

US008131391B2

(12) United States Patent

Woolfork

(10) **Patent No.:**

US 8,131,391 B2

(45) Date of Patent:

*Mar. 6, 2012

(54) WIRELESS DIGITAL AUDIO MUSIC SYSTEM

(75) Inventor: C. Earl Woolfork, Pasadena, CA (US)

(73) Assignee: One-E-Way, Inc., Pasedena. CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 12/940,747

(22) Filed: **Nov. 5, 2010**

(65) Prior Publication Data

US 2011/0044466 A1 Feb. 24, 2011

Related U.S. Application Data

(63) Continuation of application No. 12/570,343, filed on Sep. 30, 2009, now Pat. No. 7,865,258, which is a continuation of application No. 12/144,729, filed on Jul. 12, 2008, now Pat. No. 7,684,885, which is a continuation of application No. 10/648,012, filed on Aug. 26, 2003, now Pat. No. 7,412,294, which is a continuation-in-part of application No. 10/027,391, filed on Dec. 21, 2001, now abandoned.

(51)	Int. Cl.		
	G06F 17/00	(2006.01)	
(52)	U.S. Cl		700/94

(56) References Cited

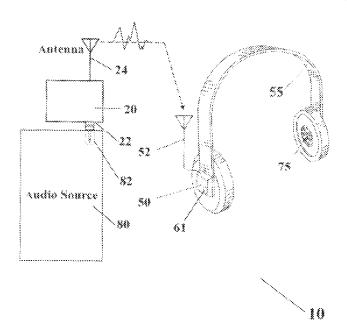
U.S. PATENT DOCUMENTS

5,771,441	4 *	6/1998	Altstatt 455/66.1
6,728,585 H	32	4/2004	Neoh
6,781,977 H	31*	8/2004	Li 370/335
7,409,064 I	32	8/2008	Watanuki
2004/0223622 A	A1*	11/2004	Lindemann et al 381/79

OTHER PUBLICATIONS

Authors: Ishiguro, Takahashi, Yoshida, Miyajima Title: Single-Chip Transceiver LSI For Spread Spectrum Communication With Smart Synchronization Technique Date: Nov. 1997 Consumer Electronics, vol. 43, Issue 4, pp. 1331 ISSN 0098-3063.

Author: Weizhong, Chen Title: Motorola's Bluetooth Solution to Interference Rejection and Coexistence with 802.11 Date: Dec. 2001 Application Note AN2211/D Rev. 0 pp. 1-8.


* cited by examiner

Primary Examiner — Andrew C Flanders (74) Attorney, Agent, or Firm — Megan Lyman

(57) ABSTRACT

A wireless digital audio system includes a portable audio source with a digital audio transmitter operatively coupled thereto and an audio receiver operatively coupled to a headphone set. The audio receiver is configured for digital wireless communication with the audio transmitter. The digital audio receiver utilizes fuzzy logic to optimize digital signal processing. Each of the digital audio transmitter and receiver is configured for code division multiple access (CDMA) communication. The wireless digital audio system allows private audio enjoyment without interference from other users of independent wireless digital transmitters and receivers sharing the same space.

