A Communication Architecture for High-speed
Networking

Zygmunt Haas
ATET Bell Laboratories
Room 4F-501
Holmdel, NJ 07733

Abstract

The communication speed in wide-, metropolitan-, and
local-area networking has increased over the past decade
from Kbps lines to Gbps lines; i.e., six orders of mag-
nitude, while the processing speed of commercial CPUs
that can be employed as communications processor has
changed only two to three orders of magnitude. This dis-
crepancy in speed translates to “bottlenecks” in the com-
munications process, because the software that supports
some of the high-level functionality of the communication
process is now several order of magnitude slower than the
transmission media. Moreover, the overhead introduced
by the operating system (OS) on the communication pro-
cess strongly affects the application-to-application com-
munication performance. As a result, new proposals for
interface architecture have emerged that considerably re-
duce the overhead associated with the OS. With the
alleviation of the OS bottleneck, the performance re-
quired from the communication system will be so high
that a new protocol architecture that will support high-
performance (high-throughput and low-delay) communi-
cation is needed. The purpose of this paper is to propose
an alternative structure to the existing models of commu-
nication architecture. The architecture presented employs
an approach quite different than that used in the exist-
ing layered models; i.e., the proposed architecture has a
horizontal (parallel) structure, as opposed to the vertical
(serial) structure of the layered models. The horizontal
structure, coupled with small number of layers, results in
elimination of unnecessary replication of functions, unnec-
essary processing of functions, and lowers the unnecessary
interprocess communication burden of the protocol execu-
tion. (For example, unnecessary error detection for voice
packets in integrated applications and unnecessary error
detection in multiple layers for data applications are elim-
inated, the overhead associated with multi peer-to-peer
connection of multi-layer architecture is substantially re-
duced, etc.) Furthermore, the proposed architecture lends
itself more naturally toward full parallel implementation.
Parallelism offers the potential of increased protocol pro-

cessing rates, reduction in processing latency, and further
reduction in processing overhead. And with the advances
in VLSI, full parallel implementation becomes more and
more feasible. Some additional features of the proposed
scheme include selective functionality, which permits the
protocol to easily adjust itself to the kind of performance
demanded by the network-application requirements. The
architecture presented supports the notion of communi-
cation networks that resemble an extension of a computer
bus, and are capable of providing very high bandwidth,
on the order of Gbps, directly to the user.

1 Introduction and Motivation

The communication speed in wide-, metropolitan-, and
local-area networking has increased over the past decade
from Kbps lines to Gbps lines; i.e., six orders of magni-
tude. The processing speed of commetrcial CPUs that can
be employed as communications processors has changed
only two to three orders of magnitude. This discrepancy
in speed translates to “bottlenecks” in the communica-
tions process, because the software that supports some
of the high-level functionality of the communication pro-
cess is now several orders of magnitude slower than the
transmission media. In other words, when the lines op-
erated at 9.6Kbps, the multi-layer conventional protocols
implemented in software were fast enough to match the
speed of the lines. However, now, when the lines operate
at 1.7Gbps, the mismatch in speed is so large that the
advantage of high-speed lines is buried in the large pro-
cessing overhead of high-level protocols, leading to large
delay and low throughput. This change has shifted the
bottleneck from the transmission to the (software) pro-
cessing at the end points.

Another trend that has influenced the design of commu-
nication networks is the potential of hardware implemen-
tation (i.e., VLSI). It is much easier and cheaper today to
implement large and fast communications hardware on a
single silicon chip. However, this opportunity cannot be
fully exploited with current protocols that were developed

CH2826-5/90/0000/0433/$01.00 © 1990 IEEE 433

DOCKET

_ ARM

Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

for software implementation. The purpose of this work is
to investigate the various possibilities of improving the
performance of communications protocols and interfaces,
so that the slow-software-fast-transmission bottleneck can
be alleviated, and to propose a new protocol architecture
that is suitable for future, high-performance communica-
tion.

