CERTIFICATE OF SERVICE

The undersigned hereby certifies that a copy of this REQUEST FOR REEXAMINATION
UNDER 35 U.S.C. §§ 302-307 AND 37 C.F.R. § 1.510 FOR U.S. Patent 5,822,523 together
with all exhibits and attachments and supporting documentation on a CD, has been served via
first class mail on June 11, 2010 upon the following:

DANIEL DEVITO
SKADDEN, ARPS, SLATE, MEAGHER & FLOM LLP
FOUR TIMES SQUARE
NEW YORK NY 10036

JORDAN ALTMAN
SHEARMAN & STERLING LLP
IP DOCKETING
599 LEXINGTON AVENUE
NEW YORK, NY 10022

RAIJIV P. PATEL, ESQ.
FENWICK & WEST LLP
TWO PALO ALTO SQUARE
PALO ALTO, CA 94306

/Sonal Dash/
Sonal Dash

Petitioner Riot Games, Inc. - Ex. 1005, p. 1

PTO/SB/08a {05-07)

Approved for use through 09/30/2007. OMB 0651-0031

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Application Number

Filing Date
INFORMATION DISCLOSURE First Named Inventor ‘ DANIEL J. SAMUEL
STATEMENT BY APPLICANT — — |

(Not for submission under 37 CFR 1.99})

Examiner Name ‘

Attorney Docket Number ‘ 8330.003

U.S.PATENTS
Examiner| Cite Kind Name of Patentee or Applicant Pages,Columns,Lines where
ek Patent Number Issue Date . Relevant Passages or Relevant
Initial No Code? of cited Document)
Figures Appear
Suzuki et al.
1 5736982 1998-04-07

If you wish to add additional U.S. Patent citation information please click the Add button.

U.S.PATENT APPLICATION PUBLICATIONS

Pages,Columns,Lines where
Relevant Passages or Relevant
Figures Appear

Examiner| Cite Publication Number Kind | Publication Name of Patentee or Applicant
Initial* No Code’| Date of cited Document

If you wish to add additional U.S. Published Application citation information please click the Add button.

FOREIGN PATENT DOCUMENTS

EFS Web 2.0.1

Petitioner Riot Games, Inc. - Ex. 1005, p. 2

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT
(Not for submission under 37 CFR 1.99}

Application Number

Filing Date

First Named Inventor ‘ DANIEL J. SAMUEL

Art Unit \

Examiner Name ‘

Attorney Docket Number ‘ 8330.003

i Name of Patentee or Pages,Columns, Lines
Examiner Cite | Foreign Eocument Country Kind | Publication | o n o o o where Relevant s
Initial* | No | Number Code? j Code4| Date pp Passages or Relevant
Document .
Figures Appear
1 [
If you wish to add additional Foreign Patent Document citation information please click the Add button
NON-PATENT LITERATURE DOCUMENTS
Examiner| Cite Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item
Initials* | No (book, magazine, journal, serial, symposium, catalog, etc), date, pages(s), volume-issue number(s), TS
publisher, city and/or country where published.
Server2.5pl4.tar.gz (“Server Code”) and BRMH-1.7 tar.gz (“Client Code”)
1 (source code dated no later than August 19941) (“Netrek”)]
J. OIKARINEN ET AL. RFC 1459, "Internet Relay Chat Protocol", published May 1993 (“IRC RFC”).
2 []
R. FRIEDMAN ET AL. "Packing Messages as a Tool for Boosting the Performance of Total Ordering Protocols”, Dept.
3 of Science of Cornell University, published July 7, 1995 (“Friedman”).]
DANIEL J. VAN HOOK, JAMES O. CALVIN, MICHAEL K. NEWTON, and DAVID A. FUSCO, “An Approach to DIS
4 Scaleability,” 11th DIS Workshop, 26-30 Sept. 1994 (“Van Hook”).]
IEEE 1278-1993 "IEEE Standard for Information Technology- Protocols for Distributed Interactive Simulation
5 Applications", approved March 18, 1993, and published in 1993 (“DIS”) D
T. A. FUNKHOUSER, “RING: A Client-Server System for Multi-User Virtual Environments,” Association of Computing
6 Machinery, 1995 Symposium on Interactive 3D Graphics, Monterey CA, April 9-12, 19952 (“RING”). []
ANDY MCFADDEN, “The History of Netrek”, published January 1, 1994 (“McFadden”).
7 []
EFS Web 2.0.1

Petitioner Riot Games, Inc. - Ex. 1005, p. 3

Application Number

Filing Date
INFORMATION DISCLOSURE First Named Inventor ‘ DANIEL J. SAMUEL
STATEMENT BY APPLICANT |

(Not for submission under 37 CFR 1.99}

Examiner Name ‘

Attorney Docket Number ‘ 8330.003

MICHAEL R. MACEDONIA, “Exploiting Reality with Multicast Groups”, published September 1995 (“Macedonia”)

If you wish to add additional non-patent literature document citation information please click the Add button

EXAMINER SIGNATURE

Examiner Signature Date Considered

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through a
citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

! See Kind Codes of USPTO Patent Documents at www.USPTO.GOV or MPEP 901.04. 2 Enter office that issued the document, by the two-letter code (WIPO
Standard ST.3). 3 For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document.
4 Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST.16 if possible. 5 Applicant is to place a check mark here if
English language translation is attached.

EFS Web 2.0.1

Petitioner Riot Games, Inc. - Ex. 1005, p. 4

PAT-A

Petitioner Riot Games, Inc. - Ex. 1005, p. 5

USD0S822523A

5,822,523
Oct. 13, 1998

United States Patent |19 1] Patent Number:
Rothschild et al. 451 Date of Patent:

[54] SERVER-GROUP MESSAGING SYSTEM FOR
INTERACTIVE APPLICATIONS

Primary Examiner—Willism M. Treat
Assistant Examiner—Zami Maung
Attorney, Agent, or Firm—H. C. Chan; Wison Sonsioi

{75] Inventors: Jeffrey J. Rothschild; Marc P. Goodrich & Rosati
Kwiatkowski, both of Los Gatos;
Daniel J. Samuel, Sunnyvale, all of [57) ABSTRACT

Calif.
A method for deploying interactive applications over a

network containing host computers and group messaging
servers is disclosed. The method operates in a conventional
unicast network architecture comprised of conventional net-
work links and unicast gateways and routers. The hosts send
messages containing destination group addresses by unicast

[73] Assignec: Mpath Interactive, Inc., Mountain
View, Calif.

[21] Appl. No.: 595323

[22) Filed: Feb. 1, 1996 to the group messaging servers, The group addresses select
[51) Int. CL® HO4H 1/02 message groups maintained by the group messaging servers,
[52] US. Cle oo 395/200.17; 395/200,1; For each message group, the group messaging servers also

395/200.00 maintain a list of all of the hosts that arc members of the

eveemennens 3952001, 200,01, Particular group. In ils most simple implementation, the
17, 200,05, 793; 370/85.13, method consists of the group server receiving a message
60 from & hos! containing a destination group address. Using
the group address, the group messaging server then sclects
a message group which lists all of the host members of the
group which are the targets of messages 1o the group. The
group messaging server then forwards the message 1o each

(58] Field of Search ...
395/200.09,

[56]) References Cited
U.S. PATENT DOCUMENTS

4,470,954 9/1984 Collon et al.
5,079,767 171992 Periman ...
5,150,464 9/1992 Sidbu et al,
5,309,433 5/1994 Cidon et al.

of the target hosts. In an interactive application, many
messages will be arriving at the group server close lo one
another in time. Rather than simply forward cach message to
its targeted hosts, the group messaging server aggregates the

5,309,437 5/1994 Perlman et al.
5,329,619 7/1994 Pagé ct al. ...
5,361,256 11/1994 Doeringer et al. 370160
5,475,819 12/1995 Miller et al.
5,517,494 5/1996 Green ...

FOREIGN PATENT DOCUMENTS
0637142 1/1995 Ewropean Pal. Off. .

WO 95/10908 4/1995 WIPO
WO 9510011 41995 WIPO .

contents of each of messages received during a specified
time period and then sonds an aggregated message 1o the
targeted hosts. The time period can be defined in a pumber
050 ©f ways. This method red the ge traffic b

hosts in & networked interactive application and contributes
10 reducing the lstency in the communications between the
hosts.

6 Claims, 11 Drawing Sheets

6 100
Hoal A Sends Host A Recajves.
R[S]G M S| AJHPI]Fa] P4
a7 11

Host B Sends

R s[G6lr]

Host B Recalves

S{6] [rIm[ra]

L]
Hoat C Sencs

102
Host C Receives
C[s[G[Pi] L![C[J[Pl[i&‘[m

" 03
E Haat D Soncs L Hoat D Rocenes
SI1s[6] 5[D] K [F[FET75]

100
Group Server Sends Group Server Racaives
101 A W | P2 | P3| Pa or A S G | Pt
5 (]] Pl P3| P4] P2
C | J[PP2]Pd cs PY

102

j{s]o]x]nﬁzm "J{n]sla{u]
-

103

Petitioner Riot Games, Inc. - Ex. 1005, p. 6

U.S. Patent Oct. 13, 1998 Sheet 1 of 11 5,822,523

Figure 1
Prior Art

Petitioner Riot Games, Inc. - Ex. 1005, p. 7

U.S. Patent Oct. 13, 1998

Host A Sends

[
o

PRE

Al B |P]|

Al cC |Pi]

A | D |Pl|

Host B Sends

N

00

B | AJ]P2]
B | C|P2|
B | D|P2|

Host C Sends

C | AjPrP3|

00

.

c | B |P3]
IR

Host D Sends
D | A P4
D| B |P4]

D[C|Pr4|

N
[(e]

PR

Sheet 2 of 11 5,822,523

Host A Receives

B[A]P2]
clalr]
D | A|P4]

NN
o O w

J00 Jo0 200 2f

N

Host B Receives

N
o

Al B |P1]

c | B | P3|

D[B | P4}

N
~

w
(&]

Host C Receives

21
AlcC|P]
B | C|P2|
D[C |P4]

Host D Receives

22

25 A | D |P1|

»8 B | D [P2]
c [D [r3]

Figure 2
Prior Art

Petitioner Riot Games, Inc. - Ex. 1005, p. 8

—

U.S. Patent Oct. 13, 1998 Sheet 3 of 11 5,822,523

Figure 3
Prior Art

Petitioner Riot Games, Inc. - Ex. 1005, p. 9

U.S. Patent Oct. 13, 1998 Sheet 4 of 11 5,822,523

54 ’\‘l Host A Sends 55a Host A Receives
Al E]|P| 554 B | E|P2]

E7n c| E | P3|

o

D | E [P4]

55 Host B Sends 54b Host B Receives

B | E[P2]

ATE]|P]

c | E[P3]

000

D[E | P4l

Host C Sends Host C Receives
Al E|P]|
B | E [P2
D|E [P4]

&
g R

c [E | P3|

)
N
[e]

57 Host D Sends Host D Receives

\rn|e|p4j ATETP]
B | E[P2]
c | E[P3]|

g &

pp

Figure 4
Prior Art

Petitioner Riot Games, Inc. - Ex. 1005, p. 10

U.S. Patent Oct, 13, 1998 Sheet 5 of 11 5,822,523

Figure §

Petitioner Riot Games, Inc. - Ex. 1005, p. 11

U.S. Patent Oct. 13, 1998 Sheet 6 of 11 5,822,523

80 Host A Sends 84 Host A Receives
[ETEToF] & STATRI7]
o S ATl
ST AR
81 '\‘L JHosthent:!sI] 87 Hlosteieceivels l
B|s]G |[r o8 s B 1 [P
AN e RN
S | B[1 |P4]
Host C Sends 90 Host C Receives
CTS1617] o.M {S[clJIF]
AN AR
\[STeliTm]
Host D Sends g3 Host D Receives
515 [617] o [S[0[K[P]
o \[SID[K[7]
\[SlolxIm]

;

J

84 Group Server Sends 80 Group Server Receives
o S TATR]P] & “[A]lSTc]r]
o S TAT"[P] e {6[5[6[7]
o S TATFT7] s fClS[GlF]
w551]P] Molslorlrm]
s LS8 [¥]
AN AR
91\473TCTJ(P11
@ [S[ClIlm]
AN e TR RN
o NS D K[P]
95’\—13|D—|—K|P27
F_[s[DTK]Pﬂ
Figure 6

Petitioner Riot Games, Inc. - Ex. 1005, p. 12

U.S. Patent Oct. 13, 1998 Sheet 7 of 11 5,822,523

96 100
L Host A Sends Host A Receives
Als |G]P] S | A|H[P2[P3]P4]

97 101
Host B Sends Host B Recsives
B|s |G |P2| s [B | I [P1]P3]Paj
98 102
Host C Sends Host C Receives
c|s |G |r3] s|clylprPi]PrP2]ra}
9

9 103
Host D Sends Host D Receives
PHIEREREZE S| D] K[P|P2]P3]|

100 96
Group Server Sends KIGmup Server Receives
. s{afHfPjrP3jpPa] Als]| G [Pr]
IEERER R B|S |G |P2|
j{S]C]J[P1|P2‘P4I c|s|[ac|r]
10:’fslolk 8 S | G [Pl
103

[Pr[P2]P3] jLDI
99

Figure 7

Petitioner Riot Games, Inc. - Ex. 1005, p. 13

U.S. Patent Oct. 13, 1998 Sheet 8 of 11 5,822,523

Figure 8
Prior Art

Petitioner Riot Games, Inc. - Ex. 1005,

p- 14

U.S. Patent Oct. 13, 1998 Sheet 9 of 11 5,822,523
123 124 125 126 127 128 129
Transport | ULP Msg. | Dest. ULP | Address | Destination . Destination Pavioad
Header Type | Address | Count | Address1 | *" """ | AddressN | 2
116 117 118 119 120 121 122
~ = -~~~
Message | Source ULP | Data Source ULP | Data
Count | Address1 | Length1 Data?f eovee Address N | LengthN DataN
130 13 132
AF | AT Address
Figure 9

Petitioner Riot Games, Inc. - Ex. 1005, p. 15

U.S. Patent Oct. 13, 1998 Sheet 10 of 11 5,822,523

135
Network Interface J

136
Group Server Control 137 138 139
L~ L L~
Host ULP Address 0] Host TLP Address 0 | | Implicit ULP Group Address ¢ Application
Specific State
Storage and
Host ULP Address n] Host TLP Address n | | Implicit ULP Group Address m Processing
h 3
140 141
L’\ L’\ h 4
ULP Server Process 0 ULP Server Process m
Host ULP Address a Host ULP Address a
142 —
Host ULP Address n Host ULP Address n
a n a n
143 —
-
S I
144 145 146
) o (J
[Logical ULP Address 0 [Logical ULP Address m
Host ULP Address a f 147 148 1 Host ULP Address a
Host ULP Address n Host ULP Address n

Figure 10

Petitioner Riot Games, Inc. - Ex. 1005, p. 16

—

U.S. Patent Oct. 13, 1998 Sheet 11 of 11 5,822,523
150
Interactive Application
b 3
151
)
y [

Host Interface for Upper Level Protocol

ULP Address 0 | TLP Address O

152
U

ULP Addressn | TLP Address n

4

A A

_f 1583
Host Interface for Transport Leve!l Protocol
154

Network Communications Stack
165

S5

Network Interface

Figure 11

Petitioner Riot Games, Inc. - Ex. 1005, p. 17

5,822,523

1

SERYER-GROUP MESSAGING SYSTEM FOR
INTERACTIVE APPLICATIONS

FIELD OF THE INVENTION

The present invention relates to computer network
systems, and particularly lo server group messaging systems
and methods for reducing message rate and latency.

BACKGROUND OF THE INVENTION

There are a wide range of interactive applications imple-
i on Y today. All arc characterized by
dynamic mspunw 1o the uscr. The user provides input fo the
and the ,_" ion ds quickly. One popular
example of interactive applications on personal computers
(PCs) arc games. In this case, rapid response to the user may
mean redrawing the screen with a new picture in between 30
ms and 100 ms. Interactive applications such as games
control the speed of their interaction with the user through
an internal time base. The application uses this ime base 10
derive rates at which the user input is sampled, the screen is
redrawn and sound is played.
As compulers have become more powerful and common,
it has become important 1o conneet them in net-

oy
[y

2

consistent between all of the PCs, [n a game that created the
illusion of a spatial environment where each player could
move, the packels could contain information about the new
positions of the players as they moved. Today there are many
commercial cxample of PC gamcs that can be played
between multiple players on Local Area Networks (LANs)
or by two players over dial-up phone lines using modems.
The network messages sent by such games contain a wide
varicty of information specific to the game. This can include
position and velocity information of the objects in the game
along with special actions taken by a player that effect the
other players in the game.

The casc of a wo player game played over a modem is
particularly simplc. If the ge rate is 10 per
second, cach PC sends 10 messages per second to the other
PC and receives 10 messages per second. The delay inlro-
duced by the modems and phone line is small and will not
be noticed in most games. Unfortunately, the casc of two
players is uninteresting for nclworked interactive applicas

20 tions, With the same game played with 8 players on a LAN,

the message rate increases. Each PC must send 7 messages,
one o each of the other 7 players every time period and will
receive 7 messages from the other players in the same time
period. If the messaging time period is 100 ms, the total

works. A network is comprised of nodes and links. The
nodes are connected in such a way that there exists a path
from cach node over the links and through the other nedes
to cach of the other nodes in the network, Each node may be
connected to the network with one or more links. Nodes are
further categorized into hosts, gateways and routcrs, Hosts
are computer systems that are connected to the network by
one link. They communicate with the olher nodes on the
network by sendi ges and receiving Gate-
ways are Cc systems d to the k by
more than onc link. They not only communicate with the
other nodes as do hosts, but they also forward messages on
one of their network links 1o other nodes on their other
network links. This processing of forwarding messages is
called routing. In addition to sending and receiving mes-
sages and their routing functions, gateways may perform
other functions in a network. Routers are nodes that are
conpected 1o the network by more than one link and whose
sole function is the forwarding of messages on one network
link to the other network links to which it is connected. A
network consisting of many network links can be thought of
as a network of sub-nelworks with gateways and/or routers
connecting the sub-networks together into what is called an
internet. Today the widely known example of a werld wide
internet is the so called “Internet” which in 1995 has over 10
million computers connected full time world-wide.

With 0 many compulters on a single world-wide network,
it is desirable to create interactive networked applications
that bring together many people in 2 shared, networked,
interactive application. Unfortunately, creating such shared
networked, intcractive applications runs into the limitations
of the existing network technology.

As an example, consider a game designed 1o be deployed
over a network which is to be played by multiple players
simultaneously. The game could be implemented in sofiware
on a PC connected to a network. A rate set by ils internal
time basc, it would sample the inputs of the local user,
receive messages from the network from the PCs of the other
players and send messages oul to the PCs of the other
players. A typical rate will be fen time per sccond for & time
period of 100 ms. The messages sent between the PCs would
contain information that was nceded to keep the game

Petitioner Riot Games, Inc.

30

w
by

50

w
w

60

65

ge ratc will be 70 messages sent per second and 70
messages received per second. As can be seen 1he message
rate increases linearly with the number of players in the
game. The message rates and data rates supparted by popu-
lar LANs are high enough to support a large number of
players at reasonable message sizes. Unfortunately, LANs
are only deployed in commercial applications and cannot be
considered for deploying a networked interactive applica-
tion 16 consumer users.

The wide area networks available today (o consumer users
all must be accessed through dial-up phone lines using
modems, While modem speeds have increased rapidly, they
have now reached a bit rate of 28.8 Kbits/sec which is close
to the limit set by the signal-to-noise ratio of conventional
phone lines, Further spccd increases are possible with ISDN,
but this technology is not ready for mass markel use. Olher
new wide area nelworking technologies are being di
that would provide much hlgher bandwudlh but none are
close to commercial operation. Therefore, in deploying a
networked, interactive application to consumers, it is nec-

s essary (o do so in 2 way thal operates with cxisting n¢t-

working and o ions infrastr

In the example of the 8 player petworked game, consider
a wide arca network implementation where the PCs of cach
of the playcrs is connected to the network with a 288
Kbit/sec modem. Assume that the network used in this
example is the Internet so that all of the network protocols
and routing behavior is well defined and understcod, If the
game uses TCP/IP to send its messages between the PCs in
the game, the PPP protocol over the dial-up phone lines can
be advantageously used to compress the TCP/IP beaders.
Even 50, a typical message will be approximately 25 byles
in size. Sent through the modem, this is 250 bits. The
messages are sent 10 times per second to cach of the other
PCs in the game and received 10 times per second from the
other PCs. This is 35.0 Kbits/sec which exceeds the capa-
bilities of the modem by 20%. If the messages are reduced
to 20 bytes, just 8 players can be supporied, but this
approach clearly cannol support networked interactive
applications with large numbers of participants. There are
other problems beyond just the bandwidth of the network
connection. There is the Joading on each PC caused by the
high packet rates and there is the lateacy introduced by (he

- Ex. 1005, p. 18

5,822,523

3

time needed 1o send all of the outbound packels. Each packet
sent or received by a PC will require some amount of
processing time. As the packet rate increases with the
number of players in the game, less and less of the processor
will be available for running the game software itself
Latency is important in an interactive application because it
defines the responsiveness of the system. When a player
provides a new input on their system, it is desirable for that
input to immediately affect the game on ali of the other
players This is p larly important in any game
where the game outcome depends on players shooting at
targets that are moved by the actions of the other players.
Latency in this case will b the time from when a player acls
1o move A targel 1o the time that the target has moved on the
screens of the other players in the game. A major portion of
this latency will come from the time nceded 1o se¢nd the
messages (0 the olher seven players in the game. In this
example the time to send the messages to the other 7 players
will be approximately 50 ms. While the first player of the
scven will receive the message quickly, it will not be until
50 ms have passed that the last player of the seven will have
received the message.
Internet Protocol Multicasting

As mentioned before, the Intcrnet is a widely known
examplc of a wide arca network. The Internet is based on a
protocol approprisiely called the Internet Protocol (IP). In
the OSI reference mode! for layers of network protocols, IP
corresponds to a layer 3 or Network layer protecol. It
provides services for transmission and routing of packets
between two nodes in an internet. The addressing model
provides a 32 bit address for all nodes in the network and all
packets carry sowrce and destination addresses. IP also
defines the routing of packets between network links in an
inter-network. Gateways and routers maintain tables that are
used 10 lookup routing information based on the destination
addresses of the packets they receive, The routing informa-
tion tells the gateway/router whether the destination of the
packet is directly rcachable on a local network link con-

s
@

20

30

35

4

3, packet 21 to host 2 and packet 22 to host 4. Host 1 wants
10 send the same data P1 to each of the other three hosts,
therefore the payload in all three packets is the same. Packet
20 travels over network links 11, 12, 15 and 18 and through
reuters 5, 6, and 8 (o reach host 3. In a similar fashion host
3 sends packels 23 (o host 1, packet 24 to host 2 and packet
25 10 host 4. Host 2 and host 4 send packels 26, 27, 28 and
29, 30, 31 respectively 10 the other three hosts. All of these
packets are carried by the unicast netwerk individually from
the source host to the destination host. So in this example
each host must send three packets and receive three packets
in order for each host to send its payload to the other three
hosts.

As can be seen, cach host must send a packel 10 every
other host that it wishes 1o communicate with in an inter-
active application. Further, il receives a packet from cvery
other bost (hat wishes (0 communicate with it. In an inter-
active applieation, this will happen at a regular and high rate.
All of the hosts that wish 10 communicate with one another
will need 10 send packets 1o each other eight to ten times per
sccond, With four hosts communicating with one another as
in this example, each host will send three messages and
receive three messages eight 10 ten limes per second. As the
number of hosts in the application that need 1o communicate
with one another grows, the message rate will reach a rate
that cannot be supporied by conventional dial-up lines. This
makes unicast transport protocols unsuitable for delivering
interactive applications for multiple participants since their
use will result in the problem of high packel rates that grow
with the number of participants.

Waork has been donc to aticmpt to ¢xtend the IP protocol
to support multicasting. See RFC-1112 “Host Extensions for
1P Multicasting”. This document describes a set of exten-
sions to the 1P protocol that enable IP multicasting. 1P
multicasting supp the ofalPd toa
host group by addressing the datagram to a single deslina-
tion add; Multicast add arc a subset of the IP
address space and identified by class DIP addresses—ihese

nected to the gateway/router or if not, the address of anoth
gateway/router on one of the local network links to which
the packet should be forwarded. On top of IP are the layer
4 transport protocols TCP and UDP. UDP provides datagram
delivery services to applications that does not guarantee
reliabie or in-order delivery of the datagrams. TCP is a
connection oriented service to applications that does provide
reliable delivery of a data stream. It handles division of the
stream info packets and liable, in-order delivery.
Sec the Internet Socicly RFCs: RFC-791 “Internet
Prolocol”, RFC-793 “Transmission Control Protocol” and
RFC-1180 “A TCP/AP Tutorial”. IP, TCP and UDP arc
unicast protocols: packels, streams or dalagrams are trans-
mitied from a source to a single destination,

As an example, consider FIGS. 1 and 2. FIG. 1 shows a
conventional unicast network with hosts 1, 2, 3 and 4 and
network links 11, 12,13, 14, 15,16,17, 18 and 19 and routers
5,6,7,8,9 and 10. In this cxample, each host waats to send
@ data payload to each of the other hosts. Host 1 has network
address A, host 2 has network address C, host 3 has network
address B and host 4 has network address D. Exisling
network protocols are typiczlly based on packet formats that
contain a source address, destination address and a payload.
This is representative of commonly used wide area network
protocols such as IP. There are other components in an actual
IP packet, but for sake of this example, only these ilems will
be considered. FIG. 2 shows the example packets that are
sent by the hosts to one using a ional unicast
network protocol such as [P, Host 1 send packets 20, to host

Petitioner Riot Games, Inc. - Ex. 1005, p. 19

>
>

S0

]

o
-

are 1P add with “1110” in the high order 4 bits, The
host group contains zero or more IP hosts and the IP
multicasting prolocol transmits a multicast dalagram to all
members of the group to which it is addressed. Hosts may
join and lcave groups dynamically and the routing of mul-
licast datagrams is supported by multicast routers and gate-
ways. It is proper to describe this general approach to
multicast messaging as “distributed multicast messaging”, It
is & distributed technigue b the job of ge deliv-
ery and duplication is distributed throughout the network to
all of the multicast routers. For distributed multicast mes-
saging to work in a wide arca network, all of the routers
bandling datagrams for multicast hosts must support the
routing of multicsst datagrams. Such multicast routers must
be aware of the multicast group bership of all of the
hosts locally connected to the router in order to deliver
multicast datagrams to local hosts. Multicast routers must
also be able to forward multicasl packets to routers on their
local network links. Multicast routers must also decide to
which if any Jocal routers they must forward multicast
datagrams. When & multicast datagrsm is received, by a
multicast router, its group address is compared to a list for
each local multicast router of group addresses, When there
is a match, the datagram is then forwarded to that local
multicast router. Therefore, the multicast routers in the
network must mainlain an accurate and up (o dale list of
group addresses for which they are to forward datagrams to.
These lists are updated when hosts join or leave multicast
groups. Hosts do this by sending messages using Interet

5,822,523

5

Group Management Protocol (IGMP) to their immediately-
neighboring multicast routers. A further attribute of distrib-
uted multicast messaging is that the routers mus! propagate
the group membership information for a particular group
throughout the network to all of the other routers that will be
forwarding traffic for that group. RFC-1112 does not
describe how this is to be done. Many different approaches
have been defined for solving this problem that will be
mentioned later in descriptions of related prior art. Despite
their differences, all of thesc appmaches are methods for

gation of multicast routing inf ion between the
mulucasx routers and tcchniques for routing the multicast
datagrams in an inter-network supporting distributed multi-
cast messaging.

The distributed multicast messaging approach has a8 num-
ber of undesirable side cffects. The process of propagation of
group membership information to al! of the relevant routers
is not i yus. In a large complex network it can even
take quite a period of time depending on the number of
routers that must receive that updated group membership
information and how many routers the information for the
group membership update must past through, 1‘h|s process

5

0

20

S

6

in a group. However, distributed multicast messaging docs
nothing to reduce the received message rate at each of the
hosts when multiple hosts in 2 group are sending messages
to the group closely spaced in time. Let us return to the
example of a group of ten hosts sending messages seven
times per-sccond to the group, With conventional unicast
messaging, ¢ach host will need 1o send § messages to the
other hosts, seven times per-sccond and will receive 9
messages, seven limes per-second. With distributed multi-
cast messaging, cach hest will nced to send only one
message 1o the group containing all of the hosts seven times
per-second, but will still receive 9 messages, seven times
per-second. It is desirable to further reduce the number of
received messages.

An example of disiribuled multicasting is shown in FIGS.
3 and 4. FIG. 3 shows a nctwork with multicast routers 39,
40, 41, 42, 43 and 44 and hosts 35, 36, 37, 38 and network
links 45, 46, 47, 48, 49, 50, 51, 52 and 53. The four hosis
have unicast network addresses A, B, C, D and are also all
members of a message group wilh address E. In advance the
message group was created and each of the bosts joined the
message group so that each of the multicast routers is aware

can casily take many scconds and cven
on the specifics of the algorithm that is used. RFC-1112
mentions this problem and some of the side effccts thal must
be handled by an impl tion of a p] routing
algorithm for mullmsl _mcssaging. One prohlem results
when groups are dy Iy ted and d d. Since
there is no central authority in the network Ior assigning
group addresses, it is easily possible in a distributed network
for there 1o be duplication of group address assignment, This
will result in incorrect datagram delivery, where hosts will
receive unwanted datagrams from the duplicate group. This
requires a method al cach host to filter out the unwanted
dalagrams, Another set of problems result from the time
delay from when a group is created, destroyed or its mem-
bership changed to when all of the routers needed to route
the datagrams to the member hosts have been informed of
these changes. Imagine the case where Host N joins an
existing group by sending a join message to its local router.
The group already contains Host M which is a number of
router hops away from Host N in the netwerk. Shortly after
Host N hes sent it join message, Host M sends a datagram
1o the group, but the local router of Host M has not yet been
informed of the change in group membership and as a result
the datagram is not forwarded (o onc of the particular
network Links connected to the Jocal router of Host M that
is the enly path in the nctwork from that router that ulti-
mately will reach Host N. The resull is that Host N will
receive no datagrams addressed to the group from Host M
until the local router of M has its group membership
information updated. Other related problems can 2lso occur.
When a host leaves a group, messages addressed o the
group will continue for some time 1o be routed to that host
up to the local router of that host. The local router will know
a1 lcast not 10 route the datagram onlo the local network of
that host. This can still result in a great deal of nnnecessary
datagrams being carcied in a large network when there are
many active message groups with rapidly changing mem-
berships.

Finally, distributed multicast messaging does not suffi-
ciently reduce the message rate between the hosts. With
distributed multicast messaging, each host nced only send
one dd! dto lhe gc group in order to send
a mcssagc to all of other hosts in the group. This is an
improvement over conventional unicast messaging where
one message would need 1o be sent 10 each of the other hosts

Petitioner Riot Games, Inc.

25

w
L=

40

6

6

&

of the ge group and hes the proper routing informa-
tion, A network protocol such IP with multicast extensions
is assumed to be used in this example. Host 35 sends packel
54 wilh source address A and dest

£ 10 the entirc message group. In the same manner host 37
sends packet 85 to the group, host 36 sends packet 56 1o the
group and host 38 sends packet 57 to the group. As the
packets are handled by the multicast routers they are repli-
cated as necessary in order to deliver them to all the
members of the group. Let us consider how a packets sent
by host 35 is ultimately delivered to the other hosts. Packet
54 is carried over network link 45 1o multicast router 39. The
router determines from its routing tables that the multicast
packet should be sent onto network links 46 and 47 and
duplicates the packet and sends to both of these network
links. The packet is reccived by multicast routers 40 and 43.
Multicast router 43 sends the packet onto network link 50
and router 40 sends its onto links 48 and 49. The packet is
then received at mullicast routers 44, 42 and 41. Router 41
sends the packet over network link 81 where il is received
by host 36. Router 42 sends the packet over network link 82
10 host 37 and router 44 sends the packet over link 53 to host
38. A similar process is followed for each of the other
packets sent by the hosts 10 the multicast group E. The final
packels received by cach host are shown in FIG. 4.

While distributed multicasting does reduce the number of
messages that need to be sent by the hosts in a networked
interactive application, it has no ¢ffect on the number of
messages that they receive, It has the further disadvantages
of poor behavior when group membership is rapidly chang-
ing and requires a special network infrastructure of multicast
routers. It also has no support for message aggregation and
cannet do so since message delivery is distribuled. Disteib-
uted multicasting also has no support for messages that
define logical operations between message groups and uni-
cast bost addresses.

All of these problems can be understood when placed in
context of the design goals for distributed multicast mes-
saging. Distributed multicast g was nol designed
for inleractive applicalions where groups sarc rapidly crcnod
changed and destroyed. Instead it was optimized for appli-
cations where the groups are created, changed and destroyed
over relatively long time spans perhaps measured in many
minutes or even hours. An example weuld be a video
conference where all the participants agreed to connect the

- Ex. 1005, p. 20

5,822,523

7

conference at a particular time for a conference that might
last for an hour. Another would be the transmission of an
audio or video program from one host o many receiving
hosts, perhaps measured in the thousands or even millions.
The muliicast group would exis! for the duration of the
audio/video program. Host members would join and leave
dynamically, but in this application it would be acceptable
for there 1o be a significant time lag from joining or leaving
before the connection was established or broken.

While 1P and multicast extensions to IP are based on the
routing of packets, another form of wide arca networking
technology called Asynchronous Transfer Mode (ATM) is
based on swilching fixed sized cells through switches.
Unlike IP which supports hmh dmgram and cnnnecnon
oriented services, ATM is fund ori-

“

15

deal only with variants of distributed multicasting they
provide no means to reduce the reccived message rate, no
method Lo aggregate messages and provide no method in the
messages to perform logical operation on message groups.

Source to destination mullicasl streams
These are PCTs and a European patent ap
are EP 0 637 149 A2 by Perlman et al, PCT/US94/11282 by
Danneels et al and PCT/US94/11278 by Sivakumar et al.
These three patent applications deal with the transmission of
data streams from & source to a group of destinations. In
none of these patent applications, is a method described for
transmitting data between multiple members of a group. In
all of these applications, the data i is from a
source to a plurality of designations., Since these patent
li deal only with point-to-multipoint messaging,

ented. An ATM network consists of ATM swnchcs intercen-
nected by pointsto-point links. The host systems are con-
nected to the lcaves of the octwork. Before any
ication can occur b the hosts through the
network, a virtual circuit must be setup across the network.
Two forms of communication can be supported by an ATM
network. Bi-directional point-to-point between two hosts
and point-to-multipoint in one direction from one host to
multiple hosts, ATM, however, does not dircctly support any
form of multicasting. There are a number of proposals for
layering multicasting on top of ATM. One approach is called
a multicast server, shown in FIG. 8. Host systems 112, 113,
114, 115 sciup point-lo-point connections 106, 107,108 and
109 (0 a multicast server 108, ATM cclls are sent by the hosts
to the multicast server via these links. The multicast server
sets up a poml-lo-mulnpoim conngction 111 to the hosts
which collectively a ge group. Cells sent to
the server which are addressed to the gmup are forwarded to
the point-to-multipoint link 111, The ATM network l.lll is

lhcy can provide no means to reduce the received message
rate, no method 1o aggregalc messages and provide no
method in the messages 10 perform logical operation on
message groups.

SUMMARY OF THE INVENTION

The present invention relates to facilitating efficient com-
munications between multiple host computers over a con-
ventional wide area communications network to implemenl
an i ive application such as a comp game b
multiple players. In such an application, the Imsls will be
dynamically scnding to cach other information that the other
hosts nced i order to keep the interactive application
operating consistently on each of the hosts. The invention is
comprised of a group messaging server connected to the
network that mamllins a set of MESSage groups used by the
hosts to . The
invention further compriscs a scrver-group messaging pro-
tocol used by the hosts and the server. The server-group

ging protocol is layered on top of the Transport Level

responsible for the transport and swilching for
all of the connections between the hosis and the server. The
cells carried by the point-to-multipoint connection are dupli-

Protocol (TLP) of the network and is called the Upper Level
Protocol (or ULP). In the OS] reference model the ULP can

cated when necessary by the ATM switches at the br g
poiats in the network tree between and forwarded down the
branching network links. Therefore, the network is respon-
sible for the replication of the cells and their payloads, nol
the server. This method has the same problems as distributed
multicasting when used for an interactive application. Each
host still receives individual cells from cach of the other
hosts, so there is no aggmgalion of the payloads of the colls

40

be thought of as a layer p] built on top of a
transport or applications layer protocol. The ULP protocol
uses a server-group address space that is separate from the
address space of the TLP. Hosts send messages 1o addresses
in the ULP address space to a group messaging server using
the underlying unicast transport protocol of the network. The
ULP address space is segmented into unicast addresses,
unphcn group messagmg addresses and logica! group mes-

targeted al a single host, There is no support for add
cells to hosts based on logical operations on the seis of
members of host groups.
Related Prior Art

There are a number of existing patents and E:uropun
patent applications that arc rclalod fo the arca of the inven-
tion. These can be ized into two categories:
multicast routing/distribution and source to destination mul-
ticast streams.
Multicas! routing and distribution

These patents are U.S, Pat. No. 4,740,954 by Cotlon ¢t al,
USS. Pat. No. 4,864,559 by Periman, U.S. Pat, No. 5,361,256
by Docringer ¢t al, U S, Pat. No. 5,079,767 by Perlman and
U.S. Pat. No. 5,309,433 by Cidon et al. Collectively these
patents cover various algorithms for the routing and distri-
bution of the datagrams in distributed multicast nctworks.
Nonc deal with the problems described previously for this
class of multicast routing and message distribution such as
poor behaviors when the message groups change rapidly. In
all of these patents, messages are transmitted from a host via
a distributed network of routers to a plurality of destination
hosts which are members of a group. Since these patents

Petitioner Riot Games, Inc.

55

X
=

saging add plicit and logical group messaging
addresses are collectively called group messaging addresses.

Host systems must first esiablish connsctions (0 a group
messaging server before sending messages lo any ULP
addresses. The process of establishing this ion is
done by sending TLP messages 10 the server. The server

blishes the ¢ by assigning a unicast ULP
address 10 the host and returning this address in an acknowl-
edgment message to the host. Once connected, hosts can
inquire about existing message groups, join existing mes-
sage groups, creale new message groups, leave message
groups they have joined and send messages to ULP
addresses known by the server. Each message group is
assigned cither an implicit or logical ULP address depending
on its type.

FIG. 5 shows an example of a wide area network with a
group messaging scrver (“GMS™). Hosts 58 has TP address
A and ULP address H, host 59 has TLP address C and ULP
address J, host 60 has TLP address B and ULP address [and
host 61 has TLP address D and ULP address K, The network
is a conventional unicast network of network links 69, 70,
71,72,73,74, 75,76, and 77 and unicast routers 63, 64, 65,

est

- Ex. 1005, p. 21

5,822,523

9
66, 67, and 68. The group messaging server 62

10

ed int

messages from (he hosts addressed to a message group and
send the contents of the messages (o the members of the
message group. FIG. 6 shows an examplec of datagrams sent
from the hosts 1o a message group that they are members of
As before, a TLP such as 1P (where the message header
contain the source and destination TLP addresses) is
assumed 10 be used here. Host 58 sends message 80 which
contains the TLP scurce address A of the host and the
destination TLP address S for the GMS 62. The destination
ULP address G is an implicit ULP address handled by the
GMS and the payload P1 contains both the data to be seat
and the source ULP address H of the host. It is assumed that
prior 10 g their ULP 1o the GMS, that each
host as already established a connection 1o the GMS and
joined the message group G. Host 60 sends message 81 with
payload P2 containing data and source ULP address [, Hosls
59 scnds message 82 with payload P3 containing data and
source ULP address J. Host 61 scnds message 83 with
payload P4 containing data and source ULP address K. The
GMS receives all of llmc memgcs and sees that each

is add i)it ge group G with
members H, L), and K. The GMS can either process the
message wilh or without aggregating their payloads. FIG. 6
shows the case where there is no aggregation and FIG. 7
shows the case with aggregation.

Without aggregation, the GMS gencrates the outbound
messages 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, and 95
which it sends to the hosts. The datagrams have TLP headers
with the source and destination TLP addresses of the GMS
and the hosts respectively. The next field in the datagrams is
the destination ULP of the datagram. Datagrams 84, 88, and
sent to host 38 with TLP address A and ULP address H.
Datagrams 87, 88, and 89 arc scnt to host 60 with TLP
address B and ULP address [, Datagrams 90, 91 and 92 are
sent to host 59 with TLP address C and ULP address J.
Datagrams 93, 94 and 95 are sent to hest 61 with TLP
address D and ULP address K respeclively. As can be seen
from the payloads that cach host has reccived, cach host has
reccived the payloads from the other three hosts. Note that
cach host has not reccived a copy of its own original
message, This is becausc the GMS has performed echo
suppression. This is selectable autribute of the GMS since in
some applications it is useful for the hosts to receive and
echo of each message that they send 1o a group that they are
also members of [n the example of FIG. 6, it has been shown
how the present invention can achieve the same 2

20

1 ion of tive applications. Con-
sider a computer game for multiple players thal supporis
hundreds of players that are spread throughout a three
dimensional space created by the game, At any timc only &
few players will be able to see and cffect one another in the
game since other players will be in other areas that are out
of sight. Using conventicnal phone lines to carry the data
from each players computer to the network, it will not be
possible 1o send all actions of each player 1o all of the other
players, but because only a few players will be in close
proximity at any one time, it will not be necessary to do so.
It is only necessary 10 send data between (he players (hat are
in close proximity to one another. These “groups” of players
naturally map onto the message groups of the invention. As
players move about the three dimensional space of the game,
game will cause them to join and leave message groups as
necessary. If this does not happen rapidly it will limit the
interactivity of the game or cause inconsistent results for the
different players in the game.

The invention also allows aggregating message payloads
of multiple messages destined 10 & single hosi into a single
larger message. This can be done because of the GMS where
all of the messages are received prior to being senl to the
hosts. FIG. 7 shows an example of how this works. The hosts
send their messages to the GMS in exactly the same fashion
as in FIG. 6 using the same addresses previously defined in
FIG. 5. Host 58 sends message 96, host 60 sends message
97, host 59 sends message 98 and host 61 sends message 99.
The GMS receives all of these messages and creates four
outbound messages 100, 101, 102 and 103. The process by
which these ges will be explained in detail in the
detailed description of the invention. Each message is des-
tined 1o a single host and contains an aggregated payload
with multiple payload items. Message 100 has a destinztion
ULP address H for host 58 and aggregated payload P2, P3
and P4 from the messages from hosis 59, 60 and 61.
Message 101 is targeted at host 60, ge 102 is 1argoted
at host 59 and message 103 is targeted at host 61, As can be
seen, each host sends one message and receives one mes-
sage. The received message is longer and contains multiple
payloads, but this is a significant improvement over receiv-
ing multiple messages with the wasted overhead of multiple

and ge processing time. Overall the

invention has dramatically reduced the amount of data that
must be sent and received by each host. Since the bit rate
over conventional phone lines using a modem is low, a
duction in the of data that must be sent and

delivery as distributed multicasting withoul its disadvan-

received directly mnslalu into improved time and latency
for ge cC jons between the hosts.

tages. Withoul aggregation, the present invention enables a
host to send a single message to multiple other hosts that are

50

Hosts creale, join and leave message groups using control

bers of a ge group. It duces the waffic
that 8 host must proccss in an interactive upphmuon by
reducing the ber of that each host must send
10 the others. Without aggregation, however, there is no
reduction in the number of messages received by the bosts.
‘Without aggregation we can achieve the same message rate
as distributed multicasting without the need for a network
with multicast routers, we can use a conventional unicast
network such as the Internet. The present invention also
avoids the problems that dynamic group membership causes
for disiributed muiticasting. Group membership can be
changed very rapidly. Groups can be created, joined and left
by single unicast messages from hosts to the GMS, These
messages will be poini-to-point messages and will not have
lo propagate in throughout the network nor have 1o cause
routing table changes in the routers, This ability 1o rapidly
and accurately change group membership is critical fo the

Petitioner Riot Games, Inc.

60

65

in the ULP protocol to the GMS. Hosts may also
read and write application specific state information that is
stored in the GMS. When hosts send messages to other
hosts, thc message must be al least addressed 10 an implicit
group address. The ULP implicit address will always be the
primary address in & message from one host to another. The
message may optionally specify auxiliary destination
addresses. In many cases the implicit ULP address will be
the only destination ULP address in the message. The GMS
will handle delivery of the ULP messages addressed Lo the
implicit message group to all of the hosts that are members
of the group. A ULP send message may optionally specify an
address list of auxiliary addresses in addition 1o the primary
destination of the implicit ULP address. This auxiliary
address list can contain only unicast and logical ULP
addresses. The address list can also specify sel operators to
be performed between the sets of host ULP addresses

- Ex. 1005, p. 22

5,822,523

11

defined by the unicast addresses and logical groups. Once
the address list has been processed to yield a set of hosts, this
set is intersccted with the set of hosts that are members of the
implicil message group specified by the primary implicit
ULP address in the message. This ability to perform logical ¢
sel operalors on message groups is very useful in interactive
applications. It allows a single ULP message 10 selectively
deliver a message 1o hosts that fit a set of computed criteria
without the sending hest having 1o know the anything about
the members of the groups in the address list. Recall the
cxample of a nctworked game with hundreds of players in a
three dumcnsxonal cavironment c(calcd by the game. Con-
sider an impli ¢ group ing of all of the game
players in a certain area of the game where all of the players
can inferact with one another. Consider that the players are
organized inlo multiple tcams. Logical message groups
could be created for cach team within the game. To send a
message (0 all the players within the area that were on one
team, @ ULP message would be sent to the ULP implicit
message group for all the players in the srea with an
auxiliary address of the logical message group fer all the
players on the selected team. The GMS would perform the
proper set intersection prior to sending the resulting mes-
sages 10 the targeted hosts. The result of this will be that the
message will only be delivered to the players on the selected
team in the selected area of the game.

In summary, the present invention deals with the issees of
deploying an interactive application for multiple participants
on wide area networks by providing a method for reducing
the overall message rate and reducing latency. This inven-
tion uses a server group messaging approach, as opposc to
the ubuve described “distribuled multicast messaging”

h. The present i ion overcomes the undesirable
side cffccts of |bc distributed multicast messaging approach.
l'unher. it reduces the message rate between the hosis. As
P d out in an di d above, with prior art
distributed multicast mcssagmg. cach hest will need to send
only one message to the group containing all of the hosts
scven times per-second, but will still receive 9 messages,
seven times per-swund The present invention of scrver
group messaging has each host sending one 2¢, seven

40

12
DESCRIPTION OF DRAWINGS

FIG. 1 shows a conventional unicast network consisting
of hosts, network links and roulters.

FIG. 2 shows the unicast datag on a conventional
unicast network that would be needed to implement an
interactive application beiween four hosts.

FIG. 3 shows 2 prior art multicast network consisting of
hosts, network links and multicast routers,

FIG. 4 shows a multicast dalagrams on a prior art mul-
licas!t network that would be peeded 10 implement an inter-
active application between four hosts.

FIG. 5 shows a unicast network equipped with a group
messaging server in accordance with the present invention.

FIG. 6 shows the ULP datagrams without payload aggre-
gation on a network acmrdmg lo the present mvcnhon thal
would be needed to impl t an ink appl
between four hosts.

FIG. 7 shows the ULP datagrams with payload aggrega-
tion on a network according to the present invention that
would be needed to impl an ive applicati
between four hosts,

FIG. 8 shows a prior art ATM network with a multicast

Server.

FIG. 9 shows the detailed datagram format and address
formeat for ULP ges in d with the p
invention.

FIG. 10 shows the internal functions of the GMS accord-
ing to the present invention.

FIG. 11 shows the host software interface and functions
needed 1o support the ULP according to the present inven-
tion,

DETAILED DESCRIPTION OF THE
INVENTION

The present invention provides a method for multiple hast
computers to cfficiently communicate information to one
anmhcr over 2 wide area network for lhe mnrposes oi

times per-second and receiving one mcmge, seven times
per-sccond.

The present invention is different from the multicast
routing and distribution method disclosed in U.S. Pat. Nos. 4
4,740,954, 4,864,559, 5,361,256, 5,079,767 and 5,309,433,
Since these patents deal only with variants of dnsmbuwd

>

an inferaclive app

users. The method consists of {hree components: a host
protocol interface, a protocol and a server. The protocol is
between the host protocol interface and the scrver and is
implemenicd on top of the network transport protocol of a
wide area nctwork. The prolocol is called the Upper Level
Protocol (ULP) since it is layered above the existing pet-

multicasting they provide no means to reduce the
message rate, no method lo aggregate messages and provide
no method in the messages to perform logical operation on
message groups. This differs frem the present invention
where messages from multiple hosts addressed to &

50

work Ti Level Protocol (TLP). In the OSI reference
model the protocol can be described as a Session Tayer
protocol on top of the Transport Layer of the network. FIG.
ll sbows the host protoco! interface, 151, relative to the

ication, 150, and the host inlerface for the

group are received by a group server which processes lhe
[of the and 1r its ihe results to the
deslination hosts, 55

The present invention is also different from the source to
destination multicast streams approach disclosed in EP 0 637
149 A2, PCT/US94/11282 and PCT/USS4/11278. In all of
these references, the data transmission is from a source to a
plurality of designations, whereas the present invention
describes data i from a sending host to a server
host system and then from the server host to the destination
hosts.

These and other features and advantages of the present
invention can be undersiood from the following detailed 65
description of the invention together with the accompanying
drawings.

Petitioner Riot Games, Inc.

'nsnspmt Level Pmtocol. 153. The network interface, 155,
provides the physical connection for the host to the network.
The network communications stack, 154, is the communi-
cations protocol stack that provides network transpert ser-
vices for the host and the host interface for the Transport
Level Prolocol, 153, is and interface between bost applica-
tion software and the network transport services of the
network communications stack.

