
INTEL EX. 1420.001

Fragmentation Considered Harmful

Christopher A. Kent
Jeffrey C. Mogul

Digital Equipment Corporation
Western Research Lab

(Originally published in Proc. SIGCOMM ‘87, Vol. 17, No. 5, October 1987)

Abstract

Internetworks can be built from many different kinds of networks, with varying limits on
maximum packet size. Throughput is usually maximized when the largest possible packet is
sent; unfortunately, some routes can carry only very small packets. The IP protocol allows a
gateway to fragment a packetif it is too large to be transmitted. Fragmentation is at best a
necessary evil; it can lead to poor performance or complete communication failure. There are a
variety of ways to reduce the likelihood of fragmentation; some can be incorporated into exist-
ing IP implementations without changes in protocol specifications. Others require new
protocols, or modifications to existing protocols.

1. Introduction

Internetworks built of heterogeneous networks are
valuable because they insulate higher-level protocols
from changes in network technology, because they al-
low universal communication without the expense of
constructing a homogeneous universal infrastructure,
and because they allow the use of different network
technologies as appropriate to both local-area and long-
haul links. Most datagram networks set a maximum
limit on tile size of packets they carry, to simplify
packet buffering in the nodes and to limit how long one
packet can lie up the link. In a heterogeneous interned
such as the DARPAIP Internet, these packet-size limits,
known as MTUs(for maximum transmission unit) vary
widely from 254 bytes for Packet Radio networks to
2000 bytes for the Wideband Satellite Network [22];
since nobody knows exactly what is connected to the
Internet, the range in MTUs maybe even broader.

In general, it is better to use a few large packets instead
of many small packets to carry a given amount ofdata,
because much ofthe cost of packetized communication
is per-packet rather than per-byte. On a high-speed
LAN, throughput can increase almost linearly with
packet size over a wide range of sizes. Therefore, we
prefer to make our packetsas large as possible.

This desire for large packets conflicts with the variation
in MTUsacross an internet. We want to send large

ACM SIGCOMM -75-

packets but some network along the packets’ path may
not be able to carry them. One approachto this dilemma
is fragmentation when a node must transmit a packet
that is larger than the MTU ofthe network.it breaks the
packet into several smaller fragments and sends them
instead.If the fragmentsare all sent along the same data
link and are immediately reassembled at the next node,
this is called transparent or intra-network fragmenta-
tion. If the fragments are allowed to follow independent
routes, and are reassembled only upon reaching their
ultimate destination this is called inter-network frag-
mentation. A good discussion of both methods, in more
detail, may be found in Shoch [23].

In this paper, drawing on experience with a large
heterogeneous internetwork, we examine fragmentation
in the context of the IP protocol [18]. IP supports the
use of inter-network fragmentation. (Transparent
fragmentation may be also be used as long asit is
invisible to the IP layer.) Fragmentation appearsatfirst
to be an elegant solution to the problem, but subtle
complications arise in real networks that can result in
poor performanceor even total communicationfailure.

Experience with inter-network fragmentation in the IP
Internet has convinced us that it is something to avoid.
In section 2 we compare the advantages and dis-
advantages of fragmentation, in order to justify this
assertion. We then discuss, in section 3, a variety of
schemesfor avoiding or recovering from fragmentation

Computer Communication Review

INTEL EX. 1420.001f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

INTEL EX. 1420.002

2. Whatis wrong with fragmentation?

The arguments in favor of fragmentation are straight-
forward. Fragmentation allows higher level protocols to
be unconcerned with the characteristics of the

transmission channel, and to send data in conveniently
sized pieces. Sending larger quantities of data in each IP
datagram minimizes the bookkeeping overhead asso-
ciated with managing the data. (See section 3.5 fowl
specific example.)

Fragmentation allows the source host to deal with routes
having different MTUs without having to know what
path packet are taking. The safest strategy is for the
source to send very small datagrams, at a great loss of
efficiency. Fragmentation allows the source to choose a
size that is “reasonable” and, when that size proves to
be too large, provides a mechanism that allows data to
continueto get through.

