
INTEL EX. 1420.001

Fragmentation Considered Harmful

Christopher A. Kent

Jefirey C. Mogul

Digital Equipment Corporation
Western Research Lab

(Originally published in Proc. SIGCOMM ‘87, Vol. 17, No. 5, October 1937)

Abstract

Internetworks can be built from many different kinds of networks, with varying limits on
maximum packet size. Throughput is usually maximized when the largest possible packet is
sent; unfortunately, some routes can carry only very small packets. The IP protocol allows a
gateway to fragment a packet if it is too large to be transmitted. Fragmentation is at best a
necessary evil; it can lead to poor performance or complete communication failure. There are a
variety of ways to reduce the likelihood of fragmentation; some can be incorporated into exist-
ing IP implementations without changes in protocol specifications. Others require new
protocols, or modifications to existing protocols.

1. Introduction

Internetworks built of heterogeneous networks are

valuable because they insulate higher—level protocols

from changes in network technology, because they al-

10w universal cummunication without the expense of
constructing a homogeneous universal infrastructure,

and because they allow the use of different network

technologies as appropriate to both local-area and long-

haul links. Most datagram networks set a maximum

limit on tile size of packets they carry, to simplify

packet buffering in the nodes and to limit how long one

packet can lie up the link. In a heterogeneous interned

such as the DARPA IP Internet, these packet—size limits,

known as MTUs (for maximum transmission unit) vary

widely from 254 bytes for Packet Radio networks to

2000 bytes for the Wideband Satellite Network [22];

since nobody knows exactly what is connected to the

Internet, the range in MTUs may be even broader.

In general, it is better to use a few large packets instead

of many small packets to carry a given amount of data,

because much of the cost of packetized communication

is per—packet rather than per-byte. On a high—speed

LAN, throughput can increase almost linearly with

packet size over a wide range of sizes. Therefore, we

prefer to make our packets as large as possible.

This desire for large packets conflicts with the variation

in MTUs across an intemet. We want to send large

ACM SIGCOMM -75-

packets but some network along the packets’ path may

not be able to carry them. One approach to this dilemma

is fragmentation when a node must transmit a packet
that is larger than the MTU of the network. it breaks the

packet into several smaller fragments and sends them

instead. If the fragments are all sent along the same data
link and are immediately reassembled at the next node,

this is called transparent or intro-network fragmenta-

tion. If the fragments are allowed to follow independent

routes, and are reassembled only upon reaching their

ultimate destination this is called inter-nemark frag-
mentation. A good discussion of both methods, in more

detail, may be found in Shoch [23].

In this paper, drawing on experience with a large

heterogeneous internetwork, we examine fragmentation

in the context of the IP protocol [18]. IP supports the

use of inter~network fragmentation. (Transparent

fragmentation may be also be used as long as it is

invisible to the [P layer.) Fragmentation appears at first

to be an elegant solution to the problem, but subtle
complications arise in real networks that can result in

poor performance or even total communication failure.

Experience with inter-network fragmentation in the 1?

Internet has convinced us that it is something to avoid.

In section 2 we compare the advantages and dis

advantages of fragmentation, in order to justify this

assertion. We then discuss. in section 3, a variety of

schemes for avoiding or recovering from fragmentation

Computer Communication Review

INTEL EX. 1420.001f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

INTEL EX. 1420.002

2. What is wrong with fragmentation?

The arguments in favor of fragmentation are straight~

forward. Fragmentation allows higher level protocols to
be unconcerned with the characteristics of the

transmission channel. and to send data in conveniently

sized pieces. Sending larger quantities of data in each IP

datagram minimizes the bookkeeping overhead asso-

ciated with managing the data. (See section 3.5 fowl

specific example.)

Fragmentation allows the source host to deal with routes

having different MTUs without having to know what

path packet are taking. The safest strategy is for the

source to send very small datagrams, at a great loss of

efficiency. Fragmentation allows the source to choose a

size that is “reasonable” and, when that size proves to

be too large, prevides a mechanism that allows data to

continue to get through.

Finally, fragmentation allows protocols to optimize

performance for high bandwidth connections. Emerging

network technologies have larger and larger MTUs.

