US005561142A

United States Patent [19]

Fisher et al.

[54] SUBSTITUTED SULFONAMIDES AS SELECTIVE β_3 AGONISTS FOR THE TREATMENT OF DIABETES AND OBESITY

- [75] Inventors: Michael H. Fisher, Ringoes; Elizabeth M. Naylor, Scotch Plains; Dong Ok, Edison; Ann E. Weber, Scotch Plains; Thomas Shih; Hyun Ok, both of Edison, all of N.J.
- [73] Assignee: Merck & Co., Inc., Rahway, N.J.
- [21] Appl. No.: 445,630
- [22] Filed: May 22, 1995

Related U.S. Application Data

- [63] Continuation-in-part of Ser. No. 404,565, Mar. 21, 1995, abandoned, which is a continuation-in-part of Ser. No. 233,166, Apr. 26, 1994, abandoned.
- [51] Int. Cl.⁶ C07D 413/12; C07D 213/30; A61K 31/44; A61K 31/47
- [52] U.S. Cl. 514/312; 546/153; 546/194; 546/269; 546/271; 546/275; 546/276; 546/277; 546/286; 546/338; 514/318; 514/337; 514/338; 514/340; 514/342
- [58] Field of Search 546/153, 194, 546/269, 271, 275, 276, 277, 280, 338; 514/312, 318, 337, 338, 340, 342

[56] **References** Cited

DOCKE.

U.S. PATENT DOCUMENTS

3,452,037	6/1969	Santilli et al	514/365
3,816,516	6/1974	Cox et al	514/653
4,000,193	12/1976	Lunts et al	546/344
4,396,627	8/1983	Ainsworth et al	424/309
4,478,849	10/1984	Ainsworth et al	424/285
4,999,377	3/1991	Ainsworth et al	424/285
5,017,619	5/1991	Alig et al	514/653
5,153,210	10/1992	Ainsworth et al	546/344
5,321,036	6/1994	Sher	514/366

[11] Patent Number: 5,561,142

[45] **Date of Patent:** Oct. 1, 1996

FOREIGN PATENT DOCUMENTS

0091749	10/1983	European Pat. Off
0007206	1/1989	European Pat. Off.
0427480	5/1991	European Pat. Off.
0455006	11/1991	European Pat. Off
0516350	12/1992	European Pat. Off
0516349	12/1992	European Pat. Off
0068669	1/1993	European Pat. Off
0565317	10/1993	European Pat. Off
0611003	8/1994	European Pat. Off
1108577	4/1968	United Kingdom .
1565080	4/1990	United Kingdom .
WO93/10074	5/1993	WIPO .
WO93/22277	11/1993	WIPO .
WO94/02493	2/1994	WIPO .
WO94/29290	12/1994	WIPO .

OTHER PUBLICATIONS

A. A. Larsen, et al, Journal of Medicinal Chemistry, vol. 10, (3) pp. 462-472, 1967.

Primary Examiner-Zinna Northington Davis Attorney, Agent, or Firm---Mollie M. Yang; David L. Rose

[57] ABSTRACT

Substituted sulfonamides are selective β_3 adrenergic receptor agonists with very little β_1 and β_2 adrenergic receptor activity and as such the compounds are capable of increasing lipolysis and energy expenditure in cells. The compounds thus have potent activity in the treatment of Type II diabetes and obesity. The compounds can also be used to lower triglyceride levels and cholesterol levels or raise high density lipoprotein levels or to decrease gut motility. In addition, the compounds can be used to reduced neurogenic inflammation or as antidepressant agents. The compounds are prepared by coupling an aminoalkylphenyl-sulfonamide with an appropriately substituted epoxide. Compositions and methods for the use of the compounds in the treatment of diabetes and obesity and for lowering triglyceride levels and cholesterol levels or raising high density lipoprotein levels or for increasing gut motility are also disclosed.

18 Claims, No Drawings

5

15

SUBSTITUTED SULFONAMIDES AS SELECTIVE β_3 AGONISTS FOR THE TREATMENT OF DIABETES AND OBESITY

CROSS-REFERENCE

This is a continuation-in-part of co-pending application U.S. patent application Ser. No. 08/404,565 filed Mar. 21, 1995, now abandoned, which is a continuation-in-part of U.S. patent application Ser. No. 08/233,166 filed Apr. 26, 10 1994, now abandoned these applications are hereby incorporated by reference in their entirety.

