a f i 1 e struc-
ture of type DTYPE_SOCKET, a socket structure, and an inpcb structure. Lots
of initialization is performed on these structures that we don’t show: the f i l e
structure is marked for read and write (since the call to socket always returns
a descriptor that can be read or written), the default sizes of the input and out-
put buffers are set in the socket structure, and so on.

We showed nonsocket descriptors for our standard input, output, and error to
show that all descriptors end up at a file structure, and it is from that point on
that differences appear between socket descriptors and other descriptors.

Section 1.9 Mbufs (Memory Buffers) and Output Processing

1.9 Mbufs (Memory Buffers) and Output Processing

A fundamental concept in the design of the Berkeley networking code is the memory
buffer, called an mbuf, used throughout the networking code to hold various pieces of
information. Our simple example (Figure 1.2) lets us examine some typical uses of
mbufs. In Chapter 2 we describe mbufs in more detail.

Mbuf Containing Socket Address Structure

In the call to s÷ndto, the fifth argument points to an Internet socket address structure
(named s÷rv) and the sixth argument specifies its length (which we’ll see later is 16
bytes). One of the first things done by the socket layer for this system call is to verify
that these arguments are valid (i.e., the pointer points to a piece of memory in the
address space of the process) and then copy the socket address structure into an mbuf.
Figure 1.6 shows the resulting mbuf.

128 b,

20 bytes

’tes

mbuf(}
m_next
m_nextpkt

m_len
m_data
m_type
m flags

NULL
NULL
16

MT_ SONAIVIE

o

16-byte sockaddr_in{ }
with destination IP address
and port number

Figure 1.6 Mbuf containing destination address for sendto.

The first 20 bytes of the mbuf is a header containing information about the mbuf.
This 20-byte header contains four 4-byte fields and two 2-byte fields. The total size of
the mbuf is 128 bytes.

Mbufs can be linked together using the re_next and ra_nextpkt members, as we’ll
see shortly. Both are null pointers in this example, which is a stand-alone mbuf.

The re_data member points to the data in the mbuf and the m_len member speci-
fies its length. For this example, ra_data points to the first byte of data in the mbuf (the
byte immediately following the mbuf header). The final 92 bytes of the mbuf data area
(108 - 16) are unused (the shaded portion of Figure 1.6).

The ra_tyD÷ member specifies the type of data contained in the mbuf, which for
this example is MT_SONNv~E (socket name). The final member in the header, re_flags,
is zero in this example.

16 Introduction Chapter i

Mbuf Containing Data

Continuing our example, the socket layer copies the data buffer specified in the call to
s÷ndto into one or more mbufs. The second argument to sendto specifies the start of
the data buffer (buff), and the third argument is its size in bytes (150). Figure 1.7
shows how two mbufs hold the 150 bytes of data.

mbuf { }
m_next
m_nextpkt
m_len

-m_data
m_type
m_flags
m_pkthdr.len
m_pkt hdr [r~vi f

100 bytes
of data

pointer to next mbuf in chain

NULL
i00

MT_ DATA

M_ PKTHDR
! 5 0 -~ mbuf

packet
NULL header

mbuf{}
m_next
m_nextpkt
m_len
-m_data
m_type
m_flags

50 byes
ofdata

NULL
NULL
50

MT_ DATA

0

Figure 1.7 Two mbufs holding 150 bytes of data.

This arrangement is called an mbuf chain. The m_next member in each mbuf links
together all the mbufs in a chain.

The next change we see is the addition of two members, m_pkthdr, len and
m_pkthdr, rcvi f, to the mbuf header in the first mbuf of the chain. These two mem-
bers comprise the packet header and are used only in the first mbuf of a chain. The
m_flags member contains the value M_PKTHDR to indicate that this mbuf contains a
packet header. The len member of the packet header structure contains the total length
of the mbuf chain (150 in this example), and the next member, rcvi f, we’ll see later
contains a pointer to the received interface structure for received packets.

Since mbufs are always 128 bytes, providing 100 bytes of data storage in the first
mbuf on the chain and 108 bytes of storage in all subsequent mbufs on the chain, two
mbufs are needed to store 150 bytes of data. We’ll see later that when the amount of
data exceeds 208 bytes, instead of using three or more mbufs, a different technique is
used--a larger buffer, typically 1024 or 2048 bytes, called a cluster is used.

One reason for maintaining a packet header with the total length in the first mbuf
on the chain is to avoid having to go through all the mbufs on the chain to sum their
m_l en members when the total length is needed.

Section 1.9 Mbufs (Memory Buffers) and Output Processing 17

Prepending IP and UDP Headers

After the socket layer copies the destination socket address structure into an mbuf (Fig-
ure 1.6) and the data into an mbuf chain (Figure 1.7), the protocol layer corresponding
to the socket descriptor (a UDP socket) is called. Specifically, the UDP output routine is
called and pointers to the mbufs that we’ve examined are passed as arguments. This
routine needs to prepend an IP header and a UDP header in front of the 150 bytes of
data, fill in the headers, and pass the mbufs to the IP output routine.

The way that data is prepended to the mbuf chain in Figure 1.7 is to allocate another
mbuf, make it the front of the chain, and copy the packet header from the mbuf with 100
bytes of data into the new mbuf. This gives us the three mbufs shown in Figure 1.8.

tabu f{
m_next
m_nextpkt

m_len
-m_data
m_type
m_flags
m_pkthdr.len
m_pkthdr.rcvif

next mbuf
next mbuf in chain in chain

NULL
28

MT_ DATA
|

M_ PKTHDR
h mbuf1 78 ~ packet

NULL fl header

t 28 bytes for
IP header and
UDP header

mbuf { }
m_next
m nextpkt
m_len
-m_data
m_type
m_flags

100 bytes
of data

NULL
I00

mbuf { }
m next
m_nextpkt
m_l en
-ra_dat a
m type
m flags

50 bytes
of data

NULL
NULL
50

MT_ DATA

0

Figure 1.8 Mbuf chain from Figure 1.7 with another mbuf for IP and UDP headers prepended.

The IP header and UDP header are stored at the end of the new mbuf that becomes
the head of the chain. This allows for any lower-layer protocols (e.g., the interface
layer) to prepend its headers in front of the IP header if necessary, without having to
copy the IP and UDP headers. The m_data pointer in the first mbuf points to the start
of these two headers, and m_len is 28. Future headers that fit in the 72 bytes of unused
space between the packet header and the IP header can be prepended before the IP
header by adjusting the m_data pointer and the m_len accordingly. Shortly we’ll see
that the Ethernet header is built here in this fashion.

Notice that the packet header has been moved from the mbuf with 100 bytes of data
into the new mbuf. The packet header must always be in the first mbuf on the chain.
To accommodate this movement of the packet header, the M_PKTHDR flag is set in the
first mbuf and cleared in the second mbuf. The space previously occupied by the packet
header in the second mbuf is now unused. Finally, the length member in the packet
header is incremented by 28 bytes to become 178.

18 Introduction Chapter I

The UDP output routine then fills in the UDP header and as much of the IP header
as it can. For example, the destination address in the IP header can be set, but the IP
checksum will be left for the IP output routine to calculate and store.

The UDP checksum is calculated and stored in the UDP header. Notice that this
requires a complete pass of the 150 bytes of data stored in the mbuf chain. So far the
kernel has made two complete passes of the 150 bytes of user data: once to copy the
data from the user’s buffer into the kernel’s mbufs, and now to calculate the UDP
checksum. Extra passes over the data can degrade the protocol’s performance, and in
later chapters we describe alternative implementation techniques that avoid unneces-
sary passes.

At this point the UDP output routine calls the IP output routine, passing a pointer
to the mbuf chain for IP to output.

IP Output

The IP output routine fills in the remaining fields in the IP header including the IP
checksum, determines the outgoing interface to which the datagram should be given
(this is the IP routing function), fragments the IP datagram if necessary, and calls the
interface output function.

Assuming the outgoing interface is an Ethernet, a general-purpose Ethernet output
function is called, again with a pointer to the mbuf chain as an argument.

Ethernet Output

The first function of the Ethernet output function is to convert the 32-bit IP address into
its corresponding 48-bit Ethernet address. This is done using ARP (Address Resolution
Protocol) and may involve sending an ARP request on the Ethernet and waiting for an
ARP reply. While this takes place, the mbuf chain to be output is held, waiting for the
reply.

The Ethernet output routine then prepends a 14-byte Ethernet header to the first
mbuf in the chain, immediately before the IP header (Figure 1.8). This contains the
6-byte Ethernet destination address, 6-byte Ethernet source address, and 2-byte Ethernet
frame type.

The mbuf chain is then added to the end of the output queue for the interface. If the
interface is not currently busy, the interface’s "start output" routine is called directly. If
the interface is busy, its output routine will process the new mbuf on its queue when it
is finished with the buffers already on its output queue.

When the interface processes an mbuf that’s on its output queue, it copies the data
to its transmit buffer and initiates the output. In our example, 192 bytes are copied to
the transmit buffer: the 14-byte Ethernet header, 20-byte IP header, 8-byte UDP header,
and 150 bytes of user data. This is the third complete pass of the data by the kernel.
Once the data is copied from the mbuf chain into the device’s transmit buffer, the mbuf
chain is released by the Ethernet device driver. The three mbufs are put back into the
kernel’s pool of free mbufs.

Section 1.10 Input Processing 19

Summary of UDP Output

In Figure 1.9 we give an overview of the processing that takes place when a process
calls sendto to transmit a single UDP datagram. The relationship of the processing
that we’ve described to the three layers of kernel code (Figure 1.3) is also shown.

process

sendtolsystem call

socket layer

protocol layer

interface layer

Ethernet frame

~copy destination socket address structure
and user data (150 bytes) into mbuf chain

~UDP output
IP output

~Ethernet output (ARP)
device driver output

Figure 1.9 Processing performed by the three layers for simple UDP output.

Function calls pass control from the socket layer to the UDP output routine, to the
IP output routine, and then to the Ethernet output routine. Each function call passes a
pointer to the mbuf chain to be output. At the lowest layer, the device driver, the mbuf
chain is placed on the device’s output queue and the device is started, if necessary. The
function calls return in reverse order of their call, and eventually the system call returns
to the process. Notice that there is no queueing of the UDP data until it arrives at the
device driver. The higher layers just prepend their header and pass the mbuf to the next
lower layer.

At this point our program calls recvfrom to read the server’s reply. Since the
input queue for the specified socket is empty (assuming the reply has not been received
yet), the process is put to sleep.

1.10 Input Processing

Input processing is different from the output processing just described because the
input is asynchronous. That is, the reception of an input packet is triggered by a receive-
complete interrupt to the Ethernet device driver, not by a system call issued by the pro-
cess. The kernel handles this device interrupt and schedules the device driver to run.

20 Introduction Chapter i

Ethernet Input

The Ethernet device driver processes the interrupt and, assuming it signifies a normal
receive-complete condition, the data bytes are read from the device into an mbuf chain.
In our example, 54 bytes of data are received and copied into a single mbuf: the 20-byte
IP header, 8-byte UDP header, and 26 bytes of data (the time and date on the server).
Figure 1.10 shows the format of this mbuf.

mbuf{}
m_next
m_nextpkt
m_len
m_data
m_type
m_flags
m_pkthdr.len
m_pkthdr.rcvif

NULL

NULL

54

MT_ DATA

M_ PKTHDR
54
ptr to interface structure

16 bytes allocated
(but not used)

20-byte IP header
8-byte UDP header

26 bytes of data

Figure 1.10 Single mbuf to hold input Ethernet data.

This mbuf is a packet header (the M_PKTHDR flag is set in m_fKags) since it is the
first mbuf of a data record. The l en member in the packet header contains the total
length of data and the roy± f member contains a pointer to the interface structure corre-
sponding to the received interface (Chapter 3). We see that the roy± f member is used
for received packets but not for output packets (Figures 1.7 and 1.8).

The first 16 bytes of the data portion of the mbuf are allocated for an interface layer
header, but are not used. Since the amount of data (54 bytes) fits in the remaining 84
bytes of the mbuf, the data is stored in the mbuf itself.

The device driver passes the mbuf to a general Ethernet input routine which looks
at the type field in the Ethernet frame to determine which protocol layer should receive
the packet. In this example, the type field will specify an IP datagram, causing the mbuf
to be added to the IP input queue. Additionally, a software interrupt is scheduled to
cause the IP input process routine to be executed. The device’s interrupt handling is
then complete.

IP Input

IP input is asynchronous and is scheduled to run by a software interrupt. The software
interrupt is set by the interface layer when it receives an IP datagram on one of the sys-
tem’s interfaces. When the IP input routine executes it loops, processing each IP

Section 1.10 Input Processing 21

datagram on its input queue and returning when the entire queue has been processed.
The IP input routine processes each IP datagram that it receives. It verifies the IP

header checksum, processes any IP options, verifies that the datagram was delivered to
the right host (by comparing the destination IP address of the datagram with the host’s
IP addresses), and forwards the datagram if the system was configured as a router and
the datagram is destined for some other IP address. If the IP datagram has reached its
final destination, the protocol field in the IP header specifies which protocol’s input rou-
tine is called: ICMP, IGMP, TCP, or UDP. In our example, the UDP input routine is
called to process the UDP datagram.

UDP Input

The UDP input routine verifies the fields in the UDP header (the length and optional
checksum) and then determines whether or not a process should receive the datagram.
In Chapter 23 we discuss exactly how this test is made. A process can receive all data-
grams destined to a specified UDP port, or the process can tell the kernel to restrict the
datagrams it receives based on the source and destination IP addresses and source and
destination port numbers.

In our example, the UDP input routine starts at the global variable udb (Figure 1.5)
and goes through the linked list of UDP protocol control blocks, looking for one with a
local port number (±np_lport) that matches the destination port number of the
received UDP datagram. This will be the PCB created by our call to socket, and the
±np_soeket member of this PCB points to the corresponding socket structure, allow-
ing the received data to be queued for the correct socket.

In our example program we never specify the local port number for our application. We’ll see
in Exercise 23.3 that a side effect of writing the first UDP datagram to a socket that has not yet
bound a local port number is the automatic assignment by the kernel of a local port number
(termed an ephernera~ port) to that socket. That’s how the ±n~_lport member of the PCB for
our socket gets set to some nonzero value.

Since this UDP datagram is to be delivered to our process, the sender’s IP address
and UDP port number are placed into an mbuf, and this mbuf and the data (26 bytes in
our example) are appended to the receive queue for the socket. Figure 1.11 shows the
two mbufs that are appended to the socket’s receive queue.

Comparing the second mbuf on this chain (the one of type HT_DATA) with the mbuf
in Figure 1.10, the ra_len and ra_pkthdr, len members have both been decremented
by 28 (20 bytes for the IP header and 8 for the UDP header) and the ra_data pointer has
been incremented by 28. This effectively removes the IP and UDP headers, leaving only
the 26 bytes of data to be appended to the socket’s receive queue.

The first mbuf in the chain contains a 16-byte Internet socket address structure with
the sender’s IP address and UDP port number. Its type is ~IT_$ON/~., similar to the
mbuf in Figure 1.6. This mbuf is created by the socket layer to return this information to
the calling process through the recvfrem or r÷cvrasg system calls. Even though there
is room (16 bytes) in the second mbuf on this chain for this socket address structure, it
must be stored in its own mbuf since it has a different type (HT_$ON~. versus
HT_DATA).

22 Introduction Chapter I

socket’s
receive
queue

mbuf { }
m next
m_nextpkt
m_len

-- m_data
m_type
m_flags

pointer to next mbuf in chain

NULL
16

MT_SONAME
0

16-byte sockaddr_in{}
withsender’sIPaddress
and portnumber

mbuf{}
m_next
m_nextpkt
m_len
m_data
m_type
m_flags
m_Dkthdr.len
m_pkthdr.rcvif

NULL
NULL
26

MT_DATA

kI_ PKTHDR
26
ptr to interface structure

44 bytes (unused)

~26 bytes of data

Figure 1.11 Sender’s address and data.

The receiving process is then awakened. If the process is asleep waiting for data to
arrive (which is the scenario in our example), the process is marked as run-able for the
kernel to schedule. A process can also be notified of the arrival of data on a socket by
the select system call or with the SIGIO signal.

Process Input

Our process has been asleep in the kernel, blocked in its call to recvfrom, and the pro-
cess now wakes up. The 26 bytes of data appended to the socket’s receive queue by the
UDP layer (the received datagram) are copied by the kernel from the mbuf into our pro-
gram’s buffer.

Notice that our program sets the fifth and sixth arguments to recvfrom to null
pointers, telling the system call that we’re not interested in receiving the sender’s IP
address and UDP port number. This causes the recvfrom system call to skip the first
mbuf in the chain (Figure 1.11), returning only the 26 bytes of data in the second mbuf.
The kernel’s recvfrom code then releases the two mbufs in Figure 1.11 and returns
them to its pool of free mbufs.

1.11 Network Implementation Overview Revisited

Figure 1.12 summarizes the communication that takes place between the layers for both
network output and network input. It repeats Figure 1.3 considering only the Internet
protocols and emphasizing the communications between the layers.

Section 1.12 Interrupt Levels and Concurrency

process

Isystem calls

~ socket layer

(~ ~socket
functi°n calI ~k

~ ~queues

~ protocollayer ~_ software interrupt @ spinet

~
(TCP, UDP~ IP, ICMP, IGMP)]- (caused by interface layer)

/ interface ~ ~ ~ protocol queue
functi°n call ~queues ~ ~J ~_~ (IP input queue)to start outptlt

~ ’.. ’r1 /-- r hardwareinterrupt@splimp

/

interface ayer

~
(caused by network device)

Figure 1.12 Communication between the layers for network input and output.

Thenotations splnet and spl imp are discussed in the next section.
We use the plural terms socket queues and interface queues since there is one queue

per socket and one queue per interface (Ethernet, loopback, SLIP, PPP, etc.), but we use
the singular term protocol queue because there is a single IP input queue. If we consid-
ered other protocol layers, we would have one input queue for the XNS protocols and
one for the OSI protocols.

1.12 Interrupt Levels and Concurrency

We saw in Section 1.10 that the processing of input packets by the networking code is
asynchronous and interrupt driven. First, a device interrupt causes the interface layer
code to execute, which posts a software interrupt that later causes the protocol layer
code to execute. When the kernel is finished with these interrupt levels the socket code
will execute.

There is a priority level assigned to each hardware and software interrupt. Fig-
ure 1.13 shows the normal ordering of the eight priority levels, from the lowest (no
interrupts blocked) to the highest (all interrupts blocked).

24 Introduction Chapter I

Function

splO
splsoftclock
splnet
spltty
splbio
splimp
splclock
splhigh

splx(s)

Description

normal operating mode, nothing blocked
low-priority clock processing
network protocol processing
terminal I/O
disk and tape I/O
network device I/O
high-priority clock processing
all interrupts blocked
(see text)

(lowest priority)

(highest priority)

Figure 1.13 Kernel functions that block selected interrupts.

Table 4.5 of [Leffler et al. 1989] shows the priority levels used in the VAX implementation. The
Net/3 implementation for the 386 uses the eight functions shown in Figure 1.13, but
splsoftclock and splnet are at the same level, and splclock and splhigh are also at
the same level.

The name imp that is used for the network interface level comes from the acronym IMP (Inter-
face Message Processor), which was the original type of router used on the ARPANET.

The ordering of the different priority levels means that a higher-priority interrupt
can preempt a lower-priority interrupt. Consider the sequence of events depicted in
Figure 1.14.

preempted

! ’splO socket II

splnet

spltty

Ethernet
spl imp

device driver

step 1 2

preempted

$ i socke----~--I
protocol 1~ ~ protocol
(IP input) I ~ (IP input)

SLIP
device driver

Figure 1.14 Example of priority levels and kernel processing.

1. While the socket layer is executing at spl 0, an Ethernet device driver interrupt
occurs, causing the interface layer to execute at splimp. This interrupt pre-
empts the socket layer code. This is the asynchronous execution of the interface
input routine.

2. While the Ethernet device driver is running, it places a received packet onto the
IP input queue and schedules a software interrupt to occur at splnet. The

Section 1.12 Interrupt Levels and Concurrency 25

software interrupt won’t take effect immediately since the kernel is currently
running at a higher priority level (sp i ±rap).

When the Ethernet device driver completes, the protocol layer executes at
spinet. This is the asynchronous execution of the IP input routine.

A terminal device interrupt occurs (say the completion of a SLIP packet) and it
is handled immediately, preempting the protocol layer, since terminal I/O
(spltty) is a higher priority than the protocol layer (spinet) in Figure 1.13.
This is the asynchronous execution of the interface input routine.

The SLIP driver places the received packet onto the IP input queue and sched-
ules another software interrupt for the protocol layer.

When the SLIP driver completes, the preempted protocol layer continues at
splnet, finishes processing the packet received from the Ethernet device driver,
and then processes the packet received from the SLIP driver. Only when there
are no more input packets to process will it return control to whatever it pre-
empted (the socket layer in this example).

7. The socket layer continues from where it was preempted.

One concern with these different priority levels is how to handle data structures
shared between the different levels. Examples of shared data structures are the three we
show between the different levels in Figure 1.12--the socket, interface, and protocol
queues. For example, while the IP input routine is taking a received packet off its input
queue, a device interrupt can occur, preempting the protocol layer, and that device
driver can add another packet to the IP input queue. These shared data structures (the
IP input queue in this example, which is shared between the protocol layer and the
interface layer) can be corrupted if nothing is done to coordinate the shared access.

The Net/3 code is sprinkled with calls to the functions st~l imp and spinet. These
two calls are always paired with a call to splx to return the processor to the previous
level. For example, here is the code executed by the IP input function at the protocol
layer to check if there is another packet on its input queue to process:

struct mbuf *m;
int s;

s = splimp() ;
IF_DEQUEUE (&ipintrq, m) ;
splx (s) ;

if (m == O)
return;

The call to splimp raises the CPU priority to the level used by the network device
drivers, preventing any network device driver interrupt from occurring. The previous
priority level is returned as the value of the function and stored in the variable s. Then
the macro IF_DEQUEUE is executed to remove the next packet at the head of the IP
input queue (ipintrq), placing the pointer to this mbuf chain in the variable m. Finally
the CPU priority is returned to whatever it was when splimp was called, by calling
splx with an argument of s (the saved value from the earlier call to spl imp).

26 Introduction Chapter i

Since all network device driver interrupts are disabled between the calls to spl±mp
and splx, the amount of code between these calls should be minimal. If interrupts are
disabled for an extended period of time, additional device interrupts could be ignored,
and data might be lost. For this reason the test of the variable m (to see if there is
another packet to process) is performed after the call to splx, and not before the call.

The Ethernet output routine needs these spl calls when it places an outgoing
packet onto an interface’s queue, tests whether the interface is currently busy, and starts
the interface if it was not busy.

struct mbuf *m;
int s;

s = splimp();
/*

* Queue message on interface,
./

if

and start output if interface not active.

(IF_QFULL(&ifp->if_snd)) {
IF_DROP(&ifp->if_snd);
splx(s);
error = ENOBUFS;
goto bad;

}
IF_ENQUEUE(&ifp->if_snd, m);

if ((ifp->if_flags & IFF_OACTIVE)
(*ifp->if_start) (ifp); /*

splx(s);

/* queue is full, drop packet */

/* add the packet to interface queue */

:: 0)
start interface */

The reason device interrupts are disabled in this example is to prevent the device driver
from taking the next packet off its send queue while the protocol layer is adding a
packet to that queue. The driver’s send queue is a data structure shared between the
protocol layer and the interface layer.

We’ll see calls to the spl functions throughout the source code.

1.13 Source Code Organization

Figure 1.15 shows the Organization of the Net/3 networking source tree, assuming it is
located in the / us r / s rc / sys directory.

This text focuses on the netinet directory, which contains all the TCP/IP source
code. We also look at some files in the kern and net directories. The former contains
the protocol-independent socket code, and the latter contains some general networking
functions used by the TCP/IP routines, such as the routing code.

Briefly, the files contained in each directory are as follows:

¯ i 3 8 6: the Intel 80x86-specific directories. For example, the directory i 3 8 6 / ± sa
contains the device drivers specific to the ISA bus. The directory ±3 8 6/stand
contains the stand-alone bootstrap code.

Section 1.13 Source Code Organization 27

~ Inte180x86-specific

/~~ general kernel

/~ general networking

HDLC, X.25

TCP/IP protocols

~OSI protocols

~
XNS protocols

NFS

kernel headers

Unix filesystem

virtual memory

Figure 1.15 Net/3 source code organization.

¯ kern: general kernel files that don’t belong in one of the other directories. For
example, the kernel files to handle the foz-k and exec system calls are in this
directory. We look at only a few files in this directory--the ones for the socket
system calls (the socket layer in Figure 1.3).

¯ net: general networking files, for example, general network interface functions,
the BPF (BSD Packet Filter) code, the SLIP driver, the loopback driver, and the
routing code. We look at some of the files in this directory.

¯ netcc±tt: interface code for the OSI protocols, including the HDLC (high-level
data-link control) and X.25 drivers.

¯ net±net: the code for the Internet protocols: IP, ICMP, IGMP, TCP, and UDP.
This text focuses on the files in this directory.

¯ net±so: the OSI protocols.
¯ netns: the Xerox XNS protocols.
¯ nfs: code for Sun’s Network File System.
¯ sys: system headers. We look at several headers in this directory. The files in

this directory also appear in the directory / us r / ±nc 3_ufle / s3,s.
¯ ufs: code for the Unix filesystem, sometimes called the Berkeley fast f!lesystem.

This is the normal disk-based filesystem.
¯ vm: code for the virtual memory system.

28 Introduction Chapter I

Figure 1.16 gives another view of the source code organization, this time mapped to our
three kernel layers. We ignore directories such as net±rap and nfs that we don’t con-
sider in this text.

kern/sys_socket.c kern/uipc_socket.c
kern/uipc_domain.c kern/uipc_socket2.c
kern/nipc_mbuf.c kern/uipc_syscalls.c

4,0001inesofC code

socket layer

net/ netns/
(routing) (XNS)

2,100 6,000 26,000 750

netinet/
(TCP/IP)

13,000

netiso/
(OSI)

kern/
(Unix domain) protocollayer

net/ net/if_s1* net/if_loop* net/bpf* Ethemet
(Ethemet, ARP) (SLIP) (loopback) (BPF) device driver

500 1,750 250 2,000 1,000 per driver

Figure 1.16 Net/3 source code organization mapped to three kernel layers.

interface layer

The numbers below each box are the approximate number of lines of C code for that
feature, which includes all comments in the source files.

We don’t look at all the source code shown in this figure. The netns and net±so
directories are shown for comparison against the Internet protocols. We only consider
the shaded boxes.

1.14 Test Network

Figure 1.17 shows the test network that is used for all the examples in the text. Other
than the host vangogh at the top of the figure, all the IP addresses belong to the class B
network ID 140.252, and all the hostnames belong to the . tuc. noao. edu domain.
(noae stands for "National Optical Astronomy Observatories" and tuc stands for Tuc-
son.) For example, the system in the lower right has a complete hostname of
svr4. rue. noao. edu and an IP address of 140.252.13.34. The notation at the top of
each box is the operating system running on that system.

The host at the top has a complete name of vangogh, cs .berkeley. edu and is
reachable from the other hosts across the Internet.

This figure is nearly identical to the test network used in Volume 1, although some
of the operating systems have been upgraded and the dialup link between sun and
netb now uses PPP instead of SLIP. Additionally, we have replaced the Net/2 net-
working code provided with BSD/386 V1.1 with the Net/3 networking code.

Section 1.15 Summary 29

4.4BSD-Lite

vangogh

AIX 3.2.2

aix

T.1.92

Solaris 2.3

solaris

T.1.32

Ethernet

SunOS 4.1.3

gemini

T~i.ll

"~128.32.33.5

.104.1
Cisco

gateway router

T.1.4

~.1.183

netb
Telebit
NetBlazer

BSD/386 1.1

t SLIP
slip .13.65

BSD/386 1.1

PPP

Solaris 2.3

(dialup)

.1.29

Figure 1.17

bsdi

.13.66+ T"13"35 7~,~3~.33

Ethemet
Test network used for all the examples in the text.

SVR4

svr4

T.13.34

1.15 Summary

This chapter provided an overview of the Net/3 networking code. Using a simple pro-
gram (Figure 1.2) that sends a UDP datagram to a daytime server and receives a repl~
we’ve followed the resulting output and input through the kernel. Mbufs hold the
information being output and the received IP datagrams. The next chapter examines
mbufs in more detail.

UDP output occurs when the process executes the sendto system call, while IP
input is asynchronous. When an IP datagram is received by a device driver, the data-
gram is placed onto IP’s input queue and a software interrupt is scheduled to cause the
IP input function to execute. We reviewed the different interrupt levels used by the net-
working code within the kernel. Since many of the networking data structures are

30 Introduction Chapter I

shared by different layers that can execute at different interrupt priorities, the code must
be careful when accessing or modifying these shared structures. We’ll encounter calls to
the stol functions in almost every function that we look at.

The chapter finishes with a look at the overall organization of the source code in
Net/3, focusing on the code that this text examines.

Exercises

1.1 Type in the example program (Figure 1.2) and run it on your system. If your system has a
system call tracing capability, such as trace (SunOS 4.x), truss (SVR4), or ktrace
(4.4BSD), use it to determine the system calls invoked by this example.

1.2 In our example that calls TF_DEQUIaIUE in Section 1.12, we noted that the call to spl±rap
blocks network device drivers from interrupting. While Ethernet drivers execute at this
level, what happens to SLIP drivers?

2

Mbufs: Memory Buffers

2.1 Introduction

Networking protocols place many demands on the memory management facilities of
the kernel. These demands include easily manipulating buffers of varying sizes,
prepending and appending data to the buffers as the lower layers encapsulate data
from higher layers, removing data from buffers (as headers are removed as data packets
are passed up the protocol stack), and minimizing the amount of data copied for all
these operations. The performance of the networking protocols is directly related to the
memory management scheme used within the kernel.

In Chapter 1 we introduced the memory buffer used throughout the Net/3 kernel:
the mbuf, which is an abbreviation for "memory buffer." In this chapter we look in more
detail at mbufs and at the functions within the kernel that are used to manipulate them,
as we will encounter mbufs on almost every page of the text. Understanding mbufs is
essential for understanding the rest of the text.

The main use of mbufs is to hold the user data that travels from the process to the
network interface, and vice versa. But mbufs are also used to contain a variety of other
miscellaneous data: source and destination addresses, socket options, and so on.

Figure 2.1 shows the four different kinds of mbufs that we’ll encounter, depending
on the ~PKTHDR and ~_~.xT flags in the m_~_ags member. The differences between
the four mbufs in Figure 2.1, from left to right, are as follows:

If m__£~_ags equals 0, the mbuf contains only data. There is room in the mbuf
for up to 108 bytes of data (the ~_ctat array). The ra_ctata pointer points some-
where in this 108-byte buffer. We show it pointing to the start of the buffer, but
it can point anywhere in the buffer. The re_Ken member specifies the number of
bytes of data, starting at r~_ctata. Figure 1.6 was an example of this type of
mbuf.

31

32 Mbufs: Memory Buffers Chapter 2

mbuf { }

0-108

MT xxx

0

108-byte
buffer:
m_dat

mbuf { }

0 i00

MT

M PKTHDR

100-byte
buffer:

m_pktdat

mbuf { }

208-2048

MT_xxx

M_EXT

2048

mbuf { }

208-2048

MT_xxx

M_PKTHDR
I M_EXT

2048

m_next

m_nextpkt

m_len m_hdr { }

m data (20 bytes)

re_type

m_flags

m_pkthdr.len ~pkthdr{
>

m_pkthdr, rcvi fJ (8 bytes)

m_ext, ext_buf ~
m ext. ext_free|% m_ext { }

¯ (12 bytes)
m_ext, ext_siz eJ

Figure 2.1

2048-byte
cluster

(external
buffer)

2048-byte
cluster

(external
buffer)

Four different types of mbufs, depending on the re_flags value.

In Figure 2.1 there are six members in the m_hdr structure, and its total size is
20 bytes. When we look at the C definition of this structure (Figure 2.8) we’ll see
that the first four members occupy 4 bytes each and the last two occupy 2 bytes
each. We don’t try to differentiate between the 4-byte members and the 2-byte
members in Figure 2.1.

The second type of mbuf has an re_flags value of M_PKTHDR, specifying a
packet header, that is, the first mbuf describing a packet of data. The data is still
contained within the mbuf itself, but because of the 8 bytes taken by the packet
header, only 100 bytes of data fit within this mbuf (in the m_pktdat array). Fig-
ure 1.10 was an example of this type of mbuf.

The m_pkthdr, fen value is the total length of all the data in the chain mbufs
for this packet: the sum of the m_len values for all the mbufs linked through the

Section 2.1 Introduction 33

re_next pointer, as shown in Figure 1.8. The m_pkthdr, rcvi f member is not
used for output packets, but for received packets contains a pointer to the
received interface’s i fret structure (Figure 3.6).

The next type of mbuf does not contain a packet header (M_PKTHDR is not set)
but contains more than 208 bytes of data, so an external buffer called a cluster is
used (M_EXT is set). Room is still allocated in the mbuf itself for the packet
header structure, but it is unused--we show it shaded in Figure 2.1. Instead of
using multiple mbufs to contain the data (the first with 100 bytes of data, and all
the rest with 108 bytes of data each), Net/3 allocates a cluster of size 1024 or
2048 bytes. The re_data pointer in the mbuf points somewhere inside this
cluster.

The Net/3 release supports seven different architectures. Four define the size of
a cluster as 1024 bytes (the traditional value) and three define it as 2048. The
reason 1024 has been used historically is to save memory: if the cluster size is
2048, about one-quarter of each cluster is unused for Ethernet packets (1500
bytes maximum). We’ll see in Section 27.5 that the Net/3 TCP never sends more
than the cluster size per TCP segment, so with a cluster size of 1024, almost one-
third of each 1500-byte Ethernet frame is unused. But [Mogul 1993, Fig-
ure 15.15] shows that a sizable performance improvement occurs on an Ethernet
when maximum-sized frames are sent instead of 1024-byte frames. This is a
performance-versus-memory tradeoff. Older systems used 1024-byte clusters to
save memory while newer systems with cheaper memory use 2048 to increase
performance. Throughout this text we assume a cluster size of 2048.

Unfortunately different names have been used for what we call clusters. The constant
MCLBYTES is the size of these buffers (1024 or 2048) and the names of the macros to
manipulate these buffers are MCLGET, MCLALLOC, and MCLFREE. This is why we call
them clusters. But we also see that the mbuf flag is M_EXT, which stands for "external"
buffer. Finally, [Leffier et al. 1989] calls them mapped pages. This latter name refers to their
implementation, and we’ll see in Section 2.9 that clusters can be shared when a copy is
required.

We would expect the minimum value of m_len to be 209 for this type of mbuf, not 208 as
we indicate in the figure. That is, a record with 208 bytes of data can be stored in two
mbufs, with 100 bytes in the first and 108 in the second. The source code, however, has a
bug and allocates a cluster if the size is greater than or equal to 208.

The final type of mbuf contains a packet header and contains more than 208
bytes of data. Both M_PKTHDR and M_EXT are set.

There are numerous additional points we need to make about Figure 2.1:

¯ The size of the mbuf structure is always 128 bytes. This means the amount of
unused space following the m_ext structure in the two mbufs on the right in
Figure 2.1 is 88 bytes (128 - 20 - 8 - 12).

¯ A data buffer with an m_len of 0 bytes is OK since some protocols (e.g., UDP)
allow 0-length records.

34 Mbufs: Memory Buffers Chapter 2

In each of the mbufs we show the m_data member pointing to the beginning of
the corresponding buffer (either the mbuf buffer itself or a cluster). This pointer
can point anywhere in the corresponding buffer, not necessarily the front.

Mbufs with a cluster always contain the starting address of the buffer
(m_ext. ext_buf) and its size (re_ext. ext_size). We assume a size of 2048
through~out this text. The re_data and re_ext, ext_buf members are not the
same (as we show) unless m__data also points to the first byte of the buffer. The
third member of the m_ext structure, ext_free, is not currently used by
Net/3.

The re_next pointer links together the mbufs forming a single packet (record)
into an mbufchain, as in Figure 1.8.

The m_nextpkt pointer links multiple packets (recordi) together to form a
queue ofmbufs. Each packet on the queue can be a single mbuf or an mbuf chain.
The first mbuf of each packet contains a packet header. If multiple mbufs define
a packet, the m_nextpkt member of the first mbuf is the only one used--the
m__nextpkt member of the remaining mbufs on the chain are all null pointers.

Figure 2.2 shows an example of two packets on a queue. It is a modification of Fig-
ure 1.8. We have placed the UDP datagram onto the interface output queue (showing
that the 14-byte Ethernet header has been prepended to the IP header in the first mbuf
on the chain) and have added a second packet to the queue: a TCP segment containing
1460 bytes of user data. The TCP data is contained in a cluster and an mbuf has been
prepended to contain its Ethernet, IP, and TCP headers. With the cluster we show that
the data pointer into the cluster (re_data) need not point to the front of the cluster. We
show that the queue has a head pointer and a tail pointer. This is how the interface out-
put queues are handled in Net/3. We have also added the m_ext structure to the mbuf
with the M_EXT flag set and have shaded in the unused pkthdr structure of this mbuf.

The first mbuf with the packet header for the UDP datagram has a type of MT_DATA, but the
first mbuf with the packet header for the TCP segment has a type of MT_HEADER. This is a side
effect of the different way UDP and TCP prepend the headers to their data, and makes no dif-
ference. Mbufs of these two types are essentially the same. It is the m_flags value of
M_PKTHDR in the first mbuf on the chain that indicates a packet header.

Careful readers may note a difference between our picture of an mbuf (the Net/3 mbuf, Fig-
ure 2.1) and the picture in [Leffier et al. 1989, p. 290], a Net/1 mbuf. The changes were made in
Net/2: adding the re_flags member, renaming the m_act pointer to be m_nextpkt, and
moving this pointer to the front of the mbuf.

The difference in the placement of the protocol headers in the first mbuf for the UDP and TCP
examples is caused by UDP calling M_PREPEND (Figure 23.15 and Exercise 23.1) while TCP
calls MGETHDR (Figure 26.25).

Section 2.1 Introduction 35

head of queue

_ [next mbuf in chain ~[m_next

1 I I Ira_flags M_PKTHDR

II1 -] mb,uf.~ ~ > packet
J headerm_pkthdr, rcvi f NULL

jj] IPhead~r, ~

~er]

next mbuf in chain~ m_nex~ ~ m next

m nextpkt ~LL m_nextpk~
m_len
m_data
m_type
m_flags

m_pkthdr, rcvilen fm_pkthdr.

Ethemet header,
IP header,

TCP header

54

MT_HEADER
M_PKTHDR

m_len
m_dat a
m_type
m_flags

m_ext, ext_bu f
m_ext, ext_free
m_ext, ext_size

next mbuf
in chain

NULL
i00

MT_DA TA

0

mbuf
m_next
m_nextpkt
re_fen

data
m_type
m_flags

50 bytes
of data

NULL
NULL
50

MT_ DATA

0

NULL
NULL
1460 2048-byte cluster

1460 bytes of data

2048

Figure 2.2 Two packets on a queue: first with 192 bytes of data and second with 1514 bytes of data.

36 Mbufs: Memory Buffers Chapter 2

2.2 Code Introduction

The mbuf functions are in a single C file and the mbuf macros and various mbuf defini-
tions are in a single header, as shown in Figure 2.3.

File Description

sys/tabu £. h mbu f structure, mbuf macros and definitions
kern/uipc_mbuf, c mbuf functions

Figure 2.3 Files discussed in this chapter.

Global Variables

One global variable is introduced in this chapter, shown in Figure 2.4.

Variable Datatype Description

mbstat struct mbstat mbuf statistics (Figure 2.5)

Figure 2.4 Global variables introduced in this chapter.

Statistics

Various statistics are maintained in the global structure robs tat, described in Figure 2.5.

mbstat member

m_clfree
m_clusters
m_drain
m_drops
m_mbufs
m_mtypes [256]
m_spare
m_wait

Description

#free clusters
#clusters obtained from page pool
#times protocol’s drain functions called to reclaim space
#times failed to find space (not used)
#mbufs obtained from page pool (not used)
counter of current mbuf allocations: MT_xxx index
spare field (not used)
#times waited for space (not used)

Figure 2.5 Mbuf statistics maintained in the mbstat structure.

This structure can be examined with the netstat -m command; Figure 2.6 shows some
sample output. The two values printed for the number of mapped pages in use are
m_e lust er s (34) minus m_e 1 free (32)] giving the number of clusters currently in use
(2), and re_clusters (34).

The number of Kbytes of memory allocated to the network is the mbuf memory
(99 x 128 bytes) plus the cluster memory (34 x 2048 bytes) divided by 1024. The percent-
age in use is the mbuf memory (99 x 128 bytes) plus the cluster memory in use (2 x 2048
bytes) divided by the total network memory (80 Kbytes), times 100.

Section 2.3 Mbuf Definitions 37

netstat -m ou~ut

99 mbufs in use:
1 mbufs allocated to data
43 mbufs allocated to packet headers
17 mbufs allocated to protocol control blocks
20 mbufs allocated to socket names and addresses
18 mbufs allocated to socket options

2/34 mapped pages in use
80 Kbytes allocated to network (20% in use)
0 requests for memory denied
0 requests for memory delayed
0 calls to protocol drain routines

mbstat member

m_mtypes[MT_DATA]
m_mtypes[MT_HEADER]
m_mtypes[MT_PCB]
m_mtypes[MT_SONAME]
m_mtypes[MT_SOOPTS]
(see text)
(see text)
m_drops

m_wait
m_drain

Figure 2.6 Sample mbuf statistics.

Kernel Statistics

The mbuf statistics show a common technique that we see throughout the Net/3
sources. The kernel keeps track of certain statistics in a global variable (the mbstat
structure in this example). A process (in this case the netstat program) examines the
statistics while the kernel is running.

Rather than provide system calls to fetch the statistics maintained by the kernel, the
process obtains the address within the kernel of the data structure in which it is inter-
ested by reading the information saved by the link editor when the kernel was built.
The process then calls the kvm(3) functions to read the corresponding location in the
kernel’s memory by using the special file /dev/mera. If the kernel’s data structure
changes from one release to the next, any program that reads that structure must also
change.

2.3 Mbuf Definitions

There are a few constants that we encounter repeatedly when dealing with mbufso
Their values are shown in Figure 2.7. All are defined in mbuf. h except MCLBYTV.S,
which is defined in/usr/include/machine/param, h.

ValueConstant
(#bytes)

MCLB YTES 2048
MHLEN 100
MINCLSIZE 208
MLEN 108
MSIZE 128

Description

size of an mbuf cluster (external buffer)
max amount of data in mbuf with packet header
smallest amount of data to put into cluster
max amount of data in normal mbuf
size of each mbuf

Figure 2.7 Mbuf constants from mbuf.h.

38 Mbufs: Memory Buffers Chapter 2

2.4 mbuf Structure

Figure 2.8 shows the definition of the mbuf structure.

/* header at beginning of each mbuf: */60
61 struct m_hdr {
62 struct mbuf *mh_next;
63 struct mbuf *mh_nextpkt;
64 int mh_len;
65 caddr_t mh_data;
66 short mh_type;
67 short mh flags;
68 };

/* next buffer in chain */
/* next chain in queue/record */
/* amount of data in this mbuf */
/* pointer to data */
/* type of data (Figure 2.10) */
/* flags (Figure 2.9) */

mbuf .h

69 /* record/packet header in first mbuf of chain; valid if M_PKTHDR set */
70 struct pkthdr {
71 int len; /* total packet length */
72 struct ifnet *rcvif; /* receive interface */
73 };

74 /* description of external storage mapped into mbuf, valid if H_EXT set */
75 struct m_ext {
76 caddr_t ext_buf; /* start of buffer */
77 void (*ext_free) (); /* free routine if not the usual */
78 u_int ext_size; /* size of buffer, for ext_free */
79 };

80
81
82
83
84
85
86
87
88
89
90
91
92

struct mbuf {
struct m_hdr m hdr;
union {

struct {
struct pkthdr HH_pkthdr;
union {

struct m_ext MH_ext; /* H_EXT set */
char HH_databuf[NHLEN];

} NH_dat;
} MH;
char M_databuf[MLEN]; /* !H_PKTHDR, !H_EXT */

} H_dat;

/* M_PKTHDR set */

};

93 #define m_next m_hdr.mh_next
94 #define m_len m_hdr.mh_len
95 #define m_data m_hdr.mh_data
96 #define m_type m_hdr.mh_type
97 #define m_flags m~hdr.mh flags
98 #define m_nextpkt m~hdr.mh_nextpkt
99 #define m_act m~nextpkt

i00 #define m_pkthdr M~dat.NH.MH_pkthdr
i01 #define m_ext H_dat.MH.NH_dat.MH_ext
102 #define m_pktdat M~dat.NH.MH_dat.HH_databuf
103 #define m_dat H_dat.M_databuf

Figure 2.8 Mbuf structures.
mbuf.h

Section 2.4 rabuf Structure 39

93--1 03

The rabuf structure is defined as an m_hdr structure, followed by a union. As the
comments indicate, the contents of the union depend on the flags N_PKTHDR and
M_EXT.

These 11 #define statements simplify access to the members of the structures and
unions within the mbuf structure. We will see this technique used throughout the
Net/3 sources whenever we encounter a structure containing other structures or
unions.

We previously described the purpose of the first two members in the rabuf struc-
ture: the re_next pointer links mbufs together into an mbuf chain and the m_nextpkt
pointer links mbuf chains together into a queue ofmbufs.

Figure 1.8 differentiated between the ra_len member of each mbuf and the
ra_pkthdr. Ken member in the packet header. The latter is the sum of all the re_Ken
members of all the mbufs on the chain.

There are five independent values for the m_f 1 ags member, shown in Figure 2.9.

m_f lags Description

M_BCAST sent/received as link-level broadcast
M_EOR end of record
M_EXT cluster (external buffer) associated with this mbuf
M_MCAST sent/received as link-level multicast
M_PKTHDR first mbuf that forms a packet (record)

M_COPYFLAGS M_PKTHDR / M_EOR / M_BCAST / M_MCAST

Figure 2.9 re_flags values.

We have already described the M_EXT and M_PKTHDR flags. N_EOR is set in an mbuf
containing the end of a record. The Internet protocols (e.g., TCP) never set this flag,
since TCP provides a byte-stream service without any record boundaries. The OSI and
XNS transport layers, however, do use this flag. We will encounter this flag in the
socket layer, since this layer is protocol independent and handles data to and from all
the transport layers.

The next two flags, N_BCAST and M_NCAST, are set in an mbuf when the packet will
be sent to or was received from a link-layer broadcast address or multicast address.
These two constants are flags between the protocol layer and the interface layer (Fig-
ure 1.3).

The final value, N_COPYFLAGS, specifies the flags that are copied when an mbuf
containing a packet header is copied.

Figure 2.10 shows the MT_xxx constants used in the m_ty-pe member to identify the
type of data stored in the mbuf. Although we tend to think of an mbuf as containing
user data that is sent or received, mbufs can contain a variety of different data struc-
tures. Recall in Figure 1.6 that an mbuf was used to hold a socket address structure
with the destination address for the sendto system call. Its m_type member was set to
MT_SONAME.

Not all of the mbuf type values in Figure 2.10 are used in Net/3. Some are historical
(MT_HTABLE), and others are not used in the TCP/IP code but are used elsewhere in the

40 Mbufs: Memory Buffers Chapter 2

Mbuf
re_type

MT CONTROL
MT DATA
MT_FREE
MT_FTABLE

MT_HEADER
MT_HTABLE

MT IFADDR
MT_OOBDATA
MT_ PCB
MT_RIGHTS

MT RTABLE
MT SONAME
MT_SOOPTS
MT_SOCKET

Used in Net/3
TCP/IP code Description

extra-data protocol message
dynamic data allocation
should be on free list
fragment reassembly header
packet header
IMP host tables
interface address
expedited (out-of-band) data
protocol control block
access rights
routing tables
socket name
socket options
socket structure

Figure 2.10 Values for re_type member.

Memory
type

M_MBUF
M MBUF
M_FREE
M_FTABLE
M_MBUF
M_HTABLE
M_IFADDR
M MBUF
M_PCB
M_MBUF
M_RTABLE
M_MBUF
M_SOOPTS
M_SOCKET

kernel. For example, MT_OOBDATA is used by the OSI and XNS protocols, but TCP han-
dles out-of-band data differently (as we describe in Section 29.7). We describe the use of
other mbuf types when we encounter them later in the text.

The final column of this figure shows the M_xxx values associated with the piece of
memory allocated by the kernel for the different types of mbufs. There are about 60
possible M._xxx values assigned to the different types of memory allocated by the ker-
nel’s raalloe function and MALLOC macro. Figure 2.6 showed the mbuf allocation
statistics from the nets tat -ra command including the counters for each MT_xxx type.
The vms tat -ra command shows the kernel’s memory allocation statistics including the
counters for each M__xxx type.

Since mbufs have a fixed size (128 bytes) there is a limit for what an mbuf can be used for--the
data contents cannot exceed 108 bytes. Net/2 used an mbuf to hold a TCP protocol control
block (which we cover in Chapter 24), using the mbuf type of i’4T_PCB. But 4.4BSD increased
the size of this structure from 108 bytes to 140 bytes, forcing the use of a different type of ker-
nel memory allocation for the structure.

Observant readers may have noticed that in Figure 2.10 we say that mbufs of type MT_PCB are
not used, yet Figure 2.6 shows a nonzero counter for this type. The Unix domain protocols use
this type of mbuf, and it is important to remember that the statistics are for mbuf usage across
all protocol suites, not just the Internet protocols.

2.5 Simple Mbuf Macros and Functions

There are more than two dozen macros and functions that deal with mbufs (allocate an
mbuf, free an mbuf, etc.). We look at the source code for only a few of the macros and
functions, to show how they’re implemented.

Section 2.5 Simple Mbuf Macros and Functions 41

Some operations are provided as both a macro and function. The macro version has
an uppercase name that begins with I~I, and the function has a lowercase name that
begins with m_. The difference in the two is the standard time-versus-space tradeoff.
The macro version is expanded inline by the C preprocessor each time it is used (requir-
ing more code space), but it executes faster since it doesn’t require a function call (which
can be expensive on some architectures). The function version, on the other hand,
becomes a few instructions each time it is invoked (push the arguments onto the stack,
call the function, etc.), taking less code space but more execution time.

re_get Function

We’ll look first at the function that allocates an mbuf: re_get, shown in Figure 2.11. This
function merely expands the macro HG~.T.

134 struct mbuf *
135 m_get(nowait, type)
136 int nowait, type;
137 {
138 struct mbuf *m;

139 MGET(m, nowait, type);
140 return (m);
141 }

Figure 2.11 ~_get function: allocate an mbuf.

uipc_mbuf .c

uipc_mbuf .c

Notice that the Net/3 code does not use ANSI C argument declarations. All the Net/3 system
headers, however, do provide ANSI C function prototypes for all kernel functions, if an ANSI
C compiler is being used. For example, the <sys/mbu£. h> header includes the line

struct mbuf *m_get(int, int) ;

These function prototypes provide compile-time checking of the arguments and return values
whenever a kernel function is called.

The caller specifies the nowait argument as either M_WAIT or M_DONTWAIT,
depending whether it wants to wait if the memory is not available. As an example of
the difference, when the socket layer asks for an mbuf to store the destination address of
the sendto system call (Figure 1.6) it specifies ~_WAIT, since blocking at this point is
OK. But when the Ethernet device driver asks for an mbuf to store a received frame
(Figure 1.10) it specifies M_DONTWAIT, since it is executing as a device interrupt handler
and cannot be put to sleep waiting for an mbuf. In this case it is better for the device
driver to discard the Ethernet frame if the memory is not available.

MGET Macro

Figure 2.12 shows the MGET macro. A call to MGET to allocate the mbuf to hold the
destination address for the sendto system call (Figure 1.6) might look like

42 Mbufs: Memory Buffers Chapter 2

MGET(m, M_WAIT, MT_SONAME);
if (m == NULL)

return (ENOBUFS) ;

Even though the caller specifies M_WAIT, the return value must still be checked, since,
as we’ll see in Figure 2.13, waiting for an mbuf does not guarantee that one will be
available.

154 #define MGET(m, how, type) { \
155 MALLOC((m) , struct mbuf *, MSIZE, mbtypes[type] ,
156 if (m) { \
157 (m)->m_type = (type); \
158 MBUFLOCK(mbstat.m_mtypes [type] ++;) \
159 (m)->m_next : (struct mbuf *)NULL; \
160 (m)->m nextpkt = (struct mbuf *)NULL; \
161 (m)->m_data : (m)->m_dat; \
162 (m)->m_flags.= 0; \
163] else \
164 (m) = re_retry((how) , (type)) ; \
165]

(how)); \

¯ mbuf.h

mbuf .h
Figure 2.12 MGET macro.

154--157

158

159--160

161 --i 62

163--164

MGET first calls the kernel’s M_ALLOC macro, which is the general-purpose kernel
memory allocator. The array mbtypes converts the mbuf NT_xxx value into the corre-
sponding M xxx value (Figure 2.10). If the memory can be allocated, the re_type mem-
ber is set to the argument’s value.

The kernel structure that keeps mbuf statistics for each type of mbuf is incremented
(mbstat). The macro NBUFLOCK changes the processor priority (Figure 1.13) while exe-
cuting the statement specified as its argument, and then resets the priority to its previ-
ous value. This prevents network device interrupts from occurring while the statement
mbstat, re_retypes [type] ++ ; is executing, because mbufs can be allocated at various
layers within the kernel Consider a system that implements the ++ operator in C using
three steps: (i) load the current value into a register, (2) increment the register, and (3)
store the register into memory. Assume the counter’s value is 77 and MGET is executing
at the socket layen Assume steps i and 2 are executed (the register’s value is 78) and a
device interrupt occurs. If the device driver also executes MGET for the same type of
mbuf, the value in memory is fetched (77), incremented (78), and stored back into mem-
ory. VVhen step 3 of the interrupted execution of MGET resumes, it stores its register (78)
into memory. But the counter should be 79, not 78, so the counter has been corrupted.

The two mbuf pointers, re_next and m_nextpkt, are set to null pointers. It is the
caller’s responsibility to add the mbuf to a chain or queue, if necessary.

Finally the data pointer is set to point to the beginning of the 108-byte mbuf buffer
and the flags are set to 0.

If the call to the kernel’s memory a11ocator fails, m_retry is called (Figure 2.13).
The first argument is either M WAIT or M_DONTWAIT.

Section 2.5 Simple Mbuf Macros and Functions 43

m_retry Function

Figure 2.13 shows the re_retry function.

92 struct mbuf *
93 m_retry(i, t)
94 int i, t;
95 {
96 struct mbuf *m;

97 m_reclaim();
98 #define m_retry(i,
99 MGET(m, i, t);

i00 #undef m_retry
i01 return (m);
1o2 }

t) (struct mbuf *}0

Figure 2.13 re_retry function.

uipc_mbuf.c

uipc_mbuf.c

92--97

9 8-i 02

The first function called by m_retry is re_reclaim. We’ll see in Section 7.4 that
each protocol can define a "drain" function to be called by re_reclaim when the sys-
tem gets low on available memory. We’ll also see in Figure 10.32 that when IP’s drain
function is called, all IP fragments waiting to be reassembled into IP datagrams are dis-
carded. TCP’s drain function does nothing and UDP doesn’t even define a drain
function.

Since there’s a chance that more memory might be available after the call to
re_reclaim, the MGET macro is called again, to try to obtain the mbuf. Before expand-
ing the MGET macro (Figure 2.12), m_retry is defined to be a null pointer. This pre-
vents an infinite loop if the memory still isn’t available: the expansion of MGET will set m
to this null pointer instead of calling the re_retry function. After the expansion of
MGET, this temporary definition of re_retry is undefined, in case there is another refer-
ence to HGET later in the source file.

Mbuf Locking

In the functions and macros that we’ve looked at in this section, other than the call to
MBUFLOCK in Figure 2.12, there are no calls to the slol functions to protect these func-
tions and macros from being interrupted. What we haven’t shown, however, is that the
macro NALLOC contains an splimp at the beginning and an splx at the end. The
macro MFRE~. contains the same protection. Mbufs are allocated and released at all lay-
ers within the kernel, so the kernel must protect the data structures that it uses for mem-
ory allocation.

Additionally, the macros MCLALLOC and HCLFREE, which allocate and release an
mbuf cluster, are surrounded by an spliml~ and an stolx, since they modify a linked
list of available clusters.

Since the memory allocation and release macros along with the cluster allocation
and release macros are protected from interrupts, we normally do not encounter calls to
the spl functions around macros and functions such as MGET and re_get.

44 Mbufs: Memory Buffers Chapter 2

2.6 m_devget and m_pullup Functions

We encounter the m_pul lup function when we show the code for IP, ICMP, IGMP, UDP,
and TCP. It is called to guarantee that the specified number of bytes (the size of the cor-
responding protocol header) are contiguous in the first mbuf of a chain; otherwise the
specified number of bytes are copied to a new mbuf and made contiguous. To under-
stand the usage of m_pul lup we must describe its implementation and its interaction
with both the m_devget function and the mtod and dtom macros. This description
also provides additional Lnsight into the usage of mbufs in Net/3.

m_devget Function

When an Ethernet frame is received, the device driver calls the function m_devget to
create an mbuf chain and copy the frame from the device into the chain. Depending on
the length of the received frame (excluding the Ethemet header), there are four different
possibilities for the resulting mbuf chain. The first two possibilities are shown in Fig-
ure 2.14.

mbuf { }
m_next
m_nextpkt

m_len
m data
re_type
m_flags
m_pkthdr, len

m_pkthdr, rcvi f

16 bytes
(unused)

52 bytes
of data

(starting with
IP header)

32 bytes
(unused)

NULL
NULL
52

/--MT_ DATA

M_PKTHDR

52

mbuf
m_next
m_nextpkt

m_len
m data
m_type
m_flags
m_pkthdr.len

m_pkthdr.rcvif

85 bytes
of data

(starting with
IP header)

15 bytes
(unused)

NULL
NULL
85

MT_DA TA
M_PKTHDR
85

0 _< data length _< 84 85 < data length < 100

Figure 2.14 First two types of mbufs created by m_devget.

1. The left mbuf in Figure 2.14 is used when the amount of data is between 0 and 84
bytes. In this figure we assume there are 52 bytes of data: a 20-byte IP header and a
32-byte TCP header (the standard 20-byte TCP header plus 12 bytes of TCP options)

Section 2.6 m_devget and m_pullup Functions 45

but no TCP data. Since the data in the mbuf returned by m_devget starts with the
IP header, the realistic minimum value for m_len is 28:20 bytes for an IP header, 8
bytes for a UDP header, and a 0-length UDP datagram.

m_devget leaves 16 bytes unused at the beginning of the mbuf. Although the
14-byte Ethernet header is not stored here, room is allocated for a 14-byte Ethernet
header on output, should the same mbuf be used for output. We’ll encounter two
functions that generate a response by using the received mbuf as the outgoing mbuf:
icrap_reflect and tcp_respond. In both cases the size of the received datagram
is normally less than 84 bytes, so it costs nothing to leave room for 16 bytes at the
front, which saves time when building the outgoing datagram. The reason 16 bytes
are allocated, and not 14, is to have the IP header longword aligned in the mbuf.

If the amount of data is between 85 and 100 bytes, the data still fits in a packet
header mbuf, but there is no room for the 16 bytes at the beginning. The data starts
at the beginning of the m_pktdat array and any unused space is at the end of this
array. The mbuf on the right in Figure 2.14 shows this example, assuming 85 bytes
of data.

Figure 2.15 shows the third type of mbuf created by m_devget. Two mbufs are
required when the amount of data is between 101 and 207 bytes. The first 100 bytes
are stored in the first mbuf (the one with the packet header), and the remainder are
stored in the second mbuf. In this example we show a 104-byte datagram. No
attempt is made to leave 16 bytes at the beginning of the first mbuf.

mbuf{}
m_next
m nextpkt

m_len
m_data
m_type
m_flags
m_pkthdr.len

m_pkthdr.rcvif

100 bytes
of data

(starting with
IP header)

next mbuf in chain

NULL
I00

MT_ DATA

M_PKTHDR
104
ptr

mbuf{}
m_next
m_nextpkt

m_len
~m_data
m_type
m_flags

4 bytes of data

104 bytes
(unused)

NULL
NULL
4

MT_ DATA

0

101 _< data length _< 207

Figure 2.15 Third type of mbuf created by m_devget.