A basic question is whether or not the current
(software-based) protocols can provide the required per-
formance? As suggested in [1], TCP/IP ([2]) can, with
some minor changes, provide up to few hundred Mbps
throughput. Assuming that the machines will, indeed,
require such a high bandwidth, there are still other ma-
jor communication bottlenecks that prevent delivery of
such large throughput. Thus, [1] concludes that it is the
other bottlenecks that we’re supposed to be concerned
with, not the high-layer protocols. Furthermore, there is
still the question of what applications require such a large
throughput. (The problem is not only in identifying such
applications, but also in predicting future application.)

Let us first provide an answer to the last question. The
general trend of computing environments to move toward
distributed and parallel processing systems is, and will be,
strongly responsible for the demand for increased perfor-
mance. For example, a parallel processing system imple-
mented on the fine-grain level requires delays on the order
of useconds. In distributed processing system, large files
may be required to be transferred between machines with
very low latency. Thus, for the parallel and distributed
processing environment, both the very low delay and large
throughput are crucial. (Another bandwidth demanding
application that can be identified today is video. Video
applications will become more and more important with
traffic integration in packet-switched networks.)

Unfortunately, indeed, the impact of the overhead in-
troduced by the operating systems (OS) on the com-
munication process strongly affects the application-to-
application communication performance. The major
sources of this overhead are (see also [3,4,5,6]):

¢ scheduling
o multiple data transfers from/to the user!
e overhead of entities management:
—~ timers
~ buffers
— connection states
overhead associated with division of the protocol

processing into processes (including interprocess
communication)

11t has been already emphasized several times in the lit-
erature (for example, [3,4]), that the number of data copies
between buffers (i.e., the per octet overhead) has a crucial ef-
fect on the performance of a protocol.

o interrupts
s context switching

The reason for large OS overhead is the structure of the
communication process in general, and the implementa-
tion of network interfaces, in particular. In other words,
the CPU performs such an important role in the com-
munication process, that, as a consequence, there are too
many interrupts, too many context switches, and too large
a scheduling overhead. Network interfaces were invented
to offioad the CPU from the communication process. Un-
fortunately, they do only a partial job; interfaces are still
being built that interrupt the processor for each received
packet, leading to multiple context switches and sched-
uler invocations. {Another solution is to structure the
process in a different way; to eliminate the scheduler calls
by the interrupts, and to resolve the scheduling of the pro-
cess that completed the communication at the “regular”
scheduler invocations.) Some new proposals for interface
architecture ({4]) considerably reduce the overhead asso-
clated with the OS. These proposals structure the com-
munication process much in the same way that Direct
Memory Access (DMA) is implemented; the CPU initi-
ates a communication event, but has little to do in the
actual information exchange process. The considerable
reduction in the OS overhead that results from the new
structuring of the communication process, will probably
have a crucial impact on the feasibility of providing multi-
Mbps bandwidth directly to the user (see also Section 6
for our ideas on a new interface structure).

The communication goal in the parallel and distributed
system environment is to provide communication, whose
throughput is restricted only by the source capacity of the
transmitter or the sink ability of the receiver. Also, the
communication delay should be minimized. As stated, OS
are today the bottleneck of the communication process.
However, once the OS bottleneck are resolved, the per-
formance required {rom the communication systems will
be so high that a new approach will be needed to the
architecture of communication protocols and to the net-
work interface design to support high-performance (high-
thronghput and low-delay). This argumentation answers
the basic question whether the current protocols are ade-
quate for future high-speed networks; local improvements
in the protocol design might be adequate for current OS-
limited systems. This will not be the case for future sys-
tems.

Along these lines, we propose an architecture that is
an alternative to the existing layered architectures, The
novel feature of the proposed architecture is the reduction
in the vertical layering; services that correspond to the
definitions of layers 4 to 6 in the ISO/OSI RM? are com-

2The references to the ISO/OSI Reference Model in this
paper relate only to the definition of services in the various
layers of the model, and not to the actual architecture of the
1SO/0SI protocols.

434

DOCKET

_ ARM

Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

bined into a single layer that is horizontally structured.
This approach lends itself more naturally to parallel im-
plementation. Moreover, the delay of a set of processes
implemented in parallel is determined by the delay of the
longest process, and not by the sum of all the process de-
lays, as is the case in sequential implementation. In the
same way, the total throughput need not to be limited
by the lowest capacity process, but can be increased by
concurrently performing the function on several devices.
Thus a protocol structure that lends itself to parallel im-
plementation has the potential to provide the high perfor-
mance matched to the requirements of the new generation
of improved OS.

