

Petitioner Riot Games, Inc. - Ex. 1005, p. 1

CERTIFICATE OF SERVICE

The undersigned hereby certifies that a copy of this REQUEST FOR REEXAMINATION

UNDER 35 U.S.C. §§ 302-307 AND 37 C.F.R. § 1.510 FOR U.S. Patent 5,822,523 together

with all exhibits and attachments and supporting documentation on a CD, has been served via

first class mail on June 11, 2010 upon the following:

DANIEL DEVITO

SKADDEN, ARPS, SLATE, MEAGHER & FLOM LLP

FOUR TIMES SQUARE
NEW YORK NY 10036

JORDAN ALTMAN

SHEARMAN & STERLING LLP

IP DOCKETING

599 LEXINGTON AVENUE

NEW YORK, NY 10022

RAJIV P. PATEL, ESQ.
FENWICK & WEST LLP

TWO PALO ALTO SQUARE

PALO ALTO, CA 94306

W
Sonal Dash

Petitioner Riot Games, Inc. - EX. 1005, p. 1

Petitioner Riot Games, Inc. - Ex. 1005, p. 2

PTOJ'SBJ'DBa (05-07)
Approved for use through 0980/2007. OMB 0651-0031

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection ofinformation unless it contains a valid OMB control number.

Application Number

Filing Date

INFORMATION DISCLOSURE First Named Inventor DANIEL J. SAMUEL

STATEMENT BY APPLICANT Art Unit
(Not for submission under 37 CFR 1.99)

Examiner Name
Attorney Docket Number 8330.003

U.S.PATENTS

Pages,Cqumns,Lines where

Examiner C'te Patent Number Kmd Issue Date Name Of Patentee or Applicant Relevant Passages or RelevantInitial No Code1 of Cited Document .
Figures Appear

Suzuki et al.

1 5736982 1998-04-07

If you wish to add additional U.S. Patent citation information please click the Add button.

U.S.PATENT APPLICATION PUBLICATIONS

Pages,Cqumns,Lines where
Relevant Passages or Relevant
Figures Appear

Examiner Cite Publication Number Kind Publication Name of Patentee or Applicantlnitia|* No Code1 Date of cited Document

If you wish to add additional U.S. Published Application citation information please click the Add button.

FOREIGN PATENT DOCUMENTS

EFS Web 2.0.1

Petitioner Riot Games, Inc. - EX. 1005, p. 2

Petitioner Riot Games, Inc. - Ex. 1005, p. 3

Application Number

Filing Date

INFORMATION DISCLOSURE First Named Inventor DANIEL J. SAMUEL
STATEMENT BY APPLICANT

(Not for submission under 37 CFR 1.99)

Art Unit

Examiner Name
Attorney Docket Number 8330.003

' Name of Patentee or Pages,Columns,Lines
Examiner Cite Foreign eDocument Country Kind Publication A licant of cited where Relevant T5
Initial* No Number Code2 i Code4 Date pp Passages or RelevantDocument .

Figures Appear

1

If you wish to add additional Foreign Patent Document citation information please click the Add button

NON-PATENT LITERATURE DOCUMENTS

Examiner Cite Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item
Initials* No (book, magazine, journal, serial, symposium, catalog, etc), date, pages(s), volume-issue number(s), T5

publisher, city and/or country where published.

Server2.5p|4.tar.gz (“Server Code”) and BRMH-‘I .7.tar.gz (”Client Code”)

1 (source code dated no later than August 19941) ("Netrek")

J. OIKARINEN ET AL. RFC 1459, "Internet Relay Chat Protocol", published May 1993 (“IRC RFC”).
2

R. FRIEDMAN ET AL. "Packing Messages as a Tool for Boosting the Performance of Total Ordering Protocols", Dept.

3 of Science of Cornell University, published July 7, 1995 ("Friedman”).

DANIEL J. VAN HOOK, JAMES O. CALVIN, MICHAEL K. NEWTON, and DAVID A. FUSCO, "An Approach to DIS

4 Scaleability," 11th DIS Workshop, 26-30 Sept.1994 (“Van Hook").

IEEE 1278—1993 “IEEE Standard for Information Technology— Protocols for Distributed Interactive Simulation

5 Applications", approved March 18, 1993, and published In 1993 (“DIS”)

T. A. FUN KHOUSER, “RING: A Client-Server System for Multi-User Virtual Environments,” Association of Computing

6 Machinery, 1995 Symposium on Interactive 3D Graphics, Monterey CA, April 9—12, 19952 (“RING”).

ANDY MCFADDEN, “The History of Netrek”, published January 1, 1994 (“McFadden").
7

EFS Web 2.0.1

Petitioner Riot Games, Inc. - EX. 1005, p. 3

Petitioner Riot Games, Inc. - Ex. 1005, p. 4

Application Number

Filing Date

INFORMATION DISCLOSURE First Named Inventor DANIEL J. SAMUEL

STATEMENT BY APPLICANT Art Unit
(Not for submission under 37 CFR 1.99)

 Examiner Name

Attorney Docket Number 8330.003

MICHAEL R. MACEDONIA. “Exploiting Reality with Multicast Groups”. published September 1995 (“Macedonia”)

If you wish to add additional non-patent literature document citation information please click the Add button

EXAMINER SIGNATURE

 Date Considered Examiner Signature

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through a
citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

1 See Kind Codes of USPTO Patent Documents at www.USPTO.GOV or MPEP 901.04. 2 Enter office that issued the document, by the two-letter code (WIPO
Standard ST.3). 3 For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document.
4 Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST.16 if possible. 5 Applicant is to place a check mark here if
English language translation is attached.

EFS Web 2.0.1

Petitioner Riot Games, Inc. - EX. 1005, p. 4

Petitioner Riot Games, Inc. - Ex. 1005, p. 5

PAT-A

Petitioner Riot Games, Inc. - EX. 1005, p. 5

United States Patent [19]
Rothschild et al.

usonsszzszm

[in Patent Number: 5,822,523

[45] Date of Patent: Oct. 13, 1998

[54] SERVERvGROUP MESSAGING SYSTEM FOR Primary Examiner—William M. 'l'reat
INTERACTIVE APPLICATIONS Animal Examiner—2am Mating

Manley, Agent, or Firm—H. C. Chan; Wison Sonsini
[75] Inventors JeilI'ey .l. Rothschild; More P. Goodrich & Ronni

Kwhthlwlki, both of Los Gums;
Daniel J. Samuel. Sunnyvtie. all of [57] ABSTRACT

Caltt A method for deploying internetive applications over a
[73] Assignoo; Mpnth Interactive. Inc. Mountain network conuining host computers and gmup messagingView. Calif. servers is diwlosedr The method operates in I conventional

unicast network architecture comprised of conventional net-

[211 Appl. No: ””23 work links and uniast gntewnys and routers The hosts send
_ messages containing destination group addresses by unicust

[22] “1"“ ”I" 1' 1996 to the group misusing servers. The group addresses select
[51] tm. (1°toHMH 1/02 meme: your» mintamod by the your) manning samu-
[521 us. or.-arts/200.17; 395mm; F"! =th "mm ImuP- the IMP Wsint “M's 8'50395mm) maintain a list of all of the hosts that are members of the
[53] Field 0f Search~.........m.. 395,101“. 200.01. particular group in its most simple implementation. the

39S/200.09, 20017, 200.05, 793; 370/8513, mtthod mists of the group server receiving 3 mg:
50 from a host oontoining a destination group address. Using

the group address, the group manning server then selects
[561 Rehnmees Cited a mega group which lists oil at the host members of the

n which are the «so! memgesto the u .11»
”-5- PM DOCUMENTS Sign: messaging servlzigthcn forwarch the manager: and:

“70.954 9/1934 can” a .1, _ 370/50 of the target hosts, in an interactive apptication. many
5,079,767 "1992 Perirnntt .o 370/943 messages will be arriving at the group server clan: to one
5,I50,464 9/1992 Sim et oi. .. 395/2000I molhcr in lime. Rather than simply forward each message to
5.309.433 5/199‘ 54°“ et at. -« 370/60 its targeted hosts. the group messaging server aggreptee the

230233; :13: $3333? 0' ”mill contents of each of messages received during a specified' 3 ' m * time riod and then sends an a tired [DOES] to the

”61'2“ “/19“ ”WW et “" """‘ 370/“) target}; hosts. The time period cagrfi'fdefined in fflwmbet5,475,819 12/1995 Miller et Al 3950M.0| .
5 5'7 ‘94 5/1996 Green _____ 37%|] of ways. Thts method reduce-m the message trafic between' ' hosts in a networked interactive application and contributes

FOREIGN PATEN'l‘ DOCUMENTS to reducing the latency in the communications between the

0637l42 i/t995 Euopun Pal. Oil. . “a”WODSt'imflti l/l995 WlPO
wo 95/t0)ll 4/1995 wtm i 6 Chime. 11 Drawing Street:

M 1m
Mal A Song tit-t A Rn-

_flflm nunmmm
97 ‘01

Meet I Iona met I Room-o
_num annmmm

I I03
Nut 0 Bill MCm

nunm unnmmm
U 1M

Ned D Sella that D Home

_KIEIIZI "nun-mm

‘m Glows-Wm U WWW—-
w, unnmmm ., unnm

nut-um
unnu-

‘°’ nut-mum “' unnm
103 W

Petitioner Riot Games, Inc. — Ex. 1005, p. 6

US. Patent 01:1 13,1998 Sheet 1 or 11 5,822,523

Figure 1

Prior Art

Petitioner Riot Games, Inc. - Ex. 1005, p. 7

US. Patent Oct. 13, 1998 Sheet 2 or 11 5,822,523

Host A Sends Host A Receives

asi 88H/
22 "-m 29 -um

-fllil n-m

23 Host B Sends 20 Host B Receives

24 “-- 2, -nm

25 n 30 -I§ll2‘l
“Ella mum

26 Host 0 Sends 21 Host C Receives

2, “In 24 u-m

28 -IEIIEI 31 Iii-[2|
-nm u-Iil

Host D Sends Host D Receives

(JONCIDi, MN GINi
31 nun! 28 Eula

“-- -IEIIE‘I

FigureZ
Prior Art

i

Petitioner Riot Games, Inc. - Ex. 1005, p. 8

US. Patent 0cL13,1998 Sheet 3 or 11 5,822,523

Figure 3
Prior Art

Petitioner Riot Games, Inc. - Ex. 1005, p. 9

US. Patent Oct. 13,1998 Sheet 4 of 11 5,822,523

Host A Sends Host A Receives
54 553

-fllil 5.5;,

t B R '
55 Host B Sends 54b Hos ecelves

“BE 55,, -fllil

57,, -EE
“I3-

Host C Sends Host C Receives
56 54c

57c “Eli!
Iii-3m

57 Host D Sends 54d Host D Receives

Imam 5%

56d “lam
"I:

Figure 4
Prior Art

Petitioner Riot Games, Inc. - Ex. 1005, p. 10

US. Patent Oct. 13, 1998 Sheet 5 of 11 5,822,523

Figure 5 I

Petitioner Riot Games, Inc. - Ex. 1005, p. 11

US. Patent 0;; 13,1993 Sheet 6 of 11 5,822,523

80 Host A Sends 84 Host A Receives

as

as

81 Host B Sends 87 Host 8 Receives

as

as

82 Host C Sends 90 Host C Receives

-“ 91 nun!

92 “'3

Hum

83 Host D Sends 93 Host D Receives

“an“ 94 nun-

95 mum

[In-amE
84 Group Sewer Sands 80 Group Server Receives

as n-um 32

e7 n-nm 83

as unn-

89 uni-m

90 uni-m
91

92

93 c

94

95

O :—EEEP4

EEE
Figure 6

Petitioner Riot Games, Inc. - Ex. 1005, p. 12

US. Patent Oct. 13,1998 Sheet 7 of 11 5,822,523

100

Host A Sends Host A Receive:

97 101

Host 8 Sends Host 8 Receives

98 102

Host C Sends Host 0 Receives

99 103

Host D Receives
96

Group Server Sends p Server Receives

101 nunmmm 9,
Grou

Bun-- B

“-IZIEI

I!
102 98

nun-lam

103 99

Figure 7

Petitioner Riot Games, Inc. - Ex. 1005, p. 13

US. Patent 0a, 13, 1998 Sheet 8 of 11 5,822,523

Figure 8
Prior Art

Petitioner Riot Games, Inc. - EX. 1005, p. 14

US. Patent Oct 13,1998 Sheet 9 0111 5,822,523

123 124 125 126 127 128 129

Transport ULP Msg. Dest. ULP Address Destination Destination Pa load
Header Type Address Count Address 1 Address N y

116 117 118 119 120 121 122

Message Source ULP Data Source ULP Data
mm W

130 131 132

Figure 9

Petitioner Riot Games, Inc. - Ex. 1005, p. 15

US. Patent Oct. 13,1998 Sheet 10 or 11 5,822,523

135

Group Server Control

Host ULP Address 0 Host TLP Address 0

Host ULP Address n Host TLP Address n

Implicit ULP Grow Address 0

Implicit LlP Group Address m
ULP Sewer Process 0 ULP Server Process 111

Hosl ULP Address 3

Host ULP Address 11

Host ULP Address 8

Host ULP Address 11

Logical ULP Address 0 Logical ULP Address to
Host ULP Address 3 Host ULP Address a

Host ULP Address n Host ULP Address n

Figure 10

Petitioner Riot Games, Inc. - EX. 1005, p. 16

US. Patent Oct. 13, 1998 Sheet 11 or 11 5,822,523

150

Interactive Application

Host Interface for Upper Level Protocol

 ULP Address 0 TLP Address 0

TLP Address nULP Address n

153

Host Interface for Transport Level Protocol

Network Communications Stack

Network Interface

154

155

Figure 1]

Petitioner Riot Games, Inc. - Ex. 1005, p. 17

5322.523

I
SERVER-GROUP MESSAGING SYSTEM FOR

INTERACTIVE APPLICATIONS

FIELD OF THE INVENTION

The present invention relates to computer network
syste ms, and particularly to server group messaging systems
and methods for reducing message rate and latency.

BACKGROUND OF THE INVENTION

'lhere are a wide range of interactive applications imple-
mented on computer systems today. All are characterized by
dynamic response to the user. The user provide: input to the
computer and the application rcsponrh quickly. One popular
example of interactive applications on personal computers
(PCs) are games. In this case. rapid response to the user may
mean retkawiog the screen with a new picture in between 30
rm and 100 ms. Interactive applicatiom such as games
control the speed of their interaction with the user through
an internal time base. The application uses this time base to
derive rates at which the user input is sampled. the screen is
redrawn and sound is played.

As computers have become more powch and common,
it has become important to connect them together in net-
wodcs. A network is comprised of nodes and links. The
nodes are connected it such a way that then: exists a path
from each node over the links and through the other nodes
to each of the other nodes in the network. Each node may be
contracted to the network with one or more links. Nodes are
Either categorized into hosts. gateways and routers. Hoots
are computer systems that are connected to the network by
one link. They communicate with the other nodes on the
netwmk by sending manages and receiving messages. Gate-
ways are computer systems connected to the network by
more than one link They not only communicate with the
other nodes as do hosts. but they also forward messages on
one of their network links to other nodes on their other
network links. This processing of forwarding messages is
called routing. In addition to sending and receiving mee-
sagcs and their touting functions, gateways may perform
other functions in a network. Routers are nodes that are
connected to the network by more than one link and whose
sole function '5 the forwarding of manages on one network
link to the other network links to which it is connected. A
network consisting of many network links can be thought of
as a network of sub-networks with gateways and/0r routers
connecting the suhmetworka together into what is called an
internet. Way the widely known examph of a world wide
intemet is the so called “Iuemet” whida in I995 has over 10
million computers connected full time world-wide.

With so many computers on a single world-wide network.
it is desirable to create interactive networked applications
that bring together many people in a shared, networked,
interactive application. Unfortunately. creating such shared
networked. interactive applications runs into the limitations
of the existing network technology.

As an example. consider a game dsigned to be deployed
over a network which is to be played by multiple players
simultaneously. The game could be implemented in soflware
on a PC connected to a network. A rate set by its Internal
time base, it would sample the Inputs of the local user.
receive damages from the network from the PCs oflhe other
players and send messages out to the PC: of the other
players. Atypical rate will be ten time per second for I time
period of 100 ms. The messages sent between the PCs would
contain Information that was needed to keep the game

Petitioner Riot Games, Inc. - EX. 1005, p- 18

IO

15

35

45

55

2
consistent between all of the PCs. In a game that created the
illusion of a spatial environment where each player culd
move. the packets could contain information about the new
positions of the players as they moved. Today there are many
commercial example of PC games that can he played
between muliplc players on Local Area Networks (LANs)
or by two players over dial-up phone lines using modems.
The network mes-gee sent by such games contain a wide
variety of information specific to the game. This can include
position and velocity information of the objects in the game
along with special actiom taken by a player that effect the
other players in the game.

The case of a two player game played over a modem is
particularly simple. It the message rate is to manager. per
second. each PC sends lo messages per second to the other
PC and receives 10 messages per second. The delay intro-
duced by the modems and phone line is small and will not
he noticed in most games. Unfortunately. the case of two
players is uninteresting {or networked interactive applica-
liona. With the same game played with 8 players on a IAN,
the message rate increases Each PCmust send 7 inc-sages.
one to each of the other 7 players every time perixl and will
receive 7 messages from the other players in the same time
periad. If the messaging time period is it!) ms. the total
message rate will be 70 messagca sent per second and 70
messages received per second. As can be seen the message
rate increases linearly with the hunter of players in the
game. The message rates and data rates supported by popu-
lar War are high enough to support a large number of
players at reasonable message sins. Unfortunately, LANs
are only deployed in commercial applications and cannot be
considered for deploying a networked interactive Ipplica-tion to consumer taunt.

The wide area networks available today to consumer users
all must be accessed through dial-up phone lines using
modems. While modem speeds have increased rapidly, theyhave now reached a bit ralo “3.8 KbIls/sec whidt '5 close
to the limit set by the signal-to-nnise ratio of conventional
phone lines. Further speed increases are ponihlc with ISDN.
but this technology is not ready for mass market use. Other
new wide area networking technologies are being discussed
that would provide much higher bandwidth, but none are
clog. to commercial operation. Therefore. in deploying a
networked. interactive application to consumers, it is nec-
essary to do so in a way that operates with existing ncl-
working and communications infrastructures.

In the example of the 8 player networked game, consider
a wade area network implementation where the PC: of each
of the players is connected to the network with a 3.8
Khit/soc modern. Assume that the network used in this
example is the Internet so that all of the network protocols
and routing behavior '5 well defined and understood. If the
game uses ‘I‘CP/ll’ to send its messages between the PCs in
the game. the PPP protocol over the dial-op phone lines can
be advantageosly uscd to compress the 'I‘CP/IP headers.
Even so. a ryp'cal message will be approximately 25 bytes
in size. Sent through the modem. this is 750 bits. The
messages are set! 10 tint: per second to each of the other
PCs in the game and received 10 times per second from the
other PCs. This is 35.0 Kbits/scc which exceeds the capa-
bilities ol the modem by 20%. If the messages are reduced
to 20 bytes, just 8 players can be supported. but this
approach clearly cannot support networked interactive
applications with large numbers of panicipanu. There are
other problems beyond just the bandwidth of the network
connection. There is the loading on each PC caused by the
high packet rates and there b the latency introduced by the

5,822,523

3
time needed to send all otthe outbound packets. Each packet
sent or received by a PC will require some amount of
processing time. As the padret rate increases with the
number ofplayers in the game, less and less of the processor
will be available for running the game software itself
latency is important it an interactive application because it
defines the responsiveness of the system. When a player
provides a new input on their system, it is desirable [or that
input to immediately affect the game on all of the other
players systems. This is particularly important in any game
where the game outcome depends on players shooting at
targets that are moved by the actions of the other players.
Latency in this case will be the time from when a player acts
to move a target to the time that the target has moved on the
screens of the other players in the game. A major portion of
this latency will come from the time needed to send the
messages to the other seven players in the game. In this
example the time tosend the messages to the other 7 players
will be approximately 50 ms While the first player of the
seven will receive the message quickly, it will not be until
50 ms haVe passed that the last player of the seven will have
received the outage.
Internet Protocol Multieesting

As mentioned before, the Internet is a widely known
example of a wide area network The Internet is based on a
protocol appropriately called the Internet Protocol (11’). In
the OSI reference model for layers of network protocols. lP
oorrespontkr to a layer 3 or Network layer protocol. It
provides services for transmission and routing of packets
between two nodes in an internet. The addressing model
provides a 32 bit address [or all nodes in the network and all
packets carry source and destination addreses I? also
defines the routing of packets bemen network links in an
inter—network. Gateways and router-a maintain tables that are
used to lockup routing int'nm'ratinn based on the destination
addresses of the packets they receive. The routing informa-
lion tells the gatewaylrouter whether the destination of the
packet is directly reachable on a local network link con-
nected to the gateway/rattler or if not, the address of another
gatewayirouter on one of the local network links to which
the packet should be forwarded. On top of IP are the layer
4 transport protocols TCI’ and UDP. UDP providm datagram
delivery services to applications that does not guarantee
reliable or tit-order delivery of the daugrams. TC? '5 a
connection oriented service to applications that does provide
reliable delivery of a data stream. It bandits division of the
stream 'Itto packets and ensures reliable. in-ordcr delivery.
See the Internet Society RFCs: RFC-791 “Internet
Protocol". RFC-793 “Transm’mion Control Protocol" and
RFC-1180 “A 't‘Cl’flP Tutorial". ll’. TCP and UDP are
unioast protocols: packets. streams or datagranrs are tram-
mittcd from a source I) a single destination.

As an example, consider FIGS. 1 and 2. F16. 1 shows a
conventional unicaat network with hosts 1. 2, 3 and 4 and
network links 11, 11 13, 14. 15,16,17, 18 and 19 amt routers
5. 6. 7. B. 9 and 10.1n this exampb.¢lcb host wants to send
a data payload to each of the other hosts. Host 1 has network
address/t. host 2 has network address C. host 3 has network
address B and host 4 has network athlress 1'). Existing
network protocols are typically bated on packet formats that
contain a source address, destination address and a payload.
This is representative of commonly used wide area network
protocols such as 1?. There are other components in an equal
tP packet, but for sake of “is example, only these items will
be considered. FIG. 2 shows the example packets that are
sent by the hosts to one another using a conventional unicast
network protocol such as IP. Host 1 send packcta20. to host

Petitioner Riot Games, Inc- - Ex. 1005, p- 19

m

15

25

It]

‘5

SS

65

4
3. packet 21 to host 2 and packet 22 to host 4. Host I want:
to send the same data P1 to each of the other three hosts.
therefore the payload in all then packets '3 the some. Packet
2. travels over network tirks ll, 12. 15 and 18 and through
motors 5, 6, and 8 to reach host 3. in I similar fashion host
3 senck packets 23 to host 1. packet 24 to host 2 and packet
25m host-1. Host2 and host4send paekesflZT.” and
29. 30. 31 respectively to the other three hosts. All of these
packets are carr'ztt by the unioast network individually from
the source host to the destination host. So in this example
each host must send thee packets and receive three packets
it order for each host to send its payload to the other three
hosts.

As can be seen, each host must send a packet to every
other host that it wishes to communicate with in an inter-
active application. l-‘Irther. it receives a packet from every
other host that wishes to communicate with it. to an inter-
active apptlattion. this will happen at a regular and high rate.
All of the hosts that wish to communicate with one another
will need to send packets to each other eight to ten times per
second. With [our hosts communicating with one another as
in this example, each host will send three messages and
receive three message eight to ten times per second. As the
number of hosts in the application that need to communicate
with one another grows. the message rate will reach a rate
that cannot be auppnrted by conventional dial-up lines. 'this
makes unicast transport protocols umuitable for delivering
interactive applications for multiple participants since their
use will result in the problem of high packet rates that grow
with the number of partic‘pants.

Work has been done to attempt to extend the IP protocol
to support multicasting. See RFC-1112 “Hos Extensions for
l? Multicasthg". This document describes a set of exten-
sions to the 1P protocol that enable lP mutticaating. tP
mutticasting supports the transmision of a It’datagram to a
host group by addressing the dstagram to r slngle destina-
tion address. Mutticast addresses are a snout of the II’
address space and identified by class Dlt’ «idiom—these
ate ll’ addresses with “1110” in the high order 4 bits. The
host group contains mm or more I? hosts and the 1P
multicesting pmtowt transmits a muttieast datagram to all
members of the group to which it is addressed. Hosts may
join and leave groups dynamically and the routing of mut-
ticast datagrama is supported by muttieast routers and gate-
ways. lt is proper to describe this general approach to
multicast trrossaging as “distributed multicast messaging". It
is a distributed technique because the job of message deliv-
ery and duplication is d‘atrilmted throughout the network to
all of the multicut routers. For distributed multicast mes-
saging to work in a wide area network, all of the routers
handling datagrants for multicusl hosts must support the
routing of mutticttst datagrams. Such multicast routers mtrsl
be aware of the multicaat group membership of all of the
hosts locally connected to the router in order to deliver
multicast datagrams to local hosts Muttieast meters must
also be able to forward multicast packets to routers on their
local network links. Mutticast routers must also decide to
which if any local routers they must forward mutticast
datagrams. When a muhicast datagram is received. by a
multieast router, its group addrem is compared to a list for
each local mnlticut router of group addresses. When there
is a match. the datagram is then forwarded to that local
multicaat router. Therefore. the muttieast routers in the
network must maintain an accurate and up to date list of
group addresses for which they are to forward datagrams to.
These lists are updated when hosts join or leave millions!
groups. Hosts do this by sending messages using lntemet

5,822,523

5
Group Management Protocol (IGMP) to their immediately-
nerghhoriug multicast routers. A further attribute oi distrau-
uted mulliaast messaging is that the routers must propagate
the group membership information for a panicular group
throughout the network to all of the other routers that will be
forwarding Iramc tor that group. RFC-1112 does not
descriae how this is to be done. Many different approaches
have been defined for solving this problem that will he
mentioned Inter in descriptions of related prior art. Despite
their dilferences. all of these approaches are methoch for
propagation of multlcttst routing information between the
multicut routers and techniques for rotating the multicast
datagrarm in an inter-network supporting distributed multi-
cast messaging.

11te distributed multieast messaging approach has a num-
ber ot‘undeairahle side efiects. The process of propagau'on of
group membership information to all of the relevant routers
is not instantaneous. In a large cornplett network it can even
take quite a period of time depending on the number of
routers that must receive that updated group membership
information and how many routers the information for the
group membership update must past through. This process
can easily take many seconds and even minutes depending
on the specifics of the algorithm that is used. RFC-1112
mentions this prrblem and some ofthe side cfl'ccts that rural
be handled by an implementation of a practical routing
algorithm for multicast messaging. One problem resuhs
when groups are dynamically created and destroyed. Since
there is no central authority in the network for assigning
group addresses. it iseasily postble in adistributed network
for there to he duplication ofgroup fldm asipmenl. This
will remit in incorrect daugram delivery. where hosts will
receive unwanted datagrama from the duplicate group. This
requires a method at each host to filter out the unwanted
datagrants. Another set of problems result from the time
delay from when a group is created, destroyed or its mem-
bership changed to when all of the routers needed to route
the datagrarm to the member hosts have been informed of
these changes. Imagine the case where Hoar N jolm an
existing group by sending I! join manage to its ball router.
The group already contains Host M which is a number of
router hops away from Hoot N in the network. Shonly after
Host N has sent it join message, Host M sends a datagram
to the group, but the local router of Host M has not yet been
informed of the change in group membership and as a result
the datagram is not forwarded to one of the particularnetwork linlts conncued to the local router of Host M that
is the only path in the network from that router that ulti-
mately will reach Host N. The result is that Host N will
receive no dttagrama addressed to the group from Host M
until the local router of M has in group membership
information updated. Other related problem can also occur.
When a host leaves a group. messages addressed to the
gmup will mntinue for some time to be routed to that host
up to the local router of that host. The local router will know
at least not to route the datagram onto the local network of
that host This an still result in a great deal of unnecessary
datagrsms being carried in a large network when there are
many active message groups with rapidly changing mem-
herships.

Finally. distributed multicast messaging dose not sulfi-
ciently reduce the message rate between the hosts. With
distributed multicast messaging, each host need only send
one message addressed to the message group in order to send
a mesage to all of other hosts in the group. This is an
improvement over conventional unicast messaging where
one message would need to be sent to each of the other hosts

Petitioner Riot Games, Inc. - Ex. 1005, p. 20

N)

)5

30

35

45

SD

55

6|)

65

6
in a poop. However, distributed multicast messay'rg does
nothing to reduce the received message rate at each of the
hosts when multiple hosts in a group arr: sending manages
to the group closely spaced it time. Let us return to the
example of a group of ten hosts sending messages seven
tints per-second to the group. With conventional unicast
messaging. each host will need to send 9 messages to the
other hosts. seven times per-second and will receive 9
messages. seven times per-sewed. With distnbuled multi-
cast massaging. each host will need to send only one
message to the group containing all of the hols seven times
permnd. but will still receive 9 messages, seven times
per-second. It is desirable to further reduce the number of
received messages.

An example of distrituted multicasting '5 shown in FIGS.
3 and 4. FIG. 3 shows a network with multicast routers 39,
40. 41. 41, 43 and 44 and hens 35, 36, 37, 38 and network
links 45. 46. ‘7. 48. 49, 50, 511 52 and 53. The four hosts
have unicast network addressesA, B, C. D and are also all
members of a message group with addras E. In advance the
message group w“ created and each of the hosts joined the
message group so that each of the multicaat routers is aware
of the message group and has the proper routing informa-
tion. A network protocol such IP with multiast extensions
is assumed to be used in this example. llost 35 sends packet
54 with source addm A and destination multioaat address
I! to the entire massage group. In the same manner host 37
sends packet 55 to the group. host 36 sends packet 56 to the
group and boat It! sends packet 57 to the group. N the
packets are handled by the multieast routers they are repli-
cated as may in order to deliver them to all the
members of the group. Let us consider how a packets sent
by host 35 is ultimately delivered to the other hosts. Packet
54 is carried over network link 45th multicast router”. The
router determines trorn its routing tables that the mutticast
packet should be sent onto network links 46 and 47 and
duplicates the packet and sends to both of those network
links. The packet is received by multieaa routers“) and 43.
Mulicast router 43 sends the packet onto network link 50
and muter 40 sends its onto links 48 and 49. '11:: packet is
then received at multicust routers 44. 42 and 41. Router 4]
sends the packet over network link 51 where it is recelved
by host 36. 110me sends the packet over network link 52
to host 37 and router“ sends the packet over link 53 to host
38. A similar process is followed for each of the other
packets sent by the hosts to the multicast your: E. The line]
packets received by each host are shown in FIG. 4.

While distributed multieasing dues reduce the number of
rummage: that need to be sent by the hosts in a networked
interactive application. it has no effect on the lumber of
wages that they receive. 11 has the further disadvantages
of poor behavior when group membership is rapidly chang-
ing and requires a special network inlrastructure of multimt
routers. It also has no support [or message aggregation and
cannot do so since rnosnge delivery is distributed. Distrb-
uted multicasting the has no support for messages that
define logical operations between message groups and uni-cast boat addesses.

All of these problems can be understood when placed in
context of the design goals for distributed mutticnt mes-
saging. D'mtn'huted multicast mesaging wn not designed
for interactive applications where groups are rapidly created,
changed and destroyed. Instead it was optimimd for appli-
cations where the groups are coated, changed and destroyed
over relatively long time spans perhaps measured in many
minutes or even hours An example would be a video
conference where all the participants agreed to connect the

5,822,523

7
conference at a particular time for a conference that might
last fm an hour. Another would be the transmission of an
audio or video program from one host to many receiving
hosts, perhaps measured in the thousands or even millions.
The multicast group would exist for the duration of the
audio/video program. Host members would join and leave
dynamically, but in this application it would be acceptable
for there to be a significant time lag from joining or leavingbefore the connection was established or broken.

While 1P and multicast extetsions to IP are based on the
routing of packets, another [arm of wide area networking
technology called Asynchronotn 'll‘atufer Mode (ATM) is
based on switching fixed sined cells through switches.
Unlike lP which supports both datagram and connection
oriented services, ATM is fundamentally connection ori-
ented. An ATM network dominant ATM switched intercon-
nected by point-tn-poinl links. The hoot systems are mn-
nected to the leaves of the network. Bafore any
communication can occur between the hosts through the
network, a virtual circuit must be setup aerom the network.
M forms of communication can he supported by an ATM
network. Bidirectional point-lo-point between two hosts
and point-tomatlt'moint in one direction from one host to
multiple hosts. ATM. however. does not directly support any
form of nulticasting. There are a number of proposals for
layering multicasting on top ofATM. One approach '3 called
a mullicasl server. drown in F108. Host systems 112.113,
114. 115 setup point-to-point connections 106, 107.108 and
109 to a multicast server 105.A'I'M cellsareaeot by the hosts
to the muhicast server via these links The multicast server
sets up a poiit-tn-multipolnt connection III to the hosts
which collectively constitute a message group. Cells sent to
the server which are addressed to the group are forwarded to
the point-to—multipoiut link 111. The ATM network 11. ia
responsible for the transport aid switching for maintainingall of the connections between the hosts and the server. “the
cells carried by the point-to-multlpoint connection are dupli-
cated when oecesary by the ATM switches at the branding
points in the network tree between and forwarded down the
branching network links. Therefore. the network is respon-
sible for the replication of the cells and their payloads. not
the server. This method has the saute problems as distriiuted
multieasting when used for an interactive application. Each
host still receives inth‘vichial cells from each of the other
hosts, so there is no aggregation of the payloads of the cells
targeted at a single host. There is no support for addrusing
cells to boats based on logical operations on the sets of
members of host groups.Related Prior Art

There are a number of existing patcnb and Europeanpatent applications that are related to the area of the inven-
tion. These can be organized into two separate categories:
multicast routing/distribution and source to destination mul-ticast meams.
Mulriect mating and d'ntribution

These patents are US. Pat. No. 4,740,954 by Cotton et aL
US. Pat. No. 4364.559 by Perlrnan. US. Pat. No. 5,361,256
by Doeringcr et al. US. Pat. No. $979,767 by Perltnan and
US. Pat. No. 5.309.433 by Cidon et al. Collectively these
patents cover various algorithms for the routing and distri-
bution of the datagrarns in distributed multicast networks.
None deal with the problems described previously for this
class of multicast routing and message distn‘bulion such as
poor behaviors when the message groups change rapidly. In
all of tliese patents. messages are transmitted from a host via
a dintrlruted network of routers to a plurality of destination
hose which are members of a group. Shoe these patents

Petitioner Riot Games, Inc. - Ex. 1005, p- 21

10

15

15

SD

35

45

50

55

6|]

65

deal only with variants of distributed multicasting they
provide no means to reduce the received mcmge rate, no
method to aggregate message and provide no method in the
messages to perform logical operation on mesage groupsSource to destination multicast streams

These are PCB and a European patent application. They
are EPO 637 149182 by Perltnan et aL PC1‘IUS94!11282 by
Danneels et al and PCT/U394111278 by Sivalrutnar et al.
Those three patent applications deal wi1|1 the mnmimion of
data streams from a source to a group of destinations. In
none of these patent applications. is a method described for
transmitting data between multiple members of a group. In
all of these applications, the data transmission is from a
source to a pluraity of designations. Since these patent
applicators deal only with point-to-multipoint memuging,
they can provide no means to reduce the wived ntartsage
rate. no method to aggregate mmges and provide no
method in the mesaagas to perform logical operation on
message groups.

SUMMARY OF THE lNVEN'nON

The present invention rehtes to facilitating cficient oom-
munications between multiple host computers over a con~
vcntional wide area communicatiots network to implement
an interactive application such as a computer game between
multiple players. In such an application, the hosts will be
dynamically sending to each other information that the other
hosts need it order to keep the interactive application
operating consistently on each of the hosts The invention is
comprised of a group messaging server connected to the
network that maintains a set of mesage groups used by thehosts to communicate intermadon between themselves. The
invention htrther comprises a server-group messaging pro-
tocol used by the hosts and the server. The server-group
arenas-aging protocol '5 layered on top of the Transport Level
Protocol (TI .P) of the network and is called tl': Upper Level
Protocol (or ULP). In the 05] reference model the UL? can
be thought of as a seasion layer protocol built on top of a
transport or applications layer protocol. The ULP protocol
uses a server-group address space that is separate from the
address space of the TLP. Hons send messages to addresses
in the ULP address space to a group messaging server using
the underlying unions: transport protocol of the network. The
ULP address space is segmented into unieast addresses.
implicit group messaging address: and logical group mes.
saging addresses. The implicit and logical group messaging
addms are milectivuly called group messaging addresses.

Host system mud first establish connections to a group
messaging server before sending messages to any ULP
addresses. The prom of arablishiug this connection is
done by sending TLP messages to the server. The server
establishes the connection by assigning a union ULP
adieu hi the boat and returning this address in an acknowl-
edgment message to the host. Once connected, hosts can
inquire about ex‘nting mags groups. join existing mes-
sage groups, create new message groups, leave message
groups they have joined and send messages to ULP
addresses known by the server. Each message gmup is
assigned either an implicit or logical ULP address depending
on its type.

FIG. 5 shows an example of a wide area network with a
group messaging server ("GMS"). Hosts 58 has TLP address
A and UL? address H. host 59 has TLP address C and ULI’
atklrnsJ,hoat60b§ 'l‘LP addreanB and ULPaddreesIand
host61 has’l‘LP address D and UL? address K.Tlte network
'5 a conventional unlmn network of network links 69, 7|,
7]. 72. 73, 74. 75. 76, and 71 and unicast routers 63. 64, 65,

5,822,523

9
66. 67. and 68. The group messaging server 62 receives
messages [tom the hosts addressed to a message group and
send the contents oi the messages to the numbers of the
message group. FIG. fishows an example of datagrarm sent
from the hosts to a message group that they are members of
As before, a TLP such as I? (where the message header
contain lhe source and destination TIP addresses) is
assumed to be used here. Hunt 56 south message 80 which
contains the ‘l'LP souna: address A of the host and the
destination TIP address S for the GMS 62. The destination
ULP address G is en imPIiCit ULP address handled by the
EMS and the payload Pl contains both the data to be sentand the source ULP addrem H of the host. it is assumed that
prior to sending their ULP messages to the GMS. that each
host as already established a connection to the GMS and
joined the message group G. Host 602mb message 8] with
payload P2 wntaining data and source ULP address I. Hosts
59 sends message 82 with payload P3 containing data and
source ULP address J. Host 61 senrk message 83 with
payload P4 containing data and source ULP address K The
GMS receivas all of time ntessagcs and sets that ach
message is addressed to implicit message group G with
members H. I, .l, and K. The GMS can either process the
message with or witlmut aggregating their payloads. FIG. 6
shows the case where there is no aggegation and FIG. 7
shows the case with aggregation.

Without aggregation. the GMS generates the outbound
messages 84. 85. 86. 8’7. 88. 89. 90. 91. 92. 93. 94. and 95
which it sends to the hosts The datagrams have TLP headers
with the source and destination TLI‘ addreses of the CNS
and the hosts respectively. The next field in the daugarns is
the destination ULP of the datagnm. Datagrarns 84. 85, andsent to host 58 with TIP address A and ULP address It.
Datagrams 87, 88. and 89 are sent to host 60 with TL?
address B and ULP address I. Detagrarrts 90, 91 and 92 are
sent to host 59 with TLI’ addrm C and ULP address I.
Detagrams 96, 94 and ’5 are sent to host 61 with 11.?
address D and ULP address K respectively. As can be seen
from the payloads that each host has received. each host has
received the payload: from the other three home. Note that
each host has not received a copy of its own original
message. This is because the GMS has performed echo
suppretnion. this is selectable attribute of the GMS since in
some applications it "o useful for the hosts to receive and
echo of each message that they send to a group that they are
also members of In the example of FIG. 6, it has been shown
how the pment invention can achieve the same message
delivery as distributed multicasting without its disadvan-
tages. Without aggregation. the present invention enables a
host to send a single message to multiple other hosts that are
members of a message group. It rcdueee the message tratllc
that a host must prone. in an interactive application by
reducing the number of messages that eadi host must send
to the others. Without aggregation, however, there is no
reduction in the number of messages received by the hosts
Without aggregation we can achieve the same message rate
as distributed multieasting without the need for a network
with multioest routers, we can use a conventional unions!
network such as the Intemet. The present invention abo
avoids the problems that dynamic group membership causes
for distributed multicasting. Group membership can be
changed very rapidly. Groups can be created,joined and left
by single unicest messages from hosts to the GMS. Thane
meager. will be point-lo-point wages and will not have
to propagate in throughout the network nor have to cause
railing table changes in the routers. This ability to rapidly
and accurately change group membership is critical to the

Petitioner Riot Games, Inc. - Ex. 1005, p. 22

10

15

25

35

40

45

55

65

10
implementation of networked interactive applications. Con-
sider a computer game for multiple players that supports
hundreds of players that are Spread throughout a three
dimetxbnal space created by the game. At any time only a
few players will be able to see and effect one another in the
game since other players will be in other areas that are out
of sight. Using conventional phone lines to carry the data
from cad: players computer to the network. it will not be
possible to send all actions ofeach player to all ofthe other
players, but because only a few players will be in close
proximity at any one time, it will not be necessary to do so.
It is only necesary to send data between the players that are
in close proximity to one another. These “groufi” ot players
naturally map onto the message groups of the invention. As
players move about the three dimensional space of the game.
game will cause them to join and leave message groups as
necessary. If this does not happen rapidly it will limit the
interactivity of the game or cause inccmistent results [or the
difierent players in the game.

The invention also allows aggregating message payloatk
ot‘ multiple messages destined to a single host into a single
larger message. Th's can be done because of the GMS where
all of the Wages are received prior to being sent to the
hints FIG. 7showsan example of how this works The hosts
send their messages to the GMS in exactly the same fashion
as in FIG. 6 using the same addresses previously defined in
FIG. 5. Item 5! sends message 96. heat 60 sends mmge
97, best 59 sends meesage 98 and host 61 sends message 99.
The OMS receives all of these messages and creates [our
outbound mesages 1.0, 101. 102 and 103.1131: process by
which these messages will be explained in detail in the
detailed description of the invention. Each message is des-
tined to a single host and contains an agregated payload
with multiple payload items. Message 100 has a destination
ULP address H for host 58 and aggregated payload P2. P3
and Pd from the messages from hosts 59. 60 and 61.
Message 101 is targeted at best 60, message 102 is targeted
at host 59 and message 103 is targeted at host 61,Ascan be
seen. each host sends one mesage and receive: one mes-
sage. The received message is longer and contains multiple
payloads. but the is a significant improvement over receiv-
ing multiple messages with the wasted overhead of multiple
message headers and message processing time. Overall the
invention has dramatically reduced the amount of data that
must be sent and received by each host. Since the bit rate
over conventional phone firms using a modem is low, areduction in the amount of data that must be sent and
received directly translates into improved time and latency
[or message communications between the hosts

Hosts create.join and leave mesagc groups using control
memges in the ULP protocol to the GMS. Hosts may also
read and write application specific state information that is
stored in the GMS. When hosts send mmges to other
hosts, the message must be at least addressed to an implicit
group address. The ULP implicit address will always be the
primary address in a message from one host to another. The
message may optionally specify auxiliary destination
addresses. In many cases the implicit ULP address will be
the only destination ULP address in the mange. The GMS
vn'll handle delivery at the ULP messages addressed to the
implicit message group to all of the hosts that are members
of the group. AULPsend message may optionally spedfy an
address list of auxiliary addremes in addition to the primary
destination of the implicit ULI’ address. This auxiliary
address list can contain only unicast and logical ULP
addressee. The address list can also specify set operators to
be performed between the sets of host ULP addresses

5,822,523

11
defined by the uniem addrcaaes and logical groups Once
the address list has been proeesmd to yield a set of hosts. thisset is intersected with the set of hosts that are members of the
implicit maze group specified by ll: primary implicit
ULP address in the message. This ability to perform logical
set operators on mmge groups is very useful in interactive
applications It allows a single ULI’ message to selectively
deliver a message to hosts that lit a set of computed criteria
without the sending host having to know the anything about
the members of the groups in the addrers list. Recall the
example of a networked game with hundrech of players In a
three dimensional environment created by the game. Coo-
sider an implicit message group comisting of all of the game
players in a certain area of the game where all of the players
can interact with one another. Consider that the players are
organived into multiple teams. logical dressage groups
could be created for each team within the game. To send a
menage to all the players within the area that were on one
team, a UL? message would be sent to the ULP implicit
message group for all the players in the area with an
auxiliary address of the logical message group for all the
players on the selected team. The GMS would perform the
proper set intersection prior to sending the resulting mes-
sages to the targeted hosts. The result of this will be that the
message will only be delivered to the players on the stained
team in the selected area of the game.

In summary. the present invention deals with the isues of
deploying an interactive application for malt‘mle participants
on wide area networks by pmvidirg a methrxl ftx reducing
the overall mermgo rate and reducing latency. This inven-
tion uses a server group messaging approach. as oppose to
the above described “distributed multicast messagiug'
approach. The present invention overcomes the undesirable
side effects of the distributed multicast messaging approach.
Further, it reduces the message rate between the hosts. M
pointed out in an example discussed above. with prior art
distriiuled multicest messaging. each host will need to send
only one message to the group containing all of the hosts
seven times per-second. but will still receive 9 messages.
seven times per-mound. The present invention of server
group managing has each but seating one message. seven
times per-second and receiving one message, seven limos
per-second.

'lhe [resent invention is different from the multicast
muting and distribution method disclosed in US. Pat. Nos.
4,740,954. 4,864,559. 5361.256. 5.079.767 and $309,433.
Since these patents deal only with variams of distn‘buted
multicasting they provide no means to reduce the received
message me, no method to aggregate messages and provide
no method in the messages to perform logical operation on
message groups. This differs from the present 'mvention
where messages from multiple hosts addremd to a message
group are received by a group server which processes the
contents of the messages and trammits the results to the
destination hosts.

1110 present invention is also different from the source to
destination multicast streams approach disclosed in EN.) 637
149 A2. PC'I‘IUSWIIIZBZ and PCI'IUSN/llflfl. In all of
these references. the data transrnision is from a source to a
plurality of designations, whereas the present invention
dumber data transmission from a sending host to a server
host system and then from the sewer host to the destination
ram.

These and other teams and advantages of the present
invention can he understood from the following detailed
description of the invemion together with the accompanying
drawings.

Petitioner Riot Games, Inc. - Ex. 1005, p. 23

I0

15

15

30

35

45

55

60

12
Descrumtort OF DRAWINGS

FIG. 1 shows a conventional unicast network consisting
of hosLs, network links and routers.

FIG. 2 shows the onicast datagratrra on a conventional
unicest network that would be needed to irnpkment an
interactive application between four hosts.

FIG. 3 shows a prior art multicast mtwnrk consisting of
hosts. network links and multicast routers.

FIG. 4 shows a multicast dalagranrs on a prior art mul-
ticast network that would be needed to implement an inter-
active application between four hosts.

FIG. 5 shows a urticast network equipped with a group
mmsaging server in accordance with the preset invention.

FIG. 6 shows the UL? datagrants without payload aggre-
gation on a network aomrding to the present invention that
would be needed to implement an interactive applicationbetween four hosts.

FIG. 7 shows the UIJ’ datagrams with payload aggrega-
tion on a network aemrding to the present invention that
would he needed to implement an inroradive application
between four hosts.

FIG. 8 shows a prior art ATM network with a multicastserver.

FIG. 9 shows the detailed datagram format and address
format for ULP messages in accordance with the presentinvention.

FIG. 10 shows the internal functions of the GMS accord-
ing to the present invention.

FIG. 11 shows the host software interface and hrnetiom
needed to support the ULP aooord'nrg to the present inven-hon.

DETAILED DESCRIPTION OF THE
INVENTION

The present invention provideaa method for multiple host
computers to efficiently communicate information to one
another over a wide area network for the purposes of
implementing an interactive application between multiple
users. The method consists of three compomnts: a host
protocol interface. a protocol and a server. The protocol is
between the hon protocol interface and the server and is
implemented on top 0! the network tnmpon protocol of a
wide area network, The protocol is called the Upper Level
Protocol (ULP) since it is layered above the existing net-
work 'l‘ranspon level Protocol (11.17). In the OSI reference
model the protocol can be described as a Session Layer
protocol on top at the ‘l‘ranspon Layer of the network. FIG.
11 shows the host protocol interface. 151, relative to the
interactive application. 150. and the host interface ft: the
Transport Level Protocol. 153. The network interface. 155.
provides the physial connection for the host to the network.
The network communications stack, L“, Is the commonl-
eations protocol stack that provides network "Import ser-
vices for the host and the host interface for the Transport
Level Probcol, 153. is and inhrfnce between boat Qplica-
lion software and the network transport services of thenetwork communications stack.

The interaaive application can send and receive conven-
tional network messages usitg the host interface In the TLP.
The interactive application also can send and receive ULP
nreasages through the host interface for the ULP. Internal to
the host interface for the UL? it a table. 152. of all ULP
addresses which the host can send messages to. Each entry
in the table comm a pair of atltlresos. a UL? address and

5,822,523

13
its corresponding TLP address. When the host south a
message to u ULP address, that message is encapsulated in
a 'l'LP memage sent to the TL? adore“ corresponding to that
ULP address. This allows the UL? messages to be handled
transparently by the tramport mechanisms of the existing
network. A one function of the ULP is group rrtessaging
where hosts send mesages to mousse groups populated by
multiple hosts. This allows a host to send a message to
multiple hosts with one ULP message. Since the UIJ’ is
layered on top of the TLP. the group massaging functiors of
the ULP operate on a conventional unicast network where
TLP messages can only be sent from one host to only oneother host.

The group based massaging is implemented through the
use of a server called a group messaging server. All ULP
memagm from the hosts are sent from the hosts to a group
messaging server tsing the TL? protocol. The server pro-
cesses the ULP portion of the montages and takes the
necenary required by the ULP message. Control ULP
messages are processed locally by the server and may he
acknowledged to the sending host. ULP massages addressed
to other hosts are processed by the group messaging server
and then tit-transmitted to the proper ULP destination hosts.
again using the TI) protocol to encapsulate and transport
these messages.

In FIG. 5. hosts 58. 59. 60 and ‘1 send messages to one
mother using the ULP over a conventional unicast network
using a group messaging server 62. The network consists of
conventional routers 63, 64, ‘5, 66, 67 and 68 connected
with conventional network links 6’. 70, 71, 72, 73. 74. 7s,
76 and77.Host58cansendamessagetehosts59.60and
6] by sending asitgle UIJ’ message to the group messaging
server 62 wlrre the ULP message specifies a destination
address that is a UU’ memge group. The ULP message is
encapsulated in a 'I'LP message addressed to the group
messaging server. This causes the memage to be properly
routed by router 63 to network linlt 71 to router 67 to the
server 62. The group messaging server receives the ULP
message and determines that the message is addresed to a
message group containing hosts 59, 60 and 61 as members.
The server sends the payload of the received message to
each of the hosts in three new ULP mesages individually
sent to the three m. Shoe each message is encapsulated
in aTLP message. the messages are properly carried over the
conventional unicast network. The first ULP massage is sent
by the group messging server to he; 61. This message is
carried by network links 7], 7., 72 and 75 and routers 67.
63. 64 and 65. The second ULP message isscni by the group
messaging server to host 60. Iliis dressage is carried by
network links 71, 70. 73 and 7‘ and routers 67, 63, 64 and
66. The third UIJ’ missago 'usent by the group messaging
server to host 61. This message is carried by network links
74 and 77 and routers 67 and 68.

‘Ihe invention can be implemented both in a datagram
form and in a connection oriented form. To best understand
the details of the invention. it '5 but to first consider a
datagram iuylementation.
Datagram Transport Implementation

The ULP can be implemented as a dalagram protocol by
encapsulating addresses. message type information and the
mange payload within a datagram of the underlying net-
work transport protocol. The general form of the ULP
datagram onstage format is shown in FIG. 9 5 elements
123, 124, 115, 126. 127, 13 and 129.111: tampon header
123 is the datagram header of the 'I'U’ that is encapsulating
the ULP datagram. 'llte ULP message type field 124 indi-
cates whether it is a send or receive message, if it is a control

Petitioner Riot Games, Inc. - Ex. 1005, p. 24

10

15

35

45

55

14
message or a state message. The following table shows the
difl'erent mesage types. The ULP message type held IIIISI
be present in a ULP datagram.