BACKGROUND OF THE INVENTION

 β -Adrenoceptors have been subclassified as β_1 and β_2 since 1967. Increased heart rate is the primary consequence of β_1 -receptor stimulation, while bronchodilation and smooth muscle relaxation typically result from β_2 stimulation. Adipocyte lipolysis was initially thought to be solely a 20 β_1 -mediated process. However, more recent results indicate that the receptor-mediating lipolysis is atypical in nature. These atypical receptors, later called β_3 -adrenoceptors, are found on the cell surface of both white and brown adipocytes where their stimulation promotes both lipolysis (breakdown 25 of fat) and energy expenditure.

Early developments in this area produced compounds with greater agonist activity for the stimulation of lipolysis $(\beta_3 \text{ activity})$ than for stimulation of atrial rate (β_1) and tracheal relaxation (β_2). These early developments disclosed 30 in Ainsworth et al., U.S. Pat. Nos. 4,478,849 and 4,396,627, were derivatives of phenylethanolamines.

Such selectivity for β_3 -adrenoceptors could make compounds of this type potentially useful as antiobesity agents. In addition, these compounds have been reported to show 35 antihyperglycemic effects in animal models of non-insulindependent diabetes mellitus.

A major drawback in treatment of chronic diseases with β_3 agonists is the potential for stimulation of other β -receptors and subsequent side effects. The most likely of these include muscle tremor (β_2) and increased heart rate (β_1) . Although these phenylethanolamine derivatives do possess some β_3 selectivity, side effects of this type have been observed in human volunteers. It is reasonable to expect that 45 these side effects resulted from partial β_1 and/or β_2 agonism.

More recent developments in this area are disclosed in Ainsworth et al., U.S. Pat. No. 5,153,210, Caulkett et al., U.S. Pat. No. 4,999,377, Alig et al., U.S. Pat. No. 5,017,619, Lecount et al., European Patent 427480 and Bloom et al., 50 European Patent 455006.

Even though these more recent developments purport to describe compounds with greater β_3 selectivity over the β_1 and β_2 activities, this selectivity was determined using rodents, in particular, rats as the test animal. Because even 55 the most highly selective compounds, as determined by these assays, still show signs of side effects due to residual β_1 and β_2 agonist activity when the compounds are tested in humans, it has become apparent that the rodent is not a good model for predicting human β_3 selectivity. 60

Recently, assays have been developed which more accurately predict the effects that can be expected in humans. These assays utilize cloned human β_3 receptors which have been expressed in Chinese hamster ovary cells. See Emorine et al, Science, 1989, 245:1118-1121; and Liggett, Mol. 65 Pharmacol., 1992, 42:634-637. The agonist and antagonist effects of the various compounds on the cultivated cells

provide an indication of the antiobesity and antidiabetic effects of the compounds in humans.

SUMMARY OF THE INVENTION

The instant invention is concerned with substituted sulfonamides which are useful as antiobesity and antidiabetic compounds. Thus, it is an object of this invention to describe such compounds. It is a further object to describe the specific preferred stereoisomers of the substituted sulfonamides. A still further object is to describe processes for the preparation of such compounds. Another object is to describe methods and compositions which use the compounds as the active ingredient thereof.

Further objects will become apparent from reading the following description.

DESCRIPTION OF THE INVENTION

The present invention provides compounds having the formula I:

where

- m is 0to 5;
- 0or 1;
- r is Oto 3;
- A is (1) a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen, 2) a benzene ring fused to a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen, 3) a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen fused to a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen, (4) phenyl, or (5) a benzene ring fused to a C3-C8 cycloalkyl ring;
- \mathbb{R}^1 is (1) hydroxy, (2) oxo, (3) halogen, (4) cyano, (5) NR^8R^8 , (6) SRS, (7) trifluoromethyl, (8) C_1-C_{10} alkyl, (9) ORS, (10) SO_2R^9 , (11) OCOR⁹, (12) NR⁸COR⁹, (13) \overline{COR}^9 , (14) $NR^8SO_2R^9$, (15) $NR^8CO_2R^8$, or (16) C_1-C_{10} alkyl substituted by hydroxy, halogen, cyano, NR⁸R⁸, SR⁸, trifluoromethyl, OR⁸, C₃-C₈ cycloalkyl, phenyl, NR⁸COR⁹, COR⁹, SO₂R⁹, OCOR⁹, $NR^8SO_2R^9$ or $NR^8CO_2R^8$;
- R^2 and R^3 are independently (1) hydrogen, (2) C_1 - C_{10} alkyl or (3) C_1-C_{10} alkyl with 1 to 4 substituents selected from hydroxy, C1-C10 alkoxy, and halogen;
- X is (1) $-CH_2$, (2) $-CH_2$, (3) -CH=CHor $(4) - CH_2O -;$
- R^4 and R^5 are independently (1)hydrogen, (2) C_1-C_{10} alkyl, (3) halogen, (4) NHR⁸, (5) OR⁸, (6) SO_2R^9 or (7) $NHSO_2R^9$;