2 The Challenge

The challenge is to propose a single protocol that suc-
cessfully provides communication over diverse networks:
data rates ranging from Kbps to Gbps and network di-
ameters from LANs to WANs. Also, the diverse require-
ments of many different applications need to be sup-
ported: connection-oriented and connectionless service,
stream-like traffic and bursty traffic, reliable transport
and best-effort delivery (error-control and flow-control),
different data sizes, different delay and throughput re-
quirements, etc. The required throughput is on the order
of hundreds of Mbps application-to-application (with a
tendency toward Gbps), and the delay is on the order of
hundreds of microseconds®.

Let us discuss the above a little bit further. Assum-
ing a very reliable subnet, the error-recovery procedures
can be simplified so that when there are no errors very
little overhead is incurred. However, this low overhead
comes at the expense of having a large penalty in the
event of an error. (On the other hand, in networks with a
high bit error rate (BER), both of the error and no-error
cases the recovery procedure should be minimized.) This
is what success-oriented* protocols mean: minimize the
overhead for successful delivery cases at the expense of
larger penalty for unsuccessful delivery attempts.

The Teason for insisting
on optimizing the performance® over such an extensive
range of the data-rate (Kbps to Gbps) is that in the fu-
ture we expect to have an enormous variety of networks.

30f course, because of the propagation delay, such a low
delay requirement has little advantage for a WAN, and is nec-
essary only in LAN/WAN environment. However, because of
the requirement that the protocol design be independent of the
actual subnet being used, the stringent performance require-
ments need to apply to any communication.

4This term refers to protocols that exploit the characteris-
tics of reliable networks. Such networks, typically composed
of fiber links and digital switches, have a very low error rate,
deliver packets in order, and rarely drop packets.

5Here “performance” refers to: throughput, delay, and
transmission efficiency.

In other words, one cannot expect that, with the intro-
duction of multi-megabit-per-second networks, Ethernets
will (at least immediately) disappear. Even today, the
range of communication is very large; 300 bps modems
are still being used.

Thus, in order to optimize the performance of the pro-
tocol for all the diverse networks/applications, the proto-
col must consist of a set of versatile protocols, that can
be readily switched between. This is what we refer to in
this work as selective functionality protocols.

The work is organized in the following way: The next
Section outlines possible approaches to improving proto-
col performance. Section 4 presents our horizontal pro-
tocol approach, while the selective-functionality feature is
described in Section 5. A new approach to network inter-
faces is discussed briefly in Section 6. Section 7 shows a
basic design example of the horizontally structured archi-
tecture. Section 8 concludes the work.

3 The Possible Approaches.

There are several possible solutions to overcome the slow-
software-fast-transmission problem:

1. Improve the performance of current high-layer pro-
tocols implementations([1,7])

2. Design new high-layer protocols based on the cur-
rent philosophy; i.e., software-based, layered struc-
ture ([8,9,5))

3. Hardware implementation of high-layer protocols
(f1e)

4. Reduction of high-layer protocols overhead (ie.,
“lite” protocols)®

5. New design philosophy that differently structures
the high-layer protocols ([6])

6. Migration of high-layer functionality to lower lay-
ers, in particular to the physical layer (for example,
networks that perform some high-layer functions
by trading the physical bandwidth; i.e., end-to-end
flow control done at the physical layer in Blazenet
[11}).

The approaches were arranged according to how much
they diverge from the conventional protocol design phi-
losophy. Of course, there can be any combination of the
above five approaches.

6We note that a “lite” (i.e., lightweight) protocol is created
by adjusting the number of states and the amount of control
information that is passed between the protocol states, in such
a way, ont one hand, to maximize the protocol functionality (to
reduce the overhead of the software-based application layer)
and, on the other hand, to minimize the overhead caused by the
low-level implementation of the protocol states (for example,
number of chips for hardware implementation or the number
of page faults for software implementation).

