

Petitioner Riot Games, Inc. - Ex. 1005, p. 1

CERTIFICATE OF SERVICE

The undersigned hereby certifies that a copy of this REQUEST FOR REEXAMINATION
UNDER35 U.S.C. §§ 302-307 AND 37 C.F.R. § 1.510 FOR U.S. Patent 5,822,523 together
with all exhibits and attachments and supporting documentation on a CD, has been served via
first class mail on June 11, 2010 upon the following:

DANIEL DEVITO

SKADDEN, ARPS, SLATE, MEAGHER & FLOM LLP
FOUR TIMES SQUARE
NEW YORKNY 10036

JORDAN ALTMAN

SHEARMAN & STERLING LLP

IP DOCKETING

599 LEXINGTON AVENUE

NEW YORK, NY 10022

RAJIV P. PATEL, ESQ.
FENWICK & WEST LLP

TWO PALO ALTO SQUARE
PALO ALTO,CA 94306

/SonalDash/
Sonal Dash

Petitioner Riot Games,Inc. - Ex. 1005, p. 1

Petitioner Riot Games, Inc. - Ex. 1005, p. 2

PTO/SB/08a (05-07)
Approved for use through 09/30/2007. OMB 0651-0031

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Underthe Paperwork Reduction Act of 1995, no persons are required to respondto a collection of information unless it contains a valid OMB control number.

 INFORMATION DISCLOSURE

STATEMENT BY APPLICANT
(Not for submission under 37 CFR 1.99}

Application Number

Filing Date
First Named Inventor DANIEL J. SAMUEL

Art Unit

Examiner Name

Attorney Docket Number 8330.003

U.S.PATENTS

Examiner) Cite Kind Name of Patentee or Applicant Pages,Columns, Lines where
ate Patent Number Issue Date : Relevant Passagesor RelevantInitial No Code" of cited Document :

Figures Appear

Suzukiet al.

1 5736982 1998-04-07

2

3

4

5

If you wish to add additional U.S. Patent citation information please click the Add button.

U.S.P,ATENT APPLICATION PUBLICATIONS

Examiner
Initial*

Cite
No

Publication Number
Kind
Code’

Publication
Date

Nameof Patentee or Applicant
of cited Document

Pages,Columns,Lines where
Relevant Passages or Relevant
Figures Appear

lf you wish to add additional U.S. Published Application citation information please click the Add button.

FOREIGN PATENT DOCUMENTS

EFS Web 2.0.1

Petitioner Riot Games, Inc. - Ex. 1005, p. 2

Petitioner Riot Games, Inc. - Ex. 1005, p. 3

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT
(Not for submission under 37 CFR 1.99}

Application Number

Filing Date

First Named Inventor|DANIEL J. SAMUEL

Art Unit

Examiner Name

Attorney Docket Number 8330.003

Pages,Columns,Lines
Foreign Document Nameof Patentee or

Examiner) Cite Numbers Country Kind|Publication Applicantofcited where Relevant TsInitial*=|No|“Umber Code2 j Code4| Date PP Passages or RelevantDocument .
Figures Appear

1

If you wish to add additional Foreign Patent Documentcitation information please click the Add button

NON-PATENT LITERATURE DOCUMENTS

Examiner| Cite Include nameof the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item
Initials*|No (book, magazine, journal, serial, symposium, catalog, etc), date, pages(s)}, volume-issue number(s), TS

publisher, city and/or country where published.

Server2.5pl4.tar.gz (“Server Code”) and BRMH-1.7.tar.gz (“Client Code”)

{ (source code dated no later than August 19941) (“Netrek”)

J, OIKARINEN ET AL. RFC 1459, "Internet Relay Chat Protocol", published May 1993 (“IRC RFC”).
2

R. FRIEDMAN ET AL. "Packing Messagesas a Tool for Boosting the Performance of Total Ordering Protocols", Dept.

3 of Science of Cornell University, published July 7, 1995 (“Friedman”).

DANIEL J. VAN HOOK, JAMES O. CALVIN, MICHAEL K. NEWTON, and DAVID A. FUSCO,“An Approachto DIS

4 Scaleability,” 11th DIS Workshop, 26-30 Sept. 1994 (“Yan Hook”).

IEEE 1278-1993 "IEEE Standard for Information Technology- Protocols for Distributed Interactive Simulation

5 Applications", approved March 18, 1993, and published in 1993 (“DIS”)

T. A. FUNKHOUSER,“RING:A Client-Server System for Multi-User Virtual Environments,” Association of Computing

6 Machinery, 1995 Symposium on Interactive 3D Graphics, Monterey CA, April 9-12, 19952 (“RING”).

ANDY MCFADDEN, “TheHistory of Netrek”, published January 1, 1994 (“McFadden”).
¢

EFS Web2.0.1

Petitioner Riot Games, Inc. - Ex. 1005, p. 3

Petitioner Riot Games, Inc. - Ex. 1005, p. 4

Application Number

Filing Date

INFORMATION DISCLOSURE First Named Inventor|DANIEL J. SAMUEL
STATEMENT BY APPLICANT |...
(Not for submission under 37 CFR 1.99}

Examiner Name

Attorney Docket Number 8330.003

MICHAEL R. MACEDONIA,“Exploiting Reality with Multicast Groups”, published September 1995 (“Macedonia”)

lf you wish to add additional non-patentliterature document citation information please click the Add button

EXAMINER SIGNATURE

Examiner Signature Date Considered
*EXAMINER: Initial if reference considered, whetheror notcitation is in conformance with MPEP 609. Draw line through a
citation if not in conformance and net considered. Include copy of this form with next communication to applicant.
1 See Kind Codes of USPTO Patent Documents at www.USPTO.GOV or MPEP 901.04. ? Enteroffice that issued the document, by the two-letter code (WIPO
Standard ST.3). 3 For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial numberof the patent document.
4 Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST.16 if possible. 5 Applicant is to place a check mark hereif
English languagetranslation is attached.

EFS Web 2.0.1

Petitioner Riot Games,Inc. - Ex. 1005, p. 4

Petitioner Riot Games, Inc. - Ex. 1005, p. 5

PAT-A

Petitioner Riot Games, Inc. - Ex. 1005, p. 5

United States Patent 119
Rothschild et al.

(54) SERVER-GROUP MESSAGING SYSTEM FORINTERACTIVE APPLICATIONS

[75] Inventors: Jeffrey J. Rothschild; Marc P.
Kwiatkowski, both of Los Gatos;
Daniel J. Samuel, Sunnyvale, ali of
Calif.

[73] Assignee: Mpath Interactive, Inc., Mountain
View, Calif.

{21] Appl. No.: $95,323

[22] Filed: Feb, 1, 1996

[51] Uinte CLS a esnennnnmncnnevencnnenee HOH 1/02
[52] US. Ch. caccssssssecssssssscnnmeens 395/200,17; 395/200, 1;395/200.09

[58] Fleld of Searedussts+ 395/200,1, 200.01,
395/200.09, 200.17, 200.05, 793; 370/85.13,

6

[56] References Cited
U.S. PATENT DOCUMENTS

4,470,954 9/1984 Cottonet al. . 370/60
5,079,767 1/1992 Perlman... woes 370/943
5,150,464 9/1992 Sidhu etal, .. 395/200.01
§,309,433 $/1994 Ciden et al. ~~ 370/60
5,309,437 5/1994 Perlman etal. =» 370/85.13
5,329,619 7/1994 Pagé et al. 39$/200.01
5,361,256 11/1994 Doeringer et al. eevee STOO
5,475,819 12/1995 Mi .
5,517,494 5/1996 G

FOREIGN PATENT DOCUMENTS

0637142 1/1995 European Pal. Of: .
WO 95/10808 4/1995 WIPO
WO 95/10911 4/1995 WIPO.

6 100
Hoat A Sends

LATSTGTP]

US005822523A

§,822,523

Oct. 13, 1998

Patent Number:

Date of Patent:

[14]

(45)

Primary Examiner—William M. Treat
Assistant Examiner—Zami Maung
Attorney, Agent, or Firm—H. C. Chan, Wison Sonsini
Goodrich & Rosati

[57] ABSTRACT

A method for deploying interactive applications over a
network containing host computers and group messaging
servers is disclosed. The method operatesin a conventional
unicast network architecture comprised of conventional net-
work links and unicast gateways and routers. The hosts send
messages containing destination group addresses by unicast
to the group messaging servers. The group addresses select
message groups maintained by the group messaging servers.
For each message group, the group messaging servers also
maintain a list of all of the hosts that are members of the
particular group. In its most simple implementation, the
method consists of the group server receiving a message
from a host containing a destination group address. Using
the group address, the group messaging server then selects
a message group which lists all of the host members of the
group which are the targets of messages to the group. The
group messaging server then forwards the message to each
of the target hosts. In an interactive application, many
messages will be arriving at the group server close lo one
anotherin time. Rather than simply forward cach message to
its targeted hosts, the group messaging server aggregates the
contents of each of messages received during a specified
time period and then sends an aggregated message to the
targeted hosts. The time period can be defined in a number
of ways, This method reduces the message traffic between
hosts in a networked interactive application and contributes
1o reducing the Istency in the communications between thehosts.

6 Claims, 11 Drawing Sheets

Host A Recmvwes
LSLATH[p2|Po]Pa)

hd 101
Host B Sends Host 8 Receives

LaTsToTre] LsisTi[Ps|3TPs|

8 102
Heat C Sends Hoat C Receives

YeTsTsTr Csfet)[ei[re[ra]
@ 403

Host D Sends Host D Recewes
LOTSTG{Pal LS[oTKk[ri[reps|

‘90 Group Server Sends * Group Sewer Receives:orLe o CALSLeT]
Petelepy

is[coyyTPTp27]a) Le[siclr]
% *~ro[Tslel]
103 oo

Petitioner Riot Games,Inc. - Ex. 1005, p. 6

U.S. Patent Oct. 13, 1998 Sheet 1 of 11 5,822,523

Figure 1
Prior Art

Petitioner Riot Games, Inc. - Ex. 1005, p. 7

U.S. Patent Oct. 13, 1998

20

,

Host A Sends

29 PA|cf]Pt
pA|OYPt|

23 Host B Sends

24 PBLA|Pe|
og —~L2LO1]
|B|D|P2|

26 Host C Sends

» CEALP]
oe—LOLe3]

Pc|O|PS|

Host D Sends

@®Qoo nNND oanN

Sheet 2 of 11 5,822,523

Host A Receives

88
No Jol>|[>|

20 Host B Receives

oy~TALELP
oo LeLe,

PD|B|PS|

24 Host C Receives

24

31

Host D Receives

» tors]=gg “TeToT
|D[|c|PA||¢[|D|PS|

Figure 2
Prior Art

|

Petitioner Riot Games, Inc. - Ex. 1005, p. 8

U.S. Patent Oct. 13, 1998 Sheet 3 of 11 5,822,523

Figure 3
Prior Art

Petitioner Riot Games, Inc. - Ex. 1005, p. 9

U.S. Patent Oct. 13, 1998 Sheet 4 of 11 5,822,523

54 Host A Sends 55a Host A Receives
LETT] C.

67a|c|E|P38|
POLE|Pa|

55 Host B Sends 54b Host B Receives
PBLEe|P2|S6p PATE]Pt|

67 pc|E|Ps|
PD]E|Pa|

56 Host C Sends 54c Host C Receives
eTETR] gn

57c PBTE|P2|
PoyEe|Pa|

57 Host D Sends 64d Host D Receives
STETP] gg,

seg L&ETP
pc[TE|PS|

Figure 4
Prior Art

Petitioner Riot Games, Inc. - Ex. 1005, p. 10

U.S. Patent Oct. 13, 1998 Sheet 5 of 11 5,822,523

Figure 5 |

Petitioner Riot Games,Inc. - Ex. 1005, p. 11

U.S. Patent Oct. 13, 1998 Sheet 6 of 11 5,822,523

80 Host A Sends 84 Host A Receives

pA}STSTP) 45 |S|A}H|P2|
86 |S[A|H|PS|

|STATH|Pe|
81 Host B Sends

pRBYS|S[P2] gg
89}BB]!|Ps|

|S)8|!|P|
82 Host C Sends Host C Receives

pc[s{otra} og pc|)[Pt
92|¢|3|Pe|

Pstc}s[ea|
83 Host D Sends Host D Receives

pots{TGPt a4|D|K|Pi|
95|D|K|P2|

|S|0|K|PS|

Host B Receives

Mhml
B4 Group Server Sends 80 Group Server Receives

~ \CSTATETPE] ee

28

A
90 |B]!|PA|
:94 c{J

22

93 fs{[c]ys|Pa)
94|s|D|}K|Pt|
95 Po|kK{Pe|

|S|Oo|K|PS|
i

Figure 6

Petitioner Riot Games, Inc. - Ex. 1005, p. 12

U.S. Patent Oct. 13, 1998 Sheet 7 of 11 5,822,523

Host A Sends Host A Receives

97 101

Host B Sends Host B Receives

Host C Receives

Host D Receives
400 96

Group Server Sends Group Server Receives101 OEEE] 97 ~LA_LS|&|Pt|
pS]Bi!|Pt]Ps|Pa|FB|S[Ss||2|

ee pc]s|6|Ps|

|Pa|
102 98

fs[To|k[Pi[P2|Ps|po}s|sc|

103 99

Petitioner Riot Games,Inc. - Ex. 1005, p. 13

U.S, Patent Oct. 13, 1998 Sheet 8 of 11 5,822,523

Figure 8
Prior Art

Petitioner Riot Games,Inc. - Ex. 1005, p. 14

U.S. Patent Oct. 13, 1998 Sheet 9 of 11 5,822,523

123 124 125 126 127 128 129

Transport|ULP Msg.|Dest. ULP|Address|Destination Destination Payload
Header Type Address|Count|Address 1 Address N Y

116 117 118 119 120 121 122

Message|Source ULP| Data Source ULP|Data
wera | 8

130 131 132

Figure 9

Petitioner Riot Games,Inc. - Ex. 1005, p. 15

U.S. Patent Oct, 13, 1998 Sheet 10 of 11 5,822,523

135

Group Server Control

Host ULP Address 0|Host TLP Address 0

Implicit ULP Group Address 0

Implicit ULP Group Address m

Host ULP Address n|Host TLP Address n
ULP Server Process 0 ULP Server Process m

Host ULP Address a Host ULP Address a

Host ULP Address n Host ULP Address n

Logical ULP Address 0 Logical ULP Address m
Host ULP Address a Host ULP Address a

Host ULP Address n

 Host ULP Address n

Figure 10

Petitioner Riot Games,Inc. - Ex. 1005, p. 16

U.S. Patent Oct. 13, 1998 Sheet 11 of 11 5,822,523

150

Interactive Application

Host Interface for Upper Level Protocol

 ULP Address 0|TLP Address 0

ULP Address n|TLP Address n

153

HostInterface for Transport Leve! Protocol
154

Network Communications Stack
155

Network Interface

Figure 11

Petitioner Riot Games,Inc. - Ex. 1005, p. 17

5,822,523

1
SERVER-GROUP MESSAGING SYSTEM FOR

INTERACTIVE APPLICATIONS

FIELD OF THE INVENTION

The present invention relates to computer network
sysiems, and particularly to server group messaging systems
and methods for reducing message rate and latency.

BACKGROUNDOF THE INVENTION

‘There are a wide range ofinteractive applications imple-
mented on computer systems today, All arc characterized by
dynamic response to the user. The user provides input to the
computer and the application responds quickly. One popular
example of interactive applications on personal computers
(PCs)arc games.In this case, rapid response to the user may
mean redrawing the screen with a new picture in between 30
ms and 100 ms. Interactive applications such as games
control the speed oftheir interaction with the user through
an internal time base. The application uses this lime base to
derive rates at which the user inputis sampled, the screen is
redrawn and sound is played.

As computers have become more powerful and common,
it has become important to connect them together in net-
works. A network is comprised of nodes and links. The
nodes are connected in such a way that there exists a path
from cach node over the links and through the other nodes
to each ofthe other nodes in the network, Each node may be
connected to the network wilh one or more links. Nodes are
further categorized into hosts, gateways and routers. Hosts
are computer systems that are connected to the network by
one link. They communicate with the other nodes on the
network by sending messages and receiving messages. Gale-
ways are computer systems connecied to the network by
more than onc link. They not only communicate with the
other nodes as do hosts, but they also forward messages on
one of their network links to other nodes on their other
network links. This processing of forwarding messages is
called routing. In addition to sending and receiving mes-
sages and thcir routing functions, gateways may perform
other functions in a network. Routers arc nodes that are
connected to the network by more than one link and whose
sole function is the forwarding of messages on one network
link to the other network links to which it is connected. A
network consisting of many network links can be thought of
as a network of sub-networks with gateways and/or routers
connecting the sub-networks together into whatis called an
internet. Today the widely known example of a werld wide
internetis the so called “Imernet” which in 1995 has over 10
million computers connected full time world-wide.

With so many computers on a single world-wide network,
it is desirable to create interactive networked applications
that bring together many people in a shared, networked,
interactive application. Unfortunately, creating such shared
networked,interactive applications rons into the limitations
of the existing network technology.

As an example, consider a game designed to be deployed
over a network which is to be played by multiple players
simultaneously. The game could be implemented in software
ona PC connected to a network. A rate set by ils internal
time base, it would sample the inputs of the local user,
receive messages from the network from the PCs of the other
players and send messages out to the PCs of the other
players. A typical rate will be ten time per second for a time
period of 100 ms. The messages sent between the PCs would
contain information that was needed to keep the game

Petitioner Riot Games, Inc. - Ex. 1005, p. 18

m a

25

3»

we tm

40

50

60

65

2
consistent between all of ibe PCs, In a game that created the
illusion of a spatial environment where each player could
move, the packets could contain information about the new
positionsof the players as they moved. Today there are many
commercial cxample of PC games that can be played
between multiple players on Loca] Area Networks (LANs)
or by two players over dial-up phone lines using modems.
The network messages sent by such games contain a wide
variety of information specific to the game. This can include
position and velocity information of the objects in the game
along with special actions taken by a player that effect the
other players in the game.

The casc of a two player game played over a modem is
particularly simple. If the message rate is 10 messages per
second, each PC sends 10 messages per second to the other
PC and receives 10 messages per second, The delay intro-
duced by the modems and phoneline is small and will not
be noticed in most games. Unfortunately, the case of two
playcrs is uninteresting for nctworked interactive applica-
tions, With the same game played with 8 players on a LAN,
the message rate increases, Each PC must send 7 messages,
one to each ofthe other 7 players every time period and will
receive 7 messages from the other players in the same time
period. If the messaging time period is 100 ms, the total
message rate will be 70 messages sent per second and 70
messages received per second. As can be seen the message
rate increases linearly with the oumber of players in the
game. The message rates and data rates supported by popu-
lar LANsare high enough to support a large number of
players at reasonable message sizes. Unfortunately, LANs
are only deployed in commercial applications and cannot be
considered for deploying a networked interactive applica-tion lo consumer users.

The wide area networks available today to consumerusers
all musi be accessed through dial-up phone lines using
modems, While modem speeds have increased rapidly, heyhave now reachedabit rate of 28.8 Kbits/sec which is close
to the limit set by the signal-to-noise ratio of conventional
phone lines, Further speed increases are possible with ISDN,
but this technology is not ready for mass marketusc. Other
new wide area networking technologiesare being discussed
that would provide much higher bandwidth, but none are
close to commercial operation. Therefore, in deploying a
networked, interactive application to consumers, il is nec-

5 essary to do so in a way thal operates with existing net-
working and communications infrastructures.

In the example of the 8 player networked game, consider
a wide area network implementation where the PCs of each
of the players is connected to the network with a 28.8
Kbit/sec modem. Assume that the network used in this
example is the Internet so that all of the network protocols
and routing behavior is well defined and understood,If the
game uses TCP/IP to send its messages between the PCs in
the game, the PPP protocol overthe dial-up phone lines can
be advantageously used to compress the TCP/IP beaders.
Even sa, a typical message will be approximately 25 bytes
in size. Sent through the modem, this is 250 bits. The
messages are sent 10 times per second to cach of the other
PCs in the game and received 10 limes per second from the
other PCs, This is 35.0 Kbits/sec which exceeds the capa-
bilities of the modem by 20%.If the messages are reduced
to 20 bytes, just 8 players can be supported, but this
approach clearly cannol support networked interactive
applications with large numbers of participants. There are
other problems beyondjust the bandwidth of the network
connection. There is the loading on each PC caused by the
high packetrates and there is the lateacy introduced by the

5,822,523

3
time needed to send all of the outbound packets. Rach packet
seni or received by a PC will require some amount of
processing time. As the packet rate increases with the
numberofplayers in the game, less and Icss of the processor
will be available for running the game software itself
Latency is importantin an interactive application because it
defines the responsiveness of the system, When a player
provides a new input ontheir system,il is desirable for that
input to immediately affect the game on all of the other
players systems.This is particularly important in any game
where the game outcome depends on players shooting at
targets that are moved by the actions of the other players.
Latency in this case will be the time from whena playeracts
to move a target to the time that the target has moved on the
screens of the otherplayers in the game. A major portion of
this latency will come from the time needed to s¢nd the
messages to the other seven players in the game. In this
example the time to send the messagesto the other 7 players
will be approximately 50 ms. While the first player of the
seven will reecive the message quickly, it will not be until
50 ms have passed that the last player of the seven will have
received the message.
Internet Protocol Multicasting

As mentioned before, the Intcrnet is a widely known
example of a wide arca network. The Internct is based on a
protocol appropriately called the Internet Protocol (IP). In
the OSI reference mode! for layers of network protocols, IP
corresponds to a layer 3 or Network layer protocol. It
provides services for transmission and routing of packets
between two nodes in an internct. The addressing model
provides a 32 bit address for all nodes in the network and all
packets carry source and destination addresses. IP also
defines the routing of packets between network links in an
inter-network. Gateways and routers maintain tables that are
used to lookup routing information based on the destination
addresses of the packets they receive, The routing informa-
tion tells the galeway/router whether the destination of the
packet is directly reachable on a local network link con-
nected to the gateway/routerorif not, the address of another
gateway/router on one of the local network links to which
the packet should be forwarded. On topof IP are the layer
4 transport protocols TCP and UDP, UDPprovides datagram
delivery services to applications that does not guarantee
reliable or in-order delivery of the datagrams. TCP is a
connection oriented service to applications thal does provide
reliable delivery of a data stream. It handles division of the
stream into packets and ensures reliable, in-order delivery.
Sec the Internet Society RFCs: RFC-791 “Internet
Protoco]", RFC-793 “Transmission Control Proteco!” and
RFC-1180 “A TCPAP Tutorial”. IP, TCP and UDP are
unicast protocols: packets, streams or dalagrams are trans-
mitted from a source to a single destination,

As en example, consider FIGS. 1 and 2. FIG. 1 shows a
conveational unicast network with hosts 1, 2,3 and 4 and
network links 11, 12, 13, 14, 15,16,17, 18 and 19 and routers
5,6, 7, 8,9 and 10. In this example, each host waats to send
a data payload to cach of the other hosts, Host 1 has network
address A, host 2 has network address C, host 3 has network
address B and host 4 has network address D. Existing
network protocols are typically based on packet formats that
contain a source address, destination address and a payload.
This is representative of commonly used wide area network
protocols such as IP. There are other componentsin an actual
IP packet, but for sake of this example,only these items will
be considered. FIG. 2 shows the example packets that are
sentby the hosts to one another using a conventionalunicas!
network protocolsuch as IP, Host 1 send packcts 20,to host

Petitioner Riot Games,Inc. - Ex. 1005, p. 19

he a

20

3”

3s

> wu

30

wo

aa

4
3, packet 21 to host 2 and packet 22 to host 4. Host 1 wants
to send the same data P1 to each of the other three hosts,
therefore the payloadin all three packets is the same. Packet
20 travels over network links 11, 12, 15 and 18 and through
routers 5, 6, and 8 to reach host 3. In a similar fashion host
3 sends packets 23 to host 1, packet 24 to host 2 and packet
25 to host 4, Host 2 and host 4 send packets 26, 27, 28 and
29, 30, 31 respectively to the other three hosts. All of these
packets are carried by the unicast network individually from
the source host to the destination host. So in this example
each host must send three packets and receive three packets
in order for each host to send its payload to the other three
hosts.

As can be seen, cach host must send a packel to every
other host that it wishes to communicate with in an inter-
active application. Further, il receives a packct from every
other bost that wishes to communicate with it. In an inter-
active application,this will happen at a regular and high rate.
All of the hosts that wish to communicate with one another
will need to send packets to cach other eight to ten times per
second, With four hosts communicating with one another as
in this example, each host will send three messages and
receive three messages eight lo ten limes per second. As the
numberofhosts in the application that need to communicate
with one another grows, the message rate will reach a rate
that cannot be supported by conventional dial-up lines. ‘This
makcs unicast transport protocols unsuitable for delivering
interactive applications for multiple participants since their
use will result in the problem of high packet rates that grow
with the number of participants.

Work has been done to attcmpt to extend the IP protocol
to support multicasting, See RFC-1112 “Host Extensions for
IP Multicasting”. This document describes a set of exten-
sions to the IP protocol that enable IP multicasting. IP
multicasting supports the transmission of a IP datagram to a
host group by addressing the datagram to a single destina-
tion address, Multicast addresses arc a subset of the IP
address space and identified by class DIP addresses—these
are IP addresses with “1110” in the high order 4 bits, The
host group contains zero or more IP hosts and the IP
multicasting protocol transmits a multicast datagram to all
members of the group to which it is addressed. Hosts may
join and leave groups dynamically and the routing of mul-
licast datagrams is supported by multicast routers and gatc-
ways. It is proper to describe this general approach to
multicast messaging as “distributed multicast messaging”, It
is a distributed technique because the job of message deliv-
ery and duplication is distributed throughout the network to
all of the multicast routers, For distributed multicast mes-
saging to work in a wide area network, all of the routers
handling datagrams for multicast hosts must support the
routing of multicast datagrams. Such multicast routers must
be aware of the multicast group membership of all of the
hosts locally connected to the router in order to deliver
multicast datagrams to local hosts. Multicast routers must
also be able to forward multicast packets to routers on their
local network links. Multicast routers must also decide to
which if any local routers they must forward multicast
datagrams. When a multicast datagram is received, by a
taulticast router, its group address is compared toalist for
each local multicsst router of group addresses, When there
is a match, the datagram is then forwarded to that local
multicast router. Therefore, the multicast routers in the
network must maintain an accurate and up to dale list of
group addresses for which they are to forward datagramsto.
These lists are updated when hosts join or leave multicast
groups. Hosts do this by sending messages using Internet

5,822,523

5
Group Management Protocol (IGMP) to their immcdiately-
neighboring multicast routers. A further attribute of distrib-
uted multicast messaging is that the roulers mus! propagate
the group membership information for a particular group
throughoutthe networkto all of the other routers that will be
forwarding traffic for that group. RFC-1112 does not
describe how this is to be done. Manydifferent approaches
have been defined for solving this problem that will be
mentioned later in descriptions of related prior art. Despite
their differences, all of thesc approaches are methods for
propagation of multicast routing information between the
multicast routers and techniques for routing the multicast
datagrams in an inter-network supporting distributed multi-
cast messaging.

The distributed multicast messaging approach has a num-
ber ofundesirable side effects. The process of propagation of
group membership information to all of the relevant routers
is not instantaneous,In a large complex network it can even
take quite a period of time depending on the number of
routers that must receive that updated group membership
information and how many routers the information for the
group membership update must past through. This process
can casily take many seconds and cven minutcs depending
on the specifics of the algorithm that is used. RFC-1112
mentions this problem and someofthe side effects thal must
be handled by an implementation of a practical routing
algorithm for multicast messaging. One problem results
when groups are dynamically created and destroyed, Since
there is no central authority in the network for assigning
group addresses, it is easily possible in a distributed nctwork
for there to be duplication ofgroup address assignment, This
will result in incorrect datagram delivery, where hosts will
Teceive unwanted datagrams from the duplicate group. This
requires a method al cach host to filter out the unwanted
datagrams. Another set of problems resuli from the time
delay from when a group is created, destroyed or its mem-
bership changed to when all of the routers needed to route
the datagrams to the memberhosts have been informed of
these changes, Imagine the case where Host N joins an
existing group by sending a join message toits local router.
The group already contains Host M which is a number of
router hops away from Host N in the network. Shortly after
Host N has sent it join message, Host M sends a datagram
to the group, but the local router of Host M has notyet been
informed of the change in group membership and as a result
the datagram is not forwarded to one of the particularnetwork links connected to the local router of Host M that
is the enly path in the network from that router that ulti-
mately will reach Host N. The resull is that Host N will
reccive no datagrams addressed to the group from Host M
uatil the local router of M has its group membership
information updated. Otherrelated problems can also occur.
When a host leaves a group, messages addressed to the
group will continue for some time to be routed to that host
up to the localrouter of that host. The local router will know
al Icast not to route the datagram onto the local network of
that host. This canstill result in a great deal of unnecessary
datagrams being carried in a large network when there are
many active message groups with rapidly changing mem-
berships.

Finally, distributed multicast messaging does not suffi-
ciently reduce the message rate between the hosts. With
distributed multicast messaging, each host need only send
one message addressed to the message group in order to send
a message to all of otber hosts in the group. This is an
improvement ever conventional unicast messaging where
one message would need to be sent to each of the other basis

Petitioner Riot Games,Inc. - Ex. 1005, p. 20

5

”

ta

2

25

#0

>“

=

aa

6
in a group, However, distributed multicast messaging docs
nothing te reduce the received message rate at each of the
hosts when multiple hosts in a group are sending messages
to the group closely spaced in time. Let us return to the
example of a group of ten hosts sending messages seven
times per-second to the group, With conventional unicast
messaging, ¢ach host will need to send 9 messages to the
other hosts, seven times per-sccond and will receive 9
messages, seven limes per-second. With distributed mullti-
cast messaging, cach host will need to send only one
message to the group containing all of the hosts seven times
per-second, but will still receive 9 messages, seven times
per-second. It is desirable to further reduce the number of
received messages.

An example of distributed multicasting is shown in FIGS.
3 and 4, FIG, 3 shows a network with multicast routers 39,
40, 41, 42, 43 and 44 and hosts 35, 36, 37, 38 and network
links 45, 46, 47, 48, 49, 50, 51, 52 and 53. The four hosis
have unicast network addresses A, B, C, D and are also all
members of a message group wilb address E.In advance the
message group was created and each of the hosts joined the
message group so that each of the multicast routers is aware
of the message group and hes the proper routing informa-
tion, A network protocol such IP with multicast extensions
is assumed to be used in this example. lost 35 sends packet
54 with source address A and destination multicast address
E to the entire message group. In the same manner host 37
sends packet 55 to the group, host 36 sends packet 56 to the
group and bost 38 sends packet 57 to the group. As the
packets are handled by the multicast routers they are repli-
cated as necessary in order to deliver them to all the
members of the group, Let us consider how a packets sent
by host 35is ultimately delivered to the other hosts. Packet
54 is carried over network link 45 to multicast router 39. The
router determines from its routing tables that the multicast
packet should be sent onto network links 46 and 47 and
duplicates the packet and sends to both of these network
links. The packetis received by multicast routers 40 and 43,
Multicast router 43 sends the packet onto network link 50
and router 40 sends its onto links 48 and 49, The packetis
then received at multicast routers 44, 42 and 41, Router 41
sends the packet over network link $1 where it is received
by host 36. Router 42 sends the packet over network link §2
to host 37 and router 44 sends the packet overlink 53 to host
38. A similar process is followed for each of the other
packets sent by the bosts to the multicast group E. The final
packets received by cach host are shown in FIG.4.

While distributed multicasting does reduce the number of
messagesthat need to be scent by the bosts in a networked
interactive application, it has no effect on the number of
messages that they receive, It has the further disadvantages
of poor behavior when group membership is rapidly chang-
ing and requires a special network infrastructure of multicast
routers, It also has no support for message aggregation and
cannot do so since message delivery is distributed. Distrib-
uted multicasting also has no support for messages thal
define logical operations between message groups and uni-cast bost addresses.

All of these problems can be understood when placed in
context of the design goals for distributed multicast mes-
Saging. Distributed multicast messaging was not designed
for interactive applications where groups are rapidly created,
changed and destroyed. Instead it was optimized for appli-
cations where the groups are created, changed and destroyed
overrelatively long ime spans perhaps measured in many
minutes or even hours. An example would be a video
conference where all the participants agreed to connect the

5,822,523

7
conference at a particular time for a conference that might
last for an hour. Another would be the transmission of an
audio or video program from one host to many receiving
hosts, perhaps measured in the thousandsor even millions.
The multicast group would exist for the duration of the
audio/video program, Host members would join and leave
dynamically, but in this application it would be acceptable
for there to be a significanttime lag from joining or leavingbefore the connection was established or broken.

While IP and multicast extensions to IP are based on the
routing of packets, another form of wide area networking
technology called Asynchronous Transfer Mode (ATM) is
based on swilching fixed sized cells through switches.
Unlike IP which supports both datagram and connection
oriented services, ATM is fundamentally connection ori-
ented. An ATM network consists of ATM switches intercon-
nected by point-to-point links. The host systems are con-
nected to the Icaves of the actwork. Before any
communication can occur between the hosis through the
network, a virtual circuit must be setup across the network.
‘Two forms of communication can be supported by an ATM
network. Bi-directional point-to-point between two hosts
and point-to-multipoint in one direction from one host to
multiple hosts. ATM, however, does not directly support any
form of multicasting, There are a number of proposals for
layering multicasting on top ofATM. Oneapproach is called
a multicast server, shown in FIG. 8. Host systems 112, 113,
114, 115 setup point-to-point connections 106, 107,108 and
109 to a multicast server 105. ATM cells arc sent by the hosts
to the multicast server via these links. The multicast server
sets up @ point-to-multipoint connection 111 to the hosts
which collectively constitute a message group. Cells sent to
the server which are addressed to the group are forwarded to
the point-to-multipoint link 111. The ATM network 110 is
responsible for the transport and switching for maintainingall of the connections between the hosts and the server. The
cells carried by the point-to-multipoint connection are dupli-
cated when necessary by the ATM switches at the branching,
points in the network tree between and forwarded down the
branching network links. Therefore, the network is respon-
sible for the replication of the cells and their payloads, not
the server. This method has the same problemsasdistributed
multicasting when used for an interactive application. Each
host still reccives individual cells from cach of the other
hosts, so there is no aggregation of the payloads of the colls
targeted al a single host, There is no support for addressing
cells to hosts based on logical operations on the seis of
members of host groups.Related Prior Art

There sre a number of existing patents and Europeanpatent applications that are related to the arca of the invea-
tion, These can be organized into two separate categorics:
multicast routing/distribution and source to destination mul-ticast streams.
Multicast routing and distribution

These patents are U.S. Pat. No. 4,740,954 by Cotton ctal,
U.S.Pat. No. 4,864,559 by Perlman, U.S, Pat, No, 5,361,256
by Doeringer ¢t al, U.S, Pat. No. 5,079,767 by Perlman and
US,Pat, No. 5,309,433 by Cidon et al. Collectively these
patents cover various algorithmsfor the routing and distri-
bution of the datagrams in distributed multicast networks.
None deal with the problems described previously for this
class of multicast routing and message distribution such as
poor behaviors when the message groups change rapidly. Io
all of these patents, messages are transmitted from a host via
a distributed network of routers to a plurality of destination
hosts which are members of a group. Since these patents

Petitioner Riot Games,Inc. - Ex. 1005, p. 21

5

» a

e5

40

>a“

58

a °

deal only with variants of distributed multicasting they
provide no means to reduce the reccived message rate, no
method lo aggregate messages and provide no method in the
messages to perform logical operation on message groups.Source to destination multicast streams

These are PCTs and a European patent application. They
are EP 0 637 149 A2 by Perlman et al, PCT/US94/11282 by
Danneels et al and PCT/US94/11278 by Sivakumar ct al.
These three patent applications deal with the transmission of
data streams from 4 source to a group of destinations. In
none of these patent applications, is a method described for
transmitting data between multiple members of a group. In
all of these applications, the data transmission is from a
source to a plurality of designations, Since these patent
applications deal only with point-to-multipoint messaging,
they can provide no means to reduce the received message
rate, no method to aggregate messages and provide no
method in the messages to perform logical operation on
message groups.

SUMMARYOF THE INVENTION

The present invention relates to facilitating efficient com-
munications between multiple host computers over a con-
ventional wide area communications network to implement
an interactive application such as a computer game between
multiple players. In such an application, the hosts will be
dynamically sending to cach other informationthat the other
hosts need in order to keep the interactive application
operating consistently on each of the hosts. The invention is
comprised of a group messaging server connected to the
network that maintains a set of message groups used by thehosts to communicate information between themselves. The
invention further comprises a server-group messaging pro-
toco] used by the hosts and the server. The server-group
messaging protocolis layered on top of the Transport Level
Protocol (TLP)of the network and is called the Upper Level
Protocol (or ULP). In the OS] reference model the ULP can
be thought of as a session layer protocol built on top of a
transport or applications layer protocol. The ULP protocol
uses a server-group address space that is separate from the
address space of the TLP. Hosts send messagesto addresses
in the ULP address space to a group messaging server using
the underlying unicast transport protocol of the network. The
ULPaddress space is segmented into unicast addresses,
implicit group messaging addresses and logical group mes-
saging addresses. The implicit and logical group messaging
addresses are collectively called group messaging addresses.

Host systems must first establish connections lo a group
Messaging server before sending messages to any ULP
addresses. The process ofestablishing this connection is
done by sending TLP messages to the server. The server
establishes the connection by assigning a unicast ULP
address to the host and returning this address in an acknowl-
edgment message to the host, Once connected, hosts can
inguire about existing message groups, join existing mes-
Sage groups, creale new message groups, leave message
groups they have joined and send messages to ULP
addresses known by the server. Each message group is
assigned cither an implicit or logical ULP address depending
on its type.

FIG. $ shows an example of a wide area network with 9
group messaging server (“GMS"). Hosts $8 bas TLP address
Aand ULP address H, bost $9 has TLP address C and ULP
address J, host 60 has TLP address B and ULP address I and
host 61 has TLP address D and ULP address K, The network
is a conventional unicast network of network links 69, 70,
71, 72, 73, 74, 75, 76, and 77 and unicast routers 63, 64, 65,

5,822,523

9
66, 67, and 68. The group messaging server 62 receives
messages from the hosts addressed to a message group and
send the contents of the messages to the members of the
message group. FIG. 6 shows an example of datagrams sent
from the hosts to a message group that (hey are members of
As before, a TLP such as IP (where the message header
contain the source and destination TLP addresses) is
assumed to be used here. Host 58 sends message 80 which
contains the ‘LP source address A of the host and the
destination TLP address S for the GMS 62. The destination
ULPaddress G is an implicit ULP address handled by the
GMSand the payload Pi contains both the data to be seatand the source ULP address H ofthe host. 11 is assumed that
prior to sending their ULP messages to the GMS, that each
host as already established a connection to the GMS and
joined the message group G. Host 60 sends message 81 with
payload P2 containing data and source ULP address I, Hosts
59 sends message 82 with payload P3 containing data and
source ULP address J, Host 61 scnds message 83 with
payload P4 containing data and source ULP address K. The
GMSreceives all of these messages and sees that each
message is addressed to implicit message group G with
members H, I, J, and K. The GMScan either process the
message with or without aggregating their payloads. FIG. 6
shows the case where there is no aggregation and FIG. 7
shows the case with aggregation.

Without aggregation, the GMS generates the outbound
messages 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, and 95
whichit sendsto the hosts. The datagrams have TLP headers
with the source and destination TLP addresses of the GMS
and the hosts respectively. The next field in the datagrams is
the destination ULP ofthe datagram. Datagrams 84, 85, andsent to host 38 with TLP address A and ULP address H.
Datagrams 87, 88, and 89 are sent to host 60 with TLP
address B and ULP address [, Datagrams 90, 91 and 92 are
sent to host 59 with TLP address C and ULP address J.
Datagrams 93, 94 and 95 are sent to hest 61 with TLP
address D and ULP address K respectively. As can be seen
from the payloads that cach host has received, cach host has
reccived the payloads from the other three hosts. Note that
cach host has not received a copy of its own orginal
message, This is because the GMS has performed echo
suppression. This is selectable attribute of the GMSsince in
some applications it is useful for the hosts to receive and
echo of each message thal they send to a group that they are
also members of In the example of FIG.6,it has becn shown
how the present invention can achieve the same message
delivery as distributed multicasting without its disadvan-
tages. Without aggregation, the present invention cnables a
host to send a single message to multiple other hosts that are
members of a message group. Jt reduces the message traffic
that @ host must process in an interactive application by
reducing the number of messages thal each host must send
10 the others. Without agercgation, however, there is no
reduction in the number of messages received by the bosts.
Without aggregation we can achieve the same message rate
as distributed multicasting without the need for a network
with multicast routers, we can use a conventional unicast
network such as the Internet. The present invention also
avoids the problems that dynamic group membership causes
for distributed multicasting. Group membership can be
changed very rapidly. Groups can be created, joined andleft
by single unicast messages from hosts to the GMS, These
messages will be point-to-point messages and will not have
to propagate in (throughout the network oor have io cause
routing table changesin the routers, This abilily to rapidly
and accurately change group membership is critical te the

Petitioner Riot Games, Inc. - Ex. 1005, p. 22

30

50

60

10
implementation of networked interactive applications, Con-
sider a computer game for multiple players that supports
hundreds of players that are sproad throughout a three
dimensional space created by the game, At any time only 8
few players will be able to see and effect one another in the
gamesince other players will be in other areas that are out
of sight. Using conventional phone lines to carry the data
from each players computer to the network,it will not be
Possible to send all actions of each playerto all of the other
players, but because only a few players will be in close
proximity at any one time,it will not be necessary to do so.
It is only necessary to send data between the players that are
in close proximity to one another. These “groups” of players
naturally map onto the message groups of the invention. As
players move aboutthe three dimensional spacc of the game,
game will cause them to join and leave message groups as
necessary. If this does not happen rapidly it will limit the
interactivity of the game or cause inconsistent results for the
different players in the game.

The invention also allows aggregating message payloads
of multiple messages destined to 4 single host into a single
larger message. This can be done because of the GMS where
all of the messagesare received prior to being sent to the
hosts. FIG, 7 shows an example of how this works. The hosts
send their messages to the GMSin exactly the same fashion
as in FIG.6 using the same addresses previously defined in
FIG. 5. Host 58 sends message 96, host 60 sends message
97, bost 59 sends message 98 and host 61 sends message 99.
The GMS receives all of these messages and creates four
outbound messages 100, 101, 102 and 103. The process by
which these messages will be explained in detail in the
detailed description of the invention. Each message is des-
tined to a single host and contains an aggregated payload
with multiple payload items, Message 100 hasa destination
ULP address H for host 58 and aggregated payload P2, P3
and P4 from the messages from hosts $9, 60 and 61.
Message 101is targeted at host 60, message 102is targeted
at host 59 and message 103 is targeted at host 61, As can be
seen, each host sends one message and receives one mes-
sage. The received message is longer and contains multiple
payloads, but this is a significant improvementover receiv-
ing multiple messages with the wasted overhead of multiple
message headers and message processing time. Overall the
invention has dramatically reduced the amount of data that
must be sent and received by each host. Since the bit rate
over conventional phone lines using a modem is low, areduction in the amouot of data that must be sent and
received directly translates into improved time and latency
for message communications between the hosts.

Hosts creale, join and leave message groups using control
messages in the ULP protocol to the GMS. Hosts may also
read and write application specific state information that is
Stored in the GMS. When hosts send messages to other
hosts, the message must be al least addressed 10 an implicit
group address. The ULP implicit address will always be the
primary address in a message from one host to another. The
message may optionally specify auxiliary destination
addresses. In many cases the implicit ULP address will be
the only destination ULP address in the message. The GMS
will handle delivery of the ULP messages addrcssed to the
implicit message group to all of the hosts that are members
of the group. AULPsend message may optionally specify an
address list of auxiliary addresses in addition to the primary
destination of the implicit ULP address. This auxiliary
address list can contain only unicast and logical ULP
addresses. The address list can also specify set operators to
be performed between the sets of host ULP addresses

5,822,523

11
defined by the unicast addresses and logical groups. Once
the address list has been processedto yield a sctof hosts, thissetis intersected with the set of hosts that are members ofthe
implicit message group specified by the primary implicit
ULPaddress in the message. This ability to perform logical
sel operators on message groupsis very usefulin interactive
applications. It allows a single ULP message to selectively
deliver a message to hosts thatfit a set of computed criteria
without the sending host having to know the anything about
the members of the groups in the address list. Recall the
example of a networked game with hundreds of players in a
three dimensional environment created by the game. Con-
sider an implicit message group consisting ofall of the game
players in a certain area of the game where all of the players
can interact with one another. Consider that the players are
organized into multiple teams. Logical message groups
could be created for cach team within the game. To send a
message (to all the players within the area that were on one
team, a ULP message would be sent to the ULP implicit
message group for all the players in the area with an
auxiliary address of the logical message group for all the
players on the selected team. The GMS would perform the
proper set intersection prior to sending the resulting mes-
sages to the targeted hosts. The result ofthis will be that the
message will only be delivered to the players on the selected
team in the selected area of the game.

In summary,the present invention deals with the issues of
deploying an interactive application for multiple participants
on wide area networks by providing a method for reducing
the overall message rate and reducing latency. This inven-
lion uses a S¢rver group messaging approach, as oppose to
the above described “distributed multicast messaging”
approach. The present invention overcomes the undesirable
side effects of the distributed multicast messaging approach.
Further, it reduces the message rate between the hosts. As
pointed out in an example discussed above, with prior art
distributed mullicast messaging, cach host will need to send
only one message to the group containing al) of the hosts
seven times per-second, but will still receive 9 messages,
seven times per-second. The present invention of server
group messaging has each host sending one message, seven
times per-second and receiving one message, seven times
per-sccond.

The present invention is different from the multicast
routing and distribution methoddisclosed jn U.S. Pat. Nos.
4,740,954, 4,864,559, 5,361,256, 5,079,767 and 5,309,433.
Since these pateats deal only with variants of distributed
multicasting they provide no means to reduce the received
message rale, no method to aggregate messages and provide
no method in the messages to perform logical operation on
message groups. This differs from the present invention
where messages from multiple hosts addressed to a message
group ar¢ received by a group server which processes the
contents of the messages and transmits the results to the
destination hosts,

The present invention is also different from the source to
destination multicast streams approach disclosed in EP 0 637
149 A2, PCT/US94/11282 and PCT/US94/11278.In all of
these references, the data transmission is from a source to a
plurality of designations, whereas the present invention
describes data transmission from a sending host to a server
host system and then from the server host to the destination
hosts.

‘These and other features and advantages of the present
invention can be undersiood from the following detailed
descriptionof the invention together with the accompanying
drawings.

Petitioner Riot Games,Inc. - Ex. 1005, p. 23

40

50

55

65

12
DESCRIPTION OF DRAWINGS

FIG.1 shows a conventional unicast network consisting
of hosts, network links and routers.

FIG. 2 shows the unicast datagrams on a conventional
unicast network that would be needed to implement an
interactive application between four hasts.

FIG, 3 shows e prior art multicast network consisting of
hosts, network links and multicast routers,

FIG. 4 shows a multicast datagrams on a prior art mul-
licast network that would be necded to implementan inter-
active application between four hosts.

FIG. 5 shows a unicast network equipped with a group
messaging server in accordance with the present invention.

FIG. 6 shows the ULP datagrams without payload aggre-
gation on a network according to the present invention that
would be needed to implement an interactive applicationbetween four hosts.

FIG.7 shows the ULP datagrams with payload aggrega-
tion on a network according to the present invention that
would be needed to implement an interactive application
between four hosts.

FIG. 8 shows a prior art ATM nctwork with a multicastServer.

FIG. 9 shows the detailed datagram format and address
format for ULP messages in accordance with the presentinvention.

FIG. 10 shows the internal functions of the GMS accord-
ing to the present invention.

FIG. 11 shows the host software interface and functions
necded to support the UIP according to the present inven-tion.

DETAILED DESCRIPTION OF THE
INVENTION

Thepresent invention provides a method for multiple hast
computers to efficiently communicate information to one
another over a wide area network for the purposes of
implementing an interaclive application between multiple
users. The method consists of three componcnts: a host
protoco] interface, a protocol and a server. The protocol is
between the host protocol interface and the server and is
implemented on top of the network transport protocol of a
wide area nctwork. The protocol is called the Upper Level
Protocol (ULP) since it is layered above the existing oet-
work Transport Level Protocol (TLP). In the OSI reference
model the protocol can be described as a Session Layer
protocol on top of the Transport Layer of the network. FIG.
11 shows the host protaco! interface, 151, relative to the
interactive application, 150, and the host interface for the
Transport Level Protocol, 153. The network interface, 155,
provides the physical connection for the host to the network.
The network communications stack, 154, is the communi-
cations protoco)stack that provides network transport ser-
vices for the host and the host interface for the Transport
Level Protocol, 153, is and interface between host applica-
tion software and the network transport services of thenetwork communications stack.

‘The interactive application can send and receive conven-
tional network messages using the host interface to the TLP.
The interactive application also can send and receive ULP
messages through the host interface for the ULP. Internal to
the host interface for the ULP is a table, 152, of all ULP
addresses which the host can send messages to. Each entry
in the table contains a pair of addresses, a ULP address and

5,822,523

13
its corresponding TLP address. When the host sends a
message to a ULP address, |hat message is encapsulated in
a TLP message sentto the TLP address corresponding to that
ULP address, This allows the ULP messages to be handled
transparently by the transport mechanisms of the existing
network. A core function of the ULP is group messaging
where hosts send messages to message groups populated by
multiple hosts. This allows a host to send a message to
multiple hosts with one ULP message. Since the ULP is
layered on top of the TLP, he group messaging functions of
the ULP operate on a conventional unicast network where
TLP messages can only be sent from one host to only oneother host.

The group based messaging is implemented through the
use of a server called 2 group messaging server. All ULP
messages from the hosts are sent from the hosts to a group
messaging server using the ‘TP protocol. The server pro-
cesses the ULP portion of the messages and takes the
necessary required by the ULP message. Control ULP
messages are processed locally by the server and may be
acknowledged to the sending host. ULP messages addressed
to other hosts are processed by the group messaging server
and then re-transmilted to the proper ULP destination hosts,
again using the TLP protocol to encapsulate and transport
these messages.

In FIG, §, hosts 58, 59, 60 and 61 send messages to one
another using the ULP over a conventional unicast network
using a group messaging server 62. The network consists of
conventional routers 63, 64, 65, 66, 67 and 68 connected
with conventiona! network links 69, 70, 71, 72, 73, 74, 75,
76 and 77, Host $8 can send a message to hosts 59, 60 and
61 by sending a single ULP messageto the group messaging
server 62 where the ULP message specifies a destination
address that is a ULP message group. The ULP messageis
encapsulated in a TLP message addressed to the group
messaging server. This causes the message to be properly
routed by router 63 to network link 71 to rouler 67 to the
server 62. The group messaging server receives the ULP
message and determines that the message is addressed to a
Message group containing hosts $9, 60 and 61 as members.
The server sends the payload of the received message to
each ofthe hosts in three new ULP messages individually
sentto the three hosts. Since each message is encapsulated
ina TLP message, the messages are properly carried over the
conventional unicast network. The first ULP message is sent
by the group messaging server to host 61. This message is
carried by network links 71, 70, 72 and 75 and routers 67,
63, 64 and 65. The second ULP message is sent by the group
messaging server to host 60. This message is carried by
network links 71, 70, 73 and 76 and routers 67, 63, 64 and
66. The third ULP messageis sent by the group messaging
server to host 61. This messageis carried by network links
74 and 77 and routers 67 and 68.

The invention can be implemented both in a datagram
form and in a connection oriented form. To best understand
the details of the invention, it is best to first consider a
datagram implementation.
Datagram Transport Implementation

The ULP can be implemenied es a dalagram protocol by
encapsulating addresses, message type information and the
message payload within a datagram of the underlying net-
work transport protoco]. The general form of the ULP
datagram message format is shown in FIG. 9 as elements
123, 124, 125, 126, 127, 128 and 129. The transport header
123 is the datagram headerof the TLP that is encapsulating
the ULP datagram. The ULP message type ficld 124 indi-
cates whetherit is a send or reccive message,if it is a contro]

Petitioner Riot Games,Inc. - Ex. 1005, p. 24

uw

5

th

2s

x»

#”

50

oO

6s

14
message or a state message. The following table shows the
different message types. The ULP messagetype field must
be present in a ULP datagram.