R6 is (1) hydrogen or (2) C_1-C_{10} alkyl; R^7 is Z-(R^{1a}),;

- R^{1a} is (1) R^1 , with the proviso that when A is phenyl, R^{1a} is not C₁-C₁₀ alkyl, (2) C₃-C₈ cycloalkyl, 3) phenyl optionally substituted with up to 4 groups indepen-dently selected from R⁸, NR⁸R⁸, OR⁸, SR⁸ and halogen, or (4) 5 or 6-membered heterocycle with from 1 to

4 heteroatoms selected from oxygen, sulfur and nitrogen, optionally substituted with up to four groups independently selected from oxo, R⁸, NR⁸R⁸, OR⁸, SR⁸, and halogen;

Z is (1) phenyl, (2) naphthyl, (3) a 5 or 6-membered 5 heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen, (4) a benzene ring fused to a C_3-C_8 cycloalkyl ring, (5) a benzene ring fused to a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and $_{10}$ nitrogen, (6) a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen fused to a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen, or (7) a 5 or 6-membered 15 heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen fused to a C_3-C_8 cycloalkyl ring;

n is 0 to 3;

m is 1;

r is 0 to 2; and

 R^4 , R^5 and R^6 are hydrogen.

Other preferred compounds of the instant invention are realized when in the above structural formula I:

- A is phenyl or a 6-membered heterocyclic ring with 1 or 2 heteroatoms selected from nitrogen and sulfur;
- R^1 is hydroxy, halogen, cyano, trifluoromethyl, NR^8R^8 , $NR^8SO_2R^9$, NR^8COR^9 , $NRSCO_2R^8$, C_1-C_6 alkyl optionally substituted by hydroxy; and

2

More preferred compounds are represented by the formula Ia:

- R^8 is (1) hydrogen, (2) C_1-C_{10} alkyl, (3) C_3-C_8 25 wherein cycloalkyl, (4) Z optionally having 1 to 4 substituents selected from halogen, nitro, oxo, $NR^{10}R^{10}$, C_1-C_{10} m is C_1 alkyl, C_1-C_{10} alkoxy, C_1-C_{10} alkylthio, and $C_1"C_{10}$ alkyl having 1 to 4 substituents selected from hydroxy, halogen, CO_2H , $CO_2-C_1-C_{10}$ alkyl, $SO_2-C_1-C_{10}$ alkyl, C_3-C_8 cycloalkyl, C_1-C_{10} alkoy, and Z optionally substituted by from 1 to 3 of halogen, C1-C10 alkyl or C_1-C_{10} alkoxy, or (5) C_1-C_{10} alkyl having 1 to 4 substituents selected from hydroxy, halogen, CO_2H , $CO_2-C_1-C_{10}$ alkyl, $SO_2-C_1-C_{10}$ alkyl, C_3-C_8 cycloalkyl, C_1-C_{10} alkoxy, C_1-C_{10} alkyl, and Z option-³⁵ ally substituted by from 1 to 4 of halogen, $C_1 - C_{10}$ alkyl or $C_1 - C_{10}$ alkoxy;
- R^9 is (1) R^8 or (2) NR^8R^8 ;
- R^{10} is (1) C_1 - C_{10} alkyl, or (2) two R^{10} groups together with the \dot{N} to which they are attached formed a 5 or 6-membered ring optionally substituted with C_1-C_{10} alkyl; or
- a pharmaceutically acceptable salt thereof.