‘The interactive application can send and receive conven-
tional network messages using Lhe host interface to the TLP.
The interactive application also can send and receive ULP
messages through the host interface for the ULP. Internal 1o
the host interface for the ULP is a table, 152, of all ULP
addresses which the host can send messages (0. Each entry
in the table contains a pair of addresses, a ULP address and

- Ex. 1005, p. 23

5,822,523

13
its corresponding TLP address, When the host sends a

ge to @ ULP address, Lhat ge is psulated in
aTLP message sent to the I'LP address corresponding to that
ULP address, This allows the ULP messages to be handled
p ly by the hanisms of the cxisling
network. A core function of lhc ULP is group messaging
where hosts send to age groups populated by
multiple bosts. This allows a host 1o send a message 10
multiple hosls with one ULP message. Since the ULP is
layered on 1op of the TLP, the group messaging functions of
the ULP operate on a conventional unicast network where
TLP messages can only be sent from one hest to only one
other host.

The group hased messaging is implemented through the
use of a server called & group messaging server. All ULP
messages from the hosts are senl from the hosls lo a group
messaging server using the TLP protocol. The server pro-
cesscs the ULP portion of the messages and takes the
necessary required by the ULP message. Control ULP
messages are processed locally by the server and may be
acknowledged to the sending host. ULP messages addressed
to other hosts are processed by the group messaging server
and then re-transmitted to the proper ULP destination hosts,
again using the TLP protocol 1o encapsulate and transport
these messages.

In FIG. 8, hosts 58, §9, 60 and 61 send messages (o one
another using the ULP over a conventional unicast network
using a group messaging server 62. The network consists of
conventional routers 63, 64, 65, 66, 67 and 68 connected
with conventiona! network links 69, 70, 71, 72, 73, 74, 75,
76 and 77, Host $8 can sead a message to hosts 59, 60 and
61 by sending a single ULP message 10 the group messaging
server 62 where the ULP message specifies a destination
address that is 8 ULP message group. The ULP message is
encapsulated in a TLP message addressed to the group
messaging server. This causes the message to be properly
routed by router 63 o network link 71 to rouler 67 to the
server 62. The group messaging server receives the ULP

“

25

14
ge or a state ge. The following table shows the
different message types. The ULP message type field must
be present in a ULP datagram.

Message Types

Send

Recrive

Send Control
Receive Costrol
Send State
Receive State

L

Send messages are always sent from a host 1o & group
messaging server. Messages from a group server to the bhosts
are always receive messages. Send Control messages arc
messages from hosts to a group messaging server requesting
a control function be performed. Receive Control messages
are acknowledgments from a group messaging server to the
hosts in response to a prior Send Conirol messages. The
Send and Receive Statc messages are special cases of the
Sead and Receive Control messages that allow hosts lo read
and write application specific state storage in the group
messaging server. The specific control functions supported
by the ULP will be explained later.

The destination ULP address 125 is required in ULP
datagrams and specifies the primary destination of the ULP
message. The address count field 126 is required in ULP
send message types and is not present in ULP reccive
messege types. When the address count ficld in @ ULP send

is 0, it specifies the of auxiliary
destination addresses for the scnd message (hat follow the
address count field, These auxiliary destination addresses
are shown as items 127 and 128, but it is understood that
there are as many auxiliary ULP destination addresses as
specified by the address count field. Finally there is the
payload 129.

The payload format for ULP datagrams is defined by
items 116, 117, 118, 119, 120, 121 and 122. Item 116 is the

message and determines that the ge is addh iwa
message group containing hosts £9, 60 and 61 as members.
The scrver sends the payload of the received message to
cach of the hosts in three new ULP messages indivicdually
sent (o the three hosts. Since each message is encapsulated
in a TLP message, the messages are properly carried over the
conventional unicast network. The first ULP message is sent
by the group messaging server to host 61. This message is
carried by nctwerk links 71, 70, 72 and 75 and routers 67,
63, 64 and 65. The second ULP message is sent by the group
messaging server 1o host 60. This message is carricd by
network links 71, 70, 73 and 76 and routers 67, 63, 64 and
66. The third ULP message is sent by the group messaging
server o host 61. This message is carried by network links
74 and 77 and routers 67 and 68.

The invention can be implemented both in a datagram
form and in a connection oriented form. To best understand
the details of the invention, it is best to first consider a
datagram implementation.

Datagram Transport Implementation

The ULP can be implemenied as a dalagram protocol by
encapsulating addresses, message lype information and the
message payload within a datagram of the underlying net-
work transport protocol. The general form of the ULP
datagram message format is shown in FIG. 9 as elements
123, 124, 125, 126, 127, 128 and 129. The transport header
123 is the datagram header of the TLP that is encapsulating
the ULP datagram. The ULP message type ficld 124 indi-
cates whether it is a send or receive message, if it is a contro]

Petitioner Riot Games, Inc.

40

»
-

50

60

68

ge count and defines how many payload ¢lements will
be conteined in the payload. A single payload clement
consists of a triplet of source ULP address, data length and
data. Jtems 117, 118 and 119 comprisc the first payload
element of the payload. Jtem 117 is the ULP address of the
source of the payload element, item 118 is the data length for
the data in the payload element and item 119 is the actual
data. Items 120, 121 and 122 comprisc the last payload
element in the payload. ULP send messages only support
payloads with a single payload element, so the message
count is required to be equal 10 one. ULP receive messages
may have payloads with one or more payload clements.
ULP Address Space

The address space of the ULP is divided into three
segments: unicast host addresses, implicit group addresses
and logical group addresses. All source aod destination
addresses in ULP must be in this address space. The ULP
address space is unique to a single group messaging server.
Therefore each group messaging server has a unique ULP
address space. Multiple group messaging servers may be
connected 10 the network and bosts may communicale with
multiple group messaging servers without confusion since
each ULP datagram contains the header of the TLP. Differcnt
group messaging servers will have unique TLP addresses
which can be used by the hosts to uniquely identify multiple
ULP address spaces. The format for ULP addresses is shown
in FIG. 9 comprised of items 130, 131 and 132. The address
format field 130 is a variable length field used to allow
multiple address lengths 1o be supported. The address (ype

- Ex. 1005, p. 24

5,822,523

1§

ficld 131 indicates the type of ULP address: unicast host,
implicit group or legical group. The encoding is as follows:

Addresa Type Encoding

o0 Unicast Hoat Address
01 Unicost Host Address
10 Implicit Group Address

11 Logical Group Address

The address format encoding determines (he length of the
address field and therefore the total length of the ULP
address, This encoding is shown below. Note that when the
address type specifies a unicast host address, the low bit of
the address type field is concatenated 1o the address field 1o
become the most significant bil of the address. This doublcs
the size of the address space for unicast host addresses which
is uscful since there will generally be more hosts than group
messaging servers.

Address Format Ercoding

29 Bit Addreas Field
0 4 Bit Addreas Field
10 11 Bit Address Field

-—o

ULP unicast host addresses are assigned 10 cach host
when it first 10 & group ging server. When a
hos! sends a message to other ULP address, the unicast ULP
address of the host will appear as the source ULP address in
the reccived payload element. Unicast ULP host addresses
can also be used ss destination addresses only as auxiliary
addresses in a ULP send message. They are not allowed 1o
be used to as the primary ULP destination address. This
means (hat hosts cannot send ULP directly to one anour.r.
but always must send the 10 one b
a group messaging server.

T group dd are d by a group messag-
ing server in response to a control message fo the server
requesting the crealion of an unpbcxl message group. The
host requesting the creation of the implici ge group

8! s

>

30

40

16

interface to connect it to s wide area network. Item 135 is the
network interface for the group messaging server and
includes not only the hardwarc connection to the network
but the communications protocol stack used to implement
the TLP on the server.

Item 136 is an overall conirol function for the group
messaging server. This control function is responsible for all
ULP messages that are sent o received by the GMS. Internal
to this control funclion are several important storage and
precessing functions. Item 137 is an address map for all
hosts currently connected to the GMS. This address map is
a list of the ULP host address of each host connected to GMS
and its corresponding TLP address. This enables the control
function to construct the necessary TLP headers for sending
uLp to the hosts d 10 the GMS. ltem 138
is & list of all of the currently active implicit ULP addresses
currenlly recognized by the GMS. tem 139 is an application
specific state ge and p furction. Many inter-
active applications deployed over a uclwcrk will be able 1o
be implemented solely with host based processing. In these
cases all data that needs to be sent between the hosts can be
transported using the ULP. However, some applications will
need maintain a centrally stored and maintained repository
of application state information. This is useful when hosts
may join or Jeave the application dynamically. Wher hosts
join such an application, they will need a place from which
they can oblain a snapshol of the currem state of the
application in order to be consistent with the other hosts that
already where part of the application. To read and write this
state storage area, the ULP supports send and receive state
message lypes. Within (hese messages, there is the ability to
access a state address space so that different portions of the
state can be individually accessed. Application specific
processing of state writlen into this state slorage area can
also be implemented,

Items 140 and 141 are two of multiple ULP server
processes running on the GMS. These are software pro-
cesses that are at the heart of the ULP. Each implicit ULP
addresses recognized by the GMS has a onc-to-one corre-
spendence to a ULP server process and (o 3 message group
maintained by the process. Since all ULP send messages

becomes a member of the message group when it is created.
Other hosts can send inquiry control messages to the group
messaging server to learn of its existence and thea send a
implicit group join message in order to join the group. The
group messaging server maintains a list of ULP addresses of
hosts that are k of the implici group.
Implicit ULP group addresses are the only ULP addresses
allowed lu be the primary destination of a ULP send
ULP add

source addresscs in 4 paylead clement.

Logical ULP addresses arc used both to address logical
message groups and for specifying set operations between
the group members of the auxiliary ULP eddresses in a ULP
send message. Logical message groups are created and
joined similarly 1o implicit message groups, however, logi-
cal ULP addresscs may only be used as auxiliary ULP
addresses in a ULP send message. Logical ULP addresses
will also never appear as source ULP addresscs in a payload
element. The support of set operations bel

will never appear as ULP 5

n
o

must have an implicit ULP address as the primary destina-
tion address of 1he message, every ULP send message is scal
to and processed by a ULP server process. These processes
are created by the GMS contro! function in response to ULP
control messages 1o create new implicit ULP addresses.
They arc destroyed when the last host which is a member of
its message group has lefl the message group. Internal 10 a
ULP server process is a list, 142, of the ULP host addresses
of the members of the message group, a set of message
queues 143 for cach host which is a member of the message
group and a message aggregation function 149 which is uscd
1o aggregate multiple messages to a single host into a single
message.

ltem 148 maintains a list of all of the logical ULP
addresses and message groups in the GMS. Ttems 144 and
146 represent two of multiple logical ULP addresses. For
cach logical ULP address, there is a corresponding list, 147
and 148 of the host ULP addresses of the members of the

groups as part of a ULP send message will be explunud in
a later section on ULP send messages.
Group Messaging Server Iniemnal Functions

The internal componenis of the group messaging server
are shown in FIG. 10.

In the preferred embodiment, the group messaging server
is a general purpose computer sysiem with a network

Petitioner Riot Games, Inc.

6!

@

logical ge group. The logical message groups are not
tied to specific ULP server processes, but are global with 4
GMS 1o all of the ULP server precesses.
Contro! Functions

The contro! functions comsist of connect, disconnect,
creale group, close group, join group, Icave group, query
groups, query group members, query group attributes. These
control functions arc implemented by a ULP send and

- Ex. 1005, p. 25

5,822,523

17

receive control messages. The control functions are initialed
by a host sending a ULP send control message 10 a GMS.
These messages only allow a primary ULP destination
address in the message and do no allow auxiliary addresses,
The primary ULP address is interpreted as a control address
space with a unique fixed address assigned to each of the
control funclions enumerated above. The contents of data in
the payload supplies any arguments ne¢ded by the control
function. Returned values from the centrol function are
returned in a ULP receive control message that is addressed
to the host that sent the original control message for which
data is being returned, The delailed operation of these
contro! funclions is described below.

Connect

‘This control function allows a host 1o connect to a GMS.
The destination ULP add in the is a fixed
address that indicates the connect function. The source ULP
address and any data in the payload are ignored.

Upon receiving this message, the GMS control function,
136, creates a new host address and enters the host address
in the host address map 136 along with the source TLP
address from the TLP header of the ge. Upon

o

20

18
group, If there is an error, the control function returns a
message to the host with a function code in the data portion
of the payload indicating failed implicit group creation.
Create logical group
This function allows a host 10 creatle a new logical
mcssage group and associated logical ULP address. The
payload in the message may contain a single payload item
whose data fickl holds attributes of the group, These
attributes can be used to define any optional functions of the
group The destination ULP address in the message is a fixed
address that ndicates the create logical group function. The
GMS control function allocates a new logical ULP address
and adds it to the Jogical ULP address list 145. The host that
sends this message is added to the membership list of the
logical group. This is done by adding the source ULP
address in the message to the group membership list 147 for
the new logical message group 144. Upon successful
completion, the GMS control function responds with a
receive control ULP message addressed to the host along
with a function code in the data portion of the payload that
indicates successful logical group creation. The source ULP
dd in the payload is the ULP address assigned to the

ful completion, the GMS control function responds with a
receive control ULP message addressed to the host along
wnh a function code in the data pomon of the payload thar
ful host on. The destination ULP
address in the message is the ULP address assigned to the
host. The host saves this and uses it for any future messages
to the GMS. If there is an error, the control function returns
a message 10 the host with a function code in the data portion
of the payload indicating failed host connection,
Disconnect
This function allows a host 1o disconnect from a GMS.
The destination ULP address in the message is a fixed
address that indicates the disconnect function. The source
ULP address is used to remove the host from membership in
any implicit or logical groups prior to disconnecting. Any
data in the payload is ignored. The GMS control function
also removes the eatry for the host from the host address
map. Upon successful completion, the GMS control function
responds with a receive control ULP message addressed o
the host along with a fanction code in the data portion of the
payload that indicates successful host disconnection. The
destination ULP address in the message is the ULP address
assigned 10 the host. If there is an error, the control function
returns a message (o the hosl witha function code in the dau
portion of the payload i g failed bost di
Create implicit group
This function allows @ bosl o creale a new implicit
message group and p U ddl and
server process. The payload in the message may contain a
single payload item whose dala ficld holds attributes of the
group. These attributes can be used 1o define any opnonal
functions of the group. The destination ULP addwss in the

25

w
=)

40

new logical group. If there is 2a error, the control function
returns a message to the host with a function code in the data
portion of the payload indicating feiled implicit group
creation,
Join group

This function allows a host to join an existing logical or
implicit message group, The destination ULP address in the
message is a fixed address (hat indicates the join group
function. The data portion of the payload contains the ULP
address of the group that is 1o be jeined. The GMS control
function looks at this address and determines if it is an
implicit or logical ULP address. If it is an implicit ULP
address, the GMS contral function finds the ULP server

cess selected by the address in the ge payload and
adds the source ULP host address from the message to the
group membership list 142, If it is a logical ULP address, the
GMS centrol function finds the logical ULP addrcss 144
selected by the address in the message payload and adds the
source ULP host address from the message to the group
membership list 147. Upon successful completion, the GMS
contrel function responds with a receive control ULP mes-
sage addressed 1o the host along with a function code in the
data portion of the payload that indicates successful group
join. The source ULP address in the payload is the ULP
address of the group thal was joined. If there is an error, the
conirol function relurns a message to the host with a function
code in the dala portion of the payload indicating failed
implicit group creation,
Leave group

This function allows a host to leave an existing logical or
implicit message group that it is a member of The destina-
tion ULP add; in the ge is a fixed add that

message is a fixed address that indi the create imp

group function. The GMS control function allocates a new
implicit ULP address, adds it 1o the implicit ULP address list
138 and creates a new ULP server process 140, The hos! that
scnds this message is added to the membership list of the
implicil group. This is done by adding the source ULP
address in the message 10 the group membership list 142 in
the ULP server p Upon ful the
GMS control function responds with a receive control ULP
message addressed to the host along with a function code in
the data portion of the payload that indicates successful
implicit group creation. The source ULP address in the
payload is the ULP address assigned to the new implicit

1edi

Petitioner Riot Games, Inc.

o
w

indicales the leave group function. The data portion of the
payload contains the ULP address of the group that is (o be
left. The GMS control function looks at this address and
determines if it is an implicit or logical ULP address. If it is
an implicit ULP address, the GMS conirol function finds the
ULP server pracess selected by the address in the

payload and removes from the group membership list 142
the source ULP host address from the message. If the host
is the last member of the group, the ULP server process is
terminated and the implicit ULP address is de-allocated. If
it is a logical ULP address, the GMS control function finds
the logical ULP address 144 sclecied by the address in the
message payload and removes from the group membership

- Ex. 1005, p. 26

5,822,523

19
list 147 the source ULP host address from the. If the host is
the lasl member of the group, the ULP address is
de- d. Upon pletion, the GMS control
function responds with a receive control ULP

ful

20
Single implicit destination
The mosl simple casc is a send message 1o a single
|mpllc|t ULP address. In all send message datagrams, (he

addressed to the host along with a function code in the data
portion of the payload that indicales successful group leave.
If there is an eror, the contre] function retums a message o
the host with a function code in the data portion of the
payload indicating failed implicil group creation.
Query groups

This function allows a host to get a list of all implicit and
lonlcnl message groups currcntly active on a GMS. The
[n ULP in the ge is 2 fixed address
that indicates the query groups function. Any data pertion of
the payload is ignored. Upon successful completion, the
GMS control function responds with a receive control ULP
message addressed to the bost along with 2 payload with
multiple payload clements, The first paylead clement con-
tains a function code indicating successful query groups.
The source ULP address in the first payload element is
ignored. Each of the sub payload e! conlain a
ULP group address in the source address field of the payload
element that is one of the aclive group addresses on 1he
GMS. There is no dala field in these subsequent payload
clements. If there is an error, the control function returns a
message to the host with a function code in the data portion
of a payload with a single payload element indicating failed
query groups.
Query group members

This function allows 2 hest 1o get a list of all hosts that are

bers of a ge group. The destination ULP address

in the ge is a fixed address that indi the query
group members function. The data portion of the payload
carries the address of the message group for the query. Upon
successful completion, the GMS control function responds
with a receive control ULP message addressed to the host
along with a payload with multiple payload elements, The
first payload element conteains a function code indicating
successful query group members. The source ULP address
in the first payload element is ignored. Each of the subse-
quent payload elements contain a ULP host address in the
source address ficld of the payload element that is one of the
active group addresses on the GMS. There is no daia field in
these subs payload el If there is an error, the
control function returns a message to the host with a function
code in the data portion of a payload with a single payload
clement indicating failed query group members,
Query group attributes

This function allows 2 host to get a list of the atiributes of
2 message group. The destination ULP address in the mes-
sage is a fixed address that indicales the query group
attributes function. The data pertion of the payload carrics
the addicss of the message group for the query. Upon
successful completion, the GMS control function responds.
wilh a receive control ULP message addressed to the hos!
along with a payload with a two payload clements. The first
payload element contains a function code indicating suc-
cessful query group members. The sccond payload element
contains the attributes of the message group. If there is an
error, the control function returns 2 message o the host with
a function code in the data portion of a payload with a single
payload element indicating failed query group atiributes.
Scod Message Operation

In order 10 I'ully understand the operations of the send
a8 ber of individual cases are worth

oons:denng.

Petitioner Riot Games, Inc.

10

n

bt

25

30

60

&5

ion ULP address 125 must be an implicit ULP
address. In this case of a single implicit destination, this is
the only destination address in the datagram. The auxiliary
address count 126 is zero and there are no auxiliary desti-
nation addresses 127 or 128, The payload consists of a
message count 116 of one, the ULP of the host sending the
message in the source ULP address 117 and the data length
118 and data 119. Send message datagrams may only have
a single payload item so their message count field 116 must
always be one.

The host sends the send message onto the network with a
TLP header addressing the data. The GMS the GMS that is
the selected target of the message. The GMS receives the
message and the GMS control function 136 determines that
ll ns a send message daugram and looks up the implicit
mits ULP address list 138, 1f the
address does not exist, an error message is returned to the
sending host with a ULP receive message datagram. If the
address is valid, the GMS control function removes the TLP
header from the datagram and sends the ULP portion to the
ULP server process corresponding to the destination implicit
ULP address. Assume for discussion that this is the ULP
server process 140. The ULP server process 140 will extract
the single payload item from the message 117, 118 and 119
and place the payload jtem in each of the message queues
143. There will be one message queue for each member of
the message group served by the ULP server process 140.
The members of the group will have their host ULP
addresses listed in the host address list 142, Each message
queue in @ ULP server process will fill with payload items
that are targeted at particular destination hosts. The mecha-
nisms by which payload items are removed from the queues
and sent 10 the hosts will be described later.

Auxiliary unicast destination

In this case in addition to an implicit destination 125,
there is also a single auxiliary address 127 in the datagram.
The auxiliary address count 126 is one and the auxiliary
destination addresses 127 is a unicast bost ULP address. The

load ists of a ge count 116 of one, the ULP of
the host sending the message in the source ULP address 117
and the data length 118 and data 119.

The host sends the scnd message onto the network with a
TLP header addressing the dnagram o the GMS Iha! is the
selected target of 1he The GMS receives the
message and the GMS control function 136 determines that
it is a send message datagram and looks up the implicit
destination address in its implicit ULP address list 138 and
the unicast host ULP auxiliary address in the bost address
map 137, If either of addresses does net exist, an error
message ns returned 10 the sending bost with a ULP receive

If the add are valid, the GMS
contro] funclion removes the TLP header from the datagram
and scndq lhe ULP portion © the ULP server process
corl 1o the destination implicit ULP add;
Assume for dlscusuun that this is lhc ULP server process
140, The ULP server process extracts the auxiliary ULP
address from the message and determines from the address
that it is a unicast host ULP address. The server process then
checks to see if this address is a member of the message
group defined by the host address list 142, If it is not, no
further acticn is taken and the payload item in the message
is not placed in any of the message queues 143. If the host
address is in the message group, the payload item in the
message is placed in the single message queue correspond-

- Ex. 1005, p. 27

5,822,523

21
ing to that host. The net eﬂ'ccl is that the ULP server process
has performed a sel i ion on the b

22
message in the implicit ULP address list 138 and al! of Ihe
add in the address list either in the host ULP address

of the message group selected by the implicit ULP destina-
tion address and defined by the group membership list 142
with the members of the set of hosts defined by the auxiliary
address. The payload i item is thcm sent only 1o the hosts that
ars bers of (his set i
Auxiliary logical destination
In this case in addition lo an implicit destination 125,
there is also a single auxiliary address 127 in the datag;

map 137 or in the logical ULP address list 145 as appro-
priate. If any of addresses does not exist, an crror message
is returned to the sending host with 2 ULP receive message
datagram. If the addresses are valid, the GMS control
function removes the TLP header from the datagram and
sends the ULP portion to the ULP server process corre-
sponding to the destination implicit ULP address. Assume

‘The auxiliary address count 126 is onc and the auxiliary
destipation addresscs 127 is 2 logical ULP address, The
payload consists of a message count 116 of one, the ULP of
the host sending the message in the source ULP address 117
and the data length 118 and data 119.

‘The host sends the send message onte the network with a
TLP header addressing the datagram to the GMS that is the
selecled target of the message. The GMS receives the
message and the GMS conirel function 136 determines that
it is a send message datagram and looks up the implicit
destination address in its implicit ULP address list 138 and
the logical ULP auxiliary address in list of logical ULP
addresses 145, If either of addresses does not exist, an error
message is returned 1o the sending hest with a ULP reccive
message datagram, If the addresses are valid, the GMS
control function removes the TLP header from the datagram
and sends the ULP portion to the ULP server process
corresponding 1o the destination implicit ULP address.
Assume for discussion that this is the ULP server process
140. The ULP server process extracts the auxiliary ULP

20

5

30

for di that this is the ULP server process 140, The
ULP server process extracls the auxiliary ULP address list
from lhc message and scans it from beginning 1o ¢nd, The
and ng of the set op is done in

post-fix fashion. This means that arguments are read fol-
lowed by an operator that is then applied to the arguments.
The result of the operator becomes the first argument of the
next operation. Thereforc at the start of scanning two
addresses are read from the address list. The next address
will be an operator that is applied to the arguments and the
result of this operator is the first argument to be used by the
nextoperator. From then on a single address is read from the
address list followed by a logical ULP address which is
operator on the two arguments consisting of the new argu-
ment and the results of the last operator. The logical address
used to indicate set complement s not a set operator, by an
argument qualifier since il can precede any address in the
ddress list. The g of the set compl
qualifier is relative to the group membership of unphcﬂ
group address in the send message. IF the set complement
qualifier precedes a wnicast host address which is not a

address from the message and determines from the add

ber of the ge group selected by the implicit ULP

that it is a logical ULP address. Assume for this example that
this logical ULP address is the logical address 144, The
server process fetches the group membership list 147 cor-
responding to the logical address and performs a set inter-
section operation with the gronp membership list 142 of the
server process. If there are nc members of this set
intersection, no further action is taken and the payload item

ddress in the send ge, the cffective argument is the sct

of all hosts that are members of the implicit message group.
If the set complement qualifier precedes a unicast host

klress which is a of the ge group selected by
the implicit ULJP address in the send ge, the effective
argument is the set of all hosts that are members of the
implicit message group except for the original unicast host

in the message is not placed in any of the g¢ queucs
143, 1f there are members of the set interscetion operation,
the payload item in the message is placed in the queues
corresponding 1o the hosts that are members of the set
intersection.

Multiple auxiliary addresses with logical operations

In its most wphlslu.aled form, a send message can per-
form set operations b the i ge group of
the ULP server process and multiple logml and unicast ULP
addresses. This is done by placing multiple auxiliary desti-
nation ULP addresses in the message with logical opcrators
imbedded in the address list. The address count 126 holds a
count of the total auxiliary addresscs in the address list 127
and 128. The auxiliary addresses arc a mix of logical ULP
addresses and unicast host ULP addresses. Two logical ULP
addresses in the ULP address space are assigned the rele of
specifying sct operations to be performed between the
logical message groups and unicast host addresses in the
message list, They are specially assigned add for the
functions set inlersection, set upion. Athud logical address
is used 10 indicate sct complement, The payload consists of
a message count 116 of one, the ULPof the host sending 1he
message in the source ULP address 117 and the data length
118 and data 119.

The host sends the send message onto the network with a
TLP header addressing the datagram to the GMS that is the
selected target of the message. The GMS receives the
message and the GMS control function 136 detcrmines that
it is a send message datagram and looks up the implicit ULP

Petitioner Riot Games, Inc.

40

w
=

@
@

o

S

dd qualified by the complement function. If the set
complement qualificr precedes a logical ULP address the
effcctive argument is the set of al! hosts thst are members of
the implicil message group specified by the send message
except hosts that are members of the logical message group
preceded by the set complement modificr. Once the entire
address list has been processed 1o a single result set of hosts,
a sel inlersection opcnuon |a performed on this set and the
setof bers of the i ge group 142 defined by
the implicit address in the send mwmge 1f there are no
members of this set intersection, no further action is taken
and the payload item in the message is not placed in 2oy of
the message queues 143, If there are members of the set
intersection operation, the payload item in the message is
placed in the queues corresponding to the hosts that are
members of the set intersection.

5 Message Delivery and Aggregation

Once are d into the g¢ queucs in the
ULP scrver processcs, there are a variety of ways that they
can ultimately be delivered to the targeted hosts. In the
invention, the delivery method is set on a per-ULP server
process basis by atiributes that are provided at the time that
an implicit ULP message group and server process are
created, It is important during the description of these
methods 1o keep in mind that the invention is intended to
provide an efficient means for a group of hosts to send
messages to each other at a rapid rate during the implemen-
tation of a networked interactive application. Also assumed
in the following description is that the GMS performs echo

- Ex. 1005, p. 28

5,822,523

23

suppression when 2 host sends a message to a group that it
belongs to. This means that the host will not receive a copy
of its own message to the group either as a single
un-aggregaled message or as a payload ilem in an aggre-
gated message. This is controlled by a ULP server process
attribute that can be changed to stop echo suppression, but
echo suppression is the default.

Immediate Delivery

hod

24
message sent to the destination bost. The GMS control
function 136 will usc the destination ULP host address 10
look up the TLP address of the host from the host address
map 137. This will be used to create a TLP header for the
message 123. The ULP message type 124 will be ULP
receive, the destination ULP address 125 will be the desti-
nation host, the address count will be 0 and there will be no
auxiliary addresses. The payload in this case will have a

The most simple delivery is to i diately
deliver the payload items to their targeted hosts as soon as
they are placed in the message queues. Each payload item in
a message queue will contain 2 ULP source address, a dats
length aad the data 1o be sent. To impl i di

ge count 116 set by the message count value from the
host aggregation buffer. The payload will contain all of the
payload items from the host aggregation buffer,

The effect of aggregation will be to greatly reduce the

delivery, the ULP server process will remove a payload item
from a message queue for a particular host 143, The host
address for this host will be obtained from the group
membership list 142. The payload item and the destination
host address will be sent to the GMS control function 136
where it will be used to create a ULP reccive message sent
to the destination host. The GMS contro! function 136 will
use the destination ULP host address to look up the TLP
address of the host from the host address map 137. This will
be used 1o create a TLP header for the message 123. The
ULP message type 124 will be ULP receive, the destination

%
2

total ge rate received by the hosts. A single message to
a host will be able 1o carry multiple payload items received
from the other hosts during the aggregation period. This fits
very well the interactive applications of this invention where
groups of hosts will be sending messages to all the other
hosts in the group at a periodic rate. Aggregation will be very
effective in collecting together all of the messages from all
of the other hosls into a single message for cach member of
the group. The reduces processing st each receiving host
since a single message will be received rather than many
separate messages. Aggregation will also reduce the total
data rate to the hosts since aggregation eliminates the nced

ULP address 125 will be the d host, the add
count will be 0 and there will be no auxiliary addresses. The
payload in this case will have a message count 116 of 1 and
the payload itern comprised of fields 117, 118, and 119 will
be the payload element taken from the message queue.

Immediate delivery is useful when the message rate
between a group of hosts is low. Consider four hosts that are
members of an implicit message group where each member
of the group sends a message (o every olher member of the
group at a fixed rate. With immediate delivery, cach host will
send three messages to the other members of the group and
receive three messages [rom the other members of the group
at the fixed rate. This is acceptable is the size of the group
is small and the message rate is low. However, it is obvious
that total message rate is the product of the underlying
message ratc and the total number of members of the group
minus one. Clearly this will resultl in unacceptably high
message rates for large groups and highly interactive mes-
sage raies, A group of 20 members that had an underlying
message ralc of 10 messages per second would yield a total
message rale at each host of 190 messages sent and 190
messages received every second. This message rate will be
unsupportable over a conventional dial-up connection to a
conventional wide area network such as the internet.
Aggregalion

A key concept in the present invention is the aggregation
of multiple messages in a message queue into a single ULP
receive message to a host that contains multiple payload
ilems in the payload. The ULP server process 140 removes
payload ilems from a message queuc 143 for a host and
accumulates them in an aggregation buffer 149. The aggre-
gation bufer has buffer areas for cach host for which there
is a message qucuc. These individual hest areas within the
aggregation buffer are called host aggregation buffers. The
start and end of this aggregation period can be controlled in
a number of ways that will be described in the next sections,
At the end of the aggregation period, the cach host aggre-
gation buffer may hold multiple paylead ftems. The host
aggregation buffer will hold a message count of the payload
items followed by the multiple payload items. The contents
of a host aggregation buffer along with the ULP host address
of the comresponding host are sent to the GMS control
function 136 where it will be used to create a ULP receive

Petitioner Riot Games, Inc. - Ex. 1005, p. 29

25

30

a
=

for sep ge headers for cach payload item. The
savings will be significant for small payload items since
there will be only one message header comprising fields 123,
124 and 125 for multiple payload items. In cases where
group of hosls are sending messages 1o the group at a
periodic rate, it is often the case in many interactive appli-
cations that the data being seat by cach host to the group is
very similar lo the messages sent by the other hests. This
affords the opportunity within an aggregated payload of
multiple payload items to apply a data compression method
across the multiple data elements of the payload clements. A
wide variety of known data compression methods will lend
th Ives 1o this application. The first data element in the
first payload item can be sent in uncompressed form with
cach subscquent data clemcent being compressed using some
form of differcnce coding method. A variety of known data
compression methods use the concept of a predictor with
differences from the predicted value being encoded. The first
data element in an aggregated payload can be used as this
predictor with the subsequent data clements coded using
such a data compression method. These conventional data
compression methods do not assume any knowledge of the
internal structure or function of portions of & data element to
compress. It is also possible to make use of application
specific coding techniques that take advantage of such
knowledge to potentially achieve much higher coding effi-
ciency.
Server Isochronous

One method by which the aggregation time peried can be
defined is called Server Isochronous or SI. In this method, A
ULP Server Process defines a uniform time base for defining
the aggregation time period. This time base is defined by
three parameters: (he time period, the aggregation offset and
the transmit offset, These parameters are set by the allributes
provided in the create implicit group control function at the
time the implicit group and the ULP server process are
created. The time period is a fixed time interval during which
the ULP server p will] ges in the
message queues, aggregate the messages in the queues and
send the aggregated messages to the targeted hosts. The
aggregation offset defines the point after the start of the time
period after which arriving messages will be stored in the
message queues for delivery in the next time period.

5,822,523

25

Therefore, a1 the aggregation offsel after the start of the time
period, a snapshot will be taken of all of the messages in
cach message queue. New messages will continue to armive
and be cntered info the queues after the aggregation offset.
Only those messages in the queues before the aggregation
offset point will be aggregated into outbound messages. The
resulting aggregated messages will then be sent 1o their
targeted hosts at the point in lime which is the transmit offsct
after the start of the time period. The result is that messages
arrive continuously and are stored in the message queucs.
Once per time period the are aggregated into single mes-
sages to each host which is the 1arget of messages and once
per time period these aggregated messages are sent o the
hosts.

Another embodiment of the SI method is (o allow the ULP
server process to dynamically vary the time period bascd on
some crileria such as the received message rafes, andfor
received data rate. The ULP server could use a function to
define the aggregation period based on the number of
messages received per second or the total number of payload
bytes received per second. One reasonable function would
be to sherten the aggregation period as the rate or received
messages or dala rate of the received payloads increased.
This would tend te keep the size of the outbound messages
from growing toc much as received ges andfor

s

S

20

26

rally synchronized. The HS ULP server process will wait
until all of the members of the message group has completed
their tums and sent a message 1o the group before sending
the aggregated messages 1o the members of the group, This
will cause the applications on the hosts 10 wait unti! they
have received the aggregated messages. They will all then
start processing these messages along with the local user
inputs. Even if they perform their processing at different
speeds and send their next messages 10 the group at different
times, the HS ULP server will wait until all have completed
their processing and reported in with a message to the group.
This will keep all of the host applications synchronized in
that ¢very host will be at the same application loop iteration
as all of the others. This will keep the application slate
consistent on all of the hosts. Only nctwork propagation
delays from the GMS to the hosts and different processing
speeds of the hosts will cause the start and completion of
their processing to begin at different times. It is nol a
requirement in networked applications o keep al! of the
hests prccmely synchronized, only that that application slate
is The HS method provides a natural way to do
this in the context of the present invention.
Preferred Embodiment

’l‘bc dclaxlcd dcscnpuon of the invention has described a

received data rate grew. Other possible functions could be
used that varied the apgregation period based on received
message rates, received payload data rates or other param-
eters available to the ULP server process.
Host Synchronous

The host h or HS method of defining the
aggregation lime period allows the definition of a flexible
time peried that is controlled by the hosis, It is based on the
concept of a turn which is a host sending & message to one
or more members of the implicit message group which is
operating is HS mode. Once every host in the ge group

ion of the invention as the best way to
cxp]am the invention. The preferred embodiment of the
invention is as follows,

In the preferred embediment, the wide arca network is the
Internct and the TLP protocol is TCPAP. The GMS is a
general purpose computer system connected to the Internet
and the hosts are p d 1o the
Internet.

TCPAP provides an number of advantages that provide for
a morc cfficicnt applications interface on the hosts 151.
TCP/IP supports the concepl of source and destination port

e
E

has taken a tum, the aggregation period ends. A snapshot of
the contents of the message queues is taken, the contents of
each of 1he queucs is aggregated and the aggregated mes-
sages are sent to the hosts targeted by each message queue.
A refi to this technique qualifies which of the three
ULP send message types to the group constitute a host urn:
a send only to the implicit address of the group, a send to a
unicast host address within the group or a send to a logical
ULP address which shares members with the group. The
attributes of the group not only will define HS aggregation,
but one or more ULP send message types that will be
considercd a host urn. A further refinement sets the total
number of tums that a host can teke in a single aggregation
time period. The default will be one turn, but multiple turos
can be allowed. If a host atempts to take more turns than
allowed, the messages are ignored.,

This aggregation lechnique has the I benefit of
causing the hosis which are member of an HS implicit

A

message group to have their processing functions synchro- $

nized when they are executing the same interactive appli-
cation. Many networked interactive applications are based
on a simple overall three step operational model: wait for
messages from other hosts, process the messages and the
Jocal users inputs 10 update the local application, send
messages ta the other hosts. This basic application loop is
repeated at a rale fast enough lo provide an inlcractive
cxpericnce such as 5 to 30 times per second. It is desirabl

40

&0

bers in its header. The ULP can make use of the port
numbers 1o identify sowrce and destination ULP connec-
tions. Most ULP send messages will be from hosts 10 &
implicit ULP group addresses and most ULP receive mes-
sages will be from the implicit ULP addresses to the ULP
host addresses. All of these and the ULP message type field
can represented by source and destination port addresses
within the TCP/IP header. This means that for most ULP
ges, the ULP g lated within the TCP/IP
message need only contain the paylold. There is the shght
complication of the aggregated ULP receive messages sent
from a ULP server process 10 a hosts. Here the destination
port will be the host the source port will be for the implicit
LJLP group address and the payload will still contain the
sourcc host ULP addresses in cach the payload items.
TCP/IP also supports header compression for low speed
dial-up lines which is also important in this application. See

RFC 1144. TCPAP is a orienled protocel which
provides reliable end-to-end transport., It handles
re-transmission on errors and fragn ion and bly

of data transparcnily 1o upper level protocols. Header com-
pression allows much of the TCP/IP header to be omitted
with each packet 10 be replaced by & small connection
identifier. This connection 1D will uniquely define a con-
nection consisting of a source and destination [P address and
source and destination TCP/IP port pumbers.

At the interface lo the lpplicllion on the hosts, the

3 n
embg

10 keep such applications synchronized so that the states of
the applications is consistent on the diffcrent host machines.
When such applications communicate using the HS model
of the present invention their operations will become patu-

Petitioner Riot Games, Inc.

fi of the ULP is as a session layer
pmlocol In the prefem-.d embodiment the application on a
host opens a session with a ULP server process. This session
is identificd with a unique session 1D on the host. The host
application then sends data to the ULP host interface 151

- Ex. 1005, p. 30

5,822,523

27
tagged with this ID. The ID defines a host
and implicit ULP pair including the TCP/IP TLP address of
the GMS server thal is running the particular ULP server

p for the implicit ULP address. By binding (he trans-
port address of the GMS of a ULP server process to the s
session 1D, we can parcnlly to the application support

28
Accordingly, the present invention is (o be limited solely by
the scope of the appended claims,
What is claimed is:
1. A method for providing group messages 1o a plurality
of host computers connected over a unicast wide area

mulliple group messaging servers on the network and a
single host can have multiple active sessions with different
physical group messaging servers. This avoids any address
space collision problems that could arisc from the fact that
the ULP address space is unique to cach GMS.

Alternste Embodiments

One possible exiension to the invention is to extend the
ULP to support a common synchronized time base on the
GMS and the hosis that are connected to it. This would be
most interesting in context of the SI message aggregation
mode. The SI time base on the GMS could be replicated on
all of the hosts and all of the hosis and the GMS could lock
these time bases together. There are known methods to
synchronize time bases on mulliple computer systems. One
such method is called NTP.

Arother extension (o the invention is to define ULP server
processes that perform specific application specific process-
ing on the contents of the messages that are received. A
varicty of diffcrent application specific prc ing

ion network, comprising the steps of:

providing a group messaging server coupled to said
network, said server communicating with said plurality
of host computers using said unicast network and
maintaining a list of message groups, each message
group conlaining at least onc host computer;
sending, by a plurality of host computers belonging to a
first message group, messages Io said server via said
unicast network, said messages containing a payload
portion and a portion for identifying said first message
group;
aggregaling, by said scrver in a time interval determined
m accordance with a predefined criterion, said payload
portions of said messages to cresle an aggregated
payload;
ing an aggrega
payload; and
itting, by said server via said unicast network, said

using said aggregated

25

can be defincd and implemented. A pamcular functien
would be sclecied by attributes provided in the create
implicil group function. These functions could process the
data in the message payloads and replace the data elements
in the payloads with processed results. Scparately, or in

bination with p g the ge payloads, the
processing could slon: cither raw message payload data in
the application specific state storage area or could store
processed results.,

Clearly, the host system need not be p I

aggregated ge 1o a recipient host comp
belonging to said first message group,

2. The method of claim 1 wherein said time interval is a
fixed period of time.

3. The methed of claim 1 wherein said time interval
correspordds 0 a time for said server o receive at least one
message from each host computer belonging to said first
message group.

4. The method of claim 1 further comprising the step of
35 creating, by one of said plurality of host computers, said first

30

but could alsc be dedicated game consoles of telcvision sct
top boxes or any other device with a programmable con-
troller capable of implementing the ULP protocol. The wide
area network used 1o transport the ULP protocol need not be
the Internet or based on IP. Other networks with some means
for wide arca packet or datagram transport are possible
including ATM nctworks or a digital cable television net-
work.

The invention now being fully described, it will be
apparent to one of crdinary skill in the art that any changes
and modifications can be made thereto without departing
from the spirit or scope of the invention as sct forth herein.

Petitioner Riot Games, Inc.

message group by sending a first control message to said
server via said upicast network.

5. The method of claim 4 further comprising the step of
joining, by some of said plurality of host cempuilers, said
first ge group by sending control via said
unicast network 10 said server specifying said first message

40

group.
6. The method of claim 1 wherein said network is Internet
and said server communicates with said plurality of host
45 computers using a session layer protocol.

. x5 e

- Ex. 1005, p. 31

CC-A-B

Petitioner Riot Games, Inc. - Ex. 1005, p. 32

Claim Chart comparing Claims 1-6 of U.S. Patent No.

5,822,523 to the disclosure in Netrek

Prior art cited in this chart;
o Server.5pld.tar.gz (“Server Code”) and BRMH-1.7.tar.gz (“Client Code”) (source code dated no later than August

1994).

¢ The History of Netrek, Andy McFadden (“McFadden”) (January 1, 1994).
Clalmls)ofthe 523 Dlsclosure in Netrek
| A method for ‘Netrek is real trme oraphrcal multrplayer arcade/strategy game played over the Internet Players form
providing group into teams and fight for control of the galaxy, dogfighting and taking planets”
messages to a plurality | McFadden at § 0.2
of host computers
connected over a “In Netrek, every player has a client program that connects to the server.”
unicast wide area McFadden at § 2.1.2
communication
network, comprising the | 33,1 Client/Server
steps of: Recall that Xtrek handled all rendering from the server side. The X10 traffic was sent over TCP sockets

from the server to the player's display.

Smith added network code that separated the game into distinct client and server components. Each player
ran a client program that communicated with the server using a vastly simpler protocol. The client handled
all rendering locally, so the bandwidth requirements were greatly reduced. "

McFadden at § 3.3.1

00001390 updateMessages ()
00001391 {

[...]

00001590 }

Server\ntservisocket.c at lines 1390-590

00000603 updateClient()

Petitioner Riot Games, Inc. - Ex. 1005, p. 33

00000604 {

[...]

00000688 flushSockBuf () ;
00000689 repCount++;
00000690 }

Server\ntservisocket.c at lines 603-90

00001537 sendServerPacket (packet)

00001538 /* Pick a random type for the packet */
00001539 struct player_spacket *packet;

00001540 {

hrmh-1.7\socket.c at lines 1537-1540

00001856 doRead (asock)
00001857 int asock;
00001858 {

00002044 }
Server\ntserv\socket.c at lines 603-90

00000523 struct mesq_cpacket {

00000524 char type; /* CP_MESSAGE */
00000525 char group;

00000526 char indiv;

00000527 char padl;

00000528 char mesq[807;

00000529 };
brmh-1.7\packets.h at lines 523-29

providing a group
messaging server
coupled to said network,
said server
communicating with
said plurality of host

“In Netrek, every player has a client program that connects to the server.”
McFadden at § 2.1.2

"3.3.1 Client/Server
Recall that Xtrek handled all rendering from the server side. The X10 traffic was sent over TCP sockets
from the server to the player's display,

Petitioner Riot Games, Inc. - Ex. 1005, p. 34

computers using said
unicast network and
maintaining a list of
message groups, each
message group
containing at least one
host computer;

Smith added network code that separated the game into distinet client and server components, Each player
ran a client program that communicated with the server using a vastly simpler protocol. The client handled
all rendering locally, so the bandwidth requirements were greatly reduced,

McFadden at § 3.3.1

A\

It then

00000129
00000130
00000131
00000132
00000133
[oo]

00000143
00000144
00000145
00000146
00000147
00000148
00000149
00000150
00000151
00000152
00000153
00000154
00000135
00000156
00000157
00000158

00000159

1. newstartd - This waits around for a connection from a client,

forks and execs a ntserv.”

Server\docs\README at lines 99-100

while (1) {

1f ((port_idx=connectionAttemptDetected (num_progs))<0){
fprintf (stderr, "Whoops. Bye.\n");

exit (0);

if (fd!=-1) write(fd, logname, strlen(logname));
sleep(2);

else 1f (fork() == 0) { /* we are a clone */
time (&curtime);
sprintf (logname, " $-32.32s %s",
peerhostname,

ctime(¢curtime));
if (fd!=-1) write(fd, logname, strlen(logname));

pr=& (prog[port_idx]);
switch (pr->nargs) {
case (: execl (pr->prog,pr->progname, peerhostname, 0);

case 1: execl (pr->prog, pr->progname, pr->arg[0],
peerhostname, 0);

=-1) close(fd);

break;

break;

Petitioner Riot Games, Inc. - Ex. 1005, p. 35

00000160 case 2: execl(pr->prog,pr->progname, pr->arg[0], pr-

>arg[l],

00000161 peerhostname, 0);

00000162 break;

00000163 case 3: execl(pr->prog,pr->progname, pr->arg[0], pr-
>arg[l],

00000164 pr->arq[2], peerhostname, 0);

00000165 break;

00000166 case 4: execl(pr->prog,pr->progname, pr->arqg[0], pr-
»arg (1],

00000167 pr->arq[2], pr->arg[3], peerhostname, 0);
00000168 break;

00000169 default: ;

00000170 }

00000171 fprintf(stderr,"Error in execl! -- %s\n",pr->prog);
00000172 reporterror();

00000173 }

Server\ntserv\newstartd.c at lines 129-173

00000179 int connectionAttemptDetected (num_progs)
00000180 int num_progs;

00000181 {

[...]

00000214 if (bind(sock, &addr, sizeof(addr)) < 0){
[.]

00000237 }

00000238 }

00000239 }

00000240 1if (listen(sock, 1)<0) {

00000241 fprintf(stderr, "Listen failed: "};
00000242 reporterror();

00000243 sock = -1;

00000244 }

00000245 prog[i].sock=sock;

Petitioner Riot Games, Inc. - Ex. 1005, p. 36

00000246 /* close(0); */

00000247 fprintf (stderr,"listening on %d, connection will start
55 \"%$s\" %s %s %5 %s\n",

00000248 prog[i].port, prog[i].prog, prog[i].progname,
00000249 prog[i].arg[0], prog[i].arg[l], prog[i].arg[2],
prog[i].arg[3]);

00000250 fflush (stderr);

00000251 }

00000252}

00000253

00000254 while (1) /* Wait for a connection */

00000289 newsock = accept (sock, &naddr, &len);
00000290 1f ((newsock < 0) && (errno == EINIR))
00000291 goto nointr;

00000292

00000293 if (newsock < 0){

00000294 fprintf(stderr,"accept error!");
00000295 reporterror();

00000296 fprintf(stderr,"No one calling!\n");
00000297 shutdown (sock, 2);

00000298 close(sock);

00000299 prog[i].sock = -1;

00000300 return(-1);

00000301 }else |

00000302 if (newsock != 0) {

00000303 if (dupZ (newsock, 0) == -1) {

00000304 fprintf(stderr, "failed dup2\n");
00000305 reporterror();
00000306 }
00000307 close (newsock) ;
00000308 }
00000309 return(i);
00000310 }
00000311 }
b

Petitioner Riot Games, Inc. - Ex. 1005, p. 37

Server\newstartd\newstartd.c at lines 179-311

00000135 if (callHost) |

00000136 if ('connectToClient (host,xtrekPort)) {
00000137 exit (0);

00000138 }

00000139 }else |

00000140 sock=0; /* Because we were forked by inetd! */
00000141 checkSocket () ;

00000142 initClientData(); /* "normally" called by
connectToClient () */

00000143)

Server\ntservimain.c at lines 135-43

00000442 connectToClient (machine, port)

00000443 char *machine;

00000444 int port;

00000445 {

[..]

00000452 if (sock!=-1) {

00000453 shutdown (sock,2);

00000454 sock= -1;

00000455 }

00000456 ERROR (3, ("Connecting to %s through %d\n", machine, port));
00000457

00000458 if ((ns=socket (AF_INET, SOCK_STREAM, 0)) < 0) {

00000459 ERROR (1, ("I cannot create a socket\n"));
00000460 exit(2);
00000461)

[..]

00000479 if (connect (ns, &addr, sizeof(addr)) < 0) {

00000480 ERROR(3, ("I cannot connect through port %d\n", port));
00000481 close(ns);

00000482 return(0);

Petitioner Riot Games, Inc. - Ex. 1005, p. 38

00000483 }

[.]

00000488 }
Server\ntserv\socket.c af lines 442-88

00001747 flushSockBuf ()
00001748 {

[..]
00001755 1if (gwrite(sock, buf, t) !'=t) {

00001756 perror ("std flush gwrite failed, client marked dead");

00001757 clientDead=1;
00001758 }

(]
00001782 1if (gurite(udpSock, udpbuf, t) != t){

00001783 perror ("UDP flush gwrite failed, client marked dead once

more");

[.]