46 Mbufs: Memory Buffers Chapter 2

Figure 2.16 shows the fourth type of mbuf created by m_devget. If the amount of
data is greater than or equal to 208 (MINCLBYTES), one or more clusters are used.
The example in the figure assumes a 1500-byte Ethernet frame with 2048-byte clus-
ters. If 1024-byte clusters are in use, this example would require two mbufs, each
with the M_EXT flag set, and each pointing to a cluster.

mbuf { }
m_next
m_nextpkt
m_len
-m_data
m_type
m_flags

m_Dkthdr.len
m_pkthdr.rcvif
-m_ext.ext_buf
m_ext.ext_free
m_ext.ext_size

88 bytes
(unused)

NULL
NULL
1500

MT_DATA
M_PKTHDRIM_EXT
1500

NULL
2048

Figure 2.16

208 _< data length _< 2048

2048-byte cluster

1500 bytes of data
(starting with IP header)

548 bytes (unused)

Fourth type of mbuf created by m_devget.

mtod and dtom Macros

The two macros mtod and dtom are also defined in mbuf.h. They simplify complex
mbuf structure expressions.

#define mtod(m, t) ((t) ((m) ->m_data))
#define dtom(x) ((struct mbuf *) ((int) (x) & -(MSIZE-I)))

mtod ("mbuf-to-data") returns a pointer to the data associated with an mbuf, and casts
the pointer to a specified type. For example, the code

Section2.6 m_devget and m_pullup Functions 47

struct mbuf *m;
struct ip *ip;

ip = mtod(m, struct ip *);
ip->ip_v = IPVERSION;

stores in ip the data pointer of the mbuf (re_data). The type cast is required by the C
compiler and the code then references the IP header using the pointer ip. We see this
macro used when a C structure (often a protocol header) is stored in an mbuf. This
macro works if the data is stored in the mbuf itself (Figures 2.14 and 2.15) or if the data
is stored in a cluster (Figure 2.16).

The macro dtom ("data-to-mbuf") takes a pointer to data anywhere within the data
portion of the mbuf and returns a pointer to the mbuf structure itself. For example, if
we know that ip points within the data area of an mbuf, the sequence

struct mbuf *m;
struct ip *ip;

m : dtom(ip) ;

stores the pointer to the beginning of the mbuf in m. By knowing that MSIZE (128) is a
power of 2, and that mbufs are always aligned by the kernel’s memory allocator on
I~ISIZE byte blocks of memory, dtom just clears the appropriate low-order bits in its
argument pointer to find the beginning of the mbuf.

There is a problem with dtom: it doesn’t work if its argument points to a cluster, or
within a cluster, as in Figure 2.16. Since there is no pointer from the cluster back to the
mbuf structure, dtom cannot be used. This leads to the next function, m_pul lup.

m~pullup Function and Contiguous Protocol Headers

The m_pullup function has two purposes. The first is when one of the protocols (IP,
ICMP, IGMP, UDP, or TCP) finds that the amount of data in the first mbuf (m_len) is
less than the size of the minimum protocol header (e.g., 20 for IP, 8 for UDP, 20 for TCP).
m_pullup is called on the assumption that the remaining part of the header is in the
next mbuf on the chain, m_pullulo rearranges the mbuf chain so that the first N bytes
of data are contiguous in the first mbuf on the chain. N is an argument to the function
that must be less than or equal to 100 (I~IHLEN). If the first N bytes are contiguous in the
first mbuf, then both of the macros mtod and dtom will work.

For example, we’ll encounter the following code in the IP input routine:
if (m->m_len < sizeof(struct ip) &&

(m = m_pullup(m, sizeof(struct ip))) == O)
ipstat.ips_toosmall++;
goto next;

}
ip = mtod(m, struct ip *);

If the amount of data in the first mbuf is less than 20 (the size of the standard IP header),
m_pullup is called, m_pullup can fail for two reasons: (1) if it needs another mbuf

48 Mbufs: Memory Buffers Chapter 2

and its call to FIG~.T fails, or (2) if the total amount of data in the mbuf chain is less than
the requested number of contiguous bytes (what we called N, which in this case is 20).
The second reason is the most common cause of failure. In this example, if ra_~ullup
fails, an IP counter is incremented and the IP datagram is discarded. Notice that this
code assumes the reason for failure is that the amount of data in the mbuf chain is less
than 20 bytes.

In actuality, ra__~ul ~,up is rarely called in this scenario (notice that C’s ~& operator
only calls it when the mbuf length is smaller than expected) and when it is called, it nor-
mally fails. The reason can be seen by looking at Figure 2.14 through Figure 2.16: there
is room in the first mbuf, or in the cluster, for at least 100 contiguous bytes, starting with
the IP header. This allows for the maximum IP header of 60 bytes followed by 40 bytes
of TCP header. (The other protocols--ICMP, IGMP, and UDP--have headers smaller
than 40 bytes.) If the data bytes are available in the mbuf chain (the packet is not
smaller than the minimum required by the protocol), then the required number of bytes
should always be contiguous in the first mbuf. But if the received packet is too short
(re_Ken is less than the expected minimum), then m_~ul lup is called and it returns an
error, since the required amount of data is not available in the mbuf chain.

Berkeley-derived kernels maintain a variable named MPFa±I that is incremented each time
ra~oullup fails° On a Net/3 system that had received over 27 million IP datagrams,
was 9. The counter ±i~stat. ±t~s_toosraall was also 9 and all the other protocol counters
(i.e., ICMP, IGMP, UDP, and TCP) following a failure of ~n~oul~_up were 0. This confirms our
statement that most failures of ra~ul lu~ are because the received IP datagram was too small

m~pullup and IP Fragmentation and Reassembly

The second use of rn_~ullu~ concerns IP reassembly and TCP reassembly. Assume IP
receives a packet of length 296, which is a fragment of a larger IP datagram. The mbuf
passed from the device driver to IP input looks like the one we showed in Figure 2.16:
the 296 bytes of data are stored in a cluster. We show this in Figure 2.17.

The problem is that the IP fragmentation algorithm keeps the individual fragments
on a doubly linked list, using the source and destination IP address fields in the IP
header to hold the forward and backward list pointers. (These two IP addresses are
saved, of course, in the head of the list, since they must be put back into the reassem-
bled datagram. We describe this in Chapter 10.) But if the IP header is in a cluster, as
shown in Figure 2.17, these linked list pointers would be in the cluster, and when the list
is traversed at some later time, the pointer to the IP header (i.e., the pointer to the begin~
ning of the cluster) could not be converted into the pointer to the mbuf. This is the
problem we mentioned earlier in this section: the ctt or~ macro cannot be used if ra_clata
points into a cluster, because there is no back pointer from the cluster to the mbuf. IP
fragmentation cannot store the links in the cluster as shown in Figure 2.17.

To solve this problem the IP fragmentation routine always calls ra__~ul ~up when a
fragment is received, if the fragment is contained in a cluster. This forces the 20-byte IP
header into its own mbuf. The code looks like

Section 2.6 m_devget and m_pul lup Functions 49

mbuf{}
m_next
m_nextpkt
m_len
m_data
m_type
m_flags
m_pkthdr.len

m_pkthdr.rcvif
m_ext.ext_buf
m_ext.ext_free
m_ext.ext_siz(

NULL
NULL
296

MT DATA
M_PKTHDR I M_EXT
296

fULL
20q8

doubly linked list doubly linked list
-oFIP ff~{gments n F ~f l-P-fr~g-m~ffts-

276 bytes of data

2048-byte cluster

Fig.re 2.17 An IP fragment of length 296.

if (m->m_flags & M_EXT) {
if ((m = m_pullup(m, sizeof(struct ip))) == O) {

ipstat.ips_toosmall++;
goto next;

}
ip - mtod(m, struct ip *);

Figure 2.18 shows the resulting mbuf chain, after m_pul lup is called, m_pul lup allo-
cates a new mbuf, prepends it to the chain, and moves the first 40 bytes of data from the
cluster into the new mbuf. The reason it moves 40 bytes, and not just the requested 20,
is to try to save an additional call at a later time when IP passes the datagram to a
higher-layer protocol (e.g., ICMP, IGMP, UDP, or TCP). The magic number 40
(max_protohdr in Figure 7.17) is because the largest protocol header normally encoun-
tered is the combination of a 20-byte IP header and a 20-byte TCP header. (This

50 Mbufs: Memory Buffers Chapter 2

doubly linked list
of IP fragments

mbuf { }
m_next
m_nextpkt
m len
m_data
m_type
m_flags
m_pkthdr. I en
m_pkthdr, rcvi f

IP header

next 20 bytes
of datagram

NULL
40

MT_ DATA
M_PKTHDR

296

doubly linked list
of IP fragments

mbuf { }
re_next~ pkt

Im_len

m data
m_type
m_flags

ext.ext_buf
m_ext.ext_free
m_ext.ext_size

NULL

NULL
256

MT_DATA

M_EXT

NULL
2048

next 256 bytes of datagram

2048-byte cluster

Figure 2.18 An IP fragment of length 296, after calling m~ou! lup.

assumes that other protocol suites, such as the OSI protocols, are not compiled into the
kernel.)

In Figure 2.18 the IP fragmentation algorithm can save a pointer to the IP header
contained in the mbuf on the left, and this pointer can be converted into a pointer to the
mbuf itself using dtom at a later time.

Avoidance of m_pullup by TCP Reassembly

The reassembly of TCP segments uses a different technique to avoid calling m~Dul lup.
This is because m__pul lup is expensive: memory is allocated and data is copied from a
cluster to an mbuf. TCP tries to avoid data copying whenever possible.

Chapter 19 of Volume i mentions that about one-half of TCP data is bulk data (often
512 or more bytes of data per segment) and the other half is interactive data (of which
about 90% of the segments contain less than 10 bytes of data). Hence, when TCP
receives segments from IP they are usually in the format shown on the left of Figure 2.14
(a small amount of interactive data, stored in the mbuf itself) or in the format shown in

Section 2.7 Summary of Mbuf Macros and Functions

Figure 2.16 (bulk data, stored in a cluster). When TCP segments arrive out of order,
they are stored on a doubly linked list by TCP. As with IP fragmentation, fields in the IP
header are used to hold the list pointers, which is OK since these fields are no longer
needed once the IP datagram is accepted by TCP. But the same problem arises with the
conversion of a list pointer into the corresponding mbuf pointer, when the IP header is
stored in a cluster (Figure 2.17).

To solve the problem, we’ll see in Section 27.9 that TCP stores the mbuf pointer in
some unused fields in the TCP header, providing a back pointer of its own from the
cluster to the mbuf, just to avoid calling ra__pullup for every out-of-order segment. If
the IP header is contained in the data portion of the mbuf (Figure 2.18), then this back
pointer is superfluous, since the dtora macro would work on the list pointer. But if the
IP header is contained in a cluster, this back pointer is required. We’ll examine the
source code that implements this technique when we describe tcp_reass in Sec-
tion 27.9.

Summary of m_pullup Usage

We’ve described three main points about ra_pul ~_up.

Most device drivers do not s.plit the first portion of an IP datagram between
mbufs. Therefore the possible calls to ra_pul lup that we’ll encounter in every
protocol (IP, ICMP, IGMP, UDP, and TCP), just to assure that the protocol header
is stored contiguously, rarely take place. When these calls to rn__~uX:Lup do
occur, it is normally because the IP datagram is too small, in which case
ra__pulZup returns an error, the datagram is discarded, and an error counter is
incremented.

¯ ra._puXZup is called for every received IP fragment, when the IP fragment is
stored in a cluster. This means that ra_~ullup is called for almost every
received fragment, since the length of most fragments is greater than 208 bytes.

¯ As long as TCP segments are not fragmented by IP, the receipt of a TCP seg-
ment, whether it be in order or out of order, should not invoke ra__pull~p. This
is one reason to avoid IP fragmentation with TCP.

2.7 Summary of Mbuf Macros and Functions

Figure 2.19 lists the macros and Figure 2.20 lists the functions that we’ll encounter in the
code that operates on mbufs. The macros in Figure 2.19 are shown as function proto-
types, not as #def±ne statements, to show the data types of the arguments. We will not
go through the source code implementation of these routines since they are concerned
primarily with manipulating the mbuf data structures and involve no networking
issues. Also, there are additional mbuf macros and functions used elsewhere in the
Net/3 sources that we don’t show in these two figures since we won’t encounter them
in the text.

52 Mbufs: Memory Buffers Chapter 2

In all the prototypes the argument nowait is either M_WAIT or lVI_DONTWAIT, and the
argument type is one of the MT_xxx constants shown in Figure 2.10.

Macro

MCLGET

MFREE

MGETHDR

MH_ALIGN

M_PREPEND

dtom

mtod

Figure 2.19 Mbuf macros that we’ll encounter in the text.

Description

Get a cluster (an external buffer) and set the data pointer (re_data) of the existing mbuf
pointed to by rn to point to the cluster. If memory for a cluster is not available, the M_EXT
flag in the mbuf is not set on return.

void MCLGI~T(struct mbuf *m, int nowait);
Free the single mbuf pointed to by m. If m points to a cluster (M_EXT is set), the cluster’s
reference count is decremented but the cluster is not released until its reference count
reaches 0 (as discussed in Section 2.9). On return m’s successor (pointed to by
m->re_next, which can be null) is stored in n.

void MFIK~-(struct mbuf *m, struct mbuf *n);

Allocate an mbuf and initialize it as a packet header. This macro is similar to MGET (Fig-
ure 2.12) except the M_PKTHDR flag is set and the data pointer (m data) points to the
100-byte buffer just beyond the packet header.

void MG~-’~I-IDR(struct mbuf *m, int nowait, int type);
Set the re_data pointer of an mbuf containing a packet header to provide room for an
object of size len bytes at the end of the mbuf’s data area. The data pointer is also
longword aligned.

void M}I AhXGN(struct mbuf *m, int len);

Prepend fen bytes of data in front of the data in the mbuf pointed to by m. If room exists
in the mbuf, just decrement the pointer (re_data) and increment the length (m_len) by
fen bytes. If there is not enough room, a new mbuf is allocated, its re_next pointer is set
to rn, a pointer to the new mbuf is stored in m, and the data pointer of the new mbuf is set
so that the fen bytes of data go at the end of the mbuf (i.e., MH_ALIGN is called). Also, if a
new mbuf is allocated and the existing mbuf had its packet header flag set, the packet
header is moved from the existing mbuf to the new one.

void M_I~I~I~ND(struct mbuf *;~/, int fen, int ;~owait);

Convert the pointer x, which must point somewhere within the data area of an mbuf, into
a pointer to the beginning of the mbuf.

struct mbuf *dtom(void *x);

Type cast the pointer to the data area of the mbuf pointed to by m to type.

type mtod(struct mbuf *m, type);

As an example of M_PREPEND, this macro was called when the IP and UDP headers
were prepended to the user’s data in the transition from Figure 1.7 to Figure 1.8, caus-
ing another mbuf to be allocated. But when this macro was called again (in the transi-
tion from Figure 1.8 to Figure 2.2) to prepend the Ethernet header, room already existed
in the mbuf for the headers.

The data type of the last argument for m_copydata is caddr_t, which stands for "core
address." This data type is normally defined in <sys / types, h> to be a char *. It was origi-
nally used internally by the kernel, but got externalized when used by certain system calls.
For example, the mmap system call, in both 4.4BSD and SVR4, uses caddr_t as the type of the
first argument and as the return value type.

Section 2.7 Summary of Mbuf Macros and Functions 53

Function Description
m_adj Remove len bytes of data from the mbuf pointed to by m. If Ien is positive, that number of

bytes is trimmed from the start of the data in the mbuf, otherwise the absolute value of
len bytes is trimmed from the end of the data in the mbuf.

void ~_adj (struct mbuf *m, int fen) ;

m_cat Concatenate the mbuf chain pointed to by n to the end of the mbuf chain pointed to by m.
We encounter this function when we describe IP reassembly (Chapter 10).

void ~_cat (struct mbuf *m, struct mbuf *n);
re_copy A three-argument version of m_copym that implies a fourth argument of M_DONTWAIT.

struct mbuf *m_coI~y(struct mbuf *m, int offset, int len);
m_copydata Copy len bytes of data from the mbuf chain pointed to by m into the buffer pointed to by

cp. The copying starts from the specified byte offset from the beginning of the data in the
mbuf chain.

m_copyback

m_copym

m_devget

void ~_copydata(struct mbuf *m, int offset, int fen, caddr_t cp);

Copy len bytes of data from the buffer pointed to by cp into the mbuf chain pointed to by
m. The data is stored starting at the specified byte offset in the mbuf chain. The mbuf
chain is extended with additional mbufs if necessary.
void m_copyback(struct mbuf *m, int offset, int len, caddr_t cp);

Create a new mbuf chain and copy len bytes of data starting at offset from the mbuf chain
pointed to by m. A pointer to the new mbuf chain is returned as the value of the
function. If len equals the constant M_COPYALL, the remainder of the mbuf chain starting
at offset is copied. We say more about this function in Section 2.9.

struct mbuf *m_coI~Ym(struct mbuf *m, int offset, int fen, int nowait);

Create a new mbuf chain with a packet header and return the pointer to the chain. The
len and rcvif fields in the packet header are set to len and ifp. The function copy is
called to copy the data from the device interface (pointed to by buJ) into the mbuf. If copy
is a null pointer, the function bcopy is called, off is 0 since trailer protocols are no longer
supported. We described this function in Section 2.6.

struct mbuf *m_devget(char *buf, int fen, int off, struct ifnet *ifp,
void (*copy)(const void *, void *, u_int);

m_free A function version of the macro MFREE.

struct mbuf *m_free(struct mbuf *m);
m_freem Free all the mbufs in the chain pointed to by m.

void m_£reem(struct mbuf *m) ;
m_get A function version of the MGET macro. We showed this function in Figure 2.12.

struct mbuf *m_get(int now~lit, int type) ;
m_getclr This function cal]s the MGET macro to get an mbuf and then zeros the 108-byte buffer.

struct mbuf *m_getclr(int nozoaft, int type);
m_gethdr A function version of the MGETHDR macro.

struct mbuf *m_gethdr(int nowaft, int type);
m_pul lup Rearrange the existing data in the mbuf chain pointed to by m so that the first fen bytes of

data are stored contiguously in the first mbuf in the chain. If this function succeeds, then
the mtod macro returns a pointer that correctly references a structure of size fen. We
described this function in Section 2.6.

struct mbuf *m_~ullup(struct mbuf *m, int fen);

Figure 2.20 Mbuf functions that we’ll encounter in the text.

54 Mbufs: Memory Buffers Chapter 2

2.8 Summary of Net/3 Networking Data Structures

This section summarizes the types of data structures we’ll encounter in the Net/3 net-
working code. Other data structures are used in the Net/3 kernel (interested readers
should examine the <sys/queue .h> header), but the following are the ones we’ll
encounter in this text.

An mbuf chain: a list of mbufs, linked through the re_next pointer. We’ve seen
numerous examples of these already.

A linked list of mbuf chains with a head pointer only. The mbuf chains are linked
using the m__nexti~kt pointer in the first mbuf of each chain.

Figure 2.21 shows this type of list. Examples of this data structure are a socket’s
send buffer and receive buffer.

sockbu f { } mbuf{} mbuf{}
m_next ~m_next

m_nextpkt

NULL

NULL

m~uf{ } mb~f{)
m_next]

m--nextpktlNULL

mbuf{}
next NULL

m~nextpkt NULL

Figure 2.21 Linked list of mbuf chains with head pointer only.

The top two mbufs form the first record on the queue, and the three mbufs on the
bottom form the second record on the queue. For a record-based protocol, such as
UDP, we can encounter multiple records per queue, but for a protocol such as TCP
that has no record boundaries, we’ll find only a single record (one mbuf chain possi-
bly consisting of multiple mbufs) per queue.

To append an mbuf to the first record on the queue requires going through all the
mbufs comprising the first record, until the one with a null re_next pointer is
encountered. To append an mbuf chain comprising a new record to the queue
requires going through all the records until the one with a null ro_nextpkt pointer
is encountered.

A linked list of mbuf chains with head and tail pointers.

Figure 2.22 shows this type of list. We encounter this with the interface queues (Fig-
ure 3.13), and showed an earlier example in Figure 2.2.

The only change in this figure from Figure 2.21 is the addition of a tail pointer, to
simplify the addition of new records.

Section 2.8 Summary of Net/3 Networking Data Structures

head
tail

mbuf()

m_nextpkt

mbuf{}

NULL

mbuf { }
--=m_next ~LL

m_nextpkt

mbuf{}
~m_next

m_nextpkt NULL

Figure 2.22 Linked list with head and tail pointers.

mbuf{)
m_next NULL
m_nextpkt NULL

A doubly linked, circular list.

Figure 2.23 shows this type of list, which we encounter with IP fragmentation and
reassembly (Chapter 10), protocol control blocks (Chapter 22), and TCP’s out-of-
order segment queue (Section 27.9).

head of list
next

prey

next
prey

next
prev

Figure 2.23 Doubly linked, circular list.

The elements in the list are not mbufs--they are structures of some type that are
defined with two consecutive pointers: a next pointer followed by a previous
pointer. Both pointers must appear at the beginning of the structure. If the list is
empty, both the next and previous pointers of the head entry point to the head entry.

For simplicity in the figure we show the back pointers pointing at another back
pointer. Obviously all the pointers contain the address of the structure pointed to,
that is the address of a forward pointer (since the forward and backward pointer are
always at the beginning of the structure).

This type of data structure allows easy traversal either forward or backward, and
allows easy insertion or deletion at any point in the list.

The functions insque and relnqUe (Figure 10.20) are called to insert and delete ele-
ments in the list.

56 Mbufs: Memory Buffers Chapter 2

2.9 re_copy and Cluster Reference Counts

One obvious advantage with clusters is being able to reduce the number of mbufs
required to contain large amounts of data. For example, if clusters were not used, it
would require 10 mbufs to contain 1024 bytes of data: the first one with 100 bytes of
data, the next eight with 108 bytes of data each, and the final one with 60 bytes of data.
There is more overhead involved in allocating and linking 10 mbufs, than there is in
allocating a single mbuf containing the 1024 bytes in a cluster. A disadvantage with
clusters is the potential for wasted space. In our example it takes 2176 bytes using a
cluster (2048 + 128), versus 1280 bytes without a cluster (10 x 128).

An additional advantage with clusters is being able to share a cluster between mul-
tiple mbufs. We encounter this with TCP output and the m_copy function, but describe
it in more detail now.

As an example, assume the application performs a wr±t÷ of 4096 bytes to a TCP
socket. Assuming the socket’s send buffer was previously empty, and that the
receiver’s window is at least 4096, the following operations take place. One cluster is
filled with the first 2048 bytes by the socket layer and the protocol’s send routine is
called. The TCP send routine appends the mbuf to its send buffer, as shown in Fig-
ure 2.24, and calls tcp_output.

socket{}

so_snd.sb_mb

mbuf{}
m_next
m_nextpkt
m_len
m_data
m type
m_flags
m_pkthdr.len
m_Dkthdr.rcvif
m_ext.ext_buf
m_ext.ext_free
m_ext.ext_size

NULL

NULL

2048

MT DATA
M_PKTHDR I M_EXT
2048
NULL

NULL
2048

2048-byte cluster

2048 bytes of data

Figure 2.24 TCP socket send buffer containing 2048 bytes of data.

The socket structure contains the sockbuf structure, which holds the head of the list
of mbufs on the send buffer: so_snd, sb_mb.

Section2.9 re_copy and Cluster Reference Counts

Assuming a TCP maximum segment size (MSS) of 1460 for this connection (typical
for an Ethernet), tcp_output .builds a segment to send containing the first 1460 bytes
of data. It also builds an mbuf containing the IP and TCP headers, leaves room for a
link-layer header (16 bytes), and passes this mbuf chain to IP output. The mbuf chain
ends up on the interface’s output queue, which we show in Figure 2.25.

TCP send
buffer’

interface
output queue

with TCP
segment
to send

socket

so_snd, sb_mb

mbuf{}
m_next
m_nextpkt
m_len
m_data
m_type
m_flags
m_pkthdr.len
m_pkthdr.rcvif

Ethemet heade~
IP heade~

TCP header

mbuf{}
m next
m_nextpkt

m_len
m_data
m_type
m_flags
m_pkthdr.len
m_pkthdr.rcvif
-m_ext.ext_buf
m_ext.ext_free
m_ext.ext_size

NULL
NULL
2048

MT_ DATA

M_ PKTHDR]M_EXT
2048
NULL

NULL
2048

2048-byte cluster

2048 bytes of data

MT_HEADER
M_PKTHDR
1514
NULL ~.~

mbuf{}
m_next
m_nextpkt

m_len
-m_data
m_type
m_flags
m_pkthdr.len
m_pkthdr.rcvif
-m_ext.ext_buf
m_ext.ext_free
m_ext.ext_size

NULL
NULL
1460

MT_ DATA

M_PKTHDR [M_EXT
2048
NULL

NULL
2048

Figure 2.25 TCP socket send buffer and resulting segment on interface’s output queue.

58 Mbufs: Memory Buffers Chapter 2

In our UDP example in Section 1.9, UDP took the mbuf chain containing the data-
gram, prepended an mbuf for the protocol headers, and passed the chain to IP output.
UDP did not keep the mbuf in its send buffer. TCP cannot do this since TCP is a reliable
protocol and it must maintain a copy of the data that it sends, until the data is acknowl-
edged by the other end.

In this example tcp_outp~at calls the function re_copy, requesting a copy be made
of 1460 bytes, starting at offset 0 from the start of its send buffer. But since the data is in
a cluster, re_copy creates an mbuf (the one on the lower right of Figure 2.25) and initial-
izes it to point to the correct place in the existing cluster (the beginning of the cluster in
this example). The length of this mbuf is 1460, even though an additional 588 bytes of
data are in the cluster. We show the length of the mbuf chain as 1514, accounting for the
Ethernet, IP, and TCP headers.

We also show this mbuf on the lower right of Figure 2.25 containing a packet header, yet this
isn’t the first mbuf in the chain. When re_copy makes a copy of an mbuf that contains a packet
header and the copy starts from offset 0 in the original mbuf, the packet header is also copied
verbatim. Since this mbuf is not the first mbuf in the chain, this extraneous packet header is
just ignored. The m_pkthdr, len value of 2048 in this extraneous packet header is also
ignored.

This sharing of clusters prevents the kernel from copying the data from one mbuf
into another--a big savings. It is implemented by providing a reference count for each
cluster that is incremented each time another mbuf points to the cluster, and decre-
mented each time a cluster is released. Only when the reference count reaches 0 is the
memory used by the cluster available for some other use. (See Exercise 2.4.)

For example, when the bottom mbuf chain in Figure 2.25 reaches the Ethernet
device driver and its contents have been copied to the device, the driver calls m_£reem.
This function releases the first mbuf with the protocol headers and then notices that the
second mbuf in the chain points to a cluster. The cluster reference count is decre-
mented, but since its value becomes 1, it is left alone. It cannot be released since it is still
in the TCP send buffer.

Continuing our example, tcp_outpu~ returns after passing the 1460-byte segment
to IP, since the remaining 588 bytes in the send buffer don’t comprise a full-sized seg-
ment. (In Chapter 26 we describe in detail the conditions under which
sends data.) The socket layer continues processing the data from the application: the
remaining 2048 bytes are placed into an mbuf with a cluster, TCP’s send routine is
called again, and this new mbuf is appended to the socket’s send buffer. Since a full-
sized segment can be sent, tcp_output builds another mbuf chain with the protocol
headers and the next 1460 bytes of data. The arguments to re_copy specify a starting
offset of 1460 bytes from the start of the send buffer and a length of 1460 bytes. This is
shown in Figure 2.26, assuming the mbuf chain is again on the interface output queue
(so the length of the first mbuf in the chain reflects the Ethernet, IP, and TCP headers).

This time the 1460 bytes of data come from two clusters: the first 588 bytes are from
the first cluster in the send buffer and the next 872 bytes are from the second cluster in
the send buffer. It takes two mbufs to describe these 1460 bytes, but again re_copy does
not copy the 1460 bytes of data--it references the existing clusters.

Section 2.9 m_copy and Cluster Reference Counts S9

socket

so_snd, sb_mb

mbuf{}
m_next
m_nextpkt
m_len
-m_data
m_type
m_flags
m~okthdr.len
m_pkt hdr [r~vi f

Ethernetheade~
IP heade~

TCP header

mbuf { }
m_next
m_nextpkt
m_len
-m_data
m_type
m_flags
m_pkthdr.len
m_pkthdr.rcvif
-m_ext.ext_buf
m_ext.ext_free
m_ext.ext_size

NULL
2048

MT_DATA
M PKTHDRIM~EXT

2048
NULL

NULL
2048

NULL
54

MT HEADER
M_PKTHDR
1514

t
NULL

2048-byte cluster

1460 bytes of data

588 bytes of data

mbuf{}
m_next
m_nextpkt

m_len
-m_data
m_type
m_flags

-m_ext.ext_buf
m_ext.ext_free
m_ext.ext_size

NULL
588

MT_DATA

M_EXT

NULL
2048

n~buf{}
m_next
m_nextpkt

m_len
.m_data
m_type
m_flags
m_pkthdr.len

m_pkthdr.rcvif
-m_ext.ext_buf
m_ext.ext_free
m_ext.ext_size

NULL
NULL
2048

MT_ DATA

M PKTHDRIM~_EXT

2048
NULL

NULL
2048

2048-byte cluster

2048 bytes of data

mbuf{}
m_next
m nextpkt
m_len
m_data
m_type
m_flags

m_ext.ext_buf
m_ext.ext_free
m_ext.ext_size

NULL
NULL
872

MT_DA TA

M_EXT

NULL
2048

Figure 2.26 Mbuf chain to send next 1460-byte TCP segment.

This time we do not show a packet header with either of the mbufs on the bottom right of Fig-
ure 2.26. The reason is that the starting offset in the call to re_copy is nonzero. Also, we show
the second mbuf in the socket send buffer containing a packet header, even though it is not the
first mbuf in the chain. This is a property of the sosend function, and this extraneous packet
header is just ignored.

60 Mbufs: Memory Buffers Chapter 2

We encounter the re_copy function about a dozen times throughout the text.
Although the name implies that a physical copy is made of the data, if the data is con-
tained in a cluster, an additional reference is made to the cluster instead.

2.10 Alternatives

Mbufs are far from perfect and they are berated regularly. Nevertheless, they form the
basis for all the Berkeley-derived networking code in use today.

A research implementation of the Internet protocols by Van Jacobson [Partridge
1993] has done away with the complex mbuf data structures in favor of large contigu-
ous buffers. [Jacobson 1993] claims a speed improvement of one to two orders of mag-
nitude, although many other changes were made besides getting rid of mbufs.

The complexity of mbufs is a tradeoff that avoids allocating large fixed buffers that
are rarely filled to capacity. At the time mbufs were being designed, a VAX-11/780 with
4 megabytes of memory was a big system, and memory was an expensive resource that
needed to be carefully allocated. Today memory is inexpensive, and the focus has
shifted toward higher performance and simplicity of code.

The performance of mbufs is also dependent on the amount of data stored in the
mbuf. [Hutchinson and Peterson 1991] show that the amount of time required for mbuf
processing is nonlinear with respect to the amount of data.

2.11 Summary

We’ll encounter mbufs in almost every function in the text. Their main purpose is to
hold the user data that travels from the process to the network interface, and vice versa,
but mbufs are also used to contain a variety of other miscellaneous data: source and
destination addresses, socket options, and so on.

There are four types of mbufs, depending whether the M_PKTHDR and H_EXT flags
are on or off:

* no packet header, with 0 to 108 bytes of data in mbuf itself,
¯ packet header, with 0 to 100 bytes of data in mbuf itself,
¯ no packet header, with data in cluster (external buffer), and
¯ packet header, with data in cluster (external buffer).

We looked at the source code for a few of the mbuf macros and functions, but did
not present the source code for all the mbuf routines. Figures 2.19 and 2.20 provide the
function prototypes and descriptions of all the mbuf routines that we encounter in the
text.

We looked at the operation of two functions that we’ll encounter: m_devget, which
is called by many network device drivers to store a received frame; and ra__pullup,
which is called by all the input routines to place the required protocol headers into con-
tiguous storage in an mbuf.

Chapter 2 Exercises 61

The clusters (external buffers) pointed to by an mbuf can be shared by re_copy.
This is used, for example, by TCP output, because a copy of the data being transmitted
must be maintained by the sender until that data is acknowledged by the other end.
Sharing clusters through reference counts is a performance improvement over making a
physical copy of the data.

Exercises

2.1 In Figure 2.9 the M_COPYFLAGS value was defined. Why was the M_EXT flag not copied?

2.2 In Section 2.6 we listed two reasons that ra_pullup can fail. There are really three reasons.
Obtah~ the source code for this function (Appendix B) and discover the additional reason.

2.3 To avoid the problems we described in Section 2.6 with the dtom macro when the data is in
a cluster, why not just add a back pointer to the mbuf for each cluster?

2.4 Since the size of an mbuf cluster is a power of 2 (typically 1024 or 2048), space cannot be
taken within the cluster for the reference count. Obtain the Net/3 sources (Appendix B)
and determine where these reference counts are stored.

2.5 In Figure 2.5 we noted that the two counters re_drops and m_wai t are not currently imple-
mented. Modify the mbuf routines to increment these counters when appropriate.

3

Interface Layer

3.1 Introduction

This chapter starts our discussion of Net/3 at the bottom of the protocol stack with the
interface layer, which includes the hardware and software that sends and receives pack-
ets on locally attached networks.

We use the term device driver to refer to the software that communicates with the
hardware and network interface (or just interface) for the hardware and device driver for a
particular network.

The Net/3 interface layer attempts to provide a hardware-independent program-
ming interface between the network protocols and the drivers for the network devices
connected to a system. The interface layer supports provides for all devices:

¯ a well-defined set of interface functions,
¯ a standard set of statistics and control flags,
¯ a device-independent method of storing protocol addresses, and
¯ a standard queueing method for outgoing packets.

There is no requirement that the interface layer provide reliable delivery of packets,
only a best-effort service is required. Higher protocol layers must compensate for this
lack of reliability. This chapter describes the generic data structures maintained for all
network interfaces. To illustrate the relevant data structures and algorithms, we refer to
three particular network interfaces from Net/3:

An AMD 7990 LANCE Ethernet interface: an example of a broadcast-capable
local area network.

A Serial Line IP (SLIP) interface: an example of a point-to-point network run-
ning over asynchronous serial lines.

63

64 Interface Layer Chapter 3

3. A loopback interface: a logical network that returns all outgoing packets as
input packets.

3.2 Code Introduction

The generic interface structures and initialization code are found in three headers and
two C files. The device-specific initialization code described in this chapter is found in
three different C files. All eight files are listed in Figure 3.1.

File Description

sys / soeket, h address structure definitions
net / i f. h interface structure definitions
net / i f_dl. h link-level structure definitions
kern/init_ma±n, e system and interface initialization
ne t / i f. c generic interface code
net / ± £_1oop. c loopback device driver
net / ± £_s 1. c SLIP device driver
hp3 0 0 / dev/± £_1 e. c LANCE Ethernet device driver

Figure 3.1 Files discussed in this chapter.

Global Variables

The global variables introduced in this chapter are described in Figure 3.2.

Variable

pdevinit

ifnet
ifnet_addrs
if_indexlim
if_index
ifqmaxlen
hz

Datatype
struct pdevinit []

struct ifnet *
struct ifaddr **
int
int
int
int

Description

array of initialization parameters for pseudo-devices
such as SLIP and loopback interfaces

head of list of i fnet structures
array of pointers to link-level interface addresses
size of i fne t_addrs array
index of the last configured interface
maximum size of interface output queues
the clock-tick frequency for this system (ticks/sgcond)

Figure 3.2 Global variables introduced in this chapter.

SNMP Variables

The Net/3 kernel collects a wide variety of networking statistics. In most chapters we
summarize the statistics and show how they relate to the standard TCP/IP information
and statistics defined in the Simple Network Management Protocol Management Infor-
mation Base (SNMP MIB-II). RFC 1213 [McCloghrie and Rose 1991] describe SNMP
MIB-II, which is organized into 10 distinct information groups shown in Figure 3.3.

Section 3.3 5_ ~:ne t Structure 65

SNMP Group

System
Interfaces
Address Translation

IP
ICMP
TCP
UDP
EGP
Transmission
SNMP

Description

general information about the system
network interface information
network-address-to-hardware-address-

translation tables (deprecated)
IP protocol information
ICMP protocol information
TCP protocol information
UDP protocol information
EGP protocol information
media-specific information
SNMP protocol information

Figure 3.3 SNMP groups in MIB-II.

Net/3 does not include an SNMP agent. Instead, an SNMP agent for Net/3 is imple-
mented as a process that accesses the kernel statistics in response to SNMP queries
through the mechanism described in Section 2.2.

While most of the MIB-II variables are collected by Net/3 and may be accessed
directly by an SNMP agent, others must be derived indirectly. MIB-II variables fall into
three categories: (1) simple variables such an integer value, a timestamp, or a byte
string; (2) lists of simple variables such as an individual routing entry or an interface
description entry; and (3) lists of lists such as the entire routing table and the list of all
interface entries.

The ISODE package includes a sample SNMP agent for Net/3. See Appendix B for informa-
tion about ISODE.

Figure 3.4 shows the one simple variable maintained for the SNMP interface group. We
describe the SNMP interface table later in Figure 4.7.

SNMP variable Net/3 variable Description

5_~:Number 5_ f_±ndex + 1 5_ f_5.nclex is the index of the last interface in the system and
starts at 0; 1 is added to get 5_ £I’~urdaer, the number of
interfaces in the system.

Figure 3.4 Simple SNMP variable in the interface group.

3.3 ifnet Structure

The 5_ fnet structure contains information common to all interfaces. During system ini-
tialization, a separate 5_~:net structure is allocated for each network device. Every
5_fnet structure has a list of one or more protocol addresses associated with it. Fig-
ure 3.5 illustrates the relationship between an interface and its addresses.

66 Interface Layer Chapter 3

ifnet{}

~ ifaddr{}

~ ifaddr{}

~ ifaddr{}

Figure 3.5 Each ±fnet structure has a list of associated ±£adclr structures.

The interface in Figure 3.5 is shown with three protocol addresses stored in ± factclz~
structures. Although some network interfaces, such as SLIP, support only a single
protocol, others, such as Ethernet, support multiple protocols and need multiple
addresses. For example, a system may use a single Ethernet interface for both Internet
and OSI protocols. A type field identifies the contents of each Ethernet frame, and since
the Internet and OSI protocols employ different addressing schemes, the Ethernet inter-
face must have an Internet address and an OSI address. All the addresses are connected
by a linked list (the arrows on the right of Figure 3.5), and each contains a back pointer
to the related ± fr~eL structure (the arrows on the left of Figure 3.5).

It is also possible for a single network interface to support multiple addresses
within a single protocol. For example, two Internet addresses may be assigned to a sin-
gle Ethernet interface in Net/3.

This feature first appeared in Net/2. Having two IP addresses for an interface is useful when
renumbering a network. During a transition period, the interface can accept packets
addressed to the old and new addresses.

The ± £net structure is large so we describe it in five sections:

¯ implementation information,
¯ hardware information,
¯ interface statistics,
¯ function pointers, and
¯ the output queue.

80--82

Figure 3.6 shows the implementation information contained in the ± £ne~ structure.
±~_nex~ joins the ±~ne~ structures for all the interfaces into a linked list. The

±f_a~Laeh function constructs the list during system initialization. ±f_actch:l±sL
points to the list of ±~actctz~ structures for the interface (Figure 3.16). Each ±£adctr
structure holds addressing information for a protocol that expects to communicate
through the interface.

Section 3.3 ifnet Structure 67

83--86

80 struct ifnet {
81 struct ifnet *if_next;
82 struct ifaddr *if_addrlist;
83 char *if_name;
84 short if_unit;
85 u_short if_index;
86 short if_flags;
87 short if_timer;
88 int if_pcount;
89 caddr_t if_bpf;

/* all struct ifnets are chained */
/* linked list of addresses per if */
/* name, e.g. ’le’ or ’io’ */
/* sub-unit for lower level driver */
/* numeric abbreviation for this if */
/* Figure 3.7 */
/* time ’til if watchdog called */
/* number of promiscuous listeners */
/* packet filter structure */

Figure 3.6 i fne t structure: implementation information.

if.h

if.h

Common interface information

i f_name is a short string that identifies the interface type, and i f_uni t identifies
multiple instances of the same type. For example, if a system had two SLIP interfaces,
both would have an if_name consisting of the 2 bytes "sl" and an if_unit of 0 for
the first interface and 1 for the second, if_index uniquely identifies the interface
within the kernel and is used by the sysctl system call (Section 19.14) as well as in the
routing domain.

Sometimes an interface is not uniquely identified by a protocol address. For example, several
SLIP connections can have the same local IP address. In these cases, if_index specifies the
interface explicitly.

i f_f lags specifies the operational state and properties of the interface. A process
can examine all the flags but cannot change the flags marked in the "Kernel only" col-
umn in Figure 3.7. The flags are accessed with the SIOCGIFFLAGS and SIOCSIFFLAGS
commands described in Section 4.4.

Kerneli f_f i ags only Description

IFF_BROADCAST
IFF_MULTICAST
IFF POINTOPOINT
IFF LOOPBACK

IFF_OACTIVE
IFF_RUIVIVING
IFF_SIMPLEX

IFF_LINKO
IFF_LINKI
IFF LINK2

IFF_ALLMULTI
IFF DEBUG

IFF_NOARP
IFF_NOTRAILERS
IFF__PROMISC
IFF_UP

see text
see text
see text

the interface is for a broadcast network
the interface supports multicasting
the interface is for a point-to-point network
the interface is for a loopback network
a transmission is in progress
resources are allocated for this interface
the interface cannot receive its own transmissions

defined by device driver
defined by device driver
defined by device driver
the interface is receiving all multicast packets
debugging is enabled for the interface
don’t use ARP on this interface
avoid using trailer encapsulation
the interface receives all network packets
the interface is operating

Figure 3.7 if_flags values.

68 Interface Layer Chapter 3

87

88--89

The IFF_BROADCAST and IFF_POINTOPOINT flags are mutually exclusive.

The macro IFF_CANTCHANGE is a bitwise OR of all the flags in the "Kernel only" column.

The device-specific flags (IFF_LINKX) may or may not be modifiable by a process depending
on the device. For example, Figure 3.29 shows how these flags are defined by the SLIP driver.

Interface timer
i f_timer is the time in seconds until the kernel calls the i f_watchdog function

for the interface. This function may be used by the device driver to collect interface
statistics at regular intervals or to reset hardware that isn’t operating correctly.
BSD Packet Filter

The next two members, if_pcount and if_bpf, support the BSD Packet Filter
(BPF). Through BPF, a process can receive copies of packets transmitted or received by
an interface. As we discuss the device drivers, we also describe how packets are passed
to BPF. BPF itself is described in Chapter 31.

The next section of the i fnet structure, shown in Figure 3.8, describes the hard-
ware characteristics of the interface.

90 struct if_data {
91 /* generic interface information */
92 u_char ifi_type; /* Figure 3.9 */
93 u_char ifi_addrlen; /* media address length */
94 u_char ifi_hdrlen; /* media header length */
95 u_long ifi_mtu; /* maximum transmission unit */
96 u_long ifi_metric; /* routing metric (external only) */
97 u_long ifi_baudrate; /* linespeed */

if.h

/* other ifnet members */

138 #define if_mtu if_data.ifi_mtu
139 #define if_type if_data.ifi_type
140 #define if_addrlen if_data.ifi_addrlen
141 #define if_hdrlen if_data.ifi_hdrlen
142 #define if_metric if_data.ifi_metric
143 #define if_baudrate if_data.ifi_baudrate

Figure 3.8 ifnet structure: interface characteristics.
if.h

90--92

Net/3 and this text use the short names provided by the #define statements on lines 138
through 143 to specify the i fnet members.

Interface characteristics

if_type specifies the hardware address type supported by the interface. Fig-
ure 3.9 lists several common values from net / i f_types, h.

Section 3.3 ifnet Structure 69

93--94

95

96--97

98--111

112--113

if_type

IFT_OTHER
IFT_ETHER
IFT_IS088023
IFT_IS088025
IFT_FDDI
IFT_LOOP
IFT_SLIP

Description

unspecified
Ethernet
IEEE 802.3 Ethernet (CMSA/CD)
IEEE 802.5 token ring
Fiber Distributed Data Interface
loopback interface
serial line IP

Figure 3.9 i f_type: data-link types.

if_addrlen is the length of the datalink address and if_hdrlen is the length of
the header attached to any outgoing packet by the hardware. An Ethernet network, for
example, has an address length of 6 bytes and a header length of 14 bytes (Figure 4.8).

i f_mtu is the maximum transmission unit of the interface: the size in bytes of the
largest unit of data that the interface can transmit in a single output operation. This is
an important parameter that controls the size of packets created by the network and
transport protocols. For Ethernet, the value is 1500.

if_metric is usually 0; a higher value makes routes through the interface less
favorable, i f_baudrate specifies the transmission speed of the interface. It is set only
by the SLIP interface.

Interface statistics are collected by the next group of members in the i fnet struc-
ture shown in Figure 3.10.

Interface statistics
Most of these statistics are self-explanatory, i f_c o 11 i s ions is incremented when

packet transmission is interrupted by another transmission on shared media such as
Ethernet. i f_noproto counts the number of packets that can’t be processed because
the protocol is not supported by the system or the interface (e.g., an OSI packet that
arrives at a system that supports only IP). The SLIP interface increments i f_noproto
if a non-IP packet is placed on its output queue:

These statistics were not part of the ifnet structure in Net/1. They were added to support
the standard SNMP MIB-II variables for interfaces.

if_iqdrops is accessed only by the SLIP device driven SLIP and the other network drivers
increment if_snd.ifq_drops (Figure 3.13) when IF_DROP is called, ifq_drops was
already in the BSD software when the SNMP statistics were added. The ISODE SNMP agent
ignores i f_iqdrops and uses i f snd. i fq_drops.

Change timestamp
i f_l a s t change records the last time any of the statistics were changed.

70 Interface Layer Chapter 3

98
99

i00
i01
102
103
104
105
106
107
108
109
ii0
iii
112
113

/* volatile statistics */
u_long
u_Iong
u_long
u_long
u_long
u_long
u_long
u_long
u_long
u_long

u_long

struct
} if_data;

ifi_ipackets;
ifi_ierrors;
ifi_opackets;
ifi_oerrors;
ifi_collisions;
ifi_ibytes;
ifi_obytes;
ifi_imcasts;
ifi_omcasts;
ifi_iqdrops;

ifi_noproto; /*

timeval ifi_lastchange;

/* #packets received on interface */
/* #input errors on interface */
/* #packets sent on interface */
/* #output errors on interface */
/* #collisions on csma interfaces */
/* #bytes received */
/* #bytes sent */
/* #packets received via multicast */
/* #packets sent via multicast */
/* #packets dropped on input, for this

interface */
#packets destined for unsupported
protocol */

/* last updated */

~h

/* other ifnet members */

144
145
146
147
148
149
150
151
152
153
154
155

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

if_ipackets if_data.ifi_ipackets
if_ierrors if_data.ifi_ierrors
if_opackets if_data.ifi_opackets
if_oerrors if_data.ifi_oerrors
if_collisions if_data.ifi_collisions
if_ibytes if_data.ifi_ibytes
if_obytes if_data.ifi_obytes
if_imcasts if_data ifi_imcasts
if_omcasts if_data.ifi_omcasts
if_iqdrops if_data.ifi_iqdrops
if_noproto if_data.ifi_noproto
if_lastchange if_data.ifi_lastchange

Figure 3.10 if net structure: interface statistics.

if.h

114--129

Once again, Net/3 and this text use the short names provided by the #define statements on
lines 144 through 155 to specify the i fnet members.

The next section of the i fnet structure, shown in Figure 3.11, contains pointers to
the standard interface-layer functions, which isolate device-specific details from the net-
work layer. Each network interface implements these functions as appropriate for the
particular device.
Interface functions

Each device driver initializes its own i fnet structure, including the seven function
pointers, at system initialization time. Figure 3.12 describes the generic functions.

We will see the comment / * xxx * / throughout Net/3. It is a warning to the reader that the
code is obscure, contains nonobvious side effects, or is quick solution to a more difficult prob-
lem. In this case, it indicates that i f_done is not used in Net/3.

Section 3.3 ± fnet Structure 71

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

/* procedure handles */
int (*if_init)

int

int

int

int

int

int

(int);
(*if_output)

/* init routine */

/* output routine (enqueue) */
(struct ifnet *, struct mbuf *, struct sockaddr *,
struct rtentry *);

(*if_start) /* initiate output routine */
(struct ifnet *);
(*if_done) /* output complete routine */
(struct ifnet *); /* (XXX not used; fake prototype)
(*if_ioctl) /* ioctl routine */
(struct ifnet *, int, caddr_t);
(*if_reset)
(int) ;
(*if_watchdog)
(int);

*/

/* new autoconfig will permit removal */
/* timer routine */

Figure 3.11 ifnet structure: interface procedures.

if.h

if.h

Function

if_init
if_output
if_start
if_done
if_ioctl
if_reset
if_watchdog

Description

initialize the interface
queue outgoing packets for transmission
initiate transmission of packets
cleanup after transmission completes (not used)
process I/O control commands
reset the interface device
periodic interface routine

Figure 3.12 if net structure: function pointers.

In Chapter 4 we look at the device-specific functions for the Ethernet, SLIP, and
loopback interfaces, which the kernel calls indirectly through the pointers in the ± fnet
structure. For example, if ± fp points to an ± fne¢ structure,

(*ifp->if_start) (ifp)

calls the ± f_s Cart function of the device driver associated with the interface.
The remaining member of the ± fnet structure is the output queue for the interface

and is shown in Figure 3.13.

130
131
132
133
134
135
136
137 };

struct ifqueue {
struct mbuf *ifq_head;
struct mbuf *ifq_tail;
int ifq_len;
int ifq_maxlen;

/* current length of queue */
/* maximum length of queue */

~h

int ifq_drops;
} if_snd;

/* packets dropped because of full queue */
/* output queue */

~h
Figure 3.13 ifnet structure: the output queue.

72 Interface Layer Chapter 3

130--137 i f_snd is the queue of outgoing packets for the interface. Each interface has its
own i fnet structure and therefore its own output queue, i fq_head points to the first
packet on the queue (the next one to be output), i fcL_tai 1 points to the last packet on
the queue, if_len is the number of packets currently on the queue, and ifq__maxlen
is the maximum number of buffers allowed on the queue. This maximum is set to 50
(from the global integer, ifqmaxlen, which is initialized at compile time from
IFQ_MAXL~,N) unless the d?iver changes it. The queue is implemented as a linked list of
mbuf chains, i fq_drops counts the number of packets discarded because the queue
was full. Figure 3.14 lists the macros and functions that access a queue.

Function Description

IF_QFULL Is ifq full?

int IF_Ql~UhL(struct ifqueue *i/q);

IF_DROP IF_DROP only increments the i fq_drops counter associated with ifq.
The name is misleading; the caller drops the packet.

void II~_DI~OF(struct ifqueue *ij:q);

IF_ENQUEUE Add the packet m to the end of the iiq queue. Packets are linked
together by m_nextpkt in the mbuf headen

void II~_~.NQUED~(struct ifqueue *i/q, struct mbuf

IF_PREPEND Insert the packet m at the front of the i]:q queue.

void IF_P~I~P~.ND(struct ifqueue *i/q, struct mbuf

IF_DEQUEUE Take the first packet off the ifq queue, m points to the dequeued packet
or is null if the queue was empty.

void IF D~.QU~D’~(struct ifqueue

i f_qf lush Discard all packets on the queue i/q, for example, when an interface is
shut down.

void i£_qflush(struct ifqueue *i/q);

Figure 3.14 if queue routines.

The first five routines are macros defined in net/if.h and the last routine,
i f_qf lush, is a function defined in net/i f. e. The macros often appear in sequences
such as:

s : splimp() ;
if (IF_QFULL(inq)) {

IF_DROP(inq) ;
m_freem(m);

} else
IF_ENQUEUE(inq, m);

splx(s);

/* queue is full, drop new packet */

/* there is room, add to end of queue */

This code fragment attempts to add a packet to the queue. If the queue is full, IF_DROP
increments ifq_drops and the packet is discarded. Reliable protocols such as TCP

Section 3.4 i faddr Structure 73

will retransmit discarded packets. Applications using an unreliable protocol such as
UDP must detect and handle the retransmission on their own.

Access to the queue is bracketed by splimp and splx to block network interrupts
and to prevent the network interrupt service routines from accessing the queue while it
is in an indeterminate state.

m_freem is called before splx because the mbuf code has a critical section that runs at
splimp. It would be wasted effort to call splx before re_free only to enter another critical
section during m_freem (Section 2.5).

3.4

217--219

220

221--223

ifaddr Structure

The next structure we look at is the interface address structure, i faddr, shown in Fig-
ure 3.15. Each interface maintains a linked list of i faddr structures because some data
links, such as Ethernet, support more than one protocol. A separate i faddr structure
describes each address assigned to the interface, usually one address per protocol.
Another reason to support multiple addresses is that many protocols, including TCP/IP,
support multiple addresses assigned to a single physical interface. Although Net/3
supports this feature, many implementations of TCP/IP do not.

217 struct ifaddr {
218 struct ifaddr *ifa_next;
219 struct ifnet *ifa_ifp;
220 struct sockaddr *ifa_addr;
221 struct sockaddr *ifa_dstaddr;
222 #define ifa_broadaddr ifa_dstaddr
223 struct sockaddr *ifa_netmask;
224 void (*ifa_rtrequest) ();
225 u_short ifa_flags;
226 short ifa_refcnt;
227 int ifa_metric;
228 };

~h

/* next address for interface */
/* back-pointer to interface */
/* address of interface */
/* other end of p-to-p link */
/* broadcast address interface */
/* used to determine subnet */
/* check or clean routes */
/* mostly rt_flags for cloning */
/* references to this structure *!
/* cost for this interface */

Figure 3.15 ifaddr structure.

The i faddr structure links all addresses assigned to an interface together by
ira_next and contains a pointer, i fa_ifp, back to the interface’s i fnet structure.
Figure 3.16 shows the relationship between the i fnet structures and the i faddr struc-
tures.

i fa_addr points to a protocol address for the interface and i fa_netmask points
to a bit mask that selects the network portion of i fa_addr. Bits that represent the net-
work portion of the address are set to i in the mask, and the host portion of the address
is set to all 0 bits. Both addresses are stored as sockaddr structures (Section 3.5). Fig-
ure 3.38 shows an address and its related mask structure. For IP addresses, the mask
selects the network and subnet portions of the IP address.

ifa_dstaddr (or its alias ifa_broadaddr) points to the protocol address of the
interface at the other end of a point-to-point link or to the broadcast address assigned to

74 Interface Layer Chapter 3

i fnet{ }

ifaddr{}
ifa_ifp
ifa_next

ifaddr{ ;
ifa_ifp I

ifa_next ~

ifaddr{}~ifa_ifp b

ifa_next

more
~interfaces

Figure 3.16 i fnet and i faddr structures.

224--228

the interface on a broadcast network such as Ethernet. The mutually exclusive flags
IFF_BROADCAST and IFF_POINTOPOINT (Figure 3.7) in the interface’s ifnet struc-
ture specify the applicable name.

i fa_rtrequest, i fa_flags, and i fa_metric support routing lookups for the
interface.

i fa_refcr~t counts references to the i faddr structure. The macro IFAFREE only
releases the structure when the reference count drops to 0, such as when addresses are
deleted with the SIOCDIFADDR ioctl command. The ifaddr structures are refer-
ence-counted because they are shared by the interface and routing data structures.

I FAFREE decrements the counter and returns if there are other references. This is the common
case and avoids a function call overhead for all but the last reference. If this is the last refer-
ence, IFAFREE calls the function i fafree, which releases the structure.

3.5 sockaddr Structure

Addressing information for an interface consists of more than a single host address.
Net/3 maintains host, broadcast, and network masks in structures derived from a
generic sockaddr structure. By using a generic structure, hardware and protocol-
specific addressing details are hidden from the interface layer.

Figure 3.17 shows the current definition of the structure as well as the definition
from earlier BSD releases--an osockaddr structure.

Section 3.5 sockaddr Structure 75

socket.h
120 struct Sockaddr {
121 u_char sa_len; /* total length */
122 u_char sa_family; /* address family (Figure 3.19) */
123 char sa_data[14]; /* actually longer; address value */
124 };

271 struct osockaddr {
272 u_short sa_family;
273 char sa_data[14];
274 };

/* address family
/* up to 14 bytes

(Figure 3.19) */
of direct address */

socket.h

Figure 3.17 sockaddr and osockaddr structures.

Figure 3.18 illustrates the organization of these structures.
family

sockaddr(} len ~ data

1 1 14bytes

osockaddr() family

2
Figure 3.18

data

14 bytes
sockaddr and osockaddr structures (sa_ prefix dropped).

120--124

In many figures, we omit the common prefix in member names. In this case, we’ve dropped
the sa_ prefix.

sockaddr structure

Every protocol has its own address format. Net/3 handles generic addresses in a
sockaddr structure, sa_len specifies the length of the address (OSI and Unix domain
protocols have variable-length addresses) and sa_farai ly specifies the type of address.
Figure 3.19 lists the address family constants that we encounter.

sa_family
AF_ INET

AF_ISO , AF_OSI
AF_UNIX
AF_ROUTE
AF_LIIVK

A F_ UNSPEC

Protocol

Internet
OSI
Unix
routing table
data link
(see text)

Figure 3.19 sa_familyconstants.

The contents of a sockaddr when AF_LrNSPEC is specified depends on the context. In most
cases, it contains an Ethernet hardware address.

76 Interface Layer Chapter 3

2 71 --2 74

The sa_len and sa_fami ly members allow protocoMndependent code to manip-
ulate variable-length sockaddr structures from multiple protocol families. The
remaining member, sa_data, contains the address in a protocol-dependent format.
sa_data is defined to be an array of 14 bytes, but when the sockaddr structure over-
lays a larger area of memory sa_data may be up to 253 bytes long. sa_len is only a
single byte, so the size of the entire address including sa_len and sa_family must be
less than 256 bytes.

This is a common C technique that allows the programmer to consider the last member in a
structure to have a variable length.

Each protocol defines a specialized sockaddr structure that duplicates the sa_len
and sa_family members but defines the sa_data member as required for that proto-
col. The address stored in sa_data is a transport address; it contains enough informa-
tion to identify multiple communication end points on the same host. In Chapter 6 we
look at the Internet address structure sockaddr_in, which consists of an IP address
and a port number.

osockaddr structure

The osockaddr structure is the definition of a sockaddr before the 4.3BSD Reno
release. Since the length of an address was not explicitly available in this definition, it
was not possible to write protocol-independent code to handle variable-length
addresses. The desire to include the OSI protocols, which utilize variable-length
addresses, motivated the change in the sockaddr definition seen in Net/3. The
osockaddr structure is supported for binary compatibility with previously compiled
programs.

We have omitted the binary compatibility code from this text.

3.6 ifnet and ifaddr Specialization

The if net and i faddr structures contain general information applicable to all net-
work interfaces and protocol addresses. To accommodate additional device and proto-
col-specific information, each driver defines and each protocol allocates a specialized
version of the i fnet and i faddr structures. These specialized structures always con-
tain an i fnet or i faddr structure as their first member so that the common informa-
tion can be accessed without consideration for the additional specialized information.

Most device drivers handle multiple interfaces of the same type by allocating an
array of its specialized i fnet structures, but others (such as the loopback driver) han-
dle only one interface. Figure 3.20 shows the arrangement of specialized i fnet struc-
tures for our sample interfaces.

Notice that each device’s structure begins with an i fnet structure, followed by all
the device-dependent data. The loopback interface declares only an if net structure,
since it doesn’t require any device-dependent data. We show the Ethernet and SLIP
driver’s softc structures with the array index of 0 in Figure 3.20 since both drivers

Section 3.7 Network Initialization Overview 77

Ethernet

SLIP

loopback

le_softc[O]:

sl_softc[O]:

loll:

ifnet{}Isl_softc{}

ifnet{}

le_softc{}

Figure 3.20 Arrangement of i fnet structures within device-dependent structures.

support multiple interfaces. The maximum number of interfaces of any given type is
limited by a configuration parameter when the kernel is built.

The arpeora structure (Figure 3.26) is common to all Ethernet drivers and contains
information for the Address Resolution Protocol (ARP) and Ethernet multicasting. The
3_ e_S O fte structure (Figure 3.25) contains additional information unique to the LANCE
Ethernet device driver.