Mel-m 1w"
Send
Rewit'e
Send Contact
Receive antral
Seed State
Ream Sm

Owl‘s-ac..—
Seml messages are always sent from a host to a group

messaging server. Messages from a group server to the hosts
are always receive messages. Send Control memgca arc
messages from hosts to a group mesaging server requesting
a control Iunctiott be performed. Receive Control messages
are acknowledgments from a group messaging server to the
hosts in response to a prior Semi Control masses. The
Send and Receive State messages are special cases of the
Send and Receive Control messages that allow hosts to read
and write application specific state storage in the group
messaging server. The specific control functions supported
by the ULP will be explained later.

The dest'matlon ULP oddest; D5 is required in ULP
datagt‘ams and specifies the primary destination of the ULP
memage. The address count field 126 is required in ULP
send mange types and is not prcmnt in ULP receive
message types. When the adaestt count field in a ULP send
message is non-zero, it specifies the number of auxiliary
thstimtion addresses for the send message that follow the
address coatat field. These auxiliary destination addresses
are shown as items I27 and 128, but it is understood that
there are as many auxiliary ULP destination addresses as
specified by the address count field. Finally there is the
payload 129.

The payload format for ULP datagram is defined by
items 116, 117, 118. 119, 120, 121 and 122. Item 1.16 '5 the
message count and defines how many payload elements will
be conttined in the payload. A single payload clement
consists of a triplet of source UU’ address. data length and
data. Items 117. 111i and 11! comprise the first payload
element of the payload. Item 1.17 is the ULP addres of the
source of the payload element. item 118 is the data length for
the data in the payload element and item 119 is the actual
data. Items 120, 121 and 12 comprise the last payload
element in the payload. ULP send messages only support
payloads with a single payload element. so the message
count is required to be equal to one. ULP receive messages
may have payloads with one or more payload elements.
ULP Address Space

The address space of the ULP is divided into three
segment: unicast host atlttresses, implicit group addresses
and logical group addessm. All source and destination
atHrcsses it ULP must be in this address space. The ULP
address space is unique to I single group messaging server.
Therefore each group messaging server has a unique ULP
address space. Multiple group messaging servers may be
connected to the network and hosts may communicate with
multiple group messaging servers without contusion atria
each ULPdatagram mntainstha headeroi' theTIJl Difl'ercnl
group messaging servers will have unique ‘lLP addresses
which can be med by the hosts to uniquely itkntify multiple
ULP address spaces. 11:: format [or ULP addresses issbown
in FIG. 9 comprised of items 130. 131 and 131. The address
format field 130 is a variable length field used to allow
multiple address lengths to be supported. The address type

5,822,523

15
field 131 indicates the type of ULP address: unicas host.
implicit group or logical group. The encoding is as follows:

Moron Iypn Encoding
0 fl liniaat "out More»
0 t Unimrt Host Malina
I 0 latplia‘t Grow Adorn
I I might Group Adore“

The addm format encoding determines the length of the
addrm field and therefore the total length of the ULP
address. This encoding is shown below. Note that when the
addrss type specifies a unleast host addres. the low bit of
the address type field is concatenated to the address field to
become the most significant bit of the address~ This doubles
the silt: of the address space for unicast host addresses which
is useful since there will generally be more hose than group
messaging servers.

Addre- Format Iiautdtng
O 19 Bi Adria-a Field
10 4 Bi Mel Field
1 l 0 ll Bil Addreu Field

ULP unicast host addresses are migrated to each Inst
when it first connccta to a group waging server. When a
host sends a message to other ULP addras, the nicest UIP
address of the host Will appear as the source ULP address in
the received payload element. Unicasl ULP host addresses
can also be used as destination addrusses only as auxiliary
arklresses in a ULP send message. They are not allowed to
be used to as the primary ULP destination address. This
means that hosts cannot send ULP directly to one another.
but always must send the messages to one another through
a group messaging server.

Implicit your: addrcm are created by a group messag-
ing server in mponse to a control message to the server
requesting the creation of an implicit message group. The
host requesting the creation of the implicit message group
becomes a member of the mes'sge group when it is created.
Other hmts can send inquiry control mmges to the group
messaging server to learn of ts existence and then send a
implicit group join message in order to join the group. 'lhe
group ntcssaging server maintains a 13! of ULP addresses of
hosts that are members of the implicit message group.
implicit ULP group addresses are the only ULP addresses
allowed to he the primary destination of a ULP send
message. Implicit ULP addresses will never appear at ULP
source addresses in a payload clement.

Logical ULP addresses are used both to addres logical
massage groups and for specifying set operations between
the grow members of the auxiliary ULP addrcmes in a ULP
send message. logical message groups are created and
joined similarly to implicit message groups, however. logi-
cal ULP addresses may only he used as auxiliary ULP
addresses in a ULP send message. Logical ULP addresses
will also never appear as source ULP addresses in a payload
element. The support of set operations between message
groups as part of a ULP send message will be explained in
a later section on ULP send manages.
Group Messaging Server lnlemal Functiots

The imernal components of the group messaging serverare shown in FIG. 10.
In the preferred embodiment. the group messaging server

is a general purpose computer system with a network

Petitioner Riot Games, Inc- - EX. 1005, p- 25

ID

IS

35

‘5

50

55

65

16
interface to content it to a wide area network. Item 135 is the
network interface for the group messaging server and
includes not only the hardware connection to the network
but the communications protocol stack used to implementthe 11.? on the server.

Item I“ is an overall control function for the group
mesaging server. This control function '5 responsible for all
ULPmessages that are sent or received by the GMS. Internal
to this control function are several important storage and
processing functions. Item 137 is an address map for all
hosts currently connected to the GMS. 'l‘h's address map is
a listof the ULP host address of each host connected to OMS
and its corresponding TLP address. This enables the control
function to construct the necessary TLI’ headers for sending
ULP messages to the hostsconnected to the GMS. Item 138
is a list of all of the currently active implicit ULP addresses
currently recognized by the GMS. Item 139 is an application
specific state atorage and prtmssing function. Many inter-
active applications deployed over a network will be able to
be implemented solely with host based ptocesing. In these
cases all data that needs to be sent between the hosts can be
transported using the ULP. However, some applications will
need maintain a centrally stored and maintained repository
of application state information. This is useful when hosts
may join or leave the application dynamically. When hosts
join such an application, they will need a place from which
they can obtain a snapshot of the current state of the
application in order to be consistent with the other hosts that
already where pan of the application. To read and write this
state storage arcs. the ULP supports send and reaive state
message type. Within these messages. there is the ability to
access a state address space so that different portions of the
state can be individually accessed. Application specific
processing or state written into this state storage area can
also be implemented.

Items 140 and 141 are two of multiple ULP sewer
processes running on the GMS. These are software pro-
cesses that an: at the lean of the ULP. Each impIiCit ULP
addresses recognized by the GMS has a one-tactic corre~
spondenoe to a ULP server process and to a message group
maintained by the process. Since all ULP send messages
must have an implicit ULP address as the primary destina-
tion adtess of'thc message, every UlPscnd message is sent
to and processed by a UU’ server process. These processes
are created by the GMS control function in response kt ULP
control messages to create new implicit ULP addresses.
They arc destroyed when the lat host which is a member of
its mesage group has left the mesage group. lntemal to a
ULP server process is a list. 141. of the ULP host addresses
of the members of tin message group. a set of message
queues 143 for each host which is a meth of the message
group and a message aggregation function I49 which is used
to aggregate multiple messages to a single host into a single
message.

Item 145 maintains a list of all of the logical ULP
addresses and message groups in the GMS. Items 144 and
146 represent two at multiple logical ULP addreaws. For
each logical ULP address, there is a corresponding list, 147
and 148 of the host ULP addresses of the members of the
logical message group. Th: logical message groups are not
tied to specific ULP server processes. but are global with a
GMS to all of the ULP server processes.Control Functions

The control functions consist of connect. disconnect.
create group, close group. join group, leave group. query
groups. query group members. query group attributes. These
control functions are implemented by a ULP send and

5,822,523

17
receive contml messages The control functions are initiated
by I host sending a UU’ send control mmge to a GMS.
These messages only allow I primary ULP destination
address in the message and do no allow auxiliary addresses.
The primary ULP address is interpreted as I control athlrase
space with a unique fixed address assigned to each of the
walnut functions enumerated above. The contents of data in
the payload supplies any arguments needed by the controlfunction. Returned values from the control function are
returned in a ULP receive control message that is addressed
to the host that sent the original control message for which
data is being returned. The detailed operation of these
control functions is described below.
Connect

'lltis control function allows a host to conned to a GMS.
The destination ULP address in the ntessagc is I fixedaddress that indicates the comet function. The source ULP
address and any data in the payload are ignored.

Upon receiving this menage, the OMS control function.
136. creates I new host address and enters the host addrem
in the host address map 136 along with the source 11.?
address from the TLP header of the message. Upon meas-
fut completion, the OMS control funnion responds with I
receive control ULP message addressed to the host along
with a function code in the data portion of the payload thatindicates successful host connection. The destination ULP
addreus in the message is the ULP address assigned to the
host, The host saves this and uses it for any future manages
to the GMS. If there is an error, the control function return
a message to the host with a function code in the data portion
of the payload indicating failed host connection.
Disconnect

This function allows a host to disconnect from a GMS.
The destination ULP address in the message is a fixed
address that tnticates the disconnect function. The source
ULP artlress is used to remove the first from membership in
any implicit or logical groups prior to disconnecting. Any
data in the payload is ignored. The GMS control function
also removes the entry for the heat from the host address
map. Upon aucmsaful completion, the GMS control function
responds with a receive control ULP message addressed to
the host alorg with I function code in the data portion ofthe
payload that indicates suwensful host disconnection. The
destination ULP address in the message is the ULP address
assigned to the host. If there is an error, the control function
returns a message to the host with a function code in the data
portion of the payload inticatr'ng failed boat d'nconnectjon.
Create implicit group

This function allows a host to create a new irwlicit
memes: group and mined implicit ULP adthem and
server process. The payload in the message may contain I
single payload item whose data field holds attributes of the
group. These attributes can he used to define any optional
functions of the group. The destination ULP address in the
message is a fixed address thIt bdieatas the create implicit
group function. The GMS control function allocatg a new
implicit ULP adrh'ess, adds it to the implicit Uu’atfiress list
138 and creates I new ULP server protect 140.111: hoal that
sends unis message is added to the membership list of the
implicit group. This is done by adding the source ULP
address in the message to the group membership list 142 in
the ULP server process. Upon successful completion. the
GMS control function responds with a receive control ULP
outage addressed to the host along with a funCtiOo code in
the data portion of the payload that indicates succcsl'ul
implicit group creation. The source ULP addre“ in the
payload is the ULP atklress assigned to the new implicit

Petitioner Riot Games, Inc. - Ex. 1005, p. 26

10

)5

30

35

45

50

55

6|]

I5

18
group. If there is an error. the control function returns I
memge to the host with a function code in the data portion
of the payload indicating failed implicit group creation.
Create logical group

This function allows a host to create a new logical
message group and associated logical ULP address The
payload in the message may contain a single payload item
whose data field holds attributes of the group. 'lhese
attributes can be used to define any optional functions of the
group The destination ULP address in the message is a fixed
address that indium the create logical group function The
OMS control function allocates a new logical UlP address
and adds it to the logical ULP addres list 145. The host that
sends this message is added to the membership list of the
logical group. This is done by adding the source ULP
address in the message to the group ntemhersh'a) list I47 for
the new logical message group 1“. Upon successful
completion. the GMS control function responds with a
receive control ULP message addressed to the inst along
with a function cotb in the data portion of the payload that
indicates sucmful logical grow creation The source ULP
address in the payload is the ULP address assigned to the
new logical group. If there is an error. the control function
returns a message to the host with I function code in the data
portion of the payload indicating tailed implicit groupcreation.
loin groin:

This function allows a host to join an existing logical or
implicit message group. The destination ULEI address in the
message is I fixed addrm that indicats the join group
function. The data ponion nfthe payload contains the ULP
address of the group that is to be joined. The GMS control
function looks at this address Ind determines if it is an
'uuplicit or logical ULP address. If it is an innaljcit ULP
address. the GMS control function finds the ULP server
process selected by the address in the mmgc payload and
adds the source ULP trout address from the message to the
group membership list "2. If it is a logical ULP achresnhc
OMS control function finds the logical ULP address 144
selected by the address in the message payload and adds the
source ULP host athlrcsa from the message to the group
membership list I41. Upon successful completion. the GMS
control function responds with a receive control ULP mes-
sage addressed to the boat along with a function code in the
data portion of the payload that indicates successful group
join. The source ULP address in the payload is the ULP
address of the group thul wasjoined [tune is an error. the
control function returns a usage to the host with a function
code in the data portion of the payload indicating failed
implicit group creation.
Leave group

This function allows a host to leave an existing logical or
implicit message group that it is a member of The destina-
lion ULP address in the message is I fixed address that
indicates the leave group function. The data portion of the
payload contains the ULP addreas of the group that is to be
left. The (MS control function loo]: It th'l address and
determines if it is an implicit or logical ULP address. If it ls
an implicit ULP addres. the GMS control function finds the
ULP server prom selected by the address in the message
payload and removes from ll: group membership list [42
the source ULP host addrcra from the message. If the host
is the last member of the group, the ULP sewer proceas is
termitated and the implicit ULP IMI'CS is de-allocatcd. If
it is a logical ULP address. the GMS control function M
the logical ULP address 144 selected by the addreas in the
message payload and removu from the group membership

5,822,523

19
list 147 the source ULP host address from the. 1f the host is
the last member 01' the group, the ULP address is
tie-allocated. Upon 5mm completion. the GMS control
function responds with a receive control ULP message
addressed to the host along with a function code in the data
portion of the payload that indicates successful group leave.
If there is an error. the control function returns a massage to
the heat with a function code in the data portion of the
payload indicating failed implicit group creation.
0-617 amps

This function allows a host to gel a lil ofall implicit and
logical message groups currently active on a GMS. The
destination ULP addres in the message is a fixed address
that indicata the query groups function. Any data ponion of
the payload is ignored. Upon succemsful completion. the
GMS control function responds with a receive control ULP
message addressed to the host along with a payload with
multiple payload elements. The first payload element con-
tains a function code indicating successful query groups.
The source ULP address in the first payload element is
ignored. Each of the subsiquent payload alert-tens contain a
ULP group addms in the source address field of the payload
element that is one of the active group addrcses on the
GMS. There is no data field in these subsequent payload
elements. If there is an error, the control function returns a
message to the host with a funmion code in the data portion
of a payload wilt a single payload element indicating failed
query groups.
Query group members

This function allows a boat to get a list of all hosts that are
members of a message group. The destination ULP address
in the message is a fixed lidrus that indicates the query
group numbers function. The data portion of the payload
carries the address ofthe message group for the query. Upon
succmt'ul completion. the GMS control function responds
with a receive control ULP mange addressed to the but
along with a payload with multiple payload elements. The
first payload element contains a function code indicating
successful query group members. The source ULP address
"It the first payload element is ignored. Each of the subse-
quent payload elements contain a ULP host address in the
source address field of the payload element that is one of the
active group addresses on the GMS. There boo data field in
these subsequent payload elements. If there is an error, the
control function returns a dressage to the host with a function
code in the data portion of a payload with a sirgle payload
element mdicaling failed query group members.
Query group attributes

This function allows a host to get a list of the attributes or
a message group. The destination UU’ address in the mes-
sage is a fixed address that indicates the query group
attributes function. The data portion of the payload carries
the adricsa of the message group for the query. Upon
successful completion, the GMS comml function responds
with a receive control ULP message addressed to the host
along with a payload with a two payload elements. The first
payload element contain; a function code indicating auc~
useful query group members. The second payload element
contains the attributes of the message group. If there is an
error. the control function rams a message to the host with
a function code in the data portion ofa payload with a single
payload element indicating failed query group attributes
Send Mmge Operation

in order to fully understand the operation 01 the trend
message functirm. a number of individual ewes are worth
considering.

Petitioner Riot Games, Inc. - Ex. 1005, p- 27

10

15

7A)

40

45

55

20
Single implicit destination

The most simple case is a send message to a single
implicit ULP address. to an send massage datwnmS. the
destination ULP address 125 must he an implicit ULP
address. In this case of a single implicit destination, this is
the only datination address in the datagram. The auxiliary
address count 126 '5 zero arr] there are no auxiliary deali-
natlorr addrms 127 or 128. The payload consists of a
message count 116 of one. the ULP of the hon scoring the
message in the source ULP address 117 and the data length
118 and data 119. Send message datagrams may only have
a single payload item so their message count field 116 mast
always be one.

The host sends the send message onto the network with a
TLP header addressing the data. The GMS the GMS that is
the selected target of the message. The GMS receives the
message and the GMS cannot firndiorr 136 determines that
it is a send mange datagram and looks up the implicit
dutinatiou address in its implicit ULP address list 138.11 the
address does not exist. an error message is returned to the
sending host with a ULP receive message datagram. If the
address is valid. the GMS control function removu the '11.?
header from the datagram and sends the ULP portion to the
ULPserver process corresponding to the damnation irnplicilULP address. Assume for diacrision that this is the ULP
server pm I“. The ULPserver prom 140 will extract
the single payload item from the message 117. 118 and 119
and place the payload item in each of the message queues
143. There will be one message queue for each member of
the message group served by the ULP server process 140.
The members of the group will have their host ULP
addresses listed in the host address list 142. Each measage
queue in a ULP server process will fill with payload items
that are targeted at partitalar destination hosts The mecha-
nisns by which payload items are removed from the queues
and sent to the hosts will he tbscriaed later.
Auxiliary unicast deaf-ration

In this case in addition to an implicit destination 1.25.
there is also a single auxiliary address 127 in the datagram.
The auxiliary address count 126 is one and the auxiliary
destination addresses 121 ”n a Irlcast host ULP address The
payload consists of a measags count 116 of one, the ULP of
the hint sending the message in the source ULP addres 117
and the data length 118 and data 11!.

The host sends the send mcmgc out) the network with a
TLP header addressing the datagram to the GMS that is the
selected target of the massage. The GMS receives the
message and the GMS control function 136 determines that
it is a send message daugram and looks up the implicit
destination address in its implicit ULP address list 138 and
the unicast host ULP auxiliary address in the host address
map 131. If either of addresses does not exist, an error
mesage is returned to the sending host with a ULP receive
message dutagram. If the addresses are valid, the GMS
control function remrwea the TL? header from the datagram
and sends the ULP portion to the ULP server process
corresponding to the destination inplicit ULP address
Anume for discumion that this is the ULP server process
140. The ULP server process extracts the auxiliary ULP
address from the message and determines from the addrss
that it is a anions: host ULP adores. The sewer procen their
checks to see if this addrem is a member of the mesage
group defined by the host adchess list 142. If it is not. no
further action h taken and the payload item in the massage
is not placed in any of the manage queues 143. If the host
address is in the wage group, the payload rtem in the
message is placed in the single message queue correspond-

5,822,523

21
ing to that host. The net eh’ect '5 that the ULP sewer process
has performed a set intersection operation on the members
of the naessage group selected by the implicit ULP destina-
tion address and defined by the group membership list 142
with the members of the set of hosts defined by the auxiliary
address. The payload item is them sent only to the busts that
are members of this set intersection.
Auxiliary logical destination

In tl'm case in addition to an implicit destination 125.
there is ako a single auxiliary addrem 127 in the daugtarn.
The auxiliary address count 126 is one and the auxiliary
destination “themes 12'] is I logical ULP adchess. The
payload cornists 01 a message mum 116 of out, the ULP of
the host sending the message in the source ULP address 117
and the data length 118 and data 119.

'11: host sends the send message onto the network with a
11.? hearbr am the datagram to the GMS that is the
selected target of the message. The GMS receives the
meme: and the GMS control function 136 determines that
it is a send message datayam and looks up the implicit
destination address in is implicit ULP addres liat 138 and
the logical ULP auxiliary address in list of logical ULP
addresses 145. If either of addresses does not exist, an error
message is returned to the sending host with a ULP receive
massage datagram. If the eddresses are valid. the GMS
control function removes the TLl’header from the datagram
and sends the ULP portion to the ULP server process
corresponding to the destitation implicit ULP addrem.
Assume {or discussion that th‘s is the ULP server process
140. The ULP sewer process extracts the auxiliary ULP
address from the message and determines from the address
that it is a logical ULP address. Assume for th‘sexamfle that
this logiCal ULP address is the logical address 144. The
server process fetches the group membershfia list 147 cor-
responding to the logical address and performs a set inter-
section operation with the group membership list 142 of the
server process. If there are no members of this set
intermetion, no further action is taken and the payload item
in the message is not placed in any of the message queues
143. 11 there are members of the set intersection operation.
the payload item in the message is placer! in the queues
corresponding to the hosts that are members of the set
intersection
Multiple auxiliary addresses with logical operations

In its most sophisticated lot-m. a send dressage can per.
form set operations between the implicit message group of
the ULPserver proces and multiple logical and unicast ULP
addresses This is done by placing multiple auxiliary desti-
nation ULP addresses in the message with logical operators
imbedded in the addrm list. The addma count 126 holds a
count of the total auxiliary addresses in the address list 121
and 128. The auxiliary addresses are a mitt of logical ULP
addresses and Inieast host ULP addresses. 'l\vo logical ULP
addresses in the ULP address space are assigned the role of
specifying set operations to be put'ormed between the
logical message groups and unicaat host addresses in the
message list. They are wccially assigned addreses for the
functions set intersection, set union. Athird logical address
is used to indicate set mmplerncnt. The payload consists of
a message count llhol‘one. the ULPof the host scoring the
message in the source ULP address 111 and the data length118 and data 119.

The boat sench the send message onto the network with a
'11.? heathr addrenitg the datagram to the GMS that is the
selected target of the message. The GMS receives the
message and the GMS control function 136 determines that
it is a send message datagrarn and looks up the implicit ULI‘

Petitioner Riot Games, Inc- - Ex. 1005, p- 28

10

'15

)5

40

IS

50

55

GD

22
message in the implicit ULP address l‘st 131] and all of theaddresses in the address list either in the lnst ULP address
map 137 or in the logical UU’ address list 145 as appro-
priate. If any of addresses does not exist. a- error memge
is returned to the sending host with a ULP receive message
dslagram. If the addreses are valid. the OMS control
function removes the TL? header from the datagram and
sends the ULP portion to the ULP server process corre-
spondng to the destination implicit ULP address. ASSume
for discussion that this is the UL? server process 140. The
ULP server process extracts the auxiliary ULP address list
from the menage and scans it from beginning to end. The
scanning and processing of the set operators is done in
post-fix fash'mn. 'l'h‘n means that arguments are read l‘ol~
lowed by an Operator that is then applied to the arguments.
The result of the operator becomes the first argument of the
next operation Therefore at the start of scanning two
addresses are read from the address list. 111:: next address
Will be an operator that is applied to the arguments and the
result of this operator is the first argument to he used by the
next operator. From then on a single address is read from the
address list followed by a logical ULP address which is
operator on the two arguments consisting of the new argu-
ment and the results of the last operator 'flte logical address
used to indicate set complement is int a set operator. by an
argument qualifier since it can precede any adckess in the
address list. The meaning of the set complement argument
qualifier '5 relative to the group meniaership of implicit
group address in the send message. If the set complement
qualifier precedes a unicast host adthess which is out a
member of the message group selected by the implicit ULP
address in the send message, the edeetive argument is the set
of all hosts that are members of the implicit message group.
If the set complement qualifier precedes a unicm host
address which is a member of the message group selected by
the implicit ULIP address in the send messga, the effective
argument is the set of all hosts that are members of the
implicit message group except for the original unieast host
address qualified by the complement function. 11' the act
complement qualifier precedes a logical ULP address the
elective argument is the set of all hosts that are members of
the implicit message group specified by the send message
except hosts that are members of the logical message group
preceded by the set complement modifier. Once the entire
address list has been processed to a single result set of hosts.
a set irlersection operation is performed on this set and the
set of members nfthe implicit message group 142 defined by
the implicit adrhem in the send niessage. lt‘ there are no
members at this set intersection. no further action is taken
and the payload item in the mesagc is not placed in any of
the message queues 143. If there are members of lhe set
intersection operation. the payload item in the message is
placed in the queues corresponding to the hosts that aremembers of the set intersection.
Message Delivery and Aggregation

Once messages are entered into the message queues in the
ULP server proxies. there are a variety of ways tlut they
can ultimately be delivered to the targeted hosts. lo the
invention, the delivery method is set on a per-ULP server
process basis by attributes that are provided at the time that
an inqilieit ULP mags youp and server process are
creatch It is important during the description of these
methods to keep in mind that the invention is intended to
provide an eflicient means for a group of hosts to send
messages to each other at a rapid rate during the implemen-
tation ofa networked interactive application. Also assumed
in the following description is that the GMS performs echo

5,822,523

23
suppression when a boat sends a menage to a group that it
belongs to. This means that the. host will not receive a copy
at its own message to the group either as a single
un-aggmgated mesagc or as a payload item in an aggre~
gated mesmge. 'lhis is controlled by a ULP server pm
attn‘bete that can he changed to stop edac suppression. but
echo suppression is the default.
immediate Delivery

The most simple delivery method is to immediately
deliver the payload items to their targeted hosts as soon as
they are placed in the mange queues. Each payload item in
a message queue will cumin a ULP source addres, a data
length and the data to be sent. To implement immediate
delivery. the ULP server process will remove a payload item
£rom a mmsage queue for a particular host 143. The host
address for this host will he obtained from lb group
membership Ii! 142. The payload item and the destination
host address will he sent to the OMS control function 136
where it will be used to create a ULP receive message sent
to the destination host. The GMS control function 136 will
use the destination ULP host address to look up the TL?
address cllhe host from the host address map 1.37. This will
be md to create a TLP header for the memage 12.3. The
ULP message type 124 will be ULP receive. the destination
ULP address 125 will be the destination host, the address
count will he 0 and there will be no auxiliary addresses. The
payload in this case will have a message count 116 of! and
the payload item mprised of fields [17. 118. and 119 will
he the payload element taken from the message queue.

Immediate delivery is useful when the massage rate
between a group of hosts is low. Consider four hosts that are
members of an implicit massage group where each member
of the group sends a manage to every other member of the
gmup at a fixed rate. With immediate delivery, each host will
send three messages to the other members oi the group and
receive three messages from the other members ofthe group
at the listed rate. This is scaptable is the size of the group
is small and the message rate is low. However, it is obvious
that total message rate ‘u the product of the underlying
message rate and the total number of members of the group
minus one. Clearly this will result in unacceptably high
message rates [or large groups and highly interactive mes-
sage rates. A group of 20 members that had an underlying
message rule of to oranges per second would yield a total
message tale at each host of 190 messages sent and 190
messags received every second This message rate will be
unsupportahle over a conventional dial-up Winn to a
conventional wide area rtetworlt arch as the internet.
Aggregation

A key concept in the present invention is the aggregation
of multiple mmges in a message queue into a single ULP
receive mesage to a host that contains multiple payload
ilerm in the payload. The ULP server prooes 140 removes
payload items from a rnemage queue 143 for a host and
accumulates them in an aggregation bullet 149.11: aggre-
gation bullet has butler areas for each host [or which there
is a message queue. These individual host areas within the
aggregation butler are called host aggregation hufl'ers. The
start and end of this aggregation period can be controlled in
a number ofways that will be described in the neat sections.
At the end of the aggregation period. the each host aggre-
gation bufl'et may hold multiple payload {tents The host
agregau'on bull‘er will hold a message count of the payload
items followed by the multiple payload ihms. '1}: contents
of a host aggregation hit her along with the ULP host address
of the correspond-rs host are sent to the GMS control
function 136 where it will be used to create a ULP receive

Petitioner Riot Games, Inc. - Ex. 1005, p. 29

10

15

20

15

40

AS

50

SS

60

65

24
trtesaage sent to the destination host. The OMS control
fundion 13‘ will use the destination ULP hoot address to
look up the TL? address of the host [mm the host address
map 137. This will be used to create a 11.? header for the
message 123. The ULP message type 124 will be ULI'
receive, the destination ULP adckesa 125 Will be the desti-
nation host, the address count will be 0 and there will he Ito
auxiliary addresses. The payload in this can: will have a
message count 11‘ set by the message count value from the
host aggregation bufl‘er. The payload will contain all of the
payload'ilents [tom the host aggregation bullet.

The effect of aggregation will be to yearly reduce the
total wage rate received by the hosts. Asingle message to
a host will be able to carry muhiple payload items received
from the other hosts during the aggregation period. This fits
very well the interactive applimtiors of this invention where
groups of hours will be sending messages to all the other
hossi‘n the group etc periodic rate. Aggregation will he very
ell'eetive In collecting together all of the messages Erom all
of the other hosts into a single message for each member ol’
the group. The reduces processing at each receiving host
since a single message will he received rather than many
separate messages Aggregation will aho reduce the total
data rate to the hosts since aggregation eliminates the need
for separate message headers for each payload item. The
savings will be significant for small payload items since
there will be only one message header comprising fields 113.
124 and 115 for multiple payload items. In cases where a
group of hosts are sending montages to the group at a
periodic rate. it is often the case in many interactive appli-
cations that the data being sent by each host to the group is
very similar to list messages sent by the other hosts. This
alfords the opportunity within an aggregated payload of
mult'mle payload items to apply a data compression method
across the multiple data elemenu of the payload elements. A
wide variety of known data compression methods will lend
themselves to this application. The first data element in the
first payload item can be sent in uncompressed form with
each subsequent data element being compressed using some
form of ditl‘ereace coding method. Avan'ely or known data
Compression methods use the concept of a predictor with
dill'erences from the predicted value being encoded. The lint
data element in an aggregated payload can he used as this
predictor with the subsequent data elements coded using
such a data compression method. These conventional data
compression methods do not asurne any knowledge of the
internal structure or function of portions of a data element to
comprm. It is also possible to make use of application
specific coding techniques that talte advantage 0! such
knowledge to potentially achieve much higher coding elli-
eieney.Server lsochronnus

One method by which the aggregation time period can be
defined is called Server Isochrooous or SI. In this method,A
ULP Server Process defines a uniform time base for defining
the awegation time period, This time base is defined by
three pararnetem: the time period. the aggregation offset and
the tramrnit cfi‘set. These parameters are set by the attributes
provided in the create implicit group control function at the
time the implicit group and the ULP server process are
created. The time period is a fixed time interval titringwhich
the ULP server promos will accumulate messages in the
massage queues. aggregate the messages in the queues and
send the aggregated messages to the targeted hosts. The
aggregation ofi'set defines the point after the start otthe time
period after which arriving messam will be stored in the
message queues for delivery in the next time period.

5,822,523

25
'I‘herefore, at the aggregation ott‘set alter the start of the time
period. a snapshot will be taken of all of the mesages in
each message queue. New messages will mntr‘nue to nt'rivc
and be entered into the queues alter the aggregation offset.
Only tlnse messages in the queus before the aggregation
ofl‘mt point will be aggregated into outbound messages The
resulting aggregated messagts will then be sent to their
targeted hosts at the point in time which is the transmit offset
after the stert of the time period. The result is that messages
arrive continuously and are stored in the message queues.
Once per time period the are aggregated into single mes-
sages to each tut which '3 the target of messages and once
per time period these aggregated messages are sent to thehosts.

Another embodiment of the st method is to allow the ULP
server process to dynamically vary the time period based on
some criteria such as the received message rates, and/or
receiver! data rate. The ULP server could use a function to
define the aggregation period based on the number of
merges received per sword or the total number of payload
bytes received per second. One reasonable function would
be to shorten the aggegation period as the rate or received
messages or data rate of the received payloads increased.
Th's would tend to keep the size of the outbound mesagcs
from growing too much as received message: and/or
received data rate grew Other poaitle functions could be
need that varied the aggregation period based on received
message rates. received payload data rates or other pararn
eters available to the ULP server process
Host Synchronous

The host syndromes or its method of defining the
aggregation time period allows the definition of a flexible
time period that '5 controlled by the hosts. ll '5 based on the
concept of a turn which is a bust sending a mange to one
or more members of the implicit dressage group which is
operating is HS mode. Once every host in the message group
has taken a turn, the aggregation period ends. Asnapshot of
the contents of the message queues is taken, the contents of
each of the queues is aggregated and the aggregated mes-
sages are sent to the hosts targeted by each message queue.
A refinement to this technique qualifies which of the three
ULP send mmgc types to the group constitute a hoot turn:
3 send only to the implicit addressofttte group. I tend to a
unicaet host address within the group or a send to a logical
ULP add'u which shares members with the group. The
attributes of the group not only will define HS aggregation.
but one or more ULP send message types that will be
considered a host turn. A further refinement sets the total
number of turns that a host can take in a single aggregation
time period. The default will be one turn, but multiple toms
can be allowed. if a host attempts to take more turns than
allowed. the messages are ignored.

This aggregation technique has the additional benefit of
causing the hosts Which are member of an HS implicit
manage group to have their processing functions synchro-
nizcd when they are executing the same interactive appli-
cation. Many networked interactive applications are based
on a simple overall three step operational model: wait for
messages from other boats. prom the messages and the
local users inputs to update the local application. send
messages to the other hosts. This basic application loop is
repeated at a rate fast enough to provide an interactive
experience such as 5 to 3D tunce per second. It is desirable
to keep sixth applications syndrronized so that the states of
the npplicatiom is consistent on the dilIerent host machine;
When such applications communicate using the HS model
of the present invention their operations will become natu-

Petitioner Riot Games, Inc. - Ex. 1005, p- 30

10

IS

'20

35

45

50

55

55

26
rally synchronized. The HS ULP server process will wait
until all of the members of the message group haseornpleted
their harm and sent a mage to the group before senditg
the aggregated messages to the members of the group. This
will cause the applications on the hosts to wait until they
have received the aggregated messages. They will all then
start processing these memgee along with the local user
input; Even ii they perform their processirg at different
speeds and send their next messages to the group at diEcrcol
times, the HS ULP server will wait until all have completed
their processing and reported in with a message to the group.
“this will keep all of the host applications synchronized in
that every boat will be at the same application loop iteration
as all of the others. Tiis will keep the application stale
ctxtsistent on all of the how». Only network propagation
delays from the GMS to the hosts and different processing
speeds of the hosts will cause the start and completion of
their processing to begin at different times. It is not a
requirement in networked applications to keep all of the
hosts precime synchronized, only that that application state
is consistent. The MS method provides a natural way to do
this in the context of the present invention.
Preferred Embodiment

The detailed description of the invention has described it
datagrlm implementation of the invention as the best way to
explain the invention. The preferred embodiment of the
invention is as follows.

in the preferred embodiment. the wide area network is the
lntemct and the TLP protocol is TCP/ll’. The OMS is a
general purpose computer system connected to the Internet
and the hosts are personal computers connected to thelnlernet.

TCP/IP provides an number of advantages that provide for
a more cflident applications interface on the hosts 15].
HIP/[P supports the concept of source and destination port
numbers in its header. The ULP can make use of the port
numbers to identify source and destination ULP connec-
tions. Most ULP send messages will be from hosts to e
implicit ULP group addresses and most ULP receive mes-
sages will be from the inplicit ULP addresses to the ULP
host addreses. All of these and the ULP message type field
can repesentu] by source and destination port addresses
within the TCP/ll’ header. This means that for roost ULP
lineages, the ULP message enupsulated within the TCP/IP
meson: need only contain the payload There is the slight
complication of the aggregated ULP receive messages sent
from a ULP server promise to a hoeLs. Here the destination
port will be the host the source port will be [or the implicit
lJ'LF group address and the payload will still contain the
source host ULP addresses in each the payload items.

'l'Cl’llP also supports header compression for low speed
dial~up lines which it also important "It this application. See
RFC ll“. TCP/ll’ is a comedian oriented protocol which
provides reliable end-to—end transport. It handles
re-trans'nission on error: and fragmentation and remembly
of data transparently to upper level protocols. Header corn-
pretsion allows much of the TCP/IP header to be omitted
with each packet to be replaced by a small connection
identifier. This connection D will uniquely define a con-
nection consisting of a source and destination IP address and
source and destination “CF/[P port numbers

At the intertaee to the application on the hosts. the
preferred embodiment of the ULP is as a session layer
protocol. in the preferred embodiment the application on a
host open; a session with a ULP sewer process. This session
is identified with a unique session ID on the host The host
application then sends data to the ULP host interface 151

5,822,523

27
tagged with this session ID. The session ID defines a but
and implicit UL? pair including the TCPIIP TLP address of
the OMS server that is running the particular UL? server
process for the implicit ULP address By binding the tram-
port address of the GMS of a ULP server process to the 5
susion 1D. we can transparently to the application support
multiple group messaging servers on the network and a
sage hoot can have multiple active sessions with different
physical group messaging servers This avoids any address
space collision problems that could arise from the fact that
the ULP address space is unique to each GMS.
Alternate Embodiments

One possible extension to the invention is to extend the
UL? to support a common synchronized time base on the
GMS and the host: that are connected to it. This would be
most interesting in context at the SI message aggregation
mode. The Si time base on the GMS could be replicated on
all of the horas and all of the hosts and the GMS could lock
these time bases together. There are known methods to
ayachronine time bases on multiple computer systems. Onesuch method is called NTP.

Another extension to the invention is to define ULPserver
processes that perform specific application specific process-
ing on the contents of the mesaagea that are received. A
variety of diflereot application specific processing functions
can be defined and implemented. A particular function
would be selected by attributes provitkd in the create
implicit group function. These funraions could process the
data in the message payloads and replace the data elements
in the payloads with processed results. Separately. or in
combination with processing the message payloads. the
processing could store either raw message payload data in
the application specific state storage area or could store
processed results.

Clearly, the host system need not be personal computers,
but could also be dedicated game consoles or television set
top boxers or any other device with a programmable con-
troller capable of implememing the ULP protocol. The wide
area network used to tranqaurt the ULP protocol need not bethn lntemet or based on [B Other network with some mcans
for wide area packet or datagram transport are possible
including ATM networks or a digital cable television net-work,

The invention now being hilly dexn’bed, it will be
apparent to one of ordinary skill in the art that any changes
and modifications can he made thereto without departing
from the spirit or scope of the invention as act forth herein.

Petitioner Riot Games, Inc- - EX. 1005, p- 31

28
Accordingly. the present inVctttion is to be limited solely by
the scope of the appended claims.

What is claimed is:
1. A method for providing group messages to a plurality

of host corwutcrs connected over a unicast wide area
communication network, comprising the steps of:

providing a group rnemagirrg server coupled to said
network, said server communicating with said plurality
of host computer: using said unicast network and
maintaining a tin of message groups, each message
group mourning at least one host computer;

sending. by a plurality of host computers belonging to a
first message group, messages to said server via said
unicast network. said messages containing a payload
portion and a portion for identifying said first message
group;

aggregating. by said server in a time interval determined
in accordance with a predefined criterion. said payload
portions of said messages to create an aggregated
payload;

forming an aggregated message using said aggregated
payload: and

transmitting by aaid server via said unicast network. said
aggregated message to a recipient host computer
belonging to said first message group.

2‘ The method ofclaim 1 wherein said time interval '5 a
fitted period of time.

3. The method of claim 1 wherein said that. interval
corresponds to a time [or said server to receive at least one
message from each host computer belonging to said first
message group.

4. The method of claim I further comprising the step of
creating, by one of said plurality of host computers. said first
message group by sending a lint control message to said
server vta said unimt network.

5. The method of claim 4 further comprising the step of
joining, by some of said plurality of host computers. said
first mesagc group by send‘ng control messages via said
unloaat nuworlr to said server Specifying said first manage
group.

6. The method of claim 1 wherein said network is Internet
and said server communicates with said plurality of Inst

45 computers using a lesion layer protocol.

lo

15

2°

25

‘0

on...

Petitioner Riot Games, Inc. - Ex. 1005, p. 32

CC-A-B

Petitioner Riot Games, Inc. - EX. 1005, p. 32

Claim Chart comparing Claims 1—6 of U.S. Patent No.

5,822,523 to the disclosure in Netrek

Prior art cited in this chart:

0 Senter2.5pl4.tar.gz (“Server Code”) and BRMH—1.7.tar.g: (“Client Code") (source code dated no later than August

1994).

0 The History of Netrek, Andy McFadden (“McFadden”) (January 1, 1994).

Claims of the ‘523

' Patent '

1. A method for

providing group

messages to a plurality

of host computers
connected over a

nnicast wide area

communication

network, comprising the

steps of:

mumwmek ,..

“Netrek is a real-time graphical multiplayer arcade/strategy game played over the lntemet. Players form

into teams and fight for control of the galaxy, dogfighting and taking planets”

McFadden at § 0.2

“In Netrek, every player has a client program that connects to the server.”

McFadden at § 2.1.2

“3.3.1 Client/Server

Recall that Xtrek handled all rendering from the server side. The X10 traffic was sent over TCP sockets

from the server to the player's display.

Smith added network code that separated the game into distinct client and server components. Each player

ran a client program that communicated with the server using a vastly simpler protocol. The client handled

all rendering locally, so the bandwidth requirements were greatly reduced.“

McFadden at § 3.3.1

C0001390 updateMessages()

(30001391 {

1. . . l

C0001590 }

Server\ntserv\socket.c at lines 1390-590

C0000603 updateClient()

Petitioner Riot Games, Inc. - Ex. 1005, p- 33

Petitioner Riot Games, Inc. - Ex. 1005, p. 34

providing a group

messaging server

coupled to said network,
smdsmver

communicating with

stphnmnyofhod

00000604 {

[ml

00000688 f1ushSockBuf();

00000689 repCount++;

00000690 }

Server\ntserv\socket.c at lines 603-90

00001537 sendServerPacketlpacket)

00001538 /* Pick a random type for the packet */

00001539 struct p1ayer_spacket *packet;

00001540 {

brmh-1.7\socket.c at lines 1537-1540

00001856 doReadlasock)

00001857 int asock;

00001858 {

00002044 }

Server\ntserv\socket.c at lines 603-90

00000523 struct mesg_cpacket {

00000524 char type; /* CP_MESSAGE */

00000525 char group;

00000526 char indiv;

00000527 char padl;

00000528 char mesg[801;

00000529 };

brmh-l.7\packets.h at lines 523-29

“In Netrek, every player has a client program that connects to the server.”

McFadden at § 2.1.2

“3.3.1 Client/Server

Recall that Xtrek handled all rendering from the server side. The X10 traffic was sent over TCP sockets

from the server to the player's display.

Petitioner Riot Games, Inc. - EX. 1005, p. 34

Petitioner Riot Games, Inc. - Ex. 1005, p. 35

computers using said

unicast network and

maintaining a list of

message groups, each

message group

containing at least one

howcompumn

Smith added network code that separated the game into distinct client and server components. Each player

ran a client program that communicated with the sewer using a vastly simpler protocol. The client handled

all rendering locally, so the bandwidth requirements were greatly reduced.“

McFadden at § 3.3.1

“ l. newstartd - This waits around for a connection from a client.

It then

Server\d0cs\README at lines 99-100

OCCCCr29

0""""r30

0""""l31

OCCZZWBZ

OCCCC"33

[ml

nannnn43

C 3144

C 3-45

C"46

C 3-47

C Cr48

C Cr49

Cr50

"l51

C Cr52

C 2153

C Cn54

"l55

C Cr56

CCCVC-57

"Cin58

CCCCC_59

peer“ostname, 0);

forks and execs a ntserv."

while (1) {

if ((port_idx=connectionAttemptDetected(num_progs])<0)t

fprintftstderr, "Whoops. Bye.\n");

exittO);

}

if (fdl=—l) writetfd, logname, strlen(logname));

sleept2);

l

else if (fork() ==) t /* we are a clone */

time(&curtime);

sprintf(logname, " %-32.325 %s",

peerhostname,

ctime(&curtime));

if (fdt=—l) writetfd, logname, strlen(logname));

if (fd!=-) closelfdl;

pr=&(proq[port_idx]);

switch (pr—>nargs) {

case 0: execl(pr—>proq,pr—>progname, peerhostname, 0);

break;

case l: execl(pr->proq,pr—>progname, pr~>arq[0],

break;

Petitioner Riot Games, Inc. - EX. 1005, p. 35

Petitioner Riot Games, Inc. - Ex. 1005, p. 36

CCCCZl60 case 2: execl(pr—>prog,pr—>progname, pr—>arq[0], pr-

>argm,

“U161 peerbostname, 0);

areuu_62 break;

CCCZCH63 case 3: execl(pr—>proq,pr—>proqname, pr—>arg[0], pr-

>arg[l],

CCCCZ“64 pr->arg[2], peerbostname, 0);

CCCZC_65 break;

CS: 66 case 4: execl(pr->proq,pr~>progname, pr->arg[0], pr-

>a_g[;],

C323: 67 pr->arg[2], pr->arg[3], peerbostname, O);

UUUUV_68 break;

”CC: 69 default: ;

C2222170 }

CCCCCl71 fprintf(stderr,"3rror in execl! -- %s\n",pr—>prog);

“raual72 reporterror();

CCCCZl73 }

Server\ntserv\newstartd.c at lines 129-173

"22179 int connectionAttemptDetected(num_progs)

222180 int num_proqs;

””22181 {

""23214 if(bind(sock, &addr, sizeof(addr)) < O){).—.C_).—C_)C_)c—) j1(.c()() -((

“"3237 }

C2222238 }

”"33239 }

""32240 if(listen(sock, l)<0) {

"”22241 fprintf(stderr,"bisten failedz'W;

w242 reporterror();

""32243 sock = —1;

””22244 }

 C_)C_)(—DC—)(—3h) ()(<c((((t((ct(

”22245 prog[i].sock:sock;

Petitioner Riot Games, Inc. - EX. 1005, p. 36

Petitioner Riot Games, Inc. - Ex. 1005, p. 37

o\OC3()

)hn‘me)()()H()f)()()Qc)(LL}

)()()()(((3)()(><)(()()()((()()()()()((DjwwwwwwaJwN)()()CC())()(
z

(.A.) H O
UUUU

””AA3ll
to

”33246

. as\" %s %s %s %s\n",

AAfV
[\

RQQD
(3C)

©(30\10'\L7|L1>~LA)K)|—‘C>k§>

/* close(0); */

fprintf (stderr,"listening on %d, connection will start

proolil.port, prooli].proq, proqli].progname,

prog[l].arq[0], prog[i].arg[l], prog[l].arg[2],

fflush (stderr);

while (l) /* Wait for a connection */

newsock = accept(sock, &naddr, &len];

if ((newsock < 0) && (errno == EINTR1)

goto nolntr;

if(newsock < 0){

fprintf(stderr,"accept errorl");

reporterror();

fprintf(stderr,"No one calling!\n");

shutdown(sock, 2);

close(sock);

prog[l].sock : ~l;

return(-l);

l else {

if (newsock != 0) {

if (dup2(newsock, 0) == -l) {

fprintf(stderr, "failed dnp2\n");

reporterror();

}

close(newsock);

}

return(i);

}

Petitioner Riot Games, Inc. - EX. 1005, p. 37

Petitioner Riot Games, Inc. - Ex. 1005, p. 38

Server\newstartd\newstartd.c at lines 179-311

occuul35

CCCCCl36

CCCCCl37

CCCCCl38

w139

"CZZl40

""lell

""142)OC“)m(—3c)CC()f(
""CCl43

Server\ntserv\main.c at lines 135-43

""33é42

"”33443

”C~44

"C 45

"333452

CCCu53

”CCL54

uuuuu£55

C3223456

C2333457

nflflfl3L58

C3222459

"333160

""Cu6l

C_)C_)C_)n—1C_)C_)C_)(_) ()()C2()C)((((l‘

we79

""32480

”CCIaSl

""C~82

 C_)C_)(—DC—).—.h) ()(<c1()((((

orrectToClient() */

if (callHost) {

if (!connectToClient(host,xtrekPort)) 1

exit(0);

l

1 else {

sock=0; /* Because we were forked by inetd! */

checkSocket(];

initClientData1); /* "normally" called by

}

connectToClient<machine, port)

char *machine;

int port;

1

if (sock!=~ J {

shutdown(sock,2];

sock: —l;

}

ERROR(3,("Connecting to %s through %d\n", machine, port));

if ((ns=socket(AF_lNET, SOCK_STREAM, 0)) < O) {

ERROR(1,("l cannot create a socket\n"));

exit(2);

}

if (connect(ns, &addr, sizeof(addr)] < 0) {

ERROR(3,("I cannot connect through port %d\n", port));

close(ns);

return(0);

Petitioner Riot Games, Inc. - EX. 1005, p. 38

00000483

1...]

00000488 }

Server\ntserv\socket.c at lines 442-88

00001747 flushSockBuf()

00001748 {

00

00001755 if (gwrite(sock, buf, t) != t) {

00001756 perror("std flush gwrite failed, client marked dead");

00001757 clientDead=1;

00001758 }

00

00001782 if (gwrite(udpSock, udpbuf, t) != t){

00001783 perror("UDP flush gwrite failed, client marked dead once

more");

[---1

00001791

L4

00001802 }

Servermtservlsocketc at lines 1747-802

0002607 gwrite(fd, wbuf, size)

0002608 int fd;

0002609 char *wbuf;

0002610 size_t size;

0002611 {

..-1

0002625 while (bytes>0) {

0002626 n = write(fd, wbuf, bytes);

0002627 if (count++ > 100) {

0002628 ERROR(1,("Gwrite hosed: too many writes

%d)\n",getpid()));

0002629 clientDead = 1;

0

0

0

0

0

[

0

0

0

C

(

0

Petitioner Riot Games, Inc. - EX. 1005, p. 39

Petitioner Riot Games, Inc. - Ex. 1005, p. 40

00002630 return (—1);

00002631 }

1. - -1

00002671 }

00002672 return(orig);

00002 673 }

Server\ntserv\socket.c at lines 2607-73

struct mesq_spacket {

char type; /* SP_MESSAGE */

uflchar mgflags;

u_char m_recpt;

u_char m_from;

char mesqlMSG_LEN];

} ;

Server\ntserv\packet.h at lines 184-190

02222-71 struc: e ory {

02222472 s:r C: player playerslMAXPLAYER];

02222473 s2r,C: torp torps1MAXPLAYER * MAXTORP];

02222-74 str,ct plasmatorp plasmatorps[MAXPLAYER * MAXPLASMA];

02222L75 s:rac: status statusll];

22222476 s:rsc: planet planetslMAXPlANETS];

02222477 s:r,c: phaser phasers1MAXPlAYER];

02222478 s:ract mctl mctl[l];

””222179 s-ract message messageslMAXMESSAGE];

02222480 strict team teamslMAXlEAM + 1];

22222481 s:r,e: ship shipvals1NUM_TYPES];

China 82 };

Server\ntserv\struct.h at lines 471-82

00000208 struct player 1

[---1

00000218 int p_x;

Petitioner Riot Games, Inc. - EX. 1005, p. 40

Petitioner Riot Games, Inc. - Ex. 1005, p. 41

03333219 int p_y;

1.. 1

01000226 short p_team; /* Team I'm on */

1...]

03333260 #ifdef FULL_HOSTNAMES

02332261 char p_fu11_hostname[32]; /* full nostname 4/13/92 TC */

03322262 #endif

03322263 #ifdef PING

””"33264 int pnavrt; /* average round trip time */

23265 int p_stdv; /* standard deviation in round

trip time */

10266 int p_pkls_c_s; /* packet loss (client to

server) */

03222267 int p_pkls_s_c; /* packet loss (server to

clieit) */

01000268 #endif

03233269 #ifdef 08

02222270 int p_timerde1av; /* updates per second */

”““23271 pid_t p_process; /* process id number */

uncou272 #endif

1...]

C " 284 };

Server\ntserv\struct.h at lines 208-84

00000120 /* These are the teams */

id

00000132 #define ALLTEAM (FED(ROM|KLI(OR1)

00000133 #define MAXTEAM (0R1) /* was ALLTEAM (overkill?)