435

DOCKET

_ ARM

Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

Note that there exists yet another approach: Reduction
of lower-layer functionality. (For example, [12] proposes
to solve the link-by-link flow control problem by drop-
ping excessive packets and correcting the packet loss at
the higher-level (transport) through retransmissions.) We
consider this approach, which is the opposite of the fifth
approach, to be, in general, unable to solve the high-speed
communication problem, since pushing the problems to
higher layers introduces, in fact, larger delays (the imple-
mentation of higher layers is typically software-based, and
thus slower). Also, in this specific case of the flow con-
trol example, the long timeout associated with detecting
the dropped packets (which is done on the end-to-end ba-
sis), increases the overall delay. (We note, however, that
pushing some of the functionality to higher layers simpli-
fies the network design, since at the lower layers there is
more traffic aggregation, and the total number of packets-
per-second is larger, leading to more complex processing
within the network. Thus, in some cases this approach
may be appropriate.)

Every one of the six approaches outlined can poten-
tially improve the protocol performance. However, major
improvement in performance can be obtained by combin-
ing a few of the above approaches. For instance, even
though changes in the current version of TCP/IP that re-
duce overhead might increase the protocol throughput to
several hundred Mbps, hardware implementatior of the
improved version will signify the improvement even fur-
ther. Consequently, we believe that the “correct” answer
to the question of how to implement high-speed protocols,
is an intelligent integration of several approaches.

In the next section, we consider a combination of the
third, fourth, fifth, and (in a limited sense) the sixth ap-
proaches. The proposed architecture is based on three
layers: the Network Access Control (the NAC layer),
the Communication Interface (the CI layer), and the
A pplication (the A layer). The NAC layer consists of all
the services defined in and below the Network layer of the
1SO/OSI RM. The CI layer consist of the services defined
by the Transport, Session, and Presentation layers. The
A layer corresponds to the conventional Application layer.
(The reason for the proposed three-layer structure is that
the services of the NAC are mostly hardware-based, while
the services of the A layer are software-implemented.
Thus the CI represents the boundary beiween the soft-
ware and the hardware. Thus, in our view, the model
of the communication protocol architecture can consist
of the three layers, where the NAC is hardware-based,
the A is software, and the CI is a mixture of software
and hardware. It is our belief that to achieve high-speed
communication, the structure of CI must lend itself eas-
ily (little overhead) toward parallel hardware implemen-
tation, and, as shown in the nest section, the proposed
three-layer structure provides a basis for such a parallel
implementation.

4 Horizontally oriented proto-
col for high-speed communi-
cation

We propose here an alternative structure to the existing
communication architectures. The central observation is
that protocols based on extensively-layered architectures
possess an inherent disadvantage for high-speed commu-
nication. While the layering is beneficial for educational
purposes, strict adherence to layering in implementation
decreases the throughput and increases the communica-
tion delay. There are several reasons for this reduction in
performance, among them (see also [6]) the replication of
functions in different layers, performance of unnecessary
functions, overhead of control messages, and the inability
to parallelize protocol processing.

The architecture presented here employs an approach
quite different than that used in the extensively-layered
models; i.e., the proposed architecture has a horizon-
tal structure, as opposed to the vertical structure of
multi-layered architectures. We refer to our architecture
as Horizontally Oriented Protocol Structure, or HOPS.

The main idea behind HOPS is the division of the pro-
tocol into functions, instead of layers. The functions,
in general, are mutually independent, in the sense that
the execution of one function can be performed without
knowing the results of the execution of another. (Thusin-
tercommunication between the functions is substantially
reduced.) For example, flow-control and decryption are
independent functions. If the dependency between two
(or more) functions is such that the execution of one de-
pends on the result of another, the function can still be
conditionally executed. For example, packet resequencing
is to be executed only if error-control detects no errors.
Thus, resequencing can be conditionally executed in par-
allel with error-control, and at the end a (binary) deci-
sion made whether to accept or ignore the resequencing
results.

Because of the independence between the functions
they can be executed in parallel, thus reducing the la-
tency of the protocol and improving throughput.

