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I, Robert Horst, hereby declare as follows: 

I. INTRODUCTION AND QUALIFICATIONS 

1. My name is Robert Horst.  I have been retained on behalf of Petitioner

Intel Corporation (“Intel”) to provide this Declaration concerning technical subject 

matter relevant to the petition for inter partes review (“Petition”) concerning U.S. 

Patent No. 8,850,948 (Ex.1001, the “948 Patent”).  I reserve the right to 

supplement this Declaration in response to additional evidence that may come to 

light. 

2. I am over 18 years of age.  I have personal knowledge of the facts

stated in this Declaration and could testify competently to them if asked to do so. 

3. My compensation is not based on the resolution of this matter.  My

findings are based on my education, experience, and background in the fields 

discussed below. 

4. I am an independent consultant with more than 30 years of expertise

in the design and architecture of computer systems.  My current curriculum vitae is 

submitted as Exhibit 1004 and some highlights follow. 

5. Currently, I am an independent consultant at HT Consulting where my

work includes consulting on technology and intellectual property.  I have testified 

as an expert witness and consultant in patent and intellectual property litigation as 

well as inter partes reviews and re-examination proceedings. 
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6. I earned my M.S. (1978) in electrical engineering and Ph.D. (1991) in

computer science from the University of Illinois at Urbana-Champaign after 

earning my B.S. (1975) in electrical engineering from Bradley University.  During 

my master’s program, I designed, constructed and debugged a shared memory 

parallel microprocessor system.  During my doctoral program, I designed and 

simulated a massively parallel, multi-threaded task flow computer. 

7. After receiving my bachelor’s degree and while pursuing my master’s

degree, I worked for Hewlett-Packard Co.  While at Hewlett-Packard, I designed 

the micro-sequencer and cache of the HP3000 Series 64 processor.  From 1980 to 

1999, I worked at Tandem Computers, which was acquired by Compaq Computers 

in 1997.  While at Tandem, I was a designer and architect of several generations of 

fault-tolerant computer systems and was the principal architect of the NonStop 

Cyclone superscalar processor.  The system development work at Tandem also 

included development of the ServerNet System Area Network and applications of 

this network to fault tolerant systems and clusters of database servers. 

8. Since leaving Compaq in 1999, I have worked with several

technology companies, including 3Ware, Network Appliance, Tibion, and AlterG 

in the areas of network-attached storage and biomedical devices.  From 2012 to 

2015, I was Chief Technology Officer of Robotics at AlterG, Inc., where I worked 
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on the design of anti-gravity treadmills and battery-powered orthotic devices to 

assist those with impaired mobility. 

9. In 2001, I was elected an IEEE Fellow “for contributions to the

architecture and design of fault tolerant systems and networks.”  I have authored 

over 30 publications, have worked with patent attorneys on numerous patent 

applications, and I am a named inventor on 80 issued U.S. patents. 

10. My patents include those directed to networks (e.g., U.S. Pat. No.

6,157,967: Method of data communication flow control in a data processing 

system using busy/ready commands), storage (e.g., U.S. Pat. No. 6,549,977: Use of 

deferred write completion interrupts to increase the performance of disk 

operations), and multi-processor systems (e.g., U.S. Pat. No. 5,751,932: Fail-fast, 

fail-functional, fault-tolerant multiprocessor system).  My publications include a 

conference paper that examined the performance and efficacy of protocol offload 

engines Ex.1004. 

11. My Curriculum Vitae, which is filed as a separate Exhibit (Ex.1004),

contains further details on my education, experience, publications, and other 

qualifications to render this opinion as expert. 

II. MATERIALS RELIED ON IN FORMING MY OPINION

12. In addition to reviewing U.S. Patent No. 8,850,948 (Ex.1001), I also

reviewed and considered the prosecution history of the 948 Patent (Ex.1002).  I 
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also reviewed Thia, A ROPE for multiple-layer bypass architecture (“Thia”) 

(Ex.1015), A. Tanenbaum, 3rd ed. (1996) (Ex.1006), and Stevens, TCP-IP 

Illustrated, Vol.2 (“Stevens2”) (Ex.1013).  I also considered the background 

materials cited herein. 

III. UNDERSTANDING OF THE GOVERNING LAW

13. I understand that a patent claim is invalid if it is anticipated or

rendered obvious in view of the prior art.  I further understand that invalidity of a 

patent claim requires that the claim be anticipated or obvious from the perspective 

of a person of ordinary skill in the relevant art at the time the invention was made. 

A. Invalidity by Anticipation 

14. I have been informed that a patent claim is invalid as anticipated

under 35 U.S.C. § 102 if each and every element of a claim, as properly construed, 

is found either explicitly or inherently in a single prior art reference. 

15. I have been informed that a claim is invalid under 35 U.S.C. § 102(a)

if the claimed invention was patented or published anywhere, before the applicant's 

invention.  I further have been informed that a claim is invalid under 35 U.S.C. § 

102(b) if the invention was patented or published anywhere more than one year 

prior to the first effective filing date of the patent application (critical date).  I 

further have been informed that a claim is invalid under 35 U.S.C. § 102(e) if an 

invention described by that claim was disclosed in a U.S. patent granted on an 
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application for a patent by another that was filed in the U.S. before the date of 

invention for such a claim. 

B. Invalidity by Obviousness 

16. I have been informed that a patent claim is invalid as obvious under

35 U.S.C. § 103 if it would have been obvious to a person of ordinary skill in the 

art, taking into account (1) the scope and content of the prior art, (2) the differences 

between the prior art and the claims, (3) the level of ordinary skill in the art, and 

(4) any so called “secondary considerations” of non-obviousness, which include: 

(i) “long felt need” for the claimed invention, (ii) commercial success attributable 

to the claimed invention, (iii) unexpected results of the claimed invention, and (iv) 

“copying” of the claimed invention by others.  I further understand that it is 

improper to rely on hindsight in making the obviousness determination. I have 

been informed that Alacritech claims a filing priority date no later than October 14, 

1997 for claims 1, 3, 6-9, 11, 14-17, 19, and 21-22 of the 948 Patent.  Accordingly 

my analysis of the prior art for the claims of the 948 Patent is based on the prior art 

and knowledge of a person having ordinary skill in the art (“POSA”) as of October 

14, 1997. 

17. I have been informed that a claim can be obvious in light of a single

prior art reference or multiple prior art references.  I further understand that 

exemplary rationales that may support a conclusion of obviousness include: 
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(A) Combining prior art elements according to known methods to yield 

predictable results; 

(B) Simple substitution of one known element for another to obtain 

predictable results; 

(C) Use of known technique to improve similar devices (methods, or 

products) in the same way; 

(D) Applying a known technique to a known device (method, or product) 

ready for improvement to yield predictable results; 

(E) “Obvious to try” - choosing from a finite number of identified, 

predictable solutions, with a reasonable expectation of success; 

(F) Known work in one field of endeavor may prompt variations of it for use 

in either the same field or a different one based on design incentives or other 

market forces if the variations are predictable to one of ordinary skill in the 

art; 

(G) Some teaching, suggestion, or motivation in the prior art that would 

have led one of ordinary skill to modify the prior art reference or to combine 

prior art reference teachings to arrive at the claimed invention. 

IV. LEVEL OF ORDINARY SKILL IN THE ART

18. I have been informed that factors that may be considered in

determining the level of ordinary skill in the art may include: (A) “type of 
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problems encountered in the art;” (B) “prior art solutions to those problems;” (C) 

“rapidity with which innovations are made;” (D) “sophistication of the 

technology;” and (E) “educational level of active workers in the field.”  I also 

understand that, every factor may not be present for a given case, and one or more 

factors may predominate.  Here, the 948 Patent is directed to an apparatus and 

methods for receive side network protocol offload.  In my experience, systems 

such as those capable of protocol offload are not designed by a single person but 

instead require a design team with wide ranging skills and experience including 

computer architecture, network design, software development and hardware 

development.  Moreover, the design team typically would have comprised 

individuals with advanced degrees and some industry experience, or significant 

industry experience. 

19. Accordingly, and while it would be rare to find all of these skills in a

single individual, it is my opinion that a person of ordinary skill in the art 

(“POSA”) is a person with at least the equivalent of a B.S. degree in computer 

science, computer engineering or electrical engineering with at least five years of 

industry experience including experience in computer architecture, network design, 

network protocols, software development, and hardware development. 

20. The statements that I make in this declaration when I refer to a POSA

are from the perspective of October 14, 1997. 
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V. STATE OF THE ART AND OVERVIEW OF TECHNOLOGY AT 
ISSUE 

21. In this section, I provide an overview of the technology at issue and

illustrate the state of the art. 

A. Layered Network Protocols 

22. The primary goal of computer networking is to provide fast, reliable

data communications between computer systems.  Interoperability has been 

accomplished through adherence to standards, and performance has steadily 

increased through new technology and optimizations of hardware and software. 

1. OSI Layers

23. Computer networking standards provide inter-system communications

across a wide range of hardware and software implementations.  The seven-layer 

OSI model describes a logical layering including physical, data link, network, 

transport, session, presentation and application as illustrated below. 

2. TCP/IP Layers

24. The TCP/IP layering is slightly different and corresponds more

closely to the way the networking code is typically partitioned in some popular 

Unix variants.  TCP/IP layers include physical (e.g. 100baseT, 1000baseT), data 
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link1 (e.g. IEEE 802 Ethernet, ATM, Token Ring), Internet (e.g. IPv4, IPv6), 

transport (e.g. TCP, UDP, VMTP, XTP), and Application (e.g. FTP, SMTP, 

Telnet, HTTP).  A network interface connected to a TCP/IP network receives 

TCP/IP packets that comply with the TCP/IP protocol. The following figure shows 

the relationship between the OSI and TCP/IP layering. 

1 References on TCP/IP use different terminology to describe the layer under IP 

layer.  The data link layer is also called the “host-to-network layer” in 

Tanenebaum96 and the “interface layer” in Stevens2 (see below for description of 

these references).  Some Alacritech patents use “data link layer,” “link layer” and 

“MAC layer.” Prior art references use many of these terms and also sometimes use 

the name of a specific implementation (e.g. Ethernet, ATM). 
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Available at http://mitigationlog.com/how-tcpip-and-reference-osi-model-works/.2 

An application layer is above the transport layer in both protocols. 

25. At a conceptual level, each layer is responsible only for its respective

functions. This enables, for example, hiding the complexity of the physical data 

connection (that is, actually transmitting the data onto the physical wires) from 

layers above the physical, data link, and network layers above.  Likewise, the 

lower layers must transmit the data on the physical wires, but need not worry about 

what application the data belongs to or even whether it is receiving packets in the 

correct order. 

2 It appears that this diagram was made in 2012.  It is being used for illustrative 

purposes only. 
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B. TCP/IP 

26. The 948 Patent relates to an intelligent network interface card that

provides a “fast path” that avoids host protocol processing for most packets in a 

large multipacket message.  Ex.1001, 948 Patent at Abstract.  The claims are all 

directed to TCP/IP. 

27. By the mid 1990s, TCP/IP was a firmly entrenched standard and was

a widespread networking protocol to, for example, access the Internet and World 

Wide Web, overtaking the OSI protocols.  See Ex.1006, Tanenbaum96 at .016 

(“The OSI protocols have quietly vanished, and the TCP/IP protocol suite has 

become dominant.”)  By that time, detailed descriptions of the protocols and open-

source implementations were widely available from books technical papers, and 

code repositories.  Free implementations of TCP/IP, such as Free BSD, were 

widely available and widely used. Standard reference books on TCP/IP included 

Stevens1 (Ex.1008), Stevens2 (Ex.1013), and Tanenbaum96 (Ex.1006), all of 

which were widely cited and relied upon.3  A series of technical memos called 

RFCs (request for comments) document the progression of design concepts of the 

Internet.  TCP/IP was standardized in a series of publically available Request for 

3 These books were well known resources to a POSA.  Consistent with that, 

Alacritech patents cite editions of the Tanenbaum and Stevens books. 
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Comments (RFCs) published by the Internet Engineering Task Force, including 

RFC 793, entitled “Transmission Control Protocol” and RFC 791, entitled 

“Internet Protocol.”  Ex.1007, RFC 793; Ex.1036, RFC 791.  A few of the key 

RFCs are quoted below to establish when certain concepts were proposed and 

documented. 

28. TCP/IP consists of two parts: (1) Transmission Control Protocol

(TCP), which provides virtual bi-directional connections that are guaranteed in-

order, error-free delivery of arbitrary amounts of data between programs running 

on different computers over the Internet; and (2) Internet Protocol (IP), which 

provides delivery of datagrams (IP packets) to any routable Internet address, 

without any reliability or ordering guarantees.  IP also provides for fragmentation 

during transmission and reassembly when received. Fragmentation occurs when an 

IP packet must be divided (“fragmented”) into smaller packets when a packet 

travels over an intermediate network with a small packet size.  TCP network 

interface includes the ability to receive multiple TCP packets for the same 

connection.  TCP/IP can be transmitted over a variety of physical media (e.g. 

Ethernet). 

1. Encapsulation

29. Network layering corresponds to the encapsulation of higher levels by

lower levels.  TCP runs on “top” of IP by first dividing application data to be 
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transmitted into segments that become the data payloads of TCP packets and 

concatenating each payload with a TCP header to form a TCP packet, a process 

called TCP segmentation.  TCP/IP then places the resulting TCP packet (TCP 

header + payload) into the data payload of an IP packet by concatenating the TCP 

packet (IP data payload) with an IP header.  The TCP packet is thus “encapsulated” 

in an IP packet. 

30. The following figure shows an example with application data

accompanied by an application header.  As shown in the figure below, in typical 

TCP/IP processing, the packet is built from the top down, i.e., each layer 

encapsulates what it receives from the above layer by concatenating an additional 

header associated with that layer.  The application header-data combination 

becomes the application data of a TCP segment.  The TCP segment containing the 

application header-data combination along with the IP header forms an IP 

datagram.  The IP datagram along with an appropriate MAC (media access control) 

layer header forms the frame that is sent over the physical interconnect.  The 

diagram below shows an example of such encapsulation where the MAC layer is 

Ethernet. Some software implementations implement the layers separately with 

data, or pointers to data, passed between the software modules for each layer.  In 

this case, one module creates the user data and application header, another module 
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then encapsulates that with a TCP header, etc.  The processing occurs sequentially, 

from top to bottom, as shown below. 

Ex.1008, Stevens1 at .034.  When receiving a packet from the network, the layers 

work in reverse, with each layer stripping its header and providing the resulting 

packet to the above layer.  The user data without headers is eventually delivered to 

the relevant application. 

2. Ethernet Header

31. The lowest layer, the MAC (media access control) layer handles the

actual transmission on the physical media.  A 14-byte Ethernet header, for 

example, includes 48-bit (6 byte) source and destination MAC addresses for 
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uniquely identifying the network interface (e.g., on a computer or router) on a local 

area network at each end of the link. 

Ex.1013, Stevens2 at .125. 

32. The MAC address can be determined by a routing table in the

protocol stack.  In an Ethernet-based network, the 48-bit MAC address corresponds 

to a physical interface, such as a network interface card (NIC) or WiFi modem in a 

server or router. The MAC address field of the destination in the Ethernet header 

determines the next hop along the route to the destination.  At each router along the 

path, the MAC address field is changed to the MAC address of the next router. The 

final router changes the MAC address field to the MAC address of the destination. 
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3. IP Header

Ex.1008, Stevens1 at .058. 

33. Above the MAC layer is the Internet protocol layer (IP layer).  An IP

header is illustrated by the figure above from Stevens1.  The IP header includes 

source and destination IP addresses for identifying the end points (e.g., computer) 

of the connection.  The IP header also has a flag that indicates whether the packet 

has been fragmented.  The 32-bit IPv4 addresses are usually expressed in dotted 

decimal notion. For example, an IP address of Google.com is 216.58.216.46. 
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4. TCP header

 Ex.1008, Stevens1 at .249. 

34. Above the IP layer is the TCP (Transport) layer.  A TCP header is

illustrated by the figure above from Stevens1.  The TCP header includes 16-bit 

source and destination port numbers for identifying the processes that are 

communicating.  These port numbers identify the end points (e.g., client or server 

programs) sending and receiving data on each end of the connection.  TCP is used 

to establish connections between processes at IP addresses across the network and 

the TCP port numbers identify which processes are communicating.  For instance, 

Email may use SMTP (simple mail transfer protocol) on port 25 (SMTP’s well-

known port number) while a web server is using HTTP on port 80 (HTTP’s well-

known port number). 
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35. The TCP layer performs several important functions such as tracking

the sequence of packets to ensure that the TCP packets are assembled in the proper 

order.  As shown above, a “sequence number” is included in the TCP header for 

several reasons such as identifying TCP packets and performing reassembly of 

these packets. The TCP layer tracks and acknowledges the sequence of packets, so 

that the sending TCP layer can re-send lost (and therefore unacknowledged) data 

so that the application does not have to manage this process.  The TCP layer 

assembles the data from packet payloads in the proper order by using sequence 

numbers in the TCP packet headers. 

