

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

INTEL CORPORATION
Petitioner

v.

ALACRITECH, INC.
Patent Owner

Case IPR. No. Unassigned
U.S. Patent No. 8,850,948

Title: INTELLIGENT NETWORK INTERFACE SYSTEM AND METHOD FOR
PROTOCOL PROCESSING

Declaration of Robert Horst, Ph.D. in Support of
Petition for Inter Partes Review

of U.S. Patent No. 8,850,948

INTEL Ex.1003.001

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

ii

TABLE OF CONTENTS
Page

I. INTRODUCTION AND QUALIFICATIONS .. 1

II. MATERIALS RELIED ON IN FORMING MY OPINION 3

III. UNDERSTANDING OF THE GOVERNING LAW 4

A. Invalidity by Anticipation ... 4

B. Invalidity by Obviousness ... 5

IV. LEVEL OF ORDINARY SKILL IN THE ART .. 6

V. STATE OF THE ART AND OVERVIEW OF TECHNOLOGY
AT ISSUE ... 8

A. Layered Network Protocols ... 8

1. OSI Layers .. 8

2. TCP/IP Layers ... 8

B. TCP/IP ...11

1. Encapsulation ..12

2. Ethernet Header ...14

3. IP Header ...16

4. TCP header ..17

5. Application Data ...21

6. RFC 793 – TCP Specification...21

B. Protocol Offload and Fast-Path Processing...21

1. RFC 647 – Front-Ending ..22

2. RFC 929 – Outboard Processing ..23

3. Mediation Levels...24

C. Offloaded Protocols ...27

1. OSI Protocol Offload ..27

2. TCP/IP Protocol Offload ...27

3. VMTP and XTP Protocol Offload ..28

4. Multi-Protocol Offload ...28

INTEL Ex.1003.002

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

ii

D. Portions of the Protocol Offloaded ...29

1. Checksum Offload ..29

2. Full Offload ...30

3. Multi-Level Offload ..30

4. Header Prediction ..30

E. Offload Implementation ..33

1. Multiprocessor Offload ...34

2. Offload Adapters based on Microprocessors35

3. Offload Adapters based on Custom Processors or Custom
Logic ...37

F. Protocol Offload Summary ...40

G. Additional Background Technology ...40

1. DMA ...41

2. Virtual and Physical Memory Addresses..................................43

VI. OVERVIEW OF 948 PATENT ...45

VII. 948 PATENT PROSECUTION HISTORY ...48

VIII. CLAIM CONSTRUCTIONS ...49

A. Legal Standard ...49

IX. THE PRIOR ART ...50

A. Thia: Thia, A Reduced Operation Protocol Engine
(ROPE) for a mulitple-layer bypass architecture (1995)50

B. Tanenbaum96: A. Tanenbaum, Computer Networks,
3rd ed. (1996) ..56

C. Stevens2: Stevens, TCP-IP Illustrated, Vol. 268

X. Obviousness Combinations – Motivations To Combine70

A. Thia in Combination with Tanenbaum96 ...70

B. Thia in Combination with Tanenbaum96 and further in
Combination with Stevens2 ..75

XI. GROUNDS OF INVALIDITY ..77

INTEL Ex.1003.003

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

1

I, Robert Horst, hereby declare as follows:

I. INTRODUCTION AND QUALIFICATIONS

1. My name is Robert Horst. I have been retained on behalf of Petitioner

Intel Corporation (“Intel”) to provide this Declaration concerning technical subject

matter relevant to the petition for inter partes review (“Petition”) concerning U.S.

Patent No. 8,850,948 (Ex.1001, the “948 Patent”). I reserve the right to

supplement this Declaration in response to additional evidence that may come to

light.

2. I am over 18 years of age. I have personal knowledge of the facts

stated in this Declaration and could testify competently to them if asked to do so.

3. My compensation is not based on the resolution of this matter. My

findings are based on my education, experience, and background in the fields

discussed below.

4. I am an independent consultant with more than 30 years of expertise

in the design and architecture of computer systems. My current curriculum vitae is

submitted as Exhibit 1004 and some highlights follow.

5. Currently, I am an independent consultant at HT Consulting where my

work includes consulting on technology and intellectual property. I have testified

as an expert witness and consultant in patent and intellectual property litigation as

well as inter partes reviews and re-examination proceedings.

INTEL Ex.1003.004

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

2

6. I earned my M.S. (1978) in electrical engineering and Ph.D. (1991) in

computer science from the University of Illinois at Urbana-Champaign after

earning my B.S. (1975) in electrical engineering from Bradley University. During

my master’s program, I designed, constructed and debugged a shared memory

parallel microprocessor system. During my doctoral program, I designed and

simulated a massively parallel, multi-threaded task flow computer.

7. After receiving my bachelor’s degree and while pursuing my master’s

degree, I worked for Hewlett-Packard Co. While at Hewlett-Packard, I designed

the micro-sequencer and cache of the HP3000 Series 64 processor. From 1980 to

1999, I worked at Tandem Computers, which was acquired by Compaq Computers

in 1997. While at Tandem, I was a designer and architect of several generations of

fault-tolerant computer systems and was the principal architect of the NonStop

Cyclone superscalar processor. The system development work at Tandem also

included development of the ServerNet System Area Network and applications of

this network to fault tolerant systems and clusters of database servers.

8. Since leaving Compaq in 1999, I have worked with several

technology companies, including 3Ware, Network Appliance, Tibion, and AlterG

in the areas of network-attached storage and biomedical devices. From 2012 to

2015, I was Chief Technology Officer of Robotics at AlterG, Inc., where I worked

INTEL Ex.1003.005

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

3

on the design of anti-gravity treadmills and battery-powered orthotic devices to

assist those with impaired mobility.

9. In 2001, I was elected an IEEE Fellow “for contributions to the

architecture and design of fault tolerant systems and networks.” I have authored

over 30 publications, have worked with patent attorneys on numerous patent

applications, and I am a named inventor on 80 issued U.S. patents.

10. My patents include those directed to networks (e.g., U.S. Pat. No.

6,157,967: Method of data communication flow control in a data processing

system using busy/ready commands), storage (e.g., U.S. Pat. No. 6,549,977: Use of

deferred write completion interrupts to increase the performance of disk

operations), and multi-processor systems (e.g., U.S. Pat. No. 5,751,932: Fail-fast,

fail-functional, fault-tolerant multiprocessor system). My publications include a

conference paper that examined the performance and efficacy of protocol offload

engines Ex.1004.

11. My Curriculum Vitae, which is filed as a separate Exhibit (Ex.1004),

contains further details on my education, experience, publications, and other

qualifications to render this opinion as expert.

II. MATERIALS RELIED ON IN FORMING MY OPINION

12. In addition to reviewing U.S. Patent No. 8,850,948 (Ex.1001), I also

reviewed and considered the prosecution history of the 948 Patent (Ex.1002). I

INTEL Ex.1003.006

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

4

also reviewed Thia, A ROPE for multiple-layer bypass architecture (“Thia”)

(Ex.1015), A. Tanenbaum, 3rd ed. (1996) (Ex.1006), and Stevens, TCP-IP

Illustrated, Vol.2 (“Stevens2”) (Ex.1013). I also considered the background

materials cited herein.

III. UNDERSTANDING OF THE GOVERNING LAW

13. I understand that a patent claim is invalid if it is anticipated or

rendered obvious in view of the prior art. I further understand that invalidity of a

patent claim requires that the claim be anticipated or obvious from the perspective

of a person of ordinary skill in the relevant art at the time the invention was made.

A. Invalidity by Anticipation

14. I have been informed that a patent claim is invalid as anticipated

under 35 U.S.C. § 102 if each and every element of a claim, as properly construed,

is found either explicitly or inherently in a single prior art reference.

15. I have been informed that a claim is invalid under 35 U.S.C. § 102(a)

if the claimed invention was patented or published anywhere, before the applicant's

invention. I further have been informed that a claim is invalid under 35 U.S.C. §

102(b) if the invention was patented or published anywhere more than one year

prior to the first effective filing date of the patent application (critical date). I

further have been informed that a claim is invalid under 35 U.S.C. § 102(e) if an

invention described by that claim was disclosed in a U.S. patent granted on an

INTEL Ex.1003.007

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

5

application for a patent by another that was filed in the U.S. before the date of

invention for such a claim.

B. Invalidity by Obviousness

16. I have been informed that a patent claim is invalid as obvious under

35 U.S.C. § 103 if it would have been obvious to a person of ordinary skill in the

art, taking into account (1) the scope and content of the prior art, (2) the differences

between the prior art and the claims, (3) the level of ordinary skill in the art, and

(4) any so called “secondary considerations” of non-obviousness, which include:

(i) “long felt need” for the claimed invention, (ii) commercial success attributable

to the claimed invention, (iii) unexpected results of the claimed invention, and (iv)

“copying” of the claimed invention by others. I further understand that it is

improper to rely on hindsight in making the obviousness determination. I have

been informed that Alacritech claims a filing priority date no later than October 14,

1997 for claims 1, 3, 6-9, 11, 14-17, 19, and 21-22 of the 948 Patent. Accordingly

my analysis of the prior art for the claims of the 948 Patent is based on the prior art

and knowledge of a person having ordinary skill in the art (“POSA”) as of October

14, 1997.

17. I have been informed that a claim can be obvious in light of a single

prior art reference or multiple prior art references. I further understand that

exemplary rationales that may support a conclusion of obviousness include:

INTEL Ex.1003.008

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

6

(A) Combining prior art elements according to known methods to yield

predictable results;

(B) Simple substitution of one known element for another to obtain

predictable results;

(C) Use of known technique to improve similar devices (methods, or

products) in the same way;

(D) Applying a known technique to a known device (method, or product)

ready for improvement to yield predictable results;

(E) “Obvious to try” - choosing from a finite number of identified,

predictable solutions, with a reasonable expectation of success;

(F) Known work in one field of endeavor may prompt variations of it for use

in either the same field or a different one based on design incentives or other

market forces if the variations are predictable to one of ordinary skill in the

art;

(G) Some teaching, suggestion, or motivation in the prior art that would

have led one of ordinary skill to modify the prior art reference or to combine

prior art reference teachings to arrive at the claimed invention.

IV. LEVEL OF ORDINARY SKILL IN THE ART

18. I have been informed that factors that may be considered in

determining the level of ordinary skill in the art may include: (A) “type of

INTEL Ex.1003.009

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

7

problems encountered in the art;” (B) “prior art solutions to those problems;” (C)

“rapidity with which innovations are made;” (D) “sophistication of the

technology;” and (E) “educational level of active workers in the field.” I also

understand that, every factor may not be present for a given case, and one or more

factors may predominate. Here, the 948 Patent is directed to an apparatus and

methods for receive side network protocol offload. In my experience, systems

such as those capable of protocol offload are not designed by a single person but

instead require a design team with wide ranging skills and experience including

computer architecture, network design, software development and hardware

development. Moreover, the design team typically would have comprised

individuals with advanced degrees and some industry experience, or significant

industry experience.

19. Accordingly, and while it would be rare to find all of these skills in a

single individual, it is my opinion that a person of ordinary skill in the art

(“POSA”) is a person with at least the equivalent of a B.S. degree in computer

science, computer engineering or electrical engineering with at least five years of

industry experience including experience in computer architecture, network design,

network protocols, software development, and hardware development.

20. The statements that I make in this declaration when I refer to a POSA

are from the perspective of October 14, 1997.

INTEL Ex.1003.010

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

8

V. STATE OF THE ART AND OVERVIEW OF TECHNOLOGY AT
ISSUE

21. In this section, I provide an overview of the technology at issue and

illustrate the state of the art.

A. Layered Network Protocols

22. The primary goal of computer networking is to provide fast, reliable

data communications between computer systems. Interoperability has been

accomplished through adherence to standards, and performance has steadily

increased through new technology and optimizations of hardware and software.

1. OSI Layers

23. Computer networking standards provide inter-system communications

across a wide range of hardware and software implementations. The seven-layer

OSI model describes a logical layering including physical, data link, network,

transport, session, presentation and application as illustrated below.

2. TCP/IP Layers

24. The TCP/IP layering is slightly different and corresponds more

closely to the way the networking code is typically partitioned in some popular

Unix variants. TCP/IP layers include physical (e.g. 100baseT, 1000baseT), data

INTEL Ex.1003.011

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

9

link1 (e.g. IEEE 802 Ethernet, ATM, Token Ring), Internet (e.g. IPv4, IPv6),

transport (e.g. TCP, UDP, VMTP, XTP), and Application (e.g. FTP, SMTP,

Telnet, HTTP). A network interface connected to a TCP/IP network receives

TCP/IP packets that comply with the TCP/IP protocol. The following figure shows

the relationship between the OSI and TCP/IP layering.

1 References on TCP/IP use different terminology to describe the layer under IP

layer. The data link layer is also called the “host-to-network layer” in

Tanenebaum96 and the “interface layer” in Stevens2 (see below for description of

these references). Some Alacritech patents use “data link layer,” “link layer” and

“MAC layer.” Prior art references use many of these terms and also sometimes use

the name of a specific implementation (e.g. Ethernet, ATM).

INTEL Ex.1003.012

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

10

Available at http://mitigationlog.com/how-tcpip-and-reference-osi-model-works/.2

An application layer is above the transport layer in both protocols.

25. At a conceptual level, each layer is responsible only for its respective

functions. This enables, for example, hiding the complexity of the physical data

connection (that is, actually transmitting the data onto the physical wires) from

layers above the physical, data link, and network layers above. Likewise, the

lower layers must transmit the data on the physical wires, but need not worry about

what application the data belongs to or even whether it is receiving packets in the

correct order.

2 It appears that this diagram was made in 2012. It is being used for illustrative

purposes only.

INTEL Ex.1003.013

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

11

B. TCP/IP

26. The 948 Patent relates to an intelligent network interface card that

provides a “fast path” that avoids host protocol processing for most packets in a

large multipacket message. Ex.1001, 948 Patent at Abstract. The claims are all

directed to TCP/IP.

27. By the mid 1990s, TCP/IP was a firmly entrenched standard and was

a widespread networking protocol to, for example, access the Internet and World

Wide Web, overtaking the OSI protocols. See Ex.1006, Tanenbaum96 at .016

(“The OSI protocols have quietly vanished, and the TCP/IP protocol suite has

become dominant.”) By that time, detailed descriptions of the protocols and open-

source implementations were widely available from books technical papers, and

code repositories. Free implementations of TCP/IP, such as Free BSD, were

widely available and widely used. Standard reference books on TCP/IP included

Stevens1 (Ex.1008), Stevens2 (Ex.1013), and Tanenbaum96 (Ex.1006), all of

which were widely cited and relied upon.3 A series of technical memos called

RFCs (request for comments) document the progression of design concepts of the

Internet. TCP/IP was standardized in a series of publically available Request for

3 These books were well known resources to a POSA. Consistent with that,

Alacritech patents cite editions of the Tanenbaum and Stevens books.

INTEL Ex.1003.014

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

12

Comments (RFCs) published by the Internet Engineering Task Force, including

RFC 793, entitled “Transmission Control Protocol” and RFC 791, entitled

“Internet Protocol.” Ex.1007, RFC 793; Ex.1036, RFC 791. A few of the key

RFCs are quoted below to establish when certain concepts were proposed and

documented.

28. TCP/IP consists of two parts: (1) Transmission Control Protocol

(TCP), which provides virtual bi-directional connections that are guaranteed in-

order, error-free delivery of arbitrary amounts of data between programs running

on different computers over the Internet; and (2) Internet Protocol (IP), which

provides delivery of datagrams (IP packets) to any routable Internet address,

without any reliability or ordering guarantees. IP also provides for fragmentation

during transmission and reassembly when received. Fragmentation occurs when an

IP packet must be divided (“fragmented”) into smaller packets when a packet

travels over an intermediate network with a small packet size. TCP network

interface includes the ability to receive multiple TCP packets for the same

connection. TCP/IP can be transmitted over a variety of physical media (e.g.

Ethernet).

1. Encapsulation

29. Network layering corresponds to the encapsulation of higher levels by

lower levels. TCP runs on “top” of IP by first dividing application data to be

INTEL Ex.1003.015

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

13

transmitted into segments that become the data payloads of TCP packets and

concatenating each payload with a TCP header to form a TCP packet, a process

called TCP segmentation. TCP/IP then places the resulting TCP packet (TCP

header + payload) into the data payload of an IP packet by concatenating the TCP

packet (IP data payload) with an IP header. The TCP packet is thus “encapsulated”

in an IP packet.

30. The following figure shows an example with application data

accompanied by an application header. As shown in the figure below, in typical

TCP/IP processing, the packet is built from the top down, i.e., each layer

encapsulates what it receives from the above layer by concatenating an additional

header associated with that layer. The application header-data combination

becomes the application data of a TCP segment. The TCP segment containing the

application header-data combination along with the IP header forms an IP

datagram. The IP datagram along with an appropriate MAC (media access control)

layer header forms the frame that is sent over the physical interconnect. The

diagram below shows an example of such encapsulation where the MAC layer is

Ethernet. Some software implementations implement the layers separately with

data, or pointers to data, passed between the software modules for each layer. In

this case, one module creates the user data and application header, another module

INTEL Ex.1003.016

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

14

then encapsulates that with a TCP header, etc. The processing occurs sequentially,

from top to bottom, as shown below.

