IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Request for Supplemental Examination of:
U.S. Patent No. 6,346,532

Inventors: Tatsuya MARUYAMA et al.
Issued: February 12, 2002
For: AMIDE DERIVATIVES OR SALTS THEREOF

```
}
)
)Group Art Unit: Not Yet Assigned
)
) Examiner: Not Yet Assigned
)
}
Confirmation No.: Not Yet Assigned
}
```

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450
Commissioner:

Request For Supplemental Examination
 Of U.S. Patent No. 6,346,532

Astellas Pharma, Inc, (hereinafter "Astellas"), is the owner of the entire right, titte and interest of U.S. Patent No. $6,346,532$ ("the ' 532 patent"). The patent issued on national stage Application No. 09/529,096 ("the '096 application") based on PCT Application No. PCT/JP98/04671, filed October 15, 1998, claming the benefit of Japanese Patent Application No. Hei 9-285778, filed October 17, 1997.

1. S1,610lal

The required fee of $\$ 16,860$ is submitted herewith, which includes the $\$ 4,400.00$ filing fee, the $\$ 12,100.00$ reexamination fee, and a document size fee of $\$ 360.00$. Astellas understands that if no reexamination is ordered, the $\$ 12,100,00$ reexamination fee will be refunded. Please charge any additional required fees or apply any credits to Deposit Account No. 09.0619.

II. \$1.6100611: Identification of the Number of the Patent for Which Supplemental Examination is Requested

Supplemental examination under 35 U.S.C. $\S 257$ and 37 C.F.R. $\$ \$ 1.601-1.625$
is requested for claims $1-14$ of the ' 532 patent.

H1. \$1.610(b)(2): A List of Items of information that are Requested to be Considered, Reconsidered, or Corrected

The following is a list of the items of information that are requested to be considered:

1. U.S. Patent No. 6,346,532 ("the '532 patent")
2. Table of testing data for compounds including those disclosed in Examples 1-113 of U.S. Patent No. 6,346,532 ("Testing Data Table")";
3. Materials for Astellas RQD Meeting. Subcommitee on Development Theme Establishment, titled "YM178/Discontinuation of Development Theme for Diabetes Melltus," dated October 27, 2003 ("R\&D Meeting Materials);
4. YM178 in Type 2 Diabetes Mellitus 178-CL003 Study Report ("Study Report");
5. Yamanouchi BAN Compound Evaluation System ("R8D Flowchart") with English-language translation;
6. Yamanouchi Monthly Research Progress Report, dated April 26, 1995 ("Monthly Progress Report") with English-language translation;
7. Excerpts of the prosecution history of U.S. Patent Application No. 09/529,096, the U.S. National Stage of PCT/JP98/04671, filed October 15, 1998, that resulted in U.S. Patent No. 6,346,532 ("the Prosecution File History");

[^0]8. Japanese Patent Application Kokal Publication No. H10-218861, "Novel Phenethanol Derivative or Sall Thereof," published August 18, 1998, and certified English-language translation thereof ("JP '861");
9. Blin, N. et al, "Structural and Conformational Features Determining Selective Signal Transduction in the $\beta 3$-Adrenergic Receptor," Molecular Pharmacology, 44:1094-1104 (1993) ("Blin"):
10. PCT Publication WO 94/18161, published 18 August 1894 ("WO '161");
11. Thomber, C.W., "Isosterism and Molecular Modification in Drug Design," Chem. Soc. Rev. 18:563-580 (1979) ("Thomber");
12. Declaration by Dr. Tetsuo Matsui under 37 C.F.R. $\$ 1.132$ ("Matsui Dec.").
IV. §1.6100b|31: A List ldentifying Prior or Concurrent Posimpatent and Trademark office Proceedings Involving the Patent for which Supplamental Examination is Being Requested

A request for a Certificate of Correction under 37 C.F.R. $\$ \$ 1.322$ and 1.323 was filed on April 17, 2002. The resulting Certificate of Correction was granted on July 13, 2002.

An Application for Extension of Patent Term under 35 C.F.R. § 156 of the '532
Patent was fled on August 21, 2012. This application is currently pending.
There are no other prior or concurrent proceedings involving the ' 532 patent.

V. S1.610(b)14): An Identification of Each Claim of the Patent for Which Supplemental Examination is Requested

Supplemental examination is requested for each of the claims $1-14$ of the ' 532 patent.

V. \$1.610(b)(5): A Separate, Detalled Explanation of the Relevance and Manner of Applying Each ltem of Information to Each Claim of the Patent for Which Supplemental Examination is Requested

A summary of the clamed subject matter and a detaled explanation of the relevance and manner of applying each item of information to each claim of the patent for which supplemental examination is requested is provided below.

A. Summary of Clamed Subject Matter

The '532 patent (tem of Information No.1) discloses and clams phenethanol amide derivatives represented by general formula (1) below, or salts thereof:
(7)

Ring " B " in formula (1) is a heteroaryl group, which may be unsubstituted or substituted and is optionally fused with a benzene ring, " X " may be a bond, or a lower alkylene or an alkenylene, both of which may be unsubstituted or substituted with hydroxy or a lower alkyl group, or X is a carbonyl or a group represented by $\mathrm{mH}-\mathrm{NH}$, and when X is a lower alkylene group which is substituted with a lower alkyl group, a carbon atom of the ring B optionally bonds with the lower alkyl group so that a ing is formed. "A" may be a lower alkylene or a group represented by fower alkylene- $\mathrm{O}-\mathrm{R}^{19}$ and R^{10} may be the same or different and each may be a hydrogen atom or a lower alkyl group. \mathbb{R}^{2} may be a hydrogen atom or a halogen atom. " Z " is a group represented by $=\mathrm{CH}$.- (See claim 1.)

Clams $2-5$ and 9 cover phenethanol dervative compounds represented by general formula (I), which are narrower in some respect compared to the compounds represented by general formula () as recited in claim 1.

Claim 6 recites the following nine spectes of phenethanol amide derivatives that fall within the scope of claim 1:

- (R)-4-[2-[(2-Hydroxy-2-phenylethyl)aminolethy]-2-pyridinecarboxyanilide,
- (R) $2-[1-(4$-chborobenzy $)$-1H-imidazol-2-y] $)-4$ - $[2-[(2$-hydroxy-2-phenylethyl)aminojethyll-acetanilide,
- (R)-2-[1~(3,4 dichlorobenzyl)-1H-tetrazol-5-yl]-4'[2-[(2-hydroxy-2-phenyl ethyl)aminolethylacetanilide,
- (R)-2-(2-aminothiazol-4-yl)-4'-[2-(2-hydroxy-2-phenylethyl)aminojethyll acetanilide,
- (R)-2-(2-benzyl-1H-1,2,4-triazol-3-yl)-4'[2-[(2-hydroxy-2-phenylethyl)aminolethyllacetanilide,
- (R)-2-(2-aminopyridin-6-yl)-4'-[2-[(2-hydroxy-2-phenylethyl)aminolethyl] acetanillde,
- (R)-4-[2-[(2-hydroxy-2-phenylethyl)amino]ethyl] 2 -(2-pyridy) acetanilide,
- (R)-4'[2-[(2-hydroxy-2-phenylethyl)-aminolethyl)-2-(2-pyrazinyl) acetanillde,
- (R)-4-[2-(2-hydroxy-2-phenylethyl)aminolethyl)-2-(2-pyrimidinyl)acetanillde,

Clams 7,8 , and $10-12$ recite compositions comprising at least one compound as clamed in claim 1.6.

Clam 13 recites a method for treating diabetes mellitus comprising administering to a patient an amount of a compound as clamed in claim 1.

Claim 14 recites a method for treating obesity comprising administering to a patient an amount of a compound as clamed in claim 1.

The ' 532 patent states that the compounds of the invention have selective stimulative action to human β_{3}-receptor, i.e, they are β_{3}-adrenergic receptor-specific agonists. (532 patent at col. 2, 11. 28-29, col. 12, 11. 9-11.) The 532 patent also states that it was known that β-adrenaline receptors are classified into β_{1}, β_{2}, and β_{3} subtypes. ('532 patent at col. 1, II. 44-47.) Moreover, the '532 patent explains that stimulation of the β_{4}-receptor causes an increase in heart rate, that stimulation of the β_{2}-receptor stimulates decomposition of glycogen in muscles, whereby synthesis of glycogen is inhibited, causing action such as muscular tremor, and that stimulation of the β_{3} receptor shows anti-obesity and an anti-hyperglycemia action (such as decrease in triglyceride, decrease in cholesterol, and increase in HDL-cholesterol). ('532 patent, col. 1, 11. 46-54.)

The '532 patent states that, due to their selective stimulating action to β_{3}. receptors, the compounds of the invention are useful for the therapy of diabetes melltus, having both an insulin secretion-promoting action and an insulin sensitivitypotentiating action, and further having anti-obesity and anti-hyperlipemia actions. (' 532 patent, col. 2, II, 31-37.) The '532 patent states that the selective human β_{g}-receptor stimulating action of the compounds of the Invention was ascertained through β_{1}, β_{2},
and β_{3} testing. (532 patent, col. 12, 11. 9-12.) Specifically, the patent teaches that the human β_{3} receptor stimulating action was investigated using an SK-N.MC cell system (cells in which human β_{3} receptor and human β_{4} receptor were permanently expressed were purchased) while human β_{2} - and β_{1}-stimulating actions were investigated using a CHO cell system (cells in which each of human β_{2} and β_{1}-receptors was compulsorly expressed were purchased). ('532 patent, col. 11, 11. 56-63.)

The '532 patent specification concludes with 113 examples, each, with the exception of example 107, disclosing a different phenethanol derivative compound of the clamed invention. Example 41 discloses a compound having the chemical fomula (R)-2-(2-aminothazol-4-y))-4'[2-(2-hydroxy-2-phenylethyl)amino]-ethylacetanilde dihydrochloride, which is encompassed by clams $1-14$ of the 532 patent. The compound of Example 41 is a dihydrochloride salt of a compound commonly known as mirabegron, which is an FDA approved drug sold under the trademark, MYREETRIQ ${ }^{\text {TM }}$.

None of the current claims is limited to cover only Astellas' commercialized product, mirabegron. Should the Patent and Trademark Office order ex parte reexamination of the claims of the 532 patent in connection with this request for supplemental examination, Astellas intends to amend the clams of the '532 patent to cover only mirabegron and its salts.

B. Summary of Relevance to Clamed Subject Matter

1. The Testing Data Table (Item of Information No. 2), Matsui Dec. (Item of imformation No. 12), R\&D Meeting Materials (Item of Infomation No. 3) and Study Report (ltem of information No. 4)

As discussed above, the ' 532 patent states that the compounds of the invention are useful as therapeutic agents for treating diabetes mellitus. (See, e.g., the '532
patent, col. 2, II. 37-41; col. 9, 11. 62-63; Abstract.) However, the commercial embodiment of the claimed invention, mirabegron, is not approved for treating diabetes mellitus. Instead, MYRBETRIQ ${ }^{\text {TM }}$ received FDA approval in June 2012 for the treatment of overactive bladder (OAB) with symptoms of urge urinary incontinence, urgency, and urimary frequency.

The Testing Data Table, discussed in more detail below, shows that the inventors conducted a series of in vitro and in vivo studies before October 15,1998 , the date on which the PCT application leading to the issuance of the' 532 patent was filed. From the results of these preliminary studies mirabegron showed promise as an antimdimetic medicine, and based upon the avallable information, the FDA approved commencement of Phase I clinical trials to determine appropriate dosages of mirabegron for Phase II clinical trials to assess efficacy for treating diabetes mellitus. (See Matsui Dec. If 7 see also Testing Data Table, Compound BAN 371, Cols. 49.) Based on the results of the ensuing limited Phase lla clinical trials, performed after the ' 532 patent issued, the then current assignee, Yamanouchi Pharmaceutical Co., Ld. (hereinafter "Yamanouch"), ${ }^{2}$ decided that mirabegron did not demonstrate sufficient efficacy to be a commercially competitive drug for the treatment of diabetes mellitus, and so decided it would not pursue dabetes melltus as an indicated use. (See Matsui Dec. If 8 ; see also, e.g., R\&D Meeting Materials at p. 13 ("The results of the phase lla study of [mirabegron] administered at a dose of 200 mg in the fed state could not confirm the efficacy of
${ }^{2}$ Yamanouchi Pharmaceutical Co., Ltd. is a predecessor company that through a merger with another pharmaceutical company formed Astellas, the current assignee.

Imirabegron] in terms of the primary end points (HbAtc and tasting blood glucose level").)

Despite the decision to discontinue the development of mirabegron for the treatment of diabetes mellitus, Yamanouchi conducted a detailed analysis of the results of the Phase lla cinical study prior to the discontinuance of the project, which revealed that mirabegron did have some efficacy in certain patient subgroups. (See Matsui Dec. If 9 , see also, e.g., the Study Report that states:

Some efficacy was found only when HbA1c at baseline was above 7\% (data from central laboratory; local data $7-8 \%$); responses of HbA 1 c and FPG to [mirabegron] were mainly found for female patients.

Changes in HbA1c were mainly detected in young patients; in elderly no difference between [mirabegron] and placebo could be found, even when baseline HbAtc was taken into account.
(Study Report at p. 11, slides 21-22).)
Because the Phase lla clinical trial resuts were not available until mid-2003, this information was not before the Patent and Trademank Office during prosecution of the '532 patent, which issued on February 12, 2002. Because no compound encompassed by claims $1-14$ proved sufficiently efficacious to be considered commercially competitive for the treatment of diabetes mellitus, which was the principal utility described in the specification, this information may be considered to raise a substantial new question of patentability with respect to those claims, and in particular with respect to claim 13.
2. The Testing Data Table (Item of Information No. 2), Matsui Dec. (Item of information No. 12), R\&D Flowchart (ltem of information No. 5), Monthly Progress Report (ltem of information No. 6), and the Prosecktion File History (Item of information No. 7)

As confirmed by one of the inventors of the ' 532 patent, Dr. Matsui, the Testing Data Table was compled from laboratory notebooks and other developmental materials generated by the inventors of the ' 532 patent. (Matsui Dec. 76 .) The table presents certain testing data for all of the claimed compounds disclosed in Examples $1-106$ and $108-113$ of the ' 532 patent. ${ }^{3}$ Column 1 of the Testing Data Table provides the internal Yamanouchi code (BAN) number for each of the compounds. Column 2 provides the example number from the ' 532 patent. Column 3 provides the chemical structure of the compound. Columns $4-6$ provide the β-adrenergic receptor data for each compound as pD_{2} values and $1 \mathrm{~A} \%$ ("Intrinsic Activity" as compared to isoproterenol - numbers in parentheticals) using the CHO screening test. Column 7 provides ED_{30} data for several of the compounds based on hypoglycemic studies in $K K$ mice. Column 8 provides $\beta_{3^{*}}$ adrenergic receptor data determined using the SK-N-MC screening lest. Column 9 provides the test report dates for these data in columns 4-8. (Matsui Dec. \$6.)

As discussed above, the ' 532 patent states that the compounds of the invention selectively stimulate the β_{3} receptor. For example, column 2 , ines $28-30$, teach that the compounds of the invention "show a selective stimulating action to β_{3}-receptors, leading to accomplishment of the present invention." Similarly, column 2 , line 37 , states that the insulin secretion-promoting action and insulin sensitivity-potentiating action of the

[^1]compounds of the invention are due to their "selective stimulating action to β_{3} receptors." Likewise, column 9, lines 61-62, discuss the "selective β_{3}-receptor stimulating action" of the compounds of the invention. Further, column 10, lines 7-9, state that "Ithe β_{3} receptor stimulating action of the compound of the present invention is selective to β_{3} receptors in human being." In addition, column 10 , lines 61-65, state that the compounds of the invention have "been ascertained to be selective to β_{3} " receptors

The '532 patent states that β_{3} receptor stimulating action for the compounds of the invention was ascertained by comparing the effects of the claimed compounds on the β_{1}, β_{2}, and β_{3} receptor subtypes using cells expressing human-type receptors. (See col. 11, I. 56 to col. 12, I. 11; see atso col. 10, II. 61-65.) Specifically, stimulating activities of the compounds were investigated by incubating cells expressing each of the β adrenergic receptor subtypes with the compounds of the invention and measuring production of cyclic adenosine monophosphate (CAMP), which is a byproduct of β adrenergic receptor activation. (ld.)

As stated in the '532 patent, the intensity of action of each compound against the β_{1}, β_{2}, and β_{3}-receptors was compared by calculating the pD_{2} value and the maximum value ($1 \mathrm{~A} \%$ where the maximum reaction of $10^{-6} \mathrm{M}$ isoproterenol, a non-selective β agonist, was defined as 100\%) from the resulting dose-reaction curve. (See the ' 532 patent at col. 11, 1, 56 to col. 12, 1.11.)

In re Request for Supplemental
Examination of USP 6,346,532
Attomey Docket No. 07385.0042-00000

a. Not All of the Clamed Compounds of Examples $1-106$ and 108 l 13 of the '532 Patent Were Shown To Have Groater β_{3} Receptor Activity Compared to Either β_{1} or β_{2} Receptor Activity

As can be seen in the Testing Data Table, cols. 4-6, the compounds of Examples $1-106$ and $108-113$ that fall within the scope of clam 1-14 of the ' 532 patent were tested using the $\mathrm{CHO} \beta_{1}, \beta_{2}$, and β_{3} receptor stimulation screening tests. Although all of the compounds tested showed some level of β_{3} receptor agonist activity, depending on whether the $1 \mathrm{~A} \%$ or pO_{2} test resums are used, a number of the claimed compounds exhibited β_{3} receptor agonist activities that were not as high as the corresponding β_{1} - or β_{2}-receptor agonist activities. (Matsui Dec. II 10; see also table below.) For example, although the compound of Example 1, designated BAN 404, covered by at least claims $1,2,6,7,8,9,10,12,13$, and 14 of the ' 532 patent, showed β_{3}-receptor agonist activity greater than β_{1} receptor agonist activity in both the $1 A \%$ and pD_{2} tests, it showed β_{3} receptor agonist activity less than β_{2}-receptor agonist activity. (Id.; see also Testing Data Table, Compound BAN 404, cols. 4-6.) Because these inital CHO screening data provided in the Testing Data Table, which indicate that some of the compounds encompassed by claims $1-14$ may not have β_{3} receptor agonist activity selectivity over both the β_{1-} and β_{2} receptors as taught in the '532 patent, were not before the Patent and Trademark Office during prosecution of the ' 532 patent, this information may be considered to raise a substantial new question of patentability with respect claims 1-14 of the ' 532 patent.

In re Request for Supplemental
Examination of USP $0,346,532$
Attorney Docket No. 07385.0042-00000

b. Not All of the Clamed Compounds of Examples $1-106$ and 108-113 of the '532 Patent Met Yamanouchi's Intermal Crikeria For Furher Development

As of time the '096 application was filed, and up to the time the '532 patent issued, Yamanouchi utilized certain internal screening criteria to determine whether a compound has sufficient β_{3}-receptor agonist activity and selectivity to warrant further evaluation for potential eventual submission as an anti-diabetic drug. (Matsui Dec ${ }^{\circ} 11$ 1.) As the R\&D Flowchart shows, in general, before a candidate compound qualified for further evaluation, Yamanouch's initial intemal screen stated that a candidate compound should have an IA test result for β_{3}-receptor agonism of greater than 0.6 (or 60%) and a pD_{2} value for the β_{3} receptor of greater than 6.5 , wille at the same time having $1 A$ test results for β_{1} - and β_{2}-receptor agonism of less than 0.2 (or 20%), (id.; see also R8O Flowhart.)

The following data, excerpted from the Testing Data Table, provide examples of the clamed compounds that did not meet Yamanouch's initial β_{3}-receptor selectivity and/or activity criteria set forth in the R\&D Flowchart:

Chart	BAN ${ }^{\text {a }}$	Example \%	Compound Covered By Clams	$14 \% \beta 3$ $14 \% 12$ A\% Bl	$\begin{aligned} & \mathrm{pD}_{2} \beta 3 \\ & \mathrm{pO}_{2} \beta 2 \\ & \mathrm{pO}_{2} \beta 1 \end{aligned}$
13	377	110	1,2,7,8,9,10,13,14	58.1	5.23
				22.7	5.65
				2.7	<4
19	390	105	$1,2,7,8,9,10,13,14$	24	6.3
				28	5.9
				17	5.3
21	395	88	1,2,7,8,9,10,13,14	18	5.9
				50	4.2
				20	<4.0
22	396	3	1,2,7,8,9,10,13,14	18	6.9
				27	4.2
				2	<4.0

In re Request for Supplemental Examination of USP 6,346,532 Attomey Docket No. 07385.0042 -00000

Chart	EAN	Example	Compound Covared By Claims	$\begin{aligned} & \mathbb{A} \% \beta 3 \\ & \mathbb{A} \% \beta 2 \\ & \mathbb{A} \% \beta 1 \end{aligned}$	$\begin{aligned} & \mathrm{pO}_{2} \beta 3 \\ & \mathrm{pD}_{2} \beta 2 \\ & \mathrm{pD}_{2} \beta 1 \end{aligned}$
23	388	96	1,2,7,8,9,10,13,14	$\begin{gathered} 27 \\ 17 \\ 9 \end{gathered}$	$\begin{aligned} & 5.6 \\ & 5.9 \\ & 4 \end{aligned}$
29	404	1	1,2,6,7,8,9,10,12,13,14	$\begin{aligned} & 10 \\ & 25 \\ & 0 \end{aligned}$	$\begin{aligned} & 5.1 \\ & 5.4 \\ & <4 \end{aligned}$
30	405	2	1,2,7,8,9,10,13,14	$\begin{gathered} 11 \\ 18 \\ 0 \end{gathered}$	$\begin{aligned} & 6.0 \\ & 5.8 \\ & 4.4 \end{aligned}$
32	407	11	$1,2,3,4,7,8,9,10,13,14$	$\begin{gathered} 40 \\ 37 \\ 3 \end{gathered}$	$\begin{aligned} & 6.4 \\ & 6.4 \\ & <4 \end{aligned}$
35	410	111	1,2,7,8,9,10,13,14	$\begin{aligned} & 32 \\ & 53 \\ & 14 \end{aligned}$	$\begin{aligned} & 5.6 \\ & 5.5 \\ & 5.6 \end{aligned}$
36	411	101	1,2,7,8,9,10,13,14	$\begin{aligned} & 37 \\ & 50 \\ & 19 \end{aligned}$	$\begin{aligned} & 6.2 \\ & 5.4 \\ & 4.6 \end{aligned}$
39	414	112	1,2,7,8,9,10,13,14	$\begin{aligned} & 55 \\ & 89 \\ & 25 \end{aligned}$	$\begin{aligned} & 6.9 \\ & 6.6 \\ & 5.6 \end{aligned}$
49	435	36	$1,2,3,4,7,8,9,10,13,14$	$\begin{gathered} 14 \\ 27 \\ 5 \end{gathered}$	$\begin{aligned} & 6.2 \\ & 5.3 \\ & <4 \end{aligned}$
50	440	37	$1,2,3,4,7,8,9,10,13,14$	$\begin{aligned} & 27 \\ & 19 \\ & 6 \end{aligned}$	$\begin{gathered} <5.0 \\ 5.4 \\ <4 \end{gathered}$
53	447	8	1,2,7,8,9,10,13,14	$\begin{aligned} & 41 \\ & 35 \\ & 23 \end{aligned}$	$\begin{aligned} & 6.3 \\ & 5.2 \\ & 6.6 \end{aligned}$
55	455	18	1,2,7,8,9,10,13,14	$\begin{aligned} & 49 \\ & 31 \\ & 69 \end{aligned}$	$\begin{aligned} & 5.8 \\ & 5.9 \\ & 44 \end{aligned}$
61	478	113	1,2,7,8,9,10,13,14	$\begin{aligned} & 52 \\ & 49 \\ & 14 \end{aligned}$	$\begin{aligned} & 5.8 \\ & 6.4 \\ & 4.9 \end{aligned}$
109	548	15	1,2,3,4,5,7,8,9,10,11,13,14	$\begin{aligned} & 68 \\ & 36 \\ & 74 \end{aligned}$	$\begin{aligned} & 7.1 \\ & 5.4 \\ & 5.1 \end{aligned}$

Thus, there are 17 clamed compounds shown in the table above that did not satisfy Yamanouchi's internal criteria for further development based on either the pD_{2} or IA\% values. (Matsui Dec. IIT 12-13.) This β_{3} receptor selectivity and activity data, and Yamanouchis internal criteria for evaluating it, were not before the Patent and Trademark Office during prosecution of the '532 patent. Because these examples do not satisfy Yamanouoh's internal β areceptor selectivity and/or activity criteria for some compounds that are within the scope of claims 114 , they may be considered to raise a substantial new question of patentability with respect to claims $1-14$ of the " 532 patent.

c. The 532 Patent Did Not Correctly ldentify the Assay Used to Determine β_{3} Selectivity for the Clamed Compounds

As discussed above, the inventors determined β_{3}-stimulating action of the compounds of the invention by comparing the effects of the claimed compounds on the β_{1}, β_{2}, and β_{3}-receptor subtypes using cells expressing human-type receptors. According to the specification, an SK-N-MC cell system comprising human neuroblastoma cells permanently expressing the human β_{1} - and β_{3}-receptor was used to assess β_{3} activity, and CHO cell systems comprising Chinese hamster ovary cells permanently expressing either the human β_{1} or β_{2}-receptors were used to assess β_{1} and β_{2} acivities. (See the ' 532 patent, col. 11, 1. 56 to col. 12, 1. 11.)

As shown by the information provided in column 9 of the Testing Data Table, however, none of the clamed compounds of Examples $1-106$ and 108 -113 in the '532 patent was tested for B_{3}-stimulating action using the SK-N-MC cell system until after the October 15,1998 , filing date of the intemational application that led to the ' 532 patent (ie. PCT/JP98/04671). (See also Matsui Dec. If 15.) As reflected in the R\&D Meeting

Materials, the inventors assessed the β_{3}-selectivity of mimbegron, and all of the clamed compounds disclosed in examples 1×100 and $108-113$ of the '532 patent, using the CHO cell system. (See R\&D Meeting Materials at p. 3; see also Matsui Dec. II 15.) The CHO cell system used to assess the β_{3} agonist activity of the clamed compounds disclosed in Examples $1-106$ and $108-113$ was essentially the same as the CHO cell system used by the inventors to assess the β_{1-} and β_{2}-agonist activity of those same compounds, except the CHO cells permanently expressed the human β_{3}-receptors only. (See Matsui Declaration at I/ 16.)

The SK-N-MC cell system referred to in the specification was used by the inventors to evaluate potential anti-diabetic compounds that were synthesized before the compounds encompassed by the claims of the '532 patent, and it was considered competent as a basis for assessing the β_{3}-selectivity of those compounds. (Matsui Dec. 117.) A swith was made to the CHO cell system because the gene for the single human β_{3}-receptor became available and could be used to construct a CHO assay, whereas the cells in the SK-N-MC cell system also contained a β_{1}-receptor and required the use of a β_{1} receptor blocker to mask any β_{1} effects. (Id.; see also the '532 patent, col. 11, line 67 - col. 12, line 2.) The inventors obtained the gene for the β_{3}-receptor from a foreign patent office based upon a foreign patent filing. (Massui Dec. II 19.) They did not refer to the $\beta_{3}-\mathrm{CHO}$ cell system assay in the instant patent application because of a concem that using the β_{3} gene in an experimental assay might be asserted to be an act of patent infringement in Japan. (ld.)

The Monthly Progress Report in which the inventors evaluated and compared the CHO β_{3} test to the SK-N-NC β_{3}-test, before switching to the $\mathrm{CHO} \beta_{3}$-test, states that
both cell systems, the SK-N-MC cell system and the CHO cell system, provide test results that have "significant correlation" with each other for assessing β-stimulating action. (Matsui Dec. IT 18; see also Monthly Progress Report, page 2.)

The fact that the specification did not correctly describe the test actually employed for assessing the β_{3} agonist activity of the compounds encompassed by claims $1-14$ may be considered to raise a substantial new question of patentability with respect to claims $1-14$ of the ' 532 patent.

d. The Hypoglycemic Activity of the Claimed Compounds Compared to Prior Art Compounds

As stated in the '532 patent, the insulin sensitivity-potentiating action of the compounds of the invention was assessed using a hypoglycemic test in KK mice. (See the '532 patent at col. 11, 11. 1-31.)

The '532 patent explains that the compounds of the invention were administered to the mice for four days, and blood sugar levels were measured 15 to 18 hours after administration. (ld.) According to the patent, a dose at which the blood sugar level was lowered by 30% compared with that before administration of the drug was expressed as an $E D_{30}$ value. (id.) Lower $E D_{30}$ values suggest stronger activity.

The '532 patent states that compounds of the invention significantly lowered the blood sugar level of KK mice as compared with blood levels before administration. ('532 patent at Col. 11, 11. 18-21.) At column 11, 11. 22-24, the '532 patent states "some of the compounds of the present invention exhibited a strong activity so that the $E D_{30}$ value in the oral administration was 3 mg/kg/day or less." (Col. 11, 11. 22-24.) The '532 patent notes that certain prior art compounds were disclosed in Intemational Publication

No. WO $95 / 29169$, and states that "the compounds of the present invention have a superior potentiating action to insulin sensitivity as compared with those of the abovereferenced WO 95/29159." (Col. 11, II. 29-31.) With respect WO 95/29159, the '532 patent states that "the compound of Example 90 had an ED_{30} value of $30 \mathrm{mg} / \mathrm{kg} / \mathrm{day}$ or more, and the compound of Example 92 had an ED 30 value of $30 \mathrm{mg} / \mathrm{kg} / \mathrm{day}$." (id. at Col. 11, II. 25-28.)

During prosecution of the ' 532 patent, in responding to a question raised by the Examiner about the enablement of the broad range of compounds claimed, reference was made to those statements in the specification: "Ithe compounds of the present invention were shown to have a potentiating action to insulin sensitivity ten times greater than those compounds disclosed in WO 95/29159. See specification at page 24. Not only do the inventive amide derivatives of general formula (1) work, but they work surprisingly better." (The Prosecution File History (ttem of Information No. 7), Amendment filed May 4, 2001, at p. 12; emphasis in original.)

Based on the information provided in column 7 of the Testing Data Table, however, several of the claimed compounds disclosed in Examples 1 -106 and 108-113 in the '532 patent did not show ED_{30} values that are ten times greater than the prior art compounds disclosed in Examples 90 and 92 of WO 95/29159. Specifically the Testing Data Table shows that 21 compounds of the claimed invention for which ED_{30} data is listed have activites of $>10 \mathrm{mg} / \mathrm{kg}$, which is less than three times greater activity than the $30 \mathrm{mg} / \mathrm{kg} /$ day activities of the compounds disciosed in Examples 90 and 92 of WO 95/29159. Moreover, the Testing Data Table shows that other of the claimed compounds disclosed in Examples $1-106$ and 108-113 have ED_{30} activities of between

3 and $10 \mathrm{mg} / \mathrm{kg}$, which is also less than ten times greater activity than the prior art $30 \mathrm{mg} / \mathrm{kg} / \mathrm{day}$ activity.

Ony two compounds included in the Testing Data Table have ED_{30} values of less than $3.0 \mathrm{mg} / \mathrm{kg} / \mathrm{day}$: Compound No. 1 (BAN-358; Example 86) and Compound No. 3 (BAN-369A; Example 99). The following data excerpted from the Testing Data Table lists examplest of the clamed compounds that did not show an ED_{30} value for oral administration that was $3 \mathrm{mg} / \mathrm{kg} / \mathrm{day}$ or less:

Chart ${ }^{\text {a }}$	BAN	Example费	Compound Covared By Clams:	$\mathrm{ED}_{30}(\mathrm{mg} / \mathrm{kg})$
5	371	41	1,2,3,4,5,6,7,8,9,10,11,12,13,14	6.5
9	372	91	1,2,7,8,9,10,13,14	>10
10	374	94	1,2,7,8, , 10,13,14	>10
15	384	39	1,2,7,8, , 10, 13, 14	>10
33	408	90	1,2,7,8,9,10,13,14	>10
47	433	38	1,2,3,4,7,8,9,10,13,14	≥ 10
49	435	36	1,2,3,4,7,8,9,10,13,14	>10
50	440	37	1,2,3,4,7,8,9,10,13,14	>10
63	484	25	1,2,7,8,9,10,13,14	10
71	501	56	1,2,7,8,9,10,13,14	>10
73	503	13	1,2,7,8,9,10,13,14	>10
78	508	71	1,2,7,8,9,10,13,14	>10
82	513	75	1,2,7,8,9,10,13,14	>10
83	514	77	1,2,7,8,9,10,13,14	-10
86	517	70	1,2,7,8,9,10,13,14	>10
87	521	64	1,2,7,8,9,10,13,14	>10
88	522	72	1,2,7,8,9,10,13,14	>10
89	523	64	1,2,7,8,9,10,13,14	-10
94	528	80	1,2,7,8,9,10,13,14	>10
95	529	73	1,2,7,8,9,10,13,14	≥ 10
96	530	78	1,2,7,8,9,10,13,14	>10
97	531	76	1,2,7,8,9,10,13,14	≥ 10
103	538	49	1,2,7,8,9,10,13,14	>10
107	544	28	1,2,7,8,9,10, 13,14	10

[^2]552
33
$1,2,6,7,8,9,10,12,13,14$ 9.5

Thus, while the statement in the specification is correct that "some" of the daimed compounds "were shown to have a potentiating action to insulin sensitivity ten times greater than those compounds disclosed in WO $95 / 29159$," that was not the case for all of the clamed compounds. The $E_{30} K K$ mouse data for the compounds encompassed by claims $1-14$ that do not meet the asserted criterion was not before the Patent and Trademark Office during prosecution of the '532 patent, and may be considered to raise a substantial new question of patentability with respect to clams 1 14 of the 532 patent.

3. 3 P 10.218861 (Item of information No. 8)

JP 10-218861 ("JP '861") describes compounds said to have β_{3} receptor stimulating action and said to be useful as active components of therapeutic agents for treating diabetes. (See JP'861 at Abstract.) JP'861 was cited during prosecution of the '532 patent against clams $1-8$ of the '096 application in a rejection under 35 U.S.C. $\S 102(a)$. (See the Prosecution File History, nonfinal Office Action mailed in the '096 application on December 7, 2000, at p. 6.)

In leu of presenting a substantive argument against the Section 102(a) rejection, a sworn translation of Japanese Application No. Hei 9-285778, filed October 17, 1997 (of which the '532 patent clams benefit under 35 U.S.C. $\$ 119$), was submited to remove JP '861, which published on August 18, 1998, as prior art. (See id. at Amendment under 37 C.F.R. $\S 1.111$ filed May 4, 2001, at pp. 13-14.) As a result, the Office withdrew the Section $102(a)$ rejection. (See id, at non-final Office Action mailed in the '096 application on June 19, 2001, at p. 3.)

JP Hel 9-285778, however, may not provide sufficient writen description support for the full scope of clams $1-5,7-11,13$, and 14 of the ' 532 patent. Specifically, while JP Hei 9285778 recites the same formulae as formula (I) in claim 1 of the '532 patent and formula (la) in claim 5 of the ' 532 patent, not all components of these formulae are described in the same manner in both documents. JP Hei 9285778 states that B is "a nitrogen-containing heteroaryl group which may be substituted and may be fused with a benzene ring," while B in claims $1-5$ of the ' 532 patent is "a heteroaryl group." Also, JP Hei $9-285778$ states that A is "methylene, ethylene or a group represented by a formula $-\mathrm{CH}_{2}-\mathrm{O}-$-" while A in claim 1 of the ' 532 patent is "lower alkylene or lower alkylene-0-."

Since claims $1-5,7 \sim 11,13$, and 14 of the ' 532 patent may not be entited to the October 17, 1997, priority date, Jp '861 may be prima facie prior ant under 35 U.S.C. $\$ 102(a)$ and may rase a substantial new question of patentability with respect to those claims, at least for the reason it was cited during prosecution of the '532 patent.

4. JP 10218861 in view of Blin (Item of Information No. 9)

JP'861 recites Compound 11 in Table 9 :
Compound 11

This Compound 11 differs from the compounds encompassed by claims $1-5,7,11,13$, and 14 of the ' 532 patent only in that the terminal phenyi ring in Compound 11 has a hydroxyl substituent, whereas the corresponding terminal phenyl ing in the compounds encompassed by claims $1-5,7-11,13$, and 14 of the ' 532 patent is not substituted with a hydroxyl group.

Blin, which was not of record during the prosecution of the ' 532 patent, discusses the structural-activity relationships of a large variety of compounds to determine the structural features responsible for the β_{3} potency and selectivity of ligands. (See Elin at p. 1097.) Blin teaches that potent β_{3} agonists may have the following minimal phamacophore:

A

dx $(A)=3.83 \pm 0.048$
$\mathrm{d} 4(\mathrm{~A})=2.47 \pm 0.03$
$d 3(A)=3.07 \pm 0.08$
(See id. at pp. 1101-02.)
This minimal pharmacophore shares a similar portion of the skeleton, phenyl ring- $\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{2}(\mathrm{NH})$, with Compound 11 of JP ' 861 . However, the phenyl ring in the minimal pharmacophore of Blin is not substituted.

Blin, therefore, might be construed, arguendo, to teach that the terminal phenyl ring in Compound 11 of JP '861 need not be substituted with a hydroxyl group to retain its intended β_{g} adrenergic receptor agonist activity. Accordingly, modification of

Compound 11 of JP' 861 to replace the hydroxyl substituent on the terminal phenyl ring with mydrogen might be said to have been prima facle obvious in view of the teachings in Blin. Thus, as discussed above, since the hydroxyl substitution on the terminal phenyl ring in Compound 11 of JP'861 is the only difference between this compound and the compounds encompassed by clams $1-5,7-11,13$, and 14 of the '532 patent, the combination of JP'961 and Blin may raise a substantial new question of patentability with respect to those claims.
5. WO $94 / 18161$ (lten of Information No. 10) im view of Elin, Thornber (Item of Information No. 11), and JP 10.218861 (ftem of Information No. 81

WO 9418161 ("WO '161"), which was not of record during prosecution of the '532 patent, describes a group of substituted sulfonamides that are said to be selective β_{3}-adrenergic receptor agonists having very litte β_{1} and β_{2} adrenergic receptor activity that are expected to be useful in the treatment of Type 11 diabetes. (Abstract.) Among the specific compounds described in WO '161 is the following on page 32:

EXAMPLE 8 OTWO'161

This compound differs from the compounds encompassed by clams 1-5, 7-11, 13 , and 14 of the ' 532 patent in that has, on the left hand side of the molecule, a hydroxy-substituted phenyl ring- $\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{2}(\mathrm{NH})$, rather than a phenyl ring-$\mathrm{CH}_{2}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{2}(\mathrm{NH})$ without the hydroxyl substitution. Also, the compound of

Example 8 of WO '161 has, on the right hand side of the molecule, a $-\mathrm{N}(\mathrm{H})-\mathrm{S}\left(\mathrm{O}_{2}\right)$ phenyl ring, while the compounds encompassed by claims $1-5,711,13$, and 14 of the '532 patent have a $-\mathrm{N}(\mathrm{H}) \mathrm{C}(\mathrm{O})$-heteroaryl ring (optionally substituted).

Blin, which is discussed above, discloses that potent β_{3} agonists may have either of the following two minimal pharmacophores: phenyl ring- $\mathrm{CH}(\mathrm{OH}) \cdot \mathrm{CH}(\mathrm{NH})$ and phenyl ring- $\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2}(\mathrm{NH})$

A

$d(A) \times 3.83 \times 0.08$
$d 2(A) \times 247 \pm 0.03$
$d 4(A)=3.07 \pm 0.08$

B

$d 1(A)=3.64 \pm 0.11$
$d 2(X)=2.40 \pm 0.02$
$03\left({ }^{2}\right)=2.95 \pm 0.03$
$d \Delta(4)=5.35 \pm 0.18$
$05(\mathcal{A})=4.38 \pm 0.12$
(See Blim, at pp. 1101-02.) Blin can also be sald, arguendo, to teach that there is no need to include a hydroxyl substituent on the phenyl ring in these pharmacophores.

Thomber, which was not of record during prosecution of the '532 patent, discusses how bioisosterism techniques are used in the pharmaceutical arts to modify a lead compound and obtain compounds with similar properties. (See Thomber at p. 563 and 565.) Thomber teaches that bioisosteres are groups or molecules which have chemical and physical similarities that impart similar biological properties to a chemical compound. (See Thomber at p. 563.) Table 3 in Thomber provides a list of known biolsosteric replacements. For example, Table 3 teaches that a carbonyl group (-CO) may be replaced with a sulfoxide group $\left(-\mathrm{SO}_{2}\right)$.

As discussed above, Jp '861 might be construed, arguendo, to teach that an optionally substituted heteroaryl group may be present at the right hand side of a phenethanol amide β-adrenergic receptor agonist.

Therefore, it arguably might have been considered pima facie obvious, based on the teachings of Blin, Thomber, and JP '861, to modify the compound disclosed in Example 8 of wo'161 to arrive at the claimed invention, by, for example:
(i) replacing the phenyl ring- $\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{2}(\mathrm{NH})$ component at the left hand side of the molecule with phenyl ring- $\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{2}(\mathrm{NH})$ and omitting the bydroxyl substitution on the phenyl ring in view of the teachings in Blin;
(ii) replacing the $-\mathrm{S}\left(\mathrm{O}_{2}\right)$-group with the $-\mathrm{C}(\mathrm{O})$-group in view of the teachings in Thomber and
(iii) replacing the terminal phenyl ring at the right hand side of the molecule with a heteroaryl ring or a methylene-linked heteroaryl ring, where the heteroaryl ring may be substituted, in view of JP'861.

Moreover, based on the teachings of Blin, Thomber, and JP '861, there arguably might have been considered to be a reasonable expectation that these modifications could be made without adversely affecting the utility of the compound for treating diabetes. Thus, the combination of WO '161, Thomber, Blin, and JP '861 may raise a substantal new question of patentability with respect to clams $1-5,7-11,13$, and 14 of the ' 532 patent.

VII. \$1.610(b)(6): A Copy of The Patent for Which Supplemental Examination is Requested and a Copy of any Disclaimer or Certificate Issued for the Patent

A copy of the ' 532 patent and a copy of a Certifcate of Correction for the ' 532 patent are submitted herewith.

Vill. \$ $1.610(b)(7)$: A Copy Of Each liem of Information Listed in Section il, Accompanied By A Written English Translation of All Of The Necessary And Pertinent Parts Of Any Non-English Language ftem Of Information

A copy of each item of information is submitted herewth.
ix. ST.610(b)18): A Summary of the Relevant Portions of any Submitted Document, Other than the Reguest, that is Over 50 Pages in Length

As the only submitted document over 50 pages in length is WO'161, a separate summary of the relevant portions of that document is provided as follows:

Wo '161, published 18 August 1994, describes a group of substituted phenylsulphonamide compounds that are reported to be selective β_{3} adrenergic receptor agonists with very little beta-1 and beta-2 adrenergic receptor activity. (Abstract.) The compounds are said to have very potent activity in the treatment of Type II diabetes and obesity. The scope of the compounds in WO' 161 is described on pages $3-5$, with several preferred compounds described on pages 5-7. Among the 219 examples described in WO '101 is Example 8 on page 32 of the specfication that is referenced above on page 27 of this request.
X. \$1.610fbig: An identification of the Owneris) of the Entire Right, Tide and Interest in the Patent Requested to be Examined, and a Submission By the Patent Owner in Complance with $\$ 3.73(c)$ Establishing the Entirety of the Ownership in the Patent Requested to be Examined

Astellas Pharma inc. is the owner of the entire right, tite and interest in the '532 patent by virtue of an assignment from the inventors to Yamanouchi Phamaceutical Co. Ltd. recorded at reel 010808, starting at frame 0313, on April 17, 2000, and a change of name to Astellas Pharma inc, recorded at reel 016784 , starting at trame 0361, on November 16, 2006.

In re Request for Supplemental
Examination of USP $6,346,532$
Attomey Docket No. 07385.0042-00000

XI. Correspondence Address

Please send correspondence regarding this supplemental examination proceeding and any subsequent reexamination to the correspondence address associated with Customer No. 22852.

XII. Conclusion

Astellas respectfully requests supplemental examination of clams $1-14$ of the '532 patent based on the (no more than 12) items of information submitted herewith, and that a supplemental examination certificate be issued.

Please grant any additional extensions of time required to enter the attached reply and charge any additional required fees to Deposit Account No. 06-0916.

Respectully submitted,
FINNEGAN, HENDERSON, FARABOW, GARRETT \& DUNNER, LLIP.

Dated: November 21, 2013

Charles E. Van Hom
Reg. No. 40,266
(202) 408-4000

(12) United States Patent Maruyama et al.

(10) Patent No.: US 6,346,532 B1

(45) Date of Patent:
(54) AMIDE DERIVATIVES OR SALIS THEREOH
(75) Inventors: Tatsuya Maruyama; Takayuki Suruki; Kenichi Onda; Masahiko Hayakawa;
Hiroyuki Moritomo; Tetsuya
Kimizuka; Tetsuo Matsui, all of Tsukuba (JP)

Assignee: Yamanouchi Pharmaceutical Co., Ltd., Tokyo (JP)
(*) Notice: Subject to any disclamer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
(21) Appl. No.:

09/529,096
(22) PCT Filcd:

Oct. 15, 1998
(86) PCT No.:

PCT/JP98/04671
§ 371 Date:
Apr: 7, 2000
§ 102(e) Date: Apr. 7, 2000
(87) PCI Pub, No.: WO99/20607

PCT Pub. Date: Apr. 29, 1999
(30) Foreign Application Iriority Data

Oct. 17, 1997 (IP) \qquad 9-285778
(51) Int. Cl. ${ }^{7}$
.................. A61K 31/495; A61K 31/505: C07D 239/02; C07D 213/00; C07D 249/00
(52) U.S. Cl. …........ 514/252.1; 514/256; 544/330; $544 / 332 ; 546 / 1 ; 546 / 152 ; 548 / 190 ; 548 / 214 ;$ 548/186; 548/252; 548/260
Field of Search
............................... 544/330, 332:
546/1, 152; 548/190, 214, 186, 252, 260; 514/252.1, 256

References Cited
U.S. PATENT DOCUMENTS

5,223,614 A	6/1993	Schromm ct al. 544/105
5,541,197 A *	7/1996	Fisher et al. 514/311
5,553,475 A	9/1996	Hayashi et al. 72/225
5,614,544 A	3/1997	Sohda et al. 514/376
6,048,884 A	4/2000	Maruyama et al. 514/370
6,177,454 B1	1/2001	Marryama et al. 514/394

FOREIGN PATENT DOCUMENTS

DE	3743265	$* 6 / 1989$
JP	10218861	$* 6 / 1989$
WO	9529159	$*$ 11/1995
	OTHER PUBLICATIONS	

Konosu T. et al. "Triazole antif.", Chem.Pharm.Bull., 39/10, 2581-9, Oct. 1991.*

* cited by examiner

Primary Examiner-Kichard L. Raymond
Assistant Examiner-Sudhaker B. Patel
(74) Attorney, Agent, or Firm-Finnegan, IIenderson, Farabow, Garrett \& Dunner, L.L..P.
(57)

ABSTRACT
(I)

Amide derivatives represented by general formula (I) or salts thereof wherein each symbol has the following meaning: ring B: an optionally substituted heteroaryl optionally fused with a benzene ring; X : a bond, lower alkylene or lower alkenylene optionally substituted by hydroxy or lower alkyl, carbonyl, or a group represented by - NH- (when X is lower alkylene optionally substituted by lower alkyl which may be bonded to the hydrogen atom bonded to a constituent carbon atom of ring B to form lower alkylene to thereby form a ring); A: a lower allkylene or a group represented by -(lower alkylenc)- $\mathrm{O}-; \mathrm{R}^{1 a}$ and $\mathrm{R}^{1 b}$: the same or different and each hydrogen or lower alkyl; R^{2}; hydrogen or halogeno; and Z : nitrogen or a group represented by $=\mathrm{CH}$ - The compounds are useful as a diabetes remedy which not only functions to both accelerate the scerction of insulin and cuhance insulin scnsitivity but has an antiobestic action and an antihyperlipemic action based on its selcetive stimulative action on a β_{3} receptor.

14 Claims, No Drawings

AMIDE DERIVATIVES OR SALTS THEREOF

TECHNICAI FIEID

The present invention relates to pharmacenticals and, more particularly, it relates to novel amide derivatives or salts thereof and also to therapeutic agents for diabetes mellitus containing them as effective components.

BACKGROUND OF TIIE INVENTION

Diabetes mellitus is a disease accompanied by continuous hyperglyecmic state and is said to be resulted by action of many environmental factors and genetic factors. The main controlling factor for blood sugar is insulin, and it has been known that hyperglycemia is resulted by deficiency of 15 insulin or by excess of factors which inhibit its action (such as genetic cause, lack of exercise, obesity and stress)

Diabetes mellitus is classified into two main types. One is insulin-dependent diabetes mellitus (IDDM) caused by a lowering of insulin-secreting function of pancreas due to autoimmune diseases, and another is non-insulin-dependent diabetes mellitus (NIDDM), eaused by a lowering of insulin-secreting function of pancrease due to pancreatic fatigue accompanied by continuous high insulin secretion. 95% or more of diabetic patients in Japan are said to suffer from NIDDM, and an increase in the patients due to a change in daily life style is becoming a problem.

As to the therapy of diabetes mellitus, dietetic treatment, therapeutic exercise and remedy of obesity are mainly conducted in mild cases while, when the discase progresses, oral antidiabetic drugs (for example, insulin secretion promoters such as sulfonylurea compounds and insulin sensitivity potentiators which potentiate the sensitivity of insulin) are administered. In severe cases, an insulin preparation is administered. However, there has been a brisk demand for creation of the drugs whereby higher control for blood sugar is possible, and development of antidiabetic drugs having a new mechanism and having high usefulness has been demanded.
U.S. Pat. Nos. 4,396,627 and 4,478,849 describe phenylethanolamine derivatives and disclose that those compounds are useful as drugs for obesity and for hyperglycemia. Action of those compounds is reported to be due to a stimulating action to β_{3}-receptors. Incidentally, it has been known that β-adrenaline receptors are classified into β_{1}, β_{z} and β_{3} sublypes, that stimulation of β_{1}-receptor causes an increase in heart rate, that stimulation of β_{2}-receptor stimulates decomposition of glycogen in muscles, whereby synthesis of glycogen is inhibited, ceusing an action such as muscular tremor, and that stimulation of β_{3}-receptor shows an anti-obesity and an anti-hyperglycemia action (such as decrease in triglyceride, decrease in cholesterol and increase in IIDL-cholesterol).

However, those β_{3}-agonists also have actions caused by stimulation of β_{1} - and β_{2}-receptors such as increase in heart rate and muscular tremor, and they have a problem in terms of side effects.

Recently, it was ascertained that β-receptors have differences to species, and it has been reported that even compounds having been confirmed to have a β_{3}-receptor selectivity in rodential animals such as rats show an action due to stimulating action to β_{1} - and β_{2}-receptors in human being. In view of the above, investigations for compounds having a stimulating action which is selective to β_{3}-receptor in human being have been conducted recently using human cells or cells where human receptors are expressed. For
(In the formula, the symbols should be referred to in the specification of this patent.)
As such, there has been still a demand for creation of therapeutic agents for diabotes mellitus of a now type which have a highly clinical uscfulness

DISCLOSURE OF THE INVENTION

The present inventors have conducted an intensive investigation on compounds having both an insulin secretion promoting action and an insulin sensitivity potentiating action and found that novel amide derivatives show both a good insulin secretion promoting action and a good insulin sensitivity potentiating action and furthermore show a selective stimulating action to β_{3}-receptors, leading to accomplishment of the present invention.
'lhat is, the present invention relates to an amide derivative represented by the general formula (I) set forth below or a sall thereol that is useful lor the therapy of diabeles mellitus, having both an insulin seeretion promoting action 35 and an insulin sensitivity potentiating action and further having anti-obesity and auti-hyperlipemia actions due to a selective stimulating action to β_{3}-receptors. The present invention also relates to a pharmaceutical agent, particularly to a therapeutic agent for diabetes mellitus containing the amide derivative or the salt thereof as an effeective ingredient.

45

50
(In the formula, each of the symbols means as follows:
ring B: a hetcroaryl group which may be substituted and may be fused with a benzene ring;
X : a bond, lower alkylene or alkenylene which may be substituted wich hydroxy or a lower alkyl group, carbonyl, or a group represented by -NH- (when X is a lower alkylene group which may be substituted with a lower alkyl group, the hydrogen atoms bonded to the carbon atom constituting the ring \mathbf{B} may form a lower alkylene group together with the lower alkyl group so that a ring is formed);
A: lower alkylene or a group represented by -lower alkylene-O-;
$\mathrm{R}^{1 a}, \mathrm{R}^{1 b}$: they may be the same or different and each is a hydrogen atom or a lower alkyl group;
R^{2} : a hydrogen atom or a halogen atom; and

Z : a nitrogen atom or a group represented by $=\mathrm{CH}-$.) The compound of the general formula (I) is further illustrated as follows.

In the definitions used in the general formula in this specification, the term "lower" means a lincar or branched hydrocarbon chain having from 1 to 6 carbon atoms unless otherwise specified.

Specific examples of the "lower alkyl group" are methyl, ethyl, and linear or branched propyl, butyl, pentyl and hexyl, preferably an alkyl having from 1 to 4 carbon atoms, and particularly preferably methyl, ethyl, propyl and isopropyl.

Examples of the "lower alkylene group" is a divalent group obtained by removing an arbitrary hydrogen atom(s) from the above "lower alkyl group", preferably an alkylene group having from 1 to 4 carbon atoms, and particularly preferably methylene, ethylene, propylene and butylene. Examples of the "lower alkenylene group" are vinylene, propenylene, butenylene, pentenylene and hexenylene groups.

The "heteroaryl group which may be fused with a benzene ring" in the "leteroaryl group which may be substituted and may be fused with ab benzene ring" means a ring group where a benzene ring is fused with a heteroaryl group as mentioned later or a non-fused heteroaryl group.

Specific examples of the "ring group where the benzene ring is fused with a heteroaryl group" are fused-ring heteroaryl groups such as quinolyl, isoquinolyl, quinazolinyl, quinolidinyl, quinoxalinyl, cinnolinyl, benzimidazolyl, imidazopyridyl, benzofuranyl, benzoisoxazolyl, benzoxazolyl, benzothiazolyl, oxazolopyridyl, isothiazolopyridyl, benzothienyl, etc.; and oxo-added rings such as oxobenzofurayl, etc.

Examples of the "heteroaryl group" are monocyclic heteroaryl groups such as furyl, thienyl, pyrrolyl, imidazolyl, thiazolyl, pyrazolyl, isothiazolyl, isoxazolyl, pyridyl, pyrimidyl, pyridazinyl, pyrazinyl, thiadiazolyl, triazolyl, tetrazolyl, etc.; and bicyclic heteroaryl groups such as naphthylidinyl, pyridopyrimidinyl, etc.

The substiment in the "heteroaryl group which may be substituted and may be fused with a benzene ring" may be any group which ean be usually substituted in this ring group. Preferred examples are a halogen atom and lower alkyl, lower alkenyl, lower alkynyl, tyydroxy, sulfanyl, halogeno lower alkyl, lower alkyl-O-, lower alkyl-S-, lower alkyl-O-CO-, carboxy, sulfonyl, sulfinyl, lower alkylSO - , lower alkyl- SO_{2}-, lower alkyl-CO-, lower alkyl-$\mathrm{CO}-\mathrm{O}-$, carbamoyl, lower alkyl-NII-CO-, di-lower alkyl-N-CO-, nitro, cyano, amino, guanidino, lower alkyl-CO-NI-, lower alkyl- SO_{2} - NII -, lower alkylNH -, di-lower alkyl-N-, -O-lower alkylene-()-, etc. 'These substituents may further be substituted with a substituent such as an aryl group, a heteroaryl group, a halogen atom, hydroxy, sulfanyl, halogeno lower alkyl, lower alkyl-O-, lower alkyl-S—, lower alkyl-()-()-, carboxy, sulfonyl, sulfinyl, lower alkyl-SO-, lower alkyl- SO_{2}-, lower alkyl-CO-, lower alkyl-CO-O-, carbamoyl, lower alkyl-NH-CO-, di-lower alkyl-N-CO-, nitro, cyano, amino, guantidino, lower alkyl- $\mathrm{CO}-\mathrm{NH}-$, lower alkyl-$\mathrm{SO}_{2}-\mathrm{NH}-$, lower alkyl-NH-, di-lower alkyl-N-, etc. These substituents such as an aryl group, a heteroaryl group, etc. may further be substituted with a halogen atom, etc.

The "lower alkenyl group" is a linear or branched alkenyl group having 2 to 6 carbon atoms, and its specific examples are vinyl, propenyl, butenyl, pentenyl and hexenyl groups.
The "lower alkynyl group" is a linear or branched alkynyl group having 2 to 6 carbon atoms, and its specific examples are etliynyl, propynyl, butynyl, pentynyl and hexynyl.
is/are substituted with a halogen atom or atoms.
The case when X is a bond means that a carbon atom of the - CO- group is directly bonded to the ring B.

The compound (I) of the present invention has at least one asymmetric carbon atom and therefore, there are optical isomers such as (R)-compounds, (S)-compounds, etc., racemates, diastereomers, etc. The present invention includes all and each of isolated isomers and mixtures thereof. The present invention also includes hydrates, solvates (such as those with ethanol) and polymorphic substances of the compound (I).
'I'he compound (I) of the present invention may form a salt with an acid. Examples of the salt are acid addition salts with mineral acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, phosphoric acid, ete; and those with organic acids such as formic acid, acetic acid, propionic acid, oxalic acid, malonic acid, succinic acid, fumaric aid, maleic asid, lactic acid, malic acid, citric acid, tartaric acid, carbonic acid, picric acid, methanesulfonic acid, ethanesulforic acid, glutamic acid, ete.

Manufacturing Mcthod

The compound of the present invention or the salt thereof may be manufactured by application of various synthetic methods utilizing the characteristics of its fundamental skeleton or type of the substituent. Representative manufacturing methods are illustrated as hereunder.
First Manufacturing Method

(In the formulae, $\mathrm{R}^{1 a}, \mathrm{R}^{1 b}, \mathrm{R}^{2}, \mathrm{~A}, \mathrm{~B}, \mathrm{X}$ and Z have the same meanings as defined already; R^{2} is a protective group for amino; and Y^{1} is a leaving group, and more specifically hydroxy, lower alkoxy or halide.)

In this method, the compound (II) and the compound (III) are subjected to amidation, and the protective group is then removed therefrom to synthesize the compound (I) of the present invention.

The amidation in this manufacturing method can be 60 conducted by customary manners.

The solvent may vary depending upon Y^{1} of the compound (III) and mostly, an inent solvent or an alcoholic solvent (such as isopropanol, etc.) may be applied.

When Y^{1} is a hydroxy group, a method where the reaction 65 is conducted in the above-mentioned solvent in the presence of a condensing agent may be applied. Examples of the condensing agent are $\mathrm{N}, \mathrm{N}^{\prime}$-dicyclohexylcarbodiimide
(DCC), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDCI), 1,1'-carbonyldiimidazole (CDI), diphenylphosphoryl azide (DPPA), diethylphosphoryl cyanide (DEPC), etc.

When Y^{1} is lower alkoxy, a method where the reaction is conclucted under heating or refluxing as it is or in the above-mentioned inert solvent may be applied.

When Y^{1} is halide, a method where the reaction is conducted in the above-mentioned inert solvent in the presence of a base may be applied.

Examples of the inert solvent are dimethylformamide (DMF), dimethylacctamide, tctrachlorocthanc, dichloromethane, dichloroethane, chloroform, carbon tctrachloride, tetrahydrofiran, dioxanc, dimethoxycthanc, ethyl acetate, benzene, toluene, xylene, acetonitrile, dimcthyl sulfoxide, ctc., and mixed solvents thercof, and they may be appropriately selected depending upon each reaction condition. Examples of the hase are inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, etc.; and organic bases such as N -methylmorpholine, triethylamine, diisopropylethylamine, pyridine, etc.

The protective group of the amino represented by R^{6} means a protective group which is commonly used for amino by those skilled in the art, and its representative examples are acyl such as formyl, acetyl, propionyl, methoxyacetyl, methoxypropionyl, benzoyl, thienylacetyl, thiazolylacetyl, tetrazolylacetyl, thiazolylglyoxyloyl, thienylglyoxyloyl, etc.; lower alkoxycarbonyl such as methoxycarbonyl, ethoxycarbonyl, tert-butoxycarbonyl, etc.; aralkyloxy-carbonyl such as benzyloxycarbonyl, p-nitrobenzyloxycarbonyl, etc.; lower alkanesulfonyl such as methanesulfonyl, ethanesulfonyl, etc.; aralkyl such as benzyl, p-nitrobenzyl, benzhydryl, trityl, ctc:; tri-(lower alkyl) silyl such as trimethylsilyl, cte.; and the like.

Removal of the protective group in this manufacturing method may be conducted by customary mamers. For example, the protective group for amino represented by $\mathrm{R}^{\text {c }}$ may be easily removed, for example, by i) a method where in case that the protective group is benztaydryl, p-methoxybenzyl, trityl, tert-butoxycarbonyl, formyl, etc., treatment with an acid such as formic acid, trifluoroacetic acid, a trifluoroacetic acid-anisole mixed solution, a hydrobromic acid-acetic acid mixed solution, a hydrochloric aciddioxane mixed solution, etc. is conducted; ii) a method where in case that the protective group is benzyl, p-nitrobenzyl, benzhydryl, trityl, etc., a catalytic reduction method using palladium-carbon or palladium hydroxidecarbon is conducted; and iii) a method where in case that the protective group is a tri-(lower alkyl) silyl or the like, treatment with water, fluoride anion (e.g., tetra-nbutylammonium fluoride, sodium fluoride, potassium fluoride, hydrofluoric acid), etc. is conducted.

Second Manufacturing Method

15

In this manufacturing method, the compound (IV) is reacted with the compound (V) to give the compound (I) of 25 the present invention.

The amine compound (IV) and the compound (V) are reacted under heating or refluxing for 1 to 24 hours as they are or in an inert solvent, to give the compound (I) of the 30 present invention

Examples of the inert solvent are acetonitrile, tetrahydrofuran, 2-butanone, dimethyl sulfoxide and N -methylpyrrolidone. In the reaction, a base such as sodium bicarbonate, potassium carbonate or diisopropylethylamine may be added to the reaction mixture.

Incidentally, in the above manufacturing methods, it is possible to purify the resulting substance by removing undesired by-products by means of recrystallization, pulverization, preparative thin layer chromatography, silica gel flash chromatography (as described in W. C. Still, ct al., J. Org. Chem., 43, 2923 (1978)), medium-pressure liquid chromatography and HPLC. The compound produced through HPLC can be isolated as a corresponding salt.

The starting naterial used in the above-mentioned manufacturing methods may be easily manufactured by the methods which are known to those skilled in the art. One of the representative methods is stowna as hereuader.

Manufacturing Method for the
Starting Compound (II)

(In the formulae, $\mathrm{R}^{1 a}, \mathrm{R}^{1 t}, \mathrm{R}^{2}, \mathrm{R}^{a}, \mathrm{~A}$ and Z have the same meanings as defined already; R^{b} is a hydrogen atom or ann aralkyl-based protective group for amino; and R^{∞} is epoxy, 2-haloacetyl or 1-carboxymethan-1-ol.)

This manufacturing method is composed of from step (a) to step (c) in which the step (a) is a step where the compound (VI) is reacted with the compound (VII), followed by reduction reaction to give the compound (VIIIa) depending upon the type of R^{c}; the step (b) is a step where protection is conducted when R^{b} of the compound (VIIIa) is a hydrogen atom; and the step (c) is a step where nitro is reduced to amino to give the compound (II).

Examples of the aralkyl-based protective group for amino 25 used in this manufacturing method are benzyl, p-nitrobenzyl, benzhydryl, etc.

Step (a)
Illustration is made for the following three cases.

1) When R^{c} is epoxy, the compound (VI) may be reacted with the compound (VII) by the same manner as in the above-mentioned sccond mamufacturing method. Reac- Manufacturing Mcthod for Starting Compound (IV)
2) When R^{C} is 1 -carboxymethan- 1 -ol, the compound (VI) is reacted with the compound (VII) in the presence of a condensing agent, followed by reduction reaction in the same manner as in 2) to prepare the compound (VIIIa). The condensing agent is the same as that mentioned in the first manufacturing method.
Step (b):
When R^{b} in the compound (VIIIa) is a hydrogen atom, the 20 amino group is protected by customary manners using di-tert-butyl dicarbonate, etc., to prepare the compound (VIIIa).

Step (c):
A method for the reduction of nitro to amino may be 25 conducted by customary manners such as metallic reduction using iron, zinc, etc. and catalytic reduction using a catalyst such as palladiuin-carbon, palladium hydroxide-carbon, Raney nickel, etc: \mathbf{R}^{a} becomes a hydrogen atom depending upon the reduction conditions, but it may be protected again by customary manners.
A)

(IX)

(IX)

tion conditions such as reaction temperature, solvent, ete. are the same as well.
2) When R^{c} is 2-haloacetyl, the compound (VI) is reacted with the compound (VII) in the presence of a base, followed by reduction reaction to prepare the compound (VIIIa). The base is the same as that mentioned in the first manufacturing method. The reduction reaction may be conducted in the above-mentioned inert solvent or in a solvent of an alcohol type with stirring in the presence of a reducing agent. Examples of the reducing agent are sodium borohydride, sodium cyanoborohydride, lithium aluminum hydride, borane, etc.

\qquad

This reaction is a reaction where the compound (IX) and the compound (III) are subjected to amidation reaction to give a compound (IVa) and, when R^{b} is a protective group for amino, the protective group is removed to give a conpound (IV). The amidation reaction can be conducted by the same manner as in the above-mentioned first manufacturing method, and the reaction conditions such as reaction temperature, solvent, etc. are the same as well.