Each protocol stores addressing information for each interface in a list of specialized
±faddr structures. The Internet protocols use an 5_n_±fafldr structure (Section 6.5)
and the OSI protocols an ± s 0_5_£addr structure. In addition to protocol addresses, the
kernel assigns each interface a link-level address when the interface is initialized, which
identifies the interface within the kernel.

The kernel constructs the link-level address by allocating memory for an 5_ faddr
structure and two soekaddr_dl structures--one for the link-level address itself and
one for the link-level address mask. The soekaddr_dl structures are accessed by OSI,
ARP, and the routing algorithms. Figure 3.21 shows an Ethernet interface with a link-
level address, an Internet address, and an OSI address. The construction and initializa-
tion of the link-level address (the ifaddr and the two sockaddr_dl structures) is
described in Section 3.11.

3.7 Network Initialization Overview

All the structures we have described are allocated and attached to each other during
kernel initialization. In this section we give a broad overview of the initialization steps.
In later sections we describe the specific device- and protocol-initialization steps.

78 Interface Layer Chapter 3

120-123

linkqevel address

Internet address

OSI address

~ i fnet{ } ~

Figure 3.21 An interface address list containing link-level, Internet, and OSI addresses.

Some devices, such as the SLIP and loopback interfaces, are implemented entirely in
software. These pseudo-devices are represented by a pdevini¢ structure (Figure 3.22)
stored in the global Zodev±n±t array. The array is constructed during kernel configura-
tion. For example:

struct pdevinit pdevinit [] : {
{ slattach, 1],
{ loopattach, 1 },
{ 0, 0 }

};

120 struct pdevinit {
121 void (*pdev_attach)
122 int pdev_count;
123 };

(int); /* attach function */
/* number of devices */

Figure 3.22 pdevinit structure.

device.h

device.h

In the pdevinit structures for the SLIP and the loopback interface, pdev_attach

is set to slattach and loopattach respectively. When the attach function is called,
pdev_count is passed as the only argument and specifies the number of devices to cre-
ate. Only one loopback device is created but multiple SLIP devices may be created if
the administrator configures the SLIP entry accordingly.

Section 3.7 Network Initialization Overview 79

The network initialization functions ~om main are shown in Figure 3.23.

70 mai~(framep)
71 void *framep;
72 {

init_main.c

/* nonnetwork code */

96 cpu_startup () ; /* locate and initialize devices */

/* nonnetwork code */

172
173
174

175
176
177

179
180
181
182

/* Attach pseudo-devices. (e.g., SLIP and loopback interfaces) */
for (pdev : pdevinit; pdev >pdev_attach !- NULL; pdev++)

(*pdev->pdev_attach) (pdev->pdev_count);

* Initialize protocols. Block reception of incoming packets
* until everything is ready.
*/

s - splimp() ;
ifinit(); /* initialize network interfaces */
domaininit(); /* initialize protocol domains */
splx(s);

/* nonnetwork code */

70--96

97 174

175--234

231
232
233
234 }

/* The scheduler is an infinite loop. */
scheduler();
/* NOTREACHED */

Figure 3.23 main function: network initialization.

init_main.c

cpu_startup locates and initializes all the hardware devices connected to the sys-
tem, including any network interfaces.

After the kernel initializes the hardware devices, it calls each of the pdev_attach
functions contained within the pdevinit array.

i finit and domaininit finish the initialization of the network interfaces and
protocols and scheduler begins the kernel process scheduler, ifinit and
domaininit are described in Chapter 7.

In the following sections we describe the initialization of the Ethernet, SLIP, and
loopback interfaces.

80 Interface Layer Chapter 3

3.8 Ethernet Initialization

As part of cpu_startup, the kernel locates any attached network devices. The details
of this process are beyond the scope of this text. Once a device is identified, a device-
specific initialization function is called. Figure 3.24 shows the initialization functions
for our three sample interfaces.

Device Initialization Function

LANCE Ethernet leattach
SLIP slat t ach
loopback 1 oop at t ach

Figure 3.24 Network interface initialization functions.

Each device driver for a network interface initializes a specialized i fnet structure
and calls if_attach to insert the structure into the linked list of interfaces. The
le_softc structure shown in Figure 3.25 is the specialized ifnet structure for our
sample Ethernet driver !Figure 3.20).

69 struct le_softc { i/_le.c
70 struct arpcom sc_ac; /* common Ethernet structures */
71 #define sc_if sc_ac.ac_if /* network-visible interface */
72 #define sc_addr sc_ac.ac_enaddr /* hardware Ethernet address */

/* device-specific members */

95 } le_softc[NLE];

Figure 3.25 le_softc structure.
if_le.c

69--95

le_softc structure
An array of le_softc structures (with NLE elements) is declared in if_le.c.

Each structure starts with sc_ac, an arpcom structure common to all Ethernet inter-
faces, followed by device-specific members. The sc_i f and sc_addr macros simplify
access to the ifnet structure and Ethernet address within the arpcom structure,
sc_ac, shown in Figure 3.26.

95 struct arpcom {
96 struct ifnet ac_if; /* network-visible interface */
97 u_char ac_enaddr[6]; /* ethernet hardware address */
98 struct in_addr ac_ipaddr; /* copy of ip address - XXX */
99

i00
i01 };

¯ if_ether.h

struct ether_multi *ac_multiaddrs; /* list of ether multicast addrs */
int ac_multicnt; /* length of ac_multiaddrs list */

¯ if_ether.h
Figure 3.26 arpcom structure.

Section 3.8 Ethernet Initialization 81

95--10l

106--115

126--137

150--157

158

159--162

arpcom structure

The first member of the arpcom structure, ac_if, is an ifnet structure as shown
in Figure 3.20. ac_enaddr is the Ethernet hardware address copied by the LANCE
device driver from the hardware when the kernel locates the device during
cpu_startup. For our sample driver, this occurs in the leattach function (Fig-
ure 3.27). ac_ipaddr is the last IP address assigned to the device. We discuss address
assignment in Section 6.6, where we’ll see that an interface can have several IP
addresses. See also Exercise 6.3. ac_multiaddrs is a list of Ethernet multicast
addresses represented by ether_multi structures, ac_multicnt counts the entries
in the list. The multicast list is discussed in Chapter 12.

Figure 3.27 shows the initialization code for the LANCE Ethernet driver.
The kernel calls leattach once for each LANCE card it finds in the system.

The single argument points to an hp_device structure, which contains HP-specific informa-
tion since this driver is written for an HP workstation.

le points to the specialized ifnet structure for the card (Figure 3.20) and ifp
points to the first member of that structure, sc_if, a generic ifnet structure. The
device-specific initializations are not included in Figure 3.27 and are not discussed in
this text.

Copy the hardware address from the device
For the LANCE device, the Ethernet address assigned by the manufacturer is

copied from the device to sc_addr (which is sc_ac, ac_enaddr--see Figure 3.26) one
nibble (4 bits) at a time in this for loop.

lestd is a device-specific table of offsets to locate information relative to hp_addr, which
points to LANCE-specific information.

The complete address is output to the console by the printf statement to indicate
that the device exists and is is operational.

Initialize the i£net structure

leattach copies the device unit number from the hp_device structure into
if_unit to identify multiple interfaces of the same type. if_name is "le" for this
device; i f_mtu is 1500 bytes (ETHERMTU), the maximum transmission unit for Ethernet;
if_init, if_reset, if_ioctl, if_output, and if_start all point to device-
specific implementations of the generic functions that control the network interface.
Section 4.1 describes these functions.

All Ethernet devices support IFF_BROADCAST. The LANCE device does not
receive its own transmissions, so IFF_SIMPLEX is set. The driver and hardware sup-
ports multicasting so IFF_MULTICAST is also set.

bpfattach registers the interface with BPF and is described with Figure 31.8. The
i f_attach function inserts the initialized i fnet structure into the linked list of inter-
faces (Section 3.11).

82 Interface Layer Chap~r 3

~_le.c
106 leattach(hd)
107 struct hp_device *hd;
108 {
109 struct lereg0 *ler0;
ii0 struct lereg2 *ler2;
iii struct lereg2 *lemem -0;
112 struct le_softc *le - &le_softc[hd->hp_unit];
113 struct ifnet *ifp = &le >sc_if;
114 char *cp;
115 int i;

/* device-specific code *!

126
127
128
129
130
131
132
133
134
135
136
137

* Read the ethernet address off the board, one nibble at a time.

cp = (char *) (lestd[3] + (int) hd->hp_addr);
for (i - 0; i < sizeof(le->sc_addr); i++) {

le->sc_addr[i] = (*++cp & 0xF) << 4;
cp++;
le->sc_addr[i] I= *++cp & 0xF;
cp++;

}
printf("le%d: hardware address %s\n", hd->hp_unit,

ether_sprintf(le->sc_addr));

/* device-specific code */

3.9

150
151
152
153
154
155
156
157
158
159
160
161
162

ifp->if_unit : hd->hp_unit;
ifp->if_name = "le";
ifp->if_mtu - ETHERMTU;
ifp->if_init - leinit;
ifp->if_reset = lereset;
ifp->if_ioctl = leioctl;
ifp->if_output : ether_output;
ifp->if_start - lestart;
ifp->if_flags - IFF_BROADCAST I IFF_SIMPLEX I IFF_MULTICAST;
bpfattach(&ifp->if_bpf, ifp, DLT_ENIOMB, sizeof(struct ether_header));
if_attach(ifp);
return (i);

if_le.c
Figure 3.27 leattach function.

SLIP Initialization

The SLIP interface relies on a standard asynchronous serial device initialized within the
call to cpu_startup. The SLIP pseudo-device is initialized when main calls
s 1 at t ach indirectly through the paler_at t ach pointer in SLIP’s pdevinit structure.

Section 3.9 SLIP Initialization 83

43--5q

135--152

Each SLIP interface is described by an s l_s o f t e structure shown in Figure 3.28.

43 struct sl_softc {
44 struct ifnet sc_if;
45 struct ifqueue sc_fastq;
46 struct tty *sc_ttyp;
47 u_char *sc mp;
48 u_char *sc_ep;
49 u_char *sc_buf;
50 u_int sc_flags;
51 u_int sc_escape;
52 struct slcompress sc_comp;
53 caddr_t sc_bpf;
54 };

if_slvar.h

/* network-visible interface */
/* interactive output queue */
/* pointer to tty structure */
/* pointer to next available buf char */
/* pointer to last available buf char */
/* input buffer */
/* Figure 3.29 */
/* =i if last char input was FRAME_ESCAPE */
/* tcp compression data */
/* BPF data */

if_slvar.h
Figure 3.28 sl_softc structure.

As with all interface structures, s l_s o f t c starts with an i f net structure followed
by device-specific information.

In addition to the output queue found in the i fnet structure, a SLIP device main-
tains a separate queue, se_fastq, for packets requesting low-delay service--typically
generated by interactive applications.

sc_ttyp points to the associated terminal device. The two pointers sc_buf and
sc_ep point to the first and last bytes of the buffer for an incoming SLIP packet, so_rap
points to the location for the next incoming byte and is advanced as additional bytes
arrive.

The four flags defined by the SLIP driver are shown in Figure 3.29.

Constant sc_softc member Description
SC_COMPRESS sc_if, if_flags IFF_LINK0; compress TCP traffic
SC_NOICMP sc_if, if_flags IFF_LINKI; suppress ICMP traffic
SC_AUTOCOMP sc_if, if_flags IFF_LINK2; auto-enable TCP compression

SC_ERROR sc_flags error detected; discard incoming frame

Figure 3.29 SLIP if_flags and sc_flags values.

SLIP defines the three interface flags reserved for the device driver in the ifnet
structure and one additional flag defined in the s l_s o f t c structure.

so_escape is used by the IP encapsulation mechanism for serial lines (Section 5.3),
while TCP header compression (Section 29.13) information is kept in s c_comp.

The BPF information for the SLIP device is pointed to by sc_bp f.

The sl_softc structure is initialized by slattach, shown in Figure 3.30.
Unlike leattach, which initializes only one interface at a time, the kernel calls

s 1 a t t a c h once and s 1 a t t a c h initializes all the SLIP interfaces. Hardware devices are
initialized as they are discovered by the kernel during cpu_startup, while pseudo-
devices are initialized all at once when main calls the pdev_attach function for the
device, if_mtu for a SLIP device is 296 bytes (SLMTU). This accommodates the

84 Interface Layer Chapter 3

135 void
136 slattach()
137 {
138 struct sl_softc *sc;
139 int i : 0;

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

for (sc : sl_softc; i < NSL; sc++) {
sc->sc_if.if_name = "sl";
sc->sc_if.if_next : NULL;
sc->sc_if.if_unit = i++;
sc->sc_if.if_mtu : SLMTU;
sc->sc_if.if_flags =

IFF_POINTOPOINT I SC_AUTOCOMP I IFF_MULTICAST;
sc->sc_if.if_type = IFT_SLIP;
sc->sc_if.if_ioctl : slioctl;
sc->sc_if.if_output : sloutput;
sc->sc_if.if_snd.ifq_maxlen = 50;
sc->sc_fastq.ifq_maxlen = 32;
if_attach(&sc->sc_if);
bpfattach(&sc->sc bpf, &sc->sc_if, DLT_SLIP, SLIP_HDRLEN);

Figt~re 3.30 slattach function.

if_sl.c

if_sl.c

153--155

standard 20-byte IP header, the standard 20-byte TCP header, and 256 bytes of user data
(Section 5.3).

A SLIP network consists of two interfaces at each end of a serial communication
line. slattach turns on IFF_POINTOPOINT, SC_AUTOCOMP, and IFF_MULTICAST in
if_flags.

The SLIP interface limits the length of its output packet queue, i f_snd, to 50 and
its own internal queue, sc_fastq, to 32. Figure 3.42 shows that the length of the
if_snd queue defaults to 50 (ifqmaxlen) if the driver selects a length, so the initial-
ization here is redundant.

The Ethernet driver doesn’t set its output queue length explicitly and relies on ifinit (Fig-
ure 3.42) to set it to the system default.

if_attach expects a pointer to an ifnet structure so slattach passes the
address of sc_i f, an i fnet structure and the first member of the sl_softc structure.

A special program, s lattach, is run (from the / etc / nets tart initialization file)
after the kernel has been initialized and joins the SLIP interface and an asynchronous
serial device by opening the serial device and issuing i o c t i commands (Section 5:3).

For each SLIP device, slattach calls bpfattach to register the interface with
BPR

Section 3.11 if_attach Function 85

3.10

41--56

Loopback Initialization

Finally, we show the initialization for the single loopback interface. The loopback inter-
face places any outgoing packets back on an appropriate input queue. There is no hard-
ware device associated with the interface. The loopback pseudo-device is initialized
when main calls loopattach indirectly through the pdev_attach pointer in the
loopback’s pdevinit structure. Figure 3.31 shows the loopattach function.

41 void
42 loopattach(n)
43 int n;
44 {
45 struct ifnet *ifp = &loif;

if_loop.c

46
47
48
49
5O
51
52
53
54
55
56

ifp->if_name = "io";
ifp->if mtu = LOMTU;
ifp->if_flags = IFF_LOOPBACK 1
ifp->if_ioctl = loioctl;
ifp->if_output = looutput;
ifp->if_type = IFT_LOOP;
ifp->if_hdrlen = 0;
ifp->if_addrlen = 0;
if_attach(ifp);
bpfattach(&ifp->if_bpf, ifp,

IFF_MULTICAST;

DLT_NULL, sizeof(u_int));

Figure 3.31 Loopback interface initialization.

if_loop.c

The loopback if_mtu is set to 1536 bytes (LOMTU). In if_flags, IFF_LOOPBACK
and IFF_MULTICAST are set. A]oopback interface has no link header or hardware
address, so if_hdrlen and if_addrlen are set to 0. if_attach finishes the initial-
ization of the i fnet structure and bpfattach registers the loopback interface with
BPF.

The loopback MTU should be at least 1576 (40 + 3 x 512) to leave room for a standard TCP/IP
header. Solaris 2.3, for example, sets the loopback MTU to 8232 (40 + 8 x 1024). These calcula-
tions are biased toward the Internet protocols; other protocols may have default headers larger
than 40 bytes.

3.11 if_attach Function

The three interface initialization functions shown earlier each call if_attach to com-
plete initialization of the interface’s i fnet structure and to insert the structure on the
list of previously configured interfaces. Also, in if_attach, the kernel initializes and
assigns each interface a link-level address. Figure 3.32 il.lustrates the data structures
constructed by i f_attach.

86 Interface Layer Chapter 3

55--57

58

6O

ifnet: le_softc[O]:

i fnet_addrs :

sockaddr_dl{}J

sl_softc[O] :

ifnet{}

sl~{}

ifaddr{}

sockaddr_dl{]1

sockaddr_dl{~

foil:

ifnet{}

ifaddr{}

sockaddr_dl{

sockaddr_dl{

Figure 3.32 ifnet list.

In Figure 3.32, if_attach has been called three times: from leattach with an
le_softc structure, from slattach with an sl_softc structure, and from
loopattach with a generic ifnet structure. Each time it is called it adds another
i fnet structure to the i fnet list, creates a link-level i faddr structure for the interface
(which contains two sockaddr_dl structures, Figure 3.33), and initializes an entry in
the i fnet_addrs array.

The structures contained within le_softc [0] and sl_softc [0] are nested as shown in Fig-
ure 3.20.

After this initialization, the interfaces are configured only with link-level addresses.
IP addresses, for example, are not configured until much later by the i fconfig pro-
gram (Section 6.6).

The link-level address contains a logical address for the interface and a hardware
address if supported by the network (e.g., a 48-bit Ethernet address for le0). The hard-
ware address is used by ARP and the OSI protocols, while the logical address within a
sockaddr_dl contains a name and numeric index for the interface within the kernel,
which supports a table lookup for converting between an interface index and the associ-
ated i faddr structure (i fa_i fwi tenet, Figure 6.32).

The sockaddr_dl structure is shown in Figure 3.33.
Recall from Figure 3.18 that sdl_len specifies the length of the entire address and

sdl_fami ly specifies the address family, in this case AF_LINK.
sdl_index identifies the interface within the kernel. In Figure 3.32 the Ethernet

interface would have an index of 1, the SLIP interface an index of 2, and the loopback
interface an index of 3. The global integer i f_index contains the last index assigned
by the kernel.

sdl_type is initialized from the i f_type member of the if net structure associ-
ated with this datalink address.

Section 3.11 if_attach Function 87

61--68

59--74

75-85

55 struct sockaddr_dl {
56 u_char sdl_len;
57 u_char sdl_family;
58 u_short sdl_index;
59
60 u_char sdl_type;
61 u_char sdl_nlen;
62
63 u_char sdl_alen;
64 u_char sdl_slen;
65 char sdl_data[12];
66
67 };

68

/* Total length of sockaddr */
/* AF_LINK */
/* if !: 0, system given index for

interface */
/* interface type (Figure 3.9) */
/* interface name length~ no trailing 0

reqd. */
/* link level address length */
/* link layer selector length */
/* minimum work area, can be larger;

if_dl.h

contains both if name and ii address */

#define LLADDR(s) ((caddr_t) ((s)->sdl_data + (s)->sdl_nlen))

Fizure3.33 sockaddr_dls[ru¢[ure.

i]:_dI.h

In addition to a numeric index, each interface has a text name formed from the
i f_name and i f_unit members of the i fnet structure. For example, the first SLIP
interface is called "sl0" and the second is called "sll". The text name is stored at the
front of the sdl_data array, and sdl_nlen is the length of this name in bytes (3 in our
SLIP example).

The datalink address is also stored in the structure. The macro LLADDR converts a
pointer into a sockaddr_dl structure to a pointer to the first byte beyond the text
name. sdl_alen is the length of the hardware address. For an Ethernet device, the
48-bit hardware address appears in the soekaddr_dl structure beyond the text name.
Figure 3.38 shows an initialized s ockaddr_dl structure.

Net/3 does not use sdl_slen.

if_attach updates two global variables. The first, if_index, holds the index of
the last interface in the system and the second, ifnet_addrs, points to an array of
i f addr pointers. Each entry in the array points to the link-level address of an interface.
The array provides quick access to the link-level address for every interface in the sys-
tem.

The if_attach function is long and consists of several tricky assignment state-
ments. We describe it in four parts, starting with Figure 3.34.

i f_at t ach has a single argument, i fp, a pointer to the i fnet structure that has
been initialized by a network device driver. Net/3 keeps all the if net structures on a
linked list headed by the global pointer ifnet. The while loop locates the end of the
list and saves the address of the null pointer at the end of the list in p. After the loop,
the new i fnet structure is attached to the end of the i fnet list, if_index is incre-
mented, and the new index is assigned to i fl~-> i f_index.

Resize ifnet_addrs array if necessary
The first time through if_attach, the ifnet_addrs array doesn’t exist so space

for 16 entries (16 = 8 << 1) is allocated. When the array becomes full, a new array of
twice the size is allocated and the entries from the old array are copied to the new array.

88 Interface Layer Chapter 3

86--99

59
60
61
62
63
64
65
66
67
68
69
7O

71
72
73
74

75
76
77
78
79

void
if_attach(ifp)
struct ifnet *ifp;
{

unsigned socksize, ifasize;
int namelen, unitlen, masklen, ether_output();
char workbuf[12], *unitname;
struct ifnet **p = &ifnet; /* head of interface list */
struct sockaddr_dl *sdl;
struct ifaddr *ifa;
static int if_indexlim : 8; /* size of ifnet_addrs array */
extern void link_rtrequest);

while (*p)
p = &((*p)->if_next);

*p = ifp;
ifp->if_index : ++if_index

/* find end of interface list *!

/* assign next index */

/* resize ifnet_addrs array if necessary */
if ifnet_addrs :: 0 II if_index >= if_indexlim) {

unsigned n : (if_indexlim <<= i) * sizeof(ifa);
struct ifaddr **q = (struct ifaddr **)

malloc(n, M_IFADDR, M_WAITOK);

80 if (ifnet_addrs) {
81 bcopy((caddr_t) ifnet_addrs, (caddr_t) q, n / 2);
82 free((caddr_t) ifnet_addrs, M_IFADDR);
83
84 ifnet_addrs : q;
85 }

Figure 3.34 if_attach function: assign interface index.

ii.c

if_indexlim is a static variable private to if_attach, if_indexlim is updated by the
<<= operator.

The malloc and free functions in Figure 3.34 are not the standard C library func-
tions of the same name. The second argument in the kernel versions specifies a type,
which is used by optional diagnostic code in the kernel to detect programming errors.
If the third argument to real loc is M_WAITOK, the function blocks the calling process if
it needs to wait for free memory to become available. If the third argument is
M_DONTWAIT, the function does not block and returns a null pointer when no memory
is available.

The next section of i f_attach, shown in Figure 3.35, prepares a text name for the
interface and computes the size of the link-level address.
Create link-level name and compute size of link-level address

i f_at tach constructs the name of the interface from i f_unit and i f_name. The
function sprint_d converts the numeric value of if_unit to a string stored in
workbuf, masklen is the number of bytes occupied by the information before
sdl_data in the sockaddr_dl array plus the size of the text name for the interface

Section 3.11 i f_at tach Function 89

86 /* create a Link Leve! name for this device */
87 unitname - sprint_d((u_int] ifp->if_unit, workbuf,
88 namelen = strlen(ifp->if_name);
89 unitlen - strlen(unitname);

sizeof(workbuf));

90 /* compute size of sockaddr_dl structure for this device */
91 #define _offsetof(t, m) ((int) ((caddr_t)&((t *)0) >m))
92 masklen = _offsetof(struct sockaddr_dl, sdl_data[0]) +
93 unitlen + namelen;
94 socksize = masklen + ifp->if_addrlen;
95 #define ROUNDUP(a) (i + (((a) - i) I (sizeof(long) - i)))
96 socksize = ROUNDUP(socksize);
97 if (socksize < sizeof(*sdl))
98 socksize = sizeof(*sdl);
99 ifasize = sizeof(*ifa) + 2 * socksize;

Figure 3.35 i f_attach function: compute size of linkqevel address.

if.c

if.c

(namelen + unitlen). The function rounds socksize, which is masklen plus the
hardware address length (if_addrlen), up to the boundary of a long integer
(ROUNDUP). If this is less than the size of a sockaddr_dl structure, the standard
sockaddr_dl structure is used. ifasize is the size of an ifaddr structure plus two
times socksize, so it can hold the sockaddr_dl structures.

In the next section, i f_at tach allocates and links the structures together, as shown
in Figure 3.36.

ifaddr{} I
ifa_addr

~ask<
sockaddr dl{}_

sockaddr_dl{}

Figure 3.36 The link-level address and mask assigned during i f_attach.

In Figure 3.36 there is a gap between the ifaddr structure and the two sockaddr_dl struc-
tures to illustrate that they are allocated in a contiguous area of memory but that they are not
defined by a single C structure.

The organization shown in Figure 3.36 is repeated in the in_i faddr structure; the
pointers in the generic i faddr portion of the structure point to specialized sockaddr
structures allocated in the device-specific portion of the structure, in this case,
sockaddr_dl structures. Figure 3.37 shows the initialization of these structures.

90 Interface Layer Chapter 3

if.e
i00 if (ifa = (struct ifaddr *) malloc(ifasize, M_IFADDR, M_WAITOK)) {
i01 bzero((caddr_t) ifa, ifasize);

102
103
104
105
106
107
108
109
ii0
iii
112
113
114
115
116

117
118
119
120
121
122
123

/* First: initialize the sockaddr_dl address */
sdl = (struct sockaddr_dl *) (ifa + i);
sdl->sdl_len = socksize;
sdl->sdl_family = AF_LINK;
bcopy(ifp->if_name, sdl->sdl_data, namelen);
bcopy(unitname, namelen + (caddr_t) sdl->sdl_data, unitlen);
sdl->sdl_nlen = (namelen += unitlen);
sdl->sdl_index = ifp->if_index;
sdl->sdl_type = ifp->if_type;
ifnet_addrs[if_index - i] = ifa;
ifa->ifa_ifp = ifp;
ifa->ifa_next = ifp->if_addrlist;
ifa->ifa_rtrequest = link_rtrequest;
ifp->if_addrlist = ira;
ifa->ifa_addr = (struct sockaddr *) sdl;

/* Second: initialize the sockaddr_dl mask */
sdl = (struct sockaddr_dl *) (socksize + (caddr_t) sdl);
ifa->ifa netmask = (struct sockaddr *) sdl;
sdl->sdl_len = masklen;
while (namelen != O)

sdl->sdl_data[--namelen] = Oxff;

Figure 3.37 if_attach function: allocate and initialize link-level address.
if.c

100--116

117--123

The address
If enough memory is available, bzero fills the new structure with 0s and sdl

points to the first sockaddr_dl just after the ifnet structure. If no memory is avail-
able, the code is skipped.

s dl_l en is set to the length of the s o ckaddr_dl structure, and s dl_fami ly is set
to AF_LINK. A text name is constructed within sdl_data from if_name and
unitname, and the length is saved in sdl_nlen. The interface’s index is copied into
sdl_index as well as the interface type into sdl_type. The allocated structure is
inserted into the i fnet_addrs array and linked to the i fnet structure by i fa_ifp
and i fa_addrlist. Finally, the s ockaddr_dl structure is connected to the if net
structure with i fa_addr. Ethernet interfaces replace the default function,
link_rtrequest with arp_rtrequest. The loopback interface installs
loop_rtrequest. We describe ifa_rtrequest and arp_rtrequest in Chapters
19 and 21. link_rtrequest and loop_rtrequest are left for readers to investigate
on their own. This completes the initialization of the first sockaddr_dl structure.

The mask
The second sockaddr_dl structure is a bit mask that selects the text name that

appears in the first structure, ifa_netmask from the ifaddr structure points to the
mask structure (which in this case selects the interface text name and not a network
mask). The while loop turns on the bits in the bytes corresponding to the name.

Section 3.11 i f_attach Function 91

124--127

Figure 3.38 shows the two initialized sockaddr_dl structures for our example
Ethernet interface, where i f_name is "le", i f_unit is 0, and i f_index is 1.

/- type
[/- nlen
| ~ {--alen

~famity ~ ~ ~ ~ slen

sockaddr_dl{ } lenA~_- index

(ifa_ifaddr) 20 LINK 1 OX6 3 6 0 i e 0
1 1 2 1 1 1 1 ~nlen

I- (3 bytes)

sockaddr_dl{] len
(ifa_netmask) 11 0 0 0 0 0 0 ff ff ff

(11 bytes)

Ethernet
address

a i en 3 bytes
(6 bytes) ~

all zeros

9 bytes
data []

Figure 3.38 The initialized Ethernet sockaddr_dl structures (sdl_ prefix omitted).

In Figure 3.38, the address is shown after ether_ifattach has done additional
initialization of the structure (Figure 3.41).

Figure 3.39 shows the structures after the first interface has been attached by
if_attach.

ifnet :

ifnet_addrs :

le_softc{}

I i faddr{}
i fa_i fp
ira_next

sockaddr_dl{}

sockaddr_dl{}

Figure 3.39 The i fnet and sockaddr_dl structures after i f_attach is called for the first time.

At the end of if_attach, the ether_ifattach function is called for Ethernet
devices, as shown in Figure 3.40.

ether_ifattach isn’t called earlier (from leattach, for example) because it
copies the Ethernet hardware address into the sockaddr_dl allocated by i f_attach.

The xxx comment indicates that the author found it easier to insert the code here once than to
modify all the Ethernet drivers.

92 Interface Layer Chapter 3

124
125
126
127 }

/* XXX -- Temporary fix before changing i0 ethernet drivers */
if (ifp->if_output == ether_output)

ether_ifattach(ifp);

Figure 3.40 if_attach function: Ethernet initialization.

ii.c

ether_i fat tach function

The ether_i fattach function performs the i fnet structure initialization common to
all Ethernet devices.

338 void
339 ether_ifattach(ifp)
340 struct ifnet *ifp;
341 {
342 struct ifaddr *ifa;
343 struct sockaddr_dl *sdl;

if_ethersubr.c

344
345
346
347
348
349
350
351
352
353
354
355
356
357

ifp->if_type = IFT_ETHER;
ifp->if_addrlen = 6;
ifp->if_hdrlen =
ifp->if_mtu = ETHERMTU;
for (ira = ifp->if_addrlist; ira; ira = ifa->ifa_next)

if ((sdl = (struct sockaddr_dl *) ifa->ifa_addr) &&
sdl->sdl_family == AF_LINK) {
sdl->sdl_type = IFT_ETH~R;
sdl->sdl_alen = ifp->if_addrlen;
bcopy((caddr_t) ((struct arpcom *) ifp)->ac_enaddr,

LLADDR(sdl), ifp->if_addrlen);
break;

}

Figure 3.41 ether_ifattach function.
if_ethersubr.c

338--357 For an Ethernet device, i f_type is IFT_ETHER, the hardware address is 6 bytes
long, the entire Ethernet header is 14 bytes in length, and the Ethernet MTU is 1500

The MTU was already assigned by leattach, but other Ethernet device drivers may not have
performed this initialization.

Section 4.3 discusses the Ethernet frame organization in more detail. The for loop
locates the link-level address for the interface and then initializes the Ethernet hardware
address information in the sockaddr_dl structure. The Ethernet address that was
copied into the arpcom structure during system initialization is now copied into the
link-level address.

Section 3.12 ifinit Function 93

3.12

43--51

ifinit Function

After the interface structures are initialized and linked together, main (Figure 3.23) calls
i finit, shown in Figure 3.42.

i .c
43 void
44 ifinit ()
45 {
46 struct ifnet *ifp;

47 for (ifp = ifnet; ifp; ifp : ifp->if_next)
48 if (ifp->if_snd.ifq_maxlen := 0)
49 ifp->if_snd.ifq_maxlen = ifqmaxlen; /* set default length */
50 if_slowtimo(0);
51 }

~c
Figure 3.42 i finit function.

The for loop traverses the interface list and sets the maximum size of each interface
output queue to 50 (ifqmaxlen) if it hasn’t already been set by the interface’s attach
function.

An important consideration for the size of the output queue is the number of packets required
to send a maximum-sized datagram. For Ethernet, if a process calls sendto with 65,507 bytes
of data, it is fragmented into 45 fragments and each fragment is put onto the interface output
queue. If the queue were much smaller, the process could never send that large a datagram, as
the queue wouldn’t have room.

i f_slowtimo starts the interface watchdog timers. When an interface timer
expires, the kernel calls the watchdog function for the interface. An interface can reset
the timer periodically to prevent the watchdog function from being called, or set
if_timer to 0 if the watchdog function is not needed. Figure 3.43 shows the
i f_s 1 owt imo function.

338 void
339 if_slowtimo(arg)
340 void *arg;
341 {
342 struct ifnet *ifp;
343 int s = splimp();

344 for (ifp : ifnet; ifp; ifp = ifp->if_next) {
345 if (ifp->if_timer == 0 I I --ifp->if_timer)

346 continue;
347 if (ifp->if_watchdog)
348 (*ifp->if_watchdog) (ifp->if_unit);
349 }
350 splx(s);
351 timeout(if_slowtimo, (void *) 0, hz / IFNET_SLOWHZ);
352 }

Figure 3.43 if_slowtimo function.

94 Interface Layer Chapter 3

338--343

344--352

The single argument, arg, is not used but is required by the prototype for the slow
timeout functions (Section 7.4).

i f_s l owtimo ignores interfaces with i f_timer equal to 0; if i f_timer does not
equal 0, if_slowtimo decrements if_timer and calls the if_watchdog function
associated with the interface when the timer reaches 0. Packet processing is blocked by
splimp during if_slowtimo. Before returning, ip_slowtimo calls timeout to
schedule a call to itself in hz/IFNET_SLOWHZ clock ticks, hz is the number of clock
ticks that occur in i second (often 100). It is set at system initialization and remains con-
stant thereafter. Since IFNET_SLOWHZ is defined to be 1, the kernel calls i f_slowtimo
once every hz clock ticks, which is once per second.

The functions scheduled by the timeout function are called back by the kernel’s callout
function. See [Leffler et al. 1989] for additional details.

3.13 Summary

In this chapter we have examined the if net and i faddr structures that are allocated
for each network interface found at system initialization time. The ifnet structures are
linked into the ifnet list. The link-level address for each interface is initialized,
attached to the i fnet structure’s address list, and entered into the i f_addrs array.

We discussed the generic sockaddr structure and its sa_family, and sa_len
members, which specify the type and length of every address. We also looked at the ini-
tialization of the s o ckaddr_dl structure for a link-level address.

In this chapter, we introduced the three example network interfaces that we use
throughout the book.

Exercises

3.1 The netstat program on many Unix systems lists network interfaces and their configura-
tion. Try netstat -i on a system you have access to. What are the names (if_name) and
maximum transmission units (i f_mtu) of the network interfaces?

3.2 In if_slowtimo (Figure 3.43) the splimp and splx calls appear outside the loop. What
are the advantages and disadvantages of this arrangement compared with placing the calls
within the loop?

3.3 Why is SLIP’s interactive queue shorter than SLIP’s standard output queue?

3.4 Why aren’t i f_hdrlen and i f_addrlen initialized in slattach?

3.5 Draw a picture similar to Figure 3.38 for the SLIP and loopback devices.

Interfaces: Ethernet

4.1 Introduction

In Chapter 3 we discussed the data structures used by all interfaces and the initializa-
tion of those data structures. In this chapter we show how the Ethernet device driver
operates once it has been initialized and is receiving and transmitting frames. The sec-
ond half of this chapter covers the generic ±oet~_ commands for configuring network
devices. Chapter 5 covers the SLIP and loopback drivers.

We won’t go through the entire source code for the Ethernet driver, since it is
around 1,000 lin6s of C code (half of which is concerned with the hardware details of
one particular interface card), but we do look at the device-independent Ethernet code
and how the driver interfaces with the rest of the kernel.

If the reader is interested in going through the source code for a driver, the Net/3
release contains the source code for many different interfaces. Access to the interface’s
technical specifications is required to understand the device-specific commands. Fig-
ure 4.1 shows the various drivers provided with Net/3, including the LANCE driver,
which we discuss in this text.

Network device drivers are accessed through the seven function pointers in the
±fnet structure (Figure 3.6). Figure 4.2 lists the entry points to our three example
drivers.

Input functions are not included in Figure 4.2 as they are interrupt-driven for net-
work devices. The configuration of interrupt service routines is hardware-dependent
and beyond the scope of this book. We’ll identify the functions that handle device inter-
rupts, but not the mechanism by which these functions are invoked.

95

96 Interfaces: Ethernet Chapter 4

Device

DEC DEUNA Interface
3Com Ethernet Interface
Excelan EXOS 204 Interface
Interlan Ethemet Communications Controller
Interlan NP100 Ethernet Communications Controller
Digital Q-BUS to NI Adapter
CMC ENP-20 Ethernet Controller
Excelan EXOS 202(VME) & 203(QBUS)
ACC VERSAbus Ethernet Controller
AMD 7990 LANCE Interface
NE2000 Ethernet
Western Digital 8003 Ethernet Adapter

File

vax/if/if_de.c
vax/if/if_ec.c
vax/if/if_ex.c
vax/if/if_iloc
vax/if/if_ix.c
vax/if/if_qe.c
tahoe/if/if_enp.c
tahoe/if/if_ex.c
tahoe/if/if_ace.c
hp3OO/dev/if_le.c
i386/isa/if_ne.c
i386/isa/if_we.c

Figure 4.1 Ethernet drivers available in Net/3.

ifnet

if_init
if_output
if_start
if_done
if_ioctl

if_reset
if_watchdog

Ethernet

leinit
ether_output
lestart

leioctl

lereset

SLIP

sloutput

slioctl

Loopback

looutput

loioctl

Description

hardware initialization
accept and queue frame for transmission
begin transmission of frame
output complete (unused)
handle ioctl commands from a

process
reset the device to a known state
watch the device for failures or collect

statistics

Figure 4.2 Interface functions for the example drivers.

Only the if_output and if_ioctl functions are called with any consistency, if_init,
if_done, and if_reset are never called or only called from device-specific code (e.g.,
leinit is called directly by leioctl), if_start is called only by the ether_output func-
tion.

4.2 Code Introduction

The code for the Ethernet device driver and the generic interface ioctls resides in two
headers and three C files, which are listed in Figure 4.3.

File Description

netinet / i f_ether, h Ethernet structures
net / i f. h ioc t i command definitions

net / i f_ethersubr, c generic Ethernet functions
hp 300 / dev / i f_l e. c LANCE Ethernet driver
net/i f. c ioctl processing

Figure 4.3 Files discussed in this chapter.

Section 4.2 Code Introduction 97

Global Variables

The global variables shown in Figure 4.4 include the protocol input queues, the LANCE
interface structure, and the Ethernet broadcast address.

Variable Datatype Description

arpintrq struct ±fqueue ARPinput queue
clnlintrq struct ifqueue CLNPinput queue
ipintrq struct ifqueue]P input queue

le_softc struct le_softc [] LANCE Ethernet interface

etherbroadcastaddr u_char [] Ethernet broadcast address

Figure 4.4 Global variables introduced in this chapter.

3_ e_s o f t c is an array, since there can be several Ethernet interfaces.

Statistics

The statistics collected in the ±fnet structure for each interface are described in Fig-
ure 4.5.

Used by
i f net member Description SNMP

if_collisions
if_ibytes
if_ierrors
if_imcasts
if_ipackets
if_iqdrops
if_lastchange
if_noproto
if_obytes
if_oerrors
if_omcasts
if_opackets
if_snd.ifq_drops
if_snd.ifcL_len

#collisions on CSMA interfaces
total #bytes received
#packets received with input errors
#packets received as multicasts
#packets received on interface
#packets dropped on input, by this interface
time of last change to statistics
#packets destined for unsupported protocol
total #bytes sent
#output errors on interface
#packets sent as multicasts
#packets sent on interface
#packets dropped during output
#packets in output queue

Figure 4.5 Statistics maintained in the if net structure.

Figure 4.6 shows some sample output from the netstat command, which includes
statistics from the i fnet structure.

The first column contains i f_name and i f_uni t displayed as a string. If the inter-
face is shut down (IFF_UP is not set), an asterisk appears next to the name. In Fig-
ure 4.6, sl0, s12, and s13 are shut down.

The second column shows i f_mtu. The output under the "Network" and
"Address" headings depends on the type of address. For link-level addresses, the con-
tents of sdl_data from the sockaddr_dl structure are displayed. For IP addresses,

98 Interfaces: Ethernet Chapter 4

netstat -i ou~ut

Name Mtu Network Address Ipkts Ierrs
le0 1500 <Link>8.0.9.13.d.33 28680519 814
le0 1500 128.32.33 128.32.33.5

sl0* 296 <Link>
sl0* 296 128.32.33 128.32.33.5

sll 296 <Link>
sll 296 128.32.33 128.32.33.5

s12* 296 <Link>

s13* 296 <Linkm

io0 1536 <Link>
io0 1536 127 127.0.0.1

Opkts Oerrs Coll
29234729 12 942798

28680519 814 29234729 12 942798

54036 0 45402 0 0
54036 0 45402 0 0

40397 0 33544 0 0
40397 0 33544 0 0

0 0 0 0 0

0 0 0 0 0

493599 0 493599 0 0
493599 0 493599 0 0

Figure 4.6 Sample interface statistics.

the subnet and unicast addresses are displayed. The remaking columns are
if_ipackets, if_ierrors, if_opackets, if_oerrors, and if_collisions.

¯ Approximately 3% of the packets collide on output (942, 798/29, 234, 729 = 3%).
¯ The SLIP output queues are never full on this machine since there are no output

errors for the SLIP interfaces.
¯ The 12 Ethernet output errors are problems detected by the LANCE hardware

during transmission. Some of these errors may also be counted as collisions.
¯ The 814 Ethernet input errors are also problems detected by the hardware, such

as packets that are too short or that have invalid checksums.

SNMP Variables

Figure 4.7 shows a single interface entry object (i fEntry) from the SNMP interface
table (i fTable), which is constructed from the i fnet structures for each interface.

The ISODE SNMP agent derives i fSpeed from i f_type and maintains an internal
variable for ifAdminStatus. The agent reports ifLastChange based on
if_lastchange in the ifnet structure but relative to the agent’s boot time, not the
boot time of the system. The agent returns a null variable for i f Speci f ic.

4.3 Ethernet Interface

Net/3 Ethernet device drivers all follow the same general design. This is common for
most Unix device drivers because the writer of a driver for a new interface card often
starts with a working driver for another card and modifies it. In this section we’ll pro-
vide a brief overview of the Ethernet standard and outline the design of an Ethernet
driver. We’ll refer to the LANCE driver to illustrate the design.

Figure 4.8 illustrates Ethernet encapsulation of an IP packet.

Section 4.3 Ethernet Interface 99

SNMP variable

i f Index
ifDescr
i fType

i fMtu
if Speed

ifPhysAddress
ifAdminStatus
ifOperStatus

Interfacetable, index= <~ndex>
ifnev member

i f_index
i f_name
i f_type
i f_mtu
(see text)

ac_enaddr
(see text)
if_flags

ifLastChange
ifIn0ctets

ifInUcastPkts

ifInNUcastPkts
ifInDiscards

ifInErrors
ifInUnknownProtos
if0ut0ctets

ifOutUcastPkts

if0utNUcastPkts
if0utDiscards

ifOutErrors
ifOutQLen
ifSpecific

(seetext)
if_ibytes

if_ipackets -
if_imcasts

if_imcasts
if_iqdrops

if_ierrors
if_noproto
if_obytes

if_opackets -
if_omcasts

if_omcasts
if_snd.ifq_drops

if_oerrors
if_snd.ifq_len
n/a

Description

uniquely identifies the interface
text name of interface
type of interface (e.g., Ethernet, SLIP, etc.)
MTU of the interface in bytes
nominal speed of the interface in bits per

second
media address (from arpeom structure)
desired state of the interface (IFF_UP flag)
operational state of the interface (IFF UP

flag)
last time the statistics changed
total #input bytes
#input unicast packets

#input broadcast or multicast packets
#packets discarded because of

implementation limits
#packets with errors
#packets destined to an unknown protocol
#output bytes
#output unicast packets

#output broadcast or multicast packets
#output packets dropped because of

implementation limits
#output packets dropped because of errors
output queue length
SNMP object ID for media-specific

information (not implemented)

Figure 4.7 Variables in interface table: i fTabl e.

destination source
address address
6 bytes 6 bytes

type data CRC

2 - 46-1500 bytes 4 bytes

08~8P0~ IP packet

2 46-1500 bytes

Figure 4.8 Ethernet encapsulation of an IP packet.

Ethernet frames consist of 48-bit destination and source addresses followed by a
16-bit type field that identifies the format of the data carried by the frame. For IP pack-
ets, the type is 0x0 8 0 0 (2048). The frame is terminated with a 32-bit CRC (cyclic redun-
dancy check), which detects errors in the frame.

100 Interfaces: Ethernet Chapter 4

We are describing the original Ethernet framing standard published in 1982 by Digital Equip-
ment Corp., Intel Corp., and Xerox Corp., as it is the most common form used today in TCP/IP
networks. An alternative form is specified by the IEEE (Institute of Electrical and Electronics
Engineers) 802.2 and 802.3 standards. Section 2.2 in Volume 1 describes the differences
between the two forms. See [Stallings 1987] for more information on the IEEE standards.

Encapsulation of IP packets for Ethernet is specified by RFC 894 [Hornig 1984] and for 802.3
networks by RFC 1042 [Postel and Reynolds 1988].

We will refer to the 48-bit Ethernet addresses as hardware addresses. The translation
from IP to hardware addresses is done by the ARP protocol described in Chapter 21
(RFC 826 [Plummer 1982]) and from hardware to IP addresses by the RARP protocol
(RFC 903 [Finlayson et al. 1984]). Ethernet addresses come in two types, unicast and
multicast. A unicast address specifies a single Ethernet interface, and a multicast
address specifies a group of Ethernet interfaces. An Ethernet broadcast is a multicast
received by all interfaces. Ethernet unicast addresses are assigned by the device’s man-
ufacturer, although some devices allow the address to be changed by software.

Some DECNET protocols require the hardware addresses of a multihomed host to be identical,
so DECNET must be able to change the Ethernet unicast address of a device.

Figure 4.9 illustrates the data structures and functions that are part of the Ethernet
interface.

In figures, a function is identified by an ellipse (]~eJ_ntr), data structures by a box
(le_softc [0]), le_softc and a group of functions by a rounded box (ARP protocol).

In the top left corner of Figure 4.9 we show the input queues for the OSI Connec-
tionless Network Layer (clnl) protocol, IP, and ARP. We won’t say anything more
about clnlintrq, but include it to emphasize that ether_input demultiplexes
Ethernet frames into multiple protocol queues.

Technically, OSI uses the term Connectionless Network Protocol (CLNP versus CLNL) but we
show the terminology used by the Net/3 code. The official standard for CLNP is ISO 8473.
[Stallings 1993] summarizes the standard.

The le_softc interface structure is in the center of Figure 4.9. We are interested
only in the ifnet and arpcom portions of the structure. The remaining portions are
specific to the LANCE hardware. We showed the i fnet structure in Figure 3.6 and the
arpcora structure in Figure 3.26.

leintr Function

We start with the reception of Ethernet frames. For now, we assume that the hardware
has been initialized and the system has been configured so that leintr is called when
the interface generates an interrupt. In normal operation, an Ethernet interface receives
frames destined for its unicast hardware address and for the Ethernet broadcast
address. When a complete frame is available, the interface generates an interrupt and
the kernel calls leintr.

Section 4.3 Ethernet Interface 101

38--42

OSI
Protocols

clnl±nerq :

ipintrq :

ARP Protocol
(Figure 21.3)

arpintrq:

le_softc[O]

ifnet{} -

arpcom{}

input [output
packets packets

interrupts

Figure 4.9 Ethernet device driver.

In Chapter 12, we’ll see that many Ethernet interfaces may be configured to receive Ethernet
multicast frames (other than broadcasts).

Some interfaces can be configured to run in promiscuous mode in which the interface receives all
frames that appear on the network. The tcpdump program described in Volume 1 can take
advantage of this feature using BPF.

leintr examines the hardware and, if a frame has arrived, calls leread to transfer
the frame from the interface to a chain of mbufs (with m_devget). If the hardware
reports that a frame transmission has completed or an error has been detected (such as a
bad checksum), leintr updates the appropriate interface statistics, resets the hard-
ware, and calls 1 e s tar t, which attempts to transmit another frame.

All Ethernet device drivers deliver their received frames to ether_input for fur-
ther processing. The mbuf chain constructed by the device driver does not include the
Ethernet header, so it is passed as a separate argument to ether_input. The
ether_header structure is shown in Figure 4.10.

The Ethernet CRC is not generally available. It is computed and checked by the
interface hardware, which discards frames that arrive with an invalid CRC. The Ether-
net device driver is responsible for converting ether_type between network and host
byte order. Outside of the driver, it is always in host byte order.

102 Interfaces: Ethernet Chapter 4

38 struct ether_header {
39 u_char ether_dhost[6];
40 u_char ether_shost[6] ;
41 u_short ether_type;
42 };

/* Ethernet destination address */
/* Ethernet source address */
/* Ethernet frame type */

Figure 4.10 The ether_header structure.

if_ether.h

if_ether.h

leread Function

The leread function (Figure 4.11) starts with a contiguous buffer of memory passed to
it by le±ntr and constructs an ÷th÷r_head÷r structure and a chain of mbufs. The
chain contains the data from the Ethernet frame, leread also passes the incoming
frame to BPF.

528 leread(unit, buf, len)
529 int unit;
530 char *buf;
531 int len;
532 {
533 struct le_softc *le = &le_softc[unit];
534 struct ether_header *et;
535 struct mbuf *m;
536 int off, resid, flags;

if_le.c

537
538
539
540
541
542

le->sc_if.if_ipackets++;
et : (struct ether_header *) buf;
et->ether_type = ntohs((u_short) et->ether_type);
/* adjust input length to account for header and CRC */
len = len - sizeof(struct ether_header) 4;
off : 0;

543
544
545
546
547
548
549
55O
551
552
553
554
555
556
557

if (fen <: 0) {
if (ledebug)

log(LOG_WARNING,
"le%d: ierror(runt packet): from %s: len:%d\n",
unit, ether_sprintf(et->ether_shost), len);

le->sc_runt++;
le->sc_if.if_ierrors++;
return;

}
flags : 0;
if (bcmp((caddr_t) etherbroadcastaddr,

(caddr_t) et->ether_dhost, sizeof(etherbroadcastaddr)) == 0)
flags I: M_BCAST;

if (et->ether_dhost[0] & i)
flags I: M_MCAST;

558
559
560
561

* Check if there’s a bpf filter listening on this interface.
* If so, hand off the raw packet to enet.
*/

Section 4.3 Ethernet Interface 103

562
563

564
565
566
567
568

569
570
571
572
573
574
575
576
577
578
579
58O
581
582
583
584
585

if (le->sc_if.if_bpf) {
bpf_tap(le->sc_if.if_bpf, but, len + sizeof(struct ether_header));

* Keep the packet if it’s a broadcast or has our
* physical ethernet address (or if we support
* multicast and it’s one).
*/

if ((flags & (M_BCAST I M MCAST)] == 0 &&
bcmp(et->ether_dhost, le->sc_addr,

sizeof(et->ether_dhost)) != 0)
return;

}
/*

* Pull packet off interface. Off is nonzero if packet
* has trailing header; m_devget will then force this header
* information to be at the front, but we still have to drop
* the type and length which are at the front of any trailer data.
*/

m = m_devget((char *) (et + i), len, off, &le->sc_if, 0);
if (m == 0)

return;
m->m_flags I: flags;
ether_input(&le->sc_if, et, m);

if_le.c
Figure 4.11 leread function.

s28-539 The leintr function passes three arguments to leread: unit, wtJch identifies the
particular interface card that received a frame; but, which points to the received frame;
and len, the number of bytes in the frame (including the header and the CRC).

The function constructs the ether_header structure by pointing et to the front of
the buffer and converting the Ethernet type value to host byte order.

The number of data bytes is computed by subtracting the sizes of the Ethernet
header and the CRC from len. Runt packets, which are too short to be a valid Ethernet
frame, are logged, counted, and discarded.

Next, the destination address is examined to determine if it is the Ethernet broad-
cast or an Ethernet multicast address. The Ethernet broadcast address is a special case
of an Ethernet multicast address; it has every bit set. etherbroadeastaddr is an
array defined as

u_char etherbroadcastaddr[6] : { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };

This is a convenient way to define a 48-bit value in C. This technique works only if we assume
that characters are 8-bit values--something that isn’t guaranteed by ANSI C.

If bcmp reports that etherbroadcastaddr and ether_dhost are the same, the
M_BCAST flag is set.

An Ethernet multicast addresses is identified by the low-order bit of the most signif-
icant byte of the address. Figure 4.12 illustrates this.

104 Interfaces: Ethernet Chapter 4

558--573

574--585

0 7 8 15 16 23 24 31 32 39 40 47

e r_d o t[l I, ,, ,, , ,, , ,,,, !,,,,,,, !,,,,,,, I,,,,,,, I,,,,,,, !
gthernet~ 48-bit Ethernet addressidentifies

multicast address

Figure 4.12 Testing for an Ethernet multicast address.

In Chapter 12 we’ll see that not all Ethernet multicast frames are IP multicast data-
grams and that IP must examine the packet further.

If the multicast bit is on in the address, I~I MCAST is set in the mbuf header. The
order of the tests is important: first ether_input compares the entire 48-bit address to
the Ethernet broadcast address, and if they are different it checks the low-order bit of
the most significant byte to identify an Ethernet multicast address (Exercise 4.1).

If the interface is tapped by BPF, the frame is passed directly to BPF by calling
bpf_tap. We’ll see that for SLIP and the loopback interfaces, a special BPF frame is
constructed since those networks do not have a link-level header (unlike Ethernet).

When an interface is tapped by BPF, it can be configured to run in promiscuous
mode and receive all Ethernet frames that appear on the network instead of the subset
of frames normally received by the hardware. The packet is discarded by leread if it
was sent to a unicast address that does not match the interface’s address.

m_devget (Section 2.6) copies the data from the buffer passed to leread to an
mbuf chain it allocates. The first argument to m_devget points to the first byte after the
Ethernet header, whichis the first data byte in the frame. If m__devget runs out of
memory, leread returns immediately. Otherwise the broadcast and multicast flags are
set in the first mbuf in the chain, and ether_input processes the packet.

ether_input Function

ether_input, shown in Figure 4.13, examines the ether_header structure to
determine the type of data that has been received and then queues the received packet
for processing.

196 void
197 ether_input(ifp, eh, m)
198 struct ifnet *ifp;
199 struct ether_header *eh;
200 struct mbuf *m;
201 {
202 struct ifqueue *inq;
203 struct llc *i;
204 struct arpcom *ac = (struct arpcom *) ifp;
205 int s;

if_ethersubr.c

206 if ((ifp->if_flags & IFF_UP) == 0)
207 m_freem(m);
208 return;
209 }
210 ifp->if_lastchange = time;

Section 4.3 Ethemet Interface 105

211
212
213
214
215
216
217
218

219
220
221
222
223

224
225
226
227

228
229
230
231
232

ifp->if_ibytes +: m->m_pkthdr.len + sizeof(*eh);
if (bcmp((caddr_t) etherbroadcastaddr, (caddr_t) eh->ether_dhost,

sizeof(etherbroadcastaddr)) == 0)
m->m_flags I: M_BCAST;

else if (eh->ether_dhost[0] & I)
m->m_flags I= M_MCAST;

if (m->m_flags & (M_BCAST I M_MCAST))
ifp->if_imcasts++;

switch (eh->ether_type) {
case ETHERTYPE_IP:

schednetisr(NETISR_IP);
inq = &ipintrq;
break;

case ETHERTYPE_ARP:
schednetisr(NETISR_ARP);
inq = &arpintrq;
break;

default:
if (eh->ether_type > ETHERMTU) {

m_freem(m);
return;

}

/* OSI code */

307

308
309
310
311
312
313
314
315

s = splimp();
if (IF_QFULL(inq)) {

IF_DROP(inq);
m_freem(m);

} else
IF_ENQUEUE(inq, m);

splx(s);

Figure 4.13 ether_input function.
if_ethersubr.c

196--209

210--218

Broadcast and multicast recognition
The arguments to ether_input are i fp, a pointer to the receiving interface’s

i fnet structure; eh, a pointer to the Ethernet header of the received packet; and m, a
pointer to the received packet (excluding the Ethemet header).

Any packets that arrive on an inoperative interface are silently discarded. The
interface may not have been configured with a protocol address, or may have been dis-
abled by an explicit request from the i fconfig(8) program (Section 6.6).

The variable t ime is a global t imeval structure that the kemel maintains with the
current time and date, as the number of seconds and microseconds past the Unix Epoch
(00:00:00 January 1, 1970, Coordinated Universal Time [UTC]). A brief discussion of

106 Interfaces: Ethernet Chapter 4

219-227

228--307

UTC can be found in [Itano and Ramsey 1993]. We’ll encounter the t±meval structure
throughout the Net/3 sources:

struct timeval {
long tv_sec; /* seconds */
long tv_usec; /* and microseconds */

ether_input updates if_lastchange with the current time and increments
if_ibytes by the size of the incoming packet (the packet length plus the 14-byte
Ethernet header).

Next, ether_input repeats the tests done by leread to determine if the packet is
a broadcast or multicast packet.

Some kernels may not have been compiled with ~e BPF code, so ~e rest must also be done
ether_input.

Link-level demultiplexing
ether_input jumps according to the Ethernet type field. For an IP packet,

schednetisr schedules an IP software interrupt and the IP input queue, ipintrq, is
selected. For an ARP packet, the ARP software interrupt is scheduled and arpintrq is
selected.

An isr is an interrupt service routine.

In previous BSD releases, ARP packets were processed immediately while at the network inter-
rupt level by calling arpinput directly. By queueing the packets, they can be processed at the
software interrupt level.

If other Ethernet types are to be handled, a kernel programmer would add additional cases
here. Alternately, a process can receive other Ethernet types using BPF. For example, RARP
servers are normally implemented using BPF under Net/3.

The de fault case processes unrecognized Ethernet types or packets that are encap-
sulated according to the 802.3 standard (such as the OSI connectionless transport). The
Ethernet type field and the 802.3 length field occupy the same position in an Ethernet
frame. The two encapsulations can be distinguished because the range of types in an
Ethernet encapsulation is distinct from the range of lengths in the 802.3 encapsulation
(Figure 4.14). We have omitted the OSI code. [Stallings 1993] contains a description of
the OSI link-level protocols.

Range Description

0 -- 1500 IEEE 802.3 length field
1501 -- 65535 Ethernet type field:

2048 IP packet
2054 ARP packet

Figure 4.14 Ethernet type and 802.3 length fields.

Section 4.3 Ethernet Interface 107

308--315

There are many additional Ethernet type values that are assigned to various protocols; we
don’t show them in Figure 4.14. RFC 1700 [Reynolds and Postel 1994] contains a list of the
more common types.

Queue the packet
Finally, ether_input places the packet on the selected queue or discards the

packet if the queue is full. We’ll see in Figures 7.23 and 21.16 that the default limit for
the IP and ARP input queues is 50 (ipqmaxlen) packets each.

When ether_input returns, the device driver tells the hardware that it is ready to
receive the next packet, which may already be present in the device. The packet input
queues are processed when the software interrupt scheduled by schednetisr occurs
(Section 1.12). Specifically, ipintr is called to process the packets on the IP input
queue, and arpintr is called to process the packets on the ARP input queue.

ether_output Function

49--64

65--67

68--74

We now examine the output of Ethernet frames, which starts when a network-level
protocol such as IP calls the if_output function, specified in the interface’s ifnet
structure. The if_output function for all Ethernet devices is ether_output (Fig-
ure 4.2). ether_output takes the data portion of an Ethernet frame, encapsulates it
with the 14-byte Ethernet header, and places it on the interface’s send queue. This is a
large function so we describe it in four parts:

¯ verification,
¯ protocol-specific processing,
¯ frame construction, and
¯ interface queueing.

Figure 4.15 includes the first part of the function.
The arguments to ether_output are i fp, which points to the outgoing interface’s

i fnet structure; m0, the packet to send; ds t, the destination address of the packet; and
rt 0, routing information.

The macro senderr is called throughout ether_output.
#define senderr(e) { error = (e) ; goto bad;]

senderr saves the error code and jumps to bad at the end of the function, where the
packet is discarded and ether_output returns error.

If the interface is up and running, ether_output updates the last change time for
the interface. Otherwise, it returns ENETDOWN.