Most local networks have MTUs large enough to send

1024 bytes of user data plus associated overhead in a

single packet; new technologies will allow ten times

that. Fragmentation provides a mechanism for deciding

the actual packet size as late as possible. It especially

allows protocols to avoid choosing to send small

datagrams until absolutely necessary. Protocols can

choose large segment sizes to take advantage of the

large MTU in a local network, and rely on fragmenta-

tion at gateways to send the segments through networks

with small M'I‘Us when needed. If datagrams must

traverse a route consisting of several high-MTU links

followed by a low-MTU link, by delaying the use of

small packets until the low—MTU link is reached,

fragmentation allows the use of large packets on the

initial high MTU links. and thus uses those links more

efficiently.

The arguments against fragmentation fall into three

categories

- Fragmentation causes inefficient use of
resources: Poor choice of fragment sizes can

greatly increase the cost of delivering a datagram.
Additional bandwidth is used for the additional

header information, intermediate gateways must

expend computational resources to make addi-

tional routing decisions, and the receiving host

must reassemble the fragments.

«- Loss of fragments leads to degraded per-

formance: Reassembly of IP fragments is not

very robust. Loss of a single fragment requires

the higher level protocol to retransmit all of the

ACM SIGCOMM -78-

data in the original datagram, even if most of the

fragments were received correctly.

I Efficient reassembly is hard: Given the

likelihood of lost fragments and the information

present in the IP header, there are many situations

in which the reassembly process. though straight-

forward, yields lower than desired performance.

2.1. An overview of fragmentation in IP

IP is a protocol providing unreliable delivery of

datagrams. IP datagrams are encapsulated in network-

specific packets. Gateways may fragment an incoming

packet if it will not fit in a single outgoing packet; in

this case, each fragment is sent as a separate packet.
The [P header contains several fields that are used to

manage fragmentation [18]:

I Identification: A 16—bit field assigned by the

sender to aid in assembling the fragments of a

datagram. The tuple (source, destination, proto-

col, identification) for a given datagram must be

unique over all existing datagrams. When a

packet is fragmented, the value of the Identifica-

tion field of the original packet is cepied into

each fragment.

I Time to live (TTL): An 8-bit field that specifies
the maximum time. measured in seconds. that the

packet may remain in the Internet system. If TTL

contains the value zero. the packet must be

discarded. The TTL must be decreased by at least

one every time the packet passes through a

gateway, even if the time required to process the

packet is less than a second. Thus, the 'I'I‘L field

is an upper bound on packet lifetime.

- Fragment offset: A 13—bit field that identifies the

fragment location, relative to the beginning of the

Original, unfragmented datagram. Fragment off-

sets are in units of 8 bytes.

0 More fragments: A l-bit field that indicates

whether or not this is the last fragment of the

datagram.

The reassembly process consists of matching the

protocol and identification fields of incoming fragments

with those of fragments already held, and coalescing the

data into complete datagrams. Fragments must be

discarded if their TTL expires while they are held for

reassembly. (For more details of the reassembly

algorithm, see [5].)

Higher level protocols such as TCP (Transmission

Control Protocol) [19] use IP as a basis to implement a

reliable connection between two client processes.

Portions of the data stream known as segments are sent
in individual IP datagrams, along with control informa—

Computer Communication Fleview

INTEL EX. 1420.002f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

INTEL EX. 1420.003

tion used by the cooperating TCP processes to ensure

reliable communication. In particular, TCP uses a

sequence number that covers individual bytes in the
data stream, and an acknowledgment mechanism that

allows the receiving process to tell the sender “I have

correctly received all data up to and including sequence
number n."

2.2. Fragmentation cauSes inefficient resource usage

Consider the costs associated with sending a packet.

Each time it passes through a gateway, there is some

constant computational overhead to make routing

decisions, modify the packet header, compute the new

checksum, and move the packet between the appropriate

incoming and outgoing queues. In addition, a portion of
the available bandwidth on the incoming and outgoing

interfaces is consumed. In many cases, the constant

computational overhead dominates the cost. Input and

output may be overlapped using DMA devices; in a

typical uniprocessor gateway, there is no way to

parallelize the computational overhead.