This reaction is a reaction where the compound (X) and the compound (III) are subjected to amidation reaction and then to reduction reaction to give a compound (IVb). The amidation reaction can be conducted by the same manner as in the above-mentioned first manufacturing method, and the reaction conditions such as reaction temperature, solvent, etc, are the same as well. In the reduction reaction, the above-mentioned catalytic reduction, or a method where reduction is conduected using sodium borohydride in the presence of cobalt chloride, may be applied.

With regard to other compounds such as the compound (III), the compound (V), the compound (VI), and the compound (VII), those which are available in the market or are appropriately synthesized by known methods (such as N -alkylation reaction, cyclization reaction, hydrolysis reaction, ete.) from the commercially available compounds may be used.

The compound (I) of the present invention which is manufactured as such is isolated and purified as a free compound, a salt thercof obtained by means of salt formation by customary manners, a hydrate, a solvate with various solvents such as ethanol, etc., or polymorphic crystals, etc. The isolation and purification may be conducted by applying common chemical operations such as extraction, concentration, evaporation, crystallization, filtration, recrystallization, various chromatographic methods, ete.

Various isomers may be isolated by customary maners utilizing the physico-chemical dilferences between the isomers. For example, the racemate can be converted to stereochemically pure isomers by common racemic resolution (such as a method where the racemate is changed to diastereoner salts with usual optically active acid (for example, tartaric acid), followed by optical resolution, and the like). Incidentally, a mixture of diastereomers may be separated by customary method such as fractional crystallizaiton or chromatography, etc. In the case of an optically active compound, il may be manufactured staring from an appropriate optically active material.

Industrial Applicability

The phenethanol derivative of the present invention represented by the general formula (I) or the salt thereof has both an insulin secretion promoting action and an insulin sensitivity potentiating action and also has a selective β_{3}-receptor stimulating action, so that it is useful as a therapeutic agent for diabetes mellitus.

As confirmed by a glucose tolerance test and a hypoglycemic test in insulin-resisting model animals as described later, the compound of the present invention has both a good insulin secretion promoting action and a good insulin sen-
sitivity potentiating action, so that its usefulness in diabetes mellitus is expected. Although the β_{3}-receptor stimulating action may have a possibility of participaling in expression of the insulin secretion promoting action and the insulin 5 sensitivity potentiating action, other mechanism might also possibly participate therein, and the details thercof have becn still unknown yet. The β_{3}-receptor stimulating action of the compound of the present invention is selective to β_{3}-receptors in human being. It has been known that the
10 stimulation of β_{3}-receptor stimulates decomposition of fat (decomposition of the fat tissue triglyceride into glycerol and free fatty acid), whereby a disappearance of fat mass is promoted. 'Therefore, the compound of the present invention has an anti-obesity action and an anti-hyperlipemia action 15 (such as triglyceride lowering action, cholesterol lowering action and HDL cholesterol increasing action) and is useful as a preventive and therapeutic agent for obesity and hyperlipemia (such as hypertriglyceridemia, hypercholesterolemia and hypo-HDL-lipoproteinemia). Those discases 20 have been known as animus factors in diabetes mellitus, and amelioration of those diseases is useful for prevention and therapy of diabetes mellitus as well.

The compound of the present invention is also useful as a preventive and therapeutic agent for other diseases where the symptoms of obesity and hyperlipemia such as ischemic coronary diseases such as arteriosclerosis, myocardial infarction, angina pectoris, etc. cerebral arteriosclerosis such as cerebral infarction, etc., or aneurysm, etc.

Further, the selective β_{3}-receptor stimulating action of the compound of the present invention is useful for prevention and therapy of s several diseases which have been reported to be improved by the stimulation of β_{3}-recepter. Examples of those discases are shown as follows.
It has been mentioned that the β_{3}-receptor mediates the motility of non-sphincteral smooth muscle contraction, and because it is believed that the selective β_{3}-receptor stimulating action assists the pharmacological control of intestinal motility without being accompanied by cardiovascular action, the compound of the present invention has a possibility of being useful in therapy of the diseases caused by abnormal intestinal motility such as various gastrointestinal diseases including irritable colon syndrome. It is also useful as the therapy for peptic ulcer, esophagitis, gastritis and duodenitis (including that induced by H. pylori), enterelcosis (such as inflammatory intestinal diseases, ulcerative colitis, clonal disease and proctitis).

It is further shown that the β_{3}-receptor affects the inhibition of release of neuropeptide of some sensory fibers in lung. The sensory nerve plays an important role in neurogenic inflamation of respiratory tract including cough, and therefore, the specific β_{3}-agonist of the present invention is useful in the therapy of neurogenic inflammation and in addition, has little action to cariopulmonary system.

Moreover, the β_{3}-adrenaline receptor is capable of resulting in a selective antidepressant action due to stimulation of the β_{3}-receptor in brain, and accordingly, the compound of the present invention has a possibility of being useful as an antidepressant.

The action of the compound of the present invention has been ascertained to be selective to p_{3}-receptors as a result of experiments using cells expressing human type receptors, and the adverse action caused by other β_{3}-receptor stimu65 lation is low or none.

Effects of the compound of the present invention have been ascertained by the following tests.

1. Hypoglycemic Test in kk Mice (insulin-resisting model: Obesity and Hyperglycemia)

Male kk mice (blood sugar level: not lower than 200 $\mathrm{mg} / \mathrm{dl}$) were subjected to a measurement of blood sugar level under feeding and then randomly classificd into groups. The drug to be tested was compulsorily administered orally or subcutancously once daily for four days, and the blood sugar level after 15 to 18 hours from the final administration was compared with that before the administration $(\mathrm{n}=6)$. The blood was collected from a tail vein of the mice using a glass capillary (previously treated with heparin), the protein was removed therefrom, and the amount of glucose in the supernatant liquid (mg/dl) was measured by calorimetric determination by means of a glucose oxidase method. Further, a dose at which the blood sugar level was lowered by 30% as compared with that before the administration with the drug to be tested was expressed as an ED_{30} value.

As a result, the compound of the present invention significantly lowered the blood sugar level as compared with that before the administration with the drug to be tested in both cases of oral and subeutaneous administrations. In particular, some of the compounds of the present invention exhibited a strong activity so that the ED_{30} value in the oral administration was $3 \mathrm{mg} / \mathrm{kg} / \mathrm{day}$ or less. On the other hand, in the above-referenced WO $95 / 29159$, the compound of Example 90 had an ED_{30} value of $30 \mathrm{mg} / \mathrm{kg} /$ day or more, and the compound of Example 92 had an ED_{30} value of 30 $\mathrm{mg} / \mathrm{kg} / \mathrm{day}$. From this fact, it has become clear that the compounds of the present invention have a superior potentiating action to insulin sensitivity as compared with those of the above-referenced WO $95 / 29159$
2. Glucose Tolerance Test in Normal Rats

Male rats of SD strain of seven weeks age were fasted for a whole day and might, then randomly classified into groups and subjected to an oral glucose tolerance test (OGTT) $(n+4)$. The compound to be tested was administered orally or subcutaneously at 30 minutes before administration of glucose ($2 \mathrm{~g} / \mathrm{kg}$ by oral administration). The blood was collected from an abdominal aorta using a heparin-treated glass syringe from the rats which were anesthetized with pentobarbital ($65 \mathrm{mg} / \mathrm{kg}$), the protein was removed therefrom, and the amount of glueose in the supernatant liquid (mg/dl) was measured by colorimetric determination by means of a glucose oxicase method. The insulin value in blood was determined by measuring the amount of insulin in plasma (ng/ml) by means of radioimmunoassay (RIA).

As a result, in a group where the compound of the present invention was administered orally or subcutaneously, a significant increase in the insulin value in blood was observed as compared with the group to which no drug was given. An increase in the sugar blood level after administration of glucose was significantly inhibited as well. From those results, it is apparent that the compound of the present invention has a good insulitin secretion promoting action and a good hyperglycemia inhibiting action.
3. Stimulating Test to Human $\beta_{3}-$, β_{2} - and β_{1}-receptors

Human β_{3}-stimulating action was investigated using an SK-N-MC cell system (cells in which human β_{3}-receptor and human β_{1}-receptor were permanently expressed were purchased) while human β_{2} - and β_{1}-stimulating actions were investigated using a CHO cell system (cells in which each of human β_{2} - and β_{1}-receptors was compulsorily expressed were purchased). Stimulating action of the compound (10^{-10} to $10^{-4} \mathrm{M}$) were investigated by incubating 10^{5} cells/well of each of the cells on a 24 -well plate and checking under a subconfluent state after two days using a producing activity of cyclic $\Lambda \mathrm{MP}$ ($\mathrm{c} \Lambda \mathrm{MP}$) as an index. Incidentally, the human
β_{3}-stimulating action was investigated in the presence of a β_{1}-receptor blocker (CGP20712A, $10^{-6} \mathrm{M}$). Amount of produclion ol caMP in each cell (pmol'mi) was measured by an RIA method using ${ }^{125}$ I-cAMP. Intensity of action of cach compound was compared by calculating the p D2 value and the maximum activity (I.A. (\%) where the maximum reaction of $10^{-6} \mathrm{M}$ isoproterenol was defined as 100%) from the resulting dose-reaction curve.

As a result, it has been ascertained that the compound of the present invention has a selective stimulating action to human β_{3}-receptor.
A pharmaceutical composition containing one or more of the compound of the present invention or the salt thereof as an effective ingredient is prepared using common pharmaceutically acceptable vehicles. Administration of the pharmaceutical composition according to the present invention may be either by oral administration or by parenteral administration by, for example, injection, suppository, subcutaneous agent, inlialing agent or intracystic infusion.

The dose may be appropriately decided depending upon each particular case while taking into consideration symptom, age, sex, etc. of the patient but usually, is around $0.01 \mathrm{mg} / \mathrm{kg}$ to $100 \mathrm{mg} / \mathrm{kg}$ per day for adults in the case of oral administration, and that is administered at a time or by dividing into 2 to 4 times a day. When intravenous injection is conducted depending upon the symptom, the close is usually around $0.001 \mathrm{mg} / \mathrm{kg}$ to $10 \mathrm{mg} / \mathrm{kg}$ per day for adults, and that is administered at a time or by dividing into two or more times a day.
With regard to a vehicle for the preparation, nontoxic solid or liquid substances for pharmaceuticals may be used.

Examples of the solid composition for use by means of oral administration according to the present invention are tablets, pills, capsules, diluted powder and granules. In such a solid composition, one or more active substances are mixed with at least one inert excipient such as lactose, mannitol, glucose, hydroxypropyl cellulose, microcrystalline cellulose, starch, polyvinylpyrrolidone, agar, pectin, magnesium metasilicate aluminate and magnesium aluminate. The composition may also contain additives other than the incrt cxcipient such as lubricants such as magnesium stearate; disintegrants such as calcium ecllulose glyeolate; stabilizers such as lactosc; and auxiliary solubilizers such as glutamic acid or aspartic acid by customary manners. Tablets and pills may, if necessary, be coated with sugar coat such as sucrose, gelatin, hydroxypropyl cellulose, hydroxypropylmethyl cellulose phthalate, ete, or with film of gastric or enteric eoating substances.

The liquid composition for oral administration includes pharmaceutically acceptable emulsions, solutions, suspensions, syrups and elixits and contains commonly used inert excipients such as purified water or ethanol. In addition to the inert excipient, the composition may further contain auxiliary agents such as moisturizing or suspending agents, 5 sweeteners, tasting agents, aromatic agents and antiseptic agents. The injection for parenteral administration includes aseptic aqueous or non-aqueous solutions, suspensions and emulsions. The non-aqueous solutions and suspensions include, for example, distilled water for injection and a physiological saline solution. Examples of the solvent for non-aqueous solution and suspension are propylene glycol; polyethylene glycol; plant oils such as cacao butter, olive oil and sesame oil; alcohols such as ethanol; gum arabic; and Polysolvate 80 (trade name). Such a composition may further contain auxiliary agents such as isotonizing agents; antiseptic agents; moisturizing agents; emulsifiers; dispersing agents; stabilizers such as lactose; and auxiliary solubi-
lizers such as glutamic acid and aspartic acid). These may be sterilized, for example, by filtration passing through a bacleria-preserving filler or by compounding of or irradiation with a bactericide. These may also be used by manufacturing a sterile solid composition, followed by dissolving in sterile water or a sterile solvent for injection before use.

Best Mode for Carrying Out the Invention

The present invention is further illustrated by way of Examples as hereunder. Compounds of the present invention are not limited to those mentioned in the following Examples but cover all of the compounds represented by the above general formula (I), salts thercof, hydrates thercof, geonetric and optical isomers thercof and polymorphic forms thereof. Incidentally, the case where the material which is used in the present invention is novel is illustrated by way of the following Referential Example.

REFERENTIAL EXAMPLE 1

To a mixed solution of cthyl acctate and a 1 N aqueous solution of sodium hydroxide was added 25.2 g of 4-nitrophenyl ethylamine hydrochloride, and the mixture was vigorously stirred. The organie layer was dried over anhydrous magnesium sulfate, and the solvent was evaporated. To the resulting residuc were added 100 ml of 2-propanol and 15.0 g of (R)-styrene oxide successively, and the reaction mixture was heated to reflux for 12 hours. The solvent was evaporated in vacuo, and the residue was purified by silica gel column chromatography (eluent: chloroform/nethanol $=100 / 1 \rightarrow 10 / 1$) The resulting residue was again subjected to silica gel column chromatography (eluent: hexane/ethyl acetate/triethylamine= $1 / 5 /$ trace) to give 8.05 g of (R)-1-phenyl-2-[L2-(4-nitrophenyl) ethyl] amino]ethanol.

REFERENTIAL EXAMPLE 2

Asclution of 8.02 g of (R)-1-phenyl-2-[[2-(4-nitrophenyl) ethyl]amino]ethanol and 6.30 g of di-tert-butyl dicarbonate in 80 ml of tetrahydrofuran was stirred for 12 hours at room temperature. The residue obtained by evaporation of the solvent was purified by silica gel column chromatography (eluent: hexane/ethyl acetate $=3 / \mathrm{L}$) to give 10.8 g of tert-butyl (R)-N-(2-hydroxy-2-phenylethyl)-N-[2-(4-uitro-phenyl) ethyl]carbamate.

REFERENTIAL EXAMPLE 3

To a solution of tert-butyl (R)-N-(2-hydroxy-2-phenylcthyl)-N-[2-(4-nitrophenyl)cthyl]carbamate in 200 ml of cthanol was added 1.03 g of 10% palladium-carbon and the mixture was stirred for two hours at room temperature in a hydrogen atmosphere under atmospheric pressure. Insoluble matters were removed using Celite, and the filtrate was concentrated in vacuo to give 9.54 g of tert-butyl (R)- N -[2-(4-aminophenyl)- N -(2-hydroxy-2-phenylethyl) ethyl]-carbamate.

REFERENTIAL EXAMPLE 4

To a solution of 448 mg of tert-butyl (R)-N-[2-(4-aminophenyl)-N-(2-hydroxy-2-phenylethyl)ethyl] carbamate and 330 mg of triethylamine in 4 ml of chloroform was added 146 mg of 2 -pyridinecarbonyl chloride. The reaction solution was stirred at room temperature for two hours, and the solvent was evaporated in vacuo. The residue was diluted with chloroform, and the organic layer was washed with a saturated aqueous solution of sodium hydro-
gen carbonate and dried over anhydrous magnesium sulfate. The residue obtained by evaporating the solvent in vacuo was purified by silica gel column chromalography (eluent: hexanc/cthyl acetate $=1 / 3$) to give 321 mg of tert-butyl (R)-N-(2-hydroxy-2-phenylcthy1)-N-[2-[4-[(2pyridinecarbonyl)amino]phenyl]cthyllcarbamate.

REFERENTIAL EXAMPLE 5

To a solution of 377 mg of tert-butyl (R)-N-[2-(4-aminophenyl)-N-(2-hydroxy-2-phenylethyl)ethyl] carbamate in 10 ml of tetrahydrofuran were added 203 mg of 1 -ethyl-3-(3-dimethylaminopropyl)earbodiimide hydrochloride, 143 mg of 1 -hydroxybenzotriazole and 202 mg of 8 -quinoline arboxylic acid successively. The reaction solution was stirred at room temperature for 18.5 hours, and the solvent was exaporated in vacuo. The residue was diluted with ethyl acetate, and the organic layer was washed with a saturated aqueous solution of sodium hydrogen carbonate and dried over anhydrous magnesium sulfate. The residue obtained by evaporation of the solvent was purified by silica gel columa chromatography (eluent: hexane/ethyl acetate $=2 / 1$) to give 302 mg of tert-butyl (R)-N-(2-hydroxy-2-phenylethyl)-N-[2-[4-[(8-quinolinecarbonyl)amino] phenyl]ethyl]carbamate.

REFERENTIAL EXAMPLE 6

To a solution of 403 mg of tert-butyl (R)-N-(2-hydroxy-2-phenylethyl)-N-[2-[4-[(2-1H-imidazol-2-ylacetyl)amino] phenyl]ethyl]carbamate in 10 ml of acetonitrile were added 120 mg of potassium carbonate and 164 mg of 2-fluorobenzyl bromide successively at room temperature. The reaction solution was stirred at $50^{\circ} \mathrm{C}$. for 12 hours. Insoluble matters were filtered off using Celite, and the solvent was evaporated. The resulting residue was purified by silica gel column chromatography to give 253 mg of tert-butyl (R)-N-[2-[4-[[2-[1-(2-fluorobenzyl)-1H-imidazol-$2-\mathrm{yl}]$-acetyl]amino]phenyl]ethyl]-N-(2-hydroxy-2-phenylethyl)-carbamate.

REFERENTIAT EXAMPT E 7

To a solution of 13.4 g of (R)-2-[N-benzyl-N-[2-(4-nitrophcayl)cthyl]amino]-1-phenylcthanol in 150 ml of methanol were added 8.6 g of iron powder and 40 ml of a 2 N aqueous hydrochloric acid solution. The reaction mixture was heated to reflux for two hours, a 1 N aqueous solution of sodium hydroxide was added thereto, and the insoluble matters thus produced were filtered off using Celite. The filtrate was concentrated in vacuo to remove the methanol. The resulting aqueous phase was extracted with chloroform, the organic layer was dried over anhydrous magnesium sulfate, and the solvent was evaporated in vacuo. The resulting residue was purified by silica gel column chromatography (eluent: hexane/ethyl acetate $=1 / 1$) to give 11.45 g of (K)-2-[N -[2-(4-amino-phenyl)ethyl]-N-benzylamino]-1-phenylethanol.

REFERENTIAL EXAMPLE 8

To 502 mg of (R)-2-[N-[2-(4-aminophenyl)ethyl]-N6o benzylaminol-1-phenylethanol were added 336 mg of ethyl 2-(3-methylpyridin-2-yl)acetate and 10 ml of xylene. The reaction mixture was refluxed for nine hours, and the solvent was evaporated in vacuo. The resulting residue was purified by silica gel column chromatography (eluent: hexane/ethyl 65 acetate $=1 / 3$) to give 222 mg of (R)-4'-[2-[N-benzyl $-\mathrm{N}-(2-$ hydroxy-2-phenylethyl)amino]ethy13-2-(3-methylpyridin-2-yl)acetanilide

REFERENTIAL, EXAMPLE 9

'Io a solution of 0.96 g of 2 -fluoroacetophenone in 20 ml of tetrahydrofuran was added 2.65 g of benzyltrimethylammoniunn tribromide. The reaction mixture was stirred at room temperature for 30 minutes, insoluble matters were filtered off, and the solvent was concentrated in vacuo. The resulting residue was dissolved in 40 mil of 2-butanome, then 1.81 g of N -benzyl-4-nitrophenethylamine and 0.92 g of disopropyl ethylarmine were added, and the reaction mixture was heated to reflux for one hour. The solvent was evaporated in vacuo, ethyl acetate was added thereto, and the mixture was washed with water and a saturated saline solution sucecssively. The organic layer was dried over anhydrous magnesium sulfate and evaporated in vacuo. The resulting residue was dissolved in 40 ml of methanol, 0.34 g of sodium borohydride was added thereto, and the reaction mixture was stirred at room temperature for one hour. The solvent was evaporated in vacuo, ethyl acetate was added, and the mixture was washed with water and a saturated saline solution successively. The organic layer was dried over anhydrous magnesium sulfate and evaporated in vacuo. The resulting residue was purified by silica gel column chromatography (cluent: chloroform) to give 1.95 g of 2-[N-benzyl-N-[2-(4-nitrophenyl)ethyl]amino]-1-(2fluorophenyl)cthanol.

REFERENTIAL EXAMPLE 10

A reaction mixture of 5.12 g of methyl 2-pyridylacctate, 5.14 g of 4 -aminobenzyl cyanide and 50 ml of xylene was heated to reflux for 24 hours. An appropriate amount of the solvent was evaporated, diethyl ether was added to the resicue, and the resulting crystals were taken by filtration to give 5.65 g of 4'-cyanome thyl-2-(2-pyridyl)acetanilide.

REFERENTIAL EXAMPLE 11

To a solution of 640 mg of 4 '-cyanomethyl-2-(4,6-dimethyl-2-pyridyl)acetanilide in 15 ml of tetrahydrofuran was added 15 ml of an ethanolic suspension of a Raney nickel, and concentrated aqueous ammonia was added to adjust the pH of the mixture to about 10 . The mixture was stirred at room temperature for one hour in a hydrogen atmosphere under atmospheric pressure. The reaction mixture was filtered using Celite, and the solvent was evaporated in vacuo to give 640 mg of 4 -(2-aminomethyl)-2-(4, 6-dimethyl-2-pyridyl)acetanilide.

REFERENTIAL, EXAMPLE 12

To a solution of 630 mg of 4 -(2-aminomethyl)-2-(4,6-dimethyl-2-pyridyl)acetanilide in 20 ml of toluenc was added 0.27 ml of benzaldehyde, and the mixture was heated to reflux for three hours using a Dean-Starke apparatus. The reaction mixture was filterect, and the solvent was evaporated in vacuo. A solution of the resulting residue in 30 ml of methanol was cooled at $0^{\circ} \mathrm{C}$., 63 mg of sodium borohydride was added, and the mixture was stirred at $0^{\circ} \mathrm{C}$. for one hour. About one-half of the solvent of the reaction mixture was evaporated in vacuo, water and ethyl acetate were added to the residue, the organic layer was washed with a saturated saline solution twice and dried over anhydrous magnesium sulfate and the solvent was evaporated in vacuo. To a solution of the resulting residue in 50 ml of isopropanol was added 0.26 ml of (R)-styrene oxide, and the mixture was heated to reflux for 12 hours. The solvent was evaporated in vacuo, and the resulting residue was purified by silica gel column chromatography (eluent: chloroform/methanol=
$100 / 3$) to give 920 mg of (R)-4'-[2-[N-benzyl-N-(2-hydroxy-2-phenylethyl)-amino]e thy1]-2-(4,6-dimethyl-2pyridyl)acelanilide.

EXAMPLE 1

A 4 N bydrogen chloride-cthyl acetate solution (10 ml) was added to 10 ml of an ethanolic solution of 458 mg of tert-butyl (R)-N-(2-hydroxy-2-phenylethyl)-N-[2-[4-[(2pyridinecarbonyl)amino]phenyl]ethyl]carbamate. The reaction solution was stirred at room temperature for three hours, and the solvent was then evaporated in vacuo. The obtained crude crystals were recrystallized from methanol-ethanolethyl acetate to give 289 mg of (R)-4'-[2-[(2-hydroxy-2-phenyl-ethyl)arnino]ethyl]-2-pyridinecarboxanilide dithydrochloride.

The compounds of Examples 2 to 33 were prepared by the same manner as in Example 1.

EXAMPLE 2
(R)-4'-[2-[(2-Hydroxy-2-phenylethyl)amino $]$ ethyl $]$ -3-pyridinecarboxanilide dihydrochloride

EXAMPLE 3
(R)-41-[2-[(2-Hydroxy-2-phenylethyl)aminolethyl]-8-quinolinecarboxanilide dihydrochloride

EXAMPIE 4

(R) $-4^{\prime}-[2-[(2-H y d r o x y-2-p h e n y l e t h y l) a m i n o] e t h y l]-$
(E)-3-(2-pyridyl)acrylic anilide dihydrochloride

EXAMPLE 5
(R)-2-(Benzothiazol-2-yl)-4'-[2-[(2-hydroxy-2-phenyl-ethyl)amino]ethyl]acetanilide
dihydrochloride
(R)-4'-[2-[(2-Hydroxy-2-phenylethyl)amino $]$ ethyl $]$ 2 -(imidazo[2,1-b]thiazol-3-yl)acetanilide dihydrochloride

EXAMPLE 7
(R)-4'-[2-[(2-Ilydroxy-2-phenylethyl)amino]ethyl]-2-(2-methylthiszol-4-yl)acetanilide hydrochloride

EXAMPLE 8
(R)-4'-[2-[(2-Ilydroxy-2-phenylethyl)amino $]$ ethyl $]$ -2-(1II-imidazol-2-yl)acetanilide dihydrochloride

EXAMPLE 9

(R)-4'-[2-[(2-Hydroxy-2-phenylethyl)amino $]$ ethyl $]$ 2 -(1H-tetrazol-5-yl)acetanilide hydrochloride

EXAMPIE 10
(R)-4'-[2-[(2-Hydroxy-2-phenylethyl)amino $]$ ethyl $]$ -

2-(5-sulfanyl-1H-1,2,4-triazol-3-yl)acetanilide hydrochloride

EXAMPLE 11
(R)-2-(2-Aminothiazol-4-yl)-4-[2-[(2-hydroxy-2-phenyl-ethyl)amino]e thyl]-2-oxoacetanilide dihydrochloride

EXAMPLE 12
(R)-2-(5-Amino-1,2,4-thiadiazol-3-yl)-4'-[2-[(2-hydroxy-2-phenylethyl)amino]ethyl]acetanilide
dihydrochlorids

EXAMPLE 13

(R)-2-(5-Ethoxycarbonylamino-1,2,4-thiadiazol-3yl) $4^{4}-[2-[(2-h y d r o x y-2-p h e n y l e t h y l) a m i n o] c t h y l]$ acetanilide hydrochloride

EXAMPLE 14
(R)-2-[(2-(3-Fluorophenylamino) thiazol-4-yl)-4'-[2-[(2-hydroxy-2-phenylethyl)amino]ethyl]acetanilide dihydrochloride

LXAMPLE 15
(R)-2-(2-Chloropyridin-6-yl)-4'-[2-[(2-hydroxy-2-phenyl-ethyl)amino]ethyl]acetanilide hydrochloride

EXAMPLE 16
(R)-2-(2-Benzyloxypyridin-6-yl)-4'-(2-[(2-thydroxy-2-phenylethyl)amino]ethyl]acetanilide hydrochloride

EXAMPLE 17
(R)-4'-[2-[(2-IIydroxy-2-phenylethyl)amino $]$ ethyl $]$ -2-[1-(2-methyl-3-propenyl)-1H-imidazol-2-yl) acetanilide dihydrochloride

EXAMPLE 18
(R)-2-(1-Benzyl-1H-imidazol-4-yl)-4'-[2-[(2-hydroxy-2-phenylethyl)amino]ethyl]acetanilide
dihydrochloride

EXAMPLE 19

(R)-2-[1-(2-Chlorobenzyl)-1H-imidazol-4-yl]-4'-[2-[(2-hydroxy-2-phenylethyl)amino]ethyl]acetanilide dihydrochloride

EXAMPIE 20
(R)-2-[1-(3-Chlorobenzyl)-1H-imidazol-4-yl)-4'[2-[(2-hydroxy-2-phenylethyl)amino]ethyl]acetanilide dihydrochloride

18

EXAMPIE 21
(R)-2-[1-(4-Chlorobenzyl)-1II-imidazol-4-yl]-4-[2-[(2-lyydroxy-2-phenylethyl)amino]ethyl]acetanilide dihydro-chloride

EXAMPLE 22
(R)-2-[1-(4-Fluorobenzyl)-1H-imidazol-2-yl]-4'-[2-[(2-hydroxy-2-phenylethyl)amino]ethyl]]acetanilide dihydrochloride

EXAMPLE 23
(R)-2-[1-(4-Chlorobenzyl)-1H-intidazol-2-yl]-4'-[2-[(2-hydroxy-2-phenylethyl)amino]ethyl]acetanilide dihydrochloride

EXAMPLE 24
(R)-2-[1-(4-Bromobenzyl)-1H-imidazol-2-yl]-4'-[2-[(2-hydroxy-2-phenylethyl)amino]ethyl]acetanilide dihydrochloride

EXAMPLE 25
(R)-4'-[2-[(2-IIydroxy-2-phenylethyl)amino]ethyl]-2-[1-(4-iodobenzyl)-1[I-imidazol-2-yl]acetanilide dihydrochloride

EXAMPLE 26
(R)-4'-[2-[(2-Hydroxy-2-phenylethyl)amino $]$ ethyl $]$ -2-[1-(4-trilluoromethylbenayl)-1H-imidazol-2-yl] ase tannilide dilaydrochloride

EXAMPLE 27
(R)-4'-[2-[(2-Hydroxy-2-phenylethyl)amino $]$ ethyl $]$ -2-[1-(2-naphthyl)-1H-imidazol-2-yl]acetanilide dihydrochloride

EXAMPLE 28
(R)-2-[1-(4-r'luorobenzyl)-5-methyl-1H-imidazol-2-yll-4--[2-[(2-hydroxy-2-phenylethyl)aminc $]$ ethyl $]$ acetantilide dihydrochloride

EXAMPIE 29
(R)-2-[1-(4-Fluorobenzyl)-4-methyl-1H-imidazol-2-yl]-4'-[2-[(2-hydroxy-2-phenylethyl)amino $]$ ethyl $]$ acetanilide dihydrochloride

EXAMPLE 30
(R)-2-[1-(4-Fluorobenzyl)-1H-tetrazol-5-yl]-4'-[2-[(2-hydroxy-2-phenylethyl)amino]ethyl]acetanilide hydrochloride

19
EXAMPIE 31
(R)-2-[2-(3,4-Dichlorobenzyl)-1H-tetrazol-5-yl]-4'-
[2-[(2-hydroxy-2-phenylethyl)amino]ethyl] acetanilide hydrochloride

EXAMPIE 32

(R)-2-[2-(4-Fluorabeazyl)-1H-tetrazol-5-yl]-4'-[2-
[(2-hydroxy-2-phenylethyl)amino]ethyl]acetanilide hydrochloride

EXAMPLE 33

(R)-2-[1-(3,4-Dichlorobenzyl)-1H-tetrazol-5-yl]-4'-[2-[(2-hyclroxy-2-phenylethyl)amino]ethyl] acetanilide hydrochloride

EXAMPLE 34

To a solution of 175 mg of tert-butyl (R)-N-[2-[4-[2-(1H-1,2,4-triazol-3-yl)acetylaminolphenyl]ethyl]N-(2-hydroxy-2-pherylethyl) carbamate in 5 ml of methanol was added 4 mil of a solution of 4 N hydrogen chloride in ethyl acetate. The mixture was stirred at room temperature for three hours, the solvent was filtered off, and the resulting powder was 25 washed with ethanol. The resulting powder was dried to give 125 mg of (R)-4'-[2-[(2-hydroxy-2-phenylethyl)amino] ethyl]-2-(1H-1,2,4-triazol-3-yl)acetanilide dihydrochloride.

The compounds of Examples 35 to 40 were prepared by the same manner as in Example 34

EXAMPLE 35
(R)-2-(5-Benzylsulfanyl-1II-1,2,4-triazol-3-yl)-4'-[2-[(2-hydroxy-2-phenylethyl)amino]ethyl]acetanilide dihydrochloride

EXAMPLE 36

(R)-2-(2-Acetamidothiazol-4-yl)-4'-[2-[(2-tryclroxy-2-phenylethyl)amino |ethyl|acetanilide hydrochloride

EXAMPLE 37
(R)-4'-[2-[(2-Hydroxy-2-phenylethyl)amino $]$ ethyl $]$ -

2-(2-methanesulfonamidothiazol-4-yl)ace lanilide
hydrochloride

EXAMPLE 38

(R)-2-(2-Guanidinothiazol-4-yl)-4'-[2-[(2-hydroxy-2-phenylethyl)amino]ethyl]acetanilide dihydrochloride

EXAMPLE 39
(R) -4^{\prime} - $[2-[(2-H y d r o x y-2-p h e n y l e t h y l)$ aminolethyl $]-$ 2-(2-phenylaminothiazol-4-yl)acetanilide hydrochloride

EXAMPLE 40
(R)-4'-[2-[(2-Hydroxy-2-phenylethyl)amino $]$ ethyl $]$ -

2-[1-(4-nitrobenzyl)-1II-imidazol-2-yl]acetanilide
hydrochloride
'lo 690 mg of tert-butyl (R)-N-[2-[4-[2-(2-amino-thiazol-4-yl)acetamino]phenyl]ethyl]-N-[(2-hydroxy-2-phenyl) 5 ethyl]carbamate were added 30 nol of methanol and 15 mll of a solution of 4 N hydrogen chloride in ethyl acetate, and the mixture was stirred at room temperature for two hours. The solvent was evaporated in vacuo, and the residue was purified by a reverses phase column chromatography (eluent: water/methanol 2/1) to give 310 mg of (R)-2-(2-aminothiazol-4-yl)-4'-[2-(2-hydroxy-2-phenylethyl)amino]ethyl]acetanilide dihydrochloride.

The compounds of Examples 42 to 57 were prepared by the same manner as in Example 41.

EXAMPLE 42
(R)-4'-[2-[(2-Hydroxy-2-phenylethyl)amino $]$ ethyl $]$ -(2-amino-thiazol-4-yl)carboxanilide hydrochloride

EXAMPLE 43
(R)-2-(2-Amino-5-methylthiazol-4-yl)-4-2-[(2-hydroxy-2-phenylethyl)amino]ethyl]acetanilide dihydrochloride

EXAMPLE 44
(R)-2-(2-Aminothiazol-4-yl)-2-methyl-4'-[2-[(2-hydroxy-2-phenylethyl)amino]ethyl]propionatuilide hydrocthloride

EXAMPLE 45
(R)-4'-[2-[(2-Hydroxy-2-phenylethyl)amino]ethyl]-(2-amino-4,5,6,7-tetrahydrobenzothiazol-4-yl) carboxanilide dihydrochloride

EXAMPLE 46
(R)-4'-[2-[(2-Hydroxy-2-phenylethyl)amino $]$ ethyl $]$ -2-(imidaco[2,1-b]ihiazol-6-yl)acetanilide hydrochloride

EXAMPLE 47
(R)-2-(2-Benzyl-1H-1,2,4-triazol-3-yl)-4'-2-L(2-hydroxy-2-phenylethyl)amino]ethyl]acelanilide hydrochloride

EXAMPLE 48
(R)-2-(1-Bcnzyl-1H-1,2,4-triazol-3-yl)-4'-[2-[(2-hydroxy-2-phenylethyl)amino]ethyl]acetanilide hydrochloride

EXAMPLE 49
(R)-2-(3-Benzyl-2-thioxothiazol-4-yl)-4'-[2-[(2-hydroxy-2-phenylethyl)amino]ethyl]acetanilide hydrochloride
(R) -4 - $-[2-[(2-I y d r o x y-2-p h e n y l e t h y l) a m i n o] e t h y l]-~$ (5,6,7,8-tetrahydroquinolin-8-yl) carboxanilide dilydrochloride

EXAMPLE 51
(R) $-4^{4}-[2-[(2-H y d r o x y-2-p h e n y l e t h y l) a m i n o] c t h y l]-$ 2-(1-phenyl-1H-imidazol-2-yl)acetanilide
dihydrochlorido

EXAMPLE 52

(R) $-4^{\prime}-[2-[(2-H y d r o x y-2-p h e n y l e t h y l) a m i n o] e t h y l]-$ 2-[(1-(4-isopropylbenzyl)-1H-imidazol-2-yl) acetanilide dihydrochloride

EXAMPLE 53
(B)-4'-[2-[(2-Hydroxy-2-phenylethyl)amino]ethyl]-2-[(1-(4-phenylbenzyl)-1H-imidazol-2-yl)acetanilide dilydrochloride

EXAMPLE 54

(R)-2-[1-(2-Chlorobenzyl)-1II-imidazol-2-yl]-4-[2-[(2-hydroxy-2-phenylethyl)amino]ethyl]acetanilide dihydrochloride

EXAMPLE 55
(R)-2-[1-(3-Chlorobenzyl)-1H-imidazol-2-yl]-4'-[2-[(2-hydroxy-2-phenylethyl)amino]ethyl]acetanilide dihydrochloride

EXAMPLE 56

(R)-2-[1-(3,4-Dichlorobenzyl)-1H-imidazol-2-yl]-4'-[2-[(2-hydroxy-2-phenylethyl)amino]ethyl] acetanilide dihydrochloride

EXAMPLE 57
(R) $-4^{\prime}-[2-[(2-H y d r o x y-2-p h e n y l e t h y l) a m i n o] e t h y l]-$ 2-[(1-(2-pyridyl)methyl-1H-imidazol-2-yl) acetanilide dilhydrochloride

The compound of Example 58 was prepared by the same manner as in Example 1.

EXAMPLE 58

(R)-2-(2-aminopyridin-6-yl)-4'-[2-[(2-hydroxy-2-phonyl-cthyl)amino]cthyl]acctanilide dihydrochloride

EXAMPLE 59

To a solution of tert-butyl (R)-N-[2-[4-[[2-(2-amino-thiazol-4-yl)-2-oxoacetyl]amino]phenyl]ethyl]-N-(2-hydroxy-2-phenylethyl) carbamate in 30 ml of methanol was added 130 mg of sodium borohydride at room temperature.

22

The reaction mixture was stirred at room temperature for three hours, and the solvent was evaporated in vacuo. The residue was dissolved in 5 ml of methanol, and to this reaction solution was added 10 ml of a solution of 4 N
5 hydrogen chloride-ethyl acetate. The reaction solution was stirred at room temperature for cight hours and the solvent was cvaporated in vacuo. The residuc was purificd by silica gel column chromatography (eluent: chloroform/methanol= $5 / 1$). The resulting residue was purified by reversed phase 10 column chromatography (eluent: water/methanol $=2 / 1$) to give 77 mg of (R)-2-(2-amino-thiazol-4-yl)-2-hydroxy-4'-[2-(2-hydroxy-2-phenylethyl)-amino]acetanilide hydrochloride.

EXAMPLE 60

To 349 mg of tert-butyl (R)-N-[2-[4-[[2-(2-benzyl-oxypyridin-6-yl)acetyl]amino]phenyl]ethyl]-N-(2-hydroxy2 -phenylethyl) carbamate were added 478 mg of pentamethylbenzene and 5 m 1 of trifluoroacetic acid successively. The reaction solution was stirred at room temperature for residue were added water and potassium carbonate to make the solution basic, and the aqueous phase was extracted with a mixed solvent of chloroform and tetrahydrofuran. The organic layer was dried over anhydrous magnesium sulfate, and the solvent was evaporated in vacuo. The residue was purified by silica gel column chromatography (eluent: chloroform/methanol=10/1 $\rightarrow 5 / 1$). To an ethanolic solution of the resulting residue was added $100 \mu \mathrm{l}$ of a 4 N hydrogen chloride-ethyl acetate solution, and then the solvent was replin vacuo. The resulting cruce crystals were recrystallized from echanol-ethyl acetate to give 65 mg of (R)-2-(2-benzyloxypyridin-6-yl)-4'-[2-[(2-hydroxy-2phenylethyl)amino]ethyl]acetanilide hydrochloride.
The compounds of Examples 61 to 76,83 and 85 were prepared by the same manner as in Example 1; and the compounds of Examples 77 to 82 were prepared by the same manner as in Example 41.
(R)-2-[1-(2,4-Difluorobenzyl)-1H-imidazol-2-yl]-4'-[2-(2-hydroxy-2-phenylethyl)amino]ethyl] acetanilide dihydrochloride

EXAMPLE 65
(R)-2-[1-(2,6-Difluorobenzyl)-1II-imidazol-2-yl]-4'-[2-(2-hydroxy-2-phenylethyl)amino]ethyl] acetanilide dibydrochloride

EXAMPIE 66
(R) $-2-[1-(3,5$-Difluorobenzyl) -1 III-imidazol-2-yl $]-4$ -
$[2-(2$-hydroxy-2-phenylethyl)anniuo $]$ ethy1 $]$ acetanilide dilydrochloride

EXAMPLE 67

$$
\begin{gathered}
\text { (R) }-2-[1-(2,5-\text {-Difluorobenzyl)-1H-imidazol-2-yl] }] \text { - } \\
4 \text { '-[2-(2-hydroxy-2-phenylethyl)amino]ethyl }] \\
\text { acctanilide dihydrochloride }
\end{gathered}
$$

EXAMPLE 68

(R)-2-[1-(3,4-Difluorobenzyl)-1H-imidazol-2-yl3-4'-[2-(2-hydroxy-2-phenylethyl)amino]ethyl] acetanilide dihydrochloride

EXAMPLE 69

(R) $-4^{\prime}-[2-[(2-H y d r o x y-2-p h e n y l e t h y l) a m i n o] e t h y l]-$

2-[1-(2,3,6-trifluorobenzyl)-l \mathbf{H}-imidazol-2-yl] acetanilide dihydrochloride

EXAMPLE 70

(R) -4 '-[2-[(2-Hydroxy-2-phenylethyl)amino $]$ ethyl $]$ -

2-[1-(2,4,5-trifluorobenzyl)-1H-imidazol-2-yl] acetanilide dihydrochloride

EXAMPLE 71

(R) $-4^{\prime}-[2-[(2-H y d r o x y-2-p h e n y l e t h y l) a m i n o] e t h y l]-$

2-[1-(3,4,5-trilluorobenzyl)-1H-imidazol-2-yl] acetanilide dilyydrochloride

EXAMPLE 72

(R)-4'-[2-[(2-Hydroxy-2-phenylethyl)amino $]$ ethyl $]$ -$2-[1-(2,3,4,5,6-$ pentafluorobenzy 1$)-1 H-$ innidazol-2yl]acetanillide dilyydrochloride

LXAMPLE 73

(R) $-4^{4}-[2-[(2-H y d r o x y-2-p h e n y l e t h y l) a m i n o] c t h y l]-$ 2-[1-(3-iodobenzyl)-1[I-imidazol-2-yl]acetanilids dihydrochloride

EXAMPLE 74
(R)-2-[1-(2,6-Dichiorobenzyl)-1.H-imidazol-2-yl]-4'-[(2-hydroxy-2-phenylethyl)amino]ethyl]acetanilide
hydrochloride

EXAMPLE 75

(R)-2-[1-(4-Cyanobenzyl)-1II-imidazol-2-yl]-4'-[2-(2-hydroxy-2-phenylethyl)amino]ethyl]acetanilide dihydrochloride
(R)-4'-[2-[(2-Hydroxy-2-phenylethyl)amino $]$ ethyl $]$ -2-[1-(quinolin-2-yl)-1II-imidazol-2-yl]acetanilide trihydrochloride

EXAMPLE 77
(R)-2-[1-(2-Chloro-6-fluorobenzyl)-1H-imidazol-2-yl]-4'-[2-(2-hydroxy-2-phenylethyl)amino]ethyl] acetanilide

EXAMPLE 78
(R)-2-[1-(2-Chloro-4-fluorobenzyl)-1H-imidazol-2-yl]-4'-[2-(2-hydroxy-2-phenylethylnamino]ethyl] acetanilide

EXAMPLE 79
(R)-2-[1-(2,5-Dichiorobenzyl)-1H-imidazol-2-yl]-4'-[2-(2-hydroxy-2-phenylethyl)amino]ethyl] acetanilide dihydrochloride

EXAMPLE 80
(R)-4'-[2-[(2-Hydroxy-2-phenylethyl)amino $]$ ethyl $]$ -2-[1-(2,3,4-trifluorobenzyl)-1H-imidazol-2-yl] acetanilide dibydrochloride

EXAMPLE 81
(R)-4'-[2-[(2-Hydroxy-2-phenylethyl)amino]ethyl]-

2-[1-(4-methoxycarbonylbenzyl)-1H-imidazol-2-yl] acetanilide dihydrochloride

EXAMPIE 82
(R)-4'-[2-[(2-Hydroxy-2-phenylcthyl)amino $]$ cthyl $]$ -
$2-[1-[($ piperidinc-1-carbonyl)benzyl $]-1 \mathrm{H}$-imidazol-2yl]acetanilide dihydrochloride

EXAMPLE 83
(R)-4'-[2-[(2-Hydroxy-2-phenylethyl)amino]ethyl]-2-(1-pyrazoly)acetanilide hydrochloride

EXAMPLE 84
(R)-4'-[2-[(2-Hydroxy-2-phonylethyl)amino $]$ cthyl $]$ -2-(1,2,4-triazol-1-yl)acetanilide dihydrochloride

EXAMPLE 85
(R)-2-(2-Aminobencimidazol-1-yl)-4'-[(2-[(2-hydroxy-2-phenylethyl)amino]ethyl]acetanilide dihydrochloride

EXAMPLE 86
To a solution of 20.1 g of 4 - $2-[\mathrm{N}$-benzyl- N -(2-hydroxy-2-phenylethyl)amino]ethyl]-2-(2-pyridyl) acetanilide in 400
ml of methanol was added 5.96 g of. 10% palladium-carbon. The reaction solution was stirred for six hours in a hydrogen atmosphere under atmospheric pressure. Insoluble matlers were filtered off using Celite and the filtrate was concentrated in vacuo. To a methanolic solution of the resulting residue was added 10.8 ml of a 4 N hydrogen chloride-cthyl acetate solution, and the solvent was evaporated in vacuo. The resulting crude crystals were recrystallized from methanol-ethanol to give (R)-4'-[2-[(2-hydroxy-2-phenylethyl)amino]ethyl]-2-(2-pyridyl)acetanilide hydrochloride.

The compounds of 87 to 90 were prepared by the same manncr as in Example 86.

EXAMPLE 87

(R) $-4^{\prime}-[2-[(2-H y d r o x y-2-p h e n y l e t h y l) a m i n o] e t h y l]-$ 2-(3-pyridyl)acetanilide hydroch1oride
acetanilide ($\mathbf{3 5 0} \mathrm{mg}$) was dissolved in 20 ml of ethanol, then 130 mg of 10% palladium-carbon was added thereto, and the mixture was stimed for 17.5 hours in a hydrogen almosphere under atmospherie pressure. The catalyst was filtered off, the solvent was evaporated in vacuo, and the residue was purificd by silica gel column chromatography (clucnt: chloroform/methanel/concentrated aqueous ammonia=200/ 10/1). The resulting oily substance was dissolved in methanol, and $280 \mu \mathrm{l}$ of a 4 N hydrogen chloride-ethyl acetate solution was added thereto. The mixture was filtered after adding active carbon was added thereto, and the solvent was evaporated in vacuo to give 200 mg of (R)-2-(1-benzyl1 H -imidazol-2-yl)-4'-[2-[(2-hydroxy-2-phenylethyl)amino] ethyl]acetanilide dihydrochloride.
15 The compounds of Examples 95 and 97 were prepared by the same manner as in Example 91; the compounds of Examples 98 and 100 were prepared by the same manner as in Example 94; and the compounds of Examples 99 and 101 to 103 were prepared by the same manner as in Example 86.

EXAMPLE 88
(R) -4^{\prime}-[2-[(2-Hydroxy-2-phenylethyl)amino $]$ ethyl $]$ -2-(4-pyridyl)acetanilide hydrochloride

EXAMPLE 89
(R) -4^{\prime}-[2-[(2-Hydroxy-2-phenylethyl)amino $]$ ethyl $]$ -3-(2-pyridyl)propionanilide hydrochloride

EXAMPLE 90
(R) $4^{\prime}[2-[(2-H y d r o x y-2$ phenylethyl $)$ amino $]$ ethyl $]$

2-[(1-phenylethyl)-1H-imidazol-2-yl]acetanilide dihydrochloride

EXAMPLE 91

(R)-2-(1H-Benzimidazol-2-yl)-4'-[4-[2-[N-benzyl-N-(2-hydroxy-2-phenylethyl)amino]ethyl]phenyl]acetanilide (240 mg) was dissolved in 30 ml of ethanol, then 170 mg of 10% palladium-carbon was added therew and the mixture wats stirred for nine hours in a hydrogen atmosphere under atmospherie pressure. The catalyst was filtered off, the solvent was evaporated in vacuo, and the residue was washod with cthanol-cthyl acctate to give 200 mg of (R)-2-(1H-benzimidazol-2-yl)-4'-[2-[(2-hydroxy-2-phenylethyl) amino]-ethyl]acetanilide.
The compounds of Examples 92 and 93 were prepared by the same manner as in Example 86.

EXAMPLE 92
(R)-4'-[2-[(2-Hydroxy-2-phenylcthyl)amino $]$ cthyl $]$ -

2-(3-methylpyridin-2-yl]acetanilide hydrochloride

EXAMPLE 93
(R) -4'-[2-[(2-Hydroxy-2-phenylethyl)amino $]$ ethyl $]$ -2-(2-pyrazinyl)acetanilide hydrochloride

EXAMPLE 94

(R)-4'-[4-[2-[N-Benzyl-N-(2-hydroxy-2-phenylethyl)-amino]ethyl]phenyl]-2-(1-benzyl-1H-imidazol-2-yl)

EXAMPLE 95
(R)-4'-[2-[(2-Hydroxy-2-phenylethyl)amino $]$ ethyl $]-$ 2-(4-methyl-2-pyridyl)acetanilide

EXAMPLE 96
(R)-4'-[2-[(2-Hydroxy-2-phenylethyl)amino $]$ ethyl $]$ -2-(5-methyl-2-pyridyl)acetanilide

EXAMPLE 97
(R)-4'-[2-[(2-Hydroxy-2-phenylethyl)amino ${ }^{2}$ ethyl $]$ -2-(6-methyl-2-pyridyl)acetanilide

EXAMPLE 98
4'-[(R)-2-[((R)-2-Hydroxy-2-phenylethyl)amino $]$ propyl]-2-(2-pyridyl)acetanilide hydrochloride

EXAMPLE 99 4'-[(S)-2-[((R)-2-Hydroxy-2-phenylethyl) aminolpropyl]-2-(2-pyridyl)acetanilide hydrochloride

EXAMPL.E 100

2-(1-Benzyl-1H-imidazol-2-yl)-4'-[(S)-2-[((R)-2-hydroxy-2-phenylethyl)amino]propyl]acetanilide hydrochloride

EXAMPLE 101
1^{\prime}-[2-[[2-Hydroxy-2-(2-fluorophenyl)ethyl]amino] ethyl]-2-(2-pyridyl)acetanilide hydrochloride

EXAMPLE 102
4'-[2-[[2-Hydroxy-2-(3-fluorophenyl)ethyl]amino] ethyl]-2-(2-pyridyl)acetanilide hydrochloride

EXAMPIE 103

4'-[2-[[2-IIydroxy-2-(4-fluorophenyl)ethyl]amino] ehyl]-2-(2-pyridyl)acetanilide hydrochloride

EXAMPLE 104

To a solution of 805 mg of 1'-cyanomethyl-2-(2pyrimidinyl) acetanilide in 30 ml of terrahydrofuran were added 30 ml of an ethanolic solution of a Raney nickel and 3 ml of concentrated aqueous ammonia. The reaction solution was stirred for four hours in a hydrogen atmosphere under atmospheric pressure, then insoluble matters were filtered off using Celite, and the solvent was evaporated. To the resulting residue were added 10 ml of 2 -propanol, 300 mg of (R)-styrene oxide and 2 ml of methanol successively. The reaction mixture was heated to reflux for ten hours, and the solvent was evaporated. The residue was purificd by silica gel column chromatography (eluent: chloroform/ methanol=10/1). To a methanolic solution of the resulting residuc was added $150 \mu 1$ of 4 N hydrogen chloride-cthyl acetate solution, and the solvent was evaporated in vacuo. The resulting residue was crystallized from methanol-ethanol-ethyl acetate and then recrystallized from ethanoldiethyl ether to give 160 mg of (R)-4'-[2-[(2-hydroxy-2-phenylethyl)amino]ethyl]-2-(2-pyrimidinyl]acetanilide hydrochloride.

The compounds of Examples 105 to 108 were prepared by the same manner as in Example 104; and the compound of Example 109 was prepared by the same manner as in Example 91.

EXAMPLE 105
(R)-4'-[2-[(2-Hydroxy-2-phenylethyl)amino $]$ ethyl $]$ -2-(2-cuinolyl)acetanilide hydrochloride

EXAMPLE 106
(R)-4'-[2-[[2-Hydroxy-2-(3-chlorophenyl)ethyl] amino]-ethyl]-2-(2-pyridyl)acetanilide hydrochloride

EXAMPLE 107
4'-[2-[[2-IIydroxy-2-(3-pyridyl)ethyl]amino]ethyl]-2-(2-pyridyl)acetanilide hydrochloride

EXAMPLE 108
(R)-2-[1-(4-Chlorobenzyl)-1 H-benzimiclazol-2-yl]-$4^{\prime}-[2-[(2-h y d r o x y-2-p h e n y l e t h y l)$ amino $]$ ethyl $]$ acetanilide dibydrochloride

EXAMPLE 109
(R)-2-(4,6-Dimethyl-2-pyridyl)-4'-[2-[(2-hydroxy-2phenylethyl)amino]ethyl]acetanilide

EXAMPLE 1.10
To 4'-(3-aminopropyl)-2-(2-pyridyl)acetanilide were added 10 ml of 2 -propanol and 600 mg of (R)-styrene oxide successively. The reaction mixture was heated to reflux for four hours, and the solvent was evaporated. The residue was
purified by silica gel column chromatography (eluent: chloroform/methanol=30/1 $\Delta 10 / 1$). To a methanolic solution of the resulting residue was added $100 a \mathrm{l}$ of a 4 N hydrogen chloride-ethyl acetate solution, and the solvent was evapo-
5 rated in vacuo. The resulting crude crystals were recrystallized from cthanol-dicthyl cther to give 71 mg of (R) -4 '-[3-[(2-hydroxy-2-phenylcthyl)aminolpropyl]-2-(2-pyridyl) acetanilide hydrochloride.

LXAMPLL 111

To a solution of 3.62 g of tert-butyl $\mathrm{N}-[2-[4-[[2-(2-$ pyridyl)acetyl]amino]phenoxy]ethyl]carbamate in 30 ml of methanol was added 50 ml of a 4 N hydrochloride-ethyl acetate solution. After the reaction solution was stirred at room temperature for eight hours, the solvent was evaporated in vacuo. To the residue were added an aqueous solution of sodium hydrogen carbonate and potassium carbonate to adjust to pII about 12. The resulting aqueous phase was extracted with a mixed solvent of chloroform and tetrahydrofuran. The organic layer was dried over anhydrous magnesium sulfate and concentrated, the resulting residue was dissolved in 40 ml of methanol, and 1.02 g of (R)styrene oxide was added thereto. After the reaction solution was heated to reflux for 26 hours, the solvent was evaporated in vacuo. The resulting residuc was purified by silica gel column chromatography (eluent: chloroform/methanol=30/ $1 \rightarrow 10 / 1$) and dissolved in methanol, 0.59 ml of a 4 N hydrogen chloride-ethyl acetate solution was added, and the solvent was evaporated in vacuo. The resulting crude crystals were recrystallized from methanol-cthanol to give 320 mg of (R)-4'-[2-[(2-hydroxy-2-phenylethyl)-amino]ethoxy]-

EXAMPLE 112

To a solution of 490 mg of tert-butyl $\mathrm{N}-[1,1$-di-methyl-2-[4-[[2-(2-pyridyl)acetyl]amino]phenyl]ethyl]-carbamate 35 in 10 ml of mothanol was added 30 ml of a 4 N hydrochloride-ethyl acetate solution. After the reaction solution was stirred at room temperature for eight hours, the solvent was evaporated in vacuo. To the residue were added an aqueous solution of sodium hydrogen carbonate and 40 potassium carbonate to adjust to pII about 12 . The resulting aqueous phase was extracted with a mixed solvent of chloroform and tetrahydrofuran. The organic layer was dried over anhydrous magnesium sulfate and concentrated, the resulting residue was dissolved in 2 ml of 2 -propanol and 2 ml of methanol, and 120 mg of (R)-styrene oxide was added thereto. After the reaction solution was heated to reflux for 24 hours, the solvent was evaporated in vacuo. The resulling residue was purified by silica gel column chromatography (cluent: chloroform $/ \mathrm{mcthanol}=30 / 1 \rightarrow 15 / \mathrm{l}$) and dissolved in mothanol, 0.1 ml of a 4 N hydrogen chloride-cthyl aectatc solution was added, and the solvent was cvaporated in vacuo. The resulting residue was purified by silica gel column chromatography (eluent: chloroform/methanol=5/1) and a reversed phase column chromatography (eluent: water/methanol=2/1 $\rightarrow 1 / 1$) to give 35 mg of (R) $-4^{\prime}-[2,2-$ dimethyl-2-[(2-hydroxy-2-phenylethyl)amino]ethyl]-2-(2pyridyl)acetanilide hydrochloride.

The compound of Example 113 was prepared by the same manner as in Example 1.

60
(R)-1-(4-[2-[(2-Hydroxy-2-phenylethyl)amino]ethyl] phenyl]-3-(2-pyridyl)urea dihydrochloride
As hereunder, physical and chemical properties of the 65 compounds of the Referential Examples are given in Tables 1 and those of the compounds of the Examples are given in Tables 2.

The symbols in the tables have the following meanings.

