(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property Organization International Bureau
(43) International Publication Date 18 November 2010 (18.11.2010)

(10) International Publication Number WO 2010/132601 A1

(51) International Patent Classification:

C07D 401/14 (2006.01)
C07D 417/04 (2006.01)
C07D 417/14 (2006.01)
C07D 495/04 (2006.01)
A61K 31/4188 (2006.01)
A6IK 31/4178 (2006.01)
A61P 31/12 (2006.01)
(21) International Application Number:

PCT/US2010/034600
(22) International Filing Date:

12 May 2010 (12.05.2010)
(25) Filing Language:

English
(26) Publication Language:

English
(30) Priority Data:

61/177,972 13 May 2009 (13.05.2009) US
61/224,745 $\quad 10$ July 2009 (10.07.2009) US
61/238,760 1 September 2009 (01.09.2009) US
(71) Applicants (for all designated States except US): GILEAD SCIENCES, INC. [US/US]; 333 Lakeside Drive, Foster City, California 94404 (US). KIM, Choung, U. [US/US]; 333 Lakeside Drive, Foster City, California 94404 (US).
(72) Inventors; and
(75) Inventors/Applicants (for US only): GUO, Hongyan [CN/US]; 333 Lakeside Drive, Foster City, California 94404 (US). KATO, Darryl [US/US]; 333 Lakeside Drive, Foster City, California 94404 (US). KIRSCHBERG, Thorsten, A. [DE/US]; 333 Lakeside Drive, Foster City, California 94404 (US). LIU, Hongtao [CN/US]; 333 Lakeside Drive, Foster City, California 94404 (US). LINK, John, O. [US/US]; 333 Lakeside Drive, Foster City, California 94404 (US). MITCHELL, Michael, L. [US/US]; 333 Lakeside Drive, Foster City, California 94404 (US). PARRISH, Jay, P. [US/US]; 333 Lakeside Drive, Foster City, California 94404 (US). SQUIRES, Neil [CA/US]; 333 Lakeside Drive, Foster City, California 94404 (US). SUN, Jianyu [CA/US]; 333 Lakeside Drive, Foster City, California 94404 (US). TAYLOR, James [US/US]; 333 Lakeside Drive, Foster City, California 94404 (US). BACON, Elizabeth, M. [US/US]; 333 Lakeside Drive, Foster City, California 94404 (US). CANALES, Eda [US/US]; 333 Lakeside Drive, Foster City, California 94404 (US). CHO, Aesop [US/US]; 333 Lakeside Drive, Foster City, California 94404 (US). COTTELL, Jeromy, J. [US/US]; 333 Lakeside Drive, Foster City, California 94404 (US). DESAI, Manoj, C. [US/US]; 333 Lakeside Drive, Foster City, California 94404 (US). HALCOMB, Randall, L. [US/US]; 333 Lakeside Drive, Foster City, California 94404 (US). KRYGOWSKI, Evan, S. [US/US]; 333 Lakeside Drive, Foster City, California 94404 (US).

LAZERWITH, Scott, E. [US/US]; 333 Lakeside Drive, Foster City, California 94404 (US). LIU, Qi [CN/US]; 333 Lakeside Drive, Foster City, California 94404 (US). MACKMAN, Richard [GB/US]; 333 Lakeside Drive, Foster City, California 94404 (US). PYUN, Hyung-Jung [KR/US]; 333 Lakeside Drive, Foster City, California 94404 (US). SAUGIER, Joseph, H. [US/US]; 333 Lakeside Drive, Foster City, California 94404 (US). TRENKLE, James, D. [US/US]; 333 Lakeside Drive, Foster City, California 94404 (US). TSE, Winston, C. [US/US]; 333 Lakeside Drive, Foster City, California 94404 (US). VIVIAN, Randall, W. [US/US]; 333 Lakeside Drive, Foster City, California 94404 (US). SCHROEDER, Scott, D. [US/US]; 333 Lakeside Drive, Foster City, California 94404 (US). WATKINS, William, J. [GB/US]; 333 Lakeside Drive, Foster City, California 94404 (US). XU, Lianhong [US/US]; 333 Lakeside Drive, Foster City, California 94404 (US). YANG, Zheng-Yu [CN/US]; 333 Lakeside Drive, Foster City, California 94404 (US). KELLAR, Terry [US/US]; 333 Lakeside Drive, Foster City, CA 94404 (US). SHENG, Xiaoning [US/US]; 333 Lakeside Drive, Foster City, CA 94404 (US). CLARKE, Michael, O'Neil, Hanrahan [US/US]; 333 Lakeside Drive, Foster City, CA 94404 (US). CHOU, Chien-hung [US/US]; 333 Lakeside Drive, Foster City, CA 94404 (US). GRAUPE, Michael [AT/US]; 333 Lakeside Drive, Foster City, CA 94404 (US). JIN, Haolun [CA/US]; 333 Lakeside Drive, Foster City, CA 94404 (US). MCFADDEN, Ryan [US/US]; 333 Lakeside Drive, Foster City, CA 94404 (US). MISH, Michael, R. [US/US]; 333 Lakeside Drive, Foster City, CA 94404 (US). METOBO, Samuel, E. [-/US]; 333 Lakeside Drive, Foster City, CA 94404 (US). PHILLIPS, Barton, W. [US/US]; 333 Lakeside Drive, Foster City, CA 94404 (US). VENKATARAMANI, Chandrasekar [IN/US]; 333 Lakeside Drive, Foster City, CA 94404 (US).
(74) Agents: HARRIS, Robert, H. et al.; Viksnins Harris \& Padys PLLP, P.O. Box 111098, St. Paul, Minnesota 55111-1098 (US).
(81) Designated States (unless otherwise indicated, for every kind of national protection available): $\mathrm{AE}, \mathrm{AG}, \mathrm{AL}, \mathrm{AM}$, $\mathrm{AO}, \mathrm{AT}, \mathrm{AU}, \mathrm{AZ}, \mathrm{BA}, \mathrm{BB}, \mathrm{BG}, \mathrm{BH}, \mathrm{BR}, \mathrm{BW}, \mathrm{BY}, \mathrm{BZ}$, $\mathrm{CA}, \mathrm{CH}, \mathrm{CL}, \mathrm{CN}, \mathrm{CO}, \mathrm{CR}, \mathrm{CU}, \mathrm{CZ}, \mathrm{DE}, \mathrm{DK}, \mathrm{DM}, \mathrm{DO}$, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
[Continued on next page]
(54) Title: ANTIVIRAL COMPOUNDS
(57) Abstract: The invention is related to anti-viral compounds, compositions containing such compounds, and therapeutic methods that include the administration of such compounds, as well as to processes and intermediates useful for preparing such compounds.

ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, Published:
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

- with international search report (Art. 21(3))

EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK,

- before the expiration of the time limit for amending the SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG). claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

Declarations under Rule 4.17:

- of inventorship (Rule 4.17(iv))

ANTIVIRAL COMPOUNDS

PRIORITY OF INVENTION

This application claims priority to United States Provisional Application Numbers 61/177,972, filed 13 May 2009; 61/224,745, filed 10 July 2009; and 61/238,760, filed 01 September 2009. The entire content of each of these applications is hereby incorporated herein by reference.

BACKGROUND OF THE INVENTION

Hepatitis C is recognized as a chronic viral disease of the liver which is characterized by liver disease. Although drugs targeting the liver are in wide use and have shown effectiveness, toxicity and other side effects have limited their usefulness. Inhibitors of hepatitis C virus (HCV) are useful to limit the establishment and progression of infection by HCV as well as in diagnostic assays for HCV.

There is a need for new HCV therapeutic agents.

SUMMARY OF THE INVENTION

In one embodiment the invention provides a compound of the invention which is a compound of formula (I):

$$
\mathrm{J}-\mathrm{Y}-\mathrm{J}
$$

as described herein, or a pharmaceutically acceptable salt, or prodrug thereof.
The invention also provides isotopically enriched compounds that are compounds of formula I that comprise an enriched isotope at one or more positions in the compound.

The present invention also provides a pharmaceutical composition comprising a compound of the invention and at least one pharmaceutically acceptable carrier.

The present invention also provides a pharmaceutical composition for use in treating disorders associated with HCV.

The present invention also provides a pharmaceutical composition further comprising an interferon or pegylated interferon.

The present invention also provides a pharmaceutical composition further comprising a nucleoside analog.

The present invention also provides for a pharmaceutical composition wherein said nucleoside analogue is selected from ribavirin, viramidine, levovirin, an L-nucleoside, and isatoribine and said interferon is α-interferon or pegylated α-interferon.

The present invention also provides for a method of treating disorders associated with hepatitis C , said method comprising administering to an individual a pharmaceutical composition which comprises a therapeutically effective amount of a compound of the invention.

The present invention also provides a method of inhibiting HCV, comprising administering to a mammal afflicted with a condition associated with HCV activity, an amount of a compound of the invention, effective to inhibit HCV.

The present invention also provides a compound of the invention for use in medical therapy (preferably for use in inhibiting HCV activity or treating a condition associated with HCV activity), as well as the use of a compound of the invention for the manufacture of a medicament useful for inhibiting HCV or the treatment of a condition associated with HCV activity in a mammal.

The present invention also provides synthetic processes and novel intermediates disclosed herein which are useful for preparing compounds of the invention. Some of the compounds of the invention are useful to prepare other compounds of the invention.

In another aspect the invention provides a compound of formula I, or a pharmaceutically acceptable salt or prodrug thereof, for use in the prophylactic or therapeutic treatment of hepatitis C or a hepatitis C associated disorder.

In another aspect the invention provides a method of inhibiting HCV activity in a sample comprising treating the sample with a compound of the invention.

In one embodiment the invention provides a compound having improved inhibitory or pharmacokinetic properties, including enhanced activity against development of viral resistance, improved oral bioavailability, greater potency (for example, in inhibiting HCV activity) or extended effective half-life in vivo. Certain compounds of the invention may have fewer side effects, less complicated dosing schedules, or be orally active.

DETAILED DESCRIPTION OF THE INVENTION

Reference will now be made in detail to certain embodiments of the invention, examples of which are illustrated in the accompanying structures and formulas. While the invention will be described in conjunction with the enumerated embodiments, it will be understood that they are not intended to limit the invention to those embodiments. On the contrary, the invention is intended to cover all alternatives, modifications, and equivalents, which may be included within the scope of the present invention as defined by the embodiments.

Compounds of the Invention

The compounds of the invention exclude compounds heretofore known. However, it is within the invention to use compounds that previously were not known to have antiviral properties for antiviral purposes (e.g. to produce an anti-viral effect in an animal). With respect to the United States, the compounds or compositions herein exclude compounds that are anticipated under 35 USC $\S 102$ or that are obvious under 35 USC $\S 103$.

Whenever a compound described herein is substituted with more than one of the same designated group, e.g., " R^{1} " or " $\mathrm{A}^{3 "}$, then it will be understood that the groups may be the same or different, i.e., each group is independently selected.
"Absent" - Some groups are defined such that they can be absent. When a group is absent it becomes a bond connector. The two groups that would otherwise be connected to that absent group are connected to each other through a bond. For example, when W is absent, M is bonded to M .
"Alkyl" is $\mathrm{C}_{1}-\mathrm{C}_{18}$ hydrocarbon containing normal, secondary, tertiary or cyclic carbon atoms. Examples are methyl (Me, $-\mathrm{CH}_{3}$), ethyl ($\mathrm{Et},-\mathrm{CH}_{2} \mathrm{CH}_{3}$), 1-propyl ($\mathfrak{n}-\mathrm{Pr}, \underline{n}$-propyl, $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2-propyl (i-Pr, $\mathbf{i}-$ propyl, $-\mathrm{CH}\left(\mathrm{CH}_{3}\right) 2$), 1-butyl (n-Bu, n-butyl, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2-methyl-1-propyl (i-Bu, ị-butyl, $-\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)$ 2), 2-butyl (s-Bu, s-butyl, $\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2-methyl-2-propyl (t-Bu, t-butyl, $-\mathrm{C}\left(\mathrm{CH}_{3}\right) 3$), 1-pentyl (n-pentyl, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2-pentyl ($-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 3-pentyl ($-\mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right.$)2), 2-methyl-2-butyl $\left(-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 3-methyl-2-butyl $\left(-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}\left(\mathrm{CH}_{3}\right) 2\right)$, 3-methyl-1butyl ($-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$), 2-methyl-1-butyl $\left(-\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 1-hexyl ($\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2-hexyl ($-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 3-hexyl ($\mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$), 2-methyl-2-pentyl ($-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 3-methyl-2-pentyl (- $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 4-methyl-2-pentyl $\left(-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{\left(\mathrm{CH}_{3}\right)}\right.$ 2), 3-methyl-3pentyl $\left(-\mathrm{C}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) 2\right)$, 2-methyl-3-pentyl $\left(-\mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right.$ 2), 2,3-dimethyl-2butyl $\left(-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 3,3-dimethyl-2-butyl $\left(-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$, and cyclopropylmethyl

"Alkenyl" is $\mathrm{C}_{2}-\mathrm{C}_{18}$ hydrocarbon containing normal, secondary, tertiary or cyclic carbon atoms with at least one site of unsaturation, i.e. a carbon-carbon, $s p^{2}$ double bond. Examples include, but are not limited to, ethylene or vinyl ($-\mathrm{CH}=\mathrm{CH}_{2}$), allyl $\left(-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, cyclopentenyl $\left(-\mathrm{C}_{5} \mathrm{H}_{7}\right)$, and 5-hexenyl $\left(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$.
"Alkynyl" is $\mathrm{C}_{2}-\mathrm{C}_{18}$ hydrocarbon containing normal, secondary, tertiary or cyclic carbon atoms with at least one site of unsaturation, i.e. a carbon-carbon, $s p$ triple bond. Examples include, but are not limited to, acetylenic ($-\mathrm{C} \equiv \mathrm{CH}$) and propargyl ($-\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}$).
"Alkylene" refers to a saturated, branched or straight chain or cyclic hydrocarbon radical of 1-18 carbon atoms, and having two monovalent radical centers derived by the removal of two hydrogen atoms from the same or two different carbon atoms of a parent alkane. Typical alkylene radicals include, but are not limited to, methylene ($-\mathrm{CH}_{2}-$) 1,2 -ethyl ($-\mathrm{CH}_{2} \mathrm{CH}_{2}-$), 1,3 -propyl ($-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$-), 1,4-butyl ($-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$-), and the like.
"Alkenylene" refers to an unsaturated, branched or straight chain or cyclic hydrocarbon radical of 2-18 carbon atoms, and having two monovalent radical centers derived by the removal of two hydrogen atoms from the same or two different carbon atoms of a parent alkene. Typical alkenylene radicals include, but are not limited to, 1,2-ethylene ($-\mathrm{CH}=\mathrm{CH}$-).
"Alkynylene" refers to an unsaturated, branched or straight chain or cyclic hydrocarbon radical of 2-18 carbon atoms, and having two monovalent radical centers derived by the removal of two hydrogen atoms from the same or two different carbon atoms of a parent alkyne. Typical alkynylene radicals include, but are not limited to, acetylene ($-\mathrm{C} \equiv \mathrm{C}$-), propargyl ($-\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}$-), and 4-pentynyl ($-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}$).
"Aryl" means a monovalent aromatic hydrocarbon radical of 6-20 carbon atoms derived by the removal of one hydrogen atom from a single carbon atom of a parent aromatic ring system. Typical aryl groups include, but are not limited to, radicals derived from benzene, substituted benzene, naphthalene, anthracene, biphenyl, and the like.
"Arylalkyl" refers to an acyclic alkyl radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or $s p^{3}$ carbon atom, is replaced with an aryl radical. Typical arylalkyl groups include, but are not limited to, benzyl, 2-phenylethan-1-yl, naphthylmethyl, 2-naphthylethan-1-yl, naphthobenzyl, 2-naphthophenylethan-1-yl and the like. The arylalkyl group comprises 6 to 20 carbon atoms, e.g., the alkyl moiety, including alkanyl, alkenyl or alkynyl groups, of the arylalkyl group is 1 to 6 carbon atoms and the aryl moiety is 5 to 14 carbon atoms.

The term "polycarbocycle" refers to a saturated or unsaturated polycyclic ring system having from about 6 to about 25 carbon atoms and having two or more rings (e.g. 2, 3, 4, or 5 rings). The rings can be fused and/or bridged to form the polycyclic ring system. For example, the term includes bicyclo $[4,5],[5,5],[5,6]$ or $[6,6]$ ring systems, as well as the following bridged ring systems:

(i.e., [2.1.1], [2.2.1], [3.3.3], [4.3.1], [2.2.2], [4.2.2], [4.2.1], [4.3.2], [3.1.1], [3.2.1], [4.3.3], [3.3.2], [3.2.2] and [3.3.1] polycyclic rings, respectively) that can be linked to the remainder of the compound of formula (I) through any synthetically feasible position. Like the other polycarbocycles, these representative bicyclo and fused ring systems can optionally comprise one or more double bonds in the ring system.

The term "polyheterocycle" refers to a polycarbocycle as defined herein, wherein one or more carbon atoms is replaced with a heteroatom (e.g., $\mathrm{O}, \mathrm{S}, \mathrm{S}(\mathrm{O}), \mathrm{S}(\mathrm{O})_{2}, \mathrm{~N}^{+}\left(\mathrm{O}^{-}\right) \mathrm{R}_{\mathrm{x}}$, or NR_{x}); wherein each R_{x} is independently H , (C1-10)alkyl, (C2-10)alkenyl, (C2-10)alkynyl, (C110)alkanoyl, $\mathrm{S}(\mathrm{O})_{2} \mathrm{NR}_{\mathrm{n}} \mathrm{R}_{\mathrm{p}}, \mathrm{S}(\mathrm{O})_{2} \mathrm{R}_{\mathrm{x}}$, or (C1-10)alkoxy, wherein each ($\mathrm{C} 1-10$)alkyl, ($\mathrm{C} 2-$ 10)alkenyl, (C2-10)alkynyl, (C1-10)alkanoyl, and (C1-10)alkoxy is optionally substituted with one or more halo).
"Substituted alkyl", "substituted aryl", and "substituted arylalkyl" mean alkyl, aryl, and arylalkyl respectively, in which one or more hydrogen atoms are each independently replaced with a non-hydrogen substituent. Typical substituents include, but are not limited to: halo (e.g. $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}),-\mathrm{R},-\mathrm{OR},-\mathrm{SR},-\mathrm{NR}_{2},-\mathrm{CF}_{3},-\mathrm{CCl}_{3},-\mathrm{OCF}_{3},-\mathrm{CN},-\mathrm{NO}_{2},-\mathrm{N}(\mathrm{R}) \mathrm{C}(=\mathrm{O}) \mathrm{R},-\mathrm{C}(=\mathrm{O}) \mathrm{R},-$ $\mathrm{OC}(=\mathrm{O}) \mathrm{R},-\mathrm{C}(\mathrm{O}) \mathrm{OR},-\mathrm{C}(=\mathrm{O}) \mathrm{NRR},-\mathrm{S}(=\mathrm{O}) \mathrm{R},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{OR},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R},-\mathrm{OS}(=\mathrm{O})_{2} \mathrm{OR},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{NRR}$, and each R is independently - H , alkyl, aryl, arylalkyl, or heterocycle. Alkylene, alkenylene, and alkynylene groups may also be similarly substituted.

The term "optionally substituted" in reference to a particular moiety of the compound of formula I, (e.g., an optionally substituted aryl group) refers to a moiety having $0,1,2$, or more substituents.

The symbol "....-" in a ring structure means that a bond is a single or double bond. In a non-limiting example,
 can be

"Haloalkyl" as used herein includes an alkyl group substituted with one or more halogens (e.g. $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$, or I). Representative examples of haloalkyl include trifluoromethyl, 2,2,2-trifluoroethyl, and 2,2,2-trifluoro-1-(trifluoromethyl)ethyl.
"Heterocycle" as used herein includes by way of example and not limitation these heterocycles described in Paquette, Leo A.; Principles of Modern Heterocyclic Chemistry (W.A. Benjamin, New York, 1968), particularly Chapters 1, 3, 4, 6, 7, and 9; The Chemistry of Heterocyclic Compounds, A Series of Monographs" (John Wiley \& Sons, New York, 1950 to present), in particular Volumes 13, 14, 16, 19, and 28; and J. Am. Chem. Soc. (1960) 82:5566. In one specific embodiment of the invention "heterocycle" includes a "carbocycle" as defined herein, wherein one or more (e.g. 1, 2, 3, or 4) carbon atoms have been replaced with a heteroatom (e.g. O, N, or S).

Examples of heterocycles include by way of example and not limitation pyridyl, dihydropyridyl, tetrahydropyridyl (piperidyl), thiazolyl, tetrahydrothiophenyl, sulfur oxidized tetrahydrothiophenyl, pyrimidinyl, furanyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, tetrazolyl, benzofuranyl, thianaphthalenyl, indolyl, indolenyl, quinolinyl, isoquinolinyl, benzimidazolyl, piperidinyl, 4-piperidonyl, pyrrolidinyl, 2-pyrrolidonyl, pyrrolinyl, tetrahydrofuranyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, decahydroquinolinyl, octahydroisoquinolinyl, azocinyl, triazinyl, $6 \mathrm{H}-1,2,5$-thiadiazinyl, $2 \mathrm{H}, 6 \mathrm{H}-1,5,2$-dithiazinyl, thienyl, thianthrenyl, pyranyl, isobenzofuranyl, chromenyl, xanthenyl, phenoxathinyl, 2 H -pyrrolyl, isothiazolyl, isoxazolyl, pyrazinyl, pyridazinyl, indolizinyl, isoindolyl, 3H-indolyl, 1 H -indazolyl, purinyl, 4H-quinolizinyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, 4H-carbazolyl, carbazolyl, β-carbolinyl, phenanthridinyl, acridinyl, pyrimidinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, furazanyl, phenoxazinyl, isochromanyl, chromanyl, imidazolidinyl, imidazolinyl, pyrazolidinyl, pyrazolinyl, piperazinyl, indolinyl, isoindolinyl, quinuclidinyl, morpholinyl, oxazolidinyl, benzotriazolyl, benzisoxazolyl, oxindolyl, benzoxazolinyl, isatinoyl, and bis-tetrahydrofuranyl:

By way of example and not limitation, carbon bonded heterocycles are bonded at position $2,3,4,5$, or 6 of a pyridine, position $3,4,5$, or 6 of a pyridazine, position $2,4,5$, or 6 of a pyrimidine, position $2,3,5$, or 6 of a pyrazine, position $2,3,4$, or 5 of a furan, tetrahydrofuran, thiofuran, thiophene, pyrrole or tetrahydropyrrole, position 2,4 , or 5 of an oxazole, imidazole or thiazole, position 3 , 4 , or 5 of an isoxazole, pyrazole, or isothiazole, position 2 or 3 of an aziridine, position 2, 3, or 4 of an azetidine, position 2, 3, 4, 5, 6, 7, or 8 of a quinoline or position $1,3,4,5,6,7$, or 8 of an isoquinoline. Still more typically, carbon bonded heterocycles include 2-pyridyl, 3-pyridyl, 4-pyridyl, 5-pyridyl, 6-pyridyl, 3-pyridazinyl, 4-pyridazinyl, 5-pyridazinyl, 6-pyridazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 6pyrimidinyl, 2-pyrazinyl, 3-pyrazinyl, 5-pyrazinyl, 6-pyrazinyl, 2-thiazolyl, 4-thiazolyl, or 5thiazolyl.

By way of example and not limitation, nitrogen bonded heterocycles are bonded at position 1 of an aziridine, azetidine, pyrrole, pyrrolidine, 2-pyrroline, 3-pyrroline, imidazole, imidazolidine, 2 -imidazoline, 3 -imidazoline, pyrazole, pyrazoline, 2-pyrazoline, 3-pyrazoline, piperidine, piperazine, indole, indoline, 1 H -indazole, position 2 of a isoindole, or isoindoline, position 4 of a morpholine, and position 9 of a carbazole, or β-carboline. Still more typically, nitrogen bonded heterocycles include 1-aziridyl, 1-azetedyl, 1-pyrrolyl, 1-imidazolyl, 1pyrazolyl, and 1-piperidinyl.
"Carbocycle" refers to a saturated, unsaturated or aromatic ring having up to about 25 carbon atoms. Typically, a carbocycle has about 3 to 7 carbon atoms as a monocycle, about 7 to 12 carbon atoms as a bicycle, and up to about 25 carbon atoms as a polycycle. Monocyclic carbocycles typically have 3 to 6 ring atoms, still more typically 5 or 6 ring atoms. Bicyclic carbocycles typically have 7 to 12 ring atoms, e.g., arranged as a bicyclo [4,5], [5,5], [5,6] or $[6,6]$ system, or 9 or 10 ring atoms arranged as a bicyclo $[5,6]$ or $[6,6]$ system. The term carbocycle includes "cycloalkyl" which is a saturated or unsaturated carbocycle. Examples of monocyclic carbocycles include cyclopropyl, cyclobutyl, cyclopentyl, 1-cyclopent-1-enyl, 1-cyclopent-2-enyl, 1-cyclopent-3-enyl, cyclohexyl, 1-cyclohex-1-enyl, 1-cyclohex-2-enyl, 1-cyclohex-3-enyl, phenyl, spiryl and naphthyl.

The term "chiral" refers to molecules which have the property of non-superimposability of the mirror image partner, while the term "achiral" refers to molecules which are superimposable on their mirror image partner.

The term "stereoisomers" refers to compounds which have identical chemical constitution, but differ with regard to the arrangement of the atoms or groups in space.
"Diastereomer" refers to a stereoisomer with two or more centers of chirality and whose molecules are not mirror images of one another. Diastereomers have different physical
properties, e.g., melting points, boiling points, spectral properties, and reactivities. Mixtures of diastereomers may separate under high resolution analytical procedures such as electrophoresis and chromatography.
"Enantiomers" refer to two stereoisomers of a compound which are non-superimposable mirror images of one another.

The term "treatment" or "treating," to the extent it relates to a disease or condition includes preventing the disease or condition from occurring, inhibiting the disease or condition, eliminating the disease or condition, and/or relieving one or more symptoms of the disease or condition.

Stereochemical definitions and conventions used herein generally follow S. P. Parker, Ed., McGraw-Hill Dictionary of Chemical Terms (1984) McGraw-Hill Book Company, New York; and Eliel, E. and Wilen, S., Stereochemistry of Organic Compounds (1994) John Wiley \& Sons, Inc., New York. Many organic compounds exist in optically active forms, i.e., they have the ability to rotate the plane of plane-polarized light. In describing an optically active compound, the prefixes (D and L) or (R and S) are used to denote the absolute configuration of the molecule about its chiral center(s). The prefixes d and I or $(+)$ and $(-)$ are employed to designate the sign of rotation of plane-polarized light by the compound, with (-) or 1 meaning that the compound is levorotatory. A compound prefixed with $(+)$ or d is dextrorotatory. For a given chemical structure, these stereoisomers are identical except that they are mirror images of one another. A specific stereoisomer may also be referred to as an enantiomer, and a mixture of such isomers is often called an enantiomeric mixture. A 50:50 mixture of enantiomers is referred to as a racemic mixture or a racemate, which may occur where there has been no stereoselection or stereospecificity in a chemical reaction or process. The terms "racemic mixture" and "racemate" refer to an equimolar mixture of two enantiomeric species, devoid of optical activity. The invention includes all stereoisomers of the compounds described herein.

Specific Definitions for Groups $\mathrm{A}^{0}, \mathrm{M}^{0}, \mathrm{~W}^{0}, \mathrm{~L}^{0}, \mathrm{P}^{0}, \mathrm{~J}^{0}, \mathrm{~T}^{0}, \mathrm{~V}^{0}, \mathrm{Z}^{0}, \mathrm{E}^{0}$, and $\mathrm{R} 9^{0}$

For the groups $\mathrm{A}^{0}, \mathrm{M}^{0}, \mathrm{~W}^{0}, \mathrm{~L}^{0}, \mathrm{P}^{0}, \mathrm{~J}^{0}, \mathrm{~T}^{0}, \mathrm{~V}^{0}, \mathrm{Z}^{0}, \mathrm{E}^{0}$, and $\mathrm{R} 9^{0}$ the following definitions apply. These definitions also apply for all other A, M, W, L, P, J, T, B, V, Z, E, and R9 groups unless those groups are otherwise defined herein.

Unless stated otherwise, all aryl, cycloalkyl, and heterocyclyl groups of the present disclosure may be substituted as described in each of their respective definitions. For example, the aryl part of an arylalkyl group may be substituted as described in the definition of the term 'aryl'.

The term "alkenyl," as used herein, refers to a straight or branched chain group of two to six carbon atoms containing at least one carbon-carbon double bond.

The term "alkenyloxy," as used herein, refers to an alkenyl group attached to the parent molecular moiety through an oxygen atom.

The term "alkenyloxycarbonyl," as used herein, refers to an alkenyloxy group attached to the parent molecular moiety through a carbonyl group.

The term "alkoxy," as used herein, refers to an alkyl group attached to the parent molecular moiety through an oxygen atom.

The term "alkoxyalkyl," as used herein, refers to an alkyl group substituted with one, two, or three alkoxy groups.

The term "alkoxyalkylcarbonyl," as used herein, refers to an alkoxyalkyl group attached to the parent molecular moiety through a carbonyl group.

The term "alkoxycarbonyl," as used herein, refers to an alkoxy group attached to the parent molecular moiety through a carbonyl group.

The term "alkoxycarbonylalkyl," as used herein, refers to an alkyl group substituted with one, two, or three alkoxycarbonyl groups.

The term "alkyl," as used herein, refers to a group derived from a straight or branched chain saturated hydrocarbon containing from one to six carbon atoms.

The term "alkylcarbonyl," as used herein, refers to an alkyl group attached to the parent molecular moiety through a carbonyl group.

The term "alkylcarbonylalkyl," as used herein, refers to an alkyl group substituted with one, two, or three alkylcarbonyl groups.

The term "alkylcarbonyloxy," as used herein, refers to an alkylcarbonyl group attached to the parent molecular moiety through an oxygen atom.

The term "alkylsulfanyl," as used herein, refers to an alkyl group attached to the parent molecular moiety through a sulfur atom.

The term "alkylsulfonyl," as used herein, refers to an alkyl group attached to the parent molecular moiety through a sulfonyl group.

The term "aryl," as used herein, refers to a phenyl group, or a bicyclic fused ring system wherein one or both of the rings is a phenyl group. Bicyclic fused ring systems consist of a phenyl group fused to a four- to six-membered aromatic or non-aromatic carbocyclic ring. The aryl groups of the present disclosure can be attached to the parent molecular moiety through any substitutable carbon atom in the group. Representative examples of aryl groups include, but are not limited to, indanyl, indenyl, naphthyl, phenyl, and tetrahydronaphthyl. The aryl groups of the present disclosure are optionally substituted with one, two, three, four, or five substituents
independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, alkylcarbonyl, a second aryl group, arylalkoxy, arylalkyl, arylcarbonyl, cyano, halo, haloalkoxy, haloalkyl, heterocyclyl, heterocyclylalkyl, heterocyclylcarbonyl, hydroxy, hydroxyalkyl, nitro, - $\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}$, $-\left(\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}\right.$)alkyl, oxo, and $-\mathrm{P}(\mathrm{O}) \mathrm{OR}_{2}$, wherein each R is independently selected from hydrogen and alkyl; and wherein the alkyl part of the arylalkyl and the heterocyclylalkyl are unsubstituted and wherein the second aryl group, the aryl part of the arylalkyl, the aryl part of the arylcarbonyl, the heterocyclyl, and the heterocyclyl part of the heterocyclylalkyl and the heterocyclylcarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro.

The term "arylalkenyl," as used herein, refers to an alkenyl group substituted with one, two, or three aryl groups.

The term "arylalkoxy," as used herein, refers to an aryl group attached to the parent molecular moiety through an alkoxy group.

The term "arylalkoxyalkyl," as used herein, refers to an alkyl group substituted with one, two, or three arylalkoxy groups.

The term "arylalkoxyalkylcarbonyl," as used herein, refers to an arylalkoxyalkyl group attached to the parent molecular moiety through a carbonyl group.

The term "arylalkoxycarbonyl," as used herein, refers to an arylalkoxy group attached to the parent molecular moiety through a carbonyl group.

The term "arylalkyl," as used herein, refers to an alkyl group substituted with one, two, or three aryl groups. The alkyl part of the arylalkyl is further optionally substituted with one or two additional groups independently selected from alkoxy, alkylcarbonyloxy, halo, haloalkoxy, haloalkyl, heterocyclyl, hydroxy, and $-N R^{c} R^{d}$, wherein the heterocyclyl is further optionally substituted with one or two substituents independently selected from alkoxy, alkyl, unsubstituted aryl, unsubstituted arylalkoxy, unsubstituted arylalkoxycarbonyl, halo, haloalkoxy, haloalkyl, hydroxy, and - $\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}$;

The term "arylalkylcarbonyl," as used herein, refers to an arylalkyl group attached to the parent molecular moiety through a carbonyl group.

The term "arylcarbonyl," as used herein, refers to an aryl group attached to the parent molecular moiety through a carbonyl group.

The term "aryloxy," as used herein, refers to an aryl group attached to the parent molecular moiety through an oxygen atom.

The term "aryloxyalkyl," as used herein, refers to an alkyl group substituted with one, two, or three aryloxy groups.

The term "aryloxycarbonyl," as used herein, refers to an aryloxy group attached to the parent molecular moiety through a carbonyl group.

The term "arylsulfanyl," as used herein, refers to an aryl group attached to the parent molecular moiety through a sulfur atom.

The term "arylsulfonyl," as used herein, refers to an aryl group attached to the parent molecular moiety through a sulfonyl group.

The terms "Cap" and "cap" as used herein, refer to the group which is placed on the nitrogen atom of the terminal nitrogen-containing ring. It should be understood that "Cap" or "cap" can refer to the reagent used to append the group to the terminal nitrogen-containing ring or to the fragment in the final product.

The term "carbonyl," as used herein, refers to $-\mathrm{C}(=0)$ -
The term "carboxy," as used herein, refers to $-\mathrm{CO}_{2} \mathrm{H}$.
The term "cyano," as used herein, refers to -CN.
The term "cyanoalkyl" as used herein, refers to an alkyl group having at least one -CN substituent.

The term "cycloalkyl," as used herein, refers to a saturated monocyclic, hydrocarbon ring system having three to seven carbon atoms and zero heteroatoms. Representative examples of cycloalkyl groups include, but are not limited to, cyclopropyl, cyclopentyl, and cyclohexyl. The cycloalkyl groups of the present disclosure are optionally substituted with one, two, three, four, or five substituents independently selected from alkoxy, alkyl, aryl, cyano, halo, haloalkoxy, haloalkyl, heterocyclyl, hydroxy, hydroxyalkyl, nitro, and $-\mathrm{NR}^{\mathrm{x}} \mathrm{R}^{\mathrm{y}}$ wherein the aryl and the heterocyclyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, hydroxy, and nitro.

The term "(cycloalkyl)alkenyl," as used herein, refers to an alkenyl group substituted with one, two, or three cycloalkyl groups.

The term "(cycloalkyl)alkyl," as used herein, refers to an alkyl group substituted with one, two, or three cycloalkyl groups. The alkyl part of the (cycloalkyl)alkyl is further optionally substituted with one or two groups independently selected from hydroxy and $-N R^{c} \mathrm{R}^{\mathrm{d}}$.

The term "cycloalkyloxy," as used herein, refers to a cycloalkyl group attached to the parent molecular moiety through an oxygen atom.

The term "cycloalkyloxyalkyl," as used herein, refers to an alkyl group substituted with one, two, or three cycloalkyloxy groups.

The term "cycloalkylsulfonyl," as used herein, refers to a cycloalkyl group attached to the parent molecular moiety through a sulfonyl group.

The term "formyl," as used herein, refers to -CHO.
The terms "halo" and "halogen," as used herein, refer to $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$, or I .
The term "haloalkoxy," as used herein, refers to a haloalkyl group attached to the parent molecular moiety through an oxygen atom.

The term "haloalkoxycarbonyl," as used herein, refers to a haloalkoxy group attached to the parent molecular moiety through a carbonyl group.

The term "haloalkyl," as used herein, refers to an alkyl group substituted by one, two, three, or four halogen atoms.

The term "haloalkylsulfanyl," as used herein, refers to a haloalkyl group attached to the parent molecular moiety through a sulfur atom.

The term "heterocyclyl," as used herein, refers to a four-, five-, six-, or seven-membered ring containing one, two, three, or four heteroatoms independently selected from nitrogen, oxygen, and sulfur. The four-membered ring has zero double bonds, the five-membered ring has zero to two double bonds, and the six- and seven-membered rings have zero to three double bonds. The term "heterocyclyl" also includes bicyclic groups in which the heterocyclyl ring is fused to another monocyclic heterocyclyl group, or a four- to six-membered aromatic or nonaromatic carbocyclic ring; as well as bridged bicyclic groups such as 7-azabicyclo[2.2.1]hept-7yl, 2-azabicyclo[2.2.2]oc-2-tyl, and 2-azabicyclo[2.2.2]oc-3-tyl. The heterocyclyl groups of the present disclosure can be attached to the parent molecular moiety through any carbon atom or nitrogen atom in the group. Examples of heterocyclyl groups include, but are not limited to, benzothienyl, furyl, imidazolyl, indolinyl, indolyl, isothiazolyl, isoxazolyl, morpholinyl, oxazolyl, piperazinyl, piperidinyl, pyrazolyl, pyridinyl, pyrrolidinyl, pyrrolopyridinyl, pyrrolyl, thiazolyl, thienyl, thiomorpholinyl, 7-azabicyclo[2.2.1]hept-7-yl, 2-azabicyclo[2.2.2]oc-2-tyl, and 2-azabicyclo[2.2.2]oc-3-tyl. The heterocyclyl groups of the present disclosure are optionally substituted with one, two, three, four, or five substituents independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylcarbonyl, cyano, halo, haloalkoxy, haloalkyl, a second heterocyclyl group, heterocyclylalkyl, heterocyclylcarbonyl, hydroxy, hydroxyalkyl, nitro, $-\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}},-\left(\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}\right.$)alkyl, and oxo, wherein the alkyl part of the arylalkyl and the heterocyclylalkyl are unsubstituted and wherein the aryl, the aryl part of the arylalkyl, the aryl part of the arylcarbonyl, the second heterocyclyl group, and the heterocyclyl part of the heterocyclylalkyl and the heterocyclylcarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro.

The term "heterocyclylalkenyl," as used herein, refers to an alkenyl group substituted with one, two, or three heterocyclyl groups.

The term "heterocyclylalkoxy," as used herein, refers to a heterocyclyl group attached to the parent molecular moiety through an alkoxy group.

The term "heterocyclylalkoxycarbonyl," as used herein, refers to a heterocyclylalkoxy group attached to the parent molecular moiety through a carbonyl group.

The term "heterocyclylalkyl," as used herein, refers to an alkyl group substituted with one, two, or three heterocyclyl groups. The alkyl part of the heterocyclylalkyl is further optionally substituted with one or two additional groups independently selected from alkoxy, alkylcarbonyloxy, aryl, halo, haloalkoxy, haloalkyl, hydroxy, and - $\mathrm{NR}^{\mathrm{c}} \mathrm{R}^{\mathrm{d}}$, wherein the aryl is further optionally substituted with one or two substituents independently selected from alkoxy, alkyl, unsubstituted aryl, unsubstituted arylalkoxy, unsubstituted arylalkoxycarbonyl, halo, haloalkoxy, haloalkyl, hydroxy, and $-\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}$.

The term "heterocyclylalkylcarbonyl," as used herein, refers to a heterocyclylalkyl group attached to the parent molecular moiety through a carbonyl group.

The term "heterocyclylcarbonyl," as used herein, refers to a heterocyclyl group attached to the parent molecular moiety through a carbonyl group.

The term "heterocyclyloxy," as used herein, refers to a heterocyclyl group attached to the parent molecular moiety through an oxygen atom.

The term "heterocyclyloxyalkyl," as used herein, refers to an alkyl group substituted with one, two, or three heterocyclyloxy groups.

The term "heterocyclyloxycarbonyl," as used herein, refers to a heterocyclyloxy group attached to the parent molecular moiety through a carbonyl group.

The term "hydroxy," as used herein, refers to - OH .
The term "hydroxyalkyl," as used herein, refers to an alkyl group substituted with one, two, or three hydroxy groups.

The term "hydroxyalkylcarbonyl," as used herein, refers to a hydroxyalkyl group attached to the parent molecular moiety through a carbonyl group.

The term "nitro," as used herein, refers to $-\mathrm{NO}_{2}$.
The term "-NR ${ }^{a} R^{b}$," as used herein, refers to two groups, R^{a} and R^{b}, which are attached to the parent molecular moiety through a nitrogen atom. R^{a} and R^{b} are independently selected from hydrogen, alkenyl, and alkyl.

The term " $\left(\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\right)$ alkyl," as used herein, refers to an alkyl group substituted with one, two, or three - $N R^{a} R^{b}$ groups.

The term " $\left(N R^{a} R^{b}\right)$ carbonyl," as used herein, refers to an - $N R^{a} R^{b}$ group attached to the parent molecular moiety through a carbonyl group.

The term " $-N R^{c} R^{d}$," as used herein, refers to two groups, R^{c} and R^{d}, which are attached to the parent molecular moiety through a nitrogen atom. R^{c} and R^{d} are independently selected from hydrogen, alkenyloxycarbonyl, alkoxyalkylcarbonyl, alkoxycarbonyl, alkyl, alkylcarbonyl, alkylsulfonyl, aryl, arylalkoxycarbonyl, arylalkyl, arylalkylcarbonyl, arylcarbonyl, aryloxycarbonyl, arylsulfonyl, cycloalkyl, cycloalkylsulfonyl, formyl, haloalkoxycarbonyl, heterocyclyl, heterocyclylalkoxycarbonyl, heterocyclylalkyl, heterocyclylalkylcarbonyl, heterocyclylcarbonyl, heterocyclyloxycarbonyl, hydroxyalkylcarbonyl, ($\mathrm{NR}^{e} \mathrm{R}^{f}$)alkyl, ($\mathrm{NR}^{\mathrm{e}} \mathrm{R}^{\mathrm{f}}$) alkylcarbonyl, ($\mathrm{NR}^{e} \mathrm{R}^{\mathrm{f}}$)carbonyl, ($\mathrm{NR}^{\mathrm{e}} \mathrm{R}^{\mathrm{f}}$) sulfonyl, $-\mathrm{C}(\mathrm{NCN}) \mathrm{OR}^{\prime}$, and - $\mathrm{C}(\mathrm{NCN}) \mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathbf{Y}}$, wherein R^{\prime} is selected from alkyl and unsubstituted phenyl, and wherein the alkyl part of the arylalkyl, the arylalkylcarbonyl, the heterocyclylalkyl, and the heterocyclylalkylcarbonyl are further optionally substituted with one $-\mathrm{NR}^{e} \mathrm{R}^{\mathrm{f}}$ group; and wherein the aryl, the aryl part of the arylalkoxycarbonyl, the arylalkyl, the arylalkylcarbonyl, the arylcarbonyl, the aryloxycarbonyl, and the arylsulfonyl, the heterocyclyl, and the heterocyclyl part of the heterocyclylalkoxycarbonyl, the heterocyclylalkyl, the heterocyclylalkylcarbonyl, the heterocyclylcarbonyl, and the heterocyclyloxycarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro.

The term " $\left(N R^{c} \mathrm{R}^{\mathrm{d}}\right)$ alkenyl," as used herein, refers to an alkenyl group substituted with one, two, or three $-N R^{c} R^{d}$ groups.

The term " $\left(N R^{c} R^{d}\right)$ alkyl," as used herein, refers to an alkyl group substituted with one, two, or three $-N R^{c} R^{d}$ groups. The alkyl part of the $\left(N R^{c} R^{d}\right)$ alkyl is further optionally substituted with one or two additional groups selected from alkoxy, alkoxyalkylcarbonyl, alkoxycarbonyl, alkylsulfanyl, arylalkoxyalkylcarbonyl, carboxy, heterocyclyl, heterocyclylcarbonyl, hydroxy, and ($\mathrm{NR}^{e} \mathrm{R}^{\mathrm{f}}$)carbonyl; wherein the heterocyclyl is further optionally substituted with one, two, three, four, or five substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro.

The term " $\left(N R^{c} R^{d}\right)$ carbonyl," as used herein, refers to an $-N R^{c} R^{d}$ group attached to the parent molecular moiety through a carbonyl group.

The term "- $\mathrm{NR}^{\mathrm{e}} \mathrm{R}^{\mathrm{f}}$," as used herein, refers to two groups, R^{e} and R^{f}, which are attached to the parent molecular moiety through a nitrogen atom. R^{e} and R^{f} are independently selected from hydrogen, alkyl, unsubstituted aryl, unsubstituted arylalkyl, unsubstituted cycloalkyl, unsubstituted (cyclolalkyl)alkyl, unsubstituted heterocyclyl, unsubstituted heterocyclylalkyl, $\left(\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}\right.$)alkyl, and -($\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}$) carbonyl.

The term " $\left(\mathrm{NR}^{e} \mathrm{R}^{\mathrm{f}}\right)$ alkyl," as used herein, refers to an alkyl group substituted with one, two, or three $-\mathrm{NR}^{\mathrm{e}} \mathrm{R}^{\mathrm{f}}$ groups.

The term " $\left(\mathrm{NR}^{\mathrm{e}} \mathrm{R}^{\mathrm{f}}\right.$)alkylcarbonyl," as used herein, refers to an ($\mathrm{NR}^{\mathrm{e}} \mathrm{R}^{f}$)alkyl group attached to the parent molecular moiety through a carbonyl group.

The term " $\left(N R^{c} R^{f}\right)$ carbonyl," as used herein, refers to an $-N R^{e} R^{f}$ group attached to the parent molecular moiety through a carbonyl group.

The term " $\left(N R^{e} R^{f}\right)$ sulfonyl," as used herein, refers to an $-N R^{e} R^{f}$ group attached to the parent molecular moiety through a sulfonyl group.

The term "-NR ${ }^{X} R^{Y}$, " as used herein, refers to two groups, R^{X} and R^{Y}, which are attached to the parent molecular moiety through a nitrogen atom. R^{X} and R^{Y} are independently selected from hydrogen, alkoxycarbonyl, alkyl, alkylcarbonyl, unsubstituted aryl, unsubstituted arylalkoxycarbonyl, unsubstituted arylalkyl, unsubstituted cycloalkyl, unsubstituted heterocyclyl, and $\left(\mathrm{NR}^{X^{\prime}} \mathrm{R}^{Y}\right)$ carbonyl, wherein R^{X} and R^{r} are independently selected from hydrogen and alkyl.

The term " $\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}$)alkyl," as used herein, refers to an alkyl group substituted with one, two, or three $-\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}$ groups.

The term "oxo," as used herein, refers to $=0$.
The term "sulfonyl," as used herein, refers to - SO_{2}-.
The term "trialkylsilyl," as used herein, refers to - SiR_{3}, wherein R is alkyl. The R groups may be the same or different

The term "trialkylsilylalkyl," as used herein, refers to an alkyl group substituted with one, two, or three trialkylsilyl groups.

The term "trialkylsilylalkoxy," as used herein, refers to a trialkylsilylalkyl group attached to the parent molecular moiety through an oxygen atom.

The term "trialkylsilylalkoxyalkyl," as used herein, refers to an alkyl group substituted with one, two, or three trialkylsilylalkoxy groups.

Prodrugs

The term "prodrug" as used herein refers to any compound that when administered to a biological system generates a compound of the invention that inhibits HCV activity ("the active inhibitory compound"). The compound may be formed from the prodrug as a result of: (i) spontaneous chemical reaction(s), (ii) enzyme catalyzed chemical reaction(s), (iii) photolysis, and/or (iv) metabolic chemical reaction(s).
"Prodrug moiety" refers to a labile functional group which separates from the active inhibitory compound during metabolism, systemically, inside a cell, by hydrolysis, enzymatic
cleavage, or by some other process (Bundgaard, Hans, "Design and Application of Prodrugs" in \underline{A} Textbook of Drug Design and Development (1991), P. Krogsgaard-Larsen and H. Bundgaard, Eds. Harwood Academic Publishers, pp. 113-191). Enzymes which are capable of an enzymatic activation mechanism with the prodrug compounds of the invention include, but are not limited to, amidases, esterases, microbial enzymes, phospholipases, cholinesterases, and phosphases. Prodrug moieties can serve to enhance solubility, absorption and lipophilicity to optimize drug delivery, bioavailability and efficacy. A prodrug moiety may include an active metabolite or drug itself.

Exemplary prodrug moieties include the hydrolytically sensitive or labile acyloxymethyl esters $-\mathrm{CH}_{2} \mathrm{OC}(=\mathrm{O}) \mathrm{R}^{99}$ and acyloxymethyl carbonates $-\mathrm{CH}_{2} \mathrm{OC}(=\mathrm{O}) \mathrm{OR}^{99}$ where R^{99} is $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, $\mathrm{C}_{1}-\mathrm{C}_{6}$ substituted alkyl, $\mathrm{C}_{6}-\mathrm{C}_{20}$ aryl or $\mathrm{C}_{6}-\mathrm{C}_{20}$ substituted aryl. The acyloxyalkyl ester was first used as a prodrug strategy for carboxylic acids and then applied to phosphates and phosphonates by Farquhar et al. (1983) J. Pharm. Sci. 72: 324; also US Patent Nos. $4816570,4968788,5663159$ and 5792756. Subsequently, the acyloxyalkyl ester was used to deliver phosphonic acids across cell membranes and to enhance oral bioavailability. A close variant of the acyloxyalkyl ester, the alkoxycarbonyloxyalkyl ester (carbonate), may also enhance oral bioavailability as a prodrug moiety in the compounds of the combinations of the invention. An exemplary acyloxymethyl ester is pivaloyloxymethoxy, (POM) $-\mathrm{CH}_{2} \mathrm{OC}(=\mathrm{O}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$. An exemplary acyloxymethyl carbonate prodrug moiety is pivaloyloxymethylcarbonate $(\mathrm{POC})-\mathrm{CH}_{2} \mathrm{OC}(=\mathrm{O}) \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}$.

Aryl esters of phosphorus groups, especially phenyl esters, are reported to enhance oral bioavailability (De Lombaert et al. (1994) J. Med. Chem. 37: 498). Phenyl esters containing a carboxylic ester ortho to a phosphate have also been described (Khamnei and Torrence, (1996) J. Med. Chem. 39:4109-4115). Benzyl esters are reported to generate parent phosphonic acids. In some cases, substituents at the ortho- or para-position may accelerate the hydrolysis. Benzyl analogs with an acylated phenol or an alkylated phenol may generate the phenolic compound through the action of enzymes, e.g., esterases, oxidases, etc., which in turn undergoes cleavage at the benzylic $\mathrm{C}-\mathrm{O}$ bond to generate phosphoric acid and a quinone methide intermediate. Examples of this class of prodrugs are described by Mitchell et al. (1992) J. Chem. Soc. Perkin Trans. II 2345; Glazier WO 91/19721. Still other benzylic prodrugs have been described containing a carboxylic ester-containing group attached to the benzylic methylene (Glazier WO 91/19721). Thio-containing prodrugs are reported to be useful for the intracellular delivery of phosphonate drugs. These proesters contain an ethylthio group in which the thiol group is either esterified with an acyl group or combined with another thiol group to form a disulfide. Deesterification or reduction of the disulfide generates the free thio intermediate
which subsequently breaks down to the phosphoric acid and episulfide (Puech et al. (1993) Antiviral Res., 22: 155-174; Benzaria et al. (1996) J. Med. Chem. 39: 4958).

Protecting Groups

In the context of the present invention, protecting groups include prodrug moieties and chemical protecting groups.
"Protecting group" refers to a moiety of a compound that masks or alters the properties of a functional group or the properties of the compound as a whole. Chemical protecting groups and strategies for protection/deprotection are well known in the art. See e.g., Protective Groups in Organic Chemistry, Theodora W. Greene, John Wiley \& Sons, Inc., New York, 1991. Protecting groups are often utilized to mask the reactivity of certain functional groups, to assist in the efficiency of desired chemical reactions, e.g., making and breaking chemical bonds in an ordered and planned fashion. Protection of functional groups of a compound alters other physical properties besides the reactivity of the protected functional group, such as the polarity, lipophilicity (hydrophobicity), and other properties which can be measured by common analytical tools. Chemically protected intermediates may themselves be biologically active or inactive.

Protected compounds may also exhibit altered, and in some cases, optimized properties in vitro and in vivo, such as passage through cellular membranes and resistance to enzymatic degradation or sequestration. In this role, protected compounds with intended therapeutic effects may be referred to as prodrugs. Another function of a protecting group is to convert the parental drug into a prodrug, whereby the parental drug is released upon conversion of the prodrug in vivo. Because active prodrugs may be absorbed more effectively than the parental drug, prodrugs may possess greater potency in vivo than the parental drug. Protecting groups are removed either in vitro, in the instance of chemical intermediates, or in vivo, in the case of prodrugs. With chemical intermediates, it is not particularly important that the resulting products after deprotection, e.g., alcohols, be physiologically acceptable, although in general it is more desirable if the products are pharmacologically innocuous.

Protecting groups are available, commonly known and used, and are optionally used to prevent side reactions with the protected group during synthetic procedures, i.e. routes or methods to prepare the compounds of the invention. For the most part the decision as to which groups to protect, when to do so, and the nature of the chemical protecting group "PG" will be dependent upon the chemistry of the reaction to be protected against (e.g., acidic, basic, oxidative, reductive or other conditions) and the intended direction of the synthesis. PGs do not need to be, and generally are not, the same if the compound is substituted with multiple PG. In
general, PG will be used to protect functional groups such as carboxyl, hydroxyl, thio, or amino groups and to thus prevent side reactions or to otherwise facilitate the synthetic efficiency. The order of deprotection to yield free deprotected groups is dependent upon the intended direction of the synthesis and the reaction conditions to be encountered, and may occur in any order as determined by the artisan.

Various functional groups of the compounds of the invention may be protected. For example, protecting groups for -OH groups (whether hydroxyl, carboxylic acid, phosphonic acid, or other functions) include "ether- or ester-forming groups". Ether- or ester-forming groups are capable of functioning as chemical protecting groups in the synthetic schemes set forth herein. However, some hydroxyl and thio protecting groups are neither ether- nor esterforming groups, as will be understood by those skilled in the art, and are included with amides, discussed below.

A very large number of hydroxyl protecting groups and amide-forming groups and corresponding chemical cleavage reactions are described in Protective Groups in Organic Synthesis, Theodora W. Greene (John Wiley \& Sons, Inc., New York, 1991, ISBN 0-471-62301-6) ("Greene"). See also Kocienski, Philip J.; Protecting Groups (Georg Thieme Verlag Stuttgart, New York, 1994), which is incorporated by reference in its entirety herein. In particular Chapter 1, Protecting Groups: An Overview, pages 1-20, Chapter 2, Hydroxyl Protecting Groups, pages 21-94, Chapter 3, Diol Protecting Groups, pages 95-117, Chapter 4, Carboxyl Protecting Groups, pages 118-154, Chapter 5, Carbonyl Protecting Groups, pages 155184. For protecting groups for carboxylic acid, phosphonic acid, phosphonate, sulfonic acid and other protecting groups for acids see Greene as set forth below.

By way of example and not limitation, $R^{1}, R^{3}, R^{A 1}, R^{A 3}$, and X^{A} are recursive substituents in certain embodiments. Typically, each of these may independently occur 20, 19, $18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1$, or 0 , times in a given embodiment. More typically, each of these may independently occur 12 or fewer times in a given embodiment. Whenever a compound described herein is substituted with more than one of the
 same or different, i.e., each group is independently selected. Wavy lines indicate the site of covalent bond attachments to the adjoining groups, moieties, or atoms.

In one embodiment of the invention, the compound is in an isolated and purified form. Generally, the term "isolated and purified" means that the compound is substantially free from biological materials (e.g. blood, tissue, cells, etc.). In one specific embodiment of the invention, the term means that the compound or conjugate of the invention is at least about $50 \mathrm{wt} . \%$ free from biological materials; in another specific embodiment, the term means that the compound or
conjugate of the invention is at least about $75 \mathrm{wt} . \%$ free from biological materials; in another specific embodiment, the term means that the compound or conjugate of the invention is at least about $90 \mathrm{wt} . \%$ free from biological materials; in another specific embodiment, the term means that the compound or conjugate of the invention is at least about $98 \mathrm{wt} . \%$ free from biological materials; and in another embodiment, the term means that the compound or conjugate of the invention is at least about $99 \mathrm{wt} . \%$ free from biological materials. In another specific embodiment, the invention provides a compound or conjugate of the invention that has been synthetically prepared (e.g., ex vivo).

Stereoisomers

The compounds of the invention may have chiral centers, e.g., chiral carbon or phosphorus atoms. The compounds of the invention thus include racemic mixtures of all stereoisomers, including enantiomers, diastereomers, and atropisomers. In addition, the compounds of the invention include enriched or resolved optical isomers at any or all asymmetric, chiral atoms. In other words, the chiral centers apparent from the depictions are provided as the chiral isomers or racemic mixtures. Both racemic and diastereomeric mixtures, as well as the individual optical isomers isolated or synthesized, substantially free of their enantiomeric or diastereomeric partners, are all within the scope of the invention. The racemic mixtures are separated into their individual, substantially optically pure isomers through wellknown techniques such as, for example, the separation of diastereomeric salts formed with optically active adjuncts, e.g., acids or bases followed by conversion back to the optically active substances. In most instances, the desired optical isomer is synthesized by means of stereospecific reactions, beginning with the appropriate stereoisomer of the desired starting material.

The compounds of the invention can also exist as tautomeric isomers in certain cases. Although only one delocalized resonance structure may be depicted, all such forms are contemplated within the scope of the invention. For example, ene-amine tautomers can exist for purine, pyrimidine, imidazole, guanidine, amidine, and tetrazole systems and all their possible tautomeric forms are within the scope of the invention.

Salts and Hydrates

Examples of physiologically acceptable salts of the compounds of the invention include salts derived from an appropriate base, such as an alkali metal (for example, sodium), an alkaline earth metal (for example, magnesium), ammonium and NX_{4}^{+}(wherein X is $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkyl). Physiologically acceptable salts of a hydrogen atom or an amino group include salts of organic carboxylic acids such as acetic, benzoic, lactic, fumaric, tartaric, maleic, malonic, malic,
isethionic, lactobionic and succinic acids; organic sulfonic acids, such as methanesulfonic, ethanesulfonic, benzenesulfonic and p-toluenesulfonic acids; and inorganic acids, such as hydrochloric, sulfuric, phosphoric and sulfamic acids. Physiologically acceptable salts of a compound of a hydroxy group include the anion of said compound in combination with a suitable cation such as Na^{+}and $\mathrm{NX}_{4}{ }^{+}$(wherein X is independently selected from H or a $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkyl group).

For therapeutic use, salts of active ingredients of the compounds of the invention will typically be physiologically acceptable, i.e. they will be salts derived from a physiologically acceptable acid or base. However, salts of acids or bases which are not physiologically acceptable may also find use, for example, in the preparation or purification of a physiologically acceptable compound. All salts, whether or not derived form a physiologically acceptable acid or base, are within the scope of the present invention.

Metal salts typically are prepared by reacting the metal hydroxide with a compound of this invention. Examples of metal salts which are prepared in this way are salts containing Li^{+}, Na^{+}, and K^{+}. A less soluble metal salt can be precipitated from the solution of a more soluble salt by addition of the suitable metal compound.

In addition, salts may be formed from acid addition of certain organic and inorganic acids, e.g., $\mathrm{HCl}, \mathrm{HBr}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{3} \mathrm{PO}_{4}$ or organic sulfonic acids, to basic centers, typically amines, or to acidic groups. Finally, it is to be understood that the compositions herein comprise compounds of the invention in their un-ionized, as well as zwitterionic form, and combinations with stoichiometric amounts of water as in hydrates.

Also included within the scope of this invention are the salts of the parental compounds with one or more amino acids. Any of the natural or unnatural amino acids are suitable, especially the naturally-occurring amino acids found as protein components, although the amino acid typically is one bearing a side chain with a basic or acidic group, e.g., lysine, arginine or glutamic acid, or a neutral group such as glycine, serine, threonine, alanine, isoleucine, or leucine.

Methods of Inhibition of HCV

Another aspect of the invention relates to methods of inhibiting the activity of HCV comprising the step of treating a sample suspected of containing HCV with a compound or composition of the invention.

Compounds of the invention may act as inhibitors of HCV , as intermediates for such inhibitors or have other utilities as described below. The inhibitors will generally bind to locations on the surface or in a cavity of the liver. Compounds binding in the liver may bind
with varying degrees of reversibility. Those compounds binding substantially irreversibly are ideal candidates for use in this method of the invention. Once labeled, the substantially irreversibly binding compounds are useful as probes for the detection of HCV. Accordingly, the invention relates to methods of detecting NS3 in a sample suspected of containing HCV comprising the steps of: treating a sample suspected of containing HCV with a composition comprising a compound of the invention bound to a label; and observing the effect of the sample on the activity of the label. Suitable labels are well known in the diagnostics field and include stable free radicals, fluorophores, radioisotopes, enzymes, chemiluminescent groups and chromogens. The compounds herein are labeled in conventional fashion using functional groups such as hydroxyl or amino. In one embodiment the invention provides a compound of formula (I) that comprises or that is bound or linked to one or more detectable labels. Within the context of the invention samples suspected of containing HCV include natural or man-made materials such as living organisms; tissue or cell cultures; biological samples such as biological material samples (blood, serum, urine, cerebrospinal fluid, tears, sputum, saliva, tissue samples, and the like); laboratory samples; food, water, or air samples; bioproduct samples such as extracts of cells, particularly recombinant cells synthesizing a desired glycoprotein; and the like. Typically the sample will be suspected of containing HCV. Samples can be contained in any medium including water and organic solvent/water mixtures. Samples include living organisms such as humans, and man made materials such as cell cultures.

The treating step of the invention comprises adding the compound of the invention to the sample or it comprises adding a precursor of the composition to the sample. The addition step comprises any method of administration as described above.

If desired, the activity of HCV after application of the compound can be observed by any method including direct and indirect methods of detecting HCV activity. Quantitative, qualitative, and semiquantitative methods of determining HCV activity are all contemplated. Typically one of the screening methods described above are applied, however, any other method such as observation of the physiological properties of a living organism are also applicable.

Many organisms contain HCV. The compounds of this invention are useful in the treatment or prophylaxis of conditions associated with HCV activation in animals or in man.

However, in screening compounds capable of inhibiting HCV activity it should be kept in mind that the results of enzyme assays may not always correlate with cell culture assays. Thus, a cell based assay should typically be the primary screening tool.

Pharmaceutical Formulations

The compounds of this invention are formulated with conventional carriers and
excipients, which will be selected in accord with ordinary practice. Tablets will contain excipients, glidants, fillers, binders and the like. Aqueous formulations are prepared in sterile form, and when intended for delivery by other than oral administration generally will be isotonic. All formulations will optionally contain excipients such as those set forth in the Handbook of Pharmaceutical Excipients (1986). Excipients include ascorbic acid and other antioxidants, chelating agents such as EDTA, carbohydrates such as dextrin, hydroxyalkylcellulose, hydroxyalkylmethylcellulose, stearic acid and the like. The pH of the formulations ranges from about 3 to about 11 , but is ordinarily about 7 to 10 .

While it is possible for the active ingredients to be administered alone it may be preferable to present them as pharmaceutical formulations. The formulations, both for veterinary and for human use, of the invention comprise at least one active ingredient, as above defined, together with one or more acceptable carriers therefor and optionally other therapeutic ingredients. The carrier(s) must be "acceptable" in the sense of being compatible with the other ingredients of the formulation and physiologically innocuous to the recipient thereof.

The formulations include those suitable for the foregoing administration routes. The formulations may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy. Techniques and formulations generally are found in Remington's Pharmaceutical Sciences (Mack Publishing Co., Easton, PA). Such methods include the step of bringing into association the active ingredient with the carrier which constitutes one or more accessory ingredients. In general the formulations are prepared by uniformly and intimately bringing into association the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.

Formulations of the present invention suitable for oral administration may be presented as discrete units such as capsules, cachets or tablets each containing a predetermined amount of the active ingredient; as a powder or granules; as a solution or a suspension in an aqueous or non-aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oil liquid emulsion. The active ingredient may also be administered as a bolus, electuary or paste.

A tablet is made by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as a powder or granules, optionally mixed with a binder, lubricant, inert diluent, preservative, surface active or dispersing agent. Molded tablets may be made by molding in a suitable machine a mixture of the powdered active ingredient moistened with an inert liquid diluent. The tablets may optionally be coated or scored and optionally are formulated so as to provide slow or controlled release of the active ingredient therefrom.

For administration to the eye or other external tissues e.g., mouth and skin, the formulations are preferably applied as a topical ointment or cream containing the active ingredient(s) in an amount of, for example, 0.075 to $20 \% \mathrm{w} / \mathrm{w}$ (including active ingredient(s) in a range between 0.1% and 20% in increments of $0.1 \% \mathrm{w} / \mathrm{w}$ such as $0.6 \% \mathrm{w} / \mathrm{w}, 0.7 \% \mathrm{w} / \mathrm{w}$, etc.), preferably 0.2 to $15 \% \mathrm{w} / \mathrm{w}$ and most preferably 0.5 to $10 \% \mathrm{w} / \mathrm{w}$. When formulated in an ointment, the active ingredients may be employed with either a paraffinic or a water-miscible ointment base. Altematively, the active ingredients may be formulated in a cream with an oil-in-water cream base.

If desired, the aqueous phase of the cream base may include, for example, at least 30% w / w of a polyhydric alcohol, i.e. an alcohol having two or more hydroxyl groups such as propylene glycol, butane 1,3-diol, mannitol, sorbitol, glycerol and polyethylene glycol (including PEG 400) and mixtures thereof. The topical formulations may desirably include a compound which enhances absorption or penetration of the active ingredient through the skin or other affected areas. Examples of such dermal penetration enhancers include dimethyl sulphoxide and related analogs.

The oily phase of the emulsions of this invention may be constituted from known ingredients in a known manner. While the phase may comprise merely an emulsifier (otherwise known as an emulgent), it desirably comprises a mixture of at least one emulsifier with a fat or an oil or with both a fat and an oil. Preferably, a hydrophilic emulsifier is included together with a lipophilic emulsifier which acts as a stabilizer. It is also preferred to include both an oil and a fat. Together, the emulsifier(s) with or without stabilizer(s) make up the so-called emulsifying wax, and the wax together with the oil and fat make up the so-called emulsifying ointment base which forms the oily dispersed phase of the cream formulations.

Emulgents and emulsion stabilizers suitable for use in the formulation of the invention include Tween ${ }^{\circledR} 60$, Span ${ }^{\circledR} 80$, cetostearyl alcohol, benzyl alcohol, myristyl alcohol, glyceryl mono-stearate and sodium lauryl sulfate.

The choice of suitable oils or fats for the formulation is based on achieving the desired cosmetic properties. The cream should preferably be a non-greasy, non-staining and washable product with suitable consistency to avoid leakage from tubes or other containers. Straight or branched chain, mono- or dibasic alkyl esters such as di-isoadipate, isocetyl stearate, propylene glycol diester of coconut fatty acids, isopropyl myristate, decyl oleate, isopropyl palmitate, butyl stearate, 2-ethylhexyl palmitate or a blend of branched chain esters known as Crodamol CAP may be used, the last three being preferred esters. These may be used alone or in combination depending on the properties required. Alternatively, high melting point lipids such as white soft paraffin and/or liquid paraffin or other mineral oils are used.

Pharmaceutical formulations according to the present invention comprise one or more compounds of the invention together with one or more pharmaceutically acceptable carriers or excipients and optionally other therapeutic agents. Pharmaceutical formulations containing the active ingredient may be in any form suitable for the intended method of administration. When used for oral use for example, tablets, troches, lozenges, aqueous or oil suspensions, dispersible powders or granules, emulsions, hard or soft capsules, syrups or elixirs may be prepared. Compositions intended for oral use may be prepared according to any method known to the art for the manufacture of pharmaceutical compositions and such compositions may contain one or more agents including sweetening agents, flavoring agents, coloring agents and preserving agents, in order to provide a palatable preparation. Tablets containing the active ingredient in admixture with non-toxic pharmaceutically acceptable excipient which are suitable for manufacture of tablets are acceptable. These excipients may be, for example, inert diluents, such as calcium or sodium carbonate, lactose, lactose monohydrate, croscarmellose sodium, povidone, calcium or sodium phosphate; granulating and disintegrating agents, such as maize starch, or alginic acid; binding agents, such as cellulose, microcrystalline cellulose, starch, gelatin or acacia; and lubricating agents, such as magnesium stearate, stearic acid or talc. Tablets may be uncoated or may be coated by known techniques including microencapsulation to delay disintegration and adsorption in the gastrointestinal tract and thereby provide a sustained action over a longer period. For example, a time delay material such as glyceryl monostearate or glyceryl distearate alone or with a wax may be employed.

Formulations for oral use may be also presented as hard gelatin capsules where the active ingredient is mixed with an inert solid diluent, for example calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, such as peanut oil, liquid paraffin or olive oil.

Aqueous suspensions of the invention contain the active materials in admixture with excipients suitable for the manufacture of aqueous suspensions. Such excipients include a suspending agent, such as sodium carboxymethylcellulose, methylcellulose, hydroxypropyl methylcelluose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia, and dispersing or wetting agents such as a naturally occurring phosphatide (e.g., lecithin), a condensation product of an alkylene oxide with a fatty acid (e.g., polyoxyethylene stearate), a condensation product of ethylene oxide with a long chain aliphatic alcohol (e.g., heptadecaethyleneoxycetanol), a condensation product of ethylene oxide with a partial ester derived from a fatty acid and a hexitol anhydride (e.g., polyoxyethylene sorbitan monooleate). The aqueous suspension may also contain one or more preservatives such as ethyl or n-propyl p-
hydroxy-benzoate, one or more coloring agents, one or more flavoring agents and one or more sweetening agents, such as sucrose or saccharin.

Oil suspensions may be formulated by suspending the active ingredient in a vegetable oil, such as arachis oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as liquid paraffin. The oral suspensions may contain a thickening agent, such as beeswax, hard paraffin or cetyl alcohol. Sweetening agents, such as those set forth above, and flavoring agents may be added to provide a palatable oral preparation. These compositions may be preserved by the addition of an antioxidant such as ascorbic acid.

Dispersible powders and granules of the invention suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersing or wetting agent, a suspending agent, and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those disclosed above. Additional excipients, for example sweetening, flavoring and coloring agents, may also be present.

The pharmaceutical compositions of the invention may also be in the form of oil-inwater emulsions. The oily phase may be a vegetable oil, such as olive oil or arachis oil, a mineral oil, such as liquid paraffin, or a mixture of these. Suitable emulsifying agents include naturally-occurring gums, such as gum acacia and gum tragacanth, naturally occurring phosphatides, such as soybean lecithin, esters or partial esters derived from fatty acids and hexitol anhydrides, such as sorbitan monooleate, and condensation products of these partial esters with ethylene oxide, such as polyoxyethylene sorbitan monooleate. The emulsion may also contain sweetening and flavoring agents. Syrups and elixirs may be formulated with sweetening agents, such as glycerol, sorbitol or sucrose. Such formulations may also contain a demulcent, a preservative, a flavoring or a coloring agent.

The pharmaceutical compositions of the invention may be in the form of a sterile injectable preparation, such as a sterile injectable aqueous or oleaginous suspension. This suspension may be formulated according to the known art using those suitable dispersing or wetting agents and suspending agents which have been mentioned above. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, such as a solution in 1,3-butane-diol or prepared as a lyophilized powder. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile fixed oils may conventionally be employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid may likewise be used in the preparation of injectables.

The amount of active ingredient that may be combined with the carrier material to produce a single dosage form will vary depending upon the host treated and the particular mode of administration. For example, a time-release formulation intended for oral administration to humans may contain approximately 1 to 1000 mg of active material compounded with an appropriate and convenient amount of carrier material which may vary from about 5 to about 95% of the total compositions (weight:weight). The pharmaceutical composition can be prepared to provide easily measurable amounts for administration. For example, an aqueous solution intended for intravenous infusion may contain from about 3 to $500 \mu \mathrm{~g}$ of the active ingredient per milliliter of solution in order that infusion of a suitable volume at a rate of about $30 \mathrm{~mL} / \mathrm{hr}$ can occur.

Formulations suitable for administration to the eye include eye drops wherein the active ingredient is dissolved or suspended in a suitable carrier, especially an aqueous solvent for the active ingredient. The active ingredient is preferably present in such formulations in a concentration of 0.5 to 20%, advantageously 0.5 to 10% particularly about $1.5 \% \mathrm{w} / \mathrm{w}$.

Formulations suitable for topical administration in the mouth include lozenges comprising the active ingredient in a flavored basis, usually sucrose and acacia or tragacanth; pastilles comprising the active ingredient in an inert basis such as gelatin and glycerin, or sucrose and acacia; and mouthwashes comprising the active ingredient in a suitable liquid carrier.

Formulations for rectal administration may be presented as a suppository with a suitable base comprising for example cocoa butter or a salicylate.

Formulations suitable for intrapulmonary or nasal administration have a particle size for example in the range of 0.1 to 500 microns (including particle sizes in a range between 0.1 and 500 microns in increments microns such as $0.5,1,30$ microns, 35 microns, etc.), which is administered by rapid inhalation through the nasal passage or by inhalation through the mouth so as to reach the alveolar sacs. Suitable formulations include aqueous or oily solutions of the active ingredient. Formulations suitable for aerosol or dry powder administration may be prepared according to conventional methods and may be delivered with other therapeutic agents such as compounds heretofore used in the treatment or prophylaxis of conditions associated with HCV activity.

Formulations suitable for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams or spray formulations containing in addition to the active ingredient such carriers as are known in the art to be appropriate.

Formulations suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes
which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents.

The formulations are presented in unit-dose or multi-dose containers, for example sealed ampoules and vials, and may be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example water for injection, immediately prior to use. Extemporaneous injection solutions and suspensions are prepared from sterile powders, granules and tablets of the kind previously described. Preferred unit dosage formulations are those containing a daily dose or unit daily sub-dose, as herein above recited, or an appropriate fraction thereof, of the active ingredient.

It should be understood that in addition to the ingredients particularly mentioned above the formulations of this invention may include other agents conventional in the art having regard to the type of formulation in question, for example those suitable for oral administration may include flavoring agents.

The invention further provides veterinary compositions comprising at least one active ingredient as above defined together with a veterinary carrier therefor.

Veterinary carriers are materials useful for the purpose of administering the composition and may be solid, liquid or gaseous materials which are otherwise inert or acceptable in the veterinary art and are compatible with the active ingredient. These veterinary compositions may be administered orally, parenterally or by any other desired route.

Compounds of the invention can also be formulated to provide controlled release of the active ingredient to allow less frequent dosing or to improve the pharmacokinetic or toxicity profile of the active ingredient. Accordingly, the invention also provides compositions comprising one or more compounds of the invention formulated for sustained or controlled release.

Effective dose of active ingredient depends at least on the nature of the condition being treated, toxicity, whether the compound is being used prophylactically (lower doses), the method of delivery, and the pharmaceutical formulation, and will be determined by the clinician using conventional dose escalation studies.

Routes of Administration

One or more compounds of the invention (herein referred to as the active ingredients) are administered by any route appropriate to the condition to be treated. Suitable routes include oral, rectal, nasal, topical (including buccal and sublingual), vaginal and parenteral (including subcutaneous, intramuscular, intravenous, intradermal, intrathecal and epidural), and the like. It will be appreciated that the preferred route may vary with for example the condition of the
recipient. An advantage of the compounds of this invention is that they are orally bioavailable and can be dosed orally.

HCV Combination Therapy

In another embodiment, non-limiting examples of suitable combinations include combinations of one or more compounds of the present invention with one or more interferons, ribavirin or its analogs, HCV NS3 protease inhibitors, alpha-glucosidase 1 inhibitors, hepatoprotectants, nucleoside or nucleotide inhibitors of HCV NS5B polymerase, nonnucleoside inhibitors of HCV NS5B polymerase, HCV NS5A inhibitors, TLR-7 agonists, cyclophillin inhibitors, HCV IRES inhibitors, pharmacokinetic enhancers, and other drugs for treating HCV.

More specifically, one or more compounds of the present invention may be combined with one or more compounds selected from the group consisting of

1) interferons, e.g., pegylated rIFN-alpha 2 b (PEG-Intron), pegylated rIFN-alpha 2a (Pegasys), rIFN-alpha 2b (Intron A), rIFN-alpha 2a (Roferon-A), interferon alpha (MOR-22, OPC-18, Alfaferone, Alfanative, Multiferon, subalin), interferon alfacon-1 (Infergen), interferon alpha-n1 (Wellferon), interferon alpha-n3 (Alferon), interferon-beta (Avonex, DL-8234), interferon-omega (omega DUROS, Biomed 510), albinterferon alpha-2b (Albuferon), IFN alpha-2b XL, BLX-883 (Locteron), DA-3021, glycosylated interferon alpha-2b (AVI-005), PEG-Infergen, PEGylated interferon lambda-1 (PEGylated IL-29), and belerofon,
2) ribavirin and its analogs, e.g., ribavirin (Rebetol, Copegus), and taribavirin (Viramidine),
3) HCV NS3 protease inhibitors, e.g., boceprevir (SCH-503034, SCH-7), telaprevir (VX950), TMC435350, BI-1335, BI-1230, MK-7009, VBY-376, VX-500, GS-9256, GS-9451, BMS-790052, BMS-605339, PHX-1766, AS-101, YH-5258, YH5530, YH5531, and ITMN191,
4) alpha-glucosidase 1 inhibitors, e.g., celgosivir (MX-3253), Miglitol, and UT-231B,
5) hepatoprotectants, e.g., emericasan (IDN-6556), ME-3738, GS-9450 (LB-84451), silibilin, and MitoQ,
6) nucleoside or nucleotide inhibitors of HCV NS5B polymerase, e.g., R1626, R7128 (R4048), IDX184, IDX-102, BCX-4678, valopicitabine (NM-283), and MK-0608,
7) non-nucleoside inhibitors of HCV NS5B polymerase, e.g., PF-868554, VCH-759, VCH-916, JTK-652, MK-3281, GS-9190, VBY-708, VCH-222, A848837, ANA-598, GL60667, GL59728, A-63890, A-48773, A-48547, BC-2329, VCH-796 (nesbuvir), GSK625433, BILN1941, XTL-2125, and GS-9190,
8) HCV NS5A inhibitors, e.g., AZD-2836 (A-831), BMS-790052, and A-689,
9) TLR-7 agonists, e.g., imiquimod, 852A, GS-9524, ANA-773, ANA-975, AZD-8848 (DSP-3025), and SM-360320,
10) cyclophillin inhibitors, e.g., DEBIO-025, SCY-635, and NIM811,
11) HCV IRES inhibitors, e.g., MCI-067,
12) pharmacokinetic enhancers, e.g., BAS-100, SPI-452, PF-4194477, TMC-41629, GS9350, GS-9585, and roxythromycin,
13) other drugs for treating HCV, e.g., thymosin alpha 1 (Zadaxin), nitazoxanide (Alinea, NTZ), BIVN-401 (virostat), PYN-17 (altirex), KPE02003002, actilon (CPG-10101), GS-9525, KRN-7000, civacir, GI-5005, XTL-6865, BIT225, PTX-111, ITX2865, TT-033i, ANA 971, NOV-205, tarvacin, EHC-18, VGX-410C, EMZ-702, AVI 4065, BMS-650032, BMS-791325, Bavituximab, MDX-1106 (ONO-4538), Oglufanide, and VX-497 (merimepodib).

In yet another embodiment, the present application discloses pharmaceutical compositions comprising a compound of the present invention, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, in combination with at least one additional therapeutic agent, and a pharmaceutically acceptable carrier or excipient.

According to the present invention, the therapeutic agent used in combination with the compound of the present invention can be any agent having a therapeutic effect when used in combination with the compound of the present invention. For example, the therapeutic agent used in combination with the compound of the present invention can be interferons, ribavirin analogs, NS3 protease inhibitors, NS5b polymerase inhibitors, alpha-glucosidase 1 inhibitors, hepatoprotectants, non-nucleoside inhibitors of HCV , and other drugs for treating HCV.

In another embodiment, the present application provides pharmaceutical compositions comprising a compound of the present invention, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, in combination with at least one additional therapeutic agent selected from the group consisting of pegylated rIFN-alpha 2 b , pegylated rIFN-alpha 2 a , rIFN-alpha 2 b , IFN alpha-2b XL, rIFN-alpha 2a, consensus IFN alpha, infergen, rebif, locteron, AVI-005, PEGinfergen, pegylated IFN-beta, oral interferon alpha, feron, reaferon, intermax alpha, r-IFN-beta, infergen + actimmune, IFN-omega with DUROS, albuferon, rebetol, copegus, levovirin, VX497, viramidine (taribavirin), A-831, A-689, NM-283, valopicitabine, R1626, PSI-6130 (R1656), HCV-796, BILB 1941, MK-0608, NM-107, R7128, VCH-759, PF-868554, GSK625433, XTL-2125, SCH-503034 (SCH-7), VX-950 (Telaprevir), ITMN-191, and BILN2065, MX-3253 (celgosivir), UT-231B, IDN-6556, ME 3738, MitoQ, and LB-84451, benzimidazole derivatives, benzo-1,2,4-thiadiazine derivatives, and phenylalanine derivatives, zadaxin, nitazoxanide (alinea), BIVN-401 (virostat), DEBIO-025, VGX-410C, EMZ-702, AVI

4065, bavituximab, oglufanide, PYN-17, KPE02003002, actilon (CPG-10101), KRN-7000, civacir, GI-5005, ANA-975 (isatoribine), XTL-6865, ANA 971, NOV-205, tarvacin, EHC-18, and NIM811 and a pharmaceutically acceptable carrier or excipient.

In yet another embodiment, the present application provides a combination pharmaceutical agent comprising:
a) a first pharmaceutical composition comprising a compound of the present invention, or a pharmaceutically acceptable salt, solvate, or ester thereof; and
b) a second pharmaceutical composition comprising at least one additional therapeutic agent selected from the group consisting of HIV protease inhibiting compounds, HIV non-nucleoside inhibitors of reverse transcriptase, HIV nucleoside inhibitors of reverse transcriptase, HIV nucleotide inhibitors of reverse transcriptase, HIV integrase inhibitors, gp41 inhibitors, CXCR 4 inhibitors, gp120 inhibitors, CCR5 inhibitors, interferons, ribavirin analogs, NS3 protease inhibitors, alpha-glucosidase 1 inhibitors, hepatoprotectants, non-nucleoside inhibitors of HCV, and other drugs for treating HCV, and combinations thereof.

Combinations of the compounds of formula I and additional active therapeutic agents may be selected to treat patients infected with HCV and other conditions such as HIV infections. Accordingly, the compounds of formula I may be combined with one or more compounds useful in treating HIV, for example HIV protease inhibiting compounds, non-nucleoside inhibitors of HIV reverse transcriptase, HIV nucleoside inhibitors of reverse transcriptase, HIV nucleotide inhibitors of reverse transcriptase, HIV integrase inhibitors, gp41 inhibitors, CXCR4 inhibitors, gp120 inhibitors, CCR5 inhibitors, interferons, ribavirin analogs, NS3 protease inhibitors, NS5b polymerase inhibitors, alpha-glucosidase 1 inhibitors, hepatoprotectants, non-nucleoside inhibitors of HCV , and other drugs for treating HCV.

More specifically, one or more compounds of the present invention may be combined with one or more compounds selected from the group consisting of 1) HIV protease inhibitors, e.g., amprenavir, atazanavir, fosamprenavir, indinavir, lopinavir, ritonavir, lopinavir + ritonavir, nelfinavir, saquinavir, tipranavir, brecanavir, darunavir, TMC-126, TMC-114, mozenavir (DMP450), JE-2147 (AG1776), AG1859, DG35, L-756423, RO0334649, KNI-272, DPC-681, DPC684, and GW640385X, DG17, PPL-100, 2) a HIV non-nucleoside inhibitor of reverse transcriptase, e.g., capravirine, emivirine, delaviridine, efavirenz, nevirapine, (+) calanolide A, etravirine, GW5634, DPC-083, DPC-961, DPC-963, MIV-150, and TMC-120, TMC-278 (rilpivirine), efavirenz, BILR 355 BS, VRX 840773, UK-453,061, RDEA806, 3) a HIV nucleoside inhibitor of reverse transcriptase, e.g., zidovudine, emtricitabine, didanosine, stavudine, zalcitabine, lamivudine, abacavir, amdoxovir, elvucitabine, alovudine, MIV-210, racivir (\pm-FTC), D-d4FC, emtricitabine, phosphazide, fozivudine tidoxil, fosalvudine tidoxil,
apricitibine (AVX754), amdoxovir, KP-1461, abacavir + lamivudine, abacavir + lamivudine + zidovudine, zidovudine + lamivudine, 4) a HIV nucleotide inhibitor of reverse transcriptase, e.g., tenofovir, tenofovir disoproxil fumarate + emtricitabine, tenofovir disoproxil fumarate + emtricitabine + efavirenz, and adefovir, 5) a HIV integrase inhibitor, e.g., curcumin, derivatives of curcumin, chicoric acid, derivatives of chicoric acid, 3,5-dicaffeoylquinic acid, derivatives of 3,5-dicaffeoylquinic acid, aurintricarboxylic acid, derivatives of aurintricarboxylic acid, caffeic acid phenethyl ester, derivatives of caffeic acid phenethyl ester, tyrphostin, derivatives of tyrphostin, quercetin, derivatives of quercetin, S-1360, zintevir (AR-177), L-870812, and L870810, MK-0518 (raltegravir), BMS-707035, MK-2048, BA-011, BMS-538158, GSK364735C, 6) a gp41 inhibitor, e.g., enfuvirtide, sifuvirtide, FB006M, TRI-1144, SPC3, DES6, Locus gp41, CovX, and REP 9, 7) a CXCR4 inhibitor, e.g., AMD-070, 8) an entry inhibitor, e.g., SP01A, TNX-355, 9) a gp120 inhibitor, e.g., BMS-488043 and BlockAide/CR, 10) a G6PD and NADH-oxidase inhibitor, e.g., immunitin, 10) a CCR5 inhibitor, e.g., aplaviroc, vicriviroc, INCB9471, PRO-140, INCB15050, PF-232798, CCR5mAb004, and maraviroc, 11) an interferon, e.g., pegylated rIFN-alpha 2 b , pegylated rIFN-alpha 2 a , rIFN-alpha 2 b , IFN alpha2b XL, rIFN-alpha 2a, consensus IFN alpha, infergen, rebif, locteron, AVI-005, PEG-infergen, pegylated IFN-beta, oral interferon alpha, feron, reaferon, intermax alpha, r-IFN-beta, infergen + actimmune, IFN-omega with DUROS, and albuferon, 12) ribavirin analogs, e.g., rebetol, copegus, levovirin, VX-497, and viramidine (taribavirin) 13) NS5a inhibitors, e.g., A-831, A689, and BMS-790052, 14) NS5b polymerase inhibitors, e.g., NM-283, valopicitabine, R1626, PSI-6130 (R1656), HCV-796, BILB 1941, MK-0608, NM-107, R7128, VCH-759, PF-868554, GSK625433, and XTL-2125, 15) NS3 protease inhibitors, e.g., SCH-503034 (SCH-7), VX-950 (Telaprevir), ITMN-191, and BILN-2065, 16) alpha-glucosidase 1 inhibitors, e.g., MX-3253 (celgosivir) and UT-231B, 17) hepatoprotectants, e.g., IDN-6556, ME 3738, MitoQ, and LB84451,18) non-nucleoside inhibitors of HCV , e.g., benzimidazole derivatives, benzo-1,2,4thiadiazine derivatives, and phenylalanine derivatives, 19) other drugs for treating Hepatitis C , e.g., zadaxin, nitazoxanide (alinea), BIVN-401 (virostat), DEBIO-025, VGX-410C, EMZ-702, AVI 4065, bavituximab, oglufanide, PYN-17, KPE02003002, actilon (CPG-10101), KRN-7000, civacir, GI-5005, ANA-975 (isatoribine), XTL-6865, ANA 971, NOV-205, tarvacin, EHC-18, and NIM811, 19) pharmacokinetic enhancers, e.g., BAS-100 and SPI452, 20) RNAse H inhibitors, e.g., ODN-93 and ODN-112, 21) other anti-HIV agents, e.g., VGV-1, PA-457 (bevirimat), ampligen, HRG214, cytolin, polymun, VGX-410, KD247, AMZ 0026, CYT 99007, A-221 HIV, BAY 50-4798, MDX010 (iplimumab), PBS119, ALG889, and PA-1050040.

Metabolites of the Compounds of the Invention

Also falling within the scope of this invention are the in vivo metabolic products of the compounds described herein. Such products may result for example from the oxidation, reduction, hydrolysis, amidation, esterification and the like of the administered compound, primarily due to enzymatic processes. Accordingly, the invention includes compounds produced by a process comprising contacting a compound of this invention with a mammal for a period of time sufficient to yield a metabolic product thereof. Such products typically are identified by preparing a radiolabelled (e.g., C^{14} or H^{3}) compound of the invention, administering it parenterally in a detectable dose (e.g., greater than about $0.5 \mathrm{mg} / \mathrm{kg}$) to an animal such as rat, mouse, guinea pig, monkey, or to man, allowing sufficient time for metabolism to occur (typically about 30 seconds to 30 hours) and isolating its conversion products from the urine, blood or other biological samples. These products are easily isolated since they are labeled (others are isolated by the use of antibodies capable of binding epitopes surviving in the metabolite). The metabolite structures are determined in conventional fashion, e.g., by MS or NMR analysis. In general, analysis of metabolites is done in the same way as conventional drug metabolism studies well-known to those skilled in the art. The conversion products, so long as they are not otherwise found in vivo, are useful in diagnostic assays for therapeutic dosing of the compounds of the invention even if they possess no HCV -inhibitory activity of their own.

Methods for determining stability of compounds in surrogate gastrointestinal secretions are known.

Compounds of formula (I)

In one embodiment the invention provides a compound of formula (I):
J-Y-J (I)
wherein:
Y is -L-L-, -M-W-M- or Y^{y};
J is $\mathrm{T}-\mathrm{P}-,-\mathrm{P}-\mathrm{T}$ or $-\mathrm{J}^{\mathrm{m}}$;
W is a bond or $-\mathrm{W}^{\mathrm{r}}$-;
L is $-\mathrm{M}-\mathrm{A}-,-\mathrm{A}-\mathrm{M}-$, or $-\mathrm{L}^{\mathrm{n}}$;
T is R9-Z-, -Z-R9, or $-\mathrm{T}^{\mathrm{p}}$;
R9 is E-V-, or $-V-E$, or $-R 9^{9}$;
each A is selected from $-A^{s}$;
each M is selected from $-M^{t}$;
each P is selected from $-P^{4}$;
each Z is selected from $-Z^{V}$;
each V is selected from $-V^{w}$;
each E is selected from $-E^{x}$;
each m is 1
each n is $0,1,2,3,4,5,6,7,9$, or 10 ;
each p is $1,2,3,4,5,6,7$, or 8 ;
each q is $0,1,2$, or 3 ;
each r is $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19$, or 20 ;
each s is $0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18$, or 21 ;
each t is $0,1,2,3,4,5,6,7,8,9,10$, or 11 ;
each u is $0,1,2,3,4,5,6,7,8,10,11,12,13,14,15,16,17,18$, or 19 ;
each v is $0,1,2,3,4,5$, or 6 ;
each w is $0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23$, or
24;
each x is $0,1,2,3,4,5,6$, or 7 ;
each y is 0,1 , or 2 ;
wherein the sum of $m, n, p, q, r, s, t, u, v, w, x$, and y is not $0 ; P$ is connected to M, L, or $Y^{y} ; A$ is connected to A or $L ; M$ is connected to P or $J ; Z$ is connected to $P ; V$ is connected to Z; and when W is a bond M is connected to M ;
each Y^{1} is independently:
a fused nine-ring system with up to thirty-five atoms that may be fully aromatic or partially saturated and contains atoms selected from $\mathrm{C}, \mathrm{N}, \mathrm{O}$, and S and which ring system is optionally substituted with one or more groups independently selected from $H, o x o, R^{A 1}$ and $R^{A 3}$;
each Y^{2} is independently:
a fused five to eight ring system with up to thirty-two atoms that may be fully aromatic or partially saturated and contains atoms selected from $\mathrm{C}, \mathrm{N}, \mathrm{O}$, and S and which ring system is optionally substituted with one or more groups independently selected from $H, o x o, R^{A l}$ and $\mathrm{R}^{\mathrm{A3} \text {; }}$
each J^{\prime} is independently a fused bicyclic saturated, partially unsaturated, or aromatic heterocyclic ring system that is substituted with one or more $-N\left(R^{\mathrm{L7}}\right) \mathrm{C}(=0) O R^{\mathrm{L7}}$, and that is optionally substituted with one or more groups independently selected from oxo, halo, $-\mathrm{R}^{\mathrm{L7}},-\mathrm{OR}$ ${ }^{\mathrm{L7}},-\mathrm{SR}^{\mathrm{L} 7},-\mathrm{CF}_{3},-\mathrm{CCl}_{3},-\mathrm{OCF}_{3},-\mathrm{CN},-\mathrm{NO}_{2},-\mathrm{N}\left(\mathrm{R}^{\mathrm{L7}}\right) \mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7}},-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7}},-\mathrm{OC}(=\mathrm{O}) \mathrm{R}^{\mathrm{L} 7}$,
$-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{\mathrm{L} 7},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{L} 7},-\mathrm{S}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7}},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{L7}},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{L7}},-\mathrm{OS}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{L7}},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}$ ${ }^{\mathrm{L7}}$, alkoxyalkyl, arylalkoxycarbonyl, halo, haloalkyl, hydroxyalkyl, $-\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}},\left(\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\right)$ alkyl, and ($\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}$)carbonyl;
each R^{L7} is independently - H , alkyl, aryl, arylalkyl, or heterocycle;
R^{a} and R^{b} are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl;
each L^{0} is independently:

wherein:
each $\mathrm{R}^{\mathrm{L} 2}$ is independently selected from hydrogen, alkenyl, alkoxy, alkyl, halo, and haloalkyl; and
each aa is independently $1,2,3$, or 4 ;
each L^{1} is independently:

wherein:
each R^{L2} is independently selected from hydrogen, alkenyl, alkoxy, alkyl, halo, and haloalkyl;
each $\mathrm{R}^{\mathrm{L} 3}$ is independently selected from cyano, nitro, $\mathrm{SOR}^{4}, \mathrm{SO}_{2} \mathrm{R}^{4}$, -alkylSO${ }_{2} \mathrm{R}^{4}$, haloalkoxy, cyanoalkyl, $\mathrm{NR}^{4} \mathrm{SO}_{2} \mathrm{R}^{4}$, cycloalkyl, (halo)cycloalkyl, heterocycle,
(cycloalkyl)alkyl, (heterocycle)alkyl, wherein each alkyl, heterocycle and cycloalkyl is optionally substituted with one or more halo; and
each R^{4} is independently selected from H, alkyl, haloalkyl, aryl, and arylalkyl; each bb is $0,1,2,3$, or 4 ; each aa is $1,2,3$, or 4 ; and the sum of bb and aa is 1,2 , 3 , or 4;
each L^{2} is independently:

wherein:
the phenyl ring shown in L^{2} is optionally substituted with one or more groups independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, formyl, halo, haloalkyl, hydroxy, hydroxyalkyl, $-\mathrm{NR}^{a} \mathrm{R}^{\mathrm{b}},\left(\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\right)$ alkyl, $\left(\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\right.$) carbonyl, cyano, nitro, $\mathrm{SOR}^{4}, \mathrm{SO}_{2} \mathrm{R}^{4}$, -alkylSO${ }_{2} \mathrm{R}^{4}$, haloalkoxy, cyanoalkyl, $\mathrm{NR}^{4} \mathrm{SO}_{2} \mathrm{R}^{4}$, cycloalkyl, (halo)cycloalkyl, heterocycle, (cycloalkyl)alkyl, (heterocycle)alkyl, wherein each alkyl, heterocycle and cycloalkyl is optionally substituted with one or more halo;
each R^{LA} is independently - H , alkyl, aryl, arylalkyl, or heterocycle;
each R^{4} is independently selected from H, alkyl, haloalkyl, aryl, and arylalkyl;
R^{a} and R^{b} are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl; and
each H^{1} is a 5 membered saturated, partially unsaturated, or aromatic ring comprising one or more heteroatoms;
each L^{3} is independently a fused-bicyclic saturated, partially unsaturated, or aromatic heterocyclic ring system that is optionally substituted with one or more groups independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, formyl, halo, haloalkyl, hydroxy, hydroxyalkyl, $-N R^{a} R^{b},\left(N^{a} R^{b}\right)$ alkyl, $\left(N R^{a} R^{b}\right)$ carbonyl, cyano, nitro, $\mathrm{SOR}^{4}, \mathrm{SO}_{2} \mathrm{R}^{4}$, -alkylSO R^{4}, haloalkoxy, cyanoalkyl, $\mathrm{NR}^{4} \mathrm{SO}_{2} \mathrm{R}^{4}$, cycloalkyl,
(halo)cycloalkyl, heterocycle, (cycloalkyl)alkyl, (heterocycle)alkyl, wherein each alkyl, heterocycle and cycloalkyl is optionally substituted with one or more halo;
each R^{4} is independently selected from H, alkyl, haloalkyl, aryl, and arylalkyl; and R^{a} and R^{b} are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl;
each L^{4} is independently a fused-tricyclic saturated, partially unsaturated, or aromatic heterocyclic ring system that is optionally substituted with one or more groups independently selected from oxo, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, formyl, halo, haloalkyl, hydroxy, hydroxyalkyl, $-\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}},\left(\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\right)$ alkyl, $\left(\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\right)$ carbonyl, cyano, nitro, $\mathrm{SOR}^{4}, \mathrm{SO}_{2} \mathrm{R}^{4}$, -alkylSO${ }_{2} \mathrm{R}^{4}$, haloalkoxy, cyanoalkyl, $\mathrm{NR}^{4} \mathrm{SO}_{2} \mathrm{R}^{4}$, cycloalkyl, (halo)cycloalkyl, heterocycle, (cycloalkyl)alkyl, (heterocycle)alkyl, wherein each alkyl, heterocycle and cycloalkyl is optionally substituted with one or more halo;
each R^{4} is independently selected from H, alkyl, haloalkyl, aryl, and arylalkyl; and
R^{a} and R^{b} are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl;
each L^{5} is independently a $-\mathrm{CR}=\mathrm{CR}$-fusedbicyclic saturated, partially unsaturated, or aromatic heterocyclic ring system that is optionally substituted with one or more groups independently selected from oxo, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, formyl, halo, haloalkyl, hydroxy, hydroxyalkyl, $-\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}},\left(\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{b}\right)$ alkyl, $\left(\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\right)$ carbonyl, cyano, nitro, $\mathrm{SOR}^{4}, \mathrm{SO}_{2} \mathrm{R}^{4}$, -alkylSO R^{4}, haloalkoxy, cyanoalkyl, $\mathrm{NR}^{4} \mathrm{SO}_{2} \mathrm{R}^{4}$, cycloalkyl, (halo)cycloalkyl, heterocycle, (cycloalkyl)alkyl, (heterocycle)alkyl, wherein each alkyl, heterocycle and cycloalkyl is optionally substituted with one or more halo;
each R is independently selected from H or alkyl;
each R^{4} is independently selected from H, alkyl, haloalkyl, aryl, and arylalkyl; and
R^{a} and R^{b} are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl;
each L^{6} is independently a $-C R=C R$-fused-tricyclic saturated, partially unsaturated, or aromatic heterocyclic ring system that is optionally substituted with one or more groups independently selected from oxo, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy,
formyl, halo, haloalkyl, hydroxy, hydroxyalkyl, $-N^{a} R^{b},\left(N^{a} R^{b}\right)$ alkyl, ($\left.N R^{a} R^{b}\right)$ carbonyl, cyano, nitro, $\mathrm{SOR}^{4}, \mathrm{SO}_{2} \mathrm{R}^{4}$, -alkylSO $\mathrm{R}^{2}{ }^{4}$, haloalkoxy, cyanoalkyl, $\mathrm{NR}^{4} \mathrm{SO}_{2} \mathrm{R}^{4}$, cycloalkyl, (halo)cycloalkyl, heterocycle, (cycloalkyl)alkyl, (heterocycle)alkyl, wherein each alkyl, heterocycle and cycloalkyl is optionally substituted with one or more halo;
each R is independently selected from H or alkyl;
each R^{4} is independently selected from H, alkyl, haloalkyl, aryl, and arylalkyl; and R^{a} and R^{b} are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl;
each L^{7} is independently:

wherein:
each $\mathrm{H}^{1.1}$ is independently a fused-bicyclic saturated, partially unsaturated, or aromatic heterocyclic ring system that is optionally substituted with one or more R^{2}; each R^{2} is independently selected from halo, $-\mathrm{R}^{\mathrm{L7}},-\mathrm{OR}{ }^{\mathrm{L7}},-\mathrm{SR}^{\mathrm{L7}},-\mathrm{N}\left(\mathrm{R}^{\mathrm{L} 7}\right)_{2},-\mathrm{CF}_{3}$, $-\mathrm{CCl}_{3},-\mathrm{OCF}_{3},-\mathrm{CN},-\mathrm{NO}_{2},-\mathrm{N}\left(\mathrm{R}^{\mathrm{L} 7}\right) \mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{L} 7},-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{L} 7},-\mathrm{OC}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7}},-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{\mathrm{L} 7}$, $-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{L} 7},-\mathrm{S}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7}},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{L7}},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{L7}},-\mathrm{OS}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{L} 7}$, and $-\mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}^{\mathrm{L} 7}$; each $\mathrm{R}^{\mathrm{L} 7}$ is independently -H , alkyl, aryl, arylalkyl, or heterocycle; and each aa is independently $1,2,3$, or 4 ;
each L^{9} is independently a fused-tetracyclic saturated, partially unsaturated, or aromatic heterocyclic ring system that is optionally substituted with one or more groups independently selected from oxo, halo, $-\mathrm{R}^{\mathrm{L} 7},-\mathrm{OR}^{\mathrm{L7}},-\mathrm{SR}^{\mathrm{L7}},-\mathrm{CF}_{3},-\mathrm{CCl}_{3},-\mathrm{OCF}_{3},-\mathrm{CN},-\mathrm{NO}_{2},-\mathrm{N}\left(\mathrm{R}^{\mathrm{L} 7}\right) \mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7} 7}$, $-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7}},-\mathrm{OC}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7}},-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{\mathrm{L7}},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{L7}},-\mathrm{S}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7}},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{L7}},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{L7}},-$ $\mathrm{OS}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{L7}},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}^{\mathrm{L7}}$, alkoxyalkyl, arylalkoxycarbonyl, halo, haloalkyl, hydroxyalkyl, $-N R^{a} R^{b},\left(N R^{a} R^{b}\right)$ alkyl, and $\left(N R^{a} R^{b}\right)$ carbonyl;
each $\mathrm{R}^{\mathrm{L} 7}$ is independently -H , alkyl, aryl, arylalkyl, or heterocycle;
R^{a} and R^{b} are each independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl;
each L^{10} is independently a fused-pentacyclic saturated, partially unsaturated, or aromatic heterocyclic ring system that is optionally substituted with one or more groups independently selected from oxo, halo, $-\mathrm{R}^{\mathrm{L7}},-\mathrm{OR}^{\mathrm{L7}},-\mathrm{SR}^{\mathrm{L7}},-\mathrm{CF}_{3},-\mathrm{CCl}_{3},-\mathrm{OCF}_{3},-\mathrm{CN},-\mathrm{NO}_{2},-\mathrm{N}\left(\mathrm{R}^{\mathrm{L7}}\right) \mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7}}$, $-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{L} 7},-\mathrm{OC}(=\mathrm{O}) \mathrm{R}^{\mathrm{L} 7},-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{\mathrm{L7}},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{L} 7},-\mathrm{S}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7}},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{L} 7},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{L7}},-$ $\mathrm{OS}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{L7}},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}^{\mathrm{L} 7}$, alkoxyalkyl, arylalkoxycarbonyl, halo, haloalkyl, hydroxyalkyl, $-N R^{a} R^{b},\left(N R^{a} R^{b}\right)$ alkyl, and $\left(N R^{a} R^{b}\right)$ carbonyl;
each $R^{1.7}$ is independently - H , alkyl, aryl, arylalkyl, or heterocycle;
R^{a} and R^{b} are each independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl;
each L^{11} is independently a six-ring fused saturated, partially unsaturated, or aromatic heterocyclic ring system that is optionally substituted with one or more groups independently selected from oxo, halo, $-\mathrm{R}^{\mathrm{L7}},-\mathrm{OR}^{\mathrm{L7}},-\mathrm{SR}^{\mathrm{L7}},-\mathrm{CF}_{3},-\mathrm{CCl}_{3},-\mathrm{OCF}_{3},-\mathrm{CN},-\mathrm{NO}_{2},-\mathrm{N}\left(\mathrm{R}^{\mathrm{L7}}\right) \mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7}}$, $-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7}},-\mathrm{OC}(=\mathrm{O}) \mathrm{R}^{\mathrm{L} 7},-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{\mathrm{L7}},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{L} 7},-\mathrm{S}(=\mathrm{O}) \mathrm{R}^{\mathrm{L} 7},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{L} 7},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{L} 7}$, $\mathrm{OS}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{L7}},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}^{\mathrm{L7}}$, alkoxyalkyl, arylalkoxycarbonyl, halo, haloalkyl, hydroxyalkyl, $-N R^{a} R^{b},\left(N R^{a} R^{b}\right)$ alkyl, and $\left(N R^{a} R^{b}\right)$ carbonyl;
each R^{L7} is independently - H , alkyl, aryl, arylalkyl, or heterocycle;
R^{a} and R^{b} are each independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl;
each $\mathrm{R} 9^{0}$ is independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, alkyl, alkylcarbonylalkyl, aryl, arylalkenyl, arylalkoxy, arylalkyl, aryloxyalkyl, cycloalkyl, (cycloalkyl)alkenyl, (cycloalkyl)alkyl, cycloalkyloxyalkyl, haloalkyl, heterocyclyl, heterocyclylalkenyl, heterocyclylalkoxy, heterocyclylalkyl, heterocyclyloxyalkyl, hydroxyalkyl, $-\mathrm{NR}^{\mathrm{c}} \mathrm{R}^{\mathrm{d}},\left(\mathrm{NR}^{\mathrm{c}} \mathrm{R}^{\mathrm{d}}\right.$) alkenyl, ($\mathrm{NR}^{\mathrm{c}} \mathrm{R}^{\mathrm{d}}$) alkyl, and ($\mathrm{NR}^{\mathrm{c}} \mathrm{R}^{\mathrm{d}}$) carbonyl;
R^{c} and R^{d} are independently selected from hydrogen, alkenyloxycarbonyl, alkoxyalkylcarbonyl, alkoxycarbonyl, alkyl, alkylcarbonyl, alkylsulfonyl, aryl, arylalkoxycarbonyl, arylalkyl, arylalkylcarbonyl, arylcarbonyl, aryloxycarbonyl, arylsulfonyl, cycloalkyl, cycloalkylsulfonyl, formyl, haloalkoxycarbonyl, heterocyclyl,
heterocyclylalkoxycarbonyl, heterocyclylalkyl, heterocyclylalkylcarbonyl, heterocyclylcarbonyl, heterocyclyloxycarbonyl, hydroxyalkylcarbonyl, ($N R^{e} R^{\mathfrak{f}}$)alkyl, ($\mathrm{NR}^{e} \mathrm{R}^{\mathrm{f}}$) alkylcarbonyl, ($\mathrm{NR}^{e} \mathrm{R}^{\mathrm{f}}$)carbonyl, $\left(\mathrm{NR}^{e} \mathrm{R}^{f}\right.$) sulfonyl, $-\mathrm{C}(\mathrm{NCN}) \mathrm{OR}^{\prime}$, and - $\mathrm{C}\left(\mathrm{NCN}^{2}\right) \mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}$, wherein R^{\prime} is selected from alkyl and unsubstituted phenyl, and wherein the alkyl part of the arylalkyl, the arylalkylcarbonyl, the heterocyclylalkyl, and the heterocyclylalkylcarbonyl are further optionally substituted with one $-N R^{c} R^{\mathrm{f}}$ group; and wherein the aryl, the aryl part of the arylalkoxycarbonyl, the arylalkyl, the arylalkylcarbonyl, the arylcarbonyl, the aryloxycarbonyl, and the arylsulfonyl, the heterocyclyl, and the heterocyclyl part of the heterocyclylalkoxycarbonyl, the heterocyclylalkyl, the heterocyclylalkylcarbonyl, the heterocyclylcarbonyl, and the heterocyclyloxycarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro; R^{X} and R^{Y} are independently selected from hydrogen, alkoxycarbonyl, alkyl, alkylcarbonyl, unsubstituted aryl, unsubstituted arylalkoxycarbonyl, unsubstituted arylalkyl, unsubstituted cycloalkyl, unsubstituted heterocyclyl, and $\left(\mathrm{NR}^{X^{\prime}} \mathrm{R}^{\mathrm{Y}}\right)$ carbonyl, wherein $\mathrm{R}^{X^{\prime}}$ and R^{r} are independently selected from hydrogen and alkyl;
each $R 9^{1}$ is independently $-\mathrm{N}\left(\mathrm{R}^{9 \mathrm{a}}\right)$-NHC $(=O) \mathrm{O}-\mathrm{R}^{9 b}$, wherein each $\mathrm{R}^{9 \mathrm{a}}$ is independently arylalkyl, alkyl, alkenyl, alkynyl, aryl, arylalkyl, arylalkenyl, arylalkoxy, halocycloalkyl, (cycloalkyl)alkenyl, (cycloalkyl)alkoxy, alkylSO ${ }_{2}$ alkyl, cycloalkylalkyl SO_{2} alkyl, cyanoalkyl, haloalkyl, cycloalkylalkyl, cycloalkyl, alkoxyalkyl, alkoxyalkylcarbonylalkyl, alkoxycarbonylalkyl, alkylsulfanylalkyl, aryalkoxyalkylcarbonylalkyl, carboxyalkyl, heterocyclylalkyl, heterocyclyl, heterocyclylcarbonylalkyl, hydroxyalkyl, NRRCOalkyl, wherein each R is independently selected from hydrogen and alkyl; and wherein arylalkyl the alkyl can be substituted with up to three aryl groups, and the alkyl part of the arylalkyl is further optionally substituted with one or two additional groups independently selected from alkoxy, alkylcarbonyloxy, halo, haloalkoxy, haloalkyl, heterocyclyl, hydroxy;
and the aryl part can be substituted with $1,2,3,4$, or 5 substituents independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, alkylcarbonyl, a second aryl group, arylalkoxy, arylalkyl, arylcarbonyl, cyano, halo, haloalkoxy, haloalkyl, heterocyclyl, heterocyclylalkyl, heterocyclylcarbonyl, hydroxy, hydroxyalkyl, nitro, $-\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}},-$ $\left(\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}\right.$)alkyl, oxo, and $-\mathrm{P}(\mathrm{O}) \mathrm{OR}_{2}$, wherein each R is independently selected from hydrogen and alkyl; and wherein the alkyl part of the arylalkyl and the heterocyclylalkyl are unsubstituted and wherein the second aryl group, the aryl part of the arylalkyl, the aryl part of the arylcarbonyl, the heterocyclyl, and the heterocyclyl part of the heterocyclylalkyl and the
heterocyclylcarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro; and the heterocyclyl can be substituted with $1,2,3,4$, or 5 substituents independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylcarbonyl, cyano, halo, haloalkoxy, haloalkyl, a second heterocyclyl group, heterocyclylalkyl, heterocyclylcarbonyl, hydroxy, hydroxyalkyl, nitro, $-\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}},\left(\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}\right)$ alkyl, and oxo, wherein the alkyl part of the arylalkyl and the heterocyclylalkyl are unsubstituted and wherein the aryl, the aryl part of the arylalkyl; the aryl part of the arylcarbonyl, the second heterocyclyl group, and the heterocyclyl part of the heterocyclylalkyl and the heterocyclylcarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro; $\mathrm{R}^{9 \mathrm{~b}}$ is independently H , alkyl, aryl, haloalkyl, or arylalkyl;
each $R 9^{2}$ is independently $-N\left(R^{9 a}\right)-N H C(=O) N R^{9 b}{ }_{2}$; wherein each $R^{9 a}$ is independently arylalkyl, alkyl, alkenyl, alkynyl, aryl, arylalkyl, arylalkenyl, arylalkoxy, halocycloalkyl, (cycloalkyl)alkenyl, (cycloalkyl)alkoxy, alkylSO 2_{2} alkyl, cycloalkylalkylSO ${ }_{2}$ alkyl, cyanoalkyl, haloalkyl cycloalkylalkyl, cycloalkyl, alkoxyalkyl, alkoxyalkylcarbonylalkyl, alkoxycarbonylalkyl, alkylsulfanylalkyl, aryalkoxyalkylcarbonylalkyl, carboxyalkyl, heterocyclylalkyl, heterocyclylcarbonylalkyl, hydroxyalkyl, NRRCOalkyl, wherein each R is independently selected from hydrogen and alkyl;
and where in arylalkyl the alkyl can be substituted with up to three aryl groups, and the alkyl part of the arylalkyl is further optionally substituted with one or two additional groups independently selected from alkoxy, alkylcarbonyloxy, halo, haloalkoxy, haloalkyl, heterocyclyl, hydroxy;
and the aryl part can be substituted with $1,2,3,4$, or 5 substituents independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, alkylcarbonyl, a second aryl group, arylalkoxy, arylalkyl, arylcarbonyl, cyano, halo, haloalkoxy, haloalkyl, heterocyclyl, heterocyclylalkyl, heterocyclylcarbonyl, hydroxy, hydroxyalkyl, nitro, $-\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}$, ($N R^{X} R^{Y}$)alkyl, oxo, and $-P(O) O R_{2}$, wherein each R is independently selected from hydrogen and alkyl; and wherein the alkyl part of the arylalkyl and the heterocyclylalkyl are unsubstituted and wherein the second aryl group, the aryl part of the arylalkyl, the aryl part of the arylcarbonyl, the heterocyclyl, and the heterocyclyl part of the heterocyclylalkyl and the heterocyclylcarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro;
and the heterocyclyl can be substituted with $1,2,3,4$, or 5 substituents independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylcarbonyl, cyano, halo, haloalkoxy, haloalkyl, a second heterocyclyl group, heterocyclylalkyl, heterocyclylcarbonyl, hydroxy, hydroxyalkyl, nitro, $-\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}},\left(\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}\right)$ alkyl, and oxo, wherein the alkyl part of the arylalkyl and the heterocyclylalkyl are unsubstituted and wherein the aryl, the aryl part of the arylalkyl; the aryl part of the arylcarbonyl, the second heterocyclyl group, and the heterocyclyl part of the heterocyclylalkyl and the heterocyclylcarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro; $\mathrm{R}^{9 b}$ is independently H , alkyl, aryl, haloalkyl, or arylalkyl;
each $R 9^{3}$ is independently $-\mathrm{N}\left(\mathrm{R}^{9 \mathrm{a}}\right)-\mathrm{NHC}(=0) \mathrm{R}^{9 b}$, wherein each $\mathrm{R}^{9 \mathrm{a}}$ is independently arylalkyl, alkyl, alkenyl, alkynyl, aryl, arylalkyl, arylalkenyl, arylalkoxy, halocycloalkyl, (cycloalkyl)alkenyl, (cycloalkyl)alkoxy, alkylSO ${ }_{2}$ alkyl, cycloalkylalkylSO ${ }_{2}$ alkyl, cyanoalkyl, haloalkyl, cycloalkylalkyl, cycloalkyl, alkoxyalkyl, alkoxyalkylcarbonylalkyl, alkoxycarbonylalkyl, alkylsulfanylalkyl, aryalkoxyalkylcarbonylalkyl, carboxyalkyl, heterocyclylalkyl, heterocyclyl, heterocyclylcarbonylalkyl, hydroxyalkyl, NRRCOalkyl, wherein each R is independently selected from hydrogen and alkyl; and where in arylalkyl the alkyl can be substituted with up to three aryl groups, and the alkyl part of the arylalkyl is further optionally substituted with one or two additional groups independently selected from alkoxy, alkylcarbonyloxy, halo, haloalkoxy, haloalkyl, heterocyclyl, hydroxy;
and the aryl part can be substituted with $1,2,3,4$, or 5 substituents independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, alkylcarbonyl, a second aryl group, arylalkoxy, arylalkyl, arylcarbonyl, cyano, halo, haloalkoxy, haloalkyl, heterocyclyl, heterocyclylalkyl, heterocyclylcarbonyl, hydroxy, hydroxyalkyl, nitro, $-\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}},-$ $\left(\mathrm{NR}^{\mathrm{X}}{ }^{\mathrm{Y}}\right.$) alkyl, oxo, and $-\mathrm{P}(\mathrm{O}) \mathrm{OR}_{2}$, wherein each R is independently selected from hydrogen and alkyl; and wherein the alkyl part of the arylalkyl and the heterocyclylalkyl are unsubstituted and wherein the second aryl group, the aryl part of the arylalkyl, the aryl part of the arylcarbonyl, the heterocyclyl, and the heterocyclyl part of the heterocyclylalkyl and the heterocyclylcarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro;
and the heterocyclyl can be substituted with $1,2,3,4$, or 5 substituents independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylcarbonyl, cyano, halo, haloalkoxy, haloalkyl, a second heterocyclyl group, heterocyclylalkyl, heterocyclylcarbonyl, hydroxy, hydroxyalkyl, nitro, $-\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}},-\left(\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}\right)$ alkyl, and oxo, wherein
the alkyl part of the arylalkyl and the heterocyclylalkyl are unsubstituted and wherein the aryl, the aryl part of the arylalkyl; the aryl part of the arylcarbonyl, the second heterocyclyl group, and the heterocyclyl part of the heterocyclylalkyl and the heterocyclylcarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro; $\mathrm{R}^{9 \mathrm{~b}}$ is independently H , alkyl, aryl, haloalkyl, or arylalkyl;
each A^{0} is independently:

wherein:
each $\mathrm{R}^{\mathrm{A} 3}$ is independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, formyl, halo, haloalkyl, hydroxy, hydroxyalkyl, $-\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}$, ($N R^{a} R^{b}$)alkyl, and ($N R^{a} R^{b}$) carbonyl; R^{a} and R^{b} are each independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl; and each
bb is independently $0,1,2,3$, or 4 ; or
each A^{0} is independently a six-membered heteroaromatic ring containing one, two, or three nitrogen atoms, which ring is optionally substituted with $1,2,3$, or $4 \mathrm{R}^{\mathrm{A3}}$ groups;
each A^{1} is independently:

wherein:
each $R^{A 1}$ is independently selected from cyano, nitro, $\mathrm{SOR}^{4}, \mathrm{SO}_{2} \mathrm{R}^{4}$, -alkylSO R^{4}, haloalkoxy, cyanoalkyl, $\mathrm{NR}^{4} \mathrm{SO}_{2} \mathrm{R}^{4}$, cycloalkyl, (halo)cycloalkyl, heterocycle, (cycloalkyl)alkyl,
(heterocycle)alkyl, wherein each alkyl, heterocycle and cycloalkyl is optionally substituted with one or more halo; and

> each R^{4} is independently selected from H, alkyl, haloalkyl, aryl, and arylalkyl; each cc is independently $1,2,3$, or 4
each A^{2} is independently:

wherein:
each R^{Al} is independently selected from cyano, nitro, $\mathrm{SOR}^{4}, \mathrm{SO}_{2} \mathrm{R}^{4}$, -alkylSO $\mathrm{R}_{2} \mathrm{R}^{4}$, haloalkoxy, cyanoalkyl, $\mathrm{NR}^{4} \mathrm{SO}_{2} \mathrm{R}^{4}$, cycloalkyl, (halo)cycloalkyl, heterocycle, (cycloalkyl)alkyl, (heterocycle)alkyl, wherein each alkyl, heterocycle and cycloalkyl is optionally substituted with one or more halo;
each R^{A3} is independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, formyl, halo, haloalkyl, hydroxy, hydroxyalkyl, -NR ${ }^{a} R^{b}$, $\left(N R^{a} R^{b}\right)$ alkyl, and $\left(N R^{a} R^{b}\right)$ carbonyl; R^{a} and R^{b} are each independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl;
each R^{4} is independently selected from H, alkyl, haloalkyl, aryl, and arylalkyl;
R^{a} and R^{b} are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl;
each bb is $0,1,2,3$, or 4 ; each cc is $1,2,3$, or 4 ; and the sum of bb and $c c$ is $1,2,3$, or 4 ;
each A^{3} is independently a six-membered heteroaromatic ring containing one, two, or three nitrogen atoms, which ring is substituted with one or more R^{Al} groups, and which ring is optionally substituted with one or more $R^{A 3}$ groups;
each A^{4} is independently:

wherein:
each H^{5} is independently a phenyl ring or a six-membered heteroaromatic ring, which H^{5} is optionally substituted with one or more groups independently selected from R^{Al} and $\mathrm{R}^{\mathrm{A} 3}$; and each X^{A} is independently $\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}$, $C R=C R, N R C(=O) N R$, allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each A^{5} is independently:

wherein:
each H^{6} is independently a phenyl ring or a six-membered heteroaromatic ring, which H^{6} is optionally substituted with one or more groups independently selected from R^{Al} and $\mathrm{R}^{\mathrm{A} 3}$; and each X^{A} is independently $\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=0) \mathrm{NR}$, $C R=C R, N R C(=O) N R$, allenyl, alkynyl, or absent; provided that at least one X^{A} is present and each R is independently selected from H or alkyl;
each A^{6} is independently:

$$
\xi x^{A}-x^{A}-x^{A}-\xi
$$

wherein:
each X^{A} is independently $\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}$, $C R=C R$, allenyl, alkynyl, or absent; provided that at least one X^{A} is present and each R is independently selected from H or alkyl;
each A^{7} is independently:

$$
\xi x^{A}-H^{7}-X^{A}-\xi
$$

wherein:
each H^{7} is independently a five-membered heteroaromatic ring, which H^{7} is optionally substituted with one or more groups independently selected from $R^{A 1}$ and $R^{A 3}$; and each X^{A} is independently $\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}$, $\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}$, allenyl, alkynyl, or absent; and each R is independently selected from H or alkyl;
each A^{8} is independently:

$$
\xi X^{A}-H^{8}-X^{A}-H^{7}-X^{A}-\xi
$$

wherein:
each H^{7} is independently a five-membered heteroaromatic ring, which H^{7} is optionally substituted with one or more groups independently selected from $R^{A 1}$ and $R^{A 3}$;
each H^{8} is independently a phenyl ring, which is optionally substituted with one or more groups independently selected from R^{Al} and R^{A3}; and
each X^{A} is independently $\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=0), \mathrm{NRC}(=0), \mathrm{C}(=0) \mathrm{NR}$, $\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}$, allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each A^{9} is independently:

wherein:
each H^{7} is independently a five-membered heteroaromatic ring, which H^{7} is optionally substituted with one or more groups independently selected from $R^{A 1}$ and $R^{A 3}$; and each X^{A} is independently $\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}$, $\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}$, allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each A^{10} is independently:

wherein:
each H^{8} is independently a phenyl ring, which is optionally substituted with one or more groups independently selected from $R^{A 1}$ and $R^{A 3}$;
each H^{9} is independently a six-membered heteroaromatic ring, which is optionally substituted with one or more groups independently selected from $R^{A l}$ and $R^{A 3}$; and
each X^{A} is independently O, NR, SO, $\mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}$, $\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}$, allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each A^{11} is independently:

wherein:
each X^{A} is independently $\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}$, $\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}$, allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each H^{10} is independently a $5-15$ carbon unsaturated, partially unsaturated or saturated bicyclic ring system that is optionally fused to an aryl, which H^{10} is optionally substituted with one or more groups independently selected from oxo, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, formyl, halo, haloalkyl, hydroxy, hydroxyalkyl, $-\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}$, $\left(\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\right.$) alkyl, and ($\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}$)carbonyl, cyano, nitro, $\mathrm{SOR}^{4}, \mathrm{SO}_{2} \mathrm{R}^{4}$, -alkylSO ${ }_{2} \mathrm{R}^{4}$, haloalkoxy, cyanoalkyl, $\mathrm{NR}^{4} \mathrm{SO}_{2} \mathrm{R}^{4}$, cycloalkyl, (halo)cycloalkyl, heterocycle, (cycloalkyl)alkyl, and (heterocycle)alkyl, wherein each alkyl, heterocycle and cycloalkyl is optionally substituted with one or more halo; and
each R^{4} is independently selected from H , alkyl, haloalkyl, aryl, and arylalkyl
each A^{12} is independently:

$$
\xi x^{A}-H^{11}-x^{A}-\xi
$$

wherein:
each X^{A} is independently $\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=0), \mathrm{NRC}(=0), \mathrm{C}(=0) \mathrm{NR}$, $\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}$, allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each H^{11} is independently a 5-15 carbon unsaturated, partially unsaturated or saturated bicyclic ring system that contains one or more heteroatoms that is optionally fused to an aryl, which H^{11} is optionally substituted with one or more groups independently selected from oxo, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, formyl, halo, haloalkyl, hydroxy, hydroxyalkyl, $-\mathrm{NR}^{a} \mathrm{R}^{\mathrm{b}},\left(\mathrm{NR}^{a} \mathrm{R}^{\mathrm{b}}\right)$ alkyl, and $\left(\mathrm{NR}^{a} \mathrm{R}^{b}\right)$ carbonyl, cyano, nitro, $\mathrm{SOR}^{4}, \mathrm{SO}_{2} \mathrm{R}^{4}$, -alkylSO $\mathrm{R}_{2} \mathrm{R}^{4}$, haloalkoxy, cyanoalkyl, $\mathrm{NR}^{4} \mathrm{SO}_{2} \mathrm{R}^{4}$, cycloalkyl, (halo)cycloalkyl, heterocycle, (cycloalkyl)alkyl, and (heterocycle)alkyl, wherein each alkyl, heterocycle and cycloalkyl is optionally substituted with one or more halo; and
each R^{4} is independently selected from H , alkyl, haloalkyl, aryl, and arylalkyl; and
each A^{13} is independently:

$$
\xi x^{A}-H^{12}-x^{A}-\xi
$$

wherein:
each H^{12} is independently a fused aromatic bicyclic carbocycle, which is optionally substituted with one or more groups independently selected from $R^{A 1}$ and $R^{A 3}$; and each X^{A} is independently $\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=0) \mathrm{NR}$, $\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}$, allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each A^{14} is independently:

wherein:
each H^{13} is independently a fused aromatic bicyclic heterocycle that comprises at least one heteroatom in the ring system, which ring system is optionally substituted with one or more groups independently selected from $R^{A l}$ and $R^{A 3}$; and
each X^{A} is independently $\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=0), \mathrm{C}(=0) \mathrm{NR}$, $\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}$, allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each A^{15} is independently:

$$
\xi-x^{A}-H^{14}-x^{A}-\xi
$$

wherein:
each H^{14} is independently a fused unsaturated, partially unsaturated or saturated tricyclic carbocycle which is optionally substituted with one or more groups independently selected from oxo, $R^{A 1}$ and $R^{A 3}$; and
each X^{A} is independently $\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=0), \mathrm{C}(=0) \mathrm{NR}$, $\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}$, allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each A^{16} is independently:

wherein:
each H^{15} is independently a fused unsaturated, partially unsaturated or saturated tricyclic heterocycle that comprises at least one heteroatom in the ring system, which ring system is optionally substituted with one or more groups independently selected from $R^{A 1}$ and $R^{A 3}$; and
each X^{A} is independently $\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=0) \mathrm{NR}$, $\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}$, allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each A^{17} is independently:

wherein:
each H^{16} is independently a fused bicyclic carbocyclic ring system wherein one ring is aromatic and another ring is partially or fully saturated, which ring system is optionally substituted with one or more groups independently selected from oxo, R^{AI} and $\mathrm{R}^{\mathrm{A} 3}$; and
each X^{A} is independently $\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=0), \mathrm{NRC}(=0), \mathrm{C}(=0) \mathrm{NR}$, $\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}$, allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each A^{18} is independently:

wherein:
each H^{17} is independently a fused bicyclic ring system comprising at least one heteroatom, wherein one ring is aromatic and another ring is partially or fully saturated, which ring system is optionally substituted with one or more groups independently selected from oxo, R^{Al} and R^{A3}; and
each X^{A} is independently $\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}$, $\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}$, allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each A^{21} is independently:

wherein:
each H^{40} is independently an anti-aromatic monocyclic or fused carbocyclic ring system, which carbocyclic ring system is optionally substituted with one or more groups independently selected from $R^{A 1}$ and $R^{A 3}$; and
each X^{A} is independently $\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}$, $C R=C R, N R C(=O) N R$, allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each W^{\prime} is independently $-\mathrm{X}^{\mathrm{A}}$-:
wherein:
each X^{A} is independently $\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=0) \mathrm{NR}$, $\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}$, allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each W^{2} is independently:

wherein:
each H^{20} is independently a fused aromatic bicyclic carbocycle, which is optionally substituted with one or more groups independently selected from $R^{A 1}$ and $R^{A 3}$; and
each X^{A} is independently $\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}$, $C R=C R, N R C(=O) N R$, allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each W^{3} is independently:

wherein:
each H^{21} is independently a fused bicyclic carbocyclic ring system wherein one ring is aromatic and another ring is partially or fully saturated, which ring system is optionally substituted with one or more groups independently selected from oxo, $R^{A 1}$ and $R^{A 3}$; and
each X^{A} is independently O, NR, $\mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=0), \mathrm{NRC}(=0), \mathrm{C}(=0) \mathrm{NR}$, $C R=C R, N R C(=O) N R$, allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each W^{4} is independently:

wherein:
each H^{22} is independently a fused aromatic bicyclic heterocycle that comprises at least one heteroatom in the ring system, which ring system is optionally substituted with one or more groups independently selected from $R^{A I}$ and $R^{A 3}$; and
each X^{A} is independently $\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=0) \mathrm{NR}$, $C R=C R, N R C(=O) N R$, allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each W^{5} is independently:

wherein:
each H^{23} is independently a fused bicyclic ring system comprising at least one heteroatom, wherein one ring is aromatic and another ring is partially or fully saturated, which ring system is optionally substituted with one or more groups independently selected from oxo, R^{Al} and $\mathrm{R}^{\mathrm{A} 3}$; and
each X^{A} is independently $\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}$, $C R=C R, N R C(=O) N R$, allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each W^{6} is independently:

wherein:
each H^{24} is independently a fused unsaturated, partially unsaturated or saturated tricyclic carbocycle, which is optionally substituted with one or more groups independently selected from oxo, R^{A1} and $\mathrm{R}^{\mathrm{A} 3}$; and
each X^{A} is independently $\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}$, $C R=C R, N R C(=O) N R$, allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each W^{7} is independently:

wherein:
each H^{26} is independently a $5-15$ carbon unsaturated, partially unsaturated or saturated bicyclic ring system which ring system is optionally substituted with one or more groups independently selected from oxo, R^{Al} and R^{A3}; and
each X^{A} is independently $\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}$, $\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}$, allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each W^{8} is independently:

wherein:
each H^{27} is independently a fused unsaturated, partially unsaturated or saturated tricyclic heterocycle that comprises at least one heteroatom in the ring system, which ring system is optionally substituted with one or more groups independently selected from $R^{A 1}$ and $R^{A 3}$; and
each X^{A} is independently $\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}$,
$C R=C R, N R C(=O) N R$, allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each W^{9} is independently:

$$
\xi-x^{A}-H^{29}-x^{A}-\xi
$$

wherein:
each H^{29} is independently a 5-15 carbon unsaturated, partially unsaturated or saturated bicyclic ring system that contains one or more heteroatoms; and
each X^{A} is independently $\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=0), \mathrm{NRC}(=0), \mathrm{C}(=0) \mathrm{NR}$, $C R=C R, N R C(=O) N R$, allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each W^{10} is independently $-\mathrm{H}^{30}=\mathrm{C}=\mathrm{H}^{31}$ -
wherein each of $-\mathrm{H}^{30}$ and H^{31} is independently a saturated 6-membered heterocyclic ring comprising one or more heteroatoms, which ring is optionally substituted with oxo;
each W^{11} is independently $-\mathrm{H}^{32}=\mathrm{C}=\mathrm{H}^{33}$ -
wherein each of $-\mathrm{H}^{32}$ and H^{33} is independently a saturated 5-membered heterocyclic ring comprising one or more heteroatoms, which ring is optionally substituted with oxo;
each W^{12} is independently an anti-aromatic monocyclic or fused carbocyclic ring system, which carbocyclic ring system is optionally substituted with one or more groups independently selected from $R^{A 1}$ and $R^{A 3}$;
each W^{13} is independently a phenyl ring that is optionally substituted with one or more groups independently selected from $R^{A 1}$ and $R^{A 3}$;
each W^{14} is independently a 5 or 6 membered heteroaryl ring that is optionally substituted with one or more groups independently selected from $R^{A 1}$ and $R^{A 3}$;
each W^{15} is independently a fused unsaturated, partially unsaturated or saturated tetracyclic carbocyclic ring, which ring system is optionally substituted with one or more groups independently selected from oxo, $R^{A 1}$ and $R^{A 3}$;
each W^{16} is independently a fused unsaturated, partially unsaturated or saturated tetracyclic heterocycle that comprises at least one heteroatom in the ring system, which ring system is optionally substituted with one or more groups independently selected from oxo, R^{Al} and R^{A3};
each W^{17} is independently a fused unsaturated, partially unsaturated or saturated pentacyclic carbocyclic ring system, which ring system is optionally substituted with one or more groups independently selected from oxo, R^{Al} and $\mathrm{R}^{\mathrm{A} 3}$;
each W^{18} is independently a fused unsaturated, partially unsaturated or saturated pentacyclic heterocycle that comprises at least one heteroatom in the ring system, which ring system is optionally substituted with one or more groups independently selected from oxo, $R^{A 1}$ and $R^{A 3}$;
each W^{19} is independently a fused unsaturated, partially unsaturated or saturated hexacyclic carbocyclic ring system, which ring system is optionally substituted with one or more groups independently selected from oxo, $R^{A 1}$ and $R^{A 3}$;
each W^{20} is independently a fused unsaturated, partially unsaturated or saturated hexacyclic heterocycle that comprises at least one heteroatom in the ring system, which ring system is optionally substituted with one or more groups independently selected from oxo, $R^{A 1}$ and $R^{A 3}$;
each M^{0} is independently a five membered heteroaryl group optionally substituted with one or more alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, haloalkyl, $\left(\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\right)$ carbonyl and trialkylsilylalkoxyalkyl;
each M^{1} is independently selected from $-\mathrm{C}(=0) \mathrm{NH}-,-\mathrm{C}(=\mathrm{O}) \mathrm{NH}-\mathrm{C}\left(\mathrm{R}^{\mathrm{M}}\right)_{2^{-}},-\mathrm{NHC}(=\mathrm{O})$-, $-\mathrm{C}\left(\mathrm{R}^{\mathrm{M}}\right)_{2} \mathrm{NHC}(=\mathrm{O})-,-\mathrm{NHC}(=\mathrm{O}) \mathrm{NR}^{\mathrm{M}}-,-\mathrm{NHC}(=\mathrm{O}) \mathrm{O}-$; wherein each R^{M} is independently selected from H and alkyl;
each M^{2} is independently a six-membered heteroaromatic ring, which is optionally substituted with one or more groups independently selected from $R^{A 1}$ and $R^{A 3}$;
each M^{3} is independently:

each M^{4} is independently:

each M^{5} is independently:

wherein the bond designated with --- is fused to a ring defined for P;
each M^{6} is independently a bicyclic bridged ring system comprising 5-15 atoms wherein at least one of the atoms is a heteroatom;
each M^{7} is independently a pyrid-di-yl;
each \mathbf{M}^{8} is independently partially saturated or a saturated five-membered ring that comprises one or more heteroatoms and that is optionally substituted with one or two oxo;
each M^{9} is independently a fused-bicyclic saturated, partially unsaturated, or aromatic heterocyclic ring system that is optionally substituted with one or more $\mathrm{R}^{\mathrm{PII} \text {; }}$
each M^{10} is independently a five membered heteroaryl group substituted with at least one alkoxy, cycloalkyl, cyano, alkylsulfonyl, arylsulfonyl, $N^{h} R^{h},\left(N R^{h} R^{h}\right)$ sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkoxy, haloalkoxyalkyloxy, cycloalkoxyalkoxy, aryloxyalkoxy, heteroaryloxyalkoxy, heterocyclyloxyalkyloxy, ($N R^{h}{ }^{h}{ }^{h}$)alkoxy, cyanoalkoxy, cycloalkoxy, heterocyclyl, alkoxyalkyl, cycloalkoxyalkyl, ($N R^{h} R^{h}$) alkyl, wherein each R^{h} is independently - H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyloxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, and sulfonylalkyl; and wherein the five membered ring is also optionally substituted with one or more alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, haloalkyl, and ($\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}$)carbonyl;
each M^{11} is independently a fused-tricyclic saturated, partially unsaturated, or aromatic heterocyclic ring system that is optionally substituted with one or more oxo, halo, $-\mathrm{R}^{\mathrm{M} 7},-\mathrm{OR}^{\mathrm{M} 7}$, $-\mathrm{SR}^{\mathrm{M} 7},-\mathrm{N}\left(\mathrm{R}^{\mathrm{M} 7}\right)_{2},-\mathrm{CF}_{3},-\mathrm{CCl}_{3},-\mathrm{OCF}_{3},-\mathrm{CN},-\mathrm{NO}_{2},-\mathrm{N}\left(\mathrm{R}^{\mathrm{M} 7}\right) \mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{M} 7},-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{M} 7},-\mathrm{OC}(=\mathrm{O}) \mathrm{R}$ ${ }^{\mathrm{M} 7},-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{\mathrm{M} 7},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{M} 7},-\mathrm{S}(=\mathrm{O}) \mathrm{R}^{\mathrm{M} 7},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{M} 7},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{M} 7},-\mathrm{OS}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{M} 7}$, or $-\mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}^{\mathrm{M} 7}$; each $\mathrm{R}^{\mathrm{M} 7}$ is independently - H , alkyl, aryl, arylalkyl, or heterocycle;
each M^{12} is independently a fused-pentacyclic, hexacyclic, or heptacyclic partially unsaturated, or aromatic heterocyclic ring system that is optionally substituted with one or more oxo halo, $-\mathrm{R}^{\mathrm{M} 7},-\mathrm{OR}^{\mathrm{M} 7},-\mathrm{SR}^{\mathrm{M} 7},-\mathrm{N}\left(\mathrm{R}^{\mathrm{M} 7}\right)_{2},-\mathrm{CF}_{3},-\mathrm{CCl}_{3},-\mathrm{OCF}_{3},-\mathrm{CN},-\mathrm{NO}_{2},-\mathrm{N}\left(\mathrm{R}^{\mathrm{M} 7}\right) \mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{M} 7},-\mathrm{C}(=\mathrm{O}) \mathrm{R}$ ${ }^{\mathrm{M} 7},-\mathrm{OC}(=\mathrm{O}) \mathrm{R}^{\mathrm{M} 7},-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{\mathrm{M} 7},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{M} 7},-\mathrm{S}(=\mathrm{O}) \mathrm{R}^{\mathrm{M} 7},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{M} 7},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{M} 7},-$ $\mathrm{OS}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{M} 7}$, or $-\mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}^{\mathrm{M} 7}$;
each $R^{M 7}$ is independently -H, alkyl, aryl, arylalkyl, or heterocycle;
each P^{0} is independently:

or

wherein:
X is selected from $\mathrm{O}, \mathrm{S}, \mathrm{S}(\mathrm{O}), \mathrm{SO}_{2}, \mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{P} 10}$, and $\mathrm{C}\left(\mathrm{R}^{\mathrm{P} 10}\right)_{2}$; provided that when pn or pm is $0, \mathrm{X}$ is selected from $\mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{P10}}$, and $\mathrm{C}\left(\mathrm{R}^{\mathrm{P} 10}\right)_{2}$;
each $R^{P 10}$ is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and $-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}$, wherein the alkyl can optionally form a fused threeto six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
each $R^{P 5}$ and $R^{P 6}$ is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and $-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}$, wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups; R^{Pa} and R^{Pb} are each independently H , alkyl, aryl, or arylalkyl; or R^{Pa} and R^{Pb} taken together with the atom to which they are attached form a heterocycle;
pq and ps are independently $0,1,2,3$, or 4 ;
pm and pn are independently 0,1 , or 2 ;
po and pp are independently 1,2 , or 3 ;
$R^{P 7}$ and $R^{P 8}$ are each independently selected from hydrogen, alkenyl, alkoxyalkyl, alkyl, haloalkyl, and ($\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}$)alkyl; or R^{P7} and R^{P8}, together with the carbon atom to which they are attached, form a five or six membered saturated ring optionally containing one or two heteroatoms selected from $\mathrm{NR}^{\mathrm{Pz}}, 0$, and S ; wherein R^{Pz} is selected from hydrogen and alkyl;
$R^{P 9}$ is selected from hydrogen and alkyl;
each P^{1} is independently:

wherein:
X is selected from $\mathrm{O}, \mathrm{S}, \mathrm{S}(\mathrm{O}), \mathrm{SO}_{2}, \mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{Pl0}}$, and $\mathrm{C}\left(\mathrm{R}^{\mathrm{P} 10}\right)_{2}$; provided that when pn is $0, \mathrm{X}$ is selected from $\mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{P} 10}$, and $\mathrm{C}\left(\mathrm{R}^{\mathrm{PI0}}\right)_{2}$;
each $\mathrm{R}^{\mathrm{P} 10}$ is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and $-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}$, wherein the alkyl can optionally form a fused threeto six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
at least one $R^{P 11}$ is independently selected from cyano, alkylsulfonyl, arylsulfonyl, ($\mathrm{NR}^{h} \mathrm{R}^{h}$)sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, ($\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}$ a) lkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl, $-N R^{\text {hh }} R^{h},\left(N R^{\text {hh }} R^{h}\right)$ alkyl, ($\mathrm{NR}^{\mathrm{hh}} \mathrm{R}^{\mathrm{h}}$)carbonyl, wherein each R^{h} is independently -H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; and when two R^{h} groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring; wherein each $\mathrm{R}^{\text {hh }}$ is independently aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl, $\left(N R^{h} R^{h}\right)$ sulfonyl, heteroarylsulfonyl, $-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{h}},-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{h}},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}$; and the remaining $\mathrm{R}^{\mathrm{PII}}$ are independently selected from R^{PS}, cyano, alkylsulfonyl, arylsulfonyl, $\left(N R^{h} R^{h}\right)$ sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy,
haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, ($\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}$)alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl; wherein each R^{h} is independently -H, alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; and when two R^{h} groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
ps is $1,2,3$, or 4 ;
pn is 0,1 , or 2 ;
each $\mathrm{P}^{\mathbf{2}}$ is independently:

wherein:
each $R^{P 12}$ is independently selected from $R^{P 5}, R^{P 11},-C(=O) O R^{h}$, cyano, alkylsulfonyl, arylsulfonyl, $\left(N \mathrm{R}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\right)$ sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, ($\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}$)alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl; wherein each R^{h} is independently - H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; and when two $\mathrm{R}^{\text {h }}$ groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
ps is $1,2,3$, or 4;
pn is 0,1 , or 2 ;
each P^{3} is independently a ring of the formula:

wherein:
the ring is substituted with one or more oxo group;
each $R^{P 13}$ is independently selected from $R^{P 5}$, cyano, alkylsulfonyl, arylsulfonyl, ($\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}$)sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, ($N R^{h} R^{h}$)alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl; wherein each R^{h} is independently $-H$, alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; and when two R^{h} groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;

```
ps is 0, 1, 2, 3, or 4;
```

pn is 0,1 , or 2 ;
each P^{4} is independently a ring of the formula:

wherein:
the ring is optionally substituted with one or more groups $R^{P 14}$ that are independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and $N R^{P a} R^{P b}$, wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups; and where two groups $R^{P 14}$ that are attached to the same carbon
when taken together with the carbon to which they are attached can form a 3-6 membered carbocyclic or heterocyclic ring;
pn is 0,1 , or 2 ;
each R^{f} is independently - H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl, $-\mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}$, $-S(=O)_{2} R^{h}, C(=O) R^{h}, C(=O) O R^{h},-C(=O) N R^{h} R^{h}$; each R^{h} is independently $-H$, alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; or when two R^{h} groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
each P^{5} is independently a ring of the formula:

wherein:
the ring is optionally substituted with one or more groups $\mathrm{R}^{\mathrm{P} 15}$ that are independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and $N R^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}$, wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups; and where two groups $\mathrm{R}^{\mathrm{P} 15}$ that are attached to the same carbon when taken together with the carbon to which they are attached can form a 3-6 membered carbocyclic or heterocyclic ring;
pn is 0,1 , or 2 ;
Z is $\mathrm{O}, \mathrm{S}, \mathrm{S}(=\mathrm{O}), \mathrm{S}(=\mathrm{O})_{2}$, or NR^{f};
each R^{f} is independently - H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl, $-\mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}$, $-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{h}}, \mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{h}}, \mathrm{C}(=\mathrm{O}) \mathrm{OR}^{\mathrm{h}},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}$; each R^{h} is independently -H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl,
dialkylaminoalkyl, sulfonylalkyl; or when two R^{h} groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
each P^{6} is independently a ring of the formula:

wherein:
the ring is substituted with one or more oxo and is optionally substituted with one or more groups $\mathrm{R}^{\mathrm{P} 16}$ that are independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and $-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}$, wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;

