

 Release provide a detailed statement of the such knnuz, mod Include the elected species or structure, utility of the invention. Define any terms that may have a special meaning.
known. Please attach a copy of the cover shea, pertinent claims, and abstract.
Title of fivenion AMDCDERIVATIVES OR SALTS THEREOF:
 Earliest Priority Filing Date: \qquad
MS AP
 appropriate serial number.

 compenngs UF UTE REST PL EDges A.
table

Biotechnology/Chemical Division
Scientific and Technical Information Center

Search Results Feedback Form

The results for your recent search request are attached. If you have any questions or comments about the scope or the results of the search, please contact the searcher whose name is stamped below.
Point of Contact:
Barb O'Bryen

Compliment or Complaint, contact:

Stephanie Publicker
Information Branch Chief - STIC
Phone: 308-4740

Arti Shah
Division Chief - Biotech/Chem Division - STIC
Phone: 308-4259

Best Available Copy

Patel

```
#> fil reg; d stat que 18; fil capl; d que nos 19
FILE 'REGISTRY' ENTERED AT 15:59:09 ON 21 AUG 2000.%
USE IS SUBUECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2000 Amexican Chemical Society (AcS)
STRUCTURE EILE UEDATES: 20 AUG 2000 HTGHEST RN 286833-04-3
DICTIONARY RILE UPDATES: 20 AUG 2000 HIGHEST RN 2&6833-04-3
TSCA INFORMATTON NOW CURRENT THROUGH JANUARY 11, 2000
    Please note that search term prieing does apply when
    conducting smartsELECT searches.
Structure search limats have been increased. See HELF SLIMIT
for details.
```

16 STR

Aethoryct
11

Hy 23
VAR G1me/N
VAR G2 $=2 / 3 / 4$
RER $G 3=(0-1) \quad 0$
VPA 20-8/9/10 U
NODE ATTRIBUTES:
DEFAULIT MLEVEL IS ATOM
MLEVEL IS CLASS AT 1423
DEFAULT ECLEVEL IS LIMITED
GRAPH ATTRIBUTES:
RING(S) ARE ISOLATEL OR EMBEDDED
NUMBER OF NODES ITS 23
STEREO ATTRIBUTES: NONE
18172 SEA F'TLEmREGISTRY SSS FUL. LG
100.08 PROGESSED 102627 ITERATIONS

172 ANSWERS
SEARCH TIME: 00.00 .15

FTLE 'CAPLUS' ENTERED AT 15:59:10 ON 21 AUG 2000
USE IS SUBUECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETATLS.
Searched by Barb o'Bryen, stic 308-4291

COPYRIGHY (C) 2000 AMERICAN CHEMICAL SOCIETY (ACS)

```
Copyright of the articles to which records in this datmbage refer is
held by the publismers 11sted in the puELISHER (PB) field (available
for records publishead or updated in Chemical Abstracts arter December
26, 1956), unless otherwiwe indicatect in the omiginal publicatlons.
FTIE COVERS 1967 - 21 AUg 2000 VOL 133 ISS 9
ETHE LAST UPDATED: 20.AUG 2000."(20000E2O/ED)
```

This file contains CAs Registry Numbers for easy and accurate substance identification.

This file supports REGLstRy for cinect browsing and searching of all substance date from the RGGSTRY file. Enter HEDR FIRSE for more information.

Now you can extend your author, patent asmignee, patent infomation, and tatle searches back to 1907. The records from 1907-1966 now have this searehable data in chomD. You mow have electronie access to daj. of GA: 2907 to 1966 in CAOLD and 1967 to the present in GAPLUS on STN.

L9 ANEWZR 1 OF 6 CAFLUS COPYRIGHT 2000 ACS
ACCESSION NUMBER: $\therefore \quad 1999: 282201$ CAELUS
DOCUMENT NUMBER:
TITLE:
INVENTOR (S) :

PATENT ASSICNEE (S) :
SOURCE:
DOCUMENT EYPH:
LANGUAGE:
FAME HK ACC. NUM. COUNT: 1
PATENT INEORMATION:

$$
130: 311793
$$

preparation of amides as antídiabetict
Maruyama, Tatsuya; Suzuki, Takayuki; Onda, Kemichi; Hayakawa, Masahiko; Moritomo, Hiroyuki; Kimizuka, "Tetsuya; Matsui, Tetsuo
Yamanouchi phanmaceutical Co., Lted., Japan
PCT Int. Appl. , 45 Pp .
CODEN: PIXXDZ
patent
Tapanese

CN 1218045 A 19990602
NO 2000001983 A . 20000414
PRTORITY PRELN. INFO.:

| CN $1998-121375$ | 19981016 |
| :--- | :--- | :--- |
| NO $2000-1983$ | 20000414 |
| JP $1997-285778$ | 19971017 |
| WO $1998-\mathrm{JP4671}$ | 19981015 |

MARPAT 130:311793

OTHER SOURCE (S):
GI

I

$I T$
$A B$ The tithe compds. I [ring $B=$ an optionally substituted heteroaryi optionally fused with a benzene ring; $X=$ a bond, lower alkylane or lower alkenylene (optionaly substituted by hydroxy or lower alkyl), carbonyl, or $N H$ (further details related to X are given): $A=$ a lower alkylene or a group represented by (lower alkylene)-o; Rla and Rlb $=$ hydroger or lowem alkyi; R2 m hydrogen or halogeno; and $z=$ nitrogen or ch] are prepd. I are useful as diabetes rememies which not ondy function to accelerate the secretion of insulin and enhance insulin sensitivity but also have an anti-obesity action and an antihyparlipemic action based on their selective stimulative action on beta. 3 receptor. For example, imidazole deriv. Ir was prepd. Compds. of this invention significantly decreased blood sugar in mice.
यт 223672-09-1P 223672-10-4P 223672-11-5P 223672-12-6. 223672-13-7F 223672-14-8F 223672-15-9P 223672-16-0P 223672-17-1P 223672-18-2P 223672-19-3P 223672-20-6P 223672-21-7P 223672-22-8p 223672-23-9P 223672-24-0p 223672-25-1P 223672-26-2P 223672-27-3P 223672-29-5F 223672~30-8P 223672-31-9p 223672-32-Op 223672-34-2P 223672-36-4P 223672-38-6F 223672-40-0F 223672-42-2P 223672-44-4P 223672-46-6P 223672-47-7P 223672-48-8F 223672-49-9P 223672-50-2P 223672-51-3P 223672-52-4P 223672-53-5P 223672-55-7P 223672-58~0р 223672-60-4F 223672-63-7F 223672-65-9P 223672-66mof 223672-67-1P 223672-6Bm-2P 223672-69-3F 223672-70-6P 223672-71-7P 223672-72-BP 223672-73-9P 223672-74-0P 223672-75-1P 223672-76-2P 223672-77-3P 223672-79-4F 223672-79-5P 223672-80-8P

Searched by Barb o'Bryen, surc 308-4291

```
223672-81-9P 223672-82-0F 223672-83-1F
223672-84-2P 223672-85-3P 223672-86-4F
223672-87m5P 223672-88-6P 223672-89-7P
223672-90-0P 223672-91-1P 223672-92-2E
223672-93-3P 223672-94-4P 2236"72-95-5p
22367%-96-6P 223672-97-7P 223672-98-8P
223672-99-9P 223673-00-5P 223673-01-6P
223673-02-7P 223673-03-8F 223673-04-9F
223673-05-0P 223673-06-1P 223673-07-2P
223673-08-3P 223673-09-4F 223673-10w7F
223673-11-8p 223673-12-9P 223673-13-0P
223673-14-1P 223673-15-2P 223673-16-3P
223673-17-4P 223673-18-5% 223673-19-6ए
223673-20-9p(223673-21-0p 223673-22-1p
223673-23-2P 223673-25-mP 223673-26m-5P
223673-27-6P 22367"3-28-7F 2236"73-29-GE
223673-30-1P 223673-31-2P 223673-32-3F
223673-33-4P 223673-58-3P 223673-59-4P
223673-60-7P 223673-61-8p 223673-62-9p
223673-63-OP 223673-64-1P 223673-65-2P
223673-56-3P
RL: BAC (Biological activity or effector, except adverge); SBN (Symthetic
preparation); THU ('nerapeutic use); BLOL (Biological study); PRER
(Preparation): USES (Uses)
    (prepa. of amides as antidiabetics)
RN 223672-09-1 CAPLUS
CN 3-Pyridinecarboxamide, NH-[4-[2-[!(2R)-2-hydroxy-2-
phenylethyllaminolethyllphenyllm, dihydrochloride (GCI) (CA INDEX NAME)
```

Absolute stereochemistry.

2 HCl

Absolute stereochemistry.

Best Available Copy

Patel

RN 223672-11-5 CAPLUS
CN 2 -Propenamide, $N-[4-[2-[[(2 R)-2-h y d r o x y-2-p h e n y l e t h y l]$ amino $]$ ethyl $]$ phenyl $]-$ $3-(2 \sim p y E i d n y l)-$, dihydrochloride, (2E) $=(9 \mathrm{CI})$ (CA INDEX NAME)

Absolute *teよeochemistry,
Double bonc geometry as shown.

RN 223672-12~6. GApLUS
$\mathrm{CN} \quad 2$-Eenzothlazoleacetamide, $N-[4-[2-[[(2 R)-2-h y d r o x y-2 \omega$ phenylethyl aminolethyl] phenyl]w, dihydrochloride (9CI) (CA INDEX NAME)

Absolute stereochemistry.

2 HCl

RN

CN Imidazo \{2, 1-b]thiazolem-acetamde, $N=[4-[2-[\{(2 R)-2-h y c r o x y-2-$ phenylethyllaminolethyllphenyll-, dihydrochloride (9CI) (CA INDEX NAME)

Absolute stereochemistry.

- 2 HCl

RN 223672-14-8 cAPLUS
CN 4-Thiazoleacetamide, $\mathrm{N}-$ - $4-[2-1(12 \mathrm{~K})-2$-hydroxy-2-
phenylethyllaminolethyljphenyll-2-methyl-, dinydrochioride (9cx) (cA INDEX NAME)

Absolute stereochemistry.

- 2 HCl

RN 223672-15-9 CAPUUS

phenylethyllaminolethyllphenyllo, dihydrochloride (9ct) (CA INDEX NAME)
Absolute stereochemistry.

- 2 HCl

```
RN 223672-16-0 cavLuS
CN IH-Tetwazole-5-acetamide, N- [4-12-[\(2R)-2-hydrcxy-2--
    phenylethyljaminolethyllpheny1] m, monohycrochloride (9cI) (CA INDEX NNME)
```

Absolute stereochemistry.

- HCl

```
RN 223672-17-1 CAPLUS
CN 1H-1,2,4mTriazolem-3mcetamice, 2,5-dihycmro-N-14-[2-[1(2R)-2-hydroxy-2m
    phenylethyl] aminolethyllphenyl]-5m-thiozom, monohydrochloride (9CI) (CA
    INDEX NAME\
```

Absclute stereochemistry.

- HCl

```
RN 223672-18-2 CAPLUS
CN 4-Thiazoleacetamide, 2mamino-N-[4-[2*[l(2R)-2-hydroxy-2-
    phenylethyl|aminolethyllphenyll-, dihydrochloride (9CI) (CA INDEX NAME)
Absolute stereochemistry.
```



```
-2 HCl
RN \(223672 \cdots 19\) CAPLUS
CN I, 2, 4-Thiadiazole-3-acetamide, 5-amino-N-[4-[2-1 [ (2R)-2-hydroxy-2phenylethyllaminolethylphenyl) - elihydrochloxide (gcy) (CA INDEX NAME)
Absolute stereochemistry.
```



```
\(-2 \mathrm{HCL}\)
RN 223672-20-6 CAELUS
CN Carbamic acic, \(13-[2 \cdots[4 \cdots[2 \omega[[(2 R)-2-h y c t r o x y-2 m\) phenylethyllaminolethyllphenyll aninol-2-oxoethylj-1, 2, 4-thiadiazol-5mylun, ethyl ester, monohydrochloride ( \(\operatorname{ECI}\) ) (CA INDEX NAME)
```

Absolute stereochemistry.

HCl
RN 223672-21-7 CRELUS
CN $\quad 4-$ Thiazoleacetamide, $2-[(3-f 1$ uorophany $)$ amino $]-N-(4-(2-[(2 R)-2-h y d r o x y-2-$ phenylethyllaminolethyllphenyl]-, aihydrochloride (9CI) (CA INDEX NAME)

Absolute stereocheraistry.

- 2 HCl

RN 223672-22-8 CARLUS
CN 2-Fyridineacetamide, 6-chloro-N-(4-(2-[1(2R)-2-hydroxy-2-2
phenylethyllaminolethyl]phenyl] ", monohycrochloride (SCI) (CA INDEX NAME)
Absolute stereocheraistry.

- HCl

```
RN 223672-23-9 CAPLUS
CN 2-Pyridimeacetamide, Nm[4-[2m[[(2R)-2-hydrexy-2-
    phenylethyl]aminolethyl] phenyl]-6m(phenylmethoxy)-, monohydrochloride
        (9CI) (CA INDEX NAME)
```

Absolute stereochemistry.

$-\operatorname{mel}$

RN 223672-24-0 CABLUS
CN 1H-Imidazole-2-acetamide, N-[4-[2-[\{(2R)-2-hydroxy-2-
phenylethyllaminolethyl] phenyl]-1"(2methyl-2-propenyl)-, dinydrochloride (9CI) (CA INDEX NAME)

Absolute stereocheristry.

02 HCl
RN 223672-25-1 CARLUS
 phenylethyllaminolethyllpheny11-1-(phenylmethyl)-", dihydrochloride (9CT) (CA INDEX NAME)

Absolute stexeochemistry.

© 2 HCl
RN 223672-26-2 CAPLUS
 hydroxy-2-phenylethyllaminolethyllphenyl]-, dihydrochloride (9CI) (CA INDEX NAME)

Absolute stereochemistry.

- 2 HCl

RN 223672-27-3 CAELUS
 hydroxy-2-2menylethyllaminolethyllphenylu-, dinydrochloride (9CI) (CA TNDEX NAME)

Absolute stereochemistry.

2 HCl
searched by Barb 0'Bryen, STIC 308+4291

RN 223572-29-5 CMALUS
$\mathrm{CN} \quad 1 \mathrm{H}$-Imidazole-4-acetamide, $1-[(4-c h l o r o p h e n y 1)$ methyll $]-\mathrm{N}-14-[2-[$ (2R)-2-hydroxy-2-phenylethyllaminolethyllphenyll-, dihydrochloride (9cI) (cA INDEX NAME)

Absolute stereochemistry.

$\bullet_{2} \mathrm{HCl}$

Absolute stexeochemistry.

- 2 HCl

RN 223672-31-9 CAPLUS
CN $1 \mathrm{H}-$ Tmidazole-2-acetamide, $1-[(4-$ bromophenyl $)$ methyl $]-N-[4-(2-[(12 R)-2 m$ hydroxy-2-phenylethyllaminolethyllphenyll", dihydrochloride (9CI) (CA INDEX NAME)

Absolute stereochemistry.

2 HCl

RN 223672-32-0 CAPLUS

 (9CT) (CA INDEX NAME)

Absolute stereochemistry.

02 HCl
RN 223672-34-2 CAPLUS
CN \quad H-Irtidazole-2macetamide, $N \cdots[4-[2 \omega[\{(2 R)-2-h y d r o x y-2-$
phenylethyllamino]ethyl]phenyl]-1-[[4-(trifluoromethyl)phenyl]methyll-, dihydrochloride (9CI) (CA INDEX NAME)

Absolute stereochemistry.

Absolute stereochemistry

- 2 HCl

RN $223672-38-6$ CAPLUS
$\mathrm{CN} \quad 1 \mathrm{Hm}$ Tmidazole-2-acetamide, $1-[(4-f 1$ uoropheny1) methyl]-N-[4-[2-[[(2R)-2m hydroxy-2-phenylethyllaminolethylphenyl)-5-methyl-", dihydrochloride (9et) (CA INDEX NAME)

Absolute stereochemistry.

- 2 HCl

RN 223672-40-0. CAPLUS
CN 1H-Imidazole-2-acetamide, $1-[(4-f l u o r o p h e n y 1)$ methyl $]-N-14-[2-[(2 R)-2-$
hydroxy-2-phenylethyl]aminolethylyphenyll-4-methyl-, dihydrochloride (9cr) (CA INDEX NAME)

Absolute stereochemistry.

- 2 HCl

RN 223672-42-2 CAPLUS
$\mathrm{CN} \quad 1 \mathrm{H}-$ Tetrazole-5-acetamide, $1-[(4-$ fluoropheny $)$ methyl $]-\mathrm{N}-[4-[2-[(2 R)-2 \omega$ hydroxy-2-phenylethyl]aminolethyllphenyl]-, monohydrochloride (9cT) (cA INDEX NAME)

Absolute stereochemistry.

- HCl

```
RN 223672-44-4 CADLUS
CN 1H-Tetratole-5-acetamude, 1-[(3,4-dichlovophenyl)methyI]-N-[4-[2-[[(2R)-2-
hydroxym-phenylethyl]aminolethyljphenyl]-, monohyarochLoride (9cT) (CA
INDEX NAME)
```

Absolute stereochemistry

HCl

RN "223672-46-6 CARLUS
$\mathrm{CN} \quad 2 \mathrm{HmTetrazole-5-acetamide}, 2-[(4-$ fluoropheny1)methy1]-N-[4-[2-[[(2R)-2w hydroxy-2-phenylethyllaninolethyllphenyll-, monohydrochzorde (9CI) (ch INDEX NAME)

Absolute stereochemistry.

- HCl

```
RN 223672-47-7 CAPLUS
CN 1H-7,2,4-Triazole-3-acetamide, Nm {A-[2-[|(2R)-2-bydroxy-2-
    phenylethyllamino)ethyllphenyll-, dihydrochloride (9CI) (CA,INDEX NANE)
```

Absolute stereochemststy.

Absolute stereochemistry.

Eh

- 2 HCl

Searched by Barb O'Bryen, STIC 308-4291

```
RN 223672-49-9 CAPLUS
CN 4-Thiazoleacetamice, 2-(acetylamino)-N-[4-[2-[((2R)-2-hycroxy-2-
    phenylethyl]aminolethyl]phenyl]-, monohydrochloride (gCI) (CA INDEX NAME)
```

Absolute stereochemistry.

Absolute stexeochemistry.

- HCl

Absolute stereochemistry.

- 2 HCL

RN 223672-52-4 capLUS
CN 4-Thiazoleacetamide, $\mathrm{N}=[4-(2-[(2 \mathrm{R})$-2mbydroxy-2m
phenylethyl] amino)ethyl] phenyl]-2-(phenylamino) - , monohydrochloride (9C1) (CA INDEX NAME)

Absolute stereochemistry.

- HC

Absolute stereochernistry.

Absolute stereochemistry.

- सtw


```
    phenylechyllaminolethyllphenyl?-5-methyl-, dinydrochlotide (9CI)' (cA
```

 phenylechyllaminolethyllphenyl?-5-methyl-, dinydrochlotide (9CI)' (cA
 INDEX NAMZ)
    ```
    INDEX NAMZ)
```

Absolute stereochemistry.

- 2 HCl

RN 223672-60-4 CAFLUS
CN $\quad 4$-Thiazolepropanamide, 2 -anino-N-[4-[2-[1(2R)-2-hydroxym-2-
phenylethyl.]aminolethyllphenyl] - , monohydrochloride (9CI) (CA INDEX NAME)
Absolute stereochemistry.

- HCl

RN 223672-63-7 CAELUS
 hydroxy-2-phenylethyllamino]ethyllphenyll-, dihydrochloride (9ct) (CA INDEX NAME

Absolute stereochemiztry.

- 2 HCL

Searched by Barb o'Bryen, STxC 308-4291

```
RN 223672-65-9 carLus
CN Imbdezo[2,1-b]thiazolem2-acetrmude, N-[4-[2-[|(2R)-2mhydroxym-2m
    phenylethyl|aminolethyllphenyl]", monohycmrochloride (9CI) (CA INDEX NAME)
```

Absolute stereochemistry.

－HCD

```
RN 223672-66-0 CAPLUS
CN 1H-1,2,4-Triazolem3-acetamide; N-[4-[2-[[(2R)-2-hycroxy-2-
    phenylethyllamino)ethyllphenyl]-1-(phenylmethyl)- (90I) (CA INDEX NAME)
```

Absolute stereochemistry.


```
RN 223672-57-1 CAPLUS
```



```
    phenylethyllamino}ethyllphenyl1-3-(phenylmethyl)-2-thioxom,
    monohydrochloride (9CI) (CA INDEX NAME)
```

Absolute stereochemistry．

- 2 HCl

RN 223672 m 70 m CA mUS
CN JH-Tmidazole-2-acetamiden $N-[4-[2-1[(2 R)-2-h y d r o x y-2-$
phenylethyl]amino $]$ ethyl phenyl $]-1-[44-(1$-xaethylethyl)phenyl]methyl]dimydrocmloride (9CL) (CA INDEX NAME)

Absolute stereochemistry.

$\bullet 2 \mathrm{HO}$
RN 223672-71-7 CRPWUS
 hyoroxy-2-phenylethylaminolethyllphenyl], dihydrochloxide (9cT) (cA INDEX NAME)

2 HCl
RN 223672-72-8 CAPLUS
$\mathrm{CN} \quad 1 \mathrm{H}-$ Imidazole-2-acetamide, $1-[(2-c h l o r o p h e n y l)$ methyl $]-\mathrm{N}-[4-[2-[[(2 R)-2-$ hydroxy-2mphenylethyl]aninolethyl)phenyll-, dihydrochloride (9CI) (CA. INDEX NAME)

Absolute stereochemistry.

- 2 HCl

RN 223672-73-9 CAPLUS
ON 1H-Imidazole-z-acetamide, 1-[(3-chlorophenyl)methyl]-N-[4-[2w[[(2R)-2 hydroxy-2.mhenylethyllaminolethyl)phenyl)-. dihydrochloride (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN $223672-74-0$ CAPLUS
CN IH-Imidazole-2-acetamide, $1-[(3,4$-cichloropheny 1$)$ methyl $]-N m(4-[2-[\{(2 R)-2-$ hydroxy-2-pnenylethyl] aminolethyl)phenyly-- dihydrochloride (9cT) (cA INDEX NAME)

Absolute stereochemistry.

PAGE 1-A

PAGE 2-A
© 2 HCl

```
RN 223672-75w1 CANLUS
CN 1H-Imidazole-2-acetamide, N-[4-[2-[[(2R)-2-hydroxy-2-m
    phenylethyl] aminolethyl] phenyl]-1-(2-pyridinylmethyl) m, dihydrochloride
    (9CI) (CA INDEX NAME)
        searched by Barb o'Bryen, sTre 308-4291
```

Absolute stereochemistry.

- 2 HC1

Absolute stereochemistry.

- HCl

RN $223672-77-3$ CAPLUS
CN IH:midazole-2-acetamide, $N-[4-12-[[(2 R)-2 \cdots h y d x o x y-2 m$
 (CA INDEX NAME)

Absolute stereocheraistry.

Absolute stereochemistry:

© HCl

Absolute stereochemistry.

- \quad нсl

RN . 223672-80-8 CAPLUS
 hydroxy-2-phenylethyllaminolethyllphenyll-, dinydrochloridm (9cI) (CA INDEX NAME)

Absolute stereochemistry.

© 2 HCl
RN $223672 \cdots 1-9$ CARLUS
 hydroxy-2"phenylethyllaminolethyllphenyll-, dihydrochloride (9cI) (CA INDEX NAME)

Absolute stereochemistry.


```
RN 223672-82-0 CAPLUS
CN 1H-Imidazole-2-acetamide, 1-1(3,5-dinfuoropheny1)methy1] N N-[4-[2-[[(2R)-2-
    hydroxy-2-phenylethyilaminolethyllpheny1] - ", dimydrochloride (9CI) (cA
        INDEX NAME)
```

Absolute stereochemistry.

EAGE 2-A

- 2 HCl

Absolute stereochemistry.

02 HCl

RN 223672-84-2 CAPLUS
 hydroxy-2-phenylethyllaminolethyl]phenyl]-, dihydrochloride (9CT) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 2-A

- 2 HCl

RN
$223672-85-3$ CAPLUS

Searched by Eart o'Bryen, STIC 308-4291

```
phenylethyl] aminoj ethyl]phenyl]-1-[(2,3,6-trifluorophenyl)methyl]-,
``` chinydrochloflde (9CI) (CA INDEX NAME)

Absolute stereochemistry.

- 2 HCl

RN . \(223672-86-4\) CAPLUS

 dinydrochloride (9CI) (CA TNDEX NAME)

Absolute stereochemistry.

PAGE I. -A

PAGE 2-A
- 2 HCI

Searched by Barb o'Bryen, stre 308-4291

RN \(223672-87-5\) CAPLUS
CN 1H-Inidazole-2-acetamide, \(N=[4-[2-[[(2 R)-2-h y d r o x y-2-\)
phenylethyl \(]\) amino ethyllpheny1] \(-1-[(3,4,5-t r i\) fluorophenyl) methyl \(]=\), dihydrochloride (9CT) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-A

DAGE 2-A
- 2 HCl

RN 223672-88-6 CAPLUS
\(\mathrm{CN} \quad 1 \mathrm{H}-\mathrm{Xmidazole}-2\)-acetamide, \(\mathrm{N}-[4-[2-[1(2 \mathrm{R})-2-\mathrm{hydraxy}-2-\) phenylethyl]aminolethyl]phenyl]-1-[(pantafluoropheny1) methyl] dihydrochloxide (SCI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-A

PACE 2-A
- 2 Hel

RN 223672-89-7. CAPLUS
CN \(\quad 1 \mathrm{H}-\) Imidazole-2-acetamide, \(\mathrm{N}-14-\left[2-\left[[12 \mathrm{R})-2-\mathrm{hydroty} \mathrm{y}^{-2}{ }^{-}\right.\right.\)
phenylethyl]aminolethyllphenyl] 1 m [(3-iodophenyl)methyl]-, dihydrochloride (9CI) (CA INDEX NAME)

Absolute stereochemistry.

- 2 HCl

\footnotetext{
RN 223672-90-0 CARLUS
CN
\(1 \mathrm{H}-\) Imidazolem-acetamide, \(1-[(2,6\)-aichlorophenyl)methyl \(]-\mathrm{N}-[4-[2-1(12 \mathrm{R})-2-\) hydroxy-2-phenylethyl]aminolethyliphenyl]-", monohydrochloride (9CI) (CA INDEX NAME)

Searched by Barb O'Bryen, STxC 308m429.
}

Absolute stereochemistry.

- HCl

RN 223672-91-1 CAPLUE
CN 1 -Tmidazole-2-acetamide, \(1-[(4\)-cyanopheny 1\()\) methy 1\(]\) m \(N-[4 \cdots[2 m[(2 R) \mathrm{m}-2\) hydroxy-2-phenylethyllaminolethyllphenyl]-, dihydrochloride (90I) (CA TIDEX NAME)

Absolute stereochemistry,

- 2 HCl

RN 223672-92-2 cAPLUS
CN 1H-Imidazole-2-acetamide, \(N-[4-[2-[[(2 R)-2-h y d r o x y-2-\)
phenylethyllaminolethyllphenyll-1-(2-quinolinyl)", trihydrochloxide (SCI) (CA INDEX NAME)

Absolut stereomemistry.

\(-3 \mathrm{HCL}\)
```

TN 2236"2-93-3 CAETUS
CN 1, Imidazole-2-acetamide, 1-[(2-chlorom6-m1uorophenyl)methy]]-N-[4-[2-
[[(2R)-2-hydroxy-2-phenylethyl] mminolethyl]phenyl]- (9CI) (CA INDEX NAME)

```

Absolute stereochmostry.

RN \(2236 \% 2-94-4\) CADLUS
 \([[(2 R)-2-h y d r o x y-2-p h e n y l e t h y l]\) amino ethyl]phenyl]-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

\footnotetext{
RN 223672-95-5 CAELOS
CN 1H-Imidazole-2-acetamide, \(1-[(2,5\)-dichlorophenyl)methyl] \(-N-[4-[2-[(12 R)-2-\) hydroxy-2-mhenylethyllaminolethyl]phenyl]", dihydrochloride (9CI) (CA INDEX NAME)
}

Absolute stereochemistry.

- 2 HCL
```

RN 223672-96-6 CAPLUS
CN Benzoic acid, 4-[[2m[2-[l4-[2-[[[(2R)-2-hydrcxy-2-
phenylethyllaminolethyllphenyl]amino]-2-oxoethyll-1H-imidazol-1-yljmethyl]-
, methyl ester, dihydrochloride (9CI) (CA INDEX NAME)

```

Absolute stereochemistry.

PAGE 1-A

PAGE 2-A
\(\because 2 \mathrm{HCl}\)
RN \(223672-97 \sim 7\) CAPLUS
CN 1H-Imidazole-2-acetamide, \(N-14-[2 \sim[\) [(2R)-2-bydroxy-2-
phenylethyl]aminolethy1]phenyl]-1-[[4-(1-piperidinylcarbonyi)phenyl] methyl j-, dihydrochloride (9CI) (CA INDEX NAME)

Absolute stereochemistry.

-2 HCL
```

RNN 223672-98-B CAPLUS
CN IH-Bycazoleml-acetamice, N-[4-[2-[[(2R)-2-bydroxy-2-
phenylethyllaminolethvllohenvll- monohvarochloxide (9CI)

Absolute stereochemistry.


- HCL

RN 223672-99-9 CAPTMS
CN $1 H-1,2,4-T r i a z o l e m-1$-acetamider $N-(4-(2-(1(2 R)-2-h y d r o x y-2-$
phenylethyl] ammolethyluphenyl]-, dihydrochlowide (9C1) (CA INDEX NAME)
Absolute stereochemistry.


- 2 HCl

RN 223673-00m CAPLUS
 phenylethyllamino]ethyl]phenyl]-, dihydrochloride (9CI) (cA INDEX NAME)

Absolute stereochemistry.


C2 HCl

Searched by Barb o'pryeri, STLC 308-4291


- HCl

RN 223673-02-7 CAELUS
CN A-Pyridineacetamide, $N-14-12-1[(2 R)-2-$ hydroxy-2-
phenylethyllaminolethyl]phenyl] , monohydrochlorice ( 9 CI ) (CA. INDEX NAME)
Absolute stereomemistry.


- HCl

RN 223673-03-6 CARLUS
CN 2-Pyridinepropanamide, $N-14-[2-[(12 R)-2$-hydroxy- $2-$ phenylethyllaminolethyllphenyl)", monohydrochloride (9CI) (CA JNDEX NAME)

Absolute stereochemistry.


- HCl

RN $223673-04-9$ CAPLUS
 phenglethyl ] minolethyl phenyl $1-1-(2$-phenylethyl $)$, dihydrochloride ( 9 (I) (CA INDEX NAME)

Absolute stereochemistry.

© 2 HCl

RN $223673-05 \times 0$ CAPLUS
CN IH-Benzimidazole-2macetamide, $N m[4 m[2 m[1(2 R)-2-h y d r o x y m-2-$ phenylethylleminolethyllphenyll- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


Absolute gtereochemistry.


02 HCl

```
RN 223673-08-3 CAPLUS
CN 2-Pyricineacetamide, N-[4-[2-[[(2R)-2-hydxoxy-2-
 phenylethyl] aminolethyllphenyj]-4-methyl- (9CI) (CA INDEX NAME)
```

Absclute stereochemistry.


RN 223673-09-4 CHPLUS

phenylethyllaminolethyllphenyl]-5-methyl- (SCI) (CA INDEX NAME)
Absolute stereochemistry.


RN 223673-10-7 CAELUS
CN 2-Pyridineacetamide, $\mathrm{N}-[4-[2-[(2 R)-2-h y d r o x y-z-$ phenylethyl]aminolethyllpheny11-6-methyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


Absolute stereochemistry.


- HCl
RN 223673-12-9 CAPLUS
CN 2-pyridineacetamide, $N-[4-1(2 S)-2-[!(2 R)-2-h y d r o x y-2-$
phenylethyllaminolpropyllphenyl]-, monohydrochloride (9CI). (CA INDEX NAME)

Absclute stereomemistry.


- HCl

Absolute stereochemistry.

- HC

RN $223673-14 \mathrm{~m}$ - CAELUS

hydroxyethyl] aminolethyllphenyl]-, monohycrochloride (9ct) (CA INDEX NAME)

$-\mathrm{HCl}$

RN 223673-153-2 MADTUZ
CN $\quad 2$-Pyridineacetamide, $N-(4-[2-[(2-(3-41$ uotopheny $)-2-$
nydroxyethyllaminolethyldphenyl1-, monohydrochloride (9CT) (CA INDEX NAME )


- HCl

```
RN 223673-16-3 CAPLNS
UN 2-Pyridineacetamide, N-[4-[2-[! [2-(4-fluorophenyl)-2-
 mydroxyethyl]amino|ethyllphenyll-, monohydrochloride {gcI) (cA INDEX
 NAME)
searched by Barb o'Bryer, STIC 308-4291
```



- HCl

RN $223673-17-4$ caplus
©N Quinolineacetamide, $N-[4-[2-[(2 R)-2$ nydroxy-2
phenylethyl]aminolethyl]phenyl]-, monohydrochloride (9cI) (CA INDEX NAME)
Absolute stereochemistry.


- HCl

```
RN 223673-18-5 CAPLUS
CN 2-Pyclalmeacetamide; N- [4- [2- [((2R) -2-(3-chlomophemyl)-2m
hydroxyethyl|aminojethyllphenyl]-, monohydrochloride (9CI) (CA INDEX
NAME)
```

```
Absolute stexacohemistwy:
```



- HCl

```
RN 223673-19-6 CAPLUS
CN 2-pyridineacetamide, N-{4-l2-[{2-hydxoxy-2-(3-
pyridinyl)ethyl)ammolethyl|phenylim, monohydrochloride(gCI) (CA INDEX
NAME)
```



Absolute stereochemistry.


- 2 HCI

RN 223673-21-0 CAPLUS

phenylethyl]aminolethyliphenylj-4, 6-dimethyl- (9CI) (CA INDEX NAME)
Absolute stereochemistry.


RN $223673-22-1$ CAPLUS
CN $\quad 2$-Pyridineacetamide, $N-[4 \mu[3+[[(2 R)-2-h y d r o x y-2=$

Searched by Barb 0*Bryen, Sric $308-4291$

NAME)
Absolute stereochemistry.


Absolute sterecchemistry.

© HCl

```
RN 223673-25-4 cApLUS
CN \(2-\mathrm{Py}\) idineacetamide, \(\mathrm{N}-[4-[2-[[(2 \mathrm{R})-2\)-hydroxy-2-phenylethyl]amino]-2-*
 methylpropyllphenyll-, monohydrochloride (9CI) (CA INDEX NAME)
```

Absolute stereochemistry.


- HC 1

```
RN 223673-26-5 CAPLUS
CN Urea, N-[4-[2-[[(2R)-2-hydroxy-2-phenylethyl]aminolethyliphenyl] - N'-2-
 pyridinylm, dihydrochloride (9CI) (CA INDEX NAME)
 Searched by Barb o'Bryen, STIC 308-4291
```

Absolute stereochemistry.


Absolute stereochemistry.

-2 HCl
RN 223673-28-7 CAELUS
CN IH-Tetrazole-5-acetamide, $1-[(3,4-$ dichlorophenyl) methyl]-N-[4-[2-[ [ (2R) - 2 Z hydroxy-2-phenylethyllamnolethyliphenyl)-, dihydrochloride (9cI) (CA INDEX NAME)

Absclute stereochemiztry.


-2 HCl
RN 223673-30m1 CAPTUS
CN 2-pyridineacetamide, 6-amino-N-[4-[2-1[(2R)-2-hydroxy-2phenylethyllaminolethyllphenyl)", dihydrochloride (GCI) (CA TNDEX NAME)

Absolute stereochemistry.


- 2 HCl

RN 223673-31-2 CAPLUS
CN $\quad 2$-pyridineacetamide, $N-[4 m[2-[\{(2 R)-2-h y d r o x y-2 \cdots$ phenylethyl] aminolethyllphenyl.] w, dihydrochloride (9Cx) (CA INDEX NAME)

Absclute stereocmemistry.


- 2 HCL

RN $223673-32-3$ CARLUS
CN Pyrazineacetamide, $\mathrm{N}-[4-[2 m[(2 R)-2-h y d r o x y-2-$
phenylathyllaminolethyljphenyll-, dihydrochloride (9cI) (CA INDEX NAME)
Absolute stereochemistry.


- 2 HCl

RN

CN 2-pyrimidineacetamide, $N-[4-12-[[(2 R)-2$-hydroxy-2phenylethyllaminolethyllphenyll $\cdots$, dihydrochloride (9CI) (CA INDEX NANE)

Absolute stereochemistry.


RN 223673-58-3 capuUs
CN 2-Pyridinecarboxamide, $N-14-12-1(1(2 R)-2$-hyaroxy-2-phenylethyllaminelathylphenyll- (9CI) (CA INDEX NAME)
Absolute stereochemistry.


RN 223673-59-4 CARLUS
CN $2 H-T m d a z o l e-2-a c e t a m i d e, ~ I-1(4-$ chloropheny $)$ methy 1$]-N-[4-[2-[[(2 R)-2-$ hydroxy -2 -whenylethyllaminolethyl)phenyl) - (9CI) (CD INDEX NAME)

Absolute stereochemistry.


```
RN 223673-60m7 CApLUS
```



```
 hydroxy-2-phenylethyl]aminolethylJphenyl]- (9CI) (CA INDEX NAME)
```

Absolute stereochemintry.


```
RN 223673-61m8 CAPLUS
CN 4-Thiazoleacetamice, 2-amino-N-[4-[2-[l(2R)-2-hydroxy-2-
 phenylethyl|aminclethyl]pheny1]- (9Cr) (CA INDEX NAME)
```

Absolute stereocheraistry.


```
RN 223673-62-9 CARLUS
CN 1H-1,2,4mTriazolemmacetamide, N-{4-12-[{(2R)-2-hydroxy-2-
 phenylethyl]amino] ethyl)phenyl]-1-(phenylmethyl)- (9CI) (CA INDEX NAME)
```

Absolute stereochemistry.


Absolute stereochemistry.


```
RN 223673-64-1 CAPLUS
CN 2mPyridineacetamide, Nm!4-12-1(12R)-2-hydroxy-2-
 phenylethyl)aminolethyllphenylu- (9CI) (CA INDEX NAME)
```

Absolute stereocheristry.


RN 223673-65-2 CAPLUS
CN Pyxazineacetamide, $N=[4-[2 m[[(2 R)-2-n y d r o x y-2-$ phenylethyl] aminolethyllphenyll- (9cI) (CA INDEX NANB)

Absolute stereochemistry.

$\mathrm{BN} \cdot 223673-66-3$ CAELYS
 phenylethyllaminolethyllphenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


LT 223673-45-8 223673-47-0 223673-46-1
$223673-49-2 \cdot 223673-50-5 \cdot 223673-51-6$
223673-52-7 223673-53-9 223673-56-1
223673-54-2
RL: RCT (Reactant)
(prepn of amides as antidiabeties)
RN 223673-45-8 CAPLUS
CN C Catbamic acid, [(2R)-2-hydroxy-2-phenylethyl][2-[4w[\{14-1midazol-2-m ylacetyl) arinolpheryliethyl\}m, 1,1 maimethylethyl, ester (9CI) (CA INDEX NAME)

Absolute stereochemistry.


[^0]Absolute stereochemistry.


RN $\quad 223673-48-1$ CARLUS
CN Carbamie acid, [2m[4-[(2-amino-4-thiazolyl) carbonyl]amino]phenyll]ethyl][( 2R)-2-hydroxy-2-phenylethyl]-, 2,1-dimethylethyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry:


RN 223673-49-2. CAPLUS
CN Carbamio acid, [2-[4-[[(2-amino-4-thiazolyl)oxoacetyl]amdnolphenyl]ethyl)] (2R)-2-hydroxy"-2"phenylethy1]-, 1, 1-dimethylethyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 223673-50-5 CADLUS
 searched by Earb o'bryen, stic 308-4291.
pyridinyldacetyllaminolphenyllethyl)m, 1, l-cimethylethyl ester (gcI) (ch INDEX NAME

Absolute stereochemistry.


RN 223673-51-6 CAPLUS
CN 2-Eyridineacetamide, $N-[4-[2-1[(2 R)-2$-hydroxy-2phenylethyll (phenylmethyl)aminolethyl]phenyl) (9CI) (CA INDEX NAME)

Absolute stereochemistry.


Absolute stereochemistry.


```
RN 22.3673-53-8 CAPLUS
CN 1H-Tmdazzole-2-acetamde, N-[4-[2-[[(2R)-2-mycmexy-2-
 phenylethyl] (phenylmethyl)amino) ethyl)phenyl)-1-(phenylmethyl)- (9ci) (cA
 INDEX NAME)
 Searched by Barb O'Bryen, STIC 308-4291
```


## Absolute stereochemistry.



RN 223673-56-1 cAPLUS
CN Carbamic acid, ( 2 R$)-2$-hydroxy-2-phenylethyl) $12-[4-1(2-$
pyridinylacetyliminolphenoxy)ethyl]-, 1, l-dimethylethyl ester (9ct) (cA INDEX NAME)

Absolute stereochenistry.


```
RN 223673-5%-2 CAPLUS
CN carbamic acid, [1, 1-amethyl-2m[4m[(2mpyridinylacetyl)aminolphenyl]ethyl][
 (2R)-2-hydroxy-2-phenylethyl]-, 1,1-dimethylethyl estex (9CI) (CA INDEX
 NAME)
```

Absolute stereochemistry.


TT $223673-37-8 \mathrm{P} \quad 223673-38-9 \mathrm{P} \quad 223673-39-\mathrm{OP}$ 223673-41-4p 223673-44-7P RL: RCT (Reactant); SPN (Synthetic preparation); PREF (Preparation) (prepn. of amides as antidiabetics)
RN 223673-37-8 CAPLUS
CN Carbamic acid, [(2R)-2-hydroxy-2-phenylethyl][2-[4-[(2pyridinylearbonyl) aminolphenyljethyl] $-1,1$-dimethylethyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 223673-38-9. CAPLUS

quinolinylcarbonyl) aminolphenyllethyll-, 1, l-dimethylethyl ester (9cr) (CA INDEX NAME)

Absolute stereochemistry.


FN 223673-39-0 CAPLUS
 yl. ] acetyl]amino]phenyl] ethyl] [(2R)-2-hydroxy-2-phenylethyl] - , 1,1-dimethylethyl ester (9CI). (CA INDEX NAME)

Absolute stereochemistry.


RN 223673-41-4 CAELUS

CN $\quad 2-$ Pyxidineacetamide, $N^{\omega w}[4-[2=[[(2 R)-2-h y d x o x y-2=$ phenylethyl] (phenylmethyl) aminolethyljphenyl] 3 methylw (9CT) (CA INDEX NAME)

Absolute stereochemistry.


```
RN 223673-44-7.c4y+us
```



```
 phenylechyl] (phenylmethyl) amLnolethyl] phenyl]-4, 6-dimethyl- (SCI)" (CA.
 TNDEX NAME)
```

Absolute stereochemistry.


REFERENGE COUNT:
REFERENCE (S):

40
(1) Mesek \& Co Ine; JP 07m10827 A 1995
(2) Merck \& Co Tne; US 5553475 A 1995
(5) Merek \& Co Tne; US 5541197 A 1997 CAPLuS
(7) Merck \& Co Inc; wo 95/29159 A1 1997 GADLUs
(10) Takeda Chem Ind Ltd; EP 643050 A1 1996 CAPLUS

ALL CITATTONS AVATLABLE IN THE RE PORMAT

L9 ANSWER 2 OF 6 CAPLUS COPYRIGFT 2000 ACS
ACCESSION NUMBER: $1998: 535771$ CAPLUS
DOCUMENT NUMBXR: $129: 198012$
T世゙ ${ }^{\text {THE }}$
INVENTOR (S):
PATENT ASSIGNBS(S):
SOURCE:
DOCUMENT TYPE:
LANGUAGE:
FAMILX ACC. NUM. COUNT: I
1
Searched by Barb o'Bryen, sTIC 308-4291
Fatel 09/529096 $\quad \therefore \quad$ Page 61

## PATENT INFORMATTON:




[^1]```
NN 211636-06-5 CAPLUS
CN 2-pyridinedentamide, Nm-{4-l2-[{[2-hydroxy-2-14-
hyomoxyphenyl)ethyl]arinolethyl]phenyll-, monohydrochloxide (9cI) (cA
INDEX NAME)
```


HCL
 (9CI) (CA INDEX NAME)

HCI

```
RN 211636m05-7. CNDLUS
CN 2mPyridineacetamide, N-[4-[2-[{2-Hydroxy-2-{4m
    hydroxyphenyl) ethyllaminolethyl|phenyl]-3-methyl-, monohydrochloride (9cI.)
        (CA INDEX NAME)
```


HCl

```
RN 221636-09-8 CAPLUS
CN 2-pymidineacetamide, N-[4-[2-I[2-myoroxy-2-(4-
    hydroxyphenyl) ethyl) aminolethyl]phemyl]-6-methyl-, monohydrochloride (9ca)
        (CA TNDEX NAME)
            Searched by Barb o'Bryen, sTic 308-4292
```


CM 2

CRN 110-17-8
CME C4 H4 O4
CDES 2:E

Double bond geometry as shown.


```
RN 211636-15-6 CAPLUS
```



```
    hycroxyphenyl) ethyl|methylaminolethyljphenyl|-n. (2E)w2-butemedioate (I : N)
    (salt) (9CI) (CA INDEX NAME)
    CM I
    CRN 211636-14-5
    CME C24 H27 N3 03
```


$\mathrm{CM} \quad 2$
CRN 110-17-8
CMF CA H4 O4.
CDES 2:E

Double bond geometry ds shown.

RN 211636-17-8 - CAPLUS

hydroxyphenyl)ethyllamjolethyllphenylu-, hycrochloride trifinoroacetate $(2: 1: 3)$ (salt) (9CI) (CA INDEX NAME)
$\mathrm{CM} \quad 2$

$$
\text { Searched by Barb o'Bryen, sTIC } 308-4291
$$

CRN $211636-16-7$
CMF C21 H24 NA OS s
 monohydrochloride (9CI) (CA INDEX NAME)

- HCl

RN 211636-19-0 CAELUS
 hydroxyethyl) methylaminolethyl]phenyl.]-, monohydrochloride (90工) (CA UNDEX NAME)

- HCl

| IT" | 211635-78-8p | 211635-79-9P | 211635-90-2p |
| :---: | :---: | :---: | :---: |
| | $211635 \mathrm{mb1}$ - 3 P | 211635-86-8P | 211635-97-9P |
| | 211635 - 88 -08 | $211635 \sim 89-1 \mathrm{P}$ | 211635-92-6P |
| | 211635-93-7P | 211635-54-8P | 211635-95-9p |
| | 211635-96-0p | 211635-94-1P | 211636-00-90 |
| | 211636-03-2P | | |

21.636-03-2P
RH: ROT (Reactant) ; SPN (Syntmetic preparation); EREQ (Preparation)
(prepn. of antidiabetic phenethanol dexiva. as , beta, 3-adrenoceptor
agonists)
RN 211635-78-B CAPTUS
CN $\quad 2$ pyridineacetamide, $N \omega[4-[2-[[2-h y d r o x y m-2-[4-$

(9CI) (CA INDEX NAME)

[^2](phenylmethomy) phenyllethyl] (phenylmethyl) minolethyljphenyl]-a-methyl(9CI) (CA INDEX NAME)

[^3]

PAGE 1-A

PAGE A-B
$-\mathrm{CH}_{2}-\mathrm{Eh}$

```
RN 211635-88-0. CAPLUS
CN 2-Pyridineacetamide, N- [4-[2-[12-mydroxy-2-[3-
    (phenylmethoxy)phenyl)ethyl](phenylmethyl)aminolethyllphenyl]m (9cy) (cA
    INDEX NAME)
```


RN 211635-89-1 CAPLUS
CN 2-Pymidineacetamide, $N-[4-[2-[12$-hydroxy $-2-[2=$
(phenylmethoxy) phenyl]ethyl] (phenylmethyl) aminolethyl)phenyl. - (9cr) (CA.
INDEX NAME)

[^4]Searched by Barb O'Bryen, sTrc 30gm4291

RN $211635-94-8$ CAFLUS
CN 2-Pyridineacetamide, $N-[4-[2-([2-h y d r o x y-2-[3-n i t r o-4-$
(ohenylmethoxy) phenyllethyl] (phenylmethyl) aminolethyllphenyll- (gCI). (CA INDEX NAME)

RN 211635-95-9 CMPLUS
 hydroxyethyl) (phenylthethym) aminolethydjphenylu- (9CI) (CA INDEX NAME)

$$
\begin{aligned}
& \text { RN } 211636 \cdots 00-9 . \text { CAPLUS }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (phenylmethoxy) pheny.] ethyl] (phenylmethyl) aminolethylppenyly-1- } \\
& \text { (phemylmemyl)- (SCI) (CA INDEX NAME) }
\end{aligned}
$$

| 49 ANSWER 3 OE 6 | CAPLUS COPYRTGET 2000 ACS |
| :---: | :---: |
| ACCESSION NUMBER: | 1998:269995 CAPLUS |
| DOCUMENT NTMBER: | 128:303693 |
| TTTLE: | New Azole Antifungals. 3. Synthesis and Antifungal |
| | Astivity of 3-Substituted-4(3H)-quimazolinones |
| AUTHOR (3) : | Bartroli, Javier; Turno, Enric; Alguero, Monica; |
| | Boncompte, Eulalia; Vericat, Maria L.; Conte, lourdes, |
| | Ramis. Joacuim: Merlos. Manuel: Garcia-Rafanell, Searched by Barb O'Bryen, STIC 308-4291 |

CORPORATE SOURCE:
SOURCE:
EUBLISHER :
DOCUMENT TYPE:
LANGUAGE:
GI

Julian: Forn, Javiex
Research Center, J. Uriach Cia. S.A., Barcelona, 08026, Spain
ü. Med. Chem. (1998), 41(11), 1869-1882
CODEN: TMCMAR; ISSN: 0022 m 223
Anmeican Chemical society
Journal
English

1
$A B \quad A \quad$ geries of azole antifungal agents featuring a quinazolinone numeus have been subjected to studies of structurewactivity relationships. In generai, these morpocs. diaplayed higher in vitro aotivities against Filamemtous fungi and shorter half-lives than the structures deseribed in out preceding paper. The most potent products in vitro carried a maloger (or an isostere) at the 7 mosition of the Guinazolinone ring. Using a mutine model of systemic candidosis, oral activity was found to be dependent on hydrophobidity, which, in turn, modulated the compd. "s haln-1ife. The $7-C 1$ dexiv., ($1 \mathrm{R}, 2 \mathrm{R})-7-\mathrm{ch}$ (oro-3-[2-(2, 4-difluoropheryl)-2-hydroxy-1-methy1-3-(1H-1,2,4-triazol-1-yl)propyl]guinazolin-4(3H)-one [1, UR 9825$]$, was selected for further testing due to its high in vitro activity, low toximity, good phammookinetic profile, and euse of obtention. compd. I is the (1R, 2R) isomer of fous possible stereoisomer: . The other three dsomexs. were also prepd, and tested. The enantiomer $(15,2 s)$ and the (1R,2S) epinter were inactive, whereas the (15, 2R) epiner retained some activity. In vitro, I was superior to fluconazole, itraconazole, ScH-42427, and $x A K-187$ and roughly similar to voxicomazole and ER-30346. In vivo, I was only moderately active in a mouse model of systemic candidosia when administiation was limited to the first day. This was attributed to its short half-1ffein that species (ti/2 $=1 \mathrm{~h}$ pol. Protection levels comparable to or higher than those of fluconazole, however, were obse. in systemic candidosis models in rat and rabbit, where the hali-life of the compd. was tound to be 6 and 9 h , resp. Einally, I mowed excellent protection levels in an immunocomptomised wat model of dismeminated mspergillosis. The compd. showed low toxicity signs wher administered to rats at $250 \mathrm{mg} / \mathrm{kg}$ gd or at $100 \mathrm{mg} / \mathrm{kg}$ bid during 28 days. 206350-06-3P
$R I_{\text {: }}$ BAC (Biological activity of effector, axcept adverse); seN (Symthetio preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation): USES (Uses)
(synthesty and antifungan whitwity of 3-substitutec-4 (3H) -
quinazolinones)
RN 206350-06-3 GAPLUS
CN Benzamide, 4-chloro-N-[(1R,2R)-2-(2,4-difluorophenyl)-2-hydroxy-1-methyl-3-w

Absolute stereocheraistry. Rotation (-).

49 ANSWER 4 OE G CAELUS COPYRTGHC 2000 ACS
ACCESSION NUMBER: 1992:426440 CAPLUS

DOCUMENT NLMBER: 1992:426440 Caplus

TITIEE:
AUTHOR(S):
Triazole antifungals. IV. Synthesis and antifungal. activities of 3-acylamino-2-aryl-2-butanol derivatives Konosu, Toshiyuki; Tajima, Yawara; Takeda, Noriko; Miyaoka, Takeo: Kasahara, Mayumi; Yasuda, Hiroshi; Oida, Sadao
CORPORADE SOURCE:
SOURCE:
med. Chem. Res. Lab., Sankyo co., Lta., Tokyo, 140 Japan
Chem. Rharm. Bul1. (1991), 39(10), 2581-9 CODEN: CPETAL; ISSN: 0009-2363
DOCUMENT TYER: Journal
English
LANGUAGE:
GI

 CMe3, Ph, substituted Ph, 2-furyl, 2-thienyl) were designed and synthesizec as potential inhibitors of the fungal cytochrome $p 450$ 14. alpha, comethylase. In testing for antifuncial activity against mouse systerde candida albicans infection, (2R, 3R)-3-acylaminom-2maryl-z-butanol derivs. exhibited remarkably high efficacy after oral or parenteral administration. The structure-activity relationships of these amido alcs. were evaluated.
IT $126916-61-8 p$
RL: BAC (Biologdcal activity or ettectox, except adverse); sPN (Synthetime preparation); BIOL (Biological study); PREP (Preparation) (premen. and antwfungal activity of)
RN 126916-61-8 CAPLUS
CN Benzamide, 4-(acetylarino) $-\mathrm{N}-[2-(2,4-\mathrm{difluorophenyl})-2-h y d r o x y-1-m e t h y 1-3-$

Searched by" Barb'o'sryen. strc $308-4291$

Relative stereochemistry.

14 138990-07-5P
RI: SPN (Synthetio preparation); PREP (Preparation)
(prepn of)
$\mathrm{RN} \quad 138990 \cdots 07-5$ CHPHUS
 $\left.\left(1 H-1,2,4-t r i a z o l-1-y^{\prime}\right) p r o p y l\right)-,\left(R^{*}, R^{*}\right)-$, ethanedioate (1:1) (sal, $)$ (9CT) (CA TNDEX NAME)
CM 1

CRN $126916-61-6$

Relative stereochemistry.

| CM | 2 |
| :--- | :--- |
| CRN | $144-62-7$ |
| CMF | $\mathrm{C} 2 \mathrm{H2}$ |

49 ANSWER 5 OE 6 CAFLUS COPYRTGHT 2000 ACS ACCESSLON NUMBER: $1990: 631379$ CAPLUS, DOCUMENT NUMBER: $113: 231379$ 113:231379 Searched by Barb o'Bryen, Spre 308-4291

 61-6 alkyl, halo-Cl-6-alkyl, (um) substituted ph, maphthyl, (um)substituted
 c2-6 aliph. having 1 or $2 \mathrm{c}-\mathrm{C}$ double bonds, c2-6 adiph, having 1 or $2 \mathrm{c}-\mathrm{C}$ triple bonds, $\mathrm{C} 3-6$ cycloalkylene, etc.; $Y=\mathrm{NR} 5 \mathrm{CO}, \mathrm{NP} 5 \mathrm{COCH}: \mathrm{CH}, \mathrm{O} \mathrm{m}$, $02 \mathrm{CCH}: \mathrm{CH}, \mathrm{SCO}, 5 \mathrm{COCH}: \mathrm{CH}_{\mathrm{C}} \mathrm{R} 5=\mathrm{H}, \mathrm{Cl}-4 \mathrm{alkyl} ; \mathrm{m}, \mathrm{n}=0,1 ; \mathrm{YR} 2=\mathrm{N} 3$, (un) substituted phthalimido. (un)substituted 1-0xo-2.3-dinvaro-2-indolyl) searched by Barb o'Bryen, sTIU 308-4291
and acid addn. salts thereof, are prepa. I are useful as medical and agrochem. fungicides. When used as agrochem. fungicides, I may be blended With other fungicides and insecticides for a broader fungicidal spectrum and synergistic effect. 4-ClC6H4COCl was added to (2R,3R)-3-amino-2-(2,4-dichlorophenyl)-1-(1H-1,2,4-tiazol-1-y1)-2-butanol (prepn. given) to give
 and converted to the oxalate salt (II). In rice seedings inoculated with Rhizoctonia solani, II at $200 \mathrm{ppm}(30 \mathrm{mi} / 3$ pots), gave complete control. Mice inoculated with Candida albicans and administered orally II $20 \mathrm{mg} / \mathrm{kg}$. showed 100 survival rate.
IT 126916-61-8P 126918-10-3F
RL: BAC (Biological activity of eftector, except adverse): SPN (Synthetic preparation): BIOL (Biological study): PREP (Exeparation)
(prepn. of, as Eungicide)
RN 126916-61-8 CADUUS
CN Benzamide, 4-(acetylamino)-N-[2-(2,4-difluoropheny1)-2-hydroxy-1-methyl-3-(1H-1,2,4-triazol-1-y1)propyll-, ($\mathrm{R}^{*}, \mathrm{R}^{*}$) - (9Cl) (CA INDEX NAME)

Relative stereochemistry.

RN 126918-10-3 CABLUS
CN Benzaride, 4-(aeetylamina)-N-12-(2,4-diehlorophenyi)-2-hydroxy-1-methy1-3($1 \mathrm{H}=1,2,4$-triazol-1-yl)propyll-, ($\left.\mathrm{R}^{*}, \mathrm{R}^{*}\right)$ - (9CI) (CA INDEX NZME)

Relative stereochemistry.

L9 ANSWER 6 OF 6 CAPLUS COPYRIGHT 2000 ACS
ACCESSION NUMBER: 1990:98544 CARLUS
DOCUMENT NUMBER: 112:98544
TITEE:

Preparation and formulation of 5 -hydroxy-8-[1-hydroxy2 - (2 methyl--2-propylamine)ethyl $]-2 \mathrm{Hm}-1,4$-benzoxazin-3-(AH)-ones and analogs containing a quaternary ammonium aroup as broncholvtics
Searched by Barb o'Bryen, STTC 308-4291

TNVENTOR (3):
PATENT ASSTGNEE(S):
SOURCE:
DOCUMENT TYPE:
LANGUAGE:
EAMILY ACC.. NUM. COUNT: I
PATENT' INE゙ORMATION:

OTHER SOURCE (S): \quad MARPAT $112: 98544$
GI

$Q C H(O H) C H R 4 N H C R 5 R 6(C H 2) \pi R(0=P h$ group of a broncholytically effective compd., e.g., $\mathrm{Q}(\mathrm{RI}=\mathrm{H}) ; \mathrm{R}=$ quaternary ammonium group contg. -alkoxy, -heterocycly1, arylalkoxy, etc.; $\mathrm{R} 4=\mathrm{H}, \mathrm{Me}, \mathrm{Bt} ; \mathrm{K} 5, \mathrm{R} 6=\mathrm{H}, \mathrm{Me;} \mathrm{n}=1-5$) were prepd. Thus, QlCOCH(OH)OEt (RI $=B z$) was condensed with 4-(Me2N) C6H4CH2CMe2NH2 and the product treated with NaHH4 to give QlCH $(O H) \mathrm{CH} 2 \mathrm{NHCMe} 2 \mathrm{CH} 2 \mathrm{C} 6 \mathrm{H} 4 \mathrm{MMe} 2-4$ (RL $=\mathrm{Bz}$) which was condensed with BrCH2CO2Et to give, after hydrolysi and hydrogenolysis,
 H: $\mathrm{R} 2=0 \mathrm{OH} 2 \mathrm{CH} 2 \mathrm{~N}+\mathrm{Me} 2(\mathrm{CH} 2) 3502-1$ gave 50 protection against. acetylcholine-induced spasm in guines pigs after inhalation of a 0.004% ag, soln. An aerosol was prepd. contg. II 0.1, sorbitan trioleate 0.5, and CrCl3 and CF2C12 (2:3) 99.4 wi. :
(prepr. of, as broncholytic)
QN 124955-21-1 CAPLUS
CN Pytidinium, 1 - $12-114-12-[12-(3,4-d i n y d r o-5-h y d r o x y-3-0 x o-24-1,4-b e n z o x a z i n-$
 chloride, monohydrochloride (9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 2ma

- Cl^{-}
- HCl

Pymidinium, $1-[\subset[〔[4-[2-[12-4 y c x o x y-2-[4-h y d r o x y-3-$

methylpropyllphenyliaminolcarbonyljoxylmethyllm, obloride, monohydrochloride ($9 \mathrm{C} \mathrm{L}^{\prime}$) (CA INDEX NAME)

- $\mathrm{c} 1-$
- HCl

```
ETLE "CAOLD' ENTERED AT 16:00:52 ON 2L AUC 2000
USE IS SUBJECT TO THE TERMS OE YOUR STN CUSTOMER AGREEMENT'
PLEASE SEE "HELP USNGETERMS" FOR DETATLS.
COPYRTGETT (C) 2000 AMERTCAN CHEMTCAL SOCLETY (ACS)
ETLE COVERS 1907-1966
FILE IAST NEDATRD: 01 May 1997 (19970501/UP)
    Th{s fide, #OntwLus cas Registmy Numbers fow wasy anc accurate
    substance identification. Title keywerds, authors, patent
    assignees, and patent information, e.g., patent numbers, ate
    now searchable from 1907-1966. TTEE images of ch mostracts
    printed between 1907-1966 are aveilable in the RAGE
    display formats.
    This fine supports REGlstRY for direct browsjng and seatching of
    all substance data from the REGTSTRY file. Enter HEJP EJRST for
```

 more information.
 | 46 | STR | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 18 | 172 | 3EA | ETLE $=$ REGIS | PRx 959 | EUL | L 6 |
| L10 | 0 | SEA | RTEE\#CAOLD | $A B B=O M$ | 48 | * |

\Rightarrow fil beil; d stat que 115
FILE 'BEILSTEIN' ENTERED AT 16:01:20 ON 21 AUG 2000
COPYRIGHT (c) 2000 Beilstein-Institut zur Foerderung der chexischen Wissenschafen licensed to Beilstein chemiedaten software cmat and mDL Infotmation systems Gmbl

FILE LAST UPDATED: G.MAR 2000
FILE COVERS 1779 TO 20000°
*** CAS REGISTRY NUMBERS FOR $4.356,237$ SUBSTANCES AVAILABLE ***
*** ETHE CONTAINS 7,688,486 SUBSTANCES ***

* PLEASE NOTE THAT THERE ARE NO EORMATS FREE OF COST. *
* SET NOTICE FEATURE: THE COST ESTIMATES CALCULATED FOR SET NOTICE
* are based on the highest erice category. therefore; these
* ESTIMATES MAY NOT REELECT THE ACTUAL costs.

```
* EOR PRICE INFORMATION SEE help COST
```


L6 \quad STR

Hy 23

VAR $G 1=C / N$
VAR G2=2/3/4
REE $G 3=(0-1)$ O
VPA 20-8/9/10 U
NODE ATTRIBUTES:
DEFAULT MLEVEL TS ATOM
MLEVEL IS CLASS AT 1423
DEFAULT ECEEVEL IS LIMITED
GRADH ATTRIBUTES:
RTNG(S) ARE TSOLATED OR EMBEDDED
NUMBER OF NODES IS 23
STEREO ATTRIBUTES: NONE
L15 2 SEA ELLEmBETLSTETN SSS EUL L6
100.0ヶ PROCESSED 32705 ITERATIONS 2 ANSWERS

SEARCH TIME: 00.00.34
\Rightarrow d ide pre 115 1-2: fil hom

L15 ANSWER 1 OF 2 COPYRYGHT 2000 BEILSTEIN CDS MDL

```
Bellstein keg; No. (BNN):
Molecular Formula (ME):
Alutonom Name (AUN):
Bellsteln Reference (SO):"
General Comments (NTE):
Eormula Weight (EW):
Lawson Number (LNN):
```

7956379 Beilustein
C20 H18 C1 F2 N5 O3
4-chloxo-N-<2-(2, 4-difluoromphenyl) $-2-h y d x o x y-1-$ methyl-3-<1,2, 4>trdazol-1-yl-propy1>-2-formylaminobenzamide
6-2 26
stereo compound
449.84

29971; 16524; 16039; 1145

Atom/Bonat Notes:

1. CtP Deseriptor: R

Ereparamion:
QRE
 methyl-3-(1H-1,2,4-triazol-1-yl) propyl>quinazolin-4(3H)-one
Reag: 0.1 N ada NaOH
Time: $\quad 3$ hour (s)
yield: 25.00 \%
Solv: tretrahydrofuran
Ambient Temperatura
Reference (s):

1. Eartroli, Javier; Turmo, Entic; Alagero, Monica; Boncompte, Eulailia; Vericat, Maria h.; et al., J. Med. Chem., $41<1998>11,1869 m 1882, L A:$ EN, CODEN: TMCMAR

Srime an CARLlS amatur tis 3

L15 ANSWER 2 OF 2 CORYRTGHT 2000 BEILSTEIN CDS MDL

```
Beilmtein Reg. No. (ERN): 4992790 Bewlsteith
Molecular Formula (MF): C21 H2L F2.NS O3
Autonom Name (AUN): A-acetylamino-N-<2-(2,4-difluoromphenyl)-2+hydroxym
    1-methy1-3-<<1,2,4>triazol-1-yl-propyl>-benzamide
Beilstein Feference (SO): 6-26
General Corments (NWE): Stereo comoound; zacemate
Saarched by Bamb o'Bryen, STIC 308-4291
```

| CAS Reg. No. (RN): | $126916-61-8$ | |
| :--- | :--- | :--- |
| Beilstein Pref, RN (RER): | $126916-61-8$ | |
| Eonmula Weight (EW): | 429.43 | |
| Lawson Number (LN): | $29971 ; 16524 ; 16038 ; 1155$ | |

Atom/Bond Notes:
I. CIE Descriptor: R

Fragnemt Notes:
Additionally represents mirror image
Preparation:
ERE
Start: ERN=4297530.(2R*,3R*)-3-Amino-2-(2,4-difiuoropropyl)-1-(1H-1,2,4-triazol-1-yl)-2-butanol, BRN=513757 p-acetylaminobenzoyl chloride
Reag: pyridine
xield: 51.00 名
Temp: 0.0 Cel
Reference(s):

1. Konosu, Toshiyuki; Tajima, Xawara; Takeda, Noriko; Miyaoka, Takeo: Kasahara, Mayumi; et al., Ghem. Pharm.Bull., $39<1991>10,2581-2589$, LA: EN, CODEN: CPBTAL ARML QR CAPLUS armaine \# 4

EILE 'HOME' ENTERED AT 16:01:34 ON 21 AUG 2000

Best Available Copy

1.9

ANSWER A OF 6 EAPLUS
COPYRIEHT 2000 ACS
DOCUMENT NUMEER:
TITLEE:

AUTHOR (S) :

CORPORATE SOURCE:
SOURCE :

DOCUMENT TYPE
LANGUAGE:
1992:426440 capLus
117:26440
Triazole antifungals.
activities of 3 macylamin. Synthesis and antiturgal Konosu, Toshiyuki; Tajima yaryl-2-mutanol dexivatives Miyaoka, Takeo; Kasahar, Nawara; Takeda, Noxiko; Oida, Sadao Med. Chem. Res Tab Japan
Chem. Pharm. Bul1, (1991), 39(10), 2581-9
CODEN: CRBTAL; ISSN: 0009-2363
Journal
Eng1, mh

1

CMe3, Ph, substituted ph, 2-furyl, 2-thienyl, were destgned aric synthesized as potential inhibitors of the fungal wytochrome $P 450$ 14.alpha. memethylase. In testing fot antifungal activity against systemic candida albicans infection, (2R, 3R) a derivs. exhibited remarkably high efficacy -3-acylamino-2-aryl-2-butanoy. acministration. the structurg effacacy after oral or parenteral were evaluated. 126916m61-8P RL: EAC (Biological activity or effector, except adverse) . preparation): BIOL (Biologicel stucy): PRem (Ry advetse); SRN (Synthetic
(prepn. and antifurgal activity of PREP (Preparation)
RN $126916-61-8$ cAPLUS
Cl
 Searched by Barb o ${ }^{*} \mathrm{Bryen}$ (9 STI (CA INDEX NAME)

Relative stereochemistry;

TT $138990-07-5 \mathrm{P}$
RL: SPN (Synthetic preparation); PREP (Breparation)
(prepn. of)
RN 138990m07-5 CAPLUS
CN Benzamide, 4-(acetyldmino)-n- (2-(2, 4-difluorophenyl)-2-hydroxy-1-methyl-3-
 (CA INDEX NAME)

CM .. 2
CRN $126916-61-8$
CMF. C21 H21 E2 N5 O3
Redative stereochernistry.

CM 2
CRN 1A4-62-7
CME C2 W2 OA

1 L9 ANSWER 6 OF 6 CARLUS COPYRIGHT 2000 ACS

ACCESSTON NUMBER: DOCUMENT NUMEER: THTLE:

MNVENTOR (S):
PATENT ASSTGNEE (S):
SOURCE:
DOCUMENT TYPE:
IANGUAGE:
FAMILY ACC: NUM: COUNT:
PATENT INEORMATICN:
1
INEORMAT

1990:98544 CAPLUS

112:98544

Preparation and fomulation of $5-h y o r o x y-8-[1$ mydrosy 2-(2-methy1-2-propylamine) ethyl1-2H-1, 4-benzoxazin-3(4H) mones and, analogs containing a quaternary ammonium aroun as broncholvtics
Schromm, Kurt; Mentrup, Anton; Renth, "Ernst otto;
Muacevic, Gojko: Traunecker, Werner
Boehringer Ingelhedm International G.m.b.H., Fed. Rep. Ger.
Ger. Offen., 30 pp .
CODEN: GWXXBX
Patent
German

| APELXCATION NO. DAPE | |
| :--- | :--- |
| DE $1997-3743265$ | 19871219 |
| $E F 1998-12101$. | 19881215 |

| EP 321864 | A2 $\because 9890626$ |
| :---: | :---: |
| EP 321864 | A3 19901227 |

OTHER SOURCE (S) \quad MAREAT 112.98544
GI
$8^{1}=$

 -hetexocyelyl, arylalkoxy, etc; RA = H, Me, Et; RG, RG = H, Me; $n=1-5)$ were prepd. Thus, QtCOCH(OH)OEt (Rl = Bzl was concensed with $4-(M e 2 N) C 6 H A C H 2 C M E 2 N H 2$ and the product treated with NaBH4 to give Q1CH(OH)CH2NHCMe2CH2ICGHANME2-4 (R1 - Bz) which was concensed with Brch2co2et to give, after hydrolysi and hydrogenolysis, Q1CH (OH)CH2NHCME2CH2C6H4R2-4 (I) (RI $=H$; R2 $=N+M e 2 C H 2 C O 2 m$ (IT). I [R1 H; R2 = OCH2CH2N+Me2(CH2) 3SO2") gave sos protection against acetylcholine-induced spasm in guinea pigs after inhalation of a 0.004 o aq. soln. An aerosol was prepa. contg. II 0.1, sorbitantrioleate 0.5,

$I T$ $124955-21-1 \mathrm{P} \quad 124955-32-4 \mathrm{P}$ RL: SEN (Synthetic preparotiom): PREP (Prepatation) searched by barbo:Eryen, STIC $308-4291$
(prepr. af, as broncholytic)
RN 12495S-21-1 CAPLUS
CN Pyridinium, 1-[2-l[4-[2-[[2-(3,4-dihydro-5-hydroxy-3-0x0-2H-1, 4mbenzorazin-B-y1) - 2mydroxyethyl] aminol-2-methylpropyl phenyl] aminol-2-oxoethyll-, chloride, monohydrochloride (9CI) (CA INDEX NAME)

- Cl^{-}
- HCl

CN Pyridimium, $1-[[![4 m[2-[12-h y d r o x y-2-(4-h y d r o x y-3-$ [(methoxysulifonyl) aminolphenyl) ethyllaminol-2m methylpropyl f phenyll aminol carbonylloky] methyll-, chloride, monohydrochloride (SCI) (CA INDEX NAME)

- cl^{-}
- ncl

```
L9 ANSWER 2 OE & CAPLUS COPYRIGHT 2000 ACS
ACCESSION NUMBERE 1998:535771 CAPLUS
DOCUMENT NUMBER: 129:H98012
TTTLE: Prepaxation of phenethanol derivatives athe thedy use
as antidiabetic agents
Maruyama, Tatsuya; Onta, Kenicehi; Hayakawa, Akihiko;
Matsuil, Tetsuo
Yamanouchi Phammemuticel Co., Ltd., Japan
Jpn, Kokai Tokkyo Koho, 20 pp.
CODEN: JKXXAF
DOCUMENT TYPE: \
PMMILY ACC, NUM, COUNT: I
$
Searched by Barb o'Bryen, STIC 308-4291
```

PATENT INGORMATION:

| PATENT NO. | KTND | DATE | APPLICATYON NO. | DATE |
| :---: | :---: | :---: | :---: | :---: |
| JP 10218861 | A2 | 19980818 | IP 1997-21870 | 19970204 |
| SOURCE (3): | | PAT 129: | | - |

OTHER SOURCE (3):
 marpat 129:198012

GI For diagram(5), see printed CA Issue.
$A B$ The derivs. I [ring $B=I I, ~ I I I$, $I V ; X, Y=0, S, N R G ; R 1=H$, Iower
alkyl; $\mathrm{R} 2=\mathrm{H}$, lower alkyl, NHSO2Me, NHCOR3; R3 $=$ H, lower alkyl, monom of di (lower alkylamino), aryl, aralkyl; R4, RS = H, lower alkyl, amino; R6 $=$ H, lower alkyl, aralkyll or their salts as beta.3-adrenoceptor agonises are prepa. Antidiabetic agents contg. I or thir salts as active ingredients are also claimed. I decreased blood glucose of obese and hyperglycemic $k k$ mice with insulin resistance upon both oral and percutaneous administrations. I also increased insulin secretion in normel xats. Erepn. of some of I was given.
IT 211636-04-3P 211636-05-4P 211.636-06-5P
21.1636-07-6P 211636-08-7P 211636-09-8P

211636-10-1P 211636-11-2P 211636-13-4P
211636-15-6P 211636-17-8P 211636-18-9P
211636-19-0е 211636-20-3P
RL: BAC (Biological activity or effector, except adversel; SRN (Synthetie
preparation) ; THU (Therapeutic use); BIOL (Biological study); PREP
(Preparation); USES (Uses)
(prepn, of anticiabetic phenethanol derivs. as .beta.3-adrenoceptor
agonists)
RN 211636-04-3 CAPLUS
CN 2-pyridineacetamide, $\mathrm{N}=(4-[2-(12-\mathrm{hydroxy}-2=$ (4
hydroxyphenyl) ethyl]amino] ethyl phenyl]-4-methyl-, monohydrochloride (9CI) (CA INDEX NAME)

- HCl

RN 211636-05-A CAPLuS
CN 2-pyridineecetamide, $N-\{4-[2-[12 m y d r o x y-2-2=(4 \omega$
hydroxyphenyl)ethyl)aminolethyl] phenyl] 5-methylm, monohydrochloride (9cI) (CA INDEX NAME)

- HCl

Searched by Barb o'Bryen, STIC 308m4291

```
RN 211636-06-5 CAPLUS
CN 2-pyridineacetamide, N-14-12-(12-hydroxy-2-(4-
nydroxypheryl)ethyl]aminolethyllphenylym, monohydrochloride (9CI) (CA.
INDEX NAME)
```


- HeI

```
RN 211636-07-6. ©APLUS
CN 2-pyridineawetarnde, \(N-[4-[2-[[2-h y d r o x y-2-14-\)
    hycroxyphenyl) ethyli aminolethyljphenyll-4, G-dimethyl-, monohydrochloxide
    ( 9 CL ) (CA INDEX NAME)
```


- hel

```
RN 211636-08-7. CAPLUS
CN 2- Pyridineacetamice, N-{4-[2-[4, 2-hydroxym-2-(4-
    mydroxyphenyl)ethyl]aminolethyllphenyl]-3-methylw, monohydrochlordide (9cx)
        (CA INDEX NAME)
```


- HCl

```
RN 211.636-09-8 CAPLUS
CN 2meyridineacetamide, N-[4-[2m〔[2-hydroxym-2-(4*
hydzoxyphenyl) ethyl] aminolethyl|phenyl]-6mmethyl-, monohydzochloricme(9cr)
    (CA INDEX NAME)
    Searched by Earb O'Eryen, STIC 308-4291
```



```
- HCl
RN 211636-10-1 CAPLUS
CN \(2 m\) Pyridineacetamide, \(N-14-12-1[2-h y d r o x y-2-13-\)
hydroxyphenyl) ethylj antnolethyllphenyl)-, monohydrochloride (9cI) (cA INDEX NAME)
```



```
- HCL
RN \(211636-11-2\). सAएUUS
CN 2-Pyricineacetamide, \(N=[4-12 \omega 1(2 \omega\) hydroxy \(-2 \omega(2)\)
hydroxyphenyl)ethyllaminolethyllphenyl]-, monohydrochloride (9cx) (cA INDEX NAME)
```



```
- HCl
RN 211636-13-4 CAPLUS
```



```
hydroxyphenyl) ethyl) aminolethyl? phenyll", (2E)-2-butenedioate (2:1) (salt) (9CI) (CA INDEX NAME)
CM 1
CRN 211636-12-3
CMF C25 H26 N4 03


CM 2

CRN \(110-17 \mathrm{~m}\)
CMF.C4 H4 O4
CDR B 2: E
Double bond geonetry as shown.
```

HO2C
RN 211636m15-6. CAPJUS
CN 2-pymidineacetamide, N-{4-[2-[12-hydromy-2-(4-
hycmoxypheryy)ethyllmethylaminolethyl]phenyl]-1, (2E)-2-butenedioate (1:1)
(5@l*) (9CI) (CA INDEX NAME)
CM I
CRN 211636-14-5
OME C24 H2% N3 O3

```

    CM 2
    GRN \(110-17-8\)
    CME CA HA OA
    CDES 2:

Double bond geometw y as thown.


RN \(211636-17-B \quad\) CAPLUS
CN \(4-\) Phiazoleacetamide, 2 -amino-N- \(4-[2-[12-h y d x o x y-2 m\) (2 -
hycinoxyphenyl) ethyllaminolethyllphemyll-, hydrochloride trifluoroacetate (2:1:3) ( \(2 a, t\) ) ( 9 CL ) (CA LNDEX NAME)
\(\mathrm{CM} \quad 1\)
Searched by Baxb o'Bryen, STIC 308-4291.
```

CRN 211636-16-7
CMF C21 H24 N4 O3 3

```


CM 2
CRN \(76-05-1\)
CMF \(\mathrm{C} 2 \mathrm{HE} \mathrm{F}_{2}\)


RN 211636-18-9 CAPLUS
CN 2-Pyridineacetamide, \(N-14-[2-1!2-h y c r o x y-2-[4-n y d r o x y-3-\) [(methylsulfonyl)amino]phenyl)ethyl]methylamino]ethyl]phenyl]*, monohydrochloricie ( 9 CT ) (CA TNDEX NAME)


HCl.

RN 211636-19-0 CAPLUS
CN 2 -Pyridtneacetamide, \(N-[4-[2-[\{2-13-\) (formylamino)-4-hydroxyphenyl]-2hydroxyethyl]methylaminolethylphenyl.]", monohydrochloride (9cI) (ca INDEX NAME)


- hel
```

1% 211.535-78-8P 21, 635-79-9P 211635-80-2P
211635-61-3P 211635-86-8P 211635-87-9p
211635m8B"OR 211635m-89-1R 211635-92-6P
211635-93m7P 211635m94m8E 211635-95"-9P
211635-96-0F 211635-97-1P 211696-00-9P
211636-03-2F
RL: RCT (Reactant): SEN (Synthetic preparation); PREP (Preparawion)
(prepn, of antidiabetic phenethanol derivs. as beta,3madrenoceptot*
agonists)
RN 2\1635-78-8 CAPLUS
CN 2-Eyridineacetamade, N-[4m[2-[[2-hydroxy-2-14-
(phenylmethoxy) phenyllethyl|(phenylmethyl)aminolethyl]phenyl]-3-methyl-
(9CI) (CA INDEX NAME)

```

RN 211635-79-9 CAPLUS
CN 2-Pyriddneacetamide, \(\quad N-14-12-1 / 2-h v d x o x v-2-14 w\)
(phenylmethoxy) phenyl) ethyl] (phenylmethyl) aminolethyliphenyl1-4-methyl(9CI) (CA INDEX NAME)


PAGE 1-A


PAGE 1-B
\[
-\mathrm{CH}_{2}-\mathrm{RH}
\]

RN 211635-81-3 CAELUS
CN 2-Fyxidineacetamide, \(N=[4-[2-[[2-h y d r o x y-2-[4]\)
(phenylmethoxy) phenyl) ethyl] (phenylmethyl) amino) ethyl] phenyl] - 6 methyl (9CI) (CA SNDEX NAME)


RN 211635-86-8 CADLUS
CN 2-pyridineacetamide, \(N-[4-[2-[[2-\) hydroxy-2-[4]
(phenylmethoxy) phenyl)ethyl) (phenylmethyl)aminolethyliphenyl) (9cI) (cA INDEX NAME)
 (9CI) (CA INDEX NAME)


PAGE \(1-B\)
\(-\mathrm{CH}_{2}-\mathrm{RH}\)
```

RN 221635-88-0. CAPLUS
CN 2-pymidirmacetamide, N-[4-[2-[12-hycimoxy-2-[3-
(phenylmethoxy)phenyl] ethyll(phenylmethyl)amjnojethyl|phenyl]- (9CI) (cम.
INDEX NAME)

```


RN \(211635-89-1\) CAPLUS
\(\mathrm{CN} \quad 2\)-pyridineacetamide, \(\mathrm{N} m\) [4-[2-[12-hycxoxy-2-12-
(pherylmethoxy) phenyllethyll (phenylmethyl) aminolethyllphenyllw (9cI) (cu INDEX NAME)


\footnotetext{
RN \(\quad 212635-9246\) CAPIUS
CN 2-Fyxidineacetamide, \(N=[4-[2-[[2-h y d x o x y-2-(4-\)
(phenylmethoxy) phenyl) ethyl] (phenylmethyl) aminolethyllphenyl] N -methyl(9CI) (CA TNDEX NAME)
}

Searched by Barb o'Eryen, sTIC \(308-4291\)


```

RN 211635-94m-8 chPLUS

```

```

 (phenylmethoxy)phenyl]ethyl) (phenylmethyl)aminolethyl]phenyl)m" (SCI) (cm
 INDEX NAME)
    ```

```

RN 211635m95-9 CARLUS
GN 2-pyridineacetamide, N-[4-[2-[[2-[3-amino-4-(phenylmethoxy)phenyl]-2-m
hydroxyethyl] (phenylmethyl)aminolethyllphenyl)- (9CT) (CA INDEX NAME)

```


RN 211635 m 9 m - CAELUS

2-hydronyethyl] (phenylmethyl)amino)ethyllphenyll (9CX) (cA INDEX NAME)


\begin{tabular}{|c|c|}
\hline RN & 211636-00-9 \\
\hline CN & 1H-Tmidazole-2wacetamide, Nm [4m [2w-1 \(12-h y d r o x y-2-[2-\) (phenylmethoxy) phenyl] ethyl] (phenylmethyl) amino) ethyl1pheryyl]-1-(phenylmethyl)- (9CI) (CA INDEX NAME) \\
\hline
\end{tabular}

```

RN 211636-03-2 CAPLUS
CN Carbamic acid, [2-[4-[{(2maminom4mthiazolym)acetyl]aminolphenyl]ethyl][2-

```

``` INDEX NAME
```



L9 ANSWER 3 OF 6 CAPXUS COPYRTGHT 2000 ACS
ACCESSEION NUMBER: $1998: 269995$ CAPLUS
DOCNMENT NUMBER: $\quad 128: 303693$
TITLE:
New Arole Antifungals. 3. Synthesis and Antifungad
Activity of 3-Substituted-4 (3H) - guinazolinones
AUTHOR (S) :
Eartrold, Javiex; Turmo, Enric; Alguero, Monica; Eoncompte, Eulalia: Vericat, Maxia f.; Conte, Lourdes; Ramis, Joanuim; Merlog. Manuel: Garcia-Rafanell, Searched by Barb o'Bryen, swIC 308-4291.


UNITED STAT. JDEPARTMENT OF COMMERCE Patent and Trademark Office
Address: COMMISSIONER OF PATENTS AND TRADEMAFKS Washington, D.C, 2023Y


Please find below and/or attached an Office communication concerning this application or proceeding.


Responsive to communication(s) filed on $\qquad$This action is FINAL.Since this application is in condition for allowance except for formal matters, prosecution as to the menits is closed in accordance with the practice under Ex porte Quayes5 C.D. 11; 453 0.0. 213.
A shortened statutory period for response to this action is set to expire $\qquad$ month(s), or thirty days, whichever is longer, from the mailing date of this communication. Failure to respond within the period for response will cause the application to become abandoned (35 U.S.C. § 133). Extensions of time may be obtained under the provisions of 37 CFR $1.136(a)$.

## Disposition of Claim

$X$ Claim(s) 1-6 is/are pending in the applicat

Of the above, claim(s) $\qquad$ is/are withdrawn from considerationClaim(s) $\qquad$ is/are allowed.Claim(s) $\qquad$ is/are rejected.Claim(s) $\qquad$ is/are objected to.
X) Claims $1-8$ $\qquad$ are subject to restriction or election requirement.

## Application Papers

See the attached Notice of Draftsperson's Patent Drawing Review, PTO-948.The drawing's) filed on $\qquad$ is/are objected to by the Examiner.The proposed drawing correction, filed on $\qquad$ is $\qquad$ approved blisapproved.The specification is objected to by the Examiner.The oath or declaration is objected to by the Examiner.Priority under 35 U.S.C. $\$ 119$Acknowledgement is made of a claim for forejgn prority under 35 U.S.C. § 119(a)-(d).
$\square$ All $\square$ Bome* Done of the CERTIFIED coples of the priority documents have beenreceived.received in Application No. (Series Code/Serial Number) $\qquad$ _.received in this national stage application from the International Bureau (PCT Rule 17.2(a)).

- Certified copies not received: $\qquad$Acknowledgement is mace of a claim for domestic prionty under 35 U.S.C. § 119(e).


## Attachment(s)

$\square$ Notice of References Cited, PTO-892Information Disclosure Statement(s). PTO-1449, Paper No(s). $\qquad$Interview Summary, PTO-413Notice of Oraftsperson's Patent Drawing Review, PTO-948Notice of Informal Patent Application, PTO -152

Art Unit: 1624

## DETAILED ACTION

## Election/Restrictions

1. Restriction is required under 35 U.S.C. 121 and 372.

This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1.

In accordance with 37 CFR 1.499, applicant is required, in response to this action, to elect a single invention to which the claims must be restricted.

Group I, claim(s) $1-3,6-8$, drawn to compounds, composition, and method of use for Formula I where in $Z=N ; B=6$-membered rings containing at least 1 N and one other heteroatom ( $0, \mathrm{~N}, \mathrm{~S}$ ) e.g. 1,4-, 1,3-diazine, piperazine, morpholine, thiomorpholine etc.

Group II, claim(s) 1-3,6-8, drawn to compounds, composition, and method of use for Formula I where in $Z=N ; B=6$-membered rings containing $1 \mathrm{~N} \& 5$ carbons, e.g. pyridine, piperidine, quinoline etc.

Group III, claim(s) 1-3,6-8, drawn to compounds, composition, and method of use for Formula I where in $\mathrm{Z}=\mathrm{N} ; \mathrm{B}=5$-membered rings containing IN and +0 to 3 heteroatoms $(0, S, N)$ e.g. diazoles, triazoles, tetrazoles, Thiadiazoles, Thiazole etc..

Group IV, claim(s) 1-1-4,5,6,7-8, drawn to compounds, composition, and method of use for Formula ( $)$ wherein $\mathrm{Z}=\mathrm{CH}$ If this group is elected, further restriction(s) will be required..

Group V, claim(s)1-8, drawn to compounds not included in above Groups I-IV.

Art Unit: 1624

In addition to election of one of the above groups, applicants are also required to elect a single species for the group:
2. The inventions listed as Groups I-V do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: They have different structures.
3. A telephone call was made to Mr. Hill on 10/24/00 to request an oral election to the above restriction requirement, but did not result in an election being made.

Applicants are advised that the reply to this requirement to be complete must include an election of the invention to be examined even though the requirement be traversed (37 CFR 1.143).
4. Applicants are reminded that upon the cancellation of claims to a non-elected invention, the inventor ship must be amended in compliance with 37 CFR 1.48 (b) if one or more of the currently named inventors is no longer an inventor of at least one claim remaining in the application. Any amendment of inventor ship must be accompanied by a petition under 37 CFR 1.48(b) and by the fee required under 37 CFR 1.17(I).
5.Any inquiry concerning this communication or earlier communications from the examiner should be directed to Sudhaker Patel whose telephone number is (703) 308 4709. The examiner can normally be reached on Monday thru' Friday from 8:30 AM to 5:00 PM. If attempts to reach
the examiner by the phone are unsuccessful, the examiner's supervisor, Mukund Shah can be reached at (703) 3084716 .

A facsimile center has been established for Group 1600. The hours of operation are Monday through Friday, 8:45 AM to 4:45 PM. The telecopier numbers for accessing the facsimile machine are (703) 308-4556 or (703) 305-3592.

Any inquiry of general nature or relating to the status of this application or proceeding should be directed to the Group receptionist whose telephone number is (703) 3081235.


October 25, 2000

Nuiknind Jolhed
Mukund J. Shah
Supervisory Patent Examiner
Art Unit 161 M

## Received

NOV 2720001

TECH CENTER 1600/2SOO


Customer Number $22,852, C$ Attorney Docket No. 7385.(0007-0

## IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:
Tatsuya MARUYAMA et al.
Serial No.: 09/529,096
Filed: April 7, 2000
For AMIDE DERIVATIVES OR SALTS THEREOF

Assistant Commissioner for Patents
Washington, DC 20231
Sir:

## RESPONSE TO RESTRICTION REQUIREMENT

In a restriction requirement dated October 27, 2000, the Examiner required restriction under 35 U.S.C. $\$ \S 121$ and 372 between the following groups of claims:

Group 1 Claims 1-3, and 6-8, drawn to compounds, compositions, and methods of use for Formula I wherein $Z$ is $N$ and $B$ is a sixmembered ring which contains at least one nitrogen and one other heteroatom;

Group II. Claims 1-3, and 6-8, drawn to compounds, compositions, and methods of use for Formula I wherein $Z$ is $N$ and $B$ is a sixmembered ring which contains one nitrogen and five carbon atoms;

Group III Claims 1-3, and 6-8, drawn to compounds, compositions, and methods of use for Formula I wherein Z is N and B is a five. membered ring containing one nitrogen and zero to three additional heteroatoms;

Group IV Claims 1-8, drawn to compounds, compositions, and methods of use for Formula I wherein Z is CH ; and

Group V Claims $1-8$ drawn to compounds not included in the above Groups I-IV.

See Office Action at 2.

The Examiner also required an election of species for the group elected. See id at 3 .

## A. Restriction Election with Traverse

Applicants provisionally elect to prosecute Group IV, claims $1-8$ drawn to compounds, compositions, and methods of use for Formula I wherein Z is CH , with traverse. Applicants traverse on the ground that the claims would not be unduly burdensome to search as written. See MPEP § 803.

The Examiner indicated that election of Group IV would require additional restriction. See Office Action at 2. During a telephonic discussion with Applicants'

Application No.: 09/529,096
representative, Jeremy Stipkala, held November 20, 2000, the Examiner kindly agreed to reconsider whether further restrictions would be required.

Applicants respectfully request the Examiner to examine the claims of Group IV without further restriction. With the provisional election made above, the scope of the required search is limited to compounds, compositions and methods of use of compounds having the following appearance:

*Note: not all substituents shown

This, Applicants respectfully contend, represents a substantial and reasonable structure for the basis of a search that is not unduly burdensome on the Examiner. Therefore, further restrictions should not be required. In making this argument, Applicants reserve the right to argue the patentability of their claimed subject matter over any cited document which may allegedly anticipate or allegedly render obvious any portion of their claimed subject matter.

## B. Species Election with Traverse

Applicants also provisionally elect, with traverse, the species of Example 7 on page 37, Example 12 on page 38, and Example 41 on page 44. Applicants traverse on
the ground that the claims as written do not define an unreasonable number of species. See 37 C.F.R. § 1.141(a).

## CONCLUSION

Please grant any extensions of time required to enter this response and charge any additional required fees to our deposit account 06-0916.

Respectfully submitted,
FINNEGAN, HENDERSON, FARABOW, GARRETT \& DUNNER, L.L.P.

Dated: November 22,2000



Please find below and/or attached an Office communication concerning this application or proceeding.


Art Unit: 1624

## DETAILED ACTION

Clams 1-8 are pending in this application.
Applicants' communication paper \# 5 dated 11/22/00 is acknowledged.
Applicants" various arguments and remarks have been considered, and found persuasive.
Accordingly Group IV will not be subjected to further restriction as indicated in previous Office Action paper \# 4 dated $10 / 27 / 00$. This is because the additional time required for search would be within the reasonable time spent for the prosecution during the present Office Action.

Applicants have provisionally elected with traverse invention of Group IV, claims 1-8, drawn to compounds, compositions, and method of use for Formula (I) wherein $\mathrm{Z}=\mathrm{CH}$, and have also elected species of Examples 7 on page 37, Example 12 on page 38, and Example 41 on page 44.Since Claims 1-8 link with other groups of inventions, the same will be examined bearing in mind the subject matter, and species as elected by the applicants only. Affirmation of this election must be made by the applicants in replying to this Office Action.

The requirement is still deemed proper for non-elected subject matter, and is therefore made FINAL .

## Improper Markush Rejection

Claims 1-8 are rejected under a judicially created doctrine as being drawn to an improper Markush group, that is, the claims lack unity of invention. The variables $. Z, X, B$, to gather with various values for other substituents are defined in a such a way that they keep changing the structure/core of the compound that determines the classification/subclassification. Additionally,

Art Unit: 1624
the physical properties e.g solubility, melting point, appearance etc. are tremendously altered with the changing of the various variable as recited herein. By changing the values of these variables several patentably distinct and independent compounds are claimed.

In order to have unity of invention the compounds must have " a community of chemical or physical characteristics" which justify their inclusion in a common group, and that such inclusion is not tepugnant to principles of scientific classification" In re Jones (CCPA) 74 USPQ 149 (see footnote 2). As already pointed out earlier, the structural formula (I) does not have a significant structural feature that is shared by all of its alternatives which is inventive. The structure has only a Formula ( I$)=\mathrm{Phenyl}-\mathrm{CH}(0 \mathrm{H})-\mathrm{CH} 2 \mathrm{NH}-\mathrm{C}(\mathrm{R1a})(\mathrm{RIb})-\mathrm{A}-\mathrm{Ph}$ enyl-NH-C0common. . This feature is not inventive. Compounds embraced by Formula (I) are so diverse in nature that a prior art anticipating a claim with respect to one member under 35 U.S.C. 102 would not render obvious the same claim under 35 U.S.C. 103. This is evidentiary of patentably distinct and independent inventions.

Limiting the claims to the elected group would overcome this rejection.

## Claim Rejections - 35 U.S.C. § 112

1. The following is a quotation of the first paragraph of 35 U.S.C. 112:

The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the same and shall set forth the bess mode contemplated by the inventor of carrying out his invention.

Application/Control Number: 09529096
Art Unit: 1624

Claims 1, and claims dependent on these claims, namely, claims ,2-8 are rejected because while enabling as therapeutic agent for diabetes mellitus which comprises of the amide derivative or its salt according to claims 1-6 as an effective ingredient, does not reasonably provide enablement for compounds, composition based on heteroaryl ring $=$ isothiazolopyridine, imidazopyridyl or oxobenzofurayl etc. Whereas the claim language does not only include these cited compounds but many more compounds as represented by variables outlined in above mentioned Markush rejection in Group IV as elected, and rejected under 35 U.S.C. 112, para. one because the claims are open-ended, and broad.

In evaluating the enablement question, several factors are to be considered. In re Wands, 8 USPQ 2 d 1400 (Fed. Cir. 1988); Ex parte Forman, 230 USPQ 546. The factors include:(l). The nature of invention; (2) the state of prior art;(3). the predictability or lack thereof in the art; (4). the amount of direction or guidance present; (5) the presence or absence of working examples; $f$ 6). the breadth of the claims, and (7). the quantity of experimentation needed 1). The nature of the invention: The claims are drawn to compounds, composition(s), a method(s) of making a pharmaceutical agent to be used as a therapeutic agent for diabetes mellitus.
2). The state of prior art: There are no known compounds of similar structure(s) which have been demonstrated to treat diabetes mellitus.
3). The predictability or lack thereof in the art: "predictability" have been demonstrated to be sufficiently lacking in the instant case for the instant method(s) claims which include (but not

Art Unit: 1624
limited to) making therapeutic agent for diabetes mellitus.
4). The amount of direction or guidance present and 5): There are no doses present for a method of preparing a therapeutic agent for diabetes mellitus. Such utilities are unbelievable on their face and therefore they must be supported by sufficient evidence demonstrating such utilities. All available drugs to treat diabetes could only be used in a limited way.
6). The breadth of the claims: The claims are drawn to making either a pharmaceutical agent or a therapeutic agent for diabetes mellitus comprising the amide derivative or the salt thereof according to claims 1-6 as an effective ingredient.
7). The quantity of experimentation need would be an undue burden to one skilled in the pharmaceutical arts since there is inadequate guidance given to the skilled artisan for the many reasons stated above.

$$
\text { Claim Rejections - } 35 \text { U.S.C. § } 102
$$

2. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless --
(a) the invention was known or used by others in this country, or patented or described in a printed publication in this or a foreign country, before the invention thereof by the applicant for a patent.

Art Unit: 1624

Claims 1-8 are rejected under 35 U.S.C. 102 (a) reference JP 10218861 which claims the application date of 2/4/1997. See also CAPLUS 1998:535771 pages 61-70.

## Claim Rejections - 35 U.S.C. § 103

3.... The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

Claim 1, and claims dependent on these claims, 2-8 are rejected under 35 U.S.C. 103(a) as being unpatentable oyer Schromm, Kurt et al.(DE 3743265) as applied to claims above, and further in view of Konosu Toshiyuki et al., "Triazol Antifungal", Chem. Pharm. Bull., 3910,2581-9 (1991) also cited as CAPLUS 1992:26440.

Claims are drawn to generic Formula (I) of claim 1 wherein the core is very similar to main core of ' 265 . The reference ' 265 teaches the making of compounds with generic core(s) encompassed by Claim 1 which are drawn to compounds of Formula (I) and others as instantly claimed.

The reference '265 (Sce Examples on pages 77-78) differ from the instantly claimed compounds by not having $-\mathrm{CH}(0 \mathrm{H})-\mathrm{CH} 2-\mathrm{NH}-\mathrm{CH} 2-\mathrm{CH} 2$-phenyl- $\mathrm{NH}-\mathrm{CO}-\mathrm{CH} 2$-pyridine, but $\mathrm{CH}(0 \mathrm{H})-\mathrm{CH} 2-\mathrm{NH}-\mathrm{C}(\mathrm{Me}) 2-\mathrm{CH} 2$ - phenyl- $\mathrm{NH}-\mathrm{CO}-\mathrm{CH} 2-$ pyridinium quat. (See Ex. On page 78 ) as claimed herein. However, the reference ' 265 is not limited in teaching of making of

Art Unit: 1624
compounds based on above generic core(s)only, but also teaches the use of the compounds as broncholvtics i.e use as pharmaceuticals as taught by the instant application.

The other reference Konosu, Toshiyuki et al. teaches making of compounds with a core also similar to instantly claimed compounds(see Formula 1 of CAPLUS pages 72-72). The reference has a core $=$ Phenyl- $\mathrm{CH}(0 \mathrm{OH}($ heterocycle $)-\mathrm{CH}(\mathrm{Me})-\mathrm{NHC} 0-\mathrm{R} 2(\mathrm{R} 2+\mathrm{H}$, Ph , substituted Ph, furyl, thenyl etc.) which is very similar to instant Example 47 cited on page 71. The reference differs from the instantly claimed compound by having triazole in place of H , and R 2 $(=-\mathrm{CH} 2 \mathrm{PH})$ instead of -CH 2 -heterocycle. The instant compounds' claims have eliminated the reference by defining $B=$ a heteroaryl group which may be substituted and may be fused with a benzene ring. However, the specific main core $\mathrm{Phenyl}-\mathrm{C}(\mathrm{H} / \mathrm{het})(\mathrm{OH})-\mathrm{CH}(\mathrm{H} / \mathrm{Alkyl})-\mathrm{NH}-\mathrm{CO}-$ remains the same as claimed instantly herein.

However, the reference is not limited to teaching of making of a part of the molecule of the instantly claimed invention, but also teaches it use as antifungal agents. (see CAPLUS page 72), that is to say the ref. Compounds have ability to control or prevent growth of living organisms. However, the difference in structural synthesis could be overcome by the teaching of Kurt et al. " 265 as cited above.

Thus, one having ordinary skill in the art would have been motivated to modify Formula (I) of ref " 265 and try out combination of ref. Konosu by using/reacting Benzene substituted with- $\mathrm{CH}(0 \mathrm{H})-\mathrm{CH} 2-\mathrm{NH}-\mathrm{CH} 2-\mathrm{CH} 2-\mathrm{Ph}-\mathrm{NH}-\mathrm{C} 0-\mathrm{CH} 2-$ with pyridine or other heterocycle for example, triazole, tetrazol or thiazole as used in the instantly claimed invention, and one would

Application/Control Number: 09529096
Art Unit: 1624
have expected still to maintain \&/or find out pharmaceutical/pharmacological activity either same or different than the reference " 265 . Hence, at the time of the invention was made, it would have been obvious to a person of ordinary skill in the art to prepare compounds and pharmaceutical compositions of the claimed Formula (I) by combining the 2 arts which were available.

This application has not been checked to the extent necessary to determine the presence of all possible minor errors. Applicants' cooperation is, therefore, requested in promptly correcting any errors of which they may become aware in the specification.

Preliminary computer assisted search revealed references: U.S.P. 5541197 . However, this reference do claim pharmacologically active compounds having hypolipidemic and hypoglycemic activities. These reference are also available on CAPLUS, MARPAT etc. The references are cited but not applied herein at this time.

Applicants are also requested to note that Application Serial \#s 09297762;09514637, and others involving either one or more of the inventors, and similar subject matter to current application are located thru' preliminary search. These references are in transit and are not accessible to the examiner at this time. Applicants are advised to provide the information related to similar \&/or presently pending local or international applications, if any, related to the subject matter included in the instant application to avoid various issues arising out of question of either double patenting \&/or priority claims and other related matters.

Art Unit: 1624

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Sudhaker Patel whose telephone number is (703) 308 4709. The examiner can normally be reached on Monday thru' Friday from 8:30 AM to 5:00 PM. If attempts to reach the examiner by the phone are unsuccessful, the examiner's supervisor, Mukund Shah can be reached at (703) 3084716.

A facsimile center has been established for Group 1600. The hours of operation Monday through Friday, 8:45 AM to 4:45 PM. The telecopier numbers for accessing the facsimile machine are (703) 308-4556 or (703) 305-3592.

Any inquiry of general nature or relating to the status of this application or proceeding should be directed to the Group receptionist whose telephone number is (703) 3081235.


December 1, 2000.

Mukuned I. Ital
Mukund Shah
Supervisory Patent Examiner
Art Unit 1624


Notice of References Cited

Examiner Sudhaker Pate
Applicathom No.
$0915 \times 9,096$

Tatsuya Maruyama et al.

U.S. PATENT DOCUMENTS

*		DOCUMENT NO.	$\therefore$ Date	, name	class	subclass
$\times$	A	$5,541,197$	* 711996	Fisher et al.	514	311
	B		$\cdots$	- ${ }^{\text {m }}$		
	0			, ,		
	-		$\cdots$	$\cdot$		
	E					
	F					
	$\bigcirc$					
	$\stackrel{ }{+}$					
	1					
	$\cdots$					
	${ }^{k}$	.				
	1					
	M					




[^5]U. S. Patunt and Trastemark OHfbu PTO-892 (Rev. 9-95)


FOREIGN PATENT DOCUMENTS

Examiner Initial	Document Number	Date	Conntry	Class	Sub Class	Trans. Yes	Trans.   No
	-						
-							

OTHER DOCUMENTS (Including Author, Title, Date, Pertinent Pages, Etc.)
Examiner
*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609; draw
line through citation if not in conformance and not considered. Include copy of this form with next commumication to Applicant.
Form PTO 1449
Patent and Trademark Office - U.S. DEPARTMENT OF COMMERCE

MAY 072001
PATENT
Customer Number 22,852
Attorney Docket No. 7385.0007-00
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:
Tatsuya MARUYAMA et al.
Serial No.: 09/529,096
Filed: April 7, 2000
For: AMIDE DERIVATIVES OR SALTS THEREOF

Assistant Commissioner for Patents
Washington, DC 20231
Sir :

## AMENDMENT UNDER 37 C.F.R. § 1.111

In response to the Office Action dated December 7, 2000, the period for response having been extended to May 7, 2001 by the filing of a Petition for Extension of Time (Two Months) and appropriate fee herewith, please amend this application as follows:

## IN THE CLAIMS:

Without prejudice, disclaimer, or acquiescence, please cancel claim 8, amend claims $1,3,5,6$, and 7 , and add new claims $9,10,11,12$, and 13, as follows:

0000007309529096
390.00 OP

from a halogen atom, lower alkyl, lower alkenyl, lower alkynyl, hydroxy, sulfanyl, halogeno lower alkyl, lower alkyl-O-, lower alkyl-S-, lower alkyl-O-CO-, carboxy, sulfonyl, sulfiny, lower alkyl-SO-, lower alkyl- $\mathrm{SO}_{2}$, lower alkyl-CO-, lower alkyl-CO-O-, carbamoyl, lower alkyl/NH-CO-, di-lower alkyl-N-CO-, nitro, cyano, amino, lower alkyl-NH-, di-lower alkyl- N -, anyl-lower alkyl, halogeno aryl-lower alkyl, guanidino, lower alkyl-CO~NH, and fower alkyl- $\mathrm{SO}_{2}-\mathrm{NH}_{-}$
5. (Once Amended) An amide derivative represented by the general formula (la):

LAW OFTCN:
HNNEGAN, HENDERSONA, FARABCNW, GARRETH, BDUNNER, L. L., P. WhO 1 SHEEET, N.W. WASHINGTON, DO 20OOK 202-408-4000



Application No.: 09/529,096
Attorney Docket No.: 7385.0007-00
4. (New) A composition comprising an amide derivative of general formula (I) as claimed in claim 1 in a pharmaceutically acceptable carrier, wherein the amide derivative is present as a polymorphic substance.
12. (New)

A method for treating diabetes mellitus in a human or animal patient in need of such treatment comprising administering to the patient an amount of an amide derivative of general formula. (I) as claimed in claim 1, wherein the amount is an amount effective for such treatment.
13. (New) A method for treating obesity in a human or animal patient in need of such treatment comprising administering to the patient an amount of an amide derivative of general formula (I) as claimed in claim 1, wherein the amount is an amount effective for such treatment.

## REMARKS

## I. Amendments to the Claims

Claims 1-7 and $9-13$ are now pending. Claims $1,3,5,6$, and 7 have been amended, and claim 8 has been canceled, all without prejudice to pursuing canceled subject matter, if any, in a continuation application, without disclaimer of any subject matter, and without acquiescence to any rejection, objection, or requirement, New claim 9 has been added to replace canceled claim 8. New claims 10 and 11 have been added to point out that several forms of the amide derivative of claim 1 form part of the claimed invention. Claim 12 has been added to clairn the method of treatment implicit in
canceled claim 8. Claim 13 has been added to claim a method of treating obesity, as taught in the application as originally filed.

Claims 1, 3, and 5 have been amended to more particularly point out and distinctly claim the subject matter Applicants regard as their invention. In particular, the claim language has been adjusted to conform with accepted U.S. claim language practices. For example, parentheses were deleted, and language describing optional or alternative features of the claimed invention was clarified. Claim 6 was amended to clarify that each recited compound or its salt was claimed individually, and not necessarily in the form of a composition containing all recited compounds and salts thereaf.

In claim 7, "agent" was changed to "composition" to recite the statutory term.
See 35 U.S.C. § 101. Applicants have used "agent" and "composition" interchangeably throughout the application. Compare, for example, specification at page 5, lines 1-5, and page 26, line 10 . Claim 7 was also modified to recite widely accepted multiply dependent claim language. Applicants note that, upon a review of their records, it appears that the fee for multiply dependent claims was not submitted yet in this application. Therefore, Applicants submit that fee with this Amendment.

Claim 8 was canceled and rewritten as claim 9. Claim 9 depends from claim 7, and merely presents the subject matter of canceled claim 8 in widely accepted claim language. Support for new claims 10 and 11, reciting forms of the amide derivatives of claim 1, find support throughout the specification and claims as originally filed, and in particular on page 8 , line 24 , to page 9 , line 5 , and page 19, lines 7-15. Claim 12, depending from claim 1 and reciting the method of treating diabetes mellitus in original
claim 8, finds additional support in the specification generally, and in particular on pages
$20-28$. Claim 13 recites a method for treating obesity, and finds support in the application as filed, and in particular, in the specification on page 20, line 4, to page 21, line 11, and page 25, line 13 , to page 28 , line 22.

## II. Certified Copies of Priority Document

The first page of the Office Action dated December 7, 2000, indicates that no certified copy of the priority document has been received by the Patent and Trademark Office (PTO). However, the Notification of Acceptance of Application under 35 U.S.C. 371 and 37 C.F.R. 1.494 or 1.495 mailed May 17, 2000 (a copy enclosed), indicates that a copy of the priority document has been received. Applicants respectfully request that the Examiner verify whether a certified copy of the priority application has been received by the PTO in this application.

## III. Restriction and Election Requirements

The restriction requirement and species election requirement of record have been made final. See Office Action at page 2. While Applicants maintain their traverse of these requirements, they affirm their election with traverse of Group IV, claims 1-8 (now claims 1-7 and 9) drawn to compounds, compositions, and methods of use for Formula I wherein Z is CH , and also their election with traverse of the species of Example 7 on page 37. Example 12 on page 38, and Example 41 on page 44 of the specification. Applicants gratefully acknowledge the Examiner for refraining from restricting the claims further. See Office Action at page 2.

## IV. Improper Markush Group Rejection

Claims $1-8$ have been rejected under the judicially created doctrine of improper Markush grouping, because these claims are allegedly drawn to an improper Markush group, that is, the claims allegedly lack unity of invention. See Office Action at page 2. The Office Action reasons that the "variables $\mathrm{Z}, \mathrm{X}$, and $\mathrm{B},[$ together] with various values for other substituents are defined in such a way that they keep changing the structure/core of the compound that determines the classification/subclassification." ld . The Office Action has further asserted that the physical properties of the various compounds would be "tremendously altered" by the possible range of the claimed variables. In sum, the Office Action alleges an improper Markush group based on the alleged lack of unity. Applicants traverse, and disagree with the reasoning.

Among the many incorrect statements set forth in the Office Action at pages 2-3, Applicants disagree, in particular, with the statement that "[t]his feature is not inventive." Id. Moreover, Applicants traverse the unsupported statement that "the physical properties e.g. solubility, melting point, appearance etc. are tremendously altered with the changing of the various variable[s]," to the extent that foreseeable variation in these properties is used to support the improper Markush group rejection. Applicants request evidence on this point in accordance with MPEP § 2144.03.

Applicants respectfully request that the Examiner hold this rejection in abeyance until otherwise patentable subject matter has been identified. The Examiner kindly indicated that this rejection could be overcome by limiting the claimed invention to the elected subject matter. See Office Action at page 3. Applicants have traversed the

Application No.: 09/529,096
Attorney Docket No.: 7385.0007-00
restriction and election requirements, and if those requirements are not withdrawn, further argument now against the Markush rejection would be moot.

## V. Claim Rejections under 35 U.S.C. § 112

Claims 1-8 have been rejected under 35 U.S.C. § 112, $\pi 1$, as allegedly lacking enablement for compounds and compositions wherein "heteroaryl ring $=$ isothiazolopyridine, imidazopyridinyl, or oxobenzofuranyl, etc." Office Action at pages 3-
4. Specifically, the Office Action states "while [claims 1.8 are] enabl[ed] as therapeutic agent for diabetes mellitus which comprises of the amide derivative or its salt according to claims 1-6 as an effective ingredient, [the Applicants' disclosure] does not reasonably provide enablement for compounds, compositions based on heteroaryl ring = isothiazolopyridine, imidazopyridinyl, or oxobenzofuranyl, etc." Id. The Office Action then analyzes several factors for determining enablement from In re Wands to support the rejection. In re Wands, 858 F.2d 731, 8 USPQ2d 1400 (Fed. Cir. 1988); ex parte Forman, 230 USPQ 546 (Bd. Pat. App. \& Interf. 1986). Applicants respectfully traverse this rejection.

In stating the rejection, the Office Action asserts that "the claims are open-ended, and broad." This reasoning appears to suggest an indefiniteness rejection under 35 U.S.C. § 112, $\uparrow$ 2, which has not been made. Applicants traverse this assertion and ask for clarification whether the claims are rejected on this ground.

35 U.S.C. § 112. II 1 requires:
The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and
use the same, and shall set forth the best mode contemplated by the inventor of carrying out his invention.

Given the statutory language, "enablement requires that the specification teach those in the art to make and use the invention without undue experimentation." In re Wands, 858 F.2d at 737, 8 USPQ2d at 1404. Moreover, "[t] he key word is 'undue,' not 'experimentation.' " Id. (internal quotations and citations omitted). To determine whether any needed experimentation is undue, the Federal Circuit listed eight factors to consider. See id. Applicants believe that the full scope of their claims is enabled, and set forth their counter-analysis of those eight factors below:
(1) The nature of the invention: Claims $1-6$ recite compounds which are amide derivatives represented by the general formula (1), and salts thereof. Claim 6 names several amide derivatives and salts thereof. Claim 7 recites a composition which comprises at least one amide derivative as claimed in one of claims 1 to 6 in a pharmaceutically acceptable carrier. Claim 9 recites the composition of claim 7 , wherein the amount of amide derivative is an amount effective for the treatment of diabetes mellitus. To the extent that the disclosed invention is broader than the scope of these claims, Applicants do not mean to limit the scope of their invention by this characterization. Also, Applicants point out that the claimed invention is more than just a treatment for diabetes.
(2) The state of the prior art: The specification describes some background of the present invention on pages 1.3. Applicants do not concede that any of the documents mentioned therein are "prior art" with respect to their invention.
(3) The predictability or lack thereof in the art: The Office Action asserts that a lack of predictability as to methods for making a therapeutic agent for diabetes
mellitus has been demonstrated. Applicants traverse and ask for evidence of that demonstration. To the extent that the Office Action is correct, and yet Applicants' disclosure addresses that lack, this speaks of the patentability of Applicants' contribution to the art.
(4) The amount of direction or guidance present, and
(5) The presence or absence of working examples: The Office Action asserts: "There are no doses present for a method of preparing a therapeutic agent for diabetes mellitus." Office Action at page 5. Applicants disagree, and point to the dosage, adjuvant, and administration information on pages 26-28, among other places in the specification. The dose is "around $0.01 \mathrm{mg} / \mathrm{kg}$ to $100 \mathrm{mg} / \mathrm{kg}$ per day for adults in the case of oral administration, and that is administered at a time or by dividing into 2 to 4 times a day." Specification at page 26, lines $20-23$. If the dose is given intravenously, the dosage changes to "around $0.001 \mathrm{mg} / \mathrm{kg}$ to $10 \mathrm{mg} / \mathrm{kg}$ per day for adults." $/ \mathrm{d}$. , at page 26 , line 24 , to page 27 , line 1.

The Office Action continues: "Such utilities are unbelievable on their face and therefore they must be supported by sufficient evidence demonstrating such utilities." Office Action at page 5. To the contrary, some of many potential utilities are listed in the specification on pages $20-23$, and operability is demonstrated in the specification on pages 23-26. Furthermore, if one of ordinary skill in the art sought to determine the efficacy of an amide derivative of general formula (1), that skilled artisan could follow the guidance provided in the specification for performing the hypoglycemic test in kk mice detailed on pages 23-24, the glucose tolerance test in normal rats beginning on page 24 , and the test for stimulating human $\beta_{3^{-}}, \beta_{2^{-}}$, and $\beta_{1-}$ receptors found on pages 24-25.

The compounds of the present invention were shown to have a potentiating action to insulin sensitivity ten times greater than those compounds disclosed in WO 95/29159.

See specification at page 24. Not only do the inventive amide derivatives of general formula (I) work, but they work surprisingly better.

The Office Action concludes this point of analysis by stating that "[a]ll available drugs to treat diabetes mellitus could only be used in a limited way." Office Action at page 5. Applicants respectfully point out that their invention is not limited to treating diabetes mellitus.. See specification generally, and in particular, pages 20-23.

Moreover, Applicants assert that the compounds are enabled per se: the amide derivatives represented by the general formula (1) are described, among other places, on pages 4-9. General synthesis schemes appear in the Manufacturing Methods set forth on pages 9-20. Synthetic details for specific examples of amide derivatives represented by general formula (I) are shown on pages 36-63, and pages 64-70 tabulate physico-chemical properties of one hundred and thirteen (113) amide derivatives of the present invention actually prepared according to the disclosed syntheses.

To the extent that the rejection holds that certain heteroaryl rings are not enabled, Applicants point out the following examples actually synthesized and reported in the specification: Example 6 (imidazo[2,1-b]thiazolyl), Example 41 (aminothiazolyl), Example 60 (benzyloxypyridinyl), Example 90 (benzimidazolyl), Example 104 (pyrimidinyl), among many others.
(6) The breadth of the claims: Applicants believe that the breadth of their claims is fully supported by the large number of diverse amide derivatives prepared and

Japanese application JP 10-218861 was published on August 18, 1998.
Applicants filed their priority application on October 17, 1997. Therefore, Applicants respectfully request that this rejection be withdrawn.

Applicants perfect their claim for priority in accordance with 37 C.F.R. § 1.55(a) by submitting, a verified English translation of their priority document with this Amendment. Upon perfection of Applicants' priority date, this rejection should be withdrawn.

## VII. Claim Rejections under 35 U.S.C. $\$ 103$

Claims $1-8$ have been rejected as allegedly unpatentable over Schromm et al. (DE 3743265) in view of Toshiyuki et al. (Chem. Pharm. Bull: 39(10) 2581-2589 (1991)). See Office Action at page 6. The Office Action points out alleged structural similarities between the compounds disclosed and the present claimed amide derivatives of general formula (I), while acknowledging structural differences between them. The disclosed use of Schromm's compounds as broncholytics allegedly motivates one with knowledge of Toshiyuki's compounds, useful as antifungals, to modify Schromm's compounds to obtain Applicants' amide derivatives. Therefore, the Office Action concludes, one of ordinary skill in the art would find the amide derivatives of the present invention obvious. Applicants respectfully traverse.

To establish a prima facie case of obviousness, three basic criteria must be met. First, there must be some suggestion or motivation, either in the references themselves or in the knowledge generally available to one of ordinary skill in the art, to modify the reference or to combine reference teachings. Second, there must be a reasonable expectation of success. Finally, the prior art reference (or references when combined) must teach or suggest all the claim limitations.

For at least these reasons, Applicants respectfully contend that the rejection under 35 U.S.C. § 103(a) over Schromm et al. in view of Toshiyuki et al. be withdrawn.

To the extent that the rejection relies on Schromm et al. in combination with alleged common knowledge in the art or allegedly "well-known" prior art, Applicants traverse and request that support be provided in accordance with MPEP $\$ 2144.03$.

## VIII. Documents Made of Record but Not Cited

The Office Action makes of record US 5,541,197. See Office Action at page 8. The Office Action also mentions Application No. 09/297,762 (now US $6,048,884$ ) and its division, Application No. 09/514,637 (now US 6,177,454). Applicants note that both patents are assigned to the same Assignee as the present application, and submit a copy of the 884 patent in a Supplemental Information Disclosure Statement accompanying this Amendment. The ' 637 application is a division of the ' 884 patent, and so submission of the patent obviates the need to submit a copy of the division. Applicants contend that the present claims are patentable over the referenced patent and its division, at least because the present application claims an earlier priority date than the filing date of the patent. Moreover, Applicants submit US 5,223,614 to Schromm et al., since this document appears to be an English language equivalent of Schromm et al., discussed above.

Applicants believe that the claims are patentable over these documents, and reserve the right to argue that patentability should the need arise.

Application No.: 09/529,096
Attomey Docket No.: 7385.0007-00

## APPENDIX

Claims 1, 3, 5, 6, and 7 (each once amended) and claims 9, 10, and 11 (new) are set forth below in marked-up form to aid the Examiner in identifying amendments to the claims. Additions are underlined, and deletions are shown with bold square brackets and strikethrough text [like-this].

1. (Once Amended) , ... An amide derivative represented by the [following] general formula (I):


If $]$ in the formula, each of the symbols means as follows:
ring $B[1$ is a heteroaryl group which [maybe] is unsubstituted or substituted and [may-be] is optionally fused with a benzene ring;
$\mathrm{XI]}$ is a bond, or a lower alkylene or an alkenylene, both of which [may-be] are unsubstituted or substituted with hydroxy or a lower alkyl group, or $X$ is a carbony[i] or a group represented by $-\mathrm{NH}_{-1}$ If and when X is a lower alkylene [group] which [may be] is substituted with a lower alkyl group, [the hydregen atomedended a carbon atom [constituting] of the ring $B$ [may form a lower alkylene-group together] optionally bonds with the lower alkyl group so that a ring is formed[]];
$\mathrm{All]}$ is a lower alkylene or a group represented by fower alkylene- O -:

(la)
[f]in the formula, each of the symbols means as follows:

Application No．：09／529，096
Attorney Docket No．：7385．0007－00
ring $\mathrm{B}[\mathrm{l}]$ is a heteroaryl group；
$\mathrm{X}[\mathrm{l}]$ is a bond or a lower alkylene group：
$R[1]$ is a hydrogen atom，a halogen atom，a lower alkyl group，amino group，an aryl lower alkyl group，or a halogeno aryl－lower alkyl group［ $[7]$ ； or a salt thereof．

6．（Once Amended）
（R）－4＇－［2－［（2－Hydroxy－2＂phenylethyl）amino］ethyl］－2＂pyridinecarboxyanilide，
（R）－2－［1－（4－chlorobenzyl）－1H－imidazol－2－yl）－4＇－［2－［（2－hydroxy－2－phenylethyl）amino］ethyl］－ acetanilide，（R）－2－［1－（3，4－dichlorobenzyl）－1H－tetrazol－5－yl］－4＇－［2－［（2－hydroxy －2－phenylethyl）aminolethyllacetanilide，
（R）－2－（2－aminothiazol－4－yl）－4＇－［2－（2－hydroxy－2－phenylethyl）amino］ethyl］acetanilide，
（R）－2＂（2－benzyl－1H－1，2，4－triazol－3－yl）－4＇－［2－［（2－hydroxy－2－phenylethyl）－amino］ ethyl］acetanilide，
（R）－2－（2－aminopyridin－6－yl）－4＇－［2－［（2－hydroxy－2－phenylethyl）amino］ethyl）acetanilide，（R）－ 4＇－［2－［（2－hydroxy－2－phenylethyl）amino］ethyl］－2－（2－pyridyl）acetanilide，
（R）－4＇－［2－［（2－hydroxy－2－phenylethyl）－amino］ethyl）－2－（2－pyrazinyl）acetanilide，（R）－4＇－［2－［（2－ hydroxy－2－phenylethyl）amino］ethyl）－2－（2－pyrimidinyl）－acetanilide，［and－salts thereof］or a salt of any of the foregoing．

7．（Once Amended）A［pharmaceuticalagent］composition comprising［the］at least one amide derivative or the salt thereof［accordingte］as claimed in one of claims 1 through 6 in a pharmaceutically acceptable carrier．

9．（New）The composition as claimed in claim 7，wherein the amount of at least one amide derivative or the salt thereof is an amount effective for the treating diabetes mellifus in a human or animal patient in need of such treating．

10．（New）The amide derivative of general formula（I）as claimed in claim 1，wherein the amide derivative is an optical isomer，a hydrate，or a solvate of the amide derivative．

11．（New）A composition comprising an amide derivative of general formula（I）as claimed in claim 1 in a pharmaceutically acceptable carrier，wherein the amide derivative is present as a polymorphic substance．

12．（New）A method for treating diabetes mellitus in a human or animal patient in need of such treatment comprising administering to the patient an amount of an amide derivative of general formula（I）as claimed in claim 1，wherein the amount is an amount effective for such treatment．

13．（New）A method for treating obesity in a human or animal patient in need of such treatment comprising administering to the patient an amount of an amide derivative of general formula（1）as claimed in claim 1，wherein the amount is an amount effective for such treatment．

## 

 FINNECAN, HENDERSON, FAJABOW, GARRETT, 8 DUNNSR, 1.14 P . 300 13 GREET, N. W.WASBINCTON, DC 20005 $502-A 0 G-4000$

## SUPPLEMENTAL INFORMATION DISCLOSURE STATEMENT UNDER 37 C.F.R. $\$ 1.97$ (c)

Pursuant to 37 C.F.R. $\S \$ 1.56$ and 1.97 (c), applicants bring to the attention of the Examiner the documents listed on the attached PTO 1449. This Information Disclosure Statement is being filed after the events recited in Section 1.97(b) but, to the undersigned's knowledge, before the mailing date of either a Final action, Quayle action, or a Notice of Allowance. Under the provisions of 37 C.F.R. § 1.97(c), this Information Disclosure Statement is accompanied by a fee of $\$ 180.00$ as specified by Section 1.17(p).

Copies of the listed documents are attached. Applicants respectfully request that the Examiner consider the listed documents and indicate that they were considered by making appropriate notations on the attached form.
 $\left(\begin{array}{ll}0 & C_{0} \\ 0 & 0\end{array}\right.$

Applisgonts call the Examiner's attention to the following Gquenting busppatent applications:

Application No.: 09/297,762 - now U.S. Patent No. 6,048,884
Filing Date: May 7, 1999
Attorney Docket No.: 7385.0004-00
Application No.: 09/514,637 wnow U.S. Patent No. 6,177,454
Filing Date: February 29, 2000
Attorney Docket No.: 7385.0004-01
This submission does not represent that a search has been made or that no better art exists and does not constitute an admission that each or all of the listed documents are material or constitute "prior art." If the Examiner applies any of the documents as prior art against any claims in the application and applicants determine that the cited documents do not constitute "prior arl" under United States law, applicants reserve the right to present to the office the relevant facts and law regarding the appropriate status of such documents.

Applicants further reserve the right to take appropriate action to establish the patentability of the disclosed invention over the listed documents, should one or more of the documents be applied against the claims of the present application.

If there is any fee due in connection with the filing of this Statement, please charge the fee to our Deposit Account No. 06-0916.

Respectfully submitted,
FINNEGAN, HENDERSON, FARABOW, GARRETT \& DUNNER, L.L.P.


Reg. No. 28,220
-2"

In re Application of:
Tatsuya MARUYAMA et al.
Application No.: 09/529,096
Filed: April 7, 2000
For: AMIDE DERIVATIVES OR SALTS THEREOF )
Customer Number 22,852
Attomey Docket No. 7385.0007-00
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Assistant Commissioner for Patents
Washington, DC 20231

## )

MAY O 92001
TECH CENTER 1600/2800

Sir:

## SUBMISSION OF TRANSLATION OF PRIORITY DOCUMENT

Applicants submit herewith a translation of Japanese patent application Hei-9285778, filed October 17, 1997. In accordance with 37 C.F.R. § 1.55(a), Applicants hereby perfect their claim of priority under 35 U.S.C. § 119 by filing this certified translation.

Please grant any extensions of time required to enter this translation and charge any required fees to our deposit account 06-0916.

Respectfully submitted,
FINNEGAN, HENDERSON, FARABOW, GARRETT \& DUNNER, L.L.P.

Dated: May 4, 2001



# VERIFICATION OF TRANSLATION 

## APPLICATYON No. Pat. Heir -9-285778

1, Tsuyoshi UDAGAWA, of coo Yamanouchi Pharmaceutical Co., Ltd., Patent Dept., 17-1, Hasune 3-chome, Itabashi-ku, Tokyo 174-8612 Japan, am the translator of the document attached and I state that the following is a true translation to the best of my knowledge and belief.

Signature of translator


Dated: April 19, 2001

## PATENT OFFICE JAPANESE GOVERNMENT

This is to certify that the annexed is a true copy of the following application as filed with this Office.

Date of Application:

Application Number:
Applicant(s):

October 17, 1997

Patent Appln. Hei-9-285778

Yamanouchi Pharmaceutical Co., Lta.

Issuance No. Heim ${ }^{10}$.

［Inventor］
【Address or Residence】 c／o Yamanouchi Fhamaceutical Co．，Ltd．
21，Miyukigaoka，Tsukuba－shi， Ibaraki，J゙apan
［ Name］
Masahiko HAYAKAWA
［Inventor］
［Address or Residence
［ Name］
［Inventor］
［Address or Residence］
c／o Yamanouchi Pharmaceutical Co．，Lta．
21，Miyukigaoka，Tsukuba－shi， Ibaraki，Japan

Tetsuya KIMIZUKA
［Inventor］
［Address or Residence］
［Name］
［App licant］
［Identification number］ 000006677
［Name or Appellation］Yamanouchi Pharmaceutical co．， Ita．
［Representative］Masayoshi onoda
［Agent］
［Identification number］ 100089200
［Patent Attorney］
［Name or Appellation］Shozo NAGAI
［Phone Number］ $03-3960-5111$
［Appointed Agent］
Identification number］ 100098501
［Patent Attorney］
［Name or Appellation］Hiroshi MORTTA
［Phone Number】 0298－52－5111
［Appointed Agent］
［Identification number］ 100109357
［Patent Attorney］
［Name or Appellation］Emiko YANO
［Phone Number］$\quad$ 0298－52－5111
［Indication of fees］
［Prepayment book number〕 005348
［Amount of payment］ 21000 yen
［List of submitted article］

［Article name］	Specification	l copy
［Article name］	Abstract	I copy
［General Power of Attorney Number］	9704254	

〔Requirement for proofy Yes
[Document Name] Specification
[rithe of the Invention]
AMIDE DERIVATIVES OR SALTS THEREOF
[scope of the claixms for Patent]
[clain 1$]$ An amide derivative represented by the following formula:
[Formala 1]

(In the above formula, each of the symbols means as follows:
ring B: a nitrogen-containing heteroaryl group which may be substituted and may be fused with a benzene ring;
x: a bond, an optionally hydroxy- or lower alkylsubstituted linear lower alkylene, lower alkenylene or carbonyl, or a group represented by a formula $w n-$ (when $X$ is a lineax lower alkylene group which may be substituted with a lower alkyl group, the hydrogen atom bonded to the carbon atom constituting a ring B may form a lower alkylene group together with said lower alkyl group so that a ring is formed);
$A$ : methylene, ethylene or a group represented by a formula $-\mathrm{CH}_{2} \mathrm{O}-$;
$\mathrm{R}^{1 \mathrm{an}}, \mathrm{R}^{1 \mathrm{~b}}$ : they may be same or different and each is a hydrogen atom or a lower alkyl group;
$\mathrm{R}^{2}$ : a hydrogen atom or a halogen atom; and
2: a nitrogen atom or a group represented by a formula $=\mathrm{CH}-$ )
or a salt thereof.
[Claim 2] A pharmaceutical agent comprising the amide derivative or the salt thereof according to claim 1 .
[Claim 3] A therapeutic agent for diabetes mellitus comprising the amde derivative or the salt thereof according to claim 1 as an effective ingredient.
[Detailed Description of the Invention]
[0001]
[Technical Field to which the Invention Belongs]
The present invention relates to pharmaceuticals and, more particularly, it relates to novel amide derivatives or salts thereof and also to therapeutic agents for diabetes mellitus containing them as effective components.
[0002]
[Prior Art.]
Diabetes mellitus is a disease accompanied by continuous hyperglycemic state and is said to be resulted by action of many environmental factors and genetic factors. The main controlling factor for blood sugar is insulin, and it has been known that hyperglycemia is resulted by deficiency of insulin
or by excess of factors which inhibit its action (such as genetic cause, lack of exercise, obesity and stress).

Diabetes mellitus is classified into two maintypes. One is insulin-dependent diabetes mellitus (IDDM) caused by a lowering of insulin-secreting function of pancreas due to autoimmane aiseases, and another is non-insulin-dependent diabetes mellitus (NIDDM) caused by a lowering of insulinsecreting function of pancrease due to pancreatic fatigue accompanied by continuous migh insulin secretion. 95 or more of diabetic patients in Japan are said to suffer from NIDDM, and an increase in the patients due to a change in daily life style is becoming a problem.

As to the therapy of diabetes mellitus, dietetic treatment, therapeutic exercise and remedy of obesity are mainly conducted in mild cases while, when the disease progresses, oral antidiabetic drugs (for example, insulin secretion promoters such as sulfonyl urea compounds and insulin sensitivity potentiators which potentiate the sensitivity of insulin) are administered. In severe cases, an insulin preparation is administered. However, there has been a brisk demand fox creation of the drugs whereby higher control for blood sugar is possible, and development of antidiabetic drugs having a new mechanism and having high usefulness has been demanded.
[0003]
U.S. Patents $4,396,627$ and $4,478,849$ describe phenylethanolamine derivatives and disclose that those compounds are useful as drugs for obesity and for hyperglycemia. Action of those compounds is reported to be due to a stimulating action to $\beta_{3}$-receptors.

Incidentally, it has been known that $\beta$-adrenaline receptors are classified into $\beta_{1}, \beta_{2}$ and $\beta_{3}$ subtypes, that stimulation of $\beta_{1}$ receptor causes an increase in heart rate, that stimulation of $\beta_{2} w r e c e p t o r ~ s t i m u l a t e s ~ d e c o m p o s i t i o n ~ o f ~$ glycogen in muscles, whereby synthes is of glycogen is inhibited, causing an action such as muscular tremor, and that stimulation of $\beta_{3}$-receptor shows an anti-obesity and an anti-hyperglycemia action (such as decrease in triglyceride, decrease in cholesterol and increase in hDL-cholesterol).

However, those $\beta_{3}$-agonists also have actions caused by stimulation of $\beta_{1}$ - and $\beta_{2}$-receptors such as increase in heart rate and muscular tremor, and they have a problem in terms of side effects. In addition, recently, it was ascertained that $\beta$-receptors have differences to species, and it has been reported that even compounds having been confirmed to have a $\beta_{3}$-receptor selectivity in rodential animals such as rats show an action due to stimulating action to $\beta_{1}$ - and $\beta_{2}$-receptors in numan being. Inview of the above, investigations for compounds having a stimulating action which is selective to $\beta_{3}$-receptor in human being have been conducted recently using human cells
or cells where human receptors are expressed. For example, wo 95/29159 describes substituted sulfonamide derivatives represented by the formula set forth below and discloses that due to their selective stimalating action to $\beta_{3}$ receptors in human being, they are useful against obesity, hyperglycemia, etc. However, this patent does not specifically disclose an insulin secretion promoting action and an insulin sensitivity potentiating action of those compouncs.
[0004]
[Formula 2]

(In the formula, the symbols should be referred to in the specification of this patent.)
[0005]
[Problems to be Solved by the Invention]
As such, there has been still a demand for creation of therapeutic agents fox diabetes mellitus of a new type which have a highly clinical usefulness.
[0006]
[Means to Solve the Problems]
The present inventors have conducted an intensive investigation on compounds having both an insulin secretion promoting action and an insulin sensitivity potentiating action and found that novel amide derivatives show both a good insulin secretion promoting action and a good insulin sensitivity potentiating action and furthermore show a selective stimulating action to $\beta_{3}$-receptors, leading to accomplishment of the present invention.

That is, the present invention relates to an amide derivative represented by the formula (I) set forth below or a selt thereof, having both an insulin secretion promoting action and an insulin sensitivity potentiating action and further having anti-mbesity and anti-hyperlipemia actions due to a selective stimulating action to $\beta_{y}-$ receptors. The present invention also relates to a pharmaceutical agent, particularly to a therapeutic agent for diabetes mellitus containing the amide derivative or the salt thereof as an effective ingredient. [0007]
[Formula 3]

(In the formula, each of the symbols means as follows:
ring $B$ : a nitrogen-containing heteroaryl group which may be substituted and may be fused with a benzene xing;
$x$ : a bond, an optionally bydroxy or lower alkylsubstituted inear lower alkylene, lower alkenylene or carbonyl, or a group represented by a formula $-N H-$ (when $x$ is a inear lower alkylene group which may be substituted with a lower alkyl group, the hydrogen atom bonded to the carbon atom constituting wing E may form a lower alkylene group together with the lower alkyl group so that a ring is formed);

A: methylene, ethylene or a group represented by a formula $-\mathrm{CH}_{2} \mathrm{O}=$;
$\mathbb{R}^{1 n}, \mathbb{R}^{15}$ : they may be same or different and each is a hydrogen atom or a lower alkyl group;
$R^{2}$ : a hydrogen atom ox halogen atom; and
z: a nitrogen atom ox a group represented by a formula $=\mathrm{CH}-$.
[0008]
[Embodiments of the Invention]

The compound of the formula (I) is further illustrated as follows.

In the definitions used in the formula in this specification, the term "lower" means a linear or branched hydrocarbon chain having from 1 to 6 carbon atoms unless otherwise specified.

Examples of the" lower" alkyl group" are methyl, ethyl and linear or branched propyl, butyl, pentyl or hexyl, preferably an alkyl group having from 1 to 4 carbon atoms, and particularly preferably methyl, ethyl, propyl or isopxopyl.

Examples of the" lower alkylene group" is a divalent group obtained by removing a hydrogen atom from the above" lower alkyl group", preferably an alkylene group having from 1 to 4 carbon atoms, and particularly preferably methylene, ethylene, propylene or butylene.
[0009]
The term "nitrogen-containing heteroaryl group which may be fused with a benzene ring" in "a nitrogen-containing hetexoaryl group which may be substituted and may be fused with a benzene ring" means a ring group where a benzene ring is fused with a heteroaryl group as mentioned later or a non-fused heteroaryl group.

Specific examples of the "ring group where the benzene ring is fused with a heteroaryl group" are fusedming heteroaryl groups such as quinolyl, isoquinolyl, quinazolinyl,
quinolidinyl, quinoxalinyl, cinnolinyl. benzimidazolyl, imidazopyridyl, benzofuranyl, benzoisoxazolyl, benzoxazolyl, benzothiazolyl, oxazolopyridyl, isothiazolopyridyl and benzothienyl groups; and oxomadded rings such as oxobenzofurayl group.

Examples of the "heteroaryl group" are monocyclic heteroaryl groups such as furyl, thieny1, pyrrolyl, imidazolyl, thiazolyl, pyrazolyl, isothiazolyl, isoxazolyl, pyridyl, pyrimidyl, pyridazinyl, pyrazinyl, thiadiazolyl, triazolyl and tetrazolyl; and bicyclic heteroaryl groups such as naphthylidinyl and pyridopyrimidinyl.
[0010]
The substituent in the "nitrogen-containing heteroaryl group which may be substituted and may be fused with a benzene ring" may be any group which can be usually substituted in this ring group. Preferred examples are a halogen atom and lower alkyl, lower alkenyl, lower alkynyl, hydroxyl, sulfanyl, halogeno lower alky1, lower alkyl-o-, lower alkyl-S-, lower alkyl-O-COm, carboxy, sulfonyl, sulfinyl, lower alkyl- $\mathrm{SO}_{2} \boldsymbol{m}$, lower alkyl-SO-, lower alkyl-CO-, lower alkyl-CO-O-, carbamoyl, lower alkyl-NH-CO-, di-lower alkyl-N-CO-, mitro, cyano, amino, lower alkyl-NH-, di-lower alkyl-N-, and -O-lower alkylene-Ogroups.

The "lower alkenyl group" is a linear or branched alkenyl group having 2 to 6 carbon atoms, and its specific examples are vinyl, propenyl, butenyl, pentenyl and hexenyl groups.

The "lower alkynyl group" is a linear or branched alkynyl group having 2 to 6 carbon atoms, and its specific examples are ethynyl, propynyl, butynyl, pentynyl and hexynyl groups.
"Halogen atom" means fluorine atom, chlorine atom, bromine atom or iodine atom, and the "halogeno lower alkyl group" means a group where a hydrogen atom or atoms in the abovementioned alkyl group is/axe substituted with a halogen atom or atoms

The case when $X$ is a bond means that a carbon atom of the group-co- is directly bonded to the ring B.
[0011]
The compound (I) of the present invention has at least one asymetric carbon atom and therefore, there are optical isomers such as (R)-compounds and (S)-compounds, racemates, diastereomers, etc. The present invention includes all and each of isolated isomers and mixtures thereof. The present invention also includes hydrates, solvates (such as those with ethanol) and polymorphic substances of the compound (I).

The compound (I) of the present invention may form a salt with an acid. Examples of the salt are acid addition salts with. mineral acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid and phosphoric
acid; and those with organic acids such as formic acid, acetic acid, propionicacid, oxalic acid, malonic acid, succinicacid, fumaric aid, maleicacid, lactic acic, malic acid, citricacid, tartaric acid, carbonic acid, picric acid, methanesulfonic acid, ethanesulfonic acid and glutamic acid.
[0012]

## (Manufacturing Method)

The compound of the present invention or the salt thereof may be manufactured by application of various synthetic methods utilizing the characteristics of its fundamental skeleton or type of the substituent. Representative manufacturingmethoas are illustrated as hereunder.

## Eixst Manufactuwing Method

[Formula 4]

(In the formulae, $\mathrm{R}^{1 m}, \mathrm{R}^{1 b}, \mathrm{R}^{2}, \mathrm{~A}, \mathrm{~B}, \mathrm{X}$ and $z$ have the same meanings as defined already; $R^{a}$ is a protective group for amino group; and $y^{1}$ is a leaving group, and more specifically hydroxyl, a lower alkoxy group or a halogen atom.)
[0013]
In this method, the compound (II) and the compound (III) are subjected to amidation, and the protective group is then removed therefrom to synthesize the compound (I) of the present invention.

The amidation in this manumacturing method can be conducted by conventional means.

The solvent may vary depending upon $Y^{1}$ of the compound (III) and mostly, an inert solvent or an alcoholic solvent (such as isopropanol) may be applied.

When $\Psi^{1}$ is a hydroxyl group, a method where the reaction is conducted in the above-mentioned solvent in the presence of a condensing agent may be applied. Examples of the condensing agent are $N, N^{\prime}$-dicyclohexylcarbodimide (DCC), 1-ethyl-3-(3-dimethylaminopropy1)carbodiimide (EDCI), 1,1'-carbony1diimidazole (CDI). diphenylphosphoryl azide (DPPA) and diethylphosphoryl cyanide (DEPC).

When $Y^{2}$ is a lower alkoxy group, a method where the reaction is conducted under heating or refluxing as it is or in the above-mentioned inert solvent may be applied.

When $Y^{1}$ is a halogen atom, a method where the reaction is conclucted in the above-mentioned inert solvent in the presence of a base may be applied.
[0014]
Examples of the inert solvent are dimethylformamide (DMF), dimethylacetamide, tetrachloroethane, dichloromethane, dichloroethane, chloroform, carbon tetrachloride, tetrahydrofuran, dioxane, dimethoxyethane, ethyl acetate, benzene, toluene, xylene, acetonitrile, dimethyl sulfoxide and a mixed solvent thereof, and they may be appropriately selected depending upon each reaction condition. Examples of the base are inorganic bases such as sodium hydroxide, potassium
hydroxide, sodium carbonate and potassium carbonate: and organic bases such as N-methylmorpholine, triethylamine, diisopropylethylamine and pyridine.

The protective group of the amino group represented by $\mathrm{R}^{4}$ is a protective group which is commonly used fox amino group by those skilled in the art, and its representative examples are acyl groups such as formyl, acetyl, propionyl, methoxyacetyl, methoxypropionyl, benzoyl, thienylacety1, thiazolylacetyl, tetrazolylacetyl, thiazolylglyoxyloyl and thienylglyoxyloyl groups; lower alkoxycarbonyl groups such as methoxycarbonyl, ethoxycarbonyl and tert-butoxycarbonyl groups; aralkyloxycarbonyl groups such as benzyloxycarbonyl and p-nitrobenzyloxycarbonyl groups; lower alkanesulfonyl groups such as methanesulfonyl and ethanesulfonyl groups; aralkyl groups such as benzyl, p-nitrobenzyl, benzhydryl and trityl groups; and tri-(lower alkyl)silyl groups such as trimethylsilyl group.
[0015]
Removal of the protective group in this manufacturing method may be conducted by conventional means. For example, the protective group for the amino group represented by $\mathrm{R}^{a}$ may be easily removed, for example, by i) a method where in case that the protective group is benzhydryl, p-methoxybenzyl, trityl, tert-butoxycarbony1, formyl, etc., treatment with an acid such as formic acid, trifluoroacetic acid, a mixture of
trifluoroacetic acid and anisole, a mixture of hydrobromic acid and acetic acid, a mixture of hydrochloric acid and dioxane, etc. is conducted; i,i) a method where in case that the protective group is benzyl, p-nitrobenzyl, benzhydryl, trityl, etc., catalytic reduction using palladium-carbon or palladium hydroxide-carbon is conducted; and i.ii) a method where in case that the protective group is a tri-(lower alkyl)silyl group or the like, treatment with water, fluoride anion (tetra-nbutylamonium fluoride, sodium fluoride, potassium fluoride or hydrofluoric acid), etc. is conducted.
[0016]
[Formula 5]

(In the formulae, $R^{10} ; R^{t h}, R^{2}, A, B, X$ and $z$ have the same meanings as defined already.)
[0017]
In this manufacturing method, the compound (IV) is reacted with the compound (V) to give the compound (I) of the present invention.

The amine compound (IV) and the compound (V) are reacted with each other under heating or refluxing for 1 to 24 hours as they are or in an inert solvent, to give the compound (I) of the present invention.

Examples of the inert solvent are acetonitrile, tetrahydrofuran, 2-butanone, dimethyl sulfoxide and $N-$
methylpyrrolidone. In the reaction, a base such as sodium bicarbonate, potassium carbonate or diisopropylethylamine may be added to the reaction mixture.
[0018]
Incidentally, in the above manufacturing methods, it is possible to purify the resulting substance by removing undesired by-products by means of recrystallization, pulverization, preparative thin layer chromatography, silica gel flash chromatography (as mentioned in W. C. Still, et al.; J. Org. Chem. 43, 2923 (1978)), medium-pressure liquid chromatography and HPLC. The compound produced by means of HPLC can be isolated as a corresponding salt.

The starting material used in the above-mentioned manufacturing methods may be easily manufactured by the methods which are known to those skilled in the art. One of the representative methods is shown as hereunder.
[0019]
[Formula 6]

(In the formulae, $\mathrm{R}^{\mathrm{n}}, \mathrm{R}^{1 \mathrm{~m}}, \mathrm{R}^{2}, \mathrm{~A}$ and z have the same.meanings as defined already; $\mathrm{R}^{b}$ is hydrogen atom or a protective group of an aralkyl type for the amino group; and $R^{e}$ is epoxy, $2-$ haloacetyl or 1-carboxymethan-1-ol group.)
[0020]
This manufacturing method is composed of from step (a) to step (c) in which the step (a) is a step where the compound (VI) is reacted with the compound (VII), followed by subjecting to reduction to give the compound (VIIIa) depending upon the type of $\mathrm{R}^{*}$; the step (b) is a step where protection is conducted when $\mathbb{R}^{b}$ of the compound (VIIIa) is hydrogen atom; and the step
(c) is a step where a nitro group is reduced to an amino group to give the compound (II).

Examples of the protective group of an aralkyl type for the amino group used in the above manufacturing method axe benzyl, p-nitrobenzyl, benzhydryl groups, etc.
[0021]

## Step (a):

Illustration is made for the following three cases.

1) When $R^{*}$ is an epoxy group, the compound (VI) may be reacted with the compound (VII) by the same manner as in the above-mentioned second manufacturing method. Reaction conditions such as reaction temperature, solvent, etc, are the same as well.
2) When $\mathrm{R}^{\text {e }}$ is 2 -haloacetyl group, the compound (VI) is reacted with the compound (VII) in the pxesence of a base, followed by subjecting to reduction to prepare the compound (VIIIG). The base is the same as that mentioned in the first manufacturing method. The reduction may be conducted in the above-mentioned inert solvent or in a solvent of an alcohol type With atirring in the presence of a reducing agent. Examples of the reducing agent are sodium borohydride, sodium cyanoborohydride, lithium aluminum hydride and borane.
3) When $R^{\circ}$ is 1-carboxymethan-1-ol group, the compound (VI) is reacted with the compound (VII) in the presence of a condensing agent, followed by subjecting to reduction in the
same manner as in 2) to prepare the compound (VIITa).. The condensing agent is the same as that mentioned in the first manufacturing method.
[0022]
Step (b):
When $\mathbb{R}^{b}$ in the compound (VIIIa) is hydrogen atom, the amino group is protected by conventional means using, for example; di-tert-butyl dicarbonate or the like, to prepare the compound (viria).
step (c):
A method for the reduction of nitro group to amino group may be conducted by conventional means such as metallic reduction using iron, zinc, etc, and catalytic reduction using a catalyst such as palladium-caxbon, palladium hydroxidecarbon, Raney nickel, etc. $\mathrm{R}^{\text {a }}$ becomes hydrogen atom depending upon the reducing condition, but it.may be protected again by conventional means.
[0023]
(Manufacturing Method for starting Compound (IV))
A)
[Formula 7]

(In the formulae, $R^{1 n}, R^{1 k x}, R^{b}, A, B, X$ and $Y^{2}$ have the same meanings as defined already.)

This reaction is a reaction where the compound (IX) and the compound (III) are subjected to amidation reaction to give a compound (IVa) and, when $\mathrm{R}^{\text {b }}$ is a protective group for amino group, the protective group is removed to give a compound (IV) . The amidation reaction can be conducted by the same mannex as in the abovementioned first manufacturing method, and the reaction conditions such as reaction temperature and solvent are the same as well.
[0024]
B)


This reaction is a reaction where the compound ( $X$ ) and the compound (III) are subjected to amidation reaction and then to reduction reaction to give a compound (Iva). The amidation reaction can be conducted by the same manner as in the above-mentioned first manufacturing method, and the reaction conditions such as reaction temperature and solvent are the same as well. In the reduction reaction, the abovementioned catalytic reduction or method where cobalt chloride and sodium borohydride is used may be applied.
[0025]
With regard to other compounds such as the compound (III), the compound (IV), the compound (V), the compound (VI) and the compound (VII), those which are available in the market or are appropriately synthesized by known methods (such as $N-$ alkylation, cyclization and hydrolysis) from the commercially available compounds may be used.
[0026]

The compound (I) of the present invention which is manufactured as such is isolated and purified as a free compound, a salt thereof obtained by means of salt formation by conventional means, a hydrate, a solvate with various solvents such as ethanol, or polymorphic crystals. The isolation and purification may be conducted by applying common chemical operations such as extraction, concentration, evaporation, crystallization, filtration, recrystallization and various chromatographic means.

Various isomers may be isolated by conventional means utilizing the physico-chemical differences between the isomers. For example, the racemate can be converted to stereochemically pure isomers by common recemic resolution (such as a method where the racemate is changed to diastexeomer salts with conventional optically active acid [for example, tartaric acid], followed by subjecting to optical resolution). Incidentally, a mixture of diastereomers may be separated by conventional method such as fractional crystallizaiton or chromatography. In the case of an optically active compound, it may be manufactured starting from an appropriate optically active material.
[0027]
[Effects of the Invention]
The phenethanol derivative of the present invention represented by the formula (I) or the salt thereof has both an insulin secretion promoting action and an insulin sensitivity
potentiating action and also has a selective $\beta_{3}$-receptor stimulating action, so that it is useful as a therapeutic agent for diabetes meliftus.

As confirmed by a glucose tolerance test and a hypoglycemic test in insulin-resisting model animals as described later, the compound of the present invention has both a good insulin secretion promoting action and a good insulin sensitivity potentiating action, so that its usefulness in diabetes mellitus is expected. Although the $\beta_{3}$ receptor stimulating action may have a possibility of participating in expression of the insulin secretion promoting action and the insulin sensitivity potentiating action, other mechanism might also possibly participate therein, and the details thereof have been still unknown yet.

The $\beta$-receptor stimulating action of the compound of the present invention is selective to $\beta_{3}$-receptors in human being. It has been known that the stimulation of $\beta_{3}$ receptor stimulates decomposition of fat (decomposition of the fat tissue triglyceride into glycerol and free fatty acid), whereby a disappearance of fat mass is promoted. Therefore, the compound of the present invention has an anti-mbesity action and an antimhyperlipemia action (such astriglyoeride loweringaction, cholesterol lowering action and HDL cholesterol increasing action) and is useful as a preventive and therapeutic agent for obesity and hyperlipemia (such as hypertriglycexidemia,
hypercholesterolemia and hypo-HDL-lipoproteinemia). Those diseases have been known as animus factors in diabetes mellitus, and amelioration of those diseases is useful for prevention and therapy of diabetes mellitus as well.
[0028]
The compound of the present invention is also useful as a preventive and therapeutic agent for other diseases where the improvement of symptom can be achieved by reducing the symptoms of obesity and hyperlipemia such as ischemic coronary diseases (for example, arteriosclerosis, myocardial infarction and angina pectoris), cerebral arteriosclerosis (for example, cerebral infarction) or aneurysm.

Further, the selective $\beta_{3}$-receptor stimulating action of the compound of the present invention is useful for prevention and therapy of several diseases which have been reported to be improved by the stimulation of $\beta_{3}$-receptor. Examples of those diseases are shown as follows.

It has been mentioned that the $\beta_{3}$-receptor mediates the motility of non-sphincteral smooth muscle contraction, and because it is believed that the selective $\beta_{3}$-receptor stimulating action assists the phamacological control of intestinal motility without being accompanied by cardiovascular action, the compound of the present invention has a possibility of being useful in therapy of the diseases caused by abnormal intestinal motility such as various
gastrointestinal diseases including inritable colon syndrome. It is also useful as the therapy for peptic ulcer, esophagitis, gastritis and duodenitis (including that induced by H. pylori), enterelcosis (such as inflammatory intestinal diseases, ulcerative colitis, clonal disease and proctitis).

It is further shown that the $\beta_{3}$ receptor affects the inhibition of release of neuropeptide of some sensory fibers in lung. The sensory nerve plays an important role in neurogenic inflammation of respiratory tract including cough, and therefore," the specific $\beta_{3}$-agonist of the present invention is useful in the therapy of neurogenic inflammation and in adaition, has little action to cariopulmonary system.

Moreover, the $\beta_{3}$-adrenaline receptor is capable of resulting in a selective antidepressant action due to stimulation of the $\beta_{3}$ receptor in brain, and accordingly, the compound of the present invention has a possibility of being usefal as an antidepressant.

The action of the compound of the present invention has been ascertained to be selective to $\beta_{3}$ receptors as a result of experiments using human cells, and the adverse action caused by other $\beta_{3}$-receptor stimulation is low or none.
[0029]
Effects of the compound of the present invention have been ascertained by the following tests.

1. Hypoglycemic test in kk mice (ingulin-resisting modelobesity and hyperglycemial:

Male kkmice (blood sugar level: not lower than $200 \mathrm{mg} / \mathrm{dl}$ ) were subjected to a measurement of blood sugar level under feeding and then randomly classjfied into groups. The drug to be tested was compulsoxily administered orally or subcutaneously once daily for four days, and the blood sugar level after 15-18 hours from the final administration was compared with that before the administration ( $n=6$ ). The blood was collected from a tail vein of the mice using a glass capillary (previously treated with heparin), the protein was removed therefrom, and the amount of glucose in the supernatant liquid (mg/dl) was measured by colorimetric determination by means of a glucose oxidase method.

The compound of the present invention significantiy lowered the blood sugar level as compared with that prior to the administration of a comparative drug in both cases of oral and subcutaneous administrations. From this result, it is shown that the compound of the present invention has a good potentiating action to insulin sensitivity.
[0030]
2. Glucose tolerance test in normal rats:

Male fats of $S D$ strain of seven weeks age were fasted for a whole day and night, then randomly classified into groups and subjected to an oral glucose tolerance test (OGIT) ( $n=4$ ). The
compound to be tested was administered orally or subcutaneously at 30 minutes before administration of glucose ( $2 \mathrm{~g} / \mathrm{kg}$ by oral administration). The blood was collected from an abdominal aorta using a heparin-treated glass syringe from the rats which were wnesthetized with pentobarbital ( $65 \mathrm{mg} / \mathrm{kg}$ ), the protein was removed therefrom, and the amount of glucose in the supernatant ilquid (mg/dl) was measured by colorimetric determination by means of a glucose oxidase method. The insulin value in blood was determined by measuring the amount of insulin in plasma ( $n g / m$ ) by means of radiodmanoassay (RTA).

In a group where the compound of the present invention was administered orally or suboutaneously, a significant increase in the insulin value in blood was observed as compared with the group to which no drug was given. An increase in the sugar blood level after administration of glucose was significanty inhibited as well. From those results, it is apparent that the compound of the present invention has a good insulin secretion promoting action and a good hyperglyeemia inhibiting action.
[0031]
3. Stimulating test to human $\beta_{2}-\beta_{2}-$ and $\beta_{2}=$ receptors :

Human $\beta_{j}-s t i m u l a t i n g$ action was investigated using an $\operatorname{sK}-\mathrm{N}-\mathrm{MC}$ cell system (cells in which human $\beta_{3}$-receptox and human $\beta_{1}$-receptor were permanentily expressed were purchased) while human $\beta_{2}$ and $\beta_{1}-s t i m u l a t i n g$ actions were investigated using a
cho cell system (cells in which each of human $\beta_{2}-$ and $\beta_{1}$-receptors was compulsorily expressed were purchased). Stimulating action of the compound ( $10^{-10}$ to $10^{-4} \mathrm{M}$ ) were investigated by incubating $10^{5}$ cells/well of each of the cells on a 24 -well plate and checking under a subconfluent state after two days using a producing activity of cyclic AMP (CAMP) as an index. Incidentally, the human $\beta_{3}$-stimulating action was investigated in the presence of a $\beta_{1}$-receptor blocker (CGP20712A, $10^{-6} \mathrm{M}$ ). Amount of production of CAMP in each cell (pmol/ml) was measured by an RTA method using ${ }^{125}$ I-cAMP. Intensity of action of each compound was compared by calculating the pD2 value and the maximum activity (I.A. (\%) where the maximum reaction of $10^{-5}$ $M$ isoproterenol was defined as 1008) from the resulting dose-reaction curve.

It has been ascertained that the compound of the present invention has a selective stimulating action to human $\beta_{3}-$ receptor.

A pharmaceutical composition containing one or more of the compound of the present invention or the salt thereof as an effective ingredient is prepared using common pharmaceutically acceptable vehicles. Administration of the pharmaceutical composition according to the present invention may be either by oral administration or by parenteral administration by, for example, injection, suppository, subcutaneous agent, inhaling agent or intracystic infusion.

The dose may be appropriately decided depending upon each particular case while taking into consideration symptom, age, sex, etc. of the patient but usually, is around $0.01 \mathrm{mg} / \mathrm{kg}$ to $100 \mathrm{mg} / \mathrm{kg}$ per day for adults in the case of oral administration, and that is administered at a time or by dividing into 2 to 4 times a day. When intravenous injection is conducted depending upon the symptom, the dose is usually around $0.001 \mathrm{mg} / \mathrm{kg}$ to 10 mg/kg per day for adults, and that is administered at a time or by dividing into two or more times a day.

With regard to a vehicle for the preparation, nontoxic solid or liquid substances for pharmaceuticals may be used. [0032]

Examples of the solid composition for use by means of oral administration according to the present invention are tablets, pills, capsules, diluted powder and granules. In such a solid composition, one or more active substances are mixed with at least one inert excipient such as lactose, mannitol, glucose, hydroxypropyl cellulose, microcrystalline cellulose, starch, polyvinylpyrrolidone, agar, pectin, magnesium metasilicate aluminate and magnesium aluminate. The composition may also contain additives other than the inert excipient such as lubricant (for example, magnesium stearate), disintegrant (for example, calcium celluloseglycolate), stabilizer (for example, lactose) and auxiliary solubilizer (for example, glutamic acid or aspartic acid) by conventional means. Tablets and pillsmay,
if. necessary, be coated with sugar coat such as sucxose, gelatin, hyaroxypropyl oellulose and hydroxypropylmethyl cellulose phthalate or withfilm of gastric or enteric coating substances.

The liquid composition for oral administration includes pharmaceutically acceptable emulsions, solutions, suspensions, syxups and elixire and contains commonly used inert excipients such as purified water or ethanol. In addition to the inert excipient, the composition may furthex containauxiliary agents such as mojsturizing or suspending agents, sweeteners, tasting agents, aromatic agents and antiseptic agents.

The injection for parenteral administration includes aseptic açueous or non-agueous solutions, suspensions and emulsions. Thenon-aqueous solutions and suspensions include, for example, distilled water for injection and a physiological saline solution. Examples of the solvent for non-aqueous solution and suspension are propylene glycol, polyethylene glycol, plant oils (such as cacao butter, olive oil and sesame oil), alcohols (such as ethanol), gum axabic and polysolvate 80 (trade name). Such a composition may further contain auxiliary agents such as isotonizingagents, antiseptic agents, moisturizing agents, emulsifiers, dispersing agents. stabilizers (for example, lactose) and auxiliary solubilizers (for example, glutamic acid and aspartic acid). Ihese may be sterilized, for example, by filtration passing through a bacteria-preserving filter or by compounding of or irradiation
with a bactericice. These may also be used by manufacturing a sterile solid composition, followed by dissolving in sterile water or a sterile solvent for injection before use. [0033]

## [Examples]

The present invention is further illustrated by way of Examples as hereunder. Compounds of the present invention are not limited to those mentioned in the following Examples but cover all of the compounds represented by the above formula (I), salts thereof, hydrates thereof, geometric and optical isomers thereof and polymorphic forms thereof. Incidentally, the case where the material which is used in the present invention is novel is illustrated by way of the following Referential Example.
[0034]
Referential Example 1
Into a solution of 781 mg of 2 -pyrazinylacetonitrile in 30 ml of ethanol was passed hydrochloric acid gas at $55^{\circ} \mathrm{C}$ for one hour. The solvent was evaporated, and the resulting residue was dissolved in ethyl acetate and a saturated aqueous solution of sodium hydrogen carbonate. The organic layer was dried over anhydrous magnesium sulfate, and the solvent was evaporated therefrom. The resulting residue was purified by silica gel column chromatography (eluent: hexane/ethyl acetate $=1 / 1$ ) to give 941 mg of ethyl 2-(2-pyrazinyl)acetate.
[0035]

## Referential Example 2

To a solution of 1.00 g of ethyl $2-(1 H-b e n z i m i d a z o l-$ $2-y 1$ ) acetate in 30 ml of acetonitrile were added 812 mg of potassium carbonate and 1.219 of 4 -chlorobenzyl bromide, and the reaction mixture was stirred at room temperature for 15 hours. Themixture was filtered, and the solvent was evaporated in vacuo from the filtrate. The resulting residue was purified by silica gel colum chromatography (eluent: hexane/ethyl acetate $=2 / 1$ ) to give 464 mg of ethyl $\quad$ (1-(4-chlorobenzyl)-1H-benzimidazol-3-yluacetate.
$[0036]$

## Referential Example 3

Ethyl 2-(1-benzyl-1H-1midazol-2-yl)acetate hydrom chloxide ( 21.4 g ) was dissolved in 300 ml of ethanol and 100 ml of tetrahydrofurar, and 4.50 g of 10 g palladium-carbon was added to the mixture, followed by stirring for 15 hours in a hydrogen atmosphere under atmospheric pressure. The catalyst was filtered off, and the solvent was evaporated in vacuo from the filtrate to give 14.9 g of ethyl 2 -(1f-imidazol-2yl)acetate hydrochloride.
[0037]

## Referential Example 4

To 8.80 g of ethyl 2-(1H-imidazol-2-yl)acetate hydrochloride was added 160 ml of 10 hydrochloric acid, and
the mixture was heated to reflux for 50 minutes. The solvent was evaporated in vacuo therefrom, and the resulting crystals were washed with 100 ml of acetone and dried to give 6.89 g of 2-(14-imidazol-2-yl)acetic acid hydrochloride.
[0038]
Referential Example 5
To an ethanolic solution of 1.46 g of ethyl $2-(2 \mathrm{~m}$ chloropyridin-6.yl) acetate was added 7.5 ml of 1 N aqueous solution of sodium hydroxide at room temperature. The mixture was stirred at room temperature, and 7.5 ml of 1 N hydrochloric acid was added thereto. An aqueous solution obtained by evaporation of ethanol was extracted with ethyl acetate. The resulting organic layer was dried over anhydrous magnesium sulfate, and the solvent was evaporated therefrom to give 1.07 9 of $2-(2-c h l o r o p y r i d i n-6-y l)$ acetic acid.
[0039]
The compounds of Referential Examples 6 and 7 were prepared by the same manner as mentioned in Referential example 5 ; and the compound of Referential Example 8 was prepared by the same manner as mentioned in Referential Example 4. Referential Example 6

2-(2-Acetylaminothiazol-2-yl)acetic acid

## Referential Example 7

2-(3-Benzyl-2-thioxathiazol-4-yl)acetic acid
Referential Example 8

2-Methyl-2-(2-aminothiazol-4-yI)propionic acid hydrochloride

100401

## Referential Example 9

To a solution of 1.18 g of guanyl thiourea in 20 ml of methanol was added 1.65 g of methyl 4 -chloroacetoacetate. The mixture was heated to reflux for four hours, the solvent was concentrated, and the concentrate was crushed by adding ethyl acetate thereto. The powder obtained by filtering off the solvent was washed with ethyl acetate and dried to give 2.25 g of methy1 2-(2-guanidinothiazol-4-yl)acetate.
[0041]
The compounds of Referential Examples 10 and 12 were prepared by the same manner as in Referential Example 4; and the compound of Refexential Example 11 was prepared by the same manner as mentioned in Referential Example 9.

Referential Example 10
2-(2-Guanidinothiazol-2-y2)acetic acid hydrochloride Referential Example 11

Ethyl 2-[2-(3-fluoroanilino)thiazol-4-yl]acetate

## Reterential Example 12

2-[2-(3-Fluoroanilino)thiazol-4-yl]acetic acid hydrochloride
[0042]
Referential Example 13
ro a solution of 0.96 g of ethyl 3 -oxovalerate in 4 ml of acetic acid was added 2.1 gof pyridinium tribromide. The mixture was stirred at room temperature for three hour, then diethylether and water were added thereto, and the organic layer was washed with water and a saturated saline solution the organic layer was dried ovex anhydrous magnesium sulfate, and the solvent was evaporated therefrom to give 1.24 g of a crude bromine compound. To a solution of 1.24 g of the crude bromine compound in ethanol was added 0.5 g of thiourea. After heating to reflux for 12 hours, the solvent was concentrated, and the concentrate was recrystallized from ethanol-ethyl acetate to give 1.05 g of ethyl 2-(2-amino-5-methylthiazol-4-yl)acetate. [0043]

The compound of Referential Example 14 was prepared by the same manner as in Referential Example 4.

Referential Exampe 14
2-(2-Amino-5-methylthiazol-4-yl)acetic acid hydrow chloride

## Referential txample 15

To a solution of 0.8 g of methyl 2-(5-sunfanyl-1H-$1,2,4-t r i a z o l-3-y l)$ acetate in 16 ml of acetonitrile were added 0.79 g of benzyl bromide and 1.5 g of cesium carbonate. The mixture was stirxed at room temperature for 30 minutes, insoluble matters were filtered off, and the filtrate was concentrated in vacuo. The residue was purified by silica gel
colum chromatography (eluent: chloroform/methanol =50/1) to give 0.79 g of ethyl $2-(5-$ benzylsultanyl-1H-1,2,4mtriazol-3-y1) acetate.
[0044]
The compouncs of Referential Examples 17, 19, 21, 23, 25, $27,29,31,33,35,37,39,41,43,45,47$ and 49 were prepared by the same manner as in Referential Example 2; and the compounds of Referential examples $16,18,20,22,24,26,28,30,32,34$, $36,38,40,42,44,46,48$ and 50 were prepared by the same manner as in Referential Example 4.

Referential Example 16
2-(5-Benzy $\operatorname{sulfany} 1-1 \mathrm{H}-1,2,4-\operatorname{triazol-3-y1})$ acetic acia hydrochloride

Referential Example 17
Ethy1 2-[1-(4-fluorobenzyl)-1H-imidazol-2-yl]acetate Referent ial Example 18

2-[1-(4-Fluorobenzyl)-1H-imidazol-2-yl]acetic acid
hydrochloride

## Referential Example 19

Ethy] 2-[1-(4-chlorobenayl)-1H-imidazo1-2-yl]acetate

## Referential Example 20

$2-[1-(4-C h l o r o b e n z y 1)-1 H-i m i d a z o l-2-y]] a c e t i c ~ a c i d$
hydrochloride
[0045]
Referential Example_21

Ethyl 2-[1-(3-chlorobenzy1)-1H-imidazolm2-yl]acetate Referential Example 22

2-11-(3-Chlorobenzyl)-1H-imidazol-2-yl1acetic acid hydrochloride

Referential Example 23
Ethyl $2-[1-(2-c h l o r o b e n z y 1)-1 H-i m i d a z o l-2-y 1] a c e t a t e$ Referential Example 24
$2-[1-(2-C h 1 o r o b e n z y 1)-1 H-i m i d a z o l-2-y 1] a c e t i c$ acid
hydrochloride
Reterential Example 25
Ethyl 2-[1-(3,4-dichlorobenzyl)-1H-imidazol-2-yl]-
acetate
Referential Example 26
$2-[7-(3 ; 4-D i c h l o r o b e n z y l)-1 H-i m i d a z o l-2-y l] a c e t i c$
acid hydrochlowide
Referential Example 27
Ethyl 2-[1-(4-bromobenzyl)-1H-imidazol-2-yl]acetate
Referential Example 28
2-[1-(4-Bromobenzyl)-1H-imidazol-2-yl]acetic acid
hydrochloride
Referential Example 29
Ethyl 2-[1-(4-iodobenzyl)-1H-imidazol-2-yl]acetate
Referential Example 30
2-[1-(4-1odobenzy1)-1H-imidazol-2-yl]acetic acid
hydrochloride
[0046]
Referential Example 31
Ethy1 2-[1-(4-trifluoromethylbenzyl)-1H-imidazol-2-
Yljacetate
Referentid Example 32
2-[1-(4-Trifuoromethylbenzyl)-1H-imidazol-z-yl]acetic
acid hydrochloride
Referential Example 33
Ethyl 2-[1-(4-isopropylbenzyl)-1E-imidazol-2-yl]-
acetate
Referential Example 34
$2-[1-(4-1 \operatorname{sopropylbenzyl)-1\mathrm {Em}} \mathrm{midazol-2-y1]acetic}$ acia hydrochloride

## Referential Example. 35

Ethyl 2-[1-(4-phenylbenzyl)-1H-imidazol-2-yl]acetate

## Referential Example 36

2-[1-(4-Pheny1benzyl)-1H-imidazol-2-y]]acetic acid
hydrochloride

## Referential Example 37

Ethyl 2-[1-(2-naphthyl)-1H-imidazol-2-yl]acetate

## Referential Example 38

2-[1-(2-Naphthy1)-1H-imidazol-2-y1]acetic acid hydrom
chloride
Referential Example 39
Ethyl 2-[1-(2-pyridyl)methyl-1H-imidazol-2-yl]acetate

Referential Example 40
2-[1-(2-Pyridyl)methyl-1H-imidazol-2-yl]acetic acid hydrochloride
[0047]
Referential Example 4
Ethyl $2-[1-(2$ methyl-2-propeny1)-1H-imidazol-2-y1]-
acetate
Refexential Example 42
2-[1-(2-Methyl-2-pxopeny1)-1H-imidazol-2-y1]acetic
acid hydrochloride
Referentiad Example 43
Ethyl 2-[1-benzy1-1H-1midazol-4-yl]acetate

## Referential Example 44

2-( 1 -Benzyl-1H-imidazol-4-yl)acetic acid hydrochlomide
Referential Example 45
Ethyl 2-[1-(2-chlorobenzyl)-1H-imidazol-4-yl]acetate

## Referential Example 46

$2-[1-(2-\operatorname{ch} 1 o r o b e n z y 1)-1 H-1 m i d a z o l-4-y l] a c e t i c ~ a c i d$ hydrochloride

## Referential Example 47

Ethy1 2-[1-(3-chlorobenzyl)-1H-imidazol-4-yl]acetate
Referential Example 48
2-[1-(3-chlorobenzyl)-1H-imidazol-4-yl]acetic acid
hydrochloride
Referential Example 49

Ethyl 2-[1-(4-chlorobenzyl)-1H-imidazol-4-yl]acetate Referential Example 50

2- [1- (4-chlorobenzy1)-1H-imidazol-4-yl]acetic acid hydrochloride
[0048]

## Referential Example 51

To a solution of 0.66 g of ethyl $2-(1 \mathrm{H}-1,2,4-t x i a z o l-$ $3-y l)$ acetate in 10 ml of acetonitrile were aded 0.59 g of potassium carbonate and 0.73 g of benzyl bromide. The mixture was heated to reflux for two hours, insoluble matters were filtered off; and the filtrate was concentrated in vacuo. The residue was purified by silica gel column chromatography (eluent: hexane/ethyl acetate $=3 / 2$ ) to give 289 mg of ethyl $2-(2$ mbenzyl-1H-1,2,4-triazol-3-yl)acetate (Referential Example 51a) and 311 mg of ethyl 2-(1-benzy1-1H-1,2,4-triazol-3-yl)acetate (Referential Example 51b).
[0049]
The compounds of Referential Examples 52 and 53 were prepared by the same manner as in Referential Example 4.

## Referential Example 52

$2-(2-\operatorname{Benzy} 1-1 \mathrm{H}-1,2,4-t r i a z o l-3-y 1)$ acetic acid hydrochloride

Referential Example 53
2-(1-Benzyl-1H-1,2,4-triazol-3-y1)acetic acid hydro-
chloride

The compounds of Referential Examples 54(a) and 54(b) were prepared by the same manner as in Referential Example 51. Referentlal Example 54(a)

Ethyl 2-[1-(4-fluorobenzyl)-1H-tetrazol-5-yl]acetate Referential Example $54(b)$

Ethy1 2-[2-(4-fluorobenzyl)-1H-tetrazol-5-yl]acetate [0051]

The compounds of Referential Examples 55 and 56 were prepared by the same manner as in Referential Example 5 . Referential Example 55

2-[1-(4-F1uorobenzyl)-1H-tetrazol-5-yl]acetic acid

## Referential Example 56

2-[2-(4-Fluorobenzyl)-1H-tetrazol-5-yl]acetic acid
[0052]
The compounds of Referential Examples 57 (a) and 57 (b) were prepaxed by the same manner as in Refexential Example 51. Referential Example 57 (a)

Ethyl 2-[1-(3,4-dichlorobenzyl)-1H-tetrazol-5-yl]acetate Referential Examplem(b)

Ethy1 $2-[2-(3,4-d i c h l o r o b e n z y])-1 H-t e t s a z o l-5-y l] m$ acetate
[0053]

The compounds of Referential Examples 58 and 59 were prepared by the same manner as in Referential Example 5.

Referential Example 58
2-[1-(3, 4-Dichlorobenzy1)-1H-tetrazol-5-y1]acetic
acid
Referential Examples9
$2-[2-(3,4-$ Dichlorobenzy1) - 1H-tetrazol-5-y1]acetic
acid
[0054]

## Referential Example 60

Into a mixture of 3.67 g of 1 -phenyl-2-methyl-1Himidazolewith 50 ml of acetonitrile and 6.50 ml of triethylamine was dropped 4.40 ml of ethyl chloroformate with ice cooling and stiming in an argon atmosphere. After 2.5 hours, water and ethyl acetate wexe added to the reaction mixture, and the organic layer was washed with a aturated saline solution and dried over anhydrous magnesium sulfate. The solvent was evaporated, and the residue was purified by silica gel column chxomatography (eluent: chloroform/methanol $=50 / 1$ ) to give 2.26 g of ethyl 2-(1-phenyl-1H-imidazol-2-yl)acetate.
[0055]
The compounds of Referential Examples 61,63 and 65 were prepared by the same manner as in Referential Example 4 ; and the compounds of Referential Examples 60 and 64 were prepared by the same manner as in Referential Example 60.

## Referential Example 61

2-(1-Phenyl-1H-imidazo1-2-yl) acetic acid hydrochloride Referential Example 62

Ethyl. 2- [1-(4-nitrobenzyl) -1 H -imidazol-2-yl]acetate
Reterential Example 63
2-[1-(4-Nitrobenzy1)-1H-imidazol-2-yl]acetic acid
hydrochloride

## Referential Example 64

Ethyl 2-[1-(2-phenylethyl)-1H-imidazol-2-yl]acetate
Refexential Example 65
2-[1-(2-phenylethyl)-1H-imidazol-2-yl]acetic acid
hydrochloride
[0056]

## Referential Example_66

Inta a mixture of 3.69 g of 2,4 -dimethyl-1H-nimazole, 4.27 of triethylamine and 25 ml of acetonitrile was aropped 3.00 g of acetyl ohloride with ice cooling and stirying. The reaction mixture was stirred at room temperature for 15 minutes, insoluble matters were filtexed off, and the solvent was evaporated in vacuo. To the residue were added 7.119 of 4-fluorobenzyl bromide and 30 ml of acetonitrile, and the mixture was heated to reflux for 3.5 hours. The solvent was evaporated in vacuo, ethanol and ethyl acetate were added to the residue, and the deposited crystals were collected by filtration and washed with ethyl acetate. To the resulting
crystals were added 100 ml of chloroform and 40 ml of a 0.5 N aqueous solution of sodium hydroxide, and the organic layer was washed with a saturated saline solution and dried over ankydrous magnesium sulfate.... The solvent was evaporated in vacuo to give 3.40 g of 1-(4-fluorobenzyl)-2,5-dimethyl-1k-imidazole. [0057]

Whe compounds of Refexential Examples 67 and 68 were prepared by the same manner as in Referential Examples 60 and 4, respectively.

## Referential Example. 67

Ethyl 2-11-(4-fluorobenzyl)-5-methyl-1H-imidazol-2-
yllacetate
Referential Example 68
$2-[1-(4-$ Fluorobenzy1) $-5-m e t h y 1-1 H-i m i d a z o l-2-y 1]-$
acetic acid hydrochloricle
$[0059]$

## Referential Example 69

To a solution of 1.00 g of 2,4 -dimethyl-1H-imidazole in 10 ml of dimethyl formamide was added 1.30 g of potassium tert-butoxide with stirring at room temperature. Into the mixture was dropped 2.20 g of 4 -fluorobenzyl bromide, followed by stirring for one hour. After insolublematters werefiltered off, the solvent was evaporated in vacuo, and ethyl acetate and water were added to the residue. The organic layer was washed with a saturated saline solution and dried over anhydrous
magnesium sulfate. The solvent was evaporated in vacuo, and the residue was purified by silica gel column chromatography (eluent: chloroform/methanol $=50 / 1$ ) to give 1.17 g of 1 -(4-fluorobenzyl)-2,4-dimethyl-1H-imidazole.
[0059]
The compounds of Referential Examples 70 and 71 were prepared by the same manner as in Referential Examples 60 and 4, respectively.

Referential Example 70
Ethyl 2-[1-(4-fluorobenzyl)-4-methyl-1H-imidazol-2yl]acetate

Referential Example 71
2-[1-(4-Fluorobenzy1)-4-methyl-1H-imidazol-2-yl]-
acetic acid hydrochloride
[0060]

## Referential Example 72

Into a solution of 3.11 g of 2-benzyloxy-6-methylpyridine in 50 ml of tetrahydrofuran was dropped 16 ml of $1.03 \mathrm{~m} \mathrm{sec}-$ butyl lithium/cyclohexane at $-78^{\circ} \mathrm{C}$. Then, 0.95 ml of diethyl carbonate was added thereto at $-78^{\circ} \mathrm{C}$, the dry ice-methanol bath was removed, and the reaction solution was stirred until itt rose to room temperature. The solvent was evaporated, and the residue was diluted with water and extracted with ethyl acetate. The resulting organic layer was dried over anhydrous magnesium sulfate, and the solvent was evaporated. The resulting residue
was purified by silica gel column chromatography (eluent: hexane/ethyl acetate $=10 / 1)$ to give ethyl $2-(2-$ benzyloxypyridin-6-yl)acetate.
[0061]
The compounds of Referential Examples 73 and 75 were prepared by the same manner as in Referential Example 5; and the compound of Referential Example 74 was prepared by the same manner as in Referential Example 72.

Referential Example 73

$$
2-(2 \text {-Benzyloxypyxidin-6-yl)acetic acid }
$$

## Referential Example 74

Ethyl 2-(2-tert-butoxycarbonylaminopyridin-6-yl)-
acetate
Referential Example 75
2-(2-tert-Butoxycarbonylaminopyridin-6-y1)acetic acid [0062]

## Referential Example 76

Into a solution of 3.11 g of $5,6,7,8$-tetrahydroquinoline in 15 ml of tetrahydrofuran was dropped 15 ml of 1.59 m n -butyl lithium/hexane at not higher than $-65^{\circ} \mathrm{C}$. Then, 1.4 ml of diethyl carbonate was added thereto at $-70^{\circ} \mathrm{C}$, the dry ice-methanol bath was removed, and the reaction solution was stirred until it rose to room temperature. To the reaction solution were added water and ethyl acetate successively. The organic layer was dried over anhydrous magnesium sulfate, and the solvent was
evaporated therefrom. The resulting residue was purified by silica gel column chromatography (eluent: hexane/ethyl acetate $=2 / 1)$ to give 3.0 g of a mixture of ethyl 8-(5,6,7,8tetrahydromquinoline)carboxylate and $5,6,7,8$-tetrahydroquinoline. To an ethanolic solution of 1.02 g of this mixture was added 5 ml of a 1 N aqueous sodium hydroxide solution at room temperature. The reaction solution was stirred at room temperature for 12 hours, and the reaction solution was washed with diethyl ether twice to remove the $5,6,7,8$-tetrahydroquinoline. The reaction mixture was neutralized by adding in hydrochloric acid thereto, and the solvent was evaporated to give 750 mg of 8 - ( $5,6,7,8$-tetrahydroquinoline) carboxylic acid.
[0063]

## Referential Example 77

no a mixed solution of ethyl acetate and a in aqueous solution of sodium hydroxide was added 25.2 g of 4 -nitrophenyl ethylamine hydrochloride, and the mixture was vigorously stirred. The organic layer was dried over anhydrous magnesium sulfate, and the solvent was evaporated. To the resulting residue were added 100 ml of 2-propanol and 15.0 g of ( R ) mstyrene oxide successively, and the reaction mixture was heated to reflux for 12 hours. The solvent was evaporated in vacuo, and the residue was purified by silica gel column chromatography (eluent: chloroform/methanol. $=100 / 1 \rightarrow 10 / 1$ ). The resulting residue was again subjected to silica gel column chromatography
(eluent: hexane/ethyl acetate/tijethylamine =1/5/trace) to give 8.05 g of (R)-1-phenyl-2-[[2-(4-nitrophenyl)ethyl]aminolethanol.
[0064]

## Rexerential Example 78

A solution of 6.30 of (R)-1-phenyl-2-[r2-(4nitrophenyl)ethyljaminojethanol and 6.30 g of di-tert-butyl dicarbonate in 80 ml of tetrahydrofuran was stirred for 12 hours at room temperature. The residue obtained by evaporation of the solvent was purified by silica gel column chromatography (eluent: hexane/ethyl acetate $=3 / 1$ ) to give 10.8 g of tertmbutyl (R) $-N-(2-$ hydroxy -2 -phenylethyl) $-N-[2-(4-n i t x o p h e n y l)$ ethyl $]-$ carbamate.
[0065]

## Referential Example 79

To a solution of tert-butyl (R)-N-(2-hydroxy-2phenylethyl) $-\mathrm{N}-[2-(4-n i t r o p h e n y d) e t h y l] c a r b a m a t e ~ i n ~ 200 \mathrm{ml}$ of ethanol was added 1.03 g of $10 \%$ palladium-carbon and the mixture was stirred for two hours at room temperature in a hydrogen atmosphere under atmospheric pressure. Insoluble matters were removed using celite, and the filtrate was concentrated in vaouo to give 9.54 g of tert-butyl ( R ) $-\mathrm{N}-\mathrm{I} 2 \mathrm{~m}(4$-aminophenyl) $-\mathrm{N}-(2-$ hydroxy-2-phenylethyl)ethyljcarbamate.
[0066]

## Referential Example 80

To a solution of 7.62 g of ( R )-mandelic acid in 100 ml of dimethylformamide were added 10.15 g of 4 -nitrophenethylamine hydrochloride, 7.11 gof 1 wydroxybenzotriazole, 7.3.ml of triethylamine and 1.01 g of 1 -ethyl-3-(3dimethylaminopropyl)carbodimide nydrochloride, and the reaction mixture was stirred at room temperature for 18 hours. To the mixture were added water and ethyl acetate, and the organic layer was washed with 1 N hydrochloric acid, a saturated aqueous solution of sodium hydrogen carbonate, water and a saturated saline solution successively and dried over anhydrous magnesium sulfate. The solvent was evaporated to give 14.94 9.. of. (R)-2-hydroxy-N-[(2-(4-nitrophenyl)ethyl]-2-phenylacetamide.
[0067]

## Referential Example 81

To a solution of 14.94 g of (R)-2mydroxy-N-[(2-(4 nitrophenyl)ethyl1-2-phenylacetamide in 80 ml of tetrahydrofuran was added 15.4 ml of a 10 m boranemethyl sulfide complex, and the mixture was heated to reflux for 1.5 hours. This was cooled down to room temperature, stiryed for one hour after addition of 20 ml of methanol, then 150 ml of 1 N hydrochloride acid was added, and the mixture was heated to reflux for one hour. To the residue obtained by concentrating the solvent in vacuo were added 200 ml of 1 N sodium hydroxide
and ethyl acetate, and the organic layer was washed with water and a saturated saline solution successively and dried over anhydrous magnesium sulfate, The solvent was evaporated in vacuo, the residue was dissolved in 100 ml of ethanol, and 12.3 mi of a 4 N hyarogen chloride-ethyl acetate solution was added thexeto. The deposited crystals were filtered to give 12.13 9. of (R)-2-[2-(4-nitrophenyl)ethylamine]-1-phenylethanol hydrochloride.
[0068]

## Referential Example 82

To a solution of 448 mg of tert-butyl (R) $-\mathrm{N}-[2-(4-$ aminophenyl)-N-(2-hydroxy-2-phenylethyl)ethyl]oarbamate and 330 mg of triethylamine in 4 ml of chloroform was added 146 mg of 2 -pyridinecarbonyl chloride. The reaction solution was stifred at room temperature fox two hours, and the solvent was evaporated in vacuo. The residue was diluted with chloroform, and the organic layer was washed with a saturated agueous solution of sodium hydrogen carbonate and dried over anhydrous magnesium sulfate. The residue obtained by evaporating the solvent in vacuo was purified by silica gel column chromatography (eluent: hexane/ethyl acetate m $1 / 3$ ) to give 321 mg of tert-butyl (R) $\mathrm{m}=(2-$ hydroxy-2-phenylethyl)-N-[2-[4-[(2-pyridinecarbonyl)amino]phenyl]ethyl]carbamate.
[0069]

The compound of Referential Example 83 was prepared by the same manner as in Referential Example 82 , Referential Example 83
tert-Buty $1 \quad \cdots(R)-N-(2-h y d r o x y-2-$ phenylethyl $)-N-[2-[4-$ [(3-pyridinecarbonyl)amino]phenyl ]ethyl]carbamate Referential Example. 84

To a solution of 377 mg of tert-buty1 (R)-N-[2-(4-aminopheny1)-N-(2-hycroxy-2-phonylethyl)ethylucarbamate in 10 m1 of tetxahydrofuran were added 203 mg of 1 -ethyl-3-(3dimethylaminopropyl)carbodiimide hydrochloride, 143 mg of 1-hydroxybenzotriazole and 202 mg of 8-quinolinecarboxylic acid successively, The reaction solution was stirred at room temperature for 18.5 hours, and the solvent was evaporated in vacuo. The residue was diluted with ethyl acetate, and the organic layer was washed with a saturated aqueous solution of sodium hydrogen carbonate and dried over anhydrous magnesium sulfate. The residue obtained by evaporation of the solvent was purified by silica gel column chromatography (eluent: hexane/ethyl acetate $=2 / 1$ ) to give 302 mg of tert-butyl (R) $-N-(2-$ hydxoxy $-2-$ phenylethyl $)-N-[2-[4-[(8-q u i n o l i n e-$ carbonyl) amino jphenyluethyl joarbamate.
[0070]
The compounds of Referential Examples 85 to 139 were prepared by the same manner as in Referential Example 84.

## Referential Example 85

tert-butyl (R) $-\mathrm{N}-(2-h y d r o x y-2-p h e n y l e t h y l)-(E)-N-(2-$ [4-[3-(2-pyridyl)acryloylamino]phenyl]ethyl]carbamate

## Referential Example. 86

text-Butyl (R)-N-[2-[4-[(2-benzothiazol-2-y]acetyl)amino jphenyl jethyl $-\mathrm{N}-(2-$ hydroxy-2-phenylethyl) oarbamate Referential Example 87
tertmbutyl. (R) $-N-(2-h y d r o x y-2-p h e n y l e t h y l)-N-[2-[4-$ $[[2-($ midazo $[2,1-b] t h i a z o l-3-y l) a c e t y l] a m i n o] p h e n y l] e t h y l]-$ carbamate

Referential Example 88
tert-Butyl (R)-N-(2-hydroxym-2-phenylethyl)-N-I2-[4-$[2-(2$ methylthiazol $-4 m y l)$ acetylamino $]$ phenyl]ethyl]carbamate Referential Example 89
tert-Butyl (R)-N-(2-hycroxy-2-phenylethyl)-N-[2-[4-[2-(1H-imidazol-2-yl)acetamino]phenyl]ethyl]carbamate Referential Example 90
tert-Butyl. (R)-N-(2-hydroxy-2-phenylethy1)-N-[2-[4-[(2-1H-tetrazol-5-yl)acetamino]phenyl]ethyl]carbamate

## Referential Example 91

text-Butyl (R)-N-(2-hydroxy-2-phenylethyl)-N-[2-[4-$[2-(5-\operatorname{sulfany}-1 H-1,2,4-t r i a z o l-3-y 1) a c e t y l a m i n o] p h e n y 1]-$ ethyllcarbamate

## Referential Rxample 92

tert-Eutyl (R) $-\mathrm{N}-(2-[4-[[2 m(2-\operatorname{aminothiazol}-4-y])-2-$
oxoacetyllaminolphenyl \}ethyl1-N-(2-hydroxy-2-phenylethyl)carbamate

Referential Example 93
tert-Buty] (R) $-N-[2-[4-[2-(5-\operatorname{amino-1,2,4-thiadazol-}$ 3-yl) acetylamino phenyl]ethyl $]-N-(2-h y d r o x y-2-p h e n y l e t h y l)-$ carbamate

Referential Example 94
tert-Butyl (R) $-\mathrm{N}-\mathrm{r} \dot{2}-[4-[2-$ (5-ethoxycarbonylaminom
$1,2,4-$ thiadiazol-3-yI) acetylaminoyphenyl]ethyl $]-N-(2-h y d x-$ oxy-2-phenylethyi) carbamate

Referential Example 95
tert - Buty $\quad(\mathrm{R})-\mathrm{N}-(2-[4-[2-[(3-f]$ uorophenylamino $)-$ thiazol-4-yl lacetylaminolphenyllethyl $]-N-(2-n y d r o x y-2-$ phenylethyl)carbamate

Refexential Example 96
tert-Butyl (R) $-\mathrm{N}-[2-[4-[2-[(2-c h l o x o p y x i d i n-6-y])-$ acetyl jamino jphenyl jethyl] $-\mathrm{N}-(2-$ hydroxy-2-phenylethyl) carbamate

Referential Example 97
tert-Buty 1 (R) $-N-[2-[4-[[2-(2-\operatorname{benzyloxypyxidin-6-y1)-~}$ acetyllaminolphenyl]ethyl $1-N-(2-h y d r o x y-2-p h e n y l e t h y l)-$ carbamate

Referential Example 98
text-Butyl (R) $-N=(2-h y d x o x y-2-p h e n y l e t h y l)-N-[2-[4-$ [2-11-(2-methyd-3mpropeny1)-1H-imidazol-2-y1)acetamino]phenyl]ethyl jcarbamate

Referential Example 99
tert-mutyl (R)-N-[2-[4-[2-(1-bengyl-1H-imidazol-4yl)acetylamino jphenyl]ethyl $1-\mathrm{N}-(2-h y d r o x y-2-$ phenylethyl $)-$ carbamate

Referentiad Example 100
tert-butyl (R)-N-I2-I4-[2-[1-(2-chlorobenzyl)-1H-imidazol-4-yluacetylamino fphenyl jethyl $]-\mathrm{N}-(2-$ hydroxy -2 m . phenylethyl) carbamate
[0071]
Referential Example 101
tertmbutyl (R) $-N-[2-[4-[2-[1-(3-\operatorname{ch}]$ robonenzyl) $-1 H-$ imidazol-4-yl]acetylaminolphenyl]ethyl. $]-N=(2-h y d r o x y-2-$ phenylethyl)carbamate

Referential Example 102
tert-Buty] (R) $-N=[2-[4-[2-[1+(4-c h l o r o b e n z y l)-1 H-$ imidazol-4-yl ]acetylaminolphenyl]ethyl.1-N-(2-hydroxy-2phenylethyl)carbamate

Referential Example 103
tert-Buty] (R)-N-[2-[4-[2-[]-(4-fluorobenzy])-1H-imidazol-2-ylyacetamino]phenyl.]ethyl1-N-(2-hydroxym2phenylethyl)carbamate

## Referential Example 104

tert-Buty ( R ) $-\mathrm{N}-[2-[4-[2-11-(4-$ chlorobenzyl)-1H-
Imidazol-2myl]acetamino Jphenyl]ethyl1-N-(2-hydroxy-2m phenylethyl)carbamate

Referentiadexample 105
tert-Buty $\quad(\mathrm{R})-\mathrm{N}-[2-[4-[2-[1-(4-$ bromobenzy 1$)-1 \mathrm{H}-$ imidazol-2-yl ןacetaminolphenyl fethyl1-N-(2-hydroxy-2phenylethyl)carbamate

Referential Example:106
tert-Butyl (R) $-N-(2-$ hydroxy-2-phenylethyl) $-N-[2-14-$
$[2-[1-(4-$ iodobenzy 1$)-1 H$-imidazol-2-yl]acetamino]phenyl] ethyljcarbamate

Referential Example 107
text-Butyl. (R) $-N-(2-h y d r o x y-2-p h e n y l e t h y 1)-N-[2-[4-$ $[2-[1-(4-\operatorname{trifluoxomethylbenzyl)-1H-imidazol-2-yl]-}$ acetamino jphenyl jethyl jcarbamate

## Refecential Example 108

tert-Eutyl (R) $-N-(2-h y d r o x y-2-p h e n y l e t h y l)-N-[2-[4+$ $[2-[1-(2-n a p h t h y 1)-1 H-i m i d a z o l-2-y l] a c e t a m i n o] p h e n y 1]-$ ethyl]carbamate

Referential Example 109
tert-Butyl (R)-N-[2-[4-[2-[3-(4-fluoxobenzyl)-4-
methyl-1H-imidazol-2-yluacetaminolphenyluethyl]-N-(2-hydroxy-2-phenylethyl) carbamate

## Referential Example 110

tert-Butyl. (R) $-\mathbb{N}-[2-[4-[2-[1-(4-f]$ uorobenzy $])-4-$ methyl-1H-imidazol-2-yl ]acetamínojphenyl ]ethyl $1-N-(2-$ hydroxy-2-phenylethyi)carbamate
[0072]

## Referential Example 111

tert-Butyl (R) $-\mathbb{N}-[2-[4-[2-[1-(4-f 1$ uoromobenzy $])-1 H-$
tetrazol-5-yllacetaminolphenyl.]ethyll-N- (2-hydroxy-2-phenylethyl)carbamate

Referential Example 112
tert-Butyl. (R) $-N-[2-[4-[2-[2-(3,4-d i c h l o r o b e n z y l)-1 H-$ tetrazol-5-yl jacetaminolphenyl lethyl]-N-(2-hydroxy-2-phenylethyl)carbamate

## Referential Example 113

tert-Buty $(\mathrm{R})-\mathrm{N}-[2-[4-[2-[2-(4-f]$ uorobenzy 1$)-1 \mathrm{H}-$
tetrazol-5-yl acetamino phenyl lethyl]-N-(2-hyoroxy-2-phenylethyl)carbamate

## Referentiad Example 114

tert-Butyl (R) $-\mathbb{N}-[2-[4-[2-[2-(3,4-\operatorname{dichlocobenzyl})-1 H-$ tetrazol-5-yl jacetaminolphenylyethyl I $\mathrm{m}-\mathrm{N}$ (2-hydroxy-2-phenylethyl)carbamate

## Referential Example 115

tert-Buty $\quad(\mathrm{R})-\mathrm{N}-[2-[4-[2-(1 \mathrm{H}-1,2,4-\operatorname{triazol}-3-\mathrm{y}]]-$ acetylamino jphenyl ]ethyl] $-\mathbb{N}-(2-$ hydroxy $-2-p h e n y l e t h y l)-$ carbamate

Referential Example 116
tert-Butyl (R) $-N-[2-[4-[2-(5-$ benzylsulfany $1-1 H-1,2,4-$ triazol-3-yl]acetylamino jphenyl]ethyl]-N-(2-hydroxy-2-
phenylethyl)carbamate
Referential Example 117
tert-Butyl ( R ) $-\mathrm{N}-[2-[4-[2-(2$-acetamidothiazol-4-yl)acetylamino phenyl jethyl $]-\mathrm{N}-(2 \mathrm{mydroxy}-2$-phenylethyl)carbamate

Referential Example 118
tert-Butyl (R)-N-(2-hydroxy-2-phenylethy1) $-\mathrm{N}-[2-[4-$ [2-(2-methanesulfonamidothazol-4-yl]acetylamino]phenyl]ethyljcarbamate

Referential Example 119
tert-Butyl (R)-N-[2-(4-[2-(2-guanidinothiazol-4-yl)acetylamino phenyllethyl $1-\mathrm{N}-(2-$ hydroxy- 2 -phenylethyl $)-$ carbamate

Referential Example 120
tert-Butyl (R)-N-(2-hydroxy-2-phenylethyl)-N-[2-[4m [2-[1-(2-phenylaminothiazol-4-yl)]acetamino]phenyl]ethy1]carbamate
[0073]

## Referential Example 121

tert-Butyl (R)-N-(2-hydroxy-2mphenylethy1) $-\mathrm{N}-[2-[4-$ [2-[1-(4-nitrobenzyl)-1H-imidazol-2-yl]acetamino]phenyl]ethyllcarbamate

## Referential Example 122

tert - Butyl ( R$)-\mathrm{N}-[2-[4-[2-(2-\operatorname{aminothiazol}-4-y])-$ acetaminojphenyljethyll-N-(2-hydxoxy-2-phenylethyl)carbamate

Referential Example 123
tert-Butyl. (R)-N-[2-[4-[(2-aminothiazol-4-yl)carboxyaminolphenyluethyl $]-\mathrm{N}-(2-$ hydroxy- 2 -phenylethyl) carbamate

Referential Example 124
tert-butyl (R) $-N-[2-[4-[2-(2-a m i n o-5-m e t h y 1 t h i a z a l-4-$ yl) acetylamino phenyl fethyl $]-N-(2-h y d x o x y-2-p h e n y l e t h y l)-$ cambamate

Referential Example 125
tert-Buty 1 (R) $-\mathrm{N}-[2-[4-[2,2-$ dimethy $1-2-(2-$ amino-thiazol-4-yl)acetylamino] phenyl]ethyl]-N-(2-hydroxy-2phenylethyl)carbamate

Referential Example 126
tert-Buty] (R) $-\mathbb{N}=[2-[4-[(2-a m i n o-4,5,6,7-t e t r a h y d r o-$ benzothiazol-4-yl)carboxyamino jphenyl]ethyl]-N-(2-hydroxy-2-phenylethyl)carbamate

Referential Example 127
tert-Butyl (R) $-\mathrm{N}-(2-$ hydroxy-2-phenylethyl) $-\mathrm{N}-[2-[4-$ $[[2-(\operatorname{imidazo}[2,1-b] t h i a z o 1-6-y 1) a c e t y l] a m i n o] p h e n y 1] e t h y l]-$ carbamate

## Referential Example 128

tert-Butyl (R) $-N-[2-[4-[2-(2-$ benzy $]-1,2,4-\operatorname{triazol}-3-$ y1)acetylaminolphenyl)ethyl]-N-(2-hydxoxy-2-phenylethy1)carbamate

Referential Example 129
tert-Butyl. (R) $-N=12-[4-[2-(1-b e n z y 1-1,2,4-t r i a z o l-3 m$ yl) acetylamino phenyl 1ethyll-N-(2-hydroxy-2-phenylethyl)carbamate

Referential Example 130
tert-Butyl (R)-N-[2-[4-[2-(3-benzyl-2-thioxothiazol-4-yl)acetylaninojphenylyethyl $1-\mathrm{N}-(2$-hyaroxy-2-phenylethyl)carbamate
$[0074]$

## Referential Example 131

tert-Butyl. (R) $-N-(2-$ hydroxy-2-phenylethyl)-N- (2-[4$[[(5,6 ; 7,8-t e t r a h y d r o q u i n o l i n-8-y]) c a r b o n y 1]$ mino $]$ phenyl] ethyljearbamate

## Rererential Example 132

tert-Eutyl (R)-N-(2-hydxoxy-2-phenylethyl)-N-[2-[4-[2-[(1-phenyl)-1H-imidazol-2-yl]acetaminolpheny1]ethyl]carbamate

Referential. Example 133
tert-Butyl (R) $-N-(2-n y d x o x y-2-p h e n y l e t h y l)-N-[2-[4-$
[2-[1-(4-isopropylbenzyI)-1H-imidazol-2-y1]acetamino]phenyl]ethyllcarbamate

Referential Example 134
tert-Butyl (R)-N-(2-hydroxy-2-phenylethyl)-N-[2-[4-
$[2-[1-(4-p h e n y \operatorname{benzyl})-1 H-i m i d a z o l-2-y l] a c e t a m i n o] p h e n y l]$ ethyllcarbamate

Referential Example 135
tert-Butyl. (R) $-N-[2-[4-[2-[1-(2-c h 1 o r o b e n z y l)-1 H-$ imicazol-2-ylucetylaminolphenyl]ethyll-N-(2-hydxoxy-2phenylethyl)carbamate Reforential Example 136
tert-butyl. (R) $-\mathrm{N}-[2-[4-[2-[1-(3-\operatorname{ch} 1$ orobenzyl) $-1 \mathrm{H}-$ imidazol-2-yl]acetylaminolphenyl]ethy1]-N-(2-hydroxy-2phenylethyl)carbamate

Retexential Example 137
tert-Butyl (R)-N-[2-[4-[2-[1-(3,4-dichlorobenzy1)-1H-inidazol-2-yl jacetylamino fphenyl]ethyl $1-N-(2-h y d r o x y-2-$
phenylethyl)carbamate
Referential Example 138
tert-Butyl (R)-N-(2-hycroxy-2-phenylethyl)-N-[2-[4-
$[2-[1-(2-p y r i d y l) m e t h y 1-1 H-i m i d a z o l-2-y l] a c e t y l a m i n o]-$
phenyl]ethyllcarbamate
Referential Example 139
tert-Butyl (R) $-N=[2-[4-[[2-[2-($ text-butoxycarbony $1-$ amino) pyridin-6-yl]acetyl Jaminolphenyl]ethyl)-N-(2-hydroxy 2-phenylethyl)carbamate
[0075]

## Referential Example 140

To a solution of 1.1 of tertimutyl (R)-N-[2-[4-[ $2=$ [2-(tert-butoxycarbonylamino)pyridin-6-yl]acetylamino]-phenyluethyll-N-(2-hydroxy-2-phenylethyl)carbamate in 10 ml of methanol was added 20 ml of a 4 N hydrogen chloride-ethyl acetate solution. The reaction solution was stirred at room temperature for two hours. The solvent was evaporated, and to the resulting residue were added 5.2 g of triethylamine, 2.2 Gof di-tert-butyl carbonate, 15 ml of tetxahydrofuran and 1 ml of methanol, and the mixture was stirred for 13 hours. the reaction mixture was diluted with ethyl acetate and washed with a saturated aqueous solution of sodium chloride and a saturated aqueous solution of sodium hydrogen carbonate successively. The organic layer was dried over anhydrous magnesium sulfate, and the solvent was evaporated in vacuo. The resulting residue was purified by silice gel colum chromatography (eluent: chloroform/methanol $=100 / 1$ ) to give 260 mg of tertmbutyl (R) $-N-[2-[4-([2-(2-\operatorname{aminopyridin}-6-y 1)$ acetyl]amino]phenyl]-ethyl]-N-(2-hydroxy-2-phenylethyl)carbamate.
[0076]

## Referential Example 141

tert-butyl (R)-N-(2-hyaroxy-2-phenylethyly-N-[2-[4 [2-[1-(2-methyl-2-propenyl)-1H-imidazol-2-yl]acetamino]phenyljethyljoarbanate ( 314 mg ) was dissolved in 1.5 ml of ethanol, 90 mg of $10 \%$ palladium-carbon was added, and the mixture
was stirred for 5.5 hours in a nitrogen atmosphere under atmospheric pressure. The catalyst was filtered off, the solvent was evaporated in vacuo, and the residue was puxified by silica. gel column chromatography (eluent: chloroform/methanol = $30 / 1$ ) to give 230 mg of text-butyl (R) $-\mathrm{N}-[(2$-hydroxy-2-phenyl)ethyl] $]-\mathrm{N}-[2-[4-[1-(2$-methyl-propy1)-1H-imidazol-2-yl]acetaminolphenyllethyllcarbamate.
[0077]

## Referential Example 142

To a solution of 403 mg of tertmbutyl (R) $\mathrm{mN}=(2-$ hydroxy-2-phenylethyl)-N-[2-[4-[(2-1H-imidazol-2-ylacetyl)aminolphenyl]ethylloarbamate in 10 ml of acetonitrile were added 120 mg of potas m ium carbonate and 164 mg of 2 -fluorobenzyl. bromide successively at room temperature. The reaction solution was stixred at $50^{\circ} \mathrm{C}$ fox 12 hours. Insoluble matters werefiltered offusing Celite, and the solvent was evaporated. The resulting residue was purified by silica gel column chxomatography to give 253 mg of tert-butyl (R)-Nwi2-[4-$[[2-[1-(2-f 1$ uorobenzyl)-1H-juidazol-2-y1]acetyl]amino]-phenyljethyl]-N-(2-hydroxy-2-phenylethyl)carbamate.
[0078]
The compounds of Referential Examples 143 to 162 were prepared by the same manner as. In Referential Example 142.

## Referential Example 143

tert-Butyl (R) $-N-[2-[4-[2-[1-(3-$ fluorobenzyl) $)-1$ H-imidazol-2myl jacetamino ]phenylyethyl]-N-(2-hydroxy-2phenylethyl)carbamate

## Referential Example 144

tert-Butyl (R) $-N-[2-[4-[2-[1-(2,4-d i f l$ uorobenzy $])-1 H-$ imidazol-2-yl)acetylaminolphenyl $\rceil$ ethyl $1-\mathrm{N}-(2-$ hydroxy $-2-$ phenylethyl)carbamate

## Referential Example 145

tert-butyl (R)-N-[2w[4-[2-[1-(2,6-difiuorobenzyl)-1H-imidezol-2-yl]acetylaminolphenyluethy11-N- (2-hydroxy-2phenylethyl)carbamate

## Beferential example 146

tert-Buty $]$ (R) $-N-[2-[4-[[2-[1-(3,5-d i f 1$ norobenzy 1$)-$
1H-imiaazol-2-yl 〕acetyl)amino fphenyl jethyl]-N-(2-hydroxy-2phenylethyl) caxbmate

Referential Example 147
tert-Butyl (R)-N-I2-[4-[2-[1-(2,5-difluorobenzy])-1. $\mathrm{H}-$ imidazol-2-yl]acetylamino fphenyl]ethyl]-N- (2-hydroxy-2phenylethy"l)carbamate

## Referential Example 148

tert-Butyl (R)-N-[2-[4-[2-[1-(3,4-difluorobenzy1)-1H-imidazol-2-yluacetaminolphenyl]ethyll-N-(2-hydroxy-2-phenylethyl)cazbamate

Referential Example 149
teft-Butyl (R)-N-(2mydroxy-2-phenylethyl)-N-[2-14-$[2-[1-(2,3,5-t r i f l u o r o b e n z y l)-1 H-j m i d a z o l-2-y l] a c e t a m i n o] m$ phenyljethyl Jcarbamate

Referential Example 150
tert-Butyl (R)-N-(2-hydroxy-2mphenylethyl)-N-[2-[4-$[[2-[1-(2,4,5-t r i f 1$ uorobenzyl)-1H-imidazol-2-yl]acety1]amino phenyl Iethyldcarbamate

Referential example 151
tert-butyl (R) $-\mathrm{N}-(2 \mathrm{mydroxy}-2-\mathrm{pheny}$ lethy $])-\mathrm{N} m[2-[4-$ $[2-[1-(3,4,5-t r i f 1 u o r o b e n z y 1)-1 H-i m i d a z o 1-2-y 1] a c e t a m i n o]=$ phenyl ]ethyl jcarbamate
[0079]

## Referential Example 152

text-Butyl (R) $-\mathrm{N}-(2-$ hydroxy-2-phenylethyl) $-N-[2-[4-$ $[[2-[1-(2,3,4,5,6$ pentafluorobenzyl)-1H-imidazol-2-y1]acetylamino jphenyljethyljcarbamate Referential Example 153
textmeutyl (R)-N-(2-hydroxy-2-phenylethyl)-N-[2-[4m [ [ $2-[1-(3-1 o d o b e n z y l)-1 H-i m i d a z o l-2-y l] a c e t y l] a m i n o] p h e n-~$ yljethyllcarbamate

Referential Example 154
text-Buty (R)-N-[2-[4-[2-[1-(2,6-dichlorobenzy1)-1H-imidazol-2-yl jacetylamino phenyllethyll-N-(2-hydroxy-2phenylethyl)carbamate

Referential Example 155
tert-Buty $\quad(\mathrm{R})-\mathrm{N}-[2-[4-[2-[1-(4-$ cyanobenzy 1$)-1 \mathrm{H}-$ imidarol-2-yllacetylaminolphenyl]ethyl $]-N-(2-h y d r o x y-2--$ phenylethyl)carbamate Referential Example 156
tert-Butyl (R) $-N-(2-h y d r o x y-2-$ phenylethyl $)-N-[2-14-$ $[2-[1-(q u i n o l i n-2-y 1) m e t h y l-1 H-i m i d a z o l-2-y l] a c e t y l a m i n o]-$ phenyljethyljcarbamate

Referential example 157
tertmbutyl (R) $-N-[2-[4-[2-[1-(2-c h 1 o r o-6-f] u o r o-$ benzyl)-1H-imidezol-2-yl lacetylaminolphenylyethylj-N-(2-hydroxy-2-phenylethyl) carbamate

Referential Example 158
tert-Butyl (R)-N-I2-[4-[2-[1-(2mehloro-4-fluorom benzyl)-1H-imidazol-2-yljacetylamirojphenyl jethyl J-N $-(2-$ hydroxy-2-phenylethyl) carbamate

## Referential Example 159

tert-Butyl (R) $-\mathrm{N}-[2 \mathrm{~m}[4-[2-[1-(2,5-$ dichlorobenzy])-1H-imidazol-2-yl jacetylaminojphenyl.]ethyl]-N-(2-nydroxy-2phenylethyl)carbamate Referential. Example 160
tert-Butyl (R) $-N-(2-h y d x o x y-2-p h e n y l e t h y l)-N-[2-[4-$ [2-[1-(2,3,4-trifluorobenzyl)-1H-inidazol-2-yl]acetylaminolphenyl ]ethyllcarbamate

Reterential Example 161
tert-Butyl (R)-N-(2-hydroxy-2-phenylethy]) $-N-[2-[4-$ [ [ $2-[1-(4$-methoxycarbonyIbenzyl)-1H-imidazol-2-yl]acetyl]aminolphenyllethyl joarbamate

Referential Example. 162
tert - Butyl $(R)-N-(2-h y d r o x y-2-p h e n y l e t h y l)-N-[2-[4-$ $[2-[1-[4-($ piperidin-1-carmbony1)benzyl]-1H-imidazol-2-yl]acetylamino phenyl]ethylucarbamate
[0080]

## Referential Example 163

Into a solution of 1.87 of tert-butyl (R)-N-(2-hydroxy-2-phenylethyl) $-N=[2-(4-n i t r o p h e n y l) e t h y l] c a r b a m a t e$ and 1.05g of disopropyl ethylamine in 40 ml of chloroform was dropped a solution of 1.07 g of bromoacetyl bromide in 3 ml of chloroform with ice cooling. The reaction mixture was stirxed for one hour with ice cooling and washed with in hydrochloric acid and a saturated salinesolution successively. The organde layer was dried over anhydrous magnesium sulfate, and the solvent was evaporated in vacuo. The resulting residue was purified by silica gel column chromatography (eluent: chloroform/methanol $=30: 1$ ) to give 2.15 g of text-butyl (R) $-N-[2-[4-(2-$ bromoacetylamino)phenyl]ethyl]-N-(2-hydroxy-2-phenylethyl.)carbamate.
[0081]

The compounds of Referential Examples 164 to 166 were prepared by the same manner as in Referential Example 147, and the compound of Referential Example 167 was prepared by the same manner as in Referential Example 77.

Referential Example 164
tertmeutyl (R) $-\mathrm{N}-(2-h y d r o x y-2-p h e n y l e t h y l)-N-[2-[4-$ [2-(1-pyrazolyl)acetylamino]phenyl]ethyl]carbamate Referential Example 165
tert-Butyl (R) $-\mathrm{N}-(2-\mathrm{hydroxy}-2-$ phenylethyl $)-\mathrm{N}-\mathrm{I} 2-[4-$ $[2-(1,2,4-t r i a z o l-1-y 1)$ acetylamino]phenyl]ethyl]carbamate Referential Example 166
tert-Butyl (R)-Nu[2-[4-[2-(2-aminobenzimidazol-1-yl)acetylaminolphenyl jethyl]-N-(2-hydroxy-2-phenylethyl)carbamate

Referential Example 167
(R) $-2-[\mathrm{N}-$ Benzyl- $\mathrm{N}-[2-(4-\mathrm{nit}$ rophenyl) ethyl]amino]-1-
phenylethanol.
[0082]

## Referential Example 168

To a solution of (R)-2-[N-benzyl-N-[2-(4-nitiom phenyl) ethyl]aminol-1-phenylethanol in 150 ml of methanol were added 8.6 g of fron powder and 40 ml of 2 N hydrochloric acid. The reaction mixture was heated to reflux for two hours, $1 N$ sodium hydroxide was added thereto, and the insoluble matters thus produced were filtered off using celite. The filtrate was
concentrated in vacuo to remove the methanol. The resulting aqueous phase was extracted with chloroform, the organic layer was dried over anhydrous magnesium sulfate, and the solvent was evaporated in vacuo. the resulting residue was purified by silica gel column chromatography (eluent: hexane/ethyl acetate $=1 / 1)$ to give 11.45 g of $(\mathrm{R})-2-[\mathrm{N}-[2-(4-\operatorname{minophenyl})-$ ethyl]-N-benzylaminol-1-phenylethanol.
[0083]
The compounds of Referential Examples 169 to 174 wexe prepared by the same manner as in Referential Example 84. Referential Example 169
(R) $-4^{\prime}-[2-[N m$ Benzyl-N-(2-hydroxy-2-phenylethyl)-
amino jethyl)-2-(2-pyridyl)acetanilide
Referential Examele 170
(R) $-4-[2-[N-B e n z y]-N-(2-h y d r o x y-2-$ phenylethyl $)-$
aminolethyl1-2-(3-pyridyl)acetanilide
Referential Example 171
(R) $-4^{\text {A }}-[2-[N-$ Benzyl-N-(2-hydroxy-2-phenylethyl $)-$
amino $e t h y 1$ - $-2-(4-p y r i d y 1)$ acetanilide
Referential Ekamole 172
(R) $-4^{\prime}-[2-[N-B e n z y]-N-(2-$ hydroxy -2 mhenylethyl $)-$
aminolethyl]-(E)-3-(2-pyridyl)acrylic anilide

## Referential Example 173

(R) $-4^{\prime}-[4-[2-[N-$ Benzy $-N-(2-$ hydroxy -2 -phenylethyl)-
amino ]ethyl]phenyl]-2-[1-(2-phenylethyl)-1H-imidazol-2m
yl]acetanilide
Referential Example 174
(R) $-4^{\prime}-[4-[2-[N-B e n z y]-N-(2 m y d x o x y-2-p h e n y l e t h y l)-$ amino jethyl jphenyl]-2-(1H-benzimidazol-2-yl Jacetanilide
[0084]

## Beferential Example 175

To. 502 mg of (R) $-2 \mathrm{~m}[\mathrm{~N}-[2-(4$-aminophenyl)ethy1]-N. benzylaminol-1-phenylethanol were added 336 of ethyl 2 m (3-methylpyridin-2-yl)acetate and 10 ml of xylene. The reaction mixture was refluxed for nine hours, and the solvent Was evaporated in vacuo. The resulting residue was purified by silica gel column chromatography (eluent: hexame/ethyl acetate $=1 / 3$ ) ta give 222 mg of (R)-4'-[2-[N-benzy]-N-(2-nydroxy-2-phenylethyl) amino)ethyl1-2-(3-methylpyridin-2-yl)-acetanilide.
[0085]
The compounds of Referential Examples 176 to 180 wexe prepared by the same manner as Referential Example 175.

Referential Example 176
(R) $-4^{\prime}-(2-[N-B e n z y l-N=(2-h y d r o x y-2-p h e n y l e t h y l)-$
aminolethyl-2-(2-pyrazinyl)acetanilide

Referential Example 177
(R) - ' $^{\prime}-[4-[2-[N-B e n z y l-N-(2-h y d r o x y-2-p h e n y l e t h y l)-$ arinolethyl]phenyl]-2-(1-benzyl-1H-imidazol-2-yl)acetanilide

Referential Example 178
(R) $-4^{\prime}-[2 m$ [N - Benzyl-N-(2-hydroxy-2-phenylethyi)-
aminojethyl]-2-(4-methyl-2-pyridyl)acetanilide
Referential Example 179
(R) -4 - $-(2-[N-B e n z y 1-N-(2-h y d r o x y-2-p h e n y l e t h y 1)-$
aminojethyl-2-(5-methyl-2-pyridyl)acetanilide
Referential Example 180
(R) - 4' - [2 - [N-Benzy]-N-(2-hydroxy-2-phenylethyl) -
aminolethyl-2-(6-methyl-2-pyridyl)acetanilide
[0066]
Eeferential Example 181
To 5.22 g of 4 -nitrophenylacetone were adad 3.43 g of benzylamine and 50 ml of toluene. The reaction solution was heated to reflux for two hours while dehydration using a Dean-Starke apparatus. The solvent was evaporated in vacuo, the residue was dissolved in 100 ml of methanol and 30 ml of tetrahydrofuran, and 1.52 g of sodium borohydride was added to this solution at room temperature. The reaction solution was stirred for two hours at the same temperature, the solvent was evaporated in vacuo, and ethyl acetate and water were added to the residue. After separation of the liquid, the organic layer
was dried over anhydrous magnesium sulfate, and the solvent was evaporated in vacuo. The residue was purified by silica gel column chromatography (eluent: chloroform/methanol $=100 / 1$ ) to give 5.35 g. of N-benzyl-N-[1-methyl-2-(4-nitrophenyl)ethyllamine.
[0087]

## Referential Example 182

To 6.34 of N -benzyl-N-[1-methyl-2-(4-nitrophenyI)ethyl jamine was added (R)-styrene oxide. The reaction mixture was stirred for two hours at $150^{\circ} \mathrm{C}$ which was a temperature of theoil bath, The resulting mixture was purified by silica gel column chromatography (eluent: hexane/ethyl acetate $=10 / 1$ ) to give 2.98 g of 2-[benzyl-N-[(R)-1-methyl-2-(4-nitrophenyl) ethyl jaminol-(R)-1-phenylethanol (Referential Example 182a) as a yellow oil and 2.69 of $2-[$ benzy $1-N-[(S)-1-$ methyl-2-(4-nitrophenyl)ethyl]amino]-(R)-1-phenylethanol (Referential Example 182b) as pale yellow crystals.
[0088]
The compounds of Referential Examples 183 and 184 were prepared by the same manner as in Referential Example 168; and the compounds of Referential Example 185 to 187 were prepared by the same mannex in Referential Example 175.

## Referential Example 183

$2-[N-[2-(4-$ Aminophenyl)-(R)-1-methylethyl]-N-benzyl-aminol-(R)-1-phenylethanol

Referential Example 184
$2-[N-[2-(4-$ Aminopheny1)-(S)-1-methylethyl]-N-benzylamino J-(R)-1-phenylethanol

Referential Example 185
$4 \cdot[(R)-2-[N-$ Benzyl-N-( $(R)-2-h y d r o x y-2-p h e n y l e t h y l)-$ amino propyl]-2-(2-pyridyl) acetanilide

Referential Example 186
$4^{\prime}-[(S)-2-[N-B e n z y]-N-((R)-2-h y d r o x y-2-p h e n y l e t h y l)-$ aminolpropyl)-2-(2-pyridyl)acetanilide

Referential Example 187
$4^{\prime}-[(S)-2-[N-B e n z y]-N-((R)-2-h y d r o x y-2-p h e n y] e t h y l)-$ aminojpropyl1-2-(1-benzyl-1H-imidazol-2-yl)acetanilide
[0089]
Referential Example 188
To a solution of 0.96 g of 2 mlnoroacetophenone in 20 ml of tetrahydrofuran was added 2.65 g of benzyltrimethylammonium tribromide. The reaction mixture was stirred at room temperature for 30 minutes, insolublematters were filtered off, and the solvent was concentrated in vacuo. The resulting residue was dissolved in 40 ml of 2 -butanone, then 1.81 g of N-benzyl-N-nitrophenethylamine and 0.92 g of disopropyl ethylamine were added, and the reaction mixture was heated to reflux for one hour. The solvent was evaporated in vacuo, ethyl acetate was added thereto, and the mixture was washed with water and a saturated saline solution successively. The organic
layer was dried over anhydrous magnesium sulfate and evaporated in vecuo. The resulting residue was dissolved in 40 ml of methanol. 0.34 g of sodium borohydride was added thereto, and the reaction mixture was stirred at room temperature for one hour. The solvent was evaporated in vacuo, ethyl acetate was added, and the mixture was washed with water and a saturated saline solution successively. The organic layer was dried over anhydrous magnesium sulfate and evaporated in vacuo. The resulting residue was purified by silica gel column chromatography (eluent: chloroform) to give 1.95 g of $2-[\mathrm{N}-$ benzyl-N-[2-(4-nitrophenyl)ethyl]amino]-1-(2-fluorophenyl)ethanol.
[0090]
The compounds of Refexential Examples 189 and 190 were prepared by the same manner as in Referential Example 188; the compounds of Referential Examples 191 to 193 were prepared by the same manner as in Referential Example 168 ; the compound of Referential Example 194 was prepared by the same manner as in Referential Example 84; and the compounds of Referential Examples 195 and 196 were prepared by the same manner as in Referential Example 175.

Referential Example 189

$$
2-[N-B e n z y 1-N-[2-(4-n i t r o p h e n y l) \text { ethyl }] \text { amino }]-1-(3-
$$

fluorophenyl)ethanol

Referential Example_190
$2-[N-B e n z y]-N-[2-(4-n i t w o p h e n y l) e t h y l] a m i n o]-1-(4-$
fluorophenyl)ethanol
Referential Example 191
$2-[N-[2-(4-A m i n o p h e n y l) e t h y l]-N-b e n z y l a m i n o]-1-(2-$
fluorophenyl)ethanol
Referential Example 192
$2-[N-[2-(4-$ Aminopheny1) ethyl]-N-benzylamino]-1-(3-
fluoropheny1) ethanol
Referential Example 193
$2-[N-[2-(4-$ Amsnopheryl)ethyl]-N-benzylamino $]-1-(4-$ fluocophenyl)ethanol

Referential Example 194
$4^{\prime}-[2-[N-B e n z y 1-N-[2-(2-1$ Iuorophenyl)-2-Hydroxy-
ethyl jaminolethyl]-2-(2-pyridyl)acetanilide
Referential Example 195
$4^{\prime}-[2-[N-$ Benzyl-N-[2-(3-fluorophenyl)-2-hydroxy-ethyl]aminolethyl]-2-(2-pyridyl)acetanilide

Referential Example 196
4'-[2-[N-Benzy]-N-[2-(4-fluorophenyl)-2-hydroxy-
ethyllamino ]ethyly-2-(2-pyridyl)acetanilide
[0091]
Referential Example 197
A reaction mixture of 5.12 g of methyl 2 -pyridylacetate, 5.14 g of 4 -aminobenzyl cyanide and 50 ml of $x y$ lene was heated
to reflux for 24 hours. An appropriate amount of the solvent was evaporated, diethyl ether was added to the residue, and the resulting crystals were taken by filtration to give 5.65 g of 4-cyanomethyl-2-(2-pyridyl)acetanilide.
[0092]
The compounds 198 to 201 were prepared by the same manner as in Referential Example 197.

Referential Example 198
4'- Cyanomethyl-2-(2-pyrimidiny1)acetanilide
Refexential Example 199
4*-Cyanomethyl-2-(2-quinolyl)acetanilide
Referential Example 200
4*-Cyanomethyl-2-(2,4-dimethylpyridin-6-y1)acet-
anilide
Refexential Example 201
$2-[1-(4 * C h 1 o r o b e n z y l)-1 H-b e n z i m i d a z o l-2-y]]-4{ }^{\prime}-$
cyanomethylacetanilide
[0093]
Referential Example 202
To a solution of 640 mg of $4^{\prime}$ moyanomethyl-2-(4,6-dimethyl-2-pyridyl)acetanilide in 15 ml of tetrahydrofuran was added 15 ml of an ethanolic suspension of a Raney nickel, and concentrated aqueous ammonia was added to adjust the pH of the mixture to about 10 . The mixture was stirred at room temperature for one hour in a hydrogen atmosphere under
atmospheric pressure. The reaction mixture was filtered using Celite, and the solvent was evaporated in vacuo to give 640 mg of $\quad 4 \cdot-(2-a m i n o m e t h y l)-2-(4,6-d i m e t h y l-2-p y r i d y l) a c e t-$ anilide.
[0094]

## Referential Example 203

To a solution of 630 mg of 4 , $-(2$-aminomethyl) $-2 \mathrm{~m}(4,6-$ dimethyl-2-pyridyl)acetanilide in 20 ml of toluene was added 0.27 ml of benzaldenyde, and the mixture was heated to reflux for three hours using a Dean-Starke apparatus. The reaction mixture was filtered, and the solvent was evaporated in vacuo. A solution of the resulting residue in 30 ml of methanol was cooled at $0^{\circ} \mathrm{C}, 63 \mathrm{mg}$ of sodium boxohydride was added, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for one hour. About one-half of the solvent of the reaction mixture was evaporated in vacuo, water and ethyl acetate were added to the residue, the organic layer was washed with a saturated saline solution twice and dried in vacuo and the solvent was evaporated in vacuo. To a solution of the resulting residue in 50 ml of isopropanol was added 0.26 ml of (R)-styrene oxide, and the mixture was heated to reflux for 12 hours. The solvent was evaporated in vacuo, and the resulting residue was purified by silica gel column chromatography (eluent: chloroform/methanol $=100 / 3$ ) to give 920 mg of (R)-4'-2-[N-benzyl-N-(2-hydroxy-2-phenylethyl)amino jethyl]-2-(4,6-dimethyl-2-pyridyl)acetanilide.
[0095]
The compounds of Referential Examples 204 to 206 were prepared by the same mannex as in Referential Example 84. Referential Example 204
tert-Eutyl $N-[3-[4-[[2-(2-p y x i d y]) a c e t y]] a m i n o] p h e n-$ ylupropyl Jcarbamate

Referential Example 205
tert-Butyl $N-[2-[4-[(2-(2-p y x i d y l)$ acetyl]amino]phenoxy]ethyllcarbamate

## Referential Example 206

tert-mutyl, $N-11,1$-dimethyl-2-[4-[[2-(2-pyxidyl)acetY1 laminolphenylethylicarbamate
[0096]
Referential Examele 207
To a solution of 1.54 g of tert-Butyl N-[3-[4-[42-(2pyridyl)acetyllaminolphenyl]propyllcarbamate in 10 ml of methanol was added 10 ml of a 4 N hydrogen chlaride-ethyl acetate solution. The reaction mixture was stirred for two hours at room temperature, and the solvent was evaporated in vacuo. The residue was dissolved in a mixture of chloroform and in sodium hydroxide. The organic layer was dxied over anhydrous magnesium sulfate, the solvent was evaporated in vacuo, and the resulting residue was dried to give 610 mg of 4 -(3-aminopropyl)-2-(2-pyridyl)acetanilide.
[0097]

Referential Example 208
To a solution of 1.1 g of tertmbutyl (R)-N-[2-(4-aminophenyl)ethyl]-N-(2-hydroxy-2-phenylethyl)carbamate in 20 ml of 1,2 -dichloroethane were added 0.35 g of triethylamine and 0.64 g of 4 -nitrophenyl chloroformate. The reaction mixture was stirred at room temperature for one hour, and the solvent was evaporated in vacuo. The resulting residue was dissolved in 15 ml of dimethylformamide, and 0.31 g of 2 m aminopyridine was added thereto. The reaction mixture was stirred at room temperature for four hours, and ethyl acetate and water were added thereto. The organic layer was washed with water, a saturated sodium hydrogen carbonate solution and a saturated saline solution successively and dried over anhydrous magnesium sulfate, The solvent was evaporated in vacuo, and the resulting residue was purified by silica gel column chromatography (eluent: chloroform/methanol $=30 / 1$ ) to give 0.19 g of tert-butyl (R)-Nm(2-hydroxy-2-phenylethyl)-N-[2-[4-[3-(2-pyridy1)ureido]pheny1]ethyl]carbamate.
[0098]

## Example 1

A 4 N hydrogen chloride-ethyl acetate solution ( 10 ml ) was added to 10 ml of an ethanolic solution of 458 mg of tert-butyl (R) $-N-(2-$ hydroxy-2-phenylethyl) $-N-[2-[4-[(2-p y r i d i n e c a r b o n=$ yl)aminolphenyl]ethyllearbamate. The reaction solution was stirred at room temperature for three hours, and the solvent
was then evaporated $2 n$ vacuo. The obtained crude crystals were recrystallized from methanol-ethanol-ethyl acetate to give 289 mg of (R)-4-[2-[(2-hydroxy-2-phenylethyl)amino]ethyl]-2pyridinecaxboxanilide dihydrochloride.
[0099]
The compounds of Examples 2 to 4 were prepared by the same manner as in Example 1.

Example 2
(R) $-4^{\prime}-[2-[(2-$ rycaroxy-2-phenylethyl)amino ]ethyl]-3-pyrianecarboxanilide dihydrochloride

## Example 3

(R) $-4^{\prime}-[2-[(2-$ fydroxy-2-phenylethyl) amino $]$ thyl]-8-quinoIinecarboxanilide dinydrochloride

Example 4
(R) $-4^{\prime}-[2-[(2-H y d r o x y-2-p h e n y l e t h y 1)$ amino $]$ ethyl $]-(E)-3-(2-$ pyridyl)acrylic anilide dihydrochloride

Example 5
(R) $-2-($ Benzothiazol-2-yl)-4'-[2-[(2-hydroxy-2-phenylethyl) aminojethyljacetanilide dihydrochloride

Example 6
(R) -4 - $-[2-[(2-H y d r o x y-2-p h e n y l e t h y l)$ amino $]$ ethyl $]-2-($ imid azo $[2,1-b]$ thiazol-3-yl)acetanilide dihydrochloride Example 7
(R) $-4^{\prime}-[2-[(2-H y d r o x y-2-p h e n y l e t h y l) a m i n o] e t h y l]-2-(2-1$ methylthiazol-4-yl)acetanilide hydrochloride

## Example 8

(R) -4 '-[2-[(2-Hydroxy-2-phenylethyl)amino]ethyl]-2-(1H-imidazol-2-yl)acetanilide dihydrochloride

## Example 9

(R)-4'-[2-[(2-Hydroxy-2-phenylethyl)amino]ethyl]-2-(1H-tetrazol-5-y1)acetanilide hydrochloride

Example 10
(R)-4'-[2-[(2-Hydroxy-2-phenylethyl)amino]ethyl]-2-(5sulfany $1-1 \mathrm{H} \sim 1,2,4-\operatorname{tr}$ iazol-3-yl)acetanilide hydrochloride [0100]

Example 11
(R) -2-(2-Aninothiazol-4-yl)-4'-[2-[(2-hydroxy-2-phenyl-ethy1)aminolethyl]-2-oxoacetanilide dihydrochloride Examele 12
(R) $-2-(5-$ Amano-1, 2,4-thiadiazol-3-y1)-4'-[2-1(2-hydroxy-2phenylethyl)aminojethyllacetanilide dihydrochloride Example 13
(R) $-2-(5-$ Ethoxycarbonylaminom $1,2,4-$ thiadiaol $-3-y l)-4 \prime-m(2 m$ [(2-hydroxy-2-phenylethyl)amino]ethyl]acetanilide hydrow chloride

Example 14
(R) $-2-[(2-(3-F l u o r o p h e n y l a m i n o) t h i a z o l-4-y l)-4 '-[2-[(2-$ nydroxy-2-phenylethyl)aminojethyl]acetanilide dihydrochloride

## Example 15

(R) $-2-(2-$ chloxopyridin-6-y1) -4 - $[2-[(2-$ hydroxy $-2-$ phenylethyl)aminolethyl lacetanilide hydrochloride

## Example 16

(R) $-2-(2-$ Benzyloxypyridin-6-yl) -4 ' $-[2-[(2-$ hydroxy $-2-$ phenylethyl) aminolethyluacetanilide hyarochloride

Example 17
$(R)-4 \cdot-[2-[(2-H y d r o x y-2$-phenylethyl)amino]ethy1]-2-[1-(2-methyl-3-propeny1)-1H-imidazol-2-yl)acetanilide dihydrochloride

Example 18
(R) $-2-\left(1-\right.$ Benzy $\left.1-1 \mathrm{H}-\mathrm{imidazol}-4-\mathrm{y}^{2}\right)-4$ - $-[2-[(2-$ hydroxy $-2-$ phenylethyl aminojethyllacetanidide dinydrochloride

Example 19
(R) $-2-[1-(2-$ chlorobenzyl) $-1 \mathrm{H}-\mathrm{imidazol}-4-y]]-4 \cdot-[2-[(2-$ hydroxy-2-phenylethyl)aminolethyluacetantlide dihydrochloride

Example 20
(R) $-2-[1-(3-$ Chlorobenzyl) $-1 \mathrm{H}-1 \mathrm{midazol}-4-y])-4,-[2-[(2-$ hydroxy-2-phenylethyl) aminolethyljacetanilide dinydrom chloride
[0101]
Example 21
 oxy-2-phenylethyl) amino jethyllacetanilide dihycrochloride

Example 22
(R) $-2-[1-(4-F l$ uorobenzyl $)-1 H-$ imidazol $-2-y 1]-4$ - $-[2-[(2-h y d r-$ oxy-2-phenylethyl) aminojethyl jacetanilide dihydrochloride Example 23
(R) $-2-$ - $1-(4-\operatorname{ch}$ lorobenzyl)-1H-1midazol-2-yl, ]-4'-[2-[(2-hydx-oxy-2-phenylethyl)aminolethyljacetanilide dinydrochloride Example 24
(R) $-2-\left[1-(4-\right.$ Bxcmobenzyl) $-1 \mathrm{H}-\mathrm{imidazol}-2-\mathrm{yl}]-4^{\prime}-[2-[(2-\mathrm{hydx}-$ oxy-2-phenylethyl) aminolethyljacetanilide dinydrochloxide Example 25
(R) - $^{\prime}-[2-[(2-$ Hydroxy-2-phenylethyl) amino $]$ ethyl]-2-[1-(4iodobenzy $)$-1H-imidazol-2-ylJacetanilide dinydrochloride Example 26
(R) $-4^{\prime}-[2-[(2-$ Hycroxy-2-pheny lethyl) amino $]$ ethyl $]-2-[1-(4-$ trif゙luoromethylbenzyl)-1H-imidazol-2-ylyacetanilide dihydrochloride

Example 27
(F) -4 - $-[2-[(2-H y d r o x y-2-$ phenylethyl) amino]ethyl]-2-[1-(2-naphthyl)-1H-imidazol-2-yllacetanilide dihydrochloride

## Example 28

(R) $-2-[1-(4-$ Fluorobenzyl)-5-methyl-1H-imidazol-2-yl]-4'-[2-[(2-hydroxy-2-phenylethyl)amino]ethyl]acetanilide dihydrochloride

Example 29
(R) $-2-[1-(4-$ Fluorobenzy1) -4-methyl-1H-imidazol-2-y1]-4'-[2-
[(2-hydroxy-2-phenylethyl)amino]ethyl]acetanilide dihydrochloride

## Example 30

( R$)-2-[1-(4-$ Fluorobenzyl) $-1 \mathrm{E}-\mathrm{tetrazol}-5-y 1]-4,-[2-[(2-\mathrm{hydx}-$ oxy-2-phenylethyl) aminojethyljacetanilide hydrochloride [0102]

Example 31
$(R)-2-12-(3,4-$ ichlorobenzyl)-1н-tetrazol-5-yI]-4'-[2-[(2-hydroxy-2-phenylethyl) aminojethyl lacetanilide hydrochloride Example 32
(R) $-2-[2-(4-F 1$ corobenzy 1$)-1 H-$ tetrazol $-5-y]]-4$ - $-[2-[(2-$ hydx -oxy-2mphenylethyl) aminojethyllacetanilide hydrochloride

Example 33
(R) $-2-[1-(3,4-D \operatorname{con} \operatorname{lorobenzyl)-1H-tetrazol-5-y1]-4n-[2-[(2-~}$ hydroxy-2-phenylethyl)aminolethyljacetanilide hydrochloride [0103]

## Examole 34

To a solution of 75 mg of tertwbutyd (R)-N-[2-[4-[2-
(1H-1,2,4-triazol-3-yl)acetylaminolphenylyethyl]-N-(2-hydr-oxy-2-phenylethyl)carbamate in 5 ml of methanol was added 4 ml of a solution of 4 N hydrogen chloride in ethyl acetate. The mixture was stirred at room temperature for three hours, the solvent was filtered offi, and the resulting powder was washed with ethanol. The resulting powder was dried to give 125 mg
of (R) -4 - $-2-[(2-h y d r o x y-2-p h e n y l e t h y l) a m i n o] e t h y l]-2-(1 H-$ 1,2,4-triazol-3-yl)acetanilide ainydrochloride.
$[0104]$
The compounds of examples 35 to 40 were prepared by the same manner as in Example 34 .

Example 35
(R) - 2-(5-Benzylsulfany1-1F-1, 2, 4-triazol-3-yl)-4'-[2-[(2-hydroxy-2-phenylethyl) aminolethyl jacetanilide dinydrom chloride

Example 36
(R) $-2-(2-$ Acetamidothiazol $-4-y])-4^{\prime}-[2-[(2-h y d x o x y-2-$ phenylethyl)aminolethyllacetanilide hydrochloride Example 37
(R) $-4^{\prime}-[2-[(2-$ Hydroxy $-2-$ phenylethyl $)$ amino $]$ ethyl] $-2-(2-$ methanesulfonamidothiazol-4-yl) acetanilide hydrochloride Example 38
(R) $-2-(2-$ Guanidinothiazol-4-y $]$ )-4'-[2-[(2-hydroxy-2phenylethyl)aminojethyl jacetanilide dinydrochloxide Example 39
(R) $-4^{\prime}-[2-[(2-$ Hydroxy -2 -phenylethyl) amjno]ethyl]-2-(2-phenylaminothiazol-4-yl) acetanilide hydrochloride Example 40
(R) $-4^{\prime}-[2-[(2-$ Hydroxy-2-phenylethyl)amino]ethyl]-2-[1-(4-nitrobenzyl)-1H-imidazol-2-yl]acetanilide hydrochloride
$[0105]$

## Example 41

To 690. mg of tert-butyl (R) $-N-[2-[4-[2-(2$-amino-thiazol-4-yI)acetamimo]phenyl]ethyly-N-[(2-hydroxy-2-phenY1) ethyllcarbamate were added 30 ml of methanol and 15 ml of a solution of 4 N hydrogen chloride in ethyl acetate, and the mixture was stirred at room temperature for two hours. The solvent was evaporated in vacuo, and the residue was purified by a reverses phase column chromatography (eluent: water/methanol $=\cdots 2 / 1)$ to give 310 mg of (R)-2-(2-aminothiazol-4-yI)-4'- [2-(2-hydroxy-2-phenylethyl)aminolethyllacetanilide dinycrochloride.
[0106]
The compounds of Examples 42 to 57 were prepared by the same manner as in Example 41.

## Example 42

$(R)-4^{\prime}-[2-[(2-$ Hydroxy-2-phenylethyl)amino]ethyl]-(2-amino-thiazol-4-yl) carboxylic acid anilide hydrochloride Example 43
(R) $-2-(2-A m i n o-5-m e t h y l t h i a z o l-4-y 1)-4,-[2-[(2-h y d r o x y-2-~$ phenylethyl)aminojethyljacetanilide dihydrochloride Example 4.4
(R)-2-(2-Aminothiazol-4-yl)-2-methyl-4'-[2-[(2-hydroxy-2phenylethyl)aminojethyljpropionanilide hydrochloride Example 45
(R)-4,-[2-[(2-Hydroxy-2-phenylethyl)amino]ethyl]-(2-amino-4,5,6,7-tetrahydrobenzothiazol-4-y1)carboxylic acid anilide dihydrochloxide

## Example 46

(R)-4'-[2-[(2-Hydroxy-2-phenylethy1)amino]ethyl]-2-(imidazo [2,1-b]thiazol-6my)acetanilide hydrochloride

Example 47
(R) $-2-\left(2-\operatorname{Ben} z y 1-1 H-1,2,4-\operatorname{triazol}-3-y^{\prime} 1\right)-4$ - $-12-[(2-$ hydroxy $-2-$ phenylethyl)amino]ethyl]acetanilide hydrochloride Example 49
(R) -2-(1-Benzyl-1H-1,2,4-triazol-3-yl)-4'-[2-[(2-hydroxy-2m phenylethyl)amino jethyljacetanilide hydrochloride

Example 49
(R) -2 w (3-Benzyl-2-thioxothiazol-4-yl)-4'-[2-[(2-hydroxy-2phenylethyl)aminojethyllacetanilide hydrochloride

## Example 50

(R) $-4^{\prime}-[2-[(2-$ Hydroxy-2-phenylethyl)amino]ethyl $]-(5,6,7,8-$ tetrahydroquinolin-8-yl)carboxylic acid dihydrochloride
[0107]
Example 51
(R)-4-[2-[(2-Hydroxy-2-phenylethyl)amino]ethyl]-2-(1-phenyl-1H-imidazol-2-yl)acetanilide dinydrochloride Example 52
(R) -4 ' $w[2-[(2-$ Hydroxy-2-phenylethyl $)$ amino $]$ ethyl $]-2-[$ ( $1-(4-$ isopropylbenzyl)-1H-imidazol-2-yl) acetanilide dihydrochloride

## Example 53

(R) -4 ' $-[2-[(2-H y d r o x y-2-p h e n y l e t h y l) a m i n o] e t h y 1]-2-[(1-(4-$ phenylbenzyl)-1H-imidazol-2-yl)acetanilide dinydrochloride Example 54
(R) $-2-[1-(2-$ chlorobenzyl $)-1 \mathrm{H}$-imidazol-2-yl]-4'-[2-[(2-hydroxy-2-phenylethyl)aminojethyluacetanilide dihydrochioride

Example 55
(R) $-2-[1-(3-$ ChIorobenzyl $)-1 \mathrm{H}-$ imidazol-2-yI]-4'-[2-[(2-hydroxy-2-phenylethyl)aminojethyllacetanilide dihydrochloride

Example 56
(R)-2-[1-(3,4-Dichlorobenzyl)-1H-imidazol-2-yl]-4'-[2-[(2-hydroxy-2-phenylethyl)aminolethyl]acetanilide
dihydrochloride
Example 57
 pyridyl) methyl-1H-imidazol-2-yl)acetanilide dihydrochloride

The compound of Example 58 was prepared by the same manner as in Example 1.

## Example 58

(R) $-2-(2$-aminopyridin $-6-y])-4^{\prime}-[2-[(2-$ hydroxy $-2-p h e n y]-$ ethyl)aminolethyllacetanilide dinydrochloride
[0108]

## Example 59

Io a solution of tertmbutyl (R)-N-[2-[4-[!2-(2-amino-thiazol-4-y1)-2-oxoacetyluamino fphenylyethyl1-N-(2-hydroxy2 -phenylethyl) oarbamate in 30 ml of methanol was added 130 mg of sodium borohydride at. room temperature. The reaction mixture was stirred at room temperature for three hours, and the solvent was evaporated in vacuo. The residue was dissolved in 5 ml of methanol, and to this reaction solution was added 10 mi of a solution of $4 N$ hydrogen chloride-ethyl acetate. The reaction solution was stirred at room temperature for eight hours and the solvent was evaporated in vacuo. The residue was purified by silica gel column chromatography (eluent: chloroform/methanol $=5 / 1$ ). The resulting residue was purified by reversed phase column chromatography (eluent: water/methanol $=2 / 1$ ) to give 77 mg of ( $R$ )-2-(2-amino-thiazol-4-yl)-2-hydroxy-4'-[2-(2-hydroxy-2-phenylethyl)aminolacetanilide hydxochloride.
[0109]

## Example 60

TO 349 mg of tert-butyl (R)-N-[2-[4-[ [2-(2-benzyl-
 phenylethyl)carbamate were added 478 mg of pentamethylbenzene
and 5 ml of trifluoroacetic acid successively. The reaction solution was stirred at room temperature for four hours, and the solvent was evaporated in vacuo. To the residue were added water and potassium carbonate to make the solution kasie, and the aqueous phase was extracted with a mixed solvent of chloroform and tetrahydrofuran. The organic layer was dried over anhydrous magnesium sulfate, and the solvent was evaporated in vacuo. The residue was purified by silica gel column chromatography (eluent: chloroform/methanol $=10 / 1 \rightarrow$ 5/1). Io an ethanolic solution of the resulting residue was added $100 \mu \mathrm{~L}$ of a 4 N hydrogen chloride-ethyl acetate solution, and then the solvent was evaporated in vacuo. The resulting crude crystals were recrystallized from ethanol-ethyl acetate to give 65 mg of (R)-2-(2-benzyloxypyridin-6-yI)-4'-12-1(2-hydroxy-2-phenylethyl) aminojethyllacetanilide hydrochloride.
[0110]
The compounds of Examples 61 to 76,83 and 85 were prepared by the same mannex as. in Example 1 ; and the compounds of Examples 77 to 82 were prepared by the same manmer as in Example 41. Example 61
(R) $-4^{\prime}-[2-[(2-$ Hydroxy-2-phenylethyl)amino]ethyl]-2-(2-methylpropyl-1H-imidazol-2-yl)acetanilide dihydrochloride Example 62
(R) $-2-[1-(2-$ Fluorobenayl) $-14-1$ midazol-2-yI]-4/-[2-(2-hydroxy-2-phenylethyl) aminolethyljacetanilide dihydrochloride

## Example 63

(R) $-2-[1-(3-$ F1uorobenzyl) $w 1$ H-inidazol-2-yl $]-4$ - $-[2-(2-$ hydxoxy-2-phenylethyl) amino jethyl]acetanilide dihydrochloride

Example 64
(R) $-2-[1-(2,4-D i f l u o r o b e n z y 1)-1$ Fi-imidazol-2-yl]-4 $-[2-(2-$ hydroxy-2-phenylethylyaminolethyllacetanilide dihydrochloride

Example. 65
 hydroxy-2-phenylethyl) aminojethyllacetanilide dihydroohloride

## Example 66

(R) $-2-[1-(3,5-$ Difluorobenzyl)-IH-imidazol-2-yl]-4' $-[2-(2-$ hydroxy-2-phenylethyl) aminolethyllacetanilide dihydrochloxide

Example 67
(F) $-2-[1-(2,5-\mathrm{Difluorobenzy} 1)-1 \mathrm{H}-1 \mathrm{midazol}-2-y \mathrm{y}]-4$ - $-[2-(2=$ hydroxy-2-phenylethyl)aminolethyl]acetanilide dihydrochloride

Example 68
(R) $-2-[1-(3,4-D i f 1 u o r o b e n z y 1)-1 H-i m i d a z o l-2-y, 1]-4-[2-(2-$ hydroxy-2mphenylethyl)aminolethyllacetanilide dinydrom chloride

## Example 69

(R) $-4^{\prime}-[2-[(2-$ Hydroxy-2-phenylethyl)amino ]ethyl]-2-[1-
(2,3,6-trifluorobenzyl)-1H-imidazol-2-yl]acetanilide dihydrochloride

Example 70
(R) $-4^{\prime}-[2-[(2-$ Hydroxym-2-phenylethyl)amino $]$ ethyl]-2-[1-
(2,4,5-trifluorobenzy1)-1H-imidazol-2-yl ]acetanilide dihydrochloride
[0111]
Example 71
(R) $-4^{\prime}-[2-[(2-$ Hydroxy-2-phenylethyl)amino ]ethy1]-2-[1(3,4,5mtrifluorobenzyl) 1 1Hmimidazol-2-yluacetanilide dihydrochloride

Example 72
(R) $-4^{\prime}-[2-[(2-H y d x o x y-2-p h e n y l e t h y l) a m i n o] e t h y l]-2-[1-$ (2,3,4,5,6-pentafluorobenzyl)-1H-imidazol-2-yl]acetanilide dihydrochloxide

Example 73
(R) $-4^{\prime}-[2-[(2-$ Hydroxy-2-phenylethyl) amino $]$ ethyl $]-2-[1-(3-$ iodobenzyl)-1H-imidazol-2-yl]acetanilide dihydrochloride Example 74
(R) $-2-[1-(2,6-D i c h l o r o b e n z y 1)-1 H-1 m i d a z o l-2-Y 1]-4,-[(2-$ hydroxy-2-phenylethyl)aminolethyl jacetanilide hydrochloride Example 75
(R) $-2-[1-(4$-cyanobenzyl) $-1 \mathrm{H}-$ imidazol-2-y1]-4'-[2-(2-hydx-oxy-2-phenylethyl)aminolethyllacetanilide dihydrochloride Example 76
$(R)-4^{*}-[2-[(2-$ Hydroxy-2-phenylethyl) amino $]$ ethyl $]-2-[1-$ (quinolin-2-yl)-1H-imidazol-2-yl]acetanilide trihydrochloride

Example 77
( F ) $-2-[1-(2-\mathrm{Ch}$ loro-6-fluorobenzyl)-1H-imidazol-2-yl]-4. $-[2-$ (2-hydroxy-2-phenylethyl) amino ]ethyllacetanilide

Example 78
(R) $-2-\left[1-(2-\text { Chloro-4-fluorobenzyl) - 1H-imidazol }-2-y 1]^{-4}-[2-\right.$ (2-bydroxy-2-phenylethyl)aminolethyl]acetanilide

Example. 79
(R) $-2-[1-(2,5-$ Dichlorobenzyl)-1H-imidazol-2-yl]-4'-[2m(2m hydroxy-2-phenylethyl) aminojethylyacetanilide dinydrochloxide

## Example 80

(R) $-4^{\prime}-[2-[(2-$ Hydroxy-2mphenylethyl)amino]ethyl $]-2-11-$ (2,3,4-trifluoxobenzyl)-1H-imidazol-2-yl]acetanilide dihydrochloride
[0112]

## Example 81

(R) $-4^{\prime}-[2-[(2-H y d x o x y-2-p h e n y l e t h y l)$ amisolethyl]-2-[1-(4-methoxycatbonylbenzyl)-1H-imidazol-2-yllacetamilide dihydrochloride

## Example 82

(R) $-4-[2-[(2-H y d r o x y-2-p h e n y l e t h y l)$ amino $]$ ethyl] $-2-[1$ -[(piperidine-1-carbonyl)benzyl]-1H-imidazol-2-yl.]acetandide dmydrochloride

## Examole 83

(R) $-4^{\prime}-[2-[(2-H y c r o x y-2-p h e n y l e t h y l)$ amino $]$ ethyl $]-2-(1-$ pyrawolyl)acetanilide hyorochloride

Example 84
(R) $-4^{\prime}-[2-[(2-$ Hydroxy-2-phenylethyl) amino]ethyI] $-2-(1,2,4-$ triazol-1-yI)acetanilide dihydrochloride

## Example 85

(R) $-2-(2-$ Aminobenzimidazol-1-yl)-4' $-(2-[(2-h y d r o x y-2-$ phenylethyl)aminolethyllacetanilide dihydrochloride [0113]

## Example 86

To a solution of 20.1 g of $4^{\prime}-[2-[N-b e n z y l-N-(2)$, hydroxy-2-phenylethyl) aminolethyll $-2-(2-p y r i d y l)$ acetanilide in 400 ml of methanol was added 5.96 g of 10 palladium-carbom. The reaction solution was stixred for six hours in a hydrogen atmosphere under atmospheric pressure. Insolublematters were filtered off using celite and the filtrate was concentrated in vacuo. To a methanolic solution of the resulting residue was
added 10.8 ml of a 4 N hydrogen chloride-ethyl acetate solution, and the solvent was evaporated in vacuo. The resulting crude crystals were recrystallized from methanol-ethanol to give $(R)-4)^{\prime}-[2-[(2-h y d$ roxy-2-phenylethyI) amino $]$ ethyl $]-2-(2-$ pyridyl)acetanilide hydrochloride.
[0114]
The compounds of 87 to 90 were prepared by the same manner as in Example 86.

## Example 87

(R) $-4^{\prime}-[2-[(2-$ Hydroxy-2-phenylethyl) amino $]$ ethyl $]-2-(3-$ pyridyl) acetanilide hydrochloride

## Example 88

$(R)-4^{\prime}-[2-[(2-$ Hyaroxy-2-phenylethyl) amino $]$ ethyl $]-2-(4-$ pyridyl)acetanilide hydrochloride

## Example 89

(R) -4'-[2-[(2-Hydroxy-2-phenylethyl)aminolethyl]-3-(2m pyridyl)propionanilide hydrochloride

Example 90

$$
\text { (R) }-A^{\prime}-[2-[(2-H y d x o x y-2-p h e n y l e t h y 1) \text { amino }] \text { ethyl }]-2-[(1-
$$ phenylethyl)-1H-imidazol-2-yllacetanilide dinydrochloride [0115]

Example 91
(R) $-2-(2 H-B e n z i m i d a z o l-2-y l)-4 \prime-[4-[2-[N-b e n z y l-N-(2--$ hydroxy-2-phenylethyl)aminolethyl]phenyl)ecetanilide (240 mg) was dissolved in 30 ml of ethanol, then 170 mg of $10 \%$
palladium carbon was added thereto amd the mixtume was stivyed for nine hours in a hydrogen atmosphere under atmospheric pressure. The catalyst was filtered off, the solvent was evaporated in vacuo, and the residue was washed with ethanol-ethyl acetate to give 200 mg of (R)-2-(1H-benzimidazol-2-yl)-4 - [2-[(2-hydroxy-2phenylethyl) aminolethyluacetanilice.
[0116]
The compounds of Examples 92 and 93 were prepared by the same manner as in Example 86.

Example 92
(R)-4'-[2-[(2-Hydroxy-2-phenylethyl) amino]ethyl]-2-(3-meth-ylpyridin-2-yl]acetanilide hydrochlorice

## Examole: 93

$(R)-4^{\prime}-[2-[(2-H y d r o x y-2-p h e n y l e t h y 1)$ amino $]$ ethyl $]-2-(2-$ pyrazinyl)acetanilide hycrochloride
[0117]

## Example 94

(R) $-4^{r}-[4-[2-(N-B e n z y]-N-(2-h y d r o x y-2-$ phenylethyl) -aminolethylpphenyll-2-(1-benzyl-1H-imidazol-2-yl)acetanilide ( 350 mg ) was dissolved in 20 ml of ethanol, then 130 mg of 10 palladium-carbon was added thereto, and the mixture was stirred for 17.5 hours in a hydrogen atmosphere under atmospheric pressure. The catalyst was filtexed off. the solvent was evaporated in vacuo, and the residue was purified
by silica gel column chmomatography (eluent:
chloroform/methanol/concentratedaqueous ammonia $=200 / 10 / 1$ ).
Theresulting oily substance was dissolved in methanol, and 280
HI of a 4 N hydrogen chloride-ethyl acetate solution was added thereto. The mixture was filtered after adding active carbon was added thereto, and the solvent was evaporated in vacuo to give 200.mg of (R)-2-(1-benzy1-1H-im1dazol-2-yl)-4'-[2-[(2-hydroxy-2-phenylethyl) aminolethyljacetanilide dinydrom chloride.
(0118)

The compounds of Examples 95 and 97 were prepared by the same manner as in Example 91 ; the compounds of Examples 98 and 100 were pxepared by the same manner as in Example 94; and the compounds of Examples 99 and 101 to 103 were prepared by the same mantex as in Example 86.

Example. 95
(R) $-4^{\prime}-[2-[(2-H y d r o x y-2-p h e n y l e t h y l) a m i n o) e t h y l]-2-(4-m e t h-$ yl-2-pyridyl)acetanilide

## Example 96

(R) $-4^{\prime}-[2-[(2-$ Hydroxy-2-phenylethyl) amino]ethyl $]-2-(5-$ meth -yl-2-pyridyl)acetanilide

Example 97
(R) $-4^{\prime}-[2-[(2-$ Hydroxy-2-phenylethyl) aminolethylu-2-(6-meth-yl-2-pyxidyl) acetanilide

## Example 98

$4^{\prime}-[(R)-2-[(R)-H y d x o x y-2-p h e n y d e t h y l)$ amino $\left.] p x o p y 1\right]-2-(2-$ pyxidyl) acecandide hydxochloride

Example 99
$4^{*}-[(S)-2-[(R)-H y d r o x y-2-p h e n y l e t h y l)$ amino]propyl]-2-(2byxidyl) acetanilide hydrochloride

Example 100
 phenylethyl amimolpxopyllacetanilide nydrochloride

## Examole 1.01

$4^{\prime}-[2-[[2-H y d r o x y-2-(2-f l u o r o p h e n y l) e t h y l] a m i n o] e t h y l]-2-$
(2-pyridyl)acetanilide hydrochloride
Example 102
$4^{\prime}-[2-[[2-H y d r o x y-2 w(3-f$ fuotophemyl) ethyl] amino]ethyl]-2-
(2mpyridyl) edetaniitde hydrochloride
Example 103

```
A'-[2-[[2-Hydroxym-2-(4-mluorophenyl)ethyl]aminolethyl]-2-
(2mpyridyl)acetanilide hydrochloride
```

[0119]
Example 104
To a solution of 805 mg of $4^{\prime}$-cyanomethyl-2-(2-m pyrimidinyl) acetanilide in 30 ml of tetrahydrofuram were added 30 ml of an ethanolic solution of a Raney nickel and 3 ml of concentrated aqueous ammonia. The meaction solution was stirred for four hours in a hydrogen atmospheze under atmospheric pressure, then insoluble matters werefiltered off
ustng celite, and the solvent was evaporated. To the resulting mesidue were added 10 ml of 2 mpropanol, 300 mg of (R)-styrene oxide and 2 ml of methanol successively. The reaction mixture was heated to reflux for ten hours, and the solvent was evaporated. The residue was purified by silica gel column chromatography (eluent: chloroform/methanol $=10 / 1$ ). To a methanolic solution of the resulting residue was added $150 \mu 1$ of 4 N hydrogen chloridewethyl acetate solution, and the solvent was evaporated in vacuo. The resulting residue was crystallized from methanol-ethanol-ethyl acetate and then recrystallized from ethanol-diethyl ether to give 160 mg of (R) $-4^{\prime}-[2-[(2-h y d x o x y-2-p h e n y l e t h y 1) a m i n o] e t h y l]-2-(2-$ pyrimidinyluacetanilide hydrochloride.
[0120]
The compounds of Examples 105 to 100 were prepared by the same manmer as in Example 104 ; and the compound of Example 109 was prepared by the same mannex as in Example 97.

## Example 105

(R) $-4^{\prime}-[2-(2-$ Hydroxy-2-phenylethyl)amino]ethy"]-2-2quinolyl)acetanilide hydrochloride

## Example 106

(R) $-4^{\prime}-[2-[[2-$ Hydroxy $-2-(3-$ chlorophenyl)ethyl]amino]ethyl]-2-(2-pyridyl) acetanilide mydrochloride

Example 107

```
4'-[2-[(2-Hydroxy-2-(3-pyridyl)ethyl]aminc]ethy1]-2m(2w
pyridyl)acetanilide hydrochloride
Example 108
(R)-2-[1-(4-Chlorobenzyl)-1H-benzimidazol-2-yl]-4'-[2-[(2-
hydroxy-2-phenylethyl)aminojethyl]acetanilide
dinydrochloride
```


## Example 109

(R) $-2-(4,6-$ bimethyl-2-pyridy1)-4 $-[2-[(2-h y d r o x y-2-p h e n y 1-$ ethyl) aminolethyllacetanilide
[0121]
Example 110
To $4^{x}-(3$-aminopropyl $)-2-(2-$ pywidyl $)$ acetanilide were added 10 ml of 2 -propanol and 600 mg of ( R )-styxene oxide successively. The reaction mixture was heated to reflux for four hours, and the solvent was evaporated. The residue was purified by silica gel column chromatography (eluent: chloroform/methanol $=30 / 1 \rightarrow 10 / 1)$. To a methanolic solution of the resulting residue was added $100 \mu \mathrm{l}$ of a 4 N hydrogen chloride -ethyl acetate solution, and the solvent was evaporated in vacuo. The resulting crude crystals were recrystallized from ethanol-diethyl ether to give 71 mg of (R)-4-[3-[(2-hydroxy-2-phenylethyl)aminolpropyl1-2"(2-pyridyl)acetanilide hydrochloride.
[0122]
Example 112

To a solution of 3.62 g of tertwbutyl $N=[2-[4-[12-(2 m$ pyrioyl)acetyllaminolphenoxylethylloarbanate in 30 ml of methanol was added 50 ml of a 4 N hydrochloride-ethyl acetate solution. After the reaction solution was stirred at room temperaturefor eight hours, the solvent was evaporated in vecuo. To the restude were added an aqueout solution of sodium hydrogen carbonate and potassium cambonate to adjust to pH about 12. The resulting aqueous phase was extracted with a mixed solvent of chloroform and tetmaydrofuran. The organic layer was dried over anhydrous magnesium sulfate and concentrated, the resulting residue was dissolved in 40 ml of methanol, and 1.02 g of (R)-styxene oxide was added thereto. After the reaction solution was heated to reflux for 26 hours, the solvent was evaporated in vacuo. The mesulting residue was purified by silica gel colum chromatography (eluent: chloroform/methanol $=30 \% 1 \rightarrow 10 / 1)$ and dissolved in metharol, 0.59 ml of a 4 N hydrogen chloride-ethyl acetate solution was added, amd the solvent was evaporated in vacuo. The resulting crude crystals were recrystallized from methanol-ethanol to give 320 mg of (R) $-4^{\prime}-[2-[(2-h y d x o x y-2-p h e n y l e t h y l)$ amino $]$ ethoxy]-2-(2pyridyl)acetanilide hydrochloride
[0123]
Example 112
To a solution of 490 mg of tertmbutyl $N(1,1-$ dimethyl-2-[4-[[2-(2-pyridyl)acetyl]amino]phenyl]ethyl]-
carbamate in 10 ml of methanol was added 30 ml of a 4 N mydrochloride-ethyl acetate solution. After the reaction solution was stirred at room temperature for eight hours, the solvent was evaporated in vacuo. To the iesidue were added an aqueois solution of sodium hycrogen carbonate and potassium carbonate to adjust to pH about 12 . The resulting aqueous phase was extracted with a mixed solvent of chloroform and tetrahydrofuran. The orgenic layer was dyied over anhydrous magnesium sulfate and concentrated, the mesulting fesddue was dissolved in m of 2 mpropanol and 2 ml of methanol, and 120 mgof (R)-styrene oxide was added thereto. After the reaction solution was heated to reflux for 24 hours, the solvent was evaporated in vacuo: The resulting residue was purified by silicagel colum ohromatography (eluent: chloroform/methanol $=30 / 1 \rightarrow 5 / 2)$ and dissolved in methanol, 0.1 ml of a 4 N hydrogen chlonide-ethyl acemete solution was added, and the solvent was evaporated in vacuo. The resulting residue was purified by silica gel column chromatography (eluent: chloroform/methanol =5/1) and a reversed phase colum chromatography (eluent: water/methanol $=2 / 1 \rightarrow 1 / 1)$ to give 35 mg of (R) $-4^{r}-(2,2-$ dimethyl-2-[(2-hydroxy-2-phenylethyl)amino]ethyl] $-2-(2-$ pyridyl)acetanilide hydmochlotide
[0124]
The compound of Example 113 was prepared by the same manmex as in Example 1.

## Example 113

(R) $-1-[4-[2-[(2-H y d x o x y-2-p h e n y l e t h y l)$ amino]ethyl] phenyl] -$3-(2$-pyxidyl)urea dinydrochloride
[0125]
As hereunder, physical and chemical properties of the compounds of the Referential Examples are given in Tables 1 to 13 and those of the compounds of the Examples are given in Tables 14 to 25

The symbols in the tables have the f゙ollowing meanings. Rex.: Referential Example No.

Ex: Example No.
DATA: PHysicomchemical properties
NME: NLicleomagnetic resonance spectrum (TMS intemnal standard; DMSO-d. was used as a solvent unless otherwise specified)
mp: melting point
dec: decomposition
MS (m/z): mass spectrographic data (m/z)
$\left(\begin{array}{lll}012 & 1\end{array}\right)$
[Table 1]

Fex.	D A T A
1	NMR (CDCl 3 ) $\delta: 4,28(3 H, t, J=7.2 H z) .3 .88(2 H, s), 4.21(2 H, q, J=7.2 H z), 7.56 m$. $71(1 \mathrm{H}, \mathrm{m}), 8.53-8.56(1 \mathrm{H}, \mathrm{m}), 8.60-8.62(1 \mathrm{H}, \mathrm{m})$
2	NMF (COCl 3 ) $8: 1.22(3 H, t, J=7.1 \mathrm{~Hz}), 3.95(2 H, s), 4.12(2 H, q, J=7.1 \mathrm{~Hz}), 5.39(2$ $\mathrm{H}, \mathrm{s}), 7.00(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 7.17 .7 .30(5 \mathrm{H}, \mathrm{m}), 7.7 \mathrm{~B}(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.1,2.0 \mathrm{~Hz})$
3	NMP $0: 1.22(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}), 4.16(2 \mathrm{H}, 9, J=6.9 \mathrm{~Hz}), 4.26(2 \mathrm{H}, \mathrm{s}), 7.62(2 \mathrm{H}, \mathrm{s})$
4	NMF 8: $4.16(2 \mathrm{H}, \mathrm{s}), 7.61(2 \mathrm{H}, \mathrm{s})$
5	NMF (CDCl3) $\delta: 3.89(2 \mathrm{H}, \mathrm{s}), 7.20-7.32(2 \mathrm{H}, \mathrm{m}), 7.63-7.71(1 \mathrm{H}, \mathrm{m}), 11.03(1 \mathrm{H}, \mathrm{br}$ s)
6	NMF $\mathrm{f}: 2.11(3 \mathrm{H}, 5), 3.58(2 \mathrm{H}, \mathrm{s}), 6.91(1 \mathrm{H}, 5), 11.90-12.50(2 \mathrm{H}, \mathrm{m})$
7	NMA 8: $3.56(2 \mathrm{H}, \mathrm{s}), 5.48(2 \mathrm{H}, \mathrm{s}), 7.13(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}), 7.24 .7 .39(3 \mathrm{H}, \mathrm{m}), 12.90($ $1 \mathrm{H}, \mathrm{S})$
8	NMP 8: $1.46(6 \mathrm{H}, 5), 6.64(3 \mathrm{H}, 5), 9.00(1 \mathrm{H}, \mathrm{brs})$
9	NMA (COCl3) 8: $3.70(2 \mathrm{H}, \mathrm{s}, 3.73(3 \mathrm{H}, \mathrm{s}), 6.81(1 \mathrm{H}, \mathrm{s})$
10	NMR 8: $3.66(2 H, s), 7.11(1 \mathrm{H}, 5), 8.28,4 \mathrm{H}, \mathrm{brs}), 12.46$ (1H,brs)
11	NMR (CDCl3) 8: $1.34(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 3.77(2 \mathrm{H}, \mathrm{s}), 4.28(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}), 6.59(1$ $\mathrm{H}, \mathrm{s}), 6.98-7.22(3 \mathrm{H}, \mathrm{m}), 7.39-7.49(1 \mathrm{H}, \mathrm{m})$
12	NMA $\delta: 3.58(2 \mathrm{H}, \mathrm{s}), 6.72(1 \mathrm{H}, \mathrm{s}), 6.73-6.79(1 \mathrm{H}, \mathrm{m}), 7.22-7.37(2 \mathrm{H}, \mathrm{m}), 7.64-7.71$ ( $1 \mathrm{H}, \mathrm{m}$ ), $10.59(1 \mathrm{H}$, brs $)$
13	NMR (CDCl3) $\delta: 1.27(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 2.16(3 \mathrm{H}, 5), 3.67(2 \mathrm{H}, 3), 4.11(2 \mathrm{H}, 9, \mathrm{~J}=7.2$ Hz)
14	NMP 8: 2.16(3H,s), 3.60(2H,s), 9.16(2H, bis)
15	NMR (CDCl3) $0: 3.78(3 \mathrm{H}, \mathrm{s}) .3 .91(2 \mathrm{H}, \mathrm{s}), 4.34(2 \mathrm{H}, \mathrm{s}), 7.20 .7 .39(5 \mathrm{H}, \mathrm{m})$
16	NMR 8:3.74(2H,s), $4.33(2 H, 5), 7.20 .7 .39(5 \mathrm{H}, \mathrm{m})$
17	NMR (CDCl3) $\delta: 1.23(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 3.75(2 \mathrm{H}, \mathrm{s}), 4.13(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}), 5.10(2$ $\mathrm{H}, \mathrm{s}), 6.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.2 \mathrm{~Hz}), 7.00-7.12(5 \mathrm{H}, \mathrm{m})$
18	$\begin{aligned} & \text { NMP } \delta: .4 .33(2 H, s), 5.43(2 H, s), 7.21-7.27(2 H, m), 7.42-7.47(2 H, m), 7.68 \cdot 7.69 \\ & (2 H, m) \end{aligned}$
19	NMR (CDCl3) $\delta: 1.23(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 3.73(2 \mathrm{H}, \mathrm{s}), 4.12(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}), 5.11(2$ $\mathrm{H}, \mathrm{s}), 6.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1 \mathrm{4Hz}), 7.02 .7 .06(3 \mathrm{H}, \mathrm{m}), 7.30 .7 .34(2 \mathrm{H}, \mathrm{m})$
20	NMF 8: $4.32(2 \mathrm{H}, 5), 5.45(2 \mathrm{H}, 5), 7.39(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.46(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.7$ $\mathrm{O}(2 \mathrm{H}, \mathrm{s}), 14,00(1 \mathrm{H}, \mathrm{brs})$
21	NMA (CDClis) 8: $1.23(3 \mathrm{H}, \mathrm{t}, \mathrm{d}=7.1 \mathrm{~Hz}), 3.74(2 \mathrm{H}, \mathrm{s}), 4.12(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}), 5.12(2$ $\mathrm{H}, \mathrm{s}), 6.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.4 \mathrm{~Hz}), 6.96-6.99(1 \mathrm{H}, \mathrm{m}), 7.04(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.4 \mathrm{~Hz}), 7.08(1 \mathrm{H}, \mathrm{brs})$ 7.25-7.31(2H.m)
22	NMR 8: $4.35(2 \mathrm{H}, \mathrm{s}), 5.46(2 \mathrm{H}, 5), 7.32-7.35(7 \mathrm{H}, \mathrm{m}), 7.43-7.44(2 \mathrm{H}, \mathrm{m}), 7.48(1 \mathrm{H}$, brs), $7.70(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=\mathrm{=}, 8 \mathrm{~Hz}), 7.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.8 \mathrm{~Hz})$
23	NMR (CDCla) $\delta: 1.22(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}), 3.77(2 \mathrm{H}, \mathrm{s}), 4.06(2 \mathrm{H}, \mathrm{G}, \mathrm{J}=7.1 \mathrm{~Hz}), 5.23(2$ $\mathrm{H} . \mathrm{s}), 6.78(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5,1.5 \mathrm{~Hz}), 6.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz}), 7.05(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz}), 7.1$ $9-7.30(2 \mathrm{H}, \mathrm{m}), 7.41(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5,1.5 \mathrm{~Hz})$
24	NMR 8; $4.32(2 \mathrm{H}, 5), 5.55(2 \mathrm{H}, 5), 7.15 m 7.73(6 \mathrm{H}, \mathrm{m})$

[0127)
[Table 2]

Rex.	0 A T A
25	NMA (CDCl3) 8: $1.24(3 \mathrm{H}, \mathrm{i}, \mathrm{J}=7.1 \mathrm{~Hz}), 3.74(2 \mathrm{H}, \mathrm{s}), 4.15(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}), 5.10$ $(2 \mathrm{H}, \mathrm{s}), 6.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz}), 6.94(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.4,2.1 \mathrm{~Hz}), 7.04(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz})$. $7.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.1 \mathrm{~Hz}), \quad 7.42(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz})$
26	NMR 8: $4.38(2 \mathrm{H}, \mathrm{s}), 5.48(2 \mathrm{H}, \mathrm{s}), 7.39(1 \mathrm{H}, \mathrm{dd}, 5=8.4,7.8 \mathrm{~Hz}), 7.67 \cdot 7.72(3 \mathrm{H}, \mathrm{m}$ ), $7.76(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2,4 \mathrm{~Hz})$
27	NMA (CDCla) $6: 1.13(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}), 4.01(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.7 \mathrm{~Hz}), 4.42(2 \mathrm{H}, \mathrm{s}), 5.46$ $(2 \mathrm{H}, \mathrm{s}), 7.31(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.60(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz}), 7.77($ $1 H, d, J=1,5 H z)$
28	NMR $\delta: 4.31(2 \mathrm{H}, \mathrm{s}), 5.43(2 \mathrm{H}, \mathrm{s}), 7.32(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.61(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8,4 \mathrm{~Hz})$, $7.70(2 \mathrm{H}, 5)$
29	NMR (CDCl3) $8: 1.23(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}), 3.73(2 \mathrm{H}, \mathrm{s}), 4.12(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=6 . \mathrm{gHz}), 5.08$ $(2 \mathrm{H}, \mathrm{s}), 6.53-6.86(3 \mathrm{H}, \mathrm{m}), 7.02(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz}), 7.67(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz})$
30	NMR 8: $4.31(2 \mathrm{H}, \mathrm{s}), 5.41(2 \mathrm{H}, \mathrm{s}), 7.16(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8,3 \mathrm{~Hz}), 7.55-7.61(2 \mathrm{H}, \mathrm{m}), 7.7$ $6(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8,3 \mathrm{~Hz})$
31	NMR (CDCla) $8: 1.22(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}), 3.74(2 \mathrm{H}, \mathrm{s}), 4.10(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}), 5.21$ $(2 \mathrm{H}, \mathrm{s}), 6.96(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.4 \mathrm{~Hz}), 7.05(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1,4 \mathrm{~Hz}), 7.20(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.5 \mathrm{~Hz}), 7.60($ $2 \mathrm{H}, \mathrm{d}, \mathrm{j}=9.5 \mathrm{~Hz}$
32	NMR $\delta: 4.32(2 \mathrm{H}, \mathrm{s}), 5.57(2 \mathrm{H}, \mathrm{s}), 7.54(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.70-7.75(\mathrm{zH}, \mathrm{m}), 7.7$ $7(2 H, d, J=8.0 H z)$
33	NMR (CDCla) \&: $1.20-1.26(9 \mathrm{H}, \mathrm{m}), 2.89(1 \mathrm{H} . \operatorname{sep} . \mathrm{J}=7.2 \mathrm{~Hz}), 3.75(2 \mathrm{H}, \mathrm{s}), 4.11($ $2 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.9 \mathrm{~Hz}), 5.09(2 \mathrm{H}, \mathrm{s}), 6.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1,2 \mathrm{~Hz}), 7.02(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}), 7.19($ $2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}), 7.26(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.2 \mathrm{~Hz})$
34	NMR 8: $1.18(6 \mathrm{H}, \mathrm{d}, \mathrm{j}=6.6 \mathrm{~Hz}), 2.88(1 \mathrm{H}, \operatorname{sep}, 6.6 \mathrm{~Hz}), 4.32(2 \mathrm{H}, \mathrm{s}), 5.38(2 \mathrm{H}, \mathrm{s})$. $7.27(2 \mathrm{H}, 5), 7.66-7.68(4 \mathrm{H}, \mathrm{m})$
35	NMF ( CDCl 3 ) $\delta: 1.17(3 \mathrm{H}, \mathrm{t}, \mathrm{Jm}=7.2 \mathrm{~Hz}), 3.43(2 \mathrm{H}, \mathrm{s}), 4.03(2 \mathrm{H}, \mathrm{G}, \mathrm{J}=7.2 \mathrm{~Hz}), 4.99$ $(2 H, s), 6.70(1 H, d, J=1.2 H z), 6.94(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.2 \mathrm{~Hz}), 7.03-7.44(9 \mathrm{H}, \mathrm{m})$
36	NMA $\delta: 3.91(2 \mathrm{H}, \mathrm{s}), 5.38(2 \mathrm{H}, \mathrm{s}), 7.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}), 7.29-7.50(9 \mathrm{H}, \mathrm{m}), 7.5$ $9(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz})$
37	NMA (CDCl 3 ) $8: 1.20(3 \mathrm{H}, \mathrm{t}, 7.3 \mathrm{~Hz}), 3.76(2 \mathrm{H}, \mathrm{s}), 4.09(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}), 5.29(2$ $\mathrm{H}, \mathrm{s}), 6.92(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.4 \mathrm{~Hz}), 7.05(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.4 \mathrm{~Hz}), 7.21-7.26(1 \mathrm{H}, \mathrm{m}), 7.46-7.52($ $3 \mathrm{H}, \mathrm{m}), 7.75-7.85(3 \mathrm{H}, \mathrm{m})$
38	NMR 8: $4.37(2 \mathrm{H}, 5), 5.61(2 \mathrm{H}, \mathrm{s}), 7.45-7.50(1 \mathrm{H}, \mathrm{m}), 7.52-7.60(2 \mathrm{H}, \mathrm{m}), 7.70-7$. $75(2 \mathrm{H}, \mathrm{m}), 7.80-7.90(4 \mathrm{H}, \mathrm{m})$
39	NMR (CDCl3) $8: 1.22(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}), 3.82(2 \mathrm{H}, \mathrm{s}), 4.11(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}), 5.26$ ( $2 \mathrm{H}, \mathrm{s}$ ), $6.93(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}), 5.96(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.4 \mathrm{~Hz}), 7.05(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.4 \mathrm{~Hz}), 7.23$ ( $1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.8,5.0 \mathrm{~Hz}), 7.66(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=7.8,1.9 \mathrm{~Hz}), 8.58(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.0 \mathrm{~Hz})$
40	NMR 8: $4.35(2 \mathrm{H}, \mathrm{s}), 5.70(2 \mathrm{H}, 5), 7.53(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5,4.8 \mathrm{~Hz}), 7.58(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5$ $\mathrm{Hz}), 7.71(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.9 \mathrm{~Hz}), 7.82(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.9 \mathrm{~Hz}), 8.03(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=4.8,1.9 \mathrm{~Hz}), \boldsymbol{\varepsilon}$. $61(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.2 \mathrm{~Hz})$
41	NMR (CDCl3) 8: $1.26(3 \mathrm{H}, \mathrm{dt}, \mathrm{J}=7.3,1.4 \mathrm{~Hz}), 1.70(3 \mathrm{H}, \mathrm{s}), 3.77(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.3 \mathrm{~Hz})$, $4.13(2 \mathrm{H}, \mathrm{dq}, \mathrm{J}=7.3,1.4 \mathrm{~Hz}), 4.45(2 \mathrm{H}, 5), 4.64(1 \mathrm{H}, \mathrm{s}), 4.90-4.95(1 \mathrm{H}, \mathrm{m}), 6.85-$ $7.28(2 \mathrm{H}, \mathrm{m})$

$\left[\begin{array}{llll}0 & 1 & 2 & 8\end{array}\right]$
[Table 3]

Rex	D A T A
42	NMR $8: 1.66(3 \mathrm{H}, \mathrm{s}), 4.21(2 \mathrm{H}, \mathrm{s}), 4.73(1 \mathrm{H}, \mathrm{s}), 4.81(2 \mathrm{H}, 5), 4.99(1 \mathrm{H}, \mathrm{s}), 7.66(1$ $H, d, J=1.8 \mathrm{~Hz}), 7.71(4 \mathrm{H}, \mathrm{d}, \mathrm{J}=1,8 \mathrm{~Hz})$
43	NMR (CDCl 3 ) $6: 1.26(3 H, t, J=7.2 \mathrm{~Hz}), 3.63(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=0.6 \mathrm{~Hz}), 4.17(2 \mathrm{H}, \mathrm{g}, \mathrm{J}=7.2$ $\mathrm{Hz}), 5.07(2 \mathrm{H}, \mathrm{s}), 6.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1,1 \mathrm{~Hz}), 7.15-7.18(2 \mathrm{H}, \mathrm{m}), 7.31-7.37(3 \mathrm{H}, \mathrm{m}), 7$. $46(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.1 \mathrm{~Hz})$
44	NMR 8: $3.79(2 \mathrm{H}, \mathrm{s}), 5.42(2 \mathrm{H}, \mathrm{s}), 7.38-7.44(6 \mathrm{H}, \mathrm{m}), 7.58(1 \mathrm{H}, \mathrm{brs}), 9.26(1 \mathrm{H}, \mathrm{tr}$ s)
45	NMP (CDCl 3 ) $\delta: 1.26(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), \quad 3.64(2 \mathrm{H}, \mathrm{G}, \mathrm{J}=0.6 \mathrm{~Hz}), 4.17(2 \mathrm{H}, 9, \mathrm{~J}=7.2$ $\mathrm{Hz}), 5.18(2 \mathrm{H}, \mathrm{s}), 6.91(1 \mathrm{H}, 5), 6.99(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.4,2.0 \mathrm{~Hz}), 7.21-7.31(2 \mathrm{H}, \mathrm{m}), 7$ $41(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.4,2.0 \mathrm{~Hz}), \quad 7.49(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz})$
46	NMF $8: 3.79(2 \mathrm{H}, 5), 5.43(2 \mathrm{H}, \mathrm{s}), 7.42 \mathrm{l}, 7.58(6 \mathrm{H}, \mathrm{m}), 9.26(1 \mathrm{H}, \mathrm{trs})$
47	NMA (CDCl3) $8: 1.26(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}), 3.64(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=0.6 \mathrm{~Hz}), 4.17(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.1$ $\mathrm{Hz}), 5.05(2 \mathrm{H}, \mathrm{s}), 6.87(1 \mathrm{H}, 5), 7.02-7.05(1 \mathrm{H}, \mathrm{m}), 7.15(1 \mathrm{H}, \mathrm{d}, \mathrm{d}=0.9 \mathrm{~Hz}), 7.28-7$. $30(2 H, m), 7.47(1 H, d, d=0.9 H z)$.
48	NMR 8: $3.78(2 \mathrm{H}, \mathrm{s}), 5.54(2 \mathrm{H}, \mathrm{s}), 7.39-7.47(4 \mathrm{H}, \mathrm{m}), 7.58(1 \mathrm{H}, \mathrm{brs}), 7.61(1 \mathrm{H}, \mathrm{br}$ s), $9,27(1 \mathrm{H}, \mathrm{brs})$
49	NMF (CDCl 3 ) $8: 1.26(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}), 3.63(2 \mathrm{H}, \mathrm{s}), 4.17(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}), 5.04$ $(2 \mathrm{H}, \mathrm{s}), 6.69(1 \mathrm{H}, \mathrm{s}), 7.08(1 \mathrm{H}, \mathrm{s}), 7.11(1 \mathrm{H}, \mathrm{s}), 7.31(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.3 \mathrm{~Hz}), 7.34(1 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $=2.3 \mathrm{~Hz}), 7.45(7 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.2 \mathrm{~Hz})$
50	NMA $8: 3.78(2 \mathrm{H}, \mathrm{s}), 5.41(2 \mathrm{H}, \mathrm{s}), 7.45-7.52(5 \mathrm{H}, \mathrm{m}), 7.58(1 \mathrm{H}, \mathrm{brs}), 9.20(1 \mathrm{H}, \mathrm{br}$ s)
51a	NMR (CDCl3) $\delta: 1.22(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 3.78(2 \mathrm{H}, \mathrm{s}), 4.12(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}), 5.37$ (2H,s), 7.15-7.21(2H,m), 7.28-7.39(3H,m), $7.90(1 \mathrm{H}, \mathrm{s})$
516	NMR (CDCl 3 ) \&: $1.25(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 3.81(2 \mathrm{H}, \mathrm{s}), 4.20(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}), 5.30$ $(2 \mathrm{H}, \mathrm{s}), 7.23-7,29(2 \mathrm{H}, \mathrm{m}), 7.34 m, 39(3 \mathrm{H}, \mathrm{m}), 7.96(1 \mathrm{H}, \mathrm{s})$
52	NMP 8: $4.04(3 \mathrm{H}, 5) ; 5.41(2 \mathrm{H}, 5), 7.24-7.38(5 \mathrm{H}, \mathrm{m}), 8.49(1 \mathrm{H}, 5)$
53	NMF 8: $3.62(3 H, s), 5.37(2 H . s), 7.25-7.41(5 H, \mathrm{~m}), 8.65(1 \mathrm{H}, 5)$
54a	NMR (CDCly) $\delta: 1.25(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 3.85(2 \mathrm{H}, \mathrm{s}), 4.16(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}), 5.59$ $(2 \mathrm{H}, \mathrm{s}), 7.07(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.20-7.27(2 \mathrm{H}, \mathrm{m})$
54b	NMR (CDCl3) $\delta: 1.25(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 3.95(2 \mathrm{H}, \mathrm{s}), 4.19(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}), 5.72$ $(2 \mathrm{H}, \mathrm{s}), 7.06(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.35-7.39(2 \mathrm{H}, \mathrm{m})$
55	NMR 8: 4,19(2H,5), 5.63(2H,s), 7.10-7.50(4H,m), 13,10(1H,brs)
56	NMR 8: $3.93(2 \mathrm{H}, \mathrm{s}), 5.91(2 \mathrm{H}, \mathrm{s}), 7.23(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}), 7.43-7.47(2 \mathrm{H}, \mathrm{m}), 12.7$ $9(2 \mathrm{H}, \mathrm{brs})$
57a	NMR ( CDCl 3 ) $\delta: 1.26(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}), 3.89(2 \mathrm{H}, \mathrm{s}), 4.17(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7,0 \mathrm{~Hz}), 5.57$ $(2 \mathrm{H}, \mathrm{s}), 7.00-7.10(1 \mathrm{H}, \mathrm{m}), 7.35 .7 .47(2 \mathrm{H}, \mathrm{m})$
57b	NMR ( CDCl 3 ) $\delta: 1.26(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7,0 \mathrm{~Hz}), 3.96(2 \mathrm{H}, \mathrm{s}), 4.20(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}), 5.71$ $(2 \mathrm{H}, \mathrm{s}), 7.2 \mathrm{O}-7.22(1 \mathrm{H}, \mathrm{m}), 7.44-7.48(2 \mathrm{H}, \mathrm{m})$
58	NMR ס: $4.23(2 \mathrm{H}, \mathrm{s}), 5.66(2 \mathrm{H}, 5), 7.32-7.35(1 \mathrm{H}, \mathrm{m}), 7.64-7.67(2 \mathrm{H}, \mathrm{m}), 7.70(2$ $\mathrm{H}, \mathrm{s}), 13.14(1 \mathrm{H}, \mathrm{brs})$

$[0129)$
[Table 4]

Rex.	D A T A
59	$\begin{aligned} & \text { NMA 8: } \\ & \text { 1H.brs })\end{aligned}$ (2H.s), $5.97(2 \mathrm{H}, \mathrm{s}), 7.33-7.39(1 \mathrm{H}, \mathrm{m})$,
60	NMR $(\mathrm{CDCl} 3) \delta: 1.19(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 3.75(2 \mathrm{H}, \mathrm{s}), 4.12(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}), 7.06$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz}), 7.12(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz}), 7.32-7.52(5 \mathrm{H}, \mathrm{m})$
61	NMA 8: $4.15(2 \mathrm{H}, \mathrm{s}), 7.55-7.70(5 \mathrm{H}, \mathrm{m}), 7.88-7.91(1 \mathrm{H}, \mathrm{m}), 7.98 \cdot 8.00(4 \mathrm{H}, \mathrm{m})$
62	NMA (CDCl3) $\delta: 1.23(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}), 3.75(2 \mathrm{H}, \mathrm{s}), 4.12(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}), 5.28$ $(2 \mathrm{H}, \mathrm{s}), 6.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.2 \mathrm{~Hz}), 7.08(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1,2 \mathrm{~Hz}), 7.26(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 8.22($ $2 \mathrm{H}, \mathrm{C}, \mathrm{J}=8.4 \mathrm{~Hz}$ )
63	NMR $\delta: 4.32(2 \mathrm{H}, \mathrm{s}), 5.64(2 \mathrm{H}, \mathrm{s}), 7.58(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.9 \mathrm{~Hz}), 7.73-7.78(2 \mathrm{H}, \mathrm{m}), 8.2$ $5(2 H, d, j=8.9 \mathrm{~Hz}), 14.00(1 \mathrm{H}, \mathrm{brs})$
64	NMR ( CDCl 3 ) $8: 1.25(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}), 3.02(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}), 3.51(2 \mathrm{H}, \mathrm{s}), 4.09-$ $4.19(4 \mathrm{H}, \mathrm{m}), 6.81(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz}), 6.96(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz}), 7.03-7.32(5 \mathrm{H}, \mathrm{m})$
65	NMA $8: 3.08(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}), 4.14(2 \mathrm{H}, 5), 4.44(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.20-7.35(5 \mathrm{H}$, m) $7.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz}), 7.68(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz})$
66	$\begin{aligned} & \mathrm{NMR}(\mathrm{CDCl} 3) \delta: 2.09(3 \mathrm{H}, 5), 2.30(3 \mathrm{H}, \mathrm{~s}), 4.99(2 \mathrm{H}, \mathrm{~s}), 6.72(1 \mathrm{H}, \mathrm{~s}), 6.88-7.04 \mathrm{C} \\ & 4 \mathrm{H}, \mathrm{~m}) \end{aligned}$
67	
68	NMF S: $2.12(3 \mathrm{H}, \mathrm{s}), 4.31(2 \mathrm{H}, \mathrm{s}), 5.45(2 \mathrm{H}, \mathrm{s}), 7.18-7.28(4 \mathrm{H}, \mathrm{m}), 7.50(1 \mathrm{H}, \mathrm{s})$
69	NMA (CDCla) $\delta: 2.18(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}), 2.30(3 \mathrm{H}, \mathrm{s}), 4.94(2 \mathrm{H}, \mathrm{s}), 6.51(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $1.5 \mathrm{~Hz}), 6.88-7.04(4 \mathrm{H} . \mathrm{m})$
70	NMA (COCl3) $\delta: 1.23(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 2.19(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=0.6 \mathrm{~Hz}), 3.71(2 \mathrm{H}, \mathrm{s}), 4.12$ $(2 \mathrm{H}, \mathrm{q}, \mathrm{j}=7.2 \mathrm{~Hz}), 5.03(2 \mathrm{H}, 5), 6.54(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=0.5 \mathrm{~Hz}), 7.00-7.12(4 \mathrm{H}, \mathrm{m})$
71	MR $8: 2.24(3 \mathrm{H}, \mathrm{s}), 4.27(2 \mathrm{H}, \mathrm{s}), 5.35(2 \mathrm{H}, \mathrm{s}), 7.21-7.45(5 \mathrm{H}, \mathrm{m})$
72	NMR (CDCl3) 8: $1.26(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}), 3.87(2 \mathrm{H}, \mathrm{s}), 4.18(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}), 5.36$ $(2 \mathrm{H}, \mathrm{s}), 6.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 6.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 7.20-7.65(6 \mathrm{H}, \mathrm{m})$
73	NMR (CDCl3) $8: 3.41(2 \mathrm{H}, \mathrm{s}), 5.40(2 \mathrm{H}, \mathrm{s}), 6.70-7.00(2 \mathrm{H}, 5), 7.20 \cdot 7.70(6 \mathrm{H}, \mathrm{m})$
74	NMR ( CDCl 3 ) $8: 1.25(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 1.48(9 \mathrm{H}, \mathrm{s}), 3.69(2 \mathrm{H}, \mathrm{s}), 4.17(2 \mathrm{H}, \mathrm{q}, \mathrm{d}$ $7.2 \mathrm{~Hz}, 6.93(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}), 7.58-7.65(1 \mathrm{H}, \mathrm{m}), 7.82(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz})$
75	NMA (CDCl3) 8; $1.51(9 \mathrm{H}, \mathrm{s}), 3.68(2 \mathrm{H}, 5), 6.80-7.00(1 \mathrm{H}, \mathrm{s}), 7.50-7.90(2 \mathrm{H}, \mathrm{m})$
76	NMR $\left(\mathrm{CDCl}_{3}\right) 8: 1.30-2.20(4 \mathrm{H}, \mathrm{s}), 2.60-3.10(2 \mathrm{H}, \mathrm{s}), 3.70-4.00(1 \mathrm{H}, \mathrm{m}), 7.00-8$ $.00(2 \mathrm{H}, \mathrm{s}), 8.20-8.60(1 \mathrm{H}, \mathrm{m})$
77	NMA (CDCl3) $8: 2.75(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.4,8.8 \mathrm{~Hz}), 2.85-3.04(5 \mathrm{H}, \mathrm{m}), 4.70(\mathrm{tH}, \mathrm{dd}$, $\mathrm{J}=\mathrm{m} . \mathrm{B}, 3.7 \mathrm{~Hz}), 7.24-7.40(7 \mathrm{H}, \mathrm{m}), 8.10 \cdot 8.20(2 \mathrm{H}, \mathrm{m})$
78	NMR (CDCl3) $8: 1.44(9 \mathrm{H}, \mathrm{s}), 2.75 \cdot 3.10(2 \mathrm{H}, \mathrm{m}), 3.20 \cdot 3.70(4 \mathrm{H}, \mathrm{m}), 4.93(1 \mathrm{H}, \mathrm{br}$ 1, $7.25-7.40(7 \mathrm{H}, \mathrm{m}), 8.14(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz})$
79	NMR (CDClis) $\delta: 1.47(9 \mathrm{H}, \mathrm{s}), 2.55-2.80(2 \mathrm{H}, \mathrm{m}), 3.20-3.40(2 \mathrm{H}, \mathrm{m}), 3.45-3.65($ $2 \mathrm{H}, \mathrm{m}), 4.87(1 \mathrm{H}, \mathrm{m}), 6.57-6.65(2 \mathrm{H}, \mathrm{m}), 6.83-7.04(2 \mathrm{H}, \mathrm{m}), 7.25-7.40(5 \mathrm{H}, \mathrm{m})$
80	NMF $(\mathrm{CDCl} 3) \delta: 2.87(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.6,2.4 \mathrm{~Hz}), 3.44-3.65(3 \mathrm{H}, \mathrm{m}), 4.97(1 \mathrm{H}, \mathrm{s}), 6$. $27(1 \mathrm{H}, \mathrm{brs}), 7.16(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8,9 \mathrm{~Hz}), 7.29-7.37(5 \mathrm{H}, \mathrm{m}), 8.05(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=\mathrm{B}, 9 \mathrm{~Hz})$

$\left[\begin{array}{lll}01 & 0\end{array}\right]$
[Table 5]

Rex.	D A T A
81	NMA 8: 3.04(1H,dd, $\mathrm{J}=12.3,10.2 \mathrm{~Hz}), 3.16-3.29(5 \mathrm{H}, \mathrm{m}), 5.10(1 \mathrm{H}, \mathrm{brd}, \mathrm{J}=9.9 \mathrm{H}$ z), $6.21(1 \mathrm{H}, \mathrm{brd}, \mathrm{J}=3.6 \mathrm{~Hz}), 7.29-7.37(1 \mathrm{H}, \mathrm{m}), 7.39-7.41(4 \mathrm{H}, \mathrm{m}), 7.57(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $8.6 \mathrm{~Hz}), 8.21(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 9.15(1 \mathrm{H}, \mathrm{brs})$.
82	NMA (CDCl3) 8: $1.47(9 \mathrm{H}, \mathrm{s}), 2.62-2.93(2 \mathrm{H}, \mathrm{m}), 3.14 .3 .58(4 \mathrm{H}, \mathrm{m}), 4.35(1 \mathrm{H}, \mathrm{br}$ s), $4.90(1 \mathrm{H}, \mathrm{br}), 7.06-7.40(7 \mathrm{H}, \mathrm{m}), 7.45-7.50(1 \mathrm{H}, \mathrm{m}), 7.67-7.72(2 \mathrm{H}, \mathrm{m}), 7.90($ $1 \mathrm{H} . \mathrm{dt}, \mathrm{J}=2.0,8.0 \mathrm{~Hz}), 8.25-8.31(1 \mathrm{H}, \mathrm{m}), 8.58-8.63(1 \mathrm{H}, \mathrm{m}), 9.98(1 \mathrm{H}, \mathrm{brs})$
83	NMR (CDCl3) $8: 1.47(9 \mathrm{H}, \mathrm{s}), 2.60-2.90(2 \mathrm{H}, \mathrm{m}), 3.15-3.70(4 \mathrm{H}, \mathrm{m}), 4.32(1 \mathrm{H}, \mathrm{br}$ s), $4.85-4.94(1 \mathrm{H}, \mathrm{m}), 7.05-7.46(9 \mathrm{H}, \mathrm{m}), 7.55-7.61(2 \mathrm{H}, \mathrm{m}), 8.16-8.23(1 \mathrm{H}, \mathrm{m}), 8$ .75(1H, br), $9.05(1 \mathrm{H}, \mathrm{br})$
84	NMR (CDCl 3 ) $\delta: 1.49(9 \mathrm{H}, \mathrm{s}), 2.64-2.90(2 \mathrm{H}, \mathrm{m}), \mathbf{3 . 1 6 - 3 . 6 0 ( 4 \mathrm { H } , \mathrm { m } ) , 4 . 3 8 ( 1 \mathrm { H } , \mathrm { br }}$ s), $4.91(1 \mathrm{H}, \mathrm{br}), 7.10-7.42(7 \mathrm{H}, \mathrm{m}), 7.55(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0,4.4 \mathrm{~Hz}), 7.74(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8$. $0 \mathrm{~Hz}), 7.77-7,84(2 \mathrm{H}, \mathrm{m}), 8.01(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0,1.2 \mathrm{~Hz}), 8.34(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4,1.6 \mathrm{~Hz})$. $8.96(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6,1.5 \mathrm{~Hz}), 9.02(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.4,2.0 \mathrm{~Hz}), 13.61(1 \mathrm{H}, \mathrm{brs})$
85	NMA (CDC13) $\delta: 1.47(9 \mathrm{H}, \mathrm{s}), 2.60-2.90(2 \mathrm{H}, \mathrm{m}), 3.20-3.55(4 \mathrm{H}, \mathrm{m}), 4.35(1 \mathrm{H}, \mathrm{br}$ s), $4.90(1 \mathrm{H}, \mathrm{br}), 7.06-7.18(3 \mathrm{H}, \mathrm{m}), 7.23-7.56(9 \mathrm{H}, \mathrm{m}), 7.66-7.77(2 \mathrm{H}, \mathrm{m}), 8.62($ $1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4, \mathrm{OHz}$
86	NMR (CDCl3) 8: $1.47(9 \mathrm{H}, \mathrm{s}), 2.60-2.85(2 \mathrm{H}, \mathrm{m}), 3.15-3.55(4 \mathrm{H}, \mathrm{m}), 4.31(1 \mathrm{H}, \mathrm{br}$ s), $4.88(1 \mathrm{H}, \mathrm{br}), 7.01-7.20(2 \mathrm{H}, \mathrm{m}), 7.22-7.56(9 \mathrm{H}, \mathrm{m}), 7.90(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 8$. $05(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 9.54(1 \mathrm{H}, \mathrm{brs})$
87	NMR (CDCl3) $8: 1.45(9 \mathrm{H}, \mathrm{s}), 2.60-2.85(2 \mathrm{H}, \mathrm{m}), 3.10-3.50(4 \mathrm{H}, \mathrm{m}), 3.80(2 \mathrm{H}, \mathrm{s})$ $4.40(1 \mathrm{H}, \mathrm{brs}), 4.80-4.90(1 \mathrm{H}, \mathrm{m}), 6.71(1 \mathrm{H}, \mathrm{s}), 6.97-7.14(2 \mathrm{H}, \mathrm{m}), 7.22-7.49(\mathrm{~g}$ $\mathrm{H}, \mathrm{m}), 8.01(1 \mathrm{H}, \mathrm{s}), 8.48(1 \mathrm{H}, \mathrm{brs})$
88	NMR (CDCl3) 8: $1.34(9 \mathrm{H}, \mathrm{s}), 2.89(3 \mathrm{H}, \mathrm{s}), 3.06-3.36(6 \mathrm{H}, \mathrm{m}), 3.73(2 \mathrm{H}, \mathrm{s}), 4.72$ $(1 \mathrm{H}, \mathrm{s}), 7.06-7.57(10 \mathrm{H}, \mathrm{m}), 10.10(1 \mathrm{H}, \mathrm{s})$
89	NMR (CDCl3) $8: 1.46(9 \mathrm{H}, \mathrm{s}), 2.52-2.80(2 \mathrm{H} . \mathrm{m}), 3.10-3.60(4 \mathrm{H}, \mathrm{m}), 3.89(2 \mathrm{H}, \mathrm{s})$ $4.85-4.95(1 \mathrm{H}, \mathrm{m}), 6.95-7.40(9 \mathrm{H}, \mathrm{m}), 7.49(2 \mathrm{H}, \mathrm{c}, \mathrm{J}=8.4 \mathrm{~Hz}), 10.15(1 \mathrm{H}, \mathrm{brs})$
90	$\begin{aligned} & \text { NMF (CDCl3) } \delta: 1.45(9 \mathrm{H}, \mathrm{~s}), 2.50-3.50(6 \mathrm{H}, \mathrm{~m}), 4.23(2 \mathrm{H}, \mathrm{~s}), 4.65-4.75(1 \mathrm{H}, \mathrm{~m}) \\ & 7.07(2 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}), 7.20-7.80(7 \mathrm{H}, \mathrm{~m}), 9.26(1 \mathrm{H}, \mathrm{brs}) \\ & \hline \end{aligned}$
91	NMA ( COCl 3$) 8: 1.46(9 \mathrm{H}, \mathrm{s}), 2.56-3.40(6 \mathrm{H}, \mathrm{m}), 3.73(2 \mathrm{H}, \mathrm{s}), 4.75-4.91(1 \mathrm{H}, \mathrm{m})$ , $7.00 .7 .47(9 \mathrm{H}, \mathrm{m}), 9.15(1 \mathrm{H}, \mathrm{brs}), 12.61(1 \mathrm{H}, \mathrm{brs})$
92	NMA (CDCl3) $\delta: 1.47(9 \mathrm{H}, \mathrm{s}), 2.60-2.90(2 \mathrm{H}, \mathrm{m}), 3.15-3.60(4 \mathrm{H}, \mathrm{m}), 4.27(1 \mathrm{H}, \mathrm{br}$ s), $4.91(1 \mathrm{H}, \mathrm{br}), 5.34(2 \mathrm{H}, \mathrm{brs}), 7.00-7.50(7 \mathrm{H}, \mathrm{m}), 7.60(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 8.80(1$ $\mathrm{H}, \mathrm{s}), 9,12(1 \mathrm{H}, \mathrm{brs})$
93	```NMP (CDCl3) 8: 1.45(9H,s), 2.60-2.75(2H,m), 3.10-3.55(4H,m), 3.81(2H,s) 4.81-4.87(1H,m), 6.40-6.55(2H,m), 7.03(2H,d,J=7.3Hz), 7.22-7.45(7H,m), 9.26(1H,s)```
94	NMR (CDCl 3 ) $\delta: 1.44(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 1.47(9 \mathrm{H}, \mathrm{s}), 2.65-2.80(2 \mathrm{H}, \mathrm{m}), 3.15-3$. $50(4 \mathrm{H}, \mathrm{m}), 4.04(2 \mathrm{H}, \mathrm{s}), 4.43(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}), 4.83-4.90(1 \mathrm{H}, \mathrm{m}), 7.02-7.15(2 \mathrm{H}$, $\mathrm{m}), 7.30-7.35(5 \mathrm{H}, \mathrm{m}), 7.45(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 9.21(1 \mathrm{H}, \mathrm{s})$
95	NMA (CDCl 3$) \delta: 1.45(9 \mathrm{H}, \mathrm{s}), 2.60-2.75(2 \mathrm{H}, \mathrm{m}), 3.10-3.50(4 \mathrm{H}, \mathrm{m}), 3.64(2 \mathrm{H}, \mathrm{s})$ . $4.82-4.91(1 \mathrm{H}, \mathrm{m}), 6.43(1 \mathrm{H}, \mathrm{s}), 6.70-7.44(13 \mathrm{H}, \mathrm{m}), 9.14(1 \mathrm{H}, \mathrm{brs})$

$\left[\begin{array}{lll}0 & 1 & 3\end{array} 1\right]$
[Table 6]

Rex.	D A T A
96	NMA (COCl3) $8: 1.46(9 \mathrm{H}, \mathrm{s}), 2.60-2.80(2 \mathrm{H}, \mathrm{m}), 3.15-3.55(4 \mathrm{H}, \mathrm{m}), 3.82(2 \mathrm{H}, \mathrm{s})$ $4.35(1 \mathrm{H}, \mathrm{brs}), 4.88(1 \mathrm{H}, \mathrm{br}), 6.97-7.16(2 \mathrm{H}, \mathrm{m}), 7.22-7.38(7 \mathrm{H}, \mathrm{m}) .7 .42-7.48(2$ $\mathrm{H}, \mathrm{m}), 7.66(1 \mathrm{H}, \mathrm{t}, \mathrm{d}=8.0 \mathrm{~Hz}), 9.18(1 \mathrm{H}, \mathrm{brs})$
97	NMR (CDCl3) , $\mathrm{S}: 1.46(\mathrm{gH}, \mathrm{s}), 2.60-2.85(2 \mathrm{H}, \mathrm{m}), 3.15-3.55(4 \mathrm{H}, \mathrm{m}), 3.77(2 \mathrm{H}, \mathrm{s})$ $4.33(1 \mathrm{H}, \mathrm{brs}), 4.87(1 \mathrm{H}, \mathrm{br}), 5.64(2 \mathrm{H}, \mathrm{s}), 6.77(1 \mathrm{H}, \mathrm{c}, \mathrm{J}=8.4 \mathrm{~Hz}), 6.89(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7$ $.2 \mathrm{~Hz}), 6.94-7.12(2 \mathrm{H}, \mathrm{m}), 7.21-7.41(10 \mathrm{H}, \mathrm{m}), 7.43-7.48(2 \mathrm{H}, \mathrm{m}), 7.59(1 \mathrm{H}, \mathrm{da}, \mathrm{J}=$ $8,4,7.2 \mathrm{~Hz}), 9.05(1 \mathrm{H}, \mathrm{br} s)$
98	NMA (COCli3) $\delta: 1.47(9 \mathrm{H}, \mathrm{s}), 1.71(3 \mathrm{H}, \mathrm{s}), 2.60-2.80(2 \mathrm{H}, \mathrm{m}), 3.20 .3 .60(4 \mathrm{H}, \mathrm{m})$ $3.73(2 \mathrm{H}, \mathrm{s}), 4.47(2 \mathrm{H}, \mathrm{s}), 4.56(1 \mathrm{H}, 5), 4.85-4.92(1 \mathrm{H}, \mathrm{m}), 4.94(1 \mathrm{H}, \mathrm{s}), 6.89(1 \mathrm{H}$ .s), $7.00-7.20(3 \mathrm{H}, \mathrm{m}), 7.35-7.40(4 \mathrm{H}, \mathrm{m}), 7.48(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 10.33(1 \mathrm{H}, \mathrm{brs})$
99	NMR (CDCl 3 ) $5: 1.47(9 \mathrm{H}, \mathrm{s}), 2.69(2 \mathrm{H}, \mathrm{brs}), 3.11-3.43(4 \mathrm{H}, \mathrm{m}), 3.61(2 \mathrm{H}, \mathrm{s}), 4$. $42(1 \mathrm{H}, \mathrm{br}), 4.88(1 \mathrm{H}, \mathrm{brs}), 5.08(2 \mathrm{H}, \mathrm{s}), 6.80(1 \mathrm{H}, \mathrm{s}), 7.03(2 \mathrm{H}, \mathrm{brs}), 7.17(2 \mathrm{H}, \mathrm{dd}$, $J=7.5,2.1 \mathrm{~Hz}), 7.33-7.41(\mathrm{eH}, \mathrm{m}), 7.45(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.54(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.2 \mathrm{~Hz})$. $9.44(1 H, \mathrm{brs})$
100	NMR (CDCl3) $8: 1.47(9 \mathrm{H}, 3), 2.68(2 \mathrm{H}, \mathrm{brs}), 3.11-3.43(4 \mathrm{H}, \mathrm{m}), 3.62(2 \mathrm{H}, \mathrm{s}), 4$. $39(1 \mathrm{H}, \mathrm{brs}), 4.88(1 \mathrm{H}, \mathrm{brs}), 5.19(2 \mathrm{H}, \mathrm{s}), 6.83(1 \mathrm{H}, \mathrm{s}), 7.03-7.06(3 \mathrm{H}, \mathrm{m}), 7.24 .7$. $35(7 \mathrm{H}, \mathrm{m}), 7,42-7.47(3 \mathrm{H}, \mathrm{m}), 7.58(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.2 \mathrm{~Hz}), 9.41(1 \mathrm{H}, \mathrm{brs})$
101	NMR (CDCl 3 ) $6: 1.47(9 \mathrm{H}, \mathrm{s}), 2.69(2 \mathrm{H}, \mathrm{brs}), 3.11-3.43(4 \mathrm{H}, \mathrm{m}), 3.63(2 \mathrm{H}, \mathrm{s}), 4$. $37(1 \mathrm{H}, \mathrm{brs}), 4.87(1 \mathrm{H}, \mathrm{brs}), 5.06(2 \mathrm{H}, \mathrm{s}), 6.80(1 \mathrm{H}, \mathrm{s}), 7.03(2 \mathrm{H}, \mathrm{brs}), 7.17(1 \mathrm{H}, \mathrm{s})$, $7: 30-7.35(8 \mathrm{H}, \mathrm{m}), 7.45(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.55(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.2 \mathrm{~Hz}), 9.37(1 \mathrm{H}, \mathrm{brs})$
102	NMA (CDCl 3 ) $8: 1.47(9 \mathrm{H}, \mathrm{s}), 2.69(2 \mathrm{H}, \mathrm{brs}), 3.11-3.43(4 \mathrm{H}, \mathrm{m}), 3.62(2 \mathrm{H}, \mathrm{s}), 4$, $337(1 \mathrm{H}, \mathrm{brs}), 4.87$ (1H,brs), $5.06(2 \mathrm{H}, 3), 6.78(1 \mathrm{H}, \mathrm{s}), 7.05(2 \mathrm{H}, \mathrm{brs}), 7.11(2 \mathrm{H}, \mathrm{d}$. $J=8.4 \mathrm{~Hz}), 7.33-7.36(7 \mathrm{H}, \mathrm{m}), 7.45(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.54(4 \mathrm{H}, \mathrm{brs}), 9.38(1 \mathrm{H}, \mathrm{brs})$
103	NMA (CDCl3) $8: 1.47(9 \mathrm{H}, \mathrm{s}), 2.60-2.80(2 \mathrm{H}, \mathrm{m}), 3.10-3.50(4 \mathrm{H}, \mathrm{m}), 3.90(2 \mathrm{H}, \mathrm{s})$ $4.85-4.95(1 \mathrm{H}, \mathrm{m}), 5.30(2 \mathrm{H}, \mathrm{s}), 6.88(1 \mathrm{H}, \mathrm{s}), 7.00-7.45(12 \mathrm{H}, \mathrm{m}), 7.57(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $8.3 \mathrm{~Hz}), 7.70-7.76(1 \mathrm{H}, \mathrm{m}), 7.87-7.96(1 \mathrm{H}, \mathrm{m}), 9.98(1 \mathrm{H}, \mathrm{brs})$
104	NMA (CDCliz) $8: 1.47(9 \mathrm{H}, \mathrm{s}), 2.50-2.70(2 \mathrm{H}, \mathrm{m}), 3.10-3.50(4 \mathrm{H}, \mathrm{m}), 3.70(2 \mathrm{H}, \mathrm{s})$ , 4.84-4.92(1H,m), 5.12(2H.s), 6.92-7.08(6H,m), 7.26-7.45(9H,m), 10.14(1 H.S) $\qquad$
105	NMR (CDCl 3 ) $8: 1.47(9 \mathrm{H}, \mathrm{s}), 2.60-2.80(2 \mathrm{H}, \mathrm{m}), 3.10-3.50(4 \mathrm{H}, \mathrm{m}), 3.70(2 \mathrm{H}, \mathrm{s})$ 4.85-4.92(1H,m), $5.10(2 \mathrm{H}, \mathrm{s}), 6.91-6.97(4 \mathrm{H}, \mathrm{m}), 7.25-7.47(11 \mathrm{H}, \mathrm{m}), 10.13(1$ H,brs)
106	NMR (CDCl3) $5: 1.47(9 \mathrm{H}, \mathrm{s}), 2.50-3.00(2 \mathrm{H}, \mathrm{m}), 3.10-3.60(4 \mathrm{H}, \mathrm{m}), 3.82(2 \mathrm{H}, \mathrm{s})$ $4.85-4.92(1 \mathrm{H}, \mathrm{m}), 6.83-6.91(3 \mathrm{H}, \mathrm{m}), 7.00-7.20(3 \mathrm{H}, \mathrm{m}), 7.30-7.40(5 \mathrm{H}, \mathrm{m}), 7$. $51(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.67(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 9.95(1 \mathrm{H}, \mathrm{m})$
107	$\begin{aligned} & \text { NMR (CDCl3 } 8: 1.47(9 \mathrm{H}, \mathrm{~s}), 2.50-2.70(2 \mathrm{H}, \mathrm{~m}), 3.10-3.60(4 \mathrm{H}, \mathrm{~m}), 3.70(2 \mathrm{H}, \mathrm{~s}) \\ & 4.30-4.40(1 \mathrm{H}, \mathrm{~m}), 4.88(1 \mathrm{H}, \mathrm{brs}), 5.22(2 \mathrm{H}, \mathrm{~s}), 6.88-7.35(9 \mathrm{H}, \mathrm{~m}), 7.42(2 \mathrm{H}, \mathrm{~d}, \mathrm{~J} \\ & =9.3 \mathrm{~Hz}), 7.59(2 \mathrm{H}, \mathrm{a}, \mathrm{~J}=8.3 \mathrm{~Hz}), 10.05(1 \mathrm{H}, \mathrm{brs}) \end{aligned}$
108	NMR (CDCla) $\delta: 1.47(9 \mathrm{H}, \mathrm{s}), 2.60-2.80(2 \mathrm{H}, \mathrm{m}), 3.10-3.50(4 \mathrm{H}, \mathrm{m}), 4.19(2 \mathrm{H}, \mathrm{s})$ $+4.80-4.90(1 \mathrm{H}, \mathrm{m}), 5.60(2 \mathrm{H}, \mathrm{s}), 6.93(1 \mathrm{H}, \mathrm{s}), 6.94 .7 .90(17 \mathrm{H}, \mathrm{m}), 10.05(1 \mathrm{H}, \mathrm{brs})$
109	NMR (CDCla) $8: 1.47(9 \mathrm{H}, \mathrm{s}), 2.03(3 \mathrm{H}, \mathrm{s}), 2.60-2.70(2 \mathrm{H}, \mathrm{m}), 3.10 \cdot 3.60(4 \mathrm{H}, \mathrm{m})$ , $3.66(2 \mathrm{H}, \mathrm{s}), 4.35(1 \mathrm{H}, \mathrm{brs}), 4.87-4.89(1 \mathrm{H}, \mathrm{m}), 6.08(2 \mathrm{H}, \mathrm{s}), 6.84-7.20(7 \mathrm{H}, \mathrm{m})$, $7.70-7.90(5 \mathrm{H}, \mathrm{m}), 7.44(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), \quad 10.21(1 \mathrm{H}, \mathrm{brs})$

$\left[\begin{array}{lll}01 & 3 & 2\end{array}\right]$
[Table "7]

Rex.	O A T A
110	NMA ( CDCl 3 ) $8: 1.48(9 \mathrm{H}, \mathrm{s}), 2.23(3 \mathrm{H}, \mathrm{s}), 2.60-2.80(2 \mathrm{H}, \mathrm{m}), 3.10-3.60(4 \mathrm{H}, \mathrm{m})$ , $3.68(2 \mathrm{H}, \mathrm{s}), 4.35(1 \mathrm{H}, \mathrm{brs}), 4.85-4.89(1 \mathrm{H}, \mathrm{m}), 5.05(2 \mathrm{H}, \mathrm{s}), 6.60(1 \mathrm{H}, \mathrm{s}), 7.00-7$ $.35(11 \mathrm{H}, \mathrm{m}), 7.44(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8,3 \mathrm{~Hz}), 10.17(1 \mathrm{H}, \mathrm{brs})$
111	NMP ( CDCl 3 ) $\delta: 1.46(9 \mathrm{H}, \mathrm{s}), 2.60 \cdot 2.90(2 \mathrm{H}, \mathrm{m}), 3.10-3.55(4 \mathrm{H}, \mathrm{m}), 3.89(2 \mathrm{H}, \mathrm{s})$ $4.85-4.95(1 \mathrm{H}, \mathrm{m}), 5.66(2 \mathrm{H}, \mathrm{s}), 7.00-7.10(4 \mathrm{H}, \mathrm{m}), 7.50-7.90(9 \mathrm{H}, \mathrm{m}), ~ a .66(1 \mathrm{H}$, brs)
112	NMR (CDCl3) $\delta: 1.46(9 \mathrm{H}, \mathrm{s}), 2.60-2.80(2 \mathrm{H}, \mathrm{m}), 3.20-3.50(4 \mathrm{H}, \mathrm{m}), 4.02(2 \mathrm{H}, \mathrm{s})$ . $4.83-4.91(1 \mathrm{H}, \mathrm{m}), 5.71(2 \mathrm{H}, \mathrm{s}), 7.00-7.51(12 \mathrm{H}, \mathrm{m}), 8.41(1 \mathrm{H}, \mathrm{brs})$
113	NMA (CDCl 3 ) $\delta: 1.46(9 \mathrm{H}, \mathrm{s}), 2.10-2.30(2 \mathrm{H}, \mathrm{m}), 3.10-3.55(4 \mathrm{H}, \mathrm{m}), 4.02(2 \mathrm{H}, \mathrm{s})$ , 4.85-4.95(1H.m), 5.73(2H.s), $7.00-7.20(4 \mathrm{H}, \mathrm{m}), 7.30-7.45(9 \mathrm{H}, \mathrm{m}), 8.85(1 \mathrm{H}$, brs)
114	NMA ( CDCl 3 ) $8: 1.46(9 \mathrm{H}, \mathrm{s}), 2.60-2.80(2 \mathrm{H}, \mathrm{m}), 3.10-3.60(4 \mathrm{H}, \mathrm{m}), \mathbf{3 . 9 2 ( 2 \mathrm { H } , \mathrm { s } )}$ $4.27(1 \mathrm{H}, \mathrm{brs}), 4.80-4.90(1 \mathrm{H}, \mathrm{m}), 5.65(2 \mathrm{H}, \mathrm{s}), 7.00-7.45(12 \mathrm{H}, \mathrm{m}), 8.47(1 \mathrm{H}, \mathrm{br}$ s)
115	NMR (CDCl3) $8: 1.46(9 \mathrm{H}, \mathrm{s}), \quad 2.60-3.36(6 \mathrm{H}, \mathrm{m}), 3.98(2 \mathrm{H}, \mathrm{m}), 4.81-4.89(1 \mathrm{H}, \mathrm{m})$ ). $7.02 .7 .12(2 \mathrm{H}, \mathrm{m}), 7.29 .7 .50(7 \mathrm{H}, \mathrm{m}), 8.09(1 \mathrm{H}, \mathrm{brs}), 9.24(1 \mathrm{H}, \mathrm{brs})$
116	NMR (CDCl3) $8: 1.46(9 \mathrm{H}, \mathrm{s}), 2.60-3.40(6 \mathrm{H}, \mathrm{m}), 3.88(2 \mathrm{H}, \mathrm{s}), 4.37(2 \mathrm{H}, \mathrm{s}), 4.80$ $-4.95(1 \mathrm{H}, \mathrm{m}), 7.00-7.45(14 \mathrm{H}, \mathrm{m}), 8.02(1 \mathrm{H}, \mathrm{s})$
117	NMR (CDCl 3 ) $8: 1.43(9 \mathrm{H}, \mathrm{s}), 2.20(3 \mathrm{H} . \mathrm{s}), 2.50-3.55(6 \mathrm{H}, \mathrm{m}), 3.67(2 \mathrm{H}, \mathrm{s}), 4.78$ $-4.87(1 \mathrm{H}, \mathrm{m}), 6.71(7 \mathrm{H}, \mathrm{s}), 6.98(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.24-7.45(7 \mathrm{H}, \mathrm{m}), 8.89(1 \mathrm{H}, \mathrm{brs}$ ). $10.38(1 \mathrm{H}, \mathrm{brs})$
118	NMR (CDClis) 8: $1.46(9 \mathrm{H}, \mathrm{s}), 2.60-2.84(2 \mathrm{H}, \mathrm{m}), 3.00(3 \mathrm{H}, \mathrm{s}), 3.20-3.50(4 \mathrm{H}, \mathrm{m})$ $3.71(2 \mathrm{H}, \mathrm{s}), 4.81-4.89(1 \mathrm{H}, \mathrm{m}), 6.51(1 \mathrm{H}, \mathrm{s}), 7.00-7.09(2 \mathrm{H}, \mathrm{m}), 7.22-7.35(5 \mathrm{H}$, $\mathrm{m}), 7.49(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 8.84(1 \mathrm{H}, \mathrm{brs})$
119	NMR (CDCl 3 ) 8: $7.40(9 \mathrm{H}, \mathrm{s}), 2.28-2.75(2 \mathrm{H}, \mathrm{m}), 3.10-3.64(6 \mathrm{H}, \mathrm{m}), 4.81(1 \mathrm{H}, \mathrm{br}$ s), $6.34(1 \mathrm{H}, \mathrm{brs}), 6.98(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, 7.18-7.42(7 \mathrm{H}, \mathrm{m}), 8.76(1 \mathrm{H}, \mathrm{brs})$
120	NMP $(\mathrm{CDCl} 3), 8: 1.47(9 \mathrm{H}, \mathrm{s}), 2.60-2.80(2 \mathrm{H}, \mathrm{m}), 3.10-3.50(4 \mathrm{H}, \mathrm{m}), 3.69(2 \mathrm{H}, \mathrm{s})$   $4.30(1 \mathrm{H}, \mathrm{brs}), 4.87-4.88(1 \mathrm{H}, \mathrm{m}), 6.44(1 \mathrm{H}, \mathrm{m}), 7.00-7.50(13 \mathrm{H}, \mathrm{m}), 9.11(1 \mathrm{H}, \mathrm{s})$
121	$\begin{array}{\|l\|} \hline \text { NMR (CDCla }) ~ 8: ~ \\ 4.47(9 \mathrm{H} .5), 2.50-2.80(2 \mathrm{H}, \mathrm{~m}), 3.10-3.50(4 \mathrm{H}, \mathrm{~m}), 3.70(2 \mathrm{H}, \mathrm{~s}) \\ (2 \mathrm{H}, \mathrm{~d}-4.90(1 \mathrm{H}, \mathrm{~m}), 5 \mathrm{~Hz}), 5.30(2 \mathrm{H}, \mathrm{~s}), 6.96 .7 .36(11 \mathrm{H}, \mathrm{~m}), 7.41(2 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}), 8.18 \\ \hline \end{array}$
122	NMR (CDCl3) $8: 2.20 \cdot 3.50(6 \mathrm{H}, \mathrm{m}), 3.63(2 \mathrm{H}, \mathrm{s}), 4.87-4.88(1 \mathrm{H}, \mathrm{m}), 5.54(1 \mathrm{H}, \mathrm{br}$ s), $6.38(1 \mathrm{H}, \mathrm{s}), 7.26-7.45(9 \mathrm{H}, \mathrm{m}), 8.93(1 \mathrm{H}, \mathrm{brs})$
123	NMR (CDCl3) 8: $1.46(9 \mathrm{H}, \mathrm{s}), 2.60-3.60(6 \mathrm{H}, \mathrm{m}), 4.87 .4 .91(1 \mathrm{H}, \mathrm{m}), 5.03(2 \mathrm{H}, \mathrm{DH}$ s), $7.02-7.38(7 \mathrm{H}, \mathrm{m}), 7.46(1 \mathrm{H}, \mathrm{s}), 7.55-7.60(2 \mathrm{H}, \mathrm{m}), 8.93(1 \mathrm{H}, \mathrm{brs})$
124	$\begin{aligned} & \text { NMA }(\mathrm{CDCl} 3) 8: 7.47(9 \mathrm{H}, \mathrm{~s}), 2.25(3 \mathrm{H}, \mathrm{~s}), 2.60-3.50(6 \mathrm{H}, \mathrm{~m}), 3.52(2 \mathrm{H}, \mathrm{~s}), 4.83 \\ & (1 \mathrm{H}, \mathrm{~s}), 7.27 .7 .45(9 \mathrm{H}, \mathrm{~m}), 9.01(1 \mathrm{H}, \mathrm{brs}) \end{aligned}$
125	NMA ( CDCl 3 ) $8: 1.47(9 \mathrm{H}, \mathrm{s}), 1.59(6 \mathrm{H}, \mathrm{s}), 2.55-3.60(6 \mathrm{H}, \mathrm{m}), 5.01(1 \mathrm{H}, \mathrm{s}), 6.34$ ( $\mathrm{H} \mathrm{H}, \mathrm{s}$ ) $, 6.95-7.50(9 \mathrm{H}, \mathrm{m}), 9.25(1 \mathrm{H}, \mathrm{brs})$
126	NMA (CDCl3) $8: 1.47(9 \mathrm{H}, \mathrm{s}), 1.75 \cdot 3.80(13 \mathrm{H}, \mathrm{m}), 4.86(1 \mathrm{H}, \mathrm{brs}), 6.99-7.50(9 \mathrm{H}$ .m)

$\left(\begin{array}{lll}0 & 1 & 3\end{array}\right]$
[Table 8]

Rex.	$\square \triangle T$ A
127	$\begin{aligned} & \text { NMA (CDCla) } \delta: 1.47(9 \mathrm{H}, \mathrm{~s}), 2.55-2.75(2 \mathrm{H}, \mathrm{~m}), 3.15-3.55(4 \mathrm{H}, \mathrm{~m}), 3.75(2 \mathrm{H}, \mathrm{~s}) \\ & 4.33(1 \mathrm{H}, \mathrm{brs}), 4.87(1 \mathrm{H}, \mathrm{br}), 6.86(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}), 6.97-7.15(2 \mathrm{H}, \mathrm{~m}), 7.23-7.4 \\ & 8(9 \mathrm{H}, \mathrm{~m}), 9.28(1 \mathrm{H}, \mathrm{br}) \end{aligned}$
128	NMA (CDCl3) 8: $1.43(9 \mathrm{H}, \mathrm{s}), 2.55-3.50(6 \mathrm{H}, \mathrm{m}), 3.78(2 \mathrm{H}, \mathrm{s}), 4.89(1 \mathrm{H}, \mathrm{brs}), 5$. $41(2 H, s), 6.98-7.44(14 \mathrm{H}, \mathrm{m}), 7.86(1 \mathrm{H}, \mathrm{s}), 9.87(1 \mathrm{H}, \mathrm{brs})$
129	NMA (CDCl3) $6: 1.45(9 \mathrm{H}, \mathrm{s}), 2.55-3.51(6 \mathrm{H}, \mathrm{m}), 3.85(2 \mathrm{H}, \mathrm{s}), 4.87(1 \mathrm{H}, \mathrm{brs}), 5$. $29(2 \mathrm{H}, 5), 7.04(2 \mathrm{H}, \mathrm{br} 5), 7.22-7.43(12 \mathrm{H}, \mathrm{m}), 8.02(1 \mathrm{H}, \mathrm{s}), 9.27(1 \mathrm{H}, \mathrm{brs})$
130	$\begin{aligned} & \text { NMR (CDCl3) } 8: 1.46(9 \mathrm{H}, \mathrm{~s}), 2.60-3.40(6 \mathrm{H}, \mathrm{~m}), 3.50(2 \mathrm{H}, \mathrm{~s}), 4.79-4.85(1 \mathrm{H}, \mathrm{~m}) \\ & , 5.63(2 \mathrm{H}, \mathrm{~s}), 6.57(1 \mathrm{H}, \mathrm{~s}), 7.01+7.46(14 \mathrm{H}, \mathrm{~m}) \end{aligned}$
131	```NMA (COCl3) \delta: 1.46(9H,s), 1.77-1.90(3H,m), 2.56-2.88(5H,m), 3.10-3.55( 4H,m), 3.82-3.90(1H,m), 4.35(1H,brs), 4.80-4.93(1H,m), 6.97-7.10(2H,m), 7.15(1H,dd,J=7.6, 4.8Hz), 7.24.7.37(5H,m), 7.43-7.48(3H,m), 8.45(1H,dd,J =4.4, 1.6Hz), 10.01(1H,brs)```
132	NMR (CDCl3) $8: 1.47(9 \mathrm{H}, \mathrm{s}), 2.52-2.80(2 \mathrm{H}, \mathrm{m}), 3.20-3.52(4 \mathrm{H}, \mathrm{m}), 3.73(2 \mathrm{H}, \mathrm{s})$ . $4.88(1 \mathrm{H}, \mathrm{brs}), 7.00-7.40(11 \mathrm{H}, \mathrm{rm}), 7.45-7.51(5 \mathrm{H}, \mathrm{m}), 10.41(1 \mathrm{H}, \mathrm{brs})$
133	NMR (CDCl3) 8: $1.22(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}), 1.47(9 \mathrm{H}, \mathrm{s}), 2.50-3.50(7 \mathrm{H}, \mathrm{m}), 3.89(2$ $\mathrm{H}, \mathrm{s}), 4.85-4.94(1 \mathrm{H}, \mathrm{m}), 5.27(2 \mathrm{H}, \mathrm{s}), 6.91(1 \mathrm{H}, \mathrm{s}), 7.00-7.45(1 \mathrm{H}, \mathrm{m}), 7.57(2 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 10.12(1 \mathrm{H}, \mathrm{brs})$
134	NMR (COCl3) $8: 1.47(9 \mathrm{H}, \mathrm{s}), 2.50-2.80(2 \mathrm{H}, \mathrm{m}), 3.20-3.60(6 \mathrm{H}, \mathrm{m}), 4.30(1 \mathrm{H}, \mathrm{br}$ s), $4.88(1 \mathrm{H}, \mathrm{brs}), 4.99(2 \mathrm{H}, 5), 6.70(1 \mathrm{H}, \mathrm{s}), 6.97-7.52(28 \mathrm{H}, \mathrm{m})$
135	NMR (CDClis) $\delta: 1.47(9 \mathrm{H}, 5), 2.69(2 \mathrm{H}, \mathrm{brs}), 3.11-3.43(4 \mathrm{H}, \mathrm{m}), 3.74(2 \mathrm{H}, \mathrm{s}), 4$. $37(1 \mathrm{H}, \mathrm{brs}), 4.88(1 \mathrm{H}, \mathrm{brs}), 5.22(2 \mathrm{H}, \mathrm{s}), 6.72(1 \mathrm{H}, \mathrm{brd}, \mathrm{J}=7.2 \mathrm{~Hz}), 6.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4$. $5 \mathrm{~Hz}), 7.05(2 \mathrm{H}, \mathrm{brs}), 7.10(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}), 7.16-7.35(7 \mathrm{H}, \mathrm{m}), 7.42(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1$ $\mathrm{Hz}), 7.48(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8,4 \mathrm{~Hz}), 10.40(1 \mathrm{H}, \mathrm{brs})$
136	NMR (CDCl3) 8: $1.47(9 \mathrm{H}, \mathrm{s}), 2.69(2 \mathrm{H}, \mathrm{brs}), 3.20-3.50(4 \mathrm{H}, \mathrm{m}), 3.7 .(2 \mathrm{H}, \mathrm{s}), 4$. $81(1 \mathrm{H}, \mathrm{brs}), 4.88(1 \mathrm{H}, \mathrm{brs}), 5.14(2 \mathrm{H}, \mathrm{s}), 6.93(2 \mathrm{H}, \mathrm{brs}), 7.06(3 \mathrm{H}, \mathrm{brd}, \mathrm{J}=8.4 \mathrm{~Hz})$. $7.26 .7 .35(8 \mathrm{H}, \mathrm{m}), 7.45(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 10.20(1 \mathrm{H}, \mathrm{brs})$
137	NMR (CDCla) $8: 1.47(9 \mathrm{H}, \mathrm{s}), 2.70(2 \mathrm{H}$, brs $), 3.15-3.40(4 \mathrm{H}, \mathrm{m}), 3.71(2 \mathrm{H}, \mathrm{s}), 4$. $88(1 \mathrm{H}, \mathrm{brs}), 5.13(2 \mathrm{H}, \mathrm{s}), 6.72(1 \mathrm{H}, \mathrm{brd}, \mathrm{J}=7.2 \mathrm{~Hz}), 6.90-7.44(14 \mathrm{H}, \mathrm{m}), 10.01(1 \mathrm{H}$, brs)
138	NMA (CDCls) $8: 1.46(9 \mathrm{H}, \mathrm{s}), 2.70(2 \mathrm{H}, \mathrm{brs}), 3.36(4 \mathrm{H}, \mathrm{brs}), 4.40(2 \mathrm{H}, \mathrm{s}), 4.89($ $1 \mathrm{H}, \mathrm{brs}), 5.5 \mathrm{~s}(2 \mathrm{H}, \mathrm{s}), 7.03-7.37(10 \mathrm{H}, \mathrm{m}), 7.55-7.77(5 \mathrm{H}, \mathrm{m}), 10.19(1 \mathrm{H}, \mathrm{brs})$
139	NMR (CDCl 3 ) $8: 1.46(9 \mathrm{H}, \mathrm{s}), 1.55(9 \mathrm{H}, \mathrm{s}), 2.55-2.85(2 \mathrm{H}, \mathrm{m}), 3.15-3.55(4 \mathrm{H}, \mathrm{m})$ , $3.76(2 \mathrm{H}, \mathrm{s}), 4.86(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0,3.2 \mathrm{~Hz}), 6.94-7.15(3 \mathrm{H}, \mathrm{m}), 7.21-7.48(6 \mathrm{H}, \mathrm{m})$, 7.63-7.84(3H,m), 9.03(1H.brs)
140	NMA (CDCliz) $\delta: 1.47(9 \mathrm{H}, \mathrm{s}), 2.55-2.85(2 \mathrm{H}, \mathrm{m}), 3.12-3.54(4 \mathrm{H}, \mathrm{m}), 3.67(2 \mathrm{H}, \mathrm{s})$ $4.56(2 \mathrm{H}, \mathrm{brs}), 4.81-4.92(1 \mathrm{H}, \mathrm{m}), 6.42(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 6.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz})$, $6.97-7.15(2 \mathrm{H}, \mathrm{m}), 7.21-7.46(8 \mathrm{H}, \mathrm{m}), 9.66(1 \mathrm{H}, \mathrm{brs})$
141	NMR (CDCla) $\delta: 0.97(6 \mathrm{H}, \mathrm{a}, \mathrm{J}=6.3 \mathrm{~Hz}), 1,46(9 \mathrm{H}, \mathrm{s}), 2.06-2.17(1 \mathrm{H}, \mathrm{m}), 2.50-3$. $50(6 \mathrm{H}, \mathrm{m}), 4.00(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}), 4.11(2 \mathrm{H}, \mathrm{s}), 4.83-4.92(1 \mathrm{H}, \mathrm{m}), 6.95(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1$ $.5 \mathrm{~Hz}), 7.00-7.10(2 \mathrm{H}, \mathrm{m}), 7.14(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz}), 7.22-7.40(9 \mathrm{H}, \mathrm{m}), 7.59(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=8.0 \mathrm{~Hz}), 10.11(1 \mathrm{H}, \mathrm{brs})$

$\left[\begin{array}{lll}013 & 4\end{array}\right]$
[故ble.9]

Fex.	D A T A
142	NMR (CDCl3) $\delta ; 1.47(9 \mathrm{H}, \mathrm{s}), 2.60-2.80(2 \mathrm{H}, \mathrm{m}), 3.15-3.55(4 \mathrm{H}, \mathrm{m}), 3.78(2 \mathrm{H}, \mathrm{s})$ $4.36(t \mathrm{H}, \mathrm{brs}), 4.82-4.94(1 \mathrm{H}, \mathrm{m}), 5.18(2 \mathrm{H}, \mathrm{s}), 6.92-6.99(2 \mathrm{H}, \mathrm{m}), 7.00-7.13(5$ $\mathrm{H}, \mathrm{m}), 7.25 .7 .38(6 \mathrm{H}, \mathrm{m}), 7.42 .7 .48(2 \mathrm{H}, \mathrm{m}), 10.34(1 \mathrm{H}, \mathrm{brs})$
143	NMF (CDCl 3 ) $8: 1.47(9 \mathrm{H}, \mathrm{s}), 2.60-2.80(2 \mathrm{H}, \mathrm{m}), 3.10-3.55(4 \mathrm{H}, \mathrm{m}), 3.70(2 \mathrm{H}, \mathrm{s})$ $4.40(1 \mathrm{H}, \mathrm{brs}), 4.87-4.89(1 \mathrm{H}, \mathrm{m}), 5.16(2 \mathrm{H}, \mathrm{s}), 6.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.2 \mathrm{~Hz}), 6.86(1 \mathrm{H}$ $d, J=8,3 \mathrm{~Hz}), 6.90-7,40(11 \mathrm{H}, \mathrm{m}), 7.45(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8,3 \mathrm{~Hz}), 10.22(1 \mathrm{H}, \mathrm{brs})$
144	NMA (CDCla) 8: $1.47(9 \mathrm{H}, \mathrm{s}), 2.60-2.77(2 \mathrm{H}, \mathrm{m}), 3.20-3.54(4 \mathrm{H}, \mathrm{m}), 3.78(2 \mathrm{H}, \mathrm{s})$ $4.33-4.42(1 \mathrm{H}, \mathrm{m}), 4.84-4.94(1 \mathrm{H}, \mathrm{m}), 5.14(2 \mathrm{H}, \mathrm{s}), 6.80-7.10(8 \mathrm{H}, \mathrm{m}), 7.31-7.3$ $7(4 \mathrm{H}, \mathrm{m}), 7,46(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}) \cdot 10.19(1 \mathrm{H} .5)$
145	NMR ( COCl 3$) 8: 1.47(9 \mathrm{H}, \mathrm{s}), 2.70(2 \mathrm{H}, \mathrm{brs}), 3.35(4 \mathrm{H}, \mathrm{brs}), 3.92(2 \mathrm{H}, \mathrm{s}), 4.36($ $1 \mathrm{H}, \mathrm{brs}), 4.89(1 \mathrm{H}, \mathrm{brs}), 5.17(2 \mathrm{H}, \mathrm{s}), 6.92-7.07(6 \mathrm{H}, \mathrm{m}), 7.26-7.35(6 \mathrm{H}, \mathrm{m}), 7.48($ $2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 10.29(1 \mathrm{H}, \mathrm{brs})$
146	```NMR (CDCl3) &: 1.47(9H,s), 2.60-2.80(2H,m), 3.15-3.55(4H,m), 3.69(2H.s) 4.35(4H,brs), 4.83-4.94(1H,m), 5.15(2H.5), 6.53-6.62(2H,m), 6.75(1H,tt,J =8.8, 2.0Hz), 6.94(1H,s), 7.00-7.15(3H,m), 7.25-7.39(5H,m), 7.42-7.48(2H, m). 10.09(1H,brs)```
147	NMR (CDCl3) $8: 1.47(9 \mathrm{H}, \mathrm{s}), 2.70(2 \mathrm{H}, \mathrm{brs}), 3.36(4 \mathrm{H}, \mathrm{brs}), 3.77(2 \mathrm{H}, \mathrm{s}), 4.87$ ( $1 \mathrm{H}, \mathrm{brs}), 5.17(2 \mathrm{H}, \mathrm{s}), 6.60(1 \mathrm{H}, \mathrm{m}), 6.95(1 \mathrm{H}, \mathrm{s}), 6.95-7.09(5 \mathrm{H}, \mathrm{m}), 7.25-7.35(5$ $\mathrm{H}, \mathrm{m}), 7.46(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 10.21(1 \mathrm{H}, \mathrm{brs})$
148	NMR (CDCls) $8: 1.47(9 \mathrm{H}, \mathrm{s}), 2.60-2.70(2 \mathrm{H}, \mathrm{m}), 3.10-3.60(4 \mathrm{H}, \mathrm{m}), 3.70(2 \mathrm{H}, \mathrm{s})$ , $4.85-4.90(1 \mathrm{H}, \mathrm{m}), 5.12(2 \mathrm{H}, \mathrm{s}), 6.80-6.95(3 \mathrm{H}, \mathrm{m}), 7.00-7.20(4 \mathrm{H}, \mathrm{m}), 7.50-7.9$ $\mathrm{O}(5 \mathrm{H}, \mathrm{m}), 7.44(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), \quad 10.05(1 \mathrm{H}, \mathrm{brs})$
149	NMA (CDCl3) 8: $1.47(9 \mathrm{H}, \mathrm{s}), 2.60-2.80(2 \mathrm{H}, \mathrm{m}), 3.10-4.05(4 \mathrm{H}, \mathrm{m}), 3.92(2 \mathrm{H}, \mathrm{s})$ , 4.35(1H,brs), $4.85-4.94(1 \mathrm{H}, \mathrm{m}), 5.20(2 \mathrm{H}, \mathrm{s}), 6.90-7.25(7 \mathrm{H}, \mathrm{m}), 7.30-7.40(4$ $H, m), 7.48(2 H, d, J=8.4 \mathrm{~Hz}), 10.25(1 \mathrm{H}, \mathrm{brs})$
150	NMR (CDCla) $8: 1.47(9 \mathrm{H}, \mathrm{s}), 2.60-2.80(2 \mathrm{H}, \mathrm{m}), 3.15-3.55(4 \mathrm{H}, \mathrm{m}), 3.77(2 \mathrm{H}, \mathrm{s})$ . $4.37(1 \mathrm{H}, \mathrm{brs}), 4.82-4.94(1 \mathrm{H}, \mathrm{m}), 5.15(2 \mathrm{H}, \mathrm{s}), 6.74-6.82(1 \mathrm{H}, \mathrm{m}), 6.90-7.14(5$ $\mathrm{H}, \mathrm{m}), 7.24-7.37(5 \mathrm{H}, \mathrm{m}), 7.42-7.48(2 \mathrm{H}, \mathrm{m}), 10.04(1 \mathrm{H}, \mathrm{brs})$
151	NMA (CDCla $)$ : $1.51(9 \mathrm{H}, \mathrm{s}), 2.60-2.75(2 \mathrm{H}, \mathrm{m}), 3.10-3.65(4 \mathrm{H}, \mathrm{m}), 3.70(2 \mathrm{H}, \mathrm{s})$ $4.36(1 \mathrm{H}, \mathrm{brs}), 4.85-4.93(1 \mathrm{H}, \mathrm{m}), 5.12(2 \mathrm{H}, \mathrm{s}), 6.69(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}), 6.92(1 \mathrm{H}, \mathrm{s}$ ), $7.00-7.15(3 \mathrm{H}, \mathrm{m}), 7.25-7.40(5 \mathrm{H}, \mathrm{m}), 7.43(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 9.91(1 \mathrm{H}, \mathrm{brs})$
152	NMR (CDCl3) $\delta: 1.47(9 \mathrm{H}, \mathrm{s}), 2.60-2.77(2 \mathrm{H}, \mathrm{m}), 3.20-3.50(4 \mathrm{H}, \mathrm{m}), 3.90(2 \mathrm{H}, \mathrm{s})$ 4.33-4.42(1H,m), 4.84-4.92(1H,m), 5.25(2H,s), 6.93(1H,s), 7.00-7.08(2H, m), $7.30-7.37(5 \mathrm{H}, \mathrm{m}), 7.46(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 10.03(1 \mathrm{H} . \mathrm{s})$
153	NMR ( $\mathrm{COCl}_{3}$ ) $\delta: 1.47(9 \mathrm{H}, \mathrm{s}), 2.60-2.80(2 \mathrm{H}, \mathrm{m}), 3.15-3.55(4 \mathrm{H}, \mathrm{m}), 3.71(2 \mathrm{H}, \mathrm{s})$ , $4.38(1 \mathrm{H}, \mathrm{brs}), 4.82-4.94(1 \mathrm{H}, \mathrm{m}), 5.10(2 \mathrm{H}, \mathrm{s}), 6.93(1 \mathrm{H}, \mathrm{s}), 6.99-7.11(5 \mathrm{H}, \mathrm{m})$, $7.23-7.48(\mathrm{BH}, \mathrm{m}), 7.62-7.67(2 \mathrm{H}, \mathrm{m}), 10.18[1 \mathrm{H}, \mathrm{brs})$
154	NMF (CDCi3) $8: 1.47(9 \mathrm{H}, \mathrm{s}), 2.69(2 \mathrm{H}, \mathrm{brs}), 3.36(4 \mathrm{H}, \mathrm{brs}), 3.98(2 \mathrm{H}, \mathrm{s}), 4.41($ $1 \mathrm{H}, \mathrm{brs}), 4.89(1 \mathrm{H}, \mathrm{brs}), 5.35(2 \mathrm{H}, \mathrm{s}), 6.68(1 \mathrm{H}, \mathrm{d}, \mathrm{d}=1.5 \mathrm{~Hz}), 7.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz})$, $7.07(2 \mathrm{H}, \mathrm{m}), 7.26-7,41(8 \mathrm{H}, \mathrm{m}), 7.49(2 \mathrm{H}, \mathrm{G}, \mathrm{J}=\mathrm{B}, 4 \mathrm{~Hz}), 10.29(1 \mathrm{H}, \mathrm{brs})$
155	NMR (CDClis) $\delta: 1.47(9 \mathrm{H}, \mathrm{s}), 2.70(2 \mathrm{H}, \mathrm{brs}), 3.36(4 \mathrm{H}, \mathrm{brs}), 3.69(2 \mathrm{H}, \mathrm{s}), 4.89($ $1 \mathrm{H}, \mathrm{brs}), 5.27(2 \mathrm{H}, \mathrm{s}), 6.92(1 \mathrm{H}, \mathrm{brd}, \mathrm{J}=1.2 \mathrm{~Hz}), 7.05-7.35(10 \mathrm{H}, \mathrm{m}), 7.40(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $8.4 \mathrm{~Hz}), 7.61(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}), 9.93(1 \mathrm{H}$, brs $)$

$\left\lfloor\begin{array}{lll}0 & 1 & 3\end{array}\right)$
[Table 10 ]

Rex.	D A T A
156	NMR ( COCl 3$) \delta: 1.47(9 \mathrm{H}, \mathrm{s}), 2.69(2 \mathrm{H}, \mathrm{brs}), 3.36(4 \mathrm{H}, \mathrm{brs}), 3.84(2 \mathrm{H}, \mathrm{s}), 4.43(1$ $\mathrm{H}, \mathrm{brs}), 4.88(1 \mathrm{H}, \mathrm{brs}), 5.43(2 \mathrm{H}, \mathrm{s}), 7.04-7.06(4 \mathrm{H}, \mathrm{m}), 7.11(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.2 \mathrm{~Hz}), 7.2$ $6-7.35(5 \mathrm{H}, \mathrm{m}), 7.45(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.55(1 \mathrm{H}, \mathrm{t}=\mathrm{J}=6.9 \mathrm{~Hz}), 7.69-7.74(1 \mathrm{H}, \mathrm{m}), 7$. $79(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}), \quad 8.01(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), \quad \mathrm{B} .11(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), \quad 10.36(1 \mathrm{H}, \mathrm{brs})$
157	NMR (CDCl3) $\delta: 1.47(9 \mathrm{H}, \mathrm{s}), 2.70(2 \mathrm{H}, \mathrm{brs}), 3.36(4 \mathrm{H}, \mathrm{brs}), 3.96(2 \mathrm{H}, \mathrm{s}), 4.40($ $1 \mathrm{H}, \mathrm{brs}), 4.89(1 \mathrm{H}, \mathrm{brs}), 5.25(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz}), 6.87(1 \mathrm{H}, \mathrm{s}), 6.99(1 \mathrm{H}, \mathrm{s}), 7.03-7$ $10(3 \mathrm{H}, \mathrm{m}), 7.25-7.35(7 \mathrm{H}, \mathrm{m}), 7.49(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 10.28(1 \mathrm{H}, \mathrm{brs})$
158	NMR ( CDCl 3 ) $8: 1.47(\mathrm{SH}, \mathrm{s}), 2.70(2 \mathrm{H}, \mathrm{brs}), 3.36(4 \mathrm{H}, \mathrm{brs}), 3.74(2 \mathrm{H}, \mathrm{s}), 4.42($ $1 \mathrm{H}, \mathrm{brs}), 4.88(1 \mathrm{H}, \mathrm{brs}), 5.19(2 \mathrm{H}, \mathrm{s}), 6.74(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.4,8 . \mathrm{OHz}), 6.89-6.94(2 \mathrm{H}$, $\mathrm{m}), 7.09-7.35(9 \mathrm{H}, \mathrm{m}), 7.46(2 \mathrm{H}, \mathrm{d}, \mathrm{d}=8.4 \mathrm{~Hz}), 10.26(1 \mathrm{H}, \mathrm{brs})$
159	NMR (CDCl3) $8: 1.47(9 \mathrm{H}, \mathrm{s}), 2.60-2.77(2 \mathrm{H}, \mathrm{m}), 3.20-3.60(4 \mathrm{H}, \mathrm{m}), 3.73(2 \mathrm{H}, \mathrm{s})$ $4.30-4.40(1 \mathrm{H}, \mathrm{m}), 4.84-4.94(1 \mathrm{H}, \mathrm{m}), 5.20(2 \mathrm{H}, \mathrm{s}), 6.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}), 6.92($ $1 \mathrm{H}, \mathrm{s}), 7.00 \sim 7.20(3 \mathrm{H}, \mathrm{m}), 7.22-7.52(9 \mathrm{H}, \mathrm{m}), 10.25(4 \mathrm{H}, \mathrm{s})$
160	NMA (CDCl3) $8: 1.47(9 \mathrm{H}, 5), 2.60-2.75(2 \mathrm{H}, \mathrm{m}), 3.25-3.55(4 \mathrm{H}, \mathrm{m}), 3.77(2 \mathrm{H}, \mathrm{s})$ , 4.30-4.40(1H.m), 4.84-4.92(1H, m), $5.18(2 \mathrm{H}, \mathrm{s}), 6.67-6.75(1 \mathrm{H}, \mathrm{m}), 6.88-6.9$ $6(2 \mathrm{H}, \mathrm{m}), 7.02-7.12(3 \mathrm{H}, \mathrm{m}), 7.31-7.36(5 \mathrm{H}, \mathrm{m}), 7.45(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 10.06(1 \mathrm{H}$, s)
161	NMP (CDCl3) 8: $1.47(9 \mathrm{H}, \mathrm{s}), 2.60-2.80(2 \mathrm{H}, \mathrm{m}), 3.20-3.60(4 \mathrm{H}, \mathrm{m}), 3.70(2 \mathrm{H}, \mathrm{s})$ , $3.91(3 \mathrm{H}, \mathrm{s}), 4.82-4.95(1 \mathrm{H}, \mathrm{m}), 5.23(2 \mathrm{H}, \mathrm{s}), 6.94(1 \mathrm{H}, \mathrm{s}), 6.99-7.50(13 \mathrm{H}, \mathrm{m}), 7$ $.94-8.03(2 \mathrm{H}, \mathrm{m}), 10.18(1 \mathrm{H}, \mathrm{brs})$
162	NMR (CDCl3) $8: 1.47(9 \mathrm{H}, \mathrm{s}), 1.60-1.70(6 \mathrm{H}, \mathrm{m}), 2.60-2.80(2 \mathrm{H}, \mathrm{m}), 3.20-3.40($ $5 \mathrm{H}, \mathrm{m}), 3.60-3.75(3 \mathrm{H}, \mathrm{m}), 3.71(2 \mathrm{H}, \mathrm{s}), 4.30-4.40(1 \mathrm{H}, \mathrm{m}), 4.80-4.90(1 \mathrm{H}, \mathrm{m}), 5$. $17(2 \mathrm{H}, \mathrm{s}), 6.95(1 \mathrm{H}, \mathrm{s}), 7.00-7.20(5 \mathrm{H}, \mathrm{m}), 7.30-7.50(10 \mathrm{H}, \mathrm{m}), 10.28(1 \mathrm{H}, \mathrm{s})$
163	NMR (CDCl3) $8: 1.47(9 \mathrm{H}, \mathrm{s}), 2.60-2.90(2 \mathrm{H}, \mathrm{m}), 3.16-3.56(4 \mathrm{H}, \mathrm{m}), 4.01(2 \mathrm{H}, \mathrm{s})$ , 4.20-4.30(1H,m), 4.80-4.95(1H,m), 7.00-7.20(2H,m), 7.25-7.38(5H,m), 7. $44(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8,4 \mathrm{~Hz}), \quad 8.07(1 \mathrm{H}, \mathrm{s})$
164	NMP ( CDCl 3 ) $8: 1.47(9 \mathrm{H}, \mathrm{s}), 2.60-2.88(2 \mathrm{H}, \mathrm{m}), 3.10-3.54(4 \mathrm{H}, \mathrm{m}), 4.20-4.35($ $1 \mathrm{H}, \mathrm{m}), 4.85-4.90(1 \mathrm{H}, \mathrm{m}), 4.93(2 \mathrm{H}, \mathrm{s}), 6.38-6.40(1 \mathrm{H}, \mathrm{m}), 7.00-7.15(2 \mathrm{H}, \mathrm{m}), 7$. $30-7.40(7 \mathrm{H}, \mathrm{m}), 7.53(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}), 7.71(1 \mathrm{H} . \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}), 8.34(1 \mathrm{H}, \mathrm{s})$
165	NMA (CDCl 3 ) $8: 1.46(9 \mathrm{H}, \mathrm{s}), 2.60-2.84(2 \mathrm{H}, \mathrm{m}), 3.10-3.50(4 \mathrm{H}, \mathrm{m}), 4.14 .4 .28($ $1 \mathrm{H}, \mathrm{m}), 4.84-4.92(1 \mathrm{H}, \mathrm{m}), 5.00(2 \mathrm{H}, \mathrm{s}), 7.02-7.10(2 \mathrm{H}, \mathrm{m}), 7.30-7.40(7 \mathrm{H}, \mathrm{m}), 8$. $12(1 \mathrm{H}, \mathrm{s}), 8.24(2 \mathrm{H}, \mathrm{s})$
166	NMR ( $\mathrm{CDCl}_{3}$ ) $8: 1.43(9 \mathrm{H}, \mathrm{s}), 2.60-2.80(2 \mathrm{H}, \mathrm{m}), 3.10-3.50(4 \mathrm{H}, \mathrm{m}), 4.64(2 \mathrm{H}, \mathrm{s})$ , 4.75-4.85(1H, m), 6.90-7.00(4H,m), $7.20 .7 .35(9 \mathrm{H}, \mathrm{m}), 8.50-8.80(1 \mathrm{H}, \mathrm{m})$
167	NMA (CDCl3) $8: 2.62-3.00(6 \mathrm{H}, \mathrm{m}), 3.50-3.65(2 \mathrm{H}, \mathrm{m}), 3.95(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.2 \mathrm{~Hz})$, $4.67(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.4,4.0 \mathrm{~Hz}), \quad 7.18-7.40(12 \mathrm{H}, \mathrm{m}), \quad 8.05-8.15(2 \mathrm{H}, \mathrm{m})$
168	NMR (CDCl 3 ) $8: 2.56-2.94(6 \mathrm{H}, \mathrm{m}), 3.40-3.65(2 \mathrm{H}, \mathrm{m}), 3.80(1 \mathrm{H}, \mathrm{brs}), 3.95(1 \mathrm{H}$, $0,13.6 \mathrm{~Hz}), 4.62(1 \mathrm{H}, \mathrm{dc}, \mathrm{J}=10.0,3.2 \mathrm{~Hz}), 6.57-6.66(2 \mathrm{H}, \mathrm{m}), 6.87-6.98(2 \mathrm{H}, \mathrm{m})$. 7.20-7.37(10H.m)
169	NMR (CDCli3) $8: 2.54-2.98(6 \mathrm{H}, \mathrm{m}), 3.50-4.02(5 \mathrm{H}, \mathrm{m}), 4.62(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.0,3$. $6 \mathrm{~Hz}), 6.80-7.70(17 \mathrm{H}, \mathrm{m}), 8.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.6 \mathrm{~Hz}), 9.73(1 \mathrm{H}, \mathrm{br})$

[013 6 01
$[T a b l e$ 11]

Rex.	D A T A
170	NMR (CDCl 3 ) $8: 2.54-2.98(6 \mathrm{H}, \mathrm{m}), 3.50-3.74(3 \mathrm{H}, \mathrm{m}), 3.96(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.6 \mathrm{~Hz})$, $4.59(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.0,3.6 \mathrm{~Hz}), 7.00-7.80(16 \mathrm{H}, \mathrm{m}), 8.50-8.62(2 \mathrm{H}, \mathrm{m})$
171	NMR (CDCl3) $6 ; 2.54-3.02(6 \mathrm{H}, \mathrm{m}), 3.50-3.75(3 \mathrm{H}, \mathrm{m}), 3.96(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.6 \mathrm{~Hz})$, $4.59(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.4,4.0 \mathrm{~Hz}), 7.00-7.60(16 \mathrm{H}, \mathrm{m}), 8.55-8.65(2 \mathrm{H}, \mathrm{m})$
172	NMA (CDClis) $8: 2.54-3.02(6 \mathrm{H}, \mathrm{m}), 3.50-4.04(3 \mathrm{H}, \mathrm{m}), 3.65(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.6 \mathrm{~Hz})$, $4.59(1 \mathrm{H}, \mathrm{da}, \mathrm{d}=10.0,4.0 \mathrm{~Hz}), 7.00-8.00(19 \mathrm{H}, \mathrm{m}), \quad 8.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.4 \mathrm{~Hz})$
173	NMA (CDCla ) $8: 1.22(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}), 1.47(9 \mathrm{H}, \mathrm{s}), 2.50-3.50(7 \mathrm{H}, \mathrm{m}), 3.89(2$ $\mathrm{H}, \mathrm{s}), 4.85-4.94(1 \mathrm{H}, \mathrm{m}), 5.27(2 \mathrm{H}, \mathrm{s}), 6.91(1 \mathrm{H}, \mathrm{s}), 7.00-7.45(10 \mathrm{H}, \mathrm{m}), 7.57(2 \mathrm{H}$, $\mathrm{d} ; \mathrm{J}=8.3 \mathrm{~Hz}), 10.12(1 \mathrm{H}, \mathrm{brs})$
174	NMA (CDClg) $8: 2.57-2.96(3 \mathrm{H}, \mathrm{m}), 3.58(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14 . \mathrm{HHz}), 3.97(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.0 \mathrm{H}$ z), $4.04(2 H, d, d=1.2 H z), 4.5 B(1 H, d d, J=10.0,3.2 H z), 7.10(2 H, d, J=8.4 H z), 7$. $21,7,33(14 \mathrm{H}, \mathrm{m}), 7.50(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 9.82(1 \mathrm{H}$, brs $)$
17	NMR ( CDCl 3 ) $8: 2.40(3 \mathrm{H}, \mathrm{s}), 2.54-3.00(6 \mathrm{H}, \mathrm{m}), 3.57(1 \mathrm{H}, \mathrm{d}, \mathrm{d}=13.6 \mathrm{~Hz}) .3 .88($ $2 \mathrm{H}, \mathrm{s}), 3.95(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.6 \mathrm{~Hz}), 4.62(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.4,3.6 \mathrm{~Hz}), 7.00 .7 .75(16 \mathrm{H}, \mathrm{m})$, $8.44(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4,4 \mathrm{~Hz}), 9.66(1 \mathrm{H}, \mathrm{brs})$
176	NMR (CDCl3) $\delta: 2.54-3.00(6 \mathrm{H}, \mathrm{m}), 3.57(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.6 \mathrm{~Hz}), 3.89(2 \mathrm{H}, \mathrm{s}), 3.95($ $1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.6 \mathrm{~Hz}), 4.61(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.0,3.6 \mathrm{~Hz}), 7.00-7.50(14 \mathrm{H}, \mathrm{m}), 8.45-8.70(3$ H,ml, 8.91 (1H,brs)
177	NMR ( $\mathrm{CDCl}_{3}$ ) $8: 2.59-2.94(6 \mathrm{H}, \mathrm{m}), 3.57(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.6 \mathrm{~Hz}), 3.72(2 \mathrm{H}, \mathrm{s}), 3.96($ $1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.6 \mathrm{~Hz}), 4.63(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.4,4.0 \mathrm{~Hz}), 5.14(2 \mathrm{H}, \mathrm{s}), 6.90(1 \mathrm{H}, \mathrm{s}), 7.04-7$ $10(4 \mathrm{H}, \mathrm{m}), 7.24-7.36(14 \mathrm{H}, \mathrm{m}), 7.46(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 10.27(1 \mathrm{H}, \mathrm{s})$
178	NMA (CDCl3) $8: 2.31(3 \mathrm{H}, \mathrm{s}), 2.89-3.19(6 \mathrm{H}, \mathrm{m}), 3.98(2 \mathrm{H}, \mathrm{s}), 3.72(2 \mathrm{H}, \mathrm{s}), 4.96$ $(1 \mathrm{H}, \mathrm{dt}, \mathrm{j}=3.2,10.4 \mathrm{~Hz}), 7.03-7.40(17 \mathrm{H}, \mathrm{m}), 10.30(4 \mathrm{H}, \mathrm{s})$
179	NMR (CDCls) $8: 2.24(3 \mathrm{H}, \mathrm{s}), 2.82-3.20(6 \mathrm{H}, \mathrm{m}), 3.81(2 \mathrm{H}, \mathrm{s}), 3.99(2 \mathrm{H}, \mathrm{s}), 5.01$ $(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=10.0,3.6 \mathrm{~Hz}), 7.14-7.61(17 \mathrm{H}, \mathrm{m}), 10.36(1 \mathrm{H}, \mathrm{s})$
180	NMA (CDCl3) $8: 2.42(3 \mathrm{H}, \mathrm{s}), 2.70-3.19(6 \mathrm{H}, \mathrm{m}), 3.69(2 \mathrm{H}, 5), 3.93(2 \mathrm{H}, 5), 4.94$ $(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=3,2,10,0 \mathrm{~Hz}), 7,05-7,69(17 \mathrm{H}, \mathrm{m}), 10.26(1 \mathrm{H}, \mathrm{s})$
181	NMR (CDClis) $\delta: 1.10(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}) .2 .73(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.2,6.4 \mathrm{~Hz}), 2.89(1 \mathrm{H}$, $\mathrm{dd}, \mathrm{J}=13.2,6.8 \mathrm{~Hz}$ ), 2.95-3.06(1H,m), $3.76(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.2 \mathrm{~Hz}), 3.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1$ $3.2 \mathrm{~Hz}), 7.16 .7 .40(7 \mathrm{H}, \mathrm{m}), 8.01-8.22(2 \mathrm{H}, \mathrm{m})$
182a	NMA (CDCl 3 ) $\delta: 1.07(3 \mathrm{H}, 0, \mathrm{~J}=6.4 \mathrm{~Hz}), 2.50-2.75(3 \mathrm{H}, \mathrm{m}), 2.88(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.6$, $8.8 \mathrm{~Hz}), 3.15-3.30(1 \mathrm{H}, \mathrm{m}), 3.51(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.2 \mathrm{~Hz}), 3.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.2 \mathrm{~Hz}), 4.62$ $(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.4,4.0 \mathrm{~Hz}), 6.80-7.60(12 \mathrm{H}, \mathrm{m}), 8.00-8.15(2 \mathrm{H}, \mathrm{m})$
182 b	NMR (CDCl3) $\delta: 1.05(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}), 2.47(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14.4,10.4 \mathrm{~Hz}), 2.62-2$. $85(2 \mathrm{H}, \mathrm{m}), 3.03-3.18(2 \mathrm{H}, \mathrm{m}), 3.62(1 \mathrm{H}, \mathrm{brs}), 3.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.2 \mathrm{~Hz}), 3.89(1 \mathrm{H}, \mathrm{d}$, $J=13.2 \mathrm{H}, \mathrm{z}), 4.51(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.6,3.2 \mathrm{~Hz}), 7.14 .7 .44(12 \mathrm{H}, \mathrm{m}), 8.05 .8 .20(2 \mathrm{H}, \mathrm{m})$
183	NMR (CDCl3) $8: 1.00(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 2.45-2.77(4 \mathrm{H}, \mathrm{m}), 3.13-3.18(1 \mathrm{H}, \mathrm{m}), 3$ $.40-3.78(4 \mathrm{H}, \mathrm{m}), 3.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.6 \mathrm{~Hz}), 4.56(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.4,3.6 \mathrm{~Hz}), 6.55-6.6$ $\mathrm{B}(2 \mathrm{H}, \mathrm{m}), 6.80-6.93(2 \mathrm{H}, \mathrm{m}), 7.13-7,40(10 \mathrm{H}, \mathrm{m})$
184	NMR (CDCl 3 ) $\delta: 1.04(3 H, d, J=6.8 \mathrm{~Hz}), 2.27(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.2,9.6 \mathrm{~Hz}), 2.62(1 \mathrm{H}$, dd $, \mathrm{J}=13.2,10.4 \mathrm{~Hz}), 2.75(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.2,4.0 \mathrm{~Hz}), 3.30-4.10(5 \mathrm{H}, \mathrm{m}), 4.42(1 \mathrm{H}$, $\mathrm{dd}, \mathrm{J}=10.0,4.0 \mathrm{~Hz}), 6.55-6.6 \mathrm{~B}(2 \mathrm{H}, \mathrm{m}), 6.83-6.95(2 \mathrm{H}, \mathrm{m}), 7.20-7.40(10 \mathrm{H}, \mathrm{m})$

(0.137)
[Table 12]

Rex.	$D$ A T A
185	NMR (CDCl3) $8: 1.00(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 2.54-2.65(3 \mathrm{H}, \mathrm{m}), 2.70-2.82(1 \mathrm{H}, \mathrm{m}), 3$ $.08-3.20(1 \mathrm{H}, \mathrm{m}), 3.44-3.98(5 \mathrm{H}, \mathrm{m}), 4.55(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.4,3.6 \mathrm{~Hz}), 6.80-7.60(16$ $\mathrm{H}, \mathrm{m}), 7.64 .7 .74(1 \mathrm{H}, \mathrm{m}), 8.50-8.70(1 \mathrm{H}, \mathrm{m}), 9.72(1 \mathrm{H}, \mathrm{brs})$
186	$\mathrm{NMA}(\mathrm{CDCl} 3) 8: 1.02(3 \mathrm{H}, \mathrm{d}, 3=6.8 \mathrm{~Hz}), 2.32(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.8,8.8 \mathrm{~Hz}), 2.63(1 \mathrm{H}$, $d d, J=13.2,10.4 \mathrm{~Hz}), 2.75(\mathrm{HH}, \mathrm{dd}, \mathrm{J}=13.2,3.6 \mathrm{~Hz}), 2.95-3.10(2 \mathrm{H} . \mathrm{m}), 3.70-3.9$ $2(4 \mathrm{H}, \mathrm{m}), 4.44(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.6,3.6 \mathrm{~Hz}), 7.00-7.06(2 \mathrm{H}, \mathrm{m}), 7.16-7.38(11 \mathrm{H}, \mathrm{m}), 7$. $62-7,72(2 \mathrm{H}, \mathrm{m}), 6,61(7 \mathrm{H}, \mathrm{d}, \mathrm{J}=4,4 \mathrm{~Hz}), 9.74(4 \mathrm{H}$, brs $)$
187	NMA (CDCl 3$) 6: 1.03(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 2.32(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.2,9.2 \mathrm{~Hz}), 2.54(1 \mathrm{H}$, $d d, J=13.2,10.4 \mathrm{~Hz}), 2.75(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.2,3.6 \mathrm{~Hz}), 2.95-3.10(2 \mathrm{H}, \mathrm{m}), 3.65-3.9$ $3(4 \mathrm{H}, \mathrm{m}), 4.45(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.4,4.0 \mathrm{~Hz}), 5.14(2 \mathrm{H}, \mathrm{s}), 6.92 .7 .50(21 \mathrm{H}, \mathrm{m}), 10.30($ 1H,brs)
188	NMA (CDCl3) $8: 2.58-2.65(1 \mathrm{H}, \mathrm{m}), 2.75-3.00(5 \mathrm{H}, \mathrm{m}), 3.59(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.2 \mathrm{~Hz})$, $3.95(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.2 \mathrm{~Hz}), 5.01(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.0,3.2 \mathrm{~Hz}), 6.97-7.03(1 \mathrm{H}, \mathrm{m}), 7.12 .7$. $35(9 \mathrm{H}, \mathrm{m}), 7.48-7.56(1 \mathrm{H}, \mathrm{m}), 8.04+8.13(2 \mathrm{H}, \mathrm{m})$
189	NMA (CDCl 3 ) $8: 2.65(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.0,12.4 \mathrm{~Hz}), 2.72-3.00(5 \mathrm{H}, \mathrm{m}), 3.57(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=13.2 \mathrm{~Hz}), 3.94(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.2 \mathrm{~Hz}), 4.64(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.0,3.2 \mathrm{~Hz}), 6.92-7.08(3 \mathrm{H}$. $\mathrm{m}), 7.20-7.36(8 \mathrm{H}, \mathrm{m}), 8.11(2 \mathrm{H}, \mathrm{d}, \mathrm{S}=3.8 \mathrm{~Hz})$
190	NMR (CDCl3) $8: 2.57-3.00(6 \mathrm{H}, \mathrm{m}), 3.56(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.2 \mathrm{~Hz}), 3.95(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.2$ $\mathrm{Hz}), 4.63(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.0,3.2 \mathrm{~Hz}), 6.99-7.04(2 \mathrm{H}, \mathrm{m}), 7.21-7.35(9 \mathrm{H}, \mathrm{m}), 8.12(2$ $\mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz})$
191	NMF (CDCla) $8: 2.52-2.59(1 \mathrm{H}, \mathrm{m}), 2.64-2.93(5 \mathrm{H}, \mathrm{m}), 3.58(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.6 \mathrm{~Hz})$, $3.72-3.76(1 \mathrm{H}, \mathrm{m}), 3.96(1 \mathrm{H} . d, \mathrm{~J}=13.6 \mathrm{~Hz}), 4.98(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.8,10.4 \mathrm{~Hz}), 6.60-6$. $64(2 \mathrm{H}, \mathrm{m}), 6.61-7.35(10 \mathrm{H}, \mathrm{m}), 7.47-7.59(1 \mathrm{H}, \mathrm{m})$
192	NMA (CDClis) 8: 2.51-2.59(1H,m), $2.64-2.90(5 \mathrm{H}, \mathrm{m}), 3.57(1 \mathrm{H}, \mathrm{d}, \mathrm{j}=13.2 \mathrm{~Hz})$, $3.94(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.2 \mathrm{~Hz}), 4.59(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.0,3.2 \mathrm{~Hz}), 6.60-6.64(2 \mathrm{H}, \mathrm{m}), 6.90-6$. $94(3 \mathrm{H}, \mathrm{m}), 7.00-7.05(2 \mathrm{H}, \mathrm{m}), 7,23-7.35(6 \mathrm{H}, \mathrm{m})$
193	NMA (CDCl3) $8: 2.52-2.92(6 \mathrm{H}, \mathrm{m}), 3.57(1 \mathrm{H}, 0, J=13.6 \mathrm{~Hz}), 3,80(1 \mathrm{H}, \mathrm{s}), 3.96($ $1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.6 \mathrm{~Hz}), 4.58(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.2,3.6 \mathrm{~Hz}), 6.60-6.64(2 \mathrm{H}, \mathrm{m}), 6.91-7.02(4$ $\mathrm{H}, \mathrm{m}), 7.22-7.35(7 \mathrm{H}, \mathrm{m})$
194	NMA (CDCl 3 ) 8: $2.53-2.60(1 \mathrm{H}, \mathrm{m}), 2.68-2.94(5 \mathrm{H}, \mathrm{m}), 3.58(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.2 \mathrm{~Hz})$. $3.86(2 H, s), 3.95(1 H, d, J=13.2 H z), 4.97(1 H, d d, J=2.8,10.0 \mathrm{~Hz}), 6.94-7.35(12$ $\mathrm{H}, \mathrm{m}), 7.44,7.51(3 \mathrm{H}, \mathrm{m}), 7.67-7.72(1 \mathrm{H}, \mathrm{m}), 8.60 .8 .63(1 \mathrm{H}, \mathrm{m}), 9.72(1 \mathrm{H}, \mathrm{s})$
195	NMR (CDCl3) $8: 2.52-2.59(1 \mathrm{H}, \mathrm{m}), 2.66-2.94(5 \mathrm{H}, \mathrm{m}), 3.57(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.2 \mathrm{~Hz})$, $3.86(2 \mathrm{H}, 5), 3.94(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.2 \mathrm{~Hz}), 4.58(1 \mathrm{H}, \mathrm{dd} . \mathrm{J}=10.4,3.6 \mathrm{~Hz}), 6.89-7.07(4 \mathrm{H}$ , m) , $7.19-7.35(9 \mathrm{H}, \mathrm{m}), 7.45-7.48(2 \mathrm{H}, \mathrm{m}), 7.62 .7 .72(1 \mathrm{H}, \mathrm{m}), 8.60-8.64(1 \mathrm{H}, \mathrm{m})$, $9.74(1 \mathrm{H}, \mathrm{s})$
196	NMR (CDCl3) $\delta ; 2.52-2,94(6 \mathrm{H}, \mathrm{m}), 3.56(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.2 \mathrm{~Hz}), 3.86(2 \mathrm{H}, \mathrm{s}), 3.94($ $1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.2 \mathrm{~Hz}), 4.57(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.0,3.2 \mathrm{~Hz}), 6.96-7.08(4 \mathrm{H}, \mathrm{m}), 7.21-7.35(9$ $\mathrm{H}, \mathrm{m}), 7.45-7.48(2 \mathrm{H}, \mathrm{m}), 7.66-7,72(1 \mathrm{H}, \mathrm{m}), 8.60-8.64(1 \mathrm{H}, \mathrm{m}), 9.73(1 \mathrm{H}, \mathrm{s})$
197	NMA (CDCl 3 ) $8: 3.70(2 \mathrm{H}, \mathrm{s}), 3.88(2 \mathrm{H}, \mathrm{s}), 7.23-7.32(4 \mathrm{H}, \mathrm{m}), 7.54-7.62(2 \mathrm{H}, \mathrm{m})$ $, 7.71(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=7.6,1,6 \mathrm{~Hz}), 8,63(1 \mathrm{H}, \mathrm{d}), 10.04(1 \mathrm{H}, \mathrm{brs})$

$(0138)$
[Twble 13]

Rex.	D A T A
198	$\begin{aligned} & \text { NMF (CDCl3) } 8: 3.72(2 \mathrm{H}, \mathrm{~s}), 4.13(2 \mathrm{H}, \mathrm{~s}), 7.26-7.31(3 \mathrm{H}, \mathrm{~m}), 7.58-7.63(2 \mathrm{H}, \mathrm{~m}) \\ & 8.78(2 \mathrm{H}, \mathrm{~d}, 5=5,2 \mathrm{~Hz}), 9.82(1 \mathrm{H}, \mathrm{brs}) \end{aligned}$
199	$\begin{aligned} & \mathrm{NMA}(\mathrm{CDCl}) \delta: \delta: 3.71(2 \mathrm{H}, \mathrm{~s}), 4.08(2 \mathrm{H}, \mathrm{~s}), 7.25-7.30(2 \mathrm{H}, \mathrm{~m}), 7.40(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}= \\ & 8.4 \mathrm{~Hz}), 7.57+7.66(3 \mathrm{H}, \mathrm{~m}), 7.77-7.89(2 \mathrm{H}, \mathrm{~m}), 8,12(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}), 8.20(\mathrm{H}, \mathrm{~d}, \\ & \mathrm{J}=8,4 \mathrm{~Hz}), 10.60(1 \mathrm{H}, \mathrm{brs}) \end{aligned}$
200	NMR (CDCl3) $8: 2.31(3 \mathrm{H}, \mathrm{s}), 2.59(3 \mathrm{H}, \mathrm{s}), 3.71(2 \mathrm{H}, \mathrm{s}), 3.77(2 \mathrm{H}, \mathrm{s}), 6.91(1 \mathrm{H}, \mathrm{s}$ ), $6.93(1 \mathrm{H}, \mathrm{s}), 7.24-7.28(2 \mathrm{H}, \mathrm{m}), 7.55-7.60(2 \mathrm{H}, \mathrm{m}), 10.60(1 \mathrm{H}, \mathrm{brs})$
201	$\begin{aligned} & \text { NMR (CDCl3) } 8: 3.70(2 \mathrm{H}, \mathrm{~s}), 3.97(2 \mathrm{H}, \mathrm{~s}), 5.42(2 \mathrm{H}, \mathrm{~s}), 3.74(2 \mathrm{H}, \mathrm{~s}), 7.01(1 \mathrm{H}, \mathrm{~d} \\ & , \mathrm{J}=\mathrm{B} .5 \mathrm{~Hz}), 6.89-6.94(2 \mathrm{H}, \mathrm{~m}), 7.22-7.37(7 \mathrm{H}, \mathrm{~m}), 7.56(2 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}), 7.78-7.8 \\ & 1(1 \mathrm{H}, \mathrm{~m}), \quad 10.68(1 \mathrm{H}, \text { brs }) \end{aligned}$
202	NMR (CDCl 3 ) $8: 2.26(3 \mathrm{H}, \mathrm{s}), 239(3 \mathrm{H}, 5), 2.57(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 2.72(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7$ $.2 \mathrm{~Hz}), 3.72(2 \mathrm{H}, \mathrm{s}), 6.95(1 \mathrm{H}, \mathrm{s}), 7.01(1 \mathrm{H}, \mathrm{s}), 7.11(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.51(2 \mathrm{H}, \mathrm{d} \mathrm{J}$ $=8.8 \mathrm{~Hz}), 10.17(1 \mathrm{H}, \mathrm{s})$
203	NMR $8: 2.32(3 \mathrm{H}, \mathrm{s}), 2.41(3 \mathrm{H}, \mathrm{s}), 2,90-3.19(6 \mathrm{H}, \mathrm{m}), 3.75(2 \mathrm{H}, \mathrm{s}), 4.01(2 \mathrm{H}, \mathrm{s})$, $4.89(1 \mathrm{H}, \mathrm{dt}, \mathrm{Jm} 7.6,3.2 \mathrm{~Hz}), 6.99-7.71(16 \mathrm{H}, \mathrm{m}), 10.26(1 \mathrm{H}, \mathrm{s})$
204	NMA (CDCl3) 8: $1.47(9 \mathrm{H}, \mathrm{s}), 1.70-1.82(2 \mathrm{H}, \mathrm{m}), 2.59(2 \mathrm{H}, \mathrm{t}, \mathrm{a}, \mathrm{J}=8.0 \mathrm{~Hz}), 3.04$ $3.20(2 \mathrm{H}, \mathrm{m}), 3.86(2 \mathrm{H}, \mathrm{s}), 4.52(1 \mathrm{H}, \mathrm{brs}), 7.05 \mathrm{~m} 7.15(2 \mathrm{H}, \mathrm{m}), 7.20-7.33(2 \mathrm{H}, \mathrm{m}), 7$ $.40-7.50(2 \mathrm{H}, \mathrm{mI}), 7.69(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=2.0,8.0 \mathrm{~Hz}), 8.55+8.65(1 \mathrm{H}, \mathrm{m}), 9.70(1 \mathrm{H}, \mathrm{brs})$
205	NMA (CDCla) $\delta: 1.45(9 \mathrm{H}, \mathrm{s}), 3.42-3.60(2 \mathrm{H}, \mathrm{m}), 3.86(2 \mathrm{H}, \mathrm{s}), 3.98(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.2$ $\mathrm{Hz}), 5.00(1 \mathrm{H}, \mathrm{brs}), 6.77-6.88(2 \mathrm{H}, \mathrm{m}), 7.21-7.28(1 \mathrm{H}, \mathrm{m}), 7.22(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz})$, $7.40 .7 .50(2 \mathrm{H}, \mathrm{m}), 7.70(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=8.0,2.0 \mathrm{~Hz}), 8.57-8.65(1 \mathrm{H}, \mathrm{m}), 9.68(1 \mathrm{H}, \mathrm{brs})$
206	NMR (CDCl3) $8: 1.24(6 \mathrm{H}, \mathrm{s}), 1.46(9 \mathrm{H}, \mathrm{s}), 2.93(2 \mathrm{H}, \mathrm{s}), 3.87(2 \mathrm{H}, \mathrm{s}), 4.24(1 \mathrm{H}, \mathrm{b}$ rs), $7.05-7.13(2 \mathrm{H}, \mathrm{m}), 7.18-7.33(2 \mathrm{H}, \mathrm{m}), 7.42-7.50(2 \mathrm{H}, \mathrm{m}), 7.66-7.73(1 \mathrm{H}, \mathrm{m})$, 8.58-8.66(1H,m), $9.73(1 \mathrm{H}, \mathrm{brs})$
207	NMR (CDCl 3 ) 8: $1.65-1.85(2 \mathrm{H}, \mathrm{m}), 2.55-2.64(2 \mathrm{H}, \mathrm{m}), 2.66-2.74(2 \mathrm{H}, \mathrm{m}), 3.86$ $(2 \mathrm{H}, \mathrm{s}), 7.07-7.15(2 \mathrm{H}, \mathrm{m}), 7.20-7.35(4 \mathrm{H}, \mathrm{m}), 7.40-7.50(2 \mathrm{H}, \mathrm{m}), 7.65 \cdot 7.73(1 \mathrm{H}$, m), 8.54-8.64(1H,m), $9.70(1 \mathrm{H}$, brs $)$
208	NMA (CDClis) $\delta: 1.48(9 \mathrm{H}, \mathrm{s}), 2.60-2.85(2 \mathrm{H}, \mathrm{m}), 3.15-3.60(4 \mathrm{H}, \mathrm{m}), 4.30-4.40($ $1 \mathrm{H}, \mathrm{m}), 4.80-4.95(1 \mathrm{H}, \mathrm{m}), 6.77(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 6.92-6.97(1 \mathrm{H}, \mathrm{m}), 7.05-7.15(2$ H,m), $7.31-7.36(4 \mathrm{H}, \mathrm{m}), 7.51(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.60-7.68(2 \mathrm{H}, \mathrm{m}), 8.26(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}$ $=4.9,1.0 \mathrm{~Hz}) .11 .71(1 \mathrm{H} . \mathrm{s})$

$\left(\begin{array}{llll}0 & 1 & 3 & 9\end{array}\right)$
[Table 14]

Ex.	D ATA
1	$\operatorname{mp}: 223-225^{\circ} \mathrm{C}$   NMF $8: 2.95-3.28(6 \mathrm{H}, \mathrm{m}), 4.98-5.07(1 \mathrm{H}, \mathrm{m}), 7.23-7.44(6 \mathrm{H}, \mathrm{m}), 7.65 \times 7.75(1 \mathrm{H}$, $\mathrm{m}), 7.88(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 8.05-8.22(2 \mathrm{H}, \mathrm{m}), 8.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.4 \mathrm{~Hz}), 8.97(1 \mathrm{H}, \mathrm{brs}$ ), $9,43(1 \mathrm{H}, \mathrm{brs}), 10,65(1 \mathrm{H}, \mathrm{brs})$
2	```mp : 263-265'C NMR 8: 2.92-3.10(3H,m), 3.13-3.27(3H,m), 5.00(1H,dd,d=10.8, 2.8Hz), 7.2 4-7.44(8H,m), 7.74-7.81(3H,m), 8.57(1H,d,j=8.0Hz), 8.81+8.96(2H,m),9.20 -9.30(2H,m), 10.71(1H,brs)```
3	mp : $145-147^{\circ} \mathrm{C}$   NMR 8: 2.94-3.10(3H,m), 3.14-3.30(3H,m), 4.97-5.05(1H,m), $7.27-7.46(7 \mathrm{H}$, $\mathrm{m}), 7.77 .7 .90(4 \mathrm{H}, \mathrm{m}), 8.30(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.4,1.6 \mathrm{~Hz}), 8.60 .8 .71(2 \mathrm{H}, \mathrm{m}), 8.89(1 \mathrm{H}$, brs $)_{,} 9.10-9.30(2 \mathrm{H}, \mathrm{m}), 13.12(1 \mathrm{H}, \mathrm{brs})$
4	mp : $246-248^{\circ} \mathrm{C}$ (dec)   NMR $8: 2.92-3.09(3 \mathrm{H}, \mathrm{m}), 3.17-3.26(3 \mathrm{H}, \mathrm{m}), 5.01(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.4,2.8 \mathrm{~Hz}), 7$. $24(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.29-7.47(6 \mathrm{H}, \mathrm{m}), 7.56 \cdot 7.75(4 \mathrm{H}, \mathrm{m}), 7.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz})$, $8.11(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}), 8.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.4 \mathrm{~Hz}), 8.92$ ( $1 \mathrm{H}, \mathrm{brs}$ ), $9.32(1 \mathrm{H}, \mathrm{brs}), 10.69$ ( 1H.brs)
5	mp : $228-233^{\circ} \mathrm{C}$ (dec)   NMA 8: 2.88-3.09(3H,m), $3.10-3.24(3 \mathrm{H}, \mathrm{m}), 4.30(2 \mathrm{H}, \mathrm{s}), 4.934 .01(1 \mathrm{H}, \mathrm{m}), 6$ $.19(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.6 \mathrm{~Hz}), 7.18-7.27(2 \mathrm{H}, \mathrm{m}), 7.28-7.53(7 \mathrm{H}, \mathrm{m}), 7.57-7.62(2 \mathrm{H}, \mathrm{m}), 7$. $97(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), \quad 8.08(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 8.83(1 \mathrm{H}, \mathrm{brs}), 9.11(1 \mathrm{H}, \mathrm{brs}), 10.57(1$ H,brs)
6	$\mathrm{mp}: 161-162^{\circ} \mathrm{C}$   NMR $8: 2.86-3.24(6 \mathrm{H}, \mathrm{m}), 4.24(2 \mathrm{H}, \mathrm{s}), 4.97(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.6,2.8 \mathrm{~Hz}), 7.16-7.23($ $2 \mathrm{H}, \mathrm{m}), 7.27 .7 .44(5 \mathrm{H}, \mathrm{m}), 7.55(1 \mathrm{H}, \mathrm{s}), 7.61(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.85(1 \mathrm{H}, \mathrm{s}), 8.27($ $1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}), 8.97(1 \mathrm{H}, \mathrm{brs}), 9.47(1 \mathrm{H}, \mathrm{brs}), 10.94(1 \mathrm{H}, \mathrm{brs})$
7	MS (m/z) : $396\left[(\mathrm{M}+\mathrm{H})^{+1}\right]$   NMA 8: $2.70(3 \mathrm{H}, 5), 2.86 \cdot 3.27(6 \mathrm{H}, \mathrm{m}), 3.85(2 \mathrm{H}, \mathrm{s}), 5.00-5.05(1 \mathrm{H}, \mathrm{m}), 7.18-7$.   $60(10 \mathrm{H}, \mathrm{m}), 10.43(1 \mathrm{H}, \mathrm{s})$
8	```mp : 203-207 NMR 8: 2.92-3.0B(3H,m), 3.10-3.22(3H,m), 4.28(2H,s), 5.01(1H,d,d=7.8Hz) , 6.21(1H,brs), 7.22(2H,d,J=8.3Hz), 7.25-7.63(4H,m), 8.93(1H.brs), 9.38(1 H,DrS), 10.86(1H,s)```
9	$\mathrm{mp}: 259-261^{\circ} \mathrm{C}$   NMA $\delta: 2.90-3.10(3 \mathrm{H}, \mathrm{m}), 3.10-3.25(3 \mathrm{H}, \mathrm{m}), 4.15(2 \mathrm{H}, \mathrm{s}), 4.97(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.8 \mathrm{H}$ z). $6.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.9 \mathrm{~Hz}), 7.21(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.30-7.42(5 \mathrm{H}, \mathrm{m}), 7.57(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $8.8 \mathrm{~Hz}), 8.85(1 \mathrm{H}, \mathrm{brs}), 9.14(1 \mathrm{H}, \mathrm{brs}), 10.58(1 \mathrm{H}, \mathrm{s})$
10	$m p=210-213^{\circ} \mathrm{C}$   NMA 8: $2.86-3.08(3 \mathrm{H}, \mathrm{m}), 3.12-3.22(3 \mathrm{H}, \mathrm{m}), 3.73(2 \mathrm{H}, \mathrm{s}), 4.91-4.98(1 \mathrm{H}, \mathrm{m}), 6$ $.19(1 H, d, J=3.9 H z), 7.21(2 H, d, J=8.3 H z), 7.29-7.42(5 H, m), 7.54(2 H, d, J=8.3 H$   z), $8.78(1 \mathrm{H}, \mathrm{brs}), 8.99(1 \mathrm{H}, \mathrm{brs}), 10.35(1 \mathrm{H}, \mathrm{s}), 13.21(1 \mathrm{H}, \mathrm{brs}), 13.34(1 \mathrm{H}, \mathrm{brs})$

【0140)
[Table 15]

Ex.	D ATA
11	$\mathrm{mp}: 205-210^{\circ} \mathrm{C}$ (dec)   NMR 8: $2.90 .3 .25(6 \mathrm{H}, \mathrm{m}), 4.95-5.04(1 \mathrm{H}, \mathrm{m}), 7.23-7.44(7 \mathrm{H}, \mathrm{m}), 7.67-7.75(2 \mathrm{H}$, $\mathrm{m}), 8.15(1 \mathrm{H}, \mathrm{s}), 8.88(1 \mathrm{H}, \mathrm{brs}), 9.25(1 \mathrm{H}, \mathrm{brs}), 10.83(1 \mathrm{H}, \mathrm{brs})$
12	$m p: 244-246^{\circ} \mathrm{C}$   NMR . 8: $2.90-3.08(3 \mathrm{H}, \mathrm{m}), 3.10-3.20(3 \mathrm{H}, \mathrm{m}), 3.67(2 \mathrm{H}, \mathrm{s}), 5.00(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.4 .1$ $0.02 \mathrm{~Hz}), 7.19(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.2 \mathrm{~B}-7.42(5 \mathrm{H}, \mathrm{m}), 7.57(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 8.90(1$ $\mathrm{H}, \mathrm{s}), 9.31(1 \mathrm{H}, \mathrm{s}), 10.31(1 \mathrm{H}, \mathrm{s})$
13	```mp : 205-208}\mp@subsup{}{}{\circ}\textrm{C NMR 8: 1.27(3H,t,J=7.1Hz), 2.88-3.08(3H,m), 3.12-3.22(3H,m), 3.86(2H,s), 4.27(2H,q,J=7.1Hz), 4.96(1H,d,J=8.3Hz), 6.20(1H,s), 7.19(2H,d,J=8.3Hz), 7.30-7.42(5H,m), 7.57(2H,d,J=8.3Hz), 8.81(1H,s), 9.10(1H,s), 10.33(1H,s), 12.53(1H.5)```
14	$\mathrm{mp}: 165.173^{\circ} \mathrm{C}$   NMR 8: 2.88-3.22(6H,m), $3.66(2 \mathrm{H}, \mathrm{s}), 4.98(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.9,13.1 \mathrm{~Hz}), 6.72(7 \mathrm{H}$,   s). $7.19(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.23-7.42(8 \mathrm{H}, \mathrm{m}), 7.59(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.72-7.78(1$   H.m), $8.85(1 \mathrm{H}, \mathrm{s}), 9.18(1 \mathrm{H}, \mathrm{brs}), 10.24(1 \mathrm{H}, \mathrm{brs}), 10.55(1 \mathrm{H}, \mathrm{s})$
15	```mp : 248-2510}\textrm{C NMR 8: 2.90-3.08(3H,m), 3.09-3.21(3H,m), 3.88(2H,s), 5.02(1H,dd, J=10.0, 2.4Hz), 6.20(1H,brs), 7.16.7.22(2H,m), 7.28-7.46(7H,m), 7.57.7.63(2H,m), 7.84(1H,t,J=7.2Hz), 8.95(1H,brs), 9.40(1H,brs), 10.48(1H,brs)```
16	$\mathrm{mp}: 237-238^{\circ} \mathrm{C}$   NMR 8: $2.87 \cdot 3.24(6 \mathrm{H}, \mathrm{m}), 3.77(2 \mathrm{H}, \mathrm{s}), 4.93-5.03(1 \mathrm{H}, \mathrm{m}), 5.32(2 \mathrm{H}, \mathrm{s}), 6.20(1$ $\mathrm{H}, \mathrm{d}, \mathrm{J}=4.0 \mathrm{~Hz}), 6.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 6.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}), 7.16-7.22(2 \mathrm{H}, \mathrm{m}), 7$ 25-7.46(10H,m), $7.57-7.63(2 \mathrm{H}, \mathrm{s}), 7.67(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.4,7.2 \mathrm{~Hz}), 8.87(1 \mathrm{H}, \mathrm{brs})$, $9.24(1 \mathrm{H}, \mathrm{brs}), 10.30(1 \mathrm{H}, \mathrm{brs})$
17	mp : $190-193^{\circ} \mathrm{C}$   NMR $\delta: 1.6 \mathrm{a}(3 \mathrm{H}, \mathrm{m}), 2.90-3.10(3 \mathrm{H}, \mathrm{m}), 3.10-3.20(3 \mathrm{H}, \mathrm{m}), 4.32(2 \mathrm{H}, \mathrm{s}), 4.67(1$ $\mathrm{H}, \mathrm{s}), 4.83(2 \mathrm{H}, \mathrm{s}), 4.94(1 \mathrm{H}, \mathrm{s}), 4.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 6.21(1 \mathrm{H}, \mathrm{brs}), 7.21(2 \mathrm{H}, \mathrm{d}$, $J=8.7 \mathrm{~Hz}), 7.24-7.42(5 \mathrm{H}, \mathrm{m}), 7.56(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.66(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.9 \mathrm{~Hz}), 7.71$ $1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1,9 \mathrm{~Hz}), 8.89(1 \mathrm{H}, \mathrm{brs}), 9.30(1 \mathrm{H}, \mathrm{brs}), 10.92(1 \mathrm{H}, \mathrm{s})$
18	$\mathrm{mp}: 139-141^{\circ} \mathrm{C}$   NMR $\delta: 3.01$ (3H,brs), $3.15(3 \mathrm{H}, \mathrm{brs}) .3 .92(2 \mathrm{H}, \mathrm{s}), 5.05(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.3 \mathrm{~Hz}), 5.44$ $(2 \mathrm{H}, \mathrm{s}), 6.19(1 \mathrm{H}, \mathrm{brs}), 7.19(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=\mathrm{B}, 3 \mathrm{~Hz}), 7.31-7.47(10 \mathrm{H}, \mathrm{m}), 7.60(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8$ $.3 \mathrm{~Hz}), 7.66(1 \mathrm{H}, \mathrm{s}), 9.05(1 \mathrm{H}, \mathrm{brs}), 9.35(1 \mathrm{H}, \mathrm{s}), 9.6 \mathrm{O}(1 \mathrm{H}, \mathrm{brs}), 10.76(1 \mathrm{H}, \mathrm{s})$
19	mp : $140-143^{\circ} \mathrm{C}$   NMR $\delta: 2.99-3.09(3 \mathrm{H}, \mathrm{m}), 3.16(3 \mathrm{H}, \mathrm{brs}), 3.95(2 \mathrm{H}, \mathrm{s}), 5.06(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.4 \mathrm{~Hz})$, $5.57(2 \mathrm{H}, \mathrm{s}), 6.19(1 \mathrm{H}, \mathrm{brs}), 7.19(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.29-7.35(1 \mathrm{H}, \mathrm{m}), 7.37-7.481$ $8 \mathrm{H}, \mathrm{m}), 7.55-7.57(1 \mathrm{H}, \mathrm{m}), 7.61(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 9.09(1 \mathrm{H}, \mathrm{brs}), 9.31(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1$. $5 \mathrm{~Hz}), 9.65(1 \mathrm{H}, \mathrm{brs}), 10.79(1 \mathrm{H}, \mathrm{s})$

$\{0141$ )
[Table 16 ]

Ex.	$D A T A$
20	mp : $140-143^{\circ} \mathrm{C}$   NMF 8: 3.01-3.09(3H,m), 3.16(3H,brs), $3.93(2 \mathrm{H}, \mathrm{s}), 5.06(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.3 \mathrm{~Hz})$, $5.47(2 \mathrm{H}, \mathrm{s}), 6.15(1 \mathrm{H}, \mathrm{brs}), 7.19(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.29-7.33(1 \mathrm{H}, \mathrm{m}), 7.38-7.46($ $7 \mathrm{H}, \mathrm{m}), 7.61(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.63(1 \mathrm{H}, \mathrm{s}), 7.70(1 \mathrm{H}, \mathrm{s}), 9.09(1 \mathrm{H}, \mathrm{brs}), 9.38(1 \mathrm{H}$,   s), $9.63(1 \mathrm{H}, \mathrm{tr}), 10.78(1 \mathrm{H}, \mathrm{s})$
21	```mp : 141-146 % NMH 8: 2.96-3.14(3H,m), 3.15(3H,brs), 3.91(2H,s), 5.04(1H,d,J=10.3Hz), 5.45(2H.s), 6.22(1H,brs), 7.19(2H,d.v=8.6Hz), 7.29-7.42(6H,m), 7.50(3H,s), 7.59(2H,d,J=8.6Hz), 7.65(1H,s), 9.02(1H,6rs), 9.32(1H,d,J=1.5Hz), 9.55(1 H,brs), 10.73(1H,s)```
22	$\mathrm{mp}: 230-235^{\circ} \mathrm{C}$   NMH. 8: 2.59-3.10(3H.m), 3.10-3.25(3H,m), 4.47(2H,s), $5.01(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.3$,   $2.4 \mathrm{~Hz}), 5.45(2 \mathrm{H}, \mathrm{s}), 6.21(1 \mathrm{H}, \mathrm{brs}), 7.16-7.22(4 \mathrm{H}, \mathrm{m}), 7.28-7.50(7 \mathrm{H}, \mathrm{m}), 7.54($ $2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.68(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.8,1.9 \mathrm{~Hz}), 8.94(\mathrm{H}, \mathrm{brs}), 9.42(1 \mathrm{H}, \mathrm{brs}), 10.9$ $8(1-s)$
23	$\mathrm{mp}: 203-209^{\circ} \mathrm{C}$   NMP 8: 2.90-3.10(3H,m), 3.10-3.20(3H.m), $4.41-4.48(2 \mathrm{H}, \mathrm{m}), 4.95-5.05(1 \mathrm{H}$. m), $5.46(2 \mathrm{H}, \mathrm{s}), 6.21(1 \mathrm{H}, \mathrm{brs}), 7.20(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.30-7.42(6 \mathrm{H}, \mathrm{m}), 7.50-7$. $54(2 \mathrm{H}, \mathrm{m}), 7.70(2 \mathrm{H}, \mathrm{s}), 8.92(1 \mathrm{H}, \mathrm{brs}), 9.39(1 \mathrm{H}, \mathrm{brs}), 10.88-10.95(1 \mathrm{H}, \mathrm{m})$
24	```mp : 221-2230 NMA 8; 2.90-3.08(3H,m), 3.10-3.22(3H,m), 4.04(2H,s), 4.97(1H,d,J=9.1Hz) , 5.44(2H,s), 6.20(1H,brs), 7.20(2H,d,J=8.1Hz), 7.30-7.41(9H,m), 7.49(2H, d, J=8,6Hz), 7.55(2H,d,J=8.6Hz), 8.83(1H,brs), 9.16(1H,brs), 10.76(1H,s)```
25	```mp : 222-225 NMA \delta: 2.60-3.05(3H,m), 3.10-3.20(3H,m), 4.43(2H,s), 5.01(1H,0,5=7.6Hz) , 5.44(2H,s), 6.21(1H,brs), 7.15-7.23(4H,m), 7.26-7.46(5H,m), 7.51(2H,d,J =8.8Hz), 7.65-7.72(4H,m), 8.94(1H,brs), 9.41(1H,brs), 10.93(1H,s), 14.72( 1H,brs)```
26	mp : 197-203 ${ }^{\circ} \mathrm{C}$   NMR 8: 2.80-3.10(3H,m), 3.10-3.25(3H,m), 4.44(2H,s), $4.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=\mathrm{B}, \mathrm{OHz})$   $5.51(2 \mathrm{H}, \mathrm{s}), 6.21(1 \mathrm{H}, \mathrm{br}), 7.17(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.30-7.42(5 \mathrm{H}, \mathrm{m}), 7.48(2 \mathrm{H}$,   $\mathrm{d}, \mathrm{d}=8.5 \mathrm{~Hz}), 7.54(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.70(2 \mathrm{H}, \mathrm{d}, \mathrm{d}=8.1 \mathrm{~Hz}), 7.72-7.77(2 \mathrm{H}, \mathrm{m}), \quad 6.9$   $0(1 \mathrm{H}, \mathrm{brs}), 9.34(1 \mathrm{H}, \mathrm{brs}), 10.90(1 \mathrm{H}, \mathrm{s})$
27	```mp : 208-214*O NMR \delta: 2.90-3,10(3H,m), 3.10-3.22(3H,m), 4.44(2H,s), 4.97(1H,d,J=9.7Hz) 5.62(2H.s), 6,20(1H.brs), 7.16(2H,d,J=8.0Hz), 7.30-7.55(10H,m), 7.70-7.9 4(6H,m), 8,82(1H,brs), 9,14(1H,brs), 10.76(1H,s)```
28	mp : $219-223^{\circ} \mathrm{C}$   NMR $8: 2.11(3 \mathrm{H} . \mathrm{s}), 2,92-3.08(3 \mathrm{H}, \mathrm{m}), 3.10-3.20(3 \mathrm{H}, \mathrm{m}), 4.43(2 \mathrm{H}, \mathrm{s}), 5.02(1$ $\mathrm{H}, \mathrm{dd}, \mathrm{J}=10.2,2.4 \mathrm{~Hz}), 5.51(2 \mathrm{H}, 5), 6.22(1 \mathrm{H}, \mathrm{brs}), 7.14-7.34(7 \mathrm{H}, \mathrm{m}), 7.36-7.42($ $4 \mathrm{H}, \mathrm{m}), 7.4 \mathrm{~B}-7.53(3 \mathrm{H}, \mathrm{m}), 8.95(1 \mathrm{H}, \mathrm{brs}), 9.43(1 \mathrm{H}, \mathrm{brs}), 10.94(1 \mathrm{H}, \mathrm{s}), 14.61(1 \mathrm{H}$ brs)

$\left(\begin{array}{lll}01421\end{array}\right.$
[Table 17]

Ex.	D ATA
29	mp: 204-207 ${ }^{\circ} \mathrm{C}$   NMR $8: 2.24(3 \mathrm{H}, \mathrm{s}), 2.80-3.10(3 \mathrm{H}, \mathrm{m}), 3.10-3.50(3 \mathrm{H}, \mathrm{m}), 4.43(2 \mathrm{H}, \mathrm{s}), 5.01(1$   $\mathrm{H}, \mathrm{dd}, \mathrm{J}=10.3,2.5 \mathrm{~Hz}), 5.39(2 \mathrm{H}, \mathrm{s}), 6.21(1 \mathrm{H}, \mathrm{brs}), 7.17 .7 .24(2 \mathrm{H}, \mathrm{m}), 7.30-7.42($   $7 \mathrm{H}, \mathrm{m}), 7.47(2 \mathrm{H}, \mathrm{dd}, J=8.8,5.4 \mathrm{~Hz}), 7.55(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 8.94(1 \mathrm{H}, \mathrm{brs}), 9.40(1$ $\mathrm{H}, \mathrm{brs}), 11.00(1 \mathrm{H}, \mathrm{S}), 14.70(1 \mathrm{H}, \mathrm{brs})$
30	$m p: 225 \cdot 228^{\circ} \mathrm{C}$   NMR $8: 2.90-3.07(3 \mathrm{H}, \mathrm{m}), 3.10-3.23(3 \mathrm{H}, \mathrm{m}), 4.28(2 \mathrm{H}, \mathrm{s}), 4.97(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.3 \mathrm{H}$   z). $5.68(2 \mathrm{H}, \mathrm{s}), 6.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.4 \mathrm{~Hz}), 7.16-7.23(4 \mathrm{H}, \mathrm{m}), 7.30-7.46(7 \mathrm{H}, \mathrm{m}), 7.5$   $3(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 8.82(1 \mathrm{H}, \mathrm{brs}), 9.11(1 \mathrm{H}, \mathrm{brs}), 10.63(1 \mathrm{H}, \mathrm{s})$
31	$\mathrm{mp}: 232-235^{\circ} \mathrm{C}$   NMA $8: 2.90 .3 .10(3 \mathrm{H}, \mathrm{m}), 3.10-3.25(3 \mathrm{H}, \mathrm{m}), 4.03(2 \mathrm{H}, \mathrm{s}), 4.98(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.3 \mathrm{H}$   z), $5.97(2 \mathrm{H}, \mathrm{s}), 6.2 \mathrm{O}(4 \mathrm{H}, \mathrm{brs}), 7.19(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.29-7.42(6 \mathrm{H}, \mathrm{m}), 7.55(2$ $\mathrm{H} . \mathrm{d}, 5=8.3 \mathrm{~Hz}), 7.67-7.77(2 \mathrm{H}, \mathrm{m}), 8.87(1 \mathrm{H}, \mathrm{brs}), 9.22(1 \mathrm{H}, \mathrm{brs}), 10.49(1 \mathrm{H}, \mathrm{s}), 1$ 4.61(1H, brs)
32	mp : $233-235^{\circ} \mathrm{C}$   NMF $\delta: 2.90-3.10(3 \mathrm{H}, \mathrm{m}), 3.10-3.25(3 \mathrm{H}, \mathrm{m}), 4.01(2 \mathrm{H}, \mathrm{s}), 4.98(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.3 \mathrm{H}$   z), $5.91(2 \mathrm{H}, \mathrm{s}), 6.19(1 \mathrm{H}, \mathrm{brs}), 7.17-7.48(11 \mathrm{H}, \mathrm{m}), 7.55(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 8.85(1$   H.brs), $9.18(1 \mathrm{H}, \mathrm{brs}), 10.47(1 \mathrm{H}, \mathrm{s})$
33	$\mathrm{mp}: 240-242^{\circ} \mathrm{C}$   NMR $\delta: 2.90-3.10(3 \mathrm{H}, \mathrm{m}), 3.10-3.25(3 \mathrm{H}, \mathrm{m}), 4.32(2 \mathrm{H}, \mathrm{s}), 4.98(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=10.3$. $3.4 \mathrm{~Hz}), 5.72(2 \mathrm{H}, \mathrm{s}), 6.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.9 \mathrm{~Hz}), 7.20(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.30-7.40(6 \mathrm{H}$, $\mathrm{m}), 7.51(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}), 8.86(1 \mathrm{H}$, brs), $9.17(1 \mathrm{H}, \mathrm{brs}), 10.67(1 \mathrm{H}, \mathrm{s})$
34	mp : $221-224^{\circ} \mathrm{C}$   NMA 8: 2.90-3.07(3H,m), 3.10-3.20(3H,m), 4.05(2H.s), 5.00(2H.dd, J=2.7. $10.2 \mathrm{~Hz}), 7.21(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.29-7.42(5 \mathrm{H}, \mathrm{m}), 7.58(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), \quad \mathrm{B} .83(1$ $\mathrm{H}, \mathrm{s}), 8.91(1 \mathrm{H}, \mathrm{brs}), 9.32(1 \mathrm{H}, \mathrm{brs}), 10.62(1 \mathrm{H}, \mathrm{s})$
35	$\mathrm{mp}: 222-224^{\circ} \mathrm{C}$   NMA 8: $2.89-3.07(3 \mathrm{H}, \mathrm{m}), 3.12 .3 .21(3 \mathrm{H}, \mathrm{m}), 3.84(2 \mathrm{H}, \mathrm{s}), 4.33(2 \mathrm{H}, \mathrm{s}), 4.98(1$ $\mathrm{H}, \mathrm{dd}, \mathrm{J}=2.4,10.2 \mathrm{~Hz}), 7.20(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.22 \cdot 7.42(10 \mathrm{H}, \mathrm{m}), 7.58(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8$ $.3 \mathrm{~Hz}), 8.87(1 \mathrm{H}, \mathrm{brs}), 9.22(1 \mathrm{H}, \mathrm{brs}), 10.44(1 \mathrm{H}, \mathrm{s})$
36	mp : $242-245^{\circ} \mathrm{C}$   NMR $\delta: 2.11(3 \mathrm{H}, \mathrm{s}), 2.99-3.06(3 \mathrm{H}, \mathrm{m}), 3.09-3.21(3 \mathrm{H}, \mathrm{m}), 3.68(2 \mathrm{H}, \mathrm{s}), 5.00(1$ $\mathrm{H}, \mathrm{dd}, \mathrm{J}=2.1,10.2 \mathrm{~Hz}), 6.02(1 \mathrm{H}, \mathrm{brs}), 6.98(1 \mathrm{H}, \mathrm{s}), 7.18(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}), 7.28-7$. $42(5 \mathrm{H}, \mathrm{m}), 7.58(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}), 8.89(1 \mathrm{H}, \mathrm{brs}), 9.30(1 \mathrm{H}, \mathrm{brs}), 10.25(1 \mathrm{H}, \mathrm{s}), 12$ . $10(1 \mathrm{H}, \mathrm{s})$
37	mp : $252-256^{\circ} \mathrm{C}$   NMR $8: 2.89(3 \mathrm{H}, \mathrm{s}), 2.91 .3 .07(3 \mathrm{H}, \mathrm{m}), 3.11-3.21(3 \mathrm{H}, \mathrm{m}), 3.65(2 \mathrm{H}, \mathrm{s}), 4.95-5$. $02(1 \mathrm{H}, \mathrm{m}), 6.20(1 \mathrm{H}, \mathrm{brs}), 6.58(1 \mathrm{H}, \mathrm{s}), 7.20(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.28-7.42(5 \mathrm{H}, \mathrm{m})$, $7.57(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 8.87(1 \mathrm{H}, \mathrm{brs}), 9.24(1 \mathrm{H}, \mathrm{brs}), \quad 10.39(1 \mathrm{H}, \mathrm{s}), 12.56(1 \mathrm{H}, \mathrm{s})$

[0143)
[Table 18 ]

Ex.	D ATA
38	mp : $-230^{\circ} \mathrm{C}$ (dec.)   NMF : $2.88-3.22(6 \mathrm{H}, \mathrm{m}), 3.73(2 \mathrm{H}, \mathrm{s}), 3.65(2 \mathrm{H}, \mathrm{s}), 5.00(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.0,10.0 \mathrm{H}$ z), $6.20(1 \mathrm{H}, \mathrm{brs}), 7.12(1 \mathrm{H}, \mathrm{s}), 7.18(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.28 \mathrm{~m} 7.42(5 \mathrm{H}, \mathrm{m}), 7.59(2$ $\mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 8.39(4 \mathrm{H}, \mathrm{brs}), 8.91(1 \mathrm{H}, \mathrm{brs}), 9.32(1 \mathrm{H}, \mathrm{brs}), 10.41(1 \mathrm{H}, \mathrm{s}), 12.60$ (1H,s)
39	mp : $177.181^{\circ} \mathrm{C}$   NMA $\delta: 2.90-3.10(3 \mathrm{H}, \mathrm{m}), 3.10-3.25(3 \mathrm{H}, \mathrm{m}), 3.67(2 \mathrm{H}, \mathrm{s}), 5.00(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 1=10$. $0.2 .0 \mathrm{~Hz}), 6.68(1 \mathrm{H}, \mathrm{s}) .6 .97(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 7.19(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.27 .7 .42(9$ $\mathrm{H}, \mathrm{m}), 7.59(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 8.90(1 \mathrm{H}, \mathrm{brs}), 9.29(1 \mathrm{H}, \mathrm{brs}), 10.29(1 \mathrm{H}, \mathrm{s}), 10.54$ ( 1H,brs)
40	$\operatorname{mp}: 237.243^{\circ} \mathrm{C}$   NMR $\delta: 2.90-3.06(3 \mathrm{H}, \mathrm{m}), 3.06-3.20(3 \mathrm{H}, \mathrm{m}), 4.45(2 \mathrm{H}, \mathrm{s}), 5.01(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.8$, $2 . \mathrm{OHz}), 5.70(2 \mathrm{H}, \mathrm{s}), 6.21(1 \mathrm{H}, \mathrm{brs}), 7.14(2 \mathrm{H}, \mathrm{C}, \mathrm{J}=8 . \mathrm{BHz}), 7.29 .7 .42(5 \mathrm{H}, \mathrm{m}), 7$. $46(2 H, d, J=8 . B H z), 7.54(2 H, d, J=8.8 H z), 7.77(2 H, d d, J=14.4,2.0 H z), 8.13(2$ $\mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 8.94(1 \mathrm{H}, \mathrm{brs}), 9.41(1 \mathrm{H}, \mathrm{brs}), 10.95(1 \mathrm{H}, \mathrm{s})$
41	mp : $151-159^{\circ} \mathrm{C}$   NMR $\delta: 2.90-3.10(3 \mathrm{H}, \mathrm{m}), 3.10-3.20(3 \mathrm{H}, \mathrm{m}), 3.76(2 \mathrm{H}, \mathrm{s}), 5.02(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.2$, $2.7 \mathrm{~Hz}), 6.70(1 \mathrm{H}, \mathrm{s}), 7.20(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.25-7.40(5 \mathrm{H}, \mathrm{m}), 7.59(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8$ $\mathrm{Hz}, 8.96(1 \mathrm{H}, \mathrm{brs}), 9.21(1 \mathrm{H}, \mathrm{brs}), 9.43(1 \mathrm{H}, \mathrm{brs}), 10.58(1 \mathrm{H}, \mathrm{s})$
42	mp : 205-209 ${ }^{\circ} \mathrm{C}$   NMF $5:$ 2.90.3.08(3H,m), 3.13-3.23(3H,m),4.92-4.97(1H,m), 6.20(1H.brs), $7.19-7.42(1 \mathrm{OH}, \mathrm{m}), 7.71(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 8.76(1 \mathrm{H}, \mathrm{brs}), 8.92(1 \mathrm{H}, \mathrm{brs}), 9.65(1 \mathrm{H}$ s)
43	MS (m/z) : $411\left[(\mathrm{M}+\mathrm{H})^{+}\right]$   NMA $\delta: 2.20(3 \mathrm{H}, \mathrm{s}), 2.90 .3 .07(3 \mathrm{H}, \mathrm{m}), 3.10-3.20(3 \mathrm{H}, \mathrm{m}), 3.74(2 \mathrm{H}, \mathrm{s}), 5.00(1$ $\mathrm{H}, \mathrm{dd}, \mathrm{J}=2.5,10.3 \mathrm{~Hz}), 7.20(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.28-7.42(5 \mathrm{H}, \mathrm{m}), 7.59(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8$. $8 \mathrm{~Hz}), 8.91(1 \mathrm{H}, \mathrm{brs}), 9.13(1 \mathrm{H}, \mathrm{brs}), 9.33(1 \mathrm{H}, \mathrm{brs}), 10.58(1 \mathrm{H} . \mathrm{s})$
44	MS (m/z) : 425[(M+H)+]   NMA 8: $1.48(6 \mathrm{H}, \mathrm{s}), 286 \cdot 3.22(6 \mathrm{H}, \mathrm{m}), 4.90-4.96(1 \mathrm{H}, \mathrm{m}), 6.19(1 \mathrm{H}, \mathrm{brs}), 6.4 \mathrm{O}($ 1H.brs), $7.17(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.27-7.41(5 \mathrm{H}, \mathrm{m}), 7.56(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 8.74(1$ H.brs) $8.90(1 \mathrm{H}, \mathrm{brs}), 9.53(1 \mathrm{H}, \mathrm{brs})$
45	MS (m/z): $437\left[(\mathrm{M}+\mathrm{H})^{+}\right]$   NMA 8: 1.68-2.12(4H,m), 2.43-2.59(2H,m), 2.91-3.07(3H,m), 3.11-3.20(3H, m). $3.76-3.81(1 \mathrm{H}, \mathrm{m}), 5.00(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.5,10.3 \mathrm{~Hz}), 6.20(1 \mathrm{H}, \mathrm{brs}), 7.19(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=8.3 \mathrm{~Hz}), 7.27-7.42(5 \mathrm{H}, \mathrm{m}), 7.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 8.90(1 \mathrm{H}, \mathrm{brs}), 9.33(1 \mathrm{H}, \mathrm{brs})$. $10.43(1 \mathrm{H} . \mathrm{s})$
46	MS ( $\mathrm{m} / \mathrm{z}$ ) : $421\left[(\mathrm{M}+\mathrm{H})^{+1}\right.$   NMR 8: 2.88-3.24(6H,m), $3.83(2 \mathrm{H}, \mathrm{s}), 4.95-5.04(1 \mathrm{H}, \mathrm{m}), 6.19(1 \mathrm{H}, \mathrm{brs}), 7.16-$ $7.22(2 \mathrm{H}, \mathrm{m}), 7.26-7.45(6 \mathrm{H}, \mathrm{m}), 7.55-7.63(2 \mathrm{H}, \mathrm{m}), 7.87(1 \mathrm{H}, \mathrm{s}), 8.04(1 \mathrm{H}, \mathrm{d}, \mathrm{j}=3$. $6 \mathrm{~Hz}), 8.91$ ( 1 H brs), $9.32(1 \mathrm{H}, \mathrm{brs}), 10.42(1 \mathrm{H}, \mathrm{brs})$
47	MS (m/z) : $456\left[(M+H)^{+}\right]$   NMR $8: 2.84-3.19(6 \mathrm{H}, \mathrm{m}), 4.03(2 \mathrm{H}, \mathrm{s}), 4.87-4.97(1 \mathrm{H}, \mathrm{m}), 5.43(2 \mathrm{H}, \mathrm{s}), 6.12(2$ $H, s), 7.20(2 H, d, J=8.3 H z), 7.25 \cdot 7.41(11 \mathrm{H}, \mathrm{m}), 7.53(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.30(1 \mathrm{H}$,   5), $10.38(1 \mathrm{H}, \mathrm{s})$

$(0144)$
[Table 19]

Ex.	D ATA
48	MS $(\mathrm{m} / \mathrm{z}): 456\left[(\mathrm{M}+\mathrm{H})^{+}\right]$   NMR $8: 2.88-3.18(6 \mathrm{H}, \mathrm{m}), 3.69(2 \mathrm{H}, \mathrm{s}), 4.87-4.95(1 \mathrm{H}, \mathrm{m}), 5.36(2 \mathrm{H}, \mathrm{s}), 6.15-6$ $21(1 \mathrm{H}, \mathrm{m}), 7.18(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.27-7.41(11 \mathrm{H}, \mathrm{m}), 7.54(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 8.5$ $7(1 \mathrm{H}, \mathrm{s}), 8.72(1 \mathrm{H}, \mathrm{brs}), 8.82(1 \mathrm{H}, \mathrm{brs}), 10.20(1 \mathrm{H}, \mathrm{s})$
49	MS $(\mathrm{m} / \mathrm{z}): 504[(\mathrm{M}+\mathrm{H})+1$   NMR 反: 2.88-3.07(3H,m), 3.11-3.21(3H,m), 3.67(2H,s), 4.93-4.99(1H,m), 5 $.53(2 \mathrm{H}, \mathrm{s}), 6.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.9 \mathrm{~Hz}), 7.00(1 \mathrm{H}, \mathrm{s}), 7.13(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}), 7.18(2 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=8.3 \mathrm{~Hz}), 7.24-7.42(8 \mathrm{H}, \mathrm{m}), 7.49(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=\mathrm{g}, 3 \mathrm{~Hz}), 8.82(1 \mathrm{H}, \mathrm{brs}), 9.11(1 \mathrm{H}, \mathrm{brs})$ , 10.35(1H.s)
50	$\mathrm{MS}(\mathrm{m} / \mathrm{z}): 416 \llbracket(\mathrm{~N}+\mathrm{H})+1$   NMP 8: $1.76 \mathrm{~m} .87(2 \mathrm{H}, \mathrm{m}), 2.18-2.26(2 \mathrm{H}, \mathrm{m}), 2.80-3.22(\mathrm{BH}, \mathrm{m}), 4.39-4.47(1 \mathrm{H}$, $\mathrm{m}), 4.95-5.07(1 \mathrm{H}, \mathrm{m}), 7.15-7.22(2 \mathrm{H}, \mathrm{m}), 7.27-7.43(5 \mathrm{H}, \mathrm{m}), 7.54 .7 .63(2 \mathrm{H}, \mathrm{m})$, 7.74-7.82(1H,m), $8.27(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}), 8.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.8 \mathrm{~Hz}), 8.97(1 \mathrm{H}, \mathrm{brs}), 9$. 47(1H,brs), $10.74(1 \mathrm{H}, \mathrm{brs})$
51	MS ( $\mathrm{m} / \mathrm{z}$ ) : $441\left[(\mathrm{M}+\mathrm{H})^{+}\right]$   NMR $8: 2.90-3.10(3 \mathrm{H}, \mathrm{m}), 3.10-3.20(3 \mathrm{H}, \mathrm{m}), 4.18(2 \mathrm{H}, \mathrm{s}), 4.96(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz})$ , $6.20(1 \mathrm{H}, \mathrm{brs}), 7.18(2 \mathrm{H}, \mathrm{a}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.2047 .60(12 \mathrm{H}, \mathrm{m}), 7.84(1 \mathrm{H}, \mathrm{s}), 7.97(1 \mathrm{H}$ s), $8.83(1 \mathrm{H}$, brs $), ~ 9.17(1 \mathrm{H}, \mathrm{brs}), 10.55(1 \mathrm{H}, \mathrm{s})$
52	MS (m/z) : $497\left[(\mathrm{M}+\mathrm{H})^{+}\right]$   NMR 8: $1.14(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.9 \mathrm{~Hz}), 2.83(1 \mathrm{H}$, sep, $\mathrm{J}=12.9 \mathrm{~Hz}), 2.90-3.22(6 \mathrm{H}, \mathrm{m}), 4$. $38(2 \mathrm{H}, \mathrm{s}), 4.97(1 \mathrm{H}, \mathrm{C}, \mathrm{J}=4.1 \mathrm{~Hz}), 5.39(2 \mathrm{H}, \mathrm{s}), 6.20(1 \mathrm{H}, \mathrm{brs}), 7.0747 .42(10 \mathrm{H}, \mathrm{m})$.   $7.52(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.67(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.9 \mathrm{~Hz}), 8.84(1 \mathrm{H}, \mathrm{brs}), 9.17(1 \mathrm{H}, \mathrm{brs}), 10.7$ $6(1 H, s)$
53	```MS (m/z) : 497[(M+H)+1 NMP \delta: 1.14(6H,d, J=12.9Hz), 2.83(1H,sep,J=12.9Hz), 2.90.3.22(6H,m), 4. 38(2H,s), 4.97(1H,d,J=4.1Hz), 5.39(2H,s), 6.20(1H,brs), 7.07-7.42(10H,m), 7.52(2H,d,J=8.8Hz), 7.67(2H,4,J=3.9Hz), 8.84(1H,Drs), 9.17(1H,brs), 10.7 6(1H,S)```
54	MS ( $\mathrm{m} / \mathrm{z}$ ) : 489[ $\left.\mathrm{M}^{+}\right]$   NMF 8: 2.95-3.02(3H,m), $3.15(3 \mathrm{H}, \mathrm{brs}), 4.44(2 \mathrm{H}, 5), 5.01(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.3,2.5$ $\mathrm{Hz}), 5.58(2 \mathrm{H}, \mathrm{s}), 6.21(1 \mathrm{H}, \mathrm{br} 5), 7.19(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.27 .7 .42(6 \mathrm{H}, \mathrm{m}), 7.51($ $2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.58-7.60(1 \mathrm{H}, \mathrm{m}), 7.69(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}), 7.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2 . \mathrm{aHz})$, $7.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}), 8.96(1 \mathrm{H}, \mathrm{brs}), 9.44(1 \mathrm{H}, \mathrm{brs}), 10.91(1 \mathrm{H}, \mathrm{s})$
55	$\mathrm{MS}(\mathrm{m} / \mathrm{z}): 489\left[\mathrm{M}^{+}\right]$   NMR $8: 2.94 .3 .04(3 \mathrm{H}, \mathrm{m}), 3.15(3 \mathrm{H}, \operatorname{tars}), 3.94(2 \mathrm{H}, 5), 5.01(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.3 \mathrm{~Hz})$, $5.31(2 \mathrm{H}, \mathrm{s}), 6.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.9 \mathrm{~Hz}), 7.01(1 \mathrm{H}, \mathrm{s}), 7.17-7.41(12 \mathrm{H}, \mathrm{m}), 7.54(2 \mathrm{H}, \mathrm{d}, \mathrm{J})$ $=8.3 \mathrm{~Hz}), 8.98(1 \mathrm{H}$, ors $), 9.35(1 \mathrm{H}$, brs $) .10 .55(1 \mathrm{H} .5)$
56	MS ( $\mathrm{m} / \mathrm{z}$ ) : $523\left[\mathrm{M}^{+}\right]$   NMR $\delta: 2.95-3.05(3 \mathrm{H}, \mathrm{m}), 3.15(3 \mathrm{H}, \mathrm{brs}), 4.44(2 \mathrm{H}, \mathrm{s}), 5.01(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.3,2.5$ $\mathrm{Hz}), 5.51(2 \mathrm{H}, 5), 6.20(1 \mathrm{H}, \mathrm{brs}), 7.19(3 \mathrm{H}, \mathrm{c}, \mathrm{j}=8.6 \mathrm{~Hz}), 7.26-7.42(7 \mathrm{H}, \mathrm{m}), 7.50-$ $7.54(3 \mathrm{H}, \mathrm{m}), 7.58(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}), 7.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2 . \mathrm{OHz}), 8.95(1 \mathrm{H}, \mathrm{brs}), 9.43(1$ H,brs). $10.98(1 \mathrm{H}, \mathrm{s})$

[01145]
[Table 20]

Ex.	$D \mathrm{~A} T \mathrm{~A}$
57	MS ( $\mathrm{m} / \mathrm{z}$ ) : $456\left[(\mathrm{M}+\mathrm{H})^{+}\right]$   NMR 8: 2.92-3.05(3H,m), $3.15(3 \mathrm{H}, \mathrm{brs}), 4.43(2 \mathrm{H}, \mathrm{s}), 5.01(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.2,2.6$ $\mathrm{Hz}), 5.65(2 \mathrm{H}, \mathrm{s}), 7.20(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=\mathrm{g}, 4 \mathrm{~Hz}), 7.29-7.48(5 \mathrm{H}, \mathrm{m}), 7.50-7.53(3 \mathrm{H}, \mathrm{m}), 7$. $70(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2,0 \mathrm{~Hz}), 7.78(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}), 7.85(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=8.0,2.0 \mathrm{~Hz}), 8.49(1 \mathrm{H}$, d. $\mathrm{J}=3,0 \mathrm{~Hz}), 8.94(1 \mathrm{H}$, brs $), 9.42(1 \mathrm{H}, \mathrm{brs}), 10.86(1 \mathrm{H}, \mathrm{s})$
58	```mp : 150-152 NMA \delta: 2.88-3.07(3H,m), 3.08(3H,m), 3.95(2H,s), 5.00(1H,dd,J=2.8, 10.0 Hz},6.21(1H,s),6.82(1H,d,J=7.6Hz),6.91(1H,d,J=8.0Hz), 7.17-7.23(2H,m) 7.28-7.43(5H,m), 7.55-7.62(2H,m), 7.82-8.04(3H,m), 8.90(1H,brs), 9.31(1 H,brs),10.67(1H,brs), 14.07(7H,brs)```
59	MS $(\mathrm{m} / \mathrm{z}): 473\left[(\mathrm{M}+\mathrm{H})^{+}\right]$   NMF $8: 2.90-3.25(6 \mathrm{H}, \mathrm{m}), 4.95-5.04(1 \mathrm{H}, \mathrm{m}), 5.20(1 \mathrm{H} . \mathrm{s}), 6.22(1 \mathrm{H}, \mathrm{brs}), 6.78$ ( $1 \mathrm{H}, 5), 7.17-7.24(2 \mathrm{H}, \mathrm{m}), 7.27 \times 7.44(5 \mathrm{H}, \mathrm{m}), 7.67 .7 .75(2 \mathrm{H}, \mathrm{m}), 8.50-9.10(3 \mathrm{H} . \mathrm{br}$ ). $9.45(1 \mathrm{H}, \mathrm{br}), 10.22(1 \mathrm{H}, \mathrm{brs})$
60	```mp : 214-216% NMR 8: 2.86-3.24(6H,m), 3.65(2H,s), 4.98(1H,dd,J=2.8, 10.4Hz), 6.18(1H, d,J=6.8Hz), 6.23(1H,G,J=8.8Hz),7.16-7.22(2H,m),7.28-7.45(6H,m), 7.53- 7.59(2H,s), 8.85(1H,brs), 9.18 (1H,brs), 10.36(1H,brs)```
61	```mp : 180-182% C NMF 8: 0.87(6H,d,J=6.8Hz), 2.05-2.15(1H,m), 2.59-3.10(3H.m), 3.10-3.20( 3H,m), 4.03(2H,d,J=7.8Hz), 4.41(2H,s), 5.01(1H,d,J=8.3Hz), 6.20(1H,brs). 7.21(2H,d,J=8.3Hz),7.29-7.42(9H,m), 7.60(2H,d,J=8.8Hz),7.69(1H,d,J=1.9 Hz},7.75(1H,d,J=2.0Hz```
62	mp : $226-228^{\circ} \mathrm{C}$   NMA 8: $2.87-3.23(6 \mathrm{H}, \mathrm{m}), 4.45(2 \mathrm{H}, \mathrm{s}), 5.02(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.4,10.0 \mathrm{~Hz}), 5.55(2 \mathrm{H}, \mathrm{s}$   ), $6.21(1 \mathrm{H}, \mathrm{brs}), 7.16-7.46(11 \mathrm{H}, \mathrm{m}), 7.49 \cdot 7.55(2 \mathrm{H}, \mathrm{m}), 7.66(1 \mathrm{H}, \mathrm{d}, \mathrm{d}=2.0 \mathrm{~Hz}), 7$.   $71(1 \mathrm{H}, \mathrm{d}, \mathrm{j}=2.0 \mathrm{~Hz}), 8.95(1 \mathrm{H}, \mathrm{brs}), 9.44(1 \mathrm{H}, \mathrm{brs}), 10.93(1 \mathrm{H}, \mathrm{brs}), 14.82(1 \mathrm{H}, \mathrm{brs})$
63	```mp : 224-225'C NMA \delta: 2.90-3.05(3H,m), 3.05-3.25(3H,m), 4.46(2H,s), 5.01(1H,d,J=8.0Hz) , 5.50(2H,s), 6.21(1H,brs), 7.14-7.50(11H,m), 7.54(2H,d,J=8.8Hz), 7.70.7.7 3(2H,m), 8.93(1H,brs), 9.39(1H,brs), 10.95(1H,s)```
64	```mp : 205-208* C NMA 8: 2.90-3.06(3H,m), 3.10-3.21(3H,m), 4.41(2H,s), 4.99(1H,d,J=8.3Hz) , 5.51(2H,s), 6.21(1H,s), 7.06-7.12(1H,m),7.20(2H,d,J=8.3Hz), 7.28-7.42(6 H,m), 7.69(2H,dd,J=2.0, 8.3Hz), 8.87(1H,5), 9.26(1H.s), 10.81(1H.s)```
65	$\mathrm{mp}: 211.216^{\circ} \mathrm{C}$   NMR $\delta: 3.00(3 \mathrm{H}, \mathrm{brs}), 3.15(3 \mathrm{H}, \mathrm{brs}), 4.44(2 \mathrm{H}, \mathrm{s}), 5.05(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.2,1.9 \mathrm{~Hz}$ ) , $5.58(2 \mathrm{H} . \mathrm{s}), 6.22(1 \mathrm{H}, \mathrm{brs}), 7.14-7.22(4 \mathrm{H}, \mathrm{m}), 7.29-7.32(1 \mathrm{H}, \mathrm{m}), 7.37-7.42(4$ $H, m), 7.47 \times 7.54(3 \mathrm{H}, \mathrm{m}), 7.65(1 \mathrm{H}, \mathrm{s}), 7.69(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.9 \mathrm{~Hz}), 9.02(1 \mathrm{H}, \mathrm{brs}), 9.55$ ( 7 H, brs), $10.97\left(1 \mathrm{H}_{2} \mathrm{~s}\right)$

(0146)
[Table 21]

Ex.	D A TA
66	```mp : 199-2010}\textrm{C NMR 8: 2.87-3.23(6H,m), 4.45(2H,s), 4.95-5.04(1H,m), 5.51(2H,s), 6.20(1 H,brs), 7.10.7.43(10H,m), 7.49-7.55(2H,m), 7.71(1H,d,J=2.0Hz), 7.74(1H,d, J=2.0Hz),8.89(1H,brs), 9.30(1H,brs), 10.90(1H,brs), 14.73(1H,\textrm{brs})```
67	mp : 131 -135 ${ }^{\circ} \mathrm{C}$   NMA 8: $3.00(3 \mathrm{H}, \mathrm{brs}), 3.16(3 \mathrm{H}, \mathrm{brs}), 4.49(2 \mathrm{H}, 5), 5.04(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.0 \mathrm{~Hz}), 5.56$ ( $2 \mathrm{H}, \mathrm{s}$ ) , $6.23(1 \mathrm{H}, \mathrm{brs}), 7.20(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}), 7.23-7.34(4 \mathrm{H}, \mathrm{m}), 7.37-7.42(4 \mathrm{H}, \mathrm{m}$   ). $7.53(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}), 7.72(2 \mathrm{H}, \mathrm{s}), 9.01(1 \mathrm{H}, \mathrm{brs}), 9.54(1 \mathrm{H}, \mathrm{brs}), 11.00(1 \mathrm{H}, \mathrm{s})$
68	$\mathrm{mp}: 217-219^{\circ} \mathrm{C}$   NMR $\delta: 2.90-3.05(3 \mathrm{H}, \mathrm{m}), \quad 3.05-3.20(3 \mathrm{H}, \mathrm{m}), 4.46(2 \mathrm{H}, \mathrm{s}), 5.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=\mathrm{a} .0 \mathrm{~Hz})$ . $5.47(2 \mathrm{H}, \mathrm{s}), 6.21(1 \mathrm{H}, \mathrm{brs}), 7.20(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.25-7.50(7 \mathrm{H}, \mathrm{m}), 7.50-7.60$ $(3 \mathrm{H}, \mathrm{m}), 7.70(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.9 \mathrm{~Hz}), 7.71(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}), 8.91(1 \mathrm{H}, \mathrm{brs}), 9.33(1 \mathrm{H}, \mathrm{brs}$ 1. $10.93(1 \mathrm{H}, 5)$
69	mp : $213-217^{\circ} \mathrm{C}$   NMF 8: $2.90-3.05(3 \mathrm{H}, \mathrm{m}), 3.05-3.20(3 \mathrm{H}, \mathrm{m}), 4.42(2 \mathrm{H}, \mathrm{s}), 5.02(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.2$,   $2.4 \mathrm{~Hz}), 5.62(2 \mathrm{H}, \mathrm{s}), 6.21(1 \mathrm{H}, \mathrm{brs}), 7.20(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.29-7.42(6 \mathrm{H}, \mathrm{m}), 7$.   $49(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.51+7.60(1 \mathrm{H}, \mathrm{m}), 7.68-7.73(2 \mathrm{H}, \mathrm{m}), \quad 8.95(1 \mathrm{H}, \mathrm{brs}), \quad 9.42(1$   H,brs) $10.89(1 \mathrm{H}, \mathrm{s})$
70	mp : $212.213^{\circ} \mathrm{C}$   NMF $8: 2.87 \cdot 3.23(6 \mathrm{H}, \mathrm{m}), 4.47(2 \mathrm{H}, \mathrm{s}), 5.02(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.4,10.0 \mathrm{~Hz}), 5.53(2 \mathrm{H}$, s), $6.21(1 \mathrm{H}, \mathrm{brs}), 7.16-7.23(2 \mathrm{H}, \mathrm{m}), 7.28 \mathrm{m.34}(1 \mathrm{H}, \mathrm{m}), 7.36-7.43(4 \mathrm{H}, \mathrm{m}), 7.48-$ $7.55(2 \mathrm{H}, \mathrm{m}), 7.57-7.67(2 \mathrm{H}, \mathrm{m}), 7.69-7.74(2 \mathrm{H}, \mathrm{m}), 8.95(1 \mathrm{H}, \mathrm{brs}), 9.43(1 \mathrm{H}, \mathrm{brs})$, $10.95(1 \mathrm{H}, \mathrm{brs}), 14.86(1 \mathrm{H}, \mathrm{brs})$
71	mp : $209-213^{\circ} \mathrm{C}$   NMR §: 2.90-3.05(3H,m), 3.05-3.20(3H,m), 4.47(2H,s), 4.98-5.01(1H,m), 5 $.49(2 H, s), 6.21(1 \mathrm{H}, \mathrm{brs}), 7.21(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.28-7.34(1 \mathrm{H}, \mathrm{m}), 7.36-7.44(6$ $\mathrm{H}, \mathrm{m}), 7.53(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=\mathrm{a} . \mathrm{aHz}), 7.71(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.9 \mathrm{~Hz}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.9 \mathrm{~Hz}), 8.91(1$ H.brs), $9.34(1 \mathrm{H}, \mathrm{brs}), 10.97(1 \mathrm{H}, \mathrm{s})$
72	mp : $190-193^{\circ} \mathrm{C}$   NMF $8: 290-3.08(3 H, m), 3.10-3.21(3 H, m), 4.38(2 H, s), 4.99(1 H, 4 d, d=2.5$, $10.2 \mathrm{~Hz}), 5.69(2 \mathrm{H}, \mathrm{s}), 6.20(1 \mathrm{H}, \mathrm{s}), 7.21(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.29 .7 .42(5 \mathrm{H}, \mathrm{m}), 7.4$ $8(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.70(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.9 \mathrm{~Hz}), 7.77(1 \mathrm{H}, \mathrm{s}), 8.88(1 \mathrm{H}, \mathrm{s}), 9.27(1 \mathrm{H}, \mathrm{s})$, $10.84(1 \mathrm{H} . \mathrm{s})$
73	$m p: 233-234^{\circ} \mathrm{C}$   NMA $\delta: 2.90-3.23(6 \mathrm{H}, \mathrm{m}), 4.47(2 \mathrm{H}, \mathrm{s}), 5.02(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.4, \quad 10.0 \mathrm{~Hz}), 5.44(2 \mathrm{H}$, s), $6.21(1 \mathrm{H}, \mathrm{br}), 7.127 .23(3 \mathrm{H}, \mathrm{m}), 7.28-7.34(1 \mathrm{H}, \mathrm{m}), 7.36-7.44(5 \mathrm{H}, \mathrm{m}), 7.52 \cdot$ $7.58(2 \mathrm{H}, \mathrm{m}), 7.66-7.73(3 \mathrm{H}, \mathrm{m}), 7.79-7.81(1 \mathrm{H}, \mathrm{m}), 8.96(1 \mathrm{H}, \mathrm{trs}), 9.44(1 \mathrm{H}, \mathrm{brs})$, $10.96(1 \mathrm{H}, \mathrm{brs}), \quad 14.79(1 \mathrm{H}, \mathrm{brs})$
74	mp : $180-183^{\circ} \mathrm{C}$   NMR 8: 2.67-2.76(4H,m), 2.78-2.86(2H,m), 4.00(2H,s), 4.66(1H.dd,J=8.3. $3.9 \mathrm{~Hz}), 5.39(2 \mathrm{H}, \mathrm{s}), 5.42(1 \mathrm{H}, \mathrm{brs}), 6.57(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=0.9 \mathrm{~Hz}), 6.78(1 \mathrm{H}, \mathrm{s}), 7.03(2 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.21-7.26(1 \mathrm{H}, \mathrm{m}), 7.27-7.34(4 \mathrm{H}, \mathrm{m}), 7.46-7.50(1 \mathrm{H}, \mathrm{m}), 7.52(2 \mathrm{H}, \mathrm{d}$ $\mathrm{J}=8.3 \mathrm{H}(2), 7.56(1 \mathrm{H}, \mathrm{s}), 7.58(1 \mathrm{H}, 5), 8,32(1 \mathrm{H}, 5), 10.32(1 \mathrm{H}, \mathrm{s})$

[01471
[Table 22]

Ex.	$D A T A$
75	$\mathrm{mp}: 210-215^{\circ} \mathrm{C}$   NMR 8: $2.91-3.03(3 \mathrm{H}, \mathrm{m}), 3.15(3 \mathrm{H}, \mathrm{brs}), 4.44(2 \mathrm{H}, \mathrm{s}), 5.01(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.4,2.6$ $\mathrm{Hz}), 5.53(2 \mathrm{H}, \mathrm{s}), 6.21(1 \mathrm{H}, \mathrm{brs}), 7.18(2 \mathrm{H}, \mathrm{c}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.30-7.32(1 \mathrm{H}, \mathrm{m}), 7.37-$ $7.42(4 \mathrm{H}, \mathrm{m}), 7.48(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.49(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz})$, $7.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}), 7.79(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 8.94(1 \mathrm{H}, \mathrm{brs}), 9.39(1 \mathrm{H}, \mathrm{brs}), 10.93$ (1H.s)
76	mp : $162.165^{\circ} \mathrm{C}$   NMR 8: $2.93-3.05(3 \mathrm{H}, \mathrm{m}), 3.14(3 \mathrm{H}, \mathrm{brs}), 4.47(2 \mathrm{H}, \mathrm{s}) .5 .03(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.3,2.5$ $\mathrm{Hz}), 5.62(1 \mathrm{H}, \mathrm{brs}), 5.89(2 \mathrm{H}, \mathrm{s}), 7.12(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.30-7.37(1 \mathrm{H}, \mathrm{m}), 7.39-$ $7.43(6 \mathrm{H}, \mathrm{m}), 7.61(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=\mathrm{m} .8 \mathrm{~Hz}), 7.69(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.9 \mathrm{~Hz})$, $7.83-7.86(2 \mathrm{H}, \mathrm{m}), 7.97(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 8.44(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 8.99(1 \mathrm{H}, \mathrm{brs}), 9$. 52(1H.brs), $10.84(1 \mathrm{H}, \mathrm{s})$
77	MS (m/z) : $507\left[\mathrm{M}^{+}\right]$   NMR 8: 2.64-2.74(4H,m), 2.77-2.82(2H,m), $3.93(2 \mathrm{H}, \mathrm{s}), 4.63(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.8$, $4.4 \mathrm{~Hz}), 5.33(2 \mathrm{H}, \mathrm{s}), 6.80(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.3 \mathrm{~Hz}), 7.14(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.20-7.24(1 \mathrm{H}$, m). $7.28-7.35(5 \mathrm{H}, \mathrm{m}), 7.43(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7,8 \mathrm{~Hz}), 7.47-7.52(3 \mathrm{H}, \mathrm{m}), 10.27(1 \mathrm{H}, \mathrm{s})$
78	$\mathrm{MS}(\mathrm{m} / \mathrm{z}): 507[\mathrm{M}+1$   NMR $\delta: 2.63-2.72(4 \mathrm{H}, \mathrm{m}), 2.75-2.81(2 \mathrm{H}, \mathrm{m}), 3.79(2 \mathrm{H}, \mathrm{s}), 4.62(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.8$, $4.4 \mathrm{~Hz}), 5.30(1 \mathrm{H}, \mathrm{brs}), 5.33(2 \mathrm{H}, \mathrm{s}), 6.68(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.0 \mathrm{~Hz}), 6.91(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.8,5$. $9 \mathrm{~Hz}), 7.06(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.0 \mathrm{~Hz}), 7.12(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.19-7.24(2 \mathrm{H}, \mathrm{m}), 7.28-7.33$ $(4 \mathrm{H}, \mathrm{m}), 7.43(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.49(1 \mathrm{H}, \mathrm{dd}, J=8.3,2.5 \mathrm{~Hz}), 8.32(1 \mathrm{H}, \mathrm{s}), 10.21(1$ H,s)
79	MS $(\mathrm{m} / \mathrm{z}): 523[(\mathrm{M}+\mathrm{H})]$   NMR 8: $2.88 \cdot 3.08(3 \mathrm{H}, \mathrm{m}), 3.10-3.22(3 \mathrm{H}, \mathrm{m}), 4,40(2 \mathrm{H}, \mathrm{s}), 4.97(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz})$ . $5.56(2 \mathrm{H}, \mathrm{s}), 6.20(1 \mathrm{H}, \mathrm{s}), 7.19(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}), 7.30-7.6$ $\mathrm{O}(9 \mathrm{H}, \mathrm{m}), 7.54(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}), 7.72(1 \mathrm{H}, \mathrm{s}), 8.83(1 \mathrm{H}, \mathrm{s}), 9.14(1 \mathrm{H}, \mathrm{s}), 10.71(1 \mathrm{H}$ s)
80	```MS (m/z) : 509 [(M+H)] NMR 8: 2.90-3.08(3H,m), 3.10-3.22(3H,m), 4.44(2H,s), 5.02(1H,d,J=8.8Hz) . 5.59(2H,s), 6.21(1H,s),7.20(2H,d,J=8.0Hz), 7.24-7.42(7H,m), 7.50(2H,d,J =9.8Hz),7.72(2H,d,J=6.8Hz),8.94(1H.5), 9.42(1H,S), 10.93(1H.5)```
81	MS (m/z):513[(M+H)+]   NMR 8: 2.87-3.23(6H,m), 3.85(3H.5), 4.30(2H.s), 4.94-5.01(1H,m), $5.55(2$   $\mathrm{H}, \mathrm{s}), 6.17-6.22(1 \mathrm{H}, \mathrm{br}), 7.14-7.23(2 \mathrm{H}, \mathrm{m}), 7.28-7.50(\mathrm{sH}, \mathrm{m}), 7.57-7.64(2 \mathrm{H}, \mathrm{m})$,   $7.87 .7 .93(2 \mathrm{H}, \mathrm{m}), 8.83(1 \mathrm{H}, \mathrm{brs}), 9.10(1 \mathrm{H}, \mathrm{brs}), 10.68(1 \mathrm{H}, \mathrm{brs}), \quad 14.86(1 \mathrm{H}, \mathrm{brs})$
82	MS ( $\mathrm{m} / \mathrm{z}$ ) : $566\left[(\mathrm{M}+\mathrm{H})^{*}\right]$   NMR 8: $1.30-1.64(6 \mathrm{H}, \mathrm{m}), 2.88-3.22(8 \mathrm{H}, \mathrm{m}), 3.45-3.65(2 \mathrm{H}, \mathrm{m}), 4.39(2 \mathrm{H}, \mathrm{s}), 4$ $.97(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9 . \mathrm{BHz}), 5.50(2 \mathrm{H}, \mathrm{s}), 6.21(1 \mathrm{H}, \mathrm{s}), 7.20(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.30-7.42($ $9 \mathrm{H}, \mathrm{m}), 7.51(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 7.71(2 \mathrm{H}, \mathrm{d}, J=7 . \mathrm{gHz}), 8.81(1 \mathrm{H}, \mathrm{s}), 9.14(1 \mathrm{H}, \mathrm{s}), 1$ $0.77(1 \mathrm{H}, \mathrm{s})$

(0148】
$\left[\begin{array}{ll}{[\mathrm{mble}} & 2\end{array}\right]$

Ex.	D AT A
83	mp : $229-232^{\circ} \mathrm{C}$   NMR $\delta: 2.90-3.00(3 \mathrm{H}, \mathrm{m}), 3.10-3.18(3 \mathrm{H}, \mathrm{m}), 5.00(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.8,10.1 \mathrm{~Hz}), 5.0$ $3(2 \mathrm{H}, \mathrm{s}), 6.27(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}), 7.20(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.29-7.42(5 \mathrm{H}, \mathrm{m}), 7.46(1 \mathrm{H}$ $, d, J=2.4 \mathrm{~Hz}), 7.58(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.77(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}), 8.91(1 \mathrm{H}, \mathrm{s}), 9.32(1 \mathrm{H}$, 5). $10.53(1 \mathrm{H}, \mathrm{s})$
84	mp : $237-240^{\circ} \mathrm{C}$   NMA 8: $2.90-3.08(3 \mathrm{H}, \mathrm{m}), 3.10-3.22(3 \mathrm{H}, \mathrm{m}), 4.96(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.0,10.0 \mathrm{~Hz}), 5.1$   $5(2 \mathrm{H}, \mathrm{s}), 7.21(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.28-7.42(5 \mathrm{H}, \mathrm{m}), 7.56(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 8.03(1$   $\mathrm{H}, \mathrm{s}), 8.61(1 \mathrm{H}, \mathrm{s}), 8.82(1 \mathrm{H}, \mathrm{s}), 9.09(1 \mathrm{H}, \mathrm{s}), 10.57(1 \mathrm{H}, \mathrm{s})$
85	```mp : 244-248* C NMR \delta: 2.90-3.06(3H,m), 3.10-3.20(3H,m), 5.00(1H,d,j=7.6Hz), 5.20(2H.s) . 6.20(1H,s), 7.20-7.50(11H,m), 7.59(2H,d,J=7.2Hz), 8.94(3H,s), 9.36(1H.s 1.10.95(1H.s). 12.92(1H,s)```
86	$\mathrm{mp}: 223-224^{\circ} \mathrm{C}$   NMA 8: $2.86-3.22(6 \mathrm{H}, \mathrm{m}), 3.49(2 \mathrm{H}, \mathrm{s}), 4.93-5.03(1 \mathrm{H}, \mathrm{m}), 6.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.0 \mathrm{~Hz})$ , $7.15-7.43(9 \mathrm{H}, \mathrm{m}), 7.55-7.62(2 \mathrm{H}, \mathrm{m}), 7.75(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=1.6,8.0 \mathrm{~Hz}), 8.45-8.53(1$ $\mathrm{H}, \mathrm{m}), 8.06-9.50(2 \mathrm{H}, \mathrm{br}) . \quad 10.35(1 \mathrm{H}, \mathrm{brs})$
87	```mp : 236-238 NMF 8: 2.86-3.23(6H,m), 3.72(2H,s), 4.91-5.02(1H,m), 6.20(1H,d,J=4.0Hz) , 7.15-7.22(2H,m), 7.27-7.45(6H,m), 7.53-7.62(2H,m),7.73-7.82(1H,m), 8. 40-8.60(2H,m), 8.84(1H,brs), 9,16(1H,brs), 10.35-10.50(1H,br)```
88	$\mathrm{mp}: 195-198^{\circ} \mathrm{C}$   NMF $\delta: 2.86-3.22(6 \mathrm{H}, \mathrm{m}), 3.73(2 \mathrm{H}, \mathrm{s}) ; 4.93-5.04(1 \mathrm{H}, \mathrm{m}), 6.15-6.25(1 \mathrm{H}, \mathrm{br}), 7$ $.14-7.22(2 \mathrm{H}, \mathrm{m}), 7.28-7.43(7 \mathrm{H}, \mathrm{m}), 7.54-7.63(2 \mathrm{H}, \mathrm{m}), 8.47-8.53(2 \mathrm{H}, \mathrm{m}), 9.07$ ( 2H,brs), $10.50(\mathrm{H}, \mathrm{b}, \mathrm{brs})$
89	$\begin{aligned} & \operatorname{mp}: 202-204^{\circ} \mathrm{C} \\ & \text { NMA } \delta ; 2.71-2.81(2 \mathrm{H}, \mathrm{~m}), 2.88-3.24(8 \mathrm{H}, \mathrm{~m}), 3.49(2 \mathrm{H}, \mathrm{~s}), 4.93-5.05(1 \mathrm{H}, \mathrm{~m}), 6 \\ & 20(1 \mathrm{H}, \mathrm{brd}, \mathrm{~J}=3.2 \mathrm{~Hz}), 7.15-7.23(3 \mathrm{H}, \mathrm{~m}), 7.26-7.44(6 \mathrm{H}, \mathrm{~m}), 7.52-7.60(2 \mathrm{H}, \mathrm{~m}), \\ & 7.69(\mathrm{H}, \mathrm{dt}, \mathrm{~J}=1.6,7.6 \mathrm{~Hz}), 8.45-8.51(1 \mathrm{H}, \mathrm{~m}), 9.07(2 \mathrm{H}, \mathrm{brs}), 10.07(1 \mathrm{H}, \mathrm{brs}) \end{aligned}$
90	```mp : 220-227}\mp@subsup{}{}{\circ}\textrm{C NMR 8: 2.80-3.20(8H,m), 4.31(2H,s), 4.42(2H,t,J=8.0Hz), 5.00(1H,d,J=1.0 Hz), 6.21(1H,brs), 7.20-7.40(12H,m), 7.59(2H,d,J=8.6Hz), 7.65(2H,dd,J=12 .9,0.9Hz), 8.91(1H,brs), 9.34(1H,brs), 10.98(1H,s)```
91	$m p=158-165^{\circ} \mathrm{C}$   NMR 8: $2.51-2.78(6 \mathrm{H}, \mathrm{m}), 3.96(2 \mathrm{H}, \mathrm{s}), 4.59(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}), 5.20(1 \mathrm{H}, \mathrm{brs}), 7$. $13-7.32(9 \mathrm{H}, \mathrm{m}), 7.50-7.53(4 \mathrm{H}, \mathrm{m}), 10.33(1 \mathrm{H}, \mathrm{s}), 12.37(1 \mathrm{H}, \mathrm{brs})$
92	```mp : 216-217}\mp@subsup{}{}{\circ}\textrm{C NMR 8: 2.31(3H,s), 2.86-3.24(6H,m), 3.89(2H,s), 4.92-5.07(1H,m), 6.20(1 H.d,J=4.0Hz), 7.12-7.22(3H,m), 7.28-7.45(5H,m), 7.50.7.64(2H,m), 8.30(1H ,d, , =4,4Hz), 8.60-9.50(2H,br), 10.32(1H,brs)```

$\left[\begin{array}{llll}0 & 1 & 4 & 9\end{array}\right]$
[Table 24]

Ex.	D A T A
93	```mp : 236-238 NMF %: 2.86-3.24(6H,m), 3.95(2H,s), 4.91-5.01(1H,m), 5.44(2H,s), 6.19(1 H,d,J=4.4Hz), 7.15-7.22(2H,m), 7.27-7.43(5H,m), 7.52-7.62(2H,m), 6.50-8. 69(3H,m), 8.83(1H,0r), 9.12(1H,brs), 10.41(1H,brs)```
94	MS ( $\mathrm{m} / \mathrm{z}$ ) : $455\left[(\mathrm{M}+\mathrm{H})^{+}\right]$   NMA 8: 2.90-3.10(3H,m), 3.10-3.20(3H,m), $4.38(2 \mathrm{H}, \mathrm{s}), 4.98(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=10.4 \mathrm{~Hz}$ ). $5.44(2 \mathrm{H}, \mathrm{s}), 6.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3,2 \mathrm{~Hz}), 7.20(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.30-7.45(9 \mathrm{H}, \mathrm{m}), 7$ $.53(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.64(2 \mathrm{H}, \mathrm{s}), 8.85(1 \mathrm{H}, \mathrm{brs}), 9.21(1 \mathrm{H}, \mathrm{trs}), 10.79(1 \mathrm{H}, \mathrm{s})$
95	MS (m/z) : $390\left[(\mathrm{M}+\mathrm{H})^{+}\right]$   NMH $8: 2.31(3 \mathrm{H}, \mathrm{s}), 2.89-3.17(6 \mathrm{H}, \mathrm{m}), 3.79(2 \mathrm{H}, \mathrm{s}), 4.98(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=3.2,10.4 \mathrm{~Hz}$   2. $7.10-7.41(12 \mathrm{H}, \mathrm{m}), 10.32(1 \mathrm{H}, \mathrm{s})$
96	MS (m/z) : $390\left[(\mathrm{M}+\mathrm{H})^{+}\right]$   NMA $6: 2.27(3 \mathrm{H}, \mathrm{s}), 2.89-3.17(6 \mathrm{H}, \mathrm{m}), 3.79(2 \mathrm{H}, \mathrm{s}), 4.99(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=3.6,10.0 \mathrm{~Hz}$   ), $7.17-7.59(12 \mathrm{H}, \mathrm{m}), 10.31(1 \mathrm{H}, \mathrm{s})$
97	MS (m/z) : $390\left[(\mathrm{M}+\mathrm{H})^{+}\right]$   NMA 8: $2.44(3 \mathrm{H}, \mathrm{s}), 2.78 .3 .20(6 \mathrm{H}, \mathrm{m}), 3.80(2 \mathrm{H}, 5), 4.97(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=3.2,10.4 \mathrm{~Hz}$   $1.7 .12-7.66(12 \mathrm{H}, \mathrm{m}), 10.33(1 \mathrm{H}, \mathrm{s})$
98	MS $(\mathrm{m} / \mathrm{z}): 513\left[(\mathrm{M}+\mathrm{H})^{+}\right]$   NMA 8: $1.06(3 \mathrm{H}, \mathrm{d}, \mathrm{d}=6.4 \mathrm{~Hz}), 2.50-2.65(2 \mathrm{H}, \mathrm{m}), 2.90-3.15(3 \mathrm{H}, \mathrm{m}), 3.83(2 \mathrm{H}, \mathrm{s})$ , $4.80-4,94(1 \mathrm{H}, \mathrm{m}), 7.10-7.18(2 \mathrm{H}, \mathrm{m}), 7.23-7.45(7 \mathrm{H}, \mathrm{m}), 7.52-7.60(2 \mathrm{H}, \mathrm{m}), 7$. $71.7 .80(1 \mathrm{H}, \mathrm{m}), 8.41 .8 .52(1 \mathrm{H}, \mathrm{m}), 10.25(1 \mathrm{H}, \mathrm{brs})$
99	$\mathrm{mp}: 203-204^{\circ} \mathrm{C}$   NMR $\delta: ~ 7.13(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}), 2.55-2.64(1 \mathrm{H}, \mathrm{m}), 3.00-3.50(4 \mathrm{H}, \mathrm{m}), 3.84(2 \mathrm{H}, \mathrm{s})$   . $4.92-5.02(1 \mathrm{H}, \mathrm{m}), 6.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.0 \mathrm{~Hz}), 7.13-7.20(2 \mathrm{H}, \mathrm{m}), 7.24-7.46(7 \mathrm{H}, \mathrm{m})$,   $7.54-7.60(2 \mathrm{H}, \mathrm{m}), \quad 7.73-7.80(1 \mathrm{H}, \mathrm{m}), 8.51(1 \mathrm{H}, \mathrm{brs}), 8.67(1 \mathrm{H}, \mathrm{brs}), 9.13(1 \mathrm{H}, \mathrm{br}$   s). $10.31(1 \mathrm{H}, \mathrm{brs})$
100	MS (m/z) ; $513\left[(\mathrm{M}+\mathrm{H})^{+}\right]$   NMR 8: $1.06(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6,4 \mathrm{~Hz}), 2.50-2.65(1 \mathrm{H}, \mathrm{m}), 2,57-3.50(4 \mathrm{H}, \mathrm{m}), 3.78(2 \mathrm{H}, \mathrm{s})$   $.4 .77-4.92(1 \mathrm{H}, \mathrm{m}), 5.25(2 \mathrm{H}, \mathrm{s}), 6.85(1 \mathrm{H}, \mathrm{s}), 7.10-7.55(15 \mathrm{H}, \mathrm{m}), 10.33(1 \mathrm{H}, \mathrm{brs})$
101	```mp : 194+196 NMP 8: 2.89-3.25(6H,m), 3.89(2H,s), 5.20-5.26(1H,m), 6.30(1H,s), 7.17.7. 48(7H,m), 7.54-7.60(3H,m),7.81+7.88(1H,m), 8.54(1H,d,J=4.0Hz), 8.82{1H, s). 9.16(1H,s), 10.35(1H,s)```
102	```mp : 214-215 NMR 8: 2.88-3.25(6H,m), 3.05(2H,s), 4.95-5.02(1H,m), 6.33(1H,d,J=3.8Hz) 7.12.7.31(6H,m), 7.39-7.48(2H,m), 7.58(2H,d,J=8.3Hz),7.74.7.80(1H,m), 8.50(1H,s), 8.82(1H,s), 9.01(1H.s), 10.30(1H,s)```
103	```mp : 223-225 NMP \delta: 2.88-3.06(3H,m), 3.10-3.20(3H,m), 3.84(2H.s), 4.94-5.01(1H,m),6 .24(1H,d,J=4.0Hz), 7.16-7.30(5H,m), 7.38-7.46(3H,m),7.58(2H,d,J=8.8Hz), 7.76(1H,dt,J=1.6, 7.6Hz), 8.50(1H,d, J=8.8Hz), 8.83(1H,s), 9.08(1H,s), 10. 31(4H.S)```

$\left(\begin{array}{lll}015 & 1\end{array}\right)$
[Table 25]

Ex.	D A T A
104	```mp : 208-210% NMF 8: 2.85-3.24(6H,m), 3.99(2H,s), 4.90-5.01(1H,m), 6.20(1H,d,J=3.6Hz) 7.15-7.24(2H,m), 7.28-7.44(6H,m), 7.53-7.62(2H,m), 8.50-9.30(4H,m), }1 .33(1H,brs)```
105	```mp : 234.235}\mp@subsup{}{}{\circ}\textrm{C NMH &: 2.94-3.25(6H,m), 4.07(2H,s), 4.90-5.02(1H,m), 6.20(1H,0,J=4.0Hz) 7.16-7.23(2H,m), 7.27-7.44(5H,m),7.53-7.65(4H,m), 7.71-7.78(1H,m), 7. 94.8.00(2H,m), 8.33(1H,d,4m8.0Hz), 8.50.9.25(2H,m), 10.46(1H,brs)```
106	$m p: 221-222^{\circ} \mathrm{C}$   NMP 8: $2.90-3.25(6 \mathrm{H}, \mathrm{m}), 3.85(2 \mathrm{H}, \mathrm{s}), 4.92-5.08(1 \mathrm{H}, \mathrm{m}), 6.35(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.6 \mathrm{~Hz})$   $7.14-7.23(2 \mathrm{H}, \mathrm{m}), 7.23-7.31(1 \mathrm{H}, \mathrm{m}), 7.33-7.50(5 \mathrm{H}, \mathrm{m}), 7.54-7.64(2 \mathrm{H}, \mathrm{m}), 7$.   $76(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=1.6,7.6 \mathrm{~Hz}), 8.43-8.55(1 \mathrm{H}, \mathrm{m}), 8.80-9.40(2 \mathrm{H}, \mathrm{br}), 10.36(1 \mathrm{H}, \mathrm{brs})$
107	```mp : 204-205 NMR \delta: 2.85-3.28(6H,m), 3.85(2H.s), 5.02-5.14(1H,m), 6.37(1H,d,J=4.0Hz) 7.14-7.32(3H,m), 7.36-7.46(2H,m), 7.55-7.64(2H,m), 7.70-7.86(2H,m), 8. 46-8.56(2H,m), 8.57-8.65(1H,m), 9.13(2H,ors), 10.37(1H,brs)```
108	MS ( $\mathrm{m} / \mathrm{z}$ ) : $539\left[\mathrm{M}^{+}\right]$   NMP $\delta: 2.63-2.67(4 \mathrm{H}, \mathrm{m}), 2.73-2.78(2 \mathrm{H}, \mathrm{m}), 4.07(2 \mathrm{H}, \mathrm{s}), 4.60(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.4$, $4.9 \mathrm{~Hz}), 5.24(1 \mathrm{H}, \mathrm{trs}), 5.57(2 \mathrm{H}, \mathrm{s}), 7.12-7.23(7 \mathrm{H}, \mathrm{m}), 7.27-7.31(4 \mathrm{H}, \mathrm{m}), 7.37(3$ $\mathrm{H}, \mathrm{d}, \mathrm{J}=8,3 \mathrm{~Hz}), 7.46(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.60-7.61(1 \mathrm{H}, \mathrm{m}), 8.31(1 \mathrm{H}, \mathrm{s}), 10.31(1 \mathrm{H}$, 5)
109	MS (m/z) : $404\left[(\mathrm{M}+\mathrm{H})^{+}\right]$   NMP 8: $2.26(3 \mathrm{H}, \mathrm{s}), 2.40(3 \mathrm{H}, \mathrm{s}), 2.90-3.17(6 \mathrm{H}, \mathrm{m}), 3.75(2 \mathrm{H}, \mathrm{s}), 4.99(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}$ $=3.2,6.8 \mathrm{~Hz}), 6.97-7.60(11 \mathrm{H}, \mathrm{~T}), 10.35(1 \mathrm{H}, \mathrm{~s})$
110	mp $183-184^{\circ} \mathrm{C}$   NMA 8: 1.85-2.05(2H,m), 2.53-2.65(2H,m), 2.83-3.03(3H,rm), 3.05-3.16(1H. $\mathrm{m}), 3.88(2 \mathrm{H}, \mathrm{s}), 4.95(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.6 \mathrm{~Hz}), 6.15(1 \mathrm{H}, \mathrm{brs}), 7.10-7.18(2 \mathrm{H}, \mathrm{m}), 7.22-7$. 43 ( $7 \mathrm{H}, \mathrm{m}$ ) , $7.50-7.60(2 \mathrm{H}, \mathrm{m}), 7.75(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=1.6,7.2 \mathrm{~Hz}), 8.45-8.53(1 \mathrm{H}, \mathrm{m}), 8$. 91 (2H.brs). $10.29(1 \mathrm{H}, \mathrm{brs})$
111	mp : $225-226^{\circ} \mathrm{C}$   NMF 8: 3.02-3.14(1H,m), 3.18-3.46(3H,m), 3.84(2H,s), 4.22-4.35(2H,m), 4 $.90-5.08(1 \mathrm{H}, \mathrm{m}), 6.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.6 \mathrm{~Hz}), 6.90-6.97(2 \mathrm{H}, \mathrm{m}), 7.23-7.44(7 \mathrm{H}, \mathrm{m}), 7$. $53-7.62(2 \mathrm{H}, \mathrm{m}), 7.76(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=1.6,7.2 \mathrm{~Hz}), 8.45-8.54(1 \mathrm{H}, \mathrm{m}), 8.80-9.50(2 \mathrm{H}, \mathrm{br}$ ). $10.29(1 \mathrm{H}, \mathrm{brs})$
112	$\mathrm{MS}(\mathrm{m} / \mathrm{z}): 404\left[(\mathrm{M}+\mathrm{H})^{+}\right]$   NMA $8: 1.21(6 \mathrm{H}, \mathrm{s}), 2.85-3.23(4 \mathrm{H}, \mathrm{m}), 3.89(2 \mathrm{H}, \mathrm{s}), 4.90-5.00(1 \mathrm{H}, \mathrm{m}), 6.21(1$ $\mathrm{H}, \mathrm{brs}), 7.11-7.19(2 \mathrm{H}, \mathrm{m}), 7.28-7.50(7 \mathrm{H}, \mathrm{m}), 7.53-7.62(2 \mathrm{H}, \mathrm{m}), 7.78-7.90(1 \mathrm{H}$, $\mathrm{m}), 8.45-8.60(2 \mathrm{H}, \mathrm{m}), 9.00 \cdot 9.10(1 \mathrm{H}, \mathrm{br}), 10.35(1 \mathrm{H}, \mathrm{brs})$
113	$\mathrm{mp}: 132.133^{\circ} \mathrm{C}$   NMA 8: $2.90-3.10(3 \mathrm{H}, \mathrm{m}), 3.13-3.23(3 \mathrm{H}, \mathrm{m}), 4.96(7 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.5,10.2 \mathrm{~Hz}), 7.0$ $6-7.11(1 \mathrm{H}, \mathrm{m}),, 7.21(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 7.30-7.42(5 \mathrm{H}, \mathrm{m}), 7.47-7.53(3 \mathrm{H}, \mathrm{m}), 7.8$ $1-7.87(1 \mathrm{H}, \mathrm{m}), 8.29(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4,9 \mathrm{~Hz}), 8.78(1 \mathrm{H}, \mathrm{s}), 9.00(1 \mathrm{H}, \mathrm{s}), 9.88(1 \mathrm{H}, \mathrm{s}), 10$. 51(1H.5)

[0151]

The compounds shown in Tables 26 and 27 together with chemical structural formulae can be easily manufactured by almost the same method as mentioned in the above Examples or Manufacturing Methods or by the method to which some modifications known to the persons skilled in the art are applied:

Incidentally, in some cases, there are tautomeric, geometric or optical isomers wow the compounds mentioned in Tables 26 and 27 , and the compounds of the present invention cover each of the isolated isomers of the abovemmentioned ones or a mixtume thereof.
[Table 26]


No.	$x$	No.	$x 8$	No.	$x$
1		2		3	
4		5		6	
7		8	CH2	9	
10		11		12	

[Table 27]


No.	$R^{2 n}$		No.	$R^{2 \times}$	
13	H		14	H	
15	H		16	H	
17	H		18	H	
19	H		20	H	
21	Cl		22	Cl	

Creation of a therapeutic agentr for diabetes mellitus maving both an insulin sectetion promoting action and an insulin sensitivity potentiating action and also having a selective stimulating action to $\beta_{3}$ receptors
[Mears to Solve the Matters]
An amide derivative represented by the followimg formula: [Formula 1]

(In the above foxmula, each of the symbols means as follows:
ring B: a mtrogen containing heteroaryl group whim may be substituted and may be fused with a benzene ring;

X: a bond, an optionaliy hydroxy or lower alkylsubstituted linear lower alkylene, lower alkenylene or carbonyl, or a group represented by a formala $-N H-$ (when $x$ is a linear lower alkylene group whichmay be substituted with a lower alkyl group, the hydrogen atombonded tothe carbon atom constituting a ring B may form a lower alkylene group together with the lower alkyl group so that a ring is formed);
-CH2O-
R 'a, R
hydrogen atom or a lower alkyl group;
R2: a hydrogen atom or a halogen atom; and
2: a nitrogen atom or a group represented by a formula
\#CH-->
or a salt. thereof.
[Selective Drawing] No

```

In re Application of:

Tatsuya MARUYAMA et al.
Serial No,: 09/529,096
Filed: April 7; 2000
For: - AMIDE DERIVATIVES OR SALTS THEREOF

\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}

\section*{TRANSMITTAL LETTER}

Assistant Commissioner for Patents
Washington, DC 20231
Sir:
Enclosed is a reply to the Office Action of December 7, 2000. The item(s) checked below are appropriate:

区.... Applicants) hereby petitions) for a two month(s) extension of time to respond to the above Office Action. The fee of \(\$ 390.00\) for the Extension is enclosed.

The claims are calculated below:

A fee of \$ \(\qquad\) to cover the cost of the additional claims added by this reply is enclosed.
© A fee of \(\$ 180.00\) to cover Supplemental Information Disclosure Statement is enclosed.
【 A check for \(\$ 570.00\) to cover the above fee (s) is enclosed.
Please grant any extensions of time required to enter this response and charge any additional required fees to our deposit account 06-0916.

Dated: May 4, 2001

\(05 / 08 / 2001\) HBERHE 0000007309829096
02 FC:126
180.000 p

Please find below and/or attached an Office communication concerning this application or proceeding.

Commissioner of Patents and Tradernarks

Art Unit: 1624

\section*{DETAILED ACTION}

The claims pending in this application are claims 1-7,9-13.
Applicants" comminication paper \#8 dated 5/7/01 is acknowledged.
This application has been found to lack unity of invention. Applicants traverse on the grounds that the allowable claims and compounds of the elected Group are not identified and therefore, the restriction requirement is inappropriate.

This is not found persuasive because the claims lack unity of invention. The clams lack unity of invention because compounds of generic Formula of claim 1 and its intermediates as recited do not possess single structural element that is shared by all of the alternatives that is inventive. The Formulae arrived at by computing values of \(Z, \mathrm{R} 2 \mathrm{~A}, \mathrm{R} 1 \mathrm{a}, \mathrm{R} 1 \mathrm{~b}, \mathrm{~B}\) etc. which simultaneously represent multiples of compounds including heterocycles. Additionally the change(s) in heterocycle size simultaneously vary the molecule because of optionally fused feature with a benzene ring. Therefore, these compounds do not share a common structural feature(s), and only common properties shared by all the compounds is presence of :

Heterocycle-C(H)OH-CH2-CH2-O-DH-NH-CO X-B bridge which does not represent patentable advances over the prior art already known(see U.S.P. 5223614;WO 9529159)

Note that compounds, corresponding compositions, a method of use and the first recited process of making composition(s) that are of the same scope are considered to form a single inventive concept under PCT Rule 13.1,37 CFR 1.475(d). The species as presented by various groups and either compounds or their derivatives as recited by generic Formulae are not so

Art Unit: 1624
linked as to form a single inventive concept. The compounds are so diverse in scope that a prior art of making it or its composition and using the same further as a pharmaceutical which is anticipated under 35 U.S.C. 102 would not render obvious another compound of the same claim 35 U.S.C. 103.

The Examiner finds Applicant's arguments not persuasive concerning traversal of the restriction; therefore; the finding is maintained and made FINAL. Applicants are required to confirm their election, and also to cancel the non elected subject matter in the next communication.

Furthernore, according to 37 CFR 1.499 (see MPEP 1893.03 (d)), the examiner may in office action require the applicant in the response to that action to elect the invention to which the claims shall be restricted, if the Examiner finds that a national stage application lacks unity of invention under CFR 1.475.

Applicants" various remarks and arguments have been favorably considers, and the rejections under 35 U.S.C. 102 are withdrawn as the JP 10218861 publication date is \(8 / 18 / 98\) which is after the instant application' filing date 10/17/97.

The rejections made under U.S.C. 35 103(a) ref. Toshiyuki et al. are also withdrawn because the ref, does not teach pharmaceutical use.

However, following new grounds of rejections are still maintained.

Art Unit: 1624

\section*{Claim Rejections - 35 U.S.C. § 112}
1. The following is a quotation of the second paragraph of 35 U.S.C. 112:

The specification shall conclude widh one or more claims particularly pointing out and distinctly claiming the subject matter which the applicant regards as his invention.

Claim 1-7,9-13 are rejected under 35 U.S.C. 112, second para as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicants regards as the invention.
A). The generic claim 1 presents group \(B\) as: " heteroaryl group which may be substituted or unsubstituted and is optionally fused with a benzene ring". This is indefinite and vague because we are not told about the various substituents and their exact position for attachment to the ring.

Also, we do know exactly which kind of rings with which size, and the heteroatoms if any how many are involved by such indefinite definition.
B). The claims usually begin with "An amide derivative". This is indefinite because we do not know exactly which derivative.
"A compounds of Formula(I)" is suggested.
C). E claims" language also often recites the word "optionally" which is indefinite because we do not know exact point of attachment and connection to the ring carbon atom where applicable.

Art Unit: 1624

\section*{Claim Rejections - 35 U.S.C. § 103}
2. The following is a quotation of 35 U.S.C. 103 (a) which forms the basis for all obviousness rejections set forth in this Office action:
(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this tite, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the mather in which the invention was made.

Claims \(1 \mathrm{~m} 7,9-13\) are rejected under 35 U.S.C. 103 (a) as being unpatentable over U.S.P. 5223614 to Schromm et al.

The applicants claim generically substituted amides of Formula(T) wherein \(\mathrm{B}+\) heteroaryl group which is (UN) substituted and is optionally fused with a benzene ring., and further ring \(B\) optionally bonding with the lower alkyl group.

Applicants further claim composition comprising these compounds or the salt thereof in a pharmaceutically acceptable carrier, and a method for treating diabetes mellitus, obesity etc, in a human or animal patient in need of such treatment. The ref ' 614 teaches generic compounds of the general Formula (1) (see abstract), and also Formula (Ia) (see column 1 lines 47.68, and column 2 lines \(1-68)\) where in Formula (Ia) \(-\mathrm{R} 7-=\mathrm{Ar}-\mathrm{B}-\mathrm{E}(\mathrm{B}=-\mathrm{NH}-\mathrm{CO}-\mathrm{Cl}-4\) akylene; \(\mathrm{E}=-\) Het \(\mathrm{N}+\)-; see column 3 lines 30-45), useful as pharmaceuticals, particularly for inhalation.. Claim 1 in the instant application differ from the reference by reciting more limited subgenus, however it is obvious to a chemist skilled in the art to select any species of the genus that will have reasonably similar properties and equal or better pharmaceutical use. The requisite motivation
stems from the expectation that compounds so structurally similar would be expected to possess similar properties(in re Wood, 199 USPQ 137).

It has been held that a prior art disclosed compounds is sufficient to render a prima facie case of obviousness as species falling within a genus. See In re SUSI, 440 F \(2 \mathrm{~d} 442,169\) USPQ 423, 425 (CCPA 1971), followed by Federal Circuit in Merck \& co. V. Biocraft Labotatories, 847 F 2d 804, 10 USPQ 2d 1843, 1846 (Fed. Cir.1989). See In re Dillon 16 USPQ 2nd. 1897, 1923 regarding a prima facie case of obvious ness of structurally similar compounds disclosed by prior art" regardess lo the properties disclosed in the inventor's application.

All this is especially considered so in the absence of timely, verified, comparative data, commensurate in scope to the claims sought, clearly and convincingly proving obvious ness over the art(s) as applied above. If applicants intend to rely on unusual or unforseen results demonstrate patentability, attention is drawn to MPEP 716. It is also pointed out that arguments of patentability to differences either not in, or not made clear by, claim language will be of no avail as it is the claims, per se, that are the measure of the invention.

Any inquiry of general nature or relating to the status of this application or proceeding should be directed to the Group receptionist whose telephone number is (703) 3081235.

This application has not been checked to the extent necessary to determine the presence of all possible minor errors. Applicants' cooperation is, therefore, requested in promptly correcting any errors of which they may become aware in the specification.
-

Application/Control Number: 09529096
Art Unit: 1624

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Sudhaker Patel,D.Sc. Tech. whose telephone number is (703) 3084709.

The examiner can normally be reached on Monday thru' Friday from 8:30 AM to 5:00 PM. If attempts to reach the examiner by the phone are unsuccessful, the examiner's supervisor, Dr.Mukund Shah can be reached at (703) 3084716.

A facsimile center has been established for Group 1600. The hours of operation are Monday through Friday, 8:45 AM to 4:45 PM. The telecopier numbers for accessing the facsimile machine are (703) \(308-4556\) or (703) 305-3592.
sp.

June 18, 2001.

Prumund J Shech
Mukund Shah

SUPERVISORY PATENT EXAMINER

U.S. PATENT DOCUMENTS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline * & & Document Number Cominty cade wumber-kind Code & \begin{tabular}{l}
Date \\
Mu-Mry
\end{tabular} & Name & \multicolumn{2}{|r|}{Classilication \({ }^{2}\)} \\
\hline \(x\) & A & 5,223,614 & 6/1993 & K.Schrommet al. & 544 & 105 \\
\hline & E & & & & & \\
\hline & c & & & & & \\
\hline & 0 & & & & & \\
\hline & E & & & & & \\
\hline & F & & & & & \\
\hline & 0 & & & & & \\
\hline & H & & & & & \\
\hline & 1 & & \(\because\) & & & \\
\hline & J & & & & & \\
\hline & \(\kappa\) & \(\ldots\) & & & & \\
\hline & L & - & & & & \\
\hline & M & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline * & & Document Nurmber Courtry Cose-Number-king Coda & Date M.M-YYY' & Country & Name & \multicolumn{2}{|r|}{Chassification \({ }^{\text {a }}\)} \\
\hline x & N & 9,529,159 & 11/1995 & WIPO & Fisher et al. & \(\cdots\) & - \\
\hline & 0 & & \(\cdots\) & & & & \\
\hline & - & & & & & & \\
\hline & 0 & & & & & & \\
\hline & R & & & & & & \\
\hline & \$ & & & & & & \\
\hline & T & & & & & & \\
\hline
\end{tabular}

NON-PATENT DOCUMENTS

UNDER THE PATENT COOPERATION TREATY (PCT)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
(51) Interuational Patent Classification \({ }^{6}\) : \\
C07D 213/30, 413/12, 401/12, 417/14, C07C 311/21, C07D 417/12, 209/08, 233/36, 215/36, A61K 31/44, 31/47, 31/18
\end{tabular}} & A1 \\
\hline \multicolumn{3}{|l|}{(21) International Application Number: PCTIUS95/04956} \\
\hline \multicolumn{3}{|l|}{(22) Mnterwational Fring Date: \(\cdot \cdots \cdot . .21\) April 1995 (21.04.95)} \\
\hline \multicolumn{3}{|l|}{(30) Priority Data:} \\
\hline 233,166 26 April 1984 & 26 April 1984 (26.04.94) & US \\
\hline 404,565 21 March 198 & 21 March 1995 (21.03.95) & S \\
\hline 404,566 . 21 March 199 & 21 March 1995 (21.03.95) & 5 \\
\hline \multicolumn{3}{|l|}{(60) Parent Applifations or Grants (63) Related by Continuation} \\
\hline \multicolumn{3}{|l|}{US
\[
404,565 \text { (CP) }
\]} \\
\hline Filed on & \multicolumn{2}{|l|}{21 March \(1995(21.03 .95)\)} \\
\hline US & \multicolumn{2}{|l|}{404,566 (CP)} \\
\hline Filed oh 21 & \multicolumn{2}{|l|}{21. Manch 1995 (21.03.95)} \\
\hline US & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline Flied on 26 & & \\
\hline \multicolumn{3}{|l|}{(71) Applieant (for all designated States except US): MERCK \& CO, INC, [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065 (US).} \\
\hline
\end{tabular}

(81) Designated States: AM, AU, BB, \(\mathrm{BG}, \mathrm{BR}, \mathrm{BY}, \mathrm{CA}, \mathrm{CN}, \mathrm{CZ}\), \(\mathrm{LE}, \mathrm{FI}, \mathrm{GE}, \mathrm{HU}, \mathrm{SS}, \mathrm{JP}, \mathrm{KG}, \mathrm{KR}, \mathrm{KZ}, L K, L R, L T, L V\), MD, MG, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TI, TT, UA, US, UZ, Burcepean pabent (AT, BE, CH, DE, DK, ES, FR, GR, GR, IE, TT, LU, MC, NL, PT, SE), OAFI patent (\(\mathrm{BF}, \mathrm{BI}, \mathrm{CF}, \mathrm{CB}, \mathrm{Cl}, \mathrm{CM}, \mathrm{GA}, \mathrm{GN}, \mathrm{ML}, \mathrm{MR}, \mathrm{NE}\), SN, TD, TG), ARIPO patent (KE, MW, SD, SZ, UG).

\section*{Published}

With international search report.
(54) Title: SUBSTITUTED SULFONAMIDES AS SELECTIVE A AGONISTS FOR THE TREATMENT OF DIABETES AND obesity

(Sy) Abstract . .
Substituted sulfonamides having formola (\()\), are selective \(\beta_{3}\) adrenergic receptor azonists with very litule \(\beta_{1}\) and \(\beta_{2}\) adrentergic receptor activity and as such the compounds are capable of increashing lpolysis snd energy expendiure in cells. The compounds thus have potent aetivity in the treatment of Type II diabetes and obesity. The compounds can also be used to lower triglyceride levels and cholesterol levels or raike high density lipoproteln levels or to decrense gut motilty. In addidion, the compounds cant be used to neduce neurogenic inflammation or as antidepressant agents. The compounds are prepared by coupling an aminoalkylphenyl-gulfonemide with an appropuitecly gubstituted epoxide. Compositions and methods for the use of the compounds th the treatatent of diabetes and obesity and for lowering triglyceride levels and cholesterol levels or raising high density lipaprotein levels or for increasing gut motility are also diselosed.

\section*{FOR TEIE RURPOSES OF IMRORMCATION ONLY}

Codes used to identify States party to the PCT on the front pages of pamphlets publisking interabtional applications under the PCT．
\begin{tabular}{|c|c|}
\hline AT & Anmeria \\
\hline ALU & Ansutrailia \\
\hline 致 & Matradios \\
\hline H \({ }^{\text {E }}\) & Helgium \\
\hline BF & Butatua Fasto \\
\hline H6 & Bulgarim \\
\hline H & Dendila \\
\hline MR & Muntil \\
\hline 8 & Raplerus \\
\hline CA & Cunta \\
\hline E & Curtral Aftuen Regatilic \\
\hline ea & Cangy \\
\hline Et & ．Swhererland \\
\hline cti & coro dTyutit \\
\hline CM & （xanumbin \\
\hline cN & THina \\
\hline CS & Crechiostonukda \\
\hline C & Cuech Republic \\
\hline DE & Corminiy \\
\hline DK & Deraramk \\
\hline ［ \(\mathbf{S E}\) & Spata \\
\hline H1 & Findeud \\
\hline YT & Fixame \\
\hline 6a & Cablea \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 43 & Unitat Kingitara \\
\hline Hz & Cloagyia \\
\hline GHI & Chititich \\
\hline 6R & Creect \\
\hline W1） & Hhuagary \\
\hline \(1{ }^{1}\) & Imand \\
\hline ET & valy \\
\hline \％ & 山iquan \\
\hline 140 & Lempa \\
\hline \(\mathbf{k G}\) & Kyxzystan \\
\hline 14P & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline 148 & Repatilc of morea \\
\hline K／2 & Karalkutan \\
\hline \(\underline{L I}\) & Weschtenutatin \\
\hline LX & \(8{ }^{\text {S }}\) L Latika \\
\hline LH & Laxemibormit \\
\hline LV & Lumvim \\
\hline MC & Mompor \\
\hline MD & Werwoblic of Moldiova \\
\hline Mr & Macisgrectar \\
\hline MTM & Mall \\
\hline MN & Manyolia \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline MR & Mauritanin \\
\hline MW\％ & Malami \\
\hline NE： & Niger \\
\hline NH， & Nechatilands \\
\hline N0 & Numury \\
\hline NK & New 7／arlhand \\
\hline 2． & Polund \\
\hline FT & Partagil \\
\hline 80 & Romamis \\
\hline RU & Ruximin Pedanation \\
\hline 910 & 4，404901 \\
\hline 息 & Sweden \\
\hline 885 & Slowertian \\
\hline SIT & Showalis \\
\hline gnt & Strmat \\
\hline \％ & curas \\
\hline TC & Toga \\
\hline TI & Taplisituan \\
\hline TT & Thumbtad and Tokxag \\
\hline U1／a & Ueramint \\
\hline W & \\
\hline 42 & Undelatatan \\
\hline VN & Vhet Num \\
\hline
\end{tabular}

\section*{TITLE OF THE INVENTION \\ SUBSTITUTED SULFONAMIDES AS SELECTIVE B3 AGONISTS FOR THE TREATMENT OF DIABETES AND OBESITY}

\section*{CROSS REFERENCE}

This is a continuation-in-part of co-pending application U.S.S.N. 08/233,166 filed April 26, 1994, which is hereby incorporated by reference in its entirety.

\section*{BACKGROUND OF THEINVENTION}
\(\beta\)-Adrenoceptors have been subclassified as \(\beta_{1}\) and \(\beta_{2}\) since
1967. Increased heart rate is the primary consequence of \(\beta_{1 \text {-receptor }}\) stimulation, while bronchodilation and smooth muscle relaxation typically result from \(\beta_{2}\) stimulation. Adipocyte lipolysis was initially thought to be solely a \(\beta 1\)-mediated process. However, more recent results indicate that the receptor-mediating lipolysis is atypical in nature. These atypical receptors, later called \(\beta 3\)-adrenoceptors, are found on the cell surface of both white and brown adipocytes where their stimulation promotes both lipolysis (breakdown of fat) and energy expenditure.

Early developments in this area produced compounds with greater agonist activity for the stimulation of lipolysis (\(\beta_{3}\) activity) than for stimulation of atrial rate (\(\beta_{1}\)) and tracheal relaxation (\(\beta_{2}\)). These early developments disclosed in Ainsworth et al., U.S. Patents \(4,478,849\) and \(4,396,627\), were derivatives of phenylethanolamines.

Such selectivity for \(\beta_{3}\)-adrenoceptors could make compounds of this type potentially useful as antiobesity agents. In addition, these compounds have been reported to show antihyperglycemic effects in animal models of non-insulin-dependent diabetes mellitus.

A major drawback in treatment of chronic diseases with \(\beta_{3}\) agonists is the potential for stimulation of other \(\beta\)-receptors and subsequent side effects. The most likely of these include muscle tremor (\(\beta_{2}\)) and increased heart rate (\(\beta_{1}\)). Although these phenylethanolamine
derivatives do possess some \(\beta 3\) selectivity, side effects of this type have been observed in human volunteers. It is reasonable to expect that these side effects resulted from partial \(\beta_{1}\) and/or \(\beta_{2}\) agonism.

More recent developments in this area are disclosed in Ainsworth et al., U.S. Patent \(5,153,210\), Caulkett et al., U.S. Patent 4,999,377, Alig et al., U.S. Patent 5,017,619, Lecount et al., European Patent 427480 and Bloom et al., European Patent 455006.

Even though these more recent developments purport to describe compounds with greater \(\beta_{3}\) selectivity over the \(\beta_{1}\) and \(\beta_{2}\) activities, this selectivity was determined using rodents, in particular, rats as the test animal. Because even the most highly selective compounds, as determined by these assays, still show signs of side effects due to residual \(\beta_{1}\) and \(\beta_{2}\) agonist activity when the compounds are tested in humans, it has become apparent that the rodent is not a good model for predicting human \(\beta 3\) selectivity.

Recently, assays have been developed which more accurately predict the effects that can be expected in humans. These assays utilize cloned human \(\beta 3\) receptors which have been expressed in Chinese hamster ovary cells. See Emorine et al, Science, 1989, 245:1118-1121; and Liggett, Mol. Pharmacol., 1992, 42:634-637. The agonist and antagonist effects of the various compounds on the cultivated cells provide an indication of the antiobesity and antidiabetic effects of the compounds in humans.

\section*{SUMMARY OF THE INVENTION}

The instant invention is concerned with substituted sulfonamides which are useful as antiobesity and antidiabetic compounds. Thus, it is an object of this invention to describe such compounds. It is a further object to describe the specific preferred stereoisomers of the substituted sulfonamides. A still further object is to describe processes for the preparation of such compounds. Another object is to describe methods and compositions which use the compounds as the active ingredient thereof. Further objects will become apparent from reading the following description.

\section*{DESCRIPTION OF THE INVENTION}

The present invention provides compounds having the formula I:
where
\(n\) is \(\quad 0\) to 5 ;
m is \(\quad 0\) or 1 ;
\(r\) is \(\quad 0\) to 3 ;
A is (1) a 5 or 6 -membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen, (2) a benzene ring fused to a 5 or 6 -membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen,
(3) a 5 or 6 -membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen fused to a 5 or 6 -membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen,
(4) phenyl, or
(5) a benzene ring fused to a \(\mathrm{C} 3-\mathrm{C} 8\) cycloalkyl ring;

R1 is • : (1) hydroxy,
(2) \(0 x \mathrm{o}\),
(3) halogen,
(4) cyano,
(5) NR 8 R8,

(6) \(\mathrm{SR}^{8}\),
(7) trifluoromethyl,
(8) \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkyl,
(9) \(\mathrm{OR}^{8}\),
(10) \(\mathrm{SO}_{2} \mathrm{R}^{9}\),
(11) OCOR 9
(12) \(\mathrm{NR}^{8} \mathrm{COR}^{9}\),
(13) COR 9 ,
(14) \(\mathrm{NR}^{8} \mathrm{SO}_{2} \mathrm{R}^{9}\),
(15) \(\mathrm{NR}^{8} \mathrm{CO}_{2} \mathrm{R}^{8}\), or
(16) \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkyl substituted by hydroxy, halogen, cyano, NR8R8, \(\mathrm{SR}^{8}\), trifluoromethyl, \(\mathrm{OR}^{8}, \mathrm{C} 3\)-C8 cycloalkyl, phenyl, \(\mathrm{NR}^{8} \mathrm{COR}^{9}, \mathrm{COR}^{9}, \mathrm{SO}_{2} \mathrm{R}^{9}, \mathrm{OCOR}^{9}, \mathrm{NR}^{8} \mathrm{SO}_{2} \mathrm{R}^{9}\) or \(\mathrm{NR}^{8} \mathrm{CO}_{2} \mathrm{R}^{8}\);
\(R^{2}\) and \(R^{3}\) are independently
(1) hydrogen,
(2) \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkyl or
(3) \(\mathrm{Cl}-\mathrm{C} 10\) alkyl with 1 to 4 substituents selected from hydroxy, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkoxy, and halogen;
(1) \(\mathrm{CH}_{2}\) -
(2) \(-\mathrm{CH}_{2}-\mathrm{CH}_{2}\) -
(3) \(-\mathrm{CH}=\mathrm{CH}\) - or
(4) \(\mathrm{CH}_{2} \mathrm{O}-\) -
\(\mathrm{R}^{4}\) and \(\mathrm{R}^{5}\) are independently
(1)hydrogen,
(2) \(\mathrm{C}_{1}-\mathrm{Cl}_{10}\) alkyl,
(3) halogen,
(4) \(\mathrm{NHR}^{8}\),
(5) \(O R^{8}\)
(6) \(\mathrm{SO}_{2} \mathrm{R}^{9}\) or
(7) \(\mathrm{NHSO}_{2} \mathrm{R}^{9}\);
\(\mathrm{R}^{6}\) is (1) hydrogen or
(2) C1-C10 alkyl;
\(\mathrm{R}^{7}\) is \(\quad \mathbf{Z}\left(\mathrm{R}^{1 \mathrm{a}}\right)_{\mathrm{n}}\);
\(\mathrm{R}^{1 \mathrm{a}}\) is (1) \(\mathrm{R}^{1}\), with the proviso that when \(A\) is phenyl, \(\mathrm{Rl}^{1} \mathrm{a}\) is not Cl-Cl0 alkyl,
(2) \(\mathrm{C}_{3}-\mathrm{C} 8\) cycloalkyl,
(3) phenyl optionally substituted with up to 4 groups independently selected from \(\mathrm{R}^{8}, \mathrm{NR}^{8} \mathrm{R}^{8}, \mathrm{OR}^{8}, \mathrm{SR}^{8}\) and halogen, or
(4) 5 or 6 -membered heterocycle with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen, optionally substituted with up to four groups independently selected from oxo, \(\mathrm{R}^{8}, \mathrm{NR}^{8} \mathrm{R}^{8}, \mathrm{OR}^{8}, \mathrm{SR}^{8}\), and halogen;
\(Z\) is (1) phenyl,
(2) naphthyl,
(3) a 5 or 6 -membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen,
(4) a benzene ring fused to a \(\mathrm{C} 3-\mathrm{C} 8\) cycloalkyl ring,
(5) a benzene ring fused to a 5 or 6 -membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen,
(6) a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen fused to a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen, or
(7) a 5 or 6 -membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen fused to a \(\mathrm{C} 3-\mathrm{C} 8\) cycloalkyl ring;
\(\mathrm{R}^{8}\) is (1) hydrogen,
(2) C1-C10 alkyl,
(3) \(\mathrm{C}_{3}-\mathrm{C} 8\) cycloalkyl,
(4) \(Z\) optionally having 1 to 4 substituents selected from halogen, nitro, oxo, \(\mathrm{NR}^{10} \mathrm{R}^{10}, \mathrm{Cl}_{1} \mathrm{C}_{10}\) alkyl, \(\mathrm{C}_{1}-\mathrm{Cl}_{10}\) alkoxy, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkylthio, and \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkyl having 1 to 4 substituents selected from hydroxy, halogen, \(\mathrm{CO}_{2} \mathrm{H}, \mathrm{CO}_{2}\) -\(\mathrm{Cl}_{1-\mathrm{Cl}}\) alkyl, \(\mathrm{SO}_{2}-\mathrm{C}_{1}-\mathrm{Cl}_{10}\) alkyl, \(\mathrm{C}_{3}-\mathrm{C}_{8}\) cycloalkyl, \(\mathrm{C}_{1}\) -

C10 alkoxy, and Z optionally substituted by from 1 to 3 of halogen, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkyl or \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkoxy, or
(5) \(\mathrm{Cl}_{1} \mathrm{Cl} 10\) alkyl having 1 to 4 substituents selected from hydroxy, halogen, \(\mathrm{CO}_{2} \mathrm{H}, \mathrm{CO}_{2}-\mathrm{Cl}_{1}-\mathrm{C}_{1}\) alkyl, \(\mathrm{SO}_{2}-\mathrm{C}_{1}-\mathrm{C}_{10}\) alkyl, \(\mathrm{C}_{3}-\mathrm{C}_{8}\) cycloalkyl, \(\mathrm{Cl}_{1}-\mathrm{C}_{10}\) alkoxy, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkyl, and \(Z\) optionally substituted by from 1 to 4 of halogen, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkyl or \(\mathrm{Cl}_{1}\) - C 10 alkoxy;
\(\mathrm{R}^{9}\) is \(\quad\) (1) \(\mathrm{R}^{8}\) or
(2) NR8R8;

10
\(\mathrm{R}^{10}\) is \(\quad\) (1) \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkyl, or
(2) two \(\mathrm{R}^{10}\) groups together with the N to which they are attached formed a 5 or 6 -membered ring optionally substituted with C1-C10 alkyl; or
a pharmaceutically acceptable salt thereof.
In one embodiment of the instant invention \(A\) is a 5 or 6 membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen, a benzene ring fused to a 5 or 6 -membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen, or a 5 or 6 -membered beterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen fused to a 5 or 6 -membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen.

In another embodiment of the instant invention \(A\) is phenyl or benzene fused to a \(\mathrm{C} 3-\mathrm{C} 8\) cycloalkyl ring.

Preferred compounds of the instant invention are realized when in the above structural formula \(\mathbf{I}\) :
\(R^{2}\) and \(R^{3}\) are hydrogen or methyl;
X is \(\quad \mathrm{CH}_{2}-\);
\(\begin{array}{ll}\mathrm{n} \text { is } & 0 \text { to } 3 ; \\ \mathrm{m} \text { is } & 1 ; \\ \mathrm{r} \text { is } & 0 \text { to } 2 ; \text { and }\end{array}\)
\(R^{4}, R^{5}\) and \(R^{6}\) are hydrogen.
Other preferred compounds of the instant invention are realized when in the above structural formula \(I\) :

A is phenyl or a 6 membered heterocyclic ring with 1 or 2 heteroatoms selected from nitrogen and sulfur;
R1 is hydroxy, halogen, cyano, trifluoromethyl, NR8R8, \(\mathrm{NR}^{8} \mathrm{SO}_{2} \mathrm{R}^{9}, \mathrm{NR}^{8} \mathrm{COR}^{9}, \mathrm{NR}^{8} \mathrm{CO}_{2} \mathrm{R}^{8}, \mathrm{C}_{1}-\mathrm{C}_{6}\) alkyl optionally substituted by hydroxy; and \(r\) is \(\quad 0\) or 2.

More preferred compounds are represented by the formula
Ia:

wherein
\(n\) is \(\quad \therefore\) to 3 ;
m is \(\quad 1\)
\(\mathbf{R}^{1}\) is
(1) halogen or
(2) \(N R^{8} R^{8}\);
\(\mathrm{R}^{2}, \mathrm{R}^{3}\) are independently hydrogen or methyl;
\(\mathrm{R}^{\text {la }}\) is (1) halogen,
(2) C1-C10 alkyl,
(3) \(\mathrm{NR}^{8} \mathbf{R}^{8}\),
(4) \(\mathrm{NR}^{8} \mathrm{COR}^{9}\).
(5) \(\mathrm{NR}^{8} \mathrm{CO}_{2} \mathrm{R}^{8}\).
(6) \(\mathrm{COR}^{9}\).
(7) \(\mathrm{OCOR}^{9}\), or
(8) a 5 or 6 -membered heterocycle with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen, optionally substituted with up to four groups independently selected from oxo, halogen, \(\mathrm{R}^{8}, \mathrm{NR}^{8} \mathrm{R}^{8}, \mathrm{OR}^{8}\), and \(\mathrm{SR}^{8}\);
Z is (1) phenyl,
(2) naphthyl,
(3) a 5 or 6 -membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen, (4) benzene ring fused to a 5 or 6 -membered heterocyclic ring with from 1 to 3 heteroatoms selected from oxygen,

X is \(\quad-\mathrm{CH}_{2}\)-; and
\(\mathrm{R}^{8}\) and \(\mathrm{R}^{9}\) are as defined under formula I .
Even more preferred compounds are those represented by
formula Id:

Id
n is \(\quad 0\) or 1 ;
\(\mathrm{R}^{1}\) is \(\quad \mathrm{NR}^{8} \mathrm{R}^{8}\);
\(\mathrm{R}^{2}\) and \(\mathrm{R}^{3}\) are independently
(1) hydrogen, or
\(B\) is
(2) methyl;
(1) hydrogen,
(2) benzene fused to the benzene ring to form naphthyl, or
(3) a 5 or 6 -membered heterocycle with 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen atom fused to the benzene ring:
\(R^{1 a}\) is (1) halogen,
(2) \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkyl,
(3) \(\mathrm{NR}^{8} \mathrm{R}^{8}\),
(4) \(\mathrm{NR}^{8} \mathrm{COR}^{9}\).
(5) \(\mathrm{NR}^{8} \mathrm{CO}_{2} \mathrm{R}^{8}\),

(6) \(\mathrm{COR}^{9}\), or
(7) a 5 or 6 -membered heterocycle with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen, optionally substituted with up to four groups independently selected from oxo, \(\mathrm{R}^{8}, \mathrm{SR}^{8}, \mathrm{OR}^{8}\), and \(\mathrm{NR}^{8} \mathrm{R}^{8}\);
when \(B\) and the benzene ring form a fused ring system, \(\mathrm{R}^{1 a}\) is attached to either ring;
\(\mathrm{R}^{8}\) is (1) hydrogen,
(2) \(\mathrm{Cl}_{1}-\mathrm{Cl}_{10}\) alkyl,
(3) Z optionally having 1 to 4 substituents selected from nitro, oxo, and NR \({ }^{10}{ }^{10}\), or
(5) \(\mathrm{C} 1-\mathrm{C} 10\) alkyl having 1 to 4 substituents selected from hydroxy, halogen, \(\mathrm{Cl}_{1}-\mathrm{C} 10\) alkyl, \(\mathrm{C}_{3}-\mathrm{C}_{8}\) cycloalkyl, and Z optionally substituted by from 1 to 4 of halogen, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkyl or \(\mathrm{Cl}_{1-10} \mathrm{C}_{10}\) alkoxy;
\(R^{9}\) is (1) \(R^{8}\) or
(2) NR8R8;
\(\mathrm{R}^{10}\) is (1) C1-C10 alkyl, or
(2) two \(\mathrm{R}^{10}\) groups together with the N to which they are attached formed a 5 or 6 -membered ring optionally substituted with \(\mathrm{C} 1-\mathrm{C} 10\) alkyl; and
\(Z\) is (1) phenyl,
(2) a 5 or 6 -membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen,
(3) a benzene ring fused to a 5 or 6 -membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen, or
(4) a 5 or 6 -membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen fused to a \(\mathrm{C}_{3}-\mathrm{C} 8\) cycloalkyl ring.
Other more preferred compounds are represented by
formula Ib :
wherein
\(n\) is \(\quad 0\) to 3 ;
m is 1
\(\mathrm{R}^{1}\) is (1) hydroxy,
(2) cyano,
(3) \(\mathrm{NR}^{8} \mathrm{R}^{8}\) or
(4) halogen;

R 1 a is (1) halogen,
(2) \(\mathrm{NR}^{8} \mathrm{R}^{8}\),
(3) \(\mathrm{NR}^{8} \mathrm{COR}^{9}\),
(4) \(\mathrm{NR}^{8} \mathrm{CO}_{2} \mathrm{R}^{8}\),
(5) \(\mathrm{OCOR}^{9}\), or
(6) a 5 or 6 -membered heterocycle with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen, optionally substituted with up to three groups independently selected from oxo, halogen, \(\mathrm{R}^{8}, \mathrm{NR}^{8} \mathrm{R}^{8}, \mathrm{OR}^{8}\) and \(\mathrm{SR}^{8}\);
Z is (1) phenyl,
(2) naphthyl or
(3) benzene ring fused to a 5 or 6 -membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen;
X is \(\quad \mathrm{CH}_{2}-\) and
\(\mathrm{R}^{2}\) and \(\mathrm{R}^{3}\) are independently hydrogen or methyl.
Representative antiobesity and antidiabetic compounds of the present invention include the following:
N -[4-[2-[[2-hydroxy-2-(6-aminopyridin-3-yl)ethyl]amino]ethyl]phenyl]-4-(hexylaminocarbonylamino)benzenesulfonamide
\(\mathrm{N}-[4-[2\)-[[2-hydroxy-2-(6-aminopyridin-3-yl)ethyl]amino]ethyl]phenyl]-4-iodobenzenesulfonamide
N -[4-[2-[[2-hydroxy-2-(6-aminopyridin-3-yl)ethyl]amino]ethyl]phenyl]benzenesulfonamide
\(\mathrm{N}-[4-[2\)-[[2-hydroxy-2-(6-aminopyridin-3-yl)ethyl]amino]ethyl]phenyl]2 -naphthalenesulfonamide
\(\mathrm{N}-[4-[2\)-[[2-hydroxy-2-(6-aminopyridin-3-yl)ethyl]amino]ethy1]phenyl]-3-quinolinesulfonamide
N -[4-[2-[[2-hydroxy-2-(6-aminopyridin-3-yl)ethyl]amino]ethyl]phenyl]5 -benzisoxazolesulfonamide
N -[4-[2-[[2-hydroxy-2-(6-aminopyridin-3-yl)ethyl]amino]ethyl]phenyl]-4-[(hexylmethylaminocarbonyl)amino]benzenesulfonamide
N -[4-[2-[[2-hydroxy-2-(6-aminopyridin-3-yl)ethyl]amino]ethyl]phenyl]-4-[(dimethylaminocarbonyl)amino]benzenesulfonamide
\(\mathrm{N}-[4-[2-[[2\)-hydroxy-2-(6-aminopyridin-3-yl)ethyl]amino]ethyl]phenyl]-4-(3-hexyl-2-imidazolidon-1-yl)benzenesulfonamide
\(\mathrm{N}-[4-[3-[[2\)-hydroxy-2-(6-aminopyridin-3-yl)ethyl]amino]propyl]-phenyll-4-(hexylaminocarbonylamino)benzenesulfonamide
N -[4-[3-[[2-hydroxy-2-(6-aminopyridin-3-yl)ethyl]amino]propyl]-phenyll-4-iodobenzenesulfonamide
N-[4-[3-[[2-hydroxy-2-(6-aminopyridin-3-yl)ethyl]amino]propyi]phenyl]benzenesulfonamide
N -[4-[3-[[2-hydroxy-2-(6-aminopyridin-3-yl)ethyl]amino]propyl]-phenyl]-2-naphthalenesulfonamide
\(\mathrm{N}-[4-[3-[[2-\) hydroxy-2-(6-aminopyridin-3-yl)ethyl]amino]propy1]-phenyll-3-quinolinesulfonamide
N -[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4 (hexylaminocarbonylamino)benzenesulfonamide
\(\mathrm{N}-[4-[2-[[2-\) hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4isopropylbenzenesulfonamide
\(\mathrm{N}-[4-[2-[[2\)-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-2naphthalenesulfonamide
\(\mathrm{N}-[4-[2-[[2\)-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-3quinolinesulfonamide
\(\mathbf{N}-[4-[2-[[2\)-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4[(hexylmethylaminocarbonyl)amino]benzenesulfonamide N -[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(3-hexyl-2-imidazolidinon-1-yl)benzenesulfonamide
\(\mathrm{N}-[4\) [2-[[2-hydroxy-2 (3-pyridinyl)ethyl]amino]ethyll]phenyl]-4iodobenzenesulfonamide
N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[5-(3-cyclopentylpropyl)-[1,2,4]-oxadiazol-3-yl]benzensulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[(1oxoheptyl)amino]benzenesulfonamide
N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[(1-oxo-4-phenylbutyl)amino]benzenesulfonamide
N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyllphenyl]-4[(propoxycarbonyl)amino]benzenesulfonamide
N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[Il(fur-2-ylmethyl)amino]carbonyllamino]benzenesulfonamide N -[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[[I(2phenylethyl)aminolcarbonyl]amino]benzenesulfonamide
\(\mathbf{N}\)-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[[[(2-indol-3-ylethyl)amino]carbonyl]amino]benzenesulfonamide
\(\mathbf{N}-[4 \cdots[2\)-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4 [[(octylamino)carbonyl]amino]benzenesulfonamide \(\mathbf{N}-[4-[2-[[2\)-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-[(hexylamino)carbonyl]-5-indolinesulfonamide
\(\mathbf{N}\) [4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-[(octylamino)carbonyl]-5-indolinesulfonamide
\(\mathbf{N}\)-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl] \(]\) 1 [[N . methyl- N -octylamino)carbonyll-5-indolinesulfonamide
N -[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-(1-oxononyl)-5-indolinesulfonamide
\(\mathrm{N}-[4\)-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-(4-methylthiazol-2-yl)-5-indolinesulfonamide \(\mathbf{N}\)-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl] 1 -(4-octylthiazol-2-yl)-5-indolinesulfonamide

N -[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-(4. ethyl-5-methylthiazol- 2 - yl) -5 -indolinesulfonamide \(\mathrm{N}-[4\)-[2 [[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl] 4-(3-octyl-2 -imidazolidinon-1-yl)benzenesulfonamide
\(N-[4-[2-[[2\)-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[3-(4,4,4-trifluorobutyl)-2-imidazolidinon-1-yl]benzenesulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[3-(3-phenylpropyl)-2-imidazolidinon-1-yl]benzenesulfonamide
N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[3-(4,4,5,5,5-pentafluoropentyl)-2-imidazolidinon-1yl]benzenesulfonamide
\(\mathrm{N}-[4\)-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[3-(2-cyclohexylethyl)-2-imidazolidinon-1-yl]benzenesulfonamide
N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[3-[3-(4-chlorophenyl)propyl]-2-imidazolidinon-1-yl]benzenesulfonamide \(\mathbf{N}\)-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(3-pentyl-2-imidazolidinon-1-yl)benzenesulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[3-(3-cyclopentylpropyl)-2-imidazolidinon-1-yl]benzenesulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyll]amino]ethyl]phenyl]-4-[3-(2-cyclopentylethyl)-2-imidazolidinon- 1 -yll]benzenesulfonamide \(\mathrm{N}-[4-[2\)-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4 [3-(3-cyclohexylpropyl)-2-imidazolidinon 1 -yl]benzenesulfonamide N -[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[3-(2,2 dimethylhexyl)-2-imidazolidinon-1-yllbenzenesulfonamide \(\mathbf{N}-[4-[2-[[2\)-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(3-hexyl-2-imidazolon-1-yl)benzenesulfonamide N -[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[3-(4,4,4-trifluorobutyl)-2-imidazolon-1-yl]benzenesulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(3-octyl-2-imidazolon-1-yl)benzenesulfonamide N -[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[3-(3-cyclopentylpropyl)-2-imidazolon-1-yl]benzenesulfonamide
\(\mathbf{N}\)-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(2-octyl-3-oxo-[1,2,4]-triazol-4-yl)benzenesulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(4-hexyl-5-tetrazolon-1-yl)benzenesulfonamide

N -[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4*(4-octyl-5-tetrazolon-1-y])benzenesulfonamide
N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[(3-cyclopentylpropyl)-5-tetrazolon-1-yl]benzenesulfonamide
N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]aminolethyl]phenyl]-4-(2-pentyloxazol-5-yl)benzenesulfonamide
\(\mathbf{N}-[4-[2-[[2-h y d r o x y-2-(3-p y r i d i n y l) e t h y l] a m i n o] e t h y l] p h e n y l]-4-(2-\) octyloxazol-5-yl)benzenesulfonamide
\(\mathrm{N}-[4-[2-[[2-h y d r o x y-2-(3-p y r i d i n y l) e t h y l] a m i n o] e t h y l] p h e n y l]-4-[2-(2-\) cyclopentylethyl)oxazol-5-yl]benzenesulfonamide
N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[(4-ethyl-5-methylthiazol-2-yl)amino]benzenesulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[(4,5,6,7-tetrahydrobenzothiazol-2-yl)amino]benzenesulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(2-hexylimidazol-4-yl)benzenesulfonamide
N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(1-methyl-2-octylimidazol-5-yl)benzenesulfonamide N-[4-[2-[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[1-methyl-2-(2-cyclopentylethyl)imidazol-5-yl]benzenesulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[1-methyl-2-[2-(4-fluorophenyl)ethyl]imidazol-5-yl]benzenesulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(5-pentyl-[1,2,4]-oxadiazol-3-yl)benzenesulfonamide \(\mathbf{N}\)-[4-[2-I[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[5-(2-cyclopentylethyl)-[1,2,4]-oxadiazol-3-yl]benzenesulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(5-heptyl-[1,2,4]-oxadiazol-3-yl)benzenesulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(5-octyl-[1,2,4]-oxadiazol-3-yl)benzenesulfonamide

N -[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]aminolethyl]phenyl] 4 -(5-hexylthio-[1,2,4]-triazol-3-yl)benzenesulfonamide \(\mathbf{N}\)-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[[4-(4-propylpiperidin-1-yl)-1,1-dioxo-[1,2,5]-thiadiazol-3yl]amino]benzenesulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyllphenyl]-4-[[4-(hexylmethylamino)-1,1-dioxo-[1,2,5]-thiadiazol-3yllamino]benzenesulfonamide
\(\mathrm{N}-[4-[2-[[2\)-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[[4-(Nheptyl, N -methylamino)-1,1-dioxo-[1,2,5]-thiadiazol-3yllamino]benzenesulfonamide N -[4-[2"[[2-hydroxy-2 (3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(1-octyl-2,4-imidazolidinedion-3-yl)benzenesulfonamide S-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[3-(3-nitrophenyl)-5-pyrazolon-1-yl]benzenesulfonamide
N-[4-[2 [[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[4-(1-hydroxy-1-hexylheptyl)-5-methyl-[1,2,3]-triazol-2-yl]benzenesulfonamide
N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[4-(1-hydroxyheptyl)-5-methyl-[1,2,3]-triazol-2-yl]benzenesulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]-2-methylpropyl]-phenyl]-4-(3-hexyl-2-imidazolidinon-1-yl)benzenesulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]-2-methylpropyl]-phenyl]-4-iodobenzenesulfonamide
N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]-2-methylpropyl]-phenyl]-4-[[(hexylamino)carbonyl]amino]benzenesulfonamide N-[4-[2-[(2-hydroxy-2-phenylethyl)amino]ethyl]phenyl]-4-iodobenzenesulfonamide
N-[4-[2-[(2-hydroxy-2-phenylethyl)amino]ethyl]phenyl]-2-naphthalenesulfonamide

N-[4-[2-[(2-hydroxy-2-phenylethyl)amino]ethyl]phenyl]-3-quinolinesulfonamide
N-[4-[2-[[2-hydroxy-2-(3-chlorophenyl)ethyl]amino]ethyl]phenyl]-3isopropylbenzenesulfonamide
\(\mathrm{N}-[4-[2-[[2\)-hydroxy-2-(3-chlorophenyl)ethyl]amino]ethyl]phenyl]-2naphthalenesulfonamide
N -[4-[2-[[2-hydroxy-2-(3-chlorophenyl)ethyl]amino]ethyl]phenyl]-3quinolinesulfonamide

N -[4-[2-[[2-hydroxy-2-(4-amino-3,5-dichlorophenyl)ethyl]amino]ethyl]-phenyl]-4-(hexylaminocarbonylamino)benzenesulfonamide
N-[4-[24[[2-hydroxy-2-(4-amino-3,5-dichlorophenyl)ethyl]amino]ethyl]-phenyl]-1-[(octylamino)carbonyl]-5-indolinesulfonamide N-[4-[2-[[2-hydroxy-2-(4-amino-3,5-dichlorophenyl)ethyl]amino]ethyl]-phenyl]-4-(3-hexyl-2-imidazolidinon-1-yl)benzenesulfonamide \(\mathrm{N}-[4-[2\)-[[2-hydroxy-2-(4-amino-3,5-dichlorophenyl)ethyl]amino]ethyl]-phenyl]-4-(3-actyl-2-imidazolidinon-1-yl)benzenesulfonamide \(\mathbf{N}\) [4-[2-[[2-hydroxy-2-(4-hydroxyphenyl)ethyl]amino]ethyl]phenyl]benzenesulfonamide
N-[4-[2-[[2-hydroxy-2-(4-hydroxyphenyl)ethyl]amino]ethyl]phenyl]-4iodobenzenesulfonamide
N-[4-[2-[[2-hydroxy-2-(3-cyanophenyl)ethyl]amino]ethyl]phenyl]-4(hexylaminocarbonylamino)benzenesulfonamide \(\mathrm{N}-[4-[2-[[2\)-hydroxy-2-(3-cyanophenyl)ethyl]amino]ethyl]phenyl]-3quinolinesulfonamide
N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(5-hexyl-[1,2,4]-oxadiazol-3-yl)benzenesulfonamide
N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(4-heptyl-5-methyl-[1,2,3]-triazol-2-yl)benzenesulfonamide
N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(3-hexyl-2,4-imidazolidinedion-1-yl)benzenesulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(3-octyl-2,4-imidazolidinedion-1-yl)benzenesulfonamide
N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[3-(3-cyclopentylpropyl)-2,4-imidazolidinedion-1-yl]benzenesulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(3-pentyl-[1,2,4]-oxadiazol-5-yl)benzenesulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(3-hexyl-[1,2,4]-oxadiazol-5-yl)benzenesulfonamide
\(\mathrm{N}-[44[2-[[2\) hydroxy-2-(3-pyridinyl)ethyl]amino]ethyllphenyll]-4-(3-heptyl-[1,2,4]-oxadiazel-5-yl)benzenesulfonamide N -[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(3-octyl-[1,2,4]-oxadiazol-5-yl)benzenesulfonamide
\(\mathrm{N}-[4-[2\)-[[2-hydroxy-2-(3-pyridinyl)ethy]]amino]ethyl]phenyl]-4-[3-(2-cyclopentylethyl)-[1,2,4]-oxadiazol-5-yl]benzenesulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridiny1)ethyl]amino]ethyl]phenyl]-4-[3-(3-cyclopentylpropyl)-[1,2,4]-oxadiazol-5-yl]benzenesulfonamide \(\mathrm{N}-\mathrm{I} 4-[2-[[2\)-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(3-pentyl-[1,2,4]-thiadiazol-5-yl)benzenesulfonamide N-44-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(3-hexyl-[1,2,4]-thiadiazol-5-yl)benzenesulfonamide N -[4-[2-[[2-hydroxy-2-(3-pyridiny1)ethyl]amino]ethyl]phenyl]-4-(3-heptyl-[1,2,4]-thiadiazol-5-yl)benzenesulfonamide
\(\mathrm{N}-[4-[2-[[2\)-hydroxy-2-(3-pyridinyl)ethyl]aminolethyl]phenyl]-4-(3-octyl-[1,2,4]-thiadiazol-5-yl)benzenesulfonamide \(\mathrm{N}-[4-[2-[[2-\mathrm{hydroxy}-2\)-(3-pyridinyl)ethyl]aminolethyl]phenyl]-4-[3-(2-cyclopentylethyl)-[1,2,4]-thiadiazol-5-yl]benzenesulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[3-(3-cyclopentylpropyl)-[1,2,4]-thiadiazol-5-yl]benzenesulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyllamino]ethyl]phenyl]-4-(5-pentyl-[1,2,4]-thiadiazol-3-yl)benzenesulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(5-hexyl-[1,2,4]-thiadiazol-3-yl)benzenesulfonamide
\(\mathrm{N}-[4-[2-[12\)-hydroxy-2-(3-pyridinyl)ethyl]aminolethyl]phenyl]-4-(5-heptyl-[1,2,4]-thiadiazol-3-yl)benzenesulfonamide
\(\mathrm{N}-[4-[2-[[2\)-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(5-octyl-[1,2,4]-thiadiazol-3-yl)benzenesulfonamide \(\mathrm{N}-[4-[2-[[2\)-hydroxy-2-(3-pyridinyl)ethyl]aminolethyl]phenyl]-4-[5-(2cyclopentylethyl) [\(1,2,4]\)-thiadiazol- 3 -yl]benzenesulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[5-(3-cyclopentylpropyl)-[1,2,4]-thiadiazol-3-yll]benzenesulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]aminolethyl]phenyl]-4-(4-pentyl-3-oxo-[1,2,4]-triazol-2-yl)benzenesulfonamide

N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]arnino]ethyl]phenyl]-4-(4 hexyl-3-oxo-[1,2,4]-triazol-2-yl)benzenesulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(4-heptyl-3-oxo-[1,2,4]-triazol-2-yl)benzenesulfonamide
N [4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(4-octyl-3-oxo-[1,2,4]-triazol-2-yl)benzenesulfonamide
N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]aminolethyl]phenyl]-4-[4-(2-cyclopentylethyl)-3-oxo-[1,2,4]-triazol-2-yl]benzenesulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[4-(3-cyclopentylpropyl)-3-oxo-[1,2,4]-triazol-2-yl]benzenesulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]aminolethyl]phenyl]-4-(5-pentyloxazol-2-yl)benzenesulfonamide N -[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(5-hexyloxazol-2-yl)benzenesulfonamide
N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]pheny1]-4-(5-heptyloxazol-2-yl)benzenesulfonamide
N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(5-octyloxazol-2-yl)benzenesulfonamide
\(\mathbf{N}-[44[2\)-[12-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[5-(2-cyclopentylethyl)oxazol-2-yllbenzenesulfonamide
\(\mathbf{N}-[4-[2-[[2\)-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[5-(3-cyclopentylpropyl)oxazol-2-yll]benzenesulfonamide
N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(4-pentyloxazol-2-yl)benzenesulfonamide \(\mathbf{N}\)-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(4-hexyloxazol-2-yl)benzenesulfonamide
N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(4-heptyloxazol-2-yl)benzenesulfonamide
\(\mathbf{N}-[44[2-[[2\)-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(4 octyloxazol-2-yl)benzenesulfonamide
N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[4-(2-cyclopentylethyl)oxazol-2-yl]benzenesulfonamide
\(\mathbf{N}-[4-[2-[[2\)-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[4-(3-cyclopentylpropyl)oxazol-2-yl]benzenesulfonamide
\(\mathrm{N}-[4-[2\)-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(2-hexyloxazol-5-yl)benzenesulfonamide \(\mathrm{N} \mu[4-[2\)-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl] 4 -(2 heptyloxazol-5-yl)benzenesulfonamide
\(\mathbf{N}\)-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[2-(3-cyclopentylpropyl)oxazol-5-yl]benzenesulfonamide N \(\mathbf{N}\) [4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[2-(4-cyclohexylbutyl)oxazol-5-yl]benzenesulfonamide
\(\mathrm{N}-\mathrm{f} 4\)-[2 \(2[[2\)-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[2-[2-(4-fluorophenyl)ethyl]oxazol-5-yl]benzenesulfonamide
N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(2-pentyloxazol-4-yl)benzenesulfonamide N -[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(2-hexyloxazol-4-yl)benzenesulfonamide \(\mathrm{N}-[4-[2-[[2-\mathrm{hydroxy}-2\)-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(2-heptyloxazol-4-yl)benzenesulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(2-octyloxazol-4-yl)benzenesulfonamide \(\mathbf{N}\) [4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[2-(2-cyclopentylethyl)oxazol-4-yl]benzenesulfonamide \(\mathbf{N}\)-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[2-(3-cyclopentylpropyl)oxazol-4-yllbenzenesulfonamide
\(\mathbf{N}\)-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(5-pentylthiazol-2-yl)benzenesulfonamide
\(\mathrm{N}-[4\)-[2"[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(5-hexylthiazol-2-yl)benzenesulfonamide
N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(5-heptylthiazol-2-yl)benzenesulfonamide
\(\mathbf{N}-[4-[2-[[2-h y d r o x y-2\)-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(5-octylthiazol-2-yl)benzenesulfonamide
\(\mathbf{N}-[4-[2-[[2-h y d r o x y-2-(3-p y r i d i n y l) e t h y l] a m i n o] e t h y l] p h e n y l]-4-[5 \cdots(2-\) cyclopentylethyl)thiazol-2-yllbenzenesulfonamide \(\mathbf{N}-[4-[2-[[2-h y d r o x y-2\)-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[5-(3-cyclopentylpropyl)thiazol-2-yllbenzenesulfonamide

N -[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(4-pentylthiazol-2-yl)benzenesulfonamide
N -[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(4-hexylthiazol-2-yl)benzenesulfonamide

N [4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(4-heptylthiazol-2-yl)benzenesulfonamide
N -[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyllphenyl]-4-(4-octylthiazol-2-yl)benzenesulfonamide
\(\mathbf{N}\)-[4-[2"[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[4-(2-cyclopentylethyl)thiazol-2-yl]benzenesulfonamide
\(\mathbf{N}\)-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[4-(3-cyclopentylpropyl)thiazol-2-yllbenzenesulfonamide
N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(2-pentylthiazol-4-yl)benzenesulfonamide
\(\mathbf{N}-[4-[2\)-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(2-hexylthiazol-4-yl)benzenesulfonamide N -[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(2) heptylthiazol-4-yl)benzenesulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(2-octylthiazol-4-yl)benzenesulfonamide
\(\mathrm{N}-[4-[2-[[2\)-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[2-(2-cyclopentylethyl)thiazol-4-yllbenzenesulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[2-(3-cyclopentylpropyl)thiazol-4-yl]benzenesulfonamide
\(\mathrm{N}-[4-[2-[[2\)-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(2-pentylthiazol-5-yl)benzenesulfonamide
\(\mathbf{N}-[4-[2-[[2-h y d r o x y-2-(3\)-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(2-hexylthiazol-5-yl)benzenesulfonamide
\(\mathbf{N}-[4-[2-[[2-\) hydroxy-2-(3-pyridinyl)ethyll]amino]ethyl]phenyl]-4-(2-heptylthiazol-5-yl)benzenesulfonamide
N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4(2-octylthiazol-5-yl)benzenesulfonamide
\(\mathbf{N}-[4-[2-[[2\)-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[2.(2cyclopentylethyl)thiazol -5 yl l]benzenesulfonamide
\(\mathrm{N}-[4-[2\)-[[2-hydroxy-2-(3-pyridinyl)ethyl]aminolethyl]phenyl]-4-[2-(3-cyclopentylpropyl)thiazol-5-yl]benzenesulfonamide \(\mathrm{N}-[4-[2-[[2\)-hydroxy-2-(3-pyridinyl)ethyl] amino \(]\) ethyl]phenyl]-1-(5-methylthiazol-2-yl)-5-indolinesulfonamide
\(\mathbb{N}-[4-[2-[[2\)-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-(5-pentylthiazol-2-yl)-5-indolinesulfonamide
\(\mathrm{N}-[4-[2-[[2\)-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-(5-hexylthiazol-2-yl)-5-indolinesulfonamide
N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-(5-heptylthiazol-2-yl)-5-indolinesulfonamide
N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-(5-octylthiazol-2-yl)-5-indolinesulfonamide \(\mathrm{N}-[4-[2\)-[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-[5-(2-cyclopentylethyl)thiazol-2-y1]-5-indolinesulfonamide. N -[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-[5-(3-cyclopentylpropy1)thiazol-2-yll-5-indolinesulfonamide
\(\mathrm{N}-[4-[2\)-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-(4-pentylthiazol-2-yl)-5-indolinesulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-(4-hexyldhiazol-2-yl)-5-indolinesulfonamide
\(\mathrm{N}-[4-[2-[[2-\mathrm{hydroxy}-2\)-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-(4-heptylthiazol-2-y1)-5-indolinesulfonamide
N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-[4-(2-cyclopentylethyl)thiazol-2-y]]-5-indolinesulfonamide
\(\mathrm{N}-[4-[2-[[2\)-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-[4-(3-cyclopentylpropyl)thiazol-2-yl]-5-indolinesulfonamide
N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-(5-methyloxazol-2-yl)-5-indolinesulfonamide
N -[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-(5-pentyloxazol-2-yl)-5-indolinesulfonamide
\(\mathrm{N}-[4-[2\)-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-(5-hexyloxazol- 2 -yl)-5-indolinesulfonamide
\(\mathrm{N}-[4-[2-[[2\)-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-(5-heptyloxazol-2-yl)-5-indolinesulfonamide
\(\mathrm{N}-[44[2-[[2\)-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-(5-octyloxazol-2-yl)-5-indolinesulfonamide
N -[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-[5-(2-cyclopentylethyl)oxazol-2-yll-5-indolinesulfonamide

N -[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-[5-(3-cyclopentylpropyl)oxazol-2-yl]-5-indolinesulfonamide \(\mathrm{N}-[4[[2-[[2\)-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-(4-methyloxazol-2-yl)-5-indolinesulfonamide
\(\mathrm{N}-[4-[2-[[2-h y d r o x y-2-(3-p y r i d i n y l) e t h y l] a m i n o] e t h y l] p h e n y l]-1-(4-\) pentyloxazol-2-yl)-5-indolinesulfonamide N -[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-(4-hexyloxazol-2-yl)-5-indolinesulfonamide
N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-(4-heptyloxazol-2-yl)-5-indolinesulfonamide
\(\mathrm{N}-[4\)-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-(4-octyloxazol-2-yl)-5-indolinesulfonamide \(\mathbf{N}\)-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-[4-(2-cyclopentylethyl)oxazol-2-yl]-5-indolinesulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-[4-(3-cyclopentylpropyl)oxazol-2-yl]-5-indolinesulfonamide N -[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-(3-methyl-[1,2,4]-oxadiazol-5-yl)-5-indolinesulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-(3-pentyl-[1,2,4]-oxadiazol-5-yl)-5-indolinesulfonamide
\(\mathbf{N}\)-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-(3-hexyl-[1,2,4]-oxadiazol-5-yl)-5-indolinesulfonamide
\(\mathbb{N}-[4\)-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-(3-heptyl-[1,2,4]-oxadiazol-5-yl)-5-indolinesulfonamide
N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-(3-octyl-[1,2,4]-oxadiazol-5-y1)-5-indolinesulfonamide
\(\mathbf{N}-[4-[2-[[2\)-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-[3-(2-cyclopentylethyl)-[1,2,4]-oxadiazol-5-yl]-5-indolinesulfonamide \(\mathrm{N}-[4-[2-[[2\)-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl] \(]\) 1-[3-(3-cyclopentylpropyl)-[1,2,4]-oxadiazol-5-yl]-5-indolinesulfonamide

N -[4-[2-[[2-hydroxy-2m(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-(5-methyl-[1,2,4]-oxadiazol-3-yl)-5-indolinesulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-(5-pentyl-[1,2,4]-oxadiazol-3-yl)-5-indolinesulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-(5-hexyl-[1,2,4]-oxadiazol-3-yl)-5-indolinesulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-(5-heptyl-[1,2,4]-oxadiazol-3-yl)-5-indolinesulfonamide
N -[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-(5-octyl-[1,2,4]-oxadiazol-5-yl)-3-indolinesulfonamide
N -[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-[5-(2-cyciopentylethyl)-[1,2,4]-oxadiazol-3-yl]-5-indolinesulfonamide \(\mathrm{N}-[4-[2-[[2-\) hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl] 1 1-[5-(3 cyclopentylpropyl)-[1,2,4]-oxadiazol-3-yl]-5-indolinesulfonamide The compounds of the instant invention all have at least one asymmetric center as noted by the asterisk in structural Formula 1. Additional asymmetric centers may be present on the molecule depending upon the nature of the various substituents on the molecule, in particular, \(\mathbf{R}^{2}\) and \(\mathbf{R}^{3}\). Each such asymmetric center will produce two optical isomers and it is intended that all such optical isomers, as separated, pure or partially purified optical isomers or racemic mixtures thereof, be included within the ambit of the instant invention. In the case of the asymmetric center represented by the asterisk in Formula I, it has been found that the compound in which the hydroxy substituent is above the plane of the structure, as seen in Formula Ic, is more active and thus more preferred over the compound in which the hydroxy substituent is below the plane of the structure.

The following stereospecific structure represents the preferred stereoisomers of the instant invention:

Ic
where \(n, m, r, A, R^{1}, R^{2}, R^{3}, R^{4}, R^{5}, R^{6}, R^{7}\) and \(X\) are as defined above under formula \(I\).

Throughout the instant application, the following terms have the indicated meanings:

The alkyl groups specified above are intended to include those alkyl groups of the designated length in either a straight or branched configuration. Exemplary of such alkyl groups are methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, tertiary butyl, pentyl, isopentyl, hexyl, isohexyl, and the like.

The alkoxy groups specified above are intended to include those alkoxy groups of the designated length in either a straight or branched configuration. Exemplary of such alkoxy groups are methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, tertiary butoxy, pentoxy, isopentoxy, hexoxy, isohexoxy and the like.

The term "halogen" is intended to include the halogen atoms fluorine, chlorine, bromine and iodine.

Examples of 5 and 6-membered heterocycles and fused heterocycles of \(\mathrm{A}, \mathrm{Z}\) and \(\mathrm{R}^{1 \mathrm{a}}\) include pyridyl, quinolinyl, pyrimidinyl, pyrrolyl, thienyl, imidazolyl, thiazolyl, benzimidazolyl, thiadiazolyl, benzothiadiazolyl, indolyl, indolinyl, benzodioxolyl, benzodioxanyl, benzothiophenyl, benzofuranyl, benzoxazinyl, benzisoxazolyl, benzothiazolyl, tetrahydronaphthyl, dihydrobenzofuranyl, tetrahydroquinolinyl, furopyridine and thienopyridine.

The preferred values of \(A\) and \(Z\) are phenyl, naphthyl, benzene ring fused to a 5 or 6 -membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen, or
heterocycles with from 1 to 4 heteroatoms independently selected from one of oxygen or sulfur, and/or 1 to 4 nitrogen atoms.

The more preferred values of A are phenyl, pyridyl, quinolinyl, pyrimidinyl, pyrrolyl, thienyl, imidazolyl, and thiazolyl.

The more preferred values of \(\mathbb{Z}\) are phenyl, naphthyl, quinolinyl, thienyl, benzimidazolyl, thiadiazolyl, benzothiadiazolyl, indolyl, indolinyl, benzodioxolyl, benzodioxanyl, benzothiophenyl, benzofuranyl, benzoxazinyl, benzisoxazolyl, benzothiazolyl, tetrahydronaphthyl, dihydrobenzofuranyl, triazolyl, tetrazolyl, oxadiazolyl, imidazolyl, oxazolyl, thiazolyl, imidazolidinyl, pyrazolyl, isoxazolyl, pyridyl, pyrimidyl, pyrazolyl, tetrahydrobenzothiazolyl and tetrahydroquinolinyl. When Z is attached to \(-\mathrm{NSO}_{2}\left(\mathrm{CH}_{2}\right)_{\mathrm{r}}\), it is preferably phenyl, naphthyl or a benzene ring fused to a 5 or 6 membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen. When \(Z\) is part of the definition of \(R^{8}\), it is preferably phenyl, a 5 or 6 -membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen, a benzenc ring fused to a 5 or 6 -membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen, or a 5 or 6 membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen fused to a \(\mathrm{C} 3-\mathrm{C} 8\) cycloalkyl ring.

The preferred heterocycles of \(\mathrm{R}^{1 a}\) are thienyl, thiadiazolyl, triazolyl, tetrazolyl, oxadiazolyl, imidazolyl, oxazolyl, thiazolyl, imidazolidinyl, pyrazolyl, isoxazolyl, pyridyl, pyrimidyl, and pyrazolyl.

Certain of the above defined terms may occur more than once in the above formula and upon such occurrence each term shall be defined independently of the other; thus for example, \(\mathrm{NR}^{8} \mathrm{R}^{8}\) may represent \(\mathrm{NH}_{2}, \mathrm{NHCH}_{3}, \mathrm{~N}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}\), and the like.

The following abbreviations are used throughout the specification:

Boc . . : tert-butyloxycarbonyl
Cbz : carbobenzyloxy
DIP-Cl . : diisopinocampheylchloroborane
DMF : dimethylformamide
\begin{tabular}{|c|c|}
\hline DMSO & : dimethylsulfoxide \\
\hline HPLC & : high pressure liquid chromatography \\
\hline Me & : methyl \\
\hline MPLC & : medium pressure liquid chromatography \\
\hline Ms & : methanesulfonyl (mesyl) \\
\hline NBS & : N-bromosuccinimide \\
\hline NCS & : N-chlorosuccinimide \\
\hline nHex & : n-hexyl \\
\hline TBAF & : tetrabutylammonium fluoride \\
\hline TBS (TBDMS) & : t-butyldimethylsilyl \\
\hline TFA & : trifluoroacetic acid \\
\hline THF & : tetrahydrofuran \\
\hline
\end{tabular} prepared from epoxide intermediates such as those of formula II and amine intermediates such as those of formula III. The preparation of these intermediates is described in the following schemes.

II

III
where \(n, m, r, A, R^{1}, R^{2}, R^{3}, R^{4}, R^{5}, R^{6}, R^{7}\) and \(X\) are as defined above.

Compounds II are known in the literature or may be conveniently prepared by a variety of methods familiar to those skilled in the art. One common route is illustrated in Scheme 1. Acid chloride 1, which may be commercially available or readily prepared from the corresponding acid by treatment with, for example, thionyl chloride or oxalyl chloride, is treated with diazomethane in a solvent such as diethyl ether. The resultant diazoketone is then treated with hydrogen chloride to give chloroketone \(2(X=C l)\). The haloketone 2 is then reduced with a reducing agent such as sodium borohydride. The resultant alcohol 3 is
treated with base such as potassium carbonate in refluxing acetone to provide the desired epoxide II. The enantiomerically enriched (\(R\)) and (S) epoxides II are readily available by asymmetric reduction of haloketones 2 using chiral reducing agents such as (-) or (+)-DIP-Cl, \((R)\) or (\(S\)) Alpine borane or (\(R\)) or (\(S\))-tetrahydro-1-methyl-3,3-diphenyl-1H,3H-pyrrolo [1,2-c][1,3,2]oxazaborole-borane (\((R)\) or (S)\(\mathrm{OAB} \cdot \mathrm{BH}_{3}\)).

\section*{SCHEME 1}

 base

An alternate route to the desired haloketones 2 is illustrated
in Scheme 2. Methylketone 4 may be converted to the corresponding haloketone using a variety of reagents known to those in the art and summarized in Larock Comprehensive Organic Transformations; VCH: New York, 1989, 369-372. Conveniently, methylketone 4 is treated
with chlorine or \(N\)-chlorosuccinimide in acetic acid with an additional acid source such as hydrogen chloride or aluminum chloride. For the synthesis of \(2(\mathrm{X}=\mathrm{Br})\), bromine, dibromobarbituric acid or NBS with hydrogen bromide or aluminum bromide may be used. In some cases, the chloro or bromoketones 2 may be commercially available.

SCHEME 2

Many of the methylketones 4 are commercially available or readily prepared by methods described in the literature and known to those skilled in the art. R1 substituents on the acid chlorides 1 or methylketones 4 may need to be protected during the subsequent procedures. A description of such protecting groups may be found in: Protective Groups in Organic Synthesis, 2nd Ed., T. W. Greene and P. G. M. Wuts, John Wiley and Sons, New York, 1991.

Compounds III can be conveniently prepared by a variety of methods familiar to those skilled in the art. A convenient route for their preparation when \(R^{6}\) is hydrogen is illustrated in Scheme 3. Compound 5 is selectively protected as a suitable carbamate derivative 6 with, for example, di-tert-butyl dicarbonate or carbobenzyloxy chloride. This compound is then treated with a sulfonyl halide, preferably the sulfonyl chloride \(7_{3}\) and a base such as pyridine in an anhydrous solvent such as dichloromethane or chloroform for 0.5 to 24 hours at temperatures of -20 to \(50^{\circ} \mathrm{C}\), preferably \(0^{\circ} \mathrm{C}\), to provide the sulfonamide 8 . The protecting group is then removed with, for
example, trifluoracetic acid in the case of Boc or catalytic hydrogenation in the case of Cbz , to give the desired amine 2.

SCHEME 3.

Compounds III where \(\mathbf{R} 6\) is not hydrogen may be conveniently prepared as illustrated in Scheme 4. Sulfonamide 8. prepared as described above, is alkylated with an appropriate alkylating agent 10 in the presence of base to provide sulfonamide 11. Removal of the protecting group as above gives the desired compound 9a.

\section*{SCHEME 4}

The sulfonyl chlorides Z, many of which are commercially available, can also be readily prepared by a number of methods familiar to those skilled in the art. One suitable method involves the addition of an organolithium reagent or a Grignard reagent to sulfuryl chloride following the procedure of S. N. Bhattacharya, et al., J. Chem. Soc. 25 (C), 1265-1267 (1969). Another convenient method involves the treatment of a thiol with sulfuryl chloride and a metal nitrate according to the procedure of Y. J. Park, et. al., Chemistry Letters, 1483-1486 (1992). Sulfonic acids are also conveniently converted to the corresponding sulfonyl chloride by treatment with \(\mathrm{PCl} 5, \mathrm{PCl}_{3}\) or \(\mathrm{SOCl}_{2}\)
(J. March, Advanced Organic Chemistry, 4th Ed., John Wiley and Sons, New York: 1992, p1297 and references sited therein). Aromatic and heteroaromatic compounds may be chlorosulfonylated directly by treatment with Vilsmeier's reagent or chorosulfonic acid (Organic Synthesis, I, 8).

The diamines 5 are commercially available or readily prepared by methods described in the literature or known to those skilled in the art. Compound 5 where \(\mathbf{R}^{2}\) or \(\mathrm{R}^{3}\) is methyl can be prepared from the corresponding amino acid following the method of J . D. Bloom, et. al., J. Med. Chem., 35, 3081-3084 (1992). As illustrated in Scheme 5 for \(\mathrm{R}^{3}=\) methyl, the appropriate \((R)\) amino acid 12 is esterified, conveniently by treatment with methanolic hydrochloric acid, and then treated with di-tert-butyl dicarbonate to give compound 13. The ester group is reduced with a hydride source such as lithium borohydride and the resultant alcohol is converted to a leaving group such as a mesylate. Removal of the Boc protecting groups gives diamine 14. This compound is subjected to catalytic hydrogenation in the presence of base such as sodium acetate to give the desired \(\alpha\)-methyl amine 15. The other enantiomer is available through an analogous sequence starting with the corresponding (\(S\)) amino acid.

\section*{SCHEME 5}

Diamines 5 or sulfonamide amines 2 where \(X\) is \(-\mathrm{CH}_{2} \mathrm{O}\). and \(m\) is 1 are also readily prepared by methods described in the literature or known to those skilled in the art. For example, as shown in Scheme 6, the sodium salt of 4-nitrophenol 16 is alkylated with 1 -bromo-2-chloroethane, conveninetly in refluxing 2-butanone with a base such as potassium carbonate to give chloro derivative 17. The chloride is converted to the corresponding amine by treatment with lithium azide followed by reduction with, for example, triphenylphosphine in aqueous tetrahydrofuran. Protection of the resultant amine, conveniently as its t-butyl carbamate by treatment with di-tert-butyldicarbonate, gives derivative 18. The nitro group is then reduced, for example, by
catalytic hydrogenation to provide amine 19. Acylation of intermediate 19 with sulfonyl chloride 7 , followed by deprotection with acid such as trifluoroacetic acid gives the desired intermediate 20.
1. \(\operatorname{LiN}_{3 x}\) DMF, \(60^{\circ}\)

SCHEME 6

16

18

19

25

30

20

Alternatively, diamine 5 where X is \(\mathrm{CH}_{2} \mathrm{O}\) - and m is 1 is available from intermediate 19 by treatment with trifluoroacetic acid. This diamine may then be modified as illustrated in Scheme 3.

Diamines 5 and sulfonamide amines 9 where X is \(-\mathrm{CH}_{2} \mathrm{CH}_{2}\) - and m is 1 are also readily prepared by methods described in the literature or known to those skilled in the art. For example, as shown in Scheme 7, bromo derivative 21 is treated with sodium cyanide to provide nitrile 22. The nitro group is selectively reduced by treatment with hydrogen and catalytic palladium to provide amine 23. Amine 23 is acylated with sulfonyl chloride \(Z\) to give the corresponding sulfonamide 24. Reduction of compound 24 with cobalt chloride and sodium borohydride provides the desired amine 25 .

\section*{SCHEME 7}

25

\(-35=\)
Alternatively, diamine 5 where X is \(-\mathrm{CH}_{2} \mathrm{CH}_{2}\) - and m is 1 is available from intermediate 23 by reduction of the nitrile group with, for example, cobalt chloride and sodium borohydride. This diamine may then be modified as illustrated in Scheme 3.

Intermediates II and III are coupled by heating them neat or as a solution in a polar solvent such as methanol, acetonitrile, tetrahydrofuran, dimethylsulfoxide or \(N\)-methyl pyrrolidinone for 1 to 24 hours at temperatures of 30 to \(150^{\circ} \mathrm{C}\) to provide compounds I as shown in Scheme 8. The reaction is conveniently conducted in refluxing methanol. Alternatively, a salt of amine III, such as the trifluoroacetate or hydrochloride salt, may be used. In these cases, a base such as sodium bicarbonate or diethylisopropylamine is added to the reaction mixture. The product is purified from unwanted side products by recrystallization, trituration, preparative thin layer chromatography, flash chromatography on silica gel as described by W. C. Still, et. al., J. Org. Chem. 43, 2923 (1978), medium pressure liquid chromatography, or HPLC. Compounds which are purified by HPLC may be isolated as the corresponding salt. Purification of intermediates is achieved in the same manner.

\section*{SCHEME 8}

In some cases, the coupling product 1 from the reaction described in Scheme 8 may be further modified, for example, by the removal of protecting groups or the manipulation of substituents on, in particular, R1 and R7. These manipulations may include, but are not limited to, reduction, oxidation, alkylation, acylation, and hydrolysis reactions which are commonly known to those skilled in the art.

An alternate method for the synthesis of compound I is illustrated in Scheme 9. Epoxide II is coupled to amine 5 as described above for coupling intermediates II and III (Scheme 8) to give aniline derivative 27. The secondary amine is selectively protected, for example, as a carbamate by treatment with di-tert-butyldicarbonate to provide carbamate 29. Alternatively, nitro amine 26 is used in the coupling reaction to provide 28. Following protection as described above, the nitro group is reduced, for example, by catalytic hydrogenation with palladium catalyst or raney nickel, to provide intermediate 29. In some cases, other group may be reduced concomitantly. For example, if \(\mathbf{R}^{1}\) is halogen in intermediate 28 , it may
be converted to hydrogen in intermediate 29. Treatment with a sulfonyl chloride in the presence of a base such as pyridine followed by removal of the protecting group with, in the case of a tert-butylcarbamate, acid such as trifluoroacetic acid or methanolic hydrogen chloride, provides the sulfonamide 1 .

\section*{SCHEME9}

\[
\frac{5}{}\left(\mathrm{Z}=\mathrm{NH}_{2}\right)
\]
\[
26\left(Z=N O_{2}\right)
\]

\(27\left(\mathrm{Z}=\mathrm{NH}_{2}\right)\)
\(28\left(\mathrm{Z}=\mathrm{NO}_{2}\right)\)

29
1) \(\mathrm{R}^{7}\left(\mathrm{CH}_{2}\right)_{-}-\mathrm{SO}_{2} \mathrm{Cl}\), base 1
2) TFA or \(\mathrm{HCl} / \mathrm{MeOH}\)

In some cases, compound I from the reaction sequence illustrated in Scheme 9 may be further modified, for example, by the
removal of protecting groups or the manipulation of substituents on, in particular, R1 and R7, as described above. In addition, manipulation of substituents on any of the intermediates in the reaction sequence illustrated in Scheme 9 may occur. One such example is illustrated in Scheme 10. Compound 30, which is prepared as outlined in Scheme 9 from the corresponding epoxide, is subjected to reduction using tin(II) chloride to provide compound 31. Other examples of substituents on compound I which may be reduced to the corresponding amine by methods commonly known to those skilled in the art include nitro groups, nitriles, and azides.

\section*{SCHEME 10}

32 is reduced with, for example, sodium borohydride in methanol to give the desired aminoalcohol I.

\section*{SCHEME 11}

32
[H]

In some cases, the product I from the reaction described in Scheme 11 may be further modified, for example, by the removal of protecting groups or the manipulation of substituents on, in particular, R1 and R7. These manipulations may include, but are not limited to, reduction, oxidation, alkylation, acylation, and hydrolysis reactions which are commonly known to those skilled in the art.

An alternate synthesis of key intermediate 29 is shown is Scheme 12. The alcohol of intermediate 3 is protected, for example, as its t-butyldimethylsilyl ether to give TBS derivative 33 . This compound is then treated with amine 5 and a base such as diisopropylethylamine in a solvent, typically polar aprotic such as acetonitrile, at temperatures of

25 to \(150^{\circ} \mathrm{C}\) for 1 to 72 hours. Typically, an iodide source such as sodium iodide is added to facilitate the reaction. The protecting group is then removed, in the case of silyl ether, by treatment of the resultant amine 34 with a fluoride source such as tetrabutylammonium fluoride. Protection of the secondary amine as before gives key intermediate 29.

\section*{SCHEME 12}

In some cases, compound I may be syithesized directly from intermediate 27 without protection of the secondary amine. For example, when \(\mathrm{R}^{2}\) and \(\mathrm{R}^{3}\) are both methyl, aniline derivative 27 is treated with sulfonyl chloride 7 and a base such as pyridine in a solvent
such as dichloromethane at a temperature of -30 to \(50^{\circ} \mathrm{C}\), typically 0 \({ }^{\circ} \mathrm{C}\), to provide compound I .

In some cases, the product I from the reaction described in Scheme 13 may be further modified, for example, by the removal of protecting groups or the manipulation of substituents on, in particular, \(R^{1}\) and \(R^{7}\), as described above.

\section*{SCHEME 13}

The compounds (I) of the present invention where \(\mathrm{R}^{2}\) and \(\mathrm{R}^{3}\) are hydrogen can also be prepared from acid intermediates of formula 36 and aminoalcohols of formula 37, as shown in Scheme 14. Acid 36 is available from the corresponding ester 35 , typically a methyl or ethyl ester, by treatment with sulfonyl chloride ' \(I\) and a base such as pyridine, followed by hydrolysis of the ester with aqueous acid or base, Acid 36 iscoupled to amine 37 , which is known in the literature or readily prepared by methods known to those skilled in the art, using a coupling agent such as benzotriazolyl- N -oxytris(dimethylamino)phosphonium hexafluorophosphate or 1-(3) dimethylaminopropyl)-3-ethylcarbodiimide methiodide to provide the amide 38. This is treated with a reducing agent, typically borane, to provide the desired compound I.

\section*{SCHEME 14}

[H]
I

Compounds of the general Formula I may be separated into diastereoisomeric pairs of enantiomers by, for example, fractional crystallization from a suitable solvent, for example methanol or ethyl acetate or a mixture thereof. The pair of enantiomers thus obtained
may be separated into individual stereoisomers by conventional means, for example by the use of an optically active acid as a resolving agent.

Alternatively, any enantiomer of a compound of the general Formula I may be obtained by stereospecific synthesis using optically pure starting materials of known configuration.

The instant compounds can be isolated in the form of their pharmaceutically acceptable acid addition salts, such as the salts derived from using inorganic and organic acids. Examples of such acids are hydrochloric, nitric, sulfuric, phosphoric, formic, acetic, trifluoroacetic, propionic, maleic, succinic, malonic and the like. In addition, certain compounds containing an acidic function such as a carboxy or tetrazole, can be isolated in the form of their inorganic salt in which the counterion can be selected from sodium, potassium, lithium, calcium, magnesium and the like, as well as from organic bases.

As previously indicated, the compounds of the present invention have valuable pharmacological properties.

The present invention also provides a compound of the general Formula I or a pharmaceutically acceptable salt thereof for use as an active therapeutic substance.

In one aspect, the present invention provides a compound of the general Formula I or a pharmaceutically acceptable ester thereof: or a pharmaceutically acceptable salt thereof for use in the treatment of obesity in human or non-human animals.

The present invention further provides a compound of the general Formula 1, or a pharmaceutically acceptable ester thereof; or pharmaceutically acceptable salt thereof, for use in the treatment of hyperglycemia (diabetes) in human or non-human animals.

The disease diabetes mellitus is characterized by metabolic defects in production and utilization of glucose which result in the failure to maintain appropriate blood sugar levels. The result of these defects is elevated blood glucose or hyperglycemia. Research on the treatment of diabetes has centered on attempts to normalize fasting and postprandial blood glucose levels. Treatments have included parenteral
administration of exogenous insulin, oral administration of drugs and dietary therapies.

Two major forms of diabetes mellitus are now recognized.
Type I diabetes, or insulin-dependent diabetes, is the result of an absolute deficiency of insulin, the hormone which regulates glucose utilization. Type II diabetes, or insulin-independent diabetes, often occurs in the face of normal, or even elevated levels of insulin and appears to be the result of the inability of tissues to respond appropriately to insulin. Most of the Type II diabetics are also obese.

In addition the compounds of the present invention lower triglyceride levels and cholesterol levels and raise high density lipoprotein levels and are therefore of use in combatting medical conditions wherein such lowering (and raising) is thought to be beneficial. Thus they may be used in the treatment of hypertriglyceridaemia, hypercholesterolaemia and conditions of low HDL (high density lipoprotein) levels in addition to the treatment of atherosclerotic disease such as of coronary, cerebrovascular and peripheral arteries, cardiovascular disease and related conditions.

Accordingly, in another aspect the present invention provides a method of lowering triglyceride and/or cholesterol levels and/or increasing high density lipoprotein levels which comprises administering, to an animal in need thereof, a therapeutically effective amount of a compound of the formula (1) or pharmaceutically acceptable salt thereof. In a further aspect the present invention provides a method of treating atherosclerosis which comprises administering, to an animal in need thereof; a therapeutically effective amount of a compound of the formula (I) or pharmaceutically. acceptable salt thereof. The compositions are formulated and administered in the same general manner as detailed below for treating diabetes and obesity. They may also contain other active ingredients known for use in the treatment of atherosclerosis and related conditions, for example fibrates such as clofibrate, bezafibrate and gemfibrozil; inhibitors of cholesterol biosynthesis such as HMG-CoA reductase inhibitors for example lovastatin, simvastatin and pravastatin; inhibitors
of cholesterol absorption for example beta-sitosterol and (acyl CoA:cholesterol acyltransferase) inhibitors for example melinamide; anion exchange resins for example cholestyramine, colestipol or a dialkylaminoalkyl derivatives of a cross-linKed dextran; nicotinyl alcohol, nicotinic acid or a salt thereof; vitamin \(E\); and thyromimetics.

The compounds of the instant invention also have the effect of reducing intestinal motility and thus find utility as aiding in the treatment of various gastrointestinal disorders such as irritable bowel syndrome It has been proposed that the motility of non-sphincteric smooth muscle contraction is mediated by activity at \(\beta 3\) adrenoreceptors. The availability of a \(\beta_{3}\) specific agonist, with little activity at \(\beta_{1}\) and \(\beta_{2}\) receptors will assist in the pharmacologic control of intestinal motility without concurrent cardiovascular effects. The instant compounds are administered generally as described below with dosages similar to those used for the treatment of diabetes and obesity.

It has also been found unexpectedly that the compounds which act as agonists at B3 adrenoreceptors may be useful in the treatment of gastrointestinal disorders, especially peptic ulcerations, esophagitis, gastritis and duodenitis, (including that induced by H pyloni), intestinal ulcerations (including inflammatory bowel disease, ulcerative colitis, Crohn's disease and proctitis) and gastrointestinal ulcerations.

In addition, \(\beta_{3}\) receptors have been indicated to have an effect on the inhibition of the release of neuropeptides in certain sensory fibers in the lung. As sensory nerves may play an important role in the neurogenic inflammation of airways, including cough, the instant specific \(\beta_{3}\) agonists may be useful in the treatment of neurogenetic inflammation, such as asthma, with minimal effects on the cardiopulmonary system.
\(\beta_{3}\) adrenoreceptors are also able to produce selective antidepressant effects by stimulating the \(\beta_{3}\) receptors in the brain and thus an additional contemplated utility of the compounds of this invention are as antidepressant agents.

The active compounds of the present invention may be orally administered as a pharmaceutical composition, for example, with an inert diluent, or with an assimilable edible carrier, or they may be enclosed in hard or soft shell capsules, or they may be compressed into tablets, or they may be incorporated directly with the food of the diet. For oral therapeutic administration, which includes sublingual administration, these active compounds may be incorporated with excipients and used in the form of tablets, pills, capsules, ampules, sachets, elixirs, suspensions, syrups, and the like. Such compositions and preparations should contain at least 0.1 percent of active compound. The percentage of active compound in these compositions may, of course, be varied and may conveniently be between about 2 percent to about 60 percent of the weight of the unit. The amount of active compound in such therapeutically useful compositions is such that an effective dosage will be obtained. The active compounds can also be administered intranasally as, for example, liquid drops or spray.

The effective dosage of active ingredient employed may vary depending on the particular compound employed, the mode of administration, the condition being treated and the severity of the condition being treated.

When treating diabetes mellitus and/or hyperglycemia generally satisfactory resuits are obtained when the compounds of the present invention are administered at a daily dosage of from about 0.1 milligram to about 100 milligram per kilogram of animal body weight, preferably given in divided doses two to six times a day, or in sustained release form. For most large mammals, the total daily dosage is from about 1.0 milligrams to about 1000 milligrams, preferably from about 1 milligrams to about 50 milligrams. In the case of a 70 kg adult human, the total daily dose will generally be from about 7 milligrams to about 350 milligrams. This dosage regimen may be adjusted to provide the optimal therapeutic response.

When treating obesity, in conjunction with diabetes and/or hyperglycemia, or alone, generally satisfactory results are obtained when the compounds of the present invention are administered at a daily
dosage of from 1 milligram to about 1000 milligrams per kilogram of animal body weight, preferably given in divided doses two to six times a day, or in sustained release form. For most large mammals, the total daily dosage is from about 10 milligrams to about 10,000 milligrams, preferably from about 10 milligrams to about 500 milligrams. In the case of a 70 kg adult human, the total daily dose will generally be from about 70 milligrarns to about 3500 milligrams. This dosage regimen may be adjusted to provide the optimal therapeutic response.

The tablets, pills, capsules, and the like may also contain a binder such as gum tragacanth, acacia, com starch or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid; a lubricant such as magnesium stearate; and a sweetening agent such as sucrose, lactose or saccharin. When a dosage unit form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier such as a fatty oil.

Various other materials may be present as coatings or to modify the physical form of the dosage unit. For instance, tablets may be coated with shellac, sugar or both. A syrup or elixir may contain, in addition to the active ingredient, sucrose as a sweetening agent, methyl and propylparabens as preservatives, a dye and a flavoring such as cherry or orange flavor.

These active compounds may also be administered parenterally. Solutions or suspensions of these active compounds can be prepared in water suitably mixed with a surfactant such as hydroxypropylcellulose. Dispersions can also be prepared in glycerol, liquid polyethylene glycols and mixtures thereof in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.

The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. In all cases, the form must be sterile and must be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the
contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (e.g. glycerol, propylene glycol and liquid polyethylene glycol), suitable mixtures thereof, and vegetable oils.

The following examples are provided so that the invention might be more fully understood. They should not be construed as limiting the invention in any way.

EXAMPLE 1

(R)- \(\mathrm{N}-[2\)-[4-(aminophenyl)]ethyll]-2-hydroxy-2-(tetrazolo[1,5-a]pyrid-6yl)ethylamine

A solution of \(1.62 \mathrm{~g}(10 \mathrm{mmol})\) of (R)-2-(tetrazolo[1,5-alpyrid-6-yl)oxirane (See Fisher and Wyvratt, European Patent Application 0318092 A2 for the synthesis of this compound.) and 4.1 g (30 mmol) of 2-(4-aminophenyl)ethylamine in 30 mL of methanol was heated at reflux for 5 h . The reaction mixture was concentrated and the residue chromatographed on silica gel (\(2 \%\) methanol/ \(98 \%\) methylene chloride) to give \(1.69 \mathrm{~g}(56 \%)\) of the title compound: \({ }^{1} \mathrm{H}\) NMR (400 \(\mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}) \delta 9.01(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.3 \mathrm{~Hz}), 8.02(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.2 \mathrm{~Hz}), 7.82\) (dd, \(1 \mathrm{H}, \mathrm{J}=1.3,9.2 \mathrm{~Hz}), 6.94(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}), 6.63(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.3\) \(\mathrm{Hz}), 4.91(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{~m}, 4 \mathrm{H}), 2.67(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz})\).

\section*{EXAMPLE 2}

4-(Hexylaminocarbonylamino)benzenesulfonyl chloride
Hexylamine, \(12.15 \mathrm{ml}(9.2 \mathrm{mmol})\), was added dropwise to a solution of \(10 \mathrm{ml}(9.2 \mathrm{mmol})\) of phenyl isocyanate in THF (150 ml) at \(0^{\circ} \mathrm{C}\), and stirring was continued for 1 h . The solvent was removed in 30 vacuo, and the resultant hexyl phenyl urea was used without further purification.

A 6 g (2.7 mmol) portion was added over 20 min to chlorosulfonic acid at \(0^{\circ} \mathrm{C}\), followed by heating at \(60^{\circ} \mathrm{C}\) for 2 h . After cooling, the mixture was added to ice/water (100 ml) and the aqueous
phase extracted with EtOAc (\(3 \times 100 \mathrm{ml}\)). The combined organic phase was washed with brine (50 ml), dried with \(\mathrm{MgSO}_{4}\), concentrated, and purified by flash chromatography (silica gel, \(75 \%\) hexane/ \(25 \%\) ethyl acetate) to give \(6 \mathrm{~g}(70 \%)\) of the title compound: \({ }^{1} \mathrm{H}\) NMR (CDCl3) \(\delta\) \(7.85(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.6 \mathrm{~Hz}), 7.54(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.6 \mathrm{~Hz}), 6.79\) (br.s, 1 H\()\), 4.71 (br. \(\mathrm{s}, 1 \mathrm{H}), 3.23(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 1.54-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.20(\mathrm{~m}\), \(6 \mathrm{H}), 0.91-0.79(\mathrm{~m}, 3 \mathrm{H})\).

\section*{EXAMPLE 4}

(R) \(\mathrm{N}-[4-[2-[\mathbb{N}\)-(1,1-dimethylethoxycarbonyl)- N -[2-hydroxy-2-(tetra-zolo[1,5-a]pyrid-6-yl)]ethyl]amino]ethyl]phenyil]-4-(hexylaminocarbonylamino)benzenesulfonamide

To a stirred solution of \(0.200 \mathrm{~g}(0.502 \mathrm{mmol})\) of the Boccompound from Example 2 in 3 mL of methylene chloride was added \(80 \mathrm{mg}(1.00 \mathrm{mmol})\) of pyridine followed by \(0.16 \mathrm{~g}(0.75 \mathrm{mmol})\) of the sulfonyl chloride from Example 3. After being stirred for 5 h, the reaction mixture was concentrated and the residue chromatographed on silica gel (\(10 \%\) methanol/90\% methylene chloride) to afford 0.303 g (\(88 \%\)) of the title compound: \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{~Hz}, \mathrm{CD} 3 \mathrm{OD}\)) 88.95 (s, \(1 \mathrm{H}), 8.0-8.08(\mathrm{~m}, 1 \mathrm{H}), 7.75-7.87(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.62(\mathrm{~m}, 4 \mathrm{H}), 7.00(\mathrm{~m}\), \(4 \mathrm{H}), 4.95(\mathrm{~m}, 2 \mathrm{H}), 3.47(\mathrm{~m}, 2 \mathrm{H}), 3.15(\mathrm{~m}, 2 \mathrm{H}), 2.75(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{t}\), \(2 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}), 1.33(\mathrm{~m}, 8 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz})\).

(R)-N-[4-[2-[[2-hydroxy-2-(6-aminopyridin-3-yl)ethyl]amino]ethyl]-phenyll-4-(hexylaminocarbonylamino)benzenesulfonamide

A mixture of \(0.302 \mathrm{~g}(0.44 \mathrm{mmol})\) of the tetrazine from Example \(4,0.20 \mathrm{~g}(0.88 \mathrm{~mol})\) of tin(II) chloride dihydrate and 0.3 ml of concentrated aqueous hydrochloric acid in 2 mL of methanol was heated at reflux for 5 h . The reaction mixture was concentrated and the residue purified by reverse-phase MPLC (C8, \(47 \%\) methanol/53 \(0.1 \%\) trifluoroacetic acid buffer) to give \(0.32 \mathrm{~g}(78 \%)\) of the title compound as its bistrifluoroacetate salt: \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}\)) 87.96 (dd, \(1 \mathrm{H}, \mathrm{J}=2.0,9.2 \mathrm{~Hz}), 7.86(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz}), 7.59(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.8 \mathrm{~Hz})\), 7.43 (d, 2H, J = \(=8.8 \mathrm{~Hz}\)), \(7.14(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.07(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.4\) \(\mathrm{Hz}), 7.03(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.2 \mathrm{~Hz}), 4.92(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{~m}, 2 \mathrm{H}), 3.15(\mathrm{~m}, 2 \mathrm{H})\), \(2.93(\mathrm{~m}, 2 \mathrm{H}, 4.0 \mathrm{~Hz}), 1.49(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}), 1.32(\mathrm{~m}, 8 \mathrm{H}), 0.91(\mathrm{t}, 3 \mathrm{H}\), \(\mathrm{J}=6.0 \mathrm{~Hz}) ; \mathrm{Cl} \mathrm{MS} \mathrm{m} / \mathrm{z} 555(\mathrm{M}+1)\).

Following the procedures outlined for Examples 1-5, the compounds listed in Table 1 were prepared.

\section*{EXAMPLE 14}

5

2-Chioroacetyllpyridine hydrochloride
To a solution of \(12 \mathrm{~g}(11 \mathrm{~mL}, 100 \mathrm{mmol})\) of 3 -
acetylpyridine in 100 mL of ethyl ether was added 100 mL of 1 M ethereal hydrogen chloride. The resultant precipitate was filtered and 15.0 g (95.2 mmol) was collected and placed in a \(500-\mathrm{mL}\) round bottom flask equipped with a magnetic stir bar. To this was added 95 mL of 1 M hydrogen chloride in acetic acid. After the mixture was stirred until (NCS) was added in one portion. The solution turned yellow and the NCS gradually dissolved. After 4 h , a white precipitate had formed. The mixture was allowed to stir for 2.5 days. It was then filtered. The solid collected was washed with 10 mL of acetic acid and 200 mL of
20 ethyl ether to give \(15.2 \mathrm{~g}(83 \%)\) of the title compound as a white solid: 1 H NMR (200 MHz , \(\mathrm{d}_{6}\)-DMSO) \(\delta 9.22(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=1 \mathrm{~Hz}\)), 8.29 (dd, \(1 \mathrm{H}, \mathrm{J}\) \(=1.6,5.1 \mathrm{~Hz}), 8.55(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}=2,8.1 \mathrm{~Hz}), 7.82(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}=0.8,5.1\), \(8.1 \mathrm{~Hz}), 5.27(\mathrm{~s}, 2 \mathrm{H})\).

EXAMPLE 15

(R)- \(\alpha\)-Chloromethyl-3-pyridinemethanol

To a stirred solution of \(3.67 \mathrm{~g}(1.1 .5 \mathrm{mmol})\) of
(-)-B-chlorodiisopinocampheylborane [(-)-DIP-Cl] in 11 mL of THF at \(-25^{\circ} \mathrm{C}\) was added a slurry of \(1.00 \mathrm{~g}(5.21 \mathrm{mmol})\) of the product from

Example 14 in 5 mL of THF via a cannula. Following the addition of 0.80 mL (5.79 mmol) of triethylamine, the reaction mixture was stirred at \(-25^{\circ} \mathrm{C}\) for 4 days. To the mixture was added 10 mL of water which was then allowed to warm to room temperature. To the mixture was added 20 mL of ethyl acetate and the organic phase separated. The aqueous phase was neutralized with saturated \(\mathrm{NaHCO}_{3}\) solution then extracted six times with ethyl acetate. The combined organic phase was concentrated in vacuo to afford a yellow oil. Flash chromatography (silica gel, \(75-100 \%\) ethyl acetate-hexanes) afforded 561 mg (68\%) of the title compound as a pale yellow oil: \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}\)) \(\delta\) \(8.58(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.8 \mathrm{~Hz}), 8.46(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.9,1.5 \mathrm{~Hz}), 7.90(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=\) \(7.9 \mathrm{~Hz}), 7.44(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=7.9,4.9 \mathrm{~Hz}), 4.93(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~m}, 2 \mathrm{H})\).

\section*{EXAMPLE 16}

(R)-Pyrid-3-yl)oxirane

To a solution of 557 mg (3.55 mmol) of the product from
Example 15 in 16 mL of acetone was added 1.80 g of potassium carbononate. The mixture was heated at reflux for 20 h then cooled to room temperature. The mixture was filtered and the filtrate evaporated in vacuo. Flash chromatography (silica gel, \(2 \%\) methanol-methylene chloride) afforded 262 mg (\(61 \%\)) of the title compound as a pale yellow oil: 1 H NMR (\(200 \mathrm{MHz}, \mathrm{CDCl} 3\)) \(88.54(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{~m}, 1 \mathrm{H}), 7.24\) \((\mathrm{m}, 1 \mathrm{H}), 3.86(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.0,2.5 \mathrm{~Hz}), 3.17(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=5.4,4.0 \mathrm{~Hz})\), 2.80 (dd, \(1 \mathrm{H}, \mathrm{J}=5.4,2.5 \mathrm{~Hz}\)).

\section*{EXAMPLE 17}

(R)- N -[2-[4-(aminophenyl)]ethyl]-2-hydroxy-2-(pyrid-3-
yl)ethylcarbamic acid 1.1-dimethylethyl ester
A solution of \(386 \mathrm{mg}(1.77 \mathrm{mmol})\) of di-tert-butyl
dicarbonate in 3.5 mL of THF was added, via a cannula, to a stirred slurry of 456 mg (1.77 mmol) of the product from Example 17 in 3.6
mL of THF cooled to \(0^{\circ} \mathrm{C}\). The yellow solution was stirred at \(0^{\circ} \mathrm{C}\) for 3 h , then the THF was removed in vacuo. Flash chromatography (silica gel, \(10 \%\) methanol, \(1 \%\) ammonia-methylene chloride) afforded 549 mg (\(87 \%\)) of the title compound as an off white solid: \({ }^{1} \mathrm{H}\) NMR (500 MHz , CD3OD, mixture of rotomers) \(\delta 8.45(\mathrm{~m}, 2 \mathrm{H}), 7.83(\mathrm{~d}, 0.6 \mathrm{H}, \mathrm{J}=7.4\) \(\mathrm{Hz}), 7.78(\mathrm{~d}, 0.4 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}), 7.41(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{~d}, 0.8 \mathrm{H}, \mathrm{J}=8.0\) \(\mathrm{Hz}), 6.89(\mathrm{~d}, 1.2 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}), 6.66(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}), 4.89(\mathrm{~m}, 1 \mathrm{H})\), 3.42-3.21 (m, 4H), 2.67 (m, 2H), 1.39 (s, 5.4H), 1.36 (s, 3.6H).

An alternative synthesis of the aniline derivative in Example 18 is illustrated in Examples 19-23:

\section*{EXAMPLE 19}

\section*{2-Chloro-5-2-bromoacetyl)pyridine hydrochloride} A solution of 784 mg of 2-chloro-5-acetylpyridine in 10 mL of THF was added via canula to a solution of 1.44 g of dibromobarbituric acid (DBBA) in 10 mL of THF. The resultant solution was heated at \(50-55^{\circ} \mathrm{C}\) for 12 h , and then an additional 0.72 g DBBA was added. After stirring at \(50-55^{\circ} \mathrm{C}\) for 2.5 more hours, 0.36 g DBBA was added. The mixture was allowed to stir for 2 h at which point NMR analysis of an aliquot indicated \(87 \%\) conversion. The reaction mixture was cooled, diluted with ethyl acetate, washed with two portions of saturated aqueous sodium bicarbonate, water, and brine, dried over magnesium sulfate and concentrated. Purification by flash chromatography (silica gel, \(15 \%\) ethyl acetate/hexane) provided 0.86 g (\(73 \%\)) of the title compound as a white solid: \({ }^{1} \mathrm{H}\) NMR \((400 \mathrm{MHz}\), \(\left.\mathrm{CDCl}_{3}\right) \delta 8.96(\mathrm{~d} \cdot 1 \mathrm{H}, \mathrm{J}=2.6 \mathrm{~Hz}), 8.21(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.5,8.3 \mathrm{~Hz}), 7.46\) \((\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}), 4.37(\mathrm{~s}, 2 \mathrm{H})\). The NMR also indicated the presence
of the corresponding 2-bromo derivative. The \(-4: 1\) mixture was carried on through the synthesis.

\section*{EXAMPLE 20}

\section*{(R)-(2-chloropyrid-5-yl)oxirane}

To a solution of 100 mg of bromoalcohol from Example 20 in 2 mL of 1:1 THF:water was added 1 mL of 5 N aqueous sodium hydroxide solution. The mixture was allowed to stir for 10 min . It was then extracted with three portions of dichloromethane. The combined
organic phases were washed with two portions of water and brine, dried over magnesium sulfate, and concentrated to give \(98 \mathrm{mg}(93 \%)\) of the title compound which was used without further purification: \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(8.8 .34(\mathrm{~d}, 1 \mathrm{H}), 7.48(\mathrm{dd}, 1 \mathrm{H}), 7.29(\mathrm{~d}, 1 \mathrm{H}), 3.86\) (dd, 1 H\(), 3.18(\mathrm{dd}, 1 \mathrm{H}), 2.78(\mathrm{dd}, 1 \mathrm{H})\).

\section*{EXAMPLE 22}
yllethylcarbamic acid 1.1-dimethylethyl ester
Following the procedure outlined in Examples 17 and 18, the title compound was prepared from the epoxide from Example 21 and 4-nitrophenylethylamine: \({ }^{1} \mathrm{H}\) NMR \((400 \mathrm{MHz}, \mathrm{CDCl}) \delta 8.32(\mathrm{~d}\), \(1 \mathrm{H}, \mathrm{J}=1.3 \mathrm{~Hz}), 8.13(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.66(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 7.30(\mathrm{~d}, 2 \mathrm{H}\), \(\mathrm{J}=8.1 \mathrm{~Hz}\)), 7.27 (\(\mathrm{br} \mathrm{m}, \mathrm{HH}\)), 4.94 (br m\(), 3.38(\mathrm{br} \mathrm{m}, 4 \mathrm{H}), 2.84\) (br m, \(2 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H})\).

\section*{EXAMPLE 23}

(R)- N -[2-[4-(aminophenyl)]ethyl]-2-hydroxy-2-(pyrid-3-
yl)ethylcarbamic acid 1,1-dimethylethyl ester
To a solution of \(80 \mathrm{mg}(0.19 \mathrm{mmol})\) of the nitro compound from Example 22 in 2 mL of ethanol was added \(0.114 \mathrm{~mL}(0.57 \mathrm{mmol})\) of 5 N aqueous sodium hydroxide solution and 20 mg of raney nickel.

The reaction mixture was shaken at room temperature under 45 psi hydrogen for 16 h . The mixture was neutralized with saturated aqueous sodium phosphate monobasic and extracted with three portions of ethyl acetate. The combined organic phases were washed with water and brine, dried (magnesium sulfate), and concentrated to give 40 mg (59\%) of the title compound which was identical to the sample prepared in Example 18.

\section*{EXAMPLE 24}
\((100 \mathrm{ml})\) at \(0^{\circ} \mathrm{C}\) was added 4 (chlorosulphonyl) phenyl isocyanate (\(38.6 \mathrm{mmol}, 8.4 \mathrm{~g}\)). The reaction mixture was stirred for 20 mins until a clear solution had formed, and 1:1 water: trifluoroacetic acid (100 ml total) was added. Vigorous stirring was continued for 16 h ., the layers separated, the organic layer was diluted with ethyl acetate (500 ml) and washed with saturated sodium bicarbonate solution (\(4 \times 50 \mathrm{ml}\)), brine (50 ml), dried with anhydrous magnesium sulphate, and concentrated in vacuo. Column chromatrography (eluant 3 hexane/ 1 ethyl acetate) yielded the title compound as pale yellow crystals \((8.8 \mathrm{~g}, 67 \%\)).

\section*{EXAMPLE 25}

(R)-N-[44[2-[[2-Hydroxy-2-(pyridin-3-yl)ethyl]amino]ethyl]phenyl]-4(hexylaminocarbonylamino)benzenesulfonamide

To a solution of \(302 \mathrm{mg}(0.845 \mathrm{mmol})\) of the product from Example 18 and \(137 \mathrm{~mL}(1.69 \mathrm{mmol})\) of pyridine in 10 mL of methylene chloride was added \(296 \mathrm{mg}(0.928 \mathrm{mmol})\) of 4-(hexylaminocarbonylamino)benzenesulfonyl chloride from Example 3. The reaction was stirred for 12 h then the solvent removed in vacuo. Flash chromatography (silica gel, \(6 \%\) methanol, \(0.5 \%\) ammoniamethylene chloride) afforded \(468 \mathrm{mg}(87 \%)\) of the BOC-protected title compound.

A solution of 468 mg (0.731 mmol) of BOC-protected title compound in 5 mL of methylene chloride and 5 mL of trifluoroacetic acid was stirred for 30 min then the volatile components removed in vacuo. The residue was azeotroped twice with \(10 \%\) methanol/toluene, twice with methanol, then dried in vacuo to give \(521 \mathrm{mg}(93 \%)\) of the title compound as its trifluroracetate salt: 1 H NMR (\(400 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}\)) \(\delta 8.88(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.5 \mathrm{~Hz}), 8.53(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}), 7.99\) \((\mathrm{m}, 1 \mathrm{H}), 7.59(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=6.9,1.9 \mathrm{~Hz}), 7.43\) (dd, \(2 \mathrm{H}, \mathrm{J}=6.9,1.9 \mathrm{~Hz}\)), \(7.15(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=8.6,2.1 \mathrm{~Hz}), 7.08(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=8.6,2.1 \mathrm{~Hz}), 5.23(\mathrm{~m}\), \(1 \mathrm{H}), 3.40-3.10(\mathrm{~m}, 6 \mathrm{H}), 2.94(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{~m}, 6 \mathrm{H}), 0.90\) (m, 2H).

\section*{EXAMPLE 26}

5

(N)-[4-[2-[(phenylmethoxycarbonyl)amino]ethyl]phenyl]-4cyanobenzensulfonamide

Following the procedure outlined in Example 4, the title compound was prepared from 2-(4-aminophenyl)ethylcarbamic acid phenylmethyl ester (see Fisher, et. al., Eur. Pat. Appl. 0611003 A1, 1994) and 4 -cyanobenzenesulfonyl chloride: \({ }^{1} \mathrm{H}\) NMR (400 MHz , \(\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta^{1 \mathrm{H}} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}), 7.69\) (d, 2H, J=8.7Hz), \(7.32(\mathrm{~m}, 5 \mathrm{H}), 7.06(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}), 6.96(\mathrm{~d}, 2 \mathrm{H}\), \(\mathrm{J}=8.4 \mathrm{~Hz}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 4.71(\mathrm{t}, \mathrm{br}, 1 \mathrm{H}), 3.38(\mathrm{q}, 2 \mathrm{H}\), \(\mathrm{J}=6.9 \mathrm{~Hz}), 2.74(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz})\).

\section*{EXAMPLE 27}

(N)-[4-[2-[[phenylmethoxycarbonyl)amino]ethyl]phenyl] 4 aminooximidomethyl)benzensulfonamide

A mixture of the nitrile from Example 26 (2.71 g , 6.23 mmol), absolute ethanol (65 ml), finely divided \(\mathrm{K}_{2} \mathrm{CO} 3(5.17 \mathrm{~g}\),
37.4 mmol), and hydroxylamine hydrochloride \((2.17 \mathrm{~g}, 31.2 \mathrm{mmol})\) was refluxed for 6 h . The ethanol was removed under reduced pressure. The resulting solid was dissolved in ethyl acetate and washed with water 3 times. The organic phase was concentrated in vacuo to 2.87 g (\(98 \%\)) of
(N)-[4-[2-[(phenylmethoxycarbonyl)amino]ethyl]phenyl]-4-[5-(3-cyclopentylpropyl)-[1,2,41-oxadiazol-3-yllbenzensulfonamide

To a solution of compound from Example 27 (0.468 g , 1.00 mmol) in dry pyridine (5.0 ml) was added 4 -cyclopentylbutyryl chloride \((0.175 \mathrm{~g}, 1.00 \mathrm{mmol})\). The mixture was refluxed for 3.5 h . The pyridine was removed under reduced pressure. The resulting residue was purified by silica gel chromatography (\(35 \%\) ethyl acetate in \(\mathrm{MHz}, \mathrm{CDCL} 3) 88.12(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}), 7.81(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}), 7.31(\mathrm{~m}\), \(5 \mathrm{H}), 7.03\) (d, \(2 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}\)), \(6.97(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 5.05(\mathrm{~s}\), \(2 \mathrm{H}), 4.70(\mathrm{t}, \mathrm{br}, 1 \mathrm{H}), 3.37(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.91(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 2.72\) \((\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.0), 1.90-1.70(\mathrm{~m}, 5 \mathrm{H}), 1.65-1.30(\mathrm{~m}, 6 \mathrm{H}), 1.06(\mathrm{~m}, 2 \mathrm{H})\).

WO 95/29159

\section*{EXAMPLE 29}

5

10

\(\mathrm{N}-[4\)-(2-aminoethyl)phenyl]-4-[5-(3-cyclopentylpropyl)-[1,2,4]-
15 oxadiazol-3-yllbenzensulfonamide
A mixture of Cbz amine from Example 28 (0.145 g ,
0.246 mmol), palladium hydroxide on carbon (0.02 g), and glacial acetic acid (5.0 ml) was hydrogenated for 2 h . The acetic acid was removed under reduced pressure. The residue was purified by silica gel
20 chromatography (\(1: 9\) of \(10 \%\) ammonium hydroxide in methanol : methylene chloride) to give 0.058 g (\(52 \%\)) of the titie compound: \({ }^{1} \mathrm{H}\) NMR (\(\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.11(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.87(\mathrm{~d}, 2 \mathrm{H}\), \(\mathrm{J}=8.5 \mathrm{~Hz}\)), 7.06 (d, \(2 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz}\)), 7.02 (d, \(2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}\)), \(2.97(\mathrm{t}, 2 \mathrm{H}\), \(\mathrm{J}=7.5 \mathrm{~Hz}), 2.84(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}), 2.67(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}), 1.90-1.75(\mathrm{~m}\),
\(255 \mathrm{H}), 1.70-1.40(\mathrm{~m}, 6 \mathrm{H}), 1.12(\mathrm{~m}, 2 \mathrm{H})\).

30

\section*{EXAMPLE 30}

5

15 (B)-N-[4-[2-[[2-Hydroxy-2-(pyridin-3-yl)ethyl]aminolethyl]phenyl]-4-[5-(3-cyclopentylpropyll- 11.2 .41 -oxadiazol-3-yllbenzensulfonamide

To a solution of amine from Example \(29(0.053 \mathrm{~g}\), 0.117 mmol) in dry methanol (30.0 ml) was added 3 -pyridine epoxide from Example 16 (\(0.021 \mathrm{~g}, 0.175 \mathrm{mmol}\)). The resulting solution was
20 refluxed ovemight. After concentration, the residue was purified by silica gel chromatography (\(13 \%\) methanol in methylene chloride) to give \(0.01 \mathrm{~g}(15 \%)\) of the title compound: \({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)\) \(\delta 8.52(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.9 \mathrm{~Hz}), 8.42(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.5,4.8 \mathrm{~Hz}), 8.13(\mathrm{~d}, 2 \mathrm{H}\), \(\mathrm{J}=8.6 \mathrm{~Hz}), 7.85(\mathrm{~m}, 3 \mathrm{H}), 7.40(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.8,7.8 \mathrm{~Hz}), 7.10(\mathrm{~d}, 1 \mathrm{H}\), \(25 \mathrm{~J}=8.6 \mathrm{~Hz}), 7.03\) (d, 2H, J=8.6Hz), 4.81 (dd, \(1 \mathrm{H}, \mathrm{J}=4.9,8.1 \mathrm{~Hz}\)), \(2.96(\mathrm{t}\), \(2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}\)), 2.93-2.70 (m, 6 H), 1.90-1.72 (m, 5H), 1.68-2.48 (m, \(4 \mathrm{H}), 1.42(\mathrm{~m}, 2 \mathrm{H}), 1.11(\mathrm{~m}, 2 \mathrm{H})\).

\section*{EXAMPLE 31}

5
10.

(R) \(\mathbf{N}\)-[4-[2-[[2-Hydroxy- 2 (pyridin-3-yl)ethyl]amino]ethyl]phenyl]-4-[4-(1-hydroxy-1-hexylhepty)-5-methyl-[1,2,3]-triazol-2yl]benzenesulfonamide and (\(\mathbb{R}\))- N -[4-[2-[[2-Hydroxy-2-(pyridin-3-yl)ethyl]amino]ethyl]phenyl]-4-[4-(1-(R.S)-hydroxyheptyl)-5-methyl-[1.2.31-triazol-2-yllbenzenesulfonamide

To a solution of 180 mg of (R)- N -[4-[2-[[2-Hydroxy-2-
20 (pyridin-3-yl)ethyl]aminojethyllphenyl]-4-(4-methoxycarbonyl-5-methyl-[1,2,3]-triazol-2-yl)benzenesulfonamide (prepared according to the procedures outlined in examples 14-19) in 2 mL of distilled THFunder argon at \(0^{\circ} \mathrm{C}\) was added, dropwise, 2 mL of a 2.0 M solution of n -hexylmagnesium bromide in ether. After 5 min , the reaction was 25 quenched with cautious addition of 5 mL of aqueous ammonium chloride followed by ethyl acetate extraction of the aqueous layer. The combined organic extracts were dried over sodium sulfate, filtered, and concentrated in vacuo to yield the crude products. Preparative layer chromatography (PLC) on \(2 \times 0.5 \mathrm{~mm}\) thick silica gel plates eluted in 9:1
зо (v/v) dichloromethane:methanol gave two bands \(\mathbf{A}(20 \mathrm{mg})\) and \(B\) (60 mg). \({ }^{1} \mathrm{H}\) NMR (\(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\)) of A: \(\delta 8.51(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2 \mathrm{~Hz})\), \(8.41(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.5,5 \mathrm{~Hz}), 8.01(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=2.5,6.5 \mathrm{~Hz}), 7.81(\mathrm{~m}, 1 \mathrm{H})\), \(7.78(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=2.0,9.0 \mathrm{~Hz}), 7.37(\mathrm{~m}, 1 \mathrm{H}), 7.07 ; 7.02(\mathrm{ABq}, 4 \mathrm{H}, \mathrm{Jab}=\) 8.5 Hz), 4.86 (s, \(\mathrm{CD}_{3} \mathrm{OH}\)), 4.79 (dd, \(1 \mathrm{H}, \mathrm{J}=7.5,8 \mathrm{~Hz}\)), 2.9-2.7 (m, 6 H\()\), \(2.44(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{~m}, 4 \mathrm{H}), 1.40-1.15(\mathrm{~m}, 16 \mathrm{H}), 0.83(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz})\)
indicating the dihexyl tertiary alcohol adduct, mass spec. expected 677 found 677. \({ }^{1} \mathrm{H}\) NMR (\(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\)) of \(\mathrm{B}: 8.51(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2 \mathrm{~Hz}\)), 8.41 (dd, 1H, J=1.5,5 Hz), 8.03 (d, \(2 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}\)), 7.78 (d, \(2 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}\)), \(7.37(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.8,7.7 \mathrm{~Hz}), 7.07 ; 7.02(\mathrm{ABq}, 4 \mathrm{H}, \mathrm{Jab}=8 \mathrm{~Hz}), 4.86(\mathrm{~s}\),
\begin{tabular}{|c|c|c|}
\hline Example & R & Selected 1H NMR (CD3OD) Data \\
\hline 32
25 & 4-isopropylphenyl & \(7.64(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.33(\mathrm{~d}\),
\(2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}), 4.80(\mathrm{~m}, 1 \mathrm{H}), 2.95 \mathrm{~m}\)
\(2.70(\mathrm{~m}, 7 \mathrm{H}), 1.22(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=6.7\)
\(\mathrm{Hz})\) \\
\hline 33 & 4-iodophenyl, bistrifluoroacetate salt & \[
\begin{aligned}
& 7.84(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=8.6 \mathrm{~Hz}), 7.47(\mathrm{~d}, \\
& 2 \mathrm{H}, \mathrm{~J}=8.6 \mathrm{~Hz}), 5.19(\mathrm{dd}, 1 \mathrm{H}, \mathrm{~J}= \\
& 10.1,3.0 \mathrm{~Hz}), 3.40-3.20(\mathrm{~m}, 4 \mathrm{H}), \\
& 2.96(\mathrm{~m}, 2 \mathrm{H})
\end{aligned}
\] \\
\hline \[
300^{34}
\] & 2-naphthyl & \[
\begin{aligned}
& 8.28(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~m}, 3 \mathrm{H}), 7.72 \\
& (\mathrm{dd}, 1 \mathrm{H}, \mathrm{~J}=8.7,1.9 \mathrm{~Hz}), 7.60(\mathrm{~m}, \\
& 2 \mathrm{H})
\end{aligned}
\] \\
\hline 35 & 3-quinolinyl, bistrifluoroacetate salt & \(9.01(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.3 \mathrm{~Hz}), 8.76 .(\mathrm{d}\),
\(1 \mathrm{H}, 1.8 \mathrm{~Hz}), 8.08(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.7\)
\(\mathrm{Hz}), 8.04(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.93\)
\((\mathrm{~m}, 1 \mathrm{H}), 7.73(\mathrm{~m}, 1 \mathrm{H})\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 36 & \begin{tabular}{l}
4-[(N-hexyl,N-methyl-aminocarbonyl)- \\
amino]phenyl, \\
bistrifluoroacetate salt
\end{tabular} & \[
\begin{aligned}
& 5.12(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=8.7 \mathrm{~Hz}), 3.40-3.10 \\
& (\mathrm{~m}, 6 \mathrm{H}), 2.99(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{~m}, 2 \mathrm{H}), \\
& 1.56(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~m}, 6 \mathrm{H}), 0.88 \\
& (\mathrm{~m}, 3 \mathrm{H})
\end{aligned}
\] \\
\hline 537 & \begin{tabular}{l}
4-(3-hexyl-2-imidazolidinon-1- \\
yl)phenyl, \\
bistrifluoroacetate salt
\end{tabular} & \[
\begin{aligned}
& 5.15(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~m}, 2 \mathrm{H}), 3.53 \\
& (\mathrm{~m}, 2 \mathrm{H}), 3.40-3.15(\mathrm{~m}, 6 \mathrm{H}), 2.94 \\
& (\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{~m}, \\
& 6 \mathrm{H}), 0.89(\mathrm{~m}, 3 \mathrm{H}) .
\end{aligned}
\] \\
\hline 1038 & 4-[(1-oxoheptyl)aminolphenyl, bistrifluoroacetate salt & \[
\begin{aligned}
& 2.35(\mathrm{tr}, 2 \mathrm{H}, \mathrm{~J}=7.5 \mathrm{~Hz}), 1.65 \\
& \text { (quint., } 2 \mathrm{H}, \mathrm{~J}=7.1 \mathrm{~Hz}), 1.32(\mathrm{~m}, \\
& 6 \mathrm{H}), 0.892(\mathrm{tr}, 3 \mathrm{H}, \mathrm{~J}=6.8 \mathrm{~Hz}) .
\end{aligned}
\] \\
\hline \(\square 39\)
15 & 4-[(1-oxo-4-phenylbutyl)amino]phenyl, bistrifluoroacetate salt & \[
\begin{aligned}
& 7.34-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.15 \mathrm{~m} .05(\mathrm{~m}, \\
& 5 \mathrm{H}), 2.71(\mathrm{tr}, 2 \mathrm{H}, \mathrm{~J}=7.7 \mathrm{~Hz}), 2.36 \\
& (\mathrm{tr}, 2 \mathrm{H}, \mathrm{~J}-7.4 \mathrm{~Hz}), 1.96(\mathrm{~m}, 2 \mathrm{H}) .
\end{aligned}
\] \\
\hline 40 & 4-[(propoxycarbonyl)amino]phenyl & \[
\begin{aligned}
& 4.07(\mathrm{tr}, 2 \mathrm{H}, \mathrm{~J}=6.6 \mathrm{~Hz}), 1.67 \\
& \text { (sextet, 2H, J=7.0 Hz). } 0.968(\mathrm{tr}, \\
& 3 \mathrm{H}, \mathrm{~J}=7.4 \mathrm{~Hz}) .
\end{aligned}
\] \\
\hline 241
20 & \begin{tabular}{l}
4-[IIf(fur-2- \\
ylmethyl)aminolcarbonyllaminolphenyl, bistrifluoroacetate salt
\end{tabular} & \[
\begin{aligned}
& 7.40(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=0.9 \mathrm{~Hz}), 6.32(\mathrm{dd}, \\
& 1 \mathrm{H}, \mathrm{~J}=2.9 .1 .8 \mathrm{~Hz}), 6.23(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J} \\
& =2.9 \mathrm{~Hz}), 4.34(\mathrm{~s}, 2 \mathrm{H})
\end{aligned}
\] \\
\hline 2542 & \[
\begin{aligned}
& \text { 4-[[I[(2- } \\
& \text { phenylethyl)amino]car- } \\
& \text { bonyl]aminolphenyl, } \\
& \text { bistrifluoroacetate salt }
\end{aligned}
\] & \[
\begin{aligned}
& 7.38-7.02(\mathrm{~m}, 9 \mathrm{H}), 3.50-3.15(\mathrm{~m}, \\
& 6 \mathrm{H}), 2.80(\mathrm{~m}, 2 \mathrm{H})
\end{aligned}
\] \\
\hline .43
30 & \[
\begin{aligned}
& \text { 4-[[I[(2-indol-3- } \\
& \text { ylethyl)amino]carbon- } \\
& \text { yllamino]phenyl }
\end{aligned}
\] & 7.58-7.53 (m, 3 H\(), 7.42-7.30(\mathrm{~m}, 4\) \(\mathrm{H}), 7.08-6.94(\mathrm{~m}, 7 \mathrm{H}), 3.48\) (tr, 2 \(\mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}\)) \(2.94(\mathrm{tr}, 2 \mathrm{H}, \mathrm{J}=6.8\) Hz). \\
\hline 44 & 4 [[(octylamino)carbonyl] aminojphenyl, bistrifluoroacetate salt & \[
\begin{aligned}
& 2.94(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{tr}, 2 \mathrm{H}, \mathrm{~J}=6.8 \\
& \mathrm{Hz}), 1.30(\mathrm{~m}, 10 \mathrm{H}), 0.884(\mathrm{tr}, 3 \mathrm{H}, \\
& \mathrm{J}=6.9 \mathrm{~Hz})
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{W0 95/29159} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{PCTIUS95/04956}} \\
\hline & & \\
\hline \multicolumn{3}{|r|}{- 68 -} \\
\hline \(\because 45\)
\(\therefore\)
5 & ```
1-
[(hexylamino)carbonyl]
indolin-5-yl
``` & \[
\begin{aligned}
& 7.83(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=9.2 \mathrm{~Hz}), 7.48(\mathrm{~m}, \\
& 2 \mathrm{H}), 3.92(\mathrm{t}, 2 \mathrm{H}, \mathrm{~J}=8.8 \mathrm{~Hz}), 3.1- \\
& 3.2(\text { two overlap-ping } \mathrm{t}, 4 \mathrm{H}), 1.54 \\
& (\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~m}, 6 \mathrm{H}), 0.90(\mathrm{t}, 3 \mathrm{H}, \\
& \mathrm{J}=6.8 \mathrm{~Hz}) .
\end{aligned}
\] \\
\hline 46
10 & 1-[(octylamino)carbonyl]-indolin-5-yl & \[
\begin{aligned}
& 7.83(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=9.2 \mathrm{~Hz}), 7.48(\mathrm{~m}, \\
& 2 \mathrm{H}), 3.92(\mathrm{t}, 2 \mathrm{H}, \mathrm{~J}=8.8 \mathrm{~Hz}), 3.1- \\
& 3.2(\text { two overlap-ping } \mathrm{t}, 4 \mathrm{H}), 1.63 \\
& (\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~m}, 10 \mathrm{H}), 0.89(\mathrm{t}, 3 \mathrm{H}, \\
& \mathrm{J}=6.9 \mathrm{~Hz}) .
\end{aligned}
\] \\
\hline 47
15 & 1-[(N-methyl- N . octylamino)carbonyl]-indolin-5-yl & \(7.53(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.3\)
\(\mathrm{Hz}), 3.89(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}), 3.26\)
\((\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 3.04(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=\)
\(8.4 \mathrm{~Hz}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~m}, 2 \mathrm{H})\),
\(1.27(\mathrm{~m}, 10 \mathrm{H}), 0.87(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.8)\). \\
\hline 48
20 & 1-(1-oxononyl)indolin-5-yl & \[
\begin{aligned}
& 7.49(\mathrm{~m}, 2 \mathrm{H}), 8.09(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=9.1), \\
& 4.04(\mathrm{t}, 2 \mathrm{H}, \mathrm{~J}=8.5), 3.07(\mathrm{t}, 2 \mathrm{H}, \\
& \mathrm{J}=8.5), 2.41(\mathrm{t}, 2 \mathrm{H}, \mathrm{~J}=7.5), 1.62(\mathrm{~m}, \\
& 2 \mathrm{H}), 1.30(\mathrm{~m}, 10 \mathrm{H}), 0.88(\mathrm{t}, 3 \mathrm{H}, \\
& \mathrm{J}=6.8)
\end{aligned}
\] \\
\hline 49
25 & 1-(4 methylthiazol-2-yl)indolin-5-yl & \[
\begin{aligned}
& 7.87(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=8.6 \mathrm{~Hz}), 7.58(1 \mathrm{H}, \\
& \mathrm{dd}, \mathrm{~J}=2.0,8.6 \mathrm{~Hz}), 7.52(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J} \\
& =2.0 \mathrm{~Hz}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 4.08(\mathrm{t}, 2 \mathrm{H}, \\
& \mathrm{J}=8.7 \mathrm{~Hz}), 3.25(\mathrm{t}, 2 \mathrm{H}, \mathrm{~J}=8.7 \mathrm{~Hz}), \\
& 2.30(\mathrm{~s}, 3 \mathrm{H}) .
\end{aligned}
\] \\
\hline 50
30 & \begin{tabular}{l}
1-(4-octylthiazol-2- \\
yl)indolin-5-yl
\end{tabular} & \[
\begin{aligned}
& 7.97(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=8.6 \mathrm{~Hz}), 7.57(1 \mathrm{H}, \\
& \mathrm{dd}, \mathrm{~J}=2.0,8.6 \mathrm{~Hz}), 7.53(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J} \\
& =2.0 \mathrm{~Hz}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 4.06(\mathrm{t}, 2 \mathrm{H}, \\
& \mathrm{J}=8.8 \mathrm{~Hz}, 3.24(\mathrm{t}, 2 \mathrm{H}, \mathrm{~J}=8.8 \mathrm{~Hz}), \\
& 2.62(\mathrm{t}, 2 \mathrm{H}, \mathrm{~J}=7.5 \mathrm{~Hz}), 1.68(\mathrm{~m}, \\
& 2 \mathrm{H}), 1.2-1.4(\mathrm{~m}, 10 \mathrm{H}), 0.88(\mathrm{t}, 3 \mathrm{H}, \\
& \mathrm{J}=7.0 \mathrm{~Hz}) .
\end{aligned}
\] \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline W0 95/29159 & & \begin{tabular}{l}
PCTIUS9504956 \\
\(\geq\) \\
0 -
\end{tabular} \\
\hline 58 & \[
\begin{aligned}
& \text { 4-(3-pentyl-2 } \\
& \text { imidazolidinon-1- } \\
& \text { yl)phenyl, } \\
& \text { bistrifluoroacetate salt }
\end{aligned}
\] & \[
\begin{aligned}
& 3.82(\mathrm{~m}, 2 \mathrm{H}), 3.53(\mathrm{~m}, 2 \mathrm{H}), 2.94 \\
& (\mathrm{~m}, 2 \mathrm{H}), 1.57 \text { (quintet, 2H, J=7.4 } \\
& \mathrm{Hz}), 1.39-1.28(\mathrm{~m}, 4 \mathrm{H}), 0.916,(\mathrm{tr}, \\
& 3 \mathrm{H}, \mathrm{y}=7.1 \mathrm{~Hz}) .
\end{aligned}
\] \\
\hline 59 & \[
\begin{aligned}
& \text { 4-[3-(3- } \\
& \text { cyclopentylpropyl)-2. } \\
& \text { imidazolidinon } 1 \text { - } \\
& \text { yllphenyl }
\end{aligned}
\] & \[
\begin{aligned}
& 3.81(\mathrm{~m}, 2 \mathrm{H}), 3.51(\mathrm{~m}, 2 \mathrm{H}), 3.23(\mathrm{t}, \\
& \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.78(\mathrm{~m}, 3 \mathrm{H}), 1.57 \\
& (\mathrm{~m}, 6 \mathrm{H}), 1.33(\mathrm{~m}, 2 \mathrm{H}), 1.17(\mathrm{~m}, \\
& 2 \mathrm{H})
\end{aligned}
\] \\
\hline \(10^{60}\) & \begin{tabular}{l}
4-[3-(2- \\
cyclopentylethyl)-2- \\
imidazolidinon-1- \\
yllphenyl, \\
bistrifluoroacetate salt
\end{tabular} & \[
\begin{aligned}
& 3.83(\mathrm{~m} .2 \mathrm{H}), 3.53(\mathrm{~m}, 2 \mathrm{H}), 2.94 \\
& (\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{~m}, 4 \mathrm{H}), 1.65-1.53 \\
& (\mathrm{~m}, 5 \mathrm{H}), 1.16(\mathrm{~m}, 2 \mathrm{H})
\end{aligned}
\] \\
\hline 1561 & \begin{tabular}{l}
4-[3-(3- \\
cyclohexylpropyl)-2-imidazolidinon-1yllphenyl
\end{tabular} & \[
\begin{aligned}
& 3.83(\mathrm{~m}, 2 \mathrm{H}), 3.51(\mathrm{~m}, 2 \mathrm{H}), 3.22(\mathrm{t}, \\
& \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.71(\mathrm{~m}, 5 \mathrm{H}), 1.56 \\
& (\mathrm{~m}, 2 \mathrm{H}), 1.20(\mathrm{~m}, 6 \mathrm{H}), 0.88(\mathrm{~m}, \\
& 2 \mathrm{H})
\end{aligned}
\] \\
\hline 2062 & \[
\begin{aligned}
& \text { 4-[3-(2,2- } \\
& \text { dimethylhexyl)-2- } \\
& \text { imidazolidinon-1- } \\
& \text { yl]phenyl } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 3.82(\mathrm{~m}, 2 \mathrm{H}), 3.60(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{~s}, \\
& 2 \mathrm{H}), 1.28(\mathrm{~m}, 6 \mathrm{H}), 0.93(\mathrm{~m}, 3 \mathrm{H}), \\
& 0.91(\mathrm{~s}, 6 \mathrm{H})
\end{aligned}
\] \\
\hline 63
25 & 4-(3-hexyl-2-imidazolon-1-yl)phenyl & \[
\begin{aligned}
& 6.93(\mathrm{~d}, 1 \mathrm{H}, 4 \mathrm{~Hz}), 6.70(\mathrm{~d}, 1 \mathrm{H}, \\
& 4 \mathrm{~Hz}), 4.79(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{t}, 2 \mathrm{H}, \\
& 8 \mathrm{~Hz}), 1.71-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.28 \\
& (\mathrm{~m}, 6 \mathrm{H}), 0.91-0.86(\mathrm{~m}, 3 \mathrm{H}) .
\end{aligned}
\] \\
\hline 64 & \[
\begin{aligned}
& \text { 4-[3-(4,4,4- } \\
& \text { trifluorobutyl)-2 } \\
& \text { imidazolon-1-yl]phenyl }
\end{aligned}
\] & \[
\begin{aligned}
& 6.97(\mathrm{~d}, 1 \mathrm{H}, 3 \mathrm{~Hz}), 6.73(\mathrm{~d}, 1 \mathrm{H}, \\
& 3 \mathrm{~Hz}), 3.73(\mathrm{t}, 2 \mathrm{H}, 7 \mathrm{~Hz}), 2.23-2.19 \\
& \left(\mathrm{~m}_{\mathrm{t}} 2 \mathrm{H}\right), 1.98-1.92(\mathrm{~m}, 2 \mathrm{H}) .
\end{aligned}
\] \\
\hline 3065 & 4-(3-octyl-2-imidazolon-1-yl)phenyl & \[
\begin{aligned}
& 6.93(\mathrm{~d}, 1 \mathrm{H}, 4 \mathrm{~Hz}), 6.69(\mathrm{~d}, 1 \mathrm{H}, \\
& 4 \mathrm{~Hz}), 3.64(\mathrm{t}, 2 \mathrm{H}, 7 \mathrm{~Hz}), 1.70-1.63 \\
& (\mathrm{~m}, 2 \mathrm{H}), 1.33-1.23(\mathrm{~m}, 10 \mathrm{H}), 0.90- \\
& 0.85(\mathrm{~m}, 3 \mathrm{H})
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 66 & \begin{tabular}{l}
\[
4-[3-(3-
\] \\
cyclopentylpropyl)-2-imidazolon-1-yll]phenyl
\end{tabular} & \[
\begin{aligned}
& 6.93(\mathrm{~d}, 1 \mathrm{H}, 3 \mathrm{~Hz}), 6.69(\mathrm{~d}, 1 \mathrm{H}, \\
& 3 \mathrm{~Hz}), 3.63(\mathrm{t}, 2 \mathrm{H}, 7 \mathrm{~Hz}), 1.80-1.47 \\
& (\mathrm{~m}, 11 \mathrm{H}), 1.35-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.13 \mathrm{~m} \\
& 1.02(\mathrm{~m}, 2 \mathrm{H}) .
\end{aligned}
\] \\
\hline 67 & 4-(2-octyl-3-oxo-[1,2,4]-triazol-4yl)phenyl & \[
\begin{aligned}
& 8.25(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{t}, 2 \mathrm{H}, 7 \mathrm{~Hz}), \\
& 1.80 \mathrm{~m} .70(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.25(\mathrm{~m}, \\
& 10 \mathrm{H}), 0.91-0.86(\mathrm{~m}, 3 \mathrm{H}) .
\end{aligned}
\] \\
\hline 68
10 & \[
\begin{array}{|l}
\text { 4-(4-hexyl-5- } \\
\text { tetrazolon-1-yl)phenyl }
\end{array}
\] & \[
\begin{aligned}
& 3.98(\mathrm{t}, 2 \mathrm{H}, \mathrm{~J}=7.1 \mathrm{~Hz}), 2.9-2.7(\mathrm{~m}, \\
& 6 \mathrm{H}), 1.82(\mathrm{q}, 2 \mathrm{H}, \mathrm{~J}=7 \mathrm{~Hz}), 1.4-1.27 \\
& (\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{t}, 3 \mathrm{H}, \mathrm{~J}=7 \mathrm{~Hz})
\end{aligned}
\] \\
\hline 69 & \begin{tabular}{l}
4-(4-octyl-5-tetrazolon- \\
1-yl)phenyl
\end{tabular} & \[
\begin{aligned}
& 3.98(\mathrm{t}, 2 \mathrm{H}, \mathrm{~J}=7.1 \mathrm{~Hz}), 2.9-2.7(\mathrm{~m}, \\
& 6 \mathrm{H}), 1.83(\mathrm{~m}, 2 \mathrm{H}), 1.4-1.2(\mathrm{~m}, \\
& 10 \mathrm{H}), 0.87(\mathrm{t}, 3 \mathrm{H}, \mathrm{~J}=7 \mathrm{~Hz})
\end{aligned}
\] \\
\hline 1570 & \[
\begin{aligned}
& 4-[(3 \\
& \text { cyclopentylpropyl)-5 } \\
& \text { tetrazolon-1-yl]phenyl }
\end{aligned}
\] & \[
\begin{aligned}
& 3.97(\mathrm{t}, 2 \mathrm{H}, \mathrm{~J}=7.1 \mathrm{~Hz}), 2.9-2.7(\mathrm{~m}, \\
& 9 \mathrm{H}), 1.9-1.7(\mathrm{~m}, 5 \mathrm{H}), 1.6(\mathrm{~m}, 1 \mathrm{H}), \\
& 1.5(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~m}, 2 \mathrm{H}), 1.07(\mathrm{~m}, \\
& 1 \mathrm{H})
\end{aligned}
\] \\
\hline \(\because 71\)
20 & \begin{tabular}{l}
4-(2-pentyloxazol-5- \\
yl)phenyl
\end{tabular} & \[
\begin{aligned}
& 7.48(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{~m}, 1 \mathrm{H}), 2.92- \\
& 2.70(\mathrm{~m}, 8 \mathrm{H}), 1.80(\mathrm{~m}, 2 \mathrm{H}), 1.39 \\
& (\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{~m}, 4 \mathrm{H})
\end{aligned}
\] \\
\hline 72 & \begin{tabular}{l}
4-(2-octyloxazol-5- \\
yl)phenyl
\end{tabular} & \[
\begin{aligned}
& 7.52(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~m}, 1 \mathrm{H}), 3.01- \\
& 2.82(\mathrm{~m}, 8 \mathrm{H}), 1.77(\mathrm{~m}, 2 \mathrm{H}), 1.37 \\
& 1.27(\mathrm{~m}, 10 \mathrm{H}), 0.87(\mathrm{~m}, 1 \mathrm{H}) \\
& \hline
\end{aligned}
\] \\
\hline 2573 & \[
\begin{array}{|l|}
\hline 4-[2-(2- \\
\text { cyclopentylethyl)oxazol } \\
-5-y] \text { phenyl }
\end{array}
\] & \[
\begin{aligned}
& 7.52(\mathrm{~s},!\mathrm{H}), 4.80(\mathrm{~m}, 1 \mathrm{H}), 2.94- \\
& 2.70(\mathrm{~m}, 8 \mathrm{H}), 1.79(\mathrm{~m}, 5 \mathrm{H}), 1.62 \\
& (\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~m}, 2 \mathrm{H}), 1.12(\mathrm{~m}, \\
& 2 \mathrm{H})
\end{aligned}
\] \\
\hline \[
30
\] & \[
\begin{aligned}
& \text { 4-[(4-ethyl-5- } \\
& \text { methylthiazol-2- } \\
& \text { yl)aminolphenyl }
\end{aligned}
\] & \[
\begin{aligned}
& 7.62(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=9 \mathrm{~Hz}), 7.58(\mathrm{~d}, 2 \mathrm{H}, \\
& \mathrm{J}=9 \mathrm{~Hz}), 2.53(\mathrm{q}, 2 \mathrm{H}, \mathrm{~J}=7.5 \mathrm{~Hz}), \\
& 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{t}, 3 \mathrm{H}, \mathrm{~J}=7.5 \\
& \mathrm{Hz})
\end{aligned}
\] \\
\hline
\end{tabular}




25
EXAMPLE 93

30

(R)- N -[4-[2-[[2-Hydroxy-2-(pyridin-3-yl)ethyl]amino]-2-methylpropyllphenyl]-4-13-hexyl-2-imidazolidinon-1-
yl)benzenesulfonamide
A solution of pyridine epoxide ( \(160 \mathrm{mg}, 1.32 \mathrm{mmol}\) ) from example 16 and 4 -amino-a,a-dimethylphenethylamine ( \(1.2 \mathrm{~g}, 7.3 \mathrm{mmol}\) ), prepared according to J. Biol. Chem. 1981, 256, 11944-50, in methanol ( 8 ml ) was warmed at reflux for 16 hours. After cooling, the reaction mixture was concentrated and purified by flash chromatography (silica gel, \(\left.95: 5 \mathrm{CH}_{2} \mathrm{Cl}_{2}: 10 \% \mathrm{NH}_{4} \mathrm{OH} / \mathrm{CH} 3 \mathrm{OH}\right)\) to give 23 mg ( 0.080 mmol ) of product as an oil.

The above product ( \(18 \mathrm{mg}, 0.063 \mathrm{mmol}\) ) was dissolved in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})\) and pyridine ( 0.05 mL ). The resulting solution was cooled to \(0^{\circ} \mathrm{C}\) and treated with 4-(3-hexyl-2-imidazolidinon-1yl)benzenesulfonyl chloride ( \(22 \mathrm{mg}, 0.063 \mathrm{mmol}\) ). The mixture was allowed to stir at \(0^{\circ} \mathrm{C}\) for 20 hours and was then purified by flash chromatography (silica gel, \(95: 5 \mathrm{CH}_{2} \mathrm{Cl}_{2}: 10 \% \mathrm{NH}_{4} \mathrm{OH} / \mathrm{CH} 3 \mathrm{OH}\) ) to give the desired product ( \(21 \mathrm{mg}, 0.035 \mathrm{mmol}\) ) as an oil: 1 HNMR (CD3OD) \(\delta\) \(8.53(\mathrm{~s}, 1 \mathrm{H}), 8.44(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.0), 7.83(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.9), 7.63(\mathrm{~m}, 4 \mathrm{H}), 7.40\) (dd, \(1 \mathrm{H}, \mathrm{J}=5.0,7.9\) ), 6.98 ( \(\mathrm{m}, 4 \mathrm{H}\) ), 4.72 (dd, \(1 \mathrm{H}, \mathrm{J}=4.0,8.4\) ), 3.80 ( m , \(2 \mathrm{H}), 3.49(\mathrm{~m}, 2 \mathrm{H}), 3.22(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.2), 2.78(\mathrm{~m}, 2 \mathrm{H}), 2.62(\mathrm{~m}, 2 \mathrm{H}), 1.55\) \((\mathrm{m}, 2 \mathrm{H}), 1.31(\mathrm{~m}, 6 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~m}, 3 \mathrm{H})\).

Following the procedure outlined above, the compounds in Table 4 were prepared.


Example \(\mid \mathbf{R}\)
Selected 1H NMR (CD3OD) Data

5
\begin{tabular}{l|l|l}
\hline 94 & -iodophenyl & \begin{tabular}{l}
\(7.82(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.6), 7.42(\mathrm{~d}, 2 \mathrm{H}\), \\
\(\mathrm{J}=8.6)\)
\end{tabular} \\
\hline 95 & \begin{tabular}{l}
4 -[[(hexylamino)car- \\
bonyl]amino]phenyl
\end{tabular} & \begin{tabular}{l}
\(7.55(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.8), 7.42(\mathrm{~d}, 2 \mathrm{H}\), \\
\(\mathrm{J}=8.8), 3.11(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.0), 1.49(\mathrm{~m}\), \\
\(2 \mathrm{H}), 1.30(\mathrm{~m}, 6 \mathrm{H}), .089(\mathrm{~m}, 3 \mathrm{H})\)
\end{tabular} \\
\hline
\end{tabular}

\section*{EXAMPLE 96}
(R)-4-amino- \(\alpha\)-(bromomethyl)-3,5-dichlorobenzenemethanol, dimethyl-1,1-dimethylethylsilyl ether

A solution of t-butyldimethylsilyl chloride ( \(1.67 \mathrm{~g}, 11.1\)
mmol) in DMF ( 15 mL ) was added slowly to a stirred solution of ( R )-4. 20 amino- \(\alpha\)-(bromomethyl)-3,5-dichlorobenzenemethanol ( \(2.1 \mathrm{~g}, 7.4\) mmol, see Judkins, et. al, European Patent Application 0460 924) and imidazole ( \(0.75 \mathrm{~g}, 11.1 \mathrm{mmol}\) ) in DMF ( 6 mL ) with an ice-water bath cooling. After being stirred at RT for 3 h , the reaction mixture was poured into water ( 300 mL ) and the product was extracted with ether.
25 The organic phase was washed with saturated aqueous sodium

\[
\begin{aligned}
& \text { bicarbonate solution, brine, dried }(\mathrm{MgSO} 4) \text { and evaporated to dryness. } \\
& \text { The crude product was purified on silica } 95 / 5 \text { hexane/ethyl acetate) to } \\
& \text { give the title compound }(2.73 \mathrm{~g}, 93 \%): 1 \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta \\
& 7.14(\mathrm{~s}, 2 \mathrm{H}), 4.67(\mathrm{dd}, 1 \mathrm{H}, \mathrm{~J}=2.1,6.4 \mathrm{~Hz}), 3.33(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}) \text {, } \\
& 30 \mathrm{O}, 89(\mathrm{~s}, 6 \mathrm{H})
\end{aligned}
\]
-77-

\section*{EXAMPLE 97}

5

(R)- \(\mathrm{N}-[2\)-[4 (Aminophenyl)]ethyl]-2-[(dimethyl-1,1-dimethylethylsilyl)oxy]-2-(4-amino-3.5-dichlorophenyl)ethylamine. O-TBDMS bromo compound from Example \(96(2.73 \mathrm{~g}\). 6.86 mmol) was dissolved in \(\mathrm{CH} 3 \mathrm{CN}(50 \mathrm{~mL})\) and 4-aminophenethylamine ( \(1.86 \mathrm{~g}, 13.72 \mathrm{mmol}\) ) was added, followed by the addition of \(\mathrm{N}, \mathrm{N}^{\prime}\)-diisopropylethylamine ( \(3.58 \mathrm{~mL}, 20.6 \mathrm{mmol}\) ) and sodium iodide ( \(1.03 \mathrm{~g}, 6.86 \mathrm{mmol}\) ). After being heated at reflux for 48 \(h\), the reaction mixture was concentrated and the residue chromatographed on silica (50/50 ethyl acetate/hexane) to provide the title compound ( \(2.3 \mathrm{~g}, 75 \%\) ): \({ }^{1} \mathrm{H}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 7.08\) (s, \(2 \mathrm{H}), 6.94\left(\mathrm{AA}^{\prime}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}\right), 6.60\left(\mathrm{BB}^{\prime}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}\right), 4.63(\mathrm{~m}, 1 \mathrm{H})\), \(4.37(\mathrm{~s}, 2 \mathrm{H}), 3.53(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.87-2.60(\mathrm{~m}, 6 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}),-0.03(\mathrm{~s}\), 6H)

\section*{EXAMPLE 98}

25

30

(R)-N-[2-[4-(Aminophenyl)]ethyl]-2-hydroxy-2-(4-amino-3,5dichlorophenyllethylamine

To a stirred solution of silyl compound from Example 97 \((2.2 \mathrm{~g}, 4.8 \mathrm{mmol})\) in THF \((20 \mathrm{~mL})\) at RT was added
tetrabutylammonium fluoride ( 10 mL of 1.0 M solution in THF) in one portion. After being stirred at RT for 2 h , the reaction mixture was concentrated and chromatographed on silica \(\left(10 / 90 \mathrm{CH}_{3} \mathrm{OH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\) to give the title compound \((1.59 \mathrm{~g}, 97 \%):{ }^{1} \mathrm{H}\) NMR \((400 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}) \delta\) \(7.15(\mathrm{~s}, 2 \mathrm{H}), 6.92\left(\mathrm{AA}^{\prime}, 2 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}\right), 6.60\left(\mathrm{BB}^{\prime}, 2 \mathrm{H}, 8.3 \mathrm{~Hz}\right), 4.58\)
(R)- \(\mathrm{N}-[44[2-[[2-H y d r o x y-2-(4-a m i n o-3,5-\) (m,1H), 2.83-2.65 (m, 6H)

\section*{EXAMPLE 99}
(hexylaminocarbonylamino)benzenesulfonamide the title compound was prepared from the aniline derivative from ESI MS \(m / z 622\) (M).

Following the procedure outlined in Example 18 and 25, Example 98: NMR ( \(400 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}\) ) 7.57 (AA', 2H, J=2.7 Hz), 7.42 25 ( \(\mathrm{BB}^{\prime}, 2 \mathrm{H}, \mathrm{J}=2.7 \mathrm{~Hz}\) ), 7.16 (s, 2H), 7.04 ( \(\mathrm{AA}^{\prime}, 2 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz}\) ), \(7.00\left(\mathrm{BB}^{\prime}\right.\), \(2 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz}), 4.58(\mathrm{t}, 1 \mathrm{H}, \mathrm{j}=7.1 \mathrm{~Hz}), 3.14(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}), 2.80(\mathrm{~m}\), \(2 \mathrm{H}), 2.73(\mathrm{~m}, 4 \mathrm{H}), 1.49(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{~m}, 6 \mathrm{H}), 0.90(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz})\).
\begin{tabular}{|c|c|c|}
\hline  & \multicolumn{2}{|l|}{;} \\
\hline \multicolumn{3}{|l|}{\[
\angle
\]} \\
\hline \multicolumn{3}{|c|}{- 79 -} \\
\hline \multicolumn{3}{|r|}{TABLE 5} \\
\hline 5 &  &  \\
\hline Example & R & Selected 1H NMR (CD3OD) Data \\
\hline 10.100 & \begin{tabular}{l}
\[
1-
\] \\
[(octylamino)carbonyl]-indolin-5-yl
\end{tabular} & \[
\begin{aligned}
& 7.82(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=9.2 \mathrm{~Hz}), 7.47(\mathrm{~m}, \\
& 2 \mathrm{H}), 3.93(\mathrm{t}, 2 \mathrm{H}, \mathrm{~J}=9.0 \mathrm{~Hz}), 3.18 \\
& (\mathrm{~m}, 4 \mathrm{H}), 1.53(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~m}, \\
& 10 \mathrm{H}), 0.88(\mathrm{t}, 3 \mathrm{H}, \mathrm{~J}=7.1 \mathrm{~Hz})
\end{aligned}
\] \\
\hline \[
15^{101}
\] & \[
\begin{aligned}
& \text { 4-(3-hexyl-2- } \\
& \text { imidazolidinon-1- } \\
& \text { yl)phenyl }
\end{aligned}
\] & \[
\begin{aligned}
& 7.68-7.60\left(\mathrm{AA}^{\prime} \mathrm{BB}, 4 \mathrm{H}\right), 3.82(\mathrm{t}, \\
& 2 \mathrm{H}, \mathrm{~J}=6.2 \mathrm{~Hz}), 3.52(\mathrm{t}, 2 \mathrm{H}, \mathrm{~J}=6.2 \\
& \mathrm{Hz}), 3.30(\mathrm{t}, 2 \mathrm{H}, \mathrm{~J}=6.0 \mathrm{~Hz}), 1.54 \\
& (\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{t}, 3 \mathrm{H} \\
& \mathrm{J}=6.0 \mathrm{~Hz})
\end{aligned}
\] \\
\hline \(20^{102}\) & \[
\begin{aligned}
& \text { 4-(3-octyl-2- } \\
& \text { imidazolidinon-1- } \\
& \text { yl)phenyl }
\end{aligned}
\] & \[
\begin{aligned}
& 7.65-7.60\left(\mathrm{AA}{ }^{\prime} \mathrm{BB}, 4 \mathrm{H}\right), 3.82(\mathrm{t}, \\
& 2 \mathrm{H}, \mathrm{~J}=6.2 \mathrm{~Hz}), 3.52(\mathrm{t}, 2 \mathrm{H}, \mathrm{~J}=6.2 \\
& \mathrm{Hz}), 3.29(\mathrm{t}, 2 \mathrm{H}, \mathrm{~J}=6.0 \mathrm{~Hz}), 1.54 \\
& (\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~m}, 10 \mathrm{H}), 0.87(\mathrm{t}, 3 \mathrm{H}, \\
& \mathrm{J}=6.1 \mathrm{HZ})
\end{aligned}
\] \\
\hline
\end{tabular}

25
EXAMPLE 103

30

(B) \(\mathrm{N}-[4][2-[[2-\) Hydroxy-2-(4-hydroxyphenyl)ethyl]amino]ethyl]phenyll-benzenesulfonamide

A solution of 5 g of 4-aminophenethyl alcohol in 50 mL of DMF was silylated with 5.5 g of t -butyldimethylsilyl chloride (TBDMS- Cl) and 2.5 g of imidazole overnight at room temperature. Extraction of the product following an aqueous ammonium chloride workup afforded 6.6 g of the O-TBDMS ether. This aniline derivative was then coupled to benzenesulfonyl chloride in pyridine-dichloromethane to give the sulfonamide in greater than \(80 \%\) yield after chromatographic purification. The TBDMS group of the sulfonamide was removed with methanolic HCl at room temperature for 30 min . The crude alcohol was oxidized to the corresponding carboxylic acid with Jones reagent in acetone (RT \(30 \mathrm{~min}_{\text {, ethyl acetate extraction). }}\)

To a solution of 180 mg of \((\mathrm{R})\)-octopamine and 300 mg of the resultant 4-N-benzenesulfonamidophenylacetic acid in 7 mL of DMF was added 0.5 mL of triethylamine and 490 mg of benzotriazolyl- N -oxy-tris(dimethylamino)phosphonium hexafluorophosphate. The reaction mixture was stirred at RT 2 h , flash chromatography over silica gel eluting with \(95: 5\) chloroform-methanol gave 322 mg of purified amide.

A solution of 220 mg of this amide in 13 mL of 1.0 M borane-THF was refluxed under argon for 2 h followed by the addition of 3 mL of \(\mathrm{N}, \mathrm{N}\)-dimethylaminoethanol and further reflux for another hour. The solvent and excess volatiles were removed in vacuo and the residual solid was taken up in acetone and purified by PLC on silica gel (9:1 ethyl acetate:methanol) to yield 61 mg of the title compound: \({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\) ) \(\delta 7.73(\mathrm{dt}, 2 \mathrm{H}, \mathrm{J}=2.1,8.2 \mathrm{~Hz}), 7.53(\mathrm{tt}, 1 \mathrm{H}\), \(\mathrm{J}=1.4,7.6 \mathrm{~Hz}), 7.44(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7,18(\mathrm{~d}, 2 \mathrm{HI}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.05(\mathrm{ABq}\), \(4 \mathrm{H}, \mathrm{Jab}=8.5 \mathrm{~Hz}), 6.76(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}), 4.75(\mathrm{dd}, \mathrm{IH}, \mathrm{J}=7.5,7.6 \mathrm{~Hz})\), \(3.05-2.90(\mathrm{~m}, 4 \mathrm{H}), 2.81(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz})\). Mass spec calcd, 412.5 found 413.2.
(R)- \(\mathrm{N}-[4-[2-[12-\mathrm{Hydroxy}-2-(4-\)
hydroxyphenyl)ethyllamino]ethyllphenyll-4-iodobenzenesulfonamide

Following the procedure outined in Example 103, the citle

3-(2-bromoacetyl)benzonitrile
To a solution of \(1.02 \mathrm{~g}(7.04 \mathrm{mmol})\) of 3 -acetylbenzonitrile in 70 mL of ethyl ether was added 1.02 g ( \(3.52 \mathrm{mmol}, 0.5\) equiv) of
30 dibromobarbituric acid. The mixture was allowed to stir at room temperature overnight. The resultant white slurry was filtered and the filtrate was concentrated. Purification by flash chromotography (silica gel, \(20 \%\) ethyl acetate/hexane) gave \(1.28 \mathrm{~g}(81 \%)\) of the title compound as a white solid: \({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.8 .26(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=1.4\)

\(\mathrm{Hz}), 8.20(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}=1.5,8.0 \mathrm{~Hz}), 7.87(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.3,7.8 \mathrm{~Hz}), 7.64\) \((\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.9 \mathrm{~Hz}), 4.40(\mathrm{~s}, 2 \mathrm{H})\).

\section*{EXAMPLE 106}
(R)-a-Bromomethyl-3-cyanophenylmethanol

To a suspension of \(181 \mathrm{mg}(0.623 \mathrm{mmol})\) of ( R )-
tetrahydro-1-methyl-3,3-diphenyl-1H,3Hpyrrolo \([1,2 \mathrm{c}][1,3,2]\) oxazaborole-borane ( \(\mathrm{R}-\mathrm{OAB}\) catalyst) in 6 mL of
15. THF at \(0^{\circ} \mathrm{C}\) was added dropwise \(6.24 \mathrm{~mL}(6.24 \mathrm{mmol})\) of a 1 M solution of borane in THF. The resultant clear solution was allowed to stir for 5 min , and then a solution of 1.27 g ( 5.67 mmol ) of bromoketone from Example 105 in 6 mL of THF was added slowly over 1 h . After the reaction was allowed to stir for 30 min more, it was quenched by the dropwise addition of 6 mL of methanol and concentrated. Purification by flash chromatography (silica gel, 20-25\% ethyl acetate/hexane) provided \(944 \mathrm{mg}(74 \%\) ) of the title compound as a clear oil which crystallized: \({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70\) (d, 1 H , \(\mathrm{J}=1.5 \mathrm{~Hz}), 7.62-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.7 \mathrm{~Hz}), 4.95(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}\) \(25=3.4,8.4 \mathrm{~Hz}), 3.63(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=3.4 \mathrm{~Hz}), 3.49(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz})\).

EXAMPLE 107


(R)-(3-cyanophenyl)oxirane

To a solution of \(937 \mathrm{mg}(4.14 \mathrm{mmol})\) of bromohydrin from Example 106 in 8 mL of methanol was added \(601 \mathrm{mg}(4.35 \mathrm{mmol}\), 1.05 equiv) of potassium carbonate. The reaction mixture was allowed to stir at room temperature for \(7 \mathbf{h}\). It was then diluted with ethyl (br dd, 1H, J = 2.7, 7.9 Hz ), 3.42-3.05 (br m, 4H), 2.75-2.55 (br m, \(2 \mathrm{H})\).

\section*{EXAMPLE 109}

(R)-N-[4-[2-[[2-Hydroxy-2-(3-cyanophenyl)ethyl]amino]ethyl]phenyl]-4(hexylaminocarbonylamino)benzenesulfonamide

Following the procedure outlined in Example 25, the title compound was prepared from the Boc aniline derivative from Example 108: \({ }^{1} \mathrm{H}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\) ) \(\delta 7.70(\mathrm{~s}, \mathrm{IH}), 7.63-7.57\) (m, 4H), \(7.48(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.7 \mathrm{~Hz}), 7.43(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.9 \mathrm{~Hz}), 7.06(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5\) Hz ), 6.99 (d, \(2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}\) ), \(4.77(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=3.9,8.5 \mathrm{~Hz}), 3.15(\mathrm{t}\), \(2 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}\) ), 2.86-2.69 (m, 6H), 1.49 (br m, 2H), 1.31 (br m, 6H), 0.90 (br t, 3H).

\section*{EXAMPLE 110}

(R)- \(\mathrm{N}-[4-[2-[[2-\mathrm{Hydroxy}-2-(3\)-cyanophenyl)ethyl]amino]ethyl]phenyl]-3quinolinesulfonamide

Following the procedure outlined in Example 25, the title compound was prepared from the Boc aniline derivative from Example

108 and 3-quinolinesulfonyl chloride: \({ }^{1} \mathrm{H}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\) ) \(\delta\) \(9.02(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.3 \mathrm{~Hz}), 8.68(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.9 \mathrm{~Hz}), 8.06(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.3\) Hz ), \(8.02(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.9 \mathrm{~Hz}\) ), 7.90 (ddd, \(1 \mathrm{H}, \mathrm{J}=1.4,7.0,8.4 \mathrm{~Hz}\) ), \(7.72-\) \(7.69(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.7 \mathrm{~Hz}), 7.07(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}\) \(=8.7 \mathrm{~Hz}), 7.03(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}), 4.76(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.0,8.5 \mathrm{~Hz}), 2.85-\) 2.68 (m, 6H).

Following the procedures outlined for Examples 14-31, the compounds listed in Table 6 were prepared.

TABLE 6

\begin{tabular}{|c|c|c|c|}
\hline & Example & R & Selected 1H NMR (CD3OD) Data \\
\hline 20 & 111 & \begin{tabular}{l}
4-(3-hexyl-2,4 imidazolidinedion-1- \\
yl)phenyl
\end{tabular} & \[
\begin{aligned}
& \hline 4.40(\mathrm{~s}, 2 \mathrm{H}), 3.54(\mathrm{~m}, 2 \mathrm{H}), 1.68- \\
& 1.59(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.28(\mathrm{~m}, 6 \mathrm{H}), \\
& 0.91(\mathrm{~m}, 3 \mathrm{H}) . \\
& \hline
\end{aligned}
\] \\
\hline 25 & 112 & 4-(3-octyl-2,4 imidazolidinedion-1yl)phenyl & \[
\begin{aligned}
& 4.40(\mathrm{~s}, 2 \mathrm{H}), 3.52(\mathrm{~m}, 2 \mathrm{H}), 1.68- \\
& 1.59(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.23(\mathrm{~m}, 10 \mathrm{H}), \\
& 0.89(\mathrm{~m}, 3 \mathrm{H}) \\
& \hline
\end{aligned}
\] \\
\hline 30. & 113 & \begin{tabular}{l}
4-[2-(4- \\
cyclohexylbutyl)-oxazol-5-yl]phenyl, trihydrochloride
\end{tabular} & \[
\begin{aligned}
& 7.66(\mathrm{~s}, 1 \mathrm{H}), 5.35(\mathrm{~m}, 1 \mathrm{H}), 3.22- \\
& 3.32(\mathrm{~m}, 5 \mathrm{H}), 2.95(\mathrm{~m}, 2 \mathrm{H}), 2.90(\mathrm{t}, \\
& \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.8(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~m}, \\
& 5 \mathrm{H}), 1.45(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{~m}, 6 \mathrm{H}), \\
& 0.89(\mathrm{~m} .2 \mathrm{H})
\end{aligned}
\] \\
\hline & 114 & \begin{tabular}{l}
\[
4-[2-[2-(4)
\] \\
fluorophenyl)ethyl]- \\
oxazol-5-yllphenyl
\end{tabular} & \[
\begin{aligned}
& 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.2(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{~m}, \\
& 2 \mathrm{H}), 4.90(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{~m}, 4 \mathrm{H}), \\
& 2.70-2.85(\mathrm{~m}, 6 \mathrm{H})
\end{aligned}
\] \\
\hline
\end{tabular}
- 86 -
\begin{tabular}{|c|c|c|}
\hline 115 & \begin{tabular}{l}
\[
4-[2-(3)
\] \\
cyclopentylpropyl)-oxazol-5-yllphenyl
\end{tabular} & \[
\begin{aligned}
& 7.51(\mathrm{~s}, 1 \mathrm{H}), 4.90(\mathrm{~m}, 1 \mathrm{H}), 2.65- \\
& 2.90(\mathrm{~m}, 8 \mathrm{H}), 1.80(\mathrm{~m}, 5 \mathrm{H}), 1.46- \\
& 1.62(\mathrm{~m}, 4 \mathrm{H}), 1.05(\mathrm{~m}, 2 \mathrm{H})
\end{aligned}
\] \\
\hline 116 & \begin{tabular}{l}
4-(4-hexyl-3-oxo-[1,2,4]-triazol-2- \\
yl)phenyl
\end{tabular} & \[
\begin{aligned}
& 8.04(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{~m}, 2 \mathrm{H}), 1.78 \\
& 1.69(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.28(\mathrm{~m}, 6 \mathrm{H}), \\
& 0.90(\mathrm{~m}, 3 \mathrm{H}) .
\end{aligned}
\] \\
\hline 117 & \begin{tabular}{l}
4-(4-octyl-3-oxo-[1,2,4]-triazol-2- \\
yl)phenyl
\end{tabular} & \[
\begin{aligned}
& 8.03(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{~m}, 2 \mathrm{H}), 1.77- \\
& 1.69(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.25(\mathrm{~m}, 10 \mathrm{H}) \\
& 0.89(\mathrm{~m}, 3 \mathrm{H}) .
\end{aligned}
\] \\
\hline 118 & \begin{tabular}{l}
4-(4-heptyl-5-methyl-[1,2,3]-triazol-2- \\
yl)phenyl
\end{tabular} & \[
\begin{aligned}
& 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{t}, 2 \mathrm{H}, \mathrm{~J}=6.9 \mathrm{~Hz}), \\
& 1.36 \mathrm{~m} .34(\mathrm{~m}, 4 \mathrm{H}), 1.31-1.29(\mathrm{~m}, \\
& 2 \mathrm{H}), 1.18(\mathrm{~d}, 4 \mathrm{H}, \mathrm{~J}=2.5 \mathrm{~Hz}), 0.88(\mathrm{t}, \\
& 3 \mathrm{H}, \mathrm{~J}=7.0 \mathrm{~Hz})
\end{aligned}
\] \\
\hline
\end{tabular}

15

20

25

30


\section*{WHAT IS CLAIMED IS:}
1. A compound having the formula I:


I
where
\(n\) is \(\quad \therefore\) to 5 ;
\(m\) is \(\quad 0\) or 1 ;
\(r\) is
0 to 3 ;
A is (1) a 5 or 6 -membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen,
(2) a benzene ring fused to a 5 or 6 -membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen,
(3) a 5 or 6 -membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen fused to a 5 or 6 -membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen,
(4) phenyl, or
(5) a benzene ring fused to a \(\mathrm{C} 3-\mathrm{C} 8\) cycloalkyl ring;

Rl is (1) hydroxy,
(2) \(0 \times \mathrm{o}\),
(3) halogen,
(4) cyano,
(5) \(\mathrm{NR}^{8} \mathrm{R}^{8}\),
(6) \(\mathrm{SR}^{8}\),
(7) trifluoromethyl,

(8) \(\mathrm{C}_{1}\)-C10 alkyl,
(9) \(\mathrm{OR}^{8}\), (10) \(\mathrm{SO}_{2} \mathrm{R} 9\).
(11) OCOR \({ }^{9}\),
(12) \(\mathrm{NR}^{8} \mathrm{COR}^{9}\),
(13) \(\mathrm{COR}^{9}\),
(14) \(\mathrm{NR}^{8} \mathrm{SO}_{2} \mathrm{R}^{9}\),
(15) \(\mathrm{NR}^{8} \mathrm{CO}_{2} \mathrm{R}^{8}\), or
(16) \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkyl substituted by hydroxy, halogen, cyano, NR \(8 \mathrm{R}^{8}, \mathrm{SR}^{8}\), trifluoromethyl, \(\mathrm{OR}^{8}, \mathrm{C} 3\)-C8 cycloalkyl, phenyl, \(\mathrm{NR}^{8} \mathrm{COR}^{9}, \mathrm{COR}^{9}, \mathrm{SO}_{2} \mathrm{R}^{9}, \mathrm{OCOR}^{9}, \mathrm{NR}^{8} \mathrm{SO}_{2} \mathrm{R}^{9}\) or \(\mathrm{NR}^{8} \mathrm{CO}_{2} \mathrm{R}^{8}\);
\(R^{2}\) and \(R^{3}\) are independently
(1) hydrogen,
(2) \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkyi or
(3) \(\mathrm{Cl}_{1}-\mathrm{C}_{10}\) alkyl with 1 to 4 substituents selected from hydroxy, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkoxy, and halogen;
\(X\) is (1) \(-\mathrm{CH}_{2}\),
(2) \(-\mathrm{CH}_{2}-\mathrm{CH}_{2}\),
(3) \(\mathrm{CH}=\mathrm{CH}-\) or
(4) \(\mathrm{CH}_{2} \mathrm{O}_{-}\);
\(R^{4}\) and \(R^{5}\) are independently
(1)hydrogen,
(2) \(\mathrm{C}_{1}-\mathrm{Cl}_{10}\) alkyl,
(3) halogen,
(4) \(\mathrm{NHR}^{8}\),
(5) \(O R^{8}\),
(6) \(\mathrm{SO}_{2} \mathrm{R}^{9}\) or
(7) \(\mathrm{NHSO}_{2} \mathrm{R} 9\);
\(\mathrm{R}^{6}\) is (1) hydrogen or
(2) \(\mathrm{Cl}-\mathrm{C} 10\) alkyl;
\(\mathrm{R}^{7}\) is \(\quad \mathrm{Z}\left(\mathrm{R}^{1 \mathrm{la}}\right)_{\mathrm{n}}\);
\(\mathrm{R}^{1 a_{i}}\) (1) \(\mathrm{R}^{1}\), with the proviso that when \(A\) is phenyl, \(\mathrm{R}^{1 \mathrm{l}}\) is not
\(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkyl,

(2) \(\mathrm{C} 3-\mathrm{C} 8\) cycloalkyl,
(3) phenyl optionally substituted with up to 4 groups independently selected from \(R^{8}, \mathrm{NR}^{8} \mathrm{R}^{8}, \mathrm{OR}^{8}, \mathrm{SR}^{8}\) and halogen, or
(4) 5 or 6 -membered heterocycle with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen, optionally substituted with up to four groups independently selected from oxo, \(\mathrm{R}^{8}, \mathrm{NR}^{8} \mathrm{R}^{8}, \mathrm{OR}^{8}, \mathrm{SR}^{8}\), and halogen;
(1) phenyl,
(2) naphthyl,
(3) a 5 or 6 -membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen, (4) a benzene ring fused to a \(\mathrm{C} 3-\mathrm{C} 8\) cycloalkyl ring, (5) a benzene ring fused to a 5 or 6 -membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen,
(6) a 5 or 6 -membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen fused to a 5 or 6 -membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen, or
(7) a 5 or 6 -membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen fused to a C3-C8 cycloalkyl ring;
(1) hydrogen,
(2) \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkyl,
(3) C3-C8 cycloalkyl,
(4) \(Z\) optionally having 1 to 4 substituents selected from halogen, nitro, oxo, NR \({ }^{10} \mathrm{R}^{10}, \mathrm{Cl}_{1}-\mathrm{Cl} 10\) alkyl, \(\mathrm{C}_{1}-\mathrm{Cl}_{10}\) alkoxy, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkylthio, and \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkyl having 1 to 4 substituents selected from hydroxy, halogen, \(\mathrm{CO}_{2} \mathrm{H}, \mathrm{CO}_{2}\) -\(\mathrm{Cl}_{1}-\mathrm{C}_{10}\) alkyl, \(\mathrm{SO}_{2}-\mathrm{C}_{1}-\mathrm{C}_{10}\) alkyl, \(\mathrm{C}_{3}-\mathrm{C}_{8}\) cycloalkyl, \(\mathrm{Cl}_{1}-\) C10 alkoxy, and Z optionally substituted by from I to 3 of halogen, \(\mathrm{Cl}_{1-} \mathrm{C}_{10}\) alkyl or \(\mathrm{C}_{1-\mathrm{C}} \mathrm{C} 0\) alkoxy, or
(5) \(\mathrm{C} 1-\mathrm{C} 10\) alkyl having 1 to 4 substituents selected from hydroxy, halogen, \(\mathrm{CO}_{2} \mathrm{H}, \mathrm{CO}_{2}-\mathrm{C}_{1}-\mathrm{C}_{10}\) alkyl, \(\mathrm{SO}_{2}-\mathrm{Cl}_{1}-\mathrm{Cl}_{10}\) alkyl, \(\mathrm{C}_{3}-\mathrm{C}_{8}\) cycloalkyl, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkoxy, \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkyl, and \(Z\) optionally substituted by from 1 to 4 of halogen, \(\mathrm{C}_{1}-\mathrm{C}_{10}\)

5
\(\mathrm{R}^{9}\) is
alkyl or \(\mathrm{Cl}_{1}-\mathrm{C}_{10}\) alkoxy;
(1) \(\mathrm{R}^{8}\) or
(2) \(\mathrm{NR}^{8 R 8}\);
\(\mathrm{R}^{10}\) is (1) \(\mathrm{Cl}_{1}-\mathrm{C}_{10}\) alkyl, or
(2) two \(\mathrm{R}^{10}\) groups together with the N to which they are attached formed a 5 or 6 -membered ring optionally
substituted with \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkyl; or
a pharmaceutically acceptable salt thereof.
2. A compound of Claim 1 where

15
\(n\) is
m is
\(r\) is
A is phenyl or a 5 - or 6 -membered heterocyclic ring with from 1 to 4 nitrogen atoms;
\(X\) is
\(-\mathrm{CH}_{2}\) -
\(\mathrm{R}^{1}\) is
(1) hydroxy,
(2) halogen,
(3) cyano,
(4) trifluoromethyl,
(5) \(\mathrm{NR}^{8} \mathrm{R}^{8}\),
(6) \(\mathrm{NR}^{8} \mathrm{SO}_{2} \mathrm{R}^{9}\),
(7) \(\mathrm{NR}^{8} \mathrm{COR}^{9}\).
(8) \(\mathrm{NR}^{8} \mathrm{CO}_{2} \mathrm{R}^{8}\), or
(9) \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkyl optionally substituted by hydroxy;
\({ }^{30} \mathbf{R}^{2}, \mathrm{R}^{3}\) are independently
(1) hydrogen or
(2) methyl;
\(\mathrm{R}^{4}, \mathrm{R}^{5}\) and \(\mathrm{R}^{6}\) are each hydrogen;
\(\mathrm{R}^{7}\) is \(\quad \mathrm{Z}-\left(\mathrm{R}^{12}\right)_{\mathrm{n}}\); and
\(\mathrm{R}^{8}, \mathrm{R}^{9}, \mathrm{Z}\) and \(\mathrm{R}^{1 \mathrm{a}}\) are as defined in Claim 1 , and when \(\mathrm{R}^{1}\) is part of the definition of \(\mathrm{R}^{\mathrm{la}}\) has the meaning defined in Claim 1.
3. A compound of Claim 1 having the formula la:

5

10
wherein
\(n\) is
0 to 3;
15 m is
1
\(R^{1}\) is
(1) halogen or
(2) \(\mathrm{NR}^{8} \mathrm{R}^{8}\);
\(\mathrm{R}^{2}, \mathrm{R}^{3}\) are independently hydrogen or methyl;
\(\mathrm{R}^{1 a}\) is
(1) halogen,
(2) \(\mathrm{C}_{1} \mathrm{C}_{10}\) alkyl,
(3) \(\mathrm{NR}^{8} \mathrm{R}^{8}\),
(4) \(\mathrm{NR}^{8} \mathrm{COR}^{9}\),
(5) \(\mathrm{NR}^{8} \mathrm{CO}_{2} \mathrm{R}^{8}\),
(6) \(\mathrm{COR}^{9}\).
(7) \(\mathrm{OCOR}^{9}\), or
(8) a 5 or 6 -membered heterocycle with from 1 to 4
heteroatoms selected from oxygen, sulfur and nitrogen, optionally substituted with up to four groups independently selected from oxo, halogen, \(\mathrm{R}^{8}, \mathrm{NR}^{8} \mathrm{R}^{8}, \mathrm{OR}^{8}\), and \(\mathrm{SR}^{8}\);
30
\(Z\) is
(1) phenyl,
(2) naphthyl,
(3) a 5 or 6 -membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen,

-92.
(4) benzene ring fused to a 5 or 6 -membered heterocyclic ring with from 1 to 3 heteroatoms selected from oxygen, sulfur and nitrogen, or
(5) a 5 or 6 -membered heterocyclic ring with from 1 to 4

\section*{hydrogen}
4. A compound of Claim 3 wherein \(\mathrm{R}^{2}\) and \(\mathrm{R}^{3}\) are each

X is \(\quad \mathrm{CH}_{2}-\); and
\(R^{8}\) and \(R^{9}\) are as defined in Claim 1. heteroatoms selected from oxygen, sulfur and nitrogen fused to a \(\mathrm{C}_{3}-\mathrm{C} 8\) cycloalkyl ring;
5. A compound of Claim 1 having the formula Ib:

15

wherein
\(\mathbf{n}\) is \(\quad 0\) to 3 ;
m is \(\quad 1\)
\(\mathrm{R}^{1}\) is (1) hydroxy,
(2) cyano,
(3) \(\mathrm{NR}^{8} \mathrm{R}^{8}\) or
(4) halogen;
\(R^{1 a}\) is (1) halogen,
(2) \(\mathrm{NR}^{8} \mathrm{R}^{8}\),
(3) \(\mathrm{NR}^{8} \mathrm{COR}^{9}\)
(4) \(\mathrm{NR}^{8} \mathrm{CO}_{2} \mathrm{R}^{8}\).
(5) \(\mathrm{OCOR}^{9}\), or
(6) a 5 or 6-membered heterocycle with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen, optionally substituted with up to three groups independently selected from oxo, halogen, \(\mathrm{R}^{8}, \mathrm{NR}^{8} \mathrm{R}^{8}, \mathrm{OR}^{8}\) and \(\mathrm{SR}^{8}\);
\(Z\) is (1) phenyl,
(2) naphthyl or
(3) benzene ring fused to a 5 or 6 -membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen;
10 X is \(-\mathrm{CH}_{2}\); and \(R^{2}\) and \(R^{3}\) are independently hydrogen or methyl.
6. A compound of Claim 1 having the formula Id


20
n is \(\quad 0\) or 1 ;
\(\mathrm{R}^{1}\) is \(\quad \mathrm{NR}^{8} \mathbf{R}^{8}\);
\(R^{2}\) and \(R^{3}\) are independently
(1) hydrogen, or (2) methyl;
\(B\) is (1) hydrogen,
(2) benzene fused to the benzene ring to form naphthyl, or
(3) a 5 or 6 -membered heterocycle with 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen atom fused to the benzene ring;
\(\mathrm{R}^{1 a}\) is (1) halogen,
(2) \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkyl,
(3) \(N R^{8} R^{8}\),
(4) \(\mathrm{NR}^{8} \mathrm{COR}^{9}\),

5
\(\mathrm{R}^{9}\) is (1) \(\mathbf{R}^{8}\) or
(2) NR8R8;
\(\mathrm{R}^{10}\) is
(1) phenyl,
(2) a 5 or 6 -membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen,
(3) a benzene ring fused to a 5 or 6 -membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen, or
(4) a 5 or 6 -membered heterocyclic ring with from 1 to 4
\(30 \cdots \ldots\). heteroatoms selected from oxygen, sulfur and nitrogen fused to a \(\mathrm{C} 3-\mathrm{C} 8\) cycloalkyl ring.
7. A compound of Claim 1 selected from the group consisting of:

N-[4-[2-[(2-hydroxy-2-phenylethyl)amino]ethyl]phenyl]-4iodobenzenesulfonamide;
\(\mathrm{N}-\)-4-[2-[(2-hydroxy-2-phenylethyl)amino]ethyl]phenyl]-2naphthalenesulfonamide; and
\(\mathrm{N}-[4-[2-[[2\)-hydroxy-2-(3-cyanophenyl)ethyl]amino]ethyl]phenyl]-3quinolinesulfonamide
8. A compound of Claim 1 selected from the group

N-[4-[2-[[2-hydroxy-2-(6-aminopyridin-3-yl)ethyl]aminolethyl]phenyl]-4-(hexylaminocarbonylamino)benzenesulfonamide;
N-[4-[2-[[2-hydroxy-2-(6-aminopyridin-3-y)ethyl]aminolethyl]phenyl]-4-iodobenzenesulfonamide;
30 N -[4-[2-[[2-hydroxy-2-(6-aminopyridin-3-yl)ethyl]amino]ethyl]phenyl]benzenesulfonamide;
\(\mathrm{N}-[4-[2-[[2\)-hydroxy-2-(6-aminopyridin-3-yl)ethyllamino]ethyl]phenyl]-2-naphthalenesulfonamide;
\(\mathbf{N}-[4\)-[2-[[2-hydroxy-2-(6-aminopyridin-3-yl)ethyll]aminojethyl]phenyl]-3-quinolinesulfonamide;

N -[4-[2-[[2-hydroxy-2-(6-aminopyridin-3-yl)ethyl]amino]ethyl]phenyl] \(]\) 5-benzisoxazolesulfonamide;
N -[4-[2-[[2-hydroxy-2-(6-aminopyridin-3-yl)ethyl]amino]ethyl]phenyl]-4-[(hexylmethylaminocarbonyl)amino]benzenesulfonamide;

N -[4-[2-[[2-hydroxy-2-(6-aminopyridin-3-yl)ethyl]amino]ethyl]phenyl]-4-[(dimethylaminocarbonyl)amino]benzenesulfonamide;
\(\mathrm{N}-[4-[2\)-[[2-hydroxy-2-(6-aminopyridin-3-yl)ethyl]amino]ethyl]phenyl]-4-(3-hexyl-2-imidazolidon-1-yl)benzenesulfonamide;
\(\mathrm{N}-[4-[2-[[2\)-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4(hexylaminocarbonylamino)benzenesulfonamide;
\(\mathbf{N}-[4\) [2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4isopropylbenzenesulfonamide;
\(\mathbf{N}-[4-[2-[[2\)-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-2naphthalenesulfonamide;
\(\mathbf{N}\)-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-3quinolinesulfonamide;
\(\mathrm{N}-[4-[2\)-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4[(hexylmethylaminocarbonyl)amino]benzenesulfonamide;
\(\mathbf{N}-[4\)-[2 [[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(3-hexyl-2-imidazolidon-1-yl)benzenesulfonamide; \(\mathrm{N}-[4-[2\)-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino \(]\) ethyl \(]\) phenyl]-4iodobenzenesulfonamide;
\(\mathbf{N}\)-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[3-(3-cyclopentylpropyl)-2-imidazolidon-1-yljbenzenesulfonamide \(\mathbf{N}-[4\)-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(3-octyl-2-imidazolidinon-1-yl)benzenesulfonamide
\(\mathrm{N}-[4\)-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(3 hexyl-2-imidazolon-1-yl)benzenesulfonamide
\(\mathbf{N}-[4-[2+[[2\)-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(3-octyl-2-imidazolon-1-yl)benzenesulfonamide
\(\mathrm{N}-[4\)-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[3-(3-cyclopentylpropyl)-2-imidazolon-1-yl]benzenesulfonamide \(\mathrm{N}-[4-[2-[[2\)-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-(4-octylthiazol-2-yl) 5 -indolinesulfonamide

N -[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(5-pentyl-[1,2,4]-oxadiazol-3-yl)benzenesulfonamide N -[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(5-hexyl-[1,2,4]-oxadiazol-3-yl)benzenesulfonamide
5 N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(5-heptyl-[1,2,4]-oxadiazol-3-yl)benzenesulfonamide
N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(5-octyl-[1,2,4]-oxadiazol-3-yl)benzenesulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[5-(2-cyclopentylethyl)-[1,2,4]-oxadiazol-3-yl]benzenesulfonamide \(\mathbf{N}\)-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[5-(3-cyclopentylpropyl)-[1,2,4]-oxadiazol-3-yl]benzensulfonamide N -[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(2-pentyloxazol-5-yl)benzenesulfonamide
15 N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(2-hexyloxazol-5-yl)benzenesulfonamide
N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(2-heptyloxazol-5-yl)benzenesulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyll-4-(2-octyloxazol-5-yl)benzenesulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[2-(2-cyclopentylethyl)oxazol-5-yl]benzenesulfonamide \(\mathbf{N}\) [4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[2-(3-cyclopentylpropyl)oxazol-5-yl]benzenesulfonamide
N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(4-hexyl-5-tetrazolon-1-yl)benzenesulfonamide
N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(4 octyl-5-tetrazolon-1-yl)benzenesulfonamide
N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[(3-cyclopentylpropyl)-5-tetrazolon-1-yl]benzenesulfonamide
9. A compound of Claim 1 with the structural formula Ic:


Ic
where \(n, m, f, A, R^{1}, R^{2}, R^{3}, R^{4}, R^{5}, R^{6}, R^{7}\) and \(X\) are as defined in Claim 1. comprises administering to a patient in need of decreased gut motility, an effective amount of a compound of Claim 1.
14. A method for reducing neurogenic inflammation of airways which comprises administering to a patient in need of reduced neurogenic inflammation, an effective amount of a compound of Claim 1.
15. A method for reducing depression which comprises administering to a depressed patient an effective amount of a compound of Claim 1.

5
16. A method for treating gastrointestinal disorders which comprises administering to a patient with gastrointestinal disorders an effective amount of a compound of Claim 1.
17. A composition for the treatment of diabetes or obesity or for lowering triglyceride or cholesterol levels or increasing high density lipoprotein levels or for decreasing gut motility or for reducing neurogenic inflammation or for treating depression or for treating gastrointestinal disorders which comprises an inert carrier and an effective amount of a compound of Claim 1.


Aconding to Internituowal Patern Clasification (IFC) or to hoth national elosalication and IPC
A. FHEADS SEARCIHAD

IPC 6 CO7D CO7C A6IK

Form PCTMSNAIO (rucond thom) (Juty 19w)
\begin{tabular}{|c|c|c|c|c|}
\hline Patent document evited in scarch repart & \[
\begin{aligned}
& \text { Publication } \\
& \text { drato }
\end{aligned}
\] & \multicolumn{2}{|c|}{Pakent family mendur(s)} &  \\
\hline EP-A-0611003 & 17-08-94 & AU-B* & 5498694 & 29-06-95 \\
\hline E A-0611003 & & CA-A- & 2114712 & 10-08-94 \\
\hline & & \(\mathrm{JP}^{\mathrm{P}}\)-A- & 7010827 & 13-01-95 \\
\hline & & W0-A* & 9418161 & 18-08-94 \\
\hline EP-A-0091/49 & 19-10-83 & JP-A- & 58185554 & 29-10-83 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{U.S. PATENT DOCUMENTS} \\
\hline Examiner Initial \({ }^{1}\) & Document Number & Issue Date & Narne & Cass & Sub Class & Filing Date If Appropriate \\
\hline (2) & 5,223,614 & Jun 29, 1993 & Schromm et al. & 544 & 10.5 & \\
\hline Sor & 6,048,884 & Apr 11, 2000 & Maruyama et al. & 514 & 320 & \\
\hline 82 & 6,177,454 & Jan 23, 2001 & Maruyama et al. & 514 & 394 & \\
\hline & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ FOREIGN PATENT DOCUMENTS } \\
\hline & \begin{tabular}{c} 
Document \\
Number
\end{tabular} & \begin{tabular}{c} 
Publication \\
Date
\end{tabular} & Country & Class & \begin{tabular}{c} 
Sub \\
Class
\end{tabular} & \begin{tabular}{c} 
Translation \\
Yes or No
\end{tabular} \\
\hline & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline & \multicolumn{2}{|c|}{ OTHER DOCUMENTS (Including Author, Title, Date, Pertinent Pages, Etc.) } \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}


Page 1 of 1


Customer Number 22,852
Attorney Docket No. 7385.0007-00
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
re Application of:
Catsuya MARUYAMA et al.
Application No.: 09/529,096
Filed: April 7, 2000
For: AMIDE DERIVATIVES OR SALTS THEREOF

Assistant Commissioner for Patents Washington, DC 20231

Group Art Unit: 1624
Examiner: S. Patel

\section*{RECEIVED}

SFP 207001
TECH CENTER 1600/2000

Sir:

\section*{SECOND AMENDMENT UNOER 37 C.F.R. \(\$ 1.111\)}

In response to the Office Action dated June 19, 2001, Applicants amend this application as follows:

INNECAN, HENDERSON Farkabow, GarRTTT, © DUNNER,L.L.P. 13001 \(\operatorname{ATAEET}, M_{4} W\). NA5H1NOTOM OC 20000 R \(202 \times 403 \cdot 1000\)

IN THE CLAIMS:
Without prejudice, disclaimer, or acquiescence, please amend claims 1-7 and 9" 13 , and add new claims \(14 \times 15\) as follows:


\(R\) is a hydrogen atom, a halogen atom, a lower alkyl group, amino group, an aryl lower alkyl group, or a halogens aryl-lower alkyl group;
or a salt thereof.
6. (Once Amended) A compound:
(R)-4"-[2-[(2-Hydroxy-2-phenylethyl)amino]ethyl]-2-pyridinecarboxyanilide,
7. (Twice Amended) A composition comprising at least one compound of formula (I) or the salt thereof as claimed in one of claims 1 through 4 in a pharmaceutically acceptable carrier.



Care has been taken so that no new matter has been introduced into this application. With the exception of the deletion of non-elected subject matter, these amendments are not intended to alter the scope of the claims.

\section*{II. Restriction Requirement}

The restriction requirement of record has been made final, on the ground that the claims lack unity of invention. See Office Action at pages 2-3. While Applicants maintain their traverse of this requirement, they affirm their election with traverse of Group IV, now claims 1-7 and 9-15, drawn to compounds, compositions, and methods of use for Formula 1 wherein Z is \(=\mathrm{CH}\)-. Accordingly, and without prejudice or disclaimer, the claims have been amended to exclude non-elected subject matter. Specifically, claim 1 no longer recites that \(Z\) can be a nitrogen atom.

\section*{III. Rejections Under 35 U.S.C. §112, 72}

Claims 1-7 and 9-13 have been rejected under 35 U.S.C. § 112, \(\$ 2\), as indefinite for allegedly failing to particularly point out and distinctly claim the subject matter Applicants regard as their invention. See Office Action at page 4. Applicants respectfully traverse, and respond as follows.
A. In the definition of group \(B\), the claim language "heteroaryl group which may be substituted or unsubstituted and is optionally fused with a benzene ring" has been rejected for being indefinite. Applicants respectfully disagree with the rejection.

Claim 1, reciting the definition of group \(B\), is not indefinite. The claim language satisfies the two separate requirements of 35 U.S.C. \(\S 112\), \| 2 . First, "the claims must set forth the subject matter that applicants regard as their invention." MPEP \$ 2171. Second, "the claims must particularly point out and distinctly define the metes and bounds of the subject matter that will be protected by the patent grant." ld.
[b]readth of a claim is not to be equated with indefiniteness. If the scope of the subject matter embraced by the claims is clear, and if applicants have not otherwise indicated that they intend the invention to be of a scope different from that defined in the claims, then the claims comply with 35 U.S.C. 112, second paragraph.

MPEP § 2173.04 (citations omitted). Applicants contend that the rejected claim language is broad, but it is not indefinite.

Applicants give specific, but nonlimiting, examples of the heteroaryl group, heteroaryl group fused with a benzene ring, and optional substituents, on pages \(7-8\) in the specification. Taking the disclosure as a whole and these examples, one of ordinary skill in the art would be able to determine the metes and bounds of the claimed invention. B may be, for example, pyridopyrimidinyl; and B may not be a hydrogen atom.

To require the claims to list every single heteroaryl group would be to deprive the Applicants of substantial value of their invention. An unscrupulous copyist could easily select a heteroaryl group not listed, and thereby steal the essence of Applicants'
B. Claims reciting, "an amide derivative" have been rejected for being indefinite.

See Office Action at page 4. Without acquiescing in the allegation that the claims were indefinite, Applicants have amended the claims to conform to the Examiner's suggestion. The claims now recite, "a compound of formula (I)" or similar language where appropriate. Applicants therefore request that this rejection be withdrawn.
C. The term "optionally" has been rejected for being indefinite. See Office Action at page 4. Applicants respectfully assert that "optionally" is not an indefinite term per se, and that the claim as it was written, was not indefinite. See MPEP § 2173.05 (h)(III). One possible alternative expression is "ring B . . . is not fused or is fused with a benzene ring." Applicants assert that the present expression employing "optionally" is clear and satisfies 35 U.S.C. § 112, „2, discussed above. Applicants respectfully request that this rejection be withdrawn.

\section*{IV. Claim Rejections Under 35 U.S.C. § 103}

Claims 1-7 and 9-13 have been rejected under 35 U.S.C. § 103 (a) as being unpatentable over Schromm et al. (US 5,223,614). See Office Action at page 5. Applicants respectfully traverse this rejection.

To establish a prima facie case of obviousness,
First, there must be some suggestion or motivation, either in the references themselves or in the knowledge generally available to one of
ordinary skill in the art, to modify the reference or to combine reference teachings. Second, there must be a reasonable expectation of success. Finally, the prior art reference (or references when combined) must teach or suggest all the claim limitations.

MPEP § 2143. The present rejection falls short of establishing a prima facie case, at least because Schromm et al. fails to teach or suggest all of the claim limitations.

Schromm et al. shows a generic formula containing, among other radicals, a
 group [.] Id., at col 1, line 36. Throughout the disclosure of Schromm ef al., this substituted phenyl group shows an hydroxyl or an ether substitution on the phenyl ring corresponding to radical \(Q\). This hydroxyl or ether substitution does not teach or suggest Applicants' claimed invention. In present claim 1, to the extent that the ring comprising \(Z\) and binding \(R^{2}\) remotely corresponds to Schromm's radical \(Q\), the two structures differ: Applicants" " \(R\) 2 is a hydrogen atom or a halogen atom," not an hydroxyl or ether radical. The Office Action provides no motivation to modify Schromm's substituted phenyl group \(Q\) to obtain anything resembling Applicants' \(Z\) ring and \(R^{2}\). Even if such modification were made, no reasonable expectation of success can be shown that such molecules would work for Schromm's intended purpose. Therefore, Applicants respectfully request that the rejection be withdrawn as to all claims rejected.

\section*{CONCLUSION}

Applicants respectfully request that all rejections be withdrawn, the application be reconsidered, and the claims allowed in a timely manner.

Please grant any extensions of time required to enter this response and charge any required extension fees to our Deposit Account No. 06-0916.

Respectfully submitted,
FINNEGAN, HENDERSON, FARABOW, GARRETT \& DUNNER, L.L.P.

Dated September 18, 2001


David.
Reg. No. 28,220
Enclosure:
- Appendix

Application No.: 09/529,096
Attorney Docket No.: 7385.0007-00

\section*{APPENDIX}

In accordance with 37 C.F.R. § 1.121, claims \(1-7\) and 9.13 are set forth below in marked-up form to aid the Examiner in identifying amendments to the claims. Additions are underlined, and deletions are shown with bold square brackets and strikethrough text [like this]. If a discrepancy is found between the version of the claims set forth above and the version set forth below, then the version set forth above controls.
1. (Twice Amended) [An amide-derivative represented by the general] A compound of formula (I):

in the formula, each of the symbols means as follows:
ring \(\mathbf{B}\) is a heteroaryl group which is unsubstituted or substituted and is optionally fused with a benzene ring;
\(X\) is a bond, or a lower alkylene or an alkenylene, both of which are unsubstituted or substituted with hydroxy or a lower alkyl group, or \(X\) is a carbonyl or a group represented by \(-\mathrm{NH}-\), and when X is a lower aikylene which is substituted with a lower alkyl group, a carbon atom of the ring B optionally bonds with the lower alkyl group so that a ring is formed;

A is a lower alkylene or a group represented by -lower alkylene-O-:

Application No.: 09/529,096
Attorney Docket No.: 7385.0007-00
\(R^{1 a}, R^{1 b}\) are the same or different and each is a hydrogen atom or a lower alkyl group;
\(R^{2}\) is a hydrogen atom or a halogen atom; and
Z is [a nitrogen atem-or] a group represented by \(=\mathrm{CH}\);
or a salt thereof.
2. (Once Arnended) The [amide derivative] compound of formula (1) or the salt thereof according to claim 1, wherein A is methylene, ethylene, or a group represented by \(-\mathrm{CH}_{2} \mathrm{O}\).
3. (Twice Amended) The [amide derivative] compound of formula (I) or the salt thereof according to claim 2, wherein the ring B is a heteroaryl group which is substituted with a substituent chosen from a halogen atom, lower alkyl, lower alkenyl, lower alkynyl, hydroxy, sulfanyl, halogeno lower alkyl, lower alkyl-O-, lower alkyl-S"., lower alkylu-CO-, carboxy, sulfonyl, sulfinyl, lower alkyl-SO-, lower alkyl- \(\mathrm{SO}_{2}\), lower
 nitro, cyano, amino, lower alkyl- NH -, di-lower alkyl- N -, aryl-lower alkyl, halogeno aryl-lower alkyl, guanidino, lower alkyl-CO-NH, and lower alkyl- \(\mathrm{SO}_{2}-\mathrm{NH}\)-,
4. (Once Amended) The [amide derivative] compound of formula (1) or the salt thereof according to claim 3 , wherein \(R^{2}, R^{\text {ta }}\) and \(R^{1 b}\) are each a hydrogen atom, and \(Z\) is \(=\mathrm{CH}\).

WAW OFPIGES FinNeGAN, HzNDRESOM, FARABOW, GARREIT, 6 DUNNER, LI. P . 130OL STREKT, N.W. WASHINGTON, DC 20005 202.403"4000

Application No.: 09/529,096
Attorney Docket No.: 7385.0007-00
5. (Twice Amended) [An amide derivative-represented by the general] \(\mathbb{A}\) compound of formula (la):

(la)
in the formula, each of the symbols means as follows:
ring \(B\) is a heteroaryl group;
\(X\) is a bond or a lower alkylene group;
\(R\) is a hydrogen atom, a halogen atom, a lower alkyl group, amino group, an aryl lower alkyl group, or a halogeno aryll-lower alkyl group;
or a salt thereof
6. (Once Amended) A compound:
(R)-4'-[2-[(2-Hydroxy-2-phenylethyl)amino]ethyl]-2-pyridinecarboxyanilide,
(R)-2-[1-(4-chlorobenzyl)-1H-imidazol-2-yl)-4-[2-[(2-hydroxy-2-phenylethyl)amino]ethyl]acetanilide, (R)-2-[1-(3,4-dichlorobenzyl)-1H-tetrazol-5-yll]- 4'-[2-[(2-hydroxy -2-phenylethyl)amino]ethyl]acetanilide,
(R)-2"(2-aminothiazol-4-yl)-4'-[2-(2-hydroxy-2-phenylethyl)amino]ethyl]acetanilide,
(R)-2-(2-benzyl-1H-1,2;4-triazol-3-yl)-4'-[2-[(2-hydroxy-2-phenylethyl)-amino] ethyl]acetanilide,
(R)-2-(2-aminopyridin-6-yl)-4-[2-I(2-hydroxy-2-phenylethyl)aminolethyl)acetanilide, (R)-

4'-[2-[(2-hydroxy-2-phenylethyl)amino]ethyl]-2-(2-pyridyl)acetanilide,
( R ) -4 '-[2-[(2-hydroxy-2-phenylethyl)-amino]ethyl)-2-(2-pyrazinyl)acetanilide, (R)-4'.[2-[(2-hydroxy-2-phenylethyl)aminolethyl)-2-(2-pyrimidinyl)-acetanilide, or a salt of any of the foregoing.
7. (Twice Amended) A composition comprising at least one [emide-derivative] compound of formula (1) or the salt thereof as claimed in one of claims 1 through [6] 4 in a pharmaceutically acceptable carrier.
9. (Once Amended) The composition as claimed in claim 7, wherein the [amount ef] at least one [amide derivative] compound of formula (1) or the salt thereof is present in an amount effective for the treating of diabetes mellitus in a human or animal patient in need of such treating.
10. (Once Amended) The [amide derivative of general] compound of formula (I) as claimed in claim 1, wherein the [amide derivative] compound of formula (1) is an optical isomer, a hydrate, or a solvate of the [amide-derivative] compound of formula (1).
11. (Once Amended) A composition comprising [an-amide-derivative of general] a compound of formula (1) as claimed in claim 1 in a pharmaceutically acceptable carrier, wherein the [amide derivative] compound of formula (I) is present as a polymorphic substance.

12. (Once Amended) A method for treating diabetes mellitus in a human or animal patient in need of such treatment comprising administering to the patient an amount of [an-amide cerivative of general] a compound of formula (1) as claimed in claim 1 , wherein the amount is an amount effective for such treatment.
13. (Once Amended) A method for treating obesity in a human or animal patient in need of such treatment comprising administering to the patient an amount of [an amidederivative of general] a compound of formula (1) as claimed in claim 1, wherein the amount is an amount effective for such treatment.


\title{
NOTICE OF ALLOWANCE AND ISSUE FEE DUE
}

\author{
FINEETAN HENOERSON FAFABOW \\ WARRETT E COMNER \\ 1300 a STREET Nu \\ MASHINGTOM DC 2000s-TOLs
}

HMces100t

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline ATTYS DOCKET NO. & CLASS:SUBGLASS & batcheno. & \multicolumn{2}{|l|}{'APPLM TYPE} & \multicolumn{2}{|l|}{SMALL ENTMY} & FEECOUE & \multirow[t]{2}{*}{DATEDUE} \\
\hline 40798 & 07985.0007 E & \(514-25.010\) & mez & \multicolumn{2}{|l|}{uTIEITV} & N & ¢ 1240.00 & \\
\hline
\end{tabular}

\section*{THE APPL/CATION IDENTIFIED ABOVE HAS BEEN EXAMINED AND IS ALLOWED FOR ISSUANCE AS A PATENT. PROSECUTION ON THE MERITS IS CLOSED.}

\section*{THE ISSUE FEE MUST EE PAID WITHIN THREE MONTHS FROM THE MAILING DATE OF THIS NOTICE OR THIS} APPLICATION SHALL BE REGARDED AS ABANDONED. IHIS STATUTOAY PERIOD CANNOT EE EXTENDED.

\section*{HOW TORESPOND TO THIS NOTICE:}
1. Review the SMALL ENTITY status shown above. If the SMALL ENTITY is shown as YES, verify your current SMALL ENTITY statuis:
A. If the status is changed, pay twice the amount of the FEE DUE shown above and rotify the Patent and Trademark 0 ffice of the change in status, or.
B, Il the status is the same, pay the FEE DUE shown above.

If the SMALL ENTITY is shown as NO:
A. Pay FEE DUE shown above, or
8. File verified statement of Small Entily Status before, or with; payment of \(1 / 2\) the FEEEDUE shown above.

ISSUE FEE: Even' if the ISSUE FEE has already been paid by charge to deposit account, Pait B tssue Fee Transmital should be completed and retumed. If you are charging the ISSUE FEE to your deposit account, section " \(4 b^{\prime \prime}\) of Part
B:Issue. Fee Transmittal should be completed and an extra copy of the form should be submitted.
111. All communications regarding this application must give application number and batch number.

Please direct all communications prior to issuance to Box ISSUE FEE unless advised to the contrary.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { MPOATANT REMNDER: Utility patents issuing on applications flied on or after Dec. } 12 \text {, } 1980 \text { may require payment of } \\
& \text { maintenance fees. it is patentee's responsibility to ensure fimely payment of minintenance } \\
& \text { fees when due. } \\
& \text { PATENT AND TRADEMA } k \text { a }
\end{aligned}
\]} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{TTOL-A5 (REV, 10.96).Approved for use : Ihewgh 08/30/99. (0651-0033)}} \\
\hline & \\
\hline
\end{tabular}
a)
\(\square\) All
b) Some \({ }^{\star}\)
c) Nibne of the:
1. Certified copies of the priority documents have been received.
2. Certified copies of the priority documents have been received in Application No. \(\qquad\) .
3. \(\square\) Copies of the certified copies of the priority documents have been received in this national stage appication from the International Bureau (FCT Rule 17.2(a)).
*Certified copies not received: \(\qquad\)
5. \(\square\) Acknowlecgement is made of a claim for domestic priority under 35 U.S.C. \(\$ 119(\mathrm{e})\).
Applicant has THREE MONTHS FROM THE "MALLING DATE" of this communication to file a reply complying with the requirements noted below. Fiture to timely camply will result in ABANDONMENT of this application. THIS THREE-MONTH PERIOD IS NOT


6. \(\square\) Note the attached EXAMINER'S AMENDMENT or NOTICE O" INFORMAL APPLICATION (PTO-152) which gives reason(s) why the oath or deciaration is deficient. A SUBSTITUTE OATH OR DECLARATION IS REQUIRED.
7. \(\square\) Applicant MUST submit NEW FORMAL DRAWINGS
(a) \(\square\) including changes requlred by the Notice of Draftsperson's Patent Drawing Review (PTO-948) attached 1) \(\square\) hereto or 2) Гto Paper No. \(\qquad\)
(b) including changes required by the proposed drawing correction filed \(\qquad\) , which has been approved by the examiner.
(c) \(\square\) including changes required by the attached Examiner's Amendment'Comment or in the Office action of Paper No. \(\qquad\) .
Identifying indicla such as the application number (see 37 CFR \(1.84(\mathrm{c})\) ) should be written on the drawings. The drawings should be filed as a separate paper with a transmittal letter addressed to the Official Draftsperson.
8.Note the attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL. Any reply to this letter should include, in the upper right hand corner, the APPLICATION NUMBER (SERIES CODE/SERIAL NUMBER). If applicant has received a Notice of Allowance and issue Fee Due, the ISSUE BATCH NUMBER and DATE of the NOTICE OF ALLOWANCE should also be included.

Attachment(s)
\(1 \square\) Notice of References Cited (PTO-892)\(\square\) Notice of Draftsperson's Patent Drawing Review (PTO-948)Information Disclosure Statement(s) (PTO-1449), Paper No(s). \(\qquad\)Notice of Informal Patent Application (PTO-152) Interview Summary (P'O-413), Paper No. \(\qquad\) .

7 [] Examiner's Comment Regarding Requirement for Deposit of Biological Material
9 Dother

Application/Control Number: 09529096
Art Unit: 1624

\section*{REASONS FOR ALLOWANCE}
1. The following is an examinerts statement of reasons for allowance:

Applicants' communication paper \#11 dated 9/18/01 is acknowledged.
Applicants have canceled claim 8, amended claims 1-7,9-13, and added new claims to add clarity by limiting the scope of the claims to elected invention of Group IV,

Applicants various arguments and remarks have been considered favorably, and rejections made under 35 U.S.C. 112 para. Second are now withdrawn.

Rejections made under 35 U.S.C. 103(a) are also with drawn because reference Schromm et al.(U.S.P. 5223614) does not indicate or disclose substituent Q( which is in ref.= hydroxy phenol or its ether) equivalent to applicants' instantly claimed compounds having ring \(Z\) and binding \(\mathrm{R} 2=\) hydrogen or a halogen. Additionally, the instant compounds have a different utility related to diabetes v.s. ref. Bronchospasm.

Therefore, applicants' compounds having substituted phenyl-C(OH)H-NH-CH2-CH2-Phenyl-NH-CO-X-Heterocycle-R core deem to be novel and patentably distinct.

Any comments considered necessary by applicant must be submitted no later than the payment of the issue fee and, to avoid processing delays, should preferably accompany the issue fee. Such submissions should be clearly labeled "Comments on Statement of Reasons for Allowance."

Art Unit: 1624

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Sudhaker Patel,D.Sc.Tech. whose telephone number is (703) 3084709.

The examiner can normally be reached on Monday thru' Friday from 8:30 AM to 5:00 PM: If attempts to reach the examiner by the phone are unsuccessful, the examiner's supervisor, Dr.Mukund Shah can be reached at (703) 3084716.

A facsimile center has been established for Group 1600. The hours of operation are Monday through Friday, 8:45 AM to 4:45 PM. The telecopier numbers for accessing the facsimile machine are (703) 308-4556 or (703) 305-3592.

Any inquiry of general nature or relating to the status of this application or proceeding should be directed to the Group receptionist whose telephone number is (703) 3081235.
S.p.


September 29, 2001

\section*{Best Available Copy}
: PART B-ISSUE FEE THANSMITTAL


THEOF AMIDE DERIVATIVES OR GALTS THEREOF
\(r\)



rim.
Burcien Hour Suthement: This fommis astimated to take 0.2 houm to complate. Time will vary dapanding on the neocds of the indilvilual case. Any crownments on the amoum of tima required to complete this form shoukd ba sent to the Chiuf Information Officer, Patent ennd Thademark Otice, Washingten, D.C. 2ORA1. DO NOT SEND FIMES OR COMPLETED FORMS TO THIS ADDRESS: SENO FEES AND THIS FOMM TO: Elox lssue Feo, Assiatant Commladionar tox Patents, Washington D.C. 20231
Uncher the Papenwork Fectuction Act of 1996; nu parsons are noquired to responct to A collaction of inlommation untass it claspleys a valid OMB control number.








Customer No. 22,852 Attorney Docket No. 07385.0007-00

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
In re U.S. Patent No.: 6,346,532 B1
Inventors: Tatsuya MARUYAMA et al,
Issue Date.: February 12, 2002
For: AMIDE DERIVATIVES OR SALTS THEREOF


FARABOW BARRETTE DUNNER ELF

FINNEGAN
henderson ARETE

\section*{REQUEST FOR CERTIFICATE OF CORRECTION}

Pursuant to 35 U.S.C. 254 and 255 , and 37 C.F.R. \(\$ 1.322\) and 1.323, this is a request for a Certificate of Correction in the above-identified patent. The mistakes identified in the appended Form occurred through the fault of both the Patent Office and the Patentees' representatives. A check in the amount of \(\$ 100\) (the fee set forth in 37 C.F.R. \(\S 1.20(a)\) ) is attached.

Two (2) copies of PTO Form 1050 are appended. The complete Certificate of Correction involves five (5) pages. Issuance of the Certificate of Correction containing the correction is earnestly requested.

Should a check not be appended or should any additional fees be needed, authorization is hereby given to charge any fees due in connection with the filing of this request to Deposit Account No. 06-0916.

1 04/19/2002 MRHKED2 00000057 6346532 Respectfully submitted,


1 04/19/2002 MAKHED2 00000057 6346.32 100.00 OP
01 Fc 145
100.00 op

FINNEGAN, HENDERSON, FARABOW,


\title{
UNITED STATES PÁTENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION
}

PATENT NO. \(\quad 6,346,532 \mathrm{BI}\)
DATED: ............... February 12, 2002
INVENTORS: T. MARUYAMA et al.

It is hereby certified that errors appear in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 16, lines 29-30, (Example 3) should read:
(R)-4'-[2-[(2-Hydroxy-2-phenylethyl)amino]ethyl]-8-quinolinecarboxanilide dihydrochloride

Column 17, lines 40-41, (Example 16) should read:
(R)-2-(2-Benzyloxypyridin-6-yl)-4'-[2-[(2-hydroxy-2-phenylethyl)amino]ethyl]acetanilide hydrochloride

Column 19, lines 58-60, (Example 39) should read:
(R)-4'-[2-[(2-Hydroxy-2-phenylethyl)amino]ethyl]-

2 -(2-phenylaminothiazol-4-yl)acetanilide hydrochloride

Column 23, lines 3-5, (Example 66) should read:
(R)-2-[1-(3,5-Difluorobenzyl)-1 H -imidazol-2-yl]-4'm [2-(2-hydroxy-2-phenylethyl)amino]ethyl] acetanilide dihydrochloride

Column 26, lines 4744, (Example 99) should read:
\(4 \mathrm{~L}(\mathrm{~S})-2-[(\mathrm{(R})\)-2-Hydroxy-2-phenylethyl)
amino]propyl]-2-(2-pyridyl)acetanilide hydrochloride


Colurnn 45, Claim 6, line 4 should read:
(R) \(-2-[1 .(4\) chlorobenzyl)-11F-imidazol-2-yl]-4'-[2-[(2-

Finnegan, Henderson, Farabow,
Garrett \& Dunner, L.L.P.
1300 I Street, N. W.

Patent No. 6,346,532 B1
No. of additional copies
@, \(30 \%\) per page

\title{
UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION
}

PATENT NO. \(6,346,532 \mathrm{B1}\)
DATED: February 12, 2002
INVENTORS: \(\quad\) T. MARUYAMA et al.

It is hereby certified that errors appear in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 16, lines 29-30, (Example 3) should read:
(R)-4'-[2-[(2-Hydroxy-2-phenylethyl)amino]ethyl]-8-quinolinecarboxanilide dihydrochloride

Column 17, lines 40-41, (Example 16) should read:
(R)-2-(2-Benzyloxypyridin-6-yl)-4'-[2-[(2-hydroxy-2-phenylethyl)amino]ethyl]acetanilide hydrochloride

Column 19, lines 58-60, (Example 39) should read:
(R)-4'-[2-[(2-Hydroxy-2-phenylethyl)amino]ethyl]2 -(2-phenylaminothiazol-4-yl)acetanilide hydrochloride

Column 23, lines 3-5, (Example 66) should read:
(R)-2 2 [1](3,5-Difluorobenzyl)-1H-imidazol-2-yl]-4'-[2-(2-hydroxy-2-phenylethyl)amino]ethyl] acetanilide dihydrochloride

Column 26, lines 47-49, (Example 99) should read:
4 [(S) \(2-2[((R)-2-H y d r o x y-2\)-phenylethyl)
amino]propyll-2-(2-pyridyl)acetanilide hydrochloride


No. of additional copies
@. 30d per page
\(\qquad\)

\title{
UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION
}
```

PATENT NO, : 6,346,532 B1

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 16

Lines 29-30, (Example 3) should read: $-(\mathrm{R}) \mu^{\prime}{ }^{-[24}[(2-H y d r o x y-2 \mu$ phenylethyl)amino] ethyl]-8-quinolinecarboxanilide dihydrochloride

Column 17
Lines 40-41, (Example 16) should read:

- (R)-2-(2-Benzyloxypyridin-6-yl)-4'-[2-[(2-hydroxy-2-phenylethyl)amino]ethyl] acetanilide hydrochloride --

Column 19
Lines 58-60, (Example 39) should read: - (R) $4-12-[(2-H y d r o x y-2$-phenylethyl)amino] ethyl]-2-(2-phenylaminothiazol-4-yl)acetanilide hydrochloride --

Column 23
Lines 3-5, (Example 66) should read:

- (R) $-2-\left[1-\left(3,5\right.\right.$-Difluorobenzyl)-1H-imidazol-2-yl] $\mathbf{4}^{\prime}$.
[2-(2-hydroxy-2-phenylethyl)amino]ethyl] acetanilide dihydrochloride --
Column 26
Lines 47-49, (Example 99) should read; - $4^{\prime \prime}(\mathrm{S})$-2 $-4((\mathrm{R})-2$-Hydroxy-2-phenylethyl) aminolpropyl] 2 (2-(2-pyridyl)acetanilide hydrochloride --

DATE

$: 05,17,02$

Paper No.: \qquad

To : Supervisor, Art Unit 1600

SUBJECT : Certificate of Correction Request in Patent No.: 6, 546,532
A response to the following question is requested with respect to the accompanying request for a certificate of correction.

With respect to the changes) requested, correcting Office and/or Applicant's errors, should the patent read as shown in the certificate of correction? No new matter should be introduced, nor should the scope or meaning of the claims be changed.

PLEASE COMPLETE THIS FORM AND
RETURN WITH FILE, WITHIN 7 DA PS,
TO CERTIFICATES OF CORRECTION BRANCH - PK 3-915/922
PALM LOCATION 7580 - TEL. N0. 305-8309
THANK YOU FOR YOUR ASSISTANCE!
Note your decision, regarding the changes requested in the Request for Certificate of Correction, by placing a check mark (+) in the box that reflects your decision, which corresponds to the question checked above.

\square NO
\square Comments belowComments: \qquad
\qquad
\qquad
\qquad
\qquad

Mukund J.thel
Supervisor
1624.

Art Unit

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENTI NO.	6,346,532 B1
DATED	February 12, 2002
INVENTOR(S)	T. Maruyama et al.

It is cerifiled that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 28
Line 2, change $30 / 1 \Delta 10 / 1$)." to $-30 / 1 \rightarrow 10 / 1$). \cdots.
Line 7, should read: -- [(2-hydroxy-2-phenylethyl)amino]propyl]-2-(2-pyridyl) -Lines 62-63, (Example 113) should read: - (R)-1-[4-[2-[2-Hydroxy-2-phenylethyl) amino]ethyl] phenyl]-3-(2-pyridyl)urea dihydrochloride --

Column 45.
Line 4, should read: - (R)-2-[1-(4-chlorobenzyl)-1H-imidazol-2-yl]-4'-[2-[(2- -

Signed and Sealed this

Thirtieth Day of July, 2002

JAMESE ROGAN

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In Re: U.S. Patent No. 6,346,532 B1
Issued, February 12, 2002
To:Tatsuya Maruyama, Takayuki Suzuki, Kenichi Onda, Masahiko Hayakawa, Hiroyuki Moritomo, Tetsuya Kimizuka, and Tetsuo Matsui

For:
AMIDE DERIVATIVES OR SALTS THEREOF
Mail Stop Hatch Waxman PTE
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450
RECEIVED

TRANSMITTAL LETTER FOR PATENT TERM EXTENSION APPLICATION

Madam:
Attached in triplicate is an Application for Extension of Patent Term under 35 U.S.C. § 156 of U.S. Patent No. 6,346,532 B1.

The Commissioner is hereby authorized to charge the $\$ 1,120$ fee prescribed in 37 C.F.R. $\S 1.20(\mathrm{j})(1)$, as well as any additional fees that may be necessitated in connection with the filing of this Application for Extension of Patent Term under 35 U.S.C. § 156, to Deposit Account No. 50-3939. Two additional copies of this transmittal letter are being submitted for charging papers.

6/13/2013 CKHLOK	01080018563939	99589896
61 FC:1457	90.90 04	

Date: August 21, 2012

FITZPATRICK, CELLA, HARPER \& SCINTO
1290 Avenue of the Americas
New York, New York 10104-3800
Telephone: (212) 218-2100
Facsimile: (212) 218-2200
Attachs.: Three copies of Application for Extension of Patent Term under 35 U.S.C. $\S 156$
Two additional copies of this transmittal letter

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
In Re: U.S. Patent No. 6,346,532 B1
Issued:February 12, 2002
To: Tatsuya Maruyama, Takayuki Suzuki, Kenichi Onda, Masahiko Hayakawa, Hiroyuki Moritomo, Tetsuya Kimizuka, and Tetsuo Matsui

For: AMIDE DERIVATIVES OR SALTS THEREOF
Mail Stop Hatch-Waxman PTE
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

APPLICATION FOR EXTENSION OF PATENT TERM UNDER 35 U.S.C. $\$ 156$

Madam:
Applicant, Astellas Pharma Inc., a company organized and existing under the laws of Japan, represents that it is the owner of the entire title and interest in and to U.S. Patent No. $6,346,532$ B1, which was granted on February 12, 2002 to Tatsuya Maruyama, Takayuki Suzuki, Kenichi Onda, Masahiko Hayakawa, Hiroyuki Moritomo, Tetsuya Kimizuka, and Tetsuo Matsui for "AMIDE DERIVATIVES OR SALTS THEREOF" by virtue of the Assignment recorded on April 7, 2000 at Reel 010808 , Frame 0313, from the inventors to Yamanouchi Pharmaceutical Co., Ltd., and the change of name recorded on November 16, 2005 at Reel 016784, Frame 0361, from Yamanouchi Pharmaceutical Co., Ltd., to Astellas Pharma Inc. Extension of the term of this patent under 35 U.S.C. $\S 156$ is hereby respectfully requested.

By the Power of Attorney and the Statement Under 37 C.F.R. § 3.73(b), attached hereto as "Appendix A", Applicant appoints attorneys associated with Customer No. 05514 to transact all business in the U.S. Patent and Trademark Office in connection with U.S. Patent No. 6,346,532 B1.

1. Applicant submits this Application for Extension of Patent Term under 35 U.S.C. § 156 by providing the following information as required by 37 C.F.R. § 1.710 through 1.785 , especially 1.740 .
(1) A complete identification of the approved product as by appropriate chemical and generic name; physical structure or characteristics.

The complete identification of the approved product is: chemical name: $\quad 2-(2$-aminothiazol-4-yl)-N $\mathrm{N}[4-(2 \mathrm{~m}\{[(2 \mathrm{R})-2$-hydroxy-2phenylethyl]amino\}ethyl)phenyl]acetamide alternative chemical names:

4-thiazoleacetamide, 2 -amino- $\mathrm{N}-[4-[2 \mathrm{~m}[\mathrm{[}(2 \mathrm{R})-2$-hydroxy- 2 -
phenylethyl]amino]ethyl]
(R)-2-(2-aminothiazol-4-yl)-4'[2-[2-hydroxy-2-
phenylethyl)aminojethyllacetanilide
(R)-2-(2-aminothiazol-4-y1)-4'-[2-[(2-hydroxy-2-
phenylethyl)amino]ethyl]acetic acid anilide
Tradename: Myrbetriq
generic name: mitabegron
empirical formula: $\quad \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$
molecular weight: 396.51
chemical structure:

A copy of the product label is attached hereto as "Appendix B".
(2) A complete identification of the Federal statute including the applicable provision of law under which the regulatory review occurred.

The approved product was subject to regulatory review under the Federal Food,
Drug, and Cosmetic Act, Section $505\left(21\right.$ U.S.C. $\S 355$). ${ }^{1}$
(3) An identification of the date on which the product received permission for commercial marketing or use under the provision of law under which the applicable regulatory review period occurred.

The approved product received permission for commercial marketing or use under Section 505 of the Federal Food, Drug and Cosmetic Act (21 U.S.C. 8355) on June 28, 2012. A copy of the approval letter is attached as "Appendix C",
(4) In the case of a drug product, an identification of each active ingredient in the product and as to each active ingredient, a statement that it has not been previously approved for commercial marketing or use under the Federal Food, Drug, and Cosmetic Act, the Public Health Service Act, or the Virus-Serum-Toxin Act, or a statement of when the active ingredient was approved for commercial marketimg or use (either alone or in combination with other active ingredients), the use for which it was approved, and the provision of law under which it was approved.

The sole aetive ingredient in Myrbetriq ${ }^{\mathrm{TM}}$ is mirabegron, which has not been previously approved for commercial marketing or use under the Federal Food, Drug, and Cosmetic Act, Section 505 (21 U.S.C. $\S 355$) prior to the approval of NDA 202611 by the United

States Food and Drug Administration on June 28, 2012.

[^6](5) A statement that the application is being submitted within the sixty day period permitted for submission pursuant to $\S 1.720(f)$ and an identification of the date of the last day on which the application could be submitted.

This Application for Extension of the term of U.S. Patent No. 6,346,532 BI under
35 U.S.C. $\$ 156$ is being submitted within the permitted 60 day period set forth in 37 C.F.R. \S
1.720(f), which period expires on August 26, 2012 (Sunday).
(6) A complete identification of the patent for which an extension is being sought by the name of the inventor, the patent number, the date of issue, and the date of expiration.

The patent, the term of which this Application seeks to extend, is U.S. Patent No.
$6,346,532 \mathrm{BI}$, which issued on February 12, 2002 to Tatsuya Maruyama, Takayuki Suzuki, Kenichi Onda, Masahiko Hayakawa, Hiroyuki Moritomo, Tetsuya Kimizuka, and Tetsuo Matsui. The term of U.S. Patent No. $6,346,532 \mathrm{BI}$, as calculated in accordance with 35 U.S.C. § 154, would otherwise expire on October 15, 2018.
(7) A copy of the patent for which an extension is being sought, including the entire specification (including claims) and drawings.

A complete copy of U.S. Patent No. 6,346,532 B1, identified in paragraph 6 above, is attached as "Appendix D".
(8) A copy of any disclaimer, certificate of correction, receipt of maintenance fee payment, or reexamination certificate issued in the patent.

No Terminal Disclaimer, Re-Examination Certificate, or Re-Issue has been issued or requested with respect to U.S. Patent No. $6,346,532 \mathrm{BI}$. The first maintenance fee for U.S. Patent No. 6,346,532 BI in the amount of $\$ 900.00$ was paid on July 20, 2005. The second maintenance fee for U.S. Patent No. $6,346,532 \mathrm{Bl}$ in the amount of $\$ 2,480.00$ was paid on July 15,2009. Copies of the Maintenance Fee Statements for the first and second maintenance fees are attached hereto as "Appendix E". A copy of Certificate of Correction granted July 30, 2002, is attached hereto as "Appendix F".
(9) A statement that the patent claims the approved product, or a method of using or manufacturing the approved product, and a showing which lists each applicable patent claim and demonstrates the manner in which at least one such patent claim reads on: (i) the approved product, if the listed claims include any claim to the approved product; (ii) the method of using the approved product, if the listed claims include any claim to the method of using the approved product; and (iii) the method of manufacturing the approved product, if the listed claims include any claim to the method of manofacturing the approved product.
U.S. Patent No. 6,346,532 BI claims the approved product and a method of using the approved product. Claims 1-12 read on the approved product (claims $1-6$ and 9 read on the approved product per se and claims 7, 8, and 10-12 read on compositions that include the approved product); and claims 13 and 14 read on a method of using the approved product.

Approved Product:

Claim 6 reads as follows:

6. A compound:
(R) 44 - [2 [[$2-$ Hydroxy-2-phenylethyl)amino]ethyl]-2-pyridinecarboxyanilide,
(R)-2-[1-(4-chlorobenzyl)-1H-imidazol-2-yl)-4'-[2-[(2-hydroxy-2-phenylethyl)aminolethyl]-acetanilide, (R)-2-[1-(3,4-dichlorobenzyl)-1H-tetrazol-5-yl]-4'-[2-[(2-hydroxy-2phenylethyl)amino]ethyl]acetanilide, (R)-2-(2-aminothiazol-4-yl)-4'-[2-(2-hydroxy-2phenylethyl)amino]ethyllacetanilide, (R)-2-(2-benzyl-1 $\mathrm{H}-1,2,4$-triazol-3-yl)-4'-[2-[(2-hydroxy-2-phenylethyl)amino]ethyljacetanilide,
(R)-2-(2-aminopyridin-6-yl) -4 '-[2-[(2-hydroxy-2" phenylethyl)aminolethyllacetanilide, (R)-4-[2-[(2-hydroxy-2-phenylethyl)aminolethyl]-2-(2-pyridyl)acetanilide, (R) 4^{\prime} w [2 $-(2$-hydroxy-2-phenylethyl)-amino]ethyl)-2-(2-pyrazinyl)acetanilide, (R)-4'[2-[(2-hydroxy-2-phenylethyl)amino]ethyl)-2-(2-pyrimidinyl)-acetanilide, or a salt of any of the foregoing.

Claim 6 reads on the approved product as follows:

Claim 6 reads on the approved product when the compound is (R)-2-(2-aminothiazol-4-yl)-4'-[2-(2-hydroxy-2"phenylethyl)amino]ethyl]acetanilide, which is one of the alternative chemical names of mirabegron.

Method of Using Approved Product:

Claim 13 reads as follows:

13. A method for treating diabetes mellitus in a human or animal patient in need of such treatment comprising administering to the patient an amount of a compound of formula (I) as claimed in claim 1, wherein the amount is an amount effective for such treatment.

Claim 13 reads on a method of using the approved product when, in the compound of formula (I):

R^{2} is a hydrogen atom
$R^{1 a}$ is a hydrogen atom
R^{if} is a hydrogen atom
Z is $=\mathrm{CH}-$
A is a lower alkylenc
B is a heteroaryl group, which is substituted
X is a lower alkylene, which is unsubstituted.
Mirabegron:

(10) A statement beginning on a new page of the relevant dates and information pursuant to 35 U.S.C. $156(\mathrm{~g})$ in order to enable the Secretary of Health and Human Services or the Secretary of Agriculture, as appropriate, to determine the applicable regulatory review period as follows:
(i) For a patent claiming a human drug, antibiotic, or human biological product:
(A) The effective date of the investigational new drug (IND) application and the IND number;
(B) The date on which a new drug application (NDA) or Product License Application (PLA) was initially submitted and the NDA or PLA number; and (C) The date on which the NDA was approved or the Product License issued.

The relevant dates and information pursuant to 35 U.S.C. § $156(\mathrm{~g})$ to enable the Secretary of Health and Human Services to determine the applicable regulatory review period are as follows:
a. An Investigational New Drug Application (IND) for mirabegron was submitted on May 9, 2006, was received by the Department of Health and Human Services on May 10, 2006, and the IND number assigned was 69,416 . A copy of the FDA letter confirming receipt of the IND is attached hereto as "Appendix G."
b. A New Drug Application (NDA) was received by the Department of Health and Human Services on August 29, 2011 and the NDA number assigned was 202611.
c. The date on which NDA 202611 was approved is June 28 , 2012.
(11) A brief description beginning on a new page of the significant activities undertaken by the marketing applicant during the applicable regulatory review period with respect to the approved product and the significant dates applicable to such activities.

As a brief description of the significant activities undertaken by the Applicant during the applicable regulatory review period, attached hereto as "Appendix H " is a chronology including a list of communications from the Applicant to the U.S. Food and Drug Administration in comection with the IND and NDA during the periods mentioned in paragraph 10 above.
(12) A statement beginning on a new page that in the opinion of the applicant the patent is eligible for the extension.

Applicant is of the opinion that U.S. Patent No. 6,346,532 B1 is eligible for extension under 35 U.S.C. $\S 156$ and 37 C.F.R. § 1.720 because it satisfies all of the requirements for such extension as follows:
a. 35 U.S.C. $\$ 156(a)$ and 37 C.E.R. $\$ 1.720(\mathrm{a})$
U.S. Patent No. 6,346,532 B1 claims a human drug product, mirabegron and a method of using this human drug product.
b. 35 U.S.C. $8156(\mathrm{a})(1)$ and 37 C.F.R. $\$ 1.720(\mathrm{~g})$

The term of U.S. Patent No. 6,346,532 B1 (expiring October 15,2018) has not expired before the submission of this Application.
c. $\quad 35$ U.S.C. $\$ 156(\mathrm{a})(2)$ and $37 \mathrm{C} . \mathrm{F} . \mathrm{R} . \$ 1.720(\mathrm{~b})$

The term of U.S. Patent No. $6,346,532$ B1 has never been extended under 35 U.S.C. $\$ 156$.
d. 35 U.S.C. $8156(\mathrm{a})(3)$ and $37 \mathrm{C} . \mathrm{F} . \mathrm{R} . \$ 1.720(\mathrm{c})$

The Application for extension of the term of U.S. Patent
No. $6,346,532 \mathrm{Bl}$ is submitted by the owner of record thereof in accordance with the requirements of 35 U.S.C. $\$$ 156(d)(1) and 37 C.F.R. § 1.740.
e. 35U.S.C. $\$ 156(a)(4)$ and 37 C.F.R. $\$ 1,720(d)$

The approved product, Myrbetriq ${ }^{\text {TM }}$, has been subjected to
a regulatory review period before its commercial marketing or use.
f. 35 U.S.C. $\$ 156(\mathrm{a})(5)(\mathrm{A})$ and 37 C.F.R. $\$ 1.720(\mathrm{e})$

The approved product, Myrbetriq ${ }^{\text {TM }}$, has received permission for commercial marketing or use, and the permission for the commercial marketing or use of the product is the first such permission received under the Federal Food, Drug, arid Cosmetic Act, Section 505 (21 U.S.C. § 355).
g. 35 U.S.C. $\$ 156(a)(5)(A)$ and 37 C.F.R. $\$ 1.720(\mathrm{~h})$

No other patent term has been extended for the same regulatory review period for the approved product, Myrbetriq ${ }^{\text {TMN }}$.
(13) A statement as to the length of extension claimed, including how the length of extension was determined.

The length of the extension of the patent term of U.S. Patent No. 6,346,532 B1 requested by Applicant is 1259 days, i.e., to March 27,2022 , which length was calculated in accordance with 37 C.F.R. $\$ 1.775$ as follows:
a. The regulatory review period under 35 U.S.C. $\$$
$156(\mathrm{~g})(1)(B)$ began on June 9,2006 (30 days after the receipt date of the $I \mathrm{ND}$) and ended on June 28, 2012, amounting to a total of 2213 days, which is the sum of (i) and (ii) below:
i) The period of review under $35 \mathrm{U} . \mathrm{S} . \mathrm{C}$. $\$$ $156(g)(1)(B)(i)$, the "Testing Period", began on June 9, 2006 and ended on August 29, 2011, which is 1908 days;
ii) The period for review under 35 U.S.C. § $156(\mathrm{~g})(1)(\mathrm{B})(\mathrm{ii})$ the "Application Period", began on August 29, 2011 and ended on June 28, 2012, which is 305 days;
b. The regulatory review period upon which the period for extension is calculated is the entire regulatory review period as determined in sub-paragraph (13)(a) above (2213 days) less:
i) The number of days in the regulatory review period which were on and before the date on which the patent issued (February 12, 2002), i.e. 0 days, and
ii) The number of days during which the Applicant did not act with due diligence, i.e. zero days, and
iii) One half of the number of days remaining in the period in subparagraph (13)(a)(i) atter subtracting the number of days in subparagraphs (13)(b)(i) and
(13)(b)(ii), which is one half of $(1908-0)$ or 954 days;
which results in a period of $2213-[0+0+954]=1259$ days.
c. The number of days as determined in sub-paragraph (13)(b), when added to the original term, would result in the date of March 27, 2022.
d. Fourteen (14) years, when added to the date of the NDA Approved Letter (June 28, 2012), would result in the date of June 28, 2026.
e. The earlier date as determined by sub-paragraphs (13)(c) and (13)(d) is March 27, 2022.
f. Since the original patent was issued after September 24, 1984, the extension otherwise obtainable is limited to not more than five years. Five years, when added to the original expiration of U.S. Patent No. 6,346,532 B1 (October 15, 2018), results in the date of October 15, 2023.
g. The earlier date as determined in sub-paragraphs (13)(e) and (13)(1) is March 27, 2022, i.e., 1259 days from the October 15, 2018 expiration date under 35 U.S.C. $\$ 154$.
(14) A statement that the applicant acknowledges a duty to disclose to the Director of the United States Patent and Trademark Office and the Secretary of Health and Human Services or the Secretary of Agriculture any information which is material to the determination of entitlement to the extension sought (see § 1.765).

Applicant acknowledges a duty to disclose to the U.S. Patent and Trademark Office and the Secretary of Health and Human Services any information, which is material to the determination of entitlement to the extension sought. In that connection, Applicant advises that Patent Term Extension applications in connection with the approval of Myrbetriq ${ }^{\text {TM }}$ (mirabegron) are being concurrently filed for U.S. Patent Nos. 7,342,117 B2 and 7,750,029 B2.
(15) The prescribed fee for receiving and acting upon the application for extension (see \$1.20(j)).

The Commissioner is authorized to charge the prescribed fee for receiving and acting upon this application to Deposit Account 50-3939. Any overpayment should be credited to the same Deposit Account.
(16) The name, address, and telephone number of the person to whom inquiries and correspondence relating to the application for patent term extension are to be directed.

All correspondence relating to this application for patent term extension should be addressed to:

Jason M. Okun
FITZPATRICK, CELLA, HARPER \& SCINTO
1290 Avenue of the Americas
New York, New York 10104-3800
Telephone: (212) 218-2100
Facsimile: (212) 218-2200
(17) Certification under 37 C.F.R. § 1.740(b)

The undersigned hereby certifies that the instant application, including its attachments and supporting papers, is being submitted with two additional copies thereof (for a total of three copies) in accordance with 37 C.F.R. $\$ 1.740$ (b).

Respectfully submitted,

Date: August 21, 2012

FITZPATRICK, CELLA, HARPER \& SCINTO
1290 Avenue of the Americas
New York, New York 10104-3800
Telephone: (212) 218-2100
Facsimile: (212) 218-2200

Appendix A

SAWAI EX. 1015

 Page 978 of 1092 PTO_00000979Approvet lor whe fhrtugh 11/30N2011. OMB CES 1 - 0035

STATEMENT UNDER 37 CFR 3.73 Bl

Applicamparatont Owne
Tatsuya Maruyama et al.
Applicalian No, Patemt No: 6,346,532 B1._ Filechssua Date: February 12, 2002

Titled:
AMIDE DERIVATIVES OR SALTS THEREOF
Astellas Pharma Ine. , a Corporation
(Name of Assigntes)
(Type of kgsignes, A. Si, cxproxerion, gartnershlp, university, government agency, elc.
states that it is:

1. X the assignee of the entire right, titte, and interest in:
2.

an assignee of tass than the entire right, titu, and interest in
(The extent (by percentage) of its ownership interest is \qquad \%) or
3.Ihe assignee of an undivided interest in the entrety of (a compiate assignment from one of the joint inventofs was made) the patent apelciation/patem identified above, by vitue of elther:
A. \square An assignment from the inventor(s) of the patent applicakionpatent identifed above. The assignment was recorded in the United States Patent and Trademark Otfice at Reel \qquad - Frame \qquad , or for which a copy therefore is atneched.
OR
B. (X]. A chain of itte from the inventor(s), of the patent application/patent identified aboue, to the current assignee as follows:

1. From: Inventors To: Yamanouchi Pharmaceutical Co, Lud.
The document was recorded in the United States Patent and Trademark Office at Reel 010808 \qquad . Frame 0313 .- or for which a copy thereaf is athached.
2. From: Yamanouch Phamaceutical Co., Ltd.

To: Astellas Pharma Inc.
$\frac{\text { Astellas Pharma Inc. }}{\text { Trademsth Offles at }}$
The docurnent was recorded in the United \$tates Patent and Trademsth Office at
Reet 016784 , Frame 0361
of for which a copy thereof is attached.
3. From: \qquad To: \qquad
The document was recorded in the United States Patent and Trademark Office at Ree) \qquad - Frame \qquad or for which a copy thereot is atached.
\square Additional documents in the chain of itte are ifted on a supplemental sheet(c).As required by 37 CFR $3.73(\mathrm{~b})(1)(i)$, the documentary avidence of the chain of title from the original owner to the astignee was, or concurrently is being, subrnitted for recordation pursuant to 37 CFR 3.11.
[NOTE: A separate copy (i.e., a true copy of the original assignment document(s)) must be submitted to Assignment Division in accordance with 37 CFR Pat 3, to record the assigmment in the retords of the USPTO. See MPEP 302.08]
The uncersigng (whosenitle is supptied batow) is authorized to act on behalf of the asslgnee.

Hirashi MORITA

Prined of Tywed Name

Appendix B

SAWAI EX. 1015

 Page 981 of 1092 Pто_00000982HGHLICUTS OF PRESCRIBINO INFORMATION
These highlights do mot include all the information needed to use
 for MYRBETEIQ.

MYRBETRIQ ${ }^{\text {wis }}$ (mirabegron) extended-release lablets ${ }_{4}$ for oral use Initat U.S. Approval: 2012

-INDICATIONS AND GSAGF

Mybotria is a theta 3 adentergic abonist indicoted tor the treatment of overactive bladder (OAB) wish symptoms of unge urinary incontinencer, urgency, and urinary frequency (I)

\qquad

- Recommended stating dose is 25 mag one daily, with or without food (2.1)
- 25 me is effecive within 8 weeks. Based on individual efficacy and welerability, may increase dose to 50 mg once daily (3.1, (4)
- Swallow whole with water, do not chew, divide or crush (2.1)
- Pariens with Severe Renal /mpaimem or Palients with Mederale Hepaic Impaiment; Muximun dose is 25 man once daily ($2,2,8,6,8.7,12.3$)
- Fatients with End Shage Menal Discase (ESADJ or Patients with Severe Hegantic Inparment: Nol recontmerdech (2.2, 8,6, 3.7, 12,3)

Exuended release rablews: $2 \$ \mathrm{mg}$ and 50 mg (3)

- Pncreapes in blood fyessure: Myrbetria can incpease blood pressure. Pexiodie blood prossute detemmintions are recomomended, especially in Bypertensive patients, Myrberio is not resommended for use in severe uncontrollad lypertensive patienis (s.1).
- Urinary Relention in Patients With Boader Outler Obstruction and in Pasionds Takatg Artimuscarinic Druss for Operactive Bladder: Admianster with ofution in these patients becuuse of rish of mimary fotention (5,2).
- Paniens 7aking Drugs Metobohized by CYP2D6, Myrbettiq is a moderat inhibitor of CY"2DC. Appropriate monitoring is recommended and dose adjustment may be necessary for marrow thempeutic index CYPDD6 3ubturace ($3,3,7.1,12.3$)
mmmormmmummunvmund AVERSE REACTIONS
Most commonly reported adverse reactions ($>2 \%$ and $>$ placebo) were hypertension, nasopharyngitis, uriaary uract infection and headache (6.1)

To repor SUSPECTED ADVERSE REACTIONS, sontatt Asteldas Pharma US, inc. an $1-800-727-7003$ or FDA us $1-800$ - $\mathrm{FD} \mathrm{A}-1088$ or www. fdagnovimedwateth

DRUG INEERACTIONS

* Drugs Mevabolized by C'YFLDo (o.g. Metoproiod and Dexipramines: Mirabegron is C Y Y 2 DD 6 inhibitor and when used concomituthty winh drugs melabolized by CYM2D6, especially narmow therapenic index drugs, appropriate monitoring and possible dose adhustment of those drugs may be necessaty (5.3, 7.1, 12.3)
- Drgoxim. When inithating a combination of Myrbetriq and digoxin, preseribe the lowest dose of digoxit, thanitor serum digoxin congentrations to titate digexin dose to desired clindeal effect (7.2, 12.3).

- Pregnancy: Use ondy if the benefit to the ntather ontweighs the potential risk to the fetus (8.1)
* Nu"sing mohers: Myrbetric is prediated to be exeretad in human milk and is nol recommended for use by nursiog mothers (3.3)
- Pediaric use. The salfety ard effeciveress of Myrbetrig in pedratric patiants have not beem established (8.4)
- Gerioric use: No dose adfusment is recommenced ior elderly patients (8.5)

See 17 for PATLENT, COUNSELING INFORMATION and HDAsplareved patigut aboling.

Revised: June 2012

FULLI PRESCRIBING INFORMATION: CONTENTS*

lindications and usage

2 dOSAGE AND ADMINISTRATION
2.1 Desing Information
2.2 Dose Adjustments in Spec ific Populations

3 DOSAGE FORMS AND STRENGTLS
4 Contraindications
5 Warnings and precautions
5. 1 meruases ir Blood Pressute
5.2 Urinary Retention in Patients with Badder Oanat Obsmetion and in Patients Taking Antimusearinic Medications for OAB
5.3 Paticnts Taking Drugs Metabolixed by CYP2DG

6ADVERSE REACTTONS
6. 1 Clinical Triala Emperionca
6.2 Postmarketing Experience

TDRUGINTERACTIONS
7.1 Drugs Metabolized by CYP2D6

7,2 Drgoxin
7.3 Warlarin

S USE IN SPECIFIC POPILATIONS
3.1 Pregrancy
8.3 Nursing Mothers
8. 4 Pediatric Uase
8.5 Cerintris Use
8.6 Remand Impairtrent
8.7 Hepatic Imparment
8.8 Gender

10 OVERDOSACE
11 DESCRIPTION
12 CLINICAL PHARMACOLOGY
12.1 Mechanism al Action
12.2 Phamacodyamics
12.3 Phammacokinetics

IS NONCLINICAL TOXICOLOGY
13.1 Carcinogenesis, Mutagenesis, mmoirnent of Fentity

1\& CLINICALSTUDIES
16 HOW SUPPLIED/GTORAGE AND HANDLING
17 PATHENT COUNSEILING INFORMATION

FULL PRESCRIBING INFORMATION

1 INDICATIONS AND USAGE

Myrbetriqu is a beta 3 adrenergic agonist indicated for the treatment of overactive bladder (OAB) with symptoms of urge urinary incontinence, urgency, and urinary frequency.

2 DOSAGE AND ADMINISTRATION

2.1 Dosing Information

The recommended starting dose of Myrbetriq is 25 mg once daily with or without food. Myrbetrig 25 mg is effective within 8 weeks. Based on individual patient efficacy and tolerability the dose may be inereased to 50 mg once daily [see Clinical Studtes (14)].

Myrbetriq should be taken with water, swallowed whole and should not be chewed, divided, or crushed.

2.2 Dose Adjustments in Specific Populations

The daily dose of Myrbetriq should not exceed 25 mg once daily in the following populations:
*) Patients with severe rerial impairment (CL 15 to $29 \mathrm{~mL} / \mathrm{min}$ or eGFR 15 to $29 \mathrm{~mL} / \mathrm{min} / 1.73 \mathrm{~m}^{2}$) (see Use in Specific Populations (8.6) and Clinical Pharmacology (12.3)).
\because Patients with moderate hepatic impairment (Child-Pugh Class B) (see Use in Specific Populations (8.7) and Clinical Pharmacology (12,3)].

Myrbetriq is not recommended for use in patients with end stage renal disease (ESRD), or in patients with severe hepatic impaiment (Chịld-Pugh Class C) Isee Use in Specifie Populations (8.6.8.7) and Clinical Pharmacology (12.3)7.

3 DOSAGE FORMS AND STRENGTHS

Myrbetriq extended-release tablets are supplied in two different strengths as described below:

- 25 mg oval, brown; film coated tablet, debossed with the 7 (Astellas logo) and " 325 "
- 50 mg oval, yellow, film coated tablet, debossed with the " (Astellas logo) and " 355 "

4 CONTRAINDICATMONS

None.

5 WARNINGS AND PRECAUTIONS

5.1 Increases in Blood Pressure

Myrbetriq can increase blood pressure. Periodic btood pressure determinations are recommended, especially in hypertensive patients. Mytbetriq is not recommended for use in patients with severe uncontrolled hypertension (defined as systolic blood pressure greater than or equal to 180 mm Hg and/or diastolic blood pressure greater than or equal to 110 mm Hg) (see Cintical Pharmacology (12.2)].

In two, randomized, placebo-controlled, healthy volunteer studies, Myrbetriq was associated with dose-related increases in supine blood pressure. In these studies, at the maximum recommended dose of 50 mg , the mean maximum increase in systolic/diastolic blood pressure was approximately $3.5 / 4.5 \mathrm{mmHg}$ grater than placebo.

In contrast, in OAB patients in clinical trials, the mean increase in systolic and diastolic blood pressure at the maximum recommended dose of 50 mg was approximately 0.5 m 1 mmHg greater than placebo. Worsening of preexisting hypertension was reported infrequently in Myrbetriq patients.

5.2 Urimary Retention in Patients with Bladder Outlet Obstruction and in Patients Taking Antimuscarinic Medications for OAB

Urinary retention in patients with bladder outlet obstruction (BOO) and in patients taking antimuscarinic medications for the treatment of $O A B$ has been reported in postmarketing experience in patients taking mirabegron. A controlled clinical safety study in patients with BOO did not demonstrate increased urinary retention in Myrbetriq patients; however, Myrbetriq should be administered with caution to patients with clinically significant BOO. Myrbetriq should also be administered with caution to patients taking antimuscarinic medications for the treatment of $O A B$ see Climical Pharmacology (12.2)].

5.3 Patients Taking Drugs Metabolized by CXP2D6

Since mirabegron is a moderate CYP2D6 inhibitor, the systemic exposure to CYP2D6 substrates such as metoprolol and desipramine is increased when co-administered with mirabegron. Therefore, appropriate monitoring and dose adjustment may be necessary, especially with narrow therapeutic index drugs metabolized by CYP2D6, such as thioridazine, flecainide, and propafenone /see Drug Interactions (7.1) and Clinical Pharmacology (12,3)].

6 ADVERSE REACTIONS

6.1 Clinical Trials Experience

Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in clinical practice.

In three, 12 week, double-blind, placebo-controlled, safety and efficacy studies in patients with overactive bladder (Studies 1, 2, and 3), Myrbetriq was evaluated for safoty in 2736 patients [see Clinical Stucties (14)]. Study 1 also included an active control. For the combined Studies 1,2, and 3, 432 patients received Myrbetriq $25 \mathrm{mg}, 1375$ received Myrbetriq 50 mg , and 929 received Myrbetriq 100 mg once dally. In these studies, the majority of the patients were Caucasian (94%), and female (72%) with a mean age of 59 years (range 18 to 95 years).

Myrbetriq was also evaluated for safety in 1632 patients who received Myrbetriq 50 mg once daily ($\mathrm{n}=812$ patients) or Myrbetrig $100 \mathrm{mg}(\mathrm{n}=820$ patients) in a 1 year, randomized, fixed dose, double blind, active controlled, safery study in patients with overactive bladder (Study 4). Of these patients, 731 received Myrbetriq in a previous 12 week study. In Study 4, 1385 patients received Myrbetriq continuously for at least 6 months, 1311 patients received Myrbetriq for at least 9 months, and 564 patients received Myrbetriq for at least 1 year.

The most frequent adverse events (0.2%) leading to discontinuation in Studies 1,2 and 3 for the 25 mg or 50 mg dose were nausea, headache, hypertension, diarthea, constipation, dizziness and tachycardia.

Atrial fibrillation (0.2%) and prostate cancer (0.1%) were reported as serious adverse events by more that 1 patient and at a rate greater than placebo.

Table 1 lists adverse reactions, derived from all adverse events, that were reported in Studies 1,2 and 3 at an incidence greater than placebo and in 1% or more of patients treated with Myrbetriq 25 mg or 50 mg once daily for up to 12 weeks. The most commonly reported adverse reactions (greater than 2% of Myrbetriq patients and greater than placebo) were hypertension, nasopharyngitis, urinary tract infection and headache.

Table 1: Percentages of Patients with Adverse Reactions, Derived from All Adverse Events, Exceeding: Placebo Rate and Reported by 1% or More Patients Treated With Myrbetriq 25 mg or 50 mg Once Daily in Studies 1, 2, and 3

	Placebo $(\%)$	Myrbetriq 25 mg (\%)	Myrbetric 50 mg (\%)
Number of Patients	1380	432	1375
Hypertension*	7.6	11.3	7.5
Nasopharyngitis	2.5	3.5	3.9
Urinary Tract Infection	1.8	4.2	2.9
Headache	3.0	2.1	3.2
Constipation	1.4	1.6	1.6
Upper Respiratory Tract Infection	1.7	2.1	1.5
Arthralgia	1.1	1.6	1.3
Dlarrbea	1.3	1.2	1.5
Tachycardia	0.6	1.6	1.2
Abdominal Pain	0.7	1.4	0.6
Fatigue	1.0	1.4	1.2

*Includes reports of blood pressure above the normal range, and BP increased from baseline, occurring predominantly in subjects with baseline hypertension.

Other adverse reactions reported by less than 1% of patients treated with Myrbetriq in Sudies 1,2, or 3 included:
Cardiac disorders: palpitations, blood pressure increased /see Clinical Pharmacology (12.2)]
Eye Disorders: glancoma [see Clinical Pharmacology (12,2)]
Gastrointestinal disorders: dyspepsia, gastritis, abdominal distension
Infections and Infestations: sinusitis, rhinitis
Investigations: GOT increased, AST increased, ALT increased, LDH increased
Renal and urinary disorders: nephrolithiasis, bladder pain
Reproductive system and breast disorders: vulvovaginal pruritis, vaginal infection
'Skin and subcutaneous tissue disorders: urticaria, leukocytoclastic vasculitis, rash, pruritus, purpura, lip edema
Table 2 lists the rates of the most commonly reported adverse reactions, derived from all adverse events in patients treated with Myrbetriq 50 mg for up to 52 weeks in Sudy 4 . The most commonly reported adverse reactions ($>3 \%$ of Myrbetriq patients) were hypertension, urinary tract infection, headache, and nasopharyngitis.

Table 2: Percentages of Patients with Adverse Reactions, Derived from all Adverse Events, Reported by Greater Than 2% of Patients Treated With Myrbetriq 50 mg Once Daily in Study 4

	Myrbetria 50 mg (\%)	$\begin{gathered} \text { Active Control } \\ (\%) \end{gathered}$
Number of Patients	812	812
Hypertension	92	96
Urinary Tract Infection	5.9	6.4
Headache	4.1	2.5
Nasopharyngitis	3.9	3.1
Back Pain	2.8	1.6
Constipation	2.8	2.7
Dry Mouth	2.8	8.6
Dizziness	2.7	2.6
Sinusitis	2.7	1.5
Influenza	2.6	3.4
Aithralgia	2.1	2.0
Cystitis	2.1	2.3

In Study 4, in patients treated with Myrbetrig 50 mg once daily, adverse reactions leading to discontinuation reported by more than 2 patients and at a rate greater than active control included: constipation (0.9%), headache (0.6%), dizziness (0.5%), hypertension (0.5%), dry eyes (0.4%), nausea (0.4%), vision blurred (0.4%), and urinary tract infection (0.4%). Serious adverse events reported by at least 2 patients and exceeding active control included cerebrovascular accident (0.4%) and osteoarthritis (0.2%). Serum AL.T/AST increased from baseline by greater than 10 .fold in 2 patierts $(0.3 \%$) taking Myrbetriq 50 mg , and these markers subsequenty returned to baseline white both patients continued Myrbetriq.

In Study 4 , serious adverse events of neoplasm were reported by $0.1 \%, 1.3 \%$, and 0.5% of patients treated with Myrbetriq 50 mg , Myrbetriq 100 mg and active control once daily, respectively. Neoplasms reported by 2 patients treated with Myrbetriq 100 mg included breast cancer, lung neoplasm malignant and prostate cancer.

In a separate clinical study in Japan, a single case was reported as Stevens-Jotnson syndrome with increased serum ALT, AST and bilirubin in a patient taking Myrbetriq 100 mg as well as an herbal medication (Kyufu Gold).

6.2 Postmarketing Experience

Because these spontaneously reported events are from the worldwide postmarketing experience, from a population of uncertainsize, the frequency of events and the role of marabegron in their causation cannot be reliably determined. The following events have been reported in association with mirabegron use in worldwide postmarketing experience:

Urologic: urinary retention [see Warnings and Precautions (5.2)]

7 DRUG INTERACTIONS

Drug interaction studies were conducted to investigate the effect of co-administered drugs on the pharmacokinetics of mirabegron and the effect of mirabegron on the pharmacokinetics of co-administered drugs (e.g., ketoconazole, rifampin, solifenacin, tamsulosin, and oral contraceptives) [see Clinical Phamacology (12.3) J. No dose adjustment is recommended when these drugs are co-administered with mirabegron.

The following are drug interactions for which monitoring is recommended:

7.1 Drugs Metabolized by CYP2D6

Since mirabegron is a moderate CYP2D6 inhibitor, the systemic exposure of drugs metabolized by CYP2D6 enzyme such as metoprolol and desipramine is increased when co-administered with mirabegron. Therefore, appropriate monitoring and dose adjustment may be necessary when Myrbetriq is co-administered with these drugs, especjally with narrow therapeutic index CYP2D6 substrates, such as thioridazine, flecainide, and propafenone /see Warnings and Precautions (5.3) and Clinical Pharmacology (12.3)].

7.2 Digoxia

When given in combination, mirabegron increased mean digoxin $\mathrm{C}_{\text {max }}$ from 1.01 to $1.3 \mathrm{ng} / \mathrm{mL}$. (29%) and $A U C$ from 16.7 to $19.3 \mathrm{ng} . \mathrm{t} / \mathrm{mL}(27 \%)$. Therefore, for patients who are initiating a combination of mirabegron and digoxin, the lowest dose for digoxin should initially be considered. Serurn digoxin concentrations should be monitored and used for titration of the digoxin dose to obtain the desired clinical effect (see Clinical Pharmacology (12.3)].

7.3 Warfarin

The mean $\mathrm{C}_{\text {max }}$ of S - and R-warfarin was increased by approximately 4% and AUC by approximately 9% when administered as a single dose of 25 mg after multiple doses of 100 mg mirabegron. Following a single dose administration of 25 mg warfarin, mirabegron had no effect on the warfarin pharmacodynamic endpoints such as International Normalized Ratio (INR) and prothrombin time. However, the effect of mirabegron on multiple doses of ${ }^{\prime}$ warfarin and on warfarin pharmacodynamic end points such as INR and prothrombin time has not been fully investigated [see Climical Pharmacology (12.3)].

8 USE IN SPECIFIC POPULATIONS

8.1 Pregnancy

Pregnancy Category C

There are no adequate and well-controlled studies using Myrbetriq in pregnant women. Myrbetrig should be used during pregnancy only if the potential benefit to the patient outweighs the risk to the patient and fetus. Women who become pregnant during Myrbetriq treatment are encouraged to contact their physician.

Risk Summary

Based on animal data, mirabegron is predicted to have a low probability of increasing the risk of adverse developmental outcomes above background risk. Reversible adverse developmental findings consisting of delayed ossification and wavy ribs in rats and decreased fetal body weights in rabbits occurred at exposures greater than or equal to 22 and 14 times, respectively, the maximal recommended human dose (MRHD). At maternally toxic exposures decreased fetal weights were observed in rats and rabbits, and fetal death, dilated aorta, and cardiomegaly were reported in rabbits.

Animal Data

In the rat embryo/fetal developmental toxicity study, pregnant rats received daily oral doses of mirabegron at 0,10 , 30,100 , or $300 \mathrm{mg} / \mathrm{kg}$ from implantation to closure of the fetal hard palate ($7^{\text {th }}$ to $17^{\text {th }}$ day of gestation). Maternal systemic exposures were approximately $0,1,6,22$, or 96 times greater than exposures in women treated at the MRHD of 50 mg based on AUC. No embryo/fetal toxicities were abserved in rats exposed up to 6 times the human systemic exposure at the MRHD of 50 mg . At systemic exposures equal to or greater than 22 times the human systemic exposure at the MRHD, delayed ossification and wavy ribs were observed in fetuses at an increased incidence. These findings were reversible.

In the rabbit embryo/fetal developmental toxicity study, pregnant rabbits received daty oral doses of mirabegron at $0,3,10$, or $30 \mathrm{mg} / \mathrm{kg}$ from implantation to closure of the feral hard palate ($6^{\text {th }}$ to $20^{\text {th }}$ day of gestation). Maternal systemic exposures were $0,1,14$, or 36 times that in women treated at the MRHD of 50 mg based on AUC. The embryo/fetal No Adverse Effect Level (NOAEL.) was similar to the exposure in women at the MRHD and was established in this species based on reduced fetal body weighe observed at systemic exposures that were 14 -fold higher than the human systemic exposure at MRHD. At higher doses, where systemic exposures were 36 -fold higher than the human exposure at MRHD, maternal body weight gain and food consumption were reduced, one of 17 pregnant rabbits died, the incidence of fetal death increased, and fetal findings of dilated aorta and cardiomegaly were reported.

The effects of mirabegron on prenatal and postnatal development was assessed in pregnant rats dosed at $0,10,30$, or $100 \mathrm{mg} / \mathrm{kg} /$ day from the seventh day of gestation until 20 days after birth. Maternal systemic exposures were $0,1,6$, and 22 times the exposure in women at the MRHD based on AUC. Rat pups exposed to mirabegron in utcro and through 2 days of lactation had no discernable adverse effects at maternal systemic exposures 6 times the MRHD. A slight but statistically siguificant decrease in the survival of pups was observed 4 days after birth at exposures 22 times the MRHD (92.7% survival) compared to the control group (98.8%), however, there was no effect on survival of pups 21 days after birth. Absolute body weight of pups was not affected on the day of birth, However, at the 30 $\mathrm{mg} / \mathrm{kg}$ dose (22-fold higher systemic exposure than humans at MHRD) body weight gain of pups was reduced 5% to 13% from postnatal day 4 to 7 but not throughout the remainder of the lactation period. In utero and lactational exposure did not affect behavior or fertility of offspring at exposures up to 22 times the MRHD.

8.3 Nursing Mothers

It is not known whether Myrbetriq is excreted in human milk. Mirabegron was found in the milk of rats at concentrations twice the maternal plasma level. Mirabegron was found in the lungs, liver, and kidneys of nursing pups. No sudies have been conducted to assess the impact of Myrbetriq on milk production in humans, its presence in human breast milk, or its effects on the breast-fed child. Because Myrbetriq is predicted to be excreted in human milk and because of the potential for serious adverse reactions in nursing infants, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother.

8.4 Pediatric Use

The safety and effectiveness of Myrbetriq in pediatric patients have not been established.

8.5 Geriatric Use

No dose adjustment is necessary for the elderly. The pharmacokinetics of Myrbetriq is not significantly influenced by age (see Clinical Pharmacology (12.3)]. Of 5648 patients who received Myrbetriq in the phase 2 and 3 studies, $2029(35.9 \%)$ were 65 years of age or older, and $557(9.9 \%)$ were 75 years of age or older. No overall differences in safety or effectiveness were observed between patients younger than 65 years of age and those 65 years of age or older in these studies.

8.6 Renal Impairment

Myrbetriq has not been studied in patients with end stage renal disease ($\mathrm{CL}_{\mathrm{pr}}<15 \mathrm{~mL} / \mathrm{min}$ or $\operatorname{CGFR}<15 \mathrm{~mL} / \mathrm{min} / 1.73 \mathrm{~m}^{2}$ or patients requiring hemodialysis), and, therefore is not recommended for use in these patient populations.

In patients with severe renal impairment ($\mathrm{CL}_{\mathrm{cr}} 15$ to $29 \mathrm{~mL} / \mathrm{min}$ or eGFR 15 to $29 \mathrm{~mL} / \mathrm{min} / 1.73 \mathrm{~m}^{2}$), the daily dose of Myrbetriq should not exceed 25 mg . No dose adjustment is necessary in patients with mild or moderate renal impairment ($\mathrm{CL} \mathrm{CL}_{\mathrm{Cx}} 30$ to $89 \mathrm{~mL} / \mathrm{min}$ or eGFR 30 to $89 \mathrm{~mL} / \mathrm{min} / 1.73 \mathrm{~m}^{2}$) (see Clinical Pharmacology (12.3)].

8.7 Hepatic Impairment

Myrbetriq has not been studied in patients with severe hepatic impairment (Child Pugh Class C), and therefore is not recommended for use in this patient population.

In patients with moderate hepatic impaiment (Child-Pugh Class B), the daily dose of Myrbetriq should not exceed 25 mg . No dose adjustment is necessary in patients with mild hepatic impairment (Child-Pugh Class A) [see Clinical Pharmacology (12.3)].

8.8 Gender

No dose adjustment is necessary based on gender. When corrected for differences in body weight, the Myrbetrig systemic exposure is 20% to 30% higher in females compared to males.

10 OVERDOSAGE

Mirabegron has been administered to healthy volunteers at single doses up to 400 mg . At this dose, adverse events reported included palpitations (1 of 6 subjects) and increased pulse rate exceeding 100 bpm (3 of 6 subjects). Multiple doses of mirabegron up to 300 mg daily for 10 days showed increases in pulse rate and systolic blood pressure when administered to healthy volunteers. Treatment for overdosage should be symptomatic and supportive. In the event of overdosage, pulse rate, blood pressure and ECG monitoring is recommended.

11 DESCRIPTION

Mirabegron is a beta- 3 adrenergic agonist. The chemical name is 2 - $(2$-aminothazol $4-y 1)-N-[4-(2-\{[(2 R)-2-h y d r o x y *$ 2-phenyleihyl]amino\}ethyl)phenyl]acetamide having an empirical formula of $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$ and a molecular weight of 396.51 . The structural formula of mirabegron is:

Mirabegron is a white powder. It is practically insoluble in water ($0.082 \mathrm{mg} / \mathrm{mL}$). It is soluble in methanol and dimethyl sulfoxide.

Each Myrbetriq extended release tablet, for oral administration contains either 25 mg or 50 mg of mirabegron and the following inactive ingredients: polyethylene oxide, polyethylene glycol, hydroxypropyl cellulose, butylated hydroxytolwene, magnesium stearate, hypromellose, yellow fertic oxide, and red ferric oxide (25 mg tablet only).

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action

Mirabegron is an agonist of the human beta-3 adrenergic receptor ($A R$) as demonstrated by in vitro laboratory experiments using the cloned human beta-3 AR. Mirabegron relaxes the detrusor smooth muscle during the storage phase of the urinary bladder fill void cycle by activation of beta-3 AR which increases bladder capacity. Although mirabegron showed very low intrinsic activity for cloned human beta- 1 AR and beta- 2 AR , results in bumans indicate that beta- 1 AR stimulation occurred at a mirabegron dose of 200 mg .

12.2 Pharmacodynamics

Uroaynamios

The effects of Myrbetrig on maximum urinary flow rate and detrusor pressure at maximum flow rate were assessed in a urodynamic study consisting of 200 male patients with lower urinary tract symptoms (LUTS) and BOO. Administration of Myrbetriq once daily for 12 weeks did not adversely affect the mean maximum flow rate or mean detrusor pressure at maximum flow rate in this study. Nonetheless, Myrbetriq should be administered with cention to patients with clinically significant BOO (see Warnings and Precautions (5,2)].

Cardiac Electrophysiology

The effect of multiple doses of Myrbetriq $50 \mathrm{mg}, 100 \mathrm{mg}$ and 200 mg once daity on QTe interval was evaluated in a randomized, placebo- and active- controlled (moxifloxacin 400 mg) four-treatment-arm parallel crossover study in 352 healthy subjects. In a study with demonstrated ability to deteot smalleffects, the upper bound of the one-sided 95% confidence interval for the largest placebo adjusted, baseline-corrected QTc based on individual correction method (QTcl) was below 10 msec . For the 50 mg Myrbetriq dose group (he maximum approved dosage), the mean difference from placebo on QTcl interval at 4.5 hours post-dose was 3.7 msec (upper bound of the $95 \% \mathrm{Cl} 5.1$ msec).

For the Myrbetrig 100 mg and 200 mg doses groups (dosages greater than the maximum approved dose and resulting in substantial multiples of the anticipated maximum blood levels at 50 mg), the mean differences from placebo in QTel interval at $4-5$ hours post dose were 6.1 msec (upper bound of the $95 \% \mathrm{Cl} 7.6 \mathrm{msec}$) and 8.1 msec (upper bound of the $95 \% \mathrm{Cl} 9.8 \mathrm{msec}$), respectively. At the Myrbetriq 200 mg dose; in females, the mean effect was 10.4 msec (upper bound of the $95 \% \mathrm{Cl} 13.4 \mathrm{msec}$).

In this thorough QT study, Myrbetriq increased heart rate on ECG in a dose dependent mamer. Maximum mean increases from baseline in heart rate for the $50 \mathrm{mg}, 100 \mathrm{mg}$, and 200 mg dose groups compared to placebo were 6.7 beats per minutes (bpm), 11 bpm , and 17 bpm , respectively. In the clinical efficacy and safety studies, the change from baseline in mean pulse rate for Myrbetriq 50 mg was approximately 1 bpm. In this thorough QT study, Myrbetriq also increased blood pressure in a dose dependent manner (see Effecis on Blood Pressure).

Effects on Blood Pressure

In a study of 352 healthy subjects assessing the effect of multiple daily doses of $50 \mathrm{mg}, 100 \mathrm{mg}$, and 200 mg of Myrbetriq for 10 days on the QTc interval, the maximum mean increase in supine $\mathrm{SBP} / \mathrm{DBP}$ at the maximum recommended dose of 50 mg was approximately $4.0 / 4.6 \mathrm{mmHg}$ greater than placebo. The 24 -hour average increases in SBP compared to placebo were $3.0,5.5$, and 9.7 mmHg at Myrbetriq doses of $50 \mathrm{mg}, 100 \mathrm{mg}$ and 200 mg , respectively. Increases in DBP were also dose-dependent, but were smaller than SBP .

In another study in 96 healthy subjects to assess the impact of age on pharmacokinetics of multiple daily doses of $50 \mathrm{mg}, 100 \mathrm{mg}, 200 \mathrm{mg}$, and 300 mg of Myrbetriq for 10 days, SBP also increased in a dose-dependent manner. The mean maximum increases in SBP were approximately $2.5,4.5,5.5$ and 6.5 mmH Hg for Myrbetriq exposures assoclated with doses of $50 \mathrm{mg}, 100 \mathrm{mg}, 200 \mathrm{mg}$ and 300 mg , respectively.

In three, 12 -week, double-blind, placebo-controlled, safety and efficacy studies (Studies 1,2 and 3) in OAB patients receiving Myrbetriq $25 \mathrm{mg}, 50 \mathrm{mg}$, or 100 mg once daily, mean increases in SBP/DBP compared to placebo of approximately $0.5-1 \mathrm{mmHg}$ were ohserved. Morning $S B P$ increased by at least 15 mmHg from baseline in 5.3%, 5.1%, and 6.7% of placebo, Myrbetriq 25 mg and Myrbetriq 50 mg patients, respectively. Moming DBP increased by at least 10 mmHg in $4.6 \%, 4.1 \%$ and 6.6% of placebo, Myrbetriq 25 mg , and Myrbetriq 50 mg patients, respectively. Hoth SBP and DBP increases were reversible upon discontinuation of treatment,

Effect on Intraocular Pressure (IOP)

Myrbetriq 100 mg once dally did not increase $10 P$ in healthy subjects after 56 days of treatment. In a phase 1 study assessing the effect of Myrbetrig on IOP using Goldmann applanation tonometry in 310 healthy subjects, a dose of Myrbetriq 100 mg was nonwinferior to placebo for the primary endpoint of the treatment difference in mean change from baseline to day 56 in subject-average IOP; upper bound of the two-sided $95 \% \mathrm{Cl}$ of the treatment difference between Myrbetriq 100 mg and placebo was 0.3 mm Hg .

12.3 Pharmacokinetics

Absorption

After oral administration of mirabegron in healthy volunteers, mirabegron is absorbed to reach maximum plasma concentrations ($\mathrm{C}_{\text {max }}$) at approximately 3.5 hours. The absolute bioavailability increases from 29% at a dose of 25 mg to 35% at a dose of 50 mg . Mean $\mathrm{C}_{\mathrm{max}}$ and AUC increase more than dose proportionally. This relationship is more apparent at doses above 50 mg . In the overall population of mates and females, a 2 -fold increase in dose from 50 mg to 100 mg mirabegron increased $\mathrm{C}_{\text {max }}$ and $\mathrm{AUC}_{\text {tau }}$ by approximately 2.9 - and 2.6 -fold, respectively, whereas a 4 fold increase in dose from 50 to 200 mg mirabegron increased $\mathrm{C}_{\text {max }}$ and $\mathrm{AUC}_{\text {ma }}$ by approximately 8.4 and 6.5 m fold. Steady state concentrations are achieved within 7 days of once daily dosing with mirabegron. After once daily administration, plasma exposure of mirabegron at steady state is approximately double that seen after a single dose.

Effect of Food

Co-administration of a 50 mg tablet with a high-fat meal reduced mirabegron $\mathrm{C}_{\text {max }}$ and AUC by 45% and 17%, respectively. A low fat meal decreased mirabegron $\mathrm{C}_{\max }$ and AUC by 75% and 51%, respectively. In the phase 3 studies, mirabegron was administered irrespective of food contents and intake (i.e., with or without food) and demonstrated both safety and efficacy. Therefore, mirabegron can be taken with or without food at the recommended dose [see Dosage and Administration (2.1)].

Distribution

Mirabegron is extensively distributed in the body. The volume of distribution at steady state ($V_{s s}$) is approximately 1670 L. following intravenous administration. Mirabegron is bound (approximately 71%) to human plasma proteins, and shows moderate affinity for albumin and alphaw acid glycoprotein. Mirabegron distributes to erythrocytes. Based on In vitro study erythrocyte concentrations of ${ }^{14} \mathrm{C}$-mirabegron were about 2 -fold higher than in plasma.

Metabolism

Mirabegron is metabolized via toultiple pathways involving dealkylation, oxidation, (direct) glucuronidation, and amide hydrolysis. Mirabegron is the major circulating component following a single dose of ${ }^{14} \mathrm{C}$-mirabegron. Two major metabolites were observed in human plasma and are phase 2 glucuronides representing 16% and 11% of total exposure, respectively. These metabolites are not pharmacologically active toward beta 3 adrenergic receptor. Although in vitro studies suggest a role for CYP2D6 and CYP3A4 in the oxidative metabohism of mirabegron, in vivo results indicate that these isozymes play a limited role in the overall elimination. In healthy subjects who are genotypically poor metabolizers of CYP2D6, mean $C_{\text {max }}$ and $A U C_{\text {taw }}$ were approximately 16% and 17% higher than in extensive metabolizers of CYP2D6, respectively. In vitro and ex vivo studies have shown the involvement of butylcholinesterase, uridine diphospho-glucuronosyltransferases (UGI) and possibly alcohol dehydrogenase in the metabolism of mirabegron, in addition to CYP3A4 and CYP2D6.

Excretion

Total body clearance (Clion) from plasma is approximately $57 \mathrm{~L} / \mathrm{h}$ following intravenous administration. The terminal elimination halfulife (t_{12}) is approximately 50 hours. Renal clearance (Cl_{R}) is approximately $13 \mathrm{~L} / \mathrm{h}$, which corresponds to nearly 25% of $\mathrm{CL}_{\text {tot }}$. Renal elimination of mirabegron is primarily through active tubular secretion atong with glomerular filtration. The urimary elimination of unchanged mirabegron is dose-dependent and ranges from approximately 6.0% after a daily dose of 25 mg to 12.2% after a daily dose of 100 mg . Following the administration of $160 \mathrm{mg}^{14} \mathrm{C}$-rmirabegron solution to healthy volunteers, approximately 55% of the radioactivity dose was recovered in the urine and 34% in the feces. Approximately 25% of unchanged mirabegron was recovered in urine and 0% in feces.

Specific Populations

Geriatric Patients

The $C_{\text {max }}$ and AUC of mirabegron following multiple oral doses in elderly volunteers ($\$ 65$ years) were similar to those in younger volunteers (18 to 45 years).

Pediatric Patients

The pharmacokinetics of mirabegron in pediatric patients have not been evaluated see Use in Specific Populations (8.4)].

Gender

The $\mathrm{C}_{\text {max }}$ end AUC of mirabegron were approximately 40% to 50% higher in females than in males. When corrected for differences in body weight, the mirabegron systemic exposure is $20 \%-30 \%$ higher in females compared to males.

Race

The pharmacokinetics of mirabegron were comparable between Cateasians and African American Blacks. Cross studies comparison shows that the exposure in Japanese subjects is higher than that in North American subjects. However, when the $\mathrm{C}_{\text {max }}$ and AUC were nomalized for dose and body weight, the difference is smaller.

Renal (mpairment

Following single dose administration of 100 mg mirabegron in volunteers with mild renal impairment (eGFR 60 to $89 \mathrm{~mL} / \mathrm{min} / \mathrm{I} .73 \mathrm{~m}^{2}$ as estimated by MDRD), mean mirabegron $\mathrm{C}_{\text {max }}$ and AUC were increased by 6% and 31% relative to volunteers with normal renal function. In volunteers with moderate renal impaiment (eGFR 30 to $59 \mathrm{~mL} / \mathrm{min} / 1.73 \mathrm{~m}^{2}$), $\mathrm{C}_{\text {max }}$ and AUC were increased by 23% and 66%, respectively. In patients with severe renal impairment (eGFR 15 to $29 \mathrm{~mL} / \mathrm{min} / 4.73 \mathrm{~m}^{2}$), mean $\mathrm{C}_{\text {max }}$ and AUC values were 92% and 18% higher compared to healthy subjects with normal renal function. Mirabegron has not been studied in patients with End Stage Renal Disease-ESRD (CL ${ }_{c}$ less than $15 \mathrm{~mL} / \mathrm{min}$ or eGFR less than $15 \mathrm{~mL} / \mathrm{min} / 1.73 \mathrm{~m}^{2}$ or patients requiring hemodialysis).

Heparic Impairment

Following single dose administration of 100 mg mirabegron in volunteers with mild hepatic impairment (Child-Pugh Class A), mean mirabegron $\mathrm{C}_{\text {max }}$ and AUC were increased by 9% and 19% relative to volunteers with normal hepatic function. In volunteers with moderate hepatic impairment (Child-Pugh Class B), mean C mas and AUC walues were 175% and 65% higher. Mirabegron has not been studied in patients with severe hepatic impaiment (Child-Pugh Class C).

Drus Interaction Studies

In Vitro Studies

Effect of Other Drugs on Mirabegron

Mirabegron is transported and metabolized throngh multiple pathways. Mirabegron is a substrate for CYP3AA, CYP2D6, butyrylcholinesterase, UGT, the efflux transporter P-glycoprotein (P-gp) and the influx organic cation transporters ($\mathrm{OCT}^{\prime \prime}$) OCT^{\prime}, $\mathrm{OCT}^{\prime 2}$, and OCT3. Sulfonylurea hypoglycemic agents glibenclamide (a CYP3A4 substrate), gliclazide (a CYP2C9 and CYP3A4 substrate) and tolbutamide (a CYP2C9 substrate) did not affect the in vitro metabolism of mirabegron.

Effect of Mirabegron on Other Drugs
Studies of mirabegron using human liver microsomes and recombinant human CYP enzymes showed that mirabegron is a moderate and time dependent inhibitor of CYP2D6 and a weak inhibitor of CYP3A. Mirabegron is unlikely to inhibit the metabolism of comadministered drugs metabolized by the following cytochrome P450 enzymes: CYPIA2, CYP2B6, CYP2C8, CYP2C9, CYP2C19 and CYP2E1 because mirabegron did not inhibit the activity of these enzymes at clinically relevant concentrations. Mirabegron did not induce CYP1A2 or CYP3A. Mirabegron inhibited P-gp-mediated drug transport at high concentrations. Mirabegron is predicted not to cause clinically relevant inhibition of OCT-mediated drug transport. Mirabegron did not affect the metabolism of glibenclamide or tolbutamide.

In Vivo Studies

The effect of co-administered drugs on the pharmacokinetics of mirabegron and the effect of mirabegron on the pharmacokinetics of comadministered drugs was studied after single and multiple doses of mirabegron. Most drugdrug interactions (DOI) were studied using mirabegron 100 mg extended-release tablets. However, interaction studies of mirabegron with metoprolol and with metformin were studied using mirabegron 160 mg immediate release (IR) tablets.

The effect of ketoconazole, rifampicin, solifenacin, tamsulosin, and metformin on systemic mirabegron exposure is shown in Figure 1.

The effect of mirabegron on metoprolol, desipramine, combined oral contraceptive-COC (ethinyl estradial-EE, levonorgestrel-LNG), solifenacin, digoxin, warfarin, tamsulosin, and metfomin is shown in Figure 2.

In these studies, the largest increase in mirabegron systemic exposure was seen in the ketoconazole DDI study. As a potent CYP3A4 inhibitor, ketoconazole increased mirabegron $\mathrm{C}_{\text {max }}$ by 45% and mirabegron AUC by 80% after multiple dose administration of 400 mg of ketoconazole for 9 days prior to the administration of a single dose of 100 mg mirabegron in 23 male and females healthy subjects.

As a moderate CYP2D6 inhibitor, mirabegron increased the systemic exposure to metoprolol and desipramine:

- Mirabegron increased the $\mathrm{C}_{\max }$ of metoprolof by 90% and metoprolol AUC by 229% after multiple doses of 160 mg mirabegron 1 R tablets once daily for 5 days and a single dose of 100 mg metoprotol tablet in 12 healthy male subjects administered before and concomitantly with mirabegron.
- Mirabegron increased the $\mathrm{C}_{\text {max }}$ of desipramine by 79% and desipramine AUC by 241% after multiple dose administration of 100 mg mirabegron once daily for 18 days and a single dose of 50 mg desipramine before and concomitantly with mirabegron in 28 male and female healthy subjects.

Caution is advised if Myrbetriq is co-administered with CYP2D6 substrates such as metoprolol and desipramine, and espectally narrow therapeutic index drugs, such as thoridazine, flecainide, and propafenone [see Warnings and Precautions (5.3) and Drug Interactions (7.1)].

Figures 1 and 2 show the magnitude of these interactions on the pharmacokinetic parameters and the recommendations for dose adjustment, if any:

Figure 1: The Effect of Co-administered Drugs on Exposure of Myrbetriq and Dose Recommendation

(1) Although no dose adjustment is recommended with solifenacin or tarnsulosin based on the lack of pharmacokinetic interaction, Myrbetriq should be administered with caution to patients taking antimuscarinic medications for the treatment of OAB and in patients with clinically significant BOO because of the risk of urinary retention [see Warnings and Precations (S.2) 1 .

Figure 2: The Effect of Myrbetriq on Exposure of Co-administered Medication

(1) Since mirabegron is a moderate CYP2D6 inhibitor, the systemic exposure to CYP206 substrates such as metoprolol and desipramine is increased when co-administered with mirabegron. Therefore, appropriate monitoring and dose adjustment may be necessary, especially with narrow therapeutic index CYP2D6 substrates, such as thioridazine, flecainide, and propafenone (see Warmings and Precautions (5.3) and Drug Imeractions (7.1)).
(2) For patients who are initiating a combination of mirabegron and digoxin, the lowest dose for digoxin should initially be prescribed. Serum digoxin concentrations should be monitored and used for titration of the digoxin dose to obtain the desired clinical effect (see Drug Interaction (7,2)).
(3) Warfarin was administered as a single 25 mg dose of the racemate (a mixture of R-warfarin and $\$$-warfarin). Based on this single dose study, mirabegron had no effect on the warfarin pharmacodynamic endpoints such as INR and prothrombin time. However, the effect of mirabegron on multiple doses of warfarin and on warfarir pharmacodynamic end points such as lNR and prothrombin time has not been fully investigated [see Drug /heractions (7.3)].
(4) Although no dose adjustment is recommended with solifenacin or tamsulosin based on the lack of pharmacokinetic interaction, Myrbetriq should be administered with caation to patients taking antimuscarinic medications for the treatment of OAB and in BOO because of the risk of urinary retention [see Warnings and Precautions ($\mathbf{3} .2$)].

13 NONCLINICAL TOXICOLOGY

13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility

Carcinogenicity

Longterm carcinogenicity studies were conducted in rats and mice dosed orally with marabegron for two years. Male rats were dosed at $0,12.5,25$, or $50 \mathrm{mg} / \mathrm{kg} /$ day and female rats and both sexes of mice were dosed at $0,25,50$, or $100 \mathrm{mg} / \mathrm{kg} /$ day. Mirabegron showed no carcinogenic potential at systemic exposures (AUC) 38 to 45 -fold higher in rats and 21 to 38 -fold higher in mice than the human systemic exposure at the 50 mg dose.

Mutagenesis

Mirabegron was not mutagenic in the Ames bacterial reverse mutation assay, did not induce chromosomal aberrations in human peripheral blood lymphocytes at concentrations that were not cytotoxic, and was not clastogenic in the rat micronucleus assay.

Impairment of lertility

Fertility studies in rats showed that mirabegron had no effect on either male or female fertility at non-lethal doses up to $100 \mathrm{mg} / \mathrm{kg} / \mathrm{day}$. Systemic exposures (AUC) at $100 \mathrm{mg} / \mathrm{kg}$ in female rats was estimated to be 22 times the MRHD in women and 93 times the MRHD in men.

14 CLINTCAL STUDIES

Myrbetriq was evaluated in three, 12 -week, double-blind, randomized, placebo-controlled, parallel group, multicenter clinical trials in patients with overactive bladder with symptoms of urge urinary incontinence, urgency, and urinary frequency (Studies 1, 2, and 3). Entry criteria required that patients had symptoms of overactive bladder for at least 3 months duration, at least 8 micturitions per day, and at least 3 episodes of urgency with or without incontinence over a 3 day period. The majority of patients were Caucasian (94%) and female (72%) with a mean age of 59 years (range $18-95$ years). The population included boh naive patients who had not received prior antimuscarinic pharmacotherapy for overactive bladder (48%) and those who had received prior antimuscarinic pharmacotherapy for OAB (52%).

In Study 1, patients were randomized to placebo, Myrbetriq 50 mg , Myrbetriq 100 mg , or an active control once daily. In Study 2, patients were randomized to placebo, Myrbetriq 50 mg or Myrbetriq 100 mg once daily, In Study 3, patients were randomized to placebo, Myrbetric 25 mg or Myrbetriq 50 mg once daily.

The co-primary effecacy endpoints in all 3 trials were (1) change from baseline to end of treatment (Week 12) in mean number of incontinence episodes per 24 hours and (2) change from baseline to end of treatment (Week 12) in mean number of micturitions per 24 hours, based on a 3-day micturition diary. An important secondary endpoint was the change from baseline to end of treatment (Week 12) in mean volume voided per micturition.

Results for the co-primary endpoints and mean volume voided per micturition from Studies 1,2 , and 3 are shown in Table 3.

Table 3: Mean Baseline and Change from Baseline at Week 12 for Incontinence Episodes, Micturition Frequency, and Volume Voided per Micturition in Patients with Overactive Bladder in Studies 1, 2, and 3

Parameter	Study		Study 2		Study 3		
	Placebo	Myrbetrig 50 mg	Placebo	Myrbetrig 50 mag	Placebo	Myrbetrig 25 mg	Myrbetric 50 mm
Nunter of Incomfinence Episodes per 24 Hours ${ }^{\wedge}$							
0	291	293	325	312	262	254	257
Baseline (mean)	2.67	2.83	3.03	2.77	2.43	2.65	2.51
Change from baseline (adjusted tmean")	-1.17	…-1.57 ${ }^{\text {* }}$	-1.13	-1.47	-0.96	-1.36	-1. 38
	\cdots	-0.41	;	-0.34	4	. 0.40	40.42
95% Confintence Interval	*	$(-0.72,-0.09)$	**	$(-0.66,-0.03)$	\sim	$(-0.74,40.56)$	$(-0.76,-0,08)$
pevalue		0,003 ${ }^{\text {a }}$		0.026.7		0.0054	0.0017
Nomber of Mieturitions per 24 Hours							
H	480	473	433	425	415	410	426
Baseline (mean)	11.71	11.65	11.51	11.80	11.48	11.68	11.66
Change from baselinc (adjusted mean')	-1.34	-1.93..	-1.05	-1.66	-1.18	-1.65	-1.60
```Difference from placebo (adjusted mean')```	-*	-060	$\cdots$	-0.61	$\cdots+$	-0.47	-0.42
$95 \%$   Confidence Interval	**"	$(-0.90,-70.29)$	$\cdots$	$(-0.98,-0.24)$	-*	$(-0.82,-0.13)$	$(-0.76,-0.08)$
p-value		$<0.001 \%$		0.0017		0.0074	0.0154
Volume Volded (mL) per Micturition							
18	480	472	433	424	415	410	426
Baseline (mean)	156.7	161.1	157.5	156.3	164.0	165.2	159.3
Change from baseline (adjusted mean ${ }^{+}$)	12.3	24.2	7.10	18.2	8.3	12.8	20.7
```Differemce from placebo (adjusted megr")```	-*	11.9	**	11.1	**	4.6	12.4
$\begin{aligned} & 95 \% \\ & \text { Confidence } \\ & \text { Interval } \end{aligned}$	"	(6.3, 17.4)	\cdots	(4.4, 17.9)	--	$(-1.6 .10 .8)$	$(6.3,18.6)$
puvalue		$<0.001 \%$		0.00117		Q, 15	40.001\%

* Week 12 is last observation on treatment
\dagger Least squares mounadiusted for busefine, gendar, and geotaphical region
For incontinence episodes per 24 hou's, the aratysis population is restricted to patients with at least I ppisode of incontinence at baseline.
*Statistically significomly superior compared to placebo at the 0.05 level with multiplisity adjustruent

Myrbetriq 25 mg was effective in treating the symptoms of $O A B$ within 8 weeks, and Myrbetriq 50 mg was effective in treating the symptoms of $O A B$ within 4 weeks. Efficacy of both 25 mg and 50 mg doses of Myrbetriq was maintained through the 12 -week treatment period.

Figures 3 through 8 show the co-primary endpoints, mean change from baseline (BL) over time in number of incontinence episodes per 24 hours and mean change from baseline over time in number of micturitions per 24 hours, in Studies 1, 2 and 3.

Figure 3. Mean (SE) Change from Baseline in Mean Number of Incontinence Episodes per 24 Hours -Study 1

Figure 4. Mean (SE) Change from Baseline in Mean Number of Micturitions per 24 Hours - Study 1

Figure 5. Mean (SE) Change from Baseline in Mean Number of Incontinence Episodes per 24 Hours - Study 2

Figure 6. Mean (SE) Change from Baseline in Mean Number of Micturitions per 24 Hours - Study 2

Figure 7. Mean (SE) Change from Baseline in Mean Number of lncontinence Episodes per 24 Hours - Study 3

Figure 8. Mean (SE) Change from Baseline in Mean Number of Micturitions per 24 Hours - Study 3

16 HOW SUPPLIED/STORAGE AND HANDLING

Myrbetriq is supplied ws oval. film coated extended-release tablets, available in bottles and blister units as follows

Strength	25 mg	50 mg
Color	brown	yellow
Debosted	7 logo, 325	7 logo, 355
Bottle of 30	NDC 0469-2601-30	NDC 0469-2602-30
Botte of 90	NDCO 04692601.90	NDC 0469.2602.90
Unit dose pack of 100	NDC 0469-2601.71	NDC 0469.2602 .71

Store at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ with excursions permitted from $15^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}\left(59^{\circ} \mathrm{F}\right.$ to $\left.86^{\circ} \mathrm{F}\right)$. (see USP controlled Room Temperature)

17 PATIENT COUNSELING INFORMATION

See FDA approved patient labeling (Patient Information)
Inform patients that Myrbetriq may increase blood pressure. Periodic blood pressure determinations are recommended, especially in patients with hypertension. Myrbetriq has also been associated with infrequent urinary tract infections, rapid heart beat, rash, and pruritis. Inform patients that urinary retention has been reported when taking mirabegron in combination with antimuscarinic drugs used in the treatment of overactive bladder. Instruct patients to contact their physician if they experience these effects while taking Myrbetriq.

Patients should read the patient leaflet entitled "Patient Information" before starting therapy with Myrbetriq.

```
Patient Information
Myrbetriq (meer-BEH-trick)
(mirabegron)
extended-release tablets
```

Read the Patient Information that comes with Myrbetriq before you start taking it and each time you get a refill. There may be new information. This leaflet does not take the place of talking with your doctor about your medical condition or treatment.

What is Myrbetriq?

Myrbetriq is a prescription medicine for adults used to treat the following symptoms due to a condition called overactive bladder:

- Urge urinary incontinence: a strong need to urinate with leaking or wetting accidents
- Urgency: a strong need to urinate right away
- Frequency: urinating often

It is not known if Myrbetriq is safe and effective in children.

What should I tell my doctor before taking Myrbetriq?

Before you take Myrbetriq, tell your doctor if you:

- have liver problems
- have kidney problems
- have very high uncontrolled blood pressure
- have trouble emptying your bladder or you have a weak urine stream
- are pregnant or plan to become pregnant. It is not known if Myrbetriq
- will harm your unborn baby. Talk to your doctor if you are pregnant or plan to become pregnant.
- are breastfeeding or plan to breastfeed. It is not known if Myrbetriq passes into your breast milk, You and your doctor should decide if you will take Myrbetriq or breastfeed. You should not do both,

Tell your doctor about all the medicines you take, including prescription and nonprescription medicines, vitamins, and herbal supplements. Myrbetriq may affect the way other medicines work, and other medicines may affect how Myrbetriq works.

Tell your doctor if you take:

- thioridazine (Mellaril or Mellaril-S)
- flecainide (Tambocor)
- propafenone (Rythmol)
- digoxin (Lanoxin)

How should I take Myrbetriq?

- Take Myrbetriq exactly as your doctor tells you to take it.
- You should take 1 Myrbetriq tablet 1 time a day.
- You should take Myrbetriq with water and swallow the tablet whole.
- Do not crush or chew the tablet.
- You can take Myrbetriq with or without food.
- If you miss a dose of Myrbetriq, begin taking mirabegron again the next day. Do not take 2 doses of Myrbetriq the same day.
- If you take too much Myrbetriq, call your doctor or go to the nearest hospital emergency room right away.
What are the possible side effects of Myrbetriq?
Myrbetriq may cause serious side effects including:
- increased blood pressure. Myrbetriq may cause your blood pressure to increase or make your blood pressure worse if you have a history of high blood pressure. It is recommended that your doctor check your blood pressure while you are taking Myrbetriq.
- inability to empty your bladder (urinary retention). Myrbetriq may increase your chances of not being able to empty your bladder if you have bladder outlet obstruction or if you are taking other medicines to treat overactive bladder. Tell your doctor right away if you are unable to empty your bladder.
The most common side effects of Myrbetriq include:
- increased blood pressure
- common cold symptoms (nasopharyngitis)
- urinary tract infection
- headache

Tell your doctor if you have any side effect that bothers you or that does not go away or if you have hives, skin rash or itching while taking Myrbetriq.

These are not all the possible side effects of Myrbetriq. For more information, ask your doctor or pharmacist.

Call your doctor for medical advice about side effects. You may report side effects to FDA at 1-800-FDA-1088.

How should I store Myrbetria?

- Store Myrbetriq between $59^{\circ} \mathrm{F}$ to $86^{\circ} \mathrm{F}\left(15^{\circ} \mathrm{C}\right.$ to $\left.30^{\circ} \mathrm{C}\right)$. Keep the bottle closed.
- Safely throw away medicine that is out of date or no longer needed.

Keep Myrbetriq and all medicines out of the reach of children.

General information about the safe and effective use of Myrbetriq.

Medicines are sometimes prescribed for purposes other than those listed in Patient Information leaflet. Do not use Myrbetrig for a condition for which it was not prescribed. Do not give Myrbetriq to other people, even if they have the same symptoms you have. It may harm them.

This Patient Information leaflet summarizes the most important information about Myrbetriq. If you would like more information, talk with your doctor. You can ask your doctor or pharmacist for information about Myrbetriq that is written for health professionals.

For more information, go to www, Myrbetrig.com website or call 1-800-727-7003.

What are the ingredients in Myrbetriq?

Active ingredient: mirabegron
Inactive ingredients: polyethylene oxide, polyethylene glycol, hydroxypropyl cellutose; butylated hydroxytoluene, magnesium stearate, hypromellose, yellow ferric oxide and red ferric oxide (25 mg Myrbetriq tablet only).

What is overactive bladder?
Overactive bladder occurs when you cannot control your bladder contractions. When these muscle contractions happen too often or cannot be controlled, you can get symptoms of overactive bladder, which are urinary frequency, urinary urgency, and urinary incontinence (leakage).

Rx Only

Manufactured by:
Astellas Pharma Technologies, Inc.
Norman, Oklahoma 73072
Marketed and Distributed by:
Astellas Pharma US, Inc.
Northbrook, Illinois 60062
(c) 2012 Astellas Pharma US, Inc.

Revised: June 2012
11G054-MIR

Appendix C

Food and Drug Admimistration Silver Spring MD 20993

NDA 202611
NDA APPROVAL
Astellas Pharma Global Development, Inc.
Attention: Judy Kannenberg, M.B.A., R.A.C.
Associate Director, Regulatory Affairs
Three Parkway North
Deerfield, IL 600.5

Dear Dr. Kamenberg:
Please refer to your New Drug Application (NDA) dated August 26, 2011, received August 29, 2011 , submitted under section $505(\mathrm{~b})$ of the Federal Food, Drug, and Cosmetic Act (FDCA) for Myrbetriq (mirabegron), 25 mg and 50 mg extended release tablets.

We acknowledge your amendments received September 12, October 11, 13, and 20, November 8 and 29, December 2, $8(2), 9,14,16,22$, and 23, 2011; January 17, February 8,9 (2) and 21, March 7 (2), 20, and 23, April 3, 11, 12, 17 and 18, May 4 (2), 9, 11(2), 16, 18, June 1, 5, 25, and $28(2), 2012$.

This new drug application provides for the use of Myrbetriq (mirabegron), 25 mg and 50 mg , for the treatment of overactive bladder.

We have completed our review of this application, as amended. It is approved, effective on the date of this letter, for use as recommended in the enclosed agreed-upon labeling text.

CONTENT OF LABELING

As soon as possible, but no later than 14 days from the date of this letter, submit the content of labeling [21 CFR 314.50(1)] in structured product labeling (SPL) format using the FDA automated drug registration and listing system (eLIST), as described at http://www.fda gov/ForIndustry/DataStandards/StructuredProductLabeling/default.htm. Content of labeling must be identical to the enclosed labeling (text for the package insert, text for the patient package insert, Medication Guide). Information on submitting SPL files using eluIST may be found in the guidance for industry titled "SPL Standard for Content of Labeling Technical Qs and $A s^{\prime \prime}$ at
htp://www fda gov/downloads/Drugs/GuidanceComplianceRegulatory/nformation/Guidances/U CM072392.jdf.

NDA 202611
Page 2

The SPL will be aecessible via publicly available labeling repositories.

CARTON AND MMMEDIATE CONTAINER LABELS

We acknowledge your May 18,2012, submission containing tinal printed carton and container labels.

Submit final printed carton and container labels that are identical to the enclosed carton and immediate container labels submitted on as soon as they are available, but no more than 30 days after they are printed. Please submit these labels electronically acoording to the guidance for industry titled "Providing Regulatory Submissions in Electronic Format - Human Pharmaceutical Product Applications and Related Submissions Using the eCTD Specifications (June 2008)." Altematively, you may submit 12 paper copies, with 6 of the copies individually mounted on heavy-weight paper or similar material. For administrative purposes, designate this submission "Final Printed Cartom and Container Labels for approved NDA 202611." Approval of this submission by FDA is not required before the labeling is used.

Marketing the product with FPL that is not identical to the approved labeling text may render the product misbranded and an unapproved new drug.

REQUIRED PEDLATRIC ASSESSMENTS

Under the Pediatric Research Equity Act (PREA) (21 U.S.C. 355c), all applications for new active ingredients, new indications, new dosage forms, new dosing regimens, or new routes of administration are required to contain an assessment of the safety and effectiveness of the product for the claimed indication(s) in pediatric patients unless this requirenent is waived, deferred, or inapplicable.

We are waiving the pediatric study requirement for ages 0 to 4 years and 11 months because overactive bladder is not a condition in infants or young children who are not yet bladder trained and, therefore, necessary studies are not possible or highly impracticable.

We are deferring submission of your pediatric studies for ages 5 to 17 years and 11 months for this application because this product is ready for approval for use in adults and the pediatric study have not been completed.

Your deferred pediatric studies required by section $505 \mathrm{~B}(\mathrm{a})$ of the Federal Food, Drug, and Cosmetic Act (FDCA) are required postmarketing studies. The status of these postmarketing studies must be reported annually according to 21 CFR 314.81 and section $505 \mathrm{~B}(\mathrm{a})(3)$ (B) of the Federal Food, Drug, and Cosmetic Act. The required studies are listed below.

1898-1 Open label, multicenter single ascending dose study to evaluate phamacokinetics, safety and tolerability of mirabegron modified release microgranule-based suspension in children from 5 to less than 18 years of age with neurogenic detrusor overactivity (NDO) or overactive bladder (OAB).

Final Protocol Submission:
Study Completion:
Final Report Submission:

January 2016
September 2017
September 2018

1898-2 Open labet, baseline-controlled, multicenter, sequential dose titration study followed by a fixed dose observation period to evaluate pharmacokinetics, safery and efficacy of mirabegron modified release microgranule-based suspension in children from 5 to less than 18 years of age with NDO.

Final Protocol Submission: January 2018
Study Completion:
Final Report Submission:

June 2023
June 2024

Submit the protocols to your IND 069416, with a cross-reference letter to this NDA.
Reports of these required pediatric postmarketing studies must be submitted as a new drug application (NDA) or as a supplement to your approved NDA with the proposed labeling changes you believe are warranted based on the data derived from these studies. When submitting the reports, please clearly mark your submission "SUBMISSION OF REQUIRED PEDIATRIC ASSESSMENTS" in large font, bolded type at the beginning of the cover letter of the submission.

POSTMARKETING REOUTREMENTS UNDER $505(0)$

Section $505(\mathrm{o})(3)$ of the Federal Food, Drug, and Cosmetic Act (FDCA) authorizes FDA to require holders of approved drug and biological product applications to conduct postmarketing studies and clinical trials for certain purposes, if FDA makes certain findings required by the statute.

We have determined that an analysis of spontaneous postmarketing adverse events reported under subsection 505(k)(1) of the FDCA will not be sufficient to assess signals of serious risk related to: 1) observed increases in mean systolic and diastolic blood pressure and 2) increased reporting of new malignant events in the long-term clinical trial of Myrbetriq (mirabegron) at the 100 mg dose.

Furthermore, the new pharmacovigilance system that FDA is required to establish under section $505(\mathrm{k})$ (3) of the FDCA will not be sufficient to assess this serious risk.

Therefore, based on appropriate scientific data, FDA has determined that you are required to conduct the following:

1898-3 A long-term observational study using electronic healtheare databases with appropriate linkages conducted in United States and European databases to evaluate the incidence of serions cardiovascular outcomes (both individual and composite outcomes) in patients administered Myrbetriq (mirabegron).

NDA 202611
Page 4

The timetable you submitted on June 27, 2012, states that you will conduct this study according to the following schedule:

Final Protocol Submission:	March 2013
Assessment and Summary Report Submission:	March 2015
Interim Study Completion:	June 2017
lnterim Analysis Report:	Junc 2018
Final Study Completion:	July 2018
Final Report Submission:	June 2019

18984
A long term observational study in electronic healtheare databases with appropriate linkages to prospectively evaluate the incidence of new malignant events (excluding non-melanoma skin cancer) in patients using Myrbetriq (mirabegron).

The timetable you submitted on June 27, 2012, states that you will conduet this study according to the following schedule:

Final Protocol Submission:	March 2013
Assessment and Summary Report Submission:	March 2015
Interim Study Completion:	June 2017
Interim Analysis Report:	June 2018
Final Study Completion:	July 2018
Final Report Submission:	June 2019

Submit the protocols to your IND 069416, with a cross-reference letter to this NDA. Submit all final reports to your NDA. Prominently identify the submission with the following wording in bold capital letters at the top of the first page of the submission, as appropriate: "Required Postmarketing Protocol Under 505(0)", "Required Postmarketing Final Report Under 505(0)", "Required Postmarketing Correspondence Under 505(0)".

Section $505(0)(3)($ E $)(i i)$ of the FDCA requires you to report periodically on the status of any study or clinical trial required under this section. This section also requires you to periodically report to FDA on the status of any study or clinical trial otherwise undertaken to investigate a safety issue. Section 506 B of the FDCA, as well as 21 CFR 314.81 (b)(2)(vii) requires you to report annually on the status of any postmarketing commitments or required studies or clinical trials.

FDA will consider the submission of your annual report under section 506 B and 21 CFR 314.81 (b)(2)(vii) to satisfy the periodic reporting requirement under section $505(0)(3)(E)(i i)$ provided that you include the elements listed in $505(0)$ and 21 CFR $314.81(\mathrm{~b})(2)$ (vii). We remind you that to comply with $505(0)$, your annual report must also include a report on the status of any study or clinical trial otherwise undertaken to investigate a safety issue. Fature to submit an annual report for studies or clinical trials required under 505 (o) on the date required will be considered a violation of FDCA section $505(0)(3)(E)(i)$ and could result in enforcement action.

PROMOTIONAL MATERIALS

You may request advisory comments on proposed introductory advertising and promotional labeling. To do so, submit, in triplicate, a cover letter requesting advisory comments, the proposed materials in draft or mock-up form with annotated references, and the package insert to:

Food and Drug Administration
Center for Drug Evaluation and Research
Office of Prescription Drug Promotion
5901-B Ammendale Road
Beltsville, MD 20705-1266
As required under 21 CFR 314.81 (b)(3)(i), you must submit final promotional materials, and the package insert, at the time of initial dissemination or publication, accompanied by a Form FDA 2253. For instruction on completing the Form FDA 2253, see page 2 of the Form. For more information about submission of promotional materials to the Office of Prescription Drug Promotion (OPDP), see htp://www.fda.gov/AboutPDA/CentersOffices/CDER/acm090142,htm.

REPORTING REOUIREMENTS

We remind you that you must comply with reporting requirements for an approved NDA (21 CFR 314.80 and 314.81).

We also request that you submit with your periodic adverse event reports an additional summary of postmarketing hepatic adverse reports for a period of 3 years following launch of Myrbetriq in the US.

MEDWATCT TO-MANUEACTURER PROGRAM

The MedWatch-to-Manufacturer Program provides manufacturers with copies of serious adverse event reports that are received directly by the FDA. New molecular entities and important new biologics qualify for inclusion for three years after approval. Your firm is eligible to receive copies of reports for this product. To participate in the program, please see the enrollment instructions and program description details at htto:/hww. fda gov/Safety/MedWatch/LowToReport/ucm166910,htm.

POSTmACTION FEEDBACK MEETING

New molecular entities and new biologics qualify for a post-action feedback meeting. Such meetings are used to discuss the quality of the application and to evaluate the communication process during drug development and marketing application review. The purpose is to learn from successful aspects of the review process and to identify areas that could benefit from improvement. If you would like to have such a meeting with us, call the Regulatory Project Manager for this application.

If you have any questions, please call Nenita Crisostomo, R.N., Regulatory Health Project Manager, at (301) 796-0875.

Sincerely,
\{See appended electronic signature page;
Victoria Kusiak, M.D.
Deputy Director
Office of Drug Evaluation III
Center for Drug Evaluation and Research

ENCLOSURES:

Content of Labeling
Carton and Container Labeling

This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature.
$/ \mathrm{s} /$

VICTORIA KUSIAK
06/28/2012

Appendix D

(12) United States Patent
 Maruyama et al.

(10) Patent No.: US 6,346,532 B1
(45) Date of Patent: Feb. 12, 2002

(54) AMIDE DERIVATIVES OR SALTS THEREOF

(75) Haventors: Thasuya Marwyama, Takayukt Swakif Kentchl Oada; Masahiko Hayakawa; Hiroyuki Morltomo; Tetsuya KImizuka; Tetsuo Matsul, all of Tsukuba (IP)
(73) Assigne: Yomanomeh Pharmaceutical © On, Nhit. Tokyo (IP)
(*) Notice: Subject to any disclamer, the term of this patent is extended of adjusted under 35 U.S.C. $1.54(b)$ by 0 days.
(21) Appl No: 09/529,096
(22) PCT Filed:

Oct 15, 1498
(86) PCT No:

PCIVJP98/04671
§ 371 Date:
Apr. 7, 2000
\$102(e) Date: Apr 7, 2000
(87) PCT Pub. No., WO09/20607

PCT Pub. Date: Apr, 29, 1999
(30) Foreign Application Priority Data

(51) Int. Cl. ${ }^{7}$............unw A61K 31/495; A61K 31/505; CO7D 239/02; C07D 213/00; C07D 249/00
(52) U,S, Cl 514/252,I; $514 / 256 ; 544 / 330 ;$

544/332; 546/1; 546/152; 548/190; 548/214; $548 / 186 ; 548 / 252 ; 548 / 260$
(58) Whedd of Search 544/330, 332;
$546 / 1,152 ; 548 / 190,214,186,252,260 ;$ 514/252.1, 256
(S6)
References Cited
U.S. PATENT DOCUMENTS

5,223,614	A	6/1903	Schomm at al. 544/105
5,341,197	A	719006	Fisher et al. 514/311
5,553,475	A	97996	Hayashi el al. $72 / 225$
5,614,544	A	3/1997	Sohda ct ad.o. $5148 \% 6$
6,048,384	A	42000	Matuyuma et al. 514/370
6,177,454	1	1/2001	Maruyma et al 544/39 ${ }^{\text {d }}$

FOREIGN PATENT DOCUMENTS

DE	3743265	$* 6 / 1989$
3P	10218869	$* 61959$
WO	9529159	$* 11 / 1995$
	OTHER PUBLICATIONS	

Konosu T. et al "Triazole antif.", Chem. Ptarm.Bull. 39 . 10. 2581m, Oct. 1991.*

* cited by examiner

Primary Exuminer- Richatd L, Raymond
Assistan Extminer-Suchaker B. Patel
(74) Athomey, Agent or Firm-Fiomegan, Henderson, Farabow, Guret \& Duncer, Lul.P.

ABSTREACT
(I)

Amide derivatives represented by general bormula (1) or salts thereof wheron cact symbol has the following meat ing: ring A: an optionally substitued beteroaryl optionally fused with a benzene ring; x : a bond, lower alkylene or lower alkenylene optionally substimed by hydroxy or lower alkyl, carbonyl, or a group represented by $-\mathrm{NH}-$ (whea X is lower alkylene optionally substimed by lower alkyl which may be bonded to the bydrogen atom bonded to a constituent carbon atom of ring B w form lower alkylene 10 thereby form a ring); Ai a lower alkylenc or a group represented by (lower alkylene) $\rightarrow 0$; $\mathrm{R}^{\text {aw }}$ and R^{26} the same or different and each bydrogen or kwer akyl; R^{2} : hydrogen or halogeno; and Z : nitrogen or a group represented by $=$ = CH- The compounds are usteful as a dibeces remedy which not only functions to both mecelerate the secretion of insulin and entance ansulio sensitivity but has an antiobestic action and an antibyertipernic action based on its selective stimulative action on a β_{3} recepton.

14 Clames, No Drawiogs

technical feld

The preseat invertion relates to pharuacemicals and, more particularly, it retates to novel amide derivatives or salks thereof and also to therapeutic ageats for diabetes mellitus contaning them as effective components.

BACKGROUND OF THE INVENTION

Diabetes rachtus is a difease aecompanied by cominuous hyperglyecmic state and is said to be resulted by action of many environmental tactors and genctic fachors. The main controlling factor for blood sugar is insulin, and it has been known that hyperglyema is resulked by deliciency of insulin or by excess of factors which inhibil its action (such as acnetie causc, hack of exercise, obesity and stress)
Diabetes mellitus is cisassified into two man typers. One is insulimedeperoden diabetes melitus (IDDM) caused by a lowering of insulin-secreting function of pancreas due to nutdimmun diseases; and mother is non-insulin odependent diabetes mellitas (NJDLM), caused by a lowering of insulin-secreting function of pancrease due to pancreatic. fatigue accompanicd by contintous high insulin secretion. 95% or more of diabotic patients in Jupan are suid to suffer from NIDDM, and an inercase in the patienes due to a change io daify life style is becoming a problem.
As to the therapy of diabetes mellitus, dietetic treatment, therapeutic exercise and remedy of obesity are mainly conducted in mild cases while, when the cliscase progresses, oral antidiabetic drugs (for example, insulin secretion promoters such as salfonylured compounds and insulit sensim tivity potentiators which potentiate the sensitivity of insulin) are administered. In severe chses, an insulin preparation is administered. However, there has been a brisk clemand for creation of he drugs whereby bigher control for blood sugar is possible, and development of antidiabetic drugs having a new mechanism and having high usefulness has beon demanded.
U.S. Pat. Nos. $4,396,627$ and $4,478,849$ demeribe phenylethanolamine derivatives and disclose that thase compounds are useful as drugs for obesity and for hyperglyecmia. Action of thase compounds is reported to be due to a stimulatiag action to β_{3} receptors, Ancidentally, it has been a koown that β-acrenaline receptors are classified into β_{1}, β_{2} and $\#_{3}$ sublypes, that stimulation of β_{3}-receptor causes an increase in heat rate, that stimulation of β_{2} fecepgor stimulates decomposition of glycrgen in nuseles, whereby synthesis of glyoogen is inhibited, causing an action such as muscular tremor, and that stimulation of $\beta_{j, ~ r e c e p t o r ~ s h o w s ~}^{\text {sen }}$ an anti-obesity and an anti-hyperglycemia action (such as decrease in triglyceride, decrease in cholesterol and increase in HDL-cholesterol).
Howewer, those β_{3}-agonists also have actions caused by stimulation of β_{1}, and β_{2}-receptors such as incretse in heart rate and muscular tremor, and they bave a problem in terms of sits effects.
Recontly, it was ascentaned that frececplors have difterences to species, and it has been reported that even conspounds having been confinmed to have a β_{3} receptor selectivity io rodential ammals such as rats show an action dae to stimulating action to $\beta_{1}{ }^{4}$ and ϕ_{2} receptors in human being. In view of the above, investigations for componinds haviog a stimulating action which is selective to β_{g} receptor in os human being have been conducted recently using haman cells or cells where human receptors are expressed. For
(In) the formula, each of the symbols means as follows; ring Di a heteroaryl group which may be substituled and day be fused with a berizene ning;
X a bond, lower alkytene or alkenylene which may be substituted with hydroxy or a lower alkyl group, cartooyl, or a group represented by -NH - (when X is a lower alkylene group which may be substituled with a lower alkyl group, the bydrogen atoms bonted to the carboa atom constituting the ring B may torm a bower alkyleae group together with the lower aikyl group so that a ring is formed);
A: lower alkylene or group represented by -lower alkylene-O-
$\mathbf{R}^{\text {ta }}, \mathbf{R}^{12}$: they may be the same or differen and each is a bydroged atom or a lover alkyl group; R^{2} : a bydrogen atom or a balogen atom, and

3
Z. a nitrogen aiom or a group epresented "by $=\mathrm{CH}-$.) The omponad af the general formala (f) is fumer illustrated as follows.
In the defintions used in the gencral formula in thes specifieation, the term "fower" means a liowar or branched hydrocarbon chain having from 1 to 6 carbon atons matess ohterwise specitied.
Specife examples of the "lower alkyl group" are methyl, ethyl, and hinear or branched propyl, butyl, pentyl and heryl, preferably an alkyl having from 1 to 4 carbon atoms, and to particulatly preferably methyt, ethyl, propyl and isopropyl.
Examples of the "lower alkylene group" is a clivaleat group obtained by removing an arbitrary hyblrogen atom(s) from the above "lower akyl group", preferably an alkylene group having from 1 to 4 carbon atoms, and particularly preferably methylene, elhylene, propylene and buylene. Examples of the "lower alkenylene group" are vinylene, propenylenc, butenylone, pentenylene and hexenylene groups.
The "heteroaryl group which may be fused with a benzene rimg" in the "heteroaryl group which may be substituted and may be fased with a benzene ring" means a ring group where a benzene ring is fused with a heleroaryl group as mentioved later or a now fused beteroaryl group.

Specific examples of the "ring group where tbe benzune 25 ring is tosed with a heteroaryl group" are fused-ring heteroaryl groups such as quinolyl, isoquinolyl, quinazolinyl, quinolidioyl, quinoxalinyl, cinnolinyl, benzimidazolyl, imidazopyridyl, benzofuranyl, benzoisoxazolyl, beazoxazolyl, benzothiazolyl, oxazolopyridyl, isothiazolopyridyl, benzothienyl, ete; and oxo-added rings such as oxobenzobirayl; etc.

Examples of the "beteroaryl group" are monocyctic het efoaryl groups such as furyl, theny1, pyrrolyl, imidazoly, thiazolyl, pyrazolyl, isothiazolyl, isoxazolyl, pyridyl, pyrimidyl, pyridazinyt, pytazinyl, thiadiazolyl, triazoly], tetrazolyl, etc; and bicyclic beteroaryl groups such as naphthylidinyl, pyridopyrimidinyl, etc.

The substituert in the "heteroaryl group which may be substifuted and may be fused with a bemene ring" may be 4 any group which on be usunlly substituled in this ring group. Preferred exmples are a balogen atom and lower alkyl, lower alkenyl, lower nilkynyl, hydroxy, sulfanyl, halogeno lower alkyl, lower alkyl-O-m, lower alkyl-Sum, lower alkyl-O-COM-, carboxy, sulfonyl, sultinyl, lower stkyl- as SO-, lower alkyl $\mathrm{SO}_{2}-$, fower alkyl-CO--, lower alkyl-$\mathrm{CO}-\mathrm{O}-$, carbamoyl, lower akylnNH-CO-m, di-lower alkyl- $\mathrm{N}-\mathrm{CO}-\mathrm{m}$, nitro, cyano, amino, guanidino, lower atkyl-COm-NHm, tower alkyl- $\mathrm{SO}_{2}-\mathrm{NH}-\mathrm{NH}$, lower alkyl-$\mathrm{NH}-$ di-lower alky)- $\mathrm{N}-,-\mathrm{O}$ - lower alkylene- O -, etc. These substituens may furituer be subslituted with a substituent such as an aryl group a $_{\text {a }}$ hetercaryl groap p_{7} a balogen atom, hydroxy, sulfayl, halogeno lower alkyl, bower alkyl-$0-$, lower alkyl $\$ \cdots$, lower alkyl-0-CO-- , carboxy,
 lower alkyl- CO , lower alkyl- $\mathrm{CO}-\mathrm{O}$-, carbamoyl, kower alkyl. $\mathrm{NH} \mathrm{H}=\mathrm{CO}-$, di-lower alkyl- $\mathrm{N}-\mathrm{CO}-\mathrm{Cm}$, nitro, cyano, amino, guaridion, tower akyl-CO-NH-, lower alkyl$5 \mathrm{O}_{2}-\mathrm{NH}=$, bower akyi-NH-, di-lower alkyl-N-m, cic. These substituents such 落 an aryl group, a heteroaryl group, etc, may further be substituted with a balogen atom, etc.

The "lower alkenyl group" is a lixe ar or branehed alkenyl group having 2 to 6 carboo atoms and its specific examples are vinyl, propenyl, butenyl, pentenyl and hexenyl groups,

The "lower alkyayl group" is a linear or branctued alkynyl group Having 2 10 6 carbon atoms, and iss specific examples are ethynyl, propynyl, butynyl, pentynyl and hexynyl.

50
(In the formulac, $\mathrm{R}^{\mathrm{tr}}, \mathrm{R}^{1 b}, \mathrm{R}^{2}, \mathrm{~A}, \mathrm{~B}, \mathrm{X}$ and Z bave the same meanings as delined akeady; R^{a} is a protective group for amino, and X^{3} is a lenving group, and trore specifically hydroxy, lower alkoxy or malide.)
In this mithod, the bompond (II) and the compouad (III)
res subjected to amidation, and the protective group is then
In this thethod, hetempond (1) and the compound (in) removed therefrom to syntbosize the compound (1) of the present invention.
The amidation in this manfacturing method can be of condacted by enstomary manacs: The solvent may vary depending upon Y^{χ} of the compound (III) and mostly, an inert solvent or an ahcololio solvent (such as isopropanol, etc.) may be applied.

When Y^{1} is a hydroxy group, a method where the reachion 55 is conducted in the above-mentioned solvent in the presence
is conducted in the above-mentioned solvent in the presence
of a condensing agent may be applied. Examples of the condensing agent are N, N '- dioyclobexylcarbodiimide is/are substitued with a halogen atom or atoms.
The case when X is a bond means that a catbon atom of the $-\mathrm{CO}-\mathrm{group}$ is directly bonded to the ring B .

The compernad (1) of the present inventiou has at teast onc asymmetric cartoon atom and therefors, here are optical isomers such as, (K)-compownds, ($\$$)-compounds, etc., racernates, diastercomers, etc. The present invention includes all and each of isolated isomens and mixtures thereof. The present invention also inchules hydrates, solvales (such as those with elhanol) and polymorphic substances of the compound (t)

The compound () of the present invention cony form a salt with at acid. Examples of the salt are acid addilion salts with mincral acids such as hydrocbloric acid, hydrobronic acid, hydroiodic acid, sulfuric acid, nitric acid, phosphoric acid, ete; and those with organic atids such as formic acid, acetic acid, propionic acid, oxalic acid, matonic acid, succinic acid, fumaric aid, maleic acid, lactic acid, malic acid, citric acid, tartaric acid, carbonic ack, picric acid, ntelbanesulfouic acid, ethanesulfonic acid, ylumic asid, etc.

Manufacturing Melhod

The compound of the present invention or the salt thereof may be manufactured by application of various synthatic methods utilizing the characteristics of its fundamental skeleton or type of the substituent. Representative mamuac turing metbods are illustrated as hereunder
First Mamfuchuring Method

The "balogen tom" means a fluorine atom, a chlorine thom, a bromine nom or an todine atom, and the "halogeno lower alkyl group" meats a group where an abitrary bydrogen alomor atoms in the abovementioned alkyigroup
(DCC). 1-ethyl-3-(3-dimethylaminopropybcarbodiimide (EDCI), $1,1^{\prime}$ warbonyldimidazole (CDI), diphenylphowphoryi axide (DPPA), diethylphosphoryl cyanide (DEPC), etc.

When Y^{1} is lower alkoxy, a mehod where the reaction is conducted unter heating or refluxing as it is or in the 5 abovementioned inert solvent may be applied.

When Y^{3} is hathite, a method whers the feaction is conducted in the above-mentioned inert stlvent in the pres. ence ol' a base may be applied.

Examples of the inert solvent ate dimetrylfomamide 10 (OMP), dimmbytacetamede, tetrachoroothane, dichloromethane, dichloroethane, charoform, cabon termenloride, tetrahydrofuran, dioxame, dinethoxyethane, ehyl acetate, benzene, tolame, xylene, acomatrile, dimm elbyl sultoxide, eic., and mixed solvents thereot, and they may be appropriately selected depenting mon each reaction condition. Examples of the base are inorganic buses such as sodium hytroxide, potassium hyokoxide, sodium carbonate, potassium carbomate, etc.; and organic bascs sweh as Nomethyimoryholine, triethylamine, disopropylethylamine, pyridine, etc.
The protective growp of the amino represented by R^{2} means a protective group which is commonly used for anomo by those skilled in the art, and is represenative examples are acyl such as formyl, acetyl, propionyl, melhoxyacetyl, methoxypropionyl, benzoyl, thienylacetyl, thiazolylacelyl, tetrazolylacelyl, hiazolylglyoxyloyl, thenylglyoxyloyl, ete.; lower alkoxycarbonyl such as methoxycarbonyl, ethoxycarbonyl, tert+butoxycarbonyl, etc.; aralkyloxy"carbonyl such as benzyloxycarbonyl, p-nitrobenzyloxycarbonyl, enc.; hower alkanesulfonyl such as coethanesulfonyl, athanesulfonyl, etc.; aralkyl such as bemzy, p-nitrobenzyl, berahydryl, triyl, etc.; min(lower aikyl)silyl such as trimethylsilyl, etc; and the like.

Removal of the protective groug in this manufacturing meilod may be conducted by customaty manders. For example, the protective grouy for anino eupesemed by R^{A} may be easily nemoved, lor example, by i) a method where in case that the protactive group is benzbydryl, m-methoxybenyl, tityl, tert-butoxycarbonyl, fomyl, etc., treatment with an acid stuch as formic acid, trifluoroncetic acid, a trifluoroacetic acid-anisole mixed solution, a bydrobromic acid acetie acid mixed solution, a hydromhorie aciddioxans mixed solution, ete. is conducted; ii) a method where in case that the protective group is benzyl, p-nitrobenayl, benzhydryl, trisyl, eke., a calalytio reduction method using palladiumecarbou or palladium hydroxidecarbon is conducted; and iii) a melhod where in case that the protective group is a tri-(lower alkyl) silyl or the like, treatment with water, fuoride anion (e.g., tetra-thbutylammonimn floride, sodium fluoride, potasium Inutite, bydronuoric acid), etc. is conducted.

Second Manufacturing Method

(In the formune, $\mathrm{R}^{3 a}, \mathrm{R}^{3 b}, \mathrm{R}^{2}, \mathrm{~A}, \mathrm{~B}, \mathrm{X}$ and Z have the same tereanings as defined already.)

In this manulacturing nethod, the compound (IV) is iedcued with the compotad (V) to give the compouxd (b) ol the present invention.

The amine compound (IV) and the compound (V) are wacted under heating or vefluxing for 1 to 24 hotres ans they are or in an inert solvent, to give the compound (I) of the 0 present invention.

Examples of the inert solvent are acetonitrile, tetrahydrofuram, 2 butanone, dimethyl sulfoxide and N-methytpyrolidone, Ia the maction, a base such as soditu bicarbonate, potassium earbonate or disopropylehalamine may be added to the reaction mixture.

Incideatally, in the above manafacturing methods, it is possible wo purify the resulting substatece by rewoving undesired by-products by means of recrystallization. pulverization, preparative thin layer chromatography, silica gel flash chromatography (as described in W. C. Still, et al., J. Org. Chen., 43, 2923 (1978)), mechum-pressure liquid chromatography and HPLC. The compound produced through HPLC can be isolated as a corresponding salt.

The starting material used in the above-meationed manufacturing methorls may be easily mamfactured by the methods which are known to those skilled in the art. One of the representative methods is shown as hereunder.

Manufacturing Method for the
Staring Compound (II) "

combimted

10
(In bue formubac, $\mathrm{X}^{12}, \mathrm{R}^{1 n}, \mathrm{R}^{2}, \mathrm{R}^{n}$, A and Z have the samo meanings as defined already; R^{b} is a byulrogen anorn or an aralkyl-based protecive group for amino; and R^{*} is epoxy, 2 whateacetyi or 1 -catwoxymethan 1 -ol)
This manufacturing melbod is composed of from step (a) ${ }^{15}$ to step (c) in which the step (a) is a step where the compound (VI) is reaced with the compound (VI), Lollowed by reduction reaction to give the compound (Vilha) depending upon the (ype of E_{s}; the suep (b) is a step where protection zo is conducted when R^{b} of the compound (VIIIa) is a bydrogen atom; awd the step (c) is a slep where nitto is reduced to amino to give the compotad (Il).

Examples of the aralkyl-based protective group for amino 25 used in this manufacturing method are benayl, putrobenzyl, benzhydryl, etc.

Slep (a)
Hllustration is made for the following three cases.

1) When R^{e} is epoxy, the compound (V) may be reacted with the compound (VII) by the same manmer as in the aboverinemioned second matufacuring method. Reac-
2) Whan \mathbb{R}^{A} is 1 -cearbowymethan-1-ol, the compound (VI) is reacted with the compound (Vil) in the presence of a conlensing agent, followed by reduction reacion in the same manner as in 2) to prepare the compound (VIII). The condensing agent is the saige as lhat mentioned in the first manufacturing method.

Step (b):

When $\mathrm{R}^{\prime \prime}$ in the compound (VUIa) is a bydrogen atom, the o smino group is proteced by customary manners using diuernbutyl dicabonate, ete, to prepare the compound (VIIL).

Step (c):

A nethod for the reduction of nitro 10 amino may be 5 conducted by customary maners such as metallic reduction using iron, zime, ctc, and catalytic reduction using a catalyst sucts as palladiumecarbon, palladiun hydroxide-carbon, Rancy nickel, etc. R" becomes a bydrogen atom depending upor the reduction conditions, but it may be proteced again a by custoxnary manners.

Mandedering Meihod for Sarling Compound (IV)

A)

tion conditions such as reation emperature, solvent, etc. axe the same as well.
2) When \mathbb{R}^{c} is 2 Haloacetyl, the compound (V) is reacted with the compound (VII) in the presence of a bese, followed by reduction reacion to prepare the oompound (Yllia). The base is the same as that raemioned in the first mannfacturing method. The reduction reaction may be conducted in the above mentioned inert solvent on in a solvent of an alcohol type with stirning in the presence of a reducing agent. Examples of the reducing agent are sodium borohydride, sodium of cyanoborohydride, thithum aluminum bydride, borane, etc.
(lo the formulate, $\mathrm{R}^{14}, \mathrm{R}^{4 b}, \mathrm{R}^{8}, \mathrm{~A}, \mathrm{~B}, \mathrm{X}$ and Y^{2} have the same 5 neanings ns defined already.)

This reaction is a reaction where the compound (X) and the compown (III) are subjected to amidation reaction to give a compound (lVa) and, when R^{h} is a protective group for amino, the protective group is removed to give a compound (IV). The anidation reaction can be condueted by the same manter as in the above mentioned first manufacturing ruethod, and the reaction conditions such as reaction temperature, solvent, etc. are the same as well.
13)

(avb)

This reaction is a reaction where the coupound (X) and the compound (III) are subjected to amidstion reaction and then to recluction reaction to give a componnd (IVb). The amidation reaction can be conducted by the same manmer as in the abovermentioned first manutacturing the bood, and the reaction conditions such as reaction temperature, solvent, etc. are the same as well. In the reduction reaction, the above-mentioned calalyic reduction, or a method where reduction is conducted asing sodimm borohydride in the presence of cobalt chloride, may be applied.
With regard to other componads such as the componod (III), the compound (V), the compound (VI), and the com" pound (VII), those which are available in the market or are appropriately synthesized by knowis methods (such as Nalkytation reaction, cyclization reaction, hydrolysis reaction, etc.) from the commercially available compounds may be usect.

The compound (I) of the presen invention which is manufactured as such is isolated and purified as a free compound, a sal thereof obtained by means of salt formation by customary maners, a bydtate, a solvate with varibus solvents such as ethanol, etc., of polymorphic crystals, ete. The isolation and purification ratay be conducted by applying common chemical operations such as extraction, concentration, evaporation, crystalization, filtation, recrystallization, warious chromatographac methods, ete.

Various isomess may be isolated by custormary manners unilizing the physico chomical differences between the isow mens. For example, the racomate can be converted to stereochemically pure isomers by common racemic resolution (such a mathod where the acemate is changed mo diastereomer salis with usual optically active acid (for example, tararic acin), followed by opheal cesolution, and the like). Incidenally, a mixture of diastereornens may be separated by customary meltod stech as Fractions crystallizaitots or chronatography, eace in the case of an optically active compound, it may be mandactured starting from an appopriate opticatly active material.

Incustrial Applicability

The phenetbanol derivative of the present invention represemed by the general formula (I) or the sale thereof has both an insalin secretion promotiog action atyd an insulin sensifivity poleatiating action and also bas a selective β_{3}-receptor stimulating action, so that is is useful as a therapeutic agent for diabetes mellitus.

As confimed by a glucose tolerance test and a bypoglym cemic test in insuliontesisting model animals as cleseribed later, the compound of the present invention has both a good insulin secretion promoting action and a good insulin sen-
shivity poleminaing action, so hat its use hulness in clinbetes
 amion ntway have possibiliy ot participating in expression of the insulin secretion promoting action and the insulin

* Scositivify potentiating netion, ohere mechanism might also possibly partietpate thereit, and the details thereof have been still unknown yet. The β_{3} feceptor stimulating achon of the componad of the preserat invention is selective to β-recepors in buman being, If has been known that the

10) stimutation of β-receptor stirtulates decomposition of fat (decomposition of the lat tissue viglyceride mo glyceroh and free falty acid), whereby a disappeamere of fat mass is promoted. The refore, the comporand of the presem invention has an anti-obessity action and an anti-bypertipemia action is (such as tiglyende lowering action, cholestern lowering action and HDL cholesterol increasing action) and is usefin as a preventive and therapeutic agent for obesity and hypern lipemia (such as hypertriglyceridenia, hypercholesterolemia and hyporHDL-Hpoprotcinemia). Those diseases 20 have been known as animus facors in diabetes mellitus, and amelioration of those cisciases is useful for prevention and the apy of diabetes mellitus as well.

The compownd of the present invention is also usetul as a prevenive and therapenic agena for other diseases where 25 the mopovement of symptom can be achicved by reducing the symptoms of obesily and hyperlipernia suct as ischemic coronary discasses such as artcriosclexosis, myomardial infachion, angina pectoris, ote cerebral arterioselerosis such as corobial intarction, efery or anturysm, etc.

Further, the selective β_{3} receptor stimulating action of the compound of the present invention is wefelal for prevention and therapy of s several diseases which have been reported to be improved by the stimutation of β_{3} receptor. Examples of those diseases are shown as follows.

In has been meationed that the β_{3}-roceptor mediates the motility of one-sphincteral smoth muscle comtraction, and because it is believed that the selective β_{3} receptor sinmlatiog aclion assisis the pharmacological control of intestimat motilly withont beang acoompanied by cardiovascular action, the compound of the present invention has a possibility of being useful in therapy of the diwasces caused by abnormal intestinal motility such as various gastrointestinal discases including irritable colon syndrone, This also useful as the therapy for peptic ulcer, esophagitis, gastritis and duodenutis (including that induced by $/ i$. pylon), enterekosis (such as inflammatory intestinal diseases, ulcerative colitis, conal disease and proctitis).
It is turther shown that the β_{3}-receptor affects the intibi50
lung The serisory nerve plays an imponant role in neurogenic inflamation of respiatory tract inchoding cough, and theretore, the specille β_{3}-agonist of the presen inyemion is usetul in the therapy of neurogenic indammation and in addition, has litide action to cariopulmonary system.

Moreover, the fis-adrenaline recepror is capable of result. ing in a selective antidepressant action due to stimulation of the β_{3} receptor in brain, and accordingly, the compound of the present invention has a possibility of beimg usetul as an anticlepressant.

The action of the compound of the present inveration bas been aseertaned to be solective to β_{3}-receptors as a result of experiments using cells expressing human type recepiors, and the adversw action caused by othor β_{3}-receptor stimanlation is low or nowe.

Efiects of the compound of the present invention have been ascertained by the following tests.

1. Hypoglyemoure "fest in kle Miee (insulidi-reswhag model; Obesily and liyperglyeemia)
Male kk mice (blood sugnt level; aot lower that 200 mg/di) Were subjectod to a meastuencon of blood sugar bevel wacer feeding and then randomly classified into groups. The drug to be tested was compalsorily administored oratly or subcumeously once daily for four days, and the blood sugar level after 15 to 18 hours from the fimal administration was compared with that before the administration ($\mathrm{n}=6$). The blool was collected fram a tain vein of the mice using a glass capillary (previously treated with beparit), the protein was removed therefrom, and the amount of glucose in the supematant hiquid (mg / d) was measured by calorimetric determination by means of a glacose oxdase method. Further, a dose at which the blood sugar level was lowered by 30% as compared will that before the administration with the drug to be tested was expressed as an $E D_{30}$ value.
As a result, the compound of the present invention significantly lowered the blood sugar level as compared with that before the administration with the drug to be tested in 20 both cases of oral and subcutaneous admimistrations. In particular, some of the compounds of the present invention extribited a strong activity so that the $\mathrm{ED}_{\text {wo }}$ value in the oral administration was $3 \mathrm{mg} / \mathrm{kg} / \mathrm{day}$ or less. On the other hand, in the abovereferenced WO 95/29159, the compound of Example 90 had an ED 30 value of 30 mge $/ \mathrm{kg} / \mathrm{day}$ or more, and the compound of Example 92 had an $E D_{30}$ vatue of 30 $\mathrm{mg} / \mathrm{kg} / \mathrm{d} a y$. From this fact, it bus become clear that the compounds of the present invemion have a superior polen tiating action to insulin sensitivity as compared with those of the above-reterenced WO $95 / 29159$.

2. Glucose Tolerance Test in Normal Rats

Male rats of SD sirain of seven weeks age were fasted for at whote day and aight, then randomly classified into groups and subjected to an oral glucose tolerance test (OGTI) $(n+4)$. The compound to be tested was adminisie red orally or subevatacously at 30 minutes before administration of gho cose ($2 \mathrm{~g} / \mathrm{kg}$ by onal administration). The blood was collected from sn abdominal aorta using a heparin-treated glass syringe from the rats which were anesthelized with pento barbial ($63 \mathrm{~m} / \mathrm{mg}$), the protein was removed therefrom, and the amount of glocose in the supernatant liquid (mg/d) was measured by coloritnetric deternimation by meates of a glucose oxidase method. The insulin value in blood was determined by measuring the amount of insalin in plasma (ng/mi) by means of radioimmunoassay (RIA).

As a result, in a group where the coripound of the present invention was administered orally or subcutancously, a significant inctease io the insulin value in blood was observed as compared with the group to which no drug was givera An iacreasce in the sugar blood level after admintstraton of glecose was significanaly inhibited as well. From those resalts, it is apparent that the conforud of the present inwenion las a good insulin secretion momoting action and a goorl byperglyeemia juhibiting action.
3. Stinulating Test to Human $\beta_{3^{-},} \beta_{2^{n}}$ ant $\beta_{1}{ }^{n}$ teceplors

Human β_{3} stimulating action was investigated using an SK.N.MC cell system (cells in which human β_{8}-receptor and human β_{1}-rweptor wore permanently expressod were purchased) while human $\beta_{2^{-}}$and β_{2}-stimulating actions were thvestigated using a CHO eel system (colls in which ench of buman β_{2} and β_{1}-receptors was compulsorily expressed were purchased) Stimblating action of the compound (10^{30} to $10^{-4} \mathrm{M}$) were investigated by incubating 10^{8} cells/well of each of the cells on a 24 -well plate and checking nuder a 63 subconfluent state after two days using a producing activily of cyclic $A M P(\mathrm{cAMP})$ as an index. Incidentally, the human
β_{2} ostimulating action was investigatect in the presence of a B_{1} recepror blocker ($\left(\mathbb{C O P} 20712 \mathrm{~A}, 10^{-6} \mathrm{M}\right)$. Amoum of produchon of cAMP in each cetl (pmol/m!) was messured by an RIA method usitg ${ }^{\text {RIF wadMD. Thensity of action of }}$ cach compound was companed by eakulating the pD2 value and the maximum activity (I.A. (\%) where the maximum reaction of $10^{-0} \mathrm{M}$ isoproterenol was defigedas 100%) from the resulting dose-reationd curve.

As a result, it has been ascertained that the compound of the present invention has a selective stimulating action to human Bareceptor.

A pharmaceutical composition coataiong one or more of the compround of the present invention or the sat thereof as an effective ingrechent is prepared using common pharmaceutically acepable vehicics. Acministration of the pharmaceutical composition according to the presen jovenion may be either by oral administration or by parenteral adanin. istration by, for cxample, injection, suppository, subeutancous agemt, inhaling agent or intracystic infusion.
The dose may be appropriately decided depending upon each particular case while taking into consideration symptom, age, sex, etc. of the patient bat usually, is around $0.01 \mathrm{mg} / \mathrm{k}$ to $100 \mathrm{mg} / \mathrm{k}$ per clay for adults in the case of orat administration, and that is administered at a time or by dividing into 2 to 4 kimes a day. When intravenous injection is condacted depending upon the sympton, the dose is usually around $0.001 \mathrm{mg} / \mathrm{kg}$ to $10 \mathrm{mg} / \mathrm{kg}$ per day for adults, and that is administered at a time of by thividing into two or more times a day.
With regard to a vehicle for the preparation, nontoxic solid or liquid substances for pharmaceuticals may be used.

Examples of the solid composition for use by means of oral administration according to the preseat invention are tablets, pills, capsules, diluted powder and granules. In such a solid composition, one of more active substances are mixed with at least one inert excipient such as lactose, manaitol, glucase, bydroxypropyl eellulose, microcrysialline cellulose, stach, polywinylpyrrolicone, agas, pection, magnesium metasilicate aluminate and magnesium afurninate. The composition may also contain addives other than the incor exeipien such as lubricants such as magnesiom stearate; cisinfegrants such as calcium cellulose glycolate; stabilizers such as lactose; and muxiliary solubilizers such as gluamic acid on aspartic acid by customary maners. Tablets and pills may, if necessary, be coated with sugar coat such as sucrose, gelatin, hydroxypropyl cellulose, bydroxypropytmetbyl celtulose phbalate, ces., or with film of gastric or enteric coating substances.

The liquid composition for oral aministration includes pharmaceutically acoeptable emulsions, solutions, suspensions, syrups and elixirs ond contains comnonly used inert excipients such as puriferd water or ethanol. In addinon to the inert excipien, the composition may further comain anxiliary agents such es moisturizing or suspending agens, swoeleners, tasting agents, atomate agents and anhiseptic agents. The injection for parenteral administration includes aseptic aqueous or non-aqueous solutions. suspensions and canulsions. The not-aqucous solutions and swaynsions inchude, for example, distilled water for injection and a physiological saline solution. Examples of the solvent for non-aqueous solution and suspensiou ate propylene glycol; polyetbylene glycol; plan oils such as cacao butter, olive oil and sessame oil: alcokols such as etbanol; gum arabic; and Polysolvate so (rade mame). Such a composition may further cootain auxiliary agents such as isotonizing agents; antiseptic agents; moisturizing agents; emutsifiers; dispers* ing agenss, stabilizers such as lactose; and auxiliary solubi-
lizers such as ghtamio acil and nspantic acid). These mav be steritized, for example, by tifration passing through a bacteria-preserving fiter or by compounding of or irradiztion with a bactericice. These may also be used by manefacturing surile solid composition, followed by dissolving in sterile water or a storile solvent for injoction before ase.

Best Mocle for Carrying Out the Invention

The pressert inveution is further illustrated by way of Examples as hereunder. Compounds of the prement invention are not limited to those mentioned in the following Examples but oover all of the comprounds represented by the above general formula (I), sats thereof, hydrates thereof, geometric and optical isomers thereof and polymorphic forms thereof. Incidentally, the case where the material which is used in the present inveation is novel is illustrated by way of the following Referential Example.

REFERENTIA EXAMPIE 1

To a mixed solution of ebyl acetate and a 1 N aquenus solution of sodium hydtoxide was added 25.2 of 4 -nitropheny! elhylamine hydrachloride, and the mixture was vigorously stired. The onemie layer was detiod over anhydrous magnesium sulfate, and the solvent was ovapow rated. To the resulting resifue were added 100 mi of 2-propanol and 15.0 g of (R)-styrene oxite successively, and the reaction mixture was heated te reflux for 12 howas. The solvent was evaporated in vacu, and the residue was purified by sitica gel column chromatography (elueat: chloroform $/ \mathrm{mechanol} \mathrm{me} 100 / \mathrm{l} \rightarrow 10 / 1$) The tesulting residue was again subjected to silica gel columa chronatography (eluen: hexanc/ethyl aetate/tricthylaminemi/5/trace) to give 8.05 g of (R)-1-phenyl-2-[[2-(4-nitrophenyl) ethyl] aminolotataol.

RLGERLNTAL LXAMPLE 2

A solution of 8.02 g of (R) 1 - phenyl-2 $4[2$ (4 -nitrophenyl) ethyl]amino lethanol and 630 g of dintert butyl dicarbonate in 80 mol of tetrahydrofuran was stimed for 12 hours at room temperature. The residue obtained by evaporation of the solvent was purified by silica gel column chromatography (eluent: hexane/ethyl acetatem3/1) to give 10.8 g of tert butyl (R) N -(2-hydroxy 2 -phenylethyl) N [2 -(4 -nitro-phenyl) ethylfcarbamate.

REFERENTIAL EXAMPLE 3

To a solution of tert-butyl (R)-N-(2-hydroxy-2phenylethyl) $\mathrm{N} \times \mathrm{N}^{2} 2 \mathrm{2}(4$ nitwopheny $)$ ethylfearbamate in 200 ml of ethanol was added 1.03 g of 10% palladium-carbon and the mixture was stirged for two hours al room tempera. ture in a hydrogen amosphere under atmospherie pressure. Insoluble maters were removed using Celite, and the filtrate was concemrated ipl vacuo to give 9.54 g of tent-butyl (R)-N-[2-(4-aminophenyl)-N (2-hydroxy-2-phenylewyl) ctiylforarbateate.

REFERENTIAL EXAMPLE 4

"lo a solution of 448 mg of terlmbutyl (R) $\mathrm{Na}[2$ (4 (6 aminophenyl)-N-(2-hydroxy-2-phenylethyl)etbyl] carbamate and 330 mgg of triethylamine in 4 mi of chloroform was added 146 cmg of 2-pyridinecandonyl chlonde. The feachion solution was stired at room temperature for two bours, and the solvent was evaporated in vacuo. The residue was diluted with chloroforna, and the orgatic layer was washed with a saturated ayueous solution of sodinm hydro-
 beazylamino]-1-phenylellannol were anded 336 mg of ethy! 2 (3 -methylpyridin- $2-y$) acetate and 10 ml of xylene. The reaction mixture was refluxed for dide hours, and the solvent vas evaporated in vacuo. The resulting residue was purifed by silica gel coluren chromatogaphy (eluent: bexanc/ethyt aectatem $1 / 3$) to give 222 mg of (R$) \cdot 4 \cdot[2 \cdot \mathrm{~N}$-benzyl $\mathrm{N} \cdot(2-$ bydroxy-2nphorayietayl) annino) kethyl3-2-(3-methylpynidin2 yi)acetanilide.

RETERENTIAA EXAMPLE 9
To a solution of 0.96 g of 2 -fluoroncelopherone in 20 ml of terabydrofuran was added 2.65 g of berizyltrimethylanmonium tribromide. The reaction mixure was stirred at roort temperature for 30 minutes, insoluble maters were Hhered off, and the solvent was concentrated in vacue. The tesuluing residue was dissolved in 40 ml of 2 -butanome, then 1.81 g of N -bomzyl-4-uitrophenethylamite nid 0.92 g of disopropyl ettyylanine were added, and the reachon mixture was heater to teflux for one bour. The solvent was evaporated in vacuo, elthyl acetate was adeled thereto, and the mixture was washel with water and a salurated saline solution successively. The organic layer was dried over anhydrous magnesiura sulfate and evaporated in vacuo. The resulting residue was disolved in 40 ml of methanol, 0.34 gof sodimu borohydride was aded thereto, and the reaction mixture was stired at room temperature for one hour The solvent was evaporated in vacuo, ethy] acetate was added, and the mixture was washer with water and saturated satiue solution successively. The organic layer was dried bver anhydrous magnesinm sulfate and evaporated in vacuo. The resulting residue was purfied by silica gel column chromatography (elment; chloroform) to give 1.95 g of 2 [N -benzyl $-\mathrm{N}-[2$-(4-nitrophenyd)ethyt]amino $]$ - $-(2$. fuoropheayl)ethanot.

REFERENTTAL EXANPLE 10

A reaction mixture of 5.12 多 of methyl 2 pyritylacetate, 5.14 g of 4 aminobenzyl cyanide and 50 ml of xylene was 30 beated to reflux for 24 hours. Aa appropriste amount of the solvent was evaprorated, diethyl ether was atded on the residuc, atud he resulting crystals were takeo by fituation to give 5.65 g of 4 -cyanomethyl-2-(2 -pyridyl)acetabilide.

REFERENTAL EXAMPLEE 1I

To a solution of 640 mg of 4 cyanomethyl $2 \cdot(4,6$ dimethyl-2-pyriclyl)acetanilide in 15 mil of tetrahydrofuram was added 15 ml of an ethamolic suspension of a Raney mickel, and concentrated aqueous armonia was added to adjust the pH of the mixture to about to. The mixture was stifred at room temperature for oae hour in a bydrogen atmosphere under atmospheric pressure. The reaction mix. tue was filtered usiog Celite, and the solvent was evaporated in vacuo to give 640 mg of 4 -(2-aminometbyl) 2 -(4, 6-dimethyluapyridyl)acetanitide.

REFERENTIAL EXAMPLE 12

To a solution of 630 mg of 4 - 2 -aminomethyl)- $2-(4,6-$ dimethyl-2 pyridyl)acetandide in 20 ol of sobene was added 0.27 ml of lenatidehyde, and the trixture was heated to reflux for three hours using a Dean-Starke apparatus. The peaction mixhtere was filered, and the solvent was evange. rated in vacoo. A solution of the resulting residue in $30 \mathrm{ml} \quad \mathrm{ss}$ of methanol was cooled at $0^{2} \mathrm{C}, 63$ meg of sodinm barohydride was added, and the mixture was stirred at $0^{\circ} \mathrm{C}$. for one hout About onemalf of the solvent of the reaction mizture wase waprated in vacuo, water and elhyl acctate wero added to the residue, the organic layer was washed with a saturated saline solution twiea and driod over anhydrous magnesiun suffate and the solvent was evaporated in vacuo. To a solution of the resultiag residue ia 50 ml of isopropanol was added 0.26 an of (R)-styrene oxide, and the mixiure was heated to teflum for 12 hours. The solvent was evaporated in 63 vacuo, and the resulting residue was purified by silica gel column chromatography (cluent: chloroform/methanolor

100/3) to give 920 mg of (R) 4 [$2[\mathrm{~N}$-bemay N (2.
 pycidyl)acetanilide.

EXAMPLLE 1

A 4 N bydrogen chloride eithyl abetate sohntion (10 mol) was added to 10 ml of an athanolic solution of 488 mg of teri-butyl (R)-N(2-hydroxy-2-phenylethyl) $\mathrm{N}-[2-[4-[(2)$ pyridinecarbonyl)aminolpheoyllethyljartomate. The reaction solulion was stirred at roora scroperambe for threc hours, and the solvent was ther ewaporated in vacuo. The obtained crude crysuls were recrystalized from methanol-ethanolelbyl asetale to give 239 mg of (R) -4 4 $2-[(2$ hydrosy -2 -
drocthloride.
The compounds of Examples 2 to 33 were prepared by the same manner as in Example 1.

EXAMPLE 2

 3 -pyridinecatboxanilide dibydrochloride

EXAMPIE 3
(R) 411 [2-[2-Hydroxy-2-pheaylethyl) aminolethyl $]$ -8-quianhaecatroxanilide dibydrochkride

EXAMPLLE 4
(B) $-1-2\left[\left(2-H y d r o x y^{2}\right.\right.$ phenylethyl)amino $\}$ ethyt $]$ (E) 3-(z-pyridyl)acrylic anitide ditydrochloride

EXAMPLE 5
(R) 2 - (Eenzothiazol- $2-y]$) $4-[24(2-h y d r o x y-2$. phenyl-ethyl)arminolatayl]acetanilide dibydrochloride

EXAMPLE 6
(R) 4 - [2 [[2-Hydroxy-2-phenylethyl)arino]ethyl]"
 difydrochloride

EXAMPLE 7
(R) $4 \cdot[2-[$ (2n-Hydroxy 2 -phenylethyl)amino $]$ ethyl $]$ 2 (2-methylthiazol-4-yl)acetanilide hydroditoride

EXAMPLES
(R)-4.[2-[(24]ydroxy-2whenylethyl)amimo $]$ ethyt]. 2 (1H-imidarol-2-y) acetanilide dihydrochloride

EXAMPLE 9
(R) $4-[2-[(2$ Hydroxy- 2 phenylathyl)amino $]$ ethyl $\}$ $2 \times\left(1 \mathrm{H}_{\text {tetrazol- }} \mathrm{-y}\right.$) acetanilide hydrochloride

17
EXAMPLE 10
 2-(5-sultayy- $-14-1,2,4$-triazol-3-y $)$ ace anilide byetrocthoride

EXAMPLE 11
 phenyl-ehyl)amioc jellyyl?-2-oxoacetanilide dibydrochlorice.

EXAMPLET2
 hydroxy-2-phenylethylamisole: thyl]acelanilide dihydrocinorike

EXAMPLE 13
(R) 2 - 5 -Ethoxycarbonylaming-1,2,4-thadiazol-3yl) $-4 \cdot\{2 \cdot[(2$-hydroxy-2-phenylethyl)amino $]$ ethyl $]$ asctanibide hydrochloride

EXAMPLE 14

[(2-hydroxy-2-theaylethyl)armino]ethyl]acelanilide
ditydrochloride

EXAMPLE 15
 phenyt-ethyl)amino jelhylacetanilide bydrochlocide

EXAMPLE 16
(R)-2-(2-Benzyloxypyridim-6-y) -4-(2-(2-hydroxy-2-phenylethyl) amipopothylumetailide hydrochlonde

EXAMPIE 17
(R) -4 - $[2$-[(2-Hydroxy-2-phenylethyl)amino]ehyl]-".f1-(2-4tehyl-3-propenyl)-14-imichazol-2-yl) acetanitide difyydrechloride

EXAMPLEE 18
(A) $-2 \cdot(1-B e n z y-1 H-1 m i d a z o l-4-y)-4 \cdot(2-[(2$ hydrexy-2-phenylethyl) aminojethyljacedanilide
dibydrochlorisle

EXAMPLE 19
(R)-2-[1-(2-Culorebenzyl)- H -imidazol-4-yl]-4-[2 [(2-hydrexy-2-phenylethyl)amino)ethyl]acetanidide dihydrochlovide

EXAMPIE 20
(R) $2-(1-(3-C h l o r o b e n z y)-18-i m i d a z o l-4-y l)-44[2$ [(2-bydroxy 2 - phenyie hyl)atoinoletbyl]acetanitide dibychrochatoride

EXAMPLE 21
(R) 2 [1-(4-Chlorobenzyl)-1H-imidazol-4-yl $] \cdot 4 \cdot\{2$ -[(2-hydroxy-2-phenylethyl)amino ethyl]acetanilide - dilydro-mhloride

EXAMPLE 22
(R) $2 \cdot[1-(4+$ Fhorobeazy $)-114$ imidazol $-2-y]]-4-[2$ [(2 -hydroxy-2-phenylenhyl)amino]ehyl]aceanilide dihydrochloride.

EXAMPIEE 23
 [(2-hydroxy-3-phanylethyl)anino]ethyl]acetanilide dibyorochlorite

EXAMPLE 24
(R)-2-[1~(4-3romobenzyl) $1 H$ mindazol- $2+y 1]-4+[2$ [(2-hydroxy-2 phenyte thyl)amino jethyl]aceranilide dihydrochloride

EXAMPLE 25
(R) $-44-[2-[(2-H y d r o x y-2 p h e r y l e t h y)$ atuino $]$ ethyl $]$ $2[1-(4$-iodobenzy $)-1 H-i n a d a z o l-2-y l] a c e l a t i d e$ dillydrochlonide

EXAMPLE 26
(R)-4'- $2-[(2-H y d r o x y-2$ phenylethyl $)$ amino $]$ ethyl $]_{4}$
 aectanilide dilyydrochtoride

EXAMPLE 27
(R) $-4-[2-[2-H y d r o x y-2$-phenylethyl)arnino $]$ ethyl $]$. 2 [1-(2-thaphthyl)-14-imidazol-2-yl]acetanilide dibydrochloride

EXAMPLE 28
(R) $2 \mathrm{~F}\{1$ (4wnorobenzyl) 5 -methyl-1H-imidazol-2 $\left.y_{1}\right]-4$-[2-[(2-hydroxy-2-phenylethyl)animo $]$ cthy! $]$ acelanilide dithydrochloride

EXAMPLE 29
(R)-2-[1-(4-Ftuorobenzyl) -4 methyl-1H-imidazol-2c yl]-4 $[2-[(2$-hydroxy-2-phenylethyl)amino $]$ ethyl $]$ acetanilide dilyydrochlonde

EXAMPLIE 30
(R) $-2-[1$ (4-Fuorobenzyl) 1 H-tetrazol-5-yl]-4-[2-[(2-kydroxy 2 -phe aylethyl)amino]ethyl]acelanilide bydrochlonide
(R) $2 \cdot\left[2,(3,4-\right.$ Dichlorobenzyl) 14 -tetrazel $5 \times y I]-4{ }^{4}$. $[2 \sim[(2$ dydnosy 2 aphenylethyl $)$ amino $]$ ethy $]]$ acomamide bydrochloride

EXAMPLE 32
 [(2-hydroxy-2 phenyleiny) a minojethyl]acelanidide hydrochloride

EXAMPIE 33

(R) $2-[1+(3,4$ Dichlorobenzyl) 14 -terazol-5-y1],4. [2 [(2-hydroxym-phenylethy]) mino]e thyl'] acetanilide hydrochlorids

EXAMPLE 34

To a solution of 175 mag of tert-huty| (R) $\mathrm{N}-[2[4-[2-(14 \mathrm{~L}$ $1,2,4$-triazol 3 yl) acety laminolphenyl lethy! $]$ N-(2-hydroxy-2-phenylethyl) carbamate ia 5 ml of methanol was added 4 mil of a solution of 4 N bydrogen chloride in ethyl acetate. The mixture was stimed a roon temperature for thre hours, the solven was hitcred onf, and the resulting powder was ss washed with ethanol. The resulting powder was dried to give 125 mg of (10)-4 [[2-[(2 hydroxy-2 phenylethyl)amino] ethyl) 2 ($(\mathrm{H}+1,2,4$-riazol-3-yl)acetanitide difydrowaloride.

The compounds of Examples 35 to 40 were prepared by the same manner as in Example 34.

EXAMPLE 35
 [(2 4, tydroxy 2 pheaylethyl)amino jethyt]acetanilide dihydrochloride

EXAMPLE 36
(R) - 2 (2-Acetamitothiazol-4-y $) 4424$ (2-hydroxy 2 phenylethyl)aminojethyl]ncetanilide tydrochatotic

EXAMPLE 37
(R)-4'-[2-[(2-Hydroxy-2-phenylethyl)amino]ethyl]2 - 2 -rnethanesulfonamidohiayol-4-yl)acetanilide bydrochloride

EXAMPLE 38
 2 -phenyletbylamino]ethylacetanilide dibydrochloride

EXAMPLE 39
(R) 4 - $[2[2$ [2-Hydraxy- 2 -phenylehyl) aminolethyi] $2-(2$-pheny hammothazol 4 - yl) azetanilite hydrochloride

EXAMPLE 40
 $241-(4$-nítrobenzyl) $+1 \mathrm{H}-\mathrm{midazol} 2 \mathrm{zyl}]$ acetanilide hydrochtoride

EXAMPLE 41

To 690 me of tert-butyl (R) M $\{2[4-[2$ (2-nmino-thiazol-4-yDacetamino $]$ phenyl]elbyl $]$ N $[(2$ byycroxy 2 phenyl) 4. ehyl]carbamate were adder 30 ml of mathanol and is mol of a solution of 4 N hydrogen chloride in cithyl acelate, and the mixure was stirred at room temperature tor two hours. The solvent was evapotated in vacuo, and the residue was purified by a reverses phase column chromatography elhyllacetailide dihydrochlonde.

Jthe compounds of Examples 42 to 57 were preparel by the same manner as in Example $\$ 1$.

EXAMPLE 42
(R) $4-[2+(2$ Hydroxy- 2 phenylethyl)amino $]$ otbyt $]$ (2 amino-lbiazol+4-yl) maboxanilide hydrochloride

EXAMPLE 43
(R) 2 (2 Amine-5-methylthatzol-4-yl)-4.2-[2 bydroxy-2-phenyletbyl)aminobethyllacetamilide dihydrachloride

EXAMPLE 44
 hydroxy-2-phenylethyl)amino)sthyilpropiowanilide hydrochloride

EXAMPLE 45
(R) $-4-[2[[(2-\mathrm{Hydroxy} 2$-phenylethyl $)$ animo ethyt $]$. earbosanilide dihydrochloride

EXAMPLE 46
(R) $-4-[2\{(2-H y d r o x y$ 2 phenytothyl)amimo $]$ elhyl $\}-$ 2 -(imidaro $[2,1-6]$ thayat-6-yl)acetanilide hydrochlopide

EXAMPI.E 47
 hydroxy-2-phenylemyl)aminojathylpacelanilide hydrochloride

EXAMPLE 48
(R)-2-(1-Benzy]-1H-1,2,4-tixaol-3-yl)-4 [2-[(2. bydeoxy-2-phenylethyl)anmolathyljacetanilide hydrochlaride

EXAMPLE 49
(R)-2 (3-Benzyl-2-thioxothiazol-4-yl) $44^{4}-2-[(2$ hydroxy-2-pherytcthyl)atminolethylacelanilide hydruchloride

. 23		24
- EXAMPLE 66		EXAMPLE 76
[2-(2-hydroxy, 2phenylethyl)amino]ethyl] acelanilide dihydrochloride	\$	(R) $-4{ }^{4}[2-[(2-H y d r o x y-2$ phanylethyl)anino $]$ elhyl $]$. $2-[1$-(quimolin-2-yl)-14-imidazol-2-yl] tribydrochtoride
EXAMPLE 6^{7}		EXAMPLE 77
(R)-2[1-(2,5-Difurobenzyl)-1dimidazol-2-yl1) 4 -[2-(2-hydroxy-2-phenylethyl)amino]sthyl] acelanilide dithydroentoride	10	y 1$]-4$ - 2 -(2-hydroxy-2 pheuylethyl)amino]ethyl] acetanilide
EXAMPIE 68	15	EXAMPLE 78
[2-(2-hydroxy 2 phenylethyl)amioo]ethyi] acelanilide dihydroctloride		yl] 4^{\prime} [2r(2-hydroxy-2-phenytethyl)amino]etbyl] asetanilide
CAMPLE 69	20	EXAMPLE 79
2 [1-(2,3,6-trifluorobenzyl)-1Hwicaidazol-2 2 yb$]$ acetanilide dihydroetaronde	23	(R)-2[[1-(2,5-Dichiorobenzyl)-1H-inudazoh-2-yl $]$-4-[2-(2-hyylroxy 2-phenylethyl)amino]ethyl] acetanilide dihydrochloride
		EXAMPLE 80
EXAMPLE 70		(R) 4 -[2-[(2-Hydroxy-2-phecyle myl)amiondethyl].
(R) $4-[2[(2-$ Hycroxy-2 phenylethyl)amioo $]$ ethyl $]$ 2 [l-(2,4,5-4rifluorobenzyl)-1H-imidazol-2~yl] acetanilide dihydrochloride	30	$2-\{1-(2,3,4$-(rifluorobenzyl)-1H-inuidazol-2-yl] acethenitide dihydrochloride
		EXAMPLE 81
EXAMPLE 71	35	
(R) 4 [$[2-[$ (2 Hydroxy 2 phenylethyl)amino]ethyl] $2-[1-(3,4,5-$ trifuarobenzyl)-1 H-imidazol-2-yl]		$2-[1$-(4-methoxycabonybenzyl)-114 imidazol-2 2 yl$]$ acetanilide dihydrochloride
acetanilide dihydroctatoride		
	40	EXAMPLE 82
EXAMPLE 72		
(R)-4-[2-[(2-Hydtoxy-2-phtenylethyl)aminci]erypl]-		24. 1 [[(piperidine-1 carbonyl)beuzyl]-1H-imidazol-2yllacetanilide dithydrochloride
$2[1-(2,3,4,5,6$ wentaflurobenzy)-1H-imidazol-2 yl]acetanilide dibydroctuoride	45	
		EXAMPLE 83
EXAMPLE 73	50	2 (1-pyrazolyl)acetanilide hydrochloride
(R) -4 - $2\{\text { (2-Hydroxy- } 2 \text { phonylethyl)amino jethyl }]^{-1}$ $2[1-(3$ iodobenzyl)-1H-imidazol-2-yl]acetanilide clihydrochloride		EXAMPLEE 84
EXAMPLE 74	55	(R) $-4-[2-[$ (2-Hydroxve 2 phenylethyl)amino $]$ ethyl] 2-(1,2,4-4nazol-1-yl)acelanilide dibydrochloride
(R)-2[1-(2,6-Dichiorobenzyl)-1/-imidarol-2-y] $\mathbf{-}^{4}$ -		EXAMPLE 85
[(2-hydroxy-2-phenylethyl)amino]ethyl]acetanilide hydrochloride	50	hydroxy" 2 "phenylethyl)araino]ethyllacelanilide dibydrochloride
EXAMPLE 75		
	63	EXAMPLE 86
(2-hydroxy-2-phenylethyl)amino]ethyl]acetanilide dihydrochloride	65	To a solution of 20.1 g of $4 \cdot[2-[\mathrm{N}$-benzyl- N -(2 -bydroxy phenylethyl)aminolethyl]-2-(2-pyridyl) acetanilide in 40 h

mil of metharel was added 5.96 g of 10% patladium-carbon "The reaction sotution was stirred for six hours in a bydrogen atmosphore under almospheric pressure. Insoluble matters were filtored off using Celite and the filtrate was concentrated in vacut. To a methanotic solution of the resulting residue was added 10.8 mil of a 4 N hydrogen chloride-e hyl wetate solulien, and the solven was evaporated in vacuo. The resulting crude erystals were recrystallized from methacol-ethanol to give (R)-4 - [24 [(2-hydroxy-2: pbenylethyl)animocthyl]-2-(2-pyridyl)acelandide hydrochatoride.

The compounds of 87 to 90 were prepared by the same manner is in Example 86.

EXAMPLE 87

(iR) $-4+[2-[(2+4 y d r o x y-2$ phenylethyl) anino $)$ ethyl $]$ 2 -(3-pyridy)acetanilide hydrochlonide

EXAMPIE 88
(R)-4-[2-[(2-Hydroxy-2rphenylethyl)amino $]$ ethyl]. 2-(4-pyridy)acetanilide hydrombloride

EXAMMLE 89

(R) 4 -[2-[(2-Hydroxy-2 phenylethyl)amno]ethyl]3 (2+pytidyl)propionatilide bydrochoricle

EXAMPLE 90

(R) $4-[3[(2$ Hedroxy-2-phenylethyil)amino $]$ ethyl $]$ 2-[(1-pheaylenhy])-1Hmimidazol 2 -yllacelanilide dibydrochloride.

EXAMPLE 91

 hydroxy-2 phenylethyl)aminolethylphenyl]acetanilide (240 mg) was dissolved in 30 ml of ethanol, then 170 mg of 10% palladiantacarbon was added thereto and the mixtare was stitred for nithe bowrs in a hydrogen atmosphere under amospheric pressure. The catalyst was filtered off, the ${ }^{\text {t }}$ solvent was cyaporated in vacuo, and the residue was washed with ethanolethyl acetate to give 200 rag of (B) -2 (
 aminolcthylfacetanilde.
The compounds of Examples 92 and 93 were prepared by 50 the same manner as in Example 86 .

EXAMPLE 92

(R) $4-[2-[(2-H y d r o x y-2$ phenylethyl)amino $]$ ethyl $]$ 2 (3-rtrethylpyridin- 2 -yl) acetanitícle hydrochloride

EXAMPLE 93

(R)-4.[2-[(2-Hydromy-2-phenytethyl)amino $]$ ethyl $]$ -2-(2-pyrazinyl)acetanilide hydrochlonde

EXAMPLE 94

(R) $4 \cdot[4[2-[\mathrm{N} \cdot \mathrm{Benzyl}-\mathrm{N}-(2-4 y \mathrm{droxy}-2-\mathrm{placaylethyl})-$ amino]ethyl 7 phenyl $]-2$ (1 -benayl-1 H -imidazol-2-yl)
acemailide (350 omg) was dissolved in 20 mo of ethanol, then 130 rag of 10% palladium-carbon was added thereto, and the mixture was stirred for 17.5 hours in a hydrogen amosphere under atmospheric pressure. The catalys was filtered oft, the solvent was evaporated in vacuo, and the residuc was puritied by silica gel column chromatograpby (elaent: choroformimethanol/cencentrated aqueous ammoniamot 10/1). The resulting oily substance was dissolved in methanol, and 280 al of a 4 N bydrogen chloride uethyl acetate solution was addecl thereso. The mixture was filtered ufter adding active cabom was abded thereto, and the solvent was evarorated in vacto to give 200 ang of (R)-2-(1-benoyl-JH-imidacol-2-yl)-4'[2-[(2-hydroxy-2-phenylethyl)amino] etbyl]acetanilide dimydrecthoride.
The compounds of Examples 95 and 97 were prepared by the same rommer as in Example 95; the compounds of Examples 98 and 100 were prepared by the same manner as in Example 94; and the compounds of: Examples 99 and 101. to 103 were prepared by the same manner as in Exemple 86.

EXAMPLE 95

EXAMRLE 96
(R) $4-[2[(2-H y d r o x y-2-p h e n y l e t b y l) a m i n o] e t h y l]$. 2-(5-methyt-2-pyridyl)acetamidide

EXAMPLE 97
(R)-4'-[2-[(2-Hydroxy-2-phenyletbyl)amino $]$ etbyl $]-$ 2-(6-rncthyl-2-pyridyl)actanilicic

EXAMPLE 98
4' $[(R)-2[((R)-2-H y d r o x y-2-p h o n y l e t h y l) a m i n o]$ propyl) 2 -(2 pyridyl)acetanilide hydrochloride

EXAMPLE 99
$4 \cdot[(\mathrm{~S}) \sim 2 \cdot[(\mathrm{CR}) \mathrm{n} 2 \cdot \mathrm{Hy}$ ydroxy-2-phenylethyl) aminolpropyl $\}-2$ (2-pyridyl)acetanilide hydrochloride

NXAMPLE 100
$2(1-\operatorname{Ben} y \mathrm{y}$ - 14 -imidazal- 2 yl$)-4^{4}-[(5)-2-[(\mathrm{R})-2$ bytroxy-2-phenylethyl)aminolpropyljacetanilide hydroch boride

EXAMPIE 101
$4-[2[[2 \cdot H y d r o x y+2 \cdot(2 \cdot$ huorophenyl)ethyl]amino] ehtyll-2-(2-pyridyl)acetanilide hydrochloride

EXAMPLE 102

[^7]EXAMPLE 103

4 - $[3-[[2-4 y t r o x y-2-(4-$ huorophenyl)ethyl $]$ amino $]$ ehyl]-2-(2-pyridy)acetanilide hydrochoride

EXAMPIE 104

 pyrimidinyl)acemailide 4030 ml of tetrahydroturan were aded 30 ml of an ethanolic solution of a Rancy nickel and 3 ml of concentated aqueous ammonia, The reaction solution was stired for four bours in a bydrogen atmosphere wnoler inmospheria pressure, then insoluble maters were fleered of uang Cetite, and the solven was evaporated. To the resuling residue were added 10 mi of 2 -propanol, 300 mig of (R)-stytene oxtte and 2 tal of methanol successively. The reaction mixture was heated to reflux for ten hours, and the solvert was evaporated, The residue was puified by silica gel column chromatograpty (oluent: chloroform/ methanolmioh). To a methanolic solution of the resulting resictue was added 150 al of 4 N bydrogen chlaride-elthyl acelate solution, and the solvent was evaporated in vacue. 'The resulting residue was aystallized from methanol ethanol-ethyl acetate atd then rectystallized from ethanoldiethyl ether to give 160 mg of (R)-4'r2ri(2 hydroxy-2" phenylethyl)animo ethyl]-2-(2-pyrimidinyl)acemanilide hydrochloride.

The compounds of Exmples 105 to 108 were prepared by the same manner as in Example 104; and the contopoud of Example 109 was prepared by the same manner as in Exatople 91.

EXAMPLE 105

(R)-4 -2 -[(2-Hydroxy-2-phetylethyl)amino]ethyl]-2-(2-quinolyl)acetanilide bydroctaloride

EXAMPTE 106
 aminol-ethyl)-2-(2-pyridyl)acetanilide laydrochloride

EXAMPLE 1O7
$4 \cdot[2-[[2+1$ ydroxy $2 \cdot(3 \cdot$ pyridy $)$ elhyl]arnino $]$ ethyl $]$ 2 -(2-pyridyl)acetanilide hydrochtoride

EXAMPLE 108

(13) $2 \cdot[\mathrm{I} \cdot(4-$ Chlorobenzyl $)$ - H-benzimidazol-2-yI $]$ $44[2-[\{$-hydroxy-2-phenylehyl)amino $]$ ethyl $\}$ acemailide dibydrochtoride

EXAMPLE 105

 phenylethyl)aminojethyl]acetanilide

EXAMPLE 110

To 4 (3 anitopropyl) 2 -(2-pyridyl) acetanilide were adeled 10 ml of 2 wropanol and 600 mg of (R) styrene oxide successively. The reaction mixiure was heated to reflux for four hours, and the solvent was evaporated. The residue was

EXAMPLE 113

(R)-1-(4-[2-[(2-Hydroxy-2-phenylethy) amino $\}$ chy $)]$ phenyll -3 -(2 -pytidyl) area dithydrochloride
As hereunder, physical and chemfeal properties of the rated in vacuo. The resulting erude crysials were recrystatlized from elbanol-diethyl ether to give 71 mg of (R) mit - 3 n [(2-hydroxy-2"phenylethyl)aminalpropyl] 2 -(2 pyridyl) acetanitide bydrochlorite.

EXAMPLEE 1.1

 pyridyl acetyl famino foheroxy het byllcarbamate in 30 ml of methanol was added 50 ml of a 4 N hydrochloride-cheyl ocetate solution. After the reaction solution was stirred at room tenperature for eight bours, the solvent was evapon rated in vacwo. To the residuc were addad an aqueous solmion of sodium hydrogen carbonate and potassiwn carbonate to adjust to pH aboul 12 . The resubing agucous phase was extracted with a mixed solvent of chloroform and tetrahydroturan. The organic layer was dried over anhydrous magresium sulfate and concentated, the resulting residue was dissolved in 40 ml of methanol, and 1.02 g of (R)styrene oxide was added thereto. After the reaction solution was heated to rellux for 26 hours, the solverl was evaporated in vacto. The resulting residue was purified by sijica gel column chromatography (elueat: chlorotorm/rmethanol $=30$ / $1 \rightarrow 10 / 1)$ and dissofved in methanol, 0.59 ml of a 4 N hydrogen chloridenethyl acelate solution was added, and the solvent was evaporated in vacuo. The resalting crude crysm tals were recrystallized from medmanolethand to give 320 mg of (R)-4-[2-[(2-bydroxy-2-phenyle(hyl)-amino ethoxy]-2-(2-pyridyl)acetanilide hydrochloride

EXAMPIE 112

To a solution of 490 mg of tert-butyl N - 1 . f -di-methyl$2[4$ [2 -(2-pyridyl)acetylfamino $]$ phonyl $]$ ethyl $]$-carbamate in 10 ml of methanot was added 30 ml of a 4 N hydrochloride-elhylacetate solution. After the reaction solution was stirred at room temperature for eight houss, the solvent was evaporated in vacuo. To the residue were added an aqueous solution of sodium. hydrogen carbonate and polassium carbonate to adjust to pH about 12 . The resultiog aqueous phase was extracted with a mixed solvent of chtoroform and tetrahydrofuran. The organic layer was dried over anhydrous magnesium sulfate and concentrated, the resulting residue was dissolved in 2 ml of 2 propanol and 2 ml of methanol, and 120 mg of (R)-styrene oxide was added thereto. After the reaction solution was heated to reflux for 24 hours, the solvent was evaporated in vacuo. The resulting residue was purified by silica gel column chromatograpliy (eluent: chloroform/methanole $30 / 1 \rightarrow 15 / 1$) and dissolved in methanol, 0.1 ml of a 4 N hydrogen chloride ethyl acetate solution was added, and the solvent was evaporated in vacuo. The resulting residue was purifed by silica gel colwn chromatograpty (eluent: chloroform/methanotm5/.) and a reversed phase colum chromatography (eluent: water/methanolm $2 / 1 \cdots 1 / \mathrm{L}$) to give 35 mg of (R) 4 - $[2,2$ dimethyl-2m[2-hydroxy*2-phenyletbyl)amino]ethyl]-2-(2 pyridyl)acetanilide hydrochloride.

The compound of Example 113 was prepared by the same mamer as it Example 1. compounds of the Referential Examples are given in Tables
puritied by silika gel column chromatography celuen: clatororm/melhanom-30/1A10/1). To a methanolic solution of the resulting residue was added $100 / \mathrm{d}$ of a 4 N hydrogen chloride eethyl ace tate solution, and the solvent was evapo1. and those of the compounds of the Examples are given in Tables 2 .

The symbols in the ables have the following meanings.
Rex.: Referential Exanple No.
Ex: Example No.
DAAA: Physicochemicat propenties
NMR: Nucleomagnetic resonance spectrum (TMS internal standard; DMSO-d was used as a solvent untess otherwise specified)
mpe mehing point
dece decomposition
MS (m/z): mass spectrographic data (m/z)
Simeture; siractural formula
TABLE 1

TABLE I"conhnued

Rex. DA'tA

 $(2 \mathrm{H}, 5), 6.92-6.99(2 \mathrm{H}, \mathrm{m}), 7 .(90-7 \times 1(5 \mathrm{H}, 01), 725-7.38$

 $657 \mathrm{~m} .66(2 \mathrm{H}, \mathrm{m}), 6.87 \mathrm{~m} .08(2 \mathrm{H}, \mathrm{m}), 7.20-7.37(10 \mathrm{H}, \mathrm{m})$

 $9.66\left(\mathrm{HH}_{\mathrm{i}} \mathrm{brs}\right)$

 J. $10.0,3.2 \mathrm{He} 7,6.97-7 \mathrm{CH}(\mathrm{HH}, \mathrm{m}), 712-7,35(9 \mathrm{H}, \mathrm{m})$, $7.48-7.56(1 \mathrm{H}, \mathrm{m}), 8.040 .13(4 \mathrm{H}, \mathrm{m})$
$10 \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 3.70(2 \mathrm{H}, \mathrm{s}), 3.88(2 \mathrm{H}, \mathrm{s}), 7.2 \mathrm{~F}-7.32$
 $8.63(\mathrm{HH}, 8), 10.04(14$, ets $)$
$11 \mathrm{NMR}\left(\mathrm{CDCl}_{5}\right) 8: 2.26(3 \mathrm{H}, 3), 2.39(3 \mathrm{H}, 8), 2.57(2 \mathrm{H}, t$,

 10. 77 (th, s^{2})

12 NMR $8: 2.32(34,3), 2.41(3 \mathrm{H}, \mathrm{B}), 2.50-3.9(644,51)$,
 690-7.71(16H1, m), 20.26(14, s)

TARLE 2
Ex. DAMA

 $7.34-7.81(3 \mathrm{H}, \mathrm{th}), 8.57(9 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 8.81-8.95(2 \mathrm{H}, \mathrm{m}), 9.20-9.30(2 \mathrm{H}, \mathrm{th}), 10.71(1 \mathrm{Hi}, \mathrm{brs})$

 (aH, brs), $9.32(3 \mathrm{H}, \mathrm{brs}), 30.69$ (H, brs)

 bes)

 $7.22(2 \mathrm{H}, \mathrm{d}, \mathrm{Jmas} 3 \mathrm{~Hz}), 7.25-7.63(4 \mathrm{H}, \mathrm{m}), 8.93(\mathrm{JH}, \mathrm{br}), 9.38\left(1 \mathrm{H}_{3}, \mathrm{brs}\right), 20.86(\mathrm{H}, \mathrm{s})$

 brs) $13.34(1 \mathrm{H}, \mathrm{trs})$
 $\left.\mathrm{H}_{\text {, }} \mathrm{g}\right), 388(1 \mathrm{H}, \mathrm{brs}), 9.25(\mathrm{LH}$, brs $)$
 c, $J=8.3 \mathrm{~Hz} 2,7.28-7,42(5 \mathrm{H}, \mathrm{m}], 7.57(2 \mathrm{H}, 4, \mathrm{~J} 8.3 \mathrm{H}(2), 3.50(1 \mathrm{H}, \mathrm{s}), 9.31(\mathrm{AH}, 5), 10.31(1 \mathrm{H}$, , s)

 $2.10(14,5), 10.3(1 \mathrm{H}, \mathrm{s}), 12.53(\mathrm{H}, \mathrm{B})$

SAWAI EX. 1015 Page 1029 of 1092

TABLEE 2-continued
Ex. DAYA

 ($1 \mathrm{H}, \mathrm{B}, \mathrm{n})$

 (1H, tras)

 $2.2 \mathrm{~Hz}), 8.87(1 \mathrm{H}, \mathrm{brs}), 9.24(1 \mathrm{H}, \mathrm{brs}), 10.30(1 \mathrm{H}, \mathrm{br})$

 bx $), 10.7(111$, घ)

 bss), $931(1 \mathrm{H}, \mathrm{d}, \mathrm{JaH} 15 \mathrm{H}), 9.6 \mathrm{c}(\mathrm{HH}, \mathrm{b}(\mathrm{s}), 10.79(\mathrm{H}, \mathrm{s})$

 (1H, brs), $9.38(1 \mathrm{H}, 8), 9.63(1 \mathrm{H}, \mathrm{brs}), 10.78(1 \mathrm{H}, \mathrm{n})$

 bros, $9.42\left(1 \mathrm{H}, \mathrm{Br} \mathrm{m}^{2}\right), 10.98(2 \mathrm{H}, 8)$

 $\left.10.8 x^{-10.25(1 H 1}, m\right)$

 (1) 1 , bus), $20.76(2 \mathrm{H}, ~ s)$

 $10.93(1 \mathrm{H}, \mathrm{s}), 14,7 \mathrm{~m}(\mathrm{dH}, \mathrm{bes})$

 $7.72=7.77(24, \mathrm{~m}), 3,50(1 \mathrm{H}, \mathrm{b} 6), 3,34(1 \mathrm{k}, \mathrm{brs}), 1090(14,4)$

 ($1 \mathrm{H}, \mathrm{s}, \mathrm{s}, 14,61(1 \mathrm{~K}, \mathrm{~b} 18)$

 - s)

 bss), $10.49\left(1 \mathrm{H}_{2}, 5,14.61(14\right.$, b, 8$)$

 brs), $1025(2 H, s), k 2,10(1 H, 8)$

 ($\mathrm{LH}, 5,5), 12.56(1+1,5)$

 $10.41(\mathrm{JH}, \mathrm{s}), 12.0(\mathrm{JH}, \mathrm{s})$

 $30,29(1 \mathrm{H}, \mathrm{s}), 10.5 \mathrm{ct}(\mathrm{d}, \mathrm{d}, \mathrm{brs})$

 $20 \mathrm{~Hz}), 8.13\left(2 \mathrm{H}, \mathrm{g}, 5 \mathrm{~m} \mathrm{z}_{\mathrm{n}} 4 \mathrm{~Hz}\right), \$ 94(\mathrm{HH}, \mathrm{bra}), 9.41(1 \mathrm{H}, \mathrm{brs}), 10.95(\mathrm{iH}, 3)$

TABLE 2 -contibued

EK. DAN

 $\left(1 \mathrm{H}_{7} \mathrm{si}\right)$
 $7.712 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.84 \mathrm{~L}), 2.76(14 \mathrm{t}, \mathrm{bes}), 82(1 \mathrm{H}, \mathrm{bm}), 0.65(\mathrm{JH}, 5)$

 brs), $10.43(1 \mathrm{H}, \mathrm{a})$

 (250), $10.36(1 \mathrm{HJ}, \mathrm{s})$

 $9,47(14$, brs), $0.74(\mathrm{JH}, \mathrm{brs})$
 $7.20-7,60(12 \mathrm{H}, \mathrm{m}), 7.84(1 \mathrm{H}, 3), 797(1 \mathrm{H}, \mathrm{s}), 8.83(1 \mathrm{H}, \mathrm{bm}), 5.77(14, \mathrm{bra}), 10.55(1 \mathrm{H}, 3)$

 $10.76(111,3)$

 $10.76\left(1 H_{4}, 5\right)$

 (1H, brs), $1098(14$, s)

 $890(1 \mathrm{HF}, \mathrm{brs}), 9 \mathrm{yy}(1 \mathrm{H}, \operatorname{brs}), 10.67(1 \mathrm{H}$, brs), $144,07(1 \mathrm{H}$, brs $)$

 $8.8 \mathrm{~Hz}), 7.69\left(1 \mathrm{H}, \mathrm{a}, \mathrm{J}_{\mathrm{m}} 1.9 \mathrm{H} 42\right), 7.75\left(1 \mathrm{H}, 4, \mathrm{~J}_{\mathrm{m}} 2.0 \mathrm{~Hz}\right)$

 (114, tras), $4.82(\mathrm{FH}, \mathrm{ms})$

 s), 10.s1(14, s)
 $(1 \mathrm{H}, 7 \mathrm{H}), 7.14-7.22(4 \mathrm{H}, \mathrm{m}), 7.29 \mathrm{~m}, 32(\mathrm{HH}, 41), 7.37-7.12(4 \mathrm{H}, \mathrm{mi}), 7.47-7.54(3 \mathrm{H}, \mathrm{m}), 7.65(1 \mathrm{H}, 5), 7.60(3 \mathrm{H}, \mathrm{d}, \mathrm{J}-1.9 \mathrm{~Hz})$, $9.02(14, \operatorname{brs}), 9, \$ 5(1 \mathrm{H}$, bra), $10.97(1 \mathrm{H}, \mathrm{s})$

 14. $7 \mathrm{ar}\left(\mathrm{HH}_{4} \mathrm{bms}\right)$

 ($\mathrm{JH}, \mathrm{brs}$), $11.00(\mathrm{JH}$, s)

 $8.91(1 \mathrm{H}, \mathrm{brs}), 9.33(4 \mathrm{H}, \mathrm{brs}), 10.93(1 \mathrm{H}, \mathrm{s})$

TABI E Econtimued
EX. DATA

 (111. s), $9.27(1 \mathrm{H}, ~ 5), 10.84(1 \mathrm{H} .8)$

 (iH_{4}, 8)

 3),
NM

$.73(4 \mathrm{H}, \mathrm{m}), 7.43(2 \mathrm{H}, 4, \mathrm{Jm} .3 \mathrm{~Hz}), 7.49(4 \mathrm{H}, \mathrm{d} 4,5 \mathrm{~m} .3,2.5 \mathrm{~Hz}), 8.32(1 \mathrm{H}, \mathrm{B}), 10.24(\mathrm{H}, \mathrm{B})$

 (34, s)

 10.72(14, 8)

mp:237-240 0 M MR \& 200 -

 $7.55-7.62(2 \mathrm{H}, \mathrm{m}), 7.75(1 \mathrm{H}, \mathrm{dt}, \mathrm{y}=1.6,8.0 \mathrm{~Hz}), 8.45-8.5 .3(\mathrm{H}, \mathrm{m}), 8.86 .950(2 \mathrm{H}, \mathrm{br}), 10.35(\mathrm{HH}, \mathrm{bm})$

 ($\mathrm{H} N \mathrm{H}, \mathrm{br}$)
 $7.23-7.43(711, \mathrm{~m}), 7.54-7.63(2 \mathrm{H}, \mathrm{m}), 8.47-8.53(2 \mathrm{Ht}, \mathrm{mi}), 9.07(2 \mathrm{H}, \mathrm{brs}), 10.56(0 \mathrm{H}, \mathrm{ma9})$

 $\mathrm{brx}), 10.07\left(1 \mathrm{H}_{3} \mathrm{brs}\right.$)
 $7.20-7.40(4 \mathrm{H}, \mathrm{mi}, 7.59(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.65(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.9,0.9 \mathrm{~Hz}), 8.91(\mathrm{HH}, \mathrm{brs}), 9.34(\mathrm{HH}, \mathrm{bry}), 10.98(1 \mathrm{H}, \mathrm{s})$
 $7.50-7,53\left(44_{0}, \mathrm{~m}\right), 20.33(111,5)_{2}, 12.97\left(1 \mathrm{H}_{5}\right.$ bss

 $7.22(2 \mathrm{CH}, \mathrm{m}), 7.27-7.43(5 \mathrm{H}, \mathrm{m}), 7.52-7.62(2 \mathrm{H}, \mathrm{m}), 8.50 \mathrm{~B} .69(3 \mathrm{H}, \mathrm{mi}), 8.539 \mathrm{AH}, \mathrm{br}), 9.32(1 \mathrm{H}$, brs), $1041(\mathrm{dH}, \mathrm{ms})$

 $7.21-7.45(76, \mathrm{~m}), 752-7.80(24, \mathrm{mi}), 7.7 \mathrm{~m} 7.80(\mathrm{H}, \mathrm{mu}, 2.41-4.52(14,7 \mathrm{mi}) 10.25(1 \mathrm{H}, \mathrm{mss})$

 ($\mathrm{hH}, \mathrm{brs}$), $9.11(1 \mathrm{H}, \mathrm{br}), 30.31(\mathrm{H}, \mathrm{brs})$
 $(1 \mathrm{H}, ~ a), 7.10-7.35(15 \mathrm{H}, 4 \mathrm{n}), 10.33(\mathrm{AH}, 6 \mathrm{~ms})$

TABI E 2 continued
Ex. DATA

 $(1 \mathrm{H}, 5), 9.08(\mathrm{JH}, \mathrm{s}), 10.31(1 \mathrm{H}, \mathrm{s})$
 $7.28 \times 7.44\left(\mathrm{chH}_{3} \mathrm{~m}\right), 7.53-7.52(2 \mathrm{H}, \mathrm{m}), 8.5 \mathrm{~m}-5.30(4 \mathrm{H}, \mathrm{m}), 70.33(\mathrm{HH}, \mathrm{brs})$

 10.4691H2, brs)

 (14, brs)

 (314, s)
 ($\mathrm{H} H, \mathrm{~s}$)
 $4.93(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.6 \mathrm{~Hz}), 6.14(\mathrm{H}, \mathrm{brs}), 710 \mathrm{~m} 7.23(2 \mathrm{ta}, \mathrm{m}), 7.22 \mathrm{~m} 7.43(7 \mathrm{H}, \mathrm{mt}), 7.50 \mathrm{~m} 7.60(2 \mathrm{H}, \mathrm{m}), 7.75(3 \mathrm{H}, \mathrm{dt}, 7=1.6,7.2 \mathrm{~Hz})$,

 $\left(1 H_{8} \mathrm{~s}\right), 288(1 \mathrm{H}, \mathrm{s}), 10.51(1 \mathrm{H}, \mathrm{s})$
table 3

27

.

TABLE 3-continned
Ex. Situcture

4

4

53

86

93

104

The componads shown in Tables 4 and 5 together with chemical structural formutae can be easily manufactured by almost the same method as mentioned in ibe above Examples or Manufacturing Methods or by the method to 6 which some modifications known to the persons skilled ia
the art are appled. lrwidentally, in some enses, there ate tautomeric, geometric or optical isomers for the compounds mentioned in Tables 4 and 5 , and the compounds of the present invention cover each of the isolated jsomers of the above-mentioned ones on a mixture thereaf.

TABLE 4

13

20

25
7

8

35

49

45

50
11

$s s$
± 2

10

- 5

45

TABEE 5
16 H

17
H

18 H

$19 \quad H$

5

10

15

30

, 21 a

25

30

35 What is clamed is:

1. A wompounct of formula (1):

40

45
in the forment, cach of the symbols means as follows:
ring B is a hetcroaryl group which is unsubstituted or substituted kud is optionally fused with a benzene ring;
5) X is a bond, or a lower alkylene or an alkebylene, boith of which are unsubstituted or substituted with hydroxy or a lower alkyl group, or X is a carbonyl or a group represcated by $-\mathrm{NH}-$-, and when X is a lower alkylene which is substituted with a lower alkyl group, a cartoon atom of the ring B optionally bonds with the lower akyl group so that a ring is forraed;
A is a lower alkylene or a group represented by lower alkylene-Om;
$\mathrm{R}^{1 d} \cdot \mathrm{R}^{16}$ are the same or diferent and each is a hydrogen atom or a lower alkyl groups
R^{2} is a hydroger atom or a balogen atom; and
Z is a group represented by $=\mathrm{Cl} \mathrm{H}$-; of a satt thereof.
2. The compound of formula (I) or the salt thereof according to claim 1, wherein A is methylene, ethylene, or
65 a group represented by $-\mathrm{CH}_{2} \mathrm{O}=$.
3. The compound of formula (I) or the salt hacroof according to clam 2 , wherein the ring B is a heteroary;
group which is substmed with a substituem chosen from a halogen atom, dower alkyl, lower alkenyl, dower alkynyl, hydiroxy, sulfanyl, balogeno lower alkyl, lower alkyi-O-, lower tilkyl- 3 - lower alkyl- $\mathrm{O}-\mathrm{CO}$ - m , carboxy, sulkonyl, sulfinyl, lower a kyl SO -m, lower alkyln SO_{2}, , lower alkyl-CO-, lower alky CO - O- - , carbamoyl, lowes akyl-$\mathrm{NH}-\mathrm{CO}-$, di-lower alkyl-N-CO-, hilro, cyano, amino, lower akyl NH -, di-lower alkyl-N...., aryllower alkyl, hatogeno aryl-lower alkyl, guanidíno, lower alkyl-CONH , ancl lower alkyl- $\mathrm{SO}_{4} \mathrm{NH}-$
4. The compound of formula (i) or the salt thereof 10 accorting to claim 3 , wherein R^{2}, $\mathrm{R}^{\text {an }}$ and R^{10} are each a hydroger atom, and Z is $=\mathrm{CH}=\mathrm{Cm}$.
5. A compound of tommla (a):

In the formula, cath of the symbols means as follows: ring B is a heteroaryl group;
X is a bond or a lower alkylene group;
R is a bydrogen atom, a halogen atom, a lower alkyl group, amino group, an aryl lower akyl group, or a
balogeno aryl-lower alkyl group; or a salt thereof.
6. A compound:
(R) $4^{\prime}-[2-[(2+\mathrm{Hydroxy}-2$-phenylethyl)amino $]$ ethyl]-2. pyrdinecerboxyanilide,
(R)-2-[1~(4-chlorobenzyt) -14 -imidazol $-2 n y \mid)-4 \cdot[2 n[(2-$ hydroxy-2 -phenylethyl)amino lethyl\} uacetanilde, (K).
 hydroxy-2 - phenyletbyl)amitojethyl]acetanilide,
(R) 2 -(2-aminothiazol-4-yI)-4-[2-(2-1 ydroxy-2. phenylethyl) atainofethylfacetatilde,
 hydroxy-2-phenylethyl-aminoledhyl bectanilide.
(R)-2-(2-aminopyridim- $5 \cdot y 1)-4 \cdot[2 \sim[(2 \sim h y d r o x y-2 \omega$ phenytethyl)amino $]$ ethyl $]$ acetanilide, $(\mathrm{R})=4 \cdot[2[(2$. hydroxy- 2 -phenglethyl)amino fetbyl ${ }^{2}-2$ (2-pyridyl) acelanilide,
 pyrazinyl)acelanilide, (R) 4 4- $\{2$ [$[(2-h y d r o x y-2$. phonytethyl)aminolethyl)-2-(2-pyrimidiayl). acemaibde, or a sati of any of the foregoing.
7. A composition momprising at last one compound of formula (1) or the sall thereol as clamed in one of clams: through 4 in a pharmaceutically acecpable carricr.
8. The emposition as claince in claim 7, wherein the at least one compound of formula (l) or the satt thereof is present in an amount effective bor the treating of diabotes wellitus in a human or animal patient in need of such treatiog.
9. The compound of formula (i) as chamed in claim 1 , wherein the compound of formula (f) is an optical isomer, a hydrate, or a solvate of the compound of Foromila (i),
10. A compasition comprising a compound of formula (i) as chaimed in claim 1 in a pharmaceuically acceptable carrier, wherein the compound of formula () is presen as a polymorphic substance.
11. A composition comprising at least one compound of ${ }^{24}$ formada (I) of the sall thereof as claimed in claim 5 , in a pharmaceutically aceeptable camier.
12. A composition comprising at leass one compound or the salt of any of the foregoing as clauned in claim 6 , in a pharmacentically aceptable entier.
13. A method for treating diabeles mellitus in a bunan or animan patient in need of such treatment comprising adrrin istering to the patient an amount of a compound of formula (1) as clamed in chaim 1, wherein the amount is an anount 5 effective for such treatnens.
14. A method for treating obesity in a buman or animal patient in need of such treatment comprising administering to the patient an amount of a compound of formula (1) as clatned in chaim 1, wherein the amount is an amount ebfective for sucb trealment.

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

```
PATENT NO. : 6,346,532 B1.
DATED : February 12, 2002
```

Page 1 of 2
INVENTOR(S) : T. Marsyama et al.

It is certilied that error iappears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 16
Lines 29-30, (Example 3) should read: - (R) 4 -[2-[[2-Hydroxy-2-phenylethyl)amino] ethyl]-8-quinolinecarboxanilide dihydrochloride

Column 17
Lines 40-41, (Example 16) should read:

- (R)-2-(2-Benzyloxypyridin-6-yl)-4'-[2-[(2-hydroxy-2-phenylethyl)amino]ethyI] acetanilide hydrochloride --

Column 19
Lines 58-60, (Example 39) should read: $-\mathrm{m}(\mathrm{R}) 44[2[(2$ Hydroxy-2-phenylethyl)amino $]$ ethyl|-2-(2-phenylaminothiazol-4-yl)acetanilide hydrochloride --

Column 23.
Lines 3-5, (Example 66) should read:
$\sim(\mathrm{R})-2 \sim[1 \cdot(3,5$ Difluorobenzal)-1H-imidazol-2"yl1)-4'm
[2-(2-hydroxy-2-phenylethyl)amino]ethyl] acetanilide dihydrochloride -..
Columm 26,
Lines $47-49$, (Example 99) should read: --41(S)-2-[((R)-2-Hydroxy-2-phenylethyl) aminolpropyl]-2-(2-pyridyl)acetanilide hydrochtoride --

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO. : $6,346,532 \mathrm{~B} 1$
DATED
: February 12, 2002
INVENTOR(S) : 'T, Maruyma ct al.

Page 2 of 2

It is certified that error appeas in the aboverdentified patent and that said Lettars Patent is hereby corrected as shown below:

Column 28.
Line 2, change " $30 / 1 \Delta 10 / 1$)" to $-30 / 1 \rightarrow 10 / 1$). - .
Line 7, should read: -- (2-hydroxy-2-phenylethyl)amino|propy|]-2 (2-pyridyl) -Lines $62-63$, (Example 113) should read; - (R)-1-[4-[2-(2-Hycroxy-2 phenylethyl) aminolethyl! phenyl|-3-(2-pyridyl)urea dihydrochloride --

Column 45
Line 4, should readt - (R)-2-[1-(4-chlorobenzyl)-1H-imidazol-2.y]]-4-[2w[2-

Appendix E

UNITED STATES PATENT AND TRADEMARK OFFICE
Commissioner for Patents Uuted States Patent and Trademark Office P.O. BOX 1450 Alexandria, VA $22313-1450$ www.usprogov

Customer No 197

ISTMT
DATE PRINTED
08/15/2012
CPA GLOBL LIMITED
2318 Mill Road 12th Floor ALEXANDRIA VA 22314

MAINTENANCE FEE STATEMENT

According to the records of the U.S.Patent and Trademark Office (USPTO), the maintenance fee and any necessary surcharge have been timely paid for the patent listed below. The "PYMT DATE" column indicates the payment date (i.e., the date the payment was filed).

The payment shown below is subject to actual collection. If the payment is refused or charged back by a financial institution, the payment will be void and the maintenance fee and any necessary surcharge unpaid.

Direct any guestions about this statement to: Mail Stop M Correspondence, Director of the USPTO, P.O.Box 1450, Alexandria, VA 22313-1450.

PATENT NUMBER	FEEAMT	$\begin{aligned} & \text { SUR } \\ & \text { CHARGE } \end{aligned}$	PYMT DATE	APPLICATION NUMBER	PATENT ISSUE DATE	APPL FILING DATE	PAYMENT YEAR	SMALL ENTITY?	ATMY DKT NUMBER
6,346,532	\$900.00	\$0.00	07/20/05	09/529,096	02/12/02	04/07/00	04	NO	07385.0007

UNITED STATES PATENT AND TRADEMARK OFFICE
Commissioner for Patents United States Patent and J'rademark Office

DATE PRINTED
08/15/2012
CPA GLOBL LIMITED
2318 Mill Road 12th Floor
ALEXANDRIA VA 22314

MAINTENANCE FEE STATEMENT

According to the records of the U.S Patent and Trademark Office (USPTO), the maintenance fee and any necessary surcharge have been timely paid for the patent listed below. The "PYMT DATE" column indicates the payment date (i.e., the date the payment was filed).

The payment shown below is subject to actual collection. If the payment is refused or charged back by a financial institution, the payment will be void and the maintenance fee and any necessary surcharge unpaid.

Direct any questions about this statement to: Mail Stop M Correspondence, Director of the USPTO, P.O.Box 1450, Alexandria, VA 22313-1450.

Appendix F

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

```
FATENTNO. :5,346,532 Bi Page i of 2
DATED : Febuary 12.2002
INVENTOR(S) :T.Mandyanma et al.
```

It is certlfied that arror appeats in the aboveddentifed patent and that said Lefters Patemi is heroby corrected as shown betow:

Colhmi 16
 ethyl) 8-quinolinecarboxanilide dihydrochoride

Columar 17
Lines $40-41$, (Example 16) should read:

- (R) 2 -(2-Benzyloxypyridin 6 - y$])-4$ - $[2$-[(2-hydroxy-2-phenylethyl)arninolethyl] acetanilide hydrochioride ...

Colvarin 12
Lines 58-60, (Example 39) should read: - (R)-4'[2-[(2-Hydroxy-2-phenylethyl)amino] ethyl]-2-(2-phenylaminothiazol $+4+y$ l)acetanilide hydrochloride \rightarrow

Collumens
Lines 3-5. (Example 66) should read:
$-(\mathrm{R})-2-[1-(3,5$-Dilhuoreberwyl $)-1$ H-irridazol- $2-y] 1-4$.
[2-(2-hydroxy 2 "phenylethyl)araino]ethyl] acetanilide dihydrochtoride
Collumn 26
Lines 47-49, (Example 99) should read: - 4 $4(S)-2-[((R)-2+$ thydroxy-2 2 phenylethyl) amino"propyl) 2 -(2"pyridyl)acetanilide hydrochloride vo

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO.	$6,346,532 \mathrm{Bl}$
DATED	February 12,2002
NVENTOR(S)	T. Maruyama et al.

Fage 2 of 2
DATED

It is cernifiod that srror sappears in the above-idenulfied patent end that sald Letters Patent is herphy corrected as shown below:

Columan 28.
Line 2 , change " $30 / 1 \Delta 10 / 1$)." to $-30 / 1 \rightarrow 10 / 1$) . -
Line 7, should read: u" $((2$-hydroxy-2 phenylethyl) amino $]$ propyl $]-2-(2$-pyridyl $)$ i. Lines 62-63, (Example 113) should read: - (R)-1-[4 [2-[2-Hydroxy-2 pitenylethyl) aninojethyll phenyl) 3 -(2-pyridyl)urea ditrydrocthoride ..

Columin 45,

Signed and Sealed this
Thirticth Day of July, 2002

Appendix G

Astellas Phama US, Inc.
Attention: Donald L. Raineri, Ptarm D.
Senor Director, Regufatory Affairs
Three Parkway North

```
Pacevver - mos
MAY 232006
```



``` מissumanes, and Satesy
```

Deertield, IL $60015-2548$

Dear Dr Raner:
We acknowledge receipt of your Investigational New Drag Application (IND) submitted under section 505 (i) of the Federal Food, Drug and Cosmetic Act. Please note the following idenifying data:

IND Number Assigned: $\quad 69,416$

Sponsor:
Name of Drig: YM178

Date of Submission:
May 9, 2006
Date of Receipt:
May 10, 2006

Studies in humans may not be initiated until 30 das after the date of receipt stowimabove. If, on or before June 9, 2006, we identify deficiencies in the IND that recuire correction before human studies begin or that require restriction of human studies, we will notify you immediately that (1) chateal studies may not be initiated under this WD ("cimical hold") or that (2) certain restrictions apply to chimeal studies under this IND ("partial clinical hold"). Lo the event of such notification, you must not intiate or you mast restrict such studies antil you have submitted information to correct the defeiencies, and we have nothted you that the information you submitted is satisfactory.

It has not been our policy to object to a sponsor, upon receipt of this acknowledgenent letter, ether obtainmg supplies of the investigational drug or shipping it to investigators tisted in the IND. However, if the drug is shipped to investigators, they should be reminded that studies may not begin under the IND until 30 days after the IND receipt date or later if the IND is placed on clinical hold.

IND 69,416
Page 2
As sponsor of this 1 ND , you are responsible for comphance with the Federal lood, Brus, and Cosmetie Act and the implenenting regulations (Title 21 of the Code of Federal Regulations). Those responsibilities include (1) reporting any unexpected fatal or life-threatening adverse experience associated wilh use of the drug by thephone or fax no later than 7 calendar days atter initial receipt of the information $[2 \mathrm{LCFR} 312.32$ (o)(2)] (2) reporting any adverse exporience associated with use of the drug that is both serious and umexpected in writing no later than 15 calendar days after initial receipt of the infomation $21 \mathrm{CFR} 31232(0)(1)]$ and (3) subnitting annual progress reports [21 ClR 312.33].

As Tequired by the Food and Drag Modernization Aot and the Best Pharmacenteals for Chidren Aet, you are also responsible for registering certain clinical trials involving your drug product in
 drug is intended for the treatment of a serious or life-theatening disease or condition and you are conducting chinical trials to test its effectiveness, then you must register these trials in the Data Bank Although not required, we encourage you to register effectiveness trits for non-serious diseases or conditions as well as noneffectiveness trials for all diseases or conditions, whether or not they are serious or life-threatening. Additional information on registering your clitical hials, including the required and optional data elements and the FDA Draft Guidance for Industry, "Information Program on Clinical Trials for Serious or Life-Threatening Diseases and Conditions," is available at the Protocol Registration System (PRS) Information Site httri/posinfochicaltrials.govi.

Prase cite the IND number listed above at the top of the frist page of any communications concerring this application. Send all submissions, electronic or paper, including hose sent by - overnight mail or courier, to the following address:

Food and Drug Administration
Center for Drug Evaluation and Research
Division of Reproductive and Urologic Products
5901-B Anmendale Road
Beltsville, MD 20705-1266
If you have any questions, call Jean Makie, Sr. Regulatory Project Manager, at 301-796-0952.
sinerely,

Margaret Kobert R.Ph., MIPA.
Chief, Project Managenent Staf
Division of Reproductive and Urologic Products
Office of Drug Evalation III
Conter for Drag Evaluation and Research

This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature.
/s/

Margaret Kober
5/18/2006 11:53:01 AM
Chief, project.Management stari

Appendix H

Mirabegron (YM178) FDA Submission/Correspondence Index

SUBMISSION/ RECEIPT DATE	DESCRIPTION
05/09/06	Original IND Application
06/05/06	FDA Fax 30 day IND safety review complete with comments
06/07/06	General Correspondence: Response to FDA 30-day review comments for new protocol 178-CL-036
07/17/06	Protocol Amendment: Revised Protocol 178-CL-036 incorporating Amendments 1 and 2
07/28/06	General Correspondence -proposal to amend Protocol 178-CL-036
08/15/06	FDA IND chemistry review complete with comments
09/15/06	Information Amendment: Chemistry, Manufacturing and Controls
09/21/06	Protocol Amendment: New Protocol 178 -CL-060 /Information Amendment: 50 mg tablet
04/05/07	$\begin{aligned} & \text { General Correspondence - Request for Protocol Review (Core Protocol } \\ & \text { 178-CL-037) } \end{aligned}$
04/26/07	FDA Fax requesting additional information on Protocol 178-CL-037
06/05/07	General Correspondence - Additional Information Requested for IRT-QT Review of Core Protocol 178-CL-037
06/12/07	Protocol Amendment: Protocol 178-CL-060 Amendment 1
08/02/07	Information Amendment: Pharmacology/Toxicology - Final Nonclinical Study Reports
08/07/07	Annual Report - Reporting Interval June 9, 2006 through June 8, 2007
08/17/07	General Correspondence: Request for End of Phase 2 Meeting
08/28/07	FDA IRT-QT Review comments on protocol 178-CL-037
09/21/07	General Correspondence: Additional Information Requested for Review of QT Protocol 178-CL-037
10/05/07	End of Phase 2 Briefing Document
10/09/07	FDA IRT-QT Review comments on protocol 178-CL-037
10/26/07	Protocol Amendment: New Protocol 178-CL-044
11/08/07	General Correspondence: Additional Information Requested for QT Protocol 178-CL-037
12/03/07	General Correspondence: Sponsor End of Phase 2 Meeting Minutes
12/11/07	FDA End of Phase 2 Meeting Minutes
12/21/07	Protocol Amendment: Request for Special Protocol Assessment (SPA) for Protocol 178-CL-047
12/21/07	Protocol Amendment: Request for Special Protocol Assessment (SPA) for Protocol 178-CL-046
01/29/08	Information Amendment: New Investigator's Brochure
01/31/08	Protocol Amendment: New Protocol $178-\mathrm{cl}-037$ and Information Amendment: CMC
02/05/08	FDA Comments on SPA review for protocols 178-CL-046 and -047

SUBMISSION/ RECEIPT DATE	DESCRIPTION
02/22/08	General Correspondence: Response to SPA comments: Clinical Protocols 178 -cl-046 and 047
03/07/08	Protocol Amendment: New Protocols 178-CL-046, 178-CL-047 and 178-CL-049 with associated Amendments
04/25/08	Protocol Amendment: Protocol 178 -cl-049 incorporating Amendments 1 and 2
06/16/08	Form FDA1572, Statement of Investigator, use in Norway
07/18/08	Information Amendment: Pharmacology/Pharmacokinetics/Toxicology Non-Clinical Reports
07/31/08	Protocol Amendment: New Protocols 178-CL-039, 178-CL-040, 178-CL058 and 178-CL-059
08/07/08	IND Annual Report (June 9, 2007 - June 8, 2008)
08/26/08	Protocol Amendment: New Protocol 178 -cl-038
09/02/08	FDA Denial of Alternate Statement of Investigator Form FDA 1572
09/18/08	Protocol Amendment: New Protocol 178 -cl-070)
10/23/08	Protocol Amendment: Amendment 2 for protocols 178-CL-046, 178-CL047 and Amendment 3 for Protocol 178-CL-049
10/31/08	Protocol Amendment: New Protocol 178 -cl-068
11/20/08	Information Amendment: Investigator's Brochure edition 8.0
01/07/09	Transfer Letter to APGD
01/26/09	Information Amendment: CMC (IV Formulation)
01/26/09	Protocol Amendment: Amendment 1 for Protocol 178 -cl-038
02/16/09	Information Amendment . CMC (25 mg Formulation)
02/18/09	Protocol Amendment: Withdrawal of Norway sites from IND
03/05/09	$\begin{aligned} & \text { Request for Special Protocol Assessment: Amended Clinical Protocol } 178 \\ & \text { CL-047 } \end{aligned}$
03/05/09	Request for Special Protocol Assessment: Amended Clinical Protocol 178 CL-046
03/17/09	FDA Request for Patient Information in Protocol 178-CL-049
03/20/09	General Correspondence: Response to Protocol $178-\mathrm{CL}-049$ Patient Information Requested
04/01/09	General Correspondence - Protocol 178-CL-049 Patient Information Requested
04/07/109	New Protocol 178-CL-076, CMC Amendment
04/17/09	Protocol Amendment: New Protocol 178-CL-074
04/23/09	Protocol Amendment: Revised Protocol 178-CL-049 incorporating Amendments 4 and 5
04/30/09	Information Amendment: New Investigator's Brochure v8.0 Addendum dated March 2009
05/14/09	Protocol Amendment: Protocol 178-CL-038 Amendment 2
05/14/09	Protocol Amendment: New Protocol 178-CL-041

SUBMISSION/ RECEIPT DATE	DESCRIPTION
05/20/09	FDA Comments on Amended protocols 178-CL-046 and -047
$06 / 18 / 09$	Proprietary Name Request
07/22/09	Information Amendment: Clinical (Final Clinical Study Report 178-CL 060)
07/31/09	Information Amendment -pharmacology and toxicology reports
08/07/09	Annual Report-Reporting Interval June 9, 2008 through June 8, 2009
08/18/09	Protocol Amendment: New Protocols 178-CL-053, 178-CL-069, 178-CL 072
08/27/09	FDA Request for Patient Information in Protocol 178-CL-049
08/28/09	Response to Information Request
09/14/09	Response to Information Request (CRFs for 178-CL-046 and 148-CL049)
09/25/09	Type C Meeting Request
10/05/09	FDA Request for Patient Information
10/06/09	FDA Comments on Protocols 178-CL-069 and -072
10/06/09	General Correspondence: Protocol 178-CL-047 and 178-CL-049 Patient Information Requested
10/19/09	Protocol Amendment: Request for IRT-QT Review of Protocol 178-CL077
$10 / 27 / 09$	FDA Teleconference Regarding protocol 178-CL-053
11/05/09	Type C Meeting Briefing Document
11/10/09	Protocol Amendment - Protocol 178 -CL-053 Amendment 1
11/10/09	General Correspondence - Protocol 178-CL-049 Patient Information Request
11/18/09	General Correspondence: Human Metabolites of Mirabegron
11/18/09	Information Amendment: Final Clinical Study Report Protocol 178-CL- 036
12/02/09	FDA Request for Datasets for Study 178-CL 037
12/04/09	Information Amendment: Datasets for QT Study 178-CL-037
12/08/09	Information Amendment Clinical: Response to Comments for Protocol 178-CL-069 and 178-CL-072
12/10/09	FDA Request for Patient information
12/16/09	FDA Response to Proprietary Name Request
12/23/09	Submission of Sponsor Type C Meeting Minutes
01/05/09	FDA Meeting Minutes from Type C Meeting
01/08/09	FDA Meeting Minutes from October 27, 2009 Teleconference
01/15/10	Type B Meeting Request [CMC]
01/20/10	Information Amendment * Response to Information Request [178-CL-037 Dataset]
02/03/10	Type B Meeting Pre-NDA CMC Briefing Document
02/15/10	Request for Proprietary Name Review
03/17/10	FDA Meeting Minutes from Type B CMC meeting
03/23/10	Protocol Amendment - Protocol 178-CL-053 Amendment 2

$\begin{aligned} & \text { SUBMISSION/ } \\ & \text { RECEIPT DATE } \end{aligned}$	DESCRIPTION
03/30/10	Protocol Amendment: Protocol 178 -cl-049 incorporating Amendments 1 7
04/19/10	FDA IRT-QT Review comments on protocol 178-CL-077
04/22/10	Information Amendment: Investigator's Brochure edition 9.0
04/27/10	Protocol Amendment: Protocol 178 -CL-077 Amendment 1
05/13/10	Information Amendment Clinical: Final Clinical Study Report 178 -CL041
05/27/10	Information Amendment: Nonclinical
06/17/10	FDA Request for Medwatch Reports
06/24/10	Information Amendment - Response to Information Request
07/01/10	Response to Information Request
07/01/10	FDA Teleconference
07/21/10	Response to Information Request
07/22/10	FDA Teleconference
07/27/10	Protocol Amendment: New Protocol 178-CL-080
07/28/10	General Correspondence: Meeting Minutes - July 1, 2010 teleconference
08/03/10	Information Amendment: PharmTox
08/09/10	Annual Report - Reporting Interval June 9, 2009 through June 8, 2010
08/09/10	Response to Information Request
08/10/10	General Correspondence: Type B preNDA Meeting Request
08/18/10	Information Amendment - Response Additional Information - Protocol 178-CL-081 / Preclinical Assessment
08/19/10	General Correspondence: Meeting Minutes - July 22, 2010 teleconference
08/25/10	FDA Teleconference
09/16/10	Information Amendment - 178-CL-047 Clinical Study Report
09/22/10	Protocol Amendment - New Protocol 178-CL 081
09/28/10	Information Amendment - 178-CL-046 Clinical Study Report
10/01/10	PreNDA Briefing Document
10/13/10	General Correspondence: Meeting Minutes - August 25, 2010 teleconference
10/22/10	Information Amendment - Additional Information for Type B Pre-NDA Meeting
11/04/10	FDA Comments on Protocol 178 -CL-081
11/11/10	Protocol Amendment - Protocol 178-CL-081 Amendment 1
11/19/10	General Correspondence - SponsorPre-NDA Meeting Minutes (November 2: 2010)
12/03/10	Protocol Amendment - Protocol 178-CL-081 Amendment 2 and SAP
12/09/10	FDA PreNDA Meeting Minutes
01/19/11	Proprietary Name Rebuttal
01/26/11	Amendment to Proprietary Name Review

SUBMISSION/ RECEIPT DATE	DESCRIPTION
02/01/11	Information Amendment - Clinical Study Reports 178 -CL-038 and 178-CL-039
02/16/11	Information Amendment - Investigator's Brochure Edition 10
03/11/11	Electronic Submission Meeting Request
04/19/11	Information Amendment - 178-CL-049 Clinical Study Report
05/04/11	Information Amendment: PharmTox
05/17/11	Briefing Package for Type C Electronic Submission Meeting
06/24/11	Information Amendment: Toxicology
07/11/11	Sponsor Electronic Submission Meeting Minutes
07/19/11	FDA Response to Proprietary Name Request
07/21/11	FDA Meeting Minutes Electronic Submission. Meeting
08/26/11	New Drug Application 202611 Submission
09/06/11	FDA NDA Acknowledgement Letter
09/09/11	FDA Request for Word version of Labeling text
09/12/11	FDA Request for FDA Form 3674
09/12/11	Information Amendment: Draft Labeling in Word format and FDA Form 3674
10/07/11	FDA Request for final versions Protocols 178-CL-046, -047, -074
10/11/11	Response to Information Request: -046 Protocol with Amendments
10/13/11	Request for Proprictary Name Review
10/20/11	FDA Request for updated labeling with Trade Name
10/19/11	Response to Information Request: Updated Draft Labeling to add tradename
11/03/11	FDA Request for Resized Datasets
11/03/11	FDA Request for statistical programming code
11/09/11	FDA Filing Communication Day 74 Letter
11/17/11	FDA Request for Clinical Patient Information
11/28/11	Response to Day 74 Letter (Updated Labeling)
12/01/11	Response to Day 74 Letter (ClinPharm)
12/01/11	Response to Day 74 Letter (Biostatistics)
12/07/11	Clinical Information Response
12/07/11	FDA Request for CMC samples and equipment
12/09/11	Clinical Information Response (Additional Patient Information)
12/13/11	FDA Request for Highlights of Clinical Pharmacology Form
12/13/11	Response to Information Request (Highlights of Clinical Pharmacology)
12/15/11	FDA Request for Carton and Container label changes
12/15/11	Armendment to Pending Application (Resized Datasets)
12/21/11	120 Day Safety Update (Updated CMC)
12/22/11	Amendment to Pending Application (Updated Vital Signs Analyses)
01/05/12	FDA CMC Request
01/13/12	Response to Information Request (CMC)
02/07/12	Response to Information Request (List of Investigators)
02/08/12	Request for Proprietary Name Review

$\begin{aligned} & \text { SUBMISSION/ } \\ & \text { RECEIPT DATE } \end{aligned}$	DESCRIPTION
02/08/12	FDA Mid-Cycle Review Comments and CVD Analysis
02/08/12	Response to Information Request (Updated draft carton and container labels)
02/14/12	Investigator's Brochure, Edition 11
02/17/12	Request for Comments and Advice (Proposed Analysis Plan)
02/29/12	FDA CMC Request
03/06/12	Response to Information Request (CMC Micro Testing)
03/07/12	Response to Information Request (CVD Analysis)
03/19/12	Response to Information Request (CMC Comparability Protocol)
03/23/12	Response to Information Request (10-yr CVD Risk Analysis)
04/03/12	Withdrawal of Request for Proprietary Name Review
04/10/12	Response to Ifformation Request (CMC Cap Liners)
04/12/12	FDA Request for Pediatric Information
04/16/12	Proprietary name Review Request
04/17/12	Response to Information Request [Pediatric Administrative Information]
05/03/12	FDA Telecon: Post-marketing Commitments and Labeling comments
05/04/12	Response to Information Request (Pediatric Administrative Information-
05/04/12	Response to Information Request (Cardiovascular Protocol Outline)
05/09/12	Response to Information Request (Updated Package Insert)
05/10/11	FDA Labeling PMR/PMC Letter
05/11/12	Response to Information Request (Hepatotox PM Surveillance)
05/11/12	Response to Information Request (Updated draft carton and container labels)
05/16/12	Response to Information Request (Neoplasm Protocol Outline)
05/18/12	Response to Information Request (Updated draft carton and container labels)
06/01/12	Response to Information Request (Hepatotox PM Surveillance)
$06 / 04 / 12$	Astellas Change of Address
06/25/12	Response to Information Request (Postmarketing Requirements)
06/27/12	Response to Information Request (Revised Postmarketing Requirements)
06/28/12	Response to Information Request (Updated draft labeling text)
06/28/12	FDA NDA Approval Letter

PTOFE/B1A (122-69)

PATENT - POWER OF ATTORNEY OR REVOCATION OF POWER OF ATTORNEY WITH A NEW POWER OF ATTORNEY AND CHANGE OF CORRESPONDENCE ADDRESS	Patent Number	6,346,532 81
	Issue Date	February 12, 2002
	First Namedilivertor	Telsuya Maruyama er al.
	Title	AMIDE DERVVATIVES OR SALTS THEFEEOF
	Attorrey Docket Number	02213.003400

STATEMENT UNDER 37 CFR $3.73(\mathrm{~b})$

Applicant/Patent Owner: Tatsuya Maruyama et al.
Application No./Patent No. 6,346,532 B1 Filedissue Date: February 12, 2002

Titted:

AMIDE DERIVATIVES OR SALTS THEREOF

Astellas Pharma Inc. - a Corporation
(Name al Asaigripe) Type of Amsignee, eng corporation, partnership, university, quvermatil apancy, elo. states that it is:

1. X the assignee of the entive right, the, and interestit:
2.

an essignee of less than the entire right, title, and interest in The extent (by percentage) of its ownership interest is \qquad \%) ; or
3.the assignee of an undivided interest in the entirety of (a campete assignment from one of the joint inventors was matie) the patent applicationipatent identified above, by virtue of elther:
A. \square

An asisignoment from the inventor(s) of the patent application/patent identifued above. The assignment was recorded in the United States Patent and Trademark Office at Reel \qquad Frame \qquad or for which a copy therefore is attached.
OR
B. X A chath of tit\% from the inventer(s), of the patent application/patent identified above, to the aurrent assignee as follows:

1. from: Inventors

To; Yamanouch Pharmaceutical Co., Ltd.
The document was recorded in the United States Patent and Trademark Olfice at
Reel 010808 - Frame 0313 of for when a copy thereot is atteched.
2. From: Yamanouchi Fharmaceutical Co. LId. To: Astellass Phamma Inc.

The document wos recorced in the Uniked States Palent and Trademark Office at
Reel 016784 , Frame 0361 or for which a copy thersof is attacher.
2. From: \qquad To: \qquad
The dacument was recorded in the Uniked States Patent ants Tradernark Office at Reel \qquad , Freme \qquad or for which a copy thereof is atteched.Additional dseuments in the chain of tite are listed on a supplemental sheet(s).

As required by 37 CFR $3.73(b)(1)(6)$, the documentary evidence of the chain of tite from the original owner to the assignee was, or concurfently is being, submitted for recordation monsuant to 37 Crik 3.11.
INOTE: A separate copy (i, a a true copy of the ofiginat assignment document(s)) must be subrnitted to Assignment Division in accordance with 37 CFR Part 3 , to record the assignment in the records of the USFTO. Seg MPEP 302.0A

 for Fistents, F.O. Bow 1450 , Aloxandria, VA $22313+1480$.

Payment information:

Submitted with Payment		no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1	Fower of Attorney	POA532patent.pdf	91900	no	1
Warnings:					
Information:					

Unted States Patent and Trademark Offige
United Statem Fatent and T'mademank Office

Date Mailed: 10/02/2012

NOTICE OF ACCEPTANCE OF POWER OF ATTORNEY

This is in response to the Power of Attorney filed 09/21/2012.
The Power of Attomey in this application is accepted. Correspondence in this application will be mailed to the above address as provided by 37 CFR 1.33 .
/dtycmon/

Office of Data Management, Application Assistance Unit (571) 272-4000, or (571) 272-4200, or 14888-786-0101

Untted States Patent and Trademark Office
United Statem Fatent and T'mademank Office

901 NEW YORK AVENUE, NW
WASHINGTON, DC 20001-4413
Date Mailed: 10/02/2012

NOTICE REGARDING CHANGE OF POWER OF ATTORNEY

This is in response to the Power of Attorney filed 09/21/2012.

- The Power of Attorney to you in this application has been revoked by the assignee who has intervened as provided by 37 OFR 3.71. Future correspondence will be mailed to the new address of record(37 CFR 1.33).
dtremon/

Office of Data Management, Application Assistance Unit (571) 272-4000, or (571) 272-4200, or 1-888-786-0101

Office of Regulatory Policy
Food and Drug Administration
10903 New Hampshire Ave., Bldg. 51, Rm. 6222
Silver Spring, MD 20993-0002

Attention: Beverly Friedman

The attached application for patent term extension of U.S. Patent No. 6,346,532 was filed on August 23, 2012, under 35 U.S.C. § 156. Please note that a patent term extension application for U.S. Patent No. $7,342,117$ and U.S. Patent No. $7,750,029$ for NDA 69,416 for the human drug product MYRBETRIQ ${ }^{\text {TM }}$ (mirabergron) was filed concurrently, pursuant to the provisions of 37 C.F.R. § 1.785.

The assistance of your Office is requested in confirming that the product identified in the application, MYRBETRIQ ${ }^{\text {TM }}$, has been subject to a regulatory review period within the meaning of 35 U.S.C. $\$ 156(\mathrm{~g})$ before its first commercial marketing or use and that the application for patent term extension was filed within the sixty-day period beginning on the date the product was approved. Since a determination has not been made whether the patent in question claims a product which has been subject to the Federal Food, Drug and Cosmetic Act, or a method of manufacturing or use of such a product, this communication is NOT to be considered as notice which may be made in the future pursuant to 35 U.S.C. $\S 156$ (d)(2)(A).

Our review of the application to date indicates that the subject patent would be eligible for extension of the patent term under 35 U.S.C. § 156.

Inquiries regarding this communication should be directed to Ali Salimi at (571) 272-0909 (telephone) or (571) 273-0909 (facsimile) or by e-mail at ali.salimi@uspto.gov.

Mary C. TV
Senior Legal Advisor
Office of Patent Legal Administration
Office of the Associate Commissioner
for Patent Examination Policy
ce: Jason M, Okun
Fitzpatrick, Cella, Harper \& Scinto
1290 Avenue of Americas
New York, New York 10104-3800

JUL 102013

10903 New Hampshire Avenue Building \# 51, Room 6284 Silver Spring, MD 20993

Re: Myrbetriq
Public Health Service

Patent Nos. 6,346,532; 7,342,117; 7,750,029
Docket Nos. FDA-2013-E-0410;
FDA-2013-E-0411;
And FDA-2013-E-0412

The Honorable Teresa Stanek Rea
Acting Under Secretary of Commerce and
Acting Director of the United States Patent and Trademark Office
Mail Stop Hatch Waxman PTE
P.O. Box 1450

Alexandría, VA 22313-1450
Dear Acting Director Rea:
This is concerning the applications for patent term extension for U.S. Patent Nos. 6,346,532; 7,342,117; and 7,750,029, filed by Astellas Pharma Inc., under 35 U.S.C. 156. The human drug product claimed by the patents is Myrbetriq (mirabergron), which was assigned new drug application (NDA) No. 202611.

A review of the Food and Drug Administration's official records indicates that this product was subject to a regulatory review period before its commercial marketing or use, as required under 35 U.S.C. $156(a)(4)$. Our records also indicate that it represents the first permitted commercial marketing or use of the product, as defined under 35 U.S.C. $156(f)(1)$.

The NDA was approved on June 28, 2012, which makes the submission of the patent term extension application on August 23, 2012, timely within the meaning of 35 U.S.C. 156 (d)(1).

Should you conclude that the subject patent is eligible for patent term extension, please advise us accordingly. As required by 35 U.S.C. 156 (d)(2)(A) we will then determine the applicable regulatory review period, publish the determination in the Federal Register, and notify you of our determination.

Please let me know if we can be of further assistance.
Sincerely yours,

Jane A. Axelrad
Associate Director for Policy Center for Drug Evaluation and Research

Rea - Myrbetriq
Patent Nos. $6,346,532 ; 7,342,117 ; 7,750,029$
Page 2
cc: Jason M. Okun
Fitzpatrick, Cella, Harper \& Scinto
1290 Avenue of the Americas
New York, NY 10104-3800

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In Re: \quad U.S. Patent No. 6,346,532 B1
Issued: … February 12, 2002
To: ... Tatsuya Maruyama, Takayuki Suzuki, Kenichi Onda, Masahiko Hayakawa, Hiroyuki Moritomo, Tetsuya Kimizuka, and Tetsuo Matsui

For: AMIDE DERIVATIVES OR SALTS THEREOF
Mail Stop Hatch-Waxman PTE
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

SLBMISSION UNDER 37 C.F.R. $\$ 1.765$

Sir;
In compliance with the duty of disclosure in patent term extension proceedings under 37 C.F.R. § 1.765, Applicant would like to advise the Office as follows:

- A. Request for Supplemental Examination of the above-captioned U.S. Patent No. 6,346,532 B1 was filed on November 21, 2013. A Notice of Supplemental Examination Request Filing Date confirming that this Request satisfied all relevant requirements for supplemental examination was issued on January 24, 2014.
- The Supplemental Examination was assigned Control No. 96/000,045.
- A Supplemental Examination Certificate was issued on January 31, 2014, indicating that a substantial new question of patentability affecting at least one claim of the patent is raised by the aforementioned Request.

Accordingly, an ex-parte reexamination will be ordered pursuant to 35
U.S.C. \$257.

Applicant's undersigned attoney may be reached in our New York Office by

telephone at (212) 218-2100. All correspondence should continue to be directed to our address listed below.

Respectfully submitted,

Jason M. Okun/
Jason M. Okun
Attomey for Applicant
Reg. No. 48,512
Date February 27, 2014

FITZPATRICK, CELLA, HARPER \& SCINTO
1290 Avenue of the Americas
New York, New York 10104-3800
Telephone: (212) 218-2100
Facsimile: (212) 218-2200

Payment information:

Submitted w	ment	no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (If appl.)
1	Miscellaneous Incoming Letter	Rule765Submission022130034 $00 . p d f$		no	2
Warnings:					
Information:					

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111

If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office
If a new international application is being filed and the international application indudes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.

Office of Regulatory Policy
Food and Drug Administration
$\Delta P R=22014$
10903 New Hampshire Ave., Bldg. 51, Rm. 6284
Silver Spring, MD 20993-0002
Attention: Beverly Friedman
Dear Ms. Axelrad:
Transmitted herewith is a copy of the application for patent term extension of U.S. Patent No. $6,346,532$. The application was filed on August 23, 2012, under 35 U.S.C. § 156. Please note that patent term extension for U.S. Patent No. 7,750,029 and U.S. Patent No. 7,342,117 for NDA No. 202611 for the product MYRBETRIQ \mathbb{B} (mirabergron) was filed concurrently, pursuant to the provisions of 37 C.F.R. § 1.785 .

The patent claims a product that was subject to regulatory review under the Federal Food, Drug and Cosmetic Act. Subject to final review, the subject patent is considered to be eligible for patent term extension. Thus, a determination by your office of the applicable regulatory review period is necessary. Accordingly, notice and a copy of the application are provided pursuant to 35 U.S.C. § $156(\mathrm{~d})(2)(\mathrm{A})$.

Inquiries regarding this communication should be directed to Ali Salimi at (571) 272-0909
(telephone) or (571) 273-0909 (facsimile) or by e-mail at ali.salimi@uspto.gov.

Senior Legal Advisor
Office of Patent Legal Administration
Office of the Associate Commissioner
for Patent Examination Policy

cc: Jason M. Okun
Fitzpatrick, Cella, Harper \& Scinto
1290 Avenue of Americas
New York, New York 10104-3800

RE: MYRBETRIQ © (mirabergron)
Docket No. FDA-2013-E-0410

Public Health Service

Food and Drug Administration 10903 New Hampshire Avenue Building 4 51, Room 6257
Silver Spring, MD 20993
Re: MYRBETRIQ
Patent Nos. 6,346,532; 7,342,117;
7,750,029
Docket Nos: FDA-2013-E-0410;
FDA-2013-E-0411; FDA-2013-E0412

Acting Under Secretary of Commerce and
Acting Ditector of the United States Patent and Trademark Office
Mail Stop Hatch-Waxman PTE
P.O. Box 1450

Alexandria, VA $22313-1450$
Dear Acting Director:
This is in regard to the applications for patent term extension for U.S. Patent Nos. 6,346,532; $7,342,117$; and 7,750,029, filed by Astellas Pharma Inc., under 35 U.S.C. section 156 et seq. We have reviewed the dates contained in the applications and have determined the regulatory review period for MYRBETRIQ (mirabegron), the human drug product claimed by the patents.

The total length of the regulatory review period for MYRBETRIQ (mirabegron) is 2,213 days. Of this time, 1,908 days occurred during the testing phase and 305 days occurred during the approval phase. These periods of time were derived from the following dates:

1. The date an exemption under subsection 505(i) of the Federal Food, Drug, and Cosmetic Act involving this drug product became effective: June 9, 2006.

The applicant claims May 10, 2006, as the date the investigational new drug application (IND) became effective. However, FDA records indicate that the IND effective date was June 9, 2006, which was 30 days after FDA receipt of the IND.
2. The date the application was initially submitted with respect to the human drug product under section 505 of the Federal Food. Drug, and Cosmetic_Act: August 29, 2011.

FDA has verified the applicant's claim that the new drug application (NDA) for MYRBETRIQ (NDA 202611) was submitted on August 29, 2011.
3. The date the application was approved: June 28, 2012.

FDA has verified the applicant's claim that NDA 202611 was approved on June 28, 2012.

This determination of the regulatory review period by FDA does not take into account the effective date of the patent, nor does it exclude one-half of the testing phase as required by 35 U.S.C. section $156(\mathrm{c})(2)$.

Please let me know if we can be of further assistance.
Sincerely yours,

bor
Jane A. Axelrad
Associate Director for Policy
Center for Drug Evaluation and Research
ce. Jason M. Okun
Fitzpatrick, Cella, Harper \& Scinto
1290 Avenue of the Americas
New York, NY. 10104-3800

Conjugate Vaccine). MENHIBRIX is a vaccine indicated for active immunization to prevent invasive disease caused by Neisseria meningitides serogroups C and Y and Haemophilus influenzae type b. Subsequent to this approval, the Patent and Trademark Office received patent term restoration applications for MENHIERIX (U.S. Patent Nos. $5,693,326$ and $5,955,079$) from the Henry M.
Jackson Foundation for the
Advancement of Military Medicine, and the Patent and Trademark Office requested FDA's assistance in determining the patents' eligibility for patent term restoration. In a letter dated March 4, 2013, FDA advised the Fatent and Trademark Office that this human biological product had undergone a regulatory review period and that the approval of MENHIBRLX represented the first pormitted commercial marketing or use of the product. Thereatter, the Patent and Traciemark Office requested that FDA determine the product's regulatory review period.
FDA has determined that the applicable regulatory review period for MENHIERIX is 2,024 days. Ol this time. 1,886 days occurred during the testing phase of the regulatory review period, while 1,038 days occurred during the approval phase. These periods of time were derived from the following dates:

1. The date an exemption under section $505(i)$ of the Federal Food, Drug, and Cosmetic Act (21 U.S.C. 355(i)) became effective: June 14, 2004. The applicant claims June 12, 2004, as the data the investigational new drug application (IND) became effective. However, FDA records indicate that the IND effective date was June 14, 2004, which was 30 days after FDA receipt of the IND.
2. The date the applicotion was initiolly submitted with respect to the human biological prodact under section 351 of the Public Health Service Act (42 U.S.C. 262); August 12, 2009. FDA has verified the applicant's claim that the biologics license application (BLA) for MENHIBRLX (BLA 1.253E3) was initially submitted on August 12, 2009.
3. The date the application was approved: June 14, 2012. FDA has verified the applicant's claim that BLA 12,363 was approved on June 14, 2012.
This determination of the regulatory reviow period establishes the maximum potential length of a patent extension. Fhowever, the Patent and Trademark Office epplies several statutory limitations in its calculations of the actual period for patent extension. In its applications for patent extension, this applicant seeks 1,825 days of gatent termextension.

Anyone with knowledge that any of the dates as published are incorrect may submit to the Division of Dockets Mandgenent (see ADDRESSES) either whetronic or writen comments and ask for a redetermination by July 28, 2014. Furthermore, any interested person may petition FDA for a determination regarding whether the applicant for extension acted with due diligence during the regulatory review period by November 24, 2014. To meet its burden, the petition must contain sufficient facts to merit an FDA investigation. (See H. Rept. 857. part 1, 98th Cong, 2d sess, pp. 41-42, 1984.) Petitions should be in the format specified in 21 CFR 10.30.
Interested persons may subnit to the Division of Dockets Management (see ADDRESSES) electronic or written comments and writter or electronic petitions. It is only necessary to send one set of comments, Identify comments with the docket number found in brackets in the heading of this document. If you submit a written petition, two copies are required. A petition submitted elactronically must be submitted to http://
www.regulations.gov, Docket No. FDA-2013-5-0610. Comments and petitions that have not been made publicly available on http://www.regulations.gov may be viewred in the Division of Dockets Management between 9 a.m. and 4 p.m., Monday through Friday.
Detud May 21. 2014.

Lestie Kux,

Assistant Commissioner for Policy.
 billing cooe aybo-ay-p

DEPARTMENT OF HEALTH AND HUMAN SERVICES

Food and Drug Administration

[Docket Nos. FDA $2013 m=\mathbf{E} \mathbf{0 4 1 0}$; FDA 2013-E-0411; FDA-2013-E-0412]

Determination of Regulatory Review Period for Purposes of Patent Extension; MYRBETRIO
agency: Food and Drug Administration, HHS.
ACTION: Notice.
summary: The Food and Drug Administration (FDA) has determined the regulatory review period for MYRBETRIQ and is publishing this notice of that detemmation as required. by law. FDA has made the determination berause of the subrission of applications to the Director of Patents and Trademarks, Department of Commerce, for the
uxtension of a patent which claims that human drug product.
ADDRESSES: Submit electronic comments to http:// www.regulations.gov. Submit written petitions (two copies are required) and written comments to the Division of Dockets Management (HFA-305), Food and Drug Administration, 5630 Fishers Lane, Rm. 1061, Rockville, MD 20852. Submit petitions electronically to http://www regulations,gov at Docket No. FDA-2013-S-0610.
FOR FUATHER INFORMATION CONTACT: Beverly Friedman, Office of Management, Center for Orug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave., Bldg. 51, Km. 6257. Silver Spring, MD 20993-0002, 301-796-7900.
SUPPLEMENTABY INFORMATION: The Drug Price Competition and Patent Term Restoration Act of 1984 (Pub. L. $98-417$) and the Generic Animal Drug and Patent Term Restoration Act (Pub. L.. 106m670) generally provide that a patent may be extended for a period of up to 5 years so long as the patented itera (human. drug product, animal drug product, medical device, food additive, or color additive) was subject to regulatory review by FDA before the item was marketed. Under these acts, a product's regulatory review period forms the basis for determining the amount of extension an applicant may receive.

A regulatory review period consists of two periods of time: A testing phase and ata approval phase, For human drug products, the testing phase begins when the exemption to permit the clinical investigations of the drug becomes effective and runs until the approval phase begins. The approval phase starts with the initial submisaion of and application to market the human drug product and continues until FDA grants ${ }^{\circ}$ permission to market the drug product. Although only a portion of a regulatory reviow poriod may count toward the actual amount of extension: that the Directar of Pateats and Trademarks may award (for example, half the testing phase must bo subtracted as well as any time that may have occurred before the patent was issued), FDA's deternination of the length of a regulatory review period for a human drug product will include all of the testing phase and approval phase as specified in 35 U.S.C. $156(\mathrm{~g})(1)(\mathrm{B})$.
FDA has approved for marketing the human drug product MYRBETRIQ (mirabegron), MYRBETRIQ is indicated for the treatment of overactive bladder with symptoms of urge urinary incontinence, urgency, and urinary
frequency. Subsequent to this approval, the Patent and Trademark Office received patent tem restoration applications for MYREETRIQ (U.S. Patent Nos. 6,346,532; 7,342,117; 7,750,029) from Astellas Phama Inc., and the Patent and Trademark Office wequested FDA's assistance in determining the patents' oligibility for patent term restoration. In a letter dated Tuly 10,2013 , FDA adviser the Patent and Trademark Office that this human drug product had undergone a regulatory review period and that the approval of MYRBETRIQ represented. the first permitted commercjal marketing or use of the product. Thereafer, the Patent and Traclemark Office requested that FDA determine the product's regulatory seview period.
FDA has determined that the applicable regulatory review period for MXRBETRIQ is 2,213 days. Of this time, 1,908 days occurred during the tasting phase of the regulatory review period, white 305 days occurred during the approvel phase. These periods of time were derived from the following dates:

1. The date an exernption under section $505(i)$ of the Federal Food, Drug, and Cosmetic Act (the FDEC Act) (21 U.S.C. $355(i))$ became effective: June 9. 2006. The applicant claims May 10, 2006, as the date the investigational new drug application (IND) became effective. However, FDA records indicate that the IND effective date was June 9, 2006. which was 30 days after FIOA recuipt of the IND.
2. The date the application wos initiolly submitted with nespect to the human drug produot under section $505(b)$ of the FDEC Act: August 29, 2011. FOA has verified the applicant's daim that the new drug application (NDA) for MYRBETRIQ (NDA 202611) was submitted on August 29, 2011.
3. The date the application was approved: June 28, 2012. FDA has verified the applicant's clatm that NDA 202611 was approved on June 28, 2012.
This determination of the regulatory review period establishes the maximum potential length of a patent extension. However, the Patent and Trademark Office applies several statutory limitations in its calculations of the actual period for patent extension. In its applications for patent extension, this applicant seeks 515,938 , or 1,259 days of patent term extension.

Anyone with knowledge that any of the dates as published are incorrect may submit to the Division of Dockets Management (see ADDREESts) either elactronic or written comments and ask for a radetermination by July 28,2014 . Furthermore, any interested person may petition FDA for a detarmination
regarding whethex the applicant for extension acted with due diligence. during the regulatory review period by November 24, 2014 . To meet its burden, the petition must contain sufficient facts to meris an FDA investigation. (See H , Rept. 857, part 1, 98 th Cong., 2d sass., pp. 41-42, 1984.) Petitions should be in the format specifled in 21 CFR 10.30.
Interested persons may submit to the Division of Dockets Management (see ADDRESSES) electronic or written commenta and written or electronic petitions. It is only necessary to send one set of comments. ldentify comments with the docket number found in brackets in the heading of this document. If you submit a writtern petition, two copies are required. A petition submitted electronically must be submitted to http://
www.regulations.gov, Docket No. FDA-$2013-5-0610$. Cornments and petitions that have not been made publicly available on http://www.regulations,gor may be viewed in the Division of Dockets Management between 9 a.m. and 4 F.m., Monday through Priday.
Dated: May 21, 2014.
Lushle Kux,
Assistant Commssionar for Policy. [FR Doc 2014-12292 Filed 5matm14; 3:45 aml] arming cone $4160 \mathrm{mH}-\mathrm{P}$

DEPARTMENT OF HEALTH AND HUMAN SERVICES

Food and Drug Administration
[Docket No, FDA-2012-E-1246]

Determination of Regulatory Feview Period for Purposes of Patent Extension; RESOLUTE INTEGAITY ZOTAFOLIMUS-ELUTING CORONARY STENT SYSTEM

Agency: Food and Drug Administration, HIS.
ACTION: Notice.
summary: The Food and Drug Administration (FDA) has determined the regulatory review period for RESOLUTE INTEGRITY ZOTAROLIMUS ELUKTNG CORONARY STENT SYSTEM and is publishing this notice of that detemmation as required by law. FDA has made the determination because of the subraission of an application to the Director of Fatents and Trademarks, Department of Commerce, for the extension of a patent which claims that medical device.
adDRESSES: Submit electronic comments to http:// www regulotions,gow Submit writton
petitions (two copies are required) and written comments to the Division of Dockets Managernent (HFA-305), Food and Drug Administration, 5630 Fishers Lane, Rm, 1061, Rockville, MD 20852. Submit petitions electronically to http://wwwregulations.gov at Docket No. $\mathrm{FDA}-2013-5-0610$.
FOR FURTHEEM INFORMATION CONTACT:
Bevarly Friedman, Office of
Management, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave., Bldg. 51, Rm. 6257. Silver Spring, MD 20993-0002, 301796 m 7900 .
SUPPLEMENTARY Information: The Drlag Price Competition and Patent Term Restoration Act of 1984 (Pub. L. 98-417) and the Ceneric Animal Drug and Patent Term Restoration Act (Pub. L. 100-670) generally provide that a patent may be extended for a period of up to 5 years so long as the patented itom (human drug product, animal drug product. medical device, foor additive, or color additive) was subject to regulatory review by FDA before the item was marketed, Uuder these acts, a product's regulatory review perioc forms the basis for determinitg the anount of extension an applicant may recaive.

A regulatory review period consists of two periods of time; A testing phase and an approval phase. For medical devices. the testing phase begins with a clinical investigation of the device and runs until the approval phase begins. The approval phase starts with the initial submission of an application to market the device and continues until. permission to market the device is grantod, Although only a portion of a regulatory review period may count toward the actual amount of extension that the Director of Fatents and Trademarks may award (half the tosting phase raust be subtractad as wetl ats any time that may have occurred before the pakent was issued], FDA's determination of the length of a regulatory review period for a medical device will include all of the testing phase and approval phase as specified in 35 U.S.C. $156(\mathrm{~g})(3)(B)$.

FDA has approved for marketing the medical device, RESOLUTE INTEGRITY ZOTAROLIMUS-ELUTLNG CORONARY STENT SYSTEM. RESOLUTEINTEGRITY ZOTAROLIMUS-ELUTING CORONARY STENT SYSTEM is indicated for improving coronary luminal diameters in patients, including those with diabetes mellitus, with symptomatic ischemic heart disease due to de novo lesions of length less than or equal to 27 millimeters (mm) in ative

The Honorable Michelle K. Lee
Deputy Under Secretary of Commerce for Intellectual Property
Acting Director of the United States Patent and Trademark Office
Mail Stop Hatch-Waxman PTE
P.O. Box 1450

Alexandria, VA 22313-1450
Dear Director Lee:
This is in regard to the patent term extension applications for U.S. Patent Nos. 6,346,532; $7,342,117 ; 7,750,029$ filed by Astellas Pharma Inc., under 35 U.S.C. § 156. The patents claim Myrbetriq (mirabegron), which was assigned new drug application (NDA) 202-611.

In the May 28, 2014, issue of the Federal Register (79 Fed. Reg. 30622), the Food and Drug Administration published its determination of this product's regulatory review period, as required under 35 U.S.C. $\$ 156(\mathrm{~d})(2)(\mathrm{A})$. The notice provided that on or before November 24, 2014, 180 days after the publication of the determination, any interested person could file a petition with FDA under 35 U.S.C. $\$ 156(\mathrm{~d})(2)(\mathrm{B})(\mathrm{i})$ for a determination of whether the patent term extension applicant acted with due diligence during the regulatory review period.

The 180 -day period for filing a due diligence petition pursuant to this notice has expired and FDA has received no such petition. Therefore, FDA considers the regulatory review period determination to be final.

Please let me know if we can provide further assistance.
Sincerely yours,

Jane A. Axelrad
Associate Director for Policy
Center for Drug Evaluation and Research

Astellas Phama Inc.
Myrbetriq
Page 2
cc: Jason M. Okun
Fitzpatrick, Cella, Harper \& Scinto 1290 Avenue of the Americas
New York, NY 10104-3800

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In Re: U.S. Patent No. 6,346,532 BI
Issued: $\quad \therefore$ February 12, 2002
To: Tatsuya Maruyama, Takayuki Suzuki, Kenichi Onda, Masahiko Hayakawa, Hiroyuki Moritomo, Tetsuya Kimizuka, and Tetsuo Matsui

For: AMIDE DERIVATTVES OR SALTS THEREOF
Mail Stop Hatch-Waxman PTE
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

SUBMISSION CNDER 37 C.F.R. $\$ 1.765$

Su:
In compliance with the duty of disclosure in patent term extension proceedings under 37 C.F.R. $\$ 1.765$, Applicant would like to advise the Office as follows:

- As a result of the ex-parte reexamination (Control No. 96/000,045) of the above-captioned U.S. Patent No. $6,346,532$ B1 ordered pursuant to 35
U.S.C. $\$ 257$ in view of the Request for Supplemental Examination that was filed on November 21,2013, Reexamination Certificate No. $6,346,532 \mathrm{C} 1$ was issued on February 24,2015. A copy of this Reexamination Certificate is provided herewith as set forth in 37 C.F.R. § $1.740(\mathrm{a})(8)$.
- The Reexamination Certificate amends original patent claims 1,3-5, and 11, cancels original claims 2, 7, and 8, and adds new claims 15-17.

[^8]- As a result of the Reexamination Certificate, claims 1,3-6,9-12, and 1517 read on the approved product. Claims 13 and 14 read on a method of using the approved proctuct.
- A manner in which at least one of the claims (claim 6) reads on the approved product has been demonstrated in the August 23, 2012 Application for Extension of Patent Term. Because claim 6 was not changed by the Reexamination Certificate, no additional showing in that regard is believed to be needed.
- A manner in which at least one of the claims (claim 13) reads on the approved product, taking into consideration the changes made by the Reexamination Certificate, is as follows:

Claim 13 reads as follows:

13. A method for treating diabetes mellitus in a human or animal patient in need of such treatment comprising administering to the patient an amount of a compound of formula (I) as claimed in claim 1, wherein the amount is an amount effective for such treatment.

Claim 13 reads on a method of using the approved product when, in the compound of formula (I):

R^{2} is a hydrogen atom
$R^{\text {bia }}$ is a hydrogen atom
$R^{\text {tb }}$ is a hydrogen atom

7 is $=\mathrm{CH}-$
A is methylene
B is a nitrogen-containing heteroaryl group, which is substituted
X is a lower alkylene, which is unsubstituted.
Mirabegron:

- Therefore, Applicant believes that all requirements set forth in 37 C.F.R. $\$$ 1.740 (a)(9), as well as the other requirements in 37 C.F.R. $\$ \$ 1.710$ through 1.785 , have been satisfied.

Applicant's undersigued attorney may be reached in our New York Office by telephone at (212) 218-2100. All correspondence should continue to be directed to our address listed below.

Respectfully submitted,

Jason M. Okw
Jason M. Okun
Attorney for Applicant
Reg. No. 48,512
Date: June 2,2015

FITZPATRICK, CELLA, HARPER \& SCINTO
1290 Avenue of the Americas
New York, New York 10104-3800
Telephone: (212) 218-2100
Facsimile: (212) 218-2200

(12) EX PARTE REEXAMINATION CERTIFICATE (25th)

Ex Parte Reexamination Ordered under 35 U.S.C. 257 United States Patent
 Maruyama et al.
 (10) Number: US 6,346,532 C1
 (45) Certificate Issued: Feb. 24, 2015

(54) AMTDE DERIVATIVES OR SALTS THEREOF
(75) Inventors: Tatsuya Maruyama, Tsulaba (TP);

Takayuki Swaki, Tsukuba (JP);
Kenichi Onda, Tsulkuta (IP); Masahiko
Hayakawa, Tsukuba (IP); Hiroyuki Moritomo, Tsukuba (JF); Tetsuya
Kimizuka, "T'sukuba (JP); Tetsuo
Matsui, Tsukuba (JP)
(73) Assignee: Astellas Phammanc, huon Ka, 'tokyo (IP)

Stpplenental Examination Request:
No. $56.000,045$, Nov. 21, 2013
Reexamination Certificate for:
Patent No.: 6346,532
Issued: Fieb. 12,2002
Appl. No.: . 09/529,096
PCT Filed: ... Oct. 15, 1998
PCT No.: ... PCTVSPO8/04671
$\$ 371(c)(1)$
(2), (4) Date: Apr 7, 2000

PCT Pub. Na.: WO99/20607
PCT Pub. Date: Apr, 29, 1999
Certificate of Correction issued Juh. 13,2002
(51) Int. Cl.

(52) U.s.Cl.

CLC C07D 213/30 (2013.01); C07D 215/48 (2013.01); C0 1 D$) 27 / / 82(2013.01), C 0 \% D$ $233 / 26(2013.01): C 07 D 235 / 30(2013.01) ;$

C07D 213/81 (2013.01); C07D 401/04 (2013.01); C07D 241/12 (2013.01); C070 277/36(2013.01); C07D 513/04 (2013.01):

C07D $231 / 2$ (2013.01); C07D 257/04
(2013.01); C07D 239/26 (2013.01); C07D
$213 / 56(2013,01)$
USPC $514 / 252,1 ; 514 / 256 ; 544 / 330,544 / 332 ;$
$5461 ; 546 / 152 ; 548 / 186 ; 548 / 190 ; 548 / 214 ;$
$548 / 252,548 / 260$
(53) Field of Classification Search

None
Sce application file for complete search history.

References Cited

To view the complate listing of prior art documents oited during the supplemental examination proceeding and the resultiag rexamination proceding for Control Number 96000,045 , please refer to the USPTO's pubilic Patent Application Intornation Retrieval (PAIR.) system under the Display References tab.

Primary Exantiner -.... Evelyn Fuang
ABSTRACT
(2)

Anide dervacives represented by general formota (T) or salts thereof wherein each symbol has the following meaning: ring Bi: an optionally substituted heteroary opionally fused with a benzene ring; X a bond, loweralkylene or lower alkenylene optionally substifuted by bydroxy ar lower alkyl, carbonvl, or a group represented by NE (wher X is lower alkylene optionally substituted by lower alkyl which may be bonded to the hydrogen atom bonded to a constituen carbon aton of ring B to form lower alleylene to thereby fom a ring); A; a lower alkylene or a group represented by -(lower alkylene) O-; $R^{1 / a}$ and $R^{1 b}$: the same or different and each hydrogen or lower alkyl; R^{2} : hydrogen or halogeno; and Z nitrogen or a group represented by $=\mathrm{CH}$ - The compounds are useful as a diabetes renedy which not only fuctions to both accelerate the sectelina of imsulinand sumbe insula sensitiviy buthes an antiobestic action and an antilyperlipethe action based on its selective stimulative action on a β, receptor,

EX PARTE

REEXAMINATION CERTIFICATE

 ISSUED UNDER 35 U.S.C. 307
"THE PATENT" IS HEREBY AMENDED AS INDICATFD BETOW.

Matter enclosed tu heavy brackets [] appeared in the patent, but has beeu deleted and is no longer a part of the patent; matter printed in italics indicates additions made to the patent.

as a resul. of reexamination, TT HAS been

 DFTERMINED THAT:Claims 2,7 and 8 are cancelled:
Clatus 1, 3-5 and 11 are deternined to be patentable as amended.
Clams 9, 10, 13 and 14, dependent on an anended elaim, 20 are determined to be patentable.
New elaims 15-17 are added and determined to be patatable.
Clams 6 and 12 wenc not recxamined.

1. A compound of formula (0):

[

(1)
in the formula, each of the symbols means as follows:
ring B is a nitrogen-containing heteroaryl group which is unsubstituted substinuted and is eptionally fused with a beareme rings
X is [a bond, or] a lower alkylene or an alkenylene, both of' which are unsubstituted or substituted with hydroxy or a lower akkyl group, or X is a carbonyl or a group reperserved by - NH -, and when X is a lower alkylene which is substituted with a lower allisy group, a carbot atom of the ring El optionally bonids with the lower alkyl group so that a ring is formed;
A is 4 lower alkylene] methvene, ethyene, or a group represented by [-lowar alkylene-O] - $\mathrm{CH}_{2} \mathrm{O}$-;
$\mathrm{R}^{16}, \mathrm{R}^{1 b}$ are the same or different and each is a hydrogen atom or a lower alkyl group;
R^{2} is a hydrogen atom or a halogen atom; and Z is a group represented by -CH -, or a salt thereof.

30

[
35

40
3. The compound of formula (T) or the sale thereof accont. ing to [claim 2] ctam 1, wherein the ring B is [a heteroary] group which is] substiuted with a substituent chosen fron a halogen atom, lower alkyl, lower alkenyl, lower alkynyl,
5 hydroxy, sulfanyl, halogeno lower alkyl, lower alkytion"; lower alkyl-S - , lower alkyl-O-CO-, carboxy, sulifonyl, sulfingl, lower alkyl- $\mathrm{SO}-\cdots$, lower alky $-\mathrm{SO}_{2} \cdots \cdots$, lower alkytOO - , ower alkyl-CO-O- carbamoyl, lower alkyl- NK -$\mathrm{CO}-$, dimower alkyl- V - CO -, nitro, oyano, amino, lower allkyl-NE-, and di-lower alkyl-N-[, ayllower alkyl, halogeto aryl-lower alkyl, guadimo, lower alkyl-CO-NH, and lower alkylm SO_{2} - $\mathrm{NH}-1$.
4. The compound of formula ($)$ or the salt thereof accorln ing to cladm 3 , wherein $\mathrm{R}^{3}, \mathrm{R}^{1 a}$ and $\mathrm{R}^{1 b}$ ate eath a hydroged ntom, [and Z is $=\mathrm{CH}-] 4$ is methylene, and

5. A compound of formula (la):
(IA)

[ia the formula, web of the symbols mens as follows: ring B is a heteroaryl group;
X is a bond or a lower alkylene group:
R is a hydrogen atom, a halogen atom, a lower alkyl group, amino group, an aryl lower alkyl group, or a halogeno ary!-lower alley grout lot a sat thereol.
11. A composition comprising [at ? wast one] the compound of fommala (0)](a) or the salt thereot as claimed in clatu 5 , 50. in a phamaceutically acceptable carrier.
15. The compound according to datm 4 of the sath thereof: which is an oprical isomex
16. A contposition comprising at least one computha of formula (T) or the salt thereof as clamed in one of claims I. 3,
is 4 , and 15 in a pharmacentically acceptable carrler.
17. The composition as clamed in clatm 16. wherein the at least one momporme of formula (f) or the salt thered is present in an amonart effective for treating diabectes mellitus in a human or anmal patiend in need of such treating.

Payment information:

Submitted with Payment		no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1	Miscellaneous Incoming Letter	SubmissionUnder37CFR176502 213003400.pdf	164020 DM4	no	3
Warnings:					
Information:					

Jason M. Okun
Fitzpatrick, Cella, Harper \& Scinto 1290 Avenue of Americas
New York, New York 10104-3800

In Re: Patent Term Extension Application for
U.S. Patent No. 6,346,532

NOTICE OF FINAL DETERMINATION
 AND
 REQUIREMENT FOR ELECTION

A determination has been made that U.S. Patent No, $6,346,532$, claims of which cover a method of using the human drug product MYRBETRIQ ${ }^{(B)}$ (mirabegron), is eligible for patent term extension under 35 U.S.C. $\$ 156$. The period of extension has been determined to be 1,259 days.

A single request for reconsideration of this final determination as to the length of extension of the term of the patent may be made if filed within one month of the date of this notice. Extensions of time under $37 \mathrm{CFR} § 1.136$ (a) are not applicable to this time period.

Applicant also has applied for patent term extension of U.S. Patent No. 7,342,117 and U.S. Patent No. RE44872 E based on the regulatory review period for MYRBETRIQ (B) (mirabegron).

When patent term extension applications are filed for extension of the terms of different patents based upon the same regulatory review period for a product, the certificate of extension is issued to the patent having the earliest date of issuance, unless applicant elects a different patent. In the absence of an election by applicant within one month of the date of this notice, and in accordance with 37 CFR 1.785 (b), the application for patent term extension in the above-identified patent U.S. Patent No. $7,342,117$ and U.S. Patent No. RE44872 E will be denied. Accordingly, the application for patent term extension of the patent having the earlier date of issuance will be granted, i.e, a certificate of extension will be issued to U.S. Patent No 6,346,532. In the absence of a request for reconsideration, and if U.S. Patent No, 6,346,532 is elected, the Director will issue to the applicant a certificate of extension, under seal, for a period of 1,259 days in U.S. Patent No, 6,346,532.

The period of extension has been calculated using the Food and Drug Administration determination of the length of the regulatory review period published in the Federal Register of 79 Fed, Reg. 30622 (June 06, 2014). Under 35 U.S.C. § 156 (c):

$$
\text { Period of Extension }=\quad \text { RRP }- \text { PGRRP }-\mathrm{DD}-1 / 2(T P-\mathrm{PGTP})^{\prime}
$$

[^9]\[

$$
\begin{aligned}
& =\quad 2,213 \cdot 0-0-1 / 2(1,908-0) \\
& =1,259 \text { days }(3,4 \text { years })
\end{aligned}
$$
\]

Since the regulatory review period began June 09, 2006, after the patent issued (February 12, 2002), the entire regulatory review period has been considered in the above determination of the length of the extension period 35 U.S.C. $\$ 156$ (c). No determination of a lack of due diligence under 35 U.S.C. $\$ 156$ (c)(1) was made.

Neither the limitations of 35 U.S.C. $\S 156(\mathrm{~g})(6)$ nor 35 U.S.C. $\$ 156(\mathrm{c})(3)$ operate to reduce the period of extension determined above.

Upon issuance of the certificate of extension the following information will be published in the Official Gazette:

U.S Patent No:

Granted:
Original Expiration Date:
Applicant.
Owner of Record:
Title:
Product Trade Name:
Term Extended:
Expiration Date of Extension:
$6,346,532$
February 12, 2002
October 15, 2018
Maruyama, et al.
Yamanouchi Pharmaceutical Co., L.td.,
Amide Derivatives Or Salts Thereof
MYRBETRIQ ® (mirabegron)
1,259 days
March 27, 2022
with due diligence, "TP" is the testing phase period described in paragraphs (1)(B)(i), (2)(B)(i), (3)(B)(i), (4)(B)(i), and (5)(B)(i) of subsection (g) of 35 U.S.C. § 156 , and "PGTP" is the number of days of the TP which were on and before the date on which the patent issued, wherein half days are ignored for purposes of the subtraction of $1 / 2$ (TP - PGTP).
${ }^{2}$ Subject to the provisions of 35 U.S.C. § 41 (b).

Any correspondence from applicant with respect to this matter should be submitted via the USPTO's EFS Web system and should be addressed as follows:

By nail. Mail Stop Hatch-Waxman PTE
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450.
Telephone inquiries related to this determination should be directed to Ali Salimi at (571) 272 . 0909.

Mary C. ILl
Senior Legal Advisor
Office of Patent Legal Administration
Office of the Associate Commissioner for Patent Examination Policy
cc: "FDA, CDER, Office of Regulatory Policy
10903 New Hampshire Avenue,
Bldg. 51 Room 6250
Silver Spring MD 20993-0002
Attention: Beverly Friedman

RE: MYRBETRIQ (13)
(mirabegron)
Docket No.: FDA -2013-E-0410

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In Re: U.S. Patent No. 6,346,532
Issued: •... February 12, 2002
To: $\quad \therefore$ Tatsuya Maruyama, Takayuki Suzuki, Kenichi Onda, Masahiko Hayakawa, Hiroyuki Moritomo, Tetsuya Kimizuka, and Tetsuo Matsui

For: AMIDE DERIVATIVES OR SALTS THEREOF
Mail Stop Hatch-Waxman PTE
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

RESPONSE TO NOTICE OF FINAL DETERMINATION
 AND REQUIREMENT FOR ELECTION

Sir

In response to the NOTICE OF FINAL DETERMTNATION AND
REQUIREMENT FOR ELECTION issued on January 8,2016 in the above-captioned matter and in accordance with 37 C.F.R. $\$ 1.785$, Applicant hereby elects U.S. Patent No. $6,346,532$ (the ' 532 patent), which claims both the approved product Myrbetriq' (mirabegron) and a method of using this approved product. Accordingly, the Director is respectfully requested to issue to Applicant a certificate of extension, under seal, for the '532 patent.

Applicant's undersigned attomey may be reached in our New York Office by

telephone at (212) 218-2100. All correspondence should contimue to be directed to our address listed below.

Respectfully submitted,

Jason M. Okun/
Jason M. Okun
Attorney for Applicant
Reg. No. 48.512
Date January 27. 2016

FTTZPATRICK; CELLA, HARPER \& SCINTO
1290 Avenue of the Americas
New York, New York 10104-3800
Telephone: (212) 218-2100
Facsimile: (212) 218-2200

Electronic Acknowledgement Receipt	
EFS ID:	24733828
Application Number:	09529096
Intermational Application Number:	
Confirmation Number:	2160
Title of Invention:	AMIDE DERIVATIVES OR SALTS THEREOF
First Named Inventor/Applicant Name:	TATSUYA MARUYAMA
Custorner Number:	5514
Filer:	Jason M. Okun/DAVID NGUY
Filer Authorized By:	, dasen M. Okun
Attorney Docket Number:	02213.003400
Receipt Date:	27.JAN 2016
Filing Date:	07-APR-2000
Time Stamp:	14:55:30
Application Type:	U.S. National Stage under 35 USC 371

Payment information:

Submitted with	Payment	no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	$\begin{gathered} \text { Multi } \\ \text { Part /.zip } \end{gathered}$	Piages (if appl.)
1	Election in Response to Notice of Final Determination	RESPTONOTICEOFFINALDETER MINATIONANDREQFORELECT ONO2213003400-1.pdf	99582 a	no	2
Warnings:					
Information:					

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53 (b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under $\mathbf{3 5}$ U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office

If a new international application is being filed and the international application indudes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.

Jason M. Okun
Fitzpatrick, Cella, Happer \& Scinto
1290 Avenue of Americas
New York, New York 10104-3800

In Re: Patent Term Extension
Application for
U.S. Patent No. 6,346,532

Dear Mr. Okun

A certificate under 35 U.S.C. $\$ 156$ is enclosed extending the term of U.S. Patent No. $6,346,532$ for a period of 1,259 days. While a courtesy copy of this letter is being forwarded to the Food and Drug Administration (FDA), you should directly correspond with the FDA regarding any required changes to the patent expiration dates set forth in the Patent and Exclusivity Data Appendix of the Orange Book (Approved Drug Products with Therapeutic Equivalence Evaluations) or in the Patent Information set forth in the Green Book (FDA Approved Animal Drug Products). Effective August 18, 2003, patent submissions for publication in the Orange Book and Docket *95S-0117 need to be submitted on form FDA 3542 which may be downloaded from FDA's Electronic Forms Download Website:
http://www.fda.gov/opacom/morechoices/fdaforms/default.html (http://www.fda.gov/opacom/morechoices/fdaforms/FDA-3542.pdf).

Inquiries regarding this communication should be directed to Ali Salimi by telephone at (571) 272-0909, or by e-mail at ali.salimi@uspto.gov.

cc: Food \& Drug Administration CDER, Office of Regulatory Policy

RE: MYRBETRIQ@ (míabegron)
10903 New Hampshire Avenue, Bldg. 51 Room 6250
Silver Spring MD 20993-0002
Docket No: FDA-2013-E-0410

Attention: Beverly Friedman

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE EXTENDING PATENT TERM UNDER 35 U.S.C. § 156

6
(68) PATENT NO. : 6,346,532
(45) ISSUED
(75) INVENTOR
(73) PATENT OWNER
(95)

PRODUCT
: February 12, 2002
Tatsuya Maruyama, et al.
. Astellas Dharma Inc.
; MYRBETRIQ © (mirabegron)

This is to certify that an application under 35 U.S.C. § 156 has been filed in the United States Patent and Trademark Office, requesting extension of the term of U.S. Patent No. $6,346,532$ based upon the regulatory review of the product MYRBETRIQ ${ }^{(B)}$ (mirabegron) by the Food and Drug Administration. Since it appears that the requirements of the law have been met, this certificate extends the term of the patent for the period of

$$
\begin{equation*}
1,259 \text { days } \tag{94}
\end{equation*}
$$

from October 15,2018; the original expiration date of the patent, subject to the payment of maintenance fees as provided by law, with all rights pertaining thereto as provided by 35 U.S.C. § 156.

I have caused the seal of the United States Patent and
Trademark Office to be affixed this 5th day of April 2016.

Michelle K. Lee
Under Secretary of Commerce for Intellectual Property and Director of the United States Patent and Trademark Office

[^0]: RN 223673-47-0 CARLUS
 CN Carbamic acid, [(2R)-2-hydroxy-2-phenylethyl] [2-[4-[(1H-1, 2, 4-triazci-3-
 NAME)

[^1]: - HCl_{1}

 Searched by Barb o'Bryen, sTIc 308-4291

[^2]: RN 211635-79-9 CAPHUS
 CN $\quad 2=\mathrm{Pyridineacetamide} \mathrm{~N}-14-12-112-,h v d r o x v-2-14-1$ searched by Earb o'Bryen. STIC 308-4291

[^3]: RN $\quad 211635-86 \mathrm{~m}$ 8 CAPLUS
 CN 2mpyridineacetarmide, $N u[4-[2-[\{2-h y d r o x y-2-[4 m$
 (phenylmethoxy) phenyl]ethyl](phenylmethyl)aminolethyl]phenyl)- (9cI) (cad. INDEX NAME)

[^4]: RN 211635-92-6 CAELUS
 CN 2-Pyridineacetamide, $N-[4-[2=1[2-$ hydroxy $-2=[4-$
 (phenylmethoxy) pheriyl] ethyl] (phenylmethyl) aminolethyluphenyll -Nomethyl... (9CI) (CA INDEX NAME)

[^5]: * A copy of this refarchice is not berng turnished with tris, cifice action.

[^6]: ${ }^{1}$ The Investigational New Drug Application was submitted pursuant to Section 505 (i) of the Federal Food, Drug, and Cosmetic Act. The New Drug Application was submitted pursuant to Section 505 (b) of the Federal Food, Drug, and Cosmetic Act.
 ${ }^{2}$ Astellas Pharma Global Development, Inc. is owned by Astellas Pharma Inc.

[^7]: 4-[24[2-Hydroxy-2-(3-luorophenyl)elhyl]arnino] ethyl]-2-(2mpyridyl)acetanilide hydrochlonide

[^8]: ${ }^{4}$ A Certificate of Correction of this Reexamination Certificate was requested to correct several printing errors in caims I and 4.

[^9]: 'Consistent with 35 U.S.C. $\$ 156$ (c), "RRP" is the total number of days in the regulatory review period, "PGRRP" is the number of days of the RRP which were on and before the date on which the patent issued, "DD" is the number of days of the RRP that the applicant did not act