Finally, fragmentation allows protocols to optimize
performance for high bandwidth connections. Emerging
network technologies have larger and larger MTUs.
Mostlocal networks have MTUslarge enough to send
1024 bytes of user data plus associated overhead in a
single packet; new technologies will allow ten times
that. Fragmentation provides a mechanism for deciding
the actual packet size as late as possible. It especially
allows protocols to avoid choosing to send small
datagrams until absolutely necessary. Protocols can
choose large segment sizes to take advantage of the
large MTU in a local network, and rely on fragmenta-
tion at gateways to send the segments through networks
with small MTUs when needed. If datagrams must
traverse a route consisting of several high-MTU links
followed by a low-MTUlink, by delaying the use of
small packets until the low-MTU link is reached,
fragmentation allows the use of large packets on the
initial high MTU links, and thus uses those links more
efficiently.

The arguments against fragmentation fall into three
categories

e Fragmentation causes inefficient use of
resources: Poor choice of fragment sizes can
greatly increase the cost of delivering a datagram.
Additional bandwidth is used for the additional

header information, intermediate gateways must
expend computational resources to make addi-
tional routing decisions, and the receiving host
must reassemble the fragments.

e Loss of fragments leads to degraded per-
formance: Reassembly of IP fragments is not
very robust. Loss of a single fragment requires
the higher level protocol to retransmit all of the

ACM SIGCOMM -76-

data in the original datagram, even if most of the
fragments were received correctly.

e Efficient reassembly is hard: Given the
likelihood of lost fragments and the information
present in the IP header, there are manysituations
in which the reassembly process, though straight-
forward, yields lower than desired performance.

2.1. An overview of fragmentation in IP

IP is a protocol providing unreliable delivery of
datagrams. IP datagrams are encapsulated in network-
specific packets. Gateways may fragment an incoming
packet if it will not fit in a single outgoing packet; in
this case, each fragment is sent as a separate packet.
The [P header contains several fields that are used to

manage fragmentation [18]:

e Identification: A 16-bit field assigned by the
sender to aid in assembling the fragments of a
datagram. The tuple (source, destination, proto-
col, identification) for a given datagram must be
unique over all existing datagrams. When a
packet is fragmented, the value of the Identifica-
tion field of the original packet is copied into
each fragment.

e Timeto live (TTL): An8-bit field that specifies
the maximum time, measured in seconds, that the

packet may remain in the Internet system. If TTL
contains the value zero, the packet must be
discarded. The TTL must be decreased byat least
one every time the packet passes through a
gateway, even if the time required to process the
packetis less than a second. Thus, the TTL field
is an upper bound on packetlifetime.

e Fragmentoffset: A 13-bit field that identifies the
fragmentlocation, relative to the beginning of the
original, unfragmented datagram. Fragment off-
sets are in units of 8 bytes.

e More fragments: A I-bit field that indicates
whether or not this is the last fragment of the
datagram.

The reassembly process consists of matching the
protocol and identification fields of incoming fragments
with those of fragments already held, and coalescing the
data into complete datagrams. Fragments must be
discarded if their TTL expires while they are held for
reassembly. (For more details of the reassembly
algorithm, see [5].)

Higher level protocols such as TCP (Transmission
Control Protocol) [19] use IP as a basis to implement a
reliable connection between two client processes.
Portions of the data stream known as segments are sent
in individual IP datagrams, along with control informa-

Computer Communication Review

INTEL EX. 1420.002f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

INTEL EX. 1420.003

tion used by the cooperating TCP processes to ensure
reliable communication. In particular, TCP uses a
sequence number that covers individual bytes in the
data stream, and an acknowledgment mechanism that
allows the receiving process to tell the sender “TI have
correctly received all data up to and including sequence
number 7.”

2.2. Fragmentation causesinefficient resource usage

Consider the costs associated with sending a packet.
Each time it passes through a gateway, there is some
constant computational overhead to make routing
decisions, modify the packet header, compute the new
checksum, and move the packet between the appropriate
incoming and outgoing queues. In addition, a portion of
the available bandwidth on the incoming and outgoing
interfaces is consumed. In many cases, the constant
computational overhead dominates the cost. Input and
output may be overlapped using DMA devices; in a
typical uniprocessor gateway, there is no way to
parallelize the computational overhead.