Z is $\mathrm{O}, \mathrm{S}, \mathrm{S}(=\mathrm{O}), \mathrm{S}(=\mathrm{O})_{2}$, or NR^{f};
pn is 0,1 , or 2 ;
each R^{f} is independently - H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl, $-\mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}$, $-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{h}}, \mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{h}}, \mathrm{C}(=0) \mathrm{OR}^{\mathrm{h}},-\mathrm{C}(=0) N \mathrm{R}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}$; each R^{h} is independently -H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; or when two R^{h} groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
each \mathbf{P}^{7} is a bridged $5-15$ membered bicyclic heterocyclic ring that is attached to the remainder of the compound of formula I through one N -link and through one C -link; wherein the ring is optionally substituted with one or more groups independently selected from $R^{P 6}$ and $R^{P 11}$;
each P^{8} is independently a ring of the formula:

wherein:
ps is $2,3,4,5$, or 6 ;
pn is 0,1 or 2 ;
each $R^{P 13}$ is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and $-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}$, wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups; where in at least one case two groups $R^{P 13}$ that are attached to the same carbon are taken together with the carbon to which they are attached and form a 4-6 membered heterocyclic ring;
each P^{10} is independently:

wherein:
X is selected from $\mathrm{O}, \mathrm{S}, \mathrm{S}(\mathrm{O}), \mathrm{SO}_{2}, \mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{Plo}}$, and $\mathrm{C}\left(\mathrm{R}^{\mathrm{Plo}}\right)_{2}$; provided that when pn or pm is $0, \mathrm{X}$ is selected from $\mathrm{CH}_{2}, \mathrm{CHR}{ }^{\mathrm{Pl0}}$, and $\mathrm{C}\left(\mathrm{R}^{\mathrm{P} 10}\right)_{2}$;
each $R^{P 10}$ is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and $-N R^{P a} R^{P b}$, wherein the alkyl can optionally form a fused threeto six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
each $R^{P 5}$ and $R^{P 6}$ is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and $-N R^{P a} R^{P b}$, wherein the alkyl can optionally form a fused
three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
pq and ps are independently $0,1,2,3$, or 4 ;
pm and pn are independently 0,1 , or 2 ;
po and pp are independently 1,2 , or 3 ;
each $P^{\prime \prime}$ is independently:

wherein:
X is selected from $\mathrm{O}, \mathrm{S}, \mathrm{S}(\mathrm{O}), \mathrm{SO}_{2}, \mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{P} 10}$, and $\mathrm{C}\left(\mathrm{R}^{\mathrm{P} 10}\right)_{2}$;
provided that when pn or pm is $0, \mathrm{X}$ is selected from $\mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{PIO}}$, and $\mathrm{C}\left(\mathrm{R}^{\mathrm{PIO}}\right)_{2}$;
each $\mathrm{R}^{\mathrm{P} 10}$ is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and $-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}$, wherein the alkyl can optionally form a fused threeto six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
each $R^{P 5}$ and $R^{P 6}$ is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and $-N R^{\mathrm{Pa}_{\mathrm{a}}} \mathrm{Rb}^{\mathrm{Pb}}$, wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
pq and ps are independently $0,1,2,3$, or 4 ;
pm and pn are independently 0,1 , or 2 ;
po and pp are independently 1,2 , or 3;
each P^{12} is independently:

wherein:
each $\mathrm{R}^{\mathrm{P} 6}$ is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and $-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}$, wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
pq is independently $0,1,2,3$, or 4 ;
pm is independently 0,1 , or 2 ;
pp is independently 1,2 , or 3 ;
ps is $1,2,3$, or 4 ;
$\mathrm{R}^{\mathrm{P11}}$ is independently selected from cyano, alkylsulfonyl, arylsulfonyl, ($\mathrm{NR}^{\text {h }} \mathrm{R}^{\mathrm{h}}$)sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, ($\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\text {h }}$)alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl, $-\mathrm{NR}^{\text {hh }} \mathrm{R}^{\mathrm{h}},\left(\mathrm{NR}^{\text {hh }} \mathrm{R}^{\mathrm{h}}\right)$ alkyl, $\left(\mathrm{NR}^{\text {hh }} \mathrm{R}^{\mathrm{h}}\right)$ carbonyl, wherein each R^{h} is independently -H, alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; and when two R^{h} groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring; wherein each $\mathrm{R}^{\text {hh }}$ is independently aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl, $\left(N R^{h} R^{h}\right)$ sulfonyl, heteroarylsulfonyl, $-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{h}},-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{h}}$, $-C(=O) N R^{h}{ }^{R^{h}}$; and the remaining $R^{{ }^{P 11}}$ are independently selected from $R^{P 5}$, cyano, alkylsulfonyl, arylsulfonyl, ($\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}$)sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, ($\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}$)alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl; wherein each R^{h} is independently - H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl,
dialkylaminoalkyl, sulfonylalkyl; and when two R^{h} groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
each P^{13} is independently:

wherein:
X is selected from $\mathrm{O}, \mathrm{S}, \mathrm{S}(\mathrm{O}), \mathrm{SO}_{2}$, or NR^{h};
each $\mathrm{R}^{\mathrm{P} 6}$ is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and $-N R^{P a} R^{P b}$, wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
pq is independently $0,1,2,3$, or 4 ;
pm and pn are independently 0,1 , or 2 but the sum of pn and pm is greater than zero;
pp are independently 1,2 , or 3 ;
ps is $1,2,3$, or 4 ;
each $\mathrm{R}^{\mathrm{PII}}$ is independently selected from cyano, alkylsulfonyl, arylsulfonyl, ($N R^{h} R^{h}$)sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, ($\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}$) alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl, $-N R^{h h} R^{h}$, ($N R^{h h} R^{h}$)alkyl, ($N R^{h h} R^{h}$)carbonyl, wherein each R^{h} is independently -H, alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; and when two R^{h} groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring; wherein each $\mathrm{R}^{\text {hh }}$ is independently aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl,
dialkylaminoalkyl, sulfonylalkyl, $\left(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\right)$ sulfonyl, heteroarylsulfonyl, $-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{h}},-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{h}}$, $-C(=O) N R^{h} R^{h}, R^{P 5}$, cyano, alkylsulfonyl, arylsulfonyl, $\left(N R^{h} R^{h}\right)$ sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, ($N R^{h} R^{h}$)alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl; wherein each R^{h} is independently -H, alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; and when two R^{h} groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
each P^{14} is independently:

wherein:
the ring is substituted with one or more oxo group;
X is NR ;
each R^{f} is independently - H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl, $-\mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}$, $-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{h}}, \mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{h}}, \mathrm{C}(=\mathrm{O}) O \mathrm{R}^{\mathrm{h}},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}$; each R^{h} is independently -H, alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; or when two R^{h} groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring; each $R^{P 6}$ is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and $-N R^{P a} R^{\mathrm{Pb}}$, wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
pq is independently $0,1,2,3$, or 4 ;

```
pm is independently 0,1 , or 2 ;
ps is \(1,2,3\), or 4 ;
\(\mathrm{R}^{\mathrm{PII}}\) is independently selected from cyano, alkylsulfonyl, arylsulfonyl,
``` \(\left(N R^{h} R^{h}\right)\) sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, ( \(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\) )alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl; wherein each \(\mathrm{R}^{\mathrm{h}}\) is independently - H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, or sulfonylalkyl; and when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
each \(P^{15}\) is:

which is substituted with one or two groups independently selected from alkoxyalkyl, haloalkoxyalkyl, alkylsulfanyl, alkylsulfanylalkyl, cyanoalkyl, and cycloalkylalkyl;
each \(P^{16}\) is:

which is substituted with methylene;
each \(P^{17}\) is:

which is substituted with one or two groups independently selected from alkenyl, alkynyl, cycloalkyl, cycloalkylalkenyl, and cycloalkylalkynyl;
\[
\text { each } P^{18} \text { is: }
\]

which is optionally substituted with one or two groups independently selected from halo, alkyl, alkoxyalkyl, haloalkyl, cycloalkyl, and cycloalkylalkyl;
each \(P^{19}\) is:

wherein each \(R^{P 19 a}\) is independently selected from \(H\) and halo; and each \(R^{P 19 b}\) is independently selected from halo;
each \(-Z^{0}\) - is \(-C(=O)\) - or \(-C(=S)\)-;
each \(-Z^{1}\) - is independently a bond, or \(-C\left(R^{Z 1}\right)_{2}-\); wherein each \(R^{Z 1}\) is independently \(H\), alkyl, haloalkyl, or halo;
each \(-Z^{2}\) - is independently saturated or partially unsaturated \(\left(C_{3}-C_{8}\right)\) cycloalkyl that is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\);
each \(-Z^{3}\) - is independently saturated, partially unsaturated, or aromatic 4-8 membered heterocyclic or heteroaryl ring that is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\);
each \(-Z^{4}\) - is independently:

wherein each \(\mathrm{R}^{24}\) is independently H , alkyl, cyano, aryl, or heteroaryl;
each \(-\mathrm{Z}^{5}\) - is independently:

wherein each \(\mathrm{R}^{25}\) is independently H , alkyl, cyano, aryl, or heteroaryl; or two \(\mathrm{R}^{25}\) s together with the nitrogen to which they are attached form a 4-8 membered heterocyclic ring that is optionally substituted with one or more oxo and with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\);
each \(-Z^{6}\) - is independently \(-C\left(R^{21}\right)\) - and is doublebonded to a carbocyclic \(P\); wherein \(R^{21}\) is independently H , alkyl, haloalkyl, or halo;
each \(\mathrm{E}^{0}\) is independently \(-\mathrm{NR}^{\mathrm{Ec}} \mathrm{R}^{\mathrm{Ed}}\) wherein
\(\mathrm{R}^{\mathrm{Ec}}\) and \(\mathrm{R}^{\mathrm{Ed}}\) are each independently selected from hydrogen, alkenyloxycarbonyl, alkoxyalkylcarbonyl, alkoxycarbonyl, alkyl, alkylcarbonyl, alkylsulfonyl, aryl, arylalkoxycarbonyl, arylalkyl, arylalkylcarbonyl, arylcarbonyl, aryloxycarbonyl, arylsulfonyl, cycloalkyl, cycloalkylsulfonyl, formyl, haloalkoxycarbonyl, heterocyclyl, heterocyclylalkoxycarbonyl, heterocyclylalkyl, heterocyclylalkylcarbonyl, heterocyclylcarbonyl, heterocyclyloxycarbonyl, hydroxyalkylcarbonyl, (\(\mathrm{NR}^{c} \mathrm{R}^{f}\))alkyl,
 wherein \(\mathrm{R}^{\prime}\) is selected from alkyl and unsubstituted phenyl, and wherein the alkyl part of the arylalkyl, the arylalkylcarbonyl, the heterocyclylalkyl, and the heterocyclylalkylcarbonyl are further optionally substituted with one \(-\mathrm{NR}^{\mathrm{c}} \mathrm{R}^{\mathrm{f}}\) group; and wherein the aryl, the aryl part of the arylalkoxycarbonyl, the arylalkyl, the arylalkylcarbonyl, the arylcarbonyl, the aryloxycarbonyl, and the arylsulfonyl, the heterocyclyl, and the heterocyclyl part of the heterocyclylalkoxycarbonyl, the heterocyclylalkyl, the heterocyclylalkylcarbonyl, the
heterocyclylcarbonyl, and the heterocyclyloxycarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro;
each \(E^{1}\) is independently - \(O C(=O) N R^{E e} R^{E f}\) wherein each \(R^{E \varepsilon}\) and \(R^{E f}\) are each independently selected from hydrogen, alkenyloxycarbonyl, alkoxyalkylcarbonyl, alkoxycarbonyl, alkyl, alkylcarbonyl, alkylsulfonyl, aryl, arylalkoxycarbonyl, arylalkyl, arylalkylcarbonyl, arylcarbonyl, aryloxycarbonyl, arylsulfonyl, cycloalkyl, cycloalkylsulfonyl, formyl, haloalkoxycarbonyl, heterocyclyl, heterocyclylalkoxycarbonyl, heterocyclylalkyl, heterocyclylalkylcarbonyl, heterocyclylcarbonyl, heterocyclyloxycarbonyl,
 \(-C(N C N) O R '\), and - C(NCN)NR \({ }^{X} \mathrm{R}^{\mathrm{Y}}\), wherein \(\mathrm{R}^{\prime}\) is selected from alkyl and unsubstituted phenyl, and wherein the alkyl part of the arylalkyl, the arylalkylcarbonyl, the heterocyclylalkyl, and the heterocyclylalkylcarbonyl are further optionally substituted with one \(-\mathrm{NR}^{e} \mathrm{R}^{\mathrm{f}}\) group; and wherein the aryl, the aryl part of the arylalkoxycarbonyl, the arylalkyl, the arylalkylcarbonyl, the arylcarbonyl, the aryloxycarbonyl, and the arylsulfonyl, the heterocyclyl, and the heterocyclyl part of the heterocyclylalkoxycarbonyl, the heterocyclylalkyl, the heterocyclylalkylcarbonyl, the heterocyclylcarbonyl, and the heterocyclyloxycarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro; or wherein \(\mathrm{R}^{\mathrm{Ee}}\) and \(\mathrm{R}^{\mathrm{Ef}}\), together with the nitrogen atom to which they are attached, form a heterocycle;
each \(E^{2}\) is independently \(-N R^{a} R^{b}\), wherein \(R^{a}\) is haloalkyl and \(R^{b}\) is \(H\), alkyl, alkoxycarbonyl or haloalkyl;
each \(\mathrm{E}^{3}\) is independently \(-\mathrm{NR}^{\mathrm{Ec}} \mathrm{R}^{\mathrm{E3a}}\), wherein \(\mathrm{R}^{\mathrm{E} 3 \mathrm{a}}\) is \(\left(\mathrm{C}_{3}-\mathrm{C}_{6}\right)\) cycloalkyloxycarbonyl;
each \(\mathrm{E}^{4}\) is independently \(-\mathrm{OC}(=\mathrm{O}) \mathrm{OR}^{\mathrm{E4a}}\), wherein \(\mathrm{R}^{\mathrm{E4a}}\) is cycloalkyl, aryl, or alkyl;
each \(\mathrm{E}^{5}\) is independently \(-\mathrm{NR}^{\mathrm{Ec}} \mathrm{S}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{ESa}}\), wherein \(\mathrm{R}^{\mathrm{ESa}}\) is is cycloalkyl, aryl or alkyl;
each \(\mathrm{E}^{6}\) is independently \(-\mathrm{NR}^{\mathrm{Ec}} \mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{E} 6 \mathrm{a}}\), wherein \(\mathrm{R}^{\mathrm{Eba}}\) is cycloalkyl, aryl, or alkyl;
each \(\mathrm{E}^{7}\) is independently \(-\mathrm{NR}^{\mathrm{Ec}} \mathrm{OR}^{\mathrm{E} 7 \mathrm{a}}\), wherein \(\mathrm{R}^{\mathrm{E7a}}\) is cycloalkyl, aryl, alkyl, haloalkyl, cycloalkylalkyl or heteroaryl;
each \(\mathrm{V}^{0}\) is independently H , alkyl, arylalkyl, alkenyl, CO, cycloalkylalkyl, cycloalkyl, alkoxyalkyl, alkoxyalkylcarbonylalkyl, alkoxycarbonylalkyl, alkylsulfanylalkyl, aryalkoxyalkylcarbonylalkyl, carboxyalkyl, heterocyclylalkyl, heterocyclylcarbonylalkyl, hydroxyalkyl, NRRCOalkyl, wherein each R is independently selected from hydrogen and alkyl;
and where in arylalkyl the alkyl can be substituted with up to three aryl groups, and the alkyl part of the arylalkyl is further optionally substituted with one or two additional groups independently selected from alkoxy, alkyocarbonyloxy, halo, haloalkoxy, haloalkyl, heterocyclyl, hydroxy;
and the aryl part can be substituted with \(1,2,3,4\), or 5 substituents independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, alkylcarbonyl, a second aryl group, arylalkoxy, arylalkyl, arylcarbonyl, cyano, halo, haloalkoxy, haloalkyl, heterocyclyl, heterocyclylalkyl, heterocyclylcarbonyl, hydroxy, hydroxyalkyl, nitro, \(-N R^{X} R^{Y}\), \(-\left(\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}\right.\))alkyl, oxo, and \(-\mathrm{P}(\mathrm{O}) \mathrm{OR}_{2}\), wherein each R is independently selected from hydrogen and alkyl; and wherein the alkyl part of the arylalkyl and the heterocyclylalkyl are unsubstituted and wherein the second aryl group, the aryl part of the arylalkyl, the aryl part of the arylcarbonyl, the heterocyclyl, and the heterocyclyl part of the heterocyclylalkyl and the heterocyclylcarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro; and the heterocyclyl can be substituted with \(1,2,3,4\), or 5 substituents independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylcarbonyl, cyano, halo, haloalkoxy, haloalkyl, a second heterocyclyl group, heterocyclylalkyl, heterocyclylcarbonyl, hydroxy, hydroxyalkyl, nitro, \(-\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}\), (\(N R^{X}{ }^{\mathrm{Y}}\)) alkyl, and oxo, wherein the alkyl part of the arylalkyl and the heterocyclylalkyl are unsubstituted and wherein the aryl, the aryl part of the arylalkyl; the aryl part of the arylcarbonyl, the second heterocyclyl group, and the heterocyclyl part of the heterocyclylalkyl and the heterocyclylcarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro;
each \(V^{1}\) is independently cyanoalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(N R^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{2}\) is independently haloalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=0) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(V^{3}\) is independently alkyl, which is substituted with one or more oxo, and which is optionally substituted with one or more groups independently selected from cycloalkyl, halo, aryl, alkenyl, and cyano;
each \(\mathrm{V}^{4}\) is independently haloalkoxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}\)-; wherein \(\mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(V^{5}\) is independently alkylsulfonylalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}_{\mathrm{a}}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(V^{6}\) is independently arylsulfonylalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(N R^{V^{\mathrm{a}}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(V^{7}\) is independently heterocyclosulfonylalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(V^{8}\) is independently spirocycloalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}^{\mathrm{Vb}}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{9}\) is independently spirocycloalkylalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{10}\) is independently fusedbicycliccycloalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{11}\) is independently fusedbicycliccycloalkylalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(V^{12}\) is independently bridged-bicycliccycloalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{13}\) is independently bridged-bicyclic-cycloalkylalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(V^{14}\) is independently aryloxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{15}\) is independently arylalkoxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(N R^{V_{a}} R^{\mathrm{Vb}} \mathrm{C}(=0) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(V^{16}\) is independently cycloalkyloxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(V^{17}\) is independently cycloalkylalkyloxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{18}\) is independently heterocyclooxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{19}\) is independently heterocycloalkyloxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{20}\) is independently heteroaryloxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(V^{21}\) is independently heteroarylalkyloxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{22}\) is independently cycloalkenylalkyl;
each \(V^{23}\) is independently arylalkyl, wherein the aryl is substituted with one or more groups independently selected from cycloalkyl, alkenyl, cycloalkylalkyl, cyanoalkyl, cycloalkoxy, hydroxyalkoxy, \(-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}, \mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}\), alkylsulfanyl, alkylsulfonyl, haloalkylsulfanyl,
haloalkylsulfonyl, alkylsulfonylalkyl, alkylsulfonylalkyl, arylsulfanyl, arylsulfonyl, alkoxyalkoxy, alkynyl, aryloxy, heteroaryloxy, alkylsulfonylamino;
\(\mathrm{R}^{\mathrm{X}}\) and \(\mathrm{R}^{\mathrm{Y}}\) are independently selected from hydrogen, alkoxycarbonyl, alkyl, alkylcarbonyl, unsubstituted aryl, unsubstituted arylalkoxycarbonyl, unsubstituted arylalkyl, unsubstituted cycloalkyl, unsubstituted heterocyclyl, and (\(\mathrm{NR}^{X^{\prime}} \mathrm{R}^{\mathrm{Y}^{\prime}}\)) carbonyl, wherein \(\mathrm{R}^{X^{\prime}}\) and \(\mathrm{R}^{\mathrm{Y}^{\prime}}\) are independently selected from hydrogen and alkyl;
each \(\mathrm{V}^{24}\) is independently heterocycloalkyl, wherein the heterocycle is substituted with one or more groups independently selected from cycloalkyl, alkenyl, cycloalkylalkyl, cyanoalkyl, cycloalkoxy, hydroxyalkoxy, \(-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}, \mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}\), alkylsulfanyl, alkylsulfonyl, haloalkylsulfanyl, haloalkylsulfonyl, alkylsulfonylalkyl, alkylsulfonylalkyl, arylsulfanyl, arylsulfonyl, alkoxyalkyoxy, alkynyl, aryloxy, heteroaryloxy, alkylfulfonylamino;
\(\mathrm{R}^{\mathrm{X}}\) and \(\mathrm{R}^{\mathrm{Y}}\) are independently selected from hydrogen, alkoxycarbonyl, alkyl, alkylcarbonyl, unsubstituted aryl, unsubstituted arylalkoxycarbonyl, unsubstituted arylalkyl, unsubstituted cycloalkyl, unsubstituted heterocyclyl, and \(\left(\mathrm{NR}^{\mathrm{X}^{\prime}} \mathrm{R}^{\mathrm{Y}^{\prime}}\right.\)) carbonyl, wherein \(\mathrm{R}^{\mathrm{X}}\) and \(\mathrm{R}^{\mathrm{Y}^{\prime}}\) are independently selected from hydrogen and alkyl;
each \(\mathrm{T}^{1}\) is independently a spiro, branched or fused bicycloalkyl;
each \(\mathrm{T}^{2}\) is independently aryl;
each \(\mathrm{T}^{3}\) is independently heteroaryl;
each \(\mathrm{T}^{4}\) is independently arylalkyl;
each \(\mathrm{T}^{5}\) is independently haloalkyl;
each \(\mathrm{T}^{6}\) is independently heteroarylalkyl;
each \(\mathrm{T}^{7}\) is independently heterocycle; and
each \(\mathrm{T}^{8}\) is independently heterocycloalkyl.
In another specific embodiment the invention provides a compound of formula (I):
J-Y-J
wherein:
Y is \(-\mathrm{L}-\mathrm{L}-,-\mathrm{M}-\mathrm{W}-\mathrm{M}-\) or \(\mathrm{Y}^{\mathrm{y}}\);
J is T-P-, -P-T or \(-\mathrm{J}^{\mathrm{m}}\);
W is a bond or \(-\mathrm{W}^{\mathrm{r}}\)-;
L is -M-A-, -A-M-, or \(-L^{n}\);
T is \(\mathrm{R9}\)-Z-, \(-\mathrm{Z}-\mathrm{R} 9\), or \(-\mathrm{T}^{\mathrm{p}}\);

R9 is E-V-, or \(-V-E\), or \(-R 9^{9}\);
each \(A\) is selected from \(-A^{5}\);
each \(M\) is selected from \(-M^{t}\);
each \(P\) is selected from - \(P^{u}\);
each \(Z\) is selected from \(-Z^{V}\);
each \(V\) is selected from \(-V^{w}\);
each \(E\) is selected from \(-E^{\mathbf{x}}\);
each \(m\) is 1 ;
each n is \(0,1,2,3,4,5,6,7,9\), or 10 ;
each \(p\) is \(1,2,3,4,5,6,7\), or 8 ;
each \(q\) is \(0,1,2\), or 3 ;
each \(r\) is \(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19\), or 20 ;
each \(s\) is \(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18\), or 21 ;
each \(t\) is \(0,1,2,3,4,5,6,7,8,9,10\), or 11 ;
each \(u\) is \(0,1,2,3,4,5,6,7,8,10,11,12,13\), or 14 ;
each \(v\) is \(0,1,2,3,4,5\), or 6 ;
each \(w\) is \(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20\), or 21 ;
each x is 0 or 1 ;
each y is 0,1 , or 2 ;
wherein the sum of \(m, n, p, q, r, s, t, u, v, w, x\), and \(y\) is not \(0 ; P\) is connected to \(M, L\), or \(\mathrm{Y}^{\mathrm{y}} ; \mathrm{A}\) is connected to A or \(\mathrm{L} ; \mathrm{M}\) is connected to P or \(\mathrm{J} ; \mathrm{Z}\) is connected to \(\mathrm{P} ; \mathrm{V}\) is connected to Z ; and when \(W\) is a bond \(M\) is connected to \(M\);
each \(\mathrm{Y}^{1}\) is independently:
a fused nine-ring system with up to thirty-five atoms that may be fully aromatic or partially saturated and contains atoms selected from \(\mathrm{C}, \mathrm{N}, \mathrm{O}\), and S , and which ring system is optionally substituted with one or more groups independently selected from \(H\), oxo, \(R^{A 1}\) and \(R^{A 3}\);
each \(Y^{2}\) is independently:
a fused five to eight ring system with up to thirty-two atoms that may be fully aromatic or partially saturated and contains atoms selected from \(\mathrm{C}, \mathrm{N}, \mathrm{O}\), and S , and which ring system is optionally substituted with one or more groups independently selected from \(H, o x o, R^{A 1}\) and \(\mathrm{R}^{\mathrm{A3} \text {; }}\)
each \(\mathrm{J}^{1}\) is independently a fused bicyclic saturated, partially unsaturated, or aromatic heterocyclic ring system that is substituted with one or more \(-\mathrm{N}\left(\mathrm{R}^{\mathrm{L7}}\right) \mathrm{C}(=\mathrm{O}) \mathrm{OR}^{\mathrm{L7}}\), and that is optionally substituted with one or more groups independently selected from oxo, halo, \(-\mathrm{R}^{\mathrm{L7}},-\mathrm{OR}\) \({ }^{\mathrm{L} 7},-\mathrm{SR}^{\mathrm{L7}},-\mathrm{CF}_{3},-\mathrm{CCl}_{3},-\mathrm{OCF}_{3},-\mathrm{CN},-\mathrm{NO}_{2},-\mathrm{N}\left(\mathrm{R}^{\mathrm{L7}}\right) \mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7}},-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7}},-\mathrm{OC}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7}}\), \(-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{\mathrm{L7}},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{L7}},-\mathrm{S}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7}},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{L7}},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{L7}},-\mathrm{OS}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{L} 7},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}\) \({ }^{\mathrm{L7}}\), alkoxyalkyl, arylalkoxycarbonyl, halo, haloalkyl, hydroxyalkyl, \(-N R^{a} R^{b},\left(N R^{a} R^{b}\right)\) alkyl, and (\(\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\)) carbonyl;
each \(R^{\mathrm{L7}}\) is independently -H , alkyl, aryl, arylalkyl, or heterocycle;
\(R^{a}\) and \(R^{b}\) are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl;
each \(L^{0}\) is independently:

wherein:
each \(R^{\mathrm{L} 2}\) is independently selected from hydrogen, alkenyl, alkoxy, alkyl, halo, and haloalkyl; and each aa is independently \(1,2,3\), or 4 ;
each \(L^{1}\) is independently:

wherein:
each \(\mathrm{R}^{\mathrm{L} 2}\) is independently selected from hydrogen, alkenyl, alkoxy, alkyl, halo, and haloalkyl;
each \(\mathrm{R}^{\mathrm{L} 3}\) is independently selected from cyano, nitro, \(\mathrm{SOR}^{4}, \mathrm{SO}_{2} \mathrm{R}^{4}\), -alkylSO \(\mathrm{R}_{2} \mathrm{R}^{4}\), haloalkoxy, cyanoalkyl, \(\mathrm{NR}^{4} \mathrm{SO}_{2} \mathrm{R}^{4}\), cycloalkyl, (halo)cycloalkyl, heterocycle, (cycloalkyl)alkyl, (heterocycle)alkyl, wherein each alkyl, heterocycle and cycloalkyl is optionally substituted with one or more halo; and
each \(R^{4}\) is independently selected from \(H\), alkyl, haloalkyl, aryl, and arylalkyl; each bb is \(0,1,2,3\), or 4 ; each aa is \(1,2,3\), or 4 ; and the sum of bb and aa is 1,2 , 3 , or 4;
each \(L^{2}\) is independently:

wherein:
the phenyl ring shown in \(\mathrm{L}^{2}\) is optionally substituted with one or more groups independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, formyl, halo, haloalkyl, hydroxy, hydroxyalkyl, \(-\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}},\left(\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\right)\) alkyl, \(\left(\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\right.\)) carbonyl, cyano, nitro, \(\mathrm{SOR}^{4}, \mathrm{SO}_{2} \mathrm{R}^{4}\), -alkylSO \(\mathrm{R}^{4}\), haloalkoxy, cyanoalkyl, \(\mathrm{NR}^{4} \mathrm{SO}_{2} \mathrm{R}^{4}\), cycloalkyl, (halo)cycloalkyl, heterocycle, (cycloalkyl)alkyl, (heterocycle)alkyl, wherein each alkyl, heterocycle and cycloalkyl is optionally substituted with one or more halo; each \(\mathrm{R}^{\mathrm{L4}}\) is independently - H , alkyl, aryl, arylalkyl, or heterocycle;
each \(\mathrm{R}^{4}\) is independently selected from H , alkyl, haloalkyl, aryl, and arylalkyl; \(R^{a}\) and \(R^{b}\) are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl; and
each \(\mathrm{H}^{1}\) is a 5 membered saturated, partially unsaturated, or aromatic ring comprising one or more heteroatoms;
each \(L^{3}\) is independently a fused-bicyclic saturated, partially unsaturated, or aromatic heterocyclic ring system that is optionally substituted with one or more groups independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, formyl, halo, haloalkyl, hydroxy, hydroxyalkyl, \(-\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}},\left(\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\right)\) alkyl, (\(\left(\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\right)\) carbonyl, cyano, nitro, \(\mathrm{SOR}^{4}, \mathrm{SO}_{2} \mathrm{R}^{4}\), -alkylSO \(\mathrm{R}_{2} \mathrm{R}^{4}\), haloalkoxy, cyanoalkyl, \(\mathrm{NR}^{4} \mathrm{SO}_{2} \mathrm{R}^{4}\), cycloalkyl, (halo)cycloalkyl, heterocycle, (cycloalkyl)alkyl, (heterocycle)alkyl, wherein each alkyl, heterocycle and cycloalkyl is optionally substituted with one or more halo;
each \(R^{4}\) is independently selected from \(H\), alkyl, haloalkyl, aryl, and arylalkyl; and \(R^{a}\) and \(R^{b}\) are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl;
each \(L^{4}\) is independently a fused-tricyclic saturated, partially unsaturated, or aromatic heterocyclic ring system that is optionally substituted with one or more groups independently selected from oxo, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, formyl, halo, haloalkyl, hydroxy, hydroxyalkyl, \(-\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}},\left(\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\right)\) alkyl, \(\left(\mathrm{NR}^{a} \mathrm{R}^{\mathrm{b}}\right)\) carbonyl, cyano, nitro, \(\mathrm{SOR}^{4}, \mathrm{SO}_{2} \mathrm{R}^{4}\), -alkylSO \(\mathrm{R}^{4}\), haloalkoxy, cyanoalkyl, \(\mathrm{NR}^{4} \mathrm{SO}_{2} \mathrm{R}^{4}\), cycloalkyl, (halo)cycloalkyl, heterocycle, (cycloalkyl)alkyl, (heterocycle)alkyl, wherein each alkyl, heterocycle and cycloalkyl is optionally substituted with one or more halo;
each \(R^{4}\) is independently selected from \(H\), alkyl, haloalkyl, aryl, and arylalkyl; and \(R^{a}\) and \(R^{b}\) are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl;
each \(L^{5}\) is independently a \(-C R=C R\)-fusedbicyclic saturated, partially unsaturated, or aromatic heterocyclic ring system that is optionally substituted with one or more groups independently selected from oxo, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, formyl, halo, haloalkyl, hydroxy, hydroxyalkyl, \(-\mathrm{NR}^{a} \mathrm{R}^{b},\left(\mathrm{NR}^{a} \mathrm{R}^{b}\right)\) alkyl, \(\left(N R^{a} R^{b}\right)\) carbonyl, cyano, nitro, \(\mathrm{SOR}^{4}, \mathrm{SO}_{2} \mathrm{R}^{4}\), -alkylSO \(2 \mathrm{R}^{4}\), haloalkoxy, cyanoalkyl, \(\mathrm{NR}^{4} \mathrm{SO}_{2} \mathrm{R}^{4}\), cycloalkyl, (halo)cycloalkyl, heterocycle, (cycloalkyl)alkyl, (heterocycle)alkyl, wherein each alkyl, heterocycle and cycloalkyl is optionally substituted with one or more halo;
each \(R\) is independently selected from \(H\) or alkyl;
each \(R^{4}\) is independently selected from \(H\), alkyl, haloalkyl, aryl, and arylalkyl; and
\(R^{a}\) and \(R^{b}\) are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl;
each \(\mathrm{L}^{6}\) is independently a \(-\mathrm{CR}=\mathrm{CR}\)-fused-tricyclic saturated, partially unsaturated, or aromatic heterocyclic ring system that is optionally substituted with one or more groups independently selected from oxo, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, formyl, halo, haloalkyl, hydroxy, hydroxyalkyl, \(-\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}},\left(\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\right)\) alkyl, \(\left(\mathrm{NR}^{a} \mathrm{R}^{b}\right)\) carbonyl, cyano, nitro, \(\mathrm{SOR}^{4}, \mathrm{SO}_{2} \mathrm{R}^{4}\), -alkylSO \(\mathrm{R}^{4}\), haloalkoxy, cyanoalkyl, \(\mathrm{NR}^{4} \mathrm{SO}_{2} \mathrm{R}^{4}\), cycloalkyl, (halo)cycloalkyl, heterocycle, (cycloalkyl)alkyl, (heterocycle)alkyl, wherein each alkyl, heterocycle and cycloalkyl is optionally substituted with one or more halo;
each R is independently selected from H or alkyl;
each \(R^{4}\) is independently selected from \(H\), alkyl, haloalkyl, aryl, and arylalkyl; and
\(R^{a}\) and \(R^{b}\) are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl;
each \(\mathrm{L}^{7}\) is independently:

wherein:
each \(\mathrm{H}^{1.1}\) is independently a fused-bicyclic saturated, partially unsaturated, or aromatic heterocyclic ring system that is optionally substituted with one or more \(R^{2}\);
each \(\mathrm{R}^{2}\) is independently selected from halo, \(-\mathrm{R}^{\mathrm{L7}},-\mathrm{OR}^{\mathrm{L7}},-\mathrm{SR}^{\mathrm{L7}},-\mathrm{N}\left(\mathrm{R}^{\mathrm{L7}}\right)_{2},-\mathrm{CF}_{3}\), \(-\mathrm{CCl}_{3},-\mathrm{OCF}_{3},-\mathrm{CN},-\mathrm{NO}_{2},-\mathrm{N}\left(\mathrm{R}^{\mathrm{L7}}\right) \mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7}},-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7}},-\mathrm{OC}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7}},-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{\mathrm{L7}}\), \(-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{L7}},-\mathrm{S}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7}},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{L7}},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{L7}},-\mathrm{OS}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{L7} 7}\), and \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}^{\mathrm{L7}} ;\)
each \(\mathrm{R}^{\mathrm{L7}}\) is independently - H , alkyl, aryl, arylalkyl, or heterocycle; and each aa is independently \(1,2,3\), or 4 ;
each \(L^{9}\) is independently a fused-tetracyclic saturated, partially unsaturated, or aromatic heterocyclic ring system that is optionally substituted with one or more groups independently selected from oxo, halo, \(-\mathrm{R}^{\mathrm{L7}},-\mathrm{OR}^{\mathrm{L7}},-\mathrm{SR}^{\mathrm{L7}},-\mathrm{CF}_{3},-\mathrm{CCl}_{3},-\mathrm{OCF}_{3},-\mathrm{CN},-\mathrm{NO}_{2},-\mathrm{N}\left(\mathrm{R}^{\mathrm{L} 7}\right) \mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7}}\), \(-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7}},-\mathrm{OC}(=\mathrm{O}) \mathrm{R}^{\mathrm{L} 7},-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{\mathrm{L} 7},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{L} 7},-\mathrm{S}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7}},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{L} 7},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{L} 7},-\) \(\mathrm{OS}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{L} 7},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}^{\mathrm{L7}}\), alkoxyalkyl, arylalkoxycarbonyl, halo, haloalkyl, hydroxyalkyl, \(-N R^{a}{ }^{b}\), (\(\left.N R^{a} R^{b}\right)\) alkyl, and (NR \(\left.R^{a}\right)^{b}\) carbonyl;
each \(R^{L 7}\) is independently \(-H\), alkyl, aryl, arylalkyl, or heterocycle;
\(R^{a}\) and \(R^{b}\) are each independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl;
each \(L^{10}\) is independently a fused-pentacyclic saturated, partially unsaturated, or aromatic heterocyclic ring system that is optionally substituted with one or more groups independently selected from oxo, halo, \(-\mathrm{R}^{\mathrm{L7}},-\mathrm{OR}^{\mathrm{L7}},-\mathrm{SR}^{\mathrm{L7}},-\mathrm{CF}_{3},-\mathrm{CCl}_{3},-\mathrm{OCF}_{3},-\mathrm{CN},-\mathrm{NO}_{2},-\mathrm{N}\left(\mathrm{R}^{\mathrm{L} 7}\right) \mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7}}\), \(-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{L} 7},-\mathrm{OC}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7}},-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{\mathrm{L} 7},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{L} 7},-\mathrm{S}(=\mathrm{O}) \mathrm{R}^{\mathrm{L} 7},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{L} 7},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{L7}},-\) \(\mathrm{OS}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{L} 7},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}^{\mathrm{L} 7}\), alkoxyalkyl, arylalkoxycarbonyl, halo, haloalkyl, hydroxyalkyl, \(-N R^{a}{ }^{b}\), (\(N R^{a} R^{b}\))alkyl, and (NR \(R^{a} R^{b}\))carbonyl;
each \(\mathrm{R}^{\mathrm{L} .7}\) is independently -H , alkyl, aryl, arylalkyl, or heterocycle;
\(R^{a}\) and \(R^{b}\) are each independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl;
each \(L^{11}\) is independently a six-ring fused saturated, partially unsaturated, or aromatic heterocyclic ring system that is optionally substituted with one or more groups independently selected from oxo, halo, \(-\mathrm{R}^{\mathrm{L} 7},-\mathrm{OR}^{\mathrm{L} 7},-\mathrm{SR}^{\mathrm{L} 7},-\mathrm{CF}_{3},-\mathrm{CCl}_{3},-\mathrm{OCF}_{3},-\mathrm{CN},-\mathrm{NO}_{2},-\mathrm{N}\left(\mathrm{R}^{\mathrm{L} 7}\right) \mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7}}\), \(-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{L} 7},-\mathrm{OC}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7}},-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{\mathrm{L7}},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{L7}},-\mathrm{S}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7}},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{L7}},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{L} 7},-\) \(\mathrm{OS}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{L} 7},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}^{\mathrm{L7}}\), alkoxyalkyl, arylalkoxycarbonyl, halo, haloalkyl, hydroxyalkyl, \(-N R^{a}{ }^{b}\), (\(N R^{a} R^{b}\))alkyl, and (\(\mathrm{NR}^{a} \mathrm{R}^{\mathrm{b}}\)) carbonyl;
each \(\mathrm{R}^{\mathrm{L} 7}\) is independently -H, alkyl, aryl, arylalkyl, or heterocycle;
\(R^{a}\) and \(R^{b}\) are each independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl;
each \(R 9^{0}\) is independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, alkyl, alkylcarbonylalkyl, aryl, arylalkenyl, arylalkoxy, arylalkyl, aryloxyalkyl, cycloalkyl, (cycloalkyl)alkenyl, (cycloalkyl)alkyl, cycloalkyloxyalkyl, haloalkyl, heterocyclyl, heterocyclylalkenyl, heterocyclylalkoxy, heterocyclylalkyl, heterocyclyloxyalkyl,

\(R^{c}\) and \(R^{d}\) are independently selected from hydrogen, alkenyloxycarbonyl, alkoxyalkylcarbonyl, alkoxycarbonyl, alkyl, alkylcarbonyl, alkylsulfonyl, aryl, arylalkoxycarbonyl, arylalkyl, arylalkylcarbonyl, arylcarbonyl, aryloxycarbonyl, arylsulfonyl, cycloalkyl, cycloalkylsulfonyl, formyl, haloalkoxycarbonyl, heterocyclyl, heterocyclylalkoxycarbonyl, heterocyclylalkyl, heterocyclylalkylcarbonyl, heterocyclylcarbonyl, heterocyclyloxycarbonyl, hydroxyalkylcarbonyl, (\(\mathrm{NR}^{\mathrm{e}} \mathrm{R}^{\mathrm{f}}\))alkyl, (\(\mathrm{NR}^{e} \mathrm{R}^{\mathrm{f}}\))alkylcarbonyl, (\(\mathrm{NR}^{e} \mathrm{R}^{f}\))carbonyl, (\(\mathrm{NR}^{e} \mathrm{R}^{f}\)) sulfonyl, \(-\mathrm{C}(\mathrm{NCN}) \mathrm{OR}\) ', and - \(\mathrm{C}(\mathrm{NCN}) \mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}\), wherein \(\mathrm{R}^{\prime}\) is selected from alkyl and unsubstituted phenyl, and wherein the alkyl part of the arylalkyl, the arylalkylcarbonyl, the heterocyclylalkyl, and the heterocyclylalkylcarbonyl are further optionally substituted with one - \(\mathrm{NR}{ }^{\mathrm{e}} \mathrm{R}^{\mathrm{f}}\) group; and wherein the aryl, the aryl part of the arylalkoxycarbonyl, the arylalkyl, the arylalkylcarbonyl, the arylcarbonyl, the aryloxycarbonyl, and the arylsulfonyl, the heterocyclyl, and the heterocyclyl part of the heterocyclylalkoxycarbonyl, the heterocyclylalkyl, the heterocyclylalkylcarbonyl, the heterocyclylcarbonyl, and the heterocyclyloxycarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro;
\[
\mathrm{R}^{\mathrm{X}} \text { and } \mathrm{R}^{\mathrm{Y}} \text { are independently selected from hydrogen, alkoxycarbonyl, alkyl, }
\] alkylcarbonyl, unsubstituted aryl, unsubstituted arylalkoxycarbonyl, unsubstituted arylalkyl, unsubstituted cycloalkyl, unsubstituted heterocyclyl, and (\(\mathrm{NR}^{\mathrm{X}^{\prime}} \mathrm{R}^{\mathrm{Y}^{\prime}}\)) carbonyl, wherein \(\mathrm{R}^{\mathrm{X}}\) and \(\mathrm{R}^{\mathrm{Y}^{\prime}}\) are independently selected from hydrogen and alkyl;
each \(\mathrm{R9}^{1}\) is independently \(-\mathrm{N}\left(\mathrm{R}^{99}\right)-\mathrm{NHC}(=0) \mathrm{O}-\mathrm{R}^{9 b}\), wherein each \(\mathrm{R}^{9 \mathrm{am}}\) is independently arylalkyl, alkyl, alkenyl, alkynyl, aryl, arylalkyl, arylalkenyl, arylalkoxy, halocycloalkyl, (cycloalkyl)alkenyl, (cycloalkyl)alkoxy, alkylSO \({ }_{2}\) alkyl, cycloalkylalkylSO \({ }_{2}\) alkyl, cyanoalkyl, haloalkyl, cycloalkylalkyl, cycloalkyl, alkoxyalkyl, alkoxyalkylcarbonylalkyl, alkoxycarbonylalkyl, alkylsulfanylalkyl, aryalkoxyalkylcarbonylalkyl, carboxyalkyl, heterocyclylalkyl, heterocyclylcarbonylalkyl, hydroxyalkyl, NRRCOalkyl, wherein each R is independently selected from hydrogen and alkyl;
and where in arylalkyl the alkyl can be substituted with up to three aryl groups, and the alkyl part of the arylalkyl is further optionally substituted with one or two additional groups
independently selected from alkoxy, alkyocarbonyloxy, halo, haloalkoxy, haloalkyl, heterocyclyl, hydroxy;
and the aryl part can be substituted with \(1,2,3,4\), or 5 substituents independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, alkylcarbonyl, a second aryl group, arylalkoxy, arylalkyl, arylcarbonyl, cyano, halo, haloalkoxy, haloalkyl, heterocyclyl, heterocyclylalkyl, heterocyclylcarbonyl, hydroxy, hydroxyalkyl, nitro, \(-\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}},-\) \(\left(N R^{X}{ }^{\mathrm{Y}}\right.\)) alkyl, oxo, and \(-\mathrm{P}(\mathrm{O}) \mathrm{OR}_{2}\), wherein each R is independently selected from hydrogen and alkyl; and wherein the alkyl part of the arylalkyl and the heterocyclylalkyl are unsubstituted and wherein the second aryl group, the aryl part of the arylalkyl, the aryl part of the arylcarbonyl, the heterocyclyl, and the heterocyclyl part of the heterocyclylalkyl and the heterocyclylcarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro;
and the heterocyclyl can be substituted with \(1,2,3,4\), or 5 substituents independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylcarbonyl, cyano, halo, haloalkoxy, haloalkyl, a second heterocyclyl group, heterocyclylalkyl, heterocyclylcarbonyl, hydroxy, hydroxyalkyl, nitro, \(-\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}},-\left(\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}\right.\))alkyl, and oxo, wherein the alkyl part of the arylalkyl and the heterocyclylalkyl are unsubstituted and wherein the aryl, the aryl part of the arylalkyl; the aryl part of the arylcarbonyl, the second heterocyclyl group, and the heterocyclyl part of the heterocyclylalkyl and the heterocyclylcarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro; \(\mathrm{R}^{9 \mathrm{~b}}\) is independently H , alkyl, aryl, haloalkyl, or arylalkyl;
each \(R 9^{2}\) is independently \(-N\left(R^{9 a}\right)-N H C(=O) N{ }^{9 b}{ }_{2}\); wherein each \(\mathrm{R}^{9 \mathrm{a}}\) is independently arylalkyl, alkyl, alkenyl, alkynyl, aryl, arylalkyl, arylalkenyl, arylalkoxy, halocycloalkyl, (cycloalkyl)alkenyl, (cycloalkyl)alkoxy, alkylSO2alkyl, cycloalkylalkylSO2alkyl, cyanoalkyl, haloalkyl, cycloalkylalkyl, cycloalkyl, alkoxyalkyl, alkoxyalkylcarbonylalkyl, alkoxycarbonylalkyl, alkylsulfanylalkyl, aryalkoxyalkylcarbonylalkyl, carboxyalkyl, heterocyclylalkyl, heterocyclylcarbonylalkyl, hydroxyalkyl, NRRCOalkyl, wherein each R is independently selected from hydrogen and alkyl;
and where in arylalkyl the alkyl can be substituted with up to three aryl groups, and the alkyl part of the arylalkyl is further optionally substituted with one or two additional groups independently selected from alkoxy, alkyocarbonyloxy, halo, haloalkoxy, haloalkyl, heterocyclyl, hydroxy;
and the aryl part can be substituted with \(1,2,3,4\), or 5 substituents independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, alkylcarbonyl, a second aryl group, arylalkoxy, arylalkyl, arylcarbonyl, cyano, halo, haloalkoxy, haloalkyl, heterocyclyl, heterocyclylalkyl, heterocyclylcarbonyl, hydroxy, hydroxyalkyl, nitro, \(-\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}},-\) \(\left(N R^{X} R^{Y}\right.\))alkyl, oxo, and \(-P(O) O R_{2}\), wherein each \(R\) is independently selected from hydrogen and alkyl; and wherein the alkyl part of the arylalkyl and the heterocyclylalkyl are unsubstituted and wherein the second aryl group, the aryl part of the arylalkyl, the aryl part of the arylcarbonyl, the heterocyclyl, and the heterocyclyl part of the heterocyclylalkyl and the heterocyclylcarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro;
and the heterocyclyl can be substituted with \(1,2,3,4\), or 5 substituents independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylcarbonyl, cyano, halo, haloalkoxy, haloalkyl, a second heterocyclyl group, heterocyclylalkyl, heterocyclylcarbonyl, hydroxy, hydroxyalkyl, nitro, \(-\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}},-\left(\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}\right)\) alkyl, and oxo, wherein the alkyl part of the arylalkyl and the heterocyclylalkyl are unsubstituted and wherein the aryl, the aryl part of the arylalkyl; the aryl part of the arylcarbonyl, the second heterocyclyl group, and the heterocyclyl part of the heterocyclylalkyl and the heterocyclylcarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro; \(\mathrm{R}^{9 \mathrm{~b}}\) is independently H , alkyl, aryl, haloalkyl, or arylalkyl;
each \(R 9^{3}\) is independently \(-\mathrm{N}\left(\mathrm{R}^{9 \mathrm{a}}\right)-\mathrm{NHC}(=0) \mathrm{R}^{9 b}\), wherein each \(\mathrm{R}^{9 \mathrm{a}}\) is independently arylalkyl, alkyl, alkenyl, alkynyl, aryl, arylalkyl, arylalkenyl, arylalkoxy, halocycloalkyl, (cycloalkyl)alkenyl, (cycloalkyl)alkoxy, alkylSO \({ }_{2}\) alkyl, cycloalkylalkylSO \({ }_{2}\) alkyl, cyanoalkyl, haloalkyl cycloalkylalkyl, cycloalkyl, alkoxyalkyl, alkoxyalkylcarbonylalkyl, alkoxycarbonylalkyl, alkylsulfanylalkyl, aryalkoxyalkylcarbonylalkyl, carboxyalkyl, heterocyclylalkyl, heterocyclylcarbonylalkyl, hydroxyalkyl, NRRCOalkyl, wherein each R is independently selected from H or alkyl;
and where in arylalkyl the alkyl can be substituted with up to three aryl groups, and the alkyl part of the arylalkyl is further optionally substituted with one or two additional groups independently selected from alkoxy, alkyocarbonyloxy, halo, haloalkoxy, haloalkyl, heterocyclyl, hydroxy;
and the aryl part can be substituted with \(1,2,3,4\), or 5 substituents independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, alkylcarbonyl, a second aryl group, arylalkoxy, arylalkyl, arylcarbonyl, cyano, halo, haloalkoxy, haloalkyl, heterocyclyl,
heterocyclylalkyl, heterocyclylcarbonyl, hydroxy, hydroxyalkyl, nitro, \(-\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathbf{Y}}\), \(\left(N R^{X} R^{Y}\right.\))alkyl, oxo, and \(-\mathrm{P}(\mathrm{O}) O R_{2}\), wherein each \(R\) is independently selected from hydrogen and alkyl; and wherein the alkyl part of the arylalkyl and the heterocyclylalkyl are unsubstituted and wherein the second aryl group, the aryl part of the arylalkyl, the aryl part of the arylcarbonyl, the heterocyclyl, and the heterocyclyl part of the heterocyclylalkyl and the heterocyclylcarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro;
and the heterocyclyl can be substituted with \(1,2,3,4\), or 5 substituents independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylcarbonyl, cyano, halo, haloalkoxy, haloalkyl, a second heterocyclyl group, heterocyclylalkyl, heterocyclylcarbonyl, hydroxy, hydroxyalkyl, nitro, \(-\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}},-\left(\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}\right.\))alkyl, and oxo, wherein the alkyl part of the arylalkyl and the heterocyclylalkyl are unsubstituted and wherein the aryl, the aryl part of the arylalkyl; the aryl part of the arylcarbonyl, the second heterocyclyl group, and the heterocyclyl part of the heterocyclylalkyl and the heterocyclylcarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro; \(\mathrm{R}^{9 \mathrm{~b}}\) is independently H , alkyl, aryl, haloalkyl, or arylalkyl;
each \(A^{0}\) is independently:

wherein:
each \(R^{A 3}\) is independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, formyl, halo, haloalkyl, hydroxy, hydroxyalkyl, \(-\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\), \(\left(N R^{a} R^{b}\right.\))alkyl, and (\(N R^{a} R^{b}\))carbonyl; \(R^{a}\) and \(R^{b}\) are each independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl; and each
bb is independently \(0,1,2,3\), or 4 ; or
each \(A^{0}\) is independently a six-membered heteroaromatic ring containing one, two, or three nitrogen atoms, which ring is optionally substituted with \(1,2,3\), or \(4 \mathrm{R}^{\mathrm{A3}}\) groups;
each \(A^{1}\) is independently:

wherein:
each \(\mathrm{R}^{\mathrm{Al}}\) is independently selected from cyano, nitro, \(\mathrm{SOR}^{4}, \mathrm{SO}_{2} \mathrm{R}^{4},-\) alkylSO \(2 \mathrm{R}^{4}\), haloalkoxy, cyanoalkyl, \(\mathrm{NR}^{4} \mathrm{SO}_{2} \mathrm{R}^{4}\), cycloalkyl, (halo)cycloalkyl, heterocycle, (cycloalkyl)alkyl, (heterocycle)alkyl, wherein each alkyl, heterocycle and cycloalkyl is optionally substituted with one or more halo; and
each \(\mathrm{R}^{4}\) is independently selected from \(H\), alkyl, haloalkyl, aryl, and arylalkyl; each cc is independently \(1,2,3\), or 4 ;
each \(A^{2}\) is independently:

wherein:
each \(\mathrm{R}^{\mathrm{Al}}\) is independently selected from cyano, nitro, \(\mathrm{SOR}^{4}, \mathrm{SO}_{2} \mathrm{R}^{4}\), -alkylSO \(\mathrm{S}_{2} \mathrm{R}^{4}\), haloalkoxy, cyanoalkyl, \(\mathrm{NR}^{4} \mathrm{SO}_{2} \mathrm{R}^{4}\), cycloalkyl, (halo)cycloalkyl, heterocycle, (cycloalkyl)alkyl, (heterocycle)alkyl, wherein each alkyl, heterocycle and cycloalkyl is optionally substituted with one or more halo;
each \(R^{A 3}\) is independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, formyl, halo, haloalkyl, hydroxy, hydroxyalkyl, \(-\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\), \(\left(N R^{a} R^{b}\right)\) alkyl, and \(\left(N R^{a} R^{b}\right)\) carbonyl; \(R^{a}\) and \(R^{b}\) are each independently selected from the group
consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl;
each \(R^{4}\) is independently selected from H, alkyl, haloalkyl, aryl, and arylalkyl;
\(R^{a}\) and \(R^{b}\) are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl;
each bb is \(0,1,2,3\), or 4 ; each \(\operatorname{cc}\) is \(1,2,3\), or 4 ; and the sum of \(b b\) and \(c c\) is \(1,2,3\), or 4 ;
each \(\mathrm{A}^{3}\) is independently a six-membered heteroaromatic ring containing one, two, or three nitrogen atoms, which ring is substituted with one or more \(R^{A l}\) groups, and which ring is optionally substituted with one or more \(\mathrm{R}^{\mathrm{A3}}\) groups;
each \(A^{4}\) is independently:

wherein:
each \(\mathrm{H}^{5}\) is independently a phenyl ring or a six-membered heteroaromatic ring, which \(\mathrm{H}^{5}\) is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\); and each \(X^{A}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=0), \mathrm{C}(=0) \mathrm{NR}\), \(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each \(A^{5}\) is independently:

wherein:
each \(\mathrm{H}^{6}\) is independently a phenyl ring or a six-membered heteroaromatic ring, which \(\mathrm{H}^{6}\) is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\); and each \(X^{A}\) is independently \(\mathrm{O}, \mathrm{NR}\), \(\mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=O), \mathrm{C}(=0) \mathrm{NR}\), \(C R=C R, N R C(=O) N R\), allenyl, alkynyl, or absent; provided that at least one \(X^{A}\) is present and each \(R\) is independently selected from H or alkyl;
each \(A^{6}\) is independently:
\[
\xi_{\xi} x^{A}-x^{A}-x^{A}-\xi
\]
wherein:
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}\), \(C R=C R\), allenyl, alkynyl, or absent; provided that at least one \(X^{A}\) is present and each \(R\) is independently selected from H or alkyl;
each \(A^{7}\) is independently:
\[
x_{\xi}^{\xi} x^{A}-H^{7}-X^{A}-\xi
\]
wherein:
each \(\mathrm{H}^{7}\) is independently a five-membered heteroaromatic ring, which \(\mathrm{H}^{7}\) is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\); and each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=0), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}\), \(C R=C R, N R C(=O) N R\), allenyl, alkynyl, or absent and each \(R\) is independently selected from \(H\) or alkyl;
each \(A^{8}\) is independently:

wherein:
each \(\mathrm{H}^{7}\) is independently a five-membered heteroaromatic ring, which \(\mathrm{H}^{7}\) is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\);
each \(\mathrm{H}^{8}\) is independently a phenyl ring, which is optionally substituted with one or more groups independently selected from \(R^{A l}\) and \(R^{A 3}\); and
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}\), \(C R=C R, N R C(=O) N R\), allenyl, alkynyl, or absent and each \(R\) is independently selected from \(H\) or alkyl;
each \(A^{9}\) is independently:
\[
\xi x^{A}-H^{7}-x^{A}-H^{7}-x^{A}-\xi
\]
wherein:
each \(\mathrm{H}^{7}\) is independently a five-membered heteroaromatic ring, which \(\mathrm{H}^{7}\) is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\); and each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=0) \mathrm{NR}\), \(C R=C R, N R C(=O) N R\), allenyl, alkynyl, or absent and each \(R\) is independently selected from \(H\) or alkyl;
each \(A^{10}\) is independently:

wherein:
each \(\mathrm{H}^{8}\) is independently a phenyl ring, which is optionally substituted with one or more groups independently selected from \(R^{A I}\) and \(R^{A 3}\);
each \(H^{9}\) is independently a six-membered heteroaromatic ring, which is
optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\); and
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}\),
\(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each \(A^{11}\) is independently:

wherein:
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}\), \(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each \(\mathrm{H}^{10}\) is independently a \(5-15\) carbon unsaturated, partially unsaturated or saturated bicyclic ring system that is optionally fused to an aryl, which \(\mathrm{H}^{10}\) is optionally substituted with one or more groups independently selected from oxo, alkoxy, alkoxyalkyl,
alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, formyl, halo, haloalkyl, hydroxy, hydroxyalkyl, \(-N R^{a} R^{b}\), (\(N R^{a} R^{b}\))alkyl, and \(\left(N R^{a} R^{b}\right.\))carbonyl, cyano, nitro, \(S O R^{4}, \mathrm{SO}_{2} R^{4}\), -alkylSO \({ }_{2} \mathrm{R}^{4}\), haloalkoxy, cyanoalkyl, \(\mathrm{NR}^{4} \mathrm{SO}_{2} \mathrm{R}^{4}\), cycloalkyl, (halo)cycloalkyl, heterocycle, (cycloalkyl)alkyl, and (heterocycle)alkyl, wherein each alkyl, heterocycle and cycloalkyl is optionally substituted with one or more halo; and each \(\mathrm{R}^{4}\) is independently selected from H , alkyl, haloalkyl, aryl, and arylalkyl;
each \(A^{12}\) is independently:

wherein:
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}\), \(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each \(\mathrm{H}^{11}\) is independently a \(5-15\) carbon unsaturated, partially unsaturated or saturated bicyclic ring system that contains one or more heteroatoms that is optionally fused to an aryl, which \(\mathrm{H}^{11}\) is optionally substituted with one or more groups independently selected from oxo, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, formyl, halo, haloalkyl, hydroxy, hydroxyalkyl, \(-\mathrm{NR}^{2} \mathrm{R}^{\mathrm{b}},\left(\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\right)\) alkyl, and \(\left(\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\right)\) carbonyl, cyano, nitro, \(\mathrm{SOR}^{4}, \mathrm{SO}_{2} \mathrm{R}^{4}\), -alkylSO \(\mathrm{R}_{2}{ }^{4}\), haloalkoxy, cyanoalkyl, \(\mathrm{NR}^{4} \mathrm{SO}_{2} \mathrm{R}^{4}\), cycloalkyl, (halo)cycloalkyl, heterocycle, (cycloalkyl)alkyl, and (heterocycle)alkyl, wherein each alkyl, heterocycle and cycloalkyl is optionally substituted with one or more halo; and
each \(R^{4}\) is independently selected from \(H\), alkyl, haloalkyl, aryl, and arylalkyl; and
each \(A^{13}\) is independently:

wherein:
each \(\mathrm{H}^{12}\) is independently a fused aromatic bicyclic carbocycle, which is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\); and
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=0), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=0) \mathrm{NR}\), \(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each \(A^{14}\) is independently:

wherein:
each \(\mathrm{H}^{13}\) is independently a fused aromatic bicyclic heterocycle that comprises at least one heteroatom in the ring system, which ring system is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\); and
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}\), \(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each \(A^{15}\) is independently:

wherein:
each \(\mathrm{H}^{14}\) is independently a fused unsaturated, partially unsaturated or saturated tricyclic carbocycle which is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\); and
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=0), \mathrm{NRC}(=0), \mathrm{C}(=0) \mathrm{NR}\), \(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each \(A^{16}\) is independently:

wherein:
each \(\mathrm{H}^{15}\) is independently a fused unsaturated, partially unsaturated or saturated tricyclic heterocycle that comprises at least one heteroatom in the ring system, which ring system is optionally substituted with one or more groups independently selected from \(R^{A I}\) and \(R^{A 3}\); and
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=0) \mathrm{NR}\), \(C R=C R, N R C(=O) N R\), allenyl, alkynyl, or absent and each \(R\) is independently selected from \(H\) or alkyl;
each \(A^{17}\) is independently:

wherein:
each \(\mathrm{H}^{16}\) is independently a fused bicyclic carbocyclic ring system wherein one ring is aromatic and another ring is partially or fully saturated, which ring system is optionally substituted with one or more groups independently selected from oxo, \(\mathrm{R}^{\mathrm{Al}}\) and \(\mathrm{R}^{\mathrm{A3}}\); and
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}\), \(C R=C R, N R C(=O) N R\), allenyl, alkynyl, or absent and each \(R\) is independently selected from \(H\) or alkyl;
each \(\mathrm{A}^{18}\) is independently:

wherein:
each \(\mathrm{H}^{17}\) is independently a fused bicyclic ring system comprising at least one heteroatom, wherein one ring is aromatic and another ring is partially or fully saturated, which ring system is optionally substituted with one or more groups independently selected from oxo, \(\mathrm{R}^{\mathrm{AI}}\) and \(\mathrm{R}^{\mathrm{A}}\); and
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}\), \(C R=C R, N R C(=O) N R\), allenyl, alkynyl, or absent and each \(R\) is independently selected from \(H\) or alkyl;
each \(A^{21}\) is independently:

wherein:
each \(\mathrm{H}^{40}\) is independently an anti-aromatic monocyclic or fused carbocyclic ring system, which carbocyclic ring system is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\); and
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=0) \mathrm{NR}\), \(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each \(W^{\prime}\) is independently \(-\mathrm{X}^{\mathrm{A}}\)-:
wherein:
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=0), \mathrm{NRC}(=0), \mathrm{C}(=0) \mathrm{NR}\), \(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each \(W^{2}\) is independently:
\[
\xi_{\xi}^{\xi} x^{A}-H^{20}-x^{A}-\xi_{\xi}^{\xi}
\]
wherein:
each \(\mathrm{H}^{20}\) is independently is independently a fused aromatic bicyclic carbocycle, which is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\); and
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}\), \(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each \(W^{3}\) is independently:

wherein:
each \(\mathrm{H}^{21}\) is independently a fused bicyclic carbocyclic ring system wherein one ring is aromatic and another ring is partially or fully saturated, which ring system is optionally substituted with one or more groups independently selected from oxo, \(\mathrm{R}^{\mathrm{Al}}\) and \(\mathrm{R}^{\mathrm{A3}}\); and
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}\), \(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each \(\mathrm{W}^{4}\) is independently:

wherein:
each \(\mathrm{H}^{22}\) is independently a fused aromatic bicyclic heterocycle that comprises at least one heteroatom in the ring system, which ring system is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\); and
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=0) \mathrm{NR}\), \(C R=C R, N R C(=0) N R\), allenyl, alkynyl, or absent and each \(R\) is independently selected from \(H\) or alkyl;
each \(W^{5}\) is independently:

wherein:
each \(\mathrm{H}^{23}\) is independently a fused bicyclic ring system comprising at least one heteroatom, wherein one ring is aromatic and another ring is partially or fully saturated, which ring system is optionally substituted with one or more groups independently selected from oxo, \(\mathrm{R}^{\mathrm{Al}}\) and \(\mathrm{R}^{\mathrm{A} 3}\); and
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=0), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=0) \mathrm{NR}\), \(C R=C R, N R C(=O) N R\), allenyl, alkynyl, or absent and each \(R\) is independently selected from H or alkyl;
each \(W^{6}\) is independently:
\[
\xi-x^{A}-H^{24}-x^{A}-\xi
\]
wherein:
each \(\mathrm{H}^{24}\) is independently a fused unsaturated, partially unsaturated or saturated tricyclic carbocycle, which is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\); and
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=0), \mathrm{NRC}(=0), \mathrm{C}(=0) \mathrm{NR}\), \(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each \(W^{7}\) is independently:

wherein:
each \(\mathrm{H}^{26}\) is independently a \(5-15\) carbon unsaturated, partially unsaturated or saturated bicyclic ring system which ring system is optionally substituted with one or more groups independently selected from oxo, \(\mathrm{R}^{\mathrm{Al}}\) and \(\mathrm{R}^{\mathrm{A}}\); and
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=0), \mathrm{NRC}(=0), \mathrm{C}(=0) \mathrm{NR}\), \(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each \(W^{8}\) is independently:

wherein:
each \(\mathrm{H}^{27}\) is independently a fused unsaturated, partially unsaturated or saturated tricyclic heterocycle that comprises at least one heteroatom in the ring system, which ring system is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\); and
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=0) \mathrm{NR}\), \(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each \(\mathrm{W}^{9}\) is independently:

wherein:
each \(\mathrm{H}^{29}\) is independently a \(5-15\) carbon unsaturated, partially unsaturated or saturated bicyclic ring system that contains one or more heteroatoms; and
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}\),
\(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each \(\mathrm{W}^{10}\) is independently \(-\mathrm{H}^{30}=\mathrm{C}=\mathrm{H}^{31}\) -
wherein each of \(-\mathrm{H}^{30}\) and \(\mathrm{H}^{31}\) is independently a saturated 6-membered heterocyclic ring comprising one or more heteroatoms, which ring is optionally substituted with oxo;
each \(\mathrm{W}^{11}\) is independently \(-\mathrm{H}^{32}=\mathrm{C}=\mathrm{H}^{33}\) -
wherein each of \(-\mathrm{H}^{32}\) and \(\mathrm{H}^{33}\) is independently a saturated 5 -membered heterocyclic ring comprising one or more heteroatoms, which ring is optionally substituted with oxo;
each \(\mathrm{W}^{12}\) is independently an anti-aromatic monocyclic or fused carbocyclic ring system, which carbocyclic ring system is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\);
each \(W^{13}\) is independently a phenyl ring that is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\);
each \(W^{14}\) is independently a 5 or 6 membered heteroaryl ring that is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\);
each \(W^{15}\) is independently a fused unsaturated, partially unsaturated or saturated tetracyclic carbocyclic ring, which ring system is optionally substituted with one or more groups independently selected from oxo, \(\mathrm{R}^{\mathrm{Al}}\) and \(\mathrm{R}^{\mathrm{A} 3}\);
each \(W^{16}\) is independently a fused unsaturated, partially unsaturated or saturated tetracyclic heterocycle that comprises at least one heteroatom in the ring system, which ring system is optionally substituted with one or more groups independently selected from oxo, \(R^{A 1}\) and \(R^{A 3}\);
each \(W^{17}\) is independently a fused unsaturated, partially unsaturated or saturated pentacyclic carbocyclic ring system, which ring system is optionally substituted with one or more groups independently selected from oxo, \(R^{A 1}\) and \(R^{A 3}\);
each \(W^{18}\) is independently a fused unsaturated, partially unsaturated or saturated pentacyclic heterocycle that comprises at least one heteroatom in the ring system, which ring system is optionally substituted with one or more groups independently selected from oxo, \(R^{A 1}\) and \(R^{A 3}\);
each \(W^{19}\) is independently a fused unsaturated, partially unsaturated or saturated hexacyclic carbocyclic ring system, which ring system is optionally substituted with one or more groups independently selected from oxo, \(\mathrm{R}^{\mathrm{Al}}\) and \(\mathrm{R}^{\mathrm{A3}}\);
each \(W^{20}\) is independently a fused unsaturated, partially unsaturated or saturated hexacyclic heterocycle that comprises at least one heteroatom in the ring system, which ring system is optionally substituted with one or more groups independently selected from oxo, \(R^{A 1}\) and \(R^{A 3}\);
each \(\mathrm{M}^{0}\) is independently a five membered heteroaryl group optionally substituted with one or more alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, haloalkyl, \(\left(\mathrm{NR}^{9} \mathrm{R}^{\mathrm{b}}\right)\) carbonyl and trialkylsilylalkoxyalkyl;
each \(\mathrm{M}^{1}\) is independently selected from \(-\mathrm{C}(=\mathrm{O}) \mathrm{NH}-,-\mathrm{C}(=\mathrm{O}) \mathrm{NH}-\mathrm{C}\left(\mathrm{R}^{\mathrm{M}}\right)_{2^{-}},-\mathrm{NHC}(=\mathrm{O})-\), \(-\mathrm{C}\left(\mathrm{R}^{\mathrm{M}}\right)_{2} \mathrm{NHC}(=\mathrm{O})-,-\mathrm{NHC}(=0) \mathrm{NR}^{\mathrm{M}},--\mathrm{NHC}(=\mathrm{O}) \mathrm{O}\); wherein each \(\mathrm{R}^{\mathrm{M}}\) is independently selected from H and alkyl;
each \(\mathrm{M}^{2}\) is independently a six-membered heteroaromatic ring, which is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\);
each \(\mathrm{M}^{3}\) is independently:

each \(\mathrm{M}^{4}\) is independently:

each \(\mathrm{M}^{5}\) is independently:

wherein the bond designated with --- is fused to a ring defined for \(P\);
each \(\mathrm{M}^{6}\) is independently a bicyclic bridged ring system comprising 5-15 atoms wherein at least one of the atoms is a heteroatom;
each \(\mathrm{M}^{7}\) is independently a pyrid-di-yl;
each \(\mathrm{M}^{8}\) is independently partially saturated or a saturated five-membered ring that comprises one or more heteroatoms and that is optionally substituted with one or two oxo;
each \(\mathrm{M}^{9}\) is independently a fused-bicyclic saturated, partially unsaturated, or aromatic heterocyclic ring system that is optionally substituted with one or more \(\mathrm{R}^{\mathrm{p} 11 \text {; }}\)
each \(\mathrm{M}^{10}\) is independently a five membered heteroaryl group;
each \(M^{11}\) is independently a fused-tricyclic saturated, partially unsaturated, or aromatic heterocyclic ring system that is optionally substituted with one or more oxo, halo, \(-\mathrm{R}^{\mathrm{M} 7},-\mathrm{OR}^{\mathrm{M7}}\), \(-\mathrm{SR}^{\mathrm{M} 7},-\mathrm{N}\left(\mathrm{R}^{\mathrm{M} 7}\right)_{2},-\mathrm{CF}_{3},-\mathrm{CCl}_{3},-\mathrm{OCF}_{3},-\mathrm{CN},-\mathrm{NO}_{2},-\mathrm{N}\left(\mathrm{R}^{\mathrm{M} 7}\right) \mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{M} 7},-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{M} 7},-\mathrm{OC}(=\mathrm{O}) \mathrm{R}\) \({ }^{\mathrm{M} 7},-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{\mathrm{M} 7},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{M} 7},-\mathrm{S}(=\mathrm{O}) \mathrm{R}^{\mathrm{M} 7},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{M} 7},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{M} 7},-\mathrm{OS}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{M} 7}\), or \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}^{\mathrm{M} 7}\);
each \(\mathrm{R}^{\mathrm{M} 7}\) is independently -H, alkyl, aryl, arylalkyl, or heterocycle;
each \(\mathrm{P}^{0}\) is independently:

or

wherein:
X is selected from \(\mathrm{O}, \mathrm{S}, \mathrm{S}(\mathrm{O}), \mathrm{SO}_{2}, \mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{P} 10}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{P} 10}\right)_{2}\); provided that when pn or pm is \(0, \mathrm{X}\) is selected from \(\mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{P} 10}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{P} 10}\right)_{2}\);
each \(R^{P 10}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-N R^{P a} R^{P b}\), wherein the alkyl can optionally form a fused threeto six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
each \(R^{P 5}\) and \(R^{P 6}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups; \(\mathrm{R}^{\mathrm{Pa}}\) and \(\mathrm{R}^{\mathrm{Pb}}\) are each independently H , alkyl, aryl, or arylalkyl; or \(\mathrm{R}^{\mathrm{Pa}}\) and \(\mathrm{R}^{\mathrm{Pb}}\) taken together with the atom to which they are attached form a heterocycle;
pq and ps are independently \(0,1,2,3\), or 4 ;
pm and pn are independently 0,1 , or 2 ;
po and pp are independently 1,2 , or 3 ;
\(\mathrm{R}^{\mathrm{P7}}\) and \(\mathrm{R}^{\mathrm{P8}}\) are each independently selected from hydrogen, alkenyl, alkoxyalkyl, alkyl, haloalkyl, and (\(N R^{P a} R^{P b}\))alkyl; or \(R^{P 7}\) and \(R^{P 8}\), together with the carbon atom to which they are attached, form a five or six membered saturated ring optionally containing one or two heteroatoms selected from \(\mathrm{NR}^{\mathrm{Pz}}, 0\), and S ; wherein \(\mathrm{R}^{\mathrm{Pz}}\) is selected from hydrogen and alkyl;
\(\mathrm{R}^{\mathrm{P9}}\) is selected from hydrogen and alkyl;
each \(P^{1}\) is independently:

wherein:
\(X\) is selected from \(\mathrm{O}, \mathrm{S}, \mathrm{S}(\mathrm{O}), \mathrm{SO}_{2}, \mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{Plo}}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{Pl0}}\right)_{2}\); provided that when pn is \(0, \mathrm{X}\) is selected from \(\mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{Pl0}}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{P} 10}\right)_{2}\);
each \(R^{P 10}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused threeto six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
at least one \(R^{P 11}\) is independently selected from cyano, alkylsulfonyl, arylsulfonyl, (\(\mathrm{NR}^{h} \mathrm{R}^{h}\))sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, (\(\mathrm{NR}^{h} \mathrm{R}^{\mathrm{h}}\))alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl, \(-\mathrm{NR}^{\mathrm{hh}} \mathrm{R}^{\mathrm{h}},\left(\mathrm{NR}^{\text {hh }} \mathrm{R}^{\mathrm{h}}\right)\) alkyl, (\(N R^{\text {hh }} \mathrm{R}^{h}\))carbonyl, wherein each \(\mathrm{R}^{\mathrm{h}}\) is independently -H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; and when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring; wherein each \(\mathrm{R}^{\mathrm{hh}}\) is independently aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl, (\(N R^{h} R^{h}\))sulfonyl, heteroarylsulfonyl, \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{h},-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{h}},-\mathrm{C}(=\mathrm{O}) N \mathrm{R}^{h} \mathrm{R}^{h}\); and the remaining \(\mathrm{R}^{\mathrm{PII}}\) are independently selected from \(\mathrm{R}^{\mathrm{P5}}\), cyano, alkylsulfonyl, arylsulfonyl,
(\(N R^{\text {h }} \mathrm{R}^{\text {h }}\))sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, (\(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\))alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl; wherein each \(\mathrm{R}^{\mathrm{h}}\) is independently - H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; and when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
ps is \(1,2,3\), or 4 ;
pn is 0,1 , or 2 ;
each \(\mathrm{P}^{2}\) is independently:

wherein:
each \(R^{P 12}\) is independently selected from \(R^{P 5}, R^{P 11},-C(=O) O R^{h}\), cyano, alkylsulfonyl, arylsulfonyl, (\(\left(\mathrm{R}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\right.\)) sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, \(\left(\mathrm{NR}^{h} \mathrm{R}^{\mathrm{h}}\right)\) alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl; wherein each \(\mathrm{R}^{\mathrm{h}}\) is independently -H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; and when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring; ps is \(1,2,3\), or 4 ;
pn is 0,1 , or 2 ;
each \(P^{3}\) is independently a ring of the formula:

wherein:
the ring is substituted with one or more oxo group;
each \(R^{P 13}\) is independently selected from \(R^{P 5}\), cyano, alkylsulfonyl, arylsulfonyl, (\(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\))sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, (\(\mathrm{NR}^{h} \mathrm{R}^{h}\))alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl; wherein each \(R^{\mathrm{h}}\) is independently -H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; and when two \(R^{h}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
ps is \(0,1,2,3\), or 4 ;
pn is 0,1 , or 2 ;
each \(\mathrm{P}^{4}\) is independently a ring of the formula:

wherein:
the ring is optionally substituted with one or more groups \(\mathrm{R}^{\mathrm{PI4}}\) that are independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(N R^{P a} R^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups; and where two groups \(\mathrm{R}^{\mathrm{P} 14}\) that are attached to the same carbon
when taken together with the carbon to which they are attached can form a 3-6 membered carbocyclic or heterocyclic ring;
pn is 0,1 , or 2 ;
each \(\mathrm{R}^{\mathrm{f}}\) is independently -H, alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl, \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}^{h} \mathrm{R}^{\mathrm{h}}\), \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{h}}, \mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{h}}, \mathrm{C}(=0) O \mathrm{R}^{\mathrm{h}},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\); each \(\mathrm{R}^{\mathrm{h}}\) is independently -H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; or when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
each \(P^{5}\) is independently a ring of the formula:

wherein:
the ring is optionally substituted with one or more groups \(\mathrm{R}^{\mathrm{P} 15}\) that are independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups; and where two groups \(\mathrm{R}^{\text {P15 }}\) that are attached to the same carbon when taken together with the carbon to which they are attached can form a 3-6 membered carbocyclic or heterocyclic ring;
pn is 0,1 , or 2 ;
Z is \(\mathrm{O}, \mathrm{S}, \mathrm{S}(=\mathrm{O}), \mathrm{S}(=\mathrm{O})_{2}\), or \(\mathrm{NR}^{\mathrm{f}}\);
each \(\mathrm{R}^{\mathrm{f}}\) is independently -H, alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl, \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}^{h} \mathrm{R}^{\mathrm{h}}\), \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{h}}, \mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{h}}, \mathrm{C}(=\mathrm{O}) O \mathrm{R}^{\mathrm{h}},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\); each \(\mathrm{R}^{\mathrm{h}}\) is independently -H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl,
dialkylaminoalkyl, sulfonylalkyl; or when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
each \(P^{6}\) is independently a ring of the formula:

wherein:
the ring is substituted with one or more oxo and is optionally substituted with one or more groups \(\mathrm{R}^{\mathrm{P16}}\) that are independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
\[
\begin{aligned}
& \mathrm{Z} \text { is } \mathrm{O}, \mathrm{~S}, \mathrm{~S}(=\mathrm{O}), \mathrm{S}(=\mathrm{O})_{2} \text {, or } \mathrm{NR}^{\mathrm{r}} \text {; } \\
& \mathrm{pn} \text { is } 0,1 \text {, or } 2 \text {; } \\
& \text { each } \mathrm{R}^{\mathrm{f}} \text { is independently }-\mathrm{H} \text {, alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, }
\end{aligned}
\] heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl, \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\), \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{h}}, \mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{h}}, \mathrm{C}(=\mathrm{O}) \mathrm{OR}^{\mathrm{h}},-\mathrm{C}(=\mathrm{O}) N \mathrm{R}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\); each \(\mathrm{R}^{\mathrm{h}}\) is independently -H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; or when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
each \(\mathrm{P}^{7}\) is a bridged \(5-15\) membered bicyclic heterocyclic ring that is attached to the remainder of the compound of formula I through one N -link and through one C -link; wherein the ring is optionally substituted with one or more groups independently selected from \(R^{P 6}\) and \(R^{P 11}\);
each \(\mathrm{P}^{8}\) is independently a ring of the formula:

wherein:
ps is \(2,3,4,5\), or 6 ;
pn is 0,1 , or 2 ;
each \(R^{P 13}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups; where in at least one case two groups \(\mathrm{R}^{\mathrm{P} 13}\) that are attached to the same carbon are taken together with the carbon to which they are attached and form a 4-6 membered heterocyclic ring;
each \(\mathrm{P}^{10}\) is independently:

wherein:
X is selected from \(\mathrm{O}, \mathrm{S}, \mathrm{S}(\mathrm{O}), \mathrm{SO}_{2}, \mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{P} 10}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{P} 10}\right)_{2}\); provided that when pn or pm is \(0, \mathrm{X}\) is selected from \(\mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{P} 10}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{P} 10}\right)_{2}\);
each \(R^{P 10}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-N R^{\mathrm{Pa}^{\mathrm{P}}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused threeto six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
each \(R^{P 5}\) and \(R^{P 6}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-N R^{P a} R^{P b}\), wherein the alkyl can optionally form a fused
three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
pq and ps are independently \(0,1,2,3\), or 4 ;
pm and pn are independently 0,1 , or 2 ;
po and pp are independently 1,2 , or 3 ;
each \(P^{11}\) is independently:

wherein:
X is selected from \(\mathrm{O}, \mathrm{S}, \mathrm{S}(\mathrm{O}), \mathrm{SO}_{2}, \mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{P} 10}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{P} 10}\right)_{2}\);
provided that when pn or pm is \(0, \mathrm{X}\) is selected from \(\mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{P} 10}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{PI0}}\right)_{2}\);
each \(\mathrm{R}^{\mathrm{P} 10}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused threeto six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
each \(R^{P 5}\) and \(R^{P 6}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-N R^{P a} R^{P b}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
pq and ps are independently \(0,1,2,3\), or 4 ;
pm and pn are independently 0,1 , or 2 ;
po and pp are independently 1,2 , or 3 ;
each \(P^{12}\) is independently:

wherein:
each \(R^{P 6}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
\[
\mathrm{pq} \text { is independently } 0,1,2,3 \text {, or } 4 \text {; }
\]
pm is independently 0,1 , or 2 ;
pp is independently 1,2 , or 3 ;
ps is \(1,2,3\), or 4;
\(\mathrm{R}^{\mathrm{P} 11}\) is independently selected from cyano, alkylsulfonyl, arylsulfonyl, (\(N R^{\text {h }} R^{\mathrm{h}}\))sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, (\(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\))alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl, \(-N R^{\text {hh }} R^{h}\), \(\left(N R^{\text {hh }} R^{h}\right)\) alkyl, \(\left(N R^{h h} R^{h}\right)\) carbonyl, wherein each \(R^{h}\) is independently -H, alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; and when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring; wherein each \(\mathrm{R}^{\text {hh }}\) is independently aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl, \(N R^{h} R^{h}\) sulfonyl, heteroarylsulfonyl, \(-S(=O)_{2} R^{h},-C(=O) R^{h}\), \(-C(=O) N R^{h} R^{h}\); and the remaining \(R^{P 11}\) are independently selected from \(R^{P 5}\), cyano, alkylsulfonyl, arylsulfonyl, \(\left(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\right)\) sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, (\(\left(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\right.\))alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl; wherein each \(\mathrm{R}^{\mathrm{h}}\) is independently - H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl,
dialkylaminoalkyl, sulfonylalkyl; and when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
each \(\mathbf{P}^{13}\) is independently:

wherein:
X is selected from \(\mathrm{O}, \mathrm{S}, \mathrm{S}(\mathrm{O}), \mathrm{SO}_{2}\), or \(\mathrm{NR}^{\mathrm{h}}\);
each \(R^{P 6}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
pq is independently \(0,1,2,3\), or 4 ;
pm and pn are independently 0,1 , or 2 but the sum of pn and pm is greater than zero;
pp are independently 1,2 , or 3 ;
ps is \(1,2,3\), or 4 ;
each \(R^{\text {P11 }}\) is independently selected from cyano, alkylsulfonyl, arylsulfonyl, (\(N R^{h} R^{h}\))sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, (\(N R^{h}{ }^{\text {R }}\)) alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl, \(-N R^{\text {hh }} R^{h}\), (\(N R^{\text {hh }} R^{h}\))alkyl, \(\left(N R^{h h} R^{h}\right)\) carbonyl, wherein each \(R^{h}\) is independently -H, alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; and when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring; wherein each \(\mathrm{R}^{\text {hh }}\) is independently aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl,
dialkylaminoalkyl, sulfonylalkyl, (\(N R^{h} R^{h}\))sulfonyl, heteroarylsulfonyl, \(-S(=O)_{2} R^{h},-C(=O) R^{h}\), \(-C(=O) N R^{h} R^{h}, R^{P 5}\), cyano, alkylsulfonyl, arylsulfonyl, (\(\mathrm{NR}^{h} \mathrm{R}^{\mathrm{h}}\)) sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, (NR \({ }^{h} R^{h}\))alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl; wherein each \(R^{h}\) is independently -H, alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; and when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
each \(\mathrm{P}^{14}\) is independently:

wherein:
the ring is substituted with one or more oxo group;
X is \(\mathrm{NR}^{\mathrm{f}}\);
each \(\mathrm{R}^{\mathrm{f}}\) is independently -H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl, \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\), \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{h}}, \mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{h}}, \mathrm{C}(=\mathrm{O}) \mathrm{OR}^{\mathrm{h}},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\); each \(\mathrm{R}^{\mathrm{h}}\) is independently -H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; or when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring; each \(\mathrm{R}^{\mathrm{P6}}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-N R^{P a} R^{P b}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups; pq is independently \(0,1,2,3\), or 4 ;
pm is independently 0,1 , or 2 ;
ps is \(1,2,3\), or 4 ;
\(\mathrm{R}^{\text {P11 }}\) is independently selected from cyano, alkylsulfonyl, arylsulfonyl, (\(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\))sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, (\(\mathrm{NR}^{h} \mathrm{R}^{h}\)) alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl; wherein each \(\mathrm{R}^{\mathrm{h}}\) is independently -H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, or sulfonylalkyl; and when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
each \(-Z^{0}-\) is \(-C(=O)\) - or \(-C(=S)\)-;
each \(-Z^{1}\) - is independently a bond, or \(-C\left(R^{Z 1}\right)_{2^{-}}\); wherein each \(R^{Z 1}\) is independently \(H\), alkyl, haloalkyl, or halo;
each \(-Z^{2}\) - is independently saturated or partially unsaturated \(\left(C_{3}-C_{8}\right)\) cycloalkyl that is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\);
each \(-Z^{3}\) - is independently saturated, partially unsaturated, or aromatic 4-8 membered heterocyclic or heteroaryl ring that is optionally substituted with one or more groups independently selected from \(R^{A I}\) and \(R^{A 3}\);
each \(-Z^{4}\) - is independently:

wherein each \(\mathrm{R}^{\mathrm{Z4}}\) is independently \(H\), alkyl, cyano, aryl, or heteroaryl;
each \(-Z^{5}\) - is independently:

wherein each \(R^{25}\) is independently \(H\), alkyl, cyano, aryl, or heteroaryl; or two \(R^{25}\) s together with the nitrogen to which they are attached form a \(4-8\) membered heterocyclic ring that is optionally substituted with one or more oxo and with one or more groups independently selected from \(R^{A 1}\) and \(R^{A^{3}}\);
each \(-Z^{6}\) - is independently \(-C\left(R^{Z 1}\right)\) - and is doublebonded to a carbocyclic \(P\); wherein \(R^{Z 1}\) is independently H , alkyl, haloalkyl, or halo;
each \(E^{0}\) is independently \(-N R^{E c} R^{E d}\) wherein
\(R^{E c}\) and \(R^{E d}\) are each independently selected from hydrogen, alkenyloxycarbonyl, alkoxyalkylcarbonyl, alkoxycarbonyl, alkyl, alkylcarbonyl, alkylsulfonyl, aryl, arylalkoxycarbonyl, arylalkyl, arylalkylcarbonyl, arylcarbonyl, aryloxycarbonyl, arylsulfonyl, cycloalkyl, cycloalkylsulfonyl, formyl, haloalkoxycarbonyl, heterocyclyl, heterocyclylalkoxycarbonyl, heterocyclylalkyl, heterocyclylalkylcarbonyl, heterocyclylcarbonyl, heterocyclyloxycarbonyl, hydroxyalkylcarbonyl, (\(\mathrm{NR}^{\mathrm{e}} \mathrm{R}^{\mathrm{f}}\))alkyl, (\(\mathrm{NR}^{e} \mathrm{R}^{f}\))alkylcarbonyl, (\(\mathrm{NR}^{e} \mathrm{R}^{f}\))carbonyl, (\(\mathrm{NR}^{e} \mathrm{R}^{f}\)) sulfonyl, \(-\mathrm{C}(\mathrm{NCN}) \mathrm{OR}^{\prime}\), and - \(\mathrm{C}(\mathrm{NCN}) \mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}\), wherein \(\mathrm{R}^{\prime}\) is selected from alkyl and unsubstituted phenyl, and wherein the alkyl part of the arylalkyl, the arylalkylcarbonyl, the heterocyclylalkyl, and the heterocyclylalkylcarbonyl are further optionally substituted with one \(-\mathrm{NR}^{c} \mathrm{R}^{\mathrm{f}}\) group; and wherein the aryl, the aryl part of the arylalkoxycarbonyl, the arylalkyl, the arylalkylcarbonyl, the arylcarbonyl, the aryloxycarbonyl, and the arylsulfonyl, the heterocyclyl, and the heterocyclyl part of the heterocyclylalkoxycarbonyl, the heterocyclylalkyl, the heterocyclylalkylcarbonyl, the heterocyclylcarbonyl, and the heterocyclyloxycarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro;
each \(\mathrm{E}^{1}\) is independently - \(\mathrm{OC}(=O) \mathrm{NR}^{\mathrm{Ee}} \mathrm{R}^{\mathrm{Ef}}\) wherein each \(\mathrm{R}^{\mathrm{Ef}}\) and \(\mathrm{R}^{\mathrm{Ef}}\) are each independently selected from hydrogen, alkenyloxycarbonyl, alkoxyalkylcarbonyl,
alkoxycarbonyl, alkyl, alkylcarbonyl, alkylsulfonyl, aryl, arylalkoxycarbonyl, arylalkyl, arylalkylcarbonyl, arylcarbonyl, aryloxycarbonyl, arylsulfonyl, cycloalkyl, cycloalkylsulfonyl, formyl, haloalkoxycarbonyl, heterocyclyl, heterocyclylalkoxycarbonyl, heterocyclylalkyl, heterocyclylalkylcarbonyl, heterocyclylcarbonyl, heterocyclyloxycarbonyl, hydroxyalkylcarbonyl, (\(\mathrm{NR}^{e} \mathrm{R}^{\mathrm{f}}\))alkyl, (\(\mathrm{NR}^{e} \mathrm{R}^{\mathrm{f}}\))alkylcarbonyl, (\(\mathrm{NR}^{e} \mathrm{R}^{\mathrm{f}}\)) carbonyl, (\(\mathrm{NR}^{e} \mathrm{R}^{\mathrm{f}}\)) sulfonyl,
 and wherein the alkyl part of the arylalkyl, the arylalkylcarbonyl, the heterocyclylalkyl, and the heterocyclylalkylcarbonyl are further optionally substituted with one \(-N R^{e} R^{f}\) group; and wherein the aryl, the aryl part of the arylalkoxycarbonyl, the arylalkyl, the arylalkylcarbonyl, the arylcarbonyl, the aryloxycarbonyl, and the arylsulfonyl, the heterocyclyl, and the heterocyclyl part of the heterocyclylalkoxycarbonyl, the heterocyclylalkyl, the heterocyclylalkylcarbonyl, the heterocyclylcarbonyl, and the heterocyclyloxycarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro; or wherein \(\mathrm{R}^{\mathrm{Ee}}\) and \(\mathrm{R}^{\mathrm{Ef}}\), together with the nitrogen atom to which they are attached, form a heterocycle;
each \(\mathrm{V}^{0}\) is independently H , alkyl, arylalkyl, alkenyl, CO , cycloalkylalkyl, cycloalkyl, alkoxyalkyl, alkoxyalkylcarbonylalkyl, alkoxycarbonylalkyl, alkylsulfanylalkyl, aryalkoxyalkylcarbonylalkyl, carboxyalkyl, heterocyclylalkyl, heterocyclylcarbonylalkyl, hydroxyalkyl, NRRCOalkyl, wherein each \(R\) is independently selected from hydrogen and alkyl;
and where in arylalkyl the alkyl can be substituted with up to three aryl groups, and the alkyl part of the arylalkyl is further optionally substituted with one or two additional groups independently selected from alkoxy, alkyocarbonyloxy, halo, haloalkoxy, haloalkyl, heterocyclyl, hydroxy;
and the aryl part can be substituted with \(1,2,3,4\), or 5 substituents independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, alkylcarbonyl, a second aryl group, arylalkoxy, arylalkyl, arylcarbonyl, cyano, halo, haloalkoxy, haloalkyl, heterocyclyl, heterocyclylalkyl, heterocyclylcarbonyl, hydroxy, hydroxyalkyl, nitro, \(-\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}\), \(\left(\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}\right.\))alkyl, oxo, and - \(\mathrm{P}(\mathrm{O}) \mathrm{OR}_{2}\), wherein each R is independently selected from hydrogen and alkyl; and wherein the alkyl part of the arylalkyl and the heterocyclylalkyl are unsubstituted and wherein the second aryl group, the aryl part of the arylalkyl, the aryl part of the arylcarbonyl, the heterocyclyl, and the heterocyclyl part of the heterocyclylalkyl and the heterocyclylcarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro;
and the heterocyclyl can be substituted with \(1,2,3,4\), or 5 substituents independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylcarbonyl, cyano, halo, haloalkoxy, haloalkyl, a second heterocyclyl group, heterocyclylalkyl, heterocyclylcarbonyl, hydroxy, hydroxyalkyl, nitro, \(-\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}\), (\(\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}\))alkyl, and oxo, wherein the alkyl part of the arylalkyl and the heterocyclylalkyl are unsubstituted and wherein the aryl, the aryl part of the arylalkyl; the aryl part of the arylcarbonyl, the second heterocyclyl group, and the heterocyclyl part of the heterocyclylalkyl and the heterocyclylcarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro;
each \(\mathrm{V}^{1}\) is independently cyanoalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}_{\mathrm{a}}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}_{\mathrm{a}}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{2}\) is independently haloalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}^{\mathrm{V}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}} \text { and } \mathrm{R}^{\mathrm{Vb}} \text { are each independently selected from }{ }^{2} \text {. }}\) hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{3}\) is independently alkyl, which is substituted with one or more oxo, and which is optionally substituted with one or more groups independently selected from cycloalkyl, halo, aryl, alkenyl, and cyano;
each \(\mathrm{V}^{4}\) is independently haloalkoxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(V^{5}\) is independently alkylsulfonylalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(V^{6}\) is independently arylsulfonylalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=0) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{7}\) is independently heterocyclosulfonylalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(V^{8}\) is independently spirocycloalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(N R^{V_{a}} R^{\mathrm{Vb}} C(=O) O-; R^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(V^{9}\) is independently spirocycloalkylalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{10}\) is independently fusedbicycliccycloalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(V^{11}\) is independently fusedbicycliccycloalkylalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(V^{12}\) is independently bridged-bicycliccycloalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{13}\) is independently bridged-bicyclic-cycloalkylalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=O) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(V^{14}\) is independently aryloxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}^{2}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{15}\) is independently arylalkoxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(V^{16}\) is independently cycloalkyloxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(V^{17}\) is independently cycloalkylalkyloxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{18}\) is independently heterocyclooxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}^{\mathrm{a}}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{19}\) is independently heterocycloalkyloxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{20}\) is independently heteroaryloxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\left.N R^{\mathrm{Va}^{\mathrm{Vb}}} \mathrm{C}=0\right) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(V^{21}\) is independently heteroarylalkylalkoxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(T^{1}\) is independently a spiro, branched or fused bicycloalkyl;
each \(\mathrm{T}^{2}\) is independently aryl;
each \(\mathrm{T}^{3}\) is independently heteroaryl;
each \(\mathrm{T}^{4}\) is independently arylalkyl;
each \(\mathrm{T}^{5}\) is independently haloalkyl;
each \(\mathrm{T}^{6}\) is independently heteroarylalkyl;
each \(\mathrm{T}^{7}\) is independently heterocycle; and
each \(\mathrm{T}^{8}\) is independently heterocyclealkyl.
In another specific embodiment the invention provides a compound of formula (I) which comprises \(\mathrm{M}^{0}-\mathrm{W}-\mathrm{M}^{0}, \mathrm{M}^{0}-\mathrm{W}-\mathrm{M}^{9}, \mathrm{M}^{9}-\mathrm{W}-\mathrm{M}^{0}\), or \(\mathrm{M}^{9}-\mathrm{W}-\mathrm{M}^{9}, \mathrm{M}^{10}-\mathrm{W}-\mathrm{M}^{0}, \mathrm{M}^{0}-\mathrm{W}-\mathrm{M}^{10}, \mathrm{M}^{10}-\mathrm{W}-\mathrm{M}^{9}\), \(\mathrm{M}^{9}-\mathrm{W}-\mathrm{M}^{10}\), or \(\mathrm{M}^{10}-\mathrm{W}-\mathrm{M}^{10}\).

In another specific embodiment the invention provides a compound of formula (I) wherein W is \(\mathrm{W}^{2}\).

In another specific embodiment the invention provides a compound of formula (I) wherein W is \(\mathrm{W}^{8}\).

In another specific embodiment the invention provides a compound of formula (I) wherein \(W\) is \(W^{15}\).

In another specific embodiment the invention provides a compound of formula (I) wherein \(W\) is \(W^{16}\).

In another specific embodiment the invention provides a compound of formula (I)
wherein \(W\) is \(W^{18}\).
In another specific embodiment the invention provides a compound of formula (I) which comprises \(M^{0}-A-A-M^{0}, M^{0}-A-A-M^{9}, M^{9}-A-A-M^{0}\), or \(M^{9}-A-A-M^{9}, M^{10}-A-A-M^{0}, M^{0}-A-A-M^{10}\), \(\mathrm{M}^{10}-\mathrm{A}-\mathrm{A}-\mathrm{M}^{9}, \mathrm{M}^{9}-\mathrm{A}-\mathrm{A}-\mathrm{M}^{10}\), or \(\mathrm{M}^{10}-\mathrm{A}-\mathrm{A}-\mathrm{M}^{10}\).

In another specific embodiment the invention provides a compound of formula (I) wherein -A-A- is \(-\mathrm{A}^{0}-\mathrm{A}^{0}\) -

In another specific embodiment the invention provides a compound of formula (I) wherein-A-A- is \(-\mathrm{A}^{0}-\mathrm{A}^{5}\)-.

In another specific embodiment the invention provides a compound of formula (I) wherein -A-A- is \(-A^{0}-A^{13}\)-.

In another specific embodiment the invention provides a compound of formula (I) wherein - \(\mathrm{A}-\mathrm{A}-\) is \(-\mathrm{A}^{13}-\mathrm{A}^{13}\).

In another specific embodiment the invention provides a compound of formula (I) wherein -A-A- is \(-\mathrm{A}^{0}-\mathrm{A}^{11}\)-.

In another specific embodiment the invention provides a compound of formula (I) wherein -A-A- is \(-\mathrm{A}^{13}-\mathrm{A}^{6}\)-.

In another specific embodiment the invention provides a compound of formula (I) wherein \(W\) is \(W^{6}\).

In another specific embodiment the invention provides a compound of formula (I) wherein each \(\mathrm{X}^{\mathrm{A}}\) is absent where it is allowed to be absent.

In another specific embodiment the invention provides a compound of formula (I) wherein one or two \(\mathrm{X}^{\mathrm{A}}\) are present and \(\mathrm{X}^{\mathrm{A}}\) is alkynyl.

In another specific embodiment the invention provides a compound of formula (I) wherein one or two \(\mathrm{X}^{\mathrm{A}}\) are present and \(\mathrm{X}^{\mathrm{A}}\) is alkenyl.

In another specific embodiment the invention provides a compound of formula (I) wherein \(W^{6}\) is selected from:

and

In another specific embodiment the invention provides a compound of formula (I) wherein \(W^{6}\) is selected from:

In another specific embodiment the invention provides a compound of formula (I) wherein \(W\) is \(W^{8}\).

In another specific embodiment the invention provides a compound of formula (I) wherein \(W^{8}\) is selected from:

In another specific embodiment the invention provides a compound of formula (l) wherein \(W^{8}\) is selected from:

In another specific embodiment the invention provides a compound of formula (I) \(\mathrm{W}^{8}\) is selected from:

In another specific embodiment the invention provides a compound of formula (I) \(W^{8}\) is selected from:

In another specific embodiment the invention provides a compound of formula (I) wherein \(W^{8}\) is selected from:

In another specific embodiment the invention provides a compound of formula (I) wherein W is \(\mathrm{W}^{8}\) that is unsubstituted.

In another specific embodiment the invention provides a compound of formula (I) wherein \(W^{12}\) is:

In another specific embodiment the invention provides a compound of formula (I) wherein \(W\) is \(W^{15}\) or \(W^{16}\).

In another specific embodiment the invention provides a compound of formula (I) wherein \(W\) is a ring system of formula:

wherein:
U is CH or N ; and
X is \(-\mathrm{CH}_{2}-,-\mathrm{C}(=\mathrm{O})-,-\mathrm{CH}_{2} \mathrm{CH}_{2}-,-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\)-, or \(-\mathrm{CH}=\mathrm{CH}-\);
wherein the ring system is optionally substituted with one or more \(R^{A I}\) or \(R^{A 3}\).
In another specific embodiment the invention provides a compound of formula (1) wherein W is a ring system of formula:

wherein :
U is CH or N ; and
X is \(-\mathrm{OCH}_{2}\), \(-\mathrm{CH}_{2} \mathrm{O}-,-\mathrm{CH}_{2} \mathrm{OCH}_{2}\)-, or \(\mathrm{CF}_{2}\);
wherein the ring system is optionally substituted with one or more \(\mathrm{R}^{\mathrm{Al}}\) or \(\mathrm{R}^{A 3}\).
In another specific embodiment the invention provides a compound of formula (I) wherein W is \(\mathrm{W}^{15}\).

In another specific embodiment the invention provides a compound of formula (l) wherein W is selected from:

and

In another specific embodiment the invention provides a compound of formula (I) wherein W is selected from:

In another specific embodiment the invention provides a compound of formula (I) wherein W is selected from:

In another specific embodiment the invention provides a compound of formula (I) wherein W is \(\mathrm{W}^{18}\).

In another specific embodiment the invention provides a compound of formula (I) wherein \(W\) is selected from:

In another specific embodiment of the invention W is

In another specific embodiment of the invention W is

In another specific embodiment of the invention W is

In another specific embodiment the invention provides a compound of formula (I) wherein one \(A\) is \(A^{0}\) and one \(A\) is \(A^{5}\), wherein one \(X^{A}\) in the \(A^{5}\) is absent and the other \(X^{A}\) in the \(A^{5}\) is alkynyl.

In another specific embodiment the invention provides a compound of formula (I) wherein \(-\mathrm{A}^{0}-\mathrm{A}^{5}\) - has the following structure:

In another specific embodiment the invention provides a compound of formula (I) wherein one \(A\) is \(A^{0}\) and one \(A\) is \(A^{13}\), wherein both \(X^{A}\) in the \(A^{13}\) are absent.

In another specific embodiment the invention provides a compound of formula (I) wherein \(-\mathrm{A}^{0}-\mathrm{A}^{13}\) - has the following structure:

In another specific embodiment the invention provides a compound of formula (I) that comprises \(A^{13}-A^{13}\), wherein all \(X^{A}\) in both \(A^{13}\) are absent.

In another specific embodiment the invention provides a compound of formula (I) wherein \(-A^{13}-A^{13}\) - has the following structure:

In another specific embodiment the invention provides a compound of formula (l) that comprises \(A^{0}-A^{11}\) wherein all \(X^{A}\) in both the \(A^{0}\) and the \(A^{11}\), are absent or alkynyl.

In another specific embodiment the invention provides a compound of formula (I) wherein \(-\mathrm{A}^{0}-\mathrm{A}^{11}\) - has the following structure:

In another specific embodiment the invention provides a compound of formula (I) that comprises one \(A^{13}\) and one \(A^{6}\) wherein all \(X^{A}\) in the \(A^{13}\) are bonds.

In another specific embodiment the invention provides a compound of formula (I) wherein \(-\mathrm{A}^{13}-\mathrm{A}^{6}\) - has the following structure:

In another specific embodiment the invention provides a compound of formula (I) wherein \(W\) is \(W^{2}\) and within the \(W^{2}\) one \(X^{A}\) is absent and one \(X^{A}\) is \(R C=C R\) and each \(R\) is independently selected from H or alkyl.

In another specific embodiment the invention provides a compound of formula (I) wherein \(W^{2}\) has the following structure:

In another specific embodiment the invention provides a compound of formula (I) wherein \(W\) is \(W^{2}\) and within the \(W^{2}\) one \(X^{A}\) is absent and one \(X^{A}\) is selected from absent, alkynyl, or \(\mathrm{RC}=\mathrm{CR}\) and each R is independently selected from H or alkyl; and M is selected from \(\mathrm{M}^{0}\) or \(\mathrm{M}^{9}\).

In another specific embodiment the invention provides a compound of formula (I) wherein \(\mathrm{M}^{0}\) is imidazolyl and \(\mathrm{M}^{9}\) is benzimidazolyl.

In another specific embodiment the invention provides a compound of formula (I) that comprises a group \(\mathrm{M}^{9}-\mathrm{W}^{2}-\mathrm{M}^{9}\). In another specific embodiment the invention provides a compound of formula (I) wherein the group \(\mathrm{M}^{9}-\mathrm{W}^{2}-\mathrm{M}^{9}\) has the following structure:

In another specific embodiment the invention provides a compound of formula (I) wherein \(A\) is \(A^{0}\) and \(L\) is \(L^{2}\).

In another specific embodiment the invention provides a compound of formula (I) wherein \(\mathrm{A}^{0}-\mathrm{L}^{2}\) has the following structure:

In another specific embodiment the invention provides a compound of formula (I) that comprises two \(A^{0}\) and one M is \(\mathrm{M}^{9}\).

In another specific embodiment the invention provides a compound of formula (I) that comprises two \(\mathrm{A}^{0}\) and one M is \(\mathrm{M}^{0}\) and another M is \(\mathrm{M}^{9}\). In another specific embodiment the invention provides a compound of formula (I) wherein \(\mathrm{A}^{0}-\mathrm{A}^{0}-\mathrm{M}^{9}\) has the following structure:

In another specific embodiment the invention provides a compound of formula (I) that comprises \(\mathrm{M}^{0}-\mathrm{A}^{0}-\mathrm{A}^{0}-\mathrm{M}^{9}\). In another specific embodiment the invention provides a compound of formula (I) wherein \(\mathrm{M}^{0}-\mathrm{A}^{0}-\mathrm{A}^{0}-\mathrm{M}^{9}\) has the following structure:

In another specific embodiment the invention provides a compound of formula (I) that comprises \(\mathrm{A}^{0}-\mathrm{A}^{7}-\mathrm{M}^{9}\). In another specific embodiment the invention provides a compound of formula (I) wherein \(A^{0}-A^{7}-M^{9}\) has the following structure:

In another specific embodiment the invention provides a compound of formula (I) that comprises one or two M and each M is \(\mathrm{M}^{0}\).

In another specific embodiment the invention provides a compound of formula (I) that comprises one or two M and each M is imidazolyl.

In another specific embodiment the invention provides a compound of formula (I) that comprises one or two M and each M is \(\mathrm{M}^{9}\).

In another specific embodiment the invention provides a compound of formula (I) that comprises one or two M and each M is benzimidazolyl.

In another specific embodiment the invention provides a compound of formula (I) that comprises two \(M\) wherein one \(M\) is \(M^{0}\) and one \(M\) is \(M^{9}\).

In another specific embodiment the invention provides a compound of formula (l) that comprises two \(M\) wherein one \(M\) is imidazolyl and one \(M\) is benzimidazolyl.

In another specific embodiment of the invention \(\mathrm{M}^{0}\) is :

In another specific embodiment of the invention \(\mathrm{M}^{9}\) is :

In another specific embodiment of the invention M is \(\mathrm{M}^{11}\) and is:

In another specific embodiment the invention provides a compound of formula (I) that comprises one or two L wherein each L is \(\mathrm{L}^{3}\).

In another specific embodiment the invention provides a compound of formula (I) that comprises one or two L wherein each L is benzimidazolyl.

In another specific embodiment the invention provides a compound of formula (I) wherein W is a ring system of formula:

wherein :
U is CH or N ; and
X is \(-\mathrm{CH}_{2}-,-\mathrm{C}(=\mathrm{O})-,-\mathrm{CH}_{2} \mathrm{CH}_{2}-,-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\)-, or \(-\mathrm{CH}=\mathrm{CH}-\);
wherein the ring system is optionally substituted with one or more \(R^{A 1}\) or \(R^{A 3}\).
In another specific embodiment the invention provides a compound of formula (I) wherein W is selected from:

In another specific embodiment the invention provides a compound of formula (I) wherein A-A is selected from:

In another specific embodiment the invention provides a compound of formula (I) wherein M-W-M is:

In another specific embodiment the invention provides a compound of formula (I) wherein -A-L- is selected from:

In another specific embodiment the invention provides a compound of formula (I) that has the formula E-V-Z-P-M-A-L-P-Z-V-E.

In another specific embodiment the invention provides a compound of formula (I) that has the formula E-V-Z-P-M-A-L"-P-Z-V-E.

In another specific embodiment the invention provides a compound of formula (I) wherein W is selected from:

and

In another specific embodiment the invention provides a compound of formula (I) wherein \(W\) is \(W^{17}\).

In another specific embodiment the invention provides a compound of formula (l) wherein W is selected from:

In another specific embodiment the invention provides a compound of formula (I) that has the formula \(\mathrm{J}-\mathrm{M}-\mathrm{W}-\mathrm{M}-\mathrm{J}\).

In another specific embodiment the invention provides a compound of formula (I) that has the formula E-V-Z-P-M-W-M- P-Z-V-E.

In another specific embodiment the invention provides a compound of formula (I) that has the formula E-V-Z-P-M-A-A-M-P-Z-V-E.

In another specific embodiment the invention provides a compound of formula (I) that has the formula E-V-Z-P-M-A-L-P-Z-V-E.

In another specific embodiment the invention provides a compound of formula (I) that has the formula E-V-Z-P-M-A-Ln-P-Z-V-E.

In another specific embodiment the invention provides a compound of formula (I) wherein -M-W-M- is selected from \(\mathrm{M}^{0}-\mathrm{W}-\mathrm{M}^{0}, \mathrm{M}^{0}-\mathrm{W}-\mathrm{M}^{9}, \mathrm{M}^{9}-\mathrm{W}-\mathrm{M}^{0}\), and \(\mathrm{M}^{9}-\mathrm{W}-\mathrm{M}^{9}\).

In another specific embodiment the invention provides a compound of formula (I) wherein -M-W-M- is selected from \(\mathrm{M}^{10}-\mathrm{W}-\mathrm{M}^{0}, \mathrm{M}^{0}-\mathrm{W}-\mathrm{M}^{10}, \mathrm{M}^{10}-\mathrm{W}-\mathrm{M}^{9}, \mathrm{M}^{9}-\mathrm{W}-\mathrm{M}^{10}\), and \(\mathrm{M}^{10}-\mathrm{W}-\mathrm{M}^{10}\).

In another specific embodiment the invention provides a compound of formula (I) wherein -M-A-A-M- is selected from \(\mathrm{M}^{0}-\mathrm{A}-\mathrm{A}-\mathrm{M}^{0}, \mathrm{M}^{0}-\mathrm{A}-\mathrm{A}-\mathrm{M}^{9}, \mathrm{M}^{9}-\mathrm{A}-\mathrm{A}-\mathrm{M}^{0}\), and \(\mathrm{M}^{9}-\mathrm{A}-\mathrm{A}-\mathrm{M}^{9}\).

In another specific embodiment the invention provides a compound of formula (I) wherein \(-\mathrm{M}-\mathrm{W}-\mathrm{M}\) - is selected from \(\mathrm{M}^{10}-\mathrm{A}-\mathrm{A}-\mathrm{M}^{0}, \mathrm{M}^{0}-\mathrm{A}-\mathrm{A}-\mathrm{M}^{10}, \mathrm{M}^{10}-\mathrm{A}-\mathrm{A}-\mathrm{M}^{9}, \mathrm{M}^{9}-\mathrm{A}-\mathrm{A}-\mathrm{M}^{10}\), and \(\mathrm{M}^{10}-\mathrm{A}-\mathrm{A}-\mathrm{M}^{10}\).

In another specific embodiment the invention provides a compound of formula (l) wherein each E is \(\mathrm{E}^{0}\).

In another specific embodiment the invention provides a compound of formula (I) wherein each E is \(-\mathrm{NHC}(=\mathrm{O})\) Oalkyl.

In another specific embodiment the invention provides a compound of formula (I) wherein each E is methoxycarbonylamino.

In another specific embodiment the invention provides a compound of formula (I) wherein each V is \(\mathrm{V}^{0}\).

In another specific embodiment the invention provides a compound of formula (I) wherein each V is alkyl.

In another specific embodiment the invention provides a compound of formula (I) wherein each V is isopropyl.

In another specific embodiment the invention provides a compound of formula (I) wherein each V is \(\mathrm{V}^{2}\).

In another specific embodiment the invention provides a compound of formula (I) wherein each V is haloalkyl.

In another specific embodiment the invention provides a compound of formula (I) wherein each \(Z\) is \(Z^{0}\).

In another specific embodiment the invention provides a compound of formula (I) wherein each \(Z\) is \(-\mathrm{C}(=0)\) -

In another specific embodiment the invention provides a compound of formula (I) wherein each M is independently a 5 -membered heteroaryl ring.

In another specific embodiment the invention provides a compound of formula (I) wherein each \(M\) is 2,4 -imidazoldiyl.

In another specific embodiment the invention provides a compound of formula (I) wherein -M-A-L- is selected from:

and

In another specific embodiment the invention provides a compound of formula (I) wherein \(M\) is \(M^{6}\).

In another specific embodiment the invention provides a compound of formula (I) wherein \(M\) is selected from:

In another specific embodiment the invention provides a compound of formula (I) wherein \(M\) is \(M^{7}\).

In another specific embodiment the invention provides a compound of formula (I) wherein \(M\) is:

In another specific embodiment the invention provides a compound of formula (I) wherein M is \(\mathrm{M}^{8}\).

In another specific embodiment the invention provides a compound of formula (l) wherein \(M\) is:

In another specific embodiment the invention provides a compound of formula (I) wherein P is \(\mathrm{P}^{0}\).

In another specific embodiment the invention provides a compound of formula (I) wherein \(P\) is

In another specific embodiment the invention provides a compound of formula (I) wherein P is:

In another specific embodiment the invention provides a compound of formula (I) wherein \(P\) is

In another specific embodiment the invention provides a compound of formula (I) wherein P is \(\mathrm{P}^{\prime}\).

In another specific embodiment the invention provides a compound of formula (1) wherein P is \(\mathrm{P}^{2}\).

In another specific embodiment the invention provides a compound of formula (1) wherein \(P\) is \(P^{2}\); and \(p n\) is 1 .

In another specific embodiment the invention provides a compound of formula (I) wherein \(P\) is \(P^{2} ; p n\) is \(1 ;\) and \(R^{P 12}\) is independently selected from alkylsulfonyl, arylsulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, \(-C(=O) R^{h},-C(=O) N R^{h} R^{h} ;-C(=O) O R^{h}\), and haloalkyl.

In another specific embodiment the invention provides a compound of formula (I) wherein P is \(\mathrm{P}^{3} ; \mathrm{pn}\) is 1 and ps is zero.

In another specific embodiment the invention provides a compound of formula (I) wherein P is \(\mathrm{P}^{5}\).

In another specific embodiment the invention provides a compound of formula (I) wherein P is \(\mathrm{P}^{\mathrm{S}}\); pn is 1 ; and Z is \(\mathrm{O}, \mathrm{S}, \mathrm{S}(=\mathrm{O}), \mathrm{S}(=\mathrm{O})_{2}\), or \(\mathrm{NR}^{\mathrm{f}}\).

In another specific embodiment the invention provides a compound of formula (1) wherein \(P\) is \(P^{5} ; \mathrm{pn}\) is 1 ; and Z is O , or S .

In another specific embodiment the invention provides a compound of formula (I) wherein P is \(\mathrm{P}^{6}\).

In another specific embodiment the invention provides a compound of formula (I) wherein P is \(\mathrm{P}^{6} ; \mathrm{pn}\) is 1 ; and Z is \(\mathrm{O}, \mathrm{S}, \mathrm{S}(=\mathrm{O}), \mathrm{S}(=0)_{2}\), or \(\mathrm{NR}^{\mathrm{f}}\).

In another specific embodiment the invention provides a compound of formula (I) wherein P is \(\mathrm{P}^{7}\) wherein \(\mathrm{P}^{7}\) is a [2.2.1] or a [2.2.2] ring system.

In another specific embodiment the invention provides a compound of formula (I) wherein \(P\) is \(P^{7}\) wherein \(P^{7}\) is a [2.2.1] ring system.

In another specific embodiment the invention provides a compound of formula (I) wherein \(P\) is

optionally substituted with one or more groups independently selected from \(R^{P 6}\) and \(R^{P 11}\).
In another specific embodiment the invention provides a compound of formula (I) wherein P is

optionally substituted with one or more groups independently selected from \(R^{P 6}\) and \(R^{P 11}\). In another specific embodiment the invention provides a compound of formula (I) wherein \(P\) is

optionally substituted with one or more groups independently selected from \(R^{P 6}\) and \(R^{P 11}\).
In another specific embodiment the invention provides a compound of formula (I) wherein P is \(\mathrm{P}^{8}\).

In another specific embodiment the invention provides a compound of formula (I) wherein P is \(\mathrm{P}^{8}\); and pn is 1 .

In another specific embodiment the invention provides a compound of formula (I) wherein P is \(\mathrm{P}^{8} ; \mathrm{pn}\) is 1 ; and ps is 2 .

In another specific embodiment the invention provides a compound of formula (I) wherein P is \(\mathrm{P}^{10}\).

In another specific embodiment the invention provides a compound of formula (I) wherein P is \(\mathrm{P}^{10} ; \mathrm{pn}\) is 1 ; and X is \(\mathrm{O}, \mathrm{S}, \mathrm{S}(=\mathrm{O}), \mathrm{S}(=0)_{2}, \mathrm{CHR}^{\mathrm{P} 10}\), or \(\mathrm{CH}\left(\mathrm{R}^{\mathrm{P} 10}\right)_{2}\).

In another specific embodiment the invention provides a compound of formula (I) wherein P is \(\mathrm{P}^{10} ; \mathrm{pn}\) is \(1 ;\) po is 1 ; and X is \(\mathrm{O}, \mathrm{S}, \mathrm{S}(=\mathrm{O}), \mathrm{S}(=\mathrm{O})_{2}, \mathrm{CHR}^{\mathrm{P} 10}\), or \(\mathrm{CH}\left(\mathrm{R}^{\mathrm{P} 10}\right)_{2}\).

In another specific embodiment the invention provides a compound of formula (I) wherein P is \(\mathrm{P}^{10} ; \mathrm{pn}\) is \(1 ;\) po is \(1 ; \mathrm{ps}\) is 0 ; and X is \(\mathrm{O}, \mathrm{S}, \mathrm{S}(=\mathrm{O}), \mathrm{S}(=\mathrm{O})_{2}, \mathrm{CHR}^{\mathrm{P} 10}\), or \(\mathrm{CH}\left(\mathrm{R}^{\mathrm{Pl0}}\right)_{2}\).

In another specific embodiment the invention provides a compound of formula (I) wherein P is \(\mathrm{P}^{11}\).

In another specific embodiment the invention provides a compound of formula (I) wherein P is \(\mathrm{P}^{11} ; \mathrm{pn}\) is 1 ; po is \(1 ; \mathrm{ps}\) is 0 ; and X is \(\mathrm{O}, \mathrm{S}, \mathrm{S}(=\mathrm{O}), \mathrm{S}(=\mathrm{O})_{2}, \mathrm{CHR}^{\mathrm{P} 10}\), or \(\mathrm{CH}\left(\mathrm{R}^{\mathrm{P10}}\right)_{2}\).

In another specific embodiment the invention provides a compound of formula (I) wherein P is \(\mathrm{P}^{12}\).

In another specific embodiment the invention provides a compound of formula (I) wherein P is \(\mathrm{P}^{12}\); pm is 1 ; and pp is 1 .

In another specific embodiment the invention provides a compound of formula (I) wherein P is \(\mathrm{P}^{13}\).

In another specific embodiment the invention provides a compound of formula (I) wherein P is \(\mathrm{P}^{13} ; \mathrm{pm}\) is \(1 ; \mathrm{pn}\) is \(0 ; \mathrm{ps}\) is \(0 ; \mathrm{pp}\) is \(1 ; \mathrm{pq}\) is 0 ; and X is \(\mathrm{O}, \mathrm{S}\), or \(\mathrm{S}(=\mathrm{O})_{2}\).

In another specific embodiment the invention provides a compound of formula (I) wherein P is \(\mathrm{P}^{14}\).

In another specific embodiment the invention provides a compound of formula (I) wherein P is \(\mathrm{P}^{14} ; \mathrm{pm}\) is 0 ; and pq is 0 .

In another specific embodiment the invention provides a compound of formula (I) wherein \(P\) is selected from:

 and

In another specific embodiment the invention provides a compound of formula (I) having a formula selected from:

T-P-Y-P-T; T-P-Y-J; J-Y-J; T-P-Y- P-Z- R9; R9-Z-P-Y- P-Z- R9; J-Y- P-Z- R9; T-P-Y-P-Z-VE; E-V-Z-P-Y-P-Z-V-E; J-Y-P-Z-V-E; T-P-L-L-P-T; T-P-L-L-J; J-L-L-J; T-P-L-L-P-Z-R9; R9-Z-P-L-L- P-Z- R9; J-L-L- P-Z- R9; T-P-L-L-P-Z-V-E; E-V-Z-P-L-L-P-Z-V-E; J-L-L-P-Z-V-E; T-P-M-A-L-P-T; T-P-M-A -L-J; J-M-A -L-J; T-P-M-A-L- P-Z-R9; R9-Z-P-M-A-L- P-ZR9; J-M-A-L-P-Z-R9; L-P-M-A-L-P-Z-V-E; E-V-Z-P-M-A-L-P-Z-V-E; J-M-A-L-P-Z-V-E; T-B-A-L-P-T; T-B-A-L-J; T-B-A-L-P-Z- R9; R9-Z-B-A-L-P-Z- R9; T-B-A-L-P-Z-V-E; E-V-Z-B-A-L-P-Z-V-E; T-P-M-A-A-M-P-T; T-P-M-A-A-M -J; J-M-A-A-M -J; T-P-M-A-A-M -P-ZR9; R9-Z-P-M-A-A-M-P-Z-R9 ; J-M-A-A-M -P-Z-R9; T-P-M-A-A-M-P-Z-V-E; E-V-Z-P-M-A-A-M-P-Z-V-E; J-M-A-A-M-P-Z-V-E; T-B-A-A-M-P-T; T-B-A-A-M-J; T-B-A-A-M-P-ZR9; R9-Z-B-A-A-M-P-Z-R9; T-B-A-A-M-P-Z-V-E; E-V-Z-B-A-A-M-P-Z-V-E; T-P-M-A-A-B-T; T-P-M-A-A-B-Z-R9; R9-Z-P-M-A- A-B-Z-R9 J-M-A- A-B-Z-R9; T-P-M-A-A-B-Z-V-E; E-V-Z-P-M-A- A-B-Z-V-E; J-M-A-A-B-Z-V-E; T-B-A-A-B-T; T-B-A-A-B-Z-R9; R9-Z-B-A-A-B-Z-R9; T-B-A-A-B-Z-V-E; E-V-Z-B-A-A-B-Z-V-E; T-P-M-W-M-P-T; T-P-M-W-M-J; J-M-W-M -J; T-P-M-W-M -P-Z- R9; R9-Z-P-M-W-M-P-Z-R9; J-M-W-M -P-Z-R9; T-P-M-W-M-P-Z-V-E; E-V-Z-P-M-W-M-P-Z-V-E; J-M-W-M-P-Z-V-E; T-B-W-M-P-T; T-B-W-M -J; T-B-W-M-P-Z-R9; R9-Z-B-W-M-P-Z-R9; T-B-W-M-P-Z-V-E; E-V-Z-B-W-M-P-Z-V-E; T-P-M-W-B-T; T-P-M-W-B-Z-R9; R9-Z-P-M-W-B-Z-R9; J-M-W-B-Z-R9; T-P-M-W-B-Z-V-E; E-V-Z-P-M-W-B-Z-V-E J-M-W-B-Z-V-E; T-B-W-B-T; T-B-W-B-Z-R9; R9-Z-B-W-B-Z-R9; T-B-W-B-Z-V-E; E-V-Z-B-W-B-Z-V-E; T-P-M-M-P-T; T-P-M-M -J; J-M-M -J; T-P-M-M -P-ZR9; R9-Z-P-M-M-P-Z-R9; J-M-M -P-Z-R9; T-P-M-M-P-Z-V-E; E-V-Z-P-M-M-P-Z-V-E; J-M-M-P-Z-V-E; T-B-M-P-T; T-B-M -J; T-B-M-P-Z- R9; R9-Z-B-M-P-Z- R9; T-B-M-P-Z-V-E; E-V-Z-B-M-P-Z-V-E; T-P-M-B-T; T-P-M-B-Z-R9; R9-Z-P-M-B-Z-R9; J-M-B-Z-R9; T-P-M-

B-Z-V-E; E-V-Z-P-M-B-Z-V-E; J-M-B-Z-V-E; T-B-B-T; T-B-B-Z-R9; R9-Z-B-B-Z-R9; and T-B-B-Z-V-E; E-V-Z-B-B-Z-V-E; or a pharmaceutically acceptable salt thereof.

In another specific embodiment the invention provides a compound of formula (I) having a formula selected from:

T-P-Y-P-T; T-P-Y-J; J-Y-J; T-P-Y-P-Z-R9; R9-Z-P-Y-P-Z-R9; J-Y-P-Z-R9; T-P-Y-P-Z-V-E; E-V-Z-P-Y-P-Z-V-E; J-Y-P-Z-V-E; R9-Z-P-Y-P-Z-V-E; T-P-L-L-P-T; T-P-L-L-J; J-L-L-J; T-P-L-L-P-Z-R9; R9-Z-P-L-L-P-Z-R9; J-L-L-P-Z-R9; T-P-L-L-P-Z-V-E; E-V-Z-P-L-L-P-Z-V-E; J-L-L-P-Z-V-E; R9-Z-P-L-L-P-Z-V-E; T-P-M-A-L-P-T; T-P-M-A-L-J; J-M-A-L-J; T-P-M-A-L-P-Z-R9; R9-Z-P-M-A-L-P-Z-R9; J-M-A-L-P-Z-R9; T-P-M-A-L-P-Z-V-E; E-V-Z-P-M-A-L-P-Z-V-E; J-M-A-L-P-Z-V-E; J-M-A-L-P-T; R9-Z-P-M-A-L-J; R9-Z-P-M-A-L-P-T; R9-Z-P-M-A-L-P-Z-V-E; E-V-Z-P-M-A-L-J; E-V-Z-P-M-A-L-P-T; E-V-Z-P-M-A-L-P-Z-R9; T-P-M-A-A-M-P-T; T-P-M-A-A-M-J; J-M-A-A-M-J; T-P-M-A-A-M-P-Z-R9; R9-Z-P-M-A-A-M-P-Z-R9 ; J-M-A-A-M-P-Z-R9; T-P-M-A-A-M-P-Z-V-E; E-V-Z-P-M-A-A-M-P-Z-V-E; J-M-A-A-M-P-Z-V-E; R9-Z-P-M-A-A-M-P-Z-V-E; T-P-M-W-M-P-T; T-P-M-W-M-J; J-M-W-M-J; T-P-M-W-M-P-Z-R9; R9-Z-P-M-W-M-P-Z-R9; J-M-W-M-P-Z-R9; T-P-M-W-M-P-Z-V-E; E-V-Z-P-M-W-M-P-Z-V-E; J-M-W-M-P-Z-V-E; R9-Z-P-M-W-M-P-Z-V-E; T-P-M-M-P-T; T-P-M-M-J; J-M-M-J; T-P-M-M-P-Z-R9; R9-Z-P-M-M-P-Z-R9; J-M-M-P-Z-R9; T-P-M-M-P-Z-V-E; E-V-Z-P-M-M-P-Z-V-E; J-M-M-P-Z-V-E; R9-Z-P-M-M-P-Z-V-E; or a pharmaceutically acceptable salt thereof.

In another specific embodiment the invention provides a compound of formula (I) having a formula selected from:
\(T^{p}-P^{u}-Y^{y}-P^{u}-T^{p} ; T^{p}-P^{u}-Y^{y}-J^{m} ; J^{m}-Y^{y}-J^{m} ; T^{p}-P^{u}-Y^{y}-P^{u}-Z^{v}-R 9^{q} ; R 9^{q}-Z^{v}-P^{u}-Y^{y}-P^{u}-Z^{\mathrm{v}}-R 9^{q} ; J^{m}-Y^{y}-P^{u}-\) \(Z^{\mathrm{v}}-R 9^{q} ; T^{P}-P^{\mathrm{u}}-Y^{\mathrm{y}}-P^{\mathrm{u}}-Z^{\mathrm{v}}-V^{\mathrm{w}}-E^{\mathrm{x}} ; E^{\mathrm{x}}-V^{\mathrm{w}}-Z^{\mathrm{v}}-P^{\mathrm{u}}-Y^{\mathrm{y}}-P^{\mathrm{u}}-Z^{\mathrm{v}}-V^{\mathrm{w}}-E^{\mathrm{x}} ; J^{\mathrm{m}}-Y^{\mathrm{y}}-P^{\mathrm{u}}-Z^{\mathrm{v}}-V^{\mathrm{w}}-E^{\mathrm{x}} ; R 9^{q}-Z^{\mathrm{v}}-P^{\mathrm{u}}-Y^{\mathrm{y}}-\) \(P^{u}-Z^{v}-V^{w}-E^{x} ; T^{p}-P^{u}-L^{n}-L^{n}-P^{u}-T^{p} ; T^{p}-P^{u}-L^{n}-L^{n}-J^{m} ; J^{m}-L^{n}-L^{n}-J^{m} ; T^{p}-P^{u}-L^{n}-L^{n}-P^{u}-Z^{v}-R 9^{q} ; R 9^{q}-Z^{v}-\) \(P^{u}-L^{n}-L^{n}-P^{u}-Z^{v}-R 9^{9} ; J^{m}-L^{n}-L^{n}-P^{u}-Z^{v}-R 9^{q} ; T^{p}-P^{u}-L^{n}-L^{n}-P^{u}-Z^{v}-V^{w}-E^{x} ; E^{x}-V^{w}-Z^{v}-P^{u}-L^{n}-L^{n}-P^{u}-Z^{v}-\) \(V^{w}-E^{x} ; J^{m}-L^{n}-L^{n}-P^{u}-Z^{v}-V^{w}-E^{x} ; R 9^{q}-Z^{v}-P^{u}-L^{n}-L^{n}-P^{u}-Z^{v}-V^{w}-E^{x} ; T^{p}-P^{u}-M^{\mathrm{t}}-A^{s}-L^{n}-P^{u}-T^{p} ; T^{p}-P^{u}-M^{t}-\) \(A^{s}-L^{n}-J^{m} ; J^{m}-M^{l}-A^{s}-L^{n}-J^{m} ; T^{p}-P^{u}-M^{l}-A^{s}-L^{n}-P^{u}-Z^{v}-R 9^{q} ; R 9^{q}-Z^{v}-P^{u}-M^{t}-A^{s}-L^{n}-P^{u}-Z^{v}-R 9^{q} ; J^{m}-M^{l}-A^{s}-\) \(L^{n}-P^{u}-Z^{v}-R 9^{q} ; T^{p}-P^{u}-M^{t}-A^{s}-L^{n}-P^{u}-Z^{v}-V^{w}-E^{x} ; E^{x}-V^{w}-Z^{v}-P^{u}-M^{t}-A^{s}-L^{n}-P^{u}-Z^{v}-V^{w}-E^{x} ; J^{m}-M^{t}-A^{s}-L^{n}-\) \(P^{u}-Z^{v}-V^{w}-E^{x} ; J^{m}-M^{l}-A^{s}-L^{n}-P^{u}-T^{p} ; R 9^{9}-Z^{v}-P^{u}-M^{t}-A^{s}-L^{n}-J^{m} ; R 9^{q}-Z^{v}-P^{u}-M^{\mathrm{l}}-A^{s}-L^{n}-P^{u}-T^{p} ; R 9^{q}-Z^{v}-P^{u}-\) \(M^{t}-A^{s}-L^{n}-P^{u}-Z^{v}-V^{w}-E^{x} ; E^{x}-V^{w}-Z^{v}-P^{u}-M^{1}-A^{s}-L^{n}-J^{m} ; E^{x}-V^{w}-Z^{v}-P^{u}-M^{t}-A^{s}-L^{n}-P^{u}-T^{p} ; E^{x}-V^{w}-Z^{v}-P^{u}-\) \(M^{t}-A^{s}-L^{n}-P^{u}-Z^{v}-R 9^{q} ; T^{p}-P^{u}-M^{t}-A^{s}-A^{s}-M^{t}-P^{u}-T^{p} ; T^{p}-P^{u}-M^{t}-A^{s}-A^{s}-M^{t}-J^{m} ; J^{m}-M^{t}-A^{s}-A^{s}-M^{t}-J^{m} ; T-\) \(P^{u}-M^{t}-A^{s}-A^{s}-M^{t}-P^{u}-Z^{v}-R 9^{q} ; R 9^{q}-Z^{v}-P^{u}-M^{l}-A^{s}-A^{s}-M^{t}-P^{u}-Z^{v}-R 9^{q} ; J^{m}-M^{l}-A^{s}-A^{s}-M^{t}-P^{u}-Z^{v}-R 9^{q} ; T^{p}-\) \(P^{u}-M^{l}-A^{s}-A^{s}-M^{l}-P^{u}-Z^{v}-V^{w}-E^{x} ; E^{x}-V^{w}-Z^{v}-P^{u}-M^{l}-A^{s}-A^{s}-M^{l}-P^{u}-Z^{v}-V^{w}-E^{x} ; J^{m}-M^{l}-A^{s}-A^{s}-M^{l}-P^{u}-Z^{v}-\) \(V^{w}-E^{\mathrm{x}} ; R 9^{q}-Z^{\mathrm{v}}-\mathrm{P}^{\mathrm{u}}-\mathrm{M}^{\mathrm{t}}-\mathrm{A}^{\mathrm{s}}-\mathrm{A}^{\mathrm{s}}-\mathrm{M}^{\mathrm{t}}-\mathrm{P}^{\mathrm{u}}-\mathrm{Z}^{\mathrm{v}}-\mathrm{V}^{\mathrm{w}}-E^{\mathrm{x}} ; \mathrm{T}^{\mathrm{p}}-\mathrm{P}^{\mathrm{u}}-\mathrm{M}^{\mathrm{t}}-\mathrm{W}^{\mathrm{r}}-\mathrm{M}^{\mathrm{t}}-\mathrm{P}^{\mathrm{u}}-\mathrm{T}^{\mathrm{p}} ; \mathrm{T}^{\mathrm{p}}-\mathrm{P}^{\mathrm{u}}-\mathrm{M}^{\mathrm{t}}-\mathrm{W}^{\mathrm{t}}-\mathrm{M}^{\mathrm{t}}-\mathrm{J}^{\mathrm{m}} ; \mathrm{J}^{\mathrm{m}}-\mathrm{M}^{\mathrm{t}}-\) \(W^{t}-M^{t}-J^{m} ; T^{p}-P^{u}-M^{t}-W^{r}-M^{t}-P^{u}-Z^{v}-R 9^{q} ; R 9^{q}-Z^{v}-P^{u}-M^{t}-W^{r}-M^{t}-P^{u}-Z^{v}-R 9^{q} ; J^{m}-M^{l}-W^{r}-M^{l}-P^{u}-Z^{v}-R 9^{q} ;\)
\(T^{\mathrm{P}}-\mathrm{P}^{\mathrm{u}}-\mathrm{M}^{\mathrm{t}}-\mathrm{W}^{\mathrm{r}}-\mathrm{M}^{\mathrm{t}}-\mathrm{P}^{\mathrm{u}}-\mathrm{Z}^{\mathrm{v}}-\mathrm{V}^{\mathrm{w}}-\mathrm{E}^{\mathrm{x}} ; \mathrm{E}^{\mathrm{x}}-\mathrm{V}^{\mathrm{w}}-Z^{\mathrm{v}}-\mathrm{P}^{\mathrm{u}}-\mathrm{M}^{\mathrm{t}}-\mathrm{W}^{\mathrm{t}}-\mathrm{M}^{\mathrm{l}}-\mathrm{P}^{\mathrm{u}}-\mathrm{Z}^{\mathrm{v}}-\mathrm{V}^{\mathrm{w}}-\mathrm{E}^{\mathrm{x}} ; \mathrm{J}^{\mathrm{m}}-\mathrm{M}^{\mathrm{t}}-\mathrm{W}^{\mathrm{r}}-\mathrm{M}^{\mathrm{t}}-\mathrm{P}^{\mathrm{u}}-Z^{\mathrm{v}}-\mathrm{V}^{\mathrm{w}}-\mathrm{E}^{\mathrm{x}} ;\) \(R 9^{\mathrm{q}}-\mathrm{Z}^{\mathrm{v}}-\mathrm{P}^{\mathrm{u}}-\mathrm{M}^{\mathrm{l}}-\mathrm{W}^{\mathrm{t}}-\mathrm{M}^{\mathrm{t}}-\mathrm{P}^{\mathrm{u}}-\mathrm{Z}^{\mathrm{v}}-\mathrm{V}^{\mathrm{w}}-\mathrm{E}^{\mathrm{x}} ; \mathrm{T}^{\mathrm{p}}-\mathrm{P}^{\mathrm{u}}-\mathrm{M}^{\mathrm{t}}-\mathrm{M}^{\mathrm{l}}-\mathrm{P}^{\mathrm{u}}-\mathrm{T}^{\mathrm{p}} ; \mathrm{T}^{\mathrm{p}}-\mathrm{P}^{\mathrm{u}}-\mathrm{M}^{\mathrm{l}}-\mathrm{M}^{\mathrm{d}}-\mathrm{J}^{\mathrm{m}} ; \mathrm{J}^{\mathrm{m}}-\mathrm{M}^{\mathrm{l}}-\mathrm{M}^{\mathrm{l}}-\mathrm{J}^{\mathrm{m}} ; \mathrm{T}^{\mathrm{p}}-\mathrm{P}^{\mathrm{u}}-\mathrm{M}^{\mathrm{t}}-\)
 \(V^{\mathrm{w}}-\mathrm{Z}^{\mathrm{v}}-\mathrm{P}^{\mathrm{u}}-\mathrm{M}^{\mathrm{t}}-\mathrm{M}^{\mathrm{t}}-\mathrm{P}^{\mathrm{u}}-\mathrm{Z}^{\mathrm{v}}-\mathrm{V}^{\mathrm{w}}-\mathrm{E}^{\mathrm{x}} ; \mathrm{J}^{\mathrm{m}}-\mathrm{M}^{\mathrm{t}}-\mathrm{M}^{\mathrm{t}}-\mathrm{P}^{\mathrm{u}}-\mathrm{Z}^{\mathrm{v}}-\mathrm{V}^{\mathrm{w}}-\mathrm{E}^{\mathrm{x}} ; \mathrm{R}^{\mathrm{q}}-\mathrm{Z}^{\mathrm{v}}-\mathrm{P}^{\mathrm{u}}-\mathrm{M}^{\mathrm{t}}-\mathrm{M}^{\mathrm{t}}-\mathrm{P}^{\mathrm{u}}-\mathrm{Z}^{\mathrm{v}}-\mathrm{V}^{\mathrm{w}}-\mathrm{E}^{\mathrm{x}}\) or a pharmaceutically acceptable salt thereof.

In another specific embodiment of the invention s is \(0,1,2,3,4,5,6,7,8,9,10,13,14\), \(15,16,17,18,19,20\), or 21 .

In another specific embodiment of the invention r is \(1,2,3,4,5,6,8,13,14,15,16,17\), 18,19 , or 20 .

In another specific embodiment the invention provides a compound which is a prodrug or a pharmaceutically acceptable salt of a compound of formula (I).

In one specific embodiment the invention provides a compound of formula (I) wherein W is not a group of the following formula:

wherein:
each \(\mathrm{R}^{\mathrm{A}}\) is independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, formyl, halo, haloalkyl, hydroxy, hydroxyalkyl, \(-N R^{a} R^{b}\), (\(N^{a} R^{\mathrm{b}}\))alkyl, and (\(\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\))carbonyl;
\(R^{a}\) and \(R^{b}\) are each independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl;
each bb is independently \(0,1,2\), or 3 ; and
\(R^{A 4}\) and \(R^{A 4}\), together with the atoms to which they are attached, form a five- to eightmembered unsaturated ring optionally containing one or two heteroatoms independently selected from nitrogen, oxygen, and sulfur; wherein the five- to eight-membered unsaturated ring is optionally substituted with one, two or three substituents independently selected from \(R^{A 3}\), oxo and a spirocycle.

In one specific embodiment the invention, the sum of \(m, n, p, q, s, t, u, v, w, x\), and \(y\) is not 0 when W is a group of the following formula:

wherein:
each \(\mathrm{R}^{\mathrm{A3}}\) is independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, formyl, halo, haloalkyl, hydroxy, hydroxyalkyl, \(-\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\), \(\left(N R^{a} R^{b}\right)\) alkyl, and (\(N R^{a} R^{b}\))carbonyl;
\(R^{a}\) and \(R^{b}\) are each independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl;
each bb is independently \(0,1,2\), or 3 ; and
\(R^{A 4}\) and \(R^{A 4}\), together with the atoms to which they are attached, form a five- to eightmembered unsaturated ring optionally containing one or two heteroatoms independently selected from nitrogen, oxygen, and sulfur; wherein the five- to eight-membered unsaturated ring is optionally substituted with one, two or three substituents independently selected from \(R^{A 3}\), oxo and a spirocycle.

In one embodiment when M comprises an imidazole ring it is connected to P through the 2-position.

In one embodiment when M or L comprises a benzimidazole it is connected to P through the 2 -position.