Host route

rt0 points to the routing entry located by ip_output and passed to
ether_output. If ether_output is called from BPF, rt0 can be null, in which case
control passes to the code in Figure 4.16. Otherwise, the route is verified. If the route is
not valid, the routing tables are consulted and EHOSTUNREACH is returned if a route
cannot be located. At this point, rt0 and rt point to a valid route for the next-hop des-
tination.

108 Interfaces: Ethernet Chapter 4

75-85

49 int
50 ether_output(ifp, m0, dst, rt0)
51 struct ifnet *ifp;
52 struct mbuf *m0;
53 struct sockaddr *dst;
54 struct rtentry *rt0;
55 {
56 short type;
57 int s, error : 0;
58 u_char edst[6];
59 struct mbuf *m = m0;
60 struct rtentry *rt;
61 struct mbuf *mcopy : (struct mbuf *) 0;
62 struct ether_header *eh;
63 int off, len : m->m~kthdr.len;
64 struct arpcom *ac : (struct arpcom *) ifp;

65 if ((ifp->if_flags & (IFF_UP I IFF_RUNNING))
66 senderr(ENETDOWN) ;
67 ifp->if_lastchange : time;
68 if (rt : rt0) {
69 if ((rt->rt_flags & RTF_UP) == 0) {
70 if (rt0 : rt = rtallocl(dst, i))
71 rt->rt_refcnt--;
72 else
73 senderr(EHOSTUNREACH);
74 }
75 if (rt->rt_flags & RTF_GATEWAY) {
76 if (rt->rt_gwroute == 0)
77 goto lookup;
78
79
80
81 lookup:

82
83
84
85
86
87
88
89
90

i/_ethersubr.c

!= (IFF_UP I IFF_RUNNING))

if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0)
rtfree(rt);
rt : rt0;
rt->rt_gwroute = rtallocl(rt->rt_gateway, i)

if ((rt = rt->rt_gwroute) == 0)
senderr(EHOSTUNREACH);

}
}
if (rt->rt_flags & RTF_REJECT)

if (rt->rt_rmx.rmx_expire == 0
time.tv_sec < rt->rt_rmx.rmx_expire)
senderr(rt =: rt0 ? EHOSTDOWN : EHOSTUNREACH);

Figure 4.15 ether_output function: verification.
if_ethersubr.c

Gateway route
If the next hop for the packet is a gateway (versus a final destination), a route to the

gateway is located and pointed t0 by rt. If a gateway route cannot be found,
EHOSTUNREACH is returned. At this point, rt points to the route for the next-hop desti-
nation. The next hop may be a gateway or the final destination.

Section 4.3 Ethernet Interface 109

86--90

Avoid ARP flooding
The RTF_RF.JECT flag is enabled by the ARP code to discard packets to the destina-

tion when the destination is not responding to ARP requests. This is described with
Figure 21.24.

ether_output processing continues according to the destination address of the
packet. Since Ethernet devices respond only to Ethernet addresses, to send a packet,
ether_output must find the Ethernet address that corresponds to the IP address of
the next-hop destination. The ARP protocol (Chapter 21) implements this translation.
Figure 4.16 shows how the driver accesses the ARP protocol.

91 switch (dst->sa_family) { if_ethersubr.c

92
93
94
95
96
97
98
99

i00
i01

case AF_INET:
if (!arpresolve(ac, rt, m, dst, edst))

return (0); /* if not yet resolved */
/* If broadcasting on a simplex interface, loopback a copy */
if ((m >m_flags & M_BCAST) && (ifp->if_flags & IFF_SIHPLEX))

mcopy = m_copy(m, 0, (int) M_COPYALL);
off = m->m pkthdr.len m >m_len;
type - ETHERTYPE_IP;
break;

case AF_ISO:

/* OSI code */

91--10l

142
143
144
145
146

147
148
149
150
151

case AF_UNSPEC:
eh - (struct ether_header *) dst->sa_data;
bcopy((caddr_t) eh->ether_dhost, (caddr_t) edst, sizeof(edst));
type : eh->ether_type;
break;

default:
printf("%s%d: can’t handle af%d\n", ifp->if_name, ifp->if_unit,

dst->sa_family);
senderr(EAFNOSUPPORT);

} ~_ethersub~c

Figure4.16 ÷ther_outputfunction:networkprotocolprocess~g.

IP output
ether_output jumps according to sa_family in the destination address. We

show only the AF_INET, AF_ISO, and AF_UNSPEC cases in Figure 4.16 and have omit-
ted the code for AF_ISO.

The AF_INET case calls arpresolve to determine the Ethernet address corre-
sponding to the destination IP address. If the Ethernet address is already in the ARP
cache, arpresolve returns 1 and ether_output proceeds. Otherwise this IP packet
is held by ARP, and when ARP determines the address, it calls ether_output from the
function in_arpinput.

110 Interfaces: Ethernet Chapter 4

142--146

147--151

Assuming the ARP cache contains the hardware address, ether_output checks if
the packet is going to be broadcast and if the interface is simplex (i.e., it can’t receive its
own transmissions). If both tests are true, re_copy makes a copy of the packet. After
the sw±tch, the copy is queued as if it had arrived on the Ethernet interface. This is
required by the definition of broadcasting; the sending host must receive a copy of the
packet.

We’ll see in Chapter 12 that multicast packets may also be looped back to be received on the
output interface.

Explicit Ethernet output
Some protocols, such as ARP, need to specify the Ethernet destination and type

explicitly. The address family constant AF_UNSPEC indicates that dst points to an
Ethernet header, bcopy duplicates the destination address in ectst and assigns the
Ethernet type to type. It isn’t necessary to call arpresolve (as for AF_TN~.T) because
the Ethernet destination address has been provided explicitly by the caller.

Unrecognized address families
Unrecognized address families generate a console message and ether_output

returns EAFNOSUPPORT.

In the next section of ether_output, shown in Figure 4.17, the Ethernet frame is
constructed.

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

if_ethersubr.c
if (mcopy)

(void) looutput(ifp, mcopy, dst, rt);
/*

* Add local net header. If no space in first mbuf,
* allocate another.
*/

M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT);
if (m == 0)

senderr(ENOBUFS) ;
eh : mtod(m, struct ether_header *);
type = htons((u_short) type);
bcopy((caddr_t) &type, (caddr_t) &eh->ether_type,

sizeof(eh->ether_type));
bcopy((caddr_t)edst, (caddr_t)eh->ether_dhost, sizeof (edst));
bcopy((caddr_t)ac->ac_enaddr, (caddr_t)eh->ether_shost,

sizeof(eh->ether_shost));
if_ethersubnc

Figure417 ether_outputfunction:Ethernet~ameconstruction.

152-167

Ethernet header
If the code in the sw±teh made a copy of the packet, the copy is processed as if it

had been received on the output interface by calling looutput. The loopback interface
and looutput are described in Section 5.4.

Section 4.3 Ethemet Interface 111

168--185

186--190

M_PREPEND ensures that there is room for 14 bytes at the front of the packet.

Most protocols arrange to leave room at the front of the mbuf chain so that N_PREPEND needs
only to adjust some pointers (e.g., sosend for UDP output in Section 16.7 and
igmp_sendreport in Section 13.6).

ether_output forms the Ethernet header from type, edst, and ac_enaddr (Fig-
ure 3.26). ac_enaddr is the unicast Ethernet address associated with the output inter-
face and is the source Ethemet address for all frames transmitted on the interface.
ether_output overwrites the source address the caller may have specified in the
ether_header structure with ac_enaddr. This makes it more difficult to forge the
source address of an Ethernet frame.

At this point, the mbuf contains a complete Ethernet frame except for the 32-bit
CRC, which is computed by the Ethernet hardware during transmission. The code
shown in Figure 4.18 queues the frame for transmission by the device.

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

s : splimp();
/*

* Queue message on interface, and start output if interface
* not yet active.
*/

if (IF_QFULL(&ifp->if_snd))
IF_DROP(&ifp->if_snd);
splx(s);
senderr(ENOBUFS);

}
IF_ENQUEUE(&ifp->if_snd, m);
if ((ifp->if_flags & IFF_OACTIVE) == 0)

(*ifp->if_start) (ifp) ;
splx(s);
ifp->if_obytes +: len + sizeof(struct ether_header);
if (m->m_flags & M MCAST)

ifp->if_omcasts++;
return (error);

if_ethersubr.c

186
187
188
189
190

bad:
if (m)

m_freem(m);
return (error);

Figure 4.18 ether_output function: output queueing.
if_ethersubr.c

If the output queue is full, ether_output discards the frame and returns
ENOBUFS. If the output queue is not full, the frame is placed on the interface’s send
queue, and the interface’s i f_s tart function transmits the next frame if the interface is
not already active.

The senderr macro jumps to bad where the frame is discarded and an error code
is returned.

112 Interfaces: Ethernet Chapter 4

lestart Function

325--333

335--342

343--350

359

360--362

The lestart function dequeues frames from the interface output queue and arranges
for them to be transmitted by the LANCE Ethernet card. If the device is idle, the func-
tion is called to begin transmitting frames. An example appears at the end of
ether_output (Figure 4.18), where lestart is called indirectly through the inter-
face’s i f_s tart function.

If the device is busy, it generates an interrupt when it completes transmission of the
current frame. The driver calls lestart to dequeue and transmit the next frame. Once
started, the protocol layer can queue frames without calling lestart since the driver
dequeues and transmits frames until the queue is empty.

Figure 4.19 shows the lestart function, lestart assumes splimp has been
called to block any device interrupts.

Interface must be initialized
If the interface is not initialized, 3_e s tar t returns immediately.

Dequeue frame from output queue
If the interface is initialized, the next frame is removed from the queue. If the inter-

face output queue is empty, lestart returns.
Transmit frame and pass to BPF

leput copies the frame in rn to the hardware buffer pointed to by the first argument
to leput. If the interface is tapped by BPF, the frame is passed to bpf_tap. We have
omitted the device-specific code that initiates the transmission of the frame from the
hardware buffer.

Repeat if device is ready for more frames
lestart stops passing frames to the device when le->sc_txcnt equals LETBUF.

Some Ethernet interfaces can queue more than one outgoing Ethernet frame. For the
LANCE driver, LETBUF is the number of hardware transmit buffers available to the
driver, and le->sc_txcnt keeps track of how many of the buffers are in use.
Mark device as busy

Finally, lestart turns on IFF_OACTIVE in the ifnet structure to indicate the
device is busy transmitting frames.

There is an unfortunate side effect to queueing multiple frames in the device for transmission.
According to [Jacobson 1988a], the LANCE chip is able to transmit queued frames with very
little delay between frames. Unfortunately, some [broken] Ethernet devices drop the frames
because they can’t process the incoming data fast enough.

This interacts badly with an application such as NFS that sends large UDP datagrams (often
greater than 8192 bytes) that are fragmented by IP and queued in the LANCE device as multi-
ple Ethernet frames. Fragments are lost on the receiving side, resulting in many incomplete
datagrams and high delays as NFS retransmits the entire UDP datagram.

Jacobson noted that Sun’s LANCE driver only queued one frame at a time, perhaps to avoid
this problem.

Section 4.3 Ethernet Interface 113

325 lestart(ifp)
326 struct ifnet *ifp;
327 {
328 struct le_softc *le : &le_softc[ifp->if_unit];
329 struct letmd *tmd;
330 struct mbuf *m;
331 int len;

332 if ((le->sc_if.if_flags & IFF_RUNNING) == 0)
333 return (0);

if_le.c

335 do {

/* device-specific code */

340
341
342
343
344
345
346
347
348
349
350

/* device-specific code */

IF_DEQUEUE(&le->sc_if.if_snd, m);
if (m == 0)

return (0);
len = leput(le->sc_r2->ler2_tbuf[le->sc_tmd], m);
/*

* If bpf is listening on this interface, let it
* see the packet before we commit it to the wire.
*/

if (ifp->if_bpf)
bpf_tap(ifp->if_bpf, le->sc_r2->ler2_tbuf[le >sc_tmd],

fen);

359
360
361
362 }

/* device-specific c6de */

} while (++le->sc_txcnt < LETBUF);
le->sc_if.if_flags I= IFF_OACTIVE;
return (0);

Figure4.19 lestartfunction.

114 Interfaces: Ethernet Chapter 4

4.4 ioctl System Call

The ±octl system call supports a generic command interface used by a process to
access features of a device that aren’t supported by the standard system calls. The pro-
totype for ±oct]_ is:

int ioctl(intid, unsigned long ~m);

fd is a descriptor, usually a device or network connection. Each type of descriptor
supports its own set of ±oct]_ commands specified by the second argument, com. A
third argument is shown as "..." in the prototype, since it is a pointer of some type that
depends on the ±octl command being invoked. If the command is retrieving informa-
tion, the third argument must point to a buffer large enough to hold the data. In this
text, we discuss only the ±octl commands applicable to socket descriptors.

The prototype we show for system calls is the one used by a process to issue the system call.
We’ll see in Chapter 15 that the function within the kernel that implements a system call has a
different prototype.

We describe the implementation of the ioctl system call in Chapter 17 but we dis-
cuss the implementation of individual i o c t 1 commands throughout the text.

The first ioctl commands we discuss provide access to the network interface
structures that we have described. Throughout the text we summarize ioctl com-
mands as shown in Figure 4.20.

Command Third argument Function Description

SIOCGIFCONF struct ifconf * ifconf retrieve list of interface configuration
SIOCGIFFLAGS struct ifreq * ifioctl get interface flags
SIOCGIFMETRIC struct ifreq * ifioctl get interface metric
SIOCSIFFLAGS struct ifreq * ifioctl set interface flags
SIOCSIFMETRIC struct ifreq * ifioctl set interface metric

Figure 4.20 Interface ioetl commands.

The first column shows the symbolic constant that identifies the ioctl command
(the second argument, corn). The second column shows the type of the third argument
passed to the ioctl system call for the command shown in the first column. The third
column names the function that implements the command.

Figure 4.21 shows the organization of the various functions that process ioctl
commands. The shaded functions are the ones we describe in this chapter. The remain-
ing functions are described in other chapters.

Section4.4 ioctl System Call 115

system calls < <.~ f cntl > < i octl >

srreq

if_ioctl

Figure 4.21 ioct i functions described in this chapter.

116 Interfaces: Ethernet Chapter 4

ifioctl Function

The ioctl system call routes the five commands shown in Figure 4.20 to the ifioctl
function shown in Figure 4.22.

394 int
395 ifioctl(so, cmd, data, p)
396 struct socket *so;
397 int cmd;
398 caddr_t data;
399 struct proc *p;
4OO {
401 struct ifnet *ifp;
402 struct ifreq *ifr;
403 int error;

404 if (cmd == SIOCGIFCONF)
405 return (ifconf(cmd, data));

406 ifr = (struct ifreq *) data;
407 ifp = ifunit(ifr->ifr_name);
408 if (ifp =: 0)
409 return (ENXIO);
410 switch (cmd) {

394--405

406--410

447-454

/* other interface ioctl commands (Figures 4.29 and 12.11) */

447
448
449
45O
451
452
453
454 }

default:
if (so >so_proto == 0)

return (EOPNOTSUPP);
return ((*so->so_proto->pr_usrreq)

}
return (0) ;

(so, PRU_CONTROL,
cmd, data, ifp));

Figure 4.22 ifioctl function: overview and SIOCGIFCONF.
ii.c

For the SIOCGIFCONF command, ifioctl calls ifconf to construct a table of
variable-length i f r e q structures.

For the remaining ioctl commands, the data argument is a pointer to an ifreq
structure, i funit searches the i fnet list for an interface with the text name provided
by the process in i fr->i fr_name (e.g., "sl 0", "lel", or "1o0"). If there is no match-
ing interface, ifioctl returns ENXIO. The remaining code depends on cmd and is
described with Figure 4.29.

If the interface ioctl command is not recognized, ifioctl forwards the com-
mand to the user-request function of the protocol associated with the socket on which
the request was made. For IP, these commands are issued on a UDP socket and
udp_usrreq is called. The commands that fall into this category are described in Fig-
ure 6.10. Section 23.10 describes the udp_usrreq function in detail.

If control falls out of the switch, 0 is returned.

Section4.4 ioctl System Call 117

ifconf Function

ifeonf provides a standard way for a process to discover the interfaces present
and the addresses configured on a system. Interface information is represented by
i freq and i fconf structures shown in Figures 4.23 and 4.24.

262 struct ifreq {
263 #define IFNAMSIZ 16
264 char ifr_name[IFNAMSIZ];
265 union {
266 struct sockaddr ifru_addr;
267 struct sockaddr ifru_dstaddr;
268 struct sockaddr ifru_broadaddr;
269 short ifru_flags;
270 int ifru_metric;
271 caddr_t ifru_data;
272] ifr_ifru;
273 #define ifr_addr ifr_ifru.ifru_addr
274 #define ifr_dstaddr ifr_ifru.ifru_dstaddr
275 #define ifr_broadaddr
276 #define ifr_flags ifr_ifru.ifru_flags
277 #define ifr_metric ifr_ifru.ifru_metric
278 #define ifr_data ifr_ifru.ifru_data
279 };

if.h

/* if name, e.g. "en0" */

/* address */
/* other end of p-to-p link */

ifr_ifru.ifru_broadaddr /* broadcast address */
/* flags */
/* metric */
/* for use by interface */

if.h
Figure 4.23 ifreq structure.

262-279 An i freq structure contains the name of an interface in i fr_name. The remaining
members in the union are accessed by the various ioctl commands. As usual, macros
simplify the syntax required to access the members of the union.

292 struct ifconf {
293 int ifc_len;
294 union {
295 caddr_t ifcu_buf;
296 struct ifreq *ifcu_req;
297 } ifc_ifcu;
298 #define ifc_buf ifc_ifcu.ifcu_buf
299 #define ifc_req ifc_ifcu.ifcu_req
300 };

/* size of associated buffer */

/* buffer address */
/* array of structures returned */

Figure 4.24 ifconf structure.

if.h

~h

292--300 In the ifconf structure, ifc_len is the size in bytes of the buffer pointed to by
ifc_buf. The buffer is allocated by a process but filled in by ifconf with an array of
variable-length ifreq structures. For the ifconf function, ifr_addr is the relevant
member of the union in the ifreq structure. Each ifreq structure has a variable
length because the length of i fr_addr (a sockaddr structure) varies according to the
type of address. The sa_len member from the sockaddr structure must be used to

118 Interfaces: Ethernet Chapter 4

locate the end of each entry. Figure 4.25 illustrates the data structures manipulated by
if conf.

~ ifc

~ ifconf{}
ifc_len
ifc_buf

ifrp[

ifreq{ }
ifr_name] ifr_addr

_/~--I~i fconfd{a}t a (process)

slO sockaddr_in{}]
slO sockaddr_dl{} I
weO sockaddr_in{} I
weO sockaddr_iso{} I
weO sockaddr_dl{}
io0 sockaddr_in{}
io0 sockaddr_dl{} I

4 62-4 74

kernel process

Fig,re 4.25 ±£conf data structures.

In Figure 4.25, the data on the left is in the kernel and the data on the right is in a
process. We’ll refer to this figure as we discuss the ±£conf function listed in Fig7
ure 4.26.

The two arguments to i fconf are: cmd, which is ignored; and data, which points
to a copy of the i fconf structure specified by the process.

ifc is data cast to a ifconf structure pointer, ifp traverses the interface list
starting at i fnet (the head of the list), and ifa traverses the address list for each inter-
face. cp and ep control the construction of the text interface name within i fr, which is
the i freq structure that holds an interface name and address before they are copied to
the process’s buffer, i frp points to this buffer and is advanced after each address is
copied, space is the number of bytes remaining in the process’s buffer, cp is used to
search for the end of the name, and ep marks the last possible location for the numeric
portion of the interface name.

462
463
464
465
466
467
468
469
470
471
472

int
ifconf(cmd, data)
int cmd;
caddr_t data;
{

struct
struct
struct
char
struct
int

ifconf *ifc = (struct ifconf *) data;
ifnet *ifp = ifnet;
ifaddr *ira;
*cp, *ep;
ifreq ifr, *ifrp;

space = ifc->ifc_len, error : O;

Section4.4 ioctl System Call 119

475--488

489--515

473
474

475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
5O0
501
5O2
5O3
504
505
5O6
5O7
5O8
5O9
510
511
512
513
514
515

ifrp = ifc->ifc_req;
ep = ifr.ifr_name + sizeof(ifr.ifr_name) - 2;

for (; space > sizeof(ifr) && ifp; ifp : ifp->if_next) {
strncpy(ifroifr_name, ifp->if_name, sizeof(ifr.ifr_name) 2);
for (cp : ifr.ifr_name; cp < ep && *cp; cp++)

continue;
*cp++ : ’0’ + ifp->if_unit;
*cp = ’\0’;
if ((ifa : ifp->if_addrlist) == O) {

bzero((caddr&t) & ifr.ifr_addr, sizeof(ifr.ifr_addr));
error = copyout((caddr_t) & ifr, (caddr_t) ifrp,

sizeof(ifr));
if (error)

break;
space -= sizeof(ifr), ifrp++;

} else
for (; space > sizeof(ifr) && ira; ifa = ifa->ifa_next) {

struct sockaddr *sa : ifa->ifa_addr;
if (sa->sa_len <: sizeof(*sa)) {

ifr.ifr_addr = *sa;
error : copyout((caddr_t) & ifr, (caddr_t) ifrp,

sizeof(ifr));
ifrp++;

} else {
space -: sa->sa_len - sizeof(*sa);
if (space < sizeof(ifr))

break;
error = copyout((caddr_t} & ifr, (caddr_t) ifrp,

sizeof(ifr.ifr_name));
if (error == O)

error = copyout((caddr_t) sa,
(caddr_t) & ifrp->ifr_addr, sa->sa_len);

ifrp : (struct ifreq *)
(sa->sa_len + (caddr_t) & ifrp->ifr_addr);

}
if (error)

break;
space -= sizeof(ifr) ;

}

Figure 4.26 ifeonf function.

}
ifc->ifc_len -= space;
return (error);

The for loop traverses the list of interfaces. For each interface, the text name is
copied to i fr_name followed by the text representation of the i f_uni t number. If no
addresses have been assigned to the interface, an address of all Os is constructed, the
resulting i freq structure is copied to the process, space is decreased, and i frp is
advanced.

If the interface has one or more addresses, the for loop processes each one. The

120 Interfaces: Ethernet Chapter 4

address is added to the interface name in i fr and then i fr is copied to the process.
Addresses longer than a standard sockaddr structure don’t fit in ifr and are copied
directly out to the process. After each address, space and ifrp are adjusted. After all
the interfaces are processed, the length of the buffer is updated (i fc->i fc_len) and
ifconf returns. The ioct 1 system call takes care of copying the new contents of the
i fconf structure back to the i fconf structure in the process.

Example

Figure 4.27 shows the configuration of the interface structures after the Ethernet, SLIP,
and loopback interfaces have been initialized.

ifnet: le_softc[0]:

arpcom{}

ifnet_addrs: le_softc{]

ifaddr{)

sockaddr dl{}I

sockaddr_dl{}1

sl_softc[O] :

ifnet{} _~

s~{_ -}~]I

ifaddr{} _IS

sockaddr_dl{}

sockaddr_dl{}

loif:

ifnet{}

ifaddr{]

sockaddr_dl{}

sockaddr_dl{}

Figure 4.27 Interface and address data structures.

Figure 4.28 shows the contents of i £c and bu£fer after the following code is executed.
struct ifconf ifc; /* SIOCGIFCONF adjusts this */
char buffer[144]; /* contains interface addresses when ioctl returns */
int s; /* any socket */

ifc.ifc_len : 144;
ifc.ifc_buf - buffer;
if (ioctl(s, SIOCGIFCONF, &ifc)

perror("ioctl failed");
exit(l);

}

<0) {

There are no restrictions on the type of socket specified with the SIOCGIFCONF
command, which, as we have seen, returns the addresses for all protocol families.

In Figure 4.28, ± £c_1 ÷n has been changed from 144 to 108 by ±oct 1 since the three
addresses returned in the buffer only occupy 108 (3 x 36) bytes. Three sockaddr_dl
addresses are returned and the last 36 bytes of the buffer are unused. The first 16 bytes
of each entry contain the text name of the interface. In this case only 3 of the 16 bytes
are used.

Section4.4 ioctl System Call 121

~
-- &ifc

~ ifconf { }

ifc_buf

~ _ i fr_name []

leO

(16 bytes)

s i 0

I o 0

i f r_addr
(20 bytes)

2018 1 6 3 6 0 l:e 0

20 18 2 28 3 0 0 s 1 0

201{ 3 24 3 0 0 1 o 0

Ethernet
address 36 bytes

36 bytes

36 bytes

36 bytes

Figure 4.28 Data returned by the SIOCGIFCONF command.

i fr_addr has the form of a sockaddr structure, so the first value is the length (20
bytes) and the second value is the type of address (18, AF_LINK). The next value is
sdl_index, which is different for each interface as is sd!_type (6, 28, and 24 corre-
spond to iFT_ETHER, IFT_SLIP, and IFT_LOOP).

The next three values are sa_nlen (the length of the text name), sa_alen (the
length of the hardware address), and sa_slen (unused). sa_nlen is 3 for all three
entries, sa_alen is 6 for the Ethernet address and 0 for both the SLIP and loopback
interfaces, sa_slen is always 0.

Finally, the text interface name appears, followed by the hardware address (Ether-
net only). Neither the SLIP nor the loopback interface store a hardware-level address in
the sockaddr_dl structure.

In the example, only seckaddr_dl addresses are returned (because no other
address types were configured in Figure 4.27), so each entry in the buffer is the same
size. If other addresses (e.g., IP or OSI addresses) were configured for an interface, they
would be returned along with the sockaddr_dl addresses, and the size of each entry
would vary according to the type of address returned.

Generic Interface ioctl commands

410--416

The four remaining interface commands from Figure 4.20 (SIOCGIFFLAGS,
SIOCGIFMETRIC, SIOCSIFFLAGS, and SIOCSIFHETRIC) are handled by the
i fioctl function. Figure 4.29 shows the case statements for these commands.

SIOCGIFFLAGS and SIOCGIFMETRIC

For the two SIOCGIIX commands, ifioctl copies the if_flags or if_metric
value for the interface into the ifreq structure. For the flags, the ifr_flags member
of the union is used and for the metric, the i f r_met r i c member is used (Figure 4.23).

122 Interfaces: Ethernet Chapter 4

417-429

430-434

410
411
412
413

414
415
416

417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434

435
436
437
438
439

switch (cmd) {
case SIOCGIFFLAGS:

ifr->ifr_flags : ifp->if_flags;
break;

case SIOCGIFMETRIC:
ifr->ifr_metric = ifp->if_metric;
break;

case SIOCSIFFLAGS:
if (error = suser(p->p_ucred, &p->p_acflag))

return (error);
if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) :: 0)

int s : splimp();
if_down(ifp);
splx(s);

}
if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) := 0)

int s = splimp();
if_up(ifp);
splx(s);

}
ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE)

(ifr->ifr_flags & ~IFF_CANTCHANGE);
if (ifp->if_ioctl)

(void) (*ifp->if_ioctl) (ifp, cmd, data);
break;

case SIOCSIFMETRIC:
if (error = suser(p->p_ucred, &p->p_acflag))

return (error);
ifp->if_metric = ifr->ifr_metric;
break;

Figure 4.29 ifioctl function: flags and metrics.

ii.c

SIOCSIFFLAGS

To change the interface flags, the calling process must have superuser privileges. If
the process is shutting down a running interface or bringing up an interface that isn’t
running, i f_down or i f_up are called respectively.
Ignore IFF_CANTCHANGE flags

Recall from Figure 3.7 that some interface flags cannot be changed by a process.
The expression (ifp->if_flags & IFF_CANTCI-IANGE) clears the interface flags that "
can be changed by the process, and the expression (ifr->ifr_flags &
~TFF_CANTCHANGE) clears the flags in the request that may not be changed by the pro-
cess. The two expressions are ORed together and saved as the new value for
ifp->if_flags. Before returning, the request is passed to the if_ioetl function
associated with the device (e.g., leioetl for the LANCE driver--Figure 4.31).

Section4.4 ioctl System Call 123

SIOCSIFMETRIC

435-439 Changing the interface metric is easier; as long as the process has superuser privi-
leges, i f io c t 1 copies the new metric into i f_met tic for the interface.

if_down and if_up Functions

With the i fconfig program, an administrator can enable and disable an interface by
setting or clearing the IFF_UP flag through the SIOCSIFFLAGS command. Figure 4.30
shows the code for the i f_down and ± f_up functions.

292 void
293 if_down(ifp)
294 struct ifnet *ifp;
295 {
296 struct ifaddr *ira;

ii.C

297 ifp->if_flags &= -IFF_UP;
298 for (ifa = ifp->if_addrlist; ifa; ifa : ifa->ifa_next)
299 pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
300 if_qflush(&ifp->if_snd];
301 rt_ifmsg(ifp) ;
302]

308 void
309 if_up(ifp)
310 struct ifnet *ifp;
311 {
312 struct ifaddr *ifa;

313
314
315

ifp->if_fla~s I: IFF_UP;
rt_ifmsg(ifp);

Figure 4.30 i f_down and i f_up functions.

292--302

308--315

When an interface is shut down, the IFF_UP flag is cleared and the PR¢_ZFDOWN
command is issued by pfctlinput (Section 7.7) for each address associated with the
interface. This gives each protocol an opportunity to respond to the interface being shut
down. Some protocols, such as OSI, terminate connections using the interface. IP
attempts to reroute connections through other interfaces if possible. TCP and UDP
ignore failing interfaces and rely on the routing protocols to find alternate paths for the
packets.

i f_qflush discards any packets queued for the interface. The routing system is
notified of the change by rt_ifmsg. TCP retransmits the lost packets automatically;
UDP applications must explicitly detect and respond to this condition on their own.

When an interface is enabled, the IFF_UP flag is set and rt_ifmsg notifies the
routing system that the interface status has changed.

124 Interfaces: Ethernet Chapter 4

Ethernet, SLIP, and Loopback

We saw in Figure 4.29 that for the SIOCSIFFLAGS command, ifioctl calls the
i f_ioct ! function for the interface. In our three sample interfaces, the s 1 ioct ! and
loioctl functions return EINVAL for this command, which is ignored by ifioctl.
Figure 4.31 shows the ! e i oc t 1 function and S I ©cs I FFLAGS processing of the LANCE
Ethernet driver.

614 leioctl(ifp, cmd, data)
615 struct ifnet *ifp;
616 int cmd;
617 caddr_t data;
618 {
619 struct ifaddr *ifa = (struct ifaddr *) data;
620 struct le_softc *le = &le_softc[ifp->if_unit];
621 struct leregl *lerl = le->sc_ri;
622 int s = splimp(), error = 0;

if_le.c

623 switch (cmd) {

/* SIOCSIFADDR code (Figure 6.28) */

638
639
640
641
642
643
644
645
646
647
648
649
65O
651
652
653
654
655
656

case SIOCSIFFLAGS:
if ((ifp >if_flags & IFF_UP) == 0 &&

ifp->if_flags & IFF_RUNNING) {
LERDWR(Ie->sc_r0, LE_STOP, lerl->lerl_rdp);
ifp->if_flags &= -IFF RUNNING;

else if (ifp->if_flags & IFF_UP &&
(ifp->if_flags & IFF_RUNNING) :: 0)

leinit(ifp->if_unit);
/*

* If the state of the promiscuous bit changes, the interface
* must be reset to effect the change.
*/

if (((ifp->if_flags ^ le->sc_iflags) & IFF_PROMISC) &&
(ifp->if_flags & IFF_RUNNING)) {
le->sc_iflags = ifp->if_flags;
lereset(ifp->if_unit);
lestart(ifp);

}
break;

/* SIOCADDMULTI and SIOCDELMULTI code (Figure 12.31) */

672
673
674
675
676
677 }

default:
error = EINVAL;

}
splx(s);
return (error);

Figure 4.31 leioctl ftmction: SIOCSIFFLAGS.
if_le.c

Chapter 4 Exercises 125

614--6~3

638--656

672--677

1 eioc t 1 casts the third argument, data, to an i f addr structure pointer and saves
the value in ifa. The le pointer references the le_softc structure indexed by
ifp->if_unit. The switch statement, based on cmd, makes up the main body of the
function.

Only the SIOCSIFFLAGS case is shown in Figure 4.31. By the time ifioctl calls
leioctl, the interface flags have been changed. The code shown here forces the physi-
cal interface into a state that matches the configuration of the flags. If the interface is
going down (IFF_UP is not set), but the interface is operating, the interface is shut
down. If the interface is going up but is not operating, the interface is initialized and
restarted.

If the promiscuous bit has been changed, the interface is shut down, reset, and
restarted to implement the change.

The expression including the exclusive OR and IFF_PRONISC is true only if the request
changes the IFF_PROMISC bit.

The default case for unrecognized commands posts EINVAL, which is returned at
the end of the function.

4.5 Summary

In this chapter we described the implementation of the LANCE Ethernet device driver,
which we refer to throughout the text. We saw how the Ethernet driver detects broad-
cast and multicast addresses on input, how the Ethernet and 802.3 encapsulations are
detected, and how incoming frames are demultiplexed to the appropriate protocol
queue. In Chapter 21 we’ll see how IP addresses (unicast, broadcast, and multicast) are
converted into the correct Ethernet addresses on output.

Finally, we discussed the protocol-specific ioctl commands that access the inter-
face-layer data structures.

Exercises

4.1

4.2

In leread, the M_MCAST flag (in addition to M_BCAST) is always set when a broadcast
packet is received. Compare this behavior to the code in ether_input. Why are the flags
set in leread and ether_input? Does it matter? Which is correct?

In ether_input (Figure 4.13), what would happen if the test for the broadcast address and
the test for a multicast address were swapped? What would happen if the i f on the test for
a multicast address were not preceded by an e 1 s e?

5

Interfaces: SLIP and Loopback

5.1 Introduction

In Chapter 4 we looked at the Ethernet interface. In this chapter we describe the SLIP
and loopback interfaces, as well as the ±oc¢1 commands used to configure all network
interfaces. The TCP compression algorithm used by the SLIP driver is described in Sec-
tion 29.13. The loopback driver is straightforward and we discuss it here in its entirety.

Figure 5.1, which also appeared as Figure 4.2, lists the entry points to our three
example drivers.

ifnet

if_init
if_output
if_start
if_done
if_ioctl
if_reset
if_watchdog

E~ernet

leinit
ether_output
lestart

leioctl
lereset

SLIP

sloutput

slioctl

Loopback

looutput

loioctl

Description

initialize hardware
accept and queue packet for transmission
begin transmission of frame
output complete (unused)
handle ± oe t 1 commands from a process
reset the device to a known state
watch the device for failures or collect

statistics

Figure 5.1 Interface functions for the example drivers.

5.2 Code Introduction

The files containing code for SLIP and loopback drivers are listed in Figure 5.2.

127

128 Interfaces: SLIP and Loopback Chapter 5

File Description

net / i f_s ivar. h SLIP definitions

net / i f_s i. c SLIP driver functions
net / i f_loop, c 1oopback driver

Figure 5.2 Files discussed in this chapter.

GIobaI VariabIes

The SLIP and loopback interface structures are described in this chapter.

Variable Datatype Description

sl_softc struct sl_softc [] SLIP interface
loif struct ifnet 1oopback interface

Figure 5.3 Global variables introduced in this chapter.

sl_softc is an array, since there can be many SLIP interfaces, loif is not an array,
since there can be only one loopback interface.

Statistics

The statistics from the i fret structure described in Chapter 4 are also updated by the
SLIP and loopback drivers. One other variable (which is not in the i fret structure)
collects statistics; it is shown in Figure 5.4.

Variable Description Used by
SNMP

~k_nin #bytes received by any serial interface (updated by SLIP driver)

Figure 5.4 ek_nin variable.

5.3 SLIP Interface

A SLIP interface communicates with a remote system across a standard asynchronous
serial line. As with Ethernet, SLIP defines a standard way to frame IP packets as they
are transmitted on the serial line. Figure 5.5 shows the encapsulation of an IP packet
into a SLIP frame when the IP packet contains SLIP’s reserved characters.

Packets are separated by the SLIP END character 0xc0. If the END character
appears in the IP packet, it is prefixed with the SLIP ESC character 0xdb and transmit-
ted as 0xdc instead. When the ESC character appears in the IP packet, it is prefixed
with the ESC character 0xdb and transmitted as 0xdd.

Since there is no type field in SLIP frames (as there is with Ethernet), SLIP is suitable
only for carrying IP packets.

Section 5.3 SLIP Interface 129

IP packet

~- END in packet ~-- ESC in packet

c 0 db

1]

~
"~sc ~ Esc

~ Escaped END l "" ~- Escaped ESC

db dc db dd

1 1 1 1SLIP frame

~-END

cO

L~

Figure 5.5 SLIP encapsulation of an IP packet.

SLIP is described in RFC 1055 [Romkey 1988], where its many weaknesses and nonstandard
status are also stated. Volume 1 contains a more detailed description of SLIP encapsulation.

The Point-to-Point Protocol (PPP) was designed to address SLIP’s problems and to provide a
standard method for transmitting frames across a serial link. PPP is defined in RFC 1332
[McGregor 1992] and RFC 1548 [Simpson 1993]. Net/3 does not contain an implementation of
PPP, so we do not discuss it in this text. See Section 2.6 of Volume 1 for more information
regarding PPP. Appendix B describes where to obtain a reference implementation of PPP.

The SLIP Line Discipline: SLIPDISC

In Net/3 the SLIP interface relies on an asynchronous serial device driver to send and
receive the data. Traditionally these device drivers have been called TTYs (teletypes).
The Net/3 TTY subsystem includes the notion of a line discipline that acts as a filter
between the physical device and I/O system calls such as read and write. A line dis-
cipline implements features such as line editing, newline and carriage-return process-
ing, tab expansion, and more. The SLIP interface appears as a line discipline to the TTY
subsystem, but it does not pass incoming data to a process reading from the device and
does not accept outgoing data from a process writing to the device. Instead, the SLIP
interface passes incoming packets to the IP input queue and accepts outgoing packets
through the if_output function in SLIP’s i fnet structure. The kernel identifies line
disciplines by an integer constant, which for SLIP is SLIPDISC.

Figure 5.6 shows a traditional line discipline on the left and the SLIP discipline on
the right. We show the process on the right as slattach since it is the program that
initializes a SLIP interface. The details of the TTY subsystem and line disciplines are
outside the scope of this text. We present only the information required to understand
the workings of the SLIP code. For more information about the TTY subsystem see
[Leffier et al. 1989]. Figure 5.7 lists the functions that implement the SLIP driver. The
middle columns indicate whether the function implements line discipline features, net-
work interface features, or both.

130 Interfaces: SLIP and Loopback Chapter 5

~eTn~! -

[process/ [slattach]

write- - I ~e-a~ ~e~ 1 - li-o~t-i

[dis~ilpline] ~ discipline]

device
driver

serial
line

device
driver

serial
line

Figure 5.6 The SLIP interface as a line discipline.

Function

slattach
slinit
sloutput

slioctl
sl_btom

slopen

slclose

sltioctl

slstart
slinput

Network
Interface

Line
Discipline Description

Figure 5.7 The functions in the SLIP device driver.

initialize and attach s l_s o f t c structures to i fne t list
initialize the SLIP data structures
queue outgoing packets for transmission on associated TTY

device
process socket ioctl requests
convert a device buffer to an mbuf chain
attach s l_s o f t c structure to TTY device and initialize

driver
detach s l_s o f t c structures from TTY device, mark

interface as down, and release memory
process TTY ioctl commands
dequeue packet and begin transmitting data on TTY device
process incoming byte from TTY device, queue incoming

packet if an entire frame has been received

The SLIP driver in Net/3 supports compression of TCP packet headers for better
throughput. We discuss header compression in Section 29.13, so Figure 5.7 omits the
functions that implement this feature.

The Net/3 SLIP interface also supports an escape sequence. When detected by the receiver,
the sequence shuts down SLIP processing and returns the device to the standard line disci-
pline. We omit this processing from our discussion.

Section 5.3 SLIP Interface 131

Figure 5.8 shows the complex relationship between SLIP as a line discipline and
SLIP as a network interface.

ipintr >

I ipintrq:

sl_softc [0] :

i fnet{ }

sc_fastq
sc_bu f
s c_mp
sc_ep
s c_t typ

BUFOFFSET
bytes

slinput
t_sc
t_outq

if_snd ~< ~sc_fastq

slstart

clist{}

t_oproc

input
characters

cluster

Fig,re 5.8 SLIP device driver.

ouVput
characters

In Net/3 sc_ttyp and t_sc point to the tty structure and the sl_softc [0] structure. In-
stead of cluttering the figure with two arrows, we use a double-ended arrow positioned at
each pointer to illustrated the two links between the structures.

Figure 5.8 contains a lot of information:

¯ The network interface is represented by the sl_softc structure and the TTY
device by the tty structure.

¯ Incoming bytes are stored in the cluster (shown behind the t ty structure).
When a complete SLIP frame is received, the enclosed IP packet is put on the
ipintrq by slinput.

¯ Outgoing packets are dequeued from if_snd or sc_fastq] converted to SLIP
frames, and passed to the TTY device by slstart. The TTY buffers outgoing
bytes in the clist structure. The t_oproc function drains and transmits the
bytes held in the c 1 i s t structure.

132 Interfaces: SLIP and Loopback Chapter 5

SLIP Initialization: slopen and slinit

We discussed in Section 3.7 how slattach initializes the sl_softc structures. The
interface remains initialized but inoperative until a program (usually s lattaeh) opens
a TTY device (e.g., /dev/tty01) and issues an ±oetl command to replace the stan-
dard line discipline with the SLIP discipline. At this point the TTY subsystem calls the
line discipline’s open function (in this case slopen), which establishes the association
between a particular TTY device and a particular SLIP interface, slopen is shown in
Figure 5.9.

181 int
182 slopen(dev, tp)
183 dev_t dev;
184 struct tty *tp;
185 {
186 struct proc *p : curproc;
187 struct sl_softc *sc;
188 int nsl;
189 int error;

/* XXX */

if_sl.c

190
191

if (error = suser(p->p_ucred, &p->p_acflag))
return (error);

192
193

194
195
196
197
198
199
2O0
201
202
203
204
205

if (tp->t_line =: SLIPDISC)
return (0);

for (nsl = NSL, sc = sl_softc; --nsl >= 0; sc++)
if (sc->sc_ttyp := NULL) {

if (slinit(sc) == 0)
return (ENOBUFS);

tp->t_sc : (caddr_t) sc;
sc->sc_ttyp : tp;
sc->sc_if.if_baudrate : tp->t_ospeed;
ttyflush(tp, FREAD I FWRITE);
return (0);

}
return (ENXIO);

Figure 5.9 The slopen function.

if_sl.c

181 -i 93

194--205

Two arguments are passed to s lopen: dev, a kernel device identifier that slopen
does not use; and tp, a pointer to the t ty structure associated with the TTY device.
First some precautions: if the process does not have superuser privileges, or if the TTY’s
line discipline is set to s L I PD I SC already, s 1 open returns immediately.

The for loop searches the array of sl_softc structures for the first unused entry,
calls slinit (Figure 5.10), joins the tty and sl_softc structures by t_sc and
sc_ttyp, and copies the TTY output speed (t_ospeed) into the SLIP interface.
ttyflush discards any pending input or output data in the TTY queues, slopen
returns ENXIO if a SLIP interface structure is not available, or 0 if it was successful.

Section 5.3 SLIP Interface 133

Notice that the first available sl_softc structure is associated with the TTY device. There
need not be a fixed mapping between TTY devices and SLIP interfaces if the system has more
than one SLIP line. In fact, the mapping depends on the order in which slattach opens and
closes the TTY devices.

The s 1 i n i t function shown in Figure 5.10 initializes the s 1 _s o f t c structure.

156 static int
157 slinit(sc)
158 struct sl_softc *sc;
159 {
160 caddr_t p;

if_sl.c

161 if (sc->sc_ep := (u_char *) 0) {
162 MCLALLOC(p, M WAIT);
163 if (p)
164 sc->sc_ep = (u_char *) p + SLBUFSIZE;
165 else {
166 printf("sl%d: can’t allocate buffer\n", sc - sl_softc);
167 sc->sc_if.if_flags &: -IFF_UP;
168 return (0);
169]
170 }
171 sc->sc_buf = sc->sc_ep - SLMAX;
172 sc->sc_mp : sc->sc_buf;
173 sl_compress_init(&sc->sc_comp);
174 return (i);
175 }

Figure 5.10 The slinit function.
if_sl.c

156--175 The slinit function allocates an mbuf cluster and attaches it to the sl_softc

structure with three pointers. Incoming bytes are stored in the cluster until an entire
SLIP frame has been received, sc_buf always points to the start of the packet in the
cluster, so_rap points to the location of the next byte to be received, and sc_÷p points to
the end of the cluster, sl_compress_init initializes the TCP header compression
state for this link (Section 29.13).

In Figure 5.8 we see that so_bur does not point to the first byte in the cluster.
slinit leaves room for 148 bytes (BUFOFFSET), as the incoming packet may have a
compressed header that will expand to fill this space. The bytes that have already been
received are shaded in the cluster. We see that so_rap points to the byte just after the
last byte received and sc_ep points to the end of the cluster. Figure 5.11 shows the rela-
tionships between several SLIP constants.

All that remains to make the interface operational is to assign it an IP address. As
with the Ethernet driver, we postpone the discussion of address assignment until Sec-
tion 6.6.

134 Interfaces: SLIP and Loopback Chapter 5

Constant

MCLBYTES
SLBUFSIZE

SLIP_HDRLEW
BUFOFFSET

SLMAX

SLMTU

SLIP_HIWAT

Value

2048
2048

16
148

1900

296

Description

size of an mbuf cluster
maximum size of an uncompressed SLIP packet--including

a BPF header
size of SLIP BPF header
maximum size of an expanded TCP/IP header plus room for

a BPF header
maximum size of a compressed SLIP packet stored in a

cluster
optimal size of SLIP packet; results in minimal delay with

good bulk throughput
100 maximum number of bytes to queue in TTY output queue
BUFOFFSET + SLMAX = SLBUFSIZE = MCLBYTES

Figure 5.11 SLIP constants.

SLIP Input Processing: slinput

The TTY device driver delivers incoming characters to the SLIP line discipline one at a
time by calling sl±npue. Figure 5.12 shows the sl±npue function but omits the end-
of-frame processing, which is discussed separately.

527 void
528 slinput(c, tp)
529 int c;
530 struct tty *tp;
531 {
532 struct sl_softc *sc;
533 struct mbuf *m;
534 int len;
535 int s;
536 u_char chdr[CHDR_LEN];

if_sl.c

537 tk_nin++;
538 sc : (struct sl_softc *) tp->t_sc;
539 if (sc :: NULL)
540 return;
541 if (c & TTY_ERRORMASK I I ((tp->t_state & TS_CARR_ON) =: 0 &&
542 (tp->t_cflag & CLOCAL) := 0)) {
543 sc->sc_flags I: SC_ERROR;

544 return;
545 }
546 c &= TTY_CHARMASK;

547 ++sc->sc_if.if_ibytes;

548 switch (c) {

549 case TRANS_FRAME_ESCAPE:
550 if (sc->sc_escape)
551 c : FRAME_ESCAPE;
552 break;

Section 5.3 SLIP Interface

527--545

546--636

553
554
555
556

557
558
559

56O

case TRANS_FRAME_END:
if (sc >sc_escape)

c = FRAME_END;
break;

case FRAME_ESCAPE:
sc >sc_escape = i;
return;

case FRAME_END:

/* FRAME_END code (Figure 5.13) */

636
637
638
639
640
641
642
643

if (sc->sc_mp < sc->sc_ep)
*SC->SC~p++ : C;
sc->sc_escape : 0;
return;

}
/* can’t put lower; would miss
sc->sc_flags I= SC_ERROR;

an extra frame */

644 error:
645 sc->sc_if.if_ierrors++;
646 newpack:
647 sc->sc_mp : sc->sc_buf = sc->sc_ep - SLMAX;
648 sc->sc_escape : 0;
649 }

Figure 5.12 slinput function.
if_sl.c

The arguments to slinput are c, the next input character; and tp, a pointer to the
device’s tty structure. The global integer tk_nin counts the incoming characters for
all TTY devices, slinput converts tp->t_sc to so, a pointer to an sl_softc struc-
ture. If there is no interface associated with the TTY device, s l input returns immedi-
ately.

The first argument to s 1 input is an integer. In addition to the received character, c
contains control information sent from the TTY device driver in the high-order bits. If
an error is indicated in c or the modem-control lines are not enabled and should not be
ignored, SC_ERROR is set and slinput returns. Later, when slinput processes the
END character, the frame is discarded. The CLOCAL flag indicates that the system
should treat the line as a local line (i.e., not a dialup line) and should not expect to see
modem-control signals.

s 1 input discards the control bits in c by masking it with TTY_CHARMASK, updates
the count of bytes received on the interface, and jumps based on the received character:

¯ If c is an escaped ESC character and the previous character was an ESC,
s ! input replaces c with an ESC character.

¯ If c is an escaped END character and the previous character was an ESC,
s 1 input replaces c with an END character.

136 Interfaces: SLIP and Loopback Chapter 5

637--649

¯ If c is the SLIP ESC character, sc_escape is set and slinput returns immedi-
ately (i.e., the ESC character is discarded).

¯ If c is the SLIP END character, the packet is put on the IP input queue. The pro-
cessing for the SLIP frame end character is shown in Figure 5.13.

The common flow of control through this swi t ch statement is to fall through (there
is no default case). Most bytes are data and don’t match any of the four cases. Con-
trol also falls through the switch in the first two cases.

If control falls through the switch, the received character is part of the IP packet.
The character is stored in the cluster (if there is room), the pointers are advanced,
s c_e s cap e is cleared, and s 1 input returns.

If the cluster is full, the character is discarded and slinput sets SC_ERROR. Con-
trol reaches error when the cluster is full or when an error is detected in the end-of-
frame processing. At newpack the cluster pointers are reset for a new packet,
sc_escape is cleared, and s 1 input returns.

560
561
562
563
564
565
566
567
568

569
570
571
572
573
574
575
576
577
578
579
58O
581
582
583
584
585
586
587
588
589
59O
591

Figure 5.13 shows the FRAME_END code omitted from Figure 5.12.

case FRAME_END:
if (sc->sc_flags & SC_ERROR) {

sc->sc_flags &= -SC_ERROR;
goto newpack;

}
len = sc->sc_mp - sc->sc_buf;
if (len < 3)

/* less than min length packet - ignore */
goto newpack;

if (sc->sc_bpf) {
/*

* Save the compressed header, so we
* can tack it on later. Note that we
* will end up copying garbage in some
* cases but this is okay. We remember
* where the buffer started so we can
* compute the new header length.
*/

bcopy(sc->sc_buf, chdr, CHDR_LEN);
)
if ((c = (*sc->sc_buf & 0xf0)) != (IPVERSION << 4)) {

if (c & 0xS0)
c = TYPE_COMPRESSED_TCP;

else if (c == TYPE_UNCOMPRESSED_TCP)
sc->sc_buf &= 0x4f; / XXX */

/*
* We’ve got something that’s not an IP packet.
* If compression is enabled, try to decompress it.
* Otherwise, if auto-enable compression is on and
* it’s a reasonable packet, decompress it and then
* enable compression. Otherwise, drop it.
*/

if_sl.c

Section 5.3 SLIP Interface 137

560--579

592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
6O8
609
610
611
612
613
614

615
616
617
618
619
620
621

if (sc->sc_if.if_flags & SC_COMPRESS) {
len = sl_uncompress_tcp(&sc->sc_buf, len,

(u_int) c, &sc->sc_comp);
if (len <= 0)

goto error;
} else if ((sc->sc_if.if_flags & SC_AUTOCOMP) &&

c == TYPE_UNCOMPRESSED_TCP && len >= 40) {
len = sl_uncompress_tcp(&sc->sc_buf, len,

(u_int) c, &sc->sc_comp);
if (fen <= 0)

goto error;
sc->sc_if.if_flags I= SC_COMPRESS;

} else
goto error;

}
if (sc->sc_bpf)

/*
* Put the SLIP pseudo-"link header" in place.
* We couldn’t do this any earlier since
* decompression probably moved the buffer
* pointer. Then, invoke BPF.
*/

u_char *hp = sc->sc_buf - SLIP_HDRLEN;

hp[SLX_DIR] = SLIPDIR_IN;
bcopy(chdr, &hp[SLX_CHDR], CHDR_LEN);
bpf_tap(sc->sc_bpf, hp, fen + SLIP_HDRLEN);

}
m = sl_btom(sc, len);
if (m == NULL)

goto error;

622 sc->sc_if.if_ipackets++;
623 sc->sc_if.if_lastchange = time;
624 s = splimp();
625 if (IF_QFULL(&ipintrq)) {
626 IF_DROP(&ipintrq);
627 sc->sc_if.if_ierrors++;
628 sc->sc_if.if_iqdrops++;
629 m_freem(m);
630 } else {
631 IF_ENQUEUE(&ipintrq, m);
632 schednetisr(NETISR_IP);
633
634 splx(s);
635 goto newpack;

Figure 5.13 slinput function: end-of-frame processing.

i/_sl.c

slinput discards an ~coming SLIP packet immediately if SC_ERROR was set
while the packet was being received or if the packet is less than 3 bytes in length
(remember that the packet may be compressed).

If the SLIP interface is tapped by BPF, slinput saves a copy of the (possibly com-
pressed) header in the ehdr array.

138 Interfaces: SLIP and Loopback Chapter 5

580--606

607--618

619--635

By examining the first byte of the packet, slinput determines if it is an uncom-
pressed IP packet, a compressed TCP segment, or an uncompressed TCP segment. The
type is saved in e and the type information is removed from the first byte of data (Sec-
tion 29.13). If the packet appears to be compressed and compression is enabled,
sl_uncompress_tcp attempts to uncompress the packet. If compression is not
enabled, auto-enable compression is on, and if the packet is large enough
s l_uncompress_tcp is also called. If it is a compressed TCP packet, the compression
flag is set.

sl±nput discards packets it does not recognize by jumping to error. Sec-
tion 29.13 discusses the header compression techniques in more detail. The cluster now
contains a complete uncompressed packet.

After SLIP has decompressed the packet, the header and data are passed to BPF.
Figure 5.14 shows the layout of the buffer constructed by sl±nput.

hp [SLX_DIR]

hp [SLX_CHDR]

I~- sc->sc_buf

unused buffer compressed . uncompressed data
space header header

I-- ~_I~
original packet

CHDR_LEN (len bytes)

I~ SLI P_HDRLEN

Figure 5.14 SLIP packet in BPF format.

The first byte of the BPF header encodes the direction of the packet, in this case
incoming (SLTPDTR_TN). The next 15 bytes contain the compressed header. The entire
packet is passed to bpf_tap.

sl_btom converts the cluster to an mbuf chain. If the packet is small enough to fit
in a single mbuf, s]__btom copies the packet from the cluster to a newly allocated mbuf
packet header; otherwise sl_btom attaches the cluster to an mbuf and allocates a new
cluster for the interface. This is faster than copying from one cluster to another. We do
not show sl_btom in this text.

Since only 1P packets are transmitted on a SLIP interface, s 1 input does not have to
select a protocol queue (as it does in the Ethernet driver). The packet is queued on
ipintrq, an IP software interrupt is scheduled, and slinput jumps to new-pack,
where it updates the cluster packet pointers and clears se_eseape.

While the SLIP driver increments if_ierrors if the packet cannot be queued on ipintrob
neither the Ethernet nor loopback drivers increment this statistic in the same situation.

Access to the IP input queue must be protected by splimp even though s 1 input
is called at spltty. Recall from Figure 1.14 that an splimp interrupt can preempt
sp i t ty processing.

Section 5.3 SLIP Interface 139

SLIP Output Processing: sloutput

As with all network interfaces, output processing begins when a network-level protocol
calls the interface’s ±£_output function. For the Ethernet driver, the function is
e¢her_output. For SLIP, the function is sloutput (Figure 5.15).

259 int
260 sloutput(ifp, m, dst, rtp)
261 struct ifnet *ifp;
262 struct mbuf *m;
263 struct sockaddr *dst;
264 struct rtentry *rtp;
265 {
266 struct sl_softc *sc : &sl_softc[ifp->if_unit];
267 struct ip *ip;
268 struct ifqueue *ifq;
269 int s;

if_sl.c

270
271
272
273
274
275
276
277
278
279
28O
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

*/
if

}
if

cannot happen (see slioctl). Someday we will extend
the line protocol to support other address families.

(dst->sa_family != AF_INET) {
printf("sl%d: af%d not supported\n",

dst->sa_family);
m_freem(m);
sc->sc_if.if_noproto++;
return (EAFNOSUPPORT);

sc->sc_if.if_unit,

(sc->sc_ttyp =: NULL) {
m_freem(m);
return (ENETDOWN); /* sort of */

((sc->sc_ttyp->t_state & TS_CARR_ON) :: 0 &&
(sc->sc_ttyp->t_cflag & CLOCAL) := 0) {
m_freem(m);
return (EHOSTUNREACH);

}
ifq = &sc->sc_if.if_snd;
ip = mtod(m, struct ip *);
if (sc->sc_if.if_flags & SC_NOICMP && ip->ip_p == IPPROTO_ICMP)

m_freem(m);
return (ENETRESET) ; /* XXX ? */

(ip->ip_tos & IPTOS_LOWDELAY)
ifq = &sc->sc_fastq;
splimp();

(IF_QFULL(ifq)) {
IF_DROP(ifq);
m_freem(m);
splx(s);
sc->sc_if.if_oerrors++;
return (ENOBUFS);

140 Interfaces: SLIP and Loopback Chapter 5

259--289

290--291

292--295

296--297

306 IF_ENQUEUE(ifq, m);
307 sc->sc_if.if_lastchange : time;
308 if (sc->sc_ttyp->t_outq.c_cc := 0)
309 slstart(sc->sc_ttyp);
310 splx(s);
311 return (0);
312]

Figure 5.15 sloutput function.

if_sl.c

The four arguments to s 1 output are: ifp, a pointer to the SLIP if net structure
(in this case an sl_softc structure); m, a pointer to the packet to be queued for output;
dst, the next-hop destination for the packet; and rtp, a pointer to a route entry. The
fourth argument is not used by sloutput, but it is required since sloutput must
match the prototype for the i f_output function in the i fnet structure.

sloutput ensures that dst is an IP address, that the interface is connected to a
TTY device, and that the TTY device is operating (i.e., the carrier is on or should be
ignored). An error is returned immediately if any of these tests fail

The SLIP interface maintains two queues of outgoing packets. The standard queue,
i f_snd, is selected by default.

If the outgoing packet contains an ICMP message and $C_NOICMP is set for the
interface, the packet is discarded. This prevents a SLIP link from being overwhelmed
by extraneous ICMP packets (e.g., ECHO packets) sent by a malicious user (Chapter 11).

The error code ~.N~.TR~.S~.q? indicates that the packet was discarded because of a
policy decision (versus a network failure). We’ll see in Chapter 11 that the error is
silently discarded unless the ICMP message was generated locally, in which case an
error is returned to the process that tried to send the message.

Net/2 returned a 0 in this case. To a diagnostic tool such as ping or traceroute it would
appear as if the packet disappeared since the output operation would report a successful com-
pletion.

In general, ICMP messages can be discarded. They are not required for correct operation, but
discarding them makes troubleshooting more difficult and may lead to less than optimal rout-
ing decisions, poorer performance, and wasted network resources.

If the TOS field in the outgoing packet specifieslow-delay service
(IPTOS_LOWDELAY), the output queue is changed to sc_fastq.

RFC 1700 and RFC 1349 [Almquist 1992] specify the TOS settings for the sta.ndard protocols.
Low-delay service is specified for Telnet, Rlogin, FTP (control), TFTP, SMTP (command phase),
and DNS (UDP query). See Section 3.2 of Volume i for more details.

In previous BSD releases, the ip_tos was not set correctly by applications. The SLIP driver
implemented TOS queueing by examining the transport headers contained within the IP
packet. If it found TCP packets for the FTP (command), Telnet, or Rlogin ports, the packet was
queued as if IPTOS_LOWDELAY was specified. Many touters continue this practice, since
many implementations of these interactive services still do not set ip_tos.

Section 5.3 SLIP Interface 141

298--312 The packet is now placed on the selected queue, the interface statistics are updated,
and (if the TTY output queue is empty) slontput calls slstart to initiate transmis-
sion of the packet.

SLIP increments if_oerrors if the interface queue is full; ether_output does not.