36. TCP maintains the status of each connection with a finite state

machine.  The TCP finite state machine and associated messages are described in 

detail in RFC 793.  RFC 793 describes the data structure for storing the 

information needed to maintain a TCP connection as a Transmission Control Block 

(TCB).  Ex.1007, RFC 793 at .016.  The finite state machine is also illustrated in 

Tanenbaum96 below. 

Petition for Inter Partes Review of 8,850,948 
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Connections begin in a CLOSED state.  Different control flags in the TCP header 

of packets sent between client and server affect the state of the connection.    These 

control flags are URG, ACK, PSH, RST, SYN, and FIN as illustrated below.   
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 Ex.1008, Stevens1 at .249.  Certain control flags indicate that the connection is not 

yet established or will be closed.  A server can move from CLOSED into a 

LISTEN state, where it will wait until a request to initialize a connection is 

received in a packet with the SYN flag set.  A server is not in the ESTABLISHED 

state until the server acknowledges the SYN packet.  In the ESTABLISHED state, 

data is transferred over the connection.  Either side can close the connection by 

sending a special packet called a FIN packet.  Control flags URG, and RST are 

also requests to close a connection, which indicates that the server is no longer in 

the ESTABLISHED state. 

37. Accordingly, routing packets between source and destination

processes over a TCP/IP connection using Ethernet requires TCP source and 

destination port numbers, source and destination IP addresses, and source and 
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destination MAC addresses. For more information on TCP, see Stevens1 (Ex.1008) 

Chapter 17, “TCP: Transmission Control Protocol,” .247-252. 

5. Application Data

38. Each user application typically has at least one range of addresses in

the user space region of host memory where it places data for transmission and 

receives data from the network.  For transmission, the protocol stack can retrieve 

data from this area in host memory, encapsulate it in packets as described above, 

and then transmit it over the network.  For receipt of data, the protocol stack puts 

data in the assigned host memory after it has processed and stripped off the MAC, 

IP, and TCP headers from the packet. 

6. RFC 793 – TCP Specification

39. The original TCP specification was published in RFC 793 (Ex.1007)

in September 1981.  RFC 793 is a full specification for TCP and shows, among 

many other things, that identifying a TCP connection by its source and destination 

IP addresses and TCP ports were known more than 15 years before the earliest 

priority dates of the Alacritech patents. 

B. Protocol Offload and Fast-Path Processing 

40. To increase performance and reduce demands on the host computer

required for protocol processing, designers have employed different techniques 

such as parallel processing, improved hardware, memory copy reduction via 

hardware and/or software, and hardware to offload all or part of the protocol stack. 
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1. RFC 647 – Front-Ending

41. As early as 1974, front-end protocol offload was already being

considered for standardization as described in request-for-comments RFC 647. 

This represents the consensus at the time that front ending (the offloading of 

protocol processing) was desirable.  At that time, NCP (Network Control Protocol) 

was the protocol used in ARPANET, the predecessor to the modern Internet. 

“FRONT-ENDING” 

In what might be thought of as the greater network community, the 

consensus is so broad that the front-ending is desirable that the topic 

needs almost no discussion here. Basically, a small machine (a PDP-

11 is widely held to be most suitable) is interposed between the IMP 

and the host in order to shield the host from the complexities of the 

NCP.  

Ex.1019, RFC 647 at .002. 

42. RFC 647 goes on to discuss rigid and flexible front-end (FE)

alternatives and includes a high-level discussion of a protocol for interfacing 

between the host and FE. 
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2. RFC 929 – Outboard Processing

43. In 1984, RFC 929 was distributed to begin work on a possible

standard for interfacing between a host and an OPE (Outboard Processing 

Environment)4: 

There are two fundamental motivations for doing outboard 

processing. One is to conserve the Hosts' resources (CPU cycles and 

memory) in a resource sharing intercomputer network, by offloading 

as much of the required networking software from the Hosts to 

Outboard Processing Environments (or "Network Front-Ends") as 

possible. The other is to facilitate procurement of implementations of 

the various intercomputer networking protocols for the several types 

of Host in play in a typical heterogeneous intercomputer network, by 

employing common implementations in the OPE.  

Ex.1009, RFC 929 at .002. 

4 Other names have been used to describe the OPE concept.  Names for protocol 

offload implementations included Front-End Processor, Network Front-End, 

Protocol Processor, Protocol Engine, Protocol Accelerator, Hardware Bypass, 

Smart Network Interface, SMART NIC, Smart Adapter, Protocol Processing 

Engine, IO Adapter, Intelligent I/O Processor and intelligent Network Interface 

Card. 
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The interaction between the Host and the OPE must be capable of 

providing a suitable interface between processes (or protocol 

interpreters) in the Host and the off-loaded protocol interpreters in the 

OPE.  This interaction must not, however, burden the Host more 

heavily than would have resulted from supporting the protocols 

inboard, lest the advantage of using an OPE be overridden.  

Id. at .003. 

44. RFC 929 includes a “protocol parameter” for selecting the protocol to

be offloaded. TCP, UDP and IP were among the protocols to be offloaded: 

Id. at .013. 

3. Mediation Levels

45. The 1984 proposal to standardize offload implementations in RFC

929 is evidence that there was already much activity in offload implementations at 

that time. The authors of RFC 929 anticipated different types of outboard 

processors and recognized that the amount of work to be done by the outboard 

processor might vary from none to partial to full offload.  To handle this range, a 

“mediation level” parameter was proposed. 
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The mediation level parameter is an indication of the role the Host 

wishes the OPE to play in the operation of the protocol. The extreme 

ranges of this mediation would be the case where the Host wished to 

remain completely uninvolved, and the case where the Host wished to 

make every possible decision.  The specific interpretation of this 

parameter is dependent upon the particular off-loaded protocol. 

The concept of mediation level can best be clarified by means of 

example.  A full inboard implementation of the Telnet protocol places 

several responsibilities on the Host. These responsibilities include 

negotiation and provision of protocol options, translation between 

local and network character codes and formats, and monitoring the 

well-known socket for incoming connection requests.  The mediation 

level indicates whether these responsibilities are assigned to the Host 

or to the OPE when the Telnet implementation is outboard.  If no OPE 

mediation is selected, the Host is involved with all negotiation of the 

Telnet options, and all format conversions. 

With full OPE mediation, all option negotiation and all format 

conversions are performed by the OPE.  An intermediate level of 

mediation might have ordinary option negotiation, format conversion, 

and socket monitoring done in the OPE, while options not known to 

the OPE are handled by the Host. 

The parameter is represented with a single ASCII digit.  The value 9 

represents full OPE mediation, and the value 0 represents no OPE 

mediation.  Other values may be defined for some protocols (e.g., the 
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intermediate mediation level discussed above for Telnet).  The default 

value for this parameter is 9.  

Id. at.015-.016. 

46. More than a decade passed between the publication of RFC 929 and

the priority date of the earliest Alacritech provisional application.  During that 

time, protocol offload was the subject of many papers and systems across the range 

anticipated by RFC 929.  These implementations can be categorized based on the 

three principal dimensions of protocol offload: 1) The set of protocols to be 

offloaded (e.g. TCP/IP, VMTP, OSI), 2) the portions of the protocol that are 

offloaded (e.g. full offload, partial offload, fast path offload, no offload), 3) the 

offload implementation (e.g. parallel processor, standard microprocessor, custom 

processor, custom hardware).  The cited references below include many different 

combinations of these three dimensions, but it should be noted that each cited 

combination was primarily a design decision among a small, finite number of 

choices.  It would have been obvious to alter these implementations along one or 

more of the dimensions for a new implementation that would have produced 

predictable results.  In other words, it was well recognized that depending on the 

application, it was desirable to vary the extent of offloading.  The simplest example 

is that while offloading the entire protocol may seem on the surface advantageous, 

it was expensive because handling every type of data packet requires a complex 
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offloading device.  For example, it was well known that setting up a connection 

and entering the ESTABLISHED state was much more complex than simply 

receiving and sending data packets.  Ex.1006, Tanenbaum96 at .583 (“The key to 

fast TPDU processing is to separate out the normal case (one-way data transfer) 

and handle it specially. Although a sequence of special TPDUs are needed to get 

into the ESTABLISHED state, once there, TPDU processing is straightforward until 

one side starts to close the connection.”). 

C. Offloaded Protocols 

47. By the mid-1990s, TCP/IP was becoming a predominant network

standard, but many other networks were still in use and new network protocols 

were being investigated. 

1. OSI Protocol Offload

48. OSI protocol offload engines were built and tested by Thia and

Woodside.  Ex.1015, Thia and Ex.1038, Woodside. 

2. TCP/IP Protocol Offload

49. TCP/IP offload engines were built or described by many in the field

including Bach, Erickson, Morris, Cooper, Kung, Rütsche and Chesson.  Ex.1020, 

Bach; Ex.1005, Erickson; Ex.1021, Morris; Ex.1022, Cooper; Ex.1023, Kung; 

Ex.1017, Rütsche92; Ex.1018, Rütsche93; Ex.1024, Chesson. 
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3. VMTP and XTP Protocol Offload

50. VMTP and XTP were proposed as alternatives to TCP.  A VMTP

offload engine was described by Kanakia, and an XTP protocol accelerator was 

described by Chesson.  Ex.1025, Kanakia; Ex.1024, Chesson. 

4. Multi-Protocol Offload

51. General-purpose offload engines were also proposed. Erickson

discloses a range of protocol scripts for offloading different protocols. 

Each type of protocol will have its own script. Types of protocols 

include, but are not limited to, TCP/IP, UDP/IP, BYNET lightweight 

datagrams, deliberate shared memory, active message handler, SCSI, 

and File [sic:Fibre] Channel.  

Ex.1005, Erickson at 5:47-51. 

52. Kung and Cooper describe the Nectar network-based multicomputer

system in which the processors communicate via Communications Acceleration 

Boards (CABs) that can run different protocols. 

The CAB runtime system currently supports several transport 

protocols with different reliability/overhead tradeoffs [10]. They 

include the standard TCP/IP protocol suite besides a number of 

Nectar-specific protocols. 

Ex.1026, Kung and Cooper at .003. 
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D. Portions of the Protocol Offloaded 

53. The portion of the protocol offloaded (called “mediation level” in

RFC 929) falls into several types that range from partial offload to full offload. 

That is, either part of the protocol processing can be offloaded (partial offload) or 

the entire protocol processing can be offload (full offload). 

1. Checksum Offload

54. One of the first parts of protocol processing to be offloaded was the

checksum calculation (a partial offload). An adapter doing only checksum offload 

is less complex because it does not require the adapter to maintain the connection 

state. 

55. Dalton describes the HP Afterburner card with optional hardware for

checksum calculation: 

To support the use of the on-card memory as clusters, we have written 

a small number of functions. The most important is a special copy 

routine, functionally equivalent to the BSD function bcopy. It is 

optimized for moving data over the I/O bus, and also optionally uses 

the card's built-in unit to calculate the IP checksum of the data it 

moves. Another function converts a single-copy cluster into a chain of 

normal clusters and mbufs; it also calculates the checksum.  

Ex.1027, Dalton at .011 (emphasis added). 
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2. Full Offload

56. Exemplary full offload papers and systems include Murphy, Bach,

MacLean, Cooper and Rütsche.5 Ex.1028, Murphy; Ex.1020, Bach; Ex.1029, 

MacLean; Ex.1022, Cooper; Ex.1017, Rütsche92; Ex.1018, Rütsche93. 

3. Multi-Level Offload

57. Chesson describes a protocol chip plus an optional control processor

that can do a range of offloads from partial (checksum, sequence numbers, etc.) to 

full offload. Ex.1024, Chesson. 

4. Header Prediction

58. In 1988, Van Jacobson proposed a header prediction algorithm for

improving the performance of TCP/IP implementations.  This “header prediction” 

teaching led to various types of partial offload.  The code, which uses header 

templates, is partitioned into one module for the commonly executed path (the fast 

5 In a “full offload,” the adapter does not typically initiate connections on its own. 

The host initiates the connection by opening a socket to an IP address and TCP 

port.  The host establishes the connection and directs the stack of protocol layers to 

create the connection.  Yet those of skill in the art often still refer to such systems 

as “full offload.” 
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path) and another module to handle the more complex cases and exception 

handling (the slow path). 

59. Code to implement the header prediction algorithm was incorporated

in the BSD 4.4-Lite distribution. 

Most IP packets carry no options. Of the 20-byte header, 14 of the 

bytes will be the same for all IP packets sent by a particular TCP 

connection. The IP length, ID, and checksum fields (6 bytes total) will 

probably be different for each packet. Also, if a packet carries any 

options, all packets for that TCP connection will be likely to carry the 

same options. 

The Berkeley implementation of UNIX makes some use of this 

observation, associating with each connection a template of the IP and 

TCP headers with a few of the fixed fields filled in. To get better 

performance, we designed an IP layer that created a template with all 

the constant fields filled in. When TCP wished to send a packet on 

that connection, it would call IP and pass it the template and the 

length of the packet. Then IP would block-copy the template into the 

space for the IP header, fill in the length field, fill in the unique ID 

field, and calculate the IP header checksum.  

This idea can also be used with TCP, as was demonstrated in an 

earlier, very simple TCP implemented by some of us at MIT [6]. In 

that TCP, which was designed to support remote login, the entire state 

of the output side, including the unsent data, was stored as a 
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preformatted output packet. This reduced the cost of sending a packet 

to a few lines of code.  

A more sophisticated example of header prediction involves applying 

the idea to the input side. In the most recent version of TCP for 

Berkeley UNIX, one of us (Jacobson) and Mike Karels have added 

code to precompute what values should be found in the next incoming 

packet header for the connection. If the packets arrive in order, a few 

simple comparisons suffice to complete header processing.  

Ex.1030, Clark at .003. 

60. The 1995 book (Stevens2) walks through the Jacobson BSD header

prediction code including the conditions for selecting the fast or slow path. In order 

to take the fast receive path, six conditions must be met, including: 

1. The connection must be established.

2. The following four control flags must not be on: SYN, FIN, RST, or

URG. The ACK flag must be on.

3.-6. [Conditions to assure that the received segments are in-order] 

Ex.1013, Stevens2 at .962-.963. 

a) Partial Offload with Header Prediction

61. The fast and slow paths described by Stevens gave a natural division

for protocol offload implementations.  Building on the Jacobson BSD header 

prediction code, Biersack (Ex.1016) describes TCP protocol offload with fast and 

slow paths. Thia and Woodside (Ex.1015) also build upon the Jacobson BSD 
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header prediction algorithm and apply its teachings to derive an OSI protocol 

offload with the fast path implemented in hardware. 

62. The header prediction code in the FreeBSD release is also discussed

in the Alacritech 1997 Provisional application: 

The base for the receive processing done by the INIC on an existing 

context is the fast-path or “header prediction” code in the FreeBSD 

release. 

Ex.1031, Alacritech 1997 Provisional Application at .057. 

63. Thus, the Jacobson header prediction code forms the basis of what

Alacritech offloads to its intelligent network interface card (INIC). 

E. Offload Implementation 

64. Offloading the transport layer to an interface card was discussed in

Tanenbaum96: 

The hardware and/or software within the transport layer that does the 

work is called the transport entity. The transport entity can be in the 

operating system kernel, in a separate user process, in a library 

package bound into network applications, or on the network interface 

card. 

Ex.1006, Tanenbaum96 at .498 (emphasis added). 

65. Others have disclosed more details of offload hardware including

implementations based on multiprocessors, microprocessors, custom processors 

and custom logic. 
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1. Multiprocessor Offload

66. Several groups proposed or built systems in which protocol

processing is offloaded from the application processor to one or more dedicated 

processors in a multiprocessor configuration to protocol processing. 

67. The Nectar system:

The Nectar communication processor together with its host can be 

viewed as a (heterogeneous) shared-memory multiprocessor. 

Dedicating one processor of a multiprocessor host to communication 

tasks can achieve some of the benefits of the Nectar approach, but this 

constrains the choice of host operating system and hardware. In 

contrast, the Nectar communication processor has been used with a 

variety of hosts and host operating systems.  

Ex.1022, Cooper at .006. 

68. The Parallel Protocol Engine:

In this paper our goal is to demonstrate that a careful implementation 

of a standard transport protocol stack on a general purpose 

multiprocessor architecture allows efficient use of the bandwidth 

available in today’s high-speed networks.  As an example, we chose 

to implement the TCP/IP protocol suite on our 4-processor prototype 

of the PPE.   

Ex.1017, Rütsche92 at .009. 