6/22/92 TMC */

00000134 #define NUMTEAM 4

Server\ntserv\defs.h at lines 120-134

00001125 updateTorps()

00001126 {

Petitioner Riot Games, Inc. - EX. 1005, p. 41

Petitioner Riot Games, Inc. - Ex. 1005, p. 42

02331132 for (i=0, torp=torps, tpizclientTorpsInfo, tp=c11entTorps;

w.133 i<MAXPLAYER*MAXTORP;

w1134 i++, torp++, tp1++, tp++) {

[...

02231142 sendClientPacket(tpi);

[...

C”CC1151 sendClientPacket(tp);

[...

10121191 }

0”""_192 }

Server\ntserv\socket.c at lines 1125-92

02221194 updatePlasmas()

0005 195 {

[...

0323-201 for (i=0, torp=p1asmatorps, tpi=clientP1asmasInfo,

tp=cnientP1asmas;

w.202 i<MAXPLAYER*MAXPLASMA;

151203 i++, t0rp++, tpi++, tp++) {

[...

02221211 sendClientPacket(tpi);

[...

0”CC 219 sendClientPacket(tp);

[...

13121254 }

0”"“.255 }

Server\ntserv\socket.c at lines 1194-255

00001257 updatePhasers()

00001258 {

[...1

00001264 for (i=0, ph:clientPhasers, phase=phasers, p1=p1ayers;

00001265 1<MAXPLAYER; i++, ph++, phase++, pl++) {

Petitioner Riot Games, Inc. - EX. 1005, p. 42

[...]

00001274 sendClientPacket(ph);

1...]

00001290 sendClientPacket(ph);

1...]

00001293 }

00001294 }

Server\ntserv\sockel.c at lines 1257-94

0001390 updateMessages()

0001391 {

...1

0001563 if (cur->m_from==DOOSHMSG) msg.m_from=255; /* god */

0001564 if ((cur->m_from < 0) II (cur->m_from > MAXPLAYER))

0001565 sendClientPacket((CVOID) &msg);

0001566 else if (cur—>m_flags & MALL && !(ignored[cur->m_from]

& MALLH

00001567 sendClientPacket((CVOID) &msg);

00001568 else if (cur->m_flags & MTEAM && 1(ignored[cur—>m_from]

& MTEAM)){

00001569 sendClientPacket((CVOID) &msg);

0001570 }

0001571 else if (cur->m_flags & MINDIV) {

...1

0001584 sendClientPacket((CVOID) &msg);

...1

0001586

...1

0001590 }

Server\ntserv\socket.c at lines 1390-590

0

0

[

0

0

0

0

 C

0

[

C

[

C

[

0

00000191 me = &players[pno];

[...1

00000222 updateSelf(); /* so he gets info on who he is */

12

Petitioner Riot Games, Inc. - Ex. 1005, p. 43

Petitioner Riot Games, Inc. - Ex. 1005, p. 44

22226

”222228)h(—3(—3C_)C ((c(t ((((

l‘\) LA) CO

i ediately */

C2222306 }

[~--i

22222223 updateShips();

22222224 updatePlahets();

22225 flushSockBuf();

2222227 /* Get login name */

2222229 if ((pweht = getpwuid(getuid())) != NULL)

2222230 STRNCPY(iogih, pweht->pwflhame, NAMEflLEN);

"222231 else

22222232 STRNCPY(logih, "Bozo", NAME_LEN);

CC: 3233 logih[NhME_LEN — 1] = ‘\0';

me—>p_team=ALLTEAM;

22222273 me->p_full_hosthame[sizeof(me—>p_fuii_hosthame) - i] =

62222296 /* give the player the motd and find out which team he wants

22297 if (me—>p_status != PALIVE) {

22222298 me—>p_x=

22222299 me—>p_y=

22222300 updateSeif();

22222301 updateShips();

”2222302 teamPick= ”1;

""2303 flushSOCkBuf();

22304 getEhtry(&team, &s_type);

22305 repCount=0; /* Make sure he gets an update

"22325 enter(team, 0, pho, swtype);

Server\ntserv\main.c at lines 183-325

-100000;

—100000;

Petitioner Riot Games, Inc. - EX. 1005, p. 44

Petitioner Riot Games, Inc. - Ex. 1005, p. 45

”"3334 enter(tho, disp, pho, s_type)

)h.—.(—3C_)C)().c)()t (-(c(
uuuu

nnnngo95

uuu

hnnn88
uu

””C"9l e—>p_cir = 0;

" “U92 e—>p_cesdir = 0;

""3"96 if ((tro == 1 11 (too == 1) { /’r change 5/10/91 TC new
(D

“"32101 me—>p,team = (1 << tho);

$23235 lot too;

t936 iht disp; /* not used, so 1 used it 7/27/91 TC */

o937 iht pno;

"23338 int s_type;

""3239 i

””2356 STRNCPY(me—>p~name, pseudo, NAMEflLEN);

"CZ"57 me->p_hame[NAMEmLEN - 1] = '\O';

"3358 getship(myship, s_type);

1960 /* Alert client about new ship stats */

”"2385 if ((s_type 1: STARBASE) && (s_type 1= ATT) && plkills>0)

“1186 me—>p_ship.s_plasmacost = —1;

""3387

tut e—>p_updates = 0;

“23289 e->p_flaqs = PFSHIELD;

“990 if (s_type==STARBASE) me—>p_flaqs l= PFDOCKOK;

"3393 e->p_speed = 0;

”3394 1e~>p_cesspeed = 0;

"Z"95 re~>p_subspeed = O;

ihdep */

ss97 me—>p_teau = 0;

out 98 placelndepehdeht(); /* place away from others 1/23/92 TC */

“333399 }

"“32100 else {

wL102 for (;;) {

””23103 startplahet=tno*10 + random() % 10;

Petitioner Riot Games, Inc. - EX. 1005, p. 45

Petitioner Riot Games, Inc. - Ex. 1005, p. 46

"”33104 if (startplanets[startplanet]) break;

CCCCCLOS }

[--]

otouu_32 /* if (!keeppeaoe) me—>p_hostile = (FED‘ROMIKLL‘ORL);*/

CCCZCL33 if (lkeeppeace) aoto_peace();

C2232134 me—>p_hostile &= ~me—>p_team;

CCCCZLBS

CCCCC_36 /* join message stuff */
”"”SZ"37

oot23138 sprintf(me—>p_mapchars,"%c%o",teamlet[me—>p_team],

s ip“os[me—>p_no]);

ooooo_39 if (lastteam l= too || lastrank != mystats->st_rank) {

"Clin40

[.-.]

CCCCCl87 #ifndef FULLHOSTNAMES

ooouo_88 pmessageZ 0, MALL | MJOIN, addrbuf, me—>pfino,

CCCCZ_89 "%._6s (%2.2s) promoted to %s (%.l6s@%.16s]",

CCCCZL90 me—>p_oame,

”““23 91 me—>p_rapchars,

ottou_92 ranks[re—>p_stats.st_rank].name,

C”322193 me—>p_nogin,

”View 94 me—>p_ronitor);

oot33195 #else

CCCCC_96 pmessageZ O, MALL | MJOLN, addrbuf, me—>p_no,

”"”SZ 97 "%. 68 (%2.23) promoted to %s (%.l6s@%.32s)",

”"Cn98 me~>p_name,

22199 me->p_mapchars,

““200 ranks[me->p_stats.st_rank].name,

o oou201 me—>p_loqin,

CCCCZZOZ me~>p_full_hostname);

C2333203 #eodif

””"32204 }

l\) LA) [\) ._,_.

Petitioner Riot Games, Inc. - EX. 1005, p. 46

Server\ntserv\enler.c at lines 30-232

sabbg,byaphnflfiy C0001537 sendServerPacket(packet)

ofhonconmuwm C0001538 /* Pick a random type for the packet */

bdongngniafint C0001539 struct player_spacket *packet;

message group, C0001540

messages to said server [...]
vmsmduMGBI C0001554 if (commMode == COMM_UDP) {

network’saidmessages C0001555 /* for now, just sent everything via TCP */

containing a payload C0001556 }

portionandaponionfor C0001557 if (commMode == COMM_TCP || ludelientSend) {

anmungsmdfint C0001558 /* special case for verify packet */
message group; C0001559 if (packet->type == CP_UDP_REQ) {

C0001560 if (((struct udp_req_cpacket *) packet)->request ==

COMM_VERIFY)

C0001561 goto send_udp;

C0001562 }

00001563 /*

C0001564 * business as usual (or player has turned off UDP

transmission)

C0001565 */

0001566 if (gwrite(sock, (char *1 packet, size) != size) {

0001567 printf("gwrite failed. Server must be dead\n");

0001568 serverDead = 1;

0001569 }

. . .1

0001610 if (gwrite(udpSock, packet, size) != size) {

...1

0001623)

...1

0001628 if (gwrite(sock, (char *) packet, size) != size) {

0001629 printf("gwrite failed. Server must be dead\n");

0001630 serverDead = 1;

0001631)

 C

C

C

C

1

C

[

C

[

C

C

C

C

16

Petitioner Riot Games, Inc. - Ex. 1005, p. 47

Petitioner Riot Games, Inc. - Ex. 1005, p. 48

[. . .1

00001633 1

00001634 }

brmh-1.7\socket.c at lines 1537-634

00000026 struct player *me = NULL;

brmh-1.7\data.c at line 26

00000134 struct player {

[. - .1

00000444 int p__x;

00000145 int p_y;

1...]

00000152 snort p_team; /* Team I‘m on */

1...]

00000192 };

nmmjmmanmnmwmnz

00000523 struct mesg_cpacket {

00000524 char type; /* CP_MESSAGE */

00000525 char group;

00000526 char indiv;

00000527 char padl;

00000528 char mesg[80];

00000529 };

brmh-1.7\packets.h at lines 523-29

00000222 #define sendTorpReq(dir) sendShortPacket(CP_TORP, dir)

brmh-1.7\defs.h at line 222

00000293 struct torp_cpacket {

00000294 char type; /* CP_TORP */

00000295 unsigned char dir; /* direction to fire torp */

00000296 char padl;

17

Petitioner Riot Games, Inc. - EX. 1005, p. 48

0

0

0000297 cha

0000298 1;

r

bmlh-l.7\packets.h at lines 293-99

0

[

0

1

0

0

0

0

000121 struct packet_handler handlers[] = {

..]

00128 {

...1

000194 #ifde

000195 {

000196 #endi

000197 };

0 sizeof(struct torp_cpacket), handleTorpReq },

f FEATURE_PACKETS

sizeof(struct feature_cpacket), handleFeature },
f

Server\ntserv\socket.c at lines 121-97

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

0001967 /

is legal.

0001968

worry about

0001969

0001970

* Check to see if the handler is there and the request

* The code is a little ugly, but it isn't too bad to

* yet.

*/

0001971 packetsReceived[*bufptr]++;

0001972 #ifdef

0001973

0001974

0001975 #endif

0001976 i

0001977

0001978

0001979 #ifdef

0001980

0001981 #endif

0001982

0001983

0001984

 PING

if(asock == udpSock)

packets_received ++;

f (handlers[*bufptr].handler != NULL) {

if (((FD_ISSET(*bufptr, &inputMask)) &&

(me==NULL || !(me->p_flags & (PFWARIPFREFITTING

SB_TRANSWARP

| PFTWARP

71)) ||

*bufptr==CP_RESETSTATS ll *bufptr==CP_UPDATES ll

*bufptr==CP_0PTIONS || *bufptr==CP_RESERVED H

M

Petitioner Riot Games, Inc. - Ex. 1005, p. 49

Petitioner Riot Games, Inc. - Ex. 1005, p. 50

02331986

331987 #endif

2331989

”321990 #endif

3331991 #ifdef

"331992

33231993 #endif

02331994 #ifdef

33331995

”3331996 #ifdef

03331997

02331998 #endif

33331999 #endif

03332330

"3 331

3 332

)(fiC—DC—D ((c

A .34

32 885 #endif

" 336

3 337

"”8

led");

" 339

310

s 332 11

Server\ntserv\socket.

O
Q))()c)()()t

O

 (c)()c()c (z()(zz(((z [\3[\J(‘D[\j[\JNL\.)L\)L_)NL\)
00002046 handlelorpReq(packet)

00002047 struct torp_cpacket *packet;

03331985 #ifdei PING /* ping response always valid */

w1988 #ifdef RSA /* NEW —— fix ghostbust problem

333 #ifdef PING /* don‘t let it undo self deszruot */

l

c

*bufptr==CP_PlNG_RESPONSE ll

*bufptr== CP_RSA_KEY 11

FEATURE_PACKETS

*bufptr == CP_FEATURE ll

NESSAGES_ALL_TIME /* off for the moment */

*bnfptr == CP_MESSAGE 1|

SHORT_PACKETS

*bufptr == CP_S_MESSAGE ||

*bufptr==CP_SOCKET 11 *bufptr==CP_BYE) {

if (me && me—>p~f1ags & PFSELFDEST

&& *bufptr != CPfl?lNG_RESPONSE

> {

me~>p_flags &= ~PFSELFDEST;

newgmarning(85,"Self Destruct has been

}

(*(nandlers[*bnfptr].handler))(bnfptr);

atfinesl976-2011

Petitioner Riot Games, Inc. - EX. 1005, p. 50

Petitioner Riot Games, Inc. - Ex. 1005, p. 51

00002048 {

00002049 ntorp(packet->dir, TMOVE);

00002050

00002051

00002052 }

Server\ntserv\s0cket.c at lines 2046-50

""241 ntorp(course, type)

2 242 u_char course;

””2248 if (me—>paflags & PFWEP) {

""2249 neu_warning(25,"Torpedo launch tubes have exceeded

axi m safe temperaturel");

"22250 return;

""251 i

””2273 if (e->p_ntorp == MAXTORP) {C3C3CDE—‘C3C3.—u(3C>H(DC):—C3C3 cj()()()().(D()()r).(j() (t((c.()((t.()()

”22274 “ew_warning(26,"0ur computers limit us to having 8

ive :orpedos at a time captainl");

"22275 return;

“22276 }

”"2277 if (“e—>p_fuel < myship—>s_torpcost) {

2278 “ew_warning(27,"We don't have enough fuel to fire

p'o;0“ torpedosl");

02222279 return;

”2222280 i

02222281 if (re—>p_flags & PFREPAIR) {

22222282 rew_warning(28,"We cannot fire while our vessel is in

epsi. mode.");

l"

Cot22283 rettrn;

02o2o284 i

0"""2285 if ((me—>p_cloakphase) && (me—>p_ship.s_type != ATT)) {

02222286 new_warning(29,"We are unable to fire while in cloak,

Petitioner Riot Games, Inc. - EX. 1005, p. 51

captainl");

C

C

C

C

C C

C

[

C

C

C

C

C

C

C

C

C

C

C

0000C87

0000C88

0000C89

0000C90

0000091

0000C92

0000C93

0000094

0000C95

0000C96

0000C97

0000C98

0000C99

0000100

0000101

0000102

...1

0000112

0000113

0000114

0000115

0000116

0000117

0000118

0000119

0000120

0000121

0000122

return;

}

/* change TC 12/9/90 -- my attempt at torp angle stuff */

if (topgun && ((me->p_ship).s_type != STARBASE)) {

int delta;

if ((delta = ((int) me—>p_dir - (int) course)) < 0)

delta = -delta;

if ((delta > topgun) && (delta < (256 - topgun))) {

/* note: 128 = 180 degrees left/right */

new_warning(30,"We only have forward mounted

cannons.");

return;

}

} /* end if topgun */

/* Setup data in new torp */

if (type>TSTRAIGHT || type<TFREE) type=TMOVE;

k->t_no = i;

k->t_status = type;

k->t_owner = me—>p_no;

k->t_team = me->p_team;

k->t_x = me->p_x;

k->t_y = me->p_y;

k—>t_dir = course;

k->t_damage = myship->s_torpdamage;

fl

Petitioner Riot Games, Inc. - Ex. 1005, p. 52

00000123 if (vectortorps)

00000124 k->t_speed = vector_torp_speed(me->p_dir, me—>p_speed,

course,

0000125 myship—>s_torpspeed);

0000126 else

0000127 k—>t_speed = myship—>s_t0rpspeed;

0000128 k->t_war = me->p_hostile | me->p_swar;

0000129 k->t_fuse = myship->s_torpfuse + (random() % 20);

0000130 k->t_turns = myship—>s_torpturns;

0000131 k->t_whodet = NODET;

0000132 1

Server\ntserv\torp.c at lines 41-132

0001161 udtorps()

0001162 {

0001163 register int i, turn=0, heading=0;

0001164 register struct torp *j;

0001165

0001166 for (i = 0, j = &torps[i]; i < MAXPLAYER * MAXTORP; i++,

j++) {

0001167 switch (j—>t_status) {

0001168 case TFREE:

0001169 continue;

0001170 case TMOVE:

0001171 case TSTRAIGHT:

0001172 if (j->t_turns > 0) {

...1

0001183 }

...1

0001245 }

Server\ntserv\daem0nll.c at lines 1161-1246

00001125 updateTorps()

22

Petitioner Riot Games, Inc. - EX. 1005, p. 53

300:126 {C

[....

C3001132 for (i=0, torp=t0rps, tpi=clientTorpsInfo, tp=clientTorps;

C0001133 i<MAXPLAYER*MAXTORP;

C300L134 i++, torp++, tpi++, tp++) {

[.

C

[

C

300:142 sendClientPacket(tpi);
3001151 sendClientPacket(tp);
[...I

C000:191 }

C0001192 }

Server\ntserv\s0cket.c at lines 1125-92

C0001125 updateTorps()

C0001126 {

[. . .I

C000l132 for (i=0, torp=torps, tpi=clientTorpsInfo, tp=clientTorps;

C0001133 i<MAXPLAYER*MAXTORP;

C0001134 i++, torp++, tpi++, tp++) {

[. . .I

C0001142 sendClientPacket(tpi);

[...:

C000L151 sendClientPacket(tp);

[. . .I

C0001191 }

C0001192 }

Server\ntserv\socket.c at lines 1125-92

aggegmhg,bysmd C0000076 int timerDelay=200000; /* delay between sending stuff to
server in atime interval client */

determined in Server\ntserv\data.c at line 76

accordance with a

fl

Petitioner Riot Games, Inc. - EX. 1005, p. 54

pnflefinodcnmfion, 00000195 readFromClient();

said payload portions of Server\ntserv\input.c at line 195

smdnmfiqnswcmmm

anaggegamdpayhad; 00000152 input()
00000153 {

00000154 struct itimerval udt;

00000155 fd_set readfds;

00000156 static struct timeval p011 = {2, 0};

00000157

00000158 #ifdef DS

00000159 if (!me—>p_process)

00000160 #endif

00000161 {

00000162 udt.it_interval.tv_sec = 0;

00000163 udt.it_interval.tv_usec = timerDelay;

00000164 udt.it_value.tv_sec = 0;

00000165 udt.it_va1ue.tv_usec = timerDelay;

00000166 setitimer(ITIMER_REAL, &udt, 0);

00000167 }

00000168 SIGNAL(SIGALRM, setflag);

00000169

00000170 /* Idea: read from client often, send to client

not so often */

00000171 while (1) {

[

0

[

0

0

]

0000195 readFromClient();

"7

0000203 }

0000204 }

Server\ntserv\input.c at lines 152-203

00000076 int timerDelay=200000; /* delay between sending stuff to

client */

Server\ntserv\data.c at line 76

24

Petitioner Riot Games, Inc. - EX. 1005, p. 55

Petitioner Riot Games, Inc. - Ex. 1005, p. 56

)c—).—.(fi(fi((If(
)h(—3>(—C_).—.< ((a\(2t (c

”“22603 updateClient()

oo604 {

""33608

"22609 /* This can halve your updates */

”322610

"333611

:36l2

to6l3

*/

322614

""33615

too616

”$33617

"$33618

”$33619

ott620

”322621

"tt622

”$23630

"$32631

C"3632

tt22633

tutt634

uti635

"$33636

"333637

”"33638

Zt639

static int skip = 0; /* lf skip is set we skip next update

if (send_short && skip) {

skip = 0; /* back to default */

if (hufptr==buf && (oonnMode!=COMM_UDP ll udpbufptr==huf))

/* We sent nothing! We better send something to wake

if (me—>p_fuel < 6l000)

sendClientPacket((CVOlD) aclientSelfShort);

else

sendClientPacket((CVOlD) &elientSelf);

flushSockBuf();

repCount++;

return;

if(send_short){

updatePlasmas();

updateStatus(];

updateSelf();

updatePhasers();

updateShips(];

updateTorps();

updatePlanets();

updateMessages()i
l
I

Petitioner Riot Games, Inc. - EX. 1005, p. 56

Petitioner Riot Games, Inc. - Ex. 1005, p. 57

03333657 if(send_sh0rt && (me—>p_fuel < 61000))

03333658 sendClientPacket((CVOID) &client8e1f8hort);

3333659 else

03333660 #endif

03333661 sendClientPacket((CVOID) &c11entSelf);

03333662 1

00

03333685 sendClientPing(); /* ping.c */

33333686 #endif

33333687

03333688 flushSockBuf();

3333689 repCount++;

""690 }

Server\ntserv\socket.c at lines 603-90

00000052 intrupt();

Server\ntserv\input.c at lines 52

00000197 intrupt();

Server\ntserv\input.c at lines 197

00001390 updateMessages()

00001391 {

[. . .1

00001590 }

Server\ntserv\socket.c at lines 1390-590

00001825 readFrom011ent()

00001826 {

[---1

00001838 if (select(32,6readfds,0,0,&timeout) != 0) {

00001839 /* Read info from the xtrek client */

00001840 if (FD_ISSET(sock, 6readfdsl) {

00001841 retval += doRead(sock);

Petitioner Riot Games, Inc. - EX. 1005, p. 57

0001842 }

0001843 if (udpSock >= 0 && FD_ISSET(udpSock, &readfds)) {

0001844 V_UDPDIAG(("Activity on UDP socket\n"));

0001845 retval += doRead(udpSock);

0001846 }

0001847 }

0001848 return (retval != 0); /* convert to 1/0 */

0001849 }

0001850

-..1

0001855 /* ripped out of above routine */

0001856 doRead(asock)

0001857 int asock;

0001858 {

0001859 struct timeval timeout;

...1

0001877 /* Read info from the xtrek server */

0001878 count=read(asock,buf,BUFSIZ*2);

...1

0001916 bufptr=buf;

0001917 while (bufptr < buf+count) {

...1

0001939 while (size>count+(buf-bufptr)) {

0001940 /* We wait for up to twenty seconds for rest of packet.

0001941 * If we don't get it, we assume the client

ied.

0001942 */

0001943 timeout.tv_sec=20;

0001944 timeout.tv_usec=0;

0001945 /*readfds=1<<asock;*/

0001946 FD_ZERO(&readfds);

0001947 FD_SET(asock, &readfds);

...1

0001956 temp=read(asock,buf+count,size-(count+(buf-bufptr)));

27

Petitioner Riot Games, Inc. - Ex. 1005, p. 58

Petitioner Riot Games, Inc. - Ex. 1005, p. 59

[.--l

CCCCl966 l

[--l

Uttt2l_0 (*(handlers[*bufptrl.handler))(bufptr);

C22323 1 }

CCCSZSlZ /* Otherwise we ignore the request */

CCCCZCrS l else {

C33223_4 ERROR(1,("Handler for packet %d not installed...\n",

*b fptr)),

Utt22315 }

C32323 6 bufptr+=size;

tu2t_7 if (bufptr>buf+BUFSlZ) {

:32"r8 beepy<buf+BUFsrz, buf, BUFSIZ);

C3222319 if (count==BUFSlZ*2) {

CCCCZCZO /*readfds = l<<asock;*/

tttu2u21 FDfiZERO(&readfds);

C3232322 FD_SET(asock, &readfds);

C2222323 if (select(32,&readfds,0,0,&timeout)) {

”“322224 temp=read(asock,buf+BUFSlZ,BUFSIZ);

tttt2t25 count=BUFSIZ+temp;

[.--l

” Zt2t34 } else {

Utt32335 count=BUFSlZ;

62322336 }

"”332"37 } else {

C"2"38 count ~=BUFSIZ;

t22339 }

w2t40 bufptr~=BUFSlZ;

U w2 41 }

CCCCZClZ }

C2332343 return(l);

””"22344 }

Server\ntserv\s0cket.c at lines 1825-2044

Petitioner Riot Games, Inc. - EX. 1005, p. 59

Petitioner Riot Games, Inc. - Ex. 1005, p. 60

)hnmC—DC ((CCf

"Cll825 readFromClient()

“$31826 {

[.--l

w1838 if (select(32,&readfds,0,0,&timeout) != 0) {

"Cil839 /* Read info from the xtrek client */

”$31840 if (FD_lSSET(sock, &readfds)) {

“$21841 retval +: doRead(sock);

”321842 }

"$31843 if (udpSock >= 0 && FDWISSET(udpSock, &readfds)> {

s21844 V_UDPDIAG(("Activity on UDP socket\n"));

”23l845 retval += doRead(udpSock);

csss1846 }

”"331847 }

C3221848 return (retval != U); /* convert to l/O */

CCCCl849 }

w1850

[..

Ciiln855 /* ripped out of above routine */

”“32i856 doRead(asock)

ossa1857 int asock;

C”CC 858 {

Chis 859 struct timeval timeout;

[..

€322-977 /* Read info from the xtrek server */

""33 878 count=read(asock,buf,BUFSIZ*2);

[...

otc2l9l6 hufptr=buf;

sol9l7 while (bufptr < huf+count) {

[.--l

CCCCl939 while (size>count+(buf-buiptr)) {

CCCCl940 /* We wait for up to twenty seconds for rest of packet.

”“"Cl941 * If we don't get it, we assume the client

died.

””321942 */

29

Petitioner Riot Games, Inc. - EX. 1005, p. 60

Petitioner Riot Games, Inc. - Ex. 1005, p. 61

C33 -943

CCCCl944

w.945

Uttul946

CCC""947

[...

CCCCl956

l...

""331966

[...

CCCCZClO

tt2tll

$32"12

CCCCZZl3

CCCCZCll

*bwfplrl),

CCCCZClB

CCCCZCl6

””332317

Uttt2ul8

C”322"l9

” SUZUZO

Utt32321

CCCCZC22

""332"23

C"2"24

Utt22325

[.--l

U w2 34

CCCCZC35

C2332336

””"32337

t32i38

322"39

timeout.tv_sec=20;

timeout.tv_usec=0;

/*readfds=l<<asoek;*/

FD_ZERO(&readfds);

FD_SET(asock, &readfds];

temp=read(asock,buf+count,size-(count+(buf-bufptr)));

(*(handlers[*bufptrl.handler))(bufptr);

i

/* Otherwise we ignore the request */

} else {

ERROR(1,("Handler for packet %d not installed...\n",

bufptr+=size;

if (bufptr>buf+BUFSlZ) {

bcopy(buf+BUFSlZ, buf, BUFSlZ);

if (count==BUFSIZ*2) {

/*readfds = l<<asock;*/

FD_ZERO(&readfds);

FD_SET(asock, &readfds);

if (select(32,&readfds,O,U,&timeout)) {

temp=read(asock,buf+BUFSIZ,BUFSlZ);

count=BUFSlZ+temp;

} else {

c0unt=BUFSlZ;

}

} else {

count —=BUFSIZ;

30

Petitioner Riot Games, Inc. - EX. 1005, p. 61

Petitioner Riot Games, Inc. - Ex. 1005, p. 62

00002040 bufptr—=BUFSIZ;

00002041 }

00002042 1

00002043 return111;

2044

Server\ntserv\socket.c at lines 1825-2044

00001390 updateMessages()

00001391 1

1...]

00001590 }

Server\ntserv\s0cket.c at lines 1390-590

"221603 sendClientPacket1packet)

"221604 /* Pick a random type for the packet */

"221605 struct player_spacket *packet;

”221606 1

.4

"C"1618 /*

"221619 * If we're dead, dying, or just born, we definitely want

transmission

”621620 * to get through (otherwise we can get stuck). I don't

“i“k this will

"221621 * be a problem for anybody, though it might hang for a

it if the TCP

)(D)U‘C—DK—TC_)(_rC_)C_3u—1C_)C_)(_DC_))CC)C.CC(C “”1622 * connection is bad.

02221623 */

”2221624 /* Okay, now I'm not so sure. Whatever. */

02221625 if (oldstatus 1: PALIVE 11 (me != NULL && me—>p_status 1:

PAJIVE11

02021626 orig_type = packetw>type 1 0x80; /* pretend it's critical
ir/

02221627 #endif

02221628 if 1packet—>type<1 ll packet—>type>NUM_SlZES 1

Petitioner Riot Games, Inc. - EX. 1005, p. 62

Petitioner Riot Games, Inc. - Ex. 1005, p. 63

C3331629 sizes[(int)packet—>type]==) {

C2331630 ERROR(1,("Attempt to send strange packet %d %d\n", packet-

)(_'C_)C_)C_)C (C(f

CCCZl648 bufptr+=size;

CCCCl649

urtu1650) else {

CCCC-651 /*

CCCCi652 * do UDP stuff unless it‘s a "critical" packet

”“32i653 * (note that both kinds get a sequence number appended)

(FIX)

C”Cii654 */

i...

use: 728 default:

CCCC-729 /* these are critical packets; send them via TCP */

””Cli730 size=sizes[packet—>type);

”"C"i731 if (bufptr~buf+size >= BUFSIZE) {

uuclll32 t=bufptr-buf;

w1733 if (gwrite(sock, buf, t) != t) l

U w1734 perror("TCP qwrite failed, client marked dead");

CCCCll35 clientDead=1;

CCCCl736)

”“"Cl737 bufptr=buf /*+ addSequence(buf)*/;

til738)

“”221739 bcopy(packet, bufptr, size);

:yne,NUM_SlZES));

w1631 return;

"221632)

”$31633 packetsSent[(int)packet—>type]++;

“$21634 if (commMode == COMM_TCP)) (commMode == COMM_UDP &&

dp ode == MODE~TCP)) {

"$31635 /*

t21636 * business as usual

”231637 */

-d

"$31647 bcopy(packet, bufptr, size);

Petitioner Riot Games, Inc. - EX. 1005, p. 63

Petitioner Riot Games, Inc. - Ex. 1005, p. 64

00001740

00001741

00001742

00001743

bufptr+=size;

break;

1

1

00001744 }

Server\ntserv\soeket.c at lines 1603-744

02221125 updateTorps()

02221126 {

1...]

02221132 for (i=0, torp=torps, tpi=c11entTorpsInfo, tp=c11entTorps;

22221133 i<MAXPLAYER*MAXTORP;

02221134 i++, torp++, tpi++, tp++) {

[..-1

02221142 sendClientPacket(tpi);

1...]

02221151 sendClientPacket(tp);

1...]

221191 1

1192 }

Server\ntserv\soeket.c at lines 1125-92
 fomaing an aggregated

message using said

aggregated payload; and

22221747 flushSockBuf()

02221748 {
02221782
02221755 if (gwrite(sock, but, t) 1: t) {

w221756 perror("std flush gwrite failed, client marked dead");

""1757 clientDead=1;

”21758 }

”"1783 perror("UDP flush gwrite failed, client marked dead once

ro-e");

02221784 #ifdef EXTRA_GB

if (gwrite(udp80ck, udpbuf, t) != t){

%

Petitioner Riot Games, Inc. - EX. 1005, p. 64

Petitioner Riot Games, Inc. - Ex. 1005, p. 65

.—.C—)(fic—)mC—)c—)) =c((c(c(

Uu

Chn
uu

Cnn

 ,_._c—)(—3c—)(—3 (<c(t(((

”$31785

"$31786

cctui787

stcui788

CCCZi789

CCCC

C

[

1790

3321791

...i

"$31802

Server\ntse

"C32607

"$32608

"$32609

tu2610

"332611

”332625

"232626

cu2671

22672

ut32673

Server\ntserv.c at lines 2607-73

"$33603

“"3604

""33608

""33609

uu610

""32611

”"22612

clientDead=l;

#endif

UDPDIAG(("*** UDP disconnected for %s\n”, me—>p_name));

printUdenfo();

closeUdeonn();

commMode = COMM_TCP;

}

}

M at lines 1747-802

gwrite(fd, wbuf, size)

int fd;

char *wbuf;

size_t size;

{

while (bytes>0) i

n = write(fd, wbuf, bytes);

}

return(orig);

}

updateCiient()

i

static int skip = U; /* If skip is set we skip next update

/* This can naive your updates */

if (send_snort && skip) {

skip = 0; /* back to default */

if (bufptr==buf && (commMode!=COMM_UDP 7| udpbufptr==buf))

34

Petitioner Riot Games, Inc. - EX. 1005, p. 65

Petitioner Riot Games, Inc. - Ex. 1005, p. 66

02222613 /* We sent nothing! We better send something to wake

1' */

2222614 if (me—>p_fue1 < 61000)

22222615 sendClientPaCket((0V01D) &c1ientSe1fShort);

02222616 e1se

02222617 sendClientPacket((CVOID) &client8e1f);

02222618 1

02222619 f1ushSockBuf();

22222620 repCount++;

22222621 return;

02222622)

[...

”2222630 if(send_short){

02222631 updatePlasmas();

02222632 updateStatus();

22222633 updateSe1f();

02222634 updatePhasers();

02222635 updateShips();

22222636 updateTorps();

22222637 updatePlanets();

02222638 updateMessages();

02222639 }

[m

02222657 if(send_short && (me~>p_fue1 < 61000))

”2222658 sendClientPacket((CV01D) &clientSe1fShort);

222659 else

2222660 #endif

2222661 sendClientPaCket((CVOID) &c11entSelf);

22662 }

[m

02222685 sendClientPing(); /* ping.c */

”2222686 #endif

22222687

2222688 f1ushSockBuf();

35

Petitioner Riot Games, Inc. - EX. 1005, p. 66

Petitioner Riot Games, Inc. - Ex. 1005, p. 67

00000689 repCount++;

00000690 }

Server\ntserv\socket.c at lines 603-90

02221603 sendClientPacket(packet)

02221604 /* Pick a random type for the packet */

2.1605 struct player_spacket *packet;

02221606 {

[---1

02221618 /*

02221619 * If we're dead, dying, or just born, we definitely want

t e transmission

02221620 * to get through (otherwise we can get stuck). 1 don't

t i“k this will

0.2.1621 * he a problem for anybody, though it might hang for a

hi: it the TCP

02221622 * connection is bad.

02221623 */

2.1624 /* Okay, now I'm not so sure. Whatever. */

2.1625 if (oldstatus != PALIVE 11 (me != NULL && me—>p_status !=

hill/E))

”221626 orig_type = packet->type 1 0x80; /* pretend it‘s critical

2221627 #endif

2221628 if (packet~>type<1 || packet—>type>NUM_SIZES l

22.21629 sizes[(int)packet—>type]==) {

02221630 ERROR(1,("Attempt to send strange packet %d %d\n", packet-

>tyoe,NUM_SlZES));

”2221631 return;

02221632 }

02221633 packetsSent[(int)packet->type]++;

22.21634 if (commMode == COMM_TCP 11 (commMode == COMM_UDP &&

tdp ode == MODE_TCP)) {

02221635 /*

M

Petitioner Riot Games, Inc. - EX. 1005, p. 67

Petitioner Riot Games, Inc. - Ex. 1005, p. 68

CCCCl636 * business as usual

02321637 */

[ml

w1647 bcopy(packet, bufptr, size);

"Cil648 bufptr+=size;

”$3l649

“$2l650) else)

”321651 /*

"$31652 * do UDP stuff unless it‘s a "critical" packet

scsil653 * (note that both kinds get a sequence number appended)

(FIX)

cc1654 */

[ml

02221728 default:

)hnmC—DC ((CCf

 02331729 /* these are critical packets; send them via TCP */

uccsl730 size=sizes[packet—>type];

0333-731 if (bufptr~buf+size >= BUFSIZE) {

CCCZH732 t=bufptr—buf;

””CCW733 if (gwrite(sock, buf, t) != t) {

ussul734 perror("TCP gwrite failed, client marked dead");

0”CZ 735 clientDead=1;

Chic 736)

setinl37 bufptr=buf /*+ addSequence(buf)*/;

0222-738)

”"CZM739 bcopy(packet, bufptr, size);

”"3""740 bufptr+=size;

sllldl break;

succl742)

u w1743)

0””21744 }

Server\ntserv\s0cket.c at lines 1603-744

hmmnudmg,bysmd 00001603 sendClientPacket(packet)

savernasmdunkam 0000l604 /* Pick a random type for the packet */

N

Petitioner Riot Games, Inc. - EX. 1005, p. 68

nawmk,wki 0001605 struct player_spacket *packet;

aggregated message to a 0001606 {

recipient host computer ...]

behngfigtosmdfkm 0001639 if (bufptr-buf+size >= BUFSIZE) {

message group. 0001640 t=bufptr-buf;
0001641 if (gwrite(sock, buf, t) != t) {

0001642 perror("std gwrite failed, client marked dead ");

0001643 clientDead=1;

0001644 }

0001645 bufptr=buf;

0001646 }

0001647 bcopy(packet, bufptr, size);

0001648 bufptr+=size;

0001649

0001650 } else {

"J

0001731 if (bufptr-buf+size >= BUFSIZE) {

0001732 t=bufptr-buf;

0001733 if (gwrite(sock, buf, t) != t) {

0001734 perror("TCP gwrite failed, client marked dead");

0001735 clientDead=1;

0001736 }

0001737 bufptr=buf /*+ addSequence(buf)*/;

0001738 }

0001739 bcopy(packet, bufptr, size);

0001740 bufptr+=size;

0001741 break;

0001742

0001743 }

0001744 }

Server\ntserv\socket.c at lines 1603-744

C

C

[

C

C

C

C

C

C

C

C

C

C

C

C

[

C

C

C

C

C

C

C

C

C

C

C

C

C

C

00000603 updateClient()

00000604 {

38

Petitioner Riot Games, Inc. - Ex. 1005, p. 69

Petitioner Riot Games, Inc. - Ex. 1005, p. 70

[ml

00000688 flushSockBuf();

00000689 repCount++;

00000690 }

Server\ntserv\socket.c at lines 603-90

w1747 flushSockBuf()

"22l748 {

”1755 if (gwrite(sock, but, t) != t) {

2221756 perror("std flush gwrite failed, client marked dead");

2221757 clientDead=l;

""2l758 }

)mC—J.—.C—)(()1((0

[

0222l782 if (gwrite(udpSock, udpbuf, t) != t){

0222l783 perror("UDP flush qwrite tailed, client marked dead once

rore");

[ml

20001791 }

[ml

0000l802 }

Server\ntserv\socket.c at lines 1747-802

02222607 gwrite(fd, wbuf, size)

02222608 int id;

””222609 char *wbuf;

02222610 size~t size;

22222611 {

[---]

02222625 while (bytes>0) {

02222626 n = write(fd, wbuf, bytes);

02222627 if (count++ > 100) {

02222628 ERROR(l,("Gwrite hosed: too many writes

(%d)\n",qetpid()));

E

Petitioner Riot Games, Inc. - EX. 1005, p. 70

Petitioner Riot Games, Inc. - Ex. 1005, p. 71

00002620 clientDead = 1;

00002630 return (-1);

00002631 }

1. . .1

00002671 }

00002672 return(orig);

00002673 }

Server\ntserv\socket.c at lines 2607-73

“”1125 updateTorps()

”221126 {

U 32 for (i=0, torp=torps, tpi=c11entTorp31nfo, tp=c1ientTorps;

” C C33 i<MAXPLAYER*MAXTORP;

34 i++, torp++, tpi++, tp++) {

"CC__42 sendClientPacket(tpi);
.—-(fi.—.m(—3C_)—.m(j -r-c(C)-r) .-(c3- 00001151 sendClientPacket(tp);

1...

03221191 }

0””21192 }

Server\ntserv\socket.c at lines 1125-92

 2.Thenw0md0fdam1 """22 52 liput()

lwhadnsmdthne C"C”C 53 {

inuivflisafixedpefiod VVCCC"54 s:ruct itimerval udt;

offinm. “""""155 fd_set readfds,

w232156 s:atic struct timeval p011 = {2, 0};

C"C”"57

03223 58 #ifdef DS

”””"""59 if (lme—>p_process)

02022 60 #endif

03:33 61 1

40

Petitioner Riot Games, Inc. - EX. 1005, p. 71

00000162 udt.it_interval.tv_sec = 0;

00000163 udt.it_interval.tv_usec = timerDelay;

00000164 udt.it_value.tv_see = 0;

00000165 udt.it_value.tv_usec = timerDelay;

00000166 setitimer(ITIMER_REAL, &udt, 0);

00000167 }

00000168 SIGNAL(SIGALRM, setflag);

Server\ntserv\input.c at lines 152-168

00000076 int timerDelay=200000; /* delay between sending stuff to

client */

Server\ntserv\data.c at line 76

3.Thenwmodofchhn 00000195 readFromClient();

lwherein said time Server\nlserv\input.c at line 195

interval corresponds to

a time for said sewer to 0000152 input ()

nxdveafleutone 0000153 {

message fromeachhost 0000154 struct itimerval udt;

compumrbebngmgto 0000155 fd_Set readfds;

nndfimtnwsmge 0000156 static struct timeval poll = {2, 0};

goup. 0000157

C

C

0

C

C

C

00000158 #ifdef DS

00000159 if (!me—>p_process)

00000160 #endif

00000161 {

C 000162 udt.it_interval.tv_sec = 0;

C 000163 udt.it_interval.tv_usec = timerDelay;

C 000164 udt.it_va1ue.tv_sec = 0;

C 000165 udt.it_va1ue.tv_usec = timerDelay;

0 000166 setitimer(ITIMER_REAL, &udt, 0);

0 000167 }

C 000168 SIGNAL(SIGALRM, setflag);

0 000169

QOQQOQQO
41

Petitioner Riot Games, Inc. - EX. 1005, p. 72

00000170 /* Idea: read from client often, send to client

not so often */

00000171

00

00000195

00

00000203

00000204

while (1) {

readFromClient();

}

}

Server\ntserv\input.c at lines 152-203

00000076 int

client */

timerDelay=200000; /* delay between sending stuff to

Server\ntserv\data.c at line 76

0000604 {

"J

0000608

/

0000610

0000611

0000612 0000603 updateClient()

static int skip = 0; /* If skip is set we skip next update

0000609 /* This can halve your updates */

if (send_short && skip) {

skip = 0; /* back to default */

if (bufptr==buf && (commMode!=COMM_UDP || udpbufptr==buf))

/* We sent nothing! We better send something to wake

if (me->p_fuel < 61000)

sendClientPacket((CVOID) &clientSelfShort);

else

sendClientPacket((CVOID) &clientSelf);

flushSockBuf();

repCount++;

return;

42

Petitioner Riot Games, Inc. - Ex. 1005, p. 73

03000622

03

03000630 if(send_short){

00000631 updatePlasmas();

03000632 updateStatus();

00000633 updateSe1f();

03000634 updatePhasers();

00000635 updateShips();

03000636 updateTorps();

03000637 updatePlanets();

00000638 updateMessages();

03000639 }

1...]

03000657 if(send_short && (me->p_fue1 < 61000))

03000658 sendClientPacket((CVOID) &c1ientSe1fShort);

00000659 else

00000660 #endif

00000661 sendClientPacket((CVOID) &clientSe1f);

0000662 }

03

00000685 sendClientPing();

00000686 #endif

00000687

00000688 f1ushSockBuf();

00000689 repCount++;

00000690 }

Server\ntserv\socket.c at lines 603-90

00000052 intrupt();

Server\ntserv\input.c at lines 52

00000197 intrupt();

Server\ntserv\input.c at lines 197

43

Petitioner Riot Games, Inc. - EX. 1005, p. 74

00001390 updateMessages()

0

[

0

0001391 {

..]

001590 }0

Server\ntserv\socket.c at lines 1390-590

C

C

[

C

C

C

C

&

C

C

&

C

C

[

C

0001390 updateMessages()

0001391 {

...]

0001563

0001564

0001565

0001566

MALL))

0001567

0001568

MTEAM)){

0001569

0001570

"J

0001590 }

if (cur->m_from==DOOSHMSG) msg.m_fr0m=255; /* god */

if ((cur->m_from < 0) || (cur->m_from > MAXPLAYERH

sendClientPacket((CVOID) &msg);

else if (cur->m_flags & MALL && !(ignored[cur—>m_from]

sendClientPacket((CVOID) &msg);

else if (cur->m_flags & MTEAM && !(ignored[cur->m_from]

sendClientPacket((CV01D) &msg);

}

Server\ntserv\socket.c at lime 1390-590

0

C

[

C

C

C

C

C

C

C

C

0001825 readFromClient()

0001826 {

...]

0001838

0001839

0001840

0001841

0001842

0001843

0001844

0001845

 if (select(32,&readfds,0,0,&timeout) != 0) {

/* Read info from the xtrek client */

if (FD_ISSET(sock, &readfds)) {

retval += doRead(sock);

}

if (udpSock >= 0 && FD_ISSET(udpSock, &readfds)) {

V_UDPDIAG(("Activity on UDP socket\n"));

retval += doRead(udpSock);

Petitioner Riot Games, Inc. - Ex. 1005, p. 75

0001846 }

0001847 }

0001848 return (retval != 0); /* convert to 1/0 */

0001849 }

0001850

...1

0001855 /* ripped out of above routine */

0001856 doRead(asock)

0001857 int asock;

0001858 {

0001859 struct timeval timeout;

...]

0001877 /* Read info from the xtrek server */

0001878 count=read(asock,buf,BUFSIZ*2);

...]

0001916 bufptr=buf;

0001917 while (bufptr < buf+count) {

...1

0001939 while (size>count+(buf—bufptr)) {

0001940 /* We wait for up to twenty seconds for rest of packet.

0001941 * If we don't get it, we assume the client

died.

0001942 */

0001943 timeout.tv_sec=20;

0001944 timeout.tv_usec=0;

0001945 /*readfds=l<<asock;*/

0001946 FD_ZERO(&readfds);

0001947 FD_SET(asock, &readfds);

...1

0001956 temp=read(asock,buf+count,size-(count+(buf-bufptr)));

...1

0001966

...1

0002010 (*(handlers[*bufptr].handler))(bufptr);

45

Petitioner Riot Games, Inc. - Ex. 1005, p. 76

Petitioner Riot Games, Inc. - Ex. 1005, p. 77

CC " Cll }

CC 312 /* Otherwise we ignore the request */

013 l else {

get “14 ERROR(1,("Handler for packet %d not installed...\n",

*bef tr)),

" 215 l

316 bufptr+=size;

" 217 if (bufptr>buf+BUFSlZ) {

" "18 bcopy<buf+BUFsrz, buf, BUFSIZ);

" Cl9 if (count==BUFSlZ*2) {

" 320 /*readfds = l<<asock;*/

021 FD_ZERO(&readfds);

"22 FD_SET(asoek, &readfds);

" 323 if (select(32,&readfds,0,0,&timeout)) {

” 224 temp=read(asock,buf+BUFSlZ,BUFSlZ);

“25 count=BUFSIZ+temp;

" 334 } else {

" 335 C0unt=BUFSlZ;

036 }

" "37 } else {

e 038 count ~=BUFSIZ;

" 339 l

" :40 bufptr—=BUFSIZ;

"41 }

"42 }

" 343 return(l);

UVU02044 }

Server\ntserv\socket.c at lines 1825-2044

0 €()()()€f)()€()()-f()()()C(3(()()()((()() ()(J(((:(((.((z¢;((((z<)(((()(NNNNNNNNNNI—‘wamwmwmmwm'b[\JNNN
00000021 intrupt()

00000022 {

[..-l

00000ll4 updateClient();

46

Petitioner Riot Games, Inc. - EX. 1005, p. 77

Petitioner Riot Games, Inc. - Ex. 1005, p. 78

00000115 }

Server\ntserv\redraw.c at lines 21-115

4. The method of claim

1 further comprising the

step of creating, by one

of said plurality of host

computers, said first

message group by

sending a first control

message to said server
Via said unicast

network.

"357 entrywindow(team, s_type)

03333358 int *team, *s_type;

1.. l

33333374 /* The following allows quick choosing of teams */

03333375

03333376 iftfastQuit)l

33333377 *team = —1;

333378 return;

"“7“ }

03333380

l.-.l

03333182 switch ((int) event.type) {

l...l

33333260 case hLElLBUTTON:

03333261 if (typeok ==)

3333262 break;

33333263 for (i = 0; i < 4; i++)

”3333264 if (event.Window == teamWinli]) {

""33265 *team = i;

03333266 break;

03333267 }

03333268 if (event.Window == qwin /* new */ aa

03333269 event.type == W_EVmBUTTON) {

03333270 *team = 4;

"""""271 break;

”"272 }

03333273 if (*team 1: —1 as !teamRequest(*team, *swtype)) {

03333274 *team = —1;

03333275 }

”3””"276 break;

03333319 /* Attempt to pick specified team a ship */

47

Petitioner Riot Games, Inc. - EX. 1005, p. 78

Petitioner Riot Games, Inc. - Ex. 1005, p. 79

03333321

3333322 {

33323

3333324

3333325

”333326

3333327

3333328

Utt33329

C3333330

03t33331

3333332

3333333

"333334

)h(—3(—3C_)C ((c(t (c(

3333340

3333341

”333342

Utt03343

33333344

33330345

3tt33346

03333347

33333348

3"3349

tt33350

3U33351

U 333352

C3333353 }

3(flh.—C—)D Cr-c(c.(

brmh-1.7\entrywin.c at lines 57-353

00001800 sendTeamReq(team, ship)

00001801

03333320 teamRequest(team, ship)

int team, ship;

iht iastTime;

pickOk = —1;

sendTeamReq(team, ship);

lastTime = time(NULL);

while (pickOk == ~1) {

if (lastTime + 3 < time(NULL)) {

setheamReq(team, ship);

}

socketPause();

readFromServer(NULL);

if (isServerDead()) {

if (udpSock >= 0)

cioseUdeOhh();

if (udeih) {

udprefresh(UDP_CURRENT);

udprefresh(UDPfiSThTUS);

}

connectToServer(nextSOCket);

printf("Yea! We've been resurrected!\n");

pickOk = 0;

break;

1

i

return (pickOk);

int team, ship;

48

Petitioner Riot Games, Inc. - EX. 1005, p. 79

Petitioner Riot Games, Inc. - Ex. 1005, p. 80

5 . The method of claim

00001802 {

00001803

00001804

00001805

00001806

00001807

00001808

00001809 }

brmh-1.7\entrywin.c at lines 1800-09

struct outfit_cpacket outfitReq;

outfitReq.type = CP_OUTFIT;

outfitReq.team = team;

outfitReq.ship = ship;

sendServerPacket((struct p1ayer_spacket *) & outfitReq);

333357 entrywindow(team, s_type)

4mnhmcompnwngme ""58 int *temm *s_type;

Mepofjonnng,bysone ..-i

ofswdphwnnyofhow 03333374 /* The following allows quick choosing of teams */

c0nmukm,sfidflmt 03333375

mewagegoupby "3""3376 iftfastQuitii

senmngconwoi 33333377 *team = ‘1;

mewagesfiasmd 53333378 return;
unicast network to said u 3 C 3 3 3 79 1

server specifying said 3 3 3 3 3 380

first message group. i- - - 1
”3333182 switch ((int) event.type) {

i...i

33333260 case W_EV_BUTTON:

03333261 if (typeok ==)

03333262 break;

03333263 for (i = 0; i < 4; i++)

”"3""264 if (event.Window == teamWinli]) {

”"265 *team = i;

03333266 break;

03333267 }

03333268 if (event.Window == qwin /* new */ &&

”3””"269 event.type == W_EV_BUTTON) {

03333270 *team = 4;

49

Petitioner Riot Games, Inc. - EX. 1005, p. 80

Petitioner Riot Games, Inc. - Ex. 1005, p. 81

"”33271 break;

C2332272 }

“U273 if (*team != *1 && !teamRequest(*team, *s_type))

Uttuu274 *team = ~i;

CCCZZZ75 }

62232276 break;

C23223i9 /* Attempt to pick specified team & ship */

CCCCC320 teamRequest(team, ship)

""333321 int team, ship;

Utt23322 {

CCCCCBZB int iastTime;

Uttia324

"333325 pickOk = —1;

C3222326 sendTeamReq(team, ship);

C2333327 iastTime = time(NULL);

Uttua328 while (pickO == —1) {

C2233329 if (lastTime + 3 < time(NULL)) {

CCCCZ330 setheamReq(team, ship);

”““23331 }

Uttuu332 socketPause();

C”CCC333 readFromServer(NULL);

Ctiee334 if (isServerDead()) {

[...