Unlike the Ethernet output function (ether_output), sloutput does not con-
struct a data-link header for the outgoing packet. Since the only other system on a SLIP
network is at the other end of the serial link, there is no need for hardware addresses or
a protocol, such as ARP, to convert between IP addresses and hardware addresses.
Protocol identifiers (such as the Ethernet type field) are also superfluous, since a SLIP
link carries only IP packets.

slstart Function

318--358

359--383

384--388

389--398

483--484

In addition to the call by sloutput, the TTY device driver calls slstart when it
drains its output queue and needs more bytes to transmit. The TTY subsystem manages
its queues through a clist structure. In Figure 5.8 the output clist t_outq is shown
below slstart and above the device’s t_oproc function, slstart adds bytes to the
queue, while t_oproc drains the queue and transmits the bytes.

The s 1 s tart function is shown in Figure 5.16.
When slstart is called, tp points to the device’s tty structure. The body of

slstart consists of a single for loop. If the output queue t_outq is not empty,
slstart calls the output function for the device, t_oproc, which transmits as many
bytes as the device will accept. If more than 100 bytes (SLIP_HIWAT) remain in the TTY
output queue, s lstart returns instead of adding another packet’s worth of bytes to
the queue. The output device generates an interrupt when it has transmitted all the
bytes, and the TTY subsystem calls s 1 s tart when the output list is empty.

If the TTY output queue is empty, a packet is dequeued from se_fastq or, if
sc_fastq is empty, from the i f_snd queue, thus transmitting all interactive packets
before any other packets.

There are no standard SNMP variables to count packets queued according to the TOS fields.
The xxx comment in line 353 indicates that the SLIP driver is counting low-delay packets in
i f_omcas t s, not multicast packets.

If the SLIP interface is tapped by BPF, slstart makes a copy of the output packet
before any header compression occurs. The copy is saved on the stack in the bpfbuf
array.

If compression is enabled and the packet contains a TCP segment, sloutput calls
sl_compress_tcp, which attempts to compress the packet. The resulting packet type
is returned and logically ORed with the first byte in IP header (Section 29.13).

The compressed header is now copied into the BPF header, and the direction
recorded as SLIPDIR_OUT. The completed BPF packet is passed to bpf_tap.

slstart returns if the for loop terminates.

142 Interfaces: SLIP and Loopback Chapter 5

318 void ~_SI.C
319 slstart(tp)
320 struct tty *tp;
321 {
322 struct sl_softc *sc : (struct sl_softc *) tp->t_sc;
323 struct mbuf *m;
324 u_char *cp;
325 struct ip *ip;
326 int s;
327 struct mbuf *m2;
328 u_char bpfbuf[SLMTU + SLIP_HDRLEN];
329 int fen;
330 extern int cfreecount;

331 for ;;) {
332 *
333 * If there is more in the output queue, just send it now.
334 * We are being called in lieu of ttstart and must do what
335 * it would.
336 */
337 if (tp->t_outq.c_cc != 0) {
338 (*tp->t_oproc) (tp);
339 if (tp->t_outq.c_cc > SLIP_HIWAT)
340 return;
341 }
342 /*
343 * This happens briefly when the line shuts down.
344 */
345 if (sc == NULL)
346 return;

347 /*
348 * Get a packet and send it to the interface.
349 */
350 s = splimp();
351 IF_DEQUEUE(&sc->sc_fastq, m);
352 if (m)
353 sc->sc_if.if_omcasts++; /* XXX */
354 else
355 IF_DEQUEUE(&sc->sc_if.if_snd, m);
356 splx(s) ;
357 if (m :: NULL)
358 return;

359 /*
360 * We do the header compression here rather than in sloutput
361 * because the packets will be out of order if we are using TOS
362 * queueing, and the connection id compression will get
363 * munged when this happens.
364 */
365 if (sc->sc_bpf) {
366 /*
367 * We need to save the TCP/IP header before it’s
368 * compressed. To avoid complicated code, we just
369 * copy the entire packet into a stack buffer (since

Section 5.3 SLIP Interface 143

399--409

410--418

370
371
372
373
374
375

376
377
378

379
38O
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398

}
if

* this is a serial line, packets should be short
* and/or the copy should be negligible cost compared
* to the packet transmission time).
*/

struct mbuf *ml = m;
u_char *cp - bpfbuf + SLIP_HDRLEN;

fen = 0;
do {

int mlen ml->m_len;

bcopy(mtod(ml, caddr_t), cp, mlen);
cp +: mlen;
len +- mlen;

] while (ml : ml->m_next);

((ip : mtod(m, struct ip *))->ip_p -- IPPROTO_TCP) {
if (sc->sc_if.if_flags & SC_COMPRESS)

*mtod(m, u_char *) I- sl_compress_tcp(m, ip,
&sc->sc_comp, i);

(sc >sc_bpf) {
/*

* Put the SLIP pseudo-"link header" in place. The
* compressed header is now at the beginning of the
* mbuf.
*/

bpfbuf[SLX_DIR] - SLIPDIR_OUT;
bcopy(mtod(m, caddr_t), &bpfbuf[SLX_CHDR], CHDR_LEN) ;
bpf_tap(sc->sc_bpf, bpfbuf, len + SLIP_HDRLEN);

/* packet output code */

483
484 }

Figure 5.16 slstart function:packet dequeueing.
if_sI.c

The next section of slstart (Figure 5.17) discards packets if the system is low on
memory, and implements a simple technique for discarding data generated by noise on
the serial line. This is the code omitted from Figure 5.16.

If the system is low on clist structures, the packet is discarded and counted as a col-
lision. By continuing the loop instead of returning, slstart quickly discards all
remaining packets queued for output. Each iteration discards a packet, since the device
still has too many bytes queued for output. Higher-level protocols must detect the lost
packets and retransmit them.

If the TTY output queue is empty, the communication line may have been idle for a
period of time and the receiver at the other end may have received extraneous data cre-
ated by line noise, slstart places an extra SLIP END character in the output queue.
A 0-length frame or a frame created by noise on the line should be discarded by the
SLIP interface or IP protocol at the receiver.

144 Interfaces: SLIP and Loopback Chapter 5

399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418

sc->sc_if.if_lastchange = time;
/*

* If system is getting low on clists, just flush our
* output queue (if the stuff was important, it’ll get
* retransmitted).
*/

if (cfreecount < CLISTRESERVE + SLMTU) {
m_freem(m);
sc->sc_if.if_collisions++;
continue;

}
/.

* The extra FRAME_END will start up a new packet, and thus
* will flush any accumulated garbage. We do this whenever
* the line may have been idle for some time.
*/

if (tp->t_outq.c_cc == 0) {
++sc->sc_if.if_obytes;
(void) putc(FRAME_END, &tp->t_outq);

}

Figure 5.17 slstart function: resource shortages and line noise.

if_sl.c

~_sl.c

Figure 5.18 illustrates this technique for discarding line noise and is attributed to
Phil Karn in RFC 1055. In Figure 5.18, the second end-of-frame (END) is transmitted
because the line was idle for a period of time. The invalid frame created by the noise
and the END byte is discarded by the receiving system.

~ idle ~ ~-- idle ~ ~- extra

packet IENDI ~ EN~ packet EN~

frame i ~I ~ frame2 ~]~ frameS
(OK) (discarded) (OK)

Figure 5.18 Karn’s method for discarding noise on a SLIP line.

In Figure 5.19 there is no noise on the line and the 0-length frame is discarded by
the receiving system.

~ idle ~ ~,- extra

packet E~ EN~ packet EN~

frame I ~1 Ii-~ frameS ~1
(OK) (OK)

frame2
(discarded)

Figure 5.19 Karn’s method with no noise.

The next section of $1start (Figure 5.20) transfers the data from an mbuf to the
output queue for the TTY device.

Section 5.3 SLIP Interface 145

if_sl.c
419 while (m) {
420 u_char *ep;

421
422
423
424
425
426
427
428

429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467

cp = mtod(m, u_char *);
ep = cp + m->m_len;
while (cp < ep) {

/*
* Find out how many bytes in the string we can
* handle without doing something special.
*/

u_char *bp = cp;

while (cp < ep) {
switch (*cp++) {
case FRAME_ESCAPE:
case FRAME_END:

--cp;
goto out;

}
}

out :
if (cp > bp) {

/*
* Put n characters at once
* into the tty output queue.
*/

if (b_to_q((char *) bp, cp - bp,
&tp->t_outq))

break;
sc->sc_if.if_obytes += cp - bp;

/*
* If there are characters left in the mbuf,
* the first one must be special..
* Put it out in a different form.

*/
if (cp < ep) {

if (putc(FRAME_ESCAPE, &tp->t_outq))
break;

if (putc(*cp++ =: FRAME_ESCAPE ?
TRANS_FRAME_ESCAPE : TRANS_FRAME_END,
&tp->t_outq))

(void) unputc(&tp->t_outq);
break;

}
sc->sc_if.if_obytes +: 2;

MFREE(m, m2);
m = m2;

Figure 5.20 slstart function: packet transmission.

if_sI.c

146 Interfaces: SLIP and Loopback Chapter 5

419 467 The outer while loop in this section is executed once for each mbuf in the chain.
The middle while loop transfers the data from each mbuf to the output device. The
inner while loop advances cp until it finds an END or ESC character, b_to_q trans-
fers the bytes between bp and cp. END and ESC characters are escaped and queued
with two calls to putc. This middle loop is repeated until all the bytes in the mbuf are
passed to the TTY device’s output queue. Figure 5.21 illustrates this process with an
mbuf containing a SLIP END character and a SLIP ESC character.

fl- END {- ESCAPE

fbp ~-- cp ~ ~- ep

headermbuf /
data data data

first call to b_to_~__~second call to bto q~call to b to q

!
putc(FRAME_ESCAPE) putc(FRAME_ESCAPE)

putc(TRANS_FRAME_END) putc(TRANS_FRAME_ESCAPE)

Figure 5.21 SLIP transmission of a single mbuf.

bp marks the beginning of the first section of the mbuf to transfer with b t o q, and
cp marks the end of the first section, ep marks the end of the data in the mbuf.

If b_to_q or putc fail (i.e., data cannot be queued on the TTY device), the break
causes slstart to fall out of the inner while loop. The failure indicates that the ker-
nel has run out of clist resources. After each mbuf is copied to the TTY device, or when
an error occurs, the mbuf is released, m is advanced to the next mbuf in the chain, and
the outer whi 1 e loop continues until all the mbufs in the chain have been processed.

Figure 5.22 shows the processing done by slstart to complete the outgoing
frame.

468 if (putc(FRAME_END, &tp >t_outq)) {
469 /*
470 * Not enough room. Remove a char to make room
471 * and end the packet normally.
472 * If you get many collisions (more than one or two
473 * a day) you probably do not have enough clists
474 * and you should increase "nclist" in param.c.
475 */
476 (void) unputc(&tp->t_outq);
477 (void) putc(FRAME_END, &tp->t_outq);
478 sc->sc_if.if_collisions++;
479 } else {
480 ++sc >sc_if.if_obytes;
481 sc->sc_if.if_opackets++;
482 }

Figure 5.22 slstart function: end-of-frame processing.

if_sI.c

if_sl.c

Section 5.3 SLIP Interface 147

468--482 Control reaches this code when the outer while loop has finished queueing the
bytes on the output queue. The driver sends a SLIP END character, which terminates
the frame.

If an error occurred while queueing the bytes, the outgoing frame is invalid and is
detected by the receiving system because of an invalid checksum or length.

Whether or not the frame is terminated because of an error, if the END character
does not fit on the output queue, the last character on the queue is discarded and
slstart ends the frame. This guarantees that an END character is transmitted. The
invalid frame is discarded at the destination.

SLIP Packet Loss

The SLIP interface provides a good example of a best-effort service. SLIP discards
packets if the TTY is overloaded; it truncates packets if resources are unavailable after
the packet transmission has started, and it inserts extraneous null packets to detect and
discard line noise. In each of these cases, no error message is generated. SLIP depends
on IP and the transport layers to detect damaged and missing packets.

On a router forwarding packets from a fast interface such as Ethernet to a low-
speed SLIP line, a large percentage of packets are discarded if the sender does not recog-
nize the bottleneck and respond by throttling back the data rate. In Section 25.11 we’ll
see how TCP detects and responds to this condition. Applications using a protocol
without flow control, such as UDP, must recognize and respond to this condition on
their own (Exercise 5.8).

SLIP Performance Considerations

The MTU of a SLIP frame (SLMTU), the clist high-water mark (SLI P_HIWAT), and SLIP’s
TOS queueing strategies are all designed to minimize the delay inherent in a slow serial
link for interactive traffic.

1. A small MTU improves the delay for interactive data (such as keystrokes and
echoes), but hurts the throughput for bulk data transfer. A large MTU improves
bulk data throughput, but increases interactive delays. Another problem with
SLIP links is that a single typed character is burdened with 40 bytes of TCP and
IP header information, which increases the communication delay.

The solution is to pick an MTU large enough to provide good interactive
response time and decent bulk data throughput, and to compress TCP/IP head-
ers to reduce the per-packet overhead. RFC 1144 [Jacobson 1990a] describes a
compression scheme and the timing calculations that result in selecting an MTU
of 296 for a typical 9600 bits/sec asynchronous SLIP link. We describe Com-
pressed SLIP (CSLIP) in Section 29.13. Sections 2.10 and 7.2 of Volume 1 sum-
marize the timing considerations and illustrate the delay on SLIP links.

2. If too many bytes are buffered in the clist (because SLIP_HIWAT is set too high),
the TOS queueing will be thwarted as new interactive traffic waits behind the
large amount of buffered data. If SLIP passes i byte at a time to the TTY driver

148 Interfaces: SLIP and Loopback Chapter 5

(because SLIP_HIWAT is set too low), the device calls slstart for each byte
and the line is idle for a brief period of time after each byte is transferred. Set-
ting SLIP_HIWAT to 100 minimizes the amount of data queued at the device
and reduces the frequency at which the TTY subsystem must call slstart to
approximately once every 100 characters.

As described, the SLIP driver provides TOS queueing by transmitting interac-
tive traffic from the sc_fastq queue before other traffic on the standard inter-
face queue, i f_snd.

slclose Function

For completeness, we show the slclose function, which is called when the
slattach program closes SLIP’s TTY device and terminates the connection to the
remote system.

210 void
211 slclose(tp)
212 struct tty *tp;
213 {
214 struct sl_softc *sc;
215 int s;

if_sl.c

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

ttywflush(tp);
s = splimp(); /* actually, max(spltty, splnet) */
tp->t_line : 0;
sc = (struct sl_softc *) tp->t_sc;
if (sc !: NULL) {

if_down(&sc->sc_if);
sc->sc_ttyp = NULL;
tp->t_sc = NULL;
MCLFREE((caddr_t) (sc->sc_ep - SLBUFSIZE));
sc->sc_ep = 0;
sc->sc_mp : O;
sc->sc_buf = 0;

]
splx (s) ;

Figure 5.23 slclose function.
if_sl.c

210--230 tp points to the TTY device to be closed, slclose flushes any remaining data out
to the serial device, blocks TTY and network processing, and resets the TTY to the
default line discipline. If the TTY device is attached to a SLIP interface, the interface is
shut down, the links between the two structures are severed, the mbuf cluster associ-
ated with the interface is released, and the pointers into the now-discarded cluster are
reset. Finally, splx reenables the TTY and network interrupts.

Section 5.3 SLIP Interface 149

sltioctl Function

Recall that a SLIP interface has two roles to play in the kernel:

¯ as a network interface, and
¯ as a TTY line discipline.

Figure 5.7 indicated that slioctl processes ioctl commands issued for a SLIP inter-
face through a socket descriptor. In Section 4.4 we showed how ifioctl calls
slioctl. We’ll see a similar pattern for ioctl commands that we cover in later chap-
ters.

Figure 5.7 also indicated that sltioctl processes ioctl commands issued for the
TTY device associated with a SLIP network interface. The one command recognized by
sltioctl is shown in Figure 5.24.

Command Argument Function Description

SLIOCGUNIT int * sltioctl return interface unit associated with the TTY
device

Figure 5.24 sltioctl commands.

The s 1 t i o c t 1 function is shown in Figure 5.25.

236 int
237 sltioctl(tp, cmd, data, flag)
238 struct tty *tp;
239 int cmd;
240 caddr_t data;
241 int flag;
242 {
243 struct sl_softc *sc :

244 switch (cmd) {
245 case SLIOCGUNIT:
246 *(int *) data =
247 break;

248 default:
249 return (-i);
25O }
251 return (0);
252 }

(struct sl_softc *) tp->t_sc;

sc->sc_if.if_unit;

Figure 5.25 sltioctl function.

if_sl.c

236--252 The t_sc pointer in the t ty structure points to the associated s l_so f t c structure.
The unit number of the SLIP interface is copied from i f_uni t to * data, which is even-
tually returned to the process (Section 17.5).

if_unit is initialized by slattach when the system is initialized, and t_se is
initialized by slopen when the slattach program selects the SLIP line discipline for
the TTY device. Since the mapping between a TTY device and a SLIP sl_softe

150 Interfaces: SLIP and Loopback Chapter 5

structure is established at run time, a process can discover the interface structure
selected by the SLIOCGUNIT command.

5.4 Loopback Interface

Any packets sent to the loopback interface (Figure 5.26) are immediately queued for
input. The interface is implemented entirely in software.

i f_output

OSI
Protocols

clnlintrq:

ipintr

I ipintrq :

Figure 5.26 Loopback device driver.

looutput, the if_output function for the loopback interface, places outgoing
packets on the input queue for the protocol specified by the packer’s destination
address.

We already saw that ether_output may call looutput to queue a copy of an out-
going broadcast packet when the device has set IFF_SIMPLEX. In Chapter 12, we’ll see
that multicast packets may be also be looped back in this way. looutput is shown in
Figure 5.27.

57 int
58 looutput(ifp, m, dst, rt)
59 struct ifnet *ifp;
60 struct mbuf *m;
61 struct sockaddr *dst;
62 struct rtentry *rt;
63 {
64 int s, isr;
65 struct ifqueue *ifq = 0;

if_loop.c

66
67
68
69
70
71
72

if ((m->m_flags & M_PKTHDR) := 0)
panic("looutput no HDR");

ifp->if_lastchange : time;
if (loif.if_bpf) {

/*
* We need to prepend the address family as
* a four byte field. Cons up a dummy header

Section 5.4 Loopback Interface 151

73
74
75
76
77
78

?9
8O
81

82
83
84

85

87
88
89
90
91
92
93
94
95
96

97
98
99

i00

i01
102
103
104
105
106
107
108
109
ii0
iii
112
113
114
115
116
117
118
119
120

* to pacify bpf. This is safe because bpf
* will only read from the mbuf (i.e., it won’t
* try to free it or keep a pointer a to it).
*/

struct mbuf m0;
u_int af : dst->sa_family;

m0.m_next = m;
m0.m_len = 4;
m0.m_data = (char *) ⁡

bpf_mtap(loif.if_bpf, &m0);
]
m->m_pkthdr.rcvif : ifp;

if (rt && rt->rt_flags & (RTF_REJECT I RTF_BLACKHOLE)) {
m_freem(m);
return (rt->rt_flags & RTF_BLACKHOLE ? 0 :

rt->rt_flags & RTF_HOST ? EHOSTUNREACH : ENETUNREACH);
}
ifp->if_opackets++;
ifp->if_obytes +: m->m_pkthdr.len;
switch (dst->sa_family) {
case AF_INET:

ifq : &ipintrq;
isr : NETISR_IP;
break;

case AF_ISO:
ifq = &clnlintrq;
isr = NETISR_ISO;
break;

default:
printf("lo%d: can’t handle af%d\n", ifp->if_unit,

dst->sa_family);
m_freem(m);
return (EAFNOSUPPORT);

}
s = splimp() ;
if (IF_QFULL(ifq)) {

IF_DROP(ifq);
m_freem(m);
splx(s);
return (ENOBUFS);

}
IF_ENQUEUE(ifq, m);
schednetisr(isr);
ifp->if_ipackets++;
ifp->if_ibytes += m->m_pkthdr.len;
splx(s);
return (0) ;

Figure 5.27 The looutput function.

if_loop.c

152 Interfaces: SLIP and Loopback Chapter 5

57-68

69-83

84--89

The arguments to iooutput are the same as those to ether_output since both
are called indirectly through the i f_output pointer in their i fnet structures: i fp, a
pointer to the outgoing interface’s i fnet structure; m, the packet to send; dst, the desti-
nation address of the packet; and rt, routing information. If the first mbuf on the chain
does not contain a packet, looutput calls panic.

Figure 5.28 shows the logical layout for a BPF]oopback packet.

 BPFheader -l
address
family
4 bytes

Figure 5.28

original packet

BPF loopback packet: logical format.

The driver constructs the BPF loopback packet in ra0 on the stack and connects ra0 to
the mbuf chain containing the original packet. Note the unusual declaration of ra0. It is
an mbuf, not a pointer to an mbuf. re_data in ra0 points to af, which is also allocated on
the stack. Figure 5.29 shows this arrangement.

mO
m_next

m_len
m_data

m_next m

m_len
m_data - - -~

v v
allocated on stack allocated in

by looutput kernel mbuf pool

Figure 5.29 BPF loopback packet: mbuf format.

looutput copies the destination’s address family into af and passes the new mbuf
chain to bpf_mtap, which processes the packet. Contrast this to bpf_tap, which
accepts the packet in a single contiguous buffer not in an mbuf chain. As the comment
indicates, BPF never releases mbufs in a chain, so it is safe to pass ra0 (which points to
an mbuf on the stack) to bpf_mtap.

The remainder of looutput contains input processing for the packet. Even though
this is an output function, the packet is being looped back to appear as input. First,
ra->ra_pkthdr, rcvi f is set to point to the receiving interface. If the caller provided a
routing entry, looutput checks to see if it indicates that the packet should be rejected
(RTF_REJECT) or silently discarded (RTF_BLACKHOLE). A black hole is implemented
by discarding the mbuf and returning 0. It appears to the caller as if the packet has been
transmitted. To reject a packet, looutput returns EHOSTUNREACH if the route is for a
host and ENETUNREACH if the route is for a network.

The various RTF_xxx flags are described in Figure 18.25.

Chapter 5 Exercises 153

90-~2o 1 o output then selects the appropriate protocol input queue and software interrupt
by examining sa_family in the packet’s destination address. It then queues recog-
nized packets and schedules a software interrupt with schednetisr.

5.5 Summary

We described the two remaining interfaces to which we refer throughout the text: s 10, a
SLIP interface, and 1 o 0, the standard loopback interface.

We showed the relationship between the SLIP interface and the SLIP line discipline,
described the SLIP encapsulation method, and discussed TOS processing for interactive
traffic and other performance considerations for the SLIP driver.

We showed how the loopback interface demultiplexes outgoing packets based on
their destination address and places the packet on the appropriate input queue.

Exercises

5.1 Why does the loopback interface not have an input function?

5.2 Why do you think mo is allocated on the stack in Figure 5.27?

5.3 Perform an analysis of SLIP characteristics for a 19,200 bps serial line. Should the SLIP
MTU be changed for this line?

5.4 Derive a formula to select a SLIP MTU based on the speed of the serial line.

5.5 What happens if a packet is too large to fit in SLIP’s input buffer?

5.6 An earlier version of slinput did not set SC_ERROR when a packet overflowed the input
buffer. How would the error be detected in this case?

5.7 In Figure 4.31 le is initialized by indexing the le_softc array with iflo->if_unit. Can
you think of another method for initializing 1 e?

5.8 How can a UDP application recognize when its packets are being discarded because of a
bottleneck in the network?

IP Addressing

6.1 Introduction

This chapter describes how Net/3 manages IP addressing information. We start with
the ±n_± factclz~ and soekactctz~_±n structures, which are based on the generic ± £ac~ct~:
and sockaclctz" structures.

The remainder of the chapter covers IP address assignment and several utility func-
tions that search the interface data structures and manipulate IP addresses.

IP Addresses

Although we assume that readers are familiar with the basic Internet addressing sys-
tem, several issues are worth pointing out.

In the IP model, it is the network interfaces on a system (a host or a router) that are
assigned addresses, not the system itself. In the case of a system with multiple inter-
faces, the system is multihomed and has more than one IP address. A router is, by defini-
tion, multihomed. As we’ll see, this architectural feature has several subtle
ramifications.

Five classes of IP addresses are defined. Class A, B, and C addresses support unicast
communication. Class D addresses support IP multicasting. In a multicast communica-
tion, a single source sends a datagram to multiple destinations. Class D addresses and
multicasting protocols are described in Chapter 12. Class E addresses are experimental.
Packets received with class E addresses are discarded by hosts that aren’t participating
in the experiment.

155

156 IP Addressing Chapter 6

It is important that we emphasize the difference between IP multicasting and
hardware multicasting. Hardware multicasting is a feature of the data-link hardware
used to transmit packets to multiple hardware interfaces. Some network hardware,
such as Ethernet, supports data-link multicasting. Other hardware may not.

IP multicasting is a software feature implemented in IP systems to transmit packets
to multiple IP addresses that may be located throughout the internet.

We assume that the reader is familiar with subnetting of IP networks (RFC 950
[Mogul and Postel 1985] and Chapter 3 of Volume 1). We’ll see that each network inter-
face has an associated subnet mask, which is critical in determining if a packet has
reached its final destination or if it needs to be forwarded. In general, when we refer to
the network portion of an IP address we are including any subnet that may defined.
When we need to differentiate between the network and the subnet, we do so explicitly.

The loopback network, 127.0.0.0, is a special class A network. Addresses of this
form must never appear outside of a host. Packets sent to this network are looped back
and received by the host.

RFC 1122 requires that all addresses within the loopback network be handled correctly. Since
the loopback interface must be assigned an address, many systems select 127.0.0.1 as the loop-
back address. If the system is not configured correctly, addresses such as 127.0.0.2 may not be
routed to the loopback interface but instead may be transmitted on an attached network,
which is prohibited. Some systems may correctly route the packet to the loopback interface
where it is dropped since the destination address does not match the configured address:
127.0.0.1.

Figure 18.2 shows a Net/3 system configured to reject packets sent to a loopback address other
than 127.0.0.1.

Typographical Conventions for IP Addresses

We usually display IP addresses in dotted-decimal notation. Figure 6.1 lists the range
of IP address for each address class.

Class Range Type

A 0.0.0.0 to 127.255.255.255
B 128.0.0.0 to 191.255.255.255 unicast
C 192.0.0.0 to 223.255.255.255
D 224.0.0.0 to 239.255.255.255 multicast
E 240.0.0.0 to 247.255.255.255 experimental

Figure 6.1 Ranges for different classes of IP addresses.

For some of our examples, the subnet field is not aligned with a byte boundary (i.e.,
a network/subnet/host division of 16/11/5 in a class B network). It can be difficult to
identify the portions of such address from the dotted-decimal notation so we’ll also use
block diagrams to illustrate the contents of IP addresses. We’ll show each address with
three parts: network, subnet, and host. The shading of each part indicates its contents.
Figure 6.2 illustrates both the block notation and the dotted-decimal notation using the
Ethernet interface of the host sun from our sample network (Section 1.14).

Section 6.1 Introduction 157

140 252
[i0001100 I iiiiii00

class B network
140.252

interface "]
address I

13 33
0000 ii01 I 00 li00001

subnet "" host
105 " 1

255 255
[Iiiiiiii I iiiiiiii

network

255 224

subnet ,"host

[~] 0s

~ ls and 0s

~ ls and 0s

140 252

network
140.252

directed "ibroadcast~

13 63

subnet ,,’all hosts,
105 31

Figure 6.2 Alternate IP address notations.

When a portion of the address is not all 0s or all ls, we use the two intermediate shades. We
have two types of intermediate shades so we can distinguish network and subnet portions or
to show combinations of address as in Figure 6.31.

Hosts and Routers

Systems on an internet can generally be divided into two types: hosts and touters. A
host usually has a single network interface and is either the source or destination for an
IP packet. A router has multiple network interfaces and forwards packets from one net-
work to the next as the packet moves toward its destination. To perform this function,
routers exchange information about the network topology using a variety of specialized
routing protocols. IP routing issues are complex, and they are discussed starting in
Chapter 18.

A system with multiple network interfaces is still called a host if it does not route
packets between its network interfaces. A system may be both a host and a router. This
is often the case when a router provides transport-level services such as Telnet access for
configuration, or SNMP for network management. When the distinction between a host
and router is unimportant, we use the term system.

Careless configuration of a router can disrupt the normal operation of a network, so
RFC 1122 states that a system must default to operate as a host and must be explicitly
configured by an administrator to operate as a router. This purposely discourages
administrators from operating general-purpose host computers as routers without care-
ful consideration. In Net/3, a system acts as a router if the global integer
ipforwarding is nonzero and as a host if ipforwarding is 0 (the default).

158 IP Addressing Chapter 6

A router is often called a gateway in Net/3, although the term gateway is now more
often associated with a system that provides application-level routing, such as an elec-
tronic mail gateway, and not one that forwards IP packets. We use the term router and
assume that ipforwarding is nonzero in this book. We have also included all code
conditionally included when GATEWAY is defined during compilation of the Net/3 ker-
nel, which defines ipforwarding to be 1.

6.2 Code Introduction

The two headers and two C files listed in Figure 6.3 contain the structure definitions and
utility functions described in this chapter.

File Description

netinet / in. h Internet address definitions
netinet / in_vat, h Internet interface definitions
net inet/in, c Internet initialization and utility functions
net ine t/i f. c Internet interface utility functions

Figure 6.3 Files discussed in this chapter.

Global Variables

The two global variables introduced in this chapter are listed in Figure 6.4.

Variable Datatype Description

in_ifaddr struct in_ifaddr * head of in_ifaddr structure list
in_interfaces int number of IP capable interfaces

Figure 6.4 Global variables introduced in this chapter.

6.3 Interface and Address Summary

A sample configuration of all the interface and address structures described in this
chapter is illustrated in Figure 6.5.

Figure 6.5 shows our three example interfaces: the Ethernet interface, the SLIP inter-
face, and the loopback interface. All have a link-level address as the first node in their
address list. The Ethernet interface is shown with two IP addresses, the SLIP interface
with one IP address, and the loopback interface has an IP address and an OSI address.

Note that all the IP addresses are linked into the ±n_±faddr list and all the link-
level addresses can be accessed from the i fnet_addrs array.

The i fa_i fp pointers within each i faddr structure have been omitted from Fig-
ure 6.5 for clarity. The pointers refer back to the i fnet structure that heads the list con-
taining the i faddr structure.

Section 6.3 Interface and Address Summary 159

ifnet :

ifnet addrs

le_softc[O] : sl_softc[O] :

ifaddr{ } ifaddr{ }

loif:

ifnet{}

each in_ifaddr{ }
starts with an

i f addr { }

in_i faddr :

ifaddr{}

sockaddr_dl{}

sockaddr_dl{}

in_ifaddr{}
ifa_ifp
ira_next

~ ia_next

iso_ifaddr{}

ifaddr{}

Figure 6.5 Interface and address data structures.

The following sections describe the data structures contained in Figure 6.5 and the
IP-specific ± oc t 1 commands that examine and modify the structures.

160 IP Addressing Chapter 6

6.4 sockaddr_in Structure

68--70

106--112

We discussed the generic sockaddr and ifaddr structures in Chapter 3. Now we
show the structures specialized for IP: sockaddr_in and in_ifaddr. Addresses in
the Internet domain are held in a sockaddr_in structure:

in.h
68 struct in_addr {
69 u_long s_addr;
70 };

/* 32-bit IP address, net byte order */

106 struct sockaddr_in {
107 u_char sin_len;
108 u_char sin_family;
109 u_short sin_port;
ii0 struct in_addr sin_addr;
iii char sin_zero[8];
112 };

/* sizeof (struct sockaddr_in) = 16 */
/* AF_INET */
/* 16-bit port number, net byte order */

/* unused */

Figure 6.6 sockaddr_in structure.

in.h

Net/3 stores 32-bit Internet addresses in network byte order in an in_addr struc-
ture for historical reasons. The structure has a single member, s_addr, which contains
the address. That organization is kept in Net/3 even though it is superfluous and clut-
ters the code.

s in_len is always 16 (the size of the sockaddr_in structure) and s in_fami ly is
AF_INET. sin_port is a 16-bit value in network (not host) byte order used to demulti-
plex transport-level messages, s in_addr specifies a 32-bit Internet address.

Figure 6.6 shows that the sin__port, sin_addr, and sin_zero members of
sockaddr_in overlay the sa_data member of sockaddr, sin_zero is unused in
the Internet domain but must consist of all 0 bytes (Section 22.7). It pads the
sockaddr_in structure to the length of a sockaddr structure.

~ family

sockaddr {) ~ data

1 ~ family 14 bytes

I len IAF_-I I addr
sockaddr_in{ } ~ in_addr{ }

zero

1 1 2 4 bytes 8 bytes

u_long addr.s_addr

4 bytes

Figure 6.7 The organization of a sockaddr_in structure (sin_ omitted).

Usually, when an Internet addresses is stored in a u_long it is in host byte order to
facilitate comparisons and bit operations on the address, s_addr within the in_addr
structure (Figure 6.7) is a notable exception.

Section 6.6 Address Assignment 161

6.5

41--45

46--54

55-56

in_i faddr Structure

Figure 6.8 shows the interface address structure defined for the Internet protocols. For
each IP address assigned to an interface, an ±n_±faddr structure is allocated and
added to the interface address list and to the global list of IP addresses (Figure 6.5).

in var.h
41 struct in_ifaddr { -
42 struct ifaddr ia_ifa; /* protocol-independent info */
43 #define ia_ifp ia_ifa.ifa_ifp
44 #define ia_flags ia_ifa.ifa_flags
45 struct in_ifaddr *ia_next; /* next internet addresses list */
46 u_long ia_net; /* network number of interface */
47 u_long ia_netmask; /* mask of net part */
48 u_long ia_subnet; /* subnet number, including net */
49 u_long ia_subnetmask; /* mask of subnet part */
50 struct in_addr ia_netbroadcast; /* to recognize net broadcasts */
51 struct sockaddr_in ia_addr; /* space for interface name */
52 struct sockaddr_in ia_dstaddr; /* space for broadcast addr */
53 #define ia_broadaddr ia_dstaddr
54 struct sockaddr_in ia_sockmask; /* space for general netmask */
55 struct in_multi *ia_multiaddrs; /* list of multicast addresses */
56 };

Figure 6.8 The in_ifaddr structure.

in_var.h

in_ifaddr starts with the generic interface address structure, ia_ifa, followed
by the IP-specific members. The ifaddr structure was shown in Figure 3.15. The two
macros, ia_ifp and ia_flags, simplify access to the interface pointer and interface
address flags stored in the generic i faddr structure, ia_next maintains a linked list
of all Internet addresses that have been assigned to any interface. This list is indepen-
dent of the list of link-level ifaddr structures associated with each interface and is
accessed through the global list in_i faddr.

The remaining members (other than ia multiaddrs) are included in Figure 6.9,
which shows the values for the three interfaces on sun from our example class B net-
work. The addresses stored as u_long variables are kept in host byte order; the
in_addr and sockaddr_in variables are in network byte order, sun has a PPP inter-
face, but the information shown in this table is the same for a PPP interface or for a SLIP
interface.

The last member of the in_ifaddr structure points to a list of in_multi struc-
tures (Section 12.6), each of which contains an IP multicast address associated with the
interface.

6.6 Address Assignment

In Chapter 4 we showed the initialization of the interface structures when they are rec-
ognized at system initialization time. Before the Internet protocols can communicate
through the interfaces, they must be assigned an IP address. Once the Net/3 kernel is

162 IP Addressing Chapter 6

Variable

ia_addr

ia_net

ia_netmask

ia_subnet

ia_subnetmask

ia_ne<broadcast

-r -|

ia broadaddr

ia_dstaddr

ia_sockmask

Type

sockaddr_in

u_long

u_long

u_long

u_!ong

in_addr

sockaddr_in

sockaddr_in

sockaddr_in

Ethernet PPP Loopback

140.252.13.33 140.252.1.29 127.0.0.1

140.252.0.0 140.252.0.0 127.0.0.0

255.255.0.0 255.255.0.0 255.0.0.0

140.252.13.32 140.252.1.0 127.0.0.0

255.255.255.224 255.255.255.0 255.0.0.0

140.252.255.255 140.252.255.255 127.255.255.255

140.252.13.63

140.252.1.183 127.0.0.1

255.255.255.224 255.255.255.0 255.0.0.0

Description

network, subnet, and
host numbers

network number

network number mask

network and subnet
number

network and subnet
mask

network broadcast
address

directed broadcast
address

destination address

like ia_subnetmask
but in network
byte order

Figure 6.9 Ethernet, PPP, and loopback in_i faddr structures on sun.

running, the interfaces are configured by the i fconfig program, which issues configu-
ration commands through the ioct 1 system call on a socket. This is normally done by
the /et c/ne t s t art shell script, which is executed when the system is bootstrapped.

Figure 6.10 shows the ioctl commands discussed in this chapter. The addresses
associated with the commands must be from the same address family supported by the
socket on which the commands are issued (i.e., you can’t configure an OSI address
through a UDP socket). For IP addresses, the ioctl commands are issued on a UDP
socket.

Command Argument Function Description

SIOCGIFADDR struct ifreq * in_control get interface address
SIOCGIFNETMASK struct ifreq * in_control get interface netmask
SIOCGIFDSTADDR struct ifreq * in_control get interface destination address
SIOCGIFBRDADDR struct ifreq * in_control get interface broadcast address

SIOCSIFADDR struct ifreq * in_control set interface address
SIOCSIFNETMASK struct ifreq * in_control set interface netn~ask
SIOCSIFDSTADDR struct ifreq * in_control set interface destination address
SIOCSIFBRDADDR struct ifreq * in_control set interface broadcast address

SIOCDIFADDR struct ifreq * in_control delete interface address
SIOCAIFAIgDR struct in_aliasreq * in_control add interface address

Figure 6.10 Interface ioctl commands.

Section 6.6 Address Assignment 163

The commands that get address information start with SIOCG, and the commands
that set address information start with s T OCS. S T OC stands for socket ioctl, the G for get,
and the s for set.

In Chapter 4 we looked at five protocol-independent ioctl commands. The com-
mands in Figure 6.10 modify the addressing information associated with an interface.
Since addresses are protocol-specific, the command processing is protocol-dependent. Fig-
ure 6.11 highlights the ioc t 1-related functions associated with these commands.

if_ioctl

Figure 6.11 ioct i functions described in this chapter.

164 IP Addressing Chapter 6

ifioctl Function

As shown in Figure 6.11, i f i o c t i passes protocol-dependent i o c t I commands to the
pr_usrreq function of the protocol associated with the socket. Control is passed to
udp_usrreq and immediately to in_control where most of the processing occurs. If
the same commands are issued on a TCP socket, control would also end up at
in_control. Figure 6.12 repeats the default code from i fioctl, first shown in Fig-
ure 4.22.

447
448
449
450
451
452
453
454

default:
if (so->so_proto :: 0)

return (EOPNOTSUPP);
return ((*so->so_proto->pr_usrreq)

]
return (0) ;

(so, PRU_CONTROL,
cmd, data, ifp));

Figure 6.12 ifioctl function: protocol-specific commands.

if.c

if.C

447--454 The function passes all the relevant data for the ioctl commands listed in Fig-
ure 6.10 to the user-request function of the protocol associated with the socket on which
the request was made. For a UDP socket, udp_usrreq is called. Section 23.10
describes the udp_usrreq function in detail. For now, we need to look only at the
PRU_CONTROL code from udp_usrreq:

if (req == PRU_CONTROL)
return (in_control(so, (int)m, caddr_t)addr, (struct ifnet *)control));

in_control Function

132--145

146--152

Figure 6.11 shows that control can reach in_control through the default case in
soo_ioctl or through the protocol-dependent case in ifioctl. In both cases,
udp_usrreq calls in_control and returns whatever in_control returns. Fig-
ure 6.13 shows in_control.

so points to the socket on which the ioctl (specified by the second argument,
crad) was issued. The third argument, data, points to the data (second column of Fig-
ure 6.10) to be used or returned by the command. The last argument, ifp, is null (non-
interface ioctl from soo_ioctl) or points to the interface named in the ifreq or
in_aliasreq structures (interface ioctl from ifioctl), in_control initializes
ifa and ifra to access data as an ifreq or as an in_aliasreq structure.

If ifp points to an ifnet structure, the for loop locates the first address on the
Internet address list associated with the interface. If an address is found, ia points to
its in_i faddr structure, otherwise, ia is null.

If ifp is null, cmd will not match any of the cases in the first switch or any of the
nondefault cases in the second switch. The default case in the second switch
returns EOPNOTSUPP when i fm is null.

Section 6.6 Address Assignment 165

in.c
132 in_control(so, cmd, data, ifp)
133 struct socket *so;
134 int cmd;
135 caddr_t data;
136 struct ifnet *ifp;
137 {
138 struct ifreq *ifr = (struct ifreq *) data;
139 struct in_ifaddr *ia = 0;
140 struct ifaddr *ifa;
141 struct in_ifaddr *oia;
142 struct in_aliasreq *ifra = (struct in_aliasreq *) data;
143 struct sockaddr_in oldaddr;
144 int error, hostIsNew, maskIsNew;
145 u_long i;

146
147
148
149
150
151
152

153

* Find address for this interface, if it exists.
*/

if (ifp)
for (ia = in_ifaddr; ia; ia - ia->ia_next)

if (ia->ia_ifp -- ifp)
break;

switch (cmd) {

/* establish preconditions for commands */

218 }
219 switch (cmd) {

/* perform the commands */

326 default:
327 if (ifp :: 0 I I ifp->if_ioctl :: 0)
328 return (EOPNOTSUPP);
329 return ((*ifp->if_ioctl) (ifp, cmd, data));
330 }
331 return (0);
332 }

Figure 6.13 in_contro! function.

153--330 The first switch in in_control makes sure all the preconditions for each com-
mand are met before the second switch processes the command. The individual cases
are described in the following sections.

If the default case is executed in the second switch, i flo points to an interface
structure, and the interface has an if_ioctl function, then in_control passes the
ioct 1 command to the interface for device-specific processing.

166 IP Addressing Chapter 6

331--332

Net/3 does not define any interface commands that would be processed by the default case.
But the driver for a particular device might define its own interface ioctl commands and
they would be processed by this case.

We’ll see that many of the cases within the switch statements return directly. If
control falls through both switch statements, in_control returns 0. Several of the
cases do break out of the second switch.
We look at the interface ioctl commands in the following order:

¯ assigning an address, network mask, or destination address;
¯ assigning a broadcast address;
¯ retrieving an address, network mask, destination address, or broadcast address;
¯ assigning multiple addresses to an interface; or
¯ deleting an address.

For each group of commands, we describe the precondition processing done in the
first switch statement and then the command processing done in the second switch
statement.

Preconditions: SIOCSTFADDR~ SIOCS~FNETMASK~ and STOCS~FDSTADDR

166-172

173 191

192-206

202-206

Figure 6.14showsthe precondition testing for SIOCSIFADDR, SIOCSIFNETlVLASK, and
SIOCSIFDSTADDR.

Superuser only
If the socket was not created by a superuser process, these commands are prohib-

ited and in_control returns EPERM. If no interface is associated with the request, the
kernel panics. The panic should never happen since i f i o c t 1 returns if it can’t locate
an interface (Figure 4.22).

The SS_PRIV flag is set by socreate (Figure 15.16) when a superuser process creates a
socket. Because the test here is against the flag and not the effective user ID of the process, a
set-user-ID root process can create a socket, and give up its superuser privileges, but still issue
privileged ioctl commands.

Allocate structure
If ia is null, the command is requesting a new address, in_control allocates an

i n_i f a ddr structure, clears it with b z e r o, and links it into the i n_i f addr list for the
system and into the i f_addrl i s t list for the interface.

Initialize structure
The next portion of code initializes the in_ifaddr structure. First the generic

pointers in the ifaddr portion of the structure are initialized to point to the
sockaddr_in structures in the in_ifaddr structure. The function also initializes the
ia_sockmask and ia_broadaddr structures as necessary. Figure 6.15 illustrates the
in_i faddr structure after this initialization.

Finally, in_control establishes the back pointer from the in_i faddr to the inter-
face’s i fnet structure.

Net/3 counts only nonloopback interfaces in in_interfaces.

Section 6.6 Address Assignment 167

166
167
168
169
170

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

case SIOCSIFADDR:
case SIOCSIFNETMASK:
case SIOCSIFDSTADDR:

if ((so->so_state & SS_PRIV)
return (EPERM) ;

== 0)

if

if

(ifp :: 0)
panic("in_control") ;

(ia == (struct in_ifaddr *) 0) {
oia : (struct in_ifaddr *)

malloc(sizeof *oia, M_IFADDR, M_WAITOK);
if (oia :: (struct in_ifaddr *) NULL)

return (ENOBUFS);
bzero((caddr_t) oia, sizeof *oia);
if (ia = in_ifaddr) {

for (; ia->ia_next; ia = ia->ia_next)
continue;

ia->ia_next : oia;
} else

in_ifaddr = oia;
ia = oia;
if (ira = ifp->if_addrlist) {

for (; ifa->ifa_next; ifa : ifa->ifa_next)
continue;

ifa->ifa_next = (struct ifaddr *) ia;
} else

ifp->if_addrlist : (struct ifaddr *) ia;

ia->ia_ifa.ifa_addr = (struct sockaddr *) &ia->ia_addr;
ia->ia_ifa.ifa_dstaddr

: (struct sockaddr *) &ia->ia_dstaddr;
ia->ia_ifa.ifa_netmask

: (struct sockaddr *) &ia->ia_sockmask;
ia->ia_sockmask.sin_len : 8;
if (ifp->if_flags & IFF_BROADCAST) {

ia->ia_broadaddr.sin_len = sizeof(ia->ia_addr);
ia->ia_broadaddr.sin_family : AF_INET;

}
ia->ia_ifp = ifp;
if (ifp !: &loif)

in_interfaces++;
}
break;

Figure 6.14 in_control function: address assignment.

i~l.C

i~l.C

Address Assignment: SIOCSIFADDR

The precondition code has ensured that ia points to an in_ifaddr structure to be
modified by the SIOCSIFADDR command. Figure 6.16 shows the code executed by
in_control in the second switch for this command.

168 IP Addressing Chapter 6

-ifa_addr
-ifa netmask
-ifa_dstaddr

ia_addr
ia_sockmask
ia_dstaddr

Iifaddr{}

in_ifaddr{}

Figure 6.15 An in_i faddr structure after initialization by in_control.

259 case SIOCSIFADDR:
260 return (in_ifinit(ifp, ia,
261 (struct sockaddr_in *) &ifr->ifr_addr, i));

Figure 6.16 in_control function: address assignment.

i1"l.C

irl.C

259-2~ in_ifinit does all the work. The IP address included within the ifreq structure
(i fr_addr) is passed to in_i finit.

in_i finit Function

353--357

358--374

The major steps in in_i f ini t are:
¯ copy the address into the structure and inform the hardware of the change,
¯ discard any routes configured with the previous address,
¯ establish a subnet mask for the address,
¯ establish a default route to the attached network (or host), and
¯ join the all-hosts group on the interface.

The code is described in three parts, starting with Figure 6.17.
The four arguments to in_i f init are: i fp, a pointer to the interface structure; i a,

a pointer to the in_ifaddr structure to be changed; sin, a pointer to the requested IP
address; and scrub, which indicates if existing routes for this interface should be dis-
carded, i holds the IP address in host byte order.

Assign address and notify hardware
in_ifinit saves the previous address in oldaddr in case it must be restored

when an error occurs. If the interface has an i f _i o c t 1 function defined, in_c o n t r o 1
calls it. The three functions leioctl, slioctl, and loioctl for the sample interfaces
are described in the next section. The previous address is restored and in_control
returns if an error occurs.

Section 6.6 Address Assignment 169

375--378

379--384

353 in_ifinit(ifp, ia, sin, scrub)
354 struct ifnet *ifp;
355 struct in_ifaddr *ia;
356 struct sockaddr_in *sin;
357 int scrub;
358 {
359 u_long i = ntohl(sin->sin_addr.s_addr);
360 struct sockaddr_in oldaddr;
361 int s : splimp(), flags : RTF_UP, error, ether_output();

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
38O
381
382
383
384

oldaddr = ia->ia_addr;
ia->ia_addr = *sin;
/*

* Give the interface a chance to initialize
* if this is its first address,
* and to validate the address if necessary.
*/

if (ifp->if_ioctl &&
(error = (*ifp->if_ioctl) (ifp, SI0CSIFADDR, (caddr_t) ia)))
splx(s);
ia->ia_addr = oldaddr;
return (error);

}
if (ifp->if_output :: ether_output) { /* xxx: Another Kludge *!

ia->ia_ifa.ifa_rtrequest = arp_rtrequest;
ia->ia_ifa.ifa_flags I: RTF_CLONING;

}
splx(s);
if (scrub) {

ia->ia_ifa.ifa_addr = (struct sockaddr *) &oldaddr;
in_ifscrub(ifp, ia);
ia->ia_ifa.ifa_addr = (struct sockaddr *) &ia->ia_addr;

}

Figure 6.17 in_ifinit function: address assignment and route initialization.

i~l.C

¯ in.c

Ethernet configuration

For Ethernet devices, arp_rtrequest is selected as the link-level routing function
and the RTF_CLONING flag is set. arp_rtrequest is described in Section 21.13 and
RTF_CLONING is described at the end of Section 19.4. As the xxx comment suggests,
putting the code here avoids changing all the Ethernet drivers.

Discard previous routes

If the caller requests that existing routes be scrubbed, the previous address is
reattached to i fa_addr while in_i f scrub locates and invalidates any routes based
on the old address. After in_i f s c rub returns, the new address is restored.

The section of i n_i f i ni t shown in Figure 6.18 constructs the network and subnet
masks.

170 IP Addressing Chapter 6

in.c
385 if (~N_CLASSA(i))
386 ia->ia_netmask : IN_CLASSA_NET;
387 else if (IN_CLASSB(i))
388 ia->ia_netmask = IN_CLASSB_NET;
389 else
390 ia->ia_netmask : IN_CLASSC_NET;
391 /*
392 * The subnet mask usually includes at least the standard network part,
393 * but may be smaller in the case of supernetting.
394 * If it is set, we believe it.
395 */
396 if (ia->ia_subnetmask :: 0) {
397 ia->ia_subnetmask = ia->ia_netmask;
398 ia->ia_sockmask.sin_addr.s_addr : htonl(ia->ia_subnetmask);
399 } else
400 ia->ia_netmask &= ia->ia_subnetmask;
401 ia->ia_net = i & ia->ia_netmask;
402 ia->ia_subnet = i & ia->ia_subnetmask;
403 in_socktrim(&ia->ia_sockmask);

in.c

Figure 6.18 in_ifinit function: network and subnet masks.

385--400

401 --403

Construct network mask and default subnetmask
A tentative network mask is constructed in ia_netmask based on whether the

address is a class A, class B, or class C address. If no subnetwork mask is associated
with the address yet, ia_subnetmask and ia_sockmask are initialized to the tenta-
tive mask in ia_netmask.

If a subnet has been specified, in_ifinit logically ANDs the tentative netmask
. and the existing submask together to get a new network mask. This operation may
clear some of the 1 bits in the tentative netmask (it can never set the 0 bits, since 0 logi-
cally ANDed with anything is 0). In this case, the network mask has fewer 1 bits than
would be expected by considering the class of the address.

This is called supernetting and is described in RFC 1519 [Fuller et al. 1993]. A supernet is a
grouping of several class A, class B, or class C networks. Supernetting is also discussed in Sec-
tion 10.8 of Volume 1.

An interface is configured by default without subnetting (i.e., the network and sub-
network masks are the same). An explicit request (with SIOCSIFNETMASK or
SIOCAIFADDR) is required to enable subnetting (or supernetting).

Construct network and subnetwork numbers
The network and subnetwork numbers are extracted from the new address by the

network and subnet masks. The function in_socktrim sets the length of
in_sockmask (which is a sockaddr in structure) by locating the last byte that con-
tains a i bit in the mask.

Figure 6.19 shows the last section of in_i f init, which adds a route for the inter-
face and joins the all-hosts multicast group.

Section 6.6 Address Assignment 171

in.c
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428

* Add route for the network.
*/

ia->ia_ifa.ifa_metric = ifp->if_metric;
if (ifp->if_flags & IFF_BROADCAST) {

ia->ia_broadaddr.sin_addr.s_addr =
htonl(ia->ia_subnet I ~ia->ia_subnetmask);

ia->ia_netbroadcast.s_addr :
htonl(ia->ia_net I -ia->ia_netmask);

} else if (ifp->if_flags & IFF_LOOPBACK) {
ia->ia_ifa.ifa_dstaddr = ia->ia_ifa.ifa_addr;
flags I: RTF_HOST;

} else if (ifp->if_flags & IFF_POINTOPOINT) {
if (ia->ia_dstaddr.sin_family != AF_INET)

return (0);
flags I= RTF_HOST;

}
if ((error = rtinit(&(ia->ia_ifa), (int) RTM ADD, flags)) == 0)

ia->ia_flags I: IFA_ROUTE;
/*

* If the interface supports multicast, join the "all hosts"
* multicast group on that interface.
*/

if (ifp->if_flags & IFF_MULTICAST)
struct in_addr addr;

429 addr.s_addr = htonI(INADDR_ALLHOSTS_GROUP);
430 in_addmulti(&addr, ifp);
431 }
432 return (error);
433 }

Figure 6.19 in_i finit function: routing and multicast groups.

i ZI . C

404--422

423--433

Establish route for host or network

The next step is to create a route for the network specified by the new address.
i n_i f in it copies the routing metric from the interface to the i n_i f addr structure,
constructs the broadcast addresses if the interface supports broadcasts, and forces the
destination address to be the same as the assigned address for loopback interfaces. If a
point-to-point interface does not yet have an IP address assigned to the other end of the
link, in_i f ini t returns before trying to establish a route for the invalid address.

i n_i f ini t initializes f lags to RTF_UP and logically ORs in RTF_HOST for loop-
back and point-to-point interfaces, rtinit installs a route to the network (RTF_HOST
not set) or host (RTF_HOST set) for the interface. If rtinit succeeds, the IFA__ROUTE
flag in ia_flags is set to indicate that a route is installed for this address.

Join all-hosts group
Finally, a multicast capable interface must join the all-hosts multicast group when it

is initialized, in_addmulti does the work and is described in Section 12.11.

172 IP Addressing Chapter 6

Network Mask Assignment: SIOCSIFNETMASK

Figure 6.20 shows the processing for the network mask command.

262
263
264
265

case SIOCSIFNETMASK:
i : ifra->ifra_addr.sin_addr.s_addr;
ia->ia_subnetmask = ntohl(ia->ia_sockmask.sin_addr.s_addr = i);
break;

Figure 6.20 in_control function: network mask assig~nent

i~l.C

i;’hC

262-265 in_control extracts the requested netmask from the i freq structure and stores it
in ia_sockmask in network byte order and in ia_subnetmask in host byte order.

Destination Address Assignment: SIOCSIFDSTADDR

For point-to-point interfaces, the address of the system on the other end of the link is
specified by the SIOCSIFDSTADDR command. Figure 6.14 showed the precondition
processing for the code shown in Figure 6.21.

236 case SIOCSIFDSTADDR:
237 if ((ifp->if_flags & IFF_POINTOPOINT) =: 0)
238 return (EINVAL);
239 oldaddr = ia->ia_dstaddr;
240 ia->ia_dstaddr = *(struct sockaddr_in *) &ifr->ifr_dstaddr;
241 if (ifp->if_ioctl && (error = (*ifp->if_ioctl)
242 (ifp, SIOCSIFDSTADDR, (caddr_t) ia))) {
243 ia->ia_dstaddr = oldaddr;
244 return (error);
245 }
246 if (ia->ia_flags & IFA_ROUTE) {
247 ia->ia_ifa.ifa_dstaddr : (struct sockaddr *) &oldaddr;
248 rtinit(&(ia->ia_ifa), (int) RTM_DELETE, RTF_HOST);
249 ia->ia_ifa.ifa_dstaddr =
250 (struct sockaddr *) &ia->ia_dstaddr;
251 rtinit(&(ia->ia_ifa), (int) RTM_ADD, RTF_HOST I RTF_UP);
252 }
253 break;

in.c

Fig.re 6.21 in_control function: destination address assignment.

i;’LC

236--245

246--253

Only point-to-point networks have destination addresses, so in_control returns
EINVAL for other networks. After saving the current destination address in oldaddr,
the code sets the new address and informs the interface through the i f_ioctl func-
tion. If an error occurs, the old address is restored.

If the address has a route previously associated with it, that route is deleted by the
first call to rtinit and a new route to the new destination is installed by the second
call to rtinit.

Section 6.6 Address Assignment 173

Retrieving Interface Information

Figure 6.22 shows the precondition processing for the SIOCSIFBRDADDR command as
well as the i oc t 1 commands that return interface information to the calling process.

207 case SIOCSIFBRDADDR:
208 if ((so->so_state & SS_PRIV)
209 return (EPERM);
210 /* FALLTHROUGH */

211 case SIOCGIFADDR:
212 case SIOCGIFNETMASK:
213 case SIOCGIFDSTADDR:
214 case SIOCGIFBRDADDR:
215 if (ia == (struct in_ifaddr *)
216 return (EADDRNOTAVAIL);
217 break;

== 0)

0)

Figure 6.22 in_control function: preconditions.

itl.C

iFI.C

207--217 The broadcast address may only be set through a socket created by a superuser pro-
cess. The SIOCSIFBRDADDR command and the four SIOCGxxx commands work only
when an address is already defined for the interface, in which case ia won’t be null (ia
was set by in_control, Figure 6.13). If ia is null, EADDRNOTAVAIL is returned.

The processing of these five commands (four get commands and one set command)
is shown in Figure 6.23.

220
221
222

223
224
225
226
227

228
229
230
231
232

233
234
235

case SIOCGIFADDR:
*((struct sockaddr_in *) &ifr->ifr_addr) : ia->ia_addr;
break;

case SIOCGIFBRDADDR:
if ((ifp->if_flags & IFF_BROADCAST) :: 0)

return (EINVAL);
*((struct sockaddr_in *) &ifr->ifr_dstaddr) : ia->ia_broadaddr;
break;

case SIOCGIFDSTADDR:
if ((ifp->if_flags & IFF_POINTOPOINT) == 0)"

return (EINVAL);
*((struct sockaddr_in *) &ifr->ifr_dstaddr) = ia->ia_dstaddr;
break;

case SIOCGIFNETMASK:
*((struct sockaddr_in *) &ifr->ifr_addr) = ia->ia_sockmask;
break;

/* processing for SIOCSIFDSTADDR command (Figure 6.21) */

174 IP Addressing Chapter 6

254 case SIOCSIFBRDADDR:
255 if ((ifp->if_flags & IFF_BROADCAST) := 0)
256 return (EINVAL);
257 ia->ia_broadaddr : *(struct sockaddr_in *)
258 break;

&ifr->ifr_broadaddr;

Figure 6.23 in_control function: processing.

220--235

254--258

The unicast address, broadcast address, destination address, or netmask are copied
into the i freq structure. A broadcast address is available only from a network inter-
face that supports broadcasts, and a destination address is available only from a point-
to-point interface.

The broadcast address is copied from the i freq structure only when the interface
supports broadcasts.

Multiple IP Addresses per Interface

The slocGxxx and STOCSXXX commands operate only on the first IP address associated
with an interface--the first address located by the loop at the start of in_control (Fig-
ure 6.25). To support multiple IP addresses per interface, the additional addresses must
be assigned and configured with the STOCATFADDR command. In fact, $IOCAIFADDR
can do everything the SIOCGxxx and sIOCSxxx commands do. The ifconfig pro-
gram uses S I ocxI FADDR to configure all of the address information for an interface.

As noted earlier, having multiple addresses per interface can ease the transition
when hosts or networks are renumbered. A fault-tolerant software system might use
this feature to allow a backup system to assume the IP address of a failed system.

The -alias option to Net/3’s i fconfig program passes information about the
additional addresses to the kernel in an ±n_a]_ i as req structure, shown in Figure 6.24.

59 struct in_aliasreq {
60 char ifra_name[IFNAMSIZ]; /*
61 struct sockaddr_in ifra_addr;
62 struct sockaddr_in ifra_broadaddr;
63 #define ifra_dstaddr ifra_broadaddr
64 struct sockaddr_in ifra_mask;
65 };

interface name, e.g. "en0" * /

in_var.h

in_var.h
Figure 6.24 in_aliasreqstructure.

59--65 Notice that unlike the ifreq structure, there is no union defined within the
in_aliasreq structure. With SIOCAIFADDR, the address, broadcast address, and
mask can be specified in a single ioctl call.