69. Rütsche also designed a Gb/s Multimedia Protocol Adapter based on

the PPE: 
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In this paper we present a new multiprocessor communication 

subsystem architecture, the Multimedia Protocol Adapter (MPA), 

which is based on the experience with the Parallel Protocol Engine 

(PPE) [Kaiserswerth 92] and is designed to connect to a 622 Mb/s 

ATM network. The MPA architecture exploits the inherent 

parallelism between the transmitter and receiver parts of a protocol 

and provides support for the handling of new multimedia protocols.  

Ex.1018, Rütsche93 at .001. 

2. Offload Adapters based on Microprocessors

70. Protocol offloading may be implemented by executing code in one or

more microprocessors on an intelligent network interface card or on a network 

accelerator board used in conjunction with a standard NIC (network interface 

card). 

71. Kanakia describes a network adapter board with a microprocessor and

other support chips: 

The prototype Network Adapter Board (NAB) has been designed 

using Motorola’s MC68020 as the on-board processor, running at 16 

Mhz clock rate; it uses about 200 hundred standard MSI and LSI 

components. The current version is designed for connecting two VMP 

multiprocessor system with a 100 megabit/sec point-to-point 

connection. 

Ex.1025, Kanakia at .010. 
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72. MacLean describes microprocessor-based protocol accelerators

residing on a VME card: 

The internal functions and data flows of the protocol accelerator 

shown in Figure 2. We use a dual CPU approach to protocol 

processing, with one CPU subsystem dedicated to the transmission, 

and the other to the reception. The transmit and receive CPUs are both 

68020 (25 MHz) based, each with its own private resources: ROM, 

parallel I/O, interrupt circuitry and 128 kilobytes of random access 

memory (RAM). In addition there is 128 kilobytes of RAM shared by 

both CPUs which is also accessible to the two host busses, VME and 

VSB.  

Ex.1029, MacLean at .004. 

73. Rütsche describes a multimedia protocol adapter (MPA) using a pair

of “transputer” microprocessors: 

The selection of the inmos2 T9000 [inmos 91] is based on our good 

experience with the transputer family of processors in the PPE. The 

most significant improvements of the T9000 over the T425 for 

protocol processing are faster programmable link interfaces, a faster 

memory interface, and a cache.  

Ex.1018, Rütsche93 at .003. 
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3. Offload Adapters based on Custom Processors or Custom
Logic 

74. Other designers have proposed custom processors and/or custom logic

for protocol offload.  Chesson describes a Protocol Engine chipset for real-time 

protocol processing.  Depending on the amount of protocol offload desired, an 

adapter can be built with or without the custom control processor (CP): 

The Protocol Engine® chipset offers real-time protocol processing for 

high-speed networks. A wide range of cost-performance subsystem 

solutions are available through various configurations based on the PE 

Chipset. The chipset (shown in Figure 1) consists of four chips: 

MPORT, HPORT, BCTL, and CP. A basic configuration consists of 

MPORT, HPORT, and BCTL.  

Ex.1024, Chesson at .006. 

75. The optional Chesson Control processor is a custom processor

designed for fast protocol processing: 

Control Processor (CP) of the Protocol Engine® chipset is a 32-bit, 

multi-thread execution unit that provides high speed protocol 

processing.  

Id. at .039. 

76. Thia also discloses the design of a custom VLSI chip for protocol

offload: 

The chip design based on bypassing is called ROPE, for Reduced 

Operation Protocol Engine. The contribution of this paper is to define 
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the host/chip interface and the chip operation, and to report on a 

VHDL-based feasibility study of the chip design. It appears to be 

feasible to support an end-system single-connection data rate 

approaching 1 Gbps.  

Ex.1015, Thia at .002 and Ex. 1038, Woodside. 

77. Culler describes the Berkeley Network of Workstations (NOW) in

which the Active Messages protocol is offloaded to intelligent NICs built with 

Myricom LANai chips: 

The hardware configuration of the Berkeley NOW system consists of 

one hundred and five Sun Ultra 170 workstations, connected by a 

large Myricom network[Bode95], and packaged into 19-inch racks. 

Each workstation contains a 167 MHz Ultra1 microprocessor with 

512 KB level-2 cache, 128 MB of memory, two 2.3 GB disks, 

ethernet, and a Myricom “Lanai” network interface card (NIC) on the 

SBus. The NIC has a 37.5 MHz embedded processor and three DMA 

engines, which compete for bandwidth to 256 KB of embedded 

SRAM. The node architecture is shown in Figure 1.  

Ex.1032, Culler at .001. 
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Id. at .003. 

78. Alteon describes their third generation intelligent Ethernet adapter that

includes performance improvements from protocol offload, reduction in memory 

copies and reduction of interrupts. 

Using an intelligent adapter with an onboard RISC-based processor 

specially designed for embedded application processing, Alteon’s 

Gigabit Ethernet technology not only reduces the number of times 

data is copied among processing entities, it allows a single interrupt to 

be issued for multiple data packets—radically altering the ratio of 

interrupts to packets, and eliminating the scalability problems inherent 

in older adapter designs.  

Ex.1033, Alteon at .022. 

79. HP discloses a custom chip called Tachyon that includes send offload,

receive offload, hardware checksum calculation, DMA, and headers/data splitting: 
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Ex.1034, Smith at .004. 

F. Protocol Offload Summary 

80. The preceding paragraphs have shown many offload implementations

foreshadowed by RFC 929 described above.  These implementations include many 

variations along the three dimensions of network protocol offload: 1) the set of 

protocols to be offloaded, 2) the portions of the protocol that are offloaded, and 3) 

the offload implementation.  The citations show that each of the individual 

concepts was well known and that many different combinations along the three 

dimensions were successfully implemented by practitioners. It would have been 

obvious to alter these implementations along one or more of the dimensions for a 

new implementation that would have produced predictable results. 

G. Additional Background Technology 

81. Protocol offload adapters have incorporated many well-known design

techniques originally developed for general purpose processors.  Some of these 

concepts, such as DMA and virtual memory, are briefly described below.  More 

information is available from textbooks on Computer Architecture.  See e.g., David 

A. Patterson and John L. Hennessy, Computer Architecture: A Quantitative 

INTEL Ex.1003.043



Petition for Inter Partes Review of 8,850,948 
Ex. 1003 (“Horst Decl.”) 

41 

Approach, Morgan Kaufmann Publishers Inc., San Mateo, CA, USA., 1990. 

(Ex.1035, Patterson). 

1. DMA

82. DMA (Direct Memory Access) is a hardware-based technique for

transferring data between memory systems or between a host memory and an I/O 

device. 

Since I/O events so often involve block transfers, direct memory 

access (DMA) hardware is added to many computer systems to allow 

transfers of numbers of words without intervention by the CPU.  

Ex.1035, Patterson at .151.  Hardware that processes the received TCP/IP packets 

on the fast path must make the received data accessible to the application running 

on the host machine (e.g., in the designated host memory as discussed above). 

DMA was a common and efficient way to achieve this, as I discuss below. 

83. Before DMA was common, processors used I/O (input/output)

instructions to transfer data to I/O devices.  A benefit of using DMA is that fewer 

processor cycles are required to transfer the data. With DMA, the DMA engine is 

loaded with an address and count of data to be moved, then the data movement 

proceeds while the processor is doing other tasks.  In some implementations, DMA 

engines are under the control of a host processor, while in others a DMA engine is 

controlled by an intelligent controller on an I/O adapter.  The DMA engine itself 

may be located either in the host or on an I/O adapter. 
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84. DMA may be used either to read from host memory or to write to host

memory. In some implementation, there are separate send and receive DMA 

engines and in others, a common DMA engine can be programmed to transfer to or 

from host memory: 

Outbound Block Mover. The outbound block mover block’s function 

is to transfer outbound data from host memory to the outbound 

sequence manager via DMA. It takes as input an address/length pair 

from the outbound sequence manager block, initiates the Tachyon 

system interface bus ownerships, and performs the most efficient 

number and size of transactions on the Tachyon system interface bus 

to pull in the data requested. 

… 

Inbound Block Mover. The inbound block mover is responsible for 

DMA transfers of inbound data into buffers specified by the 

multiframe sequence buffer queue, the single-frame sequence buffer 

queue, the inbound message queue, or the SCSI buffer manager. The 

inbound block mover accepts an address from the inbound data 

manager, then accepts the subsequent data stream and places the data 

into the location specified by the address. 

Ex.1034, Smith at .007, .009. 

Movement of data across the host bus interface are minimized by 

using an on-chip DMA for fast block data transfer to/from the host 

system memory. 
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Ex.1015, Thia at .007. 

Bus Controller (BC): The BC is a programmable busmaster DMA 

controller. It provides a small FIFO and a table for DMA requests. 

The FIFO contains a pointer to the linked list of source data and a 

connection identifier. The BC determines the destination memory 

address through the connection identifier in the table. The list format 

is the same for the BC and the DMAU. In the transmit BC the host 

writes to the FIFO and the protocol processor to the table. In the 

receive BC the protocol processor writes to the FIFO and the host to 

the table. 

Ex.1018, Rütsche93 at .004-.005. 

2. Virtual and Physical Memory Addresses

85. I/O adapters that transfer data directly to or from memory need to be

provided with the memory addresses of the buffers.  Many processors use virtual 

addressing in which large buffers appear to the processor as single contiguous 

memory space even though the addressed pages may not be contiguous in physical 

memory.  To translate from virtual to physical memory addresses, the processor 

uses page tables that store the appropriate mappings from virtual to physical pages. 

With virtual memory, the CPU produces virtual addresses that are 

translated by a combination of hardware and software to physical 

addresses, which can be used to access main memory. This process is 

called memory mapping or address translation. 

Ex.1035, Patterson at .050 (emphasis in original). 
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86. In order for an I/O device to access the main memory buffers, either

the physical address may be supplied for each page, or a translation table may be 

maintained on the I/O controller to allow it to operate on virtual addresses. 

Erickson has a “physical address buffer map” in the adapter memory and discusses 

some options for handling the translation: 

The vtophys( ) function performs a translation of the user-provided 

virtual address into a physical address usable by the adapter. In all 

likelihood, the adapter would have a very limited knowledge of the 

user process’ virtual address space, probably only knowing how to 

map virtual-to-physical for a very limited range, maybe as small as a 

single page. Pages in the user process’ virtual address space for such 

buffers would need to be fixed. The udpscript procedure would need 

to be enhanced if the user data were allowed to span page boundaries. 

Ex.1005, Erickson at 8:14-24. 

87. Tanenbaum 96 suggests the use of direct copying into the user buffer

to avoid unnecessary copy.  Ex.1006, Tanenbaum96 at .585.  Tanenbaum96 also 

identified a goal of system design for better performance was to avoid unnecessary 

copying (“[a packet] is copied to a network layer buffer, then to a transport layer 

buffer, and finally to the receiving application process.”) Ex.1006, Tanenbaum96 

at .579, .582. 

88. In implementations that avoid the extra copy steps, the DMA engine

transfers the reassembled original byte stream into user space for use by the 
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application layer.  Once the headers are processed, the application has no need for 

those headers, as demonstrated by the illustration of the protocol stack above in 

Section V.B.1.  See Ex.1006, Tanenbaum96 at .055-56, .541.  For example, 

Tanenbaum96 discloses that the headers are checksummed before transferring data 

to user space to verify that it is going to the correct location:  “The header and data 

should be separately checksummed, for two reasons. First, to make it possible to 

checksum the header but not the data. Second, to verify that the header is correct 

before starting to copy the data into user space. It is desirable to do the data 

checksum at the time the data are copied to user space, but if the header is 

incorrect, the copy may be to the wrong process.”  Id. at .589.  The TCP/IP headers 

are added (and stripped off) by intermediate layers as the data moves through the 

protocol stack. 

VI. OVERVIEW OF 948 PATENT

89. The 948 Patent relates to offloading TCP protocol processing for

established TCP connections to a network interface card (NIC).  Ex.1001, 948 

Patent at Abstract.  The specification of the 948 Patent refers to the disclosed NIC, 

which performs offloading, as an “intelligent network interface card (INIC)”.  See 

id. at Abstract. 

90. The INIC of the 948 Patent permits two modes of operation:  a “fast

path” in which protocol processing from the physical layer through the TCP layer 
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bypasses the host protocol stack and is instead performed on the INIC, and a “slow 

path” in which network frames are handed to the host at the MAC layer and passed 

up through the host protocol stack conventionally.  The concept is illustrated in 

Fig. 6, shown below: 

A simplified intelligent network interface card (INIC) 150 is shown in 

FIG. 6 to provide a network interface for a host 152. Hardware logic 

171 of the INIC 150 is connected to a network 155, with a peripheral 

bus (PCI) 157 connecting the INIC and host. The host 152 in this 

embodiment has a TCP/IP protocol stack, which provides a slow-path 

158 for sequential software processing of message frames received 

from the network 155. The host 152 protocol stack includes a data 

link layer 160, network layer 162, a transport layer 164 and an 

application layer 166, which provides a source or destination 168 for 

the communication data in the host 152….  The INIC 150 has a 

network processor 170 which chooses between processing messages 
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along a slow-path 158 that includes the protocol stack of the host, or 

along a fast-path 159 that bypasses the protocol stack of the host.  

Ex.1001, 948 Patent at Fig.6; 9:11-29. 

91. When a connection is created, the host computer creates a connection

record that is referred to in the 948 Patent as a “Communication Control Block 

(CCB).”  Ex.1001, 948 Patent at 5:22-29.  This contains similar information as in 

the Transmission Control Block (TCB) in RFC791, namely connection and state 

information for the connection.  Ex.1001, 948 Patent at 12:32-39.  When the INIC 

receives a packet, it checks whether a connection exists by looking for a CCB 

corresponding to the connection information in the received packet header.  The 

INIC uses the result of this comparison to determine which “path” should be used 

for a received packet.  If the connection exists, the packet is processed on the fast 

path, bypassing the host protocol stack: 

The processor 170 chooses, for each received message packet held in 

storage 185, whether that packet is a candidate for the fast-path 159 

and, if so, checks to see whether a fast-path has already been set up 

for the connection that the packet belongs to. To do this, the processor 

170 first checks the header status summary to determine whether the 

packet headers are of a protocol defined for fast-path candidates.… 

For fast-path 159 candidates, the processor 170 checks to see whether 

the header status summary matches a CCB held by the INIC. If so, the 

data from the packet is sent along fast-path 159 to the destination 168 
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in the host. If the fast-path 159 candidate's packet summary does not 

match a CCB held by the INIC, the packet may be sent to the host 152 

for slow-path processing to create a CCB for the message. 

Ex.1001, 948 Patent at 11:57-22-12:10. 

92. The claims of the 948 Patent are directed to fast-path TCP receive

processing when a connection is in the ESTABLISHED state (in other words, there 

are no exceptions such as no IP fragmentation, or one of the SYN, FIN or RST 

flags set in the received packet). 

VII. 948 PATENT PROSECUTION HISTORY

93. I have reviewed the prosecution history of the 948 Patent.  There were

no rejections or amendments during the prosecution of the 948 Patent. 

94. The  948 Patent is a continuation of U.S. Patent Application No.

09/692,561, filed October 18, 2000, which is a continuation of U.S. Patent No. 

6,226,680, filed April 28, 1998, which claims the benefit of U.S. Patent 

Application No. 60/061,809 filed October 14, 1997. Therefore, the earliest possible 

priority date of the 948 Patent is October 14, 1997. 

95. On December 19, 2013, Applicant filed an Information Disclosure

Statement with 383 patents, 41 applications, 13 foreign patents, and 112 non-patent 

literature documents, including Thia and Tanenbaum96.  See Ex.1002 at .075-99. 

Neither Thia nor Tanenbaum96 were discussed during the prosecution of the 

application leading to the 948 Patent. 

INTEL Ex.1003.051



Petition for Inter Partes Review of 8,850,948 
Ex. 1003 (“Horst Decl.”) 

49 

96. On June 20, 2014, the Examiner gave the following reasons for

allowance: 

Ex.1002, 948 Prosecution History at .117. 

VIII. CLAIM CONSTRUCTIONS

A. Legal Standard

97. I understand that in deciding whether to institute inter partes review,

“[a] claim in an unexpired patent shall be given its broadest reasonable 

construction in light of the specification of the patent in which it appears.” 37 

C.F.R. § 42.100(b).  I further understand that “the broader standard serves to 

identify ambiguities in the claims that can then be clarified through claim 

amendments.”  Final Rule, 77 Fed. Reg. 48680, 48699 (Aug. 14, 2012). 

98. In forming my opinions as set forth in this declaration, I have

accorded all claim terms in claims 1, 3, 6-9, 11, 14-17, 19, and 21-22 in the 948 

Patent their broadest reasonable interpretation, as would be understood by a person 
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of ordinary skill in the art at the time of the alleged invention of the alleged 

invention of the 948 Patent. 