C2222340 if (udpSock >= 0)

"332341 cioseUdeonh();

C"C342 if (udein) {

t22343 udprefresh(UDP_CURRENT);

etuv344 udprefresh(UDP_STATUS);

“U345 }

”33346 connectTOServer(nextSocket);

$22347 printf("Yea! We've been resurrected!\n");

“"32348 pickOk = 0;

Utt2u349 break;

””22350 }

iL

5|)

Petitioner Riot Games, Inc. - EX. 1005, p. 81

00000351 }

00000352 return (pickOk);

00000353 }

brmh-l.7\entrywin.c at lines 57-353

00001800 sendTeamReq(team, ship)

00001801 int team, ship;

00001802 {

00001803 struct 0utfit_cpacket outfitReq;

00001804

00001805 outfitReq.type = CP_OUTFIT;

00001806 outfitReq.team = team;

00001807 outfitReq.ship = ship;

00001808 sendServerPacket((struct p1ayer_spacket *) & outfitReq);

00001809 }

brmh-l.7\socket.c at lines 180009

6.Thememodofdmn1 0000179 int connectionAttemptDetected(num_progs)

lwhmemsmdneWka 0000180 int numLprogs;

is lntemetand 0000181 {

...1

0000192 /* check all ports */

0000193 for (i = 0; i < num_progs; i++) {

0000194 sock = prog[i].sock;

0000195 if(sock < 0){

0000196 if((sock = socket(AF_INET, SOCK_STREAM, 0)) < 0){

0000197 fprintf(stderr,"Hey! I can‘t make a socket!\n“);

0000198 fprintf(stderr,"1‘11 try again \n");

0000199 return(‘1);

0000200 }

...]

0000214 if(bind(sock, &addr, sizeof(addr)) < 0){

...1

0000227 if (bind(sock, &addr, sizeof(addr)) < 0) {

51

Petitioner Riot Games, Inc. - EX. 1005, p. 82

Petitioner Riot Games, Inc. - Ex. 1005, p. 83

)h(—3(—3C_)C ((ac(t ((c(

)C_).—.Ohc ().C)f (-t(c
““23237 }

ttuc238 l

““239 }

""23240 if(listen(sock, l)<0) {

””32241 fprintf(stderr,"Listen failed:'W;

"22242 reporterror();

”322243 sock = —1;

"333244 }

t23245 progli].sock=sock;

”"32246 /* close(0); */

cc247 fprintf (stderr,"listening on %d, connection will

22248 progli].port, prog[i].prog, prog[i].progname,

33249 progli].arg[0], progli].arg[l], prog[i].arg[2],

”"33250 fflush (stderr);

""32251 }

“$23252 l

tt253

”22254 while (1) /* Wait for a connection */

"tt255 {

”22271 for (i = 0; i < num_progs; i++)

"”32272 {

C"3273 sock = proglil.sock;

22274 if (sock < O)

ttcu275 continue;

tu276 if (FD_ISSET (sock, &accept_fds))

”33277 /* found a connection, procede */

"$32278 goto found;

”"32279 }

uct2t280 }

””22281 }

; %s \"%s\" %s %s %s %s\n",

il .arql3ll;

Petitioner Riot Games, Inc. - EX. 1005, p. 83

Petitioner Riot Games, Inc. - Ex. 1005, p. 84

[...]

00000311 }

Server\newstartd\newstartd.c at lines 179-311

00000442 connectToClient(machine, port)

00000443 char *machine;

00000444 int port;

00000445 {

[...1

00000456 ERROR(3,("Connecting to %s through %d\n", machine, port));

[...]

00000478

00000479 if (conneot(ns, aaddr, sizeof(addr)) < 0) {

00000480 ERROR(3,("I cannot connect through port %d\n", port));

00000481 close(ns);

00000482 return(0);

00000483 }

00000484 sock=ns;

00000485 initClientData();

00000486 testtime = —1;

00000487 return(l);

00000488 }

Server\ntserv\socket.c at lines 442-88
 shdsmver

communicates with said

plurality of host

computers using a

86% ” ” ‘ ” ” yer protocol.

 ""22 79 int connectionAttemptDetected(num_progs)

C"C”C 80 int num_progs;

"CC 81 {

"CC 92 /* check all ports */

C"C"n93 for (i = 0; i < num_progs; i++) {

03223 94 sock = prog[i].sock;

”"”""n95 iftsock < 0){

CCoCC 96 if((sock = sockettAFMINET, SOCK_STREAM, 0)) < 0)1

02333 97 fprintf(stderr,"Hey! I can't make a socket!\n");

Petitioner Riot Games, Inc. - EX. 1005, p. 84

C

C

C

[

C

[

C

[

C

C

C

C

C

C

C

C

C

C

C

C

C C

C

C

C

C

[

C

C

C

C

0000198

0000199

0000200

...1

0000214

...1

0000227

...1

0000237

0000238

0000239

000C240

0000241

0000242

0000243

000C244

000C245

000C246

0000247

000C248

0000249

0000250

0000251

000C252

0000253

0000254

0000255

...1

0000271

0000272

0000273

0000274

}

fprintf(stderr,"l'll try again \n");

return(-1);

if(bind(sock, &addr, sizeof(addr)) < 0){

}

if (bind(sock, &addr, sizeof(addr)) < 0) {

}

}

if(listen(sock, 1)<0) {

}

fprintf(stderr,"Listen failed: ");

reporterror();

sock = -l;

prog[i].sock=sock;

/* close(0); */

}

}

fprintf (stderr,"listening on %d, connection will

start %s \"%s\" %s %s %s %s\n",

prog[i].port, Progliloprogl prog[i].progname,

prog[i].arg[0], prog[i].arg[l], prog[i].arg[2],

prog[i].arg[3]);

fflush (stderr);

while (1) /* Wait for a connection */

{

for (i = 0; i < num_progs; i++)

{

sock = prog[i].sock;

if (sock < 0)

Petitioner Riot Games, Inc. - Ex. 1005, p. 85

Petitioner Riot Games, Inc. - Ex. 1005, p. 86

03333275 continue;

02332276 if (FD_ISSET (sock, &accept_fds))

“U277 /* found a connection, procede */

00000278 goto found;

02233279 }

02232280 }

C”322281 4

[.--i

"$33311 }

Server\newstartd\newstartd.c at lines 179-31

00000493 struct mesgwcpacket {

00000494 char type; /* CP_MESSAGE */

00000495 u_char group;

00000496 char indiv;

00000497 char padl;

00000498 char mesq[MSG_LEN];

00000499 };

Server\packets.h at lines 493-99

55

Petitioner Riot Games, Inc. - EX. 1005, p. 86

Petitioner Riot Games, Inc. - Ex. 1005, p. 87

CC-C

Petitioner Riot Games, Inc. - EX. 1005, p. 87

Petitioner Riot Games, Inc. - Ex. 1005, p. 88

Claim Chart comparing Claims 1, 2, and 4-6 of US. Patent No.

5,822,523 to the disclosure in Van Hook in view DIS

Prior art cited in this chart:

0 Daniel J. Van Hook, James 0. Calvin, Michael K. Newton. and David A. Fusco, “An Approach to DIS Scaleability," llth DIS
Workshop, 26-30 Sept. 1994 (“Van Hook”).

0 IEEE 1278-1993 IEEE Standard for Information Technology Protocols for Distributed Interactive Simulation Applications,

approved March 18, 1993, and published in 1993 (“DIS”).

' Michael R. Macedonia. “Exploiting Reality with Multicast Groups”, published September 1995 (“Macedonia”)

Reasons to Combine:

Van Hook discloses techniques that have been developed and deployed for ARPA’s Synthetic Theater of War (STOW)

program and Distributed Interactive Simulation (DIS), wherein a virtual world simulates battlefield conditions, and “[e]xp1icit

representations of command, control, and communication are required to permit command forces to transmit orders to and receive

reports from a new generation of more intelligent semi-automated forces. Van Hook at p. 1. Likewise, DIS is part of a proposed set

of standards for the Distributed Interactive Simulation (DIS) used in conjunction with the STOW program in Van Hook. DIS at pp. 1-

3. Van Hook provides for bundling of the PDUs from host computers by the AG server into larger transmission packets to be

distributed to other packets. Id. at pp. 2 and 7. IDS goes one step further to discuss the anatomy of a packet, as the PDU packets

disclosed in DIS include a PDU header, an ID denoting a host computer (Entity ID) as well as a message group (Force ID), and the

PDU message relating to positional information of the entity. DIS at Table 18. Pp. 40-41. It would have been obvious to a person of

ordinary skill in that art to combine the teachings of bundling packets, or PDUs, in a Distributed Interactive Simulation disclosed in

Van Hook with the teachings of the contents of a PDU in a Distributed Interactive Simulation as disclosed in DIS.

to

Petitioner Riot Games, Inc. - EX. 1005, p. 88

Claims of the ‘523 Patent

1. A method for provrdrng

group messages to a

plurality of host computers
connected over a unicast

wide area communication

network. comprising the

steps of:

. . . Diselosureof Van:Hook, DISsand Macedonia ,. ,. , .

“With the advent of ARPA 5 Synthetic Theater of War (STOW) program and the continued
development of Distributed Interactive Simulation (DIS), the scope of the problem has changed

substantially. Under STOW and related programs, the virtual world must expand substantially -— in

area. total population, and the types of entities represented."

Van Hook at p. 1.

“For these reasons. it has become necessary to reexamine the approach used to distribute information

across the network. Several innovative algorithms have been suggested for reducing the amount of

traffic transmitted, transported, received, and processed. Under ARPA’s Scaleability project, several

Bandwidth Reduction Techniques (BRTs) are being explored. evaluated analytically and in simulation,

and implemented in an Application Gateway (AG) residing at the LAN/WAN interface for each

participating site in this Fall's STOW-Europe (STOW-E) demonstration."

Van Hook at p. 1.

“Major characteristics of STOW-E are:

0 Live. virtual and constructive simulations

' Wide area connectivity provided by the Defense Simulation lntemet (DSI) Wide Area Network

(WAN)

' 24 network sites in the continental US and Europe: 18 directly on the D51, the remaining

bridged

0 Approximately 2,000 interacting DIS entities

0 Two security levels: Secret No-Foreign and USI

' DIS 2.0.3 protocols

Numerous legacy systems and simulators"

Van Hook at p. 1.

Petitioner Riot Games, Inc. - Ex. 1005, p- 89

Renae t. Amman Gamay marksman prison the term

Figure l of Van Hook at p. 4.

“On the WAN side, the AG transmits / receives to/ from a subnet broadcast address on a well known

UDP port. The WAN essentially bridges traffic between sites that are members of a multicast group.

0n the LAN side. the AG runs in promiscuous mode, receiving all packets transmitted on the site
LAN."

Van Hook at pp. 4-5.

“distributed interactive simulation (DIS). A time and space coherent synthetic representation of

world environments designed for linking the interactive, free-play activities of people in operational

exercises. The synthetic environment is created through the real-time exchange of data units between

distributed, computationally autonomous simulation applications in the form of simulations. simulators.

and instrumented equipment interconnected through standard computer services. The computational

simulation entities may be present in one location or may be distributed geographically."

DIS at p. 3.

“3.17 host computer: A computer that supports one or more simulation applications. All host

computers participating in a simulation exercise are connected by a common network."

DIS at p. 4.

“Data messages, called protocol data units (PDUs) that are exchanged between simulation applications

are defined. These PDUs provide information concerning simulated entity states and the types of entity

interactions that take lace in a distributed interactive simulation (DIS).”

Petitioner Riot Games, Inc. - Ex. 1005, p- 90

Petitioner Riot Games, Inc. - Ex. 1005, p. 91

DIS at Abstract.

“3.33 unicast: A transmission mode in which a single message is sent to a single network destination,

that is, one-to—one.”

DIS at p. 5.

“The communication services require by each DIS PDU are described in detail in IST-CR-92—6. A brief

summary of the basic communication services necessary for DIS is as follows:

a) Data transfer. Each simulation application must be able to transfer data to another simulation

application on the network in a single operation, with or without first establishing a logical

connection with the destination computer. The unit of data passed in a single operation is called

a packet.

b) Delivery. The communication architecture must support either, multicast, broadcast, or unicast

packets. Multicast packets are delivered to a subset of all computers on a network. Broadcast

packets are delivered to all computers on a network. (Broadcasting is actually a special kind of

multicast.) Unicast packets are delivered to a single computer on a network.

c) Best eyj’ort service. The communication architecture should support best effort delivery.

Although DIS simulation applications will tolerate occasional failures of the network to deliver

packets, these should be allowed to occur only rarely.

d) Parker integrity. The communication protocols should be capable of detecting transmission

errors associated with the network. Corrupted packets should not be delivered to the simulation

application.

e) Performance requirements. The communication architecture should provide a certain level of

performance characterized in terms of throughput and delay. Both network delay and network

delay variance are to be minimized.”

DIS at p. 10.

providing a group

messaging server coupled

to said network, said server

communicating with said

plurality of host computers

“Exercise scale. The large number of entities involved in STOW-E will produce offered loads of as

much as four megabits and perhaps up to 2,000 packets per second. Such traffic levels will severely tax

all simulation computers even if unlimited communications resources were available.”

Van Hook at p. l.

Petitioner Riot Games, Inc. - EX. 1005, p. 91

using said unicast network

and maintaining a list of

message groups, each

message group containing

at least one host computer.

“Explicit representations of command, control, and communication are required to permit command

forces to transmit orders to and receive reports from a new generation of more intelligent semi-

automated forces. These new elements and phenomena require new protocols and generate new classes

of traffic that must be carried on the connecting networks."

Van Hook at p. 1.

“A component of ARPA’s approach to scaleability for STOW-E is to implement cooperating and

complementary instances of a number of the information flow management techniques in an Application

Gateway (AG) situated at the LAN/WAN boundary of each participating network site (figure 1). The

AG may be thought of as a collection of information flow management agents [4] that perform services

on behalf of their clients the simulation applications. The purpose of these agents is to compensate for

and efficiently use the available communication and processing resources. Each AG processes PDUs

received from its attached LAN and sends representation of local exercise state and events to other AGs

over the WAN, Similarly, each AG receives representations of remote state and events from other AGs
over the WAN and sends PDUs onto its attached LAN. Communication between AGs is via an

Application Gateway to Gateway Protocol (AGGP). AGGP supports communication of control

information related to the information flow management techniques as well as representations of
exercise state and events.”

Van Hook at p. 4.

Faye: t, Apoiiestee Gateway maritime wiser: the tier-wort

Figure 1 of Van Hook at p. 4.

”The al orithm 0 rates as follows. The terrain is divided into a ‘d of s uare cells b each AG. A

Petitioner Riot Games, Inc. - Ex. 1005, p- 92

square grid is used because it makes calculations simple and permits regions of the terrain to be

specified as a list of cells. Each AG determines the set of cells from which it needs to receive full

accuracy data. This set consists of those cells that overlay the circular regions of interest of the entities

at the AG‘s site LAN. Figure 5 illustrates this idea by showing three entities and their circular regions

of interest. For determining the full accuracy region. the AGs use regions of interest that are based upon

the viewing ranges of the entities on the site LAN. The set of cells for which full accuracy data is

needed is outlined in the figure. All AGs transmit their cell sets to each other. The full accuracy region

for any AG consists of the union of the sets of cells received from all other AGs."

Van Hook at p. 6.

Figure 5' Celts tot which tall amass; is required

Fi ure 5 of Van Hook at .6.

Petitioner Riot Games, Inc. - Ex. 1005, p. 93

Petitioner Riot Games, Inc. - Ex. 1005, p. 94

“6.2. [4 Force ID

This field shall distinguish the different teams or sides in a DIS exercise.”

DIS at p. 36.

sending, by a plurality of “The DIS protocols support the exchange of information about the state of the entities participating in an

host computers belonging exercise and events related to their activities and interactions.”

to a first message group, Van Hook at p. 2.

messages to said server via

said unicast network, said “A grid-based relevance filtering algorithm is incorporated into the AG. It operates on Entity State

messages containing a PDUs originating on an AG’s site LAN as well as those arriving from remote AGs via the WAN, as

payload portion and a shown in figure 4.”

portion for identifying said Van Hook at p. 5.

first message group;

“The algorithm operates as follows. The terrain is divided into a grid of square cells by each AG. A

square grid is used because it makes calculations simple and permits regions of the terrain to be

specified as a list of cells. Each AG determines the set of cells from which it needs to receive full

accuracy data. This set consists of those cells that overlay the circular regions of interest of the entities

at the AG’s site LAN. Figure 5 illustrates this idea by showing three entities and their circular regions

of interest. For determining the full accuracy region, the AGs use regions of interest that are based upon

the viewing ranges of the entities on the site LAN. The set of cells for which full accuracy data is

needed is outlined in the figure. All AGs transmit their cell sets to each other. The full accuracy region

for any AG consists of the union of the sets of cells received from all other AGs.”

Van Hook at p. 6.

“The Entity State PDU shall communicate information about an entity’s state. This include state

information that is necessary for the receiving simulation applications to represent the issuing entity in

the simulation applications” own simulation.”

DIS at p. 14.

“A PDU header record shall be the first part of each PDU. This record is represented in table 14. The

fields of the PDU header record are described in the following four items (see also 5.5.1).

Petitioner Riot Games, Inc. - EX. 1005, p. 94

Petitioner Riot Games, Inc. - Ex. 1005, p. 95

a) Protocol version. Thisfield shall specify the version of protocol used in thisPDU. Protocol

data units found in this standard shall be specified as version 2. This field shall be specified by
an 8-bit enumeration.

b) Erercise identification. Thisfield shall specify the exercise to which the PDU pertains. The

value contained in this field shall not be equal to zero. This field shall be represented by an

Exercise Identifier (see 62.13).

c) Protocol data unit type. This field shall indicate the type of PDU that follows. This field shall

be represented by an 8-bit enumeration. The values in this field are defined in Section 4 in IST-

CR-92-l6.

d) Length. This field shall specify the length of the PDU in 32-bit words. This field shall be

represented by an 8-bit unsigned integer.”

DIS at p. 36.

“Information about a particular entity shall be communicated by issuing an Entity State PDU. The

Entity State PDU shall contain the following fields:

a) PDU header. This field shall contain data common to all DIS PDUs. The PDU header shall be

represented by the PDU Header Record (see 6.2.15).

b) Entity Identification. This field shall identify the entity issuing the PDU. This field shall be

represented by an Entity 1dentifier Record (see 6.2.8).

c) Force identification. This field shall identify the force to which the issuing entity belongs. This

field shall be represented by an 8-bit enumeration (see Section 4 in lST-CR-92—l 6).

d) Entity type. This field shall identify the entity type to be displayed by members of the same

force as the issuing entity. This field shall be represented by an Entity Type Record (see 6.2.10

and Section 6 in IST-CR-92-16).

e) Alternate entity type. This field shall identify the entity type to be displayed by members of

forces other than that of the issuing entity. This field shall be represented by an Entity Type

Record (see 6.2.10 and Section 4 in IST-CR—92-16).

f) Timestamp. This field shall specify that time at which the data in the PDU is valid. This field

shall be represented by a timestamp (see 6.2.19).

g) Entity location. This field shall specify an entity’s physical location in the simulated world.

This field shall be represented by a World Coordinates Record (see 6.2.21).

Petitioner Riot Games, Inc. - EX. 1005, p. 95

h) Entity linear velocity. This field shall specify an entity’s linear velocity. This field shall be

represented by a Linear Velocity Vector Record (see 6.2.20.3).

i) Entity orientation. This field shall specify an entity’s orientation. This field shall be represented

by a Euler Angles Record (see 6.2.1 1.). .

DIS at p. 39.

We to—Emny Sim PW

Emit) State I'Dtl mot

i Famine torsion—thitmnemnei-.._..._.._.... .—

l‘auzcrw iiiwx‘ibit (meted misfit"
10

Petitioner Riot Games, Inc- - Ex. 1005, p- 96

§MWSW§W$

Meson: w‘ min‘
3 iygx‘,

.... ... "mush

? W5 mixingm:Inuwu-v “nun-““hv «mu

Table 18 or 015 at pp. 4041.

”3.33 unicasl: A transmission mode in which a sin 1e network destination,

11

Petitioner Riot Games, Inc. - Ex. 1005, p. 97

Petitioner Riot Games, Inc. - Ex. 1005, p. 98

that is, one-to-one.”

DIS at p. 5.

aggregating, by said server “Bundling. Network components such as switches, routers, and encryption devices as well as

in a time interval simulation host computers have limitations in the rate at which they may process packets. Rather than

determined in accordance transmitting each DIS PDU as an individual packet, multiple PDUs may be bundled together into larger

with a predefined criterion, packets before transmission. Bundled packets are transmitted when either of two conditions are

said payload portions of satisfied: when a maximum size has been reached (the packet under construction is full of PDUs); or

said messages to create an when a maximum time has passed without another PDU arriving. The dominant effect of bundling is to

aggregated payload; reduce packet rates. Additionally, bundling reduces bit rates because fewer packet headers are sent.”

Van Hook at p. 2.

“4.6 Bundling

The AG collects AGGP PDUs and bundles them into larger packets for transmission over the WAN.

The purpose of the bundling algorithm is to reduce the number of packets that are transmitted. The

bundling algorithm has two parameters, a maximum bundle size and a maximum delay time. PDUs are
added to a bundle until either the maximum size is reached or the first PDU is the bundle has been

delayed by the maximum delay time. At this point, the bundle is transmitted.”

Van Hook at p. 7.

forming an aggregated “Bundling. Network components such as switches, routers, and encryption devices as well as

message using said simulation host computers have limitations in the rate at which they may process packets. Rather than

aggregated payload; and transmitting each DlS PDU as an individual packet, multiple PDUs may be bundled together into larger

packets before transmission. Bundled packets are transmitted when either of two conditions are

satisfied: when a maximum size has been reached (the packet under construction is full of PDUs); or

when a maximum time has passed without another PDU arriving. The dominant effect of bundling is to

reduce packet rates. Additionally, bundling reduces bit rates because fewer packet headers are sent.”

Van Hook at p. 2.

“4.6 Bundling

The AG collects AGGP PDUs and bundles them into larger packets for transmission over the WAN.

Petitioner Riot Games, Inc. - EX. 1005, p. 98

Petitioner Riot Games, Inc. - Ex. 1005, p. 99

The purpose of the bundling algorithm is to reduce the number of packets that are transmitted. The

bundling algorithm has two parameters, a maximum bundle size and a maximum delay time. PDUs are
added to a bundle until either the maximum size is reached or the first PDU is the bundle has been

delayed by the maximum delay time. At this point, the bundle is transmitted.”

Van Hook at p. 7.

transmitting. by said server “Bundling. Network components such as switches. routers. and encryption devices as well as

via said unicast network, simulation host computers have limitations in the rate at which they may process packets. Rather than

said aggregated message to transmitting each DIS PDU as an individual packet, multiple PDUs may be bundled together into larger

a recipient host computer packets before transmission. Bundled packets are transmitted when either of two conditions are

belonging to said first satisfied: when a maximum size has been reached (the packet under construction is full of PDUs); or

message group. when a maximum time has passed without another PDU arriving. The dominant effect of bundling is to

reduce packet rates. Additionally, bundling reduces bit rates because fewer packet headers are sent,”

Van Hook at p. 2.

“4.6 Bundling

The AG collects AGGP PDUs and bundles them into larger packets for transmission over the WAN.

The purpose of the bundling algorithm is to reduce the number of packets that are transmitted. The

bundling algorithm has two parameters, a maximum bundle size and a maximum delay time. PDUs are
added to a bundle until either the maximum size is reached or the first PDU is the bundle has been

delayed by the maximum delay time. At this point. the bundle is transmitted."

Van Hook at p. 7.

“Exercise scale. The large number of entities involved in STOW-E will produce offered loads of as

much as four megabits and perhaps up to 2.000 packets per second. Such traffic levels will severely tax

all simulation computers even if unlimited communications resources were available.”

Van Hook at p. 1.

“Explicit representations of command. control, and communication are required to permit command

forces to transmit orders to and receive reports from a new generation of more intelligent semi-

automated forces. These new elements and phenomena require new protocols and generate new classes

Petitioner Riot Games, Inc. - EX. 1005, p. 99

of traffic that must be carried on the connecting networks.”

Van Hook at p. 1.

“A component of ARPA’s approach to scaleability for STOW-E is to implement cooperating and

complementary instances of a number of the information flow management techniques in an Application

Gateway (AG) situated at the LAN/WAN boundary of each participating network site (figure 1). The

AG may be thought of as a collection of information flow management agents [4] that perform services

on behalf of their clients, the simulation applications. The purpose of these agents is to compensate for

and efficiently use the available communication and processing resources. Each AG processes PDUs

received from its attached LAN and sends representation of local exercise state and events to other AGs

over the WAN, Similarly. each AG receives representations of remote state and events from other AGs
over the WAN and sends PDUs onto its attached LAN. Communication between AGs is via an

Application Gateway to Gateway Protocol (AGGP). AGGP supports communication of control

information related to the information flow management techniques as well as representations of
exercise state and events.”

Van Hook at p. 4.

Fame 1: spam Gatewayoawsecaors mass the netted

Figure 1 of Van Hook at p. 4.

"lhe algorithm operates as follows. The terrain is divided into a grid of square cells by each AG. A

square grid is used because it makes calculations simple and permits regions of the terrain to be

specified as a list of cells. Each AG determines the set of cells from which it needs to receive full

accurac data. This set consists of those cells that overlay the circular re 'ons of interest of the entities

14

Petitioner Riot Games, Inc. - EX- 1005, p- 100

at the AG’s site LAN. Figure 5 illustrates this idea by showing three entities and their circular regions

of interest. For determining the full accuracy region. the A05 use regions of interest that are based upon

the viewing ranges of the entities on the site LAN. The set of cells for which full accuracy data is

needed is outlined in the figure. All AGs transmit their cell sets to each other. The full accuracy region

for any AG consists of the union of the sets of cells received from all other AGs."

Van Hook at p. 6.

figure 5. Gets for which hail accuracy 3 required

Figure 5 of Van Hook at p. 6.

“3.33 unicast: A transmission mode in which a single message is sent to a single network destination,
that is. one-to-one.”

lS

Petitioner Riot Games, Inc. - Ex- 1005, p. 101

Petitioner Riot Games, Inc. - Ex. 1005, p. 102

2. The method of claim I

wherein said time interval

is a fixed period of time.

DIS at p. 5.

“Bundling. Network components such as switches, routers, and encryption devices as well as

simulation host computers have limitations in the rate at which they may process packets. Rather than

transmitting each DIS PDU as an individual packet. multiple PDUs may be bundled together into larger

packets before transmission. Bundled packets are transmitted when either of two conditions are

satisfied: when a maximum size has been reached (the packet under construction is full of PDUs); or

when a maximum time has passed without another PDU arriving. The dominant effect of bundling is to

reduce packet rates. Additionally, bundling reduces bit rates because fewer packet headers are sent.”

Van Hook at p. 2.

“4.6 Bundling

The AG collects AGGP PDUs and bundles them into larger packets for transmission over the WAN.

The purpose of the bundling algorithm is to reduce the number of packets that are transmitted. The

bundling algorithm has two parameters, a maximum bundle size and a maximum delay time. PDUs are
added to a bundle until either the maximum size is reached or the first PDU is the bundle has been

delayed by the maximum delay time. At this point, the bundle is transmitted.”

Van Hook at p. 7.

4. The method of claim I

further comprising the step

of creating, by one of said

plurality of host computers,

said first message group by

sending a first control

message to said server via
said urricast network.

 “The algorithm operates as follows. The terrain is divided into a grid of square cells by each AG. A

square grid is used because it makes calculations simple and permits regions of the terrain to be

specified as a list of cells. Each AG determines the set of cells from which it needs to receive full

accuracy data. This set consists of those cells that overlay the circular regions of interest of the entities

at the AG’s site LAN. Figure 5 illustrates this idea by showing three entities and their circular regions

of interest. For determining the full accuracy region, the AGs use regions of interest that are based upon

the viewing ranges of the entities on the site LAN. The set of cells for which full accuracy data is

needed is outlined in the figure. All AGs transmit their cell sets to each other. The full accuracy region

for any AG consists of the union of the sets of cells received from all other AGs.”

Van Hook at p. 6.

“6.2.14 Force ID

This field shall distinguish the different teams or sides in a DIS exercise.”

Petitioner Riot Games, Inc. - EX. 1005, p. 102

Petitioner Riot Games, Inc. - Ex. 1005, p. 103

5. The method of claim 4

further comprising the step

of joining, by some of said

plurality of host computers,

said first message group by

sending control messages
via said unicast network to

said server specifying said

first message group.

DIS at p. 36.

“The algorithm operates as follows. The terrain is divided into a grid of square cells by each AG. A

square grid is used because it makes calculations simple and permits regions of the terrain to be

specified as a list of cells. Each AG determines the set of cells from which it needs to receive full

accuracy data. This set consists of those cells that overlay the circular regions of interest of the entities

at the AG’s site LAN. Figure 5 illustrates this idea by showing three entities and their circular regions

of interest. For determining the full accuracy region, the AGs use regions of interest that are based upon

the viewing ranges of the entities on the site LAN. The set of cells for which full accuracy data is

needed is outlined in the figure. All AGs transmit their cell sets to each other. The full accuracy region

for any AG consists of the union of the sets of cells received from all other AGs.”

Van Hook at p. 6.

“6.2.14 Force ID

This field shall distinguish the different teams or sides in a DIS exercise.”

DIS at p. 36.

“An entityjoins a group as a passive or active member. Active members send as well as receive PDUs

within the group, are located in the cell associated with the group (that is, the center of seven cells). and

can become the group leader. Passive members normally do not send PDUs to the group except when

they join or leave. They are associated with the group because the cell lies within their area of interest,

yet they do not occupy the central cell.

When an entity joins anew group, it notes the time it entered and issues a Join Request PDU to the cell

group. The PDU has a flag indicating whether the cell is active or passive. The group leader replies with

a Pointer PDU that references the request and in turn multicasts a PDU containing a pointer to itself or

another active entity. The new member sends a Data Request PDU to the referenced source. which

issues a Data PDU containing the aggregate set of active entity PDUs. A passive entity becomes an

active member of a group by reissuing the Join Request PDU with a flag set to active when entering a

cell. Departures from the group are announced with a Leave Request PDU."

Macedonia at p. 42.

6. The method of claim 1

“Major characteristics of STOW-E are:

Petitioner Riot Games, Inc. - EX. 1005, p. 103

Petitioner Riot Games, Inc. - Ex. 1005, p. 104

wherein said network is

lnternet and said server

communicates with said

plurality of host computers

using a session layer

protocol.
Numerous legacy systems and simulators”

Van Honk at p. 1.

Live, virtual and constructive simulations

Wide area connectivity provided by the Defense Simulation Internet (DSI) Wide Area Network

(WAN)

24 network sites in the continental US and Europe: 18 directly on the DSl, the remaining

bridged

Approximately 2,000 interacting DIS entities

Two security levels: Secret No—Foreign and U31

DIS 20.3 protocols

Petitioner Riot Games, Inc. - EX. 1005, p. 104

Petitioner Riot Games, Inc. - Ex. 1005, p. 105Petitioner Riot Games, Inc. - EX. 1005, p. 105

Petitioner Riot Games, Inc. - Ex. 1005, p. 106

Claim Chart comparing Claims 1-2 and 4-6 of U.S. Patent No.

5,822,523 to the disclosure of IRC RFC in view of Friedman

Prior art cited in this chart:

' J. 0ikarinen et al., RFC 1459- Internet Relay Chat Protocol, published May 1993

° R. Friedman et a1., Packing Messages as a Tool for Boosting the Performance of Total Ordering Protocols, Dept. of Science of

Cornell University, published July 7, 1995

Reason to Combine:

IRC RFC does not disclose aggregating payload portions, but Friedman discloses that messages are buffered and then the

payloads are aggregated, i.e., packed, before sending. Friedman at 5. in addition, RFC IRC states “The main goal of IRC is to

provide a forum which allows easy and efficient conferencing (one to many conversations).” IRC RFC at § 3.2. Friendman discloses

aggregation of message packets improves both latency and throughput compared to non-aggregating communication protocols.

Friedman at 1. Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to aggregate the

group messages of lRC RFC, i.e., channel messages, in order to increase the efficiency of the network which was a main goal of stated

by IRC RFC.

to

Petitioner Riot Games, Inc. - EX. 1005, p. 106

........‘fj......... DrsclosureofIRCRFCananedman.........._ ,. , .

l. A method for providing “lRC itselfis a teleconferencing system which (through the use of the client-servermodel)isw-ell
group messages to a suited to running on many machinesin a distributed fashion. A typical setup involves a single process

plurality of host computers (the server) forming a central point for clients (or other servers) to connect to, performing the required

connected over a unicast message delivery/multiplexing and other functions."

wide area communication lRC RFC at § 1

network, comprising the

steps of: "lhe lRC protocol was developed over the last 4 years since it was first implemented as a means for

users on a BBS to chat amongst themselves. Now it supports a world-wide network of servers and

clients. and is stringing [sic] to cope with growth.”

lRC RFC at abstract

“If there are multiple users on a server in the same channel, the message text is sent only once to that

server and then sent to each client on the channel. This action is then repeated for each client-server

combination until the original message has fanned out and reached each member of the channel.”

lRC RFC at § 3.2.2.

providing a group “lRC itself is a teleconferencing system, which (through the use of the client~server model) is well-

messaging server coupled to suited to running on many machines in a distributed fashion. A typical setup involves a single process

said network, said server (the server) forming a central point for clients (or other servers) to connect to. performing the required

communicating with said message delivery/multiplexing and other functions.”

plurality of host computers lRC RFC at § 1

using said unicast network

and maintaining a list of “A channel is a named group of one or more clients which will all receive messages addressed to that

message groups, each channel. The channel is created implicitly when the first client joins it and the channel ceases to exist

message group containing at when the last client leaves it. While channel exists. any client can reference the channel using the

least one host computer; name of the channel.”

lRC RFC at § 1.3

3

Petitioner Riot Games, Inc. - EX- 1005, p. 107

Petitioner Riot Games, Inc. - Ex. 1005, p. 108

sending, by a plurality of

host computers belonging to

a first message group,

messages to said server via

said unicast network, said

“In IRC the channel has a role equivalent to that of the malticast group; their existence is dynamic

(coating and going as people join and leave channels) and the actual conversation carried out on a

channel is only sent to servers which are supporting users on a given channel. If there are multiple

users on a server in the same channel, the message text is sent only once to that server and then sent to

each client on the channel. This action is then repeated for each client-server combination until the

original message has fanned out and reached each member of the channel.”

IRC RFC at § 3.22

“The current channel layout requires that all servers know about all channels, their inhabitants and

properties.”

IRC RFC at § 9.2.2

“Command: PRlVMSG

Parameters: <r‘eceiver>{ ,<receiver>} <text to be sent>

PRIVMSG is used to send private messages between users. <receiver> can also be a list of names or

channels separated with commas.”

 messages containing a IRC RFC at § 4.4.1

payload portion and a

portion for identifying said

first message group;

aggregating, by said server “The least efficient style of one-to—many conversation is through clients talking to a ’list’ of users. How

in a time interval this is done is almost self explanatory: the client gives a list of destinations to which the message is to
determined in accordance

with a predefined criterion,

said payload portions of said

messages to create an

aggregated payload;

be delivered and the server breaks it up and dispatches a separate copy of the message to each given

destination. This isn’t as efficient as using a group since the destination list is broken up and the

dispatch sent without checking to make sure duplicates aren’t sent down each path.”

IRC RFC at § 3.2.1

“This protocol is essentially the same as Dynseq except that here processes are. not allowed to send

their messages all the time. Instead messages are buffered and every l millisecond they are packed and

Petitioner Riot Games, Inc. - EX. 1005, p. 108

Petitioner Riot Games, Inc. - Ex. 1005, p. 109

sent as one packed message. In this case we have chosen l to be one millisecond since it is less than the

minimal expected one way user to user latency”

Friedman at 5.

“It turned out that packing messages improves both the latency and throughput of the protocols by two

order of magnitudes and is therefore overwhelmingly more important for the performance than any

other optimization that we used.”

Friedman at 1.

“This protocol is essentially the same as Dynseq except that here processes are. not allowed to sendforming an aggregated

message using said

aggregated payload; and

their messages all the time. Instead messages are buffered and everyl millisecond they are packed and

sent as one packed message.”

Friedman at 5.

“If we denote this byte overhead by Ii then by packing m application messages as one message the

headers overhead for these messages becomes only 11 instead of b X m which is required without

packing.”

Friedman at 12.

transmitting, by said server

via said unicast network,

said aggregated message to

a recipient host computer

belonging to said first

message group.

“In IRC the channel has a role equivalent to that of the multicast group; their existence is dynamic

(coming and going as people join and leave channels) and the actual conversation carried out on a

channel is only sent to servers which are supporting users on a given channel. If there are multiple

users on a server in the same channel, the message text is sent only once to that server and then sent to

each client on the channel. This action is then repeated for each client-server combination until the

original message has fanned out and reached each member of the channel."

IRC RFC at § 3.2.2

2. The method of claim 1

wherein said time interval is

“This protocol is essentially the same as Dynseq except that here processes are not allowed to send

their messages all the time. Instead messages are buffered and every I millisecond they are packed and

Petitioner Riot Games, Inc. - EX. 1005, p. 109

Petitioner Riot Games, Inc. - Ex. 1005, p. 110

a fixed period of time.

4. The method of claim 1

further comprising the step

of creating, by one of said

plurality of host computers,

said first message group by

sending a first control

message to said server Via
said unicast network.

sent as one packed message.”

Friedman at 5.

“To create a new channel or become part of an existing channel, a user is required to JOIN the channel.

If the channel doesn't exist prior to joining, the channel is created and the creating user becomes a

channel operator.” IRC RFC at § 1.3

“Command: JOIN

Parameters: <channel>{,<channel>} [<key>{,<key>}]

The JOIN command is used by client to start listening a specific channel.”

IRC RFC at § 4.2.1
 5. The method of claim 4

further comprising the step

of joining, by some of said

plurality of host computers,

said first message group by

sending control messages
via said unicast network to

said server specifying said

first message group.

6. The method of claim 1

wherein said network is

lntemet and said server

communicates with said

plurality of host computers

using a session layer

protocol.

 “Command: JOIN

Parameters: <channel>{,<channel>} [<key>{,<key>}]

The JOIN command is used by client to start listening a specific channel.”

IRC RFC at § 4.2.1

“The IRC protocol has been developed on systems using the TCP/IP network protocol, although there

is no requirement that this remain the only sphere in which it operates.”

lRC RFC at § 1.

Petitioner Riot Games, Inc. - EX. 1005, p. 110

Petitioner Riot Games, Inc. - Ex. 1005, p. 111Petitioner Riot Games, Inc. - EX. 1005, p. 111

Petitioner Riot Games, Inc. - Ex. 1005, p. 112

Claim Chart comparing Claims 1-6 of US. Patent No.

5,822,523 to the disclosure in RING in view of Netrek

Prior art cited in this chart:

0 Thomas A. Funkhouser, “RING: A Client-Server System for Multi-User Virtual Environments,” Association of Computing

Machinery, 1995 Symposium on Interactive 3D Graphics, Monterey CA. (“RING”)

0 Server2.5pl4.lor.gz (“Server Code”) and BRMH-l.7.tor.g: (“Client Code”) (source code dated no later than August 1994).

Reasons to Combine:

RING discloses communicating messages over a network. RING at Figs. 5 and 7, pp. 88, 87 and 91. Similarly, Netrek

discloses clients and servers communicating over a network using messages. See Server Code, Serverhttservhiewstortd.e at lines 129-

73, lines 179-311, lines 146—70; S'erverhttservhnoin.c at lines 135—43; Serverlntservhoekele at lines 442-88. Netrek further discloses

aggregating packets to reduce the number of packets sent from the server. (eg, “Idea: read from client often, send to client not so

often”). Server\ntserv\inpat.c at lines 152-203; Serverhitservhedraw.c at lines 21-115; Serverhnlservhsocketc at lines 603-90. A

person of ordinary skill in the art, looking to increase network efficiency, would have looked to related methods of communicating

messages over a network. Accordingly, a person of ordinary skill in the art would have looked to the aggregation teachings of Netrek

to aggregate messages in RING to increase network efficiency.

to

Petitioner Riot Games, Inc. - EX. 1005, p. 112

Claims of the ‘523 Patent ,.

l. A method for providing

group messages to a

plurality of host computers
connected over a unicast

wide area communication

network, comprising the

steps of:

f '. """ ,. f 1' 'f f f ,. f '. DisdosureiilRlNG'aiid times ' f f ,. f """"

"This paper describes the client-server design, implementation and experimental results for a system

that supports real-time visual interaction between a large number of users in a shared 3D virtual

environment. The key feature of the system is that server-based visibility algorithms compute potential

visual interactions between entities representing users in order to reduce the number of messages

required to maintain consistent state among many workstations distributed across a wide-area network.

When an entity changes state, update messages are sent only to workstations with entities that can

potentially perceive the change- i.e., ones to which the update is visible.”

RING at Abstract.

“In a multi-user visual simulation system. users run an interactive interface program on (usually

distinct) workstations connected to each other via a network.”

RING at p. 85.

“A difficult challenge in multi~user visual simulation is maintaining consistent state among a large
number of workstations distributed over a wide-area network.”

RING at p. 85.

“In order to support very large numbers of users (> 1000) interacting simultaneously in a distributed

virtual environment it is necessary to develop a system design and communication protocol that does

not require sending update messages to all participating hosts for every entity state change.”

RING at p. 86.

"This paper describes a system (called RING) that supports interaction between large numbers of users

in virtual environments with dense occlusion (e.g., buildings. cities, etc). RING takes advantage of the

fact that state changes must be propagated only to hosts containing entities that can possibly perceive

the change- i.e., the one that can see it. Object-space visibility algorithms are used to compute the

region of influence for each state change, and then update messages are sent only to the small subset of

workstations to which the update is relevant."

RlNGat L86.

Petitioner Riot Games, Inc. - EX- 1005, p. 113

Petitioner Riot Games, Inc. - Ex. 1005, p. 114

“We have experimented with a variety of topologies for connecting RING clients and servers. For

practical reasons, we have focused mainly on arrangements in which clients communicate with a single

w. However, depending on the capabilities of available workstations and networks, clients can

send messages to serverts) via unicast or multicast.”

RING at p. 91.

“In our first experiments with multi-user virtual environments, we used 1P multicast to send update

messages directly between clients. The general idea is to map entity properties into multicast groups,

and send update messages only to relevant groups. For instance, Macedonia partitions a virtual world

into a 2D grid of hexagonal shaped cells each of which is represented by a separate multicast group.

Entities localize their visual interactions by sending updates only to the multicast group representing

the cell in which the reside, and they listen only to multicast groups representing cells within some

radius.

The multicast approach is similar to the RING client-server approach for wide-area networks. In both

cases, intermediate machines may cull messages rather than propagating them to all participating

workstations. However, using multicast, message calling is done by routers at the network layer,

whereas, in RING, message culling is done by server machines at the application layer (see Figure 11).

The advantages of the multicast approach are that: l) fewer messages must be passed if clients are

connected directly to a multicast-capable LAN (e.g., ethernet), and 2) latency is reduced due to faster

message routing. The disadvantages are that: 1) delays associated with joining and leaving multicast

groups make it impractical to use highly dynamic entity properties for multicast group mappings, 2) the

number of unique multicast groups accessible to any one application may not be sufficient for complex

virtual environments, and 3) multicast is not generally available across wide-area networks to many

types of networks computers (e.g., PCs with modems).

The advantage of the RING client- server approach is that very dynamic and complex message

processing may be performed by servers. In contrast to multicast routers, which can only cull

messages based on a relatively small, static set of multicast groups, RING servers can cull messages

using high-level geometric algorithms and knowledge regarding a multiplicity of highly dynamic entity

Petitioner Riot Games, Inc. - EX. 1005, p. 114

Petitioner Riot Games, Inc. - Ex. 1005, p. 115

attributes (e.g., location, orientation, velocity, etc.) and interaction types (e.g., visibility, sound,

collision, etc). Since RING servers can take advantage of knowledge regarding message semantics

and the 3D geometry of the virtual environment directly, they can execute more effective and flexible

culling algorithms than would be possible using only IP address and port mappings. Furthermore,

unlike multicast routers, RING servers may process, augment, and alter messages in addition to culling

them. For instance, RING servers already augment update messages with “Add” and “Remove”

messages to inform clients that entities are entering or leaving their potentially visible areas.”

RING at p. 90-91.

providing a group fittest!

messaging server coupled to

said network, said server

communicating with said

plurality of host computers

using said unicast network

and maintaining a list of

message groups, each

message group containing at

least one host computer;
“We have experimented with a variety of topologies for connecting RING clients and servers. For

practical reasons, we have focused mainly on an‘angements in which clients communicate with a single

server. However, depending on the capabilities of available workstations and networks, clients can

send messages to serverts) via unicast or multicast.”

Petitioner Riot Games, Inc. - EX. 1005, p. 115

Petitioner Riot Games, Inc. - Ex. 1005, p. 116

RING at p. 91.

“Server-based message culling is implemented using preeomputed line-of-sight visibility information.

Prior to the multi—user simulation, the shared virtual environment is partitioned into a spatial

subdivision of cells whose boundaries are comprised of the static, axis-aligned polygons of the virtual

environment [1, 15]. A visibility precomputation is performed in which the set of cells potentially

visible to each cell is determined by tracing beams of possible sight-lines through transparent cell

boundaries [15, 16] (see Figure 6). During the multi-user simulation, servers keep track of which cells

contain which entities by exchanging “periodic” update messages when entities cross cell boundaries.

Real-time update messages are propagated only to servers and clients containing entities inside some

cell visible to the one containing the updated entity. Since an entity’s visibility is conservatively over-

estimated by the preeomputed visibility of its containing cell, this algorithm allows servers to proves

update messages quickly using cell visibility “look-ups” rather than more exact real-time entity

visibility computations which would be too expensive on currently available workstations.”

RING at p. 87.

Petitioner Riot Games, Inc. - EX. 1005, p. 116

 Figure. 7: Fkre of update messages t'labeéed arrows; for sap-a1 V ‘ ‘ QV ~ . l \ .‘

eases so rotates A, B. a... earl D arranged in a retard era-trou-
nrertt as shown: in Figures it.

Figure 7 oleNG at p. 88.

“Communication between clients is managed by servers. Clients do not send messages directly to

other clients. but instead send them to sewers which forward them to other client and server

workstations participating in the same distributed simulation (see Figure 5). A key feature of this

client-server design is that servers can process messages before propagating them to other workstations.

culling. augmenting. or altering them. For instance. a server may determine that a particular update

message is relevant only to a small subset of clients and the propagate the message only to those clients
or their servers.”

RING at r. 87.

sending, by a plurality of “RING represents a virtual environment as a set of independent entities each of which has a geometric

host computers belonging to description and a behavior. Some entities are static (e.g.. terrain, buildings, etc), whereas others have

a first message group, dynamic behavior that can be either autonomous (e.g.. robots) or controlled by a user via input devices

messa_es to said server via (e... vehicles). Distributed simulation occurs when multi le entities interact in a shared virtual

Petitioner Riot Games, Inc. - EX- 1005, p. 117

Petitioner Riot Games, Inc. - Ex. 1005, p. 118

said unicast network, said environment by sending messages to one another to announce updates to their own geometry or

messages containing a behavior modifications to the shared environment, or impact on other entities.”

payload portion and a RING at p. 87.

portion for identifying said

first message group; “Communication between clients is managed by servers. Clients do not send messages directly to

other clients, but instead send them to servers which forward them to other client and server

workstations participating in the same distributed simulation (see Figure 5).”

RING at p. 87.

“We have experimented with a variety of topologies for connecting RING clients and servers. For

practical reasons, we have focused mainly on arrangements in which clients communicate with a sin le

m. However, depending on the capabilities of available workstations and networks, clients can

send messages to scrverfs) via unicast or multicast.”

RING at p. 91.

“Update messages containing 40 bytes (message-type[4], entity-lD[4], target-position[12], target-

orientation[12], positional velocity[4], and rotational-velocity[4] were generated for each entity once

every 2.3 seconds on average with this ‘random’ navigational behavior.”

RING at p. 89.