00001791 }

[..]

00001802 }

Server\ntservisocket.c at lines 1747-802

00002607 gwrite(fd, wouf, size)
00002608 int fd;

00002609 char *wbuf;

00002610 size_t size;

00002611 {

[...]

00002625 while (bytes>() {
00002626 n = write(fd, wbuf, bytes);
00002627 if (count++ > 100) {
00002628 ERROR (1, ("Gwrite hosed: too many writes
(%d) \n", getpid()));

00002629 clientDead = 1;

Petitioner Riot Games, Inc. - Ex. 1005, p. 39

00002630 return (-1);

00002631 }

[...]

00002671 }

00002672 return(orig);
00002673 }

Server\ntserv\socket.c at lines 2607-73

struct mesqg_spacket {
char type; /* SP_MESSAGE */
u_char m_flags;
u_char m_recpt;
u_char m from;
char mesq[MSG_LEN];
b
Server\ntserv\packet.h at lines 184-190

00000471 struct memory {

00000472 struct player players[MAXPLAYER];
00000473 struct torp torps [MAXPLAYER * MAXTORP];
00000474 struct plasmatorp plasmatorps[MAXPLAYER * MAXPLASMA];
00000475 struct status status[l];

00000476 struct planet planets[MAXPLANETS];
00000477 struct phaser phasers[MAXPLAYER];
00000478 struct metl nctl[1];

00000479 struct message messages [MAXMESSAGE];
00000480 struct team teams [MAKTEAM + 1];
00000481 struct ship shipvals[NUM_TYPES];
00000482 };

Server\ntserv\struct.h at lines 471-82

00000208 struct player {

[oo]
00000218 int p_x;

Petitioner Riot Games, Inc. - Ex. 1005, p. 40

00000219 int oy;
[..]
00000226 short p_team; /* Team I'm on */

[on]
00000260 #ifdef FULL_HOSTNAMES

00000261 char p_full_hostname[32]; /* full hostname 4/13/92 TC */

00000262 #endif
00000263 #ifdef PING

00000264 int p_avrt; /* average round trip time */
00000265 int p_stdv; /* standard deviation in round
trip time */

00000266 int p_pkls_c_s; /* packet loss (client to
server) */

00000267 int p_pkls_s_c; /* packet loss (server to
client) */

00000268 #endif

00000269 #ifdef DS

00000270 int p_timerdelay; /* updates per second */
00000271 pid_t p_process; /* process id number */
00000272 #endif

[...]

00000284 };

Server\ntserv\struct.h at lines 208-84

00000120 /* These are the teams */

[.]

00000132 #define ALLTEAM (FED|ROM|KLI|ORI)

00000133 #define MAXTEAM (ORI) /* was ALLTEAM (overkill?)
6/22/92 TMC */

00000134 #define NUMIEAM 4

Server\ntserv\defs.h at lines 120134

00001125 updateTorps()
00001126 {

10

Petitioner Riot Games, Inc. - Ex. 1005, p. 41

[...]

00001132 for (i=0, torp=torps, tpi=clientTorpsInfo, tp=clientTorps;
00001133 1<MAXPLAYER*MAXTORP;

00001134 itt, torptt, tpitt, tptt) |

[...]

00001142 sendClientPacket (tpi);

[o]

00001151 sendClientPacket (tp);
[o]

00001191 }

00001192 }

Server\ntservisocket.c at lines 1125-92

00001194 updatePlasmas()

00001195 {

[...]

00001201 for (1=0, torp=plasmatorps, tpi=clientPlasmasinfo,
tp=clientPlasmas;

00001202 1<MAXPLAYER*MAXPLASMA;

00001203 itt, torptt, tpitt, tptt) |

[...]

00001211 sendClientPacket (tpi);
[o]

00001219 sendClientPacket (tp);
[...]

00001254 }

00001255 }

Server\ntservisocket.c at lines 1194-253

00001257 updatePhasers ()

00001258 {

[...]

00001264 for (i=0, ph=clientPhasers, phase=phasers, pl=players;
00001265 i<MAXPLAYER; i++, pht+, phasett, pl+t) |

11

Petitioner Riot Games, Inc. - Ex. 1005, p. 42

[...]
00001274
[oo]
00001290
[...]
00001293
00001294 }

Server\ntserv\socket.c at lines 1257-94

00001390 updateMessages ()

00001391 {
[...]
00001563
00001564
00001565
00001566

& MALL))
00001567
00001568

& MTEAM)) {
00001569
00001570
00001571
[...]
00001584
[oo]
00001586
(o]
00001590 }

Server\ntserv\socket.c at lines 1390-590

00000191

[...]
00000222

sendClientPacket (ph);
sendClientPacket (ph);

}

if (cur->m_from==DO0SHMSG) msg.m_from=255; /* god */
if ((cur->m_from < 0) [[(cur->m_from > MAXPLAYER))
sendClientPacket ((CVOID) &msg);

else if (cur->m_flags & MALL && !(ignored[cur->m_from]

sendClientPacket ((CVOID) &msg);
else if (cur->m_flags & MIEAM && ! (ignored[cur->m_from]

sendClientPacket ((CVOID) &msg);
J
else if (cur->m_flags & MINDIV) {

sendClientPacket ((CVOID) &msg);

me = gplayers(pno];

updateSelf(); /* so he gets info on who he is */

12

Petitioner Riot Games, Inc. - Ex. 1005, p. 43

00000223 updateShips();

00000224 updatePlanets();

00000225 flushSockBuf () ;

00000226

00000227 /* Get login name */

00000228

00000229 if ((pwent = getpwuid(getuid())) !'= NULL)
00000230 STRNCPY (login, pwent->pw_name, NAME_LEN);
00000231 else

00000232 STRNCPY (login, "Bozo", NAME_LEN);

00000233 login [NAME_LEN - 1] = "\0'";

[...]

00000238 me->p_team=ALLTEAV;

[...]

00000273 me->p_full_hostname[sizeof (me->p_full hostname) - 1] =
"0

[...]

00000296 /* give the player the motd and find out which team he wants
*/

00000297 if (me->p_status !'= PALIVE) |

00000298 me->p_x= -100000;

00000299 me->p_y= -100000;

00000300 updateSelf();

00000301 updateShips();

00000302 teamPick= -1;

00000303 flushSockBuf (};

00000304 getEntry(&team, &s_type);

00000305 repCount=0; /* Make sure he gets an update
immediately */

00000306 }

[...]

00000325 enter (team, 0, pno, s_type);
Server\ntserv\main.c at lines 183-323

13

Petitioner Riot Games, Inc. - Ex. 1005, p. 44

00000034 enter(tno, disp, pno, S_type)

00000035 int tno;

00000036 int disp; /* not used, so I used it 7/27/91 TC */
00000037 int pno;

00000038 int s_type;

00000039 {

[...]

00000056 STRNCPY (me->p_name, pseudo, NAME_LEN);

00000057 me->p_name [NAME_LEN - 1] = "\0';

00000058 getship(myship, s_type);

00000059

00000060 /* Alert client about new ship stats */

[...]

00000085 if ((s_type != STARBASE) && (s_type != ATT) && plkills>(0)
{
00000086 me->p_ship.s_plasmacost = -1;

00000087 }

00000088 me->p_updates = (;

00000089 me->p_flags = PFSHIELD;

00000090 if (s_type==STARBASE) me->p_flags |= PFDOCKOK;

00000091 me->p_dir = 0;

00000092 me->p_desdir = (;

00000093 me->p_speed = (;

00000094 me->p_desspeed = (;

00000095 me->p_subspeed = 0;

00000096 if ((tno == 4) || (tno ==5)) { /* change 5/10/91 TC new
case, indep */

00000097 me->p_team = 0;

00000098 placeIndependent (); /* place away from others 1/23/92 TC */
00000099 }

00000100 else {

00000101 me->p_team = (1 << tno);

00000102 for (;;) {

00000103 startplanet=tno*10 + random() % 10;

14

Petitioner Riot Games, Inc. - Ex. 1005, p. 45

00000104 if (startplanets[startplanet]) break;

00000105 }

[...]

00000132 /* if ('keeppeace) me->p_hostile = (FED|ROM|KLI|ORI);*/
00000133 if ('keeppeace) auto_peace();

00000134 me->p_hostile &= ~me->p_team;

00000135

00000136 /* join message stuff */

00000137

00000138 sprintf (me->p_mapchars, "$c%c", teamlet [me->p_team],

shipnos[me->p_nol);

00000139 if (lastteam != tno || lastrank != mystats->st_rank) {
00000140

[...]

00000187 #ifndef FULLHOSTNAMES

00000188 pmessage2(0, MALL | MJOIN, addrbuf, me->p_no,

00000189 "$.16s (%2.2s) promoted to %s (%.16s6%.16s)",
00000190 me->p_name,

00000191 me->p_mapchars,

00000192 ranks [me->p_stats.st_rank].name,

00000193 me->p_login,

00000194 me->p_monitor);

00000195 #else
00000196 pmessage2 (0, MALL | MJOIN, addrbuf, me->p_no,

00000197 "$.16s (%2.2s) promoted to %s (%.16s@%.32s)",
00000198 me->p_nane,

00000199 me->p_mapchars,

00000200 ranks[me->p_stats.st_rank].name,
00000201 me->p_login,

00000202 me->p_full_hostname);

00000203 #endif

00000204 }

[oo]
00000232 }

15

Petitioner Riot Games, Inc. - Ex. 1005, p. 46

Server\ntserv\enter.c at lines 30-232

sending, by a plurality
of host computers
belonging to a first
message group,
messages to said server
via said unicast
network, said messages
containing a payload
portion and a portion for
identifying said first
message group;

00001537 sendServerPacket (packet)

00001538
00001539
00001540
[...]

00001554
00001555
00001556
00001557
00001558
00001359
00001560

COMM_VERIFY)

00001561 goto send_udp;

00001562 }

00001563 /*

00001564 * business as usual (or player has turned off UDP
transmission)

00001565 */

00001566 if (gwrite(sock, (char *) packet, size) '= size) {
00001567 printf("gurite failed. Server must be dead\n");
00001568 serverDead = 1;

00001569 }

[...]

00001610 if (gwrite(udpSock, packet, size) != size) {

[...]

00001623 }

[...]

00001628 if (qurite(sock, (char *) packet, size) != size) {
00001629 printf("qurite failed. Server must be dead\n");
00001630 serverDead = 1;

00001631 }

/* Pick a random type for the packet */
struct player_spacket *packet;

if (commMode == COMM_UDP) {
/* for now, just sent everything via TCP */
}
if (commMode == COMM_TCP || 'udpClientSend) {
/* special case for verify packet */
if (packet->type == CP_UDP_REQ) {
if (((struct udp_req cpacket *) packet)->request ==

16

Petitioner Riot Games, Inc. - Ex. 1005, p. 47

[..]

00001633 }

00001634 }

brmh-1.7\socket.c at lines 1537-634

00000026 struct player *me = NULL;
brmh-1,\data.c at line 26

00000134 struct player {

[0]
00000144 int D %

00000145 int O_V;
[...]
00000152 short p_teanm; /* Team I'm on */

[o00]
00000192 };
brmh-1,7\struct.h at lines 134-92

00000523 struct mesg_cpacket {

00000524 char type; /* CP_MESSAGE */
00000525 char group;

00000526 char indiv;

00000527 char padl;

00000528 char mesg[80];

00000529 };
brmh-1.7\packets.h at lines 523-29

00000222 #define sendTorpReq(dir) sendShortPacket (CP_TORP, dir)
brmh-1.M\defs.h at line 222

00000293 struct torp_cpacket {

00000294 char type; /* CP_TORP */
00000295 unsigned char dir; /* direction to fire torp */
00000296 char padl;

17

Petitioner Riot Games, Inc. - Ex. 1005, p. 48

00000297 char

00000298 };

hrmh-1.T\packets.h at lines 293-99

0000121 struct packet_handler handlers[] = {

[...]

(o]

0000194 $ifdef FEATURE_PACKETS
0000195 {sizeof (struct feature_cpacket), handleFeature },
0000196 fendif

0000197 };

Server\ntserv\socket.c at lines 121-97

00001967 /* Check to see if the handler is there and the request

is legal.
00001968
worry about
00001969
00001970

00001971 packetsReceived[*bufptr]++;
00001972 #ifdef PING

00001973
00001974
00001975 #endif

00001976 if (handlers[*bufptr].handler != NULL) {
if (((FD_ISSET(*bufptr, &inputMask)) &&

00001977
00001978

00001979 #ifdef SB_TRANSWARP

00001980
00001981 #endif
00001982
00001983
00001984

0000128 { sizeof (struct torp_cpacket), handleTorpReq },

* The code is a little ugly, but it isn't too bad to

padz;

if (asock == udpSock)
packets_received ++;

(me==NULL || !(me->p_flags & (PFWAR|PFREFITTING

| PFTWARP

Nl
*pbufptr==CP_RESETSTATS || *bufptr==CP_UPDATES ||
*pufptr==CP_OPTIONS || *bufptr==CP_RESERVED ||

18

Petitioner Riot Games, Inc. - Ex. 1005, p. 49

00001985 #ifdef PING /* ping response always valid */

00001986 *hufptr==CP_PING_RESPONSE ||

00001987 #endif

00001988 #ifdef RSA /* NEW -- fix ghostbust problem
%/

00001989 *bufptr== CP_RSA_KEY ||

00001990 fendif

00001991 #ifdef FEATURE PACKETS

00001992 tpufptr == CP_FEATURE ||
00001993 #endif

00001994 #ifdef MESSAGES ALL TIME /* off for the moment */

00001995 *oufptr == CP_MESSAGE ||
00001996 #ifdef SHORT PACKETS
00001997 *oufptr == CP_S MESSAGE ||

00001998 #endif
00001999 #endif

00002000

00002001 *bufptr==CP_SOCKET || *bufptr==CP_BYE} {
00002002 if (me && me->p_flags & PFSELFDEST

00002003 #ifdef PING /* don't let it undo self destruct */
00002004 && *bufptr !'= CP_PING_RESPONSE
00002005 #endif

00002006)

00002007 me->p_flags &= ~PFSELFDEST;

00002008 new_warning (85, "Self Destruct has been
canceled");

00002009 }

00002010 (* (handlers[*bufptr].handler)) (bufptr);
00002011 }

Server\ntservisocket.c at lines 1976-2011

00002046 handleTorpReq(packet)
00002047 struct torp_cpacket *packet;

19

Petitioner Riot Games, Inc. - Ex. 1005, p. 50

00002048 {

00002049 ntorp (packet->dir, TMOVE);
00002050

00002051

00002052 }

Server\ntserv\socket.c at lines 2046-50

00000041 ntorp(course, type)

00000042 u_char course;

[...]

00000048 if (me->p_flags & PFWEP) {

00000049 new_warning (25, "Torpedo launch tubes have exceeded
maximum safe temperature!");

00000050 return;

00000051 }

[...]

00000073 if (me->p_ntorp == MAXTORP) {

00000074 new_warning (26, "Our computers limit us to having 8

live torpedos at a time captain!");

00000075 return;

00000076 }

00000077 if (me->p_fuel < myship->s_torpcost) {

00000078 new_warning (27, "ie don't have enough fuel to fire

photon torpedos!");

00000079 return;

00000080 }

00000081 if (me->p_flags & PFREPAIR) {

00000082 new_warning (28, "We cannot fire while our vessel is in

repair mode.");

00000083 return;

00000084 }

00000085 if ((me->p_cloakphase} && (me->p_ship.s_type !'= ATT)) |{

00000086 new_warning (29, "We are unable to fire while in cloak,
20

Petitioner Riot Games, Inc. - Ex. 1005, p. 51

captain!");
00000087
00000088
00000089

return;

}

00000090 /* change TC 12/9/90 -- my attempt at torp angle stuff */

00000091
00000092
00000093

00000094
00000095

00000096
00000097

00000098
00000099
cannons.");
00000100
00000101
00000102
[o00]
00000112
00000113
00000114
00000115
00000116
00000117
00000118
00000119
00000120
00000121
00000122

if (topgun && ((me->p_ship).s_type != STARBASE)) {

int delta;
if ((delta = ((int) me->p_dir - (int) course)) < 0)

delta = -delta;
if ((delta > topgun) && (delta < (256 - topgun))) {

/* note: 128 = 180 degrees left/right */
new_warning (30, "We only have forward mounted

return;

}
} /* end if topgun */

/* Setup data in new torp */

if (type>TSTRAIGHT || type<TFREE) type=TMOVE;
k->t_no = i;

k->t_status = type;

k->t_owner = me->p_no;

k->t_team = me->p_team;

k->t_x = me->p_x;

k->t_y = me->p_y;

k->t_dir = course;

k->t_damage = myship->s_torpdamage;

2l

Petitioner Riot Games, Inc. - Ex. 1005, p. 52

00000123
00000124
course,

00000125
00000126
00000127
00000128
00000129

00000130
00000131
00000132

Server\ntserv\torp.c at lines 41-132

00001161 udtorps ()

00001162
00001163
00001164
00001165
00001166
jtt) |
00001167
00001168
00001169
00001170
00001171
00001172
[...]
00001183
[o]
00001245

Server\ntserv\daemonlLc at lines 1161-1246

00001125 updateTorps ()

}

{

if (vectortorps)
k->t_speed = vector_torp_speed (me->p_dir, me->p_speed,

myship->s_torpspeed);
else
k->t_speed = myship->s_torpspeed;
k->t_war = me->p_hostile | me->p_swar;
k->t_fuse = myship->s_torpfuse + (random() % 20);

k->t_turns = myship->s_torpturns;
k->t_whodet = NODET;

register int i, turn=0, heading=0;
register struct torp *j;

for (1 =0, j = &torps[i]; i < MAXPLAYER * MAXTORP; i+4,

switch (j->t_status) {
case TFREE:
continue;
case TMOVE:
case TSTRAIGHT:
if (3->t_turns > 0) {

}

}

2

Petitioner Riot Games, Inc. - Ex. 1005, p. 53

00001126 {

[...]

00001132 for (i=0, torp=torps, tpi=clientTorpsInfo, tp=clientTorps;
00001133 1<MAXPLAYER*MAXTORP;

00001134 itt, torptt, tpitt, tp+t) {

[...]

00001142 sendClientPacket (tpi);

[v..]

00001151 sendClientPacket (tp);
[vo0]

00001191 }

00001192 }

Server\ntserv\socket.c at lines 1125-92

00001125 updateTorps()

00001126 {

[...]

00001132 for (i=0, torp=torps, tpi=clientTorpsInfo, tp=clientTorps;
00001133 1<MAXPLAYER*MAXTORP;

00001134 itt, torptt, tpitt, tpt+t) {

[v0]

00001142 sendClientPacket (tpi);

[...]

00001151 sendClientPacket (tp);
[...]

00001191 }

00001192 }

Server\ntserv\socket.c af lines 1125-92

aggregating, by said
server in a time interval
determined in
accordance with a

00000076 int timerDelay=200000; /* delay between sending stuff to
client */
Server\ntserv\data.c at line 76

IR

Petitioner Riot Games, Inc. - Ex. 1005, p. 54

predefined criterion,
said payload portions of
said messages to create
an aggregated payload;

00000195 readfFromClient ();
Server\ntserv\input.c at line 195

00000152 input ()

00000153 {

00000154 struct itimerval udt;

00000155 fd_set readfds;

00000156 static struct timeval poll = {2, 0};
00000157

00000158 #ifdef DS

00000159 if (!me->p_process)

00000160 #endif

00000161 {

00000162 udt.it_interval.tv_sec = 0;

00000163 udt.it_interval.tv_usec = timerDelay;
00000164 udt.it_value.tv_sec = 0;

00000165 udt.it_value.tv_usec = timerDelay;
00000166 setitimer (ITIMER_REAL, &udt, 0);
00000167 }

00000168 SIGNAL (SIGALRM, setflag);

00000169

00000170 /* Idea: read from client often, send to client
not so often */

00000171 while (1) {

(]

00000195 readFromClient ();

[.]

00000203 }

00000204 }

Server\ntserv\input.c at lines 152-203

00000076 int timerDelay=200000; /* delay between sending stuff to
client */
Server\ntserv\data.c at line 76

P2}

Petitioner Riot Games, Inc. - Ex. 1005, p. 55

00000603 updateClient ()
00000604 {

[..]
00000608

*/

00000609 /* This can halve your updates */

00000610
00000611
00000612
{
00000613
him */
00000614
00000615
00000616
00000617
00000618
00000619
00000620
00000621
00000622
[..]
00000630
00000631
00000632
00000633
00000634
00000635
00000636
00000637
00000638
00000639
[..]

static int skip = 0; /* If skip is set we skip next update

if (send_short && skip) |
skip = 0; /* back to default */
if (bufptr==buf && (commMode!=COMM UDP || udpbufptr==buf))

/* We sent nothing! We better send something to wake

if (me->p_fuel < 61000)

sendClientPacket ((CVOID) &clientSelfShort);
else

sendClientPacket ((CVOID) &clientSelf);

flushSockBuf ();
repCount++;
return;

if (send_short) {

updatePlasmas();
updateStatus();
updateSelf();
updatePhasers();
updateShips () ;
updateTorps();
updatePlanets();
updateMessages () ;

]
)

Petitioner Riot Games, Inc. - Ex. 1005, p. 56

00000657 if (send_short && (me->p_fuel < 61000))

00000658 sendClientPacket ((CVOID) &clientSelfShort);
00000659 else

00000660 #endif

00000661 sendClientPacket ((CVOID) &clientSelf);

00000662 }

[.]

00000685 sendClientPing(); /* ping.c */
00000686 #endif

00000687

00000688 flushSockBuf ();
00000689 repCount++;
00000690 }

Server\ntservisocket.c at lines 603-90

00000052 intrupt();
Server\ntserv\input.c at lines 52

00000197 intrupt ();
Server\ntserv\input.c at lines 197

00001390 updateMessages ()
00001391 {

[...]

00001590 }

Server\ntservisocket.c at lines 1390-590

00001825 readFromClient ()

00001826 {

[...]

00001838 if (select (32, &readfds, 0,0, &timeout) !'= 0) {
00001839 /* Read info from the xtrek client */

00001840 1if (FD_ISSET(sock, &readfds)) f{

00001841 retval += doRead(sock);

Petitioner Riot Games, Inc. - Ex. 1005, p. 57

00001842 }

00001843 1if (udpSock >= 0 && FD_ISSET (udpSock, &readfds)) {
00001844 V_UDPDIAG(("Activity on UDP socket\n"));
00001845 retval += doRead(udpSock);

00001846 }

00001847 }

00001848 return (retval != 0); /* convert to 1/0 */
00001849 }

00001850

[vo0]

00001855 /* ripped out of above routine */
00001856 doRead (asock)

00001857 int asock;

00001858 {

00001859 struct timeval timeout;

[.00]

00001877 /* Read info from the xtrek server */
00001878 count=read (asock, buf,BUFSIZ*2);

[...]

00001916 bufptr=buf;

00001917 while (bufptr < buf+count) {

[...]
00001939 while (size>countt(buf-bufptr)) {

00001940 /* We wait for up to twenty seconds for rest of packet.

00001941 * If we don't get it, we assume the client

died.

00001942 x[

00001943 timeout.tv_sec=20;

00001944 timeout.tv_usec=0;

00001945 /*readfds=1<<asock; */

00001946 FD_ZERO (&readfds);

00001947 FD_SET (asock, &readfds);

[...]

00001956 temp=read (asock, buf+count, size- (count+ (buf-bufptr)));
n

Petitioner Riot Games, Inc. - Ex. 1005, p. 58

[...]
00001966
[...]
00002010
00002011
00002012
00002013
00002014
*bufptr));
00002015
00002016
00002017
00002018
00002019
00002020
00002021
00002022
00002023
00002024
00002025
[...]
00002034
00002035
00002036
00002037
00002038
00002039
00002040
00002041
00002042
00002043
00002044 }

Server\ntservisocket.c at lines 1825-2044

(* (handlers[*bufptr].handler)) (bufptr);

/* Otherwise we ignore the request */

ERROR (1, ("Handler for packet %d not installed...\n",

bufptrt=size;
if (bufptr>buf+BUFSIZ) |

/*readfds = 1<<asock;*/

FD_7ERO(&readfds);

FD_SET (asock, &readfds);

if (select (32, &readfds, 0,0, &timeout)) {
temp=read (asock, buf+BUFSIZ, BUFSIZ);
count=BUFSIZ+temp;

b else {

count=BUFSIZ;

count -=BUFSIZ;

return(l);

bcopy (buf+BUFSIZ, buf, BUFSIZ);
if (count==BUFSIZ*2) {

} else {

bufptr-=BUFSIZ;

Petitioner Riot Games, Inc. - Ex. 1005, p. 59

00001825 readFromClient ()

00001826 {

[...]

00001838 if (select (32, 6&readfds, 0,0, &timeout) != 0) {
00001839 /* Read info from the xtrek client */

00001840 if (FD_ISSET(sock, &readfds)) {

00001841 retval += doRead(sock);

00001842 }

00001843 if (udpSock >= 0 && FD_ISSET (udpSock, &readfds)) {
00001844 V_UDPDIAG(("Activity on UDP socket\n"));
00001845 retval += doRead(udpSock);

00001846 }

00001847 }

00001848 return (retval != 0); /* convert to 1/0 */
00001849 }

00001850

[o]

00001855 /* ripped out of above routine */
00001856 doRead (asock)

00001857 int asock;

00001858 {

00001859 struct timeval timeout;

[..]

00001877 /* Read info from the xtrek server */
00001878 count=read (asock, buf, BUFSIZ*2};

[...]

00001916 bufptr=buf;

00001917 while (bufptr < buf+count) {

[...]
00001939 while (size>count+(buf-bufptr)) f{

00001940 /* We wait for up to twenty seconds for rest of packet.
00001941 * If we don't get it, we assume the client
died.
00001942 x/

2

Petitioner Riot Games, Inc. - Ex. 1005, p. 60

00001943
00001944
00001945
00001946
00001947
[...]
00001956
[...]
00001966
[...]
00002010
00002011
00002012
00002013
00002014
*bufptr));
00002015
00002016
00002017
00002018
00002019
00002020
00002021
00002022
00002023
00002024
00002025
[...]
00002034
00002035
00002036
00002037
00002038
00002039

timeout.tv_sec=20;
timeout.tv_usec=0;
/*readfds=1<<asock;*/

FD_ZERO (&readfds);

FD_SET (asock, &readfds);

temp=read (asock, buf+count, size- (count+ (buf-bufptr)));

(* (handlers[*bufptr].handler)) (bufptr);
}
/* Otherwise we ignore the request */
}else {
ERROR (1, ("Handler for packet %d not installed...\n",

bufptrt=size;
if (bufptr>buf+BUFSIZ)

bcopy (buf+BUFSIZ, buf, BUFSIZ);
if (count==BUFSIZ*2) {

/*readfds = 1<<asock;*/

FD_ZERO (&readfds);

FD_SET (asock, &readfds);

if (select (32, &readfds, 0,0, &timeout)) {

temp=read (asock, buf+BUFSIZ, BUFSIZ);

count=BUFSIZ+temp;

} else {
count=BUFSIZ;
}

belse {
count -=BUFSIZ;

30

Petitioner Riot Games, Inc. - Ex. 1005, p. 61

00002040 bufptr-=BUFSIZ;

00002041 }

00002042 }

00002043 return(l);
2044

Server\ntservisocket.c at lines 1825-2044

00001390 updateMessages ()
00001391 {

[o]

00001590 }

Server\ntservisocket.c at lines 1390-590

00001603 sendClientPacket (packet)

00001604 /* Pick a random type for the packet */

00001605 struct player_spacket *packet;

00001606 {

[...]

00001618 /*

00001619 * 1f we're dead, dying, or just born, we definitely want
the transmission

00001620 * to get through (otherwise we can get stuck). I don't
think this will

00001621 * be a problem for anybody, though it might hang for a
bit if the TCP

00001622 * connection is bad.

00001623 */

00001624 /* Okay, now I'm not so sure. Whatever, */

00001625 if (oldstatus != PALIVE || (me != NULL && me->p_status !'=
PALIVE))

00001626 orig_type = packet->type | 0x80; /* pretend it's critical
*/

00001627 #endif

00001628 if (packet->type<l || packet->type>NUM SIZES |

3

Petitioner Riot Games, Inc. - Ex. 1005, p. 62

00001629
00001630

sizes[(int)packet->type]==0) {

ERROR (1, ("Attempt to send strange packet %d %d\n", packet-

>type, NUM_SIZES));

00001631
00001632
00001633
00001634

udpMode =

00001635
00001636
00001637
[..]

00001647
00001648
00001649
00001650
00001651
00001652
00001653
(FIX)

00001654
[...]

00001728
00001729
00001730
00001731
00001732
00001733
00001734
00001735
00001736
00001737
00001738
00001739

return;

}
packetsSent [(int)packet->type]++;

if (commMode == COMM_TCP || (commMode == COMM UDP &&
= MODE_TCP)) {

/*
* husiness as usual

*/

bcopy (packet, bufptr, size);
bufptri=size;

| else {
/*

* do UDP stuff unless it's a "critical" packet

* (note that both kinds get a sequence number appended)

*/

default:

/* these are critical packets; send them via TCP */

size=sizes[packet->typel;

1f (bufptr-buf+size >= BUFSIZE) {
t=bufptr-buf;

if (qurite(sock, buf, t) !=t) {

perror ("ICP gwrite failed, client marked dead");

clientDead=1;
}
bufptr=buf /*+ addSequence (buf)*/;

}
bcopy (packet, bufptr, size);

3

Petitioner Riot Games, Inc. - Ex. 1005, p. 63

00001740 bufptr=size;
00001741 break;
00001742 '}

00001743 }

00001744 }

Server\ntservisocket.c at lines 1603-744

00001125 updateTorps ()

00001126 {

[..]

00001132 for (i=0, torp=torps, tpi=clientTorpsInfo, tp=clientTorps;
00001133 1<MAXPLAYER*MAXTORP;

00001134 it+, torptt, tpitt, tptt) |

[...]

00001142 sendClientPacket (tpi);

[..]

00001151 sendClientPacket (tp);
[.]

00001191 }

00001192 }

Server\ntservisocket.c at lines 1125-92

forming an aggregated
message using said
aggregated payload; and

00001747 flushSockBuf ()

00001748 {

[.]

00001755 if (gurite(sock, buf, t) !=t) {

00001756 perror ("std flush gwrite failed, client marked dead");
00001757 clientDead=1;

00001758 }

[.]

00001782 if (gwrite(udpSock, udpbuf, t) !'= t}{

00001783 perror ("UDP flush gwrite failed, client marked dead once
more");

00001784 #ifdef EXTRA GB

33

Petitioner Riot Games, Inc. - Ex. 1005, p. 64

00001785 clientDead=1;

00001786 #endif

00001787 UDPDIAG(("+** UDP disconnected for %s\n", me->p_name));
00001788 printUdpInfo();

00001789 closeUdpConn () ;

00001790 commMode = COMM_TCP;

00001791 }

[..]

00001802 }

Server\ntserv.c at lines 1747-802

00002607 gwrite(fd, wbuf, size)
00002608 int fd;

00002609 char *wbuf;

00002610 size_t size;

00002611 {

00002625 while (bytes>0) {
00002626 n = write(fd, whuf, bytes);

[..]
00002671 }

00002672 return(orig);
00002673 }

Server\ntserv.c at lines 2607-73

00000603 updateClient ()

00000604 {

[.]

00000608 static int skip = 0; /* If skip is set we skip next update
*/

00000609 /* This can halve your updates */

00000610 if (send_short && skip) {

00000611 skip = 0; /* back to default */

00000612 if (bufptr==buf && (commMode'!=COMM _UDP || udpbufptr==buf))
{

M

Petitioner Riot Games, Inc. - Ex. 1005, p. 65

00000613

him */
00000614
00000615
00000616
00000617
00000618 }
00000619
00000620
00000621
00000622 }

[..]
00000630

00000631 updatePlasmas();
00000632 updateStatus();
00000633 updateSelf();
00000634 updatePhasers();
00000635 updateShips();
00000636 updateTorps();
00000637 updatePlanets();
00000638 updateMessages () ;

00000639

[..]

00000657
00000658
00000659
00000660 #endif

00000661 sendClientPacket ((CVOID) &clientSelf);

00000662 }
[..]

00000685
00000686 #endif
00000687

00000688 flushSockBuf () ;

/* TWe sent nothing! e better send something to wake

if (me->p_fuel < 61000)

sendClientPacket ((CVOID) &clientSelfShort);
else

sendClientPacket ((CVOID) &clientSelf);

flushSockBuf(};

repCount++;
return;

1f (send_short) {

}

if (send_short && (me->p_fuel < 61000))
sendClientPacket ((CVOID) &clientSelfShort);
else

sendClientPing(); /* ping.c */

35

Petitioner Riot Games, Inc. - Ex. 1005, p. 66

00000689 repCount+t;
00000690 }
Server\ntservisocket.c at lines 603-90

00001603 sendClientPacket (packet)

00001604 /* Pick a random type for the packet */

00001605 struct player_spacket *packet;

00001606 {

[...]

00001618 /*

00001619 ¥ 1f we're dead, dying, or just born, we definitely want
the transmission

00001620 * to get through (otherwise we can get stuck). I don't
think this will

00001621 * be a problem for anybody, though it might hang for a
bit if the TCP

00001622 * connection is bad.

00001623 */

00001624 /* Okay, now I'm not so sure, Whatever, */

00001625 if (oldstatus != PALIVE || (me '= NULL && me->p_status !'=
PALIVE))

00001626 orig_type = packet->type | 0x80; /* pretend it's critical
%/

00001627 #endif

00001628 if (packet->type<l || packet->type>NUM SIZES |

00001629 sizes[(int)packet->type]==0) {

00001630 ERROR(L, ("Attempt to send strange packet %d %d\n", packet-
>type, NUM_SIZES));

00001631 return;

00001632 }

00001633 packetsSent [(int)packet->type]+t;

00001634 if (commMode == COMM_TCP || (commMode == COMM UDP &&
udpMode == MODE_TCP)) {

00001635 /*

36

Petitioner Riot Games, Inc. - Ex. 1005, p. 67

00001636 * business as usual

00001637 */

[...]

00001647 Dbcopy (packet, bufptr, size);

00001648 bufptrt=size;

00001649

00001650 b else {

00001651 /*

00001652 * do UDP stuff unless it's a "critical" packet
00001653 * (note that both kinds get a sequence number appended)
(FIX)

00001654 */

[...]

00001728 default:

00001729 /* these are critical packets; send them via TCP */
00001730 size=sizes[packet->type];

00001731 if (bufptr-buf+size »= BUFSIZE) {

00001732 t=bufptr-buf;

00001733 if (gwrite(sock, buf, t) !=t) {

00001734 perror ("ICP gwrite failed, client marked dead");
00001735 clientDead=1;

00001736 }

00001737 bufptr=buf /*+ addSequence (buf)*/;

00001738 }

00001739 beopy (packet, bufptr, size);
00001740 bufptri=size;

00001741 break;

00001742 '}

00001743 }

00001744 }

Server\ntserv\socket.c at lines 1603-744

transmitting, by said | 00001603 sendClientPacket (packet)
server via said unicast | 00001604 /* Pick a random type for the packet */

37

Petitioner Riot Games, Inc. - Ex. 1005, p. 68

network, said 00001605 struct player_spacket *packet;
aggregated message toa | 00001606 {

recipient host computer | [...]
belonging to said first [00001639 if (bufptr-buf+size >= BUFSIZE) {

message group. 00001640 t=bufptr-buf;
00001641 if (gwrite(sock, buf, t) !=t) {
00001642 perror ("std gurite failed, client marked dead ");
00001643 clientDead=1;
00001644 }
00001645 bufptr=buf;
00001646 }

00001647 bcopy (packet, bufptr, size);

00001648 bufptrt=size;

00001649

00001650 }else |

[..]

00001731 if (bufptr-buf+size >= BUFSIZE) {
00001732 t=bufptr-buf;

00001733 if (gurite(sock, buf, t) !'=t) {

00001734 perror ("ICP gurite failed, client marked dead");
00001735 clientDead=1;

00001736 }

00001737 bufptr=buf /*+ addSequence (buf)*/;

00001738 }

00001739 beopy (packet, bufptr, size);
00001740 bufptr+=size;

00001741 break;

00001742 }

00001743 }

00001744 }

Server\ntserv\socket.c at lines 1603-744

00000603 updateClient ()
00000604 {

3

Petitioner Riot Games, Inc. - Ex. 1005, p. 69

[...]

00000688 flushSockBuf () ;
00000689 repCount++;
00000690 }

Server\ntservisocket.c at lines 603-90

00001747 flushSockBuf ()

00001748 {

[.]

00001755 1f (gwrite(sock, buf, t) !=t) {

00001756 perror ("std flush gwrite failed, client marked dead");
00001757 clientDead=1;

00001758 }

[.]

00001782 1if (gwrite(udpSock, udpbuf, t) != t){

00001783 perror ("UDP flush gwrite failed, client marked dead once
more");

[.]

00001791)

[.]

00001802 }

Server\ntserv\socket.c at lines 1747-802

00002607 gwrite(fd, wbuf, size)
00002608 int fd;

00002609 char *wbuf;

00002610 size t size;

00002611 {

[...]

00002625 while (bytes>0) {
00002626 n = write(fd, wbuf, bytes);
00002627 if (count++ > 100) {
00002628 FRROR (1, ("Gwrite hosed: too many writes
(5d)\n", getpid(}));

3

Petitioner Riot Games, Inc. - Ex. 1005, p. 70

00002629
00002630
00002631
[...]
00002671
00002672
00002673 }

Server\ntservisocket.c at lines 2607-73

00001125 updateTorps()

00001126 {
[oo]
00001132
00001133
00001134
[oo]
00001142
[oo]
00001151
[...]
00001191
00001192 }

Server\ntserv\socket.c at lines 1125-92

clientDead = 1;
return (-1);

}

return (orig);

for (i=0, torp=torps, tpi=clientTorpsInfo, tp=clientTorps;
1<MAXPLAYER*MAXTORP;

1++, torptt, tpits, tpt+t) {

sendClientPacket (tpi);

sendClientPacket (tp);

}

2. The method of claim
1 wherein said time
interval is a fixed period
of time,

00000152
00000153
00000154
00000135
00000156
00000157

00000158 #ifdef DS

00000159

00000160 #endif

00000161

input ()
{

struct itimerval udt;
fd set readfds;
static struct timeval poll = {2, 0};

if (!me->p_process)

{
s

40

Petitioner Riot Games, Inc. - Ex. 1005, p. 71

00000162
00000163
00000164
00000165
00000166
00000167
00000168

Server\ntserv\input.c at lines 152-168

00000076 int
client */
Server\ntserv\data.c at line 76

udt.it_interval.tv_sec = 0;
udt.it_interval.tv_usec = timerDelay;
udt.it_value.tv_sec = (;
udt.it_value.tv_usec = timerDelay;
setitimer (ITIMER_REAL, &udt, 0);

}

SIGNAL(SIGALRM, setflag);

timerDelay=200000; /* delay between sending stuff to

3. The method of claim
| wherein said time
interval corresponds to
a time for said server to
receive at least one
message from each host
computer belonging to
said first message

group.

00000195

Server\ntserv\input.c at line 195

00000152
00000153
00000154
00000155
00000156
00000157

00000158 #ifdef DS

00000159

00000160 #endif

00000161
00000162
00000163
00000164
00000165
00000166
00000167
00000168
00000169

readFromClient ();

input ()

{

struct itimerval udt;

fd_set readfds;

static struct timeval poll = {2, 0};

if (!me->p_process)

{
udt.it_interval.tv_sec = 0;
udt.it_interval.tv_usec = timerDelay;
udt.it_value.tv_sec = 0;
udt.it_value.tv_usec = timerDelay;
setitimer (ITIMER_REAL, &udt, 0);

}

SIGNAL (SIGALRM, setflag);

4

Petitioner Riot Games, Inc. - Ex. 1005, p. 72

00000170 /* Idea: read from client often, send to client
not so often */

00000171 while (1) {

]

00000195 readFromClient ();
(]

00000203 }

00000204 }

Server\ntserv\input.c at lines 152-203

00000076 int timerDelay=200000; /* delay between sending stuff to
client */
Server\ntserv\data.c at line 76

00000603 updateClient ()

00000604 {

[.]

00000608 static int skip = 0; /* If skip is set we skip next update
*/

00000609 /* This can halve your updates */

00000610 if (send_short && skip) {

00000611 skip = 0; /* back to default */

00000612 if (bufptr==buf && (commMode!=COMM_UDP || udpbufptr==huf))
{

00000613 /* We sent nothing! We better send something to wake
him */
00000614 if (me->p_fuel < 61000)
00000615 sendClientPacket ((CVOID) &clientSelfShort);
00000616 else
00000617 sendClientPacket ((CVOID) &clientSelf);
00000618 }
00000619 flushSockBuf () ;
00000620 repCount++;
00000621 return;
4

Petitioner Riot Games, Inc. - Ex. 1005, p. 73

00000622 }

[.]

00000630 if(send_short) {
00000631 updatePlasmas();
00000632 updateStatus();
00000633 updateSelf();
00000634 updatePhasers();
00000635 updateShips();
00000636 updateTorps();
00000637 updatePlanets();
00000638 updateMessages();

00000639 }

[..]

00000657 if(send_short && (me->p_fuel < 61000))

00000658 sendClientPacket ((CVOID) &clientSelfShort);
00000659 else

00000660 #endif
00000661 sendClientPacket ((CVOID) &clientSelf);

00000662 }

[..]

00000685 sendClientPing(); /* ping.c */
00000686 #endif

00000687

00000688 flushSockBuf () ;
00000689 repCount++;
00000690 }

Server\ntservisocket.c at lines 603-90

00000052 intrupt ();
Server\ntserv\input.c at lines 52

00000197 intrupt ();
Server\ntservlinput.c at lines 197

4

Petitioner Riot Games, Inc. - Ex. 1005, p. 74

00001390 updateMessages ()
00001391 {

[...]

00001590 }

Server\ntserv\socket.c at lines 1390-390

00001390 updateMessages ()

00001391 {

[..]

00001563 if (cur->m_from==DOOSHMSG) msg.m_from=255; /* god */
00001564 if ((cur->m_from < 0) [I (cur->m_from > MAXPLAYER))
00001565 sendClientPacket ((CVOID) &msgq);

00001566 else if (cur->m_flags & MALL && !(ignored[cur->m_from]
& MALL))

00001567 sendClientPacket ((CVOID) &msqg);

00001568 else if (cur->m_flags & MIEAM && !(ignored[cur->m_from]
& MTEAM)){

00001569 sendClientPacket ((CVOID) &msg);

00001570 }

[.]

00001590 }

Server\ntserv\socket.c at lines 1390-590

00001825 readFromClient ()

00001826 {

[v00]

00001838 if (select(32,&readfds,0,0,&timeout) '= 0) {
00001839 /* Read info from the xtrek client */

00001840 1if (FD_ISSET(sock, &readfds)) {

00001841 retval += doRead(sock);

00001842 }

00001843 if (udpSock >= 0 && FD_ISSET (udpSock, &readfds)) {
00001844 V_UDPDIAG(("Activity on UDP socket\n"));
00001845 retval += doRead (udpSock);

Petitioner Riot Games, Inc. - Ex. 1005, p. 75

00001846 }

00001847 }

00001848 return (retval '= 0); /* convert to 1/0 */
00001849 }

00001850

[...]

00001855 /* ripped out of above routine */

00001856 doRead(asock)

00001857 int asock;

00001858 {

00001859 struct timeval timeout;

[...]

00001877 /* Read info from the xtrek server */

00001878 count=read (asock, buf,BUFSIZ*2);
[vo0]
00001916 bufptr=buf;
00001917 while (bufptr < buf+count) {
[...]
00001939 while (size>count+(buf-bufptr)) {
00001940 /* We wait for up to twenty seconds for rest of packet.
00001941 * If we don't get it, we assume the client
died.
00001942 */
00001943 timeout.tv_sec=20;
00001944 timeout.tv_usec=0;
00001945 /*readfds=1<<asock; */
00001946 FD_ZERO (4readfds);
00001947 FD_SET(asock, &readfds);
[...]
00001956 temp=read (asock, buf+count, size- (count+ (buf-bufptr)));
[.o.]
00001966 }
[...]
00002010 (* (handlers[*bufptr].handler)) (bufptr);
45

Petitioner Riot Games, Inc. - Ex. 1005, p. 76

00002011 }
00002012 /* Otherwise we ignore the request */
00002013 } else {

00002014 ERROR (1, ("Handler for packet %d not installed...
*bufptr));

00002015 }

00002016 bufptr+=size;

00002017 if (bufptr>buf+BUFSIZ) {

00002018 beopy (buf+BUFSIZ, buf, BUFSIZ);
00002019 if (count==BUFSIZ*2) {

00002020 /*readfds = 1<<asock;*/

00002021 FD_ZERO (&readfds);

00002022 FD_SET (asock, &readfds);

00002023 if (select (32, &readfds, 0,0, &timeout)) {
00002024 temp=read (asock, buf+BUFSIZ,BUFSIZ);
00002025 count=BUFSIZ+temp;

[...]

00002034 } else |

00002035 count=BUFSIZ;

00002036 }

00002037 }else {

00002038 count -=BUFSIZ;

00002039 }

00002040 bufptr-=BUFSIZ;

00002041 }

00002042 }

00002043 return(l);

00002044 }

Server\ntservisocket.c af lines 1825-2044

00000021 intrupt()

00000022 {

[..]

00000114 updateClient ();

46

Petitioner Riot Games, Inc. - Ex. 1005, p. 77

00000115

Server\ntserv\redraw.c at lines 21-115

4. The method of claim
1 further comprising the
step of creating, by one
of said plurality of host
computers, said first
message group by
sending a first control
message to said server
via said unicast
network.

00000057 entrywindow (team, s_type)

00000058
[oo]

00000074
00000075
00000076
00000077
00000078
00000079
00000080
[oo]

00000182
[oo]

00000260
00000261
00000262
00000263
00000264
00000265
00000266
00000267
00000268
00000269
00000270
00000271
00000272
00000273
00000274
00000275
00000276

int *team, *s_type;
/* The following allows quick choosing of teams */

if (fastQuit){
*team = -1;
return;

}

switch ((int) event.type) {

case W_EV_BUTTON:
if (typeok == ()
break;
for (1 =0; 1 <4; it4)
if (event.Window == teamWin[i]) {
*team = 1;
break;
}
if (event.Window == qwin /* new */ &&
event,type == W_EV_BUTTON) |
*Leam = 4;
break;
}
if (*team != -1 && !teamRequest (*team, *s_type)) {
*team = -1;
}

break;

00000319 /* Attempt to pick specified team & ship */

4

Petitioner Riot Games, Inc. - Ex. 1005, p. 78

00000320 teamRequest (team, ship)

00000321 int team, ship;
00000322 {

00000323 int lastTime;
00000324

00000325 pickOk = -1;

00000326 sendTeamReq(team, ship);
00000327 lastTime = time (NULL);
00000328 while (pickOk == -1} {

00000329 if (lastTime + 3 < time(NULL)) {
00000330 sendTeamReq(team, ship);

00000331 }

00000332 socketPause();

00000333 readFromServer (NULL);

00000334 if (isServerDead()) {

[...]

00000340 if (udpSock >= 0)

00000341 closeUdpConn();

00000342 if (udpWin) {

00000343 udprefresh (UDP_CURRENT) ;
00000344 udprefresh (UDP_STATUS) ;
00000345 }

00000346 connectToServer (nextSocket);
00000347 printf("Yea! Te've been resurrected!\n");
(0000348 pickOk = 0;

00000349 break;

00000350 }

00000351 }

00000352 return (pickQk);
00000353 }

brmh-1T\entrywin.c at lines 57-353

00001800 sendTeamReq(team, ship)
00001801 int team, ship;

4

Petitioner Riot Games, Inc. - Ex. 1005, p. 79

00001802 {

00001803 struct outfit_cpacket outfitReq;

00001804

00001805 outfitReq.type = CP_OUTFIT;

00001806 outfitReq.team = team;

00001807 outfitReq.ship = ship;

00001808 sendServerPacket ((struct player_spacket *) & outfitReq);
00001809 }

hrmh-1.7\entrywin.c at lines 1800-09

5. The method of claim | 00000057 entrywindow (team, s_type)

4 further comprising the | C0000058 int *team, *s_type;
step of joining, by some | [...]

of said plurality of host | 00000074~ /* The following allows quick choosing of teams */
computers, said fist | 00000075

message group by 00000076 1if(fastQuit){

sending control 00000077 team = -1;

messages via said 00000078 return;

unicast network to said | 00000079}

server specifying said | (0000080

first message group, [.]

00000182 switch ((int) event.type) {
[..]

00000260 case W _EV _BUTTON:

00000261 if (typeok == 0)

00000262 break;

00000263 for (i =0; 1< 4; i+4)

00000264 if (event.Window == teamWin[i]) {
00000265 *team = 1;

00000266 break;

00000267 }

00000268 if (event.Window == gwin /* new */ &&
00000269 event,type == W_EV_BUTTON) {

00000270 *team = 4;

49

Petitioner Riot Games, Inc. - Ex. 1005, p. 80

00000271 break;

00000272 }

00000273 if (*team != -1 && !teamRequest (*team, *s_type)) |
00000274 *team = -1;

00000275 }

00000276 break;

00000319 /* Attempt to pick specified team & ship */

00000320 teamRequest (team, ship)

00000321 int team, ship;
00000322 {

00000323 int lastTime;
00000324

00000325 pickOk = -1;

00000326 sendTeamReq(team, ship);
00000327 lastTime = time (NULL);
00000328 while (pickOk == -1) {

00000329 if (lastTime + 3 < time(NULL)) {
00000330 sendTeamReq(team, ship);

00000331 }

00000332 socketPause();

00000333 readFromServer (NULL) ;

00000334 if (isServerDead()) {

[...]