IX. THE PRIOR ART

A. Thia:  Thia, A Reduced Operation Protocol Engine (ROPE) for a
mulitple-layer bypass architecture (1995) 6 

99. Thia describes a hardware protocol engine for fast-path data transfer,

where the hardware bypasses the host protocol stack for certain packets: 

Abstract - The Reduced Operation Protocol Engine (ROPE) presented 

here offloads critical functions of a multiple-layer protocol stack, 

based on the "bypass concept" of a fast path for data transfer.  

Ex.1015, Thia at .001.  Thia is based on the Open System Interconnect (OSI) 

protocol that I discussed above in Section V.A.1. 

100. Thia’s hardware protocol offload system compares the incoming 

packet headers with a template that identifies “predicted bypassable headers” (in 

other words, those that are in a “data transfer phase” (consecutive packets for the 

same connection).  Thia refers to the ROPE hardware as a reduced operation 

protocol engine because it only handles this subset of packets.  Ex.1015, Thia at 

6 Thia was published in 1995.  I understand that it is prior art because it was 

published before October 14, 1997, the date to which Alacritech claims priority. 

See Ex.1015, Thia. 
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.004 (“The number of possible PDU formats in the bypass path is reduced to data 

transfer PDUs”).  Thia discloses the use of a receive bypass test (RX bypass test in 

Figure 1) where the  ROPE hardware performs all protocol processing for packets 

in this “data transfer phase,” bypassing the standard protocol stack (SPS) (host 

protocol stack): 

2.1 Bypass Architecture 

Figure 1 illustrates the architecture of a bypass implementation for 

any standard protocol. The standard protocol stack (SPS) is the 

processing path taken by all PDUs [Protocol Data Units i.e. packets] 

during a connection without the bypass….  The receive bypass test 

matches the incoming PDU headers with a template that identifies the 

predicted bypassable headers. The bypass stack performs all the 

relevant protocol processing in the data transfer phase. The shared 

data are used to maintain state consistency between the SPS and the 

bypass stack, including window flow control parameters and 

connection identifiers. 

Ex.1015, Thia at .003.  This “receive bypass test” is performed on the ROPE (i.e., 

the Network Interface Adapter).  Ex.1015, Thia at .006.  I have illustrated the fast 

and slow path processing disclosed by Thia below. 
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Id. at .003 (annotated). 

101. Thia’s receive bypass test is a generalization of Jacobson’s well-

known Header Prediction Algorithm” for TCP/IP, which is also described in the 

Tanenbaum96 and Stephens2 references discussed below.  Id. at .002.  Thia 

teaches that the receive bypass test ensures that the protocol bypass on the ROPE is 

for packets without exceptions – i.e., those in the “data transfer phase” (this is also 

what Stevens2 referred to as the ESTABLISHED state for TCP) and that the SPS 

on the host handles packets in the other phases: 

A multiple-layer bypass path is a concatenation of processing 

procedures performed by the adjacent layers when they are 

simultaneously in the data transfer phase. Meanwhile, the separate 

User A 
receives a 
packet 
from 
User B

No bypass 
– Host
processes 
the packet Bypass – 

ROPE 
processes 
the packet 
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layers in the SPS [Standard Protocol Stack] path handle the other 

phases. 

In summary, the separation of the bypass path offers the following 

advantages: 

· The processing path of data PDUs can be optimized;

· The number of possible PDU [Protocol Data Unit i.e. packet]

formats in the bypass path is reduced to data transfer PDUs; 

· The finite state machine of the protocol is now reduced to only the

"OPEN" state, for as long as processing remains in the bypass path. 

The state of the system does not change during the entire data transfer 

phase and the protocol processing is reduced to ensuring reliable 

transfer of data across the communications network. 

Id. 

102. The receive bypass test “matches” the incoming PDU (packet) 

headers with a template that identifies the next in sequence (predicted) bypassable 

headers.  Id. at .003.  To be part of the data transfer, the received packets must 

indicate that they are for the same connection.  A POSA would have understood 

that the headers would be parsed to identify the fields to be matched with the 

template.  The bypass stack then “performs all the relevant protocol processing in 

the data transfer phase.”  Id.  As I described above in Section V.A, on the receive 

side, this includes stripping off the headers and handing up the payload to the layer 

above.  The bypass stack on the ROPE performs header decoding and can perform 

the checksum on the transport layer.  Id. at .006. 
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103. Thia’s DMA then copies the data to Host Memory, eliminating data 

copying within layers.  Id. at .007 (“Movement of data across the host bus interface 

are minimized by using an on-chip DMA for fast block data transfer to/from the 

host system memory.”) (emphasis added).  A POSA would understand that only 

the payload data is transferred. The headers need not be transferred because they 

are decoded and checked by the bypass chip.  Highlighted Table 1 and Figure 2 of 

Thia show these functions: 
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Id. at .006 (annotated).  In other words, a POSA would have understood that the 

transport header is stripped off before the data is transferred to the layer above as 

described in Section V.B.1 

Id. at .007 (annotated). 

104. Thia indicates that creating the bypass for certain operations was 

implemented with minimal changes to the original software.  Id. at .002.  Thia 

teaches that using a bypass for multiple layers (i.e., concatenation of processing 

procedures in adjacent layers in the data transfer phase) provides additional gains, 

including avoiding the overhead of encoding and decoding the interface control 
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packet and stores 
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memory 
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information passed between layers and the queueing of data at layer boundries.  Id. 

at .004. 

B. Tanenbaum96: A. Tanenbaum, Computer Networks, 3rd ed. 
(1996)7 

105. Tanenbaum96, “Computer Networks,” is a 700+ page text book 

covering network hardware, software, protocols and standards.  It is a third edition 

of the 1981 Tanenbaum book. Tanenbaum96 is a widely-cited textbook covering 

network hardware, software, protocols (including OSI and TCP/IP) and standards. 

The 1996 edition is cited and incorporated by reference in the 948 Patent. 

106. Tanenbaum96 describes both TCP and UDP protocols.  Note that 

UDP, unlike TCP, is connectionless and thus does require setting up a connection: 

The Internet has two main protocols in the transport layer, a 

connection oriented protocol and a connectionless one. In the 

following sections we will study both of them. The connection-

oriented protocol is TCP. The connectionless protocol is UDP.  

Ex.1006, Tandenbaum96 at .539. 

7 Tanenbaum96 was a well-known resource to a POSA.  I understand that it is prior 

art because it was published before October 14, 1997, the date to which Alacritech 

claims priority.  See Ex.1006, Tanenbaum96. 
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Id. at .055, Fig 1-19. 

107. Tanenbaum96 recognizes that an “obstacle to fast networking is 

protocol software,” and teaches “fast path” processing for TCP as a solution.  Ex. 

1006 at .583-585.  This “fast path” solution is based off “header prediction.”  See 

Section V.E.4 above for a description of “header prediction.” 

108. Tanenbaum96 teaches that header prediction is based on the principle 

that fast path processing should apply to normal data transfers: 

The key to fast TPDU processing is to separate out the normal case 

(one-way data transfer) and handle it specially.  Although a sequence 

of special TPDUs are needed to get into the ESTABLISHED state, 

once there, TPDU processing is straightforward until one side starts to 

close the connection. 

Ex.1006, Tanenbaum96 at .583. 

109. Tanenbaum96 teaches fast path transmissions using a prototype 

header stored in the transport entity, because in the normal case of an established 

TCP connection, only a few fields of the header change in consecutive packets. 
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Compare Section V.B.5.a. (describing complexity of opening a connection, i.e., a 

“socket”).  In other words, the transport entity only needs to change a few fields to 

send subsequent packets: 

The first thing the transport entity does is make a test to see if this is 

the normal case: the state is ESTABLISHED, neither side is trying to 

close the connection, a regular (i.e., not an out-of-band) full TPDU 

[Transport Protocol Data Unit, i.e. packet] is being sent, and there is 

enough window space available at the receiver.  If all conditions are 

met, no further tests are needed and the fast path through the sending 

transport entity can be taken.  

In the normal case, the headers of consecutive data TPDUs are almost 

the same.  To take advantage of this fact, a prototype header is stored 

within the transport entity. At the start of the fast path, it is copied as 

fast as possible to a scratch buffer, word by word. Those fields that 

change from TPDU to TPDU are then overwritten in the buffer.  

Id. at .583 (emphasis added). 

110. The fast path send and receive processing are illustrated in Figure 6-

49 of Tanenbaum96. 
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Ex.1006, Tanenbaum96 at .584. 

111. Tanenbaum96 teaches that the transport entity can be implemented by 

the host operating system, or can be offloaded to the NIC (e.g., as a processor on 

the NIC): 

The hardware and/or software within the transport layer that does the 

work is called the transport entity. The transport entity can be in the 

operating system kernel, in a separate user process, in a library 

package bound into network applications, or on the network interface 

card.  

Id. at .498 (underlining added, bold in original). 

112. Tanenbaum96 discloses that the TCP transport entity divides data 

streams into TCP segments for subsequent transmission.  See Section V.B.8. 
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(segmentation description). The receiving TCP transport entity reconstructs the 

byte stream from the received TCP segments. 

Each machine supporting TCP has a TCP transport entity, either a 

user process or part of the kernel that manages TCP streams and 

interfaces to the IP layer. A TCP entity accepts user data streams from 

local processes, breaks them up into pieces not exceeding 64K bytes 

(in practice, usually about 1500 bytes), and sends each piece as a 

separate IP datagram. When IP datagrams containing TCP data arrive 

at a machine, they are given to the TCP entity, which reconstructs the 

original byte streams.  

Id. at .540.  A POSA would understand that the byte stream is transferred 

and stored into application memory without the headers from the layers 

below. 

113. Tanenbaum96 goes on to describe a TCP prototype header (i.e., a 

header template that is used to create additional headers for sending packets) and 

offloading protocol processing by the transport entity in detail: 
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Id. at .584 (emphasis added). 

114. Tanenbaum96 also teaches TCP fast path receiving by looking up a 

TCP connection record based on the IP source address, TCP source port, IP 

destination address and TCP destination address, checking to see if it the packet is 

a normal one in the ESTABLISHED state, and then putting the data into user 

memory.  In other words, Tanenbaum96 is teaching that the transport entity 

performs this check to determine whether the packet is suitable for fast path 

processing.  See Section V.E.4. (header prediction offload).  Note that there may be 

multiple connections on a single computer, and thus when a packet comes in, it 

must be checked against the connection records that may represent multiple 

connections: 
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Now let us look at fast path processing on the receiving side….  For 

TCP, the connection record can be stored in a hash table for which 

some simple function of the two IP addresses and two ports is the key. 

Once the connection record has been located, both addresses and both 

ports must be compared to verify that the correct record has been 

found….   

[T]he TPDU [Transport Protocol Data Unit, i.e. packet] is then 

checked to see if it is a normal one: the state is ESTABLISHED, 

neither side is trying to close the connection, the TPDU is a full one, 

no special flags are set, and the sequence number is the one expected. 

These tests take just a handful of instructions. If all conditions are 

met, a special fast path TCP procedure is called.  

The fast path updates the connection record and copies the data to the 

user. While it is copying, it also computes the checksum, eliminating 

an extra pass over the data. If the checksum is correct, the connection 

record is updated and an acknowledgement is sent back. The general 

scheme of first making a quick check to see if the header is what is 

expected, and having a special procedure to handle that case, is called 

header prediction. Many TCP implementations use it. 

Ex.1006, Tanenbaum96 at .584-.585 (underlining added, bold in original). 

Tanenbaum discloses that part of Header Prediction is checking whether the 

received matches a connection record (i.e., whether the source and destination 

addresses and ports match).  The phrase “the TPDU is a full one” means that it is a 

full TPDU, in other words, not fragmented.  The phrase “the sequence number is 
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the one expected” means that it is the next packet in sequence as determined by the 

sequence number, in other words it is not out of order or a retransmission. 

115. Tanenbaum discloses the function of the RST, SYN and FIN control 

flags. When the SYN flag is set, it indicates that the connection is not yet in the 

ESTABLISHED state. If either the RST or FIN flag is set, that indicates that the 

connection will be closed (i.e., is to be taken out of the ESTABLISHED state): 

The RST bit is used to reset a connection that has become confused 

due to a host crash or some other reason. It is also used to reject an 

invalid segment or refuse an attempt to open a connection. In general, 

if you get a segment with the RST bit on, you have a problem on your 

hands. 

The SYN bit is used to establish connections. The connection request 

has SYN= 1 and ACK= 0 to indicate that the piggyback 

acknowledgement field is not in use. The connection reply does bear 

an acknowledgement, so it has SYN = 1 and ACK = 1. In essence the 

SYN bit is used to denote CONNECTION REQUEST and 

CONNECTION ACCEPTED, with the ACK bit used to distinguish 

between those two possibilities. 

The FIN bit is used to release a connection. It specifies that the sender 

has no more data to transmit. However, after closing a connection, a 

process may continue to receive data indefinitely. Both SYN and FIN 

segments have sequence numbers and are thus guaranteed to be 

processed in the correct order. 

INTEL Ex.1003.066



Petition for Inter Partes Review of 8,850,948 
Ex. 1003 (“Horst Decl.”) 

64 

Id. at .545. 

116. Tanenbaum96 shows the finite state machine used by TCP/IP to 

maintain a connection.  The arrows indicate how the state changes in response to 

the flags (SYN, FIN, ACK, RST) in the TCP header: 
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Id.at .550.  As can be seen from the state diagram, the SYN, FIN and RST control 

flags affect whether a TCP connection is in the ESTABLISHED state.  SYN 

(synchronize) establishes a connection, FIN (finished) releases a connection, and 
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RST (reset) is “used to reset a connection that has become confused due to a host 

crash or some other reason.”  Ex.1006, Tanenbaum96 at .545, Fig.6-24.  Figure 6-

24 of Tanenbaum96 illustrates these flags in the TCP header. 

Id. at .544. 

117. The “connection record” disclosed in Tanenbaum96 is used to 

maintain TCP state: 

When an application on the client machine issues a CONNECT 

request, the local TCP entity creates a connection record, marks it as 

being in the SYN SENT state, and sends a SYN segment. Note that 

many connections may be open (or being opened) at the same time on 
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behalf of multiple applications, so the state is per connection and 

recorded in the connection record. 

Id. at .549 (emphasis added). 

118. The “connection record” is the same as the “Transmission Control 

Block (TCB)” described in RFC 793, the TCP protocol specification: 

Before we can discuss very much about the operation of the TCP we 

need to introduce some detailed terminology.  The maintenance of a 

TCP connection requires the remembering of several variables.  We 

conceive of these variables being stored in a connection record called 

a Transmission Control Block or TCB. 

Ex.1007, RFC 793 at .024 (emphasis added). 

119. I describe a TCB and RFC 793 in Section V.B.5. 

120. Tanenbaum96 teaches that “[f]or TCP, the connection record can be 

stored in a hash table for which some simple function of the two IP addresses and 

two ports is the key.”  Ex.1006, Tanenbaum96 at .585. 

121. Again, there may be multiple connections, and Tanenbaum96 is 

teaching a technique to quickly lookup the connection record that corresponds to 

the received packet. 

122. Tanenbaum96 discloses the benefits of fast path processing where 

unnecessary interlayer data copying is limited before the data reaches the receiving 

application process.  Id. at .579, .582; Id. at .590 (“As we saw earlier, copying data 
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is often the main source of overhead. Ideally, the hardware should dump each 

incoming packet into memory as a contiguous block of data.”) 

C. Stevens2: Stevens, TCP-IP Illustrated, Vol. 2 

123. Stevens2 is one of the most widely-read and referenced books on the 

implementation of TCP/IP.  Stevens2 is a guide to the source code for TCO/IP 

implementation in the 4.4BSD-Lite distribution, which was widely-used to 

implement TCP/IP by companies designing networking products.  Stevens2 

includes a discussion of BSD’s implementation of Jacobson’s Header Prediction, 

which was written by Jacobson. Ex.1013, Stevens2 at .960 (“Header Prediction 

was put into the 4.3BSD Reno release by Van Jacobson”) The 948 Patent claims 

priority to a 1997 provisional, which indicates that “The base for the receive 

processing done by the INIC on an existing context is the fast-path or ‘header 

prediction’ code in the FreeBSD release.”  Ex.1031, 1997 Provisional at .057. 

124. Header prediction was described in Stevens2 as follows: 

Header prediction helps unidirectional data transfer by handling the 

two common cases. . . If TCP is receiving data, the next expected 

segment for this connection is the next in-sequence data segment. . . a 

small set of tests determines if the next expected segment has been 

received, and if so, it is handled in-line, faster than the general 

processing that follows. 
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125. Stevens2 includes code and the general algorithm describing Header 

Prediction that allows for fast path processing in the common case where 1) the 

connection state is ESTABLISHED, 2) there are no control flags set (SYN, FIN, 

RST, URG, ACK), and 3) the packet is in-sequence (not out of order or a 

retransmission). 
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Ex.1013 at .962-963. 