Fragmenting at an IP gateway, rather than having the
host choose the appropriate segment size to avoid
fragmentation, may lead to suboptimal use of gateway
resources and network bandwidth. Consider a TCP

processthat tries to send 1024 data bytes across a route
that includes the ARPAnet, which has an MTU of 1006

bytes. The IP and TCP headers are at least 40 bytes
long, leading to a total unfragmented IP datagram 1064
bytes in length. To cross the ARPAnet, this will be
broken into a 1006 byte fragment, followed by a 78 byte
fragment. These short fragments amortize the fixed
overhead per ARPAnet packet over very few bytes of
data, and the total packet count is much higher than
needed. If the sending TCP instead chooses segments
that fit in a 1006 byte ARPAnetpacket,the total packet
count is minimized, and the total overhead is as low as

possible.

For example, consider sending 10 Kbytes of data.
Sending 1024-byte TCP segments generates 10 IP
datagrams, each 1064 bytes long. Each datagram is
fragmented into two ARPAnet packets, one 1006 bytes
long and the other 78 bytes, for a total of 20 packets.If
the originating TCP instead sends 966 byte segments
(the largest that will fit in a single ARPAnet packet),
only 11 packets are sent.

Anotherlimit to utilizing available bandwidth lies in the
interaction of the TTL and Identification fields. Assume

that a reasonable initial value for the TTL field is 32

(the maximum hop count from edge to edge of the
DARPA Internet is currently estimated to be between
15 and 20). If we allow fragmentation, we must ensure
that all datagrams in flight have unique values for the

ACM SIGCOMM T7-

Identification field. Thus, the maximum datagram rate is
216/32, or 2048 datagrams per second. Current
gateways can forward nearly 1000 packets per second;
high performance workstations and interfaces can
generate packets much more rapidly, and can probably
forward 4000 packets per second. We are certainly
within five years of having commonly available
processor and network technology that pushes against
the limit imposed by the 16-bit Identification field.

This limit implies that, to increase bandwidth in the
presence of fragmentation, hosts should send larger
datagrams, so as to carry more data per value of the
Identification field. This is a bad idea, because large
datagrams lead to more fragments, and we shall show
that this increases the likelihood of a severe decrease in

performance. If we simply avoid fragmented datagrams,
values of the Identification field need not be unique,
and there is no bandwidth limit imposedbyits size.

2.3. Poor performance when fragments are lost

When segmentsare sent that are large enough to require
fragmentation, the loss of any fragment requires the
entire segment to be retransmitted. This can lead to
poorer performance than would have been achieved by
originally sending segments that didn't require frag-
mentation.

Gateways in the Internet must drop packets when
congested. If the gateways are congested, dropping
fragments only makes the situation worse. Dropped
fragments mean increased retransmissions, which leads
to more fragments. As the loss rate goes up due to
heavy congestion, the total throughput drops
dramatically, since the loss of any one fragment means
that the resources expended in sending the other
fragments of that datagram are entirely wasted.

Even when congestion is not the problem, retransmis-
sion does not necessarily increase the likelihood thatall
the fragments that make up the segment will arrive
unscathed. In particular, network idiosyncrasies may
conspire to cause the same fragment or fragments to be
lost on successive retransmission. We call this deter-

ministicfragmentloss.

An example of deterministic fragment loss occurs in the
4.2BSD Unix implementation of TCP when datagrams
pass between a local network (typically an Ethernet or a
Proteon ring, with MTUs of 1500 or 2046 bytes,
respectively) and the ARPAnet. The TCP prefers to
send 1024 byte data segments, which are transmitted in
1064 byte IP datagrams. As seen earlier, this results in
two fragments, 1006 and 78 bytes long.

The receiving gateway receives both fragments and
sends them out overthe local Proteon ring. The Proteon

Computer Communication Review

INTEL EX. 1420.003f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

INTEL EX. 1420.004

Ting interface does not have sufficient buffering to
receive back-to-back packets, so it consistently drops
the second fragment. The sending TCP times out, and
retransmits the 1024 byte segment, which will again be
fragmented. The second fragment is again lost, the
segment times out, and eventually the connection is
broken.

In addition, many of the gateways in the Internet today
are derived from 4.2BSD Unix. This implementation of
IP does not properly fragment a previously fragmented
packet, preventing some fragments from ever reaching
their destination, which might better be called guar-
anteed fragmentloss.