In one embodiment of the instant invention A is a 5 or 45 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen, a benzene ring fused to a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen, or a 5 or 6-membered heterocyclic ring with from 1 to 4

n is Oto 3:

m is 1

 R^1 is (1) halogen or (2) NR^8R^8 ;

R², R³ are independently hydrogen or methyl;

- R^{1a} is (1) halogen, (2) $C_1 C_{10}$ alkyl, (3) $NR^8R^8,$ (4) $NR^8COR^9,$ (5) $NR^8CO_2R^8,$ (6) $COR^9,$ (7) $OCOR^9,$ or (8) a 5 or 6-membered heterocycle with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen, optionally substituted with up to four groups independently selected from oxo, halogen, R⁸, NR⁸R⁸, OR⁸, and SR⁸:
- Z is (1) phenyl, (2) naphthyl, (3) a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen, (4) benzene ring fused to a 5 or 6-membered heterocyclic ring with from 1 to 3 heteroatoms selected from oxygen, sulfur and nitrogen, or (5) a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen fused to a C_3-C_8 cycloalkyl ting;

X is $-CH_2$; and

 \mathbb{R}^8 and \mathbb{R}^9 are as defined in claim 1.

Even more preferred compounds are those represented by formula Id:

heteroatoms selected from oxygen, sulfur and nitrogen fused to a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen.

In another embodiment of the instant invention A is

phenyl or benzene fused to a C3-C8 cycloalkyl ring. Preferred compounds of the instant invention are realized when in the above structural formula I:

$$R^2$$
 and R^3 are hydrogen or methyl;

X is
$$-CH_2$$
;

n is 0 or 1; R^1 is NR⁸R⁸;

65

 R^2 and R^3 are independently (1) hydrogen, or (2) methyl;

B is (1) hydrogen, (2) benzene fused to the benzene ring to form naphthyl, or (3) a 5 or 6-membered heterocycle with 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen atom fused to the benzene ring;

 R^{1a} is (1) halogen, (2) $C_1 - C_{10}$ alkyl, (3) NR^8R^8 , (4) $NR^8COR^9,$ (5) $NR^8CO_2R^8,$ (6) COR^9, or (7) a 5 or

15

50

6-membered heterocycle with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen, optionally substituted with up to four groups independently selected from oxo, R^8 , SR^8 , OR^8 , and NR^8R^8 ; when B and the benzene ring form a fused ring system, R^{1a} is 5 attached to either ring;

 R^8 is (1) hydrogen, (2) C_1-C_{10} alkyl, (3) Z optionally having 1 to 4 substituents selected from nitro, oxo, and $NR^{10}R^{10}$, or (5) C_1-C_{10} alkyl having 1 to 4 substituents selected from hydroxy, halogen, C_1-C_{10} alkyl, C_3-C_8 ¹⁰ cycloalkyl, and Z optionally substituted by from 1 to 4 of halogen, C_1-C_{10} alkyl or C_1-C_{10} alkoxy;

 R^9 is (1) R^8 or (2) NR^8R^8 ;

 R^{10} is (1) $C_1 - C_{10}$ alkyl, or

(2) two R¹⁰ groups together with the N to which they are attached formed a 5 or 6-membered ring optionally substituted with C_1-C_{10} alkyl; and

Z is (1) phenyl, (2) a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, 20 sulfur and nitrogen, (3) a benzene ring fused to a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen, or (4) a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen fused to a C_3-C_8 cycloalkyl ring. Most preferred compounds are those having the formula Ie

$$\underbrace{ \begin{array}{c} OH & H \\ | & | \\ CHCH_2N - CH_2 - CH_2 - CH_2 \\ * \end{array} }_{N} NH - SO_2 - \underbrace{ (R^{1a})_n }_{R}$$

n is Oor 1;

- R^{1a} is (1) halogen, (2) NR⁸COR⁹, or (3) a 5-membered ³⁵ heterocycle substituted with 0 or 1 oxo selected from imidazolidinone, imidazolone, oxadiazole, oxazole, triazole and tetrazolone, optionally substituted with up to three groups independently selected from R⁸; 40
- R^8 is (1) hydrogen, (2) C_1-C_{10} alkyl, or (3) C_1-C_{10} alkyl having 1 to 4 substituents selected from hydroxy, halogen, C_1-C_{10} alkyl, C_3-C_8 cycloalkyl, and Z optionally substituted by from 1 to 4 of halogen, C_1-C_{10} alkyl or C_1-C_{10} alkoxy; 45
- R^9 is NR^8R^8 ;

Z is phenyl.