126. The code and algorithm above are implemented at the TCP layer, and 

thus, do not check for IP fragmentation because the IP layer reassembles 

fragmented IP packets.  Fragmentation, like out of order packets, would require 

special handling that is not the common case. 

X. OBVIOUSNESS COMBINATIONS – MOTIVATIONS TO COMBINE 

A. Thia in Combination with Tanenbaum96 

127. Thia discloses a chip for fast path receive protocol processing and a 

bypass test to offload protocol processing of consecutive packets for the same 

connection in the data transfer phase for the OSI Session and Transport layer 
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protocols.  Ex.1015, Thia at .001, .003.  Thia discloses that its protocol stack 

bypass could be used with “any standard protocol.”  Id. at .003. A POSA would be 

motivated to use Thia’s fast path protocol processing for TCP/IP, which was 

among the most popular transport protocols in the world in 1996, to achieve the 

many benefits described by Thia, including eliminating “inter-layer operations 

such as queue and buffer management, context switching, and the movement of 

data across layers, all of which are a significant overhead.”  Id. at .001. 

128. In 1996, the Internet and World Wide Web, using TCP/IP, was 

growing extremely popular.  See generally Section V.A.-B.  Thia looked to header 

prediction algorithm for TCP/IP.  Ex.1015, Thia at .001.  Given this, a POSA at 

this time would have been motivated to implement the TCP/IP fast path protocol 

processing with the Jacobson header prediction algorithm, using Thia’s Reduced 

Operation Protocol Engine hardware.  A POSA seeking to use Thia’s chip with 

TCP/IP would naturally look to a well-known “simplified . . . college-level 

textbook devoted primarily to th[e] subject . . ., such as Computer Networks, Third 

Edition (1996) by Andrew S. Tanenbaum.”  Ex.1001, 948 Patent at 3:4-8.  At the 

time, there were a finite number of networking protocols, particularly that were as 

popular as TCP/IP, and thus it would have further been obvious to try to implement 

TCP/IP using Thia’s ROPE chip on the network interface adapter.  See generally 

Section V.A.-B. Tanenbaum96 addresses both the OSI and TCP/IP models, and 
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notes that “the TCP/IP internet layer is very similar in functionality to the OSI 

network layer,” and that the TCP/IP transport layer “is designed to allow peer 

entities on the source and destination hosts to carry on a conversation, the same as 

in the OSI transport layer.”  Ex.1006, Tanenbaum96 at .054.  Tanenbaum96 also 

discloses that TCP/IP became the dominant protocol suite as the OSI model 

vanished.  Ex.1006, Tanenbaum96 at .016.  A POSA would have been motived to 

migrate to the more dominant TCP/IP protocol suite as OSI models vanished. 

Therefore, Thia’s SPS would include an IP layer in place of the OSI Network layer 

and a TCP layer in place of the OSI Transport layer with TCP payload data 

delivered to the Application layer (including functionality from the OSI 

Presentation and Session layers) running above the transport layer.  Thia’s 

modified bypass test would match the incoming TCP/IP headers with a template 

such as the one disclosed in Tanenbaum96 for header prediction and, after the 

bypass stack processing, would copy only the received data to the Host Memory in 

order without the TCP headers. 

129. As I have described in Section V.A.2. and V.B., a POSA would have 

understood TCP/IP well and standards for TCP/IP are set forth in well-known 

Request for Comments (RFCs).  Accordingly, a POSA would have had a high 

expectation of success in implementing TCP/IP on Thia’s ROPE chip on the 

network interface adapter.  Tanenbaum96 discloses that the transport processing 
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can be offloaded to a Network Interface Card (e.g., as a processor on the NIC). 

Tanenbaum96 identified a goal of system design for better performance was to 

avoid unnecessary copying (“[a packet] is copied to a network layer buffer, then to 

a transport layer buffer, and finally to the receiving application process.”), 

Ex.1006, Tanenbaum96 at .579, .582.  Thia similarly teaches that “data Copying 

within layers is eliminated” and discloses the use of a DMA to move data to the 

Host Memory supporting the goal of “high-speed bulk data transfer.”  Ex.1015, 

Thia at Table 1, .002, .006, .007.  Thus, Thia’s fast path processing and DMA 

would support Tanenbaum’s goals. 

130. Thia, like Tanenbaum, discloses a fast path protocol bypass that is 

based on Jacobson’s Header Prediction Algorithm for TCP/IP.  Ex.1015, Thia at 

.002.  Thia states that it’s “receive bypass test” matches incoming headers with a 

template that identifies the predicted bypassable headers.  Thia, like Tanenbaum96, 

disclose that fast-path processing is to be limited to the normal data transfer state 

(“OPEN” state) where consecutive packet are received for the same connection in 

order to perform a reduced number of protocol operations on the incoming data. 

Ex.1015, Thia at .004.  Tanenbaum96 describes that Header Prediction determines 

if the received packet is a normal one and describes the conditions to check make 

that determination.  Packets meeting those conditions are eligible for fast path 

processing.  This includes verifying that there is a connection record matching the 
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two IP addresses (one for source and one for destination) and two ports (one for 

source and one for destination) found in the header of the packet.  Ex.1006, 

Tanenbaum at .585.  Additionally, the connection “state is ESTABLISHED, neither 

side is trying to close the connection, TPDU is a full one [i.e., not fragmented], no 

special flags are set, and the sequence number is the one expected [not out of 

order].”  Id. at .583. 

131. Combining Tanenbaum96’s TCP/IP and header prediction with Thia 

would have been understood as combining known methods to yield predictable 

results.  For example, TCP/IP was well known.  See Section V.B.  Header 

prediction was well known.  See Section V.E.4.  Offloading protocol processing 

was also generally well known.  See Section V.B.C.-G. 

132. A POSA reading Thia in view of Tanenbaum96 would have been 

motivated to use Tanenbaum96’s conditions to determine normal packets eligible 

for fast path processing as part of Thia’s received bypass test because, as discussed 

in Sections IX.A and IX.B, both are based on Jacobson’s TCP/IP Header 

Prediction that is used to improve performance by bypassing standard protocol 

processing for normal data transfers that do not need special processing and 

avoiding multiple data copies and encoding associated with multilayer processing. 

See Ex.1006, Tanenbaum96 at .584-585; Ex.1015, Thia at .002.  Tanenbaum96 

teaches that transport processing can be offloaded to a Network Interface Card, 
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such as the ROPE chip in Thia.  Further, a POSA would have been motivated to 

reduce the burden of protocol processing on the host processor such that it may 

perform other necessary functions.  Thus, a POSA would have been motivated to 

migrate to TCP/IP and offload protocol processing for normal data transfers from a 

host processor to a separate hardware and implement direct memory access by 

storing data (stripped of the TCP headers) to eliminate interlayer copying and 

improve performance.  After the transport layer processing, the TCP header would 

be stripped off and the original byte stream would be transferred to host memory 

for use by the application. 

B. Thia in Combination with Tanenbaum96 and further in 
Combination with Stevens2 

133. A POSA would have been motivated to combine Stevens2 with Thia, 

in view of Tanenbaum96.  Both Tanenbaum96 and Stevens2 were widely-

referenced books describing different aspects of protocols such as TCP/IP. 

Tanenbaum96 references Stevens2 as providing a comprehensive treatment of 

TCP, IP and related protocols.  Ex.1006, Tanenbaum96 at .790.  Similarly, 

Stevens2 expressly references the earlier 1989 second edition of Tanenbaum96 in 

its bibliography.  Further, like Tanenbaum96, Stevens2 is another well-known 

textbook concerning the layered protocol TCP/IP.  Stevens2 reproduces and 

explains Jacobson’s implementation of Header Prediction that was in a freely 
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available and widely used BSD TCP/IP protocol stack implementation.  Ex.1013, 

Stevens2 at .960-963. 

134. Stevens2 discloses that Header Prediction improves data transfer by 

handling the common (normal) case where TCP is receiving data and the next 

expected segment for the connection is the next in-sequence data segment. 

Ex.1013, Stevens2 at .962.  In other words, calling for a reduced amount of 

protocol processing for the easiest and most common situation in the data transfer 

state.  Ex.1006, Tanenbaum96 at .583 (“The key to fast TPDU processing is to 

separate out the normal case (one-way data transfer) and handle it specially.”). 

Header Prediction determines whether the next expected segment has been 

received by checking whether it is the same connection; the connection is 

ESTABLISHED; the SYN, FIN, RST, and URG flags are not set, and the segment 

is not out of order, consistent with the description of fast path processing in 

Stevens2.  Ex.1013, Stevens2 at .962-963.  This is also similar to the description of 

the receive bypass test in Thia used to determine whether the received packet 

matches a template and is one in a normal data transfer phase.  Ex.1015, Thia at 

.003.  This is not surprising because all three references are derived from or 

describing Jacobson’s header prediction algorithm. 

135. A POSA would be motivated to combine Thia’s receive bypass test 

with the conditions of Jacobson’s Header Prediction as explained in Tanenbaum96 
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and Stevens2 because a POSA would want to reduce the burden of protocol 

processing on the host processor to reduce the bottleneck recognized by Thia and 

Tanenbaum96 and free up the host processor to allow it to perform other necessary 

functions.  This includes the interlayer copying that Thia seeks to avoid by 

performing this reduced operation protocol on its ROPE chip on the network 

interface adapter.  Thus, a POSA would be motivated to use Thia’s separate 

hardware to offload processing from a host processor to efficiently process a 

continuous sequence of normal/expected packets that have a pre-established 

connection. 

XI. GROUNDS OF INVALIDITY

136. I detail how the prior art invalidates the claims at issue in the

Appendix A claim chart.  In summary, my opinion is that claims 1, 3, 6-9, 11, 14-

17, 19, and 21-22 of the 948 Patent are invalid over Thia in view of Tanenbaum96 

and in further view of Stevens2. 
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13 7. I declare that all statements made herein on my own knowledge are 

true and that all statements made on information and belief are believed to be true, 

and further, that these statements were made with the knowledge that willful false 

statements and the like so made are punishable by fine or imprisonment, or both, 

under Section 1001 of Title 18 of the United States Code. 

Respectfully submitted, 

Robert Horst, Ph.D. 

Date: April 18, 2017 
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Y.H. Thia & C.M. Woodside, A Reduced Operation Protocol Engine 
(ROPE) for a Multiple-layer Bypass Architecture (1995) (“Thia”) in 
view of Andrew S. Tanenbaum, Computer Networks (3rd ed. 1996) 

(“Tanenbaum96”) in further view of 2 Gary R. Wright & W. Richard 
Stevens, TCP/IP Illustrated: The Implementation (1995) (“Stevens2”) 

[1.P] A method for network communication by a host computer having a 
network interface that is connected to the host by an input/output bus, the 
method comprising 

To the extent that the preamble is limiting, Thia in view of 
Tanenbaum96 in further view of Stevens2 discloses a method for network 
communication by a host computer having a network interface that is 
connected to the host by an input/output bus. 

Specifically, Thia discloses a Reduced Operation Protocol Engine 
(ROPE) chip and a Network Interface Adapter (NIA) (together “a network 
interface”), both of which are connected to the Host Processor and Host 
Memory (together the “host computer”) by a Host Processor Bus (“an 
input/output bus”).  I annotate these components in Figure 2 of Thia below: 
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Y.H. Thia & C.M. Woodside, A Reduced Operation Protocol Engine 
(ROPE) for a Multiple-layer Bypass Architecture (1995) (“Thia”) in 
view of Andrew S. Tanenbaum, Computer Networks (3rd ed. 1996) 

(“Tanenbaum96”) in further view of 2 Gary R. Wright & W. Richard 
Stevens, TCP/IP Illustrated: The Implementation (1995) (“Stevens2”) 

[1.P] A method for network communication by a host computer having a 
network interface that is connected to the host by an input/output bus, the 
method comprising 

 

 
Ex.1015, Thia at .007, Fig. 2.1  A POSA would understand that the 
combination of the ROPE chip with the NIA is the “network interface” 
because they operate together and provide the interface between the 
Transmission Medium (used for “network communication”) and the Host 
Processor and Host Memory.   

                                           
1 Emphasis added unless otherwise noted. 

Input/Output Bus 

Host Computer 
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Y.H. Thia & C.M. Woodside, A Reduced Operation Protocol Engine 
(ROPE) for a Multiple-layer Bypass Architecture (1995) (“Thia”) in 
view of Andrew S. Tanenbaum, Computer Networks (3rd ed. 1996) 

(“Tanenbaum96”) in further view of 2 Gary R. Wright & W. Richard 
Stevens, TCP/IP Illustrated: The Implementation (1995) (“Stevens2”) 

[1.P] A method for network communication by a host computer having a 
network interface that is connected to the host by an input/output bus, the 
method comprising 
 
Accordingly, Thia in view of Tanenbaum96 in further view of Stevens2 
discloses a method for network communication by a host processor and host 
memory (host computer) having a ROPE chip with the NIA (network 
interface) that is connected to the host processor by a Host Processor Bus 
(input/output bus). 
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Thia in view of Tanenbaum96 in further view of Stevens2 
[1.1] running, on the host computer, a protocol processing stack including an 
Internet Protocol (IP) layer and a Transmission Control Protocol (TCP) 
layer, with an application layer running above the TCP layer; 
Thia in view of Tanenbaum96 in further view of Stevens2 discloses running, 
on the host computer, a protocol processing stack including an Internet 
Protocol (IP) layer and a Transmission Control Protocol (TCP) layer, with 
an application layer running above the TCP layer.   
 
As explained in Section IX.A, Thia discloses a Standard Protocol Stack 
(SPS) running on the host computer.  Specifically, Thia discloses a bypass 
architecture in which a “receive bypass test” (RX Bypass Test) on the 
Network Interface Adapter (NIA) (Ex.1015, Thia at .006), determines 
whether a received packet is to be processed by a fast path bypass stack on 
the ROPE chip or the SPS on the host.  I illustrated these components below: 
 

 

Host Computer  
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Thia in view of Tanenbaum96 in further view of Stevens2 
[1.1] running, on the host computer, a protocol processing stack including an 
Internet Protocol (IP) layer and a Transmission Control Protocol (TCP) 
layer, with an application layer running above the TCP layer; 
Ex.1015, Thia at .003, Fig.1. 

 

Ex.1015, Thia at .007, Fig.2. 
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Thia in view of Tanenbaum96 in further view of Stevens2 
[1.1] running, on the host computer, a protocol processing stack including an 
Internet Protocol (IP) layer and a Transmission Control Protocol (TCP) 
layer, with an application layer running above the TCP layer; 

 

 

Ex.1015, Thia at .003, Fig.1.  See also id. at .010 (“Whenever the host 
processor encounters a switch in the processing path, i.e., from the bypass 
stack to the SPS. . .”), .002 (“The contribution of this paper is to define the 
host/chip interface and the chip operation.”). 
 
Thia discloses that the Standard Protocol Stack (SPS) protocol processes 
packets that are not bypassed.  Ex.1015, Thia at .003 (“The standard 
protocol stack (SPS) is the processing path taken by all PDU’s during a 
connection without the bypass.”). 
 
Thia in view of Tanenbaum96 discloses an Internet Protocol (IP) layer and 
a Transmission Control Protocol (TCP) layer.  Thia discloses a hardware 
offload for the critical functions of a multiple-layer protocol stack (the SPS), 
and specifically discloses the design of a ROPE chip for the OSI Session and 

User A 
receives a 
packet 
from  
User B 

No bypass 
– Host 
processes 
the packet Bypass – 

ROPE 
processes 
the packet 
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Thia in view of Tanenbaum96 in further view of Stevens2 
[1.1] running, on the host computer, a protocol processing stack including an 
Internet Protocol (IP) layer and a Transmission Control Protocol (TCP) 
layer, with an application layer running above the TCP layer; 
Transport layer protocols.  Ex.1015, Thia at .001.   
 