Ex.1008, Stevens1 at .034. When receiving a packet from the network, the layers

work in reverse, with each layer stripping its header and providing the resulting

packet to the above layer. The user data without headers is eventually delivered to

the relevant application.

2. Ethernet Header

31. The lowest layer, the MAC (media access control) layer handles the

actual transmission on the physical media. A 14-byte Ethernet header, for

example, includes 48-bit (6 byte) source and destination MAC addresses for

INTEL Ex.1003.017

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

15

uniquely identifying the network interface (e.g., on a computer or router) on a local

area network at each end of the link.

Ex.1013, Stevens2 at .125.

32. The MAC address can be determined by a routing table in the

protocol stack. In an Ethernet-based network, the 48-bit MAC address corresponds

to a physical interface, such as a network interface card (NIC) or WiFi modem in a

server or router. The MAC address field of the destination in the Ethernet header

determines the next hop along the route to the destination. At each router along the

path, the MAC address field is changed to the MAC address of the next router. The

final router changes the MAC address field to the MAC address of the destination.

INTEL Ex.1003.018

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

16

3. IP Header

Ex.1008, Stevens1 at .058.

33. Above the MAC layer is the Internet protocol layer (IP layer). An IP

header is illustrated by the figure above from Stevens1. The IP header includes

source and destination IP addresses for identifying the end points (e.g., computer)

of the connection. The IP header also has a flag that indicates whether the packet

has been fragmented. The 32-bit IPv4 addresses are usually expressed in dotted

decimal notion. For example, an IP address of Google.com is 216.58.216.46.

INTEL Ex.1003.019

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

17

4. TCP header

 Ex.1008, Stevens1 at .249.

34. Above the IP layer is the TCP (Transport) layer. A TCP header is

illustrated by the figure above from Stevens1. The TCP header includes 16-bit

source and destination port numbers for identifying the processes that are

communicating. These port numbers identify the end points (e.g., client or server

programs) sending and receiving data on each end of the connection. TCP is used

to establish connections between processes at IP addresses across the network and

the TCP port numbers identify which processes are communicating. For instance,

Email may use SMTP (simple mail transfer protocol) on port 25 (SMTP’s well-

known port number) while a web server is using HTTP on port 80 (HTTP’s well-

known port number).

INTEL Ex.1003.020

18

35. The TCP layer performs several important functions such as tracking

the sequence of packets to ensure that the TCP packets are assembled in the proper

order. As shown above, a “sequence number” is included in the TCP header for

several reasons such as identifying TCP packets and performing reassembly of

these packets. The TCP layer tracks and acknowledges the sequence of packets, so

that the sending TCP layer can re-send lost (and therefore unacknowledged) data

so that the application does not have to manage this process. The TCP layer

assembles the data from packet payloads in the proper order by using sequence

numbers in the TCP packet headers.

36. TCP maintains the status of each connection with a finite state

machine. The TCP finite state machine and associated messages are described in

detail in RFC 793. RFC 793 describes the data structure for storing the

information needed to maintain a TCP connection as a Transmission Control Block

(TCB). Ex.1007, RFC 793 at .016. The finite state machine is also illustrated in

Tanenbaum96 below.

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

INTEL Ex.1003.021

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

19

Connections begin in a CLOSED state. Different control flags in the TCP header

of packets sent between client and server affect the state of the connection. These

control flags are URG, ACK, PSH, RST, SYN, and FIN as illustrated below.

INTEL Ex.1003.022

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

20

 Ex.1008, Stevens1 at .249. Certain control flags indicate that the connection is not

yet established or will be closed. A server can move from CLOSED into a

LISTEN state, where it will wait until a request to initialize a connection is

received in a packet with the SYN flag set. A server is not in the ESTABLISHED

state until the server acknowledges the SYN packet. In the ESTABLISHED state,

data is transferred over the connection. Either side can close the connection by

sending a special packet called a FIN packet. Control flags URG, and RST are

also requests to close a connection, which indicates that the server is no longer in

the ESTABLISHED state.

37. Accordingly, routing packets between source and destination

processes over a TCP/IP connection using Ethernet requires TCP source and

destination port numbers, source and destination IP addresses, and source and

INTEL Ex.1003.023

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

21

destination MAC addresses. For more information on TCP, see Stevens1 (Ex.1008)

Chapter 17, “TCP: Transmission Control Protocol,” .247-252.

5. Application Data

38. Each user application typically has at least one range of addresses in

the user space region of host memory where it places data for transmission and

receives data from the network. For transmission, the protocol stack can retrieve

data from this area in host memory, encapsulate it in packets as described above,

and then transmit it over the network. For receipt of data, the protocol stack puts

data in the assigned host memory after it has processed and stripped off the MAC,

IP, and TCP headers from the packet.

6. RFC 793 – TCP Specification

39. The original TCP specification was published in RFC 793 (Ex.1007)

in September 1981. RFC 793 is a full specification for TCP and shows, among

many other things, that identifying a TCP connection by its source and destination

IP addresses and TCP ports were known more than 15 years before the earliest

priority dates of the Alacritech patents.

B. Protocol Offload and Fast-Path Processing

40. To increase performance and reduce demands on the host computer

required for protocol processing, designers have employed different techniques

such as parallel processing, improved hardware, memory copy reduction via

hardware and/or software, and hardware to offload all or part of the protocol stack.

INTEL Ex.1003.024

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

22

1. RFC 647 – Front-Ending

41. As early as 1974, front-end protocol offload was already being

considered for standardization as described in request-for-comments RFC 647.

This represents the consensus at the time that front ending (the offloading of

protocol processing) was desirable. At that time, NCP (Network Control Protocol)

was the protocol used in ARPANET, the predecessor to the modern Internet.

“FRONT-ENDING”

In what might be thought of as the greater network community, the

consensus is so broad that the front-ending is desirable that the topic

needs almost no discussion here. Basically, a small machine (a PDP-

11 is widely held to be most suitable) is interposed between the IMP

and the host in order to shield the host from the complexities of the

NCP.

Ex.1019, RFC 647 at .002.

42. RFC 647 goes on to discuss rigid and flexible front-end (FE)

alternatives and includes a high-level discussion of a protocol for interfacing

between the host and FE.

INTEL Ex.1003.025

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

23

2. RFC 929 – Outboard Processing

43. In 1984, RFC 929 was distributed to begin work on a possible

standard for interfacing between a host and an OPE (Outboard Processing

Environment)4:

There are two fundamental motivations for doing outboard

processing. One is to conserve the Hosts' resources (CPU cycles and

memory) in a resource sharing intercomputer network, by offloading

as much of the required networking software from the Hosts to

Outboard Processing Environments (or "Network Front-Ends") as

possible. The other is to facilitate procurement of implementations of

the various intercomputer networking protocols for the several types

of Host in play in a typical heterogeneous intercomputer network, by

employing common implementations in the OPE.

Ex.1009, RFC 929 at .002.

4 Other names have been used to describe the OPE concept. Names for protocol

offload implementations included Front-End Processor, Network Front-End,

Protocol Processor, Protocol Engine, Protocol Accelerator, Hardware Bypass,

Smart Network Interface, SMART NIC, Smart Adapter, Protocol Processing

Engine, IO Adapter, Intelligent I/O Processor and intelligent Network Interface

Card.

INTEL Ex.1003.026

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

24

The interaction between the Host and the OPE must be capable of

providing a suitable interface between processes (or protocol

interpreters) in the Host and the off-loaded protocol interpreters in the

OPE. This interaction must not, however, burden the Host more

heavily than would have resulted from supporting the protocols

inboard, lest the advantage of using an OPE be overridden.

Id. at .003.

44. RFC 929 includes a “protocol parameter” for selecting the protocol to

be offloaded. TCP, UDP and IP were among the protocols to be offloaded:

Id. at .013.

3. Mediation Levels

45. The 1984 proposal to standardize offload implementations in RFC

929 is evidence that there was already much activity in offload implementations at

that time. The authors of RFC 929 anticipated different types of outboard

processors and recognized that the amount of work to be done by the outboard

processor might vary from none to partial to full offload. To handle this range, a

“mediation level” parameter was proposed.

INTEL Ex.1003.027

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

25

The mediation level parameter is an indication of the role the Host

wishes the OPE to play in the operation of the protocol. The extreme

ranges of this mediation would be the case where the Host wished to

remain completely uninvolved, and the case where the Host wished to

make every possible decision. The specific interpretation of this

parameter is dependent upon the particular off-loaded protocol.

The concept of mediation level can best be clarified by means of

example. A full inboard implementation of the Telnet protocol places

several responsibilities on the Host. These responsibilities include

negotiation and provision of protocol options, translation between

local and network character codes and formats, and monitoring the

well-known socket for incoming connection requests. The mediation

level indicates whether these responsibilities are assigned to the Host

or to the OPE when the Telnet implementation is outboard. If no OPE

mediation is selected, the Host is involved with all negotiation of the

Telnet options, and all format conversions.

With full OPE mediation, all option negotiation and all format

conversions are performed by the OPE. An intermediate level of

mediation might have ordinary option negotiation, format conversion,

and socket monitoring done in the OPE, while options not known to

the OPE are handled by the Host.

The parameter is represented with a single ASCII digit. The value 9

represents full OPE mediation, and the value 0 represents no OPE

mediation. Other values may be defined for some protocols (e.g., the

INTEL Ex.1003.028

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

26

intermediate mediation level discussed above for Telnet). The default

value for this parameter is 9.

Id. at.015-.016.

46. More than a decade passed between the publication of RFC 929 and

the priority date of the earliest Alacritech provisional application. During that

time, protocol offload was the subject of many papers and systems across the range

anticipated by RFC 929. These implementations can be categorized based on the

three principal dimensions of protocol offload: 1) The set of protocols to be

offloaded (e.g. TCP/IP, VMTP, OSI), 2) the portions of the protocol that are

offloaded (e.g. full offload, partial offload, fast path offload, no offload), 3) the

offload implementation (e.g. parallel processor, standard microprocessor, custom

processor, custom hardware). The cited references below include many different

combinations of these three dimensions, but it should be noted that each cited

combination was primarily a design decision among a small, finite number of

choices. It would have been obvious to alter these implementations along one or

more of the dimensions for a new implementation that would have produced

predictable results. In other words, it was well recognized that depending on the

application, it was desirable to vary the extent of offloading. The simplest example

is that while offloading the entire protocol may seem on the surface advantageous,

it was expensive because handling every type of data packet requires a complex

INTEL Ex.1003.029

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

27

offloading device. For example, it was well known that setting up a connection

and entering the ESTABLISHED state was much more complex than simply

receiving and sending data packets. Ex.1006, Tanenbaum96 at .583 (“The key to

fast TPDU processing is to separate out the normal case (one-way data transfer)

and handle it specially. Although a sequence of special TPDUs are needed to get

into the ESTABLISHED state, once there, TPDU processing is straightforward until

one side starts to close the connection.”).

C. Offloaded Protocols

47. By the mid-1990s, TCP/IP was becoming a predominant network

standard, but many other networks were still in use and new network protocols

were being investigated.

1. OSI Protocol Offload

48. OSI protocol offload engines were built and tested by Thia and

Woodside. Ex.1015, Thia and Ex.1038, Woodside.

2. TCP/IP Protocol Offload

49. TCP/IP offload engines were built or described by many in the field

including Bach, Erickson, Morris, Cooper, Kung, Rütsche and Chesson. Ex.1020,

Bach; Ex.1005, Erickson; Ex.1021, Morris; Ex.1022, Cooper; Ex.1023, Kung;

Ex.1017, Rütsche92; Ex.1018, Rütsche93; Ex.1024, Chesson.

INTEL Ex.1003.030

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

28

3. VMTP and XTP Protocol Offload

50. VMTP and XTP were proposed as alternatives to TCP. A VMTP

offload engine was described by Kanakia, and an XTP protocol accelerator was

described by Chesson. Ex.1025, Kanakia; Ex.1024, Chesson.

4. Multi-Protocol Offload

51. General-purpose offload engines were also proposed. Erickson

discloses a range of protocol scripts for offloading different protocols.

Each type of protocol will have its own script. Types of protocols

include, but are not limited to, TCP/IP, UDP/IP, BYNET lightweight

datagrams, deliberate shared memory, active message handler, SCSI,

and File [sic:Fibre] Channel.

Ex.1005, Erickson at 5:47-51.

52. Kung and Cooper describe the Nectar network-based multicomputer

system in which the processors communicate via Communications Acceleration

Boards (CABs) that can run different protocols.

The CAB runtime system currently supports several transport

protocols with different reliability/overhead tradeoffs [10]. They

include the standard TCP/IP protocol suite besides a number of

Nectar-specific protocols.

Ex.1026, Kung and Cooper at .003.

INTEL Ex.1003.031

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

29

D. Portions of the Protocol Offloaded

53. The portion of the protocol offloaded (called “mediation level” in

RFC 929) falls into several types that range from partial offload to full offload.

That is, either part of the protocol processing can be offloaded (partial offload) or

the entire protocol processing can be offload (full offload).

1. Checksum Offload

54. One of the first parts of protocol processing to be offloaded was the

checksum calculation (a partial offload). An adapter doing only checksum offload

is less complex because it does not require the adapter to maintain the connection

state.

55. Dalton describes the HP Afterburner card with optional hardware for

checksum calculation:

To support the use of the on-card memory as clusters, we have written

a small number of functions. The most important is a special copy

routine, functionally equivalent to the BSD function bcopy. It is

optimized for moving data over the I/O bus, and also optionally uses

the card's built-in unit to calculate the IP checksum of the data it

moves. Another function converts a single-copy cluster into a chain of

normal clusters and mbufs; it also calculates the checksum.

Ex.1027, Dalton at .011 (emphasis added).

INTEL Ex.1003.032

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

30

2. Full Offload

56. Exemplary full offload papers and systems include Murphy, Bach,

MacLean, Cooper and Rütsche.5 Ex.1028, Murphy; Ex.1020, Bach; Ex.1029,

MacLean; Ex.1022, Cooper; Ex.1017, Rütsche92; Ex.1018, Rütsche93.

3. Multi-Level Offload

57. Chesson describes a protocol chip plus an optional control processor

that can do a range of offloads from partial (checksum, sequence numbers, etc.) to

full offload. Ex.1024, Chesson.

4. Header Prediction

58. In 1988, Van Jacobson proposed a header prediction algorithm for

improving the performance of TCP/IP implementations. This “header prediction”

teaching led to various types of partial offload. The code, which uses header

templates, is partitioned into one module for the commonly executed path (the fast

5 In a “full offload,” the adapter does not typically initiate connections on its own.

The host initiates the connection by opening a socket to an IP address and TCP

port. The host establishes the connection and directs the stack of protocol layers to

create the connection. Yet those of skill in the art often still refer to such systems

as “full offload.”

INTEL Ex.1003.033

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

31

path) and another module to handle the more complex cases and exception

handling (the slow path).

59. Code to implement the header prediction algorithm was incorporated

in the BSD 4.4-Lite distribution.

Most IP packets carry no options. Of the 20-byte header, 14 of the

bytes will be the same for all IP packets sent by a particular TCP

connection. The IP length, ID, and checksum fields (6 bytes total) will

probably be different for each packet. Also, if a packet carries any

options, all packets for that TCP connection will be likely to carry the

same options.

The Berkeley implementation of UNIX makes some use of this

observation, associating with each connection a template of the IP and

TCP headers with a few of the fixed fields filled in. To get better

performance, we designed an IP layer that created a template with all

the constant fields filled in. When TCP wished to send a packet on

that connection, it would call IP and pass it the template and the

length of the packet. Then IP would block-copy the template into the

space for the IP header, fill in the length field, fill in the unique ID

field, and calculate the IP header checksum.

This idea can also be used with TCP, as was demonstrated in an

earlier, very simple TCP implemented by some of us at MIT [6]. In

that TCP, which was designed to support remote login, the entire state

of the output side, including the unsent data, was stored as a

INTEL Ex.1003.034

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

32

preformatted output packet. This reduced the cost of sending a packet

to a few lines of code.

A more sophisticated example of header prediction involves applying

the idea to the input side. In the most recent version of TCP for

Berkeley UNIX, one of us (Jacobson) and Mike Karels have added

code to precompute what values should be found in the next incoming

packet header for the connection. If the packets arrive in order, a few

simple comparisons suffice to complete header processing.

Ex.1030, Clark at .003.

60. The 1995 book (Stevens2) walks through the Jacobson BSD header

prediction code including the conditions for selecting the fast or slow path. In order

to take the fast receive path, six conditions must be met, including:

1. The connection must be established.

2. The following four control flags must not be on: SYN, FIN, RST, or

URG. The ACK flag must be on.

3.-6. [Conditions to assure that the received segments are in-order]

Ex.1013, Stevens2 at .962-.963.

a) Partial Offload with Header Prediction

61. The fast and slow paths described by Stevens gave a natural division

for protocol offload implementations. Building on the Jacobson BSD header

prediction code, Biersack (Ex.1016) describes TCP protocol offload with fast and

slow paths. Thia and Woodside (Ex.1015) also build upon the Jacobson BSD

INTEL Ex.1003.035

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

33

header prediction algorithm and apply its teachings to derive an OSI protocol

offload with the fast path implemented in hardware.