Fragmenting at an IP gateway, rather than having the

host choose the appropriate segment size to avoid

fragmentation, may lead to suboptimal use of gateway
resources and network bandwidth. Consider a TCP

process that tries to send 1024 data bytes across a route
that includes the ARPAnet, which has an MTU of 1006

bytes. The IP and TCP headers are at least 40 bytes

long, leading to a total unfragmented IP datagram 1064

bytes in length. To cross the ARPAnel, this will be

broken into a 1006 byte fragment, followed by a 3’8 byte

fragment. These short fragments amortize the fixed

overhead per ARPAnet packet over very few bytes of

data, and the total packet count is much higher than

needed. If the sending TCP instead chooses segments

that fit in a 1006 byte ARPAnet packet, the total packet
count is minimized, and the total overhead is as low as

possible.

For example, consider sending 10 Kbytes of data.

Sending 1024—byte TCP segments generates 10 IP

datagrams, each 1064 bytes long. Each datagram is

fragmented into two ARPAnet packets, one 1006 bytes

long and the other 78 bytes, for a total of 20 packets. If

the originating TCP instead sends 966 byte segments

(the largest that will fit in a single ARPAnet packet),

only 1 1 packets are sent.

Another limit to utilizing available bandwidth lies in the
interaction of the TI'L and Identification fields. Assume

that a reasonable initial value for the 'ITL field is 32

(the maximum hop count from edge to edge of the

DARPA Internet is currently estimated to be between

15 and 20). If we allow fragmentation, we must ensure

that all datagrams in flight have unique values for the

ACM SIGCOMM -77-

Identification field. Thus, the maximum datagram rate is

215.82, or 2048 datagrams per second. Current

gateways can forward nearly 1000 packets per second;

high performance workstatiOns and interfaces can

generate packets much more rapidly, and can probably

forward 4000 packets per second. We are certainly

within five years of having commonly available

processor and network technology that pushes against

the limit imposed by the 16—bit Identification field.

This limit implies that, to increase bandwidth in the

presence of fragmentation, hosts should send larger

datagrams. so as to carry more data per value of the
Identification field. This is a bad idea, because large

datagrams lead to more fragments, and we shall show
that this increases the likelihood of a severe decrease in

performance. If we simply avoid fragmented datagrams.
values of the Identification field need not be unique,

and there is no bandwidth limit imposed by its size.

2.3. Poor performance when fragments are lost

When segments are sent that are large enough to require

fragmentation, the loss of any fragment requires the

entire segment to be retransmitted. This can lead to

poorer performance than would have been achieved by

originally sending segments that didn‘t require frag-
mentation.

Gateways in the Internet must drop packets when

congested. If the gateways are congested, dropping

fragments only makes the situation worse. Dropped

fragments mean increased retransmissions, which leads

to more fragments. As the loss rate goes up due to

heavy congestion, the total throughput drops

dramatically, since the loss of any one fragment means

that the resources expended in sending the other

fragments of that datagram are entirely wasted.

Even when congestion is not the problem, retransmis-

sion does not necessarily increase the likelihood that all

the fragments that make up the segment will arrive

unscathed. In particular, network idiosyncrasies may

conspire to cause the same fragment or fragments to be
lost on successive retransmission. We call this deter—

minisri'cfragment lass.

An example of deterministic fragment loss occurs in the

4.ZBSD Unix implementation of TCP when datagrams

pass between a local network (typically an Ethernet or a

Proteon ring, with MTUs of 1500 or 2046 bytes,

respectively) and the ARPAnet. The TCP prefers to

send 1024 byte data segments, which are transmitted in

1064 byte IP datagrams. As seen earlier, this results in

two fragments, 1006 and 78 bytes long.

The receiving gateway receives both fragments and

sends them out over the local Proteon ring. The Proteon

Computer Communication Review

INTEL EX. 1420.003f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

INTEL EX. 1420.004

ring interface does not have sufficient buffering to

receive back-to-back packets, so it consistently drops

the second fragment. The sending TCP times out, and

retransmits the 1024 byte segment, which will again be

fragmented. The second fragment is again lost. the

segment times out, and eventually the connection is
broken.

In addition, many of the gateways in the Internet today

are derived from 4.2BSD Unix. This implementation of

IP does not properly fragment a previously fragmented

packet, preventing some fragments from ever reaching

their destination, which might better be called gum:
anteed fragment loss.