Other more preferred compounds are represented by formula lb:

wherein

0to 3;

m is

⁶⁰ R^{1a} is (1) hydroxy, (2) cyano, (3) NR⁸R⁸ or (4) halogen;
⁶⁰ R^{1a} is (1) halogen, (2) NR⁸R⁸, (3) NR⁸COR⁹, (4) NR⁸CO₂R⁸, (5) OCOR⁹, or (6) a 5 or 6-membered heterocycle with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen, optionally substituted with 65 up to three groups independently selected from oxo, halogen, R⁸, NR⁸R⁸, OR⁸ and SR⁸;

Z is (1) phenyl, (2) naphthyl or (3) benzene ring fused to a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen;

X is $-CH_2$ -; and

 R^2 and R^3 are independently hydrogen or methyl. Representative antiobesity and antidiabetic compounds of the present invention include the following:

- N-[4-[2-[[2-hydroxy-2-(6-aminopyridin-3-yl)ethyl]amino] ethyl]phenyl]- 4-(hexylaminocarbonylamino)benzenesulfonamide
- N-[4-[2-[[2-hydroxy-2-(6-aminopyridin-3-yl)ethyl]amino] ethyl]phenyl]- 4-iodobenzenesulfonamide
- N-[4-[2-[[2-hydroxy-2-(6-aminopyridin-3-yl)ethyl]amino] ethyl]phenyl]-benzenesulfonamide
- N-[4-[2-[[2-hydroxy-2-(6-aminopyridin-3-yl)ethyllamino] ethyl]phenyl]- 2-naphthalenesulfonamide
- N-[4-[2-[[2-hydroxy-2-(6-aminopyridin-3-yl)ethyl]amino] ethyl]phenyl]- 3-quinolinesulfonamide N-[4-[2-[[2-hydroxy-2-(6-aminopyridin-3-yl)ethyl]amino]ethyllphenyl]- 5-benzisoxazolesulfonamide
- N-[4-[2-[[2-hydroxy-2-(6-aminopyridin-3-yl)ethyllamino] ethyl]phenyl]- 4-[(hexylmethylaminocarbonyl)amino] benzenesulfonamide
- N-[4-[2-[[2-hydroxy-2-(6-aminopyridin-3-yl)ethyl]amino] ethyl]phenyl]- 4-[(dimethylaminocarbonyl)amino]benzenesulfonamide

Ie

- N-[4-[2-[[2-hydroxy-2-(6-aminopyridin-3-yl)ethyl]amino] ethyl]phenyl]- 4-(3-hexyl-2-imidazolidon- 1-yl)benzenesulfonamide
- N-[4-[3-[[2-hydroxy-2-(6-aminopyridin-3-yl)ethyl]amino] propyl]-phenyl]- 4-(hexylaminocarbonylamino)benzenesulfonamide
- 40 N-[4-[3-[[2-hydroxy-2-(6-aminopyridin-3-yl)ethyl]amino] propyl]-phenyl]- 4-iodobenzenesulfonamide
 - N-[4-[3-[[2-hydroxy-2-(6-aminopyridin-3-yl)ethyl]amino] propyl]-phenyl]benzenesulfonamide
 - N-[4-[3-[[2-hydroxy-2-(6-aminopyridin-3-yl)ethyl]amino] propyl]-phenyl]- 2-naphthalenesulfonamide
 - N-[4-[3-[[2-hydroxy-2-(6-aminopyridin-3-yl)ethyl]amino] propyl]-phenyl]- 3-quinolinesulfonamide
 - N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phe-
 - nyl]- 4-(hexylaminocarbonylamino)benzenesulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phe-
 - nyl]- 4-isopropylbenzenesulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phe-
 - nyl]- 2-naphthalenesulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phe-
 - nyl]- 3-quinolinesulfonamide N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]
 - N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl] phenyl]- 4-[(hexylmethylaminocarbonyl)amino]benzenesulfonamide
 - N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(3-hexyl-2-imidazolidinon-1-yl)benzenesulfonamide
 - N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]- 4-iodobenzenesulfonamide
 - N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[5-(3-cyclopentylpropyl)-[1,2,4]-oxadiazol-3-yl] benzensulfonamide
 - N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[(1-oxoheptyl)amino]benzenesulfonamide