Message Types

ga

Send messages are always sent from a host to a group
messaging server. Messages from a group serverto the hosts
are always receive messages. Send Control messages arc
messagesfrom hosts to a group messaging server requesting
a control function be performed. Receive Control messages
are acknowledgments from a group messaging server to the
hosts in response to a prior Send Control messages. The
Send and Reecive State messages are special cases of the
Sead and Receive Contro] messages that allow hosts to read
and write application specific state storage in the group
messaging server. The specific control functions supported
by the ULP will be explained later.

The destination ULP address 125 is required in ULP
datagrams and specifies the primary destination of the ULP
message. The address count field 126 is required in ULP
send message types and is not present in ULP receive
message types. Whenthe address countfield in a ULP send
message is non-zero, it specifies the number of auxiliary
destination addresses for the send message that follow the
address count field. These auxiliary destination addresses
are shown as items 127 and 128, butit is understood that
there are as many auxiliary ULP destination addresses as
specified by the address countfield. Finally there is the
payload 129.

The payload format for ULP datagrams is defined by
items 116, 117, 118, 119, 120, 121 and 122. Item 116 is the
message count aod defines how manypayload elements will
be contained in the payload. A single payload clement
consists ofa triplet of source ULP address, data length and
data. Nems 117, 118 and 119 comprise the first payload
elementofthe payload, Item 117 is the ULP address of the
source of the payload clement,item 118 is the data length for
the data in the payload element and item 119 is the actual
data. Items 120, 121 and 122 comprise the last payload
element in the payload, ULP send messages only suppor!
payloads with a single payload element, so the message
countis required to be equal to one, ULP receive messages
may have payloads with one or more payload elements.ULP Address

The address space of the ULP is divided into three
segments: unicast host addresses, implicit group addresses
and logical group addresses. All source aud destination
addresses in ULP must be in this address space. The ULP
address space is unique to a single group messaging server.
Therefore each group messaging server has a unique ULP
address space. Multiple group messaging servers may be
connected to the network and bosts may communicate with
multiple group messaging servers without confusion since
each ULP datagram contains the header of the TLP. Different
group messaging servers will have unique TLP addresses
which can be used by the hosts to uniquely identify multiple
ULPaddress spaces. The format for ULP addressesis shown
in FIG, 9 comprised of items 150, 131 and 132. The address
format field 130 is a variable length field used to allow
multiple address lengths to be supported. The address type

5,822,523

15
ficld 131 indicates the type of ULP address: unicast host,
implicit group or legical group. The encodingis as follows:

Address Type Encoding
oo Unicast Host Address
01 Unicost Host Address
10 Implicit Group Address

Logical Group Address

The address format encoding determinesthe length of the
address field and therefore the total length of the ULP
address, This encoding is shown below. Note that when the
address type specifies « unicast host address, the low bit of
the address type field is concatenated to the address field to
become the most significant bil of the address. This doubles
the size of the address space for unicast host addresses which
is useful since there will generally be more hosts than group
messaging servers.

Address Format Encoding
29 Bit Addreas Field
4 Bit Address Field

TI Bit Address Field“eo
ULP unicast host addresses are assigned 10 cach host

when it first connects 10 @ group messaging server. When &
host sends a messageto other ULP address, the unicast ULP
address of the host will appear as the source ULP address in
the received payload element. Unicast ULP host addresses
can also be used as destination addresses only as auxiliary
addresses in a ULP send message. They are not allowed to
be used to as the primary ULP destination address. This
means (hat hosts cannot send ULP directly to one another,
but always must send the messages 10 one another through
a group messaging server.

Implicit group addresses are created by a group messag-
ing server in response to a control message fo the server
requesting the creation of an implicit message group. The
host requesting the creation of the implicit message group
becomes a member of the message group whenif is created.
Other hosts can send inquiry contro! messages to the group
messaging server to learn ofits existence and then send a
implicit group join message in order to join the group. The
group messaging server maintainsa list of ULP addresses of
hosts that are members of the implicit message group.
Implicit ULP group addresses are (he only ULP addresses
allowed {o be the primary destination of a ULP send
message. Implicit ULP addresses will never appear as ULP
source addresses in a payload clement.

Logical ULP addresses are used both to address logical
message groups and for specifying set operations between
the group membersof the auxiliary ULP eddresses in a ULP
send message. Logical message groups are created and
joined similarly to implicit message groups, however, logi-
cal ULP addresses may only be used as auxiliary ULP
addresses in a ULP send message. Logical ULP addresses
will also never appear as source ULP addresscs in a payload
element. The support of set operations between message
groups as part of a ULP send message will be explained in
a later section on ULP send messages.
Group Messaging Server Internal Functions

The internal components of the group messaging serverare shown in FIG, 10.
In the preferred embodiment, the group messaging server

is a general purpose computer sysiem with a network

Petitioner Riot Games,Inc. - Ex. 1005, p. 25

30

a

40

w

o

w

6

6a

16
interface to connectit to 1 Wide area network. Item 135 is the
network interface for the group messaging server and
includes not only the hardware connection to the network
but the communications protoco] stack used to implementthe TLP on the server.

Item 136 is an overall control function for the group
messaging server. This control functionis responsible for all
ULPmessagesthat are sent or received by the GMS. Internal
to this control function are several important storage and
processing functions. Item 137 is an address mapfor all
hosts currently connected to the GMS. This address mapis
8 list of the ULP host address of each host connected to GMS
and its corresponding TLP address. This enables the control
function to construct the necessary TLP headers for sending
ULP messages to the hosts connected to the GMS. Item 138
is a list of all of the currently active insplicit ULP addresses
currently recognized by the GMS.Item 139is an application
specific state storage and processing function. Many inter-
active applications deployed over a network will be able to
be implemented solely with host based processing. In these
casesal] data that needs to be sent between the hosts can be
transported using the ULP. However, someapplications will
need maintain a centrally stored and maintained repository
of application state information. This is useful when hosts
may join or leave the application dynamically. Wher hosis
join such an application, they will need a place from which
they can obtain a snapshot of the current state of the
application in order to be consistent with the other hosts that
already where part of the application. To read and write this
stale storage area, the ULP supports send and recive state
message types. Within these messages, there is the ability to
access a state address space so that different portions of the
state can be individually accessed. Application specific
processing of state written into this state storage area can
also be implemented,

Items 140 and 141 are two of multiple ULP server
processes running on the GMS. These are sofiware pro-
cesses that are at the heart of the ULP. Each implicit ULP
addresses recognized by the GMS has a one-to-one corre-
spondence to a ULPserver process and to a message group
maintained by the process. Since all ULP send messages
must have an implicit ULP address as the primary destina-
tion address of ihe message, every ULP send messageis sent
to and processed by a ULP server process. ‘These processes
are created by the GMScontro! function in response to ULP
control messages to create new implicit ULP addresses.
They arc destroyed whenthe last host which is a member of
its message group has left the message group. Internal to a
ULPserver process isalist, 142, of the ULP host addresses
of the members of the message group, a set of message
queues 143 for cach host which is a memberof the message
group and a message aggregation function 149 whichis uscd
to aggregate multiple messages to a single host into a single
message.

Item 145 maintains a list of all of the logical ULP
addresses and message groups in the GMS.Items 144 and
146 represent two of multiple logical ULP addresses. For
cach logical ULP address, there is a correspondinglist, 147
and 148 of the host ULP addresses of the members of the
logical message group. The logical message groups are not
tied to specific ULP server processes, but are global with 4
GMS to sll of the ULP server processes.Control Functions

The contro! functions consist of connect, disconnect,
crealé group, close group, join group, leave group, query
groups, query group members, query groupattributes. These
control functions arc implemented by a ULP send and

5,822,523

17
receive contro] messages. The control functions are initiated
by a host sending a ULP send control message to a GMS.
These messages only allow a primary ULP destination
address in the message anddo no allow auxiliary addresses,
The primary ULP address is interpreted as a control address
space with a unique fixed address assigned to each ofthe
control functions enumerated above. The contents of data in
the payload supplies any arguments necded by the controlfunction, Returned valucs from the control function are
returned in a ULP receive contro! message that is addressed
to the host that sent the original contro] message for which
data is being returned, The detailed operation of these
contro! functions is described below.
Connect

This control function allows a host to connect to a GMS.
The destination ULP address in the message is a fixedaddress that indicates the connect function. The source ULP
address and any data in the payload are ignored.

Upon receiving this message, the GMS control function,
136, creates a new host address and enters the hos! address
in the host address map 136 along with the source TLP
address from the TLP header of the message. Upon success-
ful completion, the GMScontrol function responds with a
receive control ULP message addressed to the host along
with a function code in the data portioa of the payload tharindicates successful host connection. The destination ULP
address in the message is the ULP address assigned to the
host. The host saves this and uses it for any future messages
to the GMS.If there is an error, the contro] function retums
a message to the host with a function code in the data portion
of the payload indicating failed host connection.
Disconnect

This function allows a host to disconnect from a GMS.
The destination ULP address in the message is a fixed
address that indicates the disconnect function. The source
ULP address is used to remove the host from membership in
any implicit or logical groups prior to disconnecting. Any
data in the payload is ignored, The GMS control function
also removes the entry for the host from the host address
map. Uponsuccessful completion, the GMS contro! function
responds with a receive control ULP message addressed to
the host along with a function code in the data portion of the
payload that indicates successful host disconnection. The
destination ULP address in the message is the ULP address
assigned 1o the host. If there is an error, the control function
returns a message to the host with a function code in the dala
portion of the payload indicating failed host disconnection,
Create implicit group

This function allows a bost to create a new implicit
message group and associated implicit ULP address and
server process, The payload in the message may contain a
single payload item whose data field holdsattributes of the
group. These altributes can be used to define any optional
functions of the group. The destination ULP address in the
message is a fixed address that indicates the create implicit
group function. The GMScontrol function allocates a new
implicit ULP address, adds it to the implicit ULP address list
138 and creates a new ULP server process 140, The host that
sends this message is added to the membership list of the
implicit group. This is done by sdding the source ULP
address in the message to the group membership list 142 in
the ULP server process. Upon successful completion, the
GMScontrol function responds with a receive control ULP
message addressed to the host along with a function code in
the data portion of the payload that indicates successful
implicit group creation. ‘The source ULP address in the
payload is the ULP address assigned to the new implicit

Petitioner Riot Games,Inc. - Ex. 1005, p. 26

10

2

25

40

” wu

18
group. If there is an error, the control function returns a
message to the host with a function code in the data portion
of the payload indicating failed implicit group creation.
Create logical group

This function allows a host to create a new logical
message group and associated logical ULP address. The
payload in the message may contain a single payload item
whose data fickd holds attributes of the group, These
altributes can be used to define any optional functions of the
group The destination ULP address in the message is a fixed
address that indicates the create logical group function. The
GMScontrol function allocates a new logica) ULP address
and adds it to the logical ULP address list 145. The host that
sends this message is added to the membershiplist of the
logical group. This is done by adding the source ULP
address in the message to the group membership list 147 for
the new logical message group 144. Upon successful
completion, the GMS control function responds with a
teceive contro] ULP message addressed to the host along
with a function code in the data portion of the payload that
indicates successful logical group creation. The source ULP
address in the payload is the ULP address assigned to the
new logical group.If there is en error, the control function
returns a message to the host with a function codein the data
portion of the payload indicating failed implicit groupcreation.
Join group

This function allows a host to join an existing logical or
implicit message group, The destination ULP address in the
message is a fixed address that indicates the join group
function. The data portion of the payload contains the ULP
address of the groupthat is to be joined. The GMScontrol
function looks at this address and determines if it is an
implicit or logical ULP address. If it is an implicit ULP
address, the GMS contro] function finds the ULP server
process selected by the address in the message payload and
adds the source ULP host address from the message to the
group membershiplist 142. Ifit is a logical ULP address,the
GMScentrol function finds the logical ULP address 144
selected by the address in the message payload and adds the
source ULP host address from the message to the group
membershiplist 147. Upon successful completion, the GMS
contro! function responds with a receive control ULP mes-
sage addressed to the host along with a function code in the
data portion of the payload that indicates successful group
join. The source ULP address in the payload is the ULP
address ofthe group thal was joined. If there is an error, the
control function returns a messageto the host with a function
code in the data portion of the payload indicating failed
implicit group creation,
Leave group

This function allows a host to leave an existing logical or
implicit message group thatit is a member of The destina-
tion ULP address in the message is a fixed address that
indicates the leave group function. The data portion of the
payload contains the ULP address of the group thatis to be
left. The GMS control function looks at this address and
determines if it is an implicit or logical ULP address.Ifit is
an implicit ULP address, the GMS control function finds the
ULP server process selected by the address in the message
payload and removes from the group membership list 142
the source ULP host address from the message. If the host
is the last member of the group, the ULP server process is
terminated andthe implicit ULP address is de-allocated. If
it is a logical ULP address, the GMS control function finds
the logical ULP address 144 selected by the address in the
message payload and removes from the group membership

5,822,523

19
list 147 the source ULP host address from the.If the hostis
the last member of the group, the ULP address is
de-allocated, Upon successful completion, the GMS control
function responds with a receive control ULP message
addressed tc the host along with a function code in the data
portion of the payload that indicates successful group leave.
If there is an error, the contre] function returns a message to
the host with a function code in the data portion of the
payload indicating failed implicit group creation.
Query groups

This function allows a host to geta list of all implicit and
logical message groups currently aclive on a GMS. The
destination ULP address in ihe message is a fixed address
that indicates the query groups function. Any data portion of
the payload is ignored. Upon successful completion, the
GMScontrol function responds with a receive control ULP
message addressed to the bost along with a payload with
multiple payload elements, The first payload element con-
tains a function code indicating successful query groups.
The source ULP address in the first payload element is
ignored. Each of the subsequent payload elements contain a
ULP group address in the source address field of the payload
clementthat is one of (he active group addresses on ihe
GMS.There is no dala field in these subsequent payload
elemeais. If there is an error, the contro] function returns a
message to the host with a function code in the data portion
of a paylosd with a single payload elementindicating failed
query groups.
Query group members

This function allowsa host to geta list of al] hosts that are
members of a message group. The destination ULP address
in the message is a fixed address thal indicates the query
group members function, The data portion of the payload
carries the address of the message group for the query. Upon
successful completion, the GMS contro! function responds
with a receive control ULP message addressed to the host
along with a payload with multiple payload elements, The
first payload element contains a function code indicating
successful query group members. The source ULP address
in the first payload element is ignored. Each of the subse-
quent payload elements contain a ULP host address in the
source address field of the payload element thatis one of the
active group addresses on the GMS.There is no data fleld in
these subsequent payload clements. If there is an error, the
control function returns a message to the hast with a function
code in the data portion of a payload with a single payload
element indicating failed query group members.
Query groupattributes

This function allows a host to get a list ofthe attributes of
a message group. The destination ULP address in the mes-
sage is a fixed address that indicates the query group
attributes function. The data portion of the payload carries
the address of the message group for the query, Upon
successful completion, the GMScontrol function responds.
with a receive control ULP message addressed to the hos!
along with a payload with a two payload elements. The first
payload element contains a function code indicating suc-
cessful query group members. The second payload element!
contains the attributes of the message group.If there is an
error, the contro! function returns a message to the host with
a function code in the data portion of a payload with a single
payload elementindicating failed query group attributes.
Send Message Operation

In order to fully understand the operations of the send
message function, 8 number of individual cases are worth
considering.

Petitioner Riot Games,Inc. - Ex. 1005, p. 27

x

2

30

60

6s

20
Single implicit destination

The most simple case is a send message to a single
implicit UIP address. In all send message datagrams, the
destination ULP address 125 musi be an implicit ULP
address. In this case of a single implicit destination,this is
the only destination address in the datagram. The auxiliary
address count 126 is zero and there are no auxiliary desti-
nation addresses 127 or 128. The payload consists of a
message count 116 of one, the ULP of the host sending the
message in the source ULP address 117 and the data length
118 and data 119, Send message datagrams may only have
a single payload item so their message count field 116 must
always be one.

The host sends the send message onto the network with a
TLP header addressing the data, The GMS the GMSthatis
the selected target of the message. The GMSreceives the
message and the GMS control function 136 determines that
it is a send message datagram and looks up the implicit
destination address in its implicit ULP address list 138. If the
address does not exist, an error message is returned to the
sending host with a ULP receive message datagram.If the
address is valid, the GMScontrol function removes the TLP
header from the datagram and sends the ULP portion to the
ULP server process corresponding to the destination implicitULP address. Assume for discussion that this is the ULP
server process 140. The ULP server pracess 140 will extract
the single payload item from the message 117, L18 and 119
and place the payload item in each of the message queues
143. There will be one message queue for each memberof
the message group served by the ULP server process 140.
The members of the group will have their host ULP
addresseslisted in the host address list 142, Each message
queue in a ULP server process will fill with payload items
that are targeted at particular destination hosts. The mecha-
nisms by which payload items are removed from the queues
and sent to the hasts will be described later.
Auxiliary unicast destination

In this case in addition to an implicit destination 125,
there is also a single auxiliary address 127 in the datagram.
‘The auxiliary address count 126 is one and the auxiliary
destination addresses 127 is a unicast bost ULP address. The
payload consists of a message count116of one, the ULP of
the host sending the message in the source ULP address 117
and the data length 118 and data 119.

The host sends the send message onto the network with a
TLP header addressing the datagram to the GMS thatis the
selected target of ihe message. The GMS receives the
message and the GMS control function 136 determines that
it is a send message datagram and looks up the implicit
destination address in its implicit ULP address list 138 and
the unicast host ULP auxiliary address in the host address
map 137, If either of addresses does not exist, an error
message is returned to the sending bost with a ULP receive
message dalagram. If the addresses are valid, the GMS
contre] function removes the TLP header from the datagram
and sends the ULP portion to the ULP server process
corresponding to the destination implicit ULP address.
Assume fer discussion that this is the ULP server process
140. The ULP server process extracts the auxiliary ULP
address from the message and determines from the address
thatit is a unicast host ULP address. The server process then
checks to see if this address is a member of the message
group defined by the host address list 142, If it is not, no
further action is taken and the payload item in the message
is not placed in any of the message queues 143.If the host
address is in the message group, the payload item in the
message is placed in the single message queue correspond-

5,822,523

21
ing to that host. The net effect is that the ULP server process
has performed a set intersection operation on the members
of the message group selected by the implicit ULP destina-
tion address and defined by the group membership list 142
with the members ofthe set of hosts defined by the auxiliary
address. The payloaditem is them sent only to the hosts that
are members ofthis set intersection.
Auxiliary logical destination

In this case in addition to an implicit destination 125,
there is also a single auxiliary address 127 in the datagram.
‘The auxiliary address count 126 is one and the auxiliary
destination addresscs 127 is a logical ULP address, The
payload consists of a message count116 of one, the ULP of
the host sending the message in the source ULP address 117
and the data length 118 and data 119.

The host sends the send message onte the network with a
TLPheader addressing the datagram to the GMS thatis the
selected target of the message. The GMS receives the
message and the GMS control function 136 determines that
il is a send message datagram and looks up the implicit
destination address in its implicit ULP address lis! 138 and
the logical ULP auxiliary address in list of logical ULP
addresses 145. If either of addresses does not exist, an error
Message is returned to the sending hest with a ULP reccive
message datagram. If the addresses are valid, the GMS
control function removes the TLP header from the datagram
and sends ihe ULP portion to the ULP server process
corresponding to the destination implicit ULP address.
Assume for discussion that this is the ULP server process
140. The ULP server process extracts the auxiliary ULP
address from the message and determines from the address
thatit is a logical ULP address. Assumefor this example that
this logical ULP address is the logical address 144, The
server process fetches the group membership list 147 cor-
responding to the logical address and performs a set inter-
section operation with the group membership list 142 of the
server process. If there are nc members of this set
intersection, no further action is taken and the payload item
in the messageis not placed im any of the message queucs
143. If there are members of the set intersection operation,
the payload itcm in the message is placed in the queues
corresponding to the hosis that are members of the set
intersection.
Multiple auxiliary addresses with logical operations

In its most sophisticated form, a send message can per-
form set operations between the implicit message group of
the ULP serverprocess and multiple logical and unicast ULP
addresses, This is done by placing multiple auxiliary desti-
nation ULP addresses in the message with logical opcrators
imbedded in the address list. The address count 126 holds a
countof the total auxiliary addresses in the addresslist 127
and 128. The auxiliary addresses are a mix of logical ULP
addresses and unicast host ULP addresses. Two logical ULP
addresses in the ULP address space are assigned the role of
specifying sct operations to be performed betwecn the
logical message groups and unicast host addresses in the
message list, They are specially assigned addresses for ihe
functions set intersection, set union. A third logical address
is used to indicate set complement, The payload consists of
a message count 116 ofone, the ULP of the host sending the
message in the source ULP address 117 and the data length148 and data 119.

The host sends the send message onto the network wilh a
TLPheader addressing the datagram to the GMS thatis the
selected target of the message. The GMS receives the
message and the GMScontrol function 136 determinesthat
it is a send message datagram and looks up the implicit ULP

Petitioner Riot Games,Inc. - Ex. 1005, p. 28

5

20

25

30

w a

65

22
message in the implicit ULP address list 138 and all of theaddresses in the address list cither in the host ULP address
map 137 or in the logica) ULP address list 145 as appro-
priate. If any of addresses does not exist, an error message
is returned to the sending host with a ULP receive message
datagram. If the addresses are valid, the GMS control
function removes the TLP header from the datagram and
sends the ULP portion to the ULP server process corre-
sponding to the destination implicit ULP address. Assume
for discussion that this is the ULP server process 140. The
ULP server process extracts the auxiliary ULP address list
from the message and scans it from beginning to end, The
scanning and processing of the set operators is done in
post-fix fashion. This means that arguments are read fol-
lowed by an operatorthat is then applied to the arguments.
The result of the operator becomesthe firs! argument ofthe
next operation. Therefore at the start of scanning two
addresses are read from the address list. The next address
will be an operator that is applied to the arguments and the
result of this operator is the first argumentto be used by the
next operator, From then ona single address is read from the
address list followed by a logical ULP address which is
operator on the two arguments consisting of the new argu-
tcnt and the results of the last operator. The logical address
used to indicate set complementis not a set operator, by an
argument qualifier since il can precede any address in the
address list, The meaning of the set complement argument
qualifier is relative to the group membership of implicit
group address in the send message, If the set complement
qualifier precedes a unicast host address which is not a
member of the message group selected by the implicit ULP
address in the send message, the effective argumentis the sct
ofall hosts that are members of the implicit message group.
If the set complement qualifier precedes a unicast host
address which is a memberof the message group selected by
the implicit ULJP address in the send message,the effective
argument is the set of all hosts that are members of the
implicit message group except for the original unicast host
address qualified by the complement function. If the set
complement qualificr precedes a logical ULP address the
effective argumentis the set ofal! hosts that are members of
the implicii message group specified by the send message
excep! hosts that are members ofthe logical message group
preceded by the set complement modificr. Once the entire
address list has been processed to a single result set of hosts,
a set intersection operation is performed on this set and the
set of members ofthe implicit message group 142 defined by
the implicit address in the send message. If there are no
members of this set intersection, no further action is taken
and the payload item in the message is not placed in any of
the message queues 143, If there are members of the set
intersection operation, the payload item in the message is
placed in the queues corresponding to the hosts that aremembers of the set intersection.

5 Mcssage Delivery and Aggregation
Once messages are cntercd into the message queues in the

ULP server processes, there are a variety of ways that they
can ultimately be delivered to the targeted hosts. In the
invention, the delivery method is set on a per-ULP server
process basis by attributes that are provided at the time that
an implicit ULP message group and server process are
created. It is important during the description of these
methods to keep in mind that the invention is intended to
provide an efficient means for a group of hosts to send
Messages to each otherat a rapid rate during the implemen-
tation of a networked interactive application. Also assumed
in the following description is that the GMS performs echo

5,822,523

23
suppression when a host sends a message to a group thatit
belongs to. This means that the host will not receive a copy
of its own message to the group either as a single
un-aggregaicd message or as a payload item in an aggre~
gated message. This is controlled by a ULP server process
attribute that can be changed to stop echo suppression, but
echo suppression is the default.
Immediate Delivery

The most simple delivery method is to immediately
deliver the payload items to their targeted hosts as soon as
they are placed in the message queues. Each payload item in
a message queuewill contain s ULP source address, a dats
Iength and the data to be sent. To implement immediate
delivery, the ULP server process will remove a payload item
from a message queue for a particular host 143. The host
address for this host will be obtained from the group
membership list 142. The payload item andthe destination
host address will be sent to the GMS control function 136
where it will be used lo ercate a ULP reccive message sent
to the destination host, The GMScontro! function 136 will
use the destination ULP host address to look up the TLP
address ofthe host from the host address map 137. This will
be used to create a TLP header for the message 123. The
ULPmessage type 124 will be ULP receive, the destination
ULPaddress 125 will be the destination host, the address
count will be 0 and there will be no auxiliary addresses, The
payload in this case will have a message count 116 of 1 and
the payload item comprised offields 117, 118, and 119 will
be the payload clement taken from the message queue.

Immediate delivery is useful when the message rate
between a group of hosts is low. Consider four hosts that are
members of an implicit message group where each member
of the group sends a message to every other memberof the
group at a fixed rate. With immediate delivery, each host will
send three messagesto the other members of the group and
receive three messages lrom the other members of the group
at the fixed rate. This is acceptable is the size of the group
is small and the message ratc is low. However,it is obvious
that total message rate is the product of the underlying
message rate and the total number of members of the group
minus one. Clearly this will result in unacceptably high
message rates for large groups and highly interactive mes-
sage rates. A group of 20 members that had an underlying
Tnessage ratc of 10 messages per second would yisld a total
message rale at each host of 190 messages sent and 190
messages received every second. This message rate will be
unsupportable over a conventional dial-up connection to a
conventional wide area network such as the internet.
Ageregalion

Akey concept in the present invention is the aggregation
of multiple messages in a message queue into a single ULP
receive message to a host that contains multiple payload
items in the payload. The ULP server process 140 removes
payload items from a message queue 143 for a host and
accumulates them in an aggregation buffer 149. The aggre-
gation buffer has buffer areas for each host for which there
is a message qucuc. These individual host areas within the
aggregation buffer are called host aggregation buffers. The
start and end of this aggregation period can be controlled in
a number of ways that will be described in the next sections,
At the end of the aggregation period, the cach host agyre-
gation buffer may bold multiple payload items. The host
aggregation buffer will bold a message count of the payload
items followed by the multiple payload items. The contents
of a host aggregation buffer along with the ULP host address
of the corresponding host are sent to the GMS control
function 136 where it will be used to create a ULP receive

Petitioner Riot Games,Inc. - Ex. 1005, p. 29

°

2s

w

6: a

24
message sent to the destination bost. The GMS control
function 136 will use the destination ULP host address to
look up the TLP address of the host from the host address
map 137. This will be used to create a TLP header for the
message 123. The ULP message type 124 will be ULP
receive, the destination ULP address 125 will be the desti-
nation host, the address count will be O and there will be no
auxiliary addresses. The payload in this case will have a
message count 116 set by the message count value from the
host aggregation buffer. The payload will contain al} of the
payload items from the host aggregation buffer,

The effect of aggregation will be to greatly reduce the
total message rate received by the hosts. A single message to
a bost will be able to carry multiple payload itemsreceived
from the other hosts during the aggregation period. This fits
very Well the interactive applications ofthis invention where
groups of hosts will be sending messages to all the other
hosts in the groupat a periodic rate. Aggregation will be very
effective in collecting together all of the messages from all
of the other hosts into a single message for each memberof
the group. The reduces processing at each receiving host
since a single message will be received rather than many
separate messages. Aggregation will also reduce the total
data rate to the hosts since aggregation eliminates the nced
for separate message headers for cach payload item. The
savings will be significant for small payload items since
there will be only one message header comprisingfields 123,
124 and 125 for multiple payload items. In cases where a
group of hosts are sending messages to the group al a
periodic rate,it is often the case in many interactive appli-
cations that the data being seat by cach host to the group is
very similar to the messages sent by the other hosts. ‘This
affords the opportunity within an aggregated payload of
multiple payload items to apply a data compression method
across the multiple data elements of the payload clements. A
wide variety of known data compression methods will lend
themselves to this application. The first data elementin the
first payload item can be sent in uncompressed form with
each subscquent data clement being compressed using some
form of difference coding method. A variety of known data
compression methods use the concept of a predictor with
differences from the predicted value being encoded, The first
data clement in an aggregated payload can be used as this
predictor with the subsequent data clements coded using
such a data compression method. These conventional data
compression methods do not assume any knowledge of the
internal structure or function of portions of a data ¢lementto
compress. It is also possible to make use of application
specific coding techniques that take advantage of such
knowledge to potentially achieve much higher coding effi-
ciency.Server]sochranous

One method by which the aggregation time period can be
defined is called Server Isochronous orSI. In this method, A
ULP Server Process defines 2 uniform time base for defining
the aggregation time period. This time base is defined by
three parameters: the time period, the aggregation offset and
the transmit offset, These parameters are set by the attributes
provided in the create implicil group control function at the
time the implicit group and the ULP server process are
created, The time period is a fixed timeinterval during which
the ULP server process will accumulate messages in the
message queues, aggregate the messages in the queues and
send the aggregated messages to the targeted hosts. The
aggregation offset defines the point after the start of the time
period after which arriving messages will be stored in the
message queues for delivery in the next time period.

5,822,523

25
Therefore, ai the aggregation offset after the start of the time
period, a snapshot will be taken of all of the messages in
each message queue. New messages will continue to arrive
and be entered into the queues after the aggregation offset.
Only those messages in the queues before the aggregation
offset point will be aggregated into outbound messages. The
resulting aggregated messages will then be sent to their
targeted hosts atthe point in time which is the transmit offset
after the start of the time period, The result is that messages
arrive continuously and are stored in the message qucucs.
Once per time period the are aggregated into single mes-
sages to each host whichis the target of messages and once
per time period these aggregated messages are sent to thehosts.

Another embodimentofthe SI methodisto allow the ULP
server process to dynamically vary the time period based on
some criteria such as the received message rates, and/or
received data rate. The ULP server could use a function to
define the aggregation period based on the number of
messages received per second orthe total number of payload
bytes received per second. One reasonable function would
be to shorten the aggregation period as the rate or received
messages or dala rate of the received payloads increased.
This would tend to keep the size of the outbound messages
from growing loo much as received messages and/or
received data rate grew, Other possible functions could be
used that varied the aggregation period based on received
message rates, received payload data rates or other param-
eters available to the ULP server process,
Host Synchronous

The host synchronous or HS method of defining the
aggregation time period allows the definition of a flexible
time peried that is controlled by the hosts,It is based on the
conceptof a turn which is a host sending @ message to one
or more members of the implicit message group which is
operating is HS mode. Once every hostin the message group
has taken a turn, the aggregation period ends. A snapshot of
the contents of the message queues is taken, the contents of
each ofthe queuesis aggregated and the aggregated mes-
Sages are sent to the hosis targeted by each message queue.
A refinementto this technique qualifies which of the three
ULP send message types to the group constitute a host turn:
a send only to the implicit address of the group, a send to a
unicast host address within the group or a sendto a logical
ULPaddress which shares members with the group. The
attributes of the group not only will define HS aggregation,
but one or more ULP send message types that will be
considered a bost turo. A further refinementsets the tota]
number of tumsthat a host can take in a single aggregation
time period. The default will be one turn, but multiple turns
can be allowed. If a host attempts to take more turas than
allowed,the messages are ignored.

This aggregation technique has the additional benefit of
causing the hosts which are member of an HS implicit
message group to have their processing functions synchro-
nized when they are executing the same interactive appli-
cation. Many networked interactive applications are based
on a simple overall three step operational model: wait for
messages from other hosts, process the messages and the
loca] users inputs to update the local application, send
messages to the other hosts. This basic application loop is
repeated al a rate fast enough to provide an interactive
experience such as 5 to 30 limes per second.It is desirable
to keep such applications synchronized so thatthe states of
the applications is consistent on the different host machines.
When such applications communicate using the HS model
of the present invention their operations wil] become natu-

Petitioner Riot Games,Inc. - Ex. 1005, p. 30

20

25

co

#0

uw0

“o

26
tally synchronized. The HS ULP server process will wait
until al] of the members of the message group has completed
their tums and sent a message to the group before sending
the aggregated messages to the members of the group. This
will cause the applications on the hosts to wait unti) they
have received the aggregated messages. Theywill all then
Start processing these messages along with the loca] user
inputs. Even if they perform their processing at different
speeds and send their next messages to the group atdifferent
times, the HS ULP server will wait until all have completed
their processing and reported in with a message to the group.
This will keep all of the host applications synchronized in
that every bost will be at the same application loop iteration
as all of the others. This will keep the application state
consistent on all of the hasts. Only nctwork propagation
delays from the GMS to the hosts and different processing
speeds of the hosts will cause the start and completion of
their processing to begin at different times. Ii is not a
requirement in networked applications to keep all of the
hests precisely synchronized, only that that application state
is consistent. The HS method provides a natural way to do
this in the context of the present invention.
Preferred Embodiment

The detailed description of the invention has described a
datagram implementation of the invention as the best way to
explain the invention. The preferred embodiment of the
invention is as follows,

In the preferred embodiment, the wide arca network is the
Internet and the TLP protocol is TCPAP. The GMSis a
general purpose computer system connected to the Internet
and the hosts are personal computers connected to theInternet.

TCP/IP provides an numberof advantages that provide for
a more efficient applications interface on the hosts 151.
TCP/IP supports the concept of source and destination port
oumbers in its header. The ULP can make use of the port
numbers to identify source and destination ULP connec-
tions. Most ULP send messages will be from hosts to @
implicit ULP group addresses and most ULP receive mes-
sages will be from the implicit ULP addresses to the ULP
host addresses. All of these and the ULP message typefield
can represented by source and destination port addresses
within the TCP/IP header. This means that for most ULP
messages, the ULP message encapsulated within the TCP/IP
message need only contain the payload. There is the slight
complication of the aggregated ULP receive messages sent
from a ULP server process to a hosts. Here the destination
port will be the host the source port will be for the implicit
LILP group address and the payload will still contain the
source host ULP addresses in each the payload items.

‘TCP/IP also supports header compression for low speed
dial-up lines which is also importantin this application. See
RFC 1144. TCPAPis a connection orienled protocol which
provides reliable end-to-end transport, It handles
re-transmission on errors and fragmentation and reassembly
of data transparently to upper level protocols. Header com-
pression allows much of the TCP/IP header to be omitted
with each packet to be replaced by 4 small connection
identifier. This connection ID will uniquely define a con-
nection consisting of a source and destination IP address and
source and destination TCP/IP port numbers.

At the interface to the application on the hosts, the
preferred embodiment of the ULP is as a session layer
protocol. In the preferred embodimentthe application on a
host opens a session with a ULP server process. This session
is identificd with a unique session ID on the host. The host
application then sends data to the ULP host interface 151

5,822,523

27
tagged with this session ID. The session ID defines a host
and implicit ULP pair including the TCP/IP TLP address of
the GMSserver thal is running the particular ULP server
process for the implicit ULP address. By binding the trans-
port address of the GMS of a ULP server process to the
session 1D, we can transparently to the application support
multiple group messaging servers on the network and a
single host can have multiple active sessions with different
physical group messaging servers. This avoids any address
space collision problems that could arise from the fact that
the ULP address space is unique to each GMS.
Altemate Embodiments

One possible extension to the invention is to extend the
ULP to support a common synchronized time base on the
GMSand the hosts that are connected to it, This would be
most interesting in context of the SI message aggregation
mode. The SI time base on the GMScould be replicated on
all of the hosts and all of the bosts and the GMS could lock
these time bases together. There are known methods to
synchronize time bases on multiple computer systems. Onesuch method is called NTP.

Another extension to the inventionis to define ULP server
processesthal perform specific application specific process-
ing on the contents of the messages that are received. A
variety of diffcrent application specific processing functions
can be defined and implemented. A particular function
would be selected by attributes provided in the create
implicit group function. These functions could process the
data in the message payloads and replace the data elements
in the payloads with processed results. Separately, or in
combination with processing the message payloads, the
processing could store cither raw message payload data in
the application specific state storage area or could store
processed results,

Clearly, the host system need not be personal computers,
but could alse be dedicated game consoles ortelevision sct
top boxes or any other device with a programmable con-
troller capable of implementing the ULPprotocol. The wide
area network used lo transport the ULPprotocol need not bethe Internet or based on IP. Other networks with some means
for wide arca packet or datagram transport are possible
including ATM networks or a digital cable television net-work.

The invention now being fully described, i1 wil! be
apparentto one of ordinary skill in the art that any changes
and modifications can be made thereto without departing
from the spirit or scope of the invention as set forth herein.

Petitioner Riot Games,Inc. - Ex. 1005, p. 31

28
Accordingly, the present invention is to be limited solely by
the scope of the appended claims,

Whatis claimedis:
1. A method for providing group messages to a plurality

of host computers connected over a unicast wide area
communication network, comprising the steps of:

5

providing a group messaging server coupled to said
network, said server communicating with said plurality
of bost computers using said unicast network and
maintaining a list of message groups, each message
group containing at least one host computer;

sending, by a plurality of host computers belonging to a
first message group, messages to said server via said
unicast network, said messages containing a payload
portion and a portion for identifying said first message
group;

aggregating, by said server io a lime interval determined
in accordance with a predefined criterion,said payload
portions of said messages to cresle an aggregated
payload;

forming an aggregated message using said aggregated
payload; and

transmitting, by said server via said unicast network, said
aggregated message to a recipient host computer
belonging to said first message group.

2. The method of claim 1 wherein said time intervalis a
fixed period of time.

3. The method of claim 1 wherein said time interval
corresponds fo a time for said server to receive at least one
message from each host computer belonging to said first
message group.

4. The method of claim 1 further comprising the step of
creating, by one ofsaid plurality of hast computers,saidfirst
message group by sending a first control message to said
server Via said unicast network,

5. The method of claim 4 further comprising the step of
joining, by someof said plurality of host computers, said
first message group by sending control messages via said
unicast network to said server specifying said first message

10

w~

Pm) om

group.
6. The method of claim 1 wherein said network is Internet

and said server communicates with said plurality of host
45 computers using a session layer protoco).

“_* # @ ©

Petitioner Riot Games, Inc. - Ex. 1005, p. 32

CC-A-B

Petitioner Riot Games,Inc. - Ex. 1005, p. 32

Claim Chart comparing Claims 1-6 of U.S, Patent No.

5,822,523 to the disclosure in Netrek

Priorart cited in this chart:

© Server?5pl4.tar.gz (“Server Code”) and BRMH-1.7.tar.gz (“Client Code”) (source code dated no later than August
1994),

¢ The History of Netrek, Andy McFadden (“McFadden”) (January 1, 1994),

poe Disclosurein Ntrek
|, A method for “Netrek is a real-time graphical multiplayer arcade/strategy gameplayedover the Internet. Players form
providing group into teamsand fight for control of the galaxy, dogfighting and taking planets”
messages toa plurality|McFaddenat § 0.2
ofhost computers
connected over a “In Netrek, every player has a client program that connects to the server.”
unicast wide area McFaddenat § 2.1.2
communication

network, comprising the|"3,3,] Client/Server
stepsof: Recall that Xtrek handled all rendering from theserver side. The X10 traffic wassent over TCP sockets

from theserverto the player's display.
Smith added network code that separated the gameinto distinctclient and server components, Each player
ran a client program that communicated with the server using a vastly simpler protocol, The client handled
all renderinglocally, so the bandwidth requirements were greatly reduced."
McFaddenat § 3.3.1

00001390 updateMessages()
00001391 {

[...]

00001590 }

Server\ntservisocket.c at lines 1390-590

00000603 updateClient()

Petitioner Riot Games,Inc. - Ex. 1005, p. 33

Petitioner Riot Games, Inc. - Ex. 1005, p. 34

00000604 {

[. 66]

00000688 flushSockBuf(};

00000689 repCount+t;
00000690 }

Server\ntserv\socket.c at lines 603-90

(0001537 sendServerPacket (packet)
00001538 /* Pick a random type for the packet */
00001539 struct player_spacket *packet;
00001540 {

brmh-1,7\socket.c at lines 1537-1540

00001856 doRead (asock)

00001857 int asock;

00001858 {

00002044 }

Server\ntservisocket.c at lines 603-90

00000523 struct mesg_cpacket {
00000524 char type; /* CP_MESSAGE */
00000525 char group;
(0000526 char indiv;

00000527=char padl;

00000528 char mesg [80];
00000529 };

brmh-1,7\packets.h at lines 523.29

providing a group “In Netrek, every player has a client program that connects to the server.”
messaging server McFadden at § 2.1.2
coupled to said network,
said server "33.1 Client/Server

communicating with|Recall that Xtrek handled all rendering from the server side, The X10 traffic was sent over TCP sockets
said plurality of host|from the server to the player's display,

Petitioner Riot Games,Inc. - Ex. 1005, p. 34

Petitioner Riot Games, Inc. - Ex. 1005, p. 35

computers using said
unicast network and

maintaining a list of
message groups, each
message group

containingat least one
host computer;

Smith added network code that separated the game intodistinct client and server components, Each player
ran a client program that communicated with the server using a vastly simpler protocol. The client handled
all rendering locally, so the bandwidth requirements were greatly reduced.”
McFaddenat § 3.3.1

“|, newstartd - This waits around for a connection from a client.

It then

forks and execs a ntserv.”

Server\docs\READMEatlines 99-100

00000129 while (1) {

00000130 if ((port_idx=connectionAttemptDetected (num_orogs) } <0) {

00000131 fprintf(stderr, "Whoops. Bye. \n");
00000132 exit (0);

00000133 }

[...]

00000143 if (fd!=-1) write(fd, logname, strlen(logname});

(0000144 sleep (2);
00000145 }

(00146 else if (fork() == 0) { /* we are a clone */

00000147 time (&curtime};

00000148 sprintf (logname, " $732,328 58",

0000149 peerhostname,
0000150 ctime (&curtime) };

00151 if (fd!=-1) write(fd, logname, strlen(logname}};
00000152 if (fd!=-1} close (fd);

00000154 pr=& (prog [port_idx]);

00000155 switch (pr->nargs) {

00000156 case 0: execl(pr->prog, pr->progname, peerhostname, 0);
00000157 break;

000158 case 1: execl(pr->prog,pr->progname, pr->arg[0),

peerhostname, 0);
00000159 break;

Petitioner Riot Games,Inc. - Ex. 1005, p. 35

Petitioner Riot Games, Inc. - Ex. 1005, p. 36

00000160 case 2: execl(pr->prog,pr->progname, pr->arg[0], pr-

>arg(1],

(0161 peerhostname, 0);
0162 break;

000163 case 3: execl(pr->prog,pr->progname, pr->arg[0], pr-

0 pr->arg[2], peerhostname, 0};
(00165 break;

000166 case 4: execl(pr->prog,pr->progname, pr->arg[0], pr-

><>coWY@OCc >Cc>cscoCC <
a .

00000167 pr->arg[2], pr->arg(3], peerhostname, 0);
00000168 break}

0000169 default: ;

00000170 }

00000171 fprintf(stderr, "Error in execl! -- $s\n",pr->prog);
00000172 reporterror(};
00000173 }

Server\ntserv\newstartd.cat lines 129-173

000179 int connectionAttemptDetected (num_progs)

(00180 int num_progs;
000181 {

0000214 if (bind(sock, éaddr, sizeof(addr}) < 0} {SeOeOODS >OFCc-<aa .<<C
(00237 }

00000238 }

0000239 }

0000240 if(listen(sock, 1)<0) {

(00241 fprintf(stderr, "Listen failed: ");
(0242 reporterror (};

00243 sock = -l;

000244 }

 aoCODUDDWODa> aoeoniemocc <ccc<<Fe

000245 prog[i].sock=sock;

Petitioner Riot Games,Inc. - Ex. 1005, p. 36

Petitioner Riot Games, Inc. - Ex. 1005, p. 37

 C<ac< >oOooaoa<<a>aooOoTC=> aafa<aooOoODODOea GoOOOOOOOOOOGFODOO1SBO >><<
< <

Co paar a

Wey

0000311
00

0000246000

00000247 forintf (stderr,"listening on $d, connection will start
48 \"Ss\" $5 $8 $3 Ss\n",

10000248 prog[i].port, prog[i].prog, prog[i] .progname,

00000249 prog{i].arg[0], prog{i].arg(1], prog[i].arg[2],

prog[i].arg[3]};
00000250 fflush (stderr);

00000251 }

00000252 }

00000253

00000254 while (1) /* Wait for a connection */

(1000289 newsock = accept (sock, &naddr, 4len);
0000290 if ((newsock < 0) && (@rrno == EINTR))

00000291 goto nointr;
00000292

00000293 if(newsock < 0) {

00000294 fprintf(stderr, "accept error!");
00000295 reporterror();
00000296 fprintf(stderr, "No one calling!\n");

(0297 shutdown(sock, 2};
Bho LO{OS co

<><>OoCc>oS 1OoOODOTeOOSEte

/* close (0); */

close (sock);

prog[i].sock = -1;
return (-1);

if (newsock '= 0} {

return (1);

| else {

if (dup2(newsock, 0) == -1) {
fprintf(stderr, "failed dup2\n"};

reporterror();

close (newsock) ;

Petitioner Riot Games,Inc. - Ex. 1005, p. 37

Petitioner Riot Games, Inc. - Ex. 1005, p. 38

Server\newstartd\newstartd.c atlines 179-311

00000135

00000136

00000137

00000138

00139

0000140

000141

00142>©aoooc >coCcc ><<
0000143

Server\ntserv\main.c at lines 135-43

000452

000453

000454

00000455

00000456

00000457

n0000458

00000459

0000460

000461

acooFeeUGa aaa:aawaa
—«c

Cc
ws cn

00479

000480

000481

000482

 aoCODUDOa> aoaoC:o> <<cc<
<

onnectToClient () */

Z connectToClient (machine, port)

if (callHost) {

if (!connectToClient (host, xtrekPort}) {

exit (0);

}

} else {

sock=0; /* Because we were forked by inetd! */
checkSocket (};

initClientData(); /* "normally" called by

char *machine;

int port;
{

if (sock!=-1) 4

shutdown (sock, 2}}

sock= -l;

}

ERROR (3, ("Connecting to %s through %d\n", machine, port});

if ((ns=socket (AF_INET, SOCKSTREAM, 0)) < 0) {

ERROR(1, ("I cannot create a socket\n"});

exit (2);

if (connect (ns, éaddr, sizeof (addr}}) < 0) {

ERROR (3, ("I cannot connect through port %d\n", port));
close (ns);

return (0);

Petitioner Riot Games,Inc. - Ex. 1005, p. 38

00000483

[..]

00000488 }

Server\ntservisocket.c at lines 442-88

00001747 flushSockBué(}
00001748

[..]

00001755 if (gwrite(sock, buf, t) !=t) {
00001756 perror("std flush gwrite failed, client marked dead");
00001757 clientDead=1;

00001758 }

[.»]

00001782 if (gwrite(udpSock, udpbuf, t) != t){
00001783 perror("UDP flush gwrite failed, client marked dead once
more");

[..]
00001791

[..]

00001802 }

Server\ntservisocket.c at lines 1747-802

0002607 gwrite(fd, wouf, size)
0002608 int fd;

0002609 char *wbuf;

0002610 size_t size;

0002611 {

vee]

0002625 while (bytes>0) {
0002626 n = write(fd, whuf, bytes);
0002627 if (count++ > 100) {

0002628 ERROR (1, ("Gwrite hosed: too many writes
$d) \n", getpid()));
0002629 clientDead = 1;

0

0

0

0

0

[

0

0

0

0

|

0

Petitioner Riot Games,Inc. - Ex. 1005, p. 39

Petitioner Riot Games, Inc. - Ex. 1005, p. 40

00002630 return (-1);

00002631}

[...]

00002671 }

00002672 return (orig};
00002673 }

Server\ntservisocket.catlines 2607-73

struct mesg_spacket |

char type; /* SPMESSAGE */
u_char m_flags;

u_char m_recpt;
u_char m_from;

char mesg [MSG_LEN];
}

Server\ntserv\packet.h at lines 184-190

00000471 struct memory {

00000472 struct player players (MAXPLAYER];

00000473 struct torp torps(MAXPLAYER * MAXTORP];

00000474 struct plasmatorp plasmatorps[MAXPLAYER * MAXPLASMA];
00000475 struct status status([1];

00000476 struct planet planets [MAXPLANETS];

00000477 struct phaser§phasers{MAXPLAYER];
00000478 struct metl metl{1]}

00000479 struct message messages [MAXMESSAGE];
00000480 struct team teams [MAXTEAM + 1];

00000481 struct ship shipvals [NUM_TYPES] ;
00000482 };

Server\ntservistruct.h at lines 471-82

00000208 struct player {
[. 6]

00000218 int px}

Petitioner Riot Games,Inc. - Ex. 1005, p. 40

Petitioner Riot Games, Inc. - Ex. 1005, p. 41

90000219~~int vy;

00226 short p_team; /* Team I'm on */

000260 #ifdef FULL_HOSTNAMES

(00261 char p_full_hostname[32]; /* full hostname 4/13/92 TC */
000262 #endif

0000263 #ifdef PING
>OoOSseOr >aoamas.c <c<<-<

000264 int p_avrt; /* average round trip time */
00265 int p_stdy; /* standard deviation in round

trip time */
(1000266 int p_pkls_c_s; /* packet loss (client to

server) */

00000267 int’ p_pkls_sc; /* packet loss (server to
client) */
00000268 #endif

00000269 #ifdef DS

00000270 int p_timerdelay; /* updates per second */
00000271 pid_t p_process; /* process id number */
00000272 #endif

[...]

00000284 };

Server\ntservistruct.h at lines 208-84

00000120 /* These are the teams */

[..]

00000132 #define ALLTEAM (FED|ROM|KLI| ORI)

00000133 #define MAXTEAM (ORI) /* was ALLTEAM (overkill?)

6/22/92 TMC */

00000134 #define NUMTEAM 4

Server\ntservidefs.h at lines 120-134

00001125 updateTorps (}
00001126 {

Petitioner Riot Games,Inc. - Ex. 1005, p. 41

Petitioner Riot Games, Inc. - Ex. 1005, p. 42

[...

00001132 for (i=0, torp=torps, tpi=clientTorpsinfo, tp=clientTorps;
(01133 1<MAXPLAYER*MAXTORP;

(01134 itt, torptt, tpitt, tptt) {
[oes

00001142 sendClientPacket(tpi) ;
[ose

00001151 sendClientPacket (tp) ;
[os

00001191 }

00001192 }

Server\ntservisocket.c at lines 1125-92

Server\ntservisocket.c at lines 1194-255

0)

0)

[

0

0

00001194 updatePlasmas (}
00001195 {

[...

00001201 for (1=0, torp=plasmatorps, tpi=clientPlasmasInfo,

tp=clientPlasmas;
001202 1<MAXPLAYER*MAXPLASMA;

(01203 itt, torptt, tpitt, tptt) {
[...

00001211 sendClientPacket(tp) ;
[...

00001219 sendClientPacket (tp) ;
[...

00001254 }

0001255 }

0001257 updatePhasers (}
0001258 {

veel

0001264 for (i=0, ph=clientPhasers, phase=phasers, pl=players;

0001265 i<MAXPLAYER; i++, pht++, phaset+t, pl+t+)} {

Petitioner Riot Games,Inc. - Ex. 1005, p. 42

[. +e]

00001274 sendClientPacket(ph);
[. +]

00001290 sendClientPacket(ph) ;
[...]