00000340 if (udpSock >= 0)

00000341 closeUdpConn () ;

00000342 if (udphin) {

00000343 udprefresh (UDP_CURRENT) ;
00000344 udprefresh (UDP_STATUS) ;
00000345 }

00000346 connectToServer (nextSocket);
00000347 printf("Yea! TWe've been resurrected!\n");
00000348 pickOk = 0;

00000349 break;

00000350 }

50

Petitioner Riot Games, Inc. - Ex. 1005, p. 81

00000351)

00000352 return (pickOk);
00000353 }

hrmh-1.T\entrywin.c at lines 57-353

00001800 sendTeamReq(team, ship)

00001801 int team, ship;
00001802 {

00001803 struct outfit_cpacket outfitReg;
00001804

00001805 outfitReq.type = CP_OUTFIT;

00001806 outfitReq.team = team;

00001807 outfitReq.ship = ship;

00001808 sendServerPacket ((struct player_spacket *) & outfitReq);
00001809 }

hrmh-1.7\socket.c at lines 1800-09

6. The method of claim
| wherein said network
is Internet and

00000179 int connectionAttemptDetected (num_progs)

00000180 int num_progs;

00000181 {

[...]

00000192 /* check all ports */

00000193 for (i = 0; 1 < num_progs; itt) {

00000194 sock = prog[i].sock;

00000195 if(sock < 0}

00000196 1if((sock = socket (AF_INET, SOCK_STREAM, 0)) < 0){
00000197 fprintf(stderr,"Hey! I can't make a socket!\n");
00000198 fprintf(stderr,"I'1l try again \n");

00000199 return(-1);

00000200 }

[oo.]

00000214 if(bind(sock, &addr, sizeof(addr)) < 0){

(o]

00000227 if (bind(sock, &addr, sizeof(addr)) < 0) {

3

Petitioner Riot Games, Inc. - Ex. 1005, p. 82

[oo]
00000237
00000238
00000239
00000240
00000241
00000242
00000243
00000244

00000245 prog[i].sock=sock;

00000246 /* close(0); */

fprintf (stderr,"listening on %d, connection will
start %s \"%s\" %s %s %s %s\n",

00000247

00000248
00000249

}

if (listen(sock, 1)<0) {
fprintf(stderr, "Listen failed: "};
reporterror();

sock = -1;

}

}

}

prog[i].arg[3]);

00000250
00000251
00000252
00000253
00000254
00000255
[oo]

00000271
00000272
00000273
00000274
00000275
00000276
00000277
00000278
00000279
00000280
00000281

}
}

while (1) /* Wait for a connection */

{

}

}

fflush (stderr);

sock = prog[1].sock;

goto found;

}

prog[1].port, prog[i].prog, prog[i].progname,
prog(i].arg[0], prog[i].arg[l], prog[i].arqg[2],

for (i =0; 1 < num_progs; itt)

{

if (sock < 0)
continue;
if (FD_ISSET (sock, &accept_fds))
/* found a connection, procede */

52

Petitioner Riot Games, Inc. - Ex. 1005, p. 83

[..]
00000311 }
Server\newstartd\newstartd.c at lines 179-311

00000442 connectToClient (machine, port)

00000443 char *machine;

00000444 int port;

00000445 {

[...]

00000456 ERROR (3, ("Connecting to %s through %d\n", machine, port));
[...]

00000478

00000479 if (connect(ns, &addr, sizeof(addr)) < 0) {

00000480 ERROR(3, ("I cannot connect through port %d\n", port));
00000481 close(ns);

00000482 return(0);

00000483 }

00000484 sock=ns;

00000485 initClientData();

00000486 testtime = -1;

00000487 return(l);

00000488 }

Server\ntserv\socket.c at lines 442-88

said server
communicates with said
plurality of host
computers using a
session layer protocol.

00000179 int connectionAttemptDetected (num progs)

00000180 int num_progs;

00000181 {

[...]

00000192 /* check all ports */

00000193 for (i = 0; i < num_progs; it+) {

00000194 sock = prog[i].sock;

00000195 if(sock < 0}{

00000196 1if((sock = socket (AF_INET, SOCK_STREAM, 0)) < 0){
00000197 fprintf (stderr, "Hey! I can't make a socket!\n");

53

Petitioner Riot Games, Inc. - Ex. 1005, p. 84

00000198 fprintf(stderr,"I'1l try again \n");
00000199 return(-1);

00000200 }

[vod]

00000214 if (bind(sock, &addr, sizeof(addr)) < 0){
[...]

00000227 if (bind(sock, &addr, sizeof(addr)) < 0) {
[...]

00000237 }

00000238 }

00000239 }

00000240 1if(listen(sock, 1)<0) {

00000241 fprintf(stderr, "Listen failed: ");
00000242 reporterror();

00000243 sock = -1;

00000244 }

00000245 prog[i].sock=sock;

00000246 /* close(0); */

00000247 fprintf (stderr,"listening on %d, connection will
start %s \"$s\" %s %s %s %s\n",
00000248 prog(i].port, prog[i].prog, prog[i].progname,
00000249 prog[i].arqg[0], prog[i].arg[l], prog[i].arq[2],
prog[i].arg[3]);
00000250 fflush (stderr);
00000251 }
00000252 '}
00000253
00000254 while (1) /* Wait for a connection */
00000255 {
[...]
00000271 for (i = 0; 1 < num_progs; itt)
00000272 {
00000273 sock = prog[i].sock;
00000274 if (sock < 0)
AL

Petitioner Riot Games, Inc. - Ex. 1005, p. 85

00000275 continue;

00000276 if (FD_ISSET (sock, &accept_fds))
00000277 /* found a connection, procede */
00000278 goto found;

00000279 }

00000280 }

00000281 }

[...]

00000311 }

Server\newstartd\newstartd.c at lines 179-31

00000493 struct mesg_cpacket {

00000494 char type; /* CP_MESSAGE */
00000495 u_char group;

00000496 char indiv;

00000497 char padl;

00000498 char mesq[MSG_LEN];

00000499 };

Server\packets.h at lines 493-99

55

Petitioner Riot Games, Inc. - Ex. 1005, p. 86

CC-C

Petitioner Riot Games, Inc. - Ex. 1005, p. 87

Claim Chart comparing Claims 1, 2, and 4-6 of U.S. Patent No.
5,822,523 to the disclosure in Van Hook in view DIS

Prior art cited in this chart:

o Daniel . Van Hook, James O, Calvin, Michael K. Newton, and David A. Fusco, “An Approach to DIS Scaleability,” 11" DIS
Workshop, 26-30 Sept. 1994 (“Van Hook”).

o [EEE 1278-1993 IEEE Standard for Information Technology- Protocols for Distributed Interactive Simulation Applications,
approved March 18, 1993, and published in 1993 ("DIS”).

* Michael R. Macedonia, “Exploiting Reality with Multicast Groups”, published September 1995 (“Macedonia”)

Reasons to Combine;

Van Hook discloses techniques that have been developed and deployed for ARPA’s Synthetic Theater of War (STOW)
program and Distributed Interactive Simulation (DIS), wherein a virtual world simulates battlefield conditions, and “[e]xplicit
representations of command, control, and communication are required to permit command forces to transmit orders to and receive
reports from a new generation of more intelligent semi-automated forces. Van Hook at p. 1. Likewise, DIS is part of a proposed set
of standards for the Distributed Interactive Simulation (DIS) used in conjunction with the STOW program in Van Hook. DIS at pp. 1-
3. Van Hook provides for bundling of the PDUs from host computers by the AG server into larger transmission packets to be
distributed to other packets. Id. at pp. 2 and 7. IDS goes one step further to discuss the anatomy of a packet, as the PDU packets
disclosed in DI include a PDU header, an ID denoting a host computer (Entity ID) as well as a message group (Force ID), and the
PDU message relating to positional information of the entity. DIS at Table 18. Pp. 40-41. It would have been obvious to a person of
ordinary skill in that art to combine the teachings of bundling packets, or PDUs, in a Distributed Interactive Simulation disclosed in

Van Hook with the teachings of the contents of a PDU in a Distributed Interactive Simulation as disclosed in DIS.

[]

Petitioner Riot Games, Inc. - Ex. 1005, p. 88

Claims of the ‘523 Patent | Disclosure of Van Hook, DIS and Macedonia

| A method for providing Wlth the advent of ARPA s Synthetic Theater of War (STOW) program and the contmued

group messages o a development of Distributed Interactive Simulation (DIS), the scope of the problem has changed
plurality of host computers | substantially. Under STOW and related programs, the virtual world must expand substantially — in
connected over a unicast | area, total population, and the types of entities represented.”

wide area communication | Van Hook at p. 1.

network, comprising the
steps of: “For these reasons, it has become necessary to reexamine the approach used to distribute information
across the network. Several innovative algorithms have been suggested for reducing the amount of
traffic transmitted, transported, received, and processed. Under ARPA’s Scaleability project, several
Bandwidth Reduction Techniques (BRTs) are being explored, evaluated analytically and in simulation,
and implemented in an Application Gateway (AG) residing at the LAN/'WAN interface for each
participating site in this Fall's STOW-Europe (STOW-E) demonstration.”

Van Hook at p. 1.

“Major characteristics of STOW-E are:
¢ Live, virtual and constructive simulations
o Wide area connectivity provided by the Defense Simulation Internet (DST) Wide Area Network
(WAN)
¢ 4 network sites in the continental US and Europe: 18 directly on the DS, the remaining
bridged
o Approximately 2,000 interacting DIS entities
¢ Two security levels: Secret No-Foreign and US1
¢ DIS2.03 protocols
Numerous legacy systems and simulators”
Van Hook at p. 1.

Petitioner Riot Games, Inc. - Ex. 1005, p. 89

B J——
3 “a,
SN ™ R
L] . A AR
L b et
/ AW B
i -
i 4
i AR h
| AR
\(.:
A, 1
o N Fod g -
i \, 7 ETTLANY
LAy e et

'\;4 :)} .
Figare 1. Application Cateway conneedons within the petwork

Figure 1 of Van Hook at p. 4.

“On the WAN side, the AG transmits / receives to / from a subnet broadcast address on a well known
UDP port. The WAN essentially bridges traffic between sites that are members of a multicast group. ...
On the LAN side, the AG runs in promiscuous mode, receiving all packets transmitted on the site
LAN”

Van Hook at pp. 4-5.

“distributed interactive simulation (DIS). A time and space coherent synthetic representation of
world environments designed for linking the interactive, free-play activities of people in operational
exercises. The synthetic environment is created through the real-time exchange of data units between
distributed, computationally autonomous simulation applications in the form of simulations, simulators,
and instrumented equipment interconnected through standard computer services. The computational
simulation entities may be present in one location or may be distributed geographically.”

DiSatp.3.

“3.17 host computer: A computer that supports one or more simulation applications. All host
computers participating in a simulation exercise are connected by a common network,”
DISatp. 4.

“Data messages, called protocol data units (PDUs) that are exchanged between simulation applications
are defined. These PDUs provide information concerning simulated entity states and the types of entity
interactions that take place in a distributed interactive simulation (DIS).”

Petitioner Riot Games, Inc. - Ex. 1005, p. 90

DIS at Abstract.

“3.33 unicast: A transmission mode in which a single message is sent to a single network destination,
that is, one-to-one.”

DISatp. 5.

“The communication services require by each DIS PDU are described in detail in IST-CR-92-6. A brief
summary of the basic communication services necessary for DIS is as follows:

a) Data transfer. Each simulation application must be able to transfer data to another simulation
application on the network in a single operation, with or without first establishing a logical
connection with the destination computer, The unit of data passed in a single operation is called
a packet.

b) Delivery. The communication architecture must support either, multicast, broadcast, or unicast
packets, Multicast packets are delivered to a subset of all computers on a network. Broadcast
packets are delivered to all computers on a network. (Broadcasting is actually a special kind of
multicast.) Unicast packets are delivered to a single computer on a network.

¢) Besteffort service. The communication architecture should support best effort delivery.
Although DIS simulation applications will tolerate occasional failures of the network to deliver
packets, these should be allowed to accur only rarely.

d) Packet integrity. The communication protocols should be capable of detecting transmission
errors associated with the network. Corrupted packets should not be delivered to the simulation
application.

e) Performance requirements. The communication architecture should provide a certain level of
performance characterized in terms of throughput and delay, Both network delay and network

delay variance are to be minimized.”
DIS at p. 10,

providing a group
messaging server coupled
to said network, said server
communicating with said
plurality of host computers

“Exercise scale, The large number of entities involved in STOW-E will produce offered loads of as
much as four megabits and perhaps up to 2,000 packets per second. Such traffic levels will severely tax

all simulation computers even if unlimited communications resources were available.”
Van Hook at p. 1.

Petitioner Riot Games, Inc. - Ex. 1005, p. 91

using said unicast network
and maintaining a list of
message groups, each
message group containing
at least one host computer;

“Explicit representations of command, control, and communication are required to permit command
forces to transmit orders to and receive reports from a new generation of more intelligent semi-
automated forces. These new elements and phenomena require new protocols and generate new classes
of traffic that must be carried on the connecting networks.”

Van Hook at p. 1.

“A component of ARPA’s approach to scaleability for STOW-E is to implement cooperating and
complementary instances of a number of the information flow management techniques in an Application
Gateway (AG) situated at the LAN/'WAN boundary of each participating network site (figure 1). The
AG may be thought of as a collection of information flow management agents [4] that perform services
on behalf of their clients, the simulation applications. The purpose of these agents is to compensate for
and efficiently use the available communication and processing resources. Each AG processes PDUs
received from its attached LAN and sends representation of local exercise state and events to other AGs
over the WAN, Similarly, each AG receives representations of remote state and events from other AGs
over the WAN and sends PDUS onto its attached LAN. Communication between AGs is via an
Application Gateway to Gateway Protocol (AGGP). AGGP supports communication of control
information related to the information flow management techniques as well as representations of
exercise state and events,”

Van Hook at p. 4.
N s
LA, / ™, P
- A ALY
;!« \,, I
i \
N BN \
:‘ W
\ |
M, ;)\- A.'. .
A b 20 SRS
P i AN i (R
i e M H N
\on ./
grsesesses

Figurs 1 Applioation GRigwy onpactons wittn f netvask

Figure 1 of Van Hook at p. 4,

“The algorithm operates as follows. The terrain is divided into a grid of square cells by each AG. A

Petitioner Riot Games, Inc. - Ex. 1005, p. 92

square grid is used because it makes calculations simple and permits regions of the terrain to be
specified as a list of cells. Each AG determines the set of cells from which it needs to receive full
accuracy data. This set consists of those cells that overlay the circular regions of interest of the entities
atthe AG's site LAN. Figure 3 illustrates this idea by showing three entities and their circular regions
of interest. For determining the full accuracy region, the AGs use regions of interest that are based upon
the viewing ranges of the entities on the site LAN. The set of cells for which full accuracy data is
needed is outlined in the figure. Al AGs transmit their cell sets to each other. The full accuracy region
for any AG consists of the union of the sets of cells received from all other AGs.”

Van Hook at p. 6.

Figuee 5 Celis for which full acouracy s reguiked
Figure 5 of Van Hook at p. 6.

Petitioner Riot Games, Inc. - Ex. 1005, p. 93

“0.2.14 Force ID
This field shall distinguish the different teams or sides in a DIS exercise.”
DIS at p. 6.

sending, by a plurality of | “The DIS protocols support the exchange of information about the state of the entities participating in an
host computers belonging | exercise and events related to their activities and interactions.”

to afirst message group, | Van Hook at p. 2.

messages to said server via
said unicast network, said | “A grid-based relevance filtering algorithm is incorporated into the AG. It operates on Entity State
messages containing a PDUs originating on an AG’s site LAN as well as those arriving from remote AGs via the WAN, as

payload portion and a shown in figure 4.”
portion for identifying said | Van Hook at p. 5.
first message group;

“The algorithm operates as follows. The terrain is divided into a grid of square cells by each AG. A
square grid is used because it makes calculations simple and permits regions of the terrain to be
specified as a list of cells. Each AG determines the set of cells from which it needs to receive full
accuracy data. This set consists of those cells that overlay the circular regions of interest of the entities
at the AG’s site LAN. Figure 3 illustrates this idea by showing three entities and their circular regions
of interest. For determining the full accuracy region, the AGs use regions of interest that are based upon
the viewing ranges of the entities on the site LAN. The set of cells for which full accuracy data s
needed is outlined in the figure. All AGs transmit their cell sets to each other. The full accuracy region
for any AG consists of the union of the sets of cells received from all other AGs.”

Van Hook at p. 6.

“The Entity State PDU shall communicate information about an entity’s state, This include state
information that is necessary for the receiving simulation applications to represent the issuing entity in
the simulation applications’ own simulation.”

DISatp. 14,

“A PDU header record shall be the first part of each PDU. This record is represented in table 14. The
fields of the PDU header record are described in the following four items (see also 5.5.1).

Petitioner Riot Games, Inc. - Ex. 1005, p. 94

a) Protocol version. This field shall specify the version of protocol used in this PDU. Protocol
data units found in this standard shall be specified as version 2. This field shall be specified by
an §-bit enumeration.

b) Exercise identification. This field shall specify the exercise to which the PDU pertains, The
value contained in this field shall not be equal to zero. This field shall be represented by an
Exercise Identifier (see 0.2.13).

¢) Protocol data unit type. This field shall indicate the type of PDU that follows. This field shall
be represented by an §-bit enumeration. The values in this field are defined in Section 4 in IST-
CR-92-16.

d) Length. This field shall specify the length of the PDU in 32-bit words. This field shall be
represented by an 8-bit unsigned integer.”

DIS at p. 36.

“Information about a particular entity shall be communicated by issuing an Entity State PDU. The
Entity State PDU shall contain the following fields:

a) PDU header. This field shall contain data common to all DIS PDUs, The PDU header shall be
represented by the PDU Header Record (see 6.2.15).

b) Entity Identification. This field shall identify the entity issuing the PDU. This field shall be
represented by an Entity Identifier Record (see 6.2.8).

¢) Force identification. This field shall identify the force to which the issuing entity belongs. This
field shall be represented by an 8-bit enumeration (see Section 4 in IST-CR-92-16).

d) Entity type. This field shall identify the entity type to be displayed by members of the same
force as the issuing entity. This field shall be represented by an Entity Type Record (see 6.2.10
and Section 6 in IST-CR-92-16).

e) Alternate entity type. This field shall identify the entity type to be displayed by members of
forces other than that of the issuing entity. This field shall be represented by an Entity Type
Record (see 6.2.10 and Section 4 in IST-CR-92-16).

f) Timestamp. This field shall specify that time at which the data in the PDU is valid. This field
shall be represented by a timestamp (see 6.2.19).

g) Entity location. This field shall specify an entity’s physical location in the simulated world.
This field shall be represented by a World Coordinates Record (see 6.2.21),

Petitioner Riot Games, Inc. - Ex. 1005, p. 95

h) Entity linear velocity. This field shall specify an entity’s linear velocity. This field shall be
represented by a Linear Velocity Vector Record (see 6.2.20.3).
i) Entity orientation. This field shall specify an entity’s orientation. This field shall be represented
by a Euler Angles Record (see 6.2.11.)...”
DISatp. 39.

Table 16—Entity State POU

Fiekd Site Al i Bzt
ity Entity State DE Fislds

Frononed Versipo—R B qunersiin

baivtee {4y

FDU Tyt aomstir

2 Dbk

§ Lo frbS ansigna

i Emndd

A Faking

§ o EaedD

G Eaegpe

Spaciic-

| Bl R0E ey

10

Petitioner Riot Games, Inc. - Ex. 1005, p. 96

e A B
{uh\ §:§M‘y5m\ BT

Aesaoe gy i

L

Table 18 of DIS at pp. 40-41.

“3.33 unicast: A transmission mode in which a single message is sent to a single network destination,

Petitioner Riot Games, Inc. - Ex. 1005, p.

97

that is, one-to-one.”

DISatp.5.
aggregating, by said server | “Bundling, Network components such as switches, routers, and encryption devices as well as
in a time interval simulation host computers have limitations in the rate at which they may process packets. Rather than

determined in accordance | transmitting each DIS PDU as an individual packet, multiple PDUs may be bundled together into larger
with a predefined criterion, | packets before transmission. Bundled packets are transmitted when either of two conditions are

said payload portions of | satisfied: when a maximum size has been reached (the packet under construction is full of PDUs); or
said messages to create an | when a maximum time has passed without another PDU arriving, The dominant effect of bundling is to
aggregated payload; reduce packet rates. Additionally, bundling reduces bit rates because fewer packet headers are sent.”
Van Hook at p. 2.

“4.,6 Bundling

The AG collects AGGP PDUs and bundles them into larger packets for transmission over the WAN.
The purpose of the bundling algorithm is to reduce the number of packets that are transmitted, The
bundling algorithm has two parameters, a maximum bundle size and a maximum delay time, PDUs are
added to a bundle until either the maximum size is reached or the first PDU is the bundle has been
delayed by the maximum delay time, At this point, the bundle is transmitted,”

Van Hook at p. 7.
forming an aggregated “Bundling. Network components such as switches, routers, and encryption devices as well as
message using said simulation host computers have limitations in the rate at which they may process packets. Rather than

aggregated payload; and | transmitting each DIS PDU as an individual packet, multiple PDUs may be bundled together into larger
packets before transmission, Bundled packets are transmitted when either of two conditions are
satisfied: when a maximum size has been reached (the packet under construction is full of PDUs); or
when a maximum time has passed without another PDU arriving. The dominant effect of bundling is to

reduce packet rates. Additionally, bundling reduces bit rates because fewer packet headers are sent.”
Van Hook at p. 2.

“4,6 Bundling

The AG collects AGGP PDUs and bundles them into larger packets for transmission over the WAN,

12

Petitioner Riot Games, Inc. - Ex. 1005, p. 98

The purpose of the bundling algorithm is to reduce the number of packets that are transmitted. The
bundling algorithm has two parameters, a maximum bundle size and a maximum delay time. PDUs are
added to a bundle until either the maximum size is reached or the first PDU is the bundle has been
delayed by the maximum delay time, At this point, the bundle is transmitted,”

Van Hook at p. 7.

transmitting, by said server | “Bundling. Network components such as switches, routers, and encryption devices as well as

via said unicast network, | simulation host computers have limitations in the rate at which they may process packets. Rather than
said aggregated message to | transmitting each DIS PDU as an individual packet, multiple PDUs may be bundled together into larger
a recipient host computer | packets before transmission. Bundled packets are transmitted when either of two conditions are

belonging to said first satisfied: when a maximum size has been reached (the packet under construction is full of PDUs); or
message group. when a maximum time has passed without another PDU arriving, The dominant effect of bundling is to
reduce packet rates. Additionally, bundling reduces bit rates because fewer packet headers are sent,”
Van Hook at p. 2.
“4.6 Bundling

The AG collects AGGP PDUs and bundles them into larger packets for transmission over the WAN.
The purpose of the bundling algorithm is to reduce the number of packets that are transmitted, The
bundling algorithm has two parameters, a maximum bundle size and a maximum delay time. PDUs are
added to a bundle until either the maximun size is reached or the first PDU is the bundle has been
delayed by the maximum delay time. At this point, the bundle is transmitted.”

Van Hook at p. 7.

“Exercise scale. The large number of entities involved in STOW-E will produce offered loads of as
much as four megabits and perhaps up to 2,000 packets per second. Such traffic levels will severely tax
all simulation computers even if unlimited communications resources were available.”

Van Hook at p. 1.

“Explicit representations of command, control, and communication are required to permit command
forces to transmit orders to and receive reports from a new generation of more intelligent semi-
automated forces. These new elements and phenomena require new protocols and generate new classes

13

Petitioner Riot Games, Inc. - Ex. 1005, p. 99

of traffic that must be carried on the connecting networks.”
Van Hook at p. 1.

“A component of ARPA's approach to scaleability for STOW-E is to implement cooperating and
complementary instances of a number of the information flow management techniques in an Application
Gateway (AG) situated at the LAN/'WAN boundary of each participating network site (figure 1), The
AG may be thought of as a collection of information flow management agents [4] that perform services
on behalf of their clients, the simulation applications. The purpose of these agents is to compensate for
and efficiently use the available communication and processing resources. Each AG processes PDUs
received from its attached LAN and sends representation of local exercise state and events to other AGs
over the WAN, Similarly, each AG receives representations of remote state and events from other AGs
over the WAN and sends PDUs onto its attached LAN. Communication between AGs is via an
Application Gateway to Gateway Protocol (AGGP). AGGP supports communication of control
information related to the information flow management techniques as well as representations of
exercise state and events.”

Van Hook at p. 4,
N ‘\ ——
(140 ’ .
el \ Fn
i_g 9
i HAN
4
' i
-’/C,;.;;‘Y‘ . / I\.ﬂi—"
i_)" \o.‘_ w.-"

Figtire 1 Angticarion Gateway connentons witin e natsomk

Figure 1 of Van Hook at p. 4.

“The algorithm operates as follows. The terrain is divided into a grid of square cells by each AG. A
square grid is used because it makes calculations simple and permits regions of the terrain to be
specified as a list of cells. Each AG determines the set of cells from which it needs to receive full
accuracy data. This set consists of those cells that overlay the circular regions of interest of the entities

14

Petitioner Riot Games, Inc. - Ex. 1005, p. 100

atthe AG's site LAN. Figure 3 illustrates this idea by showing three entities and their circular regions
of interest. For determining the full accuracy region, the AGs use regions of interest that are based upon
the viewing ranges of the entities on the site LAN. The set of cells for which full accuracy data is
needed is outlined in the figure. All AGs transmit their cell sets to each other. The full accuracy region
for any AG consists of the union of the sets of cells received from all other AGs.”

Van Hook at p. 6.

<

Figuse 5 Cells for which full accuracy is required
Figure 5 of Van Hook at p. 6.

“3.33 unicast: A transmission mode in which a single message is sent to a single network destination,
that is, one-to-one.”

15

Petitioner Riot Games, Inc. - Ex. 1005, p. 101

DISatp. 5.

2. The method of claim |
wherein said time interval
is a fixed period of time,

“Bundling. Network components such as switches, routers, and encryption devices as well as
simulation host computers have limitations in the rate at which they may process packets. Rather than
transmitting each DIS PDU as an individual packet, multiple PDUs may be bundled together into larger
packets before transmussion. Bundled packets are transmitted when either of two conditions are
satisfied: when a maximum size has been reached (the packet under construction is full of PDUS); or
when a maximum time has passed without another PDU arriving, The dominant effect of bundling is to
reduce packet rates. Additionally, bundling reduces bit rates because fewer packet headers are sent.”
Van Hook at p. 2.

“4.6 Bundling

The AG collects AGGP PDUs and bundles them into larger packets for transmission over the WAN,
The purpose of the bundling algorithm is to reduce the number of packets that are transmitted, The
bundling algorithm has two parameters, a maximum bundle size and a maximum delay time, PDUs are
added to a bundle until either the maximum size 1s reached or the first PDU is the bundle has been
delayed by the maximum delay time. At this point, the bundle is transmitted.”

Van Hook at p. 7.

4, The method of claim 1
further comprising the step
of creating, by one of said
plurality of host computers,
said first message group by
sending a first control
message to said server via
said unicast network.

“The algorithm operates as follows. The terrain is divided into a grid of square cells by each AG. A
square grid is used because it makes calculations simple and permits regions of the terrain to be
specified as a list of cells. Each AG determines the set of cells from which it needs to receive full
accuracy data, This set consists of those cells that overlay the circular regions of interest of the entities
at the AG’s site LAN. Figure 5 illustrates this idea by showing three entities and their circular regions
of interest. For determining the full accuracy region, the AGs use regions of interest that are based upon
the viewing ranges of the entities on the site LAN. The set of cells for which full accuracy data s
needed is outlined in the figure. All AGs transmit their cell sets to each other. The full accuracy region
for any AG consists of the union of the sets of cells received from all other AGs.”

Van Hook at p. 6.

“0.2.14 Force ID
This field shall distinguish the different teams or sides in a DIS exercise.”

16

Petitioner Riot Games, Inc. - Ex. 1005, p. 102

DIS at p. 36.

5. The method of claim 4 | “The algorithm operates as follows. The terrain is divided into a grid of square cells by each AG. A
further comprising the step | square grid is used because it makes calculations simple and permits regions of the terrain to be

of joining, by some of said | specified as a list of cells. Each AG determines the set of cells from which it needs to receive full
plurality of host computers, | accuracy data. This set consists of those cells that overlay the circular regions of interest of the entities
said first message group by | at the AG’s site LAN. Figure 3 illustrates this idea by showing three entities and their circular regions
sending control messages | of interest. For determining the full accuracy region, the AGs use regions of interest that are based upon
via said unicast network to | the viewing ranges of the entities on the site LAN. The set of cells for which full accuracy data is

said server specifying said | needed is outlined in the figure. All AGs transmit their cell sets to each other. The full accuracy region
first message group. for any AG consists of the union of the sets of cells received from all other AGs,”

Van Hook at p. 6.

“0.2.14 Force ID
This field shall distinguish the different teams or sides in a DIS exercise.”
DIS at p. 36.

“An entityjoins a group as a passive or active member, Active members send as well as receive PDUs
within the group, are located in the cell associated with the group (that is, the center of seven cells), and
can become the group leader. Passive members normally do not send PDUs to the group except when
they join or leave. They are associated with the group because the cell lies within their area of interest,
yet they do not occupy the central cell,

When an entity joins a new group, it notes the time it entered and issues a Join Request PDU to the cell
group. The PDU has a flag indicating whether the cell is active or passive, The group leader replies with
a Pointer PDU that references the request and in turn multicasts a PDU containing a pointer to itself or
another active entity. The new member sends a Data Request PDU to the referenced source, which
issues a Data PDU containing the aggregate set of active entity PDUs. A passive entity becomes an
active member of a group by reissuing the Join Request PDU with a flag set to active when entering a
cell. Departures from the group are announced with a Leave Request PDU.”

Macedonia at p. 42,

6. The method of claim I | “Major characteristics of STOW-E are:

17

Petitioner Riot Games, Inc. - Ex. 1005, p. 103

wherein said network is
Internet and said server
communicates with said
plurality of host computers
using a session layer
protocol,

¢ Live, virtual and constructive simulations
¢ Wide area connectivity provided by the Defense Simulation Internet (DST) Wide Area Network
(WAN)
¢ 24 network sites in the continental US and Europe: 18 directly on the DS, the remaining
bridged
¢ Approximately 2,000 interacting DIS entities
¢ Two security levels: Secret No-Foreign and US|
¢ DIS2.0.3 protocols
Numerous legacy systems and simulators”
Van Hook at p. 1.

18

Petitioner Riot Games, Inc. - Ex. 1005, p. 104

CC-D

Petitioner Riot Games, Inc. - Ex. 1005, p. 105

Claim Chart comparing Claims 1-2 and 4-6 of U.S. Patent No,
5,822,523 to the disclosure of IRC RFC in view of Friedman

Prior art cited in this chart:

*]. Oikarinen et al., REC 1439- Internet Relay Chat Protocol, published May 1993

*R. Friedman et al., Packing Messages as a Tool for Boosting the Performance of Total Ordering Protocols, Dept. of Science of
Cornell University, published July 7, 1995

Reason to Combine:

IRCREC does not disclose aggregating payload portions, but Friedman discloses that messages are buffered and then the
payloads are aggregated, i.e., packed, before sending, Friedman at 3. In addition, RFC IRC states “The main goal of IRC is to
provide a forum which allows easy and efficient conferencing (one to many conversations).” IRC RFC at § 3.2 Friendman discloses
aggregation of message packets improves both latency and throughput compared to non-aggregating communication protocols,
Friedman at 1. Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to aggregate the
group messages of IRC RFC, i.e., channel messages, in order to increase the efficiency of the network which was a main goal of stated

by IRC REC.

[]

Petitioner Riot Games, Inc. - Ex. 1005, p. 106

TR

_ Disclosure of IRCREC and Friegman.

| A method for providing
group messages to a
plurality of host computers
connected over a unicast
wide area communication
network, comprising the
steps of:

“IRC itself 1s a teleconferencing system, which (through the use of the client-server model) is well-
suited to running on many machines in a distributed fashion. A typical setup involves a single process
(the server) forming a central point for clients (or other servers) to connect to, performing the required
message delivery/multiplexing and other functions.”

IRCRECat §1

“The IRC protocol was developed over the last 4 years since it was first implemented as a means for
users on a BBS to chat amongst themselves. Now it supports a world-wide network of servers and
clients, and is stringing [sic] to cope with growth.”

IRC RFC at abstract

“If there are multiple users on a server in the same channel, the message text is sent only once to that
server and then sent to each client on the channel. This action is then repeated for each client-server
combination until the original message has fanned out and reached each member of the channel.”

IRCRFCat §3.2.2,

providing a group
messaging server coupled to
said network, said server
communicating with said
plurality of host computers
using said unicast network
and maintaining a list of
message groups, each
message group containing at
least one host computer;

“IRCitself is a teleconferencing system, which (through the use of the client-server model) is well-
suited to running on many machines in a distributed fashion. A typical setup involves a single process
(the server) forming a central point for clients (or other servers) to connect to, performing the required
message delivery/multiplexing and other functions.”

IRCRFCat§1

“A channel is a named group of one or more clients which will all receive messages addressed to that
channel. The channel is created implicitly when the first client joins it and the channel ceases to exist
when the last client leaves it. While channel exists, any client can reference the channel using the
name of the channel.”

IRCRFCat§ 1.3

Petitioner Riot Games, Inc. - Ex. 1005, p. 107

“In IRC the channel has a role equivalent to that of the multicast group; their existence is dynamic
(coming and going as people join and leave channels) and the actual conversation carried out on a
channel is only sent to servers which are supporting users on a given channel. If there are multiple
users on a server in the same channel, the message text is sent only once to that server and then sent to
each client on the channel. This action is then repeated for each client-server combination until the

original message has fanned out and reached each member of the channel.”
IRCRFCat § 3.2.2

“The current channel layout requires that all servers know about all channels, their inhabitants and
properties.”
IRCRFCat §9.2.2

sending, by a plurality of
host computers belonging to
a first message group,
messages to said server via
said unicast network, said

“Command: PRIVMSG
Parameters; <receiver>{ <receiver>} <text to be sent>

PRIVMSG is used to send private messages between users. <receiver>can also be a list of names or
channels separated with commas,”

messages containing a IRCRECat § 44.1

payload portion and a

portion for identifying said

first message group;

aggregating, by said server | “The least efficient style of one-to-many conversation is through clients talking to a list’ of users. How
in a time interval this is done is almost self explanatory: the client gives a list of destinations to which the message is to

determined in accordance
with a predefined criterion,
said payload portions of said
messages to create an
aggregated payload;

be delivered and the server breaks it up and dispatches a separate copy of the message to each given
destination, This isn’t as efficient as using a group since the destination list is broken up and the
dispatch sent without checking to make sure duplicates aren’t sent down each path.”

IRCRECat § 3.2.1

“This protocol i essentially the same as Dynseq except that here processes are not allowed to send
their messages all the time. Instead messages are buffered and every [millisecond they are packed and

Petitioner Riot Games, Inc. - Ex. 1005, p. 108

sent as one packed message. In this case we have chosen [to be one millisecond since it is less than the
minimal expected one way user to user latency”
Friedman at 5.

“It turned out that packing messages improves both the latency and throughput of the protocols by two
order of magnitudes and is therefore overwhelmingly more important for the performance than any
other optimization that we used.”

Friedman at 1.

forming an aggregated
message using said
aggregated payload; and

“This protocol is essentially the same as Dynseq except that here processes are not allowed to send
their messages all the time. Instead messages are buffered and every | millisecond they are packed and
sent as one packed message.”

Friedman at 5.

“If we denote this byte overhead by h then by packing m application messages as one message the
headers overhead for these messages becomes only instead of 1 X' m which is required without
packing,”

Friedman at 12,

fransmitting, by said server
via said unicast network,
said aggregated message to
a tecipient host computer
belonging to said first
message group.

“In IRC the channel has a role equivalent to that of the multicast group; their existence is dynamic
(coming and going as people join and leave channels) and the actual conversation carried out on a
channel is only sent to servers which are supporting users on a given channel. If there are multiple
users on a server in the same channel, the message text is sent only once to that server and then sent to
each client on the channel. This action is then repeated for each client-server combination until the
original message has fanned out and reached each member of the channel.”

IRCRECat § 3.2

2. The method of claim |
wherein said time interval is

“This protocol is essentially the same as Dynseq except that here processes are not allowed to send
their messages all the time. Instead messages are buffered and every | millisecond they are packed and

Petitioner Riot Games, Inc. - Ex. 1005, p. 109

afixed period of time.

sent as one packed message.”
Friedman at 5,

4, The method of claim 1
further comprising the step
of creating, by one of said
plurality of host computers,
said first message group by
sending a first control
message to said setver via
said unicast network.

“To create a new channel or become part of an existing channel, a user is required to JOIN the channel.

If the channel doesn't exist prior to joining, the channel is created and the creating user becomes a
channel operator.” IRC RFC at § 1.3

“Command: JOIN
Parameters: <channel>{ <channel>} [<key>{ ,<key>}]
The JOIN command is used by client to start listening a specific channel.”

IRCRECat §4.2.1

5. The method of claim 4
further comprising the step
of joining, by some of said
plurality of host computers,
said first message group by
sending control messages
via said unicast network to
said server specifying said
first message group.

“Command: JOIN
Parameters: <channel>{ <channel>} [<key>{ <key>}]
The JOIN command is used by client to start listening a specific channel.”

IRCRFC at §4.2.1

6. The method of claim 1
wherein said network is
Internet and said server
communicates with said
plurality of host computers
using a session layer
protocol.

“The IRC protocol has been developed on systems using the TCP/IP network protocol, although there
is no requirement that this remain the only sphere in which it operates.”
IRCRECat § 1.

Petitioner Riot Games, Inc. - Ex. 1005, p. 110

CC-E

Petitioner Riot Games, Inc. - Ex. 1005, p. 111

Claim Chart comparing Claims 1-6 of U.S, Patent No,
5,822,523 to the disclosure in RING in view of Netrek

Prior art cited in this chart:
* Thomas A, Funkhouser, “RING: A Client-Server System for Multi-User Virtual Environments,” Association of Computing

Machinery, 1995 Symposium on Interactive 3D Graphics, Monterey CA. (RING”)

o Server2 Spl.tar.gz (“Server Code”) and BRMH-1.7.tar.gz (“Client Code”) (source code dated no later than August 1994),
Reasons to Combine:

RING discloses communicating messages over a network. RING at Figs. 5 and 7, pp. 88, 87 and 91. Similarly, Netrek
discloses clients and servers communicating over a network using messages. See Server Code, Serverniser\iewstarid.c at lines 129-
73, lines 179-311, lines 146-70; Servervntser\\main.c at lines 135-43; Serverwntseri\socket.c at lines 442-88, Netrek further discloses
aggregating packets to reduce the number of packets sent from the server. (e.g., “Idea: read from client often, send to client not so
often”). Serverwitserhinput.c at lines 152-203; Server\ntservvredraw.c at lines 21-113; Server\atser\socket.c at lines 603-90. A
person of ordinary skill in the art, looking to increase network efficiency, would have looked to related methods of communicating
messages over a network. Accordingly, a person of ordinary skill in the art would have looked to the aggregation teachings of Netrek

to aggregate messages in RING to increase network efficiency.

[]

Petitioner Riot Games, Inc. - Ex. 1005, p. 112

RS B e

I. A method for providing | “This paper describes the client-server design, implementation and experimental results for a system
group messages o a that supports real-time visual interaction between a large number of users in a shared 3D virtual
plurality of host computers | environment. The key feature of the system is that server-based visibility algorithms compute potential
connected over a unicast | visual interactions between entities representing users in order to reduce the number of messages

wide area communication | required to maintain consistent state among many workstations distributed across a wide-area network.
network, comprising the | When an entity changes state, update messages are sent only to workstations with entities that can
steps of: potentially perceive the change- 1.¢., ones to which the update is visible.”

RING at Abstract,

“In a multi-user visual simulation system, users run an interactive interface program on (usually
distinct) workstations connected to each other via a network.”
RING at p. §5.

“A difficult challenge in multi-user visual simulation is maintaining consistent state among a large
number of workstations distributed over a wide-area network.”
RING at p. 85.

“In order to support very large numbers of users (> 1000) interacting simultaneously in a distributed
virtual environment it is necessary to develop a system design and communication protocol that does
not require sending update messages to all participating hosts for every entity state change,”

RING at p. 86,

“This paper describes a system (called RING) that supports interaction between large numbers of users
in virtual environments with dense occlusion (e.g., buildings, cities, etc.). RING takes advantage of the
fact that state changes must be propagated only to hosts containing entities that can possibly perceive
the change- i.¢., the one that can see it. Object-space visibility algorithms are used to compute the
region of influence for each state change, and then update messages are sent only to the small subset of

workstations to which the update is relevant,”
RING at p. §6.

Petitioner Riot Games, Inc. - Ex. 1005, p. 113

“We have experimented with a variety of topologies for connecting RING clients and servers. For
practical reasons, we have focused mainly on arrangements in which clients communicate with a single
server, However, depending on the capabilities of available workstations and networks, clients can
send messages to server(s) via unicast or multicast.”

RING at p. 91,

“In our first experiments with multi-user virtual environments, we used IP multicast to send update
messages directly between clients. The general idea is to map entity properties into multicast groups,
and send update messages only to relevant groups. For instance, Macedonia partitions a virtual world
into a 2D grid of hexagonal shaped cells each of which is represented by a separate multicast group.
Entities localize their visual interactions by sending updates only to the multicast group representing
the cell in which the reside, and they listen only to multicast groups representing cells within some
radius.

The multicast approach is similar to the RING client-server approach for wide-area networks. In both
cases, intermediate machines may cull messages rather than propagating them to all participating
workstations. However, using multicast, message culling is done by routers at the network layer,
whereas, in RING, message culling is done by server machines at the application layer (see Figure 1),
The advantages of the multicast approach are that: 1) fewer messages must be passed if clients are
connected directly to a multicast-capable LAN (e.g., ethemet), and 2) latency s reduced due to faster
message routing, The disadvantages are that: 1) delays associated with joining and leaving multicast
groups make it impractical to use highly dynamic entity properties for multicast group mappings, 2) the
number of unique multicast groups accessible to any one application may not be sufficient for complex
virtual environments, and 3) multicast is not generally available across wide-area networks to many
types of networks computers (¢.g., PCs with modems).

The advantage of the RING client-server approach is that very dynamic and complex message
processing may be performed by servers. In contrast to multicast routers, which can only cull
messages based on a relatively small, static set of multicast groups, RING setvers can cull messages
using high-level geometric algorithms and knowledge regarding a multiplicity of highly dynamic entity

Petitioner Riot Games, Inc. - Ex. 1005, p. 114

attributes (e.g., location, orientation, velocity, efc.) and interaction types (e.g., visibility, sound,
collision, etc.). Since RING servers can take advantage of knowledge regarding message semantics
and the 3D geometry of the virtual environment directly, they can execute more effective and flexible
culling algorithms than would be possible using only IP address and port mappings. Furthermore,
unlike multicast routers, RING servers may process, augment, and alter messages in addition to culling
them. For instance, RING servers already augment update messages with “Add” and “Remove”
messages to inform clients that entities are entering or leaving their potentially visible areas.”

RING at p. 90-91,
providing a group Client
messaging server coupled to Chiant n
said network, said server | -
communicating with said ‘ A ' i
plurality of host computers LR p—
using said unicast network Server Bervar
and maintaining a list of T A -
message groups, each Client ey
message group containing at o} Server §
least one host computer; " B

B RING servere maagh
o, piibly suling, sugmanting; or diring

AMORLR
2

Figure 5 of RING at p. 87,

“We have experimented with a variety of topologies for connecting RING clients and servers. For
practical reasons, we have focused mainly on arrangements in which clients communicate with a single
server. However, depending on the capabilities of available workstations and networks, clients can
send messages to server(s) via unicast or multicast,”

Petitioner Riot Games, Inc. - Ex. 1005, p. 115

RING at p. 91.

“Server-based message culling is implemented using precomputed line-of-sight visibility information.
Prior to the multi-user simulation, the shared virtual environment is partitioned into a spatial
subdivision of cells whose boundaries are comprised of the static, axis-aligned polygons of the virtual
environment [1, 15]. A visibility precomputation is performed in which the set of cells potentially
visible to each cell is determined by tracing beams of possible sight-lines through transparent cell
boundaries [13, 16] (see Figure 6). During the multi-user simulation, servers keep track of which cells
contain which entities by exchanging “periodic” update messages when entities cross cell boundaries.
Real-time update messages are propagated only to servers and clients containing entities inside some
cell visible to the one containing the updated entity. Since an entity’s visibility is conservatively over-
estimated by the precomputed visibility of its containing cell, this algorithm allows servers to proves
update messages quickly using cell visibility “look-ups” rather than more exact real-time entity
visibility computations which would be too expensive on currently available workstations.”

RING at p. §7.,

Petitioner Riot Games, Inc. - Ex. 1005, p. 116

Figare T Fl of apate vossages Gabeid s o age
i t 3 i ¥
",_‘\‘:\}‘ N NIRRT S .
dabes fo etitoes &, B, €, and D arvanged in & virisal swseon-
ment a5 showy In Figare &

Figure 7 of RING at p. 88,

“Communication between clients is managed by servers. Clients do not send messages directly to
other clients, but instead send them to servers which forward them to other client and server
workstations participating in the same distributed simulation (see Figure 5). A key feature of this
client-server design is that servers can process messages before propagating them to other workstations,
culling, augmenting, or altering them. For instance, a server may determine that a particular update
message is relevant only to a small subset of clients and the propagate the message only to those clients
or their servers.”

RING at p. 87

sending, by a pluralityof | “RING represents a virtual environment as a set of independent entities each of which has a geometric
host computers belonging to | description and a behavior. Some entities are static (e.g.. terrain, buildings, etc.), whereas others have
a first message group, dynamic behavior that can be either autonomous (e.g., robots) or controlled by a user via input devices
messages o said server via | (e.g., vehicles). Distributed simulation occurs when multiple entities interact in a shared virtual

Petitioner Riot Games, Inc. - Ex. 1005, p. 117

said unicast network, said | environment by sending messages to one another to announce updates to their own geometry or
messages containing a behavior modifications to the shared environment, or impact on other entities.”

payload portion and a RING at p. §7.

portion for identifying said
first message group; “Communication between clients is managed by servers. Clients do not send messages directly to
other clients, but instead send them to servers which forward them to other client and server
workstations participating in the same distributed simulation (see Figure 3).”

RING at p. §7.

“We have experimented with a variety of topologies for connecting RING clients and servers. For
practical reasons, we have focused mainly on arrangements in which clients communicate with a single
server. However, depending on the capabilities of avatlable workstations and networks, clients can
send messages to server(s) via unicast or multicast.”

RING at p. 91,

“Update messages containing 40 bytes (message-type[4], entity-ID[4], target-position[12], target-
orientation[12], positional velocity[4], and rotational-velocity[4] were generated for each entity once
every 2.3 seconds on average with this ‘random’ navigational behavior.”

RING at p. 89.

Petitioner Riot Games, Inc. - Ex. 1005, p. 118

Client
Client D

A LS
B’ '3 S ".,'

SBIVOY fuon Sewef

1=/

o Server

\
“Client

¢
§f§f§

Fiowe & RING servers mow oomumnicatin ftwan
clionts, povsibly eulling, ugmenting ot alhering wevags

Figure 5 of RING at p. 87.

aggregating, by said server
in a time interval
determined in accordance
with a predefined criterion,
said payload portions of said
messages to create an
aggregated payload;

00000076 int
client */
Server\ntserv\data.c at line 76

timerDelay=200000;

00000195 readFromClient();
Server\ntservinput.c af line 195

00000152 input ()

00000153 {

00000154 struct itimerval udt;
00000155 fd_set readfds;
00000156 static struct timeval
00000157

00000158 #ifdef DS

/* delay between sending stuff to

poll = {2, 0};

Petitioner Riot Games, Inc. - Ex. 1005, p. 119

00000159

00000160 #endif

00000161
00000162
00000163
00000164
00000165
00000166
00000167
00000168
00000169
00000170

not so often */

00000171
[..]
00000195
[..]
00000203
00000204

Server\ntserviinput.c at lines 152-203

00000076 int
client */

Server\ntserv\data.c at line 76

00000603 updateClient()

00000604 {

[..]
00000608

update */

00000609 /* This can halve your updates */

if (!me->p_process)

{

udt.it_interval.tv_sec = 0;
udt.it_interval.tv_usec = timerDelay;
udt.it_value.tv_sec = 0;
udt.it_value.tv_usec = timerDelay;
setitimer (ITIMER REAL, &udt, 0);

J

SIGNAL (SIGALRM, setflag);
/* Idea: read from client often, send to client
while (1) {
readFromClient ();
}
}

timerDelay=200000; /* delay between sending stuff to

static int skip = 0; /* If skip is set we skip next

10

Petitioner Riot Games, Inc. - Ex. 1005, p. 120

00000610 if (send_short && skip) {

00000611 skip = 0; /* back to default */
00000612 if (bufptr==buf && (commMode!=COMM_UDP |
udpbufptr==buf)) {

00000613 /* We sent nothing! We better send something to
wake him */

00000614 1f (me->p_fuel < 61000)

00000615 sendClientPacket ((CVOID) &clientSelfShort);
00000616 else

00000617 sendClientPacket ((CVOID) &clientSelf);
00000618 }

00000619 flushSockBuf () ;

00000620 repCount++;

00000621 return;

00000622 }

[..]

00000630 if (send_short) {

00000631 updatePlasmas();
00000632 updateStatus();
00000633 updateSelf();
00000634 updatePhasers();
00000635 updateShips();
00000636 updateTorps();
00000637 updatePlanets();
00000638 updateMessages () ;

00000639 }

[.]

00000657 if (send_short && (me->p_fuel < 61000))

00000658 sendClientPacket ((CVOID) &clientSelfShort);
00000659 else

00000660 #endif

11

Petitioner Riot Games, Inc. - Ex. 1005, p. 121

00000661 sendClientPacket ((CVOID) &clientSelf);

00000662 }

[.]

00000685 sendClientPing(); /* ping.c */
00000686 #endif

00000687

00000688 flushSockBuf ();
00000689 repCounttt;
00000690 }

Server\ntservisocket.c at lines 603-90

00000052 intrupt();
Server\ntserviinput.c at lines 52

00000197 intrupt();
Server\ntserv\input.c at lines 197

00001390 updateMessages ()
00001391 {

[..0]

00001590 }

Server\ntservisocket.c at lines 1390-590

00001825 readFromClient ()

00001826 {

[..]