2.4. Efficient reassembly is difficult

Reassembling fragments into datagrams at the IP layer
is considerably less robust than constructing a reliable
stream at the TCP layer. The window mechanism in
TCP allows the reassembly process to accurately gauge
how much buffer space to allocate for the current
stream of unacknowledged data bytes. Also, because in
TCP the data stream is covered by a sequence number
for each data byte, once a contiguous sequence of bytes
at the beginning of the outstanding data stream has been
reassembled, it can be acknowledged and handed up to
the next layer. Thus, progress can always be made, even
if in small amounts.

At the IP layer, there is no indication in the headerof a
fragmented packet of how many other fragments follow,
or of the length of the entire datagram. The More
Fragments bit tells only if this the last fragment of the
datagram, and the Fragment Offset field tells only the
position of this fragment in the complete datagram. If
the total size of the incoming datagram is too large to fit
available buffer space, no progress can be made. The IP
specification requires hosts to be able to reassemble
datagrams at least 576 bytes in length; larger segment
sizes must be explicitly negotiated by higher level
protocols.

Evenif there is sufficient buffer space to reassemble a
very large datagram, conflicts can occur. In the Internet,
it is possible for fragments of the same datagram to take
different routes to their ultimate destination. Depending
on queue managementstrategies at gateways along the
way, a fragment of a small datagram may arrive
intermixed with the fragments of a large datagram.
More concretely, assume two datagrams, L (large) and
S (small), are fragmented as L,L,L3LyL;L,L7L, and
S)S2. If there are only eight buffers available, and the
reception order is LjL2L3L4Ls5L¢L7S,L3S2, reassembly of
L cannot succeed, despite adequate buffer space. Upon
reception of S,, the reassembly process could discard L,
through L;, which would leave six free buffers and

ACM SIGCOMM -78-

allow S to be reassembled when S,arrives. Or, it could
discard Lg (and subsequently S,), blocking reassembly
of both L and S$; the buffers would be keptfull until the
fragments expire. In either case, the work done to
transport all the fragments of L is entirely wasted.It is
not possible to coalesce a complete initial string of
fragments and partially acknowledge receipt of the
datagram in order to free some of the buffer space.
(Dave Mills first pointed out this behaviorin [13].)

It is difficult to decide how long to hold on to received
fragments. The only firm limit is the TTL field; the
reassembly process must discard fragments as their
TTLs expire. Since each gateway decrements the TTL
field, it must be set high enoughto traverse the longest
possible route, and thus maystill be quite high when the
packet arrives at its destination. Naive use of the
received TTL as a reassembly timeout will cause some
fragments to occupy buffer space for a much longer
time than necessary. Use of too short a reassembly
timeoutwill cause fragments to be dropped too quickly,
leading to unnecessary retransmissions.

Because IP is a datagram protocol, there is no guarantee
that a given fragment will ever arrive. A higher level
protocol may retransmit a lost IP datagram.If a retrans-
mitted datagram does not have the same value for the IP
Identification field, its data will not be recognized as
being the sameas that in previously received fragments.
The old fragments will occupy buffer space until timed
out or forced out by incoming packets, and cannot fill
holes left by fragments dropped from the second data-
gram. This suggests that higher level protocols should
attempt to use the same value for the IP Identification
on both the original and retransmitted data. (This idea
was proposed by John Shriver [24].)

3. Avoiding fragmentation

Webelieve that, in most circumstances, the potential
disadvantages of fragmentation far outweigh the
expected advantages. Thus, hosts should avoid sending
datagrams that are so large that they will be fragmented.
The length limit can be determined by a variety of
general approaches:

e Always send small datagrams: There is some
datagram size that is small enough to fit without
fragmentation on any network; we could simply
send no datagramslarger than this limit.

e Guess minimum MTU of path: Use a heuristic
to guess the minimum MTUalong the path the
datagram will follow.

e Discover actual minimum MTU ofpath: Use a
protocol to determine the actual minimum MTU

along the path the datagram will follow.

Computer Communication Review

INTEL EX. 1420.004f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

INTEL EX. 1420.005

e Guess or discover MTU and backtrack if

wrong:Since an estimate might be wrong, and a
discovered MTU may change if a route changes,
sometimes we may have to adjust the length limit.
This requires both a mechanism for detecting
errors, and a mechanism for correcting them.