62. The header prediction code in the FreeBSD release is also discussed

in the Alacritech 1997 Provisional application:

The base for the receive processing done by the INIC on an existing

context is the fast-path or “header prediction” code in the FreeBSD

release.

Ex.1031, Alacritech 1997 Provisional Application at .057.

63. Thus, the Jacobson header prediction code forms the basis of what

Alacritech offloads to its intelligent network interface card (INIC).

E. Offload Implementation

64. Offloading the transport layer to an interface card was discussed in

Tanenbaum96:

The hardware and/or software within the transport layer that does the

work is called the transport entity. The transport entity can be in the

operating system kernel, in a separate user process, in a library

package bound into network applications, or on the network interface

card.

Ex.1006, Tanenbaum96 at .498 (emphasis added).

65. Others have disclosed more details of offload hardware including

implementations based on multiprocessors, microprocessors, custom processors

and custom logic.

INTEL Ex.1003.036

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

34

1. Multiprocessor Offload

66. Several groups proposed or built systems in which protocol

processing is offloaded from the application processor to one or more dedicated

processors in a multiprocessor configuration to protocol processing.

67. The Nectar system:

The Nectar communication processor together with its host can be

viewed as a (heterogeneous) shared-memory multiprocessor.

Dedicating one processor of a multiprocessor host to communication

tasks can achieve some of the benefits of the Nectar approach, but this

constrains the choice of host operating system and hardware. In

contrast, the Nectar communication processor has been used with a

variety of hosts and host operating systems.

Ex.1022, Cooper at .006.

68. The Parallel Protocol Engine:

In this paper our goal is to demonstrate that a careful implementation

of a standard transport protocol stack on a general purpose

multiprocessor architecture allows efficient use of the bandwidth

available in today’s high-speed networks. As an example, we chose

to implement the TCP/IP protocol suite on our 4-processor prototype

of the PPE.

Ex.1017, Rütsche92 at .009.

69. Rütsche also designed a Gb/s Multimedia Protocol Adapter based on

the PPE:

INTEL Ex.1003.037

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

35

In this paper we present a new multiprocessor communication

subsystem architecture, the Multimedia Protocol Adapter (MPA),

which is based on the experience with the Parallel Protocol Engine

(PPE) [Kaiserswerth 92] and is designed to connect to a 622 Mb/s

ATM network. The MPA architecture exploits the inherent

parallelism between the transmitter and receiver parts of a protocol

and provides support for the handling of new multimedia protocols.

Ex.1018, Rütsche93 at .001.

2. Offload Adapters based on Microprocessors

70. Protocol offloading may be implemented by executing code in one or

more microprocessors on an intelligent network interface card or on a network

accelerator board used in conjunction with a standard NIC (network interface

card).

71. Kanakia describes a network adapter board with a microprocessor and

other support chips:

The prototype Network Adapter Board (NAB) has been designed

using Motorola’s MC68020 as the on-board processor, running at 16

Mhz clock rate; it uses about 200 hundred standard MSI and LSI

components. The current version is designed for connecting two VMP

multiprocessor system with a 100 megabit/sec point-to-point

connection.

Ex.1025, Kanakia at .010.

INTEL Ex.1003.038

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

36

72. MacLean describes microprocessor-based protocol accelerators

residing on a VME card:

The internal functions and data flows of the protocol accelerator

shown in Figure 2. We use a dual CPU approach to protocol

processing, with one CPU subsystem dedicated to the transmission,

and the other to the reception. The transmit and receive CPUs are both

68020 (25 MHz) based, each with its own private resources: ROM,

parallel I/O, interrupt circuitry and 128 kilobytes of random access

memory (RAM). In addition there is 128 kilobytes of RAM shared by

both CPUs which is also accessible to the two host busses, VME and

VSB.

Ex.1029, MacLean at .004.

73. Rütsche describes a multimedia protocol adapter (MPA) using a pair

of “transputer” microprocessors:

The selection of the inmos2 T9000 [inmos 91] is based on our good

experience with the transputer family of processors in the PPE. The

most significant improvements of the T9000 over the T425 for

protocol processing are faster programmable link interfaces, a faster

memory interface, and a cache.

Ex.1018, Rütsche93 at .003.

INTEL Ex.1003.039

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

37

3. Offload Adapters based on Custom Processors or Custom
Logic

74. Other designers have proposed custom processors and/or custom logic

for protocol offload. Chesson describes a Protocol Engine chipset for real-time

protocol processing. Depending on the amount of protocol offload desired, an

adapter can be built with or without the custom control processor (CP):

The Protocol Engine® chipset offers real-time protocol processing for

high-speed networks. A wide range of cost-performance subsystem

solutions are available through various configurations based on the PE

Chipset. The chipset (shown in Figure 1) consists of four chips:

MPORT, HPORT, BCTL, and CP. A basic configuration consists of

MPORT, HPORT, and BCTL.

Ex.1024, Chesson at .006.

75. The optional Chesson Control processor is a custom processor

designed for fast protocol processing:

Control Processor (CP) of the Protocol Engine® chipset is a 32-bit,

multi-thread execution unit that provides high speed protocol

processing.

Id. at .039.

76. Thia also discloses the design of a custom VLSI chip for protocol

offload:

The chip design based on bypassing is called ROPE, for Reduced

Operation Protocol Engine. The contribution of this paper is to define

INTEL Ex.1003.040

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

38

the host/chip interface and the chip operation, and to report on a

VHDL-based feasibility study of the chip design. It appears to be

feasible to support an end-system single-connection data rate

approaching 1 Gbps.

Ex.1015, Thia at .002 and Ex. 1038, Woodside.

77. Culler describes the Berkeley Network of Workstations (NOW) in

which the Active Messages protocol is offloaded to intelligent NICs built with

Myricom LANai chips:

The hardware configuration of the Berkeley NOW system consists of

one hundred and five Sun Ultra 170 workstations, connected by a

large Myricom network[Bode95], and packaged into 19-inch racks.

Each workstation contains a 167 MHz Ultra1 microprocessor with

512 KB level-2 cache, 128 MB of memory, two 2.3 GB disks,

ethernet, and a Myricom “Lanai” network interface card (NIC) on the

SBus. The NIC has a 37.5 MHz embedded processor and three DMA

engines, which compete for bandwidth to 256 KB of embedded

SRAM. The node architecture is shown in Figure 1.

Ex.1032, Culler at .001.

INTEL Ex.1003.041

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

39

Id. at .003.

78. Alteon describes their third generation intelligent Ethernet adapter that

includes performance improvements from protocol offload, reduction in memory

copies and reduction of interrupts.

Using an intelligent adapter with an onboard RISC-based processor

specially designed for embedded application processing, Alteon’s

Gigabit Ethernet technology not only reduces the number of times

data is copied among processing entities, it allows a single interrupt to

be issued for multiple data packets—radically altering the ratio of

interrupts to packets, and eliminating the scalability problems inherent

in older adapter designs.

Ex.1033, Alteon at .022.

79. HP discloses a custom chip called Tachyon that includes send offload,

receive offload, hardware checksum calculation, DMA, and headers/data splitting:

INTEL Ex.1003.042

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

40

Ex.1034, Smith at .004.

F. Protocol Offload Summary

80. The preceding paragraphs have shown many offload implementations

foreshadowed by RFC 929 described above. These implementations include many

variations along the three dimensions of network protocol offload: 1) the set of

protocols to be offloaded, 2) the portions of the protocol that are offloaded, and 3)

the offload implementation. The citations show that each of the individual

concepts was well known and that many different combinations along the three

dimensions were successfully implemented by practitioners. It would have been

obvious to alter these implementations along one or more of the dimensions for a

new implementation that would have produced predictable results.

G. Additional Background Technology

81. Protocol offload adapters have incorporated many well-known design

techniques originally developed for general purpose processors. Some of these

concepts, such as DMA and virtual memory, are briefly described below. More

information is available from textbooks on Computer Architecture. See e.g., David

A. Patterson and John L. Hennessy, Computer Architecture: A Quantitative

INTEL Ex.1003.043

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

41

Approach, Morgan Kaufmann Publishers Inc., San Mateo, CA, USA., 1990.

(Ex.1035, Patterson).

1. DMA

82. DMA (Direct Memory Access) is a hardware-based technique for

transferring data between memory systems or between a host memory and an I/O

device.

Since I/O events so often involve block transfers, direct memory

access (DMA) hardware is added to many computer systems to allow

transfers of numbers of words without intervention by the CPU.

Ex.1035, Patterson at .151. Hardware that processes the received TCP/IP packets

on the fast path must make the received data accessible to the application running

on the host machine (e.g., in the designated host memory as discussed above).

DMA was a common and efficient way to achieve this, as I discuss below.

83. Before DMA was common, processors used I/O (input/output)

instructions to transfer data to I/O devices. A benefit of using DMA is that fewer

processor cycles are required to transfer the data. With DMA, the DMA engine is

loaded with an address and count of data to be moved, then the data movement

proceeds while the processor is doing other tasks. In some implementations, DMA

engines are under the control of a host processor, while in others a DMA engine is

controlled by an intelligent controller on an I/O adapter. The DMA engine itself

may be located either in the host or on an I/O adapter.

INTEL Ex.1003.044

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

42

84. DMA may be used either to read from host memory or to write to host

memory. In some implementation, there are separate send and receive DMA

engines and in others, a common DMA engine can be programmed to transfer to or

from host memory:

Outbound Block Mover. The outbound block mover block’s function

is to transfer outbound data from host memory to the outbound

sequence manager via DMA. It takes as input an address/length pair

from the outbound sequence manager block, initiates the Tachyon

system interface bus ownerships, and performs the most efficient

number and size of transactions on the Tachyon system interface bus

to pull in the data requested.

…

Inbound Block Mover. The inbound block mover is responsible for

DMA transfers of inbound data into buffers specified by the

multiframe sequence buffer queue, the single-frame sequence buffer

queue, the inbound message queue, or the SCSI buffer manager. The

inbound block mover accepts an address from the inbound data

manager, then accepts the subsequent data stream and places the data

into the location specified by the address.

Ex.1034, Smith at .007, .009.

Movement of data across the host bus interface are minimized by

using an on-chip DMA for fast block data transfer to/from the host

system memory.

INTEL Ex.1003.045

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

43

Ex.1015, Thia at .007.

Bus Controller (BC): The BC is a programmable busmaster DMA

controller. It provides a small FIFO and a table for DMA requests.

The FIFO contains a pointer to the linked list of source data and a

connection identifier. The BC determines the destination memory

address through the connection identifier in the table. The list format

is the same for the BC and the DMAU. In the transmit BC the host

writes to the FIFO and the protocol processor to the table. In the

receive BC the protocol processor writes to the FIFO and the host to

the table.

Ex.1018, Rütsche93 at .004-.005.

2. Virtual and Physical Memory Addresses

85. I/O adapters that transfer data directly to or from memory need to be

provided with the memory addresses of the buffers. Many processors use virtual

addressing in which large buffers appear to the processor as single contiguous

memory space even though the addressed pages may not be contiguous in physical

memory. To translate from virtual to physical memory addresses, the processor

uses page tables that store the appropriate mappings from virtual to physical pages.

With virtual memory, the CPU produces virtual addresses that are

translated by a combination of hardware and software to physical

addresses, which can be used to access main memory. This process is

called memory mapping or address translation.

Ex.1035, Patterson at .050 (emphasis in original).

INTEL Ex.1003.046

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

44

86. In order for an I/O device to access the main memory buffers, either

the physical address may be supplied for each page, or a translation table may be

maintained on the I/O controller to allow it to operate on virtual addresses.

Erickson has a “physical address buffer map” in the adapter memory and discusses

some options for handling the translation:

The vtophys() function performs a translation of the user-provided

virtual address into a physical address usable by the adapter. In all

likelihood, the adapter would have a very limited knowledge of the

user process’ virtual address space, probably only knowing how to

map virtual-to-physical for a very limited range, maybe as small as a

single page. Pages in the user process’ virtual address space for such

buffers would need to be fixed. The udpscript procedure would need

to be enhanced if the user data were allowed to span page boundaries.

Ex.1005, Erickson at 8:14-24.

87. Tanenbaum 96 suggests the use of direct copying into the user buffer

to avoid unnecessary copy. Ex.1006, Tanenbaum96 at .585. Tanenbaum96 also

identified a goal of system design for better performance was to avoid unnecessary

copying (“[a packet] is copied to a network layer buffer, then to a transport layer

buffer, and finally to the receiving application process.”) Ex.1006, Tanenbaum96

at .579, .582.

88. In implementations that avoid the extra copy steps, the DMA engine

transfers the reassembled original byte stream into user space for use by the

INTEL Ex.1003.047

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

45

application layer. Once the headers are processed, the application has no need for

those headers, as demonstrated by the illustration of the protocol stack above in

Section V.B.1. See Ex.1006, Tanenbaum96 at .055-56, .541. For example,

Tanenbaum96 discloses that the headers are checksummed before transferring data

to user space to verify that it is going to the correct location: “The header and data

should be separately checksummed, for two reasons. First, to make it possible to

checksum the header but not the data. Second, to verify that the header is correct

before starting to copy the data into user space. It is desirable to do the data

checksum at the time the data are copied to user space, but if the header is

incorrect, the copy may be to the wrong process.” Id. at .589. The TCP/IP headers

are added (and stripped off) by intermediate layers as the data moves through the

protocol stack.

VI. OVERVIEW OF 948 PATENT

89. The 948 Patent relates to offloading TCP protocol processing for

established TCP connections to a network interface card (NIC). Ex.1001, 948

Patent at Abstract. The specification of the 948 Patent refers to the disclosed NIC,

which performs offloading, as an “intelligent network interface card (INIC)”. See

id. at Abstract.

90. The INIC of the 948 Patent permits two modes of operation: a “fast

path” in which protocol processing from the physical layer through the TCP layer

INTEL Ex.1003.048

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

46

bypasses the host protocol stack and is instead performed on the INIC, and a “slow

path” in which network frames are handed to the host at the MAC layer and passed

up through the host protocol stack conventionally. The concept is illustrated in

Fig. 6, shown below:

A simplified intelligent network interface card (INIC) 150 is shown in

FIG. 6 to provide a network interface for a host 152. Hardware logic

171 of the INIC 150 is connected to a network 155, with a peripheral

bus (PCI) 157 connecting the INIC and host. The host 152 in this

embodiment has a TCP/IP protocol stack, which provides a slow-path

158 for sequential software processing of message frames received

from the network 155. The host 152 protocol stack includes a data

link layer 160, network layer 162, a transport layer 164 and an

application layer 166, which provides a source or destination 168 for

the communication data in the host 152…. The INIC 150 has a

network processor 170 which chooses between processing messages

INTEL Ex.1003.049

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

47

along a slow-path 158 that includes the protocol stack of the host, or

along a fast-path 159 that bypasses the protocol stack of the host.

Ex.1001, 948 Patent at Fig.6; 9:11-29.

91. When a connection is created, the host computer creates a connection

record that is referred to in the 948 Patent as a “Communication Control Block

(CCB).” Ex.1001, 948 Patent at 5:22-29. This contains similar information as in

the Transmission Control Block (TCB) in RFC791, namely connection and state

information for the connection. Ex.1001, 948 Patent at 12:32-39. When the INIC

receives a packet, it checks whether a connection exists by looking for a CCB

corresponding to the connection information in the received packet header. The

INIC uses the result of this comparison to determine which “path” should be used

for a received packet. If the connection exists, the packet is processed on the fast

path, bypassing the host protocol stack:

The processor 170 chooses, for each received message packet held in

storage 185, whether that packet is a candidate for the fast-path 159

and, if so, checks to see whether a fast-path has already been set up

for the connection that the packet belongs to. To do this, the processor

170 first checks the header status summary to determine whether the

packet headers are of a protocol defined for fast-path candidates.…

For fast-path 159 candidates, the processor 170 checks to see whether

the header status summary matches a CCB held by the INIC. If so, the

data from the packet is sent along fast-path 159 to the destination 168

INTEL Ex.1003.050

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

48

in the host. If the fast-path 159 candidate's packet summary does not

match a CCB held by the INIC, the packet may be sent to the host 152

for slow-path processing to create a CCB for the message.

Ex.1001, 948 Patent at 11:57-22-12:10.

92. The claims of the 948 Patent are directed to fast-path TCP receive

processing when a connection is in the ESTABLISHED state (in other words, there

are no exceptions such as no IP fragmentation, or one of the SYN, FIN or RST

flags set in the received packet).

VII. 948 PATENT PROSECUTION HISTORY

93. I have reviewed the prosecution history of the 948 Patent. There were

no rejections or amendments during the prosecution of the 948 Patent.

94. The 948 Patent is a continuation of U.S. Patent Application No.

09/692,561, filed October 18, 2000, which is a continuation of U.S. Patent No.

6,226,680, filed April 28, 1998, which claims the benefit of U.S. Patent

Application No. 60/061,809 filed October 14, 1997. Therefore, the earliest possible

priority date of the 948 Patent is October 14, 1997.

95. On December 19, 2013, Applicant filed an Information Disclosure

Statement with 383 patents, 41 applications, 13 foreign patents, and 112 non-patent

literature documents, including Thia and Tanenbaum96. See Ex.1002 at .075-99.

Neither Thia nor Tanenbaum96 were discussed during the prosecution of the

application leading to the 948 Patent.

INTEL Ex.1003.051

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

49

96. On June 20, 2014, the Examiner gave the following reasons for

allowance:

Ex.1002, 948 Prosecution History at .117.