SIOCAIFADDR adds a new address or changes the information associated with an
existing address. SIOCDIFADDR deletes the in_ifaddr structure for the matching IP
address. Figure 6.25 shows the precondition processing for the SIOCAIFADDR and
SIOCDIFADDR commands, which assumes that the loop at the start of in_control
(Figure 6.13) has set ia to point to they~’rst IP address associated with the interface spec-
ified in i fra_name (if it exists).

Section 6.6 Address Assignment 175

in.c
154 case SIOCAIFADDR:

155 case SIOCDIFADDR:

156 if (ifra->ifra_addr.sin_family :: AF_INET)

157 for (oia = ia; ia; ia = ia->ia_next) {
158 if (ia->ia_ifp == ifp &&

159 ia->ia_addr.sin_addr.s_addr :=

160 ifra->ifra_addr.sin_addr.s_addr)
161 break;
162 }
163 if (cmd :: SIOCDIFADDR && ia == 0)
164 return (EADDRNOTAVAIL);
165 /* FALLTHROUGH to Figure 6.14 */

Figure 6.25 in_control function: adding and deleting addresses.

ithC

154--165 Because the SIOCDIFADDR code looks only at the first two members of * i fra, the
code shown in Figure 6.25 works for SIOCAIFADDR (when ifra points to an
in_aliasreq structure) and for SIOCDIFADDR (when i fra points to an i freq struc-
ture). The first two members of the in_aliasreq and ifreq structures are identical.

For both commands, the for loop continues the search started by the loop at the
start of in_contro 1 by looking for the in_i faddr structure with the same IP address
specified by ifra->ifra_addr. For the delete command, EADDRNOTAVAIL is
returned if the address isn’t found.

After the loop and the test for the delete command, control falls through to the code
we described in Figure 6.14. For the add command, the code in Figure 6.14 allocates a
new in_ifaddr structure if one was not found that matched the address in the
in_al iasreq structure.

Additional IP Addresses: SIOCAIFADDR

266--277

278--284

285--290

At this point ia points to a new in_ifaddr structure or to an old in_ifaddr struc-
ture with an IP address that matched the address in the request. The SIOCAIFADDR
processing is shown in Figure 6.26.

Since STOCAIFADDR can create a new address or change the information associated
with an existing address, the raaskIsNew and hostIsNew flags keep track of what has
changed so that routes can be updated if necessary at the end of the function.

By default, the code assumes that a new IP address is being assigned to the interface
(hostIsNew starts at 1). If the length of the new address is 0, in_control copies the
current address into the request and changes hostIsNew to 0. If the length is not 0 and
the new address matches the old address, this request does not contain a new address
and hostIsNew is set to 0.

If a netmask is specified in the request, any routes using the current address are dis-
carded and in_control installs the new mask.

If the interface is a point-to-point interface and the request includes a new destina-
tion address, in_scrub discards any routes using the address, the new destination
address is installed, and raaskIsNew is set to 1 to force the call to in_ifinit, which
reconfigures the interface.

176 IP Addressing Chapter 6

in.c
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297

case SIOCAIFADDR:
maskIsNew = 0;
hostIsNew : i;
error : 0;
if (ia->ia_addr.sin_family == AF_INET) {

}
if

if (ifra->ifra_addr.sin_len == 0) {
ifra->ifra_addr = ia->ia_addr;
hostIsNew = 0;

} else if (ifra->ifra_addr.sin_addr.s_addr ==
ia->ia_addr.sin_addr.s_addr)

hostIsNew : 0;

(ifra->ifra_mask.sin_len) {
in_ifscrub(ifp, ia);
ia->ia_sockmask = ifra->ifra_mask;
ia->ia_subnetmask =

ntohl(ia->ia_sockmask.sin_addr.s_addr)
maskIsNew = i;

((ifp->if_flags & IFF_POINTOPOINT) &&
(ifra->ifra_dstaddr.sin_family =: AF_INET) {
in_ifscrub(ifp, ia);
ia->ia_dstaddr = ifra->ifra_dstaddr;

’maskIsNew = i; /* We lie; but the effect’s the same */
}
if (ifra->ifra_addr.sin_family == AF_INET &&

(hostIsNew I I maskIsNew))
error = in_ifinit(ifp, ia, &ifra->ifra_addr,

if ((ifp->if_flags & IFF_BROADCAST) &&
(ifra->ifra broadaddr.sin_family == AF_INET))
ia->ia_broadaddr = ifra->ifra broadaddr;

return (error);

0);

Figure 6.26 in_control function: SIOCAIFADDRprocessing.

i~l.C

291-297 If a new address has been configured or a new mask has been assigned,
i n_i f init makes all the appropriate changes to support the new configuration (Fig-
ure 6.17). Note that the last argument to in_ifinit is 0. This indicates that it isn’t
necessary to scrub any routes since that has already been taken care of. Finally, the
broadcast address is copied from the in_aliasreq structure if the interface supports
broadcasts.

Deleting IP Addresses: SIOCDIFADDI~

298--323

The SIOCDIFADDR command, which deletes IP addresses from an interface, is shown in
Figure 6.27. Remember that ia points to the in_ifaddr structure to be deleted (i.e.,
the one that matched the request).

The precondition code arranged for ia to point to the address to be deleted.
in_if scrub deletes any routes associated with the address. The first if deletes the

Section6.7 Interface ioctl Processing 177

298
299
3O0
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

case SIOCDIFADDR:
in_ifscrub(ifp, ia);
if ((ifa = ifp->if_addrlist) == (struct ifaddr *) ia)

/* ia is the first address in the list */
ifp->if_addrlist = ifa->ifa_next;

else {
/* ia is *not* the first address in the list */
while (ifa->ifa_next &&

(ifa->ifa_next != (struct ifaddr *) ia))
ifa = ifa->ifa_next;

if (ifa->ifa_next)
ifa->ifa_next = ((struct ifaddr *) ia)->ifa_next;

else
printf("Couldn’t unlink inifaddr from ifp\n");

}
oia = ia;
if (oia == (ia = in_ifaddr))

in_ifaddr = ia->ia_next;
else {

while (ia->ia_next && (ia->ia_next != oia))
ia = ia->ia_next;

if (ia->ia_next)
ia->ia_next = oia->ia_next;

else
printf("Didn’t unlink inifadr from list\n");

}
IFAFREE((&oia->ia_ifa));
break;

Figure 6.27 in_control function: deleting addresses.

324--325

structure for the interface address list. The second i f deletes the structure from the
Internet address list (in_i faddr).

IFAFREE only releases the structure when the reference count drops to 0.

The additional references would be from entries in the routing table.

6.7 Interface ioctl Processing

We now look at the specific ioctl processing done by each of our sample interfaces in
the leioctl, slioctl, and loioctl functions when an address is assigned to the
interface.

in_ifinit is called by the SIOCSIFADDR code in Figure 6.16 and by the
SIOCAIFADDR code in Figure 6.26. in_ifinit always issues the SIOCSIFADDR com-
mand through the interface’s i f_i o e t 1 function (Figure 6.17).

178 IP Addressing Chapter 6

leioctl Function

Figure 4.31 showed SIOCSIFFLAGS command processing of the LANCE driver. Fig-
ure 6.28 shows the SIOCSIFADDR command processing.

614
615
616
617
618 {
619
620
621
622

623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

leioctl(ifp, cmd, data)
struct ifnet *ifp;
int cmd;
caddr_t data;

struct ifaddr *ifa - (struct ifaddr *) data;
struct le_softc *le : &le_softc[ifp->if_unit];
struct leregl *lerl = le->sc_rl;
int s = splimp(), error - 0;

switch (cmd) {
case SIOCSIFADDR:

ifp->if_flags I= IFF_UP;
switch (ifa->ifa_addr->sa_family) {
case AF_INET:

leinit(ifp >if_unit); /* before arpwhohas */
((struct arpcom *) ±fp) >ac_ipaddr =

IA_SIN(ifa)->sin_addr;
arpwhohas((struct arpcom *) ifp, &IA_SIN(ifa)->sin_addr) ;
break;

default:
leinit(ifp->if_unit);
break;

break;

if_le.c

614-63 7

672--677

/* SIOCSIFFLAGS command (Figure 4.31) */
/* SIOCADDMULTI and SIOCDELMULTI commands (Figure 12.31) */

672 default:
673 error : EINVAL;
674 }
675 splx(s);
676 return (error);
677 }

Figure 6.28 leioctl function.

-if_le.c

Before processing the command, data is converted to an i faddr structure pointer
and i f~o - > i f_uni t selects the appropriate 1 e_so ft c structure for this request.

The interface is marked as up and the hardware is initialized by leinit. For Inter-
net addresses, the IP address is stored in the arpcom structure and a gratuitous ARP for
the address is issued. Gratuitous ARP is discussed in Section 21.5 and in Section 4.7 of
Volume 1.

Unrecognized commands
EINVAL is returned for unrecognized commands.

Section6.7 Interface ioctl Processing 179

slioctl Function

The slioct 1 function (Figure 6.29) processes the SlOCSIFADDR

S I OC S I F DS TADDR command for the SLIP device driver.

653 int
654 slioctl(ifD, cmd, data)
655 struct ifnet *ifp;
656 int cmd;
657 caddr_t data;
658 {
659 struct ifaddr *ifa : (struct ifaddr *) data;
660 struct ifreq *ifr;
661 let s : splimp(), error : 0;

662 switch (cmd) {
663 case SIOCSIFADDR:
664 if (ifa->ifa_addr->sa_family -- AF_INET)
665 ifp >if_flags I- IFF_UP;
666 else
667 error = EAFNOSUPPORT;
668 break;

669
670
671
672

case SIOCSIFDSTADDR:
if (ifa->ifa_addr->sa_family !: AF_INET)

error = EAFNOSUPPORT;
break;

and

if_sI.c

663-672

688-693

/* SIOCADDMULTI and SIOCDELMULTI commands (Figure 12.29)*/

688 default:
689 error - EINVAL;
690 }
691 splx(s);
692 return (error);
693 }

Figure 6.29 slioctl function: SIOCSIFADDR and SIOCSIFDSTADDR commands.
if_sl.c

For both commands, EAFNOSUPPORT is returned if the address is not an IP address.
The SIOCSIFADDR command enables IFF_UP.
Unrecognized commands

EINVAL is returned for unrecognized commands.

180 IP Addressing Chapter 6

loioctl Function

The loioctl function and its implementation of the SIOCSIFADDR command is
shown in Figure 6.30.

135 int
136 loioctl(ifp, cmd, data)
137 struct ifnet *ifp;
138 int cmd;
139 caddr_t data;
140 {
141 struct ifaddr *ira;
142 struct ifreq *ifr;
143 int error : 0;

if_loop.c

144 switch (cmd) {
145 case SIOCSIFADDR:
146 ifp->if_flags I: IFF_UP;
147 ifa - (struct ifaddr *) data;
148 /*
149 * Everything else is done at a higher level.
150 */
151 break;

135-151

1 67--1 71

/* SIOCADDMULTI and SIOCDELHULTI commands (Figure 12.30) */

167 default:
168 error = EINVAL;
169 }
170 return (error);
171 }

Figure 6.30 loioctl function: SIOCSIFADDR command.
if_Ioop.c

For Internet addresses, loi oct 1 sets I F F_UP and returns immediately.
Unrecognized commands

EINVAL is returned for unrecognized commands.

Notice that for all three example drivers, assigning an address causes the interface
to be marked as up (IFF_UP).

Section 6.8 Internet Utility Functions 181

6.8 Internet Utility Functions

Figure 6.31 lists several functions that manipulate Internet addresses or that rely on the
if net structures shown in Figure 6.5, usually to discover subnetting information that
cannot be obtained from the 32-bit IP address alone. The implementation of these func-
tions consists primarily of traversing data structures and manipulating bit masks. The
reader can find these functions in ne¢inet/±n, e.

Function Description

±n_neto£ Returns network and subnet portions of in. The host bits are set to 0.
For class D addresses, returns the class D prefix bits and 0 bits for
the multicast group.

u_long in netof(struct in_addr in);

in_canforward Returns true if an IF packet addressed to in is eligible for forwarding.
Class D and E addresses, loopback network addresses, and
addresses with a network number of 0 must not be forwarded~

int in can~orward(struct in_addr in);

in_localaddr

in_broadcast

Returns true if the host in is located on a directly connected network.
If the global variable subnetsarelocal is nonzero, then
subnets of all directly connected networks are also considered
local.

int in_localaddr(struct in_addr in);

Return true if in is a broadcast address associated with the interface
pointed to by ifp.

int in_~roadcast(struct in_addr in, struct ifnet *ifp);

Figure 6.31 Internet address functions.

Net/2 had a bug in in_canforward that permitted loopback addresses to be forwarded.
Since most Net/2 systems are configured to recognize only a single loopback address, such as
127.0.0.1, Net/2 systems often forward other addresses in the loopback network (e.g., 127.0.0.2)
along the default route.

A telnet to 127.0.0.2 may not do what you expect! (Exercise 6.6)

182 IP Addressing Chapter 6

6.9 ifnet Utility Functions

Several functions search the data structures shown in Figure 6.5. The functions listed in
Figure 6.32 accept addresses for any protocol family, since their argument is a pointer to
a soekaddr structure, which contains the address family. Contrast this to the functions
in Figure 6.31, each of which takes a 32-bit IP address as an argument. These functions
are defined in net / i f. e.

Function

i fa_i fwi thaddr

ifa_ifwithdstaddr

ifa_ifwithnet

ifa_ifwithaf

ifaof_ifpforaddr

ifa_ifwithroute

ifunit

Figure6.32 ifnet utility functions.

Description

Search the i fne t list for an interface with a unicast or broadcast address of
addr. Return a pointer to the matching ifaddr structure or a null
pointer if no match is found.

struct ifaddr * ifa_ifwithaddr(struct sockaddr *addr);

Search the i fnet list for the interface with a destination address of addr.
Return a pointer to the matching i faddr structure or a null pointer if
no match is found.

struct ifaddr * ifa_ifwithdstaddr(struct sockaddr *addr);

Search the ifnet list for the address on the same network as addr. Return a
pointer to the most specific matching i faddr structure or a null pointer
if no match is found.

struct ifaddr * ifa_ifwitI~et(struct sockaddr *addr);

Search the i fnet list for the first address in the same address family as addr.
Return a pointer to the matching i f addr structure or a null pointer if
no match is found.

struct ifaddr * ifa_ifwithaf(struct sockaddr *addr);

Search the address list of ifp for the address that matches addr. The order of
preference is for an exact match, the destination address on a point-to-
point link, an address on the same network, and finally an address in
the same address family. Return a pointer to the matching ifaddr
structure or a null pointer if no match is found.

struct ifaddr * ifaof_ifpforaddr(struct sockaddr *addr,
struct ifnet *i/~);

Returns a pointer to the i f addr structure for the appropriate local interface
for the destination (ds t), and gateway (gat eway) specified.

struct ifaddr * ifa_ifwlthroute(int]qags,
struct sockaddr *dst, struct sockaddr *gateway)

Return a pointer to the i fnet structure associated with name.

struct ifnet * ifunit(char *na~rle);

Chapter 6 Exercises 183

6.10 Summary

In this chapter we presented an overview of the IP addressing mechanisms and
described interface address structures and protocol address structures that are special-
ized for IP: the in_ifaddr and sockaddr_in structures.

We described how interfaces are configured with IP-specific information through
the i f c on fig program and the ioc t 1 interface commands.

Finally, we summarized several utility functions that manipulate IP addresses and
search the interface data structures.

Exercises

6.1

6.2

6.3

6.4

6.5

6.6

Why do you think sin_addr in the sockaddr_in structure was originally defined as a
structure?

ifunit ("sl0 ") returns a pointer to which structure in Figure 6.5?

Why is the IP address duplicated in ae_ipaddr when it is already contained in an ifaddr
structure on the interface’s address list?

Why do you think IP interface addresses are accessed through a UDP socket and not a raw
IP socket?

Why does in_socktrim change sin_len to match the length of the mask instead of using
the standard length of a soekaddr_in structure?

What happens when the connection request segment from a telnet 127.0.0.2 command
is erroneously forwarded by a Net/2 system and is eventually recognized and accepted by
a system along the default route?

7

Domains and Protocols

7.1 Introduction

In this chapter we describe the Net/3 data structures that support the concurrent opera-
tion of multiple network protocols. We’ll use the Internet protocols to illustrate the con-
struction and initialization of these data structures at system initialization time. This
chapter presents the necessary background material for our discussion of the IP proto-
col processing layer, which begins in Chapter 8.

Net/3 groups related protocols into a domain, and identifies each domain with a
protocol family constant. Net/3 also groups protocols by the addressing method they
employ. Recall from Figure 3.19 that address families also have identifying constants.
Currently every protocol within a domain uses the same type of address and every
address type is used by a single domain. As a result, a domain can be uniquely identi-
fied by its protocol family or address family constant. Figure 7.1 lists the protocols and
constants that we discuss.

Protocol family
PF_ INET
PF_OSI, PF_ISO
PF_LOCAL , PF_UIVIX
PF_ROUTE

n/~

Address family Protocol
AF_ INET Internet
AF_OSI, AF_ISO OSI
AF_LOCAL, AF__UI~IX local IPC (Unix)
AF_ROUTE routing tables
AF_LINK linkqevel (e.g., Ethernet)

Figure 7.1 Common protocol and address family constants.

PF_LOCAL and AF_LOCAL are the primary identifiers for protocols that support communica-
tion between processes on the same host and are part of the POSIX.12 standard. Before Net/3,
PF_UNIX and AF_UNIX identified these protocols. The LrNIX constants remain for backward
compatibility and are used by Net/3 and in this text.

185

186 Domains and Protocols Chapter 7

The PF_UNIX domain supports interprocess communication on a single Unix host.
See [Stevens 1990] for details. The PF_ROUTE domain supports communication
between a process and the routing facilities in the kernel (Chapter 18). We reference the
PF_OSI protocols occasionally, as some features of Net/3 exist only to support the OSI
protocols, but do not discuss them in any detail. Most of our discussions are about the
PF_INET protocols.

7.2 Code Introduction

Two headers and two C files are covered in this chapter. Figure 7.2 describes the four
files.

File Description

netinet/doraain, h domain structure definition
netinet/protosw.h protosw structure definition
netinet / in_~roto, c IP domain and protosw structures
kern/uipc_domain, c initialization and search functions

Global Variables

Figure 7.2 Files discussed in this chapter.

Figure 7.3 describes several important global data structures and system parameters
that are described in this chapter and referenced throughout Net/3.

Variable Datatype Description

domains struct domain * linked list of domains
inetdomain struct domain domain structure for the Internet protocols
inetsw struct protosw [] array of protosw structures for the Internet protocols
max_linkhdr int see Figure 7.17
max_~rotohdr int see Figure 7.17
max_hdr int see Figure 7.17
max_datalen int see Figure 7.17

Figure 7.3 Global variables introduced in this chapter.

Statistics

No statistics are collected by the code described in this chapter, but Figure 7.4 shows the
statistics table allocated and initialized by the ±t~_±n± ¢ function. The only way to look
at this table is with a kernel debugger.

Variable Datatype Description

ip_i fmatrix int [] [] two-dimensional array to count packets
routed between any two interfaces

Figure 7.4 Statistics collected in this chapter.

Section 7.3 domain Structure 187

7.3

42-57

domain Structure

A protocol domain is represented by a domain structure shown in Figure 7.5.

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

struct

};

domain {
int dom_family;
char *dom_name;
void (*dom_init)

(void);
int (*dom_externalize)

(struct mbuf *);
int (*dom_dispose)

(struct mbuf *);
struct protosw *dom_!3rotosw, *dom~rotoswNPROTOSW;
struct domain *dom_next;
int (*dom_rtattach) /* initialize routing table */

(void **, int);
int dom_rtoffset; /* an arg to rtattach, in bits */
int dom maxrtkey; /* for routing layer */

domain.h

/* AF_xxx */

/* initialize domain data structures */

/* externalize access rights */

/* dispose of internalized rights */

Figure 7.5 The domain structure definition.

domain.h

dora_family is one of the address family constants (e.g., AF_INET) and specifies
the addressing employed by the protocols in the domain, dom__name is a text name for
the domain (e.g., "internet").

The dora_name member is not accessed by any part of the Net/3 kernel, but the fstat(1) pro-
gram uses dora_name when it formats socket information.

dom_init points to the function that initializes the domain, dora_externalize
and dora_dispose point to functions that manage access rights sent across a communi-
cation path within the domain. The Unix domain implements this feature to pass file
descriptors between processes. The Internet domain does not implement access rights.

dom_protosw and dom_protoswNPROTOSW point to the start and end of an array
of protosw structures, dora_next points to the next domain in a linked list of domains
supported by the kernel. The linked list of all domains is accessed through the global
pointer domains.

The next three members, dom_rtattach, dom_rtoffset, and dom_maxrtkey,
hold routing information for the domain. They are described in Chapter 18.

Figure 7.6 shows an example domains list.

domains:

]
is odomain : ine tdomain : rout edomain : unixdomain :

domain() ~ domain{} ~ domaln{} ~ domain(} ~

Figure 7.6 domains list.

188 Domains and Protocols Chapter 7

7.4 protosw Structure

At compile time, Net/3 allocates and initializes a pro¢osw structure for each protocol
in the kernel and groups the structures for all protocols within a single domain into an
array. Each domain structure references the appropriate array of pro¢osw structures.
A kernel may provide multiple interfaces to the same protocol by providing multiple
pro¢osw entries. For example, in Section 7.5 we describe three different entries for the
IP protocol.

57 struct protosw {
58 short pr_type;
59 struct domain *Dr_domain;
60 short pr_protocol;
61 short Dr_flags;
62 /* protocol-protocol hooks */
63 void (*Dr_input) ();
64 int (*Dr_output) ();
65 void (*pr_ctlinput) ();
66 int (*pr_ctloutput) ();
67 /* user-protocol hook */
68 int (*pr_usrreq) ();
69 /* utility hooks */
70 void (*Dr_init) ();
71 void (*pr_fasttimo) ();
72 void (*pr_slowtimo) () ;
73 void (*Dr_drain) ();
74 int (*pr_sysctl) ();
75 };

/* see (Figure 7.8) */
/* domain protocol a member of */
/* protocol number */
/* see Figure 7.9 */

protosw.h

/* input to protocol (from below) */
/* output to protocol (from above) */
/* control input (from below) */
/* control output (from above) */

/* user request from process */

/* initialization hook */
/* fast timeout (200ms) */
/* slow timeout (500ms) */
/* flush any excess space possible */
/* sysctl for protocol */

protosw.h
Figure 7.7 The protosw structure definition.

57--61 The first four members in the structure identify and characterize the protocol.
Dr_type specifies the communication semantics of the protocol. Figure 7.8 lists the
possible values for Dr_type and the corresponding Internet protocols.

pr_type

SOCK STREAM
SOCK_DGRAM
SOCK_RAW
SOCK RDM
SOCK SEQPACKET

Protocol semantics

reliable bidirectional byte-stream service
best-effort transport-level datagram service
best-effort network-level datagram service
reliable datagram service (not implemented)
reliable bidirectional record stream service

Internet protocols

TCP
UDP
ICMP, IGMP, raw IP
n/a
n/a

Figure 7.8 pr_type specifies the protocol’s semantics.

pr_domain points to the associated domain structure, pr_protocol numbers the
protocol within the domain, and l~r_flags specifies additional characteristics of the
protocol. Figure 7.9 lists the possible values for pr_flags.

Section 7.4 protosw Structure 189

pr_flags

PR__ATOMIC
PR_ADDR
PR_CONNREQUII{ED
PR_ WANTR O VD

PR_RIGHTS

Descriptio~~n
each process request maps to a single protocol request
protocol passes addresses with each datagram
protocol is connection oriented
notify protocol when a process receives data
protocol supports access rights

Figure 7.9 pr_flags values.

If PR_ADDR is supported by a protocol, PR_ATOMIC must also be supported. PR_ADDR and
PR_CONNREQUIRED are mutually exclusive.

When PR_W/dqTRCVD is set, the socket layer notifies the protocol layer when it has passed data
from the socket receive buffer to a process (i.e., when more space becomes available in the
receive buffer).

PR_RIGHTS indicates that access right control messages can be passed across the connection.
Access rights require additional support within the kernel to ensure proper cleanup if the
receiving process does not consume the messages. Only the Unix domain supports access
rights, where they are used to pass descriptors between processes.

Figure 7.10 shows the relationship between the protocol type, the protocol flags,
and the protocol semantics.

pr_type

SOCK_STREAIVI

SOCK_SEQPACKET

SOCK RDM

SOCK DGRA!4
SOCK_RAW

ADDR

PR_

ATOMIC CONNREQUIRED

Record
boundaries?

Example
Reliable? Internet Other

¯ TCP SPP
¯ TP4
¯ SPP

see text RDP
UDP
ICMP

none
explicit
implicit
implicit
implicit
implicit

Figure 7.10 Protocol characteristics and examples.

Figure 7.10 does not include the PR--WANTRCVD or PR_RIGHTS flags. PR_WANTRCVD is always
set for reliable connection-oriented protocols.

To understand communication semantics of a protosw entry in Net/3, we must
consider the PRxxx flags and mr_type together. In Figure 7.10 we have included two
columns ("Record boundaries?" and "Reliable?") to describe the additional semantics
that are implicitly specified by pr_type. Figure 7.10 shows three types of reliable pro-
tocols:

Connection-oriented byte stream protocols such as TCP and SPP (from the XNS
protocol family). These protocols are identified by SOCK_STREAM.

190 Domains and Protocols Chapter 7

62--68

69--75

Connection-oriented stream protocols with record boundaries are specified by
SOCK_$~.QPACK~.T. Within this type of protocol, PR_ATOFITC indicates whether
records are implicitly specified by each output request or are explicitly specified
by setting the MSG_EOR flag on output. TP4 from the OSI protocol family
requires explicit record boundaries, and SPP assumes implicit record bound-
aries.

SPP supports both SOCK_STREAM and SOCK_SEQPACKET semantics.

The third type of reliable protocol provides a connection-oriented service with
implicit record boundaries and is specified by SOCK_RDN. RDP does not guar-
antee that records are received in the order that they are sent. RDP is described
in [Partridge 1987] and specified by RFC 1151 [Partridge and Hinden 1990].

Two types of unreliable protocols are shown in Figure 7.10:

¯ A transport-level datagram protocol, such as UDP, which includes multiplexing
and checksums, is specified by SOCK_DGRAM.

¯ A network-level datagram protocol, such as ICMP, which is specified by
SOCK_RAW. In Net/3, only superuser processes may create a SOCK_RAW socket
(Figure 15.18).

The next five members are function pointers providing access to the protocol from
other protocols, pr_±npu¢ handles incoming data from a lower-level protocol,
pr_ouCpu¢ handles outgoing data from a higher-level protocol, pr_ctl±npu¢ han-
dles control information from below, and pr_c¢loucpu¢ handles control information
from above, pr_usrreq handles all communication requests from a process.

pr_out t pr ctloutput

(e.g., routing doma~ output) ~ ~ (e.;, socket option~/ p o o o,pr_input I I pr_ctlinput

(e.g., arrb~g TCP packets) (e.g., ICMP errors)

process

pr_usrreq
(e.g.,read, write, etc.)

Figure 7.11 The five main entry points to a protocol.

The remaining five members are utility functions for the protocol, pr_init han-
dles initialization, pr_fasttirao and pr_slowtirao are called every 200 ms and 500

Section7.5 IP domain and protosw Structures 191

ms respectively to perform periodic protocol functions, such as updating retransmission
timers, pr_drain is called by re_reclaim when memory is in short supply (Fig-
ure 2.13). It is a request that the protocol release as much memory as possible.
pr_sysctl provides an interface for the sysctl(8) command, a way to modify sys-
tem-wide parameters, such as enabling packet forwarding or UDP checksum calcula-
tions.

7.5

39--77

IP domain and protosw Structures

The domain and protosw structures for all protocols are declared and initialized stati-
cally. For the Internet protocols, the inetsw array contains the protosw structures.
Figure 7.12 summarizes the protocol information in the inetsw array. Figure 7.13
shows the definition of the array and the definition of the domain structure for the
Internet protocols.

inetsw[]
0
1
2
3
4
5
6

pr~orotocol

0
IPPROTO_UDP
IPPROTO_TCP
IPPROTO_RAW
IPPROTO_ICMP
IPPROTO_IGMP
0

pr_type

0
SOCK_DGRAM
SOCK_STREAM
SOCK_RAW
SOCK_RAW
SOCK_RAW
SOCK_RAW

Description
Internet Protocol
User Datagram Protocol
Transmission Control Protocol
Internet Protocol (raw)
Internet Control Message Protocol
Internet Group Management Protocol
Internet Protocol (raw, default)

Acronym
IP
UDP
TCP
IP (raw)
ICMP
IGMP
IP (raw)

Figure 7.12 Internet domain protocols.

Three protosw structures in the inetsw array provide access to IP. The first,
inetsw [0], specifies administrative functions for IP and is accessed only by the kernel.
The other two entries, inetsw[3] and inetsw[6], are identical except for their
pr_protocol values and provide a raw interface to IP. inetsw[3] processes any
packets that are received for unrecognized protocols, inetsw[6] is the default raw
protocol, which the p f f i ndproto function (Section 7.6) returns when no other match
is found.

In releases before Net/3, packets transmitted through inetsw [3] did not have an IP header
prepended. It was the responsibility of the process to construct the correct header. Packets
transmitted through inetsw[6] had an IP header prepended by the kernel. 4.3BSD Reno
introduced the IP_HDRINCL socket option (Section 32.8), so the distinction between
inetsw [3] and inetsw [6] is no longer relevant.

The raw interface allows a process to send and receive IP packets without an inter-
vening transport protocol. One use of the raw interface is to implement a transport
protocol outside the kernel. Once the protocol has stablized, it can be moved into the
kernel to improve its performance and availability to other processes. Another use is
for diagnostic tools such as traceroute, which uses the raw IP interface to access IP
directly. Chapter 32 discusses the raw IP interface. Figure 7.14 summarizes the IP
p r o t o sw structures.

192 Domains and Protocols Chapter 7

in_proto.c
39 struct protosw inetsw[] :
4O {
41
42
43
44
45
46
47
48
49
5O
51
52
53
54
55
56
57
58
59
6O
61
62
63
64
65
66
67
68
69
7O
71
72
73
74
75
76
77 };

{0, &inetdomain, 0, 0,
0, ip_output, 0, 0,
0,
ip_init, 0, ip_slowtimo, ip_drain, ip_sysctl

],
{SOCK_DGRA~, &inetdomain, IPPROTO_UDP, PR_ATOMIC I PR_ADDR,
udp_input, 0, udp_ctlinput, ip_ctloutput,
udp_~srreq,
udp_init, 0, 0, 0, udp_sysctl

},
{SOCK_STREAM, &inetdomain, IPPROTO_TCP, PR_CONNREQUIRED I PR_WANTRCVD,
tcp_input, 0, tcp_ctlinput, tcp_ctloutput,
tcp_usrreq,
tcp_init, tcp_fasttimo, tcp_slowtimo, tcp_drain,

},
{SOCK_RAW, &inetdomain, IPPROTO_RAW, PR_ATOMIC
rip_input, rip_output, 0, rip_c~loutput,
rip_usrreq,
0, 0, 0, 0,

},
{SOCK_RAW, &inetdomain, IPPROTO_ICMP, PR_ATOMIC
icmp_input, rip_output, 0, rip_ctloutput,
rip_usrreq,
0, 0, 0, 0, icmp_sysctl

},
{SOCK_RAW, &inetdomain, IPPROTO_IGMP, PR_ATOMIC
igrap_input, rip_output, 0, rip_ctloutput,
rip_usrreq,
igmp_init, igmp_fasttimo, 0, 0,

},
/* raw wildcard */
{SOCK_RAW, &inetdomain, 0, PR_ATOMIC I PR_ADDR,
rip_input, rip_output, 0, rip_ctloutput,
rip_usrreq,
rip_init; 0, 0, 0,

},

PR ADDR,

PR ADDR,

PR ADDR,

78 struct domain inetdomain =
79 {AF_INET, "internet", 0, 0, 0,
80 inetsw, &inetsw[sizeof(inetsw) / sizeof(inetsw[0]
81 rn_inithead, 32, sizeof(struct sockaddr_in)};

] 0,

Figure 7.13 The Internet domain and protosw structures.

in_proto.c

78--81 The domain structure for the Internet protocols is shown at the end of Figure 7.13.
The Internet domain uses AF_INET style addressing, has a text name of "iriternet",
has no initialization or control-message functions, and has its protosw structures in the
inetsw array.

The routing initialization function for the Internet protocols is rn_inithead. The

Section 7.5 IP domain and protosw Structures 193

protosw

pr_type
pr_domain

pr_protocol

pr_flags
pr_input

pr_output

pr_ctlinput
pr_ctloutput

pr_usrreq

pr_init
pr_fasttimo
pr_slowtimo

pr_drain
pr_sysctl

inetsw[O]

0
&inetdomain

o
null

ip_output

null
null

null

ip_init
null
ip_slowtimo

ip_drain
ip_sysctl

inetsw[3 and 6]

SOCK_RAW
&ine tdomain

IPPROTO_RAW or 0

PR_ATOMIC/PR_ADDR
rip_input

rip_output

null
rip_c tl ou tpu t

rip_usrreq

null or rip_init
null
null

null
null

Description

IP provides raw packet services
both protocols are part of the

Internet domain
both IPPROTO_RAW (255) and 0 are

reserved (RFC 1700) and
should never appear in an IP
datagram

socket layer flags, not used by IP
receive unrecoglJzed datagrams

from IP, ICMP, or IGMP
prepare and send datagrams to the

IP and hardware layers
respectively

not used by IP
respond to configuration requests

from a process
respond to protocol requests from a

process
ip_ini t does all initialization
not used by IP
stow timeout is used by IP

reassembly algorithm
release memory if possible
modify systemwide parameters

Figure 7.14 The IP inetsw entries.

The only difference between inetsw [3] and inetsw [6] is in their pr_protocol numbers

and the initialization function rip_init, which is defined only in inetsw [6] so that it is
called only once during initialization.

maximum number of significant bits for an IP address is 32, and the size of an Internet
routing key is the size of a sockaddr_in structure (16 bytes).

domaininit Function

37--42

At system initialization time (Figure 3.23), the kernel calls domaininit to link the
domain and protosw structures, domaininit is shown in Figure 7.15.

The ADDDOMAIN macro declares and links a single domain structure. For example,
ADDDOMAIN (unix) expands to

extern struct domain unixdomain;
unixdomain.dom_next = domains;
domains = &unixdomain;

43--54

The __CONCAT macro is defined in sys/de f s. h and concatenates two symbols. For example,
__CONCAT (unix, domain) produces unixdomain.

domaininit constructs the list of domains by calling ADDDOMAIN for each sup-
ported domain.

194 Domains and Protocols Chapter 7

37 /* simplifies code in domaininit */ uipc_domain.c

38 #define ADDDOMAIN(x) { \
39 extern struct domain __CONCAT(x,domain); \
40 __CONCAT(x,domain.dom_next) : domains; \
41 domains : &__CONCAT(x,domain); \
42 }

43 domaininit()
44 {
45 struct domain *dp;
46 struct protosw *pr;
47 /* The C compiler usually defines unix. We don’t want to get
48 * confused with the unix argument to ADDDOFIAIN
49 */

50 #undef unix
51 ADDDOHAIN(unix);
52 ADDDOMAIN(route) ;
53 ADDDOMAIN(inet);
54 ADDDOHAIN(iso) ;

55 for (dp = domains; dp; dp = dp->dom_next) {
56 if (dp->dom_init)
57 (*dp->dom_init) () ;
58 for (pr : dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++)
59 if (pr->pr_init)
60 (*pr->pr_init) ();
61 }

62 if (max_linkhdr < 16) /* XXX */
63 max_linkhdr = 16;
64 max_hdr : max_linkhdr + max_protohdr;
65 max_datalen : MHLEN - max_hdr;
66 timeout(pffasttimo, (void *) 0, i);
67 timeout(pfslowtimo, (void *) 0, i);
68 }

uipc_domain.c

55--61

62--65

Figure 7.15 domaininit function.

Since the symbol unix is often predefined by the C preprocessor, Net/3 explicitly undefines it
here so ADDDOMATN works correctly.

Figure 7.16 shows the linked domain and protosw structures in a kernel config-
ured to support the Internet, Unix, and OSI protocol families.

The two nested for loops locate every domain and protocol in the kernel and call
the initialization functions dom_init and pr_init if they are defined. For the Internet
protocols, the following functions are called (Figure 7.13): ip_init, udp_init,
tcp_init, igmp_init, and rip_init.

The parameters computed in domaininit control the layout of packets in the
mbufs to avoid extraneous copying of data. max_linkhdr and max_protohdr are set
during protocol initialization, domaininit enforces a lower bound of 16 for
max_linkhdr. The value of 16 leaves room for a 14-byte Ethernet header ending on a
4-byte boundary. Figures 7.17 and 7.18 lists the parameters and typical values.

Section 7.5 IP domain and protosw Structures 195

domains :

isodomain

domain{

isosw[

Figure 7.16

inetdomain :

domain{} <

inetsw [] :
~ I~ -

UDP -
TCP
IP (raw) -
ICMP -
IGMP -
IP (raw) -

rout edomain :

domain { } ~

I[routesw[]~: ~

~I raw~

unixdomain :

domain{ } ~

unixs~str°am
datagram
raw (default)

The domain list and protosw arrays after initialization.

Variable

max_linkhdr
max_protohdr
max_hdr
max_datalen

Value

16
40
56
44

Description

maximum number of bytes added by link layer
maximum number of bytes added by network and transport layers
max_linkhdr + max_protohdr
number of data bytes available in packet header mbuf after accounting for

the lLnk and protocol headers

Figure 7.17 Parameters used to minimize copying of protocol data.

114 max_hdr bytes ~-II
m_hdr and link network and
m~Dkthdr header transport headers data

28 bytes 16 bytes 40 bytes 44 bytes
MHLEN max_linkhdr max_pro t ohdr max_datalen

128 bytes

Figure 7.18 Mbuf and associated maximum header lengths.

max_protohdr is a soft limit that measures the expected protocol header size. In the Internet
domain, the IP and TCP headers are usually 20 bytes in length but both can be up to 60 bytes.
The penalty for exceeding max_protohdr is the time required to push back the data to make
room for the larger than expected protocol header.

66-68 doraaininit initiates pfslowtimo and pffasttimo by calling timeout. The
third argument specifies when the kernel should call the functions, in this case in i clock
tick. Both functions are shown in Figure 7.19.

196 Domains and Protocols Chapter 7

153 void uipc_domain.c
154 pfslowtimo (arg)
155 void *arg;
156 {
157 struct domain *dp;
158 struct protosw *pr;

153--1 76

159
160
161
162
163
164

for (dp : domains; dp; dp : dp->dom next)
for (pr : dp->dom_protosw; pr < dp->dom~rotoswNPROTOSW; pr++)

if (pr->pr_slowtimo)
(*pr->pr_slowtimo) ();

timeout(pfslowtimo, (void *) 0, hz / 2);

165 void
166 pffasttimo(arg)
167 void *arg;
168 {
169 struct domain *dp;
170 struct protosw *pr;

171
172
173
174
175
176

for (dp = domains; dp; dp = dp->dom_next)
for (pr : dp->dom_protosw; pr < dp->dom~rotoswNPROTOSW; pr++)

if (pr->pr_fasttimo)
(*pr->pr_fasttimo) ();

timeout(pffasttimo, (void *) 0, hz / 5);

uipc_domain.c
Figure 7.19 pfslowtimo and pffasttimo functions.

These nearly identical functions use two for loops to call the pr_slowtimo or
pr_fasttimo function for each protocol, if they are defined. The functions schedule
themselves to be called 500 and 200 ms later by calling timeout, which we described
with Figure 3.43.

7.6

69--84

85--107

pffindproto and pffindtype Functions
The pffindproto and pffindtype functions look up a protocol by number (e.g.,
IPPROTO_TCP) or by type (e.g., SOCK_STREAM). As we’ll see in Chapter 15, these func-
tions are called to locate the appropriate protosw entry when a process creates a
socket.

p f f indtype performs a linear search of domains for the specified family and then
searches the protocols within the domain for the first one of the specified type.

pffindproto searches domains exactly as pffindtype does but looks for the
family, type, and protocol specified by the caller. If pffindproto does not find a
(protocol, type) match within the specified protocol family, and type is SOCK_RAW,
and the domain has a default raw protocol (pr_protocol equals 0), then
p f f i ndpro t o selects the default raw protocol instead of failing completely. For exam-
ple, a call such as

Section7.6 pffindproto and pffindtype Functions 197

69 struct protosw *
70 pffindtype(family, type)
71 int family, type;
72 {
73 struct domain *dp;
74 struct protosw *pr;

75 for (dp : domains; dp; dp : dp->dom_next)
76 if (dp->dom_family == family)
77 goto found;
78 return (0);
79 found:
80 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++)
81 if (pr->pr_type && pr->pr_type =: type)
82 return (pr);
83 return (0);
84 }

85
86
87
88
89
90
91

struct protosw *
pffindproto(family, protocol, type)
int family, protocol, type;

struct domain *dp;
struct protosw *pr;
struct protosw *maybe = 0;

92 if (family == 0)
93 return (0);
94 for (dp = domains; dp; dp : dp->dom_next)
95 if (dp->dom_family == family)
96 goto found;
97 return (0);
98 found:
99 for (pr = dp->dom~rotosw; pr < dp->dom_protoswNPROTOSW; pr++)

i00 if ((pr->pr~rotocol == protocol) && (pr->pr_type == type)
i01 return (pr);

if (type == SOCK_RAW && pr->pr_type == SOCK_RAW &&
pr->pr~rotocol == 0 && maybe == (struct protosw *) 0
maybe = pr;

uipc_domain.c

102
103
104
105
106
107

}
return (maybe) ;

Figure 7.20 pffindproto and pffindtype functions.
uipc_domain.c

pffindproto(PF_INET, 27, SOCK_RAW);

returns a pointer to inetsw[6], the default raw IP protocol, since Net/3 does not
include support for protocol 27. With access to raw IP, a process could implement
protocol 27 services on its own using the kernel to manage the sending and receiving of
the IP packets.

Protocol 27 is reserved for the Reliable Datagram Protocol (RFC 1151).

198 Domains and Protocols Chapter 7

Both functions return a pointer to the protosw structure for the selected protocol,
or a null pointer if they don’t find a match.

Example

We’ll see in Section 15.6 that when an application calls

socket(PF_INET, SOCK_STREAM, 0) /* TCP socket */

pffindtype gets called as

pffindtype (PF_INET, SOCK_STREAM ;

Figure 7.12 shows that pffindtype will return a pointer to inetsw[2], since TCP is
the first SOCK_STREA~ protocol in the array. Similarly,

socket(PF_INET, SOCK_DGRAM, 0) ; /* UDP socket */

leads to

pffindtype (PF_INET, SOCK_DGRAM) ;

which returns a pointer to UDP in inetsw [1].

7.7 pfctzinput Function

142--152

The p fct linput function issues a control request to every protocol in every domain.
It is used when an event that may affect every protocol occurs, such as an interface shut-
down or routing table change. ICMP calls pfctlinput when an ICMP redirect mes-
sage arrives (Figure 11.14), since the redirect can affect all the Internet protocols (e.g.,
UDP and TCP).

142 pfctlinput(cmd, sa)
143 int cmd;
144 struct sockaddr *sa;
145 {
146 struct domain *dp;
147 struct protosw *pr;

uipc_domain.c

148 for (dp : domains; dp; dp : dp->dom_next)
149 for (pr : dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++)
150 if (pr->pr_ctlinput)
151 (*pr->pr_ctlinput) (cmd, sa, (caddr_t) 0);
152 }

uipc_domain.c
Figure 7.21 pfctlinput function.

The two nested for loops locate every protocol in every domain, pfctlinput
issues the protocol control command specified by cmd by calling each protocol’s
pr_ctlinput function. For UDP, udp_ctlinput is called and for TCP,
tcp_ctlinput is called.

Section 7.8 IP Initialization 199

7.8 IP Initialization

As shown in Figure 7.13, the Internet domain does not have an initialization function
but the individual Internet protocols do. For now, we look only at ±p_±n±t, the IP ini-
tialization function. In Chapters 23 and 24 we discuss the UDP and TCP initialization
functions. Before we can discuss the code, we need to describe the ±~o_protox array.

Internet Transport Demultiplexing

A network-level protocol like IP must demultiplex incoming datagrams and deliver
them to the appropriate transport-level protocols. To do this, the appropriate ~orotosw
structure must be derived from a protocol number present in the datagram: For the
Internet protocols, this is done by the ±p_protox array.

17

255

ip~rotox [] :

1 4
2 5 --

2 -

]

inetsw[] :
IP

UDP
TCP

IP (raw)
ICMP
IGMP

IP (raw)

Figure 7.22 The ip_protox array maps the protocol number to an entry in the inet sw array.

The index into the ip_protox array is the protocol value from the IP header
(ip_p, Figure 8.8). The entry selected is the index of the protocol in the inetsw array
that processes the datagram. For example, a datagram with a protocol number of 6 is
processed by inetsw[2], the TCP protocol. The kernel constructs ip_protox during
protocol initialization, described in Figure 7.23.

ip_init Function

71--78

79--85

The ip_init function is called by domaininit (Figure 7.15) at system initializa-
tion time.

pffindproto returns a pointer to the raw protocol (inetsw[3], Figure 7.14).
Net/3 panics if the raw protocol cannot be located, since it is a required part of the ker-
nel. If it is missing, the kernel has been misconfigured. IP delivers packets that arrive
for an unknown transport protocol to this protocol where they may be handled by a
process outside the kernel.

The next two loops initialize the ip_protox array. The first loop sets each entry in
the array to ~r, the index of the default protocol (3 from Figure 7.22). The second loop
examines each protocol in inet sw (other than the entries with protocol numbers of 0 or

200 Domains and Protocols Chapter 7

71 void
72 ip_init()
73 {
74 struct protosw *pr;
75 int i;

76
77
78
79
8O
81
82
83
84
85
86
87
88
89
90
91
92

pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
if (pr =: 0)

panic("ip_init");
for (i : 0; i < IPPROTO_MAX; i++)

ip~rotox[i] : pr - inetsw;
for (pr : inetdomain.dom~rotosw;

pr < inetdomain.dom~rotoswNPROTOSW; pr++)
if (pr->pr_domain->dom_family :: PF_INET &&

pr->pr~rotocol && pr->pr_protocol != IPPROTO_RAW)
ip~rotox[pr->pr_protocol] : pr - inetsw;

ipq.next = ipq.prev = &ipq;
ip_id : time.tv_sec & 0xffff;
ipintrq.ifq_maxlen : ipqmaxlen;
i = (if_index + i) * (if_index + i) * sizeof(u_long);
ip_ifmatrix = (u_long *) malloc(i, M_RTABLE, M_WAITOK);
bzero((char *) ip_ifmatrix, i);

Figure 7.23 ip_init function.

ip_input.c

ip_input.c

86--92

IPPROTO_RAW) and sets the matching entry in ip_protox to refer to the appropriate
inetsw entry. Therefore, pr_protocol in each protosw structure must be the proto-
col number expected to appear in the incoming datagram.

ip_init initializes the IP reassembly queue, ipq (Section 10.6), seeds ip_id from
the system clock, and sets the maximum size of the IP input queue (ipintrq) to 50
(ipqmaxlen). ip_id is set from the system clock to provide a random starting point
for datagram identifiers (Section 10.6). Finally, i~_init allocates a two-dimensional
array, i~_i fmat r ix, to count packets routed between the interfaces in the system.

There are many variables within Net/3 that may be modified by a system administrator. To
allow these variables to be changed at run time and without recompiling the kernel the
default value represented by a constant (IFQ_MAXLEN in this case) is assigned to a variable
(ipqmaxlen) at compile time. A system administrator can use a kernel debugger such as adb
to change ipqmaxlen and reboot the kernel with the new value. If Figure 7.23 used
IFQ_IVIAXLEN directly, it would require a recompile of the kernel to change the limit.

Section7.9 sysctl System Call 201

7.9 sysctl System Call

The sysctl system call accesses and modifies Net/3 systemwide parameters. The sys-
tem administrator can modify the parameters through the sysctl(8) program. Each
parameter is identified by a hierarchical list of integers and has an associated type. The
prototype for the system call is:

int sysctl(int *name, u_int namelen, void *old, size_t *oldlenp, void *new,
size_t newlen) ;

name points to an array containing namelen integers. The old value is returned in
the area pointed to by oldp, and the new value is passed in the area pointed to by newp.

Figure 7.24 summarizes the organization of the names related to networking.

CTL_KERIV

CTL HW

CTL_NET

CTL_ USER

PF_INET

PF OSI

0 ~

IPPROTO_IGMP

IPCTL_FOR WARDING IPCTL_DEFTTL

IPCTL_SENDREDIRECTS

Figure 7.24 sysctl names.

In Figure 7.24, the full name for the IP forwarding flag would be

with the four integers stored in an array.

202 Domains and Protocols Chapter 7

net_sysct i Function

Each level of the sys c t 1 naming scheme is handled by a different function. Figure 7.25
shows the functions that handle the Internet parameters.

108 119

120--134

135--141

IPCTL_FORWARDING
IPCTL_SENDREDIRECTS
IPCTL_DEFTTL

Figure 7.25

pr_sysctl

ICMPCTL_MASKREPL

.............. U~PC}I]~HE~KstfN!

sy s c t i functions for Internet parameters.

The top-level names are processed by syset !. The network-level names are processed
by net_sysetl, which dispatches control based on the family and protocol to the
pr_sy s c t 1 function specified in the protocol’s prot o s w entry.

sysctl is implemented in the kernel by the __sysctl function, which we do not discuss in
this text. It contains code to move the sysctl arguments to and from the kernel and a
switch statement to select the appropriate function to process the arguments, in this case
net_sysct i.

Figure 7.26 shows the net_sy s c t 1 function.
The arguments to net_sysctl are the same as those to the sysctl system call

with the addition of p, which points to the current process structure.
The next two integers in the name are taken to be the protocol family and protocol

numbers as specified in the domain and protosw structures. If no family is specified, 0
is returned. If a family is specified, the for loop searches the domain list for a matching
family. ENOPROTOOPT is returned if a match is not found.

Within a matching domain, the second for loop locates the first matching protocol
that has the pr_sysctl function defined. When a match is found, the request is
passed to the pr_sysctl function for the protocol. Notice that name is advanced to
pass the remaining integers down to the next level. If no matching protocol is found,
ENOPROTOOPT is returned.

Figure 7.27 shows the p r_sys c t 1 functions defined for the Internet protocols.

Section 7.9 sysctl System Call 203

108 net_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
109 int *name;
ii0 u_int namelen;
iii void *oldp;
112 size_t *oldlenp;
113 void *newp;
114 size_t newlen;
115 struct proc *p;
116 {
117 struct domain *dp;
118 struct protosw *pr;
119 int family, protocol;

120
121
122
123
124
125
126
127
128

129
130
131
132
133
134
135
136
137
138
139
140
141

uipc_domain.c

* All Sysctl names at this level are nonterminal;
* next two components are protocol family and protocol number
* then at least one additional component.
*/

if (namelen < 3)
return (EISDIR); /* overloaded *!

family : name[0];
protocol = name[l];

if (family == 0)
return (0);

for (dp : domains; dp; dp : dp->dom_next)
if (dp->dom_family == family)

goto found;
return (ENOPROTOOPT);

found:
for (pr : dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++)

if (pr->pr~rotocol :: protocol && pr->pr_sysctl)
return ((*pr->pr_sysctl) (name + 2, namelen - 2,

oldp, oldlenp, newp, newlen)
return (ENOPROTOOPT);

uipc_domain.c
Figure 7.26 net_sysctl function.

pr~rotocol

0
IPPROTO_UDP
IPPROTO_ICMP

inetsw[] pr_sysctl

0 ip_sysctl
1 udp sysctl
4 icmp sysctl

Description

IP
UDP
~CMP

Reference

Section 8.9
Section 23.11
Section 11.14

Figure 7.27 pr_sysctl functions for the Internet protocol family.

In the routing domain, pr_sysctl points to the sysctl_rtable function, which
is described in Chapter 19.

204 Domains and Protocols Chapter 7

7.10 Summary

We started this chapter by describing the domain and protosw structures that describe
and group protocols within the Net/3 kernel. We saw that all the protosw structures
for a domain are allocated in an array at compile time and that inetdomain and the
inetsw array describe the Internet protocols. We took a closer look at the three
inetsw entries that describe the IP protocol: one for the kernel’s use and the other two
for access to IP by a process.

At system initialization time domaininit links the domains into the domains list,
calls the domain and protocol initialization functions, and calls the fast and slow time-
out functions.

The two functions pffindproto and pffindtype search the domain and proto-
col lists by protocol number or type. pfctlinput sends a control command to every
protocol.

Finally we described the IP initialization procedure including transport demulti-
plexing by the ip__protox array.

Exercises

7.1 What call to the pffindproto returns a pointer to inetsw [6] ?

8

IP: Internet Protocol

8.1 Introduction

In this chapter we describe the structure of an IP packet and the basic IP processing
including input, forwarding, and output. We assume that the reader is familiar with the
basic operation of the IP protocol. For more background on IP, see Chapters 3, 9 and 12
of Volume 1. RFC 791 [Postel 1981a] is the official specification for IP. RFC 1122 [Braden
1989a] contains clarifications of RFC 791.

In Chapter 9 we d_iscuss option processing and in Chapter 10 we discuss fragmenta-
tion and reassembly. Figure 8.1 illustrates the general organization of the IP layer.

We saw in Chapter 4 how network interfaces place incoming IP packets on the IP
input queue, J_l~±ntz’c~, and how they schedule a software interrupt. Since hardware
interrupts have a higher priority than software interrupts, several packets may be
placed on the queue before a software interrupt occurs. During software interrupt pro-
cessing, the J_p±ntz- function removes and processes packets from ±l~±ntrc~ until the
queue is empty. At the final destination, IP reassembles packets into datagrams and
passes the datagrams directly to the appropriate transport-level protocol by a function
call. If the packets haven’t reached their final destination, IP passes them to
±~_foz-warc] if the host is configured to act as a router. The transport protocols and
ip_forward pass outgoing packets to ip_output, which completes the IP header,
selects an output interface, and fragments the outgoing packet if necessary. The result-
ing packets are passed to the appropriate network interface output function.

When an error occurs, IP discards the packet and under certain conditions may
send an error message to the source of the original packet. These messages are part of
ICMP (Chapter 11). Net/3 sends ICMP error messages by calling iemp_error, which
accepts an mbuf containing the erroneous packet, the type of error found, and an option

205

206 IP: Internet Protocol Chapter 8

Transport] t UDP, TCP,

Protocols ICMP, IGMP

Network
Interfaces

network

Figure 8.1 IP layer processing.

l iP

code that provides additional information depending on the type of error. In this chap-
ter, we describe why and when IP sends ICMP messages, but we postpone a detailed
discussion of ICMP itself until Chapter 11.

8.2 Code Introduction

Two headers and three C files are discussed in this chapter.

File Description

net / route, h route entries
ne tine t / ip. h IP header structure

netinet/ip_input, c IP input processing
netinet/ip_output, c IP output processing
netinet/in_cksum, c Internet checksum algorithm

Figure 8.2 Files discussed in this chapter.

Global Variables

Several global variables appear in the IP processing code. They are described in Fig-
ure 8.3.

Section 8.2 Code Introduction 207

Variable

in_ifaddr
ip_defttl
ip_id
ip~rotox
ipforwarding
ipforward_rt
ipintrq
ipqmaxlen
ipsendredirects
ipstat

Datatype

struct in_ifaddr *
int
int
int[]
int
struct route
struct ifqueue
int
int
struct ipstat

Description

IP address list
default TTL for IP packets
last ID assigned to an outgoing IP packet
demultiplexing array for IP packets
should the system forward IP packets?
cache of most recent forwarded route
IP input queue
maximum length of IP input queue
should the system send ICMP redirects?
IP statistics

Figure 8.3 Global variables introduced in this chapter.

Statistics

All the statistics collected by IP are found in the ±pstat structure described by Fig-
ure 8.4. Figure 8.4 shows some sample output of these statistics, from the n÷tstat -s
command. These statistics were collected after the host had been up for 30 days.

ipstat member Description

ips_badhlen
ips_badlen
ips_badoptions
ips_badsum
ips_badvers
ips_cantforward
ips_delivered
ips_forward
ips_fragdropped
ips_fragments
ips_fragtimeout
ips_noproto
ips_reassembled
ips_tooshort
ips_toosmall
ips_total

ips_cantfrag
ips_fragmented
ips_localout
ips_noroute
ips_odropped
ips_ofragments
ips_rawout
ips_redirectsent

Used by
SNMP

#packets with invalid IP header length ¯

#packets with inconsistent IP header and IP data lengths ¯

#packets discovered with errors in option processing ¯
#packets with bad checksum ¯
#-packets with an IP version other than 4 *
#packets received for unreachable destination ¯
#datagrams delivered to upper level ¯
#packets forwarded ¯
#fragments dropped (duplicates or out of space) ¯
#fragments received ¯
#fragments timed out ¯
#packets with an unknown or unsupported protocol ¯
#datagrams reassembled ¯
#packets with invalid data length ¯
#packets too small to contain IP packet ¯
total #packets received ¯

#packets discarded because of the don’t fragment bit ¯
#datagrams successfully fragmented ¯
#datagrams generated at system (i.e., not forwarded) ¯
#packets discarded--no route to destination ¯
#packets dropped because of resource shortages ¯
#fragments created for output ¯
total #raw ip packets generated
#redirect messages sent

Figure 8.4 Statistics collected in this chapter.

208 IP: Internet Protocol Chapter 8

netstat -s ou~ut

27,881,978 total packets received
6 bad header checksums
9 with size smaller than minimum
14 with data size < data length
0 with header length < data size
0 with data length < header length
0 with bad options
0 with incorrect version number
72,786 fragments received
0 fragments dropped (dup or out of space)
349 fragments dropped after timeout
16,557 packets reassembled ok
27,390,665 packets for this host
330,882 packets for unknown/unsupported protocol

97,939 packets forwarded
6,228 packets not forwardable
0 redirects sent

29,447,726 packets sent from this host
769 packets sent with fabricated ip header
0 output packets dropped due to no bufs, etc.
0 output packets discarded due to no route
260,484 output datagrams fragmented
796,084 fragments created
0 datagrams that can’t be fragmented

ipstat members

ips_total
ips_badsum
ips_tooshort
ips_toosmall
ips_badhlen
ips_badlen
ips_badoptions
ips_badvers
ips_fragments
ips_fragdropped
ips_fragtimeout
ips_reassembled
ips_delivered
ips_noproto

ips_forward
ips_cantforward
ips_redirectsent

ips_localout
ips_rawout
ips_odropped
ips_noroute
ips_fragmented
ips_ofragments
ips_cantfrag

Figure 8.5 Sample IP statistics.

The value for ips_noproto is high because it can count ICMP host unreachable messages
when there is no process ready to receive the messages. See Section 32.5 for more details,

Section 8.2 Code Introduction 209

SNMP Variables

Figure 8.6 shows the relationship between the SNMP variables in the IP group and the
statistics collected by Net/3.

SNMP variable ±psta¢ member

ipDefaultTTL
ipForwarding
ipReasmTimeout

ipInReceives

ipInHdrErrors

ipInAddrErrors

ipForwDatagrams
ipReasmReqds
ipReasmFails

ipReasm0Ks
ipInDiscards

iplnUnknownProtos

ipInDelivers

ipOutRequests
ipFragOKs
ipFragFails

ipFragCreates
ipOutDiscards
ipOutNoRoutes

ip_defttl
ipforwarding
IPFRAGTTL

ips_total

ips_badsum +
ips_tooshort +
ips_toosmall +
ips_badhlen +
ips_badlen +
ips_badoptions +
ips_badvers

ips_cantforward

ips_forward
ips_fragments
ips_fragdropped +

ips_fragtimeout
ips_reassembled
(not implemented)

ips_noproto

ips_delivered

ips_localout
ips_fragmented
ips_cantfrag

ips_ofragments
ips_odropped
ips_noroute

Description

default TTL for datagrams (64 "hops")
is system acting as a router?
reassembly timeout for fragments (30 seconds)
total #IP packets received
#packets with errors in IP header

#IP packets discarded because of misdelivery
(J_p_output failure also)

#IP packets forwarded
#fragments received
#fragments dropped

#datagrams successfully reassembled
#datagrams discarded because of resource

limitations
#datagrams with an unknown or unsupported

protocol
#datagrams delivered to transport layer
#datagrams generated by transport layers
#datagrams successfully fragmented
#IP packets discarded because of don’t fragment

bit
#fragments created for output
#IP packets dropped because of resource shortages
#IP packets discarded because of no route

Figure 8.6 Simple SNMP variables in IP group.