As explained in Sections X, Tanenbaum96 addresses both the OSI and 
TCP/IP models, and notes that “the TCP/IP internet layer is very similar in 
functionality to the OSI network layer,” and that the TCP/IP transport layer 
“is designed to allow peer entities on the source and destination hosts to 
carry on a conversation, the same as in the OSI transport layer.”  Ex.1006, 
Tanenbaum96 at .054.  Tanenbaum96 also discloses that TCP/IP became the 
dominant protocol suite as the OSI model vanished.  Id. at .016.  A POSA 
working with the protocol processing of layered protocols in the OSI model 
would look to Tanenbaum96 and have been motivated to migrate to the 
more dominant TCP/IP protocol suite as OSI models vanished.  Thus, the 
SPS would include an IP layer in place of the OSI Network layer and a TCP 
layer in place of the OSI Transport layer and the Session layer and 
presentation layer could be incorporated into the Application layer.  See 
Ex.1006, Tanenbaum96 at .054 (“the TCP/IP internet layer is very similar in 
functionality to the OSI network layer . . . [t]he layer above the internet layer 
in the TCP/IP model is now usually called the transport layer.  It is designed 
to allow peer entities . . . to carry on a conversation, the same as in the OSI 
transport layer”), .055 (“[the session and presentation layers] are of little use 
to most applications.”).  Thia’s bypass test is based on Jacobson’s prediction 
header for TCP/IP. 
 
As shown in the figure below from Section V.A.2 above, the OSI and 
TCP/IP models have application layers above the transport layer.  
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Thia in view of Tanenbaum96 in further view of Stevens2 
[1.1] running, on the host computer, a protocol processing stack including an 
Internet Protocol (IP) layer and a Transmission Control Protocol (TCP) 
layer, with an application layer running above the TCP layer; 

 
 
Accordingly, Thia in view of Tanenbaum96 in further view of Stevens2 
discloses a host processor and host memory (together a host computer) with 
a Standard Protocol Stack (SPS) (running a protocol processing stack) 
including an Internet Protocol (IP) layer and a Transmission Control 
Protocol (TCP) layer with an application layer running above the TCP 
layer.  
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Thia in view of Tanenbaum96 in further view of Stevens2 
[1.2] initializing, by the host computer, a TCP connection that is defined by 
source and destination IP addresses and source and destination TCP ports; 
Thia in view of Tanenbaum96 in further view of Stephens2 discloses 
initializing, by the host computer, a TCP connection that is defined by 
source and destination IP addresses and source and destination TCP ports.   

Thia discloses initializing connections by a host.  Ex.1015, Thia at .004.  As 
I discussed above with respect to limitation [1.1], a POSA would have been 
motivated to implement Thia’s Standard Protocol Stack (SPS) using the 
TCP/IP protocol suite.   

As explained in Sections V.B.4 and IX.B, a TCP/IP connection is initialized 
between two machines as illustrated in Fig.6-28. 
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Thia in view of Tanenbaum96 in further view of Stevens2 
[1.2] initializing, by the host computer, a TCP connection that is defined by 
source and destination IP addresses and source and destination TCP ports; 

 

Ex.1006, Tanenbaum96 at Fig.6-28.  The SYN flag is used to establish a 
connection, which transitions into the ESTABLISHED state.  Id. at .545, 
550.  A packet with a SYN flag fails the conditions of the receive bypass test 
because it is not in the ESTABLISHED state and processing must be 
performed by the SPS on the host.  Accordingly, the host is responsible for 
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Thia in view of Tanenbaum96 in further view of Stevens2 
[1.2] initializing, by the host computer, a TCP connection that is defined by 
source and destination IP addresses and source and destination TCP ports; 
initializing the TCP connection.  Ex.1006, Tanenbaum96 at .567. 
 
As explained in Sections V.B.4 and IX.B, a TCP/IP connection is defined by 
the IP address and TCP port for both sides of the connection.  See also 
Ex.1006, Tanenbaum96 at .541 (“TCP service is obtained by having both the 
sender and receiver create end points, called sockets . . . [e]ach socket has a 
socket number (address) consisting of the IP address of the host and a 16-bit 
number local to that host, called a port.”) 
 
Accordingly, Thia in view of Tanenbaum96 in further view of Stevens2 
discloses initializing, by the SPS on the host processor (host computer), a 
TCP connection that is defined by source and destination IP addresses and 
source and destination TCP ports.   
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Thia in view of Tanenbaum96 in further view of Stevens2 
[1.3]  receiving, by the network interface, first and second packets, wherein 
the first packet has a first TCP header and contains first payload data for the 
application, and the second packet has a second TCP header and contains 
second payload data for the application; 
Thia in view of Tanenbaum96 in further view of Stevens2 discloses a 
communication processing mechanism connected to the first processor.   
 
As I explained for limitation [1.P], Thia’s Network Interface Adapter (NIA), 
together with the ROPE chip, is the network interface. As explained in 
Section IX.A, Thia’s NIA receives multiple packets, including consecutive 
packets: 
 

2.1 Bypass Architecture 
Figure 1 illustrates the architecture of a bypass implementation for 
any standard protocol. The standard protocol stack (SPS) is the 
processing path taken by all PDUs [Protocol Data Units i.e. packets] 
during a connection without the bypass….  The receive bypass test 
matches the incoming PDU headers with a template that identifies the 
predicted bypassable headers. The bypass stack performs all the 
relevant protocol processing in the data transfer phase. The shared 
data are used to maintain state consistency between the SPS and the 
bypass stack, including window flow control parameters and 
connection identifiers. 
 

Ex.1015, Thia at .003.     
 
As disclosed in Tanenbaum96, a network interface connected to a TCP/IP 
network (as explained above for limitation [1.1]) obviously receives TCP/IP 
packets (segments).  TCP/IP packets contain TCP headers and optionally 
payload data.  The well-known structure of TCP/IP packets with TCP 
Headers and payload data is documented in Tanenbaum96. See e.g., 
Ex.1006, Tanenbaum96 at .544-547.  The TCP header is illustrated below: 
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Thia in view of Tanenbaum96 in further view of Stevens2 
[1.3]  receiving, by the network interface, first and second packets, wherein 
the first packet has a first TCP header and contains first payload data for the 
application, and the second packet has a second TCP header and contains 
second payload data for the application; 

 
Id. at .544. 
 
Thia discloses that the received data is for applications.  See id. at p.5 
(protocol processing that might limit the “effective throughput [of data] 
presented to the application processes, especially for bulk data transfer.”); 
see also id. at Fig.1 (providing data to the user).  

 
As explained above for claim limitation [1.1], the application layer is above 
the Transport layer in TCP/IP and OSI model implementations.  Ex.1006, 
Tanenbaum96 at .052-53.  Accordingly, modifying Thia to use the TCP/IP 
packets, the payload data in the TCP packet is for the Application layer (i.e., 
for the application).   

 
Thus, Thia in view of Tanenbaum96 in further view of Stevens2 discloses 
Thia’s NIA (part of the network interface) receiving packets (receiving . . . 
first and second packets, wherein the packets have a TCP header and 
payload data for the application.   
 

TCP 
Header 

TCP 
Payload 
Data 
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Thia in view of Tanenbaum96 in further view of Stevens2 

[1.4] checking, by the network interface, whether the packets have certain 
exception conditions, including checking whether the packets are IP 
fragmented, checking whether the packets have a FIN flag set, and checking 
whether the packets are out of order; 
Thia in view of Tanenbaum96 in further view of Stevens2 discloses 
checking, by the network interface, whether the packets have certain 
exception conditions, including checking whether the packets are IP 
fragmented, checking whether the packets have a FIN flag set, and checking 
whether the packets are out of order. 
 
As explained in Section IX.A, Thia’s NIA (part of the network interface) 
performs the receive bypass test (checking).   
 
As explained in Sections X.A and X.B, a POSA would have been motivated 
to implement Header Prediction as disclosed in Tanenbaum96 and Stevens2 
as a part of Thia’s receive bypass test.  Thia’s receive bypass test is a 
generalization of Jacobson’s well-known “Header Prediction algorithm” for 
TCP/IP, which is also described in the Tanenbaum96 and Stevens2 
references discussed below.  Ex.1015, Thia at .002.  As explained in 
Tanenbaum96 and Stevens2, Header Prediction checks the TCP headers of 
received packets to determine if the packet is a normal one: the state is 
ESTABLISHED (i.e., no SYN flag), neither side is trying to close the 
connection (i.e., no FIN or RST  flag), the TPDU is a full one (e.g., no IP 
fragmentation), no special flags are set (including the SYN, FIN and RST 
flags), and the sequence number is the one expected (i.e., the packets are not 
out of order). See Ex.1006, Tanenbaum96 at .565, 566-7 (many TCP 
implementations use it); 585 (disclosing the test above), .545 (description of 
flags), .542 (urgent flag); see also Ex.1013, Stevens2 at .962-963 
(walkthrough of the BSD code for the test above, which tests whether 
control flags SYN, FIN, RST, or URG are set).  Thia discloses that bypass 
processing is for bulk data transfer and excludes reassembly of fragmented 
packets, which should be restricted to the lower layers.   Ex.1015, Thia at 
.002, .014.   
 
Thus, Thia in view of Tanenbaum96 in further view of Stevens2 discloses 
the NIA (part of the network interface) performing a receive bypass test 
(checking . . . whether the packets have certain exception conditions) 
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Thia in view of Tanenbaum96 in further view of Stevens2 
[1.4] checking, by the network interface, whether the packets have certain 
exception conditions, including checking whether the packets are IP 
fragmented, checking whether the packets have a FIN flag set, and checking 
whether the packets are out of order; 
including checking for whether the packets are IP fragmented, checking 
whether the packets have a FIN flag set, and checking whether the packets 
are out of order.   

 

INTEL Ex.1003.100



 
Thia in view of Tanenbaum96 in further view of Stevens2 

[1.5] if the first packet has any of the exception conditions, then protocol 
processing the first TCP header by the protocol processing stack; 
Thia in view of Tanenbaum96 in further view of Stevens2 discloses that if 
the first packet has any of the exception conditions, then protocol processing 
the first TCP header by the protocol processing stack. 
 
As explained in Section IX.A, Thia teaches that packets that fail the receive 
bypass test are processed by the Standard Protocol Stack (SPS) (the protocol 
processing stack). 

 

Ex.1015, Thia at .003 (Bypass Architecture), Fig.1.  Thus, packets failing 
the conditions of Header Prediction would fail the receive bypass test and be 
processed by the SPS.   
 
Thus, Thia in view of Tanenbaum96 in further view of Stevens2 discloses 
that if the first packet has any of the exception conditions (failing the 
conditions of Header Prediction), then protocol processing the first TCP 
header by the protocol processing stack (Standard Protocol Stack).   
 

User A 
receives a 
packet 
from  
User B 

No bypass 
– Host 
processes 
the packet 
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Thia in view of Tanenbaum96 in further view of Stevens2 
[1.6] if the second packet has any of the exception conditions, then protocol 
processing the second TCP header by the protocol processing stack; 
Thia in view of Tanenbaum96 in further view of Stevens2 discloses if the 
second packet has any of the exception conditions, then protocol processing 
the second TCP header by the protocol processing stack. 
 
The same receive bypass test applies to all packets.  Ex.1015, Thia at .003 
(“The receive bypass test matches the incoming PDU headers with a 
template that identifies the predicted bypassable headers.”). Thus, see claim 
limitation [1.5] above. 
 
Accordingly, Thia in view of Tanenbaum96 in further view of Stevens2 
discloses that if the second packet has any of the exception conditions 
(failing the conditions of Header Prediction), then protocol processing the 
first TCP header by the protocol processing stack (Standard Protocol Stack).  
 

INTEL Ex.1003.102



Thia in view of Tanenbaum96 in further view of Stevens2 
[1.7] if the packets do not have any of the exception conditions, then 
bypassing host protocol processing of the TCP headers and storing the first 
payload data and the second payload data together in a buffer of the host 
computer, such that the payload data is stored in the buffer in order and 
without any TCP header stored between the first payload data and the 
second payload data. 
Thia in view of Tanenbaum96 in further view of Stevens2 discloses if the 
packets do not have any of the exception conditions, then bypassing host 
protocol processing of the TCP headers and storing the first payload data 
and the second payload data together in a buffer of the host computer, such 
that the payload data is stored in the buffer in order and without any TCP 
header stored between the first payload data and the second payload data.   
 
As explained in Section IX.A, Thia teaches that packets that pass the receive 
bypass test are processed by the ROPE chip (part of the network interface), 
bypassing the SPS (on the host computer), for processing.  I have illustrated 
this in Figure 1 of Thia below: 
 

 

Ex.1015, Thia at .003, Fig.1 (annotated). 
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Thia in view of Tanenbaum96 in further view of Stevens2 
[1.7] if the packets do not have any of the exception conditions, then 
bypassing host protocol processing of the TCP headers and storing the first 
payload data and the second payload data together in a buffer of the host 
computer, such that the payload data is stored in the buffer in order and 
without any TCP header stored between the first payload data and the 
second payload data. 
Thia teaches the use of DMA to move packet data from the ROPE chip to 
host memory: 

Movement of data across the host bus interface are minimized 
by using an on-chip DMA for fast block data transfer to/from 
the host system memory.   

Id. at .007.  I have illustrated this in Figure 2 of Thia below: 

 

 

Ex.1015, Thia at .007.  Thus, as packets are processed by the ROPE chip, 
their payload data is moved by DMA from the ROPE chip to host memory 
(a host buffer).   
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Thia in view of Tanenbaum96 in further view of Stevens2 
[1.7] if the packets do not have any of the exception conditions, then 
bypassing host protocol processing of the TCP headers and storing the first 
payload data and the second payload data together in a buffer of the host 
computer, such that the payload data is stored in the buffer in order and 
without any TCP header stored between the first payload data and the 
second payload data. 
 
Thia in view of Tanenbaum96 in further view of Stevens2 would be 
understood by a POSA to disclose storing payload data in order without 
intervening headers. Thia discloses that the ROPE chip (part of the network 
interface) is responsible for decoding the packet header and optionally the 
checksum.  As I’ve highlighted in Table 1 of Thia, the Header Decode 
function occurs on the ROPE chip and data copying within layers is 
eliminated: 
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Thia in view of Tanenbaum96 in further view of Stevens2 
[1.7] if the packets do not have any of the exception conditions, then 
bypassing host protocol processing of the TCP headers and storing the first 
payload data and the second payload data together in a buffer of the host 
computer, such that the payload data is stored in the buffer in order and 
without any TCP header stored between the first payload data and the 
second payload data. 

 
Ex.1015, Thia at .006.  Thus, the header is already decoded and checked 
when a packet processed by the ROPE chip moves the data to Host Memory.  
Thia discloses moving the data to host memory.  Ex.1015, Thia at .007.  A 
POSA would have appreciated that there is no need to transfer the already 
decoded and checked headers to host memory. Ex.1015, Thia at .006; 
Ex.1003, Horst Decl. at ¶128. 
 
Further, as taught by Tanenbaum, by the time the data reaches the 
application in host memory, it is stored as a byte stream.  Tanenbaum96 
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Thia in view of Tanenbaum96 in further view of Stevens2 
[1.7] if the packets do not have any of the exception conditions, then 
bypassing host protocol processing of the TCP headers and storing the first 
payload data and the second payload data together in a buffer of the host 
computer, such that the payload data is stored in the buffer in order and 
without any TCP header stored between the first payload data and the 
second payload data. 
discloses that an outbound byte stream of data is broken up and sent as 
separate IP datagrams (each with their own header). On receipt, the original 
byte stream is reconstructed (removing the headers from each datagram and 
arranging them in order) by a TCP entity on a network interface card (such 
as Thia’s ROPE chip and NIA).  See Ex.1006, Tanenbaum96 at .498 (“The 
transport entity can be . . . on the network interface card”), at .540 (“A TCP 
entity accepts user data streams from local processes, breaks them up into 
pieces . . . and sends each piece as a separate IP datagram.  When IP 
datagrams containing TCP data arrive at a machine, they are given to the 
TCP entity, which reconstructs the original byte streams.”)   
 
Also, the fast path disclosed in Tanenbaum96, consistent with the option in 
Thia, offloads the calculation of the checksum for the header, eliminating an 
extra pass over the data by higher layers.  Id. at .585; .589 (“The header and 
data should be separately checksummed, for two reasons. First, to make it 
possible to checksum the header but not the data. Second, to verify that the 
header is correct before starting to copy the data into user space. It is 
desirable to do the data checksum at the time the data are copied to user 
space, but if the header is incorrect, the copy may be to the wrong 
process.”).  Therefore, there is no need to transfer the header data to the 
application.   
 
Thus, a POSA would have been motivated to use Thia’s protocol engine for 
a TCP network interface using the TCP disclosures found in Tanenbaum96 
and Stevens2.  As explained above, when incoming packets pass the receive 
bypass test (packets do not have any of the exception conditions), they are 
processed by the ROPE chip as opposed to the SPS (bypassing host protocol 
processing of the TCP headers). The output from the ROPE chip is the 
original byte stream (in order and without any TCP header stored between). 
A POSA would utilize Thia’s on-chip Direct Memory Access (DMA) to 
transfer only the data blocks in order to a buffer in host memory (storing . . . 
together in a buffer of the host computer).   
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Thia in view of Tanenbaum96 in further view of Stevens2 
[1.7] if the packets do not have any of the exception conditions, then 
bypassing host protocol processing of the TCP headers and storing the first 
payload data and the second payload data together in a buffer of the host 
computer, such that the payload data is stored in the buffer in order and 
without any TCP header stored between the first payload data and the 
second payload data. 
 