10 Claims, 3 Drawing Sheets

Mar. 6, 2012

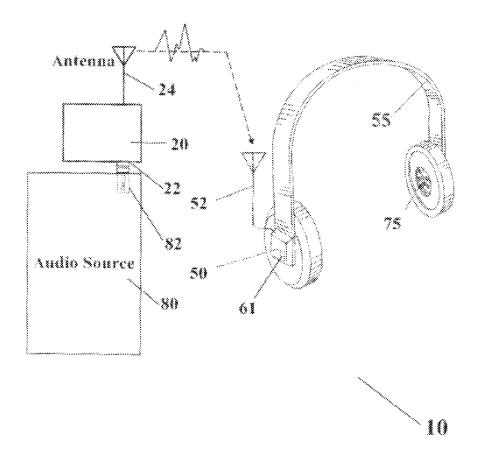
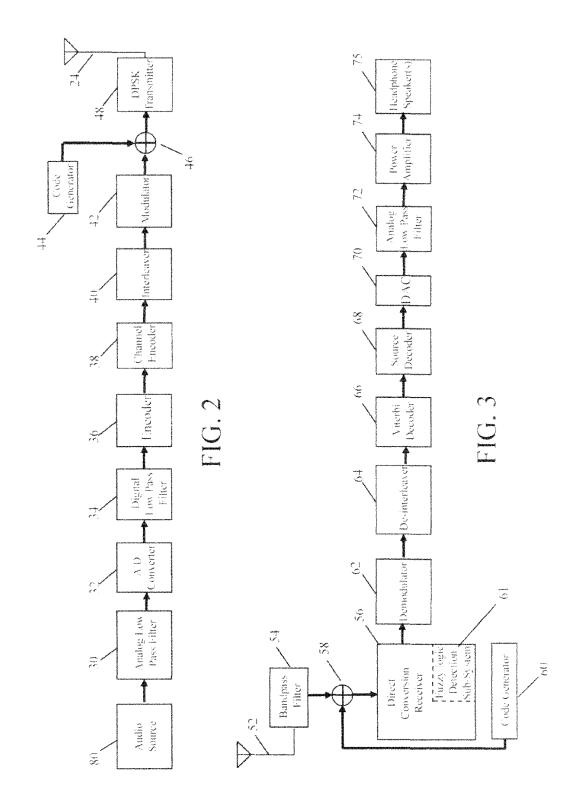
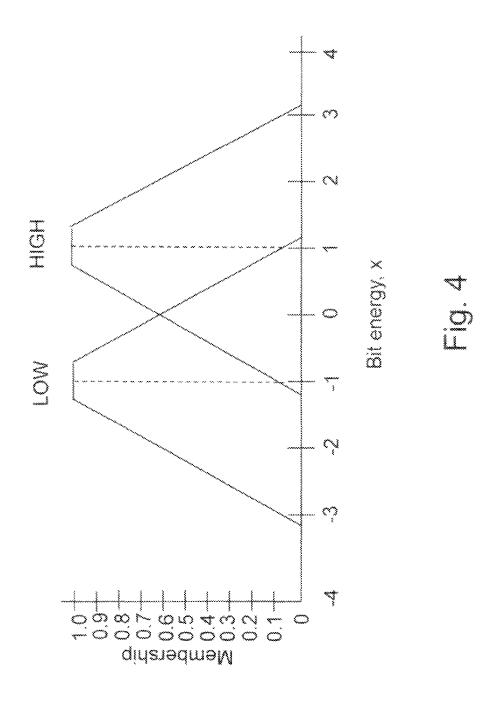




FIG.1

Mar. 6, 2012

WIRELESS DIGITAL AUDIO MUSIC SYSTEM

This continuation application claims the benefit of U.S. patent application Ser. No. 12/570,343, file Sep. 30, 2009, now U.S. Pat. No. 7,865,258, which was a continuation application claiming the benefit of U.S. patent application Ser. No. 12/144,729 filed Jul. 12, 2008, now U.S. Pat. No. 7,684,885, which was a continuation claiming benefit of U.S. patent application Ser. No. 10/648,012 filed Aug. 26, 2003, now U.S. Pat. No. 7,412,294, which was a continuation-in-part claiming benefit from U.S. patent application Ser. No. 10/027,391, filed Dec. 21, 2001, now abandoned, for "Wireless Digital Audio System," published under US 2003/0118196 A1 on Jun. 26, 2003, now abandoned, the disclosures of which are incorporated herein in their entireties by reference.

BACKGROUND OF THE INVENTION

This invention relates to audio player devices and more particularly to systems that include headphone listening devices. The new audio system uses an existing headphone jack (i.e., this is the standard analog headphone jack that connects to wired headphones) of a music audio player (i.e., portable CD player, portable cassette player, portable A.M./ F.M. radio, laptop/desktop computer, portable MP3 player, and the like) to connect a battery powered transmitter for wireless transmission of a signal to a set of battery powered receiving headphones.

Use of audio headphones with audio player devices such as portable CD players, portable cassette players, portable A.M./ F.M. radios, laptop/desktop computers, portable MP3 players and the like have been in use for many years. These systems incorporate an audio source having an analog headphone jack to which headphones may be connected by wire.