Rex.: Referential Example No.
Ex.: Example No,
DALA: Physico-chemical propertics
NMR: Nuelcomagnetic resonance spectrum (TMS internal standard; DMSO-d was used as a solvent unless otherwise specified)
mp: melting point
dec: decomposition
MS (m/z): mass spectrograptic data (m/z)
Structure: structural formula

TABLE 1

Rex.	Data
1	NMR $\left(\mathrm{CDCl}_{3}\right) 8: 2.75(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.4,8.8 \mathrm{~Hz}), 2.85-3.04$ $(5 \mathrm{H}, \mathrm{m}), 4.70(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8,3.7 \mathrm{~Hz}), 7.24-7.40(7 \mathrm{H}, \mathrm{m}), 8.10-8.20$ ($2 \mathrm{H}, \mathrm{m}$)
2	NMR (CDCl_{3}) $8: 1.44(9 \mathrm{II}, \mathrm{s}), 2.75-3.10(2 \mathrm{II}, \mathrm{m}), 3.20-3.70$ $(4 \mathrm{H}, \mathrm{mi}), 4.93(1 \mathrm{HI}, \mathrm{br}), 7.25-7.40 .7 \mathrm{H}, \mathrm{m}), 8.14(2 \mathrm{HI}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz})$
3	NMR $\left(\mathrm{CDCl}_{3}\right) \mathrm{\delta}: 1.47(9 \mathrm{H}, \mathrm{s}), 2.55-2.80(2 \mathrm{HI}, \mathrm{mi}), 3.20-3.40$ $(2 \mathrm{H}, \mathrm{m}), 3.45-3.65(2 \mathrm{H}, \mathrm{m}), 4.87(1 \mathrm{H}, n), 6.57-6.65(2 \mathrm{H}, \mathrm{m})$, $6.83-7.04(2 \mathrm{H}, \mathrm{m}), 7.25-7.40(5 \mathrm{H}, \mathrm{ri})$
4	NMR (CDCl_{3}) $8: 1.47(9 \mathrm{H}, \mathrm{s}), 2.62-2.93(2 \mathrm{H}, \mathrm{m}), 3.14-3.58$ ($4 \mathrm{H}, \mathrm{m} 1), 4.35(1 \mathrm{H}, \mathrm{brs}), 4.90(1 \mathrm{H}, \mathrm{br}), 7.06-7.40(7 \mathrm{H}, \mathrm{m}), 7.45-7.50$ $(1 \mathrm{H}, \mathrm{m}), 7.67-7.72(2 \mathrm{H}, \mathrm{m}), 7.90(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=2.0,8.0 \mathrm{~Hz}), 8.25-8.31$ $(1 . \mathrm{H}, \mathrm{m}), 8.58-8.63(1 \mathrm{H}, \mathrm{m}), 9.98(1 \mathrm{HT}, \mathrm{brs})$
5	NMR $\left(\mathrm{CDCl}_{3}\right)$) $: 1.49(9 \mathrm{H}, \mathrm{s}), 2.64-2.90(2 \mathrm{H}, \mathrm{m}), 3.16-3.60$ ($4 \mathrm{II}, \mathrm{m}$) , $4.38(1 \mathrm{II}, \mathrm{brs}), 4.91(1 \mathrm{II}, \mathrm{br}), 7.10-7.42(7 \mathrm{II}, \mathrm{m}), 7.55(1 \mathrm{II}$, dd, $\mathrm{J}=8.0,4.4 \mathrm{~Hz}), 7.74(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.77-7.84(2 \mathrm{HI}, \mathrm{m})$, $8.01(1 \mathrm{II}, \mathrm{d}, \mathrm{J}=8.0,1.2 \mathrm{Lz}), 8.34(1 \mathrm{II}, \mathrm{d}, \mathrm{J}=8.4,1.6 \mathrm{ILz})$, $8.90(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6,1.9 \mathrm{H} 4), 9.02(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.4,2.0 \mathrm{~Hz})$, $13.61(1 \mathrm{H}, \mathrm{brs})$

TABLE 1-continucd
Rex. DATA
6 NMR $\left(\mathrm{CDCl}_{3}\right) 8: 1.47(9 \mathrm{H}, \mathrm{s}), 2.60-2.80(2 \mathrm{H}, \mathrm{m}), 3.15-5.55$ $(4 \mathrm{H}, \mathrm{m}), 3.78(2 \mathrm{H}, \mathrm{s}), 4.36(4 \mathrm{HF}, \mathrm{b}(\mathrm{s}), 4.82-4.94(1 \mathrm{HI}, \mathrm{m}), 5.18$ $(2 \mathrm{H}, \mathrm{s}), 6.92-6.99(2 \mathrm{H}, \mathrm{m}), 7.00-7.13(5 \mathrm{HI}, \mathrm{m}), 7.25-7.38$ ($6 \mathrm{II}, \mathrm{mi}), 7.42-7.48(2 \mathrm{II}, \mathrm{m}), 10.34(\mathrm{III}, \mathrm{brs})$
7 NMR $\left(\mathrm{CDCl}_{3}\right) 8: 2.56-2.94(6 \mathrm{H}, \mathrm{m}), 3.40-3.65(2 \mathrm{H}, \mathrm{m})$, $3.80(1 \mathrm{H}, \mathrm{brs}), 3.95(1 \mathrm{H}, \mathrm{d}, 13.6 \mathrm{~Hz}), 4.62(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.0,3.2 \mathrm{~Hz})$, $6.57-6.66(2 \mathrm{H}, \mathrm{m}), 6.87-6.98(2 \mathrm{H}, \mathrm{m}), 7.20-7.37(17 \mathrm{H}, \mathrm{tu})$
$8 \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) 8: 2.40(3 \mathrm{H}, \mathrm{s}), 2.54-3.00(6 \mathrm{H}, \mathrm{m}), 3.57(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=1.3 .6 \mathrm{H} / 4), 3.88(2 \mathrm{H}, \mathrm{s}), 3.95(1 \mathrm{HJ}, \mathrm{d}, \mathrm{J}=13.6 \mathrm{H} / 4), 4.62(1 \mathrm{H}$, $\mathrm{dd}, \mathrm{J}=10.4,3.6 \mathrm{Hzi}, 7.00-7.75(16 \mathrm{H}, \mathrm{m}), 8.44(1 \mathrm{HI}, \mathrm{d}, \mathrm{J}=4.4 \mathrm{~Hz})$, $9.66(1 \mathrm{H}, \mathrm{brs})$
9 NMR ($\left.\mathrm{CDCl}_{3}\right) 8: 2.58-2.65(1 \mathrm{H}, \mathrm{m}), 2.75-3.00(5 \mathrm{H}, \mathrm{m})$, $3.59(1 \mathrm{HI}, \mathrm{d}, \mathrm{J}=13.2 \mathrm{~Hz}), 3.95(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.2 \mathrm{~Hz}), 5.01(1 \mathrm{H}$, cd , $\mathrm{J}=10.0,3.2 \mathrm{~Hz}), 6.97-7.03(1 \mathrm{H}, \mathrm{m}), 7.12-7.35(\mathrm{y} \mathrm{H}, \mathrm{m})$, $7.48-7.56(1 \mathrm{H}, \mathrm{m}), 8.04-8.1 .3(2 \mathrm{H}, \mathrm{m})$
$10 \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) 8: 3.70(2 \mathrm{H}, 8), 3.88(2 \mathrm{H}, 5), 7.23-7.32$ ($4 \mathrm{II}, \mathrm{mi}), 7.54-7.62(2 \mathrm{II}, \mathrm{mi}), 7.71(1 \mathrm{II}, \mathrm{ct}, \mathrm{J}=7.6,1.6 \mathrm{IL})$, $8.63(1 \mathrm{HI}, \mathrm{c}), 10.04(1 \mathrm{H}, \mathrm{brs})$
$11 \mathrm{NMR}\left(\mathrm{COCl}_{3}\right) 8: 2.25(3 \mathrm{H}, \mathrm{s}), 2.39(3 \mathrm{H}, \mathrm{s}), 2.57(2 \mathrm{H}, \mathrm{t}$, $\mathrm{J}=7.2 \mathrm{~Hz}), 2.72\left(2 \mathrm{H}_{n} \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}\right), 3.72(2 \mathrm{HI}, \mathrm{s}) ; 6.95\left(1 \mathrm{HI}_{n} \mathrm{~s}\right)$, $7.01(1 \mathrm{H}, \mathrm{s}), 7.11(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.51(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{H})$, $10.17\left(1 \mathrm{~F}_{\mathrm{t}} \mathrm{s}\right)$
12 NMR $\delta: 2.32(3 \mathrm{HI}, \mathrm{s}), 2.41(3 \mathrm{H}, \mathrm{s}), 2.90-3.19(6 \mathrm{H}, \mathrm{m})$, $3.75(2 \mathrm{H}, \mathrm{s}), 4.0 .(2 \mathrm{H}, \mathrm{s}), 4.89(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=7.5,3.2 \mathrm{~Hz})$, $6.99-7.71(16 \mathrm{H}, \mathrm{m}), 10.26(1 \mathrm{H}, \mathrm{s})$

एk. Data

$1 \mathrm{mp:} 223-225^{\circ} \mathrm{C}$, NMR $0: 2.95-3.28(6 \mathrm{H}, \mathrm{m}), 4.98-5.07(\mathrm{LH}, \mathrm{m}), 7.23-7.44(6 \mathrm{HI}, \mathrm{m}), 7.65-7.75(1 \mathrm{H}, \mathrm{m}), 7.88(2 \mathrm{E}, \mathrm{d}, \mathrm{J}=$ $8.4 \mathrm{~Hz}), 8.05-8.22(2 \mathrm{H}, \mathrm{m}), 8.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=\mathrm{c} .4 \mathrm{~Hz}), 8.97(1 \mathrm{H}$, brs $), 9.43(1 \mathrm{H}$, brs $), 10.65(1 \mathrm{H}$, brs $)$
2 mp: $263-265^{\circ} \mathrm{C}$. , NMR $8: 2.92-3.10(3 \mathrm{H}, \mathrm{m}), 5.13-3.27(3 \mathrm{H}, \mathrm{m}), 5.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.8,2.8 \mathrm{H} 4), 7.24-7.44(8 \mathrm{H}, \mathrm{m})$, $7.74-7.81(3 \mathrm{H}, \mathrm{m}), 8.57(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 8.81-8.96(2 \mathrm{HI}, \mathrm{m}), 9.20-9.30(2 \mathrm{H}, \mathrm{m}), 10.71(1 \mathrm{H}, \mathrm{brs})$
$3 \mathrm{mp:} 145-147^{\mathrm{c}} \mathrm{C}$, NMR 8: $2.94-3.10(3 \mathrm{H}, \mathrm{m}), 3.14-3.30(3 \mathrm{H}, \mathrm{m}), 4.97-5.05(1 \mathrm{H}, \mathrm{m}), 7.27-7.46(7 \mathrm{H}, \mathrm{m}), 7.77-7.90(4$ $\mathrm{H}, \mathrm{m}), 8.30(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.4,1.6 \mathrm{~Hz}), 8.60-8.71(2 \mathrm{H}, \mathrm{m}), 8.89(1 \mathrm{H}, \mathrm{brs}), 9.10-9.30(2 \mathrm{HI}, \mathrm{m}), 13.12(1 \mathrm{H}, \mathrm{brs})$
$4 \mathrm{mp}: 246-248^{\circ} \mathrm{C}$. (dec), NMR $\delta: 2.92-3.09(3 \mathrm{II}, \mathrm{m}), 3.11-3.26(3 \mathrm{II}, \mathrm{m}), 5 \mathrm{Cl}(1 \mathrm{III}, \mathrm{dd}, \mathrm{J}=10.4,2.8 \mathrm{IIz}), 7.24(2 \mathrm{II}, \mathrm{d}, \mathrm{J}=$ $8.4 \mathrm{~Hz}), 7.2 \mathrm{~S}-7.47(6 \mathrm{H}, \mathrm{m}), 7.56-7.75(4 \mathrm{H}, \mathrm{m}), 7.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 8.11(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}), 8.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.4 \mathrm{~Hz}, 2.92$ (1 H, brs $), 9.32(1 \mathrm{H}$, brs), $10.69(1 \mathrm{H}$, brs $)$
5 mp: $228-233^{\circ} \mathrm{C} .(\mathrm{dec}), \mathrm{NMR}$ ò: $2.88-3.09(3 \mathrm{H}, \mathrm{mi}), 3.10-3.24(3 \mathrm{H}, \mathrm{mb}), 4.30(2 \mathrm{H}, \mathrm{s}), 4.93-5.01(1 \mathrm{H}, \mathrm{tu}), 6.19(1 \mathrm{HL}, ~$ d, J= $3.6 \mathrm{~Hz}), 7.18-7.27(2 \mathrm{H}, \mathrm{m}), 7.28-7.53(7 \mathrm{H}, \mathrm{m}), 7.57-7.62(2 \mathrm{H}, \mathrm{m}), 7.97(\mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 8.08(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 8.83(1 \mathrm{H}$, brs), $9.1 .1 .(1 \mathrm{H}, \mathrm{trs}), 10.57(1 \mathrm{H}$, brs)
6 mp: $161-162^{\mathrm{C}} \mathrm{C}$., NMR $\left.\mathrm{d}: 2.86-3.24(6 \mathrm{H}, \mathrm{m}), 4.2492 \mathrm{H}, \mathrm{s}\right), 4.97(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}-9.6,2.8 \mathrm{~Hz}), 7.16-7.23(2 \mathrm{H}, \mathrm{m}), 7.27-7.44$ ($5 \mathrm{II}, \mathrm{m}$), $7.55(1 \mathrm{II}, \mathrm{s}), 7.61(2 \mathrm{II}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{IIz}), 7.85(1 \mathrm{IL}, \mathrm{s}), 8.27(1 \mathrm{II}, \mathrm{d}, \mathrm{J}=2.4 \mathrm{IIz}) ; 8.97(1 \mathrm{II}$, brs $), 9.47(1 \mathrm{II}$, brs $), 10.94(1 \mathrm{II}$, brs)
7 NMR $\delta: 2.70(3 \mathrm{H}, \mathrm{s}), 2.86-3.27(6 \mathrm{H}, \mathrm{m}), 3.85(2 \mathrm{H}, \mathrm{s}), 5.00-5.05(1 \mathrm{H}, \mathrm{m}), 7.18-7.60(10 \mathrm{H}, \mathrm{m}), 10.43(1 \mathrm{H}, \mathrm{s})$
$8 \mathrm{mp}: 203-207^{\circ} \mathrm{C}$, NMR 8: $2.92-3.08(3 \mathrm{H}, \mathrm{mi}, 3.10-3.22(3 \mathrm{H}, \mathrm{mi}), 4.2 \mathrm{~s}(2 \mathrm{H}, \mathrm{s}), 501(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{LL}), 6.2 \mathrm{~L}(1 \mathrm{H}, \mathrm{trs})$, $7.22(2 \mathrm{H}, \mathrm{c}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.25-7.63(4 \mathrm{H}, \mathrm{m}), 8.93(\lrcorner \mathrm{H}, \mathrm{brs}), 9.38(1 \mathrm{H}$, brs $), 10.86(1 \mathrm{H}, \mathrm{s})$
$9 \mathrm{mp}: 259-261^{\circ} \mathrm{C} ., \mathrm{NMR} 8: 2.90-3.10(3 \mathrm{I}, \mathrm{m}), \mathrm{S} .10-3.25(3 \mathrm{II}, \mathrm{m}), 4.15(2 \mathrm{IL}, \mathrm{s}), 4.97(1 \mathrm{II}, \mathrm{d}, \mathrm{J}=10.8 \mathrm{ILz}), 6.20(\mathrm{IIL}, \mathrm{d}, \mathrm{J}=$ $3.9 \mathrm{~Hz}), 7.21(\mathrm{sH}, 3, \mathrm{~J}-8.8 \mathrm{~Hz}), 7.30-7.42(5 \mathrm{H}, \mathrm{m}), 7.57(2 \mathrm{H}, \mathrm{d}, \mathrm{J}-8.8 \mathrm{~Hz}), 8.85(1 \mathrm{H}, \mathrm{brs}), 9.14(1 \mathrm{H}, \mathrm{brs}), 10.58(1 \mathrm{H}, \mathrm{s})$

1) mp: $210-213^{\circ} \mathrm{C}$, NMR $\delta: 2.86-3.08(3 \mathrm{H}, \mathrm{m}), 3.12-3.22(3 \mathrm{H}, \mathrm{m}), 3.73(2 \mathrm{H}, \mathrm{s}), 4.91-4.98(1 \mathrm{H}, \mathrm{m}), 6.19(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.9 \mathrm{~Hz})$, $7.21(2 \mathrm{H}, c, \mathrm{~J}=8.3 \mathrm{~Hz}), 7.29-7.42(5 \mathrm{H}, \mathrm{m}), 7.54(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 8.78(1 \mathrm{H}, \mathrm{brs}), 8.99(1 \mathrm{H}, \mathrm{brs}), 10.35(1 \mathrm{H}, \mathrm{s}), 13.21(1 \mathrm{H}$, brs'), $13.34(1 \mathrm{H}$, brs $)$
11 mp: 205-210 ${ }^{\circ} \mathrm{C}$. (dec), NMR $8: 2.90-3.25(\mathrm{CH}, \mathrm{m}), 4.95-5.04(1 \mathrm{H}, \mathrm{m}), 7.23-7.44(7 \mathrm{HI}, \mathrm{m}), 7.67-7.75(2 \mathrm{H}, \mathrm{m}), 8.15(1$ $\mathrm{H}, \mathrm{s}), 8.88(1 \mathrm{H}, \mathrm{brs}), 9.25(1 \mathrm{H}, \mathrm{brs})$
$12 \mathrm{mp:} 244-246^{\circ} \mathrm{C} ., \mathrm{NMR} \mathrm{d}: 2.90-3.08(3 \mathrm{H}, \mathrm{m}), 3.10-3.20(3 \mathrm{H}, \mathrm{m}), 3.67(2 \mathrm{H}, \mathrm{s}), 5.00(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=24,10.02 \mathrm{~Hz}), 7.192 \mathrm{H}$, d, J=8.3Hz), $7.28-7.42(5 \mathrm{II}, \mathrm{ml}), 7.57(2 \mathrm{II}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{II}), 8.90(1 \mathrm{II}, \mathrm{s}), 9.31(1 \mathrm{I}, \mathrm{s}), 1(1.31(1 \mathrm{II}, \mathrm{s})$
13 mp: 205-208 C., NMR $\delta: 1.27(3 \mathrm{H}, \mathrm{L}, \mathrm{J}=7.1 \mathrm{~Hz}), 2.88-3.08(3 \mathrm{H}, \mathrm{m}), 3.12-3.22(3 \mathrm{H}, \mathrm{m}), 3.86(2 \mathrm{H}$, s $), 4.27(2 \mathrm{H}, ~$ ч, $\mathrm{J}=7.1$ $\left.\mathrm{H}_{4}\right), 4.96(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{H} 4), 6.20(1 \mathrm{H}, \mathrm{s}), 7.19(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{H} 4), 7.30-7.42(5 \mathrm{H}, \mathrm{m}), 7.57(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 8.8(1 \mathrm{H}, \mathrm{s})$, $9.10(1 \mathrm{H}, \mathrm{s}), 10.33(1 \mathrm{H}, \mathrm{s}), 12.53(1 \mathrm{H}, \mathrm{s})$

TABLE 2-continucd
Ex. DATA
$14 \mathrm{mp}: 162-173^{\circ} \mathrm{C}, \mathrm{NMR} \delta: 2.83-3.22(6 \mathrm{H}, \mathrm{m}), 3.66(2 \mathrm{H}, \mathrm{s}), 4.98(1 \mathrm{H}, \mathrm{ct}, \mathrm{J}=2.9,13.1 \mathrm{~Hz}), 6.72(1 \mathrm{H}$, si) $7.19(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $8.3 \mathrm{Hm}), 7.23-7.42(8 \mathrm{HJ}, \mathrm{mi}), 7.59(2 \mathrm{~F}, \mathrm{~d}, \mathrm{~J}=8.3 \mathrm{H} / 2), 7.72-7.78(1 \mathrm{H}, \mathrm{m}), 8.85(1 \mathrm{H}, \mathrm{s}), 9.18(1 \mathrm{H}, \mathrm{brs}), 10.24(1 \mathrm{HI}$, brs $), 10.55$ ($1 \mathrm{H}, \mathrm{s}$)
$15 \mathrm{mp}: 248-251^{\circ} \mathrm{C}, \mathrm{NMR} \mathrm{j}: 2.90-3.08(3 \mathrm{H}, \mathrm{m}), 3.09-3.21(3 \mathrm{H}, \mathrm{ml}), 3.88(2 \mathrm{H}, \mathrm{s}), 5.02(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}-10.0,2.4 \mathrm{~Hz}), 6.20(1 \mathrm{H}$, brs), $7.16-7.22(2 \mathrm{H}, \mathrm{m}), 7.28-7.45(7 \mathrm{H}, \mathrm{m}), 7.57-7.63(2 \mathrm{H}, \mathrm{mi}, 7.84(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 8.95(1 \mathrm{H}, \mathrm{brs}), 9.40(1 \mathrm{H}, \mathrm{brs}), 10.48$ (III, t ts $)$
$16 \mathrm{mp:} 237-238^{\circ} \mathrm{C}, \mathrm{NMR} 8: 2.87-3.24(6 \mathrm{H}, \mathrm{m}), 3.77(2 \mathrm{H}, 8), 4.93-5.03(1 \mathrm{H}, \mathrm{mu}), 5.32(2 \mathrm{HI}, \mathrm{s}), 6.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.0 \mathrm{~Hz}), 6.73$ $(1 . \mathrm{H}, \mathrm{c}, \mathrm{J}=8.0 \mathrm{~Hz}), 6.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}), 7.16-7.22(2 \mathrm{H}, \mathrm{m}), 7.25-7.46(10 \mathrm{H}, \mathrm{m}), 7.57-7.63(2 \mathrm{H}, \mathrm{s}), 7.67(1 \mathrm{H}, d \mathrm{~d}, \mathrm{~J}=8.4$, $7.2 \mathrm{~Hz}), 8.87(1 \mathrm{H}$, brs), $9.24(1 \mathrm{H}$, brsil, $10.30(1 \mathrm{H}$, brs $)$
$17 \mathrm{mp}: 19)-193^{\circ} \mathrm{C}, \mathrm{NMR} \delta: 1.68(3 \mathrm{H}, \mathrm{m}), 2.90-3.10(3 \mathrm{H}, \mathrm{m}), 3.10-3.20(3 \mathrm{H}, \mathrm{m}), 4.32(2 \mathrm{H}, \mathrm{s}), 4.67(1 \mathrm{H}, \mathrm{s}), 4.83(2 \mathrm{H}, \mathrm{s})$, $4.94(1 \mathrm{H}, \mathrm{s}), 4.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{H} 7), 6.21(1 \mathrm{HJ}, \mathrm{brs}), 7.21(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 7.24-7.42(5 \mathrm{H}, \mathrm{m}), 7.56(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.66$ $(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.9 \mathrm{~Hz}), 7.71(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.9 \mathrm{~Hz}), 8.89(1 \mathrm{H}, \mathrm{bts}), 9.30(1 \mathrm{H}$, brs $), 10.92(1 \mathrm{H}, \mathrm{s})$
18 mp: $139-141^{\circ} \mathrm{C}$, NMR ó: $3.01(3 \mathrm{H}$, brs), $3.15(3 \mathrm{H}$, brs), $3.92(2 \mathrm{H}, \mathrm{s}), 5.05(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.3 \mathrm{~Hz}), 5.44(2 \mathrm{H}, 8), 6.19(1 \mathrm{H}$, brs), $7.19(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.31-7.47(10 \mathrm{H}, \mathrm{m}), 7.60(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.66(1 \mathrm{H}, \mathrm{s}), 9.05(1 \mathrm{H}$, brsi), $9.35(1 \mathrm{H}$, s), $9.60(1 \mathrm{H}$, (ars), $10.76(1 \mathrm{II}, \mathrm{s}$)
19 mp: $140-143^{\circ} \mathrm{C}$, NMR $\delta: 2.99-3.09(3 \mathrm{H}, \mathrm{m}), 3.16(3 \mathrm{H}, \mathrm{brs}), 3.95(2 \mathrm{H}, \mathrm{s}), 5.06(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.4 \mathrm{~Hz}), 5.57(2 \mathrm{H}, \mathrm{s}), 6.19(1 \mathrm{H}$, hus), $7.19(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.29-7.35(1 \mathrm{H}, \mathrm{m}), 7.37-7.48(8 \mathrm{H}, \mathrm{m}), 7.55-7.57(1 \mathrm{H}, \mathrm{m}), 7.61(2 \mathrm{H}, \mathrm{c}, \mathrm{J}=3.6 \mathrm{~Hz}), 9.09(1 \mathrm{H}$, ars), $5.31(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz}), 9.65(1 \mathrm{H}, \mathrm{trs}), 10.79(1 \mathrm{H}, \mathrm{s})$
$20 \mathrm{mp}: 140-143^{\circ} \mathrm{C}$. NMR $\left.\delta: 3.01-3.09\right)(3 \mathrm{H}, \mathrm{m}), 3.16(3 \mathrm{H}$, brs $, 3.93(2 \mathrm{H}, \mathrm{s}), 5.06(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.3 \mathrm{~Hz}), 5.47(2 \mathrm{H}, \mathrm{s}), 6.15$ $(1 \mathrm{H}, \mathrm{trs}), 7.19(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.29-7.33(1 \mathrm{H}, \mathrm{m}), 7.38-7.46(7 \mathrm{H}, \mathrm{m}), 7.61(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.63(1 \mathrm{H}, \mathrm{s}), 7.70(1 \mathrm{H}, \mathrm{s}), 9.08$ ($1 \mathrm{H}, \mathrm{trs}), 9.38(1 \mathrm{H}, \mathrm{s}), 9.63(1 \mathrm{H}$, bri $), 10.78(1 \mathrm{H}$, s)
$21 \mathrm{mp:} 14.1-146^{\circ} \mathrm{C}$, NMR $\delta: 2.96-3.24(3 \mathrm{H}, \mathrm{m}), 3.15(3 \mathrm{H}, \mathrm{brs}), 3.51(2 \mathrm{H}, \mathrm{s}), 5.04(1 \mathrm{HI}, \mathrm{d}, \mathrm{J}=10.3 \mathrm{~Hz}), 5.45(2 \mathrm{H}, \mathrm{z}), 6.22$ $(1 \mathrm{II}, \mathrm{t} \mathrm{LIs}), 7.19(2 \mathrm{II}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{IIz}), 7.29-7.42(6 \mathrm{II}, \mathrm{m}), 7.50(3 \mathrm{II}, \mathrm{s}), 7.59(2 \mathrm{II}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{IIz}), 7.65(1 \mathrm{II}, s), .02(1 \mathrm{II}, \mathrm{brs}), 9.32$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}-1.5 \mathrm{~Hz}$), $9.55(1 \mathrm{H}, \mathrm{brs}), 10.72(\mathrm{(HI}, \mathrm{~s})$
 бो, $6.21(1 \mathrm{HI}, \mathrm{brs}), 7.16-7.22(4 \mathrm{H}, \mathrm{m}), 7.28-7.50(7 \mathrm{H}, \mathrm{m}), 7.54(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.68(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.8,1.9 \mathrm{~Hz}), 8.94(1 \mathrm{H}$, bis), s. $42(1 \mathrm{HI}, \mathrm{br} 8), 10.98(1 \mathrm{HH}, \mathrm{s})$
$23 \mathrm{mP}: 203-209^{\circ} \mathrm{C}, \mathrm{NMR} \delta: 2.90-3.10(3 \mathrm{H}, \mathrm{m}), 3.10-3.20(3 \mathrm{H}, \mathrm{m}), 4.41-4.48(2 \mathrm{H}, \mathrm{m}), 4.95-5.05(1 \mathrm{H}, \mathrm{m}), 5.46(2 \mathrm{H}, \mathrm{s})$ $6.21 .(1 \mathrm{H}, \mathrm{brs}), 7.20(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.30-7.42(6 \mathrm{HI}, \mathrm{m}), 7.50-7.54(2 \mathrm{H}, \mathrm{mi}), 7.70(2 \mathrm{H}$, si), $8.92(\mathrm{H} . \mathrm{H}, \mathrm{hrs}), 9.39(1 \mathrm{H}, \mathrm{brs})$ 10.88-10.95(11, tit)
$24 \mathrm{mp}: 22.1-223^{\circ} \mathrm{C}$, NMR $8: 2.90-3.08(3 \mathrm{H}, \mathrm{m}), 3.10-3.22(3 \mathrm{H}, \mathrm{m}), 4.04(2 \mathrm{H}, 8), 4.97(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.1 \mathrm{~Hz}), 5.44(2 \mathrm{H}, 8), 6.20$ $(1 \mathrm{H}, \mathrm{trs}), 7.20(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}), 7.30-7.41(9 \mathrm{H}, \mathrm{m}), 7.49(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.55(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 8.83(1 \mathrm{H}$, brs), 9.16 ($11 \mathrm{II}, \mathrm{cks}$), $10.76(1 \mathrm{II}, \mathrm{s})$
$25 \mathrm{mp}: 222-225^{\circ} \mathrm{C}$, NMR $\mathrm{o}: 2.60-3.05(3 \mathrm{H}, \mathrm{m}), 3.10-3.20(3 \mathrm{H}, \mathrm{ml}), 4.43(2 \mathrm{H}, \mathrm{s}), 5.01(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 5.44(2 \mathrm{H}, \mathrm{s}), 6.21$ ($1 \mathrm{H}, \mathrm{tas}$), $7.15-7.23(4 \mathrm{H}, \mathrm{m}), 7.26-7.46(5 \mathrm{H}, \mathrm{m}), 7.51(2 \mathrm{H}, \mathrm{c}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.65-7.72(4 \mathrm{H}, \mathrm{m}), 8.94(1 \mathrm{H}$, brs), $9.41(1 \mathrm{H}$, brs), $10.93(1 \mathrm{HF}, \mathrm{s}), 14.72(1 \mathrm{H}, \mathrm{brs})$
$26 \mathrm{mp}: 197-203^{\circ} \mathrm{C}$, NMR $\delta: 2.80-3.0(3 \mathrm{H}, \mathrm{m}), 3.10-3.25(3 \mathrm{H}, \mathrm{m}), 4.44(2 \mathrm{H}, \mathrm{s}), 4.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 5.61(2 \mathrm{H}, \mathrm{s}), 6.21$ $(1 . \mathrm{H}, \mathrm{trs}), 7.17(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.30-7.42(5 \mathrm{H}, \mathrm{m}), 7.48(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.54(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.70(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz})$, $7.72-7.77(2 \mathrm{H}, \mathrm{m}), 8.90(1 \mathrm{H}, \mathrm{brs}), 9.34(1 \mathrm{H}, \mathrm{bts}), 10.90(1 \mathrm{H}, \mathrm{s})$
$27 \mathrm{mp}: 208-2.14^{\circ} \mathrm{C}, \mathrm{NMR} \delta: 2.90-3.0(3 \mathrm{H}, \mathrm{m}), 3.10-3.22(3 \mathrm{H}, \mathrm{mi}), 4.44(2 \mathrm{H}, \mathrm{s}), 4.97(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.7 \mathrm{~Hz}), 5.62(2 \mathrm{El}, 8), 6.2 \mathrm{D}$ $(1 \mathrm{H}, \mathrm{trs}), 7.16(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.30-7.55(10 \mathrm{H}, \mathrm{m}), 7.70-7.94(6 \mathrm{H}, \mathrm{m}), 8.82(1 \mathrm{H}, \mathrm{hrs}), 9.14(1 \mathrm{H}, \mathrm{brs}), 10.76(1 \mathrm{H}, \mathrm{s})$
$28 \mathrm{mp}: 219-223^{\circ} \mathrm{C}$, NMR $\delta: 2.11(3 \mathrm{II}, \mathrm{s}), 2.92-3.08(3 \mathrm{II}, \mathrm{m}), 3.10-3.20(3 \mathrm{II}, \mathrm{m}), 4.43(2 \mathrm{II}, \mathrm{s}), 5.02(1 \mathrm{III}, \mathrm{dd}, \mathrm{J}=10.2,2.4$ $\mathrm{Hz}), 5.51(2 \mathrm{HI}, \mathrm{s}), 6.22(1 \mathrm{H}, \mathrm{bws}), 7.14-7.34(7 \mathrm{H}, \mathrm{m}), 7.36-7.42(4 \mathrm{H}, \mathrm{m}), 7.48-7.53(3 \mathrm{HI}, \mathrm{m}), 8.95(1 . \mathrm{H}, \mathrm{bms}), 9.43(1 . \mathrm{H}$, bis), 1.0 .94 ($1 \mathrm{H}, 3$), 14.61(1 H , brs)
$29 \mathrm{mp}: 204-207^{\circ} \mathrm{C}$, NMR $\delta: 2.24(3 \mathrm{H}, \mathrm{s}), 2.80-3.10(3 \mathrm{H}, \mathrm{m}), 3.10-3.50(3 \mathrm{H}, \mathrm{m}), 4.43(2 \mathrm{H}, s), 5.01(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.3,2.5 \mathrm{~Hz})$, $5.39(2 \mathrm{II}, \mathrm{s}), 6.21(1 \mathrm{II}$, brs $), 7.17-7.24(2 \mathrm{III}, \mathrm{m}), 7.47(2 \mathrm{II}, \mathrm{dd}, \mathrm{J}=8.8,5.4 \mathrm{IIz}), 7.552 \mathrm{II}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{IIz})$,
B.94(1II, brs), $9.40(1 \mathrm{III}, \mathrm{brs}), 11.00(1 \mathrm{III}, \mathrm{s}), 14.70(\mathrm{III}$, brs $)$
$30 \mathrm{mp}: 225-228^{\circ} \mathrm{C}, \mathrm{NMR} \mathrm{\delta}: 2.90-3.07(3 \mathrm{H}, \mathrm{m}), 3.10-3.23(3 \mathrm{H}, \mathrm{m}), 4.28(2 \mathrm{H}, \mathrm{s}), 4.97(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.3 \mathrm{Hi}), 5.68(2 \mathrm{H}, \mathrm{s})$, $6.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.4 \mathrm{~Hz}), 7.16-7.23(4 \mathrm{H}, \mathrm{m}), 7.30-7.46(7 \mathrm{H}, \mathrm{m}), 7.53(2 \mathrm{H}, \mathrm{cl}, \mathrm{J}=8.8 \mathrm{~Hz}), 8.82(1 \mathrm{H}, \mathrm{brgi}), 9.11(1 \mathrm{H}, \mathrm{hrs}), 10.63(1 \mathrm{H}$, s)
$31 \mathrm{mp}: 232-235^{\circ} \mathrm{C}, \mathrm{NMR} \delta: 2.90-3.0(3 \mathrm{H}, \mathrm{m}), 3.10-3.25(3 \mathrm{H}, \mathrm{m}), 4.03(2 \mathrm{H}, \mathrm{s}), 4.98(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.3 \mathrm{~Hz}), 5.97(2 \mathrm{H}, \mathrm{s})$, $0.20(1 \mathrm{H}, \mathrm{trs}), 7.19(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.29-7.42(6 \mathrm{H}, \mathrm{mi}), 7.55(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.67-7.77(2 \mathrm{H}, \mathrm{mi}), 8.87(1 \mathrm{H}$, brs), $9.22(1 \mathrm{H}$, bus), 10.49 (1H, s), $14.61(1 \mathrm{H}, \mathrm{brs})$
$32 \mathrm{mp}: 233-235^{\circ} \mathrm{C}$, NMR $\mathrm{o}: 2.09-3.0(3 \mathrm{H}, \mathrm{m}), 3.10-3.25(3 \mathrm{H}, \mathrm{m}), 4.01(2 \mathrm{H}, \mathrm{s}), 4.98(1 \mathrm{HI}, \mathrm{d}, \mathrm{J}=10.3 \mathrm{~Hz}), 5.91(2 \mathrm{H}, \mathrm{s})$ $6.19(1 \mathrm{H}$, brs), $7.17-7.48(11 \mathrm{H}, \mathrm{m}), 7.55(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 8.85(1 \mathrm{H}$, brs $), 9.18(1 \mathrm{H}$, brs), $10.47(1 \mathrm{H}, \mathrm{s})$
$33 \mathrm{mp}: 240-242^{\circ} \mathrm{C}, \mathrm{NMR}$ ©: $2.90-3.0(3 \mathrm{H}, \mathrm{m}), 3.10-3.25(3 \mathrm{H}, \mathrm{m}), 4.32(2 \mathrm{H}, \mathrm{s}), 4.98(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=10.3,3.4 \mathrm{~Hz}), 5.72(2 \mathrm{H}$, 8), $6.20(1 \mathrm{H}, d, \mathrm{~J}=3.9 \mathrm{~Hz}), 7.20(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.30-7.40(6 \mathrm{H}, \mathrm{tu}), 7.51(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{H} \tau), 7.67$ $(1 \mathrm{H}, \mathrm{c}, \mathrm{J}=2.0 \mathrm{~Hz}), 8.86(1 \mathrm{H}, \mathrm{brs}), 9.17(1 \mathrm{H}, \mathrm{brs}), 10.67(1 \mathrm{H}, \mathrm{s})$
$34 \mathrm{mp}: 221-224^{\circ} \mathrm{C}, \mathrm{NMR} \delta: 2.90-3.07(3 \mathrm{H}, \mathrm{m}), 3.10-3.20(3 \mathrm{H}, \mathrm{m}), 4.05(2 \mathrm{H}, \mathrm{s}), 5.00(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.7,10.2 \mathrm{~Hz}), 7.21(2 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=8.6 \mathrm{IIz}), 7.29-7.42(5 \mathrm{II}, \mathrm{m}) ; 7.58(2 \mathrm{II}, \mathrm{c}, \mathrm{J}=8.6 \mathrm{IIz}), 8.83(\mathrm{III}, \mathrm{s}), 8.9(1 \mathrm{II}, \mathrm{brs}), 9.32(\mathrm{III}$, brs $), 10.62(1 \mathrm{II}, \mathrm{s})$
$35 \mathrm{mp}: 222-224^{\circ} \mathrm{C}$, NMR $\delta: 2.89-3.07(3 \mathrm{H}, \mathrm{m}), 3.12-3.21(3 \mathrm{H}, \mu \mathrm{l}), 3.84(2 \mathrm{H}, \mathrm{s}), 4.33(2 \mathrm{H}, \mathrm{s}), 4.98(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.4,10.2$ $\mathrm{Hz}), 7.20(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.22-7.42(10 \mathrm{H}, \mathrm{ml}), 7.58(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 8.87(1 \mathrm{H}$, brs $), 9.22(1 \mathrm{H}$, brs $), 10.44(1 \mathrm{H}, \mathrm{s})$
$36 \mathrm{mp}: 2.42-245^{\circ} \mathrm{C}, \mathrm{NMR} 8: 2.11(3 \mathrm{H}, \mathrm{s}), 2.99-3.06(3 \mathrm{HJ}, \mathrm{m}), 3.09-3.21(3 \mathrm{H}, \mathrm{ml}), 3.68(2 \mathrm{H}, \mathrm{si}, 5.0 \mathrm{~m}(\mathrm{HH}, \mathrm{dd}, \mathrm{J}=2.1,10.2 \mathrm{~Hz})$, $6.02(1 \mathrm{H}, \mathrm{brs}), 6.98(1 \mathrm{H}, \mathrm{s}), 7.18(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}), 7.28-7.42(5 \mathrm{H}, \mathrm{m}), 7.58(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}), 8.89(1 \mathrm{H}, \mathrm{brs}), 9.30(1 \mathrm{H}$, brs), $10.25(1 \mathrm{H}, \mathrm{s}), 12.10(1 \mathrm{H}, \mathrm{s})$
37 mp: $252-256^{\circ} \mathrm{C}, \mathrm{NMR}$ ô: $2.89(3 \mathrm{H}, \mathrm{s}), 2.91-3.07(3 \mathrm{H}, \mathrm{mu}), 3.11-3.21(3 \mathrm{H}, \mathrm{ml}), 3.65(2 \mathrm{H}, 4), 4.95-5.02(\mathrm{HI}, \mathrm{m}), 6.20$ ($1 \mathrm{H}, \mathrm{trs}), 6.58(1 \mathrm{H}, \mathrm{s}), 7.20(2 \mathrm{H}, \mathrm{d}, \mathrm{J}-8.6 \mathrm{~Hz}), 7.28-7.42(5 \mathrm{H}, \mathrm{m}), 7.57(2 \mathrm{H}, \mathrm{d}, \mathrm{J}-8.6 \mathrm{~Hz}), 8.87(1 \mathrm{H}, \mathrm{brb}), 0.24(\mathrm{LH}, \mathrm{brs}), 10.39$ ($1 \mathrm{H}, 3$), $12.56(1 \mathrm{H}, \mathrm{s})$
$38 \mathrm{mp}: \geqslant 230^{\circ} \mathrm{C}$. (dcc.), NMR $\delta: 2.83-3.22(6 \mathrm{IL}, \mathrm{mi}), 3.73(2 \mathrm{II}, \mathrm{s}), 3.65(2 \mathrm{II}, \mathrm{s}), 5.00(1 \mathrm{II}, \mathrm{dd}, \mathrm{J}-2.0,10.01 \mathrm{Iz}), 6.20(1 \mathrm{IL}$, brs), $7.12(1 \mathrm{H}, s), 7.18(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.28-7.42(5 \mathrm{H}, \mathrm{m}), 7.59(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 8.39(4 \mathrm{H}, \mathrm{brs}), 8.91(1 \mathrm{H}, \mathrm{biss}), 9.32(1 \mathrm{H}, \mathrm{brs})$, $10.41(1 \mathrm{H}, \mathrm{s}), 12.60\left(1 \mathrm{H}, \mathrm{s}^{2}\right)$
$39 \mathrm{mp}: 177-181^{\circ} \mathrm{c}$., NMR $8: 2.90-3.10(3 \mathrm{H}, \mathrm{m}), 3.10-3.25(3 \mathrm{H}, \mathrm{m}), 3.67(2 \mathrm{H}, \mathrm{s}), 5.00(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.0,2.0 \mathrm{~Hz}), 6.68$ $(1 \mathrm{H}, s), 6.97\left(1 \mathrm{H}, \mathrm{t}_{\mathrm{J}} \mathrm{J}=7.2 \mathrm{~Hz}\right), 7.19(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.27-7.42(9 \mathrm{H}, \mathrm{m}), 7.59(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 8.90(1 \mathrm{H}$, brs $), 9.29(1 \mathrm{HI}$, brs), $10.29(1 \mathrm{LL}, \mathrm{s}), 10.54(1 \mathrm{IL}, \mathrm{bs})$
$40 \mathrm{mp}: 237-243^{\circ} \mathrm{C}, \mathrm{NMR} \mathrm{B}: 2.90-3.06(3 \mathrm{H}, \mathrm{mi}), 3.06-3.20(3 \mathrm{H}, \mathrm{mi}), 4.45(2 \mathrm{H}, \mathrm{s}), 5.01(1 \mathrm{H}, \mathrm{dl}, \mathrm{J}=7.8,2.0 \mathrm{~Hz}), 5.70(2 \mathrm{H}, \mathrm{s})$, $6.21(1 \mathrm{H}, \operatorname{trg}), 7.14(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.29-7.42(5 \mathrm{H}, \mathrm{m}), 7.46(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.54(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}], 7.77(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14.4$, $2.0 \mathrm{~Hz}), 8.13(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 8.94(\mathrm{HIH}$, brs $), 9.41(\mathrm{IH}, \mathrm{brs}), 10.95(1 \mathrm{H}, \mathrm{s})$

TABLE 2-continucd
Ex. DATA
$41 \mathrm{mp}: 151-159^{\circ} \mathrm{C}, \mathrm{NMR} \delta: 2.90-3.20(3 \mathrm{H}, \mathrm{m}), 3.10-3.20(3 \mathrm{H}, \mathrm{m}), 3.76(2 \mathrm{H}, \mathrm{s}), 5.02(1 \mathrm{HI}, \mathrm{dcl}, \mathrm{J}=10.2,2.7 \mathrm{~Hz}), 6.70(1 \mathrm{H}$, s), $7.20(2 \mathrm{HJ}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{H} \%), 7.25-7.40(5 \mathrm{H}, \mathrm{m}), 7.59(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{H} \%, 8.96(1 \mathrm{H}, \mathrm{hrs}), 9.27 .(1 \mathrm{HJ}, \mathrm{brsi}, 9.43(1 \mathrm{H}, \mathrm{brs}), 10.58$ ($1 \mathrm{H}, \mathrm{s}$)
$\left.42 \mathrm{mp}: 205-200^{\circ} \mathrm{C}, \mathrm{NMR} \mathrm{i}: 2.90-3.08(3 \mathrm{H}, \mathrm{m}), 3.13-3.23(3 \mathrm{H}, \mathrm{m}), 4.92-4.97(1 \mathrm{H}, \mathrm{m})^{3}\right), 6.20(1 \mathrm{H}, \mathrm{brs}), 7.19-7.42(10 \mathrm{H}, \mathrm{m})$, $7.71(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 8.76(1 \mathrm{H}, \mathrm{brs}), 8.92(1 \mathrm{H}, \mathrm{brs}), 9.65(1 \mathrm{H}, \mathrm{s})$
43 NMR $\delta: 2.20(311, s), 2.90-3.07(31 \mathrm{~L}, \mathrm{r}), 3.10-3.20(3 \mathrm{LI}, \mathrm{mi}), 3.74(21 \mathrm{l}, \mathrm{s}), 5.00(1 \mathrm{II}, \mathrm{dd}, \mathrm{J}=2.5,10.3 \mathrm{LL}), 7.20(21 \mathrm{I}, \mathrm{d}, \mathrm{J}=8.8$ $\mathrm{Hz}), 7.28-7.42(5 \mathrm{H}, \mathrm{ny}), 7.59(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 8.91(1 \mathrm{H}, \mathrm{lus}), 9.13(1 \mathrm{H}, \mathrm{brs}), 9.33(1 \mathrm{H}, \mathrm{brs}), 10.58(1 \mathrm{H}, \mathrm{s})$
44 NMR $\delta: 1.48(6 \mathrm{H}, 3), 2.86-3.22(6 \mathrm{H} . \mathrm{m}), 4.90-4.96(1 \mathrm{H}, \mathrm{m}), 6.19(1 \mathrm{H}$, brs $), 6.40(1 \mathrm{H}$, hr3), $7.17(2 \mathrm{H}, \mathrm{c}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.27-$ $7.41(5 \mathrm{H}, \mathrm{m}), 7.56(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 8.74(1 \mathrm{H}, \mathrm{brs}), 8.90(1 \mathrm{H}$, brs $), 9.53(1 \mathrm{H}$, brs $)$
45 NMR $8: 1.68-2.12(4 \mathrm{H}, \mathrm{m}), 2.43-2.59(2 \mathrm{H}, \mathrm{m}), 2.91-3.07(3 \mathrm{H}, \mathrm{m}), 3.11-3.20(3 \mathrm{H}, \mathrm{m}), 3.76-3.81(1 \mathrm{H}, \mathrm{m}), 5.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $2.5,10.3 \mathrm{~Hz}), 6.20(1 \mathrm{H}, \mathrm{brs}), 7.192 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.27-7.42(5 \mathrm{H}, \mathrm{m}), 7.60\left(1 . \mathrm{H}_{7} \mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}\right), 8.90(1 \mathrm{H}, \mathrm{hrs}), 9.33(1 . \mathrm{H}$, bus), $10.43(1 \mathrm{IH}, \mathrm{s})$
46 NMR $\delta: 2.86-3.24(6 \mathrm{H}, \mathrm{min}), 3.83(2 \mathrm{H}, \mathrm{s}), 4.95-5.04(1 \mathrm{H}, \mathrm{m}), 6.19(1 \mathrm{H}$, brsì, $7.16-7.22(2 \mathrm{H}, \mathrm{m}), 7.25-7.45(6 \mathrm{H}, \mathrm{m}), 7.55-$ $7.63(2 \mathrm{H}, \mathrm{m}), 7.87(1 \mathrm{HI}, \mathrm{s}), 8.04(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.6 \mathrm{~Hz}), 8.1(1 \mathrm{HH}, \mathrm{brs}), 9.32(1 \mathrm{HI}, \mathrm{brs}), 10.42(1 \mathrm{H}, \mathrm{brs})$
$47 \mathrm{MS}(\mathrm{m} / \mathrm{z}): 456\left[(\mathrm{M}+\mathrm{II})^{+}\right], \mathrm{NMR} \delta: 2.84-3.19(6 \mathrm{II}, \mathrm{m}), 4.03(2 \mathrm{II}, \mathrm{s}), 4.87-4.97(1 I \mathrm{II}, \mathrm{m}), 5.43(2 \mathrm{II}, \mathrm{s}), 6.12(2 \mathrm{II}, \mathrm{s}), 7.20$ $(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.25-7.41(11 \mathrm{H}, \mathrm{m}), 7.53(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.9 \mathrm{C}(1 \mathrm{H}, \mathrm{s}), 10.38(1 \mathrm{H}, \mathrm{s})$
48 NMR $\delta: 2.88-3.18(6 \mathrm{H}, \mathrm{ml}), 3.69(2 \mathrm{H}, \mathrm{s}), 4.87-4.95(1 \mathrm{H}, \mathrm{m}), 5.36(2 \mathrm{H}, \mathrm{s}), 6.15-5.21(1 \mathrm{H}, \mathrm{m}), 7.18(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.27-$ $7.41(11 \mathrm{H}, \mathrm{m}), 7.54(2 \mathrm{H}, \mathrm{d}, \mathrm{I}=8.3 \mathrm{~Hz})$, , $8.57(1 \mathrm{H}, \mathrm{s}), 8.72(1 \mathrm{H}, \mathrm{brs}), 8.82(1 \mathrm{HI}, \mathrm{brs}), 10.20(1 \mathrm{H}, \mathrm{s})$
49 NMR $\delta: 2.88-3.07(3 \mathrm{H}, \mathrm{m}), 3.11-3.21(3 \mathrm{H}, \mathrm{m}), 3.67(2 \mathrm{H}, \mathrm{s}), 4.93-4.99(1 \mathrm{H}, \mathrm{m}), 5.53(2 \mathrm{H}, \mathrm{s}), 6.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.9 \mathrm{~Hz}), 7.00$ $(1 \mathrm{H}, \mathrm{s}), 7.13\left(2 \mathrm{H}_{1} \mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}\right), 7.18\left(2 \mathrm{H}_{,} \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}\right), 7.24-7.42(8 \mathrm{H}, \mathrm{m}), 7.49(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 8.82(1 \mathrm{H}, \mathrm{brs}), 9.11(1 \mathrm{H}$, (bis), $10.35(1 \mathrm{H}, \mathrm{s})$
50 NMR $\delta: 1.76-1.87(2 \mathrm{H}, \mathrm{m}), 2.18-2.26(2 \mathrm{H}, \mathrm{m}), 2.80-3.22(8 \mathrm{H}, \mathrm{m}), 4.39-4.47(1 \mathrm{H}, \mathrm{m}), 4.95-5.07(1 \mathrm{H}, \mathrm{m}), 7.15-7.22(2 \mathrm{H}$, $\mathrm{m}), 7.27-7.43(\mathrm{sII}, \mathrm{m}), 7.54-7.63(21 \mathrm{I}, \mathrm{m}), 7.74-7.82(1 \mathrm{II}, \mathrm{m}), 8.27(1 \mathrm{II}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{IIz}), 8.67(1 \mathrm{II}, \mathrm{d}, \mathrm{J}=4.8 \mathrm{IIz}), 8.97(1 \mathrm{II}$, brs), $9.47(1 \mathrm{H}, \mathrm{brs}), 10.74$ (HH ; brs)
51 NMR $\delta: 2.90-3.10(3 \mathrm{H}, \ldots \mathrm{u}), 3.10-3.20(3 \mathrm{H}, m), 4.18(2 \mathrm{H}, s)=4.96(1 \mathrm{H}, d, \mathrm{~J}=8.0 \mathrm{~Hz}), 6.20(1 \mathrm{H}, \mathrm{brs}), 7.8(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{HL})$, $7.20-7.60(12 \mathrm{H}, \mathrm{m}), 7.84(1 \mathrm{H}, \mathrm{s}), 7.97(1 \mathrm{H}, \mathrm{s}), 8.83(1 \mathrm{H}$, bris), $9.17(1 \mathrm{H}$, brs), $10.55(1 \mathrm{H}, \mathrm{s})$
52 NMR $\delta: 1.14(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.9 \mathrm{~Hz}), 2.83(1 \mathrm{H}, \mathrm{sep}, \mathrm{J}=12.9 \mathrm{~Hz}), 2.90-3.22(6 \mathrm{H}, \mathrm{m}), 4.38(2 \mathrm{H}, \mathrm{s}), 4.97(\mathrm{dH}, \mathrm{d}, \mathrm{J}=4.1 \mathrm{~Hz}), 5.3$ ($2 \mathrm{H}, \mathrm{s}$), $\left.6.20(1 \mathrm{HI}, \mathrm{brs}), 7.07-7.422^{2} 10 \mathrm{H}, \mathrm{m}\right), 7.52(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.67(2 \mathrm{H}, \mathrm{c}, \mathrm{J}=3.9 \mathrm{~Hz}, 8.84(1 \mathrm{H}$, bss), $9.17(1 \mathrm{H}$, brs $)$ 1.0. 76 (1H. s)
$53 \mathrm{NMR} \delta: 1.14(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.9 \mathrm{HL}), 2.83(1 \mathrm{H}, \mathrm{sep}, \mathrm{J}=12.9 \mathrm{~Hz}), 2.90-2.22(6 \mathrm{H}, \mathrm{mi}), 4.38(2 \mathrm{H}, \mathrm{s}), 4.97(\mathrm{HH}, \mathrm{d}, \mathrm{J}=4.1 \mathrm{~Hz}), 5.39$ $(2 \mathrm{H}, \mathrm{s}), 6.20(1 \mathrm{H}, \mathrm{bri}), 7.07-7.42(10 \mathrm{H}, \mathrm{m}), 7.52(2 \mathrm{H}, \mathrm{c}, \mathrm{I}=8.8 \mathrm{~Hz}), 7.67(2 \mathrm{H}, \mathrm{c}, \mathrm{J}=3.9 \mathrm{~Hz}), 8.84(1 \mathrm{H}$, brsi), $9.17(1 \mathrm{H}, \mathrm{brs})$, $10.76(1 \mathrm{H}, \mathrm{s})$
54 NMR $8: 2.95-3.02(3 \mathrm{IL}, \mathrm{m}), 3.15(3 \mathrm{II}$, brs), 4.44(2II, s), $5.10(1 \mathrm{II}, \mathrm{dd}, \mathrm{J}=10.3,2.5 \mathrm{IL}), 5.58(2 \mathrm{II}, \mathrm{s}), 6.21(1 \mathrm{II}$, brs), 7.19 $(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.27-7.42(6 \mathrm{E}, \mathrm{m}, 7.51(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.58-7.60(1 \mathrm{H}, \mathrm{m}), 7.69(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}), 7.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz})$, $7.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}), 8.96(1 \mathrm{H}, \mathrm{brg}), 5.44(1 \mathrm{H}, \mathrm{hrs}), 10.91(1 \mathrm{H}, \mathrm{s})$
55 NMR $8: 2.94-3.04(3 \mathrm{H}, \mathrm{mI}), 3.15(3 \mathrm{H}, \mathrm{brs}), 3.94(2 \mathrm{H}, \mathrm{s}), 5.01(1 \mathrm{H}, \mathrm{c}, \mathrm{J}=10.3 \mathrm{~Hz}), 5.31(2 \mathrm{H}, 8), 6.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.9 \mathrm{~Hz}), 7.0$ $(1 \mathrm{H}, \mathrm{s}), 7.17-7.41(12 \mathrm{H}, \mathrm{m}), 7.54(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 8.98(1 \mathrm{H}$, brs $), 9.35(1 \mathrm{H}$, brs $), 10.55(1 \mathrm{H}$, s $)$
56 NMR $8: 2.95-3.05(3 \mathrm{H}, \mathrm{m}), 3.15(3 \mathrm{H}, \mathrm{bss}), 4.44(2 \mathrm{H}, \mathrm{s}), 5.01(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.3,2.5 \mathrm{~Hz}), 5.51(2 \mathrm{H}, \mathrm{s}), 6.20(1 \mathrm{H}, \mathrm{brs}), 7.19$ $(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.26-7.42(7 \mathrm{H}, \mathrm{m}), 7.50-7.54(3 \mathrm{H}, \mathrm{m}), 7.58(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}), 7.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}), 8.95(1 \mathrm{H}, \mathrm{bss}), 9.43$ $(1 \mathrm{H}, \mathrm{t} 1 \mathrm{~s}), 10.98(1 \mathrm{H}, \mathrm{s})$
57 NMR $8: 2.92-3.05(3 \mathrm{H}, \mathrm{m}), 3.15(3 \mathrm{H}, \mathrm{brs}), 4.43(2 \mathrm{HI}, \mathrm{s}), 5.01(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.2,2.6 \mathrm{~Hz}), 5.65(2 \mathrm{H}, \mathrm{s}), 7.20(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz})$ $7.29-7.48(5 I I, m), 7.50-7.53(\mathrm{sII}, \mathrm{m}), 7.70(1 \mathrm{II}, \mathrm{d}, \mathrm{J}=2.01 \mathrm{IZ}), 7.78(1 \mathrm{II}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{IIz}), 7.85(\mathrm{HII}, \mathrm{dl}, \mathrm{J}=8.0,2.01 \mathrm{Iz}), 8.49$ $(1 . \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 8.94(1 \mathrm{H}, \mathrm{h} 1 \mathrm{~s}), 9.2(1 \mathrm{H}, \mathrm{brs}), 10.86(1 \mathrm{H}, \mathrm{s})$
$58 \mathrm{mp:} 150-152^{\circ} \mathrm{C}$., NMR $\delta: 2.88-3.07(3 \mathrm{H}, \mathrm{m}), 3.08(3 \mathrm{H}, \mathrm{m}), 3.05(2 \mathrm{H}, \mathrm{s}), 5.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.8,10 . \mathrm{CHz}), 6.21(1 \mathrm{H}, 6)$ $6.82(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 6.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.17-7.23(2 \mathrm{H}, \mathrm{m}), 7.28-7.43(5 \mathrm{H}, \mathrm{m}), 7.55-7.62(2 \mathrm{H}, \mathrm{m}), 7.82-8.04(3 \mathrm{H}, \mathrm{m})$, 8.90 (1II, brs), 9.31 (11I, brs), 10.67 (111), brs), 14.07 (1II, brs)

59 NMR $0: 2.90-3.25(6 I \mathrm{~L}, \mathrm{mi}), 4.95-5.54(\mathrm{IIL}, \mathrm{m}), 5.20(1 \mathrm{II}, \mathrm{s}), 6.22(1 \mathrm{III}, \mathrm{brs}), 6.78(1 \mathrm{II}, \mathrm{s}), 7.17-7.24(2 \mathrm{II}, \mathrm{mi}), 7.27-7.44$ $(5 \mathrm{H}, \mathrm{m}), 7.67-7.75(2 \mathrm{H}, \mathrm{m}), 8.50-9.10(3 \mathrm{H}, \mathrm{br}), 9.45(1 \mathrm{H}, \mathrm{br}), 10.22(1 \mathrm{H}, \mathrm{brs})$
60 mp: $214-216^{\circ} \mathrm{C}, \mathrm{NMR}$ ô: $2.86-3.24(6 \mathrm{H}, \mathrm{mi}), 3.65(2 \mathrm{H}, 8), 4.98(1 \mathrm{H}, \mathrm{d} \mathrm{d}, \mathrm{J}=2.8,10.4 \mathrm{~Hz}), 6.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 6.28$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.16-7.22(2 \mathrm{HI}, \mathrm{m}), 7.28-7.45(6 \mathrm{H}, \mathrm{m}), 7.53-7.59(2 \mathrm{HI}, \mathrm{s}), 8.85(1 \mathrm{H}, \mathrm{brs}), 9.18(1 \mathrm{H}, \mathrm{brs}), 10.36(1 \mathrm{H}, \mathrm{brs})$
$61 \mathrm{mp}: 180-182^{\circ} \mathrm{C}, \mathrm{NMR} \delta: 0.87(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 2.05-2.15(1 \mathrm{H}, \mathrm{m}), 2.59-3.10(3 \mathrm{H}, \mathrm{m}), 3.10-3.25(3 \mathrm{H}, \mathrm{m}), 4.03(2 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}), 4.41(2 \mathrm{H}, \mathrm{s}), 5.01(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 6.20(1 \mathrm{H}, \mathrm{bss}), 7.21(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.29-7.42(\mathrm{sH}, \mathrm{ti}), 7.60(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $8.8 \mathrm{~Hz}), 7.69(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.9 \mathrm{~Hz}), 7.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz})$
$62 \mathrm{mp}: 226-228^{\circ} \mathrm{C}, \mathrm{NMR}$ ò: $2.87-3.23(6 \mathrm{H}, \mathrm{m}), 4.45(2 \mathrm{H}, 8), 5.02(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.4,10.0 \mathrm{~Hz}), 5.55(2 \mathrm{H}, \mathrm{si}, 6.21(1 \mathrm{HI}, \mathrm{bs})$, $7.16-7.46(11 \mathrm{H}, \mathrm{m}), 7.49-7.55(2 \mathrm{H}, \mathrm{m}), 7.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}), 7.71(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}), 8.95(1 \mathrm{H}, \mathrm{brs}), 9.44(1 \mathrm{H}$, brs), 10.93 $(1 . \mathrm{H}, \mathrm{t} . \mathrm{s}), 14.82(1 \mathrm{H}, \mathrm{bss})$
63 mp: $224-225^{\circ} \mathrm{C}$, NMR $\delta: 2.90-3.05(3 \mathrm{H}, \mathrm{m}), 3.05-3.25(\mathrm{3H}, \mathrm{mu}), 4.46(2 \mathrm{H}, s), 5.01(1 \mathrm{HI}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 5.50(2 \mathrm{H}, \mathrm{s}), 6.21$ $(1 \mathrm{H}, \mathrm{crs}), 7.14-7.59(11 \mathrm{H}, \mathrm{m}), 7.54(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.7 \mathrm{c}-7.73(2 \mathrm{H}, \mathrm{m}), 8.93(1 \mathrm{H}$, brs $), 9.39(1 \mathrm{H}$, brs $), 10.95(1 \mathrm{H}, \mathrm{s})$
$64 \mathrm{mp}: 205-208^{\circ} \mathrm{C}$, NMR $8: 2.90-3.06(3 \mathrm{H}, \mathrm{m}), 3.10-3.21(3 \mathrm{H}, \mathrm{m}), 4.41(2 \mathrm{H}, \mathrm{s}), 4.99(1 \mathrm{HI}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 5.51(2 \mathrm{H}, \mathrm{s}), 6.21$ ($1 \mathrm{III}, \mathrm{s}), 7.06-7.12(1 \mathrm{III}, \mathrm{m}), 7.20(2 \mathrm{II}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{IIz}), 7.28-7.42(\mathrm{EII}, \mathrm{ml}), 7.69(2 \mathrm{II}, \mathrm{dd}, \mathrm{J}=2.0,8.3 \mathrm{IIz}), 8.87(1 \mathrm{II}, \mathrm{s}), 9.26{ }^{(11 I I I}$, s), $10.81(1 \mathrm{H}, \mathrm{s})$
$65 \mathrm{mp}: 211-216^{\circ} \mathrm{C}$, NMR $\delta: 3.00(3 \mathrm{H}, \mathrm{brs}), 3.15(3 \mathrm{H}, \mathrm{brs}), 4.44(2 \mathrm{H}, \mathrm{s}), 5.05(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.2,1.9 \mathrm{~Hz}), 5.58(2 \mathrm{H}, \mathrm{s}), 6.22$ $(1 \mathrm{H}, \mathrm{tra}), 7.14-7.22(4 \mathrm{H}, \mathrm{m}), 7.29-7.32(1 \mathrm{H}, \mathrm{m}), 7.37-7.42(4 \mathrm{H}, \mathrm{m}), 7.47-7.54(3 \mathrm{H}, \mathrm{m}), 7.65(1 \mathrm{H}, \mathrm{s}), 7.69(1 \mathrm{H}, \mathrm{d}, \mathrm{I}=1.9 \mathrm{~Hz})$ g. $42(1 \mathrm{H}$, brs $), 9.55(1 \mathrm{H}$, brs $), 10.97(\mathrm{HIH}, \mathrm{s})$
$66 \mathrm{mp}: 199-201^{\circ} \mathrm{C}, \mathrm{NMR} \mathrm{o}: 2.87-3.23(6 \mathrm{H}, \mathrm{m}), 4.45(2 \mathrm{H}, \mathrm{s}), 4.95-5.04(1 \mathrm{H}, \mathrm{m}), 5.51(2 \mathrm{H}, \mathrm{s})=6.20(1 \mathrm{H}, \mathrm{brs}), 7.10-7.43$ $(10 \mathrm{H}, \mathrm{m}), 7.49-7.55(2 \mathrm{H}, \mathrm{m}), 7.71(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}), 8.89(1 \mathrm{H}, \mathrm{bms}), 9.30(1 \mathrm{H}, \mathrm{bss}), 10.90(1 \mathrm{H}, \mathrm{brs})$, $14.73(1 \mathrm{~F}, \mathrm{kms})$
$67 \mathrm{mp}: 131-135^{\circ} \mathrm{C}$., NMR $\delta: 3.00(3 \mathrm{H}, \mathrm{brs}), 3.16(3 \mathrm{H}, \mathrm{brs}), 4.49(2 \mathrm{H}, 3), 5.04(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.0 \mathrm{~Hz}), 5.56(2 \mathrm{H}, 3), 6.23(1 \mathrm{H}$, bus), $7.20(2 \mathrm{II}, \mathrm{d}, \mathrm{J}-8.2 \mathrm{IIz}), 7.23-7.34(4 \mathrm{II}, \mathrm{mi}), 7.37-7.42(4 \mathrm{II}, \mathrm{mi}), 7.53\left(2 \mathrm{II}, \mathrm{d}_{2} \mathrm{~J}-8.2 \mathrm{IIz}\right), 7.72(2 \mathrm{II}, \mathrm{s}), 9.01(1 \mathrm{II}, \mathrm{brs}), 9.54$ ($1 . \mathrm{H}, \mathrm{EIs}$), $11.00(1 \mathrm{HT}, \mathrm{s})$
$68 \mathrm{mp}: 217-2.19^{\circ} \mathrm{C}, \mathrm{NMR} \mathrm{\delta}: 2.90-3.05(3 \mathrm{H}, \mathrm{m}), 3.05-3.20(3 \mathrm{H}, \mathrm{m}), 4.46(2 \mathrm{H}, \mathrm{s}), 5.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 5.47(2 \mathrm{HI}, \mathrm{s}), 6.21$ $(1 \mathrm{H}, \mathrm{trs}), 7.20(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.25-7.50(7 \mathrm{H}, \mathrm{m}), 7.50-7.60(3 \mathrm{H}, \mathrm{m}), 7.70(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.9 \mathrm{~Hz}), 7.7(1(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz})$, $8.91(1 \mathrm{H}, \mathrm{brs}), 9.33(1 \mathrm{H}$, brs $), 10.93(1 \mathrm{H}, \mathrm{s})$
$69 \mathrm{mp}: 213-217^{\circ} \mathrm{C}, \mathrm{NMR} \delta: 2.90-3.05(3 \mathrm{II}, \mathrm{min}), 3.05-3.20(3 \mathrm{IL} \mathrm{m}),<.42(2 \mathrm{IL}, \mathrm{s}), 5.02(1 \mathrm{IL}, \mathrm{dd}, \mathrm{J}=10.2,2.4 \mathrm{IIz}), 5.62(2 \mathrm{II}$, $\left.{ }^{\text {di }}\right), 6.21(1 \mathrm{H}, \mathrm{b} \mathrm{s}), 7.20(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.29-7.42(6 \mathrm{H}, \mathrm{mi}), 7.49(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.57-7.60(1 \mathrm{H}, \mathrm{m}), 7.68-7.73(2 \mathrm{H}, \mathrm{m})$, $8.95(1 \mathrm{H}, \mathrm{brs}), 9.42(1 \mathrm{H}, \mathrm{brs}), 10.89(1 \mathrm{H}, \mathrm{s})$
$70 \mathrm{mp}: 212-213^{\circ} \mathrm{C}$, NMR $\delta: 2.87-3.23(6 \mathrm{H}, \mathrm{m}), 4.47(2 \mathrm{H}, \mathrm{s}), 5.02(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.4,10.0 \mathrm{~Hz}), 5.53(2 \mathrm{H}, \mathrm{s}), 6.21(1 \mathrm{H}, \mathrm{brs})$,

TABLE 2-continucd

Ex. DATA

$7.16-7.23(2 \mathrm{H}, \mathrm{m}), 7.28-7.34(1 \mathrm{H}, \mathrm{m}), 7.36-7.43(4 \mathrm{H}, \mathrm{m}), 7.48-7.55(2 \mathrm{H}, \mathrm{mi)}, 7.57-7.67(2 \mathrm{H}, \mathrm{mi}), 7.69-7.74(2 \mathrm{H}, \mathrm{m}), 8.95$ $(1 . \mathrm{H}, \mathrm{trs}), 9.43(1 \mathrm{H}, \mathrm{brs}), 10.95(1 \mathrm{H}, \mathrm{hrs}), 14.86(1 \mathrm{H}, \mathrm{brs})$
$71 \mathrm{mp}: 209-213^{\circ} \mathrm{C}, \mathrm{NMR} 0: 2.00-3.05(3 \mathrm{H}, \mathrm{m}), 3.05-3.20(3 \mathrm{H}, \mathrm{ml}), 4.47(2 \mathrm{H}, \mathrm{s}), 4.98-5.01(1 \mathrm{H}, \mathrm{m}), 5.49(2 \mathrm{H}, \mathrm{s}), 6.21$ $(1 \mathrm{H}, \mathrm{t} 1 \mathrm{~s}), 7.21(2 \mathrm{H}, \mathrm{d}, \mathrm{J}-8.3 \mathrm{~Hz}), 7.28-7.34(1 \mathrm{H}, \mathrm{m}), 7.36-7.44(6 \mathrm{H}, \mathrm{m}), 7.53(2 \mathrm{H}, \mathrm{d}, \mathrm{J}-8.8 \mathrm{~Hz}), 7.71(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.9 \mathrm{~Hz}), 7.74$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.9 \mathrm{~Hz}), 8.91(1 \mathrm{H}$, brs $), 9.34(1 \mathrm{H}$, brs) $), 10.97(1 \mathrm{H}, \mathrm{s})$
$72 \mathrm{mp}: 190-193^{\circ} \mathrm{C}, \mathrm{NMR} \delta: 2.90-3.08(311, \mathrm{~m}), 3.10-3.21(31 \mathrm{Lm}), 4.38(211, \mathrm{~s}), 4.99(111, \mathrm{dcl}, \mathrm{J}=2.5,10.2 \mathrm{LIz}), 5.69(2 \mathrm{~L}$, s), $6.20(1 \mathrm{HI}$, s), $7.21(2 \mathrm{H}, \mathrm{d} . \mathrm{J}=8.8 \mathrm{EHz}), 7.29-7.42(5 \mathrm{H}, \ldots \mathrm{m}), 7.48(2 \mathrm{H}, \mathrm{d}, \mathrm{T}=8.3 \mathrm{~Hz}), 7.70(. \mathrm{HH}, \mathrm{d}, \mathrm{T}=1.9 \mathrm{~Hz}), 7.77(\mathrm{H}, \mathrm{s}), 8.88$ $(1 . \mathrm{H}, 5), 9.27(1 \mathrm{H}, 5 \mathrm{~s}, 10.84(1 \mathrm{H}, \mathrm{s})$
$73 \mathrm{mp}: 233-234^{\circ} \mathrm{C}, \mathrm{NMR} \delta: 2.90-3.23(6 \mathrm{H}, \mathrm{m}), 4.47(2 \mathrm{H}, 8), 5.02(1 \mathrm{HI}, \mathrm{dd}, \mathrm{J}=2.4,10.0 \mathrm{~Hz}), 5.44(2 \mathrm{H}$, si), $6.21(1 \mathrm{H}, \mathrm{bis})$, $7.12-7.23(3 \mathrm{H}, \mathrm{m}), 7.28-7.34(1 \mathrm{H}, \mathrm{m}), 7.36-7.44(5 \mathrm{H}, \mathrm{m}), 7.52-7.58(2 \mathrm{H}, \mathrm{m}), 7.66-7.73(3 \mathrm{H}, \mathrm{m}), 7.79-7.81(1 \mathrm{H}, \mathrm{m}), 8.96$ (1.H, tis), $9.44(1 \mathrm{H}, \mathrm{brss}), 10.96(1 . \mathrm{H}, \mathrm{hrs}), 14.79(1 \mathrm{H}, \mathrm{hrs})$