2.4. Efficient reassembly is difficult

Reassembling fragments into datagrams at the IP layer

is considerably less robust than constructing a reliable

stream at the TCP layer. The windOw mechanism in

TCP allows the reassembly process to accurately gauge

how much buffer space to allocate for the current

stream of unacknowledged data bytes. Also, because in

TCP the data stream is covered by a sequence number

for each data byte, once a contiguous sequence of bytes

at the beginning of the outstanding data stream has been

reassembled, it can be acknowledged and handed up to

the next layer. Thus, progress can always be made, even
if in small amounts.

At the IP layer, there is no indication in the header of a

fragmented packet of how many other fragments follow,

or of the length of the entire datagram. The More

Fragments bit tells only if this the last fragment of the

datagram, and the Fragment Offset field tells only the

position of this fragment in the complete datagram. If

the total size of the incoming datagram is too large to fit

available buffer space, no progress can be made. The IP

specification requires hosts to be able to reassemble

datagrams at least 576 bytes in length; larger segment

sizes must be explicitly negotiated by higher level

protocols.

Even if there is sufficient buffer space to reassemble a

very large datagram, conflicts can occur. In the Internet,

it is possible for fragments of the same datagram to take

different routes to their ultimate destination. Depending

on queue management strategies at gateways along the

way, a fragment of a small datagram may arrive

intermixed with the fragments of a large datagram.

More concretely. assume two datagrams, L (large) and
S (small), are fragmented as LILQLthLsLGLng and

$132. If there are only eight buffers available, and the

reception order is LIL2L3L4L5LgLTSlL881, reassembly of

L cannot succeed, despite adequate buffer space. Upon

reception of 8., the reassembly process could discard L]
through L»;, which would leave six free buffers and

ACM SIGCOMM -73-

allow S to be reassembled when S; arrives. Or, it could

discard L3 (and subsequently 52). blocking reassembly
of both L and S; the buffers would be kept full until the
fragments expire. In either case, the work done to

transport all the fragments of L is entirely wasted. It is

not possible to coalesce a complete initial string of

fragments and partially acknowledge receipt of the

datagram in order to free some of the buffer space.
(Dave Mills first pointed out this behavior in [13].)

It is difficult to decide how long to hold on to received
fragments. The only firm limit is the 'ITL field; the

reassembly process must discard fragments as their

TTLs expire. Since each gateway decrements the TH.

field, it must be set high enough to traverse the longest
possible route, and thus may still be quite high when the
packet arrives at its destination. Naive use of the

received T'I'L as a reassembly timeout will cause some

fragments to occupy buffer space for a much longer

time than necessary. Use of too short a reassembly

timeout will cause fragments to be dropped too quickly,
leading to unnecessary retransmissions.

Because IP is a datagram protocol, there is no guarantee

that a given fragment will ever arrive. A higher level

protocol may retransmit a lost IP datagram. If a retrans-
mitted datagram does not have the same value for the IP

Identification field, its data will not be recognized as

being the same as that in previously received fragments.

The old fragments will occupy buffer space until timed

out or forced out by incoming packets, and cannot fill

holes left by fragments dropped from the second data-

gram. This suggests that higher level protocols should
attempt to use the same value for the IP Identification

on both the original and retransmitted data. (This idea

was proposed by John Shriver [24].)

3. Avoiding fragmentation

We believe that. in most circumstances, the potential

disadvantages of fragmentation far outweigh the

expected advantages. Thus, hosts should avoid sending
datagrams that are so large that they will be fragmented.

The length limit can be determined by a variety of

general approaches:

0 Always send small datagrams: There is some

datagram size that is small enough to fit without

fragmentation on any network; we could simply

send no datagrams larger than this limit.

' Guess minimum MTU of path: Use a heuristic

to guess the minimum MTU along the path the
datagram will follow.

0 Discover actual minimum MTU of path: Use a
protocol to determine the actual minimum MTU

along the path the datagram will follow.

Computer Communication Fleview

INTEL EX. 1420.004f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

INTEL EX. 1420.005

0 Guess or discover MTU and backtrack if

wrong: Since an estimate might be wrong, and a

discovered MTU may change if a route changes,

sometimes we may have to adjust the length limit.

