
Network Working Group P. Cameron
Request for Comments: 1692 Xylogics, International Ltd.
Category: Standards Track D. Crocker
 Silicon Graphics, Inc.
 D. Cohen
 Myricom
 J. Postel
 ISI
 August 1994

 Transport Multiplexing Protocol (TMux)

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Abstract

 One of the problems with the use of terminal servers is the large
 number of small packets they can generate. Frequently, most of these
 packets are destined for only one or two hosts. TMux is a protocol
 which allows multiple short transport segments, independent of
 application type, to be combined between a server and host pair.

Acknowledgments

 This specification is the result of the merger of two documents: the
 original TMux proposal which was the result of several discussions
 and related initiatives through IETF working groups; and IEN 90 [1]
 originally proposed by Danny Cohen and Jon Postel in May 1979.

Applicability Statement

 The TMux protocol is intended to optimize the transmission of large
 numbers of small data packets that are generated in situations where
 many interactive Telnet and Rlogin sessions are connected to a few
 hosts on the network. In these situations, TMux can improve both
 network and host performance. TMux is not intended for multiplexing
 long streams composed of large blocks of data that are typically
 transmitted by such applications as FTP.

 The TMux protocol may be applicable to other situations where small
 packets are generated, but this was not considered in the design.

Cameron, Crocker, Cohen & Postel [Page 1]

Petitioner Riot Games, Inc. - Ex. 1010, p. 1f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

RFC 1692 TMux August 1994

 The use of the TMux protocol in any other situation may require some
 modification.

1. Introduction

 When network designers consider which protocols generate the most
 load, they naturally tend to consider protocols which transfer large
 blocks of data (e.g., FTP, NFS). What is often not considered is the
 load generated by Telnet and Rlogin because of the assumption that
 users type slowly and the packets are very small. This is a grave
 underestimation of the load on networks and hosts which have many
 Telnet and Rlogin ports on multiple terminal servers.

 The problem stems from the fact that the work a host must do to
 process a 1-octet packet is very nearly as much as the work it must
 do to process a 1500-octet packet. That is, it is the overhead of
 processing a packet which consumes a host’s resources, not the
 processing of the data.

 In particular, communication load is not measured only in bits per
 seconds but also in packets per seconds, and in many situation the
 latter is the true performance limit, not the former. The proposed
 multiplexing is aimed at alleviating this situation.

 If one assumes that most users connected to a terminal server will be
 connecting to only a few hosts, then it should be obvious that the
 network and host load could be greatly reduced if traffic from
 multiple users, destined for the same host, could be sent in the same
 packet.

 TMux is designed to improve network utilization and reduce the
 interrupt load on hosts which conduct multiple sessions involving
 many short packets. It does this by multiplexing transport traffic
 onto a single IP datagram [2], thereby resulting in fewer, larger
 packets. TMux is highly constrained in its method of accomplishing
 this task, seeking simplicity rather than sophistication.

2. Protocol Design

 IP hosts may engage in the use of TMux transparently, and may even
 switch back and forth between use of TMux and carriage of transport
 segments in the usual, independent IP datagrams.

 TMux operates by placing a set of transport segments into the same IP
 datagram. Each segment is preceded by a TMux mini-header which
 specifies the segment length and the actual segment transport
 protocol. The receiving host demultiplexes the individual transport
 segments and presents them to the transport layer as if they had been

Cameron, Crocker, Cohen & Postel [Page 2]

Petitioner Riot Games, Inc. - Ex. 1010, p. 2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

RFC 1692 TMux August 1994

 received in the usual IP/transport packaging. The transport layer
 is, therefore, unaware of the special encapsulation which was used.

 Hence, a TMux message appears as:

 | IP hdr | TM hdr | Tport segment | TM hdr | Tport segment| ...|

 Where:

 TM hdr is a TMux mini-header and specifies the following
 Tport segment.

 Tport segment refers to the entire transport segment, including
 transport headers.

 The TMux Protocol is defined to allow the combining of transmission
 units of different higher level protocols in one transmission unit of
 a lower level protocol. Only segments with the same Internet Protocol
 (IP) header, (with the possible exception of the protocol and check-
 sum fields) may be combined. For example, the segment (H1, B1) and
 the segment (H2, B2), where Hi and Bi are the headers and the bodies
 of the segment, respectively, may be combined (multiplexed) only if
 H=H1=H2. The combined TMux message is either (H, B1, B2) or (H, B2,
 B1).

 The receiver of this combined message should treat it as if the two
 original segments, (H,B1), and (H,B2), arrived separately. It is
 recommended, though not a requirement, that the segments in the TMux
 message should be processed in the same order that they are in the
 TMux message.