\section*{Compounds of formula (Ia)}

In one embodiment of the invention, the compound of formula (I) is a compound of formula (Ia):
E-V-Z-P-M-W-M-P-Z-V-E (Ia)
wherein:

W is a bond or \(-\mathrm{W}^{\mathrm{r}}\)-;
each \(M\) is selected from \(-\mathrm{M}^{\mathbf{1}}\);
each \(P\) is selected from \(-P^{u}\);
each \(Z\) is selected from \(-Z^{V}\);
each \(V\) is selected from \(-V^{w}\);
each \(E\) is selected from \(-E^{\mathrm{x}}\);
each \(r\) is \(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19\), or 20 ;
each \(t\) is \(0,1,2,3,4,5,6,7,8,9,10\), or 11 ;
each \(u\) is \(0,1,2,3,4,5,6,7,8,10,11,12,13\), or 14 ;
each \(v\) is \(0,1,2,3,4,5\), or 6 ;
each \(w\) is \(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20\) or 21 ;
each x is 0 or 1 ;
wherein the sum of \(\mathrm{r}, \mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}\), and x is not 0 ;
each \(\mathrm{W}^{1}\) is independently - \(\mathrm{X}^{\mathrm{A}}\)-:
wherein:
\[
\text { each } \mathrm{X}^{\mathrm{A}} \text { is independently } \mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR} \text {, }
\]
\(C R=C R, N R C(=O) N R\), allenyl, alkynyl, or absent and each \(R\) is independently selected from \(H\) or alkyl;
each \(W^{2}\) is independently:

wherein:
each \(\mathrm{H}^{20}\) is independently is independently a fused aromatic bicyclic carbocycle, which is optionally substituted with one or more groups independently selected from \(R^{A I}\) and \(R^{A 3}\); and
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=0) \mathrm{NR}\), \(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each \(W^{3}\) is independently:

wherein:
each \(\mathrm{H}^{21}\) is independently a fused bicyclic carbocyclic ring system wherein one ring is aromatic and another ring is partially or fully saturated, which ring system is optionally substituted with one or more groups independently selected from oxo, \(R^{A 1}\) and \(R^{A 3}\); and
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=0), \mathrm{NRC}(=0), \mathrm{C}(=0) \mathrm{NR}\), \(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each \(W^{4}\) is independently:

wherein:
each \(\mathrm{H}^{22}\) is independently a fused aromatic bicyclic heterocycle that comprises at least one heteroatom in the ring system, which ring system is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\); and
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=0), \mathrm{NRC}(=0), \mathrm{C}(=0) \mathrm{NR}\), \(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each \(W^{5}\) is independently:
\[
\xi x^{A}-H^{23}-x^{A}-\xi
\]
wherein:
each \(\mathrm{H}^{23}\) is independently a fused bicyclic ring system comprising at least one heteroatom, wherein one ring is aromatic and another ring is partially or fully saturated, which ring system is optionally substituted with one or more groups independently selected from oxo, \(R^{A 1}\) and \(R^{A 3}\); and
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=0) \mathrm{NR}\), \(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each \(W^{6}\) is independently:

wherein:
each \(\mathrm{H}^{24}\) is independently a fused unsaturated, partially unsaturated or saturated tricyclic carbocycle, which is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\); and
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}\), SO, \(\mathrm{SO}_{2}, \mathrm{C}(=0), \mathrm{NRC}(=0), \mathrm{C}(=0) \mathrm{NR}\), \(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each \(W^{7}\) is independently:

wherein:
each \(\mathrm{H}^{26}\) is independently a 5-15 carbon unsaturated, partially unsaturated or saturated bicyclic ring system which ring system is optionally substituted with one or more groups independently selected from oxo, \(\mathrm{R}^{\mathrm{A}}\) and \(\mathrm{R}^{{ }^{A 3}}\); and
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=0), \mathrm{NRC}(=0), \mathrm{C}(=0) \mathrm{NR}\), \(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each \(W^{8}\) is independently:
\[
\xi-x^{A}-H^{27}-x^{A}-\xi
\]
wherein:
each \(\mathrm{H}^{27}\) is independently a fused unsaturated, partially unsaturated or saturated tricyclic heterocycle that comprises at least one heteroatom in the ring system, which ring system is optionally substituted with one or more groups independently selected from \(\mathrm{R}^{\mathrm{Al}}\) and \(\mathrm{R}^{\mathrm{A} 3}\); and
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=0) \mathrm{NR}\), \(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each \(W^{9}\) is independently:
\[
\xi-x^{A}-H^{29}-x^{A}-\xi
\]
wherein:
each \(\mathrm{H}^{29}\) is independently a 5-15 carbon unsaturated, partially unsaturated or saturated bicyclic ring system that contains one or more heteroatoms; and
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}\), \(C R=C R, N R C(=O) N R\), allenyl, alkynyl, or absent and each \(R\) is independently selected from H or alkyl;
each \(\mathrm{W}^{10}\) is independently \(-\mathrm{H}^{30}=\mathrm{C}=\mathrm{H}^{31}\) -
wherein each of \(-\mathrm{H}^{30}\) and \(\mathrm{H}^{31}\) is independently a saturated 6-membered heterocyclic ring comprising one or more heteroatoms, which ring is optionally substituted with oxo;
each \(\mathrm{W}^{11}\) is independently \(-\mathrm{H}^{32}=\mathrm{C}=\mathrm{H}^{33}\) -
wherein each of \(-\mathrm{H}^{32}\) and \(\mathrm{H}^{33}\) is independently a saturated 5-membered heterocyclic ring comprising one or more heteroatoms, which ring is optionally substituted with oxo;
each \(\mathrm{W}^{12}\) is independently an anti-aromatic monocyclic or fused carbocyclic ring system, which carbocyclic ring system is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\);
each \(\mathrm{W}^{13}\) is independently an phenyl ring that is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\);
each \(W^{14}\) is independently a 5 or 6 membered heteroaryl ring that is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{\wedge 3}\);
each \(\mathrm{W}^{15}\) is independently a fused unsaturated, partially unsaturated or saturated tetracyclic carbocyclic ring, which ring system is optionally substituted with one or more groups independently selected from oxo, \(R^{A 1}\) and \(R^{A 3}\);
each \(W^{16}\) is independently a fused unsaturated, partially unsaturated or saturated tetracyclic heterocycle that comprises at least one heteroatom in the ring system, which ring system is optionally substituted with one or more groups independently selected from oxo, \(\mathrm{R}^{\mathrm{Al}}\) and \(\mathrm{R}^{\mathrm{A3}}\);
each \(W^{17}\) is independently a fused unsaturated, partially unsaturated or saturated pentacyclic carbocyclic ring system, which ring system is optionally substituted with one or more groups independently selected from oxo, \(R^{A 1}\) and \(R^{A 3}\);
each \(W^{18}\) is independently a fused unsaturated, partially unsaturated or saturated pentacyclic heterocycle that comprises at least one heteroatom in the ring system, which ring system is optionally substituted with one or more groups independently selected from oxo, \(\mathrm{R}^{\mathrm{A1}}\) and \(\mathrm{R}^{\mathrm{A} 3}\);
each \(W^{19}\) is independently a fused unsaturated, partially unsaturated or saturated hexacyclic carbocyclic ring system, which ring system is optionally substituted with one or more groups independently selected from oxo, \(R^{A 1}\) and \(R^{A 3}\);
each \(W^{20}\) is independently a fused unsaturated, partially unsaturated or saturated hexacyclic heterocycle that comprises at least one heteroatom in the ring system, which ring system is optionally substituted with one or more groups independently selected from oxo, \(R^{A 1}\) and \(R^{A 3}\);
each \(\mathrm{M}^{0}\) is independently a five membered heteroaryl group optionally substituted with one or more alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, haloalkyl, (\(\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\)) carbonyl and trialkylsilylalkoxyalkyl;
each \(\mathrm{M}^{1}\) is independently selected from \(-\mathrm{C}(=\mathrm{O}) \mathrm{NH}-,-\mathrm{C}(=\mathrm{O}) \mathrm{NH}-\mathrm{C}\left(\mathrm{R}^{\mathrm{M}}\right)_{2^{-}},-\mathrm{NHC}(=\mathrm{O})-\), \(-\mathrm{C}\left(\mathrm{R}^{\mathrm{M}}\right)_{2} \mathrm{NHC}(=\mathrm{O})-,-\mathrm{NHC}(=\mathrm{O}) \mathrm{NR}^{\mathrm{M}}-,-\mathrm{NHC}(=\mathrm{O}) \mathrm{O}-\); wherein each \(\mathrm{R}^{\mathrm{M}}\) is independently selected from H and alkyl;
each \(M^{2}\) is independently a six-membered heteroaromatic ring, which is optionally substituted with one or more groups independently selected from \(R^{A l}\) and \(R^{A 3}\);
each \(\mathrm{M}^{3}\) is independently:

each \(\mathrm{M}^{4}\) is independently:

each \(M^{5}\) is independently:

wherein the bond designated with --- is fused to a ring defined for \(P\);
each \(\mathrm{M}^{6}\) is independently a bicyclic bridged ring system comprising 5-15 atoms wherein at least one of the atoms is a heteroatom;
each \(\mathrm{M}^{7}\) is independently a pyrid-di-yl;
each \(\mathrm{M}^{8}\) is independently partially saturated or a saturated five-membered ring that comprises one or more heteroatoms and that is optionally substituted with one or two oxo;
each \(\mathrm{M}^{9}\) is independently a fused-bicyclic saturated, partially unsaturated, or aromatic heterocyclic ring system that is optionally substituted with one or more \(\mathrm{R}^{\mathrm{PII} \text {; }}\)
each \(\mathrm{M}^{10}\) is independently a five membered heteroaryl group;
each \(M^{11}\) is independently a fused-tricyclic saturated, partially unsaturated, or aromatic heterocyclic ring system that is optionally substituted with one or more oxo halo, \(-R^{M 7},-O R^{M 7}\), \(-\mathrm{SR}^{\mathrm{M} 7},-\mathrm{N}\left(\mathrm{R}^{\mathrm{M} 7}\right)_{2},-\mathrm{CF}_{3},-\mathrm{CCl}_{3},-\mathrm{OCF}_{3},-\mathrm{CN},-\mathrm{NO}_{2},-\mathrm{N}\left(\mathrm{R}^{\mathrm{M} 7}\right) \mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{M} 7},-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{M} 7},-\mathrm{OC}(=\mathrm{O}) \mathrm{R}\) \(\mathrm{M} 7,-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{\mathrm{M} 7},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{M} 7},-\mathrm{S}(=\mathrm{O}) \mathrm{R}^{\mathrm{M} 7},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{M} 7},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{M} 7},-\mathrm{OS}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{M} 7}\), or \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}^{\mathrm{M} 7}\);
each \(R^{M 7}\) is independently \(-H\), alkyl, aryl, arylalkyl, or heterocycle;
each \(\mathrm{P}^{0}\) is independently:

or

wherein:
\(X\) is selected from \(\mathrm{O}, \mathrm{S}, \mathrm{S}(\mathrm{O}), \mathrm{SO}_{2}, \mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{Plo}}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{Pl}}\right)_{2}\);
provided that when pn or pm is \(\mathrm{O}, \mathrm{X}\) is selected from \(\mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{Pl0}}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{P} 10}\right)_{2}\);
each \(\mathrm{R}^{\mathrm{P} 10}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-N R^{P a} R^{P b}\), wherein the alkyl can optionally form a fused threeto six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
each \(R^{P 5}\) and \(R^{P 6}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups; \(\mathrm{R}^{\mathrm{Pa}}\) and \(\mathrm{R}^{\mathrm{Pb}}\) are each independently H , alkyl, aryl, or arylalkyl; or \(\mathrm{R}^{\mathrm{Pa}}\) and \(\mathrm{R}^{\mathrm{Pb}}\) taken together with the atom to which they are attached form a heterocycle;
pq and ps are independently \(0,1,2,3\), or 4 ;
pm and pn are independently 0,1 , or 2 ;
po and pp are independently 1,2 , or 3 ;
\(R^{p 7}\) and \(R^{P 8}\) are each independently selected from hydrogen, alkenyl, alkoxyalkyl, alkyl, haloalkyl, and (\(\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\))alkyl; or \(\mathrm{R}^{\mathrm{P} 7}\) and \(\mathrm{R}^{\mathrm{P8}}\), together with the carbon atom to which they are attached, form a five or six membered saturated ring optionally containing one or two heteroatoms selected from \(\mathrm{NR}^{\mathrm{Pz}}, 0\), and S ; wherein \(\mathrm{R}^{\mathrm{Pz}}\) is selected from hydrogen and alkyl; \(\mathrm{R}^{\mathrm{P9}}\) is selected from hydrogen and alkyl;
each \(\mathrm{P}^{1}\) is independently:

wherein:
X is selected from \(\mathrm{O}, \mathrm{S}, \mathrm{S}(\mathrm{O}), \mathrm{SO}_{2}, \mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{P} 10}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{P} 10}\right)_{2}\); provided that when pn is \(0, \mathrm{X}\) is selected from \(\mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{P} 10}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{P} 10}\right)_{2}\);
each \(R^{P 10}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused threeto six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
at least one \(R^{P 11}\) is independently selected from cyano, alkylsulfonyl, arylsulfonyl, (\(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\))sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, (\(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\))alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl, \(-N R^{\text {hh }} R^{h},\left(N R^{\text {hh }} R^{h}\right)\) alkyl, (\(N R^{\text {hh }} R^{\text {h }}\))carbonyl, wherein each \(R^{h}\) is independently -H, alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl,
haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; and when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring; wherein each \(\mathrm{R}^{\text {th }}\) is independently aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl, (\(N R^{h} R^{h}\))sulfonyl, heteroarylsulfonyl, \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{h}},-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{h}},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\); and the remaining \(R^{P_{11}}\) are independently selected from \(R^{P 5}\), cyano, alkylsulfonyl, arylsulfonyl, (\(\mathrm{NR}^{\text {h }} \mathrm{R}^{\mathrm{h}}\))sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, (\(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\))alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl; wherein each \(\mathrm{R}^{\mathrm{h}}\) is independently - H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; and when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;

> ps is \(1,2,3\), or 4 ;
> pn is 0,1, or 2 ,
each \(\mathrm{P}^{\mathbf{2}}\) is independently:

wherein:
\[
\text { each } R^{P 12} \text { is independently selected from } R^{P 5}, R^{P 11}, C(=O) O R^{h} \text {, cyano, }
\] alkylsulfonyl, arylsulfonyl, (\(\mathrm{NR}^{h} \mathrm{R}^{\mathrm{h}}\))sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, (\(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\))alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl; wherein each \(\mathrm{R}^{\mathrm{h}}\) is independently - H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl,
dialkylaminoalkyl, sulfonylalkyl; and when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring; ps is \(1,2,3\), or 4 ; pn is 0,1 , or 2 ;
each \(P^{3}\) is independently a ring of the formula:

wherein:
the ring is substituted with one or more oxo group;
each \(\mathrm{R}^{\mathrm{P} 13}\) is independently selected from \(\mathrm{R}^{\mathrm{PS}}\), cyano, alkylsulfonyl, arylsulfonyl, \(\left(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\right)\) sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, (\(N R^{h} R^{\mathrm{h}}\))alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl; wherein each \(\mathrm{R}^{\mathrm{h}}\) is independently - H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; and when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring; ps is \(0,1,2,3\), or 4 ;
pn is 0,1 , or 2 ;
each \(\mathrm{P}^{4}\) is independently a ring of the formula:

wherein:
the ring is optionally substituted with one or more groups \(\mathrm{R}^{\mathrm{P14}}\) that are independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(N R^{P a} R^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups; and where two groups \(R^{P 14}\) that are attached to the same carbon when taken together with the carbon to which they are attached can form a 3-6 membered carbocyclic or heterocyclic ring;
pn is 0,1 , or 2 ;
each \(\mathrm{R}^{\mathrm{f}}\) is independently - H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl, \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\), \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{h}}, \mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{h}}, \mathrm{C}(=\mathrm{O}) O \mathrm{R}^{\mathrm{h}},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\); each \(\mathrm{R}^{\mathrm{h}}\) is independently -H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; or when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
each \(\mathrm{P}^{5}\) is independently a ring of the formula:

wherein:
the ring is optionally substituted with one or more groups \(R^{P 15}\) that are independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(N R^{P a}{ }^{P b}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups; and where two groups \(\mathrm{R}^{\mathrm{P} 15}\) that are attached to the same carbon when taken together with the carbon to which they are attached can form a 3-6 membered carbocyclic or heterocyclic ring;
pn is 0,1 , or 2 ;
\(Z\) is \(O, S, S(=O), S(=O)_{2}\), or \(N R^{f}\);
each \(\mathrm{R}^{\mathrm{f}}\) is independently - H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl, \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\), \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{h}}, \mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{h}}, \mathrm{C}(=\mathrm{O}) \mathrm{OR}^{\mathrm{h}},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\); each \(\mathrm{R}^{\mathrm{h}}\) is independently -H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; or when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
each \(\mathrm{P}^{6}\) is independently a ring of the formula:

wherein:
the ring is substituted with one or more oxo and is optionally substituted with one or more groups \(\mathrm{R}^{\mathrm{P} 16}\) that are independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-N R^{P a} R^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;

Z is \(\mathrm{O}, \mathrm{S}, \mathrm{S}(=\mathrm{O}), \mathrm{S}(=\mathrm{O})_{2}\), or \(\mathrm{NR}^{\mathrm{f}}\);
pn is 0,1 , or 2 ;
each \(\mathrm{R}^{\mathrm{f}}\) is independently - H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl, \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\), \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{h}}, \mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{h}}, \mathrm{C}(=\mathrm{O}) O \mathrm{R}^{\mathrm{h}},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\); each \(\mathrm{R}^{\mathrm{h}}\) is independently -H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; or when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
each \(\mathrm{P}^{7}\) is a bridged 5-15 membered bicyclic heterocyclic ring that is attached to the remainder of the compound of formula I through one N -link and through one C -link; wherein the ring is optionally substituted with one or more groups independently selected from \(R^{P 6}\) and \(R^{P 11}\);
each \(\mathrm{P}^{8}\) is independently a ring of the formula:

wherein:
ps is \(2,3,4,5\), or 6 ;
each \(\mathrm{R}^{\mathrm{P13}}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups; where in at least one case two groups \(\mathrm{R}^{\mathrm{P} 13}\) that are attached to the same carbon are taken together with the carbon to which they are attached and form a 4-6 membered heterocyclic ring;
each \(P^{10}\) is independently:

wherein:
X is selected from \(\mathrm{O}, \mathrm{S}, \mathrm{S}(\mathrm{O}), \mathrm{SO}_{2}, \mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{P} 10}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{P} 10}\right)_{2}\);
provided that when pn or pm is \(0, \mathrm{X}\) is selected from \(\mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{P} 10}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{P} 10}\right)_{2}\); each \(R^{\text {P10 }}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused threeto six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
each \(R^{P 5}\) and \(R^{P 6}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-N R^{P a} R^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three-to six-membered ring is optionally substituted with one or two alkyl groups;
pq and ps are independently \(0,1,2,3\), or 4 ;
pm and pn are independently 0,1 , or 2 ;
po and pp are independently 1,2 , or 3 ;
each \(\mathrm{P}^{11}\) is independently:

wherein:
\(X\) is selected from \(\mathrm{O}, \mathrm{S}, \mathrm{S}(\mathrm{O}), \mathrm{SO}_{2}, \mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{Pl0}}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{P10}}\right)_{2}\);
provided that when pn or pm is \(0, \mathrm{X}\) is selected from \(\mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{P} 10}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{P} 10}\right)_{2}\);
each \(R^{P 10}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-N R^{P a} R^{P b}\), wherein the alkyl can optionally form a fused threeto six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
each \(R^{P 5}\) and \(R^{P 6}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
pq and ps are independently \(0,1,2,3\), or 4 ;
pm and pn are independently 0,1 , or 2 ;
po and pp are independently 1,2 , or 3 ;
each \(P^{12}\) is independently:

wherein:
each \(\mathrm{R}^{\mathrm{P} 6}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
pq is independently \(0,1,2,3\), or 4 ;
pm is independently 0,1 , or 2 ;
pp is independently 1,2 , or 3 ;
ps is \(1,2,3\), or 4 ;
\(\mathrm{R}^{\mathrm{Pl} \mathrm{\prime}}\) is independently selected from cyano, alkylsulfonyl, arylsulfonyl, (\(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\))sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, (\(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\))alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl, \(-\mathrm{NR}^{\mathrm{hh}} \mathrm{R}^{\mathrm{h}}\), \(\left(\mathrm{NR}^{\mathrm{hh}} \mathrm{R}^{\mathrm{h}}\right)\) alkyl, \(\left(\mathrm{NR}^{\text {hh }} \mathrm{R}^{\mathrm{h}}\right)\) carbonyl, wherein each \(\mathrm{R}^{\mathrm{h}}\) is independently -H, alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; and when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring; wherein each \(\mathrm{R}^{\text {hh }}\) is independently aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl, \(\left(N R^{h} R^{h}\right)\) sulfonyl, heteroarylsulfonyl, \(-S(=O)_{2} R^{h},-C(=O) R^{h}\), \(-C(=O) N R^{h} R^{\text {h }}\); and the remaining \(R^{P 11}\) are independently selected from \(R^{P 5}\), cyano, alkylsulfonyl, arylsulfonyl, \(\left(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\right)\) sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, \(\left(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\right)\) alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl; wherein each \(\mathrm{R}^{\mathrm{h}}\) is independently - H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl,
dialkylaminoalkyl, sulfonylalkyl; and when two \(R^{h}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
each \(\mathrm{P}^{13}\) is independently:

wherein:
\(X\) is selected from \(\mathrm{O}, \mathrm{S}, \mathrm{S}(\mathrm{O}), \mathrm{SO}_{2}\), or \(\mathrm{NR}^{\mathrm{h}}\);
each \(\mathrm{R}^{\mathrm{P} 6}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
pq is independently \(0,1,2,3\), or 4 ;
pm and pn are independently 0,1 , or 2 but the sum of pn and pm is greater than zero;
pp are independently 1,2 , or 3 ;
ps is \(1,2,3\), or 4 ;
each \(R^{\text {PII }}\) is independently selected from cyano, alkylsulfonyl, arylsulfonyl, (\(N R^{h} R^{h}\))sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, (\(\mathrm{NR}^{h} \mathrm{R}^{h}\)) alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl, \(-N R^{\text {th }} \mathrm{R}^{\mathrm{h}}\), (\(N R^{\text {hh }} \mathrm{R}^{\mathrm{h}}\))alkyl, (\(N \mathrm{R}^{\text {hh }} \mathrm{R}^{\mathrm{h}}\))carbonyl, wherein each \(\mathrm{R}^{\mathrm{h}}\) is independently -H, alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; and when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring; wherein each \(\mathrm{R}^{\text {hh }}\) is independently aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl,
dialkylaminoalkyl, sulfonylalkyl, \(\left(\mathrm{NR}^{h} \mathrm{R}^{\mathrm{h}}\right)\) sulfonyl, heteroarylsulfonyl, \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{h}},-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{h}}\), \(-C(=O) N R^{h} R^{h}, R^{P 5}\), cyano, alkylsulfonyl, arylsulfonyl, \(\left(N R^{h} R^{h}\right)\) sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, (\(N R^{\text {h }} \mathrm{R}^{\text {h }}\))alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl; wherein each \(\mathrm{R}^{\mathrm{h}}\) is independently - H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; and when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
each \(\mathrm{P}^{14}\) is independently:

wherein:
the ring is substituted with one or more oxo group;
X is \(\mathrm{NR}^{\mathrm{f}}\);
each \(\mathbf{R}^{\mathrm{f}}\) is independently - H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl, \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\), \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{h}}, \mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{h}}, \mathrm{C}(=\mathrm{O}) \mathrm{OR}^{\mathrm{h}},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\); each \(\mathrm{R}^{\mathrm{h}}\) is independently -H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; or when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring; each \(\mathrm{R}^{\mathrm{P} 6}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-N R^{P a} R^{P b}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
pq is independently \(0,1,2,3\), or 4 ;
```

pm is independently 0,1 , or 2 ;

```
ps is \(1,2,3\), or 4 ;
\(R^{\text {Pll }}\) is independently selected from cyano, alkylsulfonyl, arylsulfonyl, (\(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{h}\))sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, (\(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\))alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl; wherein each \(\mathrm{R}^{\mathrm{h}}\) is independently -H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, or sulfonylalkyl; and when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
each \(-Z^{0}-\) is \(-C(=O)\) - or \(-C(=S)\);
each \(-Z^{1}\) - is independently a bond, or \(-C\left(R^{Z 1}\right)_{2}\)-; wherein each \(R^{Z 1}\) is independently \(H\), alkyl, haloalkyl, or halo;
each \(-Z^{2}\) - is independently saturated or partially unsaturated \(\left(C_{3}-C_{8}\right)\) cycloalkyl that is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\);
each \(-Z^{3}\) - is independently saturated, partially unsaturated, or aromatic 4-8 membered heterocyclic or heteroaryl ring that is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\);
each \(-Z^{4}\) - is independently:

wherein each \(\mathrm{R}^{\mathrm{ZA}}\) is independently \(H\), alkyl, cyano, aryl, or heteroaryl;
each \(-Z^{5}\) - is independently:

wherein each \(R^{Z S}\) is independently \(H\), alkyl, cyano, aryl, or heteroaryl; or two \(R^{Z S} s\) together with the nitrogen to which they are attached form a 4-8 membered heterocyclic ring that is optionally substituted with one or more oxo and with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\);
each \(-Z^{6}\) - is independently \(-C\left(R^{Z 1}\right)\) - and is doublebonded to \(P\); wherein \(R^{Z 1}\) is independently \(H\), alkyl, haloalkyl, or halo;
each \(\mathrm{E}^{0}\) is independently \(-\mathrm{NR}^{\mathrm{Ec}} \mathrm{R}^{\mathrm{Ed}}\) wherein
\(R^{E c}\) and \(R^{E d}\) are each independently selected from hydrogen, alkenyloxycarbonyl, alkoxyalkylcarbonyl, alkoxycarbonyl, alkyl, alkylcarbonyl, alkylsulfonyl, aryl, arylalkoxycarbonyl, arylalkyl, arylalkylcarbonyl, arylcarbonyl, aryloxycarbonyl, arylsulfonyl, cycloalkyl, cycloalkylsulfonyl, formyl, haloalkoxycarbonyl, heterocyclyl, heterocyclylalkoxycarbonyl, heterocyclylalkyl, heterocyclylalkylcarbonyl, heterocyclylcarbonyl, heterocyclyloxycarbonyl, hydroxyalkylcarbonyl, (\(\mathrm{NR}^{\mathrm{e}} \mathrm{R}^{\mathrm{f}}\))alkyl, (\(\mathrm{NR}^{e} \mathrm{R}^{\mathrm{f}}\)) alkylcarbonyl, (\(\mathrm{NR}^{e} \mathrm{R}^{\mathrm{f}}\)) carbonyl, (\(\mathrm{NR}^{e} \mathrm{R}^{\mathrm{f}}\)) sulfonyl, \(\mathrm{C}(\mathrm{NCN}) \mathrm{OR}^{\prime}\), and - \(\mathrm{C}(\mathrm{NCN}) \mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}\), wherein \(R^{\prime}\) is selected from alkyl and unsubstituted phenyl, and wherein the alkyl part of the arylalkyl, the arylalkylcarbonyl, the heterocyclylalkyl, and the heterocyclylalkylcarbonyl are further optionally substituted with one \(-N R^{e} R^{f}\) group; and wherein the aryl, the aryl part of the arylalkoxycarbonyl, the arylalkyl, the arylalkylcarbonyl, the arylcarbonyl, the aryloxycarbonyl, and the arylsulfonyl, the heterocyclyl, and the heterocyclyl part of the heterocyclylalkoxycarbonyl, the heterocyclylalkyl, the heterocyclylalkylcarbonyl, the heterocyclylcarbonyl, and the heterocyclyloxycarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro;
each \(E^{\prime}\) is independently \(-O C(=O) N R^{E e} R^{E f}\) wherein each \(R^{E e}\) and \(R^{E f}\) are each independently selected from hydrogen, alkenyloxycarbonyl, alkoxyalkylcarbonyl, alkoxycarbonyl, alkyl, alkylcarbonyl, alkylsulfonyl, aryl, arylalkoxycarbonyl, arylalkyl, arylalkylcarbonyl, arylcarbonyl, aryloxycarbonyl, arylsulfonyl, cycloalkyl, cycloalkylsulfonyl,
formyl, haloalkoxycarbonyl, heterocyclyl, heterocyclylalkoxycarbonyl, heterocyclylalkyl, heterocyclylalkylcarbonyl, heterocyclylcarbonyl, heterocyclyloxycarbonyl, hydroxyalkylcarbonyl, (\(\mathrm{NR}^{e} \mathrm{R}^{f}\)) alkyl, \(\left(\mathrm{NR}^{e} \mathrm{R}^{f}\right.\))alkylcarbonyl, \(\left(\mathrm{NR}^{\mathrm{e}} \mathrm{R}^{f}\right)\) carbonyl, (\(N R^{e} \mathrm{R}^{f}\)) sulfonyl, \(-\mathrm{C}(\mathrm{NCN}) O \mathrm{R}^{\prime}\), and - \(\mathrm{C}(\mathrm{NCN}) \mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}\), wherein \(\mathrm{R}^{\prime}\) is selected from alkyl and unsubstituted phenyl, and wherein the alkyl part of the arylalkyl, the arylalkylcarbonyl, the heterocyclylalkyl, and the heterocyclylalkylcarbonyl are further optionally substituted with one \(-N R^{e} R^{f}\) group; and wherein the aryl, the aryl part of the arylalkoxycarbonyl, the arylalkyl, the arylalkylcarbonyl, the arylcarbonyl, the aryloxycarbonyl, and the arylsulfonyl, the heterocyclyl, and the heterocyclyl part of the heterocyclylalkoxycarbonyl, the heterocyclylalkyl, the heterocyclylalkylcarbonyl, the heterocyclylcarbonyl, and the heterocyclyloxycarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro; or wherein \(\mathrm{R}^{\mathrm{Ec}}\) and \(\mathrm{R}^{\mathrm{Ef}}\), together with the nitrogen atom to which they are attached, form a heterocycle;
each \(\mathrm{V}^{0}\) is independently H , alkyl, arylalkyl, alkenyl, CO, cycloalkylalkyl, cycloalkyl, alkoxyalkyl, alkoxyalkylcarbonylalkyl, alkoxycarbonylalkyl, alkylsulfanylalkyl, aryalkoxyalkylcarbonylalkyl, carboxyalkyl, heterocyclylalkyl, heterocyclylcarbonylalkyl, hydroxyalkyl, NRRCOalkyl;
and where in arylalkyl the alkyl can be substituted with up to three aryl groups, and the alkyl part of the arylalkyl is further optionally substituted with one or two additional groups independently selected from alkoxy, alkyocarbonyloxy, halo, haloalkoxy, haloalkyl, heterocyclyl, hydroxy;
and the aryl part can be substituted with \(1,2,3,4\), or 5 substituents independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, alkylcarbonyl, a second aryl group, arylalkoxy, arylalkyl, arylcarbonyl, cyano, halo, haloalkoxy, haloalkyl, heterocyclyl, heterocyclylalkyl, heterocyclylcarbonyl, hydroxy, hydroxyalkyl, nitro, \(-\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}},-\) \(\left(N R^{X}{ }^{X}{ }^{Y}\right.\))alkyl, oxo, and \(-\mathrm{P}(\mathrm{O}) \mathrm{OR}_{2}\), wherein each R is independently selected from hydrogen and alkyl; and wherein the alkyl part of the arylalkyl and the heterocyclylalkyl are unsubstituted and wherein the second aryl group, the aryl part of the arylalkyl, the aryl part of the arylcarbonyl, the heterocyclyl, and the heterocyclyl part of the heterocyclylalkyl and the heterocyclylcarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro;
and the heterocyclyl can be substituted with \(1,2,3,4\), or 5 substituents independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylcarbonyl, cyano, halo, haloalkoxy, haloalkyl, a second heterocyclyl group,
heterocyclylalkyl, heterocyclylcarbonyl, hydroxy, hydroxyalkyl, nitro, \(-\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}\), (\(\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}\))alkyl, and oxo, wherein the alkyl part of the arylalkyl and the heterocyclylalkyl are unsubstituted and wherein the aryl, the aryl part of the arylalkyl; the aryl part of the arylcarbonyl, the second heterocyclyl group, and the heterocyclyl part of the heterocyclylalkyl and the heterocyclylcarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro;
each \(V^{\prime}\) is independently cyanoalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle,
 hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{2}\) is independently haloalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle,
 hydrogen, alkenyl, and alkyl;
each \(V^{3}\) is independently alkyl, which is substituted with one or more oxo, and which is optionally substituted with one or more groups independently selected from cycloalkyl, halo, aryl, alkenyl, and cyano;
each \(\mathrm{V}^{4}\) is independently haloalkoxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(N R^{\mathrm{Va}_{\mathrm{a}}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{5}\) is independently alkylsulfonylalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{6}\) is independently arylsulfonylalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle,
heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}_{\mathrm{a}}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{7}\) is independently heterocyclosulfonylalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(V^{8}\) is independently spirocycloalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle,
 hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{9}\) is independently spirocycloalkylalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}^{\mathrm{V}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}} \text { and } \mathrm{R}^{\mathrm{Vb}} \text { are each independently }{ }^{2} \text {, }}\) selected from hydrogen, alkenyl, and alkyl;
each \(V^{10}\) is independently fusedbicycliccycloalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{11}\) is independently fusedbicycliccycloalkylalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl,
 selected from hydrogen, alkenyl, and alkyl;
each \(V^{12}\) is independently bridged-bicycliccycloalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}_{\mathrm{a}} \mathrm{R}^{\mathrm{Vb}}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(V^{13}\) is independently bridged-bicyclic-cycloalkylalkyl,] which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy,
cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-\mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{14}\) is independently aryloxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=0) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(V^{15}\) is independently arylalkoxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle,
 hydrogen, alkenyl, and alkyl;
each \(V^{16}\) is independently cycloalkyloxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(N R^{\mathrm{Va}^{2}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{17}\) is independently cycloalkylalkyloxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl,
 selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{18}\) is independently heterocyclooxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl,
 selected from hydrogen, alkenyl, and alkyl;
each \(V^{19}\) is independently heterocycloalkyloxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}^{2} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}} \text { and } \mathrm{R}^{\mathrm{Vb}} \text { are each independently }{ }^{\text {a }} \text {, }}\) selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{20}\) is independently heteroaryloxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle,
heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl; and
each \(\mathrm{V}^{21}\) is independently heteroarylalkylalkoxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
or a pharmaceutically acceptable salt, or prodrug thereof.
In another specific embodiment of the invention \(r\) is \(1,2,3,4,5,6,8,13,14,15,16,17\), 18,19 , or 20.

In another specific embodiment of the invention \(W\) is \(W^{2}\).
In another specific embodiment the invention \(W\) is \(W^{4}\).
In another specific embodiment of the invention \(W\) is \(W^{8}\).
In another specific embodiment of the invention \(W\) is \(W^{6}\).
In another specific embodiment of the invention \(W\) is \(W^{15}\).
In another specific embodiment of the invention \(W\) is \(W^{16}\).
In another specific embodiment of the invention \(W^{16}\) is selected from:

In another specific embodiment of the invention \(W\) is \(W^{17}\).
In another specific embodiment of the invention \(W\) is \(W^{18}\).
In another specific embodiment of the invention \(\mathrm{W}^{6}\) is selected from:

and

In another specific embodiment of the invention \(\mathrm{W}^{6}\) is selected from:

In another specific embodiment of the invention \(\mathrm{W}^{8}\) is selected from:

In another specific embodiment of the invention \(W^{8}\) is selected from:

In another specific embodiment of the invention \(W^{8}\) is selected from:

and

In another specific embodiment of the invention \(W^{8}\) is selected from:

In another specific embodiment of the invention \(W^{8}\) is selected from:

In another specific embodiment of the invention \(W\) is \(W^{8}\) that is unsubstituted.
In another specific embodiment of the invention \(\mathrm{W}^{12}\) is:

In another specific embodiment of the invention \(W\) is \(W^{15}\) or \(W^{16}\).
In another specific embodiment of the invention W is a ring system of formula:

wherein :
U is CH or N ; and
X is \(-\mathrm{CH}_{2}-,-\mathrm{C}(=\mathrm{O})-,-\mathrm{CH}_{2} \mathrm{CH}_{2}-,-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\), or \(-\mathrm{CH}=\mathrm{CH}-\);
wherein the ring system is optionally substituted with one or more \(R^{A 1}\) or \(R^{A 3}\).
In another specific embodiment of the invention W is selected from:

In another specific embodiment of the invention W is selected from:

In another specific embodiment of the invention W is selected from:

In another specific embodiment of the invention \(W\) is \(W^{2}\) and within the \(W^{2}\) one \(X^{A}\) is absent and one \(X^{A}\) is \(R C=C R\) and each \(R\) is independently selected from \(H\) or alkyl.

In another specific embodiment of the invention \(W^{2}\) has the following structure:

In another specific embodiment of the invention \(W\) is \(W^{2}\) and within the \(W^{2}\) one \(X^{A}\) is absent and one \(X^{A}\) is selected from absent, alkynyl, or \(R C=C R\) and each \(R\) is independently selected from \(H\) or alkyl; and \(M\) is selected from \(M^{0}\) or \(\mathrm{M}^{9}\).

In another specific embodiment of the invention W is a ring system of formula:

wherein :
U is CH or N ; and
X is \(-\mathrm{CH}_{2}-,-\mathrm{C}(=\mathrm{O})-,-\mathrm{CH}_{2} \mathrm{CH}_{2}-,-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\), or \(-\mathrm{CH}=\mathrm{CH}-\);
wherein the ring system is optionally substituted with one or more \(R^{A 1}\) or \(R^{A 3}\).
In another specific embodiment of the invention W is selected from:

 and

In another specific embodiment of the invention W is selected from:

and

In another specific embodiment of the invention W is selected from:

In another specific embodiment of the invention W is

167

In another specific embodiment of the invention W is

In another specific embodiment of the invention W is

In another specific embodiment of the invention W is

In another specific embodiment of the invention W is

In another specific embodiment of the invention each \(X^{A}\) within \(W\) is absent.
In another specific embodiment of the invention t is \(0,9,10\), or 11 .

In another specific embodiment of the invention \(M^{0}\) is imidazolyl and \(M^{9}\) is benzimidazolyl.

In another specific embodiment of the invention the compound of formula (Ia) comprises a group \(\mathrm{M}^{9}-\mathrm{W}^{2}-\mathrm{M}^{9}\).

In another specific embodiment of the invention \(M\) is \(M^{0}\).
In another specific embodiment of the invention M is imidazolyl.
In another specific embodiment of the invention \(M\) is \(M^{9}\).
In another specific embodiment of the invention each \(M\) is benzimidazolyl.
In another specific embodiment of the invention one \(M\) is \(M^{0}\) and one \(M\) is \(M^{9}\).
In another specific embodiment of the invention one \(M\) is imidazolyl and one \(M\) is benzimidazolyl.

In another specific embodiment of the invention each \(M\) is independently a 5 -membered heteroaryl ring.

In another specific embodiment of the invention each M is 2,4-imidazoldiyl.
In another specific embodiment of the invention \(M\) is \(M^{6}\).
In another specific embodiment of the invention \(M\) is selected from:

In another specific embodiment of the invention \(M\) is \(M^{7}\).
In another specific embodiment of the invention \(M\) is:

In another specific embodiment of the invention \(M\) is \(M^{8}\).
In another specific embodiment of the invention M is:

In another specific embodiment of the invention \(M^{0}\) is :

In another specific embodiment of the invention \(\mathrm{M}^{9}\) is :

In another specific embodiment of the invention M is \(\mathrm{M}^{11}\) and is:

wherein * designates the site of connection to \(P\).
In another specific embodiment of the invention the compound of formula (Ia) is a compound of formula (Ia1): E-V-Z-P-M \({ }^{0}-\mathrm{W}^{6}-\mathrm{M}^{9}-\mathrm{P}-\mathrm{Z}-\mathrm{V}-\mathrm{E}\) (Ia1).

In another specific embodiment of the invention the compound of formula (Ia) is a compound of formula (la2): \(\mathrm{E}^{0}-\mathrm{V}^{0}-\mathrm{Z}^{0}-\mathrm{P}-\mathrm{M}^{0}-\mathrm{W}^{6}-\mathrm{M}^{9}-\mathrm{P}-\mathrm{Z}^{0}-\mathrm{V}^{0}-\mathrm{E}^{0}\) (Ia2)

In another specific embodiment of the invention the compound of formula (Ia) is a compound of formula (Ia3): E-V-Z-P \(\mathrm{P}^{0}-\mathrm{M}^{0}-\mathrm{W}^{6}-\mathrm{M}^{9}-\mathrm{P}^{7}-\mathrm{Z}-\mathrm{V}-\mathrm{E}\) (Ia3).

In another specific embodiment of the invention the compound of formula (Ia) is a compound of formula (la4): \(\mathrm{E}^{0}-\mathrm{V}^{0}-\mathrm{Z}^{0}-\mathrm{P}^{0}-\mathrm{M}^{0}-\mathrm{W}^{6}-\mathrm{M}^{9}-\mathrm{P}^{7}-\mathrm{Z}^{0}-\mathrm{V}^{0}-\mathrm{E}^{0}\) (Ia4).

In another specific embodiment of the invention the compound of formula (Ia) is a compound of formula (Ia5):

In another specific embodiment of the invention the compound of formula (Ia) is a compound of formula (Ia6):

In another specific embodiment of the invention the compound of formula (la) is a compound of formula (la7):

In another specific embodiment the invention provides a compound of formula (Ia5), (Ia6) or (Ia7), wherein \(W\) is \(W^{2}\).

In another specific embodiment the invention provides a compound of formula (Ia5), (Ia6) or (Ia7), wherein \(W\) is \(W^{6}\).

In another specific embodiment the invention provides a compound of formula (la5), (Ia6) or (la7), wherein \(W\) is \(W^{8}\).

In another specific embodiment the invention provides a compound of formula (Ia5), (la6) or (Ia7), wherein W is \(\mathrm{W}^{16}\).

In another specific embodiment the invention provides a compound of formula (Ia5), (Ia6) or (Ia7), wherein \(W^{16}\) is selected from:

In another specific embodiment of the invention the compound of formula (Ia) is a compound of formula (la9):

In another specific embodiment of the invention the compound of formula (Ia) is a compound of formula (Ia10):

In another specific embodiment of the invention the compound of formula (Ia) is a compound of formula (Iall):

In another specific embodiment of the invention the compound of formula (Ia) is a compound of formula (Ia 12):

In another specific embodiment of the invention the compound of formula (Ia) is a compound of formula (Ia13):

In another specific embodiment of the invention the compound of formula (Ia) is a compound of formula (lal4):
 (la14)

In another specific embodiment of the invention the compound of formula (Ia) is a compound of formula (Ia15):
 (la15)

In another specific embodiment of the invention the compound of formula (la) is a compound of formula (Ia16):

In one embodiment of the invention, the compound of formula (Ia) is a compound of formula (Ia8):
\[
\begin{equation*}
E^{\mathrm{x}}-V^{\mathrm{w}}-Z^{\mathrm{v}}-P^{\mathrm{u}}-\mathrm{M}^{\mathrm{l}}-\mathrm{W}^{\mathrm{r}}-\mathrm{M}^{\mathrm{tl}}-\mathrm{P}^{\mathrm{wl}}-Z^{\mathrm{Nl}}-V^{\mathrm{wl}}-\mathrm{E}^{\mathrm{xl}} \tag{Ia8}
\end{equation*}
\]
wherein:
r is \(2,4,6,8\), or 16 ; t is 0 or 10 ; \(u\) is \(0,1,3,5,7,8,10\), or 11 ; \(v\) is 0 ; \(w\) is \(0,1,2,3,4\), or 5 ; x is 0 ; tl is 9 ; ul is \(0,1,3,5,7,8,10\), or 11 ; vl is 0 ; wl is \(0,1,2,3,4\), or 5 ; and xl is 0 .

In one embodiment of the invention, the compound of formula (Ia) is a compound of formula (Ia8) wherein: \(r\) is \(6 ; \mathrm{t}\) is 0 or \(10 ; \mathrm{u}\) is \(0,1,3,5,7,8,10\), or \(11 ; \mathrm{v}\) is 0 ; w is \(0,1,2,3,4\), or \(5 ; \mathrm{x}\) is \(0 ; \mathrm{t} 1\) is \(9 ; \mathrm{ul}\) is \(0,1,3,5,7,8,10\), or \(11 ; \mathrm{vl}\) is \(0 ; \mathrm{wl}\) is \(0,1,2,3,4\), or 5 ; and xl is 0 .

In one embodiment of the invention, the compound of formula (Ia) is a compound of formula (Ia8) wherein \(E^{0}\) is:

In one embodiment of the invention, the compound of formula (Ia) is a compound of formula (la8) wherein \(\mathrm{M}^{0}\) is:

In one embodiment of the invention, the compound of formula (Ia) is a compound of formula (Ia8) wherein \(\mathrm{M}^{9}\) is:

In one embodiment of the invention, the compound of formula (Ia) is a compound of formula (Ia8) wherein \(r\) is 6 and \(W^{6}\) is:

In one embodiment of the invention, the compound of formula (Ia) which is selected from:

In one embodiment of the invention, the compound of formula (la) is a compound of formula (la8) wherein \(r\) is 2 and \(W^{2}\) is:

In one embodiment of the invention, the compound of formula (Ia) is a compound of formula (Ia8) which is:

In one embodiment of the invention, the compound of formula (la) is a compound of formula (Ia8) wherein \(r\) is 4 and \(W^{4}\) is:

In one embodiment of the invention, the compound of formula (la) is a compound of formula (Ia8) which is:

In one embodiment of the invention, the compound of formula (Ia) is a compound of formula (la8) wherein \(r\) is 8 and \(W^{8}\) is:

In one embodiment of the invention, the compound of formula (Ia) is a compound of formula (la8) which is selected from:

In one embodiment of the invention, the compound of formula (la) is a compound of formula (la8) wherein \(r\) is 16 and \(W^{16}\) is:

In one embodiment of the invention, the compound of formula (la) is a compound of formula (Ia8) which is selected from:

and

In one embodiment of the invention, the compound of formula (Ia) is a compound of formula (la8) wherein: r is 6 , or 8 ; t is 0 or 10 ; \(u\) is \(0,1,3,5,7,8,10\), or 11 ; v is 0 ; \(w\) is \(0,1,2\), 3,4 , or \(5 ; \mathrm{x}\) is \(0 ; \mathrm{tl}\) is \(9 ; \mathrm{ul}\) is \(0,1,3,5,7,8,10\), or \(11 ; \mathrm{vl}\) is \(0 ; \mathrm{wl}\) is \(0,1,2,3,4\), or 5 ; and xl is 0.

In one embodiment of the invention, the compound of formula (Ia) is a compound of formula (Ia8) wherein: r is 6 , or 8 ; t is 0 or 10 ; u is \(0,1,3,5,7,8,10\), or 11 ; v is 0 ; \(w\) is \(1,2,3\), 4 , or \(5 ; \mathrm{x}\) is \(0 ; \mathrm{t} 1\) is \(9 ; \mathrm{u} 1\) is \(0,1,3,5,7,8,10\), or \(11 ; \mathrm{vl}\) is \(0 ; \mathrm{wl}\) is \(0,1,2,3,4\), or 5 ; and xl is 0 .

In one embodiment of the invention, the compound of formula (Ia) is a compound of formula (la8) wherein: \(r\) is 6 , or 8 ; \(t\) is 0 or 10 ; \(u\) is \(0,1,3,5,7,8,10\), or 11 ; \(v\) is 0 ; \(w\) is \(0,1,2\), 3,4 , or \(5 ; \mathrm{x}\) is \(0 ; \mathrm{tl}\) is \(9 ; \mathrm{ul}\) is \(1,3,5,7,8,10\), or \(11 ; \mathrm{vl}\) is \(0 ; \mathrm{wl}\) is \(0,1,2,3,4\), or 5 ; and xl is 0 .

In one embodiment of the invention, the compound of formula (la) is a compound of formula (la8) wherein: \(r\) is 6 , or 8 ; \(t\) is 0 or 10 ; \(u\) is \(0,1,3,5,7,8,10\), or \(11 ; v\) is 0 ; \(w\) is \(1,2,3\), 4 , or 5 ; x is 0 ; tl is 9 ; ul is \(1,3,5,7,8,10\), or \(11 ; \mathrm{vl}\) is \(0 ; \mathrm{wl}\) is \(0,1,2,3,4\), or 5 ; and x 1 is 0 .

In one embodiment of the invention, the compound of formula (Ia) is a compound of formula (Ia8) which is selected from:

In one embodiment of the invention, the compound of formula (la) is a compound of formula (Ia8) which is selected from:

In one embodiment of the invention, the compound of formula (Ia) is a compound of formula (Ia8) wherein: \(r\) is 6 , or 8 ; \(t\) is 0 or 10 ; \(u\) is \(0,1,3,5,7,8,10\), or \(11 ; v\) is \(0 ; w\) is \(0,1,2\), 3,4 , or \(5 ; \mathrm{x}\) is 0 ; tl is 0 or 10 ; ul is \(1,3,5,7,8,10\), or 11 ; vl is 0 ; wl is \(0,1,2,3,4\), or 5 ; and x 1 is 0 .

In one embodiment of the invention, the compound of formula (la) is a compound of formula (Ia8) which has the formula:

In one embodiment of the invention, the compound of formula (la) is a compound of formula (Ia8) which is selected from:

In one embodiment of the invention, the compound of formula (Ia) is a compound of formula (Ia8) wherein: r is 16 or 18 ; t is 0 or \(10 ; \mathrm{u}\) is \(0,1,3,5,7,8,10\), or \(11 ; \mathrm{v}\) is 0 ; \(w\) is \(0,1,2\), 3,4 , or \(5 ; \mathrm{x}\) is 0 ; tl is 0 or 10 ; ul is \(0,1,3,5,7,8,10\), or \(11 ; \mathrm{v} 1\) is \(0 ; \mathrm{wl}\) is \(0,1,2,3,4\), or 5 ; and x 1 is 0 .

In one embodiment of the invention, the compound of formula (Ia) is a compound of formula (la8) wherein \(r\) is 16 and \(W^{16}\) is:

In one embodiment of the invention, the compound of formula (Ia) is a compound of formula (la8) which is selected from:

In one embodiment of the invention, the compound of formula (Ia) is a compound of formula (la8) wherein \(r\) is 18 and \(W^{18}\) is:

In one embodiment of the invention, the compound of formula (Ia) is a compound of formula (la 17):
\[
\left.\mathrm{E}^{0}-\mathrm{V}^{\mathrm{w}}-\mathrm{Z}^{0}-\mathrm{P}^{\mathrm{u}}-\mathrm{M}^{\mathrm{t}}-\mathrm{W}^{1}-\mathrm{M}^{12}-\mathrm{P}^{\mathrm{u}}-\mathrm{Z}^{0}-\mathrm{V}^{\mathrm{w}}-\mathrm{E}^{0} \quad \text { (Ial } 7\right)
\]
wherein:
each \(u\) is independently \(0,1,3,5,7,8,10\), or 11 ;
each \(w\) is independently \(0,1,2,3,4\), or 5 ;
\(t\) is \(0,9,10\), or 11 ;
\(\mathrm{W}^{1}\) is a bond;
\(\mathrm{M}^{12}\) is a fused unsaturated, partially unsaturated or saturated hexacyclic heterocycle that comprises at least one heteroatom in the ring system, which ring system is optionally substituted with one or more groups independently selected from oxo, \(R^{A 1}\) and \(R^{A 3}\);
each \(\mathrm{R}^{\mathrm{Al}}\) is independently selected from cyano, nitro, \(\mathrm{SOR}^{4}, \mathrm{SO}_{2} \mathrm{R}^{4}\), -alkylSO \(\mathrm{O}_{2} \mathrm{R}^{4}\), haloalkoxy, cyanoalkyl, \(\mathrm{NR}^{4} \mathrm{SO}_{2} \mathrm{R}^{4}\), cycloalkyl, (halo)cycloalkyl, heterocycle, (cycloalkyl)alkyl, (heterocycle)alkyl, wherein each alkyl, heterocycle and cycloalkyl is optionally substituted with one or more halo;
each \(\mathrm{R}^{\mathrm{A} 3}\) is independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, formyl, halo, haloalkyl, hydroxy, hydroxyalkyl, \(-\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\), \(\left(N R^{a} R^{b}\right)\) alkyl, and (\(N R^{a} R^{b}\)) carbonyl; \(R^{a}\) and \(R^{b}\) are each independently selected from the group
consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl;
each \(R^{4}\) is independently selected from \(H\), alkyl, haloalkyl, aryl, and arylalkyl; and \(\mathrm{R}^{\mathrm{a}}\) and \(\mathrm{R}^{\mathrm{b}}\) are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl.

In one embodiment the invention provides a compound of formula (Ia17) wherein \(M^{12}\) is:

wherein X - X is selected from \(\mathrm{O}, \mathrm{CH}_{2}, \mathrm{CH}=\mathrm{CH}, \mathrm{CH}_{2}-\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{O}, \mathrm{O}-\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\), and \(\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}\).

In one embodiment the invention provides a compound of formula (Ial7) wherein \(\mathrm{M}^{0}\) is:

In one embodiment the invention provides a compound of formula (lal7) which is selected from:

wherein X - X is selected from \(\mathrm{O}, \mathrm{CH}_{2}, \mathrm{CH}=\mathrm{CH}, \mathrm{CH}_{2}-\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{O}, \mathrm{O}-\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\), and \(\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}\); or a pharmaceutically acceptable salt, or prodrug thereof.

In one embodiment the invention provides a compound of formula (Ia17) wherein \(\mathrm{M}^{9}\) is:

In one embodiment the invention provides a compound of formula (Ia17) which is selected from:

wherein \(\mathrm{X}-\mathrm{X}\) is selected from \(\mathrm{O}, \mathrm{CH}_{2}, \mathrm{CH}=\mathrm{CH}, \mathrm{CH}_{2}-\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{O}, \mathrm{O}-\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\), and \(\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}\); or a pharmaceutically acceptable salt, or prodrug thereof.

In one embodiment the invention provides a compound of formula (Ia17) wherein \(\mathrm{M}^{11}\) is:

wherein \(\mathrm{X}-\mathrm{X}\) is selected from \(\mathrm{O}, \mathrm{CH}_{2}, \mathrm{CH}=\mathrm{CH}, \mathrm{CH}_{2}-\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{O}, \mathrm{O}-\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\), and \(\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}\); and wherein \({ }^{*}\) designates the site of connection to P .

In one embodiment of the invention, the compound of formula (Ia) is selected from:

In one embodiment the invention provides a compound of formula (Ia18):

wherein:
each \(P\) is independently selected from:

 and

each M is independently \(\mathrm{M}^{0}, \mathrm{M}^{9}\), or \(\mathrm{M}^{10}\); and \(W^{16}\) is selected from:

or a pharmaceutically acceptable salts or prodrug thereof.
In one embodiment the invention provides a compound of formula (Ia19):

wherein:
each \(P\) is independently selected from:

and

each M is independently \(\mathrm{M}^{0}, \mathrm{M}^{9}\), or \(\mathrm{M}^{10}\); and
\(W^{8}\) is selected from:

or a pharmaceutically acceptable salts or prodrug thereof.
In one embodiment the invention provides a compound of formula (Ia18) or (Ia19) wherein each \(\mathrm{E}^{0}\) is methoxycarbonylamino.

In another specific embodiment of the invention the compound of formula (Ia) is:

or a pharmaceutically acceptable salt, or prodrug thereof.
In another specific embodiment of the invention the compound of formula (la) is:

or a pharmaceutically acceptable salt, or prodrug thereof.
In another specific embodiment of the invention the compound of formula (la) is a compound of formula: R9-Z-P-M-W-M-P-Z-R9.

In another specific embodiment of the invention the compound of formula (Ia) is a compound of formula: R9-Z-P-M \({ }^{0}-\mathrm{W}^{6}-\mathrm{M}^{9}-\mathrm{P}-\mathrm{Z}-\mathrm{R} 9\).

In another specific embodiment of the invention the compound of formula (la) is a compound of formula: R9-Z- \(\mathrm{P}^{0}-\mathrm{M}^{0}-\mathrm{W}^{6}-\mathrm{M}^{9}-\mathrm{P}^{7}-\mathrm{Z}-\mathrm{R} 9\).

In another specific embodiment the invention provides a compound of formula (la) wherein the sum of \(t, u, v, w\), and \(x\) is not 0 .

In another specific embodiment the invention provides a compound of formula (la) wherein at least two of \(\mathrm{r}, \mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}\), and x are other than 0 .

In another specific embodiment the invention provides a compound of formula (Ia) wherein at least three of \(\mathrm{r}, \mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}\), and x are other than 0 .

In another specific embodiment the invention provides a compound of formula (Ia) wherein at least four of \(r, t, u, v, w\), and \(x\) are other than 0 .

In another specific embodiment the invention provides a compound of formula (Ia) wherein at least five of \(\mathrm{r}, \mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}\), and x are other than 0 .

In another specific embodiment the invention provides a compound of formula (Ia) wherein at least two of \(\mathrm{r}, \mathrm{t}, \mathrm{u}, \mathrm{v}\), w or x are not zero and at least one t is selected from \(0,1,2,3\), \(4,5,6,7,8,10\), and 11 .

In another specific embodiment the invention provides a compound of formula (Ia) wherein at least two of \(\mathrm{r}, \mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}\) and x are not zero and at least two of the non-zero groups are not the same letter (for example, one \(w\) and two \(u\) 's can be non zero, but just having two \(u\) 's being non-zero and the remaining \(\mathrm{r}, \mathrm{t}, \mathrm{v}, \mathrm{w}\), and x values all zero is not acceptable).

In another specific embodiment the invention provides a compound of formula (Ia) wherein at least three of \(r, t, u, v, w\) or \(x\) are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (la) wherein at least three of \(\mathrm{r}, \mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero and at least three of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (la) wherein at least four of \(\mathrm{r}, \mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (la) wherein at least four of \(\mathrm{r}, \mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero and at least three of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (la) wherein at least four of \(\mathrm{r}, \mathrm{t}, \mathrm{u}, \mathrm{v}\), w or x are not zero and at least four of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (la) wherein the sum of \(\mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}\) or x is not zero.

In another specific embodiment the invention provides a compound of formula (la) wherein the sum of \(\mathrm{r}, \mathrm{u}, \mathrm{v}, \mathrm{w}\) or x is not zero.

In another specific embodiment the invention provides a compound of formula (la) wherein \(r\) is \(2,3,4,5,6,7,8,9,10,11\), and at least one \(t\) is not zero.

In another specific embodiment the invention provides a compound of formula (la) wherein at least one \(u\) is not zero.

In another specific embodiment the invention provides a compound of formula (Ia) wherein r , and at least one t and at least one u are all not zero.

In another specific embodiment the invention provides a compound of formula (Ia) wherein at least two of \(u\), \(w\) and \(t\) are not zero.

In another specific embodiment the invention provides a compound of formula (Ia) wherein at least two of \(r, u\), and \(w\) are not zero.

In another specific embodiment the invention provides a compound of formula (la) wherein at least two of \(r, u\), and \(w\) are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (Ia) wherein at least \(r\) and both \(u\) are not zero.

In another specific embodiment the invention provides a compound of formula (Ia) wherein at least two of \(u, v, w\) and \(x\) are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (Ia) wherein at least one of \(u\) and or \(w\) is not zero.

In another specific embodiment the invention provides a compound of formula (la) wherein at least two of \(u\) and or \(w\) are not zero.

In another specific embodiment the invention provides a compound of formula (Ia) wherein at least one \(u\) is not zero, and at least one \(w\) is not zero.

In another specific embodiment the invention provides a compound of formula (Ia) wherein at least two \(u\) are not zero.

In another specific embodiment the invention provides a compound of formula (Ia) wherein at least one \(w\) is not zero.

In another specific embodiment the invention provides a compound of formula (Ia) wherein at least two \(w\) are not zero.

In another specific embodiment the invention provides a compound of formula (Ia) wherein both \(u\) are not zero, and at least one \(w\) is not zero.

In another specific embodiment the invention provides a compound of formula (la) wherein both \(t\) are 9 and \(r\) is \(2,3,4,5,6,7,8,9,10,11,12,15,16,17,18,19\), or 20.

In another specific embodiment the invention provides a compound of formula (Ia) wherein \(r\) is 1,13 , or 14 ; one \(t\) is \(0,1,2,3,4,5,6,7,8,9,10\), or 11 ; and the other \(t\) is \(0,1,2,3\), \(4,5,6,7,8,10\), or 11 .

In another specific embodiment the invention provides a compound of formula (la) wherein one t is 0 ; the other t is 11 ; and r is \(1,2,3,4,5,6,7,8,9,10,11,12,14,15,16,17,18\), 19 , or 20.

In another specific embodiment the invention provides a compound of formula (la) wherein \(r\) is 13 ; one \(t\) is 0 ; and the other \(t\) is \(0,1,2,3,4,5,6,7,8,9\), or 10 .

In another specific embodiment the invention provides a compound of formula (Ia) wherein \(r\) is 13 ; one \(t\) is 11 ; and the other \(t\) is \(1,2,3,4,5,6,7,8,9,10\), or 11 .

In another specific embodiment the invention provides a compound of formula (Ia) wherein both \(t\) are 11 ; and \(W\) is not a bond, or \(r\) is \(2,3,4,5,6,7,8,9,10,11,12,13,14,15,16\), \(17,18,19\), or 20.

In another specific embodiment the invention provides a compound of formula (Ia) wherein, when \(W\) is a bond or \(W^{1}\) is absent, then one \(t\) is \(0,1,2,3,4,5,6,7,8,9,10\), or 11 and the other \(t\) is \(0,1,2,3,4,5,6,7,8,9\), or 10 .

In another specific embodiment the invention provides a compound of formula (Ia) wherein when \(W\) is \(W^{r}\) and \(r\) is 6 or 8 then at least one \(t\) is not 0 .

In another specific embodiment the invention provides a compound of formula (Ia) wherein when both \(t\) are 0 , then \(r\) is \(1,2,3,4,5,7,9,10,11,12,13,14,15,16,17,18,19\), or 20 .

In another specific embodiment the invention provides a compound of formula (Ia) wherein at least one of \(\mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero.

In another specific embodiment the invention provides a compound of formula (Ia) wherein at least one of \(\mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero.

In another specific embodiment the invention provides a compound of formula (Ia) wherein at least two of \(\mathrm{r}, \mathrm{t}, \mathrm{u}, \mathrm{w}\) or x are not zero.

In another specific embodiment the invention provides a compound of formula (la) wherein at least three of \(\mathrm{r}, \mathrm{t}, \mathrm{u}, \mathrm{v}\), w or x are not zero.

In another specific embodiment the invention provides a compound of formula (Ia) wherein at least four of \(\mathrm{r}, \mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero.

In another specific embodiment the invention provides a compound of formula (la) wherein at least two of \(\mathrm{r}, \mathrm{t}, \mathrm{u}\), w or x are not zero and at least one t is selected from \(0,1,2,3,4\), \(5,6,7,8,10,11\).

In another specific embodiment the invention provides a compound of formula (la) wherein at least two of \(\mathrm{r}, \mathrm{t}, \mathrm{u}, \mathrm{w}\) or x are not zero and at least two of the non-zero groups are not in the same letter.

In another specific embodiment the invention provides a compound of formula (la) wherein at least three of \(r, t, u, v, w\) or \(x\) are not zero and at least two of the non-zero groups are not in the same letter.

In another specific embodiment the invention provides a compound of formula (Ia) wherein at least three of \(\mathrm{r}, \mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero and at least three of the non-zero groups are not in the same letter.

In another specific embodiment the invention provides a compound of formula (Ia) wherein at least four of \(\mathrm{r}, \mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero and at least two of the non-zero groups are not in the same letter.

In another specific embodiment the invention provides a compound of formula (la) wherein the sum of \(\mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}\) or x is not zero.

In another specific embodiment the invention provides a compound of formula (la) wherein the sum of \(r, u, v, w\) or \(x\) is not zero.

In another specific embodiment the invention provides a compound of formula (Ia) wherein \(r\) is \(2,3,4,5,6,7,8,9,10,11\) and at least one \(t\) is not zero.

In another specific embodiment the invention provides a compound of formula (Ia) wherein at least one \(\mathbf{u}\) is not zero.

In another specific embodiment the invention provides a compound of formula (Ia) wherein r , and at least one t , and at least one u are all not zero.

In another specific embodiment the invention provides a compound of formula (Ia) wherein at least two of \(u, w\) and \(t\) are not zero.

In another specific embodiment the invention provides a compound of formula (Ia) wherein at least two of \(\mathrm{r}, \mathrm{u}\), and w are not zero.

In another specific embodiment the invention provides a compound of formula (Ia) wherein at least two of \(r, u\), and \(w\) are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (Ia) wherein at least \(r\) and both \(u\) are not zero.

In another specific embodiment the invention provides a compound of formula (Ia) wherein at least two of \(u\), \(w\) or \(x\) are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (la wherein the sum of \(u, v, w\) and \(x\) is not zero.

In another specific embodiment the invention provides a compound of formula (Ia) wherein at least one of \(u\), or \(w\) are not zero.

In another specific embodiment the invention provides a compound of formula (la) wherein at least two of \(u\), or \(w\) are not zero.

In another specific embodiment the invention provides a compound of formula (Ia) wherein at least one \(u\) is not zero, and at least one \(w\) is not zero.

In another specific embodiment the invention provides a compound of formula (Ia) wherein both \(u\) are not zero, and at least one \(w\) is not zero.

In another specific embodiment the invention provides a compound of formula (Ia) wherein at least one \(u\) is not zero.

In another specific embodiment the invention provides a compound of formula (la) wherein both of \(u\) are not zero.

In another specific embodiment the invention provides a compound of formula (Ia) wherein at least one of \(w\) is not zero.

In another specific embodiment the invention provides a compound of formula (la) wherein both \(w\) are not zero.

In another specific embodiment the invention provides a compound of the following formula (Ia35): \(E^{\mathrm{x}}-\mathrm{V}^{\mathrm{w}}-\mathrm{Z}^{\mathrm{V}}-\mathrm{P}^{\mathrm{u}}-\mathrm{M}^{9}-\mathrm{W}^{\mathrm{r}}-\mathrm{M}^{9}-\mathrm{P}^{\mathrm{u}}-\mathrm{Z}^{\mathrm{V}}-\mathrm{V}^{\mathrm{w}}-\mathrm{E}^{\mathrm{x}}\) (Ia35) wherein r is 1,13 , or 14

In another specific embodiment the invention provides a compound of formula (Ia) wherein for a compound of formula (Ia35) at least one of \(u\), \(w\) or \(x\) are not zero.

In another specific embodiment of the invention for a compound of formula (Ia35) at least two of \(u, v, w\) or \(x\) are not zero.

In another specific embodiment of the invention for a compound of formula (Ia35) at least three of \(u, v, w\) or \(x\) are not zero.

In another specific embodiment of the invention for a compound of formula (Ia35) at least four of \(u, v, w\) or \(x\) are not zero.

In another specific embodiment of the invention for a compound of formula (la35) at least two \(u, v, w\) or \(x\) are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment of the invention for a compound of formula (Ia35) at least three of \(u, v, w\) or \(x\) are not zero and at least two of the non-zero groups are not in the same letter.

In another specific embodiment of the invention for a compound of formula (Ia35) at least three of \(u, v, w\) or \(x\) are not zero and at least three of the non-zero groups are not in the same letter.

In another specific embodiment of the invention for a compound of formula (la35) at least four of \(u, v, w\) or \(x\) are not zero and at least two of the non-zero groups are not in the same letter.

In another specific embodiment of the invention for a compound of formula (Ia35) the sum of \(u, v, w\) and \(x\) is not zero.

In another specific embodiment of the invention for a compound of formula (Ia35) at least one of \(u\), or \(w\) are not zero.

In another specific embodiment of the invention for a compound of formula (la35) at least two of \(u\), or \(w\) are not zero.

In another specific embodiment of the invention for a compound of formula (la35) at least one \(u\) is not zero, and at least one \(w\) is not zero.

In another specific embodiment of the invention for a compound of formula (Ia35) both \(u\) are not zero, and at least one \(w\) is not zero.

In another specific embodiment of the invention for a compound of formula (Ia35) at least one \(u\) is not zero.

In another specific embodiment of the invention for a compound of formula (Ia35) both of \(u\) are not zero.

In another specific embodiment of the invention for a compound of formula (Ia35) at least one of \(w\) is not zero.

I In another specific embodiment of the invention for a compound of formula (la35) both w are not zero.

In another specific embodiment the invention provides a compound of the following formula (la36): \(\mathrm{E}^{\mathrm{x}}-\mathrm{V}^{\mathrm{w}}-\mathrm{Z}^{\mathrm{V}}-\mathrm{P}^{\mathrm{u}}-\mathrm{M}^{0}-\mathrm{W}^{13}-\mathrm{M}^{11}-\mathrm{P}^{\mathrm{w}}-\mathrm{Z}^{\mathrm{V}}-\mathrm{V}^{\mathrm{w}}-\mathrm{E}^{\mathrm{x}}\) (Ia36).

In another specific embodiment of the invention for a compound of formula (Ia36) at least one of \(u, w\) or \(x\) are not zero.

In another specific embodiment of the invention for a compound of formula (Ia36) at least two of \(\mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero.

In another specific embodiment of the invention for a compound of formula (Ia36) at least three of \(u, v, w\) or \(x\) are not zero.

In another specific embodiment of the invention for a compound of formula (la36) at least four of \(\mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero.

In another specific embodiment of the invention for a compound of formula (la36)at least two \(\mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment of the invention for a compound of formula (la36) at least three of \(\mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero and at least two of the non-zero groups are not in the same letter.

In another specific embodiment of the invention for a compound of formula (la36) at least three of \(u, v, w\) or \(x\) are not zero and at least three of the non-zero groups are not in the same letter.

In another specific embodiment of the invention for a compound of formula (la36) at least four of \(u, v, w\) or \(x\) are not zero and at least two of the non-zero groups are not in the same letter.

In another specific embodiment of the invention for a compound of formula (Ia36) the sum of \(u, v, w\) and \(x\) is not zero.

In another specific embodiment of the invention for a compound of formula (la36) at least one of \(u\) or \(w\) are not zero.

In another specific embodiment of the invention for a compound of formula (Ia36) at least two of \(u\) or \(w\) are not zero.

In another specific embodiment of the invention for a compound of formula (Ia36) at least one \(u\) is not zero, and at least one \(w\) is not zero.

In another specific embodiment of the invention for a compound of formula (Ia36) both \(u\) are not zero, and at least one \(w\) is not zero.

In another specific embodiment of the invention for a compound of formula (la36) at least one \(u\) is not zero.

In another specific embodiment of the invention for a compound of formula (Ia36) both of \(u\) are not zero.

In another specific embodiment of the invention for a compound of formula (Ia36) at least one of \(w\) is not zero.

I In another specific embodiment of the invention for a compound of formula (Ia36) both \(w\) are not zero.

In another specific embodiment the invention provides a compound of the following formula (Ia37): \(\mathrm{E}^{\mathrm{x}}-\mathrm{V}^{\mathrm{w}}-\mathrm{Z}^{\mathrm{v}}-\mathrm{P}^{\mathrm{u}}-\mathrm{M}^{11}-\mathrm{M}^{\mathrm{II}}-\mathrm{P}^{\mathrm{u}}-\mathrm{Z}^{\mathrm{v}}-\mathrm{V}^{\mathrm{w}}-\mathrm{E}^{\mathrm{x}}\) (Ia37).

In another specific embodiment of the invention for a compound of formula (Ia37) at least one of \(u\), \(w\) or \(x\) are not zero.

In another specific embodiment of the invention for a compound of formula (Ia37) at least two of \(u, v, w\) or \(x\) are not zero.

In another specific embodiment of the invention for a compound of formula (Ia37) at least three of \(\mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero.

In another specific embodiment of the invention for a compound of formula (Ia37) at least four of \(u, v, w\) or \(x\) are not zero.

In another specific embodiment of the invention for a compound of formula (Ia37) at least two \(u, v, w\) or \(x\) are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment of the invention for a compound of formula (Ia37) at least three of \(u, v, w\) or \(x\) are not zero and at least two of the non-zero groups are not in the same letter.

In another specific embodiment of the invention for a compound of formula (Ia37) at least three of \(u, v, w\) or \(x\) are not zero and at least three of the non-zero groups are not in the same letter.

In another specific embodiment of the invention for a compound of formula (Ia37) at least four of \(u, v, w\) or \(x\) are not zero and at least two of the non-zero groups are not in the same letter.

In another specific embodiment of the invention for a compound of formula (Ia37) the sum of \(u, v, w\) and \(x\) is not zero.

In another specific embodiment of the invention for a compound of formula (la37) at least one of \(u\), or \(w\) are not zero.

In another specific embodiment of the invention for a compound of formula (la37) at least two of \(u\), or ware not zero.

In another specific embodiment of the invention for a compound of formula (Ia37) at least one \(u\) is not zero, and at least one \(w\) is not zero.

In another specific embodiment of the invention for a compound of formula (Ia37) both u are not zero, and at least one w is not zero.

In another specific embodiment of the invention for a compound of formula (Ia37) at least one \(u\) is not zero.

In another specific embodiment of the invention for a compound of formula (Ia37) both of \(u\) are not zero.

In another specific embodiment of the invention for a compound of formula (la37) at least one of \(w\) is not zero.
I In another specific embodiment of the invention for a compound of formula (Ia37) both w are not zero.

In another specific embodiment the invention provides a compound of the following formula (Ia38): \(\mathrm{E}^{\mathrm{x}}-\mathrm{V}^{\mathrm{w}}-\mathrm{Z}^{\mathrm{V}}-\mathrm{P}^{\mathrm{u}}-\mathrm{M}^{0}-\mathrm{W}^{\mathrm{r}}-\mathrm{M}^{0}-\mathrm{P}^{\mathrm{u}}-\mathrm{Z}^{\mathrm{V}}-\mathrm{V}^{\mathrm{w}}-\mathrm{E}^{\mathrm{x}}\) (Ia38) wherein r is 6 or 8 .

In another specific embodiment of the invention for a compound of formula (Ia38) at least one of \(u, w\) or \(x\) are not zero.

In another specific embodiment of the invention for a compound of formula (la38) at least two of \(\mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero.

In another specific embodiment of the invention for a compound of formula (Ia38) at least three of \(\mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero.

In another specific embodiment of the invention for a compound of formula (la38) at least four of \(u, v, w\) or \(x\) are not zero.

In another specific embodiment of the invention for a compound of formula (Ia38) at least two \(\mathrm{u}, \mathrm{v}\), w or x are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment of the invention for a compound of formula (la38) at least three of \(u, v, w\) or \(x\) are not zero and at least two of the non-zero groups are not in the same letter.

In another specific embodiment of the invention for a compound of formula (la38) at least three of \(u, v, w\) or \(x\) are not zero and at least three of the non-zero groups are not in the same letter.

In another specific embodiment of the invention for a compound of formula (la38) at least four of \(\mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero and at least two of the non-zero groups are not in the same letter.

In another specific embodiment of the invention for a compound of formula (Ia38) the sum of \(u, v, w\) and \(x\) is not zero.

In another specific embodiment of the invention for a compound of formula (Ia38) at least one of \(u\), or \(w\) are not zero.

In another specific embodiment of the invention for a compound of formula (Ia38) at least two of \(u\) or \(w\) are not zero.

In another specific embodiment of the invention for a compound of formula (Ia38) at least one \(u\) is not zero, and at least one \(w\) is not zero.

In another specific embodiment of the invention for a compound of formula (la38) both \(u\) are not zero, and at least one \(w\) is not zero.

In another specific embodiment of the invention for a compound of formula (la38) at least one \(\mathbf{u}\) is not zero.

In another specific embodiment of the invention for a compound of formula (Ia38) both of \(u\) are not zero.

In another specific embodiment of the invention for a compound of formula (la38) at least one of \(w\) is not zero.

In another specific embodiment of the invention for a compound of formula (la38) both w are not zero.

\section*{Compounds of formula (lb)}

In one embodiment of the invention, the compound of formula (l) is a compound of formula (Ib):

\section*{E-V-Z-P-M-A-L-P-Z-V-E (Ib)}
wherein:
L is- \(\mathrm{L}^{\mathrm{n}}\);
\(\operatorname{each} A\) is selected from \(-A^{\text {s }}\);
each \(M\) is selected from \(-M^{1}\);
each \(P\) is selected from - \(P^{\mathbf{u}}\);
each \(Z\) is selected from \(-Z^{V}\);
each V is selected from \(-\mathrm{V}^{\mathrm{w}}\);
each \(E\) is selected from \(-E^{x}\);
each \(n\) is \(0,1,2,3,4,5,6,7,9\), or 10 ;
each \(s\) is \(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18\) or 21 ;
each \(t\) is \(0,1,2,3,4,5,6,7,8,9,10\), or 11 ;
each \(u\) is \(0,1,2,3,4,5,6,7,8,10,11,12,13\), or 14 ;
each \(v\) is \(0,1,2,3,4,5\), or 6 ;
each \(w\) is \(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20\) or 21 ;
each \(x\) is 0 or 1 ;
wherein the sum of \(\mathrm{n}, \mathrm{s}, \mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}\), and x is not 0 ;
each \(L^{0}\) is independently:

wherein:
each \(R^{L 2}\) is independently selected from hydrogen, alkenyl, alkoxy, alkyl, halo, and haloalkyl; and
each aa is independently \(1,2,3\), or 4 ;
each \(L^{\prime}\) is independently:

wherein:
each \(R^{L 2}\) is independently selected from hydrogen, alkenyl, alkoxy, alkyl, halo, and haloalkyl;
each \(R^{L 3}\) is independently selected from cyano, nitro, \(\mathrm{SOR}^{4}, \mathrm{SO}_{2} \mathrm{R}^{4}\), -alkylSO \(\mathrm{R}_{2} \mathrm{R}^{4}\), haloalkoxy, cyanoalkyl, \(\mathrm{NR}^{4} \mathrm{SO}_{2} \mathrm{R}^{4}\), cycloalkyl, (halo)cycloalkyl, heterocycle, (cycloalkyl)alkyl, (heterocycle)alkyl, wherein each alkyl, heterocycle and cycloalkyl is optionally substituted with one or more halo; and
each \(\mathrm{R}^{4}\) is independently selected from H , alkyl, haloalkyl, aryl, and arylalkyl;
each bb is \(0,1,2,3\), or 4 ; each aa is \(1,2,3\), or 4 ; and the sum of bb and aa is 1,2 , 3 , or 4 ;
each \(\mathrm{L}^{2}\) is independently:

wherein:
the phenyl ring shown in \(\mathrm{L}^{2}\) is optionally substituted with one or more groups independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, formyl, halo, haloalkyl, hydroxy, hydroxyalkyl, \(-\mathrm{NR}^{a} \mathrm{R}^{\mathrm{b}},\left(\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\right.\)) alkyl, \(\left(\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\right.\)) carbonyl, cyano, nitro, \(\mathrm{SOR}^{4}, \mathrm{SO}_{2} \mathrm{R}^{4}\), -alkylSO\({ }_{2} \mathrm{R}^{4}\), haloalkoxy, cyanoalkyl, \(\mathrm{NR}^{4} \mathrm{SO}_{2} \mathrm{R}^{4}\), cycloalkyl, (halo)cycloalkyl, heterocycle, (cycloalkyl)alkyl, (heterocycle)alkyl, wherein each alkyl, heterocycle and cycloalkyl is optionally substituted with one or more halo;
each \(\mathrm{R}^{\mathrm{L4}}\) is independently -H , alkyl, aryl, arylalkyl, or heterocycle;
each \(\mathrm{R}^{4}\) is independently selected from H , alkyl, haloalkyl, aryl, and arylalkyl; \(R^{a}\) and \(R^{b}\) are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl; and
each \(\mathrm{H}^{1}\) is a 5 membered saturated, partially unsaturated, or aromatic ring comprising one or more heteroatoms;
each \(L^{3}\) is independently a fused-bicyclic saturated, partially unsaturated, or aromatic heterocyclic ring system that is optionally substituted with one or more groups independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, formyl, halo, haloalkyl, hydroxy, hydroxyalkyl, \(-\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}},\left(\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\right)\) alkyl, \(\left(\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\right)\) carbonyl, cyano, nitro, \(\mathrm{SOR}^{4}, \mathrm{SO}_{2} \mathrm{R}^{4}\), -alkylSO\({ }_{2} \mathrm{R}^{4}\), haloalkoxy, cyanoalkyl, \(\mathrm{NR}^{4} \mathrm{SO}_{2} \mathrm{R}^{4}\), cycloalkyl, (halo)cycloalkyl, heterocycle, (cycloalkyl)alkyl, (heterocycle)alkyl, wherein each alkyl, heterocycle and cycloalkyl is optionally substituted with one or more halo;
each \(R^{4}\) is independently selected from \(H\), alkyl, haloalkyl, aryl, and arylalkyl; and \(R^{a}\) and \(R^{b}\) are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl;
each \(L^{4}\) is independently a fused-tricyclic saturated, partially unsaturated, or aromatic heterocyclic ring system that is optionally substituted with one or more groups independently selected from oxo, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, formyl, halo, haloalkyl, hydroxy, hydroxyalkyl, \(-\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{b},\left(\mathrm{NR}^{a} \mathrm{R}^{b}\right)\) alkyl, \(\left(N R^{a} R^{b}\right)\) carbonyl, cyano, nitro, \(\mathrm{SOR}^{4}, \mathrm{SO}_{2} \mathrm{R}^{4}\), -alkylSO \(\mathrm{R}^{4}\), haloalkoxy, cyanoalkyl, \(\mathrm{NR}^{4} \mathrm{SO}_{2} \mathrm{R}^{4}\), cycloalkyl, (halo)cycloalkyl, heterocycle, (cycloalkyl)alkyl, (heterocycle)alkyl, wherein each alkyl, heterocycle and cycloalkyl is optionally substituted with one or more halo;
each \(R^{4}\) is independently selected from \(H\), alkyl, haloalkyl, aryl, and arylalkyl; and \(R^{a}\) and \(R^{b}\) are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl;
each \(L^{5}\) is independently a \(-\mathrm{CR}=\mathrm{CR}\)-fusedbicyclic saturated, partially unsaturated, or aromatic heterocyclic ring system that is optionally substituted with one or more groups independently selected from oxo, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy,
formyl, halo, haloalkyl, hydroxy, hydroxyalkyl, \(-\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}},\left(\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\right)\) alkyl, \(\left(\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\right)\) carbonyl, cyano, nitro, \(\mathrm{SOR}^{4}, \mathrm{SO}_{2} \mathrm{R}^{4}\), -alkylSO \(\mathrm{R}^{4}{ }^{4}\), haloalkoxy, cyanoalkyl, \(\mathrm{NR}^{4} \mathrm{SO}_{2} \mathrm{R}^{4}\), cycloalkyl, (halo)cycloalkyl, heterocycle, (cycloalkyl)alkyl, (heterocycle)alkyl, wherein each alkyl, heterocycle and cycloalkyl is optionally substituted with one or more halo;
each \(\mathrm{R}^{4}\) is independently selected from H , alkyl, haloalkyl, aryl, and arylalkyl; and
\(R^{a}\) and \(R^{b}\) are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl;
each \(\mathrm{L}^{6}\) is independently a-CR=CR-fused-tricyclic saturated, partially unsaturated, or aromatic heterocyclic ring system that is optionally substituted with one or more groups independently selected from oxo, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, formyl, halo, haloalkyl, hydroxy, hydroxyalkyl, \(-\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}},\left(\mathrm{NR}^{a} \mathrm{R}^{\mathrm{b}}\right)\) alkyl, (\(\left(\mathrm{R}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\right)\) carbonyl, cyano, nitro, \(\mathrm{SOR}^{4}, \mathrm{SO}_{2} \mathrm{R}^{4}\), -alkylSO \(\mathrm{R}_{2}{ }^{4}\), haloalkoxy, cyanoalkyl, \(\mathrm{NR}^{4} \mathrm{SO}_{2} \mathrm{R}^{4}\), cycloalkyl, (halo)cycloalkyl, heterocycle, (cycloalkyl)alkyl, (heterocycle)alkyl, wherein each alkyl, heterocycle and cycloalkyl is optionally substituted with one or more halo;
each \(R^{4}\) is independently selected from \(H\), alkyl, haloalkyl, aryl, and arylalkyl; and
\(R^{a}\) and \(R^{b}\) are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl;
each \(L^{7}\) is independently:

wherein:
each \(H^{1.1}\) is independently a fused-bicyclic saturated, partially unsaturated, or aromatic heterocyclic ring system that is optionally substituted with one or more \(R^{2}\);
each \(\mathrm{R}^{2}\) is independently selected from halo, \(-\mathrm{R}^{\mathrm{L7}},-\mathrm{OR}^{\mathrm{L7}},-\mathrm{SR}^{\mathrm{L7}},-\mathrm{N}\left(\mathrm{R}^{\mathrm{L7}}\right)_{2},-\mathrm{CF}_{3}\), \(-\mathrm{CCl}_{3},-\mathrm{OCF}_{3},-\mathrm{CN},-\mathrm{NO}_{2},-\mathrm{N}\left(\mathrm{R}^{\mathrm{L7}}\right) \mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7}},-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7}},-\mathrm{OC}(=\mathrm{O}) \mathrm{R}^{17},-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{\mathrm{L7}}\), \(-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{L7}},-\mathrm{S}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7}},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{L7}},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{L7}},-\mathrm{OS}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{L7}}\), and \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}^{\mathrm{L7}}\);
each \(\mathrm{R}^{\mathrm{L7}}\) is independently -H , alkyl, aryl, arylalkyl, or heterocycle; and each aa is independently \(1,2,3\), or 4 ;
each \(L^{9}\) is independently a fused-tetracyclic saturated, partially unsaturated, or aromatic heterocyclic ring system that is optionally substituted with one or more groups independently selected from oxo, halo, \(-\mathrm{R}^{\mathrm{L7}},-\mathrm{OR}^{\mathrm{L7}},-\mathrm{SR}^{\mathrm{L7}},-\mathrm{CF}_{3},-\mathrm{CCl}_{3},-\mathrm{OCF}_{3},-\mathrm{CN},-\mathrm{NO}_{2},-\mathrm{N}\left(\mathrm{R}^{\mathrm{L} 7}\right) \mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{L} 7}\), \(-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7}},-\mathrm{OC}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7}},-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{\mathrm{L7}},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{L7}},-\mathrm{S}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7}},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{L7}},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{L7}}\), \(\mathrm{OS}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{L} 7},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}^{\mathrm{L7}}\), alkoxyalkyl, arylalkoxycarbonyl, halo, haloalkyl, hydroxyalkyl, \(-N^{a}{ }^{\mathrm{R}}{ }^{\mathrm{b}},\left(\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\right)\) alkyl, and (NR \(\mathrm{N}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\)) carbonyl;
each \(\mathrm{R}^{\mathrm{L7}}\) is independently -H , alkyl, aryl, arylalkyl, or heterocycle;
\(R^{a}\) and \(R^{b}\) are each independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl;
each \(L^{10}\) is independently a fused-pentacyclic saturated, partially unsaturated, or aromatic heterocyclic ring system that is optionally substituted with one or more groups independently selected from oxo, halo, \(-\mathrm{R}^{\mathrm{L7}},-\mathrm{OR}^{\mathrm{L7}},-\mathrm{SR}^{\mathrm{L7}},-\mathrm{CF}_{3},-\mathrm{CCl}_{3},-\mathrm{OCF}_{3},-\mathrm{CN},-\mathrm{NO}_{2},-\mathrm{N}\left(\mathrm{R}^{\mathrm{L7}}\right) \mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7}}\), \(-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{L} 7},-\mathrm{OC}(=\mathrm{O}) \mathrm{R}^{\mathrm{L} 7},-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{\mathrm{L} 7},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{L} 7},-\mathrm{S}(=\mathrm{O}) \mathrm{R}^{\mathrm{L} 7},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{L} 7},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{L} 7}\), \(\mathrm{OS}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{L} 7},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}^{\mathrm{L7}}\), alkoxyalkyl, arylalkoxycarbonyl, halo, haloalkyl, hydroxyalkyl, \(-N R^{a} R^{b}\), (NR \(R^{a} R^{b}\))alkyl, and (\(\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\))carbonyl;
each \(\mathrm{R}^{\mathrm{L7}}\) is independently -H , alkyl, aryl, arylalkyl, or heterocycle;
\(R^{a}\) and \(R^{b}\) are each independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl;
each \(L^{11}\) is independently a six-ring fused saturated, partially unsaturated, or aromatic heterocyclic ring system that is optionally substituted with one or more groups independently selected from oxo, halo, \(-\mathrm{R}^{\mathrm{L7}},-\mathrm{OR}^{\mathrm{L7}},-\mathrm{SR}^{\mathrm{L7}},-\mathrm{CF}_{3},-\mathrm{CCl}_{3},-\mathrm{OCF}_{3},-\mathrm{CN},-\mathrm{NO}_{2},-\mathrm{N}\left(\mathrm{R}^{\mathrm{L7}}\right) \mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7}}\), \(-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7}},-\mathrm{OC}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7}},-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{\mathrm{L} 7},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{L7}},-\mathrm{S}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7}},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{L7}},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{L7}},-\) \(\mathrm{OS}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{L7}},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}^{\mathrm{L7}}\), alkoxyalkyl, arylalkoxycarbonyl, halo, haloalkyl, hydroxyalkyl, \(-N^{a} R^{b},\left(N R^{a} R^{b}\right)\) alkyl, and (NR \(R^{a} R^{b}\) carbonyl;
each \(\mathrm{R}^{\mathrm{L7}}\) is independently -H , alkyl, aryl, arylalkyl, or heterocycle;
\(R^{a}\) and \(R^{b}\) are each independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl;
each \(A^{0}\) is independently:

wherein:
each \(R^{A 3}\) is independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, formyl, halo, haloalkyl, hydroxy, hydroxyalkyl, - \(\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\), \(\left(N R^{a} R^{b}\right)\) alkyl, and (\(N R^{a} R^{b}\))carbonyl; \(R^{a}\) and \(R^{b}\) are each independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl; and each
bb is independently \(0,1,2,3\), or 4 ; or
each \(\mathrm{A}^{0}\) is independently a six-membered heteroaromatic ring containing one, two, or three nitrogen atoms, which ring is optionally substituted with \(1,2,3\), or \(4 \mathrm{R}^{\mathrm{A} 3}\) groups;
each \(A^{1}\) is independently:

wherein:
each \(R^{A 1}\) is independently selected from cyano, nitro, \(\mathrm{SOR}^{4}, \mathrm{SO}_{2} \mathrm{R}^{4}\), -alkylSO \(\mathrm{O}_{2} \mathrm{R}^{4}\), haloalkoxy, cyanoalkyl, \(\mathrm{NR}^{4} \mathrm{SO}_{2} \mathrm{R}^{4}\), cycloalkyl, (halo)cycloalkyl, heterocycle, (cycloalkyl)alkyl, (heterocycle)alkyl, wherein each alkyl, heterocycle and cycloalkyl is optionally substituted with one or more halo; and
each \(\mathrm{R}^{4}\) is independently selected from \(H\), alkyl, haloalkyl, aryl, and arylalkyl; each cc is independently \(1,2,3\), or 4
each \(\mathrm{A}^{2}\) is independently:

wherein:
each \(\mathrm{R}^{\mathrm{Al}}\) is independently selected from cyano, nitro, \(\mathrm{SOR}^{4}, \mathrm{SO}_{2} \mathrm{R}^{4}\), -alkylSO \(\mathrm{O}_{2} \mathrm{R}^{4}\), haloalkoxy, cyanoalkyl, \(\mathrm{NR}^{4} \mathrm{SO}_{2} \mathrm{R}^{4}\), cycloalkyl, (halo)cycloalkyl, heterocycle, (cycloalkyl)alkyl, (heterocycle)alkyl, wherein each alkyl, heterocycle and cycloalkyl is optionally substituted with one or more halo;
each \(\mathrm{R}^{\mathrm{A} 3}\) is independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, formyl, halo, haloalkyl, hydroxy, hydroxyalkyl, -NR \(R^{a} R^{b}\), \(\left(N R^{a} R^{b}\right)\) alkyl, and \(\left(N R^{a} R^{b}\right)\) carbonyl; \(R^{a}\) and \(R^{b}\) are each independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl;
each \(R^{4}\) is independently selected from H, alkyl, haloalkyl, aryl, and arylalkyl;
\(R^{a}\) and \(R^{b}\) are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl;
each bb is \(0,1,2,3\), or 4 ; each cc is \(1,2,3\), or 4 ; and the sum of bb and cc is \(1,2,3\), or 4 ;
each \(\mathrm{A}^{3}\) is independently a six-membered heteroaromatic ring containing one, two, or three nitrogen atoms, which ring is substituted with one or more \(\mathrm{R}^{\mathrm{Al}}\) groups, and which ring is optionally substituted with one or more \(\mathrm{R}^{\mathrm{A3}}\) groups;
each \(A^{4}\) is independently:

wherein:
each \(\mathrm{H}^{5}\) is independently a phenyl ring or a six-membered heteroaromatic ring, which \(\mathrm{H}^{5}\) is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\); and each \(X^{A}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=0), \mathrm{NRC}(=0), \mathrm{C}(=0) \mathrm{NR}\), \(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each \(A^{5}\) is independently:

wherein:
each \(\mathrm{H}^{6}\) is independently a phenyl ring or a six-membered heteroaromatic ring, which \(\mathrm{H}^{6}\) is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\); and each \(X^{A}\) is independently \(\mathrm{O}, \mathrm{NR}\), \(\mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=0), \mathrm{NRC}(=0), \mathrm{C}(=0) \mathrm{NR}\), \(C R=C R, N R C(=O) N R\), allenyl, alkynyl, or absent; provided that at least one \(X^{A}\) is present and each R is independently selected from H or alkyl;
each \(A^{6}\) is independently:

wherein:
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=0) \mathrm{NR}\), \(C R=C R\), allenyl, alkynyl, or absent; provided that at least one \(X^{A}\) is present and each \(R\) is independently selected from H or alkyl;
\(\operatorname{each} \mathrm{A}^{7}\) is independently:
\[
\xi-x^{A}-H^{7}-x^{A}-\xi
\]
wherein:
each \(\mathrm{H}^{7}\) is independently a five-membered heteroaromatic ring, which \(\mathrm{H}^{7}\) is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\); and each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=0), \mathrm{NRC}(=0), \mathrm{C}(=0) \mathrm{NR}\), \(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each \(\mathrm{A}^{8}\) is independently:
\[
\xi X^{A}-H^{8}-x^{A}-H^{7}-x^{A}-\xi
\]
wherein:
each \(\mathrm{H}^{7}\) is independently a five-membered heteroaromatic ring, which \(\mathrm{H}^{7}\) is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\);
each \(\mathrm{H}^{8}\) is independently a phenyl ring, which is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\); and
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=0) \mathrm{NR}\), \(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each \(A^{9}\) is independently:

wherein:
each \(\mathrm{H}^{7}\) is independently a five-membered heteroaromatic ring, which \(\mathrm{H}^{7}\) is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\); and each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=0) \mathrm{NR}\), \(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each \(A^{10}\) is independently:

wherein:
each \(\mathrm{H}^{8}\) is independently a phenyl ring, which is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\);
each \(\mathrm{H}^{9}\) is independently a six-membered heteroaromatic ring, which is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\); and each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}\), \(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each \(A^{11}\) is independently:

wherein:
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=0), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=0) \mathrm{NR}\), \(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each \(\mathrm{H}^{10}\) is independently a \(5-15\) carbon unsaturated, partially unsaturated or saturated bicyclic ring system that is optionally fused to an aryl, which \(\mathrm{H}^{10}\) is optionally substituted with one or more groups independently selected from oxo, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, formyl, halo, haloalkyl, hydroxy, hydroxyalkyl, \(-\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\), \(\left(\mathrm{NR}^{a} \mathrm{R}^{\mathrm{b}}\right.\)) alkyl, and (\(\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\))carbonyl, cyano, nitro, \(\mathrm{SOR}^{4}, \mathrm{SO}_{2} \mathrm{R}^{4}\), -alkylSO \({ }_{2} \mathrm{R}^{4}\), haloalkoxy, cyanoalkyl, \(\mathrm{NR}^{4} \mathrm{SO}_{2} \mathrm{R}^{4}\), cycloalkyl, (halo)cycloalkyl, heterocycle, (cycloalkyl)alkyl, and (heterocycle)alkyl, wherein each alkyl, heterocycle and cycloalkyl is optionally substituted with one or more halo; and each \(R^{4}\) is independently selected from \(H\), alkyl, haloalkyl, aryl, and arylalkyl
each \(A^{12}\) is independently:

wherein:
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}\), \(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each \(\mathrm{H}^{11}\) is independently a \(5-15\) carbon unsaturated, partially unsaturated or saturated bicyclic ring system that contains one or more heteroatoms that is optionally fused to an aryl, which \(\mathrm{H}^{11}\) is optionally substituted with one or more groups independently selected from oxo, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, formyl, halo, haloalkyl, hydroxy, hydroxyalkyl, \(-\mathrm{NR}^{a} \mathrm{R}^{\mathrm{b}},\left(\mathrm{NR}^{a} \mathrm{R}^{\mathrm{b}}\right)\) alkyl, and \(\left(\mathrm{NR}^{a} \mathrm{R}^{b}\right)\) carbonyl, cyano, nitro, \(\mathrm{SOR}^{4}, \mathrm{SO}_{2} \mathrm{R}^{4}\), -alkyl \(\mathrm{SO}_{2} \mathrm{R}^{4}\), haloalkoxy, cyanoalkyl, \(\mathrm{NR}^{4} \mathrm{SO}_{2} \mathrm{R}^{4}\), cycloalkyl, (halo)cycloalkyl, heterocycle, (cycloalkyl)alkyl, and (heterocycle)alkyl, wherein each alkyl, heterocycle and cycloalkyl is optionally substituted with one or more halo; and each \(R^{4}\) is independently selected from \(H\), alkyl, haloalkyl, aryl, and arylalkyl; and
each \(A^{13}\) is independently:

wherein:
each \(\mathrm{H}^{12}\) is independently a fused aromatic bicyclic carbocycle, which is optionally substituted with one or more groups independently selected from \(R^{1}\) and \(R^{3}\); and each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}\), \(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each \(A^{14}\) is independently:

wherein:
each \(\mathrm{H}^{13}\) is independently a fused aromatic bicyclic heterocycle that comprises at least one heteroatom in the ring system, which ring system is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\); and
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}\), \(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each \(A^{15}\) is independently:

wherein:
each \(\mathrm{H}^{14}\) is independently a fused unsaturated, partially unsaturated or saturated tricyclic carbocycle which is optionally substituted with one or more groups independently selected from \(R^{A I}\) and \(R^{A 3}\); and
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}\), \(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each \(A^{16}\) is independently:

wherein:
each \(\mathbf{H}^{15}\) is independently a fused unsaturated, partially unsaturated or saturated tricyclic heterocycle that comprises at least one heteroatom in the ring system, which ring system is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\); and
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=0), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}\),
\(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each \(A^{17}\) is independently:

wherein:
each \(\mathrm{H}^{16}\) is independently a fused bicyclic carbocyclic ring system wherein one ring is aromatic and another ring is partially or fully saturated, which ring system is optionally substituted with one or more groups independently selected from oxo, \(R^{A 1}\) and \(R^{A 3}\); and
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=0) \mathrm{NR}\), \(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each \(A^{18}\) is independently:

wherein:
each \(\mathrm{H}^{17}\) is independently a fused bicyclic ring system comprising at least one heteroatom, wherein one ring is aromatic and another ring is partially or fully saturated, which ring system is optionally substituted with one or more groups independently selected from oxo, \(\mathrm{R}^{\mathrm{Al}}\) and \(\mathrm{R}^{\mathrm{A} 3}\); and
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=0), \mathrm{NRC}(=0), \mathrm{C}(=0) \mathrm{NR}\),
\(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each \(A^{21}\) is independently:

wherein:
each \(\mathrm{H}^{40}\) is independently an anti-aromatic monocyclic or fused carbocyclic ring system, which carbocyclic ring system is optionally substituted with one or more groups independently selected from \(R^{A I}\) and \(R^{A 3}\); and
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=0), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}\), \(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent and each R is independently selected from H or alkyl;
each \(\mathrm{M}^{0}\) is independently a five membered heteroaryl group optionally substituted with one or more alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, haloalkyl, \(\left(\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\right)\) carbonyl and trialkylsilylalkoxyalkyl;
each \(\mathrm{M}^{1}\) is independently selected from \(-\mathrm{C}(=0) \mathrm{NH}-,-\mathrm{C}(=0) \mathrm{NH}-\mathrm{C}\left(\mathrm{R}^{\mathrm{M}}\right)_{2}-,-\mathrm{NHC}(=\mathrm{O})\)-, \(-\mathrm{C}\left(\mathrm{R}^{\mathrm{M}}\right)_{2} \mathrm{NHC}(=\mathrm{O})-,-\mathrm{NHC}(=\mathrm{O}) \mathrm{NR}^{\mathrm{M}},--\mathrm{NHC}(=\mathrm{O}) \mathrm{O}\)-; wherein each \(\mathrm{R}^{\mathrm{M}}\) is independently selected from H and alkyl;
each \(\mathrm{M}^{2}\) is independently a six-membered heteroaromatic ring, which is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\);
each \(\mathrm{M}^{3}\) is independently:

each \(M^{4}\) is independently:

each \(\mathrm{M}^{5}\) is independently:

wherein the bond designated with --- is fused to a ring defined for \(P\);
each \(M^{6}\) is independently a bicyclic bridged ring system comprising 5-15 atoms wherein at least one of the atoms is a heteroatom;
each \(\mathrm{M}^{7}\) is independently a pyrid-di-yl;
each \(\mathrm{M}^{8}\) is independently partially saturated or a saturated five-membered ring that comprises one or more heteroatoms and that is optionally substituted with one or two oxo;
each \(\mathrm{M}^{9}\) is independently a fused-bicyclic saturated, partially unsaturated, or aromatic heterocyclic ring system that is optionally substituted with one or more \(\mathrm{R}^{\mathrm{P} 11 \text { : }}\)
each \(\mathrm{M}^{10}\) is independently a five membered heteroaryl group;
each \(\mathrm{M}^{11}\) is independently a fused-tricyclic saturated, partially unsaturated, or aromatic heterocyclic ring system that is optionally substituted with one or more oxo halo, \(-\mathrm{R}^{\mathrm{M} 7},-\mathrm{OR}^{\mathrm{M} 7}\), \(-\mathrm{SR}^{\mathrm{M} 7},-\mathrm{N}\left(\mathrm{R}^{\mathrm{M} 7}\right)_{2},-\mathrm{CF}_{3},-\mathrm{CCl}_{3},-\mathrm{OCF}_{3},-\mathrm{CN},-\mathrm{NO}_{2},-\mathrm{N}\left(\mathrm{R}^{\mathrm{M} 7}\right) \mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{M} 7},-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{M} 7},-\mathrm{OC}(=\mathrm{O}) \mathrm{R}\) \({ }^{\mathrm{M} 7},-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{\mathrm{M} 7},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{M} 7},-\mathrm{S}(=\mathrm{O}) \mathrm{R}^{\mathrm{M} 7},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{M} 7},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{M} 7},-\mathrm{OS}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{M} 7}\), or \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}^{\mathrm{M} 7}\);
each \(\mathrm{R}^{\mathrm{M} 7}\) is independently -H, alkyl, aryl, arylalkyl, or heterocycle;
each \(\mathrm{P}^{0}\) is independently:

or

wherein:
\(X\) is selected from \(\mathrm{O}, \mathrm{S}, \mathrm{S}(\mathrm{O}), \mathrm{SO}_{2}, \mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{P} 10}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{P} 10}\right)_{2}\); provided that when pn or pm is \(0, \mathrm{X}\) is selected from \(\mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{P} 10}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{P} 10}\right)_{2}\); each \(R^{P 10}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-
to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
each \(R^{P 5}\) and \(R^{P 6}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-N R^{P a} R^{P b}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups; \(R^{P a}\) and \(R^{P b}\) are each independently H , alkyl, aryl, or arylalkyl; or \(\mathrm{R}^{\mathrm{Pa}}\) and \(\mathrm{R}^{\mathrm{Pb}}\) taken together with the atom to which they are attached form a heterocycle;
pq and ps are independently \(0,1,2,3\), or 4 ;
pm and pn are independently 0,1 , or 2 ;
po and pp are independently 1,2 , or 3 ;
\(\mathrm{R}^{\mathrm{P7}}\) and \(\mathrm{R}^{\mathrm{P8}}\) are each independently selected from hydrogen, alkenyl, alkoxyalkyl, alkyl, haloalkyl, and \(\left(\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\right.\))alkyl; or \(\mathrm{R}^{\mathrm{P7}}\) and \(\mathrm{R}^{\mathrm{P} 8}\), together with the carbon atom to which they are attached, form a five or six membered saturated ring optionally containing one or two heteroatoms selected from \(\mathrm{NR}^{\mathrm{Pz}}, 0\), and S ; wherein \(\mathrm{R}^{\mathrm{Pz}}\) is selected from hydrogen and alkyl;
\(\mathrm{R}^{\mathrm{P9}}\) is selected from hydrogen and alkyl;
each \(P^{1}\) is independently:

wherein:
\(X\) is selected from \(\mathrm{O}, \mathrm{S}, \mathrm{S}(\mathrm{O}), \mathrm{SO}_{2}, \mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{Pl0}}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{P} 10}\right)_{2}\); provided that when pn is \(0, \mathrm{X}\) is selected from \(\mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{Pl0}}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{P10}}\right)_{2}\);
each \(R^{P 10}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-N R^{P a} R^{P b}\), wherein the alkyl can optionally form a fused threeto six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
at least one \(R^{P 11}\) is independently selected from cyano, alkylsulfonyl, arylsulfonyl, (\(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\))sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, (\(N R^{h} R^{h}\))alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl, \(-\mathrm{NR}^{\mathrm{hh}} \mathrm{R}^{\mathrm{h}},\left(\mathrm{NR}^{\mathrm{hh}} \mathrm{R}^{\mathrm{h}}\right)\) alkyl,
(\(\mathrm{NR}^{\text {hh }} \mathrm{R}^{\mathrm{h}}\))carbonyl, wherein each \(\mathrm{R}^{\mathrm{h}}\) is independently -H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; and when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring; wherein each \(\mathrm{R}^{\mathrm{hh}}\) is independently aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl, (\(N R^{h} R^{h}\))sulfonyl, heteroarylsulfonyl, \(-S(=O)_{2} R^{h},-C(=O) R^{h},-C(=O) N R^{h} R^{h}\); and the remaining \(\mathrm{R}^{\mathrm{PII}}\) are independently selected from \(\mathrm{R}^{\mathrm{P5}}\), cyano, alkylsulfonyl, arylsulfonyl, (\(N R^{h} R^{h}\))sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, (\(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\))alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl; wherein each \(\mathrm{R}^{\mathrm{h}}\) is independently - H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; and when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;

> ps is \(1,2,3\), or \(4 ;\)
> pn is 0,1 , or 2
each \(P^{2}\) is independently:

wherein:
\[
\text { each } R^{P 12} \text { is independently selected from } R^{P 5}, R^{P l 1},-C(=O) O R^{h}, \text { cyano, }
\] alkylsulfonyl, arylsulfonyl, (\(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\))sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, (\(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\))alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl; wherein each \(R^{h}\) is independently \(-H\),
alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; and when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
ps is \(1,2,3\), or 4 ;
pn is 0,1 , or 2 ;
each \(P^{3}\) is independently a ring of the formula:

wherein:
the ring is substituted with one or more oxo group;
each \(R^{P 13}\) is independently selected from \(R^{P 5}\), cyano, alkylsulfonyl, arylsulfonyl, (\(\mathrm{NR}^{h} \mathrm{R}^{\mathrm{h}}\))sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, (\(N R^{h} R^{h}\))alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl; wherein each \(\mathrm{R}^{\mathrm{h}}\) is independently - H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; and when two \(\mathrm{R}^{\mathrm{b}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
\[
\begin{aligned}
& \mathrm{ps} \text { is } 0,1,2,3 \text {, or } 4 \text {; } \\
& \mathrm{pn} \text { is } 0,1 \text {, or } 2 \text {, }
\end{aligned}
\]
each \(P^{4}\) is independently a ring of the formula:

wherein:
the ring is optionally substituted with one or more groups \(\mathrm{R}^{\mathrm{P} 14}\) that are independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(N R^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups; and where two groups \(\mathrm{R}^{\mathrm{P} 14}\) that are attached to the same carbon when taken together with the carbon to which they are attached can form a 3-6 membered carbocyclic or heterocyclic ring;
pn is 0,1 , or 2 ;
each \(\mathrm{R}^{\mathrm{f}}\) is independently - H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl, \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\), \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{h}}, \mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{h}}, \mathrm{C}(=\mathrm{O}) \mathrm{OR}^{\mathrm{h}},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\); each \(\mathrm{R}^{\mathrm{h}}\) is independently -H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; or when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
each \(\mathrm{P}^{5}\) is independently a ring of the formula:

wherein:
the ring is optionally substituted with one or more groups \(\mathrm{R}^{\mathrm{P} 15}\) that are independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(N R^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an
adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups; and where two groups \(\mathrm{R}^{\mathrm{PIS}}\) that are attached to the same carbon when taken together with the carbon to which they are attached can form a 3-6 membered carbocyclic or heterocyclic ring;
pn is 0,1 , or 2 ;
\(Z\) is \(O, S, S(=O), S(=O)_{2}\), or \(\mathrm{NR}^{f}\);
each \(\mathrm{R}^{\mathrm{f}}\) is independently - H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl, \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}^{h} \mathrm{R}^{\mathrm{h}}\), \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{h}}, \mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{h}}, \mathrm{C}(=\mathrm{O}) \mathrm{OR}^{\mathrm{h}},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\); each \(\mathrm{R}^{\mathrm{h}}\) is independently -H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; or when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
each \(\mathrm{P}^{6}\) is independently a ring of the formula:

wherein:
the ring is substituted with one or more oxo and is optionally substituted with one or more groups \(R^{P 16}\) that are independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;

Z is \(\mathrm{O}, \mathrm{S}, \mathrm{S}(=\mathrm{O}), \mathrm{S}(=\mathrm{O})_{2}\), or \(\mathrm{NR}^{\mathrm{f}}\);
pn is 0,1 , or 2 ;
each \(R^{f}\) is independently - H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl, \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\), \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{h}}, \mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{h}}, \mathrm{C}(=\mathrm{O}) \mathrm{OR}^{\mathrm{h}},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\); each \(\mathrm{R}^{\mathrm{h}}\) is independently -H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl,
dialkylaminoalkyl, sulfonylalkyl; or when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
each \(\mathbf{P}^{7}\) is a bridged 5-15 membered bicyclic heterocyclic ring that is attached to the remainder of the compound of formula I through one N -link and through one C -link; wherein the ring is optionally substituted with one or more groups independently selected from \(R^{P 6}\) and \(R^{P 11}\);
each \(\mathrm{P}^{8}\) is independently a ring of the formula:

wherein:
ps is \(2,3,4,5\), or 6 ;
each \(R^{\text {P13 }}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups; where in at least one case two groups \(\mathrm{R}^{\mathrm{P} 13}\) that are attached to the same carbon are taken together with the carbon to which they are attached and form a 4-6 membered heterocyclic ring;
each \(\mathrm{P}^{10}\) is independently:

wherein:
\(X\) is selected from \(\mathrm{O}, \mathrm{S}, \mathrm{S}(\mathrm{O}), \mathrm{SO}_{2}, \mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{P} 10}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{Pl0}}\right)_{2}\); provided that when pn or pm is \(0, \mathrm{X}\) is selected from \(\mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{P} 10}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{Pl0}}\right)_{2}\); each \(R^{P 10}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-N R^{P a} R^{P b}\), wherein the alkyl can optionally form a fused threeto six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
each \(R^{P 5}\) and \(R^{P 6}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
pq and ps are independently \(0,1,2,3\), or 4 ;
pm and pn are independently 0,1 , or 2 ;
po and pp are independently 1,2 , or 3 ;
each \(\mathrm{P}^{11}\) is independently:

wherein:
\(X\) is selected from \(\mathrm{O}, \mathrm{S}, \mathrm{S}(\mathrm{O}), \mathrm{SO}_{2}, \mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{P10}}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{Pl0}}\right)_{2}\); provided that when pn or pm is \(0, \mathrm{X}\) is selected from \(\mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{P} 10}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{Pl0}}\right)_{2}\); each \(R^{P 10}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused threeto six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
each \(R^{P 5}\) and \(R^{P 6}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-N R^{P a} R^{P b}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
pq and ps are independently \(0,1,2,3\), or 4 ;
pm and pn are independently 0,1 , or 2 ;
po and pp are independently 1,2 , or 3 ;
each \(P^{12}\) is independently:

wherein:
each \(R^{P 6}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-N R^{P a} R^{P b}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
pq is independently \(0,1,2,3\), or 4 ;
pm is independently 0,1 , or 2 ;
pp is independently 1,2 , or 3 ;
ps is \(1,2,3\), or 4 ;
\(\mathrm{R}^{\mathrm{P} 11}\) is independently selected from cyano, alkylsulfonyl, arylsulfonyl, (\(N R^{h} R^{h}\)) sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, (\(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\)) alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl, \(-\mathrm{NR}^{\text {hh }} \mathrm{R}^{\mathrm{h}}\), \(\left(\mathrm{NR}^{\text {hh }} \mathrm{R}^{\mathrm{h}}\right)\) alkyl, \(\left(\mathrm{NR}^{\text {hh }} \mathrm{R}^{\text {h }}\right)\) carbonyl, wherein each \(\mathrm{R}^{\mathrm{h}}\) is independently -H, alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; and when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring; wherein each \(\mathrm{R}^{\text {hh }}\) is independently aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl, \(\left(N R^{h} R^{h}\right)\) sulfonyl, heteroarylsulfonyl, \(-S(=O)_{2} R^{h},-C(=O) R^{h}\), \(-C(=O) N R^{h} R^{\text {h }}\); and the remaining \(R^{P 11}\) are independently selected from \(R^{P 5}\), cyano, alkylsulfonyl, arylsulfonyl, (\(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\))sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy,
heteroaryloxyakyloxy, heterocyclooxyalkyloxy, (\(\mathrm{NR}^{h} \mathrm{R}^{h}\))alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl; wherein each \(\mathrm{R}^{\mathrm{h}}\) is independently -H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy; alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; and when two \(R^{h}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
each \(P^{13}\) is independently:

wherein:
\(X\) is selected from \(\mathrm{O}, \mathrm{S}, \mathrm{S}(\mathrm{O}), \mathrm{SO}_{2}\), or \(\mathrm{NR}^{\mathrm{h}}\);
each \(\mathrm{R}^{\mathrm{P} 6}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-N R^{P a} R^{P b}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
\(p q\) is independently \(0,1,2,3\), or 4 ;
pm and pn are independently 0,1 , or 2 but the sum of pn and pm is greater than zero;
pp are independently 1,2 , or 3 ;
ps is \(1,2,3\), or 4 ;
each \(\mathrm{R}^{\mathrm{P} 11}\) is independently selected from cyano, alkylsulfonyl, arylsulfonyl, (\(N R^{h} R^{h}\))sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, (\(N R^{h} R^{h}\)) alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl, \(-N R^{\text {th }} \mathrm{R}^{\mathrm{h}}\), (\(\mathrm{NR}^{\text {hh }} \mathrm{R}^{\mathrm{h}}\))alkyl, (\(\mathrm{NR}^{\text {hh }} \mathrm{R}^{\mathrm{h}}\))carbonyl, wherein each \(\mathrm{R}^{\mathrm{h}}\) is independently -H, alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl,
dialkylaminoalkyl, sulfonylalkyl; and when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring; wherein each \(\mathrm{R}^{\text {hh }}\) is independently aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl, \(\left(\mathrm{NR}^{h} \mathrm{R}^{h}\right)\) sulfonyl, heteroarylsulfonyl, \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{h}},-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{h}}\), \(-C(=O) N R^{h} R^{h}, R^{P 5}\), cyano, alkylsulfonyl, arylsulfonyl, (\(N R^{h} R^{h}\)) sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, (\(N R^{h} R^{\text {h }}\)) alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl; wherein each \(R^{h}\) is independently - H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; and when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
each \(P^{14}\) is independently:

wherein:
the ring is substituted with one or more oxo group;
X is \(\mathrm{NR}^{\mathrm{f}}\);
each \(\mathrm{R}^{\mathrm{f}}\) is independently - H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl, \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}^{h} \mathrm{R}^{\mathrm{h}}\), \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{h}}, \mathrm{C}(=0) \mathrm{R}^{\mathrm{h}}, \mathrm{C}(=\mathrm{O}) O \mathrm{R}^{\mathrm{h}},-\mathrm{C}(=\mathrm{O}) N \mathrm{R}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\); each \(\mathrm{R}^{\mathrm{h}}\) is independently -H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; or when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
each \(R^{P 6}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
pq is independently \(0,1,2,3\), or 4 ;
pm is independently 0,1 , or 2 ;
ps is \(1,2,3\), or 4 ;
\(\mathrm{R}^{\mathrm{P11}}\) is independently selected from cyano, alkylsulfonyl, arylsulfonyl, (\(N R^{h} R^{h}\))sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, (\(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\)) alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl; wherein each \(\mathrm{R}^{\mathrm{h}}\) is independently -H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, or sulfonylalkyl; and when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
each \(-Z^{0}-\) is \(-C(=O)\) - or \(-C(=S)-\);
each \(-Z^{1}\) - is independently a bond, or \(-C\left(R^{Z 1}\right)_{2}-\); wherein each \(R^{Z 1}\) is independently \(H\), alkyl, haloalkyl, or halo;
each \(-Z^{2}\) - is independently saturated or partially unsaturated \(\left(C_{3}-C_{8}\right)\) cycloalkyl that is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\);
each \(-Z^{3}\) - is independently saturated, partially unsaturated, or aromatic 4-8 membered heterocyclic or heteroaryl ring that is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\);
each \(-Z^{4}\) - is independently:

wherein each \(\mathrm{R}^{24}\) is independently H , alkyl, cyano, aryl, or heteroaryl;
each \(-Z^{5}\) - is independently:

wherein each \(R^{25}\) is independently \(H\), alkyl, cyano, aryl, or heteroaryl; or two \(R^{25}\) s together with the nitrogen to which they are attached form a \(4-8\) membered heterocyclic ring that is optionally substituted with one or more oxo and with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\);
each \(-Z^{6}\) - is independently \(-C\left(R^{21}\right)\) - and is doublebonded to \(P\); wherein \(R^{21}\) is independently \(H\), alkyl, haloalkyl, or halo;
each \(\mathrm{E}^{0}\) is independently \(-\mathrm{NR}^{\mathrm{Ec}} \mathrm{R}^{\mathrm{Ed}}\) wherein
\(\mathrm{R}^{\mathrm{Ec}}\) and \(\mathrm{R}^{\mathrm{Ed}}\) are each independently selected from hydrogen, alkenyloxycarbonyl, alkoxyalkylcarbonyl, alkoxycarbonyl, alkyl, alkylcarbonyl, alkylsulfonyl, aryl, arylalkoxycarbonyl, arylalkyl, arylalkylcarbonyl, arylcarbonyl, aryloxycarbonyl, arylsulfonyl, cycloalkyl, cycloalkylsulfonyl, formyl, haloalkoxycarbonyl, heterocyclyl, heterocyclylalkoxycarbonyl, heterocyclylalkyl, heterocyclylalkylcarbonyl, heterocyclylcarbonyl, heterocyclyloxycarbonyl, hydroxyalkylcarbonyl, (\(\mathrm{NR}^{\mathrm{c}} \mathrm{R}^{\mathfrak{f}}\))alkyl, (\(\mathrm{NR}^{e} \mathrm{R}^{f}\))alkylcarbonyl, (\(\mathrm{NR}^{e} \mathrm{R}^{f}\))carbonyl, (\(\mathrm{NR}^{e} \mathrm{R}^{f}\)) sulfonyl, \(-\mathrm{C}(\mathrm{NCN}) \mathrm{OR}{ }^{\prime}\), and - \(\mathrm{C}(\mathrm{NCN}) \mathrm{NR}^{\mathrm{X}} \mathrm{R}^{Y}\), wherein \(\mathrm{R}^{\prime}\) is selected from alkyl and unsubstituted phenyl, and wherein the alkyl part of the arylalkyl, the arylalkylcarbonyl, the heterocyclylalkyl, and the heterocyclylalkylcarbonyl are further optionally substituted with one \(-\mathrm{NR}^{\mathrm{c}} \mathrm{R}^{\mathrm{f}}\) group; and wherein the aryl, the aryl part of the arylalkoxycarbonyl, the arylalkyl, the arylalkylcarbonyl, the arylcarbonyl, the aryloxycarbonyl, and the arylsulfonyl, the heterocyclyl, and the heterocyclyl part of the heterocyclylalkoxycarbonyl, the heterocyclylalkyl, the heterocyclylalkylcarbonyl, the heterocyclylcarbonyl, and the heterocyclyloxycarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro;
each \(\mathrm{E}^{1}\) is independently - \(\mathrm{OC}(=\mathrm{O}) \mathrm{NR}^{\mathrm{Ee}} \mathrm{R}^{\mathrm{Ef}}\) wherein each \(\mathrm{R}^{\mathrm{Ee}}\) and \(\mathrm{R}^{\mathrm{Er}}\) are each independently selected from hydrogen, alkenyloxycarbonyl, alkoxyalkylcarbonyl, alkoxycarbonyl, alkyl, alkylcarbonyl, alkylsulfonyl, aryl, arylalkoxycarbonyl, arylalkyl, arylalkylcarbonyl, arylcarbonyl, aryloxycarbonyl, arylsulfonyl, cycloalkyl, cycloalkylsulfonyl, formyl, haloalkoxycarbonyl, heterocyclyl, heterocyclylalkoxycarbonyl, heterocyclylalkyl, heterocyclylalkylcarbonyl, heterocyclylcarbonyl, heterocyclyloxycarbonyl, hydroxyalkylcarbonyl, (\(N R^{c} R^{f}\))alkyl, (\(N R^{c} R^{f}\))alkylcarbonyl, \(\left(N R^{c} R^{f}\right)\) carbonyl, (\(N R^{c} R^{f}\)) sulfonyl, \(-C(N C N) O R '\), and - C(NCN)NR \({ }^{X} R^{Y}\), wherein \(R^{\prime}\) is selected from alkyl and unsubstituted phenyl, and wherein the alkyl part of the arylalkyl, the arylalkylcarbonyl, the heterocyclylalkyl, and the heterocyclylalkylcarbonyl are further optionally substituted with one \(-\mathrm{NR}^{\mathrm{c}} \mathrm{R}^{\mathrm{f}}\) group; and wherein the aryl, the aryl part of the arylalkoxycarbonyl, the arylalkyl, the arylalkylcarbonyl, the arylcarbonyl, the aryloxycarbonyl, and the arylsulfonyl, the heterocyclyl, and the heterocyclyl part of the heterocyclylalkoxycarbonyl, the heterocyclylalkyl, the heterocyclylalkylcarbonyl, the heterocyclylcarbonyl, and the heterocyclyloxycarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro; or wherein \(\mathrm{R}^{\mathrm{EE}}\) and \(\mathrm{R}^{\mathrm{Ef}}\), together with the nitrogen atom to which they are attached, form a heterocycle;
each \(\mathrm{V}^{0}\) is independently H , alkyl, arylalkyl, alkenyl, CO, cycloalkylalkyl, cycloalkyl, alkoxyalkyl, alkoxyalkylcarbonylalkyl, alkoxycarbonylalkyl, alkylsulfanylalkyl, aryalkoxyalkylcarbonylalkyl, carboxyalkyl, heterocyclylalkyl, heterocyclylcarbonylalkyl, hydroxyalkyl, NRRCOalkyl;
and where in arylalkyl the alkyl can be substituted with up to three aryl groups, and the alkyl part of the arylalkyl is further optionally substituted with one or two additional groups independently selected from alkoxy, alkyocarbonyloxy, halo, haloalkoxy, haloalkyl, heterocyclyl, hydroxy;
and the aryl part can be substituted with \(1,2,3,4\), or 5 substituents independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, alkylcarbonyl, a second aryl group, arylalkoxy, arylalkyl, arylcarbonyl, cyano, halo, haloalkoxy, haloalkyl, heterocyclyl, heterocyclylalkyl, heterocyclylcarbonyl, hydroxy, hydroxyalkyl, nitro, \(-\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}\), \(\left(N R^{X}{ }^{X}{ }^{Y}\right)\) alkyl, oxo, and \(-P(O) O R_{2}\), wherein each \(R\) is independently selected from hydrogen and alkyl; and wherein the alkyl part of the arylalkyl and the heterocyclylalkyl are unsubstituted and wherein the second aryl group, the aryl part of the arylalkyl, the aryl part of the arylcarbonyl, the heterocyclyl, and the heterocyclyl part of the heterocyclylalkyl and the
heterocyclylcarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro; and the heterocyclyl can be substituted with \(1,2,3,4\), or 5 substituents independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylcarbonyl, cyano, halo, haloalkoxy, haloalkyl, a second heterocyclyl group, heterocyclylalkyl, heterocyclylcarbonyl, hydroxy, hydroxyalkyl, nitro, \(-\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}\), (\(N R^{X} R^{Y}\))alkyl, and oxo, wherein the alkyl part of the arylalkyl and the heterocyclylalkyl are unsubstituted and wherein the aryl, the aryl part of the arylalkyl; the aryl part of the arylcarbonyl, the second heterocyclyl group, and the heterocyclyl part of the heterocyclylalkyl and the heterocyclylcarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro;
each \(V^{1}\) is independently cyanoalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}^{\mathrm{ab}}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(V^{2}\) is independently haloalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(V^{3}\) is independently alkyl, which is substituted with one or more oxo, and which is optionally substituted with one or more groups independently selected from cycloalkyl, halo, aryl, alkenyl, and cyano;
each \(\mathrm{V}^{4}\) is independently haloalkoxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NRaRbC}(=\mathrm{O}) \mathrm{O}-\mathrm{Ra}\) and Rb are each independently selected from hydrogen, alkenyl, and alkyl;
each \(V^{5}\) is independently alkylsulfonylalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle,
heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=0) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{6}\) is independently arylsulfonylalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}_{\mathrm{a}}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(V^{7}\) is independently heterocyclosulfonylalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl,
 selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{8}\) is independently spirocycloalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(N R^{\mathrm{Va}_{\mathrm{a}}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{9}\) is independently spirocycloalkylalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}_{\mathrm{a}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{10}\) is independently fusedbicycliccycloalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{V}_{\mathrm{t}}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}_{\mathrm{a}}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(V^{11}\) is independently fusedbicycliccycloalkylalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{V}_{\mathrm{a}}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{12}\) is independently bridged-bicycliccycloalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl,
 selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{13}\) is independently bridged-bicyclic-cycloalkylalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(V^{14}\) is independently aryloxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle,
 hydrogen, alkenyl, and alkyl;
each \(V^{15}\) is independently arylalkoxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle,
 hydrogen, alkenyl, and alkyl;
each \(V^{16}\) is independently cycloalkyloxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(N R^{V_{a}} R^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(V^{17}\) is independently cycloalkylalkyloxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}^{\mathrm{a}}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{18}\) is independently heterocyclooxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{V}_{\mathrm{a}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{19}\) is independently heterocycloalkyloxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl,
 selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{20}\) is independently heteroaryloxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}^{\mathrm{V}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}} \text { and } \mathrm{R}^{\mathrm{Vb}} \text { are each independently selected from }{ }^{2} \text {. }}\) hydrogen, alkenyl, and alkyl; and
each \(V^{21}\) is independently heteroarylalkylalkoxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}^{\mathrm{a}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}} \text { and } \mathrm{R}^{\mathrm{Vb}} \text { are each independently }{ }^{\text {a }} \text {, }}\) selected from hydrogen, alkenyl, and alkyl;
or a pharmaceutically acceptable salt, or prodrug thereof.

In another specific embodiment of the invention \(L\) is \(L^{3}\).
In another specific embodiment of the invention L is benzimidazolyl.
In another specific embodiment of the invention -A-L- is selected from:

In another specific embodiment of the invention-M-A-L- is selected from:

optionally substituted with one or more groups independently selected from \(\mathrm{R}^{\mathrm{P} 6}\) and \(\mathrm{R}^{\mathrm{PII}}\).
In another specific embodiment of the invention the compound of formula (Ib) is a compound of formula (Ibl): \(\mathrm{E}^{0}-\mathrm{V}^{0}-\mathrm{Z}^{0}-\mathrm{P}-\mathrm{M}-\mathrm{A}^{15}-\mathrm{L}-\mathrm{P}-\mathrm{Z}^{0}-\mathrm{V}^{0}-\mathrm{E}^{0}\) (Ib1).

In another specific embodiment of the invention the compound of formula (lb) is a compound of formula (Ib2): \(\mathrm{E}^{0}-\mathrm{V}^{0}-\mathrm{Z}^{0}-\mathrm{P}-\mathrm{M}-\mathrm{A}^{15}-\mathrm{L}^{3}-\mathrm{P}-\mathrm{Z}^{0}-\mathrm{V}^{0}-\mathrm{E}^{0}\) (Ib2).

In another specific embodiment of the invention the compound of formula (Ib) is a compound of formula (Ib3): \(\mathrm{E}^{0}-\mathrm{V}^{0}-\mathrm{Z}^{0}-\mathrm{P}-\mathrm{M}^{0}-\mathrm{A}^{15}-\mathrm{L}^{3}-\mathrm{P}-\mathrm{Z}^{0}-\mathrm{V}^{0}-\mathrm{E}^{0}\) (Ib3).

In another specific embodiment of the invention the compound of formula (Ib) is a compound of formula (Ib4): \(\mathrm{E}^{0}-\mathrm{V}^{0}-\mathrm{Z}^{0}-\mathrm{P}-\mathrm{M}-\mathrm{A}^{16}-\mathrm{L}-\mathrm{P}-\mathrm{Z}^{0}-\mathrm{V}^{0}-\mathrm{E}^{0}\) (Ib4).

In another specific embodiment of the invention the compound of formula (Ib) is a compound of formula (Ib5): \(\mathrm{E}^{0}-\mathrm{V}^{0}-\mathrm{Z}^{0}-\mathrm{P}-\mathrm{M}-\mathrm{A}^{16}-\mathrm{L}^{3}-\mathrm{P}-\mathrm{Z}^{0}-\mathrm{V}^{0}-\mathrm{E}^{0}\) (Ib5).

In another specific embodiment of the invention the compound of formula (Ib) is a compound of formula (Ib6): \(\mathrm{E}^{0}-\mathrm{V}^{0}-\mathrm{Z}^{0}-\mathrm{P}-\mathrm{M}^{0}-\mathrm{A}^{16}-\mathrm{L}^{3}-\mathrm{P}-\mathrm{Z}^{0}-\mathrm{V}^{0}-\mathrm{E}^{0}\) (Ib6).

In another specific embodiment of the invention the compound of formula (Ib) is a compound of formula (Ib7): \(\mathrm{E}^{0}-\mathrm{V}^{0}-\mathrm{Z}^{0}-\mathrm{P}-\mathrm{M}^{9}-\mathrm{A}^{16}-\mathrm{L}^{3}-\mathrm{P}-\mathrm{Z}^{0}-\mathrm{V}^{0}-\mathrm{E}^{0}\) (Ib7).

In another specific embodiment of the invention the compound of formula (Ib) is:

or

or a pharmaceutically acceptable salt, or prodrug thereof.
In another specific embodiment of the invention the compound of formula (Ib) is a compound of formula (Ib60): \(\mathrm{E}^{0}-\mathrm{V}-\mathrm{Z}^{0}-\mathrm{P}-\mathrm{M}-\mathrm{A}^{15}-\mathrm{L}-\mathrm{P}-\mathrm{Z}^{0}-\mathrm{V}-\mathrm{E}^{0}\) (Ib60).

In another specific embodiment of the invention the compound of formula (lb) is a compound of formula (Ib61): \(\mathrm{E}^{0}-\mathrm{V}-\mathrm{Z}^{0}-\mathrm{P}-\mathrm{M}-\mathrm{A}^{16}-\mathrm{L}-\mathrm{P}-\mathrm{Z}^{0}-\mathrm{V}-\mathrm{E}^{0}\) (Ib61).

In another specific embodiment the invention provides a compound of formula (lb35):

wherein:
V is alkyl;
L is benzimidazolyl;
M is a 5-membered heteroaryl ring;
\(A^{15}\) is:

each \(\mathrm{H}^{14}\) is independently a fused unsaturated, partially unsaturated or saturated tricyclic carbocycle which is optionally substituted with one or more groups independently selected from \(R^{A l}\) and \(R^{A 3}\); and
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}\), \(\mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}, \mathrm{CR}=\mathrm{CR}\), \(\mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent and each R is independently selected from H or alkyl; each \(\mathrm{R}^{\mathrm{Al}}\) is independently selected from cyano, nitro, \(\mathrm{SOR}^{4}, \mathrm{SO}_{2} \mathrm{R}^{4}\), -alkylSO \(\mathrm{R}_{2} \mathrm{R}^{4}\), haloalkoxy, cyanoalkyl, \(\mathrm{NR}^{4} \mathrm{SO}_{2} \mathrm{R}^{4}\), cycloalkyl, (halo)cycloalkyl, heterocycle, (cycloalkyl)alkyl, (heterocycle)alkyl, wherein each alkyl, heterocycle and cycloalkyl is optionally substituted with one or more halo;
each \(\mathrm{R}^{\mathrm{A3}}\) is independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, formyl, halo, haloalkyl, hydroxy, hydroxyalkyl, \(-\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\), \(\left(N R^{a} R^{b}\right)\) alkyl, and \(\left(N R^{a} R^{b}\right)\) carbonyl; \(R^{a}\) and \(R^{b}\) are each independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl;
each \(\mathrm{R}^{4}\) is independently selected from H , alkyl, haloalkyl, aryl, and arylalkyl; and each \(P\) is independently selected from:

or a pharmaceutically acceptable salt, or prodrug thereof.
In another specific embodiment the invention provides a compound of formula (Ib36):

or a pharmaceutically acceptable salt, or prodrug thereof.

In another specific embodiment the invention provides a compound of formula (Ib37):

or a pharmaceutically acceptable salt, or prodrug thereof.
In another specific embodiment the invention provides a compound of formula (lb35), (Ib36), or (Ib37) wherein P is selected from:

In another specific embodiment the invention provides a compound of formula (Ib35), (Ib36), or (Ib37):
wherein \(P\) is:

In another specific embodiment the invention provides a compound of formula (Ib35), (Ib36), or (Ib37): wherein P is:

optionally substituted with one or more groups independently selected from \(R^{P 6}\) and \(R^{P 11}\);
each \(R^{P 6}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups; \(\mathrm{R}^{\mathrm{Pa}}\) and \(\mathrm{R}^{\mathrm{Pb}}\) are each independently H , alkyl, aryl, or arylalkyl; or \(R^{P a}\) and \(R^{P b}\) taken together with the atom to which they are attached form a heterocycle;
each \(\mathrm{R}^{\mathrm{P} 11}\) is independently selected from cyano, alkylsulfonyl, arylsulfonyl, \(\left(N R^{h} R^{h}\right)\) sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, (\(N R^{h} R^{h}\))alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl, \(-N R^{h h} R^{h}\), \(\left(N R^{\text {hh }} R^{h}\right)\) alkyl, (\(\left.N R^{\text {th }} R^{h}\right)\) carbonyl, wherein each \(R^{h}\) is independently -H, alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; and when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring; wherein each \(\mathrm{R}^{\mathrm{hh}}\) is independently aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl, \(\left(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\right)\) sulfonyl, heteroarylsulfonyl, and \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{h}}\), \(-C(=O) R^{h},-C(=O) N R^{h} R^{h}\).

In another specific embodiment the invention provides a compound of formula (lb38):

or a pharmaceutically acceptable salt, or prodrug thereof.
In another specific embodiment the invention provides a compound of formula (lb39):

or a pharmaceutically acceptable salt, or prodrug thereof.

In another specific embodiment the invention provides a compound of formula (Ib40):

or a pharmaceutically acceptable salt, or prodrug thereof.
In another specific embodiment the invention provides a compound of formula (Ib41):

or a pharmaceutically acceptable salt, or prodrug thereof.
In another specific embodiment the invention provides a compound of formula (Ib42):

or a pharmaceutically acceptable salt, or prodrug thereof.

In another specific embodiment the invention provides a compound of formula (Ib43):

or a pharmaceutically acceptable salt, or prodrug thereof.
In another specific embodiment the invention provides a compound of formula (Ib44):

(Ib44)
or a pharmaceutically acceptable salt, or prodrug thereof.
In another specific embodiment the invention provides a compound of formula (Ib45):

or a pharmaceutically acceptable salt, or prodrug thereof.
In another specific embodiment the invention provides a compound of formula (Ib35), (Ib36), (Ib37), (Ib38), (Ib39), (Ib40), (Ib41), (Ib42), (Ib43), (Ib44), or (Ib45) wherein each X \({ }^{A}\) that is allowed to be absent is absent.

In another specific embodiment the invention provides a compound of formula (Ib35), (lb36), (Ib37), (lb38), (Ib39), (lb40), (lb41), (Ib42), (Ib43), (Ib44), or (Ib45) wherein \(\mathrm{A}^{15}\) is selected from:

In another specific embodiment the invention provides a compound of formula (Ib35), (Ib36), (Ib37), (Ib38), (Ib39), (Ib40), (Ib41), (Ib42), (Ib43), (Ib44), or (Ib45) wherein \(\mathrm{A}^{15}\) is selected from:

In another specific embodiment the invention provides a compound of formula (lb35), (Ib36), (Ib37), (Ib38), (Ib39), (Ib40), (Ib41), (Ib42), (Ib43), (Ib44), or (Ib45) wherein each V is:

In another specific embodiment the invention provides a compound which is:

or

or a pharmaceutically acceptable salt, or prodrug thereof.
In another specific embodiment of the invention the compound of formula (lb) is a compound of formula (Ib8)

wherein:
V is alkyl;
L is benzimidazolyl;
M is a 5-membered heteroaryl ring;
\(A^{15}\) is:

each \(\mathrm{H}^{14}\) is independently a fused unsaturated, partially unsaturated or saturated tricyclic carbocycle which is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\); and
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}, \mathrm{CR}=\mathrm{CR}\), NRC \((=O) N R\), allenyl, alkynyl, or absent and each \(R\) is independently selected from \(H\) or alkyl;
each \(\mathrm{R}^{\mathrm{Al}}\) is independently selected from cyano, nitro, \(\mathrm{SOR}^{4}, \mathrm{SO}_{2} \mathrm{R}^{4}\), -alkylSO \(\mathrm{O}_{2} \mathrm{R}^{4}\), haloalkoxy, cyanoalkyl, \(\mathrm{NR}^{4} \mathrm{SO}_{2} \mathrm{R}^{4}\), cycloalkyl, (halo)cycloalkyl, heterocycle, (cycloalkyl)alkyl, (heterocycle)alkyl, wherein each alkyl, heterocycle and cycloalkyl is optionally substituted with one or more halo;
each \(\mathrm{R}^{\mathrm{A} 3}\) is independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, formyl, halo, haloalkyl, hydroxy, hydroxyalkyl, \(-\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\), (\(N R^{a}{ }^{b}\))alkyl, and (\(N R^{a} R^{b}\))carbonyl; \(R^{a}\) and \(R^{b}\) are each independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl;
each \(R^{4}\) is independently selected from \(H\), alkyl, haloalkyl, aryl, and arylalkyl; and \(P\) is selected from:

or a pharmaceutically acceptable salt, or prodrug thereof.

In another specific embodiment of the invention the compound of formula (Ib) is a compound of formula (Ib9):

or a pharmaceutically acceptable salt, or prodrug thereof.
In another specific embodiment of the invention the compound of formula (Ib) is a compound of formula (lb10):

or a pharmaceutically acceptable salt, or prodrug thereof.

In another specific embodiment of the invention the compound of formula (lb) is a compound of formula (lbl1):

or a pharmaceutically acceptable salt, or prodrug thereof.

In another specific embodiment of the invention the compound of formula (Ib) is a compound of formula (lb12):

or a pharmaceutically acceptable salt, or prodrug thereof.
In another specific embodiment of the invention the compound of formula (lb) is a compound of formula (lb13):

or a pharmaceutically acceptable salt, or prodrug thereof.

In another specific embodiment of the invention the compound of formula (Ib) is a compound of formula (lb14):

or a pharmaceutically acceptable salt, or prodrug thereof.
In another specific embodiment of the invention the compound of formula (Ib) is a compound of formula (Ibl5):

or a pharmaceutically acceptable salt, or prodrug thereof.
In another specific embodiment of the invention the compound of formula (lb) is a compound of formula (Ib16):

or a pharmaceutically acceptable salt, or prodrug thereof.
In another specific embodiment of the invention the compound of formula (Ib) is a compound of formula (lb17):

or a pharmaceutically acceptable salt, or prodrug thereof.
In another specific embodiment of the invention the compound of formula (lb) is a compound of formula (Ib18):

or a pharmaceutically acceptable salt, or prodrug thereof.
In another specific embodiment the invention provides a compound of formula (Ib) wherein P is

In another specific embodiment the invention provides a compound of formula (lb) wherein P is

optionally substituted with one or more groups independently selected from \(\mathrm{R}^{\mathrm{P6}}\) and \(\mathrm{R}^{\mathrm{P} 11}\);
each \(R^{\text {P6 }}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups; \(\mathrm{R}^{\mathrm{Pa}}\) and \(\mathrm{R}^{\mathrm{Pb}}\) are each independently H , alkyl, aryl, or arylalkyl; or \(R^{P a}\) and \(R^{P b}\) taken together with the atom to which they are attached form a heterocycle;
each \(\mathrm{R}^{\mathrm{P} 11}\) is independently selected from cyano, alkylsulfonyl, arylsulfonyl, (\(N R^{\text {h }} \mathrm{R}^{\mathrm{h}}\))sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, (\(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\))alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl, \(-N R^{\text {hh }} R^{h}\), \(\left(N R^{\text {hh }} R^{h}\right)\) alkyl, \(\left(N R^{\text {hh }} R^{h}\right)\) carbonyl, wherein each \(R^{h}\) is independently -H, alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; and when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring; wherein each \(\mathrm{R}^{\mathrm{hh}}\) is independently aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl, \(\left(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\right)\) sulfonyl, heteroarylsulfonyl, and \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{h}}\), \(-C(=O) R^{h},-C(=O) N R^{h} R^{h}\).

In another specific embodiment the invention provides a compound of formula (Ib) wherein each \(\mathrm{X}^{\mathrm{A}}\) that is allowed to be absent is absent.

In another specific embodiment the invention provides a compound of formula (Ib) wherein \(A^{15}\) is selected from:

In another specific embodiment the invention provides a compound of formula (Ib) wherein each V is:

In one embodiment of the invention, the compound of formula (I) is a compound of formula (Ib19):
\[
\mathrm{E}^{0}-\mathrm{V}^{\mathrm{w}}-\mathrm{Z}^{0}-\mathrm{P}^{\mathrm{u}}-\mathrm{M}^{0}-A^{\mathrm{s}}-\mathrm{L}^{9}-\mathrm{P}^{\mathrm{u}}-\mathrm{Z}^{0}-\mathrm{V}^{\mathrm{w}}-\mathrm{E}^{0} \quad \text { (Ib19) }
\]
wherein:
each \(u\) is independently \(0,1,3,5,7,8,10\), or 11 ; each \(w\) is independently \(0,1,2,3,4\), or 5 ; and each \(s\) is \(0,6,13\), or 14 .

In one embodiment the invention provides a compound of formula (Ib19) wherein \(\mathrm{L}^{9}\) is:

wherein \(\mathrm{X}-\mathrm{X}\) is selected from \(\mathrm{O}, \mathrm{CH}_{2}, \mathrm{CH}=\mathrm{CH}, \mathrm{CH}_{2}-\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{O}, \mathrm{O}-\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\), and \(\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}\); wherein \({ }^{*}\) designates the site of connection to P .

In one embodiment the invention provides a compound of formula (lb19) wherein \(\mathrm{M}^{0}\) is:

In one embodiment the invention provides a compound of formula (Ib19) which is:

or a pharmaceutically acceptable salt, or prodrug thereof.
In one embodiment the invention provides a compound of formula (Ib19) wherein \(A^{0}\) is:

In one embodiment the invention provides a compound of formula (Ib19) which is:

or a pharmaceutically acceptable salt, or prodrug thereof.
In one embodiment the invention provides a compound of formula (Ib19) wherein \(\mathrm{A}^{6}\) is:

In one embodiment the invention provides a compound of formula (Ib19) which is:

or a pharmaceutically acceptable salt, or prodrug thereof.
In one embodiment the invention provides a compound of formula (Ib19) wherein \(A^{13}\) is:

In one embodiment the invention provides a compound of formula (Ib19) which is:

or a pharmaceutically acceptable salt, or prodrug thereof.
In one embodiment the invention provides a compound of formula (Ibl9) wherein \(A^{14}\) is:

In one embodiment the invention provides a compound of formula (Ib19) which is:

or a pharmaceutically acceptable salt, or prodrug thereof.
In one embodiment of the invention, the compound of formula (I) is a compound of formula (lb20):
\[
\begin{equation*}
E^{0}-V^{w}-Z^{0}-P^{0}-M^{0}-A^{0}-L^{4}-P^{0}-Z^{0}-V^{w}-E^{0} \tag{Ib20}
\end{equation*}
\]
wherein:
each \(u\) is independently \(0,1,3,5,7,8,10\), or 11 ; and each \(w\) is independently \(0,1,2,3\), 4 , or 5 .

In one embodiment of the invention, the compound of formula (I) is a compound of formula (Ib21):
\[
\begin{equation*}
E^{0}-V^{w}-Z^{0}-P^{\mathrm{ul}}-M^{0}-A^{0}-L^{4}-P^{\mathrm{LL}}-Z^{0}-V^{\mathrm{w}}-E^{0} \tag{lb21}
\end{equation*}
\]
wherein:
each ul is \(1,3,5,7,8,10\), or 11 ; \(u 2\) is \(0,1,3,5,7,8,10\), or 11 ; and each \(w\) is independently \(0,1,2,3,4\), or 5 .

In one embodiment of the invention, the compound of formula (I) is a compound of formula (Ib22):
\[
\begin{equation*}
E^{0}-V^{w 1}-Z^{0}-P^{u}-M^{0}-A^{0}-L^{4}-P^{\mathrm{w} 2}-Z^{0}-V^{w 2}-E^{0} \tag{Ib22}
\end{equation*}
\]
wherein:
each \(u\) is independently \(0,1,3,5,7,8,10\), or 11 ; each \(u 2\) is independently \(0,1,3,5,7,8\), 10 , or 11 ; \(w 1\) is independently \(0,1,2,3,4\), or 5 ; and each \(w 2\) is independently \(1,2,3,4\), or 5 .

In one embodiment of the invention, the compound of formula (I) is a compound of formula (Ib23):
\[
\begin{equation*}
\mathrm{E}^{0}-V^{\mathrm{w} 1}-Z^{0}-\mathrm{P}^{\mathrm{u}}-\mathrm{M}^{0}-\mathrm{A}^{0}-\mathrm{L}^{4}-\mathrm{P}^{\mathrm{L} 2}-Z^{0}-V^{\mathrm{w} 2}-\mathrm{E}^{0} \tag{Ib23}
\end{equation*}
\]
wherein:
each \(u\) is independently \(0,1,3,5,7,8,10\), or 11 ; each \(u 2\) is independently \(0,1,3,5,7,8\), 10 , or 11 ; w1 is independently \(1,2,3,4\), or 5 ; and each \(w 2\) is independently \(0,1,2,3,4\), or 5 .

In one embodiment the invention provides a compound of formula (lb20)-(Ib23) wherein \(M^{0}\) is:

In one embodiment the invention provides a compound of formula (Ib20)-(Ib23) wherein \(\mathrm{A}^{0}\) is:

In one embodiment the invention provides a compound of formula (Ib20)-(Ib23) wherein \(L^{4}\) is:

wherein \(\mathrm{X}-\mathrm{X}\) is selected from \(\mathrm{O}, \mathrm{CH}_{2}, \mathrm{CH}=\mathrm{CH}, \mathrm{CH}_{2}-\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{O}, \mathrm{O}-\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\), and \(\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}\); and wherein * designates the site of connection to P .

In one embodiment of the invention, the compound of formula (I) is a compound of formula (Ib24):
\[
\begin{equation*}
E^{0}-V^{w}-Z^{0}-P^{u}-M^{0}-A^{s}-L^{4}-P^{u 2}-Z^{0}-V^{w}-E^{0} \tag{Ib24}
\end{equation*}
\]
wherein:
each \(u\) is independently \(0,1,3,5,7,8,10\), or 11 ; each \(u 2\) is independently \(0,1,3,5,7,8\), 10 , or 11 ; each \(w\) is independently \(0,1,2,3,4\), or 5 ; and \(s\) is \(5,6,13,14,15\), or 16 .

In one embodiment the invention provides a compound of formula (lb24) wherein s is 16 and \(A^{16}\) is:

In one embodiment the invention provides a compound of formula:

wherein X-X is selected from \(\mathrm{O}, \mathrm{CH}_{2}, \mathrm{CH}=\mathrm{CH}, \mathrm{CH}_{2}-\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{O}, \mathrm{O}-\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\), and \(\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}\); and A is \(\mathrm{A}^{0}\); or a pharmaceutically acceptable salt, or prodrug thereof.

In one embodiment the invention provides a compound of formula:

wherein \(\mathrm{X}-\mathrm{X}\) is selected from \(\mathrm{O}, \mathrm{CH}_{2}, \mathrm{CH}=\mathrm{CH}, \mathrm{CH}_{2}-\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{O}, \mathrm{O}-\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\), and \(\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}\); or a pharmaceutically acceptable salt, or prodrug thereof.

In one embodiment the invention provides a compound of formula (Ib24) wherein \(s\) is 6 and \(A^{6}\) is:

In one embodiment the invention provides a compound of formula (Ib25):

wherein \(\mathrm{X}-\mathrm{X}\) is selected from \(\mathrm{O}, \mathrm{CH}_{2}, \mathrm{CH}=\mathrm{CH}, \mathrm{CH}_{2}-\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{O}, \mathrm{O}-\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\), and \(\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}\); or a pharmaceutically acceptable salt, or prodrug thereof.

In one embodiment the invention provides a compound of formula (lb24) wherein \(s\) is 5 and \(A^{5}\) is:

In one embodiment the invention provides a compound of formula (Ib26):

wherein X - X is selected from \(\mathrm{O}, \mathrm{CH}_{2}, \mathrm{CH}=\mathrm{CH}, \mathrm{CH}_{2}-\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{O}, \mathrm{O}-\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\) \(\mathrm{CH}_{2}\), and \(\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}\); or a pharmaceutically acceptable salt, or prodrug thereof.

In one embodiment the invention provides a compound of formula (Ib24) wherein s is 13 and \(A^{13}\) is:

In one embodiment the invention provides a compound of formula (Ib27):

wherein \(\mathrm{X}-\mathrm{X}\) is selected from \(\mathrm{O}, \mathrm{CH}_{2}, \mathrm{CH}=\mathrm{CH}, \mathrm{CH}_{2}-\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{O}, \mathrm{O}-\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\), and \(\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}\); or a pharmaceutically acceptable salt, or prodrug thereof.

In one embodiment the invention provides a compound of formula (Ib24) wherein s is 14 and \(A^{14}\) is:

In one embodiment the invention provides a compound of formula:

wherein X -X is selected from \(\mathrm{O}, \mathrm{CH}_{2}, \mathrm{CH}=\mathrm{CH}, \mathrm{CH}_{2}-\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{O}, \mathrm{O}-\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\), and \(\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}\); or a pharmaceutically acceptable salt, or prodrug thereof.

In one embodiment the invention provides a compound of formula (Ib24) wherein s is 15 and \(\mathrm{A}^{15}\) is:

In one embodiment the invention provides a compound of formula:

wherein \(\mathrm{X}-\mathrm{X}\) is selected from \(\mathrm{O}, \mathrm{CH}_{2}, \mathrm{CH}=\mathrm{CH}, \mathrm{CH}_{2}-\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{O}, \mathrm{O}-\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\), and \(\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}\); or a pharmaceutically acceptable salt, or prodrug thereof.

In one embodiment the invention provides a compound of formula (lb34):

wherein X -X is selected from \(\mathrm{O}, \mathrm{CH}_{2}, \mathrm{CH}=\mathrm{CH}, \mathrm{CH}_{2}-\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{O}, \mathrm{O}-\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\), and \(\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}\); or a pharmaceutically acceptable salt, or prodrug thereof.

In another specific embodiment of the invention the compound of formula (Ib) is a compound of formula: R9-Z-P-M-A \({ }^{15}\)-L-P-Z-R9.

In another specific embodiment of the invention the compound of formula (Ib) is a compound of formula: R9-Z-P-M-A \({ }^{15}-\mathrm{L}^{3}-\mathrm{P}-\mathrm{Z}-\mathrm{R} 9\).

In another specific embodiment of the invention the compound of formula (lb) is a compound of formula: R9-Z-P-M \({ }^{0}-\mathrm{A}^{15}-\mathrm{L}^{3}-\mathrm{P}-\mathrm{Z}-\mathrm{R} 9\).

In another specific embodiment of the invention the compound of formula (lb) is a compound of formula: R9-Z-P-M-A \({ }^{16}\)-L-P-Z-R9.

In another specific embodiment of the invention the compound of formula (lb) is a compound of formula: R9-Z-P-M-A \({ }^{16}-\mathrm{L}^{3}-\mathrm{P}-\mathrm{Z}-\mathrm{R} 9\).

In another specific embodiment of the invention the compound of formula (lb) is a compound of formula: R9-Z-P-M \({ }^{0}-\mathrm{A}^{16}-\mathrm{L}^{3}-\mathrm{P}-\mathrm{Z}-\mathrm{R} 9\).

In another specific embodiment of the invention the compound of formula (Ib) is a compound of formula: R9-Z-P-M \({ }^{9}-\mathrm{A}^{16}-\mathrm{L}^{3}-\mathrm{P}-\mathrm{Z}-\mathrm{R} 9\).

In another specific embodiment the invention provides a compound of the following formula (lb50): \(\mathrm{E}^{\mathrm{x}}-\mathrm{V}^{\mathrm{w}}-\mathrm{Z}^{\mathrm{v}}-\mathrm{P}^{\mathrm{u}}-\mathrm{M}^{\mathrm{t}}-\mathrm{A}^{\mathrm{s}}-\mathrm{L}^{\mathrm{n}}-\mathrm{P}^{\mathrm{u}}-\mathrm{Z}^{\mathrm{v}}-\mathrm{V}^{\mathrm{w}}-\mathrm{E}^{\mathrm{x}}\) (lb50) wherein the sum of \(\mathrm{t}, \mathrm{s}, \mathrm{n}, \mathrm{u}, \mathrm{v}, \mathrm{w}\) and x is not zero.

In another specific embodiment the invention provides a compound of formula (lb50) wherein at least two of \(\mathrm{n}, \mathrm{s}, \mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero.

In another specific embodiment the invention provides a compound of formula (lb50) wherein at least three of \(\mathrm{n}, \mathrm{s}, \mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero.

In another specific embodiment the invention provides a compound of formula (lb50) wherein at least two of \(n, s, t, u, v\) or \(x\) are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (lb50) wherein at least three of \(n, s, t, u, v, w\) or \(x\) are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (Ib50) wherein at least three of \(\mathrm{n}, \mathrm{s}, \mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero and at least three of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (Ib50) wherein at least four of \(n, s, t, u, v, w\) or \(x\) are not zero.

In another specific embodiment the invention provides a compound of formula (lb50) wherein at least four of \(\mathrm{n}, \mathrm{s}, \mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (lb50) wherein at least four of \(\mathrm{n}, \mathrm{s}, \mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero and at least three of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (lb50) wherein at least four of \(\mathrm{n}, \mathrm{s}, \mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero and at least four of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (Ib50) wherein the sum of \(\mathrm{n}, \mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}\) or x is not zero.

In another specific embodiment the invention provides a compound of formula (lb50) wherein the sum of \(\mathrm{s}, \mathrm{u}, \mathrm{v}, \mathrm{w}\) or x is not zero.

In another specific embodiment the invention provides a compound of formula (lb50) wherein at least one \(u\) is not zero.

In another specific embodiment the invention provides a compound of formula (Ib50) wherein s , and at least one t , and at least one u are all not zero.

In another specific embodiment the invention provides a compound of formula (Ib50) wherein at least two of \(u\), \(w\) and \(t\) are not zero.

In another specific embodiment the invention provides a compound of formula (Ib50) wherein at least two of \(\mathrm{s}, \mathrm{u}\), and w are not zero.

In another specific embodiment the invention provides a compound of formula (Ib50) wherein at least two of \(s, u\), and \(w\) are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (Ib50) wherein at least \(s\) and both \(u\) are not zero.

In another specific embodiment the invention provides a compound of formula (lb50) wherein at least two of \(u, v, w\) or \(x\) are not zero and at least two of the non-zero groups are not the same letter

In another specific embodiment the invention provides a compound of formula (Ib50) wherein at least one of \(u\), or \(w\) is not zero.

In another specific embodiment the invention provides a compound of formula (Ib50) wherein at least two of \(u\), or \(w\) are not zero.

In another specific embodiment the invention provides a compound of formula (Ib50) wherein at least one \(u\) is not zero, and at least one \(w\) is not zero.

In another specific embodiment the invention provides a compound of formula (lb50) wherein at least two of \(u\) are not zero.

In another specific embodiment the invention provides a compound of formula (Ib50) wherein at least one of \(w\) is not zero.

In another specific embodiment the invention provides a compound of formula (Ib50) wherein at least two of \(w\) are not zero.

In another specific embodiment the invention provides a compound of formula (Ib50) wherein both \(u\) are not zero, and at least one \(w\) is not zero.

In another specific embodiment the invention provides a compound of the formula (lb50) wherein \(t\) is 0 or \(10 ; \mathrm{n}\) is \(0,1,2,3,4,5,6,7,8,9\), or 10 ; and s is \(0,1,2,3,4,5,6,7,8,9,10,11\), \(12,13,14,15,16,17,18\), or 21 .

In another specific embodiment the invention provides a compound of the formula (lb50) wherein \(t\) is 0 or \(10 ; n\) is \(0,1,2,4,5,6,7,8,9\), or 10 ; and \(s\) is \(0,1,2,3,4,5,6,7,8,9,10,11,12\), \(13,14,15,16,17,18,21\).

In another specific embodiment the invention provides a compound of the formula (lb50) wherein \(t\) is \(9 ; n\) is 3 ; and \(s\) is \(3,4,8,9,10,11,12,13,14,15,16,17,18\), or 21 .

In another specific embodiment the invention provides a compound of the formula (lb50) wherein \(t\) is \(0,1,2,4,5,6,7,8,9,10\), or \(11 ; n\) is \(0,1,2,3,4,5,6,7,8,9\), or 10 ; and \(s\) is \(1,2,3\), \(4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,21\).

In another specific embodiment the invention provides a compound of the formula (lb50) wherein \(t\) is 0 ; \(n\) is \(0,1,2,3,5,6,7,8,9\), or 10 ; and \(s\) is \(0,1,2,3,4,5,6,7,8,9,10,11,12,13\), \(14,15,16,17\), or 20 .

In another specific embodiment the invention provides a compound of the formula (Ib50) wherein \(t\) is \(1,2,4,5,6,7,8,9,10\),or \(11 ; n\) is 4 ; and \(s\) is \(0,1,2,3,4,5,6,7,8,9,10,11,12,13\), \(14,15,16,17,18\), or 21 .

In another specific embodiment the invention provides a compound of the formula (lb50) wherein at least one of \(u, v, w\) or \(x\) are not zero.

In another specific embodiment the invention provides a compound of the formula (Ib50) wherein at least two of \(\mathrm{n}, \mathrm{s}, \mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero.

In another specific embodiment the invention provides a compound of the formula (Ib50) wherein at least three of \(\mathrm{n}, \mathrm{s}, \mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero.

In another specific embodiment the invention provides a compound of the formula (Ib50) wherein at least two of \(n, s, t, u, w\) or \(x\) are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of the formula (Ib50) wherein at least three of \(\mathrm{n}, \mathrm{s}, \mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of the formula (Ib50) wherein at least three of \(\mathrm{n}, \mathrm{s}, \mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero and at least three of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of the formula (lb50) wherein at least four of \(n, s, t, u, v, w\) or \(x\) are not zero.

In another specific embodiment the invention provides a compound of the formula (Ib50) wherein at least four of \(n, s, t, u, v, w\) or \(x\) are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of the formula (Ib50) wherein at least four of \(\mathrm{n}, \mathrm{s}, \mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero and at least three of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of the formula (Ib50) wherein at least four of \(\mathrm{n}, \mathrm{s}, \mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero and at least four of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of the formula (lb50) wherein the sum of \(\mathrm{n}, \mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}\) or x is not zero.

In another specific embodiment the invention provides a compound of the formula (Ib50) wherein the sum of \(\mathrm{s}, \mathrm{u}, \mathrm{v}, \mathrm{w}\) or x is not zero.

In another specific embodiment the invention provides a compound of the formula (Ib50) wherein at least one \(u\) is not zero.

In another specific embodiment the invention provides a compound of the formula (Ib50) wherein s , and at least one t , and at least one u are all not zero.

In another specific embodiment the invention provides a compound of the formula (Ib50) wherein at least two of \(u, w\) and \(t\) are not zero.

In another specific embodiment the invention provides a compound of the formula (Ib50) wherein at least two of \(s, u\), and \(w\) are not zero.

In another specific embodiment the invention provides a compound of the formula (Ib50) wherein at least two of \(s, u\), and \(w\) are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of the formula (Ib50) wherein at least s and both u are not zero.

In another specific embodiment the invention provides a compound of the formula (lb50) wherein at least two of \(u, v, w\) or \(x\) are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of the formula (Ib50) wherein at least one of \(u\), or \(w\) is not zero.

In another specific embodiment the invention provides a compound of the formula (lb50) wherein at least two of \(u\), or \(w\) are not zero.

In another specific embodiment the invention provides a compound of the formula (Ib50) wherein at least one \(u\) is not zero, and at least one \(w\) is not zero.

In another specific embodiment the invention provides a compound of the formula (Ib50) wherein at least two of \(u\) are not zero.

In another specific embodiment the invention provides a compound of the formula (Ib50) wherein at least one of \(w\) is not zero.

In another specific embodiment the invention provides a compound of the formula (Ib50) wherein at least two of w are not zero.

In another specific embodiment the invention provides a compound of the formula (Ib50) wherein both \(u\) are not zero, and at least one \(w\) is not zero.

In another specific embodiment the invention provides a compound of the following formula (Ib51): \(E^{x}-V^{w}-Z^{v}-P^{u}-M^{9}-A^{s}-L^{3}-P^{u}-Z^{v}-V^{w}-E^{x}\) (Ib51) wherein \(s\) is \(0,1,2,5,6\), or 7.

In another specific embodiment the invention provides a compound of the formula (Ib51) wherein at least one of \(u, v, w\) or \(x\) are not zero.

In another specific embodiment the invention provides a compound of the formula (lb51) wherein at least two of \(u, v, w\) or \(x\) are not zero.

In another specific embodiment the invention provides a compound of the formula (Ib51) wherein at least three of \(\mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero.