Accordingly, Thia in view of Tanenbaum96 in further view of Stevens2 
discloses that failing the conditions of Header Prediction (if the packets have 
any of the exception conditions), the Standard Protocol Stack processing of 
the headers on the host is bypassed (bypassing host protocol processing of 
the TCP headers) and the data is stored together in Host Memory after the 
header processing is done by the ROPE (storing the first payload data and 
the second payload data together in a buffer in order and without any TCP 
header stored between the first payload data and the second payload data). 
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Thia in view of Tanenbaum96 in further view of Stevens2 
[3] The method of claim 1, wherein storing the first payload data and the 
second payload data together in a buffer of the host computer is performed 
by a direct memory access (DMA) unit of the network interface. 
Thia in view of Tanenbaum96 in further view of Stevens2 discloses the 
method of claim 1, wherein storing the first payload data and the second 
payload data together in a buffer of the host computer is performed by a 
direct memory access (DMA) unit of the network interface.   
 
As explained for claim limitation [1.8], Thia teaches the use of DMA to 
move packet data from the ROPE chip to host memory (a host buffer).  Thia 
also teaches that “data Copying within layers is eliminated.”  Ex.1015, Thia 
at Table 1.  Tanenbaum96 similarly identified a goal of system design for 
better performance was to avoid unnecessary copying (“[a packet] is copied 
to a network layer buffer, then to a transport layer buffer, and finally to the 
receiving application process.”)  Ex.1006, Tanenbaum96 at .579, .582.  
Thia’s fast path processing and DMA support bulk data transfer, eliminating 
the unnecessary copying to multiple buffers associated with the network and 
transport layers.  Ex.1015, Thia at Table1, .002, .006, .007. 
 
Accordingly, This in view of Tanenbaum96 in further view of Stevens2 
discloses storing consecutive packets (wherein storing the first payload data 
and the second payload data) in Host memory (together in a buffer of the 
host computer) is performed by the DMA (is performed by a direct memory 
access (DMA) unit) on the ROPE (of the network interface). 
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Thia in view of Tanenbaum96 in further view of Stevens2 
[6] The method of claim 1, including comparing, by the network interface, 
the IP addresses and TCP ports of the packets with the source and 
destination IP addresses and source and destination TCP ports that define the 
TCP connection. 
Thia in view of Tanenbaum96 in further view of Stevens2 discloses the 
method of claim 1, including comparing, by the network interface, the IP 
addresses and TCP ports of the packets with the source and destination IP 
addresses and source and destination TCP ports that define the TCP 
connection.   
 
As explained in Section IX.A, Thia’s NIA (part of the network interface) 
receives packets and performs the receive bypass test (comparing).  Thia 
also discloses that “The receive bypass test matches the incoming PDU 
headers with a template that identifies the predicted bypassable headers.”  
Ex.1015, Thai at .003.   
 
Similarly in Tanenbaum96, the first step of the fast path test involves 
checking the connection record against the incoming Transport Protocol 
Data Units (TPDUs) (i.e., packets) as part of the check to determine whether 
the received TPDUs were expected.  Specifically, this check includes 
comparing the source and destination IP addresses and TCP ports of the 
packets against the connection record. Ex.1006, Tanenbaum96 at .584-585 
(“Step 1 is locating the connection record for the incoming TPDU. . . Once 
the connection record has been located, both addresses and both ports must 
be compared to verify that the correct record has been found.”)  See also 
above discussion of claim element [1.1] regarding the TCP/IP connection 
being defined by source and destination IP addresses and source and 
destination TCP ports.   
 
In combining Thia with Tannenbaum96 for TCP/IP offload, a POSA would 
have been motivated to use a template to do the comparison, such as the 
prototype header provided by Tannenbaum96, for the receive bypass test.  
As I’ve illustrated below, this template includes source and destination IP 
addresses and source and destination TCP Ports. 
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Thia in view of Tanenbaum96 in further view of Stevens2 
[6] The method of claim 1, including comparing, by the network interface, 
the IP addresses and TCP ports of the packets with the source and 
destination IP addresses and source and destination TCP ports that define the 
TCP connection. 

 
 
Ex.1006, Tanenbaum96 at .584. 
 
Accordingly, This in view of Tanenbaum96 in further view of Stevens2 
discloses comparing, by the networking interface, the IP addresses and TCP 
ports of the packets with the source and destination IP addresses and source 
and destination TCP ports that define the TCP connection (prototype header 
template). 
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Thia in view of Tanenbaum96 in further view of Stevens2 
[7] The method of claim 1, wherein checking whether the packets have 
certain exception conditions includes checking whether the packets have a 
RST flag set. 
Thia in view of Tanenbaum96 in further view of Stevens2 discloses the 
method of claim 1, wherein checking whether the packets have certain 
exception conditions includes checking whether the packets have a RST flag 
set. 
 
As explained for claim limitation [1.4], Thia’s NIA (part of the network 
interface) checks the packets for certain exception conditions as part of its 
bypass test. As explained in Sections X.A and X.B, a POSA would have 
been motivated to implement the Jacobson-based Header Prediction 
disclosed in Tanenbaum96 and Stevens2 as a part of Thia’s receive bypass 
test that is based on Jacobson’s disclosure.  As explained in Section IX.C, 
Jacobson’s Header Prediction test determines whether the RST flag is set.  
Ex.1013, Stevens2 at .962 (“The following four control flags must not be on:  
SYN, FIN, RST, or URG.”) 
 
Accordingly, Thia in view of Tanenbaum96 in further view of Stevens2 
discloses the use of Header Prediction that checks whether certain flags are 
set (wherein checking whether the packets have certain exception 
conditions) including whether the RST flag is set (includes checking whether 
the packets have a RST flag set).  
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Thia in view of Tanenbaum96 in further view of Stevens2 
[8] The method of claim 1, wherein checking whether the packets have 
certain exception conditions includes checking whether the packets have a 
SYN flag set. 
Thia in view of Tanenbaum96 in further view of Stevens2 discloses the 
method of claim 1, wherein checking whether the packets have certain 
exception conditions includes checking whether the packets have a SYN flag 
set. 
 
As explained for claim limitation [1.4], Thia’s NIA (part of the network 
interface) checks the packets for certain exception conditions as part of its 
bypass test. As explained in Sections X.A and X.B, a POSA would have 
been motivated to implement the Jacobson-based Header Prediction 
disclosed in Tanenbaum and Stevens2 as a part of Thia’s receive bypass test 
that is based on Jacobson’s disclosure.  As explained in Section IX.C, 
Jacobson’s Header Prediction test determines whether the SYN flag is set.  
Ex.1013, Stevens2 at .962(“The following four control flags must not be on:  
WYN, FIN, RST, or URG.”) 

 
Accordingly, Thia in view of Tanenbaum96 in further view of Stevens2 
discloses the use of Header Prediction that checks whether certain flags are 
set (wherein checking whether the packets have certain exception 
conditions) including whether the RST flag is set (includes checking whether 
the packets have a RST flag set). 
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Thia in view of Tanenbaum96 in further view of Stevens2 
[9.P] A method for network communication by a host computer having a 
network interface that is connected to the host by an input/output bus, the 
method comprising: 
As explained with respect to claim limitation [1.P] for the identical preamble 
of Claim 1, to the extent that the preamble is limiting, Thia in view of 
Tanenbaum96 in further view of Stevens2 discloses a method for network 
communication by a host computer having a network interface that is 
connected to the host by an input/output bus.   
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Thia in view of Tanenbaum96 in further view of Stevens2 
[9.1] receiving, by the network interface, a first packet having a header 
including source and destination Internet Protocol (IP) addresses and source 
and destination Transmission Control Protocol (TCP) ports; 
Thia in view of Tanenbaum96 in further view of Stevens2 discloses 
receiving, by the network interface, a first packet having a header including 
source and destination Internet Protocol (IP) addresses and source and 
destination Transmission Control Protocol (TCP) ports. 
 
As explained above for claim limitation [1.P], Thia’s NIA, together with the 
ROPE chip, is the network interface. As explained in Section IX.A, the NIA 
receives consecutive packets.  A network interface connected to a TCP/IP 
network (as explained above for claim limitation [1.2]) receives TCP/IP 
packets.   
 
As explained above for claim limitation [1.3], Tanenbaum teaches that 
TCP/IP packets have TCP headers. Therefore, the first packet has a TCP 
header. 
 
As explained above for claim limitation [6], a TCP/IP packet header 
contains Source and Destination IP addresses and Source and Destination 
Ports. 

 
 
Ex.1006, Tanenbaum96 at .584.  
 
Accordingly, Thia in view of Tanenbaum96 in further view of Stevens2 
discloses that the NIA and ROPE receive multiple packets including a first 
packet (receiving, by the network interface, a first packet) and when 
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Thia in view of Tanenbaum96 in further view of Stevens2 
[9.1] receiving, by the network interface, a first packet having a header 
including source and destination Internet Protocol (IP) addresses and source 
and destination Transmission Control Protocol (TCP) ports; 
connected to a TCP/IP network, the packets include a header with source 
and destination Internet Protocol (IP) addresses and source and destination 
Transmission Control Protocol (TCP) ports. 
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Thia in view of Tanenbaum96 in further view of Stevens2 
[9.2] protocol processing, by the host computer, the first packet, thereby 
initializing a TCP connection that is defined by the source and destination IP 
addresses and source and destination TCP ports; 
Thia in view of Tanenbaum96 in further view of Stevens2 discloses protocol 
processing, by the host computer, the first packet, thereby initializing a TCP 
connection that is defined by the source and destination IP addresses and 
source and destination TCP ports.   
 
As explained above for claim limitation [1.1], Thia in view of Tanenbaum96 
in further view of Stevens2 discloses a protocol processing stack including 
an IP layer and a TCP layer running on the host computer, namely the 
modified SPS. 
 
As explained above for claim limitation [1.2], Thia in view of Tanenbaum96 
in further view of Stevens2 discloses implementing Jacobson’s Header 
Prediction as part of Thia’s receive bypass test to determine whether a 
packet is processed on the ROPE chip (fast path) or on the SPS (slow path).  
A packet containing a SYN flag to initialize a connection fails such a receive 
bypass test because it is not in the Established state and is protocol processed 
by the SPS on the host (protocol processing, by the host computer, the first 
packet, thereby initializing a TCP connection).     
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Thia in view of Tanenbaum96 in further view of Stevens2 
[9.2] protocol processing, by the host computer, the first packet, thereby 
initializing a TCP connection that is defined by the source and destination IP 
addresses and source and destination TCP ports; 

 

Ex.1006, Tanenbaum96 at Fig.6-28. 
 
As explained above for claim limitation [1.2], a TCP/IP connection is 
defined by the IP address and TCP port for both sides of the connection. 
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Thia in view of Tanenbaum96 in further view of Stevens2 
[9.2] protocol processing, by the host computer, the first packet, thereby 
initializing a TCP connection that is defined by the source and destination IP 
addresses and source and destination TCP ports; 
 
Accordingly, Thia in view of Tanenbaum96 in further view of Stevens2 
discloses that the SPS on the host (protocol processing, by the host 
computer, the first packet) processes a packet intended to establish a 
connection, such as a SYN packet to initialize a TCP/IP connection, by 
initializing a connection (thereby initializing a TCP connection).  When the 
connection is a TCP/IP connection, that connection is defined by the source 
and destination IP addresses and source and destination TCP ports. 
 
 
  

INTEL Ex.1003.119



APPENDIX A 
to Petition for IPR of U.S. 8,805,948 

 

Horst Declaration – Exhibit 1003  Page A-35 of A-61 

 
Thia in view of Tanenbaum96 in further view of Stevens2 

[9.3] receiving, by the network interface, a second packet having a second 
header and payload data, wherein the second header has IP addresses and 
TCP ports that match the IP addresses and TCP ports of the TCP connection; 
Thia in view of Tanenbaum96 in further view of Stevens2 discloses 
receiving, by the network interface, a second packet having a second header 
and payload data, wherein the second header has IP addresses and TCP ports 
that match the IP addresses and TCP ports of the TCP connection. 
 
The first packet in claim limitation [1.3] discussed above corresponds to the 
second packet in [9.3] because Claim 9 introduces an earlier packet as part 
of the initialization.  As explained above for claim limitation [1.3], Thia’s 
NIA receives packets and is part of the network interface.  As also explained 
above for claim limitation [1.3], modifying Thia to use the TCP/IP packets, 
the received TCP/IP packets contain headers and optionally contain payload 
data.   
 
Claim limitation [9.3] additionally requires that the packet header has IP 
addresses and TCP ports that match those of the TCP connection.  As 
explained above in Sections V.B, V.D.4 and IX.B, when a connection is 
initialized, a connection record is recorded containing the source and 
destination IP addresses and source and destination TCP ports.  As explained 
above for claim limitation [6], Thia’s modified bypass test searches for the 
connection record for each incoming packet using the Source and 
Destination IP addresses and Source and Destination TCP ports stored in 
each packet.  Each packet is compared against a template (connection 
record) to verify that the correct record has been found.  
 
Accordingly, Thia in view of Tanenbaum96 in further view of Stevens2 
discloses receiving a second packet after initialize the connection with the 
first packet (receiving, by the network interface, a second packet) and when 
connected to a TCP network, that second packet has a second header and 
payload data.  If the second packet is for the same TCP connection as the 
first packet, the second header will have IP addresses and TCP ports that 
match IP addresses and TCP ports of the TCP connection. 
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Thia in view of Tanenbaum96 in further view of Stevens2 

[9.4] receiving, by the network interface, a third packet having a third header 
and additional payload data, wherein the third header has IP addresses and 
TCP ports that match the IP addresses and TCP ports of the TCP connection; 
Thia in view of Tanenbaum96 in further view of Stevens2 discloses 
receiving, by the network interface, a third packet having a third header and 
additional payload data, wherein the third header has IP addresses and TCP 
ports that match the IP addresses and TCP ports of the TCP connection. 
 
The limitations of [9.4] are identical to [9.3], but for them being in the 
context of a third packet. As I discussed above in Sections X.A and X.B, 
TCP network interface generally receives multiple TCP packets for the same 
TCP connection (e.g. data transfer phase in Thia and Tanenbaum).  Thus, the 
limitations explained above in Section 0 also disclose this limitation. 
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Thia in view of Tanenbaum96 in further view of Stevens2 
[9.5] checking, by the network interface, whether the second and third 
packets have certain exception conditions, including checking whether the 
packets are IP fragmented, checking whether the packets have a FIN flag set, 
and checking whether the packets are out of order; 
Thia in view of Tanenbaum96 in further view of Stevens2 discloses 
checking, by the network interface, whether the second and third packets 
have certain exception conditions, including checking whether the packets 
are IP fragmented, checking whether the packets have a FIN flag set, and 
checking whether the packets are out of order. 
 
The limitations of [9.5] are substantially identical to [1.4] as both relate to 
checking multiple packets; [1.4] checks “the packets” whereas [9.5] checks 
“the second and third packets.”  As explained above for claim limitation 
[1.4], Thia’s NIA (part of the network interface) receives packets and 
performs the receive bypass test, which checks whether the packets 
(including the second and third packets) have the claimed exception 
conditions.  
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Thia in view of Tanenbaum96 in further view of Stevens2 
[9.6] if the second packet has any of the exception conditions, then protocol 
processing the second packet by the host computer; 
Thia in view of Tanenbaum96 in further view of Stevens2 discloses if the 
second packet has any of the exception conditions, then protocol processing 
the second packet by the host computer. 
 
As explained above for claim limitation [9.3], the first packet in claim 1 
corresponds to the second packet in claim 9 because claim 9 introduces an 
earlier packet as part of the initialization.  As explained for claim limitation 
[1.5], packets with any of the exception conditions fail Thia’s receive bypass 
test and are protocol processed by the SPS.   
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Thia in view of Tanenbaum96 in further view of Stevens2 
[9.7] if the third packet has any of the exception conditions, then protocol 
processing the third packet by the host computer; 
Thia in view of Tanenbaum96 in further view of Stevens2 discloses if the 
third packet has any of the exception conditions, then protocol processing 
the third packet by the host computer.  
 
The same receive bypass test in Thia applies to all packets.  Thus, see claim 
limitation [9.6] above. 
 
 
 
  

INTEL Ex.1003.124



APPENDIX A 
to Petition for IPR of U.S. 8,805,948 

 

Horst Declaration – Exhibit 1003  Page A-40 of A-61 

Thia in view of Tanenbaum96 in further view of Stevens2 
[9.8] if the second and third packets do not have any of the exception 
conditions, then storing the payload data of the second and third packets 
together in a buffer of the host computer, such that the payload data is stored 
in the buffer in order and without any TCP header stored between the 
payload data of the second and third packets. 
Thia in view of Tanenbaum96 in further view of Stevens2 discloses this 
limitation. 
 