210 IP: Internet Protocol Chapter 8

8.3 IP Packets

47--67

To be accurate while discussing Internet protocol processing, we must define a few
terms. Figure 8.7 illustrates the terms that describe data as it passes through the various
Internet layers.

fragment 1

IUDPIapplicati°n

[]dataIp

packet

frame

message

~ UDP application data

~ datagram

application
data

fragment 2

application
data

IP application
data

fragment 3

l~link IP application
data

Figure 8.7 Frames, packets, fragments, datagrams, and messages.

We call the data passed to IP by a transport protocol a message. A message typically
contains a transport header and application data. UDP is the transport protocol illus-
trated in Figure 8.7. IP prepends its own header to the message to form a datagram. If
the datagram is too large for transmission on the selected network, IP splits the data-
gram into several fragments, each of which contains its own IP header and a portion of
the original datagram. Figure 8.7 shows a datagram split into three fragments.

An IP fragment or an IP datagram small enough to not require fragmentation are
called packets when presented to the data-link layer for transmission. The data-link
layer prepends its own header and transmits the resulting frame.

IP concerns itself only with the IP header and does not examine or modify the mes-
sage itself (other than to perform fragmentation). Figure 8.8 shows the structure of the
IP header.

Figure 8.8 includes the member names of the ±p structure (shown in Figure 8.9)
through which Net/3 accesses the IP header.

Since the physical order of bit fields in memory is machine and compiler depen-
dent, the #±fs ensure that the compiler lays out the structure members in the order
specified by the IP standard. In this way, when Net/3 overlays an ±p structure on an IP
packet in memory, the structure members access the correct bits in the packet.

Section 8.3 IP Packets 211

version header length type of service
ip_v ip_hl ip_tos

identification
±p_±d

time to live | protocol
ip_ttl

i
ip~

15 16
total length
ip_len

flags and fragment offset
ip_of f

header checksum
ip_cksum

32-bit source IP address
ip=src

32-bit destination IP address
ip_dst

options (if any)

data

Figure 8.8 IP datagram, including the ±p structure names.

31

20 bytes

* Structure of an internet header, naked of options.

* We declare ip_len and ip_off to be short, rather than u_short
* pragmatically since otherwise unsigned comparisons can result
* against negative integers quite easily, and fail in subtle ways.

40
41
42
43
44
45
46 */
47 struct ip {
48 #if BYTE_0RDER == LITTLE_ENDIAN
49 u_char ip_hl:4,
50 ip_v:4;
51 #endif
52 #if BYTE_ORDER =: BIG_ENDIAN
53 u_char ip_v:4, /*
54 ip_hl:4; /*
55 #endif
56 u_char ip_tos; /*
57 short ip_len; /*
58 u_short ip_id; /*
59 short ip_off; /*
60 #define IP_DF 0x4000 /*
61 #define IP_MF 0x2000 /*
62 #define IP_OFFMASK 0xlfff /*
63 u_char ip_ttl; /*
64 u_char ip_p; /*
65 u_short ip_sum; /*
66 struct in_addr ip_src, ip_dst;
67 };

/* header length */
/* version */

version *!
header length

type of service */
total length */
identification *!
fragment offset field *!
dont fragment flag */
more fragments flag */
mask for fragmenting bits */
time to live */
protocol */
checksum */

/* source and dest address */

Figure 8.9 ip structure.

ip.h

ip.h

212 IP: Internet Protocol Chapter 8

The IP header contains the format of the IP packet and its contents along with
addressing, routing, and fragmentation information.

The format of an IP packet is specified by ±p_v, the version, which is always 4;
ip_hl, the header length measured in 4-byte units; ip_len, the packet length mea-
sured in bytes; ip_p, the transport protocol that created the data within the packet; and
ip_sum, the checksum that detects changes to the header while in transit.

A standard IP header is 20 bytes long, so ip_hl must be greater than or equal to 5.
A value greater than 5 indicates that IP options appear just after the standard header.
The maximum value of ii~_hl is 15 (24 - 1), which allows for up to 40 bytes of options
(20 + 40 = 60). The maximum length of an IP datagram is 65535 (216- 1) bytes since
ip_len is a 16-bit field. Figure 8.10 illustrates this organization.

I~ (ip_hl X 4) bytes "~I
standard header options

(20 bytes)] (40 bytes max) ~ ~

Figure 8.10

data

ip_len bytes
(65535 bytes max)

Organization of an IP packet with options.

Because ip_hl is measured in 4-byte units, IP options must always be padded to a
4-byte boundary.

8.4 Input Processing: ipintr Function

In Chapters 3, 4, and 5 we described how our example network interfaces queue incom-
ing datagrams for protocol processing:

1. The Ethernet interface demultiplexes incoming frames with the type field found
in the Ethernet header (Section 4.3).

2. The SLIP interface handles only IP packets, so demultiplexing is unnecessary
(Section 5.3).

3. The loopback interface combines output and input processing in the function
looutput and demultiplexes datagrams with the sa_family member of the
destination address (Section 5.4).

In each case, after the interface queues the packet on ipintrq, it schedules a software
interrupt through schednetisr. When the software interrupt occurs, the kernel calls
ipintr if IP processing has been scheduled by schednetisr. Before the call to
ipintr, the CPU priority is changed to splnet.

ipintr Overview

ipintr is a large function that we discuss in four parts: (1) verification of incoming
packets, (2) option processing and forwarding, (3) packet reassembly, and (4)

Section8.4 Input Processing: ipintr Function 213

demultiplexing. Packet reassembly occurs in ipint r, but it is complex enough that we
discuss it separately in Chapter 10. Figure 8.11 shows the overall organization of
ipintr.

i00 void
i01 ipintr ()
102 {
103 struct ip *ip;
104 struct mbuf *m;
105 struct ipq *fp;
106 struct in_ifaddr *ia;
107 int hleN, s;

ip_input.c

108 next:
109 /*
ii0 * Get next datagram off input queue and get IP header
iii * in first mbuf.
112 */
113 s = splimp();
114 IF_DEQUEUE(&ipintrq, m);
115 splx(s);
116 if (m =: 0)
117 return;

100--117

332--336

/* input packet processing */
/* Figures 8.12, 8.13, 8.15, i0.ii, and 12.40 */

332 goto next;
333 bad:
334 m_freem(m);
335 goto next;
336 }

Figure 8.11 ipintr function.

ip_input.c

The label next marks the start of the main packet processing loop. ipintr
removes packets from ipintrq and processes them until the queue is empty. If control
falls through to the end of the function, the goto passes control back to the top of the
function at next. ipintr blocks incoming packets with splimp SO that the network
interrupt routines (such as slinput and ether_input) don’t run while it accesses the
queue.

The label bad marks the code that silently discards packets by freeing the associated
mbuf and returning to the top of the processing loop at next. Throughout ipintr,
errors are handled by jumping to bad.

Verification

We start with Figure 8.12: dequeueing packets from ipintrq and verifying their con-
tents. Damaged or erroneous packets are silently discarded.

214 IP: Internet Protocol Chapter 8

118 /.
ip_input.c

119 * If no IP addresses have been set yet but the interfaces
120 * are receiving, can’t do anything with incoming packets yet.
121 */
122 if (in_ifaddr := NULL)
123 goto bad;
124 ipstat.ips_total++;
125 if (m->mlen < sizeof(struct ip) &&
126 (m = m_pullup(m, sizeof(struct ip))) :: 0) {
127 ipstatoipS_toosmall++;
128 goto next;
129 }
130 ip = mtod(m, struct ip *);
131 if (ip->ip_v [= IPVERSION) {
132 ipstat.ips_badvers++;
133 goto bad;
134 }
135 hlen = ip->ip_hl << 2;
136 if (hlen < sizeof(struct ip)) { /* minimum header length */
137 ipstat.ips_badhlen++;
138 goto bad;
139 }
140 if (hlen > m->m_len) {
141 if ((m : m_pullup(m, hlen)) :: 0) {
142 ipstat.ips_badhlen++;
143 goto next;
144 }
145 ip : mtod(m, struct ip *);
146 }
147 if (ip->ip_sum = in_cksum(m, hlen)) {
148 ipstat.ips_badsum++;
149 goto bad;
150 }
151 /*
152 * Convert fields to host representation.
153 */
154 NTOHS(ip->ip_len);
155 if (ip->ip_len < hlen)
156 ipstat.ips_badlen++;
157 goto bad;
158 }
159 NTOHS(ip->ip_id);
160 NTOHS(ip->ip_off);

161 /*
162 * Check that the amount of data in the buffers
163 * is as at least much as the IP header would have us expect.
164 * Trim mbufs if longer than we expect.
165 * Drop packet if shorter than we expect.
166 */
167 if (m->m_pkthdr.len < ip->ip_len) {
168 ipstat.ips_tooshort++;
169 goto bad;
170

Section 8.4 Input Processing: ipintr Function 215

171 if (m->m~okthdr.len > ip->ip_len) {
172 if (m->m_len == m->m_pkthdr.len) {
173 m->m_len = ip->ip_len;
174 m->m~okthdr.len = ip->ip_len;
175 } else
176 m_adj(m, ip->ip_len - m->m_pkthdr.len);
177 }

Figure 8.12 ipintr function.

ip_input.c

118-134

135--146

IP version
If the in_i faddr list (Section 6.5) is empty, no IP addresses have been assigned to

the network interfaces, and ipintr must discard all IP packets; without addresses,
ipintr can’t determine whether the packet is addressed to the system. Normally this
is a transient condition occurring during system initialization when the interfaces are
operating but have not yet been configured. We described address assignment in Sec-
tion 6.6.

Before ipintr accesses any IP header fields, it must verify that ip_v is 4
(IPVERSION). RFC 1122 requires an implementation to silently discard packets with
unrecognized version numbers.

Net/2 didn’t check ip_v. Most IP implementations in use today, including Net/2, were cre-
ated after IP version 4 was standardized and have never needed to distinguish between pack-
ets from different IP versions. Since revisions to IP are now in progress, implementations in
the near future will have to check ip_v.

IEN 119 [Forgie 1979] and RFC 1190 [Topolcic 1990] describe experimental protocols using IP
versions 5 and 6. Version 6 has also been selected as the version for the next revision to the
official IP standard (IPv6). Versions 0 and 15 are reserved, and the remaining versions are
unassigned.

In C, the easiest way to process data located in an untyped area of memory is to
overlay a structure on the area of memory and process the structure members instead of
the raw bytes. As described in Chapter 2, an mbuf chain stores a logical sequence of
bytes, such as an IP packet, into many physical mbufs connected to each other on a
linked list. Before the overlay technique can be applied to the IP packet headers, the
header must reside in a contiguous area of memory (i.e., it isn’t split between two
mbufs).

The following steps ensure that the IP header (including options) is in a contiguous
area of memory:

¯ If the data within the first mbuf is smaller than a standard IP header (20 bytes),
ra_pul lup relocates the standard header into a contiguous area of memory.

It is improbable that the link layer would split even the largest (60 bytes) IP header into
two mbufs necessitating the use of m_pul lup as described.

ip_hl is multiplied by 4 to get the header length in bytes, which is saved in
hlen.

216 IP: Internet Protocol Chapter 8

¯ If hlen, the length of the IP packet header in bytes, is less than the length of a
standard header (20 bytes), it is invalid and the packet is discarded.

¯ If the entire header is still not in the first mbuf (i.e., the packet contains IP
options), ra_pu 1 l up finishes the job.

147--150

Again, this should not be necessary.

Checksum processing is an important part of all the Internet protocols. Each proto-
col uses the same algorithm (implemented by the function ±n_cksum) but on different
parts of the packet. For IP, the checksum protects only the IP header (and options if
present). For transport protocols, such as UDP or TCP, the checksum covers the data
portion of the packet and the transport header.
IP checksum

ipintr stores the checksum computed by in_cksum in the ip_sum field of the
header. An undamaged header should have a checksum of 0.

151 -i 6 0

161--177

As we’ll see in Section 8.7, ip_sum must be cleared before the checksum on an outgoing
packet is computed. By storing the result from in_cksum in ip_sum, the packet is prepared
for forwarding (although the TTL has not been decremented yet). The ip_output function
does not depend on this behavior; it recomputes the checksum for the forwarded packet.

If the result is nonzero the packet is silently discarded. We discuss in_cksura in
more detail in Section 8.7.

Byte ordering
The Internet standards are careful to specify the byte ordering of multibyte integer

values in protocol headers. NTOI-tS converts all the 16-bit values in the IP header from
from network byte order to host byte order: the packet length (ip_len), the datagram
identifier (ip_id), and the fragment offset (ip_of f). NTOHS is a null macro if the two
formats are the same. Conversion to host byte order here obviates the need to perform
a conversion every time Net/3 examines the fields.
Packet length

If the logical size of the packet (±p_len) is greater than the amount of data stored
in the mbuf (m_pkthdr. len), some bytes are missing and the packet is dropped. If the
mbuf is larger than the packet, the extra bytes are trimmed.

A common cause for lost bytes is data arriving on a serial device with little or no buffering,
such as on many personal computers. The incoming bytes are discarded by the device and IP
discards the resulting packet.

These extra bytes may arise, for example, on an Ethernet device when an IP packet is smaller
than the minimum size required by Ethernet. The frame is transmitted with extra bytes that
are discarded here. This is one reason why the length of the IP packet is stored in the header;
IP allows the link layer to pad packets.

At this point, the complete IP header is available, the logical size and the physical
size of the packet are the same, and the checksum indicates that the header arrived
undamaged.

Section8.4 Input Processing: ipintr Function 217

To Forward or Not To Forward?

The next section of ipintr, shown in Figure 8.13, calls ip_dooptions (Chapter 9) to
process IP options and then determines whether or not the packet has reached its final
destination. If it hasn’t reached its final destination, Net/3 may attempt to forward the
packet (if the system is configured as a router). If it has reached its final destination, it is
passed to the appropriate transport-level protocol.

178
179
180
181
182
183
184
185
186

* Process options and, if not destined for us,
* ship it on. ip_dooptions returns 1 when an
* error was detected (causing an icmp message
* to be sent and the original packet to be freed).

ip_r~hops = 0; /* for source routed packets */
if (hlen > sizeof(struct ip) && ip_dooptions(m))

goto next;

ip_input.c

187 /*
188 * Check our list of addresses, to see if the packet is for us.
189 */
190 for (ia - in_ifaddr; ia; ia - ia->ia_next)
191 #define satosin(sa) ((struct sockaddr_in *) (sa)

192
193

194
195
196
197

198
199
2O0
201
202
203
204
205
206
207
2O8
209
210
211
212
213

if (IA_SIN(ia)->sin_addr.s_addr :: ip->lp_dst.s_addr)
goto ours;

/* Only examine broadcast addresses for the receiving
if (ia->ia_ifp == m->m_pkthdr.rcvif &&

(ia->ia_ifp->if_flags & IFF_BROADCAST)) {
u_long t;

interface */

if (satosin(&ia >ia_broadaddr)->sin_addr.s_addr --
ip->ip_dst.s_addr)
goto ours;

if (ip->ip_dst.s_addr =- ia >ia_netbroadcast.s_addr)
goto ours;

/*
* Look for all-0’s host part (old broadcast addr),
* either for subnet or net.
*/

t = ntohl(ip->ip_dst.s_addr);
if (t =- ia->ia_subnet)

goto ours;
if (t == ia->ia_net)

goto ours;

/* multicast code (Figure 12.39) */

218 IP: Internet Protocol Chapter 8

258 if (ip->ip_dst.s_addr == (u_long) INADDR_BROADCAST)
259 goto ours;
260 if (ip->ip_dst.s_addr =: INADDR_ANY)
261 goto ours;

262 /*
263 * Not for us; forward if possible and desirable.
264 */
265 if (ipforwarding == 0) {
266 ipstat.ips_cantforward++;
267 m_freem(m);
268 } else
269 ip_forward(m, 0);
270 goto next;

271 ours:

Figure 8.13 ipintr continued.

ip_input.c

178--186

187--261

Option processing
The source route from the previous packet is discarded by clearing ip_nhops (Sec-

tion 9.6). If the packet header is larger than a default header, it must include options
that are processed by ip_dooptions. If ip_dooptions returns 0, ipintr should
continue processing the packet; otherwise ip_dooptions has completed processing of
the packet by forwarding or discarding it, and ipintr can process the next packet on
the input queue. We postpone further discussion of option processing until Chapter 9.

After option processing, ipintr decides whether the packet has reached its final
destination by comparing ip_dst in the IP header with the IP addresses configured for
all the local interfaces, ipintr must consider several broadcast addresses, one or more
unicast addresses, and any multicast addresses that are associated with the interface.

Final destination?

ipintr starts by traversing in_i faddr (Figure 6.5), the list of configured Internet
addresses, to see if there is a match with the destination address of the packet. A series
of comparisons are made for each in_ifaddr structure found in the list. There are
four general cases to consider:

¯ an exact match with one of the interface addresses (first row of Figure 8.14),
¯ a match with the one of the broadcast addresses associated with the receiving

interface (middle four rows of Figure 8.14),

a match with one of the multicast groups associated with the receiving interface
(Figure 12.39), or

a match with one of the two limited broadcast addresses (last row of Fig-
ure 8.14).

Figure 8.14 illustrates the addresses that would be tested for a packet arriving on
the Ethernet interface of the host sun in our sample network, excluding multicast
addresses, which we discuss in Chapter 12.

Section8.4 Input Processing: ipintr Function 219

LinesVariable Ethernet SLIP (Figure 8.13)

ia_addr 192-193

ia_broadaddr

ia_netbroadcast

ia_subnet

ia_net

INADDR_BROADCAST

INADDR_ANY

140.252.13.33 140.252.1.29

140.252.13.224

140.252.255.255

140.252.13.32

140.252.0.0

255.255.255.255

0.0.0.0

Loopback

127.0.0.1

198-200

201-202

207-209

210-211

258-259

260-261

Figure 8.14 Comparisons to determine whether or not a packet has reached its final destination.

262-271

The tests with ia_subnet, ia_net, and INADDR_ANY are not required as they represent
obsolete broadcast addresses used by 4.2BSD. Unfortunately, many TCP/IP implementations
have been derived from 4.2BSD, so it may be important to recognize these old broadcast
addresses on some networks.

Forwardin9
If ip_dst does not match any of the addresses, the packet has not reached its final

destination. If ipforwarding is not set, the packet is discarded. Otherwise,
ip_forward attempts to route the packet toward its final destination.

A host may discard packets that arrive on an interface other than the one specified by the des-
tination address of the packet. In this case, Net/3 would not search the entire in_ifaddr list;
only addresses assigned to the receiving interface would be considered. RFC 1122 calls this a
strong end system model.

For a multihomed host, it is uncommon for a packet to arrive at an interface that does not cor-
respond to the packet’s destination address, unless specific host routes have been configured.
The host routes force neighboring routers to consider the multihomed host as the next-hop
router for the packets. The weak end system model requires that the host accept these packets.
An implementor is free to choose either model. Net/3 implements the weak end system
model.

Reassembly and Demultiplexing

Finally, we look at the last section of ipintr (Figure 8.15) where reassembly and
demultiplexing occur. We have omitted the reassembly code and postpone its discus-
sion until Chapter 10. The omitted code sets the pointer ip to null if it could not

220 IP: Internet Protocol Chapter 8

reassemble a complete datagram. Otherwise, ±p points to a complete datagram that has
reached its final destination.

ip_input.c

325
326
327
328
329
330
331
332

* If control reaches here, ip points to a complete datagram.
* Otherwise, the reassembly code jumps back to next (Figure 8.11)
* Switch out to protocol’s input routine.
*/

ipstat.ips_delivered++;
(*inetsw[ip_protox[ip->ip_p]].pr_input) (m, hlen);
goto next;

Figure 8.15 ipintr continued.

ip_input.c

325--332

Transport demultiplexing
The protocol specified in the datagram is mapped by ip_p with the ip_protox

array (Figure 7.22) to an index into the inetsw array, ipintr calls the mr_input
function from the selected protosw structure to process the transport message con-
tained within the datagram. When mr_input returns, ipintr proceeds with the next
packet on ipintrq.

It is important to notice that transport-level processing for each packet occurs
within the processing loop of ipintr. There is no queueing of incoming packets
between IP and the transport protocols, unlike the queueing in SVR4 streams imple-
mentations of TCP/IP.

8.5 Forwarding: ip_£oz-warc Function

A packet arriving at a system other than its final destination needs to be forwarded.
ipintr calls the function ip_forward, which implements the forwarding algorithm,
only when ipforwarding is nonzero (Section 6.1) or when the packet includes a
source route (Section 9.6). When the packet includes a source route, ip_dooptions
calls ip_forward with the second argument, srcrt, set to 1.

ip_forward interfaces with the routing tables through a route structure shown in
Figure 8.16

46 struct route {
47 struct rtentry *ro_rt;
48 struct sockaddr ro_dst;
49 };

Figure 8.16

route.h

/* pointer to struct with information */
/* destinatio~ of this route */

route.h

route structure.

Section 8.5 Forwarding: ip_forward Function 221

46--49

867--871

879-884

There are only two members in a route structure: ro_rt, a pointer to an rtentry
structure; and ro_dst, a sockaddr structure, which specifies the destination associ-
ated with the route entry pointed to by ro_rt. The destination is the key used to find
route information in the kernel’s routing tables. Chapter 18 has a detailed description
of the rtentry structure and the routing tables.

We show ip_forward in two parts. The first part makes sure the system is permit-
ted to forward the packet, updates the IP header, and selects a route for the packet. The
second part handles ICMP redirect messages and passes the packet to ip_output for
transmission.

Is packet eligible for forwarding?

The first argument to ip_forward is a pointer to an mbuf chain containing the
packet to be forwarded. If the second argument, srert, is nonzero, the packet is being
forwarded because of a source route option (Section 9.6).

The i f statement identifies and discards the following packets:

link-level broadcasts

Any network interface driver that supports broadcasts must set the M_BCAST
flag for a packet received as a broadcast, ether_input (Figure 4.13) sets
M_BCAST if the packet was addressed to the Ethernet broadcast address. Link-
level broadcast packets are never forwarded.

Packets addressed to a unicast IP addresses but sent as a link-level broadcast are prohib-
ited by RFC 1122 and are discarded here.

¯ loopback packets

in_canforward returns 0 for packets addressed to the loopback network.
These packets may have been passed to ip_forward by ipintr because the
loopback interface was not configured correctly.

¯ network 0 and class E addresses

in_canforward returns 0 for these packets. These destination addresses are
invalid and packets addressed to them should not be circulating in the network
since no host will accept them.

class D addresses

Packets addressed to a class D address should be processed by the multicast for-
warding function, ip_mforward, not by ip_forward, in_canforward

rejects class D (multicast) addresses.

RFC 791 specifies that every system that processes a packet must decrement the
time-to-live (TTL) field by at least 1 even though TTL is measured in seconds. Because
of this requirement, TTL is usually considered a bound on the number of hops an IP
packet may traverse before being discarded. Technically, a router that held a packet for
more than i second could decrement ilo_ttl by more than 1.

222 IP: Internet Protocol Chapter 8

867 void ip_input.c

868 ip_forward(m, srert)
869 struct mbuf *m;
870 int srcrt;
871 {
872 struct ip *ip = mtod(m, struct ip *);
873 struct sockaddr_in *sin;
874 struct rtentry *rt;
875 int error, type = 0, code;
876 struct mbuf *mcopy;
877 n_long dest;
878 struct ifnet *destifp;

879
880
881
882
883
884
885
886
887
888
889
890

891
892
893
894
895
896
897
898
899
900

901
902
903
904
905
906
907
9O8
909
910
911
912

913
914

dest : 0;
if (m->m_flags & M_BCAST II in_canforward(ip->ip_dst) =: 0) {

ipstat.ips_cantforward++;
m_freem(m);
return;

}
HTONS(ip->ip_id);
if (ip->ip_ttl <= IPTTLDEC) {

icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
return;

}
ip->ip_ttl -= IPTTLDEC;

sin = (struct sockaddr_in *) &ipforward_rt.ro_dst;
if ((rt = ipforward_rt.ro_rt) == 0 I I

ip->ip_dst.s_addr != sin->sin_addr.s_addr) {
if (ipforward_rt.ro_rt) {

RTFREE(ipforward_rt.ro_rt);
ipforward_rt.ro_rt = 0;

}
sin->sin_family : AF_INET;
sin->sin_len = sizeof(*sin);
sin->sin_addr : ip->ip_dst;

rtalloc(&ipforward_rt);
if (ipforward_rt.ro_rt == 0) {

icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
return;

}
rt = ipforward_rt.ro_rt;

}
/*

* Save at most 64 bytes of the packet in case
* we need to generate an ICMP message to the src.
*/

mcopy = m_copy(m, 0, imin((int) ip->ip_len, 64));

ip_ifmatrix[rt->rt_ifp->if_index +
if_index * m->m_pkthdr.rcvif->if_index]++;

Figure 8.17 ip_forward function: route selection.

ip_input.c

Section 8.5 Forwarding: ip_forward Function 223

885-890

891-907

908--914

The question arises: How long is the longest path in the Internet? This metric is called the
diameter of a network. There is no way to discover the diameter other than through empirical
methods. A 37-hop path was posted in [Olivier 1994].

Decrement TTL

The packet identifier is converted back to network byte order since it isn’t needed
for forwarding and it should be in the correct order if ito_forward sends an ICMP
error message, which includes the invalid IP header.

Net/3 neglects to convert ip_len, which ipintr converted to host byte order The authors
noted that on big endian machines this does not cause a problem since the bytes are never
swapped. On little endian machines, such as a 386, this bug allows the byte-swapped value to
be returned in the IP header within the ICMP error This bug was observed in ICMP packets
returned from SVR4 (probably Net/1 code) running on a 386 and from AIX 3.2 (4.3BSD Reno
code).

If ip_ttl has reached 1 (IPTTLDEC), an ICMP time exceeded message is returned
to the sender and the packet is discarded. Otherwise, ito_forward decrements
ip_ttl by IPTTLDEC.

A system should never receive an IP datagram with a TTL of 0, but Net/3 generates
the correct ICMP error if this happens since ip_ttl is examined after the packet is con-
sidered for local delivery and before it is forwarded.
Locate next hop

The IP forwarding algorithm caches the most recent route, in the global route
structure ipforward_rt, and applies it to the current packet if possible. Research has
shown that consecutive packets tend to have the same destination address ([Jain and
Routhier 1986] and [Mogul 1991]), so this one-behind cache minimizes the number of
routing lookups. If the cache (ipforward_rt) is empty or the current packet is to a
different destination than the route entry in ipforward_rt, the previous route is dis-
carded, ro_dst is initialized to the new destination, and rtalloc finds a route to the
current packet’s destination. If no route can be found for the destination, an ICMP host
unreachable error is returned and the packed discarded.

Since ip_outlout discards the packet when an error occurs, re_copy makes a copy
of the first 64 bytes in case ip_forward sends an ICMP error message, ip_forward
does not abort if the call to m_copy fails. In this case, the error message is not sent.
ip_i fmatrix records the number of packets routed between interfaces. The counter
with the indexes of the receiving and sending interfaces is incremented.

Redirect Messages

A first-hop router returns an ICMP redirect message to the source host when the host
incorrectly selects the router as the packet’s first-hop destination. The IP networking
model assumes that hosts are relatively ignorant of the overall internet topology and
assigns the responsibility of maintaining correct routing tables to touters. A redirect
message from a router informs a host that it has selected an incorrect route for a packet.
We use Figure 8.18 to illustrate redirect messages.

224 IP: Internet Protocol Chapter 8

915--929

redirect

\

default network

\\ ~ 11

destination network

Figure 8.18 Router R1 is redirecting host HS to use router R2 to reach HD.

Generally, an administrator configures a host to send packets for remote networks
to a default router. In Figure 8.18, host HS has R1 configured as its default router.
When it first attempts to send a packet to HD it sends the packet to R1, not knowing
that R2 is the appropriate choice. R1 recognizes the mistake, forwards the packet to R2,
and sends a redirect message back to HS. After receiving the redirect, HS updates its
routing tables so that the next packet to HD is sent directly to R2.

RFC 1122 recommends that only routers send redirect messages and that hosts must
update their routing tables when receiving ICMP redirect messages (Section 11.8). Since
Net/3 calls ip_forward only when the system is configured as a router, Net/3 follows
RFC 1122’s recommendations.

In Figure 8.19, ip_forward determines whether or not it should send a redirect
message.

Leaving on receiving interface?
The rules by which a router recognizes redirect situations are complicated. First,

redirects are applicable only when a packet is received and resent on the same interface
(rt_ifp and rcvif). Next, the selected route must not have been itself created or
modified by an ICMP redirect message (RTF_DYNAMIC I RTF_MODIFIED), nor can the
route be to the default destination (0.0.0.0). This ensures that the system does not prop-
agate routing information for which it is not an authoritative source, and that it does not
share its default route with other systems.

Section 8.5 Forwarding: ip_forward Function 225

915
916
917
918
919
920
921
922
923
924
925
926
927
928
929

930
931
932
933
934
935
936
937
938
939
940

* If forwarding packet is using same interface that it came in on,
* perhaps should send a redirect to sender to shortcut a hop.
* Only send redirect if source is sending directly to us,
* and if packet was not source routed (or has any options).
* Also, don’t send redirect if forwarding using a default route
* or a route modified by a redirect.
*/

#define
if

ip_input.c

#define

satosin(sa) ((struct sockaddr_in *) (sa))
(rt->rt_ifp =: m->m_pkthdr.rcvif &&

(rt->rt_flags & (RTF_DYNAMIC I RTF_MODIFIED)) == 0 &&
satosin(rt_key(rt))->sin_addr.s_addr !: 0 &&
ipsendredirects && !srcrt) {
RTA(rt) ((struct in_ifaddr *) (rt->rt_ifa))
u_long src = ntohl(ip->ip_src.s_addr) ;

if (RTA(rt) &&
(src & RTA(rt)->ia_subnetmask) :: RTi(rt)->ia_subnet)
if (rt->rt_flags & RTF_GATEWAY)

dest : satosin(rt->rt_gateway)->sin_addr.s_addr;
else

dest : ip->ip_dst.s_addr;
/* Router requirements says to only send host redirects */
type : ICMP_REDIRECT;
code = ICMP_REDIRECT_HOST;

]

~_input.c

Figure 8.19 ip_forwardcontinued.

930--931

Generally, routing protocols use the special destination 0.0.0.0 to locate a default route. When
a specific route to a destination is not available, the route associated with destination 0.0.0.0
directs the packet toward a default router.

Chapter 18 has more information about default routes.

The global integer ipsendredirects specifies whether the system has adminis-
trative authority to send redirects (Section 8.9). By default, ipsendredirects is 1.
Redirects are suppressed when the system is source routing a packet as indicated by the
srcrt argument passed to ip_forward, since presumably the source host wanted to
override the decisions of the intermediate routers.

Send redirect?
This test determines if the packet originated on the local subnet. If the subnet mask

bits of the source address and the outgoing interface’s address are the same, the
addresses are on the same IP network. If the source and the outgoing interface are on
the same network, then this system should not have received the packet, since the
source could have sent the packet directly to the correct first-hop router. The ICMP
redirect message informs the host of the correct first-hop destination. If the packet orig-
inated on some other subnet, then the previous system was a router and this system
does not send a redirect; the mistake will be corrected by a routing protocol.

226 IP: Internet Protocol Chapter 8

932--940

In any case, routers are required to ignore redirect messages. Despite the requirement, Net/3
does not discard redirect messages when ±pforward±ng is set (i.e., when it is configured to
be a router).

Select appropriate router
The ICMP redirect message contains the address of the correct next system, which is

a router’s address if the destination host is not on the directly connected network or the
host address if the destination host is on the directly connected network.

RFC 792 describes four types of redirect messages: (1) network, (2) host, (3) TOS and
network, and (4) TOS and host. RFC 1009 recommends against sending network redi-
rects at any time because of the impossibility of guaranteeing that the host receiving the
redirect can determine the appropriate subnet mask for the destination network.
RFC 1122 recommends that hosts treat network redirects as host redirects to avoid this
ambiguity. Net/3 sends only host redirects and ignores any TOS considerations. In Fig-
ure 8.20, ipintr passes the packet and any ICMP messages to the link layer.

The redirect messages were standardized before subnetting. In a nonsubnetted internet, net-
work redirects are useful but in a subnetted internet they are ambiguous since they do not
include a subnet mask.

941--954

955--983

Forward packet

At this point, ip_forward has a route for the packet and has determined if an
ICMP redirect is warranted, ip_output sends the packet to the next hop as specified
in the route ipforward_rt. The IP_ALLOWBROADCAST flag allows the packet being
forwarded to be a directed broadcast to a local network. If ip_output succeeds and no
redirect message needs to be sent, the copy of the first 64 bytes of the packet is dis-
carded and ip_forward returns.

Send ICMP error?

ip_forward may need to send an ICMP message because ip_output failed or a
redirect is pending. If there is no copy of the original packet (there might have been a
buffer shortage at the time the copy was attempted), the message can’t be sent and
ip_forward returns. If a redirect is pending, type and code have been previously
set, but if ip_output failed, the switch statement sets up the new ICMP type and
code values based on the return value from ip_output, icmp_error sends the mes-
sage. The ICMP message from a failed ip_output overrides any pending redirect
message.

It is important to recognize the significance of the switch statement that handles
errors from ip_output. It translates local system errors into the appropriate ICMP
error message, which is returned to the packet’s source. Figure 8.21 summarizes the
errors. Chapter 11 describes the ICMP messages in more detail.

Net/3 always generates the ICMP source quench when ip_output returns ENOBUFS. The
Router Requirements RFC [Almquist and Kastenholz 1994] deprecate the source quench and
state that a router should not generate them.

Section 8.5 Forwarding: ip_forward Function 227

941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957

958

959
960
961

962
963
964
965
966
967
968
969

970
971
972
973
974
975
976

977
978
979
980
981
982
983 }

error : ip_output(m, (struct mbuf *) 0, &ipforward_rt,
IP_FORWARDING [IP_ALLOWBROADCAST, 0);

if (error)
ipstat.ips_cantforward++;

else {
ipstat.ips_forward++;
if (type}

ipstat.ips_redirectsent++;
else {

if (mcopy)
m_freem(mcopy);

return;
}

]
if (mcopy =: NULL)

return;
destifp : NULL;

~_input.c

switch (error) {

case O: /* forwarded, but need redirect */
/* type, code set above */
break;

case ENETUNREACH:
case EHOSTUNREACH:
case ENETDOWN:
case EHOSTDOWN:
default:

type = ICMP_UNREACH;
code = ICMP_UNREACH_HOST;
break;

/* shouldn’t happen, checked above */

case EMSGSIZE:
type : ICMP_UNREACH;
code = ICMP_UNREACH_NEEDFRAG;
if (ipforward_rt.ro_rt)

destifp : ipforward_rt.ro_rt->rt_ifp;
ipstat.ips_cantfrag++;
break;

case ENOBUFS:
type = ICMP_SOURCEQUENCH;
code = 0;
break;

}
icmp_error(mcopy, type, code, dest, destifp);

Figure 8.20 ip_forward continued.

~p_input.c

228 IP: Intemet Protocol Chapter 8

Errorcode ICMPmessage Description
from ip_outDut generated

EMSGSIZE ICMP_UNREACH_NEEDFRAG

ENOBUFS ICMP_SOURCEQUENCH

EHOSTUNREACH
ENETDOWN

EHOSTDOWN

default

ICMP_UNREACH_HOST

The outgoing packet was too large for the selected
interface and fragmentation was prohibited
(Chapter 10).

The interface queue is full or the kernel is running
short of free memory. This message is an
indication to the source host to lower the data
rate.

A route to the host could not be found.
The outgoing interface specified by the route is not

operating.
The interface could not send the packet to the

selected host.
Any unrecognized error is reported as an

I CMP_LrNREACH_HO ST error.

Figure 8.21 Errors from ip_output.

8.6 Output Processing: ip_output Function

The IP output code receives packets from two sources: ip_forward and the transport
protocols (Figure 8.1). It would seem reasonable to expect IP output operations to be
accessed by inetsw[0] .pr_output, but this is not the case. The standard Internet
transport protocols (ICMP, IGMP, UDP, and TCP) call ip_output directly instead of
going through the inetsw table. For the standard Internet transport protocols, the gen-
erality of the protosw structure is not necessary, since the calling functions are not
accessing IP in a protocoMndependent context. In Chapter 20 we’ll see that the proto-
col-independent routing sockets call pr_output to access IP.

We describe ip_output in three sections:

¯ header initialization,
¯ route selection, and
¯ source address selection and fragmentation.

Header

44-59

Initialization

The first section of ip_output, shown in Figure 8.22, merges options into the outgoing
packet and completes the IP header for packets that are passed from the transport pro-
tocols (not those from ip_forward).

The arguments to ip_output are: m0, the packet to send; opt, the IP options to
include; to, a cached route to the destination; flags, described in Figure 8.23; and imo,
a pointer to multicast options described in Chapter 12.

IP_FORWARDING is set by ip_forward and ip_mforward (multicast packet for-
warding) and prevents ip_output from resetting any of the IP header fields.

Section 8.6 Output Processing: ip_output Function 229

44 int
45 ip_output(m0, opt, ro, flags, imo)
46 struct mbuf *m0;
47 struct mbuf *opt;
48 struct route *ro;
49 int flags;
50 struct ip_moptions *imo;
51 {
52 struct ip *ip, *mhip;
53 struct ifnet *ifp;
54 struct mbuf *m = m0;
55 int hlen : sizeof(struct ip);
56 int len, off, error : 0;
57 struct route iproute;
58 struct sockaddr_in *dst;
59 struct in_ifaddr *ia;

6O
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

if

}
ip

if

(opt) {
m = ip_insertoptions(m, opt, &len);
hlen = len;

= mtod(m, struct ip *);

Fill in IP header.

((flags & (IP_FORWARDING 1 IP_RAWOUTPUT)
ip->ip_v = IPVERSION;
ip->ip_off &= IP_DF;
ip->ip_id = htons(ip_id++);
ip->ip_hl = hlen >> 2;
ipstat.ips_localout++;

else {
hlen = ip->ip_hl << 2;

==0) {

Figure 8.22 ip_output function.

ip_output.c

ip_output.c

Flag Description

IP_FORWARDING This is a forwarded packet.
IP_ROUTETOIF Ignore routing tables and route directly to interface.
IP_ALLOWBROADCAST Allow broadcast packets to be sent.
IP_RAWOUTPUT Packet contains a preconstructed IP header.

Figure 8.23 ip_output: flag values.

The MSG_DONTROUTE flag to send, sendto, and sendmsg enables IP_ROUTETOIF
for a single write (Section 16.4) while the SO_DONTROUTE socket option enables
IP_ROUTETOIF for all writes on a particular socket (Section 8.8). The flag is passed by
each of the transport protocols to ip_output.

230 IP: Internet Protocol Chapter 8

60-73

74--76

The IP_ALLOWBROADCAST flag can be set by the SO_BROADCAST socket option
(Section 8.8) but is passed only by UDP. The raw IP protocol sets
TP_ALT.OWBROADCAST by default. TCP does not support broadcasts, so
TP_ALLOWBROADCAST is not passed by TCP to ±p_output. There is no per-request
flag for broadcasting.

Construct IP header
If the caller provides any IP options they are merged witl~ the packet by

±p_±nsertopt±ons (Section 9.8), which returns the new header length.
We’ll see in Section 8.8 that a process can set the TP_OPTTONS socket option to spec-

ify the IP options for a socket. The transport layer for the socket (TCP or UDP) always
passes these options to ip_output.

The IP header of a forwarded packet (IP_FORWARDING) or a packet with a precon-
structed header (IP_RAWOUTPUT) should not be modified by ip_output. Any other
packet (e.g., a UDP or TCP packet that originates at this host) needs to have several IP
header fields initialized, ip_output sets ip_v to 4 (TPV~.RSTON), clears ip_off
except for the DF bit, which is left as provided by the caller (Chapter 10), and assigns a
unique identifier to ip->ip_id from the global integer ip_id, which is immediately
incremented. Remember that ip_id was seeded from the system clock during protocol
initialization (Section 7.8). ip_hl is set to the header length measured in 32-bit words.

Most of the remaining fields in the IP header--length, offset, TTL, protocol, TOS,
and the destination address--have already been initialized by the transport protocol.
The source address may not be set, in which case it is selected after a route to the desti-
nation has been located (Figure 8.25).
Packet already includes header

For a forwarded packet (or a raw IP packet with a header), the header length (in
bytes) is saved in hlen for use by the fragmentation algorithm.

Route Selection

After completing the IP header, the next task for ip_outl~ut is to locate a route to the
destination. This is shown in Figure 8.24.

77 /*
78 * Route packet.
79 */
80 if (ro :: 0) {
81 ro = &iproute;
82 bzero((caddr_t) ro, sizeof(*ro)) ;
83 }
84 dst : (struct sockaddr_in *) &ro->ro_dst;
85 /*
86 * If there is a cached route,
87 * check that it is to the same destination
88 * and is still up. If not, free it and try again.
89 */

ip_output.c

Section 8.6 Output Processing: ip_output Function 231

90 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) :: 0
91 dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
92 RTFREE(ro->ro_rt);
93 ro->ro_rt = (struct rtentry *) 0;
94 }
95 if (ro->ro_rt =- 0) {
96 dst->sin_family = AF_INET;
97 dst->sin_len = sizeof(*dst);
98 dst->sin_addr = ip->ip_dst;
99 }

i00 /*
i01 * If routing to interface only,
102 * short circuit routing lookup.
103 */
104 #define ifatoia(ifa) ((struct in_ifaddr *) (ifa))
105 #define sintosa(sin) ((struct sockaddr *)(sin))
106 if (flags & IP_ROUTETOIF) {
107 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == 0 &&
108 (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == 0) {
109 ipstat.ips_noroute++;
ii0 error : ENETUNREACH;
iii goto bad;
112 }
113 ifp = ia->ia_ifp;
114 ip->ip_ttl : i;
115 } else {
116 if (ro->ro_rt == 0)
117 rtalloc(ro);
118 if (ro->ro_rt == 0) {
119 ipstat.ips_noroute++;
120 error - EHOSTUNREACH;
121 goto bad;
122 }
123 ia = ifatoia(ro->ro_rt->rt_ifa);
124 ifp = ro->ro_rt->rt_ifp;
125 ro->ro_rt->rt_use++;
126 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
127 dst = (struct sockaddr_in *) ro->ro_rt->rt_gateway;
~28

/* multicast destination (Figure 12.40) */

Figure 8.24 ip_output continued.
ip_output.c

77--99

Verify cached route
A cached route may be provided to ip_output as the ro argument. In Chapter 24

we’ll see that UDP and TCP maintain a route cache associated with each socket. If a
route has not been provided, ip_output sets ro to point to the temporary route
structure iproute.

232 IP: Internet Protocol Chapter 8

100--114

115--122

123--128

If the cached destination is not to the current packer’s destination, the route is dis-
carded and the new destination address placed in ds t.
Bypass routing

A caller can prevent packet routing by setting the TP_ROUT~.TOIF flag (Section 8.8).
If this flag is set, ±p_ou¢put must locate an interface directly connected to the destina-
tion network specified in the packet. ±fa_±fw±¢hdsCaddr searches point-to-point
interfaces, while ±n_±fw±¢hn÷¢ searches all the others. If neither function finds an
interface connected to the destination network, V.NV.TUNREACH is returned; otherwise,
± fp points to the selected interface.

This option allows routing protocols to bypass the local routing tables and force the packets to
exit the system by a particular interface. In this way, routing information can be exchanged
with other routers even when the local routing tables are incorrect.

Locate route
If the packet is being routed (IP_ROUTETOIF is off) and there is no cached route,

rtalloc locates a route to the address specified by dst. ip_output returns
EHOSTUNREACH if rtalloc fails to find a route. If ip_forward called ip_output,
EHOSTUNREACH is converted to an ICMP error. If a transport protocol called
ip_output, the error is passed back to the process (Figure 8.21).

ia is set to point to an address (the i faddr structure) of the selected interface and
ifp points to the interface’s ifnet structure. If the next hop is not the packet’s final
destination, dst is changed to point to the next-hop router instead of the packet’s final
destination. The destination address within the IP header remains unchanged, but the
interface layer must deliver the packet to ds t, the next-hop router.

Source Address Selection and Fragmentation

The final section of ip_output, shown in Figure 8.25, ensures that the IP header has a
valid source address and then passes the packet to the interface associated with the
route. If the packet is larger than the interface’s MTU, it must be fragmented and trans-
mitted in pieces. As we did with the reassembly code, we omit the fragmentation code
here and postpone discussion of it until Chapter 10.

212 /*
213 * If source address not specified yet, use address
214 * of outgoing interface.
215 */
216 if (ip->ip_src.s_addr := INADDR ANY)
217 ip->ip_src = IA_SIN(ia)->sin_addr;
218 /*
219 * Look for broadcast address and
220 * verify user is allowed to send
221 * such a packet.
222 */

ip_output.c

Section 8.6 Output Processing: ip_output Function 233

212--239

223 if (in_broadcast(dst->sin_addr, ifp)) {
224 if ((ifp->if_flags & IFF_BROADCAST) :: 0)
225 error : EADDRNOTAVAIL;
226 goto bad;
227 }
228 if ((flags & IP_ALLOWBROADCAST) -o- 0) {
229 error - EACCES;
230 goto bad;
231 }
232 /* don’t allow broadcast messages to be fragmented */
233 if {(u_short) ip->ip_len > ifp->if~ntu} {
234 error : EMSGSIZE;
235 goto bad;
236
237 m->m_flags I= M_BCAST;
238 } else
239 m->m_flags &: -M_BCAST;

{ /* interface check */

/* application check */

240 sendit:
241 /*
242 * If small enough for interface, can just send directly.
243 */
244 if ((u_short) ip >ip_len <- ifp->if_mtu) {
245 ip->ip_len = htons((u_short) ip >ip_len);
246 ip->ip_off = htons((u_short) ip->ip_off) ;
247 ip->ip_sum = 0;
248 ip->ip_sum - in_cksum(m, hlen);
249 error = (*ifp->if_output) (ifp, m,
250 (struct sockaddr *) dst, ro->ro_rt);
251 goto done;
252 }

339
340
341
342
343
344
345
346 }

/* fragmentation (Section 10.3) */

done:
if (to =- &iproute && (flags & IP_ROUTETOIF) =- 0 && ro->ro_rt)

RTFREE(ro->ro_rt);
return (error);

bad:
m_freem(m0);
goto done;

Figure 8.25 ip_output continued.

ip_output.c

Select source address
If ip_src has not been specified, then ip_output selects ia, the IP address of the

outgoing interface, as the source address. This couldn’t be done earlier when the other
IP header fields were filled in because a route hadn’t been selected yet. Forwarded
packets always have a source address, but packets that originate at the local host may
not if the sending process has not explicitly selected one.

234 IP: Internet Protocol Chapter 8

240-252

253-338

339--346

If the destination IP address is a broadcast address, the interface must support
broadcasting (TFF_BROADCAS% Figure 3.7), the caller must explicitly enable broadcast-
ing (TP_ALT,OWBROADCA$% Figure 8.23), and the packet must be small enough to be
sent without fragmentation.

This last test is a policy decision. Nothing in the IP protocol specification explicitly prohibits
the fragmentation of broadcast packets. By requiring the packet to fit within the MTU of the
interface, however, there is an increased chance that the broadcast packet will be received at
every interface, because there is a better chance of receiving one undamaged packet than of
receiving two or more undamaged packets.

If any of these conditions are not met, the packet is dropped and EADDRNOTAVAIL,
EACCES, or EMSGSTZE is returned to the caller. Otherwise, M_BCAST is set on the out-
going packet, which tells the interface output function to send the packet as a link-level
broadcast. In Section 21.10 we’ll see that arpresolve translates the IP broadcast
address to the Ethernet broadcast address.

If the destination address is not a broadcast address, ip_output clears N_BCAST.

If M_BCAST were not cleared, the reply to a request packet that arrived as a broadcast might be
accidentally returned as a broadcast. We’ll see in Chapter 11 that ICMP replies are constructed
within the request packet in this way as are TCP RST packets (Section 26.9).

Send packet
If the packet is small enough for the selected interface, ip_len and ip_off are

converted to network byte order, the IP checksum is computed with in_cksura (Sec-
tion 8.7), and the packet is passed to the i f_output function of the selected interface.

Fragment packet
Larger packets must be fragmented before they can be sent. We have omitted that

code here and describe it in Chapter 10 instead.

Cleanup

A reference count is maintained for the route entries. Recall that ip_output may
use a temporary route structure (iproute) if the argument ro is null. If necessary,
RTFREE releases the route entry within iproute and decrements the reference count.
The code at bad discards the current packet before returning.

Reference counting is a memory management technique. The programmer must count the
number of external references to a data structure; when the count returns to 0, the memory can
be safely returned to the free pool. Reference counting requires some discipline by the pro-
grammer, who must explicitly increase and decrease the reference count when appropriate.

8.7 Internet Checksum: in_cksttm Function

Two operations dominate the time required to process packets: copying the data and
computing checksums ([Kay and Pasquale 1993]). The flexible nature of the mbuf data
structure is the primary method of reducing copy operations in Net/3. Efficient com-
puting of checksums is harder since it is very hardware dependent. Net/3 contains sev-
eral implementations of in_cksura.

Section 8.7 Internet Checksum: in_cksum Function 235

Version

portable C
SPARC
68k
VAX
Tahoe
HP 3000
Intel 80386

Sourcefile

sys/netinet/in_cksum.c
net3/sparc/sparc/in_cksum.c
net3/luna68k/luna68k/in_cksum.c
sys/vax/vax/in_cksum.c
sys/tahoe/tahoe/in_cksum.c
sys/hp3OO/hp3OO/in_cksum.c
sys/i386/i386/in_cksum.c

Figure 8.26 in_cksuraversions in Net/3.

Even the portable C implementation has been optimized considerably. RFC 1071
[Braden, Borman, and Partridge 1988] and RFC 1141 [Mallory and Kullberg 1990] dis-
cuss the design and implementation of the Internet checksum function. RFC 1141 has
been updated by RFC 1624 [Rijsinghani 1994]. From RFC 1071:

o

Adjacent bytes to be checksummed are paired to form 16-bit integers, and the
one’s complement sum of these 16-bit integers is formed.

To generate a checksum, the checksum field itself is cleared, the 16-bit one’s
complement sum is computed over the bytes concerned, and the one’s comple-
ment of this sum is placed in the checksum field.

To verify a checksum, the one’s complement sum is computed over the same set
of bytes, including the checksum field. If the result is all I bits (-0 in one’s com-
plement arithmetic, as explained below), the check succeeds.

Briefly, when addition is performed on integers in one’s complement representa-
tion, the result is obtained by summing the two integers and adding any carry bit to the
result to obtain the final sum. In one’s complement arithmetic the negative of a number
is formed by complementing each bit. There are two representations of 0 in one’s com-
plement arithmetic: all 0 bits, and all 1 bits. A more detailed discussion of one’s com-
plement representations and arithmetic can be found in [Mano 1982].

The checksum algorithm computes the value to place in the checksum field of the IP
header before sending the packet. To compute this value, the checksum field in the
header is set to 0 and the one’s complement sum on the entire header (including
options) is computed. The header is processed as an array of 16-bit integers. Let’s call
the result of this computation a. Since the checksum field is explicitly set to 0, a is also
the sum of all the IP header fields except the checksum. The one’s complement of a,
denoted -a, is placed in the checksum field and the packet is sent.

If no bits are altered in transit, the computed checksum at the destination should be
the complement of (a + -a). The sum (a + -a) in one’s complement arithmetic is -0 (all
i bits) and its complement is 0 (all 0 bits). So the computed checksum of an undamaged
packet at the destination should always be 0. This is what we saw in Figure 8.12. The
following C code (which is not part of Net/3) is a naive implementation of this
algorithm:

236 IP: Internet Protocol Chapter 8

1 unsigned short
2 cksum(struct ip *ip, int len)
3 {
4 long sum = O; /* assume 32 bit long, 16 bit short */

i--i 6

42--140

93--115

5 while (fen > i) {
6 sum +: *((unsigned short *) ip)++;
7 if (sum & 0xS0000000) /* if high-order bit set, fold */
8 sum : (sum & 0xFFFF) + (sum >> 16);
9 len -= 2;

i0

Ii if (len) /* take care of left over byte
12 sum += (unsigned short) *(unsigned char *) ip;

13 while (sum >> 16)
14 sum : (sum & 0xFFFF) + (sum >> 16);

15 return -sum;
16 }

Figure 8.27 A naive implementation of the IP checksum calculation.

The only performance enhancement here is to accumulate the carry bits in the high-
order 16 bits of sum. The accumulated carries are added to the low-order 16 bits when
the loop terminates, until no more carries occur. RFC 1071 calls this deferred carries. This
technique is useful on machines that don’t have an add-with-carry instruction or when
detecting a carry is expensive.

Now we show the portable C version from Net/3. It utilizes the deferred carry
technique and works with packets stored in an mbuf chain.

Our naive checksum implementation assumed that all the bytes to be checksummed
were in a contiguous buffer instead of in mbuf chains. This version of the checksum cal-
culation handles the mbufs correctly using the same underlying algorithm: 16-bit words
are summed in a 32-bit integer with the carries deferred. For mbufs with an odd num-
ber of bytes, the extra byte is saved and paired with the first byte of the next mbuf.
Since unaligned access to 16-bit words is invalid or incurs a severe performance penalty
on most architectures, a misaligned byte is saved and in_cksum continues adding with
the next aligned word. in_cksura is careful to byte swap the sum when this occurs to
ensure that even-numbered and odd-numbered data bytes are collected in separate sum
bytes as required by the checksum algorithm.
Loop unrolling

The three while loops in the function add 16 words, 4 words, and 1 word to the
sum during each iteration. The unrolled loops reduce the loop overhead and can be
considerably faster than a straightforward loop on some architectures. The price is
increased code size and complexity.

Section 8.7 Internet Checksum: in_cksum FuncHon 237

in_cksum.c
42 #define ADDCARRY(x) (x > 65535 ? x -= 65535 : x)
43 #define REDUCE [l_util.l = sum; sum : l_util.s[0] + l_util.s[l]; ADDCARRY(sum);]

int
in_ckstun(m, len)
struct mbuf *m;
int fen;

44
45
46
47
48
49
5O
51
52

53
54
55
56
57
58
59
6O

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
8O
81
82
83
84
85
86
87
88
89
9O
91
92

u_short *w;
int sum : 0;
int mlen : 0;
int byte_swapped : 0;

union {
char c[2];
u_short s;

} s_util;
union {

u_short s[2];
long i;

} l_util;

for (; m && len; m : m->m_next) {
if (m->m_len == 0)

continue;
w : mtod(m, u_short *);
if (mlen == -i) {

* The first byte of this mbuf is the continuation of a
* word spanning between this mbuf and the last mbuf.

* s_util.c[0] is already saved when scanning previous mbuf.
*/

s_util.c[l] = *(char *) w;
sum += s_util.s;
w = (u_short *) ((char *) w + i)
mlen : m->m_len - i;
len--;

} else
mlen = m->m_len;

if (len < mlen)
mlen = fen;

len -= mlen;

* Force to even boundary.
*/

if ((i & (int) w) && (mlen > 0))
REDUCE;
sum <<: 8;
s_util.c[O] = *(u_char *) w;
w = (u_short *) ((char *) w + i)
mlen--;
byte_swapped = i;

238 IP: Internet Protocol Chapter 8

93
94
95
96
97
98
99

i00
i01

102
103
104
105
106

107
108
109
ii0
iii
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

* Unroll the loop to make overhead from
* branches &c small.

while ((mlen -: 32) >: 0) {
sum += w[0]; sum += w[l]; sum += w[2]; sum += w[3];
sum += w[4]; sum += w[5]; sum += w[6]; sum +: w[7];
sum += w[8]; sum += w[9]; sum += w[10] ; sum += w[ll] ;
sum += w[12]; sum +: w[13]; sum +: w[14]; sum +: w[15];

w += 16;
}
mlen +: 32;
while ((mlen -= 8) >= 0) {

sum += w[0]; sum += w[l]; sum += w[2]; sum += w[3];

w += 4;
]
mlen += 8;
if (mlen == 0 && byte_swapped :: 0

continue;
REDUCE;
while ((mlen -= 2) >= 0) {

sum +: *w++;
}
if (byte_swapped) {

REDUCE;
sum <<: 8;

byte_swapped = O;
if (mien == -i) {

s_util.c[l] = *(char *) w;
sum += s_util.s;
mien = 0;

} else

} else if (mlen == -I)
s_util.c[0] = *(char *) w;

}
if (len)

primtf("cksum: out of data\n");
if (mlen == -i) {

/* The last mbuf has odd # of bytes. Follow the standard (the odd
byte may be shifted left by 8 bits or not as determined by
endian-ness of the machine) */

s_util.c[l] = 0;
sum += s_util.s;

}
REDUCE;
return (~sum & 0xffff) ;

in_cksum.c

Figure 8.28 An optimized portable C implementation of the IP checksum calculation.

Section 8.8 setsockopt and getsockopt System Calls 239

More Optimizations

RFC 1071 mentions two optimizations that don’t appear in Net/3: a combined copy-
with-checksum operation and incremental checksum updates. Merging the copy and
checksum operations is not as important for the IP header checksum as it is for the TCP
and UDP checksums, which cover many more bytes. This merged operation is dis-
cussed in Section 23.12. [Partridge and Pink 1993] report that an inline version of the IP
header checksum is faster than calling the more general ±n_cksum function and can be
done in six to eight assembler instructions (for the standard 20-byte IP header).

The design of the checksum algorithm allows a packet to be changed and the check-
sum updated without reexamining all the bytes. RFC 1071 contains a brief discussion of
this topic. RFCs 1141 and 1624 contain more detailed discussions. A typical use of this
technique occurs during packet forwarding. In the common case, when a packet has no
options, only the TTL field changes during forwarding. The checksum in this case can
be recomputed by a single addition with an end-around carry.

In addition to being more efficient, an incremental checksum can help detect head-
ers corrupted by buggy software. A corrupted header is detected by the next system if
the checksum is computed incrementally, but if it is recomputed from scratch, the check-
sum incorporates the erroneous bytes and the corrupted header is not detected by the
next system. The end-to-end checksum used by UDP or TCP detects the error at the
final destination. We’ll see in Chapters 23 and 25 that the UDP and TCP checksums
incorporate several parts of the IP header.

For an example of the checksum function that utilizes hardware add-with-carry
instructions to compute the checksum 32 bits at a time, see the VAX implementation of
in_cksum in the file . /sys/vax/vax/in_cksum. c.

8.8 setsockopt and getsockopt System Calls
Net/3 provides access to several networking features through the setsockop¢ and
geCsockop¢ system calls. These system calls support a generic interface used by a
process to access features of a networking protocol that aren’t supported by the stan-
dard system calls. The prototypes for these two calls are:

int setsockopt(int s, int level, int optname, const void *optval, int optlen);

int getsockopt(int s, int level, int optname, void *optval, int *optlen);

Most socket options affect only the socket on which they are issued. Compare this to
sysctl parameters, which affect the entire system. The socket options associated with
multicasting are a notable exception and are described in Chapter 12.

setsockopt and getsockopt set and get options at all levels of the communica-
tion stack. Net/3 processes options according to the protocol associated with s and the
identifier specified by level. Figure 8.29 lists possible values for level within the proto-
cols that we discuss.

We describe the implementation of the setsockopt and getsockopt system calls
in Chapter 17, but we discuss the implementation of individual options within the

240 IP: Internet Protocol Chapter 8

Reference

Figures 17.5 and 17.11

Domain

any

IP

Protocol

any

UDP

TCP

raw IP
ICMP
IGMP

level

SOL_SOCKET

IPPROTO_IP

IPPROTO_TCP
IPPROTO_IP

IPPROTO_IP

Function

sosetopt and
sogetopt

ip_ctloutput

tcp_ctloutput
ip_ctloutput

rip_ctloutput and
ip_ctloutput

Figure 8.31
Section 30.6
Figure 8.31

Section 32.8

Figure 8.29 setsockopt and getsockopt arguments.

optname

IP_OPTIONS

IP_TOS
IP_TTL
IP_RECVDSTADDR

IP_RECVOPTS

IP_RECVRETOPTS

optval
type

void *

int
int
int

int

int

Function

in_pcbopts

ip_ctloutput
ip_ctloutput
ip_ctloutput

ip_ctloutput

ip_ctloutput

Description

set or get IP options to be included in outgoing
datagrams

set or get IP TOS for outgoing datagrams
set or get IP TTL for outgoing datagrams
enable or disable queueing of IP destination

address (UDP only)
enable or disable queueing of incoming IP options

as control information (UDP only, not
implemented)

enable or disable queueing of reversed source
route associated with incoming datagram
(UDP only, not implemented)

Figure 8.30 Socket options: IPPROTO_IP level for SOCK_RAW, SOCK_DGIKAM, or SOCK_STREAM sockets.

appropriate chapters. In this chapter, we cover the options that provide access to IP fea-
tures.