In another specific embodiment the invention provides a compound of the formula (Ib51) wherein at least four of \(\mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero.

In another specific embodiment the invention provides a compound of the formula (lb51) wherein at least two \(u, v, w\) or \(x\) are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of the formula (Ib 51) wherein at least three of \(u, v, w\) or \(x\) are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of the formula (IbS1) wherein at least three of \(u, v, w\) or \(x\) are not zero and at least three of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of the formula (Ib 51) wherein at least four of \(\mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of the formula (lb51) wherein the sum of \(u, v, w\) and \(x\) is not zero.

In another specific embodiment the invention provides a compound of the formula (lb51) wherein at least one of \(u\), or \(w\) are not zero.

In another specific embodiment the invention provides a compound of the formula (Ib51) wherein at least two of \(u\), or \(w\) are not zero.

In another specific embodiment the invention provides a compound of the formula (Ib51) wherein at least one \(u\) is not zero, and at least one \(w\) is not zero.

In another specific embodiment the invention provides a compound of the formula (Ib51) wherein both \(u\) are not zero, and at least one \(w\) is not zero.

In another specific embodiment the invention provides a compound of the formula (Ib51) wherein at least one \(u\) is not zero.

In another specific embodiment the invention provides a compound of the formula (Ib51) wherein both of \(u\) are not zero.

In another specific embodiment the invention provides a compound of the formula (Ib51) wherein at least one of \(w\) is not zero.

In another specific embodiment the invention provides a compound of the formula (lb51) wherein both w are not zero.

In another specific embodiment the invention provides a compound of the following formula (Ib52): \(\mathrm{E}^{\mathrm{x}}-\mathrm{V}^{\mathrm{w}}-\mathrm{Z}^{\mathrm{v}}-\mathrm{P}^{\mathrm{u}}-\mathrm{M}^{0}-\mathrm{A}^{0}-\mathrm{L}^{4}-\mathrm{P}^{\mathrm{u}}-\mathrm{Z}^{\mathrm{v}}-\mathrm{V}^{\mathrm{w}}-\mathrm{E}^{\mathrm{x}}\) (Ib52).

In another specific embodiment the invention provides a compound of the formula (lb52) wherein at least one of \(u, v, w\) or \(x\) are not zero.

In another specific embodiment the invention provides a compound of the formula (lb52) wherein at least two of \(u, v, w\) or \(x\) are not zero.

In another specific embodiment the invention provides a compound of the formula (lb52) wherein at least three of \(u, v, w\) or \(x\) are not zero.

In another specific embodiment the invention provides a compound of the formula (Ib52) wherein at least four of \(\mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero.

In another specific embodiment the invention provides a compound of the formula (Ib52) wherein at least two \(\mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of the formula (Ib52) wherein at least three of \(u, v, w\) or \(x\) are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of the formula (Ib52) wherein at least three of \(u, v, w\) or \(x\) are not zero and at least three of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of the formula (Ib52) wherein at least four of \(u, v, w\) or \(x\) are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of the formula (Ib52) wherein the sum of \(u, v, w\) and \(x\) is not zero.

In another specific embodiment the invention provides a compound of the formula (Ib52) wherein at least one of \(u\), or \(w\) are not zero.

In another specific embodiment the invention provides a compound of the formula (Ib52) wherein at least two of \(u\), or \(w\) are not zero.

In another specific embodiment the invention provides a compound of the formula (Ib52) wherein at least one \(u\) is not zero, and at least one \(w\) is not zero.

In another specific embodiment the invention provides a compound of formula (lb52) wherein both \(u\) are not zero, and at least one \(w\) is not zero.

In another specific embodiment the invention provides a compound of the formula (lb52) wherein at least one u is not zero.

In another specific embodiment the invention provides a compound of the formula (Ib52) wherein both of \(u\) are not zero.

In another specific embodiment the invention provides a compound of the formula (lb52) wherein at least one of \(w\) is not zero.

In another specific embodiment the invention provides a compound of the formula (lb52) wherein both w are not zero.

\section*{Compounds of formula (Ic)}

In one embodiment of the invention, the compound of formula (I) is a compound of formula (Ic):

> E-V-Z-P-M-A-A-M-P-Z-V-E
wherein:
each \(A\) is selected from \(-A^{5}\);
each \(M\) is selected from \(-M^{t}\);
each \(P\) is selected from \(-P^{u}\);
each \(Z\) is selected from \(-Z^{V}\);
each \(V\) is selected from \(-V^{w}\);
each E is selected from \(-\mathrm{E}^{\mathrm{x}}\);
each \(s\) is \(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20\), or 21 ;
each \(t\) is \(0,1,2,3,4,5,6,7,8,9,10\), or 11 ;
each \(u\) is \(0,1,2,3,4,5,6,7,8,10,11,12,13\), or 14 ;
each \(v\) is \(0,1,2,3,4,5\), or 6 ;
each \(w\) is \(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20\) or 21 ;
each x is 0 or 1 ;
wherein the sum of \(\mathrm{s}, \mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}\), and x is not 0 ;
each \(A^{0}\) is independently:

wherein:
each \(R^{A 3}\) is independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, formyl, halo, haloalkyl, hydroxy, hydroxyalkyl, \(-\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\), \(\left(N R^{a} R^{b}\right.\))alkyl, and (\(N R^{a} R^{b}\)) carbonyl; \(R^{a}\) and \(R^{b}\) are each independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl; and each
bb is independently \(0,1,2,3\), or 4 ; or
each \(A^{0}\) is independently a six-membered heteroaromatic ring containing one, two, or three nitrogen atoms, which ring is optionally substituted with \(1,2,3\), or \(4 \mathrm{R}^{\mathrm{A} 3}\) groups;
each \(A^{\prime}\) is independently:

wherein:
each \(\mathrm{R}^{\mathrm{Al}}\) is independently selected from cyano, nitro, \(\mathrm{SOR}^{4}, \mathrm{SO}_{2} \mathrm{R}^{4}\), -alkylSO \(\mathrm{R}^{4}\), haloalkoxy, cyanoalkyl, \(\mathrm{NR}^{4} \mathrm{SO}_{2} \mathrm{R}^{4}\), cycloalkyl, (halo)cycloalkyl, heterocycle, (cycloalkyl)alkyl, (heterocycle)alkyl, wherein each alkyl, heterocycle and cycloalkyl is optionally substituted with one or more halo; and
each \(\mathrm{R}^{4}\) is independently selected from H , alkyl, haloalkyl, aryl, and arylalkyl; each cc is independently \(1,2,3\), or 4 ;
each \(A^{2}\) is independently:

wherein:
each \(\mathrm{R}^{\mathrm{Al}}\) is independently selected from cyano, nitro, \(\mathrm{SOR}^{4}, \mathrm{SO}_{2} \mathrm{R}^{4}\), -alkylSO \(\mathrm{R}_{2} \mathrm{R}^{4}\), haloalkoxy, cyanoalkyl, \(\mathrm{NR}^{4} \mathrm{SO}_{2} \mathrm{R}^{4}\), cycloalkyl, (halo)cycloalkyl, heterocycle, (cycloalkyl)alkyl, (heterocycle)alkyl, wherein each alkyl, heterocycle and cycloalkyl is optionally substituted with one or more halo;
each \(R^{A 3}\) is independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, formyl, halo, haloalkyl, hydroxy, hydroxyalkyl, -NR \(R^{a} R^{b}\), \(\left(N R^{a} R^{b}\right)\) alkyl, and \(\left(N R^{a} R^{b}\right)\) carbonyl; \(R^{a}\) and \(R^{b}\) are each independently selected from the group
consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl;
each \(\mathrm{R}^{4}\) is independently selected from H , alkyl, haloalkyl, aryl, and arylalkyl;
\(\mathrm{R}^{\mathrm{a}}\) and \(\mathrm{R}^{\mathrm{b}}\) are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl;
each bb is \(0,1,2,3\), or 4 ; each \(\operatorname{cc}\) is \(1,2,3\), or 4 ; and the sum of bb and \(c c\) is \(1,2,3\), or 4 ;
each \(\mathrm{A}^{3}\) is independently a six-membered heteroaromatic ring containing one, two, or three nitrogen atoms, which ring is substituted with one or more \(\mathrm{R}^{\mathrm{Al}}\) groups, and which ring is optionally substituted with one or more \(\mathrm{R}^{\mathrm{A3}}\) groups;
each \(A^{4}\) is independently:

wherein:
each \(\mathrm{H}^{5}\) is independently a phenyl ring or a six-membered heteroaromatic ring, which \(\mathrm{H}^{5}\) is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\); and each \(X^{A}\) is independently \(\mathrm{O}, \mathrm{NR}\), \(\mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=0) \mathrm{NR}\), \(C R=C R, N R C(=O) N R\), allenyl, alkynyl, or absent
each \(A^{5}\) is independently:

wherein:
each \(\mathrm{H}^{6}\) is independently a phenyl ring or a six-membered heteroaromatic ring, which \(\mathrm{H}^{6}\) is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\); and each \(X^{A}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=0), \mathrm{NRC}(=O), \mathrm{C}(=0) \mathrm{NR}\), \(C R=C R, N R C(=O) N R\), allenyl, alkynyl, or absent; provided that at least one \(X^{A}\) is present;
each \(A^{6}\) is independently:
\[
\xi-x^{A}-x^{A}-x^{A}-\xi
\]
wherein:
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=0), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=0) \mathrm{NR}\), \(C R=C R\), allenyl, alkynyl, or absent; provided that at least one \(X^{A}\) is present;
each \(A^{7}\) is independently:

wherein:
each \(\mathrm{H}^{7}\) is independently a five-membered heteroaromatic ring, which \(\mathrm{H}^{7}\) is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\); and each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=0) \mathrm{NR}\), \(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=0) \mathrm{NR}\), allenyl, alkynyl, or absent;
each \(A^{8}\) is independently:

wherein:
each \(\mathrm{H}^{7}\) is independently a five-membered heteroaromatic ring, which \(\mathrm{H}^{7}\) is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\);
each \(\mathrm{H}^{8}\) is independently a phenyl ring, which is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\); and
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}\), \(\mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=0), \mathrm{NRC}(=0), \mathrm{C}(=0) \mathrm{NR}\), \(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=0) \mathrm{NR}\), allenyl, alkynyl, or absent;
each \(A^{9}\) is independently:

wherein:
each \(\mathrm{H}^{7}\) is independently a five-membered heteroaromatic ring, which \(\mathrm{H}^{7}\) is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\); and each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}\), \(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent;
each \(A^{10}\) is independently:

wherein:
each \(H^{8}\) is independently a phenyl ring, which is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\);
each \(H^{9}\) is independently a six-membered heteroaromatic ring, which is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\); and each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}\), \(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent
each \(A^{11}\) is independently:

wherein:
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}\), \(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=0) \mathrm{NR}\), allenyl, alkynyl, or absent;
each \(\mathrm{H}^{10}\) is independently a \(5-15\) carbon unsaturated, partially unsaturated or saturated bicyclic ring system that is optionally fused to an aryl, which \(\mathrm{H}^{10}\) is optionally substituted with one or more groups independently selected from oxo, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, formyl, halo, haloalkyl, hydroxy, hydroxyalkyl, \(-\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\), \(\left(\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\right.\))alkyl, and \(\left(\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\right)\) carbonyl, cyano, nitro, \(\mathrm{SOR}^{4}, \mathrm{SO}_{2} \mathrm{R}^{4}\), -alkylSO \({ }_{2} \mathrm{R}^{4}\), haloalkoxy, cyanoalkyl, \(\mathrm{NR}^{4} \mathrm{SO}_{2} \mathrm{R}^{4}\), cycloalkyl, (halo)cycloalkyl, heterocycle, (cycloalkyl)alkyl, and (heterocycle)alkyl, wherein each alkyl, heterocycle and cycloalkyl is optionally substituted with one or more halo; and
each \(R^{4}\) is independently selected from \(H\), alkyl, haloalkyl, aryl, and arylalkyl
each \(A^{12}\) is independently:

wherein:
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}\), \(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent;
each \(H^{11}\) is independently a \(5-15\) carbon unsaturated, partially unsaturated or saturated bicyclic ring system that contains one or more heteroatoms that is optionally fused to an aryl, which \(\mathrm{H}^{11}\) is optionally substituted with one or more groups independently selected from oxo, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, formyl, halo, haloalkyl, hydroxy, hydroxyalkyl, \(-N R^{a} R^{b},\left(N R^{a} R^{b}\right)\) alkyl, and \(\left(N R^{a} R^{b}\right)\) carbonyl, cyano, nitro, \(\mathrm{SOR}^{4}, \mathrm{SO}_{2} \mathrm{R}^{4}\), -alkylSO \(\mathrm{R}^{4}\), haloalkoxy, cyanoalkyl, \(\mathrm{NR}^{4} \mathrm{SO}_{2} \mathrm{R}^{4}\), cycloalkyl, (halo)cycloalkyl, heterocycle, (cycloalkyl)alkyl, and (heterocycle)alkyl, wherein each alkyl, heterocycle and cycloalkyl is optionally substituted with one or more halo; and
each \(\mathrm{R}^{4}\) is independently selected from H , alkyl, haloalkyl, aryl, and arylalkyl; and
each \(A^{13}\) is independently:

wherein:
each \(\mathrm{H}^{12}\) is independently a fused aromatic bicyclic carbocycle, which is optionally substituted with one or more groups independently selected from \(R^{A I}\) and \(R^{A 3}\); and each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}\), \(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent;
each \(A^{14}\) is independently:

wherein:
each \(\mathrm{H}^{13}\) is independently a fused aromatic bicyclic heterocycle that comprises at least one heteroatom in the ring system, which ring system is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\); and
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}\), \(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent;
each \(A^{15}\) is independently:

wherein:
each \(\mathrm{H}^{14}\) is independently a fused unsaturated, partially unsaturated or saturated tricyclic carbocycle which is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\); and each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}\), \(C R=C R, N R C(=0) N R\), allenyl, alkynyl, or absent;
each \(\mathrm{A}^{16}\) is independently:

wherein:
each \(\mathrm{H}^{15}\) is independently a fused unsaturated, partially unsaturated or saturated tricyclic heterocycle that comprises at least one heteroatom in the ring system, which ring system is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\); and
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}\), \(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent;
each \(A^{17}\) is independently:

wherein:
each \(\mathrm{H}^{16}\) is independently a fused bicyclic carbocyclic ring system wherein one ring is aromatic and another ring is partially or fully saturated, which ring system is optionally substituted with one or more groups independently selected from oxo, \(R^{A 1}\) and \(R^{A 3}\); and
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=\mathrm{O}) \mathrm{NR}\), \(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=\mathrm{O}) \mathrm{NR}\), allenyl, alkynyl, or absent;
each \(A^{18}\) is independently:

wherein:
each \(\mathrm{H}^{17}\) is independently a fused bicyclic ring system comprising at least one heteroatom, wherein one ring is aromatic and another ring is partially or fully saturated, which ring system is optionally substituted with one or more groups independently selected from oxo, \(\mathrm{R}^{\mathrm{A} 1}\) and \(\mathrm{R}^{\mathrm{A} 3}\); and
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=0) \mathrm{NR}\), \(C R=C R, N R C(=0) N R\), allenyl, alkynyl, or absent;
each \(\mathrm{A}^{21}\) is independently:

wherein:
each \(\mathrm{H}^{40}\) is independently an anti-aromatic monocyclic or fused carbocyclic ring system, which carbocyclic ring system is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\); and
each \(\mathrm{X}^{\mathrm{A}}\) is independently \(\mathrm{O}, \mathrm{NR}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{NRC}(=\mathrm{O}), \mathrm{C}(=0) \mathrm{NR}\),
\(\mathrm{CR}=\mathrm{CR}, \mathrm{NRC}(=0) \mathrm{NR}\), allenyl, alkynyl, or absent;
each \(\mathrm{M}^{0}\) is independently a five membered heteroaryl group optionally substituted with one or more alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, haloalkyl, \(\left(\mathrm{NR}^{a} \mathrm{R}^{\mathrm{b}}\right)\) carbonyl and trialkylsilylalkoxyalkyl;
each \(\mathrm{M}^{1}\) is independently selected from \(-\mathrm{C}(=0) \mathrm{NH}-,-\mathrm{C}(=\mathrm{O}) \mathrm{NH}-\mathrm{C}\left(\mathrm{R}^{\mathrm{M}}\right)_{2^{2}},-\mathrm{NHC}(=\mathrm{O})\)-, \(-\mathrm{C}\left(\mathrm{R}^{\mathrm{M}}\right)_{2} \mathrm{NHC}(=\mathrm{O})-,-\mathrm{NHC}(=\mathrm{O}) \mathrm{NR}^{\mathrm{M}}-,-\mathrm{NHC}(=0) \mathrm{O}-\); wherein each \(\mathrm{R}^{\mathrm{M}}\) is independently selected from H and alkyl;
each \(\dot{\mathrm{M}}^{2}\) is independently a six-membered heteroaromatic ring, which is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\);
each \(M^{3}\) is independently:

each \(\mathrm{M}^{4}\) is independently:

each \(M^{5}\) is independently:

wherein the bond designated with --- is fused to a ring defined for \(P\);
each \(M^{6}\) is independently a bicyclic bridged ring system comprising \(5-15\) atoms wherein at least one of the atoms is a heteroatom;
each \(\mathrm{M}^{7}\) is independently a pyrid-di-yl;
each \(\mathrm{M}^{8}\) is independently partially saturated or a saturated five-membered ring that comprises one or more heteroatoms and that is optionally substituted with one or two oxo;
each \(\mathrm{M}^{9}\) is independently a fused-bicyclic saturated, partially unsaturated, or aromatic heterocyclic ring system that is optionally substituted with one or more \(\mathrm{R}^{\mathrm{PII} \text {; }}\)
each \(M^{10}\) is independently a five membered heteroaryl group;
each \(M^{11}\) is independently a fused-tricyclic saturated, partially unsaturated, or aromatic heterocyclic ring system that is optionally substituted with one or more oxo halo, \(-\mathrm{R}^{\mathrm{M} 7},-\mathrm{OR}^{\mathrm{M} 7}\), \(-\mathrm{SR}^{\mathrm{M} 7},-\mathrm{N}\left(\mathrm{R}^{\mathrm{M} 7}\right)_{2},-\mathrm{CF}_{3},-\mathrm{CCl}_{3},-\mathrm{OCF}_{3},-\mathrm{CN},-\mathrm{NO}_{2},-\mathrm{N}\left(\mathrm{R}^{\mathrm{M} 7}\right) \mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{M} 7},-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{M} 7},-\mathrm{OC}(=\mathrm{O}) \mathrm{R}\) \({ }^{\mathrm{M} 7},-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{\mathrm{M} 7},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{M} 7},-\mathrm{S}(=\mathrm{O}) \mathrm{R}^{\mathrm{M} 7},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{M} 7},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{M} 7},-\mathrm{OS}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{M} 7}\), or \(-\mathrm{S}=\mathrm{O})_{2} \mathrm{NR}^{\mathrm{M} 7}\);
each \(\mathrm{R}^{\mathrm{M} 7}\) is independently -H , alkyl, aryl, arylalkyl, or heterocycle;
each \(\mathrm{P}^{0}\) is independently:

wherein:
X is selected from \(\mathrm{O}, \mathrm{S}, \mathrm{S}(\mathrm{O}), \mathrm{SO}_{2}, \mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{PIO}}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{PIO}}\right)_{2}\); provided that when pn or pm is \(0, \mathrm{X}\) is selected from \(\mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{P} 10}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{P} 10}\right)_{2}\); each \(R^{P 10}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
each \(R^{P 5}\) and \(R^{P 6}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-N R^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups; \(\mathrm{R}^{\mathrm{Pa}}\) and \(\mathrm{R}^{\mathrm{Pb}}\) are each independently H , alkyl, aryl, or arylalkyl; or \(\mathrm{R}^{\mathrm{Pa}}\) and \(\mathrm{R}^{\mathrm{Pb}}\) taken together with the atom to which they are attached form a heterocycle;
pq and ps are independently \(0,1,2,3\), or 4;
pm and pn are independently 0,1 , or 2 ;
po and pp are independently 1,2 , or 3 ;
\(R^{P 7}\) and \(R^{P 8}\) are each independently selected from hydrogen, alkenyl, alkoxyalkyl, alkyl, haloalkyl, and (\(\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\)) alkyl; or \(\mathrm{R}^{\mathrm{P7}}\) and \(\mathrm{R}^{\mathrm{P} 8}\), together with the carbon atom to which they are attached, form a five or six membered saturated ring optionally containing one or two heteroatoms selected from \(\mathrm{NR}^{\mathrm{Pz}}, \mathrm{O}\), and S ; wherein \(\mathrm{R}^{\mathrm{Pz}}\) is selected from hydrogen and alkyl; \(R^{\mathrm{P9}}\) is selected from hydrogen and alkyl;
each \(\mathrm{P}^{\mathbf{1}}\) is independently:

wherein:
\(X\) is selected from \(\mathrm{O}, \mathrm{S}, \mathrm{S}(\mathrm{O}), \mathrm{SO}_{2}, \mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{P} 10}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{P} 10}\right)_{2}\); provided that when pn is \(0, \mathrm{X}\) is selected from \(\mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{P} 10}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{Pl} 0}\right)_{2}\);
each \(R^{P 10}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
at least one \(R^{P 11}\) is independently selected from cyano, alkylsulfonyl, arylsulfonyl, (\(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\))sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, (\(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\))alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl, \(-\mathrm{NR}^{\text {hh }} \mathrm{R}^{\mathrm{h}},\left(\mathrm{NR}^{\text {hh }} \mathrm{R}^{\mathrm{h}}\right)\) alkyl, \(\left(\mathrm{NR}^{\mathrm{hh}} \mathrm{R}^{\mathrm{h}}\right.\))carbonyl, wherein each \(\mathrm{R}^{\mathrm{h}}\) is independently - H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; and when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring; wherein each \(\mathrm{R}^{\text {hh }}\) is independently aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl, \(\left(N R^{h} R^{h}\right)\) sulfonyl, heteroarylsulfonyl, \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{h}},-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{h}},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\); and the remaining \(\mathrm{R}^{\mathrm{PII}}\) are independently selected from \(\mathrm{R}^{\mathrm{P5}}\), cyano, alkylsulfonyl, arylsulfonyl, \(\left(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\right)\) sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy,
haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, (\(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\))alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl; wherein each \(\mathrm{R}^{\mathrm{h}}\) is independently - H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; and when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;

> ps is \(1,2,3\), or 4 ;
> pn is 0,1 , or 2 ,
each \(P^{2}\) is independently:

wherein:
each \(R^{P 12}\) is independently selected from \(R^{P 5}, R^{P 11},-C(=O) O R^{h}\), cyano, alkylsulfonyl, arylsulfonyl, \(\left(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\right)\) sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, (\(\left(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\right.\))alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl; wherein each \(R^{h}\) is independently - H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; and when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
\[
\begin{aligned}
& \mathrm{ps} \text { is } 1,2,3 \text {, or } 4 ; \\
& \mathrm{pn} \text { is } 0,1 \text {, or } 2 ;
\end{aligned}
\]
each \(P^{3}\) is independently a ring of the formula:

wherein:
the ring is substituted with one or more oxo groups; each \(\mathrm{R}^{\mathrm{Pl3}}\) is independently selected from \(\mathrm{R}^{\mathrm{PS}}\), cyano, alkylsulfonyl, arylsulfonyl, \(\left(\mathbb{N} R^{h} R^{h}\right)\) sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, \(\left(\mathrm{NR}^{h} \mathrm{R}^{\mathrm{h}}\right)\) alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl; wherein each \(\mathrm{R}^{\mathrm{h}}\) is independently - H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; and when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
ps is \(0,1,2,3\), or 4 ;
pn is 0,1 , or 2 ;
each \(P^{4}\) is independently a ring of the formula:

wherein:
the ring is optionally substituted with one or more groups \(\mathrm{R}^{\mathrm{P} 14}\) that are independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(N R^{P a} R^{P b}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups; and where two groups \(\mathrm{R}^{\text {P14 }}\) that are attached to the same carbon
when taken together with the carbon to which they are attached can form a 3-6 membered carbocyclic or heterocyclic ring;
pn is 0,1 , or 2 ;
each \(\mathrm{R}^{\mathrm{f}}\) is independently - H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl, \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\), \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{h}}, \mathrm{C}(=0) \mathrm{R}^{\mathrm{h}}, \mathrm{C}(=O) O \mathrm{R}^{\mathrm{h}},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\); each \(\mathrm{R}^{\mathrm{h}}\) is independently -H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; or when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
each \(P^{5}\) is independently a ring of the formula:

wherein:
the ring is optionally substituted with one or more groups \(\mathrm{R}^{\mathrm{P} 15}\) that are independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(N R^{P a} R^{P b}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups; and where two groups \(\mathrm{R}^{\text {P15 }}\) that are attached to the same carbon when taken together with the carbon to which they are attached can form a 3-6 membered carbocyclic or heterocyclic ring;
pn is 0,1 , or 2 ;
Z is \(\mathrm{O}, \mathrm{S}, \mathrm{S}(=\mathrm{O}), \mathrm{S}(=\mathrm{O})_{2}\), or \(\mathrm{NR}^{\mathrm{f}}\);
each \(\mathrm{R}^{\mathrm{f}}\) is independently - H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl, \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\), \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{h}}, \mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{h}}, \mathrm{C}(=\mathrm{O}) O \mathrm{R}^{\mathrm{h}},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\); each \(\mathrm{R}^{\mathrm{h}}\) is independently -H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl,
dialkylaminoalkyl, sulfonylalkyl; or when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
each \(P^{6}\) is independently a ring of the formula:

wherein:
the ring is substituted with one or more oxo and is optionally substituted with one or more groups \(R^{P 16}\) that are independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
\[
\begin{aligned}
& \mathrm{Z} \text { is } \mathrm{O}, \mathrm{~S}, \mathrm{~S}(=\mathrm{O}), \mathrm{S}(=0)_{2} \text {, or } N R^{\mathrm{f}} \text {; } \\
& \text { pn is } 0,1 \text {, or } 2 \text {; } \\
& \text { each } R^{\mathrm{f}} \text { is independently }-\mathrm{H} \text {, alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, }
\end{aligned}
\] heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl, \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}^{h} \mathrm{R}^{\mathrm{h}}\), \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{h}}, \mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{h}}, \mathrm{C}(=0) O \mathrm{R}^{\mathrm{h}},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{h} \mathrm{R}^{\mathrm{h}}\); each \(\mathrm{R}^{\mathrm{h}}\) is independently -H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; or when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
each \(\mathrm{P}^{7}\) is a bridged 5-15 membered bicyclic heterocyclic ring that is attached to the remainder of the compound of formula I through one N -link and through one C -link; wherein the ring is optionally substituted with one or more groups independently selected from \(R^{P 6}\) and \(R^{P 11}\);
each \(\mathrm{P}^{8}\) is independently a ring of the formula:

wherein:
ps is \(2,3,4,5\), or 6 ;
pn is 0,1 or 2 ;
each \(R^{P 13}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups; where in at least one case two groups \(\mathrm{R}^{\mathrm{P} 13}\) that are attached to the same carbon are taken together with the carbon to which they are attached and form a 4-6 membered heterocyclic ring;
each \(\mathrm{P}^{10}\) is independently:

wherein:
\(X\) is selected from \(\mathrm{O}, \mathrm{S}, \mathrm{S}(\mathrm{O}), \mathrm{SO}_{2}, \mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{P} 10}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{P} 10}\right)_{2}\);
provided that when pn or pm is \(0, \mathrm{X}\) is selected from \(\mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{Pl0}}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{P} 10}\right)_{2}\);
each \(R^{P 10}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
each \(R^{P 5}\) and \(R^{P 6}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-N R^{P a} R^{P b}\), wherein the alkyl can optionally form a fused
three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
pq and ps are independently \(0,1,2,3\), or 4 ;
pm and pn are independently 0,1 , or 2 ;
po and pp are independently 1,2 , or 3 ;
each \(\mathrm{P}^{11}\) is independently:

wherein:
\(X\) is selected from \(\mathrm{O}, \mathrm{S}, \mathrm{S}(\mathrm{O}), \mathrm{SO}_{2}, \mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{Pl0}}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{Plo}}\right)_{2}\); provided that when pn or pm is \(0, \mathrm{X}\) is selected from \(\mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{P} 10}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{P} 10}\right)_{2}\);
each \(R^{\text {P10 }}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
each \(R^{P 5}\) and \(R^{P 6}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-N R^{P a}{ }^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
pq and ps are independently \(0,1,2,3\), or 4 ;
pm and pn are independently 0,1 , or 2 ;
po and pp are independently 1,2 , or 3 ;
each \(P^{12}\) is independently:

wherein:
each \(\mathrm{R}^{\mathrm{P} 6}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
pq is independently \(0,1,2,3\), or 4 ;
pm is independently 0,1 , or 2 ;
pp is independently 1,2 , or 3 ;
ps is \(1,2,3\), or 4 ;
\(R^{P 11}\) is independently selected from cyano, alkylsulfonyl, arylsulfonyl, (\(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\))sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, (\(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\))alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl, \(-N R^{\text {hh }} R^{h},\left(N R^{\text {hh }} R^{h}\right)\) alkyl, \(\left(N R^{\text {hh }} R^{h}\right)\) carbonyl, wherein each \(R^{h}\) is independently -H, alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; and when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring; wherein each \(\mathrm{R}^{\mathrm{hh}}\) is independently aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl, \(\left(\mathrm{NR}^{h} \mathrm{R}^{\mathrm{h}}\right)\) sulfonyl, heteroarylsulfonyl, \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{h}},-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{h}}\), \(-C(=O) N R^{h} R^{h}\); and the remaining \(R^{P 11}\) are independently selected from \(R^{P 5}\), cyano, alkylsulfonyl, arylsulfonyl, (\(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\))sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, (\(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\))alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl; wherein each \(R^{h}\) is independently - H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl,
dialkylaminoalkyl, sulfonylalkyl; and when two \(R^{h}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
each \(P^{13}\) is independently:

wherein:
X is selected from \(\mathrm{O}, \mathrm{S}, \mathrm{S}(\mathrm{O}), \mathrm{SO}_{2}\), or \(\mathrm{NR}^{\mathrm{h}}\);
each \(R^{P 6}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three-to six-membered ring is optionally substituted with one or two alkyl groups;
pq is independently \(0,1,2,3\), or 4 ;
pm and pn are independently 0,1 , or 2 but the sum of pn and pm is greater than zero;
pp are independently 1,2 , or 3 ;
ps is \(1,2,3\), or 4 ;
each \(\mathrm{R}^{\mathrm{P} 11}\) is independently selected from cyano, alkylsulfonyl, arylsulfonyl, (\(N R^{h} R^{h}\)) sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, (\(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\)) alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl, \(-N R^{\text {hh }} R^{h},\left(N R^{\text {hh }} R^{h}\right)\) alkyl, \(\left(N R^{\text {hh }} R^{h}\right)\) carbonyl, wherein each \(R^{h}\) is independently -H, alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; and when two \(R^{h}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring; wherein each \(\mathrm{R}^{\text {hh }}\) is independently aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl,
dialkylaminoalkyl, sulfonylalkyl, \(\left(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\right)\) sulfonyl, heteroarylsulfonyl, \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{h}},-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{h}}\), \(-C(=O) N R^{h} R^{h}, R^{P 5}\), cyano, alkylsulfonyl, arylsulfonyl, (NR \(\left.{ }^{h} R^{h}\right)\) sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, (\(N R^{\text {h }} \mathrm{R}^{\mathrm{h}}\)) alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl; wherein each \(R^{\mathbf{h}}\) is independently -H, alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; and when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
each \(P^{14}\) is independently:

wherein:
the ring is substituted with one or more oxo group;
X is \(\mathrm{NR}^{\mathrm{f}}\);
each \(\mathrm{R}^{\mathrm{f}}\) is independently - H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl, \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\), \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{h}}, \mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{h}}, \mathrm{C}(=O) O \mathrm{R}^{\mathrm{h}},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\); each \(\mathrm{R}^{\mathrm{h}}\) is independently -H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; or when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring; each \(\mathrm{R}^{\mathrm{P} 6}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups; pq is independently \(0,1,2,3\), or 4 ;
pm is independently 0,1 , or 2;
ps is \(1,2,3\), or 4 ;
\(\mathbf{R}^{\mathrm{P} 11}\) is independently selected from cyano, alkylsulfonyl, arylsulfonyl, (\(N R^{h} R^{h}\))sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, \(N R^{h}{ }^{h}{ }^{\mathrm{h}}\) alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl; wherein each \(\mathrm{R}^{\mathrm{h}}\) is independently -H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, or sulfonylalkyl; and when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
each \(-\mathrm{Z}^{0}-\) is \(-\mathrm{C}(=\mathrm{O})\) - or \(-\mathrm{C}(=\mathrm{S})\)-;
each \(-Z^{1}\) - is independently a bond, or \(-C\left(R^{\mathrm{Zl}}\right)_{2}\); ; wherein each \(\mathrm{R}^{\mathrm{Z1}}\) is independently H , alkyl, haloalkyl, or halo;
each \(-Z^{2}\) - is independently saturated or partially unsaturated \(\left(C_{3}-C_{8}\right)\) cycloalkyl that is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\);
each \(-Z^{3}\) - is independently saturated, partially unsaturated, or aromatic 4-8 membered heterocyclic or heteroaryl ring that is optionally substituted with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\);
each \(-Z^{4}\) - is independently:

wherein each \(R^{24}\) is independently \(H\), alkyl, cyano, aryl, or heteroaryl;
each \(-Z^{5}\) - is independently:

wherein each \(\mathrm{R}^{25}\) is independently H , alkyl, cyano, aryl, or heteroaryl; or two \(\mathrm{R}^{25}\) s together with the nitrogen to which they are attached form a 4-8 membered heterocyclic ring that is optionally substituted with one or more oxo and with one or more groups independently selected from \(R^{A 1}\) and \(R^{A 3}\);
each \(-Z^{6}\) - is independently \(-C\left(R^{\mathrm{Zl}}\right)\) - and is doublebonded to \(P\); wherein \(R^{\mathrm{Z1}}\) is independently \(H\), alkyl, haloalkyl, or halo;
each \(\mathrm{E}^{0}\) is independently \(-\mathrm{NR}^{\mathrm{Ec}} \mathrm{R}^{\mathrm{Ed}}\) wherein
\(\mathrm{R}^{\mathrm{Ec}}\) and \(\mathrm{R}^{\mathrm{Ed}}\) are each independently selected from hydrogen, alkenyloxycarbonyl, alkoxyalkylcarbonyl, alkoxycarbonyl, alkyl, alkylcarbonyl, alkylsulfonyl, aryl, arylalkoxycarbonyl, arylalkyl, arylalkylcarbonyl, arylcarbonyl, aryloxycarbonyl, arylsulfonyl, cycloalkyl, cycloalkylsulfonyl, formyl, haloalkoxycarbonyl, heterocyclyl, heterocyclylalkoxycarbonyl, heterocyclylalkyl, heterocyclylalkylcarbonyl, heterocyclylcarbonyl, heterocyclyloxycarbonyl, hydroxyalkylcarbonyl, (\(\mathrm{NR}^{c} \mathrm{R}^{f}\))alkyl, (\(N R^{e} R^{f}\))alkylcarbonyl, (\(\mathrm{NR}^{\epsilon} \mathrm{R}^{\mathrm{f}}\))carbonyl, (\(\mathrm{NR}^{\mathrm{e}} \mathrm{R}^{\mathrm{f}}\)) sulfonyl, -C(NCN)OR', and - C(NCN)NR \({ }^{\mathrm{X}}{ }^{\mathrm{Y}}\), wherein \(R^{\prime}\) is selected from alkyl and unsubstituted phenyl, and wherein the alkyl part of the arylalkyl, the arylalkylcarbonyl, the heterocyclylalkyl, and the heterocyclylalkylcarbonyl are further optionally substituted with one \(-N R^{e} R^{f}\) group; and wherein the aryl, the aryl part of the arylalkoxycarbonyl, the arylalkyl, the arylalkylcarbonyl, the arylcarbonyl, the aryloxycarbonyl, and the arylsulfonyl, the heterocyclyl, and the heterocyclyl part of the heterocyclylalkoxycarbonyl, the heterocyclylalkyl, the heterocyclylalkylcarbonyl, the heterocyclylcarbonyl, and the heterocyclyloxycarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro;
each \(E^{\prime}\) is independently - \(\mathrm{OC}(=O) N R^{\mathrm{Ee}} \mathrm{R}^{\mathrm{Ef}}\) wherein each \(\mathrm{R}^{\mathrm{Ee}}\) and \(\mathrm{R}^{\mathrm{Ef}}\) are each independently selected from hydrogen, alkenyloxycarbonyl, alkoxyalkylcarbonyl, alkoxycarbonyl, alkyl, alkylcarbonyl, alkylsulfonyl, aryl, arylalkoxycarbonyl, arylalkyl,
arylalkylcarbonyl, arylcarbonyl, aryloxycarbonyl, arylsulfonyl, cycloalkyl, cycloalkylsulfonyl, formyl, haloalkoxycarbonyl, heterocyclyl, heterocyclylalkoxycarbonyl, heterocyclylalkyl, heterocyclylalkylcarbonyl, heterocyclylcarbonyl, heterocyclyloxycarbonyl, hydroxyalkylcarbonyl, (\(\mathrm{NR}^{e} \mathrm{R}^{f}\))alkyl, (\(\mathrm{NR}^{e} \mathrm{R}^{f}\))alkylcarbonyl, (\(\mathrm{NR}^{c} \mathrm{R}^{f}\))carbonyl, (\(\mathrm{NR}^{c} \mathrm{R}^{f}\)) sulfonyl, \(-C(N C N) O R^{\prime}\), and - \(C(N C N) N R^{X} R^{Y}\), wherein \(R^{\prime}\) is selected from alkyl and unsubstituted phenyl, and wherein the alkyl part of the arylalkyl, the arylalkylcarbonyl, the heterocyclylalkyl, and the heterocyclylalkylcarbonyl are further optionally substituted with one \(-\mathrm{NR}^{e} \mathrm{R}^{\mathrm{f}}\) group; and wherein the aryl, the aryl part of the arylalkoxycarbonyl, the arylalkyl, the arylalkylcarbonyl, the arylcarbonyl, the aryloxycarbonyl, and the arylsulfonyl, the heterocyclyl, and the heterocyclyl part of the heterocyclylalkoxycarbonyl, the heterocyclylalkyl, the heterocyclylalkylcarbonyl, the heterocyclylcarbonyl, and the heterocyclyloxycarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro; or wherein \(\mathrm{R}^{\mathrm{Ee}}\) and \(\mathrm{R}^{\mathrm{Ef}}\), together with the nitrogen atom to which they are attached, form a heterocycle;
each \(\mathrm{V}^{0}\) is independently H , alkyl, arylalkyl, alkenyl, CO, cycloalkylalkyl, cycloalkyl, alkoxyalkyl, alkoxyalkylcarbonylalkyl, alkoxycarbonylalkyl, alkylsulfanylalkyl, aryalkoxyalkylcarbonylalkyl, carboxyalkyl, heterocyclylalkyl, heterocyclylcarbonylalkyl, hydroxyalkyl, NRRCOalkyl, wherein each \(R\) is independently selected from hydrogen and alkyl;
and wherein arylalkyl the alkyl can be substituted with up to three aryl groups, and the alkyl part of the arylalkyl is further optionally substituted with one or two additional groups independently selected from alkoxy, alkyocarbonyloxy, halo, haloalkoxy, haloalkyl, heterocyclyl, hydroxy;
and the aryl part can be substituted with \(1,2,3,4\), or 5 substituents independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, alkylcarbonyl, a second aryl group, arylalkoxy, arylalkyl, arylcarbonyl, cyano, halo, haloalkoxy, haloalkyl, heterocyclyl, heterocyclylalkyl, heterocyclylcarbonyl, hydroxy, hydroxyalkyl, nitro, \(-\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}},-\) \(\left(\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}\right.\)) alkyl, oxo, and \(-\mathrm{P}(\mathrm{O}) \mathrm{OR}_{2}\), wherein each R is independently selected from hydrogen and alkyl; and wherein the alkyl part of the arylalkyl and the heterocyclylalkyl are unsubstituted and wherein the second aryl group, the aryl part of the arylalkyl, the aryl part of the arylcarbonyl, the heterocyclyl, and the heterocyclyl part of the heterocyclylalkyl and the heterocyclylcarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro;
and the heterocyclyl can be substituted with \(1,2,3,4\), or 5 substituents independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylcarbonyl, cyano, halo, haloalkoxy, haloalkyl, a second heterocyclyl group, heterocyclylalkyl, heterocyclylcarbonyl, hydroxy, hydroxyalkyl, nitro, \(-\mathrm{NR}^{X} \mathrm{R}^{\mathrm{Y}}\), (\(N R^{X}{ }^{\mathrm{Y}}\)) alkyl, and oxo, wherein the alkyl part of the arylalkyl and the heterocyclylalkyl are unsubstituted and wherein the aryl, the aryl part of the arylalkyl; the aryl part of the arylcarbonyl, the second heterocyclyl group, and the heterocyclyl part of the heterocyclylalkyl and the heterocyclylcarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro;
each \(\mathrm{V}^{1}\) is independently cyanoalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}^{\mathrm{Vb}}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(V^{2}\) is independently haloalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(N R^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(V^{3}\) is independently alkyl, which is substituted with one or more oxo, and which is optionally substituted with one or more groups independently selected from cycloalkyl, halo, aryl, alkenyl, and cyano;
each \(\mathrm{V}^{4}\) is independently haloalkoxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\operatorname{NRaRbC}(=0) O-; \operatorname{Ra}\) and Rb are each independently selected from hydrogen, alkenyl, and alkyl;
each \(V^{5}\) is independently alkylsulfonylalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{V}_{\mathrm{a}}} \mathrm{R}^{\mathrm{Vb}^{\mathrm{b}}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{V}_{\mathrm{a}}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{6}\) is independently arylsulfonylalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}_{\mathrm{a}}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=0) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{7}\) is independently heterocyclosulfonylalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}^{2} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}_{\mathrm{a}}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{8}\) is independently spirocycloalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(V^{9}\) is independently spirocycloalkylalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}_{\mathrm{a}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{10}\) is independently fusedbicycliccycloalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{V}_{\mathrm{a}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(V^{11}\) is independently fusedbicycliccycloalkylalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{V}_{\mathrm{a}}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(V^{12}\) is independently bridged-bicycliccycloalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}^{\mathrm{Vb}}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(V^{13}\) is independently bridged-bicyclic-cycloalkylalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=O) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{14}\) is independently aryloxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(N R^{V_{a}} R^{V_{b}} C(=O) O-; R^{V_{a}}\) and \(R^{V_{b}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{15}\) is independently arylalkoxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(N R^{\mathrm{Va}^{2}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{V}_{\mathrm{a}}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(V^{16}\) is independently cycloalkyloxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{17}\) is independently cycloalkylalkyloxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}_{\mathrm{a}} \mathrm{R}^{\mathrm{Vb}}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{18}\) is independently heterocyclooxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{19}\) is independently heterocycloalkyloxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=0) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{20}\) is independently heteroaryloxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=0) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl; and
each \(\mathrm{V}^{21}\) is independently heteroarylalkylalkoxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}_{\mathrm{a}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}_{\mathrm{a}}} \text { and } \mathrm{R}^{\mathrm{Vb}} \text { are each independently }{ }^{\text {a }} \text {, }}\) selected from hydrogen, alkenyl, and alkyl.

In another specific embodiment of the invention the compound of formula (Ic) comprises: \(\mathrm{M}^{0}-\mathrm{A}-\mathrm{A}-\mathrm{M}^{0}, \mathrm{M}^{0}-\mathrm{A}-\mathrm{A}-\mathrm{M}^{9}, \mathrm{M}^{9}-\mathrm{A}-\mathrm{A}-\mathrm{M}^{0}\), or \(\mathrm{M}^{9}-\mathrm{A}-\mathrm{A}-\mathrm{M}^{9}, \mathrm{M}^{10}-\mathrm{A}-\mathrm{A}-\mathrm{M}^{0}, \mathrm{M}^{0}-\mathrm{A}-\mathrm{A}-\mathrm{M}^{10}\), \(\mathrm{M}^{10}-\mathrm{A}-\mathrm{A}-\mathrm{M}^{9}, \mathrm{M}^{9}-\mathrm{A}-\mathrm{A}-\mathrm{M}^{10}\), or \(\mathrm{M}^{10}-\mathrm{A}-\mathrm{A}-\mathrm{M}^{10}\).

In another specific embodiment of the invention \(-A-A-\) is \(-\mathrm{A}^{0}-\mathrm{A}^{5}\)-.
In another specific embodiment of the invention - \(\mathrm{A}-\mathrm{A}-\) is \(-\mathrm{A}^{0}-\mathrm{A}^{13}\).
In another specific embodiment of the invention -A-A- is \(-A^{13}-A^{13}\)-.
In another specific embodiment of the invention \(-A-A-\) is \(-A^{0}-A^{11}\)-.
In another specific embodiment of the invention - \(\mathrm{A}-\mathrm{A}-\) is \(-\mathrm{A}^{13}-\mathrm{A}^{6}\)-.
In another specific embodiment of the invention one \(A\) is \(A^{0}\) and one \(A\) is \(A^{5}\), wherein one \(\mathrm{X}^{\mathrm{A}}\) in the \(\mathrm{A}^{5}\) is absent and the other \(\mathrm{X}^{\mathrm{A}}\) in the \(\mathrm{A}^{5}\) is alkynyl.

In another specific embodiment of the invention \(-\mathrm{A}^{0}-\mathrm{A}^{5}\) - has the following structure:

In another specific embodiment of the invention one \(A\) is \(A^{0}\) and one \(A\) is \(A^{13}\), wherein both \(\mathrm{X}^{\mathrm{A}}\) in the \(\mathrm{A}^{13}\) are absent.

In another specific embodiment of the invention \(-\mathrm{A}^{0}-\mathrm{A}^{13}\) - has the following structure:

In another specific embodiment of the invention \(A-A\) is \(A^{13}-A^{13}\), wherein all \(X^{A}\) in both \(\mathrm{A}^{13}\) are absent.

In another specific embodiment of the invention \(-\mathrm{A}^{13}-\mathrm{A}^{13}\) - has the following structure:

In another specific embodiment of the invention \(A-A\) - is \(A^{0}-A^{11}\) wherein all \(X^{A}\) in both the \(\mathrm{A}^{0}\) and the \(\mathrm{A}^{11}\), are absent or alkynyl.

In another specific embodiment of the invention \(-\mathrm{A}^{0}-\mathrm{A}^{11}\) - has the following structure:

In another specific embodiment of the invention the compound of formula (Ic) comprises one \(A^{13}\) and one \(A^{6}\) wherein all \(X^{A}\) in the \(A^{13}\) are absent.

In another specific embodiment of the invention \(-\mathrm{A}^{13}-\mathrm{A}^{6}-\) has the following structure:

In another specific embodiment of the invention \(\mathrm{M}^{0}\) is imidazolyl and \(\mathrm{M}^{9}\) is benzimidazolyl.

In another specific embodiment of the invention the compound of formula (Ic) comprises two \(\mathrm{A}^{0}\) and one M is \(\mathrm{M}^{9}\).

In another specific embodiment of the invention the compound of formula (IC) comprises two \(\mathrm{A}^{0}\) and one M is \(\mathrm{M}^{0}\) and another M is \(\mathrm{M}^{9}\).

In another specific embodiment of the invention the compound of formula (IC) comprises \(A^{0}-A^{0}-M^{9}\) which has the following structure:

In another specific embodiment of the invention the compound of formula (Ic) comprises \(\mathrm{M}^{0}-\mathrm{A}^{0}-\mathrm{A}^{0}-\mathrm{M}^{9}\).

In another specific embodiment of the invention \(\mathrm{M}^{0}-\mathrm{A}^{0}-\mathrm{A}^{0}-\mathrm{M}^{9}\) has the following structure:

In another specific embodiment of the invention the compound of formula (Ic) comprises \(\mathrm{A}^{0}-\mathrm{A}^{7}-\mathrm{M}^{9}\).

In another specific embodiment of the invention \(\mathrm{A}^{0}-\mathrm{A}^{7}-\mathrm{M}^{9}\) has the following structure:

In another specific embodiment of the invention the compound of formula (Ic) comprises one or two M and each M is \(\mathrm{M}^{0}\).

In another specific embodiment of the invention the compound of formula (Ic) comprises one or two M and each M is imidazolyl.

In another specific embodiment of the invention the compound of formula (IC) comprises one or two M and each M is \(\mathrm{M}^{9}\).

In another specific embodiment of the invention the compound of formula (Ic) comprises one or two M and each M is benzimidazolyl.

In another specific embodiment of the invention the compound of formula (Ic) comprises two \(M\) wherein one \(M\) is \(M^{0}\) and one \(M\) is \(M^{9}\).

In another specific embodiment of the invention the compound of formula (Ic) comprises two M wherein one M is imidazolyl and one M is benzimidazolyl.

In another specific embodiment of the invention A-A is selected from:

In another specific embodiment of the invention-M-A-A-M- is selected from \(\mathrm{M}^{0}-\mathrm{A}-\mathrm{A}-\mathrm{M}^{0}, \mathrm{M}^{0}-\mathrm{A}-\mathrm{A}-\mathrm{M}^{9}, \mathrm{M}^{9}-\mathrm{A}-\mathrm{A}-\mathrm{M}^{0}\), and \(\mathrm{M}^{9}-\mathrm{A}-\mathrm{A}-\mathrm{M}^{9}\).

In another specific embodiment of the invention the compound of formula (Ic) M-A-A-M is selected from \(\mathrm{M}^{10}-\mathrm{A}-\mathrm{A}-\mathrm{M}^{0}, \mathrm{M}^{0}-\mathrm{A}-\mathrm{A}-\mathrm{M}^{10}, \mathrm{M}^{10}-\mathrm{A}-\mathrm{A}-\mathrm{M}^{9}, \mathrm{M}^{9}-\mathrm{A}-\mathrm{A}-\mathrm{M}^{10}\), and \(\mathrm{M}^{10}\)-A-A-M \({ }^{10}\).

In another specific embodiment of the invention each M is independently a 5 -membered heteroaryl ring.

In another specific embodiment of the invention each M is 2,4 -imidazoldiyl.
In another specific embodiment of the invention M is \(\mathrm{M}^{6}\).
In another specific embodiment of the invention M is selected from:

In another specific embodiment of the invention \(M\) is \(M^{7}\).
In another specific embodiment of the invention \(M\) is:

In another specific embodiment of the invention M is \(\mathrm{M}^{8}\).
In another specific embodiment of the invention \(M\) is selected from the group consisting of:

In another specific embodiment of the invention \(M^{0}\) is:

In another specific embodiment of the invention \(M\) is \(M^{9}\) which is:

In another specific embodiment of the invention the sum of \(s, t, u, w\), and \(x\) is not 0 ;
In another specific embodiment of the invention at least two of \(s, t, u, v, w\), and \(x\) are other than 0 .

In another specific embodiment of the invention at least three of \(s, t, u, v, w\), and \(x\) are other than 0 .

In another specific embodiment of the invention at least four of \(s, t, u, v, w\), and \(x\) are other than 0 .

In another specific embodiment of the invention at least five of \(s, t, u, w, w\), and \(x\) are other than 0 .

In another specific embodiment of the invention the compound of formula (Ic) is a compound of formula (Icl): \(\mathrm{E}^{0}-\mathrm{V}^{0}-\mathrm{Z}^{0}-\mathrm{P}-\mathrm{M}^{0}-\mathrm{A}^{13}-\mathrm{A}^{6}-\mathrm{M}-\mathrm{P}-\mathrm{Z}^{0}-\mathrm{V}^{0}-\mathrm{E}^{0}\) (ICl) or a pharmaceutically acceptable salt, or prodrug thereof.

In another specific embodiment of the invention the compound of formula (Ic) is a compound of formula (Ic2): \(\mathrm{E}^{0}-\mathrm{V}^{0}-\mathrm{Z}^{0}-\mathrm{P}-\mathrm{M}^{9}-\mathrm{A}^{13}-\mathrm{A}^{6}-\mathrm{M}-\mathrm{P}-\mathrm{Z}^{0}-\mathrm{V}^{0}-\mathrm{E}^{0}\) (Ic2) or a pharmaceutically acceptable salt, or prodrug thereof.

In another specific embodiment of the invention the compound of formula (Ic) is a compound of formula (Ic3): \(\mathrm{E}^{0}-\mathrm{V}^{0}-\mathrm{Z}^{0}-\mathrm{P}-\mathrm{M}^{10}-\mathrm{A}^{13}-\mathrm{A}^{6}-\mathrm{M}-\mathrm{P}-\mathrm{Z}^{0}-\mathrm{V}^{0}-\mathrm{E}^{0}\) (Ic3) or a pharmaceutically acceptable salt, or prodrug thereof.

In another specific embodiment of the invention the compound of formula (Ic) is a compound of formula (Ic4): \(\mathrm{E}^{0}-\mathrm{V}^{0}-\mathrm{Z}^{0}-\mathrm{P}-\mathrm{M}^{11}-\mathrm{A}^{13}-\mathrm{A}^{6}-\mathrm{M}-\mathrm{P}-\mathrm{Z}^{0}-\mathrm{V}^{0}-\mathrm{E}^{0}\) (Ic4) or a pharmaceutically acceptable salt, or prodrug thereof.

In another specific embodiment of the invention the compound of formula (Ic) is a compound of formula (IC5): \(\mathrm{E}^{0}-\mathrm{V}^{0}-\mathrm{Z}^{0}-\mathrm{P}-\mathrm{M}^{0}-\mathrm{A}^{13}-\mathrm{A}^{0}-\mathrm{M}-\mathrm{P}-\mathrm{Z}^{0}-\mathrm{V}^{0}-\mathrm{E}^{0}\) (IC5) or a pharmaceutically acceptable salt, or prodrug thereof

In another specific embodiment of the invention the compound of formula (Ic) is a compound of formula (Ic6): \(\mathrm{E}^{0}-\mathrm{V}^{0}-\mathrm{Z}^{0}-\mathrm{P}-\mathrm{M}^{9}-\mathrm{A}^{13}-\mathrm{A}^{0}-\mathrm{M}-\mathrm{P}-\mathrm{Z}^{0}-\mathrm{V}^{0}-\mathrm{E}^{0}\) (Ic6) or a pharmaceutically acceptable salt, or prodrug thereof.

In another specific embodiment of the invention the compound of formula (Ic) is a compound of formula (Ic7): \(\mathrm{E}^{0}-\mathrm{V}^{0}-\mathrm{Z}^{0}-\mathrm{P}-\mathrm{M}^{10}-\mathrm{A}^{13}-\mathrm{A}^{0}-\mathrm{M}-\mathrm{P}-\mathrm{Z}^{0}-\mathrm{V}^{0}-\mathrm{E}^{0}\) (Ic7) or a pharmaceutically acceptable salt, or prodrug thereof.

In another specific embodiment of the invention the compound of formula (Ic) is a compound of formula (Ic8): \(\mathrm{E}^{0}-\mathrm{V}^{0}-\mathrm{Z}^{0}-\mathrm{P}-\mathrm{M}^{11}-\mathrm{A}^{13}-\mathrm{A}^{0}-\mathrm{M}-\mathrm{P}-\mathrm{Z}^{0}-\mathrm{V}^{0}-\mathrm{E}^{0}\) (Ic8) or a pharmaceutically acceptable salt, or prodrug thereof.

In another specific embodiment of the invention \(A^{13}-A^{0}\) is:

In another specific embodiment of the invention the compound of formula (Ic) is:

or a pharmaceutically acceptable salt, or prodrug thereof.

In another specific embodiment of the invention the compound of formula (Ic) is:

or

or a pharmaceutically acceptable salt, or prodrug thereof.
In another specific embodiment of the invention the compound of formula (Ic) is a compound of formula (Ic9):

or a pharmaceutically acceptable salt, or prodrug thereof.
In another specific embodiment of the invention the compound of formula (Ic) is a compound of formula (Ic10):

or a pharmaceutically acceptable salt, or prodrug thereof.
In another specific embodiment of the invention the compound of formula (Ic) is a compound of formula (Ic 11):

or a pharmaceutically acceptable salt, or prodrug thereof.
In another specific embodiment of the invention the compound of formula (Ic) is a compound of formula (Ic9), (Ic10), or (Ic11) wherein-A-A- is -A \({ }^{13}-\mathrm{A}^{6}\)-.

In another specific embodiment of the invention the compound of formula (Ic) is a compound of formula (Ic9), (Ic10), or (Ic11) wherein-A-A- is -A \({ }^{13}\) - \(\mathrm{A}^{0}\) - .

In one embodiment of the invention, the compound of formula (I) is a compound of formula (Ic12):
\[
\begin{equation*}
E^{0}-V^{\mathrm{w}}-Z^{0}-P^{\mathrm{u}}-\mathrm{M}^{\mathrm{L}}-A^{\mathrm{sl}}-A^{\mathrm{s} 2}-\mathrm{M}^{\mathrm{L}}-P^{\mathrm{u}}-Z^{0}-V^{\mathrm{w}}-\mathrm{E}^{0} \tag{Ic12}
\end{equation*}
\]
or a pharmaceutically acceptable salt, or prodrug thereof, wherein:
each \(u\) is independently \(0,1,3,5,7,8,10\), or 11 ; each \(w\) is independently \(0,1,2,3,4\), or 5 ; each \(t 1\) is 0 or 10 ; each \(t 2\) is 0 or 10 ; each \(s 1\) is \(4,5,6,13,14,15\), or 16 ; and each \(s 2\) is 0,4 , or 13.

In one embodiment the invention provides a compound of formula (Ic12) wherein \(\mathrm{M}^{0}\) is:

In one embodiment the invention provides a compound of formula (Ic13)

or a pharmaceutically acceptable salt, or prodrug thereof.
In one embodiment the invention provides a compound of formula (Ic13) wherein A-A is \(A^{0}-A^{13}\) and is selected from:

In one embodiment the invention provides a compound of formula (Ic14)

or a pharmaceutically acceptable salt, or prodrug thereof.
In one embodiment the invention provides a compound of formula (Ic12) which is:

or a pharmaceutically acceptable salt, or prodrug thereof.
In one embodiment the invention provides a compound of formula (lc12) which is:

or a pharmaceutically acceptable salt, or prodrug thereof.
In one embodiment the invention provides a compound of formula (Ic13) wherein A-A is \(\mathrm{A}^{0}-\mathrm{A}^{4}\) and is:

In one embodiment the invention provides a compound of formula (Ic12) which is:

or a pharmaceutically acceptable salt, or prodrug thereof.

In one embodiment the invention provides a compound of formula (Ic13) wherein A-A is \(\mathrm{A}^{0}-\mathrm{A}^{14}\) and is:

In one embodiment the invention provides a compound of formula (Ic12) which is:

or a pharmaceutically acceptable salt, or prodrug thereof.
In one embodiment the invention provides a compound of formula (Ic13) wherein A-A is \(A^{13}-A^{14}\) and is:

In one embodiment the invention provides a compound of formula (Ic12) which is:

or a pharmaceutically acceptable salt, or prodrug thereof.
In one embodiment the invention provides a compound of formula (Ic13) wherein A-A is \(A^{13}-A^{13}\) and is:

In one embodiment the invention provides a compound of formula (Ic12) which is:

or a pharmaceutically acceptable salt, or prodrug thereof.
In one embodiment the invention provides a compound of formula (Ic13) wherein A-A is \(A^{15}-A^{6}\) and is:

In one embodiment the invention provides a compound of formula (Ic12) which is:

or a pharmaceutically acceptable salt, or prodrug thereof.
In one embodiment the invention provides a compound of formula (Ic13) wherein A-A is \(\mathrm{A}^{14}-\mathrm{A}^{6}\) and is:

In one embodiment the invention provides a compound of formula (Ic12) which is:

or a pharmaceutically acceptable salt, or prodrug thereof.
In one embodiment the invention provides a compound of formula (Ic13) wherein A-A is \(\mathrm{A}^{13}-\mathrm{A}^{6}\) and is:

In one embodiment the invention provides a compound of formula (Ic12) which is:

or a pharmaceutically acceptable salt, or prodrug thereof.

In one embodiment the invention provides a compound of formula (Ic13) wherein A-A is \(A^{16}-A^{6}\) and is:

In one embodiment the invention provides a compound of formula (Ic12) which is:

or a pharmaceutically acceptable salt, or prodrug thereof.
In one embodiment the invention provides a compound of formula (Ic13) wherein A-A is \(A^{0}-A^{5}\) and is:

In one embodiment the invention provides a compound of formula (Ic 12) which is:

or a pharmaceutically acceptable salt, or prodrug thereof.
In one embodiment the invention provides a compound of formula (Ic13) wherein A-A is \(A^{0}-A^{5}\) and is:

In one embodiment the invention provides a compound of formula (Ic12) which is:

or a pharmaceutically acceptable salt, or prodrug thereof.

In one embodiment of the invention, the compound of formula (I) is a compound of formula (Ic 15):
\[
\begin{equation*}
E^{0}-V^{\mathrm{w}}-Z^{0}-P^{\mathrm{u}}-\mathrm{M}^{\mathrm{L}}-\mathrm{A}^{\mathrm{s1}}-A^{\mathrm{s} 2}-\mathrm{M}^{\mathrm{d}}-\mathrm{P}^{\mathrm{u}}-\mathrm{Z}^{0}-\mathrm{V}^{\mathrm{w}}-\mathrm{E}^{0} \tag{Icl5}
\end{equation*}
\]
or a pharmaceutically acceptable salt, or prodrug thereof, wherein:
each \(u\) is independently \(0,1,3,5,7,8,10\), or 11 ; each \(w\) is independently \(0,1,2,3,4\), or 5 ; each tl is 0,10 , or 13 ; t 2 is 9 ; sl is \(4,5,6,13,14,15\), or 16 ; and s 2 is 0,4 , or 13 .

In one embodiment of the invention, the compound of formula (I) is a compound of formula (Ic 16):
\[
\mathrm{E}^{0}-\mathrm{V}^{\mathrm{w}}-\mathrm{Z}^{0}-\mathrm{P}^{\mathrm{u}}-\mathrm{M}^{\mathrm{t}}-\mathrm{A}^{\mathrm{s} 1}-\mathrm{A}^{\mathrm{s}^{2}}-\mathrm{M}^{\mathrm{d}}-\mathrm{P}^{\mathrm{u}}-\mathrm{Z}^{0}-\mathrm{V}^{\mathrm{w}}-\mathrm{E}^{0} \quad \text { (Ic16) }
\]
or a pharmaceutically acceptable salt, or prodrug thereof, wherein:
each \(u\) is independently \(0,1,3,5,7,8,10\), or 11 ; each \(w\) is independently \(0,1,2,3,4\), or 5 ; each t 1 is \(9 ; \mathrm{t} 2\) is 0,10 , or \(13 ; \mathrm{s} 1\) is \(4,5,6,13,14,15\), or 16 ; and \(\mathbf{s} 2\) is 0,4 , or 13 .

In one embodiment the invention provides a compound of formula (Ic15) or (Ic16) wherein \(\mathrm{M}^{0}\) is:

In one embodiment the invention provides a compound of formula (IC15) or (Ic16) wherein \(\mathrm{M}^{9}\) is:

In one embodiment the invention provides a compound of formula (Ic15) or (Ic16) wherein \(A-A\) is \(A^{0}-A^{13}\) and is:

In one embodiment the invention provides a compound of formula (Ic15) or (Ic16) which is selected from:

and pharmaceutically acceptable salts and prodrugs thereof.
In one embodiment the invention provides a compound of formula (Ic15) or (Ic16) wherein \(A-A\) is \(A^{0}-A^{13}\) and is:

In one embodiment the invention provides a compound of formula (Ic15) or (Ic16) which is selected from:

and pharmaceutically acceptable salts and prodrugs thereof.
In one embodiment the invention provides a compound of formula (Ic15) or (Ic16) wherein \(A-A\) is \(A^{0}-A^{4}\) and is:

In one embodiment the invention provides a compound of formula (Ic15) or (Ic16):

or a pharmaceutically acceptable salt or prodrug thereof.

In one embodiment the invention provides a compound of formula (Ic15) or (Ic16) wherein \(A-A\) is \(A^{0}-A^{4}\) and is:

In one embodiment the invention provides a compound of formula (Ic15) or (Ic16) which is selected from:

and pharmaceutically acceptable salts and prodrugs thereof.
In one embodiment the invention provides a compound of formula (Ic15) or (Ic16) wherein \(A-A\) is \(A^{13}-\mathrm{A}^{14}\) and is:

In one embodiment the invention provides a compound of formula (Ic15) or (Ic16) which is selected from:

and pharmaceutically acceptable salts and prodrugs thereof.

In one embodiment the invention provides a compound of formula (Ic15) or (Icl6) wherein \(A-A\) is \(A^{13}-\mathrm{A}^{13}\) and is:

In one embodiment the invention provides a compound of formula (Ic15) or (Ic16):

or a pharmaceutically acceptable salt or prodrug thereof.
In one embodiment the invention provides a compound of formula (Ic15) or (Ic16) wherein \(A-A\) is \(A^{15}-A^{6}\) and is:

In one embodiment the invention provides a compound of formula (Ic15) or (Ic16) which is selected from:

and pharmaceutically acceptable salts and prodrugs thereof.
In one embodiment the invention provides a compound of formula (Ic15) or (Ic16) wherein \(A-A\) is \(A^{0}-A^{5}\) and is:

In one embodiment the invention provides a compound of formula (Ic15) or (Ic16):

or a pharmaceutically acceptable salt or prodrug thereof.
In one embodiment the invention provides a compound of formula (Ic15) or (Icl6) wherein \(A-A\) is \(A^{0}-A^{5}\) and is:

In one embodiment the invention provides a compound of formula (Ic15) or (Ic16) which is selected from:

and pharmaceutically acceptable salts and prodrugs thereof.
In one embodiment the invention provides a compound of formula (Ic15) or (Ic16) wherein \(A-A\) is \(A^{14}-A^{6}\) and is:

In one embodiment the invention provides a compound of formula (Ic15) or (Ic16) which is selected from:

and pharmaceutically acceptable salts and prodrugs thereof.
In one embodiment the invention provides a compound of formula (Ic15) or (Ic16) wherein \(A-A\) is \(A^{13}-A^{6}\) and is:

In one embodiment the invention provides a compound of formula (Ic15) or (Ic16) which is selected from:

and pharmaceutically acceptable salts and prodrugs thereof.
In one embodiment the invention provides a compound of formula (Ic15) or (Ic16) wherein \(A-A\) is \(A^{16}-A^{6}\) and is:

In one embodiment the invention provides a compound of formula (Ic15) or (Ic16) which is selected from:

and pharmaceutically acceptable salts and prodrugs thereof.
In one embodiment the invention provides a compound of formula (Ic17) or (Ic18)

or (Ic17)
 (Ic18)
wherein:
each \(P\) is independently selected from:

and

; and
each \(M\) is independently \(M^{0}, M^{9}\), or \(M^{10}\);
or a pharmaceutically acceptable salts or prodrug thereof.
In one embodiment the invention provides a compound of formula (Ic17) or (Ic18) wherein each \(E^{0}\) is methoxycarbonylamino.

In one embodiment the invention provides a compound of formula (Icl7) or (Ic18) wherein at least one \(E^{0}\) is \(-N R^{E c} R^{E d}\) wherein \(R^{E c}\) is \(H\), alkyl or cycloalkyl and \(R^{E d}\) is heterocycle.

In another specific embodiment the invention provides a compound of the following formula (Ic30): \(E^{x}-V^{w}-Z^{v}-P^{u}-M^{t}-A^{s}-A^{s}-M^{t}-P^{u}-Z^{v}-V^{w}-E^{x}\) (Ic30) wherein at least two of \(s, t, u, v\), \(w\) or \(\mathbf{x}\) are not zero.

In another specific embodiment the invention provides a compound of formula (Ic30) wherein at least one of \(u, v, w\) or \(x\) is not zero.

In another specific embodiment the invention provides a compound of formula (Ic30) wherein at least one \(t\) is 0 or 10 .

In another specific embodiment the invention provides a compound of formula (Ic30) wherein both \(t\) are 9 ; one \(s\) is 0 ; and one \(s\) is \(0,1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17\), \(18,19,20\), or 21 .

In another specific embodiment the invention provides a compound of formula (Ic30) wherein both \(t\) are 9 ; one \(s\) is \(1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20\), or 21 ; and one \(s\) is \(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20\), or 21 .

In another specific embodiment the invention provides a compound of formula (Ic30) wherein at least two of \(s, t, u, v, w\) or \(x\) are not zero and at least one \(t\) is selected from \(0,1,2,3\), \(4,5,6,7,8,10,11\)

In another specific embodiment the invention provides a compound of formula (Ic30) wherein at least three of \(s, t, u, v, w\) or \(x\) are not zero.

In another specific embodiment the invention provides a compound of formula (Ic30) wherein at least two of \(s, t, u, v, w\) or \(x\) are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (Ic30) wherein at least three of \(s, t, u, v, w\) or \(x\) are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (Ic30) wherein at least three of \(s, t, u, v, w\) or \(x\) are not zero and at least three of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (Ic30) wherein at least four of \(s, t, u, v, w\) or \(x\) are not zero.

In another specific embodiment the invention provides a compound of formula (Ic30) wherein at least four of \(s, t, u, v, w\) or \(x\) are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (Ic30) wherein at least four of \(s, t, u, v, w\) or \(x\) are not zero and at least three of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (Ic30) wherein at least four of \(\mathrm{s}, \mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero and at least four of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (Ic30) wherein the sum of \(\mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}\) or x is not zero.

In another specific embodiment the invention provides a compound of formula (Ic30) wherein the sum of \(\mathrm{s}, \mathrm{u}, \mathrm{v}, \mathrm{w}\) or x is not zero.

In another specific embodiment the invention provides a compound of formula (Ic30) wherein at least one \(u\) is not zero.

In another specific embodiment the invention provides a compound of formula (Ic30) wherein s , and at least one t , and at least one u are all not zero.

In another specific embodiment the invention provides a compound of formula (Ic30) wherein at least two of \(u, w\) and \(t\) are not zero.

In another specific embodiment the invention provides a compound of formula (Ic30) wherein at least two of \(s, u\), and \(w\) are not zero.

In another specific embodiment the invention provides a compound of formula (Ic30) wherein at least two of \(s, u\), and \(w\) are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (Ic30) wherein at least \(s\) and both \(u\) are not zero.

In another specific embodiment the invention provides a compound of formula (Ic30) wherein at least two of \(u, v, w\) or \(x\) are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (Ic30) wherein at least one of \(u\), or \(w\) is not zero.

In another specific embodiment the invention provides a compound of formula (Ic30) wherein at least two of \(u\) or \(w\) are not zero.

In another specific embodiment the invention provides a compound of formula (Ic30) wherein at least one \(u\) is not zero, and at least one \(w\) is not zero.

In another specific embodiment the invention provides a compound of formula (Ic30) wherein at least two of \(u\) are not zero.

In another specific embodiment the invention provides a compound of formula (Ic30) wherein at least one of \(w\) is not zero.

In another specific embodiment the invention provides a compound of formula (Ic30) wherein at least two of \(w\) are not zero.

In another specific embodiment the invention provides a compound of formula (Ic30) wherein both \(u\) are not zero, and at least one \(w\) is not zero.

In another specific embodiment the invention provides a compound of formula (lc30) wherein both \(t\) are 9 ; one \(s\) is 0 ; and one \(s\) is \(0,1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17\), \(18,19,20\), or 21 .

In another specific embodiment the invention provides a compound of formula (lc30) wherein both \(t\) are 9 ; one \(s\) is \(1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20\), or 21 ; and one \(s\) is \(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20\), or 21 .

In another specific embodiment the invention provides a compound of the following formula (Ic31): \(\mathrm{E}^{\mathrm{x}}-\mathrm{V}^{\mathrm{w}}-\mathrm{Z}^{\mathrm{v}}-\mathrm{P}^{\mathrm{u}}-\mathrm{M}^{9}-\mathrm{A}^{\mathrm{s}}-\mathrm{A}^{\mathrm{s}}-\mathrm{M}^{9}-\mathrm{P}^{\mathrm{u}}-\mathrm{Z}^{\mathrm{v}}-\mathrm{V}^{\mathrm{w}}-\mathrm{E}^{\mathrm{x}}\) (Ic31) wherein one s is 0 or 6 and one s is 6 .

In another specific embodiment the invention provides a compound of formula (lc31) wherein at least one of \(\mathbf{u}, \mathbf{v}, \mathbf{w}\) or \(\mathbf{x}\) are not zero.

In another specific embodiment the invention provides a compound of formula (lc31) wherein at least two of \(u, v, w\) or \(x\) are not zero.

In another specific embodiment the invention provides a compound of formula (Ic31) wherein at least three of \(\mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero.

In another specific embodiment the invention provides a compound of formula (Ic31) wherein at least four of \(\mathrm{u}, \mathrm{v}\), w or x are not zero.

In another specific embodiment the invention provides a compound of formula (Ic31) wherein at least two \(u, v, w\) or \(x\) are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (Ic31) wherein at least three of \(u, v, w\) or \(x\) are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (Ic31) wherein at least three of \(\mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero and at least three of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (Ic31) wherein at least four of \(\mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (Ic31) wherein the sum of \(u, v, w\) and \(x\) is not zero.

In another specific embodiment the invention provides a compound of formula (Ic31) wherein at least one of \(u\) or \(w\) are not zero.

In another specific embodiment the invention provides a compound of formula (Ic31) wherein at least two of \(u\) or \(w\) are not zero.

In another specific embodiment the invention provides a compound of formula (Ic31) wherein at least one \(u\) is not zero, and at least one \(w\) is not zero.

In another specific embodiment the invention provides a compound of formula (Ic31) wherein both \(u\) are not zero, and at least one \(w\) is not zero.

In another specific embodiment the invention provides a compound of formula (Ic31) wherein at least one \(u\) is not zero.

In another specific embodiment the invention provides a compound of formula (Ic31) wherein both of \(u\) are not zero.

In another specific embodiment the invention provides a compound of formula (Ic31) wherein at least one of \(w\) is not zero.

In another specific embodiment the invention provides a compound of formula (Ic31) wherein both w are not zero.

\section*{Compounds of formula (Id)}

In one embodiment of the invention, the compound of formula (I) is a compound of formula (Id):
\[
\begin{equation*}
E^{0}-V^{\mathrm{w}}-Z^{0}-P^{\mathrm{u}}-L^{\mathrm{n1}}-L^{n^{2}}-P^{\mathrm{u}}-Z^{0}-V^{\mathrm{w}}-E^{0} \tag{Id}
\end{equation*}
\]
wherein:
\(n 1\) is 3,4 , or 9 ;
n 2 is 9 ;
each \(u\) is \(0,1,3,5,7,8,10\), or 11 ;
each \(w\) is \(0,1,2,3,4\), or 5 ;
each \(\mathrm{L}^{3}\) is independently a fused-bicyclic saturated, partially unsaturated, or aromatic heterocyclic ring system that is optionally substituted with one or more groups independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, formyl, halo, haloalkyl, hydroxy, hydroxyalkyl, \(-\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}},\left(\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{b}\right)\) alkyl, \(\left(\mathrm{NR}^{a} \mathrm{R}^{b}\right)\) carbonyl, cyano, nitro, \(\mathrm{SOR}^{4}, \mathrm{SO}_{2} \mathrm{R}^{4}\), -alkyl \(\mathrm{SO}_{2} \mathrm{R}^{4}\), haloalkoxy, cyanoalkyl, \(\mathrm{NR}^{4} \mathrm{SO}_{2} \mathrm{R}^{4}\), cycloalkyl,
(halo)cycloalkyl, heterocycle, (cycloalkyl)alkyl, (heterocycle)alkyl, wherein each alkyl, heterocycle and cycloalkyl is optionally substituted with one or more halo;
each \(\mathrm{R}^{4}\) is independently selected from H , alkyl, haloalkyl, aryl, and arylalkyl; and \(R^{a}\) and \(R^{b}\) are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl;
each \(L^{4}\) is independently a fused-tricyclic saturated, partially unsaturated, or aromatic heterocyclic ring system that is optionally substituted with one or more groups independently selected from oxo, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, formyl, halo, haloalkyl, hydroxy, hydroxyalkyl, \(-N^{a} R^{b},\left(N R^{a} R^{b}\right)\) alkyl, \(\left(N^{a} R^{b}\right)\) carbonyl, cyano, nitro, \(\mathrm{SOR}^{4}, \mathrm{SO}_{2} \mathrm{R}^{4}\), -alkylSO \(2 \mathrm{R}^{4}\), haloalkoxy, cyanoalkyl, \(\mathrm{NR}^{4} \mathrm{SO}_{2} \mathrm{R}^{4}\), cycloalkyl, (halo)cycloalkyl, heterocycle, (cycloalkyl)alkyl, (heterocycle)alkyl, wherein each alkyl, heterocycle and cycloalkyl is optionally substituted with one or more halo;
each \(R^{4}\) is independently selected from \(H\), alkyl, haloalkyl, aryl, and arylalkyl; and \(R^{a}\) and \(R^{b}\) are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl;
each \(\mathrm{L}^{9}\) is independently a fused-tetracyclic saturated, partially unsaturated, or aromatic heterocyclic ring system that is optionally substituted with one or more groups independently selected from oxo, halo, \(-\mathrm{R}^{\mathrm{L7}},-\mathrm{OR}^{\mathrm{L7}},-\mathrm{SR}^{\mathrm{L7}},-\mathrm{CF}_{3},-\mathrm{CCl}_{3},-\mathrm{OCF}_{3},-\mathrm{CN},-\mathrm{NO}_{2},-\mathrm{N}\left(\mathrm{R}^{\mathrm{L7}}\right) \mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7}}\), \(-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7}},-\mathrm{OC}(=\mathrm{O}) \mathrm{R}^{\mathrm{L7}},-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{\mathrm{L7}},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{L} 7},-\mathrm{S}(=\mathrm{O}) \mathrm{R}^{\mathrm{L} 7},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{L} 7},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{L7}},-\) \(\mathrm{OS}(=\mathrm{O})_{2} \mathrm{OR}^{\mathrm{L7}},-\mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}^{\mathrm{L7}}\), alkoxyalkyl, arylalkoxycarbonyl, halo, haloalkyl, hydroxyalkyl, \(-N R^{a} R^{b}\), (\(N R^{a} R^{b}\)) alkyl, and (\(N R^{a} R^{b}\))carbonyl;
each \(\mathrm{R}^{\mathrm{L7}}\) is independently - H , alkyl, aryl, arylalkyl, or heterocycle;
\(R^{a}\) and \(R^{b}\) are each independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl;
each \(\mathrm{P}^{0}\) is independently:

or

wherein:
X is selected from \(\mathrm{O}, \mathrm{S}, \mathrm{S}(\mathrm{O}), \mathrm{SO}_{2}, \mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{Pl0}}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{Pl0}}\right)_{2}\); provided that when pn or pm is \(0, \mathrm{X}\) is selected from \(\mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{P} 10}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{P} 10}\right)_{2}\); each \(R^{p_{10}}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-\mathrm{NR}^{\mathrm{Pa}_{8}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
each \(R^{P 5}\) and \(R^{P 6}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups; \(\mathrm{R}^{\mathrm{Pa}}\) and \(\mathrm{R}^{\mathrm{Pb}}\) are each independently H , alkyl, aryl, or arylalkyl; or \(\mathrm{R}^{\mathrm{Pa}}\) and \(\mathrm{R}^{\mathrm{Pb}}\) taken together with the atom to which they are attached form a heterocycle;
pq and ps are independently \(0,1,2,3\), or 4 ;
pm and pn are independently 0,1 , or 2 ;
po and pp are independently 1,2 , or 3 ;
\(R^{P 7}\) and \(R^{P 8}\) are each independently selected from hydrogen, alkenyl, alkoxyalkyl, alkyl, haloalkyl, and \(\left(N R^{P a} R^{P b}\right)\) alkyl; or \(R^{P 7}\) and \(R^{P 8}\), together with the carbon atom to which they are attached, form a five or six membered saturated ring optionally containing one or two heteroatoms selected from \(\mathrm{NR}^{\mathrm{Pz}_{2}}, 0\), and S ; wherein \(\mathrm{R}^{\mathrm{Pz}_{2}}\) is selected from hydrogen and alkyl;
\(\mathrm{R}^{\mathrm{P9}}\) is selected from hydrogen and alkyl;
each \(P^{1}\) is independently:

wherein:
X is selected from \(\mathrm{O}, \mathrm{S}, \mathrm{S}(\mathrm{O}), \mathrm{SO}_{2}, \mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{P} 10}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{P} 10}\right)_{2}\); provided that when pn is \(0, \mathrm{X}\) is selected from \(\mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{P} 10}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{P} 10}\right)_{2}\);
each \(R^{P 10}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
at least one \(R^{\text {P11 }}\) is independently selected from cyano, alkylsulfonyl, arylsulfonyl, (\(\left(\mathrm{R}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\right)\) sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, (\(\mathrm{NR}^{h} \mathrm{R}^{h}\))alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl, \(-\mathrm{NR}^{\mathrm{hh}} \mathrm{R}^{\mathrm{h}},\left(\mathrm{NR}^{\text {hh }} \mathrm{R}^{\mathrm{h}}\right)\) alkyl, \(\left(N R^{\text {hh }} R^{h}\right)\) carbonyl, wherein each \(R^{h}\) is independently -H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; and when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring; wherein each \(\mathrm{R}^{\text {hh }}\) is independently aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl, (\(N R^{h} R^{h}\)) sulfonyl, heteroarylsulfonyl, \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{h}},-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{h}},-\mathrm{C}(=\mathrm{O}) N \mathrm{R}^{h} \mathrm{R}^{\mathrm{h}}\); and the remaining \(\mathrm{R}^{\mathrm{P} 11}\) are independently selected from \(\mathrm{R}^{\mathrm{P5}}\), cyano, alkylsulfonyl, arylsulfonyl, (\(N R^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\))sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, (\(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\)) alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl; wherein each \(\mathrm{R}^{\mathrm{h}}\) is independently - H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; and when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
\[
\mathrm{ps} \text { is } 1,2,3 \text {, or } 4
\]
pn is 0,1 , or 2 ;
each \(P^{3}\) is independently a ring of the formula:

wherein:
the ring is substituted with one or more oxo groups;
each \(\mathrm{R}^{\mathrm{P} 13}\) is independently selected from \(\mathrm{R}^{\mathrm{P} 5}\), cyano, alkylsulfonyl, arylsulfonyl, (\(\left(R^{h} R^{h}\right)\) sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, \(\left(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\right)\) alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl; wherein each \(\mathrm{R}^{\mathrm{h}}\) is independently -H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; and when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
```

ps is 0, 1, 2, 3, or 4;
pn is 0, 1, or 2;

```
each \(P^{5}\) is independently a ring of the formula:

wherein:
the ring is optionally substituted with one or more groups \(\mathrm{R}^{\mathrm{P} 15}\) that are independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(N R^{\mathrm{Pa}} \mathbf{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one
or two alkyl groups; and where two groups \(\mathrm{R}^{\mathrm{P} 15}\) that are attached to the same carbon when taken together with the carbon to which they are attached can form a 3-6 membered carbocyclic or heterocyclic ring;
pn is 0,1 , or 2 ;
\(Z\) is \(\mathrm{O}, \mathrm{S}, \mathrm{S}(=0), \mathrm{S}(=\mathrm{O})_{2}\), or \(\mathrm{NR}^{\mathrm{f}}\);
each \(\mathrm{R}^{\mathrm{f}}\) is independently - H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl, \(-\mathrm{S}(=0)_{2} \mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\), \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{h}}, \mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{h}}, \mathrm{C}(=\mathrm{O}) O \mathrm{R}^{\mathrm{h}},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\); each \(\mathrm{R}^{\mathrm{h}}\) is independently -H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; or when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
each \(\mathrm{P}^{7}\) is a bridged \(5-15\) membered bicyclic heterocyclic ring that is attached to the remainder of the compound of formula I through one N -link and through one C -link; wherein the ring is optionally substituted with one or more groups independently selected from \(R^{P 6}\) and \(R^{P 11}\);
each \(\mathrm{P}^{8}\) is independently a ring of the formula:

wherein: ps is \(2,3,4,5\), or 6 ;
each \(\mathrm{R}^{\mathrm{P} 13}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups; where in at least one case two groups \(\mathrm{R}^{\mathrm{P} 13}\) that are attached to the same carbon are taken together with the carbon to which they are attached and form a 4-6 membered heterocyclic ring;
each \(\mathrm{P}^{10}\) is independently:

wherein:
X is selected from \(\mathrm{O}, \mathrm{S}, \mathrm{S}(\mathrm{O}), \mathrm{SO}_{2}, \mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{Pi0}}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{P} 10}\right)_{2}\);
provided that when pn or pm is \(0, \mathrm{X}\) is selected from \(\mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{P} 10}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{P} 10}\right)_{2}\);
each \(R^{\text {P10 }}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused threeto six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
each \(\mathrm{R}^{\mathrm{P} 5}\) and \(\mathrm{R}^{\mathrm{P} 6}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
pq and ps are independently \(0,1,2,3\), or 4 ;
pm and pn are independently 0,1 , or 2 ;
po and pp are independently 1,2 , or 3 ;
each \(P^{\prime \prime}\) is independently:

wherein:
X is selected from \(\mathrm{O}, \mathrm{S}, \mathrm{S}(\mathrm{O}), \mathrm{SO}_{2}, \mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{Pl0}}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{PIO}}\right)_{2}\); provided that when pn or pm is \(0, \mathrm{X}\) is selected from \(\mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{P} 10}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{P} 10}\right)_{2}\);
each \(R^{P 10}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-N R^{P_{a}} R^{P b}\), wherein the alkyl can optionally form a fused threeto six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
each \(\mathrm{R}^{\mathrm{P} 5}\) and \(\mathrm{R}^{\mathrm{P} 6}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-N R^{P a} R^{P b}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
pq and ps are independently \(0,1,2,3\), or 4 ;
pm and pn are independently 0,1 , or 2 ;
po and pp are independently 1,2 , or 3 ;
each \(-\mathrm{Z}^{0}-\) is \(-\mathrm{C}(=\mathrm{O})\) - or \(-\mathrm{C}(=\mathrm{S})\)-;
each \(E^{0}\) is independently \(-\mathrm{NR}^{\mathrm{Ec}} \mathrm{R}^{\mathrm{Ed}}\) wherein \(R^{E c}\) and \(R^{E d}\) are each independently selected from hydrogen, alkenyloxycarbonyl, alkoxyalkylcarbonyl, alkoxycarbonyl, alkyl, alkylcarbonyl, alkylsulfonyl, aryl, arylalkoxycarbonyl, arylalkyl, arylalkylcarbonyl, arylcarbonyl, aryloxycarbonyl, arylsulfonyl, cycloalkyl, cycloalkylsulfonyl, formyl, haloalkoxycarbonyl, heterocyclyl, heterocyclylalkoxycarbonyl, heterocyclylalkyl, heterocyclylalkylcarbonyl, heterocyclylcarbonyl, heterocyclyloxycarbonyl, hydroxyalkylcarbonyl, (\(\mathrm{NR}^{{ }^{e} \mathrm{R}^{f} \text {)alkyl, }}\) (\(\mathrm{NR}^{e} \mathrm{R}^{\dagger}\))alkylcarbonyl, (\(\mathrm{NR}^{\mathrm{e}} \mathrm{R}^{f}\))carbonyl, (\(\mathrm{NR}^{e} \mathrm{R}^{\dagger}\)) sulfonyl, \(-\mathrm{C}(\mathrm{NCN}) \mathrm{OR}^{\prime}\), and - \(\mathrm{C}(\mathrm{NCN}) \mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}\), wherein \(R^{\prime}\) is selected from alkyl and unsubstituted phenyl, and wherein the alkyl part of the arylalkyl, the arylalkylcarbonyl, the heterocyclylalkyl, and the heterocyclylalkylcarbonyl are further optionally substituted with one \(-\mathrm{NR}^{e} \mathrm{R}^{\mathrm{f}}\) group; and wherein the aryl, the aryl part of the arylalkoxycarbonyl, the arylalkyl, the arylalkylcarbonyl, the arylcarbonyl, the aryloxycarbonyl, and the arylsulfonyl, the heterocyclyl, and the heterocyclyl part of the heterocyclylalkoxycarbonyl, the heterocyclylalkyl, the heterocyclylalkylcarbonyl, the heterocyclylcarbonyl, and the heterocyclyloxycarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro;
each \(\mathrm{V}^{0}\) is independently H , alkyl, arylalkyl, alkenyl, CO, cycloalkylalkyl, cycloalkyl, alkoxyalkyl, alkoxyalkylcarbonylalkyl, alkoxycarbonylalkyl, alkylsulfanylalkyl,
aryalkoxyalkylcarbonylalkyl, carboxyalkyl, heterocyclylalkyl, heterocyclylcarbonylalkyl, hydroxyalkyl, NRRCOalkyl;
and where in arylalkyl the alkyl can be substituted with up to three aryl groups, and the alkyl part of the arylalkyl is further optionally substituted with one or two additional groups independently selected from alkoxy, alkyocarbonyloxy, halo, haloalkoxy, haloalkyl, heterocyclyl, hydroxy;
and the aryl part can be substituted with \(1,2,3,4\), or 5 substituents independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, alkylcarbonyl, a second aryl group, arylalkoxy, arylalkyl, arylcarbonyl, cyano, halo, haloalkoxy, haloalkyl, heterocyclyl, heterocyclylalkyl, heterocyclylcarbonyl, hydroxy, hydroxyalkyl, nitro, \(-\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}},-\) \(\left(N^{X}{ }^{X}{ }^{Y}\right.\))alkyl, oxo, and \(-P(O) O R_{2}\), wherein each \(R\) is independently selected from hydrogen and alkyl; and wherein the alkyl part of the arylalkyl and the heterocyclylalkyl are unsubstituted and wherein the second aryl group, the aryl part of the arylalkyl, the aryl part of the arylcarbonyl, the heterocyclyl, and the heterocyclyl part of the heterocyclylalkyl and the heterocyclylcarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro; and the heterocyclyl can be substituted with \(1,2,3,4\), or 5 substituents independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylcarbonyl, cyano, halo, haloalkoxy, haloalkyl, a second heterocyclyl group, heterocyclylalkyl, heterocyclylcarbonyl, hydroxy, hydroxyalkyl, nitro, \(-\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}\), (\(\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}\))alkyl, and oxo, wherein the alkyl part of the arylalkyl and the heterocyclylalkyl are unsubstituted and wherein the aryl, the aryl part of the arylalkyl; the aryl part of the arylcarbonyl, the second heterocyclyl group, and the heterocyclyl part of the heterocyclylalkyl and the heterocyclylcarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro;
each \(V^{1}\) is independently cyanoalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{V}_{\mathrm{a}}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}_{\mathrm{a}}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{2}\) is independently haloalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle,
heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(V^{3}\) is independently alkyl, which is substituted with one or more oxo, and which is optionally substituted with one or more groups independently selected from cycloalkyl, halo, aryl, alkenyl, and cyano; and
each \(\mathrm{V}^{4}\) is independently haloalkoxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(N R^{a} R^{b} C(=O) O-; R^{a}\) and \(R^{b}\) are each independently selected from hydrogen, alkenyl, and alkyl; and
each \(\mathrm{V}^{5}\) is independently alkylsulfonylalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl.

In one embodiment the invention provides a compound of formula (Id) wherein each \(L\) is benzimidazolyl.

In one embodiment the invention provides a compound of formula (Id1) or (Id2) which is selected from:

wherein X - X is selected from \(\mathrm{O}, \mathrm{CH}_{2}, \mathrm{CH}=\mathrm{CH}, \mathrm{CH}_{2}-\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{O}, \mathrm{O}-\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\), and \(\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}\); or a pharmaceutically acceptable salt, or prodrug thereof.

In one embodiment the invention provides a compound of formula (Id) wherein \(L^{9}\) is:

In one embodiment the invention provides a compound of formula (Id) wherein \(L^{9}\) is:

In one embodiment the invention provides a compound of formula (Id3) or (Id4) which is selected from:

wherein X-X is selected from \(\mathrm{O}, \mathrm{CH}_{2}, \mathrm{CH}=\mathrm{CH}, \mathrm{CH}_{2}-\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{O}, \mathrm{O}-\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\), and \(\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}\); or a pharmaceutically acceptable salt, or prodrug thereof.

In one embodiment the invention provides a compound of formula (Id) wherein \(\mathrm{L}^{3}\) is:

In one embodiment the invention provides a compound of formula (Id5) or (Id6) which is selected from:

wherein X-X is selected from \(\mathrm{O}, \mathrm{CH}_{2}, \mathrm{CH}=\mathrm{CH}, \mathrm{CH}_{2}-\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{O}, \mathrm{O}-\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\), and \(\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}\); or a pharmaceutically acceptable salt, or prodrug thereof.

In one embodiment the invention provides a compound of formula (Id) wherein \(\mathrm{L}^{4}\) is:

In one embodiment the invention provides a compound of formula (Id5) or (Id6) which is selected from:

wherein \(\mathrm{X}-\mathrm{X}\) is selected from \(\mathrm{O}, \mathrm{CH}_{2}, \mathrm{CH}=\mathrm{CH}, \mathrm{CH}_{2}-\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{O}, \mathrm{O}-\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\), and \(\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}\); or a pharmaceutically acceptable salt, or prodrug thereof.

In another specific embodiment the invention provides a compound of the following formula (Id30): \(E^{\mathrm{x}}-\mathrm{V}^{\mathrm{w}}-\mathrm{Z}^{\mathrm{v}}-\mathrm{P}^{\mathrm{u}}-\mathrm{L}^{\mathrm{n}}-\mathrm{L}^{\mathrm{n}}-\mathrm{P}^{\mathrm{u}}-\mathrm{Z}^{\mathrm{v}}-\mathrm{V}^{\mathrm{w}}-\mathrm{E}^{\mathrm{x}}\) (Id30); wherein at least one of \(\mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero.

In another specific embodiment the invention provides a compound of formula (Id30) wherein one \(n\) is \(0,1,2,4,5,6,7,8,9\), or 10 ; and one \(n\) is \(1,2,3,5,6,7,8,9\), or 10 .

In another specific embodiment the invention provides a compound of formula (Id30) wherein at least two of \(n, u, v, w\) or \(x\) are not zero.

In another specific embodiment the invention provides a compound of formula (Id30) wherein at least two of \(n, u, v, w\) or \(x\) are not zero and at least one \(n\) is selected from \(0,1,2,4,5\), \(6,7,8\), and 10

In another specific embodiment the invention provides a compound of formula (Id30) wherein at least two of \(n, u, v, w\) or \(x\) are not zero and at least one \(n\) is selected from \(0,1,2,3,5\), \(6,7,8\), and 10
Wherein at least three of \(\mathrm{n}, \mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero.
In another specific embodiment the invention provides a compound of formula (Id30) wherein at least two of \(\mathrm{n}, \mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (Id30) wherein at least three of \(n, u, v, w\) or \(x\) are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (Id30) wherein at least three of \(n, u, v, w\) or \(x\) are not zero and at least three of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (Id30) wherein at least four of \(n, u, v, w\) or \(x\) are not zero.

In another specific embodiment the invention provides a compound of formula (Id30) wherein at least four of \(n, u, v, w\) or \(x\) are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (Id30) wherein at least four of \(n, u, v, w\) or \(x\) are not zero and at least three of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (Id30) wherein at least four of \(\mathrm{n}, \mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero and at least four of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (Id30) wherein the sum of \(n, u, v, w\) or \(x\) is not zero.

In another specific embodiment the invention provides a compound of formula (Id30) wherein the sum of \(\mathrm{u}, \mathrm{v}, \mathrm{w}\) or x is not zero.

In another specific embodiment the invention provides a compound of formula (Id30) wherein at least one u is not zero.

In another specific embodiment the invention provides a compound of formula (Id30) wherein at least one \(n\), and at least one \(u\) are all not zero.

In another specific embodiment the invention provides a compound of formula (Id30) wherein at least two of \(u, w\) and \(n\) are not zero.

In another specific embodiment the invention provides a compound of formula (Id30) wherein at least two of \(u\), and \(w\) are not zero.

In another specific embodiment the invention provides a compound of formula (Id30) wherein at least two of \(u\), and \(w\) are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (Id30) wherein at least \(w\) and both \(u\) are not zero.

In another specific embodiment the invention provides a compound of formula (Id30) wherein at least two of \(u, v, w\) or \(x\) are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (Id30) wherein at least one of \(u\), or \(w\) is not zero.

In another specific embodiment the invention provides a compound of formula (Id30) wherein at least two of \(u\), or \(w\) are not zero.

In another specific embodiment the invention provides a compound of formula (Id30) wherein at least one \(u\) is not zero, and at least one \(w\) is not zero.

In another specific embodiment the invention provides a compound of formula (Id30) wherein at least two of u are not zero.

In another specific embodiment the invention provides a compound of formula (Id30) wherein at least one of \(w\) is not zero.

In another specific embodiment the invention provides a compound of formula (Id30) wherein at least two of \(w\) are not zero.

In another specific embodiment the invention provides a compound of formula (Id30) wherein both \(u\) are not zero, and at least one \(w\) is not zero.

In another specific embodiment the invention provides a compound of the following formula (Id31): \(E^{\mathrm{x}}-\mathrm{V}^{\mathrm{w}}-\mathrm{Z}^{\mathrm{v}}-\mathrm{P}^{\mathrm{u}}-\mathrm{L}^{3}-\mathrm{L}^{3}-\mathrm{P}^{\mathrm{u}}-\mathrm{Z}^{\mathrm{v}}-\mathrm{V}^{\mathrm{w}}-\mathrm{E}^{\mathrm{x}}\) (Id31).

In another specific embodiment the invention provides a compound of formula (Id31) wherein at least one of \(u, v, w\) or \(x\) are not zero.

In another specific embodiment the invention provides a compound of formula (Id31) wherein at least two of \(u, v ; w\) or \(x\) are not zero.

In another specific embodiment the invention provides a compound of formula (Id31) wherein at least three of \(u, v, w\) or \(x\) are not zero.

In another specific embodiment the invention provides a compound of formula (Id31) wherein at least four of \(u, v, w\) or \(x\) are not zero.

In another specific embodiment the invention provides a compound of formula (Id31) wherein at least two \(u, v, w\) or \(x\) are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (Id31) wherein at least three of \(u, v\), w or \(x\) are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (Id31) wherein at least three of \(\mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero and at least three of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (Id31) wherein at least four of \(u, v, w\) or \(x\) are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (Id31) wherein the sum of \(\mathrm{u}, \mathrm{v}, \mathrm{w}\) and x is not zero.

In another specific embodiment the invention provides a compound of formula (Id31) wherein at least one of \(u\), or \(w\) are not zero.

In another specific embodiment the invention provides a compound of formula (Id31) wherein at least two of \(u\), or \(w\) are not zero.

In another specific embodiment the invention provides a compound of formula (Id31) wherein at least one \(u\) is not zero, and at least one \(w\) is not zero.

In another specific embodiment the invention provides a compound of formula (Id31) wherein both \(u\) are not zero, and at least one \(w\) is not zero.

In another specific embodiment the invention provides a compound of formula (Id31) wherein at least one \(u\) is not zero.

In another specific embodiment the invention provides a compound of formula (Id31) wherein both of \(u\) are not zero.

In another specific embodiment the invention provides a compound of formula (Id31) wherein at least one of \(w\) is not zero.

In another specific embodiment the invention provides a compound of formula (Id31) wherein both \(w\) are not zero.

In another specific embodiment the invention provides a compound of the following formula (Id32): \(\mathrm{E}^{\mathrm{x}}-\mathrm{V}^{\mathrm{w}}-\mathrm{Z}^{\mathrm{V}}-\mathrm{P}^{\mathrm{u}}-\mathrm{L}^{4}-\mathrm{L}^{4}-\mathrm{P}^{\mathrm{u}}-\mathrm{Z}^{\mathrm{v}}-\mathrm{V}^{\mathrm{w}}-\mathrm{E}^{\mathrm{x}}\) (Id32).

In another specific embodiment the invention provides a compound of formula (Id32) wherein at least one of \(\mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero.

In another specific embodiment the invention provides a compound of formula (Id32) wherein at least two of \(\mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero.

In another specific embodiment the invention provides a compound of formula (Id32) wherein at least three of \(u, v, w\) or \(x\) are not zero.

In another specific embodiment the invention provides a compound of formula (Id32) wherein at least four of \(\mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero.

In another specific embodiment the invention provides a compound of formula (Id32) wherein at least two \(u, v, w\) or \(x\) are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (Id32) wherein at least three of \(\mathrm{u}, \mathrm{v}, \mathrm{w}\) or x are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (Id32) wherein at least three of \(u, v, w\) or \(x\) are not zero and at least three of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (Id32) wherein at least four of \(u, v, w\) or \(x\) are not zero and at least two of the non-zero groups are not the same letter.

In another specific embodiment the invention provides a compound of formula (Id32) wherein the sum of \(u, v, w\) and \(x\) is not zero.

In another specific embodiment the invention provides a compound of formula (Id32) wherein at least one of \(u\), or \(w\) are not zero.

In another specific embodiment the invention provides a compound of formula (Id32) wherein at least two of \(u\), or \(w\) are not zero.

In another specific embodiment the invention provides a compound of formula (Id32) wherein at least one \(u\) is not zero, and at least one \(w\) is not zero.

In another specific embodiment the invention provides a compound of formula (Id32) wherein both \(u\) are not zero, and at least one \(w\) is not zero.

In another specific embodiment the invention provides a compound of formula (Id32) wherein at least one \(u\) is not zero.

In another specific embodiment the invention provides a compound of formula (Id32) wherein both of \(u\) are not zero.

In another specific embodiment the invention provides a compound of formula (Id32) wherein at least one of \(w\) is not zero.

In another specific embodiment the invention provides a compound of formula (Id32) wherein both \(w\) are not zero.

\section*{Compounds of formula (Ie)}

In one embodiment of the invention, the compound of formula (I) is a compound of formula (Ie):
\[
\begin{equation*}
E^{0}-V^{w}-Z^{0}-P^{\mathrm{u}}-Y^{2}-P^{\mathrm{u}}-Z^{0}-V^{w}-E^{0} \tag{Ie}
\end{equation*}
\]
wherein:
each \(u\) is \(0,1,3,5,7,8,10\), or 11 ;
each \(w\) is \(0,1,2,3,4\), or 5 ;
each \(Y^{2}\) is independently:
a fused five to eight ring system with up to thirty-two atoms that may be fully aromatic or partially saturated and contains atoms selected from \(\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{S}, \mathrm{SO}_{2}, \mathrm{SO}\) and which ring system is optionally substituted with one or more groups independently selected from \(\mathrm{H}, \mathrm{oxo}, \mathrm{R}^{\mathrm{Al}}\) and \(\mathrm{R}^{\mathrm{A} 3}\);
each \(\mathrm{R}^{\mathrm{Al}}\) is independently selected from cyano, nitro, \(\mathrm{SOR}^{4}, \mathrm{SO}_{2} \mathrm{R}^{4}\), -alkylSO \(\mathrm{R}_{2} \mathrm{R}^{4}\), haloalkoxy, cyanoalkyl, \(\mathrm{NR}^{4} \mathrm{SO}_{2} \mathrm{R}^{4}\), cycloalkyl, (halo)cycloalkyl, heterocycle, (cycloalkyl)alkyl,
(heterocycle)alkyl, wherein each alkyl, heterocycle and cycloalkyl is optionally substituted with one or more halo;
each \(R^{A 3}\) is independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, arylalkoxycarbonyl, carboxy, formyl, halo, haloalkyl, hydroxy, hydroxyalkyl, \(-N R^{a} R^{b}\), \(\left(N R^{a} R^{b}\right)\) alkyl, and \(\left(N R^{a} R^{b}\right)\) carbonyl; \(R^{a}\) and \(R^{b}\) are each independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl;
each \(R^{4}\) is independently selected from \(H\), alkyl, haloalkyl, aryl, and arylalkyl; \(R^{a}\) and \(R^{b}\) are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylalkylcarbonyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl;
each \(\mathrm{P}^{0}\) is independently:

or

wherein:
X is selected from \(\mathrm{O}, \mathrm{S}, \mathrm{S}(\mathrm{O}), \mathrm{SO}_{2}, \mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{P} 10}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{P} 10}\right)_{2}\); provided that when pn or pm is \(0, \mathrm{X}\) is selected from \(\mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{P} 10}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{P} 10}\right)_{2}\);
each \(R^{\text {P10 }}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-N R^{P a} R^{P b}\), wherein the alkyl can optionally form a fused threeto six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
each \(R^{P 5}\) and \(R^{P 6}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups; \(\mathrm{R}^{\mathrm{Pa}}\) and \(\mathrm{R}^{\mathrm{Pb}}\) are each independently

H , alkyl, aryl, or arylalkyl; or \(\mathrm{R}^{\mathrm{Pa}}\) and \(\mathrm{R}^{\mathrm{Pb}}\) taken together with the atom to which they are attached form a heterocycle;
pq and ps are independently \(0,1,2,3\), or 4 ;
pm and pn are independently 0,1 , or 2 ;
po and pp are independently 1,2 , or 3 ;
\(R^{P 7}\) and \(R^{P 8}\) are each independently selected from hydrogen, alkenyl, alkoxyalkyl, alkyl, haloalkyl, and (\(\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\)) alkyl; or \(\mathrm{R}^{\mathrm{P7}}\) and \(\mathrm{R}^{\mathrm{P8}}\), together with the carbon atom to which they are attached, form a five or six membered saturated ring optionally containing one or two heteroatoms selected from \(\mathrm{NR}^{\mathrm{Pz}_{2}}, 0\), and S ; wherein \(\mathrm{R}^{\mathrm{Pz}_{2}}\) is selected from hydrogen and alkyl;
\(\mathrm{R}^{\mathrm{P9}}\) is selected from hydrogen and alkyl;
each \(\mathrm{P}^{1}\) is independently:

wherein:
X is selected from \(\mathrm{O}, \mathrm{S}, \mathrm{S}(\mathrm{O}), \mathrm{SO}_{2}, \mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{P} 10}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{P} 10}\right)_{2}\); provided that when pn is \(0, \mathrm{X}\) is selected from \(\mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{Pl0}}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{Pl0}}\right)_{2}\); each \(R^{\text {P10 }}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused threeto six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
at least one \(\mathrm{R}^{\mathrm{P} 11}\) is independently selected from cyano, alkylsulfonyl, arylsulfonyl, (\(N R^{h}{ }^{\text {h }}{ }^{\text {h }}\))sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, (\(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\))alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl, \(-\mathrm{NR}^{\mathrm{hh}} \mathrm{R}^{\mathrm{h}},\left(\mathrm{NR}^{\mathrm{hh}} \mathrm{R}^{\mathrm{h}}\right)\) alkyl, \(\left(\mathrm{NR}^{\text {hh }} \mathrm{R}^{\mathrm{h}}\right.\))carbonyl, wherein each \(\mathrm{R}^{\mathrm{h}}\) is independently -H, alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; and when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring; wherein each \(\mathrm{R}^{\text {hh }}\) is independently aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl,
haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl, \(\left(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\right)\) sulfonyl, heteroarylsulfonyl, \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{h}},-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{h}},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\); and the remaining \(\mathrm{R}^{\mathrm{PII}}\) are independently selected from \(\mathrm{R}^{\mathrm{P5}}\), cyano, alkylsulfonyl, arylsulfonyl, \(\left(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\right.\))sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, (\(\mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\))alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl; wherein each \(\mathrm{R}^{\mathrm{h}}\) is independently -H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; and when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
\[
\text { ps is } 1,2,3 \text {, or } 4 ;
\]
pn is 0,1 , or 2 ;
each \(P^{3}\) is independently a ring of the formula:

wherein:
the ring is substituted with one or more oxo group;
each \(\mathrm{R}^{\mathrm{P} 13}\) is independently selected from \(\mathrm{R}^{\mathrm{P5}}\), cyano, alkylsulfonyl, arylsulfonyl, (\(N R^{\text {h }} \mathrm{R}^{\mathrm{h}}\))sulfonyl, heterocyclylsulfonyl, heteroarylsulfonyl, haloalkoxy, alkoxyalkyloxy, haloalkoxyalkyloxy, cycloalkyoxyalkyloxy, aryloxyalkyloxy, heteroaryloxyakyloxy, heterocyclooxyalkyloxy, (\(\left(\mathrm{R}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\right)\) alkyloxy, cyanoalkoxy, cyanocycloalkyloxy, cycloalkyloxy, oxo, heterocyclyl; wherein each \(\mathrm{R}^{\mathrm{h}}\) is independently - H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; and when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
ps is \(0,1,2,3\), or 4 ;
pn is 0,1 , or 2 ;
each \(P^{5}\) is independently a ring of the formula:

wherein:
the ring is optionally substituted with one or more groups \(R^{P 15}\) that are independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(N R^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups; and where two groups \(\mathrm{R}^{\mathrm{P} 15}\) that are attached to the same carbon when taken together with the carbon to which they are attached can form a 3-6 membered carbocyclic or heterocyclic ring;
pn is 0,1 , or 2 ;
Z is \(\mathrm{O}, \mathrm{S}, \mathrm{S}(=\mathrm{O}), \mathrm{S}(=\mathrm{O})_{2}\), or \(\mathrm{NR}^{\mathrm{f}}\);
each \(\mathrm{R}^{\mathrm{f}}\) is independently - H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl, \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\), \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}^{\mathrm{h}}, \mathrm{C}(=\mathrm{O}) \mathrm{R}^{\mathrm{h}}, \mathrm{C}(=\mathrm{O}) O \mathrm{R}^{\mathrm{h}},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{\mathrm{h}} \mathrm{R}^{\mathrm{h}}\); each \(\mathrm{R}^{\mathrm{h}}\) is independently -H , alkyl, alkoxyamino, aryl, arylalkyl, heterocycle, heterocyclyoxy, alkenyl, alkenyloxy, alkynyl, alkoxyalkyl, haloalkyl, cyanoalkyl, haloalkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonylalkyl; or when two \(\mathrm{R}^{\mathrm{h}}\) groups are present then they may come together with the atoms to which they are bound to form a 4-15 membered heterocyclic ring;
each \(\mathrm{P}^{7}\) is a bridged \(5-15\) membered bicyclic heterocyclic ring that is attached to the remainder of the compound of formula I through one N -link and through one C -link; wherein the ring is optionally substituted with one or more groups independently selected from \(R^{P 6}\) and \(R^{P 11}\);
each \(\mathrm{P}^{8}\) is independently a ring of the formula:

wherein:
ps is \(2,3,4,5\), or 6 ;
each \(R^{\mathrm{P} 13}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups; where in at least one case two groups \(\mathrm{R}^{\mathrm{P} 13}\) that are attached to the same carbon are taken together with the carbon to which they are attached and form a 4-6 membered heterocyclic ring;
each \(\mathrm{P}^{10}\) is independently:

wherein:
X is selected from \(\mathrm{O}, \mathrm{S}, \mathrm{S}(\mathrm{O}), \mathrm{SO}_{2}, \mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{P10}}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{P} 10}\right)_{2}\);
provided that when pn or pm is \(0, \mathrm{X}\) is selected from \(\mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{P} 10}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{P} 10}\right)_{2}\);
each \(R^{P 10}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-N R^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused threeto six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
each \(R^{P 5}\) and \(R^{P 6}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
pq and ps are independently \(0,1,2,3\), or 4 ;
pm and pn are independently 0,1 , or 2 ;
po and pp are independently 1,2 , or 3 ;
each \(\mathrm{P}^{11}\) is independently:

wherein:
\(X\) is selected from \(\mathrm{O}, \mathrm{S}, \mathrm{S}(\mathrm{O}), \mathrm{SO}_{2}, \mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{P} 10}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{P} 10}\right)_{2}\); provided that when pn or pm is \(0, \mathrm{X}\) is selected from \(\mathrm{CH}_{2}, \mathrm{CHR}^{\mathrm{P} 10}\), and \(\mathrm{C}\left(\mathrm{R}^{\mathrm{P} 10}\right)_{2}\); each \(\mathrm{R}^{\mathrm{P} 10}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-\mathrm{NR}^{\mathrm{Pa}} \mathrm{R}^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused threeto six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
each \(R^{P 5}\) and \(R^{P 6}\) is independently selected from alkoxy, alkyl, aryl, halo, haloalkyl, hydroxy, and \(-N R^{P a} R^{\mathrm{Pb}}\), wherein the alkyl can optionally form a fused three-to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
pq and ps are independently \(0,1,2,3\), or 4 ;
pm and pn are independently 0,1 , or 2 ;
po and pp are independently 1,2 , or 3 ;
each \(-\mathrm{Z}^{0}-\) is \(-\mathrm{C}(=\mathrm{O})\) - or \(-\mathrm{C}(=\mathrm{S})\)-;
each \(E^{0}\) is independently \(-N R^{E c} R^{E d}\) wherein
\(\mathrm{R}^{\mathrm{Ec}}\) and \(\mathrm{R}^{\mathrm{Ed}}\) are each independently selected from hydrogen, alkenyloxycarbonyl, alkoxyalkylcarbonyl, alkoxycarbonyl, alkyl, alkylcarbonyl, alkylsulfonyl, aryl, arylalkoxycarbonyl, arylalkyl, arylalkylcarbonyl, arylcarbonyl, aryloxycarbonyl, arylsulfonyl, cycloalkyl, cycloalkylsulfonyl, formyl, haloalkoxycarbonyl, heterocyclyl, heterocyclylalkoxycarbonyl, heterocyclylalkyl, heterocyclylalkylcarbonyl, heterocyclylcarbonyl,
heterocyclyloxycarbonyl, hydroxyalkylcarbonyl, (\(\mathrm{NR}^{\mathrm{e}} \mathrm{R}^{\boldsymbol{f}}\))alkyl, (\(\mathrm{NR}^{c} \mathrm{R}^{f}\))alkylcarbonyl, (\(\mathrm{NR}^{c} \mathrm{R}^{f}\))carbonyl, (\(\mathrm{NR}^{e} \mathrm{R}^{f}\)) sulfonyl, \(-\mathrm{C}(\mathrm{NCN}) \mathrm{OR}^{\prime}\), and - \(\mathrm{C}(\mathrm{NCN}) \mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}\), wherein \(\mathrm{R}^{\prime}\) is selected from alkyl and unsubstituted phenyl, and wherein the alkyl part of the arylalkyl, the arylalkylcarbonyl, the heterocyclylalkyl, and the heterocyclylalkylcarbonyl are further optionally substituted with one \(-\mathrm{NR}^{c} \mathrm{R}^{\mathrm{f}}\) group; and wherein the aryl, the aryl part of the arylalkoxycarbonyl, the arylalkyl, the arylalkylcarbonyl, the arylcarbonyl, the aryloxycarbonyl, and the arylsulfonyl, the heterocyclyl, and the heterocyclyl part of the heterocyclylalkoxycarbonyl, the heterocyclylalkyl, the heterocyclylalkylcarbonyl, the heterocyclylcarbonyl, and the heterocyclyloxycarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro;
each \(\mathrm{V}^{0}\) is independently H , alkyl, arylalkyl, alkenyl, CO, cycloalkylalkyl, cycloalkyl, alkoxyalkyl, alkoxyalkylcarbonylalkyl, alkoxycarbonylalkyl, alkylsulfanylalkyl, aryalkoxyalkylcarbonylalkyl, carboxyalkyl, heterocyclylalkyl, heterocyclylcarbonylalkyl, hydroxyalkyl, NRRCOalkyl;
and where in arylalkyl the alkyl can be substituted with up to three aryl groups, and the alkyl part of the arylalkyl is further optionally substituted with one or two additional groups independently selected from alkoxy, alkyocarbonyloxy, halo, haloalkoxy, haloalkyl, heterocyclyl, hydroxy;
and the aryl part can be substituted with \(1,2,3,4\), or 5 substituents independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, alkylcarbonyl, a second aryl group, arylalkoxy, arylalkyl, arylcarbonyl, cyano, halo, haloalkoxy, haloalkyl, heterocyclyl, heterocyclylalkyl, heterocyclylcarbonyl, hydroxy, hydroxyalkyl, nitro, \(-\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}},-\) \(\left(\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{Y}\right.\))alkyl, oxo, and \(-\mathrm{P}(\mathrm{O}) \mathrm{OR}_{2}\), wherein each R is independently selected from hydrogen and alkyl; and wherein the alkyl part of the arylalkyl and the heterocyclylalkyl are unsubstituted and wherein the second aryl group, the aryl part of the arylalkyl, the aryl part of the arylcarbonyl, the heterocyclyl, and the heterocyclyl part of the heterocyclylalkyl and the heterocyclylcarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro; and the heterocyclyl can be substituted with \(1,2,3,4\), or 5 substituents independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylcarbonyl, cyano, halo, haloalkoxy, haloalkyl, a second heterocyclyl group, heterocyclylalkyl, heterocyclylcarbonyl, hydroxy, hydroxyalkyl, nitro, \(-\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{Y}\), \(\left(\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}\right.\))alkyl, and oxo, wherein the alkyl part of the arylalkyl and the heterocyclylalkyl are
unsubstituted and wherein the aryl, the aryl part of the arylalkyl; the aryl part of the arylcarbonyl, the second heterocyclyl group, and the heterocyclyl part of the heterocyclylalkyl and the heterocyclylcarbonyl are further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro;
each \(V^{1}\) is independently cyanoalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{2}\) is independently haloalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;
each \(\mathrm{V}^{3}\) is independently alkyl, which is substituted with one or more oxo, and which is optionally substituted with one or more groups independently selected from cycloalkyl, halo, aryl, alkenyl, and cyano;
each \(V^{4}\) is independently haloalkoxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(N R^{a} R^{b} C(=O) O-; R^{a}\) and \(R^{b}\) are each independently selected from hydrogen, alkenyl, and alkyl; and
each \(V^{5}\) is independently alkylsulfonylalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, heterocycle, heteroaryl, hydroxy, and \(N R^{V_{a}} R^{\mathrm{Vb}} \mathrm{C}(=0) O-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl;

In one embodiment the invention provides a compound of formula (Ie) wherein \(\mathrm{Y}^{2}\) is:

wherein \(\mathrm{X}-\mathrm{X}\) is selected from \(\mathrm{O}, \mathrm{CH}_{2}, \mathrm{CH}=\mathrm{CH}, \mathrm{CH}_{2}-\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{O}, \mathrm{O}-\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\), and \(\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}\).

In one embodiment the invention provides a compound of formula (Ie) which is selected from:

wherein X -X is selected from \(\mathrm{O}, \mathrm{CH}_{2}, \mathrm{CH}=\mathrm{CH}, \mathrm{CH}_{2}-\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{O}, \mathrm{O}-\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\), and \(\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}\); or a pharmaceutically acceptable salt, or prodrug thereof.

\section*{Specific values for \(E, P, V\), and \(Z\)}

In another specific embodiment of the invention each \(E\) is \(E^{0}\).
In another specific embodiment of the invention each E is \(-\mathrm{NHC}(=\mathrm{O})\) Oalkyl.
In another specific embodiment of the invention \(\mathrm{E}^{0}\) is methoxycarbonylamino.
In one embodiment the invention \(\mathrm{E}^{0}\) is - NH2, alkylamino or dialkylamino.
In one embodiment the invention \(\mathrm{E}^{0}\) is cycloalkylamino or cycloalkyl(alkyl)amino, or dicycloalkylamino.

In one embodiment the invention \(\mathrm{E}^{0}\) is heterocyclyl.
In one embodiment the invention \(\mathrm{E}^{0}\) is heterocyclylamino where the amino is optionally substituted with alkyl.

In one embodiment the invention provides a compound of formula (I) wherein at least one \(E^{0}\) is \(-N R^{E c} R^{E d}\) wherein \(R^{E c}\) is \(H\) and \(R^{E d}\) is methoxycarbonyl.

In one embodiment the invention provides a compound of formula (I) wherein at least one \(E^{0}\) is \(-N R^{E c} R^{E d}\) wherein \(R^{E c}\) is \(H\) or alkyl and \(R^{E d}\) is \(H\) or alkyl.

In one embodiment the invention provides a compound of formula (I) wherein at least one \(E^{0}\) is \(-N R^{E c} R^{E d}\) wherein \(R^{E c}\) is \(H\), alkyl or cycloalkyl and \(R^{E d}\) is cycloalkyl.

In one embodiment the invention provides a compound of formula (I) wherein at least one \(\mathrm{E}^{0}\) is an N -linked heterocyclyl.

In one embodiment the invention provides a compound of formula (I) wherein at least one \(E^{0}\) is \(-N R^{E c} R^{E d}\) wherein \(R^{E c}\) is \(H\), alkyl, or cycloalkyl; and \(R^{E d}\) is heterocycle.

In another specific embodiment of the invention P is selected from:

wherein \(R\) "' is hydrogen or methyl.
In another specific embodiment of the invention \(P\) is selected from

and another P is \(\mathrm{P}^{0}\).
In another specific embodiment of the invention \(P\) is selected from

wherein \(\mathrm{R}^{\prime \prime}\) ' is hydrogen or methyl; and another P is \(\mathrm{P}^{0}\).
In another specific embodiment of the invention \(P\) is selected from:

In another specific embodiment of the invention at least one \(P\) is \(P^{7}\) and is:

In another specific embodiment of the invention at least one \(P\) is \(P^{8}\) and is:

In another specific embodiment of the invention P is \(\mathrm{P}^{10}\) and is:

In another specific embodiment of the invention P is \(\mathrm{P}^{11}\) and is:

In another specific embodiment of the invention each \(P\) is independently selected from:

In another specific embodiment of the invention \(\mathrm{P}^{0}\) is

In another specific embodiment of the invention \(\mathrm{P}^{7}\) is a [2.2.1] or a [2.2.2] ring system. In another specific embodiment of the invention \(\mathrm{P}^{7}\) is

optionally substituted with one or more groups independently selected from \(R^{P 6}\) and \(R^{P 11}\).
In another specific embodiment of the invention P is selected from:

and

In another specific embodiment of the invention P is selected from:

In another specific embodiment of the invention \(P\) is selected from:

In another specific embodiment of the invention P is:

In another specific embodiment of the invention \(P\) is:

In another specific embodiment of the invention P is:

In another specific embodiment of the invention P is:

In another specific embodiment of the invention \(P\) is selected from:

and

In another specific embodiment of the invention \(P\) is selected from:

 and

In another specific embodiment of the invention P is selected from:

wherein \(R\) is hydrogen or methyl and \(n p\) is 0 or 1 .
In another specific embodiment of the invention P is selected from:

wherein X is O or S ; and Het is a heterocycle.
In another specific embodiment of the invention P is selected from:

In another specific embodiment of the invention P is:

In another specific embodiment of the invention \(P\) is selected from:

wherein \(R_{a}\) is hydrogen or methyl and \(R_{b}\) is methyl, or ethyl.
In another specific embodiment of the invention \(P\) is selected from:

In another specific embodiment of the invention \(P\) is selected from:

In another specific embodiment of the invention \(P\) is selected from:

In another specific embodiment of the invention \(P\) is selected from:

In another specific embodiment of the invention \(P\) is selected from:

In another specific embodiment of the invention \(P\) is selected from:

In another specific embodiment of the invention \(P\) is selected from:

In another specific embodiment of the invention P is selected from:

wherein X is O or S ; \(\mathrm{R}_{1 \mathrm{p}}\) and \(\mathrm{R}_{2 \mathrm{p}}\) are carbon linked and when taken together form a 4-6
membered heterocycle; \(\mathrm{R}_{3 \mathrm{p}}\) is alkyl or cycloalkyl; and \(\mathrm{R}_{4 \mathrm{p}}\) is hydrogen, methyl, or cyclopropyl.
In another specific embodiment of the invention P is \(\mathrm{P}^{0}\) and is selected from:

wherein R is alkyl.
In another specific embodiment of the invention when \(P\) is a divalent group that is linked through a nitrogen of \(P\) and through a carbon of \(P\), it is the nitrogen of \(P\) that is connected to \(Z\).

In another specific embodiment of the invention each V is \(\mathrm{V}^{0}\).
In another specific embodiment of the invention each V is alkyl.
In another specific embodiment of the invention each V is isopropyl.
In another specific embodiment of the invention each \(V\) is isobutyl.
In another specific embodiment of the invention each V is \(\mathrm{V}^{2}\).
In another specific embodiment of the invention each V is haloalkyl.
In another specific embodiment of the invention each \(V\) is independently selected from \(\mathrm{V}^{0}, \mathrm{~V}^{1}, \mathrm{~V}^{2}, \mathrm{~V}^{3}, \mathrm{~V}^{4}\), and \(\mathrm{V}^{5}\).

In another specific embodiment of the invention at least one V is selected from:

In another specific embodiment of the invention at least one V is selected from:

In another specific embodiment of the invention at least one \(V\) is selected from:

In another specific embodiment of the invention at least one V is selected from:

In another specific embodiment of the invention at least one \(V\) is selected from:

In another specific embodiment of the invention at least one V is selected from:

In another specific embodiment of the invention at least one \(V\) is selected from:

In another specific embodiment of the invention at least one \(V\) is selected from:

In another specific embodiment of the invention at least one V is selected from:

In another specific embodiment of the invention at least one \(V\) is:

In another specific embodiment of the invention at least one \(V\) is selected from:

In another specific embodiment of the invention at least one \(V\) is selected from:

In another specific embodiment of the invention at least one \(V\) is selected from:

In another specific embodiment of the invention at least one V is:

In another specific embodiment of the invention each V is:

In another specific embodiment of the invention each \(\mathrm{V}^{\mathbf{2}}\) is independently haloalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=0) \mathrm{O}-; \mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl; and each \(\mathrm{V}^{4}\) is independently haloalkoxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}\)-; \(R^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl.

In another specific embodiment of the invention each \(\mathrm{V}^{0}\) is independently arylalkyl or heterocyclylalkyl, wherein arylalkyl can be substituted with up to three aryl groups, and the alkyl part of the arylalkyl is further optionally substituted with one or two additional groups independently selected from alkoxy, alkyocarbonyloxy, halo, haloalkoxy, haloalkyl, heterocyclyl, hydroxy; and the aryl part can be substituted with \(1,2,3,4\), or 5 substituents independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, alkylcarbonyl, a second aryl group, arylalkoxy, arylalkyl, arylcarbonyl, cyano, halo, haloalkoxy, haloalkyl, heterocyclyl, heterocyclylalkyl, heterocyclylcarbonyl, hydroxy, hydroxyalkyl, nitro, - \(\mathrm{NR}^{\mathrm{X}} \mathrm{R}^{\mathrm{Y}}\), \(\left(N R^{X} R^{Y}\right)\) alkyl, oxo, and \(-P(O) O R_{2}\), wherein each \(R\) is independently selected from hydrogen and alkyl; and wherein the alkyl part of the heterocyclylalkyl is further optionally substituted with one, two, or three substituents independently selected from alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, and nitro; and the heterocyclyl can be substituted with \(1,2,3,4\), or 5 substituents independently selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylcarbonyl, cyano, halo, haloalkoxy, haloalkyl, a second
heterocyclyl group, heterocyclylalkyl, heterocyclylcarbonyl, hydroxy, hydroxyalkyl, nitro, \(N R^{X}{ }{ }^{Y}\), -(\(N R^{X}{ }^{Y}{ }^{Y}\))alkyl, and oxo.

In another specific embodiment the invention each V is isobutyl.
In another specific embodiment the invention at least one V is isobutyl.
In another specific embodiment the invention at least one V is phenylmethyl where the Z and E groups are each connected to the methyl group (i.e. \(-\mathrm{CH}(\mathrm{Ph})-\)).

In another specific embodiment the invention at least one V is \(\mathrm{V}^{0}\) and at least one \(\mathrm{V}^{0}\) is phenylmethyl where the \(Z\) and \(E\) groups are each connected to the methyl group and the phenyl can be substitituted as described in the description for the \(V^{0}\) aryl group.

In another specific embodiment the invention at least one \(\mathrm{V}^{0}\) is arylmethyl where the Z and \(E\) groups are each connected to the methyl group and the aryl can be substitituted as described in the description for the \(\mathrm{V}^{0}\) aryl group.

In another specific embodiment the invention at least one V is \(\mathrm{V}^{0}\) and at least one \(\mathrm{V}^{0}\) is heterocyclylmethyl where the Z and E groups are each connected to the methyl group.

In another specific embodiment the invention at least one V is \(\mathrm{V}^{0}\) and at least one \(\mathrm{V}^{0}\) is heterocyclylmethyl where the Z and E groups are each connected to the methyl group and the heterocyclyl group can be substitituted as described in the description for the \(\mathrm{V}^{0}\) heterocyclyl group.

In another specific embodiment the invention each \(\mathrm{V}^{2}\) is independently haloalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=0) \mathrm{O}\)-; \(\mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl.

In another specific embodiment the invention each \(\mathrm{V}^{4}\) is independently haloalkoxyalkyl, which is optionally substituted with one or more groups independently selected from cycloalkyl, alkoxy, haloalkoxy, cycloalkenyl, hydroxy, and \(\mathrm{NR}^{\mathrm{Va}} \mathrm{R}^{\mathrm{Vb}} \mathrm{C}(=\mathrm{O}) \mathrm{O}\)-; wherein \(\mathrm{R}^{\mathrm{Va}}\) and \(\mathrm{R}^{\mathrm{Vb}}\) are each independently selected from hydrogen, alkenyl, and alkyl.

In another specific embodiment of the invention each \(Z\) is \(Z^{0}\).
In another specific embodiment of the invention each \(Z\) is \(-\mathrm{C}(=0)\).
For the compounds of formula (I) described herein, including the compounds of formulae (Ia), (Ib), (Ic), (Id), and (Ie), any of the above specific values or embodiments for the variables \(\mathrm{E}, \mathrm{P}, \mathrm{V}\), and Z , can be applied. Thus, the invention also includes specific embodiments wherein one or more of the specific values or embodiments for \(\mathrm{J}, \mathrm{T}, \mathrm{P}, \mathrm{W}, \mathrm{L}, \mathrm{M}, \mathrm{A}, \mathrm{R} 9, \mathrm{E}, \mathrm{P}, \mathrm{V}\), and \(Z\) described herein are combined with one of formulae (Ia), (Ib), (Ic), (Id), and (Ie), to provide a sub-set of compounds that represents a specific embodiment of the invention.

For example, by selecting a compound of formula (la9) above, along with specific values for \(P, M, W\), and \(V\) identified herein, one can identify a specific embodiment the invention which is a compound of formula (Ia9):

wherein:
W is

one M is imidazolyl and one M is benzimidazolyl;
one P is \(\mathrm{P}^{7}\) and is:

one \(P\) is \(P^{8}\) and is:

one V is selected from:

one \(V\) is:

The invention provides all such combinations as specific embodiments of the invention.

\section*{Synthetic Intermediates}

The invention also provides synthetic processes and novel synthetic intermediates disclosed herein. For example, the invention provides the following specific intermediate compounds that are useful for preparing compounds of formula (I):

2-Amino-4-(2,2,2-trifluoroethoxy)butyric acid methyl ester

2-Methoxycarbonylamino-4-(2,2,2-trifluoro-ethoxy)butyric acid

2-Amino-5,5,5-trifluoropentanoic acid methyl ester

5,5,5-Trifluoro-2-methoxy-
carbonylamino-pentanoic acid
3-Difluoromethoxy-2-methoxycarbonylaminobutyric acid methyl ester

2,6-bis(tri-n-butylstannyl)-benzo[1,2-b:4,5-b]]dithiophene

2-5 \(5-(6-\{2\{\) [pyrrolidin-2-yl]-3H-imidazol-4-yl\}
benzo[1, 2-b:4,5-b]dithiophene-2-yl)-1 H -imidazol-2-ylf pyrrolidine tetrahydrochloride

(s)-3-Methoxy-2-methoxycarbonylamino-3-methyHbutyric acid

(R)-(4-Fhuoro-phenyl) methoxycarbonylamino-acetic acid

(S) - (4-Fhworo-phenyl)-methoxycarbonylamino-acatic acid

(S)-4-Cyano-2-methoxycarbonylaminobutyric acdd

2-[5-(4-Bromo-phenyl)-1H-imidazol-
2-ylf-4-difluoromethoxy-pyrolidine-
1-carboxylic acid tert-butyl ester

5-(4-Bromo-phenyl)-2-(4-difluoromethoxy-pyrrolidin-2-yl)-1H-imidazole

5,10-Dihydro-chromeno
[5,4,3-cde]chromene-2,7-diol

2\{5-[6-(4-\{2-\{4-Difluoromethoxy-1-(2-methoxy carbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl)-phenyl)-naphthalen-2-yl]-1H-imidazol-2-yll-pyrrolidine-1-carboxylic acid tert-butyl ester

\{1-4-Difluoromethoxy-2-(5-\{4-[6-(2-pyriolidin-2-yl-3H-
imidazol-4-yl)-naphthalen-2-ylj-phenyl\}-1H-imidazol-2-yl)-pyrrolidine-1-carbonyl]-2-methyl-propylf-carbamic acid methyl ester

Dimethylcarbamoyloxy-phenyl- Dimethylcarbamoyloxyacetic acid methylester phenyl-acetic acid

Dimethyicarbamoyloxy-Dimethylcarbamoyloxy-phenylacetic acid methyl ester
phenyl-acetic acid

Trifluoro-methanesulfonic acid 7-trifluoro methanesulfonyloxy-5,10-dihydrochromeno \([5,4,3-c d e] c h r o m e n-2-y l\) ester

\{1-[6-(4-\{6-[4-(2-tert-Butoxycarbonylamino-acetyl)-phenyl]-naphthalen-2-y]\} 1H-imidazol-2-yl)-5-aza-spiro[2.4]heptane-5-carbonyl]-2-methyl-propyl) carbamic acid methyl ester

\{1- \(2-(4-\{6-[4\) (2-tert-Butoxycarbonylamino-acetyl)-phenyl\}-naphthalen-2-yl\}-1H-imidazol-2-yl)-pyrolidine-1-cabonyl]-2-methyl-propyl-canamic acid methyl ester

2-\{5-[4-(6-\{2-[5-(2-Methoxycarbonylamino-3-methyl-butyryl)-5-azaspiro \([2.4]\) hept -6 -ylf 1 H-imidazol-4-yl\}-naphthalen-2-yl)-phenylf 1 H -imidazol-2-ylf-thiazolidine-3-carboxylic acid tert-butyl ester

1-\{2-\{5-(6-\{2-11-carbamic acid tert. buty ester-pyrrolidin-2-yl\}-3H-imidazol-4-y \(\}-4,8\)-dimethyl-1,5-dithia-s-indacen-2-y \()\)-1 \(H\) -imidazol-2-yl|-pyrolidine-1-carbamic acid tert.butyl ester

1-\{2-[5-(6-\{2-[1-carbamic acid tert. buty ester-pyrmolidin-2-y \(]\)-3H-imidazol-
4-yß-4,8-dimethoxy-1,5-dithia-s-indacen-2-yl)-1H-imidazol-2-yl)-pyrrolidine-1-carbamic acid tert.butyl ester

4,8-Dimethyl-1,5-dithia-s-indacene

(1-\{2-[5-(4-Bromo-phenyl)-1 H -imidazol-2-yl]-4-oxo-pyrrolidine-1-carbonyl)-2-methyt propyl)-carbamic acid methyl ester

2-[5-(6-Bromo-naphthalen-2-yl)-1H-imidazol-2-y|]-4-cyano-pyrrolidine-1-carboxylic acid tert-butyl ester

[5-(4-Bromo-phenyl)-1 H -imidazolcarboxylic acid tert-butyl ester

4-Cyano-2-\{5-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenylf-1 H -imidazol-2-yl\}-pyrrolidine-1-carboxylic acid tert-butyl ester

4-Methoxymethyl-pyrrolidine-1,2dicarboxylic acid 2-[2-(4-bromo-phenyl)-2-oxo-ethyl] ester 1-tert-butyl ester

2-[5-(4-Bromo-phenyl)-1H-imidazol-2-yl]-4-methoxymethyl-pyrrolidine-1-carboxylic acid tertbutyl ester

4-Difluoromethoxymethyl-pyrolidine-1,2-dicarboxylic acid 1-tert-butyl ester 2-methyl ester

MeO -
(1-2-[5-(4-Bromo-phenyl)-1H-imidazol-2-
y]-4-methoxymethy-pyrrolidine-1-carbonyl\}-2-methy-propyl)-carbamic acid methyl ester

4-Difluoromethoxymethyt pyrrolidine-1,2-dicarboxylic acid 1-tert-butyl ester

(1-2-[5-(4-Bromo-phenyl)-1H-imidazol-2-yl]-4-difluoromethoxymethyl-pyrrolidine-1-carbonyl\}-2-methyt-propyl)-carbamic acid methyl ester

Pyrrolidine-1,2-dicarboxylic acid 1-tertbutyl ester 2-[2-(3a,6a-dihydro-thieno[3,2-b]thiophen-2-yl)-2-oxo-ethyl] ester

Pyrrolidine-1,2-dicarboxylic acid 2-[2-(5-bromo-3a,6a-dihydro-thieno \([3,2-\mathrm{b}]\) thiophen-
2-yl)-2-oxo-ethyl] ester 1 -tert-butyl ester

2-[5-(5-Bromo-3a,6a-dihydro-thieno[3,2b] thiophen-2-yl)-1 H -imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester

(1-\{2-[5-(5-Bromo-3a,6a-dihydro-thieno[3,2b] thiophen-2-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester

\{1-[2-(5-Ethynyl-1 1 -imidazol-2-yl)-pyrrolidine-1-carbonylf-2-methytpropylfcarbamic acid methyl ester

(1-\{2-[5-(6-Ethynyl-naphthalen-2-y))-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyt-propyl)-carbamic acid methyl ester

(1 22 -[5-(4-Ethynyl-phenyl)-1H-imidazol-2-yll-4,4-difluoro-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester

(1-6-55-(6-Bromo-naphthalen-2-yl)-1H-imidazol
2-yl)-5-aza-spiro[2.4]heptane-5-carbonyl)-2-methyl-propyl)-carbamic acid methyl ester

2-Methyl-1-(6-\{5-[6-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-naphthalen-2-yl]-1H-imidazol-2-y \(]\)-5-aza-spiro[2.4]heptane-5-carbonyl)-propyl-carbamic acid methyl ester

NC

2-Bromo-9,9-difluoro-7-iodo-9H-fluorene
(1-\{2-[5-(4-Bromo-phenyl)-1H-imidazol-2-yl)-4-cyano-pyrrolidine-1-carbonyl\}-3-
methanesulfonyl-propyl)-carbamic acid methyl ester

2-[4-Ethynyl-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester

[1-(4-Methoxymethyl-2\{5-[4-(4,4,5,5-tetramethy)-[1,3,2]dioxaborolan-2-yl)-phenyll-1H-imidazol-2-yl\} pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester

4-Difluoromethoxymethyl-pyrrolidine-1,2-dicarboxylic acid 2-[2-(4-bromo-phenyl)-2-oxo-ethyl] ester 1-tert-butyl ester

4,4-Difluoro-pyrrolidine-1,2-dicarboxylic acid 2-[2-(6-bromo-naphthalen-2-yl)-2-oxo-ethyl] ester 1-tert-butyl ester

1-(3a,6a-Dihydro-thieno[3,2-b]thiophen-2-yl)ethanone

2-[5-(4-Bromo-phenyl)-1 H-imidazol-2-yl]-4-difluoromethoxymethyl-pyrolidine-1-carboxylic acid tert-butyl ester

2-[2-(4-Bromo-phenyl)-2-oxo-ethylcarbamoyl]-4-cyano-pyrrolidine-1-carboxylic acid tertbutyl ester

1-(7-Bromo-9,9-difluoro-9H-fluoren-2-yl)-2-chloro-ethanone

2-\{5-[5-(4,4,5,5-Tetramethy-[1,3,2]dioxaborolan-2-yl)-3a,6a-dihydro-thieno[3,2-b]thiophen-2-yl]-1H-imidazol-2-yl\}-pyrrolidine-1-carboxylic acid tert-butyl ester

6-[5-(6-Bromo-naphthalen-2-yl)-1 H -imidazol-2-yl]-5-aza-spiro[2.4]heptane-5-carboxylic acid benzyl ester

2-14-(4-Bromo-phenyl)-1-(2-trimethyisilanyl-ethoxymethyl)-1 H-imidazol-2-yl)-4-(2-methoxy-ethoxy)-pyrrolidine-1-carboxylic acid tert-butyl ester

5-(4-Bromo-phenyl)-2-[4-(2-methoxy-ethoxy)-pyrrolidin-2-ylf-1H-imidazole

[1-(4-(2-Methoxy-ethoxy)-2-(5-14-(4,4,5,5-tetramethy-[1,3,2]dioxaborolan-2-yl)-pheny \(]\)-1 1 -imidazol 2 -y \(\}\)-pyrrolidine i-carbonyl)-2-methyt-propyl -carbamic acid methyl ester

2-4-(4-Bromo-phenyl)-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazol-2-yl-4-(pyrazin-2-yloxy)-pyrolidine-1-carboxylic acid tert-butyl ester

(1-[2-[5-(4-Bromo-phenyl)-1 H -imidazol-2-yl]-4-(pyrazin-2-yloxy)-pyrtolidine-1-carbonyl]-2-methyl-propylf-cabamic acid methyl ester

[2-Methyl-1-(4-(pyrazin-2-yloxy)-2-\{5-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl)-1 1 -imidazol-2-yl)-pyrrolidine-1-carbonyl)-propyl]-carbamic acid methyl ester

\{1- \(2-[5-(4-\) Bromo-phenyl) -1 H-imidazol-2-y \(]-\) 40-(2-methoxy ethoxy)-pyrrolidine-1-carbonyl) 2-methyl-propylf-carbamic acid methyl ester

4-Difuoromethoxy-pyrrolidine-1,2. dicarboxylic acid 2-[2-(4-bromo-phenyl)-2-oxo-ethyl ester 1 tert-butyl ester
 2-yl)-pyrrolidin-3-yloxy-pyrazine

\section*{Exemplary Methods of Making the Compounds of the Invention.}

The invention also relates to methods of making the compositions of the invention. The compositions are prepared by any of the applicable techniques of organic synthesis. Many such techniques are well known in the art. However, many of the known techniques are elaborated in Compendium of Organic Synthetic Methods (John Wiley \& Sons, New York), Vol. 1, Ian T. Harrison and Shuyen Harrison, 1971; Vol. 2, Ian T. Harrison and Shuyen Harrison, 1974; Vol. 3, Louis S. Hegedus and Leroy Wade, 1977; Vol. 4, Leroy G. Wade, Jr., 1980; Vol. 5, Leroy G. Wade, Jr., 1984; and Vol. 6, Michael B. Smith; as well as March, J., Advanced Organic Chemistry, Third Edition, (John Wiley \& Sons, New York, 1985), Comprehensive Organic Synthesis. Selectivity, Strategy \& Efficiency in Modern Organic Chemistry. In 9 Volumes, Barry M. Trost, Editor-in-Chief (Pergamon Press, New York, 1993 printing). Other methods suitable for preparing compounds of the invention are described in International Patent Application Publication Number WO 2006/020276.

A number of exemplary methods for the preparation of the compositions of the invention are provided in the schemes and examples below. These methods are intended to illustrate the nature of such preparations and are not intended to limit the scope of applicable methods.

Generally, the reaction conditions such as temperature, reaction time, solvents, work-up procedures, and the like, will be those common in the art for the particular reaction to be performed. The cited reference material, together with material cited therein, contains detailed descriptions of such conditions. Typically the temperatures will be \(-100^{\circ} \mathrm{C}\) to \(200^{\circ} \mathrm{C}\), solvents will be aprotic or protic, and reaction times will be 10 seconds to 10 days. Work-up typically consists of quenching any unreacted reagents followed by partition between a water/organic layer system (extraction) and separating the layer containing the product.

Oxidation and reduction reactions are typically carried out at temperatures near room temperature (about \(20^{\circ} \mathrm{C}\)), although for metal hydride reductions frequently the temperature is reduced to \(0^{\circ} \mathrm{C}\) to \(-100^{\circ} \mathrm{C}\), solvents are typically aprotic for reductions and may be either protic or aprotic for oxidations. Reaction times are adjusted to achieve desired conversions.

Condensation reactions are typically carried out at temperatures near room temperature, although for non-equilibrating, kinetically controlled condensations reduced temperatures \(\left(0^{\circ} \mathrm{C}\right.\) to \(-100^{\circ} \mathrm{C}\)) are also common. Solvents can be either protic (common in equilibrating reactions) or aprotic (common in kinetically controlled reactions).

Standard synthetic techniques such as azeotropic removal of reaction by-products and use of anhydrous reaction conditions (e.g., inert gas environments) are common in the art and will be applied when applicable.

The terms "treated", "treating", "treatment", and the like, when used in connection with a chemical synthetic operation, mean contacting, mixing, reacting, allowing to react, bringing into contact, and other terms common in the art for indicating that one or more chemical entities is treated in such a manner as to convert it to one or more other chemical entities. This means that "treating compound one with compound two" is synonymous with "allowing compound one to react with compound two", "contacting compound one with compound two", "reacting compound one with compound two", and other expressions common in the art of organic synthesis for reasonably indicating that compound one was "treated", "reacted", "allowed to react", etc., with compound two. For example, treating indicates the reasonable and usual manner in which organic chemicals are allowed to react. Normal concentrations \((0.01 \mathrm{M}\) to 10 M , typically 0.1 M to 1 M\()\), temperatures \(\left(-100^{\circ} \mathrm{C}\right.\) to \(250^{\circ} \mathrm{C}\), typically \(-78^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\), more typically \(-78^{\circ} \mathrm{C}\) to \(100^{\circ} \mathrm{C}\), still more typically \(0^{\circ} \mathrm{C}\) to \(100^{\circ} \mathrm{C}\)), reaction vessels (typically glass, plastic, metal), solvents, pressures, atmospheres (typically air for oxygen and water insensitive reactions or nitrogen or argon for oxygen or water sensitive), etc., are intended unless otherwise indicated. The knowledge of similar reactions known in the art of organic synthesis is used in selecting the conditions and apparatus for "treating" in a given process. In particular, one of ordinary skill in the art of organic synthesis selects conditions and apparatus reasonably expected to successfully carry out the chemical reactions of the described processes based on the knowledge in the art.

Modifications of each of the exemplary schemes and in the Examples (hereafter "exemplary schemes") leads to various analogs of the specific exemplary materials produce. The above-cited citations describing suitable methods of organic synthesis are applicable to such modifications.

In each of the exemplary schemes it may be advantageous to separate reaction products from one another and/or from starting materials. The desired products of each step or series of steps is separated and/or purified (hereinafter separated) to the desired degree of homogeneity by the techniques common in the art. Typically such separations involve multiphase extraction, crystallization from a solvent or solvent mixture, distillation, sublimation, or chromatography.

Chromatography can involve any number of methods including, for example: reverse-phase and normal phase; size exclusion; ion exchange; high, medium, and low pressure liquid chromatography methods and apparatus; small scale analytical; simulated moving bed (SMB) and preparative thin or thick layer chromatography, as well as techniques of small scale thin layer and flash chromatography.

Another class of separation methods involves treatment of a mixture with a reagent selected to bind to or render otherwise separable a desired product, unreacted starting material, reaction by product, or the like. Such reagents include adsorbents or absorbents such as activated carbon, molecular sieves, ion exchange media, or the like. Alternatively, the reagents can be acids in the case of a basic material, bases in the case of an acidic material, binding reagents such as antibodies, binding proteins, selective chelators such as crown ethers, liquid/liquid ion extraction reagents (LIX), or the like.

Selection of appropriate methods of separation depends on the nature of the materials involved. For example, boiling point, and molecular weight in distillation and sublimation, presence or absence of polar functional groups in chromatography, stability of materials in acidic and basic media in multiphase extraction, and the like. One skilled in the art will apply techniques most likely to achieve the desired separation.

A single stereoisomer, e.g., an enantiomer, substantially free of its stereoisomer may be obtained by resolution of the racemic mixture using a method such as formation of diastereomers using optically active resolving agents (Stereochemistry of Carbon Compounds, (1962) by E. L. Eliel, McGraw Hill; Lochmuller, C. H., (1975) J. Chromatogr., 113, 3) 283 302). Racemic mixtures of chiral compounds of the invention can be separated and isolated by any suitable method, including: (1) formation of ionic, diastereomeric salts with chiral compounds and separation by fractional crystallization or other methods, (2) formation of diastereomeric compounds with chiral derivatizing reagents, separation of the diastereomers, and conversion to the pure stereoisomers, and (3) separation of the substantially pure or enriched stereoisomers directly under chiral conditions.

Under method (1), diastereomeric salts can be formed by reaction of enantiomerically pure chiral bases such as brucine, quinine, ephedrine, strychnine, \(\alpha\)-methyl- \(\beta\)-phenylethylamine (amphetamine), and the like with asymmetric compounds bearing acidic functionality, such as carboxylic acid and sulfonic acid. The diastereomeric salts may be induced to separate by fractional crystallization or ionic chromatography. For separation of the optical isomers of amino compounds, addition of chiral carboxylic or sulfonic acids, such as camphorsulfonic acid, tartaric acid, mandelic acid, or lactic acid can result in formation of the diastereomeric salts.

Alternatively, by method (2), the substrate to be resolved is reacted with one enantiomer of a chiral compound to form a diastereomeric pair (Eliel, E. and Wilen, S. (1994) Stereochemistry of Organic Compounds, John Wiley \& Sons, Inc., p. 322). Diastereomeric compounds can be formed by reacting asymmetric compounds with enantiomerically pure chiral derivatizing reagents, such as menthyl derivatives, followed by separation of the diastereomers and hydrolysis to yield the free, enantiomerically enriched substrate. A method of determining optical purity involves making chiral esters, such as a menthyl ester, e.g., (-) menthyl chloroformate in the presence of base, or Mosher ester, \(\alpha\)-methoxy- \(\alpha\)-(trifluoromethyl)phenyl acetate (Jacob III. (1982) J. Org. Chem. 47:4165), of the racemic mixture, and analyzing the NMR spectrum for the presence of the two atropisomeric diastereomers. Stable diastereomers of atropisomeric compounds can be separated and isolated by normal- and reverse-phase chromatography following methods for separation of atropisomeric naphthyl-isoquinolines (Hoye, T., WO 96/15111). By method (3), a racemic mixture of two enantiomers can be separated by chromatography using a chiral stationary phase (Chiral Liquid Chromatography (1989) W. J. Lough, Ed. Chapman and Hall, New York; Okamoto, (1990) J. of Chromatogr. 513:375-378). Enriched or purified enantiomers can be distinguished by methods used to distinguish other chiral molecules with asymmetric carbon atoms, such as optical rotation and circular dichroism.