Petitioner Riot Games, Inc. - EX. 1005, p. 118

 Figni's 111316 sevens manage roinisinnirestiiu Between

tilicttta, mien :raliing, :‘ingmcnt‘mg, at aiming; “image;

Fi re50leNGat .87.

aggregatingbysaidserver 00000076 int timerDelay=200000; /* delay between sending stuff to
inatime interval client */

determined in accordance Server\ntsen'\data.c at line 76

with a predefined criterion,

said payload portions of said 00000195 readFromClient () ;

messages to create an Server\ntserv\input.c at line 195

aggregated payload;

00000152 input()

00000153 {

00000154 struct itimerval udt;

00000155 fd_set readfds;

00000156 static struct timeval

00000151

00000158 #ifdef DS

Petitioner Riot Games, Inc. - EX- 1005, p- 119

Petitioner Riot Games, Inc. - Ex. 1005, p. 120

ARM/5‘59

uv

’VFVH 61
uvvvv

«an 62
uuuuu

Annnn 63
v v

AAA 64
uuuuu

nnmn 65
uuuuu-

Ann 66
uvuuu

3 ’67
uuuv

An

A n 71
vuuuv

""3 95

33330203

AAAA204

Server\ntserv\input.c at lines 152-203

00000076 int

client */

Server\ntserv\data.c at line 76

00000603 updateClient()

00000604 {

id

00000608

update */

00000609 /* This can halve your updates */

33330 60 #endif

if (!me—>p_process)

{

ndt.it_interval.tv_sec = 0;

udt.it_interval.tv_usec = timerDelay;

udt.it_value.tv_sec = 0;

udt.it_value.tv_usec = timerDelay;

setitimer(ITlMER_REAL, &udt, 0);

}

SlGNAL(SlGALRM, setflag);

/* ldea: read from client often, send to client

while (1) {

readFromClient();

}

timerDelay=200000; /* delay between sending stuff to

static int skip = 0; /* Ii skip is set we skip next

Petitioner Riot Games, Inc. - EX. 1005, p. 120

Petitioner Riot Games, Inc. - Ex. 1005, p. 121

NAAH6‘O

vvvuv ._

A A6uuuuu 1

nnnn62
vv

3

in */
33333621

33622

33333630

33333631

33333632

33333633

33333634

33333635

33636

""3637

”33638

"33639

33333657

33333658

"333659

edpbvfptr==buf)) {

33660 #endif

if (send_short && skip) {

skip = 0; /* back to default */

ii (buiptr==buf && (commMode!=COMM_UDP ||

/* We sent nothing! We better send something to

if (me—>p_fuel < 61000)

sendClientPacket((CVOlD) &clientSeliShort);

else

sendClientPacket((CVOlD) &clientSeli);

H4

ilushSockBuf();

repCount++;

return;

if(send_short){

updatePlasmas();

updateStatus();

updateSelf();

updatePhasers();

updateShipst);

updateTorps();

updatePlanetst);

updateMessages();

}

ii(send_short && (me->p_fuel < 61000))

sendClientPacket((CVOlD) &ClientSeliShort);

else

Petitioner Riot Games, Inc. - EX. 1005, p. 121

Petitioner Riot Games, Inc. - Ex. 1005, p. 122

"33661 sendClientPacket((CV01D) &c11ent5e1f);

33333662 1

10

33333685 sendC1ientPinq(); /* pinq.c */

”"3“3686 4endif

”333687

3333688 f1ushSockBuf();

"333689 repCount++;

33333690 }

Server\ntserv\socket.c at lines 603-90

00000052 intrupt();

Server\ntserv\input.c at lines 52

00000197 intrupt();

Server\ntserv\input.c at lines 197

00001390 updateMessaqes()

00001391 {

1. - .1

00001590 }

Server\ntserv\socket.c at lines 1390-590

00001825 readFromClient()

00001826 {

1.-4

00001838 if (select(32,&readfds,0,0,&timeout) != 0) 1

00001839 /* Read info from the xtrek client */

00001840 if (FD_ISSE1(SOCk, &readfds)) {

00001841 retval += doRead(sock];

00001842 }

Petitioner Riot Games, Inc. - EX. 1005, p. 122

Petitioner Riot Games, Inc. - Ex. 1005, p. 123

3333l843

3333i844

3333i845

3333i846

3333n847

"C5
Q)()((DC(- A;)()-

(D (—I‘

” doRead(asock)

if (udpSock >= 0 && FD_lSSET(udpSock, &readfds)) {

V_UDPDIAG(("Activity on UDP socket\n"));

retval += doRead(udpSock);

i

return (retval != O); /* convert to 1/0 */

/* ripped out of above routine */

int asock;

{

struct timeval timeout;

/* Read info from the xtrek server */

count=read(asock,buf,BUFSIZ*2);

hufptr=buf;

while (bufptr < huf+count) {

while (size>count+(buf-hufptr)) {

/* We wait for up to twenty seconds for rest of

* If we don't get it, we assume the client

*/

timeout.tv_sec=20;

timeout.tv_usec=0;

/*readfds=l<<asock;*/

FD_ZERO(&readfds);

Petitioner Riot Games, Inc. - EX. 1005, p. 123

Petitioner Riot Games, Inc. - Ex. 1005, p. 124

 L c
N

c |

CCCCZC34

CCCZZC35

tuss2s36

CCCC2C37

CCCZZC38

CCCCZC39

us2s40

”"331947

""33l956

”"C"l966

() [\3 F)
I

[—h *‘(jl\) (—I‘c—D

\I—g.| Ooflamvpr/‘JNI—‘Q V ‘.
)<

[\Dl\)L\)[\D[\DNL\) cm(—3r)F)Oa NL\)NL\)[\)K)‘ LJ'ILb(/3Nt—‘(3k0
FD_SET(asock, &readfds);

temp=read(asock,buf+count,size-(count+(buf—bufptr))J;

(*(handlers[*bufptrl.handler))(bufptr);

}

/* Otherwise we ignore the request */

} else {

ERROR(l,("Handler for packet %d not installed...\n",

bufptr+=size;

if (bufptr>buf+BUFSlZ) {

beopy<bur+BUrsrz, buf, BUFSlZ);

if (count==BUFSlZ*2) {

/*readfds = 1<<asock;*/

FD_ZERO(&readfds);

FD_SEl(asock, &readfds);

if (select(32,&readfds,0,0,&timeout)) {

temp=read(asock,buf+BUFSlZ,BUFSlZ);

count=BUFSlZ+temp;

} else {

count=BUFSlZ;

}

} else {

count -=BUFSlZ;

bufptr~=BUFSlZ;

Petitioner Riot Games, Inc. - EX. 1005, p. 124

00002041 }

00002042 }

00002043 return(1);

00002044 }

Server\ntserv\socket.c at lines 1825-2044

0031825 readFromClient()

30 ‘

if (select(32,&readfds,0,0,&timeout) != 0) {

/* Read info from the xtrek client */

if (FD_ISSET(sock, &readfds)) {

retval += doRead(sock);

}

if (udpSock >= 0 && FD_ISSET(udpSock, &readfds)) {

V_UDPDIAG(("Activity on UDP socket\n"));

retval += doRead(udpSock);

}

return (retval != 0); /* convert to 1/0 */

Q<_>L)L)QC.)L)C.)(.3L){—3(J(J‘ -QQC.)Oc.)QQQL)L)L)(.3(.3- .o 111111111111111
QQQQQ' QUQQU

struct timeval timeout;

/* Read info from the xtrek server */

count=read(asock,buf,BUFSIZ*2);

0

0

[

0

0

0

0

0

0

0

0

0

0

0

0

0

[

0

0

0

0

0

[.

0

0

QQ‘ <_>- 1111

15

PefifionchfiotChunealhc.-Ex.1005,p.125

bufptr=buf;

while (bufptr < buf+count) {

while (size>count+(buf-bufptr)) {

/* We wait for up to twenty seconds for rest of

* If we don't get it, we assume the client

-.<_><_>°
*/

timeout.tv_sec=20;

timeout.tv_usec=0;

/*readfds=l<<asock;*/

FD_ZERO(&readfds);

FD_SET(asock, &readfds);

temp=read(asock,buf+count,size-(count+(buf-bufptr)));

(*(handlers[*bufptr].handler))(bufptr);

}

/* Otherwise we ignore the request */

} else {

ERROR(1,("Handler for packet %d not installed...\n",

bufptr+=size;

if (bufptr>buf+BUFSIZ) {

bcopy(buf+BUFSIZ, buf, BUFSIZ);

if (count==BUFSIZ*2) {

0

U

U

U

0

U

[..

0

[...

U

[

U

U

U

0

U
‘k

U

U

U

0

0

3

3

3

3

3

b

3

3

3

3

3

16

Petitioner Riot Games, Inc. - Ex. 1005, p. 126

Petitioner Riot Games, Inc. - Ex. 1005, p. 127

32332020 /*readfds = 1<<asock;*/

23232221 FD_ZERO(&readfds);

22222022 FD_SE1(asock, &readfds);

22222023 if (select(32,4readfds,0,0,&timeout)) {

”"222”24 temp=read(asock,buf+BUFSIZ,BUFSIZ);

33332025 count=BUFSIZ+temp;

[--0

22222034 } else 1

22222035 count=BOFSIZ;

33222036 1

22222037 4 else 4

22222038 count ~=BUFSIZ;

32322039 }

w222240 bufptr—=BUFSIZ;

22222241 4

22222042 }

22222643 return(1);

2044

Server\ntserv\socket.c at lines 1825-2044

00001390 updateMessages()

00001391 {

1. . .4

00001590 }

Server\ntserv\socket.c at lines 1390-590

00001603 sendClientPacket(packet)

00001604 /* Pick a random type for the packet */

00001605 struct p1ayer_spacket *packet;

00001606 {

1...]

Petitioner Riot Games, Inc. - EX. 1005, p. 127

Petitioner Riot Games, Inc. - Ex. 1005, p. 128

33331618 /*

333i6l9 * If we're dead, dying, or just born, we definitely

wa : the transmission

33331620 * to get through (otherwise we can get stuck]. I don't

-_irk this will

3333 621 * be a problem for anybody, though it might hang for a

bit if the TCP

3333 622 * connection is bad.

3 331623 */

3333 624 /* Okay, now I'm not so sure. Whatever. */

3333-625 if (oldstatus != PALIVE 11 (me != NULL && me—>p_status

1: PALIVEH

3 331626 orig_type = packet->type 1 0x80; /* pretend it's critical

33331627 #endif

33331628 ii (packet—>type<l 11 packet—>type>NUM_SlZES 1

33331629 sizes[(int)packet—>type]==) {

33331630 ERROR(1,("Attempt to send strange packet %d %d\n", packet—

>:ype,NUM_SlZES));

33331631 return;

3333 632 l

3333 633 packetsSent[(int)packet->type]++;

33331634 ii (commMode == COMM_TCP 1| (commMode == COMM_UDP &&

d ode == MODEmTCP)) {

331637 */
33331647 bcopy(packet, buiptr, size);

33331648 bufptr+=size;

331649

Petitioner Riot Games, Inc. - EX. 1005, p. 128

III mmofi 010101 nap—Io \
>1-

~— (D ,_. (D (D .—

* do UDP stuff unless it's a "critical" packet

“653 * (note that both kinds get a sequence number appended)Q'TJQQQQ QI—IQQQQ QXQQQU .,._,....
ox m .b */

1728 default:

1729 /* these are critical packets; send them via TCP */

1730 size=sizes[packet->type];

1731 if (hufptr—buf+size >= BUFSIZE) {

1732 t=bufptr—buf;

if (gwrite(sock, buf, t) != t) {

perror("TCP gwrite failed, client marked dead");

clientDead=1;

II \x\1 ww >l>U.)
I

\J m 0\ }

bufptr=buf /*+ addSequence(buf)*/;

}

bcopy(packet, bufptr, size);

bufptr+=size;

break;

QUQQQUQUQQQUUUQ- ..,,............. \Jggqq\) gamma)LA) HommuLnQQQQQOQQQQQUQQQQ'
I

q A [\D

L) Iu \‘l .5 LA.) }

0

0

0

0

(

0

[

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

QQQUQQQUQUQQUQQQQO
3 .

Server\ntserv\socket.c at lines 1603-744

00001125 updateTorps()

00001126 {

[-..]

00001132 for (i=0, torp=t0rps, tpi=clientTorpslnfo,

tp=clientTorps;

19

Petitioner Riot Games, Inc. - Ex. 1005, p. 129

Petitioner Riot Games, Inc. - Ex. 1005, p. 130

" C 3 31‘ 33 i<MAXPLAYER*MAXTORP;

c2.3- 34 i++, torp++, tpi++, tp++) {

I...

2333" 42 sendClientPacket(tpi);

l. . .

2233“ 51 sendClientPacket(tp);

l...

”333" 91 l

s ‘92 }

Server\ntserv\s0cket.c at lines 1125-92

“Furthermore unlike multicast routers, RING server's may process, augment, and alter messages in

addition to culling them. For instance, RING servers already augment update messages with “Add”

and “Remove” messages to inform clients that entities are entering or leaving their potentially visible

sets.”

RING at p. 91.

“RING servers allow each client workstation to maintain surrogates for only the subset of remote

entities visible to at least one entity local to the client. . . . To support this feature, servers send their

client an “Add” message each time a remote entity enters a cell potentially visible to one of the client’s

local entities for the first time. A “Remove” message is sent when the server determines that an entity

has left the client’s visible region. As entities move through the environment, server's augment update

messages with “Add” and “Remove” messages notifying clients that remote entities have become
relevant or irrelevant to the cl lent's local entities.”

RING at p. 88.

“Finally, time critical computing algorithms can be used to determine an ‘optimal’ set of messages to

send to each client based on network connection bandwidths, workstation processing capabilities, and

many other real-time performance factors lie, in a manner similar to that used in [8]).”

RING at p. 91.

Petitioner Riot Games, Inc. - EX. 1005, p. 130

Petitioner Riot Games, Inc. - Ex. 1005, p. 131

 forming an aggregated

message using said

aggregated payload; and
“During the multi-user simulation, servers keep track of which cells contain which entities by

exchanging ‘periodic’ update messages when entities cross cell boundaries. Real—time update messages

are propagated only to servers and clients containing entities inside some cell visible to the one

containing the updated entity. Since an entity’s visibility is conservatively over-estimated by the

precomputed visibility of its containing cell, this algorithm allows servers to process update messages

quickly using cell visibility ‘look-ups’ rather than more exact real-time entity visibility computations

which would be too expensive on currently available workstations.”

RING at p. 87.

“Rather than sending messages directly between clients, RING routes each on through at least one

server, and possibly two. Computations are performed in the servers before messages are propagated

further adding to latency.”

RING at p. 88.

"”331747 flushSockBuf()

” " __ 7 4 8 {

""33 755 if (gwrite(sock, buf, t) l= t) {

3333 756 perror("std flush gwrite failed, client marked dead");

3333 757 c1ientDead=1;

" “758 l
w33.782 if (gwrite(udpSock, udpbuf, t) l: t){

”3331783 perror("UDP flush gwrite failed, client marked dead

0”ce more");

" " ”"1784 lifdef EXTRA_GB

33331785 c1ientDead=1;

3"3”l786 #endif

333e1787 UDPDIAG(("*** UDP disconnected for %s\n", me—>p_name));

33331788 printUdenfot);

"3331789 closeUdeonnt);

”“1798 commMode = COMM_TCP;

[\J H

Petitioner Riot Games, Inc. - EX. 1005, p. 131

Petitioner Riot Games, Inc. - Ex. 1005, p. 132

00001791 1

id

00001802 }

Server\ntserv.c at lines 1747-802

33332611 {

33332625

3332671

33332672

3 2673 }

Server\ntserv.c at lines 2607-73

"33604 {

"33608

soda:e */

””610

33333611

3333612

n flfl613

wane him */

”3333610

33332607 gurite(fd, wbuf, size)

33332608 int id;

"32609 Char *wbuf;

"332610 size_t size;

”3332626 n = write(fd, whui, bytes];

"33603 updateClient()

"”609 /* This can halve your updates */

3dpb3fptr==buf)) {

while (bytes>0) {

i

return(orig);

static int skip = 0; /* lf skip is set we skip next

if (send_short && skip] {

skip = 0; /* back to default */

if (bufptr==buf && (commMode!=COMM_UDP ||

/* We sent nothing! We better send something to

if (me—>p_fuel < 61000)

Petitioner Riot Games, Inc. - EX. 1005, p. 132

Petitioner Riot Games, Inc. - Ex. 1005, p. 133

"“23615 sendClientPacket((CVOID) &clientSelfShort);

02233621 return;

"”33622 }

03333632 updateStatus();

02333633 updateSelf();

"0”634 updatePhasers();

02333636 updateTorps();

""23637 updatePlanets();

VCC"C660 #endif

02333661 sendClientPaCket((CVOID) &client8elf];

””33662 }

03333685 sendClientPing(); /* ping.c */

“3333686 #endif

"“23687

euu“u616 else

03333617 sendClientPacket((CVOID) &client8elf);

03333618 }

""““C619 flushSockBuf();

”"20620 repCount++;

V “”630 if(send_short){

""33631 updatePlasmas();

“U635 updateShips();

“"03638 updateMessages();

”"20639 }

03333657 if(send_short && (me—>p_fuel < 61000))

02030658 sendClientPacket((CVOID) &client8elf8hort];

” 30659 else
00688 flushSockBuf();

Petitioner Riot Games, Inc. - EX. 1005, p. 133

Petitioner Riot Games, Inc. - Ex. 1005, p. 134

00000690 }

Server\ntserv\socket.c at lines 603-90

”3331603 sendC1ientPaCket(packet)

23331604 /* Pick a random type for the packet */

3333 605 struct p1ayer_spacket *packet;

"“1606 {

33331618 /*

""33 619 * If we‘re dead, dying, or just born, we definitely

wa“: the transmission

3333 620 * to get through (otherwise we can get stuck]. I don‘t

3333 622 * connection is bad.

3331623 */

3333 624 /* Okay, now I'm not so sure. Whatever. */

3333 625 if (oldstatus != PALIVE 11 (me != NULL && me->p_statns

I: DALB/13))

3 33 626 orig_type = packet—>type 1 0x80; /* pretend it's critical

"333 627 #endif

“”1628 ii (packet—>type<1 11 packet—>type>NUM_SIZES 1

3333 629 sizes[(int)packet—>type]==) {

3333-630 ERROR(1,("Attempt to send strange packet %d %d\n", packet-

>;ype,NUM_SIZES));

33331631 return;

33331632 }

001633 packetsSent[(int)packetw>type]++;

Petitioner Riot Games, Inc. - EX. 1005, p. 134

Petitioner Riot Games, Inc. - Ex. 1005, p. 135

33331634

3333i635

3333n636

”"33n637

3333n728

3333l729

33331730

3333"73l

3333"732

3333n733

t3u3n734

3333i735
33 (

3dp ode == MODE_TCP)) {

if commMode 2: COMM_TCP)l (commMode == COMM_UDP &&

//*

* bisiness as usual

*/

bcopy(packet, buiptr, size);

bufptr+zsize;

) else {

I/ *

* do UDP stuff unless it‘s a "critical" packet

* (note that both kinds get a sequence number appended)

*/l

default:

/* these are critical packets; send them via TCP */

size=sizes[packet—>type);

ii (buiptr-bui+size >= BUFSIZE))

t=bufptr~bui;

if (qwrite(sock, buf, t) != t) {

perror("TCP qwrite failed, client marked dead");

clientDead=1;

)

bufptr=buf /*+ addSequence(buf)*/;

)

bcopy(packet, buiptr, size);

bufptr+=size;

break;

Petitioner Riot Games, Inc. - EX. 1005, p. 135

Petitioner Riot Games, Inc. - Ex. 1005, p. 136

00001743 1

00001744 }

Server\ntserv\socket.c at lines 1603-744

“Furthermore unlike multicast routers, RING servers may process, augment, and alter messages in

addition to culling them. For instance, RING servers already augment update messages with “Add”

and “Remove” messages to inform clients that entities are entering or leaving their potentially visible
sets.”

RING at p. 91.

“RING servers allow each client workstation to maintain surrogates for only the subset of remote

entities visible to at least one entity local to the client. . . . To support this feature, servers send their

client an “Add” message each time a remote entity enters a cell potentially visible to one of the client’s

local entities for the first time. A “Remove” message is sent when the server determines that an entity

has left the client’s visible region. As entities move through the environment, server augment update

messages with “Add” and “Remove" messages notifying clients that remote entities have become

elevant or irrelevant to the client’s local entities.”

RING at p. 88.

transmitting, by said server 2 3 3 31603 sendClientPacket (packet)

via saidunicastnetworlr, 2233.604 /* Pick a random type for the packet */

saidaggregatedmessage to 6233-605 struct player‘spacket *packet;

arecipient host computer 2333-606 {

belonging to said first Il

messagegroup 0:33.039 if (bufptr-buf+size >= BUFSIZE) {
2233-640 t=bufptrebuf;

223" 641 if (gwritelsook, but, t) != t) l

2333 642 perror("std gwrite failed, client marked dead ");

33331643 clientDead=1;

23331644 }

23331645 bufptr=buf;

Petitioner Riot Games, Inc. - EX. 1005, p. 136

Petitioner Riot Games, Inc. - Ex. 1005, p. 137

”2221647 bcopy(packet, bufptr, size);

2223 648 bufptr+=size;

2223n649

”"23 650 } else {

””Cin731 if (bufptr-buf+size >= BUFSIZE) 4

2223-732 t=bufptr-buf;

2223n733 if (qwrite(sock, buf, t) !: t) 4

2222 734 perror("TCP qwrite failed, client marked dead");

2222 735 clientDead=1;

2233-736 4

""33.737 bufptr=buf /*+ addSequenee(buf)*/;

”2221738 }

2232u739 bcopy(packet, bufptr, size);

22221740 bufptr+=size;

2233 741 break;

22221743 4

22321744 }

Server\ntserv\socket.c at lines 1603-744

00000603 updateClient()

00000604 {

4- - .4

00000688 flushSockBuf();

00000689 repCount++;

00000690 }

Server\ntserv\socket.c at lines 603-90

00001747 flushSockBuf()

00001748 {

Petitioner Riot Games, Inc. - EX. 1005, p. 137

63

00001755 if (gwrite(sock, buf, t) != t) {

00001756 perror(“std flush gwrite failed, client marked dead");

00001757 clientDead=1;

00001758 }

L3

00001782 if (gwrite(udpSock, udpbuf, t) != t){

00001783 perror("UDP flush gwrite failed, client marked dead

once more");

L3

00001791 }

L3

00001802 }

Server\ntserv\socket.c at lines 1747-802

332607 gwrite(fd, wbuf, size)

332608 int fd;

332609 char *wbuf;

332610 size_t size;

332611 {

--]

32625 while (bytes>0) {

32626 n = write(fd, wbuf, bytes);

32627 if (count++ > 100) {

32628 ERROR(1,("Gwrite hosed: too many writes

)\n“,getpid()));

32629 clientDead = 1;

32630 return (—1);

32631 }

--]

32671

QUUUQ

QQQOPQQQQ' UQUQQUQQ

0

0

0

0

0

[

0

0

0

0

(

0

0

0

[

0

<_>- L)

28

Petitioner Riot Games, Inc. - Ex. 1005, p. 138

Petitioner Riot Games, Inc. - Ex. 1005, p. 139

00002672 return(orig);

00002673 }

Server\ntserv\sncket.c at lines 2607-73

2233- 25 updateTorps()

”33.. 26{

““1’32 for (i=0, torp=torps, tpi=clientTorpsInfo,

'p=cn;entTorps;

" C 31 33 i<MAXPLAYER*MAXTORP; 3233- 34 i++, torp++, tpi++, tp++) {

t...

2233" 42 sendClientPaeket(tpi);

i'ln

CZCS-_51 sendClientPacket<tp);

l...

”222n‘91 l

“ 92 }

Server\ntserv\sncket.c at lines 1125-92

“Communication between clients is managed by servers. Clients do not send messages directly to

other clients, but instead send them to servers which forward them to other client and server

workstations participating in the same distributed simulation (see Figure 5).”

RING at p. 87.

“We have experimented with a variety of topologies for connecting RING clients and servers. For

practical reasons, we have focused mainly on arrangements in which clients communicate with a single

server. However, depending on the capabilities of available workstations and networks, clients can

send messages to server(s) via unicast or multicast.”

RING at p. 91.

2. The method of claim 1 “During the multi-user simulation, servers keep track of which cells contain which entities by

Petitioner Riot Games, Inc. - EX. 1005, p. 139

Petitioner Riot Games, Inc. - Ex. 1005, p. 140

wherein said time interval is exchanging “periodic” update messages when entities cross cell boundaries.”

a fixed period of time. RING at p. 87.

“This paper describes the client-server design. implementation and experimental results for a system

that supports real-time visual interaction between a large number of users in a shared 3D virtual

environment. The key feature of the system is that server-based visibility algorithms compute potential

visual interactions between entities representing users in order to reduce the number of messages

required to maintain consistent state among many workstations distributed across a wide-area network.

When an entity changes state, update messages are sent only to workstations with entities that can

potentially perceive the change- i.e., ones to which the update is visible.”

RING at Abstract.

“In a multi-user visual simulation system, users run an interactive interface program on (usually

distinct) workstations connected to each other via a network.”

RING at p. 85.

“A difficult challenge in multi-user visual simulation is maintaining consistent state among a large
number of workstations distributed over a wide—area network.”

RING at p. 85.

“la order to support very large numbers of users (> 1000) interacting simultaneously in a distributed

virtual environment it is necessary to develop a system design and communication protocol that does

not require sending update messages to all participating hosts for every entity state change.”

RING at p. 86.

“This paper describes a system (called RING) that supports interaction between large numbers of users

in virtual environments with dense occlusion (e.g., buildings, cities, etc). RING takes advantage of the

fact that state changes must be propagated only to hosts containing entities that can possibly perceive

the change— i.e., the one that can see it. Object-space visibility algorithms are used to compute the

region of influence for each state change. and then update messages are sent only to the small subset of

workstations to which the update is relevant.”

30

Petitioner Riot Games, Inc. - EX. 1005, p. 140

Petitioner Riot Games, Inc. - Ex. 1005, p. 141

RING at p. 86.

“We have experimented with a variety of topologies for connecting RING clients and servers. For

practical reasons, we have focused mainly on arrangements in which clients communicate with a single

seryer. However, depending on the capabilities of available workstations and networks, clients can

send messages to serverts) via unicast or multicast.”

RING at p. 91.

“In our first experiments with multi-user virtual environments, we used IP multicast to send update

messages directly between clients. The general idea is to map entity properties into multicast groups,

and send update messages only to relevant groups. For instance, Macedonia partitions a virtual world

into a 2D grid of hexagonal shaped cells each of which is represented by a separate multicast group.

Entities localize their visual interactions by sending updates only to the multicast group representing

the cell in which the reside, and they listen only to multicast groups representing cells within some
radius.

The multicast approach is similar to the RING client-server approach for wide—area networks. In both

cases, intermediate machines may cull messages rather than propagating them to all participating

workstations. However, using multicast, message culling is done by routers at the network layer,

whereas, in RING, message culling is done by server machines at the application layer (see Figure ll).

The advantages of the multicast approach are that: l) fewer messages must be passed if clients are

connected directly to a multicast-capable LAN (e.g, ethernet), and 2) latency is reduced due to faster

message routing. The disadvantages are that: l) delays associated with joining and leaving multicast

groups make it impractical to use highly dynamic entity properties for multicast group mappings, 2) the

number of unique multicast groups accessible to any one application may not be sufficient for complex

virtual environments, and 3) multicast is not generally available across wide-area networks to many

types of networks computers (e.g., PCs with modems).

The advantage of the RING client- server approach is that very dynamic and complex message

processing may be performed by servers. In contrast to multicast routers, which can only cull

messages based on a relatively small, static set of multicast groups, RING servers can cull messages

Petitioner Riot Games, Inc. - EX. 1005, p. 141

Petitioner Riot Games, Inc. - Ex. 1005, p. 142

using high—level geometric algorithms and knowledge regarding a multiplicity of highly dynamic entity

attributes (e.g., location, orientation, velocity, etc.) and interaction types (eg, visibility, sound.

collision, etc). Since RING servers can take advantage of knowledge regarding message semantics

and the 3D geometry of the virtual environment directly, they can execute more effective and flexible

culling algorithms than would be possible using only IP address and port mappings. Furthermore,

unlike multicast routers, RING servers may process, augment, and alter messages in addition to culling

them. For instance, RING servers already augment update messages with “Add” and “Remove”

messages to inform clients that entities are entering or leaving their potentially visible areas.”

RWCMpfidfl.

3.Themem0dofchnnl 00000195 readFromClient();

wherein said time interval Server\ntserv\input.c at line 195

conespondstoatnnefor

smdsmvmtorecmveat 33333 52 input()

least one message from each C C 3 CC 53 i

homeompumrbdongngto 33333 54 street itimerval udt;

smdfimtnmsmgegoup 33333-55 fd_S€t readfds;
""3"” 56 static struct timeval poll = {2, 0i;

58 lifdet DB

333 59 if (lme~>p_process)

3 60 lendit

“33.61 { ””3 62 udt.it_interval.tv_sec = 0;

3 63 udt.it_interval.tv_usec = timerDelay;

33-64 udt.it_value.tv_sec = 0;

.333 65 udt.it_value.tv_nsec = timerDelay;

00333 66 setitimer(lTll/IER_REAL, tindt, 0);

33333-67 }

2333” 68 SlGNALtSlGALRM, setflag);

”"3 69

" 33 70 /* ldea: read from client often, send to client

32

Petitioner Riot Games, Inc. - EX. 1005, p. 142

Petitioner Riot Games, Inc. - Ex. 1005, p. 143

not so often */

00000171 while (11 {

id

00000195 readFromClient();

id

00000203 1

00000204 1

Server\ntserv\input.c at lines 152-203

00000076 int timerDelay=200000; /* delay between sending stuff to

client */

Server\ntserv\data.c at line 76

""3”603 updateClient()

"“16604 {

32333608 static int skip = 0; /* 1f skip is set we skip next

so aze */

22306609 /* This can halve your updates */

033236‘0 if (send_short && skip) {

223336 1 skip = 0; /* back to default */

223336 2 if (bufptr==huf at (commMode!=COMMEUDP |

sdpoufptr==buf11 1 ”6 3 /* We sent nothing! We better send something to

wa<e him */

""“336 4 if (me—>p_fuel < 61000)

336 5 sendClientPacket((CVOID) aclientSelfShort);

us6 6 else

””6 7 sendClientPacket((CVOID1 aclientSelf);

3"6-8 1

336-9 flushSockBuf();

33

Petitioner Riot Games, Inc. - EX. 1005, p. 143

Petitioner Riot Games, Inc. - Ex. 1005, p. 144

"33620 repCount++;

33333621 return;

33333622 }

00

”"333630 if(send_short){

33333631 updatePlasmas();

33333632 updateStatus();

"333633 updateSelf();

33333634 updatePhasers();

33333635 updateShips();

33333636 updateTorps();

3333637 updatePlanets();

”333638 updateMessages();

w333639 }

H

33333657 if(send_short && (me->p_fuel < 61000))

33333658 sendClientPacket((CVOID) &Client8elf8hort);

"3333659 else

333660 #endif

333661 sendClientPacket((CVOID) 6client8elf];

333662 }

33333685 sendClientPing(); /* ping.c */

33333686 #endif

33333687

”333688 flushSockBuf();

3333689 repCount++;

33333690 }

Server\ntserv\socket.c at lines 603-90

00000052 intrupt();

34

Petitioner Riot Games, Inc. - EX. 1005, p. 144

Petitioner Riot Games, Inc. - Ex. 1005, p. 145

Server\ntserv\input.c at lines 52

00000197 intrupt();

Server\ntserv\input.c at lines 197

00001390 updateMessages()

00001391 {

1. - .1

00001590 }

Server\ntserv\socket.c at lines 1390-590

32321390 updateMessages()

3232-391 {

M

”"""1563 if (cur—>m_fro ==DOOSHMSG> msg.m_from=255; /* god */

33331564 if ((Cur->m_fr0m < 0) 1| (cur->m_from > MAXPLAYERH

"”331565 sendC1ientPacxet((CVOID) &msg);

33311566 else if (cur->n_f1ags & MALL && 1(ign0red1cur-

> _from] & MALL))

3333-567 sendClientPaCKet((CVOID) &msg);

$233 568 else if (cur—>nwf1ags & MTEAM && 1(iqnored1cur-

> _from] & MTEAM)){

333 1569 sendClientPacxet((CVOID) &msg);

22331570 }

1...]

”""31590 }

Server\ntserv\socket.c at lines 1390-590

00001825 readFromClient()

00001826 {

1...]

35

Petitioner Riot Games, Inc. - EX. 1005, p. 145

Petitioner Riot Games, Inc. - Ex. 1005, p. 146

”2221838 it (select(32,&readfds,0,0,&timeout) != O) 1

22221839 /* Read info from the xtrek client */

2222 840 if (FD_ISSET(sock, &readfds)) 1

2222 841 retval += doRead(sock];

”"22 842 l

2222 843 if (udpSock >= 0 && FD_lSSET(udpSock, &readfds)) {

2222-844 V_UDPDIAG(("Activity on UDP socket\n"));

”"22 845 retval += doRead(udpSock);

22221846 }

2222 847 }

2222-948 return (retval != 0); /* convert to 1/0 */

222 -949 }

222 1850

1..

22221855 /* ripped out of above routine */

""221856 doRead(asock)

2222 857 int asock;

"2221858 {

2221859 struct timeval timeout;

2222 877 /* Read info from the xtrek server */

2222 878 count=read(asock,buf,BUFSIZt2];

1...

22221916 bufptr=huf;

2222 917 while (bufptr < buf+count) {

1...

2221939 while (size>count+(buf-bufptr)) {

222-940 /* We wait for up to twenty seconds for rest of

pacret

22221941 * If we don't get it, we assume the client

dies

36

Petitioner Riot Games, Inc. - EX. 1005, p. 146

Petitioner Riot Games, Inc. - Ex. 1005, p. 147

”"CZW956

”2"3n966

() c;- k) c—)
I

<
<) N O

I
33331942

VCU3H943

CCCZH944

CCZZH945

”"C"n946

””CCH947
c

N
c |

i—hc) 'ij (—t'r) ifi\ mflaxwvwaI—‘Q
)(

[\3N[\)L\)k)[\Dl\) mcm(—3)cm [\JN[\)NNN* LJ'ILb-LoN!—|C)k0
N (fl (A) 14>.

i\)

c
LA) (J1

*/

timeout.tv_sec=20;

timeout.tv_usec=0;

/*readfds=l<<asock;*/

FD_ZERO(&readfds);

FD_SET(asock, &readfds);

temp=read(asock,buf+count,size-(count+(buf-bufptr)));

(*(handlers[*bufptr].handler))(bufptr);

}

/* Otherwise we ignore the request */

} else {

ERROR(1,("Handler for packet %d not installed...\n",

bufptr+=size;

if (bufptr>buf+BUFSIZ) {

bCOpy(buf+BUFSIZ, buf, BUFSIZ);

if (C0unt==BUFSIZ*2) {

/*readfds = 1<<asock;*/

FD_ZERO(&readfds};

FD_SET(asock, &readfds);

if (select(32,&readfds,0,0,&timeout)) {

temp=read(asock,buf+BUFSIZ,BUFSIZ);

count=BUFSIZ+temp;

} else {

count=BUFSIZ;

37

Petitioner Riot Games, Inc. - EX. 1005, p. 147

Petitioner Riot Games, Inc. - Ex. 1005, p. 148

33332636 }

33332337 I else i

33332C38 count -=BUFSIZ;

33332C39 I

33332340 bufptr-=BUFSIZ;

33332C41 }

33332C42 }

”"332C43 return(l);

3 3 3 3 2 C 44 }

Server\ntserv\s0cket.c at lines 1825-2044

 4. The method of claim 1 “In our first experiments with multi-user virtual environments, we used IP multicast to send update

further comprising the step messages directly between clients. The general idea is to map entity properties into multicast groups,

of creating, by one of said and send update messages only to relevant groups. For instance, Macedonia partitions a virtual world

plurality of host computers, into a 2D grid of hexagonal shaped cells each of which is represented by a separate multicast group

said first message group by Entities localize their visual interactions by sending updates only to the multicast group representing

sending a first control the cell in which the reside, and they listen only to multicast groups representing cells within some

message to said server Via radius.

said unicast network.

The multicast approach is similar to the RING client-server approach for wide-area networks. In both

cases, intermediate machines may cull messages rather than propagating them to all participating

workstations. However, using multicast, message culling is done by routers at the network layer,

whereas, in RING, message culling is done by server machines at the application layer (see Figure ii).

The advantages of the multicast approach are that: l) fewer messages must be passed if clients are

connected directly to a multicast-capable LAN (e.g., ethernet), and 2) latency is reduced due to faster

message routing. The disadvantages are that: l) delays associated with joining and leaving multicast

groups make it impractical to use highly dynamic entity properties for multicast group mappings, 2) the

number of unique multicast groups accessible to any one application may not be sufficient for complex

Virtual environments, and 3) multicast is not generally available across wide-area networks to many

types of networks computers (e.g., PCs with modems).

38

Petitioner Riot Games, Inc. - EX. 1005, p. 148

Petitioner Riot Games, Inc. - Ex. 1005, p. 149

The advantage of the RING client-server approach is that very dynamic and complex message

processing may be performed by servers. In contrast to multicast routers, which can only cull

messages based on a relatively small, static set of multicast groups, RING servers can cull messages

using high-level geometric algorithms and knowledge regarding a multiplicity of highly dynamic entity

attributes (e.g., location, orientation, velocity, etc.) and interaction types {e.g., visibility, sound.

collision, etc.) Since RING servers can take advantage of knowledge regarding message semantics

and the 3D geometry of the virtual environment directly, they can execute more effective and flexible

culling algorithms than would be possible using only IP address and port mappings. Furthermore,

unlike nrulticast routers, RING servers may process, augment, and alter messages in addition to culling

them. For instance, RING servers already augnrent update messages with “Add” and “Remove”

messages to inform clients that entities are entering or leaving their potentially visible areas.”

RING at p. 90-91.

5. The method of claim 4 “Update messages containing 40 bytes (message-type[4], entity-ID[4], target-position[12], target-

further comprising the step orientationIl 2], positional velocity[4], and rotational-velocity[4] were generated for each entity once

of joining, by sonre of said every 2.3 seconds on average with this ‘r‘andom’ navigational behavior.”

plurality of host computers, RING at p. 89.

said first message group by

sending control messages “In our first experiments with multi—user virtual environments, we used IP multicast to send update

via said unicast network to messages directly between clients. The general idea is to map entity properties into multicast groups,

said server specifying said and send update messages only to relevant groups. For instance, Macedonia partitions a virtual world

first message group. into a 2D grid of hexagonal shaped cells each of which is represented by a separate multicast group.

Entities localize their visual interactions by sending updates only to the multicast group representing

the cell in which the reside, and they listen only to nrulticast groups representing cells within some

radius.

The multicast approach is similar to the RING client-server approach for wide-area networks. In both

cases, intermediate machines may cull nressages rather than propagating them to all participating

workstations. However, using multicast, message culling is done by routers at the network layer,

whereas, in RING, message culling is done by server machines at the application layer (see Figure ll).

The advantages of the multicast approach are that: l) fewer messages must be passed if clients are

39

Petitioner Riot Games, Inc. - EX. 1005, p. 149

Petitioner Riot Games, Inc. - Ex. 1005, p. 150

connected directly to a multicast-capable LAN (e. g., ethernet), and 2) latency is reduced due to faster

message routing. The disadvantages are that: l) delays associated with joining and leaving multicast

groups make it impractical to use highly dynamic entity properties for multicast group mappings, 2) the

number of unique multicast groups accessible to any one application may not be sufficient for complex

virtual environments, and 3) multicast is not generally available across wide-area networks to many

types of networks computers leg, PCs with modems).

The advantage of the RING client- server approach is that very dynamic and complex message

processing may be performed by servers. In contrast to multicast routers, which can only cull

messages based on a relatively small, static set of multicast groups, RING servers can call messages

using high-level geometric algorithms and knowledge regarding a multiplicity of highly dynamic entity

attributes (e.g., location, orientation, velocity, etc.) and interaction types leg, visibility, sound,

collision, etc.) Since RING servers can take advantage of knowledge regarding message semantics

and the 3D geometry of the virtual environment directly, they can execute more effective and flexible

culling algorithms than would be possible using only IP address and port mappings. Furthermore,

unlike multicast routers, RING servers may process, augment, and alter messages in addition to culling

them. For instance, RING servers already augment update messages with “Add” and “Remove”

messages to inform clients that entities are entering or leaving their potentially visible areas.”

RING at pr 90'91n
 6. The method of claim 1 “The system runs on Silicon Graphics workstations and uses UDP/IP datagrams for message passing.”

wherein said network is RING at p. 89.
Internet and said server

communicates with said “A difficult challenge in multi-user visual simulation is maintaining consisted state among a large

plurality of host computers number of workstations distributed over a wide-area networ 2”

using a session layer RING at p. 85.

protocol.

40

Petitioner Riot Games, Inc. - EX. 1005, p. 150

Figs-,2 11-. RING servers process messages in the application

lays-3' hang 31) movie] and semantic: tnfcemst'sou. Multicaet

mam use. easy IP addresses :a the artwork layer.

Figure 11 of RING at p. 91.

“However, using multicast, message culling is done by routers at the network layer, whereas, in RING.

message culling is done by server machines at the application layer (see Figure 11).”

RING at p. 90.

"This paper describes the client-server design, implementation and experimental results for a system

that supports real-time visual interaction between a large number of users in a shared 3D virtual

environment. The key feature of the system is that server-based visibility algorithms compute potential

visual interactions between entities representing users in order to reduce the number of messages

required to maintain consistent state among many workstations distributed across a wide-area network.

When an entity changes state. update messages are sent only to workstations with entities that can

potentially perceive the change- i.e.. ones to which the update is visible.”

RING at Abstract.

Petitioner Riot Games, Inc. - EX- 1005, p- 151

Petitioner Riot Games, Inc. - Ex. 1005, p. 152

“In a multi-user visual simulation system, users run an interactive interface program on (usually

distinct) workstations connected to each other via a network.”

RH‘IG at p. 85.

“A difficult challenge in multi—user visual simulation is maintaining consistent state among a large

number of workstations distributed over a wide-area networ a”

RING at p. 85.

“In order to support very large numbers of users (> 1000) interacting simultaneously in a distributed

virtual environment it is necessary to develop a system design and communication protocol that does

not require sending update messages to all participating hosts for every entity state change.”

RING at p. 86.

“This paper describes a system (called RING) that supports interaction between large numbers of users

in virtual environments with dense occlusion (e.g., buildings, cities, etc.) RING takes advantage of the

fact that state changes must be propagated only to hosts containing entities that can possibly perceive

the change- to, the one that can see it. Object-space visibility algorithms are used to compute the

region of influence for each state change, and then update messages are sent only to the small subset of

workstations to which the update is relevant.”

RING at p. 86.

“We have experimented with a variety of topologies for connecting RING clients and servers. For

practical reasons, we have focused mainly on arrangements in which clients communicate with a single

ser_ver_‘. However, depending on the capabilities of available workstations and networks, clients can

send messages to serverts) via unicast or multicast.”

RING at p. 91.

“In our first experiments with multi-user virtual environments, we used IP multicast to send update

messages directly between clients. The general idea is to map entity properties into multicast groups,

and send rrpdate messages only to relevant groups. For instance, Macedonia partitions a virtual world

42

Petitioner Riot Games, Inc. - EX. 1005, p. 152

Petitioner Riot Games, Inc. - Ex. 1005, p. 153

into a 2D grid of hexagonal shaped cells each of which is represented by a separate multicast group.

Entities localize their visual interactions by sending updates only to the multicast group representing

the cell in which the reside, and they listen only to multicast groups representing cells within some
radius.

The multicast approach is similar to the RING client-server approach for wide-area networks. In both

cases, intermediate machines may cull messages rather than propagating them to all participating

workstations. However. using multicast, message culling is done by routers at the network layer,

whereas. in RING, message culling is done by server machines at the application layer (see Figure ll).

The advantages of the multicast approach are that: l) fewer messages must be passed if clients are

connected directly to a multicast-capable LAN (e.g., ethernet), and 2) latency is reduced due to faster

message routing. The disadvantages are that: l) delays associated with joining and leaving multicast

groups make it impractical to use highly dynamic entity properties for multicast group mappings, 2) the

number of unique multicast groups accessible to any one application may not be sufficient for complex

virtual environments, and 3) multicast is not generally available across wide-area networks to many

types of networks computers (e.g., PCs with modems).

The advantage of the RING client- server approach is that very dynamic and complex message

processing maybe performed by servers. In contrast to multicast routers, which can only cull

messages based on a relatively small, static set of multicast groups, RING servers can cull messages

using high-level geometric algorithms and knowledge regarding a multiplicity of highly dynamic entity

attributes (e.g., location, orientation, velocity, etc.) and interaction types (e.g., visibility, sound,

collision, etc.) Since RING servers can take advantage of knowledge regarding message semantics

and the 3D geometry of the virtual environment directly, they can execute more effective and flexible

culling algorithms than would be possible using only IP address and port mappings. Furthermore,

unlike multicast routers, RING servers may process, augment, and alter messages in addition to culling

them. For instance, RING servers already augment update messages with “Add” and “Remove”

messages to inform clients that entities are entering or leaving their potentially visible areas.”

RING at p. 90-91.

43

Petitioner Riot Games, Inc. - EX. 1005, p. 153

Petitioner Riot Games, Inc. - Ex. 1005, p. 154Petitioner Riot Games, Inc. - EX. 1005, p. 154

Claim Chart comparing Claims 1, 2, and 4-6 of US. Patent No.

5,822,523 to the disclosure in RING in view of Van Hook

Prior art cited in this chart:

' Thomas A. Funkhouser, “RING: A Client-Server System for Multi-User Virtual Environments,” Association of Computing

Machinery. 1995 Symposium on Interactive 3D Graphics, Monterey CA. (“RING”)

' Daniel J. Van Hook. James 0. Calvin. Michael K. Newton. and David A. Fusco, “An Approach to DIS Scaleability.” lid] DIS
Workshop. 26-30 Sept. 1994 (“Van Hook").

Reasons to Combine:

RING discloses communicating messages over a network. RING at Figs. 5 and 7. pp. 88, 87 and 91. RING does not disclose

aggregating payloads into a single aggregated message, but Van Hook discloses aggregating group messages into a single packet by

bundling the packets. Van Hook at 2. Van Hook states that “[t]he dominant effect of bundling is to reduce packet rates. Additionally.

bundling reduces bit rates because fewer packet headers are sent.” Id. Therefore. one of ordinary skill in the an would have looked to

Van Hook to aggregate group messages in order to reduce bit rates and increase the network efficiency of RING.

Claims ofthe ‘523

 ’1 .DiselosureoiRlNGandI’anHook . i: :j .

Patent... ' .

1. A method for providing “This paper describes the client-server design. implementation and experimental results for a system that

group messages to a supports real-time visual interaction between a large number of users in a shared 3D virtual environment.

plurality of host The key feature of the system is that server-based visibility algorithms compute potential visual

computers connected over interactions between entities representing users in order to reduce the number of messages required to

a unicast wide area maintain consistent state among many workstations distributed across a wide-area network. When an

communication network. entity changes state. update messages are sent only to workstations with entities that can potentially

comprising the steps of: perceive the change- i.e., ones to which the update is visible."

RING at Abstract

’TL

Petitioner Riot Games, Inc. - EX- 1005, p. 155

Petitioner Riot Games, Inc. - Ex. 1005, p. 156

“In a multi-user visual simulation system, users run an interactive interface program on (usually distinct)
workstations connected to each other via a network.”

RING at p. 85.

“A difficult challenge in multi—user visual simulation is maintaining consistent state among a large
number of workstations distributed over a wide-area network.”

RING at p. 85.

“In order to support very large numbers of users (> 1000) interacting simultaneously in a distributed

virtual environment it is necessary to develop a system design and communication protocol that does not

require sending update messages to all participating hosts for every entity state change.”

RING at p. 86.

“This paper describes a system (called RING) that supports interaction between large numbers of users in

virtual environments with dense occlusion (e.g., buildings, cities, etc). RING takes advantage of the fact

that state changes must be propagated only to hosts containing entities that can possibly perceive the

change- i.e., the one that can see it. Object-space visibility algorithms are used to compute the region of

influence for each state change, and then update messages are sent only to the small subset of

workstations to which the update is relevant.”

RING at p. 86.

“We have experimented with a variety of topologies for connecting RING clients and servers. For

practical reasons, we have focused mainly on arrangements in which clients communicate with a single

m However, depending on the capabilities of available workstations and networks, clients can send

messages to serverts) via unicast or multicast.”

RING at p. 91.

“In our first experiments with multi-user virtual environments. we used IP multicast to send update

messages directly between clients. The general idea is to map entity properties into multicast groups, and

send update messages only to relevant groups. For instance, Macedonia partitions a virtual world into a

2D grid of hexagonal shaped cells each of which is represented by a separate multicast group. Entities

Petitioner Riot Games, Inc. - EX. 1005, p. 156

Petitioner Riot Games, Inc. - Ex. 1005, p. 157

localize their visual interactions by sending updates only to the multicast group representing the cell in

which the reside, and they listen only to multicast groups representing cells within some radius.

The multicast approach is similar to the RING client-server approach for wide-area networks. In both

cases, intermediate machines may cull messages rather than propagating them to all participating

workstations. However, using multicast, message culling is done by routers at the network layer,

whereas, in RING, message calling is done by server machines at the application layer (see Figure 11).

The advantages of the multicast approach are that: I) fewer messages must be passed if clients are

connected directly to a multicast-capable LAN (e.g., ethernet), and 2) latency is reduced due to faster

message routing. The disadvantages are that: 1) delays associated with joining and leaving rrrulticast

groups make it impractical to use highly dynamic entity properties for multicast group mappings, 2) the

number of unique multicast groups accessible to any one application may not be sufficient for complex

virtual environments, and 3) multicast is not generally available across wide-area networks to many types

of networks computers (e.g., PCs with modems).

The advantage of the RING client-server approach is that very dynamic and complex message processing

may be performed by servers. In contrast to multicast routers, which can only cull messages based on a

relatively small, static set of multicast groups, RING servers can cull messages using high—level

geometric algorithms and knowledge regarding a multiplicity of highly dynamic entity attributes (e.g,

location, orientation, velocity, etc.) and interaction types (e.g., visibility, sound, collision, etc). Since

RING servers can take advantage of knowledge regarding message semantics and the 3D geometry of the

virtual environment directly, they can execute more effective and flexible culling algorithms than would

be possible using only IP address and port mappings. Furthermore, unlike multicast routers, RING

servers may process, augment, and alter messages in addition to culling them. For instance, RING

servers already augment update messages with “Add” and “Remove” messages to inform clients that

entities are entering or leaving their“ potentially visible areas.”

RING at p. 90-91.

Petitioner Riot Games, Inc. - EX. 1005, p. 157

providing a group

messaging server coupled

to said network, said

sewer communicating

with said plurality of host

computers using said
unicast network and

maintaining a list of

message groups, each

message group containing
at least one host

computer;

Figure 5.3136 setters manage rearuuurriratiru leavers:

clients, media:- telling, augmenting. or altering newness,

Figure 5 of RING at p. 87.

“We have experimented with a variety of topologies for connecting RING clients and servers. For

practical reasons, we have focused mainly on arrangements in which clients communicate with a single

server. However, depending on the capabilities of available workstations and networks, clients can send

messages to serverts) via unicast or multicast."

RING at p. 91.

“Server-based message culling is implemented using precomputed line-of-sight visibility information.

Prior to the multi-user simulation, the shared virtual environment is partitioned into a spatial subdivision

of calls whose boundaries are comprised of the static, axis-aligned polygons of the virtual environment

[1. 15]. A visibility precomputation is performed in which the set of cells potentially visible to each cell

is determined by tracing beams of possible sight-lines through transparent cell boundaries [15, 16] (see

Fi re 6). Durin the multi-user simulation, servers kee track of which cells contain which entities b '

Petitioner Riot Games, Inc. - EX- 1005, p. 158

exchanging “periodic" update messages when entities cross cell boundaries. Real-time update messages

are propagated only to servers and clients containing entities inside some cell visible to the one

containing the updated entity. Since an entity’s visibility is conservatively overestimated by the

precomputed visibility of its containing cell, this algorithm allows servers to proves update messages

quickly using cell visibility “look-ups” rather than more exact real-time entity visibility computations

which would be too expensive on currently available workstations.”

RING at p. 87.

Figure 3": Flow of update messages tiabelexl assures} {or rap

view to entities A, B. C. Had I} Hanged in a viri 1:31 savanna.

rarest as shown in Figure xi.

Figure7 of RING at p. 88.

“Communication between clients is managed by servers. Clients do not send messages directly to other

clients, but instead send them to sewers which forward them to other client and server workstations

participating in the same distributed simulation (see Figure 5). A key feature of this client-server design

is that servers can process messages before propagating them to other workstations, culling, augmenting,

or alterin them. For instance, a server may determine that a articular u date messa e is relevant onl

Petitioner Riot Games, Inc. - EX- 1005, p. 159

Petitioner Riot Games, Inc. - Ex. 1005, p. 160

to a small subset of clients and the propagate the message only to those clients or their servers.”

RING at p. 87.

sending, by a plurality of “RING represents a virtual environment as a set of independent entities each of which has a geometric

host computers belonging description and a behavior. Some entities are static (e.g.. terrain, buildings, etc.), whereas others have

to a first message group, dynamic behavior that can be either autonomous (e.g., robots) or controlled by a user via input devices

messages to said server (e.g, vehicles). Distributed simulation occurs when multiple entities interact in a shared virtual

via said unicast network, environment by sending messages to one another to announce updates to their own geometry or behavior

said messages containing modifications to the shared environment, or impact on other entities.”

a payload portion and a RING at p. 87.

portion for identifying

said first message group; “Communication between clients is managed by servers. Clients do not send messages directly to other

clients, but instead send them to servers which forward them to other client and server workstations

participating in the same distributed simulation (see Figure 5).”

RING at p. 87.

“We have experimented with a variety of topologies for connecting RING clients and servers. For

practical reasons, we have focused mainly on arrangements in which clients communicate with a sin le

seryer. However, depending on the capabilities of available workstations and networks, clients can send

messages to server(s) via unicast or multicast.”

RING at p. 91.

“Update messages containing 40 bytes (nressage-type[4], entity-ID[4], target-positionHZ], target-

orientation[l2], positional velocity[4], and rotational—velocity[4] were generated for each entity once

every 2.3 seconds on average with this ‘random’ navigational behavior.”

RING at p. 89.

Petitioner Riot Games, Inc. - EX. 1005, p. 160

Figure 5- BlNG setters manage nunmunitatitu between

clients, sensibly culling. augmenting. or altering message,

Fl reSoleNGat .87.

aggregating. by said “Bundling. Network components such as switches. routers, and encryption devices as well as simulation

server in a time interval host computers have limitations in the rate at which they may process packets. Rather than transmitting

determined in accordance each DIS PDU as an individual packet, multiple PDUs may be bundled together into larger packets

with a predefined before transmission. Bundled packets are transmitted when either of two conditions are satisfied: when a

criterion, said payload maximum size has been reached (the packet under construction is full of PDUs); or when a maximum

portions of said messages time has passed without another PDU aniving. The dominant effect of bundling is to reduce packet rates.

to create an aggregated Additionally, bundling reduces bit rates because fewer packet headers are sent.”

payload; Van Hook at p. 2.