74 mp: $180-183^{\circ} \mathrm{C}$., NMR ò: $2.67-2.76(4 \mathrm{H}, \mathrm{mi}), 2.78-2.86(2 \mathrm{H}, \mathrm{mi}), 4.00(2 \mathrm{H}, s), 4.66(1 \mathrm{H}, \mathrm{dal}, \mathrm{J}=8.3,3.9 \mathrm{~Hz}), 5.39(2 \mathrm{H}, \mathrm{s})$, $5.42(1 \mathrm{H}, \mathrm{brs}), 6.57(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=0.9 \mathrm{~Hz}), 6.78(1 \mathrm{H}, 8), 7.03(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.21-7.26(1 \mathrm{H}, \mathrm{m}), 7.27-7.34(4 \mathrm{H}, \mathrm{m}), 7.46-$ $7.50(1 \mathrm{H}, \mathrm{m}), 7.52(2 \mathrm{HI}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.56(1 \mathrm{H}, \mathrm{s}), 7.58(1 \mathrm{H}, \mathrm{s}), 8.32(1 \mathrm{H}, \mathrm{s}), 10.32(1 \mathrm{H}, \mathrm{s})$
$75 \mathrm{mp}: 210-215^{\circ} \mathrm{C}$. NMR $\mathrm{d}: 2.91-3.03(3 \mathrm{II}, \mathrm{m}), 3.15(3 \mathrm{II}, \mathrm{brs}), 4.44(2 \mathrm{III}, \mathrm{s}), 5.01(1 \mathrm{III}, \mathrm{dd}, \mathrm{J}=10.4,2.6 \mathrm{IIz}), 5.53(2 \mathrm{II}, \mathrm{s})$; $6.21(1 \mathrm{H}, \mathrm{brs}), 7.18(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.30-7.32(1 \mathrm{HI}, \mathrm{m}), 7.37-7.42(4 \mathrm{H}, \mathrm{m}), 7.48(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.49(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz})$, $7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}), 7.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}), 7.79(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 8.94(1 \mathrm{H}, \mathrm{brs}), 9.95(1 \mathrm{H}, \mathrm{brs}), 10.92(1 \mathrm{H}, \mathrm{s})$
$76 \mathrm{mp}: 162-165^{\circ} \mathrm{C}$, NMR $8: 2.93-3.05(3 \mathrm{H}, \mathrm{m}), 3.14(3 \mathrm{H}, \mathrm{brs}), 4.47(2 \mathrm{H}, \mathrm{s}), 5.03(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.3,2.5 \mathrm{~Hz}), 5.62(1 \mathrm{H}, \mathrm{brr})$, $5.89(2 \mathrm{H}, \mathrm{s}), 7.122(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.30-7.37(1 \mathrm{H}, \mathrm{m}), 7.39-7.43(5 \mathrm{H}, \mathrm{m}), 7.61(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.69(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz})$, $7.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.9 \mathrm{~Hz}), 7.83-7.86(2 \mathrm{H}, \mathrm{m}), 7.97(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 8.44(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 8.99(1 \mathrm{H}, \mathrm{brs}), 9.52(1 \mathrm{H}, \mathrm{brs}), 10.84$ (1H, s)
$77 \mathrm{NMR} \delta: 2.64-2.74(4 \mathrm{H}, \mathrm{mi}), 2.77-2 . \mathrm{si} 2(2 \mathrm{H}, \mathrm{m}), 3.93(2 \mathrm{H}, \mathrm{s}), 4.63(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.8,4 . \mathrm{Hz}), 5.33(2 \mathrm{H}, \mathrm{s}), 6.80(2 \mathrm{H}, \mathrm{c}, \mathrm{J}=6.3$ IIz), $7.14(2 I \mathrm{II}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{IIZ}), 7.20-7.24(1 \mathrm{III}, \mathrm{m}), 7.28-7.35(\mathrm{SII}, \mathrm{m}), 7.43(1 \mathrm{III}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{IIz}), 7.47-7.52(3 \mathrm{II}, \mathrm{m}), 10.27(1 \mathrm{II}$, s)

78 NMR $8: 2.63-2.72(4 \mathrm{H}, \ldots \mathrm{m}), 2.75-2.81 .(2 \mathrm{H}, \mathrm{mi}), 3.79(2 \mathrm{H}, \mathrm{s}), 4.62(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.8,4.4 \mathrm{H}), 5.30(1 \mathrm{H}, \mathrm{ums}), 5.33(2 \mathrm{H}, \mathrm{s}), 0.68$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.0 \mathrm{~Hz}), 6.91(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.8,5.9 \mathrm{~Hz}), 7.06(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.0 \mathrm{~Hz}), 7.12(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.19-7.24(2 \mathrm{H}, \mathrm{m}), 7.28-$ $7.33(4 \mathrm{H}, \mathrm{m}), 7.43(2 \mathrm{H}, \mathrm{d}, \mathrm{J}-8.3 \mathrm{~Hz}), 7.49(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}-8.3,2.5 \mathrm{~Hz}), 8.32(1 \mathrm{H}, \mathrm{s}), 10.21(1 \mathrm{H}, \mathrm{s})$
79 NMR $\delta: 2.88-3.08(3 \mathrm{H}, \mathrm{m}), 3.10-3.22(3 \mathrm{H}, \mathrm{m}), 4.40(2 \mathrm{H}, \mathrm{s}), 4.97(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 5.56(2 \mathrm{H}, \mathrm{s}), 6.20(1 \mathrm{H}, \mathrm{s}), 7.1 \mathrm{l}(2 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=8.3 \mathrm{~Hz}), 7.24(1 \mathrm{H}, \mathrm{J}, \mathrm{J}=2.5 \mathrm{~Hz}), 7.6(0)-7.60(9 \mathrm{H}, \mathrm{ti}), 7.64(1 . \mathrm{H}, \mathrm{c}, \mathrm{J}=2.0 \mathrm{Hz7}), 7.72(1 \mathrm{H}, \mathrm{s}), 8.83(1 \mathrm{H}, s), 9.14(1 \mathrm{H}, s), 10.71$ (11H, s)
80 NMR $8: 2.90-3.08(3 \mathrm{H}, \mathrm{ml}), 3.10-3.22(3 \mathrm{H}, \mathrm{m}), 4.44(2 \mathrm{H}, 8), 5.02(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 5.59(2 \mathrm{H}, 8), 6.21(1 \mathrm{H}, 8), 7.20(2 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=8.0 \mathrm{~Hz}), 7.24 .7 .42(7 \mathrm{H}, \mathrm{m}), 7.50(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.72(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 8.94(\mathrm{iH}, \mathrm{s}), 9.42(1 \mathrm{H}, \mathrm{s}), 10.93(1 \mathrm{HI}, \mathrm{s})$
81 NMR $8: 2.87-3.23(6 \mathrm{II}, \mathrm{m}), 3.85(3 \mathrm{II}, \mathrm{s}, 4.30(2 \mathrm{II}, \mathrm{s}), 4.94-5.01(1 \mathrm{II}, \mathrm{m}), 5.55(2 \mathrm{II}, \mathrm{s}), 6.17-6.22(1 \mathrm{II}$, r) $), 7.14-7.23(2 \mathrm{II}$, $\mathrm{m}), 7.28-7.50(9 \mathrm{H}, \mathrm{m}), 7.57-7.64(2 \mathrm{H}, \mathrm{m}), 7.87-7.93(2 \mathrm{H}, \mathrm{tu}), 8.83(1 \mathrm{H}, \mathrm{b} . \mathrm{s}), 9.10(1 \mathrm{H}, \mathrm{b} \mathrm{s}), 10.68(1 \mathrm{H}, \mathrm{brs}), 14.86(1 \mathrm{H}$, ots)
82 NMR $8: 1.30-1.64(6 \mathrm{H}, \mathrm{mI}), 2.88-3.22(8 \mathrm{H}, \mathrm{m}), 3.45-3.65(2 \mathrm{H}, \mathrm{m}), 4.39(2 \mathrm{H}, \mathrm{s}), 4.97(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.8 \mathrm{~Hz}), 5.50(2 \mathrm{H}, \mathrm{s}), 6.21$ $(1 \mathrm{H}, \mathrm{s}), 7.20(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.30-7.42(9 \mathrm{H}, \mathrm{m}), 7.51(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 7.71\left(2 \mathrm{H}_{,} \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}\right), 8.81(1 \mathrm{H}, \mathrm{s}), 9.14(1 \mathrm{H}, \mathrm{s})$, $10.77\left(1 \mathrm{H}_{\mathrm{s}} \mathrm{s}\right)$
83 mp: $229-232^{\circ} \mathrm{C}, \mathrm{NMR} \delta: 2.90-3.00(3 \mathrm{H}, \mathrm{m}), 3.10-3.18(3 \mathrm{H}, \mathrm{ml}), 5.00(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.8,10.1 \mathrm{~Hz}), 5.03(2 \mathrm{H}, \mathrm{s}), 6.27(1 \mathrm{H}$, $\mathrm{t}, \mathrm{J}=2.0 \mathrm{Hzz}), 7.20(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.27-7.42(5 \mathrm{H}, \mathrm{m}), 7.46(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}), 7.58(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.77(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz})$, $8.51(1 \mathrm{H}, \mathrm{s}), 9.32(\mathrm{HL}, \mathrm{s}), 10.53(1 \mathrm{H}, \mathrm{s})$
$84 \mathrm{mp}: 237-240^{\circ} \mathrm{C}, \mathrm{NMR}$ o: $2.90-3.08(3 \mathrm{II}, \mathrm{m}), 3.10-3.22(\mathrm{gII}, \mathrm{m}), 4.96(1 \mathrm{II}, \mathrm{dd}, \mathrm{J}=2.0,10.0 \mathrm{~Hz}), 5.15(2 \mathrm{II}, \mathrm{s}), 7.21(2 \mathrm{II}$, $\mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.28-7.42(5 \mathrm{H}, \mathrm{m}), 7.56(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 8.03(1 \mathrm{H}, \mathrm{s}), 8.61(1 \mathrm{H}, \mathrm{s}), 8.82(1 \mathrm{H}, \mathrm{s}), 9.09(1 \mathrm{H}, s), 10.57(1 \mathrm{H}, \mathrm{s})$
$85 \mathrm{mp}: 244-248^{\circ} \mathrm{C}$. NMR $8: 2.90-3.06(3 \mathrm{H}, \mathrm{m}), 3.10-3.20(3 \mathrm{H}, \mathrm{ml}), 5.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 5.20(2 \mathrm{H}, 3), 6.20(1 \mathrm{H}, 8), 7.20$ $7.50(11 \mathrm{H}, \mathrm{m}), 7.59(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz},, \varepsilon .94(3 \mathrm{H}, \mathrm{s}), 9.36(1 \mathrm{H}, \mathrm{s}), 10.95(1 \mathrm{H}, \mathrm{s}), 12.92(1 \mathrm{H}, \mathrm{s})$
$86 \mathrm{mp}: 223-224^{\circ} \mathrm{C}$, $\mathrm{NMR} \delta: 2.86-3.22(6 \mathrm{II}, \mathrm{m}), 3.49(211, \mathrm{~s}), 4.93-5.03(1 \mathrm{ILL}, \mathrm{m}), 6.20(1 \mathrm{II}, \mathrm{d}, \mathrm{J}=40 \mathrm{ILz}), 7.15-7.43(\mathrm{MLI}, \mathrm{m})$, $7.55-7.62(2 \mathrm{II}, \mathrm{III}), 7.75(1 \mathrm{III}, \mathrm{dt}, \mathrm{J}=1.6,8.0 \mathrm{II}), 8.45-8.53(1 \mathrm{II}, \mathrm{HI}), 8.06-9.50(2 \mathrm{II}, \mathrm{br}), 10.35(1 \mathrm{III}, \mathrm{brs})$
$87 \mathrm{mp}: 236-238^{\circ} \mathrm{C}$, NMR $\delta: 2.86-3.23(6 \mathrm{H}, \mathrm{m}), 3.72(2 \mathrm{H}, 4), 4.91-5 . \mathrm{C2}(1 \mathrm{H}, \mathrm{m}), \sigma .20(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=40 \mathrm{~Hz}), 7.15-7.22(2 \mathrm{H}, \mathrm{m})$, $7.27-7.45(6 \mathrm{H}, \mathrm{m}), 7.53-7.62(2 \mathrm{H}, \mathrm{r}), 7.73-7.82(1 \mathrm{H}, \mathrm{m}), 8.40-8.60(2 \mathrm{H}, \mathrm{m}), 8.84(1 \mathrm{H}$, brs $), 9.16(1 \mathrm{H}, \mathrm{brs}), 10.35-10.50$ ($1 \mathrm{H}, \mathrm{tr}$)
$88 \mathrm{mp}: 195-198^{\circ} \mathrm{C}, \mathrm{NMR} \delta: 2.86-3.22(6 \mathrm{H}, \mathrm{m}), 3.73(2 \mathrm{H}, \mathrm{s}), 4.93-5 . \mathrm{C} 4(1 \mathrm{H}, \mathrm{m}), 6.15-6.25(1 \mathrm{H}, \mathrm{br}), 7.14-7.22(2 \mathrm{H}, \mathrm{m})$, $7.28-7.43(7 \mathrm{H}, \mathrm{m}), 7.54-7.63(2 \mathrm{H}, \mathrm{m}), 8.47-8.53(2 \mathrm{H}, \mathrm{mij}, 9.97(2 \mathrm{H}$, trsil, $10.5 \mathrm{~F}(1 \mathrm{H}, \mathrm{bts})$
$89 \mathrm{mp}: 202-204^{\circ} \mathrm{C}$. NMR $8: 2.71-2.81(2 \mathrm{H}, \mathrm{m}), 2.88-3.24(8 \mathrm{H}, \mathrm{ml}), 3.49(2 \mathrm{H}, \mathrm{s}), 4.93-5.05(1 \mathrm{H}, \mathrm{m}), 6.20(1 \mathrm{H}, \mathrm{brc}, \mathrm{J}=3.2$ $\mathrm{Hz}), 7.15-7.23(3 \mathrm{H}, \mathrm{m}), 7.26-7.44(6 \mathrm{H}, \mathrm{m}), 7.52-7.60(2 \mathrm{H} \mathrm{m}), 7.69(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=1.6,7.6 \mathrm{~Hz}), 8.45-8.51(1 \mathrm{H}, \mathrm{m}), 9.07(2 \mathrm{H}$, brs), $10.07(1 \mathrm{H}$, brs)
$90 \mathrm{mp}: 220-227^{\circ} \mathrm{C}, \mathrm{NMR} \mathrm{B}: 2.80-3.20(8 \mathrm{H}, \mathrm{m}), 4.31(2 \mathrm{H}, \mathrm{s}), 4.42(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{H} 7), 5.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.0 \mathrm{~Hz}),(6.21(1 \mathrm{H}, \mathrm{brs})$, $7.20-7.40(12 \mathrm{H}, \mathrm{m}), 7.59(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{HL}), 7.65(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=12.9,0.9 \mathrm{HL}), 8.91(1 \mathrm{H}, \mathrm{bs}), 9.34(\mathrm{H}, \mathrm{H}, \mathrm{bs}), 10.98(1 \mathrm{H}, \mathrm{s})$
$91 \mathrm{mp}: 158-165^{\circ} \mathrm{C}$, NMR $\delta: 2.5-2.78(6 \mathrm{H}, \mathrm{m}), 3.96(2 \mathrm{H}, 8), 4.59(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}), 5.20(1 \mathrm{H}, \mathrm{brs}), 7.13-7.32(\mathrm{gH}, \mathrm{m})$, $7.50-7.53(4 \mathrm{H}, \mathrm{m}), 10.33(1 \mathrm{H}, \mathrm{s}), 12.37(1 \mathrm{H}, \mathrm{brs})$
$92 \mathrm{mp}: 216-217^{\circ} \mathrm{C}$, NMR $\delta: 2.31(3 \mathrm{II}, \mathrm{s}), 2.85-3.24(6 \mathrm{II}, \mathrm{m}), 3.89(2 \mathrm{II}, \mathrm{si}, 4.92-5.07(1 \mathrm{II}, \mathrm{m}), 6.20(1 \mathrm{III} \mathrm{d}, \mathrm{J}=4.0 \mathrm{IIz}), 7.12-$ $7.22(3 \mathrm{H}, \mathrm{m}), 7.28-7.45(5 \mathrm{H}, \mathrm{m}), 7.50-7.64(2 \mathrm{H}, \mathrm{m}), 8.30(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.4 \mathrm{~Hz}), 8.60-9.50(2 \mathrm{H}, \mathrm{br}), 10.32(1 \mathrm{H}, \mathrm{brs})$
$93 \mathrm{mp}: 236-238^{\circ} \mathrm{C}$, NMR $\delta: 2.86-3.24(6 \mathrm{H}, \mathrm{m}), 3.95(2 \mathrm{H}, \mathrm{s}), 4.91-5.01(1 \mathrm{H}, \mathrm{m}), 5.44(2 \mathrm{H}, \mathrm{s}), 6.19(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.4 \mathrm{~Hz}), 7.15-$ $7.22(2 \mathrm{H}, \mathrm{m}), 7.27-7.43(5 \mathrm{H}, \mathrm{m}), 7.52-7.62(2 \mathrm{H}, \mathrm{m}), 8.50-8.69(3 \mathrm{H}, \mathrm{rl}), 8.83(1 \mathrm{Hf}, \mathrm{hr}), 9.12(1 \mathrm{H}, \mathrm{hrs}), 10.41(1 \mathrm{HF}, \mathrm{hrs})$
94 NMR $8: 2.9 \mathrm{~J}-3.10(3 \mathrm{HI}, \mathrm{m}), 3.10-3.20(3 \mathrm{HI}, \mathrm{m}), 4.38(2 \mathrm{H}, \mathrm{s}), 4.98(1 \mathrm{HI}, \mathrm{t}, \mathrm{J}=10.4 \mathrm{~Hz}), 5.44(2 \mathrm{H}, \mathrm{s}), 6.20(1 \mathrm{HI}, \mathrm{d}, \mathrm{J}=3.2 \mathrm{~Hz})$, $7.20(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.30-7.45(9 \mathrm{H}, \mathrm{m}), 7.53(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.64(2 \mathrm{H}, \mathrm{s}), 8.85(1 \mathrm{H}, \mathrm{brss}), 9.21(1 \mathrm{H}, \mathrm{brss}), 10.79(1 \mathrm{H}, \mathrm{s})$ 95 NMR $\delta: 2.31(3 \mathrm{H}, \mathrm{s}), 2.89-3.17(6 \mathrm{H}, \mathrm{r}), 3.79(2 \mathrm{H}, \mathrm{s}), 4.98(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.2,10.4 \mathrm{~Hz}), 7.10-7.4112 \mathrm{H}, \mathrm{m}), 10.32(1 \mathrm{H}, \mathrm{s})$
96 NMR $8: 2.27(3 \mathrm{H}, \mathrm{s}), 2.89-3.17(6 \mathrm{H}, \mathrm{m}), 3.79(2 \mathrm{H}, \mathrm{s}), 4.99(1 \mathrm{HI}, \mathrm{dt}, \mathrm{J}-3.6,10.0 \mathrm{~Hz}), 7.17-7.59(12 \mathrm{H}, \mathrm{ml}), 10.31(1 \mathrm{H}, 3)$
97 NMR $\delta: 2.44(3 \mathrm{H}, \mathrm{s}), 2.78-3.20(6 \mathrm{H}, \mathrm{m}), 3.80(2 \mathrm{H}, 3), 4.97(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=3.2,10.4 \mathrm{~Hz}), 7.12-7.66(12 \mathrm{H}, \mathrm{m}), 10.33(1 \mathrm{H}, \mathrm{s})$
98 NMR ©: $1.06(3 \mathrm{II}, \mathrm{c}, \mathrm{J}-6.4 \mathrm{IIz}), 2.5 \mathrm{C}-2.65(2 \mathrm{II}, \mathrm{mi}), 2.90-3.15(3 \mathrm{II}, \mathrm{mi}), 3.83(2 \mathrm{II}, \mathrm{s}), 4.80-4.94(1 \mathrm{II}, \mathrm{mi}), 7.10-7.18(2 \mathrm{II}, \mathrm{mi})$, $7.23-7.45(7 \mathrm{H}, \mathrm{n} 1), 7.52-7.60(2 \mathrm{H}, \mathrm{m}), 7.71-7.80(1 \mathrm{H}, \mathrm{m}), 8.41-8.52(1 . \mathrm{H}, \mathrm{m}), 10.25(1 \mathrm{H}, \mathrm{bss})$
$99 \mathrm{mp}: 203-204^{\circ} \mathrm{C}$, NMR $8: 1.13(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{HL}), 2.55-2.64(1 \mathrm{H}, \mathrm{m}, 2.00-3.50(4 \mathrm{H}, \mathrm{m}), 3.84(2 \mathrm{H}, \mathrm{s}), 4.92-5.02(1 \mathrm{H}, \mathrm{m})$, $6.20(1 \mathrm{HI}, \mathrm{d}, \mathrm{J}=4.0 \mathrm{~Hz}), 7.13-7.20(2 \mathrm{H}, \mathrm{m}), 7.24-7.46(7 \mathrm{H}, \mathrm{m}), 7.54-7.6 \mathrm{C}(2 \mathrm{H}, \mathrm{m}), 7.73-7.80(1 \mathrm{H}, \mathrm{m}), 8.51(1 \mathrm{H}, \mathrm{bisi}), 8.67$ ($1 \mathrm{H}, \mathrm{trs}$), $9.13(1 \mathrm{H}$, brs), $10.31(1 \mathrm{H}$, brs $)$
100 NMR $\delta: 1.05(3 \mathrm{III}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{IIz}), 2.5 \mathrm{C}-2.65(1 \mathrm{IL}, \mathrm{mi}), 2.57-3.50(4 \mathrm{II}, \mathrm{m}), 3.78(2 \mathrm{II}, \mathrm{s}), 4.77-4.92(1 \mathrm{II}, \mathrm{mi}) .5 .25(2 \mathrm{II}, \mathrm{s}), 6.85$ ($1 \mathrm{H}, \mathrm{s}), 7.10-7.55(15 \mathrm{H}, \mathrm{mt}), 10.33(\mathrm{CH}$, bss $)$
$101 \mathrm{mp:}$ 194-196. C, NMR $\delta: 2.88-3.25(6 \mathrm{H}, \mathrm{m}), 3.89(2 \mathrm{H}, 8 \mathrm{~g}), 5.20-5.26(1 \mathrm{H}, \mathrm{m}), 6.30(1 \mathrm{H}, \mathrm{s}), 7.17-7.48(7 \mathrm{H}, \mathrm{m}), 7.54$ $7.60(3 \mathrm{H}, \mathrm{m}), 7.81-7.88(1 \mathrm{H}, \mathrm{m}), 8.54(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.0 \mathrm{~Hz}), 8.82(1 \mathrm{HI}, \mathrm{s}), 9.16(1 \mathrm{H}, \mathrm{s}), 10.35(1 \mathrm{H}, 8)$

TABLE 2-continucd
Ex. DATA
$102 \mathrm{mp}: 214-215^{\circ} \mathrm{C}$, NMR $8: 2.88-3.25(6 \mathrm{H}, \mathrm{mu}), 3.85(2 \mathrm{H}, \mathrm{s}), 4.96-5.02(1 \mathrm{H}, \mathrm{m}), 6.33(1 \mathrm{HI}, \mathrm{d}, \mathrm{J}=3.8 \mathrm{~Hz}), 7.12-7.31(6 \mathrm{H}, \mathrm{m})$, $7.39-7.48(2 \mathrm{HH}, \mathrm{m}), 7.58(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{H} /), 7.74-7.80(1 \mathrm{H}, \mathrm{m}), 8.50(1 \mathrm{H}, \mathrm{s}), 8.82(1 \mathrm{H}, \mathrm{s}), 9.01(1 . \mathrm{H}, \mathrm{s},, 10.30(1 \mathrm{H}, \mathrm{s})$
$103 \mathrm{mp}: 223-225^{\circ} \mathrm{C}, \mathrm{NMR} \delta: 2.88-3.06(3 \mathrm{H}, \mathrm{m}), 3.10-3.20(3 \mathrm{H}, \mathrm{m}), 3.84(2 \mathrm{H}, \mathrm{s}), 4.94-5.01(1 \mathrm{H}, \mathrm{mi}), 6.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.0 \mathrm{~Hz})$, $7.16-7.30(5 \mathrm{H}, \mathrm{m}), 7.38-7.45(3 \mathrm{H}: \mathrm{m}), 7.58(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.76(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=1.6,7.6 \mathrm{~Hz}), 8.50(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 8.83$ ($1 \mathrm{H}, 3), 9.08(1 \mathrm{H}, \mathrm{s}), 10.31(1 \mathrm{H}, \mathrm{s})$
104 mp: $208-210^{\circ} \mathrm{C}$, NMR $\delta: 2.88-3.24(6 \mathrm{H}, \mathrm{mi}), 3.99(2 \mathrm{H}, \mathrm{s}), 4.90-5.10(1 \mathrm{H}, \mathrm{mu}), 6.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.6 \mathrm{~Hz}), 7.15-7.24(2 \mathrm{H}, \mathrm{mu})$, $7.28-7.44(6 \mathrm{H}, \mathrm{mit}), 7.53-7.62(2 \mathrm{H}, \mathrm{m}),. 8.50-9.30(4 \mathrm{H}, \mathrm{m}), 10.33(1 \mathrm{H}$, bris)
$105 \mathrm{mp}: 2.34-235^{\circ} \mathrm{C}$, NMR $8: 2.94-3.25(6 \mathrm{H}, \mathrm{m}), 4.07(2 \mathrm{H}, \mathrm{s}), 4.90-5.02(1 \mathrm{H}, \mathrm{m}), 6.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.0 \mathrm{H} 7), 7.16-7.23(2 \mathrm{H}, \mathrm{m})$, $7.27-7.44(5 \mathrm{H}, \mathrm{m}), 7.53-7.65(4 \mathrm{H}, \mathrm{m}), 7.71-7.78(1 \mathrm{H}, \mathrm{m}), 7.94-8.00(2 \mathrm{H}, \mathrm{m}), 8.33(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 8.51-9.25(2 \mathrm{H}, \mathrm{m})$, 10.46(1II, brs)
$106 \mathrm{mp}: 22.1-222^{\circ} \mathrm{C}$., NMR 0 : $2.90-3.25(6 \mathrm{H}, \mathrm{mi}), 3.85(2 \mathrm{H}, 8), 4.92-\mathrm{S} . \mathrm{c8}(1 \mathrm{H}, \mathrm{m}), 6.35(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.6 \mathrm{~Hz}), 7.14-7.23(2 \mathrm{H}, \mathrm{m})$, $7.23-7.31(1 \mathrm{H}, \mathrm{m}), 7.33-7.50(5 \mathrm{H}, \mathrm{m}), 7.54-7.64(2 \mathrm{H}, \mathrm{m}), 7.76(1 \mathrm{H}, \mathrm{ct}, \mathrm{J}=1.6,7.6 \mathrm{~Hz}), 8.43-8.55(1 . \mathrm{H}, \mathrm{mi}), 8.80-9.40$ ($2 \mathrm{H}, \mathrm{tt}$), $10.36(1 \mathrm{H}, \mathrm{brs})$
$107 \mathrm{mp}: 204-205^{\circ} 0 \mathrm{C} ., \mathrm{NMR} 8: 2.85-3.28(6 \mathrm{H}, \mathrm{m}), 3.85(2 \mathrm{H}, \mathrm{s}) .5 .02-5.14(1 \mathrm{H}, \mathrm{m}), 6.37(1 \mathrm{H}, \mathrm{cl}, \mathrm{J}=4.0 \mathrm{~Hz}), 7.14-7.32(3 \mathrm{H}, \mathrm{m})$, $7.365-7.46(2 \mathrm{H}, \mathrm{m}), 7.55-7.64(2 \mathrm{H}, \mathrm{m}), 7.70-7.86(2 \mathrm{H}, \mathrm{m}), 8.46-8.56(2 \mathrm{H}, \mathrm{m}), 8.57-8.65(1 \mathrm{H}, \mathrm{m}), 9.13(2 \mathrm{H}$, brs $), 10.37$ ($1 \mathrm{H}, \mathrm{trs}$)
108 NMR $8: 2.63-2.67(4 \mathrm{H}, \mathrm{ml}), 2.73-2.78(2 \mathrm{H}, \mathrm{m}), 4.07(2 \mathrm{H}, ~ s), 4.60(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.4,4.9 \mathrm{~Hz}), 5.24(1 \mathrm{H}, \mathrm{bss}), 5.57(2 \mathrm{H}, \mathrm{s}), 7.12-$ $7.23(7 \mathrm{H}, \mathrm{m}), 7.27-7.31(4 \mathrm{H}, \mathrm{m}), 7.37(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.46(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.60-7.61(1 \mathrm{H}, \mathrm{m}), 8.31(1 \mathrm{H}, \mathrm{s}), 10.31$ (1.H, s)

109 NMR $8: 2.26(3 I \mathrm{I}, \mathrm{s}), 2.40(3 \mathrm{II}, \mathrm{s}), 2.9(\mathrm{I}-3.17(5 \mathrm{II}, \mathrm{m}), 3.75(2 \mathrm{II}, \mathrm{s}), 4.99(1 \mathrm{II}, \mathrm{dt}, \mathrm{J}=3.2,6.8 \mathrm{IIz}), 6.97-7.50(11 \mathrm{II}, \mathrm{m}), 10.35$ ($1 \mathrm{H}, \mathrm{s}$)
$110 \mathrm{mp}: 183-184^{\circ} \mathrm{C}$, NMR $\delta: 1.85-2.05(2 \mathrm{H}, \mathrm{m}), 2.53-2.65(2 \mathrm{H}, \mathrm{m}), 2.83-3.03(3 \mathrm{H}, \mathrm{m}), 3.05-316(1 \mathrm{H}, \mathrm{m}), 3.88(2 \mathrm{H}, \mathrm{s})$, $4.95(1 \mathrm{HI}, \mathrm{d}, \mathrm{J}=9.6 \mathrm{~Hz}), 6.15(1 \mathrm{H}, \mathrm{brs}), 7.10-7.18(2 \mathrm{H}, \mathrm{m}), 7.22-7.43(7 \mathrm{H} . \mathrm{m}), 7.50-7.60(2 \mathrm{H}, \mathrm{m}), 7.75(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=1.6,7.2 \mathrm{~Hz})$, 8.45-8.53(1H1, m), $8.91(2 \mathrm{HI}, \mathrm{brs}), 10.29(1 \mathrm{H}, \mathrm{brs})$
$111 \mathrm{mp}: 225-226^{\circ} \mathrm{C}, \mathrm{NMR} \delta: 3.12-3 .-4(1 \mathrm{H}, \mathrm{m}), 3.18-3.45(3 \mathrm{H}, \mathrm{m}), 3.84(2 \mathrm{H}, \mathrm{s}), 4.22-4.35(2 \mathrm{H}, \mathrm{m}), 4.98-5.08(1 \mathrm{H}, \mathrm{m})$, $6.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.6 \mathrm{~Hz}), 6.90-6.97(2 \mathrm{H}, \mathrm{m}), 7.23-7.44(7 \mathrm{H}, \mathrm{m}), 7.53-7.62(2 \mathrm{H}, \mathrm{mi}), 7.76(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=1.6,7.2 \mathrm{~Hz}), 8.45-8.54$ ($1 \mathrm{H}, \mathrm{m}$), $8.80-5.50(2 \mathrm{H}, \mathrm{br}), 10.29(1 \mathrm{H}$, brs)
112 NMR $\delta: 1.21(6 \mathrm{H}, \mathrm{s}), 2.85-3.23(4 \mathrm{E}, \mathrm{r})$), $3.89(2 \mathrm{H}, \mathrm{s}), 4.90-5.00(1 \mathrm{H}, \mathrm{m}), 6.21(1 \mathrm{H}, \mathrm{brs}), 7.11-7.19(2 \mathrm{H}, \mathrm{m}), 7.28-7.50$ ($711, \mathrm{~m}$), $7.53-7.62(21 \mathrm{I}, \mathrm{m}), 7.78-7.90(11 \mathrm{I}, \mathrm{m}), 8.45-8.60(2 \mathrm{II}, \mathrm{m}), 5.00-9.10(11 \mathrm{I}$, bri), $10.35(1 \mathrm{II}$, brs $)$
$113 \mathrm{mp}: 132-1333^{3}(\mathrm{C}, \mathrm{NMR}$ o $: 2.90-3.0(3 \mathrm{H}, \mathrm{m}), 3.13-3.23(3 \mathrm{H}, \mathrm{m}), 4.96(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=2.5,10.2 \mathrm{~Hz}), 7.06-7.11(1 \mathrm{H}, \mathrm{m})$, $7.21(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 7.30-7.42(5 \mathrm{H}, \mathrm{m}), 7.47-7.53(3 \mathrm{H}, \mathrm{m}), 7.81-7.87(1 \mathrm{H}, \mathrm{m}), 8.29(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}), 8.78(1 \mathrm{H}, \mathrm{s}), 9.000$ ($1 \mathrm{H}, \mathrm{s}$), $9.88(1 \mathrm{H}, \mathrm{s}), 10.51(1 \mathrm{H}, \mathrm{s})$

TABLE 3

23

33

TABLE 3-continucd

47

58

86

93

104

The compounds shown in Tables 4 and 5 together with chemical structural formulae can be easily manufactured by almost the same method as mentioned in the above Examples or Manufacturing Methods or by the method to which some modifications known to the persons skilled in
the art are applied. Incidentally, in some cases, there are tautomeric, geometric or optical isomers for the compounds mentioned in Tables 4 and 5 , and the compounds of the 50 present invention cover each of the isolated isomers of the above-mentioned ones or a mixture thereof.

TABLE 4

5

25
7

30
8

35

3

4

5

40

10

50
11

55

60

TABLE 5

14
H

15
H

16
[I

H

18

19
H

TABLE 5-continucd

10

20

$21 \quad \mathrm{Cl}$

22 Cl

35 What is clatimed is:

1. A compound of formula (I):

30
25

40

45
in the formula, each or the symbols means as follows:
ring \mathbf{B} is a heteroaryl group which is unsubstituted or substituted and is optionally fused with a benzene ring;
X is a bond, or a lower alkylene or an alkenylene, both of which are unsubstituted or substituted with hydroxy or a lower alkyl group, or X is a carbonyl or a group represented by $-\mathbf{N H}$, and when X is a lower alkylene which is substituted with a lower alkyl group, a carbon atom of the ring B optionally bonds with the lower alkyl group so that a ring is formed;
A is a lower alkylene or a group represented by -lower alkylene-O-;
$\mathrm{R}^{\perp a}, \mathrm{R}^{-1 b}$ are the same or different and each is a hydrogen 60 atom or a lower alkyl group;
\mathbf{R}^{2} is a hydrogen atom or a halogen atom; and
Z is a group represented by $=\mathrm{CH}-$; or a salt thereof.
2. The compound of formula (I) or the salt thereof according to claim 1, wherein A is methylene, ethylene, or
65 a group represented by $-\mathrm{CIH}_{2} \mathrm{O}$-.
3. The compound of formula (I) or the salt thereof according to claim 2, wherein the ring \mathbf{B} is a heteroaryl

45
group which is substituted with a substituent chosen from a halogen atom, lower alkyl, lower alkenyl, lower alkynyl, hydroxy, sulfanyl, halogeno lower alkyl, lower alkyl-O-, lower alkyl-S-, lower alkyl-O-CO-, carboxy, sulfonyl, sulfinyl, lower alkyl-SO-, lower alkyl- SO_{2} - , lower alkyl-$\mathrm{CO}-$, lower alkyl-CO-O-, carbamoyl, lower alkyl-$\mathrm{NH}-\mathrm{CO}-$, di-lower alkyl-N-CO-, nitro, cyano, amino, lower alkyl-NH—, di-lower alkyl-N-, aryl-lower alkyl, halogeno aryl-lower alkyl, guanidino, lower alkyl-CONH , and lower alkyl- $\mathrm{SO}_{2}-\mathrm{NH}-$.
4. The compound of formula (I) or the salt thereof 10 according to claim 3 , wherein $\mathrm{R}^{2}, \mathrm{R}^{1 a}$ and $\mathrm{R}^{1 b}$ are each a hydrogen atom, and Z is $=\mathrm{CH}-$
5. A compound of formula (Ia):

in the formula, each of the symbols means as follows: ring B is a heteroaryl group;
X is a bond or a lower allkylene group;
R is a hydrogen atom, a halogen atom, a lower alkyl group, amino group, an aryl lower alkyl group, or a halogeno aryl-lower alkyl group; or a salt thereof.
6. A compound
(R) $-4^{\prime}-[2-[(2-$ IIydroxy-2-phenylethyl)amino $]$ ecthyl $]-2-$ pyridinecarboxyanilide,
(R)-2-[1-(4-chlorobenzyl)-1H-imidazol-2-yl)-4'-[2-[(2-hydroxy-2-phenylethyl) amino]ethyl $]$-acetanilide, (R)-$2-[1-(3,4-$ dichlorobenzyl) -1 II-tctrazol-5-y1]-4'-[2-[(2-hydroxy-2-phenylethyl)amino]ethyl]acetanilide,
(R)-2-(2-aminothiazol-4-yl)-4'-[2-(2-hydroxy-2phenylethyl)amino]ethyl]acetanilide,
(R)-2-(2-benzyl-1H-1,2,4-triazol-3-yl)-4-[2-[(2-hydroxy-2-phenyle thyl)-amino]ethyl]acetanilide,
(R)-2-(2-aminopyridin-6-yl)-4'-[2-[(2-hydroxy-2phenylsthyl)amino $]$ cthyl $]$ acctanilide, (R) $-4^{\prime}-[2-[(2-$ hydroxy-2-phenylethyl)amino]ethyl]-2-(2-pyridyl) acetanilide,
(R)-4'-[2-[(2-hydroxy-2-phenylethyl)-amino]ethyl)-2-(2pyrazinyl)acetanilide, (R) -4 '-[2-[(2-hydroxy-2-phenylethyl)amino]ethyl)-2-(2-pyrimidinyl)acetanilide, or a salt of any of the foregoing.
7. A composition comprising at least onc compound of formula (I) or the salt thereof as claimed in one of claims 1 through 4 in a pharmaceutically acceptable carrier.
8. The composition as claimed in claim 7 , wherein the at least one compound of formula (I) or the salt thereof is present in an amount effective for the treating of diabetes mellitus in a buman or animal patient in need of such treating.
9. The compound of formula (I) as claimed in claim 1, wherein the compound of formula (I) is an optical isomer, a hydrate, or a solvate of the compound of formula (I).
10. A composition comprising a compound of formula (I) as claimed in claim $\mathbf{1}$ in a pharmaceutically acceptable carrier, wherein the compound of formula (I) is present as a polymorphic substance.
11. A composition comprising at least one compound of 25 formula (T) or the salt thereof as claimed in claim 5, in a pharmaceutically acceptable carrier.
12. A composition comprising at least onc compound or the salt of any of the foregoing as claimed in claim 6, in a 30 pharmaceutically acceptable carrier.
13. A method for treating diabetes mellitus in a human or animal patient in need of such treatment comprising administering to the paticnt an amount of a compound of formula (I) as clained in claim 1, wherein the amount is an amount ${ }^{35}$ effective for such treatment.
14. A mothod for treating obcsity in a human or animal patient in need of such treatment comprising administering to the patient an amount of a compound of formula (I) as 40 claimed in claim 1, wherein the amount is an amount effective for such treatment.

UNITED STATES PATENT AND TRADEMARK OFFICE
 CERTIFICATE OF CORRECTION

PNTENT' NO. : 6,346,532 B
Page 1 of 2
DATED : February 12, 2002
INVENTOR(S) : T. Maruyama et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 16.
Lines 29-30, (Example 3) should read: -- (R)-4'-[2-[(2-Hydroxy-2-phenylethyl)amino] ethyl]-8-quinolinecarboxanilide dihydrochloride

Column 17.
Lines 40-41, (Example 16) should read:
-- (R)-2-(2-Benzyloxypyridin-6-yl)-4'-[2-[(2-hydroxy-2-phenylethyl)amino]ethyl] acetanilide hydrochloride --

Column 19.
Lines 58-60), (Example 39) should read: -- (R)-4'-[2-[(2-Hydroxy-2-phenylethyl)amino] ethyl|-2-(2-phenylaminothiazol-4-yl)acetanilide hydrochloride --

Column 23.
Lines 3-5, (Example 66) should read:
-- (R)-2-[1-(3,5-Difluorobenzyl)-1H-imidazol-2-yl]-4'-[2-(2-hydroxy-2-phenylethyl)amino]ethyl] acetanilide dihydrochloride --

Column 26.
Lines 47-49, (Example 99) should read: -- $4[(\mathrm{~S})-2-[((\mathrm{R})-2-H y d r o x y-2-p h e n y l e t h y l)$ amino]propyl]-2-(2-pyridyl)acetanilide hydrochloride --

UNITED STATES PATENT AND TRADEMARK OFFICE
 CERTIFICATE OF CORRECTION

PATENT NO. : 6,346,532 B1
Page 2 of 2
DATED : February 12, 2002
INVENTOR(S) : T. Maruyama et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below

Column 28,
Line 2, change "30/1 $\Delta 10 / 1$)." to $--30 / 1 \rightarrow 10 / 1$). --.
Line 7, should read: -- [(2-hydroxy-2-phenylethyl)amino]propyl]-2-(2-pyridyl) -Lines 62-63, (Example 113) should read: -- (R)-1-[4-[2-[(2-Hydroxy-2-phenylethyl) amino]ethyl] phenyl]-3-(2-pyridyl)urca dihydrochloride --

Column 45.
Linc 4, should read: -- (R)-2-[1-(4-chlorobenzyl)-1H-imidazol-2-yl]-4'-[2-[(2- --

Signed and Sealed this

Thirtieth Day of July, 2002

Atrest:

JAMLS E. ROGAN

Testing Data Table

	1	2	3	4	5	6	7	8	9
No.	Compound	Ex.	Structure ${ }^{1}$	$\begin{gathered} \beta 3 \\ \mathrm{pD2} \\ (\mathrm{~A} \%) \end{gathered}$	$\begin{gathered} \beta 2 \\ \mathrm{BI} 2 \\ (\mathrm{~A} \%) \\ (\mathrm{F} \%) \end{gathered}$	$\begin{gathered} \beta 1 \\ \mathrm{p} \mathrm{D} 2 \\ (\mathrm{~A} \%) \end{gathered}$		$\begin{gathered} \beta 3 \\ \mathrm{p} D 2 \\ (A \mathrm{~F}) \\ \mathrm{SK} \cdot \mathrm{Y} \cdot \mathrm{MC} \end{gathered}$	
1	BAN-358	086		$\begin{aligned} & 639 \\ & (67.3) \end{aligned}$	$\begin{gathered} <4 \\ (1.3) \end{gathered}$	$\begin{gathered} <4 \\ (5.6) \end{gathered}$	2.7	$\begin{aligned} & 5.94 \\ & (88) \end{aligned}$	112271996 $\left[\beta 1 / 1 ; 2 / \beta_{3}\right]$ 96651097 [KK Mice] 122162000 [SK-NMC]
2	BAN-369	098		$\begin{aligned} & 6.7 \\ & (80) \end{aligned}$	6.3 (60)	$\begin{aligned} & 6.2 \\ & (50) \end{aligned}$			$\begin{gathered} 0112991 \mid 1997 \\ {[\beta 1 / \beta 2 / \beta 3]} \end{gathered}$

[^3]

[^4]
${ }^{4}$ the fre basc cquivalent of compound BAN-371, which is a HCl salt. Compound BAN-371A is not onc of the synulcsis cxamples in the patcent specification. ${ }^{5}$ the racermic equivalent of the R-enantuomer compound BAN-371. Compound BAN-371B is not one of the syuthesis examples in the patern specification. ${ }^{5}$ calculated based on $\mathrm{EC}_{50}(\mathrm{MM})$ value of 60 , using $\mathrm{PD}_{2}=-\log \left[\mathrm{EC}_{50}(\mathrm{M})\right]$

[^5]

[^6]Sawai Ex. 1007

	1	2	3	4	5	6	7	8	9
No .	Compound	Ex.	Structure ${ }^{1}$	$\begin{gathered} \beta 3 \\ \mathrm{pl2} 2 \\ (\mathrm{H} \%) \end{gathered}$	$\begin{gathered} \beta 2 \\ \mathrm{p}[2 \\ (A \%) \end{gathered}$	$\begin{gathered} \beta 1 \\ \mathrm{pl} 12 \\ (\mid A \%) \end{gathered}$		$\begin{gathered} \beta 3 \\ \mathrm{plD2} \\ (\mathrm{~A} \%! \\ \mathrm{SK} \cdot \mathrm{Y} \cdot \mathrm{MC} \end{gathered}$	
26	BAN-401	007		6.5 (4))	$\begin{array}{r} 5.4 \\ (18) \end{array}$	$\begin{aligned} & <4 \\ & (1) \end{aligned}$	<1.3	$\begin{gathered} 5.89 \\ (1.4) \end{gathered}$	93128:1997 $[311 / 1 / 2 / / 33]$ 8829\%1907 [KK Mice] 221622000 [SE-N-MC]
27	BAN-402	097		$\begin{aligned} & 59 \\ & (53) \end{aligned}$	$\begin{aligned} & 53 \\ & \text { (34) } \end{aligned}$	$\begin{aligned} & <4 \\ & (4) \end{aligned}$			$\begin{aligned} & 93288 / 1997 \\ & {[\beta 1 / 1 / \beta 2 / \beta 3]} \end{aligned}$
28	BAN-403	104		$\begin{aligned} & 6.2 \\ & (31) \end{aligned}$	$\begin{aligned} & 5.1 \\ & (12) \end{aligned}$	$\begin{aligned} & 44 \\ & (1) \end{aligned}$		$\begin{gathered} 4,98 \\ (130) \end{gathered}$	

- 11 -

Sawai Ex. 1007

${ }^{9}$ Although his compound is exemplified as example 107 in the palent specification, compound BAN-417 is not covered by the chims.

	1	2	3	4	5	6	7	8	9
No .	Compound	Ex.	Structure ${ }^{1}$	$\begin{gathered} \beta 3 \\ \mathrm{BD} 2 \\ \mathrm{p} 2 \\ (\mathrm{H} \%) \end{gathered}$	$\begin{gathered} \beta 2 \\ \mathrm{p}[2 \\ (A \%) \end{gathered}$	$\begin{gathered} \beta 1 \\ \mathrm{pl} 12 \\ (\mathrm{~A} \%) \end{gathered}$		$\begin{gathered} \beta 3 \\ \mathrm{p} \mathrm{D} 2 \\ {[\mathrm{~A} / \mathrm{F}]} \\ \mathrm{SK} \cdot \mathrm{Y} \cdot \mathrm{MC} \end{gathered}$	
41	BAN-418	034		$\begin{aligned} & 6.2 \\ & (37) \end{aligned}$	$\begin{aligned} & \leqslant 4 \\ & (9) \end{aligned}$	$\begin{aligned} & <4 \\ & (2) \end{aligned}$		$\begin{aligned} & 5.72 \\ & (85) \end{aligned}$	$\begin{aligned} & 24 / 23 / 1997 \\ & {[\beta 1 / 1 / 22 / \beta 3]} \\ & 121 / 62000 \\ & {[\mathrm{SK} \cdot \mathrm{~N} \mathrm{MC}]} \end{aligned}$
42	BAN-423	023		$\begin{aligned} & 6.6 \\ & (66) \end{aligned}$	$\begin{aligned} & <4 \\ & (5) \end{aligned}$	$\begin{gathered} 5.5 \\ (16) \end{gathered}$	<10	(116.45 (102) (2).6.84 (78)	
43	BAN-424	084		$\begin{aligned} & 58 \\ & (38) \end{aligned}$	$\begin{aligned} & 5.2 \\ & (22) \end{aligned}$	$\begin{aligned} & 44 \\ & \text { (9) } \end{aligned}$		$\begin{aligned} & 508 \\ & (99) \end{aligned}$	$\begin{aligned} & 014 / 23 /[197 \\ & {[31 / 1 / 22 / 33]} \\ & 12 / 2320000 \\ & {[\mathrm{SK}-\mathrm{N} \mathrm{MC}]} \end{aligned}$

- 16 -

Sawai Ex. 1007

Sawai Ex. 1007

	1	2	3	4	5	6	7	8	9
No .	Compound	Ex.	Structure ${ }^{1}$	$\begin{gathered} \beta 3 \\ \mathrm{p} 12 \\ \mathrm{pl2} \\ (\mathrm{~A} \%) \end{gathered}$	$\begin{gathered} \beta 2 \\ \mathrm{p}[2 \\ (A \%) \end{gathered}$	$\begin{gathered} \beta 1 \\ \mathrm{pl} 12 \\ (\mid A \%) \end{gathered}$		$\begin{gathered} \beta 3 \\ \mathrm{p} 1 \mathrm{D} 2 \\ (\mathrm{~A} / \mathrm{f}) \\ \mathrm{SK}=\mathrm{Y}=\mathrm{MC} \end{gathered}$	
50	BAN-440	037		$\begin{aligned} & 6.0 \\ & (27) \end{aligned}$	$\begin{array}{r} 5.4 \\ (19) \end{array}$	$\begin{aligned} & <4 \\ & (6) \end{aligned}$	>1.3		95:88:1997 [$31 / 1 / 22 / 33]$ 93066:1998 [KK Mice]
51	BAN-433	024		$\begin{aligned} & 6.3 \\ & (65) \end{aligned}$	$\begin{aligned} & 6.1 \\ & (14) \end{aligned}$	$\begin{aligned} & 5.8 \\ & \text { (31) } \end{aligned}$			$\begin{aligned} & 96(1251 \mid 197 \\ & {[\beta 1 / 1 / \beta 2 / \beta 3]} \end{aligned}$
52	BAN-44	027		$\begin{aligned} & 6.4 \\ & (48) \end{aligned}$	$\begin{gathered} 5.6 \\ (17) \end{gathered}$	$\begin{aligned} & 57 \\ & (25) \end{aligned}$			$\begin{aligned} & 1(6 / 25 / 1997 \\ & {[\beta 1 / 1 / \beta 2 / \beta 3]} \end{aligned}$

- 22 .

Sawai Ex. 1007

- 23.

Sawai Ex. 1007

Sawai Ex. 1007

Sawai Ex. 1007

-30 -

Sawai Ex. 1007

- 31 -

Sawai Ex. 1007

	1	2	3	4	5	6	7	8	9
No .	Compound	Ex.	Structure ${ }^{1}$	$\begin{gathered} \beta 3 \\ \mathrm{pl2} 2 \\ (\mathrm{H} \%) \end{gathered}$	$\begin{gathered} \beta 2 \\ \mathrm{p}[2 \\ (A \%) \end{gathered}$	$\begin{gathered} \beta 1 \\ \mathrm{pl} 12 \\ (\mid A \%) \end{gathered}$		$\begin{gathered} \beta 3 \\ \mathrm{plD2} \\ (\mathrm{~A} \%! \\ \mathrm{SK} \cdot \mathrm{Y} \cdot \mathrm{MC} \end{gathered}$	
92	BAN-526	048		$\begin{aligned} & 6.6 \\ & (62) \end{aligned}$	$\begin{aligned} & <4 \\ & (3) \end{aligned}$	$\begin{aligned} & 50 \\ & (14) \end{aligned}$	<1.3	$\begin{aligned} & 5.87 \\ & (79) \end{aligned}$	
93	BAN-527	058		$\begin{gathered} 7.0 \\ (83) \end{gathered}$	く4 (2)	$\begin{aligned} & <4 \\ & \text { (9) } \end{aligned}$	<10	$\begin{aligned} & 5.91 \\ & (97) \end{aligned}$	188271/997 $[\beta 1 / / 22 / \beta 3]$ 99180:1997 [KK Mice] 122162000 [SK-N-MC]
94	BAN-528	080		$\begin{gathered} 7.2 \\ (83) \end{gathered}$	$\begin{aligned} & 4 \\ & 4 \\ & (0) \end{aligned}$	$\begin{aligned} & 52 \\ & (26) \end{aligned}$	>10		081271/1997 $[[1]: 1 / 22 / \beta 3]$ 99930'1907 [KK Mice]

- 32 .

Sawai Ex. 1007

	1	2	3	4	5	6	7	8	9
No .	Compound	Ex.	Structure ${ }^{1}$	$\begin{gathered} \beta 3 \\ \mathrm{pl2} 2 \\ (\mathrm{H} \%) \end{gathered}$	$\begin{gathered} \beta 2 \\ \mathrm{p}[2 \\ (A \%) \end{gathered}$	$\begin{gathered} \beta 1 \\ \mathrm{pl} 12 \\ (\mid A \%) \end{gathered}$		$\begin{gathered} \beta 3 \\ \mathrm{plD2} \\ (\mathrm{~A} \%! \\ \mathrm{SK} \cdot \mathrm{Y} \cdot \mathrm{MC} \end{gathered}$	
95	BAN-529	073		$\begin{aligned} & 6.8 \\ & (74) \end{aligned}$	$\begin{aligned} & <4 \\ & (0) \end{aligned}$	$\begin{aligned} & 4.8 \\ & (21) \end{aligned}$	>1.3		28127/1997 $[31 / 1 / 2 / / 33]$ 99901:1997 [KKMice]
96	BAN-530	078		$\begin{aligned} & 6.8 \\ & (74) \end{aligned}$	$\begin{aligned} & <4 \\ & (1) \end{aligned}$	$\begin{gathered} 50 \\ (28) \end{gathered}$	210		
97	BAN-531	076		$\begin{aligned} & 6.7 \\ & (61) \end{aligned}$	$\begin{aligned} & <4 \\ & (1) \end{aligned}$	$\begin{aligned} & 44 \\ & (8) \end{aligned}$	>10		081271/1997 $[[1]: 1 / 22 / \beta 3]$ 99930'1907 [KK Mice]

- 33 -

Sawai Ex. 1007

- 34 -

Sawai Ex. 1007

	1	2	3	4	5	6	7	8	9
No.	Compound	Ex.	Structure ${ }^{1}$	$\begin{gathered} \beta 3 \\ \mathrm{p} 12 \\ \mathrm{pl2} \\ (\mathrm{~A} \%) \end{gathered}$	$\begin{gathered} \beta 2 \\ \mathrm{p}[2 \\ (A \%) \end{gathered}$	$\begin{gathered} \beta 1 \\ \mathrm{pl} 12 \\ (\mid A \%) \end{gathered}$		$\begin{gathered} \beta 3 \\ \mathrm{p} 1 \mathrm{D} 2 \\ (\mathrm{~A} / \mathrm{f}) \\ \mathrm{SK}=\mathrm{Y}=\mathrm{MC} \end{gathered}$	
104	BAN-539	042		$\begin{aligned} & 5.5 \\ & (49) \end{aligned}$	$\begin{aligned} & <4 \\ & \text { (1) } \end{aligned}$	$\begin{aligned} & <4 \\ & (7) \end{aligned}$			$\begin{aligned} & 00180 \cdot 11997 \\ & {[\beta 1 / \beta 2 / \beta 3]} \end{aligned}$
105	BAN-540	030		7.8 (80)	$\begin{aligned} & <4 \\ & (1) \end{aligned}$	$\begin{aligned} & 4.9 \\ & (25) \end{aligned}$	<10	(1) 6.38 (197) (2) 5.91 (115)	9980:1997 [$31 / 1 / 2 / 2 / 33]$ 09012/1097 [KK Mise] (10022322000 [SK-NMC] (20030002000 [SK-NMC]
106	BAN-541	032		$\begin{aligned} & 6.8 \\ & (72) \end{aligned}$	$\begin{aligned} & <4 \\ & (1) \end{aligned}$	$\begin{aligned} & 3.8 \\ & (35) \end{aligned}$		$\begin{aligned} & 5.19 \\ & (90) \end{aligned}$	

- 37 -

Sawai Ex. 1007

- 38 -

Sawai Ex. 1007

- 39 -

Sawai Ex. 1007

	1	2	3	4	5	6	7	8	9
No.	Compound	Ex.	Structure ${ }^{1}$	$\begin{gathered} \beta 3 \\ \mathrm{pl2} 2 \\ (\mathrm{H} \%) \end{gathered}$	$\begin{gathered} \beta 2 \\ \mathrm{p} 12 \\ \left.(\mathrm{~L} \%)^{2}\right) \end{gathered}$	$\begin{gathered} \beta 1 \\ \mathrm{pl\mid 2} \\ (\mathrm{~A} \%) \end{gathered}$			
116	BAN-556	108		$\begin{array}{r} 6.2 \\ (56) \end{array}$	$\begin{array}{r} 5.3 \\ (18) \end{array}$	$\begin{gathered} 50 \\ (13) \end{gathered}$			$\begin{aligned} & 00180 \cdot 11997 \\ & {[\beta 1 / 1 ; 22, \beta 3]} \end{aligned}$

$-40-$

Sawai Ex. 1007

Strictly Confidential

October 27, 2003
Materials for R\&D Meeting

YM178/Discontinuation of Development Theme for Diabetes Mellitus

1 Overview of the Compound 2
2 Background of R\&D 3
3 Clinical Study Data 5
4 Reason for Proposing the Discontinuation of Development 13
5 What was Gained from this Project (PJ) 14
6 Actual Costs for R\&D 15
7 Conclusion 16

Strictly Confidential

1 Overview of the Compound

(1) Research Experiment Code Number: BAN-371A
(2) YM Number:
(3) Abbreviated Theme:
(4) Clinical Study Number:
(5) Generic Name:
(6) Proprietary:
(7) Drug Efficacy:
(8) Indications:

YM-179178
178
YM178
Undetermined
Undetermined
Sympathetic β_{3} receptor stimulant
Type 2 diabetes mellitus

2 Background of R\&D

1) YM178 Product Concept

Issues of the original drug Nonclinical study data of YM178

2) Background of R\&D

April, 1995 Research theme establishment
October, 1996 Synthesis of BAN-371
April, 1998 Selection of BAN-371 (free form) as an FT-FIM compound
March, 1999 Development subtheme establishment
January, 2000 Development theme establishment
June, $2000 \quad$ Start of a phase I single-dose/food effect (-001) study
April, 2001 Start of a phase I consecutive-dose (-002) study
February, 2002 Start of phase IIa (-003/-004) studies
May, 2003 Completion of treatment in phase IIa studies
July, 2003 Revelation of an overview of the phase IIa study results
The antihyperglycemic effect of YM178 given at a dose of 200 mg in the fed state could not be confirmed.

3 Clinical Study Data

1) Phase I Single-dose/food Effect (-001) Study

PK in the Food Effect Study

MTD for single-dose administration in the fasted state: 340 mg
Effect of food: Great

2) Phase I Consecutive-dose (-002) Study

Following 7-day Consecutive Doses

Plasma Trough Concentration-time Profile

Steady state: Attained on day 4 of consecutive-dose treatment
$\mathrm{C}_{\text {max }}$ following administration of 240 mg in the fed state is almost comparable to that following administration of 160 mg in the fasted state.
Common AEs: Headache, tachycardia, and orthostatic hypotension

3) Phase IIa Studies

a. Overview of the Design

Objectives	1) To assess the efficacy of YM178 in patients with diabetes mellitus 2) To assess the safety and tolerability of YM178 3) To assess the PK of YM178	
Study patients	Patients with type 2 diabetes mellitus being treated with diet and exercise (pharmacotherapy-naïve)	Patients with type 2 diabetes mellitus being treated with metformin
Design	Placebo-controlled, dose-titration ($60 \mathrm{mg} \rightarrow 130 \mathrm{mg} \rightarrow 200 \mathrm{mg}$), once-daily treatment after breakfast	
Total number of enrolled patients	60 patients (including 20 patients given placebo)	
Efficacy endpoints	- Primary: $\mathrm{HbA}_{1 \mathrm{c}}$ and FBG - Secondary: NEFA, C-peptide, triglyceride, etc.	
Safety endpoints	Adverse drug reactions (including assessment of hyperglycemic and hypoglycemic events), laboratory tests, vital signs, and ECG (including QTc assessment)	

b. Overview of Results/Monotherapy (-003) Study

c. Overview of Results/Combination Therapy (-004) Study

Mean change FPG

Mean supine pulse rate (bpm)

- Efficacy endpoints: No efficacy
- Pulse rate: Slightly elevated, compared with the monotherapy study results

d. Overview of Results/PK Results

Mean Blood Concentration Following Administration of YM178 at a Dose of 200 mg in

 Patients with Diabetes Mellitus in the Fed State

Monotherapy (-003) Study

Combination Therapy (-004) Study

- The pharmacological data indicate that the target blood YM178 concentration is sustained for 6 to 7 hours.

e. Summary of Study Results

- Primary endpoints ($\mathrm{HbA}_{\mathrm{lc}}$ and fasting blood glucose level)

When given at a dose of 200 mg in the fed state, the efficacy of YM178 for diabetes mellitus was not observed.

The stratified analysis and individual data analysis could also not confirm the efficacy of YM178.

- Secondary endpoints (NEFA, triglyceride, c-peptide, etc.)

The efficacy of YM178 could not be confirmed with any of the endpoints.

- Safety

Increases in heart rate by approximately 2 or 3 beats to 7 or 8 beats $/ \mathrm{min}$ (bpm) were observed.

- PK

The obtained data covered estimated effective blood concentrations for an average of approximately 6 hours.

4) CYP2D6 (-005) Study

The effects of defective CYP2D6 were barely observed.
Coadministration of metoprolol with YM178 resulted in an approximately 2-fold increase in blood metoprolol concentrations. Coadministration with drugs metabolized by CYP2D6 may cause increased adverse events of coadministered drugs. Caution should therefore be needed.
5) Metformin/DDI (-006) Study Draft report: Scheduled in November
6) Mass Balance (-007) Study Draft report: Scheduled in mid-October

Strictly Confidential

4 Reason for Proposing the Discontinuation of Development

The results of the two 178/phase IIa studies did not show the efficacy of YM178 for type 2 diabetes mellitus.

1) The results of the phase IIa study of YM178 administered at a dose of 200 mg in the fed state could not confirm the efficacy of YM178 in terms of the primary endpoints ($\mathrm{HbA}_{\text {Ic }}$ and fasting blood glucose level).
2) Increases in heart rate were observed when YM178 was administered at a dose of 200 mg .

5 What was Gained from this Project (PJ)

- A proof-of-concept (POC) study was conducted to confirm the hypothesis formulated for diabetes mellitus $/ \beta_{3}$ receptors, using YM178 in clinical settings; however, the results expected from preclinical study data could not be obtained.
- Prior to a phase IIa study of YM178, an agreement on goal settings and decision-making charts had been reached. We believe that this could lead to relatively smooth decisionmaking after the results became available.
- We would like to make good use of experiences gained from three regions through this PJ for future Y's PJs for diabetes mellitus (GTI, FIT, etc.).

The actual cost for R\&D development after development subtheme establishment was 3.06 billion Japanese yen.

		Indirect cost		Direct cost Thousand yen	Total of direct and indirect costs Thousand yen
		Person/ month	Thousand yen		
Drug substance	Process Chemistry Laboratories	142	514,339	190,322	704.664
Drug product	Novel Pharmaceutical Laboratories	82	150,695	49,849	200,544
Toxicity	Safety Research Laboratories	58	140,237	327,889	468,126
Pharmacology	Pharmacology Laboratories	72	132,102	61,837	193.939
ADME	Drug Metabolism Laboratories	71	179,958	48,622	228.580
Others			8,622	37,008	31,008
Non-clinical study Subtotal		405	1,125.953	709,527	1,835,480
Clinical study	YEU	\cdots	-	1,069,498	1,069,498
	YPA	"	-	9.608	9,608
	Clinical Development Department	4	13,847	15	13,862
CTM manufacturers	YPCL	94	116,866	8,094	124,960
	YEU	-	-	14.411	11411
Clinical study Subtotal		97	130.713	1,098.626	1229,339
Total		503	1,256,666	1,808,153	3,064,819

7 Conclusion

The development of YM178 for diabetes mellitus is discontinued.

A Subgroup Analysis
J. Pfeil (BMT)
E.M. van Gelderen (CPRD)

September 11, 2003

Disclaimer

Data presented are draft data to be subjected to QC-procedures
Differences from the final data cannot be excluded

Background

- No efficacy was shown by top line results from study 178-CL-003
- YEU-PT proposed subgroup analysis to identify responders and potential target patient population(s)
- Basic approach was to re-group patients and calculate mean change from baseline for the key parameters HbA1c and FPG, followed by adjustment of selection criteria (trial-and-error method)
- No formal statistics were performed

Definition of subgroups

- GPT proposed subgroups:
- Males vs. females
- High vs. low plasma concentration of YM178
- High vs. low baseline HbA1c and FPG levels
- High vs low BMI at baseline
- High vs. low Waist-to-Hip ratio at baseline
- High vs. Low age
- High vs. low baseline insulin
- High vs. low baseline triglyceride
- High vs. low change in heart rate
- Long vs. short history of type II diabetes (omitted, data not found in database, source data only)

178-CL-003, input data

- Input data consisted of the Full Analysis Set
- Individual plasma concentration versus time profiles of YM178 were used to identify non-treatment compliant patients;
- Patients 104, 131 and 146 were excluded from analysis
- Extremes were excluded from analysis using the criteria:
- change in HbA1c from baseline $>+2 \%$ and/or.
- change in FPG from baseline $>+4 \mathrm{mmol} / \mathrm{l}$
- Uneven patient distribution was avoided as much as possible
- FPG data were highly variable. Data were subjected to subgroup analysis but are only shown here if deemed usefult. In any case no trend could be discerned.

178-CL-003, Distribution of Responders

Yes	8. 44%)	21 (68\%)
No	10 (56\%)	10 (32\%)
Total	Wendex	5

Wesponder	Waseordy	MMEWW
Yes	8 (44\%)	19 (61\%)
No	10 (56\%)	12 (39\%)
	$5 \mathrm{k}$	

Yamanouchil Europe B.V.

Draft Data
7

- Despite placebo effect, YM178 reduced HbA 1 c when baseline levels were above 7%
- No differences between YM178 and placebo were found for FPG (data not shown).

- Reductions found with placebo and YM178. Biggest change at HbAic above 7\%
- No consistent changes in FPG in elther category.

Change in HbA 10 (\%) from baseline to end of treatment by Age (elderly) and baseline HbA1c

$\begin{aligned} & \text { Rgety) } \\ & \text { HBAIC } \rho_{0} \end{aligned}$	Treathent	N	Mean(SE) ,	Min.	Max
> $55 /<7$	YM178	5	$0.580(0.37)$	0.1	1.1
	Placebo	2	0.100 (0.85)	-0.5	0.7
$=55, \geq 7$	YM178	7	-0.400 (0.77)	-1.2	0.8
	Placebo	2	-0.650 (1.06)	-1.4	1.0

- No differences between YM178 and placebo freatment were found in either category. Note: subdivision is confounded by small groupsize - Similarly, no differences for FPG between categories were found due to small group sizes.

-Large placebo effects in males, biggest response to YM178 in young females
- Elderly data showed no clear gender differences due to small number of patients; group size ranged from 1 to 6 patients (data not shown).
Yarmancuchi Europa E.V.

178-CL-003, HbA1c

Change in HbA1c (\%) from baseline to end of treatment by BMI

EMI (kg/m2)	Treatment	N	Meal (SD)	Min	Max
≤ 30	YM178	20	$-0.135(1.03)$	-2.4	2.0
	Placebo	9	$-0.122(0.95)$	-1.8	0.8
30	YM178	11	$-0.636(0.90)$	-2.0	1.0
	Placebo	9	$-0.222(0.77)$	-1.2	1.0

-Reductions were found in either category, largest response when $B M>30 \mathrm{~kg} / \mathrm{m}^{2}$
-Note: BMI by gender showed reductions in placebo and YM178 in males and females with high BMi; larger reductions in females compared to males despite small group sizes (data not shown).