This requires both a mechanism for detecting

errors, and a mechanism for correcting them.

Later in this section we will discuss more specific

fragmentation avoidance Schemes.

All these strategies assume that the route the datagrams

will follow is independently determined. If multiple
routes are available between source and destination, one

might instead try to avoid fragmentation by using

source-routing to avoid data links with small MTUs.
Suitable alternate routes seldom exist, however, and

even when they do we see no efficient way for an IP

host to obtain enough information to choose a good
source-route.

IP is a layered protocol architecture, and fragmentation

avoidance must be done at the right layer. It makes little

sense to build redundant mechanisms into several layers

if it is possible to do it once. This implies that the right

place for fragmentation avoidance is the layer commOn

to all 11’ communication, the 1P datagram layer itself

(and its partner, the ICMP protocol). It would be a poor

idea to put the entire fragmentation avoidance

mechanism in, say, the TCP layer, because both the

mechanism and any additional protocol would have to
be duplicated in parallel layers, such as UDP[17],

NETBLT[6], and VMTP[3], and because it would be
awkward for a TCP—based mechanism to share

knowledge with other layers and across connections.

This is not to say that layers above IP should be

uninvolved in fragmentation avoidance. Architectural

layering does not mean that higher layers must be kept

ignorant of fragmentation issues. Optimal performance

depends upon cooperation between layers for example,

the TCP layer should not send huge segments if the IP

layer knows that they will be fragmented.

Most of the fragmentation-avoidance schemes we will

propose depend on keeping some knowledge about the

minimum MTU (MINMTU) on the path a datagram will
follow. A MINMTU value could be associated with a

specific destination network. a specific destination host.

a specific route (there may be several routes to one

destination, with differing MINMTUs), or a specific

connection (since for different applications, we may

want to choose between optimizing for maximum

bandwidth versus minimum delay, and thus might want
to accept different risks of fragmentation for different

connections to the same host). The MINMTU values

could be kept in the IP routing database. or in a separate
database, especially if per-connection MINMTUs are

ACM SIGCOMM -79-

wanted. To support pervconnection MlNMTUs, the IP

layer must obtain a connection identifier from

connection-oriented higher layers.

It is our belief that a per~connection scheme

(degenerating to a per-routc-to-specific-host scheme for

connectionless protocols) is the most flexible one.

While it is true that by keeping perwdestination-network

information one might be able to pool information

about several hosts, this is not necessarily safe. Because

many networks are subnetted [15], because MTUS may

vary among the subnets of a given network, and because
one cannot tell whether a remote network is subnetted

or not, it is not true that knowing the MLNMTU for one

host reliably gives you the MINMTU for all other hosts
on the same network.

Routes in a datagram network are not necessarily

symmetric; the route a packet takes may not be the

reverse of the route taken by a packet traveling in the

opposite direction. Because of this. it is not safe for a

host to assume that it can send a datagram as large as

the one it has received from its peer. An independent
MINMTU determination must be made for each

direction, although the peer hosts may assist each other

in doing so.

When the 1? layer has determined the MINMTU for a
connection or destination, it can make this information

available to higher layers. such as TCP, that are

generating segments to be sent as IP datagrams

Segment-generating layers should ask the IP layer for a

MINMTU before sending a segment; connection—based

layers should either check periodically that the

MINMTU has not changed, or should be able to handle

asynchronous notification of a change.

3.1. Fragmentation avoidance without protocol

changes

In this section we describe several fragmentation

avoidance schemes that can be implemented without

changing existing protocol specifications or creating

new protocols. There are obvious advantages to such

approaches. since they can be taken immediately by
individual sites or vendors; further, we have sufficient

experience with one of them to believe that it works

fairly well. On the other hand, none of these schemes

can make use of exact knowledge of MINMTUs, and so

may not provide optimal performance.

3.1.1. Always send tiny datagrams

If a host always sent datagrams no larger than the

minimum MTU over the entire intemet, these datagrams
would never be fragmented. In the IP Internet the limit

is no higher than 254 bytes, and might be lower. Since

almost all of the Internet supports larger MTUs, and

Computer Communication Review

INTEL EX. 1420.005f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