00001293 }

00001294 }

Server\ntserv\socket.cat lines 1257-94

0001390 updateMessages()
0001391 {

vee]

0001563 if (cur->m_from==DOOSHMSG) msg.m_from=255; /* god */
0001564 if ((cur->m_from < 0) || (cur->m_from > MAXPLAYER))

0001565 sendClientPacket ((CVOID) &msg) ;
0001566 else if (cur->m_flags & MALL && !(ignored[cur->m_from]

& MALL) }

00001567 sendClientPacket ((CVOID) &msg);
00001568 else if (cur->m_flags & MTEAM && ! (ignored[cur->m_from]
& MTEAM)) {

00001569 sendClientPacket ((CVOID) &msq) ;
0001570 }

0001571 else if (cur->m_flags & MINDIV) {
vee]

0001584 sendClientPacket ((CVOID) &msg);
vee]

0001586

vee]

0001590 }

Server\ntserv\socket.c at lines 1390-590

0

0

[

0

0

0

0 0

0

[

0

[

0

[
0

00000191 me = éplayers(pno];
[...]

00000222 updateSelf(); /* so he gets info on who he is */

Petitioner Riot Games,Inc. - Ex. 1005, p. 43

Petitioner Riot Games, Inc. - Ex. 1005, p. 44

00000223 updateShips(};

00000224 updatePlanets();
(000225 flushSockBuf(};

00226

0000227 /* Cet login name */
(100228

000229 if ((pwent = getpwuid(getuid()}) != NULL)

(00230 STRNCPY (login, pwent->pw_name, NAME_LEN);
000231 else

(0000232 STRNCPY (login, "Bozo", NAME_LEN);

00000233©login[NAME_LEN - 1] = '\0';

>OoOOODOc >Ooomoec <c<<c
RO Cad oO me->p_team=ALLTEAM;

00000273 me->p_full_hostname[sizeof (me->p_full_hostname} - 1] =

00000296 /* give the player the motd and find out which team he wants

00000297 if (me->p_status != PALIVE) {

00000298 me->p_x= -100000;

00000299 me->p_y= -100000;
(0000300 updateSelf();

(0000301 updateShips (};
00000302 teamPick= -1;

000303 flushSockBuf (};

00304 getEntry (&team, &s_type};

0305 repCount=0; /* Make sure he gets an update
diately */

00000306 }

[...]

00000325 enter (team, 0, pno, s_type);
Server\ntservimain,c at lines 183-325

ra

C

Dm<

Petitioner Riot Games,Inc. - Ex. 1005, p. 44

Petitioner Riot Games, Inc. - Ex. 1005, p. 45

000034 enter(tno, disp, pno, s_type}

>oreaSc >a>«+maae <-<<c <

WU

nnnnh 9005

000091 e->p_dir = 0;

000092 e->p_desdir = 0;

000094 ne->p_desspeed = 0;

wD
0000101 me->p_team = (1 << tno};

0000103 startplanet=tno*l0 + random() % 10;

000035 int tno;

00036 int disp; /* not used, so I used it 7/27/91 TC */
0037 int pno;

000038 int s_type;
000039 {

000056 STRNCPY (me->p_name, pseudo, NAME_LEN};
000057 me->p_name [NAME_LEN - 1] = '\Q';

00058 getship(myship, s_type};

0060 /* Alert client about new ship stats */

yo0008s if ((s_type != STARBASE) && (s_type != ATT) && plkills>0)

0086 me->p_ship.s_plasmacost = -l;

>p_updates = 0;

000089 e->p_flags = PFSHIELD;
0090 if (s_type==STARBASE) me->p_flags |= PFDOCKOK;

00093 e->p_speed = 0;
000095 me->p_subspeed = 0;
000096 if ((tno == 4) || (tno == 5)) { /* change 5/10/91 TC new

indeo */
00097 me->p_team = 0;

(00098 placeIndependent (); /* place away from others 1/23/92 TC */
0000099 }

01000100 else {

00102 for (33) {

Petitioner Riot Games,Inc. - Ex. 1005, p. 45

Petitioner Riot Games, Inc. - Ex. 1005, p. 46

0000104 if (startplanets[startplanet]) break;

Anna A

(0135>OoOOODOc aoaomoc <c<<c
AnnNn 37

VL

VU

AnnNn 40
WL

0000187 #ifndef FULLHOSTNAMES

0000193 me->o_login,

000194 me->p_Inonitor) 5
00000195 #else

(000196 pmessage2(0, MALL | MUOIN, addrbuf, me->p_no,
0000202 me->p_full_hostname} ;

0000105 }

00132 /* if (‘keeppeace) me->p_hostile = (FED|ROM|KLI|ORI) ;*/
000133 if (‘keeppeace) auto_peace();

000134 me->p_hostile & ~me->p_team;

000136 /* join message stuff */

00138 sprintf (me->p_mapchars, "$c%c", teamlet [me->p_team] ,

os[me->p_no]);
00139 if (lastteam != tno || lastrank != mystats->st_rank) {

00188 pmessage2(0, MALL | MJOIN, addrbuf, me->p_no,

0000189 "5.16s (2.25) promoted to %s (%.165@%.16s)",
0000190 me->p_name,

0000191 me->p_mapchars,
(0192 ranks [me->p_stats.st_rank] .name,

0000197 "5,168 (%2.28) promoted to %8 (%.165@%.32s)",

000198 me->p_name,
00199 me->p_mapchars,

00200 ranks [me->p_stats.st_rank] .name,
00201 me->p_login,

0000203 #endif

0000204 }

Bho cad Rho “we

Petitioner Riot Games,Inc. - Ex. 1005, p. 46

sending, by a plurality
ofhost computers
belonging to a first
message group,

messages to said server
via said unicast

network, said messages
containing a payload
portion and a portion for
identifyingsaidfirst
message group;

Server\ntservlenter.cat lines 30-232

0001537 sendServerPacket (packet)0

0

0

0

[

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

[
0

[

0

[

0

0

0

0

0001538

0001539

0001540

vee]

0001554

0001555

0001556

0001557

0001558

0001559

0001560

0001561

0001562

0001563

0001564

0001565

0001566

0001567

0001568

0001569

vee]
0001610

vee]

0001623

vee]

0001628

0001629

0001630

0001631

/* Pick a random type for the packet */
struct player_spacket *packet;

if (commMode == COMM_UDP) {

/* for now, just sent everything via TCP */
}

if (commMode == COMM_TCP || !udpClientSend) {
/* special case for verify packet */
if (packet->type == CP_UDP_REQ) {

if (((struct udp_req_cpacket *) packet)->request ==
COMM_VERIFY)

goto send_udp;
}

/*

* business as usual (or player has turned off UDP
transmission)

*/

if (gwrite(sock, (char *) packet, size) != size) {
printf ("gwrite failed. Server must be dead\n");
serverDead = 1;

}

if (gwrite(udpSock, packet, size) != size) {

}

if (gwrite(sock, (char *) packet, size) != size) {
printf ("gwrite failed. Server must be dead\n");
serverDead = 1;

}

Petitioner Riot Games,Inc. - Ex. 1005, p. 47

Petitioner Riot Games, Inc. - Ex. 1005, p. 48

[...]

00001633 }

00001634 }

brmh-1.7\socket.c at lines 1537-634

00000026 struct player *me = NULL;
brmh-1,7\data.c at line 26

00000134 struct player {
[+]

00000144 int DX}

00000145 int DY
[..+]

00000152 short p_team; /* Team I'm on */
[...]

00000192 };

brmh-1,7\struct.h at lines134-92

(0000523 struct mesg_cpacket {

00000524 char type; /* CP_MESSACE */
00000525 char group;
00000526 char indiv;

00000527 char padl;

00000528 char mesg [80];
00000529 };

brmh-1,7\packets.hat lines 523.29

00000222 #define sendTorpReg(dir) sendShortPacket (CP_TORP, dir)
brimh-1,7\defs.h at line 222

00000293 struct torp_cpacket {

00000294=char type; /* CP_TORP */
00000295 unsigned char dir; /* direction to fire torp */
00000296 char padl;

17

Petitioner Riot Games,Inc. - Ex. 1005, p. 48

00000297 char

00000298 };

brmh-1.7\packets,h at lines 293-99

0000121 struct packet_handler handlers[] = {
[...]

0000128 { sizeof(struct torp_cpacket), handleTorpReq },
[. +4]

0000194 #ifdef FEATURE_PACKETS

0000195 {sizeof (struct feature_cpacket), handleFeature },
0000196 #endif

0000197};
Serverintserv\socket.c at lines 121-97

00001967 /* Check to see if the handler is there and the request
is legal.

00001968 * The code is a little ugly, but it isn't too bad to
worry about

0001969 * vet,
0001970 */

0001971 packet sReceived(*bufptr] ++;
0001972 #ifdef PING

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0001973

0001974

0001975 #endif

if(asock == udpSock)
packets_received ++;

0001976 if (handlers[*bufptr] handler != NULL) {
0001977

0001978

if (((FD_ISSET(*bufptr, &inputMask)) &&

(me==NULL || !(me->p_flags & (PFWAR|PFREFITTING
0001979 #ifdef SB_TRANSWARP
0001980

0001981 #endif

0001982

0001983

0001984

| PFTWARP

yy) UI

*hufptr==CP_RESETSTATS || *bufptr==CP_UPDATES||

*hufptr==CP_OPTIONS || *bufptr==CP_RESERVED ||

Petitioner Riot Games,Inc. - Ex. 1005, p. 49

Petitioner Riot Games, Inc. - Ex. 1005, p. 50

00001986 *pufptr==CP_PING_RESPONSE | |

001987 #endif

001989 *bufptr== CP_RSA_KEY | |
0001990 #endif

0001991 #ifdef FEATURE_PACKETS

0001992 *bufptr == CP_FEATURE||
00001993 #endif

00001994 #ifdef MESSAGESALLTIME /*off for the moment */

>oooSww aaoe

00001995 *bufptr == CP_MESSAGE | |
00001996 #ifdef SHORT_PACKETS

00001997 *bufptr == CP_SMESSAGE||
00001998 #endif

001999 #endif

 00002000

0002001 *bufptr==CP_SOCKET || *bufptr==CP_BYE) {

00002002 if (me && me->p_flags & PFSELFDEST
00002003 #ifdef PING /* don't let it undo self destruct */

00002004 && *bufptr != CP_PING_RESPONSE
00002005 #endif

00002006) {

00002007 me->p_flags &= ~PFSELFDEST;

(0002008 new_warning(85, "Self Destruct has been
canceled");

02009 }

(02010 (* (nandlers[*bufptr] .handler)} (bufptr) ;
2011 }

Server\ntservisocket.c atlines 1976-2011

00002046 handleTorpReg (packet)
00002047 struct torp_cpacket *packet;

00001985 #ifdef PING /* ping response always valid */

(01988 #ifdef RSA /* NEW -- fix ghostbust problem

Petitioner Riot Games,Inc. - Ex. 1005, p. 50

Petitioner Riot Games, Inc. - Ex. 1005, p. 51

00002048 {

00002049 ntorp(packet->dir, TMOVE};
00002050

00002051

00002052 }

Server\ntserv\socket.c at lines 2046-50

(41 ntorp(course, type)
(42 u_char course;

(00048 if (me->p_flags & PFWEP) {

000049 new_warning(25,"Torpedo launch tubes have exceeded

aximum safe temperature!");
000050 return;

00051 }

000073 if (me->p_ntorp == MAXTORP) {

000074 new_warning(26,"Our computers limit us to having 8

ive torpedos at a time captain!");
000075 return;

000076 }

(00077 if (me->p_fuel < myship->s_torpcost) {

078 new_warning(27,"We don't have enouch fuel to fire

photon torpedos!");
00000079 return}

00000080 }

00000081 if (me->p_flags & PFREPAIR) {
00000082 new_warning(28,"We cannot fire while our vessel is in

repair mode."};
00000083 return;

00000084 }

00000085 if ((me->p_cloakphase) && (me->p_ship.s_type != ATT)) {

aocoOOFYOOeeesa>oeOOhl awaamamaescaaaaeaa <cc<c-cmcc<-aam

00000086 new_warning(29,"We are unable to fire while in cloak,

Petitioner Riot Games,Inc. - Ex. 1005, p. 51

captain!");
00000087 return;

00000088 }
00000089

00000090 /* change TC 12/9/90 -- my attempt at torp angle stuff */

0000091

0000092

0000093 if (topgun && ((me->p_ship).s_type != STARBASE)) {

0000094 int delta;

0000095 if ((delta = ((int) me->p_dir - (int) course)) < 0)

0000096 delta = -delta;

0000097 if ((delta > topgun) && (delta < (256 - topgun))) {

0000098 /* note: 128 = 180 degrees left/right */
00000099 new_warning(30,"We only have forward mounted
cannons.");

00000100 return;

00000101 }

00000102 } /* end if topgun */
[...]
00000112

00000113 /* Setup data in new torp */
00000114 if (type>TSTRAIGHT || type<TFREE) type=TMOVE;
00000115 k->t_no = i;

00000116 k->t_status = type;
00000117 k->t_owner = me->p_no;
00000118 k->t_team = me->p_team;

00000119 k->t_X = me->p_x;
00000120 k->t_y = me->p_y;
00000121 k->t_dir = course;

00000122 k->t_damage = myship->s_torpdamage;

21

Petitioner Riot Games,Inc. - Ex. 1005, p. 52

00000123 if (vectortorps)
00000124 k->t_speed = vector_torp_speed(me->p_dir, me->p_speed,
course,

00000125 myship->s_torpspeed);
00000126 else

00000127 k->t_speed = myship->s_torpspeed;
00000128 k->t_war = me->p_hostile | me->p_swar;

00000129 k->t_fuse = myship->s_torpfuse + (random() % 20);

00000130 k->t_turns = myship->s_torpturns;
00000131 k->t_whodet = NODET;

00000132 }

Server\ntserv\torp.cat lines 41-132

0001161 udtorps()
0001162 {

0001163 register int i, turn=0, heading=0;
0001164 register struct torp *3;
0001165

0001166 for (i = 0, j = &torps[i]; i < MAXPLAYER * MAXTORP; itt,
jtt) {
0001167 switch (j->t_status) {
0001168 case TFREE:

0001169 continue;
0001170 case TMOVE:

0001171 case TSTRAIGHT:

0001172 if (j->t_turns > 0) {
vee]

0001183 }

vee]

0001245 }

Server\ntserv\daemonll.c at lines 1161-1246

00001125 updateTorps()

22

Petitioner Riot Games,Inc. - Ex. 1005, p. 53

aggregating, by said
serverin a time interval

determined in

accordance with a

0001126 {

0001132
0001133

0001134

0001142
00001151
[..]

00001191

00001192 }

for (i=0, torp=torps, tpi=clientTorpsInfo, tp=clientTorps;

i<MAXPLAYER*MAXTORP;

itt, torptt, tpit+, tp+t) {

sendClientPacket(tpi) ;

sendClientPacket (tp) ;

}

Server\ntservisocket.c at lines 1125-92

00001125 updateTorps()
00001126 {

[..6]

00001132

00001133

00001134

[eae
00001142

[oe]
00001151
[+6]

00001191

00001192 }

Server\ntservisocket.c at lines 1125-92

00000076 int

client */

for (i=0, torp=torps, tpi=clientTorpsInfo, tp=clientTorps;
i<MAXPLAYER*MAXTORP;

itt, torpt+, tpitt, tptt) {

sendClientPacket (tpi) ;

sendClientPacket (tp);

timerDelay=200000; /* delay between sending stuff to

Server\ntserv\data.c at line 76

23

Petitioner Riot Games,Inc. - Ex. 1005, p. 54

predefined criterion, 00000195 readFromClient ();
said payload portions of|Server\ntserv\input.c at line 195
said messagesto create
an aggregated payload,|00000152 input()

00000153 {

00000154 struct itimerval udt;

00000155 fd_set readfds;

00000156 static struct timeval poll = {2, 0};
00000157

00000158 #ifdef Ds

00000159 if (!me->p_process)
00000160 #endif

00000161 {

00000162 udt.it_interval.tv_sec = 0;

00000163 udt ,it_interval.tv_usec = timerDelay;
00000164 udt.it_value.tv_sec = 0;

00000165 udt .it_value.tv_usec = timerDelay;
00000166 setitimer(ITIMER_REAL, fudt, 0);

00000167 }

00000168 SIGNAL(SIGALRM, setflag);
00000169

00000170 /* Idea: read from client often, send to client
not so often */

00000171 while (1) {

[...]

00000195 readFromClient (};

[..]

00000203 }

00000204 }

Server\ntserv\input.c at lines 152-203

00000076 int timerDelay=200000; /* delay between sending stuff to
client */

Server\ntserv\data.c atline 76

24

Petitioner Riot Games,Inc. - Ex. 1005, p. 55

Petitioner Riot Games, Inc. - Ex. 1005, p. 56

>Oo=+>ec <a—™~DM:< cc

aaaa Cc=<c
c

0000603 wodateClient (}
(0604 {

000608

000609 /* This can halve your updates */
0000610

0000611

00612

00613

*/

000014

0000615

00616

0000617

0000618

0000619

00620

0000621

000622

0000630

0000631

000632

0000633

0000634

00635

0000636

0000637

0000638

00639

static int skip = 0; /* If skip is set we skip next wodate

if (send_short && skip) {
skip = 0; /* back to default */

if (bufptr==buf && (commMode!=COMM_UDP || udpbufptr==buf))

/* We sent nothing! We better send something to wake

if (me->p_fuel < 61000)
sendClientPacket ((CVOID) &clientSelfShort} ;

else

sendClientPacket ((CVOID} &clientSelf);

flushSockBut();

repCounttt;

return}

if (send_short) {

updatePlasmas(};

updateStatus(};

updateSelf ();

updatePhasers() ;

updateShips () ;

updateTozps(} ;

updatePlanets ();

updateMessages ();
|
J

Petitioner Riot Games,Inc. - Ex. 1005, p. 56

Petitioner Riot Games, Inc. - Ex. 1005, p. 57

00000052 intrupt ();

Server\ntserv\input.c at lines 52

00000197 intrupt();

Server\ntserviinput.c at lines 197

00001390 updateMessages()
00001391 {

[.

00

00001825 readFromClient()

00001826 {

[.

00

000657 if(send_short && (me->p_fuel < 61000))
000658 sendClientPacket ((CVOID) &clientSelfShort);

(000659 else

00660 #endif

(00661 sendClientPacket ((CVOID} &clientSelf);

0000662 I

000685 sendClientPing(}; /* ping.c */
0000686 #endif

00687

000688 flushSockBuf(};

(0689 repCount+t;

00000690 }

Server\ntservisocket.c at lines 603-90

1590 }

Server\ntservisocket.c at lines 1390-590

1838 if (select (32, &readfds,0,0,&timeout) != 0) {

00001839 /* Read info from the xtrek client */

00001840 if (FD_ISSET(sock, &readfds}) {

00001841 retval t= doRead(sock};

Petitioner Riot Games,Inc. - Ex. 1005, p. 57

0001842 }

0001843 if (udpSock >= 0 && FD_ISSET(udpSock, &readfds)) {
0001844 V_UDPDIAG(("Activity on UDP socket\n"));
0001845 retval += doRead(udpSock) ;
0001846

0001847 }

0001848 return (retval != 0); /* convert to 1/0 */
0001849

0001850

vee]

0001855 /* ripped out of above routine */
0001856 doRead (asock)

0001857 int asock;

0001858 {

0001859 struct timeval timeout;

vee]

0001877 /* Read info from the xtrek server */

0001878 count=read (asock, buf, BUFSIZ*2) ;

vee]

0001916 bufptr=buf;
0001917 while (bufptr < buf+count) {
vee]

0001939 while (size>count+(buf-bufptr)) {
0001940 /* We wait for up to twenty seconds for rest of packet.
0001941 * If we don't get it, we assume the client
ied,

0001942 */

0001943 timeout .tv_sec=20;

0001944 timeout.tv_usec=0;

0001945 /*readfds=1<<asock;*/

0001946 FD_ZERO (&readfds) ;

0001947 FD_SET(asock, &readfds);

vee]

0001956 temp=read (asock, buf+count, size-(count+ (buf-bufptr)));

277

Petitioner Riot Games,Inc. - Ex. 1005, p. 58

Petitioner Riot Games, Inc. - Ex. 1005, p. 59

 = Bh
+

Bb

O17

8

019

020

021

022

023

024

025

034

035

036

037

038

039

0.40

4]

042

043

 C<><> aoacC<aoooaoea-<aaocaOooemocaamaoiic-a- aam<<a>aooOoTC-<maaoeaaoaeeaaaaamoe-a- BOBOBDROBSPROBDROBRSBOsBROBOROMOPOPOBOHhHRHhBSTTBOBOBOBOROotFOot <<<<>aaaeoOoOOoO
002044 }

(* (handlers [*bufptr] .handler)) (butptr);

}

/* Otherwise we ignore the request */
} else {

ERROR (1, ("Sandler for packet $d not installed...\n",

bufptrt=size;
1f (bufptr>buft+BUFSI2Z) {

beopy (buf+BUFSIZ, buf, BUFSIZ);
if (count==BUFSI2Z*2) {

/*readfds = l<<asock;*/

FD_ZERO (&readfds) ;

FD_SET(asock, &readfds) ;

if (select (32, &readfds,0,0,&timeout)} {

temp=read (asock, buf+BUFSIZ, BUFSIZ);

count=BUFSIZ+temp;

} else {

count=BUFSIZ;

}

} else {

count -=BUFSIZ:

bufptr-=BUFSIZ;

return (1);

Server\ntservisocket.c at lines 1825-2044

Petitioner Riot Games,Inc. - Ex. 1005, p. 59

Petitioner Riot Games, Inc. - Ex. 1005, p. 60

001825 readFromClient (}

001826 {

ve]

(01838 if (select (32, &readfds,0,0,&timeout}) != 0) {

0001839 /* Read info from the xtrek client */

001840 if (FD_ISSET(sock, &readfds}) {

001841 retval += doRead(sock};

0001842 }

0001843 if (udpSock >= 0 && FD_ISSET(udpSock, &readfds}} {
(01844 V_UDPDIAG(("Activity on UDP socket\n"));

0001845 retval t= doRead(udpsock) ;
00001846}

00001847 }

00001848 return (retval != 0); /* convert to 1/0 */

00001849 }

00001850

[...

00001855 /* ripped out of above routine */
00001556 doRead (asock)

(0001857 int asock;

00001858 {

10001859 struct timeval timeout;

[ove

00001877 /* Read info from the xtrek server */

(0001878 count=read (asock, buf, BUFSIZ*2);

[...

00001916 bufptr=buf;

00001917 while (bufptr < buftcount) {
[...]

00001939 while (size>count+(buf-bufptr)) {
00001940 /* We wait for up to twenty seconds for rest of packet.
00001941 * Tf we don't get it, we assume the client
died.

00001942 */

29

Petitioner Riot Games,Inc. - Ex. 1005, p. 60

Petitioner Riot Games, Inc. - Ex. 1005, p. 61

 ><>~~>co >oOaa= a

>CC>c> caCc><>coCc-CccocaaoCccopcSCcca>cocSca>cocoCccz qooon.-=aooo<=cooaSaoonaoe=- DOBOBOBOROROBRORODHhROBRSBOPROPOBOROMOTPOBSMhPhORO Cccco>>C>o>C¢>>Ss>aa2TTOCD@>>co Bho >
0001956

0001966
0001943

0001944

00001945

001946

0001947

34

035

036

037

38

039

timeout .tv_sec=20;

timeout.tv_usec=0;

/*readfds=l<<asock; */

FD_ZERO(&readtds) ;

FDSET (asock, &readfds);

temp=read(asock, buftcount, size-(count+ (buf-bufptr) });

(* (handlers [*bufptr] .handler)) (bufptr) ;
}

/* Otherwise we ignore the request */
| else {

ERROR (1, ("dandler for packet %d not installed...\n",

bufptrt=size;

if (bufptr>buf+BUFSI4Z) {
beopy (buf+BUFS12Z, buf, BUFSIZ);

if (count==BUFSIZ*2) {

/*readfds = l<<asock;*/

FD_ZERO(&readids) ;

FD_SET(asock, &readfds) ;

if (select (32, greadfds,0,0,&timeout)) {

temp=read (asock, buf+BUFSIZ, BUFSIZ);

count=BUFSIZ+temp;

} else {

count=BUFSIZ;

}

| else {

count -=BUFSIZ;

Petitioner Riot Games,Inc. - Ex. 1005, p. 61

Petitioner Riot Games, Inc. - Ex. 1005, p. 62

00002040 bufptr-=BUFS12;
00002041 }

00002042 }

00002043 return (1)}
2044

Server\ntservisocket.c at lines 1825-2044

(0001390 updateMessages()
00001391 {

[. +]

00001590 }

Server\ntservisocket.c at lines 1390-590

(001603 sendClientPacket (packet)
001604 /* Pick a random type for the packet */
001605 struct player_spacket *packet;

001606 {

ve]

0001618 [*

001619 * Tf we're dead, dying, or just born, we definitely want
transmission>CD

(101620 * to get through (otherwise we can get stuck}, I don't
ink this will

001621 * be a problem for anybody, though it might hang for a
it if the TCP

>OOMmreoOtdOOOeOOO >co+<7YSco-Cccom>co« fo 0101622 * connection is bad,

00001623 */

00001624 /* Okay, now I'm not so sure. Whatever, */
00001625 if (oldstatus != PALIVE || (me != NULL && me->p_status !=
PALIVE))

00001626 orig_type = packet->type | 0x80; /* pretend it's critical
xf

00001627 #endif

00001628 if (packet->type<] || packet->type>NUM_SIZES |

Petitioner Riot Games,Inc. - Ex. 1005, p. 62

Petitioner Riot Games, Inc. - Ex. 1005, p. 63

><=aoaaSoOCc ao<2woCc

0001629

0001630
€

het

001631

0001632

0001633

0001634

0001635

001636

0001637

|

00001647

0001648

0001649

001650

0001651

0001652

0001653

FIX)

0001654

001728

0001729

0001730

00001731

001732

00001733

001734

0001735

0001736

0001737

001738

00001739

dpMode =

sizes[(int)packet->type]==0) {
ERROR (1, ("Attempt to send strange packet %d Sd\n", packet-

type, NUM_SIZES) };

return;

}

packetsSent [(int) packet->type] ++;
if (commMode == COMM_TCP || (commMode == COMM_UDP &&

= MODE_TCP)) {

/*

* business as usual

*/

bcopy (packet, bufptr, size);

bufptrt=size;

} else {

| *

* do UDP stuff unless it's a "critical" packet

* (note that both kinds get a sequence number appended)

*/

default:

/* these are critical packets; send them via TCP */
size=sizes [packet->type] ;

if (bufptr-buftsize >= BUFSIZE) {

t=bufptr-buf;

if (gwrite(sock, buf, t) !=t) {
perror ("ICP gwrite failed, client marked dead");
clientDead=1;

}

bufptr=buf /*+ addSequence (buf) */;
}

beopy (packet, bufptr, size);

Petitioner Riot Games,Inc. - Ex. 1005, p. 63

Petitioner Riot Games, Inc. - Ex. 1005, p. 64

00001740 bufptrt=size;
00001741 break;

00001742 }

00001743 }

00001744 }

Server\ntserv\socket.c at lines 1603-744

(0001125 updateTorps()
00001126 {

[oe]

00001132 for (i=0, torp=torps, tpi=clientTorpsinfo, tp=clientTorps;
(10001133 i<MAXPLAYER*MAXTORP:

00001134 itt, torptt, tpitt, tptt) {
[...]

00001142 sendClientPacket(tpi);
[.6]

00001151 sendClientPacket(tp) ;
[os]

(001191 }

001192 }

Serverlntservisocket.c at lines 1125-92
 forming an aggregated|00001747 flushSockBué()

message using said 0001748 {
aggregated payload: and —@& :<

(0001755 if (gwrite(sock, buf, t}) !=t) {

(0001756 perror ("std flush gwrite failed, client marked dead");
001757 clientDead=1;

001758 }

00001782 if (gwrite(udpSock, udpbuf, t) != t}{

00001783 perror ("UDP flush gwrite failed, client marked dead once
more");

00001784 #ifdef EXTRA_GB

Petitioner Riot Games,Inc. - Ex. 1005, p. 64

Petitioner Riot Games, Inc. - Ex. 1005, p. 65

0001785 clientDead=1;

0001786 #endif

00001787 UDPDIAG(("*** UDP disconnected for %s\n", me->p_name)};
001788 printUdpInfo(); 0001789 closeUdpConn ();

00001790 commMode = COMMTCP;

00001791 }

[..]

0001802 }

Server\ntserv.c at lines 1747-802

(0002607 gwrite(fd, wouf, size)
0002608 int fd;

(002609 char *whuf;

(02610 size_t size;

02611 {

0002625 while (bytes>0) {

0

0

00

000

00

00002626 n = write(fd, whut, bytes);
0000603 wodateClient (}

000604 {

 aaramDm aameca ccc<

00002671 }

0000

000

12672 return (orig) ;

0002675 }

Server\ntserv.c atlines 2607-73

00608 static int skip = 0; /* If skip is set we skip next wodate

000609 /* This can halve your updates */
00610 if (send_short && skip) {

000611 skio = 0; /* back to default */
(00612 if (bufptr==buf && (commMode!=COMM_UDP || udpbufptr==buf) }

Petitioner Riot Games,Inc. - Ex. 1005, p. 65

Petitioner Riot Games, Inc. - Ex. 1005, p. 66

00000613 /* We sent nothing! We better send something to wake
him */

(000614 if (me->p_fuel < 61000)
00000615 sendClientPacket ((CVOID} &clientSel£Short};
00000616 else

00000617 sendClientPacket ((CVOID) &clientSelf);

00000618 }

00000619 flushSockBuf();

00000620 reoCount+t}
(10000621 return}

00000622 }

[..

00000630 if (send_short} {

00000631 updatePlasmas();

00000632 updateStatus (};
(00000633 updateSelf (};

00000634 updatePhasers();
00000635 updateShips (};

00000636 updateTorps(};
00000637 updateP lanets ()}

00000638 updateMessages ();
00000639 }

[..

00000657 if(send_short && (me->p_fuel < 61000))
(0000658 sendClientPacket ((CVOID) &clientSelfShort);

000659 else

(000660 #endif

(000661 sendClientPacket((CVOID) &clientSelf)};

00000662 }

[..

00000685 sendClientPing(}; /* ping.c */
00000686 #endif

00000687

0000688 flushSockBuf(};

35

Petitioner Riot Games,Inc. - Ex. 1005, p. 66

Petitioner Riot Games, Inc. - Ex. 1005, p. 67

00000689 repCountt+;
00000690 }

Server\ntserv\socket.c at lines 603-90

(0001603 sendClientPacket (packet)
00001604 /* Pick a random type for the packet */

(01605 struct player_spacket *packet;
00001606 {

[...]

00001618 [*

00001619 * Tf we're dead, dying, or just born, we definitely want
the transmission

00001620 * to get through (otherwise we can get stuck}. I don't
think this will

00001621 * be a problem for anybody, though it might hang for a
bit if the TCP

00001622 * connection is bad.

00001623 */

(01624 /* Okay, now I'm not so sure. Whatever. */
00001625 if (oldstatus != PALIVE || (me != NULL && me->p_status !=
PALIVE))

00001626 orig_type = packet->type | 0x80; /* pretend it's critical
*/

00001627 #endif

00001628 if (packet->type<1 || packet->type>NUM_SIZES |
001629 sizes[(int)packet->type]==0) {

00001630 ERROR(1, ("Attempt to send strange packet %d ‘%d\n", packet-
ype, NUM_SIZES));

00001631 return;

00001632 }

00001633 packetssent [(int) packet->type] tt;
00001634 if (commMode == COMM_TCP || (commMode == COMM_UDP &&

udpMode == MODE_TCP)) {
00001635 /*

Vw cr <y

Petitioner Riot Games,Inc. - Ex. 1005, p. 67

Petitioner Riot Games, Inc. - Ex. 1005, p. 68

transmitting, by said
servervia said unicast

00001636

00001637

[...]

001047

0001648

0001649

0001650

0001651

0001652

00001653

(FIX)

00001654

[oo]

00001728

00001729

00001730

00001731

00001732

00001733

00001734

00001735

00001736

00001737

00001738

00001739

00001740

00001741

00001742

00001743

00001744 }

* business as usual

bcopy (packet, bufptr, size);

bufptrt=size;

| else {

* do UDP stuff unless it's a "critical" packet

* (note that both kinds get a sequence number appended)

default:

/* these are critical packets; send them via ICP */
size=sizes [packet->type] ;

if (bufotr-buf+size >= BUFSIZE) {
t=oufotr-buf;

if (gwrite(sock, buf, t) '=t)} {
perror ("ICP gwrite failed, client marked dead");
clientDead=1;

}

bufptr=buf /*+ addSequence (buf) */;
}

beopy (packet, bufptr, size);

bufptrt=size;
break;

Server\ntservisocket.c atlines 1603-744

(0001603 sendClientPacket (packet)
00001604 /* Pick a random type for the packet */

Petitioner Riot Games,Inc. - Ex. 1005, p. 68

network,said 0001605 struct player_spacket *packet;

aggregated message toa|00001606 {
recipient host computer|[...
belonging to said first|00001639 if (butptr-buftsize >= BUFSIZE) {
message group, 0001640 t=bufptr-buf;

0

0

[
0

0

00001641 if (gwrite(sock, buf, t) !=t) {
00001642 perror("std gwrite failed, client marked dead ");
00001643 clientDead=1;

00001644 }

00001645 bufptr=buf;
00001646 }

00001647 bcopy(packet, bufptr, size);
00001648 bufptr+=size;
00001649

00001650 } else {

[

0

0

0

0

0

0

0

0)

0

0

0

0

0

0

ww]

0001731 if (bufptr-buft+size >= BUFSIZE) {
0001732 t=bufptr-buf;
0001733 if (gwrite(sock, buf, t) !=t) {
0001734 perror("TCP gwrite failed, client marked dead");
0001735 clientDead=1;

0001736 }

0001737 bufptr=buf /*+ addSequence (buf) */;
0001738 }

0001739 beopy (packet, bufptr, size);
0001740 bufptr+=size;
0001741 break;
0001742

0001743 }

0001744 }

Server\ntservisocket.c atlines 1603-744

00000603 updateClient ()
00000604 {

Petitioner Riot Games,Inc. - Ex. 1005, p. 69

Petitioner Riot Games, Inc. - Ex. 1005, p. 70

[...]

00000688 flushSockBuf (};

00000689 repCounttt;
00000690 }

Server\ntservisocket.c at lines 603-90

U01747 flushSockBuf()

001748 {

001755 if (gwrite(sock, buf, t}) !=t) {

(01756 perror ("std flush gwrite failed, client marked dead");
0001757 clientDead=1;

0001758 }

>o>aeMm co>OFaoc 0

00001782 if (gwrite(udpSock, udpouf, t) != t){

00001783 perror ("UDP flush gwrite failed, client marked dead once
more");

[..]

00001791 }

[.]

00001802 }

Server\ntservisocket.c atlines 1747-802

(10002607 gwrite(fd, wouf, size)
00002608 int fd;

00002609 char *wbut;

00002610 size_t sizes

00002611 {

[...]

00002625 while (bytes>0) {
00002626 n= write(fd, whuf, bytes);
00002627 if (countt++ > 100) {

00002628 ERROR (1, ("Gwrite hosed: too many writes
ed) \n", getpid()));

Petitioner Riot Games,Inc. - Ex. 1005, p. 70

Petitioner Riot Games, Inc. - Ex. 1005, p. 71

00002629 clientDead = 1;

00002630 return (-1)};

00002631}

[. +]

00002671 }

00002672 return (orig) ;
00002673 }

Server\ntservisocket.c at lines 2607-73

00001125 updateTorps (}
00001126 {

[...

00001132 for (i=), torp=torps, tpi=clientTorpsinfo, tp=clientTorps;
00001133 1 <MAXPLAYER*MAXTORP ;

00001134 itt, torpt+, tpitt, tptt) {
[...

00001142 sendClientPacket(tpi) ;
[...

00001151 sendClientPacket(tp);
[...

00001191 }

00001192 }

Server\ntserv\socket.c atlines 1125-92
 2, The method of clam|00000152 input (}

1 wherein said time 00000153 {

interval ts a fixed period|00000154 struct itimerval udt;
of time, 00000155 fd_set readfds:

00000156 static struct timeval poll = {2, 0};
0000157

00000158 #ifdef DS

00000159 if (!me->p_process)
00000160 #endif

00000161 {

Petitioner Riot Games,Inc. - Ex. 1005, p. 71

 3, The method of claim

| wherein said time

interval correspondsto
a timefor said server to

receive at least one

message from each host
computer belongingto
said first message
Sroup.

00000162 udt.it_interval.tv_sec = 0;

00000163 udt.it_interval.tv_usec = timerDelay;
00000164 udt.it_value.tv_sec = 0;

00000165 udt.it_value.tv_usec = timerDelay;
00000166 setitimer (ITIMERREAL, &udt, 0);

00000167 }

00000168 SIGNAL (SIGALRM, setflag);

Server\ntserv\input.c at lines 152-168

00000076 int timerDelay=200000; /* delay between sending stuff to
client */

Server\ntserv\data.c at line 76

00000195 readFromClient ();

Server\ntserviinput.c at line 195

0000152 input()
0000153 {

0000154 struct itimerval udt;

0000155 fd_set readfds;

0000156 static struct timeval poll = {2, 0};
0000157

0000158 #ifdef DS

0000159 if (!me->p_process)
0000160 #endif

0000162 udt.it_interval.tv_sec = 0;

0000163 udt ,it_interval.tv_usec = timerDelay;
0000164 udt.it_value.tv_sec = 0;

0000165 udt .it_value.tv_usec = timerDelay;
0000166 setitimer(ITIMER_REAL, &udt, 0);

0000167 }

0000168 SIGNAL(SIGALRM, setflag);
0000169

 00000000000000161 {

0

0

0

0

0

0

0

0

4]

Petitioner Riot Games,Inc. - Ex. 1005, p. 72

00000170 /* Idea: read from client often, send to client
not so often */

00000171

[..]

00000195

00000204

while (1) {

readFromClient (};

}

}

Server\ntserv\input.c at lines 152-203

00000076 int

client */

timerDelay=200000; /* delay between sending stuff to

Server\ntserv\data.c at line 76

0000604 {

wo]
0000608

/

0000610

0000611

0000612

0000613

him */

0000614

0000615

0000616

0000617

0000618

0000619

0000620

0000621

 0

0

0

0

0

0

0

0

 00[0k00000609 /* This can halve your updates */
0

0

0

{

0

0000603 updateClient()

static int skip = 0; /* If skip is set we skip next update

if (send_short && skip) {
skip = 0; /* back to default */

if (bufptr==buf && (commMode!=COMM_UDP || udpbufptr==buf))

/* We sent nothing! We better send something to wake

if (me->p_fuel < 61000)
sendClientPacket ((CVOID) &clientSelfShort) ;

else

sendClientPacket ((CVOID) &clientSelf);

flushSockBuf ();

repCounttt+;
return;

4)

Petitioner Riot Games,Inc. - Ex. 1005, p. 73

0

[

0

0

0

0

0

0

0

0

0

0

[
0

0

0

0

0

0

[
0

0

0

0

0

0

0000622

ww]

0000630

0000631

0000632

0000633

0000634

0000635

0000636

0000637

0000638

0000639

oJ
0000657

0000658

0000659

if(send_short) {

updateP lasmas() ;

updateStatus();

updateSelf() ;

updatePhasers();

updateShips();
updateTorps ();

updatePlanets();

updateMessages();
}

if(send_short && (me->p_fuel < 61000))
sendClientPacket ((CVOID) &clientSelfShort) ;

else

0000660 #endif

0000661 sendClientPacket((CVOID) &clientSelf);
0000662

ww
0000685

}

sendClientPing(); /* ping.c */
0000686 #endif

0000687

0000688

0000689

0000690 }

flushSockBuf(};

repCount++;

Server\ntservisocket.c at lines 603-90

0 0000052 intrupt();

Server\ntserv\input.c at lines 52

0 0000197 intrupt ();

Server\ntserviinput.c at lines 197

43

Petitioner Riot Games,Inc. - Ex. 1005, p. 74

(0001390 updateMessages(}
00001391 {

[...]

00001590 }

Server\ntserv\socket.c at lines 1390-590

0001390 updateMessages()
0001391 {

w|

0001563 if (cur->m_from==DOOSHMSG) msg.m_from=255; /* god */
0001564 if ((cur->m_from < 0) || (cur->m_from > MAXPLAYER))

0001565 sendClientPacket ((CVOID) &msg);
0001566 else if (cur->m_flags & MALL && ! (ignored[cur->m_from]

& MALL))

00001567 sendClientPacket ((CVOID) &msg) ;
00001568 else if (cur->m_flags & MTEAM && ! (ignored{cur->m_from]
& MTEAM)) {

00001569 sendClientPacket ((CVOID) &msq) ;
00001570 }

[..]

00001590 }

Server\ntserv\socket.c at lines 1390-590

0

0

[

0

0

0

0
00001825 readFromClient()

00001826 {

[. +e]

00001838 if (select (32, 4readfds,0,0,&timeout) '= 0) {
00001839 /* Read info from the xtrek client */

00001840 if (FD_ISSET(sock, &readfds)) {

00001841 retval += doRead (sock);

00001842 }

00001843 if (udpSock >= 0 && FD_ISSET(udpSock, &readfds)) {
00001844 V_UDPDIAG(("Activity on UDP socket\n"));
00001845 retval += doRead(udpSock);

Petitioner Riot Games,Inc. - Ex. 1005, p. 75

0001846

0001847

0001848

0001849 }
0001850

]

0001858 {

0001859

vee]

0001877

0001878

vee]

0001916

0001917

vce)

0001939

0001940

0001941

died,

0001942

0001943

0001944

0001945

0001946

0001947

cool

0001956

vee]
0001966

vee]
0002010

}

return (retval != 0); /* convert to 1/0 */

0001855 /* ripped out of above routine */
0001856 doRead(asock)

0001857 int asock;

struct timeval timeout;

/* Read info from the xtrek server */

count=read (asock, buf, BUFSI2*2);

bufptr=buf;

while (bufptr < buft+count) {

while (size>count+(buf-bufptr)) {
/* We wait for up to twenty seconds for rest of packet.

* If we don't get it, we assume the client

*/

timeout .tv_sec=20;

timeout .tv_usec=0;

/*readfds=1<<asock;*/
FD_ZERO (&readfds) ;

FD_SET(asock, éreadfds);

temp=read (asock, buf+count, size- (count+ (buf-bufptr) });

(* (handlers [*bufptr] .handler)) (bufptr);

45

Petitioner Riot Games,Inc. - Ex. 1005, p. 76

Petitioner Riot Games, Inc. - Ex. 1005, p. 77

00002011 }

00002012 /* Otherwise we ignore the request */
(002013 | else {

00002014 ERROR (1, ("Sandler for packet %d not installed...\n",

*bufptr));
00002015 }

00002016 bufptr+=size;

00002017 if (bufptr>buf+BUFSIZ) {
00002018 beopy (buf+BUFSIZ, buf, BUFSI2Z};
00002019 if (count==BUFSI2*2) {

00002020 /*readfds = 1<<asock;*/
(002021 FD_ZERO(&readfds) ;

0002022 FD_SET(asock, &readfds);

00002023 if (select (32, ireadfds,0,0,&timeout)) {

00002024 temp=read (asock, buf+BUFSI2,BUFSIZ) ;
00002025 count=BUFSIZ+ttemp;
[...]

00002034 } else {

00002035 count=BUFSIZ;

00002036 }

00002037 | else {

(10002038 count -=BUFSIZ:

00002039 }

00002040 bufptr-=BUFSI2;
00002041 }

0002042 }

0002043 return (1);

00002044 }

Server\ntservisocket.c at lines 1825-2044

00000021 intrupt()
00000022 {

[...]

00000114 updateClient ();

Petitioner Riot Games,Inc. - Ex. 1005, p. 77

Petitioner Riot Games, Inc. - Ex. 1005, p. 78

00000115 }

Server\ntserviredraw.c at lines 21-115

4, The method of claim

| further comprising the
step of creating, by one
of said plurality of host
computers, said first
message group by
sending a first control
message to said server
via said unicast

network,
(0057 entrywindow(team, s_type)

00000058 int *team, *s_type;
[...]

00000074 /* The following allows quick choosing of teams */
00000075

00000076 if(fastQuit) {

00000077 *feam = -1;

00078 return;

0079

00000080

[. +]

00000182 switch ((int) event.type) {
[ve]

0000260 case W_EVBUTTON:

00000261 if (typeok == 0)
000262 break;

00000263 for (1 = Dy i < 4s itt)

00000264 if (event.Window == teamWin[i]) {

01000265 *team = 1;

00000266 break;

00000267 }

00000268 if (event.Window == qwin /* new */ &&
00000269 event .type == WLEV_BUTTON) {
0000270 *team = 4;

00000271 break;

00272}

(0000273 if (*team != -1 && !teamRequest (*team, *s_type) }
0000274 *team = -l;

00000275 =}

00000276 break;

00000319 /* Attempt to pick specified team & ship */

47

Petitioner Riot Games,Inc. - Ex. 1005, p. 78

Petitioner Riot Games, Inc. - Ex. 1005, p. 79

00000320 teamRequest (team, ship)

00000321 int team, ship;
00322 {

00000323 int lastTime;
00000324

00000325 pickOk = -1;
00000326 sendTeamReg(team, ship);
00000327 lastTime = time (NULL);

00000328 while (pickOk == -1) {
(10329 if (lastTime + 3 < time(NULL)} {

00000330 sendTeamReg(team, ship);
00331 }

000332 socketPause ();

000333 readFromServer (NULL) ;

000334 if {isServerDead(}} {

000340 if (udpSock >= 0)
000341 closeUdpConn();

0000342 if (udpWin) {
00000343 udprefresh (UDP_CURRENT) }

00000344 udprefresh (UDP_STATUS) ;
00000345 }

00346 connectToServer (nextSocket}}

00000347 printf("Yea! We've been resurrected! \n");
00000348 pickOk = 0;

000349 break;

>oODO—DDoe> aas=aa> <<-<<<c

(000350 }

00351 }

(00000352 return (pick0Ok);
00000353 }

brmh-1,7\entrywin.c at lines 57-353

00001800 sendTeamReg(team, ship)
00001801 int team, ship;

Petitioner Riot Games,Inc. - Ex. 1005, p. 79

Petitioner Riot Games, Inc. - Ex. 1005, p. 80

 5, The method of claim
00001802 {
00001803

00001804

00001805

00001806

00001807

00001808

00001809 }

struct outfit_cpacket outfitReq;

outfitReg.type = CP_OUTFIT;
outfitReq.team = team;
outfitReq.ship = ship;
sendServerPacket ((struct player_spacket *) & outfitReq);

brmnh-1,7\entrywin.c at lines 1800-09

(00057 entrywindow (team, s_type)

4 further comprising the 0058 int *team, *s_type;
step of joining, by some|[.. +]
of said plurality of host|00000074=/* The following allows quick choosing of teams */
computers, said first|00000075
message group by 00000076 if(fastQuit) {
sending control 00000077 *team = -1;
messagesvia said 00000078 return;
unicast network to said|00000079—}

server specifying said|99900080
first message group, [oo]

10000182 switch ((int) event.type) {
[...]

(0000260 case W_EVBUTTON:

00000261 if (typeok == 0)
00000262 break;

00000263 for (i = 0; i < 43 itt)

00000264 if (event.Window == teamWin[i]} {

(10265 *team = 1}

0000266 break;

00000267 }

00000268 if (event.Window == qwin /* new */ &&
00000269 event type == W_EV_BUTTION) {
00000270 *team = 4;

49

Petitioner Riot Games,Inc. - Ex. 1005, p. 80

Petitioner Riot Games, Inc. - Ex. 1005, p. 81

>OoOOODOc aooaooiecc c<<c

>oreaCc c-<< -<<
0000340

0000341

000342

0000343

0000344

00345

0000346

0000347

0000348

00000349

0000350

0000271

0000272

0000273

00274

0000275

000276

000319 /* Attempt to pick specified team & ship */
(00320 teamRequest (team, ship)

0000321

00322

0000323

00000324

0000325

0000326

0000327

00328

0000329

0000330

0000331

00332

0000333

000334

|

break;

}

if (*team [= -1 && !teamRequest (*team, *s_type)) |
*team = -1;

}

break;

int team, ship;

int lastTime;

pickOk = -1;

sendTeamReg (team, ship};
lastTime = time (NULL};

while (pickOk == -1) {
if (lastTime + 3 < time(NULL}) {

sendTeamReg (team, ship};
}

socketPause ();

readFromServer (NULL;

if (isServerDead(}} {

if (udeSock >= 0)

closeUdoConn();

if (udpWin) {
udorefresh (UDP_CURRENT) ;

udorefresh (UDP_STATUS) ;
}

connect ToServer (nextSocket) ;

printf ("Yea! We've been resurrected! \n");
pickOk = 0;
break;

Petitioner Riot Games,Inc. - Ex. 1005, p. 81

 6, The method of claim

| wherein said network

is Internet and

00000351

00000352

00000353

}

return (pickOk);

brmh-1,7\entrywin.c atlines 57-353

0

00001801

00001802

00001803

00001804

00001805

00001806

00001807

00001808

00001809

0001800 sendTeamReq (team, ship)

int team, ship;
{

struct outfit_cpacket outfitReq;

outfitReq.type = CP_QUIFIT;
outfitReg.team = team;

outfitReq.ship = ship;

sendServerPacket ((struct player_spacket *) & outfitReq);
}

brmh-1.7\socket.c at lines 1800-09

0000181

vee]

0000192

0000193

0000194

0000195

0000196

0000197

0000198

0000199

0000200

vee]

0000214

vee]

0000227

 0000179 int connectionAttemptDetected (num_progs)
0000180 int num_progs;

{

/* check all ports */
for (1 = 0; 1 < num_progs; itt) {
sock = prog[i].sock;
if(sock < 0){

if((sock = socket (AF_INET, SOCK_STREAM, 0)) < 0){

fprintf(stderr, "Hey! I can't make a socket!\n");
fprintf(stderr,"I'll try again \n");
return (-1);

}

if(bind(sock, &addr, sizeof(addr)) < 0){

if (bind(sock, &addr, sizeof(addr)) < 0) {

Petitioner Riot Games,Inc. - Ex. 1005, p. 82

Petitioner Riot Games, Inc. - Ex. 1005, p. 83

>OoOOODOc <aoacc c<<c

0000246 /* close(0); */

>oreaCc ae<> c-<<<
0000281 }

0000237 }

qo0g23e =}

00239 }

0000240 if(listen(sock, 1)<0) {

000221 fprintf(stderr, "Listen failed: ");
000242 reporterror();

0000243 sock = -l}

0000244 }

00245 prog[i].sock=sock;

00247 fprintf (stderr, "listening on %d, connection will
t $5 \"Ss\" $5 $5 48 Ss\n",

0000248 prog[i].port, prog[i].prog, prog[i] .progname,

0000249 prog[i].arg[0], prog{i].arg(1], prog[i].arg(2],
1] .arg[3]);

0000250 fflush (stderr);

0000251 }

0000252

00253

000254 while (1) /* Wait for a connection */

000255 {

(00271 for (1 = 0; 1 < num_progs; i++}
0000272 {

000273 sock = prog[i] .sock;
00274 if (sock < 0)

(000275 continue;

00276 if (FD_ISSET (sock, &accept_fds))

0000277 /* found a connection, procede */
0000278 goto found;
0000279 }

00280 }

Petitioner Riot Games,Inc. - Ex. 1005, p. 83

Petitioner Riot Games, Inc. - Ex. 1005, p. 84

[...]