VIII. CLAIM CONSTRUCTIONS

A. Legal Standard

97. I understand that in deciding whether to institute inter partes review,

“[a] claim in an unexpired patent shall be given its broadest reasonable

construction in light of the specification of the patent in which it appears.” 37

C.F.R. § 42.100(b). I further understand that “the broader standard serves to

identify ambiguities in the claims that can then be clarified through claim

amendments.” Final Rule, 77 Fed. Reg. 48680, 48699 (Aug. 14, 2012).

98. In forming my opinions as set forth in this declaration, I have

accorded all claim terms in claims 1, 3, 6-9, 11, 14-17, 19, and 21-22 in the 948

Patent their broadest reasonable interpretation, as would be understood by a person

INTEL Ex.1003.052

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

50

of ordinary skill in the art at the time of the alleged invention of the alleged

invention of the 948 Patent.

IX. THE PRIOR ART

A. Thia: Thia, A Reduced Operation Protocol Engine (ROPE) for a
mulitple-layer bypass architecture (1995) 6

99. Thia describes a hardware protocol engine for fast-path data transfer,

where the hardware bypasses the host protocol stack for certain packets:

Abstract - The Reduced Operation Protocol Engine (ROPE) presented

here offloads critical functions of a multiple-layer protocol stack,

based on the "bypass concept" of a fast path for data transfer.

Ex.1015, Thia at .001. Thia is based on the Open System Interconnect (OSI)

protocol that I discussed above in Section V.A.1.

100. Thia’s hardware protocol offload system compares the incoming

packet headers with a template that identifies “predicted bypassable headers” (in

other words, those that are in a “data transfer phase” (consecutive packets for the

same connection). Thia refers to the ROPE hardware as a reduced operation

protocol engine because it only handles this subset of packets. Ex.1015, Thia at

6 Thia was published in 1995. I understand that it is prior art because it was

published before October 14, 1997, the date to which Alacritech claims priority.

See Ex.1015, Thia.

INTEL Ex.1003.053

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

51

.004 (“The number of possible PDU formats in the bypass path is reduced to data

transfer PDUs”). Thia discloses the use of a receive bypass test (RX bypass test in

Figure 1) where the ROPE hardware performs all protocol processing for packets

in this “data transfer phase,” bypassing the standard protocol stack (SPS) (host

protocol stack):

2.1 Bypass Architecture

Figure 1 illustrates the architecture of a bypass implementation for

any standard protocol. The standard protocol stack (SPS) is the

processing path taken by all PDUs [Protocol Data Units i.e. packets]

during a connection without the bypass…. The receive bypass test

matches the incoming PDU headers with a template that identifies the

predicted bypassable headers. The bypass stack performs all the

relevant protocol processing in the data transfer phase. The shared

data are used to maintain state consistency between the SPS and the

bypass stack, including window flow control parameters and

connection identifiers.

Ex.1015, Thia at .003. This “receive bypass test” is performed on the ROPE (i.e.,

the Network Interface Adapter). Ex.1015, Thia at .006. I have illustrated the fast

and slow path processing disclosed by Thia below.

INTEL Ex.1003.054

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

52

Id. at .003 (annotated).

101. Thia’s receive bypass test is a generalization of Jacobson’s well-

known Header Prediction Algorithm” for TCP/IP, which is also described in the

Tanenbaum96 and Stephens2 references discussed below. Id. at .002. Thia

teaches that the receive bypass test ensures that the protocol bypass on the ROPE is

for packets without exceptions – i.e., those in the “data transfer phase” (this is also

what Stevens2 referred to as the ESTABLISHED state for TCP) and that the SPS

on the host handles packets in the other phases:

A multiple-layer bypass path is a concatenation of processing

procedures performed by the adjacent layers when they are

simultaneously in the data transfer phase. Meanwhile, the separate

User A
receives a
packet
from
User B

No bypass
– Host
processes
the packet Bypass –

ROPE
processes
the packet

INTEL Ex.1003.055

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

53

layers in the SPS [Standard Protocol Stack] path handle the other

phases.

In summary, the separation of the bypass path offers the following

advantages:

· The processing path of data PDUs can be optimized;

· The number of possible PDU [Protocol Data Unit i.e. packet]

formats in the bypass path is reduced to data transfer PDUs;

· The finite state machine of the protocol is now reduced to only the

"OPEN" state, for as long as processing remains in the bypass path.

The state of the system does not change during the entire data transfer

phase and the protocol processing is reduced to ensuring reliable

transfer of data across the communications network.

Id.

102. The receive bypass test “matches” the incoming PDU (packet)

headers with a template that identifies the next in sequence (predicted) bypassable

headers. Id. at .003. To be part of the data transfer, the received packets must

indicate that they are for the same connection. A POSA would have understood

that the headers would be parsed to identify the fields to be matched with the

template. The bypass stack then “performs all the relevant protocol processing in

the data transfer phase.” Id. As I described above in Section V.A, on the receive

side, this includes stripping off the headers and handing up the payload to the layer

above. The bypass stack on the ROPE performs header decoding and can perform

the checksum on the transport layer. Id. at .006.

INTEL Ex.1003.056

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

54

103. Thia’s DMA then copies the data to Host Memory, eliminating data

copying within layers. Id. at .007 (“Movement of data across the host bus interface

are minimized by using an on-chip DMA for fast block data transfer to/from the

host system memory.”) (emphasis added). A POSA would understand that only

the payload data is transferred. The headers need not be transferred because they

are decoded and checked by the bypass chip. Highlighted Table 1 and Figure 2 of

Thia show these functions:

INTEL Ex.1003.057

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

55

Id. at .006 (annotated). In other words, a POSA would have understood that the

transport header is stripped off before the data is transferred to the layer above as

described in Section V.B.1

Id. at .007 (annotated).

104. Thia indicates that creating the bypass for certain operations was

implemented with minimal changes to the original software. Id. at .002. Thia

teaches that using a bypass for multiple layers (i.e., concatenation of processing

procedures in adjacent layers in the data transfer phase) provides additional gains,

including avoiding the overhead of encoding and decoding the interface control

A packet is
received at the
NIA via
Transmission
Medium

Bypass – ROPE
processes the
packet and stores
the data in host
memory

INTEL Ex.1003.058

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

56

information passed between layers and the queueing of data at layer boundries. Id.

at .004.

B. Tanenbaum96: A. Tanenbaum, Computer Networks, 3rd ed.
(1996)7

105. Tanenbaum96, “Computer Networks,” is a 700+ page text book

covering network hardware, software, protocols and standards. It is a third edition

of the 1981 Tanenbaum book. Tanenbaum96 is a widely-cited textbook covering

network hardware, software, protocols (including OSI and TCP/IP) and standards.

The 1996 edition is cited and incorporated by reference in the 948 Patent.

106. Tanenbaum96 describes both TCP and UDP protocols. Note that

UDP, unlike TCP, is connectionless and thus does require setting up a connection:

The Internet has two main protocols in the transport layer, a

connection oriented protocol and a connectionless one. In the

following sections we will study both of them. The connection-

oriented protocol is TCP. The connectionless protocol is UDP.

Ex.1006, Tandenbaum96 at .539.

7 Tanenbaum96 was a well-known resource to a POSA. I understand that it is prior

art because it was published before October 14, 1997, the date to which Alacritech

claims priority. See Ex.1006, Tanenbaum96.

INTEL Ex.1003.059

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

57

Id. at .055, Fig 1-19.

107. Tanenbaum96 recognizes that an “obstacle to fast networking is

protocol software,” and teaches “fast path” processing for TCP as a solution. Ex.

1006 at .583-585. This “fast path” solution is based off “header prediction.” See

Section V.E.4 above for a description of “header prediction.”

108. Tanenbaum96 teaches that header prediction is based on the principle

that fast path processing should apply to normal data transfers:

The key to fast TPDU processing is to separate out the normal case

(one-way data transfer) and handle it specially. Although a sequence

of special TPDUs are needed to get into the ESTABLISHED state,

once there, TPDU processing is straightforward until one side starts to

close the connection.

Ex.1006, Tanenbaum96 at .583.

109. Tanenbaum96 teaches fast path transmissions using a prototype

header stored in the transport entity, because in the normal case of an established

TCP connection, only a few fields of the header change in consecutive packets.

INTEL Ex.1003.060

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

58

Compare Section V.B.5.a. (describing complexity of opening a connection, i.e., a

“socket”). In other words, the transport entity only needs to change a few fields to

send subsequent packets:

The first thing the transport entity does is make a test to see if this is

the normal case: the state is ESTABLISHED, neither side is trying to

close the connection, a regular (i.e., not an out-of-band) full TPDU

[Transport Protocol Data Unit, i.e. packet] is being sent, and there is

enough window space available at the receiver. If all conditions are

met, no further tests are needed and the fast path through the sending

transport entity can be taken.

In the normal case, the headers of consecutive data TPDUs are almost

the same. To take advantage of this fact, a prototype header is stored

within the transport entity. At the start of the fast path, it is copied as

fast as possible to a scratch buffer, word by word. Those fields that

change from TPDU to TPDU are then overwritten in the buffer.

Id. at .583 (emphasis added).

110. The fast path send and receive processing are illustrated in Figure 6-

49 of Tanenbaum96.

INTEL Ex.1003.061

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

59

Ex.1006, Tanenbaum96 at .584.

111. Tanenbaum96 teaches that the transport entity can be implemented by

the host operating system, or can be offloaded to the NIC (e.g., as a processor on

the NIC):

The hardware and/or software within the transport layer that does the

work is called the transport entity. The transport entity can be in the

operating system kernel, in a separate user process, in a library

package bound into network applications, or on the network interface

card.

Id. at .498 (underlining added, bold in original).

112. Tanenbaum96 discloses that the TCP transport entity divides data

streams into TCP segments for subsequent transmission. See Section V.B.8.

INTEL Ex.1003.062

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

60

(segmentation description). The receiving TCP transport entity reconstructs the

byte stream from the received TCP segments.

Each machine supporting TCP has a TCP transport entity, either a

user process or part of the kernel that manages TCP streams and

interfaces to the IP layer. A TCP entity accepts user data streams from

local processes, breaks them up into pieces not exceeding 64K bytes

(in practice, usually about 1500 bytes), and sends each piece as a

separate IP datagram. When IP datagrams containing TCP data arrive

at a machine, they are given to the TCP entity, which reconstructs the

original byte streams.

Id. at .540. A POSA would understand that the byte stream is transferred

and stored into application memory without the headers from the layers

below.

113. Tanenbaum96 goes on to describe a TCP prototype header (i.e., a

header template that is used to create additional headers for sending packets) and

offloading protocol processing by the transport entity in detail:

INTEL Ex.1003.063

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

61

Id. at .584 (emphasis added).

114. Tanenbaum96 also teaches TCP fast path receiving by looking up a

TCP connection record based on the IP source address, TCP source port, IP

destination address and TCP destination address, checking to see if it the packet is

a normal one in the ESTABLISHED state, and then putting the data into user

memory. In other words, Tanenbaum96 is teaching that the transport entity

performs this check to determine whether the packet is suitable for fast path

processing. See Section V.E.4. (header prediction offload). Note that there may be

multiple connections on a single computer, and thus when a packet comes in, it

must be checked against the connection records that may represent multiple

connections:

INTEL Ex.1003.064

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

62

Now let us look at fast path processing on the receiving side…. For

TCP, the connection record can be stored in a hash table for which

some simple function of the two IP addresses and two ports is the key.

Once the connection record has been located, both addresses and both

ports must be compared to verify that the correct record has been

found….

[T]he TPDU [Transport Protocol Data Unit, i.e. packet] is then

checked to see if it is a normal one: the state is ESTABLISHED,

neither side is trying to close the connection, the TPDU is a full one,

no special flags are set, and the sequence number is the one expected.

These tests take just a handful of instructions. If all conditions are

met, a special fast path TCP procedure is called.

The fast path updates the connection record and copies the data to the

user. While it is copying, it also computes the checksum, eliminating

an extra pass over the data. If the checksum is correct, the connection

record is updated and an acknowledgement is sent back. The general

scheme of first making a quick check to see if the header is what is

expected, and having a special procedure to handle that case, is called

header prediction. Many TCP implementations use it.

Ex.1006, Tanenbaum96 at .584-.585 (underlining added, bold in original).

Tanenbaum discloses that part of Header Prediction is checking whether the

received matches a connection record (i.e., whether the source and destination

addresses and ports match). The phrase “the TPDU is a full one” means that it is a

full TPDU, in other words, not fragmented. The phrase “the sequence number is

INTEL Ex.1003.065

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

63

the one expected” means that it is the next packet in sequence as determined by the

sequence number, in other words it is not out of order or a retransmission.

115. Tanenbaum discloses the function of the RST, SYN and FIN control

flags. When the SYN flag is set, it indicates that the connection is not yet in the

ESTABLISHED state. If either the RST or FIN flag is set, that indicates that the

connection will be closed (i.e., is to be taken out of the ESTABLISHED state):

The RST bit is used to reset a connection that has become confused

due to a host crash or some other reason. It is also used to reject an

invalid segment or refuse an attempt to open a connection. In general,

if you get a segment with the RST bit on, you have a problem on your

hands.

The SYN bit is used to establish connections. The connection request

has SYN= 1 and ACK= 0 to indicate that the piggyback

acknowledgement field is not in use. The connection reply does bear

an acknowledgement, so it has SYN = 1 and ACK = 1. In essence the

SYN bit is used to denote CONNECTION REQUEST and

CONNECTION ACCEPTED, with the ACK bit used to distinguish

between those two possibilities.

The FIN bit is used to release a connection. It specifies that the sender

has no more data to transmit. However, after closing a connection, a

process may continue to receive data indefinitely. Both SYN and FIN

segments have sequence numbers and are thus guaranteed to be

processed in the correct order.

INTEL Ex.1003.066

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

64

Id. at .545.

116. Tanenbaum96 shows the finite state machine used by TCP/IP to

maintain a connection. The arrows indicate how the state changes in response to

the flags (SYN, FIN, ACK, RST) in the TCP header:

INTEL Ex.1003.067

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

65

Id.at .550. As can be seen from the state diagram, the SYN, FIN and RST control

flags affect whether a TCP connection is in the ESTABLISHED state. SYN

(synchronize) establishes a connection, FIN (finished) releases a connection, and

INTEL Ex.1003.068

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

66

RST (reset) is “used to reset a connection that has become confused due to a host

crash or some other reason.” Ex.1006, Tanenbaum96 at .545, Fig.6-24. Figure 6-

24 of Tanenbaum96 illustrates these flags in the TCP header.

Id. at .544.

117. The “connection record” disclosed in Tanenbaum96 is used to

maintain TCP state:

When an application on the client machine issues a CONNECT

request, the local TCP entity creates a connection record, marks it as

being in the SYN SENT state, and sends a SYN segment. Note that

many connections may be open (or being opened) at the same time on

INTEL Ex.1003.069

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

67

behalf of multiple applications, so the state is per connection and

recorded in the connection record.

Id. at .549 (emphasis added).

118. The “connection record” is the same as the “Transmission Control

Block (TCB)” described in RFC 793, the TCP protocol specification:

Before we can discuss very much about the operation of the TCP we

need to introduce some detailed terminology. The maintenance of a

TCP connection requires the remembering of several variables. We

conceive of these variables being stored in a connection record called

a Transmission Control Block or TCB.

Ex.1007, RFC 793 at .024 (emphasis added).

119. I describe a TCB and RFC 793 in Section V.B.5.

120. Tanenbaum96 teaches that “[f]or TCP, the connection record can be

stored in a hash table for which some simple function of the two IP addresses and

two ports is the key.” Ex.1006, Tanenbaum96 at .585.

121. Again, there may be multiple connections, and Tanenbaum96 is

teaching a technique to quickly lookup the connection record that corresponds to

the received packet.

122. Tanenbaum96 discloses the benefits of fast path processing where

unnecessary interlayer data copying is limited before the data reaches the receiving

application process. Id. at .579, .582; Id. at .590 (“As we saw earlier, copying data

INTEL Ex.1003.070

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

68

is often the main source of overhead. Ideally, the hardware should dump each

incoming packet into memory as a contiguous block of data.”)

C. Stevens2: Stevens, TCP-IP Illustrated, Vol. 2

123. Stevens2 is one of the most widely-read and referenced books on the

implementation of TCP/IP. Stevens2 is a guide to the source code for TCO/IP

implementation in the 4.4BSD-Lite distribution, which was widely-used to

implement TCP/IP by companies designing networking products. Stevens2

includes a discussion of BSD’s implementation of Jacobson’s Header Prediction,

which was written by Jacobson. Ex.1013, Stevens2 at .960 (“Header Prediction

was put into the 4.3BSD Reno release by Van Jacobson”) The 948 Patent claims

priority to a 1997 provisional, which indicates that “The base for the receive

processing done by the INIC on an existing context is the fast-path or ‘header

prediction’ code in the FreeBSD release.” Ex.1031, 1997 Provisional at .057.

124. Header prediction was described in Stevens2 as follows:

Header prediction helps unidirectional data transfer by handling the

two common cases. . . If TCP is receiving data, the next expected

segment for this connection is the next in-sequence data segment. . . a

small set of tests determines if the next expected segment has been

received, and if so, it is handled in-line, faster than the general

processing that follows.