“4.6 Bundling

The AG collects AGGP PDUs and bundles them into larger packets for transmission over the WAN. The

purpose of the bundling algorithm is to reduce the number of packets that are transmitted. The bundling

alorithm has two arameters, a maximum bundle size and a maximum dela time. PDUs are added to a

Petitioner Riot Games, Inc. - EX- 1005, p. 161

Petitioner Riot Games, Inc. - Ex. 1005, p. 162

bundle until either the maximum size is reached or the first PDU is the bundle has been delayed by the

maximum delay time. At this point, the bundle is transmitted.”

Van Hook at p. 7.

“Furthermore unlike multicast routers, RING servers may process, augment, and alter messages in

addition to culling them. For instance, RING servers already augment update messages with “Add” and

“Remove” messages to inform clients that entities are entering or leaving their potentially visible sets.”

RING at p. 91.

“RING servers allow each client workstation to maintain surrogates for only the subset of remote entities

visible to at least one entity local to the client. . . . To support this feature, server's send their client an

“Add” message each time a remote entity enters a cell potentially visible to one of the client’s local

entities for the first time. A “Remove” message is sent when the server determines that an entity has left

the client’s visible region. As entities move through the environment, servers augment update messages

with “Add” and “Remove” messages notifying clients that remote entities have become relevant or
irrelevant to the client’s local entities.”

RING at p. 88.

“Finally, time critical computing algorithms can be used to determine an ‘optimal’ set of messages to

send to each client based on network connection bandwidths, workstation processing capabilities, and

many other real-time performance factors (i.e., in a manner similar to that used in [8]).”

RING at p. 91.

“During the multi-user simulation, servers keep track of which cells contain which entities by exchanging

‘periodic’ update messages when entities cross cell boundaries. Real-time update messages are

propagated only to servers and clients containing entities inside some cell visible to the one containing

the updated entity. Since an entity’s visibility is conservatively over-estimated by the precomputed

visibility of its containing cell. this algorithm allows servers to process update messages quickly using

cell visibility ‘look-ups’ rather than more exact real-time entity visibility computations which would be

too expensive on currently available workstations.”

RING at p. 87.

Petitioner Riot Games, Inc. - EX. 1005, p. 162

Petitioner Riot Games, Inc. - Ex. 1005, p. 163

“Rather than sending messages directly between clients, RING routes each on through at least one server,

and possibly two. Computations are performed in the servers before messages are propagated further

adding to latency.”

RING at p. 88.

forming an aggregated

message using said

aggregated payload; and

transmitting, by said
server via said unicast

network, said aggregated

message to a recipient

“Bundling. Network components such as switches, routers, and encryption devices as well as simulation

host computers have limitations in the rate at which they may process packets. Rather than transmitting

each DIS PDU as an individual packet, multiple PDUs may be bundled together into larger packets

before transmission. Bundled packets are transmitted when either of two conditions are satisfied: when a

maximum size has been reached (the packet rrnder construction is full of PDUs); or when a maximum

time has passed without another PDU arriving. The dominant effect of bundling is to reduce packet rates.

Additionally, bundling reduces bit rates because fewer packet headers are sent.”

Van Honk at p. 2.

“Furthermore unlike multicast router‘s, RING servers may process, augment, and alter messages in

addition to culling them. For instance, RING servers already augment update messages with “Add” and

“Remove” messages to inform clients that entities are entering or leaving their potentially visible sets.”

RING at p. 91.

“RING servers allow each client workstation to maintain surrogates for only the subset of remote entities

visible to at least one entity local to the client. . . . To support this feature, server's send their client an

“Add” message each time a remote entity enters a cell potentially visible to one of the client’s local

entities for the first time. A “Remove” message is sent when the server determines that an entity has left

the client’s visible region. As entities move through the environment, server augment update messages

with “Add” and “Remove” messages notifying clients that remote entities have become relevant or

irrelevant to the client’s local entities.”

RING at p. 88.

“Communication between clients is managed by servers. Clients do not send messages directly to other

clients, but instead send them to servers which forward them to other client and server workstations

participating in the same distributed simulation (see Figure 5).”

RING at p. 87.

Petitioner Riot Games, Inc. - EX. 1005, p. 163

Petitioner Riot Games, Inc. - Ex. 1005, p. 164

host computer belonging

to said first message

group.

“We have experimented with a variety of topologies for connecting RING clients and servers. For

practical reasons. we have focused mainly orr arrangements in which clients communicate with a single

server. However, depending on the capabilities of available workstations and networks, clients can send

messages to server(s) via unicast or multicast.”

RING at p. 91.

“RING servers allow each client workstation to maintain surrogates for only the subset of remote entities

visible to at least one entity local to the client. . . . To support this feature, servers send their client an

“Add” message each time a remote entity enters a cell potentially visible to one of the client’s local

entities for the first time. A “Remove” message is sent when the server determines that an entity has left

the client’s visible region. As entities move through the environment, server augment update messages

with “Add” and “Remove” messages notifying clients that remote entities have become relevant or

irrelevant to the client’s local entities.”

RING at p. 88.

“Bundling. Network components such as switches, routers, and encryption devices as well as simulation

host computers have limitations in the rate at which they may process packets. Rather than transmitting

each DIS PDU as an individual packet, multiple PDUs may be bundled together into larger packets

before transmission. Bundled packets are transmitted when either of two conditions are satisfied: when a

maximum size has been reached (the packet under construction is full of PDUs); or when a maximum

time has passed without another PDU arriving. The dominant effect of bundling is to reduce packet rates.

Additionally, bundling reduces bit rates because fewer packet headers are sent.”

Van Hook at p. 2.

“4.6 Bundling

The AG collects AGGP PDUs and bundles them into larger packets for transmission over the WAN. The

purpose of the bundling algorithm is to reduce the number of packets that are transmitted. The bundling

algorithm has two parameters, a maximum bundle size and a maximum delay time. PDUs are added to a

bundle until either the maximum size is reached or the first PDU is the bundle has been delayed by the

Petitioner Riot Games, Inc. - EX. 1005, p. 164

Petitioner Riot Games, Inc. - Ex. 1005, p. 165

maximum delay time. At this point, the bundle is transmitted."

Van Hook at p. 7.

“Exercise scale. The large number of entities involved in STOW-E will produce offered loads of as much

as four megabits and perhaps up to 2,000 packets per second. Such traffic levels will severely tax all

simulation computers even if unlimited communications resources were available.”

Van Hook at p. 1.

“Explicit representations of command, control, and communication are required to permit command

forces to transmit orders to and receive reports from a new generation of more intelligent semi-automated

forces. These new elements and phenomena require new protocols and generate new classes of traffic

that must be carried on the connecting networks.”

Van Hook at p. 1.

“A component of ARPA’s approach to scaleability for STOW-E is to implement cooperating and

complementary instances of a number of the information flow management techniques in an Application

Gateway (AG) situated at the LAN/WAN boundary of each participating network site (figure 1). The AG

maybe thought of as a collection of information flow management agents [4] that perform services on

behalf of their clients, the simulation applications. The purpose of these agents is to compensate for and

efficiently use the available communication and processing resources. Each AG processes PDUs

received from its attached LAN and sends representation of local exercise state and events to other AGs

over the WAN, Similarly, each AG receives representations of remote state and events from other AGs
over the WAN and sends PDUs onto its attached LAN. Communication between AGs is via an

Application Gateway to Gateway Protocol (AGGP). AGGP supports communication of control

information related to the information flow management techniques as well as representations of exercise

state and events.”

Van Hook at p. 4.

Petitioner Riot Games, Inc. - EX. 1005, p. 165

Ewe regeneration Geese-y comecrm stasis the names

Figure 1 of Van Hook at p. 4.

”The algorithm operates as follows. The terrain is divided into a grid of square cells by each AG. A

square grid is used because it makes calculations simple and permits regions of the terrain to be specified

as a list of cells. Each AG determines the set of cells from which it needs to receive full accuracy data.

This set consists of those cells that overlay the circular regions of interest of the entities at the AG's site

LAN. Figure 5 illustrates this idea by showing three entities and their circular regions of interest. For

determining the full accuracy region, the AGs use regions of interest that are based upon the viewing

ranges of the entities on the site LAN. The set of cells for which full accuracy data is needed is outlined

in the figure. All AGs transmit their cell sets to each other. The full accuracy region for any AG consists
of the union of the sets of cells received from all other AGs.”

Van Hook at p. 6.

l3

Petitioner Riot Games, Inc. - EX- 1005, p- 166

FEM

i i I
\- .

i !
figure 5. Gets tor which has accuracy is required

Figure 5 of Van Hook at p. 6.

2. The method of claim 1

wherein said time interval

is a fixed period of time.

"During the multi-user simulation. servers keep track of which cells contain which entities by exchanging

“periodic” update messages when entities cross cell boundaries."

RING at p. 87.

“This paper describes the client-server design. implementation and experimental results for a system that

supports real-time visual interaction between a large number of users in a shared 3D virtual environment.

The key feature of the system is that server-based visibility algorithms compute potential visual

interactions between entities representing users in order to reduce the number of messages required to

maintain consistent state amon many workstations distributed across a wide-area network. When an

[4

Petitioner Riot Games, Inc. - Ex- 1005, p. 167

Petitioner Riot Games, Inc. - Ex. 1005, p. 168

entity changes state. update messages are sent only to workstations with entities that can potentially

perceive the change- i.e., ones to which the update is visible.”

RING at Abstract.

“In a multi-user visual simulation system, users run an interactive interface program on (usually distinct)
workstations connected to each other via a network.”

RING at p. 85.

“A difficult challenge in multi-user visual simulation is maintaining consistent state among a large
number of workstations distributed over a wide-area network.”

RING at p. 85.

“In order to support very large numbers of users (> 1000) interacting simultaneously in a distributed

virtual environment it is necessary to develop a system design and communication protocol that does not

require sending update messages to all participating hosts for every entity state change.”

RING at p. 86.

“This paper describes a system (called RING) that supports interaction between large numbers of users in

virtual environments with dense occlusion leg, buildings, cities. etc). RING takes advantage of the fact

that state changes must be propagated only to hosts containing entities that can possibly perceive the

change- i.e.. the one that can see it, Objectspace visibility algorithms are used to compute the region of

influence for each state change, and then update messages are sent only to the small subset of

workstations to which the update is relevant.”

RING at p. 86.

“We have experimented with a variety of topologies for connecting RING clients and servers. For

practical reasons. we have focused mainly on arrangements in which clients communicate with a single

m. However. depending on the capabilities of available workstations and networks. clients can send

messages to server(s) via unicast or multicast.”

RING at p. 91.

Petitioner Riot Games, Inc. - EX. 1005, p. 168

Petitioner Riot Games, Inc. - Ex. 1005, p. 169

“In our first experiments with multi-user virtual environments, we used IP multicast to send update

messages directly between clients. The general idea is to map entity properties into multicast groups, and

send update messages only to relevant groups. For instance, Macedonia partitions a virtual world into a

2D grid of hexagonal shaped cells each of which is represented by a separate multicast group. Entities

localize their visual interactions by sending updates only to the multicast group representing the cell in

which the reside, and they listen only to multicast groups representing cells within some radius.

The multicast approach is similar to the RING client-server approach for wide-area networks. In both

cases, intermediate machines may cull messages rather than propagating them to all participating

workstations. However, using multicast, message culling is done by routers at the network layer,

whereas, in RING, message culling is done by server machines at the application layer (see Figure 11).

The advantages of the multicast approach are that: l) fewer messages must be passed if clients are

connected directly to a multicast-capable LAN (e.g., ethernet), and 2) latency is reduced due to faster

message routing. The disadvantages are that: l) delays associated with joining and leaving multicast

groups make it impractical to use highly dynamic entity properties for multicast group mappings, 2) the

number of unique multicast groups accessible to any one application may not be sufficient for complex

virtual environments, and 3) multicast is not generally available across wide-area networks to many types

of networks computers (e.g., PCs with modems).

The advantage of the RING client-server approach is that very dynamic and complex message processing

may be performed by servers. In contrast to multicast routers, which can only cull messages based on a

relatively small, static set of multicast groups, RING servers can cull messages using high-level

geometric algorithms and knowledge regarding a multiplicity of highly dynamic entity attributes (e.g,

location, orientation, velocity, etc.) and interaction types [e.g., visibility, sound, collision, etc). Since

RING servers can take advantage of knowledge regarding message semantics and the 3D geometry of the

virtual environment directly, they can execute more effective and flexible culling algorithms than would

be possible using only IP address and port mappings. Furthermore, unlike multicast routers, RING

servers may process, augment, and alter messages in addition to culling them, For instance, RING

servers already augment update messages with “Add” and “Remove” messages to inform clients that

entities are entering or leaving their potentially visible areas."

RING at p. 90-91.

Petitioner Riot Games, Inc. - EX. 1005, p. 169

Petitioner Riot Games, Inc. - Ex. 1005, p. 170

4. The method of claim I

further comprising the

step of creating, by one of

said plurality of host

computers, said first

message group by sending

a first control message to
said server via said

unicast network.

“In our first experiments with multi-user virtual environments, we used IP multicast to send update

messages directly between clients. The general idea is to map entity properties into multicast groups, and

send update messages only to relevant groups. For instance, Macedonia partitions a virtual world into a

2D grid of hexagonal shaped cells each of which is represented by a separate multicast group. Entities

localize their visual interactions by sending updates only to the multicast group representing the cell in

which the reside, and they listen only to multicast groups representing cells within some radius.

The multicast approach is similar to the RING client-server approach for wide-area networks. In both

cases, intermediate machines may call messages rather than propagating them to all participating

workstations. However, using multicast, message culling is done by routers at the network layer,

whereas, in RING, message culling is done by server machines at the application layer (see Figure II).

The advantages of the multicast approach are that: l) fewer messages must be passed if clients are

connected directly to a multicast-capable LAN (e.g., ethernet), and 2) latency is reduced due to faster

message routing. The disadvantages are that: l) delays associated with joining and leaving multicast

groups make it impractical to use highly dynamic entity properties for multicast group mappings, 2) the

number of unique multicast groups accessible to any one application may not be sufficient for complex

virtual environments, and 3) multicast is not generally available across wide-area networks to many types

of networks computers (cg, PCs with modems).

The advantage of the RING client-server approach is that very dynamic and complex message processing

may be performed by servers. In contrast to multicast routers, which can only cull messages based on a

relatively small, static set of multicast groups, RING servers can cull messages using high-level

geometric algorithms and knowledge regarding a multiplicity of highly dynamic entity attributes (e.g,

location, orientation, velocity, etc.) and interaction types leg, visibility, sound, collision, etc.) Since

RING servers can take advantage of knowledge regarding message semantics and the 3D geometry of the

virtual environment directly, they can execute more effective and flexible culling algorithms than would

be possible using only IP address and port mappings. Furthermore, unlike multicast routers, RING

servers may process, augment, and alter messages in addition to calling them, For instance, RING

servers already augment update messages with “Add” and “Remove” messages to inform clients that

entities are entering or leaving their potentially visible areas."

RING at p. 90-91.

Petitioner Riot Games, Inc. - EX. 1005, p. 170

Petitioner Riot Games, Inc. - Ex. 1005, p. 171

5. The method of claim 4

further comprising the

step of joining, by some

of said plurality of host

computers, said first

message group by sending

control messages via said
unicast network to said

server specifying said first

message group.
“Update messages containing 40 bytes (message-typc[4], entity-ID[4], target-position[12], target-

orientation[l2], positional velocity[4], and rotational-velocity[4] were generated for each entity once

every 2.3 seconds on average with this ‘random’ navigational behavior.”

RING at p. 89.

“In our first experiments with multi-user virtual environments, we used IP multicast to send update

messages directly between clients. The general idea is to map entity properties into multicast groups. and

send update messages only to relevant groups. For instance, Macedonia partitions a virtual world into a

2D grid of hexagonal shaped cells each of which is represented by a separate multicast group. Entities

localize their visual interactions by sending updates only to the multicast group representing the cell in

which the reside, and they listen only to multicast groups representing cells within some radius.

The multicast approach is similar to the RING client-server approach for wide-area networks. In both

cases, intermediate machines may cull messages rather than propagating them to all participating

workstations. However, using multicast, message culling is done by routers at the network layer,

whereas, in RING, message culling is done by server machines at the application layer (see Figure ll).

The advantages of the multicast approach are that: l) fewer messages must be passed if clients are

connected directly to a multicast-capable LAN (e.g., ethernet), and 2) latency is reduced due to faster

message routing. The disadvantages are that: l) delays associated with joining and leaving multicast

groups make it impractical to use highly dynamic entity properties for multicast group mappings, 2) the

number of unique multicast groups accessible to any one application may not be sufficient for complex

virtual environments, and 3) nrulticast is not generally available across wide-area networks to many types

of networks computers (e.g., PCs with modems).

The advantage of the RING client-server approach is that very dynamic and complex message processing

maybe perfonned by servers, In contrast to multicast routers, which can only cull messages based on a

relatively small, static set of multicast groups, RING servers can cull messages using high-level

geometric algorithms and knowledge regarding a multiplicity of highly dynamic entity attributes (cg,

location, orientation, velocity, etc) and interaction types (eg, visibility, sound, collision, etc). Since

RING servers can take advantage of knowledge regarding message semantics and the 3D geometry of the

Petitioner Riot Games, Inc. - EX. 1005, p. 171

virtual environment directly, they can execute more effective and flexible culling algorithms than would

be possible using only IP address and port mappings. Furthermore, unlike multicast routers, RING

sewers may process, augment, and alter messages in addition to culling them. For instance, RING

servers already augment update messages with “Add” and “Remove” messages to inform clients that

entities are entering or leaving their potentially visible areas.”

RING at p. 90-91.

6. The method of claim 1 ”The system runs on Silicon Graphics workstations and uses UDP/IP datagrams for message passing.”

wherein said network is RING at p. 89.
Internet and said server

communicates with said “A difficult challenge in multi-user visual simulation is maintaining consisted state among a large

plurality of host number of workstations distributed over a wide-area network.”

computers using a session RING at p. 85.

layer protocol.

Figure 11; RING servers prime mfii‘fiifigt‘fi is the amateurish

Lave: mag 39 model and master. intimation, Sialticast
roam use 0an l? addressing ia the admin Sayer.

l9

Petitioner Riot Games, Inc. - EX- 1005, p- 172

Petitioner Riot Games, Inc. - Ex. 1005, p. 173

Figure 11 of RING at p. 91.

“However, using multicast, message culling is done by routers at the network layer, whereas, in RING,

message culling is done by server machines at the application layer (see Figure ll)”

RING at p. 90.

“This paper describes the client-server design, implementation and experimental results for a system that

supports real-time visual interaction between a large number of users in a shared 3D virtual environment.

The key feature of the system is that server-based visibility algorithms compute potential visual

interactions between entities representing users in order to reduce the number of messages required to

maintain consistent state among many workstations distributed across a wide-area network. When an

entity changes state, update messages are sent only to workstations with entities that can potentially

perceive the change— i.e., ones to which the update is visible.”

RING at Abstract.

“In a multi-user visual simulation system, users run an interactive interface program on (usually distinct)
workstations connected to each other via a network.”

RING at p. 85.

“A difficult challenge in multi-user visual simulation is maintaining consistent state among a large
number of workstations distributed over a widevarea network.”

RING at p. 85.

“In order to support very large numbers of users (> 1000) interacting simultaneously in a distributed

virtual environment it is necessary to develop a system design and communication protocol that does not

require sending update messages to all participating hosts for every entity state change.”

RING at p. 86.

“This paper describes a system (called RING) that supports interaction between large numbers of users in

virtual environments with dense occlusion leg, buildings, cities, etc). RING takes advantage of the fact

that state changes must be propagated only to hosts containing entities that can possibly perceive the

Petitioner Riot Games, Inc. - EX. 1005, p. 173

Petitioner Riot Games, Inc. - Ex. 1005, p. 174

change— i.e., the one that can see it. Object-space visibility algorithms are used to compute the region of

influence for each state change, and then update messages are sent only to the small subset of

workstations to which the update is relevant.”

RING at p. 86.

“We have experimented with a variety of topologies for connecting RING clients and servers. For

practical reasons. we have focused mainly on arrangements in which clients communicate with a single

semen However, depending on the capabilities of available workstations and networks, clients can send

messages to server(s) via unicast or multicast.”

RING at p. 91.

“In our first experiments with multi—user virtual environments, we used IP multicast to send update

messages directly between clients. The general idea is to map entity properties into multicast groups, and

send update messages only to relevant groups. For instance, Macedonia partitions a virtual world into a

2D grid of hexagonal shaped cells each of which is represented by a separate multicast group. Entities

localize their visual interactions by sending updates only to the multicast group representing the cell in

which the reside, and they listen only to multicast groups representing cells within some radius.

The multicast approach is similar to the RING client-server approach for wide-area networks. In both

cases, intermediate machines may cull messages rather than propagating them to all participating

workstations. However, using multicast, message culling is done by routers at the network layer,

whereas, in RING, message culling is done by server machines at the application layer (see Figure 11).

The advantages of the multicast approach are that: l) fewer messages must be passed if clients are

connected directly to a multicast-capable LAN (e.g., ether'net), and 2) latency is reduced due to faster

message routing. The disadvantages are that: l) delays associated with joining and leaving multicast

groups make it impractical to use highly dynamic entity properties for multicast group mappings, 2) the

number of unique multicast groups accessible to any one application may not be sufficient for complex

virtual environments, and 3) multicast is not generally available across wide-area networks to many types

of networks computers (e.g., PCs with modems).

The advantage of the RING client-server approach is that very dynamic and complex message processing

Petitioner Riot Games, Inc. - EX. 1005, p. 174

Petitioner Riot Games, Inc. - Ex. 1005, p. 175

may be performed by servers. In contrast to multicast routers, which can only cull messages based on a

relatively small, static set of mnlticast groups, RING servers can cull messages using high-level

geometric algorithms and knowledge regarding a multiplicity of highly dynamic entity attributes (e.g.,

location, orientation, velocity, etc.) and interaction types leg, visibility, sound, collision, etc). Since

RING servers can take advantage of knowledge regarding message semantics and the 3D geometry of the

virtual environment directly, they can execute more effective and flexible culling algorithms than would

be possible using only IP address and port mappings. Furthermore, unlike multicast routers, RING

servers may process, augment, and alter messages in addition to culling them. For instance, RING

servers already augment update messages with “Add” and “Remove” messages to inform clients that

entities are entering or leaving their potentially visible areas.”

RING at p. 90-91.

Petitioner Riot Games, Inc. - EX. 1005, p. 175

Petitioner Riot Games, Inc. - Ex. 1005, p. 176

OTH-C

Petitioner Riot Games, Inc. - EX. 1005, p. 176

Petitioner Riot Games, Inc. - Ex. 1005, p. 177

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Ex Parte Reexamination of:

Patent No. 6,264,560 Control Number: Not Yet Assigned

Inventors: S. Goldberg

J. Van Antwerp

Group Art Unit: Not Yet Assigned

Examiner: Not Yet Assigned

Issue Date: July 24, 2001

Application No. 90/140,979

Filed; August 27, 1998

J Box: Ex Parte Reexam

For: Method and System for Playing Games
on a Network

VVVVVVVVVVVVV
Mail Stop Ex Parte Reexam
Commissioner for Patents

PO. Box 1450

Alexandria, VA 223 l 3- 1450

DECLARATION OF DAVID AHN

I, David Ahn, declare:

1. I hereby certify that I am over 18 years of age and am competent to execute this

declaration. If called as a witness, I could and would competently testify to the following facts,

of which I have personal knowledge.

2. I understand that this declaration is being submitted in conjunction with a request

for reexamination of claim 92 of US. Patent No. 6,264,560. I further understand that the source

code for the multi-user online game Netrek is being submitted in support of that reexamination

request, which code was downloaded from the Netrek Software Archive at http://ftp.netrek.org/.

Specifically, I understand that the source code archive files named “BRMH- l .7.tar.gz” and

DCMB_832,595 1

Petitioner Riot Games, Inc. - Ex. 1005, p. 177

Petitioner Riot Games, Inc. - Ex. 1005, p. 178

Declaration ofDavid Ahn

“Server2.5pl4.tar.gz” have been submitted. This declaration addresses my personal knowledge

regarding the public accessibility of those files and the source code they contain.

3. My educational and professional background are in the field of computer science.

In 1995 I received a Bachelor of Science degree in Computer Science from Wake Forest

University. Since then, I have worked in the area of information technology (IT) and software

engineering. After graduation I became employed full-time at the Virtual Endoscopy Center at

Wake Forest University School of Medicine, where my work focused on researching and

developing software algorithms and techniques for medical imaging and visualization. Between

1999 and 2001 I was instrumental in forming a medical software company called Pointh, Inc.

In 2001 I left Wake Forest to join Pointh full—time. My responsibilities at Pointh included

overseeing all aspects of the technology side of the business, including technical direction,

product engineering and development, and IT infrastructure. I was primarily responsible for the

design and development of software products, and I continued working in this capacity through

two acquisitions of my employer, the first by IDX Systems Corporation and the second by GE

Healthcare IITS. In 2006 I left GE and subsequently joined GreatWall Systems, Inc., an early—

stage startup company offering IT network security products and services. I am responsible for

the technology side of the company, including overseeing all hardware, software, and systems

development of the company’s products.

4. Including my time as an undergraduate student and an amateur programmer, I

have over 16 years of experience in the field of computer science, programming, and software

engineering.

5. I am very familiar with Netrek. I first learned about Netrek in or around 1992 or

1993 as a computer science student at Wake Forest University. At that time, Netrek was quite

DCMB_832,595 2

Petitioner Riot Games, Inc. - EX. 1005, p. 178

Petitioner Riot Games, Inc. - Ex. 1005, p. 179

Declaration ofDavid Ahn

popular on college campuses all over the world.1 Netrek software generally falls into two

categories: Netrek client software and Netrek server software. In order to play Netrek, a player

uses Netrek client software running on a local computer to connect over the network, such as the

Internet, to Netrek server software running on a remote host computer. There are many versions

and variations of both Netrek client and server software. For example, the archive files “BRMH-

1.7.tar.gz” and “Server2.5pl4.tar.gz,” addressed below, contain the source code to specific

versions of Netrek client and server software.

6. In approximately 1994, I began to play Netrek extensively and, by the end of that

year, had become involved with Netrek software and with the Netrek community in general.

Over the subsequent years, I expanded my involvement with Netrek through various activities

such as joining and playing in various Netrek leagues, organizing Netrek leagues and

tournaments, developing and maintaining Netrek software, and maintaining and supporting

public Netrek resources on the Internet such as the International Netrek League (INL) statistics

home page, the Netrek Home Page, the Netrek Software Archive, and others. I also participated

actively in the Usenet newsgroup rec.gamesnetrek, so much so that a recent search on “Dave

Ahn” in that newsgroup covering 1994 to the present resulted in over 1600 results.2 I consider

myself deeply involved and very well-known in the Netrek community, even though my

involvement has lessened greatly in the last five years.

1 Posting of Tom Holub to rec.gamesnetrek, Subject: Netrek Server List,
http://groups.googlecom/group/recgames.netrek/msg/Sdch]d4abee5ace (Dec. 21, 1993), a true and correct copy
of which is contained in attached Exhibit A. (Note: in citations to Google Groups postings, this declaration

Specifies the “Local” date included in the header information.)

2 Attached hereto as Exhibit B is a true and correct copy of the first page of a search of rec.games.netrek for “Dave
Ahn” performed on Dec. 10, 2007

(http:llgroups.google.com/group/rec.games.netrek/search?q=dave+ahn&start=0&scoring=d&).

DCMB_832,595 3

Petitioner Riot Games, Inc. - Ex. 1005, p. 179

Petitioner Riot Games, Inc. - Ex. 1005, p. 180

Declaration ofDavid Ahn

7. The software source code for Netrek is publicly accessible and, to the best of my

knowledge, has been ever since I became aware of Netrek. I began building (compiling and

installing) my own Netrek server in 1994 using source code for the Netrek “Vanilla” server

which I had obtained from a publicly accessible file transfer protocol (FTP) site at

ftp.ecst.csuchico.edu.3 Thereafter, I spent a great deal of time downloading, experimenting with,

and modifying the source code to various Netrek software. Over the years, I became quite

familiar with Netrek software and its source code, including how they worked and where various

versions of the associated files could be found.

8. The Usenet newsgroup rec.games.netrek4 was a central communications tool for

the Netrek community in the early 19908 and still exists today. That newsgroup not only offered

an arena for general discussions of Netrek—related topics but also served as a medium for

publishing the locations of various FTP sites from which Netrek software and source code could

be freely downloaded. Such information was periodically posted in the form of messages

containing lists of answers to frequently asked questions (FAQ) about Netrek, lists of known

public Netrek servers, and lists of known FTP servers where Netrek software and source code

were published. One instance of the Netrek FAQ List appears in a posting dated July 21, 1994,

3 Posting of Dave Ahn to rec.gamesnetrek, Subject: Help getting res—rsa working with server...,
http:/lgroups.google.com/group/rec.gamesnetrek/browse_frrn/thread/4da4c5af59745a6 1 /fde76eab98a25b83 (N0V.
14, 1994), a true and correct copy of which is contained in attached Exhibit C.

4 Google Groups provides an archive of Usenet newsgroups that dates back to 1981. How far back does Google’s
Usenet archive go?, http:”groups.google.com/support/bin/answer.py?answer=46439&topic=9246, a true and correct
copy of which is contained in attached Exhibit D, at D-l. Google Groups includes an archive of rec.gamesnetrek
that dates back to 1992. rec.games.netrek, http://groups.google.com/group/ree.games.netrek/about, a true and
correct copy of which is contained in attached Exhibit D, at D-2/3.

DCMB__832,595 4

Petitioner Riot Games, Inc. - EX. 1005, p. 180

Petitioner Riot Games, Inc. - Ex. 1005, p. 181

Declaration ofDavid Ahn

titled “rec.gamesnetrek FAQ List.”5 The Netrek FAQ List posting points readers to a Netrek

FTP List for locations where Netrek server source code could be downloaded.6

9. A subsequent posting, also dated July 21, 1994, is titled “Netrek FTP List.” That

posting lists various FTP servers from which both server source code and client source code

could be downloaded. It also identifies locations from which the latest versions of the Netrek

FAQ List, Netrek Server List, and Netrek FTP List could be downloaded.7 Among other things,

it features a list of “blessed clients” that includes, for example, a client version called BRM-

Hadley 1.7. The description in that posting explains that the source code for BRM-Hadley 1.7

was accessible at cad.ics.uci.edu in the directory /pub/netrek.8 Later in the post is a section titled

“Subject: SERVER SOURCE” that contains “a listing of all known netrek server sources.”9 The

second server on the list is named “New Vanilla Server 2.2+,” and the post indicates that it was

5 Posting of Tom Holub to rec.games.netrek, Subject: rec.games.netrek FAQ List,
http:l/groups.google.corn/group/rec.games.netrek/msg/9bbd5514020d51fa (Jul. 21, 1994), a true and correct copy of
which is contained in attached Exhibit E; thread View of same available at

http://groups.googlecomlgroup/rec.games .netrek/browse_frm/thread/35a84ea78ce38bdb/9bbd55 1 4020d5 lfa
(referencing FAQ, Server List, and FTP List), a true and correct copy of which is contained in attached Exhibit F.

6 Exhibit E, supra note 5 (Holub, FAQ List), at E4 (“Read the Netrek FTP list to find out where you can get the
server source”).

7 Posting of Tom Holub to rec.games.netrek, Subject: Netrek FTP list,
http:”groups.google.com/group/rec.games.netrek/msg/ac03262b6a08c4c1 (Jul. 21, 1994), a true and correct copy of

which is contained in attached Exhibit G. The FTP List was updated from time to time. For example, a series of
postings dated September through October 1994 mention the FTP List and identify it as a source for Netrek
software. Posting of Tatsuya Murase to rec.games.netrek, Subject: Re: Windows Client,

http://groups.google.com/group/rec.games.netrek/browse_frm/thread/d6eccScO95bf8a38 (Sep. 30, 1994), a true and
correct copy of which is contained in attached Exhibit H; Posting of Tatsuya Murase to rec.games.nen-ek, Subject:
Re: Windows Client, http://groups.google.com/group/rec.games.netrek/msg/20da2a42b64333a8 (Sep, 30, 1994)
(“Reading the FAQ/FTPlist, you can easily download a client for your computer set it up, and run in under 45
minutes, if even that”), a true and correct copy of which is contained in attached Exhibit I.

8 Exhibit G, supra note 7 (Holub, Netrek FTP list), at 6-3.

9 1d,, at 6-6.

U1DCMB__832,595

Petitioner Riot Games, Inc. - Ex. 1005, p. 181

Petitioner Riot Games, Inc. - Ex. 1005, p. 182

Declaration of David Ahn

maintained by Nick Trown at ftp.ecst.csuchico.edu in the directory [pub/netrek/src.10 In a later

post to rec.gamesnetrek dated August 9, 1994, Nick Trown announced that a new version

(2.5pl4) of the Vanilla Server had been posted to ftp.ecst.csuchico.edu.11 My understanding,

which is consistent with these postings, is that anyone involved in the Netrek community and/0r

reading rec.games.netrek could easily and freely have accessed these copies of Netrek source

code at the indicated locations, as I myself did on several occasions.

10. Any number of other messages on rec.gamesnetrek confirm that the Netrek

community was widely aware of how to locate and download Netrek software and source code.

For example, an October 15, 1993 posting by Tedd Hadley announced that the BRM-Hadley

(BRMH) 1.7 client source code was accessible at cad.ics.uci.eduzlpub/netrekl.12 An August 17,

1994 posting by James Ivey describes having obtained a copy of the Vanilla 2.5pl4 server from

ftp.ecst.csuchico.edu under lpub/netrek/src/Server2.5p14.tar.gz.13 In that posting, Mr. Ivey

declared, “[i]t’s really not hard to grab some code and take a 100k.”14 On November 19, 1994, a

posting by Vanilla Server maintainer Nick Trown responded to a message from a user who had

10 Id., at G—6/7.

11 Posting of Nick Trown to rec.gamesnetrek, Subject: New Server Release,
http://groups.google.com/group/rec.games.netrek/msg/d7fb445 l975e6fb2 (Aug. 9, 1994), a true and correct copy of
which is contained in attached Exhibit J.

12 Posting of Tedd Hadley to rec.garnes.netrek, Subject: BRMH-1.7 available,
http://groups.google.com/group/rec.games.netrek/msg/OObOaa5dfdhlba99 (Oct. 15, 1993), a true and correct copy
of which is contained in attached Exhibit K.

13 The .tar.gz file extension signifies the multiple source code files that defined the Vanilla server had been
combined into a single compressed archive file. (A “tar” file is an archive file that collates a collection of files into
one larger file for distribution or archiving. A “tar.gz” file is a “tar” file that has been compressed to reduce storage
usage. Such formats were and still are commonly used for creating software source code packages that are easily
distributed and downloaded over the Internet.)

14 Posting of James Ivey to rec.gamesnetrek, Subject: Re: AGRI poppage (was Re: Bombing a planet -- is it. an
art?), http://groups.google.com/group/rec.games.netrek/msg/df66eac4e839b059 (Aug. 17, 1994), a true and correct
copy of which is contained in attached Exhibit L.

DCMB_832,595 6

Petitioner Riot Games, Inc. - Ex. 1005, p. 182

Petitioner Riot Games, Inc. - Ex. 1005, p. 183

Declaration ofDavid Ahn

downloaded version 2.5p14 of the Vanilla Server source code and was requesting assistance with

compiling and running it.15

11. During the 1995-98 time frame, I became aware that a number of web sites and

FTP sites that made Netrek software and source code freely available were disappearing or

shutting down. Accordingly, I began to acquire a private collection of Netrek software, software

source code, and other files that I had downloaded from the publicly accessible sites that still

existed, in order to preserve those copies and/or use them for my own purposes. I eventually

published my collection as the “Netrek FTP Archive” on an FTP site at

ftp://ftp.netrek.org/pub/netrek/. I announced that FTP site in a posting to rec.games.netrek on

October 23, 1998. That posting stated my belief that my FTP site contained “almost all known

Netrek software including mirrors of major Netrek FTP sites.”15 Since then, I have continued to

maintain that site, which currently is called the “Netrek Software Archive” and is available at

http://ftp.netrek.org/.

12. Among the files currently available on the Netrek Software Archive are those in

“mirror” directories in the /pub/netrek/mirrors/ directory. These mirrored files are complete and

verbatim copies of entire public FTP sites that were downloaded to the Netrek Software Archive

using a mirroring script that preserved the directory hierarchy and file time stamps of the data

copied from original FTP sites. The ftp.csua.berkeley.ued.old and ftp.s01ace.mh.se directories

are mirror copies of the public FTP sites ftp.csua.berkeley.edu and ftp.solace.mh.se, respectively,

15 Posting of Nick Trown to rec.games.netrek, Subject: Re: Netrek server help !,
http://groups.goog1e.com/group/rec.games.netrek/browse_frm/thread/e728557051chcl3/4f1af10b05d68a08 (Nov.
18, 1994), a true and correct copy of which is contained in attached Exhibit M.

16 Posting of Dave Ahn to rec.gamesnetrek, Subject: www.netrek.org — no longer the game?,
http://groups.google.com/group/rec.games.netreklmsg/ee9a7af9f7a39305 (Oct. 23, 1998), a true and correct copy of
which is contained in attached Exhibit N.

DCMB~832,595 7

Petitioner Riot Games, Inc. - EX. 1005, p. 183

Petitioner Riot Games, Inc. - Ex. 1005, p. 184

Declaration ofDavid Ahn

which are referenced in a December 14, 1994 posting of the Netrek FTP List to the newsgroup

rec.answers.17

13. Among the files currently available in these two mirror directories are the BRM—

Hadley 1.7 client source code files and the Vanilla 2.5p14 server source code files. The BRM—

Hadley 1.7 source code files are contained in a compressed archive file named BRMH-1.7.tar.gz

and located at http://ftp.netrek.org/pub/netrek/mirrors/ftp.csua.berkeley.edu.old/netrek/old/. The

Vanilla 2.5pl4 source code files are contained in a compressed archive file named

Server2.5pl4.tar.gz and located at

http://ftp.netrek.org/pub/netrek/mirrors/ftp.solacemh.se/netrek/servers/vanillal.1 8

14. The BRMH—1.7.tar.‘gz and Server2.5pl4.tar.gz archive files stored on the Netrek

Software Archive carry date stamps of October 16, 1993 and December 15, 1994, respectively.

The date stamps can be seen alongside the filenames in the above-referenced directories.19 Each

date stamp represents the date the associated archive file was created. Accordingly, by

definition, each file contained in the archive must have been created on or before the indicated

date, as shown in the content listings of those archive files.20 To the best of my knowledge, the

17 Posting of Tom Holub to rec.answers, Subject: Netrek FTP list.,
http://groups.google.com/group/rec.answers/msg/ebcb9al4c0d4de78 (Dec. 14, 1994), a true and correct copy of
which is contained in attached Exhibit 0.

18 For verification purposes, I wish to note that the MD5 hash of BRMH-l .7.tar.gz is
747acc63aa45b274a25d7ef0121578be, and the MD5 hash of Server2.5p14.tar.gz is
809f80634575add74600f21dC052bfad.

19 Attached hereto as Exhibit P is a true and correct copy of the current content listing of
http://ftp.netrek.org/pub/netrek/mirrors/ftp.csua.berkeley.edu.old/netrek/old/, which includes the BRMH-1.7.tar.gz
archive file and its time stamp, at P—l. Attached hereto as Exhibit Q is a true and correct copy of the current content
listing of http://ftp.netrek.org/pub/netrek/mirrors/ftp.solace.mh.se/netrek/servers/vanillal, which includes the
Server2.5pl4.tar.gz archive file and its time stamp.

20 Attached hereto as Exhibit R is a true and correct copy of the content listing of the BRMH-1.7.tar.gz archive.
Attached hereto as Exhibit S is a true and correct copy of the content listing of the Server2.5pl4.tar.gz archive.

DCMB_832,595 8

Petitioner Riot Games, Inc. - Ex. 1005, p. 184

Petitioner Riot Games, Inc. - Ex. 1005, p. 185

Declaration ofDavid Aim

date stamps on the BRMH—1.7.tar.gz and Server2.5pl4.tar.gz Netrek source code archive files

have never been modified since being posted to the Netrek Software Archive. Furthermore,

based on my experience in acquiring source code files and archives from publicly accessible

sources over the years, I have no reason to believe that the date stamps on these copies of

_ BRMH—1.7.tar.gz and Server2.5pl4.tar.gz are inaccurate and therefore believe them to correctly

reflect the dates those files were created.

15. Based on my general experience with software over the past 16 years, my

experience playing Netrek, my extensive involvement in the Netrek community over the past 13

years, discussions with other members of the Netrek community, my personal involvement in

creating and maintaining the Netrek Software Archive, the date stamps on the BRMH—l.7.tar.gz

and Server2.5pl4.tar.gz source code archive files (which I believe to accurately reflect the dates

those archive files were created), my knowledge and recollection of various messages posted to

rec.games.netrek, and my extensive experience downloading, experimenting with, and

modifying Netrek source code, I can attest as follows. To the best of my knowledge,

recollection, and understanding, the BRMH-1.7.tar.gz and Servcr2.5pl4.tar.gz source code

archive files available on the Netrek Software Archive (1) contain versions of the Netrek BRMH

client and Netrek Vanilla Server source code files, respectively; (2) became and continued to be

disseminated from publicly accessible sources during or before 1994 and substantially

continuously thereafter; and (3) were locatable and recognizable from 1994 onward by any

person interested and ordinarily skilled in source code development, particularly including

members of the Netrek community and those who participated in the rec.gamesnetrek

newsgroup, who exercised reasonable diligence to locate them.

DCMB_832,595 9

Petitioner Riot Games, Inc. - EX. 1005, p. 185

Petitioner Riot Games, Inc. - Ex. 1005, p. 186

Declaration ofDavid Ahn

I declare under penalty of perjury under the laws of the United States of America that the

foregoing is true and correct.

Executed on this LLL day of December, 2007.

‘g/fl/a
David Ahn

DCMB_832,595 10

Petitioner Riot Games, Inc. - EX. 1005, p. 186

Petitioner Riot Games, Inc. - Ex. 1005, p. 187

Electronic Patent Application Fee Transmittal

Title of Invention: SERVER-GROUP MESSAGING SYSTEM FOR INTERACTIVE APPLICATIONS

First Named Inventor/Applicant Name: Daniel J. Samuel

Filer: Tracy Wesley Druce

Filed as Large Entity

ex parte reexam Filing Fees

Sub-Total in

USD($)

Basic Filing:

Request for ex parte reexamination 1812 2520 2520

Description Fee Code Quantity

Miscellaneous-Filing:

Petition:

Patent-Appeals—and-lnterference:

Post-AlIowance-and-Post-lssuance:

Extension-of—Time:

Petitioner Riot Games, Inc. - EX. 1005, p. 187

Petitioner Riot Games, Inc. - Ex. 1005, p. 188

Sub-Total in

USD($)Description Quantity

Miscellaneous:

Total in USD (5) 2520

Petitioner Riot Games, Inc. - EX. 1005, p. 188

Petitioner Riot Games, Inc. - Ex. 1005, p. 189

Electronic Acknowledgement Receipt

7804962

Confirmation Number:

Title of Invention: SERVER-GROUP MESSAGING SYSTEM FOR INTERACTIVE APPLICATIONS

First Named Inventor/Applicant Name: Daniel J. Samuel

——
Filer Authorized By:

Attorney Docket Number: 18830.0003

——
Time Stamp: 17:36:56

Application Type: Reexam (I'hird Party)

Payment information:

Submitted with Payment yes

PaymentType Credit Card

Payment was successfully received in RAM $2520

RAM confirmation Number

Deposit Account

Authorized User

Document Document Descri tion FileSize(Bytes)/ Multi Pages
Number p Message Digest Part /.zip (ifappl.)

Petitioner Riot Games, Inc. - EX. 1005, p. 189

Petitioner Riot Games, Inc. - Ex. 1005, p. 190

CERTIFICATE_O F_SERV|CE_523.Reexam Certificate of Service
pdf h5hIhd93F03h9r93aa47 ”81 hr5df(97n788

eaAd

Information:

Reexam - Info Disclosure Statement

Filed by 3rd Party |DS_523_.pdf dIJ3bifiLL754d4d4Leb45466467efld474743
22731

Information:

Reexam - Affidavit/Decl/Exhibit Filed by
3rd Party PAiBirfci 4597|RC766pg.pdf 306115d7173807b5d0abd776032ffi8b501

68392

Warnings:

Information:

158585
Reexam - Affidavit/Decl/Exhibit Filed by PA_C_Packing_Messages_Fried

3rd Party man_19pg.pdf 3181n8b603840<15ca194cb63a50k1c944c
b36532

Warnings:

Information:

256867
Reexam - Affidavit/Decl/Exhibit Filed by PA_D_Van_Hook_An_Approac

3rd Party h_to_DIS_Scaleabilty_9pg.pdf 1735893338368923351efied101acb23695
3642

Information:

8236023
Reexam — Affidavit/Decl/Exhibit Filed by PA_E_IEEE_1278_1993_65pg_.

3rd Party Sadd Sbbicld 3b3693b95bdc52984(99f8b
(183532

PA_F_5736982_Virtual_space_ 23110919
apparatus_wit h_ava_46pg_.

pdf 52b5269d98cb9b8d57fll4(0dd447076305f/ee/

Reexam — Affidavit/Decl/Exhibit Filed by
3rd Party

Information:

3847316
Reexam - Affidavit/Decl/Exhibit Filed by PAiGiRINGiAiclienLServeLS

3rd Party ystem_10pg.pdf 43939511751b386f1953654bd07c905d3ed
4f856

Warnings:

Information:

149424
Reexam - Affidavit/Decl/Exhibit Filed by PA_H_Histow_of_Netrek_McFa l no

3rd Part dden 16 . df
y 7 pg, P 851045abam40b992ee94995bfbcc9c78aaw“

Warnings:

Information:

Petitioner Riot Games, Inc. - EX. 1005, p. 190

Petitioner Riot Games, Inc. - Ex. 1005, p. 191

2047617
Reexam — Affidavit/Decl/Exhibit Filed by PA_I_Macedonia_1995_cga_9p

3rd Party FRI 76h3r15043(94f548d733d5hf50m‘9859
7861;)

2948698
Reexam - Affidavit/Decl/Exhibit Filed by

3rd Party PAT_A_5822523_27pg_.pdf 36b5813295L1 00LDe25t-71JL7L40L1109L04L
34129

Information:

6719316
Reexam - Affidavit/Decl/Exhibit Filed by PAT7B758225237ProiHistory72

3rd Party 50pgi.pdf 17691befa73509a0448345ea68e5768fa78e

Warnings:

Information:

152176
Reexam - Affidavit/Decl/Exhibit Filed by CC_A_B_523_V_NETREK_55pg.

3rd Party N691d274a408a71093607b997c976m260
bc7el

Warnings:

Information:

238222
Reexam - Affidavit/Decl/Exhibit Filed by CC_C_523_V_Van_hook_and_

3rd Party D|S_18pg.pdf 01563345ceb5330b18702902Id7b1flc17d5
77(d

Information:

Reexam — Affidavit/Decl/Exhibit Filed by CC_D_523_IRC_RFC_Fried man
3rd Party _Claims_1_2_4_6_6pg.pdf 139(933197I723956679696K5d3149liealef

d2185

239434
Reexam — Affidavit/Decl/Exhibit Filed by CC_E_523_V_Ring_in_view_of

3rd Party Netrek_43 pg.pdf 988631391 600f65d824d461 C63703d6832b9
39363

Information:

249543
Reexam - Affidavit/Decl/Exhibit Filed by CC7F75237v7R|NGiand7Van7H

3rd Party ook_22pg.pdf 76302a5c5b75b997339bed79d9fb007cf27
hd430

Warnings:

Information:

597025
Reexam - Affidavit/Decl/Exhibit Filed by OTH_B_Paltalk_Complaint_17p l no

3rd Party gi.pdf b144(77cbb8e1 3451:3121 e23d06e5388527
5129116

Warnings:

Information:

Petitioner Riot Games, Inc. - EX. 1005, p. 191

Petitioner Riot Games, Inc. - Ex. 1005, p. 192

1293252
Reexam — Affidavit/Decl/Exhibit Filed by OTH_C_90010093_AhnDecl_11

3rd Party 37UdffiP3Pad 3 35h334PI109197f3 3349(31
39I0

Information:

1701541
Reexam - Affidavit/Decl/Exhibit Filed by OTH_D_90010093_Order_Gran

3rd Party ting_Reexam_i 9pg_.pdf 995834d771i99L881 0bdd25d8b456356b21
684m

Information:

329171
Reexam - Affidavit/Decl/Exhibit Filed by OTHiEiPalTalk70peningiCC7B

3rd Party rief734pgi.pdf d93bb9l4eb7710:817:8060017451773895
6358d5

Warnings:

Information:

83815

Reexam - Affidavit/Decl/Exhibit Filed by ioril'i—HEbnifriiiLoaplglldeerrltglogda
3rd Party

pdf 31(Sb(24f61d222534fbc37c96c579cz162455961:

Warnings:

Information:

205829
Reexam - Affidavit/Decl/Exhibit Filed by OTH_G_107_Claim_Constructi

3rd Party on_Order_44pg_.pdf 7ee210465108bf183e216600eda6d14337
526(

Information:

1742609
Reexam — Affidavit/Decl/Exhibit Filed by OTH_H_Lipstream_Claim_Cons

3rd Party truction_Order_15pg_.pdf b37ef0d4970233 | (SSefliCE-dgiaa70337aag
9137f

371455
Receipt of Original Ex Parte Reexam 523_ex_parte_reexam_52pgs.

Request pdf (61ad6eb79fb9260fcaefiI53212f76c0d635 :
lbo

Information:

4649235
Reexam - Affidavit/Decl/Exhibit Filed by OTH7A70113,5,Smith7declara

3rd Party tion_20pg.pdf b165323ad36956a<9ea249247934bdbeb6
8(19805

Warnings:

Information:

‘ 17114665

Reexam - Affidavit/Decl/Exhibit Filed by OTH_|_Netgames_your_gurde3rd Part toitheigamesiLtoJ3970f72 l no
y 87 pgs.pdf fd75a2663b263379d8b04c0ff0I43cc5139cb590

Warnings:

Information:

Petitioner Riot Games, Inc. - EX. 1005, p. 192

Petitioner Riot Games, Inc. - Ex. 1005, p. 193

OTH_|_Netgames_your_guide 16154802
to_the_ga m es_140_to_287_of

_287 [395.de drnmafimmmamasfifim srfaassaasfa

Reexam — Affidavit/Decl/Exhibit Filed by
3rd Party 084

Information:

Fee Worksheet (PTO—875) fee—info.pdf 25de79e9d8dd9L5d0296768l9dd l0d030l
I96b

Information:

Total Files Size (in bytes) 92803042

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents,
characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a
Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
Ifa new application is being filed and the application includes the necessary components for a filing date (see 37 CFR
1.53(b)—(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this
Acknowledgement Receipt will establish the filing date ofthe application.

National Stage of an International Application under 35 U.S.C. 371
lfa timely submission to enter the national stage of an international application is compliant with the conditions of 35
U.S.C. 371 and other applicable requirements a Form PCT/D0/E0/903 indicating acceptance of the application as a
national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office

lfa new international application is being filed and the international application includes the necessary components for
an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number

and of the International Filing Date (Form PCT/R0/105) will be issued in due course, subject to prescriptions concerning

national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of
the application.