00000442 connectToClient (machine, port)
00000443 char *machine;

00000444 int port;
00000445 {

[..-]
00000456

[. +6]
00000478

00000479

00000480

00000481

00000482

00000483

00000484

00000485

00000486

00000487

00000488 }
Server\ntservisocket.c atlines 442-88

00000311 }

Server\newstartd\newstartd.c at lines 179-311

ERROR (3, ("Connecting to %s through %d\n", machine, port));

if (connect (ns, éaddr, sizeof(addr)) < 0) {

ERROR (3, ("I cannot connect through port %d\n", port));
close (ns) ;

return (0) ;

}

sock=ns;

initClientData() ;
testtime = -1;

return(1);

 sald server

communicates with said

plurality of host
Computersusing a

0000179 int connectionAttemptDetected (num_progs)

(000180 int num_progs;000

00000181 {

[oo]

000192

00193

00000194

00195

00000196

00000197

/* check all ports */
for (i = 0; i < num_progs; itt) {

sock = prog[i].sock;
if (sock < 0}{

1f((sock = socket (AF_INET, SOCK_STREAM, 0)) < 0 }{

fprintf(stderr, "Hey! I can't make a socket!\n");

Petitioner Riot Games,Inc. - Ex. 1005, p. 84

0

0

0

[

0

[
0

[
0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

[

0

0

0

0

0000198

0000199

0000200

vee]

0000214

vee]
0000227

vee]

0000237

0000238

0000239

0000240

0000241

0000242

0000243

0000244

0000245

0000246

0000247

0000248

0000249

0000250

0000251

0000252

0000253

0000254

0000255

vee]

0000271

0000272

0000273

0000274

fprintf(stderr,"I'll try again \n");
return (-1);

}

if (bind(sock, &addr, sizeof(addr)) < 0) {

if (bind(sock, &addr, sizeof(addr)) < 0) {

}

}

}

if(listen(sock, 1)<0) {

fprintf(stderr,"Listen failed: ");

reporterror ();
sock = -l;

}

prog[i] .sock=sock;
/* close(0); */

fprintf (stderr,"listening on %d, connection will
start $s \"%s\" %5 $s $s %s\n",

prog[i].port, prog[1].prog, prog[i] .progname,

prog[{i].arg(0], prog[{i].arg(1], prog[i].arg(2],
prog[i].arg[3]);

fflush (stderr);

}

}

while (1) /* Wait for a connection */

{

for (i = 0; i < num_progs; itt)
{

sock = prog[i].sock;
if (sock < 0)

Petitioner Riot Games,Inc. - Ex. 1005, p. 85

Petitioner Riot Games, Inc. - Ex. 1005, p. 86

00000275 continue;

00000276 if (FD_ISSET (sock, &accept_fds)}
00277 /* found a connection, procede */

(00000278 goto found;
00000279 }

00000280 }

00000281 I

[...]

0000311 }

Server\newstartd\newstartd.c at lines 179.31

(0000493 struct mesg_cpacket {

00000494 char type; /* CP_MESSAGE */
00000495 u_char group;
00000496 char indiv;

00000497 char padl;

00000498 char mesg[MSG_LEN];
00000499 };

Server\packefs.hat lines 493-99

Petitioner Riot Games,Inc. - Ex. 1005, p. 86

Petitioner Riot Games, Inc. - Ex. 1005, p. 87

CC-C

Petitioner Riot Games,Inc. - Ex. 1005, p. 87

Petitioner Riot Games, Inc. - Ex. 1005, p. 88

Claim Chart comparing Claims 1, 2, and 4-6 of U.S, Patent No.
5,822,523 to the disclosure in Van Hookin view DIS

Priorart cited in this chart:

® Daniel J. Van Hook, James 0. Calvin, Michael K. Newton, and David A. Fusco, “An Approach to DIS Scaleability,” 11" DIS
Workshop,26-30 Sept. 1994 (Van Hook”).

¢ TEEE 1278-1993 IEEE Standard for Information Technology- Protocols for Distributed Interactive Simulation Applications,
approved March 18, 1993, and published in 1993 (“DIS”),

* Michael R. Macedonia, “Exploiting Reality with Multicast Groups”, published September1995 (“Macedonia”)

Reasons to Combine:

Van Hook disclosestechniques that have been developed and deployed for ARPA’s Synthetic Theater of War (STOW)

program and Distributed Interactive Simulation (DIS), wherein a virtual world simulates battlefield conditions, and “[e]xplicit

representations of command, control, and communication are required to permit commandforces to transmit orders to and receive

reports from a new generation of moreintelligent semi-automated forces. Van Hookat p. 1. Likewise, DIS is part of a proposedset

of standards for the Distributed Interactive Simulation (DIS)used in conjunction with the STOW program in Van Hook. DISatpp. 1-

3, Van Hookprovidesfor bundling of the PDUs from host computers by the AG serverinto largertransmission packetsto be

distributed to other packets, Id. at pp. 2 and7. IDS goes one step further to discuss the anatomyof a packet, as the PDU packets

disclosed in DIS include a PDU header, an ID denoting a host computer (Entity ID) as well as a message group (Force ID), and the

PDU messagerelating to positional informationof the entity. DIS at Table 18, Pp. 40-41. It would have beenobviousto a personof

ordinaryskill in that art to combinethe teachings of bundling packets, or PDUs,in a Distributed Interactive Simulation disclosed in

Van Hook with the teachings of the contents of a PDUin a Distributed Interactive Simulationas disclosed in DIS.

rm

Petitioner Riot Games,Inc. - Ex. 1005, p. 88

|Claimsofthe‘523Patent) Disclosureof Van Hook, DISand Macedonia ae
|, Amethod for providing|“With the advent of ARPA’ s Synthetic Theater of War (STOW)program and the continued
group messages to a developmentof Distributed Interactive Simulation (DIS), the scope of the problem has changed
plurality of host computers|substantially. Under STOW and related programs,the virtual world must expand substantially — in
connected over a unicast|area, total population, andthe types of entities represented.”
wide area communication|Van Hookat p. 1.
network, comprising the
steps of: “Forthese reasons,it has becomenecessary to reexamine the approach used to distribute information

across the network. Several innovative algorithms have been suggested for reducing the amountof
traffic transmitted, transported, received, and processed, Under ARPA’s Scaleability project, several
Bandwidth Reduction Techniques (BRT)are being explored, evaluated analytically and in simulation,
and implemented in an Application Gateway (AG) residing at the LAN/WANinterface for each
participating site in this Fall's STOW-Europe (STOW-E) demonstration.”
Van Hookat p. 1.

“Majorcharacteristics of STOW-E are:
¢ Live, virtual and constructive simulations

¢ Wide area connectivity provided by the Defense Simulation Intemet (DSI) Wide Area Network
(WAN)

24 network sites in the continental US and Europe: 18 directly on the DSI,the remaining
bridged

¢ Approximately 2,000 interacting DIS entities
¢ Twosecurity levels: Secret No-Foreign and US!
* DIS 2.0.3 protocols

Numerouslegacy systemsand simulators”
Van Hookat p. 1.

Petitioner Riot Games,Inc. - Ex. 1005, p. 89

Figure 1: Angtication Gateway connections within the network

Figure 1 of Van Hook at p. 4.

“On the WANside,the AG transmits / receives to/ from a subnet broadcastaddress on a well known

UDPport. The WANessentially bridgestraffic between sites that are members of a multicast group....
Onthe LANside, the AG runs in promiscuous mode,receiving all packets transmitted on the site
LAN.”

Van Hookat pp. 4-5.

“distributed interactive simulation (DIS), A time and space coherent synthetic representation of
world environments designed for linking the interactive, free-play activities of people in operational
exercises. The synthetic environmentis created through the real-time exchange of data units between
distributed, computationally autonomoussimulation applications in the form of simulations, simulators,
and instrumented equipmentinterconnected through standard computer services. The computational
simulationentities may be present in one location or maybedistributed geographically.”
DIS at p. 3.

“3.17 host computer: A computer that supports one or more simulation applications, All host
computers participating in a simulation exercise are connected by a common network,”
DIS at p. 4.

“Data messages, called protocoldata units (PDUs) that are exchanged betweensimulation applications
are defined. These PDUs provide information concerning simulated entity states and the types of entity
interactions that take place in a distributed interactive simulation (DIS),”

Petitioner Riot Games, Inc. - Ex. 1005, p. 90

Petitioner Riot Games, Inc. - Ex. 1005, p. 91

DIS at Abstract.

“3.33 unicast: A transmission mode in which a single messageis sent to a single network destination,
that 1s, one-to-one,”

DIS at p. 5.

“The communication services require by each DIS PDU are described in detail in IST-CR-92-6. A brief
summary of the basic communication services necessary for DIS is as follows:

a) Data transfer. Each simulation application must be able to transfer data to another simulation
application on the network in a single operation, with or withoutfirst establishing a logical
connection with the destination computer, The unit of data passed in a single operation is called
a packet,

b) Delivery. The communication architecture must support either, multicast, broadcast, or unicast
packets, Multicast packets are delivered to a subset of all computers on a network, Broadcast
packets are delivered to all computers on a network. (Broadcasting 1s actually a special kind of
multicast.) Unicast packets are delivered to a single computer on a network.

c) Best effort service. The communication architecture should support best effort delivery.
Although DIS simulation applications will tolerate occasional failures of the network to deliver
packets, these should be allowedto occur only rarely,

d) Packet integrity. The communication protocols should be capable of detecting transmission
elrors associated with the network, Corrupted packets should not be delivered to the simulation
application.

e) Performance requirements. The communication architecture should provide a certain level of
performance characterized in termsofthroughput and delay, Both network delay and network
delay variance are to be minimized,”

DISat p. 10,

providing a group
messaging server coupled
to said network, said server

communicating with said
plurality of host computers

“Exercise scale, The large numberof entities involved in STOW-E will produce offered loadsof as
muchas four megabits and perhapsup to 2,000 packets per second. Such traffic levels will severely tax
all simulation computers even if unlimited communications resources were available.”
Van Hookat p. 1,

Petitioner Riot Games,Inc. - Ex. 1005, p. 91

using said unicast network
and maintaining a list of
message groups, each
message group containing
at least one host computer;

“Explicit representations of command, control, and communication are required to permit command
forces to transmit orders to and receive reports from a newgeneration of more intelligent semi-
automated forces, These newelements and phenomena require new protocols and generate new classes
oftraffic that must be carried on the connecting networks,”
Van Hookat p.1,

“A componentof ARPA’s approach to scaleability for STOW-E is to implement cooperating and
complementary instances of a numberofthe informationflow managementtechniques in an Application
Gateway (AG) situated at the LAN/WANboundary of each participating network site (figure 1), The
AG maybe thoughtof as a collection of information flow managementagents[4] that perform services
on behalf of their clients, the simulation applications. The purpose of these agents is to compensate for
and efficiently use the available communication and processing resources, Each AG processes PDUs
received from its attached LANandsendsrepresentation oflocal exercise state and events to other AGs
over the WAN,Similarly, each AG receives representations of remote state and events from other AGs
over the WAN and sends PDUsontoits attached LAN, Communication between AGsis via an

Application Gateway to Gateway Protocol (AGGP), AGGPsupports communication of control
information related to the information flow managementtechniques as well as representationsof
exercise state and events,”

Van Hookat p. 4.

Figure 1: Apglication Gateaniy onnections within the nebeork

Figure 1 of Van Hook at p. 4.

“The algorithm operates as follows, Theterrain is divided into a grid of square cells by each AG. A

Petitioner Riot Games, Inc. - Ex. 1005, p. 92

square grid is used because it makes calculations simple and permits regionsof the terrain to be
specified as a list of cells, Each AG determines the set of cells from which it needs to receive full
accuracydata, This set consists of those cells that overlay the circular regions ofinterest ofthe entities
at the AG’s site LAN, Figure 5 illustrates this idea by showingthree entities and their circular regions
of interest. For determining thefull accuracy region, the AGs use regions ofinterest that are based upon
the viewing rangesof the entities onthe site LAN, The set of cells for which full accuracy data is
needed is outlined in the figure. All AGs transmit their cell sets to each other. The full accuracyregion
for any AG consists of the union of the sets of cells receivedfrom all other AGs.”
Van Hookat p. 6.

Figure 5: Cells for which full aocuracy is required

Figure 5 of Van Hookatp.6.

Petitioner Riot Games,Inc. - Ex. 1005, p. 93

Petitioner Riot Games, Inc. - Ex. 1005, p. 94

“6.2.14 Force ID

Thisfield shall distinguish the different teams or sides in a DIS exercise.”
DISat p.36,

sending, by a plurality of|“The DIS protocols support the exchange of information about the state of the entities participating in an
host computers belonging exercise and events related to their activities and interactions,”
toafirst message group,|Van Hookat p. 2.
messages to said server via
said unicast network, said|“A grid-based relevancefiltering algorithm 1s incorporated into the AG.It operates on Entity State
messagescontaining a PDUsoriginating on an AG’s site LANas well as those arriving from remote AGsvia the WAN,as
payload portion and a shownin figure 4,”
portion for identifying said|Van Hookat p. 5,
first Message group;

“The algorithm operates as follows. The terrain is divided into a grid of square cells by each AG. A
square grid is used because it makes calculations simple and permits regionsof the terrain to be
specified as a list of cells. Each AG determines the setof cells from which it needs to receivefull
accuracy data. This set consists of those cells that overlay the circular regionsofinterest of the entities
at the AG’s site LAN. Figure 5 illustrates this idea by showingthree entities andtheir circular regions
of interest, For determiningthefull accuracy region,the AGs use regions ofinterest that are based upon
the viewing ranges of the entities on the site LAN. Theset of cells for whichfull accuracy data 1s
needed is outlined in the figure, All AGs transmit their cell sets to each other. Thefull accuracyregion
for any AG consists of the union of the sets of cells received from all other AGs.”
Van Hookat p.6,

“The Entity State PDU shall communicate information about an entity’s state, This include state
information that is necessary for the receiving simulation applications to represent the issuing entity in
the simulation applications’ ownsimulation.”
DIS at p. 14,

“A PDUheaderrecordshall be the first part of each PDU. This record is represented in table 14. The
fields of the PDU headerrecord are described in the following four items (see also 5.5.1).

Petitioner Riot Games,Inc. - Ex. 1005, p. 94

Petitioner Riot Games, Inc. - Ex. 1005, p. 95

a) Protocol version. This field shall specify the version of protocol used in this PDU. Protocol

data units found in this standard shall be specified as version 2, This field shall be specified by
an §-bit enumeration.

b) Exercise identification. This field shall specify the exercise to which the PDU pertains. The
value contained in this field shall not be equal to zero. This field shall be represented by an
Exercise Identifier (see 6.2.13),

c) Protocol data unt type, This field shall indicate the type of PDU that follows. This field shall
be represented by an 8-bit enumeration, The values in this field are defined in Section 4 in IST-
CR-92-16.

d) Length. This field shall specify the length of the PDU in 32-bit words. This field shall be
represented by an 8-bit unsigned integer.”

DISat p. 36.

“Information about a particular entity shall be communicated byissuing an Entity State PDU. The
Entity State PDU shall contain the followingfields:

a) PDU header, This field shall contain data commonto all DIS PDUs. The PDU headershallbe
represented by the PDU Header Record(see 6.2.15).

b) Entity Identification, This field shall identify the entity issuing the PDU. This field shall be
represented by an Entity Identifier Record (see 6.2.8),

c) Force identification, This field shall identify the force to whichthe issuing entity belongs, This
field shall be represented by an 8-bit enumeration (see Section 4 in IST-CR-92-16),

d) Entity type. This field shall identify the entity type to be displayed by membersof the same
force as the issuing entity. This field shall be represented by an Entity Type Record (see 6.2.10
and Section 6 in IST-CR-92-16),

e) Alternate entity type. This field shall identify the entity type to be displayed by members of
forces other than that of the issuing entity, This field shall be represented by an Entity Type
Record (see 6.2.10 and Section 4 tn IST-CR-92-16),

f) Timestamp. This field shall specify that time at which the data in the PDUis valid. This field
shall be represented by a timestamp(see 6.2.19),

g) Entity location. This field shall specify an entity’s physical location in the simulated world.
This field shall be represented by a World Coordinates Record (see 6.2.21),

Petitioner Riot Games,Inc. - Ex. 1005, p. 95

h) Entity linear velocity, This field shall specify an entity’s linear velocity, This field shall be

represented by a Linear Velocity Vector Record(see 6.2.20.3).
i) Entity orientation. This field shall specify an entity’s orientation. This field shall be represented

by a Euler Angles Record (see 6,2.11.)...”
DIS at p. 39,

Table 18Entity State POU

Entity State PDE Fields

+ Pyonavd VersionBicamenanasiat

' + Beavcind Dnt arsignad saget
» EDU beater ie seven

: Emile pe

Petitioner Riot Games,Inc. - Ex. 1005, p. 96

Saatity State PR? Bias

Adwaukoe annay
tw

atiyhavatisa

» Baty dings

» Baisata

2 Dad chaning algorithm 8.
gad aNhanny ane AAANALRLURNMANAE er’

} pore

+ Adgewtadnns
SOPH

Table 18 of DIS at pp.40-41,

“3,33 unicast: A transmission modein which a sin le network destination,

ll

Petitioner Riot Games,Inc. - Ex. 1005, p. 97

Petitioner Riot Games, Inc. - Ex. 1005, p. 98

that 1s, one-to-one.”

DIS at p.§.

aggregating, by said server|“Bundling. Network components such as switches, routers, and encryption devices as well as
ina timeinterval simulation host computers have limitationsin the rate at which they may process packets, Rather than
determined in accordance|transmitting each DIS PDU asan individual packet, multiple PDUs may be bundled together into larger
with a predefined criterion,)packets before transmission. Bundled packets are transmitted when either of two conditionsare
said payload portions of|satisfied: when a maximum size has beenreached(the packet under construction is full of PDUs); or
said messagesto create an|when a maximum timehas passed without another PDU amiving, The dominant effect of bundling is to
aggregated payload; reduce packet rates, Additionally, bundling reduces bit rates because fewer packetheaders are sent,”

Van Hookat p, 2,

“4.6 Bundling

The AG collects AGGP PDUs and bundles theminto larger packets for transmission over the WAN,
Thepurpose of the bundling algorithmis to reduce the numberof packets that are transmitted. The
bundling algorithm has two parameters, a maximum bundle size and a maximum delay time, PDUsare
added to a bundle until either the maximumsize 1s reachedor the first PDU is the bundle has been

delayed bythe maximum delay time. At this point, the bundle is transmitted.”
Van Hookat p. 7,

forming an ageregated “Bundling. Network components such as switches, routers, and encryption devices as well as
messageusing said simulation host computers have limitationsin the rate at which they mayprocess packets, Ratherthan
aggregated payload; and|transmitting each DIS PDUas an individual packet, multiple PDUs may be bundled together into larger

packets before transmission. Bundled packets are transmitted when either of two conditionsare
satisfied: when a maximum size has beenreached(the packet under constructionis full of PDUs); or
when a maximum time has passed without another PDU arriving. The dominant effect of bundling is to
reduce packet rates. Additionally, bundling reduces bit rates because fewer packet headers are sent.”
Van Hookat p, 2,

“4.6 Bundling

The AGcollects AGGP PDUs and bundlesthem into larger packets for transmission over the WAN.

Petitioner Riot Games,Inc. - Ex. 1005, p. 98

Petitioner Riot Games, Inc. - Ex. 1005, p. 99

The purposeof the bundling algorithm is to reduce the number of packets that are transmitted. The
bundling algorithmhastwo parameters, a maximum bundle size and a maximumdelay time, PDUsare
added to a bundle until either the maximumsize1s reachedor the first PDU is the bundle has been

delayed by the maximum delay time. At this point, the bundle 1s transmitted.”
Van Hook at p. 7,

transmitting, bysaid server
via said unicast network,

said aggregated message to
a recipient host computer
belonging to said first
message group.

“Bundling, Network components such as switches, routers, and encryption devices as well as
simulation host computers have limitations in the rate at which they mayprocess packets, Rather than
transmitting each DIS PDU as an individual packet, multiple PDUs maybe bundled togetherinto larger
packets before transmission. Bundled packets are transmitted wheneither of two conditionsare
satisfied: when a maximum size has been reached(the packet under constructionis full of PDUs); or
when a maximum time has passed without another PDU arriving, The dominanteffect of bundling is to
reduce packet rates, Additionally, bundling reduces bit rates because fewer packet headers are sent,”
Van Hookat p. 2.

“4.6 Bundling

The AG collects AGGP PDUsand bundlesthem into largerpackets for transmission over the WAN.
Thepurpose of the bundling algorithmis to reducethe numberof packets that are transmitted. The
bundling algorithm has two parameters, a maximum bundle size and a maximum delay time. PDUs are
added to a bundle until either the maximumsize 1s reached or the first PDU is the bundle has been

delayed by the maximum delay time, At this point, the bundle is transmitted,”
Van Hookat p. 7.

“Exercise scale, The large numberofentities involved in STOW-Ewill produce offered loadsof as
much as four megabits and perhaps up to 2,000 packets per second. Such traffic levels will severely tax
all simulation computers evenif unlimited communications resources were available,”
Van Hookat p. 1.

“Explicit representations of command,control, and communication are required to permit command
forces to transmit orders to and receive reports from a newgeneration of moreintelligent semi-
automated forces, These newelements and phenomenarequire new protocols andgenerate newclasses

Petitioner Riot Games,Inc. - Ex. 1005, p. 99

oftraffic that must be carried on the connecting networks.”
Van Hookat p. 1.

“A component of ARPA’s approach to scaleability for STOW-E is to implement cooperating and
complementary instances of a number ofthe information flow managementtechniques in an Application
Gateway (AG) situated at the LAN/WAN boundary of each participating network site (figure 1), The
AG maybe thought of as a collection of information flow managementagents[4] that perform services
on behalf of their clients, the simulation applications, The purpose of these agents is to compensate for
and efficiently use the available communication andprocessing resources, Each AG processes PDUs
received from its attached LANandsends representation of local exercise state and events to other AGs
over the WAN,Similarly, each AG receives representations of remotestate and events from other AGs
over the WANand sends PDUsontoits attached LAN. Communication between AGsis via an

Application Gateway to Gateway Protocol (AGGP). AGGPsupports communication of control
information relatedto the information flow managementtechniques as well as representationsof
exercise state and events,”

Van Hookat p. 4,

Pagure 1: Angiication Gatewayconnectionswithin the network

Figure 1 of Van Hook at p. 4.

“The algorithm operates as follows, The terrain is divided into a grid of square cells by each AG, A
square grid is used because it makes calculations simple and permits regionsof the terrain to be
specified as a list of cells, Each AG determinesthe set of cells from which it needs to receive full
accuracy data. This set consists ofthose cells that overlay the circular regionsof interest of the entities

Petitioner Riot Games,Inc. - Ex. 1005, p. 100

at the AG’s site LAN, Figure 5 illustrates this idea by showingthree entities and their circular regions
of interest. For determiningthefull accuracy region,the AGsuse regions ofinterest that are based upon
the viewing ranges of the entities on the site LAN, The set of cells for which full accuracy data is
needed is outlined in the figure, All AGs transmit their cell sets to each other. The full accuracy region
for any AG consists of the union ofthesets of cells received from all other AGs.”
Van Hookat p. 6,

Figuie S: Cells for which full accuracy is required

Figure 5 of Van Hook at p. 6.

“3.33 unicast: A transmission mode in which a single message1s sent to a single network destination,
that is, one-to-one,”

Petitioner Riot Games,Inc. - Ex. 1005, p. 101

Petitioner Riot Games, Inc. - Ex. 1005, p. 102

2, The method of claim |

wherein said time interval

18 a fixed period of time,

DIS at p. 5.
“Bundling. Network components such as switches, routers, and encryption devices as well as
simulation host computers have limitations in the rate at which they may process packets. Rather than
transmitting each DIS PDUas an individual packet, multiple PDUs may be bundled together into larger
packets before transmission. Bundled packets are transmitted wheneither of two conditions are
satisfied: when a maximum size has been reached(the packet under construction is full of PDUs); or
when a maximum time has passed without another PDU arriving. The dominant effect of bundling is to
reduce packet rates, Additionally, bundling reducesbit rates because fewer packet headers are sent.”
Van Hookat p. 2.

“4.6 Bundling

The AG collects AGGP PDUs and bundles theminto larger packets for transmissionover the WAN,
The purposeof the bundling algorithm is to reduce the numberof packets that are transmitted. The
bundling algorithm has two parameters, a maximum bundle size and a maximumdelaytime. PDUsare
added to a bundle until either the maximumsize 1s reachedor the first PDU is the bundle has been

delayed by the maximum delaytime. At this point, the bundle is transmitted.”
Van Hookat p. 7.

4, The method of claim1

further comprising the step
of creating, by one ofsaid
plurality of host computers,
said first message group by
sending a first control
message t0 said server via
said unicast network.

 “The algorithm operates as follows. The terrain is divided into a grid of square cells by each AG. A
square grid is used because it makes calculations simple and permits regionsof the terrainto be
specified as alist of cells, Each AG determines the set of cells from which it needsto receive full
accuracy data, This set consists of those cells that overlaythe circular regionsof interest of the entities
at the AG’s site LAN. Figure 5 illustrates this idea by showingthree entities and their circular regions
of interest, For determining the full accuracy region,the AGs use regions ofinterest that are based upon
the viewing ranges of the entities on the site LAN. Theset of cells for which full accuracy data is
needed1s outlined in the figure. All AGs transmit their cell sets to each other. The full accuracy region
for any AG consists of the unionof the sets of cells received from all other AGs.”
Van Hookat p. 6.

“6.2.14 Force ID

Thisfield shall distinguish the different teams orsides in a DIS exercise,
’

Petitioner Riot Games,Inc. - Ex. 1005, p. 102

Petitioner Riot Games, Inc. - Ex. 1005, p. 103

DIS at p. 36,

5, The method of claim 4|“The algorithm operates as follows, Theterrain 1s divided into a grid of square cells by each AG. A
further comprising the step|square grid 1s used because it makes calculations simple and permits regionsofthe terrain to be
of joining, by someof said|specified as a list of cells, Each AG determines the set of cells from which it needs to receive full
plurality of host computers,|accuracy data, This set consists of those cells that overlaythe circular regions of interest of the entities
said first message group by|at the AG’s site LAN. Figure 5 illustrates this idea by showing three entities and their circular regions
sending control messages|of interest, For determining the full accuracy region, the AGs use regionsof interest that are based upon
via said unicast network to|the viewing rangesof the entities on the site LAN. The set of cells for whichfull accuracy data 1s
said server specifying said|needed is outlined in the figure, All AGstransmit theircell sets to each other. Thefull accuracy region
first message group. for any AG consists of the union of the sets of cells received from all other AGs,”

Van Hookat p. 6.

“6.2.14 Force ID

This field shall distinguish the different teams orsides in a DIS exercise,”
DIS at p. 36,

“Anentityjoins a groupas a passive oractive member. Active memberssend as well as receive PDUs
within the group, are locatedin the cell associated with the group (thatis, the center of seven cells), and
can become the group leader, Passive members normally do not send PDUs to the group except when
they join or leave. They are associated with the group because the cell lies within their area of interest,
yettheydo not occupythe central cell,
Whenan entity joins a new group, it notes the timeit entered and issues a Join Request PDUtothe cell
group, The PDUhas a flag indicating whetherthe cell is active or passive, The group leaderreplies with
a Pointer PDU that references the request and in turn multicasts a PDU containing a pointerto itself or
anotheractive entity. The new member sends a Data Request PDU to the referenced source, which
issues a Data PDU containingthe aggregate set of active entity PDUs. A passive entity becomesan
active member of a group by reissuing the Join Request PDU with a flag set to active when entering a
cell. Departures from the group are announced with a Leave Request PDU.”
Macedonia at p. 42.

6, The method of claim 1_|“Major characteristics of STOW-Eare:

Petitioner Riot Games,Inc. - Ex. 1005, p. 103

Petitioner Riot Games, Inc. - Ex. 1005, p. 104

wherein said network is

Internet and said server

communicates with said

plurality of host computers
using a session layer
protocol,

Numerouslegacy systems and simulators”
Van Hook atp. 1,

Live,virtual and constructive simulations

Widearea connectivity provided bythe Defense Simulation Internet (DSI) Wide Area Network
(WAN)

24 network sites in the continental US and Europe: 18 directly on the DSI, the remaining
bridged
Approximately 2,000 interacting DIS entities
Twosecurity levels: Secret No-Foreign and US1
DIS 2.0.3 protocols

Petitioner Riot Games,Inc. - Ex. 1005, p. 104

Petitioner Riot Games, Inc. - Ex. 1005, p. 105

CC-D

Petitioner Riot Games,Inc. - Ex. 1005, p. 105

Petitioner Riot Games, Inc. - Ex. 1005, p. 106

Claim Chart comparing Claims 1-2 and 4-6 of U.S. Patent No.
5,822,523 to the disclosure of IRC RFC in view of Friedman

Priorart cited in this chart:

* J, Otkarinenet al., RFC 1459- Intemet Relay Chat Protocol, published May 1993
¢R. Friedman et al., Packing Messages as a Tool for Boosting the Performance of Total Ordering Protocols, Dept. of Science of
Cornell University, published July 7, 1995

Reason fo Combine:

IRC REC does not disclose aggregating payload portions, but Friedman disclosesthat messages are buffered and thenthe

payloadsare aggregated, ie,, packed, before sending, Friedman at 5, In addition, RFC IRC states “The main goal of IRC isto

provide a forum which allows easy and efficient conferencing (one to many conversations).” IRC RFC at § 3.2. Friendman discloses

aggregation of message packets improves both latencyand throughput compared to non-aggregating communication protocols.

Friedman at 1. Therefore, it would have been obvious to oneof ordinaryskill in the art at the time of the invention to aggregate the

group messages of IRC RFC, Le,, channel messages, tn orderto increase the efficiency of the network which was a main goal ofstated

by IRC REC.

rm

Petitioner Riot Games,Inc. - Ex. 1005, p. 106

SETeeLitho=] A method forove TRC itself isa teleconferencing system, which(through the use of the client-serverermodel)iswel:
group messages to a suited to running on many machines in a distributed fashion, A typical setup involves a single process
plurality of host computers|(the server) forming a central point for clients (or otherservers) to connect to, performing the required
connected over a unicast—_|message delivery/multiplexing and other functions.”
wide area communication|IRC RFC at §1

network, comprising the
steps of: “The IRC protocol was developed over the last 4 years since it was first implemented as a means for

users on a BBS to chat amongst themselves, Nowit supports a world-wide network of servers and
clients, and is stringing[sic] to cope with growth.”
IRC RECatabstract

“Tfthere are multiple users on a serverin the same channel, the message textis sent only onceto that
server and then sent to each client on the channel. This action is then repeated for each client-server
combination until the original message hasfanned out and reached each memberofthe channel.”
IRC RFCat § 3.2.2,

providing a group “IRCitself is a teleconferencing system, which(through the use of the client-server model) is well-
messaging server coupled to|suited to running on many machines in a distributed fashion. A typical setup involves a single process
said network, said server—_|(the server) forming a central point for clients (or other servers) to connect to, performing the required
communicating with said|message delivery/multiplexing and other functions.”
plurality of host computers|IRC RFC at § 1
using said unicast network
and maintaining alistof|“A channelis a named group ofoneor more clients which will all receive messages addressed to that

message groups, each channel. The channelis created implicitly when thefirst client joins it and the channel ceasesto exist
message group containing at|when the last client leaves it. While channel exists, any client can reference the channelusing the
least one host computer,|name of the channel.”

IRC RFC at § 1.3

3

Petitioner Riot Games,Inc. - Ex. 1005, p. 107

Petitioner Riot Games, Inc. - Ex. 1005, p. 108

sending, by a plurality of
host computers belongingto
a first message group,
messages to said servervia
satd unicast network,said

“Tn IRC the channel has a role equivalent to that of the multicast group; their existence is dynamic
(coming andgoing as peoplejoin and leave channels) andthe actual conversationcarried out on a
channelis only sent to servers which are supporting users on a given channel. If there are multiple
users on a server in the same channel, the message text 1s sent only once to that server and then sent to
each client on the channel, This action1s then repeated for each client-server combination until the
original message has fanned out and reached each memberof the channel.”
IRC RFC at § 3.2.2

“The current channel layout requires that all servers know aboutall channels, their inhabitants and
properties,”
IRC RFC at § 9.2.2

“Command: PRIVMSG

Parameters: <teceiver>{ ,<receiver>} <text to be sent>

PRIVMSGis used to sendprivate messages between users. <receiver> can also bea list of names or
channels separated with commas,”

 messages containing a IRC RECat § 4.4.1
payload portion and a
portion for identifying said
first message group;
aggregating, by said server|“The least efficient style of one-to-manyconversation is through clients talking to a ‘list’ of users. How
ina timeinterval this is done is almost self explanatory: the client gives a list of destinations to which the message is to
determined in accordance

with a predefined criterion,
said payload portionsofsaid
messages to create an

aggregated payload;

be delivered and the server breaks it up and dispatches a separate copyof the messageto each given
destination, This isn’t as efficient as using a groupsince the destination list 1s broken up and the
dispatch sent without checking to make sure duplicates aren't sent down each path.”
IRC REC at § 3.2.1

“This protocolis essentially the same as Dynseq except that here processes are not allowed to send
their messagesall the time, Instead messages are buffered and every / millisecondthey are packed and

Petitioner Riot Games,Inc. - Ex. 1005, p. 108

Petitioner Riot Games, Inc. - Ex. 1005, p. 109

sent as one packed message, In this case we have chosen / to be one millisecond sinceit 1s less than the
minimal expected one way userto user latency”
Friedmanat5,

“Tt turned out that packing messages improves both thelatency and throughput of the protocols by two
order of magnitudes and is therefore overwhelmingly more importantfor the performance than any
otheroptimization that we used,”
Friedmanat 1,

“This protocolis essentiallythe same as Dynseq except that here processes are not allowed to sendforming an ageregated
message using said
aggregated payload; and

their messages all the time, Instead messages are buffered and every | millisecond they are packed and
sent as one packed message.”
Friedman at §,

“Tf we denote this byte overhead by Athen bypacking m application messages as one messagethe
headers overhead for these messages becomesonly h instead of hX m which 1s required without
packing,”
Friedmanat 12,

transmitting, by said server
via said unicast network,

said aggregated messageto
a recipient host computer
belonging to said first
message group,

“In IRC the channelhas a role equivalentto that of the multicast group; their existence is dynamic
(coming and going as people join and leave channels) and the actual conversation carried out ona
channelis only sent to servers which are supporting users on a given channel, If there are multiple
users on a server in the same channel, the message text is sent only onceto that server and then sent to
each client on the channel. This action is then repeated for each client-server combination until the
original message has fanned out and reached each memberof the channel,”
IRC RFC at § 3.2.2

2. The method of claim 1

wherein said time intervalis

“This protocolis essentially the same as Dynseq except that here processes are notallowed to send
their messagesall the time. Instead messages are buffered and every | millisecond they are packed and

Petitioner Riot Games,Inc. - Ex. 1005, p. 109

Petitioner Riot Games, Inc. - Ex. 1005, p. 110

a fixed periodof time,

4, The method of claim |

further comprising the step
of creating, by oneof said
plurality of host computers,
said first message group by
sending a first control
messageto said server via
said unicast network.

sent as one packed message,”
Friedman atS,

“To create a new channel or become part of an existing channel, a useris required to JOIN the channel,
If the channel doesn't exist priorto joining, the channelis created andthe creating user becomes a
channel operator.” IRC RFC at § 13

“Command: JOIN

Parameters: <channel>{,<channel>} [<key>{,<key>}]
The JOIN command1s used byclient to start listening a specific channel.”
IRC RFC at § 4.2.1 5. The method of claim 4

further comprising the step
ofjoining, by someof said
plurality of host computers,
said first message group by
sending control messages
via said unicast networkto

said serverspecifying said
first message group.
6. The method of claim 1

wherein said network is

Internet and said server

communicates with said

plurality of host computers
using a sessionlayer
protocol,

 “Command: JOIN

Parameters: <channel>{,<channel>} [<key>{,<key>}]
The JOIN command 1s used by clientto start listening a specific channel.”
IRC REC at § 4.2.1

“The IRC protocol has been developed on systemsusing the TCP/IP networkprotocol, although there
i$ no requirement that this remainthe only sphere in which it operates,”
IRC REC at § 1,

Petitioner Riot Games,Inc. - Ex. 1005, p. 110

Petitioner Riot Games, Inc. - Ex. 1005, p. 111

CC-E

Petitioner Riot Games,Inc. - Ex. 1005, p. 111

Petitioner Riot Games, Inc. - Ex. 1005, p. 112

Claim Chart comparing Claims 1-6 of U.S, Patent No.
5,822,523 to the disclosure in RING in view of Netrek

Priorart cited in this chart:

¢ Thomas A, Funkhouser, “RING: A Client-Server System for Multi-User Virtual Environments,” Association of Computing
Machinery, 1995 Symposium onInteractive 3D Graphics, Monterey CA, (“RING”)

© Server2 5pl4.tar.gz “Server Code”) and BRMH-1.7.tar.gzClient Code”) (source code dated nolater than August 1994),

Reasons to Combine:

RING discloses communicating messages over a network. RING at Figs. 5 and 7, pp. 88, 87 and 91. Similarly, Netrek

discloses clients and servers communicating over a network using messages, See Server Code, Servervniserv\newstartd.c at lines 129-

73, lines 179-311, lines 146-70: Server\ntserv\nain.c at lines 135-43: ServerAnserv\socket.c at lines 442-88. Netrek further discloses

aggregating packets to reduce the numberof packets sent from the server. (e.g., “Idea: read from client often, sendto client not so

often”), Server\nservinput.c at lines 152-203; Server\niserv\redraw.cat lines 21-115; Server\nserr\sockel.c at lines 603-90, A

person of ordinary skill in the art, looking to increase network efficiency, would have lookedto related methods of communicating

messages over anetwork. Accordingly, a person of ordinary skill in the art would have lookedto the aggregation teachings of Netrek

to aggregate messages in RINGto increase networkefficiency,

rm

Petitioner Riot Games,Inc. - Ex. 1005, p. 112

Dei

|, Amethod for providing|“This paper describes the client-server design, implementation and experimental results for a system
group messagesto a that supports real-time visualinteraction between a large number of users in a shared 3D virtual
plurality of host computers|environment. The keyfeature of the system is that server-based visibility algorithms compute potential
connected over a unicast—_|visual interactions between entities representing users in order to reduce the number of messages
Wide area communication—_|required to maintain consistent state among many workstations distributed across a wide-area network,
network, comprising the|When an entity changesstate, update messages are sent only to workstations with entities that can
steps of: potentially perceive the change- i.e., ones to which the updateis visible.”

RINGat Abstract. “Tn a multi-user visual simulation system, users run an interactive interface program on (usually
distinct) workstations connected to each other via a network,”

RINGat p.85.

“A difficult challenge in multi-user visual simulation is maintaining consistent state amonga large
numberof workstations distributed over a wide-area network,”

RINGat p. 85.

“In orderto support very large numbers of users (> 1000) interacting simultaneously in a distributed
virtual environmentit is necessary to develop a system design and communication protocol that does
not require sending update messagesto all participating hosts for everyentity state change,”
RINGat p. 86,

“This paper describes a system (called RING)that supports interaction between large numbers of users
in virtual environments with dense occlusion(e.g.buildings, cities, etc), RING takes advantageofthe
fact that state changes must be propagated only to hosts containingentities that can possibly perceive
the change- i.e., the one that can see it, Object-spacevisibility algorithmsare used to compute the
region of influencefor each state change, and then update messages are sent only to the small subset of
workstations to which the update is relevant,”
RING at p. 86.

Petitioner Riot Games,Inc. - Ex. 1005, p. 113

Petitioner Riot Games, Inc. - Ex. 1005, p. 114

“We have experimented with a variety of topologiesfor connecting RINGclients and servers, For
practical reasons, we have focused mainly on arrangements in which clients communicate with a single
server. However, depending on the capabilities of available workstations and networks, clients can
send messages to server(s) via unicast or multicast.”
RING at p. 91.

“Tn our first experiments with multi-user virtual environments, we used IP multicast to send update
messages directly between clients, The general ideais to map entity properties into multicast groups,
and send update messages only to relevant groups. For instance, Macedonta partitions a virtual world
into a 2D grid of hexagonal shaped cells each of which is represented by a separate multicast group,
Entities localize their visual interactions by sending updates onlyto the multicast group representing
the cell in which the reside, and they listen only to multicast groups representing cells within some
radius.

The multicast approach is similar to the RING client-serverapproach for wide-area networks. In both
cases, intermediate machines maycull messages ratherthan propagating themto all participating
workstations. However, using multicast, message culling is done by routers at the network layer,
whereas, in RING, message culling 1s done by server machines at the application layer(see Figure 1),
The advantagesof the multicast approach are that: 1) fewer messages must be passed if clients are
connected directly to a multicast-capable LAN (e.g,, ethemet), and 2) latency 1s reduced dueto faster
message routing, The disadvantagesare that: 1) delays associated with joining and leaving multicast
groups makeit impractical to use highly dynamic entity properties for multicast group mappings, 2) the
number of unique multicast groups accessible to any one application may not be sufficient for complex
virtual environments, and 3) multicast is not generally available across wide-area networks to many
types of networks computers (e.g., PCs with modems),

The advantage ofthe RING client-server approach is that very dynamic and complex message
processing may be performed by servers, In contrast to multicast routers, which can only cull
messages based on a relatively small, static set of multicast groups, RINGservers can cull messages
using high-level geometric algorithms and knowledge regarding a multiplicity of highly dynamicentity

Petitioner Riot Games,Inc. - Ex. 1005, p. 114

Petitioner Riot Games, Inc. - Ex. 1005, p. 115

attributes (e.g,, location, orientation, velocity, etc.) and interaction types (e.g., visibility, sound,
collision, etc,), Since RING servers can take advantage of knowledge regarding message semantics
and the 3D geometry of the virtual environment directly, they can execute more effective and flexible
culling algorithms than would be possible using only IP address and port mappings, Furthermore,
unlike multicast routers, RING servers may process, augment, and alter messages in addition to culling
them. For instance, RING servers already augmentupdate messages with “Add” and “Remove”
messages to inform clients that entities are entering or leaving their potentially visible areas,”
RINGat p. 90-91, providing a group Glient

messaging server coupled to |
sald network,said server

communicating with said
plurality of host computers
using said unicast network
and maintaining a list of
message groups, each
message group containing at
least one host computer;

Hime & BING servers manage |

fysulling, agant

Figure 5 of RINGat p. 87.

“Wehave experimented with a variety of topologiesfor connecting RINGclients and servers, For
practical reasons, we have focused mainly onarrangements in which clients communicate with a single
server. However, depending on the capabilities of available workstations and networks, clients can
send messages to server(s) via unicast or multicast.”

Petitioner Riot Games,Inc. - Ex. 1005, p. 115

Petitioner Riot Games, Inc. - Ex. 1005, p. 116

RING at p. 91.

“Server-based message culling is implemented using precomputed line-of-sight visibility information.
Priorto the multi-user simulation, the shared virtual environment is partitioned into a spatial
subdivisionof cells whose boundaries are comprised of the static, axis-aligned polygonsof the virtual
environment(1, 15]. A visibility precomputation is performed in whichthe set of cells potentially
visible to each cell is determined bytracing beamsof possible sight-Lines through transparent cell
boundaries [15, 16] (see Figure 6), During the multi-user simulation,servers keep track of whichcells
contain which entities by exchanging “periodic”update messages when entities cross cell boundaries.
Real-time update messagesare propagated onlyto servers and clients containing entities inside some
cell visible to the one containing the updated entity. Since an entity’s visibility 1s conservatively over-
estimated bythe precomputed visibility of its containing cell, this algorithm allowsservers to proves
update messages quickly using cell visibility “look-ups” rather than more exactreal-timeentity
visibility computations which would be too expensive on currently available workstations.”
RING at p. 87,

Petitioner Riot Games,Inc. - Ex. 1005, p. 116

 Figure7; Flas of apdate messages Gabel araws} fir aye‘ " Wh ay “ ‘ ' . ¢
dates tu entites A, Bf, and D arrangod in a virisal exvieon-
ment as shown in Pigare 4,

Figure 7 of RING at p.88,

“Communication between clients is managed byservers, Clients do not send messages directly to
otherclients, but instead send them to servers which forwardthem to other client and server

workstations participating in the samedistributed simulation (see Figure 5), A key feature ofthis
client-server design is that servers can process messages before propagating them to other workstations,
culling, augmenting, or altering them. For instance, a server may determinethat a particular update
message is relevant only to a small subset ofclients and the propagate the messageonly to thoseclients
ortheir servers.”

RINGat p. 87.

sending, by a plurality of—|“RING represents a virtual environmentas a set of independententities each of which has a geometric
host computers belonging to|description and a behavior. Some entities are static (¢.g.. terrain, buildings,etc.), whereas others have
a first message group, dynamic behavior that can be either autonomous(¢.g., robots) or controlled by a user via input devices
messagesto said server via|(e.g, vehicles), Distributed simulation occurs when multiple entities interact in a shared virtual

Petitioner Riot Games,Inc. - Ex. 1005, p. 117

Petitioner Riot Games, Inc. - Ex. 1005, p. 118

said unicast network, said|environment by sending messages to one another to announce updates to their own geometry or
messages containing a behavior modifications to the shared environment, or impact on otherentities,”
payload portion and a RINGat p. 87,
portion for identifying said
first message group; “Communication betweenclients is managed by servers. Clients do not send messagesdirectly to

other clients, but instead send them to servers which forward them to other client and server

workstations participating in the samedistributed simulation (see Figure 5).”
RINGat p.87,

“We have experimented with a variety of topologies for connecting RINGclients andservers, For
practical reasons, we have focused mainlyon arrangements in which clients communicate with a single
server. However, depending on the capabilities of available workstations and networks, clients can
send messages to server(s) via unicast or multicast,”
RINGat p. 91.

“Update messages containing 40 bytes (message-type[4], entity-ID[4], target-position[12], target-
orientation[12], positional velocity[4), and rotational-velocity[4] were generated for each entity once
every 2.3 seconds on average with this ‘random’ navigational behavior.”
RINGat p. 89.

Petitioner Riot Games,Inc. - Ex. 1005, p. 118

 Fiowe & RING servers manage mameunication between
clients, potibly cwlling, augmenting, or altering menaagat,

Figure 5 of RING at p. 87,

agorevating, by said server|00000076 int timerDelay=200000; /* delay between sending stuff to
ina time interval client */

determined in accordance—_|Server\ntserv\data.c atline 76

with a predefined criterion,
said payload portions of said|00000195 readFromClient() ;
messages to create an Server\ntservlinput.c at line 195
aggregated payload;

00000152 input()
00000153 {

00000154 struct itimerval udt;

00000155 fd_set readfds;

00000156 Static struct timeval poll = {2, 0};
00000157

00000158 #ifdef Ds

Petitioner Riot Games,Inc. - Ex. 1005, p. 119

Petitioner Riot Games, Inc. - Ex. 1005, p. 120

(10000159 if (!me->p_process)

00000160 #endif

000161 {

000162 udt.it_interval.tv_sec = 0;

(00000163 udt.it_interval.tv_usec = timerDelay;
000164 udt.it_value.tv_sec = 0;

0000165 udt.it_value.tv_usec = timerDelay;
0000166 setitimer (ITIMERREAL, &udt, 0);

00000167 }

0000168 SIGNAL (SIGALRM, setflag);
00000169

0000170 /* Idea: read from client often, send to client
not so often */

00000171 while (1) {

[..]

00000195 readFromClient ();

[..]

00000203 }

0000204 }

Server\ntserviinput.c atlines 152-203

00000076 int timerDelay=200000; /* delay between sending stuff to
client */

Server\ntservidata.catline 76

00000603 updateClient ()
00000604 {

[..]

00000608 static int skip = 0; /* If skip is set we skip next
update */
00000609 /* This can halve your updates */

Petitioner Riot Games,Inc. - Ex. 1005, p. 120

Petitioner Riot Games, Inc. - Ex. 1005, p. 121

(1000610 if (send_short && skip) {

00611 skip = 0; /* back to default */

000612 if (bufptr==but && (commMode!=COMM_UDP |

dpbufptr==buf)) {

00000613 /* We sent nothing! We better send something to
wake him */

0000614 if (me->p_fuel < 61000)
000615 sendClientPacket ((CVOID) &clientSelfShort};

00616 else

000617 sendClientPacket ((CVOID) &clientSelf);

000618 }

000619 flushSockBuf (};

(10620 repCount++;
(0000621 return}

00000622 }

[..]

010000630 if (send_short) {

00000631 updateP lasmas();

00000632 updateStatus ();

0000633 updateSelf();
00000634 updatePhasers() ;

010000635 updateShips();
00636 updateTorps() ;

(00637 updatePlanets ();

000638 updateMessages ();
000639 }

00000657 if(send_short && (me->p_fuel < 61000))
00000658 sendClientPacket ((CVOID) &clientSelfShort};

0000659 else

00660 #endif

Petitioner Riot Games,Inc. - Ex. 1005, p. 121

Petitioner Riot Games, Inc. - Ex. 1005, p. 122

000661 sendClientPacket ((CVOID) &clientSelf);

00000662 }

[..]

00000685 sendClientPing(}; /* ping.c */
00000686 #endif

0000687

1000688 tlushSockBuf();

0000689 repCountt+;
00000690 }

Server\ntserv\socket.c at lines 603-90

00000052 intrupt ();

Server\ntservlinput.c at lines 52

00000197 intrupt ();

Server\ntserviinput.c at lines 197

00001390 updateMessages()
00001391 {

[os]

00001590 }

Server\ntservisocket.c at lines 1390-590

10001825 readFromClient()

00001826 {

[+]

00001838 if (select (32, greadfds,0,0,&timeout) '= 0} {

00001839 /* Read info from the xtrek client */

00001840 if (FD_ISSET(sock, &readfds)) {

00001841 retval += doRead (sock);

00001842 }

Petitioner Riot Games,Inc. - Ex. 1005, p. 122

Petitioner Riot Games, Inc. - Ex. 1005, p. 123

00001843

00001844

00001845

00001846

00001847

00001848

00001849

00001850

00001855

00001856

00001857

00001858

00001859

00001877

00001878

00001916

00001917

00001939

0001940

packet,
00001941

died.

(0001942

00001943

00001944

00001945

001946

if (udpSock >= 0 && FD_ISSET(udpSock, &readfds)) {

Y_UDPDIAG(("Activity on UDP socket\n"));
retval += doRead(udpSock) ;

return (retval != 0); /* convert to 1/0 */

/* ripped out of above routine */
doRead (asock}

int asock;

{

struct timeval timeout;

/* Read info from the xtrek server */

count=read(asock, buf, BUFSI2*2};

bufptr=but;

while (bufptr < buftcount) {

while (size>countt(buf-bufptr}) {
/* We wait for up to twenty seconds for rest of

* Tf we don't get it, we assume the client

*/

timeout .tv_sec=20;

timeout .tv_usec=0;

/*readfds=1<<asock;*/

FDZERO (&readfds) ;

Petitioner Riot Games,Inc. - Ex. 1005, p. 123

Petitioner Riot Games, Inc. - Ex. 1005, p. 124

a a> Bo qa

¥UV

d00020
VU

000020
VU

VV

0000201YUL

< <
Bo

< t

00002037

00002038

00002039

00001947

00001956

00001966

fptr>t CO1O&MCHAESCOBROFrce
>

BoBOBOBMBhBDBHO cmaOoOOOOOSco BoBDBOBOBOBRS+ CA=GCMOFeoo8a
00002034

00002035

te

FD_SET(asock, &readfds);

temp=read (asock, buf+count, size-(count+ (buf-bufptr) });

(* (handlers [*bufptr] .handler)) (bufptr);

}

/* Otherwise we ignore the request */
} else {

ERROR (1, ("Handler for packet $d not installed...\n",

bufptrt=size;
if (bufptr>buf+BUFSIZ) {

beopy (ouf+BUFSIZ, buf, BUFSIZ);
if (count==BUFSIZ*2) {

/*readfds = 1<<asock;*/

FD_ZERO (&readtds} :

FDSET (asock, &readfds);

if (select (32, &readfds,0,0,&timeout}} {

temp=read (asock, buf+BUFS1Z, BUFSIZ) ;

count=BUFSIZ+temp;

} else {

count=BUFSIZ;

}

| else |

count ~=BUFSIZ;

bufetr-=BUFSI2;

Petitioner Riot Games,Inc. - Ex. 1005, p. 124

00002041

00002042 }

00002043 return (1);

00002044 }

Server\ntservisocket.c at lines 1825-2044

0001825 readFromClient()

0001826 {

if (select (32, &readfds,0,0,&timeout) != 0) {
/* Read info from the xtrek client */

if (FD_ISSET(sock, &readfds)) {

retval += doRead(sock);

}

if (udpSock >= 0 && FD_ISSET(udpSock, &readfds)) {
V_UDPDIAG(("Activity on UDP socket\n"));
retval += doRead(udpSock);

}

return (retval != 0); /* convert to 1/0 */

1855 /* ripped out of above routine */
1856 doRead (asock)

1857 int asock;

struct timeval timeout;

/* Read info from the xtrek server */

count=read(asock, buf, BUFS12*2);

0

0

[..