 The multiplexing is achieved by combining the individual segments,
 (H,B1) through (H,Bn), into a single message. This single message
 has an IP header which is equal to H, but having in the PROTOCOL
 field the value 18 which is the protocol number of the TMux protocol.
 This IP header is followed by all the segments, B1 through Bn. Each
 segment, Bi, is preceded by a 4 octet TMux mini header. This contains
 the number of the protocol to which this segment is addressed. It
 also contains the total length of this segment, including this mini
 header. Since this mini header is not otherwise protected by a check-
 sum, it also includes a checksum field which just covers this mini
 header.

Cameron, Crocker, Cohen & Postel [Page 3]

Petitioner Riot Games, Inc. - Ex. 1010, p. 3f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

RFC 1692 TMux August 1994

2.1. IP Protocol field value

 TMux is indicated in an IP datagram by the Protocol (ID) value of 18
 (22 octal), see [3].

2.2. Header Format

 Each 4 octet TMux mini-header has the following general format:

 +-------------------------------+
 | Length high |
 +-------------------------------+
 | Length low |
 +-------------------------------+
 | Protocol ID |
 +-------------------------------+
 | Checksum |
 +-------------------------------+
 | Transport segment |
 | ... |
 | ... |

 The LENGTH field specifies the octet count for this mini header and
 the following transport segment, from 0-65535 octets. Hence, the
 length field has a minimum value of 4. For segments that are larger
 than the maximum allowed for TMux (see section 5.1), individual IP
 datagrams should be sent.

 The Protocol ID field contains the value that would normally have
 been placed in the IP header Protocol field.

 The ’Checksum’ field is the XOR of the first 3 octets.

 To ensure that TCP, UDP and other segments keep their 32 bit
 alignment, where the segments being multiplexed are not a multiple of
 32 bits long, extra octets will be added to re-align the end of the
 segment, and hence the next segment. These octets will be ignored on
 input. This padding will not affect the LENGTH field, it will still
 contain the real length of the segment.

2.3. Sending Data

 Host endpoints may choose to use TMux at any time and in either (or
 both) directions. They also may switch back and forth between use of
 TMux packaging and the usual individual IP datagrams for individual
 transport associations. The only barrier to the use of TMux is for
 the sender to know whether TMux is supported by the receiver. This
 is important, since early use of TMux is likely to be limited.

Cameron, Crocker, Cohen & Postel [Page 4]

Petitioner Riot Games, Inc. - Ex. 1010, p. 4f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

RFC 1692 TMux August 1994

 The easiest way to detect TMUX support is to only send TMux messages
 to hosts from which a valid TMux message has already been received.
 This then leaves the problem of one host starting the TMux
 connection. This is most easily accomplished by the host sending an
 IP datagram with no data (i.e., with the IP total length field of
 20), but with an IP Protocol field value of 18 for TMux. This is
 referred to as a TMux ENQ (enquiry) message. The host receiving this
 message then knows that the originator supports TMux, and can start
 to send TMux messages. This will in turn cause the originator of the
 ENQ message to start to use TMux. If for any reason the receiver
 does not intend to send TMux messages to the originator, but is
 prepared to accept them, then it can reply with another ENQ message.

 If an ENQ message does not get a response, then it is reasonable to
 resend the ENQ a while later in case the original ENQ message was
 lost. If this again is lost, the ENQ may be repeated as often as
 needed, but the time between requests should increase exponentially
 up to a limit of about 1 hour. Suitable times between ENQs would be
 15 seconds, 30 seconds, 60 seconds, 120 seconds etc.

 Note that this checking process does not need to impede any of the
 transport (user) data, which may be sent as convenient, albeit in its
 less-efficient IP datagram form.

 The only problem with this scheme is that a host which supports TMux
 may stop supporting it, as might happen when the host is re-booted.
 Other hosts need to learn of this change. The solution to this is to
 maintain a Time To Live (TTL) value for hosts from which TMux
 messages have been received. This TTL is a timed TTL, rather than a
 count as used in the IP TTL field, and this time stamp is updated
 every time a TMux message is received. This can then be used to
 expire the information held by TMux on the host after a suitable
 time, e.g., 1 minute.

 This TTL time stamp is used as follows. When TMux is passed a segment
 to be sent to a host, a check is made to see if the time to live has
 expired. If the TTL has not expired, the segment is sent in a TMux
 message as normal. If the TTL has expired, the host is marked as
 being unable to TMux, but the segment is STILL sent as a TMux message
 (i.e., with the normal delay to allow other segments to be
 multiplexed). If the host is really unable to TMux anymore (a rare
 occurrence) then this segment will be timed out and retried by the
 transport provider i.e., TCP. Because the host was marked as not
 able to TMux, the retry will be sent as a normal IP datagram. If the
 remote host is still able to TMux then it should send back TMux
 traffic (even if it has been rebooted), typically a TCP window
 update, and the local host will mark it as able to TMux again. This
 way of operating removes any performance problem caused by

Cameron, Crocker, Cohen & Postel [Page 5]

Petitioner Riot Games, Inc. - Ex. 1010, p. 5f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