178-CL-003, HbA1c

Wheratio	Treatment	N	Mean (SA).	Min	Max
Low (≤ 0.9)	YM178	13	-0.715 (0.97)	-2.4	1.1
	Placebo	5	-0.340 (0.92)	-1.4	0.7
High (>0.9)	YM178	18	-0,022 (0.94)	-1.2	2.0
	Placebo	9	-0.108 (0.84)	-1.8	1.0

*In contrast to BMI, large reductions were found when W/H ratio was low. This subgroup consisted entirely of female patlents

- No differences between placebo and YM178 were found when the ratio at baseline was high.

	Change in $\mathrm{HbA} 1 \mathrm{c}(\%)$ from baseline to end of treatment by Insulin Level					
	Insulifa (pmol/I)	Treatment	N	Meari (SD)	Min	Ma
	* 50	YM178	13	-0.269 (0.95)	-1.2	2.0
5		Placebo	4	-0.575 (1.20)	-1.8	0.5
		YM178	14	-0.636.(0.98)	-2.4	1.1
5		Placebo	9	-0.311 (0.70)	-1.2	0.7
54	100	YM178	4	0.325 (1.20)	-1.4	1.4
	± 10	Placebo	5	0.400 (0.59)	-0.5	1.0

- No clear differences between YM178 and placebo and no response. in. patients with high insulin levels (small groupsl")
* Biggest resporise to YM178 found in young patients with insulin levels below 100 pmoll (data not shown).

Change in $\mathrm{HbAlc}(\%)$ from baseline to end of treatment by Triglyceride Leve!

Triglyceride Leve					
TS (minol)	Treatment		Mean(SD)	Min	Max
High (-2)	YM178	11	-0.591. (1.08)	-2.4	1.4
	Placebo	9	-0.200 (0.94)	-1.8	1.0
Low (52)	YM178	20	-0.160 (0.94)	-2.4	1.1
	Placebo	9	-0.144 (0.78)	-1.4	0.7

- No clear differences between YM178 and placebo treatment. Slightly. higher response at high baseline triglyceride levels
-No effect of YM1 78 on FPG was found for this subgroup (data not shown).

	Change in	bA1c (\%) Trou	rom h.Le	aseline to end at visit 10^{*}	eatm	
	$C_{\text {trough }}$ (ng/m)	Treatment	N	, Mean (S)	Min\%	Max:
W4	≥ 10	YM178	29	-0.369 (0.93)	-2.4	1.4
	<10	YM178	2	$0.500(2.12)$	-1.0	2.0
	≥ 15	YM178	19	-0,463 (0,87).	-2.4	1.4
	<15	YM178	12	-0.075 (1.18)	-2.0	2,0
	≥ 20	YM178	12	-0.217 (0.99)	-2.4	1.1
	<20	YM178	19	-0.374(1.03)	-2.0	2.0

*F $\mathrm{C}_{\text {trough }}<5 \mathrm{ng} / \mathrm{ml}$ at V Visit 8 and/or 9 andior 10 patient were exclucted

* A reduction of HbA1c was found with trough levels of YM178 above 10 ng/ml The largest tesponse was shown with levels of 15 ngiml Higher levers did not further increase the response to YM178.
\qquad 178-CL-003, Summary
For both HbA1c and FPG, $>60 \%$ of the patients responded to YM178 whereas 44% responded to placebo.
- Due to high intersubject variability of FPG no clear subgroup responding to YM178 could be defined on the basis of this parameter
- Mean changes in HbA1c from baseline to end of treatment were relatively small for all subgroups $(<0.75 \%)$ with high variability
- In view of the small numerical changes clinical relevance should be questioned
- Some efficacy was found only when HbA1c at baseline was above 7% (data from central laboratory; local data 7-8\%); responses of HBA1c and FPG to YM1 178 were mainly found for female patients.

178-CL-003, Summary

- Changes in HbA1c were mainly detected in young patients; in elderly no differences between YM178 and placebo could be found, even when baseline HbA1c was taken into account
. The effect of age was most clear for female patients
- Larger responses in HBA1c and FPG were found in patients with high BMilia finding not fully supported by the analysis of waist-to-hip ratio
- No clear effect of baseline insülin and triglyceride levels was shown, although patients with high insulin seem less responsive to YM178
- Steady state trough levels of YM178 above $15 \mathrm{ng} / \mathrm{ml}$ seem to be required to cause a pharmacodynamic response.

Sawai Ex. 1007
Page 121 of 495

[^7]
2) Correlation between the SK-N-MC cell line and the $\beta 3$-CHO cell line

- For the BAN compounds studied to date with both cell lines, the pD 2 value and the intrinsic activity (I.A. (\%)) of each were each plotted on a graph and the correlation was studied.

- The pD 2 value and I.A. (\%) for each compound was shown to have a significant correlation in the SK-N-MC cells and $\beta 3$-CHO cells.
- Going forward, screening will be conducted of the BAN compounds switching to the $\beta 3$ - CHO cell line.

Please find below and/or attached an Office communication concerning this application or proceeding.

Office Action Summary		Application No. $09 / 529,096$ App	Tatsuya Maruyama et al.			
		Sudhaker Patel	Group Art Unit 1624			
This action is FINAL.Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed In accordance with the practice under Ex parte Quajo35 C.D. 11; 453 O.G. 213.						
A shortened statutcry period for response to this acticn is set to expire 3\qquad month(s), or thify days, whichever is longer, from the maling date of this communication. Failure to respond within the period for response will cause the application to become abandoned. (35 U.S.C. § 133). Extensions of time may be obtained under the provisicns of 37 CFR $1.136(a)$						
Disposition of Claim						
Of the above, claim(s) _________________ is/are withdrawn from consideration						
\triangle Claim(s)						
X Claim(s) 1-8 Is/are rejected						
$\square \mathrm{Claim}(\mathrm{s}) \ldots \ldots . \ldots$						
Application Papers						
\square See the attached Notice of Drafisperson's Patent Drawing Review, PTO-948						
\square The drawing(s) filed on _______ is/are objected to by the Examiner.						
\square The proposed drewing correction, filed on ___ is \square approved \square _ \square isapproved.						
\square The specification is oblected to by the Examiner.						
\square The oath or declaration is objected to by the Examiner.						
Priority under 35 U.S.C. § 119						
\triangle Acknowledgement is made of a claim for foreign priority under 35 U.S.C. § $119(\mathrm{a})$-(d).						
$\square \mathrm{All}$ [Some* None of the CERTIFIED ccpies of the priority documents mave been						
凶 received.						
[] received in Application No. (Series Code/Serial Number) ___						
$\square]$ recelved in this national stage application from the International Bureau (FCT Rule 17.2(a)).						
*Certified copies not received:						
\square Acknowledgement is made of a claim for domestic priority under 35 U.S.C. \& 119(e),						
Attachment(s)						
区 Notice of References Cited, PTO-892						
X Information Disclosure Statement(s), PTO-1449, Paper $\mathrm{Nc}(\mathrm{s})$						
\square Interview Summary, PTO-413						
[].] Notice of Draftsperson's Patent Drawing Review, PTO-948						
[]. Notice of Informal Patent Application, FTO-152						

.-. SEE OFFICE ACTION ON THE FOLLOWING PAGES --
OTO-326 (Rev. 9-95) \quad Office Action Summary Part of Paper No. 6

Sawai Ex. 1007

DETAILED ACTION

Claims 1-8 are pending in this application.
Applicants' communication paper \# 5 datcd $11 / 22 / 00$ is acknowledged.
Applicants' various arguments and remarks have been considered, and found persuasive.
Accordingly Group IV will not be subjected to further restriction as indicated in previous Office Action paper $\# 4$ dated 10/27/00. This is because the additional time required for scarch would be within the reasonable time spent for the prosecution during the present Office Action.

Applicants have provisionally elected with traverse invention of Group IV, claims 1-8: drawn to compounds, compositions, and method of use for Formula (I) wherein $\mathrm{Z}=\mathrm{CH}$, and have also elected species of Examples 7 on page 37, Example 12 on page 38, and Example 41 on page 44.Since Claims 1-8 link with other groups of inventions, the same will be examined bearing in mind the subject matter, and species as elected by the applicants only. Affirmation of this election must be made by the applicants in replying to this Office Action.

The requirement is still deemed proper for non-elected subject matter, and is therefore made FINAL.

Improper Markush Rejection

Claims 1-8 are rejected under a judicially created doctrine as being drawn to an improper Markush group, that is, the claims lack unity of invention. The variables Z, X, X, B, to gather with various values for other substituents are defined in a such a way that they keep changing the structure/core of the compound that determines the classification/subclassification. Additionally,
the physical properties e.g. solubiiity, melting point, appearance etc. are tremendously altered with the changing of the various variable as recited herein. By changing the values of these variables several patentably distinct and independent compounds are claimed.

In order to have unity of invention the compounds must have " a community of chemical or physical characteristics" which justify their inclusion in a common group, and that such inclusion is not repugnant to principles of scientific classification" In re Jones (CCPA) 74 USPQ 149 (see footnote 2). As already pointed out earlier, the structural formula (I) does not have a significant structural feature that is shared by all of its alternatives which is inventive. The structure has only a Formula $(\mathrm{I})=$ Phenyl- $\mathrm{CH}(0 \mathrm{H})-\mathrm{CH} 2-\mathrm{NH}-\mathrm{C}(\mathrm{R} 1 \mathrm{a})(\mathrm{R} 1 \mathrm{~b})-\mathrm{A}-\mathrm{Ph}$ nyl $-\mathrm{NH}-\mathrm{CO}-$ common. . This feature is not inventive. Compounds embraced by Formula (I) are so diverse in nature that a prior art anticipating a claim with respect to one member under 35 U.S.C. 102 would not render obvious the same claim under 35 U.S.C. 103 . This is evidentiary of patentably distinct and independent inventions

Limiting the claims to the elected group would overcome this rejection.

Claim Rejections - 35 U.S.C. § 112

1. The following is a quotation of the first paragraph of 35 U.S.C. 112:

The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the same and shall set forth the best mode contemplated by the inventor of carrying out his invention.

Claims 1 , and claims dependent on these claims, namely, claims $.2-8$ are rejected because while enabling as therapeutic agent for diabetes mellitus which comprises of the amide derivative or its salt according to claims 1-6 as an effective ingredient, does not reasonably provide enablement for compounds, composition based on heteroaryl ring $=$ isothiazolopyridine, imidazopyridyl or oxobenzofurayl etc. Whereas the claim language does not only include these cited compounds but many more compounds as represented by variables outlined in above mentioned Markush rejection in Group IV as elected, and rejected under 35 U.S.C. 112, para. one because the claims are open-ended, and broad.

In evaluating the enablement question, several factors are to be considered. In re Wands, 8 USPQ 2d 1400 (Fed. Cir. 1988); Ex parte Forman, 230 USPQ 546. The factors include:(l). The nature of invention; (2) the state of prior art; (3). the predictability or lack thereof in the art; (4). the amount of direction or guidance present; (5) , the presence or absence of working examples; (6). the breadth of the claims, and (7). the quantity of experimentation needed
1). The nature of the invention: The claims are drawn to compounds, composition(s), a method(s) of making a pharmaceutical agent to be used as a therapeutic agent for diabetes mellitus.
2). The state of prior art: There are no known compounds of similar structure(s) which have been demonstrated to treat diabetes mellitus.
3). The predictability or lack thereof in the art: "predictability" have been demonstrated to be sufficiently lacking in the instant case for the instant method(s) claims which include (but not

Art Unit: 1624
limited to) making therapeutic agent for diabetes mellitus.
4). The amount of direction or guidance present and 5): There are no doses present for a method of preparing a therapeutic agent for diabetes mellitus.. Such utilities are unbelievable on their face and therefore they must be supported by sufficient evidence demonstrating such utilities. All available drugs to treat diabetes could only be used in a limited way.
6). The breadth of the claims: The claims are drawn to making either a pharmaceutical agent or a therapeutic agent for diabetes mellitus comprising the amide derivative or the salt thereof according to claims $1-6$ as an effective ingredient.
7). The quantity of experimentation need would be an undue burden to one skilled in the pharmaceutical arts since there is inadequate guidance given to the skilled artisan for the many reasons stated above.

Claim Rejections - 35 U.S.C. § 102

2. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless --
(a) the invention was known or used by others in this country, or patented or described in a printed publication in this or a foreign country, before the invention thereof by the applicant for a patent.

Claims 1-8 are rejected under 35 U.S.C. 102(a) reference JP 10218861 which claims the application date of 2/4/1997. See also CAPLUS 1998:535771 pages 61-70.

Claim Rejections - 35 U.S.C. § 103
3. The following is a quotation of 35 U.S.C. 103 (a) which forms the basis for all obviousness rejections set forth in this Office action:
(a) A patent may not be obtained though the invention is not identically disclosed or deseribed as set forth in section 102 of this titie, if the differences between the subject matter sought to be patented and the prior ant are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

Claim 1, and claims dependent on these claims, $2-8$ are rejected under 35 U.S.C. 103(a) as being unpatentable over Schromm, Kurt et al,(DE 3743265) as applied to claims above, and further in view of Konosu Toshiyuki et al., "Triazol Antifungal", Chem. Pharm. Bull., 39/10,2581-9 (1991) also cited as CAPLUS 1992:26440.

Claims are drawn to generic Formula (I) of claim 1 wherein the core is very similar to main core of ' 265 . The reference ' 265 teaches the making of compounds with generic core(s) encompassed by Claim I which are drawn to compounds of Formula (I) and others as instantly claimed.

The reference' 265 (See Examples on pages 77-78) differ from the instantly claimed compounds by not having -- $\mathrm{CH}(\mathrm{OH})-\mathrm{CH} 2-\mathrm{NH}-\mathrm{CH} 2-\mathrm{CH} 2-\mathrm{phenyl}-\mathrm{NH}-\mathrm{CO}-\mathrm{CH} 2-\mathrm{pyridine}$, but $\mathrm{CH}(0 \mathrm{OH})-\mathrm{CH} 2-\mathrm{NH}-\mathrm{C}(\mathrm{Me}) 2-\mathrm{CH} 2-$ phenyl-NH-C0-CH2-pyridinium quat. (See Ex. On page 78) as claimed herein. However, the reference ' 265 is not limited in teaching of making of

Art Unit: 1624
compounds based on above generic core(s)only, but also teaches the use of the compounds as broncholvtics i.e. use as pharmaceuticals as taught by the instant application.

The other reference Konosu, Toshiyuki et al, teaches making of compounds with a core also similar to instantly claimed compounds(see Formula I of CAPLUS pages 72-72). The reference has a core $=\mathrm{Ph}$ nenyl- $-\mathrm{CH}(0 \mathrm{H}($ heterocycle $)-\mathrm{CH}(\mathrm{Me})-\mathrm{NHC} 0-\mathrm{R} 2(\mathrm{R} 2+\mathrm{H}, \mathrm{Ph}$, substituted Ph, furyl, thienyl etc.) which is very similar to instant Example 47 cited on page 71 . The reference differs from the instantly claimed compound by having triazole in place of H , and R 2 ($=-\mathrm{CH} 2 \mathrm{PH}$) instead of - CH 2 -heterocycle. The instant compounds' claims have eliminated the reference by defining $B=$ a heteroaryl group which may be substituted and may be fused with a benzene ring. However, the specific main core Phenyl-C(H/het)(0H)-CH(H/Alkyl)-NH-COremains the same as claimed instantly herein.

However, the reference is not limited to teaching of making of a part of the molecule of the instantly claimed invention, but also teaches it use as antifungal agents. (see CAPLUS page 72), that is to say the ref. Compounds have ability to control or prevent growth of living organisms. However, the difference in structural synthesis could be overcome by the teaching of Kurt et al. ‘ 265 as cited above.

Thus, one having ordinary skill in the art would have been motivated to modify Formula (I) of ref '265 and try out combination of ref. Konosu by using/reacting Benzene- substituted with- $\mathrm{CH}(\mathrm{OH})-\mathrm{CH} 2-\mathrm{NH}-\mathrm{CH} 2-\mathrm{CH} 2-\mathrm{Pl} 2-\mathrm{NH}-\mathrm{C} 0-\mathrm{CH} 2-$ with pyridine or other heterocycle for example, triazole, tetrazol or thiazole as used in the instantly claimed invention, and onc would
have expected still to maintain \&/or find out pharmaceutical/pharmacological activity either same or different than the reference ' 265 . Hence, at the time of the invention was made, it would have been obvious to a person of ordinary skill in the art to prepare compounds and pharmaceutical compositions of the claimed Formula (I) by combining the 2 arts which were available.

This application has not been checked to the extent necessary to determine the presence of all possible minor errors. Applicants' cooperation is, therefore, requested in promptly correcting any errors of which they may become aware in the specification.

Preliminary computer assisted search revealed references: U.S.P. 5541197. However, this reference do claim pharmacologically active compounds having hypolipidemic and hypoglycemic activities. These reference are also available on CAPLUS, MARPAT etc. The references are cited but not applied herein at this time.

Applicants are also requested to note that Application Serial \#s 09297762;09514637, and others involving either one or more of the inventors, and similar subject matter to current application are located thru' preliminary search. These references are in transit and are not accessible to the examiner at this time. Applicants are advised to provide the information related to similar $\& /$ or presently pending local or international applications, if any, related to the subject matter included in the instant application to avoid various issues arising out of question of either double patenting \&/or priority claims and other related matters.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Sudhaker Patel whose telephone number is (703) 3084709 . The examiner can normally be reached on Monday thru' Friday from 8:30 AML to 5:00 PM. If attempts to reach the examiner by the phone are unsuccessful, the examiner's supervisor, Mukund Shah can be reached at (703) 3084716

A facsimile center has been established for Group 1600. The hours of operation Monday through Friday, 8:45 AM to 4:45 PM. The telecopier numbers for accessing the facsimile machine are (703) 308-4556 or (703) 305-3592.

Any inquiry of general nature or relating to the status of this application or proceeding should be dirccted to the Group receptionist whose telephone number is (703) 3081235.

December 1, 2000.

Munkund J. Ihal

Mukund Shah

Supervisory Patent Examiner

Art Unit 1624

aw cafices
Finnecinn, Henderson, Tarabon, Gakrett, 8 DUNNER. L.L.P. 1300 I. ETRE.ET, N. w. WASHINGTON, DC 20005 202.408-4000

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
In re Application of:
RECEIVED

Tatsuya MARUYAMA et al.
Serial No.: 09/529,096
Filed: April 7, 2000
For: AMIDE DERIVATIVES OR SALTS
THEREOF
$\left\{\begin{array}{l}\text { RECEIVED } \\ \left\{\begin{array}{l}\text { Group Art Unit: } 1624 \text { MAY } 092001 \\ \text { E }\end{array}\right) \text { TECH CENTER } 1600 / 2900 \\ \{ \end{array}\right.$

TRANSMITTAL LETTER

Assistant Commissioner for Patents
Washington, DC 20231
Sir:
Enclosed is a reply to the Office Action of December 7, 2000. The item(s) checked below are appropriate:

- Applicant(s) hereby pettion(s) for a two month(s) extension of time to respond to the above Office Action. The fee of $\$ 390.00$ for the Extension is enclosed.

The claims are calculated below:

	Claims Remaining After Amendment		Highest Number Previously Paid	Present Extra	Rate		
Total	12	-	20	0	$\times \$ 18$	\$	0
Indep.	3	-	3	0	$\times \$ 80$		0
\square First Presentation of Multiple Dep. Claim(s)					+\$270		0
Subtotal						\$	0
Reduction by $1 / 2$ if srnall entity						-	0
					TOTAL	\$	0

A fee of $\$$ \qquad to cover the cost of the additional claims added by this reply is enclosed.

A fee of $\$ 180.00$ to cover Supplemental Information Disclosure Statement is enclosed.
© A check for $\$ 570.00$ to cover the above fee(s) is enclosed.
Please grant any extensions of time required to enter this response and charge any additional required fees to our deposit account 06-0915.

Dated: May 4, 2001
$05 / 09 / 2001$ HBERHE 0000007309529096

U.S. PATENT DOCUMENTS						
Examiner Initial*	Document Number	Issue Date	Name	Class	$\begin{aligned} & \text { Sub } \\ & \text { Class } \end{aligned}$	Filing Date If Appropriate
$4{ }^{2}$	5,223,614	Jun 29, 1993	Schromm et al.	544	105	
这	6,048,884	Apr 11, 2000	Maruyame et al.	514	370	
82	6,177,454	Jan 23, 2001	Maruyama et al.	514	354	

FOREIGN PATENT DOCUMENTS							
	Document Number	Publication Date	Country	Class	Sub Class	Translation Yes or No	

	OTHER DOCUMENTS (Including Author, Title, Date, Pertinent Pages, Etc.)

Examiner	Cuthrab/elvis	Date Considered	$6 \mid 18 / \sigma$
*Examiner:	Initial if reference considered, whether or not citation is in conformance with MPEP 609; draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.		
Form PTO	Patent and Trademark Office - U.S. Department of Commerce		

Page 1 of 1

Sawai Ex. 1007

Sawai Ex. 1007
acetanilide, (R)-2-[1-(3,4-dichlorobenzyl)-1H-tetrazol-5-yl]- 4'-[2-[(2-hydroxy
-2-phenylethyl)aminojethyljacetanilide,
(R)-2-(2)aminothiazol-4-yl)-4'-[2-(2-hydroxy-2-phenylethyl)amino]ethyl]acetanilide,
(R)-2-(2-berhzyl-1H-1,2,4-triazol-3-y)-4'-[2-[(2-hydroxy-2-phenylethyl)-amino]
ethylacetanilide,
(R)-2-(2-aminopyridin-6-yl)-4'-[2-[(2-hydroxy-2-phenylethyl)amino]ethyl)acetanilide, (R)-4'-[2-[(2-hydroxy-2-phenylethyl)amino]ethyl]-2-(2-pyridyl)acetanilide,
(R)-4'-[2-[(2-hydroxy-2-phenylethyl)-amino]ethyl)-2-(2-pyrazinyl)acetanilide, (R)-4'-[2-[(2-
hydroxy-2-phenylethyl)amind(ethyl)-2-(2-pyrimidinyl)-acetanilide, or a salt of any of the
foregoing.
7. (Once Amended) A composition comprising at least one amide derivative or the salt thereof as claimed in one of claims 1 through 6 in a pharmaceutically acceptable carrier.
9. (New)

The composition as claimed in claim 7, wherein the amount of at least one amide derivative or the salt thereof is an amount effective for the treating diabetes
Wrellitus in a human or animal patient in need of such treating.
10. (New) The amide derivative of general formula (I) as claimed in claim 1, wherein the amide derivative is an optical isomer, a hydrate, or a solvate of the amide derivative.

Sawai Ex. 1007
canceled claim 8. Claim 13 has been added to claim a method of treating obesity, as taught in the application as originally filed.

Claims 1, 3, and 5 have been amended to more particularly point out and distinctly claim the subject matter Applicants regard as their invention. In particular, the claim language has been adjusted to conform with accepted U.S. claim language practices. For example, parentheses were deleted, and language describing optional or alternative features of the claimed invention was clarified. Claim 6 was amended to clarify that each recited compound or its salt was claimed individually, and not necessarily in the form of a composition containing all recited compounds and salts thereof.

In claim 7, "agent" was changed to "composition" to recite the statutory term. See 35 U.S.C. § 101. Applicants have used "agent" and "composition" interchangeably throughout the application. Compare, for example, specification at page 5 , lines 1-5, and page 26, line 10. Claim 7 was also modified to recite widely accepted multiply dependent claim language. Applicants note that, upon a review of their records, it appears that the fee for multiply dependent claims was not submitted yet in this application. Therefore, Applicants submit that fee with this Amendment.

Claim 8 was canceled and rewritten as claim 9. Claim 9 depends from claim 7, and merely presents the subject matter of canceled claim 8 in widely accepted claim language. Support for new claims 10 and 11, reciting forms of the amide derivatives of claim 1, find support throughout the specification and claims as originally filed, and in particular on page 8, line 24, to page 9 , line 5, and page 19, lines 7-15. Claim 12 . depending from claim 1 and reciting the method of treating diabetes mellitus in original

6

Sawai Ex. 1007

IV. Improper Markush Group Rejection

Claims 1-8 have been rejected under the judicially created doctrine of improper Markush grouping, because these claims are allegedly drawn to an improper Markush group, that is, the claims allegedly lack unity of invention. See Office Action at page 2. The Office Action reasons that the "variables Z, X, and B, [together] with various values for other substituents are defined in such a way that they keep changing the structure/core of the compound that determines the classification/subclassification." /d. The Office Action has further asserted that the physical properties of the various compounds would be "tremendously altered" by the possible range of the claimed variables. In sum, the Office Action alleges an improper Markush group based on the alleged lack of unity. Applicants traverse, and disagree with the reasoning.

Among the many incorrect statements set forth in the Office Action at pages 2-3, Applicants disagree, in particular, with the statement that "[t]his feature is not inventlve." id. Moreover, Applicants traverse the unsupported statement that "the physica! properties e.g. solubility, melting point, appearance etc. are tremendously altered with the changing of the various variable[s]," to the extent that foreseeable variation in these properties is used to support the improper Markush group rejection. Applicants request evidence on this point in accordance with MPEP § 2144.03.

Applicants respectfully request that the Examiner hold this rejection in abeyance until otherwise patentable subject matter has been identified. The Examiner kindly

Application No.: 09/529,096 Attorney Docket No.: 7385.0007-00
restriction and election requirements, and if those requirements are not withdrawn, further argument now against the Markush rejection would be moot.
V. Claim Rejections under 35 U.S.C. § 112

Claims 1-8 have been rejected under 35 U.S.C. § 112 , il 1 , as allegedly lacking enablement for compounds and compositions wherein "heteroaryl ring = isothiazolopyridine, imidazopyridinyl, or oxobenzofuranyl, etc." Office Action at pages 34. Specifically, the Office Action states "while [claims 1-8 are] enabl[ed] as therapeutic agent for diabetes mellitus which comprises of the amide derivative or its salt according to claims 1-6 as an effective ingredient, [the Applicants' disclosure] does not reasonably provide enablement for compounds, compositions based on heteroaryl ring = isothiazolopyridine, imidazopyridinyl, or oxobenzofuranyl, etc." Id. The Office Action then analyzes several factors for determining enablement from in re Wands to support the rejection. In re Wands, 858 F.2d 731, 8 USPQ2d 1400 (Fed. Cir. 1988); ex parte Forman, 230 USPQ 546 (Bd. Pat. App. \& Interf. 1986). Applicants respectfully traverse this rejection.

In stating the rejection, the Office Action asserts that "the claims are open-ended, and broad." This reasoning appears to suggest an indefiniteness rejection under 35 U.S.C. § 112, T 2 , which has not been made. Applicants traverse this assertion and ask for clarification whether the claims are rejected on this ground.

35 U.S.C. § 112, 111 requires:

- OFFIOES

N, Henderson,
ow, Garrett,
NNER, L.L. L.
streat, N.w.
STON, DC 2.0005
$-40 \mathrm{~S}-40 \mathrm{CO}$

The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and

Application No.: 09/529,096 Attorney Docket No.: 7385.0007-00
use the same, and shall set forth the best mode contemplated by the inventor of carrying out his invention.

Given the statutory language, "enablement requires that the specification teach those in the art to make and use the invention without undue experimentation." In re Wands, 858 F.2d at 737, 8 USPQ2d at 1404. Moreover, "[t]he key word is 'undue,' not 'experimentation.' " Id. (internal quotations and citations omitted). To determine whether any needed experimentation is undue, the Federal Circuit listed eight factors to consider. See id. Applicants believe that the full scope of their claims is enabled, and set forth their counter-analysis of those eight factors below:
(1) The nature of the invention: Claims 1-6 recite compounds which are amide derivatives represented by the general formula (I), and salts thereof. Claim 6 names several amide derivatives and salts thereof. Claim 7 recites a composition which comprises at least one amide derivative as claimed in one of claims 1 to 6 in a pharmaceutically acceptable carrier. Claim 9 recites the composition of clairn 7, wherein the amount of amide derivative is an amount effective for the treatment of diabetes mellitus. To the extent that the disclosed invention is broader than the scope of these claims, Applicants do not mean to limit the scope of their invention by this characterization. Also, Applicants point out that the claimed invention is more than just a treatment for diabetes.
(2) The state of the prior art: The specification describes some background of the present invention on pages 1-3. Applicants do not concede that any of the documents mentioned therein are "prior art" with respect to their invention.
(3) The predictablity or lack thereof in the art: The Office Action asserts that a lack of predictability as to methods for making a therapeutic agent for diabetes

Application No.: 09/529,096 Attorney Docket No.: 7385.0007-00
mellitus has been demonstrated. Applicants traverse and ask for evidence of that demonstration. To the extent that the Office Action is correct, and yet Applicants' disclosure addresses that lack, this speaks of the patentability of Applicants' contribution to the art.
(4) The amount of direction or guidance present, and
(5) The presence or absence of working examples: The Office Action asserts: "There are no doses present for a method of preparing a therapeutic agent for diabetes mellitus." Office Action at page 5. Applicants disagree, and point to the dosage, adjuvant, and administration information on pages 26-28, among other places in the specification. The dose is "around $0.01 \mathrm{mg} / \mathrm{kg}$ to $100 \mathrm{mg} / \mathrm{kg}$ per day for adults in the case of oral administration, and that is administered at a time or by dividing into 2 to 4 times a day." Specification at page 26 , lines 20-23. If the dose is given intravenously, the dosage changes to "around $0.001 \mathrm{mg} / \mathrm{kg}$ to $10 \mathrm{mg} / \mathrm{kg}$ per day for adults." Id., at page 26, line 24 , to page 27 , line 1 .

The Office Action continues: "Such utilities are unbelievable on their face and therefore they must be supported by sufficient evidence demonstrating such utilities." Office Action at page 5. To the contrary, some of many potential utilities are listed in the specification on pages 20-23, and operability is demonstrated in the specification on pages 23-26. Furthermore, if one of ordinary skill in the art sought to determine the efficacy of an amide derivative of general formula (I), that skilled artisan could follow the guidance provided in the specification for performing the hypoglycemic test in kk mice detailed on pages 23-24, the glucose tolerance test in normal rats beginning on page 24 , and the test for stimulating human $\beta_{3^{-}}, \beta_{2}{ }^{-}$, and β_{1} - receptors found on pages 24-25.

The compounds of the present invention were shown to have a potentiating action to insulin sensitivity ten times greater than those compounds disclosed in WO 95/29159. See specification at page 24 . Not only do the inventive amide derivatives of general formula (I) work, but they work surprisingly better.

The Office Action concludes this point of analysis by stating that "[a]ll available drugs to treat diabetes mellitus could only be used in a limited way." Office Action at page 5. Applicants respectfully point out that their invention is not limited to treating diabetes mellitus. See specification generally, and in particular, pages 20-23.

Moreover, Applicants assert that the compounds are enabled per se: the amide derivatives represented by the general formula (I) are described, among other places, on pages 4-9. General synthesis schemes appear in the Manufacturing Methods set forth on pages 9-20. Synthetic details for specific examples of amide derivatives represented by general formula (I) are shown on pages 36-63, and pages 64-70 tabulate physico-chemical properties of one hundred and thirteen (113) amide derivatives of the present invention actually prepared according to the disclosed syntheses.

To the extent that the rejection holds that certain heteroaryl rings are not enabled, Applicants point out the following examples actually synthesized and reported in the specification: Example 6 (imidazo[2,1-b]thiazolyl), Example 41 (aminothiazolyl), Example 60 (benzyloxypyridinyl), Example 90 (benzimidazolyl), Example 104 (pyrimidinyl), among many others.
(6) The breadth of the claims: Applicants believe that the breadth of their claims is fully supported by the large number of diverse amide derivatives prepared and
described in the specification, and by the numerous tests showing efficacy of the amide derivatives, as discussed above.
(7) The quantity of experimentation: The Office Action asserts that there is inadequate guidance, and that the amount of experimentation required of one of ordinary skill in the art to practice the invention would be undue. See Office Action at 5 . Applicants counter by referring again to the general and specific synthetic details provided in the specification on pages $9-20$ and 36-63, the utilities listed on page 20-23, the efficacy tests described on pages 23-26, and the dosage and formulation information found on pages 26-28. To the extent that any experimentation would be needed, Applicants contend that it would be routine and not undue.
(8) Level of skill of those in the art: While the Office Action did not address this final Wands factor, it is accepted that those in the pharmaceutical, medical, and related arts possess a high level of skill.

In sum, Applicants respectfully contend that one of ordinary skill in the art finds copious enabling disclosure in the specification, and practicing the claimed invention does not require undue experimentation. Applicants therefore request that this rejection be withdrawn.

VI. Claim Rejections under 35 U.S.C. § 102

Claims 1-8 have been rejected under 35 U.S.C. § 102(a) without elaboration over JP 10-218861. See Office Action at page 6. Applicants traverse this rejection, for the
cices
Tenderson, Garrett,

R.ET, N. W.
DC 20005 Dce 20005 4000 reason, among many, that this Japanese document is not applicable as prior art by virtue of its publication date.

Japanese application JP 10-218861 was published on August 18, 1998.
Applicants filed their priority application on October 17, 1997. Therefore, Applicants respectfully request that this rejection be withdrawn.

Applicants perfect their claim for priority in accordance with 37 C.F.R. § 1.55(a) by submitting, a verified English translation of their priority document with this Amendment. Upon perfection of Applicants' priority date, this rejection should be withdrawn
VII. Claim Rejections under 35 U.S.C. § 103

Claims 1 -8 have been rejected as allegedly unpatentable over Schromm et al. (DE 3743265) in view of Toshiyuki et al. (Chem. Pharm. Bull. 39(10) 2581-2589 (1991)) See Office Action at page 6. The Office Action points out alleged structural similarities between the compounds disclosed and the present claimed amide derivatives of general formula (I), while acknowledging structural differences between them. The disclosed use of Schromm's compounds as broncholytics allegedly motivates one with knowledge of Toshiyuki's compounds, useful as antifungals, to modify Schromm's compounds to obtain Applicants' amide derivatives. Therefore, the Office Action concludes, one of ordinary skill in the art would find the amide derivatives of the present invention obvious. Applicants respectfully traverse.

To establish a prima facie case of obviousness, three basic criteria must be met. First, there must be some suggestion or motivation, either in the references themselves or in the knowledge generally available to one of ordinary skill in the art, to modify the reference or to combine reference teachings. Second, there must be a reasonable expectation of success. Finally, the prior art reference (or references when combined) must teach or suggest all the claim limitations.

MPEP § 2143. Applicants assert that a prima facie case of obviousness has not been established here.

The Office Action finds motivation to combine one document teaching broncholytics with another document teaching antifungals. That both disclosed classes of chemicals are useful "as pharmaceuticals" is insufficient. One prevents bronchospasm, while the other kills fungus. No motivation has been offered, besides alleged structural similarity and general use in the pharmaceutical arts, to combine these molecules, to obtain either a better broncholytic or a better antifungal. Moreover, the compounds are structurally very different. Toshiyuki et al. teaches a molecule with a phenyl group just two carbon atoms away from a triazole ring at the same end of the molecule. On the other hand, Schromm et al. discloses a molecule in which a phenyl ring attaches the opposite end of a substantial 5- to 9-atom amino-hydrocarbon chain, far away from any possible heterocyclic groups.

No reasonable expectation of success can be found in either cited document. The molecules disciosed by Schromm et al, on the one hand are so structurally different, and in a different field of endeavor, from those taught by Toshiyuki et al., that there is no predictability in their combination. The Office Action states that "one [making this modification] would have expected still to maintain $\& /$ or find out pharmaceutical/pharmacological activity either [the] same or different than the reference "265 [Schromm et al.]." Applicants respectfully assert that this statement reflects the unpredictable nature of the proposed modification, and thus, the modification would be

For at least these reasons, Applicants respectfully contend that the rejection under 35 U.S.C. § 103(a) aver Schromm et al. in view of Toshiyuki et al. be withdrawn.

To the extent that the rejection relies on Schromm et al. in combination with alleged common knowledge in the art or allegedly "well-known" prior art, Applicants traverse and request that support be provided in accordance with MPEP § 2144.03.

VIII. Documents Made of Record but Not Cited

The Office Action makes of record US $5,541,197$. See Office Action at page 8. The Office Action also mentions Application No. 09/297,762 (now US 6,048,884) and its division, Application No. 09/514,637 (now US 6,177,454). Applicants note that both patents are assigned to the same Assignee as the present application, and submit a copy of the ' 884 patent in a Supplemental Information Disclosure Statement accompanying this Amendment. The ' 637 application is a division of the ' 884 patent, and so submission of the patent obviates the need to submit a copy of the division. Applicants contend that the present claims are patentable over the referenced patent and its division, at least because the present application claims an earlier priority date than the filing date of the patent. Moreover, Applicants submit US 5,223,614 to Schromm et al., since this document appears to be an English language equivalent of Schromm et al., discussed above.

Applicants believe that the claims are patentable over these documents, and reserve the right to argue that patentability should the need arise.
worfices
AN, HENDFRECN sow, Garrett, INNERE, LL. L.P. I street, N. W. OTON, पC zOOOS $400-4000$

Sawai Ex. 1007

APPENDIX

Claims 1, 3, 5, 6, and 7 (each once amended) and claims 9, 10, and 11 (new) are set forth below in marked-up form to aid the Examiner in identifying amendments to the claims. Additions are underlined, and deletions are shown with bold square brackets and strikethrough text [like this].

1. (Once Amended) An amide derivative represented by the [following] general formula (I):

[f] in the formula, each of the symbols means as follows:
ring $B[\div]$ is a heteroaryl group which [may be] is unsubstituted or substituted and [may-be] is optionally fused with a benzene ring;
$X[=]$ is a bond, or a lower alkylene or an alkenylene, both of which [may be] are unsubstituted or substituted with hydroxy or a lower alkyl group, or X is a carbonyl[$[7$ or a group represented by $-\mathrm{NH}_{-1}[t]$ and when X is a lower alkylene [group] which [maybe] is substituted with a lower alkyl group, [the hydrogen atoms bonded to the] a carbon atom [constituting] of the ring B [may form a-lower alledteno group together] optionally bonds with the lower alkyl group so that a ring is formed[t];

A[:] is a lower alkylene or a group represented by -lower alkylene-O-;

Sawai Ex. 1007
ring $B[]$ is a heteroaryl group;
$X[:]$ is a bond or a lower alkylene group;
$R[=]$ is a hydrogen atom, a halogen atom, a lower alkyl group, amino group, an aryl lower alkyl group, or a halogeno aryl-lower alkyl group[]]; or a salt thereof.
6. (Once Amended)
(R)-4'-[2-[(2-Hydroxy-2-phenylethyl)amino]ethyl]-2-pyridinecarboxyanilide, (R)-2-[1-(4-chlorobenzyl)-1H-imidazol-2-yl)-4'-[2-[(2-hydroxy-2-phenylethyl)amino]ethyl]acetanilide, (R)-2-[1-(3,4-dichlorobenzyl)-1H-tetrazol-5-yl]-4'-[2-[(2-hydroxy
-2-phenylethyl)amino]ethyllacetanilide,
(R)-2-(2-aminothiazol-4-yl)-4'-[2-(2-hydroxy-2-phenylethyl)amino]ethyl]acetanilide,
(R)-2-(2-benzyl-1H-1,2,4-triazol-3-yl)-4'-[2-[(2-hydroxy-2-phenylethyl)-amino] ethyllacetanilide,
(R)-2-(2-aminopyridin-6-yl)-4'-[2-[(2-hydroxy-2-phenylethyl)amino]ethyl)acetanilide, (R)-4'-[2-[(2-hydroxy-2-phenylethyl)amino]ethyl]-2-(2-pyridyl)acetanilide, (R)-4'-[2-[(2-hydroxy-2-phenylethyl)-amino]ethyl)-2-(2-pyrazinyl)acetanilide, (R)-4'-[2-[(2-hydroxy-2-phenylethyl)aminolethyl)-2-(2-pyrimidinyl)-acetanilide, [and salts theref] or a salt of any of the forecoing.
7. (Once Amended) A [pharmaceuticalagent] composition comprising [the] at least one amide derivative or the salt thereof [accerdingte] as claimed in one of claims , HENDERSON, *, CARRETT, NER, L.L.P. TREET, N. W. 2N, DC 20005 00.4000
 1 through 6 in a pharmaceutically acceptable carrier.

	Application No.: 09/529,096 Attorney Docket No.: 7385.0007-00 9. (New) The composition as claimed in claim 7, wherein the amount of at least one amide derivative or the salt thereof is an amount effective for the treating diabetes mellitus in a human or animal patient in need of such treating.
	10. (New) The amide derivative of general formula (I) as claimed in claim 1, wherein the amide derivative is an optical isomer, a hydrate, or a solvate of the amide derivative. 11. (New) A composition comprising an amide derivative of general formula (I) as claimed in claim 1 in a pharmaceutically acceptable carrier, wherein the amide derivative is present as a polymorphic substance.
	12. (New) A method for treating diabetes mellitus in a human or animal patient in need of such treatment comprising administering to the patient an amount of an amide derivative of general formula (I) as claimed in claim 1, wherein the amount is an amount effective for such treatment.
	13. (New) A method for treating obesity in a human or animal patient in need of such treatment comprising administering to the patient an amount of an amide derivative of general formula (1) as claimed in claim 1, wherein the amount is an amount effective for such treatment.
Finnecajo, Hemderson, FARABOWM, GARRETT, (3 DUKNER,L.L.P. 1 BOO I STREET, N. W. WASHIMGTOM, DC 20005 202.403:4000	21

PATENT
Customer Number 22,852
Attorney Docket No. 7385,0007-00
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
In re Application of:
Tatsuya MARUYAMA et al.
Application No.: 09/529,096
Filed: April 7, 2000
For: AMIDE DERIVATIVES OR SALTS THEREOF)
MAY 192001
Assistant Commissioner for Patents
Washington, DC 20231
TECH CENTER 1600/2900

Sir:

SUBMISSION OF TRANSLATION OF PRIORITY DOCUMENT

Applicants submit herewith a translation of Japanese patent application Hei-9285778, filed October 17, 1997. In accordance with 37 C.F.R. § 1.55(a), Applicants hereby perfect their claim of priority under 35 U.S.C. § 119 by filing this certified translation.

Please grant any extensions of time required to enter this translation and charge any required fees to our deposit account 06-0916.

Respectfully submitted,
FINNEGAN, HENDERSON, FARABOW, GARRETT \& DUNNER, L.L.P.

Dated: May 4, 2001

JOHN F．BUKACEK

JAPAN SE BUSINESS LEGAL \＆TECHNICAL TRANSLATION AND INTERPRETATION SERVICES

6171 N, Sheridan Road \＃22 2
Chicago TL 60600 －5841
Tex：（773）508－0352 • Fax：（773）508－5470

CERTIFICATION OFTRANSI ATION

I．John F Bukacek declare that：

1．I am a cettied translator who is knowledgeable and fluent in both the lapanese and English languages．

2．The attached is an independent translation of Japanese Paten： Application Kokai Publication No．H10－218861（Novel Phenethanol Derivative or Salt Thercort），rendered to the best of my knowledge and ability．

11 October 2013
(19) JAPANESE PATENT OFFICE (JP)
(12) Official Gazette for Kokai Patent Applications (A)
(11) Japanese Patent Application Kokai Publication No. H10-218861
(43) Kokai Publication Date: August 18, 1998

(54) [Title of the Invention] Novel Phenethanol Derivative or Salt Thereof
(57) [Abstract]
[Object] To create a therapeutic agent for the treatment of diabetes possessing both insulin secretion promoting effects and insulin sensitization enhancing effects, as well as selective stimulatory effects on β_{3} receptors.
[Means] A novel phenethanol derivative or salt thereof represented by General Formula (I) below.

[Chemical Structure 1]

(Where the respective symbols have the meanings given below:
 or a group represented by the fomula

X, Y: An oxygen atom, a sulfur atom, or a group represented by NR^{6}
R^{1} : A hydrogen atom or a lower alkyl group
R^{2} : A hydrogen atom, lower alkyl group, a methylsulfonamide group, or a group represented by $-\mathrm{NHCOR}^{3}$
R^{3} : A hydrogen atom, a lower alkyl group, a mono- or di-lower alkylamino group, an aryl group, or an aralkyl group
$\mathrm{R}^{4}, \mathrm{R}^{5}$: An identical or different hydrogen atom, a lower alkyl group, or an amino group
R^{6} : A hydrogen atom, a lower alkyl group, or an aralkyl group)

[Claims]

[Claim 1] A novel phenethanol derivative or salt thereof represented by General Formula (I) below.

[Chemical Structure 1]

(Where the respective symbols have the meanings given below:

[Chemical Structure 2]

X, Y: An oxygen atom, a sulfur atom, or a group represented by NR^{6}
R^{1} : A hydrogen atom or a lower alkyl group
R^{2} : A hydrogen atom, lower alkyl group, a methylsulfonamide group, or a group represented by $-\mathrm{NHCOR}^{3}$
R^{3} : A hydrogen atom, a lower alkyl group, a mono- or di-lower alkylamino group, an aryl group, or an aralkyl group
$\mathrm{R}^{4}, \mathrm{R}^{5}$: An identical or different hydrogen atom, a lower alkyl group, or an amino group R^{6} : A hydrogen atom, a lower alkyl group, or an aralkyl group)
[Claim 2] A drug characterized in containing the phenethanol derivative or salt thereof according to claim 1.
[Claim 3] A therapeutic agent for diabetes characterized in having as its active constituent the phenethanol derivative or salt thereof according to claim 1.

[Detailed Description of the Invention]

[0001]
[Technical Field of the Invention] The present invention relates to a drug, and in particular, the present invention relates to a therapeutic agent for diabetes having as its active constituent a novel phenethanol derivative or salt thereof.
[Prior Art] Diabetes is a condition which is accompanied by a state of sustained hyperglycemia, and is reported to occur as a result of multiple environmental factors and hereditary factors. Insulin is the principal factor which regulates blood sugar, and it is known that high blood pressure results from a deficiency of insulin, or from an excess of factors which inhibit its action (e.g., a hereditary predisposition, lack of exercise, obesity, stress, and the like). There are two main types of diabetes: insulin-dependent diabetes mellitus (IDDM) which is caused by impaired pancreatic insulin secretory function due to an autoimmune condition, and non-insulin-dependent diabetes mellitus (NIDDM) which is caused by impaired pancreatic insulin secretory function due to pancreas exhaustion accompanying sustained elevated insulin secretion. Over 95% of Japanese diabetes patients are reported to have NIDMM, and an increase in the number of patients is a problem which accompanies changes which have occurred in lifestyle. Treatment of diabetes primarily involves dietary regimens, exercise regimens, reduction in obesity, and the like in mild cases, but if the condition progresses further, oral drugs for diabetes are administered (e.g., insulin release promoters such as sulfonylureas, and insulin sensitization enhancing agents which promote insulin sensitivity), and in more severe cases, insulin preparations are administered. However, there is a strong desire for a formulation of medications capable of a higher level of blood sugar control, and a strong desire to create therapeutic drugs for diabetes with greater efficacy and with a new mechanism.
[0003] U.S. Patent No. 4,396,627 and U.S. Patent No. 4,478,849 describe phenylethanolamine derivatives, and these compounds have been disclosed as being useful as anti-obesity drugs and anti-hyperglycemia drugs. The effects of these compounds are reported to be due to β_{3} receptor stimulation. β_{3} receptor stimulation is generally known to have anti-obesity effects and anti-hyperglycemia effects (e.g., triglyceride-lowering effects, cholesterol-lowering effects, and HDL cholesterol-raising effects). β-adrenalin receptors are classified into β_{1}, β_{2}, and β_{3} sub-types. It is known that stimulation of β_{1} receptors raises the heart rate, and stimulation of β_{2} receptors inhibits glycogen synthesis by stimulating glycogenolysis in the muscles, which gives rise to muscle tremors. However, these early β_{3} receptor agonists had a problem of side effects such as increased heart rate and muscle tremors, because their action was based on stimulating β_{1} receptors and β_{2} receptors. It has recently been found that species differences exist among β receptors, and it has been reported that even in the case of compounds found to have β_{3} receptor selectivity in rodents such as rats, they were found to have effects based on stimulation of β_{1} receptors and β_{2} receptors in humans. Based on these findings, research is advancing in the area of compounds having selective stimulatory effects on β_{3} receptors in humans, using human cells or cells which human receptors are expressed. For example, WO 95/29159 describes substituted sulfonamide derivatives shown in the general formula below. These are described as being
effective against obesity and hyperglycemia because they selectively stimulate β_{3} receptors in humans. However, nothing has been specifically disclosed regarding insulin secretion promoting effects and insulin sensitization enhancing effects of these compounds.
[0004]

[Chemical Structure 3]

(For a description of the symbols, see the above-cited disclosure.)
[0005]
[Problems to Be Solved by the Invention] As mentioned above, there is a strong desire to create a new type of therapeutic agent for diabetes with even greater clinical efficacy.

[0006]

[Means for Solving These Problems] As a result of careful searching for compounds possessing both insulin secretion promoting effects and insulin sensitization enhancing effects, the present inventors found that novel phenethanol derivatives possess the dual activity of insulin secretion promoting effects and insulin sensitization enhancing effects, as well as selective stimulatory effects on β_{3} receptors, thereby achieving the present invention. That is to say, the present invention relates to a phenethanol derivative or salt thereof shown in General Formula (I) below, which is useful in diabetes therapy, because it possesses insulin secretion promoting effects and insulin sensitization enhancing effects, as well as anti-obesity and anti-hyperlipidemia based on selective stimulatory effects on β_{3} receptors. The present invention further relates to a drug which contains this phenethanol derivative, and in particular, the present invention relates to a therapeutic agent for diabetes having this phenethanol derivative as its active constituent.
[0007]
[Chemical Structure 4]

(Where the respective symbols have the meanings given below:

[0008]

[Chemical Structure 5]

Group represented by the formula
X, Y : An oxygen atom, a sulfur atom, or a group represented by NR^{6}
R^{1} : A hydrogen atom or a lower alkyl group
R^{2} : A hydrogen atom, lower alkyl group, a methylsulfonamide group, or a group represented by $-\mathrm{NHCOR}^{3}$
R^{3} : A hydrogen atom, a lower alkyl group, a mono- or di-lower alkylamino group, an aryl group, or an aralkyl group
$\mathrm{R}^{4}, \mathrm{R}^{5}$: An identical or different hydrogen atom, a lower alkyl group, or an amino group
\mathbf{R}^{6} : A hydrogen atom, a lower alkyl group, or an aralkyl group)
[0009]
[Embodiments of the Invention] A further description of the compound of General Formula (I) is as follows. In the definition of the general formulae of this Specification, the term "lower" refers to a straight or branched carbon chain having 1-6 carbons, unless specified otherwise. "A lower alkyl group" is a straight or branched carbon chain having 1-6 carbon atoms, and specific examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, an isopentyl group, a neopentyl group, a tert-pentyl group, a 1-methylbutyl group, a 2-methylbutyl group, a 1,2-dimethylpropyl group, a hexyl group, an isohexyl group, a 1-methylpentyl group, a 2-methylpentyl group, a 3-methylpentyl group, a 1,1-dimethylbutyl group, a 1,2-dimethylbutyl group, a 2,2-dimethylbutyl group, a 1,3-dimethylbutyl group, a 2,3-dimethylbutyl group, a 3,3-dimethylbutyl group, a 1-ethylbutyl group, a 2-ethylbutyl group, a 1,1,2-trimethylpropyl group, a 1,2,2-trimethylpropyl group, a 1-ethyl-1-methylpropyl
group, a 1-ethyl-2-methyl propyl group, and the like. "Aryl group" refers to an aromatic hydrocarbon group, and preferably, an aryl group having 6-14 carbons, and specifically, a phenyl group, a tolyl group, a xylyl group, a biphenyl group, a naphthyl group, an indenyl group, a phenanthryl group, and the like. Of these, a phenyl group or a naphthyl group is particularly advantageous.

[0010]

"An aralkyl group" is a lower alkyl group having an aryl group as a substituent group, and specific examples include a benzyl group, a methylbenzyl group, a methylphenethyl group, a dimethylbenzyl group, a dimethylphenethyl group, a benzhydryl group, a naphthylmethyl group, a naphthylethyl group, a an anthrylmethyl group, an anthrylethyl group, a triethyl group, a phenanthrylmethyl group, a phenanthrylethyl group, and the like. "A mono- or dilower alkylamino group" refers to an amino group having 1 or 2 hydrogen atoms in an amino group substituted with an above-mentioned lower alkyl group, and specific examples include a methylamino group, an ethylamino group, a propylamino group, a dimethylamino group, a diethylamino group, a dipropylamino group, and the like. If Compound (I) of the present invention possesses 1 or more asymmetric carbon atoms, then (R)- and (S)- optical isomers, racemic isomers, and diastereomers are present. The present invention includes all of the isolates of these isomers or mixtures thereof. Moreover, the present invention also includes hydrates, ethanol solvates, and polymorphic crystal substances of Compound (I). Compound (I) of the present invention may form acids and salts. Examples of salts can include acid addition salts using inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, phosphoric acid, and the like; or organic acids such as formic acid, acetic acid, propionic acid, oxalic acid, malonic acid, succinic acid, fumaric acid, maleic acid, lactic acid, malic acid, citric acid, tartaric acid, carbonic acid, picric acid, methanesulfonic acid, ethanesulfonic acid, glutamic acid, and the like.

[0011] Processes of Preparation

The compound of the present invention and salts thereof, can be prepared using a variety of methods of synthesis, utilizing characteristics based on its basic structure or based on the species of the substituent groups. Representative processes of preparation are described below.

First Process of Preparation

[Chemical Structure 6]

(Where R^{2} and B ring have the same meanings as described above. R^{\prime} is a protecting group of an amino group, $\mathrm{R}^{\prime \prime}$ is a protecting group of a hydroxyl group, and Y is a leaving group such as a hydroxyl group, a lower alkoxy group, or a halide.)

The present process of preparation involves an amidation reaction of Compound (II) and Compound (III), and then removing the protecting groups, resulting in the synthesis of Compound (Ia) of the present invention. In the present process of preparation, amidation may be carried out using a conventional method. The solvent depends on Y in Compound (III), but is mainly an inert solvent or an alcohol-based (isopropanol) solvent. If Y is a hydroxyl group, a process can be implemented in which the reaction is carried out in the above inert solvent, in the presence of a condensing agent. Examples of condensing agents include N, N^{\prime}-dicyclohexylcarbodiimide (DCC), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDCI), 1,1'-carbonyldiimidazole (CDI), diphenylphosphorylazide (DPPA), diethylphosphorylcyanide (DEPC), and the like. If Y is a lower alkoxy group, then the reaction may be implemented just as it is, or the reaction may be implemented in the abovementioned inert solvent, and heated or heated to reflux. If Y is a halide, a process can be implemented in which the reaction is carried out in the above inert solvent, in the presence of a base.
[0012] Examples of inert solvents include dimethylformamide (DMF), dimethylacetamide, tetrachloroethane, dichloromethane, dichloroethane, chloroform, carbon tetrachloride, tetrahydrofuran, dioxane, dimethoxyethane, ethyl acetate, benzene, toluene, acetonitrile, dimethylsulfoxide, or mixtures thereof, and these can be suitably selected according to the various reaction conditions. Examples of bases include inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate, or potassium carbonate; and organic bases such as N -methylmorpholine, triethylamine, diisopropylethylamine, or pyridine, and the like. R' refers to a protecting group of a hydroxyl group, and representative protecting groups of a hydroxyl group typically used by practitioners of the art include a methyl group,
an ethyl group, a propyl group, an isopropyl group, a tert-butyl group or other lower alkyl group, a lower alkoxy-lower alkyl group, a lower alkoxy-lower alkoxy-lower alkyl group, a benzyl group, or other arylmethyl group, a benzoyl group or lower alkanoyl group, or other acyl group, a trialkylsilyl group, and the like. R ' refers to a protecting group of an amino group typically used by practitioners of the art, and representative examples include a formyl group, a an acetyl group, a propionyl group, a methoxyacetyl group, a methoxypropionyl group, a benzoyl group, a thienylacetyl group, a thiazolylacetyl group, a tetrazolylacetyl group, a thiazolyl glyoxyloyl group, a thienyl glyoxyloyl group, and other acyl group, a methoxycarbonyl group, an ethoxycarbonyl group, a tert-butoxycarbonyl group, or other lower alkoxycarbonyl group, a benzyloxycarbonyl group, a p-nitrobenzyl group, a benzhydryl group, a triethyl group, or other aralkyl group, a trimethylsilyl group, or other tri-lower alkylsilyl group, and the like.
[0013] In the present process of preparation, deprotection is accomplished by a conventional method. For example, removal of a protecting group of a hydroxyl group can be carried out as follows.

1) Catalytic reduction: This method can be carried out in ice or heated, and in the presence of a catalyst such as palladium-carbon, palladium hydroxide-carbon, Raney nickel, and the like.
2) Hydrolysis in the presence of an acid or a base: This method can be carried out by a conventional method of hydrolysis in the presence of a base such as sodium carbonate, sodium hydroxide, and the like, or an acid such as trifluoroacetic acid, hydrochloric acid, and the like.
3) Liquid ammonia reduction: This method can be carried out by adding a compound containing a protecting group of a hydroxyl group to liquid ammonia, then adding metallic sodium, and agitating.
4) Desilylation reaction: This method can be carried out by reacting a compound containing a protecting group of a hydroxyl group with an organic fluorine compound such as tetra- n butylammonium fluoride or an inorganic fluorine compound such as sodium fluoride, potassium fluoride, hydrofluoric acid, in the inert solvent.

Removal of an R' protecting group of an amino group is readily carried out by i) Treatment with an acid such as formic acid, trifluoroacetic acid, a trifluoroacetic acid-anisole mixture, a hydrobromic acid-acetic acid mixture, a hydrochloric acid-dioxane mixture, and the like, when the protecting group is a benzhydryl group, p-methoxybenzyl group, trityl group, tertbutoxy carbonyl group, formyl group, and the like; ii) Catalytic reduction using palladiumcarbon or palladium hydroxide-carbon when the protecting group is a benzyl group, a p -
nitrobenzyl group, a benzhydryl group, a trityl group, and the like; or iii) Treatment with water assisted by fluoride anions (tetra- n-butylammonium fluoride, sodium fluoride, potassium fluoride, hydrofluoric acid), and the like, when the protecting group is a tri-lower alkylsilyl group and the like.

[0014] Second Process of Preparation

Step One

[Chemical Structure 7]

(Where R', B ring, and R'' have the same meanings as described above. $\mathrm{R}^{\text {'a }}$ is a hydrogen atom or an aralkyl-type protecting group. $R^{2 a}$ is a hydrogen atom, a lower alkyl group, a methylsulfonamide group, or a nitro group. X is a halogen atom.)

In this step, Compound (IV) and Compound (V) are reacted, then a reduction reaction is carried out to achieve carbonyl group reduction, resulting in Compound (VI).
i) The amine compound (IV) and Compound (V) are reacted just as they are, or in an inert solvent for 1-24 hours and heated or heated to reflux, and then ii) subjected to a reduction reaction to obtain Compound (VI). Examples of inert solvents include acetonitrile, tetrahydrofuran, 2-butanone, dimethylsulfoxide, or N -methylpyrrolidone. During the reaction of Compound (V) and amine compound (IV), a base such as sodium bicarbonate or diisopropylethylamine may be added. The reduction reaction may be carried out in the presence of a reducing agent, in an above-mentioned inert solvent or an alcohol-based solvent, and under agitation. Examples of reducing agents include sodium boron hydride, sodium boron cyanohydride, aluminum lithium hydride, and the like. Moreover, in this step, Compound (VI) may be produced by protecting the amino groups of amine compound (IV) for which the amino groups have not been protected ($\mathrm{R}^{\prime}=\mathrm{H}$), after going through steps i) and ii), and Compound (VI) may be produced by carrying out i) and ii) after protecting the
amino groups of amine compound (IV) with an aralkyl-type protecting group.

[0015] Step Two

[Chemical Structure 8]

(Where $R^{1}, R^{2}, R^{2 a}, R^{\prime}, R^{\prime \prime}$, and B ring have the same meanings as described above.)
In this step, when $R^{2 a}$ is a nitro group, it is reduced to an amino group, then acylation is carried out, and the protecting group is removed, resulting in Compound (I). If $\mathrm{R}^{2 \mathrm{a}}$ is a hydrogen atom, a lower alkyl group, or a methylsulfonamide group, the protecting group is removed without any further treatment, making it possible to obtain Compound (I). Reduction of the $\mathrm{R}^{2 a}$ nitro group can be carried out by a conventional process such as metallic reduction using iron, zinc, and the like. Acylation of the amino group can be carried out by a conventional method involving an amidation reaction with a carbonic acid compound. This can be readily carried out using a reactive derivative of carbonic acid such as an acid anhydride, an acid hydride, an active ester, and the like. Deprotection can be carried out in the same manner as in the First Process of Preparation above. In the above process of preparation, undesirable byproducts can be removed to purify the product by means of recrystallization, pulverization, centrifugal thin-layer chromatography, silica gel flash chromatography such as described by W.C. Still et al. in H. Org. Chem., 43, 2923 (1978), medium pressure liquid chromatography, or HPLC. A compound produced with HPLC can be isolated as a corresponding salt. The starting materials used in the above process of preparation can be readily produced by a process known to practitioners of the art. Following is a representative example thereof.
[0016] Process for Producing Starting Compound (II)

Step One

[Chemical Structure 9]

(Where R^{2}, R^{\prime}, and $R^{\prime \prime}$ have the same meanings as described above. R^{b} is a hydrogen atom or an aralkyl-type protecting group of an amino group.)

In this step, Compound (VII) and Compound (VIII) are reacted to synthesize Compound (IX). Examples of the aralkyl-type protecting group of an amino group include a benzyl group, a p-nitrobenzyl group, a benzhydryl group, and the like. This process can be carried out in the same manner as the Second Process of Preparation, and reaction conditions such as the reaction temperature, the solvent, and the like, are identical. If R^{b} is a hydrogen atom, amino group protection can be accomplished by a conventional method, using a di-tertbutyldicarbonate ester.

[0017] Step Two

[Chemical Structure 10]

(ix)

(Where $\mathrm{R}^{2}, \mathrm{R}^{\prime}$, and $\mathrm{R}^{\prime \prime}$ have the same meanings as described above.)
In this step, Compound (IX) undergoes a reduction reaction to synthesize Compound (II). The reduction reaction can be carried out by metallic reduction or catalytic reduction. Under some reaction conditions, R^{\prime} is a hydrogen atom, but re-protection can be carried out by a conventional method.
[0018] Process for Producing Starting Compound (IV)
[Chemical Structure 11]

(Where $R^{1}, R^{\prime \prime}, Y$, and B ring have the same meanings as described above. R^{d} is a cyano group or a protected aminomethyl group.)

In this step, amidation is carried out by reacting Compound (X) and Compound (III). The reaction can be carried out in the same manner as in the First Process of Preparation above. If R^{d} is a cyano group, the reduction reaction may be carried out again, to obtain Compound (IV) by implementing protection, as desired. Reduction can be carried out by a conventional method such as catalytic reduction or reduction with cobalt chloride and sodium boron hydride. Accordingly, the resulting Compound (I) of the present invention is isolated and purified as a free compound, a salt thereof produced by a conventional salification process, a hydrate, a solvate of ethanol and the like, or a polymorphic crystal. Isolation/purification may be carried out an ordinary chemical operation such as extraction, concentration, distillation, crystallization, filtration, recrystallization, various types of chromatography, and the like. The various isomers can be isolated by a conventional method using the physiochemical differences among the various isomers. For example, racemic compounds can be converted to stereochemically pure isomers by an ordinary racemic resolution method (e.g., optical resolution achieved by forming a diastereomer salt with an ordinary optically
active acid such as tartaric acid). Also, a mixture of diastereomers can be separated by a conventional method such as fractional crystallization or chromatography. In addition, an optically active compound can be produced by using a suitable optically active starting material.

[0019]

[Advantageous Effects of the Invention] The phenethanol derivative or salt thereof shown in General Formula (I) is useful as a therapeutic agent for diabetes, because it possesses both insulin secretion promoting effects and insulin sensitization enhancing effects, and also possesses selective stimulatory effects on β_{3} receptors. It is expected that the compound of the present invention will be useful in treating diabetes, because of its insulin secretion promoting effects and insulin sensitization enhancing effects, as has been confirmed in glucose tolerance tests and blood glucose-lowering tests in insulin-resistant model animals, which are described later. The mechanism of onset of action of the insulin secretion promoting effects and the insulin sensitization enhancing effects of the present invention is thought to possibly involve participation of the stimulatory effects on β_{3} receptors, but other mechanisms are possible, and the details regarding them have yet to be elucidated. The stimulatory effects on β_{3} receptors exhibited by the compound of the present invention are selective for β_{3} receptors in humans. It is known that stimulation of β_{3} receptors stimulates lipolysis (the breakdown of the trigycerides in adipose tissue into glycerols and free fatty acids), thereby promoting the elimination of fatty mass). Therefore, the compound of the present invention possesses anti-obesity effects and anti-hyperlipidemia effects (e.g., triglyceride-lowering effects, cholesterol-lowering effects, HDL cholesterol-raising effects, and the like) due to its stimulatory effects on β_{3} receptors, and is useful as a preventive/therapeutic agent for obesity and hyperlipidemia. These conditions are known to exacerbating factors in diabetes, and amelioration of these conditions is also useful in preventing and treating diabetes.
[0020] The compound of the present invention is also useful in the prevention and treatment of other conditions for which it can serve to ameliorate symptoms by mitigation of the symptoms of obesity and hyperlipidemia. Examples of such conditions include ischemic heart disease such as arteriosclerosis, myocardial infarction, angina pectoris, and cerebral infarction such as arteriosclerosis, or aneurism. In addition, the selective stimulatory effects on β_{3} receptors is also useful in the prevention and treatment of several conditions suggested as being ameliorated by the stimulation of β_{3} receptors. Examples of these conditions are given below. It has been suggested that β_{3} receptors mediate the motility of non-relaxing smooth muscle contraction, and it is thought that the selective stimulation of β_{3} receptors, and the selective stimulation of β_{3} receptors is thought to assist physiological control of intestinal motility, without concomitant cardiovascular effects. Thus, there is a possibility that the
compound of the present invention can be useful in treating conditions arising from disorders in intestinal motility, such as various gastrointestinal disorders such as irritable bowel syndrome. It is also useful in treating peptic ulcers, esophagitis, gastritis and duodenitis (including disorders induced by H. pylori), enterelcosis, inflammatory intestinal disorders, ulcerative colitis, Crohn's disease, and proctitis), and gastrointestinal ulcers. Moreover, β_{3} receptors have been shown to affect the inhibition of release of neuropeptides of a variety of sensory fibers in the lungs. Sensory fibers plan an important role in neurogenic inflammation of the respiratory tract, including the lungs. Thus, a β_{3}-specific pharmacological agent of the present invention is useful in treating neurogenic inflammations such as asthma, and moreover, has few effects on the cardiopulmonary system. β_{3} adrenalin receptors are able to produce selective antidepression effects by stimulating β_{3} receptors in the brain, and it is therefore possible that the compound of the present invention may be useful as an antidepressant. Effects on the compound of the present invention on β receptors has been shown to be β_{3} receptor-selective in experiments using human cells, and few or no side effects caused by other β_{3} receptors have been observed.
[0021] The advantageous effects of the compound of the present invention have been confirmed with the following tests.