5

25

50

- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[(1-oxo- 4-phenylbutyl)amino]benzenesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]- 4-[(propoxycarbonyl)amino]benzenesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[[[(fur- 2-ylmethyl)amino]carbonyl]amino]benzenesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[[[(2-phenylethyl)amino]carbonyl]amino]benzenesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[[[(2-indol-3-ylethyl)amino]carbonyl]amino]benzenesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]- 4-[[(octylamino)carbonyl]amino]benzenesulfona- ¹⁵ mide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]- 1-[(hexylamino)carbonyl]-5-indolinesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]- 1-[(octylamino)carbonyl]-5-indolinesulfonamide 20
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]- 1-[(N-methyl-N-octylamino)carbonyl]-5-indolinesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-1-(1-oxononyl)-5-indolinesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]- 1-(4-methylthiazo-1-2-yl)-5-indolinesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]- 1-(4-octylthiazol-2-yl)-5-indolinesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phe- 30 nyl]-1-(4-ethyl-5-methylthiazol-2-yl)-5-indolinesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl] phenyl]-4-(3-octyl-2imidazolidinon-1-yl)benzenesulfonamide 35
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[3-(4,4,4-trifluorobutyl)-2-imidazolidinon-1-yl] benzenesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[3-(3-phenylpropyl)-2-imidazolidinon- 1-yl]ben- 40 zenesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[3-(4,4,5,5,5-pentafluoropentyl)-2-imidazolidinon-1-yl]benzenesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phe- 45 nyl]-4-[3-(2-cyclohexylethyl)-2-imidazolidinon- 1-yl] benzenesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[3-[3-(4-chlorophenyl)propyl]-2-imidazolidinonl-yl]benzenesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(3-pentyl-2-imidazolidinon-1-yl)benzenesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl] phenyl]-4-[3-(3-cyclopentylpropyl)-2-imidazolidinon- 55 l-yl]benzenesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]- 4-[cyclopentylethyl)-2-imidazolidinon- 1-yl]benzenesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phe- 60 nyl]-4-[3-(3-cyclohexylpropyl)-2-imidazolidinon- 1-yl] benzenesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[3-(2,2-dimethylhexyl)-2-imidazolidinon- 1-yl] benzenesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(3-hexyl-2-imidazolon-1-yl)benzenesulfonamide

RM

- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[3-(4,4,4-trifluorobutyl)-2-imidazolon- 1-yl]benzenesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(3-octyl- 2-imidazolon-1-yl)benzenesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl] phenyl]-4-[3-(3-cyclopentylpropyl)-2-imidazolon- 1-yl] benzenesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(2-octyl- 3-oxo-[1,2,4]-triazol-4-yl)benzencsulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(4-hexyl-5-tetrazolon-1-yl)benzenesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridiny])ethyl]amino]ethyl]phcnyl]-4-(4-octyl- 5-tetrazolon-1-yl)benzenesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[4-(3-cyclopentylpropyl)-5-tetrazolon- 1-yl]benzenesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(2-pentyloxazol-5-yl)benzenesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(2-octyloxazol-5-yl)benzenesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[2-(2-cyclopentylethyl)oxazol-5-yl]benzenesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[(4-ethyl-5-methylthiazol-2-yl)amino]benzenesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[(4,5,6,7-tetrahydrobenzothiazol-2-yl)amino]benzenesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(2-hexylimidazol-4-yl)benzenesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phe-
- nyl]-4-(1-methyl-2-octylimidazol-5-yl)benzenesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[1-methyl-2-(2-cyclopentylethyl)imidazol-5-yl] benzenesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[1-methyl-2-[2-(4-fluorophenyl)ethyl]imidazol-5yl]benzenesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phcnyl]-4-(5-pentyl-[1,2,4]-oxadiazol-3-yl)benzenesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[5-(2-cyclopentylethyl)-[1,2,4]-oxadiazol-3-yl] benzenesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(5-heptyl-[1,2,4]-oxadiazol-3-yl)benzenesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(5-octyl-[1,2,4]-oxadiazol-3-yl)benzenesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(5-hexylthio-[1,2,4]-triazol-3-yl)benzenesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[[4-(4-propylpiperidin-1-yl)-1,1-dioxo-[1,2,5]thiadiazol- 3-yl]amino]benzenesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[[4-(hexylmethylamino)-1,1-dioxo-[1,2,5]-thiadiazol- 3-yl]amino]benzenesulfonamide
- N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[[4-(heptylmethylamino)-1,1-dioxo-[1,2,5]-thiadiazol- 3-yl]amino]benzenesulfonamide
- 65 N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-(1-octyl-2,4-imidazolidinedion-3-yl)benzenesulfonamide

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