\section*{Schemes and Examples}

General aspects of these exemplary methods are described below and in the Examples. Each of the products of the following processes is optionally separated, isolated, and/or purified prior to its use in subsequent processes.

A number of exemplary methods for the preparation of compounds of the invention are provided herein, for example, in the Examples hereinbelow. These methods are intended to illustrate the nature of such preparations are not intended to limit the scope of applicable methods. Certain compounds of the invention can be used as intermediates for the preparation of other compounds of the invention. In the exemplary methods described herein, the fragment E-V- can also be written as R9-. Subsequently, the fragment E-V-Z- or R9-Z- can be written as T-. The fragments E-V-Z-P, R9-Z-P-, or T-P- can all be written as J-.

\section*{Scheme 1: Representative synthesis of T-P-M-A-A-M-P-T}
\begin{tabular}{ccc}
T-P-M-A-B \((O R)_{2}\) & \(\mathrm{Br}-\mathrm{A}-\mathrm{M}-\mathrm{P}-\mathrm{T}\) & \(\longrightarrow\) \\
1 & 2 & T-P-M-A-A-M-P-T \\
3
\end{tabular}
\begin{tabular}{cc}
T-P-M-A-A-B \((O R)_{2}\) \\
4 & \(\mathrm{Br}-\mathrm{M}-\mathrm{P}-\mathrm{T}\) \\
5 & \(\longrightarrow\)
\end{tabular} \begin{tabular}{c}
T-P-M-A-A-M-P-T \\
3
\end{tabular}

Scheme 1 shows a general synthesis of the T-P-M-A-A-M-P-T molecule of the invention, wherein transition metal-mediated cross-coupling reaction is utilized to construct the A-A bond and/or A-M bond. For illustrative purposes, the Suzuki reaction is employed to couple a \(\mathrm{Br}-\mathrm{M}\) -P-T and an (RO) \()_{2} \mathrm{~B}-\mathrm{A}-\mathrm{A}-\mathrm{M}-\mathrm{P}-\mathrm{T}\) intermediate or a \(\mathrm{Br}-\mathrm{A}-\mathrm{M}-\mathrm{P}-\mathrm{T}\) and a (RO) \({ }_{2} \mathrm{~B}-\mathbf{A}-\mathrm{M}-\mathrm{P}-\mathrm{T}\) intermediate. Boronic ester 1 (or 4) is coupled with an appropriate coupling partner (e.g. arylbromide 2 or 5) using a palladium catalyst, such as \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\), to afford 3. Palladium mediated cross-coupling reactions that enable the A-A bond formation, but employ alternative coupling partners and reagents, include for example the Negishi, Kumada, Sonagashira and Stille reactions.

\section*{Scheme 1a: Representative synthesis of T-P-M-W-M-P-T}
\begin{tabular}{|c|c|c|}
\hline \[
\begin{gathered}
\text { T-P-M-W-B(OR) } 2 \\
6
\end{gathered}
\] & \[
\begin{gathered}
+\mathrm{Br}-\mathrm{M}-\mathrm{P}-\mathrm{T} \\
5
\end{gathered}
\] & T-P-M-W-M-P-T
7 \\
\hline P-M-W-B(OR) \({ }_{2}\) & + Br-M-P & P-M-W-M-P \\
\hline 6.1 & 5.1 & 8 \\
\hline
\end{tabular}

Scheme la shows a general synthesis of the T-P-M-W-M-P-T molecule and the P-M-W-M-P molecule of the invention, wherein transition metal-mediated cross-coupling reaction is utilized to construct the W-M bond. For illustrative purposes, the Suzuki reaction is employed to couple a Br-M-P-T and a (RO) \()_{2} \mathrm{~B}-\mathrm{W}-\mathrm{M}-\mathrm{P}-\mathrm{T}\) intermediate or a \(\mathrm{Br}-\mathrm{M}-\mathrm{P}-\mathrm{PG}\) to a (RO) \()_{2} \mathrm{~B}-\mathrm{W}-\mathrm{M}-\mathrm{P}-\mathrm{PG}\) intermediate. Boronic ester 6 (or 6.1) is coupled with an appropriate coupling partner (e.g. arylbromide 5 or 5.1) using a palladium catalyst, such as \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\), to afford 7 and 8 . Palladium mediated cross-coupling reactions that enable the A-A bond formation, but employ alternative coupling partners and reagents, include for example the Negishi, Kumada, Sonagashira and Stille reactions.

\section*{Scheme 2: Representative synthesis of A-M-P-T}

Scheme 2 shows a general synthesis of an A-M-P-T molecule of the invention wherein, for illustrative purposes, \(\mathbf{M}\) is an amide or an imidazole. Coupling of amine \(\mathbf{1 0}\) with acid \(\mathbf{9}\) is accomplished using a peptide coupling reagent (e.g. HATU) to afford amide containing 11. The acid 13 is coupled with an \(\alpha\)-haloketone, such as \(\alpha\)-bromoketone 12.1, under basic conditions (e.g. \(\mathrm{Et}_{3} \mathrm{~N}\)) to afford 14.1. Alternatively, the acid 13 is coupled with an \(\alpha-\) aminoketone 12.2, under amide formation conditions (e.g. \(\mathrm{EDC}, \mathrm{Et}_{3} \mathrm{~N}\)) to afford 14.2. Reaction of \(\mathbf{1 4 . 1}\) or \(\mathbf{1 4 . 2}\) with an amine or amine salt (e.g. ammonium acetate) affords the imidazole containing molecule \(\mathrm{Br}-\mathrm{A}-\mathrm{M}-\mathrm{P}-\mathrm{T}\).

The benzamidine 16 is coupled with an \(\alpha\)-haloketone such as \(\alpha\)-chloroketone 17 under basic conditions such as \(\mathrm{K}_{2} \mathrm{CO}_{3}\) to afford the imidazole containing molecule \(\mathrm{Br}-\mathrm{A}-\mathrm{M}-\mathrm{P}-\mathrm{T}\) 18. A-M-P-T 15 can be prepared analogously.

Scheme 3: Representative synthesis of A-M-P-T

Scheme 3 shows a general synthesis of an A-M-P-T molecule of the invention wherein borate or boronic acid 1.1 can be synthesized from bromide 2.1.

Scheme 4: Representative synthesis of A-M-P-Z-R9

Scheme 4 shows a general synthesis of an A-M-P-Z-R9 fragment of the invention wherein, for illustrative purposes, \(\mathbf{P}=\) pyrrolidine and \(\mathbf{Z}=\) carbonyl. Coupling of amine 20 with acid 21 is accomplished using a peptide coupling reagent (e.g. HATU) to afford 22.

\section*{Scheme 5: Representative synthesis of L-P}

Scheme 5 shows a general synthesis of an L-P molecule of the invention wherein, for illustrative purposes, \(\mathrm{L}=\) benzimidazole. The acid 24 is coupled with 23 using a peptide coupling reagent such as HATU to afford 25. Heating in solvent (such as refluxing ethanol) affords L-P fragment 26.

Alternatively, the L-P fragment 26 is obtained by reaction of diamine (such as \(\mathbf{2 3}\)) and carbonyl compound (such as aldehyde 27) in a solvent under heating conditions (e.g. ethanol under microwave irradiation).

Scheme 6: Representative synthesis of P-M-A-A-M-P fragment

Scheme 6 shows a general synthesis of P-M-A-A-M-P molecule of the invention wherein, for illustrative purposes, \(\mathbf{M}=\) imidazole. For example, the diketone \(\mathbf{2 7}\) is converted to \(\mathbf{3 0}\) using bromine. Compound 27 can be commercially available or can be prepared from dibromide 27.1 through coupling with a vinyltin reagent such as tributyl(ethoxyvinyl)stannane with palladium. Coupling of \(\mathbf{3 0}\) with acid \(\mathbf{2 4}\) under basic conditions such as diisopropylethylamine affords diester 31. Imidazole formation is accomplished by treatment of 31 with ammonium acetate to provide the imidazole containing molecule P-M-A-A-M-P.
Alternatively, bromide \(\mathbf{3 0}\) can be synthesized from 28 . The methyl compound 28 can be converted to the corresponding diacid 29 using potassium permanganate as oxidant.
Conversion of \(\mathbf{2 9}\) to \(\mathbf{3 0}\) can be accomplished by a multi-step reaction, first treatment of 29 with oxalyl chloride, then by trimethylsilyl diazomethane, then with hydrobromic acid to afford compound 30.

Scheme 7: Representative synthesis of E-V-P-M-A-A-M-P-V-E

Scheme 7 shows a general synthesis of an E-V-P-M-A-A-M-P-V-E molecule of the invention wherein, for illustrative purposes, \(\mathbf{P}=\) pyrrolidine and \(\mathbf{Z}=\) carbonyl. Coupling of amine 33 with acid 34 is accomplished using a peptide coupling reagent, such as HATU, to afford 35.

\section*{Scheme 8: Representative synthesis of P-M-W-M-P}

Scheme 8 shows a general synthesis of P-M-W-M-P molecule of the invention wherein, for illustrative purposes, \(\mathbf{W}=\) polycyclic. Conversion of 36 to 37 was accomplished using transition metal-mediated reactions. Diboronic ester or acid 37 is coupled with a suitable reaction partner, such as bromide 37.1 using Suzuki coupling conditions to afford 38.

\section*{Scheme 9: Representative synthesis of E-V-P-M-W-M-P-V-E}

Scheme 9 shows a general synthesis of an E-V-P-M-W-M-P-V-E molecule of the invention wherein, for illustrative purposes, \(\mathbf{P}=\) pyrrolidine and \(\mathbf{Z}=\) carbonyl. Coupling of amine \(\mathbf{3 8 . 1}\) with acid 34 is accomplished using a peptide coupling reagent, such as HATU, to afford 39.

\section*{Scheme 9a: Representative synthesis of P-M-W-M-P}

Scheme 9a shows a general synthesis of a P-M-W-M-P molecule of the invention wherein, for illustrative purposes, \(\mathbf{M}=\) imidazole, \(\mathbf{W}=\) polycyclic. The compound \(\mathbf{3 6}\) was coupled with a vinyltin reagent such as tributyl(ethoxyvinyl)stannane with palladium, followed by bromination and hydrolysis with NBS and water, to give bromoketone 36.1. The reaction between bromide 36.1 and a carboxylic acid (36.5) under basic condition generated ester 36.2. Following the same reaction sequence, compound 36.2 was converted to diester 36.4. Conversion of 36.4 to 38.1 was accomplished with ammonia reagents such as ammonium acetate at elevated temperature.

\section*{Scheme 10: Representative synthesis of M-P}

Scheme 10 shows a general synthesis of an M-P molecule of the invention wherein, for illustrative purposes, PG is a protecting group. Imidazole 40 can be halogenated, for example, under the action of N -bromosuccinimide to provide bromoimidazole 40.1. Bromoimidazole 40.1 can be protected using standard conditions to give \(\mathbf{4 0 . 2}\), such as \(\mathrm{SEM}-\mathrm{Cl}\) and sodium hydride when \(\mathrm{PG}=\mathrm{SEM}\).

Scheme 11: Representative synthesis of P-M-A-A-M-P

Scheme 11 shows a general synthesis of a P-M-A-A-M-P molecule of the invention wherein, for illustrative purposes, \(\mathbf{M}=\) imidazole. Boronic ester \(\mathbf{4 2}\), which can be prepared from bromide 41, is coupled with a suitably protected appropriate coupling partner (e.g. arylbromide 42.1, optionally protected with PG) using a palladium catalyst, such as \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\), to afford 43. Palladium mediated cross-coupling reactions that enable the A-A bond formation, but employ alternative coupling partners and reagents, include for example the Negishi, Kumada and Stille reactions. If optionally protected, removal of the protecting group (PG) (for example, catalytic hydrogenation of a benzyl ether) provides the deprotected compound 43 . Coupling of 43 with suitably protected imidazole \(\mathbf{4 0 . 2}\) (for example, \(\mathrm{PG}=\) SEM ether) using a metal catalyst (e.g. CuI) gives protected P-M-A-A-M-P (45). Deprotection (for example deprotection of a SEM ether using an acid such as TFA) provides the imidazole containing fragment P-M-A-A-M-P 45.

\section*{Scheme 12: Representative synthesis of P-M-W-M-P}

Scheme 12 shows a general synthesis of a P-M-W-M-P molecule of the invention wherein, for illustrative purposes, \(X=\) halogen or triflate, \(M=\) imidazole, and \(W\) is \(46, P G=\) protecting group. Haloimdiazole 40.3, such as a bromoimidazole, is subjected to a metal-halogen exchange reaction, such as BuLi in THF, and then treated with a \(\mathrm{CO}_{2}\) source, such as solid \(\mathrm{CO}_{2}\), to give
40.4. Coupling of 40.4 and 46 using peptide coupling conditions, such as HATU, gives 47. PG deprotection, such as TFA deprotection of a SEM group, gives the compound P-M-W-M-P 48.

\section*{Scheme 13: Representative synthesis of P-M-A-A-M-P}

Scheme 13 shows a general synthesis of a P-M-A-A-M-P molecule of the invention wherein, for illustrative purposes, \(\mathbf{X}=\) halogen, amine or triflate, \(\mathbf{M}=\) imidazole, \(\mathrm{PG}_{1}\) and \(\mathrm{PG}_{2}=\) protecting groups. The protected acid 49 (PGl is a suitable protecting group, such as Cbz) is converted to \(\alpha\)-halomethyl ketone 12.3., which is then transformed to \(\mathrm{PG}_{1}\)-A-M-P 50 using the analogous conditions for converting 12.1 and 12.2 to \(\mathbf{1 5}\). The imidazole is subjected to protection, with SEM for instance, to afford 51 , which is deprotected, with \(\mathrm{H}_{2}\) and Pd to remove a Cbz for example, followed by coupling with fragment X-A-M-P, using standard Pd coupling conditions for example, to afford 52. PG deprotection, such as TFA deprotection of a SEM group, gives the compound P-M-A-A-M-P 53.

\section*{Scheme 14: Representative synthesis of A-M-P}

Scheme 14 shows a general synthesis of an A-M-P molecule of the invention wherein, for illustrative purposes, \(\mathbf{M}\) is an amide bond, or an imidazole. Coupling of amine 54 with acid 9 is accomplished using a peptide coupling reagent (e.g. HATU) to afford amide containing 55. The acid 56 is coupled with an \(\alpha\)-haloketone, such as \(\alpha\)-bromoketone 12.1, under basic conditions (e.g. \(\mathrm{Et}_{3} \mathrm{~N}\)) to afford 57.1. Alternatively, the acid 56 is coupled with an \(\alpha-\) aminoketone 12.2, under amide formation conditions (e.g. \(\mathrm{EDC}, \mathrm{Et}_{3} \mathrm{~N}\)) to afford 57.2. Reaction of \(\mathbf{5 7 . 1}\) and \(\mathbf{5 7 . 2}\) with an amine or amine salt (e.g. ammonium acetate) affords the imidazole containing molecule A-M-P.
The benzamidine 18 is coupled with an \(\alpha\)-haloketone such as \(\alpha\)-chloroketone 59 under basic conditions such as \(\mathrm{K}_{2} \mathrm{CO}_{3}\) to afford the imidazole containing molecule A-M-P 60. A-M-P 58 can be prepared analogously.

Scheme 15: Representative synthesis of P-M-A-A-M-P

Scheme 15 shows a general synthesis of a P-M-A-A-M-P molecule of the invention. Boronic acid or its ester 63, can be prepared from bromide 62 using a palladium catalyst (e.g. \(\left.\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right)\) and a boron reagent (bis(pinacolato)diboron, for example), is coupled with an excess of appropriate coupling partner (e.g. a di-halo-aromatic or di-halo-heteroaromatic moiety 64) using a palladium catalyst, such as \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\), to afford bromide 65 , which then is converted to boronic acid or ester 65.1. Palladium mediated cross-coupling reactions that enable the A-A bond formation, but employ alternative coupling partners and reagents, include for example the Negishi, Kumada and Stille reactions. Suzuki coupling of 65.1 with halo-imidazole such as bromo-imidazole using a palladium catalyst (such as \(\left.\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right)\) gives \(\mathbf{P}-\mathbf{M}-\mathbf{A}-\mathbf{A}-\mathbf{M}-\mathbf{P}\) fragment 67.

Alternatively, Suzuki coupling of 63 with halo-A-M-P fragment using a palladium catalyst (such as \(\left.\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right)\) gives \(\mathbf{P}-\mathrm{M}-\mathrm{A}-\mathrm{A}-\mathrm{M}-\mathrm{P}\) fragment 67.

Scheme 16: Representative synthesis of R9-P-L-A-M-P-R9
and R9-P-L-L-P-R9
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
\[
R 9-P-L-B(O R)_{2}
\] \\
68
\end{tabular} & + & \[
\begin{gathered}
\mathrm{Br}-\mathrm{A}-\mathrm{M}-\mathrm{P}-\mathrm{R9} 9 \\
69
\end{gathered}
\] & \(\longrightarrow\) & \begin{tabular}{l}
R9-P-L-A-M-P-R9 \\
70
\end{tabular} \\
\hline R9-P-L-B(OR) \(\mathbf{2}\) & + & \(\mathrm{Br}-\mathrm{L}-\mathrm{P}-\mathrm{R} 9\) & \(\longrightarrow\) & R9-P-L-L-P-R9 \\
\hline 68 & & 71 & & 72 \\
\hline
\end{tabular}

Scheme 16 shows a general synthesis of an R9-P-L-A-M-P-R9 molecule and a R9-P-L-L-P-R9 molecule of the invention wherein a transition metal-mediated cross-coupling reaction is utilized to construct the A-A bond. For illustrative purposes, the Suzuki reaction is employed to couple
(RO) \()_{2}\) B-L-P-R9 and Br-A-M-P-R9. Boronic ester 68 is coupled with an appropriate coupling partner (e.g. arylbromide 69) using a palladium catalyst (such as \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\)) to afford 70.
Similarly, R9-P-L-L-P-R9 72 is prepared by coupling compounds 68 and 71.

\section*{Scheme 17: Representative synthesis of P-T}

Scheme 17 shows a general synthesis of a P-T molecule of the invention wherein, for illustrative purposes, \(\mathbf{P}=\) either an acyclic or cyclic amino ester (such as ethyl ester), optionally protected with PG if necessary, \(Z=\) carbonyl, \(X=\) carbon or heteroatom, and \(m\) and \(n=0-5\), independently. Coupling of amine 73 with acid 34 is accomplished using a peptide coupling reagent, such as HATU, to afford 75, which after removal of ethyl group provides the P-T compound.

\section*{Scheme 18: Representative synthesis of \(P\)}

Scheme 18 shows a general synthesis of a \(\mathbf{P}\) molecule of the invention wherein \(\mathbf{X}=\) carbon or heteroatom and \(m\) and \(n=0-5\), independently. For illustrative purposes, \(\mathbf{P}\) is substituted with an ethoxylcarbonyl group. Commercially available amino ester such an ethyl ester is converted to substituted or cyclized amino ester 73.1, through for example, reductive amination or Mitsunobu reaction. Compound 73.1 can be protected to provide compound 73 if necessary.

\section*{Scheme 19: Representative Synthesis of E-V}

Scheme 19 shows a general synthesis of an E-V molecule of the invention wherein, for illustrative purposes, \(\mathbf{V}\) is isobutyl and \(\mathbf{E}\) is methoxycarbonylamino. Amino acid 77 can be converted to the corresponding carbamate 78 , such as a methyl carbamate by reaction with methyl chloroformate under basic conditions (sodium bicarbonate).

\section*{Scheme 20: Synthesis of the E-V-Z-P-M-A}

Scheme 20 shows the synthesis of a E-V-Z-P-M-A molecule of the invention wherein, for illustrative purposes, \(\mathbf{M}\) is imidazole, \(\mathbf{P}\) is pyrrolidine, and \(\mathbf{Z}\) is carbonyl. An amino acid derivative can be reacted with an N -protected proline derivative via reaction conditions employing a coupling reagent, such as HATU, deprotection of the resulting coupling product, for example in the case of tert-butoxy carbonyl, the treatment with a proton source such as HCl yielded compound \(\mathbf{8 0}\). The conversion of \(\mathbf{8 0}\) to E-V-Z-P-M-A (82) can be obtained under reaction conditions of nucleophilic aromatic substitution, for example the displacement of methyl sulfonate under basic conditions and elevated temperatures.

Alternatively, for illustrative purposes, the amino acid derivative 80 can be converted to a guanidinium containing compound 81, via a reaction with a guanidylation reagent. The E-V-Z-P-M-A compound \(\mathbf{8 2}\) can be obtained via reaction with a 1,2 di-electrophile such as an \(\alpha\) halogenated carbonyl group under basic conditions.

\section*{Scheme 21: Representative synthesis of P-M-W-M-P}

Scheme 21 shows a general synthesis of a P-M-W-M-P molecule of the invention wherein. Boronic ester 84 is coupled with an appropriate coupling partner (e.g. arylbromide 83) using a palladium catalyst, such as \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\), to afford 85. Carboxylate 85 is reduced with reagents such as DIBAL-H to afford diol 86 . The treatment of diol 86 with acids such as \(\mathrm{H}_{3} \mathrm{PO}_{4}\) at elevated temperature generates P-M-W-M-P compound 89. Alternatively, diol 86 can be oxidized with reagents such as pyridine-sulfur trioxide to form dialdehyde 87 , which react with amines in the presence of reducing reagents such as \(\mathrm{NaBH}(\mathrm{OAc})_{3}\) to provide \(\mathbf{P}-\mathbf{M}-\mathbf{W}-\mathbf{M}-\mathbf{P}\) compound 88 .

\section*{Scheme 21a: Representative synthesis of P-M-W-M-P}

Scheme 21a shows a general synthesis of a P-M-W-M-P molecule of the invention. For illustrative purposes, \(\mathrm{FG}_{1}\) and \(\mathrm{FG}_{2}\) can be converted to esters attached to an \(\mathbf{A}\) group. Carboxylate 85.2 is reduced with reagents, such as DIBAL-H, to afford diol 86.1. The treatment of diol 86.1 with acids, such as \(\mathrm{H}_{3} \mathrm{PO}_{4}\), at elevated temperature generates P-M-W-M-P compound 89.3. Alternatively, diol 86.1 can be oxidized with reagents such as pyridine-sulfur trioxide to form dialdehyde 87.1, which reacts with amines in the presence of reducing reagents such as \(\mathrm{NaBH}(\mathrm{OAc})_{3}\) to provide \(\mathbf{P}-\mathbf{M}-\mathbf{W}-\mathrm{M}-\mathbf{P}\) compound 89.4. The carboxylate \(\mathbf{8 5 . 2}\) is selectively reduced to provide hydroxyl ester 86.2, which can be cyclized to form P-M-W-M-P compound 89.1. Compound 86.1 is converted to amine ester 86.3 , for example through azide
formation and reduction with hydrogenation. Compound \(\mathbf{8 6 . 3}\) can be cyclized to form P-M-W-M-P compound 89.2.

Scheme 22: Construction of a R9-Z-P-M-A

Scheme 22 shows the general synthesis of a R9-Z-P-M-A molecule, for illustrative purposes starting with terl-butoxy carbonyl derivative 90 (J. Am. Chem. Soc. 2003, 1221). Compound 90 can be acylated with substituent \(\mathbf{T}\) wherein \(\mathbf{Z}\) is carbonyl, via reaction conditions employing a coupling reagent such as HATU. Removal of the protecting group, for example in the case of tert-butoxycarbonyl by the treatment with a proton source such as HCl , yields compound 91 . A compound like 91 can be obtained under reaction conditions of nucleophilic aromatic substitution, for example the displacement of methyl sulfonate under basic conditions and elevated temperatures to provide the R9-Z-P-M-A compound 92. Alternatively, 91 can be converted into a guanidinium derivative. When suitably substituted, cyclization provides the R9-Z-P-M-A compound 92.

Scheme 23: Representative synthesis of T-P-M-A-A-M-P-T

Scheme 23 shows a general synthesis of a T-P-M-A-A-M-P-T molecule of the invention wherein, for illustrative purposes, \(\mathbf{M}=\) imidazole and \(\mathbf{A}=\) alkyne. Bromoimidazole \(\mathbf{9 3}\) is alkynylated by lithiation and trapping with a formate equivalent (e.g. DMF). The aldehyde 94 is converted to alkyne 95 using a phosphorus-based reagent (e.g. Ohira-Bestmann reagent), Compound 95 is coupled with a \(\mathrm{Br}-\mathrm{A}-\mathrm{M}-\mathrm{P}-\mathrm{T}\) under Sonagashira conditions to afford the alkynecontaining compound 96 .

\section*{Scheme 24: Representative Synthesis of R9 Fragment}

Scheme 24 shows a general synthesis of an \(\mathbf{R 9}\) molecule of the invention. Reaction of hydrazine carboxylate 97 with a ketone or aldehyde, such as acetone, under acidic conditions (e.g. AcOH) affords the imine 98. Reaction of 98 under reducing conditions, such as \(\mathrm{PtO}_{2}\) and hydrogen gas, affords the substituted hydrazinecarboxylate 99 .

Scheme 25: Representative synthesis of E-V-Z-P-M-A-A-M-P-Z-V-E
\begin{tabular}{|c|c|c|}
\hline \[
\begin{gathered}
E-V-Z-P-M-A-B(O R)_{2} \quad+ \\
25 a
\end{gathered}
\] & \begin{tabular}{l}
Br-A-M-P-Z-V-E \\
25b
\end{tabular} & \[
\begin{gathered}
E-V-Z-P-M-A-A-M-P-Z-V-E \\
25 c
\end{gathered}
\] \\
\hline E-V-Z-P-M-A-A-B(OR) \(\mathbf{2}^{+}\) & Br-M-P-Z-V-E & E-V-Z-P-M-A-A-M-P-Z-V-E \\
\hline 25d & 25e & 25c \\
\hline \((\mathrm{RO})_{2} \mathrm{~B}-\mathrm{A}-\mathrm{A}-\mathrm{B}(\mathrm{OR})_{2}+\) & \(2 \mathrm{Br}-\mathrm{M}-\mathrm{P}-\mathrm{Z}-\mathrm{V}-\mathrm{E}\) & E-V-Z-P-M-A-A-M-P-Z-V-E \\
\hline \(25 f\) & 25e & 25c \\
\hline
\end{tabular}

Scheme 25 shows a general synthesis of the E-V-Z-P-M-A-A-M-P-Z-V-E molecule of the invention, wherein a transition metal-mediated cross-coupling reaction is utilized to construct the A-A bond and/or A-M bond. For illustrative purposes, the Suzuki reaction is employed to couple Br-M-P-Z-V-E and (RO) \({ }_{2} \mathrm{~B}-\mathrm{A}-\mathrm{A}-\mathrm{M}-\mathrm{P}-\mathrm{Z-V}-\mathrm{E}\) or (RO) \({ }_{2} \mathrm{~B}-\mathrm{A}-\mathrm{M}-\mathrm{P}-\mathrm{Z}-\mathrm{V}-\mathrm{E}\) and \(\mathrm{Br}-\mathrm{A}-\mathrm{M}-\) P-Z-V-E. Boronic ester \(\mathbf{2 5 a}\) (or 25d) is coupled with an appropriate coupling partner (e.g. arylbromide 25b or 25e) using a palladium catalyst, such as \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\), to afford \(\mathbf{2 5}\). Formation of multiple A-M bonds can be conducted in a similar manner. For example, the Suzuki reaction can also be employed to couple (RO\()_{2} \mathrm{~B}-\mathrm{A}-\mathrm{A}-\mathrm{B}(\mathrm{OR})_{2}(\mathbf{2 5 f})\) and two equivalents of \(\mathrm{Br}-\mathrm{M}-\mathrm{P}-\mathrm{Z}-\) V-E. For each transition metal-mediated cross-coupling reaction the roles of the nucleophile and electrophile can be reversed to provide the same coupling product. Palladium mediated cross-coupling reactions that enable the A-A and/or A-M bond formation, but employ alternative coupling partners and reagents, include for example the Negishi, Kumada, Sonagashira and Stille reactions.

\section*{Scheme 26: Representative synthesis of E-V-Z-P-M-A-A-M-P-Z-V-E}

Scheme 26 shows a general synthesis of an E-V-Z-P-M-A-A-M-P-Z-V-E molecule of the invention wherein, for illustrative purposes, \(\mathbf{M}\) is an amide, or an imidazole. Coupling of acid 26a with amine 26b is accomplished using a peptide coupling reagent (e.g. HATU) to afford the amide product 26c.
The formation of an imidazole is accomplished by coupling the acid 26d with an \(\alpha\)-haloketone, such as \(\alpha\)-bromoketone 26e, under basic conditions (e.g. \(\mathrm{Et}_{3} \mathrm{~N}\)) to afford 26f. Alternatively, the acid \(\mathbf{2 6 d}\) is coupled with an \(\alpha\)-aminoketone \(\mathbf{2 6 h}\), under amide formation conditions (e.g. EDC, \(\mathrm{Et}_{3} \mathrm{~N}\)) to afford 26i. Reaction of \(\mathbf{2 6 f}\) or \(\mathbf{2 6 i}\) with an amine or amine salt (e.g. ammonium acetate) affords the imidazole containing molecule \(\mathbf{2 6 g}\). The formation of multiple imidazoles is performed in the same manner, starting with a bis- \(\alpha\)-haloketone such as \(\alpha\)-bromoketone 26j, to provide molecule 26.

Scheme 27: Representative synthesis of E-V-Z-P-M-A-A-M-P-Z-V-E

Scheme 27 shows a general synthesis of an E-V-Z-P-M-A-A-M-P-Z-V-E molecule of the invention wherein, for illustrative purposes, \(\mathbf{P}\) is pyrrolidine and \(\mathbf{Z}\) is a carbonyl. Coupling of amine 27a with acid 27b is accomplished using a peptide coupling reagent (e.g. HATU) to afford 27c. Alternatively, amine 27d is coupled with two equivalents of 27b under similar conditions to provide 27e.

Scheme 28: Representative synthesis of E-V-Z-P-M-A-A-M-P-Z-V-E

E-V-Z-P-M-A-A-M-P-Z-V-NH2 +

28a

Scheme 28 shows a general synthesis of an E-V-Z-P-M-A-A-M-P-Z-V-E molecule of the invention wherein, for illustrative purposes, \(\mathbf{E}\) is methoxycarbonylamino. The treatment of either 28a or 28d with one or two equivalents respectively of 28b under basic conditions (e.g. sodium bicarbonate) provides the molecule 28c or 28e.

Scheme 29: Representative synthesis of E-V-Z-P-M-W-M-P-Z-V-E

Scheme 29 shows a general synthesis of the E-V-Z-P-M-W-M-P-Z-V-E molecule of the invention, wherein transition metal-mediated cross-coupling reaction is utilized to construct the W-M bond. For illustrative purposes, the Suzuki reaction is employed to couple \(\mathrm{Br}-\mathrm{M}-\mathrm{P}-\mathrm{Z}-\mathrm{V}-\) E to a (RO) \()_{2} \mathrm{~B}-\mathrm{W}-\mathrm{M}-\mathrm{P}-\mathrm{Z}-\mathrm{V}-\mathrm{E}\) or \((\mathrm{RO})_{2} \mathrm{~B}-\mathrm{W}-\mathrm{B}(\mathrm{OR})_{2}\) molecule. Boronic ester 29a (or 29d) is coupled with an appropriate coupling partner (e.g. arylbromide 29b) using a palladium catalyst, such as \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\), to afford 29c. For each transition metal-mediated cross-coupling reaction the roles of the nucleophile and electrophile can be reversed to provide the same coupling product. Palladium mediated cross-coupling reactions that enable the M-W bond formation, but employ alternative coupling partners and reagents, include for example the Negishi, Kumada, Sonagashira and Stille reactions.

Scheme 30: Representative synthesis of E-V-Z-P-M-W-M-P-Z-V-E

Scheme 30 shows a general synthesis of an E-V-Z-P-M-W-M-P-Z-V-E molecule of the invention wherein, for illustrative purposes, \(\mathbf{P}\) is pyrrolidine and \(\mathbf{Z}\) is a carbonyl. Coupling of amine 30a with acid 30b is accomplished using a peptide coupling reagent (e.g. HATU) to afford 30c. Alternatively, amine 30d is coupled with two equivalents of 30b under similar conditions to provide \(\mathbf{3 0 e}\).

\section*{Scheme 31: Representative synthesis of E-V-Z-P-M-W-M-P-Z-V-E}

Scheme 31 shows a general synthesis of an E-V-Z-P-M-W-M-P-Z-V-E molecule of the invention wherein, for illustrative purposes, \(\mathbf{E}\) is methoxycarbonylamino. The treatment of either 31a or 31d with one or two equivalents respectively of 31b under basic conditions (e.g. sodium bicarbonate) provides the molecule 31c or 31e.

\section*{Scheme 32: Representative synthesis of E-V-Z-P-M-A-L-P-Z-V-E}

Scheme 32 shows a general synthesis of the E-V-Z-P-M-A-L-P-Z-V-E molecule of the invention, wherein transition metal-mediated cross-coupling reaction is utilized to construct the M-A or A-L bond. For illustrative purposes, the Suzuki reaction is employed to couple a boronic ester to an arylbromide. Boronic ester 32a (or 32d) is coupled with an appropriate coupling partner (e.g. arylbromide 32b or 32e) using a palladium catalyst, such as \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\), to afford 32c. For each transition metal-mediated cross-coupling reaction the roles of the nucleophile and electrophile can be reversed to provide the same coupling product. Palladium mediated cross-coupling reactions that enable either the M-A or A-L bond formation, but employ alternative coupling partners and reagents, include for example the Negishi, Kumada, Sonagashira and Stille reactions.

Scheme 33: Representative synthesis of E-V-Z-P-M-A-L-P-Z-V-E

Scheme 33 shows a general synthesis of an E-V-Z-P-M-A-L-P-Z-V-E molecule of the invention wherein, for illustrative purposes, \(\mathbf{P}\) is pyrrolidine and \(\mathbf{Z}\) is a carbonyl. Coupling of amine 33a or 33d with acid 33b is accomplished using a peptide coupling reagent (e.g. HATU) to afford 33c or 33e, respectively. Alternatively, amine \(33 f\) is coupled with two equivalents of 33b under similar conditions to provide 33g.

Scheme 34: Representative synthesis of E-V-Z-P-M-A-L-P-Z-V-E

E-V-Z-P-M-A-L-P-Z-V-NH2 +
34a
E-V-Z-P-L-A-M-P-Z-V-NH \({ }_{2}+\)
34d
\(\mathrm{H}_{2} \mathrm{~N}-\mathrm{V}-\mathrm{Z}-\mathrm{P}-\mathrm{M}-\mathrm{A}-\mathrm{L}-\mathrm{P}-\mathrm{Z}-\mathrm{V}-\mathrm{NH}_{2}+2\) \(34 f\)

34b

34b

\(34 c\)

\(34 e\)

Scheme 34 shows a general synthesis of an E-V-Z-P-M-A-L-P-Z-V-E molecule of the invention wherein, for illustrative purposes, \(\mathbf{E}\) is methoxycarbonylamino. The treatment of either 34a or 34d with 34b under basic conditions (e.g. sodium bicarbonate) provides the molecule \(\mathbf{3 4} \mathbf{c}\) or \(\mathbf{3 4} \mathrm{e}\). Correspondingly, the treatment of \(\mathbf{3 4 f}\) with two equivalents of \(\mathbf{3 4 b}\) provides \(\mathbf{3 4} \mathrm{g}\) under similar conditions.

\section*{Scheme 35: Representative synthesis of E-V-Z-P-L-L-P-Z-V-E}

Scheme 35 shows a general synthesis of the E-V-Z-P-L-L-P-Z-V-E molecule of the invention, wherein transition metal-mediated cross-coupling reaction is utilized to construct the \(\mathbf{L}\) - \(\mathbf{L}\) bond. For illustrative purposes, the Suzuki reaction is employed to couple a boronic ester to an arylbromide. Boronic ester 35a is coupled with an appropriate coupling partner (e.g. arylbromide 35b) using a palladium catalyst, such as \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\), to afford 35c. For each transition metal-mediated cross-coupling reaction the roles of the nucleophile and electrophile can be reversed to provide the same coupling product. Palladium mediated cross-coupling reactions that enable either the L-L bond formation, but employ alternative coupling partners and reagents, include for example the Negishi, Kumada, Sonagashira and Stille reactions.

\section*{Scheme 36: Representative synthesis of E-V-Z-P-L-L-P-Z-V-E}

Scheme 36 shows a general synthesis of an E-V-Z-P-L-L-P-Z-V-E molecule of the invention wherein, for illustrative purposes, \(\mathbf{P}\) is pyrrolidine and \(\mathbf{Z}\) is a carbonyl. Coupling of amine 36a with acid 36b is accomplished using a peptide coupling reagent (e.g. HATU) to afford 36c. Alternatively, amine 36d is coupled with two equivalents of 36b under similar conditions to provide 36e.

Scheme 37: Representative synthesis of E-V-Z-P-L-L-P-Z-V-E

Scheme 37 shows a general synthesis of an E-V-Z-P-L-L-P-Z-V-E molecule of the invention wherein, for illustrative purposes, \(\mathbf{E}\) is methoxycarbonylamino. The treatment of either 37 a or 37d with 37b under basic conditions (e.g. sodium bicarbonate) provides the molecule 37c or 37e.

Scheme 38: Representative synthesis of R-A-M-P-R \({ }^{1}\)

Scheme 38 shows a general synthesis of an R-A-M-P-R \({ }^{1}\) intermediate of the invention wherein, for illustrative purposes, \(\mathbf{M}\) is an amide or an imidazole, R is a generic group that is depicted as Br , and \(\mathrm{R}^{1}\) is a generic group that is depicted as -Z-V-E. Coupling of amine 38b with acid 38a is accomplished using a peptide coupling reagent (e.g. HATU) to afford amide containing 38c. The acid 38 e is coupled with an \(\alpha\)-haloketone, such as \(\alpha\)-bromoketone 38d, under basic conditions (e.g. \(\mathrm{Et}_{3} \mathrm{~N}\)) to afford \(\mathbf{3 8 f}\). Alternatively, the acid 38 e is coupled with an \(\alpha\) aminoketone 38 h , under amide formation conditions (e.g. EDC, \(\mathrm{Et}_{3} \mathrm{~N}\)) to afford 38i. Reaction of \(\mathbf{3 8 f}\) or \(\mathbf{3 8 i}\) with an amine or amine salt (e.g. ammonium acetate) affords the imidazole containing intermediate \(\mathrm{Br}-\mathrm{A}-\mathrm{M}-\mathrm{P}-\mathrm{Z}-\mathrm{V}-\mathrm{E}(\mathbf{3 8 g})\).
The benzamidine 38 j is coupled with an \(\alpha\)-haloketone such as \(\alpha\)-chloroketone \(\mathbf{3 8 k}\) under basic conditions such as \(\mathrm{K}_{2} \mathrm{CO}_{3}\) to afford \(\mathbf{3 8 g}\). The \(\mathrm{Br}-\mathrm{A}-\mathrm{M}-\mathrm{P}-\mathrm{Z}-\mathrm{V}-E\) intermediate can be prepared analogously from the coupling of \(\mathbf{3 8 d}\) and 381.

Scheme 39: Representative synthesis of R-W-M-P-R \({ }^{1}\)

Scheme 39 shows a general synthesis of an R-W-M-P-R \({ }^{1}\) intermediate of the invention wherein, for illustrative purposes, \(\mathbf{M}\) is an amide or an imidazole, R is a generic group that is depicted as Br , and \(\mathrm{R}^{1}\) is a generic group that is depicted as -Z-V-E. The acid \(\mathbf{3 9 b}\) is coupled with an \(\alpha-\) haloketone, such as \(\alpha\)-bromoketone 39a, under basic conditions (e.g. \(\mathrm{Et}_{3} \mathrm{~N}\)) to afford 39c. Alternatively, the acid 39b is coupled with an \(\alpha\)-aminoketone 39 e , under amide formation conditions (e.g. EDC, \(\mathrm{Et}_{3} \mathrm{~N}\)) to afford 39f. Reaction of \(\mathbf{3 9}\) c or 39 f with an amine or amine salt (e.g. ammonium acetate) affords the imidazole containing intermediate \(\mathrm{Br}-\mathrm{A}-\mathrm{M}-\mathrm{P}-\mathrm{Z}-\mathrm{V}-\mathrm{E}\) (39d).

The benzamidine 39 g is coupled with an \(\alpha\)-haloketone such as \(\alpha\)-chloroketone 39 h under basic conditions such as \(\mathrm{K}_{2} \mathrm{CO}_{3}\) to afford 39d. The Br-A-M-P-Z-V-E intermediate can be prepared analogously from the coupling of \(\mathbf{3 9 i}\) and \(\mathbf{3 9 j}\).

\section*{Scheme 40: Representative synthesis of R-A-R \({ }^{1}\)}
\begin{tabular}{|c|c|}
\hline Br-A-M-P-Z-V-E & \((\mathrm{RO})_{2} \mathrm{~B}-\mathrm{A}-\mathrm{M}-\mathrm{P}-\mathrm{Z}-\mathrm{V}-\mathrm{E}\) \\
\hline 40a & 40b \\
\hline Br-A-M-P-PG & \((\mathrm{RO})_{2} \mathrm{~B}\)-A-M-P-PG \\
\hline 40c & 40d \\
\hline Br-A-L-P-Z-V-E & (RO) \(2_{2}\) B-A-L-P-Z-V-E \\
\hline 40e & \(40 f\) \\
\hline Br-A-L-P-PG & \((\mathrm{RO})_{2} \mathrm{~B}-\mathrm{A}-\mathrm{L}-\mathrm{P}-\mathrm{PG}\) \\
\hline 40g & 40h \\
\hline Br-A-PG & \((\mathrm{RO})_{2} \mathrm{~B}-\mathrm{A}-\mathrm{PG}\) \\
\hline 40i & 40j \\
\hline
\end{tabular}

Scheme 40 shows a general synthesis of an \(R-A-R^{1}\) intermediate of the invention wherein, for illustrative purposes, \(R\) is a generic group that is depicted as a boronic ester and \(R^{1}\) is a generic group that is depicted as -M-P-Z-V-E, -M-P-PG, -L-P-Z-V-E, -L-P-PG, or a protecting group. A transition metal-mediated cross-coupling reaction is utilized to install the boronic ester on an A group. Treatment of the corresponding arylbromide with a palladium catalyst, such as \(\mathrm{PdCl}_{2}\) (dppf), and a boron source such as bis(pinacolato)diborane provides the boronic ester 40b, 40d, 40f, 40h, or 40j.

\section*{Scheme 41: Representative synthesis of \(R-W-R^{1}\)}

Scheme 41 shows a general synthesis of an R-W-R \({ }^{1}\) intermediate of the invention wherein, for illustrative purposes, R is a generic group that is depicted as a boronic ester and \(\mathrm{R}^{1}\) is a generic group that is depicted as -M-P-Z-V-E, -M-P-PG, or a protecting group. A transition metalmediated cross-coupling reaction is utilized to install the boronic ester on a \(\mathbf{W}\) group. Treatment of the corresponding arylbromide with a palladium catalyst, such as \(\mathrm{PdCl}_{2}\) (dppf), and a boron source such as bis(pinacolato)diborane provides the boronic ester 41b, 41d, or 41 f .

\section*{Scheme 42: Representative synthesis of \(R-M-R^{1}\)}
\begin{tabular}{cc}
\(\mathrm{Br}-\mathrm{M}-\mathrm{P}-\mathrm{Z}-\mathrm{V}-\mathrm{E}\) \\
42a & \(\longrightarrow\) \\
\begin{tabular}{c}
Br-M-P-PG \\
42c
\end{tabular} & \(\longrightarrow\) \\
\((\mathrm{RO})_{2} \mathrm{~B}-\mathrm{M}-\mathrm{P}-\mathrm{Z-V}-\mathrm{E}\) \\
42b
\end{tabular}

Scheme 42 shows a general synthesis of an R-M-R \({ }^{1}\) intermediate of the invention wherein, for illustrative purposes, R is a generic group that is depicted as a boronic ester and \(\mathrm{R}^{1}\) is a generic group that is depicted as -P-Z-V-E or -P-PG. A transition metal-mediated cross-coupling reaction is utilized to install the boronic ester on an \(\mathbf{M}\) group. Treatment of the corresponding arylbromide with a palladium catalyst, such as \(\mathrm{PdCl}_{2}\) (dppf), and a boron source such as bis(pinacolato)diborane provides the boronic ester 42b or 42d.

\section*{Scheme 43: Representative synthesis of R-L-R \({ }^{1}\)}
\begin{tabular}{|c|c|}
\hline Br-L-P-Z-V-E & \((\mathrm{RO})_{2} \mathrm{~B}-\mathrm{L}-\mathrm{P}-\mathrm{Z}-\mathrm{V}-\mathrm{E}\) \\
\hline 43a & 43b \\
\hline Br-L-P-PG & (RO) \({ }_{2}\) B-L-P-PG \\
\hline 43c & 43d \\
\hline
\end{tabular}

Scheme 43 shows a general synthesis of an R-L-R \({ }^{1}\) intermediate of the invention wherein, for illustrative purposes, \(R\) is a generic group that is depicted as a boronic ester and \(R^{\prime}\) is a generic group that is depicted as -P-Z-V-E or -P-PG. A transition metal-mediated cross-coupling reaction is utilized to install the boronic ester on an \(L\) group. Treatment of the corresponding arylbromide with a palladium catalyst, such as \(\mathrm{PdCl}_{2}\) (dppf), and a boron source such as bis(pinacolato)diborane provides the boronic ester 43b or 43d.

\section*{Scheme 44: Representative synthesis of R-A-M-P-Z-V-E}

Scheme 44 shows a general synthesis of an R-A-M-P-Z-V-E intermediate of the invention wherein, for illustrative purposes, \(\mathbf{P}\) is pyrrolidine, \(\mathbf{Z}\) is carbonyl, and R is a generic group that is depicted as either -A-PG, -A-M-P-PG, -L-P-PG, or a protecting group. Coupling of amine 44a, 44d, 44f, or 44h with acid 44b is accomplished using a peptide coupling reagent (e.g. HATU) to afford \(\mathbf{4 4 c}, 44 \mathrm{e}, 4 \mathrm{~g}\), or 44 i , respectively.

\section*{Scheme 45: Representative synthesis of R-W-M-P-Z-V-E}

Scheme 45 shows a general synthesis of an R-W-M-P-Z-V-E intermediate of the invention wherein, for illustrative purposes, \(\mathbf{P}\) is pyrrolidine, \(\mathbf{Z}\) is carbonyl, and R is a generic group that is depicted as either -M-P-PG or a protecting group. Coupling of amine 45a or 45d with acid 45b is accomplished using a peptide coupling reagent (e.g. HATU) to afford 45c or 45e, respectively.

\section*{Scheme 46: Representative synthesis of R-A-L-P-Z-V-E}

Scheme 46 shows a general synthesis of an R-A-L-P-Z-V-E intermediate of the invention wherein, for illustrative purposes, \(\mathbf{P}\) is pyrrolidine, \(\mathbf{Z}\) is carbonyl, and \(\mathbf{R}\) is a generic group that is depicted as either -M-P-PG or a protecting group. Coupling of amine 46a or 46d with acid 46b is accomplished using a peptide coupling reagent (e.g. HATU) to afford 46c or 46e, respectively.

Scheme 47: Representative synthesis of R-L-P-Z-V-E and R-M-P-Z-V-E

Scheme 47 shows a general synthesis of an R-L-P-Z-V-E or R-M-P-Z-V-E intermediate of the invention wherein, for illustrative purposes, \(\mathbf{P}\) is pyrrolidine, \(\mathbf{Z}\) is carbonyl, and R is a generic group that is depicted as Br . Coupling of amine 47a or 47d with acid 47b is accomplished using a peptide coupling reagent (e.g. HATU) to afford 47c or 47e, respectively.

Scheme 48: Representative synthesis of R-A-M-P-Z-V-E

Scheme 48 shows a general synthesis of an R-A-M-P-Z-V-E intermediate of the invention wherein, for illustrative purposes, \(\mathbf{E}\) is methoxycarbonylamino and R is a generic group that is depicted as a either -A-PG, -A-M-P-PG, -L-P-PG, or a protecting group. Treatment of 48a, 48d, 48f, or 48 h with \(\mathbf{4 8 b}\) under basic conditions (e.g. sodium bicarbonate) provides the intermediate \(\mathbf{4 8 c}, \mathbf{4 8 e}, 48 \mathrm{~g}\), or \(\mathbf{4 8 i}\), respectively.

Scheme 49: Representative synthesis of R-W-M-P-Z-V-E

Scheme 49 shows a general synthesis of an R-W-M-P-Z-V-E intermediate of the invention wherein, for illustrative purposes, \(\mathbf{E}\) is methoxycarbonylamino and R is a generic group that is depicted as either-M-P-PG or a protecting group. Treatment of 49a or 49d with 49b under basic conditions (e.g. sodium bicarbonate) provides the intermediate 49c or 49e, respectively.

Scheme 50: Representative synthesis of R-A-L-P-Z-V-E

Scheme 50 shows a general synthesis of an R-A-L-P-Z-V-E intermediate of the invention wherein, for illustrative purposes, E is methoxycarbonylamino and R is a generic group that is depicted as a either -M-P-PG or a protecting group. Treatment of 50a or 50d with 50b under basic conditions (e.g. sodium bicarbonate) provides the intermediate 50c or 50e, respectively.

Scheme 51: Representative synthesis of R-A-L-P-Z-V-E

Scheme 51 shows a general synthesis of an R-L-P-Z-V-E or R-M-P-Z-V-E intermediate of the invention wherein, for illustrative purposes, E is methoxycarbonylamino and R is a generic group that is depicted as a Br. Treatment of 51a or 51d with 51b under basic conditions (e.g. sodium bicarbonate) provides the intermediate 51c or 51e, respectively.

\section*{Scheme 51a: Representative synthesis of R-P-Z-V-E}

Scheme 51a shows a general synthesis of an R-P-Z-V-E intermediate of the invention wherein, for illustrative purposes, \(\mathbf{P}\) is pyrrolidine, \(\mathbf{Z}\) is carbonyl, and R is a generic group that is depicted as a methoxycarbonyl. Coupling of amine 51 a with acid \(\mathbf{5 1 b}\) is accomplished using a peptide coupling reagent (e.g. HATU) to afford \(\mathbf{5 1 c}\).

\section*{Scheme 52: Representative synthesis of R-Z-V-E}

Scheme 52 shows a general synthesis of an R-Z-V-E intermediate of the invention wherein, for illustrative purposes, \(\mathbf{E}\) is methoxycarbonylamino and R is a generic group that is depicted as a hydroxyl. Treatment of 52a under basic conditions (e.g. sodium bicarbonate) with 52b provides the intermediate 52c.

\section*{Scheme 53: Representative synthesis of R-L-P-R \({ }^{1}\)}

Scheme 53 shows a general synthesis of an R-L-P-R \({ }^{1}\) intermediate of the invention wherein, for illustrative purposes, L is benzimidazole, R is a generic group that is depicted as a bromide, and \(R^{\prime}\) is a protecting group. The acid 53b is coupled with 53a using a peptide coupling reagent such as HATU to afford 53c. Heating in solvent (such as refluxing ethanol) affords the R-L-P\(\mathrm{R}^{1}\) intermediate 53d.
Alternatively, the R-L-P-R \({ }^{1}\) intermediate \(\mathbf{5 3 d}\) is obtained by reaction of a diamine (such as 53a) and carbonyl compound (such as aldehyde 53e) in a solvent under heating conditions (e.g. ethanol under microwave irradiation).

\section*{Scheme 54: Representative synthesis of \(R-M-P-R^{1}\)}

Scheme 54 shows a general synthesis of an R-M-P-R \({ }^{1}\) intermediate of the invention wherein, for illustrative purposes, \(\mathbf{M}\) is imidazole, R is a generic group that is depicted as a bromide, aldehyde, or alkyne and \(R^{1}\) is a protecting group. Imidazole 54a can be halogenated, for example, under the action of N -bromosuccinimide to provide bromoimidazole 54b.

Bromoimidazole 54b can be protected using standard conditions to give 54c, such as SEM-Cl and sodium hydride when \(\mathrm{PG}=\mathrm{SEM}\). The bromoimidazole 54b can be further elaborated, for example, to the corresponding aldehyde or alkyne. Lithiation of 54 c and condensation with a formate equivalent (e.g. DMF) provides the aldehyde 54d. The aldehyde 54d is converted to alkyne 54 e using a phosphorus-based reagent (e.g. Ohira-Bestmann reagent).

Scheme 55: Representative synthesis of R-P-M-A-A-M-P-R

Scheme 55 shows a general synthesis of an R-P-M-A-A-M-P-R intermediate of the invention wherein, for illustrative purposes, \(\mathbf{M}\) is imidazole and \(R\) is a generic group that is depicted as a protecting group. For example, the diketone \(\mathbf{5 5 b}\) is converted to \(\mathbf{5 5 e}\) using bromine. Compound 55b can be commercially available or can be prepared from the corresponding dibromide 55a through coupling with a vinyltin reagent such as tributyl(ethoxyvinyl)stannane in the presence of a palladium catalyst. Coupling of \(\mathbf{5 5 e}\) with acid 55 f under basic conditions such as diisopropylethylamine affords diester \(\mathbf{5 5 g}\). Imidazole formation is accomplished by treatment of \(\mathbf{5 5 g}\) with ammonium acetate to provide the imidazole containing intermediate R-P-M-A-A-M-P-R (55h).
Alternatively, bromide 55 e can be synthesized from 55 c . The dimethyl compound 55 c can be converted to the corresponding diacid \(\mathbf{5 5 d}\) using potassium permanganate as oxidant.

Conversion of 55d to 55e can be accomplished by a multi-step homologation. For example, the treatment of 55d with oxalyl chloride, followed by trimethylsilyl diazomethane and then hydrobromic acid can afford compound 55e.

\section*{Scheme 56: Representative synthesis of R-P-M-W-M-P-R}

56g

Scheme 56 shows a general synthesis of an R-P-M-W-M-P-R intermediate of the invention wherein, for illustrative purposes, \(\mathbf{M}\) is imidazole and R is a generic group that is depicted as a protecting group. The compound 56a is coupled with vinyltin reagent such as tributyl(ethoxyvinyl)stannane in the presence of a palladium catalyst, followed by bromination and hydrolysis with NBS and water, to give the bromoketone 56b. The reaction between bromide 56b and a carboxylic acid under basic condition generates the ester 56d. Following the same reaction sequence, compound 56d can be elaborated to the diester 56f. Conversion of \(\mathbf{5 6 f}\) to \(\mathbf{5 6} \mathbf{g}\) is accomplished with ammonia reagents such as ammonium acetate at elevated temperature.

\section*{Scheme 57: Representative synthesis of R-A-A-M-P-R1}

Scheme 57 shows a general synthesis of an R-A-A-M-P-R \({ }^{1}\) intermediate of the invention wherein, for illustrative purposes, \(M\) is an amide or an imidazole, R is a generic group that is depicted as Br , and \(\mathrm{R}^{1}\) is a generic group that is depicted as -Z-V-E. Coupling of amine 57b with acid 57a is accomplished using a peptide coupling reagent (e.g. HATU) to afford amide containing 57e.
The acid 57 e is coupled with an \(\alpha\)-haloketone, such as \(\alpha\)-bromoketone 57 d , under basic conditions (e.g. \(\mathrm{Et}_{3} \mathrm{~N}\)) to afford 57 f . Alternatively, the acid 57 e is coupled with an \(\alpha-\) aminoketone 57 h , under amide formation conditions (e.g. \(\mathrm{EDC}, \mathrm{Et}_{3} \mathrm{~N}\)) to afford 57i. Reaction of 57 f or 57 i with an amine or amine salt (e.g. ammonium acetate) affords the imidazole containing intermediate Br-A-M-P-Z-V-E (57g). Coupling of 57 j and 57 k and, in the
alternative, coupling of 57d and 571 under appropriate conditions can also be used in preparation of intermediate \(\mathrm{Br}-\mathrm{A}-\mathrm{M}-\mathrm{P}-\mathrm{Z}-\mathrm{V}-\mathrm{E}\) (57g).

Scheme 58: Representative synthesis of R-A-A-M-P-R \({ }^{1}\)

Scheme 58 shows a general synthesis of the R-A-A-M-P-R' molecule of the invention, wherein a transition metal-mediated cross-coupling reaction is utilized to construct the A-A bond or A-M bond. For illustrative purposes, the Suzuki reaction is employed to couple two corresponding intermediates, R is a generic group that is depicted as \(\mathbf{- M}-\mathrm{P}-\mathrm{Z}-\mathrm{V}-\mathbf{E},-\mathrm{M}-\mathrm{P}-\mathrm{PG}\), or a protecting group, and \(R^{1}\) is a generic group that is depicted as a protecting group. Boronic ester \(\mathbf{5 8 a}, \mathbf{5 8 d}\), \(\mathbf{5 8 f}\) or \(\mathbf{5 8 i}\) is coupled with an appropriate coupling partner (e.g. arylbromide \(\mathbf{5 8 b}\) or \(\mathbf{5 8 j}\)) using a palladium catalyst, such as \(\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\), to afford 58c, 58e, or \(\mathbf{5 8 g}\). Formation of multiple A-M bonds can be conducted in a similar manner. For example, the Suzuki reaction can also be employed to couple (RO\()_{2} \mathrm{~B}-\mathrm{A}-\mathrm{A}-\mathrm{B}(\mathrm{OR})_{2}\) (58h) and two equivalents of \(\mathrm{Br}-\mathrm{M}-\mathrm{P}-\mathrm{PG}\). For each transition metal-mediated cross-coupling reaction the roles of the nucleophile and electrophile can be reversed to provide the same coupling product. Palladium mediated cross-coupling reactions that enable the A-A and/or A-M bond formation, but employ alternative coupling partners and reagents, include for example the Negishi, Kumada, Sonagashira and Stille reactions.

Scheme 59: Representative synthesis of R-W-M-P-R \({ }^{1}\)

Scheme 59 shows a general synthesis of the R-W-M-P-R \({ }^{1}\) molecule of the invention, wherein a transition metal-mediated cross-coupling reaction is utilized to construct the \(\mathbf{W}\)-M bond. For illustrative purposes, the Suzuki reaction is employed to couple two corresponding intermediates, R is a generic group that is depicted as -M-P-Z-V-E, -M-P-PG, or a protecting group, and \(\mathrm{R}^{1}\) is a generic group that is depicted as a protecting group. Boronic ester 59a, 59d, or 59 f is coupled with an appropriate coupling partner (e.g. arylbromide 59b) using a palladium catalyst, such as \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\), to afford \(\mathbf{5 9} \mathrm{c}, \mathbf{5 9 e}\), or 59 g . Formation of multiple \(\mathbf{W}-\mathrm{M}\) bonds can be conducted in a similar manner. For example, the Suzuki reaction can also be employed to couple (RO) \({ }_{2} \mathrm{~B}-\mathrm{W}-\mathrm{B}(\mathrm{OR})_{2}\) (59h) and two equivalents of Br-M-P-PG. For each transition metalmediated cross-coupling reaction the roles of the nucleophile and electrophile can be reversed to provide the same coupling product. Palladium mediated cross-coupling reactions that enable the W-M bond formation, but employ alternative coupling partners and reagents, include for example the Negishi, Kumada, Sonagashira and Stille reactions.

Scheme 60: Representative synthesis of R-A-L-P-R1
\begin{tabular}{|c|c|c|}
\hline \[
\begin{gathered}
E-V-Z-P-M-A-B(O R)_{2}+ \\
60 a
\end{gathered}
\] & \[
\begin{gathered}
\text { Br-L-P-PG } \\
60 \mathrm{~b}
\end{gathered}
\] & \[
\begin{gathered}
\text { E-V-Z-P-M-A-L-P-PG } \\
60 c
\end{gathered}
\] \\
\hline PG-P-M-A-B(OR) \(\mathbf{2}^{+}\) & Br-L-P-PG & PG-P-M-A-L-P-PG \\
\hline 60d & 60b & 600 \\
\hline PG-A-B(OR) \(\mathbf{2}^{+}\)+ & Br-L-P-PG & PG-A-L-P-PG \\
\hline 607 & 60b & 60g \\
\hline
\end{tabular}

Scheme 60 shows a general synthesis of the R-A-L-P-R \({ }^{1}\) molecule of the invention, wherein a transition metal-mediated cross-coupling reaction is utilized to construct the A-L bond. For illustrative purposes, the Suzuki reaction is employed to couple two corresponding intermediates, R is a generic group that is depicted as -M-P-Z-V-E, -M-P-PG, or a protecting group, and \(\mathrm{R}^{1}\) is a generic group that is depicted as a protecting group. Boronic ester 60a, 60d, or \(60 f\) is coupled with an appropriate coupling partner (e.g. arylbromide 60b) using a palladium catalyst, such as \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\), to afford \(\mathbf{6 0 c}\), \(\mathbf{6 0 e}\), or \(\mathbf{6 0 g}\). For each transition metal-mediated crosscoupling reaction the roles of the nucleophile and electrophile can be reversed to provide the same coupling product. Palladium mediated cross-coupling reactions that enable the A-L bond formation, but employ alternative coupling partners and reagents, include for example the Negishi, Kumada, Sonagashira and Stille reactions.

Scheme 61: Representative synthesis of R-A-M-P-R \({ }^{1}\)

Scheme 61 shows a general synthesis of the R-A-M-P-R \({ }^{1}\) molecule of the invention, wherein a transition metal-mediated cross-coupling reaction is utilized to construct the A-M bond. For illustrative purposes, the Suzuki reaction is employed to couple two corresponding intermediates, R is a generic group that is depicted as -L-P-Z-V-E, -L-P-PG, or a protecting group, and \(\mathrm{R}^{1}\) is a generic group that is depicted as a protecting group. Boronic ester 61a, 61d, or 61 f is coupled with an appropriate coupling partner (e.g. arylbromide 61b) using a palladium catalyst, such as \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\), to afford \(\mathbf{6 1 c}\), \(\mathbf{6 1} \mathrm{e}\), or \(\mathbf{6 1 g}\). For each transition metal-mediated crosscoupling reaction the roles of the nucleophile and electrophile can be reversed to provide the same coupling product. Palladium mediated cross-coupling reactions that enable the A-M bond formation, but employ alternative coupling partners and reagents, include for example the Negishi, Kumada, Sonagashira and Stille reactions.

\section*{Scheme 62: Representative synthesis of R-P-H}

Scheme 62 shows a general synthesis of a R-P-H molecule of the invention wherein, for illustrative purposes, R is a generic group that is depicted as ethoxycarbonyl and P is a carbocyclic or heterocyclic ring (e.g. X is carbon or heteroatom) and \(\mathrm{m}, \mathrm{n}\), and o are \(0-3\), independently. The amino ester 62a is converted to the substituted or cyclized amino ester 62b through for example a reductive amination or Mitsunobu reaction. Compound 62b can be protected to provide compound 62c if necessary.

Scheme 63: Representative synthesis of R-P-M-W-M-P-R

Scheme 63 shows a general synthesis of a R-P-M-W-M-P-R intermediate of the invention wherein, for illustrative purposes, R is a generic group that is depicted as a protecting group and \(\mathbf{A}\) is functionalized with a group depicted as either hydroxyalkyl, aminoalkyl, carbonylalkyl, or alkoxycarbonylalkyl. The cyclization of 63a, 63c, and 63d can be performed through several functional group transformations which include, but are not limited to, Mitsunobu reaction, reductive amination, and lactamization.

\section*{Scheme 64: Representative Synthesis of H-V-E}

Scheme 64 shows a general synthesis of a H-V-E intermediate of the invention wherein, for illustrative purposes \(\mathbf{E}\) is methoxycarbonylamino and \(\mathbf{V}\) is isopropylamino. The reaction of hydrazine carboxylate 64a with a ketone or aldehyde, such as acetone, under acidic conditions (e.g. AcOH) affords the imine 64b. Reaction of 64b under reducing conditions, such as \(\mathrm{PtO}_{2}\) and hydrogen gas, affords the substituted hydrazinecarboxylate 64 c .

The invention will now be illustrated by the following non-limiting Examples.

\section*{EXAMPLES}

Example AA

2-[5-(4-Bromo-phenyl)-1H-imidazol-2-yl)-pyrrolidine-1carboxylic acid tert-butyl ester

KOAc

2-\{5-[4-(4,4,5,5-Tetramethyl-
[1,3,2]dioxaborolan-2-yl)-phenyl]-1 H -imidazol-2-y|)-pyrrolidine-1-carboxylic acid tert-butyl ester
(S)-2-\{5-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl\}-
pyrrolidine-1-carboxylic acid tert-butyl ester: 1,4-Dioxane (300 mL) was added to a mixture of (S)-2-[5-(4-bromo-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (\(21.1 \mathrm{~g}, 53.7 \mathrm{mmol}\)), bis(pinacolato)diboron (\(27.3 \mathrm{~g}, 107.5 \mathrm{mmol}\)), tetrakis(triphenylphosphine) palladium (0) (\(3.10 \mathrm{~g}, 2.68 \mathrm{mmol}\)), and potassium acetate \((15.02 \mathrm{~g}\), 153.0 mmol), and heated at \(80^{\circ} \mathrm{C}\) for 16 hours. The mixture was cooled and the resulting solid was filtered. The majority of the 1,4 -dioxane was removed from the filtrate under reduced pressure and resulting residue was taken up in ethyl acetate \((300 \mathrm{~mL})\). The organic phase was washed with saturated sodium bicarbonate (\(2 \times 150 \mathrm{~mL}\)), brine (100 mL) and dried over sodium sulfate. After filtration the solvent was removed from the filtrate under reduced pressure. The resulting oil was subjected to silica gel chromatography using a 330 g ISCO column and effluent of 20-100 \% ethyl acetate and hexanes. The fractions containing product were combined and the solvent was removed under reduced pressure to provide (S)-2-\{5-[4-(4,4,5,5-tetramethyl-
[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carboxylic acid tert-butyl ester (\(18 \mathrm{~g}, 76 \%\)) and light yellow solid.

\section*{Example AB}

2-\{5-[4-(4,4,5,5-Tetramethyl-
[1,3,2]dioxaborolan-2-yl)-phenyl]-1 \(H\)-imidazol-2-yl\}-pyrrolidine-1-caboxylic acid tert-butyl ester
zor
\(\mathrm{HCl} /\) Dioxane DCM

2-Pyrrolidin-2-yl-5-f4-(4,4,5,5-
tetramethyl-\{1,3,2]dioxaborolan-2-yll-phenylj-1 H -imidazole
(S)-2-Pyrrolidin-2-yl-5-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1Himidazole hydrochloride: A solution of hydrogen chloride in 1,4 -dioxane (\(4 \mathrm{~N}, 75 \mathrm{~mL}\)) was added to a solution of (S)-2-\{5-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carboxylic acid tert-butyl ester (\(7.0 \mathrm{~g}, 15.9 \mathrm{mmol}\)) in dichloromethane (50 mL). Gas evolution was observed. After 30 minutes, a solid formed. After 1.5 hours, the resulting solid was isolated by filtration with diethyl ether washing. Any residual solvent was removed under reduced pressure to provide (S)-2-pyrrolidin-2-yl-5-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazole hydrochloride (\(5.6 \mathrm{~g}, 95\) \(\%\)) as an off-white solid.

\section*{Example AC}

2-Pyrrolidin-2-yl-5-\{4-(4,4,5,5-tetramethyl- \([1,3,2]\) dioxaborolan-2-yl)-phenyl]-1 \(H\)-imidazole

HATU, DIPEA, DMF

[2-Methyl-1-(2-\{5-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-propylf-carbamic acid methyl ester
(S,S)-[2-Methyl-1-(2-\{5-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-propyl]-carbamic acid methyl ester:
Diisopropylethylamine (\(7.63 \mathrm{~mL}, 43.8 \mathrm{mmol}\)) was added to a suspension of (S)-2-pyrrolidin-2-yl-5-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazole hydrochloride (\(7.33 \mathrm{~g}, 19.5 \mathrm{mmol}\)), \(O\)-(7-azabenzotriazol-1-yl)- \(N, N, N^{\prime}, N^{\prime}\)-tetramethyluronium hexafluorophosphate (\(7.6 \mathrm{~g}, 19.9 \mathrm{mmol}\)) and (\(S\)) 2-methoxycarbonylamino-3-methyl-butyric acid (\(3.59 \mathrm{~g}, 20.5 \mathrm{mmol}\)) in dimethylformamide (75 mL). All solids dissolved. After 30 min the
reaction mixture was diluted with ethyl acetate (300 mL) and was washed with \(1 / 2\) saturated sodium chloride (\(1 \times 300 \mathrm{~mL}\)), half saturated sodium bicarbonate (\(2 \times 150 \mathrm{~mL}\)) and brine (\(1 \times\) 100 mL). The organic phase was dried with sodium sulfate, filtered and the solvent was removed under reduced pressure. The resulting tan foam was subjected to silica gel chromatography with eluate of 20-100 \% ethyl acetate and hexanes, to provide (S,S)-[2-methy]-1-(2-\{5-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-propyl]-carbamic acid methyl ester (\(6.6 \mathrm{~g}, 68 \%\)) as a white foam: 1 H (DMSO-d6): \(\delta=11.81\) (br s, 1 H), \(7.72(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.4\) \(\mathrm{Hz}, 1 \mathrm{H}), 5.05(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~m}, 2 \mathrm{H}), 1.93(\mathrm{~m}, 2 \mathrm{H})\), \(1.28(\mathrm{~s}, 12 \mathrm{H}), 0.85\left(\mathrm{dd}, J_{1}=6.6 \mathrm{~Hz}, J_{2}=11.4 \mathrm{~Hz}, 6 \mathrm{H}\right)\).

\section*{Example AD}

3-[2-(4-Bromo-phenyl)-2-oxo-ethylcarbamoyl]-pyrrolidine-1-carboxylic acid tert-butyl ester: \(N, N\)-diisopropylethylamine (\(5.3 \mathrm{~mL}, 30.6 \mathrm{mmol}\)) was added dropwise to a mixture of pyrrolidine-1,3-dicarboxylic acid 1-tert-butyl ester (\(2.2 \mathrm{~g}, 10.1 \mathrm{mmol}\)), HATU (\(4.0 \mathrm{~g}, 10.5\) mmol), the HCl salt of 2-amino-1-(4-bromophenyl)ethanone (\(2.4 \mathrm{~g}, 9.6 \mathrm{mmol}\)), and DMF (40 mL), and stirred at ambient condition for 1 hour. Most of the volatile component was removed in vacuo, and the resulting residue was dissolved in ethyl acetate (150 mL), washed with water and brine, dried over \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), filtered and concentrated in vacuo. The obtained residue was
purified by flash chromatography to provide the desired product as a white foam-like solid (3.5 \(\mathrm{g}, 90 \%) . \mathrm{m} / \mathrm{z} 432.9,434.9(\mathrm{M}+\mathrm{Na})^{+}\).

3-[5-(4-Bromo-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester: A mixture of 3-[2-(4-bromo-phenyl)-2-oxo-ethylcarbamoyl]-pyrrolidine-1-carboxylic acid tertbutyl ester (\(1.5 \mathrm{~g}, 3.6 \mathrm{mmol}\)) and ammonium acetate (\(1.4 \mathrm{~g}, 18.2 \mathrm{mmol}\)) in xylene (15 mL) was heated in a sealed tube at \(140^{\circ} \mathrm{C}\) for 2 hours. The volatile component was removed in vacuo, and the residue was dissolved in ethyl acetate (150 mL), washed with \(\mathrm{NaHCO}_{3}\) solution, water and brine, dried over \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), filtered and concentrated in vacuo. The obtained residue was purified by flash chromatography to provide the desired product as a white solid (\(795 \mathrm{mg}, 56 \%\)). \(\mathrm{m} / \mathrm{z}\) 391.8, \(393.8(\mathrm{M}+\mathrm{H})^{+}\).

2-(5-\{4'-[2-(1-Boc-pyrrolidin-3-yl)-3H-imidazol-4-yl]-biphenyl-4-yl\}-1H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester: \(\mathrm{Pd}\left(\mathrm{Ph}_{3}\right)_{4}(54 \mathrm{mg}, 0.046 \mathrm{mmol})\) was added to a mixture 3-[5-(4-bromo-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (\(378 \mathrm{mg}, 0.97 \mathrm{mmol}\)), 2-\{5-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carboxylic acid tert-butyl ester (\(408 \mathrm{mg}, 0.93 \mathrm{mmol}\)), \(\mathrm{NaHCO}_{3}\) (\(273 \mathrm{mg}, 3.26 \mathrm{mmol}\)) in 1,2-dimethoxyethane (8 mL) and water (2 mL). The reaction mixture was flushed with nitrogen, heated at \(80^{\circ} \mathrm{C}\) for 6 hours, and then the volatile component was removed in vacuo. The residue was dissolved in ethyl acetate (100 mL), washed with \(\mathrm{NaHCO}_{3}\) solution, water and brine, dried over \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), filtered and concentrated in vacuo. The obtained residue was purified by flash chromatography to provide the desired product as a white solid (\(370 \mathrm{mg}, 64 \%\)). m/z \(625.1(\mathrm{M}+\mathrm{H})^{+}\).
(1-\{3-[5-(4'-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-1H-imidazol-2-yll-pyrrolidine-1-carbonyl\}-2-methyl-propyl)carbamic acid methyl ester: To a solution of 2-(5-\{4'-[2-(1-Boc-pyrrolidin-3-yl)-3H-imidazol-4-yl]-biphenyl-4-yl\}-1 H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (200 mg , 0.232 mmol) in methanol (5 mL) was added 4.0 M solution of HCl in dioxane (1 mL , excess). The mixture was stirred for 3 hours at \(50^{\circ} \mathrm{C}\) and concentrated under reduced pressure. The residue was treated with ether to remove excess HCl . The obtained white solid was dissolved in DMF (5 mL). To the solution was added 2-methoxycarbonylamino-3-methyl-butyric acid (123 \(\mathrm{mg}, 0.71 \mathrm{mmol}\)), HATU (\(285 \mathrm{mg}, 0.75 \mathrm{mmol}\)) and \(N, N\)-diisopropylethylamine (\(0.14 \mathrm{~mL}, 0.77\) mmol). The mixture was stirred at ambient for 2 hours, and then the volatile component was removed in vacuo. The residue was dissolved in ethyl acetate (100 mL), washed with 1 N

NaOH solution, water and brine, dried over \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), filtered and concentrated in vacuo. The obtained residue was purified by flash chromatography to provide the desired product as a white solid (\(100 \mathrm{mg}, 42 \%\)). \({ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.00-7.80(\mathrm{~m}, 10 \mathrm{H}), 5.26(\mathrm{t}, 1 \mathrm{H}), 4.40-\) \(3.42(\mathrm{~m}, 15 \mathrm{H}), 2.65-2.00(\mathrm{~m}, 8 \mathrm{H}), 1.50-0.93(\mathrm{~m}, 12 \mathrm{H}) ; \mathrm{m} / \mathrm{z} 739.3(\mathrm{M}+\mathrm{H})^{+}\).

\section*{Example AE}

3-[2-(4-Bromo-phenyl)-2-oxo-ethylcarbamoyl]-2-aza- bicyclo[2.2.1] heptane-2-carboxylic acid tert-butyl ester: Following the procedure used to prepare compound 3-[2-(4-bromo-phenyl)-2-oxo-ethylcarbamoyl]-pyrrolidine-1-carboxylic acid tert-butyl ester, except that 2-aza-bicyclo[2.2.1]heptane-2,3-dicarboxylic acid 2-tert-butyl ester was used instead of pyrrolidine-1,3-dicarboxylic acid 1-tert-butyl ester.

3-[5-(4-Bromo-phenyl)-1H-imidazol-2-yl]-2-aza-bicyclo[2.2.1]heptane-2-carboxylic acid tert-butyl ester: Following the procedure used to prepare compound 3-[5-(4-bromo-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester, except that 3-[2-(4-bromo-phenyl)-2-oxo-ethylcarbamoyl]-2-aza-bicyclo[2.2.1]heptane-2-carboxylic acid tert-butyl ester was used instead of 3-[2-(4-bromo-phenyl)-2-oxo-ethylcarbamoyl]-pyrrolidine-1-carboxylic acid tert-butyl ester.
(1-\{3-[5-(4-Bromo-phenyl)-1H-imidazol-2-yl]-2-aza-bicyclo[2.2.1]heptane-2-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester: To a solution of 3-[5-(4-bromo-phenyl)-1 H -imidazol-2-yl]-2-aza-bicyclo[2.2.1]heptane-2-carboxylic acid tert-butyl ester (\(1.0 \mathrm{~g}, 2.4 \mathrm{mmol}\)) in methanol (20 mL) was added 4.0 M solution of HCl in dioxane (4.0 mL , excess). The mixture was stirred for 3 hours at \(50^{\circ} \mathrm{C}\) and concentrated under reduced pressure. The residue was treated with ether to remove excess HCl . The obtained white solid was dissoved in DMF (20 mL). To the solution was added 2-methoxycarbonylamino-3-methyl-butyric acid (0.46 g , 2.6 mmol), HATU (\(1.0 \mathrm{~g}, 2.6 \mathrm{mmol}\)) and \(N, N\)-diisopropylethylamine (\(2.5 \mathrm{~mL}, 14.4 \mathrm{mmol}\)). The mixture was stirred at ambient for 2 hours, and then the volatile component was removed in vacuo. The residue was dissolved in ethyl acetate (200 mL), washed with 1 N NaOH solution, water and brine, dried over \(\mathrm{MgSO}_{4}\), filtered and concentrated in vacuo. The obtained residue was purified by flash chromatography to provide the desired product as a white solid \((1.0 \mathrm{~g}\), 89\%). m/z 475.1, \(477.1(\mathrm{M}+\mathrm{H})^{+}\).
[2-Methyl-1-(3-\{5-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl\}-2-aza-bicyclo[2.2.1]heptane-2-carbonyl)-propyl]-carbamic acid methyl ester: \(\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\) (\(73 \mathrm{mg}, 0.06 \mathrm{mmol}\)) was added to a sealed tube containing a mixture of (1-\{3-[5-(4-bromo-phenyl)-1H-imidazol-2-yl]-2-aza-bicyclo[2.2.1]heptane-2-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester (\(600 \mathrm{mg}, 1.27 \mathrm{mmol}\)), bis(pinacolato)diboron (\(675 \mathrm{mg}, 2.66 \mathrm{mmol}\)), potassium acetate (\(324 \mathrm{mg}, 3.3 \mathrm{mmol}\)) and 1,4-dioxane (15 mL). The reaction mixture was flushed with nitrogen, heated at \(80^{\circ} \mathrm{C}\) for 16 hours, and then the volatile component was removed in vacuo. The residue was dissolved in ethyl acetate (100 mL), washed with \(\mathrm{NaHCO}_{3}\) solution, water and brine, dried over \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), filtered and concentrated in vacuo. The obtained residue was purified by flash chromatography to provide the desired product as a white solid (\(440 \mathrm{mg}, 66 \%\)) \(\mathrm{m} / \mathrm{z}\) \(523.2(\mathrm{M}+\mathrm{H})^{+}\).
(1-\{2-[5-(4'-\{2-[2-(2-Methoxycarbonylamino-3-methyl-butyryl)-2-aza-bicyclo [2.2.1]hept-3-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester: Following the procedure used to prepare compound 2-(5-\{4'-[2-(1- Boc-pyrrolidin-3-yl)-3H-imidazol-4-yl]-biphenyl-4-yl\}-1H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester, except that [2-methyl-1-(3-\{5-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl\}-2-aza-bicyclo[2.2.1]heptane-2-carbonyl)-propyl]-carbamic acid methyl ester and (1-\{2-[5-(4-bromo-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl \}-2-methyl-propyl)-carbamic acid methyl ester were used instead of

2-\{5-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carboxylic acid tert-butyl ester and 3-[5-(4-bromo-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1carboxylic acid tert-butyl ester. \({ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \boldsymbol{\delta} 7.90-7.70\) (m, 10H), 7.20-7.10 \((\mathrm{m}, 1 \mathrm{H}), 5.24(\mathrm{t}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 1 \mathrm{H}), 4.40-3.80(\mathrm{~m}, 4 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.60-1.60(\mathrm{~m}\), \(13 \mathrm{H}), 1.05-0.90(\mathrm{~m}, 12 \mathrm{H}) ; \mathrm{m} / \mathrm{z} 765.2(\mathrm{M}+\mathrm{H})^{+}\).

\section*{(1-\{3-[5-(4'-\{2-[2-(2-Methoxycarbonylamino-3-methyl-butyryl)-2-aza-bicyclo[2.2.1]hept-3-} yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-1H-imidazol-2-yl]-2-aza-bicyclo[2.2.1]heptane-2-
carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester: Following the procedure used to prepare compound 2-(5-\{4'-[2-(1-Boc-pyrrolidin-3-yl)-3H-imidazol-4-yl]-biphenyl-4-yl\}-1H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester, except that [2-methyl-1-(3-\{5-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl\}-2-aza-bicyclo[2.2.1]heptane-2-carbonyl)-propyl]-carbamic acid methyl ester and (1-\{3-[5-(4-bromo-phenyl)-1H-imidazol-2-yl]-2-aza-bicyclo[2.2.1]heptane-2-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester were used instead of 2-\{5-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carboxylic acid tert-butyl ester and 3-[5-(4-bromo-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester. \({ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}\), \(\left.\mathrm{CD}_{3} \mathrm{OD}\right)\) 8 7.90-7.20 (m, 10H), 4.83-4.25 (m, 5H), 3.90-3.40 (m, 6H), 2.90-2.70 (m, 2H), 2.40\(2.10(\mathrm{~m}, 3 \mathrm{H}), 2.10-1.40(\mathrm{~m}, 11 \mathrm{H}), 1.10-0.90(\mathrm{~m}, 12 \mathrm{H}) ; \mathrm{m} / \mathrm{z} 791.3(\mathrm{M}+\mathrm{H})^{+}\).

\section*{Example AF}

Pyrrolidine-1,2-dicarboxylic acid 1-tert-butyl ester 2-
[2-(4-\{4-[2-(1- Boc -pyrrolidine-2-carbonyioxy)-acetyl)-phenoxy)-phenyl)-2-oxo-ethyl] ester

2- 5 -(4-\{4- \(2-(1-\) Boc -pyrrolidin-2-yl)-3H-imidazol-4-yl)-phenoxy\}-phenyl)-1H-imidazol-2-yl-pyrrolidine-1-carboxylic acid tert-butyl ester

[1-(2-\{5-[4-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyry) \()\) pyrrolidin-2-ylf-3H-imidazol-4-yl\}-phenoxy)-phenylf-1 H -imidazol-2-yl]-pyrolidine-1-cabonyl)-2-methyl-propyl)-carbamic acid methyl ester

2-Bromo-1-\{4-[4-(2-bromo-acetyl)-phenoxy]-phenyl\}-ethanone: Bromine (\(\mathbf{2} .02 \mathrm{~mL}, 39.3\) mmol) in dichloromethane (25 mL) was added slowly to a stirred solution of 4-acetylphenyl ether \((5.0 \mathrm{~g}, 19.7 \mathrm{mmol})\) in dichloromethane \((65 \mathrm{~mL})\) at \(30^{\circ} \mathrm{C}\). The mixture was stirred at ambient for 16 hours, and then the volatile component was removed in vacuo. The residue was recrystallized from ethanol (40 mL) to get a yellow crystal like product \((2.3 \mathrm{~g}, 29 \%\)).

\section*{Pyrrolidine-1,2-dicarboxylic acid 1-tert-butyl ester 2-[2-(4-\{4-[2-(1-Boc-pyrrolidine-2-} carbonyloxy)-acetyl]-phenoxy\}-phenyl)-2-oxo-ethyl] ester: To a stirred mixture of 2-bromo-1-\{4-[4-(2-bromo-acetyl)-phenoxy]-phenyl \}-ethanone (\(2.0 \mathrm{~g}, 4.9 \mathrm{mmol}\)) and pyrrolidine-1,2dicarboxylic acid 1-tert-butyl ester (\(2.2 \mathrm{~g}, 10.2 \mathrm{mmol}\)) in acetonitrile (20 mL) was added DIPEA \((1.76 \mathrm{~mL}, 10.1 \mathrm{mmol})\). The slurry was stirred for 3 hours at ambient temperature. The mixture was diluted with ethyl acetate (150 mL), washed with water and brine, dried over \(\mathrm{MgSO}_{4}\), filtered and concentrated in vacuo. The obtained residue was purified by flash chromatography to provide the desired product as a white solid \((2.2 \mathrm{~g}, 65 \%) . \mathrm{m} / \mathrm{z} 703.1(\mathrm{M}+\mathrm{Na})^{+}\).

2-[5-(4-\{4-[2-(1-Boc-pyrrolidin-2-yl)-3H-imidazol-4-yl]-phenoxy\}-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester: A mixture of pyrrolidine-1,2-dicarboxylic acid 1-fert-butyl ester 2-[2-(4-\{4-[2-(1-Boc-pyrrolidine-2-carbonyloxy)-acetyl]-phenoxy\}-phenyl)-2-oxo-ethyl] ester (\(250 \mathrm{mg}, 0.37 \mathrm{mmol}\)) and ammonium acetate (\(570 \mathrm{mg}, 7.3 \mathrm{mmol}\)) in xylene (8 mL) was heated in microwave machine at \(140^{\circ} \mathrm{C}\) for 80 minutes. The volatile component was removed in vacuo, and the residue was dissolved in ethyl acetate (100 mL), washed with \(\mathrm{NaHCO}_{3}\) solution, water and brine, dried over \(\mathrm{MgSO}_{4}\), filtered and concentrated in vacuo. The obtained residue was purified by flash chromatography to provide the desired product as a white solid (\(62 \mathrm{mg}, 26 \%\)). \(\mathrm{m} / \mathrm{z} 641.1(\mathrm{M}+\mathrm{H})^{+}\).
[1-(2-\{5-[4-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-y]]-3H-imidazol-4-yl\}-phenoxy)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester: Following the procedure used to prepare compound (1-\{3-[5-(4'-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester, except that 2-[5-(4-\{4-[2-(1- Boc -pyrrolidin-2-yl)-3H-imidazol-4-yl]-phenoxy\}-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester was used instead of 2-(5-\{4'-[2-(1- Boc-pyrrolidin-3-yl)-3H-imidazol-4-yl]-biphenyl-4-yl\}-1H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester. \({ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.80-7.60(\mathrm{~m}\), \(4 \mathrm{H}), 7.30-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.10-0.95(\mathrm{~m}, 4 \mathrm{H}), 5.16(\mathrm{t}, 1 \mathrm{H}), 4.30-3.50(\mathrm{~m}, 12 \mathrm{H}), 2.40-1.90(\mathrm{~m}\), \(10 \mathrm{H}), 1.10-0.90(\mathrm{~m}, 12 \mathrm{H}) ; \mathrm{m} / \mathrm{z} 755.2(\mathrm{M}+\mathrm{H})^{+}\).

\section*{Example AG}

Pyrrolidine-1,2-dicarboxylic acid 1-tert-butyl ester 2-[2-(4-\{3-[2-(1-Boc-pyrrolidine-2-carbonyloxy)-acety()-phenoxy)-phenyl)-2-oxo-ethyl) ester

[1-(2-\{5-[4-(3-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyry)-pyrrolidin-2-yl|-3H-imidazol-4-y|\}-phenoxy)-phenyl]-1H-imidazot 2 -ylf pyrrolidine-1-carbonyl)-2-methyl-propyl)-carbamic acid methyl ester

3,4'-Oxybis(benzoic acid): A mixture of 3,4'-dimethylbiphenyl ether (\(1.7 \mathrm{~g}, 8.6 \mathrm{mmol}\)) and potassium permanganate \((6.0 \mathrm{~g}, 38 \mathrm{mmol})\) in water (200 mL) was refluxed for 6 hours. The hot solution was filtered, cooled, and extracted with chloroform. The aqueous layer was acidified by 2 N HCl . The precipitate was filtered off and washed with water to give a white solid (0.55 \(\mathrm{g}, 25 \%) . \mathrm{m} / \mathrm{z} 257.1(\mathrm{M}-\mathrm{H})^{-}\).

2-Bromo-1-\{4-[3-(2-bromo-acetyl)-phenoxy]-phenyl\}-ethanone: A mixture of 3,4'oxybis(benzoic acid) \((0.55 \mathrm{~g}, 2.1 \mathrm{mmol})\)) and oxalyl chloride (\(10.6 \mathrm{~mL}, 21.3 \mathrm{mmol}\)) in dichloromethane (40 mL) containing DMF (4 drops) was stirred at ambient temperature for 4 hours, then concentrated and co-evaporated with toluene (3 x) and dried under high vacuum. The resulting residue was suspended in dichloromethane (15 mL) at \(0^{\circ} \mathrm{C}\) and treated with 2.0 M trimethylsilyldiazomethane in ether (\(3.2 \mathrm{~mL}, 6.4 \mathrm{mmol}\)) over 15 minutes to give a brown mixture. Reaction mixture was warmed to ambient temperature overnight and then
concentrated. The resulting brown solid was suspended in ethyl acetate (15 mL) and cooled to \(0^{\circ} \mathrm{C} . \mathrm{HBr}\) in acetic acid (\(1.2 \mathrm{~mL}, 33 \% \mathrm{~W}, 6.4 \mathrm{mmol}\)) was added over 5 minutes and reaction mixture was warmed to ambient temperature over 1 hour. Solid sodium bicarbonate (0.3 g) was added and stirred for 30 minutes. Water was added giving a biphasic mixture with a brown precipitate. The solid was removed by filtration and filtrate was extracted with dichloromethane, dried over \(\mathrm{MgSO}_{4}\) and concentrated. The residue was purified by flash column chromatography to give a brown solid (0.47 g).

Pyrrolidine-1,2-dicarboxylic acid 1-tert-butyl ester 2-[2-(4-\{3-[2-(1-Boc-pyrrolidine-2-carbonyloxy)-acetyl]-phenoxy\}-phenyl)-2-oxo-ethyl] ester: Following the procedure used to prepare compound (1-\{3-[5-(4'-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester, except that 2-bromo-1-\{4-[3-(2-bromo-acetyl)-phenoxy]phenyl \(\}\)-ethanone was used instead of 2-bromo-1-\{4-[4-(2-bromo-acetyl)-phenoxy]-phenyl \(\}\) ethanone. \(\mathrm{m} / \mathrm{z} 703.1(\mathrm{M}+\mathrm{Na})^{+}\).

2-[5-(4-\{3-[2-(1-Boc-pyrrolidin-2-yl)-3H-imidazol-4-yl]-phenoxy\}-phenyl)-1H-imidazol-2-yll-pyrrolidine-1-carboxylic acid tert-butyl ester: Following the procedure used to prepare compound 2-[5-(4-\{4-[2-(1-Boc-pyrrolidin-2-yl)-3H-imidazol-4-yl]-phenoxy\}-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester, except that pyrrolidine-1,2dicarboxylic acid 1-tert-butyl ester 2-[2-(4-\{3-[2-(1-Boc-pyrrolidine-2-carbonyloxy)-acetyl]phenoxy \(\}\)-phenyl)-2-oxo-ethyl] ester was used instead of pyrrolidine-1,2-dicarboxylic acid 1 -tert-butyl ester 2-[2-(4-\{4-[2-(1-Boc-pyrrolidine-2-carbonyloxy)-acetyl]-phenoxy\}-phenyl)-2-oxo-ethyl] ester. \(\mathrm{m} / \mathrm{z} 641.0(\mathrm{M}+\mathrm{H})^{+}\).
[1-(2-\{5-[4-(3-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-phenoxy)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester: Following the procedure used to prepare compound (1-\{3-[5-(4'-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4yl \}-biphenyl-4-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester, except that 2-[5-(4-\{3-[2-(1-Boc-pyrrolidin-2-yl)-3H-imidazol-4-y]]-phenoxy\}-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester was used instead of 2-(5-\{4'-[2-(1-Boc-pyrrolidin-3-yl)-3H-imidazol-4-yl]-biphenyl-4-yl\}-1H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester. \({ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta \mathbf{7 . 8 0 - 7 . 1 0}\) (m,
\(10 \mathrm{H}), 5.30-5.15(\mathrm{~m}, 2 \mathrm{H}), 4.30-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.18-4.05(\mathrm{~m}, 2 \mathrm{H}), 3.95-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.70-3.60\) \((\mathrm{m}, 6 \mathrm{H}), 2.65-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.00(\mathrm{~m}, 8 \mathrm{H}), 1.05-0.85(\mathrm{~m}, 12 \mathrm{H}) ; \mathrm{m} / \mathrm{z} 755.3(\mathrm{M}+\mathrm{H})^{+}\).

\section*{Example AH}

 2-yl)-pynollidine-1-carbonyll-2- \(\quad\) yl-2-eze-bicyctol2 2 1 pheptane-2-cartonylf-methyt-propyl-carbamic acio M-2-azabil-catbamic acid methyl ester
 methyl ester

phenyl)-1H-benzoimidazot-2-yl-pymolidine-1-carbonyi-2-methyl-propyl)-carbamic acid methyl ester
(1-\{2-[6-(4-\{2-[2-(2-Methoxycarbonylamino-3-methyl-butyryl)-2-aza-bicyclo[2.2.1]hept-3-yll-3H-imidazol-4-yl\}-phenyl)-1 H-benzoimidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester: Following the procedure used to prepare compound 2-(5-\{4'-[2-(1-Boc-pyrrolidin-3-yl)-3H-imidazol-4-yl]-biphenyl-4-yl \}-1H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester, except that [2-methyl-1-(3-\{5-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl\}-2-aza-bicyclo[2.2.1]heptane-2-carbonyl)-propyl]-carbamic acid methyl ester and \{1-[2-(6-bromo-1H-benzoimidazol-2-yl)-pyrrolidine-1-carbonyl]-propyl\}-carbamic acid methyl ester were used instead of 2-\{5-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carboxylic acid tert-butyl ester and 3-[5-(4-bromo-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester. \({ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.10-7.80(\mathrm{~m}, 7 \mathrm{H}), 5.42-5.30(\mathrm{~m}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 4.40-\) \(4.25(\mathrm{~m}, 2 \mathrm{H}), 4.20-3.90(\mathrm{~m}, 2 \mathrm{H}, 3.80-3.60(\mathrm{~m}, 6 \mathrm{H}), 3.00-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.50-\) \(1.60(\mathrm{~m}, 12 \mathrm{H}), 1.10-0.80(\mathrm{~m}, 12 \mathrm{H}) ; \mathrm{m} / \mathrm{z} 739.3(\mathrm{M}+\mathrm{H})^{+}\).

\section*{Example AI}

5-(4-Bromo-phenyl)-5-methyl-imidazolidine-2,4-dione: A mixture of 4-bromo acetophenone \((8.0 \mathrm{~g}, 40.2 \mathrm{mmol})\), ammonium carbonate (\(40 \mathrm{~g}, 402 \mathrm{mmol}\)) and potassium cyanide (\(3.4 \mathrm{~g}, 52.3\) \(\mathrm{mmol})\) in a mixed solvent of ethanol (90 mL) and water (90 mL) was stirred at \(55^{\circ} \mathrm{C}\) for 5 hours, then 12 hours at ambient. The solution was adjusted to \(\mathrm{pH}=6\) with 6 N HCl carefully and subsequently stirred at room temerature for 2 hours. The precipitate was filtered off, washed with water. The collected white solid was dried under vacuum to give the product \((9.2 \mathrm{~g}, 85 \%)\). m/z 267.1, 269.1 (M-H).

2-Amino-2-(4-bromo-phenyl)-propionic acid: A mixture of 5-(4-bromo-phenyl)-5-methyl-imidazolidine-2,4-dione (\(4.0 \mathrm{~g}, 14.9 \mathrm{mmol}\)) and \(3 \mathrm{~N} \mathrm{NaOH}(50 \mathrm{~mL})\) was heated in a sealed tube at \(145^{\circ} \mathrm{C}\) for two days, then diluted with water \((100 \mathrm{~mL})\). The solution was adjusted to \(\mathrm{pH}=4\) with 6 N HCl carefully and subsequently stirred at room temerature for 2 hours. The precipitate was filtered off, washed with water. The collected white solid was dried under vacuum to give the product \((2.5 \mathrm{~g}, 65 \%) . \mathrm{m} / \mathrm{z} 243.7,245.7(\mathrm{M}+\mathrm{H})^{+}\).

2-Amino-2-(4-bromo-phenyl)-propionic acid ethyl ester: To a solution of 2-amino-2-(4-bromo-phenyl)-propionic acid (\(1.0 \mathrm{~g}, 4.1 \mathrm{mmol}\)) in ethanol (20 mL) was bubbled through HCl gas for five minutes. The mixture was stirred at ambient for 24 hours, then refluxed for 18 hours. The volatile component was removed in vacuo, and the residue was dissolved in ethyl acetate (150 mL), washed with \(\mathrm{NaHCO}_{3}\) solution, water and brine, dried over \(\mathrm{MgSO}_{4}\), filtered and concentrated in vacuo. The obtained residue was purified by flash chromatography to provide the desired product \((800 \mathrm{mg}, 72 \%) . \mathrm{m} / \mathrm{z} 271.7,273.7(\mathrm{M}+\mathrm{H})^{+}\).

\section*{2-[1-(4-Bromo-phenyl)-1-ethoxycarbonyl-ethylcarbamoyl]-pyrrolidine-1-carboxylic acid} tert-butyl ester: \(N, N\)-diisopropylethylamine (\(4.1 \mathrm{~mL}, 23.6 \mathrm{mmol}\)) was added dropwise to a mixture of pyrrolidine-1,3-dicarboxylic acid l-tert-butyl ester (\(0.7 \mathrm{~g}, 3.2 \mathrm{mmol}\)), HATU (1.2 g , 3.2 mmol) and 2-amino-2-(4-bromo-phenyl)-propionic acid ethyl ester (\(0.8 \mathrm{~g}, 2.9 \mathrm{mmol}\)) in DMF (20 mL), and stirred at ambient condition for 3 hours. Most of the volatile componet was removed in vacuo, and the resulting residue was dissolved in ethyl acetate (150 mL), washed with water and brine, dried over \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), filtered and concentrated in vacuo. The obtained residue was purified by flash chromatography to provide the desired product as a colorless oil (\(0.8 \mathrm{~g}, 58 \%\)) \(\mathrm{m} / \mathrm{z} 490.9,492.9(\mathrm{M}+\mathrm{Na})^{+}\).

2-[1-(4-Bromo-phenyl)-1-carbamoyl-ethylcarbamoyl]-pyrrolidine-1-carboxylic acid tertbutyl ester: To a stirred solution of 2-[1-(4-bromo-phenyl)-1-ethoxycarbonyl-ethylcarbamoyl]-pyrrolidine-1-carboxylic acid tert-butyl ester (\(280 \mathrm{mg}, 0.6 \mathrm{mmol}\)) in ethanol (8 mL) was bubbled through \(\mathrm{NH}_{3}\) gas for 5 minutes at \(-78^{\circ} \mathrm{C}\). The solution was stirred at ambient for 3 days in a sealed tube. Most of the volatile component was removed in vacuo, and the resulting residue was dissolved in ethyl acetate (150 mL), washed with water and brine, dried over \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), filtered and concentrated in vacuo. The obtained residue was purified by flash chromatography to provide the desired product as a colorless oil (\(169 \mathrm{mg}, 64 \%\)) \(\mathrm{m} / \mathrm{z} 439.8,441.8(\mathrm{M}+\mathrm{H})^{+}\).

2-[5-(4-Bromo-phenyl)-5-methyl-4-oxo-4,5-dihydro-1H-imidazol-2-yl]-pyrrolidine-1carboxylic acid tert-butyl ester: To a stirred solution of 2-[1-(4-bromo-phenyl)-1-carbamoyl-ethylcarbamoyl]-pyrrolidine-1-carboxylic acid tert-butyl ester (\(160 \mathrm{mg}, 0.36 \mathrm{mmol}\)) in ethanol (10 mL) was added 1 N NaOH (5 mL), and stirred at ambient condition for 3 hours. Most of the volatile componet was removed in vacuo, and the resulting residue was dissolved in ethyl acetate (100 mL), washed with water and brine, dried over \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), filtered and concentrated in vacuo. The obtained residue was purified by flash chromatography to provide the desired product as a white solid (\(120 \mathrm{mg}, 79 \%\)). \(\mathrm{m} / \mathrm{z} 421.8,423.8(\mathrm{M}+\mathrm{H})^{+}\).

2-\{5-Methyl-4-oxo-5-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-4,5-dihydro-1H-imidazol-2-yl\}-pyrrolidine-1-carboxylic acid tert-butyl ester: \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(31 \mathrm{mg}, 0.03\) mmol) was added to a sealed tube containing a mixture of 2-[5-(4-bromo-phenyl)-5-methyl-4-oxo-4,5-dihydro-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (\(113 \mathrm{mg}, 0.27\) mmol), bis(pinacolato)diboron (\(144 \mathrm{mg}, 0.57 \mathrm{mmol}\)), potassium acetate (\(66 \mathrm{mg}, 0.68 \mathrm{mmol}\)) and 1,4-dioxane (3 mL). The reaction mixture was flushed with nitrogen, heated at \(80^{\circ} \mathrm{C}\) for 16 hours, and then the volatile component was removed in vacuo. The residue was dissolved in ethyl acetate (100 mL), washed with \(\mathrm{NaHCO}_{3}\) solution, water and brine, dried over \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), filtered and concentrated in vacuo. The obtained residue was purified by flash chromatography to provide the desired product as a colorless oil (\(100 \mathrm{mg}, 79 \%\)) \(\mathrm{m} / \mathrm{z} 470.0(\mathrm{M}+\mathrm{H})^{+}\).

2-(5-\{4'-[4-Boc-2-(1-methyl-pyrrolidin-2-yl)-5-oxo-4,5-dihydro-3H-imidazol-4-yl]-biphenyl-4-yl\}-1H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester: Following the procedure used to prepare compound 2-(5-\{4'-[2-(1-Boc-pyrrolidin-3-yl)-3H-imidazol-4-yl]-biphenyl-4-yl\}-1 H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester, except that 2-\{5-methyl-4-oxo-5-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-4,5-dihydro-1H-imidazol-2-yl\}-pyrrolidine-1-carboxylic acid tert-butyl ester was used instead of 2-\{5-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl \}-pyrrolidine-1carboxylic acid tert-butyl ester. \(\mathrm{m} / \mathrm{z} 655.1(\mathrm{M}+\mathrm{H})^{+}\).
(1-\{2-[5-(4'-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-4-methyl-5-ox0-4,5-dihydro-3H-imidazol-4-yl\}-biphenyl-4-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester.:Following the procedure used to prepare compound (1-\{3-[5-(4'-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yll-3H-imidazol-4-yl\}-biphenyl-4-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester, except that 2-(5-\{4'-[4-Boc-2-(1-methyl-pyrrolidin-2-yl)-5-
oxo-4,5-dihydro-3H-imidazol-4-yl]-biphenyl-4-yl \}-1 H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester was used instead of 2-(5-\{4'-[2-(1-Boc-pyrrolidin-3-yl)-3H-imidazol-4-yl]-biphenyl-4-yl\}-1H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester. \({ }^{1}\) H-NMR (300 \(\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta\) 7.90-7.50 (m, 9H), \(5.25(\mathrm{t}, 1 \mathrm{H}), 4.23(\mathrm{~d}, 2 \mathrm{H}), 4.18-3.75(\mathrm{~m}, 4 \mathrm{H}), 3.75-3.30(\mathrm{~m}\), \(6 \mathrm{H}), 2.65-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.40-1.70(\mathrm{~m}, 12 \mathrm{H}), 1.10-0.80(\mathrm{~m}, 12 \mathrm{H}) ; \mathrm{m} / \mathrm{z} 769.2(\mathrm{M}+\mathrm{H})^{+}\).

2,7-Dibromo-9,10-dihydro-phenanthrene: To a stirred solution of 9,10-dihydrophenanthrend \((10 \mathrm{~g}, 55.5 \mathrm{mmol})\) in trimethylphosphate \((60 \mathrm{~mL})\) was added a solution of bromine \((6.13 \mathrm{~mL}\), 119.3 mmol) in trimethylphosphate (40 mL) slowly. After addition, the mixture was stirred at ambient for 18 hours, the volatile component was removed in vacuo. The residue was recrystallized from chloroform to give a white crystal (\(9.45 \mathrm{~g}, 51 \%\)).

4,4,5,5-Tetramethyl-2-[7-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-9,10-dihydro-phenanthren-2-yl]-[1,3,2]dioxaborolane: \(\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(24 \mathrm{mg}, 0.03 \mathrm{mmol})\) was added to a sealed tube containing a mixture of 2,7 -dibromo- 9,10 -dihydro-phenanthrene (\(1.0 \mathrm{~g}, 3.0 \mathrm{mmol}\)), bis(pinacolato)diboron (\(3.8 \mathrm{~g}, 14.9 \mathrm{mmol}\)), potassium acetate (\(1.5 \mathrm{~g}, 14.9 \mathrm{mmol}\)) and \(1,4-\) dioxane (30 mL). The reaction mixture was flushed with nitrogen, heated at \(80^{\circ} \mathrm{C}\) for 16 hours, and then the volatile component was removed in vacuo. The residue was dissolved in ethyl acetate (300 mL), washed with water and brine, dried over \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), filtered and concentrated in
vacuo. The obtained residue was purified by flash chromatography to provide the desired product as a white solid \((1.2 \mathrm{~g}, 93 \%) . \mathrm{m} / \mathrm{z} 432.8(\mathrm{M}+\mathrm{H})^{+}\).

\section*{2-(5-\{7-[2-(1-Boc-pyrrolidin-2-yl)-3H-imidazol-4-yl]-9,10-dihydro-phenanthren-2-yl\}-1H-} imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester: \(\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(31 \mathrm{mg}, 0.03 \mathrm{mmol})\) was added to a mixture 4,4,5,5-tetramethyl-2-[7-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-9,10-dihydro-phenanthren-2-yl]-[1,3,2]dioxaborolane (\(115 \mathrm{mg}, 0.27 \mathrm{mmol}\)), 2-(4-bromo-1 H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (\(173 \mathrm{mg}, 0.55 \mathrm{mmol}\)), \(\mathrm{NaHCO}_{3}\) (\(159 \mathrm{mg}, 1.9 \mathrm{mmol}\)) in 1,2-dimethoxyethane (5 mL) and water (1 mL). The reaction mixture was flushed with nitrogen, heated at \(80^{\circ} \mathrm{C}\) for 6 hours, and then the volatile component was removed in vacuo. The residue was dissolved in ethyl acetate (100 mL), washed with \(\mathrm{NaHCO}_{3}\) solution, water and brine, dried over \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), filtered and concentrated in vacuo. The obtained residue was purified by flash chromatography to provide the desired product as a white solid (42 \(\mathrm{mg}, 24 \%)\). \(\mathrm{m} / \mathrm{z} 651.0(\mathrm{M}+\mathrm{H})^{+}\).
(1-\{2-[5-(7-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-9,10-dihydro-phenanthren-2-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester: Followed the procedure used to prepare compound (1-\{3-[5-(4'-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)carbamic acid methyl ester, except that 2-(5-\{7-[2-(1-Boc-pyrrolidin-2-yl)-3H-imidazol-4-yl]-9,10-dihydro-phenanthren-2-yl\}-1H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester was used instead of 2-(5-\{4'-[2-(1-Boc-pyrrolidin-3-yl)-3H-imidazol-4-yl]-biphenyl-4-yl\}-1H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester. \({ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta\) \(7.99(\mathrm{~d}, 2 \mathrm{H}), 7.88(\mathrm{~s}, 2 \mathrm{H}), 7.80-7.65(\mathrm{~m}, 4 \mathrm{H}), 5.30-5.20(\mathrm{~m}, 2 \mathrm{H}), 4.24(\mathrm{~d}, 2 \mathrm{H}), 4.20-4.05(\mathrm{~m}\), \(2 \mathrm{H}), 3.95-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.75-3.60(\mathrm{~m}, 6 \mathrm{H}), 3.00(\mathrm{~s}, \mathrm{H}), 2.65-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.00(\mathrm{~m}, 8 \mathrm{H})\), 1.05-0.80 (m, 12H); m/z \(765.3(\mathrm{M}+\mathrm{H})^{+}\).

\section*{Example AK}

(1-\{2-[5-(7-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyry))-pyrrolidin-2-y[]-3H-imidazol-4-ylf-9H-fluoren-2-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbony|\}-2-methyl-propyl)-carbamic acid methyl ester

4,4,5,5-Tetramethyl-2-[7-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-9H-fluoren-2-yl]-
[1,3,2]dioxaborolane: Followed the procedure used to prepare 4,4,5,5-tetramethyl-2-[7-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-9,10-dihydro-phenanthren-2-yl]-
[1,3,2]dioxaborolane, except that 2,7-dibromofluorene was used instead of 2,7-dibromo-9,10-dihydro-phenanthrene. \({ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~s}, 2 \mathrm{H}), 7.84(\mathrm{~s}, 4 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H})\), 1.38 (s, 24H).

\section*{2-(5-\{7-[2-(1-Boc-pyrrolidin-2-yl)-3H-imidazol-4-yl]-9H-fluoren-2-yl\}-1H-imidazol-2-yl)-} pyrrolidine-1-carboxylic acid tert-butyl ester: Followed the procedure used to prepare compound 2-(5-\{7-[2-(1-Boc-pyrrolidin-2-yl)-3H-imidazol-4-yl]-9,10-dihydro-phenanthren-2-yl\}-1H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester, except that 4,4,5,5-tetramethyl-2-[7-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-9H-fluoren-2-yl][1,3,2]dioxaborolane was used instead of 4,4,5,5-tetramethyl-2-[7-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-9,10-dihydro-phenanthren-2-yl]-[1,3,2]dioxaborolane. m/z 637.1 (M \(+\mathrm{H})^{+}\).
(1-\{2-[5-(7-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-9H-fluoren-2-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester: Followed the procedure used to prepare compound (1-\{3-[5-(4'-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester, except that 2-(5-\{7-[2-(1-Boc-pyrrolidin-2-yl)-3H-imidazol-4-yl]-9H-fluoren-2-yl\}-1H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester was used instead of 2-(5-\{4'-[2-(1-Boc-pyrrolidin-3-yl)-3H-imidazol-4-yl]-biphenyl-4-yl\}-1H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester. \({ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.03(\mathrm{~d}, 2 \mathrm{H}), 7.96(\mathrm{~s}, 2 \mathrm{H})\), \(7.88(\mathrm{~s}, 2 \mathrm{H}), 7.77(\mathrm{~d}, 2 \mathrm{H}), 5.26(\mathrm{t}, 2 \mathrm{H}), 4.24(\mathrm{~d}, 2 \mathrm{H}), 4.20-4.05(\mathrm{~m}, 4 \mathrm{H}), 3.95-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.75-\) \(3.60(\mathrm{~m}, 6 \mathrm{H}), 2.65-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.00(\mathrm{~m}, 8 \mathrm{H}), 1.05-0.90(\mathrm{~m}, 12 \mathrm{H}) ; \mathrm{m} / \mathrm{z} 751.3(\mathrm{M}+\mathrm{H})^{+}\).

Example AL

2,7-Dibromo-fluoren-9-one

\(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\)

2,7-Bis-(4,4,5,5-tetramethyl-
[1,3,2]dioxaborolan-2-yl)-fluoren-9-one

2-(5-(7-[2-(1-Boc-pyrrolidin-2-yl)-3H-imidazol-4-y)-9-oxo-9H-fluoren-2-yl)-1H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester

(1-\{2-[5-(7-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyry)-pyrrolidin-2-y|]-3H-imidazol-4-yl\}-9-oxo-9H-fluoren-2-yl)-1H-imidazol-2-yl)-pyrrolidine-1-carbony|)-2-methyl-propyl)-carbamic acid methyl ester

2,7-Bis-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-fluoren-9-one: Followed the procedure used to prepare 4,4,5,5-tetramethyl-2-[7-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-9,10-dihydro-phenanthren-2-yl]-[1,3,2]dioxaborolane, except that 2,7-dibromo-9-fluorenone was used instead of 2,7-dibromo-9,10-dihydro-phenanthrene.

2-(5-\{7-[2-(1-Boc-pyrrolidin-2-yl)-3H-imidazol-4-yl]-9-oxo-9H-fluoren-2-yl\}-1H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester: Followed the procedure used to prepare compound 2-(5-\{7-[2-(1-Boc-pyrrolidin-2-yl)-3H-imidazol-4-yl]-9,10-dihydro-phenanthren-2-yl\}-1H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester, except that 2,7-bis-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-fluoren-9-one was used instead of 4,4,5,5-tetramethyl-2-[7-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-9,10-dihydro-phenanthren-2-yl][1,3,2]dioxaborolane. m/z \(650.9(\mathrm{M}+\mathrm{H})^{+}\).
(1-\{2-[5-(7-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-9-oxo-9H-fluoren-2-yl)-1H-imidazol-2-yll-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester: Followed the procedure used to prepare compound (1-\{3-[5-(4'-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)carbamic acid methyl ester, except that 2-(5-\{7-[2-(1-Boc-pyrrolidin-2-yl)-3H-imidazol-4-yl]-9-oxo-9H-fluoren-2-yl\}-1H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester was used instead of 2-(5-\{4'-[2-(1-Boc-pyrrolidin-3-yl)-3H-imidazol-4-yl]-biphenyl-4-yl\}-1H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester. \({ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.05-7.85(\mathrm{~m}\), 8 H), \(5.22(\mathrm{t}, 2 \mathrm{H}), 4.23(\mathrm{~d}, 2 \mathrm{H}), 4.20-4.05(\mathrm{~m}, 2 \mathrm{H}), 3.95-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 6 \mathrm{H}), 2.65-2.50\) \((\mathrm{m}, 2 \mathrm{H}), 2.40-2.00(\mathrm{~m}, 8 \mathrm{H}), 1.05-0.90(\mathrm{~m}, 12 \mathrm{H}) ; \mathrm{m} / \mathrm{z} 765.3(\mathrm{M}+\mathrm{H})^{+}\).

\section*{Example AM}

2-Bromo-5-iodo-benzoic acid methyl ester: To the solution of 2-bromo-5-iodo-benzoic acid \((10 \mathrm{~g}, 31 \mathrm{mmol})\) in methanol (100 ml) was added thionyl chloride (\(5 \mathrm{ml}, 68 \mathrm{mmol}\)). The mixture
was heated at \(55^{\circ} \mathrm{C}\) for 12 hours. The solvent and reagent were removed under reduced pressure and the mixture was diluted with EtOAc. The organic solution was washed with saturated sodium bicarbonate, water, and brine, and was dried with sodium sulfate. Concentration gave 2-bromo-5-iodo-benzoic acid methyl ester (10.5 g).

2-Bromo-5-(2-bromo-acetyl)-benzoic acid methyl ester: To the solution of 2-bromo-5-iodobenzoic acid methyl ester (\(4.33 \mathrm{~g}, 12.7 \mathrm{mmol}\)) and tributyl(ethoxyvinyl)stannane (\(4.79 \mathrm{~g}, 13.3\) mmol) in dioxane (56 ml) was added \(\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(322 \mathrm{mg})\). The mixture was heated at \(80^{\circ} \mathrm{C}\) for 17 hours and was cooled to \(0^{\circ} \mathrm{C}\). Water (19 ml) was added, followed by slow addition of NBS \((2.33 \mathrm{~g}, 12.9 \mathrm{mmol})\) over 10 minutes period. The mixture was stirred at \(0^{\circ} \mathrm{C}\) for additional 40 minutes, and the solvent was removed under reduced pressure. The mixture was diluted with EtOAc, and was washed with water and brine and dried with sodium sulfate. Concentration and purification by flash column chromatography (hexane/EtOAc \(=2 / 1\)) gave 2-bromo-5-(2-bromo-

Pyrrolidine-1,2-dicarboxylic acid 2-[2-(4-bromo-3-methoxycarbonyl-phenyl)-2-oxo-ethyl] ester 1-tert-butyl ester: To the solution of (s)Boc-PrOH (\(2.5 \mathrm{~g}, 11.6 \mathrm{mmol}\)) and triethylamine (\(1.55 \mathrm{ml}, 11.1 \mathrm{mmol}\)) in acetonitrile (34 ml) was added a solution of 2-bromo-5-(2-bromo-acetyl)-benzoic acid methyl ester \((3.48 \mathrm{~g}, 10.4 \mathrm{mmol})\) in acetonitrile (17 ml). The mixture was stirred for 10 hours, and the solvent was evaporated. The mixture was diluted with EtOAc, and washed with water and brine, and was dried with sodium sulfate. Purification by flash column chromatography (hexane/EtOAc \(=1 / 1.5\)) gave pyrrolidine-1,2-dicarboxylic acid 2-[2-(4-bromo-3-methoxycarbonyl-phenyl)-2-oxo-ethyl] ester 1-tert-butyl ester (3.9 g): m/z: \(491.9(\mathrm{M}+\mathrm{Na})^{+}\).

2-[5-(4-Bromo-3-methoxycarbonyl-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester: The mixture of pyrrolidine-1,2-dicarboxylic acid 2-[2-(4-bromo-3-methoxycarbonyl-phenyl)-2-oxo-ethyl] ester 1-tert-butyl ester (\(460 \mathrm{mg}, 1 \mathrm{mmol}\)) and ammonium acetate (\(860 \mathrm{mg}, 11 \mathrm{mmol}\)) in xylenes (5 ml) was heated at \(140^{\circ} \mathrm{C}\) for 80 minutes under microwave. The mixture was quenched with water, and extracted with EtOAc. The organic phase was washed with water and brine, and was dried with sodium sulfate.
Concentration and purification by flash column chromatography (EtOAc) gave 2-[5-(4-bromo-3-methoxycarbonyl-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (320 \(\mathrm{mg}) . \mathrm{m} / \mathrm{z}: 449.8(\mathrm{M}+\mathrm{H})^{+}, 448.1(\mathrm{M}-\mathrm{H})^{-}\).

2-\{5-[3-Methoxycarbonyl-4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carboxylic acid tert-butyl ester: To the solution of 2-[5-(4-bromo-3-methoxycarbonyl-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (\(200 \mathrm{mg}, 0.44 \mathrm{mmol}\)) and bis(pinacolato)diboron (\(225 \mathrm{mg}, 0.89 \mathrm{mmol}\)) in 1,4-dioxane (3.4 ml) and DMF (2 ml) was added potassium acetate (\(110 \mathrm{~g}, 1.1 \mathrm{mmol}\)), followed by \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(20\) mg) and \(\mathrm{PdCl}_{2}(\mathrm{dppf}) \mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{mg})\). The mixture was heated at \(80^{\circ} \mathrm{C}\) for 12 hours. The mixture was diluted with EtOAc, and was washed with water and brine, and was dried with sodium sulfate. Concentration and purification by flash column chromatography (EtOAc) gave 2-\{5-[3-Methoxycarbonyl-4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl \}-pyrrolidine-1-carboxylic acid tert-butyl ester (168 mg) \(\mathrm{m} / \mathrm{z}: 498.0(\mathrm{M}+\mathrm{H})^{+}\).

\section*{4,4'-Bis-[2-(1-tert-butoxycarbonyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-biphenyl-2,2'-} dicarboxylic acid dimethyl ester: To the solution of 2-[5-(4-bromo-3-methoxycarbonyl-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (\(158 \mathrm{mg}, 0.35 \mathrm{mmol}\)) and 2-\{5-[3-Methoxycarbonyl-4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl \}-pyrrolidine-1-carboxylic acid tert-butyl ester (\(166 \mathrm{mg}, 0.33 \mathrm{mmol}\)) in \(1,2-\) dimethoxyether (3 ml) and water (1 ml) was added sodium bicarbonate (\(91 \mathrm{mg}, 1.1 \mathrm{mmol}\)), followed by \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(15 \mathrm{mg})\) and \(\mathrm{PdCl}_{2}(\mathrm{dppf}) \mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{mg})\). The mixture was heated at \(80^{\circ} \mathrm{C}\) for 7 hours. The mixture was diluted with EtOAc, and was washed with water and brine, and was dried with sodium sulfate. Concentration and purification by flash column chromatography (EtOAc) gave 4,4'-Bis-[2-(1-tert-butoxycarbonyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-biphenyl-2,2'-dicarboxylic acid dimethyl ester (85 mg). m/z: \(741.0(\mathrm{M}+\mathrm{H})^{+}, 370.9(\mathrm{M}+\) \(2 \mathrm{H})^{+} / 2\).

4,4'-Bis-[2-(1-tert-butoxycarbonyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-biphenyl-2,2'dimethylhydroxy: To the solution of 4,4'-Bis-[2-(1-tert-butoxycarbonyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-biphenyl-2,2'-dicarboxylic acid dimethyl ester (\(85 \mathrm{mg}, 0.11 \mathrm{mmol}\)) in THF (2 ml) at \(-78^{\circ} \mathrm{C}\) was added DIBAL-H THF solution (\(1.4 \mathrm{ml}, 1.4 \mathrm{mmol}\)). The mixture was warmed to \(25^{\circ} \mathrm{C}\) and stirred for 5 hours. The mixture was cooled to \(0^{\circ} \mathrm{C}\) and quenched with 2.0 N NaOH solution until \(\mathrm{PH}=11\). The mixture was extracted with EtOAc. The organic phase was washed with water and brine, and was dried with sodium sulfate. Concentration and purification by flash column chromatography (\(\mathrm{DCM} / \mathrm{MeOH}\)) gave 4,4'-bis-[2-(1-tert-butoxycarbonyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-biphenyl-2,2'-dimethylhydroxy (54 mg). m/z: \(685.1(\mathrm{M}+\) \(\mathrm{H})^{+}, 343.0(\mathrm{M}+2 \mathrm{H})^{+} / 2\).

\section*{Example AN}

4.4'-Bis-[2-(1-tert-butoxycarbonyl-pyrrolidin-2-y]) -3H-imidazol-4-yl)-biphenyl-2,2'-dimethylhydroxy
\(\mathrm{SO}_{2}\) /pyridine

4.4'-Bis-(2-(1-tert-butoxycarbonyl-py frolidin-2-yl) -3H-imidazol-4-yl)-biphenyl-2,2'-dicarboaldehyde

3,9-bis-[2-(1-tert-butoxycarbonyl-pyrrolidin-2-y)-3H-imidazol-4-y[]-6-methyt-6,7-dihydro-5H-dibenzo[c, e]azepine
RCOOH/HATUFBu \({ }_{2} \mathrm{NEt}\)

(1-\{2-[5-(9-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyry)]-pyrroidin-2-y]-3H-imidazol-4-y) \(-6-\) methyl
-6.7-dihydro-5H-dibenzo[c,ejazepin-3-yl)-1H-imidazol-2-yi]-pyrolidine-1-carbonyif-2-methyl-propyl)-carbamic acid methyl ester
4,4'-Bis-[2-(1-tert-butoxycarbonyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-biphenyl-2,2'-
dicarboaldehyde: To the solution of 4,4'-Bis-[2-(1-tert-butoxycarbonyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-biphenyl-2,2'-dimethylhydroxy (\(54 \mathrm{mg}, 0.08 \mathrm{mmol}\)) in DMSO (1.2 ml) was added triethylamine (0.14 ml). The mixture was stirred for 5 minutes, and pyridine-sulfur trioxide (170 mg) was added. The mixture was stirred for 90 minutes and was quenched with ice-water. The stirring was continued for additional 30 minutes and the mixture was extracted with EtOAc. The organic phase was washed with water and brine, and was dried with sodium sulfate. Concentration gave 4,4'-bis-[2-(1-tert-butoxycarbonyl-pyrrolidin-2-yl)-3H-imidazol-4-yll-biphenyl-2,2'-dicarboaldehyde (40 mg). \(\mathrm{m} / \mathrm{z}: \mathbf{6 8 1 . 0 (M + H) ^ { + } .}\)

\section*{3,9-Bis-[2-(1-tert-butoxycarbonyl-pyrrolidin-2-yl)-3H-imidazol-4-yl] -6-methyl-6,7-}
dihydro-5H-dibenzo[c,e]azepine: To the solution of 4,4'-bis-[2-(1-tert-butoxycarbonyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-biphenyl-2,2'-dicarboaldehyde (\(40 \mathrm{mg}, 0.06 \mathrm{mmol}\)) in \(\mathrm{MeOH} / \mathrm{THF}\) (\(2.5 \mathrm{ml} / 0.5 \mathrm{ml}\)) was added methylamine methanol solution (\(29 \mu \mathrm{l}, 0.06 \mathrm{mmol}\)), followed by acetic acid (\(14 \mu \mathrm{l}, 0.23 \mathrm{mmol}\)) and \(\mathrm{NaBH}(\mathrm{OAc})_{3}(50 \mathrm{mg}, 0.23 \mathrm{mmol})\). The mixture was stirred for 12 hours and was quenched with water. The mixture was extracted with EtOAc. The organic phase was washed with 1.0 N sodium hydroxide solution, water, and brine, and was dried with sodium sulfate. Concentration and purification by flash column chromatography (DCM/MeOH) gave compound 3,9- bis-[2-(1-tert-butoxycarbonyl-pyrrolidin-2-yl)-3H-imidazol-4-yl] -6-methyl-6,7-dihydro-5H-dibenzo[c,e]azepine (24 mg). \(\mathrm{m} / \mathrm{z}: 680.3(\mathrm{M}+\mathrm{H})^{+}\).

\section*{3,9-Bis-[2-(pyrrolidin-2-yl)-3H-imidazol-4-yl]-6-methyl-6,7-dihydro-5H-}
dibenzo[c,e]azepine: To the solution of 3,9-bis-[2-(1-tert-butoxycarbonyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-6-methyl-6,7-dihydro-5H-dibenzo[c,e]azepine (24 mg) in DCM/MeOH (1.6 \(\mathrm{ml} / 0.75 \mathrm{ml}\)) was added hydrochloric acid in dioxane (\(0.44 \mathrm{ml}, 1.7 \mathrm{mmol}\)). The mixture was heated at \(50^{\circ} \mathrm{C}\) for 3 hours and the solvents were evaporated under reduced pressure. The mixture was diluted with water and acetonitrile, and was freezer-dried to give 3,9- bis-[2-(pyrrolidin-2-yl)-3H-imidazol-4-yl] -6-methyl-6,7-dihydro-5H-dibenzo[c,e]azepine as brown powder (25 mg). \(\mathrm{m} / \mathrm{z}: 480.1(\mathrm{M}+\mathrm{H})^{+}\).

\section*{1-\{2-[5-(9-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-} imidazol-4-yl)-6-methyl-6,7-dihydro-5H-dibenzo[c,e]azepin-3-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester: To the solution of 3,9- bis-[2-(pyrrolidin-2-yl)-3H-imidazol-4-yl] -6-methyl-6,7-dihydro-5H-dibenzo[c,e]azepine (\(25 \mathrm{mg}, 0.035 \mathrm{mmol}\)) and MeOCO-Val-OH (\(13 \mathrm{mg}, 0.074 \mathrm{mmol}\)) in DMF (1.2 ml) was added HATU (\(28 \mathrm{mg}, 0.074 \mathrm{mmol}\)), followed by diisopropylethylamine (\(61 \mu \mathrm{l}, 0.35 \mathrm{mmol}\)). The mixture was stirred for 90 minutes and was diluted with EtOAc. The organic phase was washed with 1 N NaOH solution, water, and brine, and was dried with sodium sulfate. Concentration and purification by HPLC (\(0.1 \% \mathrm{TFA} / \mathrm{CH}_{3} \mathrm{CN} / 0.1 \% \mathrm{TFA} / \mathrm{H}_{2} \mathrm{O}\)) gave (1-\{2-[5-(9-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-6-methyl-6,7-dihydro-5H-dibenzo[c,e]azepin-3-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl \}-2-methyl-propyl)-carbamic acid methyl ester (24 mg). m/z: \(794.3(\mathrm{M}+\mathrm{H})^{+}, 397.8(\mathrm{M}+2 \mathrm{H})^{+} / 2 .{ }^{1} \mathrm{H}\) NMR (\(\mathrm{CD}_{3} \mathrm{OD}, 300 \mathrm{MHz}\)) \(\delta\) 8.0-7.9 (\(8 \mathrm{H}, \mathrm{m}\)), \(5.27(2 \mathrm{H}, \mathrm{m}), ~ 4.3-4.2(2 \mathrm{H}, \mathrm{m}), ~ 4.2-3.8(8 \mathrm{H}, \mathrm{m})\), \(3.66(6 \mathrm{H}, \mathrm{s}), 3.08(3 \mathrm{H}, \mathrm{s}), 2.7-2.5(2 \mathrm{H}, \mathrm{m}), 2.4-1.9(8 \mathrm{H}, \mathrm{m}), 0.94-0.90(12 \mathrm{H}, \mathrm{m})\).

\section*{Example AO}

3,9-Bis-[2-(pyrrolidin-2-yl)-3H-imidazol-4-yl]--5,7-dihydrodibenzo[c,e]oxepine: To the suspension of 4,4'-bis-[2-(1-tert-butoxycarbonyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-biphenyl-\(2,2^{\prime}\)-dimethylhydroxy (\(8 \mathrm{mg}, 0.011 \mathrm{mmol}\)) in water (1.5 ml) was added sulfuric acid (1.5 ml). The mixture was heated at \(60^{\circ} \mathrm{C}\) for 14 hours. The mixture was cooled to \(0^{\circ} \mathrm{C}\), and 2 N sodium hydroxide solution was added until \(\mathrm{pH}=7\). The mixture was freezer-dried to give 3,9- bis-[2-(pyrrolidin-2-yl)-3H-imidazol-4-yl]-5,7-dihydro-dibenzo[c,e]oxepine. \(\mathrm{m} / \mathrm{z}: 467.1(\mathrm{M}+\mathrm{H})^{+}\).
(1-\{2-[5-(9-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl)-5,7-dihydro-dibenzo[c,e]oxepin-3-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester: To the solution of 3,9- bis-[2-(pyrrolidin-2-yl)-3H-imidazol-4-yl]--5,7-dihydro-dibenzo[c,e]oxepine (0.011 mmol) and MeOCO-Val-OH (\(4 \mathrm{mg}, 0.023 \mathrm{mmol}\)) in DMF (5 ml) was added HATU (\(9 \mathrm{mg}, 0.023 \mathrm{mmol}\)), followed by diisopropylethylamine (\(38 \mu \mathrm{l}, 0.22 \mathrm{mmol}\)). The mixture was stirred for 60 minutes and was diluted with EtOAc. The organic phase was washed with 1 N NaOH solution, water, and brine, and was dried with sodium sulfate. Concentration and purification by HPLC (\(0.1 \% \mathrm{TFA} / \mathrm{CH}_{3} \mathrm{CN} / 0.1 \% \mathrm{TFA} / \mathrm{H}_{2} \mathrm{O}\)) gave (1-\{2-[5-(9-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-5,7-dihydro-dibenzo[c,e]oxepin-3-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester (1.5 mg). \(\mathrm{m} / \mathrm{z}: 781.2(\mathrm{M}+1), 391.2(\mathrm{M}+2) / 2 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 300 \mathrm{MHz}\right) \delta 7.9-7.8(8 \mathrm{H}, \mathrm{m}), 5.27(2 \mathrm{H}\), \(\mathrm{m}), 4.44(4 \mathrm{H}, \mathrm{s}), 4.22(2 \mathrm{H}, \mathrm{m}), 4.17-4.05(2 \mathrm{H}, \mathrm{m}), 3.95-3.83(2 \mathrm{H}, \mathrm{m}), 5.67(6 \mathrm{H}, \mathrm{s}), 2.65-2.50\) (\(2 \mathrm{H}, \mathrm{m}\)), 2.35-1.95 (\(8 \mathrm{H}, \mathrm{m}\)), 0.99-0.89 (\(12 \mathrm{H}, \mathrm{m}\)).

2-[5-(4-Bromo-3-hydroxymethyl-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester: To the solution of 2-[5-(4-Bromo-3-methoxycarbonyl-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1 -carboxylic acid tert-butyl ester (\(200 \mathrm{mg}, 0.44 \mathrm{mmol}\)) in THF (4 ml) at \(-78^{\circ} \mathrm{C}\) was added DIBAL-H THF solution (\(3.33 \mathrm{ml}, 3.33 \mathrm{mmol}\)). The mixture was warmed to \(25^{\circ} \mathrm{C}\) and stirred for 5 hours. The mixture was cooled to \(0^{\circ} \mathrm{C}\) and quenched with 2.0 N NaOH solution until \(\mathrm{PH}=11\). The mixture was extracted with EtOAc. The organic phase was washed with water and brine, and was dried with sodium sulfate. Concentration gave 2-[5-(4-bromo-3-hydroxymethyl-phenyl)-1 H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (196 \(\mathrm{mg}) . \mathrm{m} / \mathrm{z}: 421.9(\mathrm{M}+\mathrm{H})^{+}, 420.2(\mathrm{M}-\mathrm{H})^{-}\).

\section*{2-[5-(4-Bromo-3-formyl-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl} ester: To the solution of 2-[5-(4-bromo-3-hydroxymethyl-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (\(196 \mathrm{mg}, 0.46 \mathrm{mmol}\)) in DMSO (3.5 ml) was added triethylamine (0.40 ml). The mixture was stirred for 30 minutes, and pyridine-sulfur trioxide (500 mg) was added. The mixture was stirred for 2 hours and was quenched with ice-water. The stirring was continued for additional 30 minutes and the mixture was extracted with EtOAc. The organic phase was washed with water and brine, and was dried with sodium sulfate. Concentration gave 2-[5-(4-Bromo-3-formyl-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1carboxylic acid tert-butyl ester (180 mg).

2-(5-\{4-Bromo-3-[(tert-butoxycarbonyl-methyl-amino)-methyl]-phenyl\}-1H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester: To the solution of 2-[5-(4-bromo-3-formyl-phenyl)-1H-imidazol-2-yll-pyrrolidine-1-carboxylic acid tert-butyl ester (\(180 \mathrm{mg}, 0.46 \mathrm{mmol}\)) in \(\mathrm{MeOH} / \mathrm{THF}\) (\(2.5 \mathrm{ml} / 2.5 \mathrm{ml}\)) was added methylamine methanol solution (\(0.69 \mathrm{ml}, 1.38 \mathrm{mmol}\)), followed by acetic acid (\(110 \mu \mathrm{l}, 1.84 \mathrm{mmol}\)) and \(\mathrm{NaBH}(\mathrm{OAc})_{3}\) (\(975 \mathrm{mg}, 4.6 \mathrm{mmol}\)). The mixture was stirred for 12 hours and was quenched with 1 N sodium hydroxide solution. The mixture was extracted with EtOAc. The organic phase was washed with water and brine, and was dried with sodium sulfate. Concentration gave the intermediate (171 mg). To the solution of the above intermediate (\(171 \mathrm{mg}, 0.39 \mathrm{mmol}\)) in \(\mathrm{DCM}(4 \mathrm{ml})\) was added di-tert-butyl dicarbonate (\(86 \mathrm{mg}, 0.39 \mathrm{mmol}\)), followed by diisopropylethylamine (\(13561,0.78 \mathrm{mmol}\)). The mixture was stirred for 12 hours, and the solvent and reagent was evaporated. Purification by flash column chromatography (hexanes/EtOAc) gave 2-(5-\{4-bromo-3-[(tert-butoxycarbonyl-methyl-amino)-methyl]-phenyl \(\}\)-1 1 -imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (142 mg). m/z: \(535(\mathrm{M}+\mathrm{H})^{+}\).

4,4'-Bis-[2-(1-tert-butoxycarbonyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-biphenyl-2-[(tert-butoxycarbonyl-methyl-amino)-2'-carboxylic acid dimethyl ester: To the solution of 2-(5-\{4-bromo-3-[(tert-butoxycarbonyl-methyl-amino)-methyl]-phenyl\}-1 H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (\(142 \mathrm{mg}, 0.27 \mathrm{mmol}\)) and 2-\{5-[3-Methoxycarbonyl-4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carboxylic acid tert-butyl ester (\(125 \mathrm{mg}, 0.25 \mathrm{mmol}\)) in 1,2-dimethoxyether (2.3 ml) and water (0.7 ml) was added sodium bicarbonate (\(63 \mathrm{mg}, 0.75 \mathrm{mmol}\)), followed by \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(12 \mathrm{mg})\) and \(\mathrm{PdCl}_{2}(\mathrm{dppf}) \mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{mg})\). The mixture was heated at \(80^{\circ} \mathrm{C}\) for 20 hours. The mixture was diluted with EtOAc, and was washed with water and brine, and was dried with sodium sulfate. Concentration and purification by flash column chromatography (hexanes/EtOAc) gave 4,4'-bis-[2-(1-tert-butoxycarbonyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-biphenyl-2-[(tert-butoxycarbonyl-methyl-amino)-2'-carboxylic acid dimethyl ester (82 mg). \(\mathrm{m} / \mathrm{z}: 826(\mathrm{M}+\mathrm{H})^{+}, 413.6(\mathrm{M}+2 \mathrm{H})^{+} / 2\).

2'-Methylaminomethyl-4,4'-bis-(2-pyrrolidin-2-yl-3H-imidazol-4-yl)-biphenyl-2-carboxylic acid methyl ester: To the solution of 4,4'-bis-[2-(1-tert-butoxycarbonyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-biphenyl-2-[(tert-butoxycarbonyl-methyl-amino)-2'-carboxylic acid dimethyl ester (\(77 \mathrm{mg}, 0.09 \mathrm{mmol}\)) in \(\mathrm{DCM}(3 \mathrm{ml})\) was added trifluoroacetic acid (3 ml). The mixture was stirred for 2 hours, and the solvent and reagent were removed under reduced pressure. The
mixture was diluted with acetonitrile and water, was freezer-dried to give \(2^{\prime}-\) methylaminomethyl-4,4'-bis-(2-pyrrolidin-2-yl-3H-imidazol-4-yl)-biphenyl-2-carboxylic acid methyl ester as white powder \((90 \mathrm{mg}) . \mathrm{m} / \mathrm{z}: 526.1(\mathrm{M}+\mathrm{H})^{+}\).

6-Methyl-3,9-bis-(2-pyrrolidin-2-yl-3H-imidazol-4-yl)-6,7-dihydro-dibenzo[c,e]azepin-5one: To the solution of 2'-methylaminomethyl-4,4'-bis-(2-pyrrolidin-2-yl-3H-imidazol-4-yl)-biphenyl-2-carboxylic acid methyl ester (90 mg) in pyridine (5 ml) was added diisopropylethylamine (1 ml). The mixture was heated at \(100^{\circ} \mathrm{C}\) for 2 hours. The solvents were evaporated. The mixture was diluted with acetonitrile and water, was freezer-dried to give 6 -Methyl-3,9-bis-(2-pyrrolidin-2-yl-3H-imidazol-4-yl)-6,7-dihydro-dibenzo[c,e]azepin-5-one as brown powder. \(\mathrm{m} / \mathrm{z}\) : \(494.1(\mathrm{M}+\mathrm{H})^{+}\).

\section*{(1-\{2-[5-(9-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-} imidazol-4-yl)-6-methyl-5-oxo-6,7-dihydro-5H-dibenzo[c,e]azepin-3-yl)-1 H-imidazol-2-yl]-pyrrolidine-1-carbonyl)-2-methyl-propyl)-carbamic acid methyl ester: To the solution of 6-methyl-3,9-bis-(2-pyrrolidin-2-yl-3H-imidazol-4-yl)-6,7-dihydro-dibenzo[c,e]azepin-5-one (0.09 mmol) and MeOCO-Val-OH (\(33 \mathrm{mg}, 0.19 \mathrm{mmol}\)) in DMF (3 ml) was added HATU (71 \(\mathrm{mg}, 0.19 \mathrm{mmol}\)), followed by diisopropylethylamine (\(323 \mu \mathrm{l}, 1.86 \mathrm{mmol}\)). The mixture was stirred for 60 minutes and was diluted with EtOAc. The organic phase was washed with 1 N NaOH solution, water, and brine, and was dried with sodium sulfate. Concentration and purification by HPLC (\(0.1 \% \mathrm{TFA} / \mathrm{CH}_{3} \mathrm{CN} / 0.1 \% \mathrm{TFA} / \mathrm{H}_{2} \mathrm{O}\)) gave (1-\{2-[5-(9-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-6-methyl-5-oxo-6,7-dihydro-5H-dibenzo[c,e]azepin-3-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl \(\}\)-2-methyl-propyl)-carbamic acid methyl ester (16 mg). m/z: 808.2 (M+1), \(404.8(\mathrm{M}+2) / 2,806.3(\mathrm{M}-1)\). \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CD}_{3} \mathrm{OD}, 300 \mathrm{MHz}\right) \delta 8.1-7.8(8 \mathrm{H}, \mathrm{m}), 5.4-5.2(2 \mathrm{H}, \mathrm{m}), 4.6-4.2(4 \mathrm{H}, \mathrm{m}), 4.2-4.0(2\) \(\mathrm{H}, \mathrm{m}), 3.95-3.80(2 \mathrm{H}, \mathrm{m}), 3.64(6 \mathrm{H}, \mathrm{m}), 3.25(3 \mathrm{H}, \mathrm{s}), 2.65-2.45(2 \mathrm{H}, \mathrm{m}), 2.35-2.0(8 \mathrm{H}, \mathrm{m})\), \(1.05-0.9(12 \mathrm{H}, \mathrm{m})\).

2,7-Dibromo-phenanthrene: The mixture of 2,7-dibromo-9,10-dihydro-phenanthrene (2.4 g , 7.1 mmol), NBS (\(1.4 \mathrm{~g}, 7.8 \mathrm{mmol}\)), and benzoyl peroxide (0.2 g) in carbon tetrachloride (300 ml) was refluxed for 2 hours. Potassium acetate (3.6 g) and acetic acid (3.2 ml) were added, and the refluxing was continued for additional 2 hours. The mixture was cooled and diluted with EtOAc. The organic phase was washed with water, saturated sodium bicarbonate, and brine, and was dried with sodium sulfate. Concentration gave 2,7-dibromo-phenanthrene (2.3 g).
(4,4'-Dibromo-2'-hydroxymethyl-biphenyl-2-yl)-methanol: The solution of 2,7-dibromophenanthrene (3.8 g) in \(\mathrm{DCM} / \mathrm{MeOH}(120 \mathrm{ml} / 1 \mathrm{ml})\) was cooled to \(-78^{\circ} \mathrm{C}\), and it became a suspension. Ozone was bubbled thorough for 20 minutes, and the mixture became blue. Oxygen was bubbled for 5 minutes and dimethyl sulfide (3 ml) was added. The mixture was warmed to \(25^{\circ} \mathrm{C}\) and stirred for 12 hours. Concentration and purification by flash column chromatography (hexanes/EtOAc) gave 4,4'-dibromo-biphenyl-2,2'-dicarbaldehyde (600 mg). To the solution of 4,4'-dibromo-biphenyl-2,2'-dicarbaldehyde (\(600 \mathrm{mg}, 1.7 \mathrm{mmol}\)) in THF \(/ \mathrm{MeOH}\left(10 \mathrm{ml} / 10 \mathrm{ml}\right.\)) at \(0^{\circ} \mathrm{C}\) was added sodium borohydride (\(320 \mathrm{mg}, 8.2 \mathrm{mmol}\)). The mixture was warmed to \(25^{\circ} \mathrm{C}\) and stirred for 12 hours. The mixture was quenched with water, and extracted with EtOAc. The organic phase was washed with water and brine, and was dried with sodium sulfate. Concentration gave (\(4,44^{\prime}\)-dibromo-2'-hydroxymethyl-biphenyl-2-yl)methanol (550 mg).

3,9-Dibromo-5,7-dihydro-dibenzo[c,e]oxepine: The suspension of (4,4'-dibromo-2'-hydroxymethyl-biphenyl-2-yl)-methanol (460 mg) in phosphoric acid (25 ml) was heated at \(160^{\circ} \mathrm{C}\) for 4 hours. The mixture was cooled and diluted with water (100 ml), and was extracted with EtOAC. The organic phase was washed with water, saturated sodium bicarbonate, and brine, and was dried with sodium sulfate. Concentration yielded 3,9-dibromo-5,7-dihydrodibenzo[c,e]oxepine (416 mg).

2-Bromo-1-[9-(2-bromo-acetyl)-5,7-dihydro-dibenzo[c,e]oxepin-3-yl]-ethanone: To the solution of 3,9-dibromo-5,7-dihydro-dibenzo[c,e]oxepine (\(416 \mathrm{mg}, 1.2 \mathrm{mmol}\)) and tributyl(ethoxyvinyl)stannane (\(878 \mu \mathrm{l}, 2.6 \mathrm{mmol}\)) in dioxane (6 ml) was added \(\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(30\) mg). The mixture was heated at \(80^{\circ} \mathrm{C}\) for 16 hours and was cooled to \(0^{\circ} \mathrm{C}\). Water (2 ml) was added, followed by slow addition of NBS (\(464 \mathrm{mg}, 2.6 \mathrm{mmol}\)) over 5 minutes period. The mixture was stirred at \(0^{\circ} \mathrm{C}\) for additional 40 minutes, and the solvent was removed under reduced pressure. The mixture was diluted with EtOAc, and was washed with water and brine and dried with sodium sulfate. Concentration and purification by flash column chromatography (hexane/EtOAc) gave 2-bromo-1-[9-(2-bromo-acetyl)-5,7-dihydro-dibenzo[c,e]oxepin-3-yl]ethanone (160 mg).

Diketoester: To the solution of (S)-Boc-Pro-OH (\(275 \mathrm{mg}, 1.28 \mathrm{mmol}\)) and triethylamine (154 \(\mu \mathrm{l}, 1.11 \mathrm{mmol}\)) in acetonitrile (3.4 ml) was added a solution of 2-bromo-1-[9-(2-bromo-acetyl)5,7 -dihydro-dibenzo[c,e]oxepin-3-yl]-ethanone (\(160 \mathrm{mg}, 0.37 \mathrm{mmol}\)) in DMF (6 ml). The mixture was stirred for 10 hours, and the solvent was evaporated. The mixture was diluted with EtOAc, and washed with water and brine, and was dried with sodium sulfate. Concentration gave the intermediate diketoester. \(\mathrm{m} / \mathrm{z}: 729.1(\mathrm{M}+\mathrm{Na})^{+}\).

\section*{3,9-Bis-[2-(1-tert-butoxycarbonyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-5,7-dihydro-} dibenzo[c,e]oxepine: The mixture of above diketoester (0.37 mmol) and ammonium acetate (\(860 \mathrm{mg}, 11 \mathrm{mmol}\)) in xylene (5 ml) was heated at \(140^{\circ} \mathrm{C}\) for 80 minutes under microwave. The mixture was quenched with water, and extracted with EtOAc. The organic phase was washed with water and brine, and was dried with sodium sulfate. Concentration and purification by flash column chromatography (DCM/EtOAc) gave 3,9- bis-[2-(1-tert-butoxycarbonyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-5,7-dihydro-dibenzo[c,e]oxepine (195 mg). m/z: 667.1 (M \(+\mathrm{H})^{+}\).
(1-\{2-[5-(9-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-5,7-dihydro-dibenzo[c,e]oxepin-3-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester: To the solution of 3,9-bis-[2-(1-tert-butoxycarbonyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-5,7-dihydro-dibenzo[c,e]oxepine (190 mg) in DCM (3 ml) was added TFA (1.5 ml). The mixture was stirred for 60 minutes, and the solvent and reagent were removed under reduced pressure. The mixture was diluted with acetonitrile and water, and was freezer-dried to give dipyrrolidine. To the solution of dipyrrolidine (0.29 mmol) and (\(\mathrm{S}-\))-Moc-Val-OH (\(100 \mathrm{mg}, 0.57 \mathrm{mmol}\)) in DMF (8 ml) was added HATU (\(227 \mathrm{mg}, 0.60 \mathrm{mmol}\)), followed by diisopropylethylamine (\(0.5 \mathrm{ml}, 2.9 \mathrm{mmol}\)). The mixture was stirred for 90 minutes and was diluted with EtOAc. The organic phase was washed with 1 N NaOH solution, water, and brine, and was dried with sodium sulfate. Concentration and purification by HPLC (\(0.1 \% \mathrm{TFA} / \mathrm{CH}_{3} \mathrm{CN} / 0.1 \% \mathrm{TFA} / \mathrm{H}_{2} \mathrm{O}\)) gave (1-\{2-[5-(9-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-5,7-dihydro-dibenzo[c,e]oxepin-3-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)carbamic acid methyl ester (142 mg) \(\mathrm{m} / \mathrm{z}: 781.3(\mathrm{M}+1), 779.3(\mathrm{M}-1), 391.3(\mathrm{M}+2) / 2 .{ }^{1} \mathrm{H}\) NMR (\(\mathrm{CD}_{3} \mathrm{OD}, 300 \mathrm{MHz}\)) \(\delta 7.9-7.8(8 \mathrm{H}, \mathrm{m}), 5.27(2 \mathrm{H}, \mathrm{m}), 4.44(4 \mathrm{H}, \mathrm{s}), 4.22(2 \mathrm{H}, \mathrm{m}), 4.17-\) \(4.05(2 \mathrm{H}, \mathrm{m}), 3.95-3.83(2 \mathrm{H}, \mathrm{m}), 5.67(6 \mathrm{H}, \mathrm{s}), 2.65-2.50(2 \mathrm{H}, \mathrm{m}), 2.35-1.95(8 \mathrm{H}, \mathrm{m}), 0.99-\) \(0.89(12 \mathrm{H}, \mathrm{m})\).

\section*{Example AR}

2-Bromo-1-(9-bromo-5,7-dihydro-dibenzo[c,e]oxepin-3-yl)-ethanone: To the solution of 3,9-dibromo-5,7-dihydro-dibenzo[c,e]oxepine (\(416 \mathrm{mg}, 1.2 \mathrm{mmol}\)) and tributyl(ethoxyvinyl)stannane \((878 \mu \mathrm{l}, 2.6 \mathrm{mmol})\) in dioxane \((6 \mathrm{ml})\) was added \(\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(30 \mathrm{mg})\). The mixture was heated at \(80^{\circ} \mathrm{C}\) for 16 hours and was cooled to \(0^{\circ} \mathrm{C}\). Water (2 ml) was added, followed by slow addition of NBS (\(464 \mathrm{mg}, 2.6 \mathrm{mmol}\)) over 5 minutes period. The mixture was stirred at \(0^{\circ} \mathrm{C}\) for additional 40 minutes, and the solvent was removed under reduced pressure. The mixture was diluted with EtOAc, and was washed with water and brine and dried with sodium sulfate. Concentration and purification by flash column chromatography (hexane/EtOAc) gave 2-bromo-1-(9-bromo-5,7-dihydro-dibenzo[c,e]oxepin-3-yl)-ethanone (120 mg).