0

0

0

0

0

0

0

0

0

0

0

0

0

[.

0

0

0

0

0

[..

0

000

Petitioner Riot Games, Inc. - Ex. 1005, p. 125

bufptr=buf;

while (bufptr < buftcount) {

while (size>count+(buf-bufptr)) {
/* We wait for up to twenty seconds for rest of

* Tf we don't get it, we assume the client

°:-
*|

timeout.tv_sec=20;

timeout.tv_usec=0;

/*readfds=1<<asock; */

FD_ZERO(&readfds) ;

FD_SET(asock, &readfds) ;

temp=read(asock, buft+count, size-(count+ (buf-bufptr) });

(* (handlers[*bufptr] .handler)) (bufptr);

}

/* Otherwise we ignore the request */
} else {

ERROR (1, ("Handler for packet $d not installed...\n",

bufptrt=size;
if (bufptr>buf+tBUFSIZ) {

beopy (buf+BUFSIZ, buf, BUFSIZ);
if (count==BUFSI2*2) {

 0

0

0

0

0

0

[..

0

[oss
0

[.
0

0

0

0

0
x

0

0

0

0

0

Petitioner Riot Games,Inc. - Ex. 1005, p. 126

Petitioner Riot Games, Inc. - Ex. 1005, p. 127

00002020 /*readfds = 1<<asock;*/

00002021 FD_ZERO (&readfds} ;

00002022 FDSET(asock, &readfds);

00002023 if (select (32, éreadfds,0,0,&timeout}} {

00002024 temp=read (asock, buf+BUFSIZ, BUFSIZ) ;

00002025 count=BUFSIZ+temp;
[..s]

00002034 } else {

00002035 count=BUFSIZ;

(10002036 }

00002037 } else |

00002038 count -=BUFSIZ;

(0002039 }

002040 butptr-=BUFSI2Z;
00002041 }

00002042 }

00002043 return (1);
2044

Server\ntservisocket.c atlines 1825-2044

00001380 updateMessages()
00001391 {

[es]

00001590 }

Server\ntservisocket.e at lines 1390-590

(0001603 sendClientPacket (packet)
00001604 /* Pick a random type for the packet */
(0001605 struct player_spacket *packet;
0001606 {

[...]

Petitioner Riot Games,Inc. - Ex. 1005, p. 127

Petitioner Riot Games, Inc. - Ex. 1005, p. 128

00001618 /*

0001619 * Tf we're dead, dying, or just born, we definitely
want the transmission

00001620 * to get through (otherwise we can get stuck}. I don't
think this will

(0001621 * be a problem for anybody, though it might hang for a
bit if the TCP

00001622 * connection is bad.

00001623 */

00001624 /* Okay, now I'm not so sure. Whatever, */
00001625 if (oldstatus != PALIVE || (me != NULL && me->p_status
!= PALIVE) }

00001626 orig_type = packet->type | 0x80; /* pretend it's critical

00001627 #endif

00001628 if (packet->type<l || packet->type>NUM_SIZES |

0001629 sizes[(int)packet->type]==0) {
00001630 ERROR(1, ("Attempt to send strange packet $d $d\n", packet-

“ype, NUM_SIZES) }s

00001631 return;

00001632 }

00001633 packetsSent [(int) packet->type] ++;
(0001634 if (commMode == COMM_TCP || (commMode == COMM_UDP &&

doMode == MODE_TCP)) {

00001635 /*

(0001636 * business as usual

001637=*/

wa
¢

>het

00001647 bcopy(packet, bufptr, size);

00001648 bufotrt=size;
001649

Petitioner Riot Games,Inc. - Ex. 1005, p. 128

} else {

* do UDP stuff unless it's a "critical" packet
* (note that both kinds get a sequence number appended)

*/

01728 default:

01729 /* these are critical packets; send them via TCP */
01730 size=sizes(packet->type] ;
01731 if (bufptr-buftsize >= BUFSIZE) {
01732 t=bufptr-buf;
01733 if (gwrite(sock, buf, t) !=t) {
01734 perror ("ICP gwrite failed, client marked dead");
01735 clientDead=1;
01736 }

01737 bufptr=buf /*+ addSequence (buf) */;
01738 }

01739 beopy (packet, bufptr, size);

01740 bufptrt=size;
01741 break;
01742

01743 }

01744 }

Server\ntserv\socket.cat lines 1603-744

0

0

0

0

(

0

[.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00001125 updateTorps()
00001126 {

[...]

00001132 for (i=0, torp=torps, tpi=clientTorpsInfo,
tp=clientTorps;

Petitioner Riot Games,Inc. - Ex. 1005, p. 129

Petitioner Riot Games, Inc. - Ex. 1005, p. 130

00001133 i<MAXPLAYER*MAXTORP;

(0001134 itt, torptt, tpitt, tptt) {
[ves

00001142 sendClientPacket(tpi);
[as

00001151 sendClientPacket(tp} ;
[...

00001191 }

192 }

Server\ntservisocket.c atlines 1125-92

“Furthermore unlike multicast routers, RING servers may process, augment, and alter messages in
addition to culling them. For instance, RINGservers already augment update messages with “Add”
and “Remove” messages to inform clients that entities are entering or leavingtheir potentially visible
sets,”

RING at p, 91.

“RINGservers alloweach client workstation to maintain surrogatesfor only the subset of remote
entities visible to at least one entity local to the client. ... To support this feature, servers sendtheir
client an “Add” message each time a remote entity enters a cell potentiallyvisible to one of the client’s
local entities for the first time, A “Remove” message is sent whenthe server determines that an entity
hasleft the client’s visible region, Asentities move through the environment, servers augmentupdate
messages with “Add” and “Remove” messages notifyingclients that remote entities have become
relevant orirrelevant to the client’s local entities,”

RING at p.88,

“Finally,time critical computing algorithmscan be used to determine an ‘optimal’ set of messagesto
send to each client based on network connection bandwidths, workstationprocessing capabilities, and
manyotherreal-time performancefactors (1.e., in a mannersimilar to that usedin [8]),”
RINGat p. 91.

Petitioner Riot Games,Inc. - Ex. 1005, p. 130

Petitioner Riot Games, Inc. - Ex. 1005, p. 131

 forming an aggregated
messageusing said
aggregated payload; and

“During the multi-user simulation, servers keep track of which cells contain which entities by
exchanging ‘periodic’ update messages when entities cross cell boundaries, Real-time update messages
are propagated only to servers and clients containing entities inside some cell visible to the one
containing the updated entity. Since an entity’s visibility 1s conservatively over-estimatedby the
precomputed visibility ofits containingcell, this algorithm allowsservers to process update messages
quickly using cell visibility ‘look-ups’ rather than more exact real-timeentity visibility computations
which would be too expensive on currently available workstations.”
RINGat p.87,

“Rather than sending messagesdirectly between clients, RING routes each on through at least one
server, and possibly two, Computations are performedin the servers before messagesare propagated
further adding to latency,”
RINGat p.88,
00001747 flushSockBut ()

001748 {

00001755 if (gwrite(sock, buf, t) !=t) {

(0001756 perror("std flush gwrite failed, client marked dead");
00001757 clientDead=1;

(01758 }
(0001782 if (gwrite(udpSock, udpbuf, t) != t}{

00001783 perror("UDP flush gwrite failed, client marked dead
once more");

00001784 #ifdef EXTRAGB

00001785 clientDead=1;
00001786 #endif

00001787 UDPDIAG(("*** UDP disconnected for %s\n", me->p_name))};
(10001788 printUdpInfo ();

00001789 closeUdpConn() ;
001790 commMode = COMMTCP;

Petitioner Riot Games,Inc. - Ex. 1005, p. 131

Petitioner Riot Games, Inc. - Ex. 1005, p. 132

00001791 =}

[..]

00001802 }

Server\ntserv.c atlines 1747-802

(0002607 gwrite(fd, whuf, size)
00002608 int fd;

002609 char *wbuf;

0002610 size_t size;

00002611 {

00002625 while (bytes>0) {

00002626 n= write(fd, whuf, bytes);

(02671 }

(00002672 return (orig);
00002673 }

Server\ntserv.c at lines 2607-73

000603 updateClient(}
000604 {

000608 static int skip = 0; /* If skip is set we skip next
update */

00000609 /* This can halve your updates */
00610 if (send_short && skip) {

00000611 skip = 0; /* back to default */
00000612 if (bufptr==buf && (commMode!=COMM_UDP |

udpbufptr==buf)) {

0000613 /* We sent nothing! We better send something to

wake him */

00000614 if (me->p_fuel < 61000)

22

Petitioner Riot Games,Inc. - Ex. 1005, p. 132

Petitioner Riot Games, Inc. - Ex. 1005, p. 133

(0000615 sendClientPacket ((CVOID) &clientSelfShort) ;

0000616 else

00000617 sendClientPacket ((CVOID) &clientSelf);

00000618 }

(00000619 flushSockBuf (};

00000620 reoCount+t}
00000621 return}

00000622 }

[..]

00000630 if (send_short) {

(0000631 updatePlasmas() ;

0000632 updateStatus ();

00000633 updateSelf();

(0000634 updatePhasers() ;
0000635 updateShips();

00000636 updateTorps();

(00000637 updatePlanets ();

00000638 updateMessages ();
00000639 }

[..]

00000657 if(send_short && (me->p_fuel < 61000}}
00000658 sendClientPacket ((CVOID) &clientSelfShort} ;

0000659 else

000660 #endif

000661 sendClientPacket ((CVOID) &clientSelf};

000662 }

00000685 sendClientPing(}; /* ping.c */
00000686 #endif

0000687

00688 flushSockBuf();

Petitioner Riot Games,Inc. - Ex. 1005, p. 133

Petitioner Riot Games, Inc. - Ex. 1005, p. 134

00000689 repCountt+;
00000690 }

Server\ntservisocket.c at lines 603-90

< <

>ty

(0001603 sendClientPacket (packet)
00001604 /* Pick a random type for the packet */
00001605 struct player_spacket *packet;

001606 {

00001618 [*

00001619 * If we're dead, dying, or just born, we definitely
want the transmission

00001620 * to get through (otherwise we can get stuck), I don't
think this will

00001621 * be a problem for anybody, though it might hang for a
bit if the TCP

00001622 * connection is bad,

01623 */

00001624 /* Okay, now I'm not so sure. Whatever, */
00001625 if (oldstatus != PALIVE || (me != NULL && me->p_status

PALIVE} }

00001626 orig_type = packet->type | 0x80; /* pretend it's critical

00001627 #endif

001628 if (packet->type<l || packet->type>NUM_SIZES |

00001629 sizes[(int)packet->type]==0) {
00001630 ERROR(1, ("Attempt to send strange packet Sd %d\n", packet-

pe, NUM_SIZES) };
(0001631 return;nnn

01632 }

101633 packetsSent [(int) packet->type] t+;

Petitioner Riot Games,Inc. - Ex. 1005, p. 134

Petitioner Riot Games, Inc. - Ex. 1005, p. 135

00001634

00001635

00001636

00001637

00001647

00001648

00001649

00001650

00001651

00001602

00001653

(FIX

001654

00001728

00001729

00001730

00001731

00001732

00001733

00001734

00001735

00001736

00001737

00001738

00001739

00001740

00001741

001742

udpMode =

if (commMode == COMM_TCP || (commMode == COMM_UDP &&(

= MODE_TCP)) {
/k

* business as usual

*/

beopy (packet, bufptr, size);

bufptrt=size;

} else [

/ *

* do UDP stuff unless it's a "critical" packet

* (note that both kinds get a sequence number appended)

7

default:

/* these are critical packets; send them via TCP */
size=sizes [packet->type] ;

if (bufptr-buftsize >= BUFSIZE) {

t=bufptr-but;

if (gwrite(sock, buf, t) !=t) {
perror ("TCP gwrite failed, client marked dead");
clientDead=1;

bufotr=buf /*+ addSequence (buf) */;
}

beopy (packet, bufptr, size);

bufptrt=size;
break;

Petitioner Riot Games,Inc. - Ex. 1005, p. 135

Petitioner Riot Games, Inc. - Ex. 1005, p. 136

00001743 }

00001744 }

Server\ntservisocket.c at lines 1603-744

“Furthermoreunlike multicast routers, RING servers mayprocess, augment, andalter messages in
addition to culling them. For instance, RINGservers already augment update messages with “Add”
and “Remove”messages to inform clients that entities are entering or leaving their potentially visible
sets.”

RING at p, 91.

“RINGservers allow each client workstation to maintain surrogates for only the subset of remote
entities visible to at least one entity localto the client. ... To support this feature, servers send their
client an “Add” message each time a remoteentity enters a cell potentially visible to one of the client’s
local entities for the first time, A “Remove” message 1s sent when the server determines that an entity
hasleft the client’s visible region, As entities move through the environment, server augment update
messages with “Add” and “Remove” messages notifying clients that remote entities have become
elevantor irrelevant to the client’s local entities,”

RINGat p, 88,
transmitting, by said server|00001603 sendClientPacket (packet)
via said unicast network,|00001604 /* Pick a random type for the packet */

said aggregated message to|00001605 struct player_spacket *packet;
arecipient host computer/00001606 {
belonging to said first
message group, 00001639 if (oufptr-buftsize >= BUFSIZE) {

00001640 t=bufptr-but;

00001641 if (gwrite(sock, buf, t) !=t) {

00001642 perror("std gwrite failed, client marked dead ");
00001643 clientDead=1;

00001644 }

00001645 bufptr=buf;
001646 }

Petitioner Riot Games,Inc. - Ex. 1005, p. 136

Petitioner Riot Games, Inc. - Ex. 1005, p. 137

(0001647 beopy(packet, bufptr, size);

00001648 bufptrt=size;
00001649

00001650 } else {

00001731 if (oufptr-buftsize >= BUFSIZE) {
00001732 t=bufptr-but;

00001733 if (gwrite(sock, buf, t) !=t) {
00001734 perror ("TCP gwrite failed, client marked dead");
00001735 clientDead=1;

00001736 }

00001737 bufptr=buf /*+ addSequence (buf) */;
00001738 }

(0001739 beopy (packet, bufptr, size);
(0001740 bufptrt=size;

00001741 break;

00001742 }

00001743 |

(0001744 }

Server\ntservisocket.c at lines 1603-744

(0000603 updateClient ()
10000604 {

[. +]

10000688 flushSockBuf () ;

00000689 repCount++;
10000690 }

Server\ntservisocket.cat lines 603-90

00001747 flushSockBué(}

00001748 {

Petitioner Riot Games,Inc. - Ex. 1005, p. 137

[..]

00001755

00001756

00001757

00001758

(..]
00001782

00001783

if (gwrite(sock, buf, t) !=t) {

perror("std flush gwrite failed, client marked dead");
clientDead=1;

if (gwrite(udpSock, udpbuf, t) != t){

perror("UDP flush gwrite failed, client marked dead
once more");

[..]

00001791

[..]

00001802 }

Server\ntservisocket.c at lines 1747-802

aooOoOoDWOS
|

02625

02626

02627

02628

02629

02630

02631

vs]
002671

oOCOelDWODOoOs
0

0

0

0

0

[

0

0

0

0

(

0

0

0

[
0

ao-

 0

0

0

0

d)\n",getpid()));
0

0

0

002607 gwrite(fd, whuf, size)
002608 int fd;

002609 char *wbuf;

002610 size_t size;

002611 {

while (bytes>0) {
n = write(fd, wouf, bytes);
if (count++ > 100) {

ERROR (1, ("Gwrite hosed: too many writes

clientDead = 1;

return (-1);

28

Petitioner Riot Games,Inc. - Ex. 1005, p. 138

Petitioner Riot Games, Inc. - Ex. 1005, p. 139

00002672 return (orig) ;
00002673 }

Server\ntservisocket.c at lines 2607-73

00001125 updateTorps (}
00001126 {

001132 for (i=0, torp=torps, tpi=clientTorpsInfo,
tp=clientTorps;
00001133 i<MAXPLAYER* MAXTOR?; 00001134 itt, torpt+, tpitt, tpt+) {
[...

00001142 sendClientPacket (tpi);
[eas

00001151 sendClientPacket(tp} ;
[...

00001191 }

01192 }

Server\ntservisocket.c at lines 1125-92

“Communication between clients 1s managed by servers, Clients do not send messagesdirectly to
other clients, but instead send them to servers which forward them to other client and server

workstationsparticipating in the same distributed simulation (see Figure 5),”
RINGat p, 87,

“Wehaveexperimented with a variety of topologies for connecting RING clients and servers. For
practical reasons, we have focused mainly on arrangements in which clients communicate with a single
server, However, depending on the capabilities of available workstations and networks, clients can
send messages to server(s) via unicast or multicast.”
RINGat p. 91.

2, The method of claim 1|“During the multi-usersimulation, servers keep track of which cells contain which entities by

Petitioner Riot Games,Inc. - Ex. 1005, p. 139

Petitioner Riot Games, Inc. - Ex. 1005, p. 140

wherein said time interval is|exchanging “periodic” update messages whenentities cross cell boundaries,”
a fixedperiodof time, RINGat p. 87.

“This paper describes the client-server design, implementation and experimental results for a system
that supports real-time visual interaction between a large numberof users in a shared 3D virtual
environment. The key feature of the system is that server-basedvisibility algorithms computepotential
visual interactions betweenentities representing users inorder to reduce the number of messages
required to maintain consistent state among many workstationsdistributed across a wide-area network.
Whenan entity changesstate, update messages are sent only to workstationswith entities that can
potentially perceive the change-i.e., ones to which the updateis visible.”
RINGat Abstract.

“Tn a multi-uservisual simulation system, users run an interactive interface program on (usually
distinct) workstations connected to each othervia a network,”

RINGat p. 85,

“A difficult challenge in multi-user visual simulation 1s maintaining consistentstate amongalarge
number of workstationsdistributed over a wide-area network.”

RINGat p. 85.

“In orderto support very large numbers of users (> 1000) interacting simultaneously in a distributed
virtual environmentit 1s necessary to develop a system design and communication protocol that does
not require sending update messages to all participating hosts for every entity state change.”
RINGat p. 86.

“This paper describes a system (called RING)that supports interaction betweenlarge numbers of users
in virtual environments with dense occlusion (e.g., buildings, cities, etc.). RING takes advantage of the
fact that state changes must be propagated onlyto hosts containing entities that can possibly perceive
the change- Le,, the onethat can see it. Object-space visibility algorithmsare used to compute the
region of influencefor each state change, and then update messagesare sent only to the small subset of
workstations to which the update 1s relevant.”

30

Petitioner Riot Games,Inc. - Ex. 1005, p. 140

Petitioner Riot Games, Inc. - Ex. 1005, p. 141

RING at p.86.

“Wehave experimented with a variety of topologies for connecting RINGclients and servers, For
practical reasons, we have focused mainly on arrangements in which clients communicate with a single
server. However, depending on the capabilities of available workstations and networks, clients can
send messages to server(s) via unicast or multicast.”
RINGat p. 91.

“In ourfirst experiments with multi-uservirtual environments, we used IP multicast to send update
messagesdirectly between clients. The general idea 1s to map entity properties into multicast groups,
and send update messages only to relevant groups, For instance, Macedonia partitions a virtual world
into a 2D grid of hexagonal shaped cells each of which is represented by a separate multicast group.
Entities localize their visual interactions by sending updates onlyto the multicast group representing
the cell in which the reside, and they listen only to multicast groups representing cells within some
radius.

The multicast approach is similar to the RING client-server approach for wide-area networks. In both
cases, intermediate machines may cull messages rather than propagating them to all participating
workstations, However, using multicast, message culling 1s done by routers at the network layer,
whereas, in RING, message culling is done by server machines at the application layer (see Figure 11).
The advantagesof the multicast approach are that: 1) fewer messages must be passed if clients are
connected directly to a multicast-capable LAN (e.g,, ethernet), and 2) latency is reduced due to faster
message routing, The disadvantages are that: 1) delays associated with joining and leaving multicast
groups makeIt impractical to use highly dynamic entity properties for multicast group mappings, 2) the
number of unique multicast groups accessible to any one application maynot be sufficient for complex
virtual environments, and 3) multicast is not generally available across wide-area networks to many
types of networks computers (e.g.. PCs with modems),

The advantage ofthe RING client-server approach is that very dynamic and complex message
processing may be performed by servers. In contrast to multicast routers, which can onlycull
messagesbased on a relatively small, static set of multicast groups, RING serverscan cull messages

Petitioner Riot Games,Inc. - Ex. 1005, p. 141

Petitioner Riot Games, Inc. - Ex. 1005, p. 142

using high-level geometric algorithms and knowledge regarding a multiplicity of highly dynamicentity
attributes (¢.g,, location, orientation, velocity, etc.) and interaction types (¢.¢., visibility, sound,
collision, etc.). Since RING servers can take advantage of knowledgeregarding message semantics
and the 3D geometry of the virtual environment directly, they can execute more effective and flexible
culling algorithms than would be possible using only IP address and port mappings. Furthermore,
unlike multicast routers, RING servers may process, augment, and alter messages in additionto culling
them. For instance, RINGservers already augment update messages with “Add”and “Remove”
messagesto inform clients that entities are entering or leaving their potentially visible areas,”
RINGat p,90-91,

3, The method of clam!|00000195 readFromClient ();

wherein said time interval|Server\ntserv\input.c at line 195
corresponds to a time for
said serverto receive at 00000152 input (}

least one message from each|00000153 |
host computer belonging to|00000154 struct itimerval udt;
said first message group,|00000155 fd_set readfds;

00000156 static struct timeval poll = {2, 0};
00000157

0000158 #ifdef DS

000159 if (!me->p_process)
00000160 #endif

0000161 { 000162 udt.it_interval.tv_sec = 0;

(163 udt.it_interval.tv_usec = timerDelay;
00164 udt.it_value.tv_sec = 0;

0000165 udt.it_value.tv_usec = timerDelay;
(0000166 setitimer (ITIMERREAL, &udt, 0);

00000167 }

00000168 SIGNAL (SIGALRM, setflag);
000169

(000170 /* Idea: xvead from client often, send to client

32

Petitioner Riot Games,Inc. - Ex. 1005, p. 142

Petitioner Riot Games, Inc. - Ex. 1005, p. 143

not so often */

00000171 woile (1) {

[..]

00000195 readFromClient (};

[..]

00000203 }

00000204 }

Server\ntserviinput.c atlines 152-203

00000076 int timerDelay=200000; /* delay between sending stuff to
client */

Server\ntserv\data.c at line 76

000603 updateClient(}
000604 {

00000608 static int skip = 0; /* If skip is set we skip next
update */

00000609 /* This can halve your updates */
00000610 if (send_short && skip) {

00000611 skip = 0; /* back to default */
00000612 if (oufptr==buf && (commMode!=COMM_UDP | 000613 /* We sent nothing! We better send something to
wake him */

00000614 if (me->p_fuel < 61000)
(00615 sendClientPacket ((CVOID) &clientSelfShort};
000616 else

000617 sendClientPacket ((CVOID) &clientSelf);

00000618 }

000619 flushSockBut (};

33

Petitioner Riot Games,Inc. - Ex. 1005, p. 143

Petitioner Riot Games, Inc. - Ex. 1005, p. 144

100620 repCountt+;

00000621 return}

00000622 |

[..]

00000630 if (send_short} {

(00000631 updatePlasmas() ;
00000632 updateStatus ();

0000633 updateSelf();
00000634 updatePhasers() ;

00000635 updateShips();

00000636 updateTorps();

0000637 updatePlanets ();

0000638 updateMessages (};
(10000639 }

[..]

00000657 if(send_short && (me->p_fuel < 61000))
(10000658 sendClientPacket ((CVOID) &clientSelfShort};
00000659 else

000660 #endif

000661 sendClientPacket((CVOID) &clientSelf};

000662 }

00000685 sendClientPing(}; /* ping.c */
00000686 #endif

(00000687

(1000688 flushSockBuf() ;

(0000689 repCount++;
000006090 }

Server\ntservisocket.cat lines 603-90

00000052 intrupt ();

34

Petitioner Riot Games,Inc. - Ex. 1005, p. 144

Petitioner Riot Games, Inc. - Ex. 1005, p. 145

Server\ntservlinput.c at lines 52

00000197 intrupt ();

Server\ntservlinput.c at lines 197

(0001390 updateMessages()
00001391 {

[oes]

00001590 }

Server\ntservisocket.c atlines 1390-590

(0001390 updateMessages()
00001391 {

[..]

00001563 if (cur->m_from==DOOSHMSG) msg.m_from=255; /* god */
(10001564 if ((cur->m_from < 0) || (cur->m_from > MAXPLAYER) }

00001565 sendClientPacket ((CVOID) &msg) ;
00001566 else if (cur->m_flags & MALL && ! (ignored[cur-
>m_trom] & MALL))

00001567 sendClientPacket ((CVOID) &msg) ;

00001568 else if (cur->m_flags & MTEAM && ! (ignored[cur-
>m_from] & MTEAM)) {

(0001569 sendClientPacket ((CVOID) &msg);
00001570 }

[1

00001590 }

Server\ntservisocket.c atlines 1390-590

00001825 readFromClient ()

00001826 {

[+]

35

Petitioner Riot Games,Inc. - Ex. 1005, p. 145

Petitioner Riot Games, Inc. - Ex. 1005, p. 146

 ry

pack

 0001877

0001878

00001916

00001917

00001939

00001940

00001838

00001839

00001840

00001841

00001842

00001843

00001844

00001845

00001846

00001847

00001848

00001849 }

00001850

00001855 /* ripped out of above routine */
00001856 doRead(asock)

00001857 int asock;

00001858 {

00001859

et,

00001941

died.

if (select (32, greadfds,0,0,&timeout) != 0) {

/* Read info from the xtrek client */

if (FD_ISSET (sock, &readfds)) {

retval += doRead (sock);

}

if (udpSock >= 0 && FD_ISSET(udoSock, &readfds)) {
V_UDPDIAG(("Activity on UDP socket\n"));
retval += doRead(udpSock) ;

return (retval != 0); /* convert to 1/0 */

struct timeval timeout;

/* Read info from the xtrek server */

count=read(asock, buf, BUFSI2*2);

bufptr=buf;

while (bufptr < buftcount) {

while (size>countt(buf-bufptr}) {
/* We wait for up to twenty seconds for rest of

* Tf we don't get it, we assume the client

36

Petitioner Riot Games,Inc. - Ex. 1005, p. 146

Petitioner Riot Games, Inc. - Ex. 1005, p. 147

 0001956

’

000020JUUUZ

000020
VU

002Vay

< <
Bo

< t

000020

utptr
0000201
00001942

00001943

00001944

00001945

00001946

00001947
4a ao—)mSFAOEODhuhUurrRl me

*/

timeout .tv_sec=20;

timeout .tv_usec=0;

/*readfds=l<<asock; */

FD_ZERO (&readids} ;

FDSET (asock, &xreadfds);

temp=read (asock, buf+count, size-(count+ (buf-bufptr) }};

(* (handlers [*bufptr] .nandler)) (bufptr) ;

/* Otherwise we ignore the request */
} else {

ERROR (1, ("Handler for packet %d not installed...\n",

bufptrt=size;

if (bufptr>buftBUFS1Z) {

beopy (buf+BUFSIZ, buf, BUFSIZ);
if (count==BUFSI2*2} {

/*readfds = 1<<asgock;*/
FD_ZERO (ireadfds) ;

FDSET (asock, &readtids}:

if (select (32, &readfds,0,0,&timeout}} {

temp=read (asock, but+BUFSIZ, BUFSIZ) ;

count=BUFSIZ+temp;

} else {

count=BUFSIZ;

37

Petitioner Riot Games,Inc. - Ex. 1005, p. 147

Petitioner Riot Games, Inc. - Ex. 1005, p. 148

(0002036 }

(0002037 | else {

00002038 count -=BUFSIZ:

00002039 }

00002040 bufptr-=BUFSI2;
(00002041 }

00002042 }

00002043 return(1);

00002044 }

Server\ntservisocket.c at lines 1825-2044

 4. The method of claim 1|“In our first experiments with multi-user virtual environments, we used IP multicast to send update
further comprising the step|messages directly between clients. The general idea is to mapentity properties into multicast groups,
of creating, by one of said|and send update messages only to relevant groups, For instance, Macedonia partitions a virtual world
plurality of host computers,|into a 2D grid of hexagonalshaped cells each of which is represented by a separate multicast group.
said first message group by|Entities localize their visual interactions by sending updatesonly to the multicast group representing
sending a first control the cell in whichthe reside, and they listen only to multicast groups representing cells within some
message to said server via|radius,
said unicast network,

The multicast approach is similar to the RING client-server approach for wide-area networks, In both
cases, intermediate machines maycull messages ratherthan propagating them to all participating
workstations, However, using multicast, message culling is done by routers at the network layer,
whereas, in RING, message culling is done by server machines at the application layer (see Figure 11).
The advantages of the multicast approach are that: 1) fewer messages must be passed if clients are
connected directly to a multicast-capable LAN(e.g, ethernet), and 2) latency 1s reduced due to faster
message routing. The disadvantagesare that: 1) delays associated with joining andleaving multicast
groups make it impracticalto use highly dynamic entity properties for multicast group mappings, 2) the
numberof unique multicast groupsaccessible to any one application maynot be sufficient for complex
virtual environments, and 3) multicast 1s not generally available across wide-area networks to many
types of networks computers (e.g., PCs with modems).

38

Petitioner Riot Games,Inc. - Ex. 1005, p. 148

Petitioner Riot Games, Inc. - Ex. 1005, p. 149

The advantage ofthe RING client-server approach is that very dynamic and complex message
processing maybe performed byservers, In contrast to multicast routers, which can only cull
messages based on a relatively small, static set of multicast groups, RING serverscan cull messages
using high-level geometric algorithmsand knowledge regarding a multiplicity of highly dynamicentity
attributes (¢.g., location, orientation, velocity, etc.) and interaction types(e.g., visibility, sound,
collision, etc.). Since RING servers can take advantage of knowledgeregarding message semantics
and the 3D geometry of the virtual environment directly, they can execute more effective and flexible
culling algorithms than would bepossible using only IP address and port mappings. Furthermore,
unlike multicast routers, RING servers may process, augment, and alter messages in addition to culling
them. For instance, RINGservers already augment update messages with “Add” and “Remove”
messagesto inform clients that entities are entering orleaving their potentially visible areas,”
RINGat p, 90-91,

5. The method of claim 4—_|“Update messages containing 40 bytes (message-type[4], entity-ID[4], target-position[12], target-
further comprising the step|orientation[12], positional yelocity[4], and rotational-velocity[4] were generated for each entity once
of joining, by someof said|every 2.3 seconds on average with this ‘random’ navigational behavior.”
plurality of host computers,|RING at p. 89,
said first message group by
sending control messages—_|“In ourfirst experiments with multi-user virtual environments, we used IP multicast to send update
via said unicast network to|messages directly between clients, The general idea is to mapentity properties into multicast groups,
said serverspecifying said|and send update messagesonly to relevant groups. For instance, Macedoniapartitionsa virtual world
first message group. into a 2D grid of hexagonal shaped cells each of which is represented by a separate multicast group.

Entities localize their visual interactions by sending updates only to the multicast group representing
the cell in which thereside, and theylisten only to multicast groups representing cells within some
radius,

The multicast approach is similar to the RING client-server approach for wide-area networks, In both
cases, intermediate machines may cull messages ratherthan propagatingthem to all participating
workstations, However, using multicast, message culling is done by routers at the network layer,
whereas, in RING, message culling is done by server machines at the application layer (see Figure 11),
The advantagesof the multicast approach are that: 1) fewer messages must be passedif clients are

39

Petitioner Riot Games,Inc. - Ex. 1005, p. 149

Petitioner Riot Games, Inc. - Ex. 1005, p. 150

connected directly to a multicast-capable LAN (e.g., ethemet), and 2) latencyis reduced due to faster
message routing, The disadvantages are that: 1) delays associated with joining and leaving multicast
groups makett impractical to use highly dynamic entity properties for multicast group mappings, 2) the
number of unique multicast groups accessible to any one application may not be sufficient for complex
virtual environments, and 3) multicast is not generally available across wide-area networks to many
types of networks computers (e.g., PCs with modems).

The advantage of the RING client-server approach is that very dynamic and complex message
processing maybe performed by servers. In contrast to multicast routers, which can only cull
messages based on a relatively small, static set of multicast groups, RINGservers can cull messages
using high-level geometric algorithms and knowledgeregarding a multiplicity of highly dynamicentity
attributes (e.g., location, orientation, velocity, etc.) and interaction types (e.g,, visibility, sound,
collision, etc), Since RING servers can take advantage of knowledgeregarding message semantics
and the 3D geometry of the virtual environment directly, they can execute moreeffective and flexible
culling algorithms than would be possible using only IP address and port mappings. Furthermore,
unlike multicast routers, RING servers may process, augment, and alter messages in addition to culling
them. For instance, RINGservers already augment update messages with “Add”and “Remove”
messages to inform clients that entities are entering orleaving their potentially visible areas,”
RINGat p,90-91,
 6. The method of claim 1|“The system runs onSilicon Graphics workstations and uses UDP/IP datagramsfor message passing.”
wherein said network is|RING at p. 89.
Internet and said server

communicates with said|“A difficult challenge in multi-user visual simulation is maintaining consistedstate among a large
plurality of host computers|number of workstations distributed over a wide-area network,”
using a session layer RINGat p. 85.
protocol,

4)

Petitioner Riot Games,Inc. - Ex. 1005, p. 150

Figure 1H: RING servers process mmeazages in the application
laver wang AD miodel and semantic infermation. Multicast
rowters 88@ Oaly TP addressing io the network layer

Figure 11 of RING at p. 91.

“However, using multicast, message culling is done by routers at the network layer, whereas, in RING,
messageculling is done by server machines at the application layer (see Figure 11).”
RING at p. 90,

“This paper describes the client-server design, implementation and experimentalresults for a system
that supports real-time visual interaction between a large numberof users in a shared 3D virtual
environment, The keyfeature ofthe system is that server-based visibility algorithms compute potential
visual interactions betweenentities representing users in order to reduce the numberof messages
required to maintain consistent state among many workstationsdistributed across a wide-area network,
Whenan entity changes state, update messagesare sent only to workstations with entities that can
potentially perceive the change- Le., ones to whichthe update 1s visible.”
RINGat Abstract.

Petitioner Riot Games,Inc. - Ex. 1005, p. 151

Petitioner Riot Games, Inc. - Ex. 1005, p. 152

“Tn a multi-user visual simulation system, users run aninteractive interface program on (usually
distinct) workstations connected to each other via a network,”

RINGat p, 85.

“A difficult challenge in multi-user visual simulation is maintaining consistent state amongalarge
number of workstationsdistributed over a wide-area network.”

RINGat p.85,

“Tn order to support very large numbers of users (> 1000) interacting simultaneously in a distributed
virtual environmentit 1s necessary to develop a system design and communication protocol that does
not require sending update messages to all participating hosts for every entity state change.”
RINGat p. 86.

“This paper describes a system (called RING)that supports interaction betweenlarge numbers of users
in virtual environments with dense occlusion (¢.g., buildings,cities, etc.). RING takes advantage of the
fact that state changes must be propagatedonly to hosts containing entities that can possibly perceive
the change- Le., the one that cansee it. Object-space visibility algorithmsare used to compute the
region of influencefor each state change, and then update messages are sent onlyto the small subsetof
workstations to which the update1s relevant.”
RINGat p.86,

“Wehave experimented with a variety of topologies for connecting RINGclients and servers, For
practical reasons, we have focused mainly on arrangements in which clients communicate with a single
server. However, dependingon the capabilities of available workstationsand networks, clients can
send messages to server(s) via unicast or multicast,”
RINGat p. 91.

“Tn our first experiments with multi-user virtual environments, we used IP multicast to send update
messages directly between clients. The general idea is to map entity properties into multicast groups,
and send update messages onlyto relevant groups. For instance, Macedonia partitions a virtual world

4)

Petitioner Riot Games,Inc. - Ex. 1005, p. 152

Petitioner Riot Games, Inc. - Ex. 1005, p. 153

into a 2D grid of hexagonal shaped cells each of which is represented by a separate multicast group,
Entities localize their visual interactions by sending updates onlyto the multicast group representing
the cell in which the reside, and they listen only to multicast groups representing cells within some
radius.

The multicast approach is similar to the RING client-server approach for wide-area networks. In both
cases, intermediate machines maycull messages ratherthan propagatingthem to all participating
workstations. However, using multicast, message culling is done by routers at the network layer,
whereas, in RING, message culling is done by server machines at the application layer(see Figure 11).
The advantages of the multicast approach are that: 1) fewer messages must be passed if clients are
connected directly to a multicast-capable LAN (e.g., ethernet), and 2) latency 1s reduced due to faster
message routing. The disadvantagesare that: 1) delays associated with joining and leaving multicast
groups makett impractical to use highly dynamic entity properties for multicast group mappings, 2) the
numberof unique multicast groupsaccessible to any one application may notbe sufficient for complex
virtual environments, and 3) multicast is not generallyavailable across wide-area networks to many
types of networks computers(e.g., PCs with modems),

The advantage of the RING client-server approach is that very dynamic and complex message
processing may be performed by servers, In contrast to multicast routers, which canonly cull
messages based on a relatively small, static set of multicast groups, RING servers can cull messages
using high-level geometric algorithms and knowledge regarding a multiplicity of highly dynamicentity
attributes (e.g., location, orientation,velocity, etc.) and interaction types (e.g., visibility, sound,
collision, etc,), Since RING servers can take advantage of knowledge regarding message semantics
and the 3D geometryof the virtual environment directly, they can execute moreeffective and flexible
culling algorithms than wouldbe possible using only IP address and port mappings, Furthermore,
unlike multicast routers, RING servers may process, augment, and alter messages in addition to culling
them. For instance, RINGservers already augment update messages with “Add” and “Remove”
messagesto inform clients that entities are entering or leaving their potentially visible areas,”
RINGat p, 90-91,

43

Petitioner Riot Games,Inc. - Ex. 1005, p. 153

Petitioner Riot Games, Inc. - Ex. 1005, p. 154

CC-F

Petitioner Riot Games,Inc. - Ex. 1005, p. 154

Claim Chart comparing Claims1, 2, and 4-6 of U.S, Patent No.
5,822,523 to the disclosure in RING in view of Van Hook

Priorart cited in this chart:

* Thomas A. Funkhouser, “RING:A Client-Server System for Multi-User Virtual Environments,” Association of Computing
Machinery, 1995 Symposium onInteractive 3D Graphics, Monterey CA. (“RING”)
+ Daniel J. Van Hook, James 0. Calvin, Michael K, Newton, and David A. Fusco,“An Approach to DIS Scaleability,” 11° DIS
Workshop,26-30 Sept. 1994 (“Van Hook”),

Reasons to Combine:

RINGdiscloses communicating messages over a network, RINGat Figs. 5 and 7, pp. 88, 87 and 91. RING does notdisclose

aggregating payloadsinto a single aggregated message, but Van Hookdiscloses aggregating group messages into a single packet by

bundlingthe packets. Van Hook at 2. Van Hookstatesthat “t]he dominanteffect of bundling is to reduce packet rates, Additionally,

bundling reduces bit rates because fewer packet headers are sent.” Id. Therefore, one of ordinary skill in the art would have looked to

Van Hookto aggregate group messages in order to reduce bit rates and increase the network efficiency of RING.

Claims of the ‘523 beeee
: : Disclosure of RING and Van Hook =
oe eae i

1, A method for providing|“This paper describesthe client-serverdesign, implementation and experimental results for a system that
group messages to a supports real-time visual interaction between a large numberof users in a shared 3D virtual environment.
plurality of host Thekey feature of the system is that server-basedvisibility algorithms compute potential visual
computers connected over|interactions between entities representing users in order to reduce the numberof messages required to
a unicast wide area maintain consistent state among many workstations distributed across a wide-area network, When an
communication network,|entity changes state, update messages are sent only to workstations with entities that can potentially
comprising the steps of:|perceive the change- Le., ones to which the updateis visible.”

RINGat Abstract,

4L

Petitioner Riot Games,Inc. - Ex. 1005, p. 155

Petitioner Riot Games, Inc. - Ex. 1005, p. 156

“Tn a multi-user visual simulation system, users run an interactive interface program on (usually distinct)
workstations connectedto each other via a network.”

RINGat p.85,

“A difficult challenge in multi-user visual simulationis maintaining consistent state among a large
number of workstationsdistributed over a wide-area network.”

RINGat p.8,

“Tn orderto support very large numbers ofusers (> 1000) interacting simultaneously in a distributed
virtual environmentit 1s necessary to develop a system design and communication protocol that does not
require sending update messages to all participating hosts for every entitystate change,”
RINGat p.86.

“This paper describes a system (called RING) that supports interaction between large numbers of users in
virtual environments with dense occlusion (e.g., buildings,cities, etc.). RING takes advantageof the fact
that state changes mustbe propagated only to hosts containing entities that can possibly perceive the
change- Le., the one that can see it. Object-space visibility algorithmsare used to compute the region of
influencefor each state change, and then update messagesare sent only to the small subset of
workstationsto whichthe update 1s relevant.”
RINGat p.86,

“Wehave experimented with a variety of topologies for connecting RINGclients andservers. For
practical reasons, we have focused mainly on arrangements in which clients communicate with a single
server, However, depending on the capabilities of available workstations and networks,clients can send
messages to server(s) via unicast or multicast.”
RINGat p. 91,

“Tn our first experiments with multi-user virtual environments, we used IP multicast to send update
messagesdirectly betweenclients. The general idea 1s to mapentity properties into multicast groups, and
send update messagesonlyto relevant groups, For instance, Macedonia partitions a virtual world into a
2D grid of hexagonal shapedcells each of which is represented by a separate multicast group. Entities

Petitioner Riot Games,Inc. - Ex. 1005, p. 156

Petitioner Riot Games, Inc. - Ex. 1005, p. 157

localize their visual interactions by sending updates only to the multicast group representing the cell in
which the reside, and they listen only to multicast groupsrepresenting cells within someradius,

The multicast approach is similar to the RING client-server approach for wide-area networks, In both
cases, intermediate machines maycull messages rather than propagating themto all participating
workstations. However, using multicast, message culling 1s done by routers at the network layer,
whereas, in RING, message culling is done by server machines at the application layer (see Figure 11),
The advantages of the multicast approach are that: 1) fewer messages must be passed if clients are
connected directly to a multicast-capable LAN (e.g., ethernet), and 2) latencyis reduced due to faster
message routing. The disadvantages are that: 1) delays associated with joining and leaving multicast
groups make it impractical to use highly dynamicentity properties for multicast group mappings, 2) the
number of unique multicast groupsaccessible to any one application maynotbe sufficient for complex
virtual environments, and 3) multicast 1s not generally available across wide-area networks to many types
of networks computers (e.g. PCs with modems).

The advantageofthe RING client-server approach is that very dynamic and complex message processing
may be performed by servers. In contrastto multicast routers, which can only cull messages based on a
relatively small, static set of multicast groups, RING servers can cull messages using high-level
geometric algorithms and knowledge regarding a multiplicity of highly dynamic entityattributes (e.g,,
location, ortentation, velocity, etc.) and interaction types (e.g., visibility, sound, collision, etc.), Since
RINGservers can take advantage of knowledge regarding message semantics andthe 3D geometry ofthe
virtual environment directly, they can execute more effective and flexible culling algorithmsthan would
be possible using only IP address and port mappings. Furthermore, unlike multicast routers, RING
servers mayprocess, augment, and alter messages in addition to culling them, For instance, RING
servers already augment update messages with “Add” and “Remove” messages to inform clients that
entities are entering or leaving their potentially visible areas,”
RINGat p. 90-91.

Petitioner Riot Games,Inc. - Ex. 1005, p. 157

providing a group
messaging server coupled
to said network, said

server communicating
with said plurality of host
computers using said
unicast network and

maintaining a list of
message groups, each
message group containing
at least one host

computer; Siurs & RENG servers mange commmcetinn betwee
clenis, possibly culling, augmenting, or altering wessager:

Figure 5 of RINGat p.87,

“Wehave experimented with a variety of topologies for connecting RINGclients andservers. For
practical reasons, we have focused mainly on arrangements in which clients communicate with a single
server. However, depending on the capabilities of available workstations and networks, clients can send
messages to server(s) via unicast or multicast,”
RING at p. 91.

“Server-based messageculling is implemented using precomputed line-of-sight visibility information.
Prior to the multi-user simulation,the shared virtual environmentis partitioned into a spatial subdivision
of cells whose boundaries are comprised ofthe static, axis-aligned polygonsofthe virtual environment
(1, 15]. A visibility precomputation is performed in which the set of cells potentially visible to each cell
is determined by tracing beamsofpossible sight-lines through transparent cell boundaries [15,16] (see
Figure 6), During the multi-user simulation,servers keep track of which cells contain which entities by

Petitioner Riot Games,Inc. - Ex. 1005, p. 158

exchanging “periodic” update messages whenentities cross cell boundaries. Real-time update messages
are propagated only to servers and clients containing entities inside some cell visible to the one
containing the updated entity, Since an entity's visibility is conservatively over-estimated by the
precomputed visibility of its containing cell, this algorithm allows servers to proves update messages
quickly using cell visibility “look-ups”rather than more exact real-timeentity visibility computations
which would be too expensive on currently available workstations.”
RINGat p.87,

Figare 7: Flowof update mewages Gabeled arews} for ap:
dates to entities A, B,C, apd D arranged in a vires! envinan-
ment ag shows In Figure 4.

Figure 7 of RING atp. 88.

“Communication between clients is managed by servers. Clients do not send messagesdirectly to other
clients, but instead send them to servers which forward them to other client and server workstations

participating in the samedistributed simulation (see Figure 5), A key feature ofthis client-server design
is that servers can process messages before propagating them to other workstations, culling, augmenting,
or altering them, For instance, a server may determine that a particular update message is relevant onl

Petitioner Riot Games,Inc. - Ex. 1005, p. 159

Petitioner Riot Games, Inc. - Ex. 1005, p. 160

toa small subset of clients and the propagate the message only to those clients ortheir servers.”
RINGat p.87,

sending, by a plurality of|“RING represents a virtual environment as a set of independententities each of which has a geometric
host computers belonging|description and a behavior. Someentities are static (e.g., terrain, buildings, etc.), whereas others have
toa first message group,|dynamic behavior that can be either autonomous (e.g., robots) or controlled by a user via input devices
messages to said server|(e.g, vehicles), Distributed simulation occurs when multiple entities interact in a shared virtual
via said unicast network,|environment by sending messages to one another to announce updatesto thetr own geometry or behavior
said messages containing|modifications to the shared environment, or impact on other entities,”
a payload portionanda—_|RINGat p. 87,
portion for identifying
said first message group;|“Communication between clients is managed by servers. Clients do not send messages directly to other

clients, but instead send them to servers which forward them to otherclient andserver workstations

participating in the same distributed simulation (see Figure 5),”
RINGat p.87.

“Wehave experimented with a variety of topologies for connecting RING clients and servers, For
practical reasons, we have focused mainly on arrangements in which clients communicate with a single
server, However, depending on the capabilities of available workstations and networks, clients can send
messages to server(s) via unicastor multicast.”
RINGat p. 91,

“Update messages containing 40 bytes (message-type[4], entity-ID[4], target-position[12], target-
ortentation[12], positional velocity[4], and rotational-velocity[4] were generated for each entity once
every 2.3 seconds on average with this ‘random’ navigational behavior.”
RINGat p, 89.

Petitioner Riot Games,Inc. - Ex. 1005, p. 160

Figure & RING servers manage cmmmimcatins betwee
clenis, possibly culling, augmenting, or altering wessager:

Figure 5 of RINGat p. 87.
aggregating, by said “Bundling, Network components such as switches, routers, and encryption devices as well as simulation
server in atimeinterval—|host computers have limitations in the rate at which they may process packets. Rather than transmitting
determined in accordance|each DIS PDU as an individual packet, multiple PDUs maybe bundled togetherinto larger packets
with a predefined before transmission. Bundled packets are transmitted when either of two conditionsare satisfied: when a
criterion, said payload|maximum size has been reached(the packet under construction is full of PDUs); or when a maximum
portions of said messages|time has passed without another PDU arriving. The dominant effectof bundling is to reduce packetrates,
to create an aggregated|Additionally, bundling reduces bit rates because fewer packet headers are sent.”
payload; Van Hook atp. 2.

“4.6 Bundling

The AG collects AGGP PDUsand bundlesthem into larger packets for transmission over the WAN, The
purposeofthe bundling algorithm is to reduce the numberofpackets that are transmitted. The bundling
algorithm has two parameters, a maximum bundlesize and a maximum delay time. PDUsare added to a

Petitioner Riot Games,Inc. - Ex. 1005, p. 161

Petitioner Riot Games, Inc. - Ex. 1005, p. 162

bundle until either the maximum size is reached orthe first PDU 1s the bundle has been delayedbythe
maximum delay time, At this point, the bundle 1s transmitted,”
Van Hookat p.7.

“Furthermore unlike multicast routers, RINGservers may process, augment, and alter messages in
addition to culling them. For instance, RING servers already augment update messages with “Add”and
“Remove” messagesto inform clients that entities are entering or leaving their potentially visible sets,”
RINGat p. 91.

“RINGservers allow each client workstation to maintain surrogates for only the subset of remote entities
visible to at least one entity local to the client, ,.. To support this feature, servers send theirclient an
“Add” message each time a remote entity enters a cell potentially visible to one of the client's local
entities for the first time, A “Remove”messageis sent whenthe server determinesthat an entity has left
the client’s visible region, As entities move through the environment, servers augment update messages
with “Add” and “Remove” messagesnotifying clients that remote entities have becomerelevant or
irrelevantto the client’s local entities.”

RINGat p,88,

“Finally, time critical computing algorithmscan be used to determine an ‘optimal’ set of messagesto
send to each client based on network connection bandwidths, workstation processing capabilities, and
manyotherreal-time performancefactors (1¢,, in a manner similar to that used in [8]),”
RINGat p. 91,

“During the multi-usersimulation, servers keep track of which cells contain which entities by exchanging
‘periodic’ update messages whenentities cross cell boundaries, Real-time update messages are
propagated onlyto servers and clients containing entities inside somecell visible to the one containing
the updated entity, Since an entity’s visibility 1s conservatively over-estimated by the precomputed
visibility of its containing cell, this algorithm allows servers to process update messages quickly using
cell visibility ‘look-ups’ ratherthan more exact real-timeentity visibility computations which would be
too expensive on currently available workstations.”
RINGat p.87.

Petitioner Riot Games,Inc. - Ex. 1005, p. 162

Petitioner Riot Games, Inc. - Ex. 1005, p. 163

“Rather than sending messagesdirectlybetween clients, RING routes each on through at least one server,
and possibly two, Computations are performedin the servers before messagesare propagated further

adding to latency.”
RINGat p.88,

forming an ageregated|“Bundling, Network components such as switches, routers, and encryption devices as well as simulation
message using said host computers have limitations inthe rate at which they may process packets, Rather than transmitting
aggregated payload; and|each DIS PDU asan individual packet, multiple PDUs may be bundled togetherinto largerpackets

before transmission. Bundled packets are transmitted wheneitherof two conditions are satisfied: when a
maximum size has been reached (the packet under construction 1s full of PDUs); or when a maximum
time has passed without another PDU arriving. The dominanteffect of bundling is to reduce packetrates.
Additionally, bundling reducesbit rates because fewer packet headers are sent,”
Van Hookat p. 2.