Throughout the text we summarize socket options as shown in Figure 8.30. This
figure shows the options for the T PPROTO_IP level. The option appears in the first col-
umn, the data type of the variable pointed to by optval appears in the second column,
and the third column shows the function that processes the option.

Figure 8.31 shows the overall organization of the ip_ctloutput function, which
handles most of the IPPROTO_IP options. In Section 32.8 we show the additional
I PPROTO_IP options that work with SOCK_RAW sockets.

431--447 ip_ctloutput’s first argument, op, is either PRCO_SETOPT or PRCO_GETOPT.
The second argument, so, points to the socket on which the request was issued, level
must be IPPROTO_IP. optname is the option to change or to retrieve, and mp points
indirectly to an mbuf that contains the related data for the option, m is initialized to
point to the mbuf referenced by *rap.

~48-500 If an unrecognized option is specified in the call to setsockopt (and therefore to
the PRCO_SETOPT case of the switch), iD_ctloutput releases any mbuf passed by
the caller and returns EINVAL.

Section8.8 setsockopt and getsockopt System Calls 241

ip_output.c
431 int
432 ip_ctloutput(op, so, level, optname, mp)
433 int op;
434 struct socket *so;
435 int level, optname;
436 struct mbuf **mp;
437 {
438 struct inpcb *inp = sotoinpcb(so);
439 struct mbuf *m = *mp;
440 int optval;
441 int error = 0;

442 if (level != IPPROTO_IP) {
443 error = EINVAL;
444 if (op == PRCO_SETOPT && *mp)
445 (void) m_free(*mp);
446) else
447 switch (op) {

448 case PRCO_SETOPT:
449 switch (optname) {

493 freeit:
494 default:
495 error = EINVAL;
496 break;
497]
498 if (m)
499 (void) m_free(m);
500 break;

501 case PRCO_GETOPT:
502 switch (optname) {

501--553

546 default:
547 error = ENOPROTOOPT;
548 break;
549 }
550 break;
551 }
552 return (error);
553 }

Figure 8.31 ip_ctloutput function: overview.

ip_output,c

Unrecognized options passed to getsockopt result in ip_ctloutput returning
ENOPROTOOPT. In this case, the caller releases the mbuf.

242 IP: Internet Protocol Chapter 8

PRCO_SETOPT Processing

The processing for PRCO_SETOPT is shown in Figure 8.32.

450
451

452
453
454
455
456
457
458
459
460
461

462
463
464

465
466
467
468
469
470
471
472

473
474
475

476
477
478

case IP_0PTIONS:
return (ip_pcbopts(&inp->inp_options, m));

case IP_TOS:
case IP_TTL:
case IP_RECVOPTS:
case IP_RECVRETOPTS:
case IP_RECVDSTADDR:

if (m->m_len != sizeof(int))
error = EINVAL;

else {
optval : *mtod(m, int *)
switch (optname) {

case IP_TOS:
inp->inp_ip.ip_tos : optval
break;

case IP_TTL:
inp->inp_ip.ip_ttl = optval
break;

#define OPTSET(bit) \
if (optval) \

inp->inp_flags I: bit; \
else \

inp->inp_flags &= -bit;

case IP_RECVOPTS:
OPTSET(INP_RECVOPTS)
break;

case IP_RECVRETOPTS:
OPTSET(INP_RECVRETOPTS);
break;

479 case IP_RECVDSTADDR:
480 OPTSET(INP_RECVDSTADDR);
481 break;
482 }
483 }
484 break;

Figure 8.32 ip_ctloutput function: PRCO_SETOPT processing.

ip_output.c

ip_output.c

450--451

452--484

IP_OPTIONS is processed by ip_pcbopts (Figure 9.32).
The IP_TOS, IP_TTL, IP_RECVOPTS, IP_RECVRETOPTS, and IP_RECVDSTADDR

options all expect an integer to be available in the mbuf pointed to by m. The integer is
stored in olotval and then used to change the ip_tos or ip_ttl values associated
with the socket or to set or clear the INP_RECVOPTS, INP_RECVRETOPTS, or
INP_RECVDSTADDR flags associated with the socket. The macro OPTSET sets (or clears)
the specified bit if optval is nonzero (or 0).

Section8.8 setsockopt and getsockopt System Calls 243

Figure 8.30 showed that IP_RECVOPTS and IP_RECVRETOPTS were not implemented. In
Chapter 23, we’ll see that the settings of these options are ignored by UDP.

PRCO_GETOPT Processing

Figure 8.32 shows the code that retrieves the IP options when PRCO_GETOPT is speci-
fled.

503
504
5O5
506
507
508
509
510
511

512
513
514
515
516
517
518
519

520
521
522

case IP_OPTIONS:
*mp : m : m_get(M_WAIT, MT_SOOPTS);
if (inp->inp_options) {

m->m_len = inp->inp_options->m_len;
bcopy(mtod(inp->inp_options, caddr_t),

mtod(m, caddr_t), (unsigned) m->m_len);
} else

m->m_len : 0;
break;

case IP_TOS:
case IP_TTL:
case IP_RECVOPTS:
case IP_RECVRETOPTS:
case IP_RECVDSTADDR:

*mp = m = m_get(M_WAIT, MT_SOOPTS);
m->m_len : sizeof(int);
switch (optname) {

case IP_TOS:
optval : inp->inp_ip.ip_tos;
break;

523 case IP_TTL:
524 optval = inp->inp_ip.ip_ttl;
525 break;

526 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)

527 case IP_RECVOPTS:
528 optval : OPTBIT(INP_RECVOPTS);

529 break;

530 case IP_RECVRETOPTS:
531 optval = OPTBIT(INP_RECVRETOPTS)
532 break;

533 case IP_RECVDSTADDR:
534 optval = OPTBIT(INP_RECVDSTADDR)
535 break;
536 }
537 *mtod(m, int *) : optval;
538 break;

Figure 8.33 ip_ctloutput function: PRCO_GETOPT processing.

ip_output.c

ip_output.c

503-538 For IP_OPTIONS, ip_ctloutput returns an mbuf containin.g a copy of the
options associated with the socket. For the remaining options, ip_ctloutput returns

244 IP: Internet Protocol Chapter 8

the value of ip_tos, ip_ttl, or the state of the flag associated with the option. The
value is returned in the mbuf pointed to by ra. The macro OPTBIT returns 1 (or 0) if bit
is on (or off) in inp_flags.

Notice that the IP options are stored in the protocol control block (inp, Chapter 22)
associated with the socket.

8.9 ip_sysctl Function

Figure 7.27 showed that the ip_sys c t 1 function is called when the protocol and family
identifiers are 0 in a call to sysctl. Figure 8.34 shows the three parameters supported
by ip_sysctl.

sys c t i constant Net/3 variable Description

IPCTL__FORWARDIIVG ipforwarding Should the system forward IP packets?
IPCTL SENDREDIRECTS ipsendredirects Should the system send ICMP redirects?
IPCTL DEFTTL ip_defttl Default TTL for IP packets.

Figure 8.34 ip_sysctl parameters.

Figure 8.35 shows the ip_sysctl function.

984 int
985 ip_sysctl(name, namelen, oldp, oldlenp, newp, newlen)
986 int *name;
987 u_int namelen;
988 void *oldp;
989 size_t *oldlenp;
990 void *newp;
991 size_t newlen;
992 {
993 /* All sysctl names at this level are terminal. */
994 if (namelen !: i)
995 return (ENOTDIR);

996 switch (name[0]) {
997 case IPCTL_FORWARDING:
998 return (sysctl_int(oldp, oldlenp, newp,
999 case IPCTL_SENDREDIRECTS:

i000 return (sysctl_int(oldp, oldlenp, new-p,
i001 &ipsendredirects));
1002 case IPCTL_DEFTTL:
1003 return (sysctl_int(oldp, oldlenp, newp,
1004 default:
1005 return (EOPNOTSUPP);
1006 }
1007 /* NOTREACHED */
1008 }

newlen,

newlen,

newlen,

Figure 8.35 ip_sysctl function.

ip_input.c

&ipforwarding));

&ip_defttl) ;

~p_input.c

Chapter 8 Exercises 245

984-995

996--1008

8.10

Since ip_sysctl does not forward sysctl requests to any other functions, there
can be only one remaining component in name. If not, ENOTDIR is returned.

The switch statement selects the appropriate call to sysctl_int, which accesses
or modifies iloforwarding, ipsendredirects, or ip_defttl. EOPNOTSUPP is
returned for unrecognized options.

Summary

IP is a best-effort datagram service that provides the delivery mechanism for all other
Internet protocols. The standard IP header is 20 bytes long, but may be followed by up
to 40 bytes of options. IP can split large datagrams into fragments to be transmitted and
reassembles the fragments at the final destination. Option processing is discussed in
Chapter 9, and fragmentation and reassembly is discussed in Chapter 10.

ipintr ensures that IP headers have arrived undamaged and determines if they
have arrived at their final destination by comparing the destination address to the IP
addresses of the system’s interfaces and to several broadcast addresses, ipintr passes
datagrams that have reached their final destination to the transport protocol specified
within the packet. If the system is configured as a router, datagrams that have not
reached their final destination are sent to ip_forward for routing toward their final
destination. Packets have a limited lifetime. If the TTL field drops to 0, the packet is
dropped by ip_forward.

The Intemet checksum function is used by many of the Internet protocols and
implemented by in_cksum in Net/3. The IP checksum covers only the header (and
options), not the data, which must be protected by checksums at the transport protocol
level. As one of the most time-consuming operations in IP, the checksum function is
often optimized for each platform.

Exercises

8.1

8.2

8.3

8.4

8.5

Should IP accept broadcast packets when there are no IP addresses assigned to any inter-
faces?

Modify ip_forward and ip_output to do an incremental update of the IP checksum
when a packet without options is being forwarded.

Why is it necessary to check for a link-level broadcast (M_BCAST flag in an mbuf) and for an
IP-level broadcast (in_canforward) when rejecting packets for forwarding? When would
a packet arrive as a link-level broadcast but with an IP unicast destination?

Why isn’t an error message returned to the sender when an IP packet arrives with check-
sum errors?

Assume that a process on a multihomed host has selected an explicit source address for its
outgoing packets. Furthermore, assume that the packet’s destination is reached through an
interface other than the one selected as the packet’s source address. What happens when
the first-hop router discovers that the packets should be going through a different router? Is
a redirect message sent to the host?

246 IP: Internet Protocol Chapter 8

8.6

8.7

8.8

8.9

8.10

A new host is attached to a subnetted network and is configured to perform routing
(±pforwarcl±ng equals 1) but its network interface has not been assigned a subnet mask.
What happens when this host receives a subnet broadcast packet?

Why is it necessary to decrement ±p_~t~_ after testing it (versus before) in Figure 8.17?

What would happen if two routers each considered the other the best next-hop destination
for a packet?

Which addresses would not be checked in Figure 8.14 for a packet arriving at the SLIP inter-
face? Would any additional addresses be checked that aren’t listed in Figure 8.14?

±p_£orwarcl converts the fragment id from host byte order to network byte order before
calling ±¢ra~_error. Why does it not also convert the fragment offset?

IP Option Processing

9.1 Introduction

Recall from Chapter 8 that the IP input function (ipintr) processes options after it ver-
ifies the packet’s format (checksum, length, etc.) and before it determines whether the
packet has reached its final destination. This implies that a packet’s options are pro-
cessed by every router it encounters and by the final destination host.

RFCs 791 and 1122 specify the IP options and processing rules. This chapter
describes the format and processing of most IP options. We’ll also show how a trans-
port protocol can specify the IP options to be included in an IP datagram.

An IP packet can include optional fields that are processed before the packet is for-
warded or accepted by a system. An IP implementation can handle options in any
order; for Net/3, it is the order in which the options appear in the packet. Figure 9.1
shows that up to 40 bytes of options may follow the standard IP header.

ip_hl X 4 bytes ~1

standard header options
(20 bytes) (0-40 bytes)

I- 60 bytes maximum ~1

Figure 9.1 An IP header may contain 0 to 40 bytes of IP options.

9.2 Code Introduction

Two headers describe the data structures for IP options.
found in two C files. Figure 9.2 lists the relevant files.

Option processing code is

247

248 IP Option Processing Chapter 9

File Description

ne tine t / ip. h ip_t imes tamp structure
netinet / ip_var, h ipoption structure

netinet/ip_input, c option processing
netinet/ip_output, c ip_insertoptions function

Figure 9.2 Files discussed in this chapter.

Global Variables

The two global variables described in Figure 9.3 support the reversal of source routes.

Variable Datatype Description

ip_nhops int hop count for previous source route
ip_srcrt struct ip_srcrt previous source route

Figure 9.3 Global variables introduced in this chapter.

Statistics

The only statistic updated by the options processing code is ±ps_badopt±ons from the
ips tat structure, which Figure 8.4 described.

9.3 Option Format

The IP option field may contain 0 or more individual options. The two types of options,
single-byte and multibyte, are illustrated in Figure 9.4.

Single Byte: ~ Multibyte: type len offset

11I

class number

Ien bytes

data

The offset field does not appear
in every multibyte option.

2 bits 5 bits

Fig~*re 9,4 The organization of single-byte and multibyte IP options.

All options start with a 1-byte type field. In multibyte options, the type field is fol-
lowed immediately by a len field, and the remaining bytes are the data. The first byte of
the data field for many options is a 1-byte offset field, which points to a byte within the
data field. The len byte covers the type, len, and data fields in its count. The type is fur-
ther divided into three internal fields: a 1-bit copied flag, a 2-bit class field, and a 5-bit

Section 9.4 ip_dooptions Function 249

number field. Figure 9.5 lists the currently defined IP options. The first two options are
single-byte options; the remainder are multibyte options.

Constant

IPOPT_EOL
IPOPT_NOP

IPOPT_RR
IPOPT_TS
IPOPT_SECURITY
IPOPT_LSRR

IPOPT_SATID
IPOPT_SSRR

Type
Decimal Binary

0-0-0 0 0-00-00000
0-0-1 1 0-00-00001
0-0-7 7 0-00-00111
0-24 68 0-10-00100
1-0-2 130 1-00-00010
1-0-3 131 1-00-00011
1-0-5 133 1-00-00101
1-0-8 136 1-00-01000
1-0-9 137 1-00-01001

Length
(bytes)

1
1

varies
varies

11
varies
varies

4
varies

Net/3 Description

end of option list (EOL)
no operation (NOP)
record route
timestamp
basic security
loose source and record route (LSRR)
extended security
stream identifier
strict source and record route (SSRR)

Figure 9.5 IP options defined by RFC 791.

The first column shows the Net/3 constant for the option, followed by the decimal
and binary values of the type in columns 2 and 3, and the expected length of the option
in column 4. The Net/3 column shows those options that are implemented in Net/3 by
ip_dooptions. IP must silently ignore any option it does not understand. We don’t
describe the options that are not implemented in Net/3: security and stream ID. The
stream ID option is obsolete and the security options are used primarily by the U.S. mil-
itary. See RFC 791 for more information.

Net/3 examines the copied flag when it fragments a packet with options (Sec-
tion 10.4). The flag indicates whether the individual option should be copied into the IP
header of the fragments. The class field groups related options as described in Fig-
ure 9.6. All the options in Figure 9.5 have a class of 0 except for the timestamp option,
which has a class of 2.

class Description

0 control
1 reserved
2 debugging and measurement
3 reserved

Figure 9.6 The class field within an IP option.

9.4 ip_dooptions Function

In Figure 8.13 we saw that ipintr calls ip_dooptions just before it checks the desti-
nation address of the packet, ip_dooptions is passed a pointer, ra, to a packet and
processes the options it knows about. If ip_dooptions forwards the packet, as can
happen with the LSRR and SSRR options, or discards the packet because of an error, it
returns 1. If it doesn’t forward the packet, ip_dooptions returns 0 and ipintr con-
tinues processing the packet.

250 IP Option Processing Chapter 9

553--566

567--582

719--724

ip_dooptions is a long function, so we show it in parts. The first part initializes a
for loop to process each option in the header.

When processing an individual option, cp points to the first byte of the option. Fig-
ure 9.7 illustrates how the type, length, and, when applicable, the offset fields are accessed
with constant offsets from cp.

cp[IPOPT_OLEN]

cp[IPOPT_OPTVAL] ~

c~

’r ~ cp [IPOPT_OFFSET]

data

len bytes

Figure 9.7 Access to IP option fields is by constant offsets.

The RFCs refer to the offset field as a pointer, which is slightly more descriptive than
the term offset. The value of offset is the index (starting with type at index 1) of a byte
within the option, and not a 0-based offset from type. The minimum value for offset is 4
(IPOPT_MINOFF), which points to the first byte of the data field in a multibyte option.

Figure 9.8 shows the overall organization of the ip_doopt ions function.
ip_dooptions initializes the ICMP error type, type, to ICMP_PARAMPROB, which

is a generic value for any error that does not have a specific error type of its own. For
ICMP_PARAMPROB, code is the offset within the packet of the erroneous byte. This is
the default ICMP error message; some options change these values.

ip points to an ip structure with a size of 20 bytes, so ip + 1 points to the next ip structure
following the IP header. Since ip_dooptions wants the address of the byte after the IP
header, the cast converts the resulting pointer to a pointer to an unsigned byte (u_char).
Therefore cp points to the first byte beyond the standard IP header, which is the first byte of
the IP options.

£OL a.d NO;’ processi.g

The for loop processes each option in the order it appears in the packet. An EOL
option terminates the 10op, as does an invalid option length (i.e., the option length indi-
cates that the option data extends beyond the IP header). A NOP option is skipped
when it appears. The default case for the switch statement implements the require-
ment that a system ignore unknown options.

The following sections describe each of the options handled within the switch
statement. If ip_dooptions processes all the options in the packet without finding an
error, control falls through to the code after the switch.

Source route forwarding

If the packet needs to be forwarded, forward is set by the SSRR or LSRR option
processing code. The packet is passed to ip_forward with a i as the second argument
to specify that the packet is source routed.

Section 9.4 ip_dooptions Function 251

553 int
554 ip_dooptions(m)
555 struct mbuf *m;
556 {
557
558
559
56O
561
562
563

struct ip *ip = mtod(m, struct ip *);
u_char *cp;
struct ip_timestamp *ipt;
struct in_ifaddr *ia;

ip_input.c

int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
struct in_addr *sin, dst;
n_time ntime;

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
58O

dst = ip->ip_dst;
cp = (u_char *) (ip + i);
cnt = (ip->ip_hl << 2) - sizeof(struct ip);
for (; cnt > 0; cnt -: optlen, cp +: optlen)

opt : cp[IPOPT_OPTVAL];
if (opt == IPOPT_EOL)

break;
if (opt :: IPOPT_NOP)

optlen = i;
else {

optlen : cp[IPOPT_OLEN];
if (optlen <= 0 I I optlen > cnt) {

code : &cp[IPOPT_OLEN] (u_char *) ip;
goto bad;

}
}
switch (opt) {

581
582

default:
break;

/* option processing */

719
720
721
722
723
724

725
726
727
728
729
730 }

}
if (forward) {

ip_forward(m, i)
return (i);

}
return (0);

bad:
ip->ip_len -= ip->ip_hl << 2; /* XXX icmp_error adds in hdr length */
icmp_error(m, type, code, 0, 0);
ipstat.ips_badoptions++;
return (i);

ip_input.c

Figure 9.8 ip_dooptions function.

252 IP Option Processing Chapter 9

725--730

Recall from Section 8.5 that ICMP redirects are not generated for source-routed packets--this
is the reason for the second argument to ±p_forward.

ip_dooptions returns 1 if the packet has been forwarded. If the packet does not
include a source route, 0 is returned to ipintr to indicate that the datagram needs fur-
ther processing. Note that source route forwarding occurs whether the system is config-
ured as a router (ipforwarding equals 1) or not.

This is a somewhat controversial policy, but is mandated by RFC 1122. RFC 1127 [Braden
1989c] describes this as ar~ open issue.

Error handling
If an error occurs within the switch, ip_dooptions jumps to bad. The IP header

length is subtracted from the packet length since icrap_error assumes the header
length is not included in the packet length, icmp_error sends the appropriate error
message, and ip_dooptions returns 1 to prevent ipintr from processing the dis-
carded packet.

The following sections describe each of the options that are processed by Net/3.

9.5

647--657

658--673

Record Route Option

The record route option causes the route taken by a packet to be recorded within the
packet as it traverses an internet. The size of the option is fixed by the source host when
it constructs the option and must be large enough to hold all the expected addresses.
Recall that only 40 bytes of options may appear in an IP packet. The record route option
has 3 bytes of overhead followed by a list of addresses (4 bytes each). If it is the only
option, up to 9 (3 + 4 x 9 = 39) addresses may appear. Once the allocated space in the
option has been filled, the packet is forwarded as usual but no more addresses are
recorded by the intermediate systems.

Figure 9.9 illustrates the format of a record route option and Figure 9.10 shows the
source code.

p7e len o/~et~~’~address I address 2 ~_~ ~
address n

(offset = 4) (offset = 8) (offset = 4n)
1 1 1 4 bytes 4 bytes 4 bytes

Figure 9.9 The record route option, n must be _< 9.

If the option offset is too small, ip_dooptions sends an ICMP parameter problem
error. The variable code is set to the byte offset of the invalid option offset within the
packet, and the ICMP parameter problem error has this code value when the error is
generated at the label bad (Figure 9.8). If there is no space in the option for additional
addresses, the option is ignored and processing continues with the next option.

Record address

If ip_dst is one of the systems addresses (the packet has arrived at its destination),
the address of the receiving interface is recorded in the option; otherwise the address of

Section 9.5 Record Route Option - 253

647 case IPOPT_RR:
648 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
649 code : &Cp[IPOPT_OFFSET] - (u_char *) ip;
650 goto bad;
651 }
652 /*
653 * If no space remains, ignore.
654 */
655 off--; /* 0 origin */
656 if (off > optlen - sizeof(struct in_addr))
657 break;
658 bcopy((caddr_t) (&ip->ip_dst), (caddr_t) & ipaddr.sin_addr,
659 sizeof(ipaddr.sin_addr));
660 /*
661 * locate outgoing interface; if we’re the destination,
662 * use the incoming interface (should be same).
663 */
664 if ((ia : (INA) ifa_ifwithaddr((SA) & ipaddr)) :: 0 &&
665 (ia = ip_rtaddr(ipaddr.sin_addr)) :: 0) {
666 type = ICMP_UNREACH;
667 code : ICMP_UNREACH_HOST;
668 goto bad;
669
670 bcopy((caddr_t) & (IA_SIN(ia)->sin_addr),
671 (caddr_t) (cp + off), sizeof(struct in_addr)) ;
672 cp[IPOPT_OFFSET] +: sizeof(struct in_addr);
673 break;

Figure 9.10 ip_dooptions function: record route option processing.

@_input.c

ip_input.c

the outgoing interface as provided by ip_rtaddr is recorded. The offset is updated to
point to the next available address position in the option. If ip_rtaddr can’t find a
route to the destination, an ICMP host unreachable error is sent.

Section 7.3 of Volume i contains examples of the record route option.

ip_rtaddr Function

735--741

The ip_rtaddr function consults a route cache and, if necessary, the complete routing
tables to locate a route to a given IP address. It returns a pointer to the in_i faddr
structure associated with the outgoing interface for the route. The function is shown in
Figure 9.11.
Check IP forwarding cache

If the route cache is empty, or if dest, the only argument to ip_rtaddr, does not
match the destination in the route cache, the routing tables must be consulted to select
an outgoing interface.

254 IP Option Processing Chapter 9

735 struct in_ifaddr * ip_input.c
736 ip_rtaddr(dst)
737 struct in_addr dst;
798 {
739 struct sockaddr_in *sin;

740 sin = (struct sockaddr_in *) &ipforward_rt.ro_dst;

741 if (ipforward_rt.ro_rt == 0 II dst.s_addr
742 if (ipforward_rt.ro_rt) {
743 RTFREE(ipforward_rt.ro_rt) ;
744 ipforward_rt.ro_rt = 0;
745 }
746 sin->sin_family = AF_INET;
747 sin->sin_len = sizeof(*sin);
748 sin->sin_addr = dst;

!= sin->sin_addr.s_addr) {

749 rtalloc(&ipforward_rt);
75O }
751 if (ipforward_rt.ro_rt == O)
752 return ((struct in_ifaddr *) 0);
753 return ((struct in_ifaddr *) ipforward_rt.ro_rt->rt_ifa);
754 }

Figure 9.11 ip_rtaddr function: locate outgoing interface.

zp_input.c

742--750

751--754

Locate route
The old route (if any) is discarded and the new destination address is stored in

*sin (which is the ro_dst member of the forwarding cache), rtalloc searches the
routing tables for a route to the destination.

Return route information
If no route is available, a null pointer is returned. Otherwise, a pointer to the inter-

face address structure associated with the selected route is returned.

9.6 Source and Record Route Options

Normally a packet is forwarded along a path chosen by the intermediate routers. The
source and record route options allow the source host to specify an explicit path to the
destination that overrides routing decisions of the intermediate routers. Furthermore,
the route is recorded as the packet travels toward its destination.

A strict route includes the address of every intermediate router between the source
and destination; a loose route specifies only some of the intermediate routers. Routers
are free to choose any path between two systems listed in a loose route, whereas no
intermediate routers are allowed between the systems listed in a strict route. We’ll use
Figure 9.12 to illustrate source route processing.

A, B, and C are routers and HS and HD are the source and destination hosts. Since
each interface has its own IP address, we see that router A has three addresses: A~, A2,

Section 9.6 Source and Record Route Options 255

33 C3~,~

Figure 9.12 Source route example.

and A3. Similarly, routers B and C have multiple addresses. Figure 9.13 shows the for-
mat of the source and record route options.

~P3[Ienoffset addressl address2
~

addressn

1137 1 1
(offset = 4) (offset = 8) ,~ (offset = 4n)

4 bytes 4 bytes 4 bytes

Figure 9.13 The loose and strict source routing options.

The source and destination addresses in the IP header and the offset and address
list in the option specify the route and the packer’s current location within the route.
Figure 9.14 shows how this information changes as the packet follows the loose source
route from HS to A to B to C to HD. The loose source route specified by the process are
the four IP addresses: A3, B1, C1, and HD. Each row represents the state of the packet
when sent by the system shown in the first column. The last line shows the packet as
received by HD. Figure 9.15 shows the relevant code.

System

HS
A
B
C
HD

IP Header
ip_src ip_dst offset

HS A3 4
HS B1 8
HS C1 12
HS HD 16
HS HD 16

Source Route Option
addresses

¯ B1 C1 HD
A2 ¯ C1 HD
A2 B2 ¯ HD
A2 B2 C2 ¯

A2 B2 C2 ¯

Figure 9.14 The source route option is modified as a packet traverses the route.

The ¯ marks the position of offset relative to the addresses within the route. Notice
that the address of the outgoing interface is placed in the option by each system. In par-
ticular, the original route specified A3 as the first-hop destination but the output inter-
face, A2, was recorded in the route. In this way, the route taken by the packet is
recorded in the option. This recorded route should be reversed by the destination sys-
tem and attached to any reply packets so that they follow the same path as the initial
packet but in the reverse direction.

Except for UDP, Net/3 reverses a received source route when responding.

256 IP Option Processing Chapter 9

583
584
585
586
587
588
589
590
59.~.

592
593
594
595
596
597
598
599
600
601
602
603
604
6O5
606
607
6O8
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635

/. ~_input.c
* Source routing with record.
* Find interface with current destination address.
* If none on this machine then drop if strictly routed,
* or do nothing if loosely routed.
* Record interface address and bring up next address
* component. If strictly routed make sure next
* address is on directly accessible net.
*/

case IPOPT_LSRR:
case IPOPT_SSRR:

if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
code = &cp[IPOPT_OFFSET] - (u_char *) ip;
goto bad;

}
ipaddr.sin_addr = ip->ip_dst;
ia = (struct in_ifaddr *)

ifa_ifwithaddr((struct sockaddr *) &ipaddr);
if (ia == 0)

if (opt == IPOPT_SSRR)
type = ICMP_UNREACH;
code = ICMP_UNREACH_SRCFAIL;
goto bad;

}
/.

* Loose routing, and not at ne:,t destination
* yet; nothing to do except forward.
*/

break;
}
off--; /* 0 origin */
if (off > optlen - sizeof(struct in_addr))

/*
* End of source route. Should be for us.
*/

save_rt~(cp, ip->ip_src);
break;

}
/.

* locate outgoing interface
*/

bcopy((caddr_t) (cp + off), (caddr_t) & ipaddr.sin_addr,
sizeof(ipaddr.sin_addr));

if (opt == IPOPT_SSRR)
#define INA struct in_ifaddr
#define SA struct sockaddr *

if ((ia = (INA) ifa_ifwithdstaddr((SA) & ipaddr)) =: 0)
ia = (INA) ifa_ifwithnet((SA) & ipaddr);

} else
ia = ip_rtaddr(ipaddr.sin_addr);

if (ia == 0) {
type = ICMP_UNREACH;
code = ICMP_UNREACH_SRCFAIL;

Section 9.6 Source and Record Route Options 257

583-612

613--620

621--637

638-644

636
637
638
639
640
641
642
643
644
645
646

goto bad;

}
ip->ip_dst = ipaddr.sin_addr;
bcopy((caddr_t) & (IA_SIN(ia)->sin_addr),

(caddr_t) (.cp + off), sizeof(struct in_addr));
cp[IPOPT_OFFSET] +: sizeof(struct in_addr);
/*

* Let ip_intr’s mcast routing check handle mcast pkts
*/

forward : !IN_MULTICAST(ntohl(ip->ip_dst.s_addr) ;
break;

Figure 9.15 ip_dooptions function: LSRR and SSRR option processing.

ip_input.c

Net/3 sends an ICMP parameter problem error with the appropriate value of code
if the option offset is smaller than 4 (TPOPT_MINOFF). If the destination address of the
packet does not match one of the local addresses and the option is a strict source route
(TPOPT_SSRR), an ICMP source route failure error is sent. If a local address isn’t listed
in the route, the previous system sent the packet to the wrong host. This isn’t an error
for a loose source route (TPOP%’_LSRR); it means IP must forward the packet toward the
destination.

End of source route
Decrementing o f~: converts it to a byte offset from the start of the option. If

±p_dst in the IP header is one of the local addresses and off points beyond the end of
the source route, there are no more addresses in the source route and the packet has
reached its final destination, save_r¢e makes a copy of the route in the static structure
ip_srcrt and saves the number of addresses in the route in the global ±p_nhops (Fig-
ure 9.18).

ip_srcrt is declared as an external static structure since it is only accessed by the functions
declared in ip_intout, c.

Update packet for next hop

If ip_dst is one of the local addresses and offset points to an address within the
option, this system is an intermediate system specified in the source route and the
packet has not reached its final destination. During strict routing, the next system must
be on a directly cormected network, ifa_i fwithdst and ifa_i fwithnet locate a
route to the next system by searching the configured interfaces for a matching destina-
tion address (a point-to-point interface) or a matching network address (a broadcast
interface). During loose routing, ip_rtaddr (Figure 9.11) locates the route to the next
system by querying the routing tables. If no interface or route is found for the next sys-
tem, an ICMP source route failure error is sent.

If an interface or a route is located, ip_dooptions sets ip_dst to the IP address
pointed to by o f f. Within the source route option, the intermediate address is replaced
with the address of the outgoing interface, and the offset is incremented to point to the
next address in the route.

258 IP Option Processing Chapter 9

645--646

Multicast destinations
If the new destination address is not a multicast address, setting forward to 1 indi-

cates that the packet should be forwarded after ip_dooptions processes all the
options instead of returning the packet to ipintr.

Multicast addresses within a source route enable two multicast routers to communi-
cate through intermediate routers that don’t support multicasting. Chapter 14 describes
this technique in more detail.

Section 8.5 of Volume 1 contains more examples of the source route options.

save_tie Function

RFC 1122 requires that the route recorded in a packet be made available to the transport
protocol at the final destination. The transport protocols must reverse the route and
attach it to any reply packets. The function save_r¢e, shown in Figure 9.18, saves
source routes in an ±p_srcrt structure, shown in Figure 9.16

ip_input.c
57 int ip_nhops = 0;
58 static struct ip_srcrt {
59 struct in_addr dst; /* final destination */
60 char nop; /* one NOP to align */
61 char srcopt[IBOPT_OFFSET + i]; /* OPTVAL, OLEN and OFFSET */
62 struct in_addr route[MAX_IPOPTLEN / sizeof(struct in_addr)];
63 } ip_srcrt;

ip_input.c
Figureg.16 ip_srcrtstruc~re.

57--63

Thedeclarationofrouteisincorrect, thoughtheerrorisbenign. Itshouldbe

struct in_addr route[(MAX_IPOPTLEN - 3)/ sizeof(struct in_addr)];

The discussion with Figures 9.26 and 9.27 covers this in more detail.

This Code defines the ip_srcrt structure and declares the static variable
ip_srcrt. Only two functions access ip_srcrt: sav~_rte, which copies the source
route from an incoming packet into ip_srcrt; and ip_srcroute, which creates a
reversed route route from ip_s rc r t. Figure 9.17 illustrates source route processing.

ip_nhops:

ip_srcrt:

Transport
Protocols

Figure 9.17 Processing of reversed source routes.

Section 9.6 Source and Record Route Options 259

759 void ip_input.c
760 save_rte(option, dst)
761 u_char *option;
762 struct in_addr dst;
763 {
764 unsigned olen;

765 olen : option[IPOPT_OLEN];
766 if (olen > sizeof(ip_srcrt) - (i + sizeof(dst)))
767 return;
768 bcopy((caddr_t) option, (caddr_t) ip_srcrt.srcopt, olen);
769 ip_nhops : (olen - IPOPT_OFFSET - i) / sizeof(struct in_addr);
770 ip_srcrt.dst : dst;
771]

Figure 9.18 save_rte function.

ip_input.c

759--771 ip_dooptions calls save_rte when a source routed packet has reached its final
destination, option is a pointer to a packet’s source route option, and dst is ip_src
from the packet’s header (i.e., the destination of the return route, HS from Figure 9.12).
If the option length is larger than the ip_srcrt structure, save_rte returns immedi-
ately.

This would never happen, as the ip_srcrt structure is larger than the largest option length
(40 bytes).

save_rte copies the option into ip_srcrt, computes and saves the number of
hops in the source route in ip_nhops, and saves the destination of the return route in
dst.

ip_srcroute Function

777--783

784--786

When responding to a packet, ICMP and the standard transport protocols must reverse
any source route that the packet carried. The reversed source route is constructed from
the saved route by ip_srcroute, which is shown in Figure 9.19.

ip_srcroute reverses the route saved in the ip_srcrt structure and returns the
result formatted as an ipoption structure (Figure 9.26). If ip_nhops is 0, there is no
saved route, so ip_srcroute returns a null pointer.

Recall that in Figure 8.13, ipintr cleared ip_nhops when a valid packet arrives. The trans-
port protocols must call ip_srcroute and save the reversed route themselves before the next
packet arrives. As noted earlier, this is OK since the transport layer (TCP or UDP) is called by
ipintr for each packet, before the next packet on IP’s input queue is processed.

Allocate mbuf for source route
If ip_nhops is nonzero, ip_srcroute allocates an mbuf and sets m_len large

enough to include the first-hop destination, the option header information (OPTSIZ),
and the reversed route. If the allocation fails, a null pointer is returned as if there were
no source route available.

260 IP Option Processing Chapter 9

777 struct mbuf *
778 ip_srcroute()
779 {
780 struct in_addr *p, *q;
781 struct mbuf *m;

782
783
784
785
786

if (ip_nhops := 0)
return ((struct mbuf *) 0);

m : nl get(M_DONTWAIT, MT_SOOPTS);
if (m := 0)

return ((struct mbuf *) 0);

787 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))

ip_input.c

788
789
790

791
792
793
794
795

/* length is (nhops+l)*sizeof(addr) + sizeof(nop + srcrt header) */
m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +

OPTSIZ;

* First save first hop for return route
*/

p = &ip_srcrt.route[ip_nhops - i];
*(mtod(m, struct in addr *)) = *p--;

796 /*
797 * Copy option fields and padding (nop) to mbuf.
798 */
799 ip_srcrt.nop = IPOPT NOP;
800 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
801 bcopy((caddr_t) & ip_srcrt.nop,
802 mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
803 q = (struct in_addr *) (mtod(m, caddr_t) +
804 sizeof(struct in_addr) + OPTSIZ);
805 #undef OPTSIZ
806 /*
807 * Record return path as an IP source route,
808 * reversing the path (pointers are now aligned).
809 */
810 while (p >: ip_srcrt.route) {
811 *q++ = *p--;
812 }
813 /*
814 * Last hop goes to final destination.
815 */
816 *q : ip_srcrt.dst;
817 return (m);
818 }

Figure 9.19 ip_srcroute function.
ip_input.c

p is initialized to point to the end of the incoming route, and ip_srcroute copies
the last recorded address to the front of the mbuf where it becomes the outgoing first-
hop destination for the reversed route. Then the function copies a NOP option (Exer-
cise 9.4) and the source route information into the mbuf.

Section 9.7 Timestamp Option 261

805--818 The while loop copies the remaining IP addresses from the source route into the
mbuf in reverse order. The last address in the route is set to the source address from the
incoming packet, which save_rte placed in ±p_srert. dst. A pointer to the mbuf is
returned. Figure 9.20 illustrates the construction of the reversed route with the route
from Figure 9.12.

ip_nhops:

ip_srcrt:

~]~ nop (IPOPT_NOP)

f/-- srcopt [0] (IPOPT_LSRR or IPOPT_SSRR)4 bytes [~ srcopt [i] (optfon-length)

$ ~ $ ~-srcopt[2] (option-offset)

HS 1 13311520 A2
B2 C2 unused

dst route[O] route[l] route[2] route[3-9]

m: C2 1~15 4 B2 A2 HS

~ Source route option --t

unused

Figure 9.20 ip_srcroute reverses the route in ip_srcrt.

9.7

114--133

Timestamp Option

The timestamp option causes each system to record its notion of the current time within
the option as the packet traverses an internet. The time is expected to be in milliseconds
since midnight UTC, and is recorded in a 32-bit field.

If the system does not keep accurate UTC (within a few minutes) or the time is not
updated at least 15 times per second, it is not considered a standard time. A nonstan-
dard time must have the high-order bit of the timestamp field set.

There are three types of timestamp options, which Net/3 accesses through the
ip_t imes tamp structure shown in Figure 9.22.

As in the ip structure (Figure 8.10), # i fs ensure that the bit fields access the correct
bits in the option. Figure 9.21 lists the three types of timestamp options specified by
ipt_flg.

ip t_ f 1 g Value Description

IPOPT TS TSONLY 0 record timestamps
IPOPT TS TSANDADDR 1 record addresses and timestamps

2 reserved
IPOPT TS PRESPEC 3 record timestamps only at the prespecified systems

4-15 reserved

Figure 9.21 Possible values for ipt_flg.

The originating host must construct the timestamp option with a data area large enough
to hold all expected timestamps and addresses. For a timestamp option with an

262 IP Option Processing Chapter 9

674-684

114 struct ip_timestamp {
115 u_char ipt_code; /*
116 u_char ipt_len; /*
117 u_char ipt_ptr; /*
118 #if BYTE_0RDER =: LITTLE_ENDIAN
119 u_char ipt_flg:4, /*
120 ipt_oflw:4; /*
121 #endif
122 #if BYTE_0RDER :: BIG_ENDIAN
123 u_char ipt_oflw:4,
124 ipt_flg:4;
125 #endif
126 union ipt_timestamp {
127 n_long ipt_time[l];
128 struct ipt_ta {
129 struct in_addr ipt_addr;
130 n_long ipt_time;
131] ipt_ta[l];
132] ipt_timestamp;
133 };

IPOPT_TS ~/
size of structure (variable)
index of current entry */

flags, see below */
overflow counter */

/* overflow counter */
/* flags, see below */

Figure 9.22 ip_timestamp structure and constants.

*/

ip.h

ip.h

ipt_flg of 3, the originating host fills in the addresses of the systems at which a time-
stamp should be recorded when it constructs the option. Figure 9.23 shows the organi-
zation of the three timestamp options.

~
oflw

~ len ptr 0 (ptr = 4) (ptr = 8) (ptr : 4n-8) (ptr : 4n-4) (ptr : 4n)

I 1

ta[1].addr ta[1].time

~ ~

ta[~].addr ta[~].time
~ len ptr 1 (ptr -- 4) (ptr : 8)

(ptr : 8n--4) (ptr :

~°d~len ptr 3ta[l] .addr tail] .time ~ < ta[n] .addr ta[n] .time

168| (ptr = 4) (ptr : 8) / / (ptr : 8n-4) (ptr : 8n)

1 1 1 ~ 4 bytes 4 bytes 4 bytes 4 bytes

Figure 9.23 The three timestamp options (ipt_ omitted).

Because only 40 bytes are available for IP options, the timestamp options are limited
to nine timestamps (ipt_flg equals 0) or four pairs of addresses and timestamps
(ipt_flg equals 1 or 3). Figure 9.24 shows the processing for the three different time-
stamp option types.

ip_dooptions sends an ICMP parameter problem error if the option length is less
than 5 bytes (the minimum size of a timestamp option). The o f lw field counts the num-
ber of systems unable to register timestamps because the data area of the option was
full. oflw is incremented if the data area is full, and when it itself overflows at 16 (it is
a 4-bit field), an ICMP parameter problem error is sent.

Section 9.7 Timestamp Option 263

ip_input.c
674 case IPOPT_TS:
675 code = cp - (u_char *) ip;
676 ipt = (struct ip_timestamp *) cp;
677 if (ipt->ipt_len < 5)
678 goto bad;
679 if (ipt->ipt_ptr > ipt->ipt_len - sizeof(long)) {
680 if (++ipt->ipt_oflw == 0)
681 goto bad;
682 break;
683 }
684 sin = (struct in_addr *) (cp + ipt->ipt_ptr - i) ;
685 switch (ipt->ipt_flg) {

686 case IPOPT TS TSONLY:
687 break;

688
689
690
691
692
693
694
695
696
697
698
699
7OO

701
702
703
704
705
706
707
708
709
710

711
712
713
714
715
716
717
718
719

case IPOPT TS TSANDADDR:
if (ipt->ipt_ptr + sizeof(n_time) +

sizeof(struct in_addr) > ipt->ipt_len)
goto bad;

ipaddr.sin_addr = dst;
ia = (INA) ifaof_ifpforaddr((SA) & ipaddr,

m->m_pkthdr.rcvif);
if (ia == 0)

continue;
bcopy((caddr_t) & IA_SIN(ia)->sin_addr,

(caddr_t) sin, sizeof(struct in_addr));
ipt->ipt_ptr +: sizeof(struct in_addr);
break;

case IPOPT TS PRESPEC:
if (ipt->ipt_ptr + sizeof(n_time) +

sizeof(struct in_addr) > ipt->ipt_len)
goto bad;

bcopy((caddr_t) sin, (caddr_t) & ipaddr.sin_addr,
sizeof(struct in_addr));

if (ifa_ifwithaddr((SA) & ipaddr) :: 0)
continue;

ipt->ipt~tr += sizeof(struct in_addr) ;
break;

default:
goto bad;

}
ntime = iptime();
bcopy((caddr_t) & ntime, (caddr_t)

sizeof(n_time));
ipt->ipt~tr +: sizeof(n_time);

cp + ipt->ipt_ptr - i,

Figure 9.24 ip_dooptions function: timestamp option processing.

ip_input.c

264 IP Option Processing Chapter 9

685-687

688-700

701-710

711-713

714--719

Timestamp only
For a timestamp option with an ipt_flg of 0 (IPOPT TS TSONLY), all the work is

done after the switch.

Timestamp and address
For a timestamp option with an ipt_flg of 1 (IPOPT TS TSANDADDR), the

address of the receiving interface is recorded (if room remains in the data area), and the
option pointer is advanced. Because Net/3 supports multiple IP addresses on a single
interface, ip_dooptions calls ifaof_ifpforaddr to select the address that best
matches the original destination address of the packet (i.e., the destination before any
source routing has occurred). If there is no match, the timestamp option is skipped.
(INA and SA were defined in Figure 9.15.)

Timestamp at prespecified addresses
If ipt_flg is 3 (IPOPT TS PRESPEC), ifa_ifwithaddr determines if the next

address specified in the option matches one of the system’s addresses. If not, this
option requires no processing at this system; the continue forces ip_dooptions to
proceed to the next option. If the next address matches one of the system’s addresses,
the option pointer is advanced to the next position and control continues after the
switch.

Insert timestamp
Invalid ipt_flg values are caught at default where control jumps to bad.
The timestamps are placed in the option by the code that follows the switch state-

ment. iptime returns the number of milliseconds since midnight UTC.
ip_dooptions records the timestamp and increments the option offset to the next
position.

iptime Function

Figure 9.25 shows the implementation of iptime.

458 n_time
459 iptime ()
460 {
461
462

463
464
465
466 }

struct timeval atv;
u_long t;

microtime(&atv);
t = (atv.tv_sec % (24 * 60 * 60)) * i000 + atv.tv_usec / i000;
return (htonl(t));

Figure 9.25 iptime function.

ip_icmp.c

ip_icmp.c

458--466 microtime returns the time since midnight January 1, 1970, UTC, in a tiraeval
structure. The number of milliseconds since midnight is computed using atv and
returned in network byte order.

Section 7.4 of Volume i provides several timestamp option examples.

Section 9.8 ip_insertoptions Function 265

9.8

92--95

ip_insertopt ions Function
We saw in Section 8.6 that the ip_output function accepts a packet and options. When
the function is called from ip_forward, the options are already part of the packet so
ip_forward always passes a null option pointer to ip_output. The transport proto-
cols, however, may pass options to ip_forward where they are merged with the
packet by ip_insertoptions (called by ip_output in Figure 8.22).

ip_insertoptions expects the options to be formatted in an ipoption struc-
ture, shown in Figure 9.26.

92 struct ipoption {
93 struct in_addr ipopt_dst; /* first-hop dst if source routed */
94 char ipopt_list[MTbX_IPOPTLEN] ; /* options proper */
95 };

Figure 9.26 ipoption structure’.

ip_var.h

īp_var.h

The structure has only two members: ipopt_dst, which contains the first-hop des-
tination if the option list contains a source route, and ipopt_list, which is an array of
at most 40 (MAX_IPOPTLEN) bytes of options formatted as we have described in this
chapter. If the option list does not include a source route, ipopt_dst is all 0s.

Note that the ip_srcrt structure (Figure 9.16) and the mbuf returned by
ip_srcroute (Figure 9.19) both conform to the format specified by the ipoption
structure. Figure 9.27 compares the ip_srcrt and ipoption structures.

~
nop

srcopt [0]
srcopt [1]

srcopt [2]

ip_SrCrt { } ~dst _route [0] route [i] route[2-9] ~ ~

~popt- I

ipoption{} i _dst

Figure 9.27

ipopt_list[40]
~ ~

The ip_srcrt and ipoption structures.

352--364

The ip_srcrt structure is 4 bytes larger than the ipoption structure. The last entry in the
route array (route [9]) is never filled because it would make the source route option 44 bytes
long, larger than the IP header can accommodate (Figure 9.16).

The ip_insertoptions function is shown in Figure 9.28.
ip_insertoptions has three arguments: ra, the outgoing packet; opt, the options

formatted in an ipoption structure; and phlen, a pointer to an integer where the new
header length (after options are inserted) is returned. If the size of packet with the
options exceeds the maximum packet size of 65,535 (IP_MAXPACKET) bytes, the options
are silently discarded, ip_dooptions does not expect ip_insertoptions ever to
fail, so there is no way to report the erron Fortunately, few applications attempt to send
a maximally sized datagram, let alone one with options.

266 IP Option Processing Chapter 9

352 static struct mbuf *
353 ip_insertoptions(m, opt, phlen)
354 struct mbuf *m;
355 struct mbuf *opt;
356 int *phlen;
357 {
358 struct ipoption *p = mtod(opt, struct ipoption *);
359 struct mbuf *n;
360 struct ip *ip = mtod(m, struct ip *);
361 unsigned optlen;

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390

ip_output.c

optlen = opt->m_len - sizeof(p->ipopt_dst);
if (optlen + (u_short) ip->ip_len > IP_MAXPACKET)

return (m); /* XXX should fail */
if (p->ipopt_dst.s_addr)

ip->ip_dst = p->ipopt_dst;
if (m->m_flags & M_EXT]I m->m_data - optlen < m->m~ktdat) {

MGETHDR(n, M_DONTWAIT, MT_HEADER);
if (n == 0)

return (m);
n->m_pkthdr.len = m->m_pkthdr.len + optlen;
m->m_len -= sizeof(struct ip);
m->m_data += sizeof(struct ip);
n->m_next = m;
m = n;
m->m_len = optlen + sizeof(struct ip);
m->m_data += max_linkhdr;
bcopy((caddr_t) ip, mtod(m, caddr_t), sizeof(struct ip));

} else {
m->m_data -= optlen;
m->m_len += optlen;
m->m_pkthdr.len += optlen;
ovbcopy((caddr_t) ±p, mtod(m, caddr_t), sizeof(struct

}
ip = mtod(m, struct ip *);
bcopy((caddr_t) p->ipopt_list, (caddr_t) (ip + i), (unsigned) optlen);
*phlen = sizeof(struct ip) + optlen;
ip->ip_len += optlen;
return (m);

ip_output.c

Figure 9.28 ip_insertoptions function.

365--366 If ipopt_dst, s_addr specifies a nonzero address, then the options include a
source route and ±p_dst in the packet’s header is replaced with the first-hop destina-
tion from the source route.

In Section 26.2 we’ll see that TCP calls MG~,THDR to allocate a separate mbuf for the
IP and TCP headers. Figure 9.29 shows the mbuf organization for a TCP segment
before the code in lines 367 to 378 is executed.

Section 9.8 ip_insertoptions Function 267

367-378

379-384

385--390

mbuf { }

20 bytes

8 bytes

max_l inkhdr
(16 bytes)

IP header
(20 bytes)

TCP header
(20 bytes)100 bytes

44 bytes

~-----m_pktdat

~--m_data

allocated for
Ethernetheader

Figure 9.29 ip_insertoptions function: TCP segment.

If the options to be inserted occupy more than 16 bytes, the test on line 367 is true
and MGETI-tDR is called to allocate an additional mbuf. Figure 9.30 shows the organiza-
tion of the mbufs after the options have been copied into the new mbuf.

If the packet header is stored in a cluster, or the first mbuf does not have room for
the options, ip_insertoptions allocates a new packet header mbuf, initializes its
length, trims the IP header from the old mbuf, and moves the header from the old mbuf
to the new mbuf.

As described in Section 23.6, UDP uses M_PREPEND to place the UDP and IP head-
ers at the end of an mbuf, separate from the data. This is illustrated in Figure 9.31.

Because the headers are located at the end of the mbuf, there is always room for IP
options in the mbuf and the condition on line 367 is always false for UDP.

If the packet has room at the beginning of the mbuf’s data area for the options,
m_data and m_len are adjusted to contain optlen more bytes, and the current IP
header is moved by ovbcopy (which can handle overlapping source and destinations)
to leave room for the options.

ip_insertoptions can now copy the ipopt_list member of the ipoption
structure directly into the mbuf just after the IP header, ip_ins ert opt ions stores the
new header length in *phlen, adjusts the datagram length (ip_len), and returns a
pointer to the packet header mbuf.

268 IP Option Processing Chapter 9

m_data

mbuf { }

20 bytes

8 bytes

max_l inkhdr
(16 bytes)

IP header
(20 bytes)

IP options
opt fen bytes)

m_next
mbuf{}

20bytes

TCP header
(20 bytes)

additional
mbufs

~----m_data

Figure 9.30 ip_insertopt ions function: TCP segment, after options have been copied.

72 bytes

mbuf{}

20bytes

8byes

IP header
(20 bytes)

UDP header
(8bytes)

~ m_pkt dat ~

m_data

room here for 16 bytes
of Ethemet header and
56 bytes of IP options

Figure 9.31 ip_insertoptions function: UDP datagram.

Section 9.9 ip_pcbopts Function 269

9.9 ip_pcbopt s Function

The ip_pcbopts function converts the list of IP options provided with the
IP_OPTIONS socket option into the form expected by ip_output: an ipoption
structure.

559 int
560 ip_pcbopts(pcbopt, m)
561 struct mbuf **pcbopt;
562 struct mbuf *m;
563 {
564 cnt, optlen;
565 u_char *cp;
566 u_char opt;

567 /* turn off any old options */
568 if (*pcbopt)
569 (void) m_free(*pcbopt);
570 *pcbopt = O;
571 if (m == (struct mbuf *) 0 I I m->m_len == O) {
572 /*
573 * Only turning off any previous options.
574 */
575 if (m)
576 (void) m_free(m);
577 return (0);
578 }
579 if (m->m_len % sizeof(long))
580 goto bad;
581 /*
582 * IP first-hop destination address will be stored before
583 * actual options; move other options back
584 * and clear it when none present.
585 */
586 if (m->m_data + m->m_len + sizeof(struct in_addr) >: &m->m_dat[MLEN])
587 goto bad;
588 cnt = m->m_len;
589 m->m_len += sizeof(struct in_addr);
590 cp = mtod(m, u_char *) + sizeof(struct in_addr);
591 ovbcopy(mtod(m, caddr_t), (caddr_t) cp, (unsigned) cnt);
592 bzero(mtod(m, caddr_t), sizeof(struct in_addr));

593 for (; cnt > 0; cnt -= optlen, cp += optlen) {
594 opt = cp[IPOPT_OPTVAL];
595 if (opt == IPOPT_EOL)
596 break;
597 if (opt == IPOPT_NOP)
598 optlen = i;
599 else
600 optlen = cp[IPOPT_OLEN];
601 if (optlen <= IPOPT_OLEN I I optlen > cnt)
602 goto bad;
603

ip_output.c

270 IP Option Processing Chapter 9

559--562

604

6O5
6O6

607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642

643
644
645
646

switch (opt) {

default:
break;

case IPOPT_LSRR:
case IPOPT_SSRR:

/*
* user process specifies route as:
* ->A->B->C->D
* D must be our final destination (but we can’t
* check that since we may not have connected yet).
* A is first hop destination, which doesn’t appear in
* actual IP option, but is stored before the options.
*/

if {optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr})
goto bad;

m->m_len -= sizeof(struct in_addr);
cnt -= sizeof(struct in_addr);
optlen -= sizeof(struct in_addr);
cp[IPOPT_OLEN] = optlen;
/*

* Move first hop before start of options.
*/

bcopy((caddr_t) & cp[IPOPT_OFFSET + i], mtod(m, caddr_t),
sizeof(struct in_addr));

/*
* Then copy rest of options back
* to close up the deleted entry.
*/

ovbcopy((caddr_t) (&cp[IPOPT_OFFSET + i] +
sizeof(struct in_addr)),

(caddr_t) & Cp[IPOPT_OFFSET + i],
(unsigned) cnt + sizeof(struct in_addr)) ;

break;
}

}
if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))

goto bad;
*pcbopt = m;
return (0);

bad:
(void) m free(m);
return (EINVAL);

ip_output.c
Figure 9.32 ip_pcbopts function.

The first argument, pcbopt, references the pointer to the current list of options.
The function replaces this pointer with a pointer to the new list of options constructed
from options specified in the mbuf chain pointed to by the second argument, m. The
option list prepared by the process to be included with the IP_OPTIONS socket option
looks like a standard list of IP options except for the format of the LSRR and SSRR
options. For these options, the first-hop destination is included as the first address in

Section 9.9 ip_pcbopts Function 271

563--580

NOP ~

the route. Figure 9.14 shows that the first-hop destination appears as the destination
address in the outgoing packet, not as the first address in the route.

Discard previous options

Any previous options are discarded by re_free and *pcbopt is cleared. If the pro-
cess passed an empty mbuf or didn’t pass an mbuf at all, the function returns immedi-
ately without installing any new options.

If the new list of options is not padded to a 4-byte boundary, ip_pcbopts jumps to
bad, discards the list and returns EINVAL.

The remainder of the function rearranges the list to look like an ipoption struc-
ture. Figure 9.33 illustrates this process.

loose source route

~
type: LSRR
~- len

; ~- offset

19 4 1st 2nd 3rd final more options

1st

19 4 1st

15 4 2nd

2nd 3rd final

3rd final more options

more options

Figure 9.33 ip_pcbopts option list processing.

581--592

593--606

607--638

Make room for first-hop destination

If there is room in the mbuf, all the data is shifted by 4 bytes (the size of an
±n_addr structure) toward the end of the mbuf. ovbcol~y performs the copy. bzero
clears the 4 bytes at the start of the mbuf.

Scan option list

The for loop scans the option list looking for LSRR and SSRR options. For multi-
byte options, the loop also verifies that the length of the option is reasonable.
Rearrange LSRR or SRR option

When the loop locates a LSRR or SRR option, it decrements the mbuf size, the loop
index, and the option length by 4, since the first address in the option will be removed
and shifted to the front of the mbuf.

bcopy moves the first address and ovbcopy shifts the remainder of the options by
4 bytes to fill the gap left by the first address.

272 IP Option Processing Chapter 9

639--646

Cleanup
After the loop, the size of the option list (including the first-hop address) must be no

more than 44 (MAX_TPOPTLEN+4) bytes. A larger list does not fit in the IP packet
header. The list is saved in *pcbopt and the function returns.

9.10 Limitations

Options are rarely present in IP datagrams other than those created by administrative
and diagnostic tools. Volume 1 discusses two of the more common tools, ping and
tracerouee. It is difficult to write applications that utilize IP options. The program-
ming interfaces are poorly documented and not well standardized. Most vendor sup-
plied applications, such as Telnet and FTP, do not provide a way for a user to specify
options such as a source route.

The usefulness of the record route, timestamp, and source route options in a large
internet is limited by the maximum size of an IP header. Most routes contain more hops
than can be represented in the 40 option bytes. When multiple options appear in the
same packet, the available space is almost useless. IPv6 addresses this problem with a
more flexible option header design.

During fragmentation, IP copies only some options into the noninitial fragments,
since the options in noninitial fragments are discarded during reassemblyo Only options
from the initial fragment are made available to the transport protocol at the destination
(Section 10.6). But some, such as source route, must be copied to each fragment, even if
they are discarded in noninitial fragments at the destination.

9.11 Summary

In this chapter we showed the format and processing of IP options. We didn’t cover the
security and stream ID options since they are not implemented in Net/3.

We saw that the size of multibyte options is fixed by the source host when it con-
structs the option. The usefulness of IP options is severely limited by the small maxi-
mum option header size of 40 bytes.

The source route options require the most support. Incoming source routes are
saved by save_rte and reversed by ip_srcroute. A host that does not normally for-
ward packets may forward source routed packets, but RFC 1122 requires this capability
to be disabled by default. Net/3 does not have a switch for this feature and always for-
wards source routed packets.

Finally, we saw how options are merged into an outgoing packet by
ip_insertoptions.

Chapter 9 Exercises 273

Exercises

9.1 What would happen if a packet contained two different source route options?

9.2 Some commercial routers can be configured to discard packets based on their IP destination
address. In this way, a machine or group of machines can be isolated from the larger inter-
net beyond the router. Describe how source routed packets can bypass this mechanism.
Assume that there is at least one host within the network that the router is not blocking, and
that it forwards source routed datagrams.

9.3 Some hosts may not be configured with a default route. In general, this prevents communi-
cation with the host since the host can’t route to destinations outside its directly connected
networks. Describe how a source route can enable communication with this type of host.

9.4 Why is a NOP used in the ±p_srcr~ structure in Figure 9.16?

9.5 Can a nonstandard time value be confused with a standard time value in the timestamp
options?

9.6 ±p_ctoo~¢±ons saves the destination address of the packet in c~es~ before processing any
options (Figure 9.8). Why?

INTEL EX.1095.299

