Network Working Group S. Deering Request for Comments: 1112 Stanford University Obsoletes: RFCs 988, 1054 August 1989

Host Extensions for IP Multicasting

1. STATUS OF THIS MEMO

This memo specifies the extensions required of a host implementation of the Internet Protocol (IP) to support multicasting. It is the recommended standard for IP multicasting in the Internet. Distribution of this memo is unlimited.

2. INTRODUCTION

IP multicasting is the transmission of an IP datagram to a "host group", a set of zero or more hosts identified by a single IP destination address. A multicast datagram is delivered to all members of its destination host group with the same "best-efforts" reliability as regular unicast IP datagrams, i.e., the datagram is not quaranteed to arrive intact at all members of the destination group or in the same order relative to other datagrams.

The membership of a host group is dynamic; that is, hosts may join and leave groups at any time. There is no restriction on the location or number of members in a host group. A host may be a member of more than one group at a time. A host need not be a member of a group to send datagrams to it.

A host group may be permanent or transient. A permanent group has a well-known, administratively assigned IP address. It is the address, not the membership of the group, that is permanent; at any time a permanent group may have any number of members, even zero. Those IP multicast addresses that are not reserved for permanent groups are available for dynamic assignment to transient groups which exist only as long as they have members.

Internetwork forwarding of IP multicast datagrams is handled by "multicast routers" which may be co-resident with, or separate from, internet gateways. A host transmits an IP multicast datagram as a local network multicast which reaches all immediately-neighboring members of the destination host group. If the datagram has an IP time-to-live greater than 1, the multicast router(s) attached to the local network take responsibility for forwarding it towards all other networks that have members of the destination group. On those other member networks that are reachable within the IP time-to-live, an attached multicast router completes delivery by transmitting the

Deering [Page 1]

datagram as a local multicast.

This memo specifies the extensions required of a host IP implementation to support IP multicasting, where a "host" is any internet host or gateway other than those acting as multicast routers. The algorithms and protocols used within and between multicast routers are transparent to hosts and will be specified in separate documents. This memo also does not specify how local network multicasting is accomplished for all types of network, although it does specify the required service interface to an arbitrary local network and gives an Ethernet specification as an example. Specifications for other types of network will be the subject of future memos.

3. LEVELS OF CONFORMANCE

There are three levels of conformance to this specification:

Level 0: no support for IP multicasting.

There is, at this time, no requirement that all IP implementations support IP multicasting. Level 0 hosts will, in general, be unaffected by multicast activity. The only exception arises on some types of local network, where the presence of level 1 or 2 hosts may cause misdelivery of multicast IP datagrams to level 0 hosts. Such datagrams can easily be identified by the presence of a class D IP address in their destination address field; they should be quietly discarded by hosts that do not support IP multicasting. Class D addresses are described in section 4 of this memo.

Level 1: support for sending but not receiving multicast IP datagrams.

Level 1 allows a host to partake of some multicast-based services, such as resource location or status reporting, but it does not allow a host to join any host groups. An IP implementation may be upgraded from level 0 to level 1 very easily and with little new code. Only sections 4, 5, and 6 of this memo are applicable to level 1 implementations.

Level 2: full support for IP multicasting.

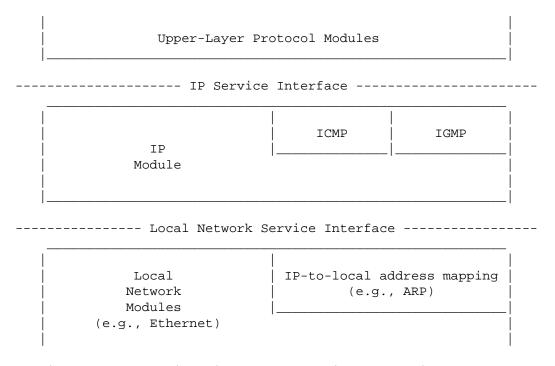
Level 2 allows a host to join and leave host groups, as well as send IP datagrams to host groups. It requires implementation of the Internet Group Management Protocol (IGMP) and extension of the IP and local network service interfaces within the host. All of the following sections of this memo are applicable to level 2 implementations.

Deering [Page 2]

4. HOST GROUP ADDRESSES

Host groups are identified by class D IP addresses, i.e., those with "1110" as their high-order four bits. Class E IP addresses, i.e., those with "1111" as their high-order four bits, are reserved for future addressing modes.

In Internet standard "dotted decimal" notation, host group addresses range from 224.0.0.0 to 239.255.255.255. The address 224.0.0.0 is guaranteed not to be assigned to any group, and 224.0.0.1 is assigned to the permanent group of all IP hosts (including gateways). This is used to address all multicast hosts on the directly connected network. There is no multicast address (or any other IP address) for all hosts on the total Internet. The addresses of other well-known, permanent groups are to be published in "Assigned Numbers".


Appendix II contains some background discussion of several issues related to host group addresses.

Deering [Page 3]

5. MODEL OF A HOST IP IMPLEMENTATION

The multicast extensions to a host IP implementation are specified in terms of the layered model illustrated below. In this model, ICMP and (for level 2 hosts) IGMP are considered to be implemented within the IP module, and the mapping of IP addresses to local network addresses is considered to be the responsibility of local network modules. This model is for expository purposes only, and should not be construed as constraining an actual implementation.

To provide level 1 multicasting, a host IP implementation must support the transmission of multicast IP datagrams. To provide level 2 multicasting, a host must also support the reception of multicast IP datagrams. Each of these two new services is described in a separate section, below. For each service, extensions are specified for the IP service interface, the IP module, the local network service interface, and an Ethernet local network module. Extensions to local network modules other than Ethernet are mentioned briefly, but are not specified in detail.

Deering [Page 4]

6. SENDING MULTICAST IP DATAGRAMS

6.1. Extensions to the IP Service Interface

Multicast IP datagrams are sent using the same "Send IP" operation used to send unicast IP datagrams; an upper-layer protocol module merely specifies an IP host group address, rather than an individual IP address, as the destination. However, a number of extensions may be necessary or desirable.

First, the service interface should provide a way for the upper-layer protocol to specify the IP time-to-live of an outgoing multicast datagram, if such a capability does not already exist. If the upper-layer protocol chooses not to specify a time-to-live, it should default to 1 for all multicast IP datagrams, so that an explicit choice is required to multicast beyond a single network.

Second, for hosts that may be attached to more than one network, the service interface should provide a way for the upper-layer protocol to identify which network interface is be used for the multicast transmission. Only one interface is used for the initial transmission; multicast routers are responsible for forwarding to any other networks, if necessary. If the upper-layer protocol chooses not to identify an outgoing interface, a default interface should be used, preferably under the control of system management.

Third (level 2 implementations only), for the case in which the host is itself a member of a group to which a datagram is being sent, the service interface should provide a way for the upper-layer protocol to inhibit local delivery of the datagram; by default, a copy of the datagram is looped back. This is a performance optimization for upper-layer protocols that restrict the membership of a group to one process per host (such as a routing protocol), or that handle loopback of group communication at a higher layer (such as a multicast transport protocol).

6.2. Extensions to the IP Module

To support the sending of multicast IP datagrams, the IP module must be extended to recognize IP host group addresses when routing outgoing datagrams. Most IP implementations include the following logic:

```
if IP-destination is on the same local network,
    send datagram locally to IP-destination
else
    send datagram locally to GatewayTo( IP-destination )
```

Deering [Page 5]

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