Petitioner Riot Games, Inc. - EX. 1005, p. 193

Petitioner Riot Games, Inc. - Ex. 1005, p. 194

PTO/SB/57 (02-09)
Approved for use through 08/31/2010. OMB 0651-0033

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

(Also referred to as FORM PTO-1465)

REQUEST FOR EX PARTE REEXAMINATION TRANSMITTAL FORM

Address to:

Mail Stop Ex Parte Reexam
Commissioner for Patents Attorney Docket No.: 18330.0003
P.O. BOX 1450

Alexandria, VA 22313-1450 Date: June 14. 2010

1. This is a request for ex parte reexamination pursuant to 37 CFR 1.510 of patent number 5,822,523

issued 1998'10'1 3 . The request is made by:

El patent owner. third party requester.

The name and address of the person requesting reexamination is:

Novak Druce + Quigg LLP

1000 Louisiana Street, Fifty-Third Floor

Houston, TX 77002

A check in the amount of$ is enclosed to cover the reexamination fee, 37 CFR 1.20(c)(1);

The Director is hereby authorized to charge the fee as set forth in 37 CFR 120(c)(1)
to Deposit Account No. ; or

Payment by credit card. Form PTO-2038 is attached.

Any refund should be made by I: check or credit to Deposit Account No. 14'1437
37 CFR1.26(c). If payment is made by credit card, refund must be to credit card account.

A copy of the patent to be reexamined having a double column format on one side of a separate paper is
enclosed. 37 CFR 1.510(b)(4)

CD-ROM or CD-R in duplicate, Computer Program (Appendix) or large table

|:| Landscape Table on CD

I: Nucleotide and/or Amino Acid Sequence Submission

if applicable, items a. — c. are required.

a. D Computer Readable Form (CRF)
b. Specification Sequence Listing on:

i. |: CD-ROM (2 copies)orCD-R (2 copies); or

ii. l: paper

c. D Statements verifying identity of above copies

8. I: A copy of any disclaimer, certificate of correction or reexamination certificate issued in the patent is included.

9. Reexamination of claim(s) 1'6 is requested.

10. A copy of every patent or printed publication relied upon is submitted herewith including a listing thereof on
Form PTO/SB/08, PTO-1449, or equivalent.

11. I: An English language translation of all necessary and pertinent non-English language patents and/or printed
publications is included.

[Page 1 of 2]

This collection of information is required by 37 CFR 1.510. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to
process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 2 hours to complete, including
gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount
of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark
Office, U.S. Department of Commerce, PO. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS.
SEND TO: Mail Stop Ex Parte Reexam, Commissioner for Patents, P.0. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

Petitioner Riot Games, Inc. - EX. 1005, p. 194

Petitioner Riot Games, Inc. - Ex. 1005, p. 195

PTO/SB/57 (02-09)
Approved for use through 08/31/2010. OMB 0651-0033

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

12. The attached detailed request includes at least the following items:

a. A statement identifying each substantial new question of patentability based on prior patents and printed
publications. 37 CFR 1.510(b)(1)
b. An identification of every claim for which reexamination is requested, and a detailed explanation of the pertinency
and manner of applying the cited art to every claim for which reexamination is requested. 37 CFR 1.51 O(b)(2).

13. D A proposed amendment is included (only where the patent owner is the requester). 37 CFR 1.510(e)

14. I a. It is certified that a copy of this request (iffiled by other than the patent owner) has been served in its entirety on
the patent owner as provided in 37 CFR 1.33(c).
The name and address of the party served and the date of service are:

Rajiv P. Patel. Fenwick & West LLP, 2 Palo Alto Square, Palo Alto, CA 94306

Jordan Altman, Shearman & Sterling LLP, 599 Lexington Ave, New York NY 10022

Daniel Devito, 4 Times Square, New York, NY 10036

June 14, 2010

D b. A duplicate copy is enclosed because service on patent owner was not possible. An explanation of the efforts
made to serve patent owner is attached. See MPEP 2220.

Date of Service: ; or

15. Correspondence Address: Direct all communications about the reexamination to:

The address associated with Customer Number: 37086

OR
Firm or

IndividualName—

Telephone

16. The patent is currently the subject of the following concurrent proceeding(s):

a. Copending reissue Application No.

b. Copending reexamination Control No.

c. Copending Interference No.
d. Copending litigation styled:

PalTalk Holdings Inc. v. Sony Computer Entertainment

America Inc., et. al., Case.No. 2:09cv00274-DF (E.D. Tex.)

WARNING: Information on this form may become public. Credit card information should not be
included on this form. Provide credit card information and authorization on PTO-2038.

/Tracy W. Druce/ June 14, 2010
Authorized Signature Date

Tracy W Druce 35493 D For Patent Owner Requester
Typed/Printed Name Registration No. For Third Party Requester

[Page 2 of 2]

Petitioner Riot Games, Inc. - EX. 1005, p. 195

Petitioner Riot Games, Inc. - Ex. 1005, p. 196

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection
with your submission of the attached form related to a patent application or patent. Accordingly,
pursuant to the requirements of the Act, please be advised that: (1) the general authority for the
collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary;
and (3) the principal purpose for which the information is used by the US. Patent and Trademark
Office is to process and/or examine your submission related to a patent application or patent. If you do
not furnish the requested information, the US. Patent and Trademark Office may not be able to
process and/or examine your submission, which may result in termination of proceedings or
abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the
Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from
this system of records may be disclosed to the Department of Justice to determine whether
disclosure of these records is required by the Freedom of Information Act.

2. A record from this system of records may be disclosed, as a routine use, in the course of
presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to
opposing counsel in the course of settlement negotiations.

3. A record in this system of records may be disclosed, as a routine use, to a Member of
Congress submitting a request involving an individual, to whom the record pertains, when the
individual has requested assistance from the Member with respect to the subject matter of the
record.

4. A record in this system of records may be disclosed, as a routine use, to a contractor of the
Agency having need for the information in order to perform a contract. Recipients of
information shall be required to comply with the requirements of the Privacy Act of 1974, as
amended, pursuant to 5 U.S.C. 552a(m).

5. A record related to an International Application filed under the Patent Cooperation Treaty in
this system of records may be disclosed, as a routine use, to the International Bureau of the
World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.

6. A record in this system of records may be disclosed, as a routine use, to another federal
agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to
the Atomic Energy Act (42 U.S.C. 218(c)).

7. A record from this system of records may be disclosed, as a routine use, to the Administrator,
General Services, or his/her designee, during an inspection of records conducted by GSA as
part of that agency's responsibility to recommend improvements in records management
practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall
be made in accordance with the GSA regulations governing inspection of records for this
purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not
be used to make determinations about individuals.

8. A record from this system of records may be disclosed, as a routine use, to the public after
either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent
pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37
CFR 1.14, as a routine use, to the public if the record was filed in an application which
became abandoned or in which the proceedings were terminated and which application is
referenced by either a published application, an application open to public inspection or an
issued patent.

9. A record from this system of records may be disclosed, as a routine use, to a Federal, State,
or local law enforcement agency, if the USPTO becomes aware of a violation or potential
violation of law or regulation.

Petitioner Riot Games, Inc. - EX. 1005, p. 196

Petitioner Riot Games, Inc. - Ex. 1005, p. 197

Electronic Acknowledgement Receipt

7810215

Confirmation Number:

Title of Invention: SERVER-GROUP MESSAGING SYSTEM FOR INTERACTIVE APPLICATIONS

First Named Inventor/Applicant Name: Daniel J. Samuel

Correspondence Address:

Tracy Wesley Druce

Receipt Date: 14-JUN-201O

Filing Date:

Payment information:

Submitted with Payment

File Listing:

Petitioner Riot Games, Inc. - EX. 1005, p. 197

Petitioner Riot Games, Inc. - Ex. 1005, p. 198

Document Document Descri tion FileSize(Bytes)/ Multi Pages
Number p Message Digest Part /.zip (ifappl.)

_ 778145
Transmlttal_Form_523_3pgs.

Reexam Miscellaneous Incoming Letter pdf I588926222126c1Sd7d6i46f6b6ece9e2cl4
7626

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents,

characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a
Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111

lfa new application is being filed and the application includes the necessary components for a filing date (see 37 CFR
1.53(b)—(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this

Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371

lfa timely submission to enter the national stage of an international application is compliant with the conditions of 35
U.S.C. 371 and other applicable requirements a Form PCT/D0/E0/903 indicating acceptance of the application as a

national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office
Ifa new international application is being filed and the international application includes the necessary components for
an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number
and of the International Filing Date (Form PCT/R0/105) will be issued in due course, subject to prescriptions concerning
national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of
the application.

Petitioner Riot Games, Inc. - EX. 1005, p. 198

Petitioner Riot Games, Inc. - Ex. 1005, p. 199

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Control No.:

Inventors: Rothschild, Jeffrey J ., Marc P. REQUEST FOR REEXAMINATION UNDER
Kwaitkowski and Daniel J. Samuel 35 U'S'C' §§ 302'307 AND

37 C.F.R. § 1.510

Patent No.: 5,822,523

Filed: February 1, 1996

Issued: October 13, 1998

Title: Server-group messaging system for

interactive applications

Mail Stop Ex Parte Reexamination
ATTN: Central Reexamination Unit

Commissioner for Patents

PO. Box 1450

Alexandria, VA 22313—1450

RE UEST FOR EX PARTE REEXAMINATION OF US. PATENT N0. 5 822 523

Petitioner Riot Games, Inc. - EX. 1005, p. 199

Petitioner Riot Games, Inc. - Ex. 1005, p. 200

TABLE OF CONTENTS

I. REQUIREMENTS FOR EX PARTE REEXAMINATION UNDER 37 C.F.R. § 1.510
7

A. 37 C.F.R. § 1.510 (b)(l) and (b)(2): Statement Pointing Out Each Substantial New

Question of Patentability and Detailed Explanation of the Pertinency and Manner of Applying

the Cited Prior Art to Every Claim for Which Reexamination is Requested 7

B. 37 C.F.R. § 1.510 (b)(3): Copy of Every Patent or Printed Publication Relied Upon to

Present a SNQ ... 7

C. 37 C.F.R. § 1.510 (b)(4): Copy ofthe Entire Patent for which Reexamination Is

Requested .. 8

D. 37 C .F.R. § 1.510 (b)(5): Certification that a Copy of the Request has been Served in its

Entirety on the Patent Owner .. 8

E. 37 C.F.R. § 1.510 (a): Fee for Requesting Reexamination ... 8

F. Related Co-Pending Litigation Requires Treatment with Special Dispatch and Priority
Over all Other Cases. .. 9

II. OVERVIEW OF THE ‘523 PATENT AND ITS PROSECUTION HISTORY . 9

A. Summary of Preferred Embodiments and Claims of the “523 Patth 9

B. “523 Patent Application Prosecution History ... 10
C. Claim Construction ... 12

1. Standard .. 12

2. Previous Litigation Claim Constructions .. 13
III. SUMMARY OF THE PRIOR ART .. 13

IV. 37 C.F.R. § 1.510 (b)(l): STATEMENT POINTING OUT EACH SUBSTANTIAL

NEW QUESTION OF PATENTABILITY .. 19

A. Netrek Alone Presents a Substantial New Question of Patentability with Respect to
Claims 1-6 of the ‘523 Patth ... 19

B. Netrek in Combination with McFadden Presents a Substantial New Question of

Patentability with Respect to Claims 1-6 of the ‘523 Patent. ... 19

C. Van Hook in Combination with DIS Presents a Substantial New Question of Patentability

with Respect to Claims 1, 2 and 4-6 of the ‘523 Patth.. 20

D. IRC RFC in Combination with Friedman Presents a Substantial New Question of

Patentability with Respect to Claims 1, 2 and 4-6 of the ‘523 Patent 21

E. RING in Combination with Netrek Provides a Substantial New Question of Patentability

with Respect to Claims 1-6 of the ‘523 patent .. 22

F. RING in Combination with Van Hook Provides a Substantial New Question of

Patentability with Respect to Claims 1, 2 and 4-6 of the “523 patent 23

V. DETAILED EXPLANATION UNDER 37 CFR 1.510(b) OF THE PERTINENCY
AND MANNER OF APPLYING THE CITED PRIOR ART TO EVERY CLAIM FOR

WHICH REEXAMINATION IS REQUESTED ... 23

Petitioner Riot Games, Inc. - Ex. 1005, p. 200

Petitioner Riot Games, Inc. - Ex. 1005, p. 201

A. Claims 1-6 Are Anticipated by Netrek Under 35 U.S.C. § 102 .. 23

B. Claims 1-6 Are Rendered Obvious by Netrek in view of McFadden under 35 U.S.C.

§ 103 .. 32

C. Claims 1, 2 and 4-6 Are Rendered Obvious by Van Hook in view of DIS under 35 U.S.C.

§ 103 .. 32

D. Claims 1, 2 and 4—6 Are Rendered Obvious by IRC RFC in view of Friedman under 35

U.S.C. § 103 .. 37

E. Claims 1-6 Are Rendered Obvious by RING in view ofNetrek under 35 U.S.C. § 103 . 40

F. Claims 1, 2 and 4-6 Are Rendered Obvious by RING in view of Van Hook under 35

U.S.C. § 103 .. 46
VI. CONCLUSION ... 51

Petitioner Riot Games, Inc. - EX. 1005, p. 201

Petitioner Riot Games, Inc. - Ex. 1005, p. 202

TABLE OF EXHIBITS

LIST OF EXHIBITS

The exhibits to the present Request are arranged in four groups: prior art (“PA”); relevant

portions of patent prosecution file history, patents, and claim dependency relationships (“PAT”);

claim charts (“CC”); and other (“0TH”).

A. PRIOR ART (PA)

PA-SB08 USPTO Form SB/08

PA-A Server2.5pl4.tar.gz (“Server Code”) and BRMH-1.7.tar.gz (“Client Code”)

(source code dated no later than August 19941) (“Netrek”)

PA—B J. Oikarinen et al., RFC 1459- Internet Relay Chat Protocol, published May

1993 (“IRC RFC”)

PA-C R. Friedman et al., Packing Messages as a Tool for Boosting the

Performance of Total Ordering Protocols, Dept. of Science of Cornell

University, published July 7, 1995 (“Friedman”)

PA-D Daniel J. Van Hook, James 0. Calvin, Michael K. Newton, and David A.

Fusco, “An Approach to DIS Scaleability,” 11th DIS Workshop, 26—30 Sept.
1994 (“Van Hook”)

PA-E IEEE 1278-1993 IEEE Standard for Information Technology- Protocols for

Distributed Interactive Simulation Applications, approved March 18, 1993,

and published in 1993 (“DIS”)

PA-F US. Patent No. 5,736,982 to Suzuki (“Suzuki”)

PA—G T. A. Funkhouser, “RING: A Client—Server System for Multi—User Virtual

Environments,” Association of Computing Machinery, 1995 Symposium on

Interactive 3D Graphics, Monterey CA, April 9-12, 19952 (“RING”)

PA—H Andy McFadden, “The History of Netrek”, published January 1, I994

(“McFadden”)

PA-I Michael R. Macedonia, “Exploiting Reality with Multicast Groups”,

published September 1995 (“Macedonia”)

B. RELEVANT PATENT MATERIALS (PAT)

PAT-A US. Patent No. 5,822,523 (“the ‘523 patent”)

PAT—B Prosecution history of the “523 patent

1 See also, The Ahn declaration (OTH—C) at 1111 7—10 and 15 (supporting public availability of Netrek source code no
later than August 1994).

2 See htux/xbortal.acmera/tot:.cfrn‘YiCFl99404 (indicating the Association of Computing Machinery, 1995
Symposium on Interactive 3D Graphics, Monterey CA, including the presentation for RING, occurred between
April 9- l 2.

Petitioner Riot Games, Inc. - EX. 1005, p. 202

Petitioner Riot Games, Inc. - Ex. 1005, p. 203

C. CLAIM CHARTS (CC)

CC-A Claim Chart comparing Claims l—6 of US. Patent No. 5,822,523 to the
disclosure in Netrek

CC-B Claim Chart comparing Claims 1-6 of US. Patent No. 5,822,523 to the
disclosure in Netrek in view of McFadden

CC-C Claim Chart comparing Claims 1, 2 and 4-6 of US. Patent No. 5,822,523 to
the disclosure in Van Hook in View of DIS

CC-D Claim Chart comparing Claims 1, 2 and 4—6 of US. Patent No. 5,822,523 to
the disclosure of IRC RFC in View of Friedman

CC-E Claim Chart comparing Claims l—6 of US. Patent No. 5,822,523 to the
disclosure of RING in View ofNetrek

CC-F Claim Chart comparing Claims 1, 2 and 4-6 of US. Patent No. 5,822,523 to
the disclosure of RING in View of Van Hook

D. OTHER DOCUMENTS (0TH)

OTH-A Declaration of Kevin Smith (“the Smith declaration”)

OTH-B Complaint filed in Paltalk Holdings, Inc. v. Sony Computer Entertainment

America, Inc, et. al., (ED. TeX.), Case No. 2:09cv00274—DF

OTH-C Declaration of David Ahn (“the Ahn declaration”)

OTH—D Reexamination Ctr]. No. 90/001,093 Determination Ordering Reexamination

dated February 29, 2008

OTH-E Paltalk’s Corrected Second Opening Claim Construction Brief filed on

December 31, 2007 in Paltalk Holdings, Inc. v. .Microsoft Corp. (ED. Tex.),
Case No. 2:06-cv-00367-DF

OTH-F Paltalk’s Second Reply Brief on Claim Construction filed on January 7, 2008 in

Paltalk Holdings, Inc. v. iMicrosoft Corp. (ED. Tex.), Case No. 2:06—cv—00367—
DF

OTH-G Claim Construction order issued on July 29, 2008 in Paltalk Holdings, Inc. v.

Microsoft Corp. (ED. Tex), Case No. 2:06—cv—00367—DF

OTH-H Claim Construction order issued on August 25, 2000 in HearMe v. Lipstream

Networks, Inc. (ND. Cal), Case No. 99-04506 WHA

OTH—I Kelly Maloni, Derek Baker and Nataniel Wice “Netgames Your Guide to the

Games People Play on the Electronic Highway” published 1994 (“Maloni”)

Petitioner Riot Games, Inc. - EX. 1005, p. 203

Petitioner Riot Games, Inc. - Ex. 1005, p. 204

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Control No:

Inventors: Rothschild, Jeffrey J ., Marc P. REQUEST FOR REEXAMINATION UNDER
Kwaitkowski and Daniel J. Samuel 35 U'S'C' §§ 302'307 AND

37 C.F.R. § 1.510

Patent No.: 5,822,523

Filed: February 1, 1996

Issued: October 13, 1998

Title: Server—group messaging system for

interactive applications

Mail Stop Ex Parte Reexamination
ATTN: Central Reexamination Unit

Commissioner for Patents

PO. Box 1450

Alexandria, VA 22313-1450

REQUEST FOR EXPARTE REEXAMINATION OF US PATENT 5,822,523

Dear Sir or Madam:

The undersigned hereby respectfully requests reexamination, pursuant to 35 U.S.C. §§ 302-

307 and 37 C.F.R. § 1.510, of Claims 1-6 of US. Patent No. 5,822,523 (“the “523 patent”), filed

February 1, 1996, and issued October 13, 1998, to Jeffrey J. Rothschild, Marc P. Kwaitkowski and

Daniel J. Samuel (Exhibit PAT-A). Reexamination is requested in View of the substantial new

questions of patentability (“SNQ”) presented below. Requester reserves all rights and defenses

available including, without limitation, dcfcnscs as to invalidity and uncnforccability. By simply

filing this Request in compliance with the Patent Rules, Requester does not represent, agree or

concur that the ‘523 patent is enforceable, and by asserting the SNQ herein, Requester specifically

asserts that Claims 1—6 of the “523 patent are in fact not patentable. As such, the US. Patent and

Trademark Office (the “Office”) should reexamine and find Claims 1-6 unpatentable and cancel

Petitioner Riot Games, Inc. - Ex. 1005, p. 204

Petitioner Riot Games, Inc. - Ex. 1005, p. 205

Claims 1—6 of the “523 patent, rendering Claims 1—6 of the “523 patent null, void, and otherwise

unenforceable.

Reexamination is requested in View of the teachings of the references cited herein. The

SNQs established by these references teach the elements recited by Claims 1-6 of the “523 patent

and, importantly, teach the elements that were argued as novel during prosccution. Further, none

of the references submitted as part of this reexam were cited or discussed during prosecution of

the “523 patent. As described more fully below, reexamination is appropriate in view of the

patents and printed publications prior art cited herein, which alone or in combination with other

prior art provide new technical teachings not previously considered with respect to the claims

herein requested for reexamination.

The Requester submits that reexamination should be granted and that Claims 1-6 be found

unpatentable by issuance of a Certificate of Reexamination canceling all claims.

I. REQUIREMENTS FOR EX PARTE REEXAMINATION UNDER 37 C.F.R. §
1.510

Requester satisfies each requirement for ex parte reexamination of the ‘523 patent.

A. 37 C.F.R. § 1.510 (b)(l) AND (b)(2): STATEMENT POINTING OUT EACH

SUBSTANTIAL NEW QUESTION OF PATENTABILITY AND DETAILED EXPLANATION OF THE
PERTINENCY AND MANNER OF APPLYING THE CITED PRIOR ART To EVERY CLAIM FOR

WHICH REEXAMINATION Is REQUESTED

A statement pointing out each substantial new question of patentability (“SNQ”) based on

the cited patents, and a detailed explanation of the pertinence and manner of applying the cited

patents to Claims 1-6 of the “523 patent is presented below in accordance with 37 C .F.R. § 1.510

(b)(l) and (b)(2)-

The SNQs raised herein are based on prior art that was not cited or discussed during the

prosecution of the “523 patent. The references, alone or in combination, are not cumulative to

the prior art discussed during the original prosecution of the “523 patent. Thus, they are

appropriate for use in supporting the SNQs ofpatentability raised herein.

B. 37 C.F.R. § 1.510 (b)(3): COPY OF EVERY PATENT OR PRINTED PUBLICATION

RELIED UPON TO PRESENT A SNQ

A copy of every patent is or printed publication relied upon to present a SNQ is submitted

herein, pursuant to 37 C.F.R. §1.510(b)(3), as Exhibits PA—A through Exhibits PA-I, citation of

Petitioner Riot Games, Inc. - Ex. 1005, p. 205

Petitioner Riot Games, Inc. - Ex. 1005, p. 206

which may be found on the accompanying Form PTO—SB/08 at Exhibit PTO—SB/OS. Each of

these cited prior art patents and printed publications constitutes effective prior art as to the claims

of the ‘523 patent under 35 U.S.C. § 102 and 35 U.S.C. § 103. PA—A was separately submitted

on a compact disc to the Office, in the care of Manuel Saldana J12, on the same date as this

request was filed, June 14, 2010.

C. 37 C.F.R. § 1.510 (b)(4): COPY OF THE ENTIRE PATENT FOR WHICH
REEXAMINATION IS REQUESTED

A full copy of the “523 patent is submitted herein as Exhibit PAT—A in accordance with

37 C.F.R. § 1.510(b)(4).

D. 37 C.F.R. § 1.510 (b)(5): CERTIFICATION THAT A COPY OF THE REQUEST HAS BEEN
SERVED IN ITS ENTIRETY ON THE PATENT OWNER

A copy of this request has been served in its entirety on the Patent Owner in accordance

with 37 C.F.R. § 1.510(b)(5) at the following address:

DANIEL DEVITO

PATENT DEPARTMENT

SKADDEN, ARPS, SLATE, MEAGHER & FLOM LLP

FOUR TIMES SQUARE
NEW YORK NY 10036

Also as a courtesy, a copy of this request is being sent to two correspondence addresses

of recent assignees:

FENWICK & WEST LLP

RAJIV P. PATEL, ESQ.

TWO PALO ALTO SQUARE

PALO ALTO, CA 94306

and

JORDAN ALTMAN 599 LEXINGTON AVENUE SHEARMAN &

STERLING LLP — IP DOCKETING

NEW YORK, NY 10022

E. 37 C.F.R. § 1.510 (a): FEE FOR REQUESTING REEXAMINATION

In accordance with 37 C.F.R. § 1.510(a), a credit card authorization to cover the fee for

reexamination of $2,520.00 iS attached. If this authorization is missing or defective, please

charge the Fee to the Novak Druce and Quigg Deposit Account No. 14-1437.

Petitioner Riot Games, Inc. - EX. 1005, p. 206

Petitioner Riot Games, Inc. - Ex. 1005, p. 207

F. RELATED CO-PENDING LITIGATION REQUIRES TREATMENT WITH SPECIAL
DISPATCH AND PRIORITY OVER ALL OTHER CASES.

The “523 patent is presently the subject of PalTalk Holdings v. Sony Computer

Entertainment America, et al., (ED. TeX.) See OTH-A, Complaint filed by Paltalk Holdings.

Pursuant to 35 U.S.C. § 305, Requester respectfully urges that this Request be granted

and reexamination conducted not only with “special dispatch,” but also with “priority over all

other cases” in accordance with 37 CPR. 1.550(a) due to the ongoing nature of the underlying

litigation.

II. OVERVIEW OF THE “523 PATENT AND ITS PROSECUTION HISTORY

A. SUMMARY OF PREFERRED EMBODIMENTS AND CLAIMS OF THE ‘523 PATENT

The “523 patent generally relates to a method for deploying interactive applications over

a network containing host computers and a group messaging server. The “523 patent at Abstract.

More specifically, the disclosure relates to an interactive application, wherein many messages are

arriving at the group server close to one another in time. Rather than simply forwarding each

message to its targeted hosts, the group messaging server aggregates the contents of the

messages received during a specified time period, and then sends an aggregated message to the

targeted hosts. The “523 patent at Abstract.

The method is described in the context of interactive computer applications, and

specifically video game applications, wherein a plurality of users can interact through the game,

although the claims are not so limited. See the “523 patent at 1:15-17; 27:35-38.

The claims recite a method of providing a group-messaging server that maintains a list of

message groups. The message groups each have at least one host computer, but at least one of

the message groups must have a plurality of host computers within the message group. Each

host computer, as well as the group-message server, is connected by a unicast network. The “523

patent at Col. 25, lines 45-64.

A plurality of computers from within one of the message groups send messages to the

group-messaging server. The group messaging server aggregates all of the messages received

within a given time period according to a criterion, forms a message from the aggregation of

received messages, and sends the aggregated message to a host computer within the given

message group. Id.

Petitioner Riot Games, Inc. - EX. 1005, p. 207

Petitioner Riot Games, Inc. - Ex. 1005, p. 208

B. ‘523 PATENT APPLICATION PROSECUTION HISTORY

The ‘523 patent was filed on February 1, 1996, as application serial number 08/595,323

(the “’323 application”). The c323 application contained 16 claims, but only claims 7-12 issued.

Distinguishing claims 7—12 from the canceled claims in the ‘323 application is the presence of

limitations requiring aggregating portions of messages sent from a plurality of host computers in

a message into a single message, which is transmitted to a host computer within the message

group. See PAT-B, pros. hist. of the ‘523 patent, claims filed February 1, 1996.

All claims of the ‘323 application were initially rejected under 35 U.S.C. § 103 over Page

(US. Patent No. 5,329,619) in View of Pcrlman (US. Patent No. 5,309,437) in an Office Action

that issued March 20, 1997. The Examiner found that Page taught all of the limitations of the

claims except for the message server and the unicast network; however, the Examiner found that

the message server would have been obvious in view of the functions of Page’s broker server.

See PAT-B, pros. hist. of the ‘523 patent, Office Action issued March 20, 1997. The Examiner

also found that Perlman taught the required unicast network and that the teachings of the two

references were combinable in View of the fact that a unicast implementation was well known in

the art. See PAT-B, pros. hist. of the ‘523 patent, Office Action issued March 20, 1997.

On June 25, 1997, the Applicants of the “323 application (the “Applicants”) responded

by canceling all claims, except for claims 7—12. See PAT—B, pros. hist. of the “523 patent, Office

Action Response filed June 25, 1997. As addressed above, claims 7-12 were distinguishable

from the canceled claims because they recited various “aggregating” limitations. By canceling

the claims that did not recite the “aggregating” limitations, the Applicants have effectively

admitted that the only potentially novel features of their claims relate to aggregation. The

Applicants” remarks support this proposition, as they argue only that Page does not teach any of

the “aggregating” limitations. See PAT—B, pros. hist. of the “523 patent, Response filed June 25,

1997 at p. 2 (See p. 2 reproduced below for convenience).

10

Petitioner Riot Games, Inc. - Ex. 1005, p. 208

Petitioner Riot Games, Inc. - Ex. 1005, p. 209

Th5 Examinar has rejected ctafims 742 as obviates ever Fags: at at in view eff-“minim:

at al, The Appiium raspaatfifliy traverses this rejactiun. In panic-mar, claims 7'42 require the

stem (if

sending, by a, piuraiity sz hast. mmputer‘s h-elfinging m a first message gratin

messages to said sewer . ., . , said messages swimming 3 paytoafi pflf‘i‘iflfl. (, ;

aggregating, by said server in a. firm: intmal detarmined in accordanue with a

predefineci criterian, said payinad partians Gt“ sajti messagag t0 create an aggregated

payiaatd;

forming an aggmgated messaga using mitt aggmgmed payiuad . . _. .

Page dtieg mt team these claim demerits. In panicuiar, Fag: mamas a. sen-“ice broker

that manages snwice tequssts and. rcSmnsit-re Stanislas mmmunimted bfltwmn mmsrs and.

ciients. Page matches three :11wa Bf mmmunicatian; mexsage prmassing. wwemaflanat

cemmunication, and mutate premium Gait.

Name of Page's modes of cemmnicatim aggregate page-ads (3f messages into an

aggregated payieati whats the payiflads are haittg sent 5mm a piuraiity afimst mmputérsi SSets

Page: 13.3; COP. 5, line 38 . C393. 6, lime 63.: Nana c.3-fPage‘s gather faaturw relate it: aggregating

1;ag-Fingdg nf‘messagag being sent. fmm a pluratity cf has-t cflmputers.

The: cieanup manager iéentifiad by the Examinar is a 313m sfthe service brake-n The

damn? manager gracessm .i A

. Pieasa See Page, Cat 25, iiflfl 48 -

CM. 2?, Sim. 42“. it (ideas not aggregata _ , i ' i It recoversW

WWfar muse. Please 56% Cat; 3?, linES NM 2'.

Pariman does net strceme this defisiancy ufii‘age‘ Fatima invokes a device. that

Gatipifls segmmts ofat: Manda 130a! area newer}; swim that messagw that empioy "mien

netwcrrk pmtamis” wiii ht! handiaci withmtt tha difficuitim usuaiiy assmiated with bridges anti

withuut the camptexity and. fixpense of fill! I? raumrsx Fatima. dag-.5 11m wash aggregating

payloads of messages.

Ailflflfliiflgifi the cembination {$13338 and Periman daes my: teach the inventions at“

claims ”Mi

1]

Petitioner Riot Games, Inc. - EX. 1005, p. 209

Petitioner Riot Games, Inc. - Ex. 1005, p. 210

The Examiner apparently agreed with the Applicants’ remarks and issued a Notice of

Allowability on July 9, 1997. While the Examiner does not provide an explicit reason for

allowance, it can be deduced that the Examiner agreed that the only potential novel and non-

obvious limitation of the pending (and now issued) claims was the “aggregating” limitation.

In view of the above, a substantial new question of patentability (“SNQ”) is raised herein

by each of the several proposed SNQs because each demonstrates that aggregating multiple

messages sent from a plurality of host computers within a message group, and transmitting the

aggregated messages to a host computer in the message group, was well known before the ‘523

patent was filed.

C. CLAIM CONSTRUCTION

1. STANDARD

Requester notes that for purposes of this Request, the claim terms are presented by the

Requester in accordance with 37 C.F.R § 1.555(b) and MPEP § 2111. Specifically, each term of

the claims is to be given its “broadest reasonable construction” consistent with the specification.

MPEP § 2111; In re Trans Texas Holding Corp, 498 F.3d 1290, 1298 (Fed. Cir. 2007) (citing

In re Yamamoto, 740 F.2d 1569, 1571 (Fed. Cir. 1984)). As the Federal Circuit noted in Trans

Texas, the Office has traditionally applied this standard during reexamination, and does not

interpret claims as a court would interpret claims. MPEP § 2111. The Office is not bound by

any prior district court claim construction. Trans Texas, 498 F.3d at 1297, 1301. Rather:

the PTO applies to the verbiage of the proposed claims the broadest reasonable

meaning of the words in their ordinary usage as they would be understood by one

of ordinary skill in the art, taking into account whatever enlightenment by way of

definitions or otherwise that may be afforded by the written description contained

in the applicant’s specification.

In re Morris, 127 F.3d 1048, 1054 (Fed. Cir.1997). The rationale underlying the “broadest

reasonable construction” standard is that it reduces the possibility that a claim, after issue or

certificate of reexamination, will be interpreted more broadly than is justified. 37 C.F.R §

1.555(b), MPEP § 2111.

Because the standards of claim interpretation used in the courts in patent litigation are

different from the claim interpretation standards used in the Office in claim examination

proceedings (including reexamination), any claim interpretations submitted herein for the

12

Petitioner Riot Games, Inc. - EX. 1005, p. 210

Petitioner Riot Games, Inc. - Ex. 1005, p. 211

purpose of demonstrating a SNQ are neither binding upon litigants in any litigation related to the

‘523 patent, nor do such claim interpretations correspond to the construction of claims under the

legal standards that are mandated to be used by the courts in litigation. See 35 U.S.C. § 305; MPEP

§ 2286 II (determination of a SNQ is made independently of a court’s decision on validity because

of diffcrcnt standards of proof and claim intcrprctation cmploycd by the District Courts and the

Office); see also Trans Texas, 498 F.3d at 1298 (Court upheld Office rejections that conflicted

with outcome oflitigation; In re Zletz, 893 F.2d 319, 322, 13 USPQ2d 1320, 1322 (Fed. Cir. 1989).

2. PREVIOUS LITIGATION CLAIM CONSTRUCTIONS

In previous litigation PalTalk had made statements regarding the construction of the

claim terms of the ‘523 patent. See OTH-E and OTH—F, Claim Construction briefs submitted by

PalTalk in PalTalk Holdings, Inc. v. Microsoft Corp.

In addition two courts have construed terms of the ‘523 patent. See OTH-G and OTH-H,

Claim construction orders from PalTalk Holdings, Inc. v. Microsoft Corp. and HearMe v.

Upstream Networks, Inc.

As notcd abovc, thc claim construction standard used in litigation is not as broad as the

standard applied in reexamination. In this reexamination proceeding, the Examiner should apply

the broadest construction consistent with the specification. However, the broadest reasonable

construction should be at least as broad as constructions argued by the Patent Owner in litigation

or adopted by a District Court.

III. SUMMARY OF THE PRIOR ART

1. Netrek

i. Netrek is a printed publication that was published no later than August 1994

Netrek is source code for a client-server game, loosely based on the Star Trek television

show, which game is playcd over a computcr network. Server/docs/README at lines 221, 238.

Because both the client and the server each needed their own code for the game, the source code

is broken into two parts, the “BRMI—I—1.7.tar.gz” Client Code and the “Server2.5p14.tar.gz”

Source Code.

13

Petitioner Riot Games, Inc. - Ex. 1005, p. 211

Petitioner Riot Games, Inc. - Ex. 1005, p. 212

In an unrelated reexamination proceeding, Control No. 90/010,093, the reexamination

request submitted the exact same “BRMH-l.7.tar.gz” Client Code and the “Server2.5pl4.tar.gz”

Source Code relied on in the instant proceeding as prior art. In the Order granting the

reexamination request in that proceeding, the Examiner agreed that the Netrek source code was a

printed publication available as prior art based on the declaration of David Ahn (“Ahn

Declaration”). See OTH—D, Order granting reexamination at 9-11; See also OTH—C, Declaration

of David Ahn. The Ahn Declaration equally supports the use of Netrek as prior art in the instant

reexamination request. Moreover, OTH—I, Maloni, is offered as additional evidence of the

popularity and public availability of the Netrek source code on various FTP servers and Usenet

newsgroups (e. g., “ftp rtfm.mit.edu” and "rec.games.netrek"). Maloni at pp. 48, 49.

As stated in the Ahn Declaration, the BRMH-1.7 Client Code was publically available at

least by October 15, 1993. OTH-D, Ahn Declaration at 11 10. Further, the Server2.5pl4.tar.gz

file, called the Vanilla 2.5 p14 by Ahn, was available by at least August 17, 1994. Id. The

“BRMH—1.7.tar.gz” and “Server2.5pl4.tar.gz” files submitted in this reexamination request were

downloaded from the web addresses specified by Ahn. Id. at 13. Ahn declares that these files

had been publically available and accessible continuously during or before 1994. Id. at 15.

Therefore Netrek is prior art no later than August 17, 1994, which is when the

Server2.5pl4.tar.gz Server Code was publically available (the BRMH-1.7 Client Code was

publically available prior to 1994).

ii. Netrek establishes an SNQ

As discussed above, Netrek was published no later than August 1994, and accordingly is

prior art under 35 U.S.C. § 102(b). Netrek was not cited or discussed in the prosecution of the

‘523 patent.

Netrek discloses a client-server game, loosely based on the Star Trek television show,

which game is played over a computer network. Server/docs/README at lines 221, 238. The

clients communicate among each other through the server using messages over an Internet

protocol (e.g., TCP/IP). Serveflntsewlz‘nputc at line 195 and Serveflntservlsocketc at line 688.

Specifically, the server reads a socket containing data sent from a client. Server\ntserv\z'nput.c at

line 195. The server places the client messages into shared memory. Serverlntservlsocket.c at

lines 1825-2044. After a specified period of time, or when the buffer is full, the server will form

14

Petitioner Riot Games, Inc. - Ex. 1005, p. 212

Petitioner Riot Games, Inc. - Ex. 1005, p. 213

aggregated messages from the received client message payloads and send these aggregated

messages out to the clients. Seweflntservlsocketc at lines 603-90. Examples of messages that

clients can send to each other via the server include text chat, torpedo (indicating a torpedo has

been launched), and plasma messages (indicating plasma has been fired). brmh-I. 7\packets.h.

These messages can be used, for example, by Federation star ships to destroy rival Klingon

starships. Sewer\r0b0rs\basep.c at line 33 and Server\ntservlsocker.c at lines 1125-92.

Accordingly, Netrek teaches aggregating various incoming messages, thereby allowing the

server to send fewer messages than it receives (e.g., “Idea: read from client often, send to client

not so often”). Serverlntservh’npuLC at lines 152-203; Serveflntservlredrawc at lines 21-115;

Server\ntservlsocket.c at lines 603-90.

2. McFadden

McFadden was published no later than May 1, 1994, and accordingly is prior art under 35

U.S.C. § 102(b). McFadden was not cited in the prosecution of the ‘523 patent.

McFadden is a FAQ and history of the Netrek online game. McFadden at p. 2, § 0.2; p.

8, §, 2.1.2 Architecture, and p. 11, §3.3.1 Client/Server. McFadden shows inherent

characteristics of Netrek and is further presented in this request to provide context and

understanding to the Netrek source code. McFadden describes Netrek as “a real-time graphical

multiplayer arcade/strategy game played over the Internet. Players form into teams and fight for

control of the galaxy, dogfighting and taking planets.” McFadden at p. 2, § 0.2. McFadden is

presented in this request to provide context and understanding to the Netrek source code.

3. Van Hook

Van Hook was published September 1994, and accordingly is prior art under 35 U.S.C. §

102(b). Van Hook was not cited or discussed in the prosecution of the ‘523 patent.

Van Hook discloses techniques that have been developed and deployed for Advanced

Research Projects Agency’s (ARPA) Synthetic Theater of War - Europe (“STOW-E”) computer

battlefield simulation program, which uses the Distributed Interactive Simulation (“DIS”)

battlefield simulation protocol. Van Hook at p. 1, 1.0 Introduction. In the STOW-E program, a

virtual world simulates battlefield conditions, and “[c]xplicit representations of command,

control, and communication are required to permit command forces to transmit orders to and

15

Petitioner Riot Games, Inc. - Ex. 1005, p. 213

Petitioner Riot Games, Inc. - Ex. 1005, p. 214

receive reports from a new generation of more intelligent semi—automated forces.” Van I-Iook at

p. 1, 1.0, Introduction. The simulation disclosed in Van Hook is deployed over the Defense

Simulation Internet Wide Area Network utilizing DIS 2.0.3 protocols, wherein protocol data

units (PDUs) containing entity-state information are exchanged between host computers via an

Application Gateway (AG) server. Id. at pp. 1, 2. In Van Hook, the AG server bundles the

PDUs from host computers into larger transmission packets to be distributed. The host

computers in Van Hook can also form message groups such as cell sets.., exercises, and forces.

Id. at p. 66, 4.6 Bundling.

4. IEEE 1278-1993: IEEE Standard for Information Technology— Protocols for Distributed

Interactive Simulation Applications (“DIS”)

DIS was published in 1993 and accordingly is prior art under 35 U.S.C. § 102(b). DIS

was not cited or discussed in the prosecution of the ‘523 patent.

DIS is part of a proposed set of standards for distributed interactive simulation wherein a

“synthetic environment is created through real—time exchange of data units [PDUs] between

distributed, computationally autonomous simulation applications in the form of simulations . . .

interconnected through standard computer communicative services.” DIS at pp. 3, 3.8

distributed interactive simulation (DIS). The standard computer services in DIS consist of a

communication architecture that supports multicast data packets. DIS at p. 10, 4.3

communication services. The PDU packets disclosed in DIS include a PDU header, an ID

denoting a host computer (Entity ID), an exercise (Exercise ID) as well as a message group

(Force ID), and the PDU message relating to positional information of the entity. DIS at pp. 40—

41, Table 18.

5. Macedonia

Macedonia was published in September 1995 and accordingly is prior art under 35 U.S.C.

§ 102(a). DIS was not cited or discussed in the prosecution of the “523 patent.

Macedonia discloses an implementation of DIS that seeks to expand the number of users

capable of participating in a simulation. Macedonia at 38. Macedonia describes groups of

participants, c.g., those within proximity of other players, and the ability to join these groups

using messages (e.g., “Join Request PDUs”). Macedonia at 42.

16

Petitioner Riot Games, Inc. - Ex. 1005, p. 214

Petitioner Riot Games, Inc. - Ex. 1005, p. 215

6. RING

RING was published in April 1995 and accordingly is prior art under 35 U.S.C. § 102(a).

RING was not cited or discussed during the prosecution of the ‘523 patent.

RING discloses a system that supports real-time visual interaction between a large

number of users in a shared 3—D environment. RING at Abstract. RING facilitates

communication over a unicast network amongst a plurality of hosts via a centralized server, or

collection of servers. RING at p. 91.

To reduce the number of messages sent between the servers and the host computers, the

centralized servers cull, augment, and alter the messages to send only relevant messages to

relevant hosts in a limited number of communications. RING at p. 87. This is accomplished by

determining the visibility of each host’s virtual representation in the virtual environment. Id.

Only information pertaining to objects within the line of sight of a host’s virtual representation is

transmitted to the host. Id. All other information is culled. Id. In this way, the number of

messages sent to each host can be markedly reduced.

Further, related to the claims of the subject patent, RING discloses a server that

communicates with a plurality of hosts. All the hosts, or a subset of all the hosts, can send

messages to the server via a unicast network informing the server, and thereby the other hosts, of

the movements of that host’s virtual representation in the virtual environment. If another host

cannot see that host, the two hosts are not part of the same group and the message is culled. But

if the several hosts are all in the line of sight of each other, each host will receive a message

transmitted from the server describing the movement of each host’s virtual representation. Id.

7. IRC RFC

IRC RFC was published May 1993, and accordingly is prior art under 35 U.S.C. §

102(b). lRC RFC was not cited or discussed in the prosecution of the “523 patent.

IRC RFC discloses protocols for implementing Internet Relay Chat (IRC). IRC was not

cited or discussed during the prosecution of the ‘523 patent. “The main goal of IRC is to provide

a forum which allows easy and efficient conferencing (one-to-many conversations).” IRC RFC

at p. 11, § 3.2 One-to-many. IRC uses a client-server configuration where a client sends a

17

Petitioner Riot Games, Inc. - EX. 1005, p. 215

Petitioner Riot Games, Inc. - Ex. 1005, p. 216

channel message to a server and the server distributes the message to the other clients who have

joined that channel. IRC RFC at p. 11, § 3.2.2; see also Fig. 2 (reproduced below).

l——K

Q D———4

E ‘ A I“; ‘1 a!
E: - - - -‘

«'1’. xx
3 E

$arverfi; R, E; C, H, E Cliente; l, E, 3, 4

Figure 2 0f IRC RFC at 3.0

Clients can join channels using the “JOIN” command (or, if the channel does not exist, it

is created in response to the join request). IRC RFC at p. 5, § 1.3 Channels; See also Id. at p. 19,

§ 4.2.1. Join message. Messages sent from clients to the server include the name of the

destination channel and the data for the message. IRC RFC at p. 32, § 4.4.1. Private messages.

The servers maintain a list of all channels and the clients joined to those channels. IRC RFC at

p. 63, § 9.2.2 Channels.

8. Friedman

Friedman was published July 7, 1995, and accordingly is prior art under 35 U.S.C. §

102(a). Friedman was not cited or discussed during the prosecution of the ‘523 patent.

Friedman discloses the results of the latency and throughput of standard network

protocols compared to modified protocols that aggregate packets by packing multiple packets

into a single packet. Friedman at p. 1. Friedman notes that a protocol modified to use

aggregation (e.g., “packing messages”) “improves both the latency and throughput.” Id. One

example of a modified protocol is the Dynseq protocol, which aggregates based on a preset time

interval, which is less than the expected user latency, such as one millisecond. Friedman at p. 5.

Friedman discloses that the reasons for the improved efficiency are due to the reduction of

packet headers, reduced link contention, and less CPU interrupts. Friedman at p. 12. Friedman

teaches to one of ordinary skill in the art that one way to increase network efficiency is to

aggregate packets before sending.

18

Petitioner Riot Games, Inc. - Ex. 1005, p. 216

Petitioner Riot Games, Inc. - Ex. 1005, p. 217

IV. 37 C.F.R. § 1.510 (b)(1): STATEMENT POINTING OUT EACH

SUBSTANTIAL NEW QUESTION OF PATENTABILITY

A. NETREK ALONE PRESENTS A SUBSTANTIAL NEW QUESTION OF PATENTABILITY
WITH RESPECT TO CLAIMS 1-6 OF THE ‘523 PATENT

Netrek was not cited or discussed during the prosecution of the ‘523 patent and thus is

new prior art with respect to the .523 patent. Netrck raises a SNQ with regards to claims 1-6

because Netrek discloses the technical teachings of a client-server game, loosely based on Star

Trek, that is played over a computer network. Server/docs/README at lines 221, 283 and

McFadden at p. 2, § 0.2; p. 8, §2.1.2 Architecture; and p. 11, §3.3.1 Client/Server. Netrek

further discloses the technical teachings of a system comprising clients communicating with each

other through the server using messages over an Internet protocol (e.g., TCP/IP).

Selveflntseivlinputc at line 195 and Serveflntsewlsocket.c at line 688.

The prosecution history of the ‘523 patent, as discussed above, suggests that the

aggregation elements of the claims were the allegedly novel aspects of the claims. Netrek

presents a substantial new question that was not previously discussed or considered in the

prosecution of the ‘523 patent. Specifically, Netrek teaches aggregating messages received from

clients to send them together as an aggregated message (e.g., “Idea: read from client often, send

to client not so often”). Semeflntservlz‘npuhc at lines 152-203; Serveflntsewlredraw.c at lines

21-115;Server\ntserv\socket.c at lines 603-90. Therefore, a reasonable examiner would consider

Netrek important in deciding the patentability of claims 1-6 and accordingly presents a SNQ.

Further, the SNQ of Netrek iS not cumulative of any of the technical teachings discussed or

suggested during the prosecution history of the ‘523 patent.

B. NETREK IN COMBINATION WITH MCFADDEN PRESENTS A SUBSTANTIAL NEW

QUESTION OF PATENTABILITY WITH RESPECT To CLAIMS 1-6 OF THE ‘523 PATENT.

Netrek was not cited or discussed during the prosecution of the ‘523 patent, and thus is

new prior art with respect to the ‘523 patent. As discussed above, Netrek raises a SNQ with

regards to claims 1—6. Further, McFadden is a FAQ and history of the online game Netrek.

McFadden at p. 2, § 0.2; at p .8, §2.1.2 Architecture; and p. 11, q3.3.1 Client/Server. McFadden

was specifically written to teach people interested in Netrek about the game. Accordingly,

19

Petitioner Riot Games, Inc. - EX. 1005, p. 217

Petitioner Riot Games, Inc. - Ex. 1005, p. 218

people interested in playing and/or modifying Netrek code would have been motivated to review

McFadden to gain an overview of the game.

The combination of Netrek and McFadden presents a substantial new question that was

not previously discussed or considered in the prosecution of the ‘523 patent. Specifically, the

combination of Netrek and McFadden teaches aggregating messages received from clients to

send them together as an aggregated message (e.g, “Idea: read from client often, send to client

not so often”). Serverlnmervvnpum at lines 152—203; Server\m‘servlredraw.c at lines 21—115;

Serve/”\ntservlsocket.c at lines 603-90. Therefore, a reasonable examiner would consider the

combination of Netrek and McFadden important in deciding the patentability of claims 1-6 and

accordingly the combination presents a SNQ. Further, the SNQ raised by the combination of

Netrek and McFadden is not cumulative of any of the technical teachings discussed or suggested

during the prosecution history of the ‘523 patent.

C. VAN HOOK IN COMBINATION WITH DIS PRESENTS A SUBSTANTIAL NEW QUESTION

OF PATENTABILITY WITH RESPECT TO CLAIMS 1, 2 AND 4-6 OF THE ‘523 PATENT

Van Hook was not cited or discussed during the prosecution of the ‘523 patent, and thus

is new prior art With respect to the ‘523 patent. Van Hook in combination With DIS raises a SNQ

With regards to claims 1, 2 and 4-6 because as discussed above, Van Hook discloses the technical

teaching of aggregating group messages into a single packet by bundling the packets. Van Hook

at 2. Van Hook states, “[t]he dominant effect of bundling is to reduce packet rates.

Additionally, bundling reduces bit rates because fewer packet headers are sent.” Id. Further,

Van Hook discloses techniques that have been developed and deployed for ARPA’s Synthetic

Theater of War - Europe (“STOW-E”) program and Distributed Interactive Simulation (“DIS”),

Wherein a virtual World simulates battlefield conditions, and “[e]xplicit representations of

command, control, and communication are required to permit command forces to transmit orders
a)

to and receive reports from a new generation of more intelligent semi—automated forces. Van

Hook at p. 1.

Likewise, as its name indicates, DIS is part of a proposed set of standards for the

Distributed Interactive Simulation (“DIS”) used in conjunction With the STOW-E program

described in Van Hook. DIS at p. 3. Van Hook provides for bundling of the PDUs from host

computers by the Application Gateway (AG) server into larger transmission packets to be

distributed to other packets. Van Hook at pp. 2 and 7. DIS goes one step further to discuss the

20

Petitioner Riot Games, Inc. - EX. 1005, p. 218

Petitioner Riot Games, Inc. - Ex. 1005, p. 219

anatomy of a packet, as the PDU packets disclosed in DlS include a PDU header, an ID denoting

a host computer (Entity ID), an exercise (Exercise ID), as well as a message group (Force ID),

and the PDU message relating to positional information of the entity. DIS at pp. 40-41, Table

18.

The prosecution history, as discussed above, suggests that the aggregation elements of the

claims were the allegedly novel aspect of the claimed invention. Van Hook provides a SNQ, as

suggested above, because of its aggregation teachings. “Additionally, bundling reduces bit rates

because fewer packet headers are sent.” Id. Accordingly, the combining the technical teachings

(e.g., teachings of bundling packets, or PDUs), in a Distributed Interactive Simulation, as

disclosed in Van Hook, with the technical teachings of the contents of a PDU in a Distributed

Interactive Simulation, as disclosed in DIS, raises an additional SNQ that was not discussed or

cited in the prosecution history of the ‘523. A reasonable examiner would consider that

combination important in deciding the patentability of claims 1, 2 and 4—6 since it would have

been obvious to those skilled in the art to combine the teachings of the two references, as

explicitly taught by Van Hook.