“Furthermore unlike multicast routers, RING servers mayprocess, augment, and alter messages in
addition to culling them. For instance, RING servers already augment update messages with “Add”and
“Remove” messages to inform clients that entities are entering or leaving their potentially visiblesets.”
RINGat p. 91,

“RINGservers allow each client workstation to maintain surrogates for only the subset of remote entities
visible to at least one entity local to the client. ,,. To support this feature, servers send their client an
“Add” message each time a remote entity enters a cell potentially visible to one ofthe client’s local
entities for the first time, A “Remove”messageis sent whenthe server determines that an entity has left
the client’s visible region. As entities movethrough the environment, server augmentupdate messages
with “Add” and “Remove” messages notifying clients that remote entities have become relevantor
relevantto the client’s local entities,”

RINGat p.88,
transmitting, by said “Communication betweenclients is managedby servers. Clients do not send messages directly to other
servervia said unicast—_|clients, but instead send them to servers which forward them to other client and server workstations

network, said aggregated participating in the same distributed simulation (see Figure 5),”
message toarecipient|RING at p. 87,

Petitioner Riot Games,Inc. - Ex. 1005, p. 163

Petitioner Riot Games, Inc. - Ex. 1005, p. 164

host computer belonging
to said first message “We have experimented with a variety of topologies for connecting RINGclients andservers, For
group. practical reasons, we have focused mainly onarrangements in which clients communicate with a single

server. However, depending on the capabilities of available workstations and networks, clients can send
messages to server(s) via unicast or multicast.”
RING at p, 91.

“RINGservers alloweach client workstation to maintain surrogates foronly the subset of remote entities
visible to at least one entity local to the client, ... To support this feature, servers send their client an
“Add” message each time a remote entity enters a cell potentially visible to one ofthe client’s local
entities for the first time, A “Remove”message is sent whenthe server determinesthat an entity has left
the client’s visible region. As entities movethrough the environment, server augmentupdate messages
with “Add” and “Remove” messages notifying clients that remote entities have becomerelevant or
irrelevant to the client’s local entities.”

RINGat p.88,

“Bundling. Network components such as switches, routers, and encryption devices as well as simulation
host computers have limitations inthe rate at which they may process packets. Ratherthan transmitting
each DIS PDU asan individual packet, multiple PDUs maybe bundled togetherinto larger packets
before transmission. Bundled packets are transmitted wheneither of two conditionsare satisfied: when a
maximum size has been reached (the packet under construction is full of PDUs); orwhen a maximum
time has passed without another PDU arriving. The dominant effect of bundling is to reduce packetrates.
Additionally, bundling reduces bit rates because fewerpacket headers are sent.”
Van Hookat p. 2.

“4,6 Bundling

The AG collects AGGP PDUsand bundlesthem into larger packets for transmission over the WAN, The
purposeofthe bundling algorithm is to reduce the number of packets that are transmitted. The bundling
algorithm has two parameters, a maximum bundle size and a maximum delay time. PDUsare added to a
bundle until either the maximumsize is reached orthe first PDU is the bundle has been delayedby the

Petitioner Riot Games,Inc. - Ex. 1005, p. 164

Petitioner Riot Games, Inc. - Ex. 1005, p. 165

maximum delay time, At this point, the bundle is transmitted.”
Van Hook at p. 7,

“Exercise scale, The large number of entities involved in STOW-Ewill produceoffered loadsof as much
as four megabits and perhaps up to 2,000 packets per second. Suchtraffic levels will severely tax all
simulation computers even if unlimited communications resources were available.”
Van Hookat p.1.

“Explicit representationsof command, control, and communicationare required to permit command
forces to transmit orders to and receive reports from a newgeneration of more intelligent semi-automated
forces, These newelements and phenomena require newprotocols and generate new classesof traffic
that must be carried on the connecting networks.”
Van Hookat p. 1,

“A component of ARPA’s approachto scaleability for STOW-E is to implementcooperating and
complementary instances of a numberofthe information flow managementtechniques in an Application
Gateway (AG) situated at the LAN/WAN boundary of each participating network site (figure 1). The AG
maybe thought of as a collection of informationflow management agents [4] that perform services on
behalf of theirclients, the simulation applications, The purpose of these agents 1s to compensate for and
efficiently use the available communication and processing resources. Each AG processes PDUs
receivedfrom its attached LANandsendsrepresentation of local exercise state and events to other AGs
over the WAN,Similarly, each AG receives representations of remote state and events fromother AGs
over the WAN and sends PDUsonto its attached LAN, Communication between AGs is via an

Application Gateway to Gateway Protocol (AGGP), AGGPsupports communicationofcontrol
information related to the information flow managementtechniques as well as representationsof exercise
state and events,”

Van Hookat p. 4,

Petitioner Riot Games,Inc. - Ex. 1005, p. 165

Figure }: Apotication Gateway connections within the nehwork

Figure 1 of Van Hookat p. 4.

“The algorithm operates as follows. The terrain is divided into a grid of square cells by each AG. A
square grid is used because it makes calculations simple and permits regionsof the terrain to be specified
as alist of cells. Each AG determines the set of cells from which it needsto receivefull accuracy data,
This set consists of those cells that overlay the circular regions ofinterest of the entities at the AG’s site
LAN.Figure 5 illustrates this idea by showingthree entities andtheir circular regions ofinterest, For
determiningthe full accuracy region, the AGs use regionsof interest that are based upon the viewing
rangesofthe entities on the site LAN, The set of cells for which full accuracy data is needed is outlined
in the figure, All AGs transmittheir cell sets to each other, The full accuracyregion for any AG consists
ofthe unionofthe sets ofcells received fromall other AGs,”

Van Hookat p. 6.

Petitioner Riot Games,Inc. - Ex. 1005, p. 166

 Figuie & Cells for which ful accuracy is reguited

Figure 5 of Van Hook at p. 6.

2, The methodofclaim |

wherein said time interval

isa fixed period of time,

“During the multi-user simulation, servers keep track of which cells contain whichentities by exchanging
“periodic” update messages when entities cross cell boundaries.”
RING atp. 87,

“This paperdescribes the client-server design, implementation and experimental results for a system that
supports real-time visual interaction between a large number of users in a shared 3D virtual environment.
The keyfeature of the system is that server-based visibility algorithms compute potential visual
interactionsbetweenentities representing users in orderto reduce the numberof messagesrequired to
maintain consistent state among manyworkstations distributed across a wide-area network, Whenan

Petitioner Riot Games,Inc. - Ex. 1005, p. 167

Petitioner Riot Games, Inc. - Ex. 1005, p. 168

entity changes state, update messages are sent only to workstations with entities that can potentially

perceive the change- 1e., ones to which the update is visible.”
RINGat Abstract.

“Tn a multi-user visual simulation system, users runan interactive interface program on (usually distinct)
workstations connected to each other via a network.”

RINGat p.85.

“A difficult challenge in multi-user visual simulation 1s maintaining consistent state among a large
numberof workstationsdistributed over a wide-area network.”

RINGat p. 85,

“Tn order to support very large numbers of users (> 1000) interacting simultaneously in a distributed
virtual environment it 1s necessary to develop a system design and communication protocol that does not
require sending update messagesto all participating hosts for every entity state change.”
RINGat p. 86.

“This paper describes a system (called RING) that supportsinteraction betweenlarge numbers of users in
virtual environments with dense occlusion (¢.g., buildings, cities, etc,), RING takes advantageof the fact
that state changes must be propagated only to hosts containing entities that can possiblyperceive the
change- 1.¢., the one that can see it, Object-space visibility algorithmsare used to computethe regionof
influence for each state change, and then update messages are sent only to the small subset of
workstations to which the update 1s relevant,”
RINGat p. 86.

“We have experimented with a variety of topologies for connecting RING clients and servers, For
practical reasons, we have focused mainly on arrangements in which clients communicate with a single
server, However, depending on the capabilities of available workstations and networks,clients can send
messages to server(s) via unicast or multicast.”
RINGat p. 91.

Petitioner Riot Games,Inc. - Ex. 1005, p. 168

Petitioner Riot Games, Inc. - Ex. 1005, p. 169

“Tn ourfirst experiments with multi-user virtual environments, we used IP multicast to send update
messagesdirectly betweenclients, The general idea 1s to map entity properties into multicast groups, and
send update messagesonly to relevant groups. For instance, Macedonia partitions a virtual world into a
2D grid of hexagonal shaped cells each of which is represented by a separate multicast group. Entities
localize their visual interactions by sending updates only to the multicast group representing the cell in
which the reside, and they listen only to multicast groups representing cells within some radius.

The multicast approach is similar to the RING client-server approach for wide-area networks, In both
cases, intermediate machines may cull messages ratherthan propagating themto all participating
workstations, However, using multicast, message culling is done by routers at the network layer,
whereas, in RING, message culling 1s done by server machines at the application layer(see Figure 11).
The advantagesof the multicast approach arethat: 1) fewer messages mustbe passed if clients are
connected directlyto a multicast-capable LAN (e.g,, ethernet), and 2) latency 1s reduceddueto faster
message routing. The disadvantages are that: 1) delays associated with joining andleaving multicast
eroups makeit impractical to use highly dynamic entity properties for multicast group mappings, 2) the
number of unique multicast groups accessible to any one application may not be sufficient for complex
virtual environments, and 3) multicast is not generally available across wide-area networks to many types
of networks computers (¢.g., PCs with modems),

The advantage of the RING client-server approach is that very dynamic and complex message processing
maybe performed byservers. In contrast to multicast routers, which can only cull messages based on a
relatively small, static set of multicast groups, RING servers can cull messagesusing high-level
geometric algorithms and knowledge regarding a multiplicity of highly dynamicentity attributes (e.g,
location,orientation, velocity, etc.) and interaction types (e.g,, visibility, sound, collision, etc,), Since
RINGservers cantake advantageof knowledge regarding message semantics and the 3D geometry ofthe
virtual environment directly, they can execute more effective and flexible culling algorithmsthan would
be possible using only IP address and port mappings. Furthermore, unlike multicast routers, RING
servers may process, augment, and alter messages in addition to culling them. For instance, RING
servers already augment update messages with “Add”and “Remove” messages to inform clients that
entities are entering or leaving theirpotentially visible areas.”
RINGat p. 90-91.

Petitioner Riot Games,Inc. - Ex. 1005, p. 169

Petitioner Riot Games, Inc. - Ex. 1005, p. 170

4, The method of claim |

further comprisingthe
step of creating, byoneof
said plurality of host
computers, said first
message group by sending
a first control message to
said server via said

unicast network,
“Tn ourfirst experiments with multi-user virtual environments, we used IP multicast to send update
messagesdirectly betweenclients, The general idea 1s to map entity properties into multicast groups, and
send update messagesonly to relevant groups. For instance, Macedonia partitions a virtual world into a
2D grid of hexagonal shaped cells each of which is represented by a separate multicast group. Entities
localize their visual interactions by sending updates only to the multicast group representing the cell in
which the reside, and they listen only to multicast groups representing cells within some radius.

The multicast approach is similar to the RING client-server approach for wide-area networks, In both
cases, intermediate machines may cull messages ratherthan propagating themto all participating
workstations, However, using multicast, message culling is done by routers at the network layer,
whereas, in RING, message culling 1s done by server machines at the application layer(see Figure 11).
The advantagesof the multicast approach arethat: 1) fewer messages mustbe passed if clients are
connected directlyto a multicast-capable LAN (e.g,, ethernet), and 2) latency 1s reduceddueto faster
message routing. The disadvantages are that: 1) delays associated with joining andleaving multicast
eroups makeit impractical to use highly dynamic entity properties for multicast group mappings, 2) the
number of unique multicast groups accessible to any one application may not be sufficient for complex
virtual environments, and 3) multicast is not generally available across wide-area networks to many types
of networks computers (¢.g., PCs with modems),

The advantage of the RING client-server approach is that very dynamic and complex message processing
maybe performed byservers. In contrast to multicast routers, which can only cull messages based on a
relatively small, static set of multicast groups, RING servers can cull messages using high-level
geometric algorithms and knowledge regarding a multiplicity of highly dynamicentity attributes (e.g,
location,orientation, velocity, etc.) and interaction types (e.g,, visibility, sound, collision, etc,), Since
RINGserverscan take advantage of knowledge regarding message semantics and the 3D geometry ofthe
virtual environment directly, they can execute more effective and flexible culling algorithmsthan would
be possible using only IP address and port mappings. Furthermore,unlike multicast routers, RING
servers mayprocess, augment, and alter messages in addition to culling them. Forinstance, RING
servers already augmentupdate messages with “Add”and “Remove” messages to inform clients that
entities are entering or leaving their potentially visible areas.”
RINGat p. 90-91.

Petitioner Riot Games,Inc. - Ex. 1005, p. 170

Petitioner Riot Games, Inc. - Ex. 1005, p. 171

5. The method of claim 4

further comprising the
step of joining, by some
of said plurality of host
computers, said first
message group by sending
control messagesviasaid
unicast networkto said

serverspecifying said first
message group.

“Update messages containing 40 bytes (message-type[4], entity-ID[4], target-position[12], target-
orientation[12], positional velocity[4], and rotational-velocity[4] were generated for each entity once
every 2.3 seconds on average with this ‘random’ navigational behavior.”
RINGat p. 89,

“Tn our first experiments with multi-user virtual environments, we used IP multicast to send update
messages directly between clients. The general idea is to map entity properties into multicast groups, and
send update messagesonly to relevant groups. For instance, Macedonia partitions a virtual world into a
2D grid of hexagonal shaped cells each of which is represented by a separate multicast group. Entities
localize their visual interactions by sending updates only to the multicast group representingthe cell in
which the reside, and they listen only to multicast groupsrepresenting cells within some radius.

The multicast approach is similar to the RING client-server approach for wide-area networks. In both
cases, intermediate machines may cull messages ratherthan propagating them to all participating
workstations, However, using multicast, message culling 1s doneby routers at the network layer,
whereas, in RING, message culling 1s done by server machinesat the application layer (see Figure 11),
The advantages of the multicast approach are that: 1) fewer messages must be passed if clients are
connected directly to a multicast-capable LAN (e.g., ethernet), and 2) latencyis reduced due to faster
message routing, The disadvantages are that: 1) delays associated with joining and leaving multicast
eroups makeit impractical to use highly dynamicentity properties for multicast group mappings,2) the
numberof unique multicast groupsaccessible to any one application maynot be sufficient for complex
virtual environments, and 3) multicast is not generally available across wide-area networks to many types
of networks computers(e.g, PCs with modems),

The advantageofthe RING client-server approach is that very dynamic and complex message processing
may be performedby servers. In contrast to multicast routers, which can only cull messages based on a
relatively small, static set of multicast groups, RING servers can cull messages using high-level
geometric algorithms and knowledge regarding a multiplicity of highly dynamic entity attributes (e.g.,
location, orientation, velocity, etc.) and interaction types(e.¢., visibility, sound, collision, etc,), Since
RINGservers can take advantage of knowledge regarding message semantics and the 3D geometryof the

Petitioner Riot Games,Inc. - Ex. 1005, p. 171

virtual environmentdirectly, they can execute more effective andflexible culling algorithmsthan would
be possible using only IP address and port mappings, Furthermore, unlike multicast routers, RING
servers may process, augment, and alter messagesin addition to culling them. For instance, RING
servers already augment update messages with “Add” and “Remove” messages to inform clients that
entities are entering or leavingtheir potentially visible areas,”
RING at p. 90-91,

6. The methodof claim 1|“The system runson Silicon Graphics workstations and uses UDP/IP datagramsfor message passing.”
wherein said network is|RING at p. 89,
Internet andsaid server

communicates with said|“A difficult challenge in multi-user visual simulation is maintaining consisted state among a large
plurality of host numberof workstations distributed over a wide-area network.”
computers using a session|RINGat p. 85,
layer protocol,

Figure Hc RING servers provias mnosnages in the application
lover using 3D wodel and semantic information. Multicast
ranters use andy LPaddressing in the network layer.

Petitioner Riot Games,Inc. - Ex. 1005, p. 172

Petitioner Riot Games, Inc. - Ex. 1005, p. 173

Figure 11 of RING at p. 91,

“However, using multicast, message culling is done by routers at the network layer, whereas, in RING,
message culling 1s done by server machinesat the application layer (see Figure 11),”
RINGat p. 0,

“This paperdescribes the client-server design, implementation and experimental results for a system that
supportsreal-time visual interaction between a large number of usersin a shared 3D virtual environment.
The keyfeature of the system 1s that server-based visibility algorithms compute potential visual
interactions betweenentities representing users in order to reduce the number of messagesrequiredto
maintain consistentstate among many workstations distributed across a wide-area network, When an
entity changesstate, update messages are sent only to workstations with entities that can potentially
perceive the change-Le,, ones to which the update is visible,”
RINGat Abstract.

“Tn a multi-user visual simulation system, users run an interactive interface program on (usually distinct)
workstations connectedto each other via a network.”

RINGat p,85,

“A difficult challenge in multi-user visual simulation 1s maintaining consistent state among a large
numberof workstationsdistributed over a wide-area network,”

RINGat p. 8,

“In orderto support very large numbers ofusers (> 1000) interacting simultaneouslyina distributed
virtual environment it is necessary to develop a system design and communication protocolthat does not
require sending update messages to all participating hosts for every entity state change,”
RINGat p. 86,

“This paper describes a system (called RING)that supportsinteraction betweenlarge numbers of users in
virtual environments with dense occlusion (¢.g., buildings, cities, etc.), RING takes advantageofthefact
that state changes must be propagatedonly to hosts containingentities that can possiblyperceivethe

Petitioner Riot Games,Inc. - Ex. 1005, p. 173

Petitioner Riot Games, Inc. - Ex. 1005, p. 174

change-Le,, the one that can see it, Object-space visibility algorithmsare used to compute the region of
influence for each state change, and then update messages are sent only to the small subset of
workstations to which the update is relevant.”
RINGat p.86.

“Wehave experimented with a variety of topologies for connecting RINGclients and servers. For
practical reasons, we have focused mainly on arrangements in which clients communicate with a single
server, However, depending on the capabilities of available workstations and networks, clients can send
messages to server(s) via unicastor multicast.”
RINGat p. 91.

“In ourfirst experiments with multi-user virtual environments, we used IP multicast to send update
messagesdirectly between clients, The general idea 1s to map entity properties into multicast groups, and
send update messagesonly to relevant groups. For instance, Macedonia partitions a virtual world into a
2D erid of hexagonal shaped cells each of which is represented bya separate multicast group. Entities
localize their visual interactions by sending updates only to the multicast group representing the cell in
which the reside, and they listen only to multicast groups representing cells within someradius.

The multicast approach is similar to the RING client-serverapproach for wide-area networks, In both
cases, intermediate machines maycull messages ratherthan propagating them to all participating
workstations, However, using multicast, messageculling 1s done by routers at the networklayer,
whereas, in RING, message culling is done by server machinesat the application layer (see Figure 11).
The advantages of the multicast approach are that: 1) fewer messages must be passed if clients are
connected directly to a multicast-capable LAN(¢.g,, ethernet), and 2) latencyis reduced due to faster
message routing. The disadvantages are that: 1) delays associated with joining and leaving multicast
groups make it impractical to use highly dynamicentity properties for multicast group mappings, 2) the
number of unique multicast groups accessible to any one application may not be sufficient for complex
virtual environments, and 3) multicast is not generally available across wide-area networksto many types
of networks computers (¢.g., PCs with modems),

The advantageofthe RING client-server approach is that very dynamic and complex messageprocessing

tr —

Petitioner Riot Games,Inc. - Ex. 1005, p. 174

Petitioner Riot Games, Inc. - Ex. 1005, p. 175

may be performedby servers. In contrast to multicast routers, which can only cull messages based on a
relativelysmall, static set of multicast groups, RING servers can cull messagesusing high-level
geometric algorithms and knowledge regarding a multiplicity of highly dynamic entity attributes (e.,,
location, orientation, velocity, etc.) and interaction types (e.g., visibility, sound, collision, etc.). Since
RINGservers can take advantage of knowledge regarding message semantics and the 3D geometryof the
virtual environmentdirectly, they can execute more effective and flexible culling algorithms than would
be possible using only IP address and port mappings. Furthermore, unlike multicast routers, RING
servers mayprocess, augment, and alter messages in addition to culling them. For instance, RING
servers already augment update messages with “Add” and “Remove” messages to tnform clients that
entities are entering or leaving their potentially visible areas.”
RINGat p. 90-91.

Petitioner Riot Games,Inc. - Ex. 1005, p. 175

Petitioner Riot Games, Inc. - Ex. 1005, p. 176

OTH-C

Petitioner Riot Games,Inc. - Ex. 1005, p. 176

Petitioner Riot Games, Inc. - Ex. 1005, p. 177

IN THE UNITED STATES PATENT AND TRADEMARKOFFICE

In re Ex Parte Reexaminationof:

Patent No. 6,264,560 Control Number: Not Yet Assigned

Inventors: S. Goldberg
J. Van Antwerp

Group Art Unit: Not Yet Assigned

Examiner: Not Yet Assigned
Issue Date: July 24, 2001

Application No. 90/140,979
Filed: August 27, 1998

“Box: Ex Parte Reexam

For: Method and System for Playing Games
on a Network

a4aaaaaaaa
Mail Stop Ex Parte Reexam
Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

DECLARATIONOF DAVID AHN

I, David Ahn,declare:

1. Thereby certify that Iam over 18 years of age and am competent to execute this

declaration. If called as a witness, I could and would competently testify to the following facts,

of which I have personal knowledge.

2. I understandthatthis declaration is being submitted in conjunction with a request

for reexamination of claim 92 of U.S. Patent No. 6,264,560. I further understand that the source

code for the multi-user online game Netrek is being submitted in support of that reexamination

request, which code was downloaded from the Netrek Software Archive at http://ftp.netrek.org/.

Specifically, I understand that the source code archive files named “BRMH-1.7.tar.gz” and

DCMB_832,595 1

Petitioner Riot Games,Inc. - Ex. 1005, p. 177

Petitioner Riot Games, Inc. - Ex. 1005, p. 178

Declaration ofDavid Ahn

“Server2.5pl4.tar.gz” have been submitted. This declaration addresses my personal knowledge

regarding the public accessibility of those files and the source code they contain.

3. Myeducational and professional backgroundare in the field of computer science.

In 1995 I received a Bachelor of Science degree in Computer Science from Wake Forest

University. Since then, I have worked in the area of information technology (IT) and software

engineering. After graduation I became employedfull-time at the Virtual Endoscopy Centerat

Wake Forest University School of Medicine, where my work focused on researching and

developing software algorithms and techniques for medical imaging and visualization. Between

1999 and 2001 I was instrumental in forming a medical software companycalled PointDx,Inc.

In 2001 I left Wake Forest to join PointDx full-time. My responsibilities at PointDx included

overseeing all aspects of the technology side of the business, including technical direction,

product engineering and development, and IT infrastructure. I was primarily responsible for the

design and developmentof software products, and I continued workingin this capacity through

two acquisitions of my employer, the first by IDX Systems Corporation and the second by GE

Healthcare IITS. In 2006 I left GE and subsequently joined GreatWall Systems,Inc., an early-

stage startup company offering IT network security products and services. 1 am responsible for

the technology side of the company, including overseeing all hardware, software, and systems

developmentof the company’s products.

4, Including my time as an undergraduate student and an amateur programmer,I

have over 16 years of experience in the field of computer science, programming, and software

engineering.

5. Iam very familiar with Netrek. I first learned about Netrek in or around 1992 or

1993 as a computer science student at Wake Forest University. At that time, Netrek was quite

DCMB_832,595 2

Petitioner Riot Games,Inc. - Ex. 1005, p. 178

Petitioner Riot Games, Inc. - Ex. 1005, p. 179

Declaration ofDavid Ahn

popular on college campusesall over the world.! Netrek software generally falls into two

categories: Netrek client software and Netrek server software. In order to play Netrek, a player

uses Netrek client software running on a local computer to connect over the network, such as the

Internet, to Netrek server software running on a remote host computer. There are many versions

and variations of both Netrek client and server software. For example, the archive files “BRMH-

1.7.tar.gz” and “Server2.5pl4.tar.gz,” addressed below, contain the source code to specific

versions of Netrek client and server software.

6. In approximately 1994, I began to play Netrek extensively and, by the end ofthat

year, had become involved with Netrek software and with the Netrek community in general.

Over the subsequent years, I expanded my involvement with Netrek through variousactivities

such as joining and playing in various Netrek leagues, organizing Netrek leagues and

tournaments, developing and maintaining Netrek software, and maintaining and supporting

public Netrek resources on the Internet such as the International Netrek League (INL)statistics

homepage, the Netrek Home Page, the Netrek Software Archive, and others. I also participated

actively in the Usenet newsgroup rec.games.netrek, so muchso that a recent search on “Dave

Ahn”in that newsgroup covering 1994to the present resulted in over 1600 results.2 I consider

myself deeply involved and very well-known in the Netrek community, even though my

involvementhas lessened greatly in the last five years.

1 Posting of Tom Holubto rec.games.netrek, Subject: Netrek Server List,
http://groups.google.com/group/rec.games.netrek/msg/8dbc01 d4abeeSace (Dec. 21, 1993), a true and correct copy
of which is contained in attached Exhibit A. (Note: in citations to Google Groups postings, this declaration
specifies the “Local” date included in the header information.)

2 Attached hereto as Exhibit B is a true and correct copyofthe first page of a search of rec.games.netrek for “Dave
Ahn” performed on Dec. 10, 2007
(http://groups.google.com/group/rec.games.netrek/search?q=dave+ahn&start=O&scoring=d&).

DCMB_832,595 3

Petitioner Riot Games,Inc. - Ex. 1005, p. 179

Petitioner Riot Games, Inc. - Ex. 1005, p. 180

Declaration ofDavid Ahn

7. The software source code for Netrek is publicly accessible and, to the best of my

knowledge, has been ever since I became aware of Netrek. I began building (compiling and

installing) my own Netrek server in 1994 using source code for the Netrek “Vanilla” server

which I had obtained from a publicly accessible file transfer protocol (FTP)site at

ftp.ecst.csuchico.edu.3 Thereafter, I spent a great deal of time downloading, experimenting with,

and modifying the source code to various Netrek software. Over the years, I became quite

familiar with Netrek software and its source code, including how they worked and where various

versions of the associated files could be found.

8. The Usenet newsgroup rec.games.netrek4 was a central communicationstool for

the Netrek community in the early 1990s andstill exists today. That newsgroup not only offered

an arena for general discussions of Netrek-related topics but also served as a medium for

publishing the locations of various FTP sites from which Netrek software and source code could

be freely downloaded. Such information was periodically posted in the form of messages

containing lists of answers to frequently asked questions (FAQ) about Netrek,lists of known

public Netrek servers, and lists of known FTP servers where Netrek software and source code

were published. Oneinstance of the Netrek FAQ List appears in a posting dated July 21, 1994,

3 Posting of Dave Ahn to rec.games.netrek, Subject: Help getting res-rsa working with server...,
http://groups.google.com/group/rec.games.netrek/browse_frm/thread/4da4c5af59745a6 1/fde76eab98a25b8a (Nov.
14, 1994), a true and correct copy of which is contained in attached ExhibitC,

4 Google Groupsprovides an archive of Usenet newsgroupsthat dates back to 1981. How far back does Google’s
Usenet archive go?,http://groups.google.com/support/bin/answer.py ?answer=46439&topic=9246,a true and correct
copy of which is contained in attached Exhibit D, at D-1. Google Groups includes an archive of rec.games.netrek
that dates back to 1992. rec.games.netrek, http://groups.google.com/group/rec.zames.netrek/about, a true and
correct copy of which is contained in attached Exhibit D, at D-2/3.

DCMB_832,595 4

Petitioner Riot Games,Inc. - Ex. 1005, p. 180

Petitioner Riot Games, Inc. - Ex. 1005, p. 181

Declaration ofDavid Ahn

titled “rec.games.netrek FAQ List.”5 The Netrek FAQ List posting points readers to a Netrek

FTPList for locations where Netrek server source code could be downloaded.®

9. A subsequentposting, also dated July 21, 1994,is titled “Netrek FTP List.” That

posting lists various FTP servers from which both server source code and client source code

could be downloaded. It also identifies locations from whichthe latest versions of the Netrek

FAQ List, Netrek Server List, and Netrek FTP List could be downloaded.?- Amongother things,

it featuresa list of “blessed clients”that includes, for example, a client version called BRM-

Hadley 1.7. The description in that posting explains that the source code for BRM-Hadley 1.7

wasaccessible at cad.ics.uci.edu in the directory /pub/netrek.8 Later in the post is a sectiontitled

“Subject: SERVER SOURCE”that contains “a listing of all known netrek server sources.”? The

second server on the list is named “New Vanilla Server 2.2+,” and the post indicates that it was

5 Posting of Tom Holubto rec.games.netrek, Subject: rec.games.netrek FAQ List,
http://groups.google.com/group/rec.games.netrek/msg/9bbd5514020d51fa (Jul. 21, 1994), a true and correct copy of
which is contained in attached Exhibit E; thread view of sameavailable at

http://groups.google.com/group/rec.games.netrek/browse_frm/thread/35a84ea78ce38bdb/9bbd55 14020d5 1fa
(referencing FAQ,Server List, and FTP List), a true and correct copy of which is contained in attached Exhibit F.

6 Exhibit E, supra note 5 (Holub, FAQ List), at E-4 (“Read the Netrek FTP list to find out where you can get the
server source.”).

7 Posting of Tom Holub to rec.games.netrek, Subject: Netrek FTPlist,
http://groups.google.com/group/rec.games.netrek/msg/ac03262b6ac8c4cl (Jul. 21, 1994), a true and correct copy of
which is contained in attached Exhibit G. The FTP List was updated from time to time. For example, a series of
postings dated September through October 1994 mention the FTP List and identify it as a source for Netrek
software. Posting of Tatsuya Murase to rec.games.netrek, Subject: Re: WindowsClient,
http://groups.google.com/group/rec.games.netrek/browse_frm/thread/d6eccScO9Sbf8a38 (Sep. 30, 1994), a true and
correct copy of which is contained in attached Exhibit H; Posting of Tatsuya Murase to rec.games.netrek, Subject:
Re: WindowsClient, http://groups.google.com/group/rec.games.netrek/msg/20da2a42b64333a8 (Sep. 30, 1994)
(“Reading the FAQ/FTPlist, you can easily download a client for your computerset it up, and run in under 45
minutes, if even that.”), a true and correct copy of which is contained in attached ExhibitI.

8 Exhibit G, supra note 7 (Holub, Netrek FTPlist), at G-3.

9 Id., at G-6.

DCMB_832,595 5

Petitioner Riot Games,Inc. - Ex. 1005, p. 181

Petitioner Riot Games, Inc. - Ex. 1005, p. 182

Declaration of David Ahn

maintained by Nick Trownat ftp.ecst.csuchico.eduin the directory /pub/netrek/src.!9 In a later

post to rec.games.netrek dated August 9, 1994, Nick Trown announcedthat a new version

(2.5pI4) of the Vanilla Server had been postedto ftp.ecst.csuchico.edu.!! My understanding,

which is consistent with these postings, is that anyone involved in the Netrek community and/or

reading rec.games.netrek could easily and freely have accessed these copies of Netrek source

codeat the indicated locations, as I myself did on several occasions.

10.|Any numberof other messages on rec.games.netrek confirm that the Netrek

community was widely aware of how to locate and download Netrek software and source code.

For example, an October 15, 1993 posting by Tedd Hadley announcedthat the BRM-Hadley

(BRMH)1.7 client source code wasaccessible at cad.ics.uci.edu:/pub/netrek/.!2, An August 17,

1994 posting by James Ivey describes having obtained a copy of the Vanilla 2.5pl4 server from

ftp.ecst.csuchico.edu under /pub/netrek/src/Server2.5p14.tar.gz.!3_ In that posting, Mr. Ivey

declared, “[i]t’s really not hard to grab some codeandtake a look.”!4 On November 19, 1994, a

posting by Vanilla Server maintainer Nick Trown responded to a message from a user who had

10 Td, at G-6/7.

11 Posting of Nick Trown to rec.games.netrek, Subject: New Server Release,
http://groups.google.com/group/rec.games.netrek/msg/d7fb445 1975e6fb2 (Aug. 9, 1994), a true and correct copy of
whichis contained in attached Exhibit J.

12 Posting of Tedd Hadley to rec.games.netrek, Subject: BRMH-1.7 available,
http://groups.google.com/group/rec.games.netrek/msg/O0b0aaSdfdb1ba99 (Oct. 15, 1993), a true and correct copy
of which is contained in attached Exhibit K.

13 The.tar.gz file extension signifies the multiple source codefiles that defined the Vanilla server had been
combinedinto a single compressed archive file. (A “tar” file is an archive file that collates a collection offiles into
one larger file for distribution or archiving. A “tar.gz”file is a “tar” file that has been compressed to reduce storage
usage. Such formats were andstill are commonly used for creating software source code packages that are easily
distributed and downloaded over the Internet.)

14 Posting of James Ivey to rec.games.netrek, Subject: Re: AGRI poppage (was Re: Bombinga planet -- is it an
art?), http://groups.google.com/group/rec.games.netrek/msg/df66eac4e839bc59 (Aug. 17, 1994), a true and correct
copy of which is contained in attached Exhibit L.

DCMB_832,595 6

Petitioner Riot Games,Inc. - Ex. 1005, p. 182

Petitioner Riot Games, Inc. - Ex. 1005, p. 183

Declaration ofDavid Ahn

downloaded version 2,5pl4 of the Vanilla Server source code and was requesting assistance with

compiling and runningit.15

11. ‘During the 1995-98 time frame, I became aware that a number of websites and

FTPsites that made Netrek software and source code freely available were disappearing or

shutting down. Accordingly, I began to acquire a private collection of Netrek software, software

source code, and otherfiles that | had downloaded from the publicly accessiblesites that still

existed, in order to preserve those copies and/or use them for my own purposes. I eventually

published mycollection as the “Netrek FTP Archive” on an FTPsite at

ftp://ftp.netrek_org/pub/netrek/. I announced that FTPsite in a posting to rec.games.netrek on

October 23, 1998. That posting stated my belief that my FTP site contained “almostall known

Netrek software including mirrors of major Netrek FTP sites.”16 Since then, I have continued to

maintain that site, which currently is called the “Netrek Software Archive”andis available at

http://ftp.netrek.org/.

12. Amongthefiles currently available on the Netrek Software Archive are those in

“mirror” directories in the /pub/netrek/mirrors/ directory. These mirrored files are complete and

verbatim copiesof entire public FTP sites that were downloaded to theNetrek Software Archive

using a mirroring script that preserved the directory hierarchy and file time stamps of the data

copied from original FTP sites. The ftp.csua.berkeley.ued.old and ftp.solace.mh.se directories

are mirror copies of the public FTPsites ftp.csua.berkeley.edu and ftp.solace.mh.se, respectively,

15 Posting of Nick Trownto rec.games.netrek, Subject: Re: Netrek serverhelp !,
hitp://groups.google.com/group/rec.games.netrek/browse_frm/thread/e72855705 1dcOc 13/4f1 af10b05d68ac8 (Nov.
18, 1994), a true and correct copy of which is contained in attached Exhibit M.

16 Posting of Dave Ahnto rec.games.netrek, Subject: www-netrek.org - no longer the game?,
http://groups.google.com/group/rec.games.netrek/msg/ee9a7af9f7a39305 (Oct. 23, 1998), a true and correct copy of
whichis contained in attached Exhibit N.

DCMB_832,595 7

Petitioner Riot Games,Inc. - Ex. 1005, p. 183

Petitioner Riot Games, Inc. - Ex. 1005, p. 184

Declaration ofDavid Ahn

whichare referenced in a December 14, 1994 posting of the Netrek FTP List to the newsgroup

rec.answers.17

13. Amongthefiles currently available in these two mirror directories are the BRM-

Hadley 1.7 client source code files and the Vanilla 2.5pl4 server source codefiles. The BRM-

Hadley 1.7 source codefiles are contained in a compressed archive file named BRMH-1.7.tar.gz

and located at http://ftp.netrek.org/pub/netrek/mirrors/ftp.csua.berkeley.edu.old/netrek/old/. The

Vanilla 2.5pl4 source code files are contained in a compressed archive file named

Server2.5pl4.tar.gz and located at

http://ftp.netrek.org/pub/netrek/mirrors/ftp.solace.mh.se/netrek/servers/vanilla/.!8

14. The BRMH-1.7.tar.gz and Server2.5pl4.tar.gz archive files stored on the Netrek

Software Archive carry date stamps of October 16, 1993 and December 15, 1994, respectively.

The date stamps can be seen alongside the filenamesin the above-referenced directories.!9 Each

date stamp represents the date the associated archive file was created. Accordingly, by

definition, each file contained in the archive must have been created on or before the indicated

date, as shownin the contentlistings of those archive files.2° To the best of my knowledge, the

17 Posting of Tom Holubto rec.answers, Subject: Netrek FTP list.,
http://groups.google.com/group/rec.answers/msg/ebcb9al4cOd4de78 (Dec. 14, 1994), a true and correct copy of
whichis contained in attached Exhibit O.

18 For verification purposes, I wish to note that the MD5 hash of BRMH-1.7.tar.gz is
7A47acc63aa45b274a25d7ef0121578be, and the MDS hash of Server2.Spl4.tar.gz is
809f80e34575add74600f2 1dc052bfad.

19 Attached hereto as Exhibit P is a true and correct copy of the current contentlisting of
http://ftp.netrek.org/pub/netrek/mirrors/ftp.csua.berkeley.edu.oid/netrek/old/, which includes the BRMH-1.7.tar.gz
archive file and its time stamp, at P-1. Attached hereto as Exhibit Q is a true and correct copy of the current content
listing of http://ftp.netrek.org/pub/netrek/mirrors/ftp.solace.mh.se/netrek/servers/vanilla/, which includes the
Server2.5pl4.tar.gz archive file and its time stamp.

20 Attached hereto as Exhibit R is a true and correct copy of the contentlisting of the BRMH-1.7.tar.gz archive.
Attached hereto as Exhibit S is a true and correct copy of the contentlisting of the Server2.5pi4.tar.gz archive.

DCMB_832,595 8

Petitioner Riot Games,Inc. - Ex. 1005, p. 184

Petitioner Riot Games, Inc. - Ex. 1005, p. 185

Declaration ofDavid Ahn

date stamps on the BRMH-1.7.tar.gz and Server2.5pl4.tar.gz Netrek source code archivefiles

have never been modified since being posted to the Netrek Software Archive. Furthermore,

based on my experience in acquiring source codefiles and archives from publicly accessible

sources over the years, I have no reason to believe that the date stamps on these copies of

. BRMH-1.7.tar.gz and Server2.5pl4.tar.gz are inaccurate and therefore believe them to correctly

reflect the dates those files were created.

15.|Based on mygeneral experience with software over the past 16 years, my

experience playing Netrek, my extensive involvementin the Netrek community over the past 13

years, discussions with other members of the Netrek community, my personal involvement in

creating and maintaining the Netrek Software Archive, the date stamps on the BRMH-1.7.tar.gz

and Server2.5pl4.tar.gz source code archive files (which I believe to accurately reflect the dates

those archive files were created), my knowledge and recollection of various messages posted to

rec.games.netrek, and my extensive experience downloading, experimenting with, and

modifying Netrek source code, I can attest as follows. To the best of my knowledge,

recollection, and understanding, the BRMH-1.7.tar.gz and Server2.5pl4.tar.gz source code

archive files available on the Netrek Software Archive (1) contain versions of the Netrek BRMH

client and Netrek Vanilla Server source code files, respectively; (2) became and continued to be

disseminated from publicly accessible sources during or before 1994 and substantially

continuously thereafter; and (3) were locatable and recognizable from 1994 onward by any

person interested and ordinarily skilled in source code development, particularly including

members of the Netrek community and those whoparticipated in the rec.games.netrek

newsgroup, who exercised reasonable diligence to locate them.

DCMB_832,595 9

Petitioner Riot Games,Inc. - Ex. 1005, p. 185

Petitioner Riot Games, Inc. - Ex. 1005, p. 186

Declaration ofDavid Ahn

I declare under penalty of perjury under the laws of the United States of America that the

foregoing is true and correct.

Executed on this ta day of December, 2007.

gt &—
David Ahn

DCMB_832,595 10

Petitioner Riot Games,Inc. - Ex. 1005, p. 186

Petitioner Riot Games, Inc. - Ex. 1005, p. 187

Electronic Patent Application Fee Transmittal

Title of Invention: SERVER-GROUP MESSAGING SYSTEM FOR INTERACTIVE APPLICATIONS

First Named Inventor/Applicant Name: Daniel J. Samuel

Filer: Tracy Wesley Druce

Filed as Large Entity

ex parte reexam Filing Fees

Sub-Totalin

USD($)

Basic Filing:

Requestfor ex parte reexamination 1812 2520 2520

Pages:

Description Fee Code Quantity

Claims:

Miscellaneous-Filing:

Petition:

Patent-Appeals-and-Interference:

Post-Allowance-and-Post-Issuance:

Extension-of-Time:

Petitioner Riot Games,Inc. - Ex. 1005, p. 187

Petitioner Riot Games, Inc. - Ex. 1005, p. 188

Sub-Totalin

USD($)
Description Fee Code Amount

Miscellaneous:

Petitioner Riot Games,Inc. - Ex. 1005, p. 188

Petitioner Riot Games, Inc. - Ex. 1005, p. 189

Electronic Acknowledgement Receipt

7804962

Confirmation Number:

Title of Invention: SERVER-GROUP MESSAGING SYSTEM FOR INTERACTIVE APPLICATIONS

First Named Inventor/Applicant Name: Daniel J. Samuel

a
Filer Authorized By:

Attorney Docket Number: 18830,0003

ee
Time Stamp: 17:36:56

Application Type: Reexam (Third Party)

Paymentinformation:

Submitted with Payment

Payment Type

Payment was successfully received in RAM

RAM confirmation Number

Deposit Account

Authorized User

Document DocumentDescription File Size(Bytes)/ Multi Pages
Number P Message Digest|Part/.zip| (if appl.)

Petitioner Riot Games,Inc. - Ex. 1005, p. 189

Petitioner Riot Games, Inc. - Ex. 1005, p. 190

CERTIFICATE_OF_SERVICE_523.Reexam Certificate of Service
pdf b5bfhd9aeNabIc93aa4?118 1beSdfc9202 8A}

eadd

Information:

Reexam - Info Disclosure Statement

Filed by 3rd Party IDS_523_pdf ab3b{6c.754d4.a4ceb45466467000474743}
22731

Information:

Reexam-Affidavit/Decl/Exhibit Filed by
3rd Party PA_Brfc1459_IRC_66pg.pdf 306d5d7f73807b5d0abc3776032ff38b501

68392

Warnings:

Information:

158585
Reexam - Affidavit/Decl/Exhibit Filed by} PA_C_Packing_Messages_Fried

3rd Party

Warnings:

256867
Reexam - Affidavit/Decl/Exhibit Filed by] PA_D_Van_Hook_An_Approac

3rd Party h_to_DIS_Scaleabilty_9pg.pdf 1735139aa38a6892a35 leffed101acb23695|
3e42

Information:

8236023
Reexam - Affidavit/Decl/Exhibit Filed by) PA_E_IEEE_1278_199365pg_.

3rd Party Badd 3bb3c2d 3b869ab95 bdc5e984cO9f8b
d8ae32

PA_F_5736982_Virtual_space_ 23110919
apparatus_with_ava_46pg_.

pdf 52b5269d98cbSb8d57ff1 4c0dd447076305}flees

Reexam - Affidavit/Decl/Exhibit Filed by
3rd Party

Information:

3847316
Reexam - Affidavit/Decl/Exhibit Filed by] PA_G_RING_AClient_Server_S

3rd Party ystem_10pg.pdf 439395 1b5 1b386f19536a4bd07c905 cf3ed|

Warnings:

Information:

149424
Reexam - Affidavit/Decl/Exhibit Filed by] PA_H_History_of_Netrek_McFal | no

3rd Part dden_16pg_.pdf
¥ —19P9_P 85f045ab3f6140b992ee94995bfbcc9<7Eaal6621

Warnings:

Information:

Petitioner Riot Games,Inc. - Ex. 1005, p. 190

Petitioner Riot Games, Inc. - Ex. 1005, p. 191

2047617
Reexam - Affidavit/Decl/Exhibit Filed by] PA_I_Macedonia_1995_cga_9p

3rd Party ef3176b3504.ac94f548d733d 5bf50ca9859
786b

Information:

2948698
Reexam - Affidavit/Decl/Exhibit Filed by

3rd Party PAT_A_5822523_27pg_.pdf 36b5813295c100.0e25e7be7c40b09.04.
adbo

Information:

6719316
Reexam - Affidavit/Decl/Exhibit Filed by) PAT_B5822523Pro_History_2

3rd Party 50pg_.pdf b69 Ibefa73509a0448345 ea68e5768fa78ed

Warnings:

Information:

152176
Reexam - Affidavit/Decl/Exhibit Filed by} CC_A_B_523_v_NETREK_55pqg.

3rd Party 91691d274a408a71093607b997<976cc260
bc7el

Warnings:

Information:

238222
Reexam - Affidavit/Decl/Exhibit Filed by) CC_C_523_v_Van_hook_and_

3rd Party DIS_18pg.pdf 01563345 ceb5 a3 0b18702902fd7b1ficl 7d5|
Ticd

Information:

Reexam-Affidavit/Decl/Exhibit Filed by) CC_D_523_IRC_RFC_Friedman
3rd Party _Claims_1_2_466pg.pdf b9c9a31971723956679696c5 dal 496ea2ef|

d2185

239434
Reexam - Affidavit/Decl/Exhibit Filed by) CC_E_523_v_Ring_in_view_of.

3rd Part Netrek_43pg.pdf
y ~ pg p 98ae3b9 1600f65d824d461 c6a70ade8a2b939568

Information:

249543
Reexam - Affidavit/Decl/Exhibit Filed by] CC_F_523_v_RING_and_Van_H

3rd Party ook_22pg.pdf 76302a5c5b75b997339bed 79cOfl007f27

Warnings:

Information:

597025
Reexam - Affidavit/Decl/Exhibit Filed by) OTH_B_Paltalk_Complaint_17p | no

3rd Party g_.pdf b144c77cbb8e134e4ael e23d06e5a8e52 71
a29d6

Warnings:

Information:

Petitioner Riot Games,Inc. - Ex. 1005, p. 191

Petitioner Riot Games, Inc. - Ex. 1005, p. 192

Reexam - Affidavit/Decl/Exhibit Filed by
3rd Party

1293252
OTH_C_90010093_AhnDecl_11

370df6e3 Pad 5 35H334ef1099197F3.3349031
aofd

Information:

Reexam - Affidavit/Decl/Exhibit Filed by
3rd Party

Information:

1701541
OTH_D_90010093_Order_Gran

ting_Reexam_19pg_.pdf 995e34a77 119981 Obdd25a8b456356b2f]
6B4ce

Reexam-Affidavit/Decl/Exhibit Filed by
3rd Party

Warnings:

329171
OTH_E_PalTalk_Opening_CCBI

rief_34pg_.pdf d93bb914eb771 0c8b<8060017451773895
635805

Information:

Reexam - Affidavit/Decl/Exhibit Filed by
3rd Party

Warnings:

83815

31¢8bc24f61d222534floc37096e5 79caG245}
59eb

OTH_F_218_Supplemental_Cla
im_Construction_Order_9pg_.

pdf

Information:

Reexam - Affidavit/Decl/Exhibit Filed by
3rd Party

. : 205829
OTH_G_107_Claim_Constructi

on_Order_44pg_.pdf 7ee210465108bf1 8ae2 16600ecb6cf143.a7
526¢

Information:

1742609
Reexam-Affidavit/Decl/Exhibit Filed by

3rd Party
OTH_H_Lipstream_Claim_Cons

truction_Order_15pg_.pdf 637ef0d497023al c55efochd83aa703a7aaQl
9b7f

Information:

Receipt of Original Ex Parte Reexam
Request

Information:

371455
523_ex_parte_reexam_52pqs.

pdf <61ad6eb79fb9260fcae6 15 a2f2F76c0d6354

Reexam - Affidavit/Decl/Exhibit Filed by
3rd Party

Warnings:

4649235
OTH_A_0113_5Smithdeclara

tion_20pg. pdf b165323ad3695 6ec9ea249247954bd bebo
&des05

Information:

Reexam - Affidavit/Decl/Exhibit Filed by
3rd Party

Warnings:

17114665 | no
fd75a2663b263379d8b04cOff01 435139}

b590

OTH_I_Netgames_your_guide
to_the_games_1_to_139_of_2

87pgs.pdf

Information:

Petitioner Riot Games,Inc. - Ex. 1005, p. 192

Petitioner Riot Games, Inc. - Ex. 1005, p. 193

OTH_I_Netgames_your_guide 16154802
to_the_games_140_to_287_of

_287pqgs.pdf d02a7f9¢¢359848a5F3601 Sffaas 56a8fa

Reexam - Affidavit/Decl/Exhibit Filed by
3rd Party 6B4

Information:

Fee Worksheet (PTO-875) fee-info.pdf 25bd579e9d8ad9.5a029676819ad [Od030f1
196b

Information:

Total Files Size (in bytes) 92803042

This AcknowledgementReceipt evidences receipt on the noted date by the USPTO ofthe indicated documents,
characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar toa
Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new applicationis being filed and the application includes the necessary componentsfora filing date (see 37 CFR
1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shownonthis
AcknowledgementReceiptwill establish thefiling date of the application.

National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35
U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptanceof the application asa
national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office
If a new international application is being filed and the international application includes the necessary componentsfor
an internationalfiling date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number
andof the InternationalFiling Date (Form PCT/RO/105)will be issued in due course, subject to prescriptions concerning
nationalsecurity, and the date shown on this AcknowledgementReceiptwill establish the international filing date of
the application.

Petitioner Riot Games,Inc. - Ex. 1005, p. 193

Petitioner Riot Games, Inc. - Ex. 1005, p. 194

PTO/SB/57 (02-09)
Approved for use through 08/31/2010. OMB 0651-0033

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no personsare required to respond to a collection of information unless it displays a valid OMB control number.

(Also referred to as FORM PTO-1465)

REQUEST FOR EX PARTE REEXAMINATION TRANSMITTAL FORM

Addressto:

Mail Stop Ex Parte Reexam
Commissionerfor Patents Attorney Docket No.: 18330.0003
P.O. Box 1450

Alexandria, VA 22313-1450 Date: June 14, 2010

This is a request for ex parte reexamination pursuant to 37 CFR 1.510 of patent number 5,822 523

issued 1998-10-13 . The request is made by:
[| patent owner. third party requester.

The name and addressof the person requesting reexaminationis:

Novak Druce + Quigg LLP

1000 Louisiana Street, Fifty-Third Floor

Houston, TX 77002

A check in the amountof § is enclosed to cover the reexamination fee, 37 CFR 1.20(c)(1);

The Director is hereby authorized to charge the fee as set forth in 37 CFR 1.20(c)(1)
to Deposit Account No. ; or

Paymentby credit card. Form PTO-2038is attached.

Any refund should be made by L] checkor credit to Deposit Account No. 14-1437
37 CFR 1.26(c). If payment is made by credit card, refund must be to credit card account.

A copy of the patent to be reexamined having a double column format on oneside of a separate paper is
enclosed. 37 CFR 1.510(b)(4)

CD-ROMor CD-Rin duplicate, Computer Program (Appendix)or large table
Landscape Table on CD

Nucleotide and/or Amino Acid Sequence Submission
If applicable, items a. — c. are required.

a. [_| Computer Readable Form (CRF)
b. Specification SequenceListing on:

i. [_]CD-ROM (2 copies) or CD-R (2 copies); or
ii. [| paper

C.[] Statements verifying identity of above copies

[| A copy of any disclaimer, certificate of correction or reexamination certificate issued in the patentis included.

Reexamination of claim(s) 1-6 is requested.

. A copyof every patentor printed publication relied upon is submitted herewith includingalisting thereof on
Form PTO/SB/08, PTO-1449, or equivalent.

11. [] An English languagetranslation of all necessary and pertinent non-English language patents and/or printed
publications is included.

Page 1 of 2

This collection of information is required by 37 CFR 1.510. The information i required id obtain or retain a benefit by the public whichis to file (and by the USPTO to
process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 2 hours to complete, including
gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending uponthe individual case. Any comments on the amount
of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark
Office, U.S. Department of Commerce, P.O. Bax 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMSTO THIS ADDRESS.
SEND TO: Mail Stop Ex Parte Reexam, Commissionerfor Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

Petitioner Riot Games,Inc. - Ex. 1005, p. 194

Petitioner Riot Games, Inc. - Ex. 1005, p. 195

PTO/SB/57 (02-09)
Approved for use through 08/31/2010. OMB 0651-0033

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unlessit displays a valid OMB control number.