Pyrrolidine-1,2-dicarboxylic acid 2-[2-(9-bromo-5,7-dihydro-dibenzo[c,e]oxepin-3-yl)-2-oxo-ethyl] ester 1-tert-butyl ester: To the solution of (\(S\))-Boc-Pro-OH (\(118 \mathrm{mg}, 0.55 \mathrm{mmol}\)) and triethylamine (\(65 \mu \mathrm{l}, 0.46 \mathrm{mmol}\)) in acetonitrile (2 ml) was added a solution of 2-bromo-1-(9-bromo-5,7-dihydro-dibenzo[c,e]oxepin-3-yl)-ethanone (\(120 \mathrm{mg}, 0.31 \mathrm{mmol}\)) in DMF (4 ml). The mixture was stirred for 10 hours, and the solvent was evaporated. The mixture was diluted with EtOAc, and washed with water and brine, and was dried with sodium sulfate. Concentration gave pyrrolidine-1,2-dicarboxylic acid 2-[2-(9-bromo-5,7-dihydro-dibenzo[c,e]oxepin-3-yl)-2-oxo-ethyl] ester 1-tert-butyl ester (160 mg). m/z: \(553.8(\mathrm{M}+\mathrm{Na})^{+}\).

Pyrrolidine-1,2-dicarboxylic acid 2-\{2-[9-(2-bromo-acetyl)-5,7-dihydro-dibenzo[c,e]oxepin-3-yl]-2-oxo-ethyl\} ester 1-tert-butyl ester: To the solution of pyrrolidine-1,2-dicarboxylic acid 2-[2-(9-bromo-5,7-dihydro-dibenzo[c,e]oxepin-3-yl)-2-oxo-ethyl] ester 1-tert-butyl ester (160 \(\mathrm{mg}, 0.30\)) and tributyl(ethoxyvinyl)stannane (\(112 \mu \mathrm{l}, 0.33 \mathrm{mmol}\)) in dioxane (2 ml) was added \(\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(8 \mathrm{mg})\). The mixture was heated at \(80^{\circ} \mathrm{C}\) for 16 hours and was cooled to \(0^{\circ} \mathrm{C}\). Water (0.7 ml) was added, followed by slow addition of NBS (\(59,0.33 \mathrm{mmol}\)) over 5 minutes period. The mixture was stirred at \(0^{\circ} \mathrm{C}\) for additional 40 minutes, and the solvent was removed under reduced pressure. The mixture was diluted with EtOAc, and was washed with water and brine and dried with sodium sulfate. Concentration and purification by flash column chromatography (hexane/EtOAc) gave pyrrolidine-1,2-dicarboxylic acid 2-\{2-[9-(2-bromo-acetyl)-5,7-dihydro-dibenzo[c,e]oxepin-3-yl]-2-oxo-ethyl\} ester 1-tert-butyl ester (156 mg). m/z: \(593.9(\mathrm{M}+\mathrm{Na})^{+}\).

2-Aza-bicyclo[2.2.1]heptane-2,3-dicarboxylic acid 3-(2-\{9-[2-(1-tert-butoxy carbonyl-pyrrolidine-2-carbonyloxy)-acetyl]-5,7-dihydro-dibenzo[c,e]oxepin-3-yl\}-2-oxo-ethyl) ester 2-tert-butyl ester: To the solution of 2-Aza-bicyclo[2.2.1]heptane-2,3-dicarboxylic acid 2-tert-
butyl ester (\(100 \mathrm{mg}, 0.42 \mathrm{mmol}\)) and triethylamine (\(50 \mu \mathrm{l}, 0.36 \mathrm{mmol}\)) in acetonitrile (2 ml) was added a solution of pyrrolidine-1,2-dicarboxylic acid 2-\{2-[9-(2-bromo-acetyl)-5,7-dihydro-dibenzo[c,e]oxepin-3-yl]-2-oxo-ethyl\} ester 1-tert-butyl ester (\(136 \mathrm{mg}, 0.24 \mathrm{mmol}\)) in DMF (4 \(\mathrm{ml})\). The mixture was stirred for 10 hours, and the solvent was evaporated. The mixture was diluted with EtOAc, and washed with water and brine, and was dried with sodium sulfate. Concentration gave 2-aza-bicyclo[2.2.1]heptane-2,3-dicarboxylic acid 3-(2-\{9-[2-(1-tert-butoxycarbonyl-pyrrolidine-2-carbonyloxy)-acetyl]-5,7-dihydro-dibenzo[c,e]oxepin-3-yl\}-2-oxo-ethyl) ester 2-tert-butyl ester (142 mg). m/z: \(731.3(\mathrm{M}-\mathrm{H})^{-}, 755.2(\mathrm{M}+\mathrm{Na})^{+}\).

3-(5-\{9-[2-(1-tert-Butoxycarbonyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-5,7-dihydro-dibenzo[c,e]oxepin-3-yl\}-1H-imidazol-2-yl)-2-aza-bicyclo[2.2.1]heptane-2-carboxylic acid tert-butyl ester: The mixture of 2-aza-bicyclo[2.2.1]heptane-2,3-dicarboxylic acid 3-(2-\{9-[2-(1-tert-butoxycarbonyl-pyrrolidine-2-carbonyloxy)-acetyl]-5,7-dihydro-dibenzo[c,e]oxepin-3-yl\}-2-oxo-ethyl) ester 2-tert-butyl ester (\(142 \mathrm{mg}, 0.19 \mathrm{mmol}\)) and ammonium acetate (860 mg , 11 mmol) in xylene (5 ml) was heated at \(140^{\circ} \mathrm{C}\) for 80 minutes under microwave. The mixture was quenched with water, and extracted with EtOAc. The organic phase was washed with water and brine, and was dried with sodium sulfate. Concentration and purification by flash column chromatography (DCM/EtOAc) gave 3-(5-\{9-[2-(1-tert-Butoxycarbonyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-5,7-dihydro-dibenzo[c,e]oxepin-3-yl\}-1H-imidazol-2-yl)-2-azabicyclo[2.2.1] heptane-2-carboxylic acid tert-butyl ester (86 mg). m/z: \(693.1(\mathrm{M}+\mathrm{H})^{+}\).
(1-\{3-[5-(9-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-5,7-dihydro-dibenzo[c,e]oxepin-3-yl)-1H-imidazol-2-yl]-2-aza-bicyclo[2.2.1]heptane-2-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester: To the solution of 3-(5-\{9-[2-(1-tert-Butoxycarbonyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-5,7-dihydro-dibenzo[c,e]oxepin-3-yl\}-1H-imidazol-2-yl)-2-aza-bicyclo[2.2.1]heptane-2-carboxylic acid tertbutyl ester (86 mg) in DCM (3 ml) was added TFA (1.5 ml). The mixture was stirred for 60 minutes, and the solvent and reagent were removed under reduced pressure. The mixture was diluted with acetonitrile and water, and was freezer-dried to give brown powder. To the solution of above powder (0.12 mmol) and (\(S\))-Moc-Val-OH (\(44 \mathrm{mg}, 0.25 \mathrm{mmol}\)) in DMF (4 ml) was added HATU (\(99 \mathrm{mg}, 0.26 \mathrm{mmol}\)), followed by diisopropylethylamine (\(0.22 \mathrm{ml}, 1.2 \mathrm{mmol}\)). The mixture was stirred for 90 minutes and was diluted with EtOAc. The organic phase was washed with 1 N NaOH solution, water, and brine, and was dried with sodium sulfate.
Concentration and purification by HPLC (\(0.1 \% \mathrm{TFA} / \mathrm{CH}_{3} \mathrm{CN} / 0.1 \% \mathrm{TFA} / \mathrm{H}_{2} \mathrm{O}\)) gave (1-\{3-[5-(9-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-5,7-
dihydro-dibenzo[c,e]oxepin-3-yl)-1 H-imidazol-2-yl]-2-aza-bicyclo[2.2.1] heptane-2-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester (84 mg). m/z: 807.4 (M+1), 805.3 (M-1), 404.4 \((\mathrm{M}+2) / 2 .{ }^{1} \mathrm{H}\) NMR (\(\left.\mathrm{CD}_{3} \mathrm{OD}, 300 \mathrm{MHz}\right) \delta 8.0-7.8(8 \mathrm{H}, \mathrm{m}), 5.26(2 \mathrm{H}, \mathrm{m}), 4.66(1 \mathrm{H}, \mathrm{m}), 4.44(4\) \(\mathrm{H}, \mathrm{m}), 4.35(1 \mathrm{H}, \mathrm{m}), 4.25(1 \mathrm{H}, \mathrm{m}), 4.15(1 \mathrm{H}, \mathrm{m}), 3.89(1 \mathrm{H}, \mathrm{m}), 3.67(6 \mathrm{H}, \mathrm{m}), 2.85(2 \mathrm{H}, \mathrm{m})\), \(2.60(2 \mathrm{H}, \mathrm{m}), 2.3-1.4(9 \mathrm{H}, \mathrm{m}), 1.05-0.85(12 \mathrm{H}, \mathrm{m})\).

3-[2-(4-Bromo-phenyl)-2-oxo-ethylcarbamoyl]-2-aza-bicyclo [2.2.1]heptane-2-carboxylic acid tert-butyl ester: To the solution of 2-amino-1-(4-bromo-phenyl)-ethanone (HCl salt, 1.0 g , 4 mmol) and 2-aza-bicyclo[2.2.1]heptane-2,3-dicarboxylic acid 2-tert-butyl ester (\(0.98 \mathrm{~g}, 4\) \(\mathrm{mmol})\) in DMF (13 ml) was added HATU (\(1.64 \mathrm{~g}, 4.3 \mathrm{mmol}\)), followed by slow addition of diisopropylethylamine (\(2.2 \mathrm{ml}, 12.7 \mathrm{mmol}\)). The mixture was stirred for 4 hours and was diluted with EtOAc. The organic phase was washed with 1 N NaOH solution, water, and brine, and was dried with sodium sulfate. Concentration and purification by flash column chromatography (hexane/EtOAc) gave 3-[2-(4-bromo-phenyl)-2-oxo-ethylcarbamoyl]-2-aza-bicyclo[2.2.1]heptane-2-carboxylic acid tert-butyl ester (1.7 g). m/z: \(460.9(\mathrm{M}+\mathrm{Na})^{+}\).

\section*{3-[5-(4-Bromo-phenyl)-1H-imidazol-2-yl]-2-aza-bicyclo[2.2.1]heptane-2-carboxylic acid} tert-butyl ester: The mixture of 3-[2-(4-bromo-phenyl)-2-oxo-ethylcarbamoyl]-2-aza-bicyclo[2.2.1]heptane-2-carboxylic acid tert-butyl ester (\(1.7 \mathrm{~g}, 4 \mathrm{mmol}\)), acetic acid (\(24 \mu \mathrm{l}\)), and ammonium acetate \((1.54 \mathrm{~g}, 20 \mathrm{mmol})\) in xylene \((20 \mathrm{ml})\) was heated at \(140^{\circ} \mathrm{C}\) for 20 hours. The mixture was quenched with saturated sodium carbonate solution, and extracted with EtOAc. The organic phase was washed with water and brine, and was dried with sodium sulfate. Concentration and purification by flash column chromatography (hexanes/EtOAc) gave 3-[5-(4-
bromo-phenyl)-1H-imidazol-2-yl]-2-aza-bicyclo[2.2.1]heptane-2-carboxylic acid tert-butyl ester \((1.21 \mathrm{~g}) . \mathrm{m} / \mathrm{z}: 417.9(\mathrm{M}+\mathrm{H})^{+}\).

\section*{3-\{5-[4-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl\}-2-aza-} bicyclo[2.2.1] heptane-2-carboxylic acid tert-butyl ester: To the solution of 3-[5-(4-Bromo-phenyl)-1H-imidazol-2-yl]-2-aza-bicyclo[2.2.1]heptane-2-carboxylic acid tert-butyl ester (667 \(\mathrm{mg}, 1.6 \mathrm{mmol}\)) and bis(pinacolato)diboron (\(813 \mathrm{mg}, 3.2 \mathrm{mmol}\)) in 1,4-dioxane (12.5 ml) was added potassium acetate (\(401 \mathrm{mg}, 4.1 \mathrm{mmol}\)), followed by \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(78 \mathrm{mg})\). The mixture was heated at \(80^{\circ} \mathrm{C}\) for 12 hours. The mixture was diluted with EtOAc, and was washed with water and brine, and was dried with sodium sulfate. Concentration and purification by flash column chromatography (hexanes/EtOAc) gave 3-\{5-[4-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl\}-2-aza-bicyclo[2.2.1]heptane-2-carboxylic acid tert-butyl ester (560 \(\mathrm{mg}) . \mathrm{m} / \mathrm{z}: 466.1(\mathrm{M}+\mathrm{H})^{+}\).

\section*{4,4'-Bis-[2-(2-tert-butoxycarbonyl-2-aza-bicyclo[2.2.1]hept-3-yl)-3H-imidazol-4-yl]-}
biphenyl: To the solution of 3-\{5-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl\}-2-aza-bicyclo[2.2.1]heptane-2-carboxylic acid tert-butyl ester (\(560 \mathrm{mg}, 1.22\) mmol) and 3-[5-(4-bromo-phenyl)-1H-imidazol-2-yl]-2-aza-bicyclo[2.2.1]heptane-2-carboxylic acid tert-butyl ester (\(535 \mathrm{mg}, 1.28 \mathrm{mmol}\)) in 1,2-dimethoxyether (11 ml) and water (3.5 ml) was added sodium bicarbonate (\(343 \mathrm{mg}, 4 \mathrm{mmol}\)), followed by \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(55 \mathrm{mg})\). The mixture was heated at \(80^{\circ} \mathrm{C}\) for 7 hours. The mixture was diluted with EtOAc, and was washed with water and brine, and was dried with sodium sulfate. Concentration and purification by flash column chromatography (\(\mathrm{DCM} / \mathrm{MeOH}\)) gave 4,4'-bis-[2-(2-tert-butoxycarbonyl-2-aza-bicyclo[2.2.1]hept-3-yl)-3H-imidazol-4-yl]-biphenyl (50 mg). m/z: \(677.2(\mathrm{M}+\mathrm{H})^{+}\).
(1-\{3-[5-(4'-\{2-[2-(2-Methoxycarbonylamino-3-methyl-butyryl)-2-aza-bicyclo[2.2.1]hept-3-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-1 H-imidazol-2-yl]-2-aza-bicyclo[2.2.1]heptane-2-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester: To the solution of 4,4'-Bis-[2-(2-tert-butoxycarbonyl-2-aza-bicyclo[2.2.1]hept-3-yl)-3H-imidazol-4-yl]-biphenyl (\(50 \mathrm{mg}, 0.07\) mmol) in MeOH (2 ml) was added hydrochloric acid (\(0.24 \mathrm{ml}, 1.48 \mathrm{mmol}\)) The mixture was heated at \(50^{\circ} \mathrm{C}\) for 5 hours, and the solvent and reagent were removed under reduced pressure. The mixture was diluted with acetonitrile and water, and was freezer-dried to give brown powder. \(\mathrm{m} / \mathrm{z}\) : \(477.2(\mathrm{M}+1), 239.1(\mathrm{M}+2) / 2\). To the solution of above powder (\(29 \mathrm{mg}, 0.047\) mmol) and MeOCO-Val-OH (\(20 \mathrm{mg}, 0.0 .113 \mathrm{mmol}\)) in DMF (1.5 ml) was added HATU (40 \(\mathrm{mg}, 0.10 \mathrm{mmol}\)), followed by diisopropylethylamine (\(50 \mathrm{ml}, 0.28 \mathrm{mmol}\)). The mixture was
stirred for 90 minutes and was diluted with EtOAc. The organic phase was washed with 1 N NaOH solution, water, and brine, and was dried with sodium sulfate. Concentration and purification by HPLC (\(0.1 \% \mathrm{TFA} / \mathrm{CH}_{3} \mathrm{CN} / 0.1 \% \mathrm{TFA} / \mathrm{H}_{2} \mathrm{O}\)) gave (\(1-\{3-[5-(4-\{2-[2-(2-\) Methoxycarbonylamino-3-methyl-butyryl)-2-aza-bicyclo[2.2.1]hept-3-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-1H-imidazol-2-yl]-2-aza-bicyclo[2.2.1]heptane-2-carbonyl\}-2-methyl-propyl)carbamic acid methyl ester (15 mg). m/z: \(791.2(\mathrm{M}+1), 396.5(\mathrm{M}+2) / 2\). \({ }^{1} \mathrm{H}\) NMR (\(\mathrm{CD}_{3} \mathrm{OD}, 300\) \(\mathrm{MHz}) \delta\) 7.92-7.82 (\(10 \mathrm{H}, \mathrm{m}\)), \(4.82(2 \mathrm{H}, \mathrm{m}), 4.32(2 \mathrm{H}, \mathrm{m}), 4.05(2 \mathrm{H}, \mathrm{m}), 3.65(6 \mathrm{H}, \mathrm{m}), 2.85(2\) \(\mathrm{H}, \mathrm{m})\), 2.3-1.6 (\(14 \mathrm{H}, \mathrm{m}\)), 1.05-0.85 (\(12 \mathrm{H}, \mathrm{m}\)).

\section*{Example AT}

2-[5-(4-Bromo-phenyl)-thiazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester: The mixture of 2-[2-(4-Bromo-phenyl)-2-oxo-ethylcarbamoyl]-pyrrolidine-1-carboxylic acid tertbutyl ester (\(1.0 \mathrm{~g}, 2.44 \mathrm{mmol}\)) and Lawesson's reagent (\(1.23 \mathrm{~g}, 3.0 \mathrm{mmol}\)) in THF (16 ml) was heated at \(80^{\circ} \mathrm{C}\) for 4 hours. The solvent was removed under reduced pressure and the mixture was diluted with EtOAc. The organic phase was washed with saturated sodium bicarbonate, water, and brine, and was dried with sodium sulfate. Concentration and purification by flash column chromatography (hexanes/EtOAc) gave 2-[5-(4-Bromo-phenyl)-thiazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (655 mg). \(\mathrm{m} / \mathrm{z}: 410.7(\mathrm{M}+\mathrm{H})^{+}\).

\section*{2-\{5-[4-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-thiazol-2-yl\}-pyrrolidine-1-} carboxylic acid tert-butyl ester: To the solution of 2-[5-(4-Bromo-phenyl)-thiazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (\(380 \mathrm{mg}, 0.93 \mathrm{mmol}\)) and bis(pinacolato)diboron (\(500 \mathrm{mg}, 2.0 \mathrm{mmol}\)) in 1,4 -dioxane (7 ml) was added potassium acetate (\(240 \mathrm{mg}, 2.1 \mathrm{mmol}\)),
followed by \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(46 \mathrm{mg})\). The mixture was heated at \(80^{\circ} \mathrm{C}\) for 20 hours. The mixture was diluted with EtOAc, and was washed with water and brine, and was dried with sodium sulfate. Concentration and purification by flash column chromatography (hexanes/EtOAc) gave 2-\{5-[4-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-thiazol-2-yl\}-pyrrolidine-1-carboxylic acid tert-butyl ester \((400 \mathrm{mg}) . \mathrm{m} / \mathrm{z}: 479.0(\mathrm{M}+\mathrm{Na})^{+}\).

4,4'- Bis-[5-(1-tert-butoxycarbonyl-pyrrolidin-2-yl)-thiazol-2-yl]-biphenyl: To the solution of 2-\{5-[4-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-thiazol-2-yl \(\}\)-pyrrolidine-1carboxylic acid tert-butyl ester (\(242 \mathrm{mg}, 0.53 \mathrm{mmol}\)) and 2-[5-(4-Bromo-phenyl)-thiazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (\(224 \mathrm{mg}, 0.55 \mathrm{mmol}\)) in 1,2-dimethoxyether (4.7 ml) and water (1.5 ml) was added sodium bicarbonate (\(150 \mathrm{mg}, 1.8 \mathrm{mmol}\)), followed by \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(24 \mathrm{mg})\). The mixture was heated at \(80^{\circ} \mathrm{C}\) for 7 hours. The mixture was diluted with EtOAc , and was washed with water and brine, and was dried with sodium sulfate.

Concentration and purification by flash column chromatography (\(\mathrm{DCM} / \mathrm{MeOH}\)) gave 4,4'- bis-[5-(1-tert-butoxycarbonyl-pyrrolidin-2-yl)-thiazol-2-yl]-biphenyl (270 mg).
(1-\{2-[5-(4'-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-thiazol-5-yl\}-biphenyl-4-yl)-thiazol-2-yll-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester: To the solution of 4,4'- Bis-[5-(1-tert-butoxycarbonyl-pyrrolidin-2-yl)-thiazol-2-yl]-biphenyl (270 mg) in DCM (4 ml) was added TFA (2 ml) The mixture was stirred for 4 hours, and the solvent and reagent were removed under reduced pressure. The mixture was diluted DCM , and 1.0 N sodium hydroxide solution was added until pH 11 . The organic phase was separated and dried with sodium sulfate. Concentration gave a white solid (182 mg). To the solution of above powder (\(46 \mathrm{mg}, 0.1 \mathrm{mmol}\)) and MeOCO-Val-OH (\(42 \mathrm{mg}, 0.24 \mathrm{mmol}\)) in DMF (3 ml) was added HATU (\(84 \mathrm{mg}, 0.22 \mathrm{mmol}\)), followed by diisopropylethylamine (\(100 \mu \mathrm{l}\), 0.6 mmol). The mixture was stirred for 90 minutes and was diluted with EtOAc. The organic phase was washed with 1 N NaOH solution, water, and brine, and was dried with sodium sulfate. Concentration and purification by flash column chromatography (DCM/EtOAc) gave (1-\{2-[5-(4'-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-thiazol-5-yl\}-biphenyl-4-yl)-thiazol-2-yl]-pyrrolidine-1-carbonyl \(\}\)-2-methyl-propyl)-carbamic acid methyl ester (57 mg). m/z: \(773.3(\mathrm{M}+1) .{ }^{1} \mathrm{H}\) NMR (DMSO-d6, 300 MHz) \(\delta 8.14\) (\(2 \mathrm{H}, \mathrm{s}\)), 7.8-7.6 (8 \(\mathrm{H}, \mathrm{m}), 7.37(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 5.32(2 \mathrm{H}, \mathrm{m}), 4.11(2 \mathrm{H}, \mathrm{m}), 3.80(4 \mathrm{H}, \mathrm{m}), 3.51(6 \mathrm{H}, \mathrm{s}), 2.3-\) \(1.9(10 \mathrm{H}, \mathrm{m}), 0.90(12 \mathrm{H}, \mathrm{m})\).

\section*{Example AU}

[2-Methyl-1-(2-\{5-(4-(4,4,5,5-tetramethyl-\{1,3,2)dioxaborolan-2-yl)-pheny|-1 1 -imidazol-2-y \(\}\)-pyrtolidine-1-carbonyl)-propyl-carbamic acid methyl ester

1,4-dibromo-benzene
 \(+\)
\(\mathrm{Pd}\left(\mathrm{PPH}_{3}\right)_{4}\)
\(\mathrm{K}_{2} \mathrm{CO}_{3}\)
DME. \(85{ }^{\circ} \mathrm{C}\)

(1-2-\{5-(4-2-[1-(2-Methoxycarbonylamino-3-methyl-butyry)-pyrrolidin-2-yl)-3H-
 metthyl-propyl)-carbamic acid methyl ester
(1-\{2-[5-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-[1,1';4',1"]terphenyl-4'-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester: A solution of [2-methyl-1-(2-\{5-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-propyl]-carbamic acid methyl ester (\(300 \mathrm{mg}, 0.60 \mathrm{mmol}\)), 1,4-dibromo-benzene (\(95 \mathrm{mg}, 0.40\) mmol) and aqueous \(\mathrm{K}_{2} \mathrm{CO}_{3}(800 \mu\) l of a 2 M solution) in dimethoxyethane (4 mL) was degassed with \(\mathrm{N}_{2}\) gas for 20 minutes. To the degassed solution was added \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\) and the reaction was heated to \(85^{\circ} \mathrm{C}\) overnight. After cooling to room temperature, the reaction was quenched with acetic acid, filtered, and then concentrated. The crude product was purified by reverse phase preparative HPLC (\(10-85 \%\) MeCN- \(\mathrm{H}_{2} \mathrm{O} ; 0.1 \%\) formic acid modifier) to afford both the monosubstituted product (1-\{2-[5-(4'-bromo-biphenyl-4-yl)-1H-imidazol-2-yl]-pyrrolidine-1carbonyl \}-2-methyl-propyl)-carbamic acid methyl ester (\(111 \mathrm{mg}, 0.21 \mathrm{mmol}, 53 \%\) yield) and the desired bis substituted product (1-\{2-[5-(4-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl \(\}\)-[1, \(\left.1^{\prime} ; 4^{\prime}, 1^{\prime \prime}\right]\) terphenyl-4"-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester (\(24 \mathrm{mg}, 0.074 \mathrm{mmol}, 19 \%\) yield): \({ }^{1} \mathrm{H}\) NMR: 400 MHz , (DMSO-d \({ }_{6}\)) \(\delta: 11.79(\mathrm{~s}, 2 \mathrm{H}), 7.85-7.62(\mathrm{~m}, 12 \mathrm{H}), 7.53(\mathrm{~s}, 2 \mathrm{H}), 7.29(\mathrm{~d}, 2 \mathrm{H})\), \(5.02(\mathrm{~m}, 2 \mathrm{H}), 4.07(\mathrm{t}, 2 \mathrm{H}), 3.82(\mathrm{~m}, 4 \mathrm{H}), 3.54(\mathrm{~s}, 6 \mathrm{H}), 2.15-1.90(\mathrm{~m}, 10 \mathrm{H}), 0.91(\mathrm{~d}, 6 \mathrm{H}), 0.86(\mathrm{~d}\), \(6 \mathrm{H})\). LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{46} \mathrm{H}_{55} \mathrm{~N}_{8} \mathrm{O}_{6}: 815.4\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(815.7(\mathrm{M}+\mathrm{H})^{+}\).

\section*{Example AV}

\{1-[2-(5-\{4-[5-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl)-3H-imidazol-4-yl\}-phenyl)-thiazol-2-yl]-phenyl\}-1H-imidazol-2-yl)-pyrrolidine-1-carbonyll-2-methyl-propyl)-carbamic acid methyl ester

\section*{[1-[2-(5-\{4-[5-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-} imidazol-4-yl\}-phenyl)-thiazol-2-yll-phenyl\}-1 H-imidazol-2-yl)-pyrrolidine-1-carbonyl]-2-methyl-propyl\}-carbamic acid methyl ester: Title compound was prepared following the method detailed for (1-\{2-[5-(4-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-[1, \(\left.\left.\left.\left.1^{\prime} ; 4^{\prime}, 1 "\right] t e r p h e n y l-4 "-y l\right)-1 H-i m i d a z o l-2-y l\right]-p y r r o l i d i n e-1-c a r b o n y l\right\}-~\) 2-methyl-propyl)-carbamic acid methyl ester, substituting 2,5-dibromo-thiazole for 2,6dibromobenzene: \({ }^{1} \mathrm{H}\) (DMSO-d6): \(\delta=8.09(\mathrm{~s}, 2 \mathrm{H}), 7.85(\mathrm{~m}, 8 \mathrm{H}), 7.71(\mathrm{~s}, 2 \mathrm{H}), 7.33\) (d, \(J=\) \(11.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.13(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{t}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~m}, 2 \mathrm{H}), 3.53(\mathrm{~s}, 6 \mathrm{H}), 2.38\) \((\mathrm{m}, 2 \mathrm{H}), 2.15(\mathrm{~m}, 3 \mathrm{H}), 2.03(\mathrm{~m}, 6 \mathrm{H}), 0.82(\mathrm{~m} \mathrm{12H}) . \mathrm{C}_{43} \mathrm{H}_{51} \mathrm{~N}_{9} \mathrm{O}_{6} \mathrm{~S}\) calculated 821.4 observed [M \(+\mathrm{H}^{+} 822.6 ; \mathrm{rt}=1.61 \mathrm{~min}\)

\section*{Example AW}

\{1-[2-(5-\{4-[5-(4-\{2-(1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl|\}-3H-imidazol-4-yl\}-phenyl)-thiophen-2-ylf-phenyl\} 1 H -imidazol-2-yl)-pyrolidine-1-carbonyl|-2-methyi-propyl)-carbamic acid methyl ester
\{1-[2-(5-\{4-[5-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-phenyl)-thiophen-2-ylj-phenyl\}-1H-imidazol-2-yl)-pyrrolidine-1-carbonyl]-2-methyl-propyl\}-carbamic acid methyl ester: Title compound was prepared following the method detailed for (1-\{2-[5-(4-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-[1, \(\left.\left.\left.\left.1^{\prime} ; 4^{\prime}, 1^{\prime \prime}\right] t e r p h e n y l-4 "-y l\right)-1 H-i m i d a z o l-2-y l\right]-p y r r o l i d i n e-1-c a r b o n y l\right\}-~\) 2-methyl-propyl)-carbamic acid methyl ester, substituting 2,5-dibromo-thiophene for 2,6dibromobenzene: \({ }^{1} \mathrm{H}(\mathrm{DMSO}-\mathrm{d} 6): ~ \delta=8.47(\mathrm{~s}, 2 \mathrm{H}), 8.09(\mathrm{~m}, 4 \mathrm{H}), 7.89(\mathrm{~m}, 6 \mathrm{H}), 7.33(\mathrm{~d} J=\)
\(10.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.12(\mathrm{t}, J=10.0 \mathrm{ZH}, 2 \mathrm{H}), 4.10(\mathrm{t}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{~m}, 4 \mathrm{H})\), \(2.37(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{~m}, 9 \mathrm{H}), 0.822(\mathrm{~m}, 12 \mathrm{H}) . \mathrm{C}_{44} \mathrm{H}_{52} \mathrm{~N}_{8} \mathrm{O}_{6} \mathrm{~S}\) calculated 820.4 observed \([\mathrm{M}+1]^{+}\) 821.8 ; \(\mathrm{rt}=1.66 \mathrm{~min}\)
Example AX

2-Bromo-1-4-(2-bromo-acetyl)-phenyl)-ethanone

Pyrrolidine-1,2-dicarboxylic acid 2-\{2-[4-(1-tert-butoxycarbonyl-pyrrolidine-2-carbonyloxycarbonyl)-phenyl-2-axo ethyl\} ester 1-fer-butyl ester

(1-\{2-55-(4-\{2-11-(2-Methoxycarbonylamino-3-methyl-butyry)-pyrrolidin-2-ylf-3H-imidazol-4-yl\}-phenyl)-1 H -imidazol-2-yl)-pyrrolidine-1-carbonyl)-2-

2-Bromo-1-[4-(2-bromo-acetyl)-phenyl]-ethanone: To a solution of \(\mathrm{Br}_{2}\) (\(1.27 \mathrm{~mL}, 24.66\) mmol) in HOAc (12 mL) was added 1,4 -diacetylbenzene (\(2.00 \mathrm{~g}, 12.33 \mathrm{mmol}\)). After stirring for 2 h , the reaction was diluted with water and the precipitate collected by filtration. The crude product was then recrystallized from toluene to afford 2-bromo-1-[4-(2-bromo-acetyl)-phenyl]ethanone (\(2.87 \mathrm{~g}, 8.97 \mathrm{mmol}, 73 \%\) yield). \({ }^{1} \mathrm{H}-\mathrm{NMR}: 400 \mathrm{MHz}\), (DMSO- \(\mathrm{d}_{6}\)) \(\delta: 8.13(\mathrm{~s}, 4 \mathrm{H}\)), 5.01 (\(\mathrm{s}, 4 \mathrm{H}\)).

Pyrrolidine-1,2-dicarboxylic acid 2-\{2-\{4-(1-tert-butoxycarbonyl-pyrrolidine-2-carbonyloxycarbonyl)-phenyl]-2-oxo-ethyl\} ester 1-tert-butyl ester: A suspension of 2-bromo-1-[4-(2-bromo-acetyl)-phenyl]-ethanone (\(2.87 \mathrm{~g}, 8.97 \mathrm{mmol}\)) in \(\mathrm{CH}_{3} \mathrm{CN}(15 \mathrm{~mL})\) was added dropwise to a solution of pyrrolidine-1,2-dicarboxylic acid 1-tert-butyl ester (\(3.85 \mathrm{~g}, 17.9\) mmol) and triethylamine (\(2.49 \mathrm{~mL}, 17.9 \mathrm{mmol}\)) in \(\mathrm{CH}_{3} \mathrm{CN}(30 \mathrm{~mL})\). The reaction was stirred for 4 hours then concentrated and purified by silica gel chromatography (\(20-60 \%\) EtOAchexanes gradient) to afford pyrrolidine-1,2-dicarboxylic acid 2-\{2-[4-(1-tert-butoxycarbonyl-pyrrolidine-2-carbonyloxycarbonyl)-phenyl]-2-oxo-ethyl\} ester 1-tert-butyl ester (\(4.9 \mathrm{~g} \mathrm{~g}, 8.34\)
\(\mathrm{mmol}, 93 \%\) yield). \({ }^{1} \mathrm{H}-\mathrm{NMR}: 400 \mathrm{MHz},\left(\mathrm{DMSO}_{6}\right) \delta: 8.11(\mathrm{~s}, 4 \mathrm{H}), 5.69-5.50(\mathrm{~m}, 4 \mathrm{H}), 4.37-\) \(4.32(\mathrm{~m}, 2 \mathrm{H}), 3.42-3.29(\mathrm{~m}, 6 \mathrm{H}), 2.34-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.82(\mathrm{~m}, 4 \mathrm{H}), 1.40\) (s, 9H), 1.37 (\(\mathrm{s}, 9 \mathrm{H}\)).

\section*{1-[2-(5-\{4-[2-(1-tert-Butoxycarbonyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-phenyl\}-1H-} imidazol-2-yl)-pyrrolidin-1-yl]-ethanone: A solution of pyrrolidine-1,2-dicarboxylic acid 2-\{2-[4-(1-tert-butoxycarbonyl-pyrrolidine-2-carbonyloxycarbonyl)-phenyl]-2-oxo-ethyl\} ester 1-tert-butyl ester (\(4.91 \mathrm{~g}, 8.35 \mathrm{mmol}\)) and ammonium acetate (\(6.44 \mathrm{~g}, 8.36 \mathrm{mmol}\)) in xylenes (42 mL) was heated to \(140^{\circ} \mathrm{C}\) overnight in a sealed pressure flask. After cooling to room temperature, the reaction was diluted with EtOAc and washed with saturated \(\mathrm{NaHCO}_{3}\) and brine. The organic layer was dried over \(\mathrm{Na}_{2} \mathrm{SO}_{4}\) then concentrated. The crude material was purified by silica gel chromatography (\(3-10 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\) gradient) to afford 1-[2-(5-\{4-[2-(1-tert-butoxycarbonyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-phenyl\}-1H-imidazol-2-yl)-pyrrolidin-1-yl]ethanone (\(1.58 \mathrm{~g}, 2.87 \mathrm{mmol}, 34 \%\) yield). LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~N}_{6} \mathrm{O}_{4}: 549.3\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(549.3\left(\mathrm{M}+\mathrm{H}^{+}\right)\).
(1-\{2-[5-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-y]]-3H-imidazol-4-yl\}-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)carbamic acid methyl ester: To 1-[2-(5-\{4-[2-(1-tert-butoxycarbonyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-phenyl\}-1H-imidazol-2-yl)-pyrrolidin-1-yl]-ethanone (\(500 \mathrm{mg}, 0.91 \mathrm{mmol}\)) in dioxanes (5 mL) was added 4 N HCl in dioxanes (3 mL). The suspension was stirred for 2 hours then concentrated to afford the HCl salt of the crude amine (530 mg). To a portion of the crude amine (\(200 \mathrm{mg}, 0.41 \mathrm{mmol}\)) in DMF (2 mL) was added \(N\)-methylmorpholine (\(270 \mu \mathrm{l}, 2.44\) mmol). After all material dissolved, 2-methoxycarbonylamino-3-methyl-butyric acid (144 mg , 0.82 mmol) and HATU (\(312 \mathrm{mg}, 0.82 \mathrm{mmol}\)) were added. After stirring for 1 hour the reaction was quenched with AcOH then purified by reverse phase preparative HPLC (\(10-85 \% \mathrm{MeCN}\) \(\mathrm{H}_{2} \mathrm{O} ; 0.1 \%\) formic acid modifier) to afford (1-\{2-[5-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester (\(56 \mathrm{mg}, 0.085 \mathrm{mmol}, 21 \%\) yield). \({ }^{1} \mathrm{H}\) NMR: \(400 \mathrm{MHz},\left(\mathrm{DMSO}-\mathrm{d}_{6}\right) \delta: 11.68(\mathrm{~s}, 2 \mathrm{H}), 7.62(\mathrm{~m}, 4 \mathrm{H}), 7.41\) (s, 2H), 7.27 (d, 2H), 5.07\(5.05(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{t}, 2 \mathrm{H}), 3.80(\mathrm{~m}, 4 \mathrm{H}), 3.54(\mathrm{~s}, 6 \mathrm{H}), 2.13(\mathrm{~m}, 4 \mathrm{H}), 1.95(\mathrm{~m}, 6 \mathrm{H}), 0.90(\mathrm{~d}, 6 \mathrm{H})\), \(0.85(\mathrm{~d}, 6 \mathrm{H})\). LCMS-ESI \({ }^{+}:\)calc'd for \(\mathrm{C}_{34} \mathrm{H}_{47} \mathrm{~N}_{8} \mathrm{O}_{6}: 663.4\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(663.1\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{Example AY}

\section*{(2-Methyl-1-\{2-[5-(4-trimethylsilanylethynyl-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-} carbonyl \(\}\)-propyl)-carbamic acid methyl ester: A solution of (1-\{2-[5-(4-bromo-phenyl)-1 H -imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester (5.00 g , 11.1 mmol), TMS-acetylene (\(7.90 \mathrm{~mL}, 55.5 \mathrm{mmol}\)) and triethylamine (\(4.64 \mathrm{~mL}, 33.3 \mathrm{mmol}\)) in DMF (56 mL) was degassed with \(\mathrm{N}_{2}\) gas for 20 minutes. To the degassed solution was added \(\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(1.28 \mathrm{~g}, 1.11 \mathrm{mmol})\) and \(\mathrm{CuI}(106 \mathrm{mg}, 0.56 \mathrm{mmol})\). The pressure flask was sealed then heated at \(80^{\circ} \mathrm{C}\) overnight. After cooling to room temperature, the reaction was concentrated then diluted with EtOAc and washed with water. The aqueous phase was backextracted two times then the organic phases were combined and dried over \(\mathrm{Na}_{2} \mathrm{SO}_{4}\). After concentration, the crude material was purified by silica gel chromatography (\(10-80 \% \mathrm{EtOAc}\) hexanes gradient) to afford (2-methyl-1-\{2-[5-(4-trimethylsilanylethynyl-phenyl)-1H-imidazol-2-yl)-pyrrolidine-1-carbonyl\}-propyl)-carbamic acid methyl ester (\(3.08 \mathrm{~g}, 6.60 \mathrm{mmol}, 59 \%\) yield). LCMS-ESI': calc'd for \(\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Si}: 467.3\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(467.1\left(\mathrm{M}+\mathrm{H}^{+}\right)\).
(1-\{2-[5-(4-Ethynyl-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)carbamic acid methyl ester: To (2-methyl-1-\{2-[5-(4-trimethylsilanylethynyl-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-propyl)-carbamic acid methyl ester (\(3.08 \mathrm{~g}, 6.60 \mathrm{mmol}\)) in MeOH was added \(\mathrm{K}_{2} \mathrm{CO}_{3}(1.82 \mathrm{~g}, 13.2 \mathrm{mmol})\). After stirring for 5 h , the reaction was filtered
then concentrated. The residue was diluted with EtOAc then washed with \(\mathrm{H}_{2} \mathrm{O}\). The aqueous phase was back-extracted with EtOAc two times then the organic phases were combined, washed with brine, dried over \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), and concentrated. The crude material was purified by silica gel chromatography (\(5-10 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\) gradient) to afford (1-\{2-[5-(4-ethynyl-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester (\(2.62 \mathrm{~g}, 6.6 \mathrm{mmol}\), quantitative yield). LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{3}: 395.2\) \(\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(395.2\left(\mathrm{M}+\mathrm{H}^{+}\right)\).
[1-(2-\{5-[4-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-phenylethynyl)-phenylj-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester: A solution of (1-\{2-[5-(4-bromo-phenyl)-1 H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester (947 mg , 2.11 mmol), (1 -\{2-[5-(4-ethynyl-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl \}-2-methyl-propyl)-carbamic acid methyl ester (\(1.00 \mathrm{~g}, 2.53 \mathrm{mmol}\)), and triethylamine (\(882 \mu \mathrm{l}, 6.33 \mathrm{mmol}\)) in DMF (13 mL) was degassed with \(\mathrm{N}_{2}\) gas for 20 minutes. To the degassed solution was added \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(244 \mathrm{mg}, 0.21 \mathrm{mmol})\) and \(\mathrm{CuI}(40 \mathrm{mg}, 0.21 \mathrm{mmol})\). The pressure flask was sealed then heated at \(80^{\circ} \mathrm{C}\) ovemight. After cooling to room temperature, the reaction was concentrated then diluted with EtOAc and washed with water. The aqueous phase was backextracted two times then the organic phases were combined and dried over \(\mathrm{Na}_{2} \mathrm{SO}_{4}\). After concentration, the crude material was purified by silica gel chromatography \((0-20 \% \mathrm{MeOH}-\) EtOAc gradient) then reverse phase preparative HPLC (\(10-85 \% \mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O} ; 0.1 \%\) formic acid modifier) to afford [1-(2-\{5-[4-(4-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyry))-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-phenylethynyl)-phenyl]-1 H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester (\(600 \mathrm{mg}, 1.00 \mathrm{mmol}, 47 \%\) yield). \({ }^{1} \mathrm{H}\) NMR: 400 MHz , (DMSO- \(\mathrm{d}_{6}\)) \(\delta: 11.84\) (s, 2H), 7.75 (d, 4H), (7.56 (s, 2H), 7.47 (d, 4H), 7.28 (d, 2H), \(5.06(\mathrm{~m}, 2 \mathrm{H}), 4.06-4.04(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~m}, 4 \mathrm{H}), 3.54(\mathrm{~s}, 6 \mathrm{H}), 2.14(\mathrm{~m}, 4 \mathrm{H}) 2.00-1.90(\mathrm{~m}\), \(6 \mathrm{H}), 0.89(\mathrm{~d}, 6 \mathrm{H}), 0.84(\mathrm{~d}, 6 \mathrm{H})\). LCMS-ESI': calc'd for \(\mathrm{C}_{42} \mathrm{H}_{51} \mathrm{~N}_{8} \mathrm{O}_{6}: 763.4\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(763.4\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{Example AZ}

[1-(2-5-[6-(4-\{2-[1-(2-Melhoxycarbonytamino-3-methy-butyry) \()\)-pyrodidin-2-y| \(-3 H-\) imidazol-4-y|)-pheny|)-naphthalen-2-y|-1/t-imidazol-2-y|)-pyrolidine-4-carbony|)-2-methyt-propyl-carbamic acid methyl ester
[1-(2-\{5-[6-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-phenyl)-naphthalen-2-yl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester: A solution of (1-\{2-[5-(4-bromo-phenyl)-1 H -imidazol-2-yl]-pyrrolidine-1-carbonyl \}-2-methyl-propyl)-carbamic acid methyl ester (244 mg , \(0.54 \mathrm{mmol})\), [2-methyl-1-(2-\{5-[6-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-naphthalen-2-yl]-1H-imidazol-2-yl \(\}\)-pyrrolidine-1-carbonyl)-propyl]-carbamic acid methyl ester (270 mg , 0.49 mmol) and aqueous \(\mathrm{K}_{2} \mathrm{CO}_{3}(490 \mu \mathrm{l}\) of a 2 M solution, 0.98 mmol\()\) in toluene (3 mL) and DMF (1 mL) was degassed with \(\mathrm{N}_{2}\) gas for 20 minutes. To the degassed solution was added \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(31 \mathrm{mg}, 0.027 \mathrm{mmol})\) and \(\mathrm{PdCl}_{2}(\mathrm{dppf})(20 \mathrm{mg}, 0.027 \mathrm{mmol})\) then the reaction was heated to \(80^{\circ} \mathrm{C}\) overnight. After cooling to room temperature, the reaction was quenched with acetic acid, filtered, and then concentrated. The crude product was purified by reverse phase preparative HPLC (\(10-85 \%\) MeCN- \(\mathrm{H}_{2} \mathrm{O} ; 0.1 \%\) formic acid modifier) to afford [1-(2-\{5-[6-(4-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-phenyl)-naphthalen-2-ylj-1H-imidazol-2-yl \}-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester (\(149 \mathrm{mg}, 0.19 \mathrm{mmol}, 35 \%\) yield). \({ }^{1} \mathrm{H}-\mathrm{NMR}: 400 \mathrm{MHz}\), (DMSO-d \(\mathrm{d}_{6}\)) \(\delta: 11.82\) (s, \(1 \mathrm{H}), 11.79(\mathrm{~s}, 1 \mathrm{H}), 8.21-8.16(\mathrm{~m}, 2 \mathrm{H}), 7.92-7.79(\mathrm{~m}, 8 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.29\) \((\mathrm{m}, 2 \mathrm{H}), 5.10(\mathrm{~m}, 2 \mathrm{H}), 4.09-4.07(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~m}, 4 \mathrm{H}), 3.54(\mathrm{~s}, 6 \mathrm{H}), 2.20-1.85(\mathrm{~m}, 10 \mathrm{H}), 0.95-\) \(0.86(\mathrm{~m}, 12 \mathrm{H})\). LCMS-ESI': calc'd for \(\mathrm{C}_{44} \mathrm{H}_{53} \mathrm{~N}_{8} \mathrm{O}_{6}: 789.4\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(789.2\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

2,6-Anthracene-bis-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: A mixture of 2,6dibromoanthracene (\(500 \mathrm{mg}, 1.49 \mathrm{mmol}\)), bis(pinacolato)diboron (\(756 \mathrm{mg}, 2.98 \mathrm{mmol}\))and KOAc (\(585 \mathrm{mg}, 5.96 \mathrm{mmol}\)) in DMSO (10 mL) was degassed with \(\mathrm{N}_{2}\) gas for 20 minutes. To the degassed solution was added \(\mathrm{PdCl}_{2}(\mathrm{dppf})(55 \mathrm{mg}, 0.075 \mathrm{mmol})\) then the reaction was heated to \(80^{\circ} \mathrm{C}\) overnight. After cooling to room temperature, the reaction was poured into \(\mathrm{H}_{2} \mathrm{O}\) and extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\). The organic phase was collected then washed with \(\mathrm{H}_{2} \mathrm{O}\) and brine. After drying over \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), the organic phase was concentrated then purified by silica gel chromatography (\(30-100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}\)-hexanes gradient) to afford 2,6-anthracene-bis-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (\(241 \mathrm{mg}, 0.56 \mathrm{mmol}, 38 \%\) yield). \({ }^{1} \mathrm{H}-\mathrm{NMR}: ~ 400 \mathrm{MHz}\), (DMSO-d \(\mathrm{d}_{6}\)) \(8: 8.57\) (s, 2H), 8.46 (\(\mathrm{s}, 2 \mathrm{H}\)), \(8.00(\mathrm{~d}, 2 \mathrm{H}), 7.79(\mathrm{~d}, 2 \mathrm{H})\).

1-[2-(5-\{6-[2-(1-1-tert-Butoxycarbonyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-anthracen-2-yl\}-1H-imidazol-2-yl)-pyrrolidin-1-yl|-ethanone: A solution of 2,6 -anthracene-bis-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (\(241 \mathrm{mg}, 0.56 \mathrm{mmol}\)), 2-(5-bromo-1 H -imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (\(531 \mathrm{mg}, 1.68 \mathrm{mmol}\)) and aq \(\mathrm{K}_{2} \mathrm{CO}_{3}(1.12 \mathrm{~mL}\) of a 2 M solution, 2.24 mmol) in toluene (6 mL) and DMF (1 mL) was degassed with \(\mathrm{N}_{2}\) gas for 20 minutes. To the degassed solution was added \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(32 \mathrm{mg}, 0.028 \mathrm{mmol})\) and \(\mathrm{PdCl}_{2}\) (dppf) (\(21 \mathrm{mg}, 0.028 \mathrm{mmol}\)) then the reaction was heated to \(80^{\circ} \mathrm{C}\) overnight. After cooling to room temperature, the reaction was concentrated. The crude material was diluted with EtOAc then washed with saturated \(\mathrm{NaHCO}_{3}\). The aqueous phase was back-extracted two times then the organic layers were combined, dried over \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), and concentrated. The crude product was purified by reverse phase preparative HPLC (\(20-80 \% \mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O} ; 0.1 \%\) formic acid modifier)
to afford 1-[2-(5-\{6-[2-(1-1-tert-butoxycarbonyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-anthracen-2-yl\}-1H-imidazol-2-yl)-pyrrolidin-1-yl]-ethanone (\(117 \mathrm{mg}, 0.18 \mathrm{mmol}, 32 \%\) yield). LCMSESI \(^{+}\): calc'd for \(\mathrm{C}_{38} \mathrm{H}_{45} \mathrm{~N}_{6} \mathrm{O}_{4}: 649.4\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(648.9\left(\mathrm{M}+\mathrm{H}^{+}\right)\).
(1-\{2-[5-(6-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-anthracen-2-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester: To 1-[2-(5-\{6-[2-(1-1-tert-butoxycarbonyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-anthracen-2-yl\}-1H-imidazol-2-yl)-pyrrolidin-1-yl]-ethanone (117 mg , 0.18 mmol) in dioxanes (5 mL) was added 4 N HCl in dioxanes (\(180 \mu \mathrm{l}, 0.72 \mathrm{mmol}\)). The suspension overnight then concentrated to afford the HCl salt of the crude amine. To the amine in DMF (3 mL) was added \(N\)-methylmorpholine (\(119 \mu \mathrm{l}, 1.08 \mathrm{mmol}\)). After all the material dissolved, 2-methoxycarbonylamino-3-methyl-butyric acid (\(76 \mathrm{mg}, 0.43 \mathrm{mmol}\)) and HATU (151 \(\mathrm{mg}, 0.40 \mathrm{mmol}\)) were added. After stirring overnight the reaction was quenched with AcOH then purified by reverse phase preparative \(\mathrm{HPLC}\left(15-70 \% \mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O} ; 0.1 \%\right.\) formic acid modifier) to afford (1-\{2-[5-(6-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-anthracen-2-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester (\(46 \mathrm{mg}, 0.098 \mathrm{mmol}, 54 \%\) yield). \({ }^{1} \mathrm{H}-\mathrm{NMR}: 400 \mathrm{MHz}\), (DMSO-d \({ }_{6}\)) \(\mathrm{E}: 11.84(\mathrm{~s}, 2 \mathrm{H}), 8.38(\mathrm{~s}, 2 \mathrm{H}), 8.31(\mathrm{~s}, 2 \mathrm{H}), 8.00(\mathrm{~d}, 2 \mathrm{H}), 7.86(\mathrm{~d}, 2 \mathrm{H}), 7.62(\mathrm{~s}, 2 \mathrm{H})\), \(7.30(\mathrm{~d}, 2 \mathrm{H}), 5.12(\mathrm{~m}, 2 \mathrm{H}), 4.10(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~m}, 4 \mathrm{H}), 3.55(\mathrm{~s}, 6 \mathrm{H}), 2.18-1.95(\mathrm{~m}, 10 \mathrm{H}), 0.96\) (d, 6 H), \(0.88(\mathrm{~d}, 6 \mathrm{H})\). LCMS-ESI': calc'd for \(\mathrm{C}_{42} \mathrm{H}_{51} \mathrm{~N}_{8} \mathrm{O}_{6}: 763.4\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: 763.1 \(\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

4,4-Difluoro-2-[5-(4-trimethylsilanylethynyl-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1carboxylic acid tert-butyl ester: A solution of 2-[5-(4-bromo-phenyl)-1H-imidazol-2-yl]-4,4-difluoro-pyrrolidine-1 -carboxylic acid tert-butyl ester (\(700 \mathrm{mg}, 1.56 \mathrm{mmol}\)), TMS-acetylene \((1.11 \mathrm{~mL}, 7.79 \mathrm{mmol})\) and triethylamine (\(1.1 \mathrm{~mL}, 7.8 \mathrm{mmol}\)) in DMF (8 mL) was degassed with \(\mathrm{N}_{2}\) gas for 20 minutes. To the degassed solution was added \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(180 \mathrm{mg}, 0.16 \mathrm{mmol})\) and CuI (\(14.8 \mathrm{mg}, 0.078 \mathrm{mmol}\)). The pressure flask was sealed then heated at \(80^{\circ} \mathrm{C}\) overnight. After cooling to room temperature, the reaction was concentrated then diluted with EtOAc and washed with water. The aqueous phase was back-extracted two times then the organic phases were combined and dried over \(\mathrm{Na}_{2} \mathrm{SO}_{4}\). After concentration, the crude material was purified by silica gel chromatography (10-50\% EtOAc-hexanes gradient) to afford 4,4-difluoro-2-[5-(4-trimethylsilanylethynyl-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (\(547 \mathrm{~g}, 1.23 \mathrm{mmol}, 79 \%\) yield). LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{23} \mathrm{H}_{3} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Si}: 446.2\left(\mathrm{M}+\mathrm{H}^{+}\right.\)); Found: \(445.8\left(\mathrm{M}+\mathrm{H}^{+}\right)\).
(1-\{4,4-Difluoro-2-[5-(4-trimethylsilanylethynyl-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester: To 4,4-difluoro-2-[5-(4-
trimethylsilanylethynyl-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester
(\(547 \mathrm{mg}, 1.23 \mathrm{mmol}\)) in dioxanes (6 mL) was added 4 N HCl in dioxanes (\(1.65 \mathrm{~mL}, 6.6 \mathrm{mmol}\)). The suspension was stirred overnight then concentrated to afford the HCl salt of the crude amine. To the amine in DMF (5 mL) was added \(N\)-methylmorpholine (\(406 \mu \mathrm{l}, 3.69 \mathrm{mmol}\)). After all the material dissolved, 2-methoxycarbonylamino-3-methyl-butyric acid (\(236 \mathrm{mg}, 1.35\) mmol) and HATU (\(513 \mathrm{mg}, 1.35 \mathrm{mmol}\)) were added. After stirring for 2 hours the reaction was concentrated then diluted with EtOAc and washed with \(\mathrm{H}_{2} \mathrm{O}\). The aqueous phase was backextracted two times then the organic layers were combined, dried over \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), and concentrated. The crude product was purified by silica gel chromatography (\(20-60 \% \mathrm{EtOAc}\) hexanes gradient) to afford (1-\{4,4-difluoro-2-[5-(4-trimethylsilanylethynyl-phenyl)-1 H -imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester (412 mg , \(0.82 \mathrm{mmol}, 67 \%\) yield). LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Si}: 503.2\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(503.2\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{(1-\{2-[5-(4-Ethynyl-phenyl)-1 H-imidazol-2-yl]-4,4-difluoro-pyrrolidine-1-carbonyl\}-2-} methyl-propyl)-carbamic acid methyl ester: \(\operatorname{To}\) (1-\{4,4-difluoro-2-[5-(4-
trimethylsilanylethynyl-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)carbamic acid methyl ester (\(412 \mathrm{mg}, 0.82 \mathrm{mmol}\)) in \(\mathrm{MeOH}(8 \mathrm{~mL})\) was added \(\mathrm{K}_{2} \mathrm{CO}_{3}\) (227 mg , \(1.64 \mathrm{mmol})\). After stirring for 5 h , the reaction was filtered then concentrated. The residue was diluted with EtOAc then washed with \(\mathrm{H}_{2} \mathrm{O}\). The aqueous phase was back-extracted with EtOAc two times then the organic phases were combined, washed with brine, dried over \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), and concentrated. The crude material was purified by silica gel chromatography (\(20-80 \%\) EtOAchexanes gradient) to afford (1-\{2-[5-(4-ethynyl-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1carbonyl \}-2-methyl-propyl)-carbamic acid methyl ester (\(371 \mathrm{mg}, 0.82 \mathrm{mmol}\), quantitative yield). LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{3}\) : \(431.2\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(431.1\left(\mathrm{M}+\mathrm{H}^{+}\right)\).
[1-(2-\{5-[4-(4-\{2-[4,4-Difluoro-1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-phenylethynyl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester: A solution of (1-\{2-[5-(4-bromo-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl \}-2-methyl-propyl)-carbamic acid methyl ester (\(400 \mathrm{mg}, 0.89 \mathrm{mmol}\)), (\(1-\{2\)-[5-(4-ethynyl-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester (\(371 \mathrm{mg}, 0.89 \mathrm{mmol}\)), and triethylamine (\(372 \mu \mathrm{l}, 2.67 \mathrm{mmol}\)) in DMF (8 mL) was degassed with \(\mathrm{N}_{2}\) gas for 20 minutes. To the degassed solution was added \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(103 \mathrm{mg}, 0.089 \mathrm{mmol})\) and \(\mathrm{CuI}(17 \mathrm{mg}, 0.089\) mmol). The pressure flask was sealed then heated at \(80^{\circ} \mathrm{C}\) overnight. After cooling to room temperature, the reaction was quenched with AcOH then purified by reverse phase preparative

HPLC (\(10-70 \%\) MeCN- \(\mathrm{H}_{2} \mathrm{O} ; 0.1 \%\) formic acid modifier) then silica gel chromatography (\(0-10 \%\) MeOH-EtOAc gradient) to afford [1-(2-\{5-[4-(4-\{2-[4,4-difluoro-1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-phenylethynyl)-phenyl]-1 H -imidazol-2-yl\}-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester (\(231 \mathrm{mg}, 0.29 \mathrm{mmol}\), \(33 \%\) yield). \({ }^{3} \mathrm{H}-\mathrm{NMR}: 400 \mathrm{MHz},\left(\mathrm{DMSO}-\mathrm{d}_{6}\right) ~ 8: 12.04(\mathrm{~s}, 1 \mathrm{H}), 11.84(\mathrm{~s}, 1 \mathrm{H}), 7.78-7.76(\mathrm{~m}\), \(4 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.48(\mathrm{~m}, 6 \mathrm{H}), 7.28(\mathrm{~d}, 2 \mathrm{H}), 5.29(\mathrm{t}, 1 \mathrm{H}), 5.07(\mathrm{~m}, 1 \mathrm{H}), 4.52\) \((\mathrm{m}, 1 \mathrm{H}), 4.24-4.14(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{t}, 1 \mathrm{H}), 3.93(\mathrm{t}, 1 \mathrm{H}), 3.80(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H})\), \(2.93(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{~m}, 1 \mathrm{H}), 2.14-1.88(\mathrm{~m}, 6 \mathrm{H}), 0.90-0.84(\mathrm{~m}, 12 \mathrm{H})\). LCMS-ESI': calc'd for \(\mathrm{C}_{42} \mathrm{H}_{49} \mathrm{~N}_{8} \mathrm{O}_{6}: 799.4\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(799.0\left(\mathrm{M}+\mathrm{H}^{+}\right)\).
Example AC1

4-Bromo-benzoic acid

2-[(4-Bromo-benzoylamino)-methyl] - (4-Bromo-benzoylamino)-metyyt butyl ester

2-Methoxycarbonylamino-
3-methyl-butyric acid

(\(4-\{2-\{(4-\) Bromo-benzoytamino)-methy) \(\}\) pyrroldine-1-carbonyl-2-methy1-propy)cartamic acid methyl ester

[2-Methyt-1-(\(2-\{5-43-(4,4,5,5-\) etramethyt [1,3,2)dioxaborolan-2-y)-phenyl)-1H-4midazol-2-y]-pyrrolidine-1-cartonyl)-propyl)-carbamic acid methyl ester
\(\left.\mathrm{Pd}_{\mathrm{PPPn}}^{3}\right)_{4}, \mathrm{~K}_{3} \mathrm{PO}_{4}\), DME, \(80^{\circ} \mathrm{C}\)

[1- \(2-\left\{\left(4^{\prime}-42-11-(2-\right.\right.\) Methoxycarbonytamino-3-methyt butyryl)-pynrolidin-2-yl)-3H-1midazot-4-y)
cartonyl)-2-methyt-propyl)-cartamic acid methyl ester

2-[(4-Bromo-benzoylamino)-methyl]-pyrrolidine-1-carboxylic acid tert-butyl ester: To 2-aminomethyl-pyrrolidine-1-carboxylic acid tert-butyl ester (\(1.00 \mathrm{~g}, 4.97 \mathrm{mmol}\)) and 4-bromobenzoic acid (\(996 \mathrm{mg}, 4.97 \mathrm{mmol}\)) in DMF (25 mL) was added \(N\)-methylmorpholine (\(655 \mu \mathrm{l}\), \(5.96 \mathrm{mmol})\) and HATU (\(1.89 \mathrm{~g}, 4.97 \mathrm{mmol}\)). After stirring for 3 hours the reaction was concentrated then diluted with EtOAc and washed with 1 N HCl , saturated \(\mathrm{NaHCO}_{3}\), and brine. The organic phase was then dried over \(\mathrm{Na}_{2} \mathrm{SO}_{4}\) and concentrated. The crude material was purified by silica gel chromatography (\(20-50 \%\) EtOAc-hexanes gradient) to afford 2-[(4-bromo-benzoylamino)-methyl]-pyrrolidine-1-carboxylic acid tert-butyl ester (\(1.91 \mathrm{~g}, 4.97 \mathrm{mmol}\),
quantitative yield). LCMS-ESI': calc'd for \(\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{BrN}_{2} \mathrm{O}_{3}\) : 383.1 (\(\mathrm{M}+\mathrm{H}^{+}\)); Found: 383.6 \(\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{(1-\{2-[(4-Bromo-benzoylamino)-methyl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-} carbamic acid methyl ester: To 2-[(4-bromo-benzoylamino)-methyl]-pyrrolidine-1-carboxylic acid tert-butyl ester (\(1.00 \mathrm{~g}, 2.61 \mathrm{mmol}\)) in dioxanes (15 mL) was added 4 N HCl in dioxanes (5 \(\mathrm{mL}, 20 \mathrm{mmol}\)). The solution was stirred overnight then concentrated to afford the HCl salt of the crude amine. To the amine in DMF (13 mL) was added \(N\)-methylmorpholine (\(574 \mu \mathrm{l}, 5.22\) mmol), 2-methoxycarbonylamino-3-methyl-butyric acid (\(457 \mathrm{mg}, 2.61\)) and HATU (992 mg , 2.61 mmol). After stirring for 2 hours the reaction was concentrated then diluted with EtOAc and washed with 1 N HCl , saturated \(\mathrm{NaHCO}_{3}\), and brine. The crude product was purified by silica gel chromatography (\(100 \% \mathrm{EtOAc}\)) to afford (1-\{2-[(4-bromo-benzoylamino)-methyl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester (\(950 \mathrm{mg}, 2.18 \mathrm{mmol}, 84 \%\) yield). LCMS-ESI': calc'd for \(\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{BrN}_{3} \mathrm{O}_{4}: 440.1\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(440.2\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{[1-(2-\{[(4'-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-} imidazol-4-yl\}-biphenyl-4-carbonyl)-amino]-methyl\}-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester: A solution of (1-\{2-[(4-bromo-benzoylamino)-methyl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester (\(104 \mathrm{mg}, 0.24 \mathrm{mmol}\)), [2-methyl-1-(2-\{5-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-propyl]-carbamic acid methyl ester (\(117 \mathrm{mg}, 0.24 \mathrm{mmol}\)) and aq \(\mathrm{K}_{3} \mathrm{PO}_{4}\) (\(480 \mu \mathrm{l}\) of a 2 M solution, 0.96 mmol) in DME (3 mL) was degassed with \(\mathrm{N}_{2}\) gas for 20 minutes. To the degassed solution was added \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(13.9 \mathrm{mg}, 0.012 \mathrm{mmol}\)) then the reaction was heated to \(80^{\circ} \mathrm{C}\) overnight. After cooling to room temperature, the reaction was concentrated and purified by reverse phase preparative HPLC (\(15-60 \% \mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O} ; 0.1 \%\) formic acid modifier) to afford [1-(2-\{[(4'-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl \(\}\)-biphenyl-4-carbonyl)-amino]-methyl \(\}\)-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester (\(26 \mathrm{mg}, 0.036 \mathrm{mmol}, 15 \%\) yield). \({ }^{1} \mathrm{H}-\mathrm{NMR}: 400 \mathrm{MHz}\), (DMSO-d \(\mathrm{d}_{6}\)) \(: 11.8(\mathrm{~s}, 1 \mathrm{H}), 8.61(\mathrm{~m}, 1 \mathrm{H}), 7.94-7.73(\mathrm{~m}, 9 \mathrm{H}), 7.34(\mathrm{~d}, 1 \mathrm{H}), 7.29(\mathrm{~d}, 1 \mathrm{H}), 5.08\) \((\mathrm{m}, 1 \mathrm{H}), 4.23(\mathrm{t}, 1 \mathrm{H}), 4.30(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{t}, 1 \mathrm{H}), 4.01(\mathrm{t}, 1 \mathrm{H}), 4.07-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{~m}, 2 \mathrm{H})\), 3.73-3.70 (m, 1H), 3.61 (m, 1H), 3.63 (s, 3H), 3.61 (s, 3H), 2.16-1.81 (m, 10H), 0.90-0.84 (m, 12H). LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{39} \mathrm{H}_{52} \mathrm{~N}_{7} \mathrm{O}_{7}: 730.4\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(730.1\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{Example AD1}

[1-(2-\{5-[1-(4-\{2-[1-(2-Methoxycarbonylamino-3-methy)-butyryl)-pyrrolidin-
2-ylf-3H-imidazol-4-yl\}-phenyl)-2-oxo-1,2-dihydro-pyridin-4-ylf-1H-imidazol-
2-yl)-pyrrolidine-1-cabonyl)-2-methyl-propyl-carbamic acid methyl ester

1-(4-Ethoxycarbonyl-phenyl)-2-oxo-1,2-dihydro-pyridine-4-carboxylic acid: A mixture of 2-oxo-1,2-dihydro-pyridine-4-carboxylic acid methyl ester (2.00 g), 1.0M tetrabutylammonium hydroxide in \(\mathrm{H}_{2} \mathrm{O}(13 \mathrm{ml})\) and toluene (50 mL) was stirred for 2 hours at ambient temperature. Mixture was concentrated and co-evaporated with toluene (\(3 \times 100 \mathrm{~mL}\)) and dried under high vacuum. To the residue was added 4-Iodo-benzoic acid ethyl ester (2.40 g) and co-evaporated with toluene (\(2 \times 20 \mathrm{~mL}\)). Copper iodide (0.829 g) and DMF (10 mL) were added and reaction mixture heated at \(95^{\circ} \mathrm{C}\) for 18 hours, protected from light. To the cooled reaction mixture was added 3 N ammonium hydroxide and extracted with dichloromethane (4 x). Organic layer was dried (\(\mathrm{MgSO}_{4}\)), concentrated and purified by flash column chromatography (silica gel, 0 to \(5 \%\) methanol/dichloromethane \(+1 \%\) triethylamine) to give 1-(4-Ethoxycarbonyl-phenyl)-2-oxo-1,2-dihydro-pyridine-4-carboxylic acid (1.155 g) as the triethylammonium salt: LCMS-ESI \({ }^{-}\): calc'd for \(\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{NO}_{5}: 286.27\left(\mathrm{M}-\mathrm{H}^{+}\right)\); Found: \(286.1\left(\mathrm{M}-\mathrm{H}^{+}\right)\).

1-(4-Carboxy-phenyl)-2-ox0-1,2-dihydro-pyridine-4-carboxylic acid: To a solution of 1-(4-Ethoxycarbonyl-phenyl)-2-oxo-1,2-dihydro-pyridine-4-carboxylic acid (1.155 g) in THF (20 mL) at \(0^{\circ} \mathrm{C}\) was added 5 M sodium hydroxide \((1.19 \mathrm{~mL})\) and mixture stirred overnight at ambient temperature. Reaction mixture was acidified to pH 1 with concentrated HCl , producing a precipitate. The solid was collected by filtration, washed with \(\mathrm{H}_{2} \mathrm{O}\) and dried under high vacuum to give 1-(4-Carboxy-phenyl)-2-oxo-1,2-dihydro-pyridine-4-carboxylic acid (0.7196 g). LCMS-ESI : calc'd for \(\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{NO}_{5}\) : \(258.2\left(\mathrm{M}-\mathrm{H}^{+}\right)\); Found: \(258.1\left(\mathrm{M}-\mathrm{H}^{+}\right)\).

4-(2-Bromo-acetyl)-1-[4-(2-bromo-acetyl)-phenyl]-1H-pyridin-2-one: A mixture of 1-(4-Carboxy-phenyl)-2-oxo-1,2-dihydro-pyridine-4-carboxylic acid (0.696 g) and oxalyl chloride (2.34 mL) in dichloromethane (20 mL) containing DMF (4 drops) was stirred at ambient temperature for 4 hours, then concentrated and co-evaporated with toluene (\(3 x\)) and dried under high vacuum. The resulting residue was suspended in dichloromethane (10 mL) at \(0^{\circ} \mathrm{C}\) and treated with 2.0 M trimethylsilyldiazomethane in ether (4.0 mL) over 15 minutes to give a brown mixture. Reaction mixture was warmed to ambient temperature overnight and then concentrated. The resulting brown solid was suspended in ethyl acetate (10 mL) and cooled to \(0^{\circ} \mathrm{C}\). 5.7 M HBr in acetic acid was added over 5 minutes and reaction mixture was warmed to ambient temperature over 1 hour. Solid sodium bicarbonate (0.3 g) was added and stirred for 30 minutes. \(\mathrm{H}_{2} \mathrm{O}\) was added giving a biphasic mixture with a brown precipitate. The solid was removed by filtration and filtrate was extracted with dichloromethane (2 x), dried \(\left(\mathrm{MgSO}_{4}\right)\) and concentrated. The residue was purified by flash column chromatography (silica gel, 30 to \(80 \%\) ethyl acetate/hexanes) to give 4-(2-Bromo-acetyl)-1-[4-(2-bromo-acetyl)-phenyl]-1H-pyridin-2one (0.555 g). LCMS-ESI': calc'd for \(\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{NO}_{3}\) : \(414.06\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: 411.9, 413.9, \(415.8\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

2-[5-(1-\{4-[2-(1-Boc-pyrrolidin-2-yl)-3H-imidazol-4-yl]-phenyl\}-2-oxo-1,2-dihydro-pyridin-4-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester: A mixture of 4-(2-Bromo-acetyl)-1-[4-(2-bromo-acetyl)-phenyl]-1H-pyridin-2-one (0.555 g) Pyrrolidine-1,2dicarboxylic acid 1-tert-butyl ester (0.6 g) and diisopropylethylamine (0.48 mL) in acetonitrile \((10.8 \mathrm{~mL})\) was stirred for 2 hours at ambient temperature. Reaction mixture was diluted with ethyl acetate, washed with brine and back-extracted with ethyl acetate. The combined organic layer was washed with diluted brine \((2 x)\), dried \(\left(\mathrm{MgSO}_{4}\right)\) and concentrated to give a brown oil (1.034 g). LCMS-ESI': calc'd for \(\mathrm{C}_{35} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{O}_{11}: 680.73\left(\mathrm{M}-\mathrm{H}^{+}\right)\); Found: \(680.3\left(\mathrm{M}-\mathrm{H}^{+}\right)\).
Residue was dissolved in toluene (5.5 mL) and ammonium acetate (2.066 g) was added. The reaction mixture was stirred at \(100^{\circ} \mathrm{C}\) for 2 hours and then concentrated. The residue was
partitioned between dichloromethane and dilute sodium bicarbonate solution. The aqueous layer was extracted with dichloromethane containing methanol (3 x) and the combined organic layer was dried \(\left(\mathrm{MgSO}_{4}\right)\), concentrated and purified by flash column chromatography (silica gel, 0 to 15\% methanol/dichloromethane) to give 2-[5-(1-\{4-[2-(1-Boc-pyrrolidin-2-yl)-3H-imidazol-4-yl]-phenyl\}-2-oxo-1,2-dihydro-pyridin-4-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (0.098 g). LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{35} \mathrm{H}_{44} \mathrm{~N}_{7} \mathrm{O}_{5}: 642.76\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: 642.1 \(\left(\mathrm{M}+\mathrm{H}^{+}\right)\).
[1-(2-\{5-[1-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-phenyl)-2-oxo-1,2-dihydro-pyridin-4-yl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester: 2-[5-(1-\{4-[2-(1-Boc-pyrrolidin-2-yl)-3H-imidazol-4-yl]-phenyl \(\}\)-2-oxo-1,2-dihydro-pyridin-4-yl)-1H-imidazol-2-yl]-pyrrolidine1 -carboxylic acid tert-butyl ester (0.098 g) in dichloromethane (6.0 mL) was treated with 4 N HCl in dioxane (2.0 mL) for 90 minutes at ambient temperature. Reaction mixture was concentrated and dried overnight under vacuum. Residue was dissolved in DMF (2.0 mL) and to this solution was added 2-Methoxycarbonylamino-3-methyl-butyric acid (0.055 g), 4methylmorpholine (0.099 mL), followed by HATU (0.116 g). Reaction mixture was stirred for 90 minutes at ambient temperature and then concentrated. Residue was dissolved in dichloromethane and washed with dilute sodium bicarbonate solution. Aqueous layer backextracted with dichloromethane and combined organic layer dried \(\left(\mathrm{MgSO}_{4}\right)\), concentrated and purified by preparative reverse phase HPLC (Gemini, 5 to \(100 \%\) ACN/H2O + 0.1\% TFA). Product was lyophilized to give [1-(2-\{5-[1-(4-\{2-[1-(2-Methoxycarbonylamino-3-methy]-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-phenyl)-2-oxo-1,2-dihydro-pyridin-4-yl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester as the bisTFA salt (0.037 g): \({ }^{1} \mathrm{H}-\mathrm{NMR}: 300 \mathrm{MHz},\left(\mathrm{DMSO}^{2} \mathrm{~d}_{6}\right) \delta: 8.14(\mathrm{~s}, 2 \mathrm{H}), 7.88(\mathrm{~d}, \mathrm{~J}=8.4,2 \mathrm{H}), 7.79\) (d, J=7.2, 1H), 7.63 (d, J=8.4, 2H), 7.35-7.30 (m, 2H), \(6.88(\mathrm{~s}, \mathrm{H}), 6.74(\mathrm{~d}, \mathrm{~J}=8.4,1 \mathrm{H}), 5.13-5.10\) (m, 2H), 3.90-3.80 (m, 8H), \(3.53(\mathrm{~s}, 6 \mathrm{H}), 2.40-2.01(\mathrm{~m}, 10 \mathrm{H}), 0.83-0.75(\mathrm{~m}, 12 \mathrm{H}) ;\) LCMS-ESI \(^{+}\): calc'd for \(\mathrm{C}_{39} \mathrm{H}_{50} \mathrm{~N}_{9} \mathrm{O}_{7}: 756.86\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(756.3\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{Example AE1}

4-Bromo-1H-pyridin-2-one

2-Benzyloxy-4-bromo-pyridine
\(+\)

2-\{5-\{4-(4,4,5,5-Tetramethy)-
[1,3,2]dioxaborolan-2-yl)-phenyl)-1 1 -imidazol-2-y)?-pyrrolidine-1-carboxylic acid tert-butyl ester

2-\{5-44-(2-Benzyloxy-pyridin-4-yl)-phenylf-1H-imidazol-2-yl-pyrrolidine-1-carboxylic acid tertbutyl ester

2-[5-[4-(2-Oxo-1,2-dihydro-pyridin-4-yl)-phenyI]-1-(2-trimethylsilanylethoxymethyl)-1 H -imidazol-2y f -pyrrolidine-1-carboxylic acid tert-butyl ester

[1-(2-\{5-44-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyry)-pyrrolidin-2-yl]-3H-imidazol-4-yl)-phenyl)-2-oxo-2H-pyridin-1-yl)-1H-imidazol-2-yl)-pyrrolidine-1-carbonyl)-2-methyl-propyl-carbamic acid methyl ester

2-Benzyloxy-4-bromo-pyridine: A mixture of 4-Bromo-1H-pyridin-2-one (0.613 g), silver carbonate \((0.63 \mathrm{~g})\) and benzyl bromide \((0.50 \mathrm{~mL})\) in benzene \((10 \mathrm{~mL})\) was heated at \(50^{\circ} \mathrm{C}\) for 24 hours, protected from light. Reaction mixture stirred ambient temperature for 16 hours.

Reaction mixture was filtered through a pad of CELITE, which was washed ethyl acetate. The filtrate was concentrated and purified by flash column chromatography (silica gel, 0 to \(10 \%\) ethyl acetate/hexanes) to give 2-Benzyloxy-4-bromo-pyridine (0.6043 g): LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{BrNO}: 265.12\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(263.8,265.8\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

2-\{5-[4-(2-Benzyloxy-pyridin-4-yl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carboxylic acid tert-butyl ester: A mixture of 2-Benzyloxy-4-bromo-pyridine (0.292 g), 2-\{5-[4-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl \(\}\)-pyrrolidine-1-carboxylic acid tert-butyl ester (0.533 g , prepared according to WO 2008021927 A 2) and \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.064 \mathrm{~g})\) in aq. \(\mathrm{K}_{2} \mathrm{CO}_{3}\) solution/dimethoxyethane \((1.82 \mathrm{~mL} / 5.0 \mathrm{~mL})\) was heated at \(80-90^{\circ} \mathrm{C}\) for 8 hours.

Reaction mixture was cooled, diluted with ethyl acetate, washed with brine, dried (MgSO) and concentrated. The residue was purified by flash column chromatography (silica gel, 20 to \(80 \%\) ethyl acetate/hexanes) to give 2-\{5-[4-(2-Benzyloxy-pyridin-4-yl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carboxylic acid tert-butyl ester (0.530 g): LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{3}\) : \(497.6\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(497.0\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

2-[5-[4-(2-Oxo-1,2-dihydro-pyridin-4-yl)-phenyl]-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester: To a solution of 2-\{5-[4-(2-Benzyloxy-pyridin-4-yl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carboxylic acid tert-butyl ester \((0.530 \mathrm{~g})\) in DMF \((5.0 \mathrm{~mL})\) at \(0^{\circ} \mathrm{C}\) was added \(60 \%\) sodium hydride \((0.047 \mathrm{~g})\). After stirring for 5 minutes, 2-(trimethylisilyl)ethoxylmethyl chloride was added and reaction mixture stirred for 2 hours. Saturated ammonium chloride was added and mixture was extracted with ethyl acetate (2 x). Organic layer was washed with \(5 \%\) lithium chloride solution (2 x), brine and dried \(\left(\mathrm{MgSO}_{4}\right)\). Concentrated and purified by flash column chromatography (silica gel, 20 to \(80 \%\) ethyl acetate/hexanes) to give 2-[5-[4-(2-Benzyloxy-pyridin-4-yl)-phenyl]-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (0.495 g).
LCMS-ESI': calc'd for \(\mathrm{C}_{36} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Si}\) : \(627.87\left(\mathrm{M}^{+}+\mathrm{H}^{+}\right)\); Found: \(627.1\left(\mathrm{M}+\mathrm{H}^{+}\right)\). A mixture of 2-[5-[4-(2-Benzyloxy-pyridin-4-yl)-phenyl]-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (0.495 g) and \(10 \% \mathrm{Pd} / \mathrm{C}(0.023 \mathrm{~g})\) in ethanol \((5.5 \mathrm{~mL})\) was stirred under hydrogen atmosphere for 1 hour. Reaction mixture was filtered through a pad of Celite, which was washed with methanol. The filtrate was concentrated and purifed by flash column chromatography (silica gel, 0 to \(10 \%\) methanol/ethyl acetate) to give 2-[5-[4-(2-Oxo-1,2-dihydro-pyridin-4-yl)-phenyl]-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (0.3027 g): LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{29} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Si}: 537.47\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(537.0\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{2-[4-(4-\{4-[2-(1-tert-butylcarbamyl-pyrrolidin-2-yl)-3-(2-trimethylsilanyl-ethoxymethyl)-} 3H-imidazol-4-yl]-phenyl\}-2-oxo-2H-pyridin-1-yl)-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester: To a solution of 2-[5-[4-(2-Oxo-1,2-dihydro-pyridin-4-yl)-phenyl]-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (0.3027 g) in ethanol (5.0 mL) was added tetrabutylammonium hydroxide (0.375 mL of 1.5 M solution) and reaction mixture stirred for 1 hour., then concentrated to give a colorless oil. Residue was lyophilized from acetonitrile to give a yellow residue. To this residue was added 2-[4-Bromo-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (0.301 g ,
prepared by reacting 2-(4-Bromo-1H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (prepared according to WO2008021927 A2) with 2-(trimethylsilyl)ethoxylmethyl chloride using sodium hydride in DMF) and mixture co-evaporated with toluene (15 mL). DMF (1.0 \(\mathrm{mL})\) and copper (I) iodide (0.035 g) were added and the reaction mixture was stirred at \(95^{\circ} \mathrm{C}\) for 24 hour, protected from light. To the reaction mixture was added tetrabutylammonium iodide (50 mg) and reaction continued for 2 days. Added more 2-[4-Bromo-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (0.35 g) and copper(I) iodide (0.050 g) and reaction continued for 24 hours. Reaction mixture was cooled and diluted with ethyl acetate and washed with 3 N ammonium hydroxide. The aqueous layer was back-extracted with ethyl acetate (2 x). The combined organic layer was washed with 3 N ammonium hydroxide, \(\mathrm{H}_{2} \mathrm{O}\), brine and dried \(\left(\mathrm{MgSO}_{4}\right)\) then concentrated and purified by flash column chromatography (silica gel, 0 to \(10 \%\) isopropanol/hexane) to give impure product that was repurified by preparative reverse phase HPLC (Gemini, 25 to \(100 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}+0.1 \%\) TFA). Product was lyophilized to give 2-[4-(4-\{4-[2-(1-tert-butylcarbamyl-pyrrolidin-2-yl)-3-(2-trimethylsilanyl-ethoxymethyl)-3H-imidazol-4-yl]-phenyl\}-2-oxo-2H-pyridin-1-yl)-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (0.042 g): LCMS-ESI': calc'd for \(\mathrm{C}_{47} \mathrm{H}_{72} \mathrm{~N}_{7} \mathrm{O}_{7} \mathrm{Si}_{2}: 903.28\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(902.2,903.2\) \(\left(\mathrm{M}+\mathrm{H}^{+}\right)\).
[1-(2-\{5-[4-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-phenyl)-2-ox0-2H-pyridin-1-yl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-2-methyl-propyl)-carbamic acid methyl ester: 2-[4-(4-\{4-[2-(1-tert-butylcarbamyl-pyrrolidin-2-yl)-3-(2-trimethylsilanyl-ethoxymethyl)-3H-imidazol-4-yl]-phenyl\}-2-oxo-2H-pyridin-1-yl)-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (0.042 g) in dichloromethane (1.0 mL) was treated with trifluoroacetic acid (0.3 mL) for 7 hours at ambient temperature. Reaction mixture was concentrated and dried for 1 hour under vacuum. Residue was dissolved in DMF (0.7 mL) and to this solution was added 2-Methoxycarbonylamino-3-methyl-butyric acid (0.013 g), 4-methylmorpholine (0.024 mL), followed by HATU (0.028 g). Reaction mixture was stirred for 45 minutes at ambient temperature and then more 4-methylmorpholine (0.024 mL) was added. Reaction continued for 30 minutes, diluted with ethyl acetate and washed with dilute sodium bicarbonate solution, brine and dried \(\left(\mathrm{MgSO}_{4}\right)\), concentrated and purified by preparative reverse phase HPLC (Gemini, 5 to \(\left.100 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}+0.1 \% \mathrm{TFA}\right)\). Product was lyophilized to give [1-(2-\{5-[4-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-phenyl)-2-oxo-2H-pyridin-1-yl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid
methyl ester as the bis-TFA salt (0.077 mg): \({ }^{1} \mathrm{H}-\mathrm{NMR}: ~ 300 \mathrm{MHz},\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta: 8.48(\mathrm{~d}, \mathrm{~J}=7.2\), \(1 \mathrm{H}), 7.96-7.80(\mathrm{~m}, 6 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 6.92-6.85(\mathrm{~m}, 2 \mathrm{H}), 5.29-5.17(\mathrm{~m}, 2 \mathrm{H}), 4.26-3.88(\mathrm{~m}, 8 \mathrm{H})\), \(3.66(\mathrm{~s}, 6 \mathrm{H}), 2.60-2.01(\mathrm{~m}, 12 \mathrm{H}), 0.83-0.75(\mathrm{~m}, 12 \mathrm{H})\); LCMS-ESI': calc'd for \(\mathrm{C}_{39} \mathrm{H}_{50} \mathrm{~N}_{9} \mathrm{O}_{7}\) : \(756.86\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(756.3\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{Example AF1}

2-(4-Bromo-benzylcarbamoyl)-pyrrolidine-1-carboxylic acid tert-butyl ester: To a mixture of 4-Bromo-benzylamine (2.00 g), Boc-L-proline (2.01 g), and 4-methylmorpholine (3.26 mL) in DMF (40 mL) was added HATU (3.48 g). Reaction mixture was stirred for 45 minutes, then concentrated, diluted with dichloromethane and washed with 10:1 \(\mathrm{H}_{2} \mathrm{O}\) /saturated sodium bicarbonate solution. The aqueous layer was back-extracted with dichloromethane and the combined organic layers were dried \(\left(\mathrm{MgSO}_{4}\right)\), concentrated and purified by flash column chromatography (silica gel, 50 to \(100 \%\) ethyl acetate/hexanes) to give 2-(4-Bromo-benzylcarbamoyl)-pyrrolidine-1-carboxylic acid tert-butyl ester (3.38 g): LCMS-ESI': calc'd for \(\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{BrN}_{2} \mathrm{NaO}_{3}: 405.29\left(\mathrm{M}+\mathrm{Na}^{+}\right)\); Found: \(405.0\left(\mathrm{M}+\mathrm{Na}^{+}\right)\).

2-(\{4'-[2-(1-tert-butylcarbamyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-biphenyl-4-yl methyl\}-carbamoyl)-pyrrolidine-1-carboxylic acid tert-butyl ester: A mixture of 2-(4-Bromo-benzylcarbamoyl)-pyrrolidine-1-carboxylic acid tert-butyl ester (0.257 g), 2-\{5-[4-(4,4,5,5-

Tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carboxylic acid tert-butyl ester (0.309 g , prepared according to WO 2008021927 A 2), \(\mathrm{NaHCO}_{3}(0.186 \mathrm{~g})\) and \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.064 \mathrm{~g})\) in \(\mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{~mL}) /\) dimethoxyethane \((6.0 \mathrm{~mL})\) was heated at \(80^{\circ} \mathrm{C}\) for 16 hours. Reaction mixture was cooled and concentrated. Residue was dissolved in dichloromethane, washed with \(\mathrm{H}_{2} \mathrm{O}\). Aqueous layer was back-extracted with dichloromethane and combined organic layer was dried \(\left(\mathrm{MgSO}_{4}\right)\), concentrated and purified by flash column chromatography (silica gel, 50 to \(100 \%\) ethyl acetate/hexanes) to give 2-(\{4'-[2-(1-tert-butylcarbamyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-biphenyl-4-yl methyl\}-carbamoyl)-pyrrolidine-1-carboxylic acid tert-butyl ester (0.280 g): LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{35} \mathrm{H}_{46} \mathrm{~N}_{5} \mathrm{O}_{5}\) : \(616.76\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(616.1\left(\mathrm{M}+\mathrm{H}^{+}\right)\).
[1-(2-\{5-[4'-(\{[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidine-2-carbonyl]-amino\}-methyl)-biphenyl-4-ylj-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester: 2-(\{4'-[2-(1-tert-butylcarbamyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-biphenyl-4-ylmethyl\}-carbamoyl)-pyrrolidine-1-carboxylic acid tert-butyl ester \((0.280 \mathrm{~g})\) in dichloromethane (5.0 mL) was treated with 4 N HCl in dioxane \((3.0 \mathrm{~mL})\) for 2 hours at ambient temperature. Reaction mixture was concentrated and dried overnight under vacuum to give a yellow powder (0.2548 g). Yellow powder \((0.129 \mathrm{~g})\) was dissolved in DMF (2.0 mL) and to this solution was added 2-Methoxycarbonylamino-3-methyl-butyric acid (0.090 g), 4methylmorpholine (0.136 mL), followed by HATU (0.192 g). Reaction mixture was stirred for 90 minutes at ambient temperature and then concentrated. Residue was dissolved in dichloromethane and washed with dilute sodium bicarbonate solution. The aqueous layer was back-extracted with dichloromethane and the combined organic layers were dried \(\left(\mathrm{MgSO}_{4}\right)\), concentrated and purified by preparative reverse phase HPLC (Gemini, 5 to \(100 \%\) ACN/ \(\mathrm{H}_{2} \mathrm{O}+\) \(0.1 \% \mathrm{TFA})\). Product was lyophilized to give [1-(2-\{5-[4'-(\{[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidine-2-carbonyl]-amino\}-methyl)-biphenyl-4-yl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester as the bis-TFA salt (0.089 mg).
\({ }^{1} \mathrm{H}-\mathrm{NMR}: 300 \mathrm{MHz},\left(\mathrm{DMSO}_{\mathrm{d}}\right) \mathbf{\delta}: 8.40-8.37(\mathrm{~m}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, \mathrm{~J}=8.4,2 \mathrm{H}), 7.72\) (d, J=8.1, 2H), 7.63 (d, J=8.4, 2H), 7.37-7.29 (m, 3H), 4.90-4.87 (m, 1H), 4.35-4.28 (m, 3H), 4.03-3.95 (m, 4H), 3.90-3.80 (m, 3H), \(3.53(\mathrm{~s}, 6 \mathrm{H}), 2.30-1.80(\mathrm{~m}, 10 \mathrm{H}), 0.90(\mathrm{~d}, \mathrm{~J}=6.9,3 \mathrm{H})\), \(0.86(\mathrm{~d}, \mathrm{~J}=6.3,3 \mathrm{H}), 0.78(\mathrm{~d}, \mathrm{~J}=6.6,3 \mathrm{H}), 0.68(\mathrm{~d}, \mathrm{~J}=6.9,3 \mathrm{H})\).
LCMS-ESI: calc'd for \(\mathrm{C}_{39} \mathrm{H}_{50} \mathrm{~N}_{7} \mathrm{O}_{7}: 728.86\left(\mathrm{M}-\mathrm{H}^{+}\right)\); Found: \(728.2\left(\mathrm{M}-\mathrm{H}^{+}\right)\).

\section*{Example AG1}

6-Bromo-isoquinolin-1ylamine

2-(6-Bromo-isoquinolin-1-ylcarbamoyl)-pyrrolidine-1carboxylic acid tert-butyl ester

2-\{5-[4-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl)1 H -imidazo-2-yl)-pyrrolidine-1carboxylic acid tert-butyl ester

[1-(2-\{5-[4-(1-\{11-(2-Methoxycarbonylamino-3-methyt butyryl)-pymolidine-2-carbonyl)-aminof-isoquinolin-6-yli)-phenyl)-1/-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-2-methyl-propyl-carbamic acid methyl ester

2-(6-Bromo-isoquinolin-1-yl carbamoyl)-pyrrolidine-1-carboxylic acid tert-butyl ester: To a mixture of 6-Bromo-isoquinolin-1-ylamine (0.80 g), Boc-L-proline (0.803 g), and 4methylmorpholine (0.83 mL) in DMF (10 mL) was added HATU (1.39 g). Reaction mixture was stirred for 6 hours. Additional Boc-L-proline (0.803 g), 4-methylmorpholine (0.83 mL) and HATU (1.39 g) were added and reaction stirred overnight at ambient temperature and then concentrated. The residue was dissolved in ethyl acetate and washed with \(10: 1 \mathrm{H}_{2} \mathrm{O}\) /saturated sodium bicarbonate solution, \(5 \%\) lithium chloride solution, brine and dried \(\left(\mathrm{MgSO}_{4}\right)\), concentrated and purified by flash column chromatography (silica gel, 20 to \(70 \%\) ethyl acetate/hexanes) to give 2-(6-Bromo-isoquinolin-1-yl carbamoyl)-pyrrolidine-1-carboxylic acid tert-butyl ester (1.74 g): LCMS-ESI': calc'd for \(\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{BrN}_{3} \mathrm{O}_{3}: 421.31\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: 419.8, \(421.8\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

2-(6-\{4-[2-(1-tert-butylcarbamyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-phenyl\}-isoquinolin-1yl carbamoyl)-pyrrolidine-1-carboxylic acid tert-butyl ester: A mixture 2-(6-Bromo-isoquinolin-1-yl carbamoyl)-pyrrolidine-1-carboxylic acid tert-butyl ester (0.426 g), 2-\{5-[4-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-
carboxylic acid tert-butyl ester (0.405 g , prepared according to WO2008021927 A2), and \(\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.053 \mathrm{~g})\) in \(2 \mathrm{M} \mathrm{aq} . \mathrm{K}_{2} \mathrm{CO}_{3}(1.4 \mathrm{~mL}) /\) dimethoxyethane \((3.0 \mathrm{~mL})\) was heated at \(90^{\circ} \mathrm{C}\) for 16 hours. Reaction mixture was cooled and diluted with ethyl acetate, washed with brine, dried \(\left(\mathrm{MgSO}_{4}\right)\), concentrated and purified by flash column chromatography (silica gel, 50 to 100\% ethyl acetate/hexanes) to give 2-(6-\{4-[2-(1-tert-butylcarbamyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-phenyl\}-isoquinolin-1-ylcarbamoyl)-pyrrolidine-1-carboxylic acid tert-butyl ester (0.272 g): LCMS-ESI': calc'd for \(\mathrm{C}_{37} \mathrm{H}_{45} \mathrm{~N}_{6} \mathrm{O}_{5}: 653.78\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(653.1\left(\mathrm{M}+\mathrm{H}^{+}\right)\).
[1-(2-\{5-[4-(1-\{[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidine-2-carbonyl]-amino\}-isoquinolin-6-yl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester: 2-(6-\{4-[2-(1-tert-butylcarbamyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-phenyl\}-isoquinolin-1-yl carbamoyl)-pyrrolidine-1-carboxylic acid tert-butyl ester (0.272 g) in dichloromethane (5.0 mL) was treated with 4 N HCl in dioxane (5.0 mL) for 2 hours at ambient temperature. Reaction mixture was concentrated and suspended in ethyl ether. The solid was collected by filtration, washed with ethyl ether and dried overnight under vacuum to give a yellow powder (0.2279 g). Yellow powder (0.1005 g) was dissolved in DMF (1.5 mL) and to this solution was added 2-Methoxycarbonylamino-3-methyl-butyric acid (0.061 g), 4methylmorpholine (0.092 mL), followed by HATU (0.130 g). Reaction mixture was stirred for 1 hour at ambient temperature and then diluted with ethyl acetate and washed with dilute sodium bicarbonate solution, brine and dried \(\left(\mathrm{MgSO}_{4}\right)\). Organic layer was concentrated and purified by preparative reverse phase HPLC (Gemini, 5 to \(100 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}+0.1 \%\) TFA). Product was lyophilized to give [1-(2-\{5-[4-(1-\{[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidine-2-carbonyl]-amino \}-isoquinolin-6-yl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester as the bis-TFA salt (0.093 mg).
\({ }^{1} \mathrm{H}-\mathrm{NMR}: 300 \mathrm{MHz},\left(\mathrm{DMSO}-\mathrm{d}_{6}\right) 8: 8.36(\mathrm{~s}, 1 \mathrm{H}), 8.30-8.15(\mathrm{~m}, 2 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}), 8.05-7.95(\mathrm{~m}\), 3 H), \(7.88(\mathrm{~d}, \mathrm{~J}=8.7,2 \mathrm{H}), 7.70(\mathrm{~d}, \mathrm{~J}=8.4,1 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=8.7,1 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=8.7,1 \mathrm{H}), 5.10-5.05\) \((\mathrm{m}, 1 \mathrm{H}), 4.70-4.65(\mathrm{~m}, 1 \mathrm{H}), 4.10-3.908(\mathrm{~m}, 3 \mathrm{H}), 4.03-3.95(\mathrm{~m}, 4 \mathrm{H}), 3.90-3.80(\mathrm{~m}, 3 \mathrm{H}), 3.49(\mathrm{~s}\), 6 H), 2.39-1.80 (\(\mathrm{m}, 10 \mathrm{H}\)), 0.90-0.70 (m, 12H): LCMS-ESI: calc'd for \(\mathrm{C}_{41} \mathrm{H}_{51} \mathrm{~N}_{8} \mathrm{O}_{7}: 767.89\) \(\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(767.2\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{Example AH1}

2-(5-\{7-[2-(1-tertbutyl-carbamyl-pyrrolidin-2-yl)\(3 H\)-imidazol-4-y \()^{-5,5-d i o x o-5 H-5 \lambda^{6}}\) -
dibenzothiophen-3-ylf-1 \(H\)-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester

2-Methoxycarbonylamino-3-methyl-butyric acid

(1-\{2-15-(7-\{2-[1-(2-Methoxycabonylamino-3-methyl-
butyryl)-pyrrolidin-2-y[]-3H-imidazol-4-y \(\mid\) - 5,5 -dioxo- \(5 \mathrm{H}-5 \lambda^{6}\) -dibenzothiophen-3-yl)-1 -imidazol-2-yll-pyrrolidine-1-carbonylf-2-methyl-propyl)-carbamic acid methyl ester

\section*{2-Bromo-1-[7-(2-bromo-acetyl)-5,5-dioxo-5H-5 \(\lambda^{6}\)-dibenzothiophen-3-yl]-ethanone: A} mixture of 5,5-Dioxo-5H-5 \(\lambda^{6}\)-dibenzothiophene-3,7-dicarboxylic acid (10.85 g , prepared according to OL' Khouk et. Al. Russian J. Org. Chem. 2006, 42(8) 1164-1168) and oxalyl chloride (31.11 mL) in dichloromethane (250 mL) containing DMF (0.2 mL) was stirred at ambient temperature for 6 hours. A small amount of solid material was removed by filtration and the filtrate was concentrated to give a brown solid.
This brown solid was suspended in dichloromethane and cooled to \(0^{\circ} \mathrm{C}\). To this mixture was added 2.0 M (trimethylsilyl)diazomethane in hexane (52.5 mL) and warmed to ambient temperature over 16 hours. Reaction mixture was concentrated providing a brown residue. The resulting brown residue was suspended in ethyl acetate (200 mL) and cooled to \(0^{\circ} \mathrm{C} .5 .7 \mathrm{M}\) Hydrobromic acid in acetic acid (15.3 mL) was added slowly and stirred for 1 hour at \(0^{\circ} \mathrm{C}\), then 1 hour at ambient temperature. The reaction mixture was quenched with solid sodium
bicarbonate and stirred for 30 minutes Saturated sodium bicarbonate solution was added, giving a brown precipitate. The solid was collected, washed with \(\mathrm{H}_{2} \mathrm{O}\), ethyl acetate and dried under vacuum to give 2-Bromo-1-[7-(2-bromo-acetyl)-5,5-dioxo-5H-5 \({ }^{6}\)-dibenzothiophen-3-yl]ethanone as a brown solid (25 g): LCMS-ESI: calc'd for \(\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{Br}_{2} \mathrm{O}_{4} \mathrm{~S}: 459.12\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: no product mass observed.

\section*{2-(5-\{7-[2-(1-tertbutyl-carbamyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-5,5-dioxo-5H-5 \({ }^{6}\) -} dibenzothiophen-3-yl)-1H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester: A mixture of 2-Bromo-1-[7-(2-bromo-acetyl)-5,5-dioxo-5H-5 \({ }^{6}\)-dibenzothiophen-3-yl]-ethanone \((25 \mathrm{~g})\), Boc-L-proline (15.82 g) and diisopropylethylamine (12.6 mL) in acetonitrile (300 mL) was stirred for 3 hours at ambient temperature. Reaction mixture was concentrated and residue dissolved in ethyl acetate, washed with brine and back-extracted with ethyl acetate (3x). The combined organic layer was washed with brine, dried \(\left(\mathrm{MgSO}_{4}\right)\) and purified by flash column chromatography (silica gel, 20 to \(800 \%\) ethyl acetate/hexanes) to give yellow foam (10 g). LCMS-ESI: calc'd for \(\mathrm{C}_{36} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{~S}\) : \(725.79\left(\mathrm{M}-\mathrm{H}^{+}\right)\); Found: \(725.1\left(\mathrm{M}-\mathrm{H}^{+}\right)\). A mixture of the yellow foam (7 g) and ammonium acetate (3.72 g) in xylenes (20 mL) was stirred at \(120^{\circ} \mathrm{C}\) for 3.5 hours and then cooled. Diluted with ethyl acetate and washed with dilute sodium bicarbonate solution. The aqueous layer was extracted with ethyl acetate (3 x), then dichloromethane containing methanol (3 x). The combined organic layer was dried \(\left(\mathrm{MgSO}_{4}\right)\), concentrated and purified by flash column chromatography (silica gel, 0 to \(5 \%\) methanol/ethyl acetate) to give 2-(5-\{7-[2-(1-tert-butyl-carbamyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-5,5-dioxo\(5 \mathrm{H}-5 \lambda^{6}\)-dibenzothiophen-3-yl\}-1H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (4.56 g): LCMS-ESI': calc'd for \(\mathrm{C}_{36} \mathrm{H}_{43} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{~S}: 687.82\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(687.0\left(\mathrm{M}+\mathrm{H}^{+}\right)\).
(1-\{2-[5-(7-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-5,5-dioxo-5H-5 \({ }^{6}\)-dibenzothiophen-3-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester: 2-(5-\{7-[2-(1-tertbutyl-carbamyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-5,5-dioxo-5H-5 \({ }^{6}\)-dibenzothiophen-3-yl \(\}\)-1 H -imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (4.56 g) in dichloromethane (50 mL) was treated with 4 N HCl in dioxane (50 mL) for 3 hours at ambient temperature. Reaction mixture was concentrated, triturated with ethyl ether and the orange solid dried overnight under vacuum. A portion of this orange solid \((0.15 \mathrm{~g})\) was dissolved in DMF \((2.5 \mathrm{~mL})\) and to this solution was added 2-Methoxycarbonylamino-3-methyl-butyric acid (0.187 g), 4-methylmorpholine (0.13 mL), followed by HATU (0.184 g). Reaction mixture was stirred for 1 hour at ambient temperature and then diluted with ethyl acetate, washed with dilute sodium bicarbonate solution,
\(5 \%\) lithium chloride solution, brine dried \(\left(\mathrm{MgSO}_{4}\right)\). Concentration and purification by preparative reverse phase HPLC (Gemini, 5 to \(100 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}+0.1 \%\) TFA) and lyophilization gave (1-\{2-[5-(7-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin2 -yl]-3H-imidazol-4-yl\}-5,5-dioxo-5H-5 \({ }^{6}\)-dibenzothiophen-3-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester as the bis-TFA salt (0.150 mg) \({ }^{1} \mathrm{H}-\mathrm{NMR}: 300 \mathrm{MHz}\), \(\left(\mathrm{DMSO}^{2} \mathrm{~d}_{6}\right)\) 8: \(8.40-8.14\) (m, 8 H), 7.33 (d, J=8.1, 2H), 5.13-5.10 (m, \(2 \mathrm{H}), 4.13-4.07(\mathrm{~m}, 2 \mathrm{H}), 3.90-3.80(\mathrm{~m}, 4 \mathrm{H}), 3.53(\mathrm{~s}, 6 \mathrm{H}), 2.34-1.98(\mathrm{~m}, 10 \mathrm{H}), 0.85(\mathrm{~d}, \mathrm{~J}=6.6\), \(6 \mathrm{H}), 0.81(\mathrm{~d}, \mathrm{~J}=6.6,6 \mathrm{H})\).
LCMS-ESI': calc'd for \(\mathrm{C}_{40} \mathrm{H}_{49} \mathrm{~N}_{8} \mathrm{O}_{8} \mathrm{~S}: 801.92\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(801.2\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{Example AI1}

2-5-(5-44-12-(1-tert-butylcarbamyl-pyrrolidin- 2 -yl)-3 \(\mathrm{H}-\) imidazol-4-yl)-phenyl)-hiophen-2-yl)-1H-imidazol-2-yl-pyrrolidine-1-caboxylic acid tert-butyl ester

2-Methoxycarbonylamino-3-methy-butyric acid

[1-(2-\{5-[4-(5-\{2-[1-(2-Methoxycarbonylamino-3-methyt-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl)-thiophen-2-yll-phenyl)-1H-imidazol-2-yl)-pyrrolidine-1-carbonyl)-2-methyl-propyif-carbamic acid methyl ester

2-\{5-[4-(5-Bromo-thiophen-2-yl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carboxylic acid tert-butyl ester: A mixture of 2,5-Dibromo-thiophene (4.93 g), 2-\{5-[4-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carboxylic acid tert-butyl ester (0.896 g , prepared according to WO 2008021927 A 2), and \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.118 \mathrm{~g})\) in 2 M \(\mathrm{K}_{2} \mathrm{CO}_{3}(3.06 \mathrm{~mL}) /\) dimethoxyethane \((6.12 \mathrm{~mL})\) was heated at \(90^{\circ} \mathrm{C}\) for 8 hours. Reaction mixture was cooled, diluted with ethyl acetate and washed with brine, dried \(\left(\mathrm{MgSO}_{4}\right)\), concentrated and purified by flash column chromatography (silica gel, 0 to \(100 \%\) ethyl acetate/hexanes) to give 2-\{5-[4-(5-Bromo-thiophen-2-yl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carboxylic acid tertbutyl ester (0.955 g): LCMS-ESI': calc'd for \(\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{BrN}_{3} \mathrm{O}_{2} \mathrm{~S}: 475.42\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: 473.8, \(475.9\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

2-(5-\{4-[5-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-thiophen-2-yl]-phenyl\}-1H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester: A mixture of 2-\{5-[4-(5-Bromo-thiophen-2-yl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carboxylic acid tert-butyl ester \((0.4807 \mathrm{~g})\), bis(pinacolato)diboron (0.54 g), \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.058)\) and potassium acetate \((0.257 \mathrm{~g})\) in 1,4 -dioxane was heated at \(90^{\circ} \mathrm{C}\) for 16 hours. Reaction mixture was cooled to ambient temperatures and diluted with ethyl acetate. Organic layer was washed with brine, dried \(\left(\mathrm{MgSO}_{4}\right)\), concentrated and purified by flash column chromatography (silica gel, 20 to \(80 \%\) ethyl acetate/hexanes) to give 2-(5-\{4-[5-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-thiophen-2-yl]-phenyl \}-1H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (0.3752 g) as a brown foam: LCMS-ESI': calc'd for \(\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{BN}_{3} \mathrm{O}_{4} \mathrm{~S}: 522.48\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: 521.9 \(\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

2-[5-(5-\{4-[2-(1-tert-butylcarbamyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-phenyl\}-thiophen-2-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester: A mixture of 2-(5-\{4-[5-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-thiophen-2-yl]-phenyl\}-1H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (0.1050 g), 2-(4-Bromo-1 H -imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (0.070 g , prepared according to WO2008021927 \(\mathrm{A} 2)\) and \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.012 \mathrm{~g})\) in 2.0 M sodium bicarbonate solution \((0.33 \mathrm{~mL})\) and dimethoxyethane (0.66 mL) was stirred under microwave irradiation at \(120^{\circ} \mathrm{C}\) for 20 minutes. Reaction mixture was diluted with ethyl acetate, washed with brine, dried \(\left(\mathrm{MgSO}_{4}\right)\), concentrated and purified by flash column chromatography (silica gel, 50 to \(100 \%\) ethyl acetate/hexanes) to give 2-[5-(5-\{4-[2-(1-tert-butylcarbamyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-phenyl\}-thiophen-2-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (0.069
g) as a brown foam: LCMS-ESI': calc'd for \(\mathrm{C}_{34} \mathrm{H}_{43} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S}: 631.80\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: 631.0 \(\left(\mathrm{M}+\mathrm{H}^{+}\right)\).
[1-(2-\{5-[4-(5-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-thiophen-2-yl)-phenyll-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester: 2-[5-(5-\{4-[2-(1-tert-butylcarbamyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-phenyl\}-thiophen-2-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tertbutyl ester \((0.069 \mathrm{~g})\) in dichloromethane \((3.0 \mathrm{~mL})\) was treated with 4 N HCl in dioxane (3.0 mL) for 30 minutes at ambient temperature. Reaction mixture was concentrated and dried ovemight under vacuum to give a reddish-brown solid (0.084 g). Residue was dissolved in DMF (1.0 mL) and to this solution was added 2-Methoxycarbonylamino-3-methyl-butyric acid (0.053 g), 4methylmorpholine (0.083 mL), followed by HATU (0.113 g). Reaction mixture was stirred for 1 hour at ambient temperature then diluted with ethyl acetate, washed with dilute sodium bicarbonate solution, \(5 \%\) lithium chloride solution, brine, then dried \(\left(\mathrm{MgSO}_{4}\right)\). Concentration and purification by preparative reverse phase HPLC (Gemini, 5 to \(100 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}+0.1 \%\) TFA) and lyophilization gave [1-(2-\{5-[4-(5-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-thiophen-2-yl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester as the bis-TFA salt (0.040 mg).
 \((\mathrm{m}, 1 \mathrm{H}), 7.402-7.30(\mathrm{~m}, 21 \mathrm{H}), 5.20-5.00(\mathrm{~m}, 2 \mathrm{H}), 4.10(\mathrm{q}, \mathrm{J}=6.9,3 \mathrm{H}), 3.90-3.80(\mathrm{~m}, 3 \mathrm{H}), 3.53\) (\(\mathrm{s}, 6 \mathrm{H}\)), 2.40-1.90 (m, 10H), 0.90-0.76 (m, 12H): LCMS-ESI: calc'd for \(\mathrm{C}_{38} \mathrm{H}_{49} \mathrm{~N}_{8} \mathrm{O}_{6} \mathrm{~S}: 745.90\) \(\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(745.2\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{Example AJ1}

[1,3,2]dioxaborolan-2-yl)-phenyl(-1H-imidazol-2-
y|-pyrrolidine-1-carboxylic acid tert-butyl ester

2-Methoxycarbonylamino-3-methyl-butyric acid
[1-(2-\{5-[4'-(3H-Imidazol-4-yl)-biphenyl-4-y|]-1H-imidazol-2-yl\} pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester

\section*{5-(4-Bromo-phenyl)-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazole and 4-(4-Bromo-} phenyl)-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazole: To a solution of 5-(4-Bromo-phenyl)-1 H -imidazole (0.997 g) in DMF \((15.0 \mathrm{~mL})\) at \(0^{\circ} \mathrm{C}\) was added \(60 \%\) sodium hydride (0.197 g). After stirring for 5 minutes, 2-(trimethylsilyl)ethoxylmethyl chloride (1.18 mL) was added and reaction mixture stirred for 2 hours. Reaction mixture was concentrated, dissolved in ethyl acetate. Organic layer was washed with \(5 \%\) lithium chloride solution (\(2 x\)), brine and dried \(\left(\mathrm{MgSO}_{4}\right)\). Concentrated and purified by flash column chromatography (silica gel, ethyl acetate/hexanes) to give a \(1: 1\) mixture of 5-(4-Bromo-phenyl)-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazole and 4-(4-Bromo-phenyl)-1-(2-trimethylsilanyl-ethoxymethyl)-1Himidazole (0.89 g): LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{OSi}: 354.33\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: no product mass observed.

\section*{2-(5-\{4'-[3-(2-Trimethylsilanyl-ethoxymethyl)-3H-imidazol-4-yl]-biphenyl-4-yl\}-1H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester and 2-(5-\{4'-[1-(2-Trimethylsilanyl-ethoxymethyl)-1H-imidazol-4-yl]-biphenyl-4-yl\}-1H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester: A mixture of 1:1 mixture of 5-(4-Bromo-phenyl)-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazole and 4-(4-Bromo-phenyl)-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazole (0.145 g), 2-\{5-[4-(4,4,5,5-Tetramethyl-} [1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carboxylic acid tert-butyl ester \(\left(0.150 \mathrm{~g}\right.\), prepared according to WO2008021927 A2) and \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.020 \mathrm{~g})\) in aq. \(\mathrm{K}_{2} \mathrm{CO}_{3}\) solution \((0.51 \mathrm{~mL}) /\) dimethoxyethane \((1.5 \mathrm{~mL})\) was heated at \(80^{\circ} \mathrm{C}\) for 18 hours. Reaction mixture was cooled, diluted with ethyl acetate, washed with brine, dried \(\left(\mathrm{MgSO}_{4}\right)\) and concentrated. The residue was purified by flash column chromatography (silica gel, 50 to \(100 \%\) ethyl acetate/hexanes) to give a \(1: 1\) mixture 2-(5-\{4'-[3-(2-Trimethylsilanyl-ethoxymethyl)-3H-imidazol-4-yl]-biphenyl-4-yl\}-1 H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester and 2-(5-\{4'-[1-(2-Trimethylsilanyl-ethoxymethyl)-1H-imidazol-4-yl]-biphenyl-4-yl\}-1H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (0.0998 g): LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{Si}: 586.82\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(586.0\left(\mathrm{M}+\mathrm{H}^{+}\right)\).
[1-(2-\{5-[4'-(3H-Imidazol-4-yl)-biphenyl-4-yl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester: A 1:1 mixture 2-(5-\{4'-[3-(2-Trimethylsilanyl-ethoxymethyl)-3H-imidazol-4-yl]-biphenyl-4-yl\}-1H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester and 2-(5-\{4'-[1-(2-Trimethylsilanyl-ethoxymethyl)-1H-imidazol-4-yl]-biphenyl-4-yl\}-1H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (0.0998 g) in dichloromethane (3.0 mL) was treated with trifluoroacetic acid (3.0 mL) for 18 hours at ambient temperature. Reaction mixture was concentrated, co-evaporated with acetonitrile and purified by preparative reverse phase HPLC (Gemini, 5 to \(100 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}+0.1 \% \mathrm{TFA}\)) and concentrated to give a yellow film (0.087 g). Residue was dissolved in DMF \((1.0 \mathrm{~mL})\) and to this solution was added 2-Methoxycarbonylamino-3-methyl-butyric acid (0.023 g), 4methylmorpholine (0.055 mL), followed by HATU (0.049 g). Reaction mixture was stirred for 1 hour at ambient temperature, diluted with ethyl acetate and washed with dilute sodium bicarbonate solution, brine and dried \(\left(\mathrm{MgSO}_{4}\right)\), concentrated and purified by preparative reverse phase HPLC (Gemini, 5 to \(100 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}+0.1 \%\) TFA). Product was lyophilized to give [1-(2-\{5-[4'-(3H-Imidazol-4-yl)-biphenyl-4-yl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester as the bis-TFA salt (0.016 mg): \({ }^{1} \mathrm{H}\)-NMR: 300 MHz , (\(\mathrm{DMSO}_{\mathrm{d}}\)) \(8: 9.10(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.93-7.80(\mathrm{~m}, 8 \mathrm{H}), 7.32(\mathrm{~d}\), \(\mathrm{J}=7.8,1 \mathrm{H}), 5.20-5.12(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.80(\mathrm{~m}, 3 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 2.40-1.85(\mathrm{~m}\),
\(6 \mathrm{H}), 0.83(\mathrm{~d}, \mathrm{~J}=7.2,3 \mathrm{H}), 0.80(\mathrm{~d}, \mathrm{~J}=6.9,3 \mathrm{H}):\) LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{~N}_{6} \mathrm{O}_{3}: 513.61\) \(\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(513.1\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{Examples AK1 and AL1}

2-\{6-[4-(4,4,5,5-Tetramethy|-[1,3,2]dioxaborolan-2-y()-pheny)]-1t-benzoimidazol-2-y|-pyrrolidine-1-
carboxylic acid tert-butyl ester
2-(5-Bromo-1 H -imidazol-2-
yl)-pymolidine-1-carboxylic acid tert-butyl ester

2-(6-\{4-[2-(9-tert-butycarbamyl-pyrrolidin-2-y) -3H-imidazol-4-y|-pheny \(\mid\) - 1 - -benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester

2-(6-4'-[2-(1-tert-butylcarbamyl-pyrrolidin-2-yl)-3H-benzoimidazot-5-yi)-biphenyl-4-yl\}-1 \(H\)-benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester
1. HCl

2-Methoxycarbonylamino-3-

(1-\{2-[5-(4-\{2-1-(2-Methoxycarbonylamino-3-methy-
butyryl)-pyrrolidin-2-ylf-3H-benzoimidazol-5-yl)
phenyl)-1 H -imidazol-2-yl-pyrrolidine-1-carbonyl\}-2-
methyl-propyl)-cabamic acid methyl ester

2-(6-Bromo-1H-benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester: To a mixture of 4-Bromo-benzene-1,2-diamine (5.0 g), Boc-L-proline (6.0 g), and 4methylmorpholine (5.88 mL) in DMF (100 mL) was added HATU (10.7 g). Reaction mixture was stirred for 16 hours and then concentrated. Residue was dissolved in ethyl acetate and washed with \(5 \%\) lithium chloride solution (2 x), brine and dried (MgSO 4), concentrated and purified by flash column chromatography (silica gel, 30 to \(60 \%\) ethyl acetate/hexanes) to a dark brown foam. Brown foam was dissolved in ethanol (100 mL) and heated in a sealed tube at 110 \(130^{\circ} \mathrm{C}\) for 2 days. Reaction mixture was cooled and concentrated. Residue was dissolved in ethyl acetate and extracted with \(1 \mathrm{~N} \mathrm{HCl}(3 \mathrm{x})\). Aqueous layer was basified with \(50 \% \mathrm{NaOH}\) solution to pH 10 and extracted with ethyl acetate \((2 \mathrm{x})\). The organic layer was dried \(\left(\mathrm{MgSO}_{4}\right)\), concentrated and purified by flash column chromatography (silica gel, 0 to \(10 \%\) isopropanol/hexanes) to give 2-(6-Bromo-1H-benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (6.5 g) as an off-white foam: LCMS-ESI': calc'd for \(\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{BrN}_{3} \mathrm{O}_{2}: 367.26\) \(\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(365.8,367.8\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{2-\{6-[4-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-benzoimidazol-2-yl\}-} pyrrolidine-1-carboxylic acid tert-butyl ester: A mixture 2-(6-Bromo-1 H-benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (0.257 g), 1,4-benzenediboronic acid, pinacol ester \((1.158 \mathrm{~g}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.041 \mathrm{~g})\) and potassium carbonate \((0.485 \mathrm{~g})\) in \(\mathrm{H}_{2} \mathrm{O}(2.0\) \(\mathrm{mL}) /\) dimethoxyethane \((5.0 \mathrm{~mL})\) was heated in microvave at \(120^{\circ} \mathrm{C}\) for 30 minutes. Reaction mixture was cooled and diluted with ethyl acetate, washed with brine, dried (\(\mathrm{MgSO}_{4}\)), concentrated and purified by flash column chromatography (silica gel, 20 to \(70 \%\) ethyl acetate/hexanes) to give 2-\{6-[4-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1 H-benzoimidazol-2-yl\}-pyrrolidine-1-carboxylic acid tert-butyl ester (0.187 g): LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{BN}_{3} \mathrm{O}_{4}: 490.42\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(490.0\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{2-(6-\{4-[2-(1-tert-butylcarbamyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-phenyl\}-1H-} benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester: A mixture of 2-\{6-[4-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-benzoimidazol-2-yl\}-pyrrolidine-1carboxylic acid tert-butyl ester (0.116 g), 2-(5-Bromo-1H-imidazol-2-yl)-pyrrolidine-1carboxylic acid tert-butyl ester (0.112 g , prepared according to WO2008021927 A2) and \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.014 \mathrm{~g})\) in 2.0 M potassium carbonate solution \((0.35 \mathrm{~mL})\) and dimethoxyethane (1.0 mL) was heated at \(90^{\circ} \mathrm{C}\) for 6 hours. Additional \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.014 \mathrm{~g})\) was added and reaction continued for 12 hours. Reaction mixture was cooled, diluted with ethyl acetate, washed with \(\mathrm{H}_{2} \mathrm{O}\), brine, dried \(\left(\mathrm{MgSO}_{4}\right)\), concentrated and purified by flash column chromatography (silica
gel, 1 to \(30 \%\) isopropanol/hexanes) and preparative reverse phase HPLC (Gemini, 5 to 100\% \(\mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}+0.1 \%\) TFA) to give 2-(6-\{4-[2-(1-tert-butylcarbamyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-phenyl \(\}\)-1 H -benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester \((0.035 \mathrm{~g})\) as a bis-TFA salt: LCMS-ESI': calc'd for \(\mathrm{C}_{34} \mathrm{H}_{43} \mathrm{~N}_{6} \mathrm{O}_{4}: 599.74\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(599.1\left(\mathrm{M}+\mathrm{H}^{+}\right)\). A reaction side-product was also isolated and determined to be 2-(6-\{4'-[2-(1-tert-butylcarbamyl-pyrrolidin-2-yl)-3H-benzoimidazol-5-yl]-biphenyl-4-yl\}-1H-benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (0.013 g) as the bis-TFA salt: LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{44} \mathrm{H}_{4} \mathrm{~N}_{6} \mathrm{O}_{4}\) : 725.89 . \(\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(725.1\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{(1-\{2-[5-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-} benzoimidazol-5-yl\}-phenyl)-1 H -imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)carbamic acid methyl ester: 2-(6-\{4-[2-(1-tert-butylcarbamyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-phenyl \(\}\)-1 H -benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester \((0.035 \mathrm{~g})\) in dichloromethane \((1.0 \mathrm{~mL})\) was treated with 4 N HCl in dioxane \((1.0 \mathrm{~mL})\) for 1 hour at ambient temperature. Reaction mixture was concentrated and dried under vacuum. The residue was dissolved in DMF (1.0 mL) and to this solution was added 2-Methoxycarbonylamino-3-methylbutyric acid (0.0155 g), 4-methylmorpholine (0.023 mL), followed by HATU \((0.033 \mathrm{~g})\).
Reaction mixture was stirred for 1 hour at ambient temperature and then diluted with ethyl acetate and washed with dilute sodium bicarbonate solution, \(5 \%\) lithium chloride solution, brine and dried \(\left(\mathrm{MgSO}_{4}\right)\). Organic layer was concentrated and purified by preparative reverse phase HPLC (Gemini, 5 to \(100 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}+0.1 \%\) TFA). Product was lyophilized to give (1-\{2-[5-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-benzoimidazol-5yl \(\}\)-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester as the bis-TFA salt \((0.0226 \mathrm{~g})\).
\({ }^{1} \mathrm{H}-\mathrm{NMR}: 300 \mathrm{MHz},\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta: 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.90-7.70(\mathrm{~m}, 8 \mathrm{H}), 5.32(\mathrm{t}, \mathrm{J}=6.9,1 \mathrm{H}), 5.21(\mathrm{t}\), \(\mathrm{J}=6.9,1 \mathrm{H}), 4.22(\mathrm{dd}, \mathrm{J}=10.8,6.9,2 \mathrm{H}), 4.10-3.80(\mathrm{~m}, 4 \mathrm{H}), 3.61(\mathrm{~s}, 6 \mathrm{H}), 2.65-1.80(\mathrm{~m}, 10 \mathrm{H})\), \(0.950-0.80(\mathrm{~m}, 12 \mathrm{H}):\) LCMS-ESI: calc'd for \(\mathrm{C}_{38} \mathrm{H}_{4} \mathrm{~N}_{8} \mathrm{O}_{6}: 713.84\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: 713.3 \(\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{Example AL1}
(1-\{2-[6-(4'-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-y]]-3H-benzoimidazol-5-yl\}-biphenyl-4-yl)-1H-benzoimidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester: 2-(6-\{4'-[2-(1-tert-butylcarbamyl-pyrrolidin-2-yl)-3H-benzoimidazol-5-yl]-biphenyl-4-yl\}-1H-benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (0.013 g) in dichloromethane (1.0 mL) was treated with 4 N HCl in dioxane \((1.0 \mathrm{~mL})\) for 1 hour at ambient temperature. Reaction mixture was concentrated and dried under
vacuum. The residue was dissolved in DMF (1.0 mL) and to this solution was added 2-Methoxycarbonylamino-3-methyl-butyric acid (0.0155 g), 4-methylmorpholine (0.023 mL), followed by HATU (0.033 g). After stirring for 1 hour at ambient temperature, additional 2-Methoxycarbonylamino-3-methyl-butyric acid (0.0155 g), HATU (0.033 g) were added followed by 4 -methylmorpholine (0.023 mL). After stirring for 30 minutes, reaction mixture was diluted with ethyl acetate and washed with dilute sodium bicarbonate solution, \(5 \%\) lithium chloride solution, brine and dried \(\left(\mathrm{MgSO}_{4}\right)\). Organic layer was concentrated and purified by preparative reverse phase HPLC (Gemini, 5 to \(100 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}+0.1 \% \mathrm{TFA}\)). Product was lyophilized to give (1-\{2-[6-(4'-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-benzoimidazol-5-yl\}-biphenyl-4-yl)-1H-benzoimidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester as the bis-TFA salt (0.0106 g). \({ }^{1} \mathrm{H}-\mathrm{NMR}: 300\) \(\mathrm{MHz},\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta: 8.00(\mathrm{~s}, 2 \mathrm{H}), 7.90-7.70(\mathrm{~m}, 14 \mathrm{H}), 5.40-5.35(\mathrm{~m}, 2 \mathrm{H}), 4.28(\mathrm{~d}, \mathrm{~J}=7.2,2 \mathrm{H})\), 4.15-3.85 (m, 5H), 3.67 (s, 6H), 2.65-2.06 (m, 10H), \(0.95(\mathrm{~d}, \mathrm{~J}=6.6,6 \mathrm{H}), 0.88(\mathrm{~d}, \mathrm{~J}=6.6,6 \mathrm{H}):\)

LCMS-ESI: calc'd for \(\mathrm{C}_{48} \mathrm{H}_{55} \mathrm{~N}_{8} \mathrm{O}_{6}: 839.99\left(\mathrm{M}^{\prime}+\mathrm{H}^{+}\right)\); Found: \(839.4\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{Example AM1}

2-(6-\{4-[2-(1-tert-butylcarbamyl-pyrrolidin-2-yl)-3H-benzoimidazol-5-yl]-phenyl\}-1H-benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester: A mixture of 2-\{6-[4-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-benzoimidazol-2-yl\}-pyrrolidine-1carboxylic acid tert-butyl ester (0.058 g), 2-(6-Bromo-1 H-benzoimidazol-2-yl)-pyrrolidine-1carboxylic acid tert-butyl ester (0.052 g) and \(\mathrm{Pd}(\mathrm{PPh} 3) 4(0.0069 \mathrm{~g})\) in 2.0 M potassium carbonate solution \((0.18 \mathrm{~mL})\) and dimethoxyethane \((0.36 \mathrm{~mL})\) was heated in microwave at \(110^{\circ} \mathrm{C}\) for 30 minutes, then at \(120^{\circ} \mathrm{C}\) for 60 minutes. Additional \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.069 \mathrm{~g})\) was added and reaction was heated conventially at \(90^{\circ} \mathrm{C}\) for 12 hours. Reaction mixture was cooled, diluted with ethyl acetate, washed with brine, dried \(\left(\mathrm{MgSO}_{4}\right)\), concentrated and purified by flash column chromatography (silica gel, 1 to \(20 \%\) isopropanol/hexanes) and preparative reverse phase HPLC (Gemini, 5 to \(100 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}+0.1 \% \mathrm{TFA}\)) to give 2-(6-\{4-[2-(1-tert-butylcarbamyl-pyrrolidin-2-yl)-3H-benzoimidazol-5-yl]-phenyl\}-1H-benzoimidazol-2-yl)-pyrrolidine-1-
carboxylic acid tert-butyl ester (0.0315 g) as a bis-TFA salt: LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{38} \mathrm{H}_{45} \mathrm{~N}_{6} \mathrm{O}_{4}: 649.79\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(649.1\left(\mathrm{M}+\mathrm{H}^{+}\right)\).
(1-\{2-[6-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-benzoimidazol-5-yl\}-phenyl)-1H-benzoimidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester: A solution of 2-(6-\{4-[2-(1-tert-butylcarbamyl-pyrrolidin-2-yl)-3H-benzoimidazol-5-yl]-phenyl\}-1H-benzoimidazol-2-yl)-pyrrolidine-1carboxylic acid tert-butyl ester (0.0315 g) in dichloromethane (2.0 mL) was treated with 4 N HCl in dioxane (1.0 mL) for 1 hour at ambient temperature. Reaction mixture was concentrated and dried under vacuum. The residue was dissolved in DMF \((1.0 \mathrm{~mL})\) and to this solution was added 2-Methoxycarbonylamino-3-methyl-butyric acid (0.0128 g), 4-methylmorpholine (0.023 mL), followed by HATU (0.027 g). Reaction mixture was stirred for 1 hour at ambient temperature and additional 4 -methylmorpholine (0.023 mL) was added. After stirring for 30 minutes, reaction mixture was diluted with ethyl acetate and washed with dilute sodium bicarbonate solution, \(5 \%\) lithium chloride solution, brine and dried (\(\mathrm{MgSO}_{4}\)). Organic layer was concentrated and purified by preparative reverse phase HPLC (Gemini, 5 to \(100 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}+\) \(0.1 \%\) TFA). Product was lyophilized to give (1-\{2-[6-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-benzoimidazol-5-yl\}-phenyl)-1H-benzoimidazol-2-yl]-pyrrolidine-1-carbonyl \(\}\)-2-methyl-propyl)-carbamic acid methyl ester as the bis-TFA salt \((0.0263 \mathrm{~g}) .{ }^{1} \mathrm{H}-\mathrm{NMR}: 300 \mathrm{MHz},\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta: 8.00(\mathrm{~s}, 2 \mathrm{H}), 7.90-7.70(\mathrm{~m}, 8 \mathrm{H}), 5.40-5.35(\mathrm{~m}\), \(2 \mathrm{H}), 4.28\) (d, J=7.2, 2H), 4.15-3.85 (m, 4H), 3.67 (\(\mathrm{s}, 6 \mathrm{H}\)), 2.65-2.06 (m, 10H), 0.95 (d, J=6.6, \(6 \mathrm{H}), 0.88(\mathrm{~d}, \mathrm{~J}=6.6,6 \mathrm{H})\) : LCMS-ESI-: calc'd for \(\mathrm{C}_{42} \mathrm{H}_{51} \mathrm{~N}_{8} \mathrm{O}_{6}: 763.90\left(\mathrm{M}^{-} \mathrm{H}^{+}\right)\); Found: 763.3 \(\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{Example AN1}

[1-(2-\{6-[5-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-ylJ-3H-imidazol-4-yl\}-phenyl)-thiophen-2-ylJ-1 \(H\)-benzoimidazol-2-yl)-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester

2-[6-(5-\{4-[2-(1-Boc-pyrrolidin-2-yl)-3H-imidazol-4-yl]-phenyl\}-thiophen-2-yl)-1H-benzoimidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester: A mixture of 2-(5-\{4-[5-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-thiophen-2-yl]-phenyl\}-1H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (0.110 g), 2-(6-Bromo-1H-benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester \((0.115 \mathrm{~g})\) and \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.012 \mathrm{~g})\) in 2.0 M potassium carbonate solution \((0.32 \mathrm{~mL})\) and dimethoxyethane \((0.64 \mathrm{~mL})\) was heated in microwave at \(110^{\circ} \mathrm{C}\) for 30 minutes. Reaction mixture was cooled, diluted with ethyl acetate, washed with brine, dried \(\left(\mathrm{MgSO}_{4}\right)\), concentrated and purified by flash column chromatography (silica gel, 50 to \(100 \%\) ethyl acetate/hexanes) and preparative reverse phase HPLC (Gemini, 5 to \(100 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}+0.1 \%\) TFA) to give 2-[6-(5-\{4-[2-(1-Formyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-phenyl\}-thiophen-2-yl)-1H-benzoimidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl
ester (0.085 g) as a bis-TFA salt: LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{38} \mathrm{H}_{45} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S}: 681.86\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(681.0\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{[1-(2-\{6-[5-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-} imidazol-4-yl\}-phenyl)-thiophen-2-yl]-1H-benzoimidazol-2-yl\}-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester: A solution of 2-[6-(5-\{4-[2-(1-Formyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-phenyl\}-thiophen-2-yl)-1H-benzoimidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (0.085 g) in dichloromethane (2.0 mL) was treated with 4 N HCl in dioxane (2.0 mL) for 1.5 hour at ambient temperature. Reaction mixture was concentrated and dried under vacuum. The residue was dissolved in DMF (1.0 mL) and to this solution was added 2-Methoxycarbonylamino-3-methyl-butyric acid (0.033 g), 4methylmorpholine (0.060 mL), followed by HATU (0.070 g). Reaction mixture was stirred for 45 minutes at ambient temperature and reaction mixture was diluted with ethyl acetate and washed with dilute sodium bicarbonate solution, \(5 \%\) lithium chloride solution, brine and dried \(\left(\mathrm{MgSO}_{4}\right)\). Organic layer was concentrated and purified by preparative reverse phase HPLC (Gemini, 5 to \(100 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}+0.1 \% \mathrm{TFA}\)). Product was lyophilized to give [1-(2-\{6-[5-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-phenyl)-thiophen-2-yl]-1 H-benzoimidazol-2-yl\}-pyrrolidine-1-carbonyl)-2-methyl-propyl]carbamic acid methyl ester as the bis-TFA salt (0.048 mg) \({ }^{1} \mathrm{H}-\mathrm{NMR}: 300 \mathrm{MHz}\), (DMSO-d \(\mathrm{d}_{6}\)) \(\delta\) : 8.09 (br s, 1H), 7.90-7.75 (m, 8H), 7.70-7.55 (m, 4H), \(7.34(\mathrm{~d}, \mathrm{~J}=8.1,2 \mathrm{H}), 5.25-5.10(\mathrm{~m}, 2 \mathrm{H})\), \(4.20-4.15(\mathrm{~m}, 4 \mathrm{H}), 4.15-3.85(\mathrm{~m}, 4 \mathrm{H}), 3.54(\mathrm{~s}, 6 \mathrm{H}), 2.50-1.85(\mathrm{~m}, 10 \mathrm{H}), 0.87-0.75(\mathrm{~m}, 12 \mathrm{H}):\) LCMS-ESI: calc'd for \(\mathrm{C}_{42} \mathrm{H}_{51} \mathrm{~N}_{8} \mathrm{O}_{6} \mathrm{~S}\) : \(795.96\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(795.2\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{Example AO1}

2-[6-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-1H-benzoimidazol-2-yl]-pyrrolidine-1carboxylic acid tert-butyl ester: A mixture of 2-(6-Bromo-1H-benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (0.450 g), bis(pinacolato)diboron (0.655 g), \(\mathrm{PdCl}_{2}\) (dppf) \((0.050 \mathrm{~g})\) and potassium acetate \((0.314 \mathrm{~g})\) in 1,4 -dioxane was heated at \(90^{\circ} \mathrm{C}\) for 16 hours. Reaction mixture was cooled to ambient temperatures and diluted with ethyl acetate. The organic layer was washed with brine, dried \(\left(\mathrm{MgSO}_{4}\right)\), concentrated and purified by flash column chromatography (silica gel, 30 to \(70 \%\) ethyl acetate/hexanes) to give 2-[6-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-1H-benzoimidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (0.452 g) as an off-white foam: LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{BN}_{3} \mathrm{O}_{4}\) : 414.32 \(\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(414.0\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

2-(6-\{5-[2-(1-tert-butylcarbamyl-pyrrolidin-2-yl)-3H-benzoimidazol-5-yl]-thiophen-2-yl\}-1H-benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester: A mixture of 2-[6-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-1H-benzoimidazol-2-yl]-pyrrolidine-1-
carboxylic acid tert-butyl ester (0.149 g), 2,5-Dibromo-thiophene (0.035 g) and \(\mathrm{PdCl}_{2}\left(\mathrm{dppf}_{2}\right.\) \((0.006 \mathrm{~g})\) in 2.0 M potassium carbonate solution \((0.36 \mathrm{~mL})\) and dimethoxyethane \((1.0 \mathrm{~mL})\) was heated at \(90^{\circ} \mathrm{C}\) for 18 hours. Additional 2 M potassium carbonate solution \((0.36 \mathrm{~mL})\) and \(\mathrm{PdCl}_{2}\) (dppf) \((0.006 \mathrm{~g})\) was added and reaction was continued for 48 hours. Reaction mixture was cooled, diluted with ethyl acetate, washed with brine, dried \(\left(\mathrm{MgSO}_{4}\right)\), concentrated and purified using preparative reverse phase HPLC (Gemini, 5 to \(100 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}+0.1 \%\) TFA) to give 2-(6-\{5-[2-(1-tert-butylcarbamyl-pyrrolidin-2-yl)-3H-benzoimidazol-5-yl]-thiophen-2-yl\}-1H-benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (0.0475 g) as a bis-TFA salt: LCMS-ESI : calc'd for \(\mathrm{C}_{36} \mathrm{H}_{43} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S}: 655.82\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(655.0\left(\mathrm{M}+\mathrm{H}^{+}\right)\).
(1-\{2-[6-(5-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-benzoimidazol-5-yl\}-thiophen-2-yl)-1H-benzoimidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester: A solution of 2-(6-\{5-[2-(1-tert-butylcarbamyl-pyrrolidin-2-yl)-3H-benzoimidazol-5-yl]-thiophen-2-yl\}-1H-benzoimidazol-2-yl)-pyrrolidine-1carboxylic acid tert-butyl ester (0.0475 g) in dichloromethane (1.0 mL) was treated with 4 N HCl in dioxane \((1.0 \mathrm{~mL})\) for 1.5 hour at ambient temperature. Reaction mixture was concentrated and dried under vacuum. The residue was dissolved in DMF (1.0 mL) and to this solution was added 2-Methoxycarbonylamino-3-methyl-butyric acid (0.0196 g), 4-methylmorpholine (0.035 mL), followed by HATU (0.042 g). Reaction mixture was stirred for 1 hour at ambient temperature and additional 4-methylmorpholine (0.023 mL) was added. After stirring for 30 minutes, reaction mixture was diluted with ethyl acetate and washed with dilute sodium bicarbonate solution, \(5 \%\) lithium chloride solution, brine and dried \(\left(\mathrm{MgSO}_{4}\right)\). Organic layer was concentrated and purified by preparative reverse phase HPLC (Gemini, 5 to \(100 \%\) ACN/ \(\mathrm{H}_{2} \mathrm{O}+\) \(0.1 \%\) TFA). Product was lyophilized to give (1-\{2-[6-(5-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-benzoimidazol-5-yl\}-thiophen-2-yl)-1H-benzoimidazol-2-yl]-pyrrolidine-1-carbonyl \(\}\)-2-methyl-propyl)-carbamic acid methyl ester as the bis-TFA salt (0.0296 g): \({ }^{1} \mathrm{H}-\mathrm{NMR}: 300 \mathrm{MHz}\), (DMSO-d \(\mathrm{d}_{6}\)) \(\boldsymbol{8}: 7.91(\mathrm{~s}, 2 \mathrm{H}), 7.71(\mathrm{~s}, 4 \mathrm{H}), 7.61\) (s, 2H), 7.35 (d, \(\mathrm{J}=9.0,2 \mathrm{H}\)), \(5.25-5.15(\mathrm{~m}, 2 \mathrm{H}), 4.15-4.00(\mathrm{~m}, 4 \mathrm{H}), 3.95-3.75(\mathrm{~m}, 4 \mathrm{H}), 3.54(\mathrm{~s}, 6 \mathrm{H}), 2.25-1.85\) \((\mathrm{m}, 10 \mathrm{H}), 0.83(\mathrm{~d}, \mathrm{~J}=6.6,6 \mathrm{H}), 0.79(\mathrm{~d}, \mathrm{~J}=6.9,6 \mathrm{H})\); LCMS-ESI: calc'd for \(\mathrm{C}_{40} \mathrm{H}_{49} \mathrm{~N}_{8} \mathrm{O}_{6} \mathrm{~S}\) : \(769.92\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(769.2\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{Example AP1}

2-(6-\{6-[2-(1-tert-butylcarbamyl-pyrrolidin-2-yl)-3H-benzoimidazol-5-y|]-naphthalen- \(2-\mathrm{y} \mid\}-1 \mathrm{H}\)-benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester

2-Methoxycarbonylamino-3-methyl-butyric acid

(1-\{2-[6-(6-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-benzoimidazol-5-yl]-naphthalen-2-yl)-1 H-benzoimidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester

2-(6-\{6-[2-(1-tert-butylcarbamyl-pyrrolidin-2-yl)-3H-benzoimidazol-5-yl]-naphthalen-2-yl\}-1H-benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester: A mixture of 2-[6-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-1H-benzoimidazol-2-yl]-pyrrolidine-1carboxylic acid tert-butyl ester (0.170 g), 2,6-Dibromo-naphthalene (0.047 g) and \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\) \((0.0095 \mathrm{~g})\) in 2.0 M potassium carbonate solution \((0.41 \mathrm{~mL})\) and dimethoxyethane \((0.8 \mathrm{~mL})\) was heated in microwave at \(110^{\circ} \mathrm{C}\) for 40 minutes. Reaction mixture was cooled, diluted with ethyl acetate, washed with brine, dried \(\left(\mathrm{MgSO}_{4}\right)\), concentrated and purified by flash column chromatography (silica gel, 50 to \(100 \%\) ethyl acetate/hexanes) to give 2-(6-\{6-[2-(1-tert-butylcarbamyl-pyrrolidin-2-yl)-3H-benzoimidazol-5-yl]-naphthalen-2-yl\}-1H-benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (0.0961 g) as a yellow film: LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{42} \mathrm{H}_{47} \mathrm{~N}_{6} \mathrm{O}_{4}\) : \(699.85\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(699.1\left(\mathrm{M}+\mathrm{H}^{+}\right)\).
(1-\{2-[6-(6-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-benzoimidazol-5-yl\}-naphthalen-2-yl)-1H-benzoimidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester: A solution of 2-(6-\{6-[2-(1-tert-butylcarbamyl-pyrrolidin-2-yl)-3H-benzoimidazol-5-yl]-naphthalen-2-yl \(\}\)-1 H -benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (0.0961 g) in dichloromethane (2.0 mL) was treated with 4 N HCl in dioxane \((1.0 \mathrm{~mL})\) for 1 hour at ambient temperature. Reaction mixture was concentrated and dried under vacuum. The residue was dissolved in DMF (1.1 mL) and to this solution was added 2-Methoxycarbonylamino-3-methyl-butyric acid (0.0501 g), 4-methylmorpholine (0.091 mL), followed by HATU (0.107 g). Reaction mixture was stirred for 1 hour at ambient temperature, diluted with ethyl acetate and washed with dilute sodium bicarbonate solution, \(5 \%\) lithium chloride solution, brine and dried \(\left(\mathrm{MgSO}_{4}\right)\). Organic layer was concentrated and purified by preparative reverse phase HPLC (Gemini, 5 to \(100 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}+0.1 \%\) TFA). Product was lyophilized to give (1-\{2-[6-(6-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-benzoimidazol-5-yl\}-naphthalen-2-yl)-1H-benzoimidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester as the bis-TFA salt (0.035 mg): \({ }^{1} \mathrm{H}\) NMR: 300 MHz , (DMSO- \(\mathrm{d}_{6}\)) 8: \(8.33(\mathrm{~s}, 2 \mathrm{H}), 8.18-8.01(\mathrm{~m}, 4 \mathrm{H}), 7.95-7.80(\mathrm{~m}, 5 \mathrm{H}), 7.35(\mathrm{~d}\), \(\mathrm{J}=8.70,2 \mathrm{H}), 5.25-5.15(\mathrm{~m}, 2 \mathrm{H}), 4.20-4.00(\mathrm{~m}, 4 \mathrm{H}), 3.95-3.75(\mathrm{~m}, 4 \mathrm{H}), 3.55(\mathrm{~s}, 6 \mathrm{H}), 2.55-1.90\) \((\mathrm{m}, 10 \mathrm{H}), 0.84(\mathrm{~d}, \mathrm{~J}=6.6,6 \mathrm{H}), 0.79(\mathrm{~d}, \mathrm{~J}=6.9,6 \mathrm{H})\); LCMS-ESI: calc'd for \(\mathrm{C}_{46} \mathrm{H}_{53} \mathrm{~N}_{8} \mathrm{O}_{6}: 813.96\) \(\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(813.3\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{Example AQ1}

2-(2-\{4'-[5-(1-tert-butyl-carbamyl-pyrrolidin-2-yl)-1H-imidazol-2-yl)-biphenyl-4-yl\}-3H-imidazol-4-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester

2-Methoxycarbonylamino-3-methyl-butyric acid

(1-\{2-[2-(4-\{5-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-1 H -imidazol-2-y \(\mid\}\)-biphenyl-4-yl)-3H-imidazol-4-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester

2-[2-(4-Bromo-phenyl)-3H-imidazol-4-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester: A mixture of 4-Bromo-benzamidine \((0.202 \mathrm{~g})\) and potassium carbonate \((0.237 \mathrm{~g})\) in \(\mathrm{H}_{2} \mathrm{O}(0.286\) mL) and THF (1.1 mL) was heated to \(65^{\circ} \mathrm{C}\). 2 -(2-Chloro-acetyl)-pyrrolidine-1-carboxylic acid tert-butyl ester \((0.106 \mathrm{~g})\) in THF \((0.7 \mathrm{~mL})\) was added over 1 hour and reaction mixture heated at \(65^{\circ} \mathrm{C}\) for 18 hours. Reaction mixture was concentrated to \(\sim 0.5 \mathrm{~mL}\) and extracted with ethyl acetate. Organic layer was washed with \(\mathrm{H}_{2} \mathrm{O}\), brine and dried \(\left(\mathrm{MgSO}_{4}\right)\), concentrated and purified by flash column chromatography (silica gel, 20 to \(100 \%\) ethyl acetate/hexanes) to give 2-[2-(4-Bromo-phenyl)-3H-imidazol-4-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (0.075 g) as an orange film: LCMS-ESI: calc'd for \(\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{BrN}_{3} \mathrm{O}_{2}: 393.30\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: 391.8, \(393.83\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

4-[2-(3H-Imidazol-4-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester]-phenylboronic acid: A mixture of 2-[2-(4-Bromo-phenyl)-3H-imidazol-4-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (0.075 g), bis(pinacolato)diboron \((0.102 \mathrm{~g}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.011 \mathrm{~g})\) and potassium acetate \((0.049 \mathrm{~g})\) in 1,4 -dioxane (1.5 mL) was heated at \(100^{\circ} \mathrm{C}\) for 16 hours. More \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.011 \mathrm{~g})\) was added and the reaction was continued for 24 hours. Reaction mixture was cooled to ambient temperatures and diluted with ethyl acetate. Organic layer was washed with brine, dried \(\left(\mathrm{MgSO}_{4}\right)\), concentrated and purified by purified by preparative reverse phase HPLC (Gemini, 5 to \(100 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}+0.1 \% \mathrm{TFA}\)). Product was lyophilized to give 4-[2-(3H-Imidazol-4-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester]-phenylboronic acid (0.027 g) as a white powder: LCMS-ESI': calc'd for \(\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{BN}_{3} \mathrm{O}_{4}: 357.21\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(357.9\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{2-(2-\{4'-[5-(1-tert-butyl-carbamyl-pyrrolidin-2-yl)-1H-imidazol-2-yl]-biphenyl-4-yl\}-3H-} imidazol-4-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester: A mixture of 4-[2-(3H-Imidazol-4-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester]-phenylboronic acid (0.0098 g), 2-[2-(4-Bromo-phenyl)-3H-imidazol-4-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (0.0118 g) and \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.0012 \mathrm{~g})\) in 2.0 M potassium carbonate solution \((0.031 \mathrm{~mL})\) and dimethoxyethane \((0.8 \mathrm{~mL})\) was heated at \(90^{\circ} \mathrm{C}\) for 18 hours. \(\mathrm{PdCl}_{2}(\mathrm{dppf})(0.003 \mathrm{~g})\) was added and reaction mixture was heated at \(100^{\circ} \mathrm{C}\) for 18 hours. Reaction mixture was cooled, diluted with ethyl acetate, washed with brine, dried \(\left(\mathrm{MgSO}_{4}\right)\), concentrated and purified using preparative reverse phase HPLC (Gemini, 5 to \(100 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}+0.1 \%\) TFA). Product was lyophilized to give 2-(2-\{4'-[5-(1-tert-butyl-carbamyl-pyrrolidin-2-yl)-1H-imidazol-2-yl]-biphenyl-4-yl\}-3H-imidazol-4-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (0.0018 g) as a white powder: LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{36} \mathrm{H}_{45} \mathrm{~N}_{6} \mathrm{O}_{4}: 624.77\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(625.0\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{(1-\{2-[2-(4'-\{5-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-1H-} imidazol-2-yl\}-biphenyl-4-yl)-3H-imidazol-4-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)carbamic acid methyl ester: A solution of 2-(2-\{4'-[5-(1-tert-butyl-carbamyl-pyrrolidin-2-yl)-1H-imidazol-2-yl]-biphenyl-4-yl\}-3H-imidazol-4-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester \((0.0018 \mathrm{~g})\) in dichloromethane (0.5 mL) was treated with 4 N HCl in dioxane (0.5 mL) for 1 hour at ambient temperature. Reaction mixture was concentrated and dried under vacuum. The residue was dissolved in DMF (0.4 mL) and to this solution was added 2-
methoxycarbonylamino-3-methyl-butyric acid (0.0008 g), 4-methylmorpholine (0.0024 mL), followed by HATU (0.0016 g). Reaction mixture was stirred for 1.5 hour at ambient temperature, then purified by preparative reverse phase HPLC (Gemini, 5 to \(100 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}+\)
\(0.1 \%\) TFA). Product was lyophilized to give (1-\{2-[2-(4'-\{5-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-1H-imidazol-2-yl\}-biphenyl-4-yl)-3H-imidazol-4-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester as a mixture of diastereomers of the bis-TFA salt (0.0017 g): \({ }^{1} \mathrm{H}-\mathrm{NMR}: 300 \mathrm{MHz},\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta: 8.10-7.95(\mathrm{~m}\), \(8 \mathrm{H}), 7.55-7.40(\mathrm{~m}, 2 \mathrm{H}), 5.25-5.15(\mathrm{~m}, 2 \mathrm{H}), 4.20-3.65(\mathrm{~m}, 6 \mathrm{H}), 3.62(\mathrm{~s}, 6 \mathrm{H}), 2.40-1.90(\mathrm{~m}, 10 \mathrm{H})\), 1.05-0.85 (m, 12H); LCMS-ESI: calc'd for \(\mathrm{C}_{40} \mathrm{H}_{51} \mathrm{~N}_{8} \mathrm{O}_{6}: 739.88\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: 739.3 \(\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{Example AR1}

2-(2-44-[2-(1-tert-butylcarbamyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-biphenyl-4-yl\}-3H-imidazol-4-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester

2-Methoxycarbonylamino-3-methyl-butyric acid

(1-22-[5-(4'\{5-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl|-1 H -imidazol-2-yl\}-biphenyl-4-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester

2-(2-\{4'-[2-(1-tert-butylcarbamyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-biphenyl-4-yl\}-3H-imidazol-4-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester: A mixture of 4-[2-(3H-

Imidazol-4-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester]-phenylboronic acid (0.0177 g), 2-[5-(4-Bromo-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (0.0148 g) and \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.0022 \mathrm{~g}), \mathrm{PdCl}_{2}(\mathrm{dppf})(0.0016 \mathrm{~g})\) in 2.0 M potassium carbonate solution (0.056 \(\mathrm{mL})\) and dimethoxyethane (0.8 mL) was heated at \(90^{\circ} \mathrm{C}\) for 18 hours. Reaction mixture was cooled, diluted with ethyl acetate, washed with brine, dried \(\left(\mathrm{MgSO}_{4}\right)\), concentrated and purified
using preparative reverse phase HPLC (Gemini, 5 to \(100 \%\) ACN/H2O + 0.1\% TFA). Product was lyophilized to give 2-(2-\{4'-[2-(1-tert-butylcarbamyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-biphenyl-4-yl \(\}\)-3H-imidazol-4-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester \((0.0066 \mathrm{~g})\) as a white powder: LCMS-ESI': calc'd for \(\mathrm{C}_{36} \mathrm{H}_{45} \mathrm{~N}_{6} \mathrm{O}_{4}: 624.77\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(625.0\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{(1-\{2-[5-(4'-\{5-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-1H-} imidazol-2-yl\}-biphenyl-4-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)carbamic acid methyl ester: A solution of 2-(2-\{4'-[2-(1-tert-butylcarbamyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-biphenyl-4-yl\}-3H-imidazol-4-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester \((0.0066 \mathrm{~g})\) in dichloromethane \((0.5 \mathrm{~mL})\) was treated with 4 N HCl in dioxane \((0.5 \mathrm{~mL})\) for 1 hour at ambient temperature. Reaction mixture was concentrated and dried under vacuum. The residue was dissolved in DMF (0.4 mL) and to this solution was added 2-

Methoxycarbonylamino-3-methyl-butyric acid (0.0028 g), 4-methylmorpholine (0.012 mL), followed by HATU \((0.006 \mathrm{~g})\). Reaction mixture was stirred for 2 hours at ambient temperature, then purified by preparative reverse phase HPLC (Gemini, 5 to \(100 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}+0.1 \%\) TFA). Product was lyophilized to give (1-\{2-[5-(4'-\{5-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-1H-imidazol-2-yl\}-biphenyl-4-yl)-1H-imidazol-2-yl]-pyrrolidine-1carbonyl \}-2-methyl-propyl)-carbamic acid methyl ester as a mixture of diastereomers of the bisTFA salt (0.0081 g): \({ }^{1} \mathrm{H}-\mathrm{NMR}: 300 \mathrm{MHz},\left(\mathrm{CD}_{3} \mathrm{OD}\right) \mathbf{~}: ~ 8.05-7.80(\mathrm{~m}, 9 \mathrm{H}), 7.55-7.40(\mathrm{~m}, 1 \mathrm{H})\), 5.25-5.15 (m, 2H), 4.20-3.65 (m, 6H), 3.62 (s, 6H), 2.55-1.95 (m, 10H), 1.05-0.85 (m, 12H); LCMS-ESI: calc'd for \(\mathrm{C}_{40} \mathrm{H}_{51} \mathrm{~N}_{8} \mathrm{O}_{6}\) : \(739.88\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(739.3\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{Example AS1}

(1-\{2-[6-(4'-\{2-[2-(2-Methoxycarbonylamino-3-methyl-butyryl)-2-aza-bicyclo[2.2.1]hept-3-yl]-3H-imidazol-4-y|\}-bipheny|-4-yl)-1 H -benzoimidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)carbamic acid methyl ester

\section*{2-(6-\{4'-[2-(2-tert-butylcarbamyl-2-aza-bicyclo[2.2.1]hept-3-yl)-3H-imidazol-4-yl]-}

\section*{biphenyl-4-yl\}-1H-benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester: A} mixture of 2-\{6-[4-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1 H-benzoimidazol-2-yl\}-pyrrolidine-1-carboxylic acid tert-butyl ester (0.142 g), 3-[5-(4-Bromo-phenyl)-1H-imidazol-2-yl]-2-aza-bicyclo[2.2.1]heptane-2-carboxylic acid tert-butyl ester (0.1013 g) and \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.014 \mathrm{~g})\) in 2.0 M potassium carbonate solution \((0.036 \mathrm{~mL})\) and dimethoxyethane \((0.8\) mL) was heated in microwave at \(110^{\circ} \mathrm{C}\) for 30 minutes. Reaction mixture was diluted with ethyl acetate, washed with brine, dried \(\left(\mathrm{MgSO}_{4}\right)\), concentrated and purified using preparative reverse phase HPLC (Gemini, 5 to \(100 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}+0.1 \%\) TFA). Product was lyophilized to give 2-(6-\{4'-[2-(2-tert-butylcarbamyl-2-aza-bicyclo[2.2.1]hept-3-yl)-3H-imidazol-4-yl]-biphenyl-4-\(\mathrm{yl}\}\)-1 H -benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester \((0.128 \mathrm{~g})\) as a white powder: LCMS-ESI': calc'd for \(\mathrm{C}_{42} \mathrm{H}_{49} \mathrm{~N}_{6} \mathrm{O}_{4}\) : \(701.87\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(701.1\left(\mathrm{M}+\mathrm{H}^{+}\right)\).
(1-\{2-[6-(4'-\{2-[2-(2-Methoxycarbonylamino-3-methyl-butyryl)-2-aza-bicyclo [2.2.1]hept-3-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-1H-benzoimidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester: A solution of 2-(6-\{4'-[2-(2-tert-butylcarbamyl-2-aza-bicyclo[2.2.1]hept-3-yl)-3H-imidazol-4-yl]-biphenyl-4-yl\}-1H-benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (0.128 g) in dichloromethane (2.0 mL) was treated with 4 N HCl in dioxane (1.0 mL) for 1 hour at ambient temperature. Reaction mixture was concentrated and dried under vacuum. The residue was dissolved in DMF (2.0 mL) and to this solution was added 2-Methoxycarbonylamino-3-methyl-butyric acid (0.050 g), 4methylmorpholine (0.090 mL), followed by HATU (0.106 g). Reaction mixture was stirred for 1 hour at ambient temperature. Additional 4-methylmorpholine (0.090 mL) was added and reaction mixture stirred for 1 hour. Reaction mixture was diluted with ethyl acetate, washed with dilute sodium bicarbonate solution, \(5 \%\) lithium chloride solution, brine and dried \(\left(\mathrm{MgSO}_{4}\right)\), then concentrated and purified by preparative reverse phase HPLC (Gemini, 5 to 100\% \(\left.\mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}+0.1 \% \mathrm{TFA}\right)\). Product was lyophilized to (1-\{2-[6-(4)-\{2-[2-(2-Methoxycarbonylamino-3-methyl-butyryl)-2-aza-bicyclo[2.2.1]hept-3-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-1H-benzoimidazol-2-yll-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester as the bis-TFA salt (0.080 g): \({ }^{1} \mathrm{H}-\mathrm{NMR}: 300 \mathrm{MHz},\left(\mathrm{CD}_{3} \mathrm{OD}\right) 8: 8.05-7.70\) \((\mathrm{m}, 13 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 2 \mathrm{H}), 5.25-5.15(\mathrm{~m}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 1 \mathrm{H}), 4.20-4.00(\mathrm{~m}, 2 \mathrm{H})\), 3.85-3.75 (m, 4H), \(3.51(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 2.50-1.45(\mathrm{~m}, 14 \mathrm{H}), 0.95-0.75(\mathrm{~m}, 12 \mathrm{H})\); LCMSESI: calc'd for \(\mathrm{C}_{46} \mathrm{H}_{55} \mathrm{~N}_{8} \mathrm{O}_{6}: 815.97\left(\mathrm{M}+\mathrm{H}^{+}\right)\); Found: \(815.3\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{Example AT1}

6-55-(4'-\{2-[1-(2-Methoxycarbonylarnino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-y]-biphenyl-4-yl)-1H-imidazol-2-yl]-4-oxo-hexahydro-pyrrolo[1,2-a]pyrazine-2-carboxylic acid methyl ester

5-Formyl-pyrrolidine-1,2-dicarboxylic acid 1-tert-butyl ester 2-ethyl ester: 5-Formyl-pyrrolidine-1,2-dicarboxylic acid 1-tert-butyl ester 2-ethyl ester was prepared according to: \(J\). Org. Chem. 1995, 60, 5011 - 5015.