00001838 if (select (32, &readfds, 0,0, &timeout) != 0} {
00001839 /* Read info from the xtrek client */

00001840 1if (FD_ISSET(sock, &readfds)) {

00001841 retval += doRead(sock);

00001842 }

12

Petitioner Riot Games, Inc. - Ex. 1005, p. 122

00001843
00001844
00001845
00001846
00001847
00001848
00001849
00001850
[...]
00001855
00001856
00001857
00001858
00001859
[.o0]
00001877
00001878
[...]
00001916
00001917
[.o0]
00001939
00001940
packet.
00001941
died.
00001942
00001943
00001944
00001945
00001946

/* ripped out of above routine */
doRead (asock)
int asock;

{

1f (udpSock >= 0 && FD_ISSET (udpSock, &readfds)) {

}

V_UDPDIAG(("Activity on UDP socket\n"));
retval += doRead (udpSock);

}

return (retval !'= 0); /* convert to 1/0 */

struct timeval timeout;

/* Read info from the xtrek server */
count=read (asock, buf, BUFSIZ*2);

bufptr=buf;
while (bufptr < buf+count) {

while (size>count+(buf-bufptr)} {
/* We wait for up to twenty seconds for rest of

* If we don't get it, we assume the client

*/
timeout.tv_sec=20;
timeout.tv_usec=0;
/*readfds=1<<asock; */
FD 7ERO(&readfds);

13

Petitioner Riot Games, Inc. - Ex. 1005, p. 123

00001947 FD_SET (asock, &readfds);
[...]
00001956 temp=read (asock,buf+count, size-(count+ (buf-bufptr)));
[...]
00001966 }
[...]
00002010 (* (handlers[*bufptr].handler)) (bufptr);
00002011 }
00002012 /* Otherwise we ignore the request */
00002013 }else {
00002014 FRROR (1, ("Handler for packet %d not installed...\n",
*bufptr));
00002015 }
00002016 bufptri=size;
00002017 if (bufptr>buf+BUFSIZ) {
00002018 bcopy (buf+BUFSIZ, buf, BUFSIZ);
00002019 if (count==BUFSIZ*2) {
00002020 /*readfds = 1<<asock;*/
00002021 FD_ZERO (&readfds);
00002022 FD_SET (asock, &readfds);
00002023 if (select (32, &readfds, 0,0, &timeout)) {
00002024 temp=read (asock, buf+BUFSIZ, BUFSIZ);
00002025 count=BUFSIZ+temp;
[...]
00002034 } else {
00002035 count=BUFSIZ;
00002036 }
00002037 }else |
00002038 count -=BUFSIZ;
00002039 }
00002040 bufptr-=BUFSIZ;
14

Petitioner Riot Games, Inc. - Ex. 1005, p. 124

00002041]

00002042 }
00002043 return(l);
00002044 }

Server\ntserv\socket.c at lines 1825-2044

00001825 readFromClient ()

00001826 {

[...]

00001838 if (select (32, &readfds, 0,0, &timeout) != 0) {
00001839 /* Read info from the xtrek client */

00001840 if (FD_ISSET(sock, &readfds)) {

00001841 retval += doRead(sock);

00001842 }

00001843 1if (udpSock >= 0 && FD_ISSET (udpSock, &readfds)) {
00001844 V_UDPDIAG(("Activity on UDP socket\n"));
00001845 retval += doRead(udpSock);

00001846 }

00001847 }

00001848 return (retval !'= 0); /* convert to 1/0 */
00001849 }

00001850

[...]

00001855 /* ripped out of above routine */

00001856 doRead (asock)

00001857 int asock;

00001858 {

00001859 struct timeval timeout;

[...]

00001877 /* Read info from the xtrek server */

00001878 count=read(asock, buf,BUFSIZ*2);
15

Petitioner Riot Games, Inc. - Ex. 1005, p. 125

[...]
00001916 bufptr=buf;
00001917 while (bufptr < buf+count) {
[...]
00001939 while (size>count+(buf-bufptr)) {
00001940 /* We wait for up to twenty seconds for rest of
packet.
00001941 * If we don't get it, we assume the client
died.
00001942 x/
00001943 timeout.tv_sec=20;
00001944 timeout.tv_usec=0;
00001945 /*readfds=1<<asock; */
00001946 FD_ZERO (4readfds);
00001947 FD_SET (asock, &readfds);
[...]
00001956 temp=read (asock, buf+count, size- (countt (buf-bufptr)));
[...]
00001966 }
[...]
00002010 (*(handlers[*bufptr].handler)) (bufptr);
00002011 }
00002012 /* Otherwise we ignore the request */
00002013 } else {
00002014 ERROR(1, ("Handler for packet %d not installed...\n",
*pufptr));
00002015 }
00002016 bufptri=size;
00002017 if (bufptr>buf+BUFSIZ) {
00002018 beopy (buf+BUFSIZ, buf, BUFSIZ);
00002019 if (count==BUFSIZ*2) {
16

Petitioner Riot Games, Inc. - Ex. 1005, p. 126

00002020 /*readfds = 1<<asock;*/

00002021 FD_7ERO (&readfds);
00002022 FD_SET (asock, &readfds);
00002023 if (select (32, &readfds, 0,0, &timeout)) {
00002024 temp=read (asock, buf+BUFSIZ, BUFSIZ);
00002025 count=BUFSIZ+temp;
[o00]
00002034 } else |
00002035 count=BUFSIZ;
00002036 J
00002037 }else |
00002038 count -=BUFSIZ;
00002039 }
00002040 bufptr-=BUFSIZ;
00002041 }
00002042 }
00002043 return(l);
2044

Server\ntserv\socket.c at lines 1825-2044

00001390 updateMessages ()
00001391 {

[o00]

00001590 }

Server\ntserv\socket.c at lines 1390-390

00001603 sendClientPacket (packet)

00001604 /* Pick a random type for the packet */
00001605 struct player_spacket *packet;

00001606 {

[...]

17

Petitioner Riot Games, Inc. - Ex. 1005, p. 127

00001618 /*

00001619 * 1f we're dead, dying, or just born, we definitely
want the transmission

00001620 * to get through (otherwise we can get stuck). I don't
think this will

00001621 * be a problem for anybody, though it might hang for a
bit if the TCP

00001622 * connection is bad.

00001623 */

00001624 /* Okay, now I'm not so sure. Whatever, */

00001625 if (oldstatus !'= PALIVE || (me != NULL && me->p_status
= PALIVE))

00001626 orig_type = packet->type | 0x80; /* pretend it's critical
*/

00001627 #endif

00001628 if (packet->type<l || packet->type>NUM_SIZES |

00001629 sizes[(int)packet->typel==0) {

00001630 ERROR(L, ("Attempt to send strange packet %d %d\n", packet-
>type, NUM_SIZES)) ;

00001631 return;

00001632 }

00001633 packetsSent [(int)packet->type]++;

00001634 if (commMode == COMM_TCP || (commMode == COMM_UDP &&
udpMode == MODE_TCP)) |

00001635 /*

00001636 * business as usual

00001637 */

[...]

00001647 bcopy (packet, bufptr, size);

00001648 bufptrt=size;

00001649

18

Petitioner Riot Games, Inc. - Ex. 1005, p. 128

00001650
00001651
00001652
00001653
(FIX)
00001654
(o]
00001728
00001729
00001730
00001731
00001732
00001733
00001734
00001735
00001736
00001737
00001738
00001739
00001740
00001741
00001742
00001743
00001744 }

} else {
/*
* do UDP stuff unless it's a "critical" packet
* (note that both kinds get a sequence number appended)

*/

default:
/* these are critical packets; send them via TCP */
size=sizes[packet->typel;
if (bufptr-buft+size >= BUFSIZE) {
t=bufptr-buf;
if (gwrite(sock, buf, t) !=t) {
perror ("ICP gwrite failed, client marked dead");
clientDead=1;
}
bufptr=buf /*+ addSequence (buf)*/;
}
bcopy (packet, bufptr, size);
bufptrt=size;
break;

}

Server\ntserv\socket.c at lines 1603-744

00001125 updateTorps()

00001126 {

o]
00001132

for (i=0, torp=torps, tpi=clientTorpsInfo,

tp=clientTorps;

19

Petitioner Riot Games, Inc. - Ex. 1005, p. 129

00001133 1<MAXPLAYER*MAXTORP;
00001134 itt, torpt+, tpitt, tptt) {
[o]

00001142 sendClientPacket (tpi);
[vo0]

00001151 sendClientPacket (tp);
[o00]

00001191 }

00001192 }

Server\ntservisocket.c at lines 1125-92

“Furthermore unlike multicast routers, RING servers may process, augment, and alter messages in
addition to culling them. For instance, RING servers already augment update messages with “Add”
and “Remove” messages to inform clients that entities are entering or leaving their potentially visible
sets.”

RING at p. 91,

“RING servers allow each client workstation to maintain surrogates for only the subset of remote
entities visible to at least one entity local to the client. ... To support this feature, servers send their
client an “Add” message each time a remote entity enters a cell potentially visible to one of the client’s
local entities for the first time. A “Remove” message is sent when the server determines that an entity
has left the client’s visible region. As entities move through the environment, servers augment update
messages with “Add” and “Remove” messages notifying clients that remote entities have become
relevant or irrelevant to the client’s local entities.”

RING at p. §8.

“Finally, time critical computing algorithms can be used to determine an ‘optimal” set of messages to
send to each client based on network connection bandwidths, workstation processing capabilities, and
many other real-time performance factors (i.¢., in a manner similar to that used in 8]).”

RING at p. 91,

Petitioner Riot Games, Inc. - Ex. 1005, p. 130

“During the multi-user simulation, servers keep track of which cells contain which entities by
exchanging ‘periodic’ update messages when entities cross cell boundaries. Real-time update messages
are propagated only to servers and clients containing entities inside some cell visible to the one
containing the updated entity. Since an entity’s visibility is conservatively over-estimated by the
precomputed visibility of its containing cell, this algorithm allows servers to process update messages
quickly using cell visibility ‘look-ups’ rather than more exact real-time entity visibility computations
which would be too expensive on currently available workstations.”

RING at p. §7.

“Rather than sending messages directly between clients, RING routes each on through at least one
server, and possibly two. Computations are performed in the servers before messages are propagated
further adding to latency.”

RING at p. 88,
forming an aggregated 00001747 flushSockBuf ()
message using said 00001748 {

aggregated payload; and | [..]
00001755 if (qurite(sock, buf, t) !=t) {

00001756 perror ("std flush guwrite failed, client marked dead");
00001757 clientDead=1;

00001758 }

[..]

00001782 if (guwrite(udpSock, udpbuf, t) != t){

00001783 perror ("UDP flush gwrite failed, client marked dead
once more");

00001784 #ifdef EXTRA GB

00001785 clientDead=1;

00001786 #endif

00001787 UDPDIAG(("*** UDP disconnected for %s\n", me->p_name));
00001788 printUdpInfo();

00001789 closeUdpConn();

00001790 commMode = COMM_TCP;

Petitioner Riot Games, Inc. - Ex. 1005, p. 131

00001791 }

[..]

00001802 }

Server\ntserv.c at lines 1747-802

00002607 gurite(fd, whuf, size)
00002608 int fd;

00002609 char *wbuf;

00002610 size t size;

00002611 {

00002625 while (bytes>() {
00002626 n = write(fd, whbuf, bytes);

[..]
00002671 }

00002672 return (orig);
00002673 }

Server\ntserv.c at lines 260773

00000603 updateClient ()

00000604 {

[.]

00000608 static int skip = 0; /* If skip is set we skip next
update */

00000609 /* This can halve your updates */

00000610 if (send_short && skip) {

00000611 skip = 0; /* back to default */

00000612 if (bufptr==buf && (commMode!=COMM_UDP |
udpbufptr==buf)) {

00000613 /* We sent nothing! We better send something to
wake him */
00000614 if (me->p_fuel < 61000)

2

Petitioner Riot Games, Inc. - Ex. 1005, p. 132

00000615
00000616
00000617
00000618 }
00000619
00000620
00000621
00000622 }
[..]

00000630

00000631 updatePlasmas();
00000632 updateStatus();
00000633 updateSelf();
00000634 updatePhasers();
00000635 updateShips();
00000636 updateTorps();
00000637 updatePlanets();
00000638 updateMessages () ;

00000639

[..]

00000657
00000658
00000659
00000660 #endif

00000661 sendClientPacket ((CVOID) &clientSelf);

00000662 }
[..]

00000685
00000686 #endif
00000687

00000688 flushSockBuf () ;

sendClientPacket ((CVOID) &clientSelfShort);
else
sendClientPacket ((CVOID) &clientSelf);

flushSockBuf () ;

repCount++;
return;

if (send_short) {

}

if (send_short && (me->p_fuel < 61000))
sendClientPacket ((CVOID) &clientSelfShort);
else

sendClientPing(); /* ping.c */

Petitioner Riot Games, Inc. - Ex. 1005, p. 133

00000689 repCount+t;
00000690 }
Server\ntserv\socket.c at lines 603-90

00001603 sendClientPacket (packet)

00001604 /* Pick a random type for the packet */

00001605 struct player_spacket *packet;

00001606 {

[...]

00001618 /*

00001619 * If we're dead, dying, or just born, we definitely
want the transmission

00001620 * to get through (otherwise we can get stuck). I don't
think this will

00001621 * be a problem for anybody, though it might hang for a
bit if the TCP

00001622 * connection is bad.,

00001623 */

00001624 /* Okay, now I'm not so sure. TWhatever, */

00001625 if (oldstatus !'= PALIVE || (me != NULL && me->p_status
= PALIVE))

00001626 orig type = packet->type | 0x80; /* pretend it's critical
*/

00001627 #endif

00001628 if (packet->type<l || packet->type>NUM_SIZES |

00001629 sizes[(int)packet->typel==0) {

00001630 ERROR(L, ("Attempt to send strange packet %d %d\n", packet-
>type, NUM_SIZES));

00001631 return;

00001632 }

00001633 packetsSent [(int)packet->type]t4;

Petitioner Riot Games, Inc. - Ex. 1005, p. 134

00001634

udpMode =

00001635
00001636
00001637
[oo]

00001647
00001648
00001649
00001650
00001651
00001652
00001653
(FIX)

00001654
L]

00001728
00001729
00001730
00001731
00001732
00001733
00001734
00001735
00001736
00001737
00001738
00001739
00001740
00001741
00001742

= MODE_TCP)) {

if (commMode == COMM_TCP || (commMode == COMM UDP &&

/*
* business as usual

*/

bcopy (packet, bufptr, size);
bufptrt=size;

} else {
/*
* do UDP stuff unless it's a "critical" packet
* (note that both kinds get a sequence number appended)

*/

default:
/* these are critical packets; send them via TCP */
size=sizes[packet->type];
if (bufptr-buftsize >= BUFSIZE) {
t=bufptr-buf;
if (gurite(sock, buf, t) =t} {
perror ("TCP gwrite failed, client marked dead");
clientDead=1;
}
bufptr=buf /*+ addSequence (buf)*/;
J
bcopy (packet, bufptr, size);
bufptr+=size;
break;

Petitioner Riot Games, Inc. - Ex. 1005, p. 135

00001743 }
00001744 }
Server\ntserv\socket.c at lines 1603-744

“Furthermore unlike multicast routers, RING servers may process, augment, and alter messages in
addition to culling them. For instance, RING servers already augment update messages with “Add”
and “Remove” messages to inform clients that entities are entering or leaving their potentially visible
sefs.”

RING at p. 9L,

“RING servers allow each client workstation to maintain surrogates for only the subset of remote
entities visible to at least one entity local to the client, ... To support this feature, servers send their
client an “Add” message each time a remote entity enters a cell potentially visible to one of the client’s
local entities for the first time. A “Remove” message is sent when the server determines that an entity
has left the client’s visible region. As entities move through the environment, server augment update
messages with “Add” and “Remove” messages notifying clients that remote entities have become

relevant or irrelevant to the client’s local entities.”
RING at p. 88,

transmitting, by said server | 00001603 sendClientPacket (packet)

via said unicast network, | 00001604 /* Pick a random type for the packet */
said aggregated message to | 00001605 struct player_spacket *packet;

a recipient host computer | 00001606 {

belonging to said first [..]

message group. 00001639 1f (bufptr-buftsize >= BUFSIZE) {
00001640 t=bufptr-buf;

00001641 if (guwrite(sock, buf, t) !=t) {

00001642 perror ("std gwrite failed, client marked dead ");
00001643 clientDead=1;
00001644 }
00001645 bufptr=buf;
00001646 }
26

Petitioner Riot Games, Inc. - Ex. 1005, p. 136

00001647 bcopy (packet, bufptr, size);
00001648 bufptrt=size;

00001649

00001650 } else {

[..]
00001731 if (bufptr-buf+size >= BUFSIZE) {

00001732 t=bufptr-buf;

00001733 if (guwrite(sock, buf, t) != t} |

00001734 perror ("TCP gwrite failed, client marked dead");
00001735 clientDead=1;

00001736 }

00001737 bufptr=buf /*+ addSequence (buf)*/;

00001738 }

00001739 bcopy (packet, bufptr, size);
00001740 bufptri=size;

00001741 break;

00001742 '}

00001743 }

00001744 }

Server\ntservisocket.c at lines 1603744

00000603 updateClient ()
00000604 {

[...]

00000688 flushSockBuf () ;
00000689 repCount++;
00000690 }

Server\ntservisocket.c at lines 603-90

00001747 flushSockBuf ()
00001748 {

Petitioner Riot Games, Inc. - Ex. 1005, p. 137

(]
00001755 1if (gurite(sock, buf, t) !=t) {

00001756 perror ("std flush gwrite failed, client marked dead");

00001757 clientDead=1;
00001758 }

[.]
00001782 1if (gurite(udpSock, udpbuf, t) != t){

00001783 perror ("UDP flush gwrite failed, client marked dead

once more");

[..]

00001791 }

[.]

00001802 }

Server\ntserv\socket.c at lines 1747-802

00002607 gurite(fd, wbuf, size)
00002608 int fd;

00002609 char *wbuf;

00002610 size_t size;

00002611 {

[...]

00002625 while (bytes>0) {
00002626 n = write(fd, wouf, bytes);
00002627 1if (count++ > 100) {

00002628 ERROR (1, ("Guwrite hosed: too many writes
(5d) \n", getpid()));
00002629 clientDead = 1;
00002630 return (-1);
00002631 }
[...]
00002671 }
8

Petitioner Riot Games, Inc. - Ex. 1005, p. 138

00002672 return(orig);
00002673 }
Server\ntserv\socket.c at lines 2607-73

00001125 updateTorps()

00001126 {

[...]

00001132 for (i=0, torp=torps, tpi=clientTorpsInfo,
tp=clientTorps;

00001133 1<MAXPLAYER*MAXTORP;
00001134 it+, torptt, tpitt, tptt) {
[...]

00001142 sendClientPacket (tpi);
[...]

00001151 sendClientPacket (tp);
[...]

00001191 }

00001192 }

Server\ntservisocket.c at lines 1125-92

“Communication between clients is managed by servers. Clients do not send messages directly to
other clients, but instead send them to servers which forward them to other client and server

workstations participating in the same distributed simulation (see Figure 5).”
RING at p. 87.

“We have experimented with a variety of topologies for connecting RING clients and servers. For
practical reasons, we have focused mainly on arrangements in which clients communicate with a single
server. However, depending on the capabilities of available workstations and networks, clients can
send messages to server(s) via unicast or multicast.”

RING at p. 91.

2. The method of claim |

“During the multi-user simulation, servers keep track of which cells contain which entities by

Petitioner Riot Games, Inc. - Ex. 1005, p. 139

wherein said time interval is | exchanging “periodic” update messages when entities cross cell boundaries.”
a fixed period of time, RING at p. §7.

“This paper describes the client-server design, implementation and experimental results for a system
that supports real-time visual interaction between a large number of users in a shared 3D virtual
environment. The key feature of the system is that server-based visibility algorithms compute potential
visual interactions between entities representing users in order to reduce the number of messages
required to maintain consistent state among many workstations distributed across a wide-area network.
When an entity changes state, update messages are sent only to workstations with entities that can
potentially perceive the change- i.., ones to which the update is visible.”

RING at Ahstract,

“In a multi-user visual simulation system, users run an interactive interface program on (usually

distinct) workstations connected to each other via a network.”
RING at p. 85.

“A difficult challenge in multi-user visual simulation is maintaining consistent state among a large
number of workstations distributed over a wide-area network.”
RING at p. 85.

“In order to support very large numbers of users (> 1000) interacting simultaneously in a distributed
virtual environment it is necessary to develop a system design and communication protocol that does
not require sending update messages to all participating hosts for every entity state change.”

RING at p. 86.

“This paper describes a system (called RING) that supports interaction between large numbers of users
in virtual environments with dense occlusion (e.g., buildings, cities, etc.). RING takes advantage of the
fact that state changes must be propagated only to hosts containing entities that can possibly perceive
the change- i.¢., the one that can see it. Object-space visibility algorithms are used to compute the
region of influence for each state change, and then update messages are sent only to the small subset of
workstations to which the update is relevant.”

30

Petitioner Riot Games, Inc. - Ex. 1005, p. 140

RING at p. §6.

“We have experimented with a variety of topologies for connecting RING clients and servers. For
practical reasons, we have focused mainly on arrangements in which clients communicate with a single
server, However, depending on the capabilities of available workstations and networks, clients can
send messages to server(s) via unicast or multicast,”

RING at p. 91,

“In our first experiments with multi-user virtual environments, we used [P multicast to send update
messages directly between clients. The general idea is to map entity properties into multicast groups,
and send update messages only to relevant groups, For instance, Macedonia partitions a virtual world
into a 2D grid of hexagonal shaped cells each of which is represented by a separate multicast group.
Entities localize their visual interactions by sending updates only to the multicast group representing
the cell in which the reside, and they listen only to multicast groups representing cells within some
radius.

The multicast approach is similar to the RING client-server approach for wide-area networks. In both
cases, intermediate machines may cull messages rather than propagating them to all participating
workstations, However, using multicast, message culling is done by routers at the network layer,
whereas, in RING, message culling is done by server machines at the application layer (see Figure 11).
The advantages of the multicast approach are that: 1) fewer messages must be passed if clients are
connected directly to a multicast-capable LAN (e.g., ethemet), and 2) latency is reduced due to faster
message routing. The disadvantages are that: 1) delays associated with joining and leaving multicast
groups make it impractical to use highly dynamic entity properties for multicast group mappings, 2) the
number of unique multicast groups accessible to any one application may not be sufficient for complex
virtual environments, and 3) multicast is not generally available across wide-area networks to many
types of networks computers (e.g., PCs with modems).

The advantage of the RING client-server approach is that very dynamic and complex message
processing may be performed by servers. In contrast to multicast routers, which can only cull
messages based on a relatively small, static set of multicast groups, RING servers can cull messages

3l

Petitioner Riot Games, Inc. - Ex. 1005, p. 141

using high-level geometric algorithms and knowledge regarding a multiplicity of highly dynamic entity
attributes (e.g., location, orientation, velocity, etc.) and interaction types (e.g., visibility, sound,
collision, ec.). Since RING servers can take advantage of knowledge regarding message semantics
and the 3D geometry of the virtual environment directly, they can execute more effective and flexible
culling algorithms than would be possible using only IP address and port mappings. Furthermore,
unlike multicast routers, RING servers may process, augment, and alter messages in addition to culling
them. For instance, RING servers already augment update messages with “Add” and “Remove”

messages to inform clients that entities are entering or leaving their potentially visible areas.”
RING at p. 90-91,

3. The method of claim 1~ [00000195 readFromClient ();
wherein said time interval | Server\ntserv\input.c at line 195

corresponds to a time for
said server to receive at 00000152 input ()
least one message from each | 00000153 {

host computer belonging to | 00000154 struct itimerval udt;

said first message group, | 00000155 fd_set readfds;

00000156 static struct timeval poll = {2, 0};
00000157

00000158 #ifdef DS

00000159 if ('me->p_process)

00000160 #endif

00000161 {

00000162 udt.it_interval.tv_sec = 0;

00000163 udt.it_interval.tv_usec = timerDelay;

00000164 udt.it_value.tv_sec = 0;

00000165 udt.it_value.tv_usec = timerDelay;

00000166 setitimer (ITIMER_REAL, &udt, 0);

00000167 }

00000168 SIGNAL (SIGALRM, setflag);

00000169

00000170 /* Idea: read from client often, send to client

3

Petitioner Riot Games, Inc. - Ex. 1005, p. 142

not so often */

00000171

[..]

00000195

[..]

00000203
00000204 }

Server\ntserviinput.c at lines 152-203

00000076 int
client */

Server\ntserv\data.c at line 76

00000603 updateClient ()

00000604 {
[..]

update */

00000609 /* This can halve your updates */
00000610 if (send_short && skip) {

00000611

00000612 if (bufptr==buf && (commMode'=COMM UDP |
udpbufptr==buf)) {

00000613

wake him */
00000614
00000615
00000616
00000617
00000618 }
00000619

timerDelay=200000; /* delay between sending stuff to

00000608 static int skip = 0; /* If skip is set we skip next

while (1) {
readFromClient ();

}

skip = 0; /* back to default */

/* We sent nothing! We better send something to

if (me->p_fuel < 61000)

sendClientPacket ((CVOID) &clientSelfShort);
else

sendClientPacket ((CVOID) &clientSelf);

flushSockBuf ();

33

Petitioner Riot Games, Inc. - Ex. 1005, p. 143

00000620
00000621
00000622 }

[..]
00000630

00000631 updatePlasmas();
00000632 updateStatus();
00000633 updateSelf();
00000634 updatePhasers();
00000635 updateShips();
00000636 updateTorps();
00000637 updatePlanets();
00000638 updateMessages () ;

00000639

[..]

00000657
00000658
00000659
00000660 #endif

00000661 sendClientPacket ((CVOID) &clientSelf);

00000662 }
[..]

00000685
00000686 #endif
00000687

00000688 flushSockBuf ();
00000689 repCount++;

000006390 }

Server\ntservisocket.c at lines 603-90

00000052 intrupt();

repCount++;
return;

if (send_short) {

}

if (send_short && (me->p_fuel < 61000))
sendClientPacket ((CVOID) &clientSelfShort);
else

sendClientPing(); /* ping.c */

34

Petitioner Riot Games, Inc. - Ex. 1005, p. 144

Server\ntserviinput.c at lines 52

00000197 intrupt();
Server\ntserviinput.c at lines 197

00001390 updateMessages ()
00001391 {

[o00]

00001590 }

Server\ntservisocket.c at lines 1390-590

00001390 updateMessages ()

00001391 {

[..]

00001563 if (cur->m_from==DO0SHMSG) msg.m_from=255; /* god */
00001564 1t ((cur->m_from < 0) || (cur->m_from > MAXPLAYER))
00001565 sendClientPacket ((CVOID) &msq);

00001566 else if (cur->m_flags & MALL && !(ignored[cur-
>n_from] & MALL))

00001567 sendClientPacket ((CVOID) &msq);

00001568 else 1f (cur->m_flags & MTEAM && !(ignored[cur-
>I_from] & MTEAM)){

00001569 sendClientPacket ((CVOID) &msqg);

00001570 }

[..]

00001590 }

Server\ntservisocket.c at lines 1390-590

00001825 readFromClient ()
00001826 {

L]

35

Petitioner Riot Games, Inc. - Ex. 1005, p. 145

00001838 if (select (32, &readfds, 0,0, &timeout) '= 0) {
00001839 /* Read info from the xtrek client */

00001840 1if (FD_ISSET(sock, &readfds)) {

00001841 retval += doRead(sock);

00001842 '}

00001843 if (udpSock >= 0 && FD_ISSET (udpSock, &readfds)) {
00001844 V_UDPDIAG(("Activity on UDP socket\n"));
00001845 retval += doRead(udpSock);

00001846 }

00001847 }

00001848 return (retval '= (); /* convert to 1/0 */
00001849 }

00001850

[...]

00001855 /* ripped out of above routine */

00001856 doRead (asock)

00001857 int asock;

00001858 {

00001859 struct timeval timeout;

[...]

00001877 /* Read info from the xtrek server */

00001878 count=read (asock,buf, BUFSIZ*2);
[...]

00001916 bufptr=buf;

00001917 while (bufptr < buf+count) {

[..]
00001939 while (size>count+(buf-bufptr)) {

00001940 /* We wait for up to twenty seconds for rest of
packet.,
00001941 * If we don't get it, we assume the client
died.

36

Petitioner Riot Games, Inc. - Ex. 1005, p. 146

00001942 */
00001943 timeout.tv_sec=20;
00001944 timeout.tv_usec=0;
00001945 /*readfds=1<<asock; */
00001946 FD_ZERO (&readfds);
00001947 FD_SET(asock, &readfds);
[o00]
00001956 temp=read (asock, buf+count, size- (count+ (buf-bufptr)));
[..]
00001966 }
[..0]
00002010 (* (handlers[*bufptr].handler)) (bufptr);
00002011 }
00002012 /* Otherwise we ignore the request */
00002013 } else {
00002014 FRROR (1, ("Handler for packet %d not installed...\n",
*hufptr));
00002015 }
00002016 bufptrt=size;
00002017 if (bufptr>buf+BUFSIZ) |
00002018 bcopy (buf+BUFSIZ, buf, BUFSIZ);
00002019 if (count==BUFSIZ*2) {
00002020 /*readfds = 1<<asock;*/
00002021 FD_ZERO (&readfds);
00002022 FD_SET (asock, &readfds);
00002023 if (select (32, &readfds, 0,0, &timeout)) {
00002024 temp=read (asock, buf+BUFSIZ,BUFSIZ);
00002025 count=BUFSIZ+temp;
[..]
00002034 } else {
00002035 count=BUFSIZ;
37

Petitioner Riot Games, Inc. - Ex. 1005, p. 147

00002036 }

00002037 }else {
00002038 count -=BUFSIZ;
00002039 }

00002040 bufptr-=BUFSIZ;
00002041 }

00002042 }

00002043 return(l);

00002044 }

Server\ntservisocket.c at lines 1825-2044

4. The method of claim I | “In our first experiments with multi-user virtual environments, we used IP multicast to send update
further comprising the step | messages directly between clients. The general idea is to map entity properties into multicast groups,
of creating, by one of said | and send update messages only to relevant groups, For instance, Macedonia partitions a virtual world
plurality of host computers, | into a 2D grid of hexagonal shaped cells each of which is represented by a separate multicast group.
said first message group by | Entities localize their visual interactions by sending updates only to the multicast group representing

sending a first control the cell in which the reside, and they listen only to multicast groups representing cells within some
message to said server via | radius,
said unicast network,

The multicast approach is similar to the RING client-server approach for wide-area networks. In both
cases, intermediate machines may cull messages rather than propagating them to all participating
workstations, However, using multicast, message culling is done by routers at the network layer,
whereas, in RING, message culling is done by server machines at the application layer (see Figure 11).
The advantages of the multicast approach are that; 1) fewer messages must be passed if clients are
connected directly to a multicast-capable LAN (e.g., ethernet), and 2) latency is reduced due to faster
message routing. The disadvantages are that: 1) delays associated with joining and leaving multicast
groups make it impractical to use highly dynamic entity properties for multicast group mappings, 2) the
number of unique multicast groups accessible to any one application may not be sufficient for complex
virtual environments, and 3) multicast is not generally available across wide-area networks to many
types of networks computers (e.g., PCs with modems).

38

Petitioner Riot Games, Inc. - Ex. 1005, p. 148

The advantage of the RING client-server approach is that very dynamic and complex message
processing may be performed by servers. In contrast to multicast routers, which can only cull
messages based on a relatively small, static set of multicast groups, RING servers can cull messages
using high-level geometric algorithms and knowledge regarding a multiplicity of highly dynamic entity
attributes (e.g., location, orientation, velocity, etc.) and interaction types (e.g,, visibility, sound,
collision, etc.). Since RING servers can take advantage of knowledge regarding message semantics
and the 3D geometry of the virtual environment directly, they can execute more effective and flexible
culling algorithms than would be possible using only IP address and port mappings. Furthermore,
unlike multicast routers, RING servers may process, augment, and alter messages in addition to culling
them. For instance, RING servers already augment update messages with “Add” and “Remove”
messages to inform clients that entities are entering or leaving their potentially visible areas,”

RING at p. 90-91.

5. The method of claim4 | “Update messages containing 40 bytes (message-type[4], entity-ID[4], target-position[12], target-
further comprising the step | orientation[12], positional velocity[4], and rotational-velocity[4] were generated for each entity once
of joining, by some of said | every 2.3 seconds on average with this ‘random’ navigational behavior.”

plurality of host computers, | RING at p. 89,

said first message group by
sending control messages | “In our first experiments with multi-user virtual environments, we used IP multicast to send update
via said unicast network to | messages directly between clients. The general idea is to map entity properties into multicast groups,
said server specifying said | and send update messages only to relevant groups. For instance, Macedonia partitions a virtual world
first message group. into a 2D grid of hexagonal shaped cells each of which s represented by a separate multicast group.
Entities localize their visual interactions by sending updates only to the multicast group representing
the cell in which the reside, and they listen only to multicast groups representing cells within some
radius,

The multicast approach is similar to the RING client-server approach for wide-area networks. In both
cases, intermediate machines may cull messages rather than propagating them to all participating
workstations. However, using multicast, message culling is done by routers at the network layer,
whereas, in RING, message culling is done by server machines at the application layer (see Figure 11).
The advantages of the multicast approach are that; 1) fewer messages must be passed if clients are

39

Petitioner Riot Games, Inc. - Ex. 1005, p. 149

connected directly to a multicast-capable LAN (e.g., ethemet), and 2) latency is reduced due to faster
message routing, The disadvantages are that: 1) delays associated with joining and leaving multicast
groups make it impractical to use highly dynamic entity properties for multicast group mappings, 2) the
number of unique multicast groups accessible to any one application may not be sufficient for complex
virtual environments, and 3) multicast is not generally available across wide-area networks to many
types of networks computers (e.g., PCs with modems).

The advantage of the RING client-server approach is that very dynamic and complex message
processing may be performed by servers. In contrast to multicast routers, which can only cull
messages based on a relatively small, static set of multicast groups, RING servers can cull messages
using high-level geometric algorithms and knowledge regarding a multiplicity of highly dynamic entity
attributes (e.g., location, orientation, velocity, etc.) and interaction types (e.g., visibility, sound,
collision, etc.). Since RING servers can take advantage of knowledge regarding message semantics
and the 3D geometry of the virtual environment directly, they can execute more effective and flexible
culling algorithms than would be possible using only IP address and port mappings. Furthermore,
unlike multicast routers, RING servers may process, augment, and alter messages in addition to culling
them. For instance, RING servers already augment update messages with “Add” and “Remove”
messages to inform clients that entities are entering or leaving their potentially visible areas.”

RING at p. 90-91,

0. The method of claim I | “The system runs on Silicon Graphics workstations and uses UDP/IP datagrams for message passing.”
wherein said network is | RING at p. 89

Internet and said server
communicates with said | “A difficult challenge in multi-user visual simulation is maintaining consisted state among a large
plurality of host computers | number of workstations distributed over a wide-area network.”

using a session layer RING at p. 85

protocol.

40

Petitioner Riot Games, Inc. - Ex. 1005, p. 150

i Ho RING suvony provess soossages i the applicativn
Pl He RESG sarvery provesy smossages i the application
fager waing 4D wode] aad semastic infemation. Malticast
roavters w3 pady 1P addroasing i the netwark lagor

Figure 11 of RING at p. 91.

“However, using multicast, message culling is done by routers at the network layer, whereas, in RING,
message culling is done by server machines at the application layer (see Figure 11).”
RING at p. 90.

“This paper describes the client-server design, implementation and experimental results for a system
that supports real-time visual interaction between a large number of users in a shared 3D virtual
environment, The key feature of the system is that server-based visibility algorithms compute potential
visual interactions between entities representing users in order to reduce the number of messages
required to maintain consistent state among many workstations distributed across a wide-area network.
When an entity changes state, update messages are sent only to workstations with entities that can
potentially perceive the change- i.¢., ones to which the update is visible.”

RING at Abstract.

Petitioner Riot Games, Inc. - Ex. 1005, p. 151

“In a multi-user visual simulation system, users run an interactive interface program on (usually
distinct) workstations connected to each other via a network.”
RING at p. 85.

“A difficult challenge in multi-user visual simulation is maintaining consistent state among a large
number of workstations distributed over a wide-area network,”
RING at p. 85.

“In order to support very large numbers of users (> 1000) interacting simultaneously in a distributed
virtual environment it 1s necessary to develop a system design and communication protocol that does
not require sending update messages to all participating hosts for every entity state change.”

RING at p. 86,

“This paper describes a system (called RING) that supports interaction between large numbers of users
in virtual environments with dense occlusion (e.g., buildings, cities, etc.). RING takes advantage of the
fact that state changes must be propagated only to hosts containing entities that can possibly perceive
the change- i.¢., the one that can see it. Object-space visibility algorithms are used to compute the
region of influence for each state change, and then update messages are sent only to the small subset of
workstations to which the update is relevant.”

RING at p. §6.

“We have experimented with a variety of topologies for connecting RING clients and servers. For
practical reasons, we have focused mainly on arrangements in which clients communicate with a single
server, However, depending on the capabilities of available workstations and networks, clients can
send messages to server(s) via unicast or multicast.”

RING at p. 91

“In our first experiments with multi-user virtual environments, we used [P multicast to send update
messages directly between clients. The general idea is to map entity properties into multicast groups,
and send update messages only to relevant groups. For instance, Macedonia partitions a virtual world

4

Petitioner Riot Games, Inc. - Ex. 1005, p. 152

into a 2D grid of hexagonal shaped cells each of which is represented by a separate multicast group.
Entities localize their visual interactions by sending updates only to the multicast group representing
the cell in which the reside, and they listen only to multicast groups representing cells within some
radius.

The multicast approach is similar to the RING client-server approach for wide-area networks. In both
cases, intermediate machines may cull messages rather than propagating them to all participating
workstations. However, using multicast, message culling is done by routers at the network layer,
whereas, in RING, message culling is done by server machines at the application layer (see Figure 11).
The advantages of the multicast approach are that: 1) fewer messages must be passed if clients are
connected directly to a multicast-capable LAN (e.g., ethernet), and 2) latency is reduced due to faster
message routing, The disadvantages are that: 1) delays associated with joining and leaving multicast
groups make it impractical to use highly dynamic entity properties for multicast group mappings, 2) the
number of unique multicast groups accessible to any one application may not be sufficient for complex
virtual environments, and 3) multicast is not generally available across wide-area networks to many
types of networks computers (.., PCs with modems).

The advantage of the RING client-server approach is that very dynamic and complex message
processing may be performed by servers. In contrast to multicast routers, which can only cull
messages based on a relatively small, static set of multicast groups, RING servers can cull messages
using high-level geometric algorithms and knowledge regarding a multiplicity of highly dynamic entity
attributes (e.g., location, orientation, velocity, etc.) and interaction types (e.g., visibility, sound,
collision, etc.). Since RING servers can take advantage of knowledge regarding message semantics
and the 3D geometry of the virtual environment directly, they can execute more effective and flexible
culling algorithms than would be possible using only IP address and port mappings. Furthermore,
unlike multicast routers, RING servers may process, augment, and alter messages in addition to culling
them. For instance, RING servers already augment update messages with “Add” and “Remove”
messages to inform clients that entities are entering or leaving their potentially visible areas.”

RING at p. 90-91,

43

Petitioner Riot Games, Inc. - Ex. 1005, p. 153

CC-F

Petitioner Riot Games, Inc. - Ex. 1005, p. 154

Claim Chart comparing Claims 1, 2, and 4-6 of U.S. Patent No.
5,822,523 to the disclosure in RING in view of Van Hook

Prior art cited in this chart;
* Thomas A. Funkhouser, “RING: A Client-Server System for Multi-User Virtual Environments,” Association of Computing
Machinery, 19935 Symposium on Interactive 3D Graphics, Monterey CA. (“RING”)
+ Daniel J. Van Hook, James 0. Calvin, Michael K. Newton, and David A, Fusco, “An Approach to DIS Scaleability,” 11" DIS
Workshop, 26-30 Sept. 1994 (“Van Hook”).
Reasons to Combine:
RING discloses communicating messages over a network. RING at Figs. S and 7, pp. 88, 87 and 91. RING does not disclose
regating payloads into a single aggregated message, but Van Hook discloses aggregating group messages into a single packet by
bundlmg the packets. Van Hook at 2. Van Hook states that “[tJhe dominant effect of bundling is to reduce packet rates. Additionally,

bundling reduces bit rates because fewer packet headers are sent.” Id. Therefore, one of ordinary skill in the art would have looked to

Van Hook to aggregate group messages in order to reduce bit rates and increase the network efficiency of RING.

G Patent G : G i
1. A method for providino ‘Thls papel descnbes the cllent server deslgn lmplementatlon and expenmemal msults f01 asystem that
group messages to a supports real-time visual interaction between a large number of users in a shared 3D virtual environment,
plurality of host The key feature of the system is that server-based visibility algorithms compute potential visual
computers connected over | interactions between entities representing users in order to reduce the number of messages required to
a unicast wide area maintain consistent state among many workstations distributed across a wide-area network, When an

communication network, | entity changes state, update messages are sent only to workstations with entities that can potentially
comprising the steps of: | perceive the change- 1.¢., ones to which the update is visible.”
RING at Abstract,

Petitioner Riot Games, Inc. - Ex. 1005, p. 155

“In a multi-user visual simulation system, users run an interactive interface program on (usually distinct)
workstations connected to each other via a network.”
RING at p. 85.

“A difficult challenge in multi-user visual simulation is maintaining consistent state among a large

number of workstations distributed over a wide-area network,”
RING at p. §5.

“In order to support very large numbers of users (> 1000) interacting simultaneously in a distributed
virtual environment it is necessary to develop a system design and communication protocol that does not
require sending update messages to all participating hosts for every entity state change.”

RING at p. §6.

“This paper describes a system (called RING;) that supports interaction between large numbers of users in
virtual environments with dense occlusion (e.g., buildings, cities, efc.). RING takes advantage of the fact
that state changes must be propagated only to hosts containing entities that can possibly perceive the
change- i.¢., the one that can see it. Object-space visibility algorithms are used to compute the region of
influence for each state change, and then update messages are sent only to the small subset of
workstations to which the update is relevant,”

RING at p. §6.

“We have experimented with a variety of topologies for connecting RING clients and servers. For
practical reasons, we have focused mainly on arrangements in which clients communicate with a single
server, However, depending on the capabilities of available workstations and networks, clients can send
messages to server(s) via unicast or multicast.”

RING at p. 91,

“In our first experiments with multi-user virtual environments, we used [P multicast to send update
messages directly between clients. The general idea is to map entity properties into multicast groups, and
send update messages only to relevant groups. For instance, Macedonia partitions a virtual world into a
2D grid of hexagonal shaped cells each of which is represented by a separate multicast group. Entities

Petitioner Riot Games, Inc. - Ex. 1005, p. 156

localize their visual interactions by sending updates only to the multicast group representing the cell in
which the reside, and they listen only to multicast groups representing cells within some radius.

The multicast approach is similar to the RING client-server approach for wide-area networks. In both
cases, intermediate machines may cull messages rather than propagating them to all participating
workstations. However, using multicast, message culling is done by routers at the network layer,
whereas, in RING, message culling is done by server machines at the application layer (see Figure 1),
The advantages of the multicast approach are that; 1) fewer messages must be passed if clients are
connected directly to a multicast-capable LAN (e.g., ethernet), and 2) latency is reduced due to faster
message routing. The disadvantages are that: 1) delays associated with joining and leaving multicast
groups make it impractical to use highly dynamic entity properties for multicast group mappings, 2) the
number of unique multicast groups accessible to any one application may not be sufficient for complex
virtual environments, and 3) multicast is not generally available across wide-area networks to many types
of networks computers (e.g., PCs with modems).

The advantage of the RING client-server approach is that very dynamic and complex message processing
may be performed by servers. In contrast to multicast routers, which can only cull messages based ona
relatively small, static set of multicast groups, RING servers can cull messages using high-level
geometric algorithms and knowledge regarding a multiplicity of highly dynamic entity attributes (e.g,,
location, orientation, velocity, etc.) and interaction types (e.g., visibility, sound, collision, etc.). Since
RING servers can take advantage of knowledge regarding message semantics and the 3D geometry of the
virtual environment directly, they can execute more effective and flexible culling algorithms than would
be possible using only IP address and port mappings. Furthermore, unlike multicast routers, RING
servers may process, augment, and alter messages in addition to culling them. For instance, RING
servers already augment update messages with “Add” and “Remove” messages to inform clients that
entities are entering or leaving their potentially visible areas,”

RING at p. 90-91,

Petitioner Riot Games, Inc. - Ex. 1005, p. 157

providing a group Client

messaging server coupled Client D
to said network, said A TR
server communicating . {
with said plurality of host 8.0 O,

computers using said SOrver . Sarv ér

unicast network and \ ”’:‘ﬁ/ ‘
maintaining a list of Client . y

message groups, each o] Server Y
message group containing i “Client
at least one host ¢

Fiare & RING servery mxusge commmmicatinn betwen
clisnts, povsbly culling, sugmening, or dtering wesage:

Figure 5 of RING at p. 87.

“We have experimented with a variety of topologies for connecting RING clients and servers. For
practical reasons, we have focused mainly on arrangements in which clients communicate with a single
server. However, depending on the capabilities of available workstations and networks, clients can send

messages to server(s) via unicast or multicast.”
RING at p. 91.

“Server-based message culling is implemented using precomputed line-of-sight visibility information.
Prior to the multi-user simulation, the shared virtual environment is partitioned into a spatial subdivision
of cells whose boundaries are comprised of the static, axis-aligned polygons of the virtual environment
(1, 15]. A visibility precomputation is performed in which the set of cells potentially visible to each cell
is determined by tracing beams of possible sight-lines through transparent cell boundaries [13, 16] (see
Figure 6). During the multi-user simulation, servers keep track of which cells contain which entities by

Petitioner Riot Games, Inc. - Ex. 1005, p. 158

exchanging “periodic” update messages when entities cross cell boundaries. Real-time update messages
are propagated only to servers and clients containing entities inside some cell visible to the one
containing the updated entity. Since an entity’s visibility is conservatively over-estimated by the
precomputed visibility of its containing cell, this algorithm allows servers to proves update messages
quickly using cell visibility “look-ups” rather than more exact real-time entity visibility computations
which would be too expensive on currently available workstations.”

RING at p. 87.

Figare ¥ Flow of update messages (aheleed avouws} for wpe
dates toentites &, B, T, aod T armged tn 2 virtual epviron-

wment a8 shows in Figone 4.

Figure 7 of RING at p. §8.

“Communication between clients is managed by servers. Clients do not send messages directly to other
clients, but instead send them to servers which forward them to other client and server workstations
participating in the same distributed simulation (see Figure 5). A key feature of this client-server design
18 that servers can process messages before propagating them to other workstations, culling, augmenting,
or altering them, For instance, a server may determine that a particular update message is relevant only

Petitioner Riot Games, Inc. - Ex. 1005, p. 159

to a small subset of clients and the propagate the message only to those clients or their servers.”
RING at p. §7.

sending, by a plurality of | “RING represents a virtual environment as a set of independent entities each of which has a geometric
host computers belonging | description and a behavior. Some entities are static (¢.g.. terrain, buildings, etc.), whereas others have

o a first message group, | dynamic behavior that can be either autonomous (e.g., robots) or controlled by a user via input devices
messages to said server | (e.g., vehicles). Distributed simulation occurs when multiple entities interact in a shared virtual

via said unicast network, | environment by sending messages to one another to announce updates to their own geometry or behavior
said messages containing | modifications to the shared environment, or impact on other entities.”

apayload portionanda | RING at p. §7.

portion for identifying
said first message group; | “Communication between clients is managed by servers. Clients do not send messages directly to other
clients, but instead send them to servers which forward them to other client and server workstations
participating in the same distributed simulation (see Figure 5).”

RING at p. §7.

“We have experimented with a variety of topologies for connecting RING clients and servers. For
practical reasons, we have focused mainly on arrangements in which clients communicate with a single
server, However, depending on the capabilities of available workstations and networks, clients can send
messages to server(s) via unicast or multicast.”

RING at p. 91,

“Update messages containing 40 bytes (message-type[4], entity-ID[4], target-position[12], target-
orientation[12], positional velocity[4], and rotational-velocity[4] were generated for each entity once
every 2.3 seconds on average with this ‘random’” navigational behavior.”

RING at p. 89,

Petitioner Riot Games, Inc. - Ex. 1005, p. 160

Client D

A Ave
BIEBp,
Serverj. Server
A
Client !
Server)

“Client

¢

Fiare & RING servery mxusge commmmicatinn betwen
clisnks, povsdbly culing, augmenting, ot Ktering wessage:

Figure 5 of RING at p. 87.

aggregating, by said
server in a time interval
determined in accordance
with a predefined
criterion, said payload
portions of said messages
to create an aggregated
payload;

“Bundling. Network components such as switches, routers, and encryption devices as well as simulation
host computers have limitations in the rate at which they may process packets. Rather than transmitting
each DIS PDU as an individual packet, multiple PDUs may be bundled together into larger packets
before transmission, Bundled packets are transmitted when either of two conditions are satisfied: when a
maximum size has been reached (the packet under construction is full of PDUs); or when a maximum
time has passed without another PDU arriving. The dominant effect of bundling is to reduce packet rates.
Additionally, bundling reduces bit rates because fewer packet headers are sent.”

Van Hook at p. 2.

“4,6 Bundling
The AG collects AGGP PDUs and bundles them into larger packets for transmission over the WAN, The

purpose of the bundling algorithm is to reduce the number of packets that are transmitted. The bundling
algorithm has two parameters, a maximum bundle size and a maximum delay time. PDUs are added toa

Petitioner Riot Games, Inc. - Ex. 1005, p. 161

bundle until either the maximum size is reached or the first PDU is the bundle has been delayed by the
maximum delay time. At this point, the bundle is transmitted.”
Van Hook at p. 7.

“Furthermore unlike multicast routers, RING servers may process, augment, and alter messages in
addition to culling them. For instance, RING servers already augment update messages with “Add” and
“Remove” messages to inform clients that entities are entering or leaving their potentially visible sets.”
RING at p. 91,

“RING servers allow each client workstation to maintain surrogates for only the subset of remote entities
visible to at least one entity local to the client. . .. To support this feature, servers send their client an
“Add” message each time a remote entity enters a cell potentially visible to one of the client’s local
entities for the first time, A “Remove” message is sent when the server determines that an entity has left
the client’s visible region. As entities move through the environment, servers augment update messages
with “Add” and “Remove” messages notifying clients that remote entities have become relevant or
irrelevant to the client’s local entities.”

RING at p. 88.

“Finally, time critical computing algorithms can be used to determine an ‘optimal” set of messages to
send to each client based on network connection bandwidths, workstation processing capabilities, and
many other real-time performance factors (i.e., in a manner similar to that used in [§]).”

RING at p. 91,

“During the multi-user simulation, servers keep track of which cells contain which entities by exchanging
‘periodic’ update messages when entities cross cell boundaries. Real-time update messages are
propagated only to servers and clients containing entities inside some cell visible to the one containing
the updated entity, Since an entity’s visibility is conservatively over-estimated by the precomputed
visibility of its containing cell, this algorithm allows servers to process update messages quickly using
cell visibility ‘look-ups’ rather than more exact real-time entity visibility computations which would be
too expensive on currently available workstations.”

RING at p. §7.

Petitioner Riot Games, Inc. - Ex. 1005, p. 162

“Rather than sending messages directly between clients, RING routes each on through at least one server,
and possibly two. Computations are performed in the servers before messages are propagated further

adding to latency.”
RING at p. 88,

forming an aggregated
message using said
aggregated payload; and

“Bundling. Network components such as switches, routers, and encryption devices as well as simulation
host computers have limitations in the rate at which they may process packets. Rather than transmitting
each DIS PDU as an individual packet, multiple PDUSs may be bundled together into larger packets
before transmission. Bundled packets are transmitted when either of two conditions are satisfied: when a
maximum size has been reached (the packet under construction is full of PDUs); or when a maximum
time has passed without another PDU arriving. The dominant effect of bundling is to reduce packet rates.
Additionally, bundling reduces bit rates because fewer packet headers are sent.”

Van Hook at p. 2.

“Furthermore unlike multicast routers, RING servers may process, augment, and alter messages in
addition to culling them. For instance, RING servers already augment update messages with “Add” and
“Remove” messages to inform clients that entities are entering or leaving their potentially visible sets.”
RING at p. 91,

“RING servers allow each client workstation to maintain surrogates for only the subset of remote entities
visible to at least one entity local to the client. . .. To support this feature, servers send their client an
“Add” message each time a remote entity enters a cell potentially visible to one of the client’s local
entities for the first time, A “Remove” message is sent when the server determines that an entity has left
the client’s visible region. As entities move through the environment, server augment update messages
with “Add” and “Remove” messages notifying clients that remote entities have become relevant or
irrelevant to the client’s local entities.”

RING at p. 88,

fransmitting, by said

server via said unicast | clients, but instead send them to servers which forward them to other client and server workstations
network, said aggregated | participating in the same distributed simulation (see Figure 3).”
message to arecipient | RING at p. 87,

“Communication between clients is managed by servers. Clients do not send messages directly to other

10

Petitioner Riot Games, Inc. - Ex. 1005, p. 163

host computer belonging
to said first message “We have experimented with a variety of topologies for connecting RING clients and servers. For
group. practical reasons, we have focused mainly on arrangements in which clients communicate with a single
server, However, depending on the capabilities of available workstations and networks, clients can send
messages to server(s) via unicast or multicast,”

RING at p. 91

“RING servers allow each client workstation to maintain surrogates for only the subset of remote entities
visible to at least one entity local to the client, . .. To support this feature, servers send their client an
“Add” message each time a remote entity enters a cell potentially visible to one of the client’s local
entities for the first time. A “Remove” message is sent when the server determines that an entity has left
the client’s visible region. As entities move through the environment, server augment update messages
with “Add” and “Remove” messages notifying clients that remote entities have become relevant or

irrelevant to the client’s local entities.”
RING at p. §8.

“Bundling. Network components such as switches, routers, and encryption devices as well as simulation
host computers have limitations in the rate at which they may process packets. Rather than transmitting
each DIS PDU as an individual packet, multiple PDUs may be bundled together into larger packets
before transmission. Bundled packets are transmitted when either of two conditions are satisfied: when a
maximun size has been reached (the packet under construction is full of PDUs); or when a maximum
time has passed without another PDU arriving, The dominant effect of bundling is to reduce packet rates.
Additionally, bundling reduces bit rates because fewer packet headers are sent.”

Van Hook at p. 2.

“4.6 Bundling

The AG collects AGGP PDUs and bundles them into larger packets for transmission over the WAN. The
purpose of the bundling algorithm is to reduce the number of packets that are transmitted. The bundling
algorithm has two parameters, a maximum bundle size and a maximum delay time. PDUs are added to a
bundle until either the maximum size is reached or the first PDU is the bundle has been delayed by the

11

Petitioner Riot Games, Inc. - Ex. 1005, p. 164

maximum delay time, At this point, the bundle is transmitted.”
Van Hook at p. 7.

“Exercise scale, The large number of entities involved in STOW-E will produce offered loads of as much
as four megabits and perhaps up to 2,000 packets per second. Such traffic levels will severely tax all
simulation computers even if unlimited communications resources were available,”

Van Hook at p. 1.

“Explicit representations of command, control, and communication are required to permit command
forces to transmit orders to and receive reports from a new generation of more intelligent semi-automated
forces. These new elements and phenomena require new protocols and generate new classes of traffic
that must be carried on the connecting networks.”

Van Hook at p. 1,

“A component of ARPA’s approach to scaleability for STOW-E is to implement cooperating and
complementary instances of a number of the information flow management techniques in an Application
Gateway (AG) situated at the LAN/WAN boundary of each participating network site (figure 1). The AG
may be thought of as a collection of information flow management agents [4] that perform services on
behalf of their clients, the simulation applications, The purpose of these agents is to compensate for and
efficiently use the available communication and processing resources. Each AG processes PDUs
received from its attached LAN and sends representation of local exercise state and events to other AGs
over the WAN, Similarly, each AG receives representations of remote state and events from other AGs
over the WAN and sends PDUs onto its attached LAN. Communication between AGs is via an
Application Gateway to Gateway Protocol (AGGP). AGGP supports communication of control
information related to the information flow management techniques as well as representations of exercise
state and events,”

Van Hook at p. 4.

12

Petitioner Riot Games, Inc. - Ex. 1005, p. 165

A A,
(AN, - ™ .
- / N oy
- ‘,-'! \ ﬂ.!\ {.A\(\i}
AR
i WaAN i
y ;
A /
1ANY . / Mo
N R

Figwre 1: Appfization Gateway comections Wil i network

Figure 1 of Van Hook at p. 4.

“The algorithm operates as follows. The terrain is divided into a grid of square cells by each AG. A
square grid is used because it makes calculations simple and permits regions of the terrain to be specified
as alist of cells. Each AG determines the set of cells from which it needs to receive full accuracy data,
This set consists of those cells that overlay the circular regions of interest of the entities at the AG’s site
LAN. Figure 3 illustrates this idea by showing three entities and their circular regions of interest, For
determining the full accuracy region, the AGs use regions of interest that are based upon the viewing
ranges of the entities on the site LAN. The set of cells for which full accuracy data is needed is outlined
in the figure. All AGs transmit their cell sets to each other. The full accuracy region for any AG consists
of the union of the sets of cells received from all other AGs.”

Van Hook at p. 6,

3

Petitioner Riot Games, Inc. - Ex. 1005, p. 166

Figure & Cell for which Tuf accuracy is tequired
Figure 5 of Van Hook at p. 6.

2. The method of claim | | “During the multi-user simulation, servers keep track of which cells contain which entities by exchanging
wherein said time interval | “periodic” update messages when entities cross cell boundaries.”
is a fixed period of time. | RING at p. 87.

“This paper describes the client-server design, implementation and experimental results for a system that
supports real-time visual interaction between a large number of users in a shared 3D virtual environment.
The key feature of the system is that server-based visibility algorithms compute potential visual
interactions between entities representing users in order to reduce the number of messages required to
maintain consistent state among many workstations distributed across a wide-area network, When an

Petitioner Riot Games, Inc. - Ex. 1005, p. 167

entity changes state, update messages are sent only to workstations with entities that can potentially
perceive the change- i.¢., ones to which the update is visible.”
RING at Abstract,

“In a multi-user visual simulation system, users run an interactive interface program on (usually distinct)

workstations connected to each other via a network.”
RING at p. §5.

“A difficult challenge in multi-user visual simulation is maintaining consistent state among a large
number of workstations distributed over a wide-area network.”
RING at p. 85,

“In order to support very large numbers of users (> 1000) interacting simultaneously in a distributed
virtual environment it is necessary to develop a system design and communication protocol that does not
require sending update messages to all participating hosts for every entity state change.”

RING at p. §6.

“This paper describes a system (called RING;) that supports interaction between large numbers of users in
virtual environments with dense occlusion (.g., buildings, cities, etc.). RING takes advantage of the fact
that state changes must be propagated only to hosts containing entities that can possibly perceive the
change- L., the one that can see it. Object-space visibility algorithms are used to compute the region of
influence for each state change, and then update messages are sent only to the small subset of
workstations to which the update is relevant,”

RING at p. 86.

“We have experimented with a variety of topologies for connecting RING clients and servers. For
practical reasons, we have focused mainly on arrangements in which clients communicate with a single
server, However, depending on the capabilities of available workstations and networks, clients can send
messages to server(s) via unicast or multicast.”

RING at p. 91,

15

Petitioner Riot Games, Inc. - Ex. 1005, p. 168

“Tn our first experiments with multi-user virtual environments, we used IP multicast to send update
messages directly between clients. The general idea is to map entity properties into multicast groups, and
send update messages only to relevant groups. For instance, Macedonia partitions a virtual world into a
2D grid of hexagonal shaped cells each of which is represented by a separate multicast group. Entities
localize their visual interactions by sending updates only to the multicast group representing the cell in
which the reside, and they listen only to multicast groups representing cells within some radius.

The multicast approach s similar to the RING client-server approach for wide-area networks. In both
cases, intermediate machines may cull messages rather than propagating them to all participating
workstations. However, using multicast, message culling is done by routers at the network layer,
whereas, in RING, message culling is done by server machines at the application layer (see Figure 11).
The advantages of the multicast approach are that: 1) fewer messages must be passed if clients are
connected directly to a multicast-capable LAN (e.g., ethernet), and 2) latency is reduced due to faster
message routing. The disadvantages are that: 1) delays associated with joining and leaving multicast
groups make it impractical to use highly dynamic entity properties for multicast group mappings, 2) the
number of unique multicast groups accessible to any one application may not be sufficient for complex
virtual environments, and 3) multicast is not generally available across wide-area networks to many types
of networks computers (e.g., PCs with modems).

The advantage of the RING client-server approach is that very dynamic and complex message processing
may be performed by servers, In contrast to multicast routers, which can only cull messages based on a
relatively small, static set of multicast groups, RING servers can cull messages using high-level
geometric algorithms and knowledge regarding a multiplicity of highly dynamic entity attributes (e.g,,
location, orientation, velocity, etc.) and interaction types (e.g., visibility, sound, collision, etc.). Since
RING servers can take advantage of knowledge regarding message semantics and the 3D geometry of the
virtual environment directly, they can execute more effective and flexible culling algorithms than would
be possible using only IP address and port mappings. Furthermore, unlike multicast routers, RING
servers may process, augment, and alter messages in addition to culling them. For instance, RING
servers already augment update messages with “Add” and “Remove” messages to inform clients that
entities are entering or leaving their potentially visible areas.”

RING at p. 90-91,

16

Petitioner Riot Games, Inc. - Ex. 1005, p. 169

4, The method of claim 1
further comprising the
step of creating, by one of
said plurality of host
computers, said first
message group by sending
a first control message to
said server via said
unicast network,

“In our first experiments with multi-user virtual environments, we used IP multicast to send update
messages directly between clients. The general idea is to map entity properties into multicast groups, and
send update messages only to relevant groups. For instance, Macedonia partitions a virtual world into a
2D grid of hexagonal shaped cells each of which is represented by a separate multicast group. Entities
localize their visual interactions by sending updates only to the multicast group representing the cell in
which the reside, and they listen only to multicast groups representing cells within some radius.

The multicast approach s similar to the RING client-server approach for wide-area networks. In both
cases, intermediate machines may cull messages rather than propagating them to all participating
workstations. However, using multicast, message culling is done by routers at the network layer,
whereas, in RING, message culling is done by server machines at the application layer (see Figure 11).
The advantages of the multicast approach are that: 1) fewer messages must be passed if clients are
connected directly to a multicast-capable LAN (e.g., ethernet), and 2) latency is reduced due to faster
message routing. The disadvantages are that: 1) delays associated with joining and leaving multicast
groups make it impractical to use highly dynamic entity properties for multicast group mappings, 2) the
number of unique multicast groups accessible to any one application may not be sufficient for complex
virtual environments, and 3) multicast is not generally available across wide-area networks to many types
of networks computers (e.g., PCs with modems).

The advantage of the RING client-server approach is that very dynamic and complex message processing
may be performed by servers, In contrast to multicast routers, which can only cull messages based on a
relatively small, static set of multicast groups, RING servers can cull messages using high-level
geometric algorithms and knowledge regarding a multiplicity of highly dynamic entity attributes (e.g,,
location, orientation, velocity, etc.) and interaction types (e.g, visibility, sound, collision, etc.). Since
RING servers can take advantage of knowledge regarding message semantics and the 3D geometry of the
virtual environment directly, they can execute more effective and flexible culling algorithms than would
be possible using only IP address and port mappings. Furthermore, unlike multicast routers, RING
servers may process, augment, and alter messages in addition to culling them. For instance, RING
servers already augment update messages with “Add” and “Remove” messages to inform clients that

entities are entering or leaving their potentially visible areas.”
RING at p. 90-91,

17

Petitioner Riot Games, Inc. - Ex. 1005, p. 170

5. The method of claim 4
further comprising the
step of joining, by some
of said plurality of host
computers, said first
message group by sending
control messages via said
unicast network to said
server specifying said first
message group.

“Update messages containing 40 bytes (message-type[4], entity-ID[4], target-position[12], target-
orientation[12], positional velocity[4], and rotational-velocity[4] were generated for each entity once
every 2.3 seconds on average with this ‘random’ navigational behavior.”

RING at p. 89,

“In our first experiments with multi-user virtual environments, we used IP multicast to send update
messages directly between clients. The general idea is to map entity properties into multicast groups, and
send update messages only to relevant groups. For instance, Macedonia partitions a virtual world into a
2D grid of hexagonal shaped cells each of which is represented by a separate multicast group. Entities
localize their visual interactions by sending updates only to the multicast group representing the cell in
which the reside, and they listen only to multicast groups representing cells within some radius,

The multicast approach is similar to the RING client-server approach for wide-area networks. In both
cases, intermediate machines may cull messages rather than propagating them to all participating
workstations, However, using multicast, message culling is done by routers at the network layer,
whereas, in RING, message culling is done by server machines at the application layer (see Figure 11).
The advantages of the multicast approach are that; 1) fewer messages must be passed if clients are
connected directly to a multicast-capable LAN (e.g., ethernet), and 2) latency is reduced due to faster
message routing. The disadvantages are that: 1) delays associated with joining and leaving multicast
groups make it impractical to use highly dynamic entity properties for multicast group mappings, 2) the
number of unique multicast groups accessible to any one application may not be sufficient for complex
virtual environments, and 3) multicast is not generally available across wide-area networks to many types
of networks computers (e.g., PCs with modems).

The advantage of the RING client-server approach is that very dynamic and complex message processing
may be performed by servers. In contrast to multicast routers, which can only cull messages based on a
relatively small, static set of multicast groups, RING servers can cull messages using high-level
geometric algorithms and knowledge regarding a multiplicity of highly dynamic entity attributes (.g,
location, orientation, velocity, etc.) and interaction types (e.g., visibility, sound, collision, etc.). Since
RING servers can take advantage of knowledge regarding message semantics and the 3D geometry of the

18

Petitioner Riot Games, Inc. - Ex. 1005, p. 171

virtual environment directly, they can execute more effective and flexible culling algorithms than would
be possible using only IP address and port mappings. Furthermore, unlike multicast routers, RING
servers may process, augment, and alter messages in addition to culling them. For instance, RING
servers already augment update messages with “Add” and “Remove” messages to inform clients that
entities are entering or leaving their potentially visible areas.”

RING at p. 90-91,

6. The method of claim |
wherein said network is
Internet and said server
communicates with said
plurality of host
computers using a session
layer protocol.

“The system runs on Silicon Graphics workstations and uses UDP/IP datagrams for message passing.”
RING at p. §9.

“A difficult challenge in multi-user visual simulation is maintaining consisted state among a large
number of workstations distributed over a wide-area network,”
RING at p. 85,

Figues 1o RING servers proviss messiges i the applicatios
over waing 3D wode] and semantic wiomation Multicet
rantert wse oy 1P aldeessing o the retwork laper,

19

Petitioner Riot Games, Inc. - Ex. 1005, p. 172

Figure 11 of RING at p. 91.

“However, using multicast, message culling is done by routers at the network layer, whereas, in RING,
message culling is done by server machines at the application layer (see Figure 11).”

RING at p. 90,

“This paper describes the client-server design, implementation and experimental results for a system that
supports real-time visual interaction between a large number of users in a shared 3D virtual environment.
The key feature of the system is that server-based visibility algorithms compute potential visual
interactions between entities representing users in order to reduce the number of messages required to
maintain consistent state among many workstations distributed across a wide-area network. When an
entity changes state, update messages are sent only to workstations with entities that can potentially
perceive the change- 1.¢., ones to which the update is visible,”

RING at Abstract,

“In a multi-user visual simulation system, users run an interactive interface program on (usually distinct)
workstations connected to each other via a network.”
RING at p. 85,

“A difficult challenge in multi-user visual simulation is maintaining consistent state among a large
number of workstations distributed over a wide-area network,”
RING at p. §5.

“In order to support very large numbers of users (> 1000) interacting simultaneously in a distributed
virtual environment it is necessary to develop a system design and communication protocol that does not
require sending update messages to all participating hosts for every entity state change.”

RING at p. 86,

“This paper describes a system (called RING;) that supports interaction between large numbers of users in
virtual environments with dense occlusion (e.g., buildings, cities, etc.). RING takes advantage of the fact
that state changes must be propagated only to hosts containing entities that can possibly perceive the

Petitioner Riot Games, Inc. - Ex. 1005, p. 173

change- i.e., the one that can see it. Object-space visibility algorithms are used to compute the region of
influence for each state change, and then update messages are sent only to the small subset of
workstations to which the update is relevant.”

RING at p. 86.

“We have experimented with a variety of topologies for connecting RING clients and servers. For
practical reasons, we have focused mainly on arrangements in which clients communicate with a single
server. However, depending on the capabilities of available workstations and networks, clients can send
messages to server(s) via unicast or multicast.”

RING at p. 91,

“In our first experiments with multi-user virtual environments, we used IP multicast to send update
messages directly between clients. The general idea is to map entity properties into multicast groups, and
send update messages only to relevant groups. For instance, Macedonia partitions a virtual world into a
2D grid of hexagonal shaped cells each of which is represented by a separate multicast group. Entities
localize their visual interactions by sending updates only to the multicast group representing the cell in
which the reside, and they listen only to multicast groups representing cells within some radius.

The multicast approach is similar to the RING client-server approach for wide-area networks. In both
cases, intermediate machines may cull messages rather than propagating them to all participating
workstations, However, using multicast, message culling is done by routers at the network layer,
whereas, in RING, message culling is done by server machines at the application layer (see Figure 11).
The advantages of the multicast approach are that: 1) fewer messages must be passed if clients are
connected directly to a multicast-capable LAN (e.g,, ethernet), and 2) latency is reduced due to faster
message routing. The disadvantages are that: 1) delays associated with joining and leaving multicast
groups make it impractical to use highly dynamic entity properties for multicast group mappings, 2) the
number of unique multicast groups accessible to any one application may not be sufficient for complex
virtual environments, and 3) multicast is not generally available across wide-area networks to many types
of networks computers (e.g., PCs with modems).

The advantage of the RING client-server approach is that very dynamic and complex message processing

Petitioner Riot Games, Inc. - Ex. 1005, p. 174

may be performed by servers. In contrast to multicast routers, which can only cull messages based on a
relatively small, static set of multicast groups, RING servers can cull messages using high-level
geometric algorithms and knowledge regarding a multiplicity of highly dynamic entity attributes (e.g,,
location, orientation, velocity, etc.) and interaction types (e.g., visibility, sound, collision, etc.). Since
RING servers can take advantage of knowledge regarding message semantics and the 3D geometry of the
virtual environment directly, they can execute more effective and flexible culling algorithms than would
be possible using only IP address and port mappings. Furthermore, unlike multicast routers, RING
servers may process, augment, and alter messages in addition to culling them. For instance, RING
servers already augment update messages with “Add” and “Remove” messages to inform clients that
entities are entering or leaving their potentially visible areas.”

RING at p. 90-91,

Petitioner Riot Games, Inc. - Ex. 1005, p. 175

OTH-C

Petitioner Riot Games, Inc. - Ex. 1005, p. 176

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
In re Ex Parte Reexamination of:
Patent No. 6,264,560 Control Number: Not Yet Assigned

Inventors: S. Goldberg
J. Van Antwerp

Group Art Unit: Not Yet Assigned

Examiner: Not Yet Assigned
Issue Date: July 24, 2001
Application No. 90/140,979
Filed: August 27, 1998

"Box: Ex Parte Réexam

For: Method and System for Playing Games
on a Network

N N’ N N e N N N Nt N N N

Mail Stop Ex Parte Reexam
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

DECLARATION OF DAVID AHN

I, David Ahn, declare:

1. I hereby certify that I am over 18 years of age and am competent to execute this
declaration. If called as a witness, I could and would competently testify to the following facts,
of which I have personal knowledge.

2. I understand that this declaration is being submitted in conjunction with a request
for reexamination of claim 92 of U.S. Patent No. 6,264,560. I further understand that the source
code for the multi-user online game Netrek is being submitted in support of that reexamination
request, which code was downloaded from the Netrek Software Archive at http://ftp.netrek.org/.

Specifically, I understand that the source code archive files named “BRMH-1.7.tar.gz” and

DCMB_832,595 1

Petitioner Riot Games, Inc. - Ex. 1005, p. 177

Declaration of David Ahn

“Server2.5pl4.tar.gz” have been submitted. This declaration addresses my personal knowledge
regarding the public accessibility of those files and the source code they contain.

3. My educational and professional background are in the field of computer science.
In 1995 I received a Bachelor of Science degree in Computer Science from Wake Forest
University. Since then, I have worked in the area of information technology (IT) and software
engineering. After graduation I became employed full-time at the Virtual Endoscopy Center at
Wake Forest University School of Medicine, where my work focused on researching and
developing software algorithms and techniques for medical imaging and visualization. Between
1999 and 2001 I was instrumental in forming a medical software company called PointDx, Inc.
In 2001 I left Wake Forest to join PointDx full-time. My responsibilities at PointDx included
overseeing all aspects of the technology side of the business, including technical direction,
product engineering and development, and IT infrastructure. I was primarily responsible for the
design and development of software products, and I continued working in this capacity through
two acquisitions of my employer, the first by IDX Systems Corporation and the second by GE
Healthcare IITS. In 2006 I left GE and subsequently joined GreatWall Systems, Inc., an early-
stage startup company offering IT network security products and services. 1 am responsible for
the technology side of the company, including overseeing all hardware, software, and systems
development of the company’s products.

4. Including my time as an undergraduate student and an amateur programmer, I
have over 16 years of experience in the field of computer science, programming, and software
engineering.

5. I am very familiar with Netrek. I first learned about Netrek in or around 1992 or

1993 as a computer science student at Wake Forest University. At that time, Netrek was quite

DCMB_832,595 2

Petitioner Riot Games, Inc. - Ex. 1005, p. 178

Declaration of David Ahn

popular on college campuses all over the world.1 Netrek software generally falls into two
categories: Netrek client software and Netrek server software. In order to play Netrek, a player
uses Netrek client software running on a local computer to connect over the network, such as the
Internet, to Netrek server software running on a remote host computer. There are many versions
and variations of both Netrek client and server software. For example, the archive files “BRMH-
1.7.tar.gz” and “Server2.5pl4.tar.gz,” addressed below, contain the source code to specific
versions of Netrek client and server software.

6. In approximately 1994, I began to play Netrek extensively and, by the end of that
year, had become involved with Netrek software and with the Netrek community in general.
Over the subsequent years, I expanded my involvement with Netrek through various activities
such as joining and playing in various Netrek leagues, organizing Netrek leagues and
tournaments, developing and maintaining Netrek software, and maintaining and supporting
public Netrek resources on the Internet such as the International Netrek League (INL) statistics
home page, the Netrek Home Page, the Netrek Software Archive, and others. I also participated
actively in the Usenet newsgroup rec.games.netrek, so much so that a recent search on “Dave
Ahn” in that newsgroup covering 1994 to the present resulted in over 1600 results.2 I consider
myself deeply involved and very well-known in the Netrek community, even though my

involvement has lessened greatly in the last five years.

1 posting of Tom Holub to rec.games.netrek, Subject: Netrek Server List,
http://groups.google.com/group/rec.games.netrek/msg/8dbcO1d4abeeSace (Dec. 21, 1993), a true and correct copy
of which is contained in attached Exhibit A. (Note: in citations to Google Groups postings, this declaration
specifies the “Local” date included in the header information.)

2 Attached hereto as Exhibit B is a true and correct copy of the first page of a search of rec.games.netrek for “Dave
Ahn” performed on Dec. 10, 2007
(http://groups.google.com/group/rec.games.netrek/search?q=dave+ahn&start=0&scoring=d&).

DCMB_832,595 3

Petitioner Riot Games, Inc. - Ex. 1005, p. 179

Declaration of David Ahn

7. The software source code for Netrek is publicly accessible and, to the best of my
knowledge, has been ever since I became aware of Netrek. I began building (compiling and
installing) my own Netrek server in 1994 using source code for the Netrek “Vanilla” server
which I had obtained from a publicly accessible file transfer protocol (FTP) site at
ftp.ecst.csuchico.edu.3 Thereafter, I spent a great deal of time downloading, experimenting with,
and modifying the source code to various Netrek software. Over the years, I became quite
familiar with Netrek software and its source code, including how they worked and where various
versions of the associated files could be found.

8. The Usenet newsgroup rec.games.netrek? was a central communications tool for
the Netrek community in the early 1990s and still exists today. That newsgroup not only offered
an arena for general discussions of Netrek-related topics but also served as a medium for
publishing the locations of various FTP sites from which Netrek software and source code could
be freely downloaded. Such information was periodically posted in the form of messages
containing lists of answers to frequently asked questions (FAQ) about Netrek, lists of known
public Netrek servers, and lists of known FTP servers where Netrek software and source code

were published. One instance of the Netrek FAQ List appears in a posting dated July 21, 1994,

3 Posting of Dave Ahn to rec.games.netrek, Subject: Help getting res-rsa working with server...,
http://groups.google.com/group/rec.games.netrek/browse_frm/thread/4dadc5af59745a61/fde76eab98a25b8a (Nov.
14, 1994), a true and correct copy of which is contained in attached Exhibit C.

4 Google Groups provides an archive of Usenet newsgroups that dates back to 1981. How far back does Google’s
Usenet archive go?, http://groups.google.com/support/bin/answer.py?answer=46439&topic=9246, a true and correct
copy of which is contained in attached Exhibit D, at D-1. Google Groups includes an archive of rec.games.netrek
that dates back to 1992. rec.games.netrek, http://groups.google.com/group/rec.games.netrek/about, a true and
correct copy of which is contained in attached Exhibit D, at D-2/3.

DCMB_832,595 4

Petitioner Riot Games, Inc. - Ex. 1005, p. 180

Declaration of David Ahn

titled “rec.games.netrek FAQ List.”> The Netrek FAQ List posting points readers to a Netrek
FTP List for locations where Netrek server source code could be downloaded.¢

9. A subsequent posting, also dated July 21, 1994, is titled “Netrek FTP List.” That
posting lists various FTP servers from which both server source code and client source code
could be downloaded. It also identifies locations from which the latest versions of the Netrek
FAQ List, Netrek Server List, and Netrek FTP List could be downloaded.” Among other things,
it features a list of “blessed clients” that includes, for example, a client version called BRM-
Hadley 1.7. The description in that posting explains that the source code for BRM-Hadley 1.7
was accessible at cad.ics.uci.edu in the directory /pub/netrek.8 Later in the post is a section titled
“Subject: SERVER SOURCE” that contains “a listing of all known netrek server sources.”® The

second server on the list is named “New Vanilla Server 2.2+,” and the post indicates that it was

5 Posting of Tom Holub to rec.games.netrek, Subject: rec.games.netrek FAQ List,
http://groups.google.com/group/rec.games.netrek/msg/9bbd5514020d51fa (Jul. 21, 1994), a true and correct copy of
which is contained in attached Exhibit E; thread view of same available at
http://groups.google.com/group/rec.games.netrek/browse_frm/thread/35a84ea78ce38bdb/9bbd5514020d51fa
(referencing FAQ, Server List, and FTP List), a true and correct copy of which is contained in attached Exhibit F.

6 Exhibit E, supra note 5 (Holub, FAQ List), at E-4 (“Read the Netrek FTP list to find out where you can get the
server source.”).

7 Posting of Tom Holub to rec.games.netrek, Subject: Netrek FTP list,
http://groups.google.com/group/rec.games.netrek/msg/ac03262b6ac8c4cl (Jul. 21, 1994), a true and correct copy of
which is contained in attached Exhibit G. The FTP List was updated from time to time. For example, a series of
postings dated September through October 1994 mention the FTP List and identify it as a source for Netrek
software. Posting of Tatsuya Murase to rec.games.netrek, Subject: Re: Windows Client,
http://groups.google.com/group/rec.games.netrek/browse_frm/thread/d6ecc5c095bf8a38 (Sep. 30, 1994), a true and
correct copy of which is contained in attached Exhibit H; Posting of Tatsuya Murase to rec.games.netrek, Subject:
Re: Windows Client, http://groups.google.com/group/rec.games.netrek/msg/20da2a42b64333a8 (Sep. 30, 1994)
(“Reading the FAQ/FTPIist, you can easily download a client for your computer set it up, and run in under 45
minutes, if even that.”), a true and correct copy of which is contained in attached Exhibit 1.

8 Exhibit G, supra note 7 (Holub, Netrek FTP list), at G-3.

9 Id., at G-6.

DCMB_832,595 5

Petitioner Riot Games, Inc. - Ex. 1005, p. 181

Declaration of David Ahn

maintained by Nick Trown at ftp.ecst.csuchico.edu in the directory /pub/netrek/src.10 In a later
post to rec.games.netrek dated August 9, 1994, Nick Trown announced that a new version
(2.5pl4) of the Vanilla Server had been posted to ftp.ecst.csuchico.edu.!! My understanding,
which is consistent with these postings, is that anyone involved in the Netrek community and/or
reading rec.games.netrek could easily and freely have accessed these copies of Netrek source
code at the indicated locations, as I myself did on several occasions.

10. Any number of other messages on rec.games.netrek confirm that the Netrek
community was widely aware of how to locate and download Netrek software and source code.
For example, an October 15, 1993 posting by Tedd Hadley announced that the BRM-Hadley
(BRMH) 1.7 client source code was accessible at cad.ics.uci.edu:/pub/netrek/.12 An August 17,
1994 posting by James Ivey describes having obtained a copy of the Vanilla 2.5pl4 server from
ftp.ecst.csuchico.edu under /pub/netrek/src/Server2.5pl4.tar.gz.13 In that posting, Mr. Ivey
declared, “[i]t’s really not hard to grab some code and take a look.”4 On November 19, 1994, a

posting by Vanilla Server maintainer Nick Trown responded to a message from a user who had

10 14., at G-6/7.

11 posting of Nick Trown to rec.games.netrek, Subject: New Server Release,
http://groups.google.com/group/rec.games.netrek/msg/d7fb4451975e6fb2 (Aug. 9, 1994), a true and correct copy of
which is contained in attached Exhibit J.

12 posting of Tedd Hadley to rec.games.netrek, Subject: BRMH-1.7 available,
http://groups.google.com/group/rec.games.netrek/msg/00b0aa5dfdb1ba99 (Oct. 15, 1993), a true and correct copy
of which is contained in attached Exhibit K.

13 The .tar. gz file extension signifies the multiple source code files that defined the Vanilla server had been
combined into a single compressed archive file. (A “tar” file is an archive file that collates a collection of files into
one larger file for distribution or archiving. A “tar.gz” file is a “tar” file that has been compressed to reduce storage
usage. Such formats were and still are commonly used for creating software source code packages that are easily
distributed and downloaded over the Internet.)

14 posting of James Ivey to rec.games.netrek, Subject: Re: AGRI poppage (was Re: Bombing a planet —- is it an
art?), http://groups.google.com/group/rec.games.netrek/msg/df66eac4e839bc59 (Aug. 17, 1994), a true and correct
copy of which is contained in attached Exhibit L.

DCMB_832,595 6

Petitioner Riot Games, Inc. - Ex. 1005, p. 182

Declaration of David Ahn

downloaded version 2.5pl4 of the Vanilla Server source code and was requesting assistance with
compiling and running it.13

11. During the 1995-98 time frame, I became aware that a number of web sites and
FTP sites that made Netrek software and source code freely available were disappearing or
shutting down. Accordingly, I began to acquire a private collection of Netrek software, software
source code, and other files that I had downloaded from the publicly accessible sites that still
existed, in order to preserve those copies and/or use them for my own purposes. I eventually
published my collection as the “Netrek FTP Archive” on an FTP site at
ftp://ftp.netrek.org/pub/netrek/. I announced that FTP site in a posting to rec.games.netrek on
October 23, 1998. That posting stated my belief that my FTP site contained “almost all known
Netrek software including mirrors of major Netrek FTP sites.”16 Since then, I have continued to
maintain that site, which currently is called the “Netrek Software Archive” and is available at
http://ftp.netrek.org/.

12. Among the files currently available on the Netrek Software Archive are those in
“mirror” directories in the /pub/netrek/mirrors/ directory. These mirrored files are complete and
verbatim copies of entire public FTP sites that were downloaded to the Netrek Software Archive
using a mirroring script that preserved the directory hierarchy and file time stamps of the data
copied from original FTP sites. The ftp.csua.berkeley.ued.old and ftp.solace.mh.se directories

are mirror copies of the public FTP sites ftp.csua.berkeley.edu and ftp.solace.mh.se, respectively,

15 posting of Nick Trown to rec.games.netrek, Subject: Re: Netrek server help !,
http://groups.google.com/group/rec.games.netrek/browse_frim/thread/e728557051dc0c13/4f1af10b05d68ac8 (Nov.
18, 1994), a true and correct copy of which is contained in attached Exhibit M.

16 posting of Dave Ahn to rec.games.netrek, Subject: www.netrek.org - no longer the game?,
http://groups.google.com/group/rec.games.netrek/msg/ee9a7af9f7a39305 (Oct. 23, 1998), a true and correct copy of
which is contained in attached Exhibit N.

DCMB_832,595 7

Petitioner Riot Games, Inc. - Ex. 1005, p. 183

Declaration of David Ahn

which are referenced in a December 14, 1994 posting of the Netrek FTP List to the newsgroup
rec.answers.17

13. Among the files currently available in these two mirror directories are the BRM-
Hadley 1.7 client source code files and the Vanilla 2.5pl4 server source code files. The BRM-
Hadley 1.7 source code files are contained in a compressed archive file named BRMH-1.7 tar.gz
and located at http://ftp.netrek.org/pub/netrek/mirrors/ftp.csua.berkeley.edu.old/netrek/old/. The
Vanilla 2.5pl4 source code files are contained in a compressed archive file named
Server2.5pl4.tar.gz and located at
http://ftp.netrek.org/pub/netrek/mirrors/ftp.solace.mh.se/netrek/servers/vanilla/.18

14. The BRMH-1.7.tar.gz and Server2.5pl4.tar.gz archive files stored on the Netrek
Software Archive carry date stamps of October 16, 1993 and December 15, 1994, respectively.
The date stamps can be seen alongside the filenames in the above-referenced directories.!® Each
date stamp represents the date the associated archive file was created. Accordingly, by
definition, each file contained in the archive must have been created on or before the indicated

date, as shown in the content listings of those archive files.20 To the best of my knowledge, the

17 posting of Tom Holub to rec.answers, Subject: Netrek FTP list.,
http://groups.google.com/group/rec.answers/msg/ebcb9al4c0d4de78 (Dec. 14, 1994), a true and correct copy of
which is contained in attached Exhibit O.

18 For verification purposes, I wish to note that the MD5 hash of BRMH-1.7.tar.gz is
747acc63aad5b274a25d7ef0121578be, and the MDS hash of Server2.5pl4.tar.gz is
809f80e34575add74600f21dc052bfad.

19 Attached hereto as Exhibit P is a true and correct copy of the current content listing of
http:/ftp.netrek.org/pub/netrek/mirrors/ftp.csua.berkeley.edu.old/netrek/old/, which includes the BRMH-1.7 tar.gz
archive file and its time stamp, at P-1. Attached hereto as Exhibit Q is a true and correct copy of the current content
listing of http://ftp.netrek.org/pub/netrek/mirrors/ftp.solace.mh.se/netrek/servers/vanilla/, which includes the
Server2.5pl4.tar.gz archive file and its time stamp.

20 Attached hereto as Exhibit R is a true and correct copy of the content listing of the BRMH-1.7.tar.gz archive.
Attached hereto as Exhibit S is a true and correct copy of the content listing of the Server2.5pl4.tar.gz archive.

DCMB_832,595 8

Petitioner Riot Games, Inc. - Ex. 1005, p. 184

Declaration of David Ahn

date stamps on the BRMH-1.7.tar.gz and Server2.5pl4.tar.gz Netrek source code archive files
have never been modified since being posted to the Netrek Software Archive. Furthermore,
based on my experience in acquiring source code files and archives from publicly accessible
sources over the years, I have no reason to believe that the date stamps on these copies of

‘ BRMH-1.7.tar.gz and Server2.5pl4.tar.gz are inaccurate and therefore believe them to correctly
reflect the dates those files were created.

15. Based on my general experience with software over the past 16 years, my
experience playing Netrek, my extensive involvement in the Netrek community over the past 13
years, discussions with other members of the Netrek community, my personal involvement in
creating and maintaining the Netrek Software Archive, the date stamps on the BRMH-1.7.tar.gz
and Server2.5pl4.tar.gz source code archive files (which I believe to accurately reflect the dates
those archive files were created), my knowledge and recollection of various messages posted to
rec.games.netrek, and my extensive experience downloading, experimenting with, and
modifying Netrek source code, I can attest as follows. To the best of my knowledge,
recollection, and understanding, the BRMH-1.7 tar.gz and Server2.5pl4.tar.gz source code
archive files available on the Netrek Software Archive (1) contain versions of the Netrek BRMH
client and Netrek Vanilla Server source code files, respectively; (2) became and continued to be
disseminated from publicly accessible sources during or before 1994 and substantially
continuously thereafter; and (3) were locatable and recognizable from 1994 onward by any
person interested and ordinarily skilled in source code development, particularly including
members of the Netrek community and those who participated in the rec.games.netrek

newsgroup, who exercised reasonable diligence to locate them.

DCMB_832,595 9

Petitioner Riot Games, Inc. - Ex. 1005, p. 185

Declaration of David Ahn

I declare under penalty of perjury under the laws of the United States of America that the
foregoing is true and correct.

Executed on this H_ day of December, 2007.

e

David Ahn

DCMB_832,595 10

Petitioner Riot Games, Inc. - Ex. 1005, p. 186

Electronic Patent Application Fee Transmittal

Application Number:

Filing Date:

Title of Invention:

SERVER-GROUP MESSAGING SYSTEM FOR INTERACTIVE APPLICATIONS

First Named Inventor/Applicant Name:

Daniel J. Samuel

Filer:

Tracy Wesley Druce

Attorney Docket Number: 18830.0003
Filed as Large Entity
ex parte reexam Filing Fees
Description Fee Code Quantity Amount Suz-;'g(tsa)l in

Basic Filing:

Request for ex parte reexamination 1812 1 2520 2520
Pages:
Claims:

Miscellaneous-Filing:

Petition:

Patent-Appeals-and-Interference:

Post-Allowance-and-Post-Issuance:

Extension-of-Time:

Petitioner Riot Games, Inc. - Ex. 1005, p. 187

o . Sub-Total in
Description Fee Code Quantity Amount UsD($)
Miscellaneous:
Total in USD ($) 2520

Petitioner Riot Games, Inc. - Ex. 1005, p. 188

Electronic Acknowledgement Receipt

EFS ID: 7804962
Application Number: 90011033
International Application Number:
Confirmation Number: 1686

Title of Invention:

SERVER-GROUP MESSAGING SYSTEM FOR INTERACTIVE APPLICATIONS

First Named Inventor/Applicant Name:

Daniel J. Samuel

Customer Number: 37086
Filer: Tracy Wesley Druce
Filer Authorized By:
Attorney Docket Number: 18830.0003
Receipt Date: 14-JUN-2010
Filing Date:
Time Stamp: 17:36:56

Application Type:

Reexam (Third Party)

Payment information:

Submitted with Payment

yes

Payment Type

Credit Card

Payment was successfully received in RAM

$2520

RAM confirmation Number

4465

Deposit Account

Authorized User

File Listing:

Document

Number Document Description

File Name

File Size(Bytes)/
Message Digest

Multi
Part /.zip

Pages
(if appl.)

Petitioner Riot Games, Inc. - Ex. 1005, p. 189

CERTIFICATE_OF_SERVICE_523.

16087

1 Reexam Certificate of Service df no 1
p b5bfbd9ae0ab9c93aa421f81bc5dfc920288]
eadd
Warnings:
Information:
R Info Disclosure Statement 30587
eexam - Info Disclosure Statemen
2 Filed by 3rd Party IDS_523_.pdf no 3
ab3bf6cc754d4adceb45466467e0d474743|
22731
Warnings:
Information:
) . 88827
3 Reexam - Affidavit/Decl/Exhibit Filed by PA_B, rfc1459_IRC_66pg.pdf o 66
3rd Party
306d5d7f73807b5d0abc3776032ff38b501
68392
Warnings:
Information:
. T . . 158585
Reexam - Affidavit/Decl/Exhibit Filed by| PA_C_Packing_Messages_Fried
4 no 19
3rd Party man_19pg.pdf
3181a8b60a840c15eal94ebb5a5efeedd4c
ba682
Warnings:
Information:
o o 256867
5 Reexam - Affidavit/Decl/Exhibit Filed by| PA_D_Van_Hook_An_Approac o 10
3rd Party h_to_DIS_Scaleabilty_9pg.pdf
1735f39aa38a6892a35 1effed101ach23695
3e42
Warnings:
Information:
8236023
Reexam - Affidavit/Decl/Exhibit Filed by| PA_E_IEEE_1278_1993_65pg_.
6 no 65
3rd Party pdf
8add3bb3c2d3b869ab95bdc5e984¢99fsh
d8ae32
Warnings:
Information:
i 23110919
Reexam - Affidavit/Decl/Exhibit Filed by PA_F_573698%_V|rtual_space_
7 apparatus_with_ava_46pg_. no 46
3rd Party
pdf 52b5269d98ch9b8d57ff14c0dd447076305|
f7ee7
Warnings:
Information:
o o) 3847316
8 Reexam - Affidavit/Decl/Exhibit Filed by| PA_G_RING_A_Client_Server_S o 10
3rd Party VStem_1 opg.pdf 4393951b51b386f19536a4bd07c905cf3ed
Warnings:
Information:
. I . 149424
Reexam - Affidavit/Decl/Exhibit Filed by| PA_H_History_of Netrek_McFa
9 no 16
3rd Party dden_16pg_.pdf
85f045ab3f6140b992ee94995bfbcc9c78aal
66al
Warnings:
Information:

Petitioner Riot Games, Inc. - Ex. 1005, p. 190

2047617

Reexam - Affidavit/Decl/Exhibit Filed by| PA_I_Macedonia_1995_cga_9p
10 no 9
3rd Party g_.pdf
ef3176b3b504ac941548d733d5bf50ca9859
Warnings:
Information:
o _— 2948698
1 Reexam - Affidavit/Decl/Exhibit Filed by PAT A 5822523 27pg_pdf no 57
3rd Party
36b5813295¢100c0e25e7bc7¢40ch09c04¢
a4b9
Warnings:
Information:
. T A 6719316
Reexam - Affidavit/Decl/Exhibit Filed by| PAT_B_5822523_Pro_History_2
12 no 250
3rd Party 50pg_.pdf
b691befa73509a0448345ea68e5768fa78e:
698f
Warnings:
Information:
. o 152176
Reexam - Affidavit/Decl/Exhibit Filed by| CC_A_B_523_v_NETREK_55pg.
13 no 55
3rd Party pdf
9f691d274a408a71093607b997c976ce260)
bc7el
Warnings:
Information:
) . S 238222
Reexam - Affidavit/Decl/Exhibit Filed by| CC_C_523_v_Van_hook_and_
14 no 18
3rd Party DIS_18pg.pdf
0f563345ceb5a30b18702902fd 7b1ffc17d5)
77cd
Warnings:
Information:
. . I . 40163
15 Reexam - Affidavit/Decl/Exhibit Filed by| CC_D_523_IRC_RFC_Friedman o 6
3rd Party _Claims_1_2_4_6_6pg.pdf
b9c9a31971723956679696c5da1496ea2ef|
d2185
Warnings:
Information:
) . T . . . 239434
Reexam - Affidavit/Decl/Exhibit Filed by| CC_E_523_v_Ring_in_view_of |
16 no 43
3rd Party Netrek_43pg.pdf
98ae3b91600f65d824d461c6a70adeBa2b9)
Warnings:
Information:
.) I 249543
Reexam - Affidavit/Decl/Exhibit Filed by| CC_F_523_v_RING_and_Van_H
17 no 22
3rd Party ook_22pg.pdf
76302a5¢5b75b997339bed79¢9fb007 cf27
Warnings:
Information:
. s . 597025
18 Reexam - Affidavit/Decl/Exhibit Filed by| OTH_B_Paltalk_Complaint_17p o 17
3rd Party g_.pdf
b144c77cbb8e134edael e23d06e5a8e5271
a29d6
Warnings:
Information:

Petitioner Riot Games, Inc. - Ex. 1005, p. 191

1293252
19 Reexam - Affidavit/Decl/Exhibit Filed by| OTH_C_90010093_AhnDecl_11 o n
3rd Party pg_.pdf 370df6e3ead535b334ef1c29197f33349¢31
a9fo
Warnings:
Information:
) . T 1701541
20 Reexam - Affidavit/Decl/Exhibit Filed by| OTH_D_90010093_Order_Gran o 19
3rd Party tlng_Reexa m_1 9pg_.pdf 995e34a771f99ce810bdd25a8b456356b2f]
684ce
Warnings:
Information:
. o) 329171
Reexam - Affidavit/Decl/Exhibit Filed by| OTH_E_PalTalk_Opening_CC_B
21 . no 34
3rd Party rief_34pg_.pdf
d93bb914eb7710c8bc8060017451773895
6358d5
Warnings:
Information:
83815
Reexam - Affidavit/Decl/Exhibit Filed by QTH—F—N 8_S.upp[ementaI_C|a
22 im_Construction_Order_9pg_. no 9
3rd Party
pdf 31c8bc24f61d222534fbc37c96e579ca6245)
59eb
Warnings:
Information:
) . S . . 205829
Reexam - Affidavit/Decl/Exhibit Filed by| OTH_G_107_Claim_Constructi
23 no 44
3rd Party on_Order_44pg_.pdf
7ee210465108bf18ae216600ech6cf143a77]
526¢
Warnings:
Information:
1742609
Reexam - Affidavit/Decl/Exhibit Filed by| OTH_H_Lipstream_Claim_Cons|
24 N no 15
3rd Party truction_Order_15pg_.pdf
637ef0d497023a1c55efocod83aa703a7aad)
9b7f
Warnings:
Information:
. o 371455
Receipt of Original Ex Parte Reexam 523_ex_parte_reexam_52pgs.
25 no 52
Request pdf
<61ad6eb79fh9260fcae615a2f2f76¢0d6354
Warnings:
Information:
4649235
Reexam - Affidavit/Decl/Exhibit Filed by| OTH_A_0113_5_Smith_declara
26 R no 20
3rd Party tion_20pg.pdf
b165323ad36956ec9ea249247954bdbebé)
8de805
Warnings:
Information:
i 17114665
Reexam - Affidavit/Decl/Exhibit Filed by OTH_I_Netgames_your_guide
27 to_the_games_1_to_139_of 2 no 139
3rd Party
87pgs.pdf 1d7522663b263379d8b040ff0143cc5139¢
Warnings:
Information:

Petitioner Riot Games, Inc. - Ex. 1005, p. 192

AfFi A A OTH_|_Netgames_your_guide_| 16154802
28 Reexam - Affidavit/Decl/Exhibit Filed by to_the_games_140_to_287 of no 148
3rd Party
_287pgs.pdf dc002a2102cc3598482536015ffaas 56a8fa)
Warnings:
Information:
29839
29 Fee Worksheet (PTO-875) fee-info.pdf no 2
25bd579e9d8ad9c5a0296768f9ad f0d030ff
196b
Warnings:
Information:
Total Files Size (in bytes):i 92803042

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents,
characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a
Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111

If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR
1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this
Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35

U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a
national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office

If a new international application is being filed and the international application includes the necessary components for
an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number
and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning
national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of
the application.

Petitioner Riot Games, Inc. - Ex. 1005, p. 193

PTO/SB/57 (02-09)

Approved for use through 08/31/2010. OMB 0651-0033

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

(Also referred to as FORM PTO-1465)

REQUEST FOR EX PARTE REEXAMINATION TRANSMITTAL FORM

Address to:

Mail Stop Ex Parte Reexam

Commissioner for Patents Attorney Docket No.: 18330.0003

P.O. Box 1450

Alexandria, VA 22313-1450 Date: June 14, 2010

1. This is a request for ex parte reexamination pursuant to 37 CFR 1.510 of patent number 5,822,523
issued 1998-10-13 . The request is made by:

|:| patent owner. third party requester.

2. The name and address of the person requesting reexamination is:

Novak Druce + Quigg LLP
1000 Louisiana Street, Fifty-Third Floor
Houston, TX 77002

3. D a. A check in the amount of § is enclosed to cover the reexamination fee, 37 CFR 1.20(c)(1);

D b. The Director is hereby authorized to charge the fee as set forth in 37 CFR 1.20(c)(1)
to Deposit Account No. ;or

¢. Payment by credit card. Form PTO-2038 is attached.

4. Any refund should be made by D check or credit to Deposit Account No. 14-1437
37 CFR 1.26(c). If payment is made by credit card, refund must be to credit card account.

5. A copy of the patent to be reexamined having a double column format on one side of a separate paper is
enclosed. 37 CFR 1.510(b)(4)

6. CD-ROM or CD-R in duplicate, Computer Program (Appendix) or large table
Landscape Table on CD

7. D Nucleotide and/or Amino Acid Sequence Submission
If applicable, items a. — ¢. are required.

a. [_] Computer Readable Form (CRF)
b. Specification Sequence Listing on:
i. [_] CD-ROM (2 copies) or CD-R (2 copies); or

ii. |:| paper

C. |:| Statements verifying identity of above copies
8. |:| A copy of any disclaimer, certificate of correction or reexamination certificate issued in the patent is included.

9. Reexamination of claim(s) 1-6 is requested.

10. A copy of every patent or printed publication relied upon is submitted herewith including a listing thereof on
Form PTO/SB/08, PTO-1449, or equivalent.

1. D An English language translation of all necessary and pertinent non-English language patents and/or printed
publications is included.

Page 1 of 2
This collection of information is required by 37 CFR 1.510. The information i[s regquired tg obtain or retain a benefit by the public which is to file (and by the USPTO to
process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 2 hours to complete, including
gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount
of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark
Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS.
SEND TO: Mail Stop Ex Parte Reexam, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.
If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

Petitioner Riot Games, Inc. - Ex. 1005, p. 194

PTO/SB/57 (02-09)

Approved for use through 08/31/2010. OMB 0651-0033

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

12. The attached detailed request includes at least the following items:

a. A statement identifying each substantial new question of patentability based on prior patents and printed
publications. 37 CFR 1.510(b)(1)

b. An identification of every claim for which reexamination is requested, and a detailed explanation of the pertinency
and manner of applying the cited art to every claim for which reexamination is requested. 37 CFR 1.510(b)(2).

13. |:| A proposed amendment is included (only where the patent owner is the requester). 37 CFR 1.510(e)

14. . a. ltis certified that a copy of this request (if filed by other than the patent owner) has been served in its entirety on
the patent owner as provided in 37 CFR 1.33(c).

The name and address of the party served and the date of service are:

Rajiv P. Patel. Fenwick & West LLP, 2 Palo Alto Square, Palo Alto, CA 94306

Jordan Altman, Shearman & Sterling LLP, 599 Lexington Ave, New York NY 10022
Daniel Devito, 4 Times Square, New York, NY 10036

Date of Service: June 14’ 2010 ;or

|:| b. A duplicate copy is enclosed because service on patent owner was not possible. An explanation of the efforts
made to serve patent owner is attached. See MPEP 2220.

15. Correspondence Address: Direct all communications about the reexamination to:

The address associated with Customer Number: 37086
OR
I:' Firm or
Individual Name
Address
City State Zip
Country
Telephone Email

16. The patent is currently the subject of the following concurrent proceeding(s):
a. Copending reissue Application No.

b. Copending reexamination Control No.

c. Copending Interference No.

d. Copending litigation styled:
PalTalk Holdings Inc. v. Sony Computer Entertainment

America Inc., et. al., Case.No. 2:09¢cv00274-DF (E.D. Tex.)

WARNING: Information on this form may become public. Credit card information should not be
included on this form. Provide credit card information and authorization on PTO-2038.

X0

[Tracy W. Druce/ June 14, 2010

Authorized Signature Date

Tracy W. Druce 35493 |:| For Patent Owner Requester

Typed/Printed Name Registration No. For Third Party Requester
[Page 2 of 2]

Petitioner Riot Games, Inc. - Ex. 1005, p. 195

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection
with your submission of the attached form related to a patent application or patent. Accordingly,
pursuant to the requirements of the Act, please be advised that: (1) the general authority for the
collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary;
and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark

Office is to process and/or examine your submission related to a patent application or patent. If you do
not furnish the requested information, the U.S. Patent and Trademark Office may not be able to
process and/or examine your submission, which may result in termination of proceedings or
abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the
Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from
this system of records may be disclosed to the Department of Justice to determine whether
disclosure of these records is required by the Freedom of Information Act.

2. A record from this system of records may be disclosed, as a routine use, in the course of
presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to

opposing counsel in the course of settiement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of

Congress submitting a request involving an individual, to whom the record pertains, when the
individual has requested assistance from the Member with respect to the subject matter of the
record.

4. Arecord in this system of records may be disclosed, as a routine use, to a contractor of the
Agency having need for the information in order to perform a contract. Recipients of
information shall be required to comply with the requirements of the Privacy Act of 1974, as
amended, pursuant to 5 U.S.C. 552a(m).

5. A record related to an International Application filed under the Patent Cooperation Treaty in
this system of records may be disclosed, as a routine use, to the International Bureau of the
World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.

6. A record in this system of records may be disclosed, as a routine use, to another federal
agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to
the Atomic Energy Act (42 U.S.C. 218(c)).

7. A record from this system of records may be disclosed, as a routine use, to the Administrator,
General Services, or his/her designee, during an inspection of records conducted by GSA as
part of that agency's responsibility to recommend improvements in records management
practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall
be made in accordance with the GSA regulations governing inspection of records for this
purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not
be used to make determinations about individuals.

8. A record from this system of records may be disclosed, as a routine use, to the public after
either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent
pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37
CFR 1.14, as a routine use, to the public if the record was filed in an application which
became abandoned or in which the proceedings were terminated and which application is
referenced by either a published application, an application open to public inspection or an
issued patent.

9. A record from this system of records may be disclosed, as a routine use, to a Federal, State,
or local law enforcement agency, if the USPTO becomes aware of a violation or potential
violation of law or regulation.

Petitioner Riot Games, Inc. - Ex. 1005, p. 196

Electronic Acknowledgement Receipt

EFS ID: 7810215
Application Number: 90011033
International Application Number:
Confirmation Number: 1686

Title of Invention:

SERVER-GROUP MESSAGING SYSTEM FOR INTERACTIVE APPLICATIONS

First Named Inventor/Applicant Name:

Daniel J. Samuel

Correspondence Address:

Filer:

Tracy Wesley Druce

Filer Authorized By:

Attorney Docket Number: 18830.0003
Receipt Date: 14-JUN-2010
Filing Date:
Time Stamp: 18:02:06

Application Type:

Reexam (Third Party)

Payment information:

Submitted with Payment

no

File Listing:

Petitioner Riot Games, Inc. - Ex. 1005, p. 197

Document .. . File Size(Bytes)/ Multi Pages
Document Description File Name A . .
Number Message Digest | Part/.zip| (if appl.)
T ittal_F 523_3 778145
1 Reexam Miscellaneous Incoming Letter ransmittal_ odr:w_ —>Pgs. no 3
p 1588926222126c15d7d6f46f6b6ecede2c4)
762e

Warnings:

Information:

Total Files Size (in bytes):i 778145

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents,
characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a
Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111

If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR
1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this
Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371

If a timely submission to enter the national stage of an international application is compliant with the conditions of 35
U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a
national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office

If a new international application is being filed and the international application includes the necessary components for
an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number
and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning
national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of
the application.

Petitioner Riot Games, Inc. - Ex. 1005, p. 198

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Control No.:
Inventors: Rothschild, Jeffrey J., Marc P. REQUEST FOR REEXAMINATION UNDER

Kwaitkowski and Daniel J. Samuel 35U.S.C. §§ 302-307 AND
37C.F.R.§1.510

Patent No.: 5,822,523
Filed: February 1, 1996

Issued: October 13, 1998

Title: Server-group messaging system for
interactive applications

Mail Stop Ex Parte Reexamination
ATTN: Central Reexamination Unit
Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

REQUEST FOR EX PARTE REEXAMINATION OF U.S. PATENT NO. 5.822.523

Petitioner Riot Games, Inc. - Ex. 1005, p. 199

TABLE OF CONTENTS

I. REQUIREMENTS FOR EX PARTE REEXAMINATION UNDER 37 C.F.R. § 1.510
7
A. 37 CF.R.§1.510 (b)(1) and (b)(2): Statement Pointing Out Each Substantial New
Question of Patentability and Detailed Explanation of the Pertinency and Manner of Applying

the Cited Prior Art to Every Claim for Which Reexamination is Requestedccccooeeeeen. 7
B. 37 C.F.R. § 1.510 (b)(3): Copy of Every Patent or Printed Publication Relied Upon to
Present @ SINQ ..ottt ettt e et e et et e et b e e e et aeeeeateaeeabae e b be e nnbaeeannae s 7
C. 37 C.F.R.§ 1.510 (b)(4): Copy of the Entire Patent for which Reexamination Is
REQUESLE ...ttt et vttt et et vttt eaaeeraeees 8
D. 37 C.F.R.§ 1.510 (b)(5): Certification that a Copy of the Request has been Served in its
Entirety on the Patent OWNETccocveiiiiiieiiie ettt et r et ests b srae b e ssesasesaeeens 8
E. 37C.F.R.§1.510 (a): Fee for Requesting Reexamination............cceceveeeenceiinescneseene. 8
F. Related Co-Pending Litigation Requires Treatment with Special Dispatch and Priority
OVET All OthEr CaSES.oueviiiiitiietetce ettt bbbttt et 9
II. OVERVIEW OF THE ‘523 PATENT AND ITS PROSECUTION HISTORY . 9
A. Summary of Preferred Embodiments and Claims of the ‘523 Patent............ccccoovnrrenne.e. 9
B. ‘523 Patent Application Prosecution HiStOTYccooooiviiiiiiiiiiiii e, 10
C. Claim CONSIUCHIONviuiiiiitieiie ettt sttt ettt ettt ettt er et et ene 12
Lo Standardoooviiiiiiic e 12
2. Previous Litigation Claim COnStruCtionS...........c.cevirierieiieeiesriieeeteerenesveereereesveesnens 13
III. SUMMARY OF THE PRIOR ART ...uucciiiiinrirrnissnsncississssssssssssisasssssssssssssssssses 13
IV. 37 C.F.R. § 1.510 (b)(1): STATEMENT POINTING OUT EACH SUBSTANTIAL
NEW QUESTION OF PATENTABILITY ..cccueviviisinnsnissnsaissisessessessessassessassassassassas 19
A. Netrek Alone Presents a Substantial New Question of Patentability with Respect to
Claims 1-6 of the 523 Patentccuoiiiiiee e 19
B. Netrek in Combination with McFadden Presents a Substantial New Question of
Patentability with Respect to Claims 1-6 of the 523 Patent.ccccooeiieiiiiiiieieeee 19
C. Van Hook in Combination with DIS Presents a Substantial New Question of Patentability
with Respect to Claims 1, 2 and 4-6 of the 523 Patent...........cccocvevieeiiiieiiicieiceeieeer e 20
D. IRC RFC in Combination with Friedman Presents a Substantial New Question of
Patentability with Respect to Claims 1, 2 and 4-6 of the 523 Patentccocoeeveviiieninnenens 21
E. RING in Combination with Netrek Provides a Substantial New Question of Patentability
with Respect to Claims 1-6 of the ‘523 patent..........cccccveviiiiiviiiiie et 22
F. RING in Combination with Van Hook Provides a Substantial New Question of
Patentability with Respect to Claims 1, 2 and 4-6 of the 523 patent.............ccoooeeieieienienenens 23

V. DETAILED EXPLANATION UNDER 37 CFR 1.510(b) OF THE PERTINENCY
AND MANNER OF APPLYING THE CITED PRIOR ART TO EVERY CLAIM FOR
WHICH REEXAMINATION IS REQUESTEDcuiiiininsinniinecsnissacssisssnssnsssecsnees 23

Petitioner Riot Games, Inc. - Ex. 1005, p. 200

A. Claims 1-6 Are Anticipated by Netrek Under 35 U.S.C. § 102.....cooiiiiiiiiiiiees 23
B. Claims 1-6 Are Rendered Obvious by Netrek in view of McFadden under 35 U.S.C.

T TS T SRS PRRR 32

D. Claims 1, 2 and 4-6 Are Rendered Obvious by IRC RFC in view of Friedman under 35

ULS.C. § L1053ttt t et et et s e et s st est e s e st et en e ae e eeenan s 37

E. Claims 1-6 Are Rendered Obvious by RING in view of Netrek under 35 U.S.C. § 103 .40

F. Claims 1, 2 and 4-6 Are Rendered Obvious by RING in view of Van Hook under 35

ULS.C. § T03eieeeeeeeeeeeteeeteeeeteeeet ettt s et s e st et et eb ettt ne et enaa s 46
VI. CONCLUSION ..ccuirunrinriracssssssasssssssasssassssssssssssssssssss 51

Petitioner Riot Games, Inc. - Ex. 1005, p. 201

TABLE OF EXHIBITS

LiST OF EXHIBITS

The exhibits to the present Request are arranged in four groups: prior art (“PA”); relevant
portions of patent prosecution file history, patents, and claim dependency relationships (“PAT”);
claim charts (“CC”); and other (“OTH”).

A. PRIOR ART (PA)

PA-SB08 USPTO Form SB/08

PA-A Server2.5pl4.tar.gz (“Server Code”) and BRMH-1.7 tar.gz (“Client Code™)
(source code dated no later than August 1994") (“Netrek™)

PA-B J. Oikarinen et al., RFC 1459- Internet Relay Chat Protocol, published May
1993 (“IRC RFC”)

PA-C R. Friedman et al.,, Packing Messages as a Tool for Boosting the

Performance of Total Ordering Protocols, Dept. of Science of Cornell
University, published July 7, 1995 (“Friedman’)

PA-D Daniel J. Van Hook, James O. Calvin, Michael K. Newton, and David A.
Fusco, “An Approach to DIS Scaleability,” 11" DIS Workshop, 26-30 Sept.
1994 (“Van Hook™)

PA-E IEEE 1278-1993 IEEE Standard for Information Technology- Protocols for
Distributed Interactive Simulation Applications, approved March 18, 1993,
and published in 1993 (“DIS”)

PA-F U.S. Patent No. 5,736,982 to Suzuki (“Suzuki”)

PA-G T. A. Funkhouser, “RING: A Client-Server System for Multi-User Virtual
Environments,” Association of Computing Machinery, 1995 Symposium on
Interactive 3D Graphics, Monterey CA, April 9-12, 1995 (“RING”)

PA-H Andy McFadden, “The History of Netrek”, published January 1, 1994
(“McFadden”)
PA-I Michael R. Macedonia, “Exploiting Reality with Multicast Groups”,

published September 1995 (“Macedonia”)

B. RELEVANT PATENT MATERIALS (PAT)
PAT-A U.S. Patent No. 5,822,523 (“the ‘523 patent”)
PAT-B Prosecution history of the ‘523 patent

! See also, The Ahn declaration (OTH-C) at 49 7-10 and 15 (supporting public availability of Netrek source code no
later than August 1994).

% See hitpy/portal.acm.ore/toc.cfm?id=199404 (indicating the Association of Computing Machinery, 1995
Symposium on Interactive 3D Graphics, Monterey CA, including the presentation for RING, occurred between
April 9-12.

Petitioner Riot Games, Inc. - Ex. 1005, p. 202

C. CLAIM CHARTS (CC)

CC-A Claim Chart comparing Claims 1-6 of U.S. Patent No. 5,822,523 to the
disclosure in Netrek

CC-B Claim Chart comparing Claims 1-6 of U.S. Patent No. 5,822,523 to the
disclosure in Netrek in view of McFadden

CC-C Claim Chart comparing Claims 1, 2 and 4-6 of U.S. Patent No. 5,822,523 to
the disclosure in Van Hook in view of DIS

CC-D Claim Chart comparing Claims 1, 2 and 4-6 of U.S. Patent No. 5,822,523 to
the disclosure of IRC RFC in view of Friedman

CC-E Claim Chart comparing Claims 1-6 of U.S. Patent No. 5,822,523 to the
disclosure of RING in view of Netrek

CC-F Claim Chart comparing Claims 1, 2 and 4-6 of U.S. Patent No. 5,822,523 to
the disclosure of RING in view of Van Hook

D. OTHER DOCUMENTS (OTH)
OTH-A Declaration of Kevin Smith (“the Smith declaration™)

OTH-B Complaint filed in Paltalk Holdings, Inc. v. Sony Computer Entertainment
America, Inc., et. al., (E.D. Tex.), Case No. 2:09¢v00274-DF

OTH-C Declaration of David Ahn (“the Ahn declaration™)

OTH-D Reexamination Ctrl. No. 90/001,093 Determination Ordering Reexamination
dated February 29, 2008

OTH-E Paltalk’s Corrected Second Opening Claim Construction Brief filed on
December 31, 2007 in Paltalk Holdings, Inc. v. Microsoft Corp. (E.D. Tex.),
Case No. 2:06-cv-00367-DF

OTH-F Paltalk’s Second Reply Brief on Claim Construction filed on January 7, 2008 in
Paltalk Holdings, Inc. v. Microsoft Corp. (E.D. Tex.), Case No. 2:06-cv-00367-
DF

OTH-G Claim Construction order issued on July 29, 2008 in Paltalk Holdings, Inc. v.
Microsoft Corp. (E.D. Tex.), Case No. 2:06-cv-00367-DF

OTH-H Claim Construction order issued on August 25, 2000 in HearMe v. Lipstream
Networks, Inc. (N.D. Cal.), Case No. 99-04506 WHA

OTH-I Kelly Maloni, Derck Baker and Nataniel Wice ‘“Netgames ... Your Guide to the
Games People Play on the Electronic Highway” published 1994 (“Maloni’)

Petitioner Riot Games, Inc. - Ex. 1005, p. 203

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Control No:

Inventors: Rothschild, Jeffrey J., Marc P. REQUEST FOR REEXAMINATION UNDER

Kwaitkowski and Daniel J. Samuel 35U.S.C. §§302-307 AND
37C.F.R.§1.510

Patent No.: 5,822,523
Filed: February 1, 1996

Issued: October 13, 1998

Title: Server-group messaging system for
interactive applications

Mail Stop Ex Parte Reexamination
ATTN: Central Reexamination Unit
Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

REQUEST FOR EX PARTE REEXAMINATION OF U.S. PATENT 5,822,523
Dear Sir or Madam:

The undersigned hereby respectfully requests reexamination, pursuant to 35 U.S.C. §§ 302-
307 and 37 C.F.R. § 1.510, of Claims 1-6 of U.S. Patent No. 5,822,523 (*“the ‘523 patent”), filed
February 1, 1996, and issued October 13, 1998, to Jeffrey J. Rothschild, Marc P. Kwaitkowski and
Daniel J. Samuel (Exhibit PAT-A). Reexamination is requested in view of the substantial new
questions of patentability (“SNQ”) presented below. Requester reserves all rights and defenses
available including, without limitation, defenses as to invalidity and unenforceability. By simply
filing this Request in compliance with the Patent Rules, Requester does not represent, agree or
concur that the ‘523 patent is enforceable, and by asserting the SNQ herein, Requester specifically
asserts that Claims 1-6 of the ‘523 patent are in fact not patentable. As such, the U.S. Patent and

Trademark Office (the “Office”) should reexamine and find Claims 1-6 unpatentable and cancel

Petitioner Riot Games, Inc. - Ex. 1005, p. 204

Claims 1-6 of the ‘523 patent, rendering Claims 1-6 of the ‘523 patent null, void, and otherwise
unenforceable.

Reexamination is requested in view of the teachings of the references cited herein. The
SNQs established by these references teach the elements recited by Claims 1-6 of the 523 patent
and, importantly, teach the elements that were argued as novel during prosecution. Further, none
of the references submitted as part of this reexam were cited or discussed during prosecution of
the ‘523 patent. As described more fully below, reexamination is appropriate in view of the
patents and printed publications prior art cited herein, which alone or in combination with other
prior art provide new technical teachings not previously considered with respect to the claims
herein requested for reexamination.

The Requester submits that reexamination should be granted and that Claims 1-6 be found

unpatentable by issuance of a Certificate of Reexamination canceling all claims.

I. REQUIREMENTS FOR EX PARTE REEXAMINATION UNDER 37 C.F.R. §
1.510

Requester satisfies each requirement for ex parte reexamination of the ‘523 patent.

A, 37 C.F.R. § 1.510 (b)(1) AND (b)(2): STATEMENT POINTING OUT EACH
SUBSTANTIAL NEW QUESTION OF PATENTABILITY AND DETAILED EXPLANATION OF THE
PERTINENCY AND MANNER OF APPLYING THE CITED PRIOR ART TO EVERY CLAIM FOR

WHICH REEXAMINATION IS REQUESTED

A statement pointing out each substantial new question of patentability (“SNQ”’) based on
the cited patents, and a detailed explanation of the pertinence and manner of applying the cited
patents to Claims 1-6 of the ‘523 patent is presented below in accordance with 37 C.F.R. § 1.510
(b)(1) and (b)(2).

The SNQs raised herein are based on prior art that was not cited or discussed during the
prosecution of the ‘523 patent. The references, alone or in combination, are not cumulative to
the prior art discussed during the original prosecution of the ‘523 patent. Thus, they are
appropriate for use in supporting the SNQs of patentability raised herein.

B. 37 C.F.R. § 1.510 (b)(3): COPY OF EVERY PATENT OR PRINTED PUBLICATION
RELIED UPON TO PRESENT A SNQ

A copy of every patent is or printed publication relied upon to present a SNQ is submitted

herein, pursuant to 37 C.F.R. §1.510(b)(3), as Exhibits PA-A through Exhibits PA-I, citation of

Petitioner Riot Games, Inc. - Ex. 1005, p. 205

which may be found on the accompanying Form PTO-SB/08 at Exhibit PTO-SB/08. Each of
these cited prior art patents and printed publications constitutes effective prior art as to the claims
of the ‘523 patent under 35 U.S.C. § 102 and 35 U.S.C. § 103. PA-A was separately submitted
on a compact disc to the Office, in the care of Manuel Saldana Jr., on the same date as this
request was filed, June 14, 2010.

C. 37 C.F.R. § 1.510 (b)(4): COPY OF THE ENTIRE PATENT FOR WHICH
REEXAMINATION IS REQUESTED

A full copy of the 523 patent is submitted herein as Exhibit PAT-A in accordance with

37 C.ER. § 1.510(b)(4).

D. 37 C.F.R. § 1.510 (b)(5): CERTIFICATION THAT A COPY OF THE REQUEST HAS BEEN
SERVED IN ITS ENTIRETY ON THE PATENT OWNER

A copy of this request has been served in its entirety on the Patent Owner in accordance
with 37 C.F.R. § 1.510(b)(5) at the following address:

DANIEL DEVITO

PATENT DEPARTMENT

SKADDEN, ARPS, SLATE, MEAGHER & FLOM LLP
FOUR TIMES SQUARE

NEW YORK NY 10036

Also as a courtesy, a copy of this request is being sent to two correspondence addresses
of recent assignees:

FENWICK & WEST LLP
RAIJIV P. PATEL, ESQ.
TWO PALO ALTO SQUARE
PALO ALTO, CA 94306

and

JORDAN ALTMAN 599 LEXINGTON AVENUE SHEARMAN &
STERLING LLP - IP DOCKETING
NEW YORK, NY 10022
E. 37 C.F.R. § 1.510 (a): FEE FOR REQUESTING REEXAMINATION
In accordance with 37 CF.R. § 1.510(a), a credit card authorization to cover the fee for
reexamination of $2,520.00 is attached. If this authorization is missing or defective, please

charge the Fee to the Novak Druce and Quigg Deposit Account No. 14-1437.

Petitioner Riot Games, Inc. - Ex. 1005, p. 206

F. RELATED CO-PENDING LITIGATION REQUIRES TREATMENT WITH SPECIAL
DISPATCH AND PRIORITY OVER ALL OTHER CASES.

The 523 patent is presently the subject of PalTalk Holdings v. Sony Computer
Entertainment America, et al., (E.D. Tex.) See OTH-A, Complaint filed by Paltalk Holdings.

Pursuant to 35 U.S.C. § 305, Requester respectfully urges that this Request be granted
and reexamination conducted not only with “special dispatch,” but also with “priority over all
other cases” in accordance with 37 C.F.R. 1.550(a) due to the ongoing nature of the underlying

litigation.

II. OVERVIEW OF THE ‘523 PATENT AND ITS PROSECUTION HISTORY

A. SUMMARY OF PREFERRED EMBODIMENTS AND CLAIMS OF THE ‘523 PATENT

The ‘523 patent generally relates to a method for deploying interactive applications over
a network containing host computers and a group messaging server. The ‘523 patent at Abstract.
More specifically, the disclosure relates to an interactive application, wherein many messages are
arriving at the group server close to one another in time. Rather than simply forwarding each
message to its targeted hosts, the group messaging server aggregates the contents of the
messages received during a specified time period, and then sends an aggregated message to the
targeted hosts. The ‘523 patent at Abstract.

The method is described in the context of interactive computer applications, and
specifically video game applications, wherein a plurality of users can interact through the game,
although the claims are not so limited. See the 523 patent at 1:15-17; 27:35-38.

The claims recite a method of providing a group-messaging server that maintains a list of
message groups. The message groups each have at least one host computer, but at least one of
the message groups must have a plurality of host computers within the message group. Each
host computer, as well as the group-message server, is connected by a unicast network. The 523
patent at Col. 25, lines 45-64.

A plurality of computers from within one of the message groups send messages to the
group-messaging server. The group messaging server aggregates all of the messages received
within a given time period according to a criterion, forms a message from the aggregation of
received messages, and sends the aggregated message to a host computer within the given

message group. 1d.

Petitioner Riot Games, Inc. - Ex. 1005, p. 207

B. 523 PATENT APPLICATION PROSECUTION HISTORY

The 523 patent was filed on February 1, 1996, as application serial number 08/595,323
(the “’323 application”). The ‘323 application contained 16 claims, but only claims 7-12 issued.
Distinguishing claims 7-12 from the canceled claims in the ‘323 application is the presence of
limitations requiring aggregating portions of messages sent from a plurality of host computers in
a message into a single message, which is transmitted to a host computer within the message
group. See PAT-B, pros. hist. of the ‘523 patent, claims filed February 1, 1996.

All claims of the ‘323 application were initially rejected under 35 U.S.C. § 103 over Page
(U.S. Patent No. 5,329,619) in view of Perlman (U.S. Patent No. 5,309,437) in an Office Action
that issued March 20, 1997. The Examiner found that Page taught all of the limitations of the
claims except for the message server and the unicast network; however, the Examiner found that
the message server would have been obvious in view of the functions of Page’s broker server.
See PAT-B, pros. hist. of the ‘523 patent, Office Action issued March 20, 1997. The Examiner
also found that Perlman taught the required unicast network and that the teachings of the two
references were combinable in view of the fact that a unicast implementation was well known in
the art. See PAT-B, pros. hist. of the ‘523 patent, Office Action issued March 20, 1997.

On June 25, 1997, the Applicants of the ‘323 application (the “Applicants”) responded
by canceling all claims, except for claims 7-12. See PAT-B, pros. hist. of the ‘523 patent, Office
Action Response filed June 25, 1997. As addressed above, claims 7-12 were distinguishable
from the canceled claims because they recited various “aggregating” limitations. By canceling
the claims that did not recite the “aggregating” limitations, the Applicants have effectively
admitted that the only potentially novel features of their claims relate to aggregation. The
Applicants’ remarks support this proposition, as they argue only that Page does not teach any of
the “aggregating” limitations. See PAT-B, pros. hist. of the ‘523 patent, Response filed June 25,

1997 at p. 2 (See p. 2 reproduced below for convenience).

10

Petitioner Riot Games, Inc. - Ex. 1005, p. 208

The Examiner has rejected claims 7-12 as obvious over Page ot al in view of Perlman
et al. The Applicart respecifislly traverses this rejection. In particular, claims 7-12 require the
steps of

sending, by a plurality of host computers belonging to a first message group,
messages to said server . . ., sald messages containing & payload portion . . . ;

aggregating, by said server in a time interval determined in accordance with a
predefined criterion, said payload portions of said messages to create an aggrepated
payload;

forming an aggregated message using said aggregated payload

Page does not teach these claim elements. In particular, Page teaches a service broker
that manages service requests and responsive services conununicated between servers and
clients. Page teaches three modes of communication. message processing, conversational
cotmmunication, and remote procedure call.

Nomne of Page's modes of communication aggregate payloads of messages into an
aggregated payload where the pavicads are being sent from a plurality of host computers. See
Page, e.g Col. 3, line 38 - Col. 6, line 68. None of Page's other features relate {0 aggregating
pavioads of messages being sent from a plurality of host computers.

‘The cleanup manager identified by the Examiner is & part of the service broker. The
. Please see Page, Col. 25, line 48 -
Col. 27, line 42. 1t does not aggregate payk ages. It recovers golges in
various tables of the service broker for reuse. Please see Col. 27, lines 10-12,

Periman does not overcome this deficiency of Page. Perdman involves a device that

clean-up manager processes

couples segments of an extended local area network such that messages that employ “inter-
network protocols” will be handled without the difficulties usually associated with bridges and
without the complexity and expense of full IP routers. Perlman does not teach aggregating
pavioads of messages.

Accordingly, the combination of Page and Perlman does not teach the inventions of

claims 7-12.

11

Petitioner Riot Games, Inc. - Ex. 1005, p. 209

The Examiner apparently agreed with the Applicants’ remarks and issued a Notice of
Allowability on July 9, 1997. While the Examiner does not provide an explicit reason for
allowance, it can be deduced that the Examiner agreed that the only potential novel and non-
obvious limitation of the pending (and now issued) claims was the “aggregating” limitation.

In view of the above, a substantial new question of patentability (“SNQ”) is raised herein
by each of the several proposed SNQs because each demonstrates that aggregating multiple
messages sent from a plurality of host computers within a message group, and transmitting the
aggregated messages to a host computer in the message group, was well known before the ‘523

patent was filed.

C. CLAIM CONSTRUCTION

1. STANDARD

Requester notes that for purposes of this Request, the claim terms are presented by the
Requester in accordance with 37 C.F.R § 1.555(b) and MPEP § 2111. Specifically, each term of
the claims is to be given its “broadest reasonable construction” consistent with the specification.
MPEP § 2111; In re Trans Texas Holding Corp., 498 F.3d 1290, 1298 (Fed. Cir. 2007) (citing
In re Yamamoto, 740 F.2d 1569, 1571 (Fed. Cir. 1984)). As the Federal Circuit noted in Trans
Texas, the Office has traditionally applied this standard during reexamination, and does not
interpret claims as a court would interpret claims. MPEP § 2111. The Office is not bound by
any prior district court claim construction. Trans Texas, 498 F.3d at 1297, 1301. Rather:

the PTO applies to the verbiage of the proposed claims the broadest reasonable

meaning of the words in their ordinary usage as they would be understood by one

of ordinary skill in the art, taking into account whatever enlightenment by way of

definitions or otherwise that may be afforded by the written description contained
in the applicant’s specification.

In re Morris, 127 F.3d 1048, 1054 (Fed. Cir.1997). The rationale underlying the “broadest
reasonable construction” standard is that it reduces the possibility that a claim, after issue or
certificate of reexamination, will be interpreted more broadly than is justified. 37 CFR §
1.555(b), MPEP § 2111.

Because the standards of claim interpretation used in the courts in patent litigation are
different from the claim interpretation standards used in the Office in claim examination

proceedings (including reexamination), any claim interpretations submitted herein for the

12

Petitioner Riot Games, Inc. - Ex. 1005, p. 210

purpose of demonstrating a SNQ are neither binding upon litigants in any litigation related to the
523 patent, nor do such claim interpretations correspond to the construction of claims under the
legal standards that are mandated to be used by the courts in litigation. See 35 U.S.C. § 305; MPEP
§ 2286 11 (determination of a SNQ is made independently of a court’s decision on validity because
of different standards of proof and claim interpretation employed by the District Courts and the
Office); see also Trans Texas, 498 F.3d at 1298 (Court upheld Office rejections that conflicted
with outcome of litigation; /n re Zletz, 893 F.2d 319, 322, 13 USPQ2d 1320, 1322 (Fed. Cir. 1989).

2. PREVIOUS LITIGATION CLAIM CONSTRUCTIONS

In previous litigation PalTalk had made statements regarding the construction of the
claim terms of the ‘523 patent. See OTH-E and OTH-F, Claim Construction briefs submitted by
PalTalk in PalTalk Holdings, Inc. v. Microsoft Corp.

In addition two courts have construed terms of the ‘523 patent. See OTH-G and OTH-H,
Claim construction orders from PalTalk Holdings, Inc. v. Microsoft Corp. and HearMe v.
Lipstream Networks, Inc.

As noted above, the claim construction standard used in litigation is not as broad as the
standard applied in reexamination. In this reexamination proceeding, the Examiner should apply
the broadest construction consistent with the specification. However, the broadest reasonable
construction should be at least as broad as constructions argued by the Patent Owner in litigation

or adopted by a District Court.

III. SUMMARY OF THE PRIOR ART

1. Netrek
i. Netrek is a printed publication that was published no later than August 1994
Netrek is source code for a client-server game, loosely based on the Star Trek television
show, which game is played over a computer network. Server/docs/README at lines 221, 238.
Because both the client and the server each needed their own code for the game, the source code
is broken into two parts, the “BRMH-1.7.tar.gz” Client Code and the “Server2.5pl4.tar.gz”

Source Code.

13

Petitioner Riot Games, Inc. - Ex. 1005, p. 211

In an unrelated reexamination proceeding, Control No. 90/010,093, the reexamination
request submitted the exact same “BRMH-1.7.tar.gz” Client Code and the “Server2.5pl4.tar.gz”
Source Code relied on in the instant proceeding as prior art. In the Order granting the
reexamination request in that proceeding, the Examiner agreed that the Netrek source code was a
printed publication available as prior art based on the declaration of David Ahn (“Ahn
Declaration”). See OTH-D, Order granting reexamination at 9-11; See also OTH-C, Declaration
of David Ahn. The Ahn Declaration equally supports the use of Netrek as prior art in the instant
reexamination request. Moreover, OTH-I, Maloni, is offered as additional evidence of the
popularity and public availability of the Netrek source code on various FTP servers and Usenet
newsgroups (e.g., “ftp rtfm.mit.edu” and "rec.games.netrek™). Maloni at pp. 48, 49.

As stated in the Ahn Declaration, the BRMH-1.7 Client Code was publically available at
least by October 15, 1993. OTH-D, Ahn Declaration at § 10. Further, the Server2.5pl4.tar.gz
file, called the Vanilla 2.5 pl4 by Ahn, was available by at least August 17, 1994. Id. The
“BRMH-1.7 tar.gz” and “Server2.5pl4.tar.gz” files submitted in this reexamination request were
downloaded from the web addresses specified by Ahn. /d. at 13. Ahn declares that these files
had been publically available and accessible continuously during or before 1994. Id. at 15.

Therefore Netrek is prior art no later than August 17, 1994, which is when the
Server2.5pld.tar.gz Server Code was publically available (the BRMH-1.7 Client Code was
publically available prior to 1994).

ii. Netrek establishes an SNQ

As discussed above, Netrek was published no later than August 1994, and accordingly is
prior art under 35 U.S.C. § 102(b). Netrek was not cited or discussed in the prosecution of the
523 patent.

Netrek discloses a client-server game, looscly based on the Star Trek television show,
which game is played over a computer network. Server/docs/README at lines 221, 238. The
clients communicate among each other through the server using messages over an Internet
protocol (e.g., TCP/IP). Server\ntserviinput.c at line 195 and Server\ntservisocket.c at line 688.
Specifically, the server reads a socket containing data sent from a client. Serverintserviinput.c at
line 195. The server places the client messages into shared memory. Server\ntservisocket.c at

lines 1825-2044. After a specified period of time, or when the buffer is full, the server will form

14

Petitioner Riot Games, Inc. - Ex. 1005, p. 212

aggregated messages from the received client message payloads and send these aggregated
messages out to the clients. Server\ntservisocket.c at lines 603-90. Examples of messages that
clients can send to each other via the server include text chat, torpedo (indicating a torpedo has
been launched), and plasma messages (indicating plasma has been fired). brmh-1.7\packets.h.
These messages can be used, for example, by Federation star ships to destroy rival Klingon
starships. Server\robots\basep.c at line 33 and Server\ntservisocket.c at lines 1125-92.
Accordingly, Netrek teaches aggregating various incoming messages, thereby allowing the
server to send fewer messages than it receives (e.g., “Idea: read from client often, send to client
not so often”). Server\ntserviinput.c at lines 152-203; Server\ntserviredraw.c at lines 21-115;

Server\ntserv\socket.c at lines 603-90.

2. McFadden

McFadden was published no later than May 1, 1994, and accordingly is prior art under 35
U.S.C. § 102(b). McFadden was not cited in the prosecution of the ‘523 patent.

McFadden is a FAQ and history of the Netrek online game. McFadden at p. 2, § 0.2; p.
8, §, 2.1.2 Architecture; and p. 11, §3.3.1 Client/Server. McFadden shows inherent
characteristics of Netrek and is further presented in this request to provide context and
understanding to the Netrek source code. McFadden describes Netrek as “a real-time graphical
multiplayer arcade/strategy game played over the Internet. Players form into teams and fight for
control of the galaxy, dogfighting and taking planets.” McFadden at p. 2, § 0.2. McFadden is

presented in this request to provide context and understanding to the Netrek source code.

3. Van Hook

Van Hook was published September 1994, and accordingly is prior art under 35 U.S.C. §
102(b). Van Hook was not cited or discussed in the prosecution of the ‘523 patent.

Van Hook discloses techniques that have been developed and deployed for Advanced
Research Projects Agency’s (ARPA) Synthetic Theater of War - Europe (“STOW-E”) computer
battlefield simulation program, which uses the Distributed Interactive Simulation (“DIS”)
battlefield simulation protocol. Van Hook at p. 1, 1.0 Introduction. In the STOW-E program, a
virtual world simulates battlefield conditions, and “[e]xplicit representations of command,

control, and communication are required to permit command forces to transmit orders to and

15

Petitioner Riot Games, Inc. - Ex. 1005, p. 213

receive reports from a new generation of more intelligent semi-automated forces.” Van Hook at
p. 1, 1.0, Introduction. The simulation disclosed in Van Hook is deployed over the Defense
Simulation Internet Wide Area Network utilizing DIS 2.0.3 protocols, wherein protocol data
units (PDUs) containing entity-state information are exchanged between host computers via an
Application Gateway (AG) server. Id. at pp. 1, 2. In Van Hook, the AG server bundles the
PDUs from host computers into larger transmission packets to be distributed. The host
computers in Van Hook can also form message groups such as cell sets.., exercises, and forces.

1d. at p. 66, 4.6 Bundling.

4. 1EEE 1278-1993: IEEE Standard for Information Technology- Protocols for Distributed
Interactive Simulation Applications (“DIS”)

DIS was published in 1993 and accordingly is prior art under 35 U.S.C. § 102(b). DIS
was not cited or discussed in the prosecution of the 523 patent.

DIS is part of a proposed set of standards for distributed interactive simulation wherein a
“synthetic environment is created through real-time exchange of data units [PDUs] between
distributed, computationally autonomous simulation applications in the form of simulations . . .
interconnected through standard computer communicative services.” DIS at pp. 3, 3.8
distributed interactive simulation (DIS). The standard computer services in DIS consist of a
communication architecture that supports multicast data packets. DIS at p. 10, 4.3
communication services. The PDU packets disclosed in DIS include a PDU header, an ID
denoting a host computer (Entity ID), an exercise (Exercise ID) as well as a message group
(Force ID), and the PDU message relating to positional information of the entity. DIS at pp. 40-
41, Table 18.

5. Macedonia

Macedonia was published in September 1995 and accordingly is prior art under 35 U.S.C.
§ 102(a). DIS was not cited or discussed in the prosecution of the ‘523 patent.

Macedonia discloses an implementation of DIS that seeks to expand the number of users
capable of participating in a simulation. Macedonia at 38. Macedonia describes groups of
participants, e.g., those within proximity of other players, and the ability to join these groups

using messages (e.g., “Join Request PDUs”). Macedonia at 42.

16

Petitioner Riot Games, Inc. - Ex. 1005, p. 214

6. RING

RING was published in April 1995 and accordingly is prior art under 35 U.S.C. § 102(a).
RING was not cited or discussed during the prosecution of the ‘523 patent.

RING discloses a system that supports real-time visual interaction between a large
number of users in a shared 3-D environment. RING at Abstract. RING facilitates
communication over a unicast network amongst a plurality of hosts via a centralized server, or
collection of servers. RING at p. 91.

To reduce the number of messages sent between the servers and the host computers, the
centralized servers cull, augment, and alter the messages to send only relevant messages to
relevant hosts in a limited number of communications. RING at p. 87. This is accomplished by
determining the visibility of each host’s virtual representation in the virtual environment. Id.
Only information pertaining to objects within the line of sight of a host’s virtual representation is
transmitted to the host. /d. All other information is culled. /d. In this way, the number of
messages sent to each host can be markedly reduced.

Further, related to the claims of the subject patent, RING discloses a server that
communicates with a plurality of hosts. All the hosts, or a subset of all the hosts, can send
messages to the server via a unicast network informing the server, and thereby the other hosts, of
the movements of that host’s virtual representation in the virtual environment. If another host
cannot see that host, the two hosts are not part of the same group and the message is culled. But
if the several hosts are all in the line of sight of each other, each host will receive a message

transmitted from the server describing the movement of each host’s virtual representation. /d.

7. IRC RFC

IRC RFC was published May 1993, and accordingly is prior art under 35 U.S.C. §
102(b). IRC RFC was not cited or discussed in the prosecution of the ‘523 patent.

IRC RFC discloses protocols for implementing Internet Relay Chat (IRC). IRC was not
cited or discussed during the prosecution of the ‘523 patent. “The main goal of IRC is to provide
a forum which allows easy and efficient conferencing (one-to-many conversations).” IRC RFC

at p. 11, § 3.2 One-to-many. IRC uses a client-server configuration where a client sends a

17

Petitioner Riot Games, Inc. - Ex. 1005, p. 215

channel message to a server and the server distributes the message to the other clients who have

joined that channel. IRC RFC at p. 11, § 3.2.2; see also Fig. 2 (reproduced below).

1--%
Y D---4
2e-F N 4
B----¢
9'{\ \.\
3 E
Segrvars: &, B, C, L, E Clients: 1, 2, 3, 4

Figure 2 of IRC RFC at 3.0
Clients can join channels using the “JOIN” command (or, if the channel does not exist, it
is created in response to the join request). IRC RFC at p. 5, § 1.3 Channels; See also Id. at p. 19,
§ 4.2.1. Join message. Messages sent from clients to the server include the name of the
destination channel and the data for the message. IRC RFC at p. 32, § 4.4.1. Private messages.
The servers maintain a list of all channels and the clients joined to those channels. IRC RFC at

p. 63, § 9.2.2 Channels.

8. Friedman

Friedman was published July 7, 1995, and accordingly is prior art under 35 U.S.C. §
102(a). Friedman was not cited or discussed during the prosecution of the ‘523 patent.

Friedman discloses the results of the latency and throughput of standard network
protocols compared to modified protocols that aggregate packets by packing multiple packets
into a single packet. Friedman at p. 1. Friedman notes that a protocol modified to use
aggregation (e.g., “packing messages”) “improves both the latency and throughput.” Id. One
example of a modified protocol is the Dynseq protocol, which aggregates based on a preset time
interval, which is less than the expected user latency, such as one millisecond. Friedman at p. 5.
Friedman discloses that the reasons for the improved efficiency are due to the reduction of
packet headers, reduced link contention, and less CPU interrupts. Friedman at p. 12. Friedman
teaches to one of ordinary skill in the art that one way to increase network efficiency is to

aggregate packets before sending.

18

Petitioner Riot Games, Inc. - Ex. 1005, p. 216

IV.37 C.F.R. § 1.510 (b)(1): STATEMENT POINTING OUT EACH
SUBSTANTIAL NEW QUESTION OF PATENTABILITY

A. NETREK ALONE PRESENTS A SUBSTANTIAL NEW QUESTION OF PATENTABILITY
WITH RESPECT TO CLAIMS 1-6 OF THE ‘523 PATENT

Netrek was not cited or discussed during the prosecution of the ‘523 patent and thus is
new prior art with respect to the ‘523 patent. Netrek raises a SNQ with regards to claims 1-6
because Netrek discloses the technical teachings of a client-server game, loosely based on Star
Trek, that is played over a computer network. Server/docs/README at lines 221, 283 and
McFadden at p. 2, § 0.2; p. 8, §2.1.2 Architecture; and p. 11, §3.3.1 Client/Server. Netrek
further discloses the technical teachings of a system comprising clients communicating with each
other through the server using messages over an Internet protocol (e.g., TCP/IP).
Server\ntserviinput.c at line 195 and Server\ntservisocket.c at line 688.

The prosecution history of the 523 patent, as discussed above, suggests that the
aggregation elements of the claims were the allegedly novel aspects of the claims. Netrek
presents a substantial new question that was not previously discussed or considered in the
prosecution of the ‘523 patent. Specifically, Netrek teaches aggregating messages received from
clients to send them together as an aggregated message (e.g., “Idea: read from client often, send
to client not so often”). Serverintserviinput.c at lines 152-203; Server\ntserviredraw.c at lines
21-115;Server\ntservisocket.c at lines 603-90. Therefore, a reasonable examiner would consider
Netrek important in deciding the patentability of claims 1-6 and accordingly presents a SNQ.
Further, the SNQ of Netrek is not cumulative of any of the technical teachings discussed or

suggested during the prosecution history of the ‘523 patent.

B. NETREK IN COMBINATION WITH MCFADDEN PRESENTS A SUBSTANTIAL NEW
QUESTION OF PATENTABILITY WITH RESPECT TO CLAIMS 1-6 OF THE ‘523 PATENT.

Netrek was not cited or discussed during the prosecution of the 523 patent, and thus is
new prior art with respect to the ‘523 patent. As discussed above, Netrek raises a SNQ with
regards to claims 1-6. Further, McFadden is a FAQ and history of the online game Netrek.
McFadden at p. 2, § 0.2; at p .8, §2.1.2 Architecture; and p. 11, §3.3.1 Client/Server. McFadden

was specifically written to teach people interested in Netrek about the game. Accordingly,

19

Petitioner Riot Games, Inc. - Ex. 1005, p. 217

people interested in playing and/or modifying Netrek code would have been motivated to review
McFadden to gain an overview of the game.

The combination of Netrek and McFadden presents a substantial new question that was
not previously discussed or considered in the prosecution of the ‘523 patent. Specifically, the
combination of Netrek and McFadden teaches aggregating messages received from clients to
send them together as an aggregated message (e.g., “Idea: read from client often, send to client
not so often”). Server\ntserviinput.c at lines 152-203; Server\ntserviredraw.c at lines 21-115;
Server\ntservisocket.c at lines 603-90. Therefore, a reasonable examiner would consider the
combination of Netrek and McFadden important in deciding the patentability of claims 1-6 and
accordingly the combination presents a SNQ. Further, the SNQ raised by the combination of
Netrek and McFadden is not cumulative of any of the technical teachings discussed or suggested

during the prosecution history of the ‘523 patent.

C. VAN HOOK IN COMBINATION WITH DIS PRESENTS A SUBSTANTIAL NEW QUESTION
OF PATENTABILITY WITH RESPECT TO CLAIMS 1,2 AND 4-6 OF THE ‘523 PATENT

Van Hook was not cited or discussed during the prosecution of the ‘523 patent, and thus
is new prior art with respect to the ‘523 patent. Van Hook in combination with DIS raises a SNQ
with regards to claims 1, 2 and 4-6 because as discussed above, Van Hook discloses the technical
teaching of aggregating group messages into a single packet by bundling the packets. Van Hook
at 2. Van Hook states, “[t]he dominant effect of bundling is to reduce packet rates.
Additionally, bundling reduces bit rates because fewer packet headers are sent.” Id. Further,
Van Hook discloses techniques that have been developed and deployed for ARPA’s Synthetic
Theater of War - Europe (“STOW-E”) program and Distributed Interactive Simulation (“DIS”),
wherein a virtual world simulates battlefield conditions, and “[e]xplicit representations of
command, control, and communication are required to permit command forces to transmit orders
to and receive reports from a new generation of more intelligent semi-automated forces.” Van
Hook at p. 1.

Likewise, as its name indicates, DIS is part of a proposed set of standards for the
Distributed Interactive Simulation (“DIS”) used in conjunction with the STOW-E program
described in Van Hook. DIS at p. 3. Van Hook provides for bundling of the PDUs from host
computers by the Application Gateway (AG) server into larger transmission packets to be

distributed to other packets. Van Hook at pp. 2 and 7. DIS goes one step further to discuss the

20

Petitioner Riot Games, Inc. - Ex. 1005, p. 218

anatomy of a packet, as the PDU packets disclosed in DIS include a PDU header, an ID denoting
a host computer (Entity ID), an exercise (Exercise ID), as well as a message group (Force 1D),
and the PDU message relating to positional information of the entity. DIS at pp. 40-41, Table
18.

The prosecution history, as discussed above, suggests that the aggregation elements of the
claims were the allegedly novel aspect of the claimed invention. Van Hook provides a SNQ, as
suggested above, because of its aggregation teachings. “Additionally, bundling reduces bit rates
because fewer packet headers are sent.” Id. Accordingly, the combining the technical teachings
(e.g., teachings of bundling packets, or PDUs), in a Distributed Interactive Simulation, as
disclosed in Van Hook, with the technical teachings of the contents of a PDU in a Distributed
Interactive Simulation, as disclosed in DIS, raises an additional SNQ that was not discussed or
cited in the prosecution history of the ‘523. A reasonable examiner would consider that
combination important in deciding the patentability of claims 1, 2 and 4-6 since it would have
been obvious to those skilled in the art to combine the teachings of the two references, as

explicitly taught by Van Hook.