12. The attached detailed request includes at least the following items:

a. Astatement identifying each substantial new question of patentability based on prior patents and printed
publications. 37 CFR 1.510(b)(1)
b. An identification of every claim for which reexamination is requested, and a detailed explanation of the pertinency
and mannerof applying the cited art to every claim for which reexamination is requested. 37 CFR 1.510(b)(2).

13.[] A proposed amendmentis included (only where the patent owneris the requester). 37 CFR 1.510(e)

14. IX a. It is certified that a copy of this request(if filed by other than the patent owner) has beenservedinits entirety on
the patent owner as provided in 37 CFR 1.33(c).
The name and addressof the party served and the date of service are:

Rajiv P. Patel. Fenwick & West LLP, 2 Palo Alto Square, Palo Alto, CA 94306

Jordan Altman, Shearman & Sterling LLP, 599 Lexington Ave, New York NY 10022

Daniel Devito, 4 Times Square, New York, NY 10036

Date of Service: June 14, 2010

; Or

[] b. Aduplicate copy is enclosed because service on patent owner was not possible. An explanation ofthe efforts
made to serve patent owner is attached. See MPEP 2220.

15. Correspondence Address: Direct all communications about the reexamination to:

The address associated with Customer Number: 37086
OR

Firm or
IndividualName

Telephone

16. The patentis currently the subject of the following concurrent proceeding(s):

a. Copending reissue Application No.

[| b. Copending reexamination Control No.

[| c. Copending Interference No.
X| d. Copendinglitigation styled:

PalTalk Holdings Inc. v. Sony Computer Entertainment

AmericaInc., et. al., Case.No. 2:09cv00274-DF (E.D. Tex.)

WARNING: Information on this form may become public. Credit card information should not be
included on this form. Provide credit card information and authorization on PTO-2038.

‘Tracy W. Druce/ June 14, 2010
Authorized Signature Date

Tracy W. Druce 35493 [| For Patent Owner Requester
Typed/Printed Name Registration No. For Third Party Requester

[Page 2 of 2]

Petitioner Riot Games,Inc. - Ex. 1005, p. 195

Petitioner Riot Games, Inc. - Ex. 1005, p. 196

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection
with your submission of the attached form related to a patent application or patent. Accordingly,
pursuant to the requirements of the Act, please be advised that: (1) the general authority for the
collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary;
and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark
Office is to process and/or examine your submission related to a patent application or patent. If you do
not furnish the requested information, the U.S. Patent and Trademark Office may not be able to
process and/or examine your submission, which may result in termination of proceedings or
abandonmentof the application or expiration of the patent.

The information provided by youin this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the
Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from
this system of records may be disclosed to the Departmentof Justice to determine whether
disclosure of these records is required by the Freedom of Information Act.

2. A record from this system of records may be disclosed, as a routine use, in the course of
presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to
opposing counsel in the course of settlement negotiations.

3. A record in this system of records may be disclosed, as a routine use, to a Memberof
Congress submitting a request involving an individual, to whom the record pertains, when the
individual has requested assistance from the Memberwith respect to the subject matter of the
record.

4. Arecord in this system of records may be disclosed, as a routine use, to a contractor of the
Agency having need for the information in order to perform a contract. Recipients of
information shall be required to comply with the requirements of the Privacy Act of 1974, as
amended, pursuantto 5 U.S.C. 552a(m).

5. A-record related to an International Application filed under the Patent Cooperation Treaty in
this system of records may be disclosed, as a routine use, to the International Bureau of the
World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.

6. A record in this system of records may be disclosed, as a routine use, to another federal
agency for purposes of National Security review (35 U.S.C. 181) and for review pursuantto
the Atomic Energy Act (42 U.S.C. 218(c)).

7. A record from this system of records may be disclosed, as a routine use, to the Administrator,
General Services, or his/her designee, during an inspection of records conducted by GSA as
part of that agency's responsibility to recommend improvements in records management
practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall
be madein accordance with the GSA regulations governing inspection of recordsfor this
purpose, and anyotherrelevant (/.e., GSA or Commerce)directive. Such disclosure shall not
be used to make determinations about individuals.

8. A record from this system of records may bedisclosed, as a routine use, to the public after
either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent
pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37
CFR 1.14, as a routine use, to the public if the record wasfiled in an application which
became abandonedorin which the proceedings were terminated and which application is
referenced by either a published application, an application open to public inspection or an
issued patent.

9. Arecord from this system of records may bedisclosed, as a routine use, to a Federal, State,
or local law enforcement agency,if the USPTO becomes awareof a violation or potential
violation of law or regulation.

Petitioner Riot Games,Inc. - Ex. 1005, p. 196

Petitioner Riot Games, Inc. - Ex. 1005, p. 197

Electronic Acknowledgement Receipt

7810215

Confirmation Number:

Title of Invention: SERVER-GROUP MESSAGING SYSTEM FOR INTERACTIVE APPLICATIONS

First Named Inventor/Applicant Name: Daniel J. Samuel

Correspondence Address:

Tracy Wesley Druce

Receipt Date: 14-JUN-2010

Filing Date:

Paymentinformation:

File Listing:

Petitioner Riot Games,Inc. - Ex. 1005, p. 197

Petitioner Riot Games, Inc. - Ex. 1005, p. 198

Document DocumentDescription File Size(Bytes)/ Multi Pages
Number P Message Digest|Part/.zip| (if appl.)

. 778145
Transmittal_Form_523_3pgs.

Reexam Miscellaneous Incoming Letter odf £588926222126c15d7d6f46f6b6ece9e2c14]
762e

This Acknowledgement Receipt evidences receipt on the noted date by the USPTOof the indicated documents,
characterized by the applicant, and including page counts, where applicable. It serves as evidenceof receipt similar toa
Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new applicationis being filed and the application includes the necessary componentsfora filing date (see 37 CFR
1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shownonthis
AcknowledgementReceiptwill establish thefiling date of the application.

National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35
U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903indicating acceptance of the application as a
nationalstage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO asa Receiving Office
If a new international application is being filed and the international application includes the necessary componentsfor
an internationalfiling date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number
and of the InternationalFiling Date (Form PCT/RO/105)will be issued in due course, subject to prescriptions concerning
nationalsecurity, and the date shown on this AcknowledgementReceiptwill establish the international filing date of
the application.

Petitioner Riot Games,Inc. - Ex. 1005, p. 198

Petitioner Riot Games, Inc. - Ex. 1005, p. 199

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Control No.:

Inventors: Rothschild, Jeffrey J., Mare P. REQUEST FOR REEXAMINATION UNDER
Kwaitkowski and Daniel J. Samuel 35 U.S.C.§§ 302-307 AND

37 C.F.R. § 1.510

Patent No.: 5,822,523

Filed: February 1, 1996

Issued: October 13, 1998

Title: Server-group messaging system for
interactive applications

Mail Stop Ex Parte Reexamination
ATTN:Central Reexamination Unit

Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

REQUEST FOR EX PARTE REEXAMINATIONOF U.S. PATENT NO.5,822,523

Petitioner Riot Games,Inc. - Ex. 1005, p. 199

Petitioner Riot Games, Inc. - Ex. 1005, p. 200

TABLE OF CONTENTS

I REQUIREMENTSFOR EX PARTE REEXAMINATION UNDER 37 C.E.R. § 1.510
7

A. 37C.F.R. § 1.510 (b)(1) and (b)(2): Statement Pointing Out Each Substantial New
Question of Patentability and Detailed Explanation of the Pertinency and MannerofApplying
the Cited Prior Art to Every Claim for Which Reexamination is Requestedcceeeeeeree 7
B. 37C.F.R. § 1.510 (b)(3): Copy of Every Patent or Printed Publication Relied Upon to
Present & SNQ wo. ccccccccsccccssscsessscsessececsaeescsaesesseseecesseecsesescseeassueaaesessaeasceaeaesseasecessseceesussesesseeeeases 7
C. 37 C.F.R. § 1.510 (b)(4): Copy of the Entire Patent for which Reexamination Is
ReqUCSted ooo... eecccccccecccceseessceseensecseecssesseeseceaecssecaeecsessseesecesecssecsaecsssesaesseesecsseeseecseesaenseseeesieeseeeses 8
D. 37C.F.R. § 1.510 (b)(5): Certification that a Copy of the Request has been Servedin its
Entirety on the Patent OWNeD 0... ccc cccccccesseescesscesesscecssceseesscesecesesscecsscesesssevsecesessaecssseaeeseeaeesnes 8
E. 37C.F.R. § 1.510 (a): Fee for Requesting Reexamination0...ccccececeeeeeeeeeteeeeeeenees 8
F. Related Co-Pending Litigation Requires Treatment with Special Dispatch and Priority
Overall Other Cases...cece sesecssesseecsesseescnesseeessesaeisesesesiseeesssseceeessesecevseeecsseaseecsasaeesceeentees 9

Il. OVERVIEWOF THE ‘523 PATENT AND ITS PROSECUTION HISTORY.9

A. Summary of Preferred Embodiments and Claims of the ‘523 Patent...eesti 9
B. ‘523 Patent Application Prosecution History00...ccccceccccccccecceeeseeceeeeseenseeesseesssesnseees 10
C. Claim Construction 2.0... cece eeeeeceeeeececeseceeesesececesvsececevsececeveeseceeveceeeaeeaceeeaeeeeeesaeeeseeeaes 12

Lo Standardeecseeccsesenesesseteeecsssseeessssssecesssseecssvseeecsssaseecsesssescnesaseessesateeeeeeesseeaees 12

2. Previous Litigation Claim Comstructions........ccccccccsscsssscscesecsseeceeeseeeesssscesecssesseerenenees 13
TH. SUMMARYOF THE PRIOR ART uuu... ccccsssccssstcsssccsssneecssneesssnseessssseesssseseaees 13

IV. 37 C.F.R. § 1.510 (b)\(1): STATEMENT POINTING OUT EACH SUBSTANTIAL
NEWQUESTION OF PATENTABILITY«0.0...sssssssscsesessencessecssceenessecsssseceersoesees 19

A. Netrek Alone Presents a Substantial New Question of Patentability with Respect to
Claims 1-6 of the ‘523 Patent ..0.....cccccccccesceeccseeeecseeecceeeeececerceaeescsaeeeceaeeaeeaeeaeceseesneeseenaeesenaees 19

B. Netrek in Combination with McFadden Presents a Substantial New Question of
Patentability with Respect to Claims 1-6 of the £523 Patent. 0... ceeceeeeeeeeeeeeeeeeeeeeeeeeeeeeees 19
C. Van Hook in Combination with DIS Presents a Substantial New Question of Patentability
with Respect to Claims 1, 2 and 4-6 of the £523 Patent..........ccccccescccccssecssseteessseeseetseeeesseeeees 20
D. TRC RFC in Combination with Friedman Presents a Substantial New Question of
Patentability with Respect to Claims 1, 2 and 4-6 of the °523 Patent oo...eee 21
E. RINGin Combination with Netrek Provides a Substantial New Question of Patentability
with Respect to Claims 1-6 of the ‘523 patent..........ccccccseeseeesssscetecsseeseeeseseesssscesectseeseenseeenes 22
F. RING in Combination with Van Hook Provides a Substantial New Question of
Patentability with Respect to Claims 1, 2 and 4-6 of the ‘523 patent...eeeeee 23

Vv. DETAILED EXPLANATION UNDER37 CFR 1.510(b) OF THE PERTINENCY
AND MANNER OF APPLYING THE CITED PRIOR ART TO EVERY CLAIM FOR

WHICH REEXAMINATIONIS REQUESTED uu...ccssscsesseecscnscsesccsssscsessenssseessees 23

Petitioner Riot Games,Inc. - Ex. 1005, p. 200

Petitioner Riot Games, Inc. - Ex. 1005, p. 201

A. Claims 1-6 Are Anticipated by Netrek Under 35 U.S.C. § 102...etecette 23
B. Claims 1-6 Are Rendered Obvious by Netrek in view of McFadden under 35 U.S.C.
S LOBeeeccceseeecesecseesecaeesecseesecuesecseceneseeseaecseseecsesaeceeesceaecseeaecscesecaecaecaecsesaesaesaeseeseateeseeseneeas 32
C. Claims 1, 2 and 4-6 Are Rendered Obvious by Van Hook in view of DIS under 35 U.S.C.
S LOB Lee eececcceseeecesecseesecseesecseeecseesecsaceesaeseesaecsessecsecseceeeseseaeesenaecseeaecaecaecaeesesaesaeseseeseateeseeeenseas 32
D. Claims 1, 2 and 4-6 Are Rendered Obvious by IRC RFC in view of Friedman under 35
US... § LOB eee ceceeececeeeceeeseesecseesaceeesaecaeeesaeeeeseeeeecaessesseeeeceaeseesaeeeesaeeeesaecaeseesaeseeeeeseeeeeeetenes 37
E. Claims 1-6 Are Rendered Obvious by RINGin view ofNetrek under 35 U.S.C. § 103 . 40
F. Claims 1, 2 and 4-6 Are Rendered Obvious by RINGin view of Van Hook under 35
ULS.C. § 108 ccccccccccccccssesecscssesececseesesecseesesecsessesecaesesecscesesessssesecsesaesecseeaesscsesseeeseeseteeeeseneesees 46

VI. CONCLUSION.......cccssscsscsseceescscecsssescosssssccacsssecesssesscsssessecsessscescessecessesasesssseasers 51

Petitioner Riot Games,Inc. - Ex. 1005, p. 201

Petitioner Riot Games, Inc. - Ex. 1005, p. 202

TABLE OF EXHIBITS

LIST OF EXHIBITS

The cxhibits to the present Request are arranged in four groups: prior art (“PA”); relevant
portions of patent prosecution file history, patents, and claim dependencyrelationships (“PAT”);
claim charts (“CC”); and other (“OTH”).

A. PRIOR ART (PA)

PA-SB08 USPTO Form SB/08

PA-A Server2.5pl4.tar.gz (“Server Code’) and BRMH-1.7.tar.gz (“Client Code’’)
(source code dated nolater than August 1994') (“Netrek”)

PA-B J. Oikarinen et al., RFC 1459- Internet Relay Chat Protocol, published May
1993 (“IRC RFC”)

PA-C R. Friedman et al., Packing Messages as a Tool for Boosting the
Performance of Total Ordering Protocols, Dept. of Science of Cornell
University, published July 7, 1995 (“Friedman’’)

PA-D Daniel J. Van Hook, James O. Calvin, Michael K. Newton, and David A.
Fusco, “An Approach to DIS Scaleability,” 11" DIS Workshop, 26-30 Sept.
1994 (“Van Hook’’)

PA-E IEEE 1278-1993 IEEE Standard for Information Technology- Protocols for
Distributed Interactive Simulation Applications, approved March 18, 1993,
and published in 1993 (“DIS”)

PA-F U.S. Patent No. 5,736,982 to Suzuki (“Suzuk?’’)

PA-G T. A. Funkhouser, “RING: A Client-Server System for Multi-User Virtual
Environments,” Association of Computing Machinery, 1995 Symposium on
Interactive 3D Graphics, Monterey CA, April 9-12, 1995” (“RING”)

PA-H Andy McFadden, “The History of Netrek”, published January 1, 1994
(“McFadden”)

PA-I Michael R. Macedonia, “Exploiting Reality with Multicast Groups”,
published September 1995 (“Macedonia”)

B. RELEVANT PATENT MATERIALS (PAT)

PAT-A U.S. Patent No. 5,822,523 (“the ‘523 patent”)

PAT-B Prosecution history of the ‘523 patent

' See also, The Ahn declaration (OTH-C) at 4 7-10 and 15 (supporting public availability of Netrek source code no
later than August 1994).
* See bup://porlal. acm.cre/iog.cfin?id=199404 (indicating the Association of Computing Machinery, 1995
Symposium on Interactive 3D Graphics, Monterey CA,including the presentation for RING, occurred between
April 9-12.

Petitioner Riot Games,Inc. - Ex. 1005, p. 202

Petitioner Riot Games, Inc. - Ex. 1005, p. 203

C. CLAIM CHARTS(CC)

CC-A Claim Chart comparing Claims 1-6 of U.S. Patent No. 5,822,523 to the
disclosure in Netrek

CC-B Claim Chart comparing Claims 1-6 of U.S. Patent No. 5,822,523 to the
disclosure in Netrek in view of McFadden

CC-C Claim Chart comparing Claims 1, 2 and 4-6 of U.S. Patent No. 5,822,523 to
the disclosure in Van Hookin view of DIS

CC-D Claim Chart comparing Claims 1, 2 and 4-6 of U.S. Patent No. 5,822,523 to
the disclosure of IRC RFC in view of Friedman

CC-E Claim Chart comparing Claims 1-6 of U.S. Patent No. 5,822,523 to the
disclosure of RINGin view ofNetrek

CC-F Claim Chart comparing Claims 1, 2 and 4-6 of U.S. Patent No. 5,822,523 to
the disclosure of RING in view of Van Hook

D. OTHER DOCUMENTS (OTH)

OTH-A Declaration of Kevin Smith (“the Smith declaration”)

OTH-B Complaint filed in Paltalk Holdings, Inc. v. Sony Computer Entertainment
America, Inc., et. al., (E.D. Tex.), Case No. 2:09¢v00274-DF

OTH-C Declaration of David Ahn (“the Ahn declaration’’)

OTH-D Reexamination Ctrl. No. 90/001,093 Determination Ordering Reexamination
dated February 29, 2008

OTH-E _Paltalk’s Corrected Second Opening Claim Construction Brief filed on
December 31, 2007 in Paltalk Holdings, Inc. v. Microsoft Corp. (E.D. Tex.),
Case No. 2:06-cv-00367-DF

OTH-F Paltalk’s Second Reply Brief on Claim Construction filed on January 7, 2008 in
Paltalk Holdings, Inc. v. Microsoft Corp. (E.D. Tex.), Case No. 2:06-cv-00367-
DF

OTH-G—Claim Construction order issued on July 29, 2008 in Paltalk Holdings, Inc. v.
Microsoft Corp. (E.D. Tex.), Case No. 2:06-cv-00367-DF

OTH-H—Claim Construction order issued on August 25, 2000 in HearMe v. Lipstream
Networks, Inc. (N.D. Cal.), Case No. 99-04506 WHA

OTH-I Kelly Maloni, Derek Baker and Nataniel Wice “Netgames ... Your Guide to the
Games People Play on the Electronic Highway” published 1994 (“Maloni’’)

Petitioner Riot Games,Inc. - Ex. 1005, p. 203

Petitioner Riot Games, Inc. - Ex. 1005, p. 204

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Control No:

Inventors: Rothschild, Jeffrey J., Marc P. REQUEST FOR REEXAMINATION UNDER
Kwaitkowski and Daniel J. Samuel 35 U.S.C. §§ 302-307 AND

37 C.F.R. § 1.510

Patent No.: 5,822,523

Filed: February 1, 1996

Issued: October 13, 1998

Title: Server-group messaging system for
interactive applications

Mail Stop Ex Parte Reexamination
ATTN:Central Reexamination Unit

Commissionerfor Patents

P.O. Box 1450

Alexandria, VA 22313-1450

REQUEST FOR EXPARTE REEXAMINATIONOF U.S. PATENT5,822,523

Dear Sir or Madam:

The undersigned. hereby respectfully requests reexamination, pursuant to 35 U.S.C. §§ 302-

307 and 37 C.F.R. § 1.510, of Claims 1-6 of U.S. Patent No. 5,822,523 (“the ‘523 patent”), filed

February 1, 1996, and issued October 13, 1998, to Jeffrey J. Rothschild, Mare P. Kwaitkowski and

Daniel J. Samuel (Exhibit PAT-A). Reexamination is requested in viewof the substantial new

questions of patentability (“SNQ”) presented below. Requester reserves all rights and defenses

available including, without limitation, defenses as to invalidity and unenforceability. By simply

filing this Request in compliance with the Patent Rules, Requester does not represent, agree or

concurthat the ‘523 patent is enforceable, and by asserting the SNQ herein, Requester specifically

asserts that Claims 1-6 of the “523 patent are in fact not patentable. As such, the U.S. Patent and

Trademark Office (the “Office’”) should reexamine and find Claims 1-6 unpatentable and cancel

Petitioner Riot Games,Inc. - Ex. 1005, p. 204

Petitioner Riot Games, Inc. - Ex. 1005, p. 205

Claims 1-6 of the ‘523 patent, rendering Claims 1-6 of the ‘523 patent null, void, and otherwise

unenforceable.

Reexamination is requested in view ofthe teachings of the references cited herein. The

SNQsestablished by these references teach the elements recited by Claims 1-6 of the “523 patent

and, importantly, teach the clements that were argued as novel during prosecution. Further, none

of the references submitted as part of this reexam were cited or discussed during prosecution of

the ‘523 patent. As described more fully below, reexamination is appropriate in view of the

patents and printed publications prior art cited herein, which alone or in combination with other

prior art provide new technical teachings not previously considered with respect to the claims

herein requested for reexamination.

The Requester submits that reexamination should be granted and that Claims 1-6 be found

unpatentable by issuance of a Certificate of Reexamination canceling all claims.

I, REQUIREMENTSFOR EX PARTE REEXAMINATION UNDER37 C.E.R. §
1.510

Requestersatisfies each requirement for ex parte reexamination of the ‘523 patent.

A, 37 C.F.R. § 1.510 (b)(1) AND (b)(2): STATEMENT POINTING OUT EACH
SUBSTANTIAL NEW QUESTION OF PATENTABILITY AND DETAILED EXPLANATION OF THE
PERTINENCY AND MANNER OF APPLYING THE CITED PRIOR ART TO EVERY CLAIM FOR

WHICH REEXAMINATION IS REQUESTED

A statement pointing out each substantial new question of patentability (“SNQ’’) based on

the cited patents, and a detailed explanation of the pertinence and mannerof applying the cited

patents to Claims 1-6 of the ‘523 patent is presented below in accordance with 37 C.F.R. § 1.510

(b)(1) and (b)(2).

The SNQsraised herein are based on prior art that was not cited or discussed during the

prosecution of the ‘523 patent. The references, alone or in combination, are not cumulative to

the prior art discussed during the original prosecution of the ‘523 patent. Thus, they are

appropriate for use in supporting the SNQsofpatentability raised herein.

B. 37 C.E.R. § 1.510 (b)(3): COPY OF EVERY PATENT OR PRINTED PUBLICATION
RELIED UPON TO PRESENT A SNQ

A copyof every patent is or printed publication relied upon to present a SNQ is submitted

herein, pursuant to 37 C.F.R. §1.510(b)(3), as Exhibits PA-A through Exhibits PA-I, citation of

Petitioner Riot Games,Inc. - Ex. 1005, p. 205

Petitioner Riot Games, Inc. - Ex. 1005, p. 206

which may be found on the accompanying Form PTO-SB/08 at Exhibit PTO-SB/08. Each of

these cited prior art patents and printed publications constitutes effective prior art as to the claims

of the ‘523 patent under 35 U.S.C. § 102 and 35 U.S.C. § 103. PA-A was separately submitted

on a compactdisc to the Office, in the care of Manuel Saldana Jr., on the samedate as this

request wasfiled, June 14, 2010.

C, 37 C.F.R. § 1.510 (b)(4): Copy OF THE ENTIRE PATENT FOR WHICH
REEXAMINATION IS REQUESTED

A full copy of the *523 patent is submitted herein as Exhibit PAT-A in accordance with

37 C.F.R. § 1.510(b)(4).

D. 37 C.F.R. § 1.510 (b)(5): CERTIFICATION THAT A COPY OF THE REQUEST HAS BEEN
SERVEDIN ITS ENTIRETY ON THE PATENT OWNER

A copy ofthis request has been served in its entirety on the Patent Owner in accordance

with 37 C.F.R. § 1.510(b)(5) at the following address:

DANIEL DEVITO

PATENT DEPARTMENT

SKADDEN, ARPS, SLATE, MEAGHER & FLOM LLP

FOUR TIMES SQUARE
NEW YORK NY 10036

Also as a courtesy, a copy ofthis request is being sent to two correspondence addresses
of recent assignees:

FENWICK & WEST LLP

RAJIV P. PATEL, ESQ.
TWO PALO ALTO SQUARE
PALO ALTO, CA 94306

and

JORDAN ALTMAN 599 LEXINGTON AVENUE SHEARMAN &

STERLING LLP - IP DOCKETING

NEW YORK, NY 10022

E. 37 C.F.R. § 1.510 (a): FEE FOR REQUESTING REEXAMINATION

In accordance with 37 C.F.R. § 1.510(a), a credit card authorization to cover the fee for

reexamination of $2,520.00 is attached. If this authorization is missing or defective, please

charge the Fee to the Novak Druce and Quigg Deposit Account No. 14-1437.

Petitioner Riot Games,Inc. - Ex. 1005, p. 206

Petitioner Riot Games, Inc. - Ex. 1005, p. 207

F. RELATED CO-PENDING LITIGATION REQUIRES TREATMENTWITH SPECIAL
DISPATCH AND PRIORITY OVER ALL OTHER CASES.

The ‘523 patent is presently the subject of PalTalk Holdings v. Sony Computer

Entertainment America, et al., (E.D. Tex.) See OTH-A, Complaintfiled by Paltalk Holdings.

Pursuant to 35 U.S.C. § 305, Requester respectfully urges that this Request be granted

and reexamination conducted not only with “special dispatch,” but also with “priority overall

other cases” in accordance with 37 C.F.R. 1.550(a) duc to the ongoing nature of the underlying

litigation.

I. OVERVIEW OF THE ‘523 PATENT AND ITS PROSECUTION HISTORY

A. SUMMARY OF PREFERRED EMBODIMENTS AND CLAIMS OF THE ‘523 PATENT

The ‘523 patent generally relates to a method for deploying interactive applications over

a network containing host computers and a group messaging server. The ‘523 patent at Abstract.

Morespecifically, the disclosure relates to an interactive application, wherein many messagesare

arriving at the group server close to onc another in time. Rather than simply forwarding cach

message to its targeted hosts, the group messaging server aggregates the contents of the

messages received during a specified time period, and then sends an aggregated message to the

targeted hosts. The ‘523 patent at Abstract.

The method is described in the context of interactive computer applications, and

specifically video game applications, wherein a plurality of users can interact through the game,

although the claimsare not so limited. See the ‘523 patent at 1:15-17; 27:35-38.

The claims recite a method of providing a group-messaging server that maintainsa list of

message groups. The message groups each have at least one host computer, but at least one of

the message groups must have a plurality of host computers within the message group. Each

host computer, as well as the group-message server, is connected by a unicast network. The ‘523

patent at Col. 25, lines 45-64.

A plurality of computers from within one of the message groups send messages to the

group-messaging server. The group messaging server aggregates all of the messages received

within a given time period according to a criterion, forms a message from the aggregation of

received messages, and sends the aggregated message to a host computer within the given

message group. Id.

Petitioner Riot Games,Inc. - Ex. 1005, p. 207

Petitioner Riot Games, Inc. - Ex. 1005, p. 208

B. *523 PATENT APPLICATION PROSECUTION HISTORY

The ‘523 patent wasfiled on February 1, 1996, as application serial number 08/595,323

(the “323 application”). The ‘323 application contained 16 claims, but only claims 7-12 issucd.

Distinguishing claims 7-12 from the canceled claims in the ‘323 application is the presence of

limitations requiring aggregating portions of messages sent from a plurality of host computers in

a message into a single message, which is transmitted to a host computer within the message

group. See PAT-B, pros.hist. of the ‘523 patent, claimsfiled February 1, 1996.

All claims of the ‘323 application wereinitially rejected under 35 U.S.C. § 103 over Page

(U.S. Patent No. 5,329,619) in view of Perlman (U.S. Patent No. 5,309,437) in an Office Action

that issued March 20, 1997. The Examiner found that Page taught all of the limitations of the

claims except for the message server and the unicast network; however, the Examiner foundthat

the message server would have been obvious in view of the functions of Page’s broker server.

See PAT-B,pros. hist. of the ‘523 patent, Office Action issued March 20, 1997. The Examiner

also found that Perlman taught the required unicast network and that the teachings of the two

references were combinable in view of the fact that a unicast implementation was well known in

the art. See PAT-B,pros.hist. of the ‘523 patent, Office Action issued March 20, 1997.

On June 25, 1997, the Applicants of the *323 application (the “Applicants”) responded

by canceling all claims, except for claims 7-12. See PAT-B, pros. hist. of the ‘523 patent, Office

Action Response filed June 25, 1997. As addressed above, claims 7-12 were distinguishable

from the canceled claims because they recited various “aggregating” limitations. By canceling

the claims that did not recite the “aggregating” limitations, the Applicants have effectively

admitted that the only potentially novel features of their claims relate to aggregation. The

Applicants’ remarks support this proposition, as they argue only that Page does not teach any of

the “aggregating” limitations. See PAT-B,pros.hist. of the ‘523 patent, Responsefiled June 25,

1997 at p. 2 (See p. 2 reproduced below for convenience).

10

Petitioner Riot Games,Inc. - Ex. 1005, p. 208

Petitioner Riot Games, Inc. - Ex. 1005, p. 209

The Examiner has rejected claims 7-12 as obvious over Page at al in wew of Perlman

et al. The Applicant respectfully traverses this rejection. In particular, claims 7-12 require the

steps af

sending, by a plurality of host computers belonging to a first message group,
messages to said server... , sald messages containing a payload portion... ;

agerepating, by said server tn atime interval determined in accordance with a
predefined criterion, said payload portions of said messages to create an aggregated
payload;

forming an aggregated message using said aggregated payload...

Page does not teach these claim elements. In particular, Page teaches aservice broker

that manages service requests and responsive services communicated between servers and

clients. Page teaches three modes of communication: message processing, conversational

contmunication, and remote procedure call.

None of Page's modes of communication aggregate payloads of messages into an

aggregated payload where the payloads are being sent froma plurality ofhost computers. See

Page, e.g. Col, 5, line 38 - Col. 6, line 68. None ofPage's other features relate to aggregating

payloads ofmessages being sent from4 plurality af host computers.

The cleanup manager identified by the Examiner is a part of the service broker. The

. Please see Page, Col. 25, line 48 -

Col. 27, ine 42. Tt does not aggregate pa “messages, It recovers entriesin

varioustablesof the servicebrokerfor reuse. Please see Col. 27, lines 10-12.

Perlman does not overcome this deficiency of Page. Perlman involves a device that

 clean-up manager processes tin

couples segments ofan extended local area network such that messages that employ “inter-

network protocols" will be handied without the difficulties usually associated with bridges and

without the complexity and expense of full IP routers. Perlman does not teach aggregating

payloads of messages.

Accordingly, the combination ofPage and Perlman does notteach the inventions of

claims 7-12.

11

Petitioner Riot Games,Inc. - Ex. 1005, p. 209

Petitioner Riot Games, Inc. - Ex. 1005, p. 210

The Examiner apparently agreed with the Applicants’ remarks and issued a Notice of

Allowability on July 9, 1997. While the Examiner does not provide an explicit reason for

allowance, it can be deduced that the Examiner agreed that the only potential novel and non-

obviouslimitation of the pending (and nowissued) claims wasthe “aggregating”limitation.

In view of the above, a substantial new question of patentability (“SNQ”) is raised herein

by each of the several proposed SNQs because each demonstrates that aggregating multiple

messages sent from a plurality of host computers within a message group, and transmitting the

aggregated messages to a host computer in the message group, was well known before the ‘523

patent was filed.

C. CLAIM CONSTRUCTION

1, STANDARD

Requester notes that for purposes of this Request, the claim terms are presented by the

Requester in accordance with 37 C.F.R § 1.555(b) and MPEP § 2111. Specifically, each term of

the claimsis to be given its “broadest reasonable construction” consistent with the specification.

MPEP § 2111; fn re Trans Texas Holding Corp., 498 F.3d 1290, 1298 (Fed. Cir. 2007) (citing

In re Yamamoto, 740 F.2d 1569, 1571 (Fed. Cir. 1984)). As the Federal Circuit noted in Trans

Texas, the Office has traditionally applied this standard during reexamination, and does not

interpret claims as a court would interpret claims. MPEP § 2111. The Office is not bound by

any prior district court claim construction. Trans Texas, 498 F.3d at 1297, 1301. Rather:

the PTO applics to the verbiage of the proposed claims the broadest reasonable
meaning of the words in their ordinary usage as they would be understood by one
of ordinary skill in the art, taking into account whatever enlightenment by way of
definitions or otherwise that may be afforded by the written description contained
in the applicant’s specification.

In re Morris, 127 F.3d 1048, 1054 (Fed. Cir.1997). The rationale underlying the “broadest

reasonable construction” standard is that it reduces the possibility that a claim, after issue or

certificate of reexamination, will be interpreted more broadly than is justified. 37 C.F.R §

1.555(b), MPEP § 2111.

Because the standards of claim interpretation used in the courts in patentlitigation are

different from the claim interpretation standards used in the Office in claim examination

proceedings (including reexamination), any claim interpretations submitted herein for the

12

Petitioner Riot Games,Inc. - Ex. 1005, p. 210

Petitioner Riot Games, Inc. - Ex. 1005, p. 211

purpose of demonstrating a SNQare neither binding uponlitigants in any litigation related to the

*523 patent, nor do such claim interpretations correspond to the construction of claims under the

legal standards that are mandated to be used by the courts in litigation. See 35 U.S.C. § 305; MPEP

§ 2286 II (determination of a SNQ is made independently of a court’s decision on validity because

of different standards of proof and claim interpretation employed by the District Courts and the

Office); see also Trans Texas, 498 F.3d at 1298 (Court upheld Office rejections that conflicted

with outcomeoflitigation; /m re Zletz, 893 F.2d 319, 322, 13 USPQ2d 1320, 1322 (Fed. Cir. 1989).

2. PREVIOUS LITIGATION CLAIM CONSTRUCTIONS

In previous litigation PalTalk had made statements regarding the construction of the

claim terms of the ‘523 patent. See OTH-E and OTH-F, Claim Construction briefs submitted by

PalTalk in PalTatk Holdings, Inc. v. Microsoft Corp.

In addition two courts have construed terms of the ‘523 patent. See OTH-G and OTH-H,

Claim construction orders from PalTalk Holdings, Inc. v. Microsoft Corp. and HearMe vy.

Lipstream Networks, Inc.

As noted above, the claim construction standard uscd in litigation is not as broad as the

standard applied in reexamination. In this reexamination proceeding, the Examiner should apply

the broadest construction consistent with the specification. However, the broadest reasonable

construction should be at least as broad as constructions argued by the Patent Owner inlitigation

or adopted by a District Court.

THT.=SUMMARYOF THE PRIOR ART

1. Netrek

i. Netrek is a printed publication that was published nolater than August 1994

Netrek is source code for a client-server game, loosely based on the Star Trek television

show, which gameis played over a computer network. Server/docs/READMEat lincs 221, 238.

Because both the client and the server each needed their own code for the game, the source code

is broken into two parts, the “BRMH-1.7.tar.gz” Client Code and the “Server2.5pl4.tar.gz”

Source Code.

13

Petitioner Riot Games,Inc. - Ex. 1005, p. 211

Petitioner Riot Games, Inc. - Ex. 1005, p. 212

In an unrelated reexamination proceeding, Control No. 90/010,093, the reexamination

request submitted the exact same “BRMH-1.7.tar.gz” Client Code and the “Server2.5p14.tar.gz”

Source Code relied on in the instant proceeding as prior art. In the Order granting the

reexamination request in that proceeding, the Examiner agreed that the Netrek source code was a

printed publication available as prior art based on the declaration of David Ahn (“Ahn

Declaration”). See OTH-D, Order granting reexamination at 9-11; See also OTH-C, Declaration

of David Ahn. The Ahn Declaration equally supports the use of Netrek as prior art in the instant

reexamination request. Moreover, OTH-I, Maloni, is offered as additional evidence of the

popularity and public availability of the Netrek source code on various FTP servers and Usenet

newsgroups(e.g., “ftp rtfm.mit.edu” and "rec.games.netrek"). Maloni at pp. 48, 49.

Asstated in the Ahn Declaration, the BRMH-1.7 Client Code was publically available at

least by October 15, 1993. OTH-D, Ahn Declaration at 10. Further, the Server2.5p14.tar.gz

file, called the Vanilla 2.5 pl4 by Ahn, was available by at least August 17, 1994. /d. The

“BRMH-1.7.tar.gz” and “Server2.5pl4.tar.gz” files submitted in this reexamination request were

downloaded from the web addresses specified by Ahn. /d. at 13. Ahn declares that these files

had been publically available and accessible continuously during or before 1994. Jd. at 15.

Therefore Netrek is prior art no later than August 17, 1994, which is when the

Server2.5pl4.tar.gz Server Code was publically available (the BRMH-1.7 Client Code was

publically available prior to 1994).

ii, Netrek establishes an SNQ

Asdiscussed above, Netrek was published no later than August 1994, and accordingly is

prior art under 35 U.S.C. § 102(b). Netrek was not cited or discussed in the prosecution of the

“523 patent.

Netrek discloses a client-server game, loosely based on the Star Trek television show,

which game is played over a computer network. Server/docs/README at lines 221, 238. The

clients communicate among each other through the server using messages over an Internet

protocol (e.g., TCP/IP). Server\ntserv\input.c at line 195 and Server\ntserv\socket.c at line 688.

Specifically, the server reads a socket containing data sent from a client. Server\ntserv\input.c at

line 195. The server places the clicnt messages into shared memory. Server \ntserv\socket.c at

lines 1825-2044. After a specified period of time, or when the buffer is full, the server will form

14

Petitioner Riot Games,Inc. - Ex. 1005, p. 212

Petitioner Riot Games, Inc. - Ex. 1005, p. 213

aggregated messages from the received client message payloads and send these aggregated

messages out to the clients. Server\ntserv\socket.c at lines 603-90. Examples of messages that

clients can send to each other via the server include text chat, torpedo (indicating a torpedo has

been launched), and plasma messages (indicating plasma has been fired). brmh-1.7\packets.h.

These messages can be used, for cxample, by Federation star ships to destroy rival Klingon

starships. Server\robots\basep.c at line 33 and Server\ntserv\socket.c at lines 1125-92.

Accordingly, Netrek teaches aggregating various incoming messages, thereby allowing the

server to send fewer messages than it receives (¢.g., “Idea: read from client often, send to client

not so often”). Server\ntserv\input.c at lines 152-203; Server\ntserv\redraw.c at lines 21-115;

Server\ntserv\socket.c at lines 603-90.

2. McFadden

McFadden was published no later than May 1, 1994, and accordingly is prior art under 35

U.S.C. § 102(b). McFadden wasnotcited in the prosecution of the ‘523 patent.

McFaddenis a FAQ and history of the Netrek online game. McFaddenatp. 2, § 0.2; p.

8, §, 2.1.2 Architecture; and p. 11, §3.3.1 Client/Server. McFadden shows inherent

characteristics of Netrek and is further presented in this request to provide context and

understanding to the Netrek source code. McFadden describes Netrek as “a real-time graphical

multiplayer arcade/strategy game played over the Internet. Players form into teams andfight for

control of the galaxy, dogfighting and taking planets.” McFadden at p. 2, § 0.2. McFaddenis

presented in this request to provide context and understanding to the Netrek source code.

3. Van Hook

Van Hook was published September 1994, and accordingly is prior art under 35 U.S.C. §

102(b). Van Hook wasnot cited or discussed in the prosecution of the ‘523 patent.

Van Hook discloses techniques that have been developed and deployed for Advanced

Research Projects Agency’s (ARPA) Synthetic Theater of War - Europe (““STOW-E”) computer

battlefield simulation program, which uses the Distributed Interactive Simulation (“DIS”)

battlefield simulation protocol. Van Hookat p. 1, 1.0 Introduction. In the STOW-Eprogram,a

virtual world simulates battleficld conditions, and “[c]xplicit representations of command,

control, and communication are required to permit command forces to transmit orders to and

15

Petitioner Riot Games,Inc. - Ex. 1005, p. 213

Petitioner Riot Games, Inc. - Ex. 1005, p. 214

receive reports from a new generation of more intelligent semi-automated forces.” Van Hook at

p. 1, 1.0, Introduction. The simulation disclosed in Van Hook is deployed over the Defense

Simulation Internet Wide Area Network utilizing DIS 2.0.3 protocols, wherein protocol data

units (PDUs) containing entity-state information are exchanged between host computers via an

Application Gateway (AG) server. /d. at pp. 1, 2. In Van Hook, the AG server bundles the

PDUs from host computers into larger transmission packets to be distributed. The host

computers in Van Hook can also form message groups such ascell sets.., exercises, and forces.

id. at p. 66, 4.6 Bundling.

4. IEEE 1278-1993: LEEE Standard for Information Technology- Protocols for Distributed

Interactive Simulation Applications (“DIS”)

DIS was published in 1993 and accordinglyis prior art under 35 U.S.C. § 102(b). DIS

was not cited or discussed in the prosecution of the ‘523 patent.

DISis part of a proposed sct of standardsfor distributed intcractive simulation whercin a

“synthetic environmentis created through real-time exchange of data units [PDUs] between

distributed, computationally autonomous simulation applications in the form of simulations.. .

interconnected through standard computer communicative services.” DISat pp. 3, 3.8

distributed interactive simulation (DIS). The standard computer services in DIS consist of a

communication architecture that supports multicast data packets. DIS at p. 10, 4.3

communication services. The PDU packcts disclosed in DIS include a PDU header, an ID

denoting a host computer (Entity ID), an exercise (Exercise ID) as well as a message group

(Force ID), and the PDU messagerelating to positional information of the entity. DIS at pp. 40-

41, Table 18.

5. Macedonia

Macedonia was published in September 1995 and accordingly is prior art under 35 U.S.C.

§ 102(a). DIS was not cited or discussed in the prosecution of the ‘523 patent.

Macedonia discloses an implementation of DIS that seeks to expand the numberofusers

capable of participating in a simulation. Macedonia at 38. Macedonia describes groups of

participants, c.g., those within proximity of other players, and the ability to join these groups

using messages(e.g., “Join Request PDUs”). Macedonia at 42.

16

Petitioner Riot Games,Inc. - Ex. 1005, p. 214

Petitioner Riot Games, Inc. - Ex. 1005, p. 215

6. RING

RING waspublished in April 1995 and accordingly is prior art under 35 U.S.C. § 102(a).

RING wasnotcited or discussed during the prosecution of the ‘523 patent.

RING discloses a system that supports real-time visual interaction between a large

number of users in a shared 3-D environment. RING at Abstract. RING facilitates

communication over a unicast network amongst a plurality of hosts via a centralized server, or

collection of servers. RING at p. 91.

To reduce the number of messages sent between the servers and the host computers, the

centralized servers cull, augment, and alter the messages to send only relevant messages to

relevant hosts in a limited number of communications. RING at p. 87. This is accomplished by

determining the visibility of each host’s virtual representation in the virtual environment. Id.

Only information pertaining to objects within the line of sight of a host’s virtual representation is

transmitted to the host. /d. All other information is culled. /d. In this way, the number of

messages sent to each host can be markedly reduced.

Further, related to the claims of the subject patent, RING discloses a server that

communicates with a plurality of hosts. All the hosts, or a subset of all the hosts, can send

messagesto the server via a unicast network informing the server, and thereby the other hosts, of

the movements of that host’s virtual representation in the virtual environment. If another host

cannot see that host, the two hosts are not part of the same group and the message is culled. But

if the several hosts are all in the line of sight of each other, each host will receive a message

transmitted from the server describing the movementofeach host’s virtual representation. /d.

7. IRC RFC

IRC RFC was published May 1993, and accordingly is prior art under 35 U.S.C. §

102(b). IRC RFC wasnotcited or discussed in the prosecution of the ‘523 patent.

IRC RFC discloses protocols for implementing Internet Relay ChatIRC). IRC was not

cited or discussed during the prosecution of the ‘523 patent. “The main goal of IRC is to provide

a forum whichallows easy and efficient conferencing (one-to-many conversations).” IRC RFC

at p. 11, § 3.2 Onc-to-many. IRC uscs a clicnt-server configuration where a clicnt sends a

17

Petitioner Riot Games,Inc. - Ex. 1005, p. 215

Petitioner Riot Games, Inc. - Ex. 1005, p. 216

channel message to a server and the server distributes the message to the other clients who have

joined that channel. IRC RFCat p. 11, § 3.2.2; see also Fig. 2 (reproduced below).

1--%,

A D---4

a> - f ‘, f
B----!

? 4
a E

Servers: A, B, C, [, E Cliente: 1, 3, 3, 4

Figure 2 of IRC RFCat 3.0

Clients can join channels using the “JOIN” command(or, if the channel does not exist, it

is created in response to the join request). IRC RFCat p. 5, § 1.3 Channels; See also Id. at p. 19,

§ 4.2.1. Join message. Messages sent from clients to the server include the name of the

destination channel and the data for the message. IRC RFC at p. 32, § 4.4.1. Private messages.

The servers maintain a list of all channels and the clients joined to those channels. IRC RFCat

p. 63, § 9.2.2 Channels.

8. Friedman

Friedman was published July 7, 1995, and accordingly is prior art under 35 U.S.C. §

102(a). Friedman wasnotcited or discussed during the prosecution of the ‘523 patent.

Friedman discloses the results of the latency and throughput of standard network

protocols compared to modified protocols that aggregate packets by packing multiple packets

into a single packet. Friedman at p. 1. Friedman notes that a protocol modified to use

aggregation (e.g., “packing messages”) “improves both the latency and throughput.” /d. One

example of a modified protocol is the Dynseq protocol, which aggregates based on a preset time

interval, whichis less than the expected user latency, such as one millisecond. Friedmanatp.5.

Fricdman discloscs that the rcasons for the improved cfficiency are duc to the reduction of

packet headers, reduced link contention, and less CPU interrupts. Friedman at p. 12. Friedman

teaches to one of ordinary skill in the art that one way to increase network efficiency is to

aggregate packets before sending.

18

Petitioner Riot Games,Inc. - Ex. 1005, p. 216

Petitioner Riot Games, Inc. - Ex. 1005, p. 217

IV.37 C.F.R.§ 1.510 (b)(1): STATEMENT POINTING OUT EACH
SUBSTANTIAL NEW QUESTION OF PATENTABILITY

A. NETREK ALONE PRESENTS A SUBSTANTIAL NEW QUESTION OF PATENTABILITY
WITH RESPECT TO CLAIMS1-6 OF THE ‘523 PATENT

Netrek was not cited or discussed during the prosecution of the ‘523 patent and thusis

new prior art with respect to the ‘523 patent. Netrck raiscs a SNQ with regards to claims 1-6

because Netrek discloses the technical teachings of a client-server game, loosely based on Star

Trek, that is played over a computer network. Server/docs/READMEat lines 221, 283 and

McFadden at p. 2, § 0.2; p. 8, §2.1.2 Architecture; and p. 11, §3.3.1 Client/Server. Netrek

further discloses the technical teachings of a system comprising clients communicating with each

other through the server using messages over an Internet protocol (e.g., TCP/IP).

Server\ntserv\input.c at line 195 and Server\ntserv\socket.c at line 688.

The prosecution history of the ‘523 patent, as discussed above, suggests that the

aggregation elements of the claims were the allegedly novel aspects of the claims. Netrek

presents a substantial new question that was not previously discussed or considered in the

prosecution of the ‘523 patent. Specifically, Netrek teaches aggregating messages received from

clients to send them together as an aggregated message(e.g., “Idea: read from client often, send

to client not so often”). Server\ntserv\input.c at lines 152-203; Server\ntserviredraw.c at lines

21-115;Server\ntserv\socket.c at lines 603-90. Therefore, a reasonable examiner would consider

Netrek important in deciding the patentability of claims 1-6 and accordingly presents a SNQ.

Further, the SNQ of Netrek is not cumulative of any of the technical teachings discussed or

suggested during the prosecution history of the ‘523 patent.

B. NETREK IN COMBINATION WITH MCFADDEN PRESENTS A SUBSTANTIAL NEW

QUESTION OF PATENTABILITY WITH RESPECT TO CLAIMS1-6 OF THE ‘523 PATENT.

Netrek was not cited or discussed during the prosecution of the ‘523 patent, and thus is

new prior art with respect to the ‘523 patent. As discussed above, Netrek raises a SNQ with

regards to claims 1-6. Further, McFadden is a FAQ and history of the online game Netrek.

McFaddenat p. 2, § 0.2; at p .8, §2.1.2 Architecture; and p. 11, §3.3.1 Client/Server. McFadden

was specifically written to teach people interested in Netrek about the game. Accordingly,

19

Petitioner Riot Games,Inc. - Ex. 1005, p. 217

Petitioner Riot Games, Inc. - Ex. 1005, p. 218

people interested in playing and/or modifying Netrek code would have been motivated to review

McFaddento gain an overview of the game.

The combination of Netrek and McFadden presents a substantial new question that was

not previously discussed or considered in the prosecution of the ‘523 patent. Specifically, the

combination of Netrek and McFadden tcaches aggregating messages received from clicnts to

send them together as an aggregated message (e.g., “Idea: read from client often, send to client

not so often”). Serverintserv\input.c at lines 152-203; Server\ntserv\redraw.c at lines 21-115;

Server\ntserv\socket.c at lines 603-90. Therefore, a reasonable examiner would consider the

combination of Netrek and McFadden important in deciding the patentability of claims 1-6 and

accordingly the combination presents a SNQ. Further, the SNQ raised by the combination of

Netrek and McFadden is not cumulative of any of the technical teachings discussed or suggested

during the prosecution history of the ‘523 patent.

C. VAN HOOK IN COMBINATION WITH DIS PRESENTS A SUBSTANTIAL NEW QUESTION
OF PATENTABILITY WITH RESPECT TO CLAIMS1, 2 AND 4-6 OF THE °523 PATENT

Van Hook wasnot cited or discussed during the prosecution of the ‘523 patent, and thus

is new prior art with respect to the ‘523 patent. Van Hook in combination with DIS raises a SNQ

with regards to claims 1, 2 and 4-6 because as discussed above, Van Hook discloses the technical

teaching of aggregating group messagesinto a single packet by bundling the packets. Van Hook

at 2. Van Hook states, “[t]he dominant effect of bundling is to reduce packet rates.

Additionally, bundling reduces bit rates because fewer packet headers are sent.” Jd. Further,

Van Hook discloses techniques that have been developed and deployed for ARPA’s Synthetic

Theater of War - Europe (“STOW-E”) program and Distributed Interactive Simulation (“DIS”),

wherein a virtual world simulates battleficld conditions, and “[c]xplicit representations of

command, control, and communication are required to permit command forces to transmit orders
”

to and receive reports from a new generation of more intelligent semi-automated forces.” Van

Hookatp. 1.

Likewise, as its name indicates, DIS is part of a proposed set of standards for the

Distributed Interactive Simulation (“DIS”) used in conjunction with the STOW-E program

described in Van Hook. DIS at p. 3. Van Hook provides for bundling of the PDUs from host

computers by the Application Gateway (AG) server into larger transmission packets to be

distributed to other packets. Van Hook at pp. 2 and 7. DIS goes one step further to discuss the

20

Petitioner Riot Games,Inc. - Ex. 1005, p. 218

Petitioner Riot Games, Inc. - Ex. 1005, p. 219

anatomy of a packet, as the PDU packets disclosed in DIS include a PDU header, an 1D denoting

a host computer (Entity ID), an exercise (Exercise ID), as well as a message group (Force ID),

and the PDU messagerelating to positional information of the entity. DIS at pp. 40-41, Table

18.

The prosccution history, as discussed above, suggests that the aggregation elements of the

claims were the allegedly novel aspect of the claimed invention. Van Hook provides a SNQ,as

suggested above, because ofits aggregation teachings. “Additionally, bundling reducesbit rates

because fewer packet headers are sent.” /d. Accordingly, the combining the technical teachings

(e.g., teachings of bundling packets, or PDUs), in a Distributed Interactive Simulation, as

disclosed in Van Hook, with the technical teachings of the contents of a PDU in a Distributed

Interactive Simulation, as disclosed in DIS, raises an additional SNQ that was not discussed or

cited in the prosecution history of the ‘523. A reasonable examiner would consider that

combination important in deciding the patentability of claims 1, 2 and 4-6 since it would have

been obvious to those skilled in the art to combine the teachings of the two references, as

explicitly taught by Van Hook.