Later in this section we will discuss more specific
fragmentation avoidance schemes.

All these strategies assume that the route the datagrams
will follow is independently determined. If multiple
routes are available between source and destination, one

might instead try to avoid fragmentation by using
source-routing to avoid data links with small MTUs.
Suitable alternate routes seldom exist, however, and

even when they do we see no efficient way for an IP
host to obtain enough information to choose a good
source-route.

IP is a layered protocol architecture, and fragmentation
avoidance mustbe doneatthe right layer. It makeslittle
sense to build redundant mechanismsinto several layers
if it is possible to do it once, This implies that the right
place for fragmentation avoidanceis the layer common
to all IP communication, the IP datagram layeritself
(and its partner, the ICMP protocol). It would be a poor
idea to put the entire fragmentation avoidance
mechanism in, say, the TCP layer, because both the
mechanism and any additional protocol would have to
be duplicated in paralle] layers, such as UDP[17],
NETBLT[6], and VMTP[3], and because it would be
awkward for a TCP-based mechanism to share

knowledge with other layers and across connections.

This is not to say that layers above IP should be
uninvolved in fragmentation avoidance. Architectural
layering does not mean that higher layers must be kept
ignorant of fragmentation issues. Optimal performance
depends upon cooperation between layers for example,
the TCP layer should not send huge segments if the IP
layer knowsthat they will be fragmented.

Most of the fragmentation-avoidance schemes we will
propose depend on keeping some knowledge about the
minimum MTU (MINMTU)onthe path a datagram will
follow. A MINMTU value could be associated with a

specific destination network, a specific destination host,
a specific route (there may be several routes to one
destination, with differing MINMTUs), or a specific
connection (since for different applications, we may
want to choose between optimizing for maximum
bandwidth versus minimum delay, and thus might want
to accept different risks of fragmentation for different
connections to the same host). The MINMTUvalues
could be kept in the IP routing database, or in a separate
database, especially if per-connection MINMTUs are

ACM SIGCOMM -79-

wanted. To support per-connection MINMTUs, the IP
layer must obtain a connection identifier from
connection-oriented higherlayers.

It is our belief that a per-connection scheme
(degenerating to a per-route-to-specific-host scheme for
connectionless protocols) is the most flexible one.
Whileit is true that by keeping per-destination-network
information one might be able to pool information
about several hosts, this is not necessarily safe. Because
many networks are subnetted [15], because MTUs may
vary amongthe subnets of a given network, and because
one cannot tell whether a remote network is subnetted

or not, it is not true that knowing the MINMTU for one
host reliably gives you the MINMTUforall other hosts
on the same network.

Routes in a datagram network are not necessarily
symmetric, the route a packet takes may not be the
reverse of the route taken by a packet traveling in the
opposite direction. Because of this, it is not safe for a
host to assume that it can send a datagram as large as
the one it has received from its peer. An independent
MINMTU determination must be made for each

direction, although the peer hosts may assist each other
in doing so.

Whenthe IP layer has determined the MINMTUfor a
connection or destination, it can make this information

available to higher layers, such as TCP, that are
generating segments to be sent as IP datagrams
Segment-generating layers should ask the IP layer for a
MINMTUbefore sending a segment; connection-based
layers should either check periodically that the
MINMTUhas not changed,or should be able to handle
asynchronousnotification of a change.

3.1. Fragmentation avoidance without protocol
changes

In this section we describe several fragmentation
avoidance schemes that can be implemented without
changing existing protocol specifications or creating
new protocols. There are obvious advantages to such
approaches, since they can be taken immediately by
individual sites or vendors; further, we have sufficient

experience with one of them to believe that it works
fairly well. On the other hand, none of these schemes
can make use of exact knowledge of MINMTUs,and so
may not provide optimal performance.

3.1.1. Always send tiny datagrams

If a host always sent datagrams no larger than the
minimum MTU overthe entire internet, these datagrams
would never be fragmented. In the IP Internet the limit
is no higher than 254 bytes, and might be lower. Since
almost all of the Internet supports larger MTUs, and

Computer Communication Review

INTEL EX. 1420.005f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