1. Blood glucose-lowering tests in kk mice (insulin resistance model: Obesity, hyperglycemia

Using male kk mice (blood glucose level $200 \mathrm{mg} / \mathrm{dL}$ or higher), blood glucose levels were measured after feeding, and the mice were randomly divided into groups. The test drug was dosed by forced oral administration or subcutaneously once a day for 4 days, and the blood glucose level 15-18 hours after the final dosing was compared with the blood glucose level prior to dosing ($\mathrm{n}=6$). Blood was drawn from the caudal vein of the mice, using a glass capillary tube (after being treated with heparin), and after deproteinization, the glucose level $(\mathrm{mg} / \mathrm{dL})$ in the supernatant was determined by colorimetry with glucose oxidase. The compound of the present invention significantly reduced blood glucose levels in comparison to levels prior to administration of the test drug, whether administered orally or subcutaneously. These results show that the compound of the present invention possesses good insulin sensitization enhancing effects.
[0022]

2. Glucose tolerance tests in healthy rats

Using 7-week-old SD rats, after fasting a whole day and night, the rats were randomly divided into groups, and an oral glucose tolerance test (OGTT) was conducted ($\mathrm{n}=4$). The
test compound was administered orally or subcutaneously 30 minutes prior to administering glucose (oral dose $2 \mathrm{~g} / \mathrm{kg}$). The rats were anesthetized with pentobarbital ($65 \mathrm{mg} / \mathrm{kg}$), and blood was drawn from the abdominal vena cava, using a glass syringe treated with heparin. After deproteinization, the glucose level ($\mathrm{mg} / \mathrm{dL}$) in the supernatant was determined by colorimetry with glucose oxidase. The blood insulin level was determined by measuring plasma insulin ($\mathrm{ng} / \mathrm{mL}$) using radioimmunoassay (RIA). There was observed to be a significant increase in blood insulin levels in groups dosed either orally or subcutaneously with the compound of the present invention, as compared to untreated groups. In addition, increases in blood glucose levels were significantly suppressed after administering glucose. These results show the compound of the present invention has favorable insulin secretion promoting effects as well as hyperglycemia inhibiting effects.

[0023]

3. Human $\beta_{32} \beta_{2}$, and β_{1} receptor stimulation tests

Human β_{3} agonism was studied using a SK-N-MC cell line (permanent human β_{3} and β_{1} receptors were expressed in the purchased cells), and human β_{2}, β_{1} receptor agonism was studied using a CHO cell line (human β_{2}, β_{1} receptors were forcibly expressed in the purchased cells). The stimulatory activity of the compound (10^{-10} to $10^{-4} \mathrm{M}$) was studied by culturing the cells on a 24 -well plate at 10^{5} cells $/$ well, and with the cells in a subconfluent state after 2 days, cyclic AMP (cAMP) production activity was used as the index. Human β_{3} agonism was studied in the presence of a β_{1} receptor blocker (CGP20712A, $10^{-6} \mathrm{M}$). The cAMP production ($\mathrm{pmol} / \mathrm{mL}$) in the cells was measured by RIA using I-cAMP. The potency of effect of the various compounds was computed using the pD 2 values from the doseresponse curve and the maximum activity (I.A. (\%), the maximum reaction of isoproterenol $10^{-6} \mathrm{M}$ is set at 100%), and the results were compared. The compound of the present invention was found to have selective stimulatory effects on human β_{3} receptors. Pharmaceutical compositions having one or more species of the compound of the present invention or salt thereof as the active constituent were prepared using an ordinary pharmaceutically acceptable carrier. The pharmaceutical composition according to the present invention can be administered orally, or in a non-orally dosed form, including an injection, suppository, transdermal, inhalant, or vesical injection. The dose is suitably determined with consideration given to the age and gender of the person receiving the dose, but is typically $0.01 \mathrm{mg} / \mathrm{kg}$ to $100 \mathrm{mg} / \mathrm{kg}$ per day in the case of oral administration to adults, and is administered once a day or divided into 2-4 times. Depending on the condition, if administered intravenously, the typical dose ranges from $0.001 \mathrm{mg} / \mathrm{kg}$ to $10 \mathrm{mg} / \mathrm{kg}$ per time for an adult, and dosing can be performed once or several times per day. The carrier for the preparation can be a solid ore liquid non-toxic pharmaceutical substance.
[0024] A solid composition for oral administration of the present invention can be in the form of a tablet, a pill, a capsule, a powder, or granules. In such a solid composition, one or more active substances, is mixed with at least one inert diluent, such as lactose, mannitol, Dglucose, hydroxypropyl cellulose, microcrystalline cellulose, starch, polyvinyl pyrrolidone, agar, pectin, magnesium aluminum metasilicate, and magnesium aluminate. The composition may also contain additives other than the inert diluent, such as a lubricating agent such as magnesium stearate, a disintegrator such as fibrous calcium glycolate, a stabilizer such as lactose, and a solubilizer such as glutamic acid or aspartic acid. As needed, tablets or pills may have a sugar coating such as cane sugar, gelatin, hydroxypropyl cellulose, hydroxypropyl methylcellulose, or a film to aid digestion in the stomach or the intestines. Liquid compositions for oral administration contain pharmaceutically acceptable emulsions, solutions, suspensions, syrups, elixirs, and the like, as well as commonly used inert diluents such as purified water and ethanol. In addition to inert diluents, this composition may also contain an adjuvant such as a lubricating agent or a suspension, or a sweetener, flavoring, fragrance, or antiseptic. Injections for non-oral administration contain an antiseptic aqueous or non-aqueous solution, suspension, or emulsion. An aqueous solution or suspension may contain distilled water and physiological saline for injection, for example. Examples of nonaqueous solutions and suspensions include propylene glycol, polyethylene glycol, cocoa butter, olive oil, sesame oil, or other vegetable oil, an alcohol such as ethanol, or gum Arabic, Polysorbate 80 (trade name), and the like. Such a composition may also contain an adjuvant such as an isotonizer, antiseptic, lubricating agent, emulsifier, dispersant, stabilizer (e.g., lactose), and solubilizer (e.g., glutamic acid, aspartic acid). These may be sterilized by passing through a bacterial retentive filter, adding a bacteriocide, or by irradiating. These can be used to produce a sterile solid composition, or they can be dissolved in sterile water or in a sterile solution for injection prior to use.

[0025]

[Examples] The present invention is described in further detail below on the basis of examples. The compound of the present invention is not limited to the compounds recited in the examples below, and may contain the compound shown in General Formula (I) above, a salt thereof, a hydrate thereof, a geometrical or optical isomer thereof, or a polymorphic crystal. The case where the starting material used in the present invention is novel is described in the Reference Examples.

[0026] Reference Example 1

8.48 g of N -benzyl-2-(4-nitrophenyl)ethylamine, 5.2 g of diisopropylethylamine, 12 g of 4'benzyloxyphenacyl bromide, and 200 mL of 2-butanone were sequentially added, and the reaction mixture was heated to reflux for 1 hour. After distilling off the solvent under
reduced pressure, the residue was diluted with ethyl acetate, washed sequentially with a saturated sodium hydrogencarbonate aqueous solution and saturated salt water, then the organic layer was dried with anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The resulting residue was dissolved in 100 mL of methanol and a small quantity of tetrahydrofuran. To this reaction solution was added 2 g of sodium boron hydride, in ice. After agitating the reaction solution for 1 hour at room temperature, the solvent was distilled off under reduced pressure. After adding water and ethyl acetate to the residue, the organic layer was washed with a saturated sodium hydrogencarbonate aqueous solution. After drying the organic layer with anhydrous magnesium sulfate, the solvent was distilled off under reduced pressure. The resulting residue was purified with silica gel column chromatography (eluent: hexane/ethyl acetate $=3 / 1$), resulting in 15.2 g of $2-[\mathrm{N}-$ benzyl- N-[2-(4-nitrophenyl)ethyl]amino]-1-(4-benzyloxyphenyl)ethanol.

[0027] Reference Example 2

40 mL of 2 N HCl and 8.6 g of iron powder were added to a 250 mL methanol solution of 14.8 g of 2-[N-benzyl- N-[2-(4-nitrophenyl)ethyl]amino]-1-(4-benzyloxyphenyl)ethanol. The reaction solution was heated to reflux for 2 hours, after which the insoluble matter was filtered off with celite. After concentrating the filtrate under reduced pressure, a 1 N sodium hydroxide aqueous solution and chloroform were added, and the insoluble matter was again filtered off with celite. After drying the organic layer with anhydrous magnesium sulfate, the solvent was distilled off under reduced pressure. The resulting residue was purified with silica gel column chromatography (eluent: hexane/ethyl acetate $=2 / 1$), resulting in 11.7 g of 2-[N-benzyl- N-[2-(4-aminophenyl)ethyl]amino]-1-(4-benzyloxyphenyl)ethanol.

[0028] Reference Example 3

510 mg of 2-[N -benzyl- N -[2-(4-aminophenyl)ethyl]amino]-1-(4-benzyloxyphenyl)ethanol and a 10 mL xylene solution of 315 mg of 2-(3-methylpyridine-2-yl)ethyl acetate was heated to reflux for 13 hours. The solvent was distilled off under reduced pressure, and the residue was purified with silica gel column chromatography (eluent: chloroform/methanol = 100/1), resulting in 256 mg of 4^{\prime}-[2-[N-benzyl- N-[2-(4-benzyloxyphenyl)-2-hydroxyethyl] amino]ethyl]-2-(3-methylpyridine-2-yl)anilide acetate.

[0029] Reference Example 4

4'-[2-[N-benzyl- N-[2-(4-benzyloxyphenyl)-2-hydroxyethyl] amino]ethyl]-2-(4-methyl pyridine-2-yl)anilide acetate was synthesized according to the same process as in Reference Example 3.

[0030] Reference Example 5

4'-[2-[N-benzyl- N-[2-(4-benzyloxyphenyl)-2-hydroxyethyl]amino]ethyl]-2-(3-methyl pyridine-6-yl)anilide acetate was synthesized according to the same process as in Reference Example 3.

[0031] Reference Example 6

4'-[2-[N-benzyl- N-[2-(4-benzyloxyphenyl)-2-hydroxyethyl]amino]ethyl]-2-(2-methyl pyridine-6-yl)anilide acetate was synthesized according to the same process as in Reference Example 3.

[0032] Reference Example 7

5.12 g of 2-(2-pyridyl)methyl acetate and a 50 mL xylene solution of 5.14 g of 4aminophenylacetonitrile was heated to reflux for 24 hours. The solvent was distilled off under reduced pressure, and the resulting crude crystals were washed with diethylether to produce 5.65 g of 4^{\prime}-cyanomethyl-2-(2-pyridyl)anilide acetate.

[0033] Reference Example 8

4'-cyanomethyl-2-(2,4-dimethylpyridine-6-yl)anilide acetate was synthesized according to the same process as in Reference Example 7.

[0034] Reference Example 9

20 mL of Raney nickel and concentrated ammonia water were added to a 50 mL tetrahydrofuran solution of 5.12 g of 4 '-cyanomethyl-2-(2-pyridyl)anilide acetate. The reaction solution was agitated for 3 hours in a hydrogen environment at normal pressure at room temperature. After removing the insoluble matter with celite, the solvent was distilled off under reduced pressure. To the resulting residue were added 50 mL of toluene and 2.1 mL of benzaldehyde. This reaction mixture was heated to reflux for 3 hours while dehydrating with a Dienstag apparatus. After distilling off the solvent under reduced pressure, 1.0 g of sodium boron hydride was added in ice to a 50 mL methanol solution of the resulting residue. After agitating the reaction solution for 1 hour at room temperature, the solvent was distilled off under reduced pressure. Chloroform and a saturated sodium hydrogencarbonate aqueous solution were added to the residue, and the organic layer was dried with anhydrous magnesium sulfate. After that, the solvent was distilled off under reduced pressure. The resulting residue was purified with silica gel column chromatography (eluent: chloroform/methanol $=50 / 1$), resulting in 4.63 g of 4'-(2-benzylaminoethyl)-2-(2-
pyridyl)anilide acetate.
[0035] Reference Example 10
4'-(2-benzylaminoethyl)-2-(2-pyridyl)anilide acetate was synthesized according to the same process as in Reference Example 9.
[0036] Reference Example 11
A reaction mixture of 338 mg of 4'-(2-benzylaminoethyl)-2-(2-pyridyl)anilide acetate, 299 mg of 4^{\prime}-benzyloxyphenacylbromide, and 0.175 mL of diisopropylethylamine suspended in 20 mL of 2-butanone was heated to reflux for 3 hours. The insoluble matter was filtered off, and the filtrate was concentrated under reduced pressure. 120 mg of sodium boron hydride was added in ice to a 10 mL methanol solution of the resulting residuc. After agitating the reaction solution for 1 hour at room temperature, the solvent was distilled off under reduced pressure. Chloroform and a saturated sodium hydrogencarbonate aqueous solution were added to the residue, and after drying the organic layer with anhydrous magnesium sulfate, the solvent was distilled off under reduced pressure. The residue was purified with silica gel column chromatography (eluent: chloroform/methanol $=100 / 1$), resulting in 283 mg of $4^{\prime}-[2-$ N -benzyl- N -[2-(4-benzyloxyphenyl)-2-hydroxy ethyl] amino]ethyl]-2-(2-pyridyl)anilide acetate.

[0037] Reference Example 12

4'-[2- N-benzyl- N-[2-(4-benzyloxyphenyl)-2-hydroxyethyl]amino)ethyl]-2-(2,4-dimethyl pyridine-6-yl)anilide acetate was synthesized according to the same process as in Reference Example 11.

[0038] Reference Example 13

4'-[2- N -benzyl- N -[2-(3-benzyloxyphenyl)-2-hydroxyethyl] amino]ethyl]-2-(2-pyridyl)anilide acetate was synthesized according to the same process as in Reference Example 11.

[0039] Reference Example 14

4'-[2- N -benzyl- N-[2-(2-benzyloxyphenyl)-2-hydroxyethyl] amino]ethyl]-2-(2-pyridyl)anilide acetate was synthesized according to the same process as in Reference Example 11.

[0040] Reference Example 15

50 mL of tetrahydrofuran and 15 mL of dimethylformamide were sequentially added to 5.14
g of 4-methylaminophenylacetonitrile, 12.1 g of 2-pyridylacetate hydrochloride, 10.5 g of (3dimethylaminopropyl)carbodiimide hydrochloride, and 7.62 g of 1-hydroxybenzotriazole. After agitating the reaction solution for 2.5 hours at room temperature, the solvent was distilled off under reduced pressure. After diluting the residue with ethyl acetate, the organic layer was washed with a saturated sodium hydrogencarbonate aqueous solution, and dried with anhydrous magnesium sulfate. The residue obtained by distilling off the solvent under reduced pressure was purified with silica gel column chromatography (eluent: chloroform/methanol $=100 / 1 \rightarrow 20 / 1)$, resulting in 6.07 g of 4^{\prime}-cyanomethyl -N -methyl-2-(2pyridyl)anilide acetate.

[0041] Reference Example 16

4'-(2-benzylaminoethyl)- N -methyl-2-(2-pyridyl)anilide acetate was synthesized according to the same process as in Reference Example 9.

[0042] Reference Example 17

4'-[2- N-benzyl- N-[2-(4-benzyloxyphenyl)-2-hydroxyethyl] amino]ethyl]- N^{\prime}-methyl-2-(2pyridyl)anilide acetate was synthesized according to the same process as in Reference Example 11.

[0043] Reference Example 18

1.28 g of phenyltrimethylammonium tribromide was added to a 20 mL tetrahydrofuran solution of 1.03 g of N -(5-acetyl-2-benzyloxyphenyl)methanesulfonamide. After agitating the reaction solution for 0.75 hour at room temperature, the insoluble matter was filtered off. The filtrate was concentrated under reduced pressure, and the resulting crude crystals were crystallized using chloroform-hexane. To a mixture of the resulting crystals and 1.11 g of $4^{\prime}-$ (2-benzylaminoethyl)-2-(2-pyridyl)anilide acetate were sequentially added 20 mL of 2butanol and 0.56 mL of diisopropylethylamine. The reaction mixture was heated to reflux for 1 hour, and the insoluble matter was filtered off. The filtrate was concentrated under reduced pressure, and 160 mg of sodium boron hydride was added in ice to a 20 mL solution of the resulting residue. After agitating the reaction solution for 0.5 hour at room temperature, another 470 mg of sodium boron hydride was added to the reaction solution. After agitating the reaction solution for 0.5 hour at room temperature, the solvent was distilled off under reduced pressure. Ethyl acetate and a saturated sodium hydrogencarbonate aqueous solution were added to the residue, and after drying the organic layer with anhydrous magnesium sulfate, the solvent was distilled off under reduced pressure. The residue was purified with silica gel column chromatography (eluent: chloroform/methanol $=100 / 1$), resulting in 920 mg of $4^{\prime}-[2-N$-benzyl- N-[2-(4-benzyloxy-3-methanesulfonylaminophenyl)-2-hydroxyethyl]
amino]ethyl]-2-(2-pyridyl)anilide acetate.

[0044] Reference Example 19

4'-[2- N-benzyl- N-[2-(4-benzyloxy-3-nitrophenyl)-2-hydroxyethyl]amino]ethyl]-2-(2-pyridyl) anilide acetate was synthesized according to the same process as in Reference Example 11.

[0045] Reference Example 20

4'-[2- N-benzyl- N-[2-(3-amino-4-benzyloxyphenyl)-2-hydroxyethyl]amino]ethyl]-2-(2pyridyl) anilide acetate was synthesized according to the same process as in Reference Example 2.

[0046] Reference Example 21

To a 10 mL chloroform solution of 670 mg of 4^{\prime}-[2- N -benzyl- N -[2-(3-amino-4-benzyloxyphenyl)-2-hydroxyethyl]amino]ethyl]-2-(2-pyridyl)anilide acetate was added 1.0 mL of a formic acid-anhydrous acetic anhydride mixture (3:5), and this was agitated for 7 hours at room temperature. The solvent was distilled off under reduced pressure, and 15 mL of methanol, 1.0 mL of water, and 490 mg of sodium carbonate was added to the residue, and agitated for 1.5 hour at room temperature. The insoluble matter was filtered off, the solvent was concentrated under reduced pressure, and water and chloroform were added to the resulting residue. After washing the organic layer with saturated salt water, it was dried with anhydrous magnesium sulfate. The residue was purified with silica gel column chromatography (eluent: chloroform/methanol $=50 / 1$), resulting in 590 mg of $4^{\prime}-[2-N-$ benzyl- N-[2-(4-benzyloxy-3-formamidephenyl)-2-hydroxyethyl]amino]ethyl]-2-(2-pyridyl) anilide acetate.

[0047] Reference Example 22

20 mL of acetic anhydride was added to 640 mg of 4^{\prime}-[2- N -benzyl- N -[2-(3-amino-4-benzyloxyphenyl)-2-hydroxyethyl]amino]ethyl]-2-(2-pyridyl)anilide acetate, and the mixture was agitated for 2 hours at room temperature. The solvent was distilled off under reduced pressure, 30 mL of methanol and 5 mL of 1 N sodium hydroxide aqueous solution were added to the residue, and then agitated for 1.5 hour at room temperature. The solvent was distilled off under reduced pressure, water and ethyl acetate were added to the residue, and after washing the organic layer sequentially with water and saturated salt water, it was dried with anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the residue was purified with silica gel column chromatography (eluent: chloroform $/$ methanol $=50 / 1$), resulting in 570 mg of $4^{\prime}-[2-N-[2-(3-$ acetamide-4-benzyl
oxyphenyl)-2-hydroxyethyl]- N-benzylamino]ethyl]-2-(2-pyridyl)anilide acetate.
[0048] Reference Example 23
2-[N-benzyl- N-[2-(4-nitrophenyl)ethyl]amino]-1-(2-benzyloxyphenyl) ethanol was synthesized according to the same process as in Reference Example 1.
[0049] Reference Example 24
2-[N-benzyl- N-[2-(4-aminophenyl)ethyl]amino]-1-(2-benzyloxyphenyl) ethanol was synthesized according to the same process as in Reference Example 2.

[0050] Reference Example 25

4'-2-[N-benzyl- N-[2-(2-benzyloxyphenyl)-2-hydroxyethyl]amino]ethyl-2-(1-benzylimidazole-$2-\mathrm{yl}$)anilide acetate was synthesized according to the same process as in Reference Example 3.
[0051] Reference Example 26
7.5 g of 4'-benzyloxyphenacylbromide was added to 100 mL of an acetonitrile solution of 8.2 g of 2-(4-nitrophenyl)ethylamine at room temperature. After agitating the reaction solution for 0.5 hour at room temperature, the resulting insoluble matter was filtered off, and a suitable amount of solvent distilled off under reduced pressure without heating. To the concentrated reaction solution was added 50 mL of methanol and 2.5 g of sodium boron hydride in ice, and this was agitated for 1 hour at room temperature. The solvent was distilled off under reduced pressure, and the residue was dissolved in chloroform and a saturated sodium hydrogencarbonate aqueous solution. The organic layer was dried with anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the resulting residue was purified with silica gel column chromatography (eluent: chloroform/methanol $=20 / 1$), resulting in 4.36 g of 1-(4-benzyloxyphenyl)-2-[[2-(4nitrophenyl)ethyl]amino]ethanol.

[0052] Reference Example 27

A 100 mL tetrahydrofuran solution of 4.29 g of 1-(4-benzyloxyphenyl)-2-[[2-(4nitrophenyl)ethyl]amino]ethanol and 2.39 g of di- t-butyl bicarbonate ester was heated to reflux for 2 hours. The solvent was distilled of under reduced pressure, and to a 150 mL solution of the resulting residue was added 1.1 g of 10% palladium-carbon, and agitated for 5 hours at room temperature in a hydrogen environment under normal pressure. After
removing the insoluble matter with celite, the filtrate was concentrated under reduced pressure to yield 3.53 g of N-[2-(4-aminophenyl)ethyl]- N-[2-hydroxy-2-(4-hydroxy phenyl)ethyl] carbamate t-butyl ester.

[0053] Reference Example 28

320 mg of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride and 240 mg of 1hydroxybenzotriazole were added to a 15 mL dimethylformamide solution of 513 mg of N -[2-(4-aminophenyl)ethyl]- N-[2-hydroxy-2-(4-hydroxyphenyl)ethyl] carbamate t-butyl ester and 243 mg 2 -(2-aminothiazole-4-yl) acetate, and agitated for 14 hours at room temperature. The solvent was distilled off under reduced pressure, water and ethyl acetate were added to the residue, and the organic layer was washed with saturated salt water. After drying the organic layer with anhydrous magnesium sulfate, the solvent was distilled off under reduced pressure. The resulting residue was purified with silica gel column chromatography (eluent: chloroform/methanol $=30 / 1$), resulting in 570 mg of N-[2-[4-[2-(2-aminothiazole-4-yl) ace amide]phenyl]ethyl]- N-[2-hydroxy-2-(4-hydroxyphentyl)ethyl] carbamate t-butylester.

[0054] Example 1

135 mg of palladium-carbon was added to a 10 mL methanol solution of 253 mg of $4{ }^{\prime}-[2-[\mathrm{N}-$ benzyl- N-[2-(4-benzyloxyphenyl)-2-hydroxyethyl] amino]ethyl]-2-(3-methylpyridine-2yl)anilide acetate. The reaction solution was agitated for 2 hours in a hydrogen environment under normal pressure. After filtering off the insoluble matter with celite, the filtrate was concentrated under reduced pressure. A 0.1 mL 4 N hydrogenchloride-ethyl acetate solution was added to a methanol solution of the resulting residue, and the solvent was distilled off under reduced pressure. After crystallizing the residue with methanol-ethanol-diethyl ether, the crude crystals were recrystallized with methanol-ethanol, yielding 112 mg of $4^{\prime}-[2-[[2-$ hydroxy-2-(4-hydroxyphenyl)ethyl]amino]ethyl-2-(4-methylpyridine-2-yl) anilide acetate hydrochloride.

[0055] Example 2

4'-[2-[[2-hydroxy-2-(4-hydroxyphenyl)ethyl]amino]ethyl-2-(3-methylpyridine-6-yl) anilide acetate hydrochloride was synthesized according to the same process as in Example 1.

[0056] Example 3

4'-[2-[[2-hydroxy-2-(4-hydroxyphenyl)ethyl]amino]ethyl-2-(2-pyridyl) anilide acetate hydrochloride was synthesized according to the same process as in Example 1.

[0057] Example 4

4'-[2-[[2-hydroxy-2-(4-hydroxyphenyl)ethyl]amino]ethyl-2-(2,4-dimethylpyridine-6-yl) anilide acetate hydrochloride was synthesized according to the same process as in Example 1.

[0058] Example 5

120 mg of 10% palladium-carbon was added to a 10 mL methanol solution of 236 mg of $4^{\prime}-$ [2-[N-benzyl- N-[2-(4-benzyloxyphenyl)-2-hydroxyethyl] amino]ethyl]-2-(3-methylpyridine2 -yl)anilide acetate. The reaction solution was agitated for 4 hours in a hydrogen environment at normal pressure. After filtering off the insoluble matter using celite, the filtrate was concentrated under reduced pressure. 0.1 mL of 4 N hydrogen chloride-ethyl acetate solution was added to a methanol solution of the resulting residue, and the solvent was distilled off under reduced pressure. The residue was purified with silica gel column chromatography (eluent: chloroform/methanol $=5 / 1$), resulting in 121 mg of $4^{\prime}-[2-[[2-$ hydroxy-2-(4-hydroxyphenyl)ethyl]amino]ethyl-2-(3-methylpyridine-2-yl) anilide acetate hydrochloride.

[0059] Example 6

4'-[2-[[2-hydroxy-2-(4-hydroxyphenyl)ethyl]amino]ethyl-2-(2-methylpyridine-6-yl) anilide acetate hydrochloride was synthesized according to the same process as in Example 5.

[0060] Example 7

4'-[2-[[2-hydroxy-2-(3-hydroxyphenyl)ethyl]amino]ethyl-2-(2-pyridyl) anilide acetate hydrochloride was synthesized according to the same process as in Example 5.

[0061] Example 8

4'-[2-[[2-hydroxy-2-(2-hydroxyphenyl)ethyl]amino]ethyl-2-(2-pyridyl) anilide acetate hydrochloride was synthesized according to the same process as in Example 5.

[0062] Example 9

A 0.5 fumaric acid salt of 2-(1-benzylimidazole-2-yl)-4'-[2-[[2-hydroxy-2-(2-hydroxyphenyl)ethyl]amino]ethyl-2-(2-pyridyl) anilide acetate was synthesized according to the same process as in Example 5.

A fumaric acid salt of $4^{\prime}-[2-[[2-h y d r o x y-2-(4-h y d r o x y p h e n y l) e t h y l]$ amino $]$ ethyl- N-methyl-2-(2-pyridyl) anilide acetate was synthesized according to the same process as in Example 5.

[0064] Example 11

10 mL of a trifluoroacetic acid solution of 490 mg of N-[2-[4-[2-(2-aminothiazole-4-yl) acetamide]phenyl]ethyl]- N-[2-hydroxy-2-(4-hydroxyphentyl)ethyl] carbamate t-butylester was agitated for 30 minutes at room temperature. The solvent was distilled off under reduced pressure, 20 mL of tetrahydrofuran and 30 mL of a 4 N HCl -dioxane solution were added to the residue, and this was agitated for 1.5 hour at room temperature. The solvent was distilled off under reduced pressure, and the resulting residue was purified with reverse-phase column chromatography (eluent: water/methanol $=2 / 1$), resulting in 340 mg of 2-(2-aminothiazole-4-yl)-4'[2-[[2-hydroxy-2-(2-hydroxyphenyl)ethyl]amino]ethyl] anilide acetate 0.5 hydrochloride, 1.5 trifluoroacetate salt.

[0065] Example 12

4'-[2-[[2-hydroxy-2-(4-hydroxy-3-methanesulfonamidephenyl)ethyl]amino]ethyl]-2-(2pyridyl)anilide acetate hydrochloride was synthesized according to the same process as in Example 1.
[0066] Example 13
4'-[2-[[2-(3-formamide-4-hydroxyphenyl-2-hydroxyethyl)]amino]ethyl]-2-(2-pyridyl)anilide acetate hydrochloride was synthesized according to the same process as in Example 1.

[0067] Example 14

4'-[2-[[2-(3-formamide-4-hydroxyphenyl-2-hydroxyethyl)]amino]ethyl]-2-(2-pyridyl)anilide acetate hydrochloride was synthesized according to the same process as in Example 1.
[0068] The physiochemical properties of the compounds of the Reference Examples are given in TABLES 1-4. The physiochemical properties compounds of the Examples are given in TABLES 5-6. The structural formulas for the compounds of the Examples are given in TABLE 7. The symbols given in the tables are explained as follows:

Rex. No.: Reference Example No.
Ex. No.: Example No.
sal.: Salt
DATA: Physiochemical properties
MS (m / z): Mass spectrometry values (m / z)
NMR: Nuclear magnetic resonance spectra (TMS internal standard)
Mp : Melting point
OH-pos: Hydroxyl group substitution position in phenyl group
[0069]
[TABLE 1]

Hem. No.	D A I A
1	```MS (m,/z):481[[(M H) +] NMR (CDCl3) \sigma : 2000-2.98 (0H, m). 350-3.00 (2H, m`, 3.94 (1H, d, J - 192, [Hz), 402 (17, dd, J-10.0, 4.OT2), 50% (2F, s), 6.92-3.97 (2T, m), 7/18-7.45 (14H, m), 807-5.13(%HTm)```
2	MS (m / z) : 453 ($(\mathrm{M}+\mathrm{H})+]$ $\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ б : $2.54-2.91(6 \mathrm{H}, \mathrm{m}), 3.40-3.80(3 \mathrm{H}, \mathrm{m}), 3.96(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14 . \mathrm{CHz})$, $4.68(1 \mathrm{H}, \mathrm{dd} . \mathrm{J}-9.6,4.0 \mathrm{~Hz}), 6.04(2 \mathrm{H}, \mathrm{s}), 6.69-6.64(2 \mathrm{H}, \mathrm{m})$, (6.89) 0.97 ($4 \mathrm{HL}, \mathrm{m}$), $7.18 \quad 7.44$ (12H, m)
3	```MS (m,/z) : 586 [(M+H) +] NMR (CDCl3) \delta:2.40(0H, s), 2.55-2.98(6H, m), 3.50-3.60(2H, m), 3.87 (2H, s), 3.94(1H, 4, J=13.2Hz), 4.62 (1H, da, J=10.0, 1.0Hz), E.05 (2H, s), 6.92-6.97 (2H, m), 7.13-7.45 (18H, m), 8.40-8.50(1H, m), 9.05 (1H, brs)```
4	$\mathrm{Ms}(\mathrm{m} / \mathrm{z}): 586[(\mathrm{M}+\mathrm{H})+7$ NMR (CTCly $\delta: 2.35(3 \mathrm{H}, \mathrm{s}), 2.55-2.99(6 \mathrm{H}, \mathrm{mi}), 3.55(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1 \mathrm{~m} .6 \mathrm{It})$, 3.71 ($1 \mathrm{H}, \mathrm{brs}$, 3.80 ($2 \mathrm{HL}, \mathrm{s}$), 3.94 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.6 \mathrm{~Hz}$), $4.57\left(1 \mathrm{H}_{1} \mathrm{dd}, \mathrm{J}=9.6,4.0 \mathrm{~Hz}\right), 5.04\left(2 \mathrm{H}_{4} \mathrm{~s}\right), 6.92-6.97\left(2 \mathrm{H}_{,} \mathrm{m}\right)_{1}$, $7.09-7.07(2 \mathrm{~F}, \mathrm{~m}), 7.12\left(1 \mathrm{H}_{\mathrm{x}} \mathrm{s}\right), 7.18-7.46\left(15 \mathrm{H}_{,} \mathrm{m}\right)$, 8.46 (ITI, d, $\mathrm{J}=4 \mathrm{BHz}$) 976 (1FI, krs)
5	```MS (m/r) : 586 [(M+H) +] NMR (CLClia) \delta : 2.35 (3H, s), 2.55-3.00(6H, m), 3.55 (1H, d, J = 13.0Hz), 9.80(2H, s), 2.9e(1H, t, J=13.2Hz), 4.57(1H, dd, J=9.8, 4.Hz),``` ```9.71 (17I, brs)```
6	$\mathrm{MS}(\mathrm{m} / \mathrm{m}): 586[(\mathrm{M}+\mathrm{H})+7$ NMR (CDC1 ${ }_{3}$) $7.19-7.48(14 \mathrm{f}, \mathrm{m}), 7.57\left(1 \mathrm{H}, L_{,} J=8.0 \mathrm{He}\right), 10.20(1 \mathrm{H}, \mathrm{brs})$
7	MS (m / x) : $252[(\mathrm{M}+\mathrm{F})+]$ NHIR (CDClis) b : $3.10(2 \mathrm{H}, \mathrm{s}), 388(2 \mathrm{H}, \mathrm{s}), 7,33-7.32(4 \mathrm{H}, \mathrm{m})$, B. 6 ($1 \mathrm{FI}, \mathrm{d}, \mathrm{J}=4.4 \mathrm{~Hz}$) 10.04 (1 H , brs)

Erex. No.	D A T A
8	```MS (m/c): 280 [(M+H)+] NNRR (CDCl} c:231(3H, s), 2.59 (3F, s), 3.71 (2H, s), 3.77 (2H, s), 6.91(1H, s), 6.98(1H, s), 7.24-7.28(2H, m), 7.55-7.30(2H, m), 10.60 (1H, brs)```
9	MS (m / z) : 34 C [$(\mathrm{M}-\mathrm{H}) \mathrm{I}]$ NMR (CuCH3)
10	$\text { MS }(\mathrm{m} / \mathrm{n}): 874\left[\left(\mathrm{M}+\mathrm{H}+{ }^{+}\right]\right.$ $\mathrm{NMIR}\left(\mathrm{CuCl}_{3}\right)$
11	$\mathrm{MS}(n / z): \operatorname{ZF}[(\mathrm{M}+\mathrm{H})+]$ MMR (CDCly) $8: 254-2.54(6 \mathrm{H}, \mathrm{m}), 356(4 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.6 \mathrm{H} \mathrm{t}) .3 .86(2 \mathrm{E}, \mathrm{s})$, $395(1 \mathrm{H}, \mathrm{d}, \mathrm{J} \cdots 13.4 \mathrm{~Hz}), 4,57(1 \mathrm{H}, \mathrm{dc}, \mathrm{J} \cdots 10.0,4.0 \mathrm{Hg})$, $5.04\left(\mathrm{KH}_{3}\right.$ s), $6.90 \cdots 6.34(28, \mathrm{mi}), 7.04 \cdots 7.00(\mathrm{ZH}, \mathrm{m})$, $7.18-7.48\left(16 L_{,} \mathrm{m}\right), 7.69\left(1 \mathrm{H}_{2} \mathrm{~d} \mathrm{t}, \mathrm{J}=2.0,8.0 \mathrm{CHz}\right)$, $8.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.8 \mathrm{~Hz}), 9.72\left(1 \mathrm{H}_{8}\right.$ brs)
12	
13	
14.	```MS (n/z): 572 [(M+1) +] NNR(CDCl3} 8:247-2.90(6F, m), 3.49(1F, d, I= 13.6Fz), 501-5.11 (3H, m), 6.89 (1H, d, J=7.2Hz), 6.98-6.99 (3H, m), 7.18-7.52 (16H, m), 7.69(1H, dt, J=8.0Hzw, J = 20.4z), 8.60-8.64 (}1\textrm{H},\textrm{m}) 9.68(1H, s)```

Rex. No.	D A T A
15	```NS (IL/2): 200 [(M - H) +] NDRR (CLCCl}``` ```7.35-7.39 (6m,m), 7.5s-7.5S (1H,m), 8.43(1m, brd, J-3.6mz)```
16	
1.7	
18	NNL $\left(\mathrm{CLCl}_{3}\right)$ $3.94(\mathrm{IH}, \mathrm{d}, \mathrm{J}=13.6 \mathrm{~Hz})_{\mathrm{r}} 4.06\left(\mathrm{CH}, \mathrm{dd}, \mathrm{J}=10.0 \mathrm{~m}, \mathrm{GHz} \mathrm{m}^{\circ}\right.$. $7.04-7.12(3 \mathrm{H}, \mathrm{m}), 7.22-7.49(\mathrm{L5H}, \mathrm{~m})$
19	```MS (m, 2): 317[(M-H)+] NTMR (CLCly) \delta:2.43-254(1EL m), 2.84-2.94 (51, m), 3.57 (14, d, J=13.2Hz) 3.75(1HL bre) 3.86 (2L, 2), 3.52 (1HL, d, J=13.2[12), 4.5S (1H, dd, J = 10.84L, J = 3.6Hz), 5.21 (2H, 5), 7.03 \cdots.7.08(3F, m), 7.23\cdots 7.4.4 (15H, m), 7.67 .. 7.75 (2H, m), 8.60-8.64(114, 7n), 8.75 (14, 3)```
20	```MS (m,/x):GR7[(M LH)+] NTMR (CLCCH) 8:2.59-2.80(6H, m), 3.55 (1F, _, J-15.2Hz), 3.07 (1H, trs), 3.81(2H, brs), 3.86 (2H, s), 3.94 {1H, d, J= (3.2Hz), 4,49\cdots-4,5c(1H, m), 5.05 (2H, 8), 5.5% - 6.79 (3H, m), 7.05-7.07(9I, m), 7.23-7.40(L4LI,m), 7.67-7.71 (1HI,m), 8.01-8.02 (1H, n), 971 (1F, brs)```
21	

Rex. No.	D A T A
22	
2	```MS (m/z):483 [(M + H) +7 NMRR (ODCl \delta:2.50 - 2.55 (6H, m), 2.E0 (1HL, d, J= 18.6Hz),```
24	```MS (m/x):45S[(M+H)+] NNRR (CDCly) \delta:246 - 2.92 (6H, n), 2.40-3.80 (37, m), 2.87 (171, d, J= 18.(Flz), 5.00-5.15 (3H, m), 6.55-6.61 (2H, m), 6.82-6.91 (3H1, m), 0.95-7.01(1H,m), 7.17-7.49(11H, m), 7.49-7.53(1H,m)```
25	```MS (m/z): 651[(M+H) +] NNR (CDC1%) \delta: 246 - 2.92 (6H, m), 3.80(1H, d, J=1.3.8Hz), 3.62(1H, brs), 3.72 (2H, s), 38% (1E, d, J = 18.6tiz), 6.60 - 6.16 (6H, m), 6.87\cdots7.54 (25H, mi, 10.25 (114, brs)```
20	```MS (m/z):395[(M+H)+] NMP(CDCly) \sigma:2.78(1H, (d, J = 8.g, 12.4Fg), 2.84-3.33 (6H, m),``` ```7.2: - 7.45 (9H, m), 8.13 \cdots 8.17 (2H, m)```
27	```MS (m/z): ST1[(M-N] -] NMAR (CDCly) &:1.46(9H, s), 2.66-2.72 (2F,m), 3.15-3.03(4H,m). 4mT2-4.83(1H, m), 6.58-6.63(2H, m), 6.73-6.79(2H, m), 6.B5\cdots.6.E7 (6H,m), 7.13\cdots7.19(2H,m)```
29	

Ex, Mor	D A T A
1	mp : $284 \cdots 226$ $\mathrm{NMH}\left(\mathrm{CNSO}-\mathrm{d}_{\mathrm{b}}\right)$ $\delta: 2.31(3 \mathrm{H}, \mathrm{s}), 2.85-3.18(6 \mathrm{H}, \mathrm{m}), 378(2 \mathrm{H}, \mathrm{s}), 4.79-4.86(1 \mathrm{H}, \mathrm{m})$, $6.00(: H, d, J=4.0 \mathrm{~Hz}) .6 .74 \quad 6.79\left(2 \mathrm{H}_{\mathrm{r}} \mathrm{m}\right), 7.08 \quad 7.12(1 \mathrm{H}, \mathrm{m})$, $7.14-7.23(5 \mathrm{H}, \mathrm{m}), 7.54-7.61$ (2 H m m) $8.31-8.37(1 \mathrm{H}, \mathrm{m})$. 9.47 ($1 \mathrm{HH}_{4} \mathrm{brs}$), 10.28 ($1 \mathrm{H}, \mathrm{brg}$)
2	$\operatorname{mp}: 215-216^{4} \mathrm{C}$ NMT (DMSO - d_{6}) $\delta: 2.27(3 H, s), 285-3.18(6 H 1, \mathrm{~m}), 3.78(2 H, s), 479-4.87(1 \mathrm{H}, \mathrm{m})$, $599(1 H, d, j-32 H z), 674-6.79(2 H, m), 7.14-7.20\left(5 H_{1} \mathrm{mD}\right.$, 9.47 (iH, brs), $10.2 \mathrm{~T}(\mathrm{HH}, \mathrm{brs}$)
3	mp: 211-212 C NMR (DMEO - d $d: 2.84-3.20(6 \mathrm{H}, \mathrm{m}), 3.84(2 \mathrm{H}, \mathrm{s}), 4.77-4.85(1 \mathrm{H}, \mathrm{m})$, $0.00(\mathrm{HH}, \mathrm{c}, \mathrm{J}-3.2 \mathrm{~Hz}), 6.74-8.79(2 \mathrm{H}, \mathrm{m}), 7.14-7.20(4 \mathrm{H}, \mathrm{m})$, 7.76 ($1 \mathrm{LI}, \mathrm{dt}, \mathrm{J}=2.0,8.0 \mathrm{Ez}$), B. $7 T-8.51(1 \mathrm{~L}, \mathrm{~m}), 8.71\left(1 \mathrm{H}_{1} \mathrm{brs}\right)$, 891 (H, brs), $945(1 \mathrm{H}, \mathrm{brs}), 102 \mathrm{~g}(1 \mathrm{H}$, brs)
4	$\operatorname{mp}: 194-190 \%$ NMR (DMEO- $\left.\mathrm{d}_{\mathrm{g}}\right)$ $6.96(\mathrm{LH}, 9), 7.0 \mathrm{~L}(1 \mathrm{H}, \mathrm{s}), 7.09-7.20(4 \mathrm{H}, \mathrm{m}), 7.55-7.51(2 \mathrm{H}, \mathrm{m})$. $2.49(\mathrm{H}, \mathrm{Bra}), 10.33(\mathrm{IH}, \mathrm{brg})$
5	MS $(\mathrm{m} / \mathrm{z}): 406[(\mathrm{M}+\mathrm{H})-$ NWE (DMSO - d_{O}) $\delta: 2.31(3 \mathrm{H}, \mathrm{s}), 2.84-3.16(6 \mathrm{H}, \mathrm{m}), 3.87(2 \mathrm{H}, \mathrm{s}) ;$ $4,79(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 5,92(1 \mathrm{H}, \mathrm{brs}), 6.73-6.79\left(2 \mathrm{H}, \mathrm{m}^{2}\right.$, $7.13-7.21(5 H, m), 7.53-7.80\left(9 H, \mathrm{~m}_{2}, 8.27-833(1 \mathrm{H}, \mathrm{mL})\right.$, $9.44(1 \mathrm{H}, \mathrm{brs}), 10.29(\mathrm{HL}, \mathrm{brg})$
6	
7	```MS (m\|z) : gge [(M+H) +- NMN (MNSG - + d d : 284 .. 304 (3HL m), 3C6 - 320 (3L, m, 3.84 (2H, s), 4.B1-4.4. (NN, m), 6.12 (1N, d. J = 3.6NZ), 6.70 (1H, dd, J - 2.0, 8.0Hz), 6.76-6.8m (2H, m), 7.13-7.20(3H,m).724-7.30(1H,m).7.39(1H, d. J=8.0Hz), 7.56-7.60 (2H, m), 7.76 (1H. dt. J = 1.6, 7.2Hz), 8.47-3.52(1H, m, 8.72(1H, 2rs), 8.92(1H, bs%, 9.49 (1H, brs), 1028 (1H, bre)```

Ex. No.	D A T A
8	```MS (m, / 2):392[M + Hj +] NMP (DhSO - d``` ```7.00 (1II. dt. J w 6.0Hz, J = 1.6Iz), 7.17 (2II, c. J = 8.0Iz)، 7.25-7.40 (3H, m), 7.56 (2H, d, J=8.4Hz). 7.75 (1H,dt,J=8.0Hz,J=2.4Hz), g.49-8.50(1H,m), 10.28 (1H, g)```
9	
10 15	```MS (m/x):400 [\((M+H)+1\) NWMA (IMBO- \(d_{B}\))``` ```\(6.52\left(2 \mathrm{H}_{4} \mathrm{~s}\right), 6.70-\mathrm{E} .75(\mathrm{ZH}, \mathrm{m}), 7.15-7.00(\mathrm{BH}, \mathrm{m})\), \(7.60-7.70(1 \mathrm{H}, \mathrm{m}), 8.85-8.95\left(\mathrm{IH}_{7} \mathrm{~m}\right)\) WE \(\left.(\mathrm{m} / \mathrm{x}): 4] 3[\mathrm{M}+\mathrm{H}){ }^{+}\right]\) NMR (DKEO-G) \(\delta: 2.85-3.17\left(6 H_{1} \mathrm{~m}\right), 3.62(2 \mathrm{H}, \mathrm{g}, 4,79-4.81(1 \mathrm{H}, \mathrm{m})\), \(600\left(1 \mathrm{H}_{v} \mathrm{brs}\right), 6.55(1 \mathrm{H}, 5), 6.77(\mathrm{ZH}, \mathrm{d}, \mathrm{J}-8.4 \mathrm{~Hz})\), \(7.15 \cdots\left(20\left(4 H_{0} \mathrm{~m}\right), 7.55(2 H, d, \mathrm{~J}=\mathrm{B}, 8 \mathrm{PLz}), 7.55(\mathrm{H}, \mathrm{brs})\right.\), \(8.67\left(1 \mathrm{H}_{\mathrm{r}} \mathrm{brs}\right), 8(\mathrm{fi}(\mathrm{H}, \mathrm{brs}), 8.79(\mathrm{H}, \mathrm{brs}), 975(1 \mathrm{H}, \mathrm{brs})\), 10.21 [1H, brs]```
12	```mp: 191-182% NMR (DMSO-de``` ```4.78-4.88(1H m). 6.05 (1H, brs), 6.92 (LH, d J = 8.0 Hz), 7.00 (}1\textrm{H 7.3S(1H, d, J=8.0F[z), 7.54-7.50 (2H, m).```
13	
14	

Ex No.	OH-pos	-R ${ }^{1}$	$-R^{2}$	B ring	salt
1	4	-H	-H		HCl
2	4	- H	- H		HCl
3	4	-H	-H		HCl
4	4	-H	-H		HCl
5	4	-H	-H		HCl
6	4	-H	-H		HCl
7	3	H	-H		HCl
8	2	H	-H		HCl
9	2	-H	-H		$\begin{gathered} 0.5 \\ \text { fumalate } \end{gathered}$
10	4	$-\mathrm{CH}_{3}$	-H		fumalate
11	4	-H	H		$\begin{aligned} & 1.5 \mathrm{TFA} \\ & 0.5 \mathrm{HCl} \end{aligned}$
12	4	-H	$-\mathrm{NHSO}_{2} \mathrm{CH}_{3}$		HCl
13	4	H	-NHCHO		HCl
14	4	H	- NHCOCH		HCl

Sawai Ex. 1007

The compounds having the chemical structures shown in TABLES 8-9 can be easily prepared in almost the same manner as the processes given in the Examples or in the Processes of Preparation, or by utilizing a slightly modified process obvious to a practitioner the art. A variety of tautomers, geometrical isomers, and optical isomers may be present in the compounds given in TABLES 8-9, but the compound of the present invention includes various isomeric isolates or mixtures thereof.
[0076]
[TABLE 8]
[Chemical Structure 12]

No.	E	No.	B
1		6	
2		7	
3		8	$/_{N^{\prime}}{ }^{\prime} \mathrm{NH}_{2}$
4		9	
5		10	

[0077]
[TABLE 9]
[Chemical Structure 13]

No.	B	No.	B
11		14	$L_{\mathrm{N}}^{\mathrm{N}}$
12		15	d_{N}^{0}
13	d_{N}^{S}	16	

Continued from the front page

(51) Int. $\mathrm{Cl}^{6}{ }^{6}$

A61K 31/44	ADK
C07D $283 / 64$	ADF
$233 / 88$	
$263 / 38$	
$277 / 30$	

F1

A6 1 K $31 / 44$	ADN
C07D $233 / 64$	106
$233 / 88$	
$763 / 92$	
$27 / 30$	

(72) Inventor

Tetsuo MATSUI
Etoile Kasuga 403
2-35-2 Kasuga,
Tsukuba City, Ibaraki Prefecture

（54）［発明の名称］新規なフェネタノール褋道体又はその塩
（57）【要約】
【課題】インスリン分裡促進作用とインスリン感愛性增沙作用を併せ持ち，さらに選扒的な β_{3} 受容体剌激作用を有する，糖尿病か治療剤か創製。
【解洪手段】ト記一般式（1）で小されるフェネタノー

（上記式中の記昜は，それぞれ以下の意味虎有守る。【化1】

基，

Ri^{2} ：水素原子，低緅つル 4 基，メチルスルボナミド基又约式－NHCOR ${ }^{3}$ な示出れる基，
低級アルキルアシノ基，アリール基又はアラルキル基， R^{4} ， R^{5} ：同一义は異なっで水素原子，低敬アルギル基又はア゙ロノ基，
$\mathrm{R}^{6}:$ 氷素原子，低級アルキル基又はアアルキル基）

【特許諎求の範囲】
【請求項1】下記一般式（I）飞示されるフェネタノ
一ル誘尊体又は宣の塩。
【化1】

X，Y：酸素原子，硫英原子又化式NR白で示をれる基，
R^{1} ：水素原子又心弤級アルキル基，
R^{2} ：水素原子，低級アルキル基，メ干ルスルホナシド基又は式－NHCOR ${ }^{3}$ て示きれる其，
R^{3} ：水素原子，低衫アルキル基，モノ一若しくはジー
低級アルキルアミノ基，アリール基入はアラルキル基，
$\mathrm{R}^{4}, ~ \mathrm{R}^{5}$ ：同一又は異今口て水素原子，低級アルキル基 めはアミノ基，
R^{6} ：水素原子，低級アルキル基又心アラルキル基）
【請求項2】請求項1に䛉載のフェネタノール綉導体

【誚求項3】誚求㖽1に記載かつェネタノール誘尊体又はきの塩を有効成分とすることを特嶉とする糖尿病治療剂。
【発明の詳細た説明】
【0001】
【発朋の鳫する技術分野】本発朋は，医薬，特に新規な
 とずる糖尿病治蒸剂に閉する。
【0002】
【従来の技術】糖展病は，持続的高血糖状態を伴う疾患 であり，あくの環璄因子と遺伝的因子とが作而した結果生じるといわれている。血榶の主要な調整因子はインス リン゙であり，高血糖はイシスリン欠乏あるいばきの作用
両，ストレス等）お゙軥籼となって牛じることが知られて いる。糖尿病には主として2つの種類があり，自己免疫疾患による業インスリン分湡機能か低下によって生じる イン゙スリン低存性糖尿病（IDDM）と持続的な高イン
低下が原因であるインスリン非体存性糖尿病（NTDT） M）とに分けられる。日本人の搪尿病患者の95\％以上 はNIDDMといわれでわり，生活様式か変化に伴い患

にむいては食事療法，運䡃豦洔及び肥満の改善等が主と しで行かん，更に進行すると，経い糖尿师薬（例吴ば， スルホニルウレア剂等のインスリン分泌促淮剤，インス リンの感受性を増強するインスリン感受性増強剤等）o投与が行われ，更に車症の場合はインスリン製剤の投与 が行われてている。しかしながら，より高度な血糖管理が
 を有する有用性か高い糖庣病治療薬の開発が望きれてい为。
【0003］一方，米匡特許4．396，627号及び同4，478，849号には，フェニルエタノールアミ

薬，抗向血䊀証紧として有用があることが開示されてい る。これらの化合物の作用は，β_{2} 受容体刺激作用によ ると報告されている。 β_{3} 愛容体刺激作用としては，一股に抗肥满作用，抗高脂血作用（例えば，トリグリセラ 1ド低下作用，コレステロール低下作用，HDLコンス テロール上萛作用等）が知られている。ここで β ーアド レホリン受容体は $\beta_{1}, \beta_{2}, \beta_{3}$ かサブタイグに分頳き $れ, ~ \beta_{1}$ 受容体の刺激よ心拍数の增加を引き起こし，β_{2}受容体の刺激む筋肉中でのダリコーゲンの分解这刺湤し これによってがリコーゲンの合成产阻传し，筋肉振戦等 か作刀を生じることが知られている。しかしなからっこ
振戦等の β_{1} 受容体及び β_{2} 受容体剌激に基つく作用をも有しており，副作用め点で問題が荡った。又，最近 β 受
 の㡀歯類にて β_{3} 受容体選択性力確認むれた化合物であ \rightarrow ても，ヒトにおいては β_{1} 取び β_{2} 受容体剌激作用に基 ごく作用が醀認きれたことが報告きれている。このよう
現きせた細胞坔用いて，ヒトに出いて β_{9} 受容体選択的 な刺激作用を有する化合物め研究が堆められている。例 えば，WO95／29159公報には，下記一般式で示

いて β_{3} 受容体に㩐択的に剌激作用を有することより，肥満症，高血糖症等に有用であることが記載されてい
進作用並びにインスリン感愛性增䧝作用については貝体的に開示がない。
【0004】
【化3】

（式中の記号は，上記公報䄹照。）
【0005】
【発明が解決しようとする誢題】前述のように，いまな あ，擥床的に有用性の高い新しいタイプか糖尿病治療剂 の創製が场望をれている。
【0006】
【課題を解決守るためか丰段】本発明者等は，インスリ
ン分汹促進作用とインスリン感受性増強作用を併せ持の化合物を鋭意探索したところ，新規なワェネタノール誘導体が息好なインスリン分注促進作用とインスリン感受
作用を有することを見いだし本発明を完成した。すなわ ち，本発朋はインスリン分別促進作用とインスリン感受性堌強作用学併せ持ち，さらに祀択的 β_{8} 受容体刺激作历た基つく抗肥満作历及び抗高脂血症作历定も併せ持つ ことから，糖尿恼か治療に有用だ，下記一般式（I）で
 た，当該つェネタノール誘学体を含有する医薬，殊に，当該フェネタノール誘導体を有効成分をずる糖尿病洪療剤な関家る。
【0007］
【化4】

（上記式中の記号な，\＆れ然れ以下の意味を有する。
（00081
【化5】

$\mathrm{X}, \mathrm{Y}:$ 酸素原子，硫黄原子又は式NR6で示される基，
R^{1} ：水素原子又低低粄アルキル基，
R^{2} ：水素原子，低級アルキル基，メチルスルホナミド基又は式－NHCOR ${ }^{3}$ で示きれる基，
R^{3} ：水素原子，低級アル\＆ル基，モノ一若しくはジー低級アルキルアミノ基，アリール基又はアラルキル基，
又はアミノ基，
R^{6} ：水素原子，低級アル土ル基又はアラルキル基）【0009】
【発明め美施め形態】一般式（I）O）化合物をこらに説
明すると，次か通りである。本明細書の一般式の定義に あいて，－低級」なる用語は，侍に断らない限り，炭素数が1 号至6個の直銷状又は分肢状の炭素銷を意味方
る。－低紘プルキル基」とは，㟶素数が $1 \sim 6$ 個か直顉又化分岐のアルキル基であり，具体的には，例えはメチ ル基，从于ル基，グロビル基，イソブロピル基，ゾッル基，イソブキル基，secーブキル基，tertーブチ ル基，ペンチル基，イソベンチル基，ネオペンチル基， tert－ペン于儿基，1－メチルブチル基，2－メチ ルブチル基，1，2－ジメチルプロピル基，ヘキシル基，イソへキシル基，1－メ寸ルバンホル基，2－メ才

ルペンホル基，3－メホルペンホル基，1，1－ジメず ルブみル基，1，2－ジメチルブチル基，2，2－ジメ チルブチル基，1，3－ジメチルブチル基，2，3ージ メチルブチル基，3，3ージメチルブチル基，1－エチ ルブチル基，2－エチルブチル基，1，1，2－トリメ チルプロビル基，1，2，2－トリメチルプロビル基， 1－エキル－1－メ才ルグロピル基，1－エキル－2－ メキルヅロビル基等が挙げられる。「アリール基」は，芳香族炭化水素基意味し，炭素数6㢯至14固のアリ ール基が好㐘しく，具休的には，フェール基，トソル基，キシリル基，ビフエニル基，ナフチル基，インデニ ル基，プントリル基，フエナントリル基等が学げられ る。これらのこちつェニル基又はサフキル基が特に好ま しい。
【0010】「アラルキル基」とねアリール基を置換基 として有している低緑アルキル基であり具体的になっへ シジル基，つェネまル基，メキルバンジル基，メキルつ ェネチル基，ジメチルバンジル基，ジメチルソェネチル基，ベンスヒドリル基，ナフキルメチル基，ナフキルエ チル基，ア゚ントリルメチル基，ア゚ントリルエチル基，ト リチル基，フェナントリルメキル基，フェナントリルエ チル基等が举げられ，好ま！くはバンジル基である。
「モノー呂しくはジー低緅フルキルフミノ基」とは，フ

ミノ基中の水素原子1乃至2個が上記低級ワルキル基で直換されたアミノ基を意味し，具体的には，例きば，又 キルアミノ基，エチルアミノ基，プロピルアミノ基，ジ メォルアミノ基，ジエチルアミノ基，ジプロピルアミノ基等が举げられる。本觉朋化合物（I）忙，1個历至複数個の不普炭素原子を有する場合があり，これに基づく （R）体，（S）体等の光学異性体っシせミ体っジアス示レオマー等が存在する。本発明は，これらの異性体の
 に，本犖明には化合物（I）の水和物，エタノール等の溶媒和物が結晶多形か物覮も包含され为。本発明北合物 （I）は酸と塩を形成する場合がある。かかる塩上して は坆酸，臭化水素酸，ヨウ化水素酸，硫酸，硝酸，リン酸等の鉱酝わ，ギ酸，酶酸，プロビオン酸，シュウ酸，
 リンゴ酸，タエン酸，酒石酸，炭酸，ピタリン酸，メタ ンスルホン酸，エタンスルホン酸，ダルタミン酸等の有機酸との酸付加塩を举げることができる。
【0011】（製造法）本発明化合物及びその塩は，そ の基本骨格灰るいは置換基の楎類に基つく特微を利用 し，種々の合成法を適用して製造することができる。以 トになの代表的な製造法について莧明する。
第一製法
【化6】

（ E ． ）
基の保護基を，R＂は水酸基の保護基学，Yは水酸基，低級アルコキジ基又はハロゲン化物かような悓解基を示 す。）
本製法は化合物（II）と化合物（III）とをアミド化反応させ，次に保誏基荧除去して本発明化合物（I a）を合成ず製法である。本製法のアミド化は常法に より行うことおできる。滾娸ばは化合物（III）のYに
 （イソプロパノール）か䖩媒が適用できる。こごる，Y
応きせる方法が適用できる。縮合剤としては，N，N －ジシクロヘキシルカルボジイミド（DCC），1－エ チル－3－（3－ジメチルアミノプロピル）カルボジイ ミド（EDCI），1，1＇－加ボニルジイミダゾー

ル（CDI），ジフェニルホスホリルアジド（DPP A）やジエチルホスホリルシアニド（DEPC）等が挙 ダられる。Yが低級アルコキジ基である場合は家のまま で，又は前記不活性溶媒中，加蓺下乃至加埶還流下で反応きせる方法が適历できる。Yおかロゲン化物である湯
適用できる。
【0012】前記不活性溶煤としては，例えばジメチル ホルムアミド（DMF），ジメホルアセトアミド，テト ラタロロエタン，ジクロロメタン，ジクロロエタン，タ ロロホルム，凹塩化炭表，デララヒドロフラン，ジオキ サン，ジメトキシスタン，醮酸上チル，バンゼン，トル エン，キシレン，アトトニトリル，ジメキルスルホキシ ド等やこれらの混合溶媒が学げられるが，禈々の反応条
 ウム，水俊化力リウム，炭酸けトリウム又は炭酸力りウ ム等か無機塩基，V—メチルモルホリン，トリエキルン ミン，ジイソプロピルエチルアミンス㮏ピリジン等の有機塩基が挙げられる。 R＂か水酸基の保護基として当業者が通常使用する水硴基の保譩基を意味し代表的なもの としては，メチル基，エチル基，プロピル基，イソブロ ビル基，tert－ブチル基等の低新アルホル基，低帾 アルコキシ低級アルキル基，低級アルコキシ低級アルル キシ低級アルキル基，ベンジル基等のアリールメキル
基，ベジゾイル基若しくは低級アルカノイル基等のアシ ル基，トリアルキルシリル基等が举げられる。R＇のア ミノ基の保護基は当業者办通常使历するアミノ基の保講基を意㭑し，代裁的なもかとしてはホルミル基，ブセす ル基，プロビオニル基，メトキシアセ才ル基，メトキシ ブロピオニル基，ベンゾイル基，キエニルアセキル基， チアゾリルアセキル基，テトラゾリルアセおル基，チア ゾリルグリオキシータル基，チエニルグリオキシロイル基等のアシル基，メトキシタカルボニル基，エトキシカル ボニル基，tert－グトキシカルホニル基等の低級ア ルコキシカルボニル基，ベンジルオキシカルボニル基， p －ニトロベンジルオキシカルボニル基等のアラルキル オキシカルボニル基，メタンスルホニル基，エタンスル ホニル基等の低級アルカンスルホニル基，ベンジル基， p －ニトロベンジル基，ヘンズヒドリル基，トリボル基䓁のアラルキル基，トリメチルシリル基等のトリ低級ア ルキルシリル基等が挙げられ呂。
【00131本製法にむける保講基の除去は常法に従え ぼよく，例えば，水磄基の保護基が除去は，以下のよう に行うことができる。
 シジウムー崖素，メはラネーニックル等の触媒存在ド，氷冷下乃至加温下で行うことがてきる。
2）酸あるいけ塩基存在下での加水分解：木方法け岩酸 ナトリウム，水酸化ナトリウム等の塩基，又はトリフル オ口酶酸，監酸等か酸Q存在下区加水分解する常法が脳

用でき，氷冷下沙至 $100^{\circ} \mathrm{C}$ の温度条件下で夹施するの が好適である。
3）液安還元：本方法は水酸基の保講基を有する化合物 を液体アンモニア中に加え，次いで金属けトリウムを添加し，䚇抖ずることにより行まことができる。
4）脱シリル化反他：本方法は，水酸基か保護基を有す る化合物を前記不活性漯煤中，テトラnーブチルアンモ ニウムフルオリド等の有機フッ素化合物芳るいはフッ化 ナトリウム，フッ化为リウム，フッ化水素酸等の無機フ ッ素化合物と反応きせるごとにより行りことがてるる。 R＇基，p－メトキシベンジル基，トリチル基，tert－ ブトキシカルボニル基，ホルミル基等の保護基であるを

きは，ギ酸，トリフルオロ醮酸，トリフルオロ唃酸一ゲ ニソール混液，臭化水菜酸一酯酸混渡，塩酸—ジオキサ ン混椎等の酸《処理文る方法，i i）ベンジル基，p－ ニトロベンジル基，ベンスヒドリル基，トリナル基等て あると気は，パラジウムー炭素又は水酸化パラジウムー炭素を用いあ接触還元方法，i i i ）保譈基がトリ低級 アルキルシリル基等であるときは，水で処理守る方法， フッ素化物フニオン（テトワпーブチルフンモニウムフ ルオリド，フッ化ナトリウム，フッ化かリウム，フッ化水素酸）等により容吻に除よされる。
〔0014］第二製法
第一工程
【化7】

ii）カル林二小基の逼元

（v）
水素原子又心アラルキル系の保讙基を示す。 $\mathrm{R}^{2 \mathrm{a}}$ は水素原子，氏絠アルキル基，メホルスルホナミド基又はニト口基を，入しハロングン原子をそれそれ意味する。）本上程は化合物（IV）と化合物（V）を反兑せ 更 に還元反悶に付して力ルボニル基を還元して化合物（V I）を得る工程である。
i）アミン化合物（IV）及び化合物（V）を安めま き，あるいまう不活性溶媒中で，i）加熱下㢯至加熱澴流下， $1 \sim 24$ 時間反応をせ，さらに i i ）還无反応に付 して化合物（VI）を得ることがでる。不活性溶媒は例えばアセトニトリル，テトラヒドロフラン，2－ブタ ノン，ジメチルスルホキシド又はN－メチルピロリドン が少げられる。また，化合物（V）とアミン化合物（I V）の反なの際，重㟶酸けトリウム又はジイソプロビル