D. IRC RFC IN COMBINATION WITH FRIEDMAN PRESENTS A SUBSTANTIAL NEW

QUESTION OF PATENTABILITY WITH RESPECT TO CLAIMS1, 2 AND 4-6 OF THE ‘523
PATENT

IRC RFCdiscloses protocols for implementing Internct Relay Chat IRC). IRC RFC was

not cited or discussed during the prosecution of the “523 patent. “The main goal of IRC is to

provide a forum which allows easy and efficient conferencing (one-to-many conversations).”

IRC RFC at p. 11, § 3.2 One-to-many. IRC uses a client-server configuration, where a client

sends a channel message to a server and the server distributes the message to the other clients

who havejoined that channel, as discussed in detail above.

IRC RFC does not disclose aggregating payload portions, but Friedman discloses that

messages are buffered and then the payloads are aggregated (e.g., packed) before sending.

Friedman at p. 5. In addition, IRC RFCstates that “[t]he main goal of IRC is to provide a forum

which allows easy and efficient conferencing (one-to-many conversations).” IRC RFC at p. 11,

§ 3.2 One-to-many. Friedman discloses that the aggregation of message packets improves both

latency and throughput compared to non-aggregating communication protocols. Friedmanat p.

1,

21

Petitioner Riot Games,Inc. - Ex. 1005, p. 219

Petitioner Riot Games, Inc. - Ex. 1005, p. 220

The combination of RFC IRC and Friedman provides the technical teaching of

aggregating the group messages of IRC RFC (e.g., channel messages) in order to increase the

efficiency of the network, which was a main goal of IRC RFC. The prosecution history of the

“523 patent, as discussed above, suggests that the aggregation elements of the claims were the

allegedly novel aspects of the claims in the ‘523 patent. IRC RFC alone docs not provide the

aggregation teachings; however, when IRC RFC is combined. with Friedman, a substantial new

question is presented that was not previously discussed or considered in the prosecution of the

“523 patent. Further, a reasonable examiner would consider the teachings of IRC RFC in

combination with Friedman because the teachings of aggregation are present and it would have

been obviousto those skilled in the art to combine the teachings of the two references.

E. RING IN COMBINATION WITH NETREK PROVIDES A SUBSTANTIAL NEW QUESTION
OF PATENTABILITY WITH RESPECT TO CLAIMS 1-6 OF THE ‘523 PATENT

RING was not cited or discussed during the prosecution of the ‘523 patent, and thus

RINGis new prior art with respect to the ‘523 patent. RING, as discussed above, presents a

substantial new question of patentability alone. Similarly, Netrek discloses the technical

teaching of clients and servers communicating over a network using messages. See Server Code,

Server\ntserv\newstartd.c at lines 129-73, lines 179-311, lines 146-70; Server\ntserv\main.c at

lines 135-43; Server\ntserv\socket.c at lines 442-88.

Netrek further discloses aggregating packets to reduce the number of packets sent from

the server (¢.g., “Idea: read from client often, send to client not so often.”) Server\ntserv\input.c

at lines 152-203; Server\ntserv\redraw.c at lines 21-115; Server\ntserv\socket.c at lines 603-90.

RING in combination with Netrek further raises a SNQ with regards to claims 1-6 because they

provide the technical teachings of increasing nctwork cfficicncy by applying the aggregation

teachings ofNetrek to aggregate messages in RINGto increase networkefficiency. Therefore, a

reasonable examiner would consider the combination of RING and Netrek important in deciding

the patentability of claims 1-6, and accordingly the combination presents a SNQ. Further, the

SNQ of the combination RING and Netrek is not cumulative of any of the technical teachings

discussed or suggested during the prosecution history of the ‘523 patent.

22

Petitioner Riot Games,Inc. - Ex. 1005, p. 220

Petitioner Riot Games, Inc. - Ex. 1005, p. 221

F. RING IN COMBINATION WITH VAN HOOK PROVIDES A SUBSTANTIAL NEW

QUESTION OF PATENTABILITY WITH RESPECT TO CLAIMS 1, 2 AND 4-6 OF THE ‘523
PATENT

RING wasnotcited or discussed during the prosecution of the ‘523 patent, and thus is

new prior art with respect to the “523 patent. RING, as discussed above, presents a substantial

new question of patentability alone. Similarly, Van Hook discloses host computers and servers

communicating over a network using messages packets. Van Hook at pp. 1, 2. RING in

combination with Van Hook further raises a SNQ with regards to claims 1, 2 and 4-6 because the

combination provides the technical teachings of increasing network efficiency by applying the

aggregation teachings of Van Hook to aggregate messages in RING. Therefore, a reasonable

examiner would consider the combination of RING and Van Hook important in deciding the

patentability of claims 1, 2 and 4-6 and accordingly, this combination presents a SNQ. Further,

the SNQ of the combination of RING and Van Hookis not cumulative to any of the technical

teachings discussed or suggested during the prosecution history of the ‘523 patent.

V. DETATLED EXPLANATION UNDER37 CFR 1.510(b) OF THE
PERTINENCY AND MANNEROF APPLYING THE CITED PRIOR ART TO

EVERY CLAIM FOR WHICH REEXAMINATIONIS REQUESTED

A. CLAIMS 1-6 ARE ANTICIPATED BY NETREK UNDER35 U.S.C. § 102

Please see the attached Exhibit CC-A presenting claim charts for comparison of Netrek

with claims 1-6 of the ‘523 patent.

Server2.5pl4.tar.gz [hereinafter “Server Code”] and BRMH-1.7.tar.gz [hereinafter

“Client Code”’] contain the source code for the game Netrek. Together, the Server Code and

Client Code define computer instructions for an online game based on a client-server network

architecture. Specifically, the Server Code defines the computer instructions for the portion of

the game running on the server; the Client Code defines the portion of the game running on the

client or host computers. See, e.g., Server\ntserv\socket.c at lines 1390-1590 and lines 603-90;

brmh-1.7\socket.c at lines 1537-1634; and brmh-1!.7\packets.h at lines 523-29. McFadden is

provided to add additional context and teaches inherent game play features of Netrek, in which

clicnts connect to a server over the Internet, which allows players to “form into teams and fight

for control of the galaxy, dogfighting and taking planets.” McFaddenat p. 2, § 0.2; p. 8, §2.1.2

Architecture; and at p. 11, §3.3.1 Client/Server. Even though Netrek is presented as anticipating

23

Petitioner Riot Games,Inc. - Ex. 1005, p. 221

Petitioner Riot Games, Inc. - Ex. 1005, p. 222

the claims, McFadden is properly presented since it shows inherent characteristics of Netrek.

See MPEP § 2131.01) and Continental Can Co. USA v. Monsanto Co., 948 F.2d 1264, 1268

(Normally, only one reference should be used in making a rejection under 35 U.S.C. § 102.

However, a 35 U.S.C. § 102 rejection over multiple references has been held to be proper when

extra references are cited to show that a characteristic not disclosed in the reference is inherent.”)

To the extent that the examiner disagrees, Requester submits Netrek in view of McFadden to

reject claims 1-6 under 35 U.S.C. § 103.

CLAIM 1

A method for providing group messages to a plurality of host computers
connected over a unicast wide area communication network, comprising the
stepsof:

Netrek utilizes group messaging to send game state updates over the Internet, a unicast

wide area network, to maintain a consistent and shared gaming experience among a numberof

host computers. McFadden at p. 2, § 0.2; at p. 8, §2.1.2 Architecture; and at p. 11, §3.3.1

Client/Server. Netrek also utilizes group messaging to allow players to communicate with other

players in the gameorplayers on a specific team. See Server Code; and brmh-1.7\socket.c at

lines 1537-1634 (“sendServerPacket(packet)’’).

providing a group messaging server coupled to said network, said server
communicating with said plurality of host computers using said unicast
network and maintaining a list of message groups, each message group
containing at least one host computer;

The Netrek server is a group messaging server that is coupled to the Internet. See Server

Code, Server\ntserv\newstartd.c at lines 129-73 (the server program newstartd loops while

waiting for a network connection from a host computer), lines 179-311 (the function

connectionAttemptDetected initializes the server’s network connection so that the server can

listen for host computer connections), lines 146-70 (newstartd spawns a ntserv process on the

server for each new host computer that connects); Server\ntserv\main.c at lines 135-43 (ntserv

maintains the connection from the server to the host computer by calling ConnectToClient),

Server\ntserv\socket.c at lines 442-88 (the function ConnectToClient defined).

The Netrek server communicates with the plurality of host computers using the Internet, a

unicast network. See /d., Server\ntservinewstartd.c at lines 179-311 (a TCP/IP connection,

socket type SOCK.STREAM,is created on the server to listen for incoming host computer

24

Petitioner Riot Games,Inc. - Ex. 1005, p. 222

Petitioner Riot Games, Inc. - Ex. 1005, p. 223

connections); Server\ntserv\socket.c at lines 442-88 (the function ConnectToClient maintains a

TCP/IP connection, socket type SOCKSTREAM,between the server and each host computer),

lines 1747-802 (the server communicates with a host computer by calling the function

AlushSockBuf, which calls the function gwrite), lines 2607-73 (the function gwrite defined). See

generally Id., Server\ntserv\packets.h (the headerfile defines all of the types of messages that

can be sent during a Netrek game).

The Netrek server also maintains message groups in multiple aspects. Examples of

message groups include the group ofall host computers in the game, the group of host computers

on a particular team, and the group of host computers in a player location (Ze. within the same

proximity or geographic area) in the game. See /d., Server\ntserv\struct.h at lines 471-82 (the

server determines who is in a message group by examining the data structure struct memory,

which contains an array of players: “‘struct player players [MAXPLAYER];”), lines 208-84

(definition for struct player, which includes a field for identifying the team/message group that

the player is on, “short p_team;”’, and fields for identifying the geographical vicinity (/.¢., group)

of each player’s ship, “int px,” and “int p_y;”); Server\ntserv\defs.h at lines 120-134 (contains

the definitions for the different teams and the group ofall players); Server\ntserv\socket.c at lines

1125-92 (the function updateTorps determines whether or not a player is in a torpedo message’s

proximity-based message group), lines 1194-255 (the function updatePlasmas determines

whether or not a playeris in a plasma message’s proximity-based message group), lines 1257-94

(the function updatePhasers determines whether or not a player is in a phaser message’s

proximity-based message group), lines 1390-590 (the function updateMessages determines

whether or not a player should receive a text message based on who the text message is

addressedto).

Each team or message group on the Netrek server contains at lcast one host computer.

See Id., Server\ntserv\main.c at lines 183-325 (when a host computer joins a game, the server

prompts the player to join or create a team, inserts the player into the array of players, and then

initializes the player’s team field and location fields by calling enter); Server\ntserv\enter.c at

lines 30-232 (definition to the function enter).

sending, by a plurality of host computers belonging to a first message group,
messagesto said server via said unicast network, said messages containing a
payload portion and a portion for identifying said first message group;

25

Petitioner Riot Games,Inc. - Ex. 1005, p. 223

Petitioner Riot Games, Inc. - Ex. 1005, p. 224

Host computers, belonging to specific message groups, send out multiple types of

messages to the Netrek server over the Internet, a unicast network. See Client Code, brmh-

1.7\socket.c at lines 1537-634 (the function serdServerPacket sends messages from the host

computer to the server using either TCP/IP or UDP/IP), brmh-1.7\data.c at line 26 (the player

data structure contains a host computer’s information about the message groupsit belongsto),

brmh-I.7\struct.h at lines 134-92 (struct player includes the fields “short pteam;”, “int p_x;”,

and “int p_y;”, which identify the message groups a host computer belongs to). The messages a

host computer sends out contain a payload portion and a portion for identifying a message group.

See Id., brmh-1.7\packets.h (the header file defines all of the types of messages that can be sent

by a host computer, for example, a torpedo message allows a user to fire a torpedo at another

player). For example, when a host computer in Netrek sends a text message to a team/group

(message type CP_MESSAGE), the message contains both a payload portion and a portion for

identifying the message group. The payload portion is stored in the field “char mesg/S0/;”. See

Id., brmh-1.7\packets.h at lines 523-29, The portion identifying a message group can be stored

in, for example, stored in “char group;” and“ char indiv,”. Id.

When a host computer in Netrek fires a torpedo, the host computer sends a torpedo

message to the server. See Id., brmh-1.7\defs.h at line 222 (the function sendTorpRegq sends the

server a torpedo message). The host torpedo message sent to the server contains two fields: a

field for storing the Netrek message type anda field for storing the direction of the torpedo. See

ld., brmh-I.7\packets.h at lines 293-99 (“char type; stores the message type and message

type“unsigned chardir;”stores the direction). The fields storing the message type of the torpedo

and direction of the torpedo represent the portion of the message that identifies the message

group, and the field storing the direction of the torpedo represents the payload portion of the

message.

Whenthe server receives a host torpedo message, the message type field of the torpedo

message directs the server to store the information for identifying the message group, as well as

the payload portion of the message, into shared memory. See fd., Server\ntserv\socket.c at lines

121-97, 1976-2011, 2046-50; Server\ntserv\torp.c at lines 41-132 (the message type field of the

torpedo causes the server to call the message handling function, ntorp, to store into shared

memory the direction of the torpedo, which comes from the host torpedo message, and the X,Y

coordinates of the torpedo, which is determined by the server based on the location of the host's

26

Petitioner Riot Games,Inc. - Ex. 1005, p. 224

Petitioner Riot Games, Inc. - Ex. 1005, p. 225

ship in the game); Server\ntserv\daemonli.c at lines 1161-1246 (the function udtorps regularly

examines the shared memory and updates the locations of all torpedoes in the game using the

direction and X, Y coordinates of each torpedo); Server\ntserv\secket.c at lines 1125-1192 (the

aggregation function updateTorps uses the information stored in shared memory by the function

ntorp to determine which playcrs should reccive which torpedo messages by comparing cach

torpedo's location with a host's ship location, i.e. proximity).

aggregating, by said server in a time interval determined in accordance with
a predefined criterion, said payload portions of said messages to create an
aggregated payload;

The Netrek server aggregates, in a time interval determined in accordance with

predefined criterion, the payload portions of messages that are received from host computers to

create an aggregated payload. See Server Code, Server\ntserviinput.c at line 195 (the function

input calls the function readFromClient to receive messages sent by the host computers and then

places the messages into shared memory (¢.g., “buf’) so that they can be aggregated by the

server; See also, OTH-A, The Smith declaration at 4] 7, 18, 25-39

For example, one of the commentsstates, “Idea: read from client often, send to client not

so often’), lines 152-203 (the server sets the aggregation interval to a pre-defined time stored in

timerDelay); Server\ntserv\data.c at line 76 (aggregation interval set to 200,000 microseconds,

“int timerDelay=200000;”); Server\ntserv\socket.c at lines 603-90 (definition for the function

updateClient that calls the other update functions which handle aggregation). See generally

Server Code, Server\ntserv\socket.c (contains the update functions that handle aggregation).

For example, the Netrek server receives text messages, addressed to specific teamsor all

players, from the host computers and stores them into the server's shared memory. See Server

Code, Server\ntserv\input.c at line 195 (the function input calls readFromClient to receive

messages sent by the host computers and then places the messages into shared memory so that

they can be aggregated by the server); Server\ntserv\socket.c at lines 1825-2044

(readFromClient calls doRead, which stores information into buf at line 1956). In Netrek,

players can use text messages to communicate attack and defensive strategics or to make

comments to the opposing teams, a player's own team,or all players. Because the groupsofall

players and teams each consist of multiple players, and players may send multiple messages

simultaneously in the heat of battle, Netrek aggregates these multiple text messages with each

27

Petitioner Riot Games,Inc. - Ex. 1005, p. 225

Petitioner Riot Games, Inc. - Ex. 1005, p. 226

other, torpedo messages, and other types of Netrek messages during gameplay to make efficient

use of the network and increase network throughput. The server, after waiting 0.2 seconds,calls

the function updateClient for each host computer in the game. See id., Server\ntserv\input.c at

lines 52, 154-168, 197 (server sets the aggregation interval to a pre-defined time stored in

timerDelay). The function updateClient calls multiple update functions, including the function

updateMessages. See id., Server\ntserv\socket.c at lines 603-90 (definition for the function

updateClient that calls the other update functions which handle aggregation. The function

updateMessages examines the server’s shared memory and copies the appropriate text messages

onto the aggregation buffer to create an aggregated payload intended for a target host computer.

See id., Server\ntserv\socket.c at lines 1390-590 (definition for the updateMfessages function),

lines 1603-744 (definition for the function sendClientPacket, which places individual messages

onto the aggregation buffer). During gameplay, multiple ships in proximity of each other may

fire multiple torpedoes at one another. Netrek aggregates these multiple torpedo messages with

each other, text messages, and other types ofNetrek messages during gameplay to make efficient

use of the network and increase network throughput. When the Netrek server receives a torpedo

message from a host computer, the server stores the message into its shared memory. See Server

Code, Server\ntserv\input.c at line 195 (input calls the function readFromClient to receive

messages sent by the host computers and then places the messages into shared memory so that

they can be aggregated by the server); Server\ntserv\socket.c at lines 1825-2044

(readFromClient calls doRead, which stores information into bufat line 1956). The server, after

waiting 0.2 seconds, calls the function updateClient for each host computer in the game. Seeid.,

Server\ntserv\input.c at lines 52, 154-168, 197 (server sets the aggregation interval to a pre-

defined time stored in timerDelay). The function updateClient calls multiple update functions,

including updateTorps. See id., Server\ntserv\socket.c at lincs 603-90 (definition for the function

updateClient that calls the other update functions which handle aggregation). The function

updateTorps examines the server's shared memory and copies the appropriate torpedo messages,

based on proximity, onto the aggregation buffer to create an aggregated payload intended for a

target host computer. See id., Server\ntserv\socket.c at lines 1125-92 (definition for the

updateTorps function), lines 1603-744 (definition for the function sendClientPacket, which

places individual messages onto the aggregation buffer).

forming an aggregated message using said aggregated payload; and

28

Petitioner Riot Games,Inc. - Ex. 1005, p. 226

The Netrek server forms an aggregated message using the aggregated payload that was

created in the aggregation buffer. See Server Code, Server\ntserv\socket.c at line 688 (the

function updateClient calls the function flushSockBufafterfilling the aggregation buffer to form

and transmit an aggregated message using the TCP/IP or UDP/IP protocol), lines 1603-744 (if

the aggregation buffer becomesfull, the function sendClientPacket will call the function gwrite

to form and transmit an aggregated message using the TCP/IP or UDP/IP protocol), lines 1747-

802 (definition of the function flushSockBuf), lines 2607-73 (definition of the function gwrite).

An example of such an aggregated message appears in Figure 6c of the Smith declaration:

 Netrek server’s Player 3’s Server Server
IP address IP address message packet ||message packet 2

Smith declaration at Figure 6c.

“Figure 6c. The aggregated message sent to Player 3 included Internet header infonnation and
both messages. Server message packet 1 was based on the payload of the message from Player 1
and server message packet 2 was based on the payload of the message from Player 2.” Smith
declaration at p. 18.

transmitting, by said server via said unicast network, said aggregated
message to a recipient host computer belonging to said first message group.

Aggregated message:
Includes message 1 and message 2

Player1 Niserv

Calls

Aggregated message: updateClient{)
Includes message 1 and message 2

Player 2 i Ntserv
Calls

. teClient()Aggregated message: upda
_______ Includes message 1 and message 2 otaiedlMey

Player 3 hs Ntserv aa

Calls

updateClient()
MessageArray

Smith declaration at Figure 6b.

“Figure 6b. Each host's ntserv process called updateClient(), which in turn called
updateMessages(). UpdateMessages() found all messages intended for that host in the message
array, aggregated them into a buffer (not shown), and transmitted the buffer contents to the host.
In this example, Players 1-3 are on the same team,Players | and 2 had earlier indicated that their
messages (labeled message] and message2 in Figure 6a above) should be sent to their entire
team. Thus, Players 1-3 all received an aggregated message that included both messages.” /d.

29

Petitioner Riot Games,Inc. - Ex. 1005, p. 227

Petitioner Riot Games, Inc. - Ex. 1005, p. 228

The Netrek server transmits the aggregated message via the unicast network to the host

computers belonging to the appropriate message groups. See Server Code, Server\ntserv\socket.c

at line 688 (the function updateClientcalls the functionflushSockBufafter filling the aggregation

buffer to form and transmit an aggregated message using the TCP/IP or UDP/IP protocol), lines

1603-744 (if the aggrcgation buffer becomes full, the function sendClientPacket will call the

function gwrite to form and transmit an aggregated message using the TCP/IP or UDP/IP

protocol), lines 1747-802 (definition of the function flushSockBuf), lines 2607-73 (definition of

the function gwrite). As an example, a series of torpedo messages can be collected and sent

(e.g., fired) to a competing player in the game. Server\ntserv\socket.c at lines 1125-92. In the

case that all messages aggregated during the aggregation interval belong to the same message

group, every computer belonging to the message group will receive the same message because

only group messages have been aggregated. Therefore, Netrek anticipates transmitting the same

“agpregated message” to each group memberas recited by the claim.

CLAIM 2

The method of claim 1 wherein said time interval is a fixed period of time.

The Netrek server called its aggregation function, updateClient, every 0.2 seconds. See

Server Code, Server\ntserv\input.c at lines 152-168 (server scts the aggregation interval to a pre-

defined time stored in timerDelay); Server\ntserv\data.c at line 76 (aggregation interval set to

200,000 microseconds,“int timerDelay=200000;”).

CLAIM 3

The method of claim 1 wherein said time interval corresponds to a time for
said server to receive at least one message from each host computer
belonging to said first message group.

Netrek discloses a readFromClient function that receives messages from each of the

hosts (e.g., clients) into a shared memory (e.g., “buf’) for aggregation. See Server\ntserv\input.c

at line 195 and Server\ntserv\socket.c at lines 1825-2044. Netrek further discloses a time for the

server to reccive at least one message from cach host—cach host that joins has a corresponding

ntserv process running on the server, which waits for 0.2 seconds for at least one message to

aggregate in buf from each host computer belonging to the first message group (e.g., all players

in the game or on a particular team)—and after waiting the 0.2 seconds, the aggregated messages

30

Petitioner Riot Games,Inc. - Ex. 1005, p. 228

Petitioner Riot Games, Inc. - Ex. 1005, p. 229

are sent to the clients. See Serverintserv\socket.c at lines 1825-2044, 603-90;

Server\ntserv\input.c at lines 152-203; Server\ntserv\redraw.c at lines 21-115.

CLAIM 4

The methodof claim 1 further comprising the step of creating, by one of said
plurality of host computers, said first message group by sending a first
control message to said server via said unicast network.

Host computers in Netrek create message groups by sending create messages to the

server. Specifically, the first player to join a team, or the first player to join the game sends a

create message. See Client Code, brmh-1.7\entrywin.c at lincs 57-353 (host computer prompts

user to select a team to create); brmh-1.7\socket.c at lines 1800-09 (host computer sends a create

message to the server specifying the team that the host wants to create, “outfitReg.team =

team;”’).

CLAIM 5

The method of claim 4 further comprising the step of joining, by someof said
plurality of host computers, said first message group by sending control
messages via said unicast network to said server specifying said first message
group.

Host computers in Netrek send join messages to the server specifying a message group to

be joined. See Client Code, brmh-1.7\entrywin.c at lines 57-353 (host computer prompts user to

select a team to join); brmh-1.7\socket.c at lines 1800-09 (host computer sends a join message to

the server specifying the team that the host wants to join, “outfitReg.team = team;”’).

CLAM 6

The method of claim 1 wherein said network is Internet and said server

communicates with said plurality of host computers using a session layer
protocol.

Netrek is a network gamethat runs over the Internet. See /d., Server\ntserv\newstartd.c

at lines 179-311 (a TCP/IP connection, socket type SOCKSTREAM,is created on server to

listen for incoming host computer connections); Server\ntserv\socket.c at lines 442-88 (the

function ConnectToClient maintains a TCP/IP connection, socket type SOCK_STREAM,

between the server and each host computer); Server\packets.h (the headerfile defines the packet

types that exist in the Netrek session layer protocol). As was known in the art, TCP/IP

31

Petitioner Riot Games,Inc. - Ex. 1005, p. 229

Petitioner Riot Games, Inc. - Ex. 1005, p. 230

connections implement session layer functionality in the transport layer and/or application layer,

which means that Netrek inherently includes a session layer functionality.

B. CLAIMS 1-6 ARE RENDERED OBVIOUS BY NETREKIN VIEW OF MCFADDEN UNDER 35

U.S.C. § 103

Please see the attached Exhibit CC-B presenting claim charts for comparison ofNetrek

and McFadden with claims 1-6 of the ‘523 patent.

To the extent that the Office finds that the “BRMH-1.7.tar.gz” Client Code, the

“Server2.5pl4.tar.gz” Server Code and McFadden does not teach inherent characteristics of

Netrek, Requester submits that it would have been obvious to combine “BRMH-1.7.tar.gz”

Client Code, the “Server2.5pl4.tar.gz” Server Code (together “Netrek”) in view of McFadden to

the claims 1-6 of the ‘523 patent under 35 U.S.C. § 103.

Requester incorporates by reference the arguments made above in § IV-A to showthat

even if claim 1-6 of the ‘523 patent are not anticipated by Netrek, they are rendered obvious by

Netrek in view of McFadden. As discussed above, Netrek discloses all of the elements of the

claims under 35 U.S.C. § 102, particularly when the inherent features of Netrek shown by

McFadden are considered. Beyond the Netrek disclosure and its inherent characteristics, Netrek

and McFadden when considered together render the claims obvious under 35 U.S.C. § 103 for

the reasons given below.

Reason to Combine:

“BRMH-1.7.tar.gz” Client Code and the “Server2.5pl4.tar.gz” Server Code are both used

to play Netrek. See OTH-C, Ahn Declaration at 45. Therefore, one of skill in the art would

look to combine the Client Code and the Server Code in order to enable playing Netrek.

McFaddenis a FAQ and history of the online game Netrek game. McFaddenat p. 2, §

0.2; p. 8, §2.1.2 Architecture; and p. 11, §3.3.1 Client/Server. McFadden was specifically

written to teach people interested in Netrek about the game. Accordingly, one of ordinary skill

in the art would look to McFadden to help provide context of the source code of Netrek in order

to understand how certain lines of code affected actual gameplay experience.

Cc, CLAIMS1, 2 AND 4-6 ARE RENDERED OBVIOUS BY VAN HOOKIN VIEW OF DIS UNDER
35 U.S.C. § 103

Please see the attached Exhibit CC-C presenting claim charts for comparison ofVan

Hook in view of DIS with claims 1, 2 and 4-6 of the ‘523 patent.

Reason to Combine:

32

Petitioner Riot Games,Inc. - Ex. 1005, p. 230

Petitioner Riot Games, Inc. - Ex. 1005, p. 231

Van Hook discloses techniques that have been developed and deployed for ARPA’s

Synthetic Theater of War - Europe (“STOW-E”) program and Distributed Interactive Simulation

(“DIS”), wherein a virtual world simulates battlefield conditions, and “[e]xplicit representations

of command, control, and communication are required to permit command forces to transmit

orders to and reccive reports from a new gencration of more intelligent semi-automated forces.”

Van Hookat p. 1. Likewise, as its name indicates, DIS is part of a proposed set of standards for

the Distributed Interactive Simulation (“DIS”) used in conjunction with the STOW-E program in

Van Hook. DISat pp. 1-3. Van Hook provides for bundling of the PDUs from host computers

by the AG serverinto larger transmission packets to be distributed to other host computers. Van

Hook at pp. 2 and 7. DIS goes one step further to discuss the anatomy of a packet, as the PDU

packets disclosed in DIS include a PDU header, an ID denoting a host computer (Entity ID), an

ID for an exercise (Exercise ID), an ID denoting which team the host computer belongs to (Force

ID) and the positional information of the entity. DIS at pp. 40-41, Table 18. It would have been

obvious to a person of ordinary skill in that the art to combine the teachings of bundling packets,

or PDUs,in a Distributed Interactive Simulation disclosed in Van Hook with the teachings of the

contents of a PDU in a Distributed Interactive Simulation as disclosed in DIS since Van Hook

explicitly teaches using the DIS protocol to exchange information in STOW-E.

CLAIM 1

A method for providing group messages to a plurality of host computers
connected over a unicast wide area communication network, comprising the
stepsof:

Van Hook in view of DIS discloses a method for providing group messages, such as the

protocol data units (“Data messages, called protocol data units (PDUs)’’) disclosed in DIS, to a

plurality of host computers connected over a wide area network (“WAN”). Van Hook at pp. 1,

4, 5 and Figure 1; DIS at Abstract, pp. 3, 4, 5 and 10. Van Hook discloses “some of the

innovative techniques being developed and deployed” for the Synthetic Theater of War-Europe

(“STOW-E”) exercise. Van Hook at p.1. STOW-E would use the Distributed Interactive

Simulation (“DIS”) protocols to exchange information between DIS-based simulators. Thus,

Van Hookdiscloses providing group messages (e.g., “Data messages, called protocol data units

(PDUsy’) to a plurality of host computers (¢.g., “network sites”) connected over a wide area

communication network (e.g., the “Defense Simulation Internet (DSI) Wide Area Network

33

Petitioner Riot Games,Inc. - Ex. 1005, p. 231

Petitioner Riot Games, Inc. - Ex. 1005, p. 232

(WANY’). DIS discloses providing group messages(¢.g., “Data messages, called protocol data

units (PDUs)’) to a plurality of “host computers” over a wide area network. DIS at Abstract, pp.

3, 4, 5 and 10.

Van Hook does not expressly disclose that the wide area communication network is

unicast. Instead, Van Hookdiscloses that the LANs run in “promiscuous mode”(7.e., broadcast)

and the WAN is multicast. Van Hook at 5. However, DIS was designed to operate over a

unicast network. DIS at 5, 10 (Delivery. The communication architecture must support either,

multicast, broadcast, or unicast packets.”). Thus, a person of ordinary skill in the art at the time

of filing would have found it obvious to modify the system disclosed in Van Hook and DISto

operate on a unicast network.

providing a group messaging server coupled to said network, said server
communicating with said plurality of host computers using said unicast
network and maintaining a list of message groups, each message group
containing at least one host computer;

Van Hook in view of DIS discloses providing a group messaging server (¢.g., the

“Application Gateway” (“AG”)) coupled to said network, said server communicating with said

plurality of host computers participating in the DIS exercise, using said network. Van Hook at

Figs. | and 5; pp. 1, 4, 6; DIS at p. 36. Van Hook further discloses that cach AG maintainsa list

of message groups(e.g., “cell sets,” “forces,” or “exercises’’) each message group containing at

least one host computer. Van Hookat Figs. 1, 5, pp. 1, 4 and 6.

sending, by a plurality of host computers belonging to a first message group,
messages to said server via said unicast network, said messages containing a
payload portion and a portion for identifying said first message group;

Van Hook in view of DIS discloses sending, by a plurality of host computers belonging

to a first message group, messages (e.g., PDUs) to said server via said network, said messages

containing a payload portion and a portion for identifying said first message group (e.g., first

coordinates). Wan Hook at pp. 2 and 5; DIS at Table 18, pp. 5, 14, 36 and 39-41. For example,

the payload portion of the PDU can be “state information that is necessary for the receiving

simulation application to represent the issuing entity in the simulation application’s own

simulation”). DIS at p. 14. The portion for identifying said first message group can be, for

example, the positional information (7.e., coordinates), exercise information “Exercise ID”, or

force information “Force ID” in the PDU. While the coordinates themselves do not indicate a

34

Petitioner Riot Games,Inc. - Ex. 1005, p. 232

Petitioner Riot Games, Inc. - Ex. 1005, p. 233

particular message group, they are used by the AGs “for identifying” the group (e.g., “cell set,”

Force, or Exercise) to which the PDU should be transmitted. Van Hookat6.

aggregating, by said server in a time interval determined in accordance with
a predefined criterion, said payload portions of said messages to create an
aggregated payload;

Van Hook discloses aggregating (¢.g., bundling), by said server (¢.g., AG) in a time

interval determined in accordance with a predefinedcriterion (e.g., “maximum delay time”), said

payload portions of said messages to create an aggregated payload. Van Hookat pp. 2 and 7.

forming an aggregated message using said aggregated payload; and

Van Hookdiscloses forming an aggregated message(e.g., "bundled packets") using said

aggregated payload. /d.

transmitting, by said server via said unicast network, said aggregated
messageto a recipient host computer belonging to said first message group.

Van Hook, in viewof DIS, discloses transmitting, by said server (e.g., “AG’”) via said

network, (¢.g., “WAN”) said aggregated message (¢.g., “bundled PDU”) onto the WAN. Van

Hook at 7. The other AGs on the WANreceive the aggregated message(e.g., “bundled packet’),

unbundle it, and determine which hosts in the group (e.g., “cell set,’ “Force ID” or “Exercise

ID”) should receive the PDU. The AG then transmits the PDUs individually to those recipient

host computer in the group (e.g., “cell set,” “force,” or “exercise”). Van Hook at Figures 1 and

5; pp. 1, 2, 4, 6, 7; DIS at p. 5.

The recipient host computer does not receive the aggregated message (e.g., “bundled

PDU”) because it us unbundled by an AG after being received from the WAN andbefore being

retransmitted to the host computer over the LAN. Van Hookat 7, section 4.6. Nevertheless,

Requester submits that the broadest reasonable interpretation of this element does not require

receiving, by a recipient host computer, said aggregated message. Instead, the step of

“transmitting ... said aggregated message”is performed when the AGtransmits the bundled PDU

out onto the WAN,even though the packet may be de-aggregated prior to being received by the

recipient host computer.

CLAIM 2

The method of claim 1 wherein said time intervalis a fixed period of time.

35

Petitioner Riot Games,Inc. - Ex. 1005, p. 233

Petitioner Riot Games, Inc. - Ex. 1005, p. 234

Van Hookdiscloses the method of claim 1 wherein said time internalis a fixed period of

time (e.g., the maximum time delay). Van Hookat pp. 2 and 7.

CLAIM 4

The methodof claim 1 further comprising the step of creating, by one of said
plurality of host computers, said first message group by sendingafirst
control message to said server via said unicast network.

Van Hook in view of DIS discloses creating a message group (e.g., “cell set,” “Force” or

“Exercise”) by establishing the group at initialization or during the simulation, when, for

example, a participant enters a region of the simulation or cstablishes a newforce Van Hook at 6

and DISat 36.

CLaim5

The method of claim 4 further comprising the step of joining, by some of said
plurality of host computers, said first message group by sending control
messages via said unicast networkto said server specifying said first message
group.

Van Hook in view of DIS discloses some host computers (e.g., participants in the same

vicinity, exercise or force) joining a message group (e.g., “cell set,” “Force” or “Exercise”) by

sending a control message (e.g., join PDU or moving into the vicinity of other group members)

specifying the message group(e.g., coordinates, “Exercise”or “Force”’), Van Hook at 6 and DIS

at 36. Join PDUsare inherent in the operation of STOW-E because there must be some method

for multiple computers to join the simulation during initialization or while the game is in

progress; this is exemplified in Macedonia, which discloses Join PDUs in a DIS system.

Macedonia at 42. Therefore, Van Hook, in view of DIS, inherently, or at least obviously,

includes Join PDUs.

CLAIM 6

The method of claim 1 wherein said network is Internet and said server

communicates with said plurality of host computers using a session layer
protocol.

Van Hook discloses the method of claim | wherein the network is the Defense

Simulation Internet Wide Area Network, and the AG server communicates with said plurality of

36

Petitioner Riot Games,Inc. - Ex. 1005, p. 234

Petitioner Riot Games, Inc. - Ex. 1005, p. 235

host computers using a session layer protocol (e¢.g., the “DIS protocol’, which inherently runs

over a session layer protocol or its equivalent). Van Hookat p. 1.

D. CLAIMS 1, 2 AND 4-6 ARE RENDERED OBVIOUS BY IRC RFC IN VIEWOF

FRIEDMAN UNDER35 U.S.C, § 103

Please see the attached Exhibit CC-D presenting claim charts for comparison of IRC RFC

in view of Friedman with claims 1, 2 and 4-6 of the ‘523 patent.

Reason to Combine:

IRC RFC does not disclose aggregating payload portions, but Friedman discloses that

messages are buffered and then the payloads are aggregated (¢.g., packed) before sending.

Friedman at p. 5. In addition, IRC RFCstates that “[t]he main goal of IRC is to provide a forum

which allows easy and efficient conferencing (one-to-many conversations).” IRC RFC at p. 11,

§ 3.2, One-to-many. Friedman discloses that the aggregation of message packets improves both

latency and throughput compared to non-agercgating communication protocols. Fricdmanat p.

1. In addition both IRC RFC and Friedman are both directed to messaging groups connecting

over a network. IRC RFC at p. 11, § 1, Introduction and Friedman at pg. 2. Therefore, it would

have been obvious to one of ordinary skill in the art at the time of the invention to aggregate the

group messages of IRC RFC (e.g., channel messages) in order to increase the efficiency of the

network, which was a main goal of IRC RFC.

CLAIM 1

A method for providing group messages to a plurality of host computers
connected over a unicast wide area communication network, comprising the
stepsof:

IRC RFC discloses a text-based protocol designed to provide real-time Internet text

messaging or synchronous text-based conferencing through the use of a client-server model.

IRC REC provides a method for providing group messages (e.g., chat messages on a specific

channel) to a plurality of host computers (e.g., clients). IRC RFC at p. 4, $1 Introduction and p.

11, §3.2.2, To a group. The host computers are connected over a unicast wide area

communication network, the Internet, and communicate with one another via TCP/IP. IRC RFC

at abstract, § 1. Messages “are sent only once to that server [connected to the client] and then

sent to each client on the channel” rather than sent directly to multiple other clients. Jd. at §

3.2.2.

37

Petitioner Riot Games,Inc. - Ex. 1005, p. 235

Petitioner Riot Games, Inc. - Ex. 1005, p. 236

providing a group messaging server coupled to said network, said server
communicating with said plurality of host computers using said unicast
network and maintaining a list of message groups, each message group
containing at least one host computer;

IRC RFCdiscloses a group messagingserver(e.g., the server) coupled to a network(e.g.,

the Internet), said server, communicating with a plurality of host computers (¢.g., clients) using a

unicast network, and maintaining a list of message groups(¢.g., channels). IRC RFCat p. 4, §1,

Introduction, 5, §, 1.3, Channels and 11, § 3.2.2, To a group (channel), Each server “know([s]

aboutall channels, their inhabitants and properties.” /d. at p. 64, § 9.2.2, Channels.

sending, by a plurality of host computers belonging to a first message group,
messages to said server via said unicast network, said messages containing a
payload portion and a portion for identifying said first message group;

IRC RFC discloses that clients can send a message to a message group (é.g., a channel).

IRC RFCatp. 32, § 4.4.1, Private messages. The messages contain a payloadportion, i.e. <text

to be sent>, and a portion identifying the message group(e¢.g., <receiver> which can be a channel

name). fd.

aggregating, by said server in a time interval determined in accordance with
a predefined criterion, said payload portions of said messages to create an
aggregated payload;

IRC RFC discloses that sending individual messages to each user in a list is the least

efficient method of group communication because duplicate messages are sent along the same

path. IRC RFCat p. 11, § 3.2.1, To a list. IRC instead suggests sending the message to a

message group (i.e. a channel) such that “the message text is sent only once to that server and

then sent to each client on the channel.” IRC RFC at § 3.2.2. IRC RFC does not disclose

aggregating payload portions, but Friedman discloses such. Friedman discloses that messages

are buffered and then the payloads are aggregated (e.g., packed) before sending. Friedmanat p.

5. It would have been obvious to aggregate the group messages of IRC RFC (e.g., channel

messages) in order to increase the efficiency of the network. Friedmanat p. 1.

forming an aggregated message using said aggregated payload; and

Friedman discloses that aggregated payloads(e.g., packed messages) are formed into an

aggregated message (e.g., packed message having a single header). Friedman at pp. 5 and 12.

38

Petitioner Riot Games,Inc. - Ex. 1005, p. 236

Petitioner Riot Games, Inc. - Ex. 1005, p. 237

transmitting, by said server via said unicast network, said aggregated
message to a recipient host computer belonging to said first message group.

IRC RFCdiscloses that the server sends messages addressed to a channelto each other host (e.g.,

client), which is a memberofthe message group(e.g., channel), IRC RFC at p. 11, § 3.2.2, Toa

group.

CLAIM 2

The method of claim 1 wherein said time intervalis a fixed period of time.

Friedman discloses that messages are buffered for a time intervalthat is fixed (e.g., one

millisecond). Friedmanat p. 5.

CLAIM4

The methodof claim 1 further comprising the step of creating, by one of said
plurality of host computers, said first message group by sendingafirst
control message to said server via said unicast network.

IRC RFC discloses creating a message group (e.g., a channel) by sending a control

message (e.g., the “JOIN” command creates a new channel when the first client joins) with the

channel name. IRC RFCatp. 5, §1.3 Channels and 19, §4.2.1, Join message.

CLAIM 5

The methodof claim 4 further comprising the step of joining, by someof said
plurality of host computers, said first message group by sending control
messagesvia said unicast networkto said server specifying said first message
group.

IRC RFC discloses some host computers (¢.g., some clients) joining a message group

(e.g., a channel) by sending a control message (e.g., the “JOIN” command) with the channel

name. IRC RFCat p. 5, $1.3 Channels, and 19, §4.2.1, Join message.

CLAIM 6

The method of claim 1 wherein said network is Internet and said server

communicates with said plurality of host computers using a session layer
protocol.

IRC RFC discloses running on systems using the TCP/IP network protocol suite, which

necessarily includes communication using a scssion layer protocol. IRC RFC at p. 4, § 1

Introduction. As was known in the art, TCP/IP connections implement session layer

39

Petitioner Riot Games,Inc. - Ex. 1005, p. 237

Petitioner Riot Games, Inc. - Ex. 1005, p. 238

functionality in the transport layer and/or application layer, which means that IRC RFC

inherently includes a session layer functionality.

E. CLAIMS 1-6 ARE RENDERED OBVIOUS BY RINGIN VIEW OF NETREK UNDER35 U.S.C.

§ 103

Please see the attached Exhibit CC-E presenting claim charts for comparison of RING in

viewofNetrek with claims 1-6 of the ‘523 patent.

Reasons to Combine:

RINGdiscloses communicating messages over a network. RING at Figs. 5 and 7, pp. 88,

87 and 91. Similarly, Netrek discloses clients and servers communicating over a network using

messages. See Server Code, Server\ntserv\newstartd.c at lines 129-73, lines 179-311, lines 146-

70; Server\ntserv\main.c at lines 135-43; Server\ntserv\socket.c at lines 442-88. Netrek further

discloses aggregating packets to reduce the numberof packets sent from the server. (e.g., “Idea:

read from client often, send to client not so often”). Server\ntserv\input.c at lines 152-203;

Server\ntserv\redraw.c at lines 21-115; Server\ntserv\socket.c at lines 603-90. A person of

ordinary skill in the art, looking to increase network efficiency, would have looked to related

methods of communicating messages over a network. Accordingly, a person of ordinary skill in

the art would have looked to the aggregation teachings of Netrck to agercgate messages in RING

to increase networkefficiency.

CLAM 1

A method for providing group messages to a plurality of host computers
connected over a unicast wide area communication network, comprising the
stepsof:

RING discloses a method for providing group messages (e.g., “update messages”) to a

plurality of host computers (e.g., “client workstations”) connected over RING’s unicast wide-

area communication network. RING at Abstract, pp. 85, 86, 90 and 91.

providing a group messaging server coupled to said network, said server
communicating with said plurality of host computers using said unicast
network and maintaining a list of message groups, each message group
containing at least one host computer;

RING discloses providing a group messaging server coupled to the network, (e.g.,

RING’s unicast wide-area communication network), wherein the server communicates with the

40

Petitioner Riot Games,Inc. - Ex. 1005, p. 238

plurality of host computers (e.g., “client workstations”) using the unicast network and

maintaining a list of message groups. RINGat Figs. 5 and 7, pp. 88, 87 and 91. As illustrated in

Figure 7 (reproduced below), for example, RING discloses that clients A and C belongto client

B’s message group, and therefore this particular message group contains at least one host

computer, or client workstation, including A, B and C. RINGatFig.7.

Cent G

Figure 7: Blow of update messages (labeled arcowe; for ape
dxtes ta entites A, B, ©, aset D aresnged in a virtual «pvircn-
imexk as showy: is Figsre 4,

Figure 7 of RING atp. 88.

Message groups can consist of all clients connected to RING servers, or clients that are

visible to cach other and can send messages to cach other. RING at pp.87-88. A server, such as

server Y in Figure 7, maintains a list of message groups, as “servers keep track of which cells

contain which entities by exchanging ‘periodic’ update messages when entities cross cell

boundaries,” and thus becomevisible to other clients. RING at p. 87.

sending, by a plurality of host computers belonging to a first message group,
messages to said server via said unicast network, said messages containing a
payload portion and a portion for identifying said first message group;

RING discloses sending, by a plurality of host computers (e.g., “client workstations’)

belonging to a first message group (e.g., other clients participating in the same distributed

simulation and in the samecell), messages to the server via the unicast network. RINGat pp. 87

and 91. The messages(e.g., “update messages”) contain 40 bytes, and consist of a portion for

identifying a first message group, such as an “entity-ID,” as well as a payload portion containing
99 66, 39 66.

message information such as “target-position,” “target-orientation,” “‘positional-velocity,” and

“rotational velocity.” RING at pp. 87, 89, 91 and Fig. 5. While the entity-ID does not explicitly

indicate a particular message group, it is used by the server “for identifying” the group (e.g.,

4]

Petitioner Riot Games,Inc. - Ex. 1005, p. 239

Petitioner Riot Games, Inc. - Ex. 1005, p. 240

“cell”) to which the message should be transmitted. RING at p. 87 (“[S]ervers keep track of

which cells contains which entities by exchanging ‘periodic’ update message whenentities cross

cell boundaries. Real-time update messages are propagated only to servers and client containing

entities inside some cell visible to the one containing the updated entity.’’)

aggregating, by said server in a time interval determined in accordance with
a predefined criterion, said payload portions of said messages to create an
aggregated payload;

While RING does not explicitly disclose aggregating, Netrek discloses aggregating

payload potions of said messages to create an aggregated payload. See Server Code,

Server\ntserv\input.c at line 195 (the function input calls the function readFromClient to receive

messages sent by the host computers and then places the messages into shared memory (e.g.,

“buf’) so that they can be aggregated by the server; See also, OTH-A, The Smith declaration at

"| 7, 18, 25-39

For example, one of the commentsstates, “Idea: read from client often, send to client not

so often’’), lines 152-203 (the server sets the aggregation interval to a pre-defined time stored in

timerDelay);, Server\ntserv\data.c at line 76 (aggregation interval set to 200,000 microseconds,

“int timerDelay=200000;”); Serverintserv\socket.c at lines 603-90 (definition for the function

updateClient that calls the other update functions which handle aggregation). See generally

Server Code, Server\ntserv\socket.c (contains the update functions that handle aggregation).

For example, the Netrek server aggregates torpedo messages based on a ship’s proximity

to a torpedo because ships in the torpedo’s proximity may be hit by it and players will need to

see it to take evasive measures. When the Netrek server receives a torpedo message from a host

computer, the server stores the message into its shared memory (e.g., “buf’). See Server Code,

Server\ntserv\input.c at line 195 (input calls the function readFromClient to receive messages

sent by the host computers and then places the messages into shared memory (e.g., buf) so that

they can be aggregated by the server); Server\ntserv\socket.c at lines 1825-2044

(readFromClient calls doRead, which stores information into bufat line 1956).

Similarly, RING takes entity proximity into account when proccssing what information

should be sent to servers and clients. RINGat p. 87. Therefore, it would have been obvious to

one of skill in the art to use the teaching of aggregating message payloads from clients based on

42

Petitioner Riot Games,Inc. - Ex. 1005, p. 240

entity proximity in Netrek to aggregate update message payloads in RING, which are also based

on entity proximity, to increase network efficiency.

forming an aggregated message using said aggregated payload; and

While RING doesnot explicitly disclose forming an aggregated message,it teaches thatit

is advantageous to aggregate (e.g. “augment”) a client message payload (e.g., an "update

message”) with “Add” and “Remove” messages. RING atp. 88 (“As entities move through the

environment, servers augment update messages with ‘Add’ and ‘Remove’ messages notifying

clients that remote entities have become relevant or irrelevant to the client’s local entities.’’).

Moreover, Netrek teaches forming an aggregated message using the aggregated payload that was

created in the aggregation buffer. See Server Code, Server\ntserv\socket.c at line 688 (the

function wpdateClient calls the functionflushSockBufafter filling the aggregation buffer to form

and transmit an aggregated message using the TCP/IP or UDP/IP protocol), lines 1603-744 (if

the aggregation buffer becomesfull, the function sendClientPacket will call the function gwrite

to form and transmit an aggregated message using the TCP/IP or UDP/IP protocol), lines 1747-

802 (definition of the function flushSockBuf), lines 2607-73 (definition of the function gwrite).

An example of such an aggregated message appears in Figure 6c of the Smith declaration:

 Netrek server's Player 3’s Server Server
IP address IP address message packet |_| message packet 2

“Figure 6c. The aggregated message sent to Player 3 included Internet header infonnation and
both messages. Server message packet | was based on the payload of the message from Player |
and server message packet 2 was based on the payload of the message from Player 2.” Smith
declaration at p. 18.

transmitting, by said server via said unicast network, said aggregated
message to a recipient host computer belonging to said first message group.

RING further discloses transmitting, by said server via the unicast network, said

aggregated message to a recipient host computer (e.g., “client workstation’’) belonging to said

first message group. RING at pp. 87 and 91. More specifically, RING teaches, “sending

messages directly between clients, RING routes cach one through at least one server and

possibly two.” Ring at p. 88. According to RING, client workstations belong to the first

43

Petitioner Riot Games,Inc. - Ex. 1005, p. 241

Petitioner Riot Games, Inc. - Ex. 1005, p. 242

message group if they participate in the same distributed simulation or are visible to each other.

RINGat p. 87.

Moreover, the Netrek server transmits the aggregated message via the unicast network to

the host computers belonging to the appropriate message groups. See Server Code,

Server\ntserv\socket.c at linc 688 (the function updateClient calls the functionflushSockBufafter

filling the aggregation buffer to form and transmit an aggregated message using the TCP/IP or

UDP/IP_ protocol), lines 1603-744 (if the aggregation buffer becomes full, the function

sendClientPacket will call the function gwrite to form and transmit an aggregated message using

the TCP/IP or UDP/IP protocol), lines 1747-802 (definition of the functionflushSockBuf), lines

2607-73 (definition of the function gwrite). As an example, a series of torpedo messages can be

collected and sent (¢.g., fired) to a competing player in the game. Server\ntserv\socket.c at lines

1125-92.

Aggregated message:
includes message 1 and message 2

Player 1 Nisery

Calls >+ %,

Aggregated message: updateClient() \
includes message 1 and message 2 \

Player2 Niserv \
Calls < \

. dateClient()|~\ ~Aggregated message: uP! S
includes message 1 and message 2 ;Shared Memory

Player3 Ntserv
Calls wt Message Array
updateClient(}

Smith declaration at Figure 6b.

“Figure 6b. Each host's ntserv process called updateClientQ), which in tum called
updateMessages(). UpdateMessages() found all messages intended for that host in the message
array, aggregated them into a buffer (not shown), and transmitted the buffer contents to the host.
In this example, Players 1-3 are on the same team, Players 1 and 2 had earlier indicated that their
messages (labeled message! and message? in Figure 6a above) should be sent to their entire
team. Thus, Players 1-3 all received an aggregated message that included both messages.” /d.

CLAIM 2

The method of claim 1 wherein said time intervalis a fixed period of time.

RING, in view ofNetrek, discloses the method of claim 1 wherein said timeintervalis a

fixed period of time. RING at Abstract, pp. 85, 86, 87, 90 and 91. In particular, RING discloses

44

Petitioner Riot Games,Inc. - Ex. 1005, p. 242