Figure 1 shows the structure of HOPS. In this Figure,
the correspondence in services between HOPS and the
ISO/OSI RM is also shown. Thus the CI of HOPS im-
plements in hardware- the services defined by layers 4 to
6. The meaning of hardware implementation is not (nec-
essarily) that HOPS is fully cast into silicon, but that
specific hardware exists to perform the functions, rather
than relying on the host software. Thus HOPS can be
implemented as a collection of custom-designed hardware
and general-purpose processors.

CI receives the raw information (unprocessed pack-
ets) from the Network Access Control (NAC) layer. The
central layer in HOPS is the Communication Interface

436

DOCKET

_ ARM

Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

— — % Options—=
Application Application | ¥ "
- Connector 13 |3 o€ el Es
Presentation I 1T o 383 SEEE ; ; ?
" &= ] i
Session 2 =38 45 ; barta
g = “CRE
Transport -1
a
Network Network z Figure 2: HOPS packet format
Data-link Access ®
ta-
Control based on the fourth, fifth, and sixth approaches described
Physical (NAC) in Section 3, are not compatible with the ISO/OSI model,
and, in fact, violate the model boundaries.
1SO/0SI HOPS

Figure 1: HOPS

(CI). CI is divided into parallel (and independent or
conditionally-independent) functions. Before the results
of the functions are passed to the Application layer, they
are evaluated in the Connector. The Connector exe-
cutes the conditional dependency among the functions,
and passes the processed information to the Application
layer.

HOPS is expected to lead to high-performance imple-
mentations because of several reasons. First, because of
the horizontal structure of functions, the delay of a packet
processing is determined by the slowest function, rather
than by the sum of all delays. This is achieved in HOPS
by the independency characteristic of functions. Thus a
function need not to wait for a result of another function
before its execution can begin. Second, the throughput
can be easily improved by increasing the number of units
of capacity-limited functions. Such increase is rather nat-
ural in paralleled-structured CI. Third, because of the
compression of layers, much of the replication and over-
head are eliminated (such as buffering on different layers,
for example). Fourth, the horizontal structure lends it-
self to parallel implementation on separate (possibly cus-
tomized) hardware. The parallel implementation by itself
has the potential of lowering the processing delay and in-
creasing the processing throughput. Also, the overhead
associated with switching between the execution of func-
tions is groesly eliminated, as is the communication mes-
sages between the processes. Finally, the selective func-
tionality feature” can eliminate unnecessary function pro-
cessing.

We also believe that in order to achieve the limit of
performance, one should implement the HOPS-structured
protocols in custom designed hardware.

It should be noted that HOPS, as well as other solutions

7See Section 5

5 HOPS as a Selective Func-
tionality Protocol

Because HOPS is intended to support communication
over diverse networks and for diverse applications, a single
protocol cannot provide optimum performance. For ex-
ample, retr policy d ds on the quality of the
network: selective retransmission is better for networks
with large average BER, while go-back-n may be benefi-
cial in very reliable environment. Moreover, the require-
ments for a protocol may change with time and space; for
example increasing congestion may ch retra

policy, or the required error-control mechanism may differ
from subnet to subnet. Consequently, what we propose
is a “protocol with a menu,” whereby a user will request
some combination of functions that are needed to achieve
some particular level of performance. For instance, the
function retransmission may be designed to receive the
following values: selective, go-back-n, go-and-wait, none,
any, .... The network interface (NI} has to decide on the
particular retransmission policy required. If the NI has
some knowledge about the subnets the packet is going to
travel on, then the NI can make an intelligent decision on
the required policy. The NI can change its decision with
time, if it learns that the conditions have changed or that
its previous decision was incorrect.

The function values are communicated throughout the
network by means of the special option field in the packet
format as shown in Figure 2. The values are decoded sep-
arately, in parallel, and “on the fly” at the packet arrival
time.

There is another, very important advantage of the se-
lective functionality feature; possible compatibility with
current protocols. It cannot be expected that there will
be immediate transfer from the rooted architectures and
protocols. Thus protocols like TP4/CLNP will continue
to exist, and it is of paramount importance that the cur-
rent and the new high-speed oriented protocols interwork.

437

DOC KET

_ ARM

Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE




