
ZTE/SAMSUNG 1008-0280
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Feature selectors are used when enabling or setting features, such as remote wakeup, specific to a device,

interface, or endpoint. The values for the feature selectors are given in Table 9-6.

Table 9-6. Standard Feature Selectors

D EVI GENREMOTE_WAKEUP Device

EN DPOINT_HALT Endpoint

If an unsupported or invalid request is made to a USB device, the device responds by retuming STALL in

the Data or Status stage of the request. If the device detects the error in the Setup stage, it is preferred that

the device returns STALL at the earlier of the Data or Status stage. Receipt of an unsupported or invalid

request does NOT cause the Optional Hair feature on the control pipe to be set. If for any reason, the device

becomes unable to communicate via its Default Control Pipe due to an error condition, the device must be

reset to clear the condition and restart the Default Control Pipe.

9.4.1 Clear Feature

This request is used to clear or disable a specific feature.

 000000008 CLEAR_FEATURE Feature Zero Zero
00000001 B Selector Interface

0000001 OB Endpoint

Feature selector values in w Vahte must be appropriate to the recipient. Only device feature selector values

may be used when the recipient is a device, only interface feature selector values may be used when the

recipient is an interface, and only endpoint feature selector values may be used when the recipient is an

endpoint.

Refer to Table 9-6 for a definition ofwhich feature selector values are defined for which recipients.

A ClearFeatureO request that references a feature that cannot be cleared, that does not exist, or that

references an interface or endpoint that does not exist, will cause the device to respond with a Request
Error.

If wLength is non~zero, then the device behavior is not specified.

Default state: Device behavior when this request is received while the device is in the Default state

is not Specified.

Address state: This request is valid when the device is in the Address state; references to interfaces

or to endpoints other than endpoint zero shall cause the device to respond with a
Request Error.

Configured state: This request is valid when the device is in the Configured state.

Note: The Test_Mode feature cannot be cleared by the ClearFeatureO request.

252

ZTE/SAMSUNG 1008-0280

|PR201 8-001 10

ZTE/SAMSUNG 1008-0281
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

9.4.2 Get Configuration

This request returns the current device configuration value.

100000000 00000000000000”00000000.nValue

If the returned value is zero, the device is not configured.

If iirVaIue, windex, or wLength are not as specified above, then the device behavior is not specified.

Default state: Device behavior when this request is received while the device is in the Default state

is not specified.

Address state: The value zero must be returned.

Configured state: The non-zero bConfigumrionVaiue of the current configuration must be returned.

9.4.3 Get Descriptor

This request returns the specified descriptor if the descriptor exists.

but RequestTypa bRequest Data

100000008 GET_DESCR|PTOR Descriptor Zero or Descriptor Descriptor
Type and Language ID Length
Descriptor {refer to

Index Section 9.6.7)

The wVat’ue field specifies the descriptor type in the high byte (refer to Table 9-5) and the descriptor index

in the low byte. The descriptor index is used to select a Specific descriptor (only for configuration and

string descriptors) when several descriptors of the same type are implemented in a device. For example, a

device can implement several configuration descriptors. For other standard descriptors that can be retrieved

via a GetDescriptorO request, a descriptor index of zero must be used. The range of values used for a

descriptor index is from 0 to one less than the number of descriptors of that type implemented by the device.

The windex field specifies the Language ID for string descriptors or is reset to zero for other descriptors.

The wLength field specifies the number of bytes to return. If the descriptor is longer than the wLengrh field,

only the initial bytes of the descriptor are returned. If the descriptor is shorter than the wiles-gm field, the

device indicates the end of the control transfer by sending a short packet when further data is requested. A

short packet is defined as a packet shorter than the maximum payload size or a zero length data packet (refer

to Chapter 5).

The standard request to a device supports three types of descriptors: device (also device_qualifier),

configuration {also 0ther_speed_configuration), and string. A high-speed capable device supports the

device__qualifier descriptor to return information about the device for the speed at which it is not operating

(including wMaxPacket-S'ize for the default endpoint and the number of configurations for the other speed).

The other_speed_configuration returns information in the same structure as a configuration descriptor, but

for a configuration if the device were operating at the other speed. A request for a configuration descriptor

returns the configuration descriptor, all interface descriptors, and endpoint descriptors for all of the

253

ZTE/SAMSUNG 1008-0281

|PR201 8-001 10

ZTE/SAMSUNG 1008-0282
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

interfaces in a single request. The first interface descriptor follows the configuration descriptor. The

endpoint descriptors for the first interface follow the first interface descriptor. If there are additional

interfaces, their interface descriptor and endpoint descriptors follow the first interface‘s endpoint

descriptors. Class-specific andr’or vendor—specific descriptors follow the standard descriptors they extend or

modify.

All devices must provide a device descriptor and at least one configuration descriptor. If a device does not

support a requested descriptor, it responds with a Request Error.

Default state: This is a valid request when the device is in the Default state.

Address state: This is a valid request when the device is in the Address state.

Configured state: This is a valid request when the device is in the Configured state.

9.4.4 Get interface

This request returns the selected alternate setting for the specified interface.

 10000001 B GET_I NTERFACE Zero interface Alternate

Setting

Some USB devices have configurations with interfaces that have mutually exclusive settings. This request

allows the host to determine the currently selected alternate setting.

If wValue or wLengrh are not as specified above, then the device behavior is not specified.

If the interface specified does not exist, then the device responds with a Request Error.

Default state: Device behavior when this request is received while the device is in the Default state

is not specified.

Address state: A Request Error response is given by the device.

Configured state: This is a valid request when the device is in the Configured state.

9.4.5 Get Status

This request returns status for the specified recipient.

 100000003 GET_STATUS Zero Zero Device
10000001 B Interface Interface, or
1000001 DB Endpoint Endpoint

Status

The Recipient bits ofthe meequesrType field specify the desired recipient. The data returned is the current

status of the specified recipient.

254

ZTE/SAMSUNG 1008-0282

|PR201 8-001 10

ZTE/SAMSUNG 1008-0283
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

If w Value or wLengrh are not as specified above, or if winder is non-zero for a device status request, then

the behavior ofthe device is not specified.

If an interface or an endpoint is specified that does not exist, then the device responds with a Request Error.

Default state: Device behavior when this request is received while the device is in the Default state

is not specified.

Address state: If an interface or an endpoint other than endpoint zero is specified, then the device

responds with a Request Error.

Configured state: If an interface or endpoint that does not exist is Specified, then the device responds

with a Request Error.

A GetStatus() request to a device returns the information shown in Figure 9-4.

“unmann-
Reserved (Reset to zero) Remote Self

Wakeup Powered

Reserved (Reset to zero}

Figure 9-4. Information Returned by a GetStatus() Request to 3 Device

The SetfPowered field indicates whether the device is currently self-powered. If D0 is reset to zero, the

device is bus-powered. If D0 is set to one, the device is self-powered. The SeifPower-ed field may not be

changed by the SetFeatureO or ClearFeatureO requests.

The Remote Wakeup field indicates whether the device is currently enabled to request remote wakeup. The

default mode for devices that support remote wakeup is disabled. If D1 is reset to zero, the ability of the

device to signal remote wakeup is disabled. If D1 is set to one, the ability ofthe device to signal remote

wakeup is enabled. The Remote Wakeup field can be modified by the SetFeatureO and CIearFeatureO

requests using the DEVICE_REMOTE_WAKEUP feature selector. This field is reset to zero when the
device is reset.

A GetStatus() request to an interface returns the information shoWn in Figure 9-5.

Inn-unnum-
Reserved (Reset to zero)

Reserved (Reset to zero}

Figure 9-5. Information Returned by a GetStatus() Request to an Interface

255

ZTE/SAMSUNG 1008-0283

|PR201 8-001 10

ZTE/SAMSUNG 1008-0284
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

A GetStatusO request to an endpoint returns the information shown in Figure 9-6.

nun-nun“
Reserved (Reset to zero]

“nun-mun
Reserved (Reset to zero)

Figure 9-6. Information Returned by a GetStatusO Request to an Endpoint

The Hat! feature is required to be implemented for all interrupt and bulk endpoint types. If the endpoint is

currently halted, then the Halt feature is set to one. Otherwise, the Hat! feature is reset to zero. The Ha}!

feature may Optionally be set with the SetFeature{ENDPOINT_HALT) request. When set by the
SetFeature(} request, the endpoint exhibits the same stall behavior as if the field had been set by a hardware

condition. If the condition causing a halt has been removed, clearing the Hat: feature via a

ClearFeature{ENDPOiNT_HALT) request results in the endpoint no longer returning a STALL. For

endpoints using data toggle, regardless of whether an endpoint has the Halt feature set, a

ClearFeature(ENDPOINT_HALT) request always results in the data toggle being reinitialized to DATAO.

The Hair feature is reset to zero after either a SetConfigurationO or SetInterface(} request even if the

requested configuration or interface is the same as the current configuration or interface.

It is neither required nor recommended that the Holt feature be implemented for the Default Control Pipe.

However, devices may set the Hair feature ofthe Default Control Pipe in order to reflect a functional error

condition. If the feature is set to one, the device will return STALL in the Data and Status stages of each

Standard request to the pipe except GetStatusU, SetFeature(}, and ClearFeatureU requests. The device need

not return STALL for class~specific and vendor-specific requests.

9.4.6 Set Address

This request sets the device address for all future device accesses.

bm RequestType b Request

The wVaIue field specifies the device address to use for all subsequent accesses.

As noted elsewhere, requests actually may result in up to three stages. In the first stage, the Setup packet is

sent to the device. In the optional second stage, data is transferred between the host and the device. In the

final stage, status is transferred between the host and the device. The direction of data and status transfer

depends on whether the hest is sending data to the device or the device is sending data to the host. The

Status stage transfer is always in the opposite direction of the Data stage. If there is no Data stage, the

Status stage is from the device to the host.

Stages after the initial Setup packet assume the same device address as the Setup packet. The USB device

does not change its device address until after the Status stage of this request is completed successfully. Note

that this is a difference between this request and all other requests. For all other requests, the operation

indicated must be completed before the Status stage.

If the specified device address is greater than 127, or if winder or wLength are non-zero, then the behavior

cfthe device is not specified.

256

ZTE/SAMSUNG 1008-0284

|PR201 8-001 10

ZTE/SAMSUNG 1008-0285
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Device response to SetAddress() with a value of 0 is undefined.

Default state: If the address specified is non-zero, then the device shall enter the Address state;

otherwise, the device remains in the Default state (this is not an error condition).

Address state: lfthe address specified is zero, then the device shall enter the Default state;

otherwise, the device remains in the Address state but uses the newly-specified
address.

Configured state: Device behavior when this request is received while the device is in the Configured

state is not specified.

9.4.7 Set Configuration

This request sets the device configuration.

 000000003 SET_CONFIGURATION Configuration Value

The lower byte of the w Value field specifies the desired configuration. This configuration value must be

zero or match a configuration value from a configuration descriptor. If the configuration value is zero, the

device is placed in its Address state. The upper byte ofthe wl’alue field is reserved.

If windex, wLength, or the upper byte of w Vaiue is non-zero, then the behavior of this request is not

specified.

Default state: Device behavior when this request is received while the device is in the Default state

is not specified.

Address state: lfthe specified configuration value is zero, then the device remains in the Address

state. If the specified configuration value matches the configuration value from a

configuration descriptor, then that configuration is selected and the device enters the

Configured state. Otherwise, the device responds with a Request Error.

Configured state: If the specified configuration value is zero, then the device enters the Address state.

If the specified configuration value matches the configuration value from a

configuration descriptor, then that configuration is selected and the device remains in

the Configured state. Otherwise, the device responds with a Request Error.

9.4.8 Set Descriptor

This request is optional and may be used to update existing descriptors or new descriptors may be added.

000000003 SET_DESCR| PTOR Descriptor Language ID Descriptor Descriptor

Type and (refer to Length
Descriptor Section 9.8.?)

Index or zero
257

ZTE/SAMSUNG 1008—0285

|PR201 8-001 10

ZTE/SAMSUNG 1008-0286
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

The w Value field specifies the descriptor type in the high byte {refer to Table 9-5) and the descriptor index

in the low byte. The descriptor index is used to select a specific descriptor (only for configuration and string

descriptors) when several descriptors ofthe same type are implemented in a device. For example, a device

can implement several configuration descriptors. For other standard descriptors that can be set via a

SetDescriptorO request, a descriptor index of zero must be used. The range of values used for a deseriptor

index is from 0 to one less than the number of descriptors of that type implemented by the device.

The windex field specifies the Language ID for string descriptors or is reset to zero for other descriptors.

The wLength field specifies the number of bytes to transfer from the host to the device.

The only allowed values for descriptor type are device, configuration, and string descriptor types.

[fthis request is not supported, the device will respond with a Request Error.

Default state: Device behavior when this request is received while the device is in the Default state

is not specified.

Address state: Ifsupported, this is a valid request when the device is in the Address state.

Configured state: Ifsupported, this is a valid request when the device is in the Configured state.

9.4.9 Set Feature

This request is used to set or enable a specific feature.

000000003 SETflF EATU RE Test Selector Zero Zero
00000001 B Interface

0000001 OB Endpoint

Feature selector values in wVahre must be appropriate to the recipient. Only device feature selector values

may be used when the recipient is a device; only interface feature selector values may be used when the

recipient is an interface, and only endpoint feature selector values may be used when the recipient is an

endpoint.

Refer to Table 9-6 for a definition of which feature selector values are defined for which recipients.

The TEST_MODE feature is only defined for a device recipient {i.e., meequestType = 0) and the lower

byte of wIndex must be zero. Setting the TEST_MODE feature puts the device upstream facing port into

test mode. The device will respond with a request error ifthe request contains an invalid test selector. The

transition to test mode must be complete no later than 3 ms after the completion of the status stage of the

request. The transition to test mode of an upstream facing port must not happen until after the status stage

of the request. The power to the device must be cycled to exit test mode of an upstream facing port of a
device. See Section 7.1.20 for definitions ofeach test mode. A device must support the TEST_MODE

feature when in the Default, Address or Configured high~speed device states.

A SetFeatureO request that references a feature that cannot be set or that does not exist causes a STALL to

be returned in the Status stage of the request.

258

ZTE/SAMSUNG 1008-0286

|PR201 8-001 10

ZTE/SAMSUNG 1008-0287
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Table 9-7. Test Mode Selectors

00H Reserved

01 H Test_J

GLl)I TesthEOmNAK

O.p.I Test_Packet

05H Test_Force_Enable

06H—3FH Reserved for standard test selectors

CUHvFFH Reserved for vendor-specific test modes.

If the feature selector is TEST_MODE, then the most significant byte of winds); is used to specify the

specific test mode. The recipient of a SetFeature(TEST_MODE. . .) must be the device; i.e., the lower byte

of windex must be zero and the meequestType must be set to zero. The device must have its power cycled
to exit test mode. The valid test mode selectors are listed in Table 9-?. See Section 7.1.20 for more

information about the specific test modes.

If wLengrh is non-zero, then the behavior of the device is not specified.

If an endpoint or interface is specified that does not exist, then the device responds with a Request Error.

Default state: A device must be able to accept a SetFeature(TEST_MODE, TEST_SELECTOR)

request when in the Default State. Device behavior for other SetFeature requests

while the device is in the Default state is not specified.

Address state: If an interface or an endpoint other than endpoint zero is specified, then the device

responds with a Request Error.

Configured state: This is a valid request when the device is in the Configured state.

9.4.10 Set Interface

This request allows the host to select an alternate setting for the specified interface.

meequestType wValue wLength

 00000001 B SET_| NTERFACE Alternate interface Zero
Setting

Some USB devices have configurations with interfaces that have mutually exclusive settings. This request

allows the host to select the desired alternate setting. Ifa device only supports a default setting for the

specified interface, then a STALL may be returned in the Status stage ofthe request. This request cannot be

used to change the set of configured interfaces (the SetConfigurationO request must be used instead).

If the interface or the alternate setting does not exist, then the device responds with a Request Error. If
wLengIh is non-zero, then the behavior of the device is not specified.

259

ZTE/SAMSUNG 1008—0287

|PR201 8-001 10

ZTE/SAMSUNG 1008-0288
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Default state: Device behavior when this request is received while the device is in the Default state

is not specified.

Address state: The device must respond with a Request Error.

Configured state: This is a valid request when the device is in the Configured state.

9.4.11 Synch Frame

This request is used to set and then report an endpoint’s synchronization frame.

meequestType bRequest wLength “

When an endpoint supports isochronous transfers, the endpoint may also require per-frame transfers to vary

in size according to a specific pattern. The host and the endpoint must agree on which frame the repeating

pattern begins. The number of the frame in which the pattern began is returned to the host.

If a high-speed device supports the Synch Frame request, it must internally synchronize itself to the zeroth

microframe and have a time notion ofclassic frame. Only the frame number is used to synchronize and

reported by the device endpoint (i.e., no microframe number). The endpoint must synchronize to the zeroth
microframe.

This value is only used for isochronous data transfers using implicit pattern synchronization. Ifw Value is

non-zero or wLength is not two, then the behavior of the device is not Specified.

If the specified endpoint does not support this request, then the device will respond with a Request Error.

Default state: Device behavior when this request is received while the device is in the Default state

is not Specified.

Address state: The device shall respond with a Request Error.

Configured state: This is a valid request when the device is in the Configured state.

9.5 Descriptors

USB devices report their attributes using descriptors. A descriptor is a data structure with a defined format.

Each descriptor begins with a byte-wide field that contains the total number of bytes in the descriptor

followed by a byte-wide field that identifies the descriptor type.

Using descriptors allows concise storage of the attributes of individual configurations because each

configuration may reuse descriptors or portions of descriptors from other configurations that have the same

characteristics. In this manner, the descriptors resemble individual data records in a relational database.

Where appropriate, descriptors contain references to string descriptors that provide displayable information

describing a descriptor in human-readable form. The inclusion of string descriptors is Optional. However,

the reference fields within descriptors are mandatory. If a device does not support string descriptors, string

reference fields must be reset to zero to indicate no string descriptor is available.

lfa descriptor returns with a value in its length field that is less than defined by this specification, the

descriptor is invalid and should be rejected by the host. If the descriptor returns with a value in its length

260

ZTE/SAMSUNG 1008-0288

|PR201 8-001 10

ZTE/SAMSUNG 1008-0289
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

field that is greater than defined by this specification, the extra bytes are ignored by the host, but the next

descriptor is located using the length returned rather than the length expected.

A device may return class- or vendor-specific descriptors in two ways:

1. If the class or vendor specific descriptors use the same format as standard descriptors {e.g., start with a

length byte and followed by a type byte), they must be returned interleaved with standard descriptors in
the configuration information returned by a GetDescriptor{Configuration) request. In this case, the

class or vendor-specific descriptors must follow a related standard descriptor they modify or extend.

2. If the class or vendor specific descriptors are independent of configuration information or use a non-

standard format, a GetDescriptorO request specifying the class or vendor specific descriptor type and

index may be used to retrieve the descriptor from the device. A class or vendor specification will

define the appropriate way to retrieve these descriptors.

9.6 Standard USB Descriptor Definitions

The standard descriptors defined in this specification may only be modified or extended by revision of the

Universal Serial Bus Specification.

Note: An extension to the USB l.0 standard endpoint descriptor has been published in Device Class

Specification for Audio Devices Revision 1.0. This is the only extension defined outside USB Specification
that is allowed. Future revisions of the USB Specification that extend the standard endpoint descriptor will

do so as to not conflict with the extension defined in the Audio Device Class Specification Revision 1.0.

9.6.1 Device

A device descriptor describes general information about a USB device. It includes information that applies

globally to the device and all of the device‘s configurations. A USB device has only one device descriptor.

A high-speed capable device that has different device information for full-speed and high-speed must also

have a deviceflqualifier descriptor (see Section 9.6.2}.

The DEVICE descriptor of a high~speed capable device has a version number of 2.0 (0200H). [f the device

is full-speed only or low-speed only, this version number indicates that it will respond correctly to a request

for the deviceflqualifier desciptor (i.e., it will respond with a request error).

The bchSB field contains a BCD version number. The value ofthe bchSB field is OxJJMN for version

JJ.M.N (JJ — major version number, M — minor version number, N — sub-minor version number), e.g.,

version 2.1.3 is represented with value 0x0213 and version 2.0 is represented with a value of 0x0200.

The bNumConfigw'arions field indicates the number of configurations at the current Operating speed.

Configurations for the other operating speed are not included in the count. If there are specific

configurations ofthe device for specific speeds, the bNumConfigur'aiions field only reflects the number of

configurations for a single speed, not the total number of configurations for both speeds.

If the device is operating at high-speed, the bMaxPackeiSizeO field must be 64 indicating a 64 byte

maximum packet. High-speed operation does not allow other maximum packet sizes for the control

endpoint (endpoint 0).

All USB devices have a Default Control Pipe. The maximum packet size of a device’s Default Control Pipe

is described in the device descriptor. Endpoints specific to a configuration and its interface(s} are described

in the configuration descriptor. A configuration and its interface(s) do not include an endpoint descriptor

for the Default Control Pipe. Other than the maximum packet size, the characteristics of the Default

Control Pipe are defined by this specification and are the same for all USB devices.

The bNumConfigw‘ations field identifies the number of configurations the device supports. Table 9-8 shows

the standard device descriptor.

261

ZTE/SAMSUNG 1008-0289

IPR201 8-001 10

ZTE/SAMSUNG 1008-0290
IPR2018-00110

262

Universal Serial Bus Specification Revision 2.0

bLength

Table 9-8. Standard Device Descriptor

Number

Description

Size of this descriptor in bytes

bDescrfpforType

bDeviceClass

bDew’ce SubClass

Constant

SubClass

DEVICE Descriptor Type

USB Specification Release Number in
Binary-Coded Decimal (i.e.. 2.10 is 210H}.
This field identifies the release ofthe USB

Specification with which the device and its
descriptors are compliant.

Class code (assigned by the USB-IF).

If this field is reset to zero, each interface

within a configuration specifies its own
class information and the various

interfaces operate independently.

If this field is set to a value between 1 and

FEH. the device sUpports different class
specifications on different interfaces and
the interfaces may not operate
independently, This value identifies the

class definition used for the aggregate
interfaces.

If this field is set to FFH. the device class

is vendor-specific.

Subclass code {assigned by the USB-IF).

These codes are qualified by the value of
the bDeviceClass field.

If the bDeviceClass field is reset to zero,
this field must also be reset to zero.

lfthe bDeviceClass field is not set to FFH.

all values are reserved for assignment by
the USB-IF.

ZTE/SAMSUNG 1008-0290

|PR201 8-001 10

ZTE/SAMSUNG 1008-0291
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Table 9-8. Standard Device Descriptor (Continued)

Value Description

Protocol code (assigned by the USB-IF).
These codes are qualified by the value of
the bDeviceCi'ass and the
bDeviceSubClass fields. If a device

supports class-specific protocols on a
device basis as opposed to an interface
basis, this code identifies the protocols
that the device uses as defined by the
Specification of the device class.

AHbDeviceProtocol

If this field is reset to zero. the device
does not use class—specific protocols on a
device basis. However. it may use class-

specific protocols on an interface basis.

If this field is set to FFH. the device uses a

vendor-specific protocol on a device basis.

bMaxPaclretSizeO Maximum packet size for endpoint zero
(only 8, 16. 32, or 64 are valid}

idi/endor Vendor ID {assigned by the USB-IF)

idProduct Product ID (assigned by the manufacturer)

_L bcdDevice Device release number in binary-coded
decimal

_|. Manufacturer Index of string descriptor describing
manufacturer

_s (11 Index of string descriptor describing
product

_L U) iSerialNumber

bNumConfigurations

Index of string descriptor describing the
device’s serial number

Number Number of possible configurations

263

ZTE/SAMSUNG 1008-0291

|PR201 8-001 10

ZTE/SAMSUNG 1008-0292
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

9.6.2 Device_Qualifier

The device_qualifi er descriptor describes information about a high-speed capable device that would

change if the device were operating at the other speed. For example, if the device is currently operating

at full-speed, the device_qualifier returns information about how it would operate at high-speed and

vice«versa. Table 9-9 shows the fields of the device_qualifier descriptor.

Table 9-9. Device_Qualierr Descriptor

-bLength Number Size of descriptor
bDescnfpforType Constant Device Qualifier Type

bchSB 300 USB specification version number (e.g.,
0200H for V2.00]

bDeviceCtass Class Code

bDe viceSubCiass SubClass SubCiass Code

bDeviceProtocot Protocol Protocol Code

bMaxPacketSizeO Maximum packet size for other speed

bNumConfiguratt’ons Number of Other-speed Configurations

bReserved Reserved for future use. must be zero

The vendor, product, device, manufacturer, product, and serialnumber fields of the standard device

descriptor are not included in this descriptor since that information is constant for a device for all supported

speeds. The version number for this descriptor must be at least 2.0 (0200H).

The host accesses this descriptor using the GetDescriptorO request. The descriptor type in the
GetDescriptorO request is set to device_qualifier (see Table 9-5}.

If a filll-speed on] 3! device (with a device descriptor version number equal to 0200H) receives a

GetDescriptorO request for a device_qualif1er, it must respond with a request error. The host must not make

a request for an other_speed_conflguration descriptor unless it first successfully retrieves the

device_qualifier descriptor.

9.6.3 Configuration

The configuration descriptor describes information about a specific device configuration. The descriptor

contains a bConfiguraiionVafne field with a value that, when used as a parameter to the SetConfigurationO

request, causes the device to assume the deScribed configuration.

The descriptor describes the number of interfaces provided by the configuration. Each interface may

operate independently. For example, an ISDN device might be configured with two interfaces, each

providing 64 Kst bi-directional channels that have separate data sources or sinks on the host. Another

configuration might present the ISDN device as a single interface, bonding the two channels into one
128 Kbi’s bi-directional channel.

When the host requests the configuration descriptor, all related interface and endpoint descriptors are
returned (refer to Section 9.4.3).

264

ZTE/SAMSUNG 1008-0292

|PR201 8-001 10

ZTE/SAMSUNG 1008-0293
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

A USB device has one or more configuration descriptors. Each configuration has one or more interfaces

and each interface has zero or more endpoints. An endpoint is not shared among interfaces within a single

configuration unless the endpoint is used by alternate settings of the same interface. Endpoints may be

shared among interfaces that are part of different configurations without this restriction.

Once configured, devices may support limited adjustments to the configuration. If a particular interface has

alternate settings, an alternate may be selected after configuration. Table 9-10 shows the standard

configuration descriptor.

Table 9-10. Standard Configuration Descriptor

Size of this descriptor in bytes

Constant CONFIGURATION Descriptor Type

Total length of data returned for this
configuration. Includes the combined length

of all descriptors (configuration. interface,
endpoint. and class- or vendor-specific)
returned for this configuration.

Number of interfaces supported by this
configuration

Value to use as an argument to the
SetConfiguration0 request to select this
configuration

index Index of string descriptor describing this
configuration

bLength

1 ‘lbDescrlptorType

2 Number2 wTotalLenglh

 4 bNumlnferfaces

b Configuration Value

iConfr‘guration

1

265

ZTE/SAMSUNG 1008-0293

|PR201 8-001 10

ZTE/SAMSUNG 1008-0294
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Table 9-10. Standard Configuration Descriptor (Continued)

mum-—
7 bmAttn‘butes 1 Bitmap Configuration characteristics

DT: Reserved (set to one)
06: Self-powered
I35: Remote Wakeup
D4...0: Reserved (reset to zero)

D? is reserved and must be set to one for
historical reasons.

A device configuration that uses power from
the bus and a local source reports a non-zero
value in bMaxPower to indicate the amount of

bus power required and sets D6. The actuat

power source at runtime may be determined
using the GetStatus(DEVlCE) request (see
Section 9.4.5).

If a device configuration supports remote
wakeup, DS is set to one.

1 mA Maximum power consumption of the USB
device from the bus in this specific
configuration when the device is fully
operational. Expressed in 2 mA units
(Le, 50 = 100 mA).

Note: A device configuration reports whether
the configuration is bus-powered or self-

powered. Device status reports whether the
device is currently self-powered. If a device is
disconnected from its external power source, it
updates device status to indicate that it is no
longer self-powered.

A device may not increase its power draw
from the bus, when it IOses its external power
source, beyond the amount reported by its
configuration.

If a device can continue to operate when
disconnected from its external power source‘ it
continues to do so. If the device can not

continue to operate. it fails operations it can
no longer support. The USB System Software

may determine the cause of the failure by
checking the status and noting the loss of the
device's power source.

9.6.4 0ther_Speed_Configuration

The other_specd_configuration descriptor shown in Table 9-1] describes a configuration of a high-

speed capable device if it were operating at its other possible speed. The structure of the

otherHspeed_configuration is identical to a configuration descriptor.

 bMaxPower

266

ZTE/SAMSUNG 1008-0294

|PR201 8-001 10

ZTE/SAMSUNG 1008-0295
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Table 9-1]. Other_Speed#Configuration Descriptor

m“Size Value Description
bLength Number Size of descriptor

bDescriptorType Constant Other_speed_Configuralion Type

wTotalLength Total length of data returned

bNumlnterfaces Number of interfaces sUpported by this speed

configuration

bConfiguratr’onl/alue Value to use to seiect configuration

iConfr‘guratr'on index of string descriptor

bmAl‘tn’butes Same as Configuration descriptor

bMaxPower Same as Configuration descriptor

u
l

5

6

7

8

The host accesses this descriptor using the GetDescriptor() request. The descriptor type in the

GetDescriptor() request is set to other_speed_configuration (see Table 9-5).

9.6.5 Interface

The interface descriptor describes a specific interface within a configuration. A configuration provides one

or more interfaces, each with zero or more endpoint descriptors describing a unique set of endpoints within

the configuration. When a configuration supports more than one interface, the endpoint descriptors for a

particular interface follow the interface descriptor in the data returned by the GetConfigurationO request.

An interface descriptor is always returned as part of a configuration descriptor. Interface descriptors cannot
be directly accessed with a GetDescriptorO or SetDescriptorO request.

An interface may include alternate settings that allow the endpoints andfor their characteristics to be varied

after the device has been configured. The default setting for an interface is always alternate setting zero.

The SetlnterfaceO request is used to select an alternate setting or to return to the default setting. The

GetlnterfaceO request returns the selected alternate setting.

Alternate settings allow a portion of the device configuration to be varied while other interfaces remain in

Operation. If a configuration has alternate settings for one or more of its interfaces, a separate interface

descriptor and its associated endpoints are included for each setting.

If a device configuration supported a single interface with two alternate settings, the configuration

descriptor would be followed by an interface descriptor with the bfnterfaceNumber' and 5A iter‘nareSetl‘ing

fields set to zero and then the endpoint descriptors for that setting, followed by another interface descriptor

and its associated endpoint descriptors. The second interface descriptor's bfnterfaceNzrmber field would

also be set to zero, but the bAt’ter'nateSetting field ofthe second interface descriptor would be set to one.

If an interface uses only endpoint zero, no endpoint descriptors follow the interface descriptor. In this case,

the bNumEndpor‘nts field must be set to zero.

An interface descriptor never includes endpoint zero in the number of endpoints. Table 9-12 Shows the

standard interface descriptor.

267

ZTE/SAMSUNG 1008-0295

|PR201 8-001 10

ZTE/SAMSUNG 1008-0296
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Table 9-12. Standard Interface Descriptor

bLength Number Size of this descriptor in bytes

1 bDescriptorType Constant INTERFACE Descriptor Type

bfnterfaceNumber Number Number of this interface. Zero-based

value identifying the index in the array of
concurrent interfaces supported by this
configuration.

blnfen‘aceClass Class code (assigned by the USB-IF).

A value of zero is reserved for future
standardization.

lfthis field is set to FFH, the interface

class is vendor—specific.

All other values are reserved for

assignment by the USB-IF.

fl
-

3 bAlternateSettr‘ng 1 Value used to select this alternate setting
for the interface identified in the prior field

4 bNumEndpoints 1 Number of endpoints used by this
interface {excluding endpoint zero). If this

value is zero. this interface only uses the
Default Control Pipe.

I
6 bfnterfaceSub Class 1 SubClass Subclass code (assigned by the USB-IF].

These codes are quatified by the value of
the bfnterfaceclass field.

If the blnterfaceClass field is reset to zero,
this field must also be reset to zero.

If the hinterfaceClass field is not set to

FFH, all values are reserved for
assignment by the USB-tF.

268

ZTE/SAMSUNG 1008-0296

|PR201 8-001 10

ZTE/SAMSUNG 1008-0297
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Table 9-12. Standard Interface Descriptor (Continued)

mun-—
ointerfaceProtoco.‘ Protocol Protocol code {assigned by the USB).

These codes are qualified by the value of
the blnterfacectass and the
binterfaceSubCI‘ass fields. If an interface

supports class-specific requests, this code
identifies the protocols that the device
uses as defined by the specification of the
device class.

lfthis field is reset to zero, the device
does not use a class-specific protocol on
this interface.

lfthis field is set to FFH. the device uses

a vendor-specific protocol for this
interface.

tinterface Index index of string descriptor describing this
interface

9.6.6 Endpoint

Each endpoint used for an interface has its own descriptor. This descriptor contains the information

required by the host to determine the bandwidth requirements of each endpoint. An endpoint descriptor is

always returned as part of the configuration information returned by a GetDescriptor(Configuration)

request. An endpoint descriptor cannot be directly accessed with a GetDescriptorO or SetDescriptorO

request. There is never an endpoint descriptor for endpoint zero. Table 9-13 shows the standard endpoint

descriptor.

Table 9-13. Standard Endpoint Descriptor

mmfi—m
n_-m_-_
--m---__

 bEndpointAddress 1 Endpoint The address of the endpoint on the USB device
described by this descriptor. The address is
encoded as follows:

Bit 3...0: The endpoint number
Bit 6...4: Reserved, reset to zero

Bit 7: Direction. ignored for
control endpoints

0 = OUT endpoint
1: IN endcint

269

ZTE/SAMSUNG 1008-0297

|PR201 8-001 10

ZTE/SAMSUNG 1008-0298
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Table 9-13. Standard Endpoint Descriptor (Continued)

mmm-w

3 bmAtfributes Bitmap This field describes the endpoint’s attributes when it is

configured using the bConfigurafionl/aiue.

Bits 1,.0: Transfer Type
00 = Control
01 = lsochronous

10 = Bulk

11 2 Interrupt

If not an isochronous endpoint. bits 5.2 are reserved
and must be setto zero. If isochronous, they are
defined as follows:

Bits 3.2: Synchronization Type

00 = No Synchronization
01 = Asynchronous
10 = Adaptive
11 = Synchronous

Bits 5..4: Usage Type

00 = Data endpoint
01 = Feedback endpoint
10 = lmpticit feedback Data endpoint
11 2 Reserved

Refer to Chapter 5 for more information.

All other bits are reserved and must be reset to zero.

Reserved bits must be i- nored b the host.

270

ZTE/SAMSUNG 1008-0298

|PR201 8-001 10

ZTE/SAMSUNG 1008-0299
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Table 9-13. Standard Endpoint Descriptor (Continued)

E-EI—
wMaxPacketSize Number Maximum packet size this endpointIs capable of

sending or receiving when this configuration is
selected.

_ For isochronous endpoints. this value is used to
reserve the bus time in the schedule. required for the

per-(micro}frame data payloads. The pipe may. on an
ongoing basis. actually use less bandwidth than that

reserved. The device reports. if necessary. the actual
bandwidth used via its normal. non-USB defined
mechanisms.

For all endpoints. bits 10..O specify the maximum

packet size (in bytes).

For highsspeed isochronous and interruptendpoints:

Bits 12..11 specify the number of additional transaction
opportunities per microframe:

00 = None (1 transaction per microframe)
01 = 1 additional (2 per microframe)

10 = 2 additional (3 per microframe)
11 = Reserved

Bits 15.13 are reserved and must be set to zero.

Refer to Cha-ter 5 for more information. bintewa.‘ Number Interval for polling endpoint for data transfers.
Expressed in frames or microframes depending on the

device operating speed (i.e.. either 1 millisecond or
125 ps units).

For full-I'high-speed isochronous endpoints. this value
must be in the range from 1 to 16. The blnterval value
is used as the exponent for a 2“"“"" value; e.g.. a

blnferval of 4 means a period of 8 [2“).

For fuii-llow-speed interrupt endpoints. the value of
this field may be from 1 to 255.

For high—speed interrupt endpoints. the blnferval value
is used as the exponent for a 2”"""“"'1 value; e.g.. a

blnferval of 4 means a period of 8 (2“). This value
must be from 1 to 16.

For high-speed bulldcontrol OUT endpoints. the

blnferval must specify the maxim um NAK rate of the
endpoint. A value of 0 indicates the endpoint never
NAKs. Other values indicate at most 1 NAK each
blnterval number of microframes. This value must be

in the range from 0 to 255.

See Cha nter 5 descriotion of eriods for more detail.

The bmArtrfbntes field provides information about the endpoint’s Transfer Type {bits l..0) and

Synchronization Type (bits 3.2}. In addition, the Usage Type bit (bits 5..4) indicate whether this is an

endpoint used for nonnal data transfers (bits 5..4=OOB), whether it is used to convey explicit feedback
information for one or more data endpoints {bits 5..4=OlB) or whether it is a data endpoint that also serves

271

ZTE/SAMSUNG 1008—0299

|PR201 8-001 10

ZTE/SAMSUNG 1008-0300
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

as an implicit feedback endpoint for one or more data endpoints (bits 5..4=IOB}. Bits 5.2 are only

meaningful for isochronous endpoints and must be reset to zero for all other transfer types.

If the endpoint is used as an explicit feedback endpoint (bits 5..4=01B), then the Transfer Type must be set

to isochronous (bitsl..0 = 01B} and the Synchronization Type must be set to No Synchronization

{bits 3..2=OOB}.

A feedback endpoint (explicit or implicit} needs to be associated with one (or more) isochronous data

endpoints to which it provides feedback service. The association is based on endpoint number matching. A

feedback endpoint always has the opposite direction from the data endpoint(s) it services. If multiple data

endpoints are to be serviced by the same feedback endpoint, the data endpoints must have ascending

ordered—but not necessarily consecutive—endpoint numbers. The first data endpoint and the feedback

endpoint must have the same endpoint number {and opposite direction). This ensures that a data endpoint

can uniquely identify its feedback endpoint by searching for the first feedback endpoint that has an endpoint

number equal or less than its own endpoint number.

Example: Consider the extreme case where there is a need for five groups of OUT asynchronous

isochronous endpoints and at the same time four groups of IN adaptive isochronous endpoints. Each group

needs a separate feedback endpoint and the groups are composed as shown in Figure 9-7.

Nr of OUT Nr of IN

Endpoints Endpoints

Figure 9-7. Example of Feedback Endpoint Numbers

5 OUT

fl

6 E

‘:| Data Endpoint 0 Feedback Endpoint
Figure 9-8. Example of Feedback Endpoint Relationships

The endpoint numbers can be intertwined as illustrated in Figure 9-3.

WW
1

272

ZTE/SAMSUNG 1008-0300

|PR201 8-001 10

ZTE/SAMSUNG 1008-0301
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

High-speed isochronous and interrupt endpoints use bits 12..“ of wMaxPacketSize to specify multiple

transactions for each microframe specified by antervai. If bits 12..11 of wMaxPacketSize are zero, the

maximum packet size for the endpoint can be any allowed value (as defined in Chapter 5}. If bits 12..11 of

wMaxPacketSize are not zero (0), the allowed values for wMaxPacketSize hits 111.0 are limited as shown in
Table 9-14.

Table 9-14. Allowed wMaxPacketSize Values for Different Numbers of Transactions per Microframe

wMaxPacketSize wMaxPockeLS‘ize
bits 12..l] bits 10..0 Values

Allowed

1 — 1024

513 — 1024

683 - 1024

NA; reserved

0]

10

For high-speed bulk and control OUT endpoints, the blntervaa’ field is only used for compliance purposes;

the host controller is not required to change its behavior based on the value in this field.

9.6.7 String

String descriptors are optional. As noted previously, if a device does not support string descriptors, all
references to string descriptors within device, configuration, and interface descriptors must be reset to zero.

String descriptors use UNICODE encodings as defined by The Unicode Standard, Worldwide Character

Encoding, Version 3. 0, The Unicode Consortium, Addison-Wesley Publishing Company, Reading,

Massachusetts (URL: http:ffwww.unicode.com). The strings in a USB device may support multiple

languages. When requesting a string descriptor, the requester specifies the desired language using a sixteen-

bit language lD (LANGID) defined by the USB-IF. The list ofcurrently defined USB LANGIDs can be

found at http:l'r’www.usb.org/developersr’docshtrnI. String index zero for all languages retums a string

descriptor that contains an array of two-byte LANGID codes supported by the device. Table 9-15 shows the

LANGID code array. A USB device may omit all string descriptors. USB devices that omit all string

descriptors must not return an array of LANGID codes.

The array of LANGID codes is not NULL-terminated. The size of the array (in bytes] is computed by

subtracting two from the value of the first byte of the descriptor.

Table 9-15. String Descriptor Zero, Specifying Languages Supported by the Device

mum-—
_bLength --Size of this descriptor in bytes

bDescriptorType STRING Descriptor Type

Imm -Mmm m...
273

ZTE/SAMSUNG 1008-0301

|PR201 8-001 10

ZTE/SAMSUNG 1008-0302
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

The UNICODE string descriptor (shown in Table 9-16} is not NULL-terminated. The string length is

computed by subtracting two from the value of the first byte of the descriptor.

Table 9-16. UNICODE String Descriptor

mum-—
— bLength Size of this descriptor in bytes

bDescrfptorType STRING Descriptor Type

bString —- UNICODE encoded string

9.7 Device Class Definitions

All devices must support the requests and descriptor definitions described in this chapter. Most devices

provide additional requests and, possibly, descriptors for device-specific extensions. In addition, devices
may provide extended services that are common to a group ofdevices. In order to define a class ofdevices,

the following information must be provided to completely define the appearance and behavior of the device
class.

9.7.1 Descriptors

If the class requires any specific definition ofthe standard descriptors, the class definition must include

those requirements as part of the class definition. In addition, if the class defines a standard extended set of

descriptors, they must also be fully defined in the class definition. Any extended descriptor definitions must

follow the approach used for standard descriptors; for example, all descriptors must begin with a length
field.

9.7.2 Interface(s) and Endpoint Usage

When a class of devices is standardized, the interfaces used by the devices, including how endpoints are
used, must be included in the device class definition. Devices may further extend a class definition with

proprietary features as long as they meet the base definition of the class.

9.7.3 Requests

All ofthe requests specific to the class must be defined.

274

ZTE/SAMSUNG 1008-0302

|PR201 8-001 10

ZTE/SAMSUNG 1008-0303
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Chapter 10

USB Host: Hardware and Software

The USB interconnect supports data traffic between a host and a USB device. This chapter deScribes the
host interfaces necessary to facilitate USB communication between a software client, resident on the host,

and a function implemented on a device. The implementation described in this chapter is not required.
This implementation is provided as an example to illustrate the host system behavior expected by a USB
device. A host system may provide a different host software implementation as long as a USB device
experiences the same host behavior.

10.1 Overview of the USB Host

10.1.1 Overview

The basic flow and interrelationships ofthe USB communications model are shown in Figure 10—1.

Host Interconnect Device

l l 1

USB Bus
Interface

H Actual communications flow

 Logical communications flow

Figure 10-1. lnterlayer Communications Model

The host and the device are divided into the distinct layers depicted in Figure 10-1. Vertical arrows
indicate the actual communication on the host. The corresponding interfaces on the device are
implementation-specific. All communications between the host and device ultimately occur on the

physical USB wire. However, there are logical h0st-device interfaces between each horizontal layer.
These communications, between client software resident on the host and the function provided by the

device, are typified by a contract based on the needs ofthe application currently using the device and the
capabilities provided by the device.

This client-function interaction creates the requirements for all of the underlying layers and their interfaces.

275

ZTE/SAMSUNG 1008-0303

|PR201 8-001 10

ZTE/SAMSUNG 1008-0304
IPR2018-00110

276

Universal Serial Bus Specification Revision 2.0

Host Interconnect

l l

Client

manages interfaces

Pipe Bundle
to an interface

Configuration

USB Driver

Default Pipe

to Endpoint Zero

 use System
manages pipes

HW—Defined

Host
Controller

USB Bus

Interface

Pipe: Represents connection
abstraction between two horizontal

layers

lnterprocess Communication
Figure 10-2. Host Communications

This chapter describes this model from the point ofview ofthe host and its layers. Figure 10-2 illustrates,
based on the overall view introduced in Chapter 5, the host’s view ofits communication with the device.

ZTE/SAMSUNG 1008-0304

|PR2018—001 10

ZTE/SAMSUNG 1008-0305
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

There is only one host for each USB. The major layers ofa host consist of the following:

. USB bus interface

0 USB System

a Client

The USB bus interface handles interactions for the electrical and protocol layers (refer to Chapter 7 and
Chapter 8). From the interconnect point of view, a similar USB bus interface is provided by both the USB
device and the host, as exemplified by the Serial Interface Engine (SIE). On the host, however, the USB
bus interface has additional responsibilities due to the unique role ofthe host on the USB and is
implemented as the Host Controller. The Host Controller has an integrated root hub providing attachment
points to the USB wire.

The USB System uses the Host Controller to manage data transfers between the host and USB devices.
The interface between the USB System and the Host Controller is dependent on the hardware definition of
the Host Controller. The USB System, in concert with the Host Controller, performs the translation

betWeen the client’s view of data transfers and the USB transactions appearing on the interconnect. This

includes the addition of any USB feature support such as protocol wrappers. The USB System is also
responsible for managing USB resources, such as bandwidth and bus power, so that client access to the
USB is possible.

The USB System has three basic components:

0 Host Controller Driver

0 USB Driver

- Host Software

The Host Controller Driver (HCD) exists to more easily map the various Host Controller implementations
into the USB System, such that a client can interact with its device without knowing to which Host
Controller the device is connected. The USB Driver (USBD) provides the basic host interface (USBDI) for
clients to USB devices. The interface between the HCD and the USBD is known as the Host Controller

Driver Interface (HCDI). This interface is never available directly to clients and thus is not defined by the
USB Specification. A particular HCDI is, however, defined by each operating system that supports various
Host Controller implementations.

The USBD provides data transfer mechanisms in the form of U0 Request Packets (IRPs), which consist of
a request to transport data across a specific pipe. In addition to providing data transfer mechanisms, the
USBD is responsible for presenting to its clients an abstraction of a USB device that can be manipulated for
configuration and state management. As part of this abstraction, the USBD owns the default pipe (see
Chapter 5 and Chapter 9) through which all USB devices are accessed for the purposes of standard USB
control. This default pipe represents a logical communication between the USBD and the abstraction of a
USB device as shown in Figure 10-2.

In some operating systems, additional non-USB System Software is available that provides configuration
and loading mechanisms to device drivers. ln such operating systems, the device driver shall use the
provided interfaces instead of directly accessing the USBDI mechanisms.

The client layer describes all the sofiware entities that are responsible for directly interacting with USB

devices. When each device is attached to the system, these clients might interact directly with the
peripheral hardware. The shared characteristics of the USB place USB System Software between the client
and its device; that is, a client cannot directly access the device‘s hardware.

27?

ZTE/SAMSUNG 1008—0305

|PR201 8-001 10

ZTE/SAMSUNG 1008-0306
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Overall, the host layers provide the following capabilities:

I Detecting the attachment and removal of USB devices

. Managing USB standard control flow between the host and USB devices

0 Managing data flow between the host and USB devices

0 Collecting status and activity statistics

- Controlling the electrical interface between the Host Controller and USB devices, including the
provision of a limited amount of power

The following sections describe these responsibilities and the requirements placed on the USBDI in greater
detail. The actual interfaces used for a specific combination of host platform and operating system are
described in the appropriate operating system environment guide.

All hubs [see Chapter 11) report internal status changes and their port change status via the status change
pipe. This includes a notification of when a USB device is attached to or removed from one of their ports.
A USED client generically known as the hub driver receives these notifications as owner of the hub’s
Status Change pipe. For device attachments, the hub driver then initiates the device configuration process.
In some systems, this hub driver is a part of the host software provided by the operating system for
managing devices.

10.1.2 Control Mechanisms

Control information may be passed between the host and a USB device using in-band or out-of-band
signaling. In-band signaling mixes control information with data in a pipe outside the awareness of the
host. Out-of-band signaling places control information in a separate pipe.

There is a message pipe called the default pipe for each attached USB device. This logical association
between a host and a USB device is used for USB standard control flow such as device enumeration and

configuration. The default pipe provides a standard interface to all USB devices. The default pipe may
also be used for device-specific communications, as mediated by the USBD, which owns the default pipes
ofall ofthe USB devices.

A particular USB device may allow the use of additional message pipes to transfer device-specific control
information. These pipes use the same communications protocol as the default pipe, but the information
transferred is specific to the USB device and is not standardized by the USB Specification.

The USBD supports the sharing ofthe default pipe, which it owns and uses, with its clients. It also
provides access to any other control pipes associated with the device.

10.1.3 Data Flow

The Host Controller is responsible for transferring streams of data between the host and USB devices.
These data transfers are treated as a continuous stream of bytes. The USB supports four basic types of data
transfers:

0 Control transfers

0 Isochronous transfers

0 Interrupt transfers

0 Bulk transfers

For additional information on transfer types, refer to Chapter 5.

Each device presents one or more interfaces that a client may use to communicate with the device. Each
interface is composed of zero or more pipes that individually transfer data between the client and a

particular endpoint on the device. The USBD establishes interfaces and pipes at the explicit request ofthe
Host Software. The Host Controller provides service based on parameters provided by the Host Software
when the configuration request is made.

278

ZTE/SAMSUNG 1008-0306

|PR201 8-001 10

ZTE/SAMSUNG 1008-0307
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

A pipe has several characteristics based on the delivery requirements of the data to be transferred.
Examples of these characteristics include the following:

0 The rate at which data needs to be transferred

0 Whether data is provided at a steady rate or sporadically

I How long data may be delayed before delivery

. Whether the loss of data being transfened is catastrophic

A USB device endpoint describes the characteristics required for a specific pipe. Endpoints are described

as part of a USB device’s characterization information. For additional details, refer to Chapter 9.

10.1.4 Collecting Status and Activity Statistics
As a common communicant for all control and data transfers between the host and USB devices, the USB

System and the Host Controller are wellvpositioned to track status and activity information. Such
information is provided upon request to the Host Software, allowing that software to manage status and
activity information. This specification does not identify any specific information that should be tracked or

require any particular format for reporting activity and status information.

10.1.5 Electrical Interface Considerations

The host provides power to USB devices attached to the root hub. The amount of power provided by a port
is specified in Chapter 7.

10.2 Host Controller Requirements

In all implementations, Host Controllers perform the same basic duties with regard to the USB and its
attached devices. These basic duties are described below.

The Host Controller has requirements from both the host and the USB. The following is a brief overview
ofthe fiJnctionality provided. Each capability is discussed in detail in subsequent sections.

State Handling As a component ofthe host, the Host Controller reports and manages
its states.

Serializerr‘Deserializer For data transmitted from the host, the Host Controller converts

protocol and data information from its native format to a bit stream
transmitted on the USB. For data being received into the host, the
reverse operation is performed.

(micro)fra me Generation The Host Controller produces 50F tokens at a period of 1 ms when-
operating with full-speed devices, and at a period of 125 us when
operating with high«speed devices.

Data Processing The Host Controller processes requests for data transmission to and
from the host.

Protocol Engine The Host Controller supports the protocol specified by the USB.

Transmission Error All Host Controllers exhibit the same behavior when detecting and

Handling reacting to the defined error categories.

Remote Wakeup All Host Controllers must have the ability to place the bus into the
Suspended state and to respond to bus wakeup events.

279

ZTE/SAMSUNG 1008-0307

|PR201 8-001 10

ZTE/SAMSUNG 1008-0308
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Root Hub The root hub provides standard hub function to link the Host
Controller to one or more USB ports.

Host System Interface Provides a high-speed data path between the Host Controller and host
system.

The following sections present a more detailed discussion of the required capabilities ofthe Host
Controller.

10.2.1 State Handling

The Host Controller has a series ofstates that the USB System manages. Additionally, the Host Controller
provides the interface to the following two areas of USB-relevant state:

0 State change propagation

I Root hub

The root hub presents to the hub driver the same standard states as other USB devices. The Host Controller
supports these states and their transitions for the hub. For detailed discussions of USB states, including
their interrelations and transitions, refer to Chapter 9.

The overall state of the Host Controller is inextricably linked with that of the root hub and of the overall

USB. Any Host Controller state changes that are visible to attached devices must be reflected in the
corresponding device state change information such that the resulting Host Controller and device states are
consistent.

USB devices request a wakeup through the use of resume signaling (refer to Chapter 7). The Host
Controller must notify the rest of the host of a resume event through a mechanism or mechanisms specific

to that system’s implementation. The Host Controller itself may cause a resume event through the same
signaling method.

10.2.2 SerializeriDeserializer

The actual transmission of data across the physical USB takes places as a serial bit stream. A Serial
Interface Engine (SIE), whether implemented as part of the host or a USB device, handles the serialization
and deserialization of USB transmissions. On the host, this SIE. is part ofthe Host Controller.

10.2.3 Frame and Mieroframe Generation

It is the Host Controller’s responsibility to partition USB time into quantities called “frames” when
operating with full-speed devices, and "microframes" when operating with high-speed devices. Frames and
microframes are created by the Host Controller through issuing Start-of-Frame (SOF) tokens as shown in

Figure 10-3. The SOF token is the first transmission in the (micro)frame period. Host controllers operating
with high—speed devices generate SOF tokens at 125 its intervals. Host controllers operating with full-
speed devices generate SOF tokens at 1.00 ms intervals. After issuing an SOF token, the Host Controller is
free to transmit other transactions for the remainder of the (micro)frame period. When the Host Controller

is in its nonna] operating state, SOF tokens must be continuously generated at appropriate periodic rate,
regardless of other bus activity or lack thereof. If the Host Controller enters a state where it is not

providing power on the bus, it must not generate SOFs. When the Host Controller is not generating SOFs,
it may enter a power-reduced state.

280

ZTE/SAMSUNG 1008-0308

|PR201 8-001 10

ZTE/SAMSUNG 1008-0309
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

4 (micro)frame N-1 ._ 4 (micro‘iframe N (microfirame N+1
SOF

EDF Interval {n'vicmlframa N-‘IJ EOF Interval (micmll'mrne N] EOF lnlerval [micrull'rarne NH}

Figure 10-3. Frame and Microframe Creation

The SOF token holds the highest priority access to the bus. Babble circuitry in hubs electrically isolates
any active transmitters during the End-of—microframe or End-of-Frame (EOF) interval, providing an idle
bus for the SOF transmission.

The Host Controller maintains the current (micro)frame number that may be read by the USB System.

The following apply to the current (micro)frame number maintained by the host:

a Used to uniquely identify one (micro)frame from another

- lncremented at the end of every (micro)frarne period

- Valid through the subsequent (micro)frame

Host controllers operating with full-speed devices maintain a current frame number (at least 11 bits) that
increments at a 1 ms period. The host transmits the lower I I bits of the current frame number in each SOF
token transmission.

Host controllers operating with high-speed devices maintain a current microframe number (at least [4 bits)
that increments at a 125 ps period. The host transmits bits 3 through 13 of the current microframe number

in each SOF token transmission. This results in the same SOF packet value being transmitted for eight
consecutive microframes before the SOF packet value increments.

When requested from the Host Controller, the current (microlframe number is the (micro}frame number in
existence at the time the request was fulfilled. The current (micro)frame number as returned by the host
(Host Controller or HCD) is at least 32 bits, although the Host Controller itselfis not required to maintain

more than I 1 bits when Operating with full-speed devices or l4 bits when operating with high-speed
devices.

The HOst Controller shall cease transmission during the EOF interval. When the EOF interval begins, any
transactions scheduled specifically for the (micro)frame that has just passed are retired. If the Host

Controller is executing a transaction at the time the EOF interval is encountered, the Host Controller
terminates the transaction.

10.2.4 Data Processing

The HOst Controller is responsible for receiving data from the USB System and sending it to the USB and
for receiving data fi'om the USB and sending it to the USB System. The particular format used for the data
communications between the USB System and the Host Controller is implementation specific, within the

rules for transfer behavior described in Chapter 5.

10.2.5 Protocol Engine

The Host Controller manages the USB protocol level interface. It inserts the appropriate protocol
information for outgoing transmissions. It also strips and interprets, as appropriate, the incoming protocol
information.

281

ZTE/SAMSUNG 1008—0309

|PR201 8-001 10

ZTE/SAMSUNG 1008-0310
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

10.2.6 Transmission Error Handling

The Host Controller must be capable of detecting the following transmission error conditions, which are
defined from the host’s point of view:

0 Timeout conditions after a host-transmitted token or packet. These errors occur when the addressed
endpoint is unresponsive or when the structure of the transmission is so badly damaged that the
targeted endpoint does not recognize it.

I Data errors resulting in missing or invalid transmissions:

The Host Controller is unable to completely send or receive a packet for host specific reasons, for
example, a transmission extending beyond EOF or a lack of resources available to the Host
Controller.

— An invalid CRC field on a received data packet.

- Protocol errors:

— An invalid handshake PID, such as a malformed or inappropriate handshake

— A false EOP

— A bit stuffing error

For each bulk, control, and inten'upt transaction, the host must maintain an error count tally. Errors result
from the conditions described above, not as a result of an endpoint NAKing a request. This value reflects
the number oftimes the transaction has encountered a transmission error. It is recommended that the error

count not be incremented when there was an error due to host specific reasons {buffer underrun or overrun),
and that whenever a transaction does not encounter a transmission error, the enor count is reset to zero.

If the error count for a given transaction reaches three, the host retires the transfer. When a transfer is
retired due to excessive errors, the last error type must be indicated. Isochronous transactions are attempted
only once, regardless of outcome, and, therefore, no error count is maintained for this type.

10.2.7 Remote Wakeup

If USB System wishes to place the bus in the Suspended state, it commands the Host Controller to stop all
bus traffic, including SOFS. This causes all USB devices to enter the Suspended state. In this state, the

USB System may enable the Host Controller to respond to bus wakeup events. This allows the Host
Controller to respond to bus wakeup signaling to restart the host system.

10.2.8 Root Hub

The root hub provides the connection between the Host Controller and one or more USB ports. The root
hub provides the same functionality for dealing with USB topology as other hubs (see Chapter 11), except
that the hardware and software interface between the root hub and the Host Controller is defined by the
specific hardware implementation.

10.2.8.1 Port Resets

Section 7.1.7.5 describes the requirements of a hub to ensure all upstream resume attempts are
overpowered with a long reset downstream. Root hubs must provide an aggregate reset period of at least
50 ms. Ifthe reset duration is controlled in hardware and the hardware timer is <50 ms, the USB System
can issue several consecutive resets to accumulate the specified reset duration as described in
Section 7.1.7.5.

282

ZTE/SAMSUNG 1008-0310

|PR201 8-001 10

ZTE/SAMSUNG 1008-0311
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

10.2.9 Host System Interface

The Host Controller provides a high-speed bus-mastering interface to and from main system memory. The
physical transfer between memory and the USB wire is performed automatically by the Host Controller.
When data buffers need to be filled or emptied, the Host Controller informs the USB System.

10.3 Overview of Software Mechanisms

The HCD and the‘ USBD present software interfaces based on different levels of abstraction. They are,
however, expected to operate together in a specified manner to satisfy the overall requirements of the USB

System (see Figure 10-2). The requirements for the USB System are expressed primarily as requirements
for the USBDI. The division of duties between the USBD and the HCD is not defined. However, the one

requirement of the HCDI that must be met is that it supports, in the specified operating system context,
multiple Host Controller implementations.

The HCD provides an abstraction of the Host Controller and an abstraction of the Host Controller’s view of
data transfer across the USE. The USBD provides an abstraction of the USB device and of the data
transfers between the client of the USBD and the function on the USB device. Overall, the USB System
acts as a facilitator for transmitting data between the client and the function and as a control point for the
USE-specific interfaces of the USB device. As part of facilitating data transfer, the USB System provides
buffer management capabilities and allows the synchronization of the data transmittal to the needs of the
client and the fimction.

The specific requirements for the USBD] are described later in this chapter. The exact functions that fulfill

these requirements are described in the relevant operating system environment guide for the HCDl and the
USBDI. The procedures involved in accomplishing data transfers via the USBDI are described in the
following sections.

10.3.1 Device Configuration

Different operating system environments perform device configuration using different software
components and different sequences of events. The USB System does not assume a specific operating
system method. However, there are some basic requirements that must be fulfilled by any USB System
implementation. In some operating systems, existing host software provides these requirements. In others,
the USB System provides the capabilities.

The USB System assumes a Specialized client ofthe USBD, called a hub driver, that acts as a
clearinghouse for the addition and removal of devices from a particular hub. Once the hub driver receives
such notifications, it will employ additional host software and other USBD clients, in an operating system
specific manner, to recognize and configure the device. This model, shown in Figure 10-4, is the basis of
the following discussion.

283

ZTE/SAMSUNG 1008-0311

|PR2018-001 1O

ZTE/SAMSUNG 1008-0312
IPR2018-00110

284

Universal Serial Bus Specification Revision 2.0

 figmammmnnmmnmmmn

H Configuration

Control

fimfi” Optional
Configuration
Control

HCD

Figure 10-4. Configuration Interactions

When a device is attached, the hub driver receives a notification from the hub detecting the change. The

hub driver, using the information provided by the hub, requests a device identifier from the USBD. The
USBD in turn sets up the default pipe for that device and returns a device identifier to the hub driver.

The device is now ready to be configured for use. For each device, there are three configurations that must
be complete before that device is ready for use:

1. Device Configuration: This includes setting up all ofthe device’s USB parameters and allocating all
USB host resources that are visible to the device. This is accomplished by setting the configuration
value on the device. A limited set of configuration changes, such as alternate settings, is allowed
without totally reconfiguring the device. Once the device is configured, it is, from its point of view,
ready for use.

2. USB Configuration: In order to actually create a USBD pipe ready for use by a client, additional USB
information, not visible to the device, must be specified by the client. This information, known as the
Policy for the pipe, describes how the client will use the pipe. This includes such items as the
maximum amount of data the client will transfer with one IRP, the maximum service interval the client
will use, the client’s notification identification, and so on.

3. Function Configuration: Once configuration types] and 2 have been accomplished, the pipe is
completely ready for use from the USB’s point of view. However, additional vendor— or class-specific
setup may be required before the client can actually use the pipe. This configuration is a private matter
between the device and the client and is not standardized by the USBD.

ZTE/SAMSUNG 1008-0312

|PR201 8-001 10

ZTE/SAMSUNG 1008-0313
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

The following paragraphs describe the device and USB configuration requirements.

The responsible configuring software performs the actual device configuration. Depending on the

particular operating system implementation, the software responsible for configuration can include the
following:

I The hub driver

I Other host software

I A device driver

The configuring software first reads the device descriptor, then requests the description for each possible
configuration. It may use the information provided to load a panicular client, such as a device driver,
which initially interacts with the device. The configuring software, perhaps with input from that device
driver, chooses a configuration for the device. Setting the device configuration sets up all ofthe endpoints
on the device and returns a collection ofinterfaces to be used for data transfer by USBD clients. Each
interface is a collection of pipes owned by a single client.

This initial configuration uses the default settings for interfaces and the default bandwidth for each

endpoint. A USED implementation may additionally allow the client to specify alternate interfaces when
selecting the initial configuration. The USB System will verify that the resources required for the support
of the endpoint are available and, if so, will allocate the bandwidth required. Refer to Section 10.3.2 for a
discussion of resource management.

The device is now configured, but the created pipes are not yet ready for use. The USB configuration is
accomplished when the client initializes each pipe by setting a Policy to Specify how it will interact with
the pipe. Among the information specified is the client‘s maximum service interval and notification
information. Among the actions taken by the USB System, as a result ofsetting the Policy, is determining
the amount of buffer working space required beyond the data buffer space provided by the client. The size
of the buffers required is based upon the usage chosen by the client and upon the per-transfer needs of the
USE System.

The client receives notifications when IRPs complete, successfully or due to errors. The client may also
wake up independently of USB notification to check the status of pending IRPs.

The client may also choose to make configuration modifications, such as enabling an alternate setting for
an interface or changing the bandwidth allocated to a particular pipe. In order to perform these changes,
the interface or pipe, respectively, must be idle.

10.3.2 Resource Management

Whenever a pipe is setup by the USBD for a given endpoint, the USB System must determine if it can

support the pipe. The USB System makes this determination based on the requirements stated in the
endpoint descriptor. One of the endpoint requirements, which must be supported in order to create a pipe
for an endpoint, is the bandwidth necessary for that endpoint‘s transfers. There are two stages to check for
available bandwidth. First the maximum execution time for a transaction is calculated. Then the

(micro)frame schedule is consulted to determine ifthe indicated transaction will fit.

The allocation of the guaranteed bandwidth for isochronous and interrupt pipes, and the determination of
whether a particular control or bulk transaction will fit into a given (micro)frame, can be determined by a
software heuristic in the USB System. If the actual transaction execution time in the Host Controller

exceeds the heuristically determined value, the Host Controller is responsible for ensuring that
(micro)frame integrity is maintained (refer to Section l0.2.3). The following discussion describes the

requirements for the USB System heuristic.

285

ZTE/SAMSUNG 1008-0313

|PR201 8-001 10

ZTE/SAMSUNG 1008-0314
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

In order to determine if bandwidth can be allocated, or if a transaction can be fit into a particular
(micro)frame, the maximum transaction execution time must be calculated. The calculation of the
maximum transaction execution time requires that the following information be provided: [Note that an
agent other than the client may provide some of this information.)

0 Number of data bytes (wMaxPacketSr'ze) to be transmitted.

- Transfer type.

- Depth in the topology. If less precision is allowed, the maximum topology depth may be assumed.

This calculation must include the bit transmission time, the signal propagation delay through the topology,

and any implementation-specific delays, such as preparation or recovery time required by the Host
Controller itself. Refer to Chapter 5 for examples of formulas that can be used for such calculations.

10.3.3 Data Transfers

The basis for all client-function communication is the interface: a bundle of related pipes associated with a
particular USB device.

Exactly one client on the host manages a given interface. The client initializes each pipe of an interface by
setting the Policy for that pipe. This includes the maximum amount of data to be transmitted per IRP and
the maximum service interval for the pipe. A service interval is stated in milliseconds and describes the
interval over which an IRP’s data will be transmitted for an isochronous pipe. It deseribes the polling

interval for an interrupt pipe. The client is notified when a specified request is completed. The client
manages the size of each IRP such that its duty cycle and latency constraints are maintained. Additional
Policy information includes the notification information for the client.

The client provides the buffer space required to hold the transmitted data. The USB System uses the Policy
to determine the additional working space it will require.

The client views its data as a contiguous serial stream, which it manages in a similar manner to those
streams provided over other types of bus technologies. Internally, the USB System may, depending on its
own Policy and any Host Controller constraints, break the client request down into smaller requests to be
sent across the USB. However, two requirements must be met whenever the USB System chooses to
undertake such division:

0 The division of the data stream into smaller chunks is not visible to the client.

0 USB samples are not split across bus transactions.

When a client wishes to transfer data, it will send an IRP to the USBD. Depending on the direction ofdata
transfer, a full or empty data buffer will be provided. When the request is complete (successfully or due to
an error condition), the IRP and its status is returned to the client. Where relevant, this status is also
provided on a per-transaction basis.

10.3.4 Common Data Definitions

In order to allow the client to receive request results as directly as possible from its device, it is desirable to
minimize the amount of processing and copying required between the device and the client. To facilitate
this, some control aspects of the IRP are standardized such that different layers in the stack may directly
use the information provided by the client. The particular format for this data is dependent on the

actualization ofthe USBDI in the Operating system. Some data elements may in fact not be directly visible
to the client at all but are generated as a result ofthe client request.

286

ZTE/SAMSUNG 1008-0314

|PR201 8-001 10

ZTE/SAMSUNG 1008-0315
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

The following data elements define the relevant information for a request:

I identification of the pipe associated with the request. Identifying this pipe also describes information
such as transfer type for this request.

I Notification identification forthe particular client.

I Location and length of data buffer that is to be transmitted or received.

I Completion status for the request. Both the summary status and, as required, detailed per-transaction
status must be provided.

I Location and length ofworking space. This is implementation-dependent.

The actual mechanisms used to communicate requests to the USBD are operating system-specific.
However, beyond the requirements stated above for what request-related information must be available,
there are also requirements on how requests will be processed. The basic requirements are described in
Chapter 5. Additionally, the USBD provides a mechanism to designate a group of isoohronous IRPs for
which the transmission of the first transaction ofeach IRP will occur in the same (micro)frame. The USBD
also provides a mechanism for designating an uninterruptable set of vendor- or class-specific requests to a
default pipe. No other requests to that default pipe, including standard, class, or vendor request may be
inserted in the execution flow for such an uninterruptable set. If any request in this set fails, the entire set is
retired.

10.4 Host Controller Driver

The Host Controller Driver (HCD) is an abstraction of Host Controller hardware and the Host Controller‘s

view ofdata transmission over the USB. The HCD] meets the following requirements:

I Provides an abstraction of the Host Controller hardware.

I Provides an abstraction for data transfers by the Host Controller across the USB interconnect.

I Provides an abstraction for the allocation (and de—al location) of Host Controller resources to support
guaranteed service to USB devices.

I Presents the root hub and its behavior according to the hub class definition. This includes supporting
the root hub such that the hub driver interacts with the root hub exactly as it would for any hub. In

particular, even though a root hub can be implemented in a combination of hardware and software, the
root hub responds initially to the default device address [from a client perspective), returns descriptor

information, supports having its device address set, and supports the other hub class requests.
However, bus transactions may or may not need to be generated to accomplish this behavior given the
close integration possible between the Host Controller and the root hub.

The HCD provides a software interface (HCDI) that implements the required abstractions. The function of
the HCD is to provide an abstraction, which hides the details of the Host Controller hardware. Below the
Host Controller hardware is the physical USB and all the attached USB devices.

The HCD is the lowest tier in the USB software stack. The HCD has only one client: the Universal Serial
Bus Driver (USED). The USBD maps requests from many clients to the apprOpriate HCD. A given HCD
may manage many Host Controllers.

The HCDI is not directly accessible from a client. Therefore, the specific interface requirements for the
HCDI are not discussed here.

10.5 Universal Serial Bus Driver

The USBD provides a collection ofmechanisms that operating system components, typically device
drivers, use to access USB devices. The only access to a USB device is that provided by the USBD. The
USBD implementations are operating system-specific. The mechanisms provided by the USBD are

implemented, using as appropriate and augmenting as necessary, the mechanisms provided by the operating
system environment in which the USB runs. The following discussion centers on the basic capabilities

287

ZTE/SAMSUNG 1008—031 5

|PR2018—001 10

ZTE/SAMSUNG 1008-0316
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

required for all USBD implementations. For specifics ofthe USBD operation within a Specific
environment, see the relevant operating system environment guide for the USBD. A single instance of the
USBD directs accesses to one or more HCDs that in turn connect to one or more Host Controllers. If

allowed, how USBD instancing is managed is dependent upon the operating system environment.

However, from the client’s point ofview, the USBD with which the client communicates manages all of
the attached USB devices.

10.5.1 USBD Overview

Clients of USBD direct commands to devices or move streams of data to or from pipes. The USBD

presents two groups of software mechanisms to clients: command mechanisms and pipe mechanisms.

Command mechanisms allow clients to configure and control USBD operation as well as to configure and

generically control a USB device. In particular, command mechanisms provide all access to the device‘s
default pipe.

Pipe mechanisms allow 3 USED client to manage device specific data and control transfers. Pipe
mechanisms do not allow a client to directly address the device’s default pipe.

Figure 10—5 presents an overview of the USBD structure.

a: _

c-H DH 0

.93 § '35 t:
Tu'E Q'” “’E cl... m D 0
:0 mm [D 0
0353 DU 130'! L.cm ._0 cu: m
:1: $< to: 3
0‘“ Q ”’m 0
()2 32 D.

Command Interfaces

Services

Host Host

Controller Controller

Figure 10-5. Universal Serial Bus Driver Structure

10.5.1.1 USBD Initialization

Specific USBD initialization is operating system-dependent. When a particular USB managed by USBD is
initialized, the management information for that USB is also created. Part of this management information
is the default address device and its default pipe used to communicate to a newly reset device.

When a device is attached to a USB, it responds to a special address known as the default address (refer to
Chapter 9) until its unique address is assigned by the bus enumerator. In order for the USB System to
interact with the new device, the default device address and the device’s default pipe must be available to
the hub driver when a device is attached. During device initialization, the default address is changed to a

unique address.

288

ZTE/SAMSUNG 1008-0316

|PR201 8-001 10

ZTE/SAMSUNG 1008-0317
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

10.5.1.2 USBD Pipe Usage

Pipes are the method by which a device endpoint is associated with a Host Software entity. Pipes are
owned by exactly one such entity on the host. Although the basic concept of a pipe is the same no matter
who the owner, some distinction of capabilities provided to the USBD client occurs between two groups of
pipes:

I Default pipes, which are owned and managed by the USBD

I All other pipes, which are owned and managed by clients ofthe USBD

Default pipes are never directly accessed by clients, although they are often used to fulfill some part of
client requests relayed via command mechanisms.

10.5.1 .2.1 Default Pipes

The USBD is responsible for allocating and managing appropriate buffering to support transfers on the
default pipe that are not directly visible to the client such as setting a device address. For those transfers
that are directly visible to the client, such as sending vendor and class commands or reading a device

descriptor, the client must provide the required buffering.

10.5.1.2.2 Client Pipes

Any pipe not owned and managed by the USBD can be owned and managed by a USBD client. From the
USBD viewpoint, a single client owns the pipe. In fact, a cooperative group ofclients can manage the pipe,
provided they behave as a single coordinated entity when using the pipe.

The client is responsible for providing the amount of buffering it needs to service the data transfer rate of
the pipe within a service interval attainable by the client. Additional buffering requirements for working
space are specified by the USB System.

10.5.1.3 US EU Service Capabilities

The USBD provides services in the following categories:

I Configuration via command mechanisms

I Transfer services via both command and pipe mechanisms

I Event notification

I Status reporting and error recovery

10.5.2 USBD Command Mechanism Requirements

USBD command mechanisms allow a client generic access to a USB device. Generally, these commands
allow the client to make read or write accesses to one of potentially several device data and control spaces.
The client provides as little as a device identifier and the relevant data or empty buffer pointer.

USBD command transfers do not require that the USB device be configured. Many ofthe device
configuration facilities provided by the USBD are command transfers.

Following are the specific requirements on the command mechanisms provided.

10.5.2.1 Interface State Control

USBD clients must be able to set a specified interface to any settable pipe state. Setting an interface state
results in all of the pipes in that interface moving to that state. Additionally, all of the pipes in an interface
may be reset or aborted.

289

ZTE/SAMSUNG 1008—031 7

|PR2018—001 10

ZTE/SAMSUNG 1008-0318
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

10.5.2.2 Pipe State Control

USBD pipe state has two components:

0 Host status

0 Reflected endpoint status

Whenever the pipe status is reported, the value for both components will be identified. The pipe status
reflected from the endpoint is the result ofthe endpoint being in a particular state. The USBD client

manages the pipe state as reported by the USBD. For any pipe state reflected from the endpoint, the client
must also interact with the endpoint to change the state.

A USED pipe is in exactly one ofthe following states:

- Active: The pipe‘s Policy has been set and the pipe is able to transmit data. The client can query as to
whether any IRPs are outstanding for a particular pipe. Pipes for which there are no outstanding IRPs
are still considered to be in the Active state as long as they are able to accept new lRPs.

- Halted: An error has occurred on the pipe. This state may also be a reflection of the corresponding
Halted endpoint on the device.

A pipe and endpoint are considered active when the device is configured and the pipe andror endpoint is
not stalled. Clients may manipulate pipe state in the following ways:

I Aborting a Pipe: All ofthe IRPs scheduled for a pipe are retired immediately and returned to the client
with a status indicating they have been aborted. Neither the host state nor the reflected endpoint state
ofthe pipe is affected.

- Resetting a Pipe: The pipe’s IRPs are aborted. The host state is moved to Active. 1f the reflected

endpoint state needs to be changed, that must he commanded explicitly by the USBD client.

0 Clearing a Halted pipe: The pipe's state is cleared from Halted to Active.

I Halting a Pipe: The pipe's state is set to Halted.

10.5.2.3 Getting Descriptors

The USBDI must provide a mechanism to retrieve standard device, configuration, and string descriptors, as
well as any class- or vendor-specific descriptors.

10.5.2.4 Getting Current Configuration Settings

The USBDI must provide a facility to return, for any specified device, the current configuration descriptor.
If the device is not configured, no configuration descriptor is returned. This action is equivalent to

returning the configuration descriptor for the current configuration by requesting the specific configuration
descriptor. It does not, however, require the client to know the identifier for the current configuration.
This will return all of the configuration information, including the following:

a All of the configuration descriptor information as stored on the device, including all ofthe alternate
settings for all of the interfaces

0 Indicators for which of the alternate settings for interfaces are active

0 Pipe handles for endpoints in the active alternate settings for interfaces

0 Actual wMaxPackerSize values for endpoints in the active alternate settings for interfaces

Additionally, for any specified pipe, the USBDI must provide a facility to return the wMaxPackerSize that
is currently being used by the pipe.

290

ZTE/SAMSUNG 1008-0318

|PR201 8-001 10

ZTE/SAMSUNG 1008-0319
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

10.5.2.5 Adding Devices

The USBD] must provide a mechanism for the hub driver to inform USBD ofthe addition ofa new device
to a Specified USB and to retrieve the USBD ID of the new USB device. The USBD tasks include
assigning the device address and preparing the device’s default pipe for use.

10.5.2.6 Removing Devices

The USBD] must provide a facility for the hub driver to inform the USBD that a specific device has been
removed.

10.5.2.7 Managing Status

The USBDI must provide a mechanism for obtaining and clearing device-based status on a device,
interface, or pipe basis.

10.5.2.8 Sending Class Commands

This USBD] mechanism is used by a client, typically a class-specific or adaptive driver, to send one or
more class-«specific commands to a device.

10.5.2.9 Sending Vendor Commands

This USBD] mechanism is used by a client to send one or more vendor-specific commands to a device.

10.5.2.10 Establishing Alternate Settings

The USBD] must provide a mechanism to change the alternate setting for a specified interface. As a result,
the pipe handles for the previous setting are released and new pipe handles for the interface are returned.
For this request to succeed, the interface must be idle; i.e., no data buffers may be queued for any pipes in
the interface.

10.5.2.11 Establishing a Configuration

Configuring sofiware requests a configuration by passing a buffer containing the configuration information
to the USBD. The USBD requests resources for the endpoints in the configuration, and ifall resource
requests succeed, the USBD sets the device configuration and returns interface handles with corresponding
pipe handles for all of the active endpoints. The default values are used for all alternate settings for
interfaces.

Note: The interface implementing the configuration may require specific alternate settings to be identified.

10.5.2.12 Setting Descriptors

For devices supporting this behavior, the USBD] allows existing descriptors to be updated or new
descriptors to be added.

10.5.3 USBD Pipe Mechanisms

This part of the USBD] offers clients the highest—speed, lowest overhead data transfer services possible.
Higher performance is achieved by shifting some pipe management reSponsibilities from the U SBD to the
client. As a result, the pipe mechanisms are implemented at a more primitive level than the data transfer
services provided by the USBD command mechanisms. Pipe mechanisms do not allow access to a device’s
default pipe.

USBD pipe transfers are available only after both the device and USB configuration have completed
successfully. At the time the device is configured, the USBD requests the resources required to support all

291

ZTE/SAMSUNG 1008-0319

|PR201 8-001 10

ZTE/SAMSUNG 1008-0320
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

device pipes in the configuration. Clients are allowed to modify the configuration, constrained by whether
the specified interface or pipe is idle.

Clients provide full buffers to outgoing pipes and retrieve transfer status information following the
completion of a request. The transfer status returned for an outgoing pipe allows the client to determine the
success or failure of the transfer.

Clients provide empty buffers to incoming pipes and retrieve the filled buffers and transfer status

information from incoming pipes following the completion of a request. The transfer status returned for an
incoming pipe allows a client to determine the amount and the quality ofthe data received.

10.5.3.1 Supported Pipe Types

The four types of pipes supported, based on the four transfer types, are described in the following sections.

10.5.3.1.1 lsochronous Data Transfers

Each buffer queued for an isochronous pipe is required to be viewable as a stream of samples. As with all
pipe transfers, the client establishes a Policy for using this isochronous pipe, including the relevant service
interval for this client. Lost or missing bytes, which are detected on input, and transmission problems,
which are noted on output, are indicated to the client.

The client queues a first buffer, starting the pipe streaming service. To maintain the continuous streaming
transfer model used in all isochronous transfers, the client queues an additional buffer before the current
buffer is retired.

The USBD is required to be able to provide a sample stream view of the client’s data stream. In other

words, using the client‘s specified method ofsynchronization, the precise packetization ofthe data is
hidden from the client. Additionally, a given transaction is always contained completely within some client
data buffer.

For an output pipe, the client provides a buffer ofdata. The USBD allocates the data across the
(micro)frames for the service period using the client’s chosen method ofsynchronization.

For an input pipe, the client must provide an empty buffer large enough to hold the maxim um number of
bytes the client‘s device will deliver in the service period. Where missing or invalid bytes are indicated,
the USBD may leave the space that the bytes would have occupied in place in the buffer and identify the
error. One of the consequences of using no synchronization method is that this reserved space is assumed
to be the maximum packet size. The buffer—retired notification occurs when the [RP completes. Note that

the input buffer need not be full when returned to the client.

The USBD may optionally provide additional views of lsochronous data streams. The USBD is also

required to be able to provide a packet stream view of the client’s data stream.

10.5.3.1.2 Interrupt Transfers

The Interrupt out transfer originates in the client of the USBD and is delivered to the USB device. The
interrupt in transfer originates in a USB device and is delivered to a client ofthe USBD. The USB System

guarantees that the transfers meet the maximum latency specified by the USB endpoint descriptor.

The client queues a buffer large enough to hold the interrupt transfer data (typically a single USB
transaction). When all of the data is transferred, or ifthe error threshold is exceeded, the IRP is returned to
the client.

10.5.3.1.3 Bulk Transfers

Bulk transfers may originate either from the device or the client. No periodicity or guaranteed latency is
assumed. When all of the data is transferred, or if the error threshold is exceeded, the [RF is returned to the
client.

292

ZTE/SAMSUNG 1008-0320

|PR201 8-001 10

ZTE/SAMSUNG 1008-0321
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

10.5.3.1.4 Control Transfers

All message pipes transfer data in both directions. In all cases, the client outputs a setup stage to the device
endpoint. The optional data stage may be either input or output and the final status is always logically
presented to the host. For details of the defined message protocol, refer to Chapter 8.

The client prepares a buffer specifying the command phase and any optional data or empty buffer space.
The client receives a buffer-retired notification when all phases of the control transfer are complete, or an
error notification, if the transfer is aborted due to transmission error.

10.5.3.2 USBD Pipe Mechanism Requirements

The following pipe mechanisms are provided.

10.5.3.2.1 Aborting lRPs

The USBD] must allow lRPs for a particular pipe to be aborted.

10.5.3.2.2 Managing Pipe Policy

The USBD] must allow a client to set and clear the Policy for an individual pipe or for an entire interface.
Any lRPs made by the client prior to successfully setting a Policy are rejected by the USBD.

1 0.5.3.2.3 Queuing IRPs

The USBDI must allow clients to queue IRPs for a given pipe. When IRPs are returned to the client, the
request status is also returned. A mechanism is provided by the USBD to identify a group of isochronous
lRPs whose first transactions will all Occur in the same (micro)frame.

10.5.4 Managing the USB via the USBD Mechanisms

Using the provided USBD mechanisms, the following general capabilities are supported by any USB
System.

10.5.4.1 Configuration Services

Configuration services operate on a per-device basis. The configuring software tells the USBD when to
perform device configuration. A hub driver has a special role in device management and provides at least
the following capabilities:

0 Device attachfdetach recognition, driven by an interrupt pipe owned by the hub driver

in Device reset, accomplished by the hub driver by resetting the hub port upstream of the device

0 Tells the USBD to perform device address assignment

0 Power control

The USBDI additionally provides the following configuration facilities, which may be used by the hub
driver or other configuring software available on the host:

I Device identification and access to configuration information (via aceess to descriptors on the device)

I Device configuration via command mechanisms

When the hub driver informs the USBD ofa device attachment, the USBD establishes the default pipe for
the new device. _

293

ZTE/SAMSUNG 1008-0321

|PR2018-00110

ZTE/SAMSUNG 1008-0322
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

10.5.4.1.1 Configuration Management

Configuration management services are provided primarily as a set of specific interface commands that
generate USB transactions on the default pipe. The notable exception is the use of an additional inten'upt

pipe that delivers hub status directly to the hub driver.

Every hub initiates an interrupt transfer when there is a change in the state ofone ofthe hub ports.

Generally, the port state change will be the connection or removal of a downstream USB device. {Refer to
Chapter 11 for more information.)

10.5.4.1.2 Initial Device Configuration

The device configuration process begins when a hub reports, via its status change pipe, the connection of a
new USB device.

Configuration management services allow configuring software to select a USB device configuration from
the set of configurations listed in the device. The USBD verifies that adequate power is available and the
data transfer rates given for all endpoints in the configuration do not exceed the capabilities of the USB
with the current schedule before setting the device configuration.

10.5.4.1.3 Modifying 3 Device Configuration

Configuration management services allow configuring software to replace a USB device configuration with
another configuration from the set of configurations listed in the device. The operation succeeds if
adequate power is available and the data transfer rates given for all endpoints in the new configuration fit
within the capabilities ofthe USB with the current schedule. lfthe new configuration is rejected, the
previous configuration remains.

Configuration management services allow configuring software to return a USB device to a Not
Configured state.

10.5.4.1.4 Device Removal

Error recovery andr'or device removal processing begins when a hub reports via its status change pipe that
the USB device has been removed.

10.5.4.2 Power Control

There are two cooperating levels of power management for the USB: bus and device level management.
This specification provides mechanisms for managing power on the USB bus. Device classes may define
class-specific power control capabilities.

All USB devices must support the Suspended state (refer to Chapter 9). The device is placed into the
Suspended state via control of the hub port to which the device is attached. Normal device operation ceases
in the Suspend State; however, if the device is capable of wakeup signaling and the device is enabled for
remote wakeup, it may generate resume signaling in response to external events.

The power management system may transition a device to the Suspended state or power-off the device in
order to control and conserve power. The USB provides neither requirements nor commands for the device
state to be saved and restored across these transitions. Device classes may define class-specific device state
save-and-restore capabilities.

The USB System coordinates the interaction between device power states and the Suspended state.

It is recommended that while a device is not being used by the system (i.e., no transactions are being
transmitted to or from the device besides SOF tokens), the device be suspended as soon as possible by
selectively suspending the port to which the device is attached. Suspending inactive devices reduces
reliability issues due to high currents passing through a transceiver operating in high-speed mode in the
presence of short circuit conditions described in Section 7.1.]. Some of these short circuit conditions are

not detectable in the absence oftransactions to the device. Suspending the unused device will place the

294

ZTE/SAMSUNG 1008-0322

IPR201 8-001 10

ZTE/SAMSUNG 1008-0323
IPR2018-00110

Universal Serial Bus Specification Revision 1.0

transceiver interface into full-speed mode which has a greater reliability in the presence of short circuit
conditions.

10.5.4.3 Event Notifications

USBD clients receive several kinds ofevent notifications through a number ofsources:

- Completion of an action initiated by a client.

0 Interrupt transfers over stream pipes can deliver notice of device events directly to USBD clients. For
example, hubs use an interrupt pipe to deliver events corresponding to changes in hub status.

. Event data can be embedded by devices in streams.

II Standard device interface commands, device class commands, vendor-specific commands, and even
general control transfers over message pipes can all be used to poll devices for event conditions.

10.5.4.4 Status Reporting and Error Recovery Services

The command and pipe mechanisms both provide status reporting on individual requests as they are
invoked and completed.

Additionally, USB device status is available to USBD clients using the command mechanisms.

The USBD provides clients with pipe error recovery mechanisms by allowing pipes to be reset or aborted.

10.5.4.5 Managing Remote Wakeup Devices

The USB System can minimize the resume power consumption of a suspended USB tree. This is

accomplished by explicitly enabling devices capable of resume signaling and controlling propagation of
resume signaling via selectively suspending andtor disabling hub ports between the device and the nearest
self-powered, awake hub.

In some error-recovery scenariOs, the USB System will need to re-enumerate subwtrees. The sub-tree may
be partially or completely suspended. During error«recovery, the USB System must avoid contention
between a device issuing resume signaling and simultaneously driving reset down the port. Avoidance is
accomplished via management ofthe devices” remote wakeup feature and the hubs’ port features. The
rules are as follows:

0 Issue a SetDeviceFeature(DEVICE_REMOTE_WAKEUP) request to the leaf device, only just prior to
selectively suspending any port between where the device is connected and the root port (via a
SetPortFeature(PORT_SU SPEND) request).

t Do not reset a suspended port that has had a device enabled for remote wakeup without first enabling

that port.

0 Verify that after a remote wakeup, the devices in the subtree affected by the remote wakeup are still
present. This will typically be done as part of determining which potential remote wakeup device was

the source of the wakeup. This should be done to ensure that a suSpended device is not disconnected
(and possibly reconnected) or reset {e.g., by noise) during a suspendfresume process.

10.5.5 Passing USB Preboot Control to the Operating System

A single software driver owns the Host Controller. If the host system implements USB services before the
operating system loads, the Host Controller must provide a mechanism that disables access by the preboot

software and allows the operating system to gain control. Preboot USB configuration is not passed to the
operating system. Once the operating system gains control, it is responsible to fully configure the bus. If
the operating system provides a mechanism to pass control back to the preboot environment, the bus will be
in an unknown state. The preboot software should treat this event as a powerup.

295

ZTE/SAMSUNG 1008—0323

|PR201 8-001 10

ZTE/SAMSUNG 1008-0324
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

10.6 Operating System Environment Guides

As noted previously, the actual interfaces between the USB System and host software are specific to the host

platform and Operating system. A companion specification is required for each combination of platform and
operating system with USB support. These specifications describe the specific interfaces used to integrate the
USB into the host. Each operating system provider for the USB System identifies a compatible Universal USB
Specification revision.

296

ZTE/SAMSUNG 1008-0324

|PR201 8-001 10

ZTE/SAMSUNG 1008-0325
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Chapter 11

Hub Specification

This chapter describes the architectural requirements for the USB hub. It contains a description of the three

principal sub~blocksz the Hub Repeater, the Hub Controller, and the Transaction Translator. The chapter
also describes the hubs operation for error recovery, reset, and suspendfresume. The second half of the

chapter defines hub request behavior and hub descriptors.

The hub specification supplies sufficient additional information to permit an implementer to design a hub

that conforms to the USB specification.

11.1 Overview

Hubs provide the electrical interface between USB devices and the host. Hubs are directly responsible for

supporting many of the attributes that make USB user friendly and hide its complexity from the user. Listed

below are the major aspects of USB functionality that hubs must support:

0 Connectivity behavior

a Power management

- Device connectfdisconncct detection

I Bus fault detection and recovery

0 High-, fiJlI-, and low-speed device support

A hub consists ofthree components: the Hub Repeater, the Hub Controller, and the Transaction Translator.

The Hub Repeater is responsible for connectivity setup and tear-down. It also supports exception handling,

such as bus fault detection and recovery and connectr’disconnect detect. The Hub Controller provides the

mechanism for host-to-hub communication. Hub-specific status and control commands permit the host to

configure a hub and to monitor and control its individual downstream facing ports. The Transaction

Translator responds to high-speed split transactions and translates them to fiill-r‘low-speed transactions with

full-{low-speed devices attached on downstream facing ports.

11.1.1 Hub Architecture

Figure l l-l shows a hub and the locations of its upstream and downstream facing ports. A hub consists of a

Hub Repeater section, a Hub Controller section, and a Transaction Translator section. The hub must

operate at high-speed when its upstream facing port is connected at high-speed. The hub must operate at

full-speed when its upstream facing port is connected at full-speed.

The Hub Repeater is responsible for managing connectivity between upstream and downstream facing ports

which are operating at the same speed. The Hub Repeater supports full-flow-speed connectivity and high-

speed connectivity. The Hub Controller provides status and control and permits host access to the hub. The

Transaction Translator takes high-speed split transactions and translates them to full-r’low-speed transactions

when the hub is operating at high-speed and has full-flow-speed devices attached. The operating speed of a

device attached on a downstream facing port determines whether the Routing Logic connects a port to the

Transaction Translator or hub repeater sections.

297

ZTE/SAMSUNG 1008—0325

|PR201 8-001 10

ZTE/SAMSUNG 1008-0326
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Part D

Upstream Facing Port Upstream Facing Port State Machines

Hub Hub State Hub

Repeater: Machines Controlle

Downstream

Facing Port
State Machine{s)

Port 1 Port 2 Port N

Downstream Facing Ports

Figure "-1. Hub Architecture

When a hub’s upstream facing port is attached to an electrical environment that is operating at full-flow-

speed, the hub‘s high-speed functionality is disallowed. This means that the hub will only operate at full-

flow-Speed and the transaction translator and high-speed repeater will not operate. In this electrical

environment, the hub repeater must operate as a full-flow-speed repeater and the routing logic connects

ports to the hub repeater.

When the hub upstream facing port is attached to an electrical environment that is operating at high-speed,

the fullJlow-speed hub repeater is not Operational. In this electrical environment when a high-speed device
is attached on downstream facing port, the routing logic will connect the port to the hub repeater and the

hub repeater must operate as a high-speed repeater. In this case, when a full-flow-speed device is attached
on a downstream facing port, the routing logic must connect the port to the transaction translator.

11.1.2 Hub Connectivity

Hubs exhibit different connectivity behavior depending on whether they are propagating packet traffic, or

resume signaling, or are in the ldle state.

11.1.2.1 Packet Signaling Connectivity

The Hub Repeater contains one port that must always connect in the upstream direction (referred to as the

upstream facing port) and one or more downstream facing ports. Upstream connectivity is defined as being

towards the host, and downstream connectivity is defined as being towards a device. Figure] 1-2 shows the

packet signaling connectivity behavior for hubs in the upstream and downstream directions. A hub also has
an [die state, during which the hub makes no connectivity. When in the Idle state, all of the hub’s ports are

in the receive rnode waiting for the start of the next packet.

298

ZTE/SAMSUNG 1008-0326

|PR201 8-001 10

ZTE/SAMSUNG 1008-0327
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

UpstreamPort

 ownstream
Ports

Downstream Upstream Idle
Connectivity Connectivity (No Connectivity)

|:| Enabled Port.

El Port not Enabled

Figure 11—2. Hub Signaling Connectivity

Ifa dovvnstream facing port is enabled (i.e., in a state where it can propagate signaling through the hub), and

the hub detects the start of a packet on that port, connectivity is established in an upstream direction to the

upstream facing port of that hub, but not to any other downstream facing ports. This means that when a

device or a hub transmits a packet upstream, only those hubs in line between the transmitting device and the

host will see the packet. Refer to Section l 1.8.3 for optional behavior when a hub detects simultaneous

upstream signaling on more than one port.

In the downstream direction, hubs operate in a broadcast mode. When a hub detects the start of a packet on

its upstream facing port, it establishes connectivity to all enabled downstream facing ports. If a port is not

enabled, it does not propagate packet signaling downstream.

.1.2.2 Resume Connectivity

Hubs exhibit different connectivity behaviors for upstream- and downstream-directed resume signaling. A

hub that is suspended reflects resume signaling from its upstream facing port to all of its enabled
downstream facing ports. Figure 1 1-3 illustrates hub upstream and dowustream resume connectivity.

Enabled Port

Disabled or
Suspended
Port

ambled or
Suspended
Port

Downstream Connectivity

Upstream Connectivity

Figure 11-3. Resume Connectivity

299

ZTE/SAMSUNG 1008—0327

|PR201 8-001 10

ZTE/SAMSUNG 1008-0328
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

If a hub is suspended and detects resume signaling from a selectively suspended or an enabled downstream

facing port, the hub reflects that signaling upstream and to all of its enabled downstream facing ports,

including the port that initiated the resume sequence. Resume signaling is not reflected to disabled or

suspended ports. A detailed discussion of resume connectivity appears in Section 1 1.9.

11.1.2.3 Hub Fault Recovery Mechanisms

Hubs are the essential USB component for establishing connectivity between the host and other devices. It

is vital that any connectivity faults, especially those that might result in a deadlock, be detected and

prevented from occurring. Hubs need to handle connectivity faults only when they are in the repeater mode.

Hubs must also be able to detect and recover from lost or corrupted packets that are addressed to the Hub
Controller. Because the Hub Controller is, in fact, another USB device, it must adhere to the same timeout

rules as other USB devices, as described in Chapter 8.

11.2 Hub FrameiMicroframe Timer

Each hub has a (micro}frame timer whose timing is derived from the bub’s local clock and is synchronized

to the host {micro)frame period by the host-generated Start-of-(micro)frame (SOF). The (micro)frame

timer provides timing references that are used to allow the hub to detect a babbling device and prevent the

hub from being disabled by the upstream hub. The hub (micro)frame timer must track the host

(micro)frame period and be capable of remaining synchronized with the host even if two consecutive SOF

tokens are missed by the hub.

The (micro)framc timer must lock to the host’s (micro)frame timing for worst case clock accuracies and

timing offsets between the host and hub. There are specific requirements for hubs when their upstream
facing port is operating at high-speed and full-speed.

11.2.1 High-speed Microframe Timer Range

The range for a microframe timer must be from 59904 to 60096 high-speed bits.

The nominal microframe interval is 60000 high-speed bit times. The hub microframe timer range specified

above is 60000 +f- 96 high-speed bit times in order to accommodate host accuracy, hub accuracy, repeater

jitter, and hub quantization. The +1-96 full-speed bit time variation is calculated in Table “-2.

Table 11-1. High-speed Microframe Timer Range Contributions

Source of Variation Variation (ppm) Variation (bits) Over
One Microframe Interval

Host accuracy

 Hub accuracy

Host jitter

 Four hubs in series

upstream of hub; 0 to 5
bits ofjitter per hub

Hub chain jitter

Bits need to round total

variation to multiple of 16

Quantization

300

ZTE/SAMSUNG 1008-0328

|PR201 8-001 10

ZTE/SAMSUNG 1008-0329
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.2.2 Full-speed Frame Timer Range

The range of the frame timer must be from 11958 to 12042 full-speed bits.

The nominal frame interval is 12000 filll-speed bit times. The hub frame timer range specified above is

l2000 +f- 42 full-speed bit times in order to accommodate host accuracy and hub accuracy. The +f-42 full-

speed bit time variation is calculated in Table 1 1-2.

Table 11-2. Full-speed Frame Timer Range Contributions

Source of Variation Variation (ppm) Variation (bits) Over Comment
One Frame Interval

Hub accuracy +l~6 bits due to hub
accuracy (500 ppm)

+1—30 bits due to 1.x

parent hub accuracyr
(2500 ppm}

11.2.3 FrametMicroframe Timer Synchronization

A hub’s (micro)frame timer is clocked by the hub’s clock source and is synchronized to SOF packets that

are derived from the host’s (micro)frame timer. Afier a reset or resume, the hub’s (micro)frame timer is not

synchronized. Whenever the hub receives two consecutive SOF packets, its (micro)frame timer must be

synchronized. Synchronized is synonymous with lock(ed). An example for a method of constructing a

timer that properly synchronizes is as follows.

11.2.3.1 Example (Micro)frame Timer Synchronization Method

The hub maintains three timer values: (micro)frame timer (down counter), current (micro)frame (up

counter), and next (micro)frame (register). Afier a reset or resume, a flag is set to indicate that the

(micro)frame timer is not synchronized.

When the first SOF token is detected, the current (micro)frame timer resets and starts counting once per hub

bit time. On the next SOF, ifthe timer has not rolled over, the value in the current (micro)frame timer is

loaded into the next (micro)frame register and into the (micro)frame timer. The current (micro)frame timer

is reset to zero and continues to count and the flag is set to indicate that the (micro)frame timer is locked.

The (micro)frame timer rolls over when the count exceeds 60096 for high-speed or 12042 for full-speed (a

test at 65535 for high-speed or 16383 for full-speed is adequate). If the current (micro)frame timer has

rolled-over, then an SOF was missed and the (micro)frame timer and next (micro)frame values are not

loaded. When an SOF is missed, the flag indicating that the timer is not synchronized remains set.

Whenever the (micro)frame timer counts down to zero, the current value of the next (micro)frame register is

loaded into the (micro)frame timer. When an SOF is detected, and the current (micro)frame timer has not

rolled over, the value of the current (micro)frame timer is loaded into the (micro)frame timer and the next

(micro)frame registers. The current (micro)frame timer is then reset to zero and continues to count. If the

current (micro)frame timer has rolled over, then the value in the next (micro)frame register is loaded into

the (micro)frame timer. This process can cause the (micro)frame timer to be updated twice in a single

(micro)frame: once when the (micro)frame timer reaches zero and once when the SOF is detected.

301

ZTE/SAMSUNG 1008-0329

|PR201 8-001 10

ZTE/SAMSUNG 1008-0330
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.2.3.2 EOF Advancement

The hub must advance its EOF points based on its SOF decode time in order to ensure that in the tiered

topology, hubs farther away from the host will always have later EOF points than hubs nearer to the host.

The magnitude of advance is implem entation-dependent; the possible range of advance is derived below.

The synchronization circuit described above depends on successfully decoding an SOF packet identifier

(PID). This means that the (micro)frame timer will be synchronized to a time that is later than the

synchronization point in the SOF packet: later by at least 40 bit times for high-speed or 16 bit times for full-

speed. Each implementation also takes some time to react to the SOF decode and set the appropriate

timerr'counter values. This reaction time is implementation-dependent but is assumed to be less than 192 bit

times for high-speed and four bit times for full-speed. Subsequent sections describe the actions that are

controlled by the (micro)frame timer. These actions are defined at the EOF], EOFZ, and EOF. EOFl and

EOF'Z are defined in later sections. These sections assume that the hub’s (micro)frame timer will count to

zero at the end of the (micro)frame (EOF). The circuitry described above will have the {micro)frame timer

counting to zero afier 40 to 192 for high-speed bit times or 16—20 full-speed bit times after the start of a

(micro)t‘rame (or end of previous (micro)fiame). The timings and bit offsets in the later sections must be

advanced to account for this delay (i.e., add 40-192 for high-speed or 16-20 bit times for full-speed to the

EOF] and EOF2 points).

Advancing the EOF points by the processing delay ensures that the spread between the EOFs is only due to

the propagation delay. For example, for high-speed, the maximum spread between 2 EOF points anywhere

on the USB is less than 216 bits (144 + 72). 144 bit times are due to 36 bit times of max latency through

4 repeaters. 72 bit times are due to five maximum cable and interconnect delays of30 as each. As can be

seen in Figure 11-4 without EOF advancement, a hub with a larger tier number could have an EOF occuring

earlier than a hub with a smaller tier number. In Figure 11-5 with EOF advancement ensures that in the

tiered topology, hubs with larger tier numbers always have later EOF points than hubs with smaller tier

numbers. Note: 13 bit times in the figures is an example maximum cable delay (approximately 30 ns).

Time

:u.....----....-. .u‘.’

Tier 1

3+192 bits delay
Tier N

i

Tier 13+l3+36+40 bits delay

Depth Tier N+l

Figure 11-4. Example High-speed EOF Offsets Due to Propagation Delay Without EOF
Advancement

‘d

Tier

Depth

Tier 1

13 bits delay
Tier N

13+l3+36 bits delay

Tier N+l

Figure 11-5. Example High-speed EOF Offsets Due to Propagation Delay With EOF Advancement

302

ZTE/SAMSUNG 1008-0330

|PR201 8-001 10

ZTE/SAMSUNG 1008-0331
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.2.3.3 Effect of Synchronization on Repeater Behavior

The {micro)frame timer provides an indication to the hub Repeater state machine that the {micro)frame

timer has synchronized to SOF and that the (micro)frame timer is capable of generating the EOF] and

EOF2 timing points. This signal is important after a global resume because ofthe possibility that a full-

i'low-speed device may have been detached, and a low—ifull-speed device attached while the host was

generating a long resume (several seconds) and the disconnect cannot be detected. The new device will bias

D+ and D- to appear like a K on the hub which would then be treated as an SOP and, unless inhibited, this

SOP would propagate though the resumed hubs. Since the hubs would not have seen any SOFs at this point,

the hubs would not be synchronized and, thus, unable to generate the EOF] and EOF2 timing points. The

only recovery from this would be for the host to reset and re-enumerate the section of the bus containing the

changed device. This scenario is prevented by inhibiting any downstream facing port from establishing

connectivity until the hub is locked after a resume.

11.2.4 Microframe Jitter Related to Frame Jitter

The period between the SOFs from the Transaction Translator must not vary by more than +i- 42 us. The

microframe timer count must be used by the Transaction Translator to generate SOFs to full-speed devices

(and keepalives to low~speed devices} connected to it.

The SOF received at the upstream facing port of the hub is repeated with a local clock. The frequency of

this clock may be a divided version of the bit rate. This could result in a quantization error and microframe-

to-microframe jitter. The microframe-to-microframejitter of a hub repeater must be between 0 and 5 bit

times. This means that the latency through the repeater of consecutive SOFs must differ by less than 5 bits.

A hub may register the SOF for internal use, e.g., microframe synchronization. This requires SOF PID

detection. The circuitry used for internal registering of the SOF must have ajitter which is less than or

equal to 16 bits. This means that the microframe timer count values between consecutive equally spaced

SOFs must differ by less than or equal to l6 bits. The host controller fi-equency may drifi over the period of

a microframe resulting in microframe period jitter. The host controller source jitter for SOFs must be less

than 4 bits. This means that the consecutive periods between SOFs must differ by less than 4 bits. These

requirements ensure that the microframe period at the end of five hub tiers will have ajitter of less than

40 bits (4 from host controller + 4*5 from hub repeaters '1' l6 from the internal SOF registering). This

means that the consecutive periods between SOFs as measured at any microframe timer will differ by less
than 40 bits (83.3 ns at 480 Mbs). This is less than the +i— 42 ns variation allowed.

11.2.5 EOF1 and EOF2 Timing Points

The EOF] and EOF2 are timing points that are derived from the hub’s (micro}frame timer. Table “-3
specifies the required host and hub EOF timing points for high-speed and full-speed operation.

Table ”—3. Hub and Host EOFliEOFZ Timing Points

Bit Times Before EOF Bit Times Before EOF

for High-speed for Full—speed
Notes

560 End-of—{micro)frame point #1

These timing points are used to ensure that devices and hubs do not interfere with the proper transmission of

the SOF packet from the host. These timing points have meaning only when the (micr‘olfi‘mne timer has
been synchronized to the SOF.

The host and hub {micro)frame markers, while all synchronized to the host’s SOF, are subject to certain

skeWs that dictate the placement of the EOF points. Figure “-6 illustrates EOF2 timing point for high-

303

ZTE/SAMSUNG 1008-0331

|PR201 8-001 10

ZTE/SAMSUNG 1008-0332
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Speed operation. Figure 11-? illustrates the EOF] high-speed timing point. The numbers in the figures are

in high-speed bit times.

* ime

EPF l EfiF=01 tier m l
tier depth EOF2=64 ‘ quantization=16

“Cl- ll
skcw=38

Figure 11-6. High-speed EOFZ Timing Point

_ 'l time ElOgdefi. F=0 t.Maw-Mme» . . _ let 0
l ... F re a aion=216
i EOF1=560 “R... p p g t
it

EOP propagation=2| 6 + _. '
quiescent time = 8

tier depth

tier 5

skew=38

Figure 11-7. High-speed EOFI Timing Point

At the EOFZ point, any port that has upstream connectivity will be disabled as a babbler. Hubs operating as

a fillI-r’low-speed repeater prevent becoming disabled by sending an end of packet to the upstream hub

before that hub reaches its EOF2 point (i.e., at EOFl).

Figure 11-8 illustrates EOF timing points for full-fiow-speed repeater operation.

EOF1 EOF2

Bil times 80F

<—|—|—|—|—I—|—l—1—l—l—l—
so 40 an 2|: 1n n

I‘— EOF1 range —0| |‘— EOFZ range —‘I
Figure 11-8. Full-speed EOF Timing Points

The hub operating as a full-flow-speed repeater is permitted to send the BOP if upstream connectivity is not

established at EOFI time. A full-speed rcpeater must send the BOP if connectivity is established from any

downstream facing port at the EOFl point.

A high-«speed repeater must tear down upstream connectivity at the EOFI point.

A high-speed repeater must tear down connectivity after the bus returns to the ldle state and the Elasticity

buffer is emptied (as described in Section 1 1.7.2) rather than on decoding an EOP pattern as in filli-r’low~

speed. Therefore, abrupt end of signaling (i.e, without a high-speed EOP) may cause malformed packets,

and this must not affect repeater operation. The host controller design must be capable of processing such

packets correctly.

304

ZTE/SAMSUNG 1008-0332

|PR201 8-001 10

ZTE/SAMSUNG 1008-0333
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.2.5.1 High-speed EOF1 and EOF2 Timing Points

The EOF2 point is 64 bit times before EOF as shown in Figure “-6, and the EOF] point is 560 bit times

before EOF as shown in Figure 11-7.

Although the hub is synchronized to the SOF, timing skew can accumulate between the host and a hub or

between hubs. This timing skew represents the difference between different microframe timers on different

hubs and the host. The total accumulated skew can be as much as 38 bit times. This is composed of i2 bit

times of (m icro)frame host sourcejitter and D to 36 bit times of repeaterjitter as derived earlier. This skew

timing affects the placement of the EOFl and EOF2 points.

Note: The hub skew timing assumes that the microframe interval will not be changed by the host after the

microframe timers have synchronized.

EOF skew can be from —2 to + 38 bits, so all EOFs are within 256 bits (216 bits of EOF prOpagation delay +

40 bits of EOF skew) of each other.

Note: The EOF2 point is based on l6 bit times for quantization + 38 bit times of skew; therefore, the EOF2

point needs to located at least 54 bit times before EOF. The EOF2 point is set at 64 bit times to allow

babble detection to be done with a divided (by 16) version of the bit clock. An upstream-directed packet

ending before EOFl must reach every upstream hubr’host before it gets to its EOF2 point. This is achieved

if the EOFl point is located at least 544 bits before any upstream EOF (64 bits of EOF2 offset + 216 bits of

EOP propagation delay + 8 bits of idle time + 2] 6 bits of SOF propagation delay + 38 bits of EOF] skew +
2 bits of EOF2 skew). The EOF] point is set at 560 bit times to allow using a divided (by l6) version ofthe
bit clock.

11.2.5.2 Full-speed EOF1 and EOF2 Timing Points

When the hub operates as a full—flow-speed repeater, the EOF] point is 10 bit times before EOF and EOF]

is 32 bit times before EOF as shown in Figure 1 Hi.

The EOF2 point is defined to occur at least one bit time before the first bit ofthe SYNC for an SOP. The

period allowed for an EOP is four full-speed bit times (the upstream facing port on a hub is always full-

speed).

Although the hub is synchronized to the SOF, timing skew can accumulate between the host and a hub or
between hubs. This timing skew represents the difference between different frame timers on different hubs

and the host. The total accumulated skew can be as large as i9 bit times. This is composed of i1 bit times

per frame of quantization error and i] bit per frame of wander. The quantization error occurs when the hub
times the interval between SOFs and arrives at a value that is off by a fraction of a bit time but, due to

quantization, is rounded to a full bit. Frame wander occurs when the h0st's frame timer is adjusted by the

USB System Software so that the value sampled by the hub in a previous frame differs from the frame

interval being used by the host. (Note: Such adjustment was permitted in the USB 1.0 and 1.1 specification

but is no longer permitted.) These values accumulate over multiple frames because SOF packets can be lost

and the hub cannot resynchronize its frame timer. This specification allows for the loss of two consecutive

SOFs. During this interval, the quantization error accumulates to i3 bit times, and the wander accumulates

to i] :r 2 :r 3 = i6 for a total of i9 bit times ofaccumulated skew in three frames. This skew timing affects

the placement of the EOF] and EOF2 points as follows.

A hub must reach its EOF2 point one bit time before the end of the frame. In order to ensure this, a 9-bit

time guard-band must be added so that the EOF2 point is set to occur when the hub's looal frame timer

reaches IO. A hub must complete its EDP before the hub to which it is attached reaches its EOF2 point. A

hub may reach its EOF2 point nine bit times before bit time 10 (at bit time 19 before the SOF). To ensure

that the EOF is completed by bit time 19, it must start before bit time 23. To ensure that the hub starts at bit

time 23 with respect to another hub, a hub must set its EOF] point nine bit times ahead of bit time 23 (at bit

time 32). Ifa hub sets its timer to generate an EOP at bit time 32, that EOF may start as much as 9 bit times

early {at bit time 41).

305

ZTE/SAMSUNG 1008-0333

|PR201 8-001 10

ZTE/SAMSUNG 1008-0334
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.3 Host Behavior at End-of—Frame

It is the responsibility of the USB host controller {the host) to not provoke a response from a device if the

response would cause the device to be sending a packet at the EOF2 point. Furthermore, because a hub will

terminate an upstream directed packet when the hub reaches its EOFl point, the host should not start a

transaction if a response from the device (data or handshake) would be pending or in process when a hub

reaches its EOF 1 point. The implications of these limitations are described in the following sections.

Note: The above requirements can be met if the host controller ensures that the last transaction will

complete by its EOFI. The time consumed by a transaction (and consequently the latest start time ofthe
transaction) can be evaluated by aceumulating the various delay components in the transaction. The packet

lengths should include all fields and account for bit-stuffing overhead as described in Chapter 7 and

Chapter 8. Formulae for calculating transaction times are located in Section 5.11.3.

In defining the timing points below, the last bit interval in a (micro)frame is designated as bit time zero. Bit

times in a (micro)frame that cccur before the last have values that increase the further they are from bit time

zero {earlier bit times have higher numbers). These bit time designations are used for convenience only and

are not intended to imply a particular implementation. The only requirement of an implementation is that

the relative time relationships be preserved.

Host controllers issuing highvspeed transactions on a high-speed bus must meet the above requirements.

Host controllers issuing full-flow-speed transactions on a full—flow—speed bus may also use the following
three behaviors near EOF.

11.3.1 Full-llow-speed Latest Host Packet

Hubs are allowed to send an EOP on their upstream facing ports at the BOP] point ifthere is no

downstream-directed traffic in progress at that time. To prevent potential contention, the host is not allowed

to start a packet if connectivity will not be established on all connections before a hub reaches its EOF]

point. This means that the host must not start a packet afler bit time 42.

Note: Although there is as much as a six-bit time delay between the time the host starts a packet and all

connections are established, this time need not be added to the packet start time as this phase delay exists for

the SOF packet as well, causing all hub frame timers to be phase delayed with respect to the host by the

propagation delay. There is only one bit time of phase delay between any two adjacent hubs and this has
been accounted for in the skew calculations.

11.3.2 Full-tlow-speed Packet Nullification

If a device is sending a packet (data or handshake) when a hub in the device’s upstream path reaches its

EOFI point, the hub will send a full-speed BOP. Any packet that is truncated by a hub must be discarded.

A host implementation may discard any packet that is being received at bit time 4] . Alternatively, a host

implementation may attempt to maximize bus utilization by accepting a packet if the packet is predicted to
start at or before bit time 4].

11.3.3 Full-llow-speed Transaction Completion Prediction

A device can send two types of packets: data and handshake. A handshake packet is always exactly 16 bit

times long (sync byte plus PID byte.) The time from the end ofa packet from the host until the first bit of

the handshake must be seen at the host is 17 bit times. This gives a total allocation of 35 bit times item the

end of data packet from the root (start of EOP) until it is predicted that the handshake will be completed

(start of EOP) fi-om the device. Therefore, if the host is sending a data packet for which the device can

return a handshake (anything other than an isochronous packet}, then if the host completes the data packet

and starts sending EOP before bit time 76, then the host can predict that the device will complete the

handshake and start the BOP for the handshake on or before bit time 41. For a low-speed device, the 36 bit

times from start of EOP from root to start of EOP from the device are low-speed bit times, which convert 1

306

ZTE/SAMSUNG 1008-0334

|PR201 8-001 10

ZTE/SAMSUNG 1008-0335
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

to 8 into full-speed bit times. Therefore, if the host completes the low-speed data packet by bit time 329,

then the low-speed device can be predicted to complete the handshake before bit time 41.

Note: If the host cannot accept a full-speed EOP as a valid end of a low-speed packet, then the low-speed

BOP will need to complete before bit time 41, which will add 13 full-speed bit times to the low-speed
handshake time.

As the host approaches the end ofthe frame, it must ensure that it does not require a device to send a

handshake if that handshake cannot be completed before bit time 4]. The host expects to receive a

handshake after any valid, non-isochronous data packet. Therefore, if the host is sending a non—isoehronous

data packet when it reaches bit time 76 (329 for low-speed), then the host should start an abnormal

termination sequence to ensure that the device will not try to respond. This abnormal termination sequence
consists of 7 consecutive (non-bitstuffed) bits of 1 followed by an EOP. The abnormal termination

sequence is sent at the speed of the current packet. Note: The intent of this sequence is to force a

bitstuffing violation (and possibly other errors) at the receiver.

If the host is preparing to send an TN token, it may not send the token if the predicted packet from the device

would not complete by bit time 41. The maximum valid length ofthe response from the device is known by

the host and should be used in the prediction calculation. For a full-speed packet, the maximum interval

between the start ofthe IN token and the end of a data packet is:

token_length + (packet_length + header + CRC) * 71’6 + 18

Where tokenjength is 34 bit times, packetjengrh is the maximum number of data bits in the packet,

header is eight bits ofsync and eight bits ofPID, and CRC is 16 bits. The 7% multiplier accounts for the

absolute worst case bit-stuff on the packet, and the 13 extra bits allow for worst case tum-around delay. For

a low-speed device, the same calculation applies, but the result must be multiplied by 8 to convert to full-

speed bit times. and an additional 20 full-speed bit times must be added to account for the low-speed prefix.

This gives the maximum number of bit times between the start ofthe IN token and the end ofthe data

packet, so the token cannot be sent if this number of bit times does not exist before the earliest EOF 1 point

(bit time 41). (For example, take the results ofthe above calculation and add 41. Ifthe number of bits left

in the frame is less than this value, the token may not be sent.)

The hOst is allowed to use a more conservative algorithm than the one given above for deciding whether or

not to start a transaction. The calculation might also include the time required for the host to send the

handshake when one is required, as there is no benefit in starting a transfer if the handshake cannot be

completed.

11.4 internal Port

The internal port is the connection between the Hub Controller and the Hub Repeater. BeSides conveying

the serial data tolfrom the Hub Controller, the internal port is the source of certain resume signals.

Figure 11-9 illustrates the internal port state machine; Table 1 14 defines the internal port signals and
events.

307

ZTE/SAMSUNG 1008—0335

|PR201 8-001 10

ZTE/SAMSUNG 1008-0336
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Inactive

Rx_Suspend

Suspend Delay

!Rx Sus-end

l = Logical NOT

Resume‘Event

Figure “-9. Internal Port State Machine

Table “—4. Internal Port SignaUEvent Definitions

Signali‘Event Name EventISignal Description
Source

internal End of timed interval

Rx_8uspend Receiver Receiver is in the Suspend state

Hub Controller A resume condition exists in the Hub Controller

11.4.1 Inactive

This state is entered whenever the Receiver is not in the Suspend state.

11.4.2 Suspend Delay

This state is entered from the Inactive state when the Receiver transitions to the Suspend state.

This is a timed state with a 2 ms interval.

11.4.3 Full Suepend (Fsus)

This state is entered when the Suspend Delay interval expires.

11.4.4 Generate Resume (GResume)
This state is entered from the Fsus state when a resume condition exists in the Hub Controller. A resume

condition exists if the C_PORT_SUSPEND hit is set in any port, or if the hub is enabled as a wakeup source

and any bit is set in a Port Change field or the Hub Change field (as described in Figures 11-22 and 11-20,

respectively).

In this state, the intemal port generates signaling to emulate an SOP#FD to the Hub Repeater.

308

ZTE/SAMSUNG 1008-0336

|PR201 8-001 10

ZTE/SAMSUNG 1008-0337
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.5 Downstream Facing Ports

The following sections provide a functional description of a state machine that exhibits the correct behavior

for a downstream facing port.

Figure 11-10 is an illustration of the downstream facing port state machine. The events and signals are

defined in Table 11-5. Each ofthe states is described in Section 11.5.]. In the diagram below, some of the

entry conditions into states are shown without origin. These conditions have multiple origin states and the

individual transitions lines are not shown so that the diagram can be simplified. The description of the

entered state indicates from which states the transition is applicable.

Note: For the root hub, the signals from the upstream facing port state machines are implementation

dependent.

309

ZTE/SAMSUNG 1008-0337

|PR201 8-001 10

ZTE/SAMSUNG 1008-0338
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Port Outputs in States
Configuration = 0

= Logical OR

8: = LogicelAND

l = Logical NOT
Not The hub is not configured.

Configured

SetConfig uration{nDn-zero)
ClearPortFeature(PORT_POWERJ #

SetConfiguration(non-zero) #
Power_Source_Otf #Over—current

Powered_ufi: Port requires explicit
request to transition.

Disconnect_Detect
Disconnected: Port does not propagate
anyI traffic in either direction. All ports
are Hi2. Port is timing Eength ofJiK
(2.5p5 to ZmS).

ClearPorlFeature(PORT_ENABLE)

Disabled: Port cannot propagate any
traffic. All ports are HiZ.

SetPorlFeature(PORT_RESET)
SetTest

E

Rx_Suspend & (SEO # K)

Resetting: Drive SEO through the port for
10m5.

Enabled: Port can propagate both
upstream and downstream traffic.

Transmit: Port propagates downstream
directed traffic.

Suspended: No traffic is propagated
downstream or upstream.

(le_Suspend 8: PK) #

ClearPortFeature(PORT_SUSPEND

Resuming: Drive 'K‘ for 2!] m8.

TransmitR: Port propagates downstream
directed resume signaling.

Restarts and Restart_E: Port enters one of
these states to wait through timing
iintervals or for ciocks to restart. Delay
iintervai is implementation dependent.

State machine exports:
TrueRWU signal
('fTrueRWU' indicates signal is
generated on transition from state)

 [(F'KWSJS-EOI 'I
Figure 11-10. Downstream Facing Hub Port State Machine

310

ZTE/SAMSUNG 1008-0338

|PR201 8-001 10

ZTE/SAMSUNG 1008-0339
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Table 11-5. Downstream Facing Port Signali’Event Definitions

SignallEventName EventlSignal Description
Source

Power__source_off Implementation- Power to the port not available due to over-current or
dependent termination of source power (eg. external power

removed]

Over-current Hub Controller Over—current condition exists on the hub or the port

Internal End of a timed interval or sequenceEOI

Disconnecthetect mDisconnect seen at port
Hub Controller Low-speed device attached to this portLs —
Hub Controller SOF token received

TrueRWU K lasting for at least TDDIS (see Table 7-13)

P K lasting for at least TDDIS

SEO lasting for at least TDDIS'U m

‘K' received on port

Rx_Resume Upstream Receiver in Resume state

Rx_Suspend Upstream Receiver in Suspend state

SetTest Hub Controller Logical OR of SetPortFeature[Test_SEO_NAK)‘
SetPortFeature(Test_J), SetPortFeatureutTestfiK).
SetPortFeature(Test_PRBS}.

SetPortFeature(Test_ForcefiEnab|e)

Configuration = 0 Hub Controller Hub controller's configuration value is zero

311

ZTE/SAMSUNG 1008—0339

|PR201 8-001 10

ZTE/SAMSUNG 1008-0340
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.5.1 Downstream Facing Port State Descriptions

11.5.1.1 Not Configured

A port transitions to and remains in this state whenever the value of the hub configuration is zero. While the

port is in this state, the hub will drive an SEO on the port (this behavior is Optional on root hubs). No other

active signaling takes place on the port when it is in this state.

11.5.1.2 Powered-off

This state is supported for all hu bs.

A port transitions to this state in any of the following situations:

0 From any state except Not Configured when the hub receives a ClearPortFeature(PORT_POWER)

request for this port

I From any state when the hub receives a SetConfigurationO request with a configuration value other
than zero

a From any state except Not Configured when power is lost to the port or an over-current condition exists

A port will enter this state due to an over-current condition on another port if that over-current condition

may have caused the power supplied to this port to drop below specified limits for port power (see
Section 7.2.1.2.] and Section 7.2.4.1).

Ifa hub was configured while the hub was self-powered, and then ifextemal power is lost, the hub must

place all ports in the Powered~off state. [f the hub is configured while bus powered, then the hub need not

change port status if the hub switched to externally applied power. However, if external power is

subsequently lost, the hub must place ports in the Powered-off state.

In this state, the port’s differential and single-ended transmitters and receivers are disabled.

Control of power to the port is covered in Section 1].] l.

11.5.1.3 Disconnected

A port transitions to this state in any of the following situations:

I From the Powered-off state when the hub receives a SetPottFeature£PORTwPOWER) request

0 From any state except the Not Configured and Powered-off states when the port’s disconnect timer times
out

I From the Restart_S or Restart_E state at the end of the restart interval

In the Disconnected state, the ports differential transmitter and receiver are disabled and only connection

detection is possible.

This is a timed state. While in this state, the timer is reset as long as the port’s signal lines are in the SEO or

SE] state. If another signaling state is detected, the timer starts. Unless the hub is suspended with clocks

stopped, this timers duration is 2.5 us to 2 ms.

If the hub is suspended with its remote wakeup feature enabled, then on a transition to any state other than

the SEO state or SE1 state on a Disconnected port, the hub will start its clocks and time this event. The hub
must be able to start its clocks and time this event within 12 ms of the transition. If a hub does not have its

remote wakeup feature enabled, then transitions on a port that is in the Disconnected state are ignored until
the hub is resumed.

312

ZTE/SAMSUNG 1008-0340

|PR201 8-001 10

ZTE/SAMSUNG 1008-0341
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.5.1.4 Disabled

A port transitions to this state in any ofthe following situations:

0 From the Disconnected state when the timer expires indicating a connection is detected on the port

I From any but the Powered-off, Disconnected, or Not Configured states on receipt of a

ClearPortFeature(PORT_ENABLE) request

- From the Enabled state when an error condition is detected on the port

A port in the Disabled state will not propagate signaling in either the upstream or the downstream direction.

While in this state, the duration of any SEO received on the port is timed. Ifthe port is using high-speed

terminations when it enters this state, it switches to full-speed terminations. The port must not perform

normal disconnect detection until at least 4 ms after entering this state.

11.5.1.5 Resetting

Unless it is in the Powered-off or Disconnected states, a port transitions to the Resetting state upon receipt

of a SetPortFeature(PORT_RESET) request. The hub drives SEO on the port during this timed interval.

The duration ofthe Resetting state is nominally 10 ms to 20 ms {10 ms is preferred).

A hub in high-speed operation will use the high-speed terminations ofthe port when in this state.

11.5.1.6 Enabled

A port transitions to this state in any ofthe following situations:

0 At the end of the Resetting state

i From the Transmit state or the TransmitR state when the Hub Repeater exits the WFEOPFU state

0 From the Suspended state if the upstream Receiver is in the Suspend state when a ’K’ is detected on the
port

0 At the end ofthe SendEOR state

I From the Restart_E state when a persistent K or persistent SEO has not been seen within 900 us of

entering that state

While in this state, the output of the port’s differential receiver is available to the Hub Repeater so that

appropriate signaling transitions can establish upstream connectivity.

A port which is Using high-speed terminations in this state switches to full-speed terminations on

Rx_Suspend (i.e., when the hub is suspended). The port must not perform normal disconnect detection until

at least 1 ms after Rx_Suspend becomes active.

11.5.1.7 Transmit

This state is entered from the Enabled state on the transition of the Hub Repeater to the WFEOPFU state.

While in this state, the port will transmit the data that is received on the upstream facing port.

For a low-speed port, this state is entered from the Enabled state if a full-speed PRE PD is received on the

upstream facing port. While in this state, the port will retransmit the data that is received on the upstream

facing port (after proper inversion).

In high-Speed, this state is used for testing for disconnect at the port. The disconnect detection circuit is

enabled after 32 bits ofthe same signaling level (‘1’ or ‘K’) have been transmitted down the port.

Note: Because of the timing skew in the repeater path to the downstream facing ports, all downstream

facing ports may not be enabled for disconnect detection at the same instant in time.

313

ZTE/SAMSUNG 1008-0341

|PR201 8-001 10

ZTE/SAMSUNG 1008-0342
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.5.1.8 TransmitR

This state is entered in either of the following situations:

I From the Enabled state if the upstream Receiver is in the Resume state

a From the Restart_S or Restart_E state if a PK is detected on the part

When in this state, the port repeats the resume ‘K’ at the upstream facing port to the downstream facing
port. Depending on the speed of the port, two behaviors are possible on the KJSEO transition at the

upstream facing port at the end of the resume.

I Upstream facing port high-speed and downstream facing port full-flow-speed: After the K->SEO

transition, the port drives SEO for 16 to 18 full—speed bit times followed by drivingJ for at least one

full-speed bit time. Note: The timer in the Resume state of the upstream port receiver state machine

which generates EOI'IR can be used to time this requirement at the downstream facing port(s). The

pullup resistor and the latency of the Transaction Translator{TT) results in this Idle state being

maintained for at least one low-speed bit time ensuring that a device sees the same end of resume
behavior below the TT as it would below a USB 1.x hub.

I Upstream facing port and downstream facing port are the same speed: port continues to repeat the

signaling which follows the K->SEO transition.

A port operating in high-speed reverts to its high-speed terminations within 18 full-speed bit times after the
K->SEO transition as described in Section 7.1.7.7.

11.5.1.9 Suspended

A port enters the Suspended state:

- From the Enabled state when it receives a SetPortFeature(PORT_SUSPEND) request

I From the Restart_S state when a persistent K or persistent SEO has not been seen within 900 [is of

entering that state '

While a port is in the Suspended state, the port's differential transmitter is disabled. A high-speed port

reverts from high-speed to full-speed terminations but its speed status continues to be high-speed. The port

must not perform normal disconnect detection until at least 4 ms after entering this state.

An implementation must have a KISEO ‘noise’ filter for a port that is in the suspended state. This filter can
time the length of KISEO and, ifthe length ofthe KISEO is shorter than TDDIS, the port must remain in this

state. If the hub is suspended with its clocks stopped, a transition to KISEO on a suspended port must cause

the port to immediately transition to the Restart_S state.

11.5.1.10 Resuming

A port enters this state from the Suspended state in either of the following situations:

I If a ‘K' is detected on the port and persists for at least 2.5 ps and the Receiver is not in the Suspended

state. The transition from the Suspended state must happen within 900 us ofthe J->K transition.

I When a CIearPortFeature(PORT_SUSPEND) request is received.

This is a timed state with a nominal duration of 20 ms (the interval may be longer under the conditions

described in the note below). While in this state, the hub drives a 'K' on the port.

Note: A single timer is allowed to be used to time both the Resetting interval and the Resuming interval and

that timer may be shared among multiple ports. When shared, the timer is reset when a port enters the

Resuming state or the Resetting state. If shared, it may not be shared among more than ten ports as the

cumulative delay could exceed the amount of time required to replace a device and a disconnect could be
missed.

314

ZTE/SAMSUNG 1008-0342

|PR201 8-001 10

ZTE/SAMSUNG 1008-0343
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.5.1 .11 SendEOR

This state is entered from the Resuming state if the 20 ms timer expires. It is also entered from the Enabled

state when an SOF (or other FS token) is received and a low-Speed device is attached to this port.

This is a timed state which lasts for three low-speed bit times.

In this state, ifthe port is high-speed it will drive the bus to the ldle state for three low-speed bit times and

then exit from this state to the Enabled state. It must also revert to its high-speed terminations within

18 full-speed bit times after the K->SEO transition as described in Section 7.1.7.7.

If the port is full-speed or low-speed, the port must drive two low-speed bit times of SEO followed by one

low-speed bit time of Idle state and then exit from this state to the Enabled state.

Since the driven SEO period should be of fixed length, the SendEOR timer, if shared, should not be reset. If

the hub implementation shares the SendEOR timing circuits between ports, then for a port with a IOW-speed

device attached, the Resuming state should not end until an SOF (or other FS token) has been received (see

Section] 1.8.4.] for Keep-alive generation rules).

11.5.1.12 Restart_S

A port enters the Restart_S state from the Suspended state when an SEO or ‘K‘ is seen at the port and the
Receiver is in the Suspended state.

In this state, the port continuously monitors the bus state. If the bus is in the ‘K’ state for at least TDDlS, the

port sets the C_PORT_SUSPEND bit, exits to the TransmitR, and generates a signal to the repeater called

‘TrueRWU’. If the bus is in the ‘SEO‘ state for at least TDDIS, the port exits to the Disconnected state.

Either of these transitions must happen within 900 115 after entering the Restart_S state; otherwise, the port
must transition back to the Suspended state.

11.5.1.13 Restart_E

A port enters the RestartnE state from the Enabled state when an ‘SEO’ or ‘K‘ is seen at the port and the
Receiver is in the Suspended state.

In this state, the port continuously monitors the bus state. If the bus is in the ‘K’ state for at least TDDIS, the

port exits to the TransmitR state and generates a signal to the repeater called ‘TrueRWU’. 1f the bus is in the

‘SEU’ State for at least TDDlS, the port exits to the Disconnected state. Either of these transitions must

happen within 900 us after entering the Restart_E state; otherwise the port must transition back to the
Enabled state.

11.5.1.14 Testing

A port transitions to this state from any state when the port sees SetTest.

While in this state, the port executes the host command as decoded by the hub controller. 1f the command

was a SetPortFeature(PORT_TEST, Test_ForceuEnable), the port supports packet connectivity in the

downstream direction in a manner identical to that when the port is in the Enabled state.

11.5.2 Disconnect Detect Timer

11.5.2.1 High-speed Disconnect Detection

High-speed disconnect detection is described in Section 7.1.7.3.

315

ZTE/SAMSUNG 1008-0343

|PR201 8-001 10

ZTE/SAMSUNG 1008-0344
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.5.2.2 Full-flow-speed Disconnect Detection

Each port is required to have a timer used for detecting disconnect when a fiill-r’low-speed device is attached

to the port. This timer is used to constantly monitor the port’s single-ended receivers to detect a disconnect

event. The reason for constant monitoring is that a noise event on the bus can cause the attached device to

detect a reset condition on the bus after 2.5 us of SEO or SE] on the bus. If the hub does not place the port in

the disconnect state before the device resets, then the device can be at the Default Address state with the port

enabled. This can cause systems errors that are very difficult to isolate and correct.

This timer must be reset whenever the D+ and D- lines on the port are not in the SEO or SE1 state or when

the port is not in the Enabled, Suspended, Disabled, Restart-E, or Restart_S states. This timer must be reset

for 4ms upon entry to the Suspended and Disabled states. This timer times an interval TDDIS. The range of

TDDIS is 2.0 us to 2.5 as defined in Table 7-13. When this timer expires, it generates the

Disconnect_Detect signal to the port state machine.

This timer can also be used for filtering the [USED signal in the Suspended, Restart_"E, or Restart_S states as
described in Section 11.5.1.

11.5.3 Port Indicator

Each downstream facing port of a hub can support an optional status indicator. The presence of indicators

for downstream facing ports is specified by bit 7 of the wHubCharae-rerisrics field of the hub class

descriptor. Each port’s indicator must be located in a position that obviously associates the indicator with

the port. The indicator provides two colors: green and amber. This can be implemented as physically one

LED with two color capability or two separate LEDs. A combination of hardware and software control is

used to inform the user of the current status of the port or the device attached to the port and to guide the

user through problem resolution. Colors and blinking are used to provide information to the user.

An external hub must automatically control the color of the indicator as specified in Figure] l-l].

Automatic port indicator setting support for root hubs may be implemented with either hardware or

software. The port indicator color selector value is zero {indicating automatic control) when the hub

transitions to the configured device state. When the hub is suspended or not configured, port indicators
must be off.

Table l 1-6 identifies the mapping of color to port state when the port indicators are automatically
controlled.

Table ”—6. Automatic Port State to Port Indicator Color Mapping

Power Downstream Facing Hub Port State
Switching

Powered-off Disconnected, Disabled, Not Enabled, Suspended,
Configured, Resetting, Transmit, or Resuming,
Testing TransmitR SendEDR,

Restart_E, or
Restart_S

Off or amber it due
to an over-current

condition

Off or amber if due to an over-
current condition

316

ZTE/SAMSUNG 1008-0344

|PR201 8-001 10

ZTE/SAMSUNG 1008-0345
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Automatic

Mode \\
Enabled or Transmit or TransmitR

SetPortFeature

(PORTHINDICATOR,
indicator selector != 0]

! (Enabled or Transmit or TransmitR)

and PORT_OVER_CURRENT != 1

 PORT_OVER_CURRENT = 1

\PORT_OVER#CURRENT : l

SetPortFeature

(PORT_INDICATOR,
indicator_selector = 0)

 SetPortFeatur‘

"x (PORT_POWER)\

xv)
Figure 11-1 1. Port Indicator State Diagram

In Manual Mode the color of a port indicator (Amber, Green, or OH) is set by a system software USB Hub

class request. in Automatic Mode the color of a port indicator is set by the port state information.

Table 11-7r defines port state as understood by the user.

Table ll-Tr'. Port Indicator Color Definitions

“—
Not operational

Error condition

Green Fully operational

Blinking Software attention

OfflGreen

Blinking Hardware attention

OfilAmber

Blinking

GreentAmber

Note that the indicators reflect the status of the port, not necessarily the device attached to it. Blinking of

the indicator is used to draw the user’s attention to the port, irrespective of its color.

317

ZTE/SAMSUNG 1008—0345

|PR2018-00110

ZTE/SAMSUNG 1008-0346
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Port indicators allow control by software. Host software forces the state of the indicator to draw attention to

the port or to indicate the current state ofthe port.

See Section 11.24.211.10 for the specification of indicator requests.

11.5.3.1 Labeling

USB system software uses port numbers to reference an individual port with a ClearPortFeature or

SetPortFeature request. If a vendor provides a labeling to identify individual downstream facing ports, then

each port connector must be labeled with their respective port number.

11.6 Upstream Facing Port

The upstream facing port has four components: transmitter, transmitter state machine, receiver, and receiver
state machine. The transmitter and its state machine are the Transmitter, while the receiver and its state

machine are the Receiver. The Transmitter and Receiver operate in high-speed and full-speed depending on

the current hub configuration.

11.6.1 Full-speed

Both the transmitter and receiver have differential and single-ended components. The differential

transmitter and receiver can sendr’receive ‘J‘ or ’K’toi’from the bus while the single-ended components are

used to sendfreceive SEO, suspend, and resume signaling. The single-ended components are also used to

receive SE1. In this section, when it is necessary to differentiate the signals senttreceived by the differential

component of the transmitterireceiver from those of the single-ended components, DJ and DK will be used
to denote the differential signal, while SJ, SK, SEO, and SE1 will be used for the single-ended signals.

When the Hub Repeater has connectivity in the upstream direction, the transmitter must not send or

propagate SE1 signaling. Instead, the SE1 must be propagated as a DJ.

11.6.2 High-speed

Both the transmitter and receiver have differential components only. These signals are called H] and HR.

The HS_Idle state is the idle state of the bus in high-speed.

It is assumed that the differential transmitter and receiver are turned off during suspend to minimize power

consumption. The single-ended components are left on at all times, as they will take minimal power.

11.6.3 Receiver

The receiver state machine is responsible for monitoring the signaling state of the upstream connection to

detect long-term signaling events such as bus reset, resume, and suspend. This state machine details the

operation of the device state diagram shown in Figure 9-] in the Default, Address, Configured, and

Suspended state. The Suspend, Resume, and ReceivingSEO states are only used when the upstream facing

port is operating in full-Speed mode with full-speed terminations. The ReceivingIS, ReceivingHJ, and

ReceivingHK states are only used when the upstream facing port is operating in high-speed mode with high—

speed terminations; so these states are categorized as the HS (high-speed) states, and all other states are

categorized as nonHS in the description below.

318

ZTE/SAMSUNG 1008-0346

|PR201 8-001 10

ZTE/SAMSUNG 1008-0347
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Figure 11-12 illustrates the state transition diagram.

Tx‘wactive
State Machine Exports:

Rx_Bus_Reset(Buszeset)
RxflSuspend(Suspend)
Rx_Resume(Resurne)

EOITR

= Logical OR
& = Logical AND
! 2 Logical NOT

Bus_Reset
HS Idle

HS &EOR EOI & HS_ldle

_Receivinng

E01 & !HS_ldle

Figure 11-12. Upstream Facing Port Receiver State Machine

Table 11-8 defines the signals and events referenced in the figures.

319

ZTE/SAMSUNG 1008-0347

|PR201 8-001 10

ZTE/SAMSUNG 1008-0348
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Table 11—8. Upstream Facing Port Receiver SignaliEvent Definitions

Sig naliEvent EventiSignal Description
Name Source

HS lntemal Port is operating in highvspeed

Transmitter Transmitter in the Active state

lntemal Receiving a 'J' (IDLE) or an 'SE1‘ on the upstream facing port

HJ lntemal Receiving an HJ on the upstream facing port

EOI Internal End of timed interval

EOITR Internal Generated 24 futt-speed bit times after the K—>SEO transition
at the end of resume

HK, K Intemal Receiving an HK, 'K' on the upstream facing port

Tx__resume Transmitter Transmitter is in the Sresume state

HS_ldie lntemal Receiving an Idle state on the high-speed upstream facing
port

lnternai Receiving an SEC! on the full-speed upstream facing port

lntemal End of Reset signaling from upstream

lmplementation- Power_0n_Reset
dependent

11.6.3.1 ReceivingiS

This state is entered

- From the ReceivingHJ or ReceivingHK state when 21 SEO is seen at the port and the port is in high-

speed operation

0 From the Resume state when a EOITR is seen and the port is in high-speed operation

0 From the Bus Reset state at the End of Reset signaling from upstream when the port is in high-speed

operation

This is a timed state with an interval of3 ms. The timer is reset each time this state is entered.

11.6.3.2 ReceivingHJ
This state is entered from an HS state when a H] is seen on the bus.

11.6.3.3 ReceivingJ

This state is entered from a nonl-iS state except the Suspend state if the receiver detects an SJ {or Idle) or
SE] condition on the bus or while the Transmitter is in the Active state.

This is a timed state with an interval of 3 ms. The timer is reset each time this state is entered.

The timer only advances ifthe Transmitter is in the Inactive state.

320

ZTE/SAMSUNG 1008-0348

|PR201 8-001 10

ZTE/SAMSUNG 1008-0349
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.6.3.4 Suspend
This state is entered when:

a The 3 ms timer expires in the Receiving]

a The 3 ms timer expires in the ReceivingIS state and the port has removed its high-speed

terminations and connected its D+ pull-up resistor and the resulting bus state is not SEO.

When the Receiver enters this state, the Hub Controller starts a 2 ms timer. If that timer expires while the

Receiver is still in this state, then the Hub Controller is suspended. When the Hub Controller is suspended,

it may generate resume signaling.

11.6.3.5 ReeeivingHK
This state is entered from an HS state when a HK is seen on the bus.

11.6.3.6 ReceivingK

This state is entered from any nonHS state except the Resume state when the receiver detects an SK

condition on the bus and the Hub Repeater is in the WFSOP or WFSOPFU state.

This is a timed state with a duration of 2.5 as to 100 ps. The timer is reset each time this state starts.

11.6.3.7 Resume

This state is entered:

a From the ReceivingK state when the timer expires

- From the Suspend state while the Transmitter is in the Sresume state or ifthere is a transition to the

K state on the upstream facing port

lfthe hub enters this state when its timing reference is not available, the hub may remain in this state until

the hub’s timing reference becomes stable (timing references must stabilize in less than 10 ms). If this state

is being held pending stabilization of the hub’s clock, the Receiver must provide a K to the repeater for

propagation to the downstream facing ports. When clocks are stable, the Receiver must repeat the incoming
signals.

Note: Hub timing references will be stable in less than 10 ms since reset requirements already specify that

they be stable in less than 10 ms and a hub must support reset from suSpend.

11.6.3.8 ReceivingSEO

This state is entered from any nonHS state except Bus_Reset when the receiver detects an SEO condition

and the Hub Repeater is in the WFSOP or WFSOPFU state.

This is a timed state. The minimum interval for this state is 2.5 us. The maximum depends on the hub but

this interval must timeout early enough such that if the width of the SEO on the upstream facing port is only

10 ms, the Receiver will enter the Bus_Reset state with sufficient time remaining in the 10 ms interval for

the hub to complete its reset processing. Furthermore, if the hub is suspended when the Receiver enters this

state, the hub must be able to start its clocks, time this interval, and complete its reset (chirp) protocol and

processing in the Bus_Reset state within 10 ms. It is preferred that this interval be as long as possible given

the constraints listed here. This will provide for the maximum immunity to noise on the upstream facing

port and reduce the probability that the device will reset in the presence of noise before the upstream hub

disables the port.

The timer is reset each time this state starts.

32]

ZTE/SAMSUNG 1008-0349

|PR201 8-001 10

ZTE/SAMSUNG 1008-0350
IPR2018-00110

Universal Serial Bus Specification Revision 2.1]

11.6.3.9 Bu5_Reset
This state is entered:

I From the ReceivingSEO state when the timer expires. As long as the port continues to receive SEO, the
Receiver will remain in this state.

- This state is also entered while power-on-reset (POR) is being generated by the hub’s local circuitry.
The state machine cannot exit this state while POR is active.

- The 3 ms timer expires in the ReceivingIS state and the port has removed its high-speed terminations

and connected its D+ pull-up resistor and the resulting bus state is still SEO.

In this state, a high-speed capable port will implement the chirp signaling, handshake, and timing protocol
as described in Section 7.1.7.5.

11.6.4 Transmitter

This state machine is used to monitor the upstream facing port while the Hub Repeater has connectivity in

the upstream direction. The purpose of this monitoring activity is to prevent propagation of erroneous

indications in the upstream direction. In particular, this machine prevents babble and diseonnect events on

the downstream facing ports of this hub from propagating and causing this hub to be disabled or
disconnected by the hub to which it is attached. Figure 1 1-13 is the transmitter state transition diagram.

Table 11-9 defines the signals and events referenced in Figure 11-13.

RxflBu "Reset

State Machine Exports:

TxfiActivemctive)

Tx_Resurne(Sresume)

= Logical OR

8. = Logical AND

! = Logical NOT

GEOPTU

Figure 11-13. Upstream Facing Port Transmitter State Machine

Rx_Suspend 8.

Rptr_WFEOP

322

ZTE/SAMSUNG 1008-0350

|PR201 8-001 10

ZTE/SAMSUNG 1008-0351
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Table 11-9. Upstream Facing Port Transmit SignaUEvent Definitions

SignaliEvent EventiSignal Description
Name Source

Rx_Bus_Reset Receiver is in the Bus_Reset state

EOF1 (microiframe Hub {micro}frame time has reached the EOF1 point or is
Timer between EOF1 and the end of the (microiframe

Transmitter transitions to sending a ’J’ and transmits a ‘J‘

RptrfiWFEOP Hub Repeater Hub Repeater is in the WFOEP state

Internal Transmitter transmits a 'K’

internal At least one bit time of SEO has been sent through the
transmitter

Rx_Suspend Receiver is in Suspend state

Repeater Completion of packet transmission in upstream direction

Upstream facing port is operating as high-speed port

End of timed interval

11.6.4.1 Inactive

This state is entered at the end of the Send] state or while the Receiver is in the Bus_Reset state. This state
is also entered at the end of the Sresume state. While the transmitter is in this state, both the differential and

single-ended transmit circuits are disabled and placed in their high-impedance state.

When port is operating as a high-speed port, this state is entered from the Active state at EOF 1 or after an
HEOP from downstream.

11.6.4.2 Active

This state is entered from the Inactive state when the Hub Repeater transitions to the WFEOP state. This

state is entered from the RepeatingSEU state if the first transition after the SE1]I is not to the .l state. In this

state, the data from a downstream facing port is repeated and transmitted on the upstream facing port.

11.6.4.3 RepeatingSEO

The port enters this state from the Active state when one bit time of SEO has been sent on the upstream

facing port. While in this state, the transmitter is still active and downstream signaling is repeated on the

port. This is a timed state with a duration of 23 hill-speed bit times.

11.6.4.4 SendJ

The port enters this state from the RepeatingSEU state if either the bit timer reaches 23 or the repeated
signaling changes from SEO to 'J' or ‘SEl’. This state is also entered at the end of the GEOPTU state. This

state lasts for one full-speed bit time. During this state, the hub drives an SJ on the port.

323

ZTE/SAMSUNG 1008-0351

|PR201 8-001 10

ZTE/SAMSUNG 1008-0352
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.6.4.5 Generate End of Packet Towards Upstream Port (GEOPTU)

The port enters this state from the Active or RepeatingSEO state if the frame timer reaches the BOP] point.

In this state, the port transmits SEO for two full~speed bit times.

11.6.4.6 Send Resume (Sresume)

The port enters this state from the Inactive state if the Receiver is in the Suspend state and the Hub Repeater
transitions to the WFEOP state. This indicates that a dOWnstream device (or the port to the Hub Controller)

has generated resume signaling causing upstream connectivity to be established.

On entering this state, the hub will restart clocks ifthey had been turned offduring the Suspend state.

While in this state, the Transmitter will drive a ’K’ on the upstream facing port. While the Transmitter is in
this state, the Receiver is held in the Resume state. While the Receiver is in the Resume state, all

downstream facing ports that are in the Enabled state are placed in the TransmitR state and the resume on

this port is transmitted to those downstream facing ports.

The port stays in this state for at least 1 ms but for no more than 15 ms.

11.7 Hub Repeater

The Hub Repeater provides the following functions:

I Sets up and tears down connectivity on packet boundaries

- Ensures orderly entry into and out of the Suspend state, including proper handling of remote wakeups

11.7.1 High-speed Packet Connectivity

Highwspeed packet repeaters must reclock the packets in both directions. Reclocking means that the

repeater extracts the data from the received stream and rctransmits the stream using its own local clock.

This is necessary in order to keep the jitter seen at a receiver within acceptable limits (see Chapter 7 for
definition and limits onjitter).

Reclocking creates several requirements which can be best understood with the example repeater signal path

shown in Figure 11-14.

Port Selector state

machine

th_stream

Elasticity
Buffer

th_Clk

Figure 11-14. Example Hub Repeater Organization

324

ZTE/SAMSUNG 1008-0352

|PR201 8-001 10

ZTE/SAMSUNG 1008-0353
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.7.1.1 Squelch Circuit

Because of squelch detection, the initial bits of the SYNC field may not be seen in the rest of the repeater.

At mast, 4 bits of the SYNC field may be sacrificed in the entire repeater path.

The squelch circuit may take at most 4 bit times to disable the repeater after the bus returns to the Idle state.

This results in bits being added after the end ofthe packet. This is also known as EOP dribble and up to

4 random bits may get added after the packet by the entire repeater path.

11.7.1.2 Data Recovery Unit

The data recovery unit extracts the receive clock and receive data from this stream. Note that this is a

conceptual model only; actual implementations (e.g., DLL) may achieve the reclocking by the local clock

without separation of the receive clock and data.

11.7.1.3 Elasticity Buffer

The half-depth of the elasticity buffer in the repeater must be at least 12 bits.

The total latency of a packet through a repeater must be less than 36 bit times. This includes the latency

through the elasticity buffer.

The elasticity buffer is used to handle the difference in frequency between the receive clock and the local

clock and works as follows. The elasticity buffer is primed (filled with at least 12 bits) by the receive clock
before the data is clocked out of it by the transmit clock. If the transmit clock is faster than the receive

clock, the buffer will get emptied more quickly than it gets filled. Ifthe transmit clock is slower, the buffer

will get emptied slower than it gets filled. If the halfwdepth of the buffer is chosen to be equal to the

maximum difference in clock rate over the length of a packet, bits will not be lost or added to the packet.

The half-depth is calculated as follows.

The eleck tolerance allowed is 500 ppm. This takes into account the effect of voltage, temperature, aging,

etc. So the received clock and the local clock could be different by 1000 ppm. The longest packet has a

data payload of l Kbytes. The maximum length of a packet is computed by adding the length of all the
fields and assuming maximum bit-stuffing. This maximum length is 9644 hits (9624 hits ofpacket + 20 bits

of EOP dribble). This means that when the repeater is clocking out a packet with its local clock, it could get

ahead of or fall behind the receive clock by 9.644 bits (1000 ppm*9644). This calculation yields 10 bits.

The half-depth of the elasticity buffer in the repeater must be at least 12 bits to provide system timing
margin.

11.7.1.4 High-Speed Port Selector State Machine

This state machine is used to establish connectivity on a valid packet and to keep the repeater from

establishing connectivity from a port which is seeing noise. This state machine must implement the

behavior shown in Figure 11-15. (Note: This state machine may be implemented on a per-port or per-hub
basis.)

325

ZTE/SAMSUNG 1008-0353

|PR201 8-001 10

ZTE/SAMSUNG 1008-0354
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Enable Transmit

Rx_Bus_Reset

EBEmptieo

 Inactive

 Squelch&EOl&!SORP

EO|&SORP

!Squelch&EO|&ISORP

 Squelch ! = Logical NOT

N P k &=Logica| AND0t ac et
ti=Logical OR

Figure 11-15. High-speed Port Selector State Machine

Table 11-"). High-speed Port Selector SignallEvent Definitions

Sig nallEvent Name EventlSignal Description
Source

EBEmptied

EOI

SORP

Rx_Bus_Reset Internal Receiver is in the Bus_reset state.

transmitted.

Squelch Internal Bus is in squelch state

been seen in data in elasticity buffer.

11.7.1.4.1 Inactive

This state is entered

O

From the Not Packet state when the Squelch circuit indicates a squelch state on the port

From on any state on Rx_Bus_Reset

11.7.1.4.2 Priming

This state is entered from the Inactive state when the squelch circuit indicates that valid signal levels have

326

been observed at the port. This is a timed state and the priming interval is the time needed for the

implementation to fill the elasticity buffer with at least 12 bits.

Ail bits accumulated in the elasticity buffer have been

End of interval of time needed for priming elasticity buffer

Start Of Repeating Pattern; a ‘J KJ K‘ or 'KJ KJ' pattern has

From the Enable Transmit state when all the bits accumulated in the elasticity buffer have been
transmitted

From the Priming state if squelch is seen and the elasticity buffer is primed without a SORP being seen

ZTE/SAMSUNG 1008-0354

|PR2018—001 10

ZTE/SAMSUNG 1008-0355
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.7.1 .4.3 Enable Transmit

This state is entered from the Priming state when the Elasticity buffer priming interval has elapsed and the

bits in the elasticity buffer include the SORP pattern.

In this state, the state machine generates a signal “start of high-speed packet” (SOHP) to the repeater state

machine which allows the repeater to establish connectivity from this port to the upstream facing port {or

downstream facing ports).

11.7.1.4.4 Not Packet

This state is entered from the Priming state when the Elasticity buffer priming interval has elapsed, and the

bits in the elasticity buffer do not include the SORP pattern, and the squelch signal is not active.

11.7.2 Hub Repeater State Machine

The Hub repeater state machine in Figure 11-16 shows the states and transitions needed to implement the

Hub Repeater. Table 1 1-11 defines the Hub Repeater signals and events. The following sections describe
the states and the transitions.

11.7.2.1 High-speed Repeater Operation

Connectivity is setup on SOHP and torn down on HEOP. (HEOP is either the EBemptied signal from the

port selector state machine ‘OR’ the E01 signal which causes the transition out ofthe SendEOR state in

downstream facing port state machine.) Several of the state transitions below will occur when the HEOP is

seen. When such a transition is indicated, the transition does not occur until after the hub has repeated the

last bit in the elasticity buffer. Some of the transitions are triggered by an SOHP. Transitions ofthis type

occur as soon as the hub detects the SOHP from the port selector state machine ensuring that a valid packet
start has been seen.

11.7.2.2 Full-ilow-speed Repeater Operation

Connectivity is setup on SOP and torn down on EOP. Several of the state transitions below will occur when
the BOP is seen. When such a transition is indicated, the transition does not occur until after the hub has

repeated the SEO-to-T transition and has driven 'J' for at least one bit time (bit time is determined by the

speed of the port.) Some ofthe transitions are triggered by an SOP. Transitions of this type occur as soon

as the hub detects the ‘J‘-to-'K' transition, ensuring that the initial edge ofthe SYNC field is preserved.

327

ZTE/SAMSUNG 1008-0355

|PR201 8-001 10

ZTE/SAMSUNG 1008-0356
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.7.2.3 Repeater State Machine

Rx_Bus_Rese-

_FSOPFU State Machine Exports:

Rplr_WFEOP(WFEOP)
UEOP & !Lock RPtr_WFSOPFU(WFSOPFU)

Rptr_Enter_WFEOPFU
Rplr_Exil_WFEOPFU

Rx_Resum-_FEOPFU
UEOP & Lock # = Logical 0R

& = Logical AND

! = Logical NOT
Rx_Su5pend

Figure “-16. Hub Repeater State Machine

328

ZTE/SAMSUNG 1008-0356

|PR201 8-001 10

ZTE/SAMSUNG 1008-0357
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Table 1 1-1 1. Hub Repeater Signalevent Definitions

SignallEvent EventlSignal Description
Name Source

Rx_Bus_Reset Receiver Receiver is in the Bus_Reset state

Three sources of HEOP:

Internal (Port seiector. EBEmptied signal from port selector state machine OR

Downstream port; transition at E0! from SendEOR state in downstream facing
port state machine OR

Upstream port
receiver) EOITR from upstream facing port receiver state machine

(HEOPJEOP received from the upstream facing port

"Generated when the Transmitter enters the (inactive) SendJstate

(MicrOJframe Timer (microiframe timer is at the EOF2 point or between EOF2
and End-of—{micro)frame

{Micro)frame Timer {micro)frame timer is locked

Rx—Suspend Receiver Receiver is in the Suspend state

(Micro)frame Timer (micro)frame timer is at the EOF1 point or between EOF1
and End-of—{micro)frame

Rx_Resume Receiver Receiver is in the Resume state

SOPgFD (SOHP)SOP received from downstream facing port or Hub
Controlle r, Generated (after SOHP identified) on the
transition from the Idle to K state on a port.

SOP_FU Internal (SOHP)SOP received from upstream facing port

Generated (after SOHP identified} on the transition from the
Idle to K state on the upstream facing port.

11.7.3 Wait for Start of Packet from Upstream Port (WFSOPFU)

This state is entered in either of the following situations:

I From any other state when the upstream Receiver is in the Bus_Reset state

0 From the WFSOP state if the (micro)frame timer is at or has passed the EOF1 point

I From the WFEOP state at the EOF2 point

I From the WFEOPFU if the (micro)frame timer is not synchronized (locked) when an {HEOP)EOP is

received on the upstream facing port

In this state, the hub is waiting for an (SOHP)SOP on the upstream facing port, and transitions on

downstream facing ports are ignored by the Hub Repeater. While the Hub Repeater is in this state,

connectivity is not established.

329

ZTE/SAMSUNG 1008—0357

|PR201 8-001 10

ZTE/SAMSUNG 1008-0358
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

This state is used during the End-of-(micro)fi'ame (past the BOP] point) to ensure that the hub will be able

to receive the SOF when it is sent by the host.

11.7.4 Wait for End of Packet from Upstream Port (WFEOPFU)

The hub enters this state if the hub is in the WFSOP or WFSOPFU state and an (SOHP)SOP is detected on

the upstream facing port. The hub also enters this state from the WFSOP, WFSOPFU, or WFEOP states
when the Receiver enters the Resume state.

While in this state, connectivity is established from the upstream facing port to all enabled downstream

facing ports. Downstream facing ports that are in the Enabled state are placed in the Transmit state on the
transition to this state.

11.7.5 Wait for Start of Packet (WFSOP)

This state is entered in any ofthe following situations:

I From the WFEOP state when an (HEOP)EOP is detected from the downstream facing port

I From the WFEOPFU state if the (micro)frame timer is synchronized (locked) when an (HEOP)EOP is

received from upstream

I From the WFSOPFU or WFEOPFU states when the upstream Receiver transitions to the Suspend state

A hub in this state is waiting for an (SOHP)SOP on the upstream facing port or any downstream facing port

that is in the Enabled state. While the Hub Repeater is in this state, connectivity is not established.

11.7.6 Wait for End of Packet (WFEOP)

This state is entered from the WFSOP state when an (SOHP)SOP is received from a downstream facing

port in the Enabled state.

In this state, the hub has connectivity established in the upstream direction and the signaling received on an

enabled downstream facing port is repeated and driven on the upstream facing port. The upstream

Transmitter is placed in the Active state on the transition to this state.

If the Hub Repeater is in this state when the EOF2 point is reached, the downstream facing port for which

connectivity is established is disabled as a babble port.

Note: The full-speed Transmitter will send an EOP at EOFI , but the Repeater stays in this state until the

device sends an {HEOP}EOP or the EOF2 point is reached.

11.8 Bus State Evaluation

A hub is required to evaluate the state of the connection on a port in order to make appropriate port state

transitions. This section describes the appropriate times and means for several of these evaluations.

11.8.1 Port Error

A Port Error can occur on a downstream facing port that is in the Enabled state. A Port Error condition
exists when:

I The hub is in the WFEOP state with connectivity established upstream from the port when the

(micro)frame timer reaches the EOFZ point.

I At the EOF2 point, the Hub Repeater is in the WFSOPFU state, and there is other than Idle state on the
port.

330

ZTE/SAMSUNG 1008-0358

|PR201 8-001 10

ZTE/SAMSUNG 1008-0359
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

If upstream-directed connectivity is established when the (micro}frame timer reaches the EOFI point, the

upstream Transmitter will (return to Inactive state) generate a full-speed EOP to prevent the hub from being

disabled by the upstream hub. The connected port is then disabled if it has not ended the packet and

returned to the Idle state before the (micro)frame timer reaches the EOF2 point.

11.8.2 Speed Detection

At the end of reset, the bus is in the Idle state for the speed recorded in the port status register. Speed
detection is described in Section ?.1.7.5.

If the device connected at the downstream facing port is high-speed, the repeater (rather than the

Transaction Translator) is used to signal between this port and the upstream facing port.

Due to connect and start-up transients, the hub may not be able to reliably determine the speed of the device

until the transients have ended. The USB System Sofiware is required to l‘debounce" the connection and

provide a delay between the time a connection is detected and the device is used (see Section 11.7.3). At

the end of the debounce interval, the device is expected to have placed its upstream facing port in the ldle

state and be able to react to reset signaling. The USB System Software must send a

SetPortFeature(PORT_RESET} request to the port to enable the port and make the attached device ready for
use.

The downstream facing port monitors the state of the D+ and D- lines to determine if the connected device

is low-speed. If so, the PORT_LOW_SPEED status bit is set to one to indicate a low-speed device. If not,

the PORT_LOW_SPEED status bit is set to zero to indicate a full-thigh-speed device. Upon exit from the
reset process, the hub must set the PORT_HIGH_SPEED status bit according to the detected speed. The

downstream facing port performs the required reset processing as defined in Section 7.1.7.5. At the end of

the Resetting state, the hub will return the bus to the Idle state that is appropriate for the speed of the
attached device and transition to the Enabled state.

11.8.3 Collision

If the Hub Repeater is in the WFEOP state and an (SOHP)SOP is detected on another enabled port, a
Collision condition exists. There are two allowed behaviors for the hub in this instance. In either case,

connectivity teardown at EOFl and babble detection at EOF2 is required.

The first, and preferred, behavior is to ‘garble’ the message so that the host can detect the problem. The hub

garbles the message by transmitting a (‘J’ or) 'K' on the upstream facing port. This (‘1’ or) 'K' should persist

until packet traffic from all downstream facing ports ends. The hub should use the last (‘1’ or ‘K’) EOP to

terminate the garbled packet. Babble detection is enabled during this garbled message.

A second behavior is to block the second packet and, when the first message ends, return the hub to the

WFSOPFU or WFSOP state as appropriate. If the second stream is still active, the hub may reestablish

connectivity upstream. This method is not preferred, as it does not convey the problem to the host.

Additionally, if the second stream causes the hub to reestablish upstream connectivity as the host is trying to

establish downstream connectivity, additional packets can be lost and the host cannot properly associate the

problem.

Note: In high-speed repeaters, use of the SOHP to detect collisions w0uld need replication of the datapath

shown in Figure [1-14 at every port. The unsquelch signal at a port can be used instead of the SOl-IP to
detect collisions; in this case, the second behavior (blocking) described above must be used.

11.8.4 Low-speed Port Behavior

When a hub is configured for full-flow-speed operation, low-speed data is sent or received through the hub’s

upstream facing port at full-speed signaling even though the bit times are low-speed.

Full-speed signaling must not be transmitted to low-speed ports.

33]

ZTE/SAMSUNG 1008—0359

|PR201 8-001 10

ZTE/SAMSUNG 1008-0360
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

If a port is detected to be attached to a low-speed device, the hub port’s output buffers are configured to

Operate at the slow slew rate (75-300 ns), and the port will not propagate downstream-directed packets

unless they are prefaced with a PRE PID. When a PRE PID is received, the ‘1’ state must be driven on

enabled low-speed ports within four bit times of receiving the last bit of the PRE PID.

Low-speed data follows the PID and is propagated to both low- and fiJll-speed devices. Hubs continue to

propagate downstream signaling to all enabled ports until a downstream EOP is detected, at which time all

output drivers are turned off.

Full-speed devices will not misinterpret low-speed traffic because no low—speed data pattern can generate a

valid full-speed PID.

When a low—speed device transmits, it does not preface its data packet with a PRE PID. Hubs will

propagate upstream-directed packets of full-flow-speed using full-speed signaling polarity and edge rates.

For both upstream and downstream low-speed data, the hub is responsible for inverting the polarity ofthe

data before transmitting tolfrom a low-speed port.

Although a low-speed device will send a low-speed EOP to properly terminate a packet, a hub may truncate

a low-speed packet at the EOF] point with a full~speed EOP. Thus, hubs must always be able to tear down

connectivity in response to a fullnspeed EOP regardless of the data rate of the packet.

Because of the slow transitions on low~speed ports, when the D+ and D- signal lines are switching between

the T and ’K‘, they may both be below 2.0 V for a period oftirne that is longer than a full-speed bit time. A

hub must ensure that these slow transitions do not result in termination of connectivity and must not result in

an SEO being sent upstream.

11.8.4.1 Low-speed Keep-alive

All hub ports to which low-speed devices are connected must generate a low-speed keep-alive strobe,

generated at the beginning ofthe frame, which consists ofa valid low-speed EOP (described in
Section 7.1.13.2). The strobe must be generated at least once in each frame in which an SOF is received.

This strobe is used to prevent low~speed devices from suspending if there is no other low-speed traffic on the

bus. The hub can generate the keep-alive on any valid full«speed token packet. The following rules for

generation of a low-speed keep-alive must be adhered to:

I A keep-alive must minimally be derived from each SOF. It is recommended that a keep-alive be

generated on any valid full-speed token.

- The keep-alive must start by the eighth bit after the PID of the full-speed token.

11.9 Suspend and Resume

Hubs must support suspend and resume both as a USB device and in terms of propagating suspend and

resume signaling. Hubs support both global and selective suspend and resume. Global and selective

suspend are defined in Section 7.1.7.6. Global suspendfresume refers to the entire bus being suspended or

resumed without affecting any hub‘s downstream facing port states; selective suspendfresume refers to a

downstream facing port of a hub being suspended or resumed without affecting the hub state. Global

suspendr’resume is implemented through the root port(s) at the host. Selective suspendr'resume is

implemented via requests to a hub. Device-initiated resume is called remote-wakeup (see Section 7.1.7.7).

If the hub upstream facing port is in (high-speed) full-speed, the required behavior is the same as that for a

function with upstream facing port in (high-speed) fiill-speed and is described in Chapter 7.

When a downstream facing port operating at high-speed goes into the Suspended state, it switches to full-

Speed terminations but continues to have high-speed port status. In response to a remote wakeup or

selective resume, this port will drive full-speed ‘K’ throughout its Resuming state. The requirements and

timings are the same as for full-speed ports and described below. At the end ofthis signaling, the bus will

33?.

ZTE/SAMSUNG 1008-0360

|PR201 8-001 10

ZTE/SAMSUNG 1008-0361
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

be returned to the high-speed Idle state (using the SendEOR state). After this, the port will return to the

Enabled state. The high-speed status of the port is maintained throughout the suspend-resume cycle.

Figure 1 1-17 and Figure 11-18 show the timing relationships for an example remote-wakeup sequence.

This example illustrates a device initiating resume signaling through a suspended hub (‘B’) to an awake hub

(‘A‘). Huh ‘A’ in this example times and completes the resume sequence and is the "Controlling Hub".

The timings and events are defined in Section 7.1.7.7.

Fulfl'low speed Bus driving
Fulh'low speed Bus driving --
repeat

_______ Fullflow speed Bus lctle or
Everything driven at other end- below Hub 'A' . .

6 Hull: ':\'H b In Suspend ______ High speed Idle stateontm in u state
I g .3 .- Controlling Hub Drives Resume [osi “WWW “uh

zen-.5 [nominal] sends EOR ending
(—— Controlling Huo _...._.e.._.:f_ = resumesuspended DS Idle (‘J'ii

Pm-t —————— 5.—

': 2‘ Controlling Hub Reflects ResumeHuh {o3} soups E
Upstream ‘ Huh '3’ generates
Fort " EOF eating resume

Enabled D5 E Idle {'J‘]\Hub Ports - -—-
Hub ‘3' Drives Resisme (U5 and DS}

[e.9.. films]
. . . . E

Device i
Huh Port + 4—th 'B' Reflects Resume (U5 and D6) E

90095 E
Device E r "-

If _ {Idle (2r:-______________ ..EL..L _
Refifiz + + Device Drives Resume EE -i e.9.1om5
Walteup to? it? lei h: h; [1 [515

Figure 11-17. Example Remote-makeup Resume Signaling With Full-{Iow-speed Device

333

ZTE/SAMSUNG 1008-0361

|PR201 8-001 10

ZTE/SAMSUNG 1008-0362
IPR2018-00110

11

334

Universal Serial Bus Specification Revision 2.0

Fullfluw speed Bus driving
Fullflow speed Elus driving -
repeat
Fulli'lmv speed Elus Idle ordriven at other end

- below Hub 'A'

C HuIlI: 'A’ in Suspend High speed Idle stateontro in Hub tat .

(g p) s e 5 2 : Controlling Huh Drives Resume [06} E ,_ | Contmlllng Huh

Everything
sends EUR ending

>21 I E's 2—b- Zflmsinominal). E : : [EELI'I'IB
ktControlling Huhsuspended DS

Port

2‘ i3ontrollingE Huh Reflects Resume
-r.- Upstream . roe} soupsPort

Enabled US Idle [‘J’) E' idle
\Huh Ports ------é-

+ 54— Hub '3' Drives Residue (us and us:
‘ i i i E [Ia-9.. 1pm]i 5

Device
Huh pa” + +Huh 'B' Reflects Resume {US and US)

soups

If Device '

 R223: + ‘— Device Drives ResumeI: I: E i .5 e 1Dms
”“9"" a; a; bi a; a; [9’ I a:

Figure 11-48. Example Remote-wakeup Resume Signaling With High-speed Device

Here is an explanation of what happens at each t":

Suspended device initiates remote-wakeup by driving a ’K’ on the data lines.

I Suspended hub ‘B’ detects the ‘K’ on its downstream facing port and wakes up enough within 900 its

to filter and then reflect the resume upstream and down through all enabled ports.

Hub ‘A’ is not suspended (implication is that the port at which ‘B’ is attached is selectively

suspended), detects the ‘K’ on the selectively suspended port where ‘B’ is attached, and filters and

then reflects the resume signal back to ‘B’ within 900 its.

i‘ Device ceases driving ‘K’ upstream.

Hub ‘3’ ceases driving ‘K’ upstream and down all enabled ports and begins repeating upstream

signaling to all enabled downstream facing ports.

r, Hub ‘A’ completes resume sequence, after appropriate timing interval, by driving a speed-apprOpriate

end ofresume dOWnstream. [End ofresume will be an Idle state for a high-speed device or a low-
speed EOP for a full-flow-speed device.)

The hub reflection time is much smaller than the minimum duration a USB device will drive resume

upstream. This relationship guarantees that resume will be propagated upstream and downstream without
any gaps.

.10 Hub Reset Behavior

Reset signaling to a hub is defined only in the downstream direction, which is at the hub's upstream facing

port. Reset signaling required of the hub is described in Section 7.1.7.5.

A suspended hub must interpret the start of reset as a wakeup event; it must be awake and have completed

its reset sequence by the end of reset signaling.

ZTE/SAMSUNG 1008-0362

|PR201 8-001 10

ZTE/SAMSUNG 1008-0363
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Alter completion ofthe reset sequence, a hub is in the following state:

0 Hub Controller default address is 0.

0 Hub status change bits are set to zero.

0 Hub Repeater is in the WFSOPFU state.

- Transmitter is in the Inactive state.

- Downstream facing ports are in the Not Configured state and SEO driven on all downstream facing
ports.

11.11 Hub Port Power Control

Self-powered hubs may have power switches that control delivery of power downstream facing ports but it

is not required. Bus-powered hubs are required to have power switches. A hub with power switches can

switch power to all ports as a groupigang, to each port individually, or have an arbitrary number of gangs of
one or more ports.

A hub indicates whether or not it supports power switching by the setting ofthe Logical Power Switching

Mode field in wHttbCharacteristics. If a hub supports per—port power switching, then the power to a port is

turned on when a SetPortFeature(PORT_POWER} request is received for the port. Port power is turned off

when the port is in the Powered-off or Not Configured states. If a hub supports ganged power switching,

then the power to all ports in a gang is turned on when any port in a gang receives a

SetPortFeature(PORT_POWER) request. The power to a gang is not turned off unless all ports in a gang

are in the Powered-off or Not Configured states. Note, the power to a port is not turned on by a

SetPortFeature(PORT_POWER) if both C_H'UB_LOCAL_POWER and Local Power Status (in

wHtrbSroms) are set to]B at the time when the request is executed and the PORTAPOWER feature would
be turned on.

Although a self-powered hub is not required to implement power switching, the hub must support the

Powered-off state for all ports. Additionally, the hub must implement the Porthr-CtrlMosk (all bits set to

13) even though the hub has no power switches that can be controlled by the USB System Software.

Note: To ensure compatibility with previous versions of USB Software, hubs must implement the Logical

Power Switching Mode field in wHubChar-acreristic-s. This is because some versions of SW will not use the

SetPortFeatureO request if the hub indicates in wHttbChar‘acrerisrr'cs that the port does not support port

power switching. Otherwise, the Logical Power Switching Mode field in wHubChar-octeris'IEL-s would have

become redundant as of this version ofthe specification.

The setting of the Logical Power Switching Mode for hubs with no power switches should reflect the

manner in which over-current is reported. For example, if the hub reports over-current conditions on a per-

port basis, then the Logical Power Switching Mode should be set to indicate that power switching is

controlled on a per-port basis.

For a hub with no power switches, warOnZPwrGood must be set to zero.

11.11.1 Multiple Gangs

A hub may implement any number of power andfor over-current gangs. A hub that implements more than

one over-current andfor power switching gang must set both the Logical Power Switching Mode and the

Over-current Reporting Mode to indicate that power switching and over-current reporting are on a per port
basis (these fields are in wHubCharacrer-istr'm). Also, all bits in Porthr-Crr'IMask must be set to 13.

When an over-current condition occurs on an over-current protection device, the over-current is signaled on

all ports that are protected by that device. When the over-current is signaled, all the ports in the group are

placed in the Powered-off state, and the C_PORT_OVER—CURRENT field is set to [B on all the ports.

When port status is read from anyport in the group, the PORTWOVER-CURRENT field will be set to 1B as

335

ZTE/SAMSUNG 1008—0363

|PR201 8-001 10

ZTE/SAMSUNG 1008-0364
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

long as the over-current condition exists. The C_PORT_OVER-CURRENT field must be cleared in each

port individually.

When multiple ports share a power switch, setting PORT_POWER on any port in the group will cause the

power to all ports in the group to turn on. It will not, however, cause the other ports in that group to leave

the Powered-off state. When all the ports in a group are in the Powered—off state or the hub is not

configured, the power to the ports is turned off.

If a hub implements both power switching and over-current, it is not necessary for the over-current groups

to be the same as the power switching groups.

If an over-cunent condition occurs and power switches are present, then all power switches associated with

an over-current protection circuit must be turned off. If multiple over-current protection devices are

associated with a single power switch then that switch will be turned offwhen any of the over-current

protection circuits indicates an over-current condition.

11.12 Hub Controller

The Hub Controller is logically organized as shown in Figure 11-19.

UPSTREAM ONNECTION

ENDPOINT 0:

Configuration
Information

Status Change
Endpoint

 Port 2 Port 3

Figure ll-l9. Example Hub Controller Organization

11.12.1 Endpoint Organization

The Hub Class defines one additional endpoint beyond Default Control Pipe, which is required for all hubs:

the Status Change endpoint. The host system receives port and hub status change notifications through the

Status Change endpoint. The Status Change endpoint is an interrupt endpoint. If no hub or port status

change bits are set, then the hub returns an NAK when the Status Change endpoint is polled. When a status

change bit is set, the hub responds with data, as shown in Section ll.12.4, indicating the entity (hub or port}

with a change bit set. The USB System Software can use this data to determine which status registers to

access in order to determine the exact cause of the status change interrupt.

336

ZTE/SAMSUNG 1008-0364

|PR201 8-001 10

ZTE/SAMSUNG 1008-0365
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.12.2 Hub Information Architecture and Operation

Figure 11-20 shows how status, status change, and control information relate to device states. Hub

descriptors and HubfPort Status and Control are accessible through the Default Control Pipe. The Hub

descriptors may be read at any time. When a hub detects a change on a port or when the hub changes its

own state, the Status Change endpoint transfers data to the host in the form specified in Section 11.12.4.

Hub or port status change bits can be set because of hardware or Software events. When set, these bits

remain set until cleared directly by the USB System Software through a ClearPortFeatureO request or by a

hub reset. While a change bit is set, the hub continues to report a status change when polled until all change
bits have been cleared by the USB System Sofiware.

E Status Information
a; (static) Hardware Events —
ea
2 g}m 'C

E D
a?) Change Information.. (due to hardware

E
Change Device

State

Control Information
[change device state) Control

Figure 11-20. Relationship of Status, Status Change, and Control Information to Device States

Device Control

The USB System Software uses the interrupt pipe associated with the Status Change endpoint to detect
changes in hub and port status.

11.12.3 Port Change Information Processing

Hubs report a port’s status through port commands on a per-port basis. The USB System Software

acknowledges a port change by clearing the change state corresponding to the status change reported by the

hub. The acknowledgment clears the change state for that port so future data transfers to the Status Change
endpoint do not report the previous event. This allows the process to repeat for further changes (see

Figure 11-21).

337

ZTE/SAMSUNG 1008—0365

|PR201 8-001 10

ZTE/SAMSUNG 1008-0366
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

System Sottware requests interrupt Pipe notification for Status Change Information

Hub NAKs

status change
IN token

Yes

Interrupt Pipe returns Hub and Port Status Change Bitmap

Interant Pipe notification retired

System Soliware reads Hub or Port status (for affected ports)

YES

 Change Data

Available ?

Any Changed . Accumulate change rnfon'nation
State? - System Software clears

corresponding change state

No

System Soflware processes accumulated change information

Re-initialize Interrupt Pipe for Status Change endpoint

Return to

beginning

Figure 11-2]. Port Status Handling Method

11.12.4 Hub and Port Status Change Bitmap

The Hub and Port Status Change Bitmap, shown in Figure [1-22, indicates whether the hub or a port has

experienced a status change. This bitmap also indicates which port(s} has had a change in status. The hub

returns this value on the Status Change endpoint. Hubs report this value in byte-increments. That is, if a

hub has six ports, it returns a byte quantity, and reports a zero in the invalid port number field locations.
The USB System Software is aware of the number of ports on a hub {this is reported in the hub descriptor)

and decodes the Hub and Port Status Change Bitmap accordingly. The hub reports any changes in hub

status in bit zero of the Hub and Port Status Change Bitmap.

The Hub and Port Status Change Bitmap size varies from a minimum size of one byte. Hubs report only as

many bits as there are ports on the hub, subject to the byte~granularity requirement (i.e., round up to the

nearest byte).

338

ZTE/SAMSUNG 1008-0366

|PR201 8-001 10

ZTE/SAMSUNG 1008-0367
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

I. __

Port N change detected

Port 2 change detected
Port 1 change delecled

Hub change delecled

Figure 11-22. Hub and Port Status Change Bitmap

Anytime the Status Change endpoint is polled by the host controller and any of the Status Changed bits are
non-zero, the Hub and Port Status Change Bitmap is returned. Figure 11-23 shows an example creation

mechanism for hub and port change bits.

Par-Pun Lo - I:

Logical DR

Change
Information

Change
Detect Logi o

N

Figure 11—23. Example Hub and Port Change Bit Sampling

11.125 Over-current Reporting and Recovery

USB devices must be designed to meet applicable safety standards. Usually, this will mean that a self-

powered hub implement current limiting on its downstream facing ports. If an over-current condition

occurs, it causes a status and state change in one or more ports. This change is reported to the USB System
Sofiware so that it can take corrective action.

A hub may be designed to report over-current as either a port or a hub event. The hub descriptor field
wHubCharacteristics is used to indicate the reporting capabilities ofa particular hub {see Section 11.232).

The over-current status bit in the hub or port status field indicates the state ofthe over-current detection

when the status is returned. The over-current status change bit in the Hub or Port Change field indicates if

the over-current status has changed.

When a hub experiences an over-current condition, it must place all affected ports in the Powered-off state.

If a hub has per-port power switching and per-port current limiting, an over-current on one port may still

339

ZTE/SAMSUNG 1008-0367

|PR201 8-001 10

ZTE/SAMSUNG 1008-0368
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

cause the power on another port to fall below specified minimums. In this case, the affected port is placed

in the Powered-off state and C_PORT_OVER_CURRENT is set for the port, but

PORT_OVER_CURRENT is not set. If the hub has over-current detection on a hub basis, then an over-

current condition on the hub will cause all ports to enter the Powered-off state. However, in this case,

neither C_PORT_OVER_CURRENT nor PORT_OVERgCURRENT is set for the affected ports.

Host recovery actions for an over-current event should include the following:

1. Host gets change notification from hub with over-current event.

2. Host extracts appropriate hub or port change information (depending on the infomtation in the

change bitmap).

3. Host waits for over-current status bit to be cleared to 0.

4. Host cycles power on to all of the necessary ports (e.g., issues a SetPortFeature(PORT_POWER)

request for each port).

5. Host re-enumerates all affected ports.

11.12.6 Enumeration Handling

The hub device class commands are used to manipulate its downstream facing port state. When a device is

attached, the device attach event is detected by the hub and reported on the status change interrupt. The host

will accept the status change report and request a SetPortFeature(PORT_RESET) on the port. As part of the

bus reset sequence, a speed detect is performed by the hub’s port hardware.

The Get_Status(PORT) request invoked by the host will return a “not PORT_LOW__SPEED and

PORT_HIGH_SPEED” indication for a downstream facing port operating at high-speed. The

Get_Status(PORT) will report “PORT_LOW_SPEED” for a downstream facing port operating at low-

speed. The Get_Status(PORT) will report “not PORT_LOW__SPEED and not PORT_HIGH_SPEED” for a

downstream facing port operating at full-speed.

When the device is detached from the port, the port reports the status change through the status change

endpoint and the port will be reconnected to the high-speed repeater. Then the process is ready to be

repeated on the next device attach detect.

11.13 Hub Configuration

Hubs are configured through the standard USB device configuration commands. A hub that is not

configured behaves like any other device that is not configured with respect to power requirements and

addressing. If a hub implements power switching, no power is provided to the downstream facing ports

while the hub is not configured. Configuring a hub enables the Status Change endpoint. The USB System

Software may then issue commands to the hub to switch port power on and off at appropriate times.

The USB System Software examines hub descriptor information to determine the hub’s characteristics. By

examining the hub’s characteristics, the USB System Software ensures that illegal power topologies are not

allowed by not powering on the hub’s ports if doing so would violate the USB power topology. The device

status and configuration information can be used to determine whether the hub should be used as a bus or

self-powered device. Table l l«12 summarizes the information and how it can be used to determine the

current power requirements of the hub.

340

ZTE/SAMSUNG 1008-0368

|PR201 8-001 10

ZTE/SAMSUNG 1008-0369
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Table 11-12. Hub Power Operating Mode Summary

Configuration Descriptor Hub

bmAttributes Device Status Explanation

MaxPower (Self Powered) (55" Power)

NA

This is an illegal set of information.

NIA

A device which is only self-powered. but does

not have local power cannot connect to the bus

0

and communicate.

Self-powered only hub and local power supply is
good. Hub status also indicates local power

good. see Section 11.16.25. Hub functionality is
valid anywhere depth restriction is not violated.

Bus-powered only hub. Downstream facing
ports may not be powered unless allowed in

current topology. Hub device status reporting
Self Powered is meaningless in combination of a
zeroed bmA ttribUtes. Self-Powered.

This hub is capable of both self— and bus-
powered operating modes. it is currently only
available as a bus-powered hub.

This hub is capable of both self— and bus-
powered operating modes. it is currently
available as a self-powered hub.

A self-powered hub has a local power supply, but may optionally draw one unit load from its upstream

connection. This allows the interface to function when local power is not available (see Section 7.2.1.2}.

When local power is removed {either a hub-wide over-current condition or local supply is off), a hub of this

type remains in the Configured state but transitions all ports {whether removable or non-removable) to the

Powered-off state. While local power is off, all port status and change information read as zero and all

SetPortFeatureU requests are ignored (request is treated as a no-operation). The hub will use the Status

Change endpoint to notify the USB System Software of the hub event (see Section 1 1.24.2.6 for details on

hub status).

The MaxPower field in the configuration descriptor is used to report to the system the maximum power the

hub will draw from VBUS when the configuration is selected. For bus-powered hubs, the reported value

must not include the power for any of external downstream facing ports. The external devices attaching to

the hub will report their individual power requirements.

A compound device may power both the hub electronics and the permanently attached devices from VBUS.

The entire load may be reported in the hubs’ configuration descriptor with the permanently attached devices

each reporting self-powered, with zero MaxPower in their respective configuration descriptors.

341

ZTE/SAMSUNG 1008—0369

|PR201 8-001 10

ZTE/SAMSUNG 1008-0370
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.14 Transaction Translator

A hub has a special responsibility when it is operating in high-speed and has full-flow-speed devices

connected on downstream facing ports. In this case, the hub must isolate the high-speed signaling

environment from the full-flow-speed signaling environment. This function is performed by the Transaction
Translator (TT) portion of the hub.

This section defines the required behavior of the transaction translator.

11.1 4.1 Overview

Figure 11-24 shows an overview of the Transaction Translator. The TT is responsible for participating in

high-speed split transactions on the high-speed bus via its upstream facing port and issuing corresponding

full-llow-speed transactions on its downstream facing ports that are operating at full-flow-speed. The TT

acts as a high-speed function on the high-speed bus and performs the role of a host controller for its

downstream facing ports that are operating at full-flow-speed. The "IT includes a high-speed handler to deal

with high-speed transactions. The TT also includes a full-flow-speed handler that performs the role of a

host controller on the downstream facing ports that are operating at full-llow-speed.

High Speed Bus

 High—Speed Handler

,I

1mm III/Int B/C BIC

Strtplt Cmpplt [mom/0

 Full/Low Speed Bus

Figure 11-24. Transaction Translator Overview

The TT has buffers (showu in gray in the figure) to hold transactions that are in progress and tracks the state

of each buffered transaction as it is processed by the TT. The buffers provide the connection between the

high-speed and full-flow—speed handlers. The state tracking the 'IT does for each transaction depends on the

specific USB transfer type of the transaction (i.e., bulk, control, interrupt, isochronous). The high-speed

handler accepts high-speed start-split transactions or responds to high-speed complete-split transactions.

The high-speed handler places the start-split transactions in local buffers forthe full-llow-speed handler’s
use.

The buffered start-split transactions provide the full-flow—speed handler with the information that aIIOWs it

to issue corresponding full—flow-speed transactions to full-{low-speed devices attached on downstream

facing ports. The full-flow-speed handler buffers the results of these full-llow-speed transactions so that

they can be retumed with a corresponding complete-split transaction on the high-speed bus.

The general conversion between full-{low-speed transactions and the corresponding high-speed split

transaction protocol is described in Section 8.4.2. More details about the specific transfer types for split

transactions are described later in this chapter.

342

ZTE/SAMSUNG 1008-0370

|PR201 8-001 10

ZTE/SAMSUNG 1008-0371
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

The high-speed handler of the TT operates independently of the full~/low~speed handler. Both handlers use
the local transaction buffers to exchange information where required.

Figure 11-25. Periodic and Non-periodic Buffer Sections of TT

The TT has two buffer and state tracking sections (shown in gray in Figure 11-24 and Figure 11—25):

periodic (for isochronous/interrupt full-/low-speed transactions) and non-periodic (for bulk/control full-
/low-speed transactions). The requirements on the TT for these two buffer and state tracking sections are

different. Each will be described in turn later in this chapter.

11.14.1.1 Data Handling Between High-speed and Full-llow-speed

The host converts transfer requests involving a full-/low—speed device into corresponding high-speed split
transactions to the TT to which the device is attached.

Low—speed Preamble(PRE) packets are never used on the high-speed bus to indicate a low-speed

transaction. Instead, a low»speed transaction is encoded in the split transaction token.

The host can have a single schedule of the transactions that need to be issued to devices. This single

schedule can be used to hold both high-speed transactions and high-speed split transactions used for

communicating with full-/low—speed devices.

11.14.1.2 Host Controller and TT Split Transactions

The host controller uses the split transaction protocol for initiating full-/low-speed transactions via the TT

and then determining the completion status of the fiill-/low-speed transaction. This approach allows the

host controller to start a full—/low~speed transaction and then continue with other high—speed transactions

while avoiding having to wait for the slower transaction to proceed/complete at its speed. A high-speed

split transaction has two parts: a start-split and a complete-split. Split transactions are only used between
the host controller and a hub. No other high-/full-/low-speed devices ever participate in split transactions.

When the host controller sends a start—split transaction at high-speed, the split transaction is addressed to the

TT for that device. That TT will accept the transaction and buffer it locally. The high-speed handler

responds with an appropriate handshake to inform the host controller that the transaction has been accepted.

Not all split transactions have a handshake phase to the start-split. The start-split transactions are kept

temporarily in a TT transaction buffer.

The full—/low—speed handler processes start—split periodic transactions stored in the periodic transaction
buffer (in order) as the downstream full-/low-speed bus is ready for the “next” transaction. The full-/low-

speed handler accepts any result information from the downstream bus (in response to the full-/low-speed
transaction) and accumulates it in a local buffer for later transmission to the host controller.

At an appropriate future time, the host controller sends a high—speed complete-split transaction to retrieve

the status/data/result for appropriate full-/low-speed transactions. The highvspeed handler checks this high-

speed complete-split transaction with the response at the head of the appropriate local transaction buffer and

responds accordingly. The specific split transaction sequences are defined for each USB transfer type in
later sections.

343

ZTE/SAMSUNG 1008-0371

|PR2018-00110

ZTE/SAMSUNG 1008-0372
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.14.1 .3 Multiple Transaction Translators

A hub has two choices for organizing transaction translators (TTs). A hub can have one TT for all

downstream facing ports that have full-flow-speed devices attached or the hub can have one TT for each

downstream facing port. The hub must report its organization in the hub class descriptor.

11.14.2 Transaction Translator Scheduling

As the high—speed handler accepts start-splits, the fiJIl-Jlow-speed transaction information and data for

OUTs or the transaction information for INS accumulate in buffers awaiting their service on the downstream

bus. The host manages the periodic TT transaction buffers differently than the non-periodic transaction
buffers.

11.14.2.1 TT lsochronousilnterrupt (Periodic) Transaction Buffering

Periodic transactions have strict timing requirements to meet on a full-flow-speed bus (as defined by the

specific endpoint and transfer type). Therefore, transactions must move across the high-speed bus, through

the TT, across the full-flow-speed bus, back through the TT, and onto the high-speed bus in a timely

fashion. An overview ofthe microframe pipeline of buffering in the TT is shown in Figure 11-26. A

transaction begins as a start-split on the high-speed bus, is accepted by the high-speed handler, and is stored

in the start-Sp] it transaction buffer. The full-flow-speed handler uses the next start-split transaction at the

head of the start-split transaction buffer when it is time to issue the next periodic full-flow-speed transaction

on the downstream bus. The results of the transaction are accumulated in the complete-split transaction

buffer. The T1" responds to a complete-split from the host and extracts the appropriate response from the

complete-split transaction buffer. This completes the flow for a periodic transaction through the TT. This

is called the periodic transaction pipeline.

High Speed Start-Split High Speed Complete-Split

Figure 11—26. 'I‘T Mieroframe Pipeline for Periodic Split Transactions

The TT implements a traditional pipeline of transactions with its periodic transaction buffers. There is

separate buffer space for start-splits and complete-splits. The host is responsible for filling the start-split

transaction buffer and draining the complete-split transaction buffer. The host software manages the host

controller to cause high-speed split transactions at the correct times to avoid overfunder runs in the TT

periodic transaction buffers. The host controller sends data “just in time” for full-flow-speed OUTS and

retrieves response data from full-1’low-speed [MS to ensure that the periodic transaction buffer space required

in the TT is the minimum possible. See Section 11.18 for more detailed information.

USB strictly defines the timing requirements of periodic transactions and the isochronous transport

capabilities of the high-speed and full-Flow-speed buses. This allows the host to accurately predict when

344

ZTE/SAMSUNG 1008-0372

|PR201 8-001 10

ZTE/SAMSUNG 1008-0373
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

data for periodic transactions must be moved on both the full-flow-speed and high-speed buses, whenever a

client requests a data transfer with a full-flow-speed periodic endpoint. Therefore, the host can “pipeline”

data to?from the TT so that it moves in a timely manner with its target endpoint. Once the configuration of

a full-flow-speed device with periodic endpoints is set, the host streams data toffrom the TT to keep the

device’s endpoints operating normally.

11.14.22 TT Bulleontrol (Non-Periodic) Transaction Buffering

Non-periodic transactions have no timing requirements, but the TT supports the maximum full~flow«speed

throughput allowed. A TT provides a few transaCIion buffers for bulkicontro] full-flow-speed transactions.

The host and "IT use simple flow control (NAK) mechanisms to manage the bulki’control non-periodic

transaction buffers. The host issues a start-spl it transaction, and if there is available buffer space, the TT

accepts the transaction. The fiJll-flow-speed handler uses the buffered information to issue the downstream

full-flow-speed transaction and then uses the same buffer to hold any results (e.g., handshake or data or

timeout). The buffer is then emptied with a corresponding high-speed complete-split and the process

continues. Figure] l»27 shows an example overview of a "IT that has two bulio'control buffers.

High Speed Start-IComplete-Split

Full/Low Speed Transaction

Figure 11—27. TT Nonperiodic Buffering

11.14.23 Full-flow-speed Handler Transaction Scheduling

The full-{low-speed handler uses a simple, scheduled priority scheme to service pending transactions on the

downstream bus. Whenever the full-flow-speed handler finishes a transaction on the downstream bus, it

takes the next start-split transaction from the start-split periodic transaction buffer (if any). If there are no

available start-split periodic transactions in the buffer, the full-flow~speed handler may attempt a

bulki'control transaction. If there are start~split transactions pending in the bulki'control buffeds) and there is

sufficient time left in the full-flow-speed 1 ms flame to complete the transaction, the full-flow-speed handler

issues one of the bulldcontrol transactions (in round robin order). Figure 11-28 shows pseudo code for the

full-{low-speed handler start-split transaction scheduling algorithm.

The TT also sequences the transaction pipeline based on the high-speed microframe timer to ensure that it

does not start full~flow~speed periodic transactions too early or too late. The “AdvanceJaipeline” procedure

in the pseudo code is used to keep the "IT advancing the microframe “pipeline”. This procedure is described

in more detail later in Figure 11-67.

345

ZTE/SAMSUNG 1008-0373

|PR201 8-001 10

ZTE/SAMSUNG 1008-0374
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

While (1) loop
While (not end of microframel loop

-- process next start-split transaction
If available periodic start-split transaction then

Process next full—llow—speed periodic transaction
Else if (available bulk/control transaction} and

(fits in full-[low-speed 1 ms frame} than
Process one transaction

End if
End loop

Advance_Pipelinell; -- see description in Figure 11—67(below)
End loop

Figure ”~28. Example Full—flow—speed Handler Scheduling for Start-splits

As described earlier in this chapter, the TT derives the downstream bus’s 1 ms SOF timer from the high-

speed 125 us microframe. This means that the best and the TI‘ have the same 1 ms frame time for all TI‘s.

Given the strict relationship between frames and the zeroth microframe, there is no need to have any

explicit timing information carried in the periodic split transactions sent to the TT. See Section “.18 for
more information.

11.15 Split Transaction Notation Information

The following sections describe the details of the transaction phases and flow sequences of split transactions

for the different USB transfer types: bulldcontrol, interrupt, and isochronous. Each description also shows

detailed example host and TT state machines to achieve the required transaction definitions. The diagrams

should not be taken as a required implementation, but to specify the required behavior. Appendix A

includes example high-speed and full-speed transaction sequences with different results to clarify the

relationships between the host controller, the TT, and a full-speed endpoint.

Low-speed is not discussed in detail since beyond the handling of the PRE packet (which is defined in

Chapter 8), there are no packet sequencing differences between low- and full-speed.

For each data transfer direction, reference figures also show the possible flow sequences for the start-split

and the complete-Sp] it portion of each split transaction transfer type.

The transitions on the flow sequence figures have labels that correspond to the transitions in the host and TT

state machines. These labels are also included in the examples in Appendix A. The three character labels

are ofthe form: < S l C >< T | D | H | E ><number>. S indicates that this is a start-split label. C indicates

that this is a complete-split label. T indicates token phase; D indicates data phase; H indicates handshake

phase; B indicates an error case. The number simply distinguishes different labels of the same casefphase in

the same split transaction part.

The flow sequence figures further identify the visibility of transitions according to the legend in

Figure 1 1-29. The flow sequences also include some indication of states required in the host or TT or

actions taken. The legend shown in Figure 1129 indicates how these are identified.

Bold indicates host action

Italics indicate <hub status? or éhub action?

Both Visible

Hub ViSible ..

HOSI Visible _________________

Figure 11—29. Flow Sequence Legend

Figure 11-30 shows the legend for the state machine diagrams. A circle with a three line border indicates a

reference to another (hierarchical) state machine. A circle with a two line border indicates an initial state.

A circle with a single line border is a simple state.

346

ZTE/SAMSUNG 1008-0374

|PR201 8-001 10

ZTE/SAMSUNG 1008-0375
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

A diamond (ioint) is used tojoin several transitions to a common point. Ajoint allows a single input

transition with multiple output transitions or multiple input transitions and a single output transition. All

conditions on the transitions of a path involving a joint must be true for the path to be taken. A path is

simply a sequence oftransitions involving one or more joints.

A transition is labeled with a block with a line in the middle separating the (upper) condition and the (lower)

actions. The condition is required to be true to take the transition. The actions are performed if the

transition is taken. The syntax for actions and conditions is VHDL. A circle includes a name in bold and

optionally one or more actions that are performed upon entry to the state.

- Contains other state machines

- Initial state of a state machine
- State in a state machine

I‘_'>—> —>I:> - Entry and exit of state machine

- Joint used to connect transitions

Condition _ . . .

WAcfiom - Transmon: taken when cond1t10n

is true and performs actions

Figure 11-30. Legend for State Machines

The descriptions of the split transactions for the four transfer types refer to the status ofthe fiJll-r’low-speed

transaction on the bus downstream of the "IT. This status is used by the high-speed handler to determine its
response to a complete-split transaction. The status is only visible within a "IT implementation and is used

in the specification purely for ease of explanation. The defined status values are:

I Ready - The transaction has completed on the downstream facing full-llow-speed bus with the result
as follows:

I Readyi’NAK — A NAK handshake was received.

I Ready ftrans_err — The full-flow-speed transaction experienced a error in the transaction.

Possible errors are: PID to PID_inver(bits check failure, CRCS check failure, incorrect PID,

timeout, CRC 16 check failure, incorrect packet length, bitstuffing error, false EOP.

I Ready KACK — An ACK handshake was received.

0 Ready i’Stall — A STALL handshake was received.

I Ready fData —- A data packet was received and the CRC check passed. (bulkfcontrol IN).

347

ZTE/SAMSUNG 1008—0375

|PR201 8-001 10

ZTE/SAMSUNG 1008-0376
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

0 Ready flastdata — A data packet was finished being received. (isochronousfinterrupt IN).

‘- Ready fmoredata — A data packet was being received when the microframe timer occurred

(isochronousl'interrupt IN}.

0 Old — A complete-split has been received by the high-speed handler for a transaction that previously

had a “ready” status. The possible status results are the same as for the Ready status. This is the
initial state for a buffer before it has been used for a transaction.

0 Pending + The transaction is waiting to be completed on the downstream facing full-Ilow-speed bus.

The figures use “oldfx” and “readyl'x” to indicate any ofthe old or ready status respectively.

The split transaction state machines in the remainder of this chapter are presented in the context of

Figure l 1-31. The host controller state machines are located in the host controller. The host controller

causes packets to be issued downstream (labeled as HSDI) and it receives upstream packets (labeled as

HSUZ).

The transaction translator state machines are located in the TT. The TT causes packets to be issued

upstream (labeled as HSUI) and it receives downstream packets (labeled as HSD2).

The host controller has commands that tell it what split transaction to issue next for an endpoint. The host

controller tracks transactions for several endpoints. The TT has state in buffers that track transactions for

several endpoints.

Appendix B includes some declarations that were used in constructing the state machines and may be useful

in understanding additional details ofthe state machines. There are several pseudo-code procedures and

functions for conditions and actions. Simple descriptions of them are also included in Appendix B.

Transaction

Results

Transaction

Commands
Host

Controller

Hi_h seed Bus

Hub

Transaction

Translator

Hih 5 need Bus

 Bulk/Ctr] Buffers Periodic Pipeline Buffers

Figure 11-31. State Machine Context Overview

348

ZTE/SAMSUNG 1008-0376

|PR2018-00110

ZTE/SAMSUNG 1008-0377
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.16 Common Split Transaction State Machines

There are several state machines common to all the specific split transaction types. These state machines

are used in the host controller and transaction translator to determine the specific Split transaction type (e.g.,

interrupt OUT start-split vs. bulk IN complete—split). An overview of the host controller state machine
hierarchy is shown in Figure 11-32. The overview of the transaction translator state machine hierarchy is

shown in Figure l 1'33. Each of the labeled boxes in the figures show an individual state machine. Boxes
contained in another box indicate a state machine contained within another state machine. All the state

machines except the lowest level ones are showa in the remaining figures in this section. The lowest level

state machines are shown in later sections describing the specific split transaction type.

HC_D0_start HC_D0_complete

HC_D0_IsochISS HC_D0_IsochICS

HC—DOJHHSS HC D0 IntICS

HC_D0_BISS HC_Data_or_timeout

HCfiDo_IsochOSS HCHD0_BICS

HCflDo_IntOSS HC_D0_Int0CS

HC_D0_BOSS HC_D0_BOCS

Figure 11-32. Host Controller Split Transaction State Machine Hierarchy Overview

349

ZTE/SAMSUNG 1008—0377

|PR201 8-001 10

ZTE/SAMSUNG 1008-0378
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

TT_Process_packet

TT__D0#start TTuDomcomplete

TT_IsochSS TT_IsochICS

TT_Do_IsochOSS

l TT_D0_IsochISS I

TT_IntSS TTfiIntCS

| TT_Do_IntOSS | ITT_D0_IntOCS |

l TT_Do_IntISS |

TT_BulkSS TT_BulkCS

| TT_DowBOSS | | TT_D0_BOCS |

Figure 11-33. Transaction Translator State Machine Hierarchy Overview

11.1B.1 Host Controller State Machine

Architecture Declaralions

Package Llst

leee sld_logic_1164
Jeee mmeric_sid
usthtatemachines behav_pal:kage
‘Ieee sld‘logigan'lh

Concurrenl Statements

Figure 11-34. Host Controller

350

ZTE/SAMSUNG 1008-0378

|PR2018-00110

ZTE/SAMSUNG 1008-0379
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.16:! .1 HC_Process_command State Machine

HC_cmd.cmd = SOF _

_ lssue__packet(HSD1. SOF);

HCHProcesacommand I

Figure 11-35. HC_Process_Command

351

ZTE/SAMSUNG 1008-0379

|PR2018-00110

ZTE/SAMSUNG 1008-0380
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.16.1.1.1 HC_Do_start State Machine

'HC_cmd.ep_type isochronous e

_ chcmdep‘type = bulk or
Hchcmdephtype = control

: HC_emd.ep_type = isochronous

HC_cmd.ep_type = interru t

_ C_cmd.ep_‘type = bulk or
HCucmd.ep__type = control :

Hc_Do_Stan

Figure 11-36. HCflDtLStar-t

352

ZTE/SAMSUNG 1008-0380

|PR2018-00110

ZTE/SAMSUNG 1008-0381
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.16.1.1.2 HC_Do__complete State Machine

HC_u-nd.ep_,type = isuchronous

 HC_cmd.ep_type = bulk or
HC_cmd.ep_type = control

HC_and.direclion = In__dir j

HC_Du_compleie

Figure 11—37. HC__Do_Complete

353

ZTE/SAMSUNG 1008-0381

|PR2018-00110

ZTE/SAMSUNG 1008-0382
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.162 Transaction Translator State Machine

Architecture Declarations

Package List

ieee std__|ogic_1164
ieae numeric_std
usbzflatemachines behavgpackage

Figure 11-38. Transaction Translator

354

ZTE/SAMSUNG 1008-0382

|PR2018-00110

ZTE/SAMSUNG 1008-0383
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.16.2.1 TT_Process_packet State Machine

 splitPlD != SSPLIT and splitPlD != CSPLIT

51.21012 _

HSD2.PID = SSPLIT or E

HSD2.PID = CSPLIT =

* Save(HSD2. split):

HSD2.F'ID = SOF

not SS_Bufi.isochO or
(SS_Bufi.isochO and
SS Buff saw a lit}

' SS_Buff.isochO and
not SS_Buff.saw_split I

Down_error;

SDZPID I: SSPLIT and
SD2.P|D i= CSPLIT and

TT_Proness__Packet

Figure 11-39. 1T_Process_Packet

355

ZTE/SAMSUNG 1008-0383

|PR2018-00110

ZTE/SAMSUNG 1008-0384
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.16.2.1.1 TT_Do_Start State Machine

j split.ep_type = bulk or
' split.ep_type = control

TILDOWStart

Figure 11-40. Tl"_Do_Slart

356

ZTE/SAMSUNG 1008-0384

|PR2018-00110

ZTE/SAMSUNG 1008-0385
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.16.2.1.2 TT_Do_Complete State Machine

split.ep_type = interrupt .-

split.ep_type = bulk or E
split.ep_type = control

Tl'_Do_complete

Figure 11—4]. '[T_Do_Con1plete

11.16.2.1.3 TT_BquSS State Machine

(token. PID l~ tokenOUT and
tokenPlD I: LokenSETUP and

toElsenPlD l: tokenlN} or
token.timeeut

okenPlD = tokenlN

tokenPlD = tokenOUT or
token.P|D = tokenSETUP

TT_BquSS

Figure 11—42. TT_BulkSS

357

ZTE/SAMSUNG 1008-0385

|PR2018-00110

ZTE/SAMSUNG 1008-0386
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11 .1 6.2.1 .4 'I'I'_BUIKCS State Machine

(tokenPlD r: mkenOUT and 'token.PiD r: takenSETUP and

tokenPlD I: tokenlN) or
tokenJin-eout

takenPID = tokenOUT or
tokenPlD = bkenSETUP

 [TT_Bu!kCS

Figure 11-43. TI‘_BulkCS

11.16.2.1.5 Tl‘__lntSS State Machine

(tokenPlD I: taker-OUT and
tokenPlD l= tokenlN) or
tokt-mlimeaut

' taken.PlD = tokenlN

tokenPlD = tokenOUT

 | Tr_lntSS

Figure 11—44. TT_IntSS

358

ZTE/SAMSUNG 1008-0386

|PR2018-00110

ZTE/SAMSUNG 1008-0387
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.16.2.1.B TT_|ntCS State Machine

{tnkenPtD r: tokenlN and
tukenPlD I= tokenOUT] or
tnkenjimeom

Figure 11-45. TT_IntCS

11.16.2.1.7 TT_|sochSS State Machine

(tokenPlD IztakenIN and '—
tnkenPlD I: tokenOUT) or

étokenjimenut

gmkenpln = tokenlN

tokenPlD = tohenOUT

Figure 11—46. TT_IsochSS

359

ZTE/SAMSUNG 1008-0387

|PR2018-00110

ZTE/SAMSUNG 1008-0388
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.17 BulkIControl Transaction Translation Overview

Each TT must have at least two bulklcontrol transaction buffers. Each buffer holds the information for a

start- or complete-sp] it transaction and represents a single filIl-i’low-speed transaction that is awaiting (or has

completed) transfer on the downstream bus. The buffer is used to hold the transaction information from the

start-spl it (and data for an OUT) and then the handshakefresu It of the full-flow-speed transaction (and data

for an IN). This buffer is filled and emptied by split transactions from the high-speed bus via the high-speed

handler. The buffer is also updated by the full-flow-speed handler while the transaction is in progress on the
downstream bus.

The high-speed handler must accept a start-cpl it transaction from the host controller for a bulki’control

endpoint whenever the high-speed handler has appropriate space in a bulkx’control buffer.

The host controller attempts a start-split transaction according to its bulkr'control high-speed transaction

schedule. As soon as the high-speed handler responds to a complete-split transaction with the results from

the corresponding buffer, the next start-split for some (possibly other) fuli-llow-Speed endpoint can be saved
in the buffer.

There is no method to control the start-split transaction accepted next by the high-speed handler.

Sequencing of start-split transactions is simply determined by available TT buffer space and the current
state of the host controller schedule {e.g., which start-split transaction is next that the host controller tries as

a normal part of processing high-speed transactions).

The host controller does not need to segregate split transaction bulk (or control) transactions from high-

speed bulk (control) transactions when building its schedule. The host controller is required to track

whether a transaction is a normal high-speed transaction or a high-speed spl it transaction.

The following sections describe the details of the transaction phases, flow sequences, and state machines for

split transactions used to support full-ilow-speed bulk and control OUT and IN transactions. There are only

minor differences between bulk and control split transactions. In the figures, some areas are shaded to

indicate that they do not apply for control transactions.

11.17.1 BulkiControl Split Transaction Sequences

The state machine figures show the transitions required for high—speed split transactions for full-flow-speed

bulkfcontrol transfer types for a single endpoint. These figures must not be interpreted as showing any

particular specific timing. They define the required sequencing behavior of different packets of a

bulkfcontrol split transaction. In particular, other high-speed or split transactions for other endpoints occur

before or after these split transaction sequences.

Figure 11-4? shows a sample code algorithm that describes the behavior ofthe transitions labeled with

Is_new_SS, Is_oid_SS and Is_no_space shown in the figures for both bulki’contt‘ol IN and OUT start-Sp] it

transactions buffered in the TT for any endpoint. This algorithm ensures that the TT only buffers a single

bulkfcontroi split transaction for any endpoint. The complete-split protocol definition requires an endpoint
has only a single result buffered in the TT at any time. Note that the “buffer match” mst is different for bulk

and control endpoints. A buffer match test for a bulk transaction must include the direction of the

transaction in the test since bulk endpoints are unidirectional. A control transaction must not use direction

as part of the match test.

360

ZTE/SAMSUNG 1008-0388

|PR201 8-001 10

ZTE/SAMSUNG 1008-0389
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

proaedure Compare_buffs IS
variable match:boolean:=FALSE;

begin

-— Is_new_SS is true when BC_huff. status == NEW_SS
—- IS_vold_SS is true when BC__buff. status == 0LD__SS
—~ Is_no_5pace is true when BC_buff status == N0_SPACE

-- Assume nospace and intialize index to 0.
BC_buff.status := N0_SPACE;
BC_buff . index := 0;

FOR 1 IN 0 to num_buffs-l LOOP
IF NOT match THEN

—— Re-use buffer with same Device Address/End point.
I? ttoken.endpt = camlil.store.endpt AND

token.dev_addr = camlil.store.dev_addr AND
(ttoken.direction = camtil.store.direction AND

split.ep_type /= CONTROL} OR
5plit.ap_type = CONTROLii THEN

—— If The buffer is already pending/ready this must he a retry.
IF {camli}.match.state = READY OR camli).match.state = PENDING) THEN

BC_buff.status := OLD_SS;ELSE

BC_buff.status := usw_ss;
END IF;
BC_buff.index := i;
match := TRUE;

—— Otherwise use the buffer if it's old.
ELSIF {camlii.match.state = OLD] THEN

BC_buff.status := NEWfiSS;
BC_buff.index :2 1;

END IF;
END IF;

END LOOP;

end Compare_buffs;

Figure 11-47. Sample Algorithm for Compare_buffs

Figure 11-48 shows the sequence of packets for a start—split transaction for the full-flow-speed bulk OUT

transfer type. The block labeled SSPLIT represents a split transaction token packet as described in

Chapter 8. It is followed by an OUT token packet (or SETUP token packet for a control setup transaction).

If the high-speed handler times out after the SSPLlT or OUT token packets, and does not receive the
following OUT!SETUP or DATAOH packets, it will not respond with a handshake as indicated by the

dotted line transitions labeled “sel” or “se2”. This causes the host to subsequently see a transaction error

(timeout) (labeled “set!” and indicated with a dashed line). Ifthe high-speed handler receives the DATAOr'l

packet and it fails the CRC check, it takes the transition “se2” which causes the host to timeout and follow
the “se2” transition.

36]

ZTE/SAMSUNG 1008-0389

|PR201 8-001 10

ZTE/SAMSUNG 1008-0390
IPR2018-00110

362

Universal Serial Bus Specification Revision 2.0

Start split

Compfarefibufis

..Y
Is new; SS Is_ota:7_SS Is_no_§_space
AEceptE—data Trians_err

sh 1% shZi sh3i 562:
i

ACK NAK Inca?"
count

I | IF‘_'_Y__________ |
; ; se4¢ seS;

Go to Retry if err_count < 3 if err_count 3-= 3

comp. split start split retry start split endpoint halt

Figure "-48. BulkIControl OUT Start-split Transaction Sequence

The host must keep retrying the start~split for this endpoint until the err_count reaches three for this

endpoint before continuing on to some other start-split for this endpoint. However, the host can issue other

start-splits for other endpoints before it retries the start-split for this endpoint. The err_count is used to

count how many errors have been experienced during attempts to issue a particular transaction for a

particular endpoint.

If there is no space in the transaction buffers to hold the start-split, the high-speed handler re5ponds with a
NAK via transition “sh3”. This will cause the host to retry this start-split at some future time based on its

normal schedule. The host does not increase its en'_count for a NAK handshake response. Once the host

has received a NAK response to a start-split, it can skip other start-5p] its for this TT for bulk/control

endpoints until it finishes a bulkJ'controI complete-split.

If there is buffer space for the start-split, the high-speed handler takes transition “shl” and responds with an

ACK. This tells the host it must try a complete-Split the next time it attempts to process a transaction for
this full-{low-speed endpoint. After receiving an ACK handshake, the host must not issue a further start-

split for this endpoint until the corresponding complete—split has been completed.

If the high-speed handler already has a start-spl it for this full-flow-speed endpoint pending or ready, it

follows transition “sh2” and also responds with an ACK, but ignores the data. This handles the case where

ZTE/SAMSUNG 1008-0390

|PR201 8-001 10

ZTE/SAMSUNG 1008-0391
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

an ACK handshake was smashed and missed by the host controller and now the host controller is retrying

the start-split; e.g., a high-speed handler transition of “shl” but a host transition of “sell”.

In the host controller error cases, the host controller implements the “three strikes and you‘re out”

mechanism. That is, it increments an error count (err_count) and, if the count is less than three (transition

“se4”), it will retry the transaction. Ifthe err_count is greater or equal to three (transition “se5”), the host

controller does endpoint halt processing and does not retry the transaction. If for some reason, a host

memory or non-USB bus delay (e.g.,a system memory “hold off”) occurs that causes the transaction to not

be completed normally, the err_count must not be incremented. Whenever a transaction completes

norm ally, the err_count is reset to zero.

The high-speed handler in the T1" has no immediate knowledge of what the host sees, so the “se2”, “se4”,

and “seS” transitions Show only host visibility.

This packet flow sequence showing the interactions between the host and hub is also represented by host

and high—speed handler state machine diagrams in the next section. Those state machine diagrams use the

same labels to correlate transitions between the two representations of the split transaction rules.

Figure 11-49 shows the corresponding flow sequence for the complete-split transaction for the full-flow-

speed bulkfcontrol OUT transfer type. The notation “readyz’x” or “oldt'x” indicates that the transaction status

of the split transaction is any of the ready or old states. After a full-flow-speed transaction is run on the
downstream bus, the transaction status is updated to reflect the result of the transaction. The possible result

status is: nak, stall, ack. Thex“ ” means any of the NAK, ACK, STALL full-llow-Speed transaction status

results. Each status result reflects the handshake response from the fiill-flow-speed transaction.

Complete Split

Not applicable

for control-setup
........N..............“My” 0”" Tim—e”

match 5 i
1081*!ng oldi’stah' Didi/ask old-{flak

chl ceSic-hZ c-h3= ch4é - '-ce2iline err

NYET STALL ACK N-K q'mmt
.............I

ce3+ i. I

fi v v y - if err_count < 3 i

Retry , Endpoint Go to next Retry retry immed eel-i
comp. split halt cmd start split. comp. split

if err_count >— 3

m - endpoint halt
Figure 11-49. Bulk/Control OUT Complete-split Transaction Sequence

363

ZTE/SAMSUNG 1008-0391

|PR201 8-001 10

ZTE/SAMSUNG 1008-0392
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

There is no timeout response status for a transaction because the filli-r’low-speed handler must perform a

local retry of a full-flow-speed bulk or control transaction that experiences a transaction error. It locally

implements a “three strikes and you’re out" retry mechanism. This means that the full-flow-speed

transaction will resolve to one of a NAK, STALL or ACK handshake results. If the transaction experiences

a transaction error three times, the full~flow—speed handler will reflect this as a stall status result. The full-

llow—speed handler must not do a local retry ofthe transaction in response to an ACK, NAK, or STALL
handshake.

Start split

st]

SSPL'I'T
5:2”answer?..

se]

Com ; J re_bufi%

Is_newi_SS Is_olci_SS Is_no_.i~pace '
Acceptidata Traims_err

shli 5112,? 51133 :
Ind err

A CK NAK codnt
|

i i se4l

i i I"—————— 1
Y Y 532i i

Go to Retry if err_count < 3 :
comp. split start split retry start split i

i
|

SIBv

if errficount >= 3

endpoint halt

Figure 11-50. Bulkir'Control IN Sta rt—split Transaction Sequence

If the high-speed handler receives the complete-5p] it token packet (and the token packet) while the full-

i’low-speed transaction has not been completed {e.g., the transaction status is “pending”), the high-speed

handler responds with a NYET handshake. This causes the host to retry the complete-split for this endpoint
some time in the future.

If the high-speed handler receives a complete-split token packet (and the token packet) and finds no local

buffer with a corresponding transaction, the TT responds with a STALL to indicate a protocol violation.

Once the full-flow-speed handler has finished a full-flow-speed transaction, it changes the transaction status

from pending to ready and saves the transaction result. This allows the high—speed handler to respond to the

complete-split transaction with something besides NYET. Once the high-speed handler has seen a

364

ZTE/SAMSUNG 1008-0392

IPR201 8-001 10

ZTE/SAMSUNG 1008-0393
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

complete-split, it changes the transaction status from ready/x to oldfx. This allows the high-speed handler to

reuse its local buffer for some other bulldcontrol transaction after this complete-split is finished.

If the host times out the transaction or does not receive a valid handshake, it immediately retries the

complete-split before going on to any other bulkfcontrol transactions for this TT. The normal “three strikeS”

mechanism applies here also for the host; i.e., the err_count is incremented. If for some reason, a host
memory or non-USB bus delay (e.g., a system memory “hold off”) occurs that causes the transaction to not

be completed normally, the err__count must not be incremented.

Complete split

Marc};_split__stare

ready/x or old/x ormperiding
Transgrr If statusm=ready/x=I>I statusII_III=IIold/9c

Didi/ac]; -E..._...«

old/data aid/Iiiak Olaf/stat“ pending
cdli 2 ch33 ceSE chli

D_TAO/I_m-STALL NYET
Trans_lerr i

: i Retry Endpoint Retry

ceaI ‘ start split halt comp. split'1________T_____________l
l<—-e—2-—r-Il'?—lls—err notltrans_err ndt trans_err and

Inc! err and =

colint Daiax i: Datax toggle
toglgle HC_Ac++ept_data

lr'ei"”1 i
a we. a a” I

if err_count >= 3 if errwcount < 3 Retry Go to next

endpoint halt retry immed. start split emd

comp. split

Figure 11-5]. BulldControl IN Complete-split Transaction Sequence

If the host receives a STALL handshake, it performs endpoint halt processing and will not issue any more

split transactions for this full-flow-speed endpoint until the halt condition is removed.

If the host receives an ACK, it records the results of the full-flow-speed transaction and advances to the next

split transaction for this endpoint. The next transaction will be issued at some time in the future according

to normal scheduling rules.

365

ZTE/SAMSUNG 1008—0393

|PR201 8-001 10

ZTE/SAMSUNG 1008-0394
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

If the host receives a NAK, it will retry the start-split transaction for this endpoint at some time in the future

according to normal scheduling rules. The host must not increment the err_count in this case.

The host must keep retrying the current start-split until the err_count reaches three for this endpoint before

proceeding to the next split transaction for this endpoint. Hovvever, the host can issue other start-splits for

other endpoints before it retries the start-split for this endpoint.

After the host receives a NAK, ACK, or STALL handshake in response to a completesplit transaction, it

may subsequently issue a start-split transaction for the same endpoint. The host may choose to instead issue

a start-split transaction for a different endpoint that is not awaiting a complete-split response.

The shaded case shown in the figure indicates that a control setup transaction should never encounter a

NAK response since that is not allowed for full-llow-speed transactions.

Figure 11-50 and Figure l l~51 show the corresponding flow sequences for bulki’control IN split
transactions.

11.17.2 Bull-LIControl Split Transaction State Machines

The host and TT state machines for bulkfcontrol IN and OUT split transactions are shown in the following

figures. The transitions for these state machines are labeled the same as in the flow sequence figures.

HCgomdethype = control and
HC_crnd.setup

issue_packet[HSD1, ssme;

sl1

RespondHC(Do_complete):
HC_cmd.ep_type = bulk or
(HC_cmd.ep_typc = control and
not HC_cmd.setup)

lssue_packet(
HSD1. SSPLIT):

HSUZPID = NAK

RespondHC{Do_start):
 : ssue_packet(

HSD1. tokenSETUP)' 531mg
ErrorCount < 3

RespondHC(Do_star1];
; lssue_packet(5

HSD1, tokenOUT];

HSUZPID i= NAK) or
HSU2.timeoul

ErrorCount >= 3 E

RespondHC(Do_l1all];

 884

HC__Do__BOSS

Figure 11-52. BulldControl OUT Start-split Transaction Host State Machine

366

ZTE/SAMSUNG 1008-0394

|PR201 8-001 10

ZTE/SAMSUNG 1008-0395
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

HSUZPID = NYET
d1 _ _—~_—-

HC_cmd.ep_type = control and g : RespondHC(Do_complete}.
; HC_crnd.setup
. Issue-Packet(HSD1‘ CSPLIT); ..

HC_cmd.ep_type = bulk or
(HC_cmd.ep_type= control and
NOT HC_ch:l.setup}

Issue_packet(HSD1, CSPLIT):

HSU2.P[D = ACK '

RespondHC(Do_next_cmd)‘ch4 ''''''''''

: En‘orCount < 3 E
RespondHC{Do_complete_immediate);

(HSUZPID I: NYET and
HSUZPID I: STALL and
HSU2.PID I: ACK and

HSU2.PID r: NAK] or
HSU2.timeout

ErrorCount >= 3 _

3 RespondHC(Do_halt);

HC_D0_BOCS

Figure 11-53. BulldControl OUT Complete-split Transaction Host State Machine

367

ZTE/SAMSUNG 1008-0395

|PR2018-00110

ZTE/SAMSUNG 1008-0396
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

_ HSDZPID I= DATAX or
HSDZ.fimeout or
HSDZ.CRC16 = bad

ls_new_SS(BC_bLIff)

Awept_data;
Issue acket(HSU1 ACK)’

5H1

Is_old_SS{BC_bufi) :
Issue_packet(Hsu1. ACK); 5

I lsfino_space(BC_bufi)

Elssue_packet(HSU1. NAK);

 TT_Do_BOSS |

Figure 11-54. BulkJ‘Control OUT Start-split Transaction TT State Machine

; BC_Buff.match.down_result = r_nak

Issue_packet(HSU1, NAK):

C__buff.match.5tate = pending

Issue_packet(HSU1, NYET); 3

Tl’_Do_BOCS

Figure 11-55. BufldControl OUT Complete-split Transaction 'IT State Machine

368

ZTE/SAMSUNG 1008-0396

|PR2018-00110

ZTE/SAMSUNG 1008-0397
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

st‘i
lssue_packet(HSD1, SSPLIT);

HSU2.PID=NAK

dHCD tart‘

.5 HSU2.PID = ACK

Resp0ndHC(Do_compIete);

se4 ErrorCount < 3 ;

RespondHC(Do_start);

(HSU2.P|D l= ACK and

HSU2.timeout EWUTGOUWt 3‘: 3

HC_Do_BlSS

Figure “-56. BquJ'COntrol IN Start—split Transaction Host State Machine

HSU2P|D I: NAK) or ..

RespondHC(Do_haIt); I

369

ZTE/SAMSUNG 1008-0397

|PR2018-00110

ZTE/SAMSUNG 1008-0398
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

HSU2.x .-"= Hcflcmdjoggle

RespondHC(Do_start};

. RespondHC(Do_l1alt);

ErrorCount < 3

RespondHC(Do_complete_immediate}:

(HSU2.PID r: DATAx and
HSU2.PID .-"= NAK and
HSU2.PID I: NYET and

HSU2.PID.’= STALL) or
HSU2.iimeout

HSU2.P|D = STALL .

HSU2.P|D = NYET

RespondHC(Do_complete);

HC_D0_B|CS

Figure 11-57. BulldControl IN Complete-split Transaction Host State Machine

370

ZTE/SAMSUNG 1008-0398

|PR2018-00110

ZTE/SAMSUNG 1008-0399
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

: Iswnowspace(BC_buffl _
lssue_packet(HSU1, NAK)‘

 |s_new_SS(BC_buff)

Accept_data;

_ Issue_pac|<et(HSLl1, ACK);

sh2

Is_o|d__SS(BCbuff)

. ssue_packet(HSU1. ACK);

TF_Do_B|SS

Figure 11-58. Bulkaontrol IN Start-split Transaction TT State Machine

BC buff match.state: no_match lssue_packet(HSU1. STALL);

:_BCbuff. matchdown_result= r_sta|| or
:BC_buff.match.down_result= r_ackMatch_sp[it_state;

BC_bufi.match.down#result = r__data

Issue_packet(HSU1, DATAx);

BC__buL‘fmatch.down_result—— r_nak

Issue_packet(HSU1. NAK);

BC_buff.match.state : old

BC_buff.match.state = ready

BC_buff.match.state := old; BC_buff.match.state = pending

Issue_packet(HSU1, NYET);

'|'|'_Do_BlCS

Figure 11-59. Bulleontrol IN Complete-Split Transaction "IT State Machine

11 .1 7.3 BulkiControl Sequencing

Once the high-speed handler has received a start-split for an endpoint and saved it in a local buffer, it

responds with an ACK split transaction handshake. This tells the host controller to do a complete-split

transaction next time this endpoint is polled.

371

ZTE/SAMSUNG 1008-0399

|PR201 8-001 10

ZTE/SAMSUNG 1008-0400
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

As soon as possible (subject to scheduling rules described previously), the full-flow-speed handler issues the
full-flow-speed transaction and saves the handshake status (for OUT) or datafhandshake status (for IN) in
the same buffer.

Some time later (according to the host controller schedule), this endpoint will be polled for the complete-

split transaction. The high-speed handler responds to the complete-split to return the full-flow-speed

endpoint status for this transaction (as recorded in the buffer). If the host controller polls for the complete-

split transaction for this endpoint before the full-flow-speed handler has finished processing this transaction

on the downstream bus, the high-speed handler responds with a NYET handshake. This tells the host

controller that the transaction is not yet complete. In this case, the host controller will retry the complete-

split again at some later time.

When the full-flow-speed handler finally finishes the full-flow-speed transaction, it saves the data/status in

the buffer to be ready for the next host controller complete-split transaction for this endpoint. When the
host sends the complete-split, the high-Speed handler responds with the indicated datafstatus as recorded in

the buffer. The buffer transaction status is updated from ready to old so the high-speed handler is ready for

either a retry or a new start-split transaction for this (or some other) fiJll-r’low-speed endpoint.

If there is an error on the complete-split transaction, the host controller will retry the complete-split

transaction for this bulkfcontrol endpoint “immediately” before proceeding to some other bulldcontrol split

transaction. The host controller may issue other periodic split transactions or other non-split transactions

before doing this complete-split transaction retry.

If there is a bulki'control transaction in progress on the downstream facing bus when the EOF time occurs,

the TT must adhere to the definition in Section 1 1.3 for its behavior on the downstream facing bus. This

will cause an increase in the error count for this transaction. The normal retry rules will determine if the

transaction will be retried or not on the downstream facing bus.

11 .17.4 Bulk!Contro[Buffering Requirements

The TT must provide at least two transactions of non-periodic buffering to allow the TT to deliver

maximum full-flow-speed throughput on a downstream bus when the high-speed bus is idle.

As the high—speed bus becomes busier, the throughput possible on downstream full-flow-Speed buses will
decrease.

A TT may provide more than two transactions of non-periodic buffering and this can improve throughput
for downstream buses for specific combinations of device configurations.

11.17.5 Other Bulki'Control Details

When a bullo’control Split transaction fails, it can leave the associated TT transaction buffer in a busy

(readyix) state. This buffer state will not allow the buffer to be reused for other bulkfcontrol split

transactions. Therefore, as part of endpoint halt processing for full-flow-speed endpoints connected via a

TT, the host software must use the Clear_T'T_Buffer request to the TT to ensure that the buffer is not in the

busy state.

Appendix A shows examples of packet sequences for full-flow~speed bulkfcontrol transactions and their

relationship with start-splits and complete-splits in various normal and error conditions.

11.18 Periodic Split Transaction Pipelining and Buffer Management

There are requirements on the behavior of the host and the TT to ensure that the microframe pipeline
correctly sequences full-llow-speed isochronousi'interrupt transactions on downstream facing fullJlow-

speed buses. The host must determine the microframes in which a start-Sp] it and complete-Sp] it transaction

must be issued on high~speed to correctly sequence a corresponding full-ilow-speed transaction on the

downstream facing bus. This is called “scheduling” the split transactions.

372

ZTE/SAMSUNG 1008-0400

|PR201 8-001 10

ZTE/SAMSUNG 1008-0401
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

In the following descriptions, the 8 microframes within each full-speed (1 ms.) frame are referred to as

microframe Y", ‘1", Y2, ..., YT This notation means that the first microframe of each full-speed frame is

labeled Y”. The second microframe is labeled Y1, etc. The last microframe of each full-speed flame is
labeled Y,. The labels repeat for each full-speed frame.

This section describes details of the microframe pipeline that affect both full-speed isochronous and full-

flow-speed interrupt transactions. Then the split transaction rules for interrupt and isochronous are
described.

Bulkfcontrol transactions are not scheduled with this mechanism. They are handled as described in the

previous section.

11.18.1 Best Case Full-Speed Budget

A microframe of time allows at most 187.5 raw bytes of signaling on a full-speed bus. In order to estimate

when full-flow-speed transactions appear on a downstream bus, the host must calculate a best case full-

speed budget. This budget tracks in which microframes a fiJII-i’low-speed transaction appears. The best case

full-speed budget assumes that 188 full-speed bytes occur in each microframe. Figure l l-60 shows how a
1 ms frame subdivided into microframes of budget time. This estimate assumes that no bit stuffing occurs

to lengthen the time required to move transactions over the bus.

The maximum number of bytes in a 1 ms frame is calculated as:

l 157 maximum_periodic_bytes_per_frame = 12 bes * 1 ms f 8 bits_per_byte "'

6 data_bits f 7 bit-stuffed_data_bits * 90% maximum_periodic_data_per_frame

Microf mes

Max wire time

Best case wire budge
l [57 bytes w! no
bilstut'fing

Figure “-60. Best Case Budgeted FulI-speed Wire Time With No Bit Stuffing

11.182 TT Microframe Pipeline

The TT implements a microframe pipeline of split transactions in support of a full-llow-speed bus. Start-
split transactions are scheduled a microframe before the earliest time that their corresponding full-flow-

speed transaction is expected to start. Complete-5p] it transactions are scheduled in microfiames that the

full-flow-speed transaction can finish.

When a full-flow~speed device is attached to the bus and configured, the host assigns some time on the

full-llow-speed bus at some budgeted time, based on the endpoint requirements of the configured device.

The effects of bit stuffing can delay when the full-flow-speed transaction actually runs. The results of other

previous full-flow-speed transactions can cause the transaction to run earlier or later on the full-.1flow-speed
bus.

The host always uses the maximum data payload size for a full-flow-speed endpoint in doing its budgeting.

It does not attempt to schedule the actual data payloads that may be used in specific transactions to full-

!low-speed endpoints. The host must include the maximum duration interpacket gap, bus turnaround times,

and “TT think time”. The TT requires some time to proceed to the next full-flow-speed transaction. This

time is called the “TT think time” and is specified in the hub descriptor field wHubCharacter-fstt‘cs bit 5 and
6.

373

ZTE/SAMSUNG 1008-0401

' |PR201 8-001 10

ZTE/SAMSUNG 1008-0402
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

#1: A fullt'low-speed transaction
budgeted to run here on the classic bus....

i ”'1 l7 Y

Best tiase budgeta. M. :
-.._ °~........

...............

z_
i

i t
i
'i
f

5 . . gn-Q HS A gHS Completel-‘splits .. 2 g i z
: Start-split i * i i =' 5 ?

1:2: ...has_ a HS start-split scheduled #3: ...has 3 HS complete-split transactions
In this microframe and scheduled in the possible microframes

for this fullllow-speed transaction

Figure 11-61. Scheduling ofTT Microframe Pipeline

Figure ”-61 shows an example of a new endpoint that is assigned some portion of a full-Ilow-speed frame

and where its start— and complete-splits are generally scheduled. The act of assigning some portion ofthe
full-flow-speed frame to a particular transaction is called determining the budget for the transaction. More

precise rules for scheduling and budgeting are presented later. The start-split for this example transaction is

scheduled in microframe Y-l” the transaction is budgeted to run in microframe Y0, and complete-splits are

scheduled for microframes Yl, Y2, and Y3. Section I l.l8.4 describes the scheduling rules more completely.

The host must determine precisely when start- and complete« splits are scheduled to avoid overruns or

underruns in the periodic transaction buffers provided by the TT.

11.183 Generation of Full-speed Frames

The TT must generate SOFs on the full-speed bus to establish the 1 ms frame clock within the definedjitter

tolerances for full-speed devices. The TT has its own frame clock that is synchronized to the microframe

SOFs on the high-speed bus. The SOF that reflects a change in the frame number it carries is identified as

the zeroth microframe SOF. The zeroth high-speed microframe SOF corresponds to the full-speed SOF on
the TT’s downstream facing bus. The TT must adhere to all timing/jitter requirements ofa host controller

related to frames as defined in other parts ofthis specification.

The TT must stop issuing full-speed SOFs after it detects 250 us of high-speed idle. This is nquired to

ensure that the full-flow-speed downstream facing bus enters suspend no more than 250 |.ls after the high-

speed bus enters suspend.

The TT must generate a full-speed SOF on the downstream facing bus based on its frame timer. The

generation of the full-speed SOF must occur within +f-3 full-speed bit time from the occurrence of the

zeroth high-speed SOF. See Section 11.22.] for more information about TT SOF generation.

11 .18.4 Host Split Transaction Scheduling Requirements

Scheduling of split transactions is done by the host (typically in software) based on a best-case estimate of

how the full-flow-speed transactions can be run on the downstream facing bus. This best-case estimate is

called the best case budget. The host is free to issue the split transactions anytime within the scheduled

microframe, but each split transaction must be issued sometime within the scheduled microframe. This

description ofthe scheduling requirements applies to the split transactions for a single fiJll-r’low-speed
transaction at a time.

I. The host must never schedule a start-split in microframe Y6. Some error conditions may result in the

host controller erroneously issuing a start-split in this microframe. The TT response to this start-split is
undefined.

374

ZTE/SAMSUNG 1008-0402

|PR201 8-001 10

ZTE/SAMSUNG 1008-0403
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

2. The host must compute the start-split schedule by determining the best case budget for the transaction
and:

a. For isochronous OUT full~speed transactions, for each microframe in which the transaction is

budgeted, the host must schedule a 188 (or the remaining data size) data byte start-split transaction.

The start-split transaction must be scheduled in the microframe before the data is budgeted to begin

on the full-speed bus. The start-sp] it transactions must use the beginningtmiddlefendr’all split

transaction token encodings corresponding to the piece of the full-speed data that is being sent on

the high-speed bus. For example, ifonly a single startosplit is required, an “all” encoding is used.

If multiple start~spl its are required, a “beginning” encoding is used for the first start-split and an

“end” encoding is used for the final start-split. If there are more than two start-Sp] its required, the

additional start-splits that are not the first or last use a “middle” encoding. A zero length full-speed

data payload must only be scheduled with an “all” start-split. A start-split transaction for a
beginning, middle, or end start-split must always have a non-zero length data payload.

Figure 11—62 shows an example of an isochronous OUT that would appear to have budgeted a zero

length data payload in a start»split (end). This example instead must be scheduled with a start-
split{all) transaction.

Isoch OUT transaction with 187 data

bytes has 196 byte budget.
Transaction budgeted tor Y1 and Y2.

[Y‘lli Ya \ YI 2. Y2 f Y: f Y: Y5 s Yr. 3 Y,
Bestéasebudget ..

, EHSSS-all g
i Start-split

z.

 i

a a s. - r a.

Schedule SS-all with 137 data bytes, not SS-begin(137 data} and SS-end [0 data}.

An lsoch OUT only ever has zero length data in SS-all.

Figure 11—62. lsochronous OUT Example That Avoids a Start-split-end With Zero Data

b. For isochronous IN and interrupt INIOUT fiill-r‘low-speed transactions, a single start-split must be

scheduled in the microframe before the transaction is budgeted to start on the full-flow-speed bus.

3. The host never schedules more than one complete-spl it in any microframe for the same full-flow-speed
transaction.

a. For isochronous OUT full-speed transactions, the host must never schedule a complete-split. The

TT response to a complete-split for an isochronous OUT is undefined.

b. For interrupt INIOUT full-flow-speed transactions, the host must schedule a complete-Sp] it

transaction in each ofthe two microfiarnes following the first microfiame in which the full-How-

Speed transaction is budgeted. An additional complete-split must also be scheduled in the third

following microframe unless the full-flow-speed transaction was budgeted to start in microframe

Y5. Figure 11-63 shows an example with only two complete—splits.

375

ZTE/SAMSUNG 1008-0403

|PR201 8-001 10

ZTE/SAMSUNG 1008-0404
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

#1: A lullilow-speed transaction
budgeted to run here on the classic bus,...

 Ya i Y: I Y2 Y3 : Y: a Y5 Y1 UH)“ i

Praised}!hudsasciiransacli.oas :
Best case budget * 5 *- ' -, 3

'3 f ; l-IS __ 5H Complete-splits
t s ‘ Start-split I'

#2: ...has a HS start-split scheduled
in this microframe and

#3: ...has 2 HS complete-split transactions
scheduled in the possible microfrarnes
for this fullilow«5peed transaction

Figure 11-63. End of Frame TT Pipeline Scheduling Example

c. For isochronous IN full-speed transactions, for each microframe in which the full-speed transaction

is budgeted, a complete-split must be scheduled for each following microframe. Also, determine

the last microframe in which a complete-split is scheduled, call it L. If]. is less than Y6, schedule
additional complete-splits in microframe L+l and L+2.

If L is equal to Y,,, Schedule one complete-split in microframe Y,. Also, schedule one complete»
split in microframe Y, ofthe next frame, unless the full-speed transaction was budgeted to start in

microframe Y”.

If L is equal to Y,, schedule one complete-split in microframe Y,I of the next frame, unless the full-

speed transaction was budgeted to start in microframe Y”. Figure 11-64 and Figure 1 1-65 show

examples of the cases for L: Y6 and L=Y,.

376

ZTE/SAMSUNG 1008-0404

|PR201 8-001 10

ZTE/SAMSUNG 1008-0405
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

#1 A mm] d u r Microhame with: ow-spee ansac lDl'I .

budgeted to run here on the classic bus... IaSt complete-spilt

\ from budget (L)
(___;_\ x

V l...Vz. . a.YH . . . « Vs : Vs Y1 - mm 5
. Previouslybudgeted transactions ' : ' 5 5’

Best case bud at i i '5 5
9 z 2 t" ; A ; "A ' '

:Hs 5 5 HS Complete-splits .“Extra” complete-splits
:Start-split i i

f
#2: ...has a HS start-split scheduled
in this microtrame and

#3: ...has 4 HS complete-split transactions
scheduled in the possible microirames
for this tulh’low-speed transaction

Figure "-64. lsochronous [N Complete-split Schedule Example at L=Yii

#1 M m] at” 1' Microframe with: u ow-spe ransac lOl'I -
budgeted to run here on the classic hush“ laSt complete-split

\ from budget (L)
(__._.__A__..___\ x

Yn- . YI :- Ye . . 5 Y3 : .. Y4 2 Y5 2 Yr. Y1 "+111

__ _ _ Previously budgeted transactions ' .- Z 3

Hes} case budget; A j A __ "'A :A 4‘ u
5 -’ iHEB -’ : HSfCompletesplits Extra

Eco plate-split

ism/spit
#2: ...has a HS start-split scheduled
in this microtrame and

#3: ...has 4 H5 complete-split transactions
scheduled in the possible microtrames
for this tullflow-speed transaction

Figure 11-65. lsochronous IN Complete—split Schedule Example at L=Y,

4. The host must never issue more than 16 start—splits in any high-speed microfiame for any TT.

5. The host must only issue a split transaction in the microframe in which it was scheduled.

6. As precisely identified in the flow sequence and state machine figures, the host controller must

immediately retry a complete-split after a high-speed transaction error (“trans_err”).

3T?

ZTE/SAMSUNG 1008-0405

|PR201 8-001 10

ZTE/SAMSUNG 1008-0406
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

The “pattern” of split transactions scheduled for a fiill-flow-speed transaction can be computed once when

each endpoint is configured. Then the pattem does not change unless some change occurs to the collection

of currently configured full-flow—speed endpoints attached via a IT.

Finally, for all periodic endpoints that have split transactions scheduled within a particular microframe, the

host must issue complete-split transactions in the same relative order as the corresponding start-split
transactions were issued.

11.18.5 TT Response Generation

The approach used for full-speed isochronous INs and interrupt INleUTs ensures that there is always an

opportunity for the TT to return datar’resuits whenever it has something to return from the full-flow-speed

transaction. Then whenever the full-flow-speed handler starts the fiill«flow-spced transaction, it simply

accumulates the results in each microframe and then returns it in response to a complete-split from the host.

The TT acts similar to an isochronous device in that it uses the microframe boundary to "carve up'I the full~

flow-speed data to be returned to the host. The TT does not do any computation on how much data to return

at what time. In response to the "next" high-speed complete-split, the TT simply returns the endpoint data it
has received from the full-flow-speed bus in a microframe.

Whenever the TT has data to return in response to a complete-5p] it for an interrupt full~flow~speed or

isochronous full-speed transaction, it uses either a DATA0! 1 or MDATA for the data packet PID.

If the full-flow-speed handler completes the full—flow-speed isochronousrJinterrupt IN transaction during a

microframe with a valid CRC 1 6, it uses the DATAOI’I PID for the data packet of the complete-split

transaction. This indicates that this is the last data ofthe full-flow-‘speed transaction. A DATAO PID is

always used for isochronous transactions. For interrupt transactions, a DATAOJ’I PID is used corresponding
to the full-flow~speed data packet PID received.

If the full-flow-speed handler completes the full-llow-speed isochronousfinterrupt IN transaction during a

microframe with a bad CRClfi, it uses the ERR response to the complete-split transaction and does not
retum the data received from the full-flow-speed device.

Ifthe TT is still receiving data on the downstream facing bus at the microframe boundary, the T1" will

respond with either an MDATA PID or a NYET for the corresponding complete-split. If the TT has

received more than two bytes of the data field of the full-flow—speed data packet, it will respond with an

MDATA PID. Further, the data packet that will be returned in the complete-split must contain the data

received from the full-{Iow-speed device minus the last two bytes. The last two bytes must not be included
since they could be the CRCI 6 field, but the TT will not know this until the next microfralne. The CRC] 6

field received from the full-flow-speed device is never returned in a complete-split data packet for

isochronousr‘intenupt transactions. If less than three data bytes of the full-tiow-speed data packet have been

received at the end of a microframe, the ”IT must respond with a NYET to the corresponding high~speed
complete-split. Both of these responses indicate to the host that more data is being received and another

complete-spl it transaction is required.

When the host controller receives a DATADII PID for interrupt or isochronous [N complete-splits (and

ACK, NAK, STALL, ERR for interrupt INIOUT complete-splits), it stops issuing any remaining complete-

splits that might be scheduled for that endpoint for this full-llow-speed transaction.

If the TI" has not started the full-tlow-speed transaction when it receives a complete-split, the TT will not
find an entry in the complete-split pipeline stage. When this happens, the protocol state machines show that

the TI responds with a NYET (e.g., the “no match” case). This NYET response tells the host that there are

no results available currently, but the host should continue with other scheduled split transactions for this

endpoint in subsequent microframes.

In general, there will be two (or more) complete-split transactions scheduled for a periodic endpoint.

However, for interrupt endpoints, the maximum size of the full-flow-speed transaction guarantees that it can

never require more than two complete-split transactions. Two complete-split transactions are only required

when the transaction spans a microframe boundary. In cases where the full-flow-speed transaction actually

378

ZTE/SAMSUNG 1008-0406

|PR201 8-001 10

ZTE/SAMSUNG 1008-0407
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

starts and completes in the same microframe, only a single complete-split will return data; any other earlier

complete-splits will have a NYET response.

For isochronous IN transactions, more complete-split transactions may be scheduled based on the length of

the full-speed transaction. A full-speed isochronous IN transaction can be up to 1023 data bytes, which can

require portions of up to 8 microframes of time on the downstream facing bus (with the worst alignment in
the frame and worst case bit stuffing). Such a maximum sized full-speed transaction can require

8 com plete—split transactions. If the device generates leSs data, the host will stop issuing complete-splits
alter the one that returns the final data from the device for a frame.

11.18.6 TT Periodic Transaction Handling Requirements

The 'IT has two methods it must use to react to timing related events that afiect the microframe pipeline:

current transaction abort and freeing pending start-spl its. These methods must be used to manage the

microframe pipeline.

The TT must also react (as described in Section ”.22. 1) when its microframe or frame timer loses

synchronization with the high-speed bus.

The TT must not issue too many full-{low-speed transactions in any microframe.

Each ofthese requirements are described below.

11.18.6.1 Abort of Current Transaction

When a current transaction is in progress on the downstream facing bus and it is no longer appropriate for
the TT to continue the transaction, the transaction is “aborted.”

The TT full-flowspeed handler must abort the current full-flow-speed transaction:

I. For all periodic transaction types, if the full-speed frame EOF time occurs

2. If the transaction is an interrupt transaction and the startvspl it for the transaction was received in some
microframe (call it X) and the TT microframe timer indicates the X+4 microframe

Note that no additional abort handling is required for isochronous transactions besides the generic leOUT

handling described below. Abort has different processing requirements with regards to the downstream

facing bus for IN and OUT transactions. For any type of transaction, the TT must not generate a complete»

split reSponse for an aborted transaction; e.g., no entry is made in the complete-split pipeline stage for an
aborted transaction.

I. At the time the TT decides to abort an [N transaction, the TT must not issue the handshake packet for

the transaction if the handshake has not already been started on the downstream facing bus. The TT

may choose to not issue the TN token packet, if possible. If the transaction is in the data phase (e.g., in

the middle of the target device generated DATA packet), the TT simply awaits the completion of that

packet and ignores any data received and must not respond with a full-flow-speed handshake. The 'IT

must not make an entry in the complete-spl it pipeline stage. This processing will cause a NYET

response to the corresponding complete-split on the high-speed bus.

2. At the time the TT decides to abort an OUT transaction, the TT may choose to not issue the TOKEN or

DATA packets, if possible. If the TT is in the middle of the DATA packet, it must stop issuing data

bytes as soon as possible and force a bit-stuffing error on the downstream facing bus. In any case, the

TT must not make an entry in the complete-spl it pipeline stage. This processing will cause a NYET

response to the corresponding complete-Split on the high-speed bus.

11.18.62 Free of Pending Start-splits

A start-split can be buffered in the start-split pipeline stage that is no longer appropriate to cause a full-flow-

speed transaction on the downstream facing bus. Such a start-spl it transaction must be “freed” from the

‘ 379

ZTE/SAMSUNG 1008—0407

|PR2018—001 10

ZTE/SAMSUNG 1008-0408
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

start-split pipeline stage. This means the start-split is simply ignored by the TT and the TT must respond to

a corresponding complete-split with aNYET. For example, no entry is made in the complete-split pipeline

stage for the freed Startnspl it.

A start-Sp] it in the start-split pipeline must be freed:

1. If the full-speed frame EOF time occurs, except for start-Sp] its received in (Y- 1),

2. If the start-split transaction was received in some microframe (call it X) and the TT microframe
timer indicates the X+4 microframe

If the TT receives a periodic start-split transaction in microframe Y“, its behavior is undefined. This is a
host scheduling error.

11.18.B.3 Maximum Full-flow-speed Transactions per Microframe

The "IT must not start a firll-Jlow-speed transaction unless it has space available in the complete-split

pipeline stage to hold the results of the transaction. If there is not enough space, the TT must wait to issue

the transaction until there is enough space. The maximum number of normally operating full-speed
transactions that can ever be completed in a microframe is 16.

11 .18.? TT Transaction Tracking

Figure 1 1-66 shows the TT microframe pipeline of transactions. The 8 high-speed microframes that

compose a fiJllJlowuspeed frame are labeled with Y, through Y, assuming the microframe timer has

occurred at the point in time shown by the arrow (e.g., time “NOW”).

As shown in the figure, a start-split high-speed transaction that the high-speed handler receives in

microframe Y“ (e.g., a start-split “3”) can run on the full-llow-speed bus during microframe times YI or Y,
or Y,. This variation in starting on the fiill-r’low-speed bus is due to hit stuffing and bulldcontrol
reclamation that can occur on the fiJll-r‘low-speed bus. Once the full-llow-speed transaction finishes, its

complete-sp] it transactions {if they are required) will run on the high-speed bus during microframes Y,, Y,,

or Y,. I I | I l l l
: : : : : i :

Yn i Y: I Y: i Y; i Y4 1 Y5 i Yo l Y1
E l i l l i lr I I I l | lI I l I I l l

Stan-splits B E C i o 5 E E F E c .‘ None, E A"
rsrLs trunsuctio A I, A. B ; A, B. c 1 B, c. D g c. n, E : D, E, F i E, F. o : F, G
Complete-splils F', G‘ I A : A. B ,' A. B, C l B. C. D : C. D, E i D, E, F l E F, G

I I 1 ! ! I I‘
NOW-4 Now-3 Now-2 NOW-l NOW

Figure 11-66. Microframe Pipeline

When the microframe timer indicates a new microframe, the high-speed handler must mark any start-splits

in the start-split pipeline stage it received in the previous microframe as “pending” so that they can be

processed on the fiJll-flow-speed bus as appropriate. This prevents the full-llow-speed transactions from
running on the downstream bus too early.

At the beginning of each microfiame (call it “NOW”), the high-speed handler must free (as defined in

Section 1 1.18.6.2) any start-sp] it transactions from the start-split pipeline stage that are still pending from

microframe NOW-4 {or earlier) and ignore them. Ifthe transaction is in progreSs on the downstream facing

bus, the transaction must be aborted (with full-llow-speed methods as defined in Chapter 8). This is

described in more detail in the previous sections. This ensures that even if the full-tlow-speed bus has

encountered a babble condition on the bus (or other delay condition), the TT keeps its periodic transaction

pipeline running on time (e.g., transactions do not run too late). This also ensures that when the last

scheduled complete—split transaction is received by the "IT, the fiJll-flow-speed transaction has been

completed (either successfully or by being aborted).

380

ZTE/SAMSUNG 1008-0408

|PR201 8-001 10

ZTE/SAMSUNG 1008-0409
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Finally, at the beginning of each microframe, the high-speed handler must change any complete-split

transaction responses in the complete-split pipeline stage fi'om microframe NOW~2 to the free state so that

their space can be reused for responses in this microframe.

This algorithm is shown in pseudo code in Figure 11-67. This pseudo-code corresponds to the

Advance_pipeline procedure identified previously.

-- Clean up start-split state in case full-[low-speed bus fell behind
while start—splits in pending state received by TT before microframe—4 loop

Free start—split entry
End loop

-- Clean up complete-split pipeline in case no complete-splits were received
While complete-split transaction states from (microframe-2} loop

Free complete-split response transaction entry
End loop

-- Enable full—[low—speed transactions received in previous microframe
While start-split transactions from {previous_microframe} loop

Set start-split entry to pending status
End loop

Figure 11-6?. Advance_Pipeline Pseudocode

11.18.8 TT Complete-split Transaction State Searching

A host must issue complete-split transactions in a microframe for a set of full-flow-speed endpoints in the

same relative order as the start-splits were issued in a microframe for this TT. However, errors on start— or

complete-splits can cause the high-speed handler to receive a complete-split transaction that does not

“match” the expected next transaction according to the TT’s transaction pipeline.

The TT has a pipeline of complete-split transaction state that it is expecting to use to respond to complete-

split transactions. Normally the host will issue the complete-5p] it that the high-speed handler is expecting

next and the complete-split will correspond to the entry at the front of the complete-split pipeline.

However, when errors occur, the complete~spl it transaction that the high-speed handler receives might not

match the entry at the front of the complete-split pipeline. This can happen for example, when a start-split

is damaged on the high-speed bus and the high-speed handler does not receive it successfully. Or the high-

speed handler might have a match, but the matching entry is located after the state for other expected

complete-splits that the high-speed handler did not receive {clue to complete-split errors on the high-speed
bus}.

The high-speed handler must respond to a complete-split transaction with the results of a full-llow-speed

transaction that it has completed. This means that the high-speed handler must search to find the correct

State tracking entry among several possible complete-split response entries. This searching takes time. The

high-speed handler only needs to search the complete-split responses accumulated during the previous

microframe. There only needs to be at most 1 microframe of complete-split response entries; the

microframe of responses that have already been accumulated and are awaiting to be returned via high-speed

complete-splits.

The split transaction protocol is defined to allow the high-speed handler to timeout the first high-speed

complete-split transaction while it is searching for the correct response. This allows the high-speed handler

time to complete its search and respond correctly to the next (retried) complete-split.

The following interrupt and isochronous flow sequence figures show these cases with the transitions labeled

“Search not complete in time” and “No split response found”.

The high-speed handler matches the complete-split transaction with the correct entry in the complete-split

pipeline stage and advances the pipeline appmpriately. There are five cases the TT must handle correctly:

1. if the high-speed complete-split token and first entry of the complete-split pipeline match, the high-speed

handler responds with the indicated datar'status. This case occurs the first time the TT receives a

complete-split.

381

ZTE/SAMSUNG 1008-0409

|PR201 8-001 10

ZTE/SAMSUNG 1008-0410
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

2. Same as above, but this is a retry of a complete-Sp] it that the TT has already received due to the host
controller not receiving the (previous) response information.

3. If the complete—split transactioa matches some other entry in the complete-5p] it pipeline besides the first,

the high-speed handler advances the complete-split pipeline (e.g., frees response information for previous

complete-Sp] it entries) and responds with the information for the matching entry. This case can happen

due to normal or missed previous complete-split transactions. An example abnormal case could be that

the host controller was unsucceSSful in issuing a complete-split transaction to the high-speed handler and

has done endpoint halt processing for that endpoint. This means the next complete-split will not match

the first entry of the complete-split pipeline stage.

4. The high-speed handler can also receive a complete-split before it has started a full-flow-speed

transaction. If there is not an entry in the complete-split pipeline, the high-speed handler responds with a
NYET handshake to inform the host that it has no status information. When the host issues the last

scheduled complete-split for this endpoint for this frame, it must interpret the NYET as an error

condition. This stimulates the normal “three strikes” error handling. If there have been more than three

errors, the host halts this endpoint. If there have been less than three errors, the host continues processing

the scheduled transactions of this endpoint (e.g., a start-split will be issued as the next transaction for this

endpoint at the next scheduled time for this endpoint). Note that a NYET response is possible in this case

due to a transaction error on the start-split or a host (or TT) scheduling error.

5. The high-speed handler can timeout its first high-speed complete-Sp] it transaction while it is searching the

complete-split pipeline stage for a matching entry. However, the high-speed handler must respond

correctly to the subsequent complete-split transaction. If the high-speed handler did not respond correctly

for an interrupt IN after it had acknowledged the full-{low-speed transaction, the endpoint soitware and

the device would lose data synchronization and more catastrophic errors could occur.

The host controller must issue the complete-Sp] it transactions in the same relative order as the original

corresponding start-split transactions.

11.19 Approximate TT Buffer Space Required

A transaction translator requires butter and state tracking space for its periodic and non-periodic portions.

The TT microframe pipeline requires less than:

0 752 data bytes for the start-split stage

- 2x 138 data bytes for the complete-split stage

0 l6): 4): transaction status (<4 bytes for each transaction) for start-split stage

a 16): 2x transaction status (<4 bytes for each transaction) for complete-5p] it stage

There are, at most, 4 microframes of buffering required for the start-split stage of the pipeline and, at most,

2 microframes of buffering for the complete-split stage of the pipeline. There are, at most, 16 full-speed

(minimum sized) transactions possible in any microframe.

The non-periodic portion of the TT requires at least:

a 2x (64 data + 4 transaction status) bytes

Different implementations may require more or less buffering and state tracking space.

11.20 Interrupt Transaction Translation Overview

The flow sequence and state machine figures show the transitions required for high-speed split transactions

for full-flow-speed interrupt transfer types for a single endpoint. These figures must not be interpreted as

showing any particular specific timing. In particular, high-speed or full-flow-speed transactions for other

endpoints may occur before or after these Split transactions. Specific details are described as appropriate.

382

ZTE/SAMSUNG 1008-0410

|PR201 8-001 10

ZTE/SAMSUNG 1008-0411
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

In contrast to bulkfcontrol processing, the firll-i’low-spced handler must not do local retry processing on the

full-llow-speed bus in response to a transaction error for full-llow-speed interrupt transactions.

11.20.1 Interrupt Split Transaction Sequences

The interrupt IN and OUT flow sequence figures use the same notation and have descriptions similar to the

bulkfcontrol figures.

In contrast to bulkfcontrol processing, the full-speed handler must not do local retry processing on the full-

speed bus in response to a transaction errors (including timeout) of an interrupt transaction.

Start split

stl

 sel§

no! h‘aérsgzrr, Tranis_err
Data_i:nto#SS_pfpe

362i
V

shli
V

comp. split

Figure 11-68. Interrupt OUT Start-split Transaction Sequence

383

ZTE/SAMSUNG 1008—0411

|PR2018—001 1O

ZTE/SAMSUNG 1008-0412
IPR2018-00110

334

Complete Split

Universal Serial Bus Specification Revision 2.0

Fast;march
Searchnotcompfefemflme... I

................NOSPIWeSPomefound :
i

... I

ohfl’stall oldiack olcfi’nak otd/trans_err TranI err
ccl !

|

it Vi!
Endpoint Go to next
halt cmd

v ce 3 ‘Retry 27,--957;
start split

|

L-------~I
I ce41‘

if errficount < 3 i

retry start split !
*

ccSi

-—- I [tic errlNDt last c2111“;
ch61” i
Next i

comp. split i
l

i

r""m‘i

I if errficount < 3
i retry immed.
i com .s lit

Y P P
if err_count >= 3

endpoint halt

Figure 11-69. Interrupt OUT Complete-split Transaction Sequence

ZTE/SAMSUNG 1008-0412

|PR201 8-001 10

ZTE/SAMSUNG 1008-0413
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Start split

I

Data_ini‘o_SS_p:]oe
V

Go to

comp. split

Figure 11-70. Interrupt IN Sta rt-split Transaction Sequence

Complete split

; Search not

complete in time

I‘..._; _
! 5
! ..

i okf/mbredata old/fastdata aid/oak oicfi’stafl old/rrans__eu-
Trans_eIrr

i-i-
i F!_._ .__i 1 Last 1i Trans_ not transerr i Retry Endpoint ce3 I lNot lasti erri Chi ‘ start split halt i._.1_._._.! ChfiV

ce‘i ! HC_AccipLdata . —i‘m. """“‘“}‘1 1m: err Ne“ _i i Tral|is : '8 :0 is ctiunt comp. 5PM! . Next com ! ra n. _err, ran. _err, '

' w" s I t p m ! Datdx = oatdx x= 2%________
i l P " ceSi r !
i4—- 1_____._._._._._._._i toggie toggie cefii !' ' I

Inc err_t'?Er":________ ch? : Chg; if err_count < 3 i

ce'Tr 08%! V Retry retry start split !
* Go to next cmd start split ce£i

1f err_count >= 3 If err_count < 3 HC_Accept_data HC__reject data . _
endpmnl halt retry immed. __ If err_count ’- 3

comp. split endpoint halt

Figure [1-71. Interrupt IN Complete-split Transaction Sequence

385

ZTE/SAMSUNG 1008—041 3

|PR2018—OO1 1O