エ寸ルアミンのような塩基をが応混合物に㳢加してもよ い。還元反応は，還元剤の存在下，前記不活性溶媒又に アルコール系の溶媒中，親拌しながら行うことができ る。還元剤としては，例えば水素化小ウ素ナトリウム，水素化シアノホウ素けトリウム，水素化りボウムワルミ ニウム等が用いられる。更に本工程においてはアミン化合物（IV）のアミ」基が保護きれていまいもの（R） $=\mathrm{H})$ を客のまま，i），i i ）o工程を経てからの
ち，ア』ノ基を保護し，化合物（VI）を製造してもよ く，查た，アミン化合物（IV）のアミノ基をアワル卌
合物（VI）を製造してもよい。
［0015］第二工程
【化8】

（式中， $\mathrm{R}^{1}, \mathrm{R}^{2}, \mathrm{R}^{2 a}, \mathrm{R}^{\prime}, \mathrm{R}^{\prime \prime}, \mathrm{B}$ 環出前記の意味を示す。）

にアシル化を行い，保講基を除去して化合物（I）を得 るT程である。 R^{2} aが水素原子，低級尸ルホル基又はメ

去して化合物（I）を得ることができる。 $\mathrm{R}^{8, ~}$ のニトロ基の對元は鉄，亜錵等を用いる金属還元等により常法で行うことがてきる。袁た，アミノ基のアシル化し，常法 によりかルボン酸化合物とのアミド化を応により行わ れ，例えば酸楽水物，酸ハライド，活性エステル等の力力 ルボン酸め反尤性誘導体を用いて容易に行うことができ シ。保樭基の除去は，前記第一製法と同様に行うことが できる。尚，上記製法において，再結晶化，粉研，分取溝層クロマトダラフィー，W．C．Still 1 か，J． Org．Chem．43，2923（1978）に記載

されているようなシリカダルフラッシュタロマトグラフ
ィー，中圧液体タロマトグラフィー及びHPLCによ
り，望丰しくない副生成物質を除高生成物筫を精製子る
 る知として単離することができる。前記製法て円いる原料化合物は，当業者に公知の方法が容易に製造なることが できる。以下にをか代表的な製造法を示す。
【0016］（原料化合物（II）の製法）
第一工程
［化9］
i）

素原子又はアラルキル柔のアミノ基の保護基を示す。）木工程は化合物（VII）と化合物（VIII）とを反応きせることにより，化合叛（I X）艮合成する工程で
基としては，ベンジル基，p－ニトロベンジル基，ベン ズヒドリル基等が挙げられる。本工程は前記第二製法第一工程と同樣にして行うことができ，反応温庶，溶媒等 の反疬条件についても同様である。また，R ${ }^{\text {b }}$ が水素原子の場合は，ジしゃr L －ブチルジ炭酸エステル等を用 いて，常場によりアミノ基の保護化を行うことがを敛。
〔0017】第二工程

【化10】

（IX）

温元反応

（II）
（式中， $\mathrm{R}^{2}, ~ \mathrm{R}^{\prime}$ ， $\mathrm{R}^{\text {＂}}$ は前記の意味を示す。）本上程は化合物（I X）を還元反心きせせることにより化

合物（II）を合成市る工程でする。還元ね応は金茅還元あるいは接触還元等により行うことがてきる。還元条件によいてはR＇が水素原子となる場合があるが，常法 により再度保謮化を行かことができる。
【0018】（原料化合物（IV）か製法）
【化11】

（式中， R^{1} ， $\mathrm{R}^{\text {＂}}$ ，Y及びB環む前記の意味を示す。 Rd はシアノ其又保保護きれたアミノメ寸ル基を意味す る。）
本工程は化合物（X）と化合物（III）とを反応き せ，アミド化する工程で多る。反応な，前記第一製山と同樣にして行うことができる。尚，Kdがンアノ基であ
 つて化合物（IV）を得为ことができる。䢬元じ常法O接触噮元又性塩化コバルト及び水素化ホウ素けトリウム

れた本発明化合物（I）は上，遊離化合物，常法による造
炎和物，あるいは結晶多形等として単蛙•精製をれる。
晶，各種タロマトダラフィー等の通常の化学操作堂適T して行かれる。各種の異性体はま異性体間か）物理化学的な差を利用して常法により単䧲できる。例えば，シセミ化合物は一般的なラセミ分割法により（例えば，一般的漛
 き，光学分割家る力汒等）立体化学的心䋥粹な異性体に導くことがてきる。又，シアスデレオマーの混合物は常法，例えば分別結唱化又はクロマトグラクイー等じより分髅てきる。また，光学活性な化合物心適当な光学活性 な原料を用いることにより製造することもできる。【OO19】
【觉明の効果】本発明O一般式（I）で示されるフェネ タフール誘導体又は学か壏は，インスリン分緒促進作用 とインスリン感受性増強作用を併せ持ち，ざらに選択的 な β_{3} 受容体刺噭作用を有字ることより，糖尿病め治療剂として有用である。本発明化合物は，後記栭啸能試験及びインスリン抵抗性モデル動肳における血糖低下試験 において確誌きれたよりに，良好なインスリン分湡促進作用とインスリン感受性増強作用を併せ持ち，糖尿病に ＊いてるの有用性が期待されるあっである。本発明化合物のインスリン分泌促進作用及びインスリン感受性増強作用発現のメカーズムは，β_{3} 受容休刺激作用が関与し ている可能性も考えられるが，その他のメカニズムによ るものである可能性も有り，『つ語形は未解明である。本発明化合物 $O \beta_{3}$ 受容体剌激作用ほ，ヒトにおいて β_{3}愛容体に選据的である。 β_{3} 受容体の剌激は脂肪分解
酸とへの分解）を刺激し，これによって脂肪塊の傥头を促進をることた知られている。従つて本発朋化合物に， β_{3} 受容体刺激による抗肥満作用，抗高脂血作用（例え ぼ，トリダリセライド低ト作用，コレステロール低ト作用，HDT．コレステロール上昇作用等）を有L，肥満症，高脂血症（例えば高トリダリセライド血症，高コレ スデロール血症，低HDL血症等）か予防•治療剤とし
子であることみ知られており，これらの疾患の改善は糖尿病の予防•治療にも有用である。
【0020】また，本発明化合㧾は，肥満症，高脂血症 の症状を低減することはより症状の改善の國れるこの他 ○疾患，例义ば，動脈梗化症，心箷梗塞，狭心症等の笽
 の予防•浩撩剂をしても有用である。さらに，本発明化合物の選択的 β_{3} 受容体刺嚾作用は，β_{3} 受容体の刺澌に より改善方ることお提㖧されているいくつかの浣患の予防•治原にも有用である。これらの㾘患か例を以下に示

することが提唱されてあり，選択的 β_{3} 受容体刺湤作用 は心腹血管作用を伴うことなく腸䅉動性の薬理的制御を助けると考えられることより，腸慟の異常により生じ る疾婁，例えば，過敏性腸症候群のような種々の胃腸疾患か治療に有川である可能性を有する。まれ，消化性潰陽，食道炎，胃炎及び十 一指腸炎（H．pyloriに より誘発きれるものを含当か）。腸潰瘍（胥症吽腸疾患，潰疩性結腸炎，クローン病及び直腸炎）及び胃腸潰瘍の

 ぼすことが小されている。感覚神経き咳を含めな気道の蚛経原性炎症に重要学役割を演しるので，本発明か特異
 であってしかも心师縹への作用が少ない。 β_{3} アドレナ リン愛容惏はきらに腅にあるる β_{3} 愛容吽か棘激により
 は抗帾薬として有用である可能性を有する。本発明化合物から受容体に対する作用はもトか細胞を用いな実験に よって，β_{3} 爱容体選据的であることを醀認してあり，他の β_{3} 愛容休刺激に起因する副作用心低いが若しくは有したいものである。
【0021】本発明化合物の効果訜以トの試験により確認きれた。
1． kk マウス（インスリン抵抗性モデル：肥満，高血糖）になかけ高血糖低下試験
雄性kkマウス（血稹值200mg／d1以上）を用い て，摄食下て血糖値を測定後，無作為に群分けした。被験薬物恃1日1回，4日間，強制経し投与省しくな艮下
値と比較した（ $\mathrm{n}=6$ ）。血精値侍マウスの尾静脈よ
り，ガラス丰細管（ペリン処理㜔み）を用いて採血 L，除タンパ夕処理絃，上清中のグルコース量（mg d1）をダルコースオキシターゼ法により比色定量！ た。本発明化合物経口投与，支下投与かいるれだれい ても，比験楽物投与前に比して有意に血糖値を低ドきせ た。この結果より，本発明化合物が良好なインスリン感受性増強作用を有することが示ぎれた。
【002212．正常ラットにおける耐輤能試験
7週踰の椎性SD系ラットを用いて，一量夜紇食後，恶作為っ群分讨L，oralglucose tolerance test（OGT T）を行つた（ $\mathrm{n}=4$ ）。被験化合物は，グルコース
（2g） kg を経口投与）の投与30分前に経口投与方
一ル（ 65 mg ， k g ）麻醮下で，ソパリン处理したか ラスシリンジを用いて腹大静両より採血し，除タンパタ处烓镜，上清中かグルコース量（mg／d I）そグルコ ースオキシターゼ法によりり比色定量した。血中インスリ ン値は，血䄰中のインスリン量（ n g／ml）を Radio imu noassay（RI A ）法灿より定量した。本発朋化合

未処理群に比して血中インスリン値め有意な増加が䘽䕓 された。また，グルコース投与徬の血糖値の上昇も有意 に抑制きれた。これらの続果より，本菼明化合物り良好 なインスリン分湡促進作用を有し，末だ，良好な高血糖抑制作历を有宁ることが示きれた。
【0023】3．ヒト β_{3} ，β_{2} 及び β_{1}－受容体剌激試験
E下 β_{8} —剌激作用恃 $\mathrm{SK}-\mathrm{N}-\mathrm{MC}$ 細胞系（permanent にヒト β_{3} 及びヒト β_{1} 受寞体を発現した細胞を購人）蚛用い，ヒト β_{2} ，B_{1} —刺激作用はC H O 細胞采（ヒト
 を用いて娭討した。化合物（10－1月～10－4 M）の刺激作用は，各細胞を24we11プレート上に10¹個
 て，cyclic AMP（cAMP）の旁生活性を指栖に橹䚯した，尚ヒト β_{3} —刺溦作川は，β_{1} —受容体遮断薬 （CGP20712A， $10^{-6} \mathrm{M}$ ）存在下で検討した。各細胞中のcAMP産生量（pmo1／m1）は，125 I－c AMPを用いてRIA法により測定した。各化合物の作用陮度は，得られた用量反応曲線加ら口D2値及 び最大活性（1．A．（\％），イソブロテレノール 10 － MO 最大反応を 100% とする）を算出し比較した。本喾明化合物は，ヒト β_{3} 受容体に対しな巽択的に刺激作用を有することだ碓認された。本発明化合物入はるの塩の一種又は二種以上学有効成分として含有する医雚組成物は，䦽常か製葇学的に許容きれる担休を用いて調製

 より非経口投与のいすれの形態であってもよい。投与量 ほ症状，投与対象の年齢，性別等を考慮しく個々の場合 に応じて適宙決定きれたが，通常経口投与の場合成人1日当たり0．01mg，kg乃至100mg， kg 程度 であり，これを1回で，あるいは2～4回に分けて投与
成人1回当たり，0．00 $1 \mathrm{mg} / \mathrm{kg}^{\mathrm{k}}$ 万至 10 mg ， kg の範囲で1日に1回分至裖数回投与をれる。製剤用
 ぼられる。
【0024】本発明による経し投与のための固体組成物 としては，鋎済，丸剤，カブセル剤，散剤，顆粒剤等が用いられる。このような固体組成物におおいては，ひとつ又は，思れ以トの活性物質が，少なくともひとつの不活性
 ロキシプロピルセルロース，媺詩晶セルロース，デング ン，ボリビニルビロリドン，寒天，ヘタキン，メタゲイ酸アルミン酸マダネシウム，アルミン酸マグネシウムを混合きれる。組成物は，常法に従って，不活性な希釈剤以外の添加剂，例えばスデアリン酸マダネシウムのよう な潤渦剤や䌦素グリコール酸かルシウムのような崩壊利，ラタトースロような安定化剂，グルタミン醙又はつ

スバラギン酸のような䈶解補助剤を含有していてもよ い。鋎剤又は丸剤ま必要によりショ糖，ゼラチン，ヒド ロキジプロビルサルロース，ビロロキシプロビルメチル セルロースフタレート等か糖衣又佖胃溶性荅しく房腸溶性物筫のフィルムで被膜してもよい。経口投与のための液体組成物は，薬剂的に許容される乳渴剂，浴液消，髪濁剤，シロップ剤，エリキシル剤等を含み，一般的に用 いられる不活性を希利剤，例えに゙掅製水，エタノールを
剤みような袢助剤，甘味剤，風味剤，芳香剤，防度剤空含有していてもよい。非経口投与のための注射剤として は，無菌の水性又心非水性の蓉液剤，䯮淴剤，乳涌剤を包含する。水性の溶液剤，圎㺃剤としては，例えば注射剂用蒸留水及び生理食塩水が含まれる。非水湥性の溶渡剂，䯮湢剂としては，例えばブロピレングリコール，ポ リエチレンダリコール，カ力才バター，オリーブ油，ゴ マ油のような植物由，エタノールのようなケルコール類，アラビアゴム，ポリソルベート80（商品名）等が ある。このようた組成物侍，さらに等張化剤，防腐剤，
 ス），溶解補切剤（例え体，グルタミン酸，アスパラギ ン酸）のような補助剤ぎ含んですよい。これらは例えば バクテリア゙保管ワイルターを通当汗過，殺菌剤の配合又 は昭射によのて無菌化される。これらはませた無菌の固体組成物を製造し，使用前に無菌水又は無菌の注射用溶媒 に溶解して使用することもできる。
【0025】
【笑㮱例】以下，尖施例に基づき本発明をざるに評湅に說明す学。本発明化合物け，下記害施例は記載の化合物 に限定され号もかではなく，また，前記一段式（I）に
光学異性体，結晶多形の全てを包舍するものである。き らに，本発朋で使用きれる原料々っ新規な場合を，参莶例 として説明する。
【0026】参考例1
N－ベンジル－2－（4－ニトロフッニル）エキルアミ ン8． 48 g，ジイソプロピルエキルアミン5． 2 g ， 4＇－ベンジルオキシフェナシルブロミド 12 g ，2－ ブタノン200m1を順次加え，反淢混合物を1时間加熱睘流した。溶媒を減圧下留去した㖟，残㴡を酢酸工ま儿て吝积し飽和炭酸水素ナトリウム水溶液，䳌和郎塩水 で绣次洗浄後，有榡層を無水硫酸マグネシウムで乾燥
 100 ml Iと少量のテトタヒドロクランたて溶解した。 この応溶液に氷泠下，水素化小ウ素ナトリウム2gを加きた。反応溶液を室温にて 1 時間摫拌した挠，溶媒を
機層を飽和炭酸水素小トリウム水溶液で洗浄した。方機層を無水硫酸マグネシウムで乾燥後，溶煤违減圧下留去 した。得られた残楂をシリカダル力ラムタロマトダラク

ィー（溶出㢈：ヘキサン（酢酸エチル＝3 1 ）にて精製することにより，2－［N－ベンジルーNー［ 2－
（4－ニトロクェニル）エチル］アミク］－1－（4－ ベンジルオキシフェール）エタノール15．2 2 意得 た。
【00271参考例2
2－－ N －ペンジル－N－［2－（4－ニトロクェニ
ル）エチル］「゙ミノ］－1－（4－ベンジルオキシフェ ニル）エタノール14．8gのメタノール250m1溶

 て沪去した。沪液を減圧下濃縮した後，残㴡に 1 N 水酸化ナトリウえ水溶液及じクロロホルムを加え大後，再び不溶物をセライトを用いて沪去した。右梪層を無水䟽酸 マグネシウムで流煤した後，溶媒を减圧下留去した。得 られた球洫をシリカゲル力ラムタロマトグラフィー（溶

 ノワェニル）エキル］アミノ・1－（4－ベンジルオ キシフェニル）エタノール11．7g変得た。
【0028】参考例3
2－－N－ベンジル－N－［2－（4－アミノフェニ
ル）エナル］「シノ］－1－（4－ベンジル才キシクェ ニル）エタノール510mg 父び2－（3ーメサルビリ シンー2ーイル）醮酸エチル315mgかキシレン10 m1溶液を 13 時間加熱還流した。溶煤を減圧下留去
し，晋渣をシリカゲルカラムタロマトダラフィー（溶出沎；タロロホルムノメタノール＝100，1）にで精製
 ［2－（4－ベンジルウキシフォニル）－2－ヒドロキ シエチル］アミノ］エチル］－2－（3ーメチルピリジ ンー2－イル）醉酸アニリド 256 mg を得た。【0029】寥考例4
4＇－［2－［ベーベン゙ジル－N－［2－（4－ベンジ ルオキシフェニル）－2－ヒドロギシエキル］アミノ］ エチル］－2－（4－メチルピリジン－2－イル）酢酸 アニリドを参考洌ふと同様の方法にて合成した。【0030】参考例5
4＇－［2－［ベーベンジル－N－［2－（4－ベンジ ルキッシフェニル）－2－ヒドロキシェキル」アミノ」 エチル］－2－（3－メチルピリジンー6－イル）醮酸 アニリドを参考例3と同様の方法にて合成した。
【0031】参考例6
4’－［2－［ベーベンジル－N－［2－（4－ベンジ ルオキシーェェニル）－2－ヒドロキシェォル］アミノ］ エキル］－2－（2－メキルビリジンー6－イル）酰酸 アニリドを参考例らと同様の方誌にて合成した。
【0032】参考例7
2－（2－ピリジル）唒酸メチル5．1．2g及び4－ア ミノフェニルフセセトニトリルら．14gかキシレン50
 し，得られた粗結晶をジエチルエーテルにく洗争するこ とにより，4＇－シアノメチルー2－（2－ビリジル）

【0033】参考例8
4－－シソノメメルー2－（2．4－ジメキルピリジン －6－イル）酕酸アニリドを参考例7と同様の方法して合成した。
【00341参考例9
4＇－シアノメチルー2－（2－ピリジル）醮酸アニリ ド5． 12 g のテトラヒドロフラン50ml，エター N40m1溶液にシネーニッケル及び濃アンモニア水2 0 ml 1を加えた。反応溶液を常圧水素雾囲気下，旺温に て3時間摜拌した。不溶物をセライトを用いて除去した後，溶媒を減圧下留去した。得られた抟渣にトルコン5 0 ml 及びバンズアルデヒド2．1mlを加えた。この反人谵合物をディーンスターク装惪により水を除去！な がら3時間加熱還流した。溶媒を減圧下留去した後，得 られだ残楿のメタノール 50 ml 溶液に氷冷下水素化ホ ウ素ナトリウム1．0gを加きた。反応液家牢温たて 1
 ホルム，能和炭酸水函ナトリウム水溶液教加え，有機屏
 た。得られた残啙をシリカダルカラムタロマトダラクィ —（溶出液；タロロホルムノメタノール＝50 1 1）で精製す呂ことにより，4’－（2－ベンジルアミノエホ ル）$-2-(2-$ ビリジル）酶酸アニリド4．63g得た。
【00351参考例10
4＇－（2－ベンジルアミノエキル）－2－（2，4－ ジメキルビリジンー6ーイル）醴酸アニリドを参考例9 と同様の方法にて合成した。
【00361点菏列11
4＇－（2－ベンジルアミノエ于ル）－2－（2－ピリ
ジル）醮酸アニリド338mg，4，ーベンジルオキシ フッナシルブロ ミド299mg，ジイソプロビルエチル
甘た反応混合物を3時間加熱還流した。不溶物を沪去 し，沪液を減压下濃維した。得られた㱯渣かメタノール 10 ml 1溶液に氷冷下水素化小ウ素十トリウム 120 m ほを加えた。反応溶液を室温にて1時間摫詊した彭，溶媒を減府下留去した。臓榃にタロロホルム，䳌和炭酸水

 ルカラムタロマトリタラクィー（溶出液：クロロホルム メタノール＝ 100 ノ1）で精製ずることにより，4 －［2－［N－ベンジル－N－［2－（4－ベンジル才 キシフェール）－2－ヒドロキシエチル］アミノ］エキ ル］－2－（2－ピリジル）醮酸アニリド 283 mg を得た。

【00371参考例12
4＇－［2－［ベーベンジル－N－［2－（4－ベンジ ルオキシフェニル）－2－ビロキシエチル］アミノ］ エォル］－2－（2，4－ジメテルビリジンー6－イ ル）酰酸アニリドを参考例 11 と同様の方法にて合成し た。
【00381参考例13
4＇－［2－［ベーベンジル－N－［2－（3－ベンジ
山才ホシフェニル）－2－ヒドロキシエォル］アミノ］
エチル・－2－（2－ビリジル）酢酸アニリドそ参考例
11 と同様の方法にて合成した。
【0039】参考例14
4’－［2－［ベーベンジル－N－［2－（2－ベンジ
ルオキシフォニル）－2－ヒドロキシェまル］アミノ］
エホル］フェニル］－2－（2ービリジル）酹㝤アニリ
ドを参考例11と同様の方法にて合成した。
【0040】参考例15
4－メチルアミノクェニルアセトニトリル5．14g，

（3ージメホルアミノプロピル）カルボジイミド㭚酸蝶 10． 5 g ，1－ヒトロロシシベンゾトリアゾール 7.6 2 g にテトラヒドロフラン50ml，ジメチルホルムア

 キルで希釈した铲，有機層を飽和炭酸水素ナトリウム水溶液で洗浄し，無水流酸マグネシーウムで軲燥した。溶媒 を減圧下留去まることにより得られた娍㴡きシリカダル カラムクロマトダラフィー（溶出体；タロロホルムノメ
 －シアノメテルーN－メテル－2－（2－ピリジル）酢㜔アニリド6．07をを得た。
【0041】参考例16
4．－（2－ベンジルアミノエチル）－N－メキル－2
法にて合成した。
【0042】参考例17
4＇－［2－［ベーベンジル－N－［2－（4－ベンジ ルオ央シフェニル）－2－ヒドロキシエチル］アミノ］ エキル・－N＇－メキルー2－（2－ビリジル）酢酸つ ニリドを参考例11と同様の方法にて合成した。【0043】参考例18
N－（5－アセチル－2－ベンジルオキシフェニル）又 タンスルホナさド1．03gのテトラヒドロフラン20 Inl溶液につェニルトリメキルアンモニウムトリブロミ ド1．288を扠えた。反応溶液を室温にく0．75時
 し，得られた粗結晶莹夕ロロホルムーへキサンより結晶化した。得られた結㫛及び4＇－（2－ベンジルアミ エチル）－2－（2－ビリジル）醮酸アニリド1．1．1． gゆ混合物に2ーブタノジ20m1，ジイソブロビルエ

チルフミン゚ 0.56 m 1 萦順次加えた。反応混合物を 1時間加菱澴流し，不涳物を沪去した。沪液を減圧下濃縮 し，得られた倩湾のメタノール20m1灌渡に水冷下，水素化ボ素ナトリウム 160 mg を加えた。反応溶液 を窒温下O．5時間摬倳した後，反応溶液に再び水素化 ホウ素ナトリウム470mgを加えた。反心溶液を空温
渣に眺酸工チル，能和炭酸水素ナトリウム水㯴液を加民，有警層を無水硫酸マグネシウムで軲煤後，㯖媒を減庄下留出した。残査をシリカダルカラムタロマトダラク ィー（溶山液；タロロホルムイメタノールー100ノ
1）で精製するどとぼより，4’－［2－［ N－ベンジ ル－N－［2－（4－ベンジルオキシー3ーメタンスル ホコルアきノフォニル）－2ーヒドロキジエキル・アミ ノ1エホル］－2－（2ーピリジル）酢酸アニリド92 0 mg を得た。
【0044】参考例19
4－［2－LN－ベンジル－N－ N 2－（4－ベンジ ルオキシーラーニトロワェニル！－2－ヒドロキシエキ ル］アミノ］エかル］－2－（2－ピリジル）酢輯アニ リドを参考例11と同樣の力法にを合成した。
【0045】参考例20
4＇－［2－［N－ベンジル－N－［2－（3－ア゚シ） －4－ベンジルオキシフェニル）－2－ヒドロキシエ寸 ル］アミノ］エみル］－2－（2ーピリジル）酢酸アニ リドを参考例2も同様め方法にく合成した。
【0046】参考例21
4＇－［2－［N－バンジル－N－［2－（3－サミ） －4－ベンジル才キジクェニル）－2－ヒドロキシエキ ル］アミノ］エネル］－2－（2－ビリジル）酢睃アニ リド 670 mg のクロロホルム10m1の㳰液にギ酸一無水酶㪜混合物（3：5）1．0m1を加え，室温で7
 5m1と水1．0m1と炭酸小トリウム490mgを川

 え，有機層を能和食塩水を洗净した続，無水硫酸マグネ シウムで乾燥した。溶媒庄淢圧下留去し，碃渣をシリカ ゲルカラムクロマトダラフィー（溶出液；クロロボム メタタール＝50 1）で精製して4－L2－N －ベンジルーN－［2－（4－ベンジル才キシー3－ホ ルムアミドフェニル）－2－ヒドロキシエキル］アミ ノ］エチル］－2－（2－ピリジル）酶酸アニリドラ9 －minを得た。
【0047】参苦例22
4＇－［2－［ N－ベンジル－N－［2－（3－アミ） －4－ベンジルオキシワォニル）－2－ヒドロキシエキ ル］アミノ］エキル］－2－（2－ピリジル）酢酸アニ リド 640 mg を無水酢酸 20 ml 1を加民，混合物を室溢で2時間攪柈した。溶媒を減圧留去し，晛渣にメタノ

ール30m1と1N水酸化かトリウム水落液 5 ml 1を加

 で順次洗浄した德，無水硫酸マグネシウムで故燥した。
 ダラフィー（溶出㳸；タロロホルム，メタノール＝50 －1）で精製して4’－ $12-\lfloor N-L 2-(3-ア セ$ タミドー4－ベンジルウキシフェニル）－2－ヒドロキ シエォル］－Nーバンジルアミノ］エォル］－2－（2 ービリジル）醮酸アニリド 570 mg 室得た。
【0048】参考傑23
2－－ N －パンジル－N－［2－（4－ニトロワェニ ル）エォル］アミノ］－1－（2－ベンジルオキシフェ ニル）エタノールを参考例1と同様の方法で合成した。【0049】参考例24
2－－N－ベンジル－N－［2－（4－アミノフェニ
ル）エチル］フミノ］－1－（2－ベンジルオキシンフェ ニル）エタノールを参芕例2と同様の方法にて合成し た。
【0050】参考例25
4＇－［2－［ベーベンジル－N－［2－（2－ベンジ
ルオキシフェコル）－2－ヒドロキシエチル］アミノ］
エチル］－2－（1－ペンジルイミダゾール－2－1
ル）酶酸アニリドを参考例ヨと同栐の方法にて合成し
た。
【0051】参考例26
2－（4－ニトロフェニル）エチルアシン8．2gのア
 オキジフェサシルブロミド 7.5 g を加民た。反応溶液 を室温にて0．5時間擐拌した後，生じた不溶物を沪別 し，渀媒の適当量を澸干下にて加熱することなく留去し
化布ウ素小トりウム2．5』を氷冷下加え，室温にで
洔間攪拌した。溶媒を減圧下留去し，残渣をクロロホル ム友び飽和黄酸水素ナトリウム水溶夜に溶解し，有機層 き無水硫酸マダネシウムで乾燥した。溶煤を堿圧下留去 L，得られた残楿をシリカゲルカラムタロマトグラフィ
精製をることにより，1－（4－ベンジルオキシーェニ ル）$-2-$ L L2－（4－ニトロフェニル）エキル」ア ミノ］エタール4．368を得た。
【0052】参考例27
1－（4－ベンジルオキシフェニル）－2－［［ 2－ （4－ニトロクェニル）エキル］アミノ］エタノール 4． 29 g ，ジーt－ゾチルジ酸エステル2．398
 した。溶煤を減圧下留去し得られた嘘滔のメタノール1 50 ml 溶波に 10% パラジウムー炭素1． 1 g这加
物をセジイトを用いて除去した後，沪波をを減圧下澧緗す

ることにより， N －［2－（4－クミノフェニル）エチ ル］－N－［2－ヒドロキシー2－（4－ヒドロキシフ ェニル）エチル－カルバミン酸 t －ブチルエスデル 3． 53 g を得た。
［00531参考例28
N －［2－（4－ゾミクフェニル）エまル］－N－－ 2 ーヒドロキシー2－（4－ヒドロキシフェニル）エチ ル］カルバミン酸 \quad ーブチルエステル513mgを2 －（2－アミノカアゾール4－イル）䤀酸243mgo ジメチルホルムアミド溶液15m1に1ーエチルー3ー
 320 mg と1－ヒドロキシベソゾトリア゚ソール240 mg を加え，室温で 14 時間搨拌した。溶煤を減圧留去
 で洗浄した。有機層を無水硫酸マグネシウんて韩燥した後，溶煤を減圧留去して得た残㴡をシリカゲルカラムタ ロマトダラクィー（溶出渡；クロロホルムノメタノール
 アシノキアゾールー4ーイル）「セセタミド］フェニル エホル］－N－［2－ヒドロキシー2－（4ーヒドロキ シフェニル）エチル・カルバミン酸 tーブチルエステ ル570mge 紫得た。
［0054］実施例1
4＇－［2－［N－ベンジル－N－［2－（4－ベンジ ルオキシフォニル）－2ーヒドロキシエキル］アミノ゙ エホル］－2－（4－メボルピリジンー2－イル）酶酸 アニリド253mgのメタノール10m1溶液に10\％

 て沪去した啳，沪液を減圧濃綃した。得られた残渣す入

 エタノールージエキルエーテルで絓晶化した绕，粗結晶 をメタノールーエタノールで再棭唱することにより4， －［2－［［2－ヒドロギシー2－（4－ヒドロキミン ェニル）エチル］アシノ］エチル－－ ビリジンー2－イル）酶酸アニリド 塩酸塭 112 mg を得た。
［0055］美施例2
4－［2－L［2－ヒドロキシー2－（4－ヒドロチ シフェニル）エチル・アミノーエォル］－2－（3－メ チルピリジンー6ーイル）酢酸アニリド 塩酸塩を実施例1と同様の方法にて合成した。
【00561审施例3
4）－［2－［［2－ヒドロキシー2－（4－ヒドロキ シフェニル）エキル］アミノ「エキル・2－（2－ビ
 にて合成した。
【00571実施例4

シフェニル）エチル］フミノ］エチル］－ $2-$（2，4 －ジメチルピリジンー6－イル）酰酸アニリド塩酸塩を実施例1と同様の方洁にて合成した。
【0058】実施例5
4＇－L2－LN゙ーベンジル－N－L2－（4－ベンジ
ルオキシフェニル）－2－ヒドロキシエキル］フミノ］
エチル」－2－（3－メチルピリジン－2－イル）醡酸 ブニリド 236 mg のメタクール 10 m 1溶液に10\％ パラジウムー炭素120mgを加えた。反応湾液堂常压水素雰囲気下4洔間摬拌した。不溶物穵セライト觉用い
 タクール溶濾に 4 N 塩化水素一醰酸上寸ル溶液 0.1 m 1 を加え，澹煤を減圧下留去した。残洫をシリカラ゙ルカ ラムタロマトタララクィー（溶出液；クロロホルムノメタ ノール＝5（1）にて精製ず志ことにより，4－－2 －［－2－ヒドロキシー2－（4－ヒドロキシフェニ ル）エキル］プミノ］エキル］－2－（3－メチルビリ ジンー2－イル）㼍酸アニリド 塩駼塩 121 mg を得 た。
【0059】実施例6
4’－［2－［［2－ヒドロキシー2－（4一ヒドロキ シフェニル）エチル］アミノ］エチル］－2－（2－メ ホルビリジン－6－1ル）酸酸アニリド 塩酸塩を実施到ちと同様の方法にて合成した。
【0060】実施例7
4’－［2－［［2－ヒドロキシー2－（3ーヒドロキ $シ フ ェ ニ ル) ~ エ チ ル] ア ミ ノ] エ チ ル]-2-~(2-ヒ ゚ ~$
 にて合成した。
【0061】実施例8
4’－［2－［［2－ヒドロキシー2－（2ーヒドロキ シフェニル）エチル］アシノ］エチル］－2－（2－ピ リジル）䤏酸アニリド 塩酸塩を实施例5と同様の方法 にで合成した。
【0062】実施例9
2－（1－ペンジルイミダゾール－2－イル）－4’－ ［2－［－2－ヒドロキシー2－（2－ヒドロキシフェ ニル）エチル］アミノ］エチル］酢酸アニリドの． 57

【0063】実施例10
4’－［2－［［2－ヒドロキジ－2－（4－ヒドロキ シフェニル）エチル］アミノ］エチル］－N－メチル 2－（2－ピリジル）酯酸な゙ニリド フマル酸監を実施例5と同様の方法にて合成した。

【0064］実施峢11
$\mathrm{N}-$［2－［4－［2－（2－アミノチアソール－4－ 1ル）アセタミド］フェニル エチル］－N－［2－ヒ ドロキシー $2-(4-$ ヒドロキシフェニル）エホル］力 ルバミン酸 t －ブキルエステル 490 mg のトリフル
 を減历下留去し，残渣にテトラヒドロフタン20m1，

逆㤢力ラムタロアトダラクイー（溶出液；水ノメタノー ルー2 11 ）で精製して， $2-(2-$ アミノキアゾール －4－イル）－4－［2－［［2－ヒドロキシー2－ （2－ヒドロキジフェニル）エキル］アミノ］エキル
酶酸アニリド 0.5 塩酸塩 1．5トリフルオ口酢酸塩 340 mg な得た。
【00651実施例12
4）－［2－［［2－ヒドロキシー2－（4－ヒドロキ
シーアーメタンスルホナミドフェニル）エキル」アミ
・エチル］－2－（2－ピリジル）酢酸戸ニリド 塩酸镓を実旃例1と同様の方法にて合成した。
［0066］実施例13
4＇－［2－［［ 2 －（3－ホルムアミド－4－ヒドロ キシクエニル）－2－ヒドロキシエキル・アミノエホ ル］－2－（2－ビリジル）醀酸アニリド 塩酸塩を実施例1と同様の方法にで合成した。
［00671実施例14
4－［2－［［2－（3－アセタミドー4－ヒドロキ シフエニル）－2－ヒドロキシエホル」クミノ」エか
ル」－2－（2－ビリジル）跳アニリド 塩酸塩を実施例1と同様の方法にて合成した。
【00681以下，表1～4に参考例化合物の物理化学的性状を，表5～6に実施列北合物の物理北学的性状密並でた表7に実施例化合物の構造式をそれだれ示す。表中の記号は以下か意味を表す。
Rex．No．：参考例糗号
Fix．No．：害施例香号
sal．：塩
$\mathrm{D} \wedge \mathrm{T} \Lambda$ ：物理化学的性状
MS（ mL / z ）：質量分折值（ m / z ）
NMR：核磁気共鳴スペタトル（TMS内部䧣萑）
$m p$ ：融点
$\mathrm{OH}-\mathrm{pos}$ ：フェニル基における水酸基の置換位置
［0069］
【表1】

Lox．No．	D \triangle T
I	```MS (ml'z):481 ['M H) +' NMN (CDCl3)``` ```4.02 (1H, dd, T = 10.0. 40Hz), 505 (2F, s), 6.92 - 0.97 (2H, m), 7.10-7.45 (14H,m), 8.07-8.13 (2H,m)```
2	$\mathrm{MS}\left(\mathrm{ma}^{\prime} \mathrm{m}^{\prime}\right): 453[\mathrm{M}+\mathrm{E}) \mathrm{H}_{-}^{-}$ Note（ CDCH_{4} ）
3	```MS (m, m ! 586 ['M + H) +- NMTE (CDCleg) \delta :2.40(3H, s), 255-2.98(6H, m), 3.50-3.60(2H, m), 3.B7 (2H, s, , 3.94 (1H, d, J = 13.2Hz), 1.022 (1H, dd, J=10.0, 4.0Hz), 5.05 (aH, 4), 6.02-6.97 (2H, m): 7.1星-7.45 (18H, m), 8.40-8.50(1H,m), 4.65 (1H, brs)```
4	```MS (m/m):586 ['M (M) +- NMF (NTJClf}``` ```3.71 (1II, bre). 3.80 (2IL, s), 3.94 (1II, c, J = 13.6ILz), 4.57(1H, dd, J = 9.6, 4.0Hz), 5.04 (2.H, s), 6.92-6.97 (2H, m), 7.09-7.07 (2H,m), 7.12(1H,s):7.18-7.4.6 (15H,m), 8,16 (1H, d, J= 4,8HIL), 9,76 (1E, brg)```
5	 NMI（ $\mathrm{CDCl}_{\mathrm{f}}$ ） 9.71 （ $\mathrm{HH}, \mathrm{brs}$ ）
θ	MS（ $\mathrm{m}, \mathrm{m}^{-}$）： $\mathbf{6 8 6}[\mathrm{M}+\mathrm{H}){ }^{+-}$ NMR（ CDCl_{2} ） 6．04（2H，s）， $690-6.94(2 H, m), 7.00-1.11\left(4 \mathrm{~L}_{\mathrm{L}} \mathrm{m}\right)$ ） $7.19-7.43(14 \mathrm{II}, \mathrm{m}), 7.57(1 \mathrm{~T}, \mathrm{~L}, \mathrm{~J}=8.0 \mathrm{TL} \boldsymbol{2}), 10.20\left(1 \mathrm{I}_{r} \mathrm{brs}\right)$
7	MS（ m, m ）： $252\left[(\mathrm{~m}+\mathrm{H})+{ }_{-}^{-}\right.$ NIVIR（CDC1 ${ }^{2}$ ） $7.5 \mathrm{E}-7.61(\mathrm{dI}[\mathrm{m}), 7.71(1 \mathrm{II}, \mathrm{dt} . \mathrm{I}-1 . \mathrm{m}, 7 . \mathrm{EII} \mathrm{s})$ ， $8.6 \mathrm{~B}\langle 1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.4 \mathrm{~Hz}\rangle, 10.04(1 \mathrm{H}, \mathrm{brs})$

Texax Na	D A T A
8	```MS (m/q) : 280 [(M + H) --] NNRR (CDClg) 8:2.31(3H, s), 2.59(3H, s), 3.71(2H, s), 3.77 (2H, s), 6.91(1H, क), 6.93(1H, क), 7.24-7.23 (EH,m), न.66-7.80 (2H,m), 10.60 (IH, brs)```
9	 NMR（CCDCla） t ：2．75－2．81（2H，m），2．83－2．89（2H．m），3．78（2H，s）， $3.66(21, ~ s), 7,11-7.16(2 \mathrm{E}, \mathrm{m}), 7.20-7.3 \mathrm{~g}(7 \mathrm{H}, \mathrm{m})$ ， $7.44-7.48\left(2 H_{4} \mathrm{~m}\right)_{,} 7.89\left(\mathrm{LE}_{4} \mathrm{dt}, \mathrm{J}=2.6,8 . \mathrm{JH} x\right)_{4}$ 8.61 （ $1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.2 \mathrm{~Hz}$ ）， $972(1 \mathrm{H}, \mathrm{brs})$
10	MS $\left(\mathrm{m} / \mathrm{z}^{\prime}\right): 374[(\mathrm{M}+\mathrm{H})-]$ NAR（CLCH）
11	MS $(\mathrm{m} / \mathrm{z}): 672[(\mathrm{M}+\mathrm{H})-]$ NMR（ COCl_{4} ） $8: 2.54-2.94\left(6 \mathrm{H}_{4} \mathrm{~m}\right), 3.50\left(\mathrm{IE}_{n} \mathrm{~d}, \mathrm{~J}-13.0 \mathrm{~Hz}\right) .380(2 \mathrm{H}, \mathrm{s})$, 3.95 （ $1 \mathrm{H}, \mathrm{d}, \mathrm{J}-19,5 \mathrm{~Hz}$ ）．4． $57(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}-100,4,0 \mathrm{~Hz})$ ） $5.04(2 \mathrm{H}, \mathrm{m}), 8.90-6.94(2 \mathrm{H}, \mathrm{m}), 7.04-7.08(2 \mathrm{H}, \mathrm{m})$ ， $7.18-7.48$（ $\mathrm{LEII}, \mathrm{m}), 7 . \mathrm{Bg}(\mathrm{ILI}, \mathrm{dt}, \mathrm{J}=2.0,8.0 \mathrm{LIz})$ ． 8.62 （ $1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.8 \mathrm{~Hz}$ ）， 9.72 （ $1 \mathrm{LL}, \mathrm{bra}$ ）
12	```MS (m,/z): 598 [(M-H) --] NMR (CNCOM) \delta:2.30 (3L, s), 2.50-3.00 (9LI, m), 3.56 (LLL, d, J = 13.7Hz), 3.60-3.80 (3H, m), 3.94 (LE, d, J= L3.2Hz), 5.04 (2H, s), 6.B0-7.80(20H,m), 1025 (1H, bra)```
13	MS $(\mathrm{m}, \mathrm{m}): 672[(\mathrm{M}+\mathrm{H})-]$ NMRP（CDCLly） $6.88-6.90(2 \mathrm{H}, \mathrm{ml}), 6.9 \mathrm{~s}-6.98(1 \mathrm{H}, \mathrm{m}), 7.08-7.08(2 \mathrm{H}, \mathrm{m})$ ， $7.18-7.48(15 \mathrm{H}, \mathrm{m}), 7.6 \mathrm{x}$（ $1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=8.0,2.0 \mathrm{~Hz}$ ）． $8.80-8.68\left(1 \mathrm{H}_{\mathrm{r}} \mathrm{m}\right), \mathrm{g} .72$（ $\left.\mathrm{LE}, \mathrm{brg}\right)$
14	```MS (m,z z) : 5%% [(M+1) +] NME: (CNCly) \varepsilon:2.47-2.90 (6H, m), 3.49(1F, d, J=13.6Hz), 5.01-5.11(9H, m), 6.59 (1F, d, J=7.2Hz), 6.94 - 8.900 (3H, m), 7.18-7.52 {16H, m), 7.69(1H, 1t, J = B.0Hz, J = 2.0Hz), 8.60-8.64 (1H, m)* 9.68 (1H, s)```

Rex．No．	D A T A
15	```MS (ml/m) : 266[(M-ET) +] NMR (CDCL2) a: 3.6T (2H, brg), 3.77 (2FL, s), 7.10-7.28 (1H, mi), 7.33-7.35(9IT, m), 7.53-7.65 (1II, m), 8.43 (1II, bod, J=3.6IIz)```
16	$\mathrm{MS}(\mathrm{m} / \mathrm{z})$ ： $360[(\mathrm{M}-\mathrm{LD})+]$ NLWR（CLCCI） $\begin{aligned} s: & 2.80-2.94\left(6 \mathrm{H}, \mathrm{~m}_{3}, 3.29\left(\mathrm{EH}_{1} \mathrm{~s}\right), 3.67(2 \mathrm{H}, \mathrm{~S}), 3 . \mathrm{B2}(2 \mathrm{H}, \mathrm{~s}),\right. \\ & 7.08-7.34(11 \mathrm{H}, \mathrm{~m}), 7.68-7.58(1 \mathrm{H}, \mathrm{~m}), 8.46\left(1 \mathrm{H}, \mathrm{~d}_{3} \mathrm{~J}=4.4 \mathrm{~Hz}\right) \end{aligned}$
17	```MS (mL/z) ; 586「(M-E) +7 NNR (CLCIE) $:2.58-2.98(6H, mi, 3.29(9F, s), 9.54-3.68(3H, m), 3.96 (1H, d, J=13.6Hz), 4.06-4, 4, (1H,m), E.55 (2H, s), 6.90-6.86(2H, mi, 7.05-7.44(18H, m), 7.08-7.08(1H, m), 8.47 (1H, d, J=4.4.za)```
18	MS $(\mathrm{m} / \mathrm{z}): 665[(\mathrm{M}-\mathrm{EI})+]$ NNR（CJCle） $\delta: 2.50-2.91$（9II，mi， 3.55 （1II， $\mathrm{d}, \mathrm{J}=13.61 \mathrm{Iz}$ ） 2.56 （2II， s ）， $3.94(1 \mathrm{HI}, \mathrm{d}, \mathrm{J}=13 . \mathrm{BEL}), 4.86$（ $1 \mathrm{~B}, \mathrm{da}, \mathrm{J}=10.0,3 \mathrm{BHz})$ ， 5.08 （ $2 \mathrm{H}, \mathrm{s}, 8,8.83$（ $\mathrm{LE}, \mathrm{brs}$ ）， 0.94 （ $\mathrm{JLL}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}$ ）， $7.04-7.12$（3H，mi．7．22：－ 7.48 （ $15 \mathrm{H}, \mathrm{m}$ ），
19 20	
2	

Rex．No．	D A T A
22	MS（ m / z ）：6es $[\mathrm{M}-\mathrm{H})+$ ］ NNR（ CDCl_{3} ） $s: 2.4$（ $9 \mathrm{H}, \mathrm{s}$ ）， $2.58-2.87$（ EH, m ）， 9.54 （ $1 \mathrm{H}, \mathrm{d}, \mathrm{J}=19.2 \mathrm{~Hz}$ ）， $3.74(1 \mathrm{H}, \mathrm{brs}), 3.86\left(2 \mathrm{H}_{n} \mathrm{~s}\right), 3.94$（ $1 \mathrm{H}_{\mathrm{n}} \mathrm{d} \mathrm{J}=13.2 \mathrm{~Hz}$ ． $4.56-4,64(1 \mathrm{H}, \mathrm{m}), 5.10(2 \mathrm{H}, \mathrm{s}), 6,90(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{Hx})$ ， $8.28-8.32(1 \mathrm{H}, \mathrm{m}), 8.60-8.65(1 \mathrm{H}, \mathrm{m}), \mathrm{E} .69(1 \mathrm{H}, \mathrm{s})$
28	```ME (m,z):483 [(M-H) +] MNR (CDCl3)``` ```385 (1H, d, J=18.2Hz), 5.00-5.14 (9H, m), 6.92-7.59 (16H,m), 8.03-8.08 (2H, m)```
34	```MS (m/z):453[(M--H)+] NMR (CDCly) z :246-2.92(6EL,m), a.40-3.80(3H, m), 3.87 (17, d, J-19.6Hz) 5.00-5.15(3H, m), 6.55-6.61(2H, m), 6.82-6.91 (3H, m), 6.95-7.01(1H, mu), 7.17-7.43(11H, T\pi), 7.4月-7.53(1 (H, m)```
85	```MS (m,z NNR (CLCl3) s :2.46-2.92 (6H, m), 8.60 (1H, d, J = 1.9.f(z), 3.62 (1H, brs),``` ```0.87-7.54 (25H, m), 20.83 (1H, brs)```
28	```MS (m,z NNR (CDCl3) 5:2.73 (1H, dd, J = 8.8, 12.4Hz), 2.84-3.30 (5H, m), 4.64(1H, dd, J=3.6, 8.8Ez), 5.05 (2H, s), 6.98-6.98(2H, m), 7.28-7.45 (EH, m), 8.13-8.17 (2H, m)```
37	```ME (m/z):371[0N H) -] MMNE (CDCls) 8 : 1.48 (9H, s), 2.55-2.72 (3H,m), 3.15-3.53 (4H, m), 4.72-4.43(1H, m), 6.58-6.63(2H,m), 6.73-6.79 (2H,m), 6.85-0.97(0H, mi), 7.13-7.19 (%H,m)```
24	MS $(\mathrm{m}, \mathrm{x}): 513[(\mathrm{M}-\mathrm{F})+]$ NMR（DMSO－de） $3.44(2 \mathrm{H}, \mathrm{5}), 4.59(1 \mathrm{H}, \mathrm{krs}), 5.16-5.25(1 \mathrm{H}, \mathrm{m}), 6.29(1 \mathrm{H}, \mathrm{s})$ $6.69(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 6.89(2 \mathrm{H}, \mathrm{m}), 7.0 \overline{0}-7.12$（ $4 \mathrm{H}, \mathrm{m})$ ， $7.49\left(2 \mathrm{H}, \mathrm{d}_{1} \mathrm{~J}=8.0 \mathrm{~Hz}\right), 8.31$（ $1 \mathrm{H}, \mathrm{s}$ ）， 9.23 （1H，s）， 9.99 （1H，s）

$\lfloor 0073$ 】
【表5】

Ex．No．	D A T A
1	mp ：224－226 C NMR（DNSO－de $6.00(11 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.01 \mathrm{Iz}), 6.74 \quad 6.79(2 \mathrm{HI}, \mathrm{m}), 7.08 \quad 7.12(1 \mathrm{I}, \mathrm{m})$ ． $7.14-7.23(\mathrm{EH}, \mathrm{m}), 7.54-7.31$（2（2H，mi）， $8.31-8.37(\mathrm{HH}, \mathrm{m})$ ， $9.47(1 \mathrm{H}, \mathrm{brs}), 10.28(1 \mathrm{H}, \mathrm{bra})$
2	$\mathrm{mp}: 21.5-216^{\circ} \mathrm{C}$ NMT：（ $\mathrm{L} M \mathrm{MSO}-\mathrm{d}_{\mathrm{E}}$ ） $5.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.2 \mathrm{~Hz}), 6.74-6.79(2 \mathrm{H}, \mathrm{m}), 7.14-7.20(5 \mathrm{H}, \mathrm{m})$ ， $7.28(1 \mathrm{H}, \mathrm{d}, 7-8 .(\mathrm{Tz}), 7.53-7.60$（3H，-m$), 8.81-8.34(1 \mathrm{H}, \mathrm{m})$ ， $9.47\left(1 \mathrm{H}_{0} \mathrm{brs}\right), 10.27(1 \mathrm{H}, \mathrm{brs})$
3	mp：211－212C NMP（DMSO－del $6.00(1 \mathrm{HL}, \mathrm{d}, \mathrm{J}-3.2 \mathrm{~Hz}), 6.74-6.79$（2 IL, m ）， $7.14-7.20(4 \mathrm{II}, \mathrm{m})$ ， $7.76(\mathrm{LH}, \mathrm{dt}, \mathrm{I}=2.0 .8 .0 \mathrm{~Hz}), 8.47-8.51(\mathrm{LH}, \mathrm{m}), 8.71(1 \mathrm{HI}, \mathrm{brs})$, $8.91(1 \mathrm{H}, \mathrm{brs}), 9.16(1 \mathrm{H}, \mathrm{bs}), 10.2 \mathrm{c}(1 \mathrm{~F}, \mathrm{brs})$
4	$\mathrm{mp}: 194-196^{\circ} \mathrm{C}$ NMR（DMSO－de वं ： $2.26(3 \mathrm{H}, \mathrm{s}), 2.39(3 \mathrm{H}, \mathrm{E}), 2.86-3.18\left(6 \mathrm{~F}^{-}, \mathrm{m}\right) .3 .74(2 \mathrm{H}, \mathrm{s})$ ， $4.81-4.90$（ $11 \mathrm{II}, \mathrm{m}$ ），6．00（ $\mathrm{IL}, \mathrm{d}, \mathrm{J}=3.6[\mathrm{LI}), 6.74-6.80(2 I \mathrm{I}, \mathrm{m})$ ， B．90（ $1 \mathrm{H}, \mathrm{s}$ ）， $7.01(1 \mathrm{H}, \mathrm{s}), 7.09-7.20(4 \mathrm{H}, \mathrm{m}), 7.55-7.81(2 \mathrm{H}, \mathrm{m})$ ， $9.49(1 \mathrm{H}, \mathrm{bra}), 10.33$（ $\mathrm{IH}, \mathrm{bra}$ ）
5	```MS (m/z):406[(M+H)+ NMR (DMSO- - de) 0: : 2.31(3H, s), 2.84-3.16 (6H, m), 3.87 (2H, s), 4.79 (1II, d, J=8.0(Tz), 5.92 (III, krs), 6.73-6.79 (2TI, m), 7.18-7.21(5H, m), 7.53-7.80 (3H5, m), 8.27-8.93 (1H, m). g.44 (1H, brs), 10.23 (1H, brg)```
θ	```MS (m,/x) : 406 [(M+H) +- NMH: (UNSO- - DE) f: 2.44 (3H, s), 2.80-3.10(6H, m1), 3.7n (2H, s), 4.70-4.76 (1H, m), 5.81(1H, brg), 6.72-6.77 (2FH, m), 7.10-7.2(1)(6H, m), 7.53-7.66 (4H, m), 9.44 (IEL brs), 1024 (1H, lrs)```
7	

Ex．No．	D A T A
8	MS $(\mathrm{m} / \mathrm{g}): 362[\mathrm{M}-\mathrm{H}]+]$ NNR（DNSO－d ${ }^{2}$ ） $3.34(2 \mathrm{H}, \mathrm{c}), 5.05-5.11(1 \mathrm{H}, \mathrm{m}), 8.79-6.62(2 \mathrm{H}, \mathrm{m})$ ， $7.09(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=8.9 \mathrm{~Hz}, \mathrm{~J}=1.5 \mathrm{Hzz}), 7.17$（ $2 \mathrm{HF}, \mathrm{c} . \mathrm{J}=8.0 \mathrm{~Hz}$ ）， $7.25-7.10(3 \mathrm{H}, \mathrm{m}), 7.56(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz})$ ． $7.75\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=8.3 \mathrm{~Hz} z_{4} \mathrm{~J}=2.4 \mathrm{~Hz}\right), 8.45-8.50\left(\mathrm{H}_{4} \mathrm{~m}\right)$ ， $10.23(1 \mathrm{H}, \mathrm{s})$
9	```MS (m/z NNR (DMSD - de) \delta :2.84-300 (2H, m), 3.07-3.18 (8H, m), 3.79 (2H, 8), 5.LБ-5.20(1H, m), Б.2a (2H, s), 6.64 (1.2H, s), (g.80-6.87(5h, m), 7.08-7.40 (10H, m), 7.50-7.57 (组, m), 10.38 (1H, brs)```
10 11	MS（ m / z ）： 406 「 $(\mathrm{M}-\mathrm{H})$ NOTR（DMEID－de） $6.52(2 \mathrm{H}, \mathrm{s}), 6.70-6.75(2 \mathrm{H}, \mathrm{mi}), 7.15-7.80(\mathrm{BH}, \mathrm{m})$ ， $7.60-7.70(1 \mathrm{H}, \mathrm{m}), 8.85-8.95$（ LH, m ） MS（m／ze ： $413[(\mathbb{M}-\mathrm{IL} \mid 1]$ NNR（CMSO－${ }^{\text {d }}$ ） 6．00）（ 1 H, brs）， $5.55(1 \mathrm{H}, \mathrm{s}), 6.77(2 \mathrm{ZH}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz})$ ， $7.15-7.70(4 \mathrm{H}, \mathrm{m}), 7.53(9 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.55(1 \mathrm{H}, \mathrm{hrs})$. $8.67(1 \mathrm{H}$, brs） $8.67(1 \mathrm{H}$, brs $), 8.79(1 \mathrm{H}$, brs）， $9.75(1 \mathrm{H}, \mathrm{brs})$ ， 10.21 （ $1 \mathrm{H}, \mathrm{br} 3$ ）
12	```mp: 191-192 C NWR (TMSO-d s:2.34-3.01 (\(\mathrm{H}, \mathrm{m}, \mathrm{m}, 3.05-3.17(3 \mathrm{H}, \mathrm{m}), 3.84(2 \mathrm{H}, \mathrm{s})\), \(4.78-4.88(11 \mathrm{I}, \mathrm{mi}, 6.05(11 \mathrm{II}, \mathrm{lrss}), 4.92(11 \mathrm{IL}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{CLx})\), 7.08 (\(1 \mathrm{H} . \mathrm{dd} . \mathrm{J}=2.0 .8 .4 \mathrm{~Hz}\)). \(7.14-7.29(4 \mathrm{H} . \mathrm{m})\). \(7.39(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.51-7.60(2 \mathrm{H}, \mathrm{m})\). \(7.75(1 \mathrm{H}, \mathrm{ct}, \mathrm{J}-20.0,8.0 \mathrm{~Hz}), 8.47-8.51(\mathrm{LH}, \mathrm{m}), 10.30(1 \mathrm{H}, \mathrm{brg})\)```
18	me：217－2114 NNR（DNTSN－ Cl ？ $s: 2.80-300(\mathrm{BH}, \mathrm{m}), 3.00-3.20(3 \mathrm{H}, \mathrm{m}), 4.02(2 \mathrm{H}, \mathrm{s})$, 7． $14-7.20(2 \mathrm{H}, \mathrm{m}), 7.51-7.85(4 \mathrm{H}, \mathrm{m}), 8.05(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz})$ ， $8.14-8.24(2 H, m), 8.64(1 H, d, J=4,8 H z), 8.74$（ $1 \mathrm{H}, \mathrm{brs}$ ）， 9.04 （ $1 \mathrm{IH}, \mathrm{brs}$ ）， 9.61 （ $1 \mathrm{HI}, \mathrm{s}$ ）， 10.12 （ 1 IH, s）， 10.47 （ 1 IH, si）
14	tap ：216．222\％ NMR（DMSD－Ag） $4.76-4.8 \mathrm{BS}(1 \mathrm{H}, \mathrm{m}), 6.0 \mathrm{a}(1 \mathrm{H}, \mathrm{d}, \mathrm{d}=3.6 \mathrm{~Hz}), 686(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz})$, $6.94-6.96(1 \mathrm{H}, \mathrm{m}), 7.17$（ $2 \mathrm{H}, \mathrm{d}_{\mathrm{I}} \mathrm{J}-8.8 \mathrm{~Hz}$ ）， $7.26-7.25(1 \mathrm{H}, \mathrm{m})$ ） $7.39(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.57(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz})$ ， $7.76(\mathrm{IH}, \mathrm{dt}, \mathrm{J}=8.0 \mathrm{FLz}, \mathrm{J}=4 . \mathrm{HFz}), 7.81-7.84(\mathrm{H}, \mathrm{m})$ ， $8.50(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.0 \mathrm{CHz}), 8.66(1 \mathrm{H}, \mathrm{brs}), 87 \mathrm{~F}(1 \mathrm{EL}, \mathrm{krs})$ ， $9.81(1 \mathrm{H}$, є）， $9.8 \mathrm{f}(1 \mathrm{H}, \mathrm{s}), 1026(1 \mathrm{H}, \mathrm{s})$

Ex．No．	OH－pos	－ \mathbf{R}^{1}	$-\mathrm{R}^{2}$	B 襄	salt
1	4	－H	－H		HCl
2	4	－H	－H		HCl
3	4	－H	－H	B_{p}	HCl
4	4	－H	－H		HCl
5	4	－H	－H		HCl
6	4	－H	－H		HCl
7	3	－H	－H		HCl
8	2	－H	－H	,	HCl
9	2	－H	－H		$\begin{gathered} 0.5 \\ \text { fumalate } \end{gathered}$
10	4	－ $\mathrm{CH}^{\text {a }}$	－H	S_{N}	fumalate
11	4	－H	－H		$\begin{aligned} & 1.5 \mathrm{TFA} \\ & 0.5 \mathrm{HCl} \end{aligned}$
12	4	－H	$-\mathrm{NHSO}_{2} \mathrm{CH}_{3}$	∞	HCl
13	4	－H	－ NHCHO	∞_{n}	HCl
14	4	－H	－ NHCOCH	S_{n}	HCl

また，表8～9に化学構造式を揭記する化合物生，前記実施例若しくは製造法に記載の方法とは試同様にして，又はそれらに当業者に白明の若干の要法を箈用して。容
合物につき，各種，亚変，䇅何，光学異性体が存在する

啺合があるが，本発明化合物にし前記各異性体か単䝑当
れたもの，又はその混合物が含まれる。
【0076】
【表8】
【化12】

【0077】
【化13】
【表9】

No．	B	No．	B
11		14	
12		16	
13			

フロントページか続き

（51）Int．Cl．${ }^{6}$	識別記号	FI	
A61K 31／44	ADN	A61K 31／44	ADN
	ADP		
C07D 233／64	106	C07D 233／64	ADP
$233 / 88$		$233 / 88$	
$263 / 32$		$263 / 32$	
$27 / 30$		$277 / 30$	

（72）発明者 松井 哲夫茨城県つくば市春日 $2-35-2$ エトワー ル春月403

Structural and Conformational Features Determining Selective Signal Transduction in the $\beta 3$－Adrenergic Receptor

NATHALIE BLIN，LUC CAMOIN，BERNARD MAIGRET，and A．DONNY STROSBERG
Institut Cochin de Génêtque Moleculaire，CNRS－UPR 0415，and Unlversitte Paris VII， 75014 Paris，France（N．B．，L．C．，A．D．S．），and Laboratolre de
Chimie Theorique，Untversitt de Nancy I， 54506 Vandoouvre Les Nancy，France（B．M．）
Received April 23，1993；Accepted September 11， 1993

Abstract

SUMMARY

With respect to the $\beta 1$－and $\beta 2$－adrenergic receptors（ARs），the日3－AR induces specific physiological effects in a few target tissues and exhibits atypical pharmacological properties that distinguish it unambiguously from its counterparts．Therefore， the 83 －AR represents a suitable model to study the molecular mechanism responsible for receptor subtype selectivity and specificity．Potent $\beta 3$－AR ligands newly characterized in Chinese hamster ovary cells expressing the $\beta 3$－AR were also evaluated in Chinese hamster ovary cells expressing $\beta 1$－and $\beta 2$－ARs and were classified into three groups according to their pharmaco－ logical properties．Among the $\beta 1 / \beta 2 / \beta 3$ agonists BRL 37344 and LY 79771 exhibit $\beta 3$ solectivity in stimulating adenylyi cyclase； armong the $\beta 1 / \beta 2$ antagonists displaying $\beta 3$ agonistic effects ICI 201651 exhibits $\beta 3$－AR binding selectivity，whereas among the $\beta 1 / \beta 2 / \beta 3$ antagonist class bupranotol is the most efficient（but not selective）$\beta 3-A R$ antagonist．The structures of these ligands were simulated and compared using computer－generated moleo－ ular modeling．Structure－activity retationship analysis indicates that potent or selective $\beta 3$－AR compounds，in addition to pos－ sessing a pharmacophore common to all β－AR ligands，contain a long and bulky alkylamine substituent moiety，which is able to adopt and exchange extended and stacked conformations．Com－ puterized three－dimenstonal models of the $\beta 1-, \beta 2$－，and $\beta 3$－AR binding sites show that more buliky amino acid side chains point inside the groove of the $\beta 1$ and $\beta 2$ sites，compared with the $\beta 3$ site，in a region implicated in signal processing．The long alkyla－ mine chain of compounds behaving as $\beta 1 / \beta 2$ antagonists and $\beta 3$ agonists may thus adopt either a stacked conformation in the encumbered $\beta 1$－and $\beta 2$－AR sites，leading to antagonistic effects， or an extended conformation in the less encumbered $\beta 3$ site， thus interacting with specific residues implicated in signal trans－ duction．

Sympathetic stimulation via humoral（adrenergic）and neu－ ronal（noradrenergic）pathways induces a number of physiolog－ ical effects，auch as modulation of heart rate，vascular tonus， bronchospasm，and glucose and lipid metabolism．Lands et al． （1）first subdivided the β－AR－mediated effects into $\beta 1$ and $\beta 2$ ， on the basis of the rank order of potency of epinephrine and norepinephrine in different tissues．Since this classification，

[^8]many clinically active drugs，mimicking or blocking the effects of natural hormones，have been synthesized and shown to discriminate between $\beta 1$－and $\beta 2-\mathrm{AR}$－mediated effects．
In the following years，however，a number of novel com－ pounds revealed atypical $\boldsymbol{\beta}$－AR properties in various tissues． BRL 37344 was thus characterized as a potent thermogenic and lipolytic β－AR agonist in rat adipose tissue（2）and SR 58611A as an atypical β－AR agonist mediating relaxation in precontracted guinea pig ileum（3）．Several $\beta 1 / \beta 2$ antagonists displayed atypically low hinding affinities in these tissues as well as low potencies in inhibiting responses mediated by these novel compounds，thus suggesting the existence of a novel β－ AR pharmacological profile．However，partly because of its low

[^9]affinity for available β-AR radioligands and primarily because of the lack of suitable tools to study its expression among a population of conventional β-ARs, this atypical β-AR remained difficult to charactarize unambiguously by a classical pharmacological approach, and some inconsistencies were described between drug affinities identified in binding atudies and those measured in functional assays (4).
After the initial cloning of the $\beta 2$ - (5) and $\beta 1-A R s$ (6), a third gene, coding for a novel β-AR subtype (the $\beta 3$-AR) sharing 51% and 46% identity with the human $\beta 1$ - and $\beta 2-A R$ amino acid sequences, respectively, was cloned from a human genomic library (7). The presence of human $83-A R$ mRNA transcripts has been demonstrated in human fat tissues as well as in gall bladder and colon biopsies (8), and evidence for a functional $\beta 3$-AR in human fat cells has been recently shown by lipolysis stimulation studies (9). Functional $\beta 3$-ARs, cloned from either human (7), mouse (10), or rat (11, 12) tissues, were characterized in transfected CHO cells, and their pharmacological pattern indicated that the $\beta 3-A R$ is closely related to the atypical β-AR in adipose tissues (13, 14). However, minor differences between the human and rodent $\beta 3-\mathrm{AR}_{\mathrm{s}}$ as well as between atypical β-ARs from different tissues have led some authors to question whether these are actually the same pharmacological subtypes (11, 12, 15).
To settle this point, we performed a systematic pharmacological analysis in CHO- 83 (human) and CHO- 83 (mouse) using a large panel of β-AR ligands, and we showed (i) that both the human and the rodent $\beta 3$-ARs display well defined pharmacological properties that distinguish them unambiguously from the $\beta 1-$ and $\beta 2-\mathrm{ARs}$, (ii) that the $\beta 3-\mathrm{AR}$ is the prototype of the atypical β sites described in a few target tissues (adipose, gut, and cardiac tissues) where it induces specific physiological effecta, and (iii) that some compounds (BRL 37344, bucindolol, bupranolol, CGP 12177A, cimaterol, ICI 201651, LY 79771, SR 58611A, and SM 11044) exhibit potent affinities or activities in CHO- $83 .{ }^{1}$ These atypical and specific properties make the $\beta 3$-AR a model receptor to study the molecular basis of subtype selectivity, using these new pharmacological tools.
In this study, we analyzed the selectivity of the subtype by evaluating pharmacological receptor binding and adenylyl cyclase activation properties of β-AR ligands in CHO cells expressing human $\beta 1$-, $\beta 2$-, or $\beta 3$-ARs. Results led us to classify compounds into pharmacological classes, and the structureactivity relationship of these ligands was analyzed using MD simulations. Structural features of $\beta 3$-efficient agonists and antagonists were examined to define a putative pharmacophore, as well as to provide new insights into the molecular mechanism responsible for the $\beta 3$-AR potency and selectivity.