\section*{5-[(tert-Butoxycarbonylmethyl-amino)-methyl]-pyrrolidine-1,2-dicarboxylic acid 1-tert-}
butyl ester 2-ethyl ester: Sodium triacetoxyborohydride (\(2.08 \mathrm{~g}, 9.86 \mathrm{mmol}\)) was added to a
solution of 5-formyl-pyrrolidine-1,2-dicarboxylic acid 1-tert-butyl ester 2-ethyl ester (891 mg , \(3.29 \mathrm{mmol})\) and glycine \(t\)-butyl ester (\(1.65 \mathrm{~g}, 9.86 \mathrm{mmol}\)) in dichloromethane (20 mL) over 2 minutes - a small amount of gas evolution was observed. After 1 hour the reaction was quenched with saturated ammonium chloride (5 mL). The mixture was extracted with ethyl acetate (\(3 \times 25 \mathrm{~mL}\)). The combined organic phases were dried over sodium sulfate, filtered and the solvent was removed under reduced pressure. The resulting residue was purified by flash chromatography with methanol and dichloromethane as the eluant at a gradient of \(0-10 \%\). The fractions containing product were combined and the solvent was removed under reduced pressure to provide 5-[(tert-butoxycarbonylmethyl-amino)-methyl]-pyrrolidine-1,2-dicarboxylic acid 1-tert-butyl ester 2-ethyl ester (\(601 \mathrm{mg}, 1.55 \mathrm{mmol}, 47 \%\)). \(\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{6}\) calculated 386.2, observed \([\mathrm{M}+1]^{+} 387.2 ; \mathrm{rt}=1.61 \mathrm{~min}\).

\section*{5-[(tert-Butoxycarbonylmethyl-methoxycarbonyl-amino)-methyl]-pyrrolidine-1,2-} dicarboxylic acid 1-tert-butyl ester 2-ethyl ester: Methyl chloroformate (\(0.065 \mathrm{~mL}, 0.85\) mmol) was added to a solution of 5-[(tert-butoxycarbonylmethyl-amino)-methyl]-pyrrolidine-1,2-dicarboxylic acid 1-tert-butyl ester 2-ethyl ester (\(300 \mathrm{mg}, 0.77 \mathrm{mmol}\)) and 4methylmorpholine (\(0.12 \mathrm{~mL}, 1.2 \mathrm{mmol}\)) in dichloromethane \((10 \mathrm{~mL})\) at \(0^{\circ} \mathrm{C}\). After 15 minutes the mixture was diluted with dichloromethane \((30 \mathrm{~mL})\) and washed with water \((15 \mathrm{~mL})\), saturated ammonium chloride (15 mL) and saturated sodium chloride (15 mL). The organic phase was dried over sodium sulfate and the solvent was removed under reduced pressure to provide 5-[(tert-butoxycarbonylmethyl-methoxycarbonyl-amino)-methyl]-pyrrolidine-1,2dicarboxylic acid 1-tert-butyl ester 2-ethyl ester (\(304 \mathrm{mg}, 0.68 \mathrm{mmol}, 88 \%\)). \(\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{8}\) calculated 444.3 , observed \([\mathrm{M}+1]^{+} 445.3 ; \mathrm{rt}=2.58 \mathrm{~min}\).

\section*{5-[(Carboxymethyl-methoxycarbonyl-amino)-methyl]-pyrrolidine-2-carboxylic acid ethyl} ester: 5-[(tert-Butoxycarbonylmethyl-methoxycarbonyl-amino)-methyl]-pyrrolidine-1,2dicarboxylic acid 1-tert-butyl ester 2-ethyl ester (\(304 \mathrm{mg}, 0.68 \mathrm{mmol}\)) was added to a solution of hydrogen chloride in dioxane (\(4 \mathrm{~N}, 15 \mathrm{~mL}\)). After 16 hours the solvent was removed under reduced pressure and the resulting residue was azeotroped with toluene to provide 5-[(carboxymethyl-methoxycarbonyl-amino)-methyl]-pyrrolidine-2-carboxylic acid ethyl ester (224 mg) - assumed \(100 \%\) yield.

4-Oxo-hexahydro-pyrrolo[1,2-a]pyrazine-2,6-dicarboxylic acid 6-ethyl ester 2-methyl ester: HATU (\(390 \mathrm{mg}, 1.03 \mathrm{mmol}\)) was added to solution of 5 -[(carboxymethyl-methoxycarbonyl-amino)-methyl]-pyrrolidine-2-carboxylic acid ethyl ester (\(187 \mathrm{mg}, 0.68\)
mmol) and 4-methylmorpholine (\(375 \mu \mathrm{~L}, 3.4 \mathrm{mmol}\)) in dimethylformamide (30 mL). After 50 minutes the solvent was removed under reduced pressure and the resulting residue was taken up in ethyl acetate (20 mL) which was washed with half saturated sodium chloride (\(2 \times 10 \mathrm{~mL}\)), saturated sodium bicarbonate (\(2 \times 10 \mathrm{~mL}\)) and dried over sodium sulfate. The aqueous phase also contained product. The water was removed under reduced pressure and the residue was azeotroped with toluene and then stirred with ethyl acetate \((50 \mathrm{~mL})\). The mixture was filtered and combined with the organic extracts. The solvent was removed under reduced pressure and the resulting residue was subjected to flash chromatography with eluent of (\(10 \%\) methanol in ethyl acetate) and hexane. The product-containing fractions were combined and the solvent was removed under reduced pressure to provide 4-oxo-hexahydro-pyrrolo[1,2-a]pyrazine-2,6dicarboxylic acid 6-ethyl ester 2-methyl ester (\(141 \mathrm{mg}, 0.52 \mathrm{mmol}, 76 \%\)). \(\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}\) calculated 270.1 , observed \([\mathrm{M}+1]^{+} 271.1 ; \mathrm{rt}=1.54 \mathrm{~min}\).

\section*{The following (ester hydrolysis) constitutes an example of Method 801}

4-Oxo-hexahydro-pyrrolo[1,2-a]pyrazine-2,6-dicarboxylic acid 2-methyl ester: A solution of lithium hydroxide monohydrate (\(16.8 \mathrm{mg}, 0.38 \mathrm{mmol}\)) in water \((0.5 \mathrm{~mL}\)) was added to a solution of 4-oxo-hexahydro-pyrrolo[1,2-a]pyrazine-2,6-dicarboxylic acid 6-ethyl ester 2-methyl ester (\(86 \mathrm{mg}, 0.32 \mathrm{mmol}\)) in methanol (1 mL) and tetrahydrofuran (1 mL). After 2 hours, an aqueous solution of hydrogen chloride (\(1 \mathrm{~N}, 0.41 \mathrm{~mL}, 0.41 \mathrm{mmol}\)) was added and the organic solvents were removed under reduced pressure. The resulting aqueous solution was lyophilized for 16 hours to give 4-oxo-hexahydro-pyrrolo[1,2-a]pyrazine-2,6-dicarboxylic acid 2-methyl ester. A yield of \(100 \%\) was assumed for the subsequent step. \(\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{5}\) calculated 242.1, observed \([\mathrm{M}+1]^{+} 242.9,[\mathrm{M}+1]\) 241.1; rt \(=1.54 \mathrm{~min}\).

The following three steps (amide formation, imidazole cyclization and Suzuki coupling) constitute an example of Method 802

6-[2-(4-Bromo-phenyl)-2-oxo-ethylcarbamoyl]-4-oxo-hexahydro-pyrrolo[1,2-a]pyrazine-2carboxylic acid methyl ester: A solution of 4-oxo-hexahydro-pyrrolo[1,2-a]pyrazine-2,6dicarboxylic acid 2-methyl ester (\(81 \mathrm{mg}, 0.33 \mathrm{mmol}\)), HATU (\(152 \mathrm{mg}, 0.40 \mathrm{mmol}\)), and 4 methyl morpholine (\(146 \mu \mathrm{~L}, 1.33 \mathrm{mmol}\)) in dimethylformamide (4 mL) was stirred at ambient temperature for 5 minutes. 2-Amino-1-(4-bromo-phenyl)-ethanone hydrochloride (\(91 \mathrm{mg}, 0.37\) mmol) was added to the reaction mixture. After 1 hour the solvent was removed under reduced pressure and the resulting residue was taken up in ethyl acetate (10 mL). The resulting mixture
contained a solid and was filtered. The solvent was removed under reduced pressure from the filtrate. The resulting residue was subjected to flash chromatography with eluent of (\(10 \%\) methanol in ethyl acetate) and hexane. The product-containing fractions were combined and the solvent was removed under reduced pressure to provide 6-[2-(4-bromo-phenyl)-2-oxo-ethylcarbamoyl]-4-oxo-hexahydro-pyrrolo[1,2-a]pyrazine-2-carboxylic acid methyl ester (110 \(\mathrm{mg}, 0.25 \mathrm{mmol}, 75 \%\). \(\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{BrN}_{3} \mathrm{O}_{5}\) calculated 437.1observed \([\mathrm{M}+1]^{+} 438.1 ; \mathrm{rt}=1.82 \mathrm{~min}\).

6-[5-(4-Bromo-phenyl)-1H-imidazol-2-yl]-4-oxo-hexahydro-pyrrolo[1,2-a]pyrazine-2carboxylic acid methyl ester: A mixture of 6-[2-(4-bromo-phenyl)-2-oxo-ethylcarbamoyl]-4-oxo-hexahydro-pyrrolo[1,2-a]pyrazine-2-carboxylic acid methyl ester (\(110 \mathrm{mg}, 0.25 \mathrm{mmol}\)), ammonium acetate (\(193 \mathrm{mg}, 2.5 \mathrm{mmol}\)) and xylenes (8 mL) was heated to \(130^{\circ} \mathrm{C}\). After 1 hour the mixture was cooled and the xylenes were removed under reduced pressure.
Dichloromethane was added to the resulting residue and the mixture was filtered. The solvent was removed under reduced pressure from the filtrate and the resulting residue was subjected to flash chromatography with eluent of (\(10 \%\) methanol in ethyl acetate) and hexane. The productcontaining fractions were combined and the solvent was removed under reduced pressure to provide 6-[5-(4-bromo-phenyl)-1H-imidazol-2-yl]-4-oxo-hexahydro-pyrrolo[1,2-a]pyrazine-2carboxylic acid methyl ester (\(65 \mathrm{mg}, 0.15 \mathrm{mmol}, 60 \%\)). \(\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{BrN}_{4} \mathrm{O}_{3}\) calculated 418. lobserved \([\mathrm{M}+1]^{+} 419.1 ; \mathrm{rt}=1.50 \mathrm{~min}\).

6-[5-(4'-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl)-biphenyl-4-yl)-1H-imidazol-2-yl]-4-oxo-hexahydro-pyrrolo[1,2-a]pyrazine-2carboxylic acid methyl ester: A mixture of 6-[5-(4-bromo-phenyl)-1H-imidazol-2-yl]-4-oxo-hexahydro-pyrrolo[1,2-a]pyrazine-2-carboxylic acid methyl ester (\(65 \mathrm{mg}, 0.15 \mathrm{mmol}\)), [2-methyl-1-(2-\{5-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-propyl]-carbamic acid methyl ester (\(77 \mathrm{mg}, 0.15 \mathrm{mmol}\)), tetrakis(triphenylphosphine)palladium (0) (\(18 \mathrm{mg}, 0.015 \mathrm{mmol}\)), potassium carbonate \((42.8 \mathrm{mg}\), 0.31 mmol), 1,2 -dimethoxyethane (4 mL) and water (1 mL) was heated in a microwave reactor at \(120^{\circ} \mathrm{C}\) for 20 minutes. The mixture was cooled and all volatiles were removed under reduced pressure. The resulting residue was taken up in dimethylformamide (2 mL) and subjected to reverse phase chromatography with an eluent of \(0.1 \%\) TFA in water and \(0.1 \%\) TFA in acetonitrile. The product-containing fractions were combined and the solvent was removed by lyophilization to provide 6-[5-(4'-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl \(\}\)-biphenyl-4-yl)-1 H -imidazol-2-yl]-4-oxo-hexahydro-pyrrolo[1,2-a]pyrazine-2-carboxylic acid methyl ester (\(16.8 \mathrm{mg}, 0.024 \mathrm{mmol}, 15 \%\)). \(\mathrm{C}_{38} \mathrm{H}_{44} \mathrm{BrN}_{8} \mathrm{O}_{6}\)
calculated 708.3 observed \([\mathrm{M}+1]^{+} 709.4 ; \mathrm{rt}=1.39 \mathrm{~min} .^{1} \mathrm{H}(\mathrm{DMSO}-\mathrm{d} 6): \delta=8.10(\mathrm{~s}, 2 \mathrm{H}), 7.89\) \((\mathrm{m}, 7 \mathrm{H}), 7.33(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{~m}, 1 \mathrm{H}), 4.23(\mathrm{~m}\), \(1 \mathrm{H}), 4.11(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~m}, 3 \mathrm{H}), 2.90(\mathrm{~m}\), \(1 \mathrm{H}), 2.41(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{~m}, 4 \mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H}), 0.82(\mathrm{~m}, 6 \mathrm{H})\).

\section*{Example AU1}
 no-pentanoic acid

HCl , Dioxane
DCM
\{1-[5-(4'-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyry))-
pyrrolidin-2-y \(\mid\))- 3 H -imidazol-4-y|-biphenyl-4-yl)-1 H -imidazol-2-ylmethyl-2-oxo-piperidin-3-yi]-carbamic acid tert-butyl ester

(2-Oxo-piperidin-3-yl)-carbamic acid tert-butyl ester: 4-Methylmorpholine (\(4.73 \mathrm{~mL}, 43.0\) mmol) was added to a suspension of R-5-amino-2-tert-butoxycarbonylamino-pentanoic acid (5 \(\mathrm{g}, 21.5 \mathrm{mmol})\) and \(\operatorname{HATU}(9 \mathrm{~g}, 23.6 \mathrm{mmol})\) in dimethylformamide (100 mL). After 2 hours the solvent was removed under reduced pressure. Saturated sodium bicarbonate (100 mL) was added to the residue and the resulting mixture was extracted with dichloromethane (\(3 \times 75 \mathrm{~mL}\)). The combined organic extracts were washed with saturated sodium chloride (50 mL), dried over sodium sulfate and filtered. The solvent was removed under reduced pressure and the residue was subjected to flash chromatography with eluent of (\(10 \%\) methanol in ethyl acetate) and hexane. The product-containing fractions were combined and the solvent was removed under reduced pressure to provide (\(R\))-(2-oxo-piperidin-3-yl)-carbamic acid tert-butyl ester (\(3 \mathrm{~g}, 14.0\) mmol, \(66 \%) . \mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}\) calculated 214.1 observed \([\mathrm{M}+1]^{+} 215.2 ; \mathrm{rt}=1.73 \mathrm{~min}\).

\section*{\(\boldsymbol{R}\)-(3-tert-Butoxycarbonylamino-2-oxo-piperidin-1-yl)-acetic acid benzyl ester: A solution} of lithium bis(trimethylsilyl)amide (\(1.0 \mathrm{M}, 16.8 \mathrm{~mL}, 16.8 \mathrm{mmol}\)) in tetrahydrofuran was added dropwise to a solution of R-2-oxo-piperidin-3-yl)-carbamic acid tert-butyl ester (\(3 \mathrm{~g}, 14.0\) mmol) in tetrahydrofuran in a dry flask under an atmosphere of nitrogen. After 30 minutes bromo-acetic acid benzyl ester (\(2.41 \mathrm{~mL}, 15.4 \mathrm{mmol}\)) was added dropwise. After an additional 30 minutes the mixture was quenched with saturated ammonium chloride (30 mL). The aqueous phase was extracted with ethyl acetate (\(3 \times 50 \mathrm{~mL}\)). The combined organic phases were washed with saturated sodium chloride \((50 \mathrm{~mL})\) and dried over sodium sulfate. The mixture was filtered and the solvent was removed under reduced pressure. The residue was subjected to flash chromatography with eluent of ethyl acetate and hexane. The product-containing fractions were combined and the solvent was removed under reduced pressure to provide (\(R\))-(3-tert-
butoxycarbonylamino-2-oxo-piperidin-1-yl)-acetic acid benzyl ester (\(2.31 \mathrm{~g}, 6.37 \mathrm{mmol}, 45 \%\)). \(\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}\) calculated 362.2 observed \([\mathrm{M}+1]^{+} 363.1 ; \mathrm{rt}=2.40 \mathrm{~min}\).

\section*{The following (benzyl ester cleavage) constitutes and example of Method 803}
(R)-(3-tert-Butoxycarbonylamino-2-oxo-piperidin-1-yl)-acetic acid: Palladium on carbon (10 \(\%, 500 \mathrm{mg}\)) was added to a solution of (\(R\))-(3-tert-butoxycarbonylamino-2-oxo-piperidin-1-yl)acetic acid benzyl ester (\(2.31 \mathrm{~g}, 6.37 \mathrm{mmol}\)) in ethanol (50 mL). The atmosphere was replaced with hydrogen and maintained with a balloon filled with hydrogen and the above mixture was vigorously stirred. After 16 hours the hydrogen was removed and CELITE was added to the mixture with stirring and then the mixture was filtered though a pad of CELITE. The solvent was removed under reduced pressure and the resulting residue was azeotroped with toluene to provide (\(R\))-(3-tert-butoxycarbonylamino-2-oxo-piperidin-1-yl)-acetic acid (\(1.65 \mathrm{~g}, 6.06 \mathrm{mmol}\), \(95 \%) . \mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}\) calculated 272.3 observed \([\mathrm{M}+1]^{+} 271.2 ; \mathrm{rt}=1.80 \mathrm{~min}\).

\section*{(R)-\{1-[5-(4'-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-y]]-3H-} imidazol-4-yl\}-biphenyl-4-yl)-1H-imidazol-2-yl methyl|-2-ox0-piperidin-3-yl\}-carbamic acid tert-butyl ester: (\(R\))-\{1-[5-(4'-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-1H-imidazol-2-yl methyl]-2-oxo-piperidin-3-yl\}-carbamic acid tert-butyl ester was prepared by Method 802 substituting (3-tert-butoxycarbonylamino-2-oxo-piperidin-1-yl)-acetic acid for 4-oxo-hexahydro-pyrrolo[1,2-a]pyrazine-2,6-dicarboxylic acid 2-methyl ester. \(\mathrm{C}_{40} \mathrm{H}_{50} \mathrm{~N}_{8} \mathrm{O}_{6}\) calculated 738.4 observed [M + \(1]^{+} 739.5 ; \mathrm{rt}=1.83 \mathrm{~min} ;{ }^{1} \mathrm{H}(\mathrm{DMSO}-\mathrm{d} 6): ~ \delta=11.82(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~m}, 4 \mathrm{H}), 7.64(\mathrm{~m}, 4 \mathrm{H}), 7.47(\mathrm{~s}\), \(1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~m}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})\), \(4.43(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 2 \mathrm{H}), 3.1(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H})\), \(2.11(\mathrm{~m}, 2 \mathrm{H}), 1.93(\mathrm{~m}, 4 \mathrm{H}), 1.74(\mathrm{~m}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}), 0.850(\mathrm{~m}, 6 \mathrm{H})\).

\{1-[5-(4'-\{2-11-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-1H-imidazol-2-ylmethylj-2-oxo-piperidin-3-yl)-carbamic acid tert-butyl ester
(S)-\{1-[5-(4'-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-1H-imidazol-2-yl methyl]-2-oxo-piperidin-3-yl\}-carbamic acid tert-butyl ester: (\(S\))-\{1-[5-(4'-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-1H-imidazol-2-yl methyl]-2-oxo-piperidin-3yl \(\}\)-carbamic acid tert-butyl ester was prepared following the method described above.
\(\mathrm{C}_{40} \mathrm{H}_{50} \mathrm{~N}_{8} \mathrm{O}_{6}\) calculated 738.4 observed \([\mathrm{M}+1]^{+} 739.5 ; \mathrm{rt}=1.80 \mathrm{~min} .{ }^{1} \mathrm{H}\) (DMSO-d6): \(\delta=8.09\) \((\mathrm{s}, 1 \mathrm{H}), 7.90(\mathrm{~m}, 8 \mathrm{H}), 7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})\), \(7.85(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~m}, 2 \mathrm{H}), 3.82\) \((\mathrm{m}, 2 \mathrm{H}), 3.51(\mathrm{~s}, 2 \mathrm{H}), 3.43(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 2.14-1.86\) (series \(\mathrm{m}, 9 \mathrm{H}), 1.34(\mathrm{~s}\), \(9 \mathrm{H}), 0.810(\mathrm{~m}, 6 \mathrm{H})\).

\section*{The following (Boc deportation) constitutes an example of Method 804}

\section*{(R)-\{1-[2-(5-\{4'-[2-(3-Amino-2-oxo-piperidin-1-ylmethyl)-3H-imidazol-4-yl]-biphenyl-4-yl\}-} 1H-imidazol-2-yl)-pyrrolidine-1-carbonyl]-2-methyl-propyl\}-carbamic acid methyl ester: A solution of hydrogen chloride \((4 \mathrm{~N}, 8 \mathrm{~mL})\) in dioxane was added to a solution of \((R)-\left\{1-\left[5-\left(4^{\prime}-\right.\right.\right.\) \{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-1H-imidazol-2-yl methyl]-2-oxo-piperidin-3-yl\}-carbamic acid tert-butyl ester (\(175 \mathrm{mg}, 0.24 \mathrm{mmol}\)) in dichloromethane (2 mL). After 1 hour the solvent was removed under reduced pressure. The resulting residue was placed on a high vacuum for 1 hour to provide \((R)\) -\{1-[2-(5-\{4'-[2-(3-amino-2-oxo-piperidin-1-ylmethyl)-3H-imidazol-4-yl]-biphenyl-4-yl\}-1H-imidazol-2-yl)-pyrrolidine-1-carbonyl]-2-methyl-propyl\}-carbamic acid methyl ester. The yield was assumed to be \(100 \%\) percent. A sample suitable for analysis was obtained by subjection to reverse phase chromatography with an eluent of \(0.1 \%\) TFA in water and \(0.1 \%\) TFA in acetonitrile. The product-containing fractions were combined and the solvent was removed by lyophilization. \(\mathrm{C}_{3} \mathrm{H}_{42} \mathrm{~N}_{8} \mathrm{O}_{4}\) calculated 638.3 observed \([\mathrm{M}+1]^{+} 639.4 ; \mathrm{rt}=1.41 \mathrm{~min}\). \({ }^{1} \mathrm{H}\) (DMSO-d6): \(\delta=8.33(\mathrm{~m}, 1 \mathrm{H}), 8.12(\mathrm{~m}, 1 \mathrm{H}), 7.99(\mathrm{~m}, 1 \mathrm{H}), 7.92(\mathrm{~m}, 6 \mathrm{H}), 7.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}\), \(1 \mathrm{H}), 5.13(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~m}, 2 \mathrm{H}), 4.09(\mathrm{t} J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-3.82\) (series \(\mathrm{m}, 6 \mathrm{H}\)), \(2.36(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{~m}, 4 \mathrm{H}), 0.76(\mathrm{~m}, 6 \mathrm{H})\).

\{1-[2-(5-\{4'-[2-(3-Amino-2-oxo-piperidin-1-ylmethyl)-3H-imidazol-4-yl]-biphenyl-4-yl)-1H-imidazol-2-yl)-pyrrolidine-1-carbonyl]-2-methyl-propylf-carbamic acid methyl ester
(S)-\{1-[2-(5-\{4'-[2-(3-Amino-2-oxo-piperidin-1-yl methyl)-3H-imidazol-4-yl]-biphenyl-4-yl\}-1H-imidazol-2-yl)-pyrrolidine-1-carbonyl]-2-methyl-propyl\}-carbamic acid methyl ester: \((S)\) - \(\{1\)-[2-(5-\{4'-[2-(3-Amino-2-oxo-piperidin-1-ylmethyl)-3H-imidazol-4-yl]-biphenyl-4-yl\}-1H-imidazol-2-yl)-pyrrolidine-1-carbonyl]-2-methyl-propyl\}-carbamic acid methyl ester was prepared following the method used for the (R)-isomer with the appropriate substitution described above. \(\mathrm{C}_{35} \mathrm{H}_{42} \mathrm{~N}_{8} \mathrm{O}_{4}\) calculated 638.3 observed \([\mathrm{M}+1]^{+} 639.5 ; \mathrm{rt}=1.39 \mathrm{~min} .{ }^{1} \mathrm{H}\) (DMSO-d6): \(\delta=8.32(\mathrm{~m}, 2 \mathrm{H}), 7.91(\mathrm{~m}, 8 \mathrm{H}), 7.27(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})\), \(4.79(\mathrm{~m}, 3 \mathrm{H}), 4.09(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~m}, 4 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{~m}, 1 \mathrm{H})\), \(2.35(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~m}, 3 \mathrm{H}), 1.95(\mathrm{~m}, 6 \mathrm{H}), 0.78(\mathrm{~m}, 6 \mathrm{H})\).

The following two steps (Carbamate formation and imidazole deprotection) constitute an example of Method 805

\section*{(R)-\{1-[5-(4'-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-} imidazol-4-yl\}-biphenyl-4-yl)-1H-imidazol-2-yl methyl|-2-oxo-piperidin-3-yl\}-carbamic acid methyl ester: 4-Methylmorpholine (\(71 \mu \mathrm{~L}, 0.64 \mathrm{mmol}\)) was added to a suspension of (\(R\))-\{1-[2-(5-\{4'-[2-(3-amino-2-oxo-piperidin-1-yl methyl)-3H-imidazol-4-yl]-biphenyl-4-yl\}-1H-imidazol-2-yl)-pyrrolidine-1-carbonyl]-2-methyl-propyl\}-carbamic acid methyl ester (137 mg , 0.21 mmol) in dichloromethane (5 mL). Methyl chloroformate (\(16.5 \mu \mathrm{~L}, 0.21 \mathrm{mmol}\)) was added to the resulting solution. After 20 minutes the solvent was removed under reduced pressure. The residue was taken up in tetrahydrofuran (4 mL) and methanol (2 mL) and an aqueous solution of sodium hydroxide (\(2 \mathrm{~N}, 1 \mathrm{~mL}\)) was added. After 2 hours the organic solvents were removed under reduced pressure and the aqueous phase was decanted. The residue was taken up in dimethylformamide (2 mL) and subjected to reverse phase chromatography with an eluent of \(0.1 \%\) TFA in water and \(0.1 \%\) TFA in acetonitrile. The product-containing fractions were combined and the solvent was removed by lyophilization to provide (\(R\))-\{1-[5-(4'-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)1 H -imidazol-2-ylmethyl]-2-oxo-piperidin-3-yl)-carbamic acid methyl ester (\(46.7 \mathrm{mg}, 0.67\)
mmol, \(32 \%\)). \(\mathrm{C}_{37} \mathrm{H}_{44} \mathrm{~N}_{8} \mathrm{O}_{6}\) calculated 696.3 observed \([\mathrm{M}+1]^{+} 697.4 ; \mathrm{rt}=1.58 \mathrm{~min} .{ }^{1} \mathrm{H}\) (DMSO-d6,): \(\delta=8.05(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~m}, 8 \mathrm{H}) 7.30(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=\) \(15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~m}, 2 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H})\), \(2.14(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.78\) (series \(\mathrm{m}, 8 \mathrm{H}), 0.78(\mathrm{~m}, 6 \mathrm{H})\).

\{1-[5-(4'-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-1 H -imidazol-2-ylmethyl)-2-oxo-piperidin-3-ylf-carbamic acid methyl ester
(S)-\{1-[5-(4'-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-
imidazol-4-yl\}-biphenyl-4-yl)-1H-imidazol-2-ylmethyl]-2-oxo-piperidin-3-yl\}-carbamic acid methyl ester: (\(S\))-\{1-[5-(4'-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl \(\}\)-biphenyl-4-yl)-1H-imidazol-2-ylmethyl]-2-oxo-piperidin-3-yl\}-carbamic acid methyl ester was prepared following the method described above for the (\(R\)) isomer with the appropriate substitution. \(\mathrm{C}_{37} \mathrm{H}_{44} \mathrm{~N}_{8} \mathrm{O}_{6}\) calculated 696.3 observed \([\mathrm{M}+1]^{+} 697.4 ; \mathrm{rt}=1.54\) \(\min .{ }^{1} \mathrm{H}(\mathrm{DMSO}-\mathrm{d} 6): \delta=8.03(\mathrm{~m}, 1 \mathrm{H}), 7.86(\mathrm{~m}, 8 \mathrm{H}), 7.03(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})\), \(4.84(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~m}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H})\), \(3005(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~m}, 1 \mathrm{H}), 2.14-1.78\) (series \(\mathrm{m}, 9 \mathrm{H}), 0.78(\mathrm{~m}, 6 \mathrm{H})\).

\section*{Example AV1}

\{3-[5-(4'-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-ylf-biphenyl-4-y|)-1H-imidazol-2-yl]-5-oxo-octahydro-indolizin-6-yl\}-carbamic acid tert-butyl ester
\{3-[5-(4'-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-1H-imidazol-2-yll-5-oxo-octahydro-indolizin-6-yl\}-carbamic acid tertbutyl ester: \{3-[5-(4'-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-1H-imidazol-2-yl]-5-oxo-octahydro-indolizin-6-yl\}-carbamic
acid tert-butyl ester was prepared following method 802 substituting 6-tert-butoxycarbonylamino-5-oxo-octahydro-indolizine-3-carboxylic acid for 4-oxo-hexahydro-pyrrolo[1,2-a]pyrazine-2,6-dicarboxylic acid 2-methyl ester. \(\mathrm{C}_{42} \mathrm{H}_{52} \mathrm{~N}_{8} \mathrm{O}_{6}\) calculated 764.4 observed \([\mathrm{M}+1]^{+} 765.5 ; \mathrm{rt}=1.86 \mathrm{~min} .{ }^{1} \mathrm{H}(\mathrm{DMSO}-\mathrm{d} 6): \delta=7.89(\mathrm{~m}, 8 \mathrm{H}), 7.33(\mathrm{~d}, J=11.2 \mathrm{~Hz}\), \(1 \mathrm{H}), 6.88(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{~m}, 2 \mathrm{H}), 4.09(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~m}, 2 \mathrm{H}), 3.60-3.45\) (series \(\mathrm{m}, 4 \mathrm{H}), 3.53(\mathrm{~s}\), \(3 \mathrm{H}), 2.34(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{~m} 8 \mathrm{H}), 1.79(\mathrm{~m}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}), 0.81(\mathrm{dd}, J=8.8 \mathrm{~Hz}, J=17.2 \mathrm{~Hz}\), \(6 \mathrm{H})\).

\section*{Example AW1}

\{3-[5-(4'-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-1 -imidazol-2-yl]-5-oxo-octahydro-indolizin-6-yl\}carbamic acid methyl ester

\section*{\{3-[5-(4'-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-} 4-yl\}-biphenyl-4-yl)-1H-imidazol-2-yl]-5-ox0-octahydro-indolizin-6-yl\}-carbamic acid methyl ester: \{3-[5-(4'-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-1H-imidazol-2-yl]-5-oxo-octahydro-indolizin-6-yl \}-carbamic acid methyl ester was prepared following method 804 followed by method 805, substituting \{3-[5-(4'-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-1H-imidazol-2-yl]-5-oxo-octahydro-indolizin-6-yl\}-carbamic acid tert-butyl ester for \{1-[5-(4'-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-1H-imidazol-2-ylmethyl]-2-oxo-piperidin-3-yl\}-carbamic acid tert-butyl ester in method 804, and substituting \{1-[2-(5-\{4'-[2-(6-Amino-5-oxo-octahydro-indolizin-3-yl)-3H-imidazol-4-yl]-biphenyl-4-yl\}-1H-imidazol-2-yl)-pyrrolidine-1-carbonyl]-2-methyl-propyl\}-carbamic acid methyl ester for \(\{1\)-[2-(5-\{4'-[2-(3-amino-2-oxo-piperidin-1-ylmethyl)-3H-imidazol-4-yl]-biphenyl-4-yl\}-1H-imidazol-2-yl)-pyrrolidine-1-carbonyl]-2-
methyl-propyl\}-carbamic acid methyl ester in method 805. \(\quad \mathrm{C}_{39} \mathrm{H}_{46} \mathrm{~N}_{8} \mathrm{O}_{6}\) calculated 722.4 observed \([\mathrm{M}+1]^{+} 723.4 ; \mathrm{rt}=1.62 \mathrm{~min} .{ }^{1} \mathrm{H}(\mathrm{DMSO}-\mathrm{d} 6): \delta=8.10(\mathrm{~m}, 1 \mathrm{H}), 7.90(\mathrm{~m}, 8 \mathrm{H}), 7.31\) \((\mathrm{m}, 2 \mathrm{H}), 5.12(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~m} 2 \mathrm{H}), 3.74(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{~s}, 6 \mathrm{H}), 2.38(\mathrm{~m}, 2 \mathrm{H}), 2.14\) \((\mathrm{m}, 3 \mathrm{H}), 2.05(\mathrm{~m}, 5 \mathrm{H}), 1.82(\mathrm{~m} 3 \mathrm{H}), 0.81(\mathrm{dd}, J=8.8 \mathrm{~Hz}, J=17.6 \mathrm{~Hz}, 6 \mathrm{H})\).

\section*{Example AX1}

[1-(2-\{5-[4'-(2-tert-Butoxycarbonylamino-acetyl)-biphenyl-4-yl]-1H-imidazol-2-yl)-pyrrolidine-1-carbonyl)-2-methyl-propylJ-carbamic acid methyl ester

[1-(2-\{5-[4'-(2-Amino-acetyl)-biphenyl-4-yl]-1H-
imidazol-2-yl\}-pyrrolidine-1-carbonyl)-2-methyl-propyl]carbamic acid methyl ester
[1-(2-\{5-[4'-(2-tert-Butoxycarbonylamino-acetyl)-biphenyl-4-yl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester: A mixture of [2-(4-Bromo-phenyl)-2-oxo-ethyl]-carbamic acid tert-butyl ester (\(1 \mathrm{~g}, 3.2 \mathrm{mmol}\)), [2-methyl-1-(2-\{5-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-propyl]-carbamic acid methyl ester (\(1.57 \mathrm{~g}, 3.2 \mathrm{mmol}\)), tetrakis(triphenylphosphine)palladium(0) (\(183 \mathrm{mg}, 0.15 \mathrm{mmol}\)), potassium carbonate (878 mg , \(6.5 \mathrm{mmol}), 1,2\)-dimethoxyethane (25 mL) and water (2.5 mL) was stirred at \(80^{\circ} \mathrm{C}\) for 16 hours. The mixture was cooled and all volatiles were removed under reduced pressure. The resulting residue was taken up in dichloromethane (100 mL) and washed with water (25 mL) and saturated sodium chloride (25 mL). The organic phase was dried over sodium sulfate and filtered. The solvent was removed under reduced pressure and the residue was subjected to flash chromatography with eluent of (\(10 \%\) methanol in ethyl acetate) and hexane. The productcontaining fractions were combined and the solvent was removed under reduced pressure to
provide [1-(2-\{5-[4'-(2-tert-butoxycarbonylamino-acetyl)-biphenyl-4-yl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester (\(869 \mathrm{mg}, 1.4 \mathrm{mmol}, 44\) \(\%\)).
\(\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}_{6}\) calculated 603.3 observed \([\mathrm{M}+1]^{+} 604.3 ; \mathrm{rt}=2.01 \mathrm{~min} .{ }^{1} \mathrm{H}\) (DMSO-d6): \(\delta=\) \(11.82(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~m}, 2 \mathrm{H}), 7.84(\mathrm{~m} 4 \mathrm{H}), 7.72(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.7\) \(\mathrm{Hz}, 1 \mathrm{H}), 7.08(\mathrm{~m}, 1 \mathrm{H}), 5.08(\mathrm{~m}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~m}, 2 \mathrm{H}), 3.53\) \((\mathrm{s}, 3 \mathrm{H}), 2.14(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{dd}, J=6.9 \mathrm{~Hz}, J=15.9 \mathrm{~Hz}, 6 \mathrm{H})\).
[1-(2-\{5-|4'-(2-Amino-acetyl)-biphenyl-4-yl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester: [1-(2-\{5-[4'-(2-Amino-acetyl)-biphenyl-4-yl]1 H -imidazol-2-yl \(\}\)-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester was prepared using method 804 substituting [1-(2-\{5-[4'-(2-tert-butoxycarbonylamino-acetyl)-biphenyl-4-yl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester for \{1-[5-(4'-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-1H-imidazol-2-ylmethyl]-2-oxo-piperidin-3-yl\}-carbamic acid tert-butyl ester. \(\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{4}\) calculated 503.3 observed \([\mathrm{M}+1]^{+} 504.2 ; \mathrm{rt}=1.42 \mathrm{~min}\).

\section*{Example AY1}

(1-\{1-[4-(4'-\{2-11-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl)-3H-imidazol-4-yl\}-biphenyl-4-yl)-1 H -imidazol-2-y|]-ethy|l-2-oxo-piperidin-3-yl)-carbamic acid methyl ester

2-tert-Butoxycarbonylamino-4-(methoxy-methyl-carbamoyl)-butyric acid benzyl ester: 4Methylmorpholine (\(9.77 \mathrm{~mL}, 88.9 \mathrm{mmol}\)) was added to a suspension of 2-tert-butoxycarbonylamino-pentanedioic acid l-benzyl ester (\(6 \mathrm{~g}, 17.7 \mathrm{mmol}\)), and HATU (8.11 g , 21.3 mmol) in dimethylformamide (20 mL). After 5 minutes \(N, O\) - dimethylhydroxylamine hydrochloride (\(2.60 \mathrm{~g}, 26.7 \mathrm{mmol}\)), was added to the solution. After 1 hour the solvent was removed under reduced pressure. The residue was taken up in ethyl acetate (150 mL), and washed with water (100 mL), aqueous hydrogen chloride (\(0.5 \mathrm{~N}, 2 \times 100 \mathrm{~mL}\)), saturated sodium bicarbonate (100 mL), and saturated sodium chloride \((100 \mathrm{~mL})\). The organic phase was dried over sodium sulfate, filtered and the solvent was removed under reduced pressure. The residue was subjected to flash chromatography with eluent of ethyl acetate and hexane. The productcontaining fractions were combined and the solvent was removed under reduced pressure to yield 2-tert-butoxycarbonylamino-4-(methoxy-methyl-carbamoyl)-butyric acid benzyl ester (6.8 \(\mathrm{g}, 17.8 \mathrm{mmol}, 99 \%) . \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6}\) calculated 380.2 observed \([\mathrm{M}+1]^{+} 381.2 ; \mathrm{rt}=2.48 \mathrm{~min}\).

\section*{2,2-bis(tert-Butoxycarbonylamino)-4-(methoxy-methyl-carbamoyl)-butyric acid benzyl} ester: Di-tert-butyl dicarbonate \((4.20 \mathrm{~g}, 19.6 \mathrm{mmol})\) was added to a solution of 2-tert-butoxycarbonylamino-4-(methoxy-methyl-carbamoyl)-butyric acid benzyl ester (\(6.8 \mathrm{~g}, 17.8\) mmol) and dimethylamino pyridine (\(436 \mathrm{mg}, 3.5 \mathrm{mmol}\)) in acetonitrile (40 mL). After 16 hours starting material remained and di-tert-Butyl dicarbonate (\(4.20 \mathrm{~g}, 19.6 \mathrm{mmol}\)) was added again. After 6 days the solvent was removed under reduced pressure. The residue was taken up in ethyl acetate (250 mL), washed with water (\(2 \times 100 \mathrm{~mL}\)) and saturated ammonium chloride (100 mL), dried over sodium sulfate and filtered. The solvent was removed under reduced pressure. The residue was subjected to flash chromatography with eluent of ethyl acetate and hexane. The product-containing fractions were combined and the solvent was removed under reduced pressure to yield 2,2-bis(tert-butoxycarbonylamino)-4-(methoxy-methyl-carbamoyl)-butyric acid benzyl ester (\(8.2 \mathrm{~g}, 17.0 \mathrm{mmol}, 95 \%\)). \(\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{6}\) calculated 480.3 observed \([\mathrm{M}+1]^{+}\) \(481.1 ; \mathrm{rt}=2.83 \mathrm{~min}\).

2,2-bis(tert-Butoxycarbonylamino)-5-oxo-pentanoic acid benzyl ester: A solution of DIBAL (\(1.0 \mathrm{M}, 14.7 \mathrm{~mL}, 14.7 \mathrm{mmol}\)) in hexane was added dropwise to a solution of 2,2-bis(tert-butoxycarbonylamino)-4-(methoxy-methyl-carbamoyl)-butyric acid benzyl ester (\(4 \mathrm{~g}, 10.5\) mmol) under an atmosphere of nitrogen at \(-78^{\circ} \mathrm{C}\). After 2 hours the mixture was quenched with saturated ammonium chloride (30 mL) and allowed to warm to room temperature. Water (20 mL) was added, and the mixture was extracted with diethyl ether (\(3 \times 50 \mathrm{~mL}\)). The combined organic phases were left to stand at room temperature for 15 minutes. The resulting thick gel was filtered through a pad of CELITE. The filtrate was dried over sodium sulfate, filtered and the solvent was removed under reduced pressure to provide 2,2-bis(tert-butoxycarbonylamino)5 -oxo-pentanoic acid benzyl ester (\(3.34 \mathrm{~g}, 7.9 \mathrm{mmol}, 75 \%\)). This was used immediately in the next step.

\section*{2,2-bis(tert-Butoxycarbonylamino)-5-(1-ethoxycarbonyl-ethylamino)-pentanoic acid benzyl} ester: Sodium triacetoxyborohydride (\(5 \mathrm{~g}, 23.5 \mathrm{mmol}\)) was added to a solution of 2,2-bis(tert-butoxycarbonylamino)-5-oxo-pentanoic acid benzyl ester (\(3.34 \mathrm{~g}, 7.9 \mathrm{mmol}\)) and alanine ethyl ester hydrochloride (\(3.62 \mathrm{~g}, 23.5 \mathrm{mmol}\)) in dichloromethane (30 mL). After 1 hour saturated ammonium chloride (10 mL) was added and the mixture was stirred for 5 minutes. The aqueous phase was extracted with dichloromethane (\(2 \times 15 \mathrm{~mL}\)), and the combined organic phases were dried over sodium sulfate, filtered and the solvent was removed under reduced pressure. The resulting residue was subjected to flash chromatography with eluent of (\(10 \%\) methanol in ethyl
acetate) and hexane. The product-containing fractions were combined and the solvent was removed under reduced pressure to provide 2,2-bis(tert-butoxycarbonylamino)-5-(1-ethoxycarbonyl-ethylamino)-pentanoic acid benzyl ester (\(1.7 \mathrm{~g}, 3.3 \mathrm{mmol}, 41 \%\)). \(\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{8}\) calculated 522.3 observed \([\mathrm{M}+1]^{+} 523.3 ; \mathrm{rt}=2.08 \mathrm{~min}\).

2,2-bis(tert-Butoxycarbonylamino)-5-(1-ethoxycarbonyl-ethylamino)-pentanoic acid: 2,2-bis(tert-Butoxycarbonylamino)-5-(1-ethoxycarbonyl-ethylamino)-pentanoic acid was prepared using method 803, substituting 2,2-bis(tert-butoxycarbonylamino)-5-(1-ethoxycarbonyl-ethylamino)-pentanoic acid benzyl ester for (3-tert-butoxycarbonylamino-2-oxo-piperidin-1-yl)acetic acid benzyl ester. \(\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{8}\) calculated 432.3 observed \([\mathrm{M}+1]^{+} 433.1 ; \mathrm{rt}=1.73 \mathrm{~min}\).

\section*{2-[3,3-bis(tert-Butoxycarbonylamino)-2-oxo-piperidin-1-yl]-propionic acid ethyl ester:} HATU (\(1.72 \mathrm{~g}, 4.5 \mathrm{mmol}\)) was added to a solution of 2,2-bis(tert-butoxycarbonylamino)-5-(1-ethoxycarbonyl-ethylamino)-pentanoic acid (\(1.31 \mathrm{~g}, 3.0 \mathrm{mmol}\)) and 4-methylmorpholine in dimethylformamide (50 mL). After 30 minutes the solvent was removed under reduced pressure and the residue was subjected to flash chromatography with eluent of ethyl acetate and hexane. The product-containing fractions were combined and the solvent was removed under reduced pressure to provide 2-[3,3-bis(tert-butoxycarbonylamino)-2-oxo-piperidin-1-yl]-propionic acid ethyl ester (\(1.11 \mathrm{~g}, 2.6 \mathrm{mmol}, 86 \%\)). \(\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{7}\) calculated 414.2 observed [\(\mathrm{M}+1\)] \({ }^{+} 415.2\); rt \(=2.77 \mathrm{~min}\).

2-(3-Amino-2-oxo-piperidin-1-yl)-propionic acid ethyl ester: 2-(3-Amino-2-oxo-piperidin-1-yl)-propionic acid ethyl ester was prepared using method 804 substituting 2-[3,3-bis(tert-butoxycarbonylamino)-2-oxo-piperidin-1-yl]-propionic acid ethyl ester for \{1-[5-(4'-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-1H-imidazol-2-ylmethyl]-2-oxo-piperidin-3-yl\}-carbamic acid tert-butyl ester. \(\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}\) calculated 214.2 observed \([\mathrm{M}+1]^{+} 215.2 ; \mathrm{rt}=1.21 \mathrm{~min}\).

\section*{The following (carbamate formation) constitutes an example of Method 806}

2-(3-Methoxycarbonylamino-2-oxo-piperidin-1-yl)-propionic acid ethyl ester: Methyl chloroformate (\(192 \mu \mathrm{~L}, 2.5 \mathrm{mmol}\)) was added to a solution of 2-(3-amino-2-oxo-piperidin-1-yl)propionic acid ethyl ester (\(353 \mathrm{mg}, 1.6 \mathrm{mmol}\)) and 4-methylmorpholine (\(907 \mu \mathrm{~L}, 8.24 \mathrm{mmol}\)) in dichloromethane (10 mL). After 15 minutes the mixture was diluted with dichloromethane (20 mL) and washed with water (10 mL), and aqueous hydrogen chloride (\(0.5 \mathrm{~N}, 10 \mathrm{~mL}\)). The
organic phase was dried over sodium sulfate and filtered. The solvent was removed under reduced pressure to provide 2-(3-methoxycarbonylamino-2-oxo-piperidin-1-yl)-propionic acid ethyl ester (\(332 \mathrm{mg}, 1.2 \mathrm{mmol}, 75 \%\)). \(\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}\) calculated 272.1 observed \([\mathrm{M}+1]^{+} 273.0\); rt \(=1.82 \mathrm{~min}\).

2-(3-Methoxycarbonylamino-2-oxo-piperidin-1-yl)-propionic acid: 2-(3-Methoxycarbonylamino-2-oxo-piperidin-1-yl)-propionic acid was prepared by method 801 substituting 2-(3-methoxycarbonylamino-2-oxo-piperidin-1-yl)-propionic acid ethyl ester for 4-oxo-hexahydro-pyrrolo[1,2-a]pyrazine-2,6-dicarboxylic acid 6-ethyl ester 2-methyl ester. \(\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5}\) calculated 244.1 observed \([\mathrm{M}+1]^{+} 245.1 ; \mathrm{rt}=1.53 \mathrm{~min}\).
(1-\{1-[2-(4'-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-2-oxo-ethylcarbamoyl]-ethyl\}-2-oxo-piperidin-3-yl)-carbamic acid methyl ester: A solution of 2-(3-methoxycarbonylamino-2-oxo-piperidin-1-yl)-propionic acid (\(48.5 \mathrm{mg}, 0.20 \mathrm{mmol}\)), HATU (\(91 \mathrm{mg}, 0.24 \mathrm{mmol}\)), and 4-methylmorpholine (\(109 \mu \mathrm{~L}, 0.99\) mmol) in dimethylformamide (5 mL) was stirred at ambient temperature for 5 minutes. [1-(2-\{5-[4'-(2-Amino-acetyl)-biphenyl-4-yl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester (\(100 \mathrm{mg}, 0.20 \mathrm{mmol}\)) was added to the reaction mixture. After 40 minutes the solvent was removed under reduced pressure and the resulting residue was taken up in ethyl acetate (10 mL). The resulting mixture contained a solid and was subjected to flash chromatography with eluent of (\(10 \%\) methanol in ethyl acetate) and hexane followed by \(30 \%\) methanol in DCM. The product-containing fractions were combined and the solvent was removed under reduced pressure to provide (1-\{1-[2-(4'-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-2-oxo-ethylcarbamoyl]-ethyl\}-2-oxo-piperidin-3-yl)-carbamic acid methyl ester (\(149 \mathrm{mg}, 0.20 \mathrm{mmol}, 99 \%\)). \(\mathrm{C}_{38} \mathrm{H}_{47} \mathrm{~N}_{7} \mathrm{O}_{8}\) calculated 729.4 observed \([\mathrm{M}+1]^{+} 730.6 ; \mathrm{rt}=1.78 \mathrm{~min}\).
(1-\{1-[4-(4'-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-1H-imidazol-2-yl]-ethyl\}-2-oxo-piperidin-3-yl)-carbamic acid methyl ester: A mixture of ammonium acetate (\(157 \mathrm{mg}, 2.0 \mathrm{mmol}\)), (1-\{1-[2-(4'-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-2-oxo-ethylcarbamoyl]-ethyl\}-2-oxo-piperidin-3-yl)-carbamic acid methyl ester (\(149 \mathrm{mg}, 0.20\) mmol) and xylenes (20 mL) was heated at \(130^{\circ} \mathrm{C}\) for 1 hour. The solvent was removed under reduced pressure. The residue was taken up in dichloromethane (15 mL) and filtered. The solvent was removed under reduced pressure. The residue was taken up in dimethylformamide
(2 mL) and subjected to reverse phase chromatography with an eluent of \(0.1 \%\) TFA in water and \(0.1 \%\) TFA in acetonitrile. The product-containing fractions were combined and the solvent was removed by lyophilization to provide (1-\{1-[4-(4'-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-1H-imidazol-2-yl]-ethyl\}-2-oxo-piperidin-3-yl)-carbamic acid methyl ester (\(20.5 \mathrm{mg}, 0.029 \mathrm{mmol}, 15 \%\)). \(\mathrm{C}_{38} \mathrm{H}_{46} \mathrm{~N}_{8} \mathrm{O}_{6}\) calculated 710.4 observed \([\mathrm{M}+1]^{+} 711.4 ; \mathrm{rt}=1.59 \mathrm{~min}\).
\({ }^{1} \mathrm{H}\) (DMSO-d6): \(\delta=8.10(\mathrm{~m}, 1 \mathrm{H}), 7.88(\mathrm{~m}, 8 \mathrm{H}), 7.33(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.33(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{t}\), \(J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{~m}, 1 \mathrm{H})\), \(2.26-1.74\) (series m, 8 H), 1.63 (d, \(J=6.3 \mathrm{~Hz}, 3 \mathrm{H}\)), 0.81 (dd, \(J=6.9 \mathrm{~Hz}, J=13.2 \mathrm{~Hz}, 6 \mathrm{H}\)).

\section*{Example AZ1}

(\{[2-(4-Bromo-phenyl)-2-oxo-ethylcarbamoyl]-methyll-tert-butoxycarbonyl-amino)-acetic acid

2-[2-(\{[2-(4-Bromo-phenyl)-2-oxo-ethylcarbamoyl]-methylf-tert-butoxycarbonyl-amino)-acetylaminoj-3-methyl-butyric acid methyl ester

2-[2-(\{[2-(4-Bromo-phenyl)-2-oxo-
ethylcarbamoyl)-methyl\}-tert-butoxycarbonyl-
amino)-acetylaminof-3-methyl-butyric acid

ethylcarbamoyll-methyl)-amino)-
acetylaminol-3-methyl-butyric
acid
N -[2-(4-Bromo-phenyl)-2-oxo-ethyll-2-(3-isopropyl-2,5-dioxo-piperazin-1-yl)-acetamide

1-[5-(4-Bromo-phenyl)-1 H -imidazol-2-yimethyll-3-isopropyl-piperazine-2,5-dione
[2-Methyl-1-(2- \(5-44-4,4,5,5\)-tetramethyl-[1,3,2]dioxaborolan-
2 -yl)-pheny()-1H-imidazol-2-yl)-pymolidine-1-carbonyl)propylfcarbamic acid methyl ester

\{1-[2-(5-44'-[2-(3-Isopropyl-2.5-dioxo-piperazin-1-ylmethyl)-3H-imidazol-4-y \(\mid\)-bipheny-4-y \(\mid\)-1 1 -imidazol-2-yl)-pyrrolidine-1-carbonylf 2-methyt-propyl-carbamic acid methyl ester

\section*{2,6-Dioxo-morpholine-4-carboxylic acid tert-butyl ester: A suspension of (tert-} butoxycarbonyl-carboxymethyl-amino)-acetic acid (\(5 \mathrm{~g}, 21.4 \mathrm{mmol}\)) and DCC (\(4.85 \mathrm{~g}, 23.6\) mmol) in dichloromethane was stirred for 16 hours. The mixture was filtered and the solvent was removed from the filtrate to provide 2,6-dioxo-morpholine-4-carboxylic acid tert-butyl ester (\(4.86 \mathrm{~g}, 21.0 \mathrm{mmol}, 99 \%\)).
(\{[2-(4-Bromo-phenyl)-2-oxo-ethylcarbamoyl]-methyl\}-tert-butoxycarbonyl-amino)-acetic acid: 2,6-Dioxo-morpholine-4-carboxylic acid tert-butyl ester (\(2.5 \mathrm{~g}, 11.6 \mathrm{mmol}\)) was added to a solution of 2-amino-1-(4-bromo-phenyl)-ethanone hydrochloride (\(3.05 \mathrm{~g}, 12.2 \mathrm{mmol}\)) and 4methylmorpholine (\(1.92 \mathrm{~mL}, 17.4 \mathrm{mmol}\)) in dimethylformamide (15 mL). After 30 min the solvent was removed under reduced pressure. The residue was taken up in ethyl acetate (100 mL) and washed with water (50 mL), aqueous hydrogen chloride (\(0.5 \mathrm{~N}, 2 \times 50 \mathrm{~mL}\)), and saturated sodium bicarbonate (\(2 \times 50 \mathrm{~mL}\)). The basic extracts were neutralized and extracted with ethyl acetate (\(2 \times 75 \mathrm{~mL}\)). The combined organic phases from the second extraction were dried over sodium sulfate, and filtered. The solvent was removed under reduced pressure to provide (\{[2-(4-bromo-phenyl)-2-oxo-ethylcarbamoyl]-methyl\}-tert-butoxycarbonyl-amino)acetic acid (\(4 \mathrm{~g}, 9.3 \mathrm{mmol}, 80 \%\)). \(\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{BrN}_{2} \mathrm{O}_{6}\) calculated 428.0 observed \([\mathrm{M}+1]^{+} 431.1 ; \mathrm{rt}=\) 2.36 min .

2-[2-(\{[2-(4-Bromo-phenyl)-2-oxo-ethylcarbamoyl]-methyl\}-fert-butoxycarbonyl-amino)-acetylaminoj-3-methyl-butyric acid methyl ester: 4-Methylmorpholine (\(4.1 \mathrm{~mL}, 37.3 \mathrm{mmol}\)) was added to a suspension of (\{[2-(4-bromo-phenyl)-2-oxo-ethylcarbamoyl]-methyl\}-tert-butoxycarbonyl-amino)-acetic acid (\(4 \mathrm{~g}, 9.3 \mathrm{mmol}\)), and HATU (\(4.61 \mathrm{~g}, 12.1 \mathrm{mmol}\)) in dimethylformamide (25 mL). After 5 minutes \(d\)-valine methyl ester hydrochloride (\(1.56 \mathrm{~g}, 9.3\) mmol), was added to the solution. After 1 hour the solvent was removed under reduced pressure. The residue was taken up in ethyl acetate \((150 \mathrm{~mL})\), and washed with water (100 mL), aqueous hydrogen chloride (\(0.5 \mathrm{~N}, 2 \times 100 \mathrm{~mL}\)), saturated sodium bicarbonate (100 mL), and saturated sodium chloride (100 mL). The organic phase was dried over sodium sulfate, filtered and the solvent was removed under reduced pressure. The residue was subjected to flash chromatography with eluent of (\(10 \%\) methanol in ethyl acetate) and hexane. The productcontaining fractions were combined and the solvent was removed under reduced pressure to yield 2-[2-(\{[2-(4-bromo-phenyl)-2-oxo-ethylcarbamoyl]-methyl\}-tert-butoxycarbonyl-amino)-acetylamino]-3-methyl-butyric acid methyl ester (\(4.37 \mathrm{~g}, 8.1 \mathrm{mmol}, 87 \%\)). \(\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{BrN}_{3} \mathrm{O}_{7}\) calculated 541.1 observed \([M+1]^{+} 431.1 ; \mathrm{rt}=2.65 \mathrm{~min}\).

2-[2-(\{[2-(4-Bromo-phenyl)-2-oxo-ethylcarbamoyl]-methyl\}-tert-butoxycarbonyl-amino)-acetylamino]-3-methyl-butyric acid: 2-[2-(\{[2-(4-Bromo-phenyl)-2-oxo-ethylcarbamoyl]-methyl\}-tert-butoxycarbonyl-amino)-acetylamino]-3-methyl-butyric acid was prepared using method 801 substituting 2-[2-(\{[2-(4-bromo-phenyl)-2-oxo-ethylcarbamoyl]-methyl\}-tert-butoxycarbonyl-amino)-acetylaminoj-3-methyl-butyric acid methyl ester for 4-oxo-hexahydro-pyrrolo[1,2-a]pyrazine-2,6-dicarboxylic acid 6-ethyl ester 2-methyl ester. \(\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{BrN}_{3} \mathrm{O}_{7}\) calculated 527.1 observed \([\mathrm{M}+1]^{+} 528.1 ; \mathrm{rt}=2.39 \mathrm{~min}\).

2-[2-(\{[2-(4-Bromo-phenyl)-2-oxo-ethylcarbamoyl]-methyl\}-amino)-acetylamino]-3-methyl-butyric acid: 2-[2-(\{[2-(4-Bromo-phenyl)-2-oxo-ethylcarbamoyl]-methyl \(\}\)-amino)-acetylamino]-3-methyl-butyric acid was prepared using method 804 substituting 2-[2-(\{[2-(4-bromo-phenyl)-2-oxo-ethylcarbamoyl]-methyl\}-tert-butoxycarbonyl-amino)-acetylamino]-3-methyl-butyric acid for 1-[5-(4'-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-1H-imidazol-2-ylmethyl]-2-oxo-piperidin-3-yl\}carbamic acid tert-butyl ester. \(\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{BrN}_{3} \mathrm{O}_{5}\) calculated 427.1 observed \([\mathrm{M}+1]^{+} 428.0\); rt \(=\) 2.39 min .
\(\mathbf{N}\)-[2-(4-Bromo-phenyl)-2-oxo-ethyl]-2-(3-isopropyl-2,5-dioxo-piperazin-1-yl)-acetamide: HATU (\(3.70 \mathrm{~g}, 9.7 \mathrm{mmol}\)) was added to a solution of 2-[2-(\{[2-(4-bromo-phenyl)-2-oxo-ethylcarbamoyl]-methyl \(\}\)-amino)-acetylamino]-3-methyl-butyric acid (\(2.78 \mathrm{~g}, 6.5 \mathrm{mmol}\)), and 4methylmorpholine (\(3.57 \mathrm{~mL}, 32.5 \mathrm{mmol}\)) in DMF (100 mL). After 30 min the solvent was removed under reduced pressure. The residue was taken up in dichloromethane (150 mL) and washed with water (50 mL), aqueous hydrogen chloride (\(0.5 \mathrm{~N}, 2 \times 50 \mathrm{~mL}\)), saturated sodium bicarbonate (50 mL) and dried over sodium sulfate. The mixture was filtered and the solvent was removed under reduced pressure. The residue was subjected to flash chromatography with eluent of (\(10 \%\) methanol in ethyl acetate) and hexane. The product-containing fractions were combined and the solvent was removed under reduced pressure to yield N -[2-(4-bromo-phenyl)-2-oxo-ethyl]-2-(3-isopropyl-2,5-dioxo-piperazin-1-yl)-acetamide (\(1.56 \mathrm{~g}, 3.8 \mathrm{mmol}, 60 \%\)). \(\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{BrN}_{3} \mathrm{O}_{4}\) calculated 409.1 observed \([\mathrm{M}+1]^{+} 410.1 ; \mathrm{rt}=2.00 \mathrm{~min}\).
\{1-[2-(5-\{4'-[2-(3-Isopropyl-2,5-dioxo-piperazin-1-ylmethyl)-3H-imidazol-4-yl]-biphenyl-4-yl\}-1H-imidazol-2-yl)-pyrrolidine-1-carbonyl]-2-methyl-propyl\}-carbamic acid methyl ester: \{1-[2-(5-\{4'-[2-(3-Isopropyl-2,5-dioxo-piperazin-1-ylmethyl)-3H-imidazol-4-yl]-biphenyl-4-yl\}-1H-imidazol-2-yl)-pyrrolidine-1-carbonyl]-2-methyl-propyl\}-carbamic acid
methyl ester was prepared using the imidazole cyclization from method 802, substituting N -[2-(4-bromo-phenyl)-2-oxo-ethyl]-2-(3-isopropyl-2,5-dioxo-piperazin-1-yl)-acetamide for 6-[2-(4-bromo-phenyl)-2-oxo-ethylcarbamoyl]-4-oxo-hexahydro-pyrrolo[1,2-a]pyrazine-2-carboxylic acid methyl ester and using [2-Methyl-1-(2-\{5-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1 H -imidazol-2-yl\}-pyrrolidine-1-carbonyl)-propyl]-carbamic acid methyl ester in the coupling reaction. \(\mathrm{C}_{37} \mathrm{H}_{44} \mathrm{~N}_{8} \mathrm{O}_{5}\) calculated 680.3 observed \([\mathrm{M}+1]^{+} 681.4 ; \mathrm{rt}=1.57 \mathrm{~min} .{ }^{1} \mathrm{H}\) (DMSO-d6): \(\delta=8.39\) (d, \(J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~m}, 1 \mathrm{H}), 8.04(\mathrm{~m}, 1 \mathrm{H}), 7.88(\mathrm{~m}, 5 \mathrm{H}), 7.33(\mathrm{~d}, J\) \(=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~m}, 1 \mathrm{H}), 4.79(\mathrm{~m}, 1 \mathrm{H}), 4.65(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.83\) \((\mathrm{m}, 2 \mathrm{H}), 3.73(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~m}, 2 \mathrm{H}), 8.40(\mathrm{~m}, 8 \mathrm{H}) .:\)

The following 3 steps (Sonogashira coupling, SEM protection, Boc deprotection) constitute an example of method \(\mathbf{8 0 7}\)

\section*{Example BA}

3'-(2-Methoxycarbonylamino-3-methyl-butyryl)-4-[4-(4-\{2-[1-(2-
methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl)-1 H -imidazol-4-yl)-phenylethynyl)-phenyl]-2', \(3^{\prime}, 4^{\prime}, 5^{\prime}\)-tetrahydro-1H-[2,4']biimidazolyl-1'-carboxylic acid tert-butyl ester

3'-(2-Methoxycarbonylamino-3-methyl-butyryl)-4-[4-(4-\{2-[1-(2-
methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-ylf)-1-(2-trimethylsilanyl-ethoxymethyl)-1 H -imidazol-4-yl\}-phenylethynyl)-phenylj-1-(2-trimethylsilanyl-ethoxymethyl)-2', \(3^{\prime}, 4^{\prime}, 5^{\prime}\)-tetrahydro-1 \(H\) - [2, 4']biimidazolyl-1'-carboxylic acid tert-butyl ester

3'-(2-Methoxycarbonylamino-3-methyl-butyryl)-4-[4-(4-\{2-[1-(2-
methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-y \(\mid]-1 / H\)-imidazol-4-y \(\mid\}-\) phenylethynyl)-phenyl]-2',3',4',5'-tetrahydro-1 \(H\)-[2,4']biimidazolyl-1'carboxylic acid methyl ester

3'-(2-Methoxycarbonylamino-3-methyl-butyryl)-4-[4-(4-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-1H-imidazol-4-yl\}-phenylethynyl)-phenyl|-2', \(\mathbf{3}^{\prime}, 4^{\prime}, 5^{\prime}\) -tetrahydro-1H-[2,4']biimidazolyl-1'-carboxylic acid tert-butyl ester: A mixture of 4-(4-bromo-phenyl)-3'-(2-methoxycarbonylamino-3-methyl-butyryl)-2',3',4',5'-tetrahydro-1H[\(2,4^{4}\)]biimidazolyl-1'-carboxylic acid tert-butyl ester (\(686 \mathrm{mg}, 1.74 \mathrm{mmol}\)), (1-\{2-[4-(4-ethynyl-phenyl)-1 H-imidazol-2-yl]-pyrrolidine-1-carbonyl \(\}\)-2-methyl-propyl)-carbamic acid methyl ester (\(800 \mathrm{mg}, 1.45 \mathrm{mmol}\)), copper(I) iodide (\(28 \mathrm{mg}, 0.14 \mathrm{mmol}\)),
tetrakis(triphenylphosphine)palladium \((0)(167 \mathrm{mg}, 0.14 \mathrm{mmol})\), triethylamine (\(2.0 \mathrm{~mL}, 14.5\) \(\mathrm{mmol})\) and degassed dimethylformamide (10 mL) was stirred at \(80^{\circ} \mathrm{C}\) for 1 hour. (\(1-\{2-[4-(4-\) Ethynyl-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl \(\}\)-2-methyl-propyl)-carbamic acid methyl ester (\(200 \mathrm{mg}, 0.57 \mathrm{mmol}\)) was added. After 1 hour the solvent was removed under reduced pressure. The residue was taken up in dichloromethane (50 mL) and washed with water (10 mL), saturated ammonium chloride (\(2 \times 10 \mathrm{~mL}\)), dried over sodium sulfate and filtered. The solvent was removed under reduced pressure. The residue was subjected to flash chromatography with eluent of (\(10 \%\) methanol in ethyl acetate) and hexane. The productcontaining fractions were combined and the solvent was removed under reduced pressure to yield 3'-(2-methoxycarbonylamino-3-methyl-butyry) \({ }^{\prime}\)-4-[4-(4-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-1H-imidazol-4-yl\}-phenylethynyl)-phenyl]-2', \(3^{\prime}, 4^{\prime}, 5^{\prime}-\) tetrahydro-1H-[2,4] biimidazolyl-1'-carboxylic acid tert-butyl ester (\(439 \mathrm{mg}, 0.50 \mathrm{mmol}, 35 \%\)).
\(\mathrm{C}_{46} \mathrm{H}_{57} \mathrm{~N}_{9} \mathrm{O}_{8}\) calculated 863.4 observed \([\mathrm{M}+1]^{+} 864.5 ; \mathrm{rt}=1.91 \mathrm{~min} .{ }^{1} \mathrm{H}\) (DMSO-d6): \(\delta=8.07\) \((\mathrm{m}, 1 \mathrm{H}), 7.76(\mathrm{~m}, 4 \mathrm{H}), 7.68(\mathrm{~m}, \mathrm{H}), 7.56(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~m}\), \(1 \mathrm{H}), 5.21(\mathrm{~m}, 1 \mathrm{H}), 5.08(\mathrm{~m}, 2 \mathrm{H}), 4.80(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{~s}\), \(3 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~m}, 4 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}), 1.34(\mathrm{~m}, 2 \mathrm{H}), 0.81(\mathrm{~m}\), 12H).

\{1-[2-(5-\{4-[4-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-ylf-3H-imidazol-4-yl\}-phenyl)-buta-1,3-diynyl]-phenyl\}-1H-imidazol-2-yl)-pyrrolidine-1-carbonyll-2-methyi-propyl|-carbamic acid methyl ester
\{1-|2-(5-\{4-[4-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl|-3H-imidazol-4-yl\}-phenyl)-buta-1,3-diynyl]-phenyl\}-1H-imidazol-2-yl)-pyrrolidine-1-carbonyl]-2-methyl-propyl\}-carbamic acid methyl ester: \(\{1\)-[2-(5-\{4-[4-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-phenyl)-buta-1,3-diynyl]-phenyl\}-1H-imidazol-2-yl)-pyrrolidine-1-carbonyl]-2-methyl-propyl\}-carbamic acid methyl ester was also isolated in the flash chromatography. The fractions containing this product were combined and the solvent was removed under reduced pressure. The resulting residue was taken up in dimethylformamide (2 mL) and subjected to reverse phase chromatography with an eluent of \(0.1 \%\) TFA in water and \(0.1 \%\) TFA in acetonitrile. The product-containing fractions were combined and the solvent was removed by lyophilization to provide
\{1-[2-(5-\{4-[4-(4-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl \}-phenyl)-buta-1,3-diynyl]-phenyl\}-1H-imidazol-2-yl)-pyrrolidine-1-carbonyl]-2-methyl-propyl\}-carbamic acid methyl ester (\(83.2 \mathrm{mg}, 0.10 \mathrm{mmol}\)). \(\mathrm{C}_{44} \mathrm{H}_{50} \mathrm{~N}_{8} \mathrm{O}_{6}\) calculated 786.4 observed \([\mathrm{M}+1]^{+} 787.6 ; \mathrm{rt}=2.59 \mathrm{~min}\)
\({ }^{1} \mathrm{H}(\mathrm{DMSO}-\mathrm{d} 6): \delta=8.06(\mathrm{~s}, 2 \mathrm{H}), 7.79(\mathrm{~m}, 4 \mathrm{H}), 7.72(\mathrm{~m}, 4 \mathrm{H}), 7.28(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.08(\mathrm{t}, J\) \(=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~m}, 4 \mathrm{H}), 3.51(\mathrm{~s}, 6 \mathrm{H}), 2.32(\mathrm{~m}, 2 \mathrm{H}), 2.11(\mathrm{~m}, 2 \mathrm{H})\), \(1.99(\mathrm{~m} 6 \mathrm{H}), 0.84(\mathrm{~m}, 1 \mathrm{H}), 0.78(\mathrm{dd}, J=6.8 \mathrm{~Hz}, J=17.6 \mathrm{~Hz}, 12 \mathrm{H})\).

3'-(2-Methoxycarbonylamino-3-methyl-butyry])-4-[4-(4-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-1-(2-trimethylsilanyl-ethoxymethyl)-1 H-imidazol-4-yl\}-phenylethynyl)-phenyl]-1-(2-trimethylsilanyl-ethoxymethyl)-2', 3',4',5'-tetrahydro-1H-
[2,4']biimidazolyl-1'-carboxylic acid tert-butyl ester: Sodium hydride (\(60 \%\) in mineral oil, \(27 \mathrm{mg}, 0.55 \mathrm{mmol}\)) was added to a solution of 3'-(2-methoxycarbonylamino-3-methyl-butyryl)-4-[4-(4-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-1H-imidazol-4-yl\}-phenylethynyl)-phenyl]-2',3', \(\mathbf{4}^{\prime}, 5^{\prime}\) 'tetrahydro-1H-[2,4']biimidazolyl-1'-carboxylic acid tert-butyl ester (\(248 \mathrm{mg}, 0.23 \mathrm{mmol}\)) in dimethylformamide (8 mL) under an atmosphere of nitrogen at \(0^{\circ} \mathrm{C}\). After 15 minutes 2-(trimethylsilyl)ethoxymethyl chloride (\(107.5 \mu \mathrm{~L}, 0.48 \mathrm{mmol}\)) was added and the reaction was allowed to warm to ambient temperature. After 2 hours the solvent was removed under reduced pressure. The residue was taken up in dichloromethane (50 mL) washed with water (20 mL), and dried over sodium sulfate and filtered. The solvent was removed under reduced pressure. The residue was subjected to flash chromatography with eluent of (\(10 \%\) methanol in ethyl acetate) and hexane. The product-containing fractions were combined and the solvent was removed under reduced pressure to yield 3'-(2-methoxycarbonylamino-3-methyl-butyry)-4-[4-(4-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazol-4-yl\}-phenylethynyl)-phenyl]-1-(2-trimethylsilanyl-ethoxymethyl)-2',3',4',5'-tetrahydro-1H-[2,4']biimidazolyl-1'-carboxylic acid tert-butyl ester (\(410 \mathrm{mg}, 0.36 \mathrm{mmol}\)). \(\mathrm{C}_{58} \mathrm{H}_{85} \mathrm{~N}_{9} \mathrm{O}_{10} \mathrm{Si}_{2}\) calculated 1123.6 observed \([\mathrm{M}+1]^{+} 1124.7 ; \mathrm{rt}=3.10 \mathrm{~min}\).

3'-(2-Methoxycarbonylamino-3-methyl-butyryl)-4-[4-(4-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazol-4-yl\}-phenylethynyl)-phenyl]-1-(2-trimethylsilanyl-ethoxymethyl)-2', \(\mathbf{3}^{\prime}, 4^{\prime}, 5^{\prime}\)-tetrahydro- 1 H [2,4']biimidazole: \(3^{\prime}\)-(2-Methoxycarbonylamino-3-methyl-butyryl)-4-[4-(4-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazol-4-yl \(\}\)-phenylethynyl)-phenyl]-1-(2-trimethylsilanyl-ethoxymethyl)-2',3', \(\mathbf{4}^{\prime}, 5^{\prime}\) ' tetrahydro- \(1 \mathrm{H}-\left[2,4^{\prime}\right]\) biimidazole was prepared using method 804 substituting \(3^{\prime}\)-(2-methoxycarbonylamino-3-methyl-butyryl)-4-[4-(4-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazol-4-yl\}-phenylethynyl)-phenyl]-1-(2-trimethylsilanyl-ethoxymethyl)-2', \(3^{\prime}, 4^{\prime}, 5^{\prime}\)-tetrahydro- 1 H -[2,4']biimidazolyl-1'-carboxylic acid tert-butyl ester for \{1-[5-(4'-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)1 H -imidazol-2-ylmethyl]-2-oxo-piperidin-3-yl\}-carbamic acid tert-butyl ester. \(\mathrm{C}_{53} \mathrm{H}_{77} \mathrm{~N}_{9} \mathrm{O}_{8} \mathrm{Si}_{2}\) calculated 1023.5 observed \([\mathrm{M}+1]^{+} 1024.7\); \(\mathrm{rt}=2.81 \mathrm{~min}\).

\section*{The following step constitutes an example of method 808.}

3'-(2-Methoxycarbonylamino-3-methyl-butyryl)-4-[4-(4-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-1H-imidazol-4-yl\}-phenylethynyl)-phenyl]-2', \(\mathbf{3}^{\prime}, 4^{\prime}, 5^{\prime}\) -tetrahydro-1 H-[2,4']biimidazolyl-1'-carboxylic acid methyl ester: Methyl chloroformate (15 \(\mu \mathrm{L}, 0.19 \mathrm{mmol}\)) was added to a solution of 3'-(2-methoxycarbonylamino-3-methyl-butyryl)-4-[4-(4-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazol-4-yl\}-phenylethynyl)-phenyl]-1-(2-trimethylsilanyl-ethoxymethyl)\(2^{\prime}, 3^{\prime}, 4^{\prime}, 5^{\prime}\)-tetrahydro-1 H-[2,4']biimidazole (\(97 \mathrm{mg}, 0.09 \mathrm{mmol}\)), and 4-methylmorpholine (\(40 \mu \mathrm{~L}\), 0.36 mmol) in dichloromethane (3 mL). After 30 minutes the solvent was removed under reduced pressure and azeotroped with toluene. The residue was taken up in dichloromethane (5 mL) and trifluoroacetic acid (5 mL) was added. After 16 hours the volatiles were removed under reduced pressure and the residue was taken up in tetrahydrofuran (4 mL) and methanol (2 mL). An aqueous solution of sodium hydroxide (\(2 \mathrm{~N}, 1 \mathrm{~mL}\)) was added. After 30 min the organic solvents were removed under reduced pressure and the resulting precipitate was isolated by filtration. The solid was taken up in dimethylformamide (2 mL) and subjected to reverse phase chromatography with an eluent of \(0.1 \%\) TFA in water and \(0.1 \%\) TFA in acetonitrile. The product-containing fractions were combined and the solvent was removed by lyophilization to provide 3'-(2-methoxycarbonylamino-3-methyl-butyryl)-4-[4-(4-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-1H-imidazol-4-yl\}-phenylethynyl)-phenyl]-2', \(3^{\prime}, 4^{\prime}, 5\) '-tetrahydro-1H-[2,4']biimidazolyl-1'-carboxylic acid methyl ester (14.1 mg , \(0.017 \mathrm{mmol}, 10 \%\)).
\(\mathrm{C}_{43} \mathrm{H}_{51} \mathrm{~N}_{9} \mathrm{O}_{8}\) calculated 821.4 observed \([\mathrm{M}+1]^{+} 822.8 ; \mathrm{rt}=1.72 \mathrm{~min} .{ }^{1} \mathrm{H}(\mathrm{DMSO}-\mathrm{d} 6): \delta=8.07\) \((\mathrm{m}, 1 \mathrm{H}), 7.77(\mathrm{~m}, 7 \mathrm{H}), 7.67(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~m}, 1 \mathrm{H}), 5.27\) \((\mathrm{d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{t}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H})\), \(3.83(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~m}, 2 \mathrm{H})\), \(2.13(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~m}, 5 \mathrm{H}), 1.90(\mathrm{~m}, 2 \mathrm{H}), 0.805(\mathrm{~m}, 18 \mathrm{H})\).

\section*{Example BB}

(1-\{2-[5-(4-\{4-[1'-Acetyl-3'-(2-methoxycarbonylamino-3-methyl-butyryl)2', \(3^{\prime}, 4^{\prime}, 5^{\prime}\)-tetrahydro-3H,1'H-[2,4']biimidazolyl-4-yl]-phenylethynyl\}-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-cabamic acid methyl ester
(1-\{2-[5-(4-\{4-[1'-Acetyl-3'-(2-methoxycarbonylamino-3-methyl-butyryl)-2',3',4',5'-tetrahydro3H, 1'H-[2,4']biimidazolyl-4-yl]-phenylethynyl \(\}\)-phenyl)-1 H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester was prepared following method 808 in Example BA substituting acetic anhydride for methyl chloroformate in the first step of the synthesis. \(\mathrm{C}_{43} \mathrm{H}_{51} \mathrm{~N}_{9} \mathrm{O}_{7}\) calculated 805.4 observed \([\mathrm{M}+1]^{+} 806.5 ; \mathrm{rt}=1.65 \mathrm{~min} ;{ }^{1} \mathrm{H}\) (DMSO\(\mathrm{d} 6): \delta=8.06(\mathrm{~m}, 1 \mathrm{H}), 776(\mathrm{~m}, 6 \mathrm{H}), 7.68(\mathrm{~m}, 3 \mathrm{H}), 7.56(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.29(\mathrm{~d}, J=9.2 \mathrm{~Hz}\), \(1 \mathrm{H}), 5.47(\mathrm{~m}, 1 \mathrm{H}), 5.38(\mathrm{~m}, 1 \mathrm{H}), 5.27(\mathrm{~m}, 1 \mathrm{H}), 5.18(\mathrm{~m}, 1 \mathrm{H}), 5.08(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.17(\mathrm{~m}, 1\) \(\mathrm{H}), 4.07(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~m}, 4 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 6 \mathrm{H}), 3.37(\mathrm{~m}, 1 \mathrm{H})\), \(2.34(\mathrm{~m}, 2 \mathrm{H}), 2.13(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~m}, 12 \mathrm{H}), 0.81(\mathrm{~m}, 18 \mathrm{H})\).

\section*{Example BC}

4-(2-Methoxycarbonylamino-3-methyl-butyry))-3-\{5-[4-(4-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\} phenylethynyl)-phenylf-1 H -imidazol-2-yl)-piperazine-1-carboxylic acid tertbutyl ester

4-(2-Methoxycarbonylamino-3-methyl-butyry) -3-\{5-[4-(4-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-phenylethynyl)-phenyl]-1H-imidazol-2-yl\}-piperazine-1-carboxylic acid tert-butyl ester was prepared following step one of method 807, substituting (1-\{2-[4-(4-bromo-phenyl)-1H-imidazol-2-yl]-piperazine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester for 4-(4-bromo-phenyl)-3'-(2-methoxycarbonylamino-3-
methyl-butyryl)-2', \(3^{\prime}, 4^{\prime}, 5^{\prime}\)-tetrahydro-1 \(\mathrm{H}-\left[2,4^{\prime}\right]\) biimidazolyl-1'-carboxylic acid tert-butyl ester in the first step of Example BA. \(\mathrm{C}_{47} \mathrm{H}_{59} \mathrm{~N}_{9} \mathrm{O}_{8}\) calculated 877.5 observed \([\mathrm{M}+1]^{+} 878.5 ; \mathrm{rt}=1.65\) min
\({ }^{1} \mathrm{H}\) (DMSO-d6): \(\delta=8.08(\mathrm{~m}, 1 \mathrm{H}), 7.78(\mathrm{~m}, 4 \mathrm{H}), 7.68(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=9.2\) \(\mathrm{Hz}, 2 \mathrm{H}), 5.54(\mathrm{~m}, 1 \mathrm{H}), 5.08(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~m}, 2 \mathrm{H}), 4.07(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~m}\), \(4 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~m}, 4 \mathrm{H}), 1.28(3\), \(3 \mathrm{H}), 1.17\) (br s, 3H), \(0.80(\mathrm{~m}, 12 \mathrm{H})\).

\section*{Example BD}

[1-(2-\{5-14-(4-\{2-11-(2-Methoxycarbonylamino-3-methyl-butyryl)-piperazin-2-yl)\(3 H\)-imidazol-4-yl\}-phenylethynyl)-phenylf-1H-imidazol-2-yl)-pyrrolidine-1-carbonyl)-2-methyl-propyll-carbamic acid methyl ester
[1-(2-\{5-[4-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-piperazin-2-yl]-3H-imidazol-4-yll-phenylethynyl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester was prepared following method 807 substituting (1-\{2-[4-(4-bromo-phenyl)-1H-imidazol-2-yl]-piperazine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester for 4-(4-bromo-phenyl)-3'-(2-methoxycarbonylamino-3-methyl-butyryl)-2',3',4',5'-tetrahydro-1H-[2,4']biimidazolyl-1'-carboxylic acid tert-butyl ester. Followed by method 808, substituting [1-(2-15-[4-(4-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-piperazin-2-y]]-1-(2-trimethylsilanyl-ethoxymethyl)-3H-imidazol-4-yl)-phenylethynyl)-phenyl]-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester for 3'-(2-methoxycarbonylamino-3-methyl-butyryl)-4-[4-(4-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazol-4-yl\}-phenylethynyl)-phenyl]-1-(2-trimethylsilanyl-ethoxymethyl)-2', 3', \(4^{\prime}, 5^{\prime}\) 'tetrahydro-1H-[2,4']biimidazole and leaving
out methyl chloroformate. \(\mathrm{C}_{42} \mathrm{H}_{51} \mathrm{~N}_{9} \mathrm{O}_{6}\) calculated 777.4 observed \([\mathrm{M}+1]^{+} 778.4 ; \mathrm{rt}=1.58\) min.
\({ }^{\prime} \mathrm{H}\) (DMSO-d6): \(\delta=9.30(\mathrm{~m}, 1 \mathrm{H}), 7.9(\mathrm{~m}, 2 \mathrm{H}), 7.75(\mathrm{~m}, 3 \mathrm{H}), 7.63(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{~m} 2 \mathrm{H})\),
\(7.28(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(1 \mathrm{H}), 5.07(\mathrm{~m}, 1 \mathrm{H}), 4.49(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{~m}, 2 \mathrm{H})\),
\(3.80(\mathrm{~m}, 4 \mathrm{H}), 3.56(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~m}, 2.12(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{~m}, 4 \mathrm{H})\), \(0.95(\mathrm{~m}, 1 \mathrm{H}), 0.81(\mathrm{~m}, 12 \mathrm{H})\).

\section*{Example BE}

2-(6-bromo-1H-benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester: A mixture of 4-bromo-benzene-1,2-diamine (2.4 g) and 2-formyl-pyrrolidine-1-carboxylic acid tert-butyl ester (2.55 g) in ethanol (5 mL) was heated in microwave at \(80^{\circ} \mathrm{C}\) for 1 hour. Mixture was concentrated and purified by flash column chromatography (silica gel, 20 to \(80 \%\) ethyl acetate/hexane) to give 2-(6-bromo-1H-benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tertbutyl ester (2.6 g , yield 55\%). LCMS-ESI: calc'd for \(\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{BrN}_{3} \mathrm{O}_{2}\) : 366.25 ; Found: 365.8 \(\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

2-[6-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-1H-benzoimidazol-2-yl]-pyrrolidine-1carboxylic acid tert-butyl ester: A mixture of 2-(6-bromo-1H-benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (\(890 \mathrm{mg}, 2.43 \mathrm{mmol}\)), bis(pinacolato)diboron(\(1.36 \mathrm{~g}, 5.35 \mathrm{mmol}\)), [1,1'bis(diphenylphosphino)ferrocene]dichloropalladium(II)(\(99 \mathrm{mg}, 0.12 \mathrm{mmol}\)) and potassium acetate (\(620 \mathrm{mg}, 6.32 \mathrm{mmol}\)) in 15 mL dioxane was heated to \(95^{\circ} \mathrm{C}\) for 4 hour. The reaction mixture was cooled and dissolved in ethyl acetate and washed with saturated sodium bicarbonate solution. The organic layer dried (MgSO4), concentrated and purified by flash column chromatography (silica gel, 20 to \(80 \%\) ethyl acetate/hexane) to give 2-[6-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-1H-benzoimidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (588 mg , yield \(59 \%\)). LCMS-ESI: calc'd for \(\mathrm{C}_{32} \mathrm{H}_{20} \mathrm{BN}_{3} \mathrm{O}_{4}\) : 413.32; Found: \(414.0\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{2-[2'-(1-Boc-pyrrolidin-2-yl)-3H,3'H-[5,5']bibenzoimidazolyl-2-yl]-pyrrolidine-1-} carboxylic acid tert-butyl ester: A mixture of 2-(6-bromo-1H-benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (\(64 \mathrm{mg}, 0.174 \mathrm{mmol}\)), 2-[6-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-1H-benzoimidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (\(72 \mathrm{mg}, 0.174 \mathrm{mmol}\)), tetrakis(triphenylphosphine)palladium (\(30 \mathrm{mg}, 0.026 \mathrm{mmol}\)) and potassium carbonate (\(48 \mathrm{mg}, 0.35 \mathrm{mmol}\)) in \(2 \mathrm{ml} 1,2\)-dimethoxyethane and 1 mL water was heated to \(110^{\circ} \mathrm{C}\) in microwave for 15 minutes. The reaction mixture was cooled and dissolved in ethyl acetate and washed with \(5 \%\) lithium chloride aqueous solution. The organic layer dried (MgSO 4), concentrated and purified by flash column chromatography (silica gel, 0 to \(10 \%\) methanol/ethyl acetate) to give 2-[2'-(1-Boc-pyrrolidin-2-yl)-3H,3'H-[5,5']bibenzoimidazolyl-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (15 mg , yield \(15 \%\)). LCMS-ESI': calc'd for \(\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{O}_{4}\) : 572.70 ; Found: \(573.1\left(\mathrm{M}+\mathrm{H}^{+}\right)\).
[1-(2-\{2'-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl|-3H,3'H-[5,5']bibenzoimidazolyl-2-yl\}-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester: Trifluoroacetic acid (0.5 mL) was added to (2-[2'-(1-Boc-pyrrolidin-2-yl)\(3 \mathrm{H}, 3^{3} \mathrm{H}-\left[5,5^{\prime}\right]\) bibenzoimidazolyl-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (15 mg , 0.0262 mmol) and the reaction mixture was stirred at room temperature for 2 hours. The reaction mixture was concentrated and dried overmight under vacuum. The residue was dissolved in DMF (1.5 mL) and to this solution was added 2-Methoxycarbonylamino-3-methylbutyric acid (\(10 \mathrm{mg}, 0.058 \mathrm{mmol}\)), diisopropylethylamine (\(27 \mu \mathrm{~L}\)), followed by HATU (20 mg). Reaction mixture was stirred at \(0^{\circ} \mathrm{C}\) for 60 minutes. The reaction mixture was dissolved in ethyl acetate and washed with dilute sodium bicarbonate solution. The organic layer was dried
(MgSO4), concentrated and purified by preparative reverse phase HPLC (GEMINI, 5 to 100\% \(\left.\mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}+0.1 \% \mathrm{TFA}\right)\). Product was lyophilized to give [1-(2-\{2'-[1-(2-
Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H,3'H-[5,5']bibenzoimidazolyl-2-yl\}-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester as the bis-TFA salt (8.1 mg).
\({ }^{1} \mathrm{H}-\mathrm{NMR}: 300 \mathrm{MHz},\left(\mathrm{CD}_{3} \mathrm{OD}-\mathrm{d}_{4}\right) \delta: 8.02(\mathrm{~s}, 2 \mathrm{H}), 7.88(\mathrm{~m}, 4 \mathrm{H}), 5.38(\mathrm{~m}, 2 \mathrm{H}), 4.27(\mathrm{~d}, 2 \mathrm{H})\), \(4.12(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 6 \mathrm{H}), 2.62(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.20(\mathrm{~m}, 6 \mathrm{H}), 2.08(\mathrm{~m}, 2 \mathrm{H}), 0.95-\) \(0.85(\mathrm{~m}, 12 \mathrm{H})\); LCMS-ESI': calc'd for \(\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{~N}_{8} \mathrm{O}_{6}: 686.80\); Found: \(687.3\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{Example BF}

acid tert-butyl ester

2-\{6-14'-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-biphenyl-4-y]-1H-benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester

2-(6-\{4'- \(2-(1-\) Boc-pyrrolidin-2-yl)-3-(2-trimethylsilanyl-ethoxymethyl)-3H-imidazol-4-yll-biphenyl-4-y|f-1H-benzoimidazol-2-yl)-pyrrolidine-1carboxylic acid tert-butyl ester

\(\mathrm{Pd}(\mathrm{dppf})_{2} \mathrm{Cl}_{2}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\) \(\mathrm{K}_{2} \mathrm{CO}_{3}, 90^{\circ} \mathrm{C}\)

(1-\{2-55-(4'-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-y \(\mid\)]-3H-benzoimidazol-5-y \(\mid\)-bipheny \(\mid-4\)-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl)-2-methyl-propyl)-carbamic acid methyl ester

2-\{6-[4'-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-biphenyl-4-y]]-1 H-benzoimidazol-2-yl\}-pyrrolidine-1-carboxylic acid tert-butyl ester: A mixture of 2-(6-bromo-1H-benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (\(230 \mathrm{mg}, 0.628 \mathrm{mmol}\)), 4,4'bipheynldiboronic acid dipinacol ester (\(1.28 \mathrm{~g}, 3.14 \mathrm{mmol}\)),
tetrakis(triphenylphosphine)palladium (\(73 \mathrm{mg}, 0.063 \mathrm{mmol}\)) and potassium carbonate (521 mg , 3.77 mmol) in 10 ml 1,2-dimethoxyethane and 5 mL water was heated to \(120^{\circ} \mathrm{C}\) in microwave for 40 minutes. The reaction mixture was cooled and dissolved in ethyl acetate and washed with \(5 \%\) lithium chloride aqueous solution. The organic layer was dried (MgSO 4), concentrated and purified by flash column chromatography (silica gel, 20 to \(100 \%\) ethyl acetate/hexane) to give 2-\{6-[4'-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-biphenyl-4-yl]-1H-benzoimidazol-2-yl\}-pyrrolidine-1-carboxylic acid tert-butyl ester (15 mg , yield \(15 \%\)). LCMS-ESI: calc'd for \(\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{BN}_{3} \mathrm{O}_{4}\) : 65.51 ; Found: \(566.1\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

2-(6-\{4'-[2-(1-Boc-pyrrolidin-2-yl)-3-(2-trimethylsilanyl-ethoxymethyl)-3H-imidazol-4-yl]-biphenyl-4-yl\}-1H-benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester: A mixture of 2-\{6-[4'-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-biphenyl-4-yl]-1H-benzoimidazol-2-yl\}-pyrrolidine-1-carboxylic acid tert-butyl ester (\(147 \mathrm{mg}, 0.26 \mathrm{mmol}\)), 2-[5-bromo-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (\(116 \mathrm{mg}, 0.26 \mathrm{mmol}\)), tetrakis(triphenylphosphine)palladium (\(30 \mathrm{mg}, 0.026\) \(\mathrm{mmol}), \mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}\) (\(21 \mathrm{mg}, 0.026 \mathrm{mmol}\)) and potassium carbonate (\(72 \mathrm{mg}, 0.52 \mathrm{mmol}\)) in 3 ml 1,2 -dimethoxyethane and 1 mL water was heated to \(90^{\circ} \mathrm{C}\) for 2.5 hours. The reaction mixture was cooled and dissolved in ethyl acetate and washed with \(5 \%\) lithium chloride aqueous solution. The organic layer was dried (MgSO 4), concentrated and purified by preparative reverse phase HPLC (GEMINI, 5 to \(100 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}+0.1 \%\) TFA). Product was lyophilized to give 2-(6-\{4'-[2-(1-Boc-pyrrolidin-2-yl)-3-(2-trimethylsilanyl-ethoxymethyl)-3H-imidazol-4-yl]-biphenyl-4-yl \(\}\)-1 H-benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (52 mg, yield 25\%); LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{46} \mathrm{H}_{60} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{Si}\) : 805.09; Found: \(805.1\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{(1-\{2-[5-(4'-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-y]]-3H-} benzoimidazol-5-yl\}-biphenyl-4-yl)-1 H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester: Trifluoroacetic acid (2 mL)was added to 2-(6-\{4'-[2-(1-Boc-pyrrolidin-2-yl)-3-(2-trimethylsilanyl-ethoxymethyl)-3H-imidazol-4-yl]-biphenyl-4-yl\}1 H -benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (\(52 \mathrm{mg}, 0.056 \mathrm{mmol}\)) and the reaction mixture was stirred at room temperature for 4 hours. The reaction mixture was concentrated and dried overnight under vacuum. The residue was dissolved in DMF (1.5 mL) and to this solution was added 2-methoxycarbonylamino-3-methyl-butyric acid (20 mg), diisopropylethylamine (\(59 \mu \mathrm{~L}\)), followed by HATU (43 mg). Reaction mixture was stirred at \(0^{\circ} \mathrm{C}\) for 30 minutes. The reaction mixture was dissolved in ethyl acetate and washed with dilute sodium bicarbonate solution. The organic layer was dried \(\left(\mathrm{MgSO}_{4}\right)\), concentrated and purified
by preparative reverse phase HPLC (GEMINI, 5 to \(100 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}+0.1 \%\) TFA). Product was lyophilized to give (1-\{2-[5-(4'-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-benzoimidazol-5-yl\}-biphenyl-4-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester as the bis-TFA salt (4.8 mg).
\({ }^{1} \mathrm{H}-\mathrm{NMR}: 300 \mathrm{MHz},\left(\mathrm{CD}_{3} \mathrm{OD}-\mathrm{d}_{4}\right) \delta: 8.0(\mathrm{~s}, 1 \mathrm{H}), 7.92-7.82(\mathrm{~m}, 11 \mathrm{H}), 5.38(\mathrm{t}, 1 \mathrm{H}), 5.24(\mathrm{t}, 1 \mathrm{H})\), \(4.27(\mathrm{dd}, 2 \mathrm{H}), 4.16(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{~s}, 6 \mathrm{H}), 2.62(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.18(\mathrm{~m}, 6 \mathrm{H}), 2.08(\mathrm{~m}\), 2 H), 0.95-0.85 (m, 12 H); LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{44} \mathrm{H}_{52} \mathrm{~N}_{8} \mathrm{O}_{6}\) : 788.93; Found: \(789.3\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{Example BG}
 benzoimidazol-2-yl)-pyrrolidine-1carboxylic acid tert-butyl ester

\{1-[2-(6-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl-3H-benzoimidazol-5-ylethynyl\}-1 H -

2-Methoxycarbonylamino-3-methyl-butyric acid
benzoimidazol-2-yl)-pyrrolidine-1-carbonyll-2-methyl-propyl)-carbamic acid methyl ester

2-(6-trimethylsilanylethynyl-1H-benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tertbutyl ester: A mixture of 2-(6-bromo-1 H -benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (\(309 \mathrm{mg}, 0.84 \mathrm{mmol}\)), ethynyl-trimethyl-silane (\(1.2 \mathrm{~mL}, 8.4 \mathrm{mmol}\)), tetrakis(triphenylphosphine)palladium (\(97 \mathrm{mg}, 0.08 \mathrm{mmol}\)), copper(1) iodide (\(32 \mathrm{mg}, 0.16\) mmol) and triethylamine (\(0.7 \mathrm{~mL}, 5,04 \mathrm{mmol}\)) in 5 ml DMF was heated to \(80^{\circ} \mathrm{C}\) for 8 hours. The reaction mixture was cooled and dissolved in ethyl acetate and washed with \(5 \%\) lithium chloride aqueous solution. The organic layer was dried (MgSO4), concentrated and purified by flash column chromatography (silica gel, 20 to \(100 \%\) ethyl acetate/hexane) to give 2-(6-
trimethylsilanylethynyl-1H-benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (200 mg , yield 62\%). LCMS-ESI: calc'd for \(\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Si}\) : 383.56 ; Found: \(384.1\left(\mathrm{M}+\mathrm{H}^{+}\right.\)).

\section*{2-(6-ethynyl-1 H-benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester:} Potassium carbonate (144 mg) was added to 2-(6-trimethylsilanylethynyl-1H-benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (\(200 \mathrm{mg}, 0.52 \mathrm{mmol}\)) in 6 ml methanol. The reaction was stirred at room temperature for 2 hours. The reaction mixture was concentrated and purified by flash column chromatography (silica gel, 20 to \(100 \%\) ethyl acetate/hexane) to give 2-(6-ethynyl-1 H-benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (121 mg , yield \(75 \%\)). LCMS-ESI': calc'd for \(\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}\) : 311.38 ; Found: \(311.8\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

2-\{6-[2-(1-Boc-2-yl)-1H-benzoimidazol-5-ylethynyl]-1H-benzoimidazol-2-yl\}-pyrrolidine-1carboxylic acid tert-butyl ester: A mixture of 2-(6-bromo-1 H-benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (\(91 \mathrm{mg}, 0.24 \mathrm{mmol}\)), 2-(6-ethynyl-1 H -benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (\(77 \mathrm{mg}, 0.24 \mathrm{mmol}\)), tetrakis(triphenylphosphine)palladium (14 mg), copper(I) iodide (5 mg) and triethylamine (138 \(\mu \mathrm{L}\)) in 2 ml DMF was heated to \(90^{\circ} \mathrm{C}\) for 2 hours. The reaction mixture was cooled and dissolved in ethyl acetate and washed with \(5 \%\) lithium chloride aqueous solution. The organic layer was dried \(\left(\mathrm{MgSO}_{4}\right)\), concentrated and purified by flash column chromatography (silica gel, \(0-10 \%\) IPA/ DCM: acetone(3:2) mixture) to give 2-\{6-[2-(1-Boc-2-yl)-1H-benzoimidazol-5-ylethynyl]-1H-benzoimidazol-2-yl\}-pyrrolidine-1-carboxylic acid tert-butyl ester (5.4 mg). LCMS-ESI': calc'd for \(\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{O}_{4}\) : 596.72 ; Found: \(597.0\left(\mathrm{M}+\mathrm{H}^{+}\right)\).
\{1-[2-(6-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-benzoimidazol-5-ylethynyl\}-1H-benzoimidazol-2-yl)-pyrrolidine-1-carbonyl]-2-methyl-propyl\}-carbamic acid methyl ester: Trifluoroacetic acid (1 mL) was added to 2-\{6-[2-(1-Boc-2-yl)-1H-benzoimidazol-5-ylethynyl]-1H-benzoimidazol-2-yl\}-pyrrolidine-1-carboxylic acid tert-butyl ester (\(5.4 \mathrm{mg}, 0.0065 \mathrm{mmol}\)) and the reaction mixture was stirred at room temperature for 4 hours. The reaction mixture was concentrated and dried overnight under vacuum. The residue was dissolved in DMF (1 mL) and to this solution was added 2-methoxycarbonylamino-3-methyl-butyric acid (2.6 mg), diisopropylethylamine (\(9 \mu \mathrm{~L}\)), followed by HATU (5.5 mg). Reaction mixture was stirred at \(0^{\circ} \mathrm{C}\) for 30 minutes. The reaction mixture was dissolved in ethyl acetate and washed with dilute sodium bicarbonate solution. The organic layer was dried \(\left(\mathrm{MgSO}_{4}\right)\), concentrated and purified by preparative reverse phase HPLC (GEMINI, 5 to \(100 \%\) \(\left.\mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}+0.1 \% \mathrm{TFA}\right)\). Product was lyophilized to give \{1-[2-(6-\{2-[1-(2-
methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-benzoimidazol-5-ylethynyl\}-1H-benzoimidazol-2-yl)-pyrrolidine-1-carbonyl]-2-methyl-propyl \(\}\)-carbamic acid methyl ester as the bis-TFA salt (0.9 mg).
\({ }^{1} \mathrm{H}-\mathrm{NMR}: 300 \mathrm{MHz},\left(\mathrm{CD}_{3} \mathrm{OD}-\mathrm{d}_{4}\right) \delta: 7.82(\mathrm{~s}, 2 \mathrm{H}), 7.68-7.60(\mathrm{~m}, 4 \mathrm{H}), 5.32(\mathrm{~m}, 2 \mathrm{H}), 4.27(\mathrm{dd}\), \(2 \mathrm{H}), 4.11(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{~s}, 6 \mathrm{H}), 2.58(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.12(\mathrm{~m}, 6 \mathrm{H}), 2.08(\mathrm{~m}, 2 \mathrm{H})\), 0.95-0.85 (m, 12 H); LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{38} \mathrm{H}_{46} \mathrm{~N}_{8} \mathrm{O}_{6}\) : 710.82 ; Found: \(711.2\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{Example BH}

(1-\{2-[6-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-

2-Methoxycarbonylamino-3-methyl-butyric acid butyryl)-pyrrolidin-2-y]-3H-benzoimidazol-5-yl)-buta-1,3-diynyl)-1 1 -benzoimidazol-2-y \(\}\)-pyrrolidine-1-carbonylf-2-methyt-propyl)-carbamic acid methyl ester

2-(6-\{4-[2-(1-Boc-pyrrolidin-2-yl)-1H-benzoimidazol-5-yl]-buta-1,3-diynyl\}-1H-benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester: A mixture of 2-(6-ethynyl-1H-benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (88 mg), tetrakis(triphenylphosphine)palladium (16 mg), copper(I) iodide (3 mg) and triethylamine (120 \(\mu \mathrm{L}\)) in 1.5 ml DMF was heated to \(50^{\circ} \mathrm{C}\) for 2 hours. The reaction mixture was cooled and dissolved in ethyl acetate and washed with \(5 \%\) lithium chloride aqueous solution. The organic layer was dried \(\left(\mathrm{MgSO}_{4}\right)\), concentrated and purified by preparative reverse phase HPLC (GEMINI, 5 to \(100 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}+0.1 \%\) TFA) to give 2-(6-\{4-[2-(1-Boc-pyrrolidin-2-yl)-1H-benzoimidazol-5-yl]-buta-1,3-diynyl\}-1H-benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (12 mg). LCMS-ESI: calc'd for \(\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{O}_{4}\) : 620.74; Found: \(621.0\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{(1-\{2-[6-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-} benzoimidazol-5-yl\}-buta-1,3-diynyl)-1H-benzoimidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester: Trifluoroacetic acid (1 mL)was added to 2-(6-
\{4-[2-(1-Boc-pyrrolidin-2-yl)-1H-benzoimidazol-5-yl]-buta-1,3-diynyl\}-1 H-benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (12 mg) and the reaction mixture was stirred at room temperature for 3 hours. The reaction mixture was concentrated and dried overnight under vacuum. The residue was dissolved in DMF (1 mL) and to this solution was added 2-methoxycarbonylamino-3-methyl-butyric acid (5.5 mg), diisopropylethylamine (\(13 \mu \mathrm{~L}\)), followed by HATU (12 mg). Reaction mixture was stirred at \(0^{\circ} \mathrm{C}\) for 30 minutes. The reaction mixture was dissolved in ethyl acetate and washed with dilute sodium bicarbonate solution. The organic layer was dried (MgSO4), concentrated and purified by preparative reverse phase HPLC (GEMINI, 5 to \(100 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}+0.1 \% \mathrm{TFA}\)). Product was lyophilized to give (1-\{2-[6-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-benzoimidazol-5-yl\}-buta-1,3-diynyl)-1H-benzoimidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester as the bis-TFA salt (4 mg).
\({ }^{1} \mathrm{H}-\mathrm{NMR}: 300 \mathrm{MHz},\left(\mathrm{CD}_{3} \mathrm{OD}-\mathrm{d}_{4}\right) \delta: 7.82(\mathrm{~s}, 2 \mathrm{H}), 7.72-7.62(\mathrm{~m}, 4 \mathrm{H}), 5.32(\mathrm{~m}, 2 \mathrm{H}), 4.27(\mathrm{~d}\), \(2 \mathrm{H}), 4.11(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{~s}, 6 \mathrm{H}), 2.54(\mathrm{~m}, 2 \mathrm{H}), 2.38-2.12(\mathrm{~m}, 6 \mathrm{H}), 2.06(\mathrm{~m}, 2 \mathrm{H})\), 0.95-0.85 (m, 12 H); LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{40} \mathrm{H}_{46} \mathrm{~N}_{8} \mathrm{O}_{6}\) : 734.84; Found: \(735.2\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{Example BI}

2-(6-Ethynyl-1H-
benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid fert-butyl ester

1,4-Diiodo-benzene

2-[6-(4-lodo-phenylethynyl)-1H-benzoimidazol-2-yl|-pyrrolidine-1carboxylic acid tert-butyl ester 2-[5-Bromo-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester
\(\mathrm{Pd}(\mathrm{dppf})_{2} \mathrm{Cl}_{2}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\),
\(\mathrm{K}_{2} \mathrm{CO}_{3}, 90^{\circ} \mathrm{C}\)

\(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{KOAc}\) dioxane, \(90^{\circ} \mathrm{C}, 5 \mathrm{hr}\).

2\{6-boronic acid)-phenylethynyl]-1H-benzoimidazol-2-yl\}-pyrrolidine-1carboxylic acid tert-butyl ester

2-(6-(4-[2-(9-Boc-pyrrolidin-2-yl)-3-(2-trimethylsilanyl-ethoxymethyl)-3H-imidazol-4-yl)-phenylethynyl)-1 H-benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester

(1-\{2-[5-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl\} \(3 H\)-benzoimidazol-5-ylethynyl)-phenyl)-1 \(H\)-imidazol-2-yl)-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester

2-[6-(4-Iodo-phenylethynyl)-1 H-benzoimidazol-2-y]]-pyrrolidine-1-carboxylic acid tertbutyl ester: A mixture of 2-(6-ethynyl-1H-benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (\(100 \mathrm{mg}, 0.321 \mathrm{mmol}\)), 1,4-Diiodo-benzene (\(529 \mathrm{mg}, 1.61 \mathrm{mmol}\)), tetrakis(triphenylphosphine)palladium (\(37 \mathrm{mg}, 0.03 \mathrm{mmol}\)), copper(I) iodide (\(12 \mathrm{mg}, 0.06\) mmol) and triethylamine (\(0.135 \mathrm{~mL}, 0.96 \mathrm{mmol}\)) in 2 ml DMF was heated to \(100^{\circ} \mathrm{C}\) in the microwave for 1 hour. The reaction mixture was cooled and dissolved in ethyl acetate and washed with \(5 \%\) lithium chloride aqueous solution. The organic layer was dried \(\left(\mathrm{MgSO}_{4}\right)\), concentrated and purified by flash column chromatography (silica gel, 20 to \(100 \%\) ethyl acetate/hexane) to give 2-[6-(4-Iodo-phenylethynyl)-1H-benzoimidazol-2-yl]-pyrrolidine-1carboxylic acid tert-butyl ester (123 mg , yield 75\%). LCMS-ESI': calc'd for \(\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{IN}_{3} \mathrm{O}_{2}\) : 513.37; Found: \(531.8\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

2-\{6-[4-boronic acid-phenylethynyl]-1H-benzoimidazol-2-yl\}-pyrrolidine-1-carboxylic acid tert-butyl ester: A mixture of 2-[6-(4-Iodo-phenylethynyl)-1H-benzoimidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (\(123 \mathrm{mg}, 0.24 \mathrm{mmol}\)), bis(pinacolato)diboron (122 \(\mathrm{mg}, 0.48 \mathrm{mmol}\)), tetrakis(triphenylphosphine) palladium (\(52 \mathrm{mg}, 0.02 \mathrm{mmol}\)) and potassium acetate (\(52 \mathrm{mg}, 0.53 \mathrm{mmol}\)) in \(3 \mathrm{ml} 1,4\)-dioxane was heated to \(90^{\circ} \mathrm{C}\) for 5 hours. The reaction mixture was cooled and dissolved in ethyl acetate and washed with \(5 \%\) lithium chloride aqueous solution. The organic layer was dried (MgSO4), concentrated and purified by flash column chromatography (silica gel, 20 to \(100 \%\) ethyl acetate/hexane) and followed by preparative reverse phase HPLC (GEMINI, 5 to \(100 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}+0.1 \% \mathrm{TFA}\)) to give the corresponding boronic acid of 2-\{6-[4-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenylethynyl]-1H-benzoimidazol-2-yl \}-pyrrolidine-1-carboxylic acid tert-butyl ester (15 mg). LCMS-ESI: calc'd for \(\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{BN}_{3} \mathrm{O}_{4}: 431.29\); Found: \(431.9\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

2-(6-\{4-[2-(1-Boc-pyrrolidin-2-yl)-3-(2-trimethylsilanyl-ethoxymethyl)-3H-imidazol-4-yl]-phenylethynyl\}-1H-benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester: A mixture of 2-\{6-[4-boronic acid-phenylethynyl]-1H-benzoimidazol-2-yl\}-pyrrolidine-1carboxylic acid tert-butyl ester (\(11 \mathrm{mg}, 0.025\)), 2-[5-Bromo-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (\(34 \mathrm{mg}, 0.076\) mmol), tetrakis(triphenylphosphine) palladium (1.5 mg), \(\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(1 \mathrm{mg})\) and potassium carbonate (3.5 mg) in 1 ml DME and 0.3 mL water was heated to \(90^{\circ} \mathrm{C}\) for 30 minutes. The reaction mixture was cooled and dissolved in ethyl acetate and washed with \(5 \%\) lithium chloride aqueous solution. The organic layer was dried \(\left(\mathrm{MgSO}_{4}\right)\), concentrated and purified by preparative reverse phase HPLC (GEMINI, 5 to \(100 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}+0.1 \%\) TFA) to give 2-(6-\{4-[2-(1-Boc-pyrrolidin-2-yl)-3-(2-trimethylsilanyl-ethoxymethyl)-3H-imidazol-4-yl]phenylethynyl \(\}\)-1 H -benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (4 mg , yield \(21 \%\)). LCMS-ESI: calc'd for \(\mathrm{C}_{43} \mathrm{H}_{60} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{Si}\); 753.02 ; Found: \(751.4\left(\mathrm{M}-\mathrm{H}^{+}\right)\).
(1-\{2-[5-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-benzoimidazol-5-ylethynyl\}-phenyl)-1 H -imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester: Trifluoroacetic acid (1 mL) was added to 2-(6-\{4-[2-(1-Boc-pyrrolidin-2-yl)-3-(2-trimethylsilanyl-ethoxymethyl)-3H-imidazol-4-yl]-phenylethynyl\}-1H-benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (4 mg) and the reaction mixture was stirred at room temperature for 5 hours. The reaction mixture was concentrated and dried overnight under vacuum. The residue was dissolved in DMF (1 mL) and to this solution was added 2-methoxycarbonylamino-3-methyl-butyric acid (2 mg), diisopropylethylamine (6
\(\mu \mathrm{L}\)), followed by HATU (4 mg). Reaction mixture was stirred at \(0^{\circ} \mathrm{C}\) for 30 minutes. The reaction mixture was dissolved in ethyl acetate and washed with dilute sodium bicarbonate solution. The organic layer was dried \(\left(\mathrm{MgSO}_{4}\right)\), concentrated and purified by preparative reverse phase HPLC (GEMINI, 5 to \(100 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}+0.1 \%\) TFA). Product was lyophilized to give (1-\{2-[5-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-benzoimidazol-5-ylethynyl\}-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester as the bis-TFA salt (2.8 mg): \({ }^{1} \mathrm{H}-\mathrm{NMR}: 300 \mathrm{MHz}\), \(\left(\mathrm{CD}_{3} \mathrm{OD}-\mathrm{d}_{4}\right) \delta: 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.78-7.60(\mathrm{~m}, 5 \mathrm{H}), 5.32(\mathrm{~m}, 2 \mathrm{H}), 4.27(\mathrm{dd}, 2 \mathrm{H})\), \(4.11(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{~s}, 6 \mathrm{H}), 2.58(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.12(\mathrm{~m}, 6 \mathrm{H}), 2.08(\mathrm{~m}, 2 \mathrm{H}), 0.95-\) \(0.85(\mathrm{~m}, 12 \mathrm{H})\); LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{40} \mathrm{H}_{46} \mathrm{~N}_{8} \mathrm{O}_{6}\) : 736.86; Found: \(737.3\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{Example BJ}

(2-Methyl-1-\{2-[5-(4-trimethylsilanylethynyl-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-propyl)-carbamic acid methyl ester: A mixture of (1-\{2-[5-(4-Bromo-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester (364 mg , 0.81 mmol), Ethynyl-trimethyl-silane (\(0.68 \mathrm{~mL}, 4.9 \mathrm{mmol}\)), Copper(I) iodide (\(154 \mathrm{mg}, 0.81\) mmol), tetrakis(triphenylphosphine)palladium (\(94 \mathrm{mg}, 0.08 \mathrm{mmol}\)) and triethylamine (0.67 mL , 4.9 mmol) in 5 ml DMF was heated to \(70^{\circ} \mathrm{C}\) overnight. The reaction mixture was cooled and dissolved in ethyl acetate and washed with \(5 \%\) lithium chloride aqueous solution. The organic layer was dried \(\left(\mathrm{MgSO}_{4}\right)\), concentrated and purified by flash column chromatography (silica gel, 20 to \(100 \%\) ethyl acetate/hexane) and followed by preparative reverse phase HPLC (GEMINI, 5 to \(100 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}+0.1 \% \mathrm{TFA}\)) to give (2-Methyl-1-\{2-[5-(4-trimethylsilanylethynyl-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-propyl)-carbamic acid methyl ester (324 mg). LCMS-ESI: calc'd for \(\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{BN}_{4} \mathrm{O}_{3} \mathrm{Si}\) : 466.65 ; Found: \(467.1\left(\mathrm{M}+\mathrm{H}^{+}\right)\).
(1-\{2-[5-(4-Ethynyl-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)carbamic acid methyl ester: Potassium carbonate (192 mg) was added to (2-Methyl-1-\{2-[5-(4-trimethylsilanylethynyl-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl \}-propyl)-carbamic acid methyl ester (324 mg) in 7 mL MeOH solution. The reaction was stirred at room temperature overnight. The reaction mixture was concentrated down and purified by flash column chromatography (silica gel, 20 to \(100 \%\) ethyl acetate/hexane) to give (1-\{2-[5-(4-Ethynyl-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester (234 mg).
\({ }^{1} \mathrm{H}-\mathrm{NMR}: 300 \mathrm{MHz},\left(\mathrm{CD}_{3} \mathrm{OD}-\mathrm{d}_{4}\right) \delta: 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, 2 \mathrm{H}), 6.98(\mathrm{~d}, 2 \mathrm{H}), 5.22(\mathrm{t}, 1 \mathrm{H})\), \(4.21(\mathrm{~d}, 1 \mathrm{H}), 4.11(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.02(\mathrm{~m}, 4 \mathrm{H}), 0.95-0.85\) \((\mathrm{m}, 6 \mathrm{H})\); LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{3}\) : 394.47; Found: \(395.1\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{Example BK}

2-(6-Ethynyl-1 H-benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester

2-Methoxycarbonylamino-3-methyl-butyric acid

\{1-[2-(6-Ethynyl-1 H -benzoimidazol-2-
yl)-pyrrolidine-1-carbonyl]-2-methyl-propyif-carbamic acid methyl ester

\section*{\{1-[2-(6-Ethynyl-1H-benzoimidazol-2-yl)-pyrrolidine-1-carbonyl]-2-methyl-propyl\}-} carbamic acid methyl ester: Trifluoroacetic acid (1 mL) was added to 2-(6-Ethynyl-1 H-benzoimidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (20 mg) and the reaction mixture was stirred at room temperature for 1 hour. The reaction mixture was concentrated and dried ovemight under vacuum. The residue was dissolved in DMF (1 mL) and to this solution was added 2-methoxycarbonylamino-3-methyl-butyric acid (12 mg), diisopropylethylamine (67 \(\mu \mathrm{L}\)), followed by HATU (24 mg). Reaction mixture was stirred at \(0^{\circ} \mathrm{C}\) for 30 minutes. The reaction mixture was dissolved in ethyl acetate and washed with dilute sodium bicarbonate solution. The organic layer was dried \(\left(\mathrm{MgSO}_{4}\right)\), concentrated and purified by preparative reverse phase HPLC (GEMINI, 5 to \(100 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}+0.1 \%\) TFA). Product was lyophilized to give \(\{1\)-[2-(6-Ethynyl-1 H-benzoimidazol-2-yl)-pyrrolidine-1-carbonyl]-2-methyl-propyl \(\}\) carbamic acid methyl ester as the mono TFA salt (23 mg): \({ }^{1} \mathrm{H}-\mathrm{NMR}: 300 \mathrm{MHz},\left(\mathrm{CD}_{3} \mathrm{OD}-\mathrm{d}_{4}\right) \delta\) : \(7.82(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, 1 \mathrm{H}), 7.62(\mathrm{~d}, 1 \mathrm{H}), 5.32(\mathrm{t}, 1 \mathrm{H}), 4.24(\mathrm{~d}, 1 \mathrm{H}), 4.11(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~m}, 1 \mathrm{H})\),
\(3.63(\mathrm{~s}, 4 \mathrm{H}), 2.58(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.12(\mathrm{~m}, 3 \mathrm{H}), 2.04(\mathrm{~m}, 1 \mathrm{H}), 0.95-0.85(\mathrm{~m}, 6 \mathrm{H}) ; \mathrm{LCMS}^{2}-\mathrm{ESI}^{+}:\) calc'd for \(\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{3}\) : 368.43 ; Found: \(369.0\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{Example BL}

Piperidine-1,4-dicarboxylic acid monobenzyl ester: Piperidine-4-carboxylic acid (\(64.8 \mathrm{~g}, 0.5\) \(\mathrm{mol})\) in \(\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})\) was treated with \(\mathrm{NaOH}(44.0 \mathrm{~g}, 1.1 \mathrm{~mol})\). The reaction mixture was cooled to \(0^{\circ} \mathrm{C}\) and treated with \(\mathrm{CbzCl}(93.8 \mathrm{~g}, 0.55 \mathrm{~mol})\). The reaction mixture was stirred at ambient temperature for 4 hours and the mixture was extracted with \(\mathrm{Et}_{2} \mathrm{O}(3150 \mathrm{~mL}\)). The aqueous phase was acidified with \(6 \mathrm{~N} \mathrm{HCl}(140 \mathrm{~mL})\) and extracted with EtOAc (3200 mL). The solution was dried over MgSO4, filtered, and concentrated to afford crude piperidine-1,4dicarboxylic acid monobenzyl ester (120 g), which was used without further purification: MS (ESI) \(m / z 262[\mathrm{M}-\mathrm{H}]^{+}\).

4-Chlorocarbonyl-piperidine-1-carboxylic acid benzyl ester: Piperidine-1,4-dicarboxylic acid monobenzyl ester (\(40.2 \mathrm{~g}, 0.15 \mathrm{~mol}\)) in dichloromethane (300 mL) was treated with oxalyl chloride (\(100 \mathrm{~g}, 0.79 \mathrm{~mol}\)). The reaction mixture was stirred at ambient temperature for 4 hours and the mixture was concentrated to afford crude 4-chlorocarbonyl-piperidine-1-carboxylic acid benzyl ester (43 g), which was used without further purification.

4-(2-Diazo-acetyl)-piperidine-1-carboxylic acid benzyl ester: 4-Chlorocarbonyl-piperidine-1carboxylic acid benzyl ester (\(43 \mathrm{~g}, 0.15 \mathrm{~mol}\)) in dichloromethane (300 mL) was treated with (trimethylsilyl)diazomethane (2.0 M in hexanes, \(150 \mathrm{~mL}, 0.31 \mathrm{~mol}\)) over 15 min . The reaction mixture was stirred at ambient temperature for 18 hours and the mixture was concentrated to afford crude 4-(2-diazo-acetyl)-piperidine-1-carboxylic acid benzyl ester (44 g), which was used without further purification.

4-(2-Bromo-acetyl)-piperidine-1-carboxylic acid benzyl ester: 4-(2-Diazo-acetyl)-piperidine1 -carboxylic acid benzyl ester (\(44 \mathrm{~g}, 0.15 \mathrm{~mol}\)) in EtOAc (300 mL) was cooled to \(0^{\circ} \mathrm{C}\). The solution was treated with \(33 \% \mathrm{HBr} / \mathrm{HOAc}\) (\(75 \mathrm{~mL}, 0.42 \mathrm{~mol}\)) over 15 min and stirred at ambient temperature for 2 hours. The mixture was slowly treated with saturated \(\mathrm{NaHCO}_{3}\) solution (300 mL) until pH was neutral or slightly basic and filtered. The solution was dried over \(\mathrm{MgSO}_{4}\) and subjected to a \(330 \mathrm{~g} \mathrm{SiO}_{2}\) COMBIFLASH column (\(0-100 \% \mathrm{EtOAc}\)-hexanes gradient) to afford 4-(2-bromo-acetyl)-piperidine-1-carboxylic acid benzyl ester (\(38.1 \mathrm{~g}, 81 \%\)): MS (ESI) m/z 341 \([\mathrm{M}+\mathrm{H}]^{+}\).

Pyrrolidine-1,2-dicarboxylic acid 2-[2-(1-benzyloxycarbonyl-piperidin-4-yl)-2-oxo-ethyl] ester 1-tert-butyl ester: (\(S\))-Proline (\(13 \mathrm{~g}, 61 \mathrm{mmol}\)) in \(\mathrm{MeCN}(250 \mathrm{~mL}\)) was treated with triethylamine (\(8.5 \mathrm{~mL}, 61 \mathrm{mmol}\)). 4-(2-Bromo-acetyl)-piperidine-1-carboxylic acid benzyl ester \((19 \mathrm{~g}, 56 \mathrm{mmol})\) in \(\mathrm{MeCN}(50 \mathrm{~mL})\) was added dropwise over 15 min and the reaction was stirred for 2 hours. The mixture was concentrated and suspended in dicholormethane (100 mL) and washed with \(\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})\). The solution was dried over \(\mathrm{MgSO}_{4}\) and subjected to a \(330 \mathrm{~g} \mathrm{SiO}_{2}\) COMBIFLASH column (\(0-100 \%\) EtOAc-hexanes gradient) to afford pyrrolidine-1,2dicarboxylic acid 2-[2-(1-benzyloxycarbonyl-piperidin-4-yl)-2-oxo-ethyl] ester 1-tert-butyl ester (\(20 \mathrm{~g}, 75 \%\)): MS (ESI) \(m / z 497[\mathrm{M}+\mathrm{Na}]^{+}\).

4-[2-(1-tert-Butoxycarbonyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-piperidine-1-carboxylic acid benzyl ester: Pyrrolidine-1,2-dicarboxylic acid 2-[2-(1-benzyloxycarbonyl-piperidin-4-
yl)-2-oxo-ethyl] ester 1-tert-butyl ester (\(20 \mathrm{~g}, 42 \mathrm{mmol}\)) in xylenes (100 mL) was treated with ammonium acetate (\(16 \mathrm{~g}, 210 \mathrm{mmol}\)). The reaction was stirred at \(130^{\circ} \mathrm{C}\) in a sealed tube for 3 hours. The mixture was concentrated and suspended in dicholormethane (100 mL) and washed with saturated \(\mathrm{NaHCO}_{3}(50 \mathrm{~mL})\). The solution was dried over \(\mathrm{MgSO}_{4}\) and subjected to a 330 g \(\mathrm{SiO}_{2}\) COMBIFLASH column (\(0-100 \% \mathrm{EtOAc}-\) hexanes followed by \(0-20 \% \mathrm{MeOH}-\mathrm{EtOAc}\) gradient) to afford 4-[2-(1-tert-butoxycarbonyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-piperidine-1carboxylic acid benzyl ester (\(6.8 \mathrm{~g}, 36 \%\)): MS (ESI) \(m / z 455[\mathrm{M}+\mathrm{H}]^{+}\).

4-[2-(1-tert-Butoxycarbonyl-pyrrolidin-2-yl)-3-(2-trimethylsilanyl-ethoxymethyl)-3H-imidazol-4-yl]-piperidine-1-carboxylic acid benzyl ester: 4-[2-(1-tert-Butoxycarbonyl-pyrrolidin-2-yl)-3H-imidazol-4-yl]-piperidine-1-carboxylic acid benzyl ester (\(6.8 \mathrm{~g}, 14.9 \mathrm{mmol}\)) in DMF (115 mL) was treated with NaH (\(60 \%\) dispersion in mineral oil, \(655 \mathrm{mg}, 16.4 \mathrm{mmol}\)) in one portion. After 5 min , the mixture was treated with \(\mathrm{SEMCl}(2.75 \mathrm{~mL}, 15.7 \mathrm{mmol})\) in 0.1 mL portions over 10 min . The reaction was stirred for 3 hours and diluted with saturated \(\mathrm{NH}_{4} \mathrm{Cl}\) solution (50 mL) and EtOAc (100 mL). The organic layer was washed with \(\mathrm{H}_{2} \mathrm{O}(350 \mathrm{~mL})\) and brine (50 mL). The solution was dried over \(\mathrm{MgSO}_{4}\) and subjected to a \(120 \mathrm{~g} \mathrm{SiO}_{2}\) COMBIFLASH column (\(0-100 \%\) EtOAc-hexanes followed by \(0-20 \% \mathrm{MeOH}-E t O A c\) gradient) to afford 4-[2-(1-tert-butoxycarbonyl-pyrrolidin-2-yl)-3-(2-trimethylsilanyl-ethoxymethyl)-3H-imidazol-4-yl]-piperidine-1-carboxylic acid benzyl ester (\(2.8 \mathrm{~g}, 32 \%\)): MS (ESI) m/z \(585[\mathrm{M}+\) \(\mathrm{H}]^{+}\).

2-[5-Piperidin-4-yl-1-(2-trimethylsilanyl-ethoxymethyl)-1 H-imidazol-2-yl]-pyrrolidine-1carboxylic acid tert-butyl ester: 4-[2-(1-tert-Butoxycarbonyl-pyrrolidin-2-yl)-3-(2-trimethylsilanyl-ethoxymethyl)-3H-imidazol-4-yl]-piperidine-1-carboxylic acid benzyl ester (2.8 \(\mathrm{g}, 6.1 \mathrm{mmol}\)) in \(\mathrm{EtOH}(60 \mathrm{~mL})\) was treated with \(20 \% \mathrm{PdOH} / \mathrm{C}(600 \mathrm{mg})\) and placed under an atmosphere of \(\mathrm{H}_{2}\). The reaction was stirred for 18 hours and filtered through a CELITE plug to afford crude 2-[5-piperidin-4-yl-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (2.0 g), which was used without further purification: MS (ESI) \(m / z 451[\mathrm{M}+\mathrm{H}]^{+}\).

2-[3-(2-Trimethylsilanyl-ethoxymethyl)-3H-imidazol-4-yl]-phenyl\}-piperidin-4-yl)-1-(2-trimethylsilanyl-ethoxymethyl)-1 H-imidazol-2-yl]-pyrrolidine-bis-1-carboxylic acid tertbutyl ester: 2-[5-Piperidin-4-yl-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (\(170 \mathrm{mg}, 0.37 \mathrm{mmol}\)) and 4-Bromophenyl-1-SEM-imidazol-2-yl-pyrrolidine-1-Boc (\(164 \mathrm{mg}, 0.31 \mathrm{mmol}\), prepared according to WO 2008/021927)
in toluene \((3.5 \mathrm{~mL})\) were treated with \(\mathrm{Pd}(\mathrm{OAc})_{2}(1.4 \mathrm{mg}, 0.0064 \mathrm{mmol}\), via \(10 \%\) solution in toluene), BINAP (\(19 \mathrm{mg}, 0.031 \mathrm{mmol}\)), and \(\mathrm{NaOtBu}(42 \mathrm{mg}, 0.44 \mathrm{mmol}\)). The mixture was stirred in a sealed tube at \(110^{\circ} \mathrm{C}\) for 36 hours. The solution was concentrated, diluted with EtOAc (50 mL), and washed with saturated \(\mathrm{NaHCO}_{3}(20 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})\), and brine (20 mL). The solution was dried over \(\mathrm{MgSO}_{4}\) and subjected to a \(40 \mathrm{~g} \mathrm{SiO}_{2}\) COMBIFLASH column (0\(100 \%\) EtOAc - hexanes followed by \(0-20 \% \mathrm{MeOH}-\mathrm{EtOAc}\) gradient) to afford 2-[3-(2-trimethylsilanyl-ethoxymethyl)-3H-imidazol-4-yl]-phenyl \(\}\)-piperidin-4-yl)-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazol-2-yl]-pyrrolidine-bis-1-carboxylic acid tert-butyl ester (\(35 \mathrm{mg}, 13 \%\)): MS (ESI) \(m / z 892[\mathrm{M}+\mathrm{H}]^{+}\).
[1-(2-\{5-[4-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-piperidin-1-yl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester: 2-[3-(2-Trimethylsilanyl-ethoxymethyl)-3H-imidazol-4-yl]-phenyl\}-piperidin-4-yl)-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazol-2-yl]-pyrrolidine-bis-1-carboxylic acid tert-butyl ester (\(35 \mathrm{mg}, 0.04 \mathrm{mmol}\)) in dichloromethane (1.0 mL) was treated with trifluoroacetic acid \((0.2 \mathrm{~mL})\) and the mixture was stirred for 1 hours. The solution was concentrated and the residue was suspended in DMF (1.0 mL) and treated with (\(S\))-Moc-Val-OH (\(15 \mathrm{mg}, 0.086 \mathrm{mmol}\)), HATU (\(32 \mathrm{mg}, 0.085 \mathrm{mmol}\)), and \(N\)-methyl morpholine (\(0.034 \mathrm{~mL}, 0.31 \mathrm{mmol}\)). The mixture was stirred for 2 hours then diluted with EtOAc (25 mL), and washed with saturated \(\mathrm{NaHCO}_{3}(310 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})\), and brine (10 mL). The solution was dried over \(\mathrm{MgSO}_{4}\) and suspended in trifluoroacetic acid (1.0 mL) and stirred in a screw-cap vial at \(40^{\circ} \mathrm{C}\) for 1 hour. The solution was concentrated and subjected to a reverse phase HPLC column (\(5-95 \% \mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O} ; 0.1 \%\) TFA modifier) to afford [1-(2-\{5-[4-(4-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-piperidin-1-yl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester (\(9.5 \mathrm{mg}, 33 \%\)) as a white solid (TFA salt): \({ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 300 \mathrm{MHz}\right) 7.64(\mathrm{~s}, 1 \mathrm{H})\), \(7.57(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.18(\mathrm{~m}, 2 \mathrm{H}), 4.21(\mathrm{~m}, 2 \mathrm{H}), 4.08\) \((\mathrm{m}, 2 \mathrm{H}), 3.96(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~m}, 2 \mathrm{H}), 3.65,(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{~m}, 3 \mathrm{H}), 2.51(\mathrm{~m}, 2 \mathrm{H})\), \(2.20(\mathrm{~m}, 2 \mathrm{H}), 2.13(\mathrm{~m}, 7 \mathrm{H}), 1.82(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{~m}, 12 \mathrm{H}) ; \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 746[\mathrm{M}+\mathrm{H}]^{+}\).

\section*{Example BM}

\{1-[2-(5- \(4-[4-44-\{2-11-(2-\) Methoxycarbonylamino-3-methyl-butyry \()\)-pyrrolidin-2-y] \(-(2-\)
trimethy|silanyl-ethoxymethyl)-3H-imidazol-4-yl)-phenyl)-piperazin-1-ylf-phenyl)-1-(2-
trimethy|silanylethoxymethyl)-1H-midazol-2-yl)-pymolidine-1-carbonyl)-2-methyi-propyl\} carbamic acid methyl ester

\{1-[2-(5-4-44-(4-\{2-(1- \(2-\) Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-y|]-3H-imidazol-4-yl|-phenyl)-piperazin-1-yl)-pheny|(-1H-imidazol-2-y|)-pyrolidine-1-carbonyl|-2-methyl-propylf-carbamic acid methyl ester

\section*{(1-\{2-[5-(4-Bromo-phenyl)-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazol-2-yl]-} pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester: (1-\{2-[5-(4-Bromo-phenyl)-1 H -imidazol-2-yl]-pyrrolidine-1-carbonyl \(\}\)-2-methyl-propyl)-carbamic acid methyl ester (\(2.6 \mathrm{~g}, 5.8 \mathrm{mmol}\)) in DMF (60 mL) was treated with NaH (\(60 \%\) dispersion in mineral oil, \(256 \mathrm{mg}, 6.4 \mathrm{mmol}\)) in one portion. After 5 min , the mixture was treated with \(\mathrm{SEMCl}(1.08 \mathrm{~mL}\), 6.1 mmol) in 0.1 mL portions over 10 min . The reaction was stirred for 2 hours and diluted with saturated \(\mathrm{NH}_{4} \mathrm{Cl}\) solution \((50 \mathrm{~mL})\) and EtOAc \((100 \mathrm{~mL})\). The organic layer was washed with \(\mathrm{H}_{2} \mathrm{O}(350 \mathrm{~mL})\) and brine \((50 \mathrm{~mL})\). The solution was dried over \(\mathrm{MgSO}_{4}\) and subjected to a 120 \(\mathrm{g} \mathrm{SiO}_{2}\) COMBIFLASH column (\(0-100 \%\) EtOAc-hexanes gradient) to afford (1-\{2-[5-(4-bromo-phenyl)-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester (\(2.4 \mathrm{~g}, 71 \%\)).
\{1-[2-(5-\{4-[4-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-(2-trimethylsilanyl-ethoxymethyl)-3H-imidazol-4-yl\}-phenyl)-piperazin-1-yl]-phenyl\}-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazol-2-yl)-pyrrolidine-1-carbonyl]-2-methyl-propyl\}-carbamic acid methyl ester: (1-\{2-[5-(4-Bromo-phenyl)-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester (\(222 \mathrm{mg}, 0.38 \mathrm{mmol}\)) and piperazine (\(17 \mathrm{mg}, 0.19 \mathrm{mmol}\)) in toluene (3.5 mL) were treated with \(\mathrm{Pd}(\mathrm{OAc})_{2}(2.1 \mathrm{mg}, 0.0096 \mathrm{mmol}\), via \(10 \%\) solution in toluene), BINAP (12 mg , 0.019 mmol), and \(\mathrm{NaOtBu}(64 \mathrm{mg}, 0.67 \mathrm{mmol})\). The mixture was stirred in a sealed tube at \(120^{\circ} \mathrm{C}\) for 4 hours. The solution was concentrated, diluted with EtOAc (50 mL), and washed with saturated \(\mathrm{NaHCO}_{3}(20 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})\), and brine (20 mL). The solution was dried over \(\mathrm{MgSO}_{4}\) and subjected to a reverse phase HPLC column (5-95\% MeCN- \(\mathrm{H}_{2} \mathrm{O} ; 0.1 \%\) TFA modifier) to afford \{1-[2-(5-\{4-[4-(4-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-(2-trimethylsilanyl-ethoxymethyl)-3H-imidazol-4-yl\}-phenyl)-piperazin-1-yl]-phenyl\}-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazol-2-yl)-pyrrolidine-1-carbonyl]-2-methyl-propyl \(\}\)-carbamic acid methyl ester (\(8 \mathrm{mg}, 4 \%\)): MS (ESI) \(m / z 1105[\mathrm{M}+\mathrm{Na}]^{+}\).
\{1-[2-(5-\{4-[4-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-phenyl)-piperazin-1-yl]-phenyl\}-1H-imidazol-2-yl)-pyrrolidine-1-carbonyl]-2-methyl-propyl\}-carbamic acid methyl ester: \{1-[2-(5-\{4-[4-(4-\{2-[1-(2-

Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-(2-trimethylsilanyl-ethoxymethyl)-3H-imidazol-4-yl \}-phenyl)-piperazin-1-yl]-phenyl\}-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazol-2-yl)-pyrrolidine-1-carbonyl]-2-methyl-propyl\}-carbamic acid methyl ester (8 mg , 0.007 mmol) in trifluoroacetic acid (1.0 mL) was stirred in a screw-cap vial at \(40^{\circ} \mathrm{C}\) for 1 hours. The solution was concentrated and subjected to a reverse phase HPLC column (\(5-95 \% \mathrm{MeCN}\) \(\mathrm{H}_{2} \mathrm{O} ; 0.1 \%\) TFA modifier) to afford \{1-[2-(5-\{4-[4-(4-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-phenyl)-piperazin-1-yl]-phenyl\}-1H-imidazol-2-yl)-pyrrolidine-1-carbonyll-2-methyl-propyl\}-carbamic acid methyl ester (1.9 mg , \(32 \%\)) as a white solid (TFA salt): \({ }^{1} \mathrm{H}\) NMR (\(\mathrm{CD}_{3} \mathrm{OD}, 300 \mathrm{MHz}\)) \(7.66(\mathrm{~s}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.7\) \(\mathrm{Hz}, 4 \mathrm{H}), 7.13(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 5.21(\operatorname{app} \mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{~m}\), \(2 \mathrm{H}), 3.85(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 6 \mathrm{H}), 3.31(\mathrm{~m}, 5 \mathrm{H}), 2.52(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{~m}, 8 \mathrm{H}), 0.91(\mathrm{~m}, 12 \mathrm{H})\); MS (ESI) \(m / z 824[\mathrm{M}+\mathrm{H}]^{+}\).

\section*{Example BN}

2-[4-Bromo-1-(2-trimethylsilanyl-ethoxymethyl)-1H imidazol-2-yl)-pyrrolidine-1-carboxylic acid tertbutyl ester
(2-trimethylsilanyt-ethoxymethyl) 1H-imidazole-4-carboxylic acid

2-[4-19-[1-(2-Trimethyisilanyl-ethoxymethyl)-1H-imidazole-4-carbony[)3,9-diaza-spiro[5.5]undecane-3-carbonyl-1-(2-trimethylsilany-ethoxymethyl)-1 H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester

(1-\{2-[4-(9-\{2-[1-(2-Methoxycarbonylamino-3-methytbutyryl)-pyrrolidin-2-yl)-1H-imidazole-4-carbonyl-3,9-diaza-spiro[5.5]undecane-3-carbonyl)-1H-imidazol-2-yil-pyrrolidine-1-carbonyl-2-methyl-propyl)-carbamic acid methyl ester

2-(1-tert-Butoxycarbonyl-pyrrolidin-2-yl)-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazole-4-carboxylic acid: 2-[4-Bromo-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (\(1.0 \mathrm{~g}, 2.2 \mathrm{mmol}\)) in THF (10 mL) was cooled to \(-78^{\circ} \mathrm{C}\) and treated with \(t-\mathrm{BuLi}(1.7 \mathrm{M}\) in pentane, \(2.7 \mathrm{~mL}, 4.6 \mathrm{mmol})\). The reaction mixture was stirred for 1 hour and treated with solid \(\mathrm{CO}_{2}(500 \mathrm{mg})\). The mixture was warmed to ambient temperature and mixture was concentrated. The solution was dried over \(\mathrm{MgSO}_{4}\) and subjected to a \(120 \mathrm{~g} \mathrm{SiO}_{2}\) COMBIFLASH column (\(0-100 \%\) EtOAc-hexanes followed by \(0-\) \(20 \% \mathrm{MeOH}-E t O A c\) gradient) to afford 2-(1-tert-butoxycarbonyl-pyrrolidin-2-yl)-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazole-4-carboxylic acid (\(200 \mathrm{mg}, 22 \%\)): MS (ESI) m/z \(412[\mathrm{M}+\mathrm{H}]^{+}\).