The claim limitation [1.7] includes the claim limitations of [9.8].  In both 
limitations the payload data of the packets without exception conditions are 
stored in order and without TCP headers between them in a buffer of the 
host computer. Claim limitation [1.7] has an additional limitation of 
bypassing host protocol processing of the TCP headers, which is not found 
in claim limitation [9.8]. Regardless, the disclosure satisfying claim 
limitation [1.7] also satisfies claim limitation [9.8]. Thus, see Claim 
limitations [1.7]. 
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Thia in view of Tanenbaum96 in further view of Stevens2 

[11] The method of claim 9, wherein storing the payload data of the second 
and third packets together in a buffer of the host computer is performed by a 
direct memory access (DMA) unit of the network interface. 
Thia in view of Tanenbaum96 in further view of Stevens2 discloses the 
method of claim 9, wherein storing the payload data of the second and third 
packets together in a buffer of the host computer is performed by a direct 
memory access (DMA) unit of the network interface. 
 
This claim is substantially similar to claim 3.  Claim 3 requires “storing the 
first payload data and the second payload data together” whereas this claim 
requires “storing the payload data of the second and third packets together.”  
As previously noted, the first and second packets of claim 1 correspond to 
the second and third packets of claim 9.  Thus, see claim limitation [3]. 
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Thia in view of Tanenbaum96 in further view of Stevens2 
[14] The method of claim 9, including comparing, by the network interface, 
the IP addresses and TCP ports of the second and third packets with the 
source and destination IP addresses and source and destination TCP ports 
that define the TCP connection. 
Thia in view of Tanenbaum96 in further view of Stevens2 discloses the 
method of claim 9, including comparing, by the network interface, the IP 
addresses and TCP ports of the second and third packets with the source and 
destination IP addresses and source and destination TCP ports that define the 
TCP connection. 
 
This claim is substantially similar to claim 6.  Claim 6 requires “comparing . 
. . the IP addresses and TCP ports of the packets” wherein packets refers to 
the first and second packets. This claim requires “comparing . . . the IP 
addresses and TCP ports of the second and third packets.”  As previously 
noted, the first and second packets of claim 1 correspond to the second and 
third packets of claim 9.  Thus, see claim limitation [6]. 
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Thia in view of Tanenbaum96 in further view of Stevens2 
[15] The method of claim 9, wherein checking whether the second and third 
packets have certain exception conditions includes checking whether the 
packets have a RST flag set. 
Thia in view of Tanenbaum96 in further view of Stevens2 discloses the 
method of claim 9, wherein checking whether the second and third packets 
have certain exception conditions includes checking whether the packets 
have a RST flag set. 
 
This claim is substantially similar to claim 7.  Claim 7 requires “wherein 
checking whether the packets have certain exception conditions includes 
checking whether the packets have a RST flag set,” wherein “the packets” 
refers to the first and second packets.  This claim requires “wherein checking 
whether the second and third packets have certain exception conditions 
includes checking whether the packets have a RST flag set.”  As previously 
noted, the first and second packets of claim 1 correspond to the second and 
third packets of claim 9.  Thus, see claim limitation [7]. 
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Thia in view of Tanenbaum96 in further view of Stevens2 
[16] The method of claim 9, wherein checking whether the second and third 
packets have certain exception conditions includes checking whether the 
packets have a SYN flag set. 
Thia in view of Tanenbaum96 in further view of Stevens2 discloses the 
method of claim 9, wherein checking whether the second and third packets 
have certain exception conditions includes checking whether the packets 
have a SYN flag set. 
 
This claim is substantially similar to claim 8.  Claim 8 requires “wherein 
checking whether the packets have certain exception conditions includes 
checking whether the packets have a SYN flag set,” wherein “the packets” 
refers to the first and second packets.  This claim requires “wherein checking 
whether the second and third packets have certain exception conditions 
includes checking whether the packets have a SYN flag set.”  As previously 
noted, the first and second packets of claim 1 correspond to the second and 
third packets of claim 9.  Thus, see claim limitation [8]. 
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Thia in view of Tanenbaum96 in further view of Stevens2 
[17.P] An apparatus for network communication, the apparatus comprising: 

To the extent that the preamble is limiting, Thia in view of Tanenbaum96 in 
further view of Stevens2 discloses an apparatus for network communication. 
 
Thia discloses an apparatus for network communication. Specifically, Thia 
discloses a Reduced Operation Protocol Engine (ROPE) chip and a Network 
Interface Adaptor (NIA) connected to the Host Processor and Host Memory 
by a Host Processor Bus (together the “apparatus”).  The apparatus is 
connected to the network through the Transmission Medium.  I have 
illustrated these components in Figure 2 of Thia below: 
 

 
Ex.1015, Thia at .007. 
 
Thia discloses that the NIA (portion of the apparatus) is used for sending 
and receiving packets (network communications). Ex.1015, Thia at .008 

Apparatus 
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Thia in view of Tanenbaum96 in further view of Stevens2 
[17.P] An apparatus for network communication, the apparatus comprising: 

(describing the NIA as a source/sink for data packets.)   
 
Accordingly, Thia in view of Tanenbaum96 in further view of Stevens2 
discloses an apparatus for network communications. 
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Thia in view of Tanenbaum96 in further view of Stevens2 
[17.1] a host computer running a protocol stack including an Internet 
Protocol (IP) layer and a Transmission Control Protocol (TCP) layer, the 
protocol stack adapted to establish a TCP connection for an application layer 
running above the TCP layer, the TCP connection being defined by source 
and destination IP addresses and source and destination TCP ports; 
Thia in view of Tanenbaum96 in further view of Stevens2 discloses this 
limitation. 
 
Claim 1 is a method claim. Claim 17 is an apparatus claim.  The evidence 
and disclosures from the following Sections for claim 1 also disclose the 
limitations of the claimed apparatus. 
 
As explained above for claim limitation [1.1], Thia in view of Tanenbaum96 
in view of Stevens2 discloses an SPS running on the host (a host computer 
running a protocol stack).  As also explained above for claim limitation 
[1.1], Thia in view of Tanenbaum96 in view of Stevens2 teach modifying 
the SPS to implement the TCP/IP protocol suite, which includes an IP layer 
and a TCP layer with an application layer running above the TCP layer 
(including an Internet Protocol (IP) layer and a Transmission Control 
Protocol (TCP) layer). 
 
As explained above for claim limitation [1.2], Thia in view of Tanenbaum96 
in view of Stevens2 discloses that the SYN packets required for the 
initialization fail the conditions of the receive bypass test, and thus must be 
processed by the SPS on the host.  Accordingly, the SPS is responsible for 
initializing the TCP connection for the application layer running above the 
TCP layer (the protocol stack adapted to establish a TCP connection for an 
application running above the TCP layer).   
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Thia in view of Tanenbaum96 in further view of Stevens2 
[17.1] a host computer running a protocol stack including an Internet 
Protocol (IP) layer and a Transmission Control Protocol (TCP) layer, the 
protocol stack adapted to establish a TCP connection for an application layer 
running above the TCP layer, the TCP connection being defined by source 
and destination IP addresses and source and destination TCP ports; 

 

Ex.1006, Tanenbaum96 at .052-53, Fig.1-17. 
 
As explained above for claim limitation [1.3], Thia in view of Tanenbaum96 
in view of Stevens2 discloses that the TCP connection is defined by the TCP 
ports and the IP addresses for both sides of the connection (the TCP 
connection being defined by source and destination IP addresses and source 
and destination TCP ports). 
 
Accordingly, Thia in view of Tanenbaum96 in further view of Stevens2 
discloses a host computer running a Standard Protocol Stack (protocol stack) 
and when connected to a TCP connection, the protocol stack would include 
an IP layer and a TCP layer and would establish a TCP connection for an 
application layer running above the TCP layer.  The TCP connection would 
be defined by the source and destination IP addresses and source and 
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Thia in view of Tanenbaum96 in further view of Stevens2 
[17.1] a host computer running a protocol stack including an Internet 
Protocol (IP) layer and a Transmission Control Protocol (TCP) layer, the 
protocol stack adapted to establish a TCP connection for an application layer 
running above the TCP layer, the TCP connection being defined by source 
and destination IP addresses and source and destination TCP ports; 
destination TCP ports. 
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Thia in view of Tanenbaum96 in further view of Stevens2 
[17.2.1] a network interface that is connected to the host computer by an 
input/output bus,  
As explained above for claim limitation [1.P], Thia in view of Tanenbaum96 
in further view of Stevens2 discloses a host computer having a network 
interface that is connected to the host by an input/output bus. 
 

 

Ex.1015, Thia at .007, Fig.2. 
 
 
 
  

Input/Output Bus 

Host Computer 

Network  
Interface 
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Thia in view of Tanenbaum96 in further view of Stevens2 
[17.2.2] the network interface adapted to parse the headers of received 
packets  
A POSA would have understood that parsing a header involves identifying 
fields of the header to determine whether or not those fields individually or 
collectively satisfy one or more criteria.  Thia discloses a receive bypass test 
(performed by the NIA, part of the network interface) in which fields of the 
header of a received packet are compared to a template.  Ex.1015, Thia at 
.003 (“The receive bypass test matches the incoming PDU headers with a 
template that identifies the predicted bypassable headers.”)  A POSA would 
have understood that before the NIA compares fields within a header, the 
header must be parsed.     
 
 
 
  

INTEL Ex.1003.136



APPENDIX A 
to Petition for IPR of U.S. 8,805,948 

 

Horst Declaration – Exhibit 1003  Page A-52 of A-61 

Thia in view of Tanenbaum96 in further view of Stevens2 
[17.2.3] to determine whether the headers have the IP addresses and TCP 
ports that define the TCP connection and  
As explained for claim limitation [6].  Thia in view of Tanenbaum96 in 
further view of Stevens2 discloses the NIA performing a modified receive 
bypass test that checks whether the packet matches a template (i.e., has 
source and destination IP addresses and source and destination TCP ports 
that match the connection record).  In doing so, the NIA determines whether 
the headers have the IP addresses and TCP ports that define the TCP 
connection.   
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Thia in view of Tanenbaum96 in further view of Stevens2 
[17.2.4] to check whether the packets have certain exception conditions, 
including whether the packets are IP fragmented, have a FIN flag set, or are 
out of order,  
As explained for claim limitation [1.4] the NIA (part of the network 
interface) performs a modified receive bypass test as taught by 
Tanenbaum96 on received packets to check whether each TCP header has an 
established connection, neither side is trying to close the connection (i.e., no 
FIN or RST flag), the TPDU is a full one (e.g., no IP fragmentation), no 
special flags are set (e.g., no FIN, RST or SYN flag), and the sequence 
number is the one expected (i.e., the packets are not out of order). See 
Ex.1006, Tanenbaum96 at .585 (disclosing the test above); see also Ex.1013, 
Stevens2 at .962-63 (providing a walkthrough of the BSD code for the test 
above). 
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Thia in view of Tanenbaum96 in further view of Stevens2 
[17.2.5] the network interface having logic that directs any of the received 
packets that have the exception conditions to the protocol stack for 
processing, and  
As explained above for claim limitation [1.5], Thia in view of Tanenbaum96 
in further view of Stevens2 discloses that packets that fail the bypass test are 
processed by the SPS. 

 

Ex.1015, Thia at .003, Fig.1. 
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Thia in view of Tanenbaum96 in further view of Stevens2 
[17.2.6] [the network interface having logic that] directs the received packets 
that do not have any of the exception conditions to have their headers 
removed and their payload data stored together in a buffer of the host 
computer, such that the payload data is stored in the buffer in order and 
without any TCP header stored between the payload data that came from 
different packets of the received packets. 
As explained above for claim limitation [1.7], Thia in view of Tanenbaum96 
in further view of Stevens2 discloses that packets that pass the receive 
bypass test (packets that do not have any of the exception conditions) are 
bypassed to the ROPE chip for processing.  I have illustrated this path in 
Figure 1 of Thia below: 

 

Ex.1015, Thia at .003, Fig.1. 
 
As also explained above for claim limitation [1.7], Thia in view of 
Tanenbaum96 in further view of Stevens2 discloses that the system uses 
DMA to move only packet data in order from the ROPE chip to host 
memory (to have . . . their payload data stored together in a buffer of the 
host computer).  I have illustrated this in Figure 2 of Thia below: 
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Thia in view of Tanenbaum96 in further view of Stevens2 
[17.2.6] [the network interface having logic that] directs the received packets 
that do not have any of the exception conditions to have their headers 
removed and their payload data stored together in a buffer of the host 
computer, such that the payload data is stored in the buffer in order and 
without any TCP header stored between the payload data that came from 
different packets of the received packets. 

 

 

Ex.1015, Thia at .007, Fig.2. 
 
As also explained above for claim limitation [1.7], a POSA would have 
appreciated that a packet passing the receive bypass test has a header 
decoded by the ROPE chip, and thus there is no need to transfer the already-
decoded header into host memory (to have their header removed).  
Additionally, as further explained for claim limitation [1.7], the TCP entity 
on the ROPE chip reconstructs the data from each packet into the original 
byte stream (removing the headers from each datagram and arranging them 
in order).   
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Thia in view of Tanenbaum96 in further view of Stevens2 
[17.2.6] [the network interface having logic that] directs the received packets 
that do not have any of the exception conditions to have their headers 
removed and their payload data stored together in a buffer of the host 
computer, such that the payload data is stored in the buffer in order and 
without any TCP header stored between the payload data that came from 
different packets of the received packets. 
Thus, a POSA would have been motivated to develop a TCP network 
interface combining Thia’s protocol engine with the TCP disclosures found 
in Tanenbaum96 and Stevens2. As explained above, when incoming packets 
pass the modified receive bypass test (the received packets that do not have 
any of the exception conditions), they are directed to be processed by the 
ROPE chip as opposed to the SPS. The output from the ROPE chip is the 
original byte stream (to have their headers removed . . . in order and without 
any TCP header stored between the payload data that came from different 
packets of the received packets). A POSA would have utilized Thia’s on-
chip Direct Memory Access (DMA) to transfer only the data blocks in order 
to a buffer in host memory (and their payload data stored together in a 
buffer of the host computer, such that the payload data is stored in the 
buffer).   
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Thia in view of Tanenbaum96 in further view of Stevens2 
[19] The apparatus of claim 17, wherein the network interface includes a 
direct memory access (DMA) unit that is adapted to store the payload data in 
the buffer. 
Thia in view of Tanenbaum96 in further view of Stevens2 discloses the 
apparatus of claim 17, wherein the network interface includes a direct 
memory access (DMA) unit that is adapted to store the payload data in the 
buffer.   
 
Claim 1 is a method claim. Claim 19 depends from claim 17, which is an 
apparatus claim.  The evidence and disclosures from the following Sections 
for claim 1 also disclose the limitations of the claimed apparatus. 
 
As explained for claim limitation [1.7], Thia teaches the use of DMA to 
move packet data from the ROPE chip to host memory (a host buffer).  I’ve 
illustrated this in Figure 2 of Thia below: 
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Thia in view of Tanenbaum96 in further view of Stevens2 
[19] The apparatus of claim 17, wherein the network interface includes a 
direct memory access (DMA) unit that is adapted to store the payload data in 
the buffer. 
Ex.1015, Thia at .007, Fig.2. 
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Thia in view of Tanenbaum96 in further view of Stevens2 
[21] The apparatus of claim 17, wherein the exception conditions include 
having a RST flag set. 
Thia in view of Tanenbaum96 in further view of Stevens2 discloses the 
apparatus of claim 17, wherein the exception conditions include having a 
RST flag set. 
 
Claims 1 and 7 are method claims. Claims 17 and 21 are apparatus claims. 
The evidence and disclosures described above for claim limitation [1.3] 
disclosing an exception condition including a RST flag set for claim 7 also 
disclose the limitations of this claim. 
 
 
 
 
  

INTEL Ex.1003.145



APPENDIX A 
to Petition for IPR of U.S. 8,805,948 

 

Horst Declaration – Exhibit 1003  Page A-61 of A-61 

Thia in view of Tanenbaum96 in further view of Stevens2 
[22] The apparatus of claim 17, wherein the exception conditions include 
having a SYN flag set. 
Thia in view of Tanenbaum96 in view of Stevens2 discloses the apparatus of 
claim 17, wherein the exception conditions include having a SYN flag set. 
 
Claims 1 and 8 are method claims. Claims 17 and 22 are apparatus claims. 
The evidence and disclosures described above for claim limitation [1.4] 
showing an exception condition that includes having a SYN flag set meeting 
clam 8 also disclose the limitations of this claim. 
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