INTEL Ex.1003.071

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

69

125. Stevens2 includes code and the general algorithm describing Header

Prediction that allows for fast path processing in the common case where 1) the

connection state is ESTABLISHED, 2) there are no control flags set (SYN, FIN,

RST, URG, ACK), and 3) the packet is in-sequence (not out of order or a

retransmission).

INTEL Ex.1003.072

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

70

Ex.1013 at .962-963.

126. The code and algorithm above are implemented at the TCP layer, and

thus, do not check for IP fragmentation because the IP layer reassembles

fragmented IP packets. Fragmentation, like out of order packets, would require

special handling that is not the common case.

X. OBVIOUSNESS COMBINATIONS – MOTIVATIONS TO COMBINE

A. Thia in Combination with Tanenbaum96

127. Thia discloses a chip for fast path receive protocol processing and a

bypass test to offload protocol processing of consecutive packets for the same

connection in the data transfer phase for the OSI Session and Transport layer

INTEL Ex.1003.073

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

71

protocols. Ex.1015, Thia at .001, .003. Thia discloses that its protocol stack

bypass could be used with “any standard protocol.” Id. at .003. A POSA would be

motivated to use Thia’s fast path protocol processing for TCP/IP, which was

among the most popular transport protocols in the world in 1996, to achieve the

many benefits described by Thia, including eliminating “inter-layer operations

such as queue and buffer management, context switching, and the movement of

data across layers, all of which are a significant overhead.” Id. at .001.

128. In 1996, the Internet and World Wide Web, using TCP/IP, was

growing extremely popular. See generally Section V.A.-B. Thia looked to header

prediction algorithm for TCP/IP. Ex.1015, Thia at .001. Given this, a POSA at

this time would have been motivated to implement the TCP/IP fast path protocol

processing with the Jacobson header prediction algorithm, using Thia’s Reduced

Operation Protocol Engine hardware. A POSA seeking to use Thia’s chip with

TCP/IP would naturally look to a well-known “simplified . . . college-level

textbook devoted primarily to th[e] subject . . ., such as Computer Networks, Third

Edition (1996) by Andrew S. Tanenbaum.” Ex.1001, 948 Patent at 3:4-8. At the

time, there were a finite number of networking protocols, particularly that were as

popular as TCP/IP, and thus it would have further been obvious to try to implement

TCP/IP using Thia’s ROPE chip on the network interface adapter. See generally

Section V.A.-B. Tanenbaum96 addresses both the OSI and TCP/IP models, and

INTEL Ex.1003.074

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

72

notes that “the TCP/IP internet layer is very similar in functionality to the OSI

network layer,” and that the TCP/IP transport layer “is designed to allow peer

entities on the source and destination hosts to carry on a conversation, the same as

in the OSI transport layer.” Ex.1006, Tanenbaum96 at .054. Tanenbaum96 also

discloses that TCP/IP became the dominant protocol suite as the OSI model

vanished. Ex.1006, Tanenbaum96 at .016. A POSA would have been motived to

migrate to the more dominant TCP/IP protocol suite as OSI models vanished.

Therefore, Thia’s SPS would include an IP layer in place of the OSI Network layer

and a TCP layer in place of the OSI Transport layer with TCP payload data

delivered to the Application layer (including functionality from the OSI

Presentation and Session layers) running above the transport layer. Thia’s

modified bypass test would match the incoming TCP/IP headers with a template

such as the one disclosed in Tanenbaum96 for header prediction and, after the

bypass stack processing, would copy only the received data to the Host Memory in

order without the TCP headers.

129. As I have described in Section V.A.2. and V.B., a POSA would have

understood TCP/IP well and standards for TCP/IP are set forth in well-known

Request for Comments (RFCs). Accordingly, a POSA would have had a high

expectation of success in implementing TCP/IP on Thia’s ROPE chip on the

network interface adapter. Tanenbaum96 discloses that the transport processing

INTEL Ex.1003.075

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

73

can be offloaded to a Network Interface Card (e.g., as a processor on the NIC).

Tanenbaum96 identified a goal of system design for better performance was to

avoid unnecessary copying (“[a packet] is copied to a network layer buffer, then to

a transport layer buffer, and finally to the receiving application process.”),

Ex.1006, Tanenbaum96 at .579, .582. Thia similarly teaches that “data Copying

within layers is eliminated” and discloses the use of a DMA to move data to the

Host Memory supporting the goal of “high-speed bulk data transfer.” Ex.1015,

Thia at Table 1, .002, .006, .007. Thus, Thia’s fast path processing and DMA

would support Tanenbaum’s goals.

130. Thia, like Tanenbaum, discloses a fast path protocol bypass that is

based on Jacobson’s Header Prediction Algorithm for TCP/IP. Ex.1015, Thia at

.002. Thia states that it’s “receive bypass test” matches incoming headers with a

template that identifies the predicted bypassable headers. Thia, like Tanenbaum96,

disclose that fast-path processing is to be limited to the normal data transfer state

(“OPEN” state) where consecutive packet are received for the same connection in

order to perform a reduced number of protocol operations on the incoming data.

Ex.1015, Thia at .004. Tanenbaum96 describes that Header Prediction determines

if the received packet is a normal one and describes the conditions to check make

that determination. Packets meeting those conditions are eligible for fast path

processing. This includes verifying that there is a connection record matching the

INTEL Ex.1003.076

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

74

two IP addresses (one for source and one for destination) and two ports (one for

source and one for destination) found in the header of the packet. Ex.1006,

Tanenbaum at .585. Additionally, the connection “state is ESTABLISHED, neither

side is trying to close the connection, TPDU is a full one [i.e., not fragmented], no

special flags are set, and the sequence number is the one expected [not out of

order].” Id. at .583.

131. Combining Tanenbaum96’s TCP/IP and header prediction with Thia

would have been understood as combining known methods to yield predictable

results. For example, TCP/IP was well known. See Section V.B. Header

prediction was well known. See Section V.E.4. Offloading protocol processing

was also generally well known. See Section V.B.C.-G.

132. A POSA reading Thia in view of Tanenbaum96 would have been

motivated to use Tanenbaum96’s conditions to determine normal packets eligible

for fast path processing as part of Thia’s received bypass test because, as discussed

in Sections IX.A and IX.B, both are based on Jacobson’s TCP/IP Header

Prediction that is used to improve performance by bypassing standard protocol

processing for normal data transfers that do not need special processing and

avoiding multiple data copies and encoding associated with multilayer processing.

See Ex.1006, Tanenbaum96 at .584-585; Ex.1015, Thia at .002. Tanenbaum96

teaches that transport processing can be offloaded to a Network Interface Card,

INTEL Ex.1003.077

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

75

such as the ROPE chip in Thia. Further, a POSA would have been motivated to

reduce the burden of protocol processing on the host processor such that it may

perform other necessary functions. Thus, a POSA would have been motivated to

migrate to TCP/IP and offload protocol processing for normal data transfers from a

host processor to a separate hardware and implement direct memory access by

storing data (stripped of the TCP headers) to eliminate interlayer copying and

improve performance. After the transport layer processing, the TCP header would

be stripped off and the original byte stream would be transferred to host memory

for use by the application.

B. Thia in Combination with Tanenbaum96 and further in
Combination with Stevens2

133. A POSA would have been motivated to combine Stevens2 with Thia,

in view of Tanenbaum96. Both Tanenbaum96 and Stevens2 were widely-

referenced books describing different aspects of protocols such as TCP/IP.

Tanenbaum96 references Stevens2 as providing a comprehensive treatment of

TCP, IP and related protocols. Ex.1006, Tanenbaum96 at .790. Similarly,

Stevens2 expressly references the earlier 1989 second edition of Tanenbaum96 in

its bibliography. Further, like Tanenbaum96, Stevens2 is another well-known

textbook concerning the layered protocol TCP/IP. Stevens2 reproduces and

explains Jacobson’s implementation of Header Prediction that was in a freely

INTEL Ex.1003.078

Petition for Inter Partes Review of 8,850,948
Ex. 1003 (“Horst Decl.”)

76

available and widely used BSD TCP/IP protocol stack implementation. Ex.1013,

Stevens2 at .960-963.

134. Stevens2 discloses that Header Prediction improves data transfer by

handling the common (normal) case where TCP is receiving data and the next

expected segment for the connection is the next in-sequence data segment.

Ex.1013, Stevens2 at .962. In other words, calling for a reduced amount of

protocol processing for the easiest and most common situation in the data transfer

state. Ex.1006, Tanenbaum96 at .583 (“The key to fast TPDU processing is to

separate out the normal case (one-way data transfer) and handle it specially.”).

Header Prediction determines whether the next expected segment has been

received by checking whether it is the same connection; the connection is

ESTABLISHED; the SYN, FIN, RST, and URG flags are not set, and the segment

is not out of order, consistent with the description of fast path processing in

Stevens2. Ex.1013, Stevens2 at .962-963. This is also similar to the description of

the receive bypass test in Thia used to determine whether the received packet

matches a template and is one in a normal data transfer phase. Ex.1015, Thia at

.003. This is not surprising because all three references are derived from or

describing Jacobson’s header prediction algorithm.

135. A POSA would be motivated to combine Thia’s receive bypass test

with the conditions of Jacobson’s Header Prediction as explained in Tanenbaum96

INTEL Ex.1003.079

Petition for Inter Partes Review of 8,850,948 Ex.
1003 (“Horst Decl.”)

77

and Stevens2 because a POSA would want to reduce the burden of protocol

processing on the host processor to reduce the bottleneck recognized by Thia and

Tanenbaum96 and free up the host processor to allow it to perform other necessary

functions. This includes the interlayer copying that Thia seeks to avoid by

performing this reduced operation protocol on its ROPE chip on the network

interface adapter. Thus, a POSA would be motivated to use Thia’s separate

hardware to offload processing from a host processor to efficiently process a

continuous sequence of normal/expected packets that have a pre-established

connection.

XI. GROUNDS OF INVALIDITY

136. I detail how the prior art invalidates the claims at issue in the

Appendix A claim chart. In summary, my opinion is that claims 1, 3, 6-9, 11, 14-

17, 19, and 21-22 of the 948 Patent are invalid over Thia in view of Tanenbaum96

and in further view of Stevens2.

INTEL Ex.1003.080

Declaration

13 7. I declare that all statements made herein on my own knowledge are

true and that all statements made on information and belief are believed to be true,

and further, that these statements were made with the knowledge that willful false

statements and the like so made are punishable by fine or imprisonment, or both,

under Section 1001 of Title 18 of the United States Code.

Respectfully submitted,

Robert Horst, Ph.D.

Date: April 18, 2017

78

Petition for Inter Partes Review of 8,850,948 Ex.
1003 (“Horst Decl.”)

INTEL Ex.1003.081

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-i of A-ii

TABLE OF CONTENTS

Page

[1.P] A method for network communication by a host computer
having a network interface that is connected to the host by an
input/output bus, the method comprising ... 1

[1.1] running, on the host computer, a protocol processing stack
including an Internet Protocol (IP) layer and a Transmission Control
Protocol (TCP) layer, with an application layer running above the
TCP layer; ... 4

[1.2] initializing, by the host computer, a TCP connection that is
defined by source and destination IP addresses and source and
destination TCP ports; .. 9

[1.3] receiving, by the network interface, first and second packets,
wherein the first packet has a first TCP header and contains first
payload data for the application, and the second packet has a second
TCP header and contains second payload data for the application; 12

[1.4] checking, by the network interface, whether the packets have
certain exception conditions, including checking whether the packets
are IP fragmented, checking whether the packets have a FIN flag set,
and checking whether the packets are out of order; 14

[1.5] if the first packet has any of the exception conditions, then
protocol processing the first TCP header by the protocol processing
stack; ... 16

[1.6] if the second packet has any of the exception conditions, then
protocol processing the second TCP header by the protocol
processing stack; ... 17

[1.7] if the packets do not have any of the exception conditions, then
bypassing host protocol processing of the TCP headers and storing
the first payload data and the second payload data together in a
buffer of the host computer, such that the payload data is stored in
the buffer in order and without any TCP header stored between the
first payload data and the second payload data. ... 18

INTEL Ex.1003.082

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-ii of A-ii

[3] The method of claim 1, wherein storing the first payload data and
the second payload data together in a buffer of the host computer is
performed by a direct memory access (DMA) unit of the network
interface. .. 24

[6] The method of claim 1, including comparing, by the network
interface, the IP addresses and TCP ports of the packets with the
source and destination IP addresses and source and destination TCP
ports that define the TCP connection. ... 25

[7] The method of claim 1, wherein checking whether the packets
have certain exception conditions includes checking whether the
packets have a RST flag set. ... 27

[8] The method of claim 1, wherein checking whether the packets
have certain exception conditions includes checking whether the
packets have a SYN flag set. .. 28

[9.P] A method for network communication by a host computer
having a network interface that is connected to the host by an
input/output bus, the method comprising: .. 29

[9.1] receiving, by the network interface, a first packet having a
header including source and destination Internet Protocol (IP)
addresses and source and destination Transmission Control Protocol
(TCP) ports; .. 30

[9.2] protocol processing, by the host computer, the first packet,
thereby initializing a TCP connection that is defined by the source
and destination IP addresses and source and destination TCP ports; 32

[9.3] receiving, by the network interface, a second packet having a
second header and payload data, wherein the second header has IP
addresses and TCP ports that match the IP addresses and TCP ports
of the TCP connection; ... 35

[9.4] receiving, by the network interface, a third packet having a
third header and additional payload data, wherein the third header
has IP addresses and TCP ports that match the IP addresses and TCP
ports of the TCP connection; .. 36

INTEL Ex.1003.083

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-iii of A-ii

[9.5] checking, by the network interface, whether the second and
third packets have certain exception conditions, including checking
whether the packets are IP fragmented, checking whether the packets
have a FIN flag set, and checking whether the packets are out of
order; ... 37

[9.6] if the second packet has any of the exception conditions, then
protocol processing the second packet by the host computer; 38

[9.7] if the third packet has any of the exception conditions, then
protocol processing the third packet by the host computer; 39

[9.8] if the second and third packets do not have any of the exception
conditions, then storing the payload data of the second and third
packets together in a buffer of the host computer, such that the
payload data is stored in the buffer in order and without any TCP
header stored between the payload data of the second and third
packets. .. 40

[11] The method of claim 9, wherein storing the payload data of the
second and third packets together in a buffer of the host computer is
performed by a direct memory access (DMA) unit of the network
interface. .. 41

[14] The method of claim 9, including comparing, by the network
interface, the IP addresses and TCP ports of the second and third
packets with the source and destination IP addresses and source and
destination TCP ports that define the TCP connection. 42

[15] The method of claim 9, wherein checking whether the second
and third packets have certain exception conditions includes
checking whether the packets have a RST flag set. 43

[16] The method of claim 9, wherein checking whether the second
and third packets have certain exception conditions includes
checking whether the packets have a SYN flag set. 44

[17.P] An apparatus for network communication, the apparatus
comprising: ... 45

INTEL Ex.1003.084

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-iv of A-ii

[17.1] a host computer running a protocol stack including an Internet
Protocol (IP) layer and a Transmission Control Protocol (TCP) layer,
the protocol stack adapted to establish a TCP connection for an
application layer running above the TCP layer, the TCP connection
being defined by source and destination IP addresses and source and
destination TCP ports; .. 47

[17.2.1] a network interface that is connected to the host computer
by an input/output bus, .. 50

[17.2.2] the network interface adapted to parse the headers of
received packets .. 51

[17.2.3] to determine whether the headers have the IP addresses and
TCP ports that define the TCP connection and .. 52

[17.2.4] to check whether the packets have certain exception
conditions, including whether the packets are IP fragmented, have a
FIN flag set, or are out of order, ... 53

[17.2.5] the network interface having logic that directs any of the
received packets that have the exception conditions to the protocol
stack for processing, and ... 54

[17.2.6] [the network interface having logic that] directs the received
packets that do not have any of the exception conditions to have their
headers removed and their payload data stored together in a buffer of
the host computer, such that the payload data is stored in the buffer
in order and without any TCP header stored between the payload
data that came from different packets of the received packets. 55

[19] The apparatus of claim 17, wherein the network interface
includes a direct memory access (DMA) unit that is adapted to store
the payload data in the buffer. .. 58

[21] The apparatus of claim 17, wherein the exception conditions
include having a RST flag set. .. 60

[22] The apparatus of claim 17, wherein the exception conditions
include having a SYN flag set. ... 61

INTEL Ex.1003.085

Y.H. Thia & C.M. Woodside, A Reduced Operation Protocol Engine
(ROPE) for a Multiple-layer Bypass Architecture (1995) (“Thia”) in
view of Andrew S. Tanenbaum, Computer Networks (3rd ed. 1996)

(“Tanenbaum96”) in further view of 2 Gary R. Wright & W. Richard
Stevens, TCP/IP Illustrated: The Implementation (1995) (“Stevens2”)

[1.P] A method for network communication by a host computer having a
network interface that is connected to the host by an input/output bus, the
method comprising

To the extent that the preamble is limiting, Thia in view of
Tanenbaum96 in further view of Stevens2 discloses a method for network
communication by a host computer having a network interface that is
connected to the host by an input/output bus.