\section*{2-[4-\{9-[1-(2-Trimethylsilanyl-ethoxymethyl)-1H-imidazole-4-carbonyl]-3,9-diaza-} spiro[5.5]undecane-3-carbonyl\}-1-(2-trimethylsilanyl-ethoxymethyl)-1 H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester: 2-(1-tert-Butoxycarbonyl-pyrrolidin-2-yl)-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazole-4-carboxylic acid (\(141 \mathrm{mg}, 0.34 \mathrm{mmol}\)) in DMF (1.0 mL) was treated with spiro-diamine (\(38 \mathrm{mg}, 0.16 \mathrm{mmol}\)), HATU (\(136 \mathrm{mg}, 0.36\)
\(\mathrm{mmol})\), and \(N\)-methyl morpholine (\(0.90 \mathrm{~mL}, 0.82 \mathrm{mmol}\)). The mixture was stirred for 2 hours then diluted with EtOAc (25 mL), and washed with saturated \(\mathrm{NaHCO}_{3}(310 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(10\) mL), and brine (10 mL). The solution was dried over \(\mathrm{MgSO}_{4}\) to afford crude 2-[4-\{9-[1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazole-4-carbonyl]-3,9-diaza-spiro[5.5]undecane-3-carbonyl\}-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester which was used without further purification: MS (ESI) \(m / z 941[M+H]^{+}\).
(1-\{2-[4-(9-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-1H-imidazole-4-carbonyl\}-3,9-diaza-spiro[5.5]undecane-3-carbonyl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester: 2-[4-\{9-[1-(2-Trimethylsilanyl-ethoxymethyl)-1 H -imidazole-4-carbonyl]-3,9-diaza-spiro[5.5]undecane-3-carbonyl\}-1-(2-trimethylsilanyl-ethoxymethyl)-1 H -imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (\(153 \mathrm{mg}, 0.17 \mathrm{mmol}\)) in trifluoroacetic acid (3.0 mL) was stirred for 18 hours. The mixture was concentrated, suspended in DMF (1.7 mL), and treated with (\((S)\)-Moc-Val-OH (\(64 \mathrm{mg}, 0.37 \mathrm{mmol}\)), HATU (\(140 \mathrm{mg}, 0.38 \mathrm{mmol}\)), and \(N\)-methyl morpholine (\(185 \mathrm{~mL}, 1.66\) \(\mathrm{mmol})\). The mixture was stirred for 2 hours then diluted with EtOAc (25 mL), and washed with saturated \(\mathrm{NaHCO}_{3}(310 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})\), and brine \((10 \mathrm{~mL})\). The solution was dried over \(\mathrm{MgSO}_{4}\) and subjected to a reverse phase HPLC column (\(5-95 \% \mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O} ; 0.1 \%\) TFA modifier) to afford 1-\{2-[4-(9-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-1H-imidazole-4-carbonyl\}-3,9-diaza-spiro[5.5]undecane-3-carbonyl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester (\(3.0 \mathrm{mg}, 2 \%\)) as a white solid (TFA salt): \({ }^{1} \mathrm{H}\) NMR (\(\mathrm{CD}_{3} \mathrm{OD}, 300 \mathrm{MHz}\)) 7.77 (\(\mathrm{s}, 2 \mathrm{H}\)), 5.18 (\(\mathrm{app} \mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}\)), 4.22 (d, \(J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 6 \mathrm{H}), 3.31(\mathrm{~m}, 5 \mathrm{H}), 2.52(\mathrm{~m}, 2 \mathrm{H}), 2.16\) \((\mathrm{m}, 8 \mathrm{H}), 0.91(\mathrm{~m}, 12 \mathrm{H}) ; \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 796[\mathrm{M}+\mathrm{H}]^{+}\).

\section*{Example BO}

(1-\{2-[5-(4-Bromo-phenyl)-1-(2-
trimethylsilanyl-ethoxymethyl) -1 H imidazol-2-yl]-pyrrolidine-1-carbony[)-2-methyl-propyl)-carbamic acid methyl ester

4-\{4-[2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3-(2-frimethylsilanyl-ethoxymelhyl)-3H-imidazol-4-yll-phenyl-piperazine-1-carboxylic acid benzyl
ester

2. нату.

2-[4-[4-(4-\{2-11-(2-Methoxycarbonylamino-3-methyt-butyryl)-pyrrolidin-2-y \(]\)-3-methyl-3H-imidazol-4-yI)-phenyl)-piperazine-1-carbonyll-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester

[1-(2-\{5-[4-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl)-3H-imidazole-4-carbonyl)-piperazin-1-yl)-phenyl)-1H-imidazol-2-yll-pyrrolidine-1-carbonyl)-2-methyl-propyl)carbamic acid methyl ester

\section*{4-\{4-[2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3-(2-}

\section*{trimethylsilanyl-ethoxymethyl)-3H-imidazol-4-yl]-phenyl\}-piperazine-1-carboxylic acid} benzyl ester: (1-\{2-[5-(4-Bromo-phenyl)-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester (\(1033 \mathrm{mg}, 1.8 \mathrm{mmol}\)) and 4-Cbz-piperazine (\(588 \mathrm{mg}, 2.7 \mathrm{mmol}\)) in toluene \((9 \mathrm{~mL})\) were treated with \(\mathrm{Pd}(\mathrm{OAc})_{2}(20\) \(\mathrm{mg}, 0.09 \mathrm{mmol}\)), BINAP (\(110 \mathrm{mg}, 0.1 \mathrm{mmol}\)), and \(\mathrm{NaOtBu}(428 \mathrm{mg}, 4.45 \mathrm{mmol})\). The mixture
was stirred in a sealed tube at \(110^{\circ} \mathrm{C}\) for 18 hours. The solution was concentrated, diluted with \(\operatorname{EtOAc}(50 \mathrm{~mL})\), and washed with saturated \(\mathrm{NaHCO}_{3}(20 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})\), and brine (20 mL). The solution was dried over \(\mathrm{MgSO}_{4}\) and subjected to a \(120 \mathrm{~g} \mathrm{SiO}_{2}\) COMBIFLASH column (\(0-\) \(100 \%\) EtOAc-hexanes gradient) to afford 4-\{4-[2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3-(2-trimethylsilanyl-ethoxymethyl)-3H-imidazol-4-yl]-phenyl\}-piperazine-1-carboxylic acid benzyl ester (\(166 \mathrm{mg}, 13 \%\)): MS (ESI) \(m / z 719[\mathrm{M}+\mathrm{H}]^{+}\).

\section*{(2-Methyl-1-\{2-[5-(4-piperazin-1-yl-phenyl)-1-(2-trimethylsilanyl-ethoxymethyl)-1H-} imidazol-2-yl]-pyrrolidine-1-carbonyl\}-propyl)-carbamic acid methyl ester: 4-\{4-[2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3-(2-trimethylsilanyl-ethoxymethyl)-3H-imidazol-4-yl]-phenyl \(\}\)-piperazine-1-carboxylic acid benzyl ester (166 mg , 0.23 mmol) in \(\mathrm{EtOH}(2.5 \mathrm{~mL})\) was treated with \(20 \% \mathrm{PdOH} / \mathrm{C}(60 \mathrm{mg})\) and placed under an atmosphere of \(\mathrm{H}_{2}\). The reaction was stirred for 18 hours and filtered through a CELITE plug to afford crude (2-methyl-1-\{2-[5-(4-piperazin-1-yl-phenyl)-1-(2-trimethylsilanyl-ethoxymethyl)1 H -imidazol-2-yl]-pyrrolidine-1-carbonyl \(\}\)-propyl)-carbamic acid methyl ester (120 mg), which was used without further purification: MS (ESI) \(m / z 585[\mathrm{M}+\mathrm{H}]^{+}\).

2-[4-[4-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3-methyl-3H-imidazol-4-yl\}-phenyl)-piperazine-1-carbonyl]-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester: (2-Methyl-1-\{2-[5-(4-piperazin-1-yl-phenyl)-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-propyl)-carbamic acid methyl ester (\(28 \mathrm{mg}, 0.047 \mathrm{mmol}\)) and 2-(1 -tert-butoxycarbonyl-pyrrolidin-2-yl)-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazole-4carboxylic acid (\(20 \mathrm{mg}, 0.047 \mathrm{mmol}\)) in DMF (1 mL) were treated with HATU (\(20 \mathrm{mg}, 0.052\) mmol) and \(N\)-methyl morpholine (\(0.26 \mathrm{~mL}, 0.23 \mathrm{mmol}\)). The mixture was stirred for 18 hours then diluted with EtOAc (25 mL), and washed with saturated \(\mathrm{NaHCO}_{3}(310 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(10\) mL), and brine (10 mL). The solution was dried over \(\mathrm{MgSO}_{4}\) to afford crude 2-[4-[4-(4-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3-methyl-3H-imidazol-4-yl\}-phenyl)-piperazine-1-carbonyl]-1-(2-trimethylsilanyl-ethoxymethyl)-1 H -imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester, which was used without further purification: MS (ESI) \(m / z 978[\mathrm{M}+\mathrm{H}]^{+}\).
[1-(2-\{5-[4-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazole-4-carbonyl\}-piperazin-1-yl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-
2-methyl-propyl]-carbamic acid methyl ester: 2-[4-[4-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3-methyl-3H-imidazol-4-yl\}-phenyl)-piperazine-1-carbonyl]-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (\(47 \mathrm{mg}, 0.05 \mathrm{mmol}\)) in trifluoroacetic acid \((3.0 \mathrm{~mL})\) was stirred for 18 hours. The mixture was concentrated, suspended in DMF (1.5 mL), and treated with (\(S\))-Moc-Val-OH (9 mg , 0.0 .053 mmol), HATU (\(20 \mathrm{mg}, 0.0 .053 \mathrm{mmol}\)), and \(N\)-methyl morpholine (\(0.26 \mathrm{~mL}, 0.24\) mmol). The mixture was stirred for 18 hours then diluted with EtOAc (25 mL), and washed with saturated \(\mathrm{NaHCO}_{3}(310 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})\), and brine \((10 \mathrm{~mL})\). The solution was dried over \(\mathrm{MgSO}_{4}\) and subjected to a reverse phase HPLC column (\(5-95 \% \mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O} ; 0.1 \%\) TFA modifier) to afford [1-(2-\{5-[4-(4-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazole-4-carbonyl\}-piperazin-1-yl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester (\(6.6 \mathrm{mg}, 18 \%\)) as a white solid (TFA salt): \({ }^{1} \mathrm{H}\) NMR (\(\left.\mathrm{CD}_{3} \mathrm{OD}, 300 \mathrm{MHz}\right) 7.67(\mathrm{~s}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J\) \(=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.20(\mathrm{app} \mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{~m}, 5 \mathrm{H}), 3.85(\mathrm{~m}, 2 \mathrm{H})\), \(3.66(\mathrm{~s}, 6 \mathrm{H}), 3.38(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{~m}, 8 \mathrm{H}), 0.91(\mathrm{~m}, 12 \mathrm{H})\); MS (ESI) m/z 775 [M+ \(\mathrm{H}]^{+}\).

\section*{Example BP}

\{1-[5-(4-Bromo-phenyl)-1H-imidazol-2-yl]-cyclopropyl\}-carbamic acid tert-butyl ester: 2-Amino-1-(4-bromo-phenyl)-ethanone \(\mathrm{HCl}(2.5 \mathrm{~g}, 10 \mathrm{mmol})\) in DMF (30 mL) was treated with 1-tert-butoxycarbonylamino-cyclopropanecarboxylic acid (\(1.97 \mathrm{~g}, 9.8 \mathrm{mmol}\)), HATU (4.02 g , 10.5 mmol), and DIPEA (\(5.6 \mathrm{~mL}, 31.1 \mathrm{mmol}\)). The mixture was stirred for 18 hours and concentrated. The mixture was diluted with EtOAc (25 mL), and washed with saturated \(\mathrm{NaHCO}_{3}(310 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})\), and brine (10 mL). The solution was dried over \(\mathrm{MgSO}_{4}\) and subjected to a \(80 \mathrm{~g} \mathrm{SiO}_{2}\) COMBIFLASH column (\(0-100 \%\) EtOAc-hexanes gradient) to afford \{1-[2-(4-bromo-phenyl)-2-oxo-ethylcarbamoyl]-cyclopropyl\}-carbamic acid tert-butyl ester (\(3.49 \mathrm{~g}, 90 \%\)). This material (\(3.49 \mathrm{~g}, 8.8 \mathrm{mmol}\)) in xylenes (20 mL) was treated with ammonium acetate (\(3.4 \mathrm{~g}, 44 \mathrm{mmol}\)). The reaction was stirred at \(130^{\circ} \mathrm{C}\) in a sealed tube for 18 hours. The mixture was concentrated and suspended in dicholormethane (100 mL) and washed with saturated \(\mathrm{NaHCO}_{3}(50 \mathrm{~mL})\). The solution was dried over \(\mathrm{MgSO}_{4}\) to afford crude \(\{1-[5-(4-\) bromo-phenyl)-1 H -imidazol-2-yl]-cyclopropyl \(\}\)-carbamic acid tert-butyl ester, which was used without further purification: MS (ESI) \(m / z 379[\mathrm{M}+\mathrm{H}]^{+}\).

\section*{(1-\{1-[5-(4-Bromo-phenyl)-1 H-imidazol-2-yl]-cyclopropylcarbamoyl\}-2-methyl-propyl)-} carbamic acid methyl ester: \(\{1\)-[5-(4-Bromo-phenyl)-1H-imidazol-2-yl]-cyclopropyl\}carbamic acid tert-butyl ester (\(3.3 \mathrm{~g}, 8.77 \mathrm{mmol}\)) was treated with \(4 \mathrm{~N} \mathrm{HCl} /\) dioxane \((40 \mathrm{~mL})\) and
stirred for 2 hours. The mixture was concentrated and suspended in DMF (50 mL). The mixture was treated with (\(S\))-Moc-Val-OH (\(1.69 \mathrm{~g}, 9.7 \mathrm{mmol}\)), HATU (\(3.67 \mathrm{~g}, 9.7 \mathrm{mmol}\)), and \(N\)-methyl morpholone (\(4.8 \mathrm{~mL}, 43.9 \mathrm{mmol}\)). The mixture was stirred for 18 hours and concentrated. The mixture was diluted with \(\mathrm{EtOAc}(100 \mathrm{~mL})\), and washed with saturated \(\mathrm{NaHCO}_{3}(350 \mathrm{~mL})\), \(\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})\), and brine (50 mL). The solution was dried over \(\mathrm{MgSO}_{4}\) and subjected to a 120 g \(\mathrm{SiO}_{2}\) COMBIFLASH column (\(0-100 \% \mathrm{EtOAc}\)-hexanes gradient) to afford (1-\{1-[5-(4-bromo-phenyl)-1H-imidazol-2-yl]-cyclopropylcarbamoyl\}-2-methyl-propyl)-carbamic acid methyl ester (\(3.37 \mathrm{~g}, 88 \%\)): MS (ESI) \(m / z 436[\mathrm{M}+\mathrm{H}]^{+}\).
[2-Methyl-1-(1-\{5-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl\}-cyclopropylcarbamoyl)-propyl]-carbamic acid methyl ester: (1-\{1-[5-(4-Bromo-phenyl)-1H-imidazol-2-yl]-cyclopropylcarbamoyl \(\}\)-2-methyl-propyl)-carbamic acid methyl ester (\(1.38 \mathrm{~g}, 3.2 \mathrm{mmol}\)) in 1,4-dioxane (25 mL) was treated with bis(pinacolato)diboron (1.69 g , \(6.7 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(150 \mathrm{mg}, 0.13 \mathrm{mmol})\), and \(\mathrm{KOAc}(810 \mathrm{mg}, 8.2 \mathrm{mmol})\). The mixture was stirred in a sealed tube at \(80^{\circ} \mathrm{C}\) for 18 hours. The mixture was filtered through a fritted glass funnel and concentrated. The mixture was then suspended in dichloromethane (10 mL) and filtered and subjected to a \(120 \mathrm{~g} \mathrm{SiO}_{2}\) COMBIFLASH column (0-100\% EtOAc-hexanes gradient) to afford [2-methyl-1-(1-\{5-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]1 H -imidazol-2-yl\}-cyclopropylcarbamoyl)-propyl]-carbamic acid methyl ester (\(1.24 \mathrm{~g}, 81 \%\)): MS (ESI) \(m / z 483[\mathrm{M}+\mathrm{H}]^{+}\).
(1-\{2-[5-(4'-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyrylamino)-cyclopropyl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-1H-imidazol-2-yl|-pyrrolidine-1-carbonyl\}-2-methyl-propyl)carbamic acid methyl ester: [2-Methyl-1-(1-\{5-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl\}-cyclopropylcarbamoyl)-propyl]-carbamic acid methyl ester (85 \(\mathrm{mg}, 0.21 \mathrm{mmol}\)) and (1-\{2-[5-(4-bromo-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl \(\}\)-2-methyl-propyl)-carbamic acid methyl ester (\(97 \mathrm{mg}, 0.21 \mathrm{mmol}\)) in 3:1 DME/ \(\mathrm{H}_{2} \mathrm{O}(2.5 \mathrm{~mL})\) were treated with \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{mg}, 0.0084 \mathrm{mmol})\) and \(\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{M}\) solution, \(0.42 \mathrm{~mL}, 0.84 \mathrm{mmol})\). The mixture was stirred in a sealed tube at \(80^{\circ} \mathrm{C}\) for 3 hours. The mixture was filtered through a fritted glass funnel and concentrated. The mixture was subjected to a reverse phase HPLC column (\(5-95 \% \mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O} ; 0.1 \%\) TFA modifier) to afford (1-\{2-[5-(4'-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyrylamino)-cyclopropyl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-1 H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester \((2.3 \mathrm{mg}, 2 \%)\) as a white solid (TFA salt): \({ }^{1} \mathrm{H}\) NMR (\(\left.\mathrm{CD}_{3} \mathrm{OD}, 300 \mathrm{MHz}\right) 7.93(\mathrm{~s}, 2 \mathrm{H}), 7.84(\mathrm{~m}\), \(4 \mathrm{H}), 5.20(\mathrm{~m}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{~m}, 4 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}\),
\(3 \mathrm{H}), 3.38(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~m}, 4 \mathrm{H}), 2.04(\mathrm{~m}, 4 \mathrm{H}), 1.75(\mathrm{~m}, 4 \mathrm{H}), 1.58(\mathrm{~m}, 4 \mathrm{H}), 0.95\) (\(\mathrm{m}, 12 \mathrm{H}\)) ; MS (ESI) \(m / z 725[\mathrm{M}+\mathrm{H}]^{+}\).

\section*{Example BQ}

\{1-[5-(4-Bromo-phenyl)-1H-imidazol-2-yl]-cyclobutyl\}-carbamic acid tert-butyl ester: 2-Amino-1-(4-bromo-phenyl)-ethanone \(\mathrm{HCl}(5.8 \mathrm{~g}, 23 \mathrm{mmol})\) in DMF (75 mL) was treated with 1-tert-butoxycarbonylamino-cyclobutanecarboxylic acid (\(5.0 \mathrm{~g}, 23 \mathrm{mmol}\)), HATU (\(9.7 \mathrm{~g}, 25\) mmol), and DIPEA (\(12.9 \mathrm{~mL}, 34 \mathrm{mmol}\)). The mixture was stirred for 18 hours and concentrated. The mixture was diluted with EtOAc (25 mL), and washed with saturated \(\mathrm{NaHCO}_{3}\) (3 10 mL), \(\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})\), and brine (10 mL). The solution was dried over \(\mathrm{MgSO}_{4}\) to afford crude \{1-[2-(4-bromo-phenyl)-2-oxo-ethylcarbamoyl]-cyclobutyl\}-carbamic acid tertbutyl ester, which was used without further purification. This material (\(6.54 \mathrm{~g}, 16 \mathrm{mmol}\)) in xylenes (40 mL) was treated with ammonium acetate \((6.1 \mathrm{~g}, 80 \mathrm{mmol})\). The reaction was stirred at \(130^{\circ} \mathrm{C}\) in a sealed tube for 18 hours. The mixture was concentrated and suspended in dicholormethane (100 mL) and washed with saturated \(\mathrm{NaHCO}_{3}(50 \mathrm{~mL})\). The solution was dried over \(\mathrm{MgSO}_{4}\) to afford crude \(\{1\)-[5-(4-bromo-phenyl)-1H-imidazol-2-yl]-cyclobutyl \}carbamic acid tert-butyl ester, which was used without further purification: MS (ESI) \(m / z 393\) \([\mathrm{M}+\mathrm{H}]^{+}\).
\{1-[1H-Imidazol-2-yl]-cyclobutyl\}-carbamic acid tert-butyl ester boronic acid: \{1-[5-(4-Bromo-phenyl)-1H-imidazol-2-yl]-cyclobutyl \(\}\)-carbamic acid tert-butyl ester (\(110 \mathrm{mg}, 0.28\)) in 1,4-dioxane (2.5 mL) was treated with bis(pinacolato)diboron (\(150 \mathrm{mg}, 0.59 \mathrm{mmol}\)), \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\) (\(13 \mathrm{mg}, 0.011 \mathrm{mmol}\)), and KOAc (\(71 \mathrm{mg}, 0.73 \mathrm{mmol}\)). The mixture was stirred in a sealed tube at \(80^{\circ} \mathrm{C}\) for 18 hours. The mixture was filtered through a fritted glass funnel and concentrated. The mixture was subjected to a reverse phase HPLC column (\(5-95 \% \mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O} ; 0.1 \%\) TFA modifier) to afford \{1-[1H-imidazol-2-yl]-cyclobutyl \(\}\)-carbamic acid tert-butyl ester boronic acid.

2-(5-\{4'-[2-(1-tert-Butoxycarbonylamino-cyclobutyl)-3H-imidazol-4-yl]-biphenyl-4-yl\}-1H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester: 1 -[1H-Imidazol-2-yl]-cyclobutyl\}-carbamic acid tert-butyl ester boronic acid (\(60 \mathrm{mg}, 0.17 \mathrm{mmol}\)) and 2-[5-(4-bromo-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (\(65 \mathrm{mg}, 17 \mathrm{mmol}\)) in 3:1 DME/ \(\mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{~mL})\) were treated with \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{mg}, 0.0084 \mathrm{mmol})\) and \(\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{M}\) solution, \(0.25 \mathrm{~mL}, 0.50 \mathrm{mmol}\)). The mixture was stirred in a sealed tube at \(80^{\circ} \mathrm{C}\) for 18 hours. The mixture was filtered through a fritted glass funnel and concentrated. The mixture was subjected to a reverse phase HPLC column (5-95\% MeCN- \(\mathrm{H}_{2} \mathrm{O} ; 0.1 \%\) TFA modifier) to afford 2-(5-\{4'-[2-(1-tert-butoxycarbonylamino-cyclobutyl)-3H-imidazol-4-yl]-biphenyl-4-yl\}-1H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (10 mg , 9\%): MS (ESI) m/z 625 [M \(+\mathrm{H}]^{+}\).

\section*{(1-\{2-[5-(4'-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyrylamino)-cyclobuty]]-3H-} imidazol-4-yl\}-biphenyl-4-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)carbamic acid methyl ester: 2-(5-\{4'-[2-(1-tert-Butoxycarbonylamino-cyclobutyl)-3H-imidazol-4-yl]-biphenyl-4-yl\}-1H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (\(9.8 \mathrm{mg}, 0.016 \mathrm{mmol}\)) was treated with \(4 \mathrm{~N} \mathrm{HCl} /\) dioxane \((1.5 \mathrm{~mL})\) and stirred for 4 hours. The mixture was concentrated and suspended in DMF (1.5 mL). The mixture was treated with \((S)\) -Moc-Val-OH (\(6.0 \mathrm{mg}, 0.032 \mathrm{mmol}\)), HATU (\(13 \mathrm{mg}, 0.034 \mathrm{mmol}\)), and \(N\)-methyl morpholone (\(0.009 \mathrm{~mL}, 0.080 \mathrm{mmol}\)). The mixture was stirred for 18 hours and concentrated. The mixture was subjected to a reverse phase HPLC column (\(5-95 \% \mathrm{MeCN}^{2} \mathrm{H}_{2} \mathrm{O} ; 0.1 \%\) TFA modifier) to afford (1-\{2-[5-(4'-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyrylamino)-cyclobutyl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)carbamic acid methyl ester (\(2.8 \mathrm{mg}, 24 \%\)) as a white solid (TFA salt): \({ }^{1} \mathrm{H}\) NMR (\(\mathrm{CD}_{3} \mathrm{OD}, 300\) \(\mathrm{MHz}) 7.88(\mathrm{~m}, 10 \mathrm{H}), 5.20(\mathrm{~m}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~m}, 1 \mathrm{H}), 3.88(\) app d, \(J=7.2\)
\(\mathrm{Hz}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{br} \mathrm{m}, 2 \mathrm{H}), 2.65(\mathrm{~m}, 4 \mathrm{H}), 2.09(\mathrm{~m}, 10 \mathrm{H}), 0.95(\mathrm{~m}, 12 \mathrm{H})\); MS (ESI) \(m / z 739[\mathrm{M}+\mathrm{H}]^{+}\).

\section*{Example BR}

(2-Methanesulfonyl-1 \(\{2-\) [5-(4' \(\{2-\) [1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-y|]-3H-imidazol-4-yl\}-biphenyl-4-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl)-2-methyl-propyl)-carbamic acid methyl ester
[2-Methanesulfonyl-2-methyl-1-(2-\{5-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl|-1H-imidazol-2-ylf-pyrrolidine-1-carbonyl)-propyl]-carbamic acid methyl ester: 2-\{5-[4-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1carboxylic acid tert-butyl ester (\(1.02 \mathrm{~g}, 1.73 \mathrm{mmol}\)) was treated with 4 N HCl dioxane (5 mL) and stirred for 4 hours. The mixture was concentrated and suspended in DMF (1.5 mL). The mixture was treated with (\(S\))-Moc-3-methanesulfonyl-2-methoxycarbonylamino-3-methylbutyric acid (\(460 \mathrm{mg}, 1.82 \mathrm{mmol}\)), HATU (\(772 \mathrm{mg}, 2.03 \mathrm{mmol}\)), and \(N\)-methyl morpholone \((0.950 \mathrm{~mL}, 8.65 \mathrm{mmol})\). The mixture was stirred for 18 hours and concentrated. The mixture was diluted with EtOAc (100 mL), and washed with saturated \(\mathrm{NaHCO}_{3}(350 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(50\) mL), and brine (50 mL). The solution was dried over \(\mathrm{MgSO}_{4}\) and subjected to a \(40 \mathrm{~g} \mathrm{SiO}_{2}\) COMBIFLASH column (\(0-100 \%\) EtOAc-hexanes followed by 0-20\% MeOH-EtOAc gradient) to afford [2-methanesulfonyl-2-methyl-1-(2-\{5-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-propyl]-carbamic acid methyl ester (728 \(\mathrm{mg}, 73 \%\)): MS (ESI) \(m / z 575[\mathrm{M}+\mathrm{H}]^{+}\).
(2-Methanesulfonyl-1-\{2-[5-(4'-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl|-3H-imidazol-4-yl\}-biphenyl-4-yl)-1H-imidazol-2-yl|-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester: [2-Methanesulfonyl-2-methyl-1-(2-\{5-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-
carbonyl)-propyl]-carbamic acid methyl ester (\(700 \mathrm{mg}, 1.22 \mathrm{mmol}\)) and (1-\{2-[5-(4-bromo-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl \(\}\)-2-methyl-propyl)-carbamic acid methyl ester \((565 \mathrm{mg}, 1.26 \mathrm{mmol})\) in \(3: 1 \mathrm{DME} / \mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})\) were treated with \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(56 \mathrm{mg}\), 0.0050 mmol) and \(\mathrm{NaHCO}_{3}(350 \mathrm{mg}, 4.15 \mathrm{mmol})\). The mixture was stirred in a sealed tube at \(80^{\circ} \mathrm{C}\) for 24 hours. The mixture was filtered through a fritted glass funnel and concentrated. The mixture was subjected to a reverse phase HPLC column (\(5-95 \% \mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O} ; 0.1 \%\) TFA modifier) to afford (2-methanesulfonyl-1-\{2-[5-(4'-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-1H-imidazol-2-yl]-pyrrolidine-1carbonyl \}-2-methyl-propyl)-carbamic acid methyl ester (\(150 \mathrm{mg}, 15 \%\)) as a white solid (TFA salt): \({ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 300 \mathrm{MHz}\right) 7.85(\mathrm{~m}, 10 \mathrm{H}), 5.25(\mathrm{~m}, 2 \mathrm{H}), 4.24(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.13\) \((\mathrm{m}, 2 \mathrm{H}), 3.88(\mathrm{app} \mathrm{d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~m}, 2 \mathrm{H}), 2.16\) \((\mathrm{m}, 10 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 1 \mathrm{H}), 0.93(\mathrm{~m}, 6 \mathrm{H}) ; \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 818[\mathrm{M}+\mathrm{H}]^{+}\).

\section*{Example BS}

(1-\{2-[5-(8-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl]-thianthren-2-yl)-1 H -imidazol-2-yl-pyrrolidine-1-carbonyl)-2-methyl-propyl)-carbamic acid methyl ester

\section*{2,7-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-thianthrene and 2,8-(4,4,5,5-}
tetramethyl-[1,3,2]dioxaborolan-2-yl)-thianthrene: Thianthrene (\(27 \mathrm{~g}, 125 \mathrm{mmol}\)) in AcOH \((150 \mathrm{~mL})\) was treated with bromine \((44 \mathrm{~g}, 275 \mathrm{mmol})\) and heated at \(120^{\circ} \mathrm{C}\) for 8 hours. The mixture was allowed to stand overnight at ambient temperature, at which time a white solid appeared. The solid was filtered, washed with \(\mathrm{H}_{2} \mathrm{O}(350 \mathrm{~mL})\) and air dried to afford a mixture
of 2,7-dibromo-thianthrene and 2,8-dibromo-thianthrene which was carried forward without further purification \((42 \mathrm{~g})\). The 2,7-bibromo-thianthrene/2,8-dibromo-thianthrene mixture (1 g , 2.7 mmol) in DMSO (25 mL) was treated with bis(pinacolato)diboron (\(2.7 \mathrm{~g}, 10.7 \mathrm{mmol}\)), \(\mathrm{PdCl}_{2} \mathrm{dppf}(218 \mathrm{mg}, 0.27 \mathrm{mmol})\), and \(\mathrm{KOAc}(2.1 \mathrm{~g}, 21.4 \mathrm{mmol})\). The mixture was stirred in a sealed tube at \(80^{\circ} \mathrm{C}\) for 18 hours. The mixture was diluted with EtOAc (100 mL), and washed with saturated \(\mathrm{NaHCO}_{3}(350 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})\), and brine (50 mL). The solution was dried over \(\mathrm{MgSO}_{4}\) and subjected to a \(40 \mathrm{~g} \mathrm{SiO}_{2}\) COMBIFLASH column (\(0-50 \%\) EtOAc-hexanes gradient) to afford a mixture of 2,7-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-thianthrene and 2,8-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-thianthrene (\(1.25 \mathrm{~g}, 99 \%\)): MS (ESI) \(\mathrm{m} / \mathrm{z}\) \(796[\mathrm{M}+\mathrm{H}]^{+}\).

2-(5-\{7-[3H-Imidazol-4-yl]-thianthren-2-yl\}-1H-imidazol-2-yl)-pyrrolidine-bis-1-carboxylic acid tert-butyl ester and 2-(5-\{8-3H-imidazol-4-yl]-thianthren-2-yl\}-1H-imidazol-2-yl)-pyrrolidine-bis-1-carboxylic acid tert-butyl ester: A mixture of 2,7-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-thianthrene and 2,8-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)thianthrene (\(1.25 \mathrm{~g}, 2.67 \mathrm{mmol}\)) and 2-(4-bromo-1 H -imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester \((1.77 \mathrm{~g}, 5.6 \mathrm{mmol})\) in 3:1 DME/ \(\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})\) were treated with \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\) (\(185 \mathrm{mg}, 0.160 \mathrm{mmol}\)) and \(\mathrm{NaHCO}_{3}(1.12 \mathrm{~g}, 13.35 \mathrm{mmol})\). The mixture was stirred in a sealed tube at \(90^{\circ} \mathrm{C}\) for 24 hours. The mixture was filtered through a fritted glass funnel and concentrated. The mixture was diluted with EtOAc (100 mL), and washed with saturated \(\mathrm{NaHCO}_{3}(350 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})\), and brine (50 mL). The solution was dried over \(\mathrm{MgSO}_{4}\) and subjected to a \(120 \mathrm{~g} \mathrm{SiO}_{2}\) COMBIFLASH column (\(0-50 \%\) EtOAc-hexanes gradient) to afford a mixture of 2-(5-\{7-[3H-imidazol-4-yl]-thianthren-2-yl\}-1H-imidazol-2-yl)-pyrrolidine-bis-1-carboxylic acid tert-butyl ester and 2-(5-\{8-3H-imidazol-4-yl]-thianthren-2-yl \}-1H-imidazol-2-yl)-pyrrolidine-bis-1-carboxylic acid tert-butyl ester.
(1-\{2-[5-(7-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-thianthren-2-yl)-1 \(\mathbf{H}\)-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester and (1-\{2-[5-(8-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-thianthren-2-yl)-1 H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester: A mixture of 2-(5-\{7-[3H-Imidazol-4-yl]-thianthren-2-yl\}-1H-imidazol-2-yl)-pyrrolidine-bis-1-carboxylic acid terl-butyl ester and 2-(5-\{8-3H-imidazol-4-yl]-thianthren-2-yl\}-1H-imidazol-2-yl)-pyrrolidine-bis-1-carboxylic acid tert-butyl ester (\(150 \mathrm{mg}, 0.22 \mathrm{mmol}\)) was treated with \(4 \mathrm{~N} \mathrm{HCl} /\) dioxane (2.5 mL) and stirred for 4 hours. The mixture was concentrated and suspended in DMF (2.5
mL). The mixture was treated with (\(S\))-Moc-Val-OH (\(84 \mathrm{mg}, 0.48 \mathrm{mmol}\)), HATU (\(191 \mathrm{mg}, 0.50\) mmol), and \(N\)-methyl morpholone (\(120 \mathrm{~mL}, 1.09 \mathrm{mmol}\)). The mixture was stirred for 2 hours and concentrated. The mixture was diluted with EtOAc (100 mL), and washed with saturated \(\mathrm{NaHCO}_{3}(350 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})\), and brine (50 mL). The solution was dried over \(\mathrm{MgSO}_{4}\) and subjected to a \(40 \mathrm{~g} \mathrm{SiO}_{2}\) COMBIFLASH column (\(0-100 \%\) EtOAc-hexanes followed by \(0-\) \(20 \%\) MeOH-EtOAc gradient), which gave a pure mixture of \(2,7 / 2,8\) products. The 2,7/2,8 mixture was subjected to a reverse phase HPLC column (5-95\% MeCN-H2O; 0.1\% TFA modifier) to afford (1-\{2-[5-(7-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-thianthren-2-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester (\(26 \mathrm{mg}, 15 \%\)) as a white solid (TFA salt): \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) 7.88(\mathrm{~s}, 2 \mathrm{H}), 7.80(\mathrm{~s}, 2 \mathrm{H}), 7.63(\mathrm{~s}, 4 \mathrm{H}), 5.20(\mathrm{~m}, 2 \mathrm{H}), 4.23(\mathrm{~d}, J=7.5 \mathrm{~Hz}\), \(2 \mathrm{H}), 4.13(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 6 \mathrm{H}), 2.99(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{~m}, 10 \mathrm{H}), 0.95\) (\(\mathrm{m}, 12 \mathrm{H}\)) ; MS (ESI) m/z \(818[\mathrm{M}+\mathrm{H}]^{+}\); and (1-\{2-[5-(8-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-thianthren-2-yl)-1 H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester (\(10 \mathrm{mg}, 5 \%\)) as a white solid (TFA salt): \({ }^{1} \mathrm{H}\) NMR (\(\left.\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) 7.86(\mathrm{~s}, 2 \mathrm{H}), 7.80(\mathrm{~s}, 2 \mathrm{H}), 7.63(\mathrm{~s}, 4 \mathrm{H}), 5.20(\mathrm{~m}\), \(2 \mathrm{H}), 4.23(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 6 \mathrm{H}), 2.99(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{~m}\), \(2 \mathrm{H}), 2.16(\mathrm{~m}, 10 \mathrm{H}), 0.95(\mathrm{~m}, 12 \mathrm{H}) ; \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 801[\mathrm{M}+\mathrm{H}]^{+}\).

\section*{Example BT}

\section*{3-Benzylamino-2-tert-butoxycarbonylamino-propionic acid methyl ester:}

3-Amino-2-tert-butoxycarbonylamino-propionic acid (\(5.0 \mathrm{~g}, 24.5 \mathrm{mmol}\)) was suspended in methanol (100 mL) and benzaldehyde (\(5.2 \mathrm{~g}, 49 \mathrm{mmol}\)) was added, followed by triethylamine (TEA, \(10.2 \mathrm{~mL}, 73.5 \mathrm{mmol}\)). The reaction mixture was stirred at ambient temperature for 90 minutes and cooled to \(0^{\circ} \mathrm{C}\). Solid sodium borohydride (\(2.78 \mathrm{~g}, 73.5 \mathrm{mmol}\)) was added in small portions and the reaction was stirred for additional 60 minutes after addition was complete. All volatiles were removed in vacuo and the crude was dissolved in \(\mathrm{NaOHaq}(0.1 \mathrm{M}, 100 \mathrm{~mL}\)). The solution was washed with diethyl ether and acidified with HCl aq. The mixture was extracted with chloroform. The organic extracts were washed with brine and dried over sodium sulfate. Filtration and evaporation of solvents in vacuo yielded crude semi-solid (9.0 g). The crude material was dissolved in methanol \((40 \mathrm{~mL})\) and toluene \((20 \mathrm{~mL})\) and the solution was cooled to \(0^{\circ} \mathrm{C}\). Trimethysilyl diazomethane solution (2 M , in hexanes) was added until the yellow color persisted (\(\sim 25 \mathrm{~mL}\)). The reaction mixture was stirred for additional 60 minutes at room temperature. The volatiles were removed in vacuo and the crude product was purified via silica gel chromatography (eluent: EtOAc / hexanes) to yield the pure product 3-Benzylamino-2-tert-butoxycarbonylamino-propionic acid methyl ester (4.09 g): LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}: 308.3\left(\mathrm{M}^{+}\right)\); Found: \(309.2\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{1-Benzyl-imidazolidine-4-carboxylic acid methyl ester: 3-Benzylamino-2-tert-}
butoxycarbonylamino-propionic acid methyl ester (\(4.01 \mathrm{~g}, 13.02 \mathrm{mmol}\)) was dissolved in dichloromethane (20 mL) and \(\mathrm{HCl}(4 \mathrm{M}\) Dioxane, 40 mL) was added. The resultant suspension was stirred at room temperature for 30 minutes, after which all volatiles were removed in vacuo. The crude material was mixed with para-formaldehyde (\(390 \mathrm{mg}, 13.02 \mathrm{mmol}\)), magnesium sulfate (2.6 g), potassium carbonate (2.6 g) and suspended in chloroform (40 mL). Triethylamine (5.07 mL) was added and the reaction was stirred at room temperature for 48 hours. The suspension was filtered and the volatiles were removed in vacuo. The crude material 1-Benzyl-imidazolidine-4-carboxylic acid methyl ester (3.5 g) was used in the next step without further analysis.

\footnotetext{
1-Benzyl-3-(2-methoxycarbonylamino-3-methyl-butyryl)-imidazolidine-4-carboxylic acid methyl ester: Crude 1-Benzyl-imidazolidine-4-carboxylic acid methyl ester (\(3.0 \mathrm{~g}, 13.6 \mathrm{mmol}\)) was added as a DMF suspension to a premixed solution of \(N\)-(methylcarbamoyl)(\(L\))-valine (2.39 \(\mathrm{g}, 13.6 \mathrm{mmol}\)), HATU (\(5.16 \mathrm{~g}, 13.6 \mathrm{mmol}\)) and disopropyl ethylamine (DIEA, \(3.58 \mathrm{~g}, 27.2\) mmol) at room temperature. After 60 minutes, all volatiles were removed in vacuo and the crude material was taken into dichloromethane. The organic layer was washed with aqueous
}
hydrochloric acid (0.1 M), aqueous lithium chloride solution (5\%), saturated aqueous sodium bicarbonate solution, brine and was dried over sodium sulfate. Filtration and evaporation of solvents yielded crude material. Purification via silica gel chromatography (eluent: EtOAc w \(\mathrm{MeOH} 10 \%\) / hexanes) yielded the product 1-Benzyl-3-(2-methoxycarbonylamino-3-methyl-butyryl)-imidazolidine-4-carboxylic acid methyl ester (\(1.95 \mathrm{~g}, 5.15 \mathrm{mmol}\)): LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{5}: 377.4\left(\mathrm{M}^{+}\right)\); Found: \(378.4\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{3-(2-Methoxycarbonylamino-3-methyl-butyryl)-imidazolidine-1,4-dicarboxylic acid 1-tert-} butyl ester 4-methyl ester: 1-Benzyl-3-(2-methoxycarbonylamino-3-methyl-butyryl)-imidazolidine-4-carboxylic acid methyl ester (\(1.0 \mathrm{~g}, 2.64 \mathrm{mmol}\)) was dissolved in MeOH (30 \(\mathrm{mL})\) at room temperature. Pd on carbon (\(10 \%, 350 \mathrm{mg}\)) was added and the reaction was stirred under an atmosphere of hydrogen. After three hours the reaction mixture was filtered through CELITE and the volatiles were removed in vacuo. The crude material was dissolved in tetrahydrofuran (10 mL) and \(\mathrm{Boc}_{2} \mathrm{O}(576 \mathrm{mg})\) and diiso-propyl ethylamine (340 mg) were added and the reaction was stirred at room temperature. After 60 minutes all volatiles were removed in vacuo and the crude material was purified via silica gel chromatography (eluent: EtOAc w10\% \(\mathrm{MeOH} /\) hexanes) and yielded the product (0.812 g): LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{7}\) : \(387.4\left(\mathrm{M}^{+}\right)\); Found: \(388.4\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{Example BU}

3-(2-Methoxycarbonylamino-3-methyl-butyryl)-imidazolidine-1,4dicarboxylic acid 1-fert-butyl ester 4-methyl ester acid tert-butyl ester

\section*{4-[2-(4-Bromo-phenyl)-2-oxo-ethylcarbamoyl]-3-(2-methoxycarbonylamino-3-methyl-}
butyryl)-imidazolidine-1-carboxylic acid tert-butyl ester: 3-(2-Methoxycarbonylamino-3-methyl-butyryl)-imidazolidine-1,4-dicarboxylic acid 1-tert-butyl ester 4-methyl ester (460 mg , 1.18 mmol) was dissolved in THF (3 mL) and \(\mathrm{MeOH}(2 \mathrm{~mL}\)). An aqueous solution of LiOH (\(49.8 \mathrm{mg}, 1.18 \mathrm{mmol}\)) was added and stirring at room temperature was continued. After the hydrolysis was complete, the reaction was neutralized with aqueous \(\mathrm{HCl}(1.18 \mathrm{~mL}, 1 \mathrm{M})\). The organic solvents were removed in vacuo and the aqueous suspension was frozen and lyophilized. The crude material was used in the next step without further purification. The crude material was dissolved in DMF (4.0 mL) and HATU (\(448 \mathrm{mg}, 1.18 \mathrm{mmol}\)) and DIEA (\(152 \mathrm{mg}, 1.18\)
mmol) were added. The reaction was stirred at room temperature for five minutes, after which the amino-(4 'bromo) acetophenone hydrochloride salt (\(295 \mathrm{mg}, 1.18 \mathrm{mmol}\)) was added. Stirring at room temperature was continued. After 90 minutes, all volatiles were removed in vacuo and the crude material was purified via silica gel chromatography (eluent: EtOAc / hexanes) to yield the slightly impure product 4-[2-(4-Bromo-phenyl)-2-oxo-ethylcarbamoyl]-3-(2-methoxycarbonylamino-3-methyl-butyryl)-imidazolidine-1-carboxylic acid tert-butyl ester (723 \(\mathrm{mg}):\) LCMS-ESI': calc'd for \(\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{BrN}_{4} \mathrm{O}_{7}: 569.4\left(\mathrm{M}^{+}\right)\); Found: \(570.4 / 572.4\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

4-(4-Bromo-phenyl)-3'-(2-methoxycarbonylamino-3-methyl-butyryl)-2',3', \(\mathbf{4}^{\prime}, 5^{\prime}\)-tetrahydro-1H-[2,4']biimidazolyl-1'-carboxylic acid tert-butyl ester: 4-[2-(4-Bromo-phenyl)-2-oxo-ethylcarbamoyl]-3-(2-methoxycarbonylamino-3-methyl-butyryl)-imidazolidine-1-carboxylic acid tert-butyl ester (723 mg) was dissolved in m-xylenes (6.0 mL) and heated at \(135^{\circ} \mathrm{C}\). Solid ammonium acetate (\(500 \mathrm{mg}, 6.48 \mathrm{mmol}\)) was added and the reaction was stirred at \(135^{\circ} \mathrm{C}\). After 45 minutes, the reaction was cooled to room temperature and the volatiles were removed in vacuo. The crude material was purified via silica gel chromatography (eluent: EtOAc w 10\% \(\mathrm{MeOH} /\) hexanes) to yield the product 4-(4-Bromo-phenyl)-3'-(2-methoxycarbonylamino-3-methyl-butyryl)-2',3',4',5'-tetrahydro-1H-[2,4']biimidazolyl-1'-carboxylic acid tert-butyl ester (436 mg): LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{BrN}_{5} \mathrm{O}_{5}: 550.4\left(\mathrm{M}^{+}\right)\); Found: \(551.2 / 553.2\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

3'-(2-Methoxycarbonylamino-3-methyl-butyryl)-5-(4'-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-2', \(\mathbf{3}^{\prime}, 4^{\prime}, 5^{\prime}-\) tetrahydro\(\mathbf{1 H}-\left[2, \mathbf{4}^{\prime} \mid\right.\) biimidazolyl-1'-carboxylic acid tert-butyl ester: 4-(4-Bromo-phenyl)-3'-(2-methoxycarbonylamino-3-methyl-butyryl)-2',3',4',5'tetrahydro-1H-[2,4']biimidazolyl-1'carboxylic acid tert-butyl ester (\(75 \mathrm{mg}, 0.136 \mathrm{mmol}\)) was combined with [2-Methyl-1-(2-\{4-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl \(\}\)-pyrrolidine-1-carbonyl)-propyl]-carbamic acid methyl ester (\(67.6 \mathrm{mg}, 0.136 \mathrm{mmol}\)) under an argon atmosphere. Potassium carbonate (\(37.5 \mathrm{mg}, 0.272 \mathrm{mmol}\)) and \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(15.7 \mathrm{mg}, 0.014 \mathrm{mmol})\) were added, followed by DME (3 mL) and water \((0.6 \mathrm{~mL})\). The mixture was heated under microwave conditions for 20 minutes at \(120^{\circ} \mathrm{C}\). All volatiles were removed in vacuo and the crude material was dissolved in DMF and purified via RP-HPLC (eluent: water/ MeCN w \(0.1 \%\) TFA) to yield the product (55 mg): LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{44} \mathrm{H}_{57} \mathrm{~N}_{9} \mathrm{O}_{8}: 839.9\) (\(\mathrm{M}^{+}\)); Found: \(840.5\left(\mathrm{M}+\mathrm{H}^{+}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}: 300 \mathrm{MHz},\left(\mathrm{MeOH}-\mathrm{d}_{4}\right) 8: 7.90-7.81(\mathrm{~m}, 10 \mathrm{H}), 5.58(\mathrm{~m}, 1 \mathrm{H}), 5.43(\mathrm{~m}\), \(1 \mathrm{H}), 5.25-5.20(\mathrm{~m}, 2 \mathrm{H}), 4.24(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~s}\), \(3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.10(\mathrm{~m}, 5 \mathrm{H}), 1.53 \& 1.44(\mathrm{~s}, 9 \mathrm{H})\) \(1.04-0.89(\mathrm{~m}, 12 \mathrm{H})\).

\section*{Example BV}

3'-(2-Methoxycarbonylamino-3-methyl-butyryl)-5-(4'-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl|-3H-imidazol-4-yl\}-biphenyl-4-yl)-2',3',4',5'-tetrahydro-1H-[2,4']biimidazolyl-1'-carboxylic acid methyl ester: 4-Methylmorpholine (\(31 \mu \mathrm{~L}, 0.28\) mmol) was added to a suspension of \(\{1\)-[2-(5-\{4'-[3'-(2-Methoxycarbonylamino-3-methyl-butyryl)-2', 3', \(4^{\prime}, 5^{\prime}\)-tetrahydro-3H, 1'H-[2,4']biimidazolyl-4-yl]-biphenyl-4-yl\}-1H-imidazol-2-yl)-pyrrolidine-1-carbonyl]-2-methyl-propyl\}-carbamic acid methyl ester (\(41.1 \mathrm{mg}, 0.056 \mathrm{mmol}\)) [prepared via reaction of 3'-(2-Methoxycarbonylamino-3-methyl-butyryl)-5-(4'-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-2',3',4',5'-tetrahydro-1H-[2,4']biimidazolyl-1'-carboxylic acid tert-butyl ester with HCl -solution] in dichloromethane (5 mL). Methyl chloroformate (\(16.5 \mu \mathrm{~L}, 0.21 \mathrm{mmol}\)) was added to the resulting solution. After 20 minutes the solvent was removed in vacuo. The residue was taken into tetrahydrofuran (4 mL) and methanol (2 mL) and an aqueous solution of sodium hydroxide (\(2 \mathrm{~N}, 1 \mathrm{~mL}\)) was added. After 2 hours the organic solvents were removed in vacuo and the aqueous phase was decanted. The residue was dissolved in dimethylformamide (2 mL) and purified via RP-HPLC (eluent: water/ MeCN w \(0.1 \%\) TFA). The product-containing fractions were combined and the solvent was removed by lyophilization to provide \(3^{\prime}\)-(2-

Methoxycarbonylamino-3-methyl-butyryl)-5-(4'-\{2-[1-(2-methoxycarbonylamino-3-methyl-
butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-2',3',4',5'-tetrahydro-1H[2,4 ']biimidazolyl- 1 '-carboxylic acid methyl ester (7.5 mg)
\(\mathrm{C}_{41} \mathrm{H}_{51} \mathrm{~N}_{9} \mathrm{O}_{8}\) calculated 797.4 observed \([\mathrm{M}+1]^{+} 798.4 ;{ }^{1} \mathrm{H}\) (DMSO-d6): \(\delta=8.08(\mathrm{~s}, 1 \mathrm{H}), 7.83\) \((\mathrm{m}, 8 \mathrm{H}), 7.58(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~s}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{dd}, \mathrm{J}=7.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.26\) (\(\mathrm{d}, \mathrm{J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}\)), \(5.18(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{t}, \mathrm{J}=\) \(7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~m}, 4 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~m}, 1 \mathrm{H})\), \(2.01(\mathrm{~m}, 5 \mathrm{H}), 0.83(\mathrm{~m}, 12 \mathrm{H})\).

\section*{Example BW}

2-10-phenyl)-3'-(2-butyryl)-2', \(3^{\prime}, 4^{\prime}, 5^{\prime}\)-tetrahydro-1/ [\(2,4^{\prime}\)]biimidazolyt \(1^{\prime}\)-carboxylic acid tert-
[2,47biima-(4-bromo-pheny)-1,2,4,5-tetrahydro-1H [2,4]biimidazolyl-3'-carbonyl)-2-methyl-propyl)-carbamic acid methyl ester

methyt
\{1-11'-Benzoyl-5-(4'-\{2-11-(2-methoxycarbonylamino-3-methyl-butyry)-pyrrolidin-2-yl)-3H-imidazol-4-y|(-biphenyt-4-yl)-1', 2', 4',5'-tetrahydro-1 H -[2,4]biimidazoly-3'-carbonyl]-2-methyl-propyl] carbamic acid methyl ester
\{1-[1'-Benzoyl-4-(4-bromo-phenyl)-1', \(\mathbf{2}^{\prime}, 4^{\prime}, 5^{\prime}\) 'tetrahydro-1H-[2,4']biimidazolyl-3'-carbonyll-2-methyl-propyl\}-carbamic acid methyl ester: 4-(4-Bromo-phenyl)-3'-(2-methoxycarbonylamino-3-methyl-butyryl)-2',3',4',5'-tetrahydro-1H-[2,4']biimidazolyl-1'carboxylic acid tert-butyl ester (\(55.6 \mathrm{mg}, 0.101 \mathrm{mmol}\)) was dissolved in dichloromethane (0.5 mL) and \(\mathrm{HCl}(4 \mathrm{M}\) dioxane, 0.5 mL) was added. The resultant suspension was stirred at room temperature for 20 minutes, after which all volatiles were removed in vacuo. The crude material was dissolved in THF (1 mL) and diisopropyl ethylamine (\(26.0 \mathrm{mg}, 0.202 \mathrm{mmol}\)) was added, followed by benzoyl chloride (\(15.6 \mathrm{mg}, 0.11 \mathrm{mmol}\)). The reaction was stirred at room temperature. After 10 minutes, all starting material was consumed. All volatiles were removed
in vacuo and the crude brown solid \{1-[1'-Benzoyl-4-(4-bromo-phenyl)-1', \(2^{\prime}, 4^{\prime}, 5^{\prime}\)-tetrahydro-1H[\(2,4^{\prime}\) ']biimidazolyl-3'-carbonyl]-2-methyl-propyl \(\}\)-carbamic acid methyl ester was used in the coupling reaction without further analysis or purification: LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{BrN}_{5} \mathrm{O}_{4}: 554.4\left(\mathrm{M}^{+}\right)\); Found: \(554.3 / 556.4\left(\mathrm{M}+\mathrm{H}^{+}\right)\).
\{1-[1'-Benzoyl-5-(4'-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-1', \(2^{\prime}, 4^{\prime}, 5^{\prime}\)-tetrahydro-1H-[2,4']biimidazolyl-3'-carbonyl]-

\section*{2-methyl-propyl\}-carbamic acid methyl ester:}
\{1-[1'-Benzoyl-4-(4-bromo-phenyl)-1',2',4',5'-tetrahydro-1H-[2,4']biimidazolyl-3'-carbonyl]-2-methyl-propyl \}-carbamic acid methyl ester (crude, \(<0.101 \mathrm{mmol}\)) was combined with [2-Methyl-1-(2-\{4-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-propyl]-carbamic acid methyl ester (\(45.1 \mathrm{mg}, 0.091 \mathrm{mmol}\)) under an argon atmosphere. Potassium carbonate \((27.8 \mathrm{mg}, 0.202 \mathrm{mmol})\) and \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{mg}, 0.009\) \(\mathrm{mmol})\) were added, followed by DME \((2.0 \mathrm{~mL})\) and water \((0.4 \mathrm{~mL})\). The mixture was heated under microwave conditions for 20 minutes at \(120^{\circ} \mathrm{C}\). All volatiles were removed in vacuo and the crude material was dissolved in DMF and purified via RP-HPLC (eluent: water/ \(\mathrm{MeCN} w\) \(0.1 \%\) TFA) to yield the product \{1-[1'-Benzoyl-5-(4'-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-1',2', 4',5'-tetrahydro-1H-
[2,4']biimidazolyl-3'-carbonyl]-2-methyl-propyl \(\}\)-carbamic acid methyl ester (20.7 mg): LCMS\(\mathrm{ESI}^{+}\): calc'd for \(\mathrm{C}_{46} \mathrm{H}_{53} \mathrm{~N}_{9} \mathrm{O}_{7}\) : \(843.9\left(\mathrm{M}^{+}\right)\); Found: \(844.3\left(\mathrm{M}+\mathrm{H}^{+}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}: 300 \mathrm{MHz}\), \(\left(\mathrm{MeOH}-\mathrm{d}_{4}\right) \delta: 7.90-7.84(\mathrm{~m}, 10 \mathrm{H}), 7.66-7.52(\mathrm{~m}, 5 \mathrm{H}), 5.68(\mathrm{~m}, 1 \mathrm{H}), 5.59(\mathrm{~m}, 1 \mathrm{H}), 5.49(\mathrm{~m}, 1 \mathrm{H})\), \(5.26(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.46\) \((\mathrm{d}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.09(\mathrm{~m}, 5 \mathrm{H}), 1.01-0.85(\mathrm{~m}, 12 \mathrm{H})\).

\section*{Example BX}

3-(2-Methoxycarbonylamino-3-methyl-butyryl)-imidazolidine-1,4-dicarboxylic acid 1-tert-butyl ester 4-methyl ester

3-(2-Methoxycarbonylamino-3-methy-butyryl)-1-(2,2,2-trifluoro-ethyl)-imidazolidine-4-carboxylic acid methyl ester

3-(2-Methoxycarbonylamino-3-methylbutyry) -1-(2,2,2-trifluoro-ethyl)-imidazolidine-4-carboxylic acid methyl ester
1. LiOH
2. HATU, \(\mathrm{NH}_{2}-\) R

(1-5-[2-(4-Bromo-phenyl)-2-oxo-ethylcarbamoyl\}-3-(2,2,2-trifuoro-ethyl)-imidazolidine-1-carbonyl]-2-methy-propy|-carbamic acid methyl ester

[1-[5-[2-(4-Bromo-phenyl)-2-oxo-ethylcarbamoyl]-3 (2,2,2-trifluoro-ethyl)-imidazolidine-1-carbonyl)-2-methyl-propyl)-carbamic acid methyl ester
\{1-[4-(4-Bromo-phenyl)-1'-(2,2,2-trifluoro-ethyl)\(1^{\prime}, 2^{\prime}, 4^{\prime}, 5^{\prime}\)-tetrahydro-1 \(H\) - \(22,4^{\prime}\) ']biimidazolyl-3'-carbonyl-2-methyl-propyl-carbamic acid methy ester

\{1-[4-(4-Bromo-phenyl)-1'-(2,2,2-trifluoro-ethyl)\(1^{\prime}, 2^{\prime}, 4^{\prime}, 5^{\prime}\)-tetrahydro-1H-[2,4]biimidazolyl-3'-carbonylf-2-methyl-propyl-carbamic acid methyl ester

3-(2-Methoxycarbonylamino-3-methyl-butyryl)-1-(2,2,2-trifluoro-ethyl)-imidazolidine-4carboxylic acid methyl ester: 3-(2-Methoxycarbonylamino-3-methyl-butyryl)-imidazolidine-1,4-dicarboxylic acid l-tert-butyl ester 4-methyl ester (\(160 \mathrm{mg}, 0.412 \mathrm{mmol}\)) was dissolved in dichloromethane (0.5 mL) and \(\mathrm{HCl}(4 \mathrm{M}\) dioxane, 3 mL) was added. The resultant suspension was stirred at room temperature for 60 minutes, after which all volatiles were removed in vacuo. The crude material was dissolved in DMF (1.5 mL) and diisopropyl ethylamine (\(106 \mathrm{mg}, 0.824\) mmol) was added followed by trifluoroethyl triflate (\(114.7 \mathrm{mg}, 0.494 \mathrm{mmol}\)). After 14 hrs additional diisopropyl ethylamine (\(212 \mathrm{mg}, 1.648 \mathrm{mmol}\)) and trifluoroethyl triflate (229.4 mg ,
0.988 mmol) were added. Stirring at room temperature was continued. After 40 hours, all volatiles were removed in vacuo and the crude material was purified by flash chromatography on silica gel (eluent: EtOAc / hexanes) to yield the product 3-(2-Methoxycarbonylamino-3-methyl-butyryl)-1-(2,2,2-trifluoro-ethyl)-imidazolidine-4-carboxylic acid methyl ester (95 mg , 0.257 mmol): LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{5}: 369.3\left(\mathrm{M}^{+}\right)\); Found: \(369.9\left(\mathrm{M}^{+}\right)\).
\{1-[5-[2-(4-Bromo-phenyl)-2-oxo-ethylcarbamoyl]-3-(2,2,2-trifluoro-ethyl)-imidazolidine-1-carbonyl]-2-methyl-propyl\}-carbamic acid methyl ester:
3-(2-Methoxycarbonylamino-3-methyl-butyryl)-1-(2,2,2-trifluoro-ethyl)-imidazolidine-4carboxylic acid methyl ester (\(95 \mathrm{mg}, 0.257 \mathrm{mmol}\)) was dissolved in THF (1.8 mL) and MeOH (0.9 mL). An aqueous solution of \(\mathrm{LiOH}(10.8 \mathrm{mg}, 0.208 \mathrm{mmol})\) was added and stirring at room temperature was continued. After the hydrolysis was complete, the reaction was neutralized with aqueous \(\mathrm{HCl}(1 \mathrm{M})\). The organic solvents were removed in vacuo and the aqueous suspension was frozen and lyophilized. The crude material was used in the next step without further purification. The crude material was dissolved in DMF (1.5 mL) and HATU (97.6 mg , 0.257 mmol) and DIEA (\(66.3 \mathrm{mg}, 0.514 \mathrm{mmol}\)) were added. The reaction was stirred at room temperature for five minutes, after which the amino-(4'bromo) acetophenone hydrochloride salt (\(64.2 \mathrm{mg}, 0.257 \mathrm{mmol}\)) was added. Stirring at room temperature was continued. After 60 minutes, all volatiles were removed in vacuo and the crude material was purified via silica gel chromatography (eluent: EtOAc / hexanes) to yield the slightly impure product \(\{1\)-[5-[2-(4-Bromo-phenyl)-2-oxo-ethylcarbamoyl]-3-(2,2,2-trifluoro-ethyl)-imidazolidine-1-carbonyl]-2-methyl-propyl \}-carbamic acid methyl ester (148 mg): LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{BrF}_{3} \mathrm{~N}_{4} \mathrm{O}_{5}\) : \(551.3\left(\mathrm{M}^{+}\right)\); Found: \(551.2 / 553.2\left(\mathrm{M}^{+}\right)\).

\section*{\{1-[4-(4-Bromo-phenyl)-1'-(2,2,2-trifluoro-ethyl)-1',2',4',5'-tetrahydro-1H-}
[2,4']biimidazolyl-3'-carbonyl|-2-methyl-propyl\}-carbamic acid methyl ester:
\{1-[5-[2-(4-Bromo-phenyl)-2-oxo-ethylcarbamoyl]-3-(2,2,2-trifluoro-ethyl)-imidazolidine-1-carbonyl]-2-methyl-propyl \}-carbamic acid methyl ester (\(148 \mathrm{mg},<257 \mathrm{mmol}\)) was dissolved in m-xylenes \((4.0 \mathrm{~mL})\) and heated at \(135^{\circ} \mathrm{C}\). Solid ammonium acetate (\(150 \mathrm{mg}, 1.9 \mathrm{mmol}\)) was added and the reaction was stirred at \(135^{\circ} \mathrm{C}\). After 60 minutes, the reaction was cooled to room temperature and the volatiles were removed in vacuo. The crude material was purified via RPHPLC (eluent: water / MeCN w \(0.1 \%\) TFA) to yield the product \{1-[4-(4-Bromo-phenyl)-1'-(2,2,2-trifluoro-ethyl)-1',2',4',5'-tetrahydro-1H-[2,4']biimidazolyl-3'-carbonyl]-2-methylpropyl \}-carbamic acid methyl ester (15.1 mg) as the TFA salt: LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{BrF}_{3} \mathrm{~N}_{5} \mathrm{O}_{3}\) : \(532.3\left(\mathrm{M}^{+}\right)\); Found: \(532.1 / 534.2\left(\mathrm{M}^{+}\right)\).
\{1-[5-(4'-(2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-1'-(2,2,2-trifluoro-ethyl)-1',2',4',5'-tetrabydro-1H-[2,4'|biimidazolyl-3'-carbonyl]-2-methyl-propyl\}-carbamic acid methyl ester: \{1-[4-(4-Bromo-phenyl)-1'-(2,2,2-trifluoro-ethyl)-1',2',4',5'-tetrahydro-1H-[2,4']biimidazolyl-3'-carbonyl]-2-methylpropyl \}-carbamic acid methyl ester (\(13.0 \mathrm{mg}, 0.0244 \mathrm{mmol}\)) was combined with [2-Methyl-1-(2-\{4-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-propyl]-carbamic acid methyl ester (\(12.1 \mathrm{mg}, 0.0244 \mathrm{mmol}\)) under an argon atmosphere. Potassium carbonate (\(6.7 \mathrm{mg}, 0.048 \mathrm{mmol}\)) and \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(2.7 \mathrm{mg}, 0.0024 \mathrm{mmol})\) were added, followed by DME \((2.0 \mathrm{~mL})\) and water \((0.4 \mathrm{~mL})\). The mixture was heated under microwave conditions for 20 minutes at \(120^{\circ} \mathrm{C}\). All volatiles were removed in vacuo and the crude material was dissolved in DMF and purified via RP-HPLC (eluent: water/ MeCN w \(0.1 \%\) TFA) to yield the product \(\left\{1-\left[5-\left(4^{\prime}-\{2-[1-(2-M e t h o x y c a r b o n y l a m i n o-3-m e t h y l-b u t y r y l)-\right.\right.\right.\) pyrrolidin-2-yl]-3H-imidazol-4-yl \}-biphenyl-4-yl)-1'-(2,2,2-trifluoro-ethyl)-1',2',4',5'tetrahydro\(1 \mathrm{H}-[2,4\) ']biimidazolyl-3'-carbonyl]-2-methyl-propyl \(\}\)-carbamic acid methyl ester (\(6.1 \mathrm{mg}, 0.006\) mmol) as the TFA salt: LCMS-ESI': calc'd for \(\mathrm{C}_{41} \mathrm{H}_{50} \mathrm{~F}_{3} \mathrm{~N}_{9} \mathrm{O}_{6}: 821.8\left(\mathrm{M}^{+}\right)\); Found: 823.4 \(\left(\mathrm{M}+\mathrm{H}^{+}\right) ;{ }^{\mathrm{H}} \mathrm{H}-\mathrm{NMR}: 300 \mathrm{MHz},\left(\mathrm{MeOH}-\mathrm{d}_{4}\right) \delta: 7.89-7.82(\mathrm{~m}, 10 \mathrm{H}), 5.39(\mathrm{dd}, \mathrm{J}=6.3,6.3 \mathrm{~Hz}, 1 \mathrm{H})\), \(5.25(\mathrm{~m}, 1 \mathrm{H}), 4.78(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H})\), \(3.88(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.65-3.43(\mathrm{~m}, 4 \mathrm{H}), 2.58(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.01(\mathrm{~m}, 5 \mathrm{H})\), \(1.03-0.89(\mathrm{~m}, 12 \mathrm{H})\).

\section*{Example BY}

1-Acetyl-3-(2-methoxycarbonyłamino-3-methyl-butyryl)-imidazolidine-4carboxylic acid methyl ester
(1-\{3-Acetyl-5-[2-(4-bromo-phenyl)-2-oxo-ethylcarbamoyl)-imidazolidine-1-carbonyl)-2-methyl-propyl)-carbamic acid methyl ester

(1-\{3-Acetyl-5-[2-(4-bromo-phenyl)-2-oxo-ethylcarbamoyl]-imidazolidine-1-carbonyl)-2-methyl-propyl)-carbamic acid methyl ester

\{1-[1'-Acetyl-4-(4-bromo-phenyl)\(1^{\prime}, 2^{\prime}, 4^{\prime}, 5^{\prime}\)-tetrahydro-1H-
[\(2,4^{\prime}\)]biimidazolyl-3'-carbonyl]-2-methyl-propy|)-carbamic acid methyl ester

(1-[1'-Acetyl-4-(4-bromo-phenyl)\(1^{\prime}, 2^{\prime}, 4^{\prime}, 5^{\prime}\)-tetrahydro-1H-
[2,4']biimidazolyl-3'-carbonyl]-2-methyl-propylf-carbamic acid methyl ester

\section*{1-Acetyl-3-(2-methoxycarbonylamino-3-methyl-butyryl)-imidazolidine-4-carboxylic acid} methyl ester: 3-(2-Methoxycarbonylamino-3-methyl-butyryl)-imidazolidine-1,4-dicarboxylic acid 1-tert-butyl ester 4 -methyl ester (\(465 \mathrm{mg}, 1.2 \mathrm{mmol}\)) was dissolved in dichloromethane (1 mL) and \(\mathrm{HCl}(4 \mathrm{M}\) dioxane, 3 mL) was added. The resultant suspension was stirred at room temperature for 30 minutes, after which all volatiles were removed in vacuo. The crude material was dissolved in THF and diisopropyl ethylamine (\(154 \mathrm{mg}, 1.2 \mathrm{mmol}\)) was added, followed by
acetic anhydride (\(122 \mathrm{mg}, 1.2 \mathrm{mmol}\)). The reaction was stirred at room temperature. After 30 minutes, all volatiles were removed in vacuo. The crude material was purified by silica gel chromatography (eluent: DCM / MeOH) to yield the product 1-Acetyl-3-(2-methoxycarbonylamino-3-methyl-butyryl)-imidazolidine-4-carboxylic acid methyl ester (273 \(\mathrm{mg}, 0.829 \mathrm{mmol}\)): LCMS-ESI': calc'd for \(\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{6}: 329.4\left(\mathrm{M}^{+}\right)\); Found: \(330.4\left(\mathrm{M}+\mathrm{H}^{+}\right)\).
(1-\{3-Acetyl-5-[2-(4-bromo-phenyl)-2-oxo-ethylcarbamoyl]-imidazolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester:
1-Acetyl-3-(2-methoxycarbonylamino-3-methyl-butyryl)-imidazolidine-4-carboxylic acid methyl ester (\(273 \mathrm{mg}, 0.829 \mathrm{mmol}\)) was dissolved in THF (1.8 mL) and \(\mathrm{MeOH}(1.2 \mathrm{~mL})\). An aqueous solution of LiOH (\(34.8 \mathrm{mg}, 0.829 \mathrm{mmol}\)) was added and stirring at room temperature was continued. After the hydrolysis was complete, the reaction was neutralized with aqueous \(\mathrm{HCl}(0.83 \mathrm{~mL}, 1 \mathrm{M})\). The organic solvents were removed in vacuo and the aqueous suspension was frozen and lyophilized. The crude material was used in the next step without further purification. The crude material was dissolved in DMF (3 mL) and HATU (\(315 \mathrm{mg}, 0.829\) mmol) and DIEA (\(106 \mathrm{mg}, 0.829 \mathrm{mmol}\)) were added. The reaction was stirred at room temperature for five minutes, after which the amino-(\(4^{\prime}\) bromo) acetophenone hydrochloride salt (\(207 \mathrm{mg}, 0.829 \mathrm{mmol}\)) was added. Stirring at room temperature was continued. After 120 minutes, all volatiles were removed in vacuo and the crude material was dissolved in DCM. The organic layer was washed with aqueous \(\mathrm{HCl}(0.5 \mathrm{M})\), aqueous lithium chloride solution (\(5 \%\)), brine and was dried over sodium sulfate. Filtration and evaporation of solvents yielded crude product which was purified via silica gel chromatography (eluent EtOAc / hexanes) to yield the product (1-\{3-Acetyl-5-[2-(4-bromo-phenyl)-2-oxo-ethylcarbamoyl]-imidazolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester (\(203 \mathrm{mg}, 0.397 \mathrm{mmol}\)): LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{BrN}_{4} \mathrm{O}_{6}\) : \(511.4\left(\mathrm{M}^{+}\right)\); Found: \(511.3 / 513.2\left(\mathrm{M}^{+} \mathrm{H}^{+}\right)\).

\section*{\{1-[1'-Acetyl-4-(4-bromo-phenyl)-1',2',4',5'-tetrahydro-1H-[2,4']biimidazolyl-3'-carbonyl]-2-methyl-propyl\}-carbamic acid methyl ester: (1-\{3-Acetyl-5-[2-(4-bromo-phenyl)-2-oxo-ethylcarbamoyl]-imidazolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester (\(203 \mathrm{mg}, 0.397 \mathrm{mmol}\)) was dissolved in m-xylenes (4 mL) and heated at \(135^{\circ} \mathrm{C}\). Solid ammonium acetate (\(200 \mathrm{mg}, 2.58 \mathrm{mmol}\)) was added and the reaction was stirred at \(135^{\circ} \mathrm{C}\). After 120 minutes, the reaction was cooled to room temperature and the volatiles were removed in vacuo. The crude material was purified via silica gel chromatography (eluent: EtOAc w \(10 \% \mathrm{MeOH} /\) hexanes) to yield the product \(\{1-[1\)-Acetyl-4-(4-bromo-phenyl)-1',2',4',5'-tetrahydro-1H-[2,4']biimidazolyl-3'-carbonyl]-2-methyl-propyl\}-}
carbamic acid methyl ester (\(162 \mathrm{mg}, 0.329 \mathrm{mmol}\)): LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{BrN}_{5} \mathrm{O}_{4}\) : \(492.4\left(\mathrm{M}^{+}\right)\); Found: 492.3 / \(494.3\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{\{1-[1'-Acetyl-5-(4'-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-} imidazol-4-yl\}-biphenyl-4-yl)-1',2',4',5'-tetrahydro-1H-[2,4']biimidazolyl-3'-carbonyl]-2-methyl-propyl\}-carbamic acid methyl ester:
\{1-[1'-Acetyl-4-(4-bromo-phenyl)-1',2',4',5'-tetrahydro-1H-[2,4']biimidazolyl-3'-carbonyl]-2-methyl-propyl\}-carbamic acid methyl ester (\(150 \mathrm{mg}, 0.304 \mathrm{mmol}\)) was combined with [2-Methyl-1-(2-\{4-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-propyl]-carbamic acid methyl ester (\(151 \mathrm{mg}, 0.304 \mathrm{mmol}\)) under an argon atmosphere. Potassium carbonate (\(83.9 \mathrm{mg}, 0.608 \mathrm{mmol}\)) and \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(34 \mathrm{mg}, 0.030\) \(\mathrm{mmol})\) were added, followed by DME (8 mL) and water (2 mL). The mixture was heated under microwave conditions for 20 minutes at \(120^{\circ} \mathrm{C}\). All volatiles were removed in vacuo and the crude material was dissolved in DMF and purified via RP-HPLC (eluent: water/ MeCN w 0.1\% TFA) to yield the product \{1-[1'-Acetyl-5-(4'-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-1',2',4',5'-tetrahydro-1H-[2,4']biimidazolyl-3'-carbonyl]-2-methyl-propyl\}-carbamic acid methyl ester (69.8 mg): LCMS\(\mathrm{ESI}^{+}\): calc'd for \(\mathrm{C}_{41} \mathrm{H}_{51} \mathrm{~N}_{9} \mathrm{O}_{7}: 781.9\left(\mathrm{M}^{+}\right)\); Found: \(782.5\left(\mathrm{M}+\mathrm{H}^{+}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}: 300 \mathrm{MHz}\), \(\left(\mathrm{MeOH}-\mathrm{d}_{4}\right)\) 8: 7.91-7.82 (m, 10H), \(5.68(\mathrm{~m}, 1 \mathrm{H}), 5.59-5.37(\mathrm{~m}, 2 \mathrm{H}), 5.25(\mathrm{~m}, 1 \mathrm{H}), 4.34(\mathrm{~m}, 1 \mathrm{H})\), \(4.24(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 6 \mathrm{H}), 3.47(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H})\), \(2.60(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.10(\mathrm{~m}, 8 \mathrm{H}), 1.05-0.89(\mathrm{~m}, 12 \mathrm{H})\).

\section*{Example BZ}

(1-14-(4-Bromo-phenyi)-1'-methanesulfonyl- \(\mathbf{1}^{\prime}, 2^{\prime}, 4^{\prime}, 5^{\prime}\)-tetrahydro-1H-[2,4]biimidazolyl-3'-carbonyl]-2-methyl-propyl-carbamic acid methyl ester
\{1-[1'-Methanesulfonyl-5-(4'-\{2-[1-(2-methoxycarbonylamino-3-methy-butyry)-pyrrolidin-2-yl|-3 H -imidazol-4-yl\}-bipheny \((-4\)-yl)\(1^{\prime}, 2^{\prime}, 4^{\prime}, 5^{\prime}\)-tetrahydro-1H-[2,4']biimidazolyl-3'-carbonyll-2-methyl-propyl-carbamic acid methyl ester
\{1-[1'-Methanesulfonyl-5-(4'-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-1',2',4',5'-tetrahydro-1H-
[2,4']biimidazolyl-3'-carbonyl]-2-methyl-propyl\}-carbamic acid methyl ester: \{1-[4-(4-
Bromo-phenyl)-1'-methanesulfonyl-1',2',4',5'-tetrahydro-1H-[2,4']biimidazolyl-3'-carbonyl]-2-
methyl-propyl \}-carbamic acid methyl ester (\(62.9 \mathrm{mg}, 0.119 \mathrm{mmol}\)) [prepared as described for the synthesis of \(\left\{1-\left[1 '\right.\right.\)-Acetyl-4-(4-bromo-phenyl)-1', \(2^{\prime}, 4^{\prime}, 5^{\prime}\)-tetrahydro-1 H -[2,4']biimidazolyl-3'carbonyl (Example BY)]-2-methyl-propyl\}-carbamic acid methyl ester substituting the acetic anhydride with methyl sulfonyl chloride] was combined with [2-Methyl-1-(2-\{4-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-propyl]-carbamic acid methyl ester (\(54.6 \mathrm{mg}, 0.110 \mathrm{mmol}\)) under an argon atmosphere. Potassium carbonate (\(33.1 \mathrm{mg}, 0.240 \mathrm{mmol}\)) and \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(12.7 \mathrm{mg}, 0.011 \mathrm{mmol})\) were added, followed by DME \((2.0 \mathrm{~mL})\) and water \((0.4 \mathrm{~mL})\). The mixture was heated under microwave conditions for 20 minutes at \(120^{\circ} \mathrm{C}\). All volatiles were removed in vacuo and the crude material was dissolved in DMF and purified via RP-HPLC (eluent: water/ MeCN w \(0.1 \%\) TFA) to yield the product (20.1 mg): LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{40} \mathrm{H}_{51} \mathrm{~N}_{9} \mathrm{O}_{8} \mathrm{~S}: 817.9\left(\mathrm{M}^{+}\right)\); Found: 818.6 \(\left(\mathrm{M}+\mathrm{H}^{+}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}: 300 \mathrm{MHz},\left(\mathrm{MeOH}-\mathrm{d}_{4}\right) \delta: 7.90-7.81(\mathrm{~m}, 10 \mathrm{H}), 5.69(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.48\) (dd, J=6.9, 6.9Hz, 1H), \(5.27(\mathrm{dd}, \mathrm{J}=8.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}\)), \(5.17(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.41\) (dd, J=12.0, \(7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~s}\), \(3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~m}, 1 \mathrm{H}), 2.29-1.99(\mathrm{~m}, 5 \mathrm{H}), 1.03-0.89(\mathrm{~m}, 12 \mathrm{H})\).

\section*{Example CA}
 [2,4']biimidazolyl-3'-carbonyl]-2-methyt-propyl-carbamic acid methyl ester
\{1-[1'-Benzenesulfonyl-5-(4'-\{2-\{1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrolidin-2-yl)-3H-imidazol-4-y|)-biphenyl-4-yl)\(1^{\prime}, 2^{\prime}, 4^{\prime}, 5^{\prime}\) 'tetrahydro- 1 H - \(\left[2,4\right.\) ']biimidazoly- \(3^{\prime}\)-carbonyl)-2-methyt propyl)-carbamic acid methyl ester
(1-[1'-Benzenesulfonyl-5-(4'-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-1',2',4',5'-tetrahydro-1H-
[2,4']biimidazolyl-3'-carbonyl]-2-methyl-propyl\}-carbamic acid methyl ester: \{1-[1'-Benzenesulfonyl-4-(4-bromo-phenyl)-1',2',4',5'-tetrahydro-1H-[2,4']biimidazolyl-3'-carbonyl]-2-methyl-propyl\}-carbamic acid methyl ester (\(63.1 \mathrm{mg}, 106.9 \mathrm{mmol}\)) [prepared as described for the synthesis of \(\{1\)-[1'-Acetyl-4-(4-bromo-phenyl)-1',2',4',5'-tetrahydro-1 H-[2,4']biimidazolyl-3'-carbonyl]-2-methyl-propyl\}-carbamic acid methyl ester (Example BY)] substituting the acetic anhydride with phenyl sulfonyl chloride] was combined with [2-Methyl-1-(2-\{4-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl \}-pyrrolidine-1-carbonyl)-
propyl]-carbamic acid methyl ester (\(53.1 \mathrm{mg}, 106.9 \mathrm{mmol}\)) under an argon atmosphere. Potassium carbonate (\(29.2 \mathrm{mg}, 0.212 \mathrm{mmol}\)) and \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(12.2 \mathrm{mg}, 0.0106 \mathrm{mmol})\) were added, followed by DME (2.5 mL) and water (0.8 mL). The mixture was heated under microwave conditions for 20 minutes at \(120^{\circ} \mathrm{C}\). All volatiles were removed in vacuo and the crude material was dissolved in DMF and purified via RP-HPLC (eluent: water/ MeCN w \(0.1 \%\) TFA) to yield the product \(\{1-[1-\) Benzenesulfonyl-5-(4'-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-1',2',4',5'-tetrahydro-1H-[2,4']biimidazolyl-3'-carbonyl]-2-methyl-propyl \(\}\)-carbamic acid methyl ester (27.9 mg): LCMSESI': calc'd for \(\mathrm{C}_{45} \mathrm{H}_{53} \mathrm{~N}_{9} \mathrm{O}_{8} \mathrm{~S}: 880.2\left(\mathrm{M}^{+}\right)\); Found: \(881.5\left(\mathrm{M}+\mathrm{H}^{+}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}: 300 \mathrm{MHz}\), (\(\mathrm{MeOH}-\mathrm{d}_{4}\)) \(\mathbf{\delta :} 8.01(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.90-7.76(\mathrm{~m}, 11 \mathrm{H}), 7.65(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.59(\mathrm{~d}\), \(\mathrm{J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{dd}, \mathrm{J}=7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{dd}, \mathrm{J}=7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H})\), 4.32-4.22 (m, 2H), \(4.08(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}\), \(1 \mathrm{H}), 2.57(\mathrm{~m}, 1 \mathrm{H}), 2.29-1.99(\mathrm{~m}, 5 \mathrm{H}), 0.99-0.86(\mathrm{~m}, 12 \mathrm{H})\).

\section*{Example CB}

3-(2-Methoxycarbonylamino-3-methyt-butyryl)-imidazolidine-1,4-dicarboxylic acid 1-tertbutyl ester 4-methyl ester

(1-\{5-[2-(4-Bromo-phenyl)-2-oxo-ethylcarbamoyl-3-phenyl-imidazolidine-1-carbonyl)-2-methyl-propyl-carbamic acid methyl ester

(1-\{5-[2-(4-Bromo-phenyl)-2-oxo-ethylcarbamoyl]-3-pheny-imidazolidine-1-carbonyl)-2-methyt-propyl)-carbamic acid methyl ester

\{1-14-(4-Bromo-phenyl)-1'-phenyl-1, 2',4'5;-tetrahydro-1 \(H\)-[2,4]biimidazolyl-3'-carbonyl]-2-methyt-propyl-carbamic acid methyl ester

(1-[5-(4'-\{2-\{1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yll-3H-imidazol-4-y \(\mid\)-biphenyl-4-yl)-1'-phenyl\(1^{1}, 2^{\prime}, 4^{\prime}, 5^{\prime}\)-tetrahydro-1 H - \(\left[2,4^{\prime}\right]\) biimidazolyl-3'-carbonyl)-2-methyl-propyl-carbamic acid methyl ester
(1-[4-(4-Bromo-phenyl)-1'-phenyl-1',2',4',5'-tetrahydro-1/H-[2,4]biimidazolyl-3'-carbonyl\}-2-methyl-propyl-carbamic acid methyl ester

\section*{3-(2-Methoxycarbonylamino-3-methyl-butyryl)-1-phenyl-imidazolidine-4-carboxylic acid} methyl ester: 3-(2-Methoxycarbonylamino-3-methyl-butyryl)-imidazolidine-1,4-dicarboxylic acid 1-tert-butyl ester 4-methyl ester (\(0.20 \mathrm{~g}, 0.515 \mathrm{mmol}\)) was dissolved in dichloromethane \((1.0 \mathrm{~mL})\) and \(\mathrm{HCl}(4 \mathrm{M}\) dioxane, 1 mL\()\) was added. The resultant suspension was stirred at room temperature for 60 minutes, after which all volatiles were removed in vacuo. The crude material was combined with phenyl boronic acid (\(188 \mathrm{mg}, 1.545 \mathrm{mmol}\)) and DCM (15 mL) was added. Triethylamine (\(1.2 \mathrm{~mL}, 8.89 \mathrm{mmol}\)) was added, followed by copper(II) acetate and molecular sieves \(4 \AA\). The reaction was stirred at room temperature. After 24 hrs, the reaction was quenched with aqueous ammonium hydroxide solution (\(10 \%\)) and the organic layer was isolated. The organic layer was washed with aqueous HCl solution \((0.5 \mathrm{M})\), brine, and was dried over sodium sulfate. Filtration and evaporation gave crude material. Purification via flash chromatography on silica gel (eluent: EtOAc / hexanes) yielded the desired product 3-(2-Methoxycarbonylamino-3-methyl-butyryl)-1-phenyl-imidazolidine-4-carboxylic acid methyl ester (\(51.0 \mathrm{mg}, 0.14 \mathrm{mmol}\)): LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{5}: 363.4\) (\(\mathrm{M}^{+}\)); Found: 364.4 \(\left(\mathrm{M}+\mathrm{H}^{+}\right)\).
(1-\{5-[2-(4-Bromo-phenyl)-2-oxo-ethylcarbamoyl]-3-phenyl-imidazolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester: 3-(2-Methoxycarbonylamino-3-methyl-butyryl)-1-phenyl-imidazolidine-4-carboxylic acid methyl ester (\(51 \mathrm{mg}, 0.14 \mathrm{mmol}\)) was dissolved in THF (1.2 mL) and \(\mathrm{MeOH}(0.8 \mathrm{~mL})\). An aqueous solution of \(\mathrm{LiOH}(6.0 \mathrm{mg}, 0.14 \mathrm{mmol})\) was added and stirring at room temperature was continued. After the hydrolysis was complete, the reaction was neutralized with aqueous \(\mathrm{HCl}(1 \mathrm{M})\). The organic solvents were removed in vacuo and the aqueous suspension was frozen and lyophilized. The crude material was used in the next step without further purification. The crude material was dissolved in DMF (1.5 mL) and HATU (\(54.3 \mathrm{mg}, 0.14 \mathrm{mmol}\)) and DIEA (\(36.9 \mathrm{mg}, 0.28 \mathrm{mmol}\)) were added. The reaction was stirred at room temperature for five minutes, after which the amino-(4'bromo) acetophenone hydrochloride salt (\(35.7 \mathrm{mg}, 0.14 \mathrm{mmol}\)) was added. Stirring at room temperature was continued. After 10 minutes, all volatiles were removed in vacuo and the crude material was purified via silica gel chromatography (eluent: EtOAc / hexanes) to yield the slightly impure product (95 mg): LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{BrN}_{4} \mathrm{O}_{5}: 545.4\) (\(\mathrm{M}^{+}\)); Found: 545.2 / 547.4 \(\left(\mathrm{M}+\mathrm{H}^{+}\right)\).
\{1-[4-(4-Bromo-phenyl)-1'-phenyl-1',2',4',5'-tetrahydro-1H-[2,4']biimidazolyl-3'-carbonyl]-2-methyl-propyl\}-carbamic acid methyl ester: (1-\{5-[2-(4-Bromo-phenyl)-2-oxo-ethylcarbamoyl]-3-phenyl-imidazolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl
ester (90 mg) was dissolved in m -xylenes (3 mL) and heated at \(135^{\circ} \mathrm{C}\). Solid ammonium acetate (\(100 \mathrm{mg}, 1.29 \mathrm{mmol}\)) was added and the reaction was stirred at \(135^{\circ} \mathrm{C}\). After 120 minutes, the reaction was cooled to room temperature and the volatiles were removed in vacuo. The crude material was purified via silica gel chromatography (eluent: EtOAc / hexanes) to yield the product \(\left\{1\right.\)-[4-(4-Bromo-phenyl)-1'-phenyl-1', \(2^{\prime}, 4^{\prime}, 5^{\prime}\)-tetrahydro-1H-[2,4']biimidazolyl-3'-carbonyl]-2-methyl-propyl\}-carbamic acid methyl ester (\(40.2 \mathrm{mg}, 0.0764 \mathrm{mmol}\)): LCMS\(\mathrm{ESI}^{+}\): calc'd for \(\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{BrN}_{5} \mathrm{O}_{3}\) : \(526.4\left(\mathrm{M}^{+}\right)\); Found: \(526.4 / 528.3\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{\{1-[5-(4'-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-} 4-yl\}-biphenyl-4-yl)-1'-phenyl-1',2',4',5'-tetrahydro-1H-[2,4'|biimidazolyl-3'-carbonyl]-2-methyl-propyl\}-carbamic acid methyl ester:
\{1-[4-(4-Bromo-phenyl)-1'-phenyl-1',2',4',5'-tetrahydro-1H-[2,4']biimidazolyl-3'-carbonyl]-2-methyl-propyl \(\}\)-carbamic acid methyl ester (\(40 \mathrm{mg}, 0.076 \mathrm{mmol}\)) was combined with [2-Methyl-1-(2-\{4-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-propyl]-carbamic acid methyl ester (\(37.6 \mathrm{mg}, 0.076 \mathrm{mmol}\)) under an argon atmosphere. Potassium carbonate \((20.9 \mathrm{mg}, 0.152 \mathrm{mmol})\) and \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(8.7 \mathrm{mg}, 0.0076\) \(\mathrm{mmol})\) were added, followed by DME \((1.8 \mathrm{~mL})\) and water \((0.3 \mathrm{~mL})\). The mixture was heated under microwave conditions for 20 minutes at \(120^{\circ} \mathrm{C}\). All volatiles were removed in vacuo and the crude material was dissolved in DMF and purified via RP-HPLC (eluent: water/ MeCN w \(0.1 \%\) TFA) to yield the product \{1-[5-(4'-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-biphenyl-4-yl)-1'-phenyl-1',2', 4',5'-tetrahydro-1H[\(2,4^{\prime}\)]biimidazolyl-3'-carbonyl]-2-methyl-propyl \(\}\)-carbamic acid methyl ester (5.4 mg): LCMS\(\mathrm{ESI}^{+}\): calc'd for \(\mathrm{C}_{45} \mathrm{H}_{53} \mathrm{~N}_{9} \mathrm{O}_{6}\) : \(815.9\left(\mathrm{M}^{+}\right)\); Found: \(816.5\left(\mathrm{M}+\mathrm{H}^{+}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}: 300 \mathrm{MHz}\), \(\left(\mathrm{MeOH}-\mathrm{d}_{4}\right) \delta: 7.89-7.86(\mathrm{~m}, 10 \mathrm{H}), 7.35(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{~m}, 2 \mathrm{H}), 5.67(\mathrm{~m}, 1 \mathrm{H})\), \(5.37(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{~m}, 1 \mathrm{H}), 4.31-4.08(\mathrm{~m}, 3 \mathrm{H}), 4.01-3.79(\mathrm{~m}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H})\), \(3.66(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{~m}, 1 \mathrm{H}), 2.29-1.99(\mathrm{~m}, 5 \mathrm{H}), 0.99-0.89(\mathrm{~m}, 12 \mathrm{H})\).

\section*{Example CD}

Piperazine-1.3dicarboxylic acid 1-tertbutyl ester

3-[2-(4-Bromo-phenyl)-2-oxo-ethylcarbamoyl]-4-(2-methoxycarbonylamino-3-methyl-butyryl)-piperazine-1carboxylic acid tert-butyl ester

3-[2-(4-Bromo-phenyl)-2-oxo-ethylcarbamoyl)-4-(2-methoxycarbonylamino-3-methyl-butyryl)-piperazine-1-carboxylic acid tert-butyl ester

3-[4-(4-Bromo-phenyl)-1H-imidazol-2-yi]-4-(2-methoxycarbonylamino-3-methyl-butyryl)-piperazine-1-carboxylic acid tert-butyl ester

\section*{3-[2-(4-Bromo-phenyl)-2-oxo-ethylcarbamoyl]-4-(2-methoxycarbonylamino-3-methyl-} butyryl)-piperazine-1-carboxylic acid tert-butyl ester: N -(Methylcarbamoyl)(\(L\))-valine (2.0 \(\mathrm{g}, 11.4 \mathrm{mmol})\) was dissolved in DMF (15 mL) at room temperature. HATU (\(4.34 \mathrm{~g}, 11.4 \mathrm{mmol}\)) and disopropyl ethylamine (\(1.47 \mathrm{~g}, 11.4 \mathrm{mmol}\)) were added and stirring was continued. After 10 minutes, solid piperazine-1,3-dicarboxylic acid 1-tert-butyl ester (\(2.62 \mathrm{~g}, 11.4 \mathrm{mmol}\)) was added. To the resultant suspension was added DMF (10 mL) and disopropyl ethylamine (1.47 \(\mathrm{g}, 11.4 \mathrm{mmol})\). Stirring at room temperature was continued. After \(45 \mathrm{~min}, \mathrm{HATU}(4.34 \mathrm{~g}, 11.4\) mmol) and diisopropyl ethylamine (\(1.47 \mathrm{~g}, 11.4 \mathrm{mmol}\)) were added to the resultant yellow solution followed by amino-(4'bromo) acetophenone hydrochloride salt (\(2.85 \mathrm{~g}, 11.4 \mathrm{mmol}\)). After 30 minutes all volatiles were removed in vacuo. The crude material was taken into EtOAc and the organic layer was washed with aqueous \(\mathrm{HCl}(1 \mathrm{M})\), aqueous \(\mathrm{LiCl}(5 \%)\), aqueous bicarbonate solution, brine and was dried over sodium sulfate. Filtration and evaporation of solvents in vacuo yielded crude material, which was purified by flash chromatography on silica gel (eluent: EtOAc w MeOH 10\%/hexanes) to yield the product 3-[2-(4-Bromo-phenyl)-2-oxo-ethylcarbamoyl]-4-(2-methoxycarbonylamino-3-methyl-butyryl)-piperazine-1-carboxylic acid tert-butyl ester (3.62 g): LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{BrN}_{4} \mathrm{O}_{7}: 583.4\) (M \({ }^{+}\)); Found: 583.2 / \(585.2\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{3-[4-(4-Bromo-phenyl)-1H-imidazol-2-yl]-4-(2-methoxycarbonylamino-3-methyl-butyryl)-} piperazine-1-carboxylic acid tert-butyl ester:
3-[2-(4-Bromo-phenyl)-2-oxo-ethylcarbamoyl]-4-(2-methoxycarbonylamino-3-methyl-butyryl)-piperazine-1-carboxylic acid tert-butyl ester (\(2.0 \mathrm{~g}, 3.43 \mathrm{mmol}\)) was dissolved in m-xylenes (18 mL) and heated at \(135^{\circ} \mathrm{C}\). Solid ammonium acetate (\(1.70 \mathrm{~g}, 22.0 \mathrm{mmol}\)) was added and the reaction was stirred at \(135^{\circ} \mathrm{C}\). After 120 minutes, the reaction was cooled to room temperature and the volatiles were removed in vacuo. The crude material was purified via silica gel chromatography (eluent: EtOAc w MeOH 10\% / hexanes) to yield the product 3-[4-(4-Bromo-phenyl)-1H-imidazol-2-yl]-4-(2-methoxycarbonylamino-3-methyl-butyryl)-piperazine-1carboxylic acid tert-butyl ester (\(674 \mathrm{mg}, 1.19 \mathrm{mmol}\)): LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{Br}_{5} \mathrm{O}_{5}\) :
\(564.5\left(\mathrm{M}^{+}\right)\); Found: \(564.2 / 566.2\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{Example CE}

3-[4-(4-Bromo-phenyl)-1H-imidazol-2-yl]-4-(2-methoxycarbonylamino-3-methyl-butyryl)-piperazine-1-carboxylic acid tert-butyl ester

[1-(2-\{5-[4-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-4-(2,2,2-trifluoro-ethyl)-piperazin-2-yl)-1 H -imidazol-4-y \(]\)-phenylethynyl)-phenyl) 1 H -imidazol-2-yl)-pyrrolidine-1-carbonyl)-2-methyl-propylf-carbamic acid methyl ester
\{1-[2-[4-(4-Bromo-phenyl)-1 H-imidazol-
2-yl)-4-(2,2,2-trifluoro-ethyl)-piperazine-1-carbonyl)-2-methyl-propyl)-carbamic acid methyl ester
\{1-[2-[2-(4-Bromo-phenyl)-2-oxo-ethylcarbamoyl]-4-(2,2,2-trifluoro-ethyl)-piperazine-1-carbonyl]-2-methyl-propyl\}-carbamic acid methyl ester: 3-[4-(4-Bromo-phenyl)-1H-imidazol-2-yl]-4-(2-methoxycarbonylamino-3-methyl-butyryl)-piperazine-1-carboxylic acid tert-butyl ester (\(400 \mathrm{mg}, 0.686 \mathrm{mmol}\)) was dissolved in dichloromethane \((1.0 \mathrm{~mL})\) and \(\mathrm{HCl}(4 \mathrm{M}\) dioxane, 2 mL) was added. The resultant suspension was stirred at room temperature for 20 minutes, after which all volatiles were removed in vacuo. The crude material was dissolved in DMF (1.0 mL) / THF (1.0 mL) and diisopropyl ethylamine (\(88.5 \mathrm{mg}, 0.686 \mathrm{mmol}\)) was added followed by trifluoroethyl triflate (\(114.7 \mathrm{mg}, 0.494 \mathrm{mmol}\)). Stirring at room temperature was continued. After 14 hours, all volatiles were removed in vacuo and the crude material was purified by flash chromatography on silica gel (eluent: EtOAc w MeOH 10\% / hexanes) to yield the product \{1-[2-[2-(4-Bromo-phenyl)-2-oxo-ethylcarbamoyl]-4-(2,2,2-trifluoro-ethyl)-piperazine-1-carbonyl]-2-methyl-propyl \(\}\)-carbamic acid methyl ester (\(192 \mathrm{mg}, 0.34 \mathrm{mmol}\)): LCMS-ESI': calc'd for \(\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{BrF}_{3} \mathrm{~N}_{4} \mathrm{O}_{5}\) : \(565.3\left(\mathrm{M}^{+}\right)\); Found: \(565.2 / 567.2\left(\mathrm{M}+\mathrm{H}^{+}\right)\).

\section*{\{1-[2-[4-(4-Bromo-phenyl)-1H-imidazol-2-yl]-4-(2,2,2-trifluoro-ethyl)-piperazine-1-} carbonyl]-2-methyl-propyl\}-carbamic acid methyl ester: \{1-[2-[2-(4-Bromo-phenyl)-2-oxo-ethylcarbamoyl]-4-(2,2,2-trifluoro-ethyl)-piperazine-1-carbonyl]-2-methyl-propyl\}-carbamic acid methyl ester (\(192 \mathrm{mg}, 0.34 \mathrm{mmol}\)) was dissolved in m -Xylenes (2 mL) and heated at 135 \({ }^{\circ} \mathrm{C}\). Solid ammonium acetate (\(128 \mathrm{mg}, 1.66 \mathrm{mmol}\)) was added and the reaction was stirred at \(135^{\circ} \mathrm{C}\). After 110 minutes, the reaction was cooled to room temperature and the volatiles were removed in vacuo. The crude material was purified via silica gel chromatography (eluent: EtOAc w MeOH 10\%/hexanes) to yield the product \{1-[2-[4-(4-Bromo-phenyl)-1 H-imidazol-2-yl]-4-(2,2,2-trifluoro-ethyl)-piperazine-1-carbonyl]-2-methyl-propyl\}-carbamic acid methyl ester (\(98.7 \mathrm{mg}, 0.181 \mathrm{mmol}\)): LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{BrF}_{3} \mathrm{~N}_{5} \mathrm{O}_{3}\) : \(546.4\left(\mathrm{M}^{+}\right)\); Found: \(546.0 / 548.2\left(\mathrm{M}+\mathrm{H}^{+}\right)\).
[1-(2-\{5-[4-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-4-(2,2,2-trifluoro-ethyl)-piperazin-2-yl]-1H-imidazol-4-yl\}-phenylethynyl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester: \{1-[2-[4-(4-Bromo-phenyl)-1H-imidazol-2-yl]-4-(2,2,2-trifluoro-ethyl)-piperazine-1-carbonyl]-2-methyl-propyl\}-carbamic acid methyl ester (\(98.7 \mathrm{mg}, 0.181 \mathrm{mmol}\)) was combined with (1-\{2-[5-(4-Ethynyl-phenyl)-1 H-imidazol-2-yl]-pyrrolidine-1-carbonyl \}-2-methyl-propyl)-carbamic acid methyl ester (71.2 mg , \(0.181 \mathrm{mmol})\) and \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(21.5 \mathrm{mg}, 0.018 \mathrm{mmol})\) under an argon atmosphere. DMF (degassed with Argon) was added followed by triethylamine (\(181 \mathrm{mg}, 1.8 \mathrm{mmol}\)) and copper(I) iodide (\(3.5 \mathrm{mg}, 0.018 \mathrm{mmol}\)). The mixture was heated at \(80^{\circ} \mathrm{C}\). After 20 minutes, volatiles were removed in vacuo and the crude material was semi-purified via chromatography on silica gel (eluent EtOAc w MeOH 10\% / hexanes) and further purified via RP-HPLC (eluent: water/ MeCN w 0.1\% TFA) to yield the product [1-(2-\{5-[4-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-4-(2,2,2-trifluoro-ethyl)-piperazin-2-yl]-1H-imidazol-4-yl\}-phenylethynyl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester (12.4 mg): LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{44} \mathrm{H}_{52} \mathrm{~F}_{3} \mathrm{~N}_{9} \mathrm{O}_{6}: 859.9\left(\mathrm{M}^{+}\right)\); Found: \(860.5\left(\mathrm{M}+\mathrm{H}^{+}\right)\); \({ }^{1} \mathrm{H}-\mathrm{NMR}: 300 \mathrm{MHz},\left(\mathrm{MeOH}-\mathrm{d}_{4}\right) \delta: 7.91-7.68(\mathrm{~m}, 10 \mathrm{H}), 6.06(\mathrm{~m}, 2 \mathrm{H}), 5.24(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{~m}\), \(1 \mathrm{H}), 4.23(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~m}, \mathrm{lH}), 3.85(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.49-3.45(\mathrm{~m}\), \(2 \mathrm{H}), 3.15-3.02(\mathrm{~m}, 3 \mathrm{H}), 2.77(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.01(\mathrm{~m}, 5 \mathrm{H}), 1.07-0.83(\mathrm{~m}, 12 \mathrm{H})\).

\section*{Example CF}

(1-14-(4-Bromo-phenyl)-1'-(2,2,2-trifuoro-ethyl)-1', \(2^{\prime}, 4^{\prime}, 5^{\prime}\)-tetrahydro-1/-[2,4] biimidazolyl-3'-carbonyl]-2-methyl-propyl-carbamic acid methyt
[1-(2-\{5-[4-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-4N-(2,2,2-trifiuoro-ethyl)-pyrrolidin-2-yll-1 H -imidazol-4-yl\}-phenylethynyl)-phenylf-1 H -imidazol-2-yl\}-pyrrolidine-1-carbonyl)-2-methyl-propylf ester
carbamic acid methyl ester
[1-(2-\{5-[4-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-4N-(2,2,2-trifluoro-ethyl)-pyrrolidin-2-yll-1H-imidazol-4-yl\}-phenylethynyl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester: \{1-[4-(4-Bromo-phenyl)-1'-(2,2,2-trifluoro-ethyl)-1',2',4',5'-tetrahydro-1H-[2,4']biimidazolyl-3'-carbonyl]-2-methyl-propyl \(\}\)-carbamic acid methyl ester (\(55.0 \mathrm{mg}, 0.103 \mathrm{mmol}\)) was combined with (\(1-\{2-[5-\) (4-Ethynyl-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester (\(37.5 \mathrm{mg}, 0.095 \mathrm{mmol}\)) and \(\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.010 \mathrm{mmol})\) under an argon atmosphere. DMF (2.0 mL , degassed with Argon) was added followed by triethylamine (104
\(\mathrm{mg}, 1.03 \mathrm{mmol}\)) and copper(I) iodide (\(1.9 \mathrm{mg}, 0.01 \mathrm{mmol}\)). The mixture was heated at \(80^{\circ} \mathrm{C}\). After 240 minutes, volatiles were removed in vacuo and the crude material was semi-purified via chromatography on silica gel (eluent EtOAc w MeOH \(10 \%\) / hexanes) and further purified via RP-HPLC (eluent: water/ MeCN w 0.1\% TFA) to yield the product [1-(2-\{5-[4-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-4N-(2,2,2-trifluoro-ethyl)-pyrrolidin-2-yl]-1H-imidazol-4-yl\}-phenylethynyl)-phenyl]-1 H -imidazol-2-yl \(\}\)-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester (4.9 mg): LCMS-ESI \({ }^{+}\): calc'd for \(\mathrm{C}_{43} \mathrm{H}_{50} \mathrm{~F}_{3} \mathrm{~N}_{9} \mathrm{O}_{6}: 845.9\) \(\left(\mathrm{M}^{+}\right)\); Found: \(846.4\left(\mathrm{M}+\mathrm{H}^{+}\right)\); \({ }^{1} \mathrm{H}-\mathrm{NMR}: 300 \mathrm{MHz},\left(\mathrm{MeOH}-\mathrm{d}_{4}\right)\) 8: \(7.91-7.68(\mathrm{~m}, 10 \mathrm{H}), 5.35\) (dd, \(\mathrm{J}=6.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~m}, 1 \mathrm{H}), 4.76(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~m}, 1 \mathrm{H})\), \(4.00(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 6 \mathrm{H}), 3.65-3.42(\mathrm{~m}, 4 \mathrm{H}), 2.56(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.06\) (m, 5H), 0.99-0.88 (m, 12H).

\section*{Example CG}

2-(4-\{4-[(pyrrolidine-1'-carboxylic acid tert-butyl ester)-phenylcarbamoyl\}-phenylcarbamoyl)-pyrrolidine-1-carboxylic acid tert-butyl ester: 4-Amino-N-(4-amino-phenyl)-benzamide (3.00 g) and pyrrolidine-1,2-dicarboxylic acid 1-tert-butyl ester (6.55 g) were dissolved in DCM (90 mL), and 1-ethoxycarbonyl-1,2-dihydroquinoline (7.88 g) was added. The reaction mixture was stirred at ambient temperature for 17 hours and evaporated under vacuum. Oil was dissolved in ethyl acetate, forming a precipitate, which was collected by vacuum filtration and dried under vacuum, giving 2-(4-\{4-[(pyrrolidine-1'-carboxylic acid tert-
butyl ester)-phenylcarbamoyl\}-phenylcarbamoyl)-pyrrolidine-1-carboxylic acid tert-butyl ester (\(7.64 \mathrm{~g}, 93 \%\)) as a white solid.

Pyrrolidine-2-carboxylic-acid\{4-[4-(pyrrolidin-2'-yl-carbonyl-amino)-phenylcarbamoyl]-phenyl\}-amide: 2-(4-\{4-[(pyrrolidine-1'-carboxylic acid tert-butyl ester)-phenylcarbamoyl\}-phenylcarbamoyl)-pyrrolidine-1-carboxylic acid tert-butyl ester (2.01 g) was dissolved in DCM (46 mL), and trifluoroacetic acid (6 mL) was added. The reaction mixture was stirred at ambient temperature for 3.5 hours and evaporated under vacuum. Solid was dissolved in DCM and extracted twice with saturated \(\mathrm{NaHCO}_{3}\) solution. Solid was collected by vacuum filtration, washed with ethyl acetate, and dried under vacuum, giving pyrrolidine-2-carboxylic acid \{4-[4-(pyrrolidin-2'-yl-carbonyl-amino)-phenylcarbamoyl]-phenyl\}-amide (\(1.18 \mathrm{~g}, 87 \%\)) as a white solid.
(1-\{2-[4-(4-\{[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidine-2-carbonyl]-amino\}-phenylcarbamoyl)-phenylcarbamoyl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)carbamic acid methyl ester: Pyrrolidine-2-carboxylic acid \{4-[4-(pyrrolidin-2'-yl-carbonyl-amino)-phenylcarbamoyl]-phenyl \(\}\)-amide (0.305 g), 2-methoxycarbonylamino-3-methyl-butyric acid (0.277 g), and HATU (0.621 g) were dissolved in anhydrous DMF (8 mL), and diisopropylethylamine (0.496 mL) was added. The reaction mixture was stirred at ambient temperature for 1 hour and evaporated under vacuum. The oil was dissolved in DCM and purified by chromatography (0-20\% ethyl acetate:hexane), giving (1-\{2-[4-(4-\{[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidine-2-carbonyl]-amino\}-phenylcarbamoyl)-phenylcarbamoyl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester (0.324 \(\mathrm{g}, 58 \%\)) as a white solid: \({ }^{1} \mathrm{H}-\mathrm{NMR}: 300 \mathrm{MHz},\left(\mathrm{DMSO}-\mathrm{d}_{6}\right) \delta: 10.3(\mathrm{~s}, 1 \mathrm{H}), 10.1(\mathrm{~s}, 1 \mathrm{H}), 10.0(\mathrm{~s}\), \(1 \mathrm{H}), 7.9(\mathrm{~d}, \mathrm{~J}=9.9,2 \mathrm{H}), 7.7(\mathrm{~m}, 4 \mathrm{H}), 7.5(\mathrm{~d}, \mathrm{~J}=9.9,2 \mathrm{H}), 7.3(\mathrm{~d}, \mathrm{~J}=9.9,2 \mathrm{H}), 4.5(\mathrm{~m}, 2 \mathrm{H}), 4.0(\mathrm{~m}\), \(2 \mathrm{H}), 3.8(\mathrm{~m}, 2 \mathrm{H}), 3.6(\mathrm{~m}, 2 \mathrm{H}), 3.5(\mathrm{~s}, 6 \mathrm{H}), 2.2(\mathrm{~m}, 2 \mathrm{H}), 1.9(\mathrm{~m}, 8 \mathrm{H}), 0.9(\mathrm{~m}, 12 \mathrm{H}) ; \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}\) \(736[\mathrm{M}+\mathrm{H}]^{+}\).

\section*{Example CH}

2-[4-(2-\{4-[(1-carboxylic acid tert-butyl ester-pyrrolidine-2-carbonyl)-amino]-phenyl\}-ethyl)-phenylcarbamoyl]-pyrrolidine-1-carboxylic acid tert-butyl ester: 4,4'-
Ethylenedianiline (2.98 g) and pyrrolidine-1,2-dicarboxylic acid 1-tert-butyl ester (7.09 g) were dissolved in DCM (90 mL), and 1-ethoxycarbonyl-1,2-dihydroquinoline (8.38 g) was added. The reaction mixture was stirred at ambient temperature for 3 hours and evaporated under vacuum. Oil was dissolved in ethyl acetate, forming a precipitate, which was collected by vacuum filtration and dried under vacuum, giving 2-[4-(2-\{4-[(1-carboxylic acid tert-butyl ester-pyrrolidine-2-carbonyl)-amino]-phenyl\}-ethyl)-phenylcarbamoyl]-pyrrolidine-1-carboxylic acid tert-butyl ester \((8.30 \mathrm{~g}, 97 \%)\) as a white solid.

Pyrrolidine-2-carboxylic acid (4-\{2-[4-(pyrrolidinecarbonyl-amino)-pheny]]-ethyl\}-phenyl)-amide: 2-[4-(2-\{4-[(1-carboxylic acid tert-butyl ester-pyrrolidine-2-carbonyl)-amino]-phenyl\}-ethyl)-phenylcarbamoyl]-pyrrolidine-1-carboxylic acid tert-butyl ester (3.01 g) was dissolved in DCM (45 mL), and trifluoroacetic acid (15 mL) was added. The reaction mixture was stirred at ambient temperature for 4 hours and evaporated under vacuum. Solid was dissolved in DCM and extracted twice with saturated \(\mathrm{NaHCO}_{3}\) solution. Solid was collected by vacuum filtration, washed with ethyl acetate, and dried under vacuum, giving pyrrolidine-2carboxylic acid (4-\{2-[4-(pyrrolidinecarbonyl-amino)-phenyl]-ethyl\}-phenyl)-amide (1.86 g , \(93 \%\)) as a light gray solid.
[1-(2-\{4-[2-(4-\{[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidine-2-carbonyl]-amino\}-phenyl)-ethyl]-phenylcarbamoyl\}-pyrrolidine-1-carbonyl)-2-methyl-propyl]carbamic acid methyl ester: Pyrrolidine-2-carboxylic acid (4-\{2-[4-(pyrrolidinecarbonyl-amino)-phenyll-ethyl \(\}\)-phenyl)-amide (0.299 g), 2-methoxycarbonylamino-3-methyl-butyric acid (0.296 g), and HATU (0.648 g) were dissolved in anhydrous DMF (5 mL), and diisopropylethylamine (0.513 mL) was added. The reaction mixture was stirred at ambient temperature for 1 hour and evaporated under vacuum. The oil was dissolved in DCM and purified by chromatography (\(0-100 \%\) ethyl acetate:hexane), giving [1-(2-\{4-[2-(4-\{[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidine-2-carbonyl]-amino \(\}\)-phenyl)-ethyl]phenylcarbamoyl \(\}\)-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester (0.254 \(\mathrm{g}, 48 \%\)) as a white solid: \({ }^{\mathrm{H}} \mathrm{H}-\mathrm{NMR}: ~ 300 \mathrm{MHz},\left(\mathrm{DMSO}^{2} \mathrm{~d}_{6}\right) \delta: 9.9(\mathrm{~s}, 2 \mathrm{H}), 8.2\) (broad s, 2 H), 7.4 (\(\mathrm{d}, \mathrm{J}=9.9,4 \mathrm{H}\)), \(7.3(\mathrm{~d}, \mathrm{~J}=9.9,2 \mathrm{H}), 7.1(\mathrm{~d}, \mathrm{~J}=9.9,4 \mathrm{H}), 4.4(\mathrm{~m}, 2 \mathrm{H}), 4.0(\mathrm{t}, \mathrm{J}=7.5,2 \mathrm{H}), 3.8(\mathrm{~m}, 2 \mathrm{H})\), \(3.6(\mathrm{~m}, 8 \mathrm{H}), 3.5(\mathrm{~s}, 6 \mathrm{H}), 3.1(\mathrm{~m}, 8 \mathrm{H}), 2.8(\mathrm{~s}, 4 \mathrm{H}), 2.1(\mathrm{~m}, 2 \mathrm{H}), 1.9(\mathrm{~m}, 8 \mathrm{H}), 0.9(\mathrm{~m}, 12 \mathrm{H})\); MS (ESI) \(m / z 721[\mathrm{M}+\mathrm{H}]^{+}\).

\section*{Example CI}

2-(4-\{4-[(1-Acetyl-pyrrolidine-2-carbonyl)-amino]-phenylazo\}-phenylcarbamoyl)-pyrrolidine-1-carboxylic acid tert-butyl ester: 4-(4-aminophenylazo)-phenylamine (3.02 g) and pyrrolidine-1,2-dicarboxylic acid 1-tert-butyl ester (7.00 g) were dissolved in DCM (90 mL), and 1-ethoxycarbonyl-1,2-dihydroquinoline (8.45 g) was added. The reaction mixture was stirred at ambient temperature for 19 hours and evaporated under vacuum. Oil was dissolved in
ethyl acetate, forming a precipitate, which was collected by vacuum filtration and dried under vacuum, giving 2-(4-\{4-[(1-carboxylic acid tert-butyl ester-pyrrolidine-2-carbonyl)-amino]phenylazo \}-phenylcarbamoyl)-pyrrolidine-1-carboxylic acid tert-butyl ester (9.28 g) as a brown solid.

Pyrrolidine-2-carboxylic acid \{4-[4-(pyrrolidinecarbonyl-amino)-phenylazo]-phenyl\}amide: 2-(4-\{4-[(1-carboxylic acid tert-butyl ester-pyrrolidine-2-carbonyl)-amino]-phenylazo\}-phenylcarbamoyl)-pyrrolidine-1-carboxylic acid tert-butyl ester (9.28 g , crude) was dissolved in DCM (75 mL), and trifluoroacetic acid (25 mL) was added. The reaction mixture was stirred at ambient temperature for 3 hours and evaporated under vacuum. Solid was dissolved in DCM and extracted twice with saturated \(\mathrm{NaHCO}_{3}\) solution. The solution was evaporated under vacuum, giving pyrrolidine-2-carboxylic acid \{4-[4-(pyrrolidinecarbonyl-amino)-phenylazo]phenyl \(\}\)-amide (6.18 g , crude) as a red solid.

\section*{(1-\{2-[4-(4-\{[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidine-2-carbonyl]-} amino\}-phenylazo)-phenylcarbamoyl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester: Pyrrolidine-2-carboxylic acid \{4-[4-(pyrrolidinecarbonyl-amino)-phenylazo]-phenyl\}-amide (0.302 g), 2-methoxycarbonylamino-3-methyl-butyric acid (0.284 g), and HATU (0.643 g) were dissolved in anhydrous DMF (5 mL), and N-methylmorpholine (0.324 mL) was added. The reaction mixture was stirred at ambient temperature for 2 hours and evaporated under vacuum. The oil was dissolved in DCM and purified by chromatography (0 100\% ethyl acetate:hexane), giving (1-\{2-[4-(4-\{[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidine-2-carbonyl]-amino \}-phenylazo)-phenylcarbamoyl]-pyrrolidine-1carbonyl \}-2-methyl-propyl)-carbamic acid methyl ester (\(0.158 \mathrm{~g}, 30 \%\)) as a yellow solid: \({ }^{1} \mathrm{H}\) NMR: \(300 \mathrm{MHz},\left(\mathrm{DMSO}_{-} \mathrm{d}_{6}\right) \delta: 10.4(\mathrm{~s}, 2 \mathrm{H}), 7.8 .(\mathrm{m}, 8 \mathrm{H}), 7.4(\mathrm{~d}, \mathrm{~J}=9.9,2 \mathrm{H}), 4.5(\mathrm{~m}, 2 \mathrm{H}), 4.0\) \((\mathrm{t}, \mathrm{J}=7.5,2 \mathrm{H}), 3.8(\mathrm{~m}, 2 \mathrm{H}), 3.6(\mathrm{~m}, 8 \mathrm{H}), 3.5(\mathrm{~s}, 6 \mathrm{H}), 2.2(\mathrm{~m}, 2 \mathrm{H}), 2.0(\mathrm{~m}, 8 \mathrm{H}), 0.9(\mathrm{~m}, 12 \mathrm{H}) ; \mathrm{MS}\) (ESI) \(m / z 721[\mathrm{M}+\mathrm{H}]^{+}\).

\section*{Example CJ}

 y(1)-pyrrolidine-1-carbonyl)-2-methyt-propyl)-cartamic acid methy ester

4-Bromo-naphthalene-1-carbonyl chloride: 4-Bromonaphthalene-1-carboxylic acid (9.80 g) was suspended in thionyl chloride (80 mL) and stirred at \(40^{\circ} \mathrm{C}\) for 16 hours and evaporated under vacuum. Solid was dissolved in DCM (20 mL) and evaporated under vacuum, giving 4-bromonaphthalene-1 -carbonyl chloride (13.8 g, crude) as a white solid.

1-(4-Bromonaphthalen-1-yl)-2-diazoethanone: 4-Bromo-naphthalene-1-carbonyl chloride \((13.8 \mathrm{~g})\) was dissolved in dichloromethane \((130 \mathrm{~mL})\) and cooled to \(0^{\circ} \mathrm{C}\). TMS diazomethane solution (\(40 \mathrm{~mL}, 2 \mathrm{M}\) in DCM) was added, and ice bath was removed. Reaction mixture was stirred for 18 hours and evaporated under vacuum, giving 1-(4-bromonaphthalen-1-yl)-2diazoethanone (13.8 g , crude) as a brown oil.

2-Bromo-1-(4-bromo-naphthalen-1-yl)-ethanone: 1-(4-Bromonaphthalen-1-yl)-2diazoethanone (13.8 g) was dissolved in ethyl acetate (200 mL), and hydrobromic acid solution (\(8.4 \mathrm{~mL}, 5.7 \mathrm{M}\) in acetic acid) was added at \(0^{\circ} \mathrm{C}\). Reaction mixture was stirred 15 minutes, \(\mathrm{NaHCO}_{3}\) solution (100 mL) was added, and mixture was stirred 10 minutes. Ethyl acetate
solution was extracted twice with \(\mathrm{NaHCO}_{3}\) solution (50 mL), once with brine (50 mL), and evaporated under vacuum. The oil was dissolved in DCM and purified by chromatography (0 \(20 \%\) ethyl acetate:hexane), giving 2-bromo-1-(4-bromo-naphthalen-1-yl)-ethanone (6.67 g , \(51 \%\)) as a \(\tan\) solid.

Pyrrolidine-1,2-dicarboxylic acid 2-[2-(4-bromonaphthalen-1-yl)-2-oxo-ethyl]ester 1-tertbutyl ester: Pyrrolidine-1,2-dicarboxylic acid 1-tert-butyl ester (4.85 g) was dissolved in acetonitrile (65 mL), and triethylamine (3.09 mL) was added. A solution of 2-bromo-1-(4-bromonaphthalen-1-yl)-ethanone (6.60 g) in acetonitrile (35 mL) was added. Reaction mixture was stirred 90 minutes and evaporated under vacuum. Oil was dissolved in DCM (50 mL), extracted once with water (20 mL) and once with \(\mathrm{NaHCO}_{3}\) solution (20 mL), and evaporated under vacuum to a concentrated liquid. Solution was purified by chromatography (\(0-50 \%\) ethyl acetate:hexane) and evaporated under vacuum, giving pyrrolidine-1,2-dicarboxylic acid 2-[2-(4-bromonaphthalen-1-yl)-2-oxo-ethyl]ester 1-tert-butyl ester (\(8.95 \mathrm{~g}, 95 \%\)) as a tan solid.

\section*{2-[5-(4-Bromo-naphthalen-1-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl}
ester: Pyrrolidine-1,2-dicarboxylic acid 2-[2-(4-bromonaphthalen-1-yl)-2-oxo-ethyl]ester 1-tert-butyl ester (8.80 g) and ammonium acetate (7.51 g) were suspended in xylenes. The reaction mixture was stirred at \(140^{\circ} \mathrm{C}\) for 15 hours and evaporated under vacuum. Solid was dissolved in ethyl acetate (50 mL) and extracted twice with water (20 mL) and once with brine (20 mL). The oil was dissolved in DCM, purified by chromatography (\(0-50 \%\) ethyl acetate:hexanes), and evaporated under vacuum, giving 2-[5-(4-bromo-naphthalen-1-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (\(4.34 \mathrm{~g}, 52 \%\)) as a tan solid.

5-(4-Bromo-naphthalen-1-yl)-2-pyrrolidin-2-yl-1H-imidazole: 2-[5-(4-Bromo-naphthalen-1-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (1.00 g) was dissolved in DCM (12 mL), and trifluoroacetic acid (4 mL) was added. The reaction mixture was stirred at ambient temperature for 3 hours and evaporated under vacuum. Solid was dissolved in DCM (10 mL) and extracted with saturated \(\mathrm{NaHCO}_{3}\) solution (30 mL). A solid was collected by vacuum filtration, washed with DCM, and dried under vacuum, giving 5-(4-bromo-naphthalen1 -yl)-2-pyrrolidin-2-yl-1H-imidazole (0.940 g , crude) as an off-white solid.
(1-\{2-[5-(4-Bromo-naphthalen-1-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester: 5-(4-bromo-naphthalen-1-yl)-2-pyrrolidin-2-yl-1Himidazole (0.925 g), 2-methoxycarbonylamino-3-methyl-butyric acid (0.441 g), and HATU
\((1.00 \mathrm{~g})\) were dissolved in anhydrous DMF (15 mL), and N -methylmorpholine (0.497 mL) was added. The reaction mixture was stirred at ambient temperature for 30 minutes and evaporated under vacuum. The oil was dissolved in DCM, purified by chromatography (\(0-100 \%\) ethyl acetate:hexanes), and evaporated under vacuum, giving (1-\{2-[5-(4-bromo-naphthalen-1-yl)-1 \(\mathrm{H}-\) imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester (0.814 g , \(72 \%\)) as an off-white solid.

\section*{[1-(2-\{5-[4-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-} imidazol-4-yl\}-phenyl)-naphthalen-1-yl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester: (1-\{2-[5-(4-Bromo-naphthalen-1-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester (0.115 g), [2-Methyl-1-(2-\{5-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-propyl]-carbamic acid methyl ester (0.111 g), and \(\mathrm{NaHCO}_{3}(0.0623\) g) were dissolved in a mixture of 1,2 -dimethoxyethane (3 mL) and water (1 mL). The solution was degassed with nitrogen, and \(\mathrm{Pd}_{(}\left(\mathrm{PPh}_{3}\right)_{4}(0.0114 \mathrm{~g})\) was added. The reaction mixture was stirred at \(85^{\circ} \mathrm{C}\) for 16 hours and evaporated under vacuum. Solid was dissolved in ethyl acetate \((10 \mathrm{~mL})\) and extracted twice with water \((10 \mathrm{~mL})\) and once with brine \((10 \mathrm{~mL})\). Solution was evaporated, dissolved in DMF, purified by reverse phase HPLC (5-70\% acetonitrile:water), and lyophilized, giving [1-(2-\{5-[4-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-phenyl)-naphthalen-1-yl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-2-methyl-propyl]-carbamic acid methyl ester (\(0.037 \mathrm{~g}, 21 \%\)) as a white solid: \({ }^{1} \mathrm{H}\) NMR: \(300 \mathrm{MHz},\left(\mathrm{CHCl}_{3}-\mathrm{d}_{1}\right) \delta: 8.9(\mathrm{~m}, 1 \mathrm{H}), 7.6(\mathrm{~m}, 2 \mathrm{H}), 7.4(\mathrm{~m}, 5 \mathrm{H}), 7.0(\mathrm{~m}, 2 \mathrm{H}), 6.8(\mathrm{~m}\), \(2 \mathrm{H}), 5.8(\mathrm{~m}, 2 \mathrm{H}), 5.3(\mathrm{~m}, 2 \mathrm{H}), 4.3(\mathrm{~m}, 2 \mathrm{H}), 4.0(\mathrm{~m}, 4 \mathrm{H}), 3.6(\mathrm{~s}, 6 \mathrm{H}), 2.4(\mathrm{~m}, 6 \mathrm{H}), 2.0(\mathrm{~m}, 6 \mathrm{H})\), \(0.8(\mathrm{~m}, 12 \mathrm{H})\); MS (ESI) \(m / z 789[\mathrm{M}+\mathrm{H}]^{+}\).

2,6-(bis-pinocolato) Diboranonaphthalene: 2,6-Dibromonaphthalene (10.2 g), bis(pinocolato)diborane (37.3 g), and potassium acetate (18.0 g) were dissolved in 1,4-dioxane \((250 \mathrm{~mL})\), and solution was degassed with nitrogen. \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3.13 \mathrm{~g})\) was added, and the reaction mixture was stirred at \(80^{\circ} \mathrm{C}\) for 20 hours. The suspension was vacuum filtered, and the solid was washed with ethyl acetate, giving 2,6-(bis-pinocolato)diboranonaphthalene (7.71 g , \(58 \%\)) as a yellow solid.

2-(5-\{6-[2-(1'-carboxylic acid tert-butyl ester-pyrrolidin-2-yl)-3H-imidazol-4-yl]-naphthalen-2-yl\}-1H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester: 2,6-(bispinocolato)diboranonaphthalene (0.501 g), 2-(5-bromo-1 H-imidazol-2-yl)-pyrrolidine-1carboxylic acid tert-butyl ester (0.885 g), and \(\mathrm{NaHCO}_{3}(0.562 \mathrm{~g})\) were dissolved in a mixture of 1,2-dimethoxyethanedichloromethane (15 mL) and water (5 mL). The solution was degassed with nitrogen, and \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.0935 \mathrm{~g})\) was added. The reaction mixture was stirred at \(90^{\circ} \mathrm{C}\) for 16 hours and evaporated under vacuum. Solid was dissolved in DCM (20 mL) and extracted twice with water and once with brine. Solution was evaporated, recrystallized from ethyl acetate, and dried under vacuum, giving 2-(5-\{6-[2-(1'-carboxylic acid tert-butyl ester-pyrrolidin-2-yl)-3H-imidazol-4-yl]-naphthalen-2-yl\}-1H-imidazol-2-yl)-pyrrolidine-1carboxylic acid tert-butyl ester (\(0.365 \mathrm{~g}, 46 \%\)) as a white solid.

2,6-bis(2-Pyrrolidin-2-yl-1H-imidazole)naphthalene: 2-(5-\{6-[2-(1'-carboxylic acid tertbutyl ester-pyrrolidin-2-yl)-3H-imidazol-4-yl]-naphthalen-2-yl \}-1H-imidazol-2-yl)-pyrrolidine1 -carboxylic acid tert-butyl ester (0.365 g) was dissolved in dichloromethane (3 mL), and trifluoroacetic acid (1 mL) was added. The reaction mixture was stirred at ambient temperature
for 27 hours, heated to \(40^{\circ} \mathrm{C}\) for 3 hours, and evaporated under vacuum. Solid was dissolved in DCM (10 mL) and extracted with saturated \(\mathrm{NaHCO}_{3}\) solution (30 mL). A solid was collected by vacuum filtration, washed with DCM, and dried under vacuum, giving 2,6-bis(2-pyrrolidin-2-yl1 H -imidazole) naphthalene (\(0.180 \mathrm{~g}, 74 \%\)) as a yellow solid.

\section*{(1-\{2-[5-(6-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-} imidazol-4-yl\}-naphthalen-2-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester: 2,6-bis(2-Pyrrolidin-2-yl-1H-imidazole)naphthalene (0.170 g), 2-methoxycarbonylamino-3-methyl-butyric acid (0.168 g), and HATU (0.378 g) were dissolved in anhydrous DMF (3 mL), and N -methylmorpholine (0.188 mL) was added. The reaction mixture was stirred at ambient temperature for 30 minutes and evaporated under vacuum. The oil was dissolved in DMF and purified by reverse phase HPLC (5-70\% acetonitrile:water) and lyophilized, giving (1-\{2-[5-(6-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-naphthalen-2-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl \}-2-methyl-propyl)-carbamic acid methyl ester (\(0.051 \mathrm{~g}, 17 \%\)) as a white solid: \({ }^{1} \mathrm{H}-\mathrm{NMR}: 300 \mathrm{MHz},\left(\mathrm{DMSO}_{6}\right) \delta: 8.3(\mathrm{~s}, 2 \mathrm{H}), 8.1(\mathrm{~s}, 2 \mathrm{H}), 8.0(\mathrm{~m}, 4 \mathrm{H}), 7.3(\mathrm{~d}, \mathrm{~J}=11.2\), \(2 \mathrm{H}), 5.1(\mathrm{~m}, 2 \mathrm{H}), 4.1(\mathrm{~m}, 2 \mathrm{H}), 3.9(\mathrm{~m}, 4 \mathrm{H}), 3.5(\mathrm{~s}, 6 \mathrm{H}), 2.4(\mathrm{~m}, 1 \mathrm{H}), 2.0(\mathrm{~m}, 5 \mathrm{H}), 0.8(\mathrm{~m}, 12 \mathrm{H}) ;\) MS (ESI) \(m / z 713[\mathrm{M}+\mathrm{H}]^{+}\).

\section*{Example CK}

\{1-[2-(5-44-2-(4-\{2-11-(2-Methoxycarbonylamino-3-methyl-butyry))-pyrrolidin-2-yll-3H-imidazol-4-yl)-phenyl)-vinyl)-phenyl)1 H-imidazol-2-yl)-pyrrolidine-1-carbonyl)-2-methyl-propyltcarbamic acid methyl ester
(1-\{2-[5-(4-Bromonaphthalen-1-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester: 2-[5-(4-Bromonaphthalen-1-yl)-1 H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (3.80 g), 2-methoxycarbonylamino-3-methyl-
butyric acid (2.57 g), and HATU (5.88 g) were dissolved in anhydrous DMF (85 mL), and N methylmorpholine (2.86 mL) was added. The reaction mixture was stirred at ambient temperature for 22 hours and evaporated under vacuum. The oil was dissolved in dichloromethane, purified by chromatography (\(0-50 \%\) ethyl acetate:hexanes), and evaporated under vacuum, giving (1-\{2-[5-(4-bromonaphthalen-1-yl)-1H-imidazol-2-yl]-pyrrolidine-1carbonyl \}-2-methyl-propyl)-carbamic acid methyl ester (6.10 g , crude) as a tan solid.
\{1-[2-(5-\{4-[2-(4-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-phenyl)-vinyl]-phenyl\}-1H-imidazol-2-yl)-pyrrolidine-1-carbonyl]-2-methyl-propyl\}-carbamic acid methyl ester: (1-\{2-[5-(4-Bromonaphthalen-1-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl \(\}\)-2-methyl-propyl)-carbamic acid methyl ester (1.01 g) was dissolved in anhydrous DMF (13 mL), and (E)-bis(tributylstannyl)ethene (0.585 mL) was added. The solution was degassed with nitrogen, and \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.0401 \mathrm{~g})\) was added. The reaction mixture was stirred at \(85^{\circ} \mathrm{C}\) for 17 hours and evaporated under vacuum. Solid was dissolved in DMF, purified by reverse phase HPLC (5-70\% acetonitrile:water), and lyophilized, giving \{1-[2-(5-\{4-[2-(4-\{2-[1-(2-methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-phenyl)-vinyl]-phenyl\}-1H-imidazol-2-yl)-pyrrolidine-1-carbonyl]-2-methyl-propyl\}-carbamic acid methyl ester (\(25 \mathrm{mg}, 1.5 \%\)) as a white solid: \({ }^{1} \mathrm{H}\)-NMR: 300 MHz , (DMSO-d \(\mathrm{d}_{6}\)) 8: 8.0 (s , \(2 \mathrm{H}), 7.8(\mathrm{~m}, 8 \mathrm{H}), 7.4(\mathrm{~s}, 2 \mathrm{H}), 7.3(\mathrm{~d}, \mathrm{~J}=9.9,2 \mathrm{H}), 5.1(\mathrm{t}, \mathrm{J}=6.9,2 \mathrm{H}), 4.1(\mathrm{t}, \mathrm{J}=6.9,2 \mathrm{H}), 3.8(\mathrm{~m}\), \(4 \mathrm{H}), 3.8(\mathrm{~m}, 2 \mathrm{H}), 3.5(\mathrm{~s}, 6 \mathrm{H}), 2.4(\mathrm{~m}, 2 \mathrm{H}), 2.0(\mathrm{~m}, 6 \mathrm{H}), 0.8(\mathrm{~m}, 12 \mathrm{H}) ;\) MS (ESI) m/z \(765[\mathrm{M}+\) \(\mathrm{H}]^{+}\).

\section*{Example CL}

(1-\{2-\{5-(6-Bromonaphthalen-2-y \()-1\) - -imidazol bis(pinocolato)diborane
-2-y')-pytrotidine-1-carbonyl)-2-methyl-propyl)carbamic acid methyl ester -

[2-Methyt-1 \(22-\{5-[6-(4,4,5,5-\) tetramethy \(\mathcal{H} 1,3,2]\) dioxaborotan-2-yl) naphthaten-2-yl) 1 H -imidazol-2-y|-pyirolidine-1 carbonyl)-propy't cartamic acid methyl ester

(1-\{2-4-(6-Bromonaphthaten-2-y \()-1 H\)-imidazo -2-y \(\}\)-pyroicine-1-carbony()-2-methyl-propyl). carbamic acid methyl ester

\section*{\(\mathrm{Pa}_{\left(\mathrm{PPO}_{3}\right)}\)
\(\mathrm{NaHCO}_{3}\) \(\xrightarrow[\text { DME- } \mathrm{H}_{2} \mathrm{O}]{\mathrm{NaHCO}_{3}}\)}

(\(1\{2-\{5-16-241-\{2-\) Methoxycartonylamino-3-methyH-butyry \(\mid\))-pyrotidin- \(2-\mathrm{y} \mid\}\)

6-Bromo-naphthalene-2-carbonyl chloride: 6-Bromonaphthalene-2-carboxylic acid (25.1 g) was suspended in thionyl chloride (200 mL), stirred at \(60^{\circ} \mathrm{C}\) for 16 hours and evaporated under vacuum. Solid was dissolved in dichloromethane (50 mL) and evaporated under vacuum, giving 6-bromonaphthalene-2-carbonyl chloride (27.0 g , crude) as a white solid.

1-(6-Bromo-naphthalen-2-yl)-2-diazo-ethanone: 6-Bromonaphthalene-2-carbonyl chloride (27.0 g , crude) was dissolved in dichloromethane (330 mL) and cooled to \(0^{\circ} \mathrm{C}\). TMS diazomethane solution (\(100 \mathrm{~mL}, 2 \mathrm{M}\) in DCM) was added, and ice bath was removed. Reaction mixture was stirred for 16 hours and evaporated under vacuum, giving 1-(6-bromonaphthalen-2-yl)-2-diazoethanone (34.7 g , crude) as an orange solid.

2-Bromo-1-(6-bromo-naphthalen-2-yl)-ethanone: 1-(6-Bromonaphthalen-2-yl)-2diazoethanone (34.7 g) were dissolved in ethyl acetate \((500 \mathrm{~mL})\), and hydrobromic acid solution (\(21.1 \mathrm{~mL}, 5.7 \mathrm{M}\) in acetic acid) was added at \(0^{\circ} \mathrm{C}\). Reaction mixture was stirred 3 hours,
\(\mathrm{NaHCO}_{3}\) solution (200 mL) was added, and mixture was stirred 10 minutes. Ethyl acetate solution was extracted twice with \(\mathrm{NaHCO}_{3}\) solution (50 mL), once with brine (50 mL), and evaporated under vacuum, giving 2-bromo-1-(6-bromonaphthalen-2-yl)-ethanone (33.0 g , crude) as a tan solid.

Pyrrolidine-1,2-dicarboxylic acid 2-[2-(6-bromo-naphthalen-2-yl)-2-oxo-ethyl] ester 1-tertbutyl ester: Pyrrolidine-1,2-dicarboxylic acid 1-tert-butyl ester (24.0 g) was dissolved in acetonitrile (330 mL), and triethylamine (15.6 mL) was added. A solution of 2-bromo-1-(6-bromonaphthalen-2-yl)-ethanone (33.0 g) in acetonitrile (170 mL) were added. Reaction mixture was stirred over 3 days and evaporated under vacuum. Oil was dissolved in dichloromethane (100 mL), extracted with water \((50 \mathrm{~mL})\) and with \(\mathrm{NaHCO}_{3}\) solution (50 mL), and evaporated under vacuum to a concentrated liquid. Solution was purified by chromatography (\(0-30 \%\) ethyl acetate:hexane) and evaporated under vacuum, giving pyrrolidine-1,2-dicarboxylic acid 2-[2-(6-bromo-naphthalen-2-yl)-2-oxo-ethyl] ester 1-tert-butyl ester (\(39.2 \mathrm{~g}, 84 \%\)) as a tan solid.

\section*{2-[5-(6-Bromo-naphthalen-2-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl} ester: Pyrrolidine-1,2-dicarboxylic acid 2-[2-(6-bromonaphthalen-2-yl)-2-oxo-ethyl] ester 1-tert-butyl ester (39.0 g) and ammonium acetate (40.1 g) were suspended in xylenes (420 mL). The reaction mixture was stirred at \(140^{\circ} \mathrm{C}\) for 15 hours and evaporated under vacuum. Solid was dissolved in dichloromethane (300 mL), extracted twice with water (50 mL) and once with brine (50 mL), and evaporated under vacuum, giving 2-[5-(6-bromonaphthalen-2-yl)-1H-imidazol-2-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester (\(30.3 \mathrm{~g}, 81 \%\)) as an off-white solid.

5-(6-Bromo-naphthalen-2-yl)-2-pyrrolidin-2-yl-1H-imidazole: 2-[5-(6-Bromonaphthalen-2-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carboxylic acid tert-butyl ester (5.03 g) was dissolved in dichloromethane \((75 \mathrm{~mL})\), and trifluoroacetic acid \((25 \mathrm{~mL})\) was added. The reaction mixture was stirred at ambient temperature for 5 hours and evaporated under vacuum. Solid was dissolved in dichloromethane (50 mL) and extracted with saturated \(\mathrm{NaHCO}_{3}\) solution (50 mL). Solid was collected by vacuum filtration, washed with dichloromethane, and dried under vacuum, giving 5-(6-Bromo-naphthalen-2-yl)-2-pyrrolidin-2-yl-1H-imidazole (98\%) as an offwhite solid.
(1-\{2-[5-(6-Bromonaphthalen-2-yl)-1 H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester: 5-(6-Bromo-naphthalen-2-yl)-2-pyrrolidin-2-yl-1Himidazole (3.80 g), 2-methoxycarbonylamino-3-methyl-butyric acid (2.21 g), and HATU (5.06 g) were dissolved in anhydrous DMF (75 mL), and N -methylmorpholine (2.68 mL) was added. The reaction mixture was stirred at ambient temperature for 16 hours and evaporated under vacuum. The oil was dissolved in dichloromethane, purified by chromatography (\(0-100 \%\) ethyl acetate:hexanes), and evaporated under vacuum, giving (1-\{2-[5-(6-bromo-naphthalen-2-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester (0.814 g , \(72 \%\)) as an off-white solid.
[2-Methyl-1-(2-\{5-[6-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-naphthalen-2-yl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-propyl]-carbamic acid methyl ester: (1-\{2-[5-(6-Bromonaphthalen-2-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester (3.02 g), bis-(pinocolato)diborane (3.18 g), and potassium acetate (1.52 g) were dissolved in 1,4-dioxane (40 mL), and solution was degassed with nitrogen. \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\) \((0.285 \mathrm{~g})\) was added, and the reaction mixture was stirred at \(80^{\circ} \mathrm{C}\) for 20 hours and evaporated under vacuum. Solid was dissolved in dichloromethane (50 mL), extracted with saturated \(\mathrm{NaHCO}_{3}\) solution (50 mL), and evaporated under vacuum. The oil was dissolved in dichloromethane, purified by chromatography (\(0-10 \%\) isopropanol:dichloromethane), and evaporated under vacuum, giving [2-Methyl-1-(2-\{5-[6-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-naphthalen-2-yl]-1H-imidazol-2-yl\}-pyrrolidine-1 -carbonyl)-propyl]carbamic acid methyl ester (3.65 g , crude) as a yellow solid.

\section*{(1-\{2-[5-(6'-\{2-[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-3H-} imidazol-4-yl\}-[2,2']binaphthalenyl-6-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester: (1-\{2-[5-(6-Bromonaphthalen-2-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester (0.174 g), [2-Methyl-1-(2-\{5-[6-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-naphthalen-2-yl]-1H-imidazol-2-yl\}-pyrrolidine-1-carbonyl)-propyl]-carbamic acid methyl ester (0.202 g), and \(\mathrm{NaHCO}_{3}(0.108 \mathrm{~g})\) were dissolved in a mixture of 1,2 -dimethoxyethane (6 mL) and water (2 \(\mathrm{mL})\). The solution was degassed with nitrogen, and \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.0176 \mathrm{~g})\) was added. The reaction mixture was stirred at \(85^{\circ} \mathrm{C}\) for 16 hours and evaporated under vacuum. Solid was dissolved in ethyl acetate (10 mL) and extracted twice with water \((10 \mathrm{~mL})\) and once with brine \((10 \mathrm{~mL})\). Solution was evaporated, dissolved in DMF, purified by reverse phase HPLC (5-70\% acetonitrile:water), and lyophilized, giving (1-\{2-[5-(6'-\{2-[1-(2-Methoxycarbonylamino-3-
methyl-butyryl)-pyrrolidin-2-yl]-3H-imidazol-4-yl\}-[2,2']binaphthalenyl-6-yl)-1H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester (\(0.050 \mathrm{~g}, 16 \%\)) as a white solid: \({ }^{1} \mathrm{H}-\mathrm{NMR}: ~ 300 \mathrm{MHz},\left(\mathrm{MeOH}-\mathrm{d}_{4}\right) \delta: 8.3(\mathrm{~m}, 4 \mathrm{H}), 8.1(\mathrm{~m}, 6 \mathrm{H}), 8.0(\mathrm{~s}, 2 \mathrm{H}), 7.8(\mathrm{~d}\), \(\mathrm{J}=9.4,2 \mathrm{H}), 5.3(\mathrm{~m}, 2 \mathrm{H}), 4.3(\mathrm{~d}, \mathrm{~J}=9.0,2 \mathrm{H}), 4.1(\mathrm{~m}, 2 \mathrm{H}), 3.9(\mathrm{~m}, 2 \mathrm{H}), 3.7(\mathrm{~s}, 6 \mathrm{H}), 2.6(\mathrm{~m}, 2 \mathrm{H})\), \(2.2(\mathrm{~m}, 6 \mathrm{H}), 0.9(\mathrm{~m}, 12 \mathrm{H}) ; \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 839[\mathrm{M}+\mathrm{H}]^{+}\).

\section*{Example CM}

2-[5-(3'-tert-Butoxycarbonylamino-biphenyl-4-yl)-1H-imidazol-2-yl]-pyrrolidine-1carboxylic acid benzyl ester: 2-[5-(4-Bromo-phenyl)-1H-imidazol-2-yl]-pyrrolidine-1carboxylic acid benzyl ester (\(2.14 \mathrm{~g}, 5.01 \mathrm{mmol}\)), (3-tert-Butoxycarbonylaminophenyl)-boronic acid (\(1.19 \mathrm{~g}, 5.01 \mathrm{mmol}\)), \(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(289 \mathrm{mg}, 0.251 \mathrm{mmol})\) and \(\mathrm{K}_{2} \mathrm{CO}_{3}(5.5 \mathrm{~mL}\) of 2 M aqueous solution, 11.02 mmol) were combined with 1,2 -dimethoxyethane (20 mL). The suspension was stirred while \(\mathrm{N}_{2}\) was bubbled through the solution for 24 min . A reflux condenser was attached and the suspension was heated to \(85^{\circ} \mathrm{C}\) for 17 hours. It was then cooled, diluted with ethyl acetate (150 mL), washed with water and brine, dried over sodium sulfate and concentrated. The crude product was purified by silica column chromatography (\(25 \%\) to \(50 \% \mathrm{EtOAc} / \mathrm{hexanes}\)) to provide 2-[5-(3'-tert-Butoxycarbonylamino-biphenyl-4-yl)-1H-imidazol-2-yl]-pyrrolidine-1carboxylic acid benzyl ester (\(1.73 \mathrm{~g}, 64 \%\)).

\section*{Pyrrolidine-2-carboxylic acid [4'-(2-pyrrolidin-2-yl-3H-imidazol-4-yl)-biphenyl-3-yl]-} amide: 2-[5-(3'-tert-Butoxycarbonylamino-biphenyl-4-yl)-1H-imidazol-2-yl]-pyrrolidine-1carboxylic acid benzyl ester (\(1.75 \mathrm{~g}, 3.25 \mathrm{mmol}\)) was dissolved in methanol (40 mL) and concentrated \(\mathrm{HCl}(2 \mathrm{~mL})\) was added. The solution was stirred at \(50^{\circ} \mathrm{C}\) for 19 hours before being concentrated to a volume of 10 mL , poured into saturated \(\mathrm{NaHCO}_{3}(60 \mathrm{~mL})\). The organic phase was extracted 3 times with 30 mL dichloromethane. The combined organic phases were dried with sodium sulfate and concentrated. A portion of the resulting residue (\(515 \mathrm{mg}, 1.17 \mathrm{mmol}\))
was dissolved in THF (2 mL). In a separate flask, ethylchloroformate (\(0.134 \mathrm{~mL}, 1.41 \mathrm{mmol}\)) was added dropwise to a stirred \(0^{\circ} \mathrm{C}\) solution of Boc-Pro-OH (\(303 \mathrm{mg}, 1.41 \mathrm{mmol}\)) and triethylamine (\(0.197 \mathrm{~mL}, 1.41 \mathrm{mmol}\)) in THF (4 mL). After 10 minutes, the solution of biphenyl compound was added by cannula followed by a 2 mL rinse with THF. Following addition, the mixture was warmed to RT. After 70 min , the mixture was diluted with ethyl acetate (60 mL) and washed with water and brine. The organic phase was dried over sodium sulfate and concentrated. The residue was purified by silica column chromatography (\(25 \%\) to \(50 \%\) EtOAc/hexanes) to provide the Boc-Pro compound (\(470 \mathrm{mg}, 63 \%\)). This material was dissolved in ethanol \((40 \mathrm{~mL})\) and \(10 \% \mathrm{Pd} / \mathrm{C}(300 \mathrm{mg})\) was added before the flask was sealed and a bladder containing hydrogen gas was attached. A venting needle was placed in the septum for 30 s to allow hydrogen to bubble through the solution. After 13 h , the mixture was filtered over CELITE and concentrated. A portion of this residue (\(177 \mathrm{mg}, 0.353 \mathrm{mmol}\)) was dissolved in methanol (20 mL) and concentrated \(\mathrm{HCl}(2 \mathrm{~mL})\) was added. The mixture was stirred at \(60^{\circ} \mathrm{C}\) before being concentrated to provide Pyrrolidine-2-carboxylic acid [4'-(2-pyrrolidin-2-yl-3H-imidazol-4-yl)-biphenyl-3-yl]-amide (\(142 \mathrm{mg}, 100 \%\)).
(1-\{2-[5-(3'-\{[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidine-2-carbonyl]-amino\}-biphenyl-4-yl)-1 H-imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)carbamic acid methyl ester: Pyrrolidine-2-carboxylic acid [4'-(2-pyrrolidin-2-yl-3H-imidazol4 -yl)-biphenyl-3-yl]-amide (\(142 \mathrm{mg}, 0.353 \mathrm{mmol}\)), 2-Methoxycarbonylamino-3-methyl-butyric acid (\(124 \mathrm{mg}, 0.706 \mathrm{mmol}\)) and HATU (\(295 \mathrm{mg}, 0.777 \mathrm{mmol}\)) were suspended in DMF (7 mL) and cooled to \(0^{\circ} \mathrm{C}\) before DIPEA (\(0.615 \mathrm{~mL}, 3.53 \mathrm{mmol}\)) was added. After 80 min , the mixture was warmed to RT then filtered and purified by reverse phase preparative HPLC, giving (1-\{2-[5-(3'-\{[1-(2-Methoxycarbonylamino-3-methyl-butyryl)-pyrrolidine-2-carbonyl]-amino\}-biphenyl-4-yl)-1 H -imidazol-2-yl]-pyrrolidine-1-carbonyl\}-2-methyl-propyl)-carbamic acid methyl ester (\(50 \mathrm{mg}, 20 \%\)): \({ }^{1} \mathrm{H}\) NMR (DMSO-d6, 400 MHz) \(10.11(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.83\) (d, \(J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.80-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.29(\mathrm{~m}, 4 \mathrm{H}), 5.90(\mathrm{~m}, 1 \mathrm{H}), 4.47(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{~m}\), 2 H), \(3.82(\mathrm{~m}, 3 \mathrm{H}), 3.64(\mathrm{~m}, 2 \mathrm{H}), 3.54(\mathrm{~m}, 6 \mathrm{H}), 2.18(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.92(\mathrm{~m}, 6 \mathrm{H}), 0.96-0.82(\mathrm{~m}\), 12H); MS (ESI) m/z \(716[\mathrm{M}+\mathrm{H}]^{+}\).```