D. IRC RFC IN COMBINATION WITH FRIEDMAN PRESENTS A SUBSTANTIAL NEW
QUESTION OF PATENTABILITY WITH RESPECT TO CLAIMS 1,2 AND 4-6 OF THE ‘523
PATENT

IRC RFC discloses protocols for implementing Internet Relay Chat (IRC). IRC RFC was
not cited or discussed during the prosecution of the ‘523 patent. “The main goal of IRC is to
provide a forum which allows easy and efficient conferencing (one-to-many conversations).”
IRC RFC at p. 11, § 3.2 One-to-many. IRC uses a client-server configuration, where a client
sends a channel message to a server and the server distributes the message to the other clients
who have joined that channel, as discussed in detail above.

IRC RFC does not disclose aggregating payload portions, but Friedman discloses that
messages are buffered and then the payloads are aggregated (e.g., packed) before sending.
Friedman at p. 5. In addition, IRC RFC states that “[t]he main goal of IRC is to provide a forum
which allows easy and efficient conferencing (one-to-many conversations).” IRC RFC at p. 11,
§ 3.2 One-to-many. Friedman discloses that the aggregation of message packets improves both
latency and throughput compared to non-aggregating communication protocols. Friedman at p.
1.

21

Petitioner Riot Games, Inc. - Ex. 1005, p. 219

The combination of RFC IRC and Friedman provides the technical teaching of
aggregating the group messages of IRC RFC (e.g., channel messages) in order to increase the
efficiency of the network, which was a main goal of IRC RFC. The prosecution history of the
523 patent, as discussed above, suggests that the aggregation elements of the claims were the
allegedly novel aspects of the claims in the ‘523 patent. IRC RFC alone does not provide the
aggregation teachings; however, when IRC RFC is combined with Friedman, a substantial new
question is presented that was not previously discussed or considered in the prosecution of the
523 patent. Further, a reasonable examiner would consider the teachings of IRC RFC in
combination with Friedman because the teachings of aggregation are present and it would have

been obvious to those skilled in the art to combine the teachings of the two references.

E. RING IN COMBINATION WITH NETREK PROVIDES A SUBSTANTIAL NEW QUESTION
OF PATENTABILITY WITH RESPECT TO CLAIMS 1-6 OF THE ‘523 PATENT

RING was not cited or discussed during the prosecution of the ‘523 patent, and thus
RING is new prior art with respect to the ‘523 patent. RING, as discussed above, presents a
substantial new question of patentability alone. Similarly, Netrek discloses the technical
teaching of clients and servers communicating over a network using messages. See Server Code,
Server\ntservinewstartd.c at lines 129-73, lines 179-311, lines 146-70; Server\ntservimain.c at
lines 135-43; Server\ntservisocket.c at lines 442-88.

Netrek further discloses aggregating packets to reduce the number of packets sent from
the server (e.g., “Idea: read from client often, send to client not so often.”) Serverintserviinput.c
at lines 152-203; Serverintserviredraw.c at lines 21-115; Server\ntservisocket.c at lines 603-90.
RING in combination with Netrek further raises a SNQ with regards to claims 1-6 because they
provide the technical teachings of increasing network efficiency by applying the aggregation
teachings of Netrek to aggregate messages in RING to increase network efficiency. Therefore, a
reasonable examiner would consider the combination of RING and Netrek important in deciding
the patentability of claims 1-6, and accordingly the combination presents a SNQ. Further, the
SNQ of the combination RING and Netrek is not cumulative of any of the technical teachings
discussed or suggested during the prosecution history of the ‘523 patent.

22

Petitioner Riot Games, Inc. - Ex. 1005, p. 220

F. RING IN COMBINATION WITH VAN HOOK PROVIDES A SUBSTANTIAL NEW
QUESTION OF PATENTABILITY WITH RESPECT TO CLAIMS 1,2 AND 4-6 OF THE ‘523
PATENT

RING was not cited or discussed during the prosecution of the ‘523 patent, and thus is
new prior art with respect to the ‘523 patent. RING, as discussed above, presents a substantial
new question of patentability alone. Similarly, Van Hook discloses host computers and servers
communicating over a network using messages packets. Van Hook at pp. 1, 2. RING in
combination with Van Hook further raises a SNQ with regards to claims 1, 2 and 4-6 because the
combination provides the technical teachings of increasing network efficiency by applying the
aggregation teachings of Van Hook to aggregate messages in RING. Therefore, a reasonable
examiner would consider the combination of RING and Van Hook important in deciding the
patentability of claims 1, 2 and 4-6 and accordingly, this combination presents a SNQ. Further,
the SNQ of the combination of RING and Van Hook is not cumulative to any of the technical

teachings discussed or suggested during the prosecution history of the 523 patent.

V. DETAILED EXPLANATION UNDER 37 CFR 1.510(b) OF THE
PERTINENCY AND MANNER OF APPLYING THE CITED PRIOR ART TO
EVERY CLAIM FOR WHICH REEXAMINATION IS REQUESTED

A. CLAIMS 1-6 ARE ANTICIPATED BY NETREK UNDER 35 U.S.C. § 102

Please see the attached Exhibit CC-A presenting claim charts for comparison of Netrek
with claims 1-6 of the ‘523 patent.

Server2.5pld.tar.gz [hereinafter “Server Code”] and BRMH-1.7.tar.gz [hereinafter
“Client Code”] contain the source code for the game Netrek. Together, the Server Code and
Client Code define computer instructions for an online game based on a client-server network
architecture. Specifically, the Server Code defines the computer instructions for the portion of
the game running on the server; the Client Code defines the portion of the game running on the
client or host computers. See, e.g., Server\ntservisocket.c at lines 1390-1590 and lines 603-90;
brmh-1.7\socket.c at lines 1537-1634; and brmh-1.7\packets.h at lines 523-29. McFadden is
provided to add additional context and teaches inherent game play features of Netrek, in which
clients connect to a server over the Internet, which allows players to “form into teams and fight
for control of the galaxy, dogfighting and taking planets.” McFadden at p. 2, § 0.2; p. §, §2.1.2
Architecture; and at p. 11, §3.3.1 Client/Server. Even though Netrek is presented as anticipating

23

Petitioner Riot Games, Inc. - Ex. 1005, p. 221

the claims, McFadden is properly presented since it shows inherent characteristics of Netrek.
See MPEP § 2131.01(I111) and Continental Can Co. USA v. Monsanto Co., 948 F.2d 1264, 1268
(“Normally, only one reference should be used in making a rejection under 35 U.S.C. § 102.
However, a 35 U.S.C. § 102 rejection over multiple references has been held to be proper when
extra references are cited to show that a characteristic not disclosed in the reference is inherent.”)
To the extent that the examiner disagrees, Requester submits Netrek in view of McFadden to
reject claims 1-6 under 35 U.S.C. § 103.

Cram1

A method for providing group messages to a plurality of host computers

connected over a unicast wide area communication network, comprising the

steps of:

Netrek utilizes group messaging to send game state updates over the Internet, a unicast
wide area network, to maintain a consistent and shared gaming experience among a number of
host computers. McFadden at p. 2, § 0.2; at p. 8, §2.1.2 Architecture; and at p. 11, §3.3.1
Client/Server. Netrek also utilizes group messaging to allow players to communicate with other
players in the game or players on a specific team. See Server Code; and brmh-1.7\socket.c at
lines 1537-1634 (“sendServerPacket(packet)”).

providing a group messaging server coupled to said network, said server

communicating with said plurality of host computers using said unicast

network and maintaining a list of message groups, each message group
containing at least one host computer;

The Netrek server is a group messaging server that is coupled to the Internet. See Server
Code, Server\ntservinewstartd.c at lines 129-73 (the server program newstartd loops while
waiting for a network connection from a host computer), lines 179-311 (the function
connectionAttemptDetected initializes the server’s network connection so that the server can
listen for host computer connections), lines 146-70 (newstartd spawns a ntserv process on the
server for each new host computer that connects); Server\ntservimain.c at lines 135-43 (ntserv
maintains the connection from the server to the host computer by calling ConnectToClient),
Server\ntservisocket.c at lines 442-88 (the function ConnectToClient defined).

The Netrek server communicates with the plurality of host computers using the Internet, a
unicast network. See Id., Server\ntservinewstartd.c at lines 179-311 (a TCP/IP connection,

socket type SOCK STREAM, is created on the server to listen for incoming host computer

24

Petitioner Riot Games, Inc. - Ex. 1005, p. 222

connections); Server\ntservisocket.c at lines 442-88 (the function ConnectToClient maintains a
TCP/IP connection, socket type SOCK_STREAM, between the server and each host computer),
lines 1747-802 (the server communicates with a host computer by calling the function
flushSockBuf, which calls the function gwrite), lines 2607-73 (the function gwrite defined). See
generally Id., Server\ntserv\packets.h (the header file defines all of the types of messages that
can be sent during a Netrek game).

The Netrek server also maintains message groups in multiple aspects. Examples of
message groups include the group of all host computers in the game, the group of host computers
on a particular team, and the group of host computers in a player location (i.e. within the same
proximity or geographic area) in the game. See Id., Server\ntservistruct.h at lines 471-82 (the
server determines who is in a message group by examining the data structure struct memory,
which contains an array of players: “struct player players [MAXPLAYER];”), lines 208-84
(definition for struct player, which includes a field for identifying the team/message group that
the player is on, “short p_team,”, and fields for identifying the geographical vicinity (i.e., group)
of each player’s ship, “int p_x;” and “int p_y,”); Server\ntservidefs.h at lines 120-134 (contains
the definitions for the different teams and the group of all players); Server\ntservisocket.c at lines
1125-92 (the function updateTorps determines whether or not a player is in a torpedo message’s
proximity-based message group), lines 1194-255 (the function updatePlasmas determines
whether or not a player is in a plasma message’s proximity-based message group), lines 1257-94
(the function updatePhasers determines whether or not a player is in a phaser message’s
proximity-based message group), lines 1390-590 (the function updateMessages determines
whether or not a player should receive a text message based on who the text message is
addressed to).

Each team or message group on the Netrek server contains at least one host computer.
See Id., Server\ntservimain.c at lines 183-325 (when a host computer joins a game, the server
prompts the player to join or create a team, inserts the player into the array of players, and then
initializes the player’s team field and location fields by calling enter); Serverintservienter.c at
lines 30-232 (definition to the function enter).

sending, by a plurality of host computers belonging to a first message group,
messages to said server via said unicast network, said messages containing a
payload portion and a portion for identifying said first message group;

25

Petitioner Riot Games, Inc. - Ex. 1005, p. 223

Host computers, belonging to specific message groups, send out multiple types of
messages to the Netrek server over the Internet, a unicast network. See Client Code, brmh-
1.7\socket.c at lines 1537-634 (the function sendServerPacket sends messages from the host
computer to the server using either TCP/IP or UDP/IP), brmh-1.7\data.c at line 26 (the player
data structure contains a host computer’s information about the message groups it belongs to),
brmh-1.7\struct.h at lines 134-92 (struct player includes the ficlds “short p_team;”, “int p x;”,
and “int p_y;”, which identify the message groups a host computer belongs to). The messages a
host computer sends out contain a payload portion and a portion for identifying a message group.
See Id., brmh-1.7\packets.h (the header file defines all of the types of messages that can be sent
by a host computer, for example, a torpedo message allows a user to fire a torpedo at another
player). For example, when a host computer in Netrek sends a text message to a team/group
(message type CP_MESSAGE), the message contains both a payload portion and a portion for
identifying the message group. The payload portion is stored in the field “char mesg/80];”. See
1d., brmh-1.7\packets.h at lines 523-29. The portion identifying a message group can be stored
in, for example, stored in “char group,;” and *“ char indiv,”. Id.

When a host computer in Netrek fires a torpedo, the host computer sends a torpedo
message to the server. See Id., brmh-1.7\defs.h at line 222 (the function sendTorpReq sends the
server a torpedo message). The host torpedo message sent to the server contains two fields: a
field for storing the Netrek message type and a field for storing the direction of the torpedo. See
Id., brmh-1.7\packets.h at lines 293-99 (“char type;” stores the message type and message
type“‘unsigned char dir;” stores the direction). The fields storing the message type of the torpedo
and direction of the torpedo represent the portion of the message that identifies the message
group, and the field storing the direction of the torpedo represents the payload portion of the
message.

When the server receives a host torpedo message, the message type field of the torpedo
message directs the server to store the information for identifying the message group, as well as
the payload portion of the message, into shared memory. See Id., Server\ntservisocket.c at lines
121-97, 1976-2011, 2046-50; Server\ntservitorp.c at lines 41-132 (the message type field of the
torpedo causes the server to call the message handling function, ntorp, to store into shared
memory the direction of the torpedo, which comes from the host torpedo message, and the XY

coordinates of the torpedo, which is determined by the server based on the location of the host's

26

Petitioner Riot Games, Inc. - Ex. 1005, p. 224

ship in the game); Server\ntservidaemonll.c at lines 1161-1246 (the function udtorps regularly
examines the shared memory and updates the locations of all torpedoes in the game using the
direction and X, Y coordinates of each torpedo); Serverintservisocket.c at lines 1125-1192 (the
aggregation function updateTorps uses the information stored in shared memory by the function
ntorp to determine which players should receive which torpedo messages by comparing each
torpedo’s location with a host's ship location, i.e. proximity).

aggregating, by said server in a time interval determined in accordance with

a predefined criterion, said payload portions of said messages to create an

aggregated payload;

The Netrek server aggregates, in a time interval determined in accordance with
predefined criterion, the payload portions of messages that are received from host computers to
create an aggregated payload. See Server Code, Server\ntserviinput.c at line 195 (the function
input calls the function readFromClient to receive messages sent by the host computers and then
places the messages into shared memory (e.g., “buf”) so that they can be aggregated by the
server; See also, OTH-A, The Smith declaration at 4 7, 18, 25-39

For example, one of the comments states, “Idea: read from client often, send to client not
so often”), lines 152-203 (the server sets the aggregation interval to a pre-defined time stored in
timerDelay); Server\ntservidata.c at line 76 (aggregation interval set to 200,000 microseconds,
“int timerDelay=200000;"); Serverintservisocket.c at lines 603-90 (definition for the function
updateClient that calls the other update functions which handle aggregation). See generally
Server Code, Server\ntservisocket.c (contains the update functions that handle aggregation).

For example, the Netrek server receives text messages, addressed to specific teams or all
players, from the host computers and stores them into the server's shared memory. See Server
Code, Server\ntserviinput.c at line 195 (the function input calls readFromClient to receive
messages sent by the host computers and then places the messages into shared memory so that
they can be aggregated by the server); Serverintservisocket.c at lines 1825-2044
(readFromClient calls doRead, which stores information into buf at line 1956). In Netrek,
players can use text messages to communicate attack and defensive strategies or to make
comments to the opposing teams, a player's own team, or all players. Because the groups of all
players and teams cach consist of multiple players, and players may send multiple messages

simultaneously in the heat of battle, Netrek aggregates these multiple text messages with each

27

Petitioner Riot Games, Inc. - Ex. 1005, p. 225

other, torpedo messages, and other types of Netrek messages during gameplay to make efficient
use of the network and increase network throughput. The server, after waiting 0.2 seconds, calls
the function updateClient for each host computer in the game. See id., Server\ntserviinput.c at
lines 52, 154-168, 197 (server sets the aggregation interval to a pre-defined time stored in
timerDelay). The function updateClient calls multiple update functions, including the function
updateMessages. See id., Server\ntservisocket.c at lines 603-90 (definition for the function
updateClient that calls the other update functions which handle aggregation. The function
updateMessages examines the server’s shared memory and copies the appropriate text messages
onto the aggregation buffer to create an aggregated payload intended for a target host computer.
See id., Server\ntservisocket.c at lines 1390-590 (definition for the updateMessages function),
lines 1603-744 (definition for the function sendClientPacket, which places individual messages
onto the aggregation buffer). During gameplay, multiple ships in proximity of each other may
fire multiple torpedoes at one another. Netrek aggregates these multiple torpedo messages with
cach other, text messages, and other types of Netrek messages during gameplay to make efficient
use of the network and increase network throughput. When the Netrek server receives a torpedo
message from a host computer, the server stores the message into its shared memory. See Server
Code, Server\ntserviinput.c at line 195 (input calls the function readFromClient to receive
messages sent by the host computers and then places the messages into shared memory so that
they can be aggregated by the server); Server\ntservisocket.c at lines 1825-2044
(readFromClient calls doRead, which stores information into buf at line 1956). The server, after
waiting 0.2 seconds, calls the function updateClient for each host computer in the game. See id.,
Serverintserviinput.c at lines 52, 154-168, 197 (server sets the aggregation interval to a pre-
defined time stored in timerDelay). The function updateClient calls multiple update functions,
including updateTorps. See id., Server\ntservisocket.c at lines 603-90 (definition for the function
updateClient that calls the other update functions which handle aggregation). The function
updateTorps examines the server's shared memory and copies the appropriate torpedo messages,
based on proximity, onto the aggregation buffer to create an aggregated payload intended for a
target host computer. See id., Server\ntservisocket.c at lines 1125-92 (definition for the
updateTorps function), lines 1603-744 (definition for the function sendClientPacket, which

places individual messages onto the aggregation buffer).

forming an aggregated message using said aggregated payload; and

28

Petitioner Riot Games, Inc. - Ex. 1005, p. 226

The Netrek server forms an aggregated message using the aggregated payload that was
created in the aggregation buffer. See Server Code, Server\ntservisocket.c at line 688 (the
function updateClient calls the function flushSockBuf after filling the aggregation buffer to form
and transmit an aggregated message using the TCP/IP or UDP/IP protocol), lines 1603-744 (if
the aggregation buffer becomes full, the function sendClientPacket will call the function gwrite
to form and transmit an aggregated message using the TCP/IP or UDP/IP protocol), lines 1747-
802 (definition of the function flushSockBuf), lines 2607-73 (definition of the function gwrite).

An example of such an aggregated message appears in Figure 6¢ of the Smith declaration:

Netrek server’s Player 3’s Server Server
IP address IP address message packet 1 | message packet 2

Smith declaration at Figure 6c¢.

“Figure 6c¢. The aggregated message sent to Player 3 included Internet header infonnation and
both messages. Server message packet 1 was based on the payload of the message from Player 1
and server message packet 2 was based on the payload of the message from Player 2.” Smith
declaration at p. 18.

transmitting, by said server via said unicast network, said aggregated
message to a recipient host computer belonging to said first message group.

Aggregated message:
— Includes message 1 and message2
Player 1 [€ Ntserv
Calls >
Aggregated message: ApdateClieny) |
S Includes message 1 and message2
Player 2 I|< Ntserv
Calls v .
Aggregated message: updateClient() | . R
S Includes message 1 and message 2 BN Ty
Player 3 [« Ntserv
Calls Message Array
updateClient()

Smith declaration at Figure 6b.

“Figure 6b. Each host's ntserv process called updateClient(), which in turn called
updateMessages(). UpdateMessages() found all messages intended for that host in the message
array, aggregated them into a buffer (not shown), and transmitted the buffer contents to the host.
In this example, Players 1-3 arc on the same team, Players 1 and 2 had carlier indicated that their
messages (labeled messagel and message2 in Figure 6a above) should be sent to their entire
team. Thus, Players 1-3 all received an aggregated message that included both messages.” /d.

29

Petitioner Riot Games, Inc. - Ex. 1005, p. 227

The Netrek server transmits the aggregated message via the unicast network to the host
computers belonging to the appropriate message groups. See Server Code, Server\ntservisocket.c
at line 688 (the function updateClient calls the function flushSockBuf after filling the aggregation
buffer to form and transmit an aggregated message using the TCP/IP or UDP/IP protocol), lines
1603-744 (if the aggregation buffer becomes full, the function sendClientPacket will call the
function gwrite to form and transmit an aggregated message using the TCP/IP or UDP/IP
protocol), lines 1747-802 (definition of the function flushSockBuf), lines 2607-73 (definition of
the function gwrite). As an example, a series of torpedo messages can be collected and sent
(e.g., fired) to a competing player in the game. Server\ntservisocket.c at lines 1125-92. In the
case that all messages aggregated during the aggregation interval belong to the same message
group, every computer belonging to the message group will receive the same message because
only group messages have been aggregated. Therefore, Netrek anticipates transmitting the same

“aggregated message” to each group member as recited by the claim.

CLAIM 2

The method of claim 1 wherein said time interval is a fixed period of time.

The Netrek server called its aggregation function, updateClient, every 0.2 seconds. See
Server Code, Server\ntserviinput.c at lines 152-168 (server sets the aggregation interval to a pre-
defined time stored in timerDelay), Server\ntserv\data.c at line 76 (aggregation interval set to
200,000 microseconds, “int timerDelay=200000;").

CLAIM 3

The method of claim 1 wherein said time interval corresponds to a time for

said server to receive at least one message from each host computer

belonging to said first message group.

Netrek discloses a readFromClient function that receives messages from each of the
hosts (e.g., clients) into a shared memory (e.g., “buf”) for aggregation. See Server\ntserviinput.c
at line 195 and Server\ntservisocket.c at lines 1825-2044. Netrek further discloses a time for the
server to receive at least one message from each host—each host that joins has a corresponding
ntserv process running on the server, which waits for 0.2 seconds for at least one message to
aggregate in buf from each host computer belonging to the first message group (e.g., all players

in the game or on a particular team)—and after waiting the 0.2 seconds, the aggregated messages

30

Petitioner Riot Games, Inc. - Ex. 1005, p. 228

arc sent to the clients. See Server\ntservisocket.c at lines 1825-2044, 603-90;

Server\ntserviinput.c at lines 152-203; Server\ntserviredraw.c at lines 21-115.

Cramv 4

The method of claim 1 further comprising the step of creating, by one of said

plurality of host computers, said first message group by sending a first

control message to said server via said unicast network.

Host computers in Netrek create message groups by sending create messages to the
server. Specifically, the first player to join a team, or the first player to join the game sends a
create message. See Client Code, brmh-1.7\entrywin.c at lines 57-353 (host computer prompts
user to select a team to create); brmh-1.7\socket.c at lines 1800-09 (host computer sends a create
message to the server specifying the team that the host wants to create, “outfitReq.team =
team;”).

CLAIM S

The method of claim 4 further comprising the step of joining, by some of said

plurality of host computers, said first message group by sending control

messages via said unicast network to said server specifying said first message
group.

Host computers in Netrek send join messages to the server specifying a message group to
be joined. See Client Code, brmh-1.7\entrywin.c at lines 57-353 (host computer prompts user to
select a team to join); brmh-1.7\socket.c at lines 1800-09 (host computer sends a join message to
the server specifying the team that the host wants to join, “outfitReq.team = team,”).

CLAIM 6

The method of claim 1 wherein said network is Internet and said server

communicates with said plurality of host computers using a session layer

protocol.

Netrek is a network game that runs over the Internet. See Id., Server\ntservinewstartd.c
at lines 179-311 (a TCP/IP connection, socket type SOCK _STREAM, is created on server to
listen for incoming host computer connections), Server\ntservisocket.c at lines 442-88 (the
function ConnectToClient maintains a TCP/IP connection, socket type SOCK STREAM,
between the server and each host computer); Server\packets.h (the header file defines the packet

types that exist in the Netrek session layer protocol). As was known in the art, TCP/IP

31

Petitioner Riot Games, Inc. - Ex. 1005, p. 229

connections implement session layer functionality in the transport layer and/or application layer,
which means that Netrek inherently includes a session layer functionality.

B. CLAIMS 1-6 ARE RENDERED OBVIOUS BY NETREK IN VIEW OF MCFADDEN UNDER 35
U.S.C.§ 103

Please see the attached Exhibit CC-B presenting claim charts for comparison of Netrek
and McFadden with claims 1-6 of the 523 patent.

To the extent that the Office finds that the “BRMH-1.7.tar.gz” Client Code, the
“Server2.5pld.tar.gz” Server Code and McFadden does not teach inherent characteristics of
Netrek, Requester submits that it would have been obvious to combine “BRMH-1.7 tar.gz”
Client Code, the “Server2.5pl4.tar.gz” Server Code (together “Netrek™) in view of McFadden to
the claims 1-6 of the ‘523 patent under 35 U.S.C. § 103.

Requester incorporates by reference the arguments made above in § IV-A to show that
even if claim 1-6 of the 523 patent are not anticipated by Netrek, they are rendered obvious by
Netrek in view of McFadden. As discussed above, Netrek discloses all of the elements of the
claims under 35 U.S.C. § 102, particularly when the inherent features of Netrek shown by
McFadden are considered. Beyond the Netrek disclosure and its inherent characteristics, Netrek
and McFadden when considered together render the claims obvious under 35 U.S.C. § 103 for
the reasons given below.

Reason to Combine:

“BRMH-1.7 tar.gz” Client Code and the “Server2.5pl4.tar.gz” Server Code are both used
to play Netrek. See OTH-C, Ahn Declaration at 9 5. Therefore, one of skill in the art would
look to combine the Client Code and the Server Code in order to enable playing Netrek.

McFadden is a FAQ and history of the online game Netrek game. McFadden at p. 2, §
0.2; p. 8, §2.1.2 Architecture; and p. 11, §3.3.1 Client/Server. McFadden was specifically
written to teach people interested in Netrek about the game. Accordingly, one of ordinary skill
in the art would look to McFadden to help provide context of the source code of Netrek in order
to understand how certain lines of code affected actual gameplay experience.

C. CLAIMS 1, 2 AND 4-6 ARE RENDERED OBVIOUS BY VAN HOOK IN VIEW OF DIS UNDER
35U0.8.C.§ 103

Please see the attached Exhibit CC-C presenting claim charts for comparison of Van
Hook in view of DIS with claims 1, 2 and 4-6 of the ‘523 patent.

Reason to Combine:

32

Petitioner Riot Games, Inc. - Ex. 1005, p. 230

Van Hook discloses techniques that have been developed and deployed for ARPA’s
Synthetic Theater of War - Europe (“STOW-E”) program and Distributed Interactive Simulation
(“DIS”), wherein a virtual world simulates battlefield conditions, and “[e]xplicit representations
of command, control, and communication are required to permit command forces to transmit
orders to and receive reports from a new generation of more intelligent semi-automated forces.”
Van Hook at p. 1. Likewise, as its name indicates, DIS is part of a proposed set of standards for
the Distributed Interactive Simulation (“DIS”) used in conjunction with the STOW-E program in
Van Hook. DIS at pp. 1-3. Van Hook provides for bundling of the PDUs from host computers
by the AG server into larger transmission packets to be distributed to other host computers. Van
Hook at pp. 2 and 7. DIS goes one step further to discuss the anatomy of a packet, as the PDU
packets disclosed in DIS include a PDU header, an ID denoting a host computer (Entity ID), an
ID for an exercise (Exercise ID), an ID denoting which team the host computer belongs to (Force
ID) and the positional information of the entity. DIS at pp. 40-41, Table 18. It would have been
obvious to a person of ordinary skill in that the art to combine the teachings of bundling packets,
or PDUs, in a Distributed Interactive Simulation disclosed in Van Hook with the teachings of the
contents of a PDU in a Distributed Interactive Simulation as disclosed in DIS since Van Hook
explicitly teaches using the DIS protocol to exchange information in STOW-E.

Cram1

A method for providing group messages to a plurality of host computers

connected over a unicast wide area communication network, comprising the

steps of:

Van Hook in view of DIS discloses a method for providing group messages, such as the
protocol data units (“Data messages, called protocol data units (PDUs)”) disclosed in DIS, to a
plurality of host computers connected over a wide area network (“WAN”). Van Hook at pp. 1,
4, 5 and Figure 1; DIS at Abstract, pp. 3, 4, 5 and 10. Van Hook discloses “some of the
innovative techniques being developed and deployed” for the Synthetic Theater of War-Europe
(“STOW-E”) exercise. Van Hook at p. 1. STOW-E would use the Distributed Interactive
Simulation (“DIS”) protocols to exchange information between DIS-based simulators. Thus,
Van Hook discloses providing group messages (e.g., “Data messages, called protocol data units
(PDUs)”) to a plurality of host computers (e.g., “network sites”) connected over a wide area

communication network (e.g., the “Defense Simulation Internet (DSI) Wide Area Network

33

Petitioner Riot Games, Inc. - Ex. 1005, p. 231

(WAN)”). DIS discloses providing group messages (e.g., “Data messages, called protocol data
units (PDUs)”) to a plurality of “host computers” over a wide arca network. DIS at Abstract, pp.
3,4, 5 and 10.

Van Hook does not expressly disclose that the wide area communication network is
unicast. Instead, Van Hook discloses that the LANS run in “promiscuous mode” (i.e., broadcast)
and the WAN is multicast. Van Hook at 5. However, DIS was designed to operate over a
unicast network. DIS at 5, 10 (“Delivery. The communication architecture must support either,
multicast, broadcast, or unicast packets.”). Thus, a person of ordinary skill in the art at the time
of filing would have found it obvious to modify the system disclosed in Van Hook and DIS to
operate on a unicast network.

providing a group messaging server coupled to said network, said server

communicating with said plurality of host computers using said unicast

network and maintaining a list of message groups, each message group
containing at least one host computer;

Van Hook in view of DIS discloses providing a group messaging server (e.g., the
“Application Gateway” (“AG”)) coupled to said network, said server communicating with said
plurality of host computers participating in the DIS exercise, using said network. Van Hook at
Figs. 1 and 5; pp. 1, 4, 6; DIS at p. 36. Van Hook further discloses that each AG maintains a list
of message groups (e.g., “cell sets,” “forces,” or “exercises”’) each message group containing at
least one host computer. Van Hook at Figs. 1, 5, pp. 1, 4 and 6.

sending, by a plurality of host computers belonging to a first message group,

messages to said server via said unicast network, said messages containing a

payload portion and a portion for identifying said first message group;

Van Hook in view of DIS discloses sending, by a plurality of host computers belonging
to a first message group, messages (e.g., PDUs) to said server via said network, said messages
containing a payload portion and a portion for identifying said first message group (e.g., first
coordinates). Van Hook at pp. 2 and 5; DIS at Table 18, pp. 5, 14, 36 and 39-41. For example,
the payload portion of the PDU can be “state information that is necessary for the receiving
simulation application to represent the issuing entity in the simulation application’s own
simulation”). DIS at p. 14. The portion for identifying said first message group can be, for
example, the positional information (i.e., coordinates), exercise information “Exercise ID”, or

force information “Force ID” in the PDU. While the coordinates themselves do not indicate a

34

Petitioner Riot Games, Inc. - Ex. 1005, p. 232

particular message group, they are used by the AGs “for identifying” the group (e.g., “cell set,”
Force, or Exercise) to which the PDU should be transmitted. Van Hook at 6.

aggregating, by said server in a time interval determined in accordance with

a predefined criterion, said payload portions of said messages to create an

aggregated payload;

Van Hook discloses aggregating (e.g., bundling), by said server (e.g., AG) in a time
interval determined in accordance with a predefined criterion (e.g., “maximum delay time”), said

payload portions of said messages to create an aggregated payload. Van Hook at pp. 2 and 7.
forming an aggregated message using said aggregated payload; and

Van Hook discloses forming an aggregated message (e.g., "bundled packets") using said

aggregated payload. Id.

transmitting, by said server via said unicast network, said aggregated

message to a recipient host computer belonging to said first message group.

Van Hook, in view of DIS, discloses transmitting, by said server (e.g., “AG”) via said
network, (e.g., “WAN?”) said aggregated message (e.g., “bundled PDU”) onto the WAN. Van
Hook at 7. The other AGs on the WAN receive the aggregated message (e.g., “bundled packet”),
unbundle it, and determine which hosts in the group (e.g., “cell set,” “Force ID” or “Exercise
ID”) should receive the PDU. The AG then transmits the PDUs individually to those recipient
host computer in the group (e.g., “cell set,” “force,” or “exercise”). Van Hook at Figures 1 and

5:pp.1,2,4,6,7,DIS atp. 5.

The recipient host computer does not receive the aggregated message (e.g., “bundled

PDU”) because it us unbundled by an AG after being received from the WAN and before being
retransmitted to the host computer over the LAN. Van Hook at 7, section 4.6. Nevertheless,
Requester submits that the broadest reasonable interpretation of this element does not require
receiving, by a recipient host computer, said aggregated message. Instead, the step of
“transmitting ... said aggregated message” is performed when the AG transmits the bundled PDU
out onto the WAN, even though the packet may be de-aggregated prior to being received by the

recipient host computer.

CLAIM 2

The method of claim 1 wherein said time interval is a fixed period of time.

35

Petitioner Riot Games, Inc. - Ex. 1005, p. 233

Van Hook discloses the method of claim 1 wherein said time internal is a fixed period of
time (e.g., the maximum time delay). Van Hook at pp. 2 and 7.
Cramv 4

The method of claim 1 further comprising the step of creating, by one of said

plurality of host computers, said first message group by sending a first

control message to said server via said unicast network.

Van Hook in view of DIS discloses creating a message group (e.g., “cell set,” “Force” or
“Exercise”) by establishing the group at initialization or during the simulation, when, for
example, a participant enters a region of the simulation or establishes a new force Van Hook at 6

and DIS at 36.

CLAIM 5

The method of claim 4 further comprising the step of joining, by some of said
plurality of host computers, said first message group by sending control
messages via said unicast network to said server specifying said first message

group.

Van Hook in view of DIS discloses some host computers (e.g., participants in the same
vicinity, exercise or force) joining a message group (e.g., “cell set,” “Force” or “Exercise”) by
sending a control message (e.g., join PDU or moving into the vicinity of other group members)
specifying the message group (e.g., coordinates, “Exercise” or “Force”). Van Hook at 6 and DIS
at 36. Join PDUs are inherent in the operation of STOW-E because there must be some method
for multiple computers to join the simulation during initialization or while the game is in
progress; this is exemplified in Macedonia, which discloses Join PDUs in a DIS system.
Macedonia at 42. Therefore, Van Hook, in view of DIS, inherently, or at least obviously,
includes Join PDUs.

CLAIM 6
The method of claim 1 wherein said network is Internet and said server
communicates with said plurality of host computers using a session layer

protocol.

Van Hook discloses the method of claim 1 wherein the network is the Defense

Simulation Internet Wide Area Network, and the AG server communicates with said plurality of

36

Petitioner Riot Games, Inc. - Ex. 1005, p. 234

host computers using a session layer protocol (e.g., the “DIS protocol”, which inherently runs
over a session layer protocol or its equivalent). Van Hook at p. 1.
D. CLAIMS 1, 2 AND 4-6 ARE RENDERED OBVIOUS BY IRC RFC IN VIEW OF

FRIEDMAN UNDER 35 U.S.C. § 103

Please see the attached Exhibit CC-D presenting claim charts for comparison of IRC RFC
in view of Friedman with claims 1, 2 and 4-6 of the ‘523 patent.
Reason to Combine:

IRC RFC does not disclose aggregating payload portions, but Friedman discloses that
messages are buffered and then the payloads are aggregated (e.g., packed) before sending.
Friedman at p. 5. In addition, IRC RFC states that “[t]he main goal of IRC is to provide a forum
which allows easy and efficient conferencing (one-to-many conversations).” IRC RFC at p. 11,
§ 3.2, One-to-many. Friedman discloses that the aggregation of message packets improves both
latency and throughput compared to non-aggregating communication protocols. Friedman at p.
1. In addition both IRC RFC and Friedman are both directed to messaging groups connecting
over a network. IRC RFC at p. 11, § 1, Introduction and Friedman at pg. 2. Therefore, it would
have been obvious to one of ordinary skill in the art at the time of the invention to aggregate the
group messages of IRC RFC (e.g., channel messages) in order to increase the efficiency of the
network, which was a main goal of IRC RFC.

Cram1

A method for providing group messages to a plurality of host computers

connected over a unicast wide area communication network, comprising the

steps of:

IRC RFC discloses a text-based protocol designed to provide real-time Internet text
messaging or synchronous text-based conferencing through the use of a client-server model.
IRC RFC provides a method for providing group messages (e.g., chat messages on a specific
channel) to a plurality of host computers (e.g., clients). IRC RFC at p. 4, §1 Introduction and p.
11, §3.2.2, To a group. The host computers are connected over a unicast wide arca
communication network, the Internet, and communicate with one another via TCP/IP. IRC RFC
at abstract, § 1. Messages “are sent only once to that server [connected to the client] and then
sent to each client on the channel” rather than sent directly to multiple other clients. Id. at §

32.2.

37

Petitioner Riot Games, Inc. - Ex. 1005, p. 235

providing a group messaging server coupled to said network, said server

communicating with said plurality of host computers using said unicast

network and maintaining a list of message groups, each message group

containing at least one host computer;

IRC RFC discloses a group messaging server (e.g., the server) coupled to a network (e.g.,
the Internet), said server, communicating with a plurality of host computers (e.g., clients) using a
unicast network, and maintaining a list of message groups (e.g., channels). IRC RFC at p. 4, §1,
Introduction, 5, §, 1.3, Channels and 11, § 3.2.2, To a group (channel). Each server “know][s]
about all channels, their inhabitants and properties.” Id. at p. 64, § 9.2.2, Channels.

sending, by a plurality of host computers belonging to a first message group,

messages to said server via said unicast network, said messages containing a

payload portion and a portion for identifying said first message group;

IRC RFC discloses that clients can send a message to a message group (e.g., a channel).
IRC RFC at p. 32, § 4.4.1, Private messages. The messages contain a payload portion, i.e. <text
to be sent>, and a portion identifying the message group (e.g., <receiver> which can be a channel
name). /d.

aggregating, by said server in a time interval determined in accordance with

a predefined criterion, said payload portions of said messages to create an

aggregated payload;

IRC RFC discloses that sending individual messages to each user in a list is the least
efficient method of group communication because duplicate messages are sent along the same
path. IRC RFC at p. 11, § 3.2.1, To a list. IRC instead suggests sending the message to a
message group (i.e. a channel) such that “the message text is sent only once to that server and
then sent to cach client on the channel.” IRC RFC at § 3.2.2. IRC RFC does not disclose
aggregating payload portions, but Friedman discloses such. Friedman discloses that messages
are buffered and then the payloads are aggregated (e.g., packed) before sending. Friedman at p.
5. It would have been obvious to aggregate the group messages of IRC RFC (e.g., channel

messages) in order to increase the efficiency of the network. Friedman at p. 1.
forming an aggregated message using said aggregated payload; and

Friedman discloses that aggregated payloads (e.g., packed messages) are formed into an

aggregated message (e.g., packed message having a single header). Friedman at pp. 5 and 12.

38

Petitioner Riot Games, Inc. - Ex. 1005, p. 236

transmitting, by said server via said unicast network, said aggregated
message to a recipient host computer belonging to said first message group.
IRC RFC discloses that the server sends messages addressed to a channel to each other host (e.g.,

client), which is a member of the message group (e.g., channel). IRCRFC atp. 11,§3.2.2, To a
group.

CLAIM 2

The method of claim 1 wherein said time interval is a fixed period of time.

Friedman discloses that messages are buffered for a time interval that is fixed (e.g., one
millisecond). Friedman at p. 5.
CLAIM 4
The method of claim 1 further comprising the step of creating, by one of said
plurality of host computers, said first message group by sending a first
control message to said server via said unicast network.
IRC RFC discloses creating a message group (e.g., a channel) by sending a control

message (e.g., the “JOIN” command creates a new channel when the first client joins) with the

channel name. IRC RFC at p. 5, §1.3 Channels and 19, §4.2.1, Join message.

CLAIM 5

The method of claim 4 further comprising the step of joining, by some of said
plurality of host computers, said first message group by sending control
messages via said unicast network to said server specifying said first message

group.

IRC RFC discloses some host computers (e.g., some clients) joining a message group
(e.g., a channel) by sending a control message (e.g., the “JOIN” command) with the channel
name. IRC RFC at p. 5, §1.3 Channels, and 19, §4.2.1, Join message.

CLAIM 6
The method of claim 1 wherein said network is Internet and said server
communicates with said plurality of host computers using a session layer

protocol.

IRC RFC discloses running on systems using the TCP/IP network protocol suite, which
necessarily includes communication using a session layer protocol. IRC RFC at p. 4, § 1

Introduction. As was known in the art, TCP/IP connections implement session layer

39

Petitioner Riot Games, Inc. - Ex. 1005, p. 237

functionality in the transport layer and/or application layer, which means that IRC RFC

inherently includes a session layer functionality.

E. CLAIMS 1-6 ARE RENDERED OBVIOUS BY RING IN VIEW OF NETREK UNDER 35 U.S.C.
§ 103

Please see the attached Exhibit CC-E presenting claim charts for comparison of RING in
view of Netrek with claims 1-6 of the ‘523 patent.
Reasons to Combine:

RING discloses communicating messages over a network. RING at Figs. 5 and 7, pp. 88,
87 and 91. Similarly, Netrek discloses clients and servers communicating over a network using
messages. See Server Code, Server\ntservinewstartd.c at lines 129-73, lines 179-311, lines 146-
70; Server\ntservimain.c at lines 135-43; Server\ntservisocket.c at lines 442-88. Netrek further
discloses aggregating packets to reduce the number of packets sent from the server. (e.g., “Idea:
read from client often, send to client not so often™). Server\ntserviinput.c at lines 152-203;
Server\ntserviredraw.c at lines 21-115; Server\ntservisocket.c at lines 603-90. A person of
ordinary skill in the art, looking to increase network efficiency, would have looked to related
methods of communicating messages over a network. Accordingly, a person of ordinary skill in
the art would have looked to the aggregation teachings of Netrek to aggregate messages in RING
to increase network efficiency.

Cram 1

A method for providing group messages to a plurality of host computers

connected over a unicast wide area communication network, comprising the

steps of:

RING discloses a method for providing group messages (e.g., “update messages”) to a
plurality of host computers (e.g., “client workstations”) connected over RING’s unicast wide-
areca communication network. RING at Abstract, pp. 85, 86, 90 and 91.

providing a group messaging server coupled to said network, said server

communicating with said plurality of host computers using said unicast

network and maintaining a list of message groups, each message group
containing at least one host computer;

RING discloses providing a group messaging server coupled to the network, (e.g.,

RING’s unicast wide-arca communication network), wherein the server communicates with the

40

Petitioner Riot Games, Inc. - Ex. 1005, p. 238

plurality of host computers (e.g., “client workstations) using the unicast network and
maintaining a list of message groups. RING at Figs. 5 and 7, pp. 88, 87 and 91. As illustrated in
Figure 7 (reproduced below), for example, RING discloses that clients A and C belong to client
B’s message group, and therefore this particular message group contains at Icast one host

computer, or client workstation, including A, B and C. RING at Fig. 7.

LHENT A

.......

Pigure 70 Flwwe of updase mossages (Gabated aveowsy for spe
Autem o entites AL B, O 313 arenprged in 2 virtnel soavirun-
ent vy showy: in Figure 4

Figure 7 of RING at p. 88.

-

Message groups can consist of all clients connected to RING servers, or clients that are
visible to cach other and can send messages to cach other. RING at pp.87-88. A server, such as
server Y in Figure 7, maintains a list of message groups, as “servers keep track of which cells
contain which entitics by exchanging ‘periodic’ update messages when entities cross cell
boundarics,” and thus become visible to other clients. RING at p. 87.

sending, by a plurality of host computers belonging to a first message group,

messages to said server via said unicast network, said messages containing a

payload portion and a portion for identifying said first message group;

RING discloses sending, by a plurality of host computers (e.g., “client workstations™)
belonging to a first message group (e.g., other clients participating in the same distributed
simulation and in the same cell), messages to the server via the unicast network. RING at pp. 87
and 91. The messages (e.g., “update messages”) contain 40 bytes, and consist of a portion for
identifying a first message group, such as an “entity-1D,” as well as a payload portion containing

RIS

message information such as “target-position,” “target-orientation,” “‘positional-velocity,” and
g get-p g p y

“rotational velocity.” RING at pp. 87, 89, 91 and Fig. 5. While the entity-ID does not explicitly

indicate a particular message group, it is used by the server “for identifying” the group (e.g.,

41

Petitioner Riot Games, Inc. - Ex. 1005, p. 239

“cell”) to which the message should be transmitted. RING at p. 87 (“[S]ervers keep track of
which cells contains which entities by exchanging ‘periodic’ update message when entities cross
cell boundaries. Real-time update messages are propagated only to servers and client containing
entities inside some cell visible to the one containing the updated entity.”)

aggregating, by said server in a time interval determined in accordance with

a predefined criterion, said payload portions of said messages to create an

aggregated payload;

While RING does not explicitly disclose aggregating, Netrek discloses aggregating
payload potions of said messages to create an aggregated payload. See Server Code,
Server\ntservi\input.c at line 195 (the function input calls the function readFromClient to receive
messages sent by the host computers and then places the messages into shared memory (e.g.,
“buf”) so that they can be aggregated by the server; See also, OTH-A, The Smith declaration at
M7, 18,2539

For example, one of the comments states, “Idea: read from client often, send to client not
so often”), lines 152-203 (the server sets the aggregation interval to a pre-defined time stored in
timerDelay); Server\ntservidata.c at line 76 (aggregation interval set to 200,000 microseconds,
“int timerDelay=200000;”); Server\ntservisocket.c at lines 603-90 (definition for the function
updateClient that calls the other update functions which handle aggregation). See generally
Server Code, Server\ntservisocket.c (contains the update functions that handle aggregation).

For example, the Netrek server aggregates torpedo messages based on a ship’s proximity
to a torpedo because ships in the torpedo’s proximity may be hit by it and players will need to
see it to take evasive measures. When the Netrek server receives a torpedo message from a host
computer, the server stores the message into its shared memory (e.g., “buf”). See Server Code,
Serverintserviinput.c at line 195 (input calls the function readFromClient to receive messages
sent by the host computers and then places the messages into shared memory (e.g., buf) so that
they can be aggregated by the server); Serverintservisocket.c at lines 1825-2044
(readFromClient calls doRead, which stores information into buf at line 1956).

Similarly, RING takes entity proximity into account when processing what information
should be sent to servers and clients. RING at p. 87. Therefore, it would have been obvious to

one of skill in the art to use the teaching of aggregating message payloads from clients based on

42

Petitioner Riot Games, Inc. - Ex. 1005, p. 240

entity proximity in Netrek to aggregate update message payloads in RING, which are also based

on entity proximity, to increase network efficiency.
forming an aggregated message using said aggregated payload; and

While RING does not explicitly disclose forming an aggregated message, it teaches that it
is advantageous to aggregate (e.g., “augment”) a client message payload (e.g., an "update
message”) with “Add” and “Remove” messages. RING at p. 88 (“As entitics move through the
environment, servers augment update messages with ‘Add” and ‘Remove’ messages notifying
clients that remote entitics have become relevant or irrelevant to the client’s local entities.”).
Moreover, Netrek teaches forming an aggregated message using the aggregated payload that was
created in the aggregation buffer. See Server Code, Serverintservisocket.c at line 688 (the
function updateClient calls the function flushSockBuf after filling the aggregation buffer to form
and transmit an aggregated message using the TCP/IP or UDP/IP protocol), lines 1603-744 (if
the aggregation buffer becomes full, the function sendClientPacket will call the function gwrite
to form and transmit an aggregated message using the TCP/IP or UDP/IP protocol), lines 1747-
802 (definition of the function flushSockBuf), lines 2607-73 (definition of the function gwrite).

An example of such an aggregated message appears in Figure 6¢ of the Smith declaration:

Netrek server’s Player 3’s Server Server
IP address IP address message packet 1 | message packet 2

“Figure 6¢. The aggregated message sent to Player 3 included Internet header infonnation and
both messages. Server message packet 1 was based on the payload of the message from Player 1
and server message packet 2 was based on the payload of the message from Player 2.” Smith
declaration at p. 18.

transmitting, by said server via said unicast network, said aggregated

message to a recipient host computer belonging to said first message group.

RING further discloses transmitting, by said server via the unicast network, said
aggregated message to a recipient host computer (e.g., “client workstation) belonging to said
first message group. RING at pp. 87 and 91. More specifically, RING teaches, “sending
messages directly between clients, RING routes cach one through at least onc server and

possibly two.” Ring at p. 88. According to RING, client workstations belong to the first

43

Petitioner Riot Games, Inc. - Ex. 1005, p. 241

message group if they participate in the same distributed simulation or are visible to each other.
RING at p. 87.

Moreover, the Netrek server transmits the aggregated message via the unicast network to
the host computers belonging to the appropriate message groups. See Server Code,
Serverintservisocket.c at line 688 (the function updateClient calls the function flushSockBuf after
filling the aggregation buffer to form and transmit an aggregated message using the TCP/IP or
UDP/IP protocol), lines 1603-744 (if the aggregation buffer becomes full, the function
sendClientPacket will call the function gwrite to form and transmit an aggregated message using
the TCP/IP or UDP/IP protocol), lines 1747-802 (definition of the function flushSockBuf), lines
2607-73 (definition of the function gwrite). As an example, a series of torpedo messages can be
collected and sent (e.g., fired) to a competing player in the game. Server\ntservisocket.c at lines
1125-92.

Aggregated message:

Includes message 1 and message 2
Player 1 < Niserv
Calls
updateClient()

Aggregated message:
Includes message 1 and message 2

Player 2 < Niserv

Calls
: dateClient()
Aggregated message: up \
Includes message 1 and message 2 Shared Memory

Player 3 < Ntserv

Calls Message Array
updateClient()

Smith declaration at Figure 6b.

“Figure 6b. Each host's ntserv process called updateClient(), which in turn called
updateMessages(). UpdateMessages() found all messages intended for that host in the message
array, aggregated them into a buffer (not shown), and transmitted the buffer contents to the host.
In this example, Players 1-3 are on the same team, Players 1 and 2 had earlier indicated that their
messages (labeled messagel and message? in Figure 6a above) should be sent to their entire
team. Thus, Players 1-3 all received an aggregated message that included both messages.” Id.
CLAIM 2

The method of claim 1 wherein said time interval is a fixed period of time.

RING, in view of Netrek, discloses the method of claim 1 wherein said time interval is a

fixed period of time. RING at Abstract, pp. 85, 86, 87, 90 and 91. In particular, RING discloses

44

Petitioner Riot Games, Inc. - Ex. 1005, p. 242