Specifically, Thia discloses a Reduced Operation Protocol Engine
(ROPE) chip and a Network Interface Adapter (NIA) (together “a network
interface”), both of which are connected to the Host Processor and Host
Memory (together the “host computer”) by a Host Processor Bus (“an
input/output bus”). I annotate these components in Figure 2 of Thia below:

INTEL Ex.1003.086

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-2 of A-61

Y.H. Thia & C.M. Woodside, A Reduced Operation Protocol Engine
(ROPE) for a Multiple-layer Bypass Architecture (1995) (“Thia”) in
view of Andrew S. Tanenbaum, Computer Networks (3rd ed. 1996)

(“Tanenbaum96”) in further view of 2 Gary R. Wright & W. Richard
Stevens, TCP/IP Illustrated: The Implementation (1995) (“Stevens2”)

[1.P] A method for network communication by a host computer having a
network interface that is connected to the host by an input/output bus, the
method comprising

Ex.1015, Thia at .007, Fig. 2.1 A POSA would understand that the
combination of the ROPE chip with the NIA is the “network interface”
because they operate together and provide the interface between the
Transmission Medium (used for “network communication”) and the Host
Processor and Host Memory.

1 Emphasis added unless otherwise noted.

Input/Output Bus

Host Computer

Network
Interface

INTEL Ex.1003.087

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-3 of A-61

Y.H. Thia & C.M. Woodside, A Reduced Operation Protocol Engine
(ROPE) for a Multiple-layer Bypass Architecture (1995) (“Thia”) in
view of Andrew S. Tanenbaum, Computer Networks (3rd ed. 1996)

(“Tanenbaum96”) in further view of 2 Gary R. Wright & W. Richard
Stevens, TCP/IP Illustrated: The Implementation (1995) (“Stevens2”)

[1.P] A method for network communication by a host computer having a
network interface that is connected to the host by an input/output bus, the
method comprising

Accordingly, Thia in view of Tanenbaum96 in further view of Stevens2
discloses a method for network communication by a host processor and host
memory (host computer) having a ROPE chip with the NIA (network
interface) that is connected to the host processor by a Host Processor Bus
(input/output bus).

INTEL Ex.1003.088

Thia in view of Tanenbaum96 in further view of Stevens2
[1.1] running, on the host computer, a protocol processing stack including an
Internet Protocol (IP) layer and a Transmission Control Protocol (TCP)
layer, with an application layer running above the TCP layer;
Thia in view of Tanenbaum96 in further view of Stevens2 discloses running,
on the host computer, a protocol processing stack including an Internet
Protocol (IP) layer and a Transmission Control Protocol (TCP) layer, with
an application layer running above the TCP layer.

As explained in Section IX.A, Thia discloses a Standard Protocol Stack
(SPS) running on the host computer. Specifically, Thia discloses a bypass
architecture in which a “receive bypass test” (RX Bypass Test) on the
Network Interface Adapter (NIA) (Ex.1015, Thia at .006), determines
whether a received packet is to be processed by a fast path bypass stack on
the ROPE chip or the SPS on the host. I illustrated these components below:

Host Computer

Network
Interface

INTEL Ex.1003.089

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-5 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[1.1] running, on the host computer, a protocol processing stack including an
Internet Protocol (IP) layer and a Transmission Control Protocol (TCP)
layer, with an application layer running above the TCP layer;
Ex.1015, Thia at .003, Fig.1.

Ex.1015, Thia at .007, Fig.2.

Host Computer

Network
Interface

SPS

INTEL Ex.1003.090

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-6 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[1.1] running, on the host computer, a protocol processing stack including an
Internet Protocol (IP) layer and a Transmission Control Protocol (TCP)
layer, with an application layer running above the TCP layer;

Ex.1015, Thia at .003, Fig.1. See also id. at .010 (“Whenever the host
processor encounters a switch in the processing path, i.e., from the bypass
stack to the SPS. . .”), .002 (“The contribution of this paper is to define the
host/chip interface and the chip operation.”).

Thia discloses that the Standard Protocol Stack (SPS) protocol processes
packets that are not bypassed. Ex.1015, Thia at .003 (“The standard
protocol stack (SPS) is the processing path taken by all PDU’s during a
connection without the bypass.”).

Thia in view of Tanenbaum96 discloses an Internet Protocol (IP) layer and
a Transmission Control Protocol (TCP) layer. Thia discloses a hardware
offload for the critical functions of a multiple-layer protocol stack (the SPS),
and specifically discloses the design of a ROPE chip for the OSI Session and

User A
receives a
packet
from
User B

No bypass
– Host
processes
the packet Bypass –

ROPE
processes
the packet

INTEL Ex.1003.091

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-7 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[1.1] running, on the host computer, a protocol processing stack including an
Internet Protocol (IP) layer and a Transmission Control Protocol (TCP)
layer, with an application layer running above the TCP layer;
Transport layer protocols. Ex.1015, Thia at .001.

As explained in Sections X, Tanenbaum96 addresses both the OSI and
TCP/IP models, and notes that “the TCP/IP internet layer is very similar in
functionality to the OSI network layer,” and that the TCP/IP transport layer
“is designed to allow peer entities on the source and destination hosts to
carry on a conversation, the same as in the OSI transport layer.” Ex.1006,
Tanenbaum96 at .054. Tanenbaum96 also discloses that TCP/IP became the
dominant protocol suite as the OSI model vanished. Id. at .016. A POSA
working with the protocol processing of layered protocols in the OSI model
would look to Tanenbaum96 and have been motivated to migrate to the
more dominant TCP/IP protocol suite as OSI models vanished. Thus, the
SPS would include an IP layer in place of the OSI Network layer and a TCP
layer in place of the OSI Transport layer and the Session layer and
presentation layer could be incorporated into the Application layer. See
Ex.1006, Tanenbaum96 at .054 (“the TCP/IP internet layer is very similar in
functionality to the OSI network layer . . . [t]he layer above the internet layer
in the TCP/IP model is now usually called the transport layer. It is designed
to allow peer entities . . . to carry on a conversation, the same as in the OSI
transport layer”), .055 (“[the session and presentation layers] are of little use
to most applications.”). Thia’s bypass test is based on Jacobson’s prediction
header for TCP/IP.

As shown in the figure below from Section V.A.2 above, the OSI and
TCP/IP models have application layers above the transport layer.

INTEL Ex.1003.092

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-8 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[1.1] running, on the host computer, a protocol processing stack including an
Internet Protocol (IP) layer and a Transmission Control Protocol (TCP)
layer, with an application layer running above the TCP layer;

Accordingly, Thia in view of Tanenbaum96 in further view of Stevens2
discloses a host processor and host memory (together a host computer) with
a Standard Protocol Stack (SPS) (running a protocol processing stack)
including an Internet Protocol (IP) layer and a Transmission Control
Protocol (TCP) layer with an application layer running above the TCP
layer.

INTEL Ex.1003.093

Thia in view of Tanenbaum96 in further view of Stevens2
[1.2] initializing, by the host computer, a TCP connection that is defined by
source and destination IP addresses and source and destination TCP ports;
Thia in view of Tanenbaum96 in further view of Stephens2 discloses
initializing, by the host computer, a TCP connection that is defined by
source and destination IP addresses and source and destination TCP ports.

Thia discloses initializing connections by a host. Ex.1015, Thia at .004. As
I discussed above with respect to limitation [1.1], a POSA would have been
motivated to implement Thia’s Standard Protocol Stack (SPS) using the
TCP/IP protocol suite.

As explained in Sections V.B.4 and IX.B, a TCP/IP connection is initialized
between two machines as illustrated in Fig.6-28.

INTEL Ex.1003.094

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-10 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[1.2] initializing, by the host computer, a TCP connection that is defined by
source and destination IP addresses and source and destination TCP ports;

Ex.1006, Tanenbaum96 at Fig.6-28. The SYN flag is used to establish a
connection, which transitions into the ESTABLISHED state. Id. at .545,
550. A packet with a SYN flag fails the conditions of the receive bypass test
because it is not in the ESTABLISHED state and processing must be
performed by the SPS on the host. Accordingly, the host is responsible for

INTEL Ex.1003.095

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-11 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[1.2] initializing, by the host computer, a TCP connection that is defined by
source and destination IP addresses and source and destination TCP ports;
initializing the TCP connection. Ex.1006, Tanenbaum96 at .567.

As explained in Sections V.B.4 and IX.B, a TCP/IP connection is defined by
the IP address and TCP port for both sides of the connection. See also
Ex.1006, Tanenbaum96 at .541 (“TCP service is obtained by having both the
sender and receiver create end points, called sockets . . . [e]ach socket has a
socket number (address) consisting of the IP address of the host and a 16-bit
number local to that host, called a port.”)

Accordingly, Thia in view of Tanenbaum96 in further view of Stevens2
discloses initializing, by the SPS on the host processor (host computer), a
TCP connection that is defined by source and destination IP addresses and
source and destination TCP ports.

INTEL Ex.1003.096

Thia in view of Tanenbaum96 in further view of Stevens2
[1.3] receiving, by the network interface, first and second packets, wherein
the first packet has a first TCP header and contains first payload data for the
application, and the second packet has a second TCP header and contains
second payload data for the application;
Thia in view of Tanenbaum96 in further view of Stevens2 discloses a
communication processing mechanism connected to the first processor.

As I explained for limitation [1.P], Thia’s Network Interface Adapter (NIA),
together with the ROPE chip, is the network interface. As explained in
Section IX.A, Thia’s NIA receives multiple packets, including consecutive
packets:

2.1 Bypass Architecture
Figure 1 illustrates the architecture of a bypass implementation for
any standard protocol. The standard protocol stack (SPS) is the
processing path taken by all PDUs [Protocol Data Units i.e. packets]
during a connection without the bypass…. The receive bypass test
matches the incoming PDU headers with a template that identifies the
predicted bypassable headers. The bypass stack performs all the
relevant protocol processing in the data transfer phase. The shared
data are used to maintain state consistency between the SPS and the
bypass stack, including window flow control parameters and
connection identifiers.

Ex.1015, Thia at .003.

As disclosed in Tanenbaum96, a network interface connected to a TCP/IP
network (as explained above for limitation [1.1]) obviously receives TCP/IP
packets (segments). TCP/IP packets contain TCP headers and optionally
payload data. The well-known structure of TCP/IP packets with TCP
Headers and payload data is documented in Tanenbaum96. See e.g.,
Ex.1006, Tanenbaum96 at .544-547. The TCP header is illustrated below:

INTEL Ex.1003.097

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-13 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[1.3] receiving, by the network interface, first and second packets, wherein
the first packet has a first TCP header and contains first payload data for the
application, and the second packet has a second TCP header and contains
second payload data for the application;

Id. at .544.

Thia discloses that the received data is for applications. See id. at p.5
(protocol processing that might limit the “effective throughput [of data]
presented to the application processes, especially for bulk data transfer.”);
see also id. at Fig.1 (providing data to the user).

As explained above for claim limitation [1.1], the application layer is above
the Transport layer in TCP/IP and OSI model implementations. Ex.1006,
Tanenbaum96 at .052-53. Accordingly, modifying Thia to use the TCP/IP
packets, the payload data in the TCP packet is for the Application layer (i.e.,
for the application).

Thus, Thia in view of Tanenbaum96 in further view of Stevens2 discloses
Thia’s NIA (part of the network interface) receiving packets (receiving . . .
first and second packets, wherein the packets have a TCP header and
payload data for the application.

TCP
Header

TCP
Payload
Data

INTEL Ex.1003.098

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-14 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2

[1.4] checking, by the network interface, whether the packets have certain
exception conditions, including checking whether the packets are IP
fragmented, checking whether the packets have a FIN flag set, and checking
whether the packets are out of order;
Thia in view of Tanenbaum96 in further view of Stevens2 discloses
checking, by the network interface, whether the packets have certain
exception conditions, including checking whether the packets are IP
fragmented, checking whether the packets have a FIN flag set, and checking
whether the packets are out of order.

As explained in Section IX.A, Thia’s NIA (part of the network interface)
performs the receive bypass test (checking).

As explained in Sections X.A and X.B, a POSA would have been motivated
to implement Header Prediction as disclosed in Tanenbaum96 and Stevens2
as a part of Thia’s receive bypass test. Thia’s receive bypass test is a
generalization of Jacobson’s well-known “Header Prediction algorithm” for
TCP/IP, which is also described in the Tanenbaum96 and Stevens2
references discussed below. Ex.1015, Thia at .002. As explained in
Tanenbaum96 and Stevens2, Header Prediction checks the TCP headers of
received packets to determine if the packet is a normal one: the state is
ESTABLISHED (i.e., no SYN flag), neither side is trying to close the
connection (i.e., no FIN or RST flag), the TPDU is a full one (e.g., no IP
fragmentation), no special flags are set (including the SYN, FIN and RST
flags), and the sequence number is the one expected (i.e., the packets are not
out of order). See Ex.1006, Tanenbaum96 at .565, 566-7 (many TCP
implementations use it); 585 (disclosing the test above), .545 (description of
flags), .542 (urgent flag); see also Ex.1013, Stevens2 at .962-963
(walkthrough of the BSD code for the test above, which tests whether
control flags SYN, FIN, RST, or URG are set). Thia discloses that bypass
processing is for bulk data transfer and excludes reassembly of fragmented
packets, which should be restricted to the lower layers. Ex.1015, Thia at
.002, .014.

Thus, Thia in view of Tanenbaum96 in further view of Stevens2 discloses
the NIA (part of the network interface) performing a receive bypass test
(checking . . . whether the packets have certain exception conditions)

INTEL Ex.1003.099

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-15 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[1.4] checking, by the network interface, whether the packets have certain
exception conditions, including checking whether the packets are IP
fragmented, checking whether the packets have a FIN flag set, and checking
whether the packets are out of order;
including checking for whether the packets are IP fragmented, checking
whether the packets have a FIN flag set, and checking whether the packets
are out of order.

INTEL Ex.1003.100

Thia in view of Tanenbaum96 in further view of Stevens2

[1.5] if the first packet has any of the exception conditions, then protocol
processing the first TCP header by the protocol processing stack;
Thia in view of Tanenbaum96 in further view of Stevens2 discloses that if
the first packet has any of the exception conditions, then protocol processing
the first TCP header by the protocol processing stack.

As explained in Section IX.A, Thia teaches that packets that fail the receive
bypass test are processed by the Standard Protocol Stack (SPS) (the protocol
processing stack).

Ex.1015, Thia at .003 (Bypass Architecture), Fig.1. Thus, packets failing
the conditions of Header Prediction would fail the receive bypass test and be
processed by the SPS.

Thus, Thia in view of Tanenbaum96 in further view of Stevens2 discloses
that if the first packet has any of the exception conditions (failing the
conditions of Header Prediction), then protocol processing the first TCP
header by the protocol processing stack (Standard Protocol Stack).

User A
receives a
packet
from
User B

No bypass
– Host
processes
the packet

INTEL Ex.1003.101

Thia in view of Tanenbaum96 in further view of Stevens2
[1.6] if the second packet has any of the exception conditions, then protocol
processing the second TCP header by the protocol processing stack;
Thia in view of Tanenbaum96 in further view of Stevens2 discloses if the
second packet has any of the exception conditions, then protocol processing
the second TCP header by the protocol processing stack.

The same receive bypass test applies to all packets. Ex.1015, Thia at .003
(“The receive bypass test matches the incoming PDU headers with a
template that identifies the predicted bypassable headers.”). Thus, see claim
limitation [1.5] above.

Accordingly, Thia in view of Tanenbaum96 in further view of Stevens2
discloses that if the second packet has any of the exception conditions
(failing the conditions of Header Prediction), then protocol processing the
first TCP header by the protocol processing stack (Standard Protocol Stack).

INTEL Ex.1003.102

Thia in view of Tanenbaum96 in further view of Stevens2
[1.7] if the packets do not have any of the exception conditions, then
bypassing host protocol processing of the TCP headers and storing the first
payload data and the second payload data together in a buffer of the host
computer, such that the payload data is stored in the buffer in order and
without any TCP header stored between the first payload data and the
second payload data.
Thia in view of Tanenbaum96 in further view of Stevens2 discloses if the
packets do not have any of the exception conditions, then bypassing host
protocol processing of the TCP headers and storing the first payload data
and the second payload data together in a buffer of the host computer, such
that the payload data is stored in the buffer in order and without any TCP
header stored between the first payload data and the second payload data.

As explained in Section IX.A, Thia teaches that packets that pass the receive
bypass test are processed by the ROPE chip (part of the network interface),
bypassing the SPS (on the host computer), for processing. I have illustrated
this in Figure 1 of Thia below:

Ex.1015, Thia at .003, Fig.1 (annotated).

User A
receives
a packet
from
User B

Bypass –
ROPE
processes
the packet

INTEL Ex.1003.103

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-19 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[1.7] if the packets do not have any of the exception conditions, then
bypassing host protocol processing of the TCP headers and storing the first
payload data and the second payload data together in a buffer of the host
computer, such that the payload data is stored in the buffer in order and
without any TCP header stored between the first payload data and the
second payload data.
Thia teaches the use of DMA to move packet data from the ROPE chip to
host memory:

Movement of data across the host bus interface are minimized
by using an on-chip DMA for fast block data transfer to/from
the host system memory.

Id. at .007. I have illustrated this in Figure 2 of Thia below:

Ex.1015, Thia at .007. Thus, as packets are processed by the ROPE chip,
their payload data is moved by DMA from the ROPE chip to host memory
(a host buffer).