D. IRC RFC IN COMBINATION WITH FRIEDMAN PRESENTS A SUBSTANTIAL NEW

QUESTION OF PATENTABILITY WITH RESPECT TO CLAIMS 1, 2 AND 4-6 OF THE ‘523
PATENT

IRC RFC discloses protocols for implementing Internet Relay Chat (IRC). IRC RFC was

not cited or discussed during the prosecution of the ‘523 patent. “The main goal of IRC is to

provide a forum Which allows easy and efficient conferencing (one—to—many conversations)”

IRC RFC at p. 11, § 3.2 One—to—many. IRC uses a client—server configuration, where a client

sends a channel message to a server and the server distributes the message to the other clients

who have joined that channel, as discussed in detail above.

IRC RFC does not disclose aggregating payload portions, but Friedman discloses that

messages are buffered and then the payloads are aggregated (e.g., packed) before sending.

Friedman at p. 5. In addition, IRC RFC states that “[t]he main goal of IRC is to provide a forum

which allows easy and efficient conferencing (one-to-many conversations)” IRC RFC at p. 11,

§ 3.2 One-tO-many. Friedman discloses that the aggregation of message packets improves both

latency and throughput compared to non-aggregating communication protocols. Friedman at p.

1.

21

Petitioner Riot Games, Inc. - Ex. 1005, p. 219

Petitioner Riot Games, Inc. - Ex. 1005, p. 220

The combination of RFC IRC and Friedman provides the technical teaching of

aggregating the group messages of IRC RFC (e.g., channel messages) in order to increase the

efficiency of the network, which was a main goal of IRC RFC. The prosecution history of the

“523 patent, as discussed above, suggests that the aggregation elements of the claims were the

allegedly novel aspects of the claims in the “523 patent. IRC RFC alone does not provide the

aggregation teachings; however, when IRC RFC is combined with Friedman, a substantial new

question is presented that was not previously discussed or considered in the prosecution of the

“523 patent. Further, a reasonable examiner would consider the teachings of IRC RFC in

combination with Friedman because the teachings of aggregation are present and it would have

been obvious to those skilled in the art to combine the teachings of the two references.

E. RING IN COMBINATION WITH NETREK PROVIDES A SUBSTANTIAL NEW QUESTION
OF PATENTABILITY WITH RESPECT TO CLAIMS 1-6 OF THE ‘523 PATENT

RING was not cited or discussed during the prosecution of the “523 patent, and thus

RING is new prior art with respect to the “523 patent. RING, as discussed above, presents a

substantial new question of patentability alone. Similarly, Netrek discloses the technical

teaching of clients and servers communicating over a network using messages. See Server Code,

Server\ntservlnewstartd.c at lines 129-73, lines 179-311, lines 146-70; Serverlntservlmainc at

lines 135-43; Server\ntservlsocket.e at lines 442-88.

N etrek further discloses aggregating packets to reduce the number of packets sent from

the server (e.g., “Idea: read from client often, send to client not so often”) Serverlntservlinputc

at lines 152-203; Server\ntserv\redraw.c at lines 21-115; Server\ntserv\socket.c at lines 603-90.

RING in combination with Netrek further raises a SNQ with regards to claims 1-6 because they

provide the technical teachings of increasing network efficiency by applying the aggregation

teachings ofNetrek to aggregate messages in RING to increase network efficiency. Therefore, a

reasonable examiner would consider the combination of RlNG and Netrek important in deciding

the patentability of claims 1-6, and accordingly the combination presents a SNQ. Further, the

SNQ of the combination RING and Netrek is not cumulative of any of the technical teachings

discussed or suggested during the prosecution history of the “523 patent.

22

Petitioner Riot Games, Inc. - EX. 1005, p. 220

Petitioner Riot Games, Inc. - Ex. 1005, p. 221

F. RING IN COMBINATION WITH VAN HOOK PROVIDES A SUBSTANTIAI. NEW

QUESTION OF PATENTABILITY WITH RESPECT TO CLAIMS 1, 2 AND 4-6 OF THE ‘523
PATENT

RING was not cited or discussed during the prosecution of the ‘523 patent, and thus is

new prior art with respect to the “523 patent. RING, as discussed above, presents a substantial

new question of patentability alone. Similarly, Van Hook discloses host computers and servers

communicating over a network using messages packets. Van Hook at pp. 1, 2. RING in

combination with Van Hook further raises a SNQ with regards to claims 1, 2 and 4-6 because the

combination provides the technical teachings of increasing network efficiency by applying the

aggregation teachings of Van Hook to aggregate messages in RING. Therefore, a reasonable

examiner would consider the combination of RING and Van Hook important in deciding the

patentability of claims 1, 2 and 4—6 and accordingly, this combination presents a SNQ. Further,

the SNQ of the combination of RING and Van Hook is not cumulative to any of the technical

teachings discussed or suggested during the prosecution history of the ‘523 patent.

V. DETAILED EXPLANATION UNDER 37 CFR 1.510(b) OF THE
PERTINENCY AND MANNER OF APPLYING THE CITED PRIOR ART TO

EVERY CLAIM FOR WHICH REEXAMINATION IS REQUESTED

A. CLAIMS 1-6 ARE ANTICIPATED BY NETREK UNDER 35 U.S.C. § 102

Please see the attached Exhibit CC-A presenting claim charts for comparison of Netrek

with claims 1-6 of the “523 patent.

Server2.5pl4.tar.gz [hereinafter “Server Code”] and BRMH-1.7.tar.gz [hereinafter

“Client Code”] contain the source code for the game Netrek. Together, the Server Code and

Client Code define computer instructions for an online game based on a client-server network

architecture. Specifically, the Server Code defines the computer instructions for the portion of

the game running on the server; the Client Code defines the portion of the game running on the

client or host computers. See, e.g., Serverlntsewlsockew at lines 1390-1590 and lines 603-90;

brmh-I.7\socket.c at lines 1537-1634; and brmh-I.7\packets.h at lines 523-29. McFadden is

provided to add additional context and teaches inherent game play features of Netrek, in which

clicnts connect to a server over the Internet, which allows players to “form into teams and fight

for control of the galaxy, dogfighting and taking planets.” McFadden at p. 2, § 0.2; p. 8, §2.1.2

Architecture; and at p. 11, §3.3.1 Client/Server. Even though Netrek is presented as anticipating

23

Petitioner Riot Games, Inc. - Ex. 1005, p. 221

Petitioner Riot Games, Inc. - Ex. 1005, p. 222

the claims, McFadden is properly presented since it shows inherent characteristics of Netrek.

See MPEP § 2131.01(III) and Continental Can Co. USA v. Monsanto C0., 948 F.2d 1264, I268

(“Normally, only one reference should be used in making a rejection under 35 U.S.C. § 102.

However, a 35 U.S.C. § 102 rejection over multiple references has been held to be proper when

extra references are cited to show that a characteristic not disclosed in the reference is inherent”)

To the extent that the examiner disagrees, Requester submits Netrek in view of McFadden to

reject claims 1—6 under 35 U.S.C. § 103.

CLAIM 1

A method for providing group messages to a plurality of host computers

connected over a unicast wide area communication network, comprising the

steps of:

Netrek utilizes group messaging to send game state updates over the Internet, a unicast

wide area network, to maintain a consistent and shared gaming experience among a number of

host computers. McFadden at p. 2, § 0.2; at p. 8, §2.1.2 Architecture; and at p. 11, §3.3.1

Client/Server. Netrek also utilizes group messaging to allow players to communicate with other

players in the game or players on a specific team. See Server Code; and brmh-I. 7\socket.c at

lines 1537-1634 ("sendServerPacket(packet)”).

providing a group messaging server coupled to said network, said server

communicating with said plurality of host computers using said unicast

network and maintaining a list of message groups, each message group

containing at least one host computer;

The Netrek server is a group messaging server that is coupled to the Internet. See Server

Code, Server\ntserv\newstartd.c at lines 129-73 (the server program newstartd loops while

waiting for a network connection from a host computer), lines 179—311 (the function

connectionAttemptDetected initializes the server’s network connection so that the server can

listen for host computer connections), lines 146-70 (newstartd spawns a ntserv process on the

server for each new host computer that connects); Serverlntserv\main.c at lines 135-43 (ntserv

maintains the connection from the server to the host computer by calling ConnectToClient);

Server\ntservlsocket.c at lines 442-88 (the function ConnectToClz'ent defined).

The Netrek server communicates with the plurality of host computers using the Internet, a

unicast network. See Id, Serverlntservlnewstartd.C at lines 179—311 (a TCP/IP connection,

socket type SOCK_STREAM, is created on the server to listen for incoming host computer

24

Petitioner Riot Games, Inc. - Ex. 1005, p. 222

Petitioner Riot Games, Inc. - Ex. 1005, p. 223

connections); Server\ntserv\sockete at lines 442-88 (the function CanneclToClz'ent maintains a

TCP/IP connection, socket type SOCK_STREAM, between the server and each host computer),

lines 1747-802 (the server communicates with a host computer by calling the function

flashSockBuf, which calls the function gwrz'te), lines 2607-73 (the function gwrz‘te defined). See

generally [6]., Serverlntserv\packets.h (the header file defines all of the types of messages that

can be sent during a Netrek game).

The Netrek server also maintains message groups in multiple aspects. Examples of

message groups include the group of all host computers in the game, the group of host computers

on a particular team, and the group of host computers in a player location (i. e. within the same

proximity or geographic area) in the game. See Id, Serverlnlserflstructfi at lines 471-82 (the

server determines who is in a message group by examining the data structure struct memory,

which contains an array of players: “struct player players [MAXPLAYER];”), lines 208-84

(definition for Struct player, which includes a field for identifying the team/message group that

the player is on, “sliortpjeam; ”, and fields for identifying the geographical vicinity (Le, group)

of each player’s ship, “int p_x;” and “int p_y;”); Serverlntserv\rlefs.h at lines 120-134 (contains

the definitions for the different teams and the group of all players); Server\ntservlsocket.c at lines

1125-92 (the function updateTorps determines whether or not a player is in a torpedo message’s

proximity-based message group), lines 1194-255 (the function updatePlasmas determines

whether or not a player is in a plasma message’s proximity—based message group), lines l257—94

(the function apdateP/msers determines whether or not a player is in a phaser message’s

proximity-based message group), lines 1390-590 (the function updateMessages determines

whether or not a player should receive a text message based on who the text message is

addressed to).

Each team or message group on the thrck server contains at least one host computer.

See 151., Selyerlntserflmainc at lines 183-325 (when a host computer joins a game, the server

prompts the player to join or create a team, inserts the player into the array of players, and then

initializes the player’s team field and location fields by calling enter); Serverlntservlenter.c at

lines 30-232 (definition to the function enter).

sending, by a plurality of host computers belonging to a first message group,

messages to said server via said unicast network, said messages containing a

payload portion and a portion for identifying said first message group;

25

Petitioner Riot Games, Inc. - EX. 1005, p. 223

Petitioner Riot Games, Inc. - Ex. 1005, p. 224

Host computers, belonging to specific message groups, send out multiple types of

messages to the Netrek server over the Internet, a unicast network. See Client Code, brmh-

I.7\s00ket.c at lines 1537-634 (the fianction sendSewerPacket sends messages from the host

computer to the server using either TCP/IP or UDP/IP), brmh-I. 7\data.c at line 26 (the player

data structure contains a host computer’s information about the message groups it belongs to),

brmh-I. 7\struct.h at lines 134-92 (struct player includes the fields “short piteam; ”, “int p30”,

and “int pi”, which identify the message groups a host computer belongs to). The messages a

host computer sends out contain a payload portion and a portion for identifying a message group.

See [6]., brmh-I. 7\packets.h (the header file defines all of the types of messages that can be sent

by a host computer, for example, a torpedo message allows a user to fire a torpedo at another

player). For example, when a host computer in Netrek sends a text message to a team/group

(message type CP_MESSAGE), the message contains both a payload portion and a portion for

identifying the message group. The payload portion is stored in the field “char mesg[80];”. See

Id, brmh—1.7\packets.h at lines 523—29. The portion identifying a message group can be stored

in, for example, stored in “char grown” and “ char indiv;”. Id.

When a host computer in Netrek fires a torpedo, the host computer sends a torpedo

message to the server. See [5]., brmh-I. 7ldefs.h at line 222 (the function sendTorpReq sends the

server a torpedo message). The host torpedo message sent to the server contains two fields: a

field for storing the Netrek message type and a field for storing the direction of the torpedo. See

ILL, brmh—I.7lpackets./1 at lines 293—99 (“char type,” stores the message type and message

type“unsigned char dir;” stores the direction). The fields storing the message type of the torpedo

and direction of the torpedo represent the portion of the message that identifies the message

group, and the field storing the direction of the torpedo represents the payload portion of the

message.

When the server receives a host torpedo message, the message type field of the torpedo

message directs the server to store the information for identifying the message group, as well as

the payload portion of the message, into shared memory. See 161., Serverlntserflsockete at lines

121-97, 1976-2011, 2046-50; Serverlntservhorpc at lines 41-132 (the message type field of the

torpedo causes the server to call the message handling function, ntorp, to store into shared

memory the direction of the torpedo, which comes from the host torpedo message, and the X,Y

coordinates of the torpedo, which is determined by the server based on the location of the host's

26

Petitioner Riot Games, Inc. - Ex. 1005, p. 224

Petitioner Riot Games, Inc. - Ex. 1005, p. 225

ship in the game); Sen/er\ntserv\daemon1[.c at lines 1161—1246 (the function udtorps regularly

examines the shared memory and updates the locations of all torpedoes in the game using the

direction and X, Y coordinates of each torpedo); Sewer\ntservlsocket.c at lines 1125-1192 (the

aggregation function updateTorps uses the information stored in shared memory by the function

ntorp to determine which players should receive which torpedo messages by comparing each

torpedo's location with a host's ship location, i.e. proximity).

aggregating, by said server in a time interval determined in accordance with

a predefined criterion, said payload portions of said messages to create an

aggregated payload;

The Netrek server aggregates, in a time interval determined in accordance with

predefined criterion, the payload portions of messages that are received from host computers to

create an aggregated payload. See Server Code, Serverlntservlinpute at line 195 (the function

input calls the function readFromClz’ent to receive messages sent by the host computers and then

places the messages into shared memory (e.g., “buf’) so that they can be aggregated by the

server; See also, OTH-A, The Smith declaration at 111] 7, 18, 25-39

For example, one of the comments states, “Idea: read from client often, send to client not

so often”), lines 152—203 (the server sets the aggregation interval to a pre—defined time stored in

tz'merDelay); Server\ntserv\data.c at line 76 (aggregation interval set to 200,000 microseconds,

“int timerDelay=200000,”); Serverlntservbocketc at lines 603-90 (definition for the function

updateClient that calls the other update functions which handle aggregation). See generally

Server Code, Server\nz‘se1v\socket.c (contains the update functions that handle aggregation).

For example, the Netrek server receives text messages, addressed to specific teams or all

players, from the host computers and stores them into the server's shared memory. See Sewer

Code, Server\ntservlinput.c at line 195 (the function input calls readFromClz'ent to receive

messages sent by the host computers and then places the messages into shared memory so that

they can be aggregated by the server); Serverlntserv\socket.c at lines 1825-2044

(readFromClz'ent calls doRead, which stores information into buf at line 1956). In Netrek,

players can use text messages to communicate attack and defensive strategies or to make

comments to the opposing teams, a player's own team, or all players. Because the groups of all

players and teams each consist of multiple players, and players may send multiple messages

simultaneously in the heat of battle, Netrek aggregates these multiple text messages with each

27

Petitioner Riot Games, Inc. - Ex. 1005, p. 225

Petitioner Riot Games, Inc. - Ex. 1005, p. 226

other, torpedo messages, and other types of Netrek messages during gameplay to make efficient

use of the network and increase network throughput. The server, after waiting 0.2 seconds, calls

the fianction updateClient for each host computer in the game. See z'd., Serverlntservhnputc at

lines 52, 154-168, 197 (server sets the aggregation interval to a pre-defined time stored in

tz'merDelay). The function updateClz'ent calls multiple update functions, including the function

updateiMessages. See id, Server\ntserv\socket.C at lines 603—90 (definition for the function

updateClient that calls the other update functions which handle aggregation. The function

updateMessages examines the server’s shared memory and copies the appropriate text messages

onto the aggregation buffer to create an aggregated payload intended for a target host computer.

See id, Serverlntserv\socket.c at lines 1390-590 (definition for the updateMessages function),

lines 1603-744 (definition for the function sendClz'entPacket, which places individual messages

onto the aggregation buffer). During gameplay, multiple ships in proximity of each other may

fire multiple torpedoes at one another. Netrek aggregates these multiple torpedo messages with

each other, text messages, and other types ofNetrek messages during gameplay to make efficient

use of the network and increase network throughput. When the Netrek server receives a torpedo

message from a host computer, the server stores the message into its shared memory. See Server

Code, Selveflntservlinputc at line 195 (input calls the function readFromClz'ent to receive

messages sent by the host computers and then places the messages into shared memory so that

they can be aggregated by the server); Serverlntservlmcket.C at lines 1825—2044

(readmeClz'ent calls doRead, which stores information into buf at line 1956). The server, after

waiting 0.2 seconds, calls the function updateClient for each host computer in the game. See id.,

Server\ntservlinput.c at lines 52, 154-168, 197 (server sets the aggregation interval to a pre-

defined time stored in timerDelay). The function updateClz'ent calls multiple update functions,

including updateTorps. See z'cl., Semzeflntservlsocketc at lincs 603-90 (definition for the function

updateCll'enr that calls the other update functions which handle aggregation). The function

updateTorps examines the server's shared memory and copies the appropriate torpedo messages,

based on proximity, onto the aggregation buffer to create an aggregated payload intended for a

target host computer. See 121., Serverlntsewlsockete at lines 1125-92 (definition for the

updateTorps function), lines 1603-744 (definition for the function sendCZientPacket, which

places individual messages onto the aggregation buffer).

forming an aggregated message using said aggregated payload; and

28

Petitioner Riot Games, Inc. - Ex. 1005, p. 226

The Netrek server forms an aggregated message using the aggregated payload that was

created in the aggregation buffer. See Server Code, Serverlntservlsocket.c at line 688 (the

function updateC/ient calls the function flushSockBufafter filling the aggregation buffer to form

and transmit an aggregated message using the TCP/IP or UDP/IP protocol), lines 1603-744 (if

the aggregation buffer becomes full, the function sendC/iemPacker will call the function gwr'ite

to form and transmit an aggregated message using the TCP/lP or UDP/lP protocol), lines 1747-

802 (definition of the function flushSockBLg‘). lines 2607-73 (definition of the function gwrire).

An example of such an aggregated message appears in Figure 6c of the Smith declaration:

Netrek server’s Player 3’s Server Server
IP address IP address messa_e racket l messae .aeket 2

Smith declaration at Figure 6c.

“Figure 6c. The aggregated message sent to Player 3 included Internet header information and

both messages. Server message packet l was based on the payload of the message from Player 1

and server message packet 2 was based on the payload of the message from Player 2.” Smith

declaration at p. 18.

transmitting, by said server via said unicast network, said aggregated

message to a recipient host computer belonging to said first message group.

Aggregated message:
Includes message 1 and message 2

Playerl l‘ NtservCalls

Aggregated message: updateClientO .
.. ‘ Includes message 1 and message 2 g .. ‘

Player 2 l‘ NtservCalls

. teClientO
Aggregated message. upda
Includes message 1 and message 2 ’Si‘a'eg.Mem°w

Player 3 i‘ Ntserv

Calls

updateClientO
Message Array

Smith declaration at Figure 6b.

“Figure 6b. Each host‘s ntserv process called updateCiientO, which in turn called

UpdateMessages(). UpdateMessages() found all messages intended for that host in the message

array, aggregated them into a buffer (not shown), and transmitted the buffer contents to the host.

In this example, Players 1-3 are on the same team, Players 1 and 2 had earlier indicated that their

messages (labeled message] and message2 in Figure 6a above) should be sent to their entire

team. Thus, Players 1—3 all received an aggregated message that included both messages.” Id.

29

Petitioner Riot Games, Inc. - EX- 1005, p. 227

Petitioner Riot Games, Inc. - Ex. 1005, p. 228

The Netrek server transmits the aggregated message via the unicast network to the host

computers belonging to the appropriate message groups. See Server Code, Serverlntservlsockete

at line 688 (the function updateClierzt calls the functionflushSockBufafter filling the aggregation

buffer to form and transmit an aggregated message using the TCP/IP or UDP/IP protocol), lines

1603-744 (if the aggregation buffcr bccomcs full, thc function sendClz'entPacket will call the

function gwrite to form and transmit an aggregated message using the TCP/IP or UDP/IP

protocol), lines 1747—802 (definition of the function .fluShSockBuf), lines 2607—73 (definition of

the function gwrite). As an example, a series of torpedo messages can be collected and sent

(e.g, fired) to a competing player in the game. Serverlntserflsockete at lines 1125-92. In the

case that all messages aggregated during the aggregation interval belong to the same message

group, every computer belonging to the message group will receive the same message because

only group messages have been aggregated. Therefore, Netrek anticipates transmitting the same

“aggregated message” to each group member as recited by the claim.

CLAIM 2

The method of claim 1 wherein said time interval is a fixed period of time.

The Netrek server called its aggregation function, updateClz‘ent, every 0.2 seconds. See

Server Code, Sewer\ntserv\input.c at lines 152-168 (scrvcr sets the aggrcgation interval to a pro-

defined time stored in tz'merDelay); Serverlntservldatae at line 76 (aggregation interval set to

200,000 microseconds, “int timerDelay=200000;”).

CLAIM 3

The method of claim 1 wherein said time interval corresponds to a time for

said server to receive at least one message from each host computer

belonging to said first message group.

Netrek discloses a readFromCZient function that receives messages from each of the

hosts (e.g., clients) into a shared memory (e.g, “buf’) for aggregation. See Serverlntservlz'npum

at line 195 and Serverlntserv\socket.c at lines 1825-2044. Netrek further discloses a time for the

server to receive at least one message from each host—each host that joins has a corresponding

ntserv process running on the server, which waits for 0.2 seconds for at least one message to

aggregate in buf from each host computer belonging to the first message group (e.g., all players

in the game or on a particular team)—and after waiting the 0.2 seconds, the aggregated messages

30

Petitioner Riot Games, Inc. - EX. 1005, p. 228

Petitioner Riot Games, Inc. - Ex. 1005, p. 229

are sent to the clients. See Server\ntserv\socket.c at lines 1825-2044, 603-90;

Serveflntserviinputc at lines 152-203; Server\ntserv\redraw.c at lines 21-1 15.

CLAIM 4

The method of claim 1 further comprising the step of creating, by one of said

plurality of host computers, said first message group by sending a first

control message to said server via said unicast network.

Host computers in Netrek create message groups by sending create messages to the

server. Specifically, the first player to join a team, or the first player to join the game sends a

create message. See Client Code, brmh-I.7\entrywin.e at lines 57-353 (host computer prompts

user to select a team to create); brmh-I. 7\socker.c at lines 1800-09 (host computer sends a create

message to the server specifying the team that the host wants to create, “outfitRqueam =

team;”).

CLAIM 5

The method of claim 4 further comprising the step of joining, by some of said

plurality of host computers, said first message group by sending control

messages via said unicast network to said server specifying said first message

group.

Host computers in Netrek send join messages to the server specifying a message group to

be joined. See Client Code, brmh-1.7\entrywin.c at lines 57-353 (host computer prompts user to

select a team to join); brmh-I. 7\socket.c at lines 1800-09 (host computer sends a join message to

the server specifying the team that the host wants to join, “outfitReq.team : team”).

CLAIM 6

The method of claim 1 wherein said network is Internet and said server

communicates with said plurality of host computers using a session layer

protocol.

Netrek is a network game that runs over the Internet. See Id, Server\ntservmewstartd.c

at lines 179-311 (a TCP/IP connection, socket type SOCK_STREAM, is created on server to

listen for incoming host computer connections); Serveflntservlsocketc at lines 442-88 (the

function ConnectToClz'ent maintains a TCP/IP connection, socket type SOCK_STREAM,

between the server and each host computer); Sewer‘paekets.h (the header file defines the packet

types that exist in the Netrek session layer protocol). As was known in the art, TCP/IP

3]

Petitioner Riot Games, Inc. - EX. 1005, p. 229

Petitioner Riot Games, Inc. - Ex. 1005, p. 230

connections implement session layer functionality in the transport layer and/or application layer,

which means that Netrek inherently includes a session layer functionality.

B. CLAIMS 1-6 ARE RENDERED OBVIOUS BY NETREK IN VIEW OF MCFADDEN UNDER 35

U.S.C. § 103

Please see the attached Exhibit CC-B presenting claim charts for comparison ofNetrek

and McFadden with claims 1-6 of the ‘523 patent.

To the extent that the Office finds that the “BRMH—l .7.tar.gz” Client Code, the

“Server2.5pl4.tar.gz” Server Code and McFadden does not teach inherent characteristics of

Netrek, Requester submits that it would have been obvious to combine “BRMH-l.7.tar.gz”

Client Code, the “Server2.5pl4.tar.gz” Server Code (together “Netrek”) in view of McFadden to

the claims 1-6 ofthe ‘523 patent under 35 U.S.C. § 103.

Requester incorporates by reference the arguments made above in § IV-A to show that

even if claim 1-6 of the ‘523 patent are not anticipated by Netrek, they are rendered obvious by

Netrek in View of McFadden. As discussed above, Netrek discloses all of the elements of the

claims under 35 U.S.C. § 102, particularly when the inherent features of Netrek shown by

McFadden are considered. Beyond the Netrek disclosure and its inherent characteristics, Netrek

and McFadden when considered together render the claims obvious under 35 U.S.C. § 103 for

the reasons given bclow.

Reason to Combine:

“BRMl-1—1.7.tar.gz” Client Code and the “Server2.5pl4.tar.gz” Server Code are both used

to play Netrek. See OTH-C, Ahn Declaration at 1] 5. Therefore, one of skill in the art would

look to combine the Client Code and the Server Code in order to enable playing Netrek.

McFadden is a FAQ and history of the online game Netrek game. McFadden at p. 2, §

0.2; p. 8, §2.1.2 Architccturc; and p. 11, §3.3.1 Client/Server. McFadden was specifically

written to teach people interested in Netrek about the game. Accordingly, one of ordinary skill

in the art would look to McFadden to help provide context of the source code of Netrek in order

to understand how certain lines of code affected actual gameplay experience.

C. CLAIMS 1, 2 AND 4-6 ARE RENDERED OBVIOUS BY VAN HOOK IN VIEW OF DIS UNDER

35 U.S.C.§ 103

Please see the attached Exhibit CC-C presenting claim charts for comparison ofVan

Hook in view of DIS with claims 1, 2 and 4-6 of the ‘523 patent.

Reason to Combine:

32

Petitioner Riot Games, Inc. - Ex. 1005, p. 230

Petitioner Riot Games, Inc. - Ex. 1005, p. 231

Van Hook discloses techniques that have been developed and deployed for ARPA’s

Synthetic Theater of War - Europe (“STOW-E”) program and Distributed Interactive Simulation

(“DIS”), wherein a virtual world simulates battlefield conditions, and “[e]xplicit representations

of command, control, and communication are required to permit command forces to transmit

orders to and receive reports from a new generation of more intelligent semi-automated forces.”

Van Hook at p. 1. Likewise, as its name indicates, DIS is part of a proposed set of standards for

the Distributed Interactive Simulation (“DIS”) used in conjunction with the STOW—E program in

Van Hook. DIS at pp. 1-3. Van Hook provides for bundling of the PDUs from host computers

by the AG server into larger transmission packets to be distributed to other host computers. Van

Hook at pp. 2 and 7. DIS goes one step further to discuss the anatomy of a packet, as the PDU

packets disclosed in DIS include a PDU header, an ID denoting a host computer (Entity ID), an

ID for an exercise (Exercise ID), an ID denoting which team the host computer belongs to (Force

ID) and the positional information of the entity. DIS at pp. 40—4] , Table 18. It would have been

obvious to a person of ordinary skill in that the art to combine the teachings of bundling packets,

or PDUs, in a Distributed Interactive Simulation disclosed in Van Hook with the teachings of the

contents of a PDU in a Distributed Interactive Simulation as disclosed in DIS since Van Hook

explicitly teaches using the DIS protocol to exchange information in STOW-E.

CLALVI 1

A method for providing group messages to a plurality of host computers

connected over a unicast wide area communication network, comprising the

steps of:

Van Hook in view of DIS discloses a method for providing group messages, such as the

protocol data units (“Data messages, called protocol data units (PDUs)”) disclosed in DIS, to a

plurality of host computers connected over a wide area network (“WAN”). Van Hook at pp. 1,

4, 5 and Figure l; DIS at Abstract, pp. 3, 4, 5 and 10. Van Hook discloses “some of the

innovative techniques being developed and deployed” for the Synthetic Theater of War-Europe

(“STOW-E”) exercise. Van Hook at p. 1. STOW-E would use the Distributed Interactive

Simulation (“DIS”) protocols to exchange information between DIS-based simulators. Thus,

Van Hook discloses providing group messages (e.g., “Data messages, called protocol data units

(PDUs)”) to a plurality of host computers (cg, “network sites”) connected over a wide area

communication network (e.g., the “Defense Simulation Internet (DSI) Wide Area Network

33

Petitioner Riot Games, Inc. - EX. 1005, p. 231

Petitioner Riot Games, Inc. - Ex. 1005, p. 232

(WAN)”). DIS discloses providing group messages (cg, “Data messages, called protocol data

units (PDUs)”) to a plurality of “host computers” over a wide area network. DIS at Abstract, pp.

3, 4, 5 and 10.

Van Hook does not expressly disclose that the wide area communication network is

unicast. Instead, Van Hook discloses that the LANs run in “promiscuous mode” (1'. e., broadcast)

and the WAN is multicast. Van Hook at 5. However, DIS was designed to operate over a

unicast network. DIS at 5, 10 (“Delivery The communication architecture must support either,

multicast, broadcast, or unicast packets”). Thus, a person of ordinary skill in the art at the time

of filing would have found it obvious to modify the system disclosed in Van Hook and DIS to

operate on a unicast network.

providing a group messaging server coupled to said network, said server

communicating with said plurality of host computers using said unicast

network and maintaining a list of message groups, each message group

containing at least one host computer;

Van Hook in View of DIS discloses providing a group messaging server (e.g., the

“Application Gateway” (“AG”)) coupled to said network, said server communicating with said

plurality of host computers participating in the DIS exercise, using said network. Van Hook at

Figs. 1 and 5; pp. 1, 4, 6; DIS at p. 36. Van Hook further discloses that each AG maintains a list

of message groups (e.g, “cell sets,” “forces,” or “exercises”) each message group containing at

least one host computer. Van Hook at Figs. 1, 5, pp. 1, 4 and 6.

sending, by a plurality of host computers belonging to a first message group,

messages to said server via said unicast network, said messages containing a

payload portion and a portion for identifying said first message group;

Van Hook in View of DIS discloses sending, by a plurality of host computers belonging

to a first message group, messages (e.g., PDUs) to said server via said network, said messages

containing a payload portion and a portion for identifying said first message group (e.g., first

coordinates). Van Hook at pp. 2 and 5; DIS at Table 18, pp. 5, 14, 36 and 39-41. For example,

the payload portion of the PDU can be “state information that is necessary for the receiving

simulation application to represent the issuing entity in the simulation application’s own

simulation”). DIS at p. 14. The portion for identifying said first message group can be, for

example, the positional information (2'. e., coordinates), exercise information “Exercise ID”, or

force information “Force ID” in the PDU. While the coordinates themselves do not indicate a

34

Petitioner Riot Games, Inc. - Ex. 1005, p. 232

Petitioner Riot Games, Inc. - Ex. 1005, p. 233

particular message group, they are used by the AGs “for identifying” the group (eg, “cell set,”

Force, or Exercise) to which the PDU should be transmitted. Van Hook at 6.

aggregating, by said server in a time interval determined in accordance with

a predefined criterion, said payload portions of said messages to create an

aggregated payload;

Van Hook discloses aggregating (6g, bundling), by said server (eg, AG) in a time

interval determined in accordance with a predefined criterion (e.g., “maximum delay time”), said

payload portions of said messages to create an aggregated payload. Van Hook at pp. 2 and 7.

forming an aggregated message using said aggregated payload; and

Van Hook discloses forming an aggregated message (6g, "bundled packets") using said

aggregated payload. 1d.

transmitting, by said server via said unicast network, said aggregated

message to a recipient host computer belonging to said first message group.

Van Hook, in View of DIS, discloses transmitting, by said server (e.g., “AG”) via said

network, (e.g., “WAN”) said aggregated message (e.g., “bundled PDU”) onto the WAN. Van

Hook at 7. The other AGs on the WAN receive the aggregated message (e.g, “bundled packet”),

unbundle it, and determine which hosts in the group (e.g., “cell set,” “Force ID” or “Exercise

ID”) should receive the PDU. The AG then transmits the PDUs individually to those recipient

host computer in the group (eg, “cell set,” “force,” or “exercise”). Van Hook at Figures 1 and

5; pp. 1, 2, 4, 6, 7; DIS atp. S.

The recipient host computer does not w the aggregated message (eg, “bundled

PDU”) because it us unbundled by an AG after being received from the WAN and before being

retransmitted to the host computer over the LAN. Van Hook at 7, section 4.6. Nevertheless,

Requester submits that the broadest reasonable interpretation of this element does not require

receiving, by a recipient host computer, said aggregated message. Instead, the step of

“transmitting said aggregated message” is performed when the AG transmits the bundled PDU

out onto the WAN, even though the packet may be de-aggregated prior to being received by the

recipient host computer.

CLAIM 2

The method of claim 1 wherein said time interval is a fixed period of time.

35

Petitioner Riot Games, Inc. - Ex. 1005, p. 233

Petitioner Riot Games, Inc. - Ex. 1005, p. 234

Van Hook discloses the method of claim 1 wherein said time internal is a fixed period of

time (e.g., the maximum time delay). Van Hook at pp. 2 and 7.

CLAIM 4

The method of claim 1 further comprising the step of creating, by one of said

plurality of host computers, said first message group by sending a first

control message to said server via said unicast network.

Van Hook in View of DIS discloses creating a message group (e.g., “cell set,” “Force” or

“Exercise”) by establishing the group at initialization or during the simulation, when, for

example, a participant enters a region of the simulation or establishes a new force Van Hook at 6

and DIS at 36.

M

The method of claim 4 further comprising the step of joining, by some of said

plurality of host computers, said first message group by sending control

messages via said unicast network to said server specifying said first message
group.

Van Hook in View of DIS discloses some host computers (e.g, participants in the same

Vicinity, exercise or force) joining a message group (e.g., “cell set,” “Force” or “‘Exercise”) by

sending a control message (6g, join PDU or moving into the vicinity of other group members)

specifying the message group (e.g., coordinates, “Exercise” or “Force”). Van Hook at 6 and DIS

at 36. Join PDUs are inherent in the operation of STOW-E because there must be some method

for multiple computers to join the simulation during initialization or while the game is in

progress; this is exemplified in Macedonia, which discloses Join PDUs in a DIS system.

Macedonia at 42. Therefore, Van Hook, in View of DIS, inherently, or at least obviously,

includes Join PDUs.

CLAIM 6

The method of claim 1 wherein said network is Internet and said server

communicates with said plurality of host computers using a session layer

protocol.

Van Hook discloses the method of claim 1 wherein the network is the Defense

Simulation Internet Wide Area Network, and the AG server communicates with said plurality of

36

Petitioner Riot Games, Inc. - Ex. 1005, p. 234

Petitioner Riot Games, Inc. - Ex. 1005, p. 235

host computers using a session layer protocol (eg, the “DIS protocol”, which inherently runs

over a session layer protocol or its equivalent). Van Hook at p. l.

D. CLAIMS 1, 2 AND 4-6 ARE RENDERED OBVIOUs BY IRC RFC IN VIEW OF

FRIEDMAN UNDER 35 U.S.C. § 103

Please see the attached Exhibit CC-D presenting claim charts for comparison of IRC RFC

in view of Friedman with claims 1. 2 and 4-6 of the ‘523 patent.

Reason to Combine:

IRC RFC does not disclose aggregating payload portions, but Friedman discloses that

messages are buffered and then the payloads are aggregated (cg, packed) before sending.

Friedman at p. 5. In addition, IRC RFC states that “[t]he main goal of IRC is to provide a forum

which allows easy and efficient conferencing (one-to-many conversations)” IRC RFC at p. 11,

§ 3.2, One-to-many. Friedman discloses that the aggregation of message packets improves both

latency and throughput compared to non-aggregating communication protocols. Friedman at p.

1. In addition both IRC RFC and Friedman are both directed to messaging groups connecting

over a network. IRC RFC at p. 11, § 1, Introduction and Friedman at pg. 2. Therefore, it would

have been obvious to one of ordinary skill in the art at the time of the invention to aggregate the

group messages of IRC RFC (e.g., channel messages) in order to increase the efficiency of the

network, which was a main goal of IRC RFC.

CLAIM 1

A method for providing group messages to a plurality of host computers

connected over a unicast wide area communication network, comprising the

steps of:

IRC RFC discloses a text-based protocol designed to provide real-time Internet text

messaging or synchronous text-based conferencing through the use of a client-server model.

IRC RFC provides a method for providing group messages (e.g., chat messages on a specific

channel) to a plurality of host computers (e.g., clients). IRC RFC at p. 4, §1 Introduction and p.

11, §3.2.2, To a group. The host computers are connected over a unicast wide area

communication network, the Internet, and communicate with one another via TCP/IP. IRC RFC

at abstract, § 1. Messages “are sent only once to that server [connected to the client] and then

sent to each client on the channel” rather than sent directly to multiple other clients. Id. at §

3.2.2.

37

Petitioner Riot Games, Inc. - EX. 1005, p. 235

Petitioner Riot Games, Inc. - Ex. 1005, p. 236

providing a group messaging server coupled to said network, said server

communicating with said plurality of host computers using said unicast

network and maintaining a list of message groups, each message group

containing at least one host computer;

IRC RFC discloses a group messaging server (e.g, the server) coupled to a network (e.g.,

the Internet), said server, communicating with a plurality of host computers (cg, clients) using a

unicast network, and maintaining a list of message groups (e.g., channels). IRC RFC at p. 4, §l,

Introduction, 5, §, 1.3, Channels and 11, § 3.2.2, To a group (channel). Each server “know[s]

about all channels, their inhabitants and properties.” Id. at p. 64, § 9.2.2, Channels.

sending, by a plurality of host computers belonging to a first message group,

messages to said server via said unicast network, said messages containing a

payload portion and a portion for identifying said first message group;

IRC RFC discloses that clients can send a message to a message group (eg, a channel).

lRC RFC at p. 32, § 4.4.], Private messages. The messages contain a payload portion, i.e. <text

to be sent>, and a portion identifying the message group (e.g., <receiver> which can be a channel

name). Id.

aggregating, by said server in a time interval determined in accordance with

a predefined criterion, said payload portions of said messages to create an

aggregated payload;

IRC RFC discloses that sending individual messages to each user in a list is the least

efficient method of group communication because duplicate messages are sent along the same

path. IRC RFC at p. 11, § 3.2.1, To a list. IRC instead suggests sending the message to a

message group (i. e. a channel) such that “the message text is sent only once to that server and

then sent to each client on the channel.” IRC RFC at § 3.2.2. IRC RFC does not disclose

aggregating payload portions, but Friedman discloses such. Friedman discloses that messages

are buffered and then the payloads are aggregated (e.g., packed) before sending. Friedman at p.

5. It would have been obvious to aggregate the group messages of IRC RFC (e.g, channel

messages) in order to increase the efficiency of the network. Friedman at p. 1.

forming an aggregated message using said aggregated payload; and

Friedman discloses that aggregated payloads (e.g., packed messages) are formed into an

aggregated message (e.g., packed message having a single header). Friedman at pp. 5 and 12.

38

Petitioner Riot Games, Inc. - EX. 1005, p. 236

Petitioner Riot Games, Inc. - Ex. 1005, p. 237

transmitting, by said server via said unicast network, said aggregated

message to a recipient host computer belonging to said first message group.

IRC RFC discloses that the server sends messages addressed to a channel to each other host (e.g.,

client), which is a member of the message group (e.g., channel). IRC RFC at p. 11, § 3.2.2, To a

group.

CLAIM 2

The method of claim 1 wherein said time interval is a fixed period of time.

Friedman discloses that messages are buffered for a time interval that is fixed (e.g., one

millisecond). Friedman at p. 5.

M

The method of claim 1 further comprising the step of creating, by one of said

plurality of host computers, said first message group by sending a first

control message to said server via said unicast network.

IRC RFC discloses creating a message group (e.g., a channel) by sending a control

message (eg, the “JOIN” command creates a new channel when the first client joins) with the

channel name. IRC RFC at p. 5, §l.3 Channels and 19, §4.2.1, Join message.

CLAIM 5

The method of claim 4 further comprising the step of joining, by some of said

plurality of host computers, said first message group by sending control

messages via said unicast network to said server specifying said first message
group.

IRC RFC discloses some host computers (cg, some clients) joining a message group

(e.g., a channel) by sending a control message (e.g., the “JOIN” command) with the channel

name. IRC RFC at p. 5, §1.3 Channels, and 19, §4.2.l, Join message.

CLAIM 6

The method of claim 1 wherein said network is Internet and said server

communicates with said plurality of host computers using a session layer

protocol.

IRC RFC discloses running on systems using the TCP/IP network protocol suite. which

necessarily includes communication using a session layer protocol. IRC RFC at p. 4, § 1

Introduction. As was known in the art, TCP/IP connections implement session layer

39

Petitioner Riot Games, Inc. - EX. 1005, p. 237

Petitioner Riot Games, Inc. - Ex. 1005, p. 238

functionality in the transport layer and/or application layer, which means that lRC RFC

inherently includes a session layer functionality.

E. CLAIMS 1-6 ARE RENDERED OBVIOUS BY RING IN VIEW OF NETREK UNDER 35 U.S.C.

§ 103

Please see the attached Exhibit CC-E presenting claim charts for comparison of RING in

View of Netrek with claims 1-6 of the “523 patent.

Reasons to Combine:

RING discloses communicating messages over a network. RING at Figs. 5 and 7, pp. 88,

87 and 91. Similarly, Netrek discloses clients and servers communicating over a network using

messages. See Server Code, Serverlntsewhewsz‘artd.c at lines 129-73, lines 179-311, lines 146-

70; Serverlntservlmain.c at lines 135-43; Serverlntservlsockete at lines 442-88. Netrek further

discloses aggregating packets to reduce the number of packets sent from the server. (e.g., “Idea:

read from client often, send to client not so often”). Serverlntserv\z'nput.c at lines 152—203,

Server\ntservlredraw.c at lines 21-115; Serverlntserflsockete at lines 603-90. A person of

ordinary skill in the art, looking to increase network efficiency, would have looked to related

methods of communicating messages over a network. Accordingly, a person of ordinary skill in

the art would havc lookcd to thc aggrcgation tcachings of thrck to aggrcgatc mcssagcs in RING

to increase network efficiency.

CLAIM 1

A method for providing group messages to a plurality of host computers

connected over a unicast wide area communication network, comprising the

steps of:

RING discloses a method for providing group messages (cg, “update messages”) to a

plurality of host computers (e.g, “client workstations”) connected over RING’s unicast wide—

area communication network. RING at Abstract, pp. 85, 86, 90 and 91.

providing a group messaging server coupled to said network, said server

communicating with said plurality of host computers using said unicast

network and maintaining a list of message groups, each message group

containing at least one host computer;

RING discloses providing a group messaging server coupled to the network, (e.g.,

RING’s unicast Wide-area communication network), wherein the server communicates with the

40

Petitioner Riot Games, Inc. - EX. 1005, p. 238

plurality of host computers (e.g., “client workstations”) using the unicast network and

maintaining a list ofmessage groups. RING at Figs. 5 and 7, pp. 88. 87 and 9|. As illustrated in

Figure 7 (reproduced below), for example, RING discloses that clients A and C belong to client

B’s mcssagc group, and therefore this particular message group contains at least one host

computer, or client workstation, including A, B and C. RING at Fig. 7.

CEO!!! 0

F‘aems t: 515m of a: date mean-res Eats-$325.1 atom-m for :s‘ -\. b .

data-a M (’tligffi's A, E, (T: M63 {3 Jinangmzi in a. virtual «51.6mm-
ismut as sitcom: in Flgiiffi :‘..

Figure 7 of RING at p. 88.

Message groups can consist of all clients connected to RING servers, or clients that are

visible to each other and can send messages to each other. RING at pp.87-88. A server, such as

server Y in Figure 7, maintains a list of message groups, as “servers keep track of which cells

contain which entities by exchanging ‘pcriodic‘ update messages when entities cross cell

boundaries,” and thus become visible to other clients. RING at p. 87.

sending, by a plurality of host computers belonging to a first message group,

messages to said server via said unicast network, said messages containing a

payload portion and a portion for identifying said first message group;

RING discloses sending, by a plurality of host computers (e.g., “client workstations”)

belonging to a first message group (e.g., other clients participating in the same distributed

simulation and in the same cell), messages to the server via the unicast network. RING at pp. 87

and 91. The messages (e.g., “update messages”) contain 40 bytes, and consist of a portion for

identifying a first message group, such as an “entity-ID,” as well as a payload portion containing
a, as ,3 u

message information such as “target-position, target-orientation, positional-velocity,” and

“rotational velocity.” RING at pp. 87, 89, 91 and Fig. 5. While the entity-ID does not explicitly

indicate a particular message group, it is used by the server “for identifying” the group (e.g.,

41

Petitioner Riot Games, Inc. - Ex- 1005, p. 239

Petitioner Riot Games, Inc. - Ex. 1005, p. 240

“cell”) to which the message should be transmitted. R1NG at p. 87 (“[S]ervers keep track of

which cells contains which entities by exchanging ‘periodic’ update message when entities cross

cell boundaries. Real-time update messages are propagated only to servers and client containing

entities inside some cell visible to the one containing the updated entity”)

aggregating, by said server in a time interval determined in accordance with

a predefined criterion, said payload portions of said messages to create an

aggregated payload;

While RING does not explicitly disclose aggregating, Netrek discloses aggregating

payload potions of said mcssagcs to crcatc an aggrcgatcd payload. See Server Code,

Server\ntservlinput.c at line 195 (the function input calls the function readFromClz'ent to receive

messages sent by the host computers and then places the messages into shared memory (e.g,

“buf’) so that they can be aggregated by the server; See also, OTH—A, The Smith declaration at

W 7, 18, 25-39

For example, one of the comments states, “Idea: read from client often, send to client not

so often”), lines 152-203 (the server sets the aggregation interval to a pre-defined time stored in

tz'merDelay); Server\ntserv\data.c at line 76 (aggregation interval set to 200,000 microseconds,

“int timerDelay=200000;”); Serverlntservboekerc at lines 603—90 (definition for the function

updaleClienz‘ that calls the other update functions which handle aggregation). See generally

Server Code, Server\ntserv\socket.c (contains the update functions that handle aggregation).

For example, the Netrek server aggregates torpedo messages based on a ship’s proximity

to a torpedo because ships in the torpedo’s proximity may be hit by it and players will need to

see it to take evasive measures. When the Netrek server receives a torpedo message from a host

computer, the server stores the message into its shared memory (e.g., “buf’). See Server Code,

Server\ntservlinput.c at line 195 (input calls the function readFromClz'ent to receive messages

sent by the host computers and then places the messages into shared memory (e.g., buf) so that

they can be aggregated by the server); Serverlntserv\socket.c at lines 1825-2044

(readFromClz'ent calls doRead, which stores information into buf at line 1956).

Similarly, RING takes cntity proximity into account whcn proccssing what information

should be sent to servers and clients. RING at p. 87. Therefore, it would have been obvious to

one of skill in the art to use the teaching of aggregating message payloads from clients based on

42

Petitioner Riot Games, Inc. - Ex. 1005, p. 240

entity proximity in Netrek to aggregate update message payloads in RING, which are also based

on entity proximity, to increase network efficiency.

forming an aggregated message using said aggregated payload; and

While RING does not explicitly disclose forming an aggregated message, it teaches that it

is advantageous to aggregate (e.g., “augment”) a client message payload (e.g., an "update

message”) with “Add” and “Remove” messages. RING at p. 88 (“As entities move through the

environment, servers augment update messages with ‘Add’ and ‘Remove‘ messages notifying

clients that remote entities have become relevant or irrelevant to the client’s local entities").

Moreover, Netrek teaches forming an aggregated message using the aggregated payload that was

created in the aggregation buffer. See Server Code, Serverlntservlsocket.c at line 688 (the

function updateC/ient calls the funetionflushSockBigfafter filling the aggregation buffer to form

and transmit an aggregated message using the TCP/IP or UDP/IP protocol), lines 1603-744 (if

the aggregation buffer becomes full, the function sena’C/iemPacket will call the function gwrite

to form and transmit an aggregated message using the TCP/IP or UDP/IP protocol), lines 1747-

802 (definition of the function flushSockBuf), lines 2607-73 (definition of the function gwrite).

An example of such an aggregated message appears in Figure 6c of the Smith declaration:

 Netrek server's Player 3’s Server Server

IP address IP address messae acket l messae ackct 2

“Figure 6c. The aggregated message sent to Player 3 included Internet header information and

both messages. Server message packet l was based on the payload of the message from Player 1

and server message packet 2 was based on the payload of the message from Player 2.” Smith

declaration at p. 18.

transmitting, by said server via said unicast network, said aggregated

message to a recipient host computer belonging to said first message group.

RING further discloses transmitting, by said server via the unicast network, said

aggregated message to a recipient host computer (e.g., “client workstation”) belonging to said

first message group. RING at pp. 87 and 9]. More specifically, RING teaches, “sending

messages directly between clients, RING routes each one through at least one server and
a

possibly two.’ Ring at p. 88. According to RING, client workstations belong to the first

43

Petitioner Riot Games, Inc. - Ex- 1005, p. 241

Petitioner Riot Games, Inc. - Ex. 1005, p. 242

message group if they participate in the same distributed simulation or are visible to each other.

RING at p. 87.

Moreover, the Netrek server transmits the aggregated message via the unicast network to

the host computers belonging to the appropriate message groups. See Server Code,

Server\ntsem2lsocket.c at line 688 (the function updateClz'ent calls the functionflushSockBufafter

filling the aggregation buffer to form and transmit an aggregated message using the TCP/IP or

UDP/IP protocol), lines 1603-744 (if the aggregation buffer becomes full, the function

sendClientPacket will call the function gwrlte to form and transmit an aggregated message using

the TCP/IP or UDP/IP protocol), lines 1747-802 (definition of the functionflushSockBuf), lines

2607-73 (definition of the function gwrz'te). As an example, a series of torpedo messages can be

collected and sent (e.g., fired) to a competing player in the game. Serverlntserv\sockez‘.c at lines

1125-92.

Aggregated message:
Includes message 1 and message 2

Player 1 ‘ Ntserv

Calls g- \

Aggregated message: updateCIIentI) \
Includes message 1 and message 2 \\

Player 2 ‘ Ntserv \
Calls V \

. dateCIiento \ \Aggregated message. up
Includes message 1 and message 2 -\S\hareg\Memory

Player 3 ‘ Ntserv
Calls 4 Message Array
updateCIient()

Smith declaration at Figure 6b.

“Figure 6b. Each host's m‘serv process called updateClientO, which in turn called

updateMessages(). UpdateMessagesO found all messages intended for that host in the message

array, aggregated them into a buffer (not shown), and transmitted the buffer contents to the host.

In this example, Players l—3 are on the same team, Players 1 and 2 had earlier indicated that their

messages (labclcd mcssagcl and mcssagc2 in Figure 6a above) should be sent to their entire

team. Thus, Players 1-3 all received an aggregated message that included both messages.” Id.

CLALVI 2

The method of claim 1 wherein said time interval is a fixed period of time.

RING, in View ofNetrek, discloses the method of claim 1 wherein said time interval is a

fixed period of time. RING at Abstract, pp. 85, 86, 87, 90 and 91. In particular, RING discloses

44

Petitioner Riot Games, Inc. - Ex. 1005, p. 242