There are also known wireless headphones that may receive A.M. and F.M. radio transmissions. However, they do not allow use of a simple plug in (i.e., plug in to the existing analog audio headphone jack) battery powered transmitter for connection to any music audio player device jack, such as the above mentioned music audio player devices, for coded wireless transmission and reception by headphones of audio music for private listening without interference where multiple users occupying the same space are operating wireless transmission devices. Existing audio systems make use of electrical wire connections between the audio source and the headphones to accomplish private listening to multiple users.

There is a need for a battery powered simple connection system for existing music audio player devices (i.e., the previously mentioned music devices), to allow coded digital wireless transmission (using a battery powered transmitter) to a headphone receiver (using a battery powered receiver headphones) that accomplishes private listening to multiple users occupying the same space without the use of wires.

SUMMARY OF THE INVENTION

The present invention is generally directed to a wireless digital audio system for coded digital transmission of an audio signal from any audio player with an analog headphone jack to a receiver headphone located away from the audio 60 player. Fuzzy logic technology may be utilized by the system to enhance bit detection. A battery-powered digital transmitter may include a headphone plug in communication with any suitable music audio source. For reception, a battery-powered headphone receiver may use embedded fuzzy logic to 65 enhance user code bit detection. Fuzzy logic detection may be used to enhance user code bit detection during decoding of the

2

transmitted audio signal. The wireless digital audio music system provides private listening without interference from other users or wireless devices and without the use of conventional cable connections.

These and other features, aspects and advantages of the present invention will become better understood with reference to the following drawings, description and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Some aspects of the present invention are generally shown by way of reference to the accompanying drawings in which:

FIG. 1 schematically illustrates a wireless digital audio system in accordance with the present invention;

FIG. 2 is a block diagram of an audio transmitter portion of the wireless digital audio system of FIG. 1;

FIG. 3 is a block diagram of an audio receiver portion of the wireless digital audio system of FIG. 1; and

FIG. 4 is an exemplary graph showing the utilization of an embedded fuzzy logic coding algorithm according to one embodiment of the present invention.

DETAILED DESCRIPTION

The following detailed description is the best currently contemplated modes for carrying out the invention. The description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating the general principles of the invention.

Referring to FIGS. 1 through 3, a wireless digital audio music system 10 may include a battery powered transmitter 20 connected to a portable music audio player or music audio source 80. The battery powered wireless digital audio music transmitter 20 utilizes an analog to digital converter or ADC 32 and may be connected to the music audio source 80 analog headphone jack 82 using a headphone plug 22. The battery powered transmitter 20 may have a transmitting antenna 24 that may be omni-directional for transmitting a spread spectrum modulated signal to a receiving antenna 52 of a battery powered headphone receiver 50. The battery powered receiver 50 may have headphone speakers 75 in headphones 55 for listening to the spread spectrum demodulated and decoded communication signal. In the headphone receiver 50, fuzzy logic detection may be used to optimize reception of the received user code. The transmitter 20 may digitize the audio signal using ADC 32. The digitized signal may be processed downstream by an encoder 36. After digital conversion, the digital signal may be processed by a digital low pass filter. To reduce the effects of channel noise, the battery powered transmitter 20 may use a channel encoder 38. A modulator 42 modulates the digital signal to be transmitted. For further noise immunity, a spread spectrum DPSK (differential phase shift key) transmitter or module 48, is utilized. The battery powered transmitter 20 may contain a code generator 44 that may be used to create a unique user code. The unique user code generated is specifically associated with one wireless digital audio system user, and it is the only code recognized by the battery powered headphone receiver 50 operated by a particular user. The radio frequency (RF) spectrum utilized (as taken from the Industrial, Scientific and Medical (ISM) band) may be approximately 2.4 GHz. The power radiated by the transmitter adheres to the ISM stan-

Particularly, the received spread spectrum signal may be communicated to a 2.4 GHz direct conversion receiver or module **56**. Referring to FIGS. **1** through **4**, the spread spectrum modulated signal from transmit antenna **24** may be

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