A packet is
received at the
NIA via
Transmission
Medium

Bypass – ROPE
processes the
packet and stores
the data in host
memory

INTEL Ex.1003.104

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-20 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[1.7] if the packets do not have any of the exception conditions, then
bypassing host protocol processing of the TCP headers and storing the first
payload data and the second payload data together in a buffer of the host
computer, such that the payload data is stored in the buffer in order and
without any TCP header stored between the first payload data and the
second payload data.

Thia in view of Tanenbaum96 in further view of Stevens2 would be
understood by a POSA to disclose storing payload data in order without
intervening headers. Thia discloses that the ROPE chip (part of the network
interface) is responsible for decoding the packet header and optionally the
checksum. As I’ve highlighted in Table 1 of Thia, the Header Decode
function occurs on the ROPE chip and data copying within layers is
eliminated:

INTEL Ex.1003.105

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-21 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[1.7] if the packets do not have any of the exception conditions, then
bypassing host protocol processing of the TCP headers and storing the first
payload data and the second payload data together in a buffer of the host
computer, such that the payload data is stored in the buffer in order and
without any TCP header stored between the first payload data and the
second payload data.

Ex.1015, Thia at .006. Thus, the header is already decoded and checked
when a packet processed by the ROPE chip moves the data to Host Memory.
Thia discloses moving the data to host memory. Ex.1015, Thia at .007. A
POSA would have appreciated that there is no need to transfer the already
decoded and checked headers to host memory. Ex.1015, Thia at .006;
Ex.1003, Horst Decl. at ¶128.

Further, as taught by Tanenbaum, by the time the data reaches the
application in host memory, it is stored as a byte stream. Tanenbaum96

INTEL Ex.1003.106

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-22 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[1.7] if the packets do not have any of the exception conditions, then
bypassing host protocol processing of the TCP headers and storing the first
payload data and the second payload data together in a buffer of the host
computer, such that the payload data is stored in the buffer in order and
without any TCP header stored between the first payload data and the
second payload data.
discloses that an outbound byte stream of data is broken up and sent as
separate IP datagrams (each with their own header). On receipt, the original
byte stream is reconstructed (removing the headers from each datagram and
arranging them in order) by a TCP entity on a network interface card (such
as Thia’s ROPE chip and NIA). See Ex.1006, Tanenbaum96 at .498 (“The
transport entity can be . . . on the network interface card”), at .540 (“A TCP
entity accepts user data streams from local processes, breaks them up into
pieces . . . and sends each piece as a separate IP datagram. When IP
datagrams containing TCP data arrive at a machine, they are given to the
TCP entity, which reconstructs the original byte streams.”)

Also, the fast path disclosed in Tanenbaum96, consistent with the option in
Thia, offloads the calculation of the checksum for the header, eliminating an
extra pass over the data by higher layers. Id. at .585; .589 (“The header and
data should be separately checksummed, for two reasons. First, to make it
possible to checksum the header but not the data. Second, to verify that the
header is correct before starting to copy the data into user space. It is
desirable to do the data checksum at the time the data are copied to user
space, but if the header is incorrect, the copy may be to the wrong
process.”). Therefore, there is no need to transfer the header data to the
application.

Thus, a POSA would have been motivated to use Thia’s protocol engine for
a TCP network interface using the TCP disclosures found in Tanenbaum96
and Stevens2. As explained above, when incoming packets pass the receive
bypass test (packets do not have any of the exception conditions), they are
processed by the ROPE chip as opposed to the SPS (bypassing host protocol
processing of the TCP headers). The output from the ROPE chip is the
original byte stream (in order and without any TCP header stored between).
A POSA would utilize Thia’s on-chip Direct Memory Access (DMA) to
transfer only the data blocks in order to a buffer in host memory (storing . . .
together in a buffer of the host computer).

INTEL Ex.1003.107

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-23 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[1.7] if the packets do not have any of the exception conditions, then
bypassing host protocol processing of the TCP headers and storing the first
payload data and the second payload data together in a buffer of the host
computer, such that the payload data is stored in the buffer in order and
without any TCP header stored between the first payload data and the
second payload data.

Accordingly, Thia in view of Tanenbaum96 in further view of Stevens2
discloses that failing the conditions of Header Prediction (if the packets have
any of the exception conditions), the Standard Protocol Stack processing of
the headers on the host is bypassed (bypassing host protocol processing of
the TCP headers) and the data is stored together in Host Memory after the
header processing is done by the ROPE (storing the first payload data and
the second payload data together in a buffer in order and without any TCP
header stored between the first payload data and the second payload data).

INTEL Ex.1003.108

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-24 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[3] The method of claim 1, wherein storing the first payload data and the
second payload data together in a buffer of the host computer is performed
by a direct memory access (DMA) unit of the network interface.
Thia in view of Tanenbaum96 in further view of Stevens2 discloses the
method of claim 1, wherein storing the first payload data and the second
payload data together in a buffer of the host computer is performed by a
direct memory access (DMA) unit of the network interface.

As explained for claim limitation [1.8], Thia teaches the use of DMA to
move packet data from the ROPE chip to host memory (a host buffer). Thia
also teaches that “data Copying within layers is eliminated.” Ex.1015, Thia
at Table 1. Tanenbaum96 similarly identified a goal of system design for
better performance was to avoid unnecessary copying (“[a packet] is copied
to a network layer buffer, then to a transport layer buffer, and finally to the
receiving application process.”) Ex.1006, Tanenbaum96 at .579, .582.
Thia’s fast path processing and DMA support bulk data transfer, eliminating
the unnecessary copying to multiple buffers associated with the network and
transport layers. Ex.1015, Thia at Table1, .002, .006, .007.

Accordingly, This in view of Tanenbaum96 in further view of Stevens2
discloses storing consecutive packets (wherein storing the first payload data
and the second payload data) in Host memory (together in a buffer of the
host computer) is performed by the DMA (is performed by a direct memory
access (DMA) unit) on the ROPE (of the network interface).

INTEL Ex.1003.109

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-25 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[6] The method of claim 1, including comparing, by the network interface,
the IP addresses and TCP ports of the packets with the source and
destination IP addresses and source and destination TCP ports that define the
TCP connection.
Thia in view of Tanenbaum96 in further view of Stevens2 discloses the
method of claim 1, including comparing, by the network interface, the IP
addresses and TCP ports of the packets with the source and destination IP
addresses and source and destination TCP ports that define the TCP
connection.

As explained in Section IX.A, Thia’s NIA (part of the network interface)
receives packets and performs the receive bypass test (comparing). Thia
also discloses that “The receive bypass test matches the incoming PDU
headers with a template that identifies the predicted bypassable headers.”
Ex.1015, Thai at .003.

Similarly in Tanenbaum96, the first step of the fast path test involves
checking the connection record against the incoming Transport Protocol
Data Units (TPDUs) (i.e., packets) as part of the check to determine whether
the received TPDUs were expected. Specifically, this check includes
comparing the source and destination IP addresses and TCP ports of the
packets against the connection record. Ex.1006, Tanenbaum96 at .584-585
(“Step 1 is locating the connection record for the incoming TPDU. . . Once
the connection record has been located, both addresses and both ports must
be compared to verify that the correct record has been found.”) See also
above discussion of claim element [1.1] regarding the TCP/IP connection
being defined by source and destination IP addresses and source and
destination TCP ports.

In combining Thia with Tannenbaum96 for TCP/IP offload, a POSA would
have been motivated to use a template to do the comparison, such as the
prototype header provided by Tannenbaum96, for the receive bypass test.
As I’ve illustrated below, this template includes source and destination IP
addresses and source and destination TCP Ports.

INTEL Ex.1003.110

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-26 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[6] The method of claim 1, including comparing, by the network interface,
the IP addresses and TCP ports of the packets with the source and
destination IP addresses and source and destination TCP ports that define the
TCP connection.

Ex.1006, Tanenbaum96 at .584.

Accordingly, This in view of Tanenbaum96 in further view of Stevens2
discloses comparing, by the networking interface, the IP addresses and TCP
ports of the packets with the source and destination IP addresses and source
and destination TCP ports that define the TCP connection (prototype header
template).

INTEL Ex.1003.111

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-27 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[7] The method of claim 1, wherein checking whether the packets have
certain exception conditions includes checking whether the packets have a
RST flag set.
Thia in view of Tanenbaum96 in further view of Stevens2 discloses the
method of claim 1, wherein checking whether the packets have certain
exception conditions includes checking whether the packets have a RST flag
set.

As explained for claim limitation [1.4], Thia’s NIA (part of the network
interface) checks the packets for certain exception conditions as part of its
bypass test. As explained in Sections X.A and X.B, a POSA would have
been motivated to implement the Jacobson-based Header Prediction
disclosed in Tanenbaum96 and Stevens2 as a part of Thia’s receive bypass
test that is based on Jacobson’s disclosure. As explained in Section IX.C,
Jacobson’s Header Prediction test determines whether the RST flag is set.
Ex.1013, Stevens2 at .962 (“The following four control flags must not be on:
SYN, FIN, RST, or URG.”)

Accordingly, Thia in view of Tanenbaum96 in further view of Stevens2
discloses the use of Header Prediction that checks whether certain flags are
set (wherein checking whether the packets have certain exception
conditions) including whether the RST flag is set (includes checking whether
the packets have a RST flag set).

INTEL Ex.1003.112

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-28 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[8] The method of claim 1, wherein checking whether the packets have
certain exception conditions includes checking whether the packets have a
SYN flag set.
Thia in view of Tanenbaum96 in further view of Stevens2 discloses the
method of claim 1, wherein checking whether the packets have certain
exception conditions includes checking whether the packets have a SYN flag
set.

As explained for claim limitation [1.4], Thia’s NIA (part of the network
interface) checks the packets for certain exception conditions as part of its
bypass test. As explained in Sections X.A and X.B, a POSA would have
been motivated to implement the Jacobson-based Header Prediction
disclosed in Tanenbaum and Stevens2 as a part of Thia’s receive bypass test
that is based on Jacobson’s disclosure. As explained in Section IX.C,
Jacobson’s Header Prediction test determines whether the SYN flag is set.
Ex.1013, Stevens2 at .962(“The following four control flags must not be on:
WYN, FIN, RST, or URG.”)

Accordingly, Thia in view of Tanenbaum96 in further view of Stevens2
discloses the use of Header Prediction that checks whether certain flags are
set (wherein checking whether the packets have certain exception
conditions) including whether the RST flag is set (includes checking whether
the packets have a RST flag set).

INTEL Ex.1003.113

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-29 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[9.P] A method for network communication by a host computer having a
network interface that is connected to the host by an input/output bus, the
method comprising:
As explained with respect to claim limitation [1.P] for the identical preamble
of Claim 1, to the extent that the preamble is limiting, Thia in view of
Tanenbaum96 in further view of Stevens2 discloses a method for network
communication by a host computer having a network interface that is
connected to the host by an input/output bus.

INTEL Ex.1003.114

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-30 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[9.1] receiving, by the network interface, a first packet having a header
including source and destination Internet Protocol (IP) addresses and source
and destination Transmission Control Protocol (TCP) ports;
Thia in view of Tanenbaum96 in further view of Stevens2 discloses
receiving, by the network interface, a first packet having a header including
source and destination Internet Protocol (IP) addresses and source and
destination Transmission Control Protocol (TCP) ports.

As explained above for claim limitation [1.P], Thia’s NIA, together with the
ROPE chip, is the network interface. As explained in Section IX.A, the NIA
receives consecutive packets. A network interface connected to a TCP/IP
network (as explained above for claim limitation [1.2]) receives TCP/IP
packets.

As explained above for claim limitation [1.3], Tanenbaum teaches that
TCP/IP packets have TCP headers. Therefore, the first packet has a TCP
header.

As explained above for claim limitation [6], a TCP/IP packet header
contains Source and Destination IP addresses and Source and Destination
Ports.

Ex.1006, Tanenbaum96 at .584.

Accordingly, Thia in view of Tanenbaum96 in further view of Stevens2
discloses that the NIA and ROPE receive multiple packets including a first
packet (receiving, by the network interface, a first packet) and when

INTEL Ex.1003.115

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-31 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[9.1] receiving, by the network interface, a first packet having a header
including source and destination Internet Protocol (IP) addresses and source
and destination Transmission Control Protocol (TCP) ports;
connected to a TCP/IP network, the packets include a header with source
and destination Internet Protocol (IP) addresses and source and destination
Transmission Control Protocol (TCP) ports.

INTEL Ex.1003.116

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-32 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[9.2] protocol processing, by the host computer, the first packet, thereby
initializing a TCP connection that is defined by the source and destination IP
addresses and source and destination TCP ports;
Thia in view of Tanenbaum96 in further view of Stevens2 discloses protocol
processing, by the host computer, the first packet, thereby initializing a TCP
connection that is defined by the source and destination IP addresses and
source and destination TCP ports.

As explained above for claim limitation [1.1], Thia in view of Tanenbaum96
in further view of Stevens2 discloses a protocol processing stack including
an IP layer and a TCP layer running on the host computer, namely the
modified SPS.

As explained above for claim limitation [1.2], Thia in view of Tanenbaum96
in further view of Stevens2 discloses implementing Jacobson’s Header
Prediction as part of Thia’s receive bypass test to determine whether a
packet is processed on the ROPE chip (fast path) or on the SPS (slow path).
A packet containing a SYN flag to initialize a connection fails such a receive
bypass test because it is not in the Established state and is protocol processed
by the SPS on the host (protocol processing, by the host computer, the first
packet, thereby initializing a TCP connection).

INTEL Ex.1003.117

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-33 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[9.2] protocol processing, by the host computer, the first packet, thereby
initializing a TCP connection that is defined by the source and destination IP
addresses and source and destination TCP ports;

Ex.1006, Tanenbaum96 at Fig.6-28.

As explained above for claim limitation [1.2], a TCP/IP connection is
defined by the IP address and TCP port for both sides of the connection.

INTEL Ex.1003.118

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-34 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[9.2] protocol processing, by the host computer, the first packet, thereby
initializing a TCP connection that is defined by the source and destination IP
addresses and source and destination TCP ports;

Accordingly, Thia in view of Tanenbaum96 in further view of Stevens2
discloses that the SPS on the host (protocol processing, by the host
computer, the first packet) processes a packet intended to establish a
connection, such as a SYN packet to initialize a TCP/IP connection, by
initializing a connection (thereby initializing a TCP connection). When the
connection is a TCP/IP connection, that connection is defined by the source
and destination IP addresses and source and destination TCP ports.

INTEL Ex.1003.119

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-35 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2

[9.3] receiving, by the network interface, a second packet having a second
header and payload data, wherein the second header has IP addresses and
TCP ports that match the IP addresses and TCP ports of the TCP connection;
Thia in view of Tanenbaum96 in further view of Stevens2 discloses
receiving, by the network interface, a second packet having a second header
and payload data, wherein the second header has IP addresses and TCP ports
that match the IP addresses and TCP ports of the TCP connection.

The first packet in claim limitation [1.3] discussed above corresponds to the
second packet in [9.3] because Claim 9 introduces an earlier packet as part
of the initialization. As explained above for claim limitation [1.3], Thia’s
NIA receives packets and is part of the network interface. As also explained
above for claim limitation [1.3], modifying Thia to use the TCP/IP packets,
the received TCP/IP packets contain headers and optionally contain payload
data.

Claim limitation [9.3] additionally requires that the packet header has IP
addresses and TCP ports that match those of the TCP connection. As
explained above in Sections V.B, V.D.4 and IX.B, when a connection is
initialized, a connection record is recorded containing the source and
destination IP addresses and source and destination TCP ports. As explained
above for claim limitation [6], Thia’s modified bypass test searches for the
connection record for each incoming packet using the Source and
Destination IP addresses and Source and Destination TCP ports stored in
each packet. Each packet is compared against a template (connection
record) to verify that the correct record has been found.

Accordingly, Thia in view of Tanenbaum96 in further view of Stevens2
discloses receiving a second packet after initialize the connection with the
first packet (receiving, by the network interface, a second packet) and when
connected to a TCP network, that second packet has a second header and
payload data. If the second packet is for the same TCP connection as the
first packet, the second header will have IP addresses and TCP ports that
match IP addresses and TCP ports of the TCP connection.

INTEL Ex.1003.120

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-36 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2

[9.4] receiving, by the network interface, a third packet having a third header
and additional payload data, wherein the third header has IP addresses and
TCP ports that match the IP addresses and TCP ports of the TCP connection;
Thia in view of Tanenbaum96 in further view of Stevens2 discloses
receiving, by the network interface, a third packet having a third header and
additional payload data, wherein the third header has IP addresses and TCP
ports that match the IP addresses and TCP ports of the TCP connection.

The limitations of [9.4] are identical to [9.3], but for them being in the
context of a third packet. As I discussed above in Sections X.A and X.B,
TCP network interface generally receives multiple TCP packets for the same
TCP connection (e.g. data transfer phase in Thia and Tanenbaum). Thus, the
limitations explained above in Section 0 also disclose this limitation.

INTEL Ex.1003.121

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-37 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[9.5] checking, by the network interface, whether the second and third
packets have certain exception conditions, including checking whether the
packets are IP fragmented, checking whether the packets have a FIN flag set,
and checking whether the packets are out of order;
Thia in view of Tanenbaum96 in further view of Stevens2 discloses
checking, by the network interface, whether the second and third packets
have certain exception conditions, including checking whether the packets
are IP fragmented, checking whether the packets have a FIN flag set, and
checking whether the packets are out of order.

The limitations of [9.5] are substantially identical to [1.4] as both relate to
checking multiple packets; [1.4] checks “the packets” whereas [9.5] checks
“the second and third packets.” As explained above for claim limitation
[1.4], Thia’s NIA (part of the network interface) receives packets and
performs the receive bypass test, which checks whether the packets
(including the second and third packets) have the claimed exception
conditions.

INTEL Ex.1003.122

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-38 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[9.6] if the second packet has any of the exception conditions, then protocol
processing the second packet by the host computer;
Thia in view of Tanenbaum96 in further view of Stevens2 discloses if the
second packet has any of the exception conditions, then protocol processing
the second packet by the host computer.

As explained above for claim limitation [9.3], the first packet in claim 1
corresponds to the second packet in claim 9 because claim 9 introduces an
earlier packet as part of the initialization. As explained for claim limitation
[1.5], packets with any of the exception conditions fail Thia’s receive bypass
test and are protocol processed by the SPS.

INTEL Ex.1003.123

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-39 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[9.7] if the third packet has any of the exception conditions, then protocol
processing the third packet by the host computer;
Thia in view of Tanenbaum96 in further view of Stevens2 discloses if the
third packet has any of the exception conditions, then protocol processing
the third packet by the host computer.

The same receive bypass test in Thia applies to all packets. Thus, see claim
limitation [9.6] above.

INTEL Ex.1003.124

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-40 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[9.8] if the second and third packets do not have any of the exception
conditions, then storing the payload data of the second and third packets
together in a buffer of the host computer, such that the payload data is stored
in the buffer in order and without any TCP header stored between the
payload data of the second and third packets.
Thia in view of Tanenbaum96 in further view of Stevens2 discloses this
limitation.

The claim limitation [1.7] includes the claim limitations of [9.8]. In both
limitations the payload data of the packets without exception conditions are
stored in order and without TCP headers between them in a buffer of the
host computer. Claim limitation [1.7] has an additional limitation of
bypassing host protocol processing of the TCP headers, which is not found
in claim limitation [9.8]. Regardless, the disclosure satisfying claim
limitation [1.7] also satisfies claim limitation [9.8]. Thus, see Claim
limitations [1.7].

INTEL Ex.1003.125

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-41 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2

[11] The method of claim 9, wherein storing the payload data of the second
and third packets together in a buffer of the host computer is performed by a
direct memory access (DMA) unit of the network interface.
Thia in view of Tanenbaum96 in further view of Stevens2 discloses the
method of claim 9, wherein storing the payload data of the second and third
packets together in a buffer of the host computer is performed by a direct
memory access (DMA) unit of the network interface.

This claim is substantially similar to claim 3. Claim 3 requires “storing the
first payload data and the second payload data together” whereas this claim
requires “storing the payload data of the second and third packets together.”
As previously noted, the first and second packets of claim 1 correspond to
the second and third packets of claim 9. Thus, see claim limitation [3].

INTEL Ex.1003.126

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-42 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[14] The method of claim 9, including comparing, by the network interface,
the IP addresses and TCP ports of the second and third packets with the
source and destination IP addresses and source and destination TCP ports
that define the TCP connection.
Thia in view of Tanenbaum96 in further view of Stevens2 discloses the
method of claim 9, including comparing, by the network interface, the IP
addresses and TCP ports of the second and third packets with the source and
destination IP addresses and source and destination TCP ports that define the
TCP connection.

This claim is substantially similar to claim 6. Claim 6 requires “comparing .
. . the IP addresses and TCP ports of the packets” wherein packets refers to
the first and second packets. This claim requires “comparing . . . the IP
addresses and TCP ports of the second and third packets.” As previously
noted, the first and second packets of claim 1 correspond to the second and
third packets of claim 9. Thus, see claim limitation [6].

INTEL Ex.1003.127

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-43 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[15] The method of claim 9, wherein checking whether the second and third
packets have certain exception conditions includes checking whether the
packets have a RST flag set.
Thia in view of Tanenbaum96 in further view of Stevens2 discloses the
method of claim 9, wherein checking whether the second and third packets
have certain exception conditions includes checking whether the packets
have a RST flag set.

This claim is substantially similar to claim 7. Claim 7 requires “wherein
checking whether the packets have certain exception conditions includes
checking whether the packets have a RST flag set,” wherein “the packets”
refers to the first and second packets. This claim requires “wherein checking
whether the second and third packets have certain exception conditions
includes checking whether the packets have a RST flag set.” As previously
noted, the first and second packets of claim 1 correspond to the second and
third packets of claim 9. Thus, see claim limitation [7].

INTEL Ex.1003.128

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-44 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[16] The method of claim 9, wherein checking whether the second and third
packets have certain exception conditions includes checking whether the
packets have a SYN flag set.
Thia in view of Tanenbaum96 in further view of Stevens2 discloses the
method of claim 9, wherein checking whether the second and third packets
have certain exception conditions includes checking whether the packets
have a SYN flag set.

This claim is substantially similar to claim 8. Claim 8 requires “wherein
checking whether the packets have certain exception conditions includes
checking whether the packets have a SYN flag set,” wherein “the packets”
refers to the first and second packets. This claim requires “wherein checking
whether the second and third packets have certain exception conditions
includes checking whether the packets have a SYN flag set.” As previously
noted, the first and second packets of claim 1 correspond to the second and
third packets of claim 9. Thus, see claim limitation [8].

INTEL Ex.1003.129

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-45 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[17.P] An apparatus for network communication, the apparatus comprising:

To the extent that the preamble is limiting, Thia in view of Tanenbaum96 in
further view of Stevens2 discloses an apparatus for network communication.

Thia discloses an apparatus for network communication. Specifically, Thia
discloses a Reduced Operation Protocol Engine (ROPE) chip and a Network
Interface Adaptor (NIA) connected to the Host Processor and Host Memory
by a Host Processor Bus (together the “apparatus”). The apparatus is
connected to the network through the Transmission Medium. I have
illustrated these components in Figure 2 of Thia below:

Ex.1015, Thia at .007.

Thia discloses that the NIA (portion of the apparatus) is used for sending
and receiving packets (network communications). Ex.1015, Thia at .008

Apparatus

INTEL Ex.1003.130

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-46 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[17.P] An apparatus for network communication, the apparatus comprising:

(describing the NIA as a source/sink for data packets.)

Accordingly, Thia in view of Tanenbaum96 in further view of Stevens2
discloses an apparatus for network communications.

INTEL Ex.1003.131

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-47 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[17.1] a host computer running a protocol stack including an Internet
Protocol (IP) layer and a Transmission Control Protocol (TCP) layer, the
protocol stack adapted to establish a TCP connection for an application layer
running above the TCP layer, the TCP connection being defined by source
and destination IP addresses and source and destination TCP ports;
Thia in view of Tanenbaum96 in further view of Stevens2 discloses this
limitation.

Claim 1 is a method claim. Claim 17 is an apparatus claim. The evidence
and disclosures from the following Sections for claim 1 also disclose the
limitations of the claimed apparatus.

As explained above for claim limitation [1.1], Thia in view of Tanenbaum96
in view of Stevens2 discloses an SPS running on the host (a host computer
running a protocol stack). As also explained above for claim limitation
[1.1], Thia in view of Tanenbaum96 in view of Stevens2 teach modifying
the SPS to implement the TCP/IP protocol suite, which includes an IP layer
and a TCP layer with an application layer running above the TCP layer
(including an Internet Protocol (IP) layer and a Transmission Control
Protocol (TCP) layer).

As explained above for claim limitation [1.2], Thia in view of Tanenbaum96
in view of Stevens2 discloses that the SYN packets required for the
initialization fail the conditions of the receive bypass test, and thus must be
processed by the SPS on the host. Accordingly, the SPS is responsible for
initializing the TCP connection for the application layer running above the
TCP layer (the protocol stack adapted to establish a TCP connection for an
application running above the TCP layer).

INTEL Ex.1003.132

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-48 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[17.1] a host computer running a protocol stack including an Internet
Protocol (IP) layer and a Transmission Control Protocol (TCP) layer, the
protocol stack adapted to establish a TCP connection for an application layer
running above the TCP layer, the TCP connection being defined by source
and destination IP addresses and source and destination TCP ports;

Ex.1006, Tanenbaum96 at .052-53, Fig.1-17.

As explained above for claim limitation [1.3], Thia in view of Tanenbaum96
in view of Stevens2 discloses that the TCP connection is defined by the TCP
ports and the IP addresses for both sides of the connection (the TCP
connection being defined by source and destination IP addresses and source
and destination TCP ports).

Accordingly, Thia in view of Tanenbaum96 in further view of Stevens2
discloses a host computer running a Standard Protocol Stack (protocol stack)
and when connected to a TCP connection, the protocol stack would include
an IP layer and a TCP layer and would establish a TCP connection for an
application layer running above the TCP layer. The TCP connection would
be defined by the source and destination IP addresses and source and

INTEL Ex.1003.133

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-49 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[17.1] a host computer running a protocol stack including an Internet
Protocol (IP) layer and a Transmission Control Protocol (TCP) layer, the
protocol stack adapted to establish a TCP connection for an application layer
running above the TCP layer, the TCP connection being defined by source
and destination IP addresses and source and destination TCP ports;
destination TCP ports.

INTEL Ex.1003.134

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-50 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[17.2.1] a network interface that is connected to the host computer by an
input/output bus,
As explained above for claim limitation [1.P], Thia in view of Tanenbaum96
in further view of Stevens2 discloses a host computer having a network
interface that is connected to the host by an input/output bus.

Ex.1015, Thia at .007, Fig.2.

Input/Output Bus

Host Computer

Network
Interface

INTEL Ex.1003.135

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-51 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[17.2.2] the network interface adapted to parse the headers of received
packets
A POSA would have understood that parsing a header involves identifying
fields of the header to determine whether or not those fields individually or
collectively satisfy one or more criteria. Thia discloses a receive bypass test
(performed by the NIA, part of the network interface) in which fields of the
header of a received packet are compared to a template. Ex.1015, Thia at
.003 (“The receive bypass test matches the incoming PDU headers with a
template that identifies the predicted bypassable headers.”) A POSA would
have understood that before the NIA compares fields within a header, the
header must be parsed.

INTEL Ex.1003.136

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-52 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[17.2.3] to determine whether the headers have the IP addresses and TCP
ports that define the TCP connection and
As explained for claim limitation [6]. Thia in view of Tanenbaum96 in
further view of Stevens2 discloses the NIA performing a modified receive
bypass test that checks whether the packet matches a template (i.e., has
source and destination IP addresses and source and destination TCP ports
that match the connection record). In doing so, the NIA determines whether
the headers have the IP addresses and TCP ports that define the TCP
connection.

INTEL Ex.1003.137

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-53 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[17.2.4] to check whether the packets have certain exception conditions,
including whether the packets are IP fragmented, have a FIN flag set, or are
out of order,
As explained for claim limitation [1.4] the NIA (part of the network
interface) performs a modified receive bypass test as taught by
Tanenbaum96 on received packets to check whether each TCP header has an
established connection, neither side is trying to close the connection (i.e., no
FIN or RST flag), the TPDU is a full one (e.g., no IP fragmentation), no
special flags are set (e.g., no FIN, RST or SYN flag), and the sequence
number is the one expected (i.e., the packets are not out of order). See
Ex.1006, Tanenbaum96 at .585 (disclosing the test above); see also Ex.1013,
Stevens2 at .962-63 (providing a walkthrough of the BSD code for the test
above).

INTEL Ex.1003.138

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-54 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[17.2.5] the network interface having logic that directs any of the received
packets that have the exception conditions to the protocol stack for
processing, and
As explained above for claim limitation [1.5], Thia in view of Tanenbaum96
in further view of Stevens2 discloses that packets that fail the bypass test are
processed by the SPS.

Ex.1015, Thia at .003, Fig.1.

User A
receives
a packet
from
User B

No
bypass –
Host
processe
s the

INTEL Ex.1003.139

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-55 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[17.2.6] [the network interface having logic that] directs the received packets
that do not have any of the exception conditions to have their headers
removed and their payload data stored together in a buffer of the host
computer, such that the payload data is stored in the buffer in order and
without any TCP header stored between the payload data that came from
different packets of the received packets.
As explained above for claim limitation [1.7], Thia in view of Tanenbaum96
in further view of Stevens2 discloses that packets that pass the receive
bypass test (packets that do not have any of the exception conditions) are
bypassed to the ROPE chip for processing. I have illustrated this path in
Figure 1 of Thia below:

Ex.1015, Thia at .003, Fig.1.

As also explained above for claim limitation [1.7], Thia in view of
Tanenbaum96 in further view of Stevens2 discloses that the system uses
DMA to move only packet data in order from the ROPE chip to host
memory (to have . . . their payload data stored together in a buffer of the
host computer). I have illustrated this in Figure 2 of Thia below:

User A
receives
a packet
from
User B

Bypass –
ROPE
processes
the packet

INTEL Ex.1003.140

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-56 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[17.2.6] [the network interface having logic that] directs the received packets
that do not have any of the exception conditions to have their headers
removed and their payload data stored together in a buffer of the host
computer, such that the payload data is stored in the buffer in order and
without any TCP header stored between the payload data that came from
different packets of the received packets.

Ex.1015, Thia at .007, Fig.2.

As also explained above for claim limitation [1.7], a POSA would have
appreciated that a packet passing the receive bypass test has a header
decoded by the ROPE chip, and thus there is no need to transfer the already-
decoded header into host memory (to have their header removed).
Additionally, as further explained for claim limitation [1.7], the TCP entity
on the ROPE chip reconstructs the data from each packet into the original
byte stream (removing the headers from each datagram and arranging them
in order).

A packet is
received at
the NIA via
Transmission
Medium

Bypass – ROPE
processes the
packet and stores
the data in host
memory

INTEL Ex.1003.141

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-57 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[17.2.6] [the network interface having logic that] directs the received packets
that do not have any of the exception conditions to have their headers
removed and their payload data stored together in a buffer of the host
computer, such that the payload data is stored in the buffer in order and
without any TCP header stored between the payload data that came from
different packets of the received packets.
Thus, a POSA would have been motivated to develop a TCP network
interface combining Thia’s protocol engine with the TCP disclosures found
in Tanenbaum96 and Stevens2. As explained above, when incoming packets
pass the modified receive bypass test (the received packets that do not have
any of the exception conditions), they are directed to be processed by the
ROPE chip as opposed to the SPS. The output from the ROPE chip is the
original byte stream (to have their headers removed . . . in order and without
any TCP header stored between the payload data that came from different
packets of the received packets). A POSA would have utilized Thia’s on-
chip Direct Memory Access (DMA) to transfer only the data blocks in order
to a buffer in host memory (and their payload data stored together in a
buffer of the host computer, such that the payload data is stored in the
buffer).

INTEL Ex.1003.142

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-58 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[19] The apparatus of claim 17, wherein the network interface includes a
direct memory access (DMA) unit that is adapted to store the payload data in
the buffer.
Thia in view of Tanenbaum96 in further view of Stevens2 discloses the
apparatus of claim 17, wherein the network interface includes a direct
memory access (DMA) unit that is adapted to store the payload data in the
buffer.

Claim 1 is a method claim. Claim 19 depends from claim 17, which is an
apparatus claim. The evidence and disclosures from the following Sections
for claim 1 also disclose the limitations of the claimed apparatus.

As explained for claim limitation [1.7], Thia teaches the use of DMA to
move packet data from the ROPE chip to host memory (a host buffer). I’ve
illustrated this in Figure 2 of Thia below:

A packet is
received at
the NIA via
Transmission
Medium

Bypass – ROPE
processes the
packet and stores
the data in host
memory

INTEL Ex.1003.143

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-59 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[19] The apparatus of claim 17, wherein the network interface includes a
direct memory access (DMA) unit that is adapted to store the payload data in
the buffer.
Ex.1015, Thia at .007, Fig.2.

INTEL Ex.1003.144

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-60 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[21] The apparatus of claim 17, wherein the exception conditions include
having a RST flag set.
Thia in view of Tanenbaum96 in further view of Stevens2 discloses the
apparatus of claim 17, wherein the exception conditions include having a
RST flag set.

Claims 1 and 7 are method claims. Claims 17 and 21 are apparatus claims.
The evidence and disclosures described above for claim limitation [1.3]
disclosing an exception condition including a RST flag set for claim 7 also
disclose the limitations of this claim.

INTEL Ex.1003.145

APPENDIX A
to Petition for IPR of U.S. 8,805,948

Horst Declaration – Exhibit 1003 Page A-61 of A-61

Thia in view of Tanenbaum96 in further view of Stevens2
[22] The apparatus of claim 17, wherein the exception conditions include
having a SYN flag set.
Thia in view of Tanenbaum96 in view of Stevens2 discloses the apparatus of
claim 17, wherein the exception conditions include having a SYN flag set.

Claims 1 and 8 are method claims. Claims 17 and 22 are apparatus claims.
The evidence and disclosures described above for claim limitation [1.4]
showing an exception condition that includes having a SYN flag set meeting
clam 8 also disclose the limitations of this claim.

INTEL Ex.1003.146