Materials and Methods

Chemicala. Bucindolol and nadolol were provided by Bristol-Myers Squibb (Princeton, NJ). CGP 12177A, CGP 20712A, alprenolol, and oxprenolol were gifte from Ciba-Geigy Corporation (Basel, Switzerland). ICI 118551 and ICI 201651 were obtained from Imperial Chemical Industries (Maccleafield, England). Cimaterol and LY 79771 were donated by American Cyanamid (Pearl River, NY) and Lilly Research Labe (Indianapolis, IN), respectively. Clenbuterol was obtained from Roussel Uclaf (Romainville, France). Pindolol and cyanopindolol were
N. Blin, C. Nahmias, M. F. Drumare, and A. D. Strobberg. The $\beta 3$-adrenergic receptor a aingle aubtype responsible for atypical β-adrenergic receptor-mediated effecte. Submitted for publication.
provided by Sandoz (Basel, Switzerland). (\pm)- and (-)-Bupranolol were gifts from Schwarz Pharma (Monheim, Germany). BRL 37344 was obtained from SmithKline Beecham Pharmaceuticals (Epsom, England). SM 11044 and SR 58611A were given by Sumitomo Pharmaceuticals (Osaka, Japan) and Sanofi-Midy (Milano, Italy), respectively. (-)-Inoproterenol and propranolol were purchaned from Sigma Chemical Co. (St. Louis, MO).

Cell culture. Subclones of CHO cells stably transfected with human $\beta 1-, \beta 2-$, or $\beta 3-A R s$ were grown as deacribed previously $(7,16)$.

Receptor binding amays. Preconfluent cells were harvested by treatment with Versen-EDDTA (Seromed) and were washed with Hanka' balanced salt solution supplemented with 1 mM ascorbic acid and buffered with 20 mM HEPES to achieve a pH of 7.4. Aliquots of 10^{6} cells were incubated with (-)-[3-128I]ICYP ($2000 \mathrm{Ci} / \mathrm{mmol}$; Amersham, England) in the absence or presence of competitor, in a buffered 500μ final volume with 0.1% (\mathbf{w} / v) bovine serum albumin (Sigma) and 4 $\mu \mathrm{M}$ desipramine (Sigma). The reaction was performed for 45 min at 37°, with shaking, in the dark. After dilution with ice-cold PBS, pH 7.4, cells were immediately filtered and extensively washed over glass fiber disks (Whatman GF/C) that had been presoaked with $\mathbf{0 . 3 \%}$ polyethyleneimine (Sigma). Radioactivity was measured in a LKB 1282 $\boldsymbol{\gamma}$-radiation counter.
Saturation experiments were performed with ICYP concentrations ranging from 5 to 500 pm for the $\beta 1$ - and $\beta 2$-ARs and from 50 to 5000 pm for the $\beta 3-\mathrm{AR}$. Nonspecific binding was determined in the presence of $2 \mu \mathrm{M}(\pm)$-propranolol for $\mathrm{CHO}-\beta 1$ and $\mathrm{CHO}-\beta 2$ or $100 \mu \mathrm{~m}(-)$. isoproterenol for CHO- $\beta 3$. Competition experiments were performed with ICYP concentrations of 50 pM for the $\beta 1$ and 82 subtypes and 1 nM for the $\beta 3$ subtype and various concentrations of competitor ranging from 1 pm to $100 \mu \mathrm{~m}$. Ligand lipophilicity indezes (\log (F) were calculated using the TSAR software (Oxford Molecular, Oxford, England).

Adenylyl cyclase binding amaym. Because forskolin directly stimulates the catalytic subunit of adenylyl cyclase and displays greater efficacy and potency when its catalytic domain intoracta with the α_{4} subunit of the G protein (17), forskolin binding experiments were performed with adherent transfected CHO- β in the absence or presence of β-AR ligands.
Preconfluent cells in sir-well dishes ($\$ 1.2 \times 10^{6}$ cells/well) were washed twice with 2 ml of ice-cold PBS, added to 1 ml of ice-cold Ham's F12 medium buffered with 20 mM HEPES, pH 7.4, and kept on ice for 30 min before the binding study. Cells were incubated at 4^{*} for 1 hr , with slow shaking, in 500μ of buffered [12- ${ }^{5} \mathrm{H}$]forskolin (20-35 Ci/mmol; New England Nuclear), in the abeence or presence of nontritiated forskolin or β-AR ligands. Cells were then washed three times with 2 ml of PBS and disaolved in 1 ml of 1 N NaOH for 30 min at 37° before the homogenate was counted in a LKB-Wallac 1410 acintillation counter.
Cholera toxin ADP-ribosylates G_{s}, irreversibly blocking its GTPase activity and maintaining the atability of the α_{n}-cyclase complex in a way that is independent of receptor occupancy. Cells were treated with cholera toxin ($2 \mu \mathrm{~g} / \mathrm{ml}$ in culture medium; Sigma) for 6 hr at 37° before measurement of forskolin binding at 4°, a temperature that allowa stabilization of the tranaient complex but probably leads to undereatimation of the maximal complex association at 37°.
Adenylyl cyclase atimulation amaya. CHO- $\beta 1, \mathrm{CHO}-\beta 2$, and CHO-f3 were grown to preconfluence in six-well dishes ($\approx 1.2 \times 10^{6}$ cells/well). After washing with 1 ml of Ham's F12 medium buffered with 20 mm HEPES, pH 7.4, and supplemented with 1 mM ascorbic acid and 1 mM 3 -isobutylmethylranthine (Sigma), cell monolayers were incubated for 30 min at 37° in 1 ml of buffer, in the absence (basal level, $5-25 \mathrm{pmol} / 10^{6}$ cells) or in the presence of $10 \mu \mathrm{M}(-)$-isoproterenol (maximal stimulation mediated by $\beta-\mathrm{AR}, 170-400 \mathrm{pmol} / 10^{6}$ cells), 25 $\mu \mathrm{M}$ forskolin (direct adenylyl cyclase stimulation, $420-860 \mathrm{pmol} / 10^{6}$ cells), or 1 pM to $100 \mu \mathrm{~m}$ ligand. The reaction was stopped by one wash with 1 ml of PBS and immediate addition of $500 \mu \mathrm{l}$ of 1 N NaOH . After a period of 20 min at 37°, diseolved cells were collected, buffered with

1 N acetic acid, and centrifuged at 3000×8 for 10 min at 4°. The total cAMP amount contained in an aliquot of supernatant was determined using the Amersham [$\left.{ }^{3} \mathrm{H}\right]$ cAMP assay or [${ }^{125} \mathrm{I}$]-cAMP acintillation prozimity assay.

For inhibition studies of adenylyl cyclase stimulation, cells were preincubated with the antagonist at 37° for 10 min before addition of a reference agonist [i.e., (-)-isoproterenol] at its $K_{\text {ar }}$ concentration (5 nM) and incubation for a subsequent $20-\mathrm{min}$ period.

Data analywes. The data were expressed as the means \pm standard errors of at least three independent experiments performed in duplicate, except for forskolin binding data, which resulted from two experiments only. Saturation experiments were computer analyzed with the EBDA program (Bionoft-Eleevier, Cambridge, UK) using the Scatchard plot representation. IC_{50} and EC_{80} parametera obtained from binding competition experiments or adenylyl cyclase activation or inhibition erperiments were determined using a computerized, iterative, nonlinear, least squarea curve-fitting program (Inplot 4.0, written by H. J. Motulsky, GraphPad Software, San Diego, CA). ICso values messured in binding competition or cyclase antagonism experiments were corrected (K_{i} value) according to the method of Cheng and Prusoff. The IA of a compound was measured relative to the maximal cyclase stimulation obtained for (-)-isoproterenol. Ligands that possessed IA values of <0.90 were defined aa partial agonists.

Molecular modeling. The conformations of the arylethanolaminerelated compounds that were incorporated into the analysis were obtained using the BIOSYM molecular modeling software (BIOSYM Technologies, Inc., San Diego, CA) on a Silicon Graphics workstation.

Initial structures were built using the Insight II Builder module, which directly produced coarse three-dimensional starting structures. To mimic ionization at neutral pH , an sp3+ hybridization was assigned to the amine of the main alkyl chain, increasing the molecular electrostatic total charge by +1 .

Energy minimization and MD simulations were performed with the Insight II Discover module, using the consistent valence force field. All calculations were performed for in vacuo conditions, using in the description of the coulombic interaction a distance-dependent dielectric constant fixed to 3.5 to avoid formation of intramolecular salt bridges.

The first step of modeling consisted of minimizing the atructure previoualy constructed, to find a local energy minimum on the potential energy hypersurface of the molecule. Calculations were performed according to several algorithms commonly used in molecular mechanica minimization for choosing descent directions, namely steepest descent, conjugate gradient, and Newton-Raphson methods.

The second step of the conformational sampling procedure consisted of recording MD trajectories. By solving the equations of motion for a syatem of atoms, MD has an advantage in that it is not restricted to harmonic motion about a single minima but allowe molecules to cross energy barriers and explore other stable conformations. Molecular conformers were sampled during a $1-\mathrm{nsec}$ MD trajectory at $300^{\circ} \mathrm{K}$. A time step of 5 fsec was used, and the system was equilibrated for 1 psec. A conformation was stored each 5 psec, 80 that 200 conformations were recorded by the end of the MD simulation.

All molecular conformations were compared using the Analysis module of Insight II. Conformational similarities were evaluated by calculating the RMS of deviation between heavy atoms for each possible pair of these 200 structures and by plotting the associated cluster graph. A threshold value of $4 \AA$ was solected to plot the RMS evolution, so that numerous boxlike areas appeared along the diagonal, representing group of structures whose small RMS deviations ($<1 \AA$) and closeness in time suggested that they may belong to the same conformational family. Conformational representatives extracted from each family were compared for each compound, as well as between different ligands, using a superimposition procedure.

Results and Discussion

Selectivity of β-AR Ligands in CHO- $\beta 1, \mathrm{CHO}-\beta 2$, and $\mathrm{CHO}-\beta 3$
Although β-AR overexpression has been reported to affect adenylyl cyclase gengitivity (18-20), it offers the opportunity
to thoroughly characterize receptors such as the $\beta 3-\mathrm{AR}$, for which high affinity radiolabeled antagonists have not been developed thus far. The human $\beta 1-, \beta 2$-, and $\beta 3$-ARs overexpressed in CHO cells displayed selectivity profiles for catecholamines and reference β-AR ligands that were consistent with those described in tissues characterized by prevailing $\beta 1-, \beta 2$-, and $\beta 3-\mathrm{AR}$ populations (16). The presence of six additional carboxyl-terminal residues in the sequence of the human $\beta 3$ AR, resulting from splicing of an intron in the corresponding gene, has been reported (21,22), but a recent pharmacological comparison failed to detect any difference between the 408 and 602-residue forms of this receptor (23).

Because the apparent affinity of agonists at ICYP binding sites may be influenced by varying degrees of internalization, we verified that the lipophilicity indices $(\log P)$ of the $\beta 1$ - and $\beta 2-\mathrm{AR}$ agonists tested in $\mathrm{CHO}-\beta$ were higher than that of the ICYP radioligand. For the $\beta 3-A R$, no bias in measurement of K_{i} values is expected, because this receptor subtype does not become sequestered (23).

Because differences in the level of receptor expressed in each CHO- β subclone [190,271 $\pm 16,796$ sites/cell in CHO- $\beta 1$ (human), $74,885 \pm 22,461$ sites/cell in CHO- 22 (human), and $108,785 \pm 5,988$ sites/cell in CHO- $\beta 3$ (human)] and differences in receptor subtype coupling might interfere with the measurement of cyclase stimulation potency, the stoichiometry of re-ceptor-G adenylyl cyclase interactions was assessed in CHO- $_{\text {-ad }}$ $\beta 1$, $\mathrm{CHO}-\beta 2$, and $\mathrm{CHO}-\beta 3$. Because isoproterenol-stimulated forskolin binding measurements revealed approximately the same number of forskolin binding sites in the three types of cells as well as after cholera toxin stimulation (Fig. 1), it appeared that all of the cholera toxin-sensitive G protein cou-pled-adenylyl cyclase existing in $\mathrm{CHO}-\beta$ was stimulated by isoproterenol. Moreover, it appeared that coupling efficiency of the three β-AR subtypes should not bias the adenylyl cyclase stimulation potency measurements, thus allowing comparison of the β selectivity of ligands based on $\mathrm{K}_{\text {act }}$ values.

The selectivity of β-AR ligands exhibiting interesting pharmacological properties at the $\beta 3$ site ${ }^{1}$ was evaluated in CHO$\beta 1, \mathrm{CHO}-\beta 2$, and $\mathrm{CHO}-\beta 3$ and led to the classification of the compounds into three groups, i.e., agonists at the three β sites,

Fig. 1. Measurement of the rate of coupling in CHO-81, $\mathrm{CHO}-\mathrm{\beta 2}$, and $\mathrm{CHO}-\beta 3$. Forskoin binding was evaluated in intact $\mathrm{CHO}-\beta 1$, $\mathrm{CHO}-82$, and CHO-A3 preincubated (ㄱ) or not (ㅁ) with $2 \mu \mathrm{~g} / \mathrm{ml}$ cholera toxin for 5 hr at 37° and incubated with $100 \mu \mathrm{~m}$ isoproterenol for 1 hr at 4°. Veluee are the mean \pm standard error of two separate experiments performed in dupllicate.
$\beta 1 / \beta 2$ antagonists displaying $\beta 3$ agonistic properties, and antagonists for the $\beta 1-, \beta 2-$, and $\beta 3$-ARs (Table 1).
$\beta 1 / \beta 2 / \beta 3$ agonists. The $\beta 3-A R$ was characterized by its potency for a class of arylethanolamine agonists that were initially found to be potent and selective activators of lipolysis and thermogenesis at the atypical β-ARs described in white and brown adipose tissues (Table 1). BRL 37344, the most representative compound of this class (2,24), was a full agonist in CHO- $\beta 1$ and CHO- $\beta 3$, with partial agonistic effects (IA = 0.8) in CHO- $\beta 2$, and exhibited a 10 -fold $\beta 3$-AR selectivity, relative to the $\beta 1$ - and $\beta 2$-ARs. LY 79771, an activator of the metabolic rate in dogs (25), stimulated adenylyl cyclase with 5 and 17 -fold greater potency in $\mathrm{CHO}-\beta 3$ than in $\mathrm{CHO}-\beta 1$ and CHO- $\beta 2$, respectively. Thus, atypical β-AR compounds, which are potent in inducing thermogenesis in brown adipose tissue and in increasing the rates of cellular metabolism such as lipolysis in white adipose tissue, appeared to be $\beta 3$-selective ligands.

SR 58611A and SM 11044, which were relaxant agents in the precontracted rat colon (3) and guinea pig ileum (26), respectively, were "rather $\beta 2 / \beta 3$-selective" agonists in CHO- β. SR 58611A, the potent and most selective compound of the phenylethanolaminotetraline class, induced rat colon relaxation with an EC_{50} of 3.5 nM (3), compared with a. $K_{\text {act }}$ of 25 nM in stimulating CHO- $\beta 3$ adenylyl cyclase. The SM 11044 functional selectivity order in guinea pig tissues, i.e., ileum relaxation (atypical $\beta-A R$) $>$ trachea or lung relaxation $(\beta 2-A R)>$ atrium rate increase ($\beta 1-A R$), was consistent with the selectivity of this drug in $\mathrm{CHO}-\beta 1, \mathrm{CHO}-\beta 2$, and $\mathrm{CHO}-\beta 3$. Although possessing rather low affinities at the $\beta 3$ site (K_{i} range of 1-6 $\mu \mathrm{M}$), these compounds were efficient enough ($K_{\text {act }}$ values between 10 and 100 nM) to induce $\beta 3$-AR-mediated functional relaxation in smooth muscle tissues.

Cimaterol and clenbuterol, reported to induce protein accretion and to increase skeletal muscle mass in vivo (25), were "rather $\beta 1 / \beta 2$-selective" agonists in CHO- β. In addition, cimaterol exhibited high efficiency in stimulating the cyclase in CHO- $\beta 3$, in agreement with its ability to potently activate lipolysis in rat white adipose tissue (25).
$\beta 1 / \beta 2$ antagonists/ $\beta 3$ agonists. Among the $\beta 1 / \beta 2$ antagonists displaying $\beta 3$ agonistic properties, some exhibited high binding affinities and agonistic potencies in $\mathrm{CHO}-\beta 3$ (Table 1). Bucindolol, described as a high affinity nonselective β-AR antagonist (27), displayed the same binding affinities for $\beta 1$ and $\beta 2$-ARs expressed in CHO cells (K_{i} values of 0.2 nM and 0.1 nM , respectively) and possessed full and potent ($K_{\text {met }}=7$ nM) $\beta 3$ agonistic effects. ICI 201651, the in vivo metabolized form of ICI D7114 that is able to selectively stimulate brown adipose tissue activity (28), was a weak antagonist at the $\beta 1$ and $\beta 2-\mathrm{AR}$ sites (K_{i} values of $0.55 \mu \mathrm{M}$ and $2.86 \mu \mathrm{M}$, respectively) but a potent full agonist in CHO- $\beta 3$ ($K_{\text {eet }}=20 \mathrm{nM}$). ICI 201651 was the most important compound of this class, exhibiting a $\beta 3$ selectivity in binding affinities.

CGP 12177A, oxprenolol, pindolol, and alprenolol were 10100 -fold less potent in stimulating the $\beta 3-A R$ than were the previously mentioned full agonists and, except for alprenolol, demonstrated partial agonistic effects. Pindolol maintained its cyclase stimulation potency when a cyano group was added to the indol function of the molecule ($K_{\text {nct }}$ value of 153 nM , compared with 174 nM) but displayed an IA that increased from 0.55 to 0.82 . These compounds bound to the $\beta 1$ - and $\beta 2$ -

ARs with 10-100-fold higher affinities than those measured in CHO-83.

Nadolol and propranolol were $\beta 1 / \beta 2$ antagonists exhibiting weak ($K_{\text {act }}$ values in the micromolar range) and partial agonistic effects in CHO- $\beta 3$. In agreement with these results, Bond and Clarke (29) reported a biphasic effect for nadolol and propranolol in antagonizing the isoproterenol-induced relaration of precontracted guinea pig ileum strips.
$\beta 1 / \beta 2 / \beta 3$ antagonists. The third category of ligands included antagonists such as the $\beta 1$-selective CGP 20712A, the $\beta 2$-selective ICI 118551, and bupranolol (Table 1).

Kaumann (30) earlier reported that heart atypical β agonistic effects were antagonized by $1 \mu \mathrm{M}$ bupranolol but not propranolol. Although (- -)-bupranolol appeared to be the best antagonist available to characterize the $\beta 3-\mathrm{AR}$ (K_{i} value of 50 nM), its receptor binding order of selectivity in CHO- β was $\beta 2$-AR $>\beta 1-\mathrm{AR}>\beta 3-\mathrm{AR}$.
The selectivity profiles for these antagonists were CGP $20712 \mathrm{~A}=$ bupranolol $>\mathrm{ICI} 118551$ in $\mathrm{CHO}-\beta 1$, bupranolol \geq ICI $118551>$ CGP 20712A in CHO-62, and bupranolol $>$ ICI $118551>$ CGP 20712A in CHO-83.

Taken together, our data show that $\beta 3$-selective agonists (BRL 37344 and LY 79771), $\beta 3$-selective (ICI 201651) and $\beta 3$ potent (bucindolol and CGP 12177A) agonists that exhibit $\beta 1 /$ $\beta 2$ antagonistic properties, a $\beta 3$-potent antagonist (bupranolol), and $\beta 1$ - and $\beta 2$-selective antagonists (CGP 20712A and ICI 118551, respectively) are useful tools that can help to distinguish $\beta 3$-AR-mediated physiological effects from those mediated by conventional $\beta 1$ - and $\beta 2$-ARs. To date, only [${ }^{125} \mathrm{I}$] ICYP and $\left[{ }^{3} \mathrm{H}\right]$ CGP 12177A have allowed direct characterization of tissue $\beta 3$-ARs (13). In addition, radiolabeling of ICI 201651, which exhibited binding selectivity towards the $\beta 3$ site, should provide a new pharmacological tool for the characterization of the $\beta 3$-AR in tissues. More selective compounds for the $\beta 3-\mathrm{AR}$, however, remain to be found, and analysis of the struc-ture-activity relationships for this large variety of compounds should help in determining the structural features responsible for the $\beta 3$ potency and selectivity of ligands.

Structural Features of $\beta 3$-AR Ligands

Fine specificity of the ligand recognition mechanism for G protein-coupled receptors. Norepinephrine stimulated adenylyl cyclase in CHO- $\beta 3$ with a 1600 -fold higher potency, relative to dopamine, which is its metabolic precursor and is specific for dopaminergic receptors (7). Although these compounds are structurally related, β-hydroxylation of the alkylamine chain appears to be important for ligand-receptor recognition. Indeed, this modification creates an asymmetrical center, leading to isomerization of the molecule, and this polar β-hydroxyl group may interact with an electrophilic center and form a hydrogen bond with an amino acid side chain inside the receptor groove.
Similarly, α - and β-ARs were distinguished upon the basis of the potency order of isoproterenol, relative to norepinephrine and epinephrine, three catecholaminergic structures that are closely related. Indeed, isoproterenol differs from (nor)epinephrine by a (di)methyl substitution, which increases steric bulk and lipophilicity at the end of the alkylamine chain, and the substitution of a methyl group on the protonated amine moiety of norepinephrine corresponds, in thermodynamic calculations, to a loss of 6-7 kcal (31). These modifications seem

TABLE 1
Comparison of the phamascological properties of human $\beta 1-, \beta 2$－and $\beta 3$－AR expressed in CHO colle
Bincing competition assays were carried out with intact catis for 45 min at 37° in the presence of $\left[{ }^{23}\right.$ gjicYP，as described in Materials and Methods．Adenyty cyciase stinulation asacys were performed with intact celts preincubated or not with 5 nm isoproterenol for 10 min and incubated with drugs for 30 min at 37° ．Concentration－response carves were fitted using least squares regression anslysta，and bincing compeltion（ K ）and experiments performed in cuplicate．Ligands were classified as $\beta 1 / \beta 2 / \beta 3$ agonists（more $\beta 3$－selective，more $\beta 2 / \beta 3$－selective，or more $\beta 1 / \beta 2$－selective agonists），$\beta 1 / \beta 2$ antagonists／$\beta 3$ agonists，of $\beta 1 / \beta 2 / \beta 3$ antagonists．All data were obtained using similar experimental conditions．

	Human f1－AR			Human P2－A			Humm ${ }^{\text {P3ARAR}}$		
	Binding K_{1}	Adermpl coplese stimudition		Ainating K_{4}	A maypi cydase stinumion		Einding x_{1}	Adenjep cyame eliminition	
		$K_{\text {cout }}$	H		$K_{\text {ket }}$	14		$\mathrm{K}_{\text {m }}$	4
	nu	＊＊		nu	nM		nu	n＊	
R1／82／83 agonists									
BRL 37344	1，750 ± 310	112 ± 28	1.30 ± 0.11	1，120 ± 380	177 ± 47	0.80 ± 0.04	287 ± 92	15 ± 3	1.11 ± 0.12
LY 79771		86 ± 8	1.42 ± 0.30		325 ± 121	0.22 ± 0.03	555 ± 71	18 ± 3	1.06 ± 0.04
SR 58611A	38，500 $\pm 13,400$	$12,000 \pm 600$	0.96 ± 0.07	187 ± 26	36 ± 19	0.87 ± 0.07	6，640 ± 960	25 ± 5	1.23 ± 0.23
SM 11044	$18,100 \pm 1,700$	190 ± 20	1.50 ± 0.21	4，100 ± 200	62 ± 6	1.03 ± 0.08	1，300 4200	84 ± 10	0.98 ± 0.10
Cimaterol		0.64 ± 0.15	1.20 ± 0.06		0.57 ± 0.002	0.98 ± 0.03	$4,700 \pm 1,710$	17 ± 3	1.15 ± 0.08
Clenbuterol	190 ± 30			60 ± 9	1.0 ± 0.2	0.91 ± 0.02	1，100 ± 200	$1,050 \pm 130$	0.72 ± 0.07
Bucindotol	0.20 ± 0.04	Antagonist		0.10 ± 0.03	Antagonist		23 ± 10	7.0 ± 1.2	1.01 ± 0.10
ICI 201651	549 ± 200	Antagonist		$2,860 \pm 750$	Antagonist		85 ± 12	20 ± 9	1.14 ± 0.14
CGP 12177A	0.9 ± 0.1	Antagonist		4 ± 2	Antagonist		88 ± 22	$139 \pm 4{ }^{\circ}$	$0.66 \pm 0.02^{*}$
Oxprenotol	5.4 ± 1.3	Antagonist		1.5 ± 0.4	Antagonist		$70 \pm 10^{\circ}$	77 ± 13^{b}	$0.53 \pm 0.07^{\text {b }}$
Pindolol	3.4 ± 0.7	Antagonist		2.3 ± 0.9	Antagonist		11 ± 2^{6}	153 ± 12^{6}	$0.55 \pm 0.05^{\text {b }}$
Cyanopindolol		Angatonist			Antagonist			174 ± 58	0.82 ± 0.04
Alprenolo：	8.8 ± 0.2	Antagonist		1.5 ± 0.3	Antagonist		110 ± 30	219 ± 46	0.97 ± 0.07
Nadoiol	40 ± 6	Antagonist		14 ± 5	Antagonist		636 ± 72	1，120	0.80 ± 0.05
Propranolol	6.3 ± 1.0	Antagonist		0.7 ± 0.3	Antagonist		145 ± 8	1，490 ± 550	0.51 ± 0.12
$\beta 1 / \beta 2 / \beta 3$ antagonists 0									
（－）－Bupranoiol	1.7 ± 0.3	Antegonist		0.4 ± 0.1	Antagonist		50 ± 14	Antagonist	
（ \pm ）－Buprandol	2.4 ± 0.5	Antagonist		0.5 ± 0.1	Antagorist		106 ± 8	Antagorist	
ICI 118551	$120 \pm{ }^{6}$	Antagonist		1.2 ± 0.2	Antagonist		$257 \pm 34^{\text { }}$	Antagorist	
CGP 20712A	$1.5 \pm 0.2{ }^{\text {c }}$	Antagonist		1，800 $\pm 400^{\circ}$	Antagonist		$2,300 \pm 450^{\circ}$	Antagorist	

－Resuits reported by Nahmias et al．（10），with IA expressed relative to isoproterenol．
－Data reported by Emorine ef at．（7），with IA expressed relative to norepineptrine maximal cyclase stimulation．
－Data reported by Tate of al．（16）．
to be crucial for the ligand-receptor recognition mechanism leading to subtype selectivity, and Lewell (32) suggested that residue Val ${ }^{117}$ in the β-AR sequence, replaced by the less hydrophobic amino acid cysteine in the α-AR sequence, could be mainly responsible for the β versus α subtype specificity.
Structural characteristics of the three pharmacological classes of β-AR ligands. Catecholamines are small molecules with an approximately 10 -carbon skeleton. One part of the molecule consists of a catechol group equivalent to a reactive ortho-hydroquinone function (a potential hydrogen bond donor), and the other part is a positively charged β-hydroxylalkylamine chain ending in apolar alkyl substitutions. The aromatic ring, the β-hydroxyl group, the charged amine, and the alkyl substitutions are structural requirements common to all of the β-AR compounds evaluated in CHO- $\beta 1, \mathrm{CHO}-\beta 2$, and CHO-63 (Table 1).

Cimaterol and clenbuterol (Fig. 2A), which were rather $\beta 1 /$ $\beta 2$-selective compounds, possess a structure close to that of isoproterenol, except that both hydroxyl groups of the phenyl moiety are substituted by less polar but equally reactive amine functions, or an inductor-donor chlorine atom and an electrophilic cyano group, which favor delocalization of benzenic π electrons and may increase hydrophilicity. Large structural modifications of the hydroxylalkylamine chain occur for the rather $\beta 2 / \beta 3$-selective compounds like SR 58611A and SM 11044 (Fig. 2A); the skeleton becomes longer and possesses two asymmetrical centers and one additional aromatic ring substituted with electronegative or nucleophilic atoms, so that steric bulk as well as aromaticity might be strengthened. The rather $\beta 3$-selective agonists BRL 37344 and LY 79771 share similar features (Fig. 2A), except that these molecules possess an alkylamine chain that appears less ramified and more flexible than those of SR 58611A and SM 11044.
Among $\beta 1 / \beta 2$ antagonists exhibiting 63 agonistic effects (Fig. 2B), alprenolol and oxprenolol have similar structures and, remarkably, behaved similarly towards each of the three receptor subtypes. CGP 12177A and nadolol on one hand, and pindolol and propranolol on the other hand, possess the same ethoxyhydroxylalkylamine chain but different polar substitutions on the cyclic moiety, which may account for the 10 -fold difference in binding affinity measured with each type of CHOβ either between CGP 12177A and nadolol or between pindolol and propranolol.
Affinities of the antagonists at the $\beta 3$ site appear to be inversely related to the number of carbons in the backbone as well as to the steric bulk of the aromatic moiety (Fig. 2C). The number of compounds tested in this class is, however, insufficient to deduce important structural characteristics for $\beta 1 / \beta 2 /$ A3 antagonists. In a general way, Dixon et al. (33) concluded that the subtype selectivity of antagonists appears to arise from the subtype selectivity of the substituents on the aromatic ring and/or from the addition of differentially substituted aromatic moieties to an alkyl chain on the amine.
From this analysis, it seems that an obvious correlation exists between β-AR ligands of similar structural formula and pharmacological classes defined in $\mathrm{CHO}-\beta 1, \mathrm{CHO}-\beta 2$, and $\mathrm{CHO}-\beta 3$. However, ICI 118551 and pindolol, which share basic structural similarities, exhibit either antagonistic or agonistic effects in CHO-A3, emphasizing therefore the structural complexity of the ligand-receptor recognition mechanism responsible for binding and signal processing.

Structural requirements for $\boldsymbol{\beta 3}$-selective and -potent ligands. A global analysis of structures shows that $\beta 1 / \beta 2$ antagonists (Fig. 2, B and C) display an obvious structural difference, compared with $\beta 1 / \beta 2$ agonists (Fig. 2A), because a $\mathrm{O}-\mathrm{CH}_{2}$ spacer is inserted between the aryl group and the β hydroxylalkylamine chain, extending the molecule and inducing a mesomer-donor effect that might strengthen the aromaticity on the ring. The ethozy linking group inside the arylozyhydroxylalkylamine chain thus introduces a structural modification important enough to alter the transduction of signal in $\mathrm{CHO}-\beta 1$ and $\mathrm{CHO}-\beta 2$. Some authors have addressed the question of modes of binding of arylhydroxylalkylamine and arylozyhydroxylalkylamine ligands to β-ARs and invoked either the existence of distinct binding sites for the aromatic moieties of each ligand type (34) or large conformational flexibility of the ligands, involving energetically more or less favorable folded or extended conformations that all fit into a single binding site (35). In CHO- 33 , the ethoxy function seems to play a minor role in ligand-induced receptor activation, because bucindolol and ICI 201651 are as potent agonists as are BRL 37344, LY 79771, and SR 58611A, which do not possess this additional group; these results are in line with the second hypothesis.
Common structural requirements characterize the selective or potent $\beta 3$-AR ligands, i.e., a 18-20-carbon backbone length, an aromatic ring (substituted or not), and an (oxy)hydroxylalkylamine chain ending in an indol function or a phenyl carrying hydroxyl, ether, or acid functions, which increase steric bulk and moderate lipophilicity.
From this structural formula analysis, it appears that small conventional β-AR ligands may achieve increased interactions with the $\beta-\mathrm{AR}$ sites by hydrogen bonding of meta- and parahydroxyl groups of the catechol, whereas binding of long and bulky $\beta 3$-potent compounds may be stabilized by aryl-aryl or polar interactions between the phenyl-substituted part of the alkylamine moiety and residues in the site.
Moreover, small molecules such as catecholamines were more efficient in activating the $\beta 1-$ and $\beta 2-\mathrm{ARs}$ than the $\beta 3-\mathrm{AR}$, whereas the long and bulky molecules, which should occupy the whole space available in the site groove, were more potent or selective in CHO- $\beta 3$. This suggests that the $\beta 3$ efficiency is determined by the long and bulky amine subatituent moiety of the ligands, which may interact with helices positioned on the opposite side, relative to those implicated more apecifically in ligand binding.

Structure-Activity Analysis by Molecular Modeling

To further explore structural features responsible for the pharmacological properties of ligands, we used the recently developed molecular modeling tools, which provide more realistic insight into molecules because their three-dimensional conformations are related to their physico-chemical properties. Because biomolecules exist as a set of active conformations in an equilibrium state depending upon system internal entropy and intermolecular collisions, the dynamic motions of $\beta 3-A R$ ligands were studied using MD simulations on minimized structures.
Ligands as a set of bioactive conformers in equilibrium. Analysis of conformations generated by MD simulations for the BRL 37344 and LY 79771 ligands showed that, within a family, conformations were mostly similar, even though some superimpositional discrepancies occured in the plane of the
A
CIMATEROL

clembuterol

sm 12m4

GR SEINA (RS)

LX 79771 (RS)

tC1 1asst

Fig. 2. Comparison of structural formulas for β-AR ligands that exhibited "rather $\beta 1 / \beta 2$-selective" (cimaterol and clenbuterol), "rather $\beta 2 / \beta 3-8 e l e c t i v e "$ SM 11044 and SR 58611A), or "rather $\beta 3$-selective" (BRL 37344 and LY 79771) agonistic properties (A), $\beta 1 / \beta 2$ antegonistic and $\beta 3$ agonistic effects (B), or $\beta 1 / \beta 2 / \beta 3$ antagonistic effects (C). Asterisks mark asymmetric carbons.
catechol moiety or at the end of the alkylamine chain, implying greater rotational ability for bonds implicated in these parts of the molecules. A detailed analysis of conformational families showed that the coexistence of two benzene rings within one structure led to the appearance of both extended and stacked conformations, with respective distances of 8.2-9.0 \AA and $4.0-$ $6.8 \AA$ between the most remote carbon atoms (Fig. 3).
SR 58611A, in contrast to BRL 37344 and LY 79771, exhibited only stacked conformations ($7-9 \AA$ long), probably because of the constraint imposed by additional cyclization between the aromatic ring and the $\mathrm{NH}\left(\mathrm{CH}_{3}\right)$ group of the chain. To validate this hypothesis, we assayed the SR 58611A structure in a MD simulation over the same period but at higher temperature $\left(600^{\circ} \mathrm{K}\right)$, to increase the kinetic energy of the system and to sample, therefore, a larger available conformational space. From this high thermal energy MD simulation, we indeed obtained an extended conformational family exhibiting a $16-\AA$ distance between the most remote carbon atoms (Fig. 4).
For all molecules, the transition between extended and stacked conformations was mainly due to rotation around the $\mathrm{C}^{a}-\mathrm{C}^{\beta}$ bond $\left[\mathrm{C}^{\beta}(\mathrm{OH})-\mathrm{C}^{a}(\mathrm{NH})\right]$ of the hydroxylalkylamine chain. To analyze the possibility of transconformation between these two forms, we used a dynamics simulation forcing rotation of the dihedral angle ($\mathrm{OH}-\mathrm{C}^{\rho}-\mathrm{C}^{\alpha}-\mathrm{NH}$) in 10° stepwise increments. BRL 37344 was able to move from an extended to a stacked conformation at an energy expense of $12 \mathrm{kcal} / \mathrm{mol}$ and in a time scale of 1 psec, consistent with binding kinetic equilibrium constants. Extended and stacked conformers may thus exchange, and it is possible that a ligand will sacrifice nearly 10 $\mathrm{kcal} / \mathrm{mol}$ to adopt an optimal conformation, leading to the best fit into the receptor binding site.
Relationships between structural conformations and pharmacological properties. Of primary importance in a comparative molecular analysis is the definition of superimposition rules for the geries of compounds under investigation. The potent $\beta 3$ agonists were either $\beta 1 / \beta 2$ agonists or $\beta 1 / \beta 2$ antagonists, and in each case the compounds shared a similar portion of the skeleton, that is, aromatic carbon- $\mathrm{CH}(\mathrm{OH})$ $\mathrm{CH}_{2}(\mathrm{NH})$ or aromatic carbon- $\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{2}(\mathrm{NH})$, respectively. Therefore, we used an automated superimposition procedure involving these consensual atoms, and the quality of the superimposition step was measured by the RMS deviation

Fig. 3. Extended (nght) and stacked (left) contormations of the potent 03 agonist LY 79771 , obtained after a $300^{\circ} \mathrm{K}$ MD simulation step pertormed as described in Materials and Methods. The dot surface at van der Waals radius is depicted and shows the steric bulk of the conformers.

Fig. 4. Representation of the three conformational fammes obtained for the potent $\beta 3$ agonist SR 58611A, using a $300^{\circ} \mathrm{K}$ (purple and turquoise folded conformations) or a $600^{\circ} \mathrm{K}$ (orange extended conformation) MD simulation step.

Fig. 5. Superimposition of representative extended and stacked conformers obtained by MD simulation procedures performed on the most selective $\beta 3$-AR agonists, BRL 37344 and LY 79771.
in fitting.
Equally convincing steric fits (RMS between 0.08 and 0.21) were obtained for the extended and stacked conformations of BRL 37344 and LY 79771 (Fig. 5), as well as for the potent $\beta 3$ agonists, which were either $\beta 1 / \beta 2$ agonists (BRL 37344, LY 79771, SR 58611A, and cimaterol) or $\boldsymbol{\beta 1 / \beta 2}$ antagonists (bucindolol and ICI 201651) (Fig. 6).
The partial $\beta 3$ agonists CGP 12177A and propranolol had conformations that overlapped well with each other (RMS between 0.28 and 0.62) but not with those of the full $\beta 3$ agonists bucindolol and ICI 201651 (RMS between 0.88 and 0.97). An

Fig. 6. Supermposition of MD simulation conformations obtained for the F1/62/63 agonists cimaterol, BRL 37344, LY 79771, and SR 58611A and for the $\beta 1 / \beta 2$ antagonists/ $\beta 3$ agonists buchndolol and ICI 201651.
explanation could be that partial agonism may result from competitive occupancy of the receptor by energetically favorable (active) and unfavorable (inactive) conformers, with a 6-7kcal enthalpic energy difference existing between the two forms of the ligand (31).

Common atructural features appeared between bupranolol and ICI 118551 (RMS of 0.10), which exhibited interesting affinities at the $\beta 3$ site but had mostly different conformations, compared with the weak $\beta 3$ antagonist CGP 20712A (RMS approximatley 1.0) (data not ahown).

To gain more insight into the relative orientations of conformers described above, we evaluated three-dimensional interatomic distances between involved atoms (Fig. 7). Coherent distances were measured for the totality of conformers, further supporting the sizeable role of atoms that were superimposed. On the basis of the hypothetical minimal pharmacophore model imposed during fitting, we thus obtained a mostly satisfactory representation of the manner in which ligands that induce similar pharmacological effects at the $\beta 3$ site resemble each other at the three-dimensional level.

Although this model does not take into account the effect of environment on ligand conformation, the general picture that emerged from the present analysis could be used next to precisely assess the contribution of particular chemical functions in the interaction with the receptor. One may assume that β AR ligands bind to the $\beta 3-A R$ in the same orientation because of their very similar steric and electrostatic properties, that is, (i) an aromatic group, which could stabilize aryl-aryl interactions, (ii) a β-hydroxyl or an ether function, which could establish a hydrogen bond, and (iii) a protonated amine, which should create an ionic bridge with a negatively charged carboxyl function inside the pocket site. All these atom groups and their relative orientations in space (depending on whether the ether function is present) constitute the pharmacophore for $\beta 3$-AR agonists.

$\beta 3$ Specificity of the Ligand-Receptor Interaction

Like the two other subtypes, the human 83 -AR belongs to the family of surface membrane receptors that are structurally organized in seven hydrophobic α-helices connected by extraand intracellular loops. Binding of ligands to β-ARs is governed by three important factors; (i) the ligand should fit sterically into the receptor groove, (ii) parts of the ligand and receptor with opposite electrostatic groups should closely complement

A

$\mathrm{dl}(\AA)=3.83 \pm 0.08$
$\mathrm{d} 2(\mathrm{~A})=2.47 \pm 0.03$
$\mathrm{d} 3(\mathrm{~A})=3.07 \pm 0.08$

$\mathrm{d} 1(\mathrm{~A})=3.64 \pm 0.11$
$\mathrm{d} 2(\mathrm{~A})=2.40 \pm 0.02$
$\mathrm{d} 3(\mathrm{~A})=2.95 \pm 0.03$
$\mathrm{d} 4(\AA)=5.35 \pm 0.18$
$\mathrm{d} 5(\AA)=4.31 \pm 0.12$
Fig. 7. Schematic representation of the $\beta 3$-AR minimal pharmacophore. Three-dimensional distances (in A) were measured between essential atoms of the different conformevs obtained for B3-AR agonists. The means \pm standard errors of interatomic cistances between atoms joined by arrows are reported for 10 ק1/ $\beta 2$ agonist conformers (A) and $12 \beta 1 /$ 02 antagonist conformers (B).
each other, and (iii) lipophilic regions should match, to induce optimal hydrophobic interactions.
In past years, site-directed mutagenesis (33, 34, 36, 37), chimeric receptor construction (38,39), fluorescence binding probe analysis (40), and computer-aided three-dimensional model building ($32,35,41,42$) have helped investigators understand the structure of the β-AR binding site. These studies all suggest that a number of highly conserved residues interact with the ligand in a $10-15-\AA$ buried groove formed by the seventransmembrane α-helice bundle core, i.e., (i) the aromatic ring of the catechol moiety would be stacked between phenylaianine and tryptophan residues of helices 5 and 6, (ii) the para- and meta-hydroxyl groups of catechol may form hydragen bonds with two serine residues, which are conserved as a pair in TM5 only for catecholaminergic receptors, (iii) a hydrogen bond between the β-hydroxyl group and a serine residue in TM4 could explain on one hand the extra stabilization upon binding of norepinephrine, compared with dopamine, and on the other hand the higher binding affinity of β-AR R-stereoisomers (32, 42), and (iv) the cationic amine might interact strongly with an aspartate amino acid side chain within a stabilizing hydrophobic cluster of phenylalanine and tryptophan residues in

TM3. All of these interactions were visualized using threedimensional models of ligands and of β-ARs (43) and supported our assumptions concerning ligand atoms and their spatial arrangement forming the β-AR pharmacophore. The receptor binding site model also implies that large flexible chains can be substituted at the amine end of the ligand, because this part of the receptor corresponds to the receptor core cavity.
From the atructural formula analysis of ligands, it appears that catecholamines and agonists that were rather $\beta 1 / \beta 2$ selective possess a short backbone and a catechol group, which may stabilize the ligand in the receptor site by hydrogen bonding with the two serine residues of helix 5 . For $\beta 3$-potent agonists, however, the catechol is replaced by a benzene ring, and stabilization of the long alkylamine chain may be achieved by polar or aryl-aryl interactions between the bulky N-substituent and amino acid side chains pointing into the opposite side of the groove. Therefore, we suggest that $\beta 1 / 62$ agonists localize in a reduced space in the site formed by TM3, TM4, and TM5, whereas $\beta 3$ agonists should establish additional interactions with amino acid side chains in TM7, TM1, and TM2. A threedimensional view of the $\beta 2$ - and $\beta 3-A R$ sites showing the docking of $\beta 2$ - or $\beta 3$-selective ligands confirms this difference in steric space occupation of the site (43). All of these findings are in agreement with molecular genetic analysis suggesting the involvement of multiple binding subsites that overlap (39), i.e., in the hamster β-AR sequence, Asp ${ }^{113}$ in TM3 seems to interact directly with the charged amine of β-AR ligands $(36,37)$ and to determine the physiological effect induced (34), whereas Asp ${ }^{79}$ in TM2 and Asn ${ }^{319}$ in TM7 appear to be selectively involved in agonist binding and signal transduction (36).
Study of ligand structures by three-dimensional molecular modeling showed that the long and flexible alkylamine chains of $\beta 3$-potent agonists were able to exchange extended and stacked conformations. This mechanism of transconformation may underlie the ability of these ligands to induce agonistic effects specifically at the $\beta 3-A R$ site. Indeed, analysis of amino acids forming the three-dimensional $\beta 3-A R$ binding site and comparison with correaponding amino acids in the $\beta 1$ - and $\beta 2$ AR sequences show some important differences, such as the substitution of glycine ($\beta 3$) by alanine ($\beta 1$) or phenylalanine (p2) in helix 1 and the replacement of adjacent alanine and leucine ($\beta 3$) by phenylalanine and phenylalanine ($\beta 1$) or leucine and leucine ($\beta 2$) in helix 7 . The presence of these bulky side chains pointing into the groove of $\beta 1$ - and $\beta 2$-ARs renders this region of the site less accessible to molecules. In fact, it appears that receptor conformational changes induced by the binding of an agonist are triggered by specific amino acids in helices 1 , 2, 3, and 7 (34, 36, 43). Furthermore, the presence of two additional proline residues in the $\beta 3$-AR TM7 may play a direct role in message triggering, because this type of amino acid introduces noticeable kinks in helices, thus permitting complex conformational shifts and reorientations probably involved in signal transduction.

We suggest herein a mechanistic model in which the long alkylamine chains of $\beta 1 / \beta 2$ antagonist/ $\beta 3$ agonist compounds adopt atacked conformations in the encumbered $\beta 1$ and $\beta 2$ sites that prevent access to the signal-processing region, whereas extended conformations, which could be adopted in the less encumbered 83 site, may induce agonistic effects. Only the evaluation of completely rigid compounds retaining the molecular determinants deacribed above would definitively test our
model.
This study led us to propose that the ligand conformational state plays a key role in the efficiency of the interaction and that the same compound is able to induce agonistic or antagonistic effects in different receptor subtypes depending on its conformational adaptation to amino acid side chains pointing into the groove. In addition, we suggest that variations in the affinity of structurally related ligands may result from microvariations in the fitting of ligand and receptor conformations, a dynamic process leading to the existence of various interaction subsites.
In conclusion, this study has provided ligands to study the pharmacological characteristics and physiological implications of $\beta 3$-ARs in tissues, as well as the specificity of the ligandreceptor interactions. Although these compounds are useful pharmacological tools, their potential clinical value remains limited by their lack of high selectivity. This analysis has helped to provide a theoretical framework for the design and development of new potent or selective $\beta 3$-AR ligands by using computational methods such as quantitative structure-activity analysis. Additional enhancement in the quality of the designed compounds is expected from advances in methods that may precisely evaluate target molecules in terms of binding conformation, binding affinity, and ligand-induced changes in receptor conformation.
Acknowledgmenta
We would like to thank Dr. B. Fëve, Dr. C. Nahmias, and Dr. B. Manning for their valuable comments concerning this paper, and we are gratoful to M. F. Drumare and N. Foignant for helpful technical assistance.

Reforencea

1. Land, A. M., A. Arnold, J. P. MacAuliff, F. P. Luduena, and T. G. Brown, Jr. Differentiation of receptor ayutems activated by sympathomimetic amines. Nature (Lond) $214: 597-698$ (1967).
2. Arch, J. R. S., A. T. Ainoworth, M. A. Cawthorns, V. Piercy, M. V. Sennitt, V. E. Thody, C. Wilson, and S. Wilson. Atypical β-adrenoceptor on brown adipocytes as target for anti-obsonity druga. Nature (Lond) 300:163-165 (1984).
3. Manara, L., A. Bianchetti, T. Croci, and A. Giudice. New developementa in β-adrenergic-mediated control of intemtinal motility: gut-apecific phenylethanolaminotetralinea, in Neurochemical Pharmacolagy (E. Conta, od.). Raven Prose, Now York, 131-147 (1989),
4. Muzzin, P., J. Seydoux, J. P. Giacobino, J. C. Venter, and C. Fraeor. Discrepancien between the affinitien of binding and action of the novel β-edrenergic agonist BRL 37344 in rat brown adipoee tiseus. Biochem. Biephys. Res. Comтим. 156:375-382 (1988).
5. Dixon, R. A. F., B. K. Kobilka, D. J. Strader, J. L. Benovic, H. G. Dohlman, T. Frielle, M. A. Bolanowski, C. D. Bennett, E. Randh, R. E. Diehl, R. A. Mumford, E. E. Slater, I. S. Sigal, M. G. Caron, R. J. Laftowits, and C. D. Strader. Cloning of the gene and cDNA for mammalian β-adrenargic recoptor and homology with thodopain. Nature (Lond) 321:75-79 (1986).
6. Friello, T., S. Collina, K. W. Daniel, M. G. Caron, R. J. Lefkowitn, and B. K. Kobilke. Cloning of the cDNA for the human $\beta 1$-adrenergic receptor. Proc. Nath Acod. Sci USA 84:7920-7924 (1987).
7. Emorino, L. J., S. Marullo, M. M. Briend-Sutren, G. Patay, K. Tate, C. Dolavier-Klutchko, and A. D. Stronberg. Molecular characterization of the human B3-adrenergic receptor. Science (Washington D. C.J 246:1118-1121 (19889).
8. Krief, S., F. Lonnquiat, S. Raimbauit, B. Beuda, A. Van Sproneon, P. Arner, A. D. Stroeberg, D. Ricquier, and L. J. Emorine. Tiseve distribution of 83 adrenergic receptor mRNA in man. J. Clim. Invest. 91:344-349 (1993).
9. Lönnqvist, F., S. Krief, A. D. Stromberg, B. Nybarg, L. Enorine, and P. Arner. Evidence for a functional $\beta 3$-adremergic roceptor in man. Br. J. Pharmocol 110:929-938 (1993).
10. Nahmian, C., N. Blin, J. M. Elalouf, M. G. Mattei, A. D. Stroeberg, and L. J. Emorine. Molecular characterization of the moume a3-adronergic receptor: relationship with the atypical receptor of sdipocytes. EMBO J. 10:37213727 (1991).
11. Granneman, J. G., K. N. Lahners, and A. Chaudhry. Molecular cloning and expreation of the rat A3-adronergic receptor. Mol Pharmacol 40:805-809 (1991).
12. Muzzin, P., J. P. Revelli, F. Kuhne, J. D. Gocayne, W. R. MacCombie, J. C. Venter, J. P. Giacobino, and C. M. Fraser. An edipone timuso-epecific β sdrenergic receptor. J. Biol. Chem. 266:24063-24058 (1991).
13. Fewa, B., L. J. Emarine, F. Lasniar, N. Blin, B. Baude, A. D. Stroaberg, and J. Pairault. Atypical β-adrenergic receptor in ST3-F442A adipocytes. Pharmacological and molecular relationahip with the human beta-3-adrenergic receptor. I. Biol Chem. 266:20829-20836 (1991).
14. Emorine, L. J., B. Föve, J. Pairault, M. M. Briend-Sutren, C. Nahmias, S. Marullo, C. Delavier-Klutchiko, and A. D. Stroaberg. The human β an-adrenersic recoptor: relation hip with atypical receptora. Am. J. Clin. Nutr. 5E:2158$218 S$ (1992).
15. Liggett, S. B. Functional propertios of the rat and human 83 -adrenergic receptors: differential agonist activation of recombinant receptors in Chinese hamiter ovary celln. Mol. Pharmacol 42:634-637 (1992).
16. Tate, K. M., M. M. Briend-Sutren, L. J. Emorine, C. Delavior-Klutchko, S. Marullo, and A. D. Stroaberg. Expreasion of three human β-adrenergicreceptor subtypet in transfected Chinese hamster ovary cells. Eur. J. Biochem. 612:1-6 (1991).
17. Aloumi, A. A., J. R. Jeoper, P. A. Invel, and H. J. Motulgky. Stoichiometry of receptor-G.adonylate cyclase intozections. FASEB J. 5:2300-2303 (1991).
18. Bouvier, M., M. Hnatowich, S. Collina, B. K. Kobilka, A. DeBlasi, R. J. Lefrowitz, and M. G. Caron. Exprestion of a human CDNA oncoding the 82 adrenergic receptor in Chineme hameter fibroblasts (CHW): functionality and regulation of the expreaseed recsptors. Mol. Pharmacol. 33:133-139 (1987).
19. George, S. T., M. Berrios, J. R. Hadeock, H. Y. Wang, and C. C. Malbon. Receptor density and cAMP accumulation: analysis in CHO cells exhibiting stable expresaion of a CDNA that encodes the $\beta 2$-edrenergic receptor. Biochem. Biophys. Res. Commun. 150:665-672 (1988).
20. Lohe, M. J. Stable overexpremeion of human $\beta 2$-adrenergic receptorn in mammalian cells. Naunyn-Schmiedeberga Arch. Pharmacol. 346:444-451. (1992).
21. Granneman, J. G., K. N. Lahners, and D. D, Reo. Rodent and human $\beta 3$ adrenergic receptor genes contain an intron within the protein-coding block. Mol Pharmacol' 42:964-970 (1992).
22. Van Spromen, A., C. Nahmids, S. Krief, M. M. Briend-Sutren, A. D. Strosberg, and L. J. E. Emorine. The human and mouse $\beta 3$-adrenergic recaptor genen; promoter and intron/ezon etructure. Eur. J. Biochem. 213:1117-1124 (1993).
23. Nantel, F., H. Bonin, L. J. Emorine, V. Zilberfarb, A. D. Stroaberg, M. Bouvior, and S. Marullo. The human $\beta 3$-adrenergic receptor is resistant to short-term agonist-promoted denensitization. Mol Phermacol 43:548-555 (1998).

23a.Granneman, J. G., K. N. Lahners, and A. Chandley. Characterization of the human β_{3}-adrenergic receptor gene. Mol. Pharmacol. 44:264-270 (1993).
24. Wileon, C., S. Wileon, V. Piercy, M. V. Sennitt, and J. R. S. Arch. The rat lipolytic β-adrenoceptor: studien using novel β-adrenoceptor agonists. Eur. J. Pharmacol 100:309-319 (1984).
25. Arch, J. R. S., M. A. Cawthorne, K. A. Coney, B. A. Guaterson, V. Piercy, M. V. Sennitt, S. A. Smith, J. Wallace, and S. Wilmon. β-Adrenoceptor-mediated control of thermogeneais, body composition and glucose homeostasis, in Obesity and Cachexia (N. J. Rothwell and M. J. Stock, eds.). Wiley and Sons, New York, 241-268 (1991).
26. Sugasawa, T., M. Matsuraki, S. Morooka, N. Foignant, N. Blin, and A. D. Strosberg. In vitro atudy of a novel atypical β-adrenoceptor agonist, SM11044. Eur. J. Pharmacol 210:207-215 (1992).
27. Harahberger, R. E., J. R. Wynn, L. Sundberg, and M. R. Bristow. Mechanism of action of bucindolol in human ventricular myocardium. J. Candiovasc.

Pharmacol. 15:959-967 (1990),
28. Holloway, B. F., R. Howe, B. S. Rav, D. Stribling, R. M. Mayars, M. G. Brincoe, and J. M. Jackson. ICI D7114, a novel eslective β-adronoceptor agonist, selectively stimulates brown fat and increases whole-body orypen. Br. J. Pharmacol 104:97-104 (1991).
29. Bond, R. A., and D. E. Clarko. Agonist and antagonist characterization of a putative adrenoceptor with distinct pharmacological properties from the arand β-subtypes. Br. J. Pharmacol. 95:723-734 (1g88)
30. Kaumann, A. J. Is there a third heart β-adrenoceptor? Trends Pharmacol Sci. 10:316-320 (1889).
31. Davies, R. H. Drug and receptors in molecular biology. Int. J. Quantum Chem. Quantum Bioh Symp. 14:221-243 (1987).
32. Lewell, X. Q. A model of the adrenergic beta-2 receptor and binding nites for agoniat and antagonist. Drug Design Discovery 8:29-48 (1992).
33. Dizon, R. A. F., W. S. Hill, M. R. Candalore, E. Rande, R. E. Diahl, M. S. Marshall, I. S. Sigal, and C. D. Strader. Genetic analytis of the molecular basis for β-adronergic receptor subtype epocificity. Proteine 6:267-274 (1999).
34. Strader, C. D., M. R. Candelore, W. S. Hill, and R. A. F. Dixon. A aingle amino acid gubetitution in the β-adrenergic recoptor promotes partial agoniot ectivity from antagonists. J. Biol Chem. 264:16470-16477 (1909).
35. Timms, D., A. J. Wilkinson, D. R. Kelly, K. J. Broadloy, and R. H. Davien. Interactions of Tys ${ }^{377}$ in a ligand-activation model of sigual transmisaion through $\beta 1$-adrenoceptor a-helices. Int. J. Quantum Chem. Quantum Biol. Symp. 10:197-215 (1992),
36. Strader, C. D., I. S. Sigal, R. B. Regiater, M. R. Candalora, E. Rands, and R. A. F. Dixon. Identification of reaidues required for ligand binding to the $\boldsymbol{\beta}$ adrenergic receptor. Proc. Nath. Acad. Sci. USA 84:4384-4388 (1987)
37. Strader, C. D., I. S. Sigal, R. B. Rogister, M. R. Candalare, E. Rand, W. S. Hill, and R. A. F. Dixon. Consorved aspartic acid residum 79 and 113 of the β-edrenergic receptor have different roleo in receptor function. I. Biol. Chem. 263:10267-10271 (1988).
38. Frielle, T., K. W. Daniel, M. G. Caron, and R. J. Leflrowity. Structural batis of β-adrenergic receptor subtype specificity studied with chimeric $\beta 1 / \beta 2$ adrenergic receptors. Proc. Nath. Acad Sci. USA 85:9494-0498 (1908).
39. Marullo, S., L. J. Emorine, A. D. Strobberg, and C. Delevier-Klutchlo Selective biading of ligands to $\beta 1, \beta 2$, or chimeric $\beta 1 / \beta 2$-adzenergic receptors involves multiple subsites. EMBOJ. 9:1471-1476 (1990).
40. Tota, M. R., and C. D. Strader. Characterization of the binding domain of the β-adrenergic receptor with the fluoreacent antagonigt carabolol. J. Biol Chem. 265:16891-16897 (1980) .
41. Hibert, M. F., S. Trumpp-Kallmeyer, A. Bruinsvels, and J. Hoflack. Thrwedimensional models of neurotranamitter GIP-binding protein-coupled receptors. Mol. Pharmacol, 40:8-15 (1991).
42. MaloneyHusa, K., and T. P. Lyborand. Three-dimentional structure for the $\beta 2$ adrenergic receptor protein based on computer modeling studies. J. Mol Biol 225:859-871 (1992).
43. Strosberg, A. D., L. Camoin, N. Blin, and B. Maigret. In receptors coupled to GTP-binding proteins, ligand binding and G-protein activation is a multistep dynamic process. Drug Design Discovery 9:199-211 (1993).

Gend reprint requentes to; A. Donny Stromberg, Institut Cochin de Gónêtique Moléculaire, CNRS-UPR 0415, and Univarsitó Paris VII, 22 rue Méchain, 75014 Paris, France.

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(57) Abstract

Substituted phenylsulphonamides having formula (I) where the variables ane as defined in Claim 1; are selective beta-3 adrenergic receptor agonists with very little beta-1 and beta-2 adregenic receptor activity and as such the compounds are capable of increasing lipolysis and energy expenditure in cells. The compounds thus have very potent activity in the treatment of Type III diabetes and obesity. The compounds can also be used to reduce triglyceride levels and cholesterol levels or raise high density lipoprotein levels or to reduce gut motility. In addition, the compounds can be used to reduce neurogenic inflammation or as antidepressant agents. The compounds are prepared by coupling an aminoalkylphenylsulphonamide with an appropriately substituted alkyl epoxide. Compositions and methods for the use of the compounds in the treatrment of diabetes and obesity and for the reduction of triglyceride levels and cholesterol levels or raising high density lipoprotein levels or for increasing gut motility are also disclosed.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritanis
AL	Australa	GE	Georgla	MW	Malawl
BH	Barbados	GN	Guines	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Buggaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Coite d'Tyoire	KZ	Kazakhgtan	SK	Slovalia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	T0	Chad
CS	Czechoslovakis	4 LO	Luxembourg	TG	Togo
C2	Crech Republic	LV	Latvia	TJ	Tajikistan
DE	Germiny	MC	Monaco	TT	Trinidad and Tobago
DK	Denmaris	MD	Eepublic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
ER	France	MN	Moagolia	VN	Viet Nam
GA	Gabon				

TITLE OF THE INVENTION
 SUBSTITUTED PHENYL SULFONAMIDES AS SELECTIVE $\beta 3$ AGONISTS FOR THE TREATMENT OF DIABETES AND OBESITY

CROSS REFERENCE TO RELATED APPLICATIONS
This application is a continuation-in-part of our copending application Serial Number 08/015689 filed February 9, 1993.

BACKGROUND OF THE INVENTION

β-Adrenoceptors have been subclassified as β_{1} and β_{2} since 1967. Increased heart rate is the primary consequence of β_{1}-receptor stimulation, while bronchodilation and smooth muscle relaxation typically result from β_{2} stimulation. Adipocyte lipolysis was initially thought to be solely a $\beta 1$-mediated process. However, more recent results indicate that the receptor-mediating lipolysis is atypical in nature. These atypical receptors, later called $\beta 3$-adrenoceptors, are found on the cell surface of both white and brown adipocytes where their stimulation promotes both lipolysis (breakdown of fat) and energy expenditure.

Early developments in this area produced compounds with greater agonist activity for the stimulation of lipolysis ($\beta 3$ activity) than for stimulation of atrial rate $\left(\beta_{1}\right)$ and tracheal relaxtion $\left(\beta_{2}\right)$. These early developments disclosed in Ainsworth et al., U.S. Patents 4,478,849 and 4,396,627, were derivatives of phenylethanolamines.

Such selectivity for $\beta 3$-adrenoceptors could make compounds of this type potentially useful as antiobesity agents. In addition, these compounds have been reported to show antihyperglycemic effects in animal models of non-insulin-dependent diabetes mellitus.

A major drawback in treatment of chronic diseases with $\beta 3$ agonists is the potential for stimulation of other β-receptors and subsequent side effects. The most likely of these include muscle tremor $\left(\beta_{2}\right)$ and increased heart rate $\left(\beta_{1}\right)$. Although these phenylethanolamine derivatives do possess some $\beta 3$ selectively, side effects of this type have

- 2 -

been observed in human volunteers. It is reasonable to expect that these side effects resulted from partial β_{1} and/or β_{2} agonism.

More recent developments in this area are disclosed in Ainsworth et al., U.S. Patent 5,153,210, Caulkett et al., U.S. Patent 4,999,377, Alig et al., U.S. Patent 5,017,619, Lecount et al., European Patent 427480 and Bloom et al., European Patent 455006.

Even though these more recent developments purport to describe compounds with greater $\beta 3$ selectively over the β_{1} and β_{2} activities, this selectively was determined using rodents, in particular, rats as the test animal. Because even the most highly selective compounds, as determined by these assays, still show signs of side effects due to residual β_{1} and β_{2} agonist activity when the compounds are tested in humans, it has become apparent that the rodent is not a good model for predicting human $\beta 3$ selectivity.

Recently, assays have been developed which more accurately predict the effects that can be expected in humans. These assays utilize cloned human $\beta 3$ receptors which have been expressed in Chinese hamster ovary cells. The agonist and antagonist effects of the various compounds on the cultivated cells provide an indication of the antiobesity and antidiabetic effects of the compounds in humans.

SUMMARY OF THE INVENTION

The instant invention is concerned with substituted phenyl sulfonamides which are useful as antiobesity and antidiabetic compounds. Thus, it is an object of this invention to describe such compounds. It is a further object to describe the specific preferred stereoisomers of the substituted phenylsulfonamides. A still further object is to describe processes for the preparation of such compounds. Another object is to describe methods and compositions which use the compounds as the active ingredient thereof. Further objects will become apparent from reading the following description.

DESCRIPTION OF THE INVENTION

The compounds of the instant invention are best realized in the following structural formula:

I
where
n is $\quad 0$ to 7 ;
m is $\quad 0$ or 1 ;
r is $\quad 0$ to 3 ;
A is phenyl, naphthyl, a 5 or 6 -membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, a benzene ring fused to a $\mathrm{C} 3-\mathrm{C} 8$ cycloalkyl ring, a benzene ring fused to a 5 or 6 -membered heterocyclic ring with from 1 to 3 heteroatoms selected from oxygen, sulfur or nitrogen or a 5 or 6 -membered heterocyclic ring with from 1 to 3 heteroatoms selected from oxygen, sulfur or nitrogen fused to a 5 or 6 membered heterocyclic ring with from 1 to 3 heteroatoms selected from oxygen, sulfur or nitrogen;
$R 1$ is hydroxy, oxo, halogen, cyano, nitro, NR8R8, SR8, trifluoromethyl, $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkoxy, $\mathrm{C}_{3}-\mathrm{C}_{8}$ cycloalkyl, phenyl, $\mathrm{SO}_{2} \mathrm{R}^{9}, \mathrm{NR}^{8} \mathrm{COR}^{9}, \mathrm{COR}^{9}, \mathrm{NR}^{8} \mathrm{SO}_{2} \mathrm{R}^{9}$, $\mathrm{NR}^{8} \mathrm{CO}_{2} \mathrm{R} 8$ or $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl substituted by hydroxy, nitro, halogen, cyano, NR $8 \mathrm{R} 8, \mathrm{SR} 8$, trifluoromethyl, $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkoxy, $\mathrm{C}_{3}-\mathrm{C} 8$ cycloalkyl, phenyl, NR $8 \mathrm{COR} 9, \mathrm{COR} 9$, $\mathrm{SO}_{2} \mathrm{R}^{9}, \mathrm{NR}^{8} \mathrm{SO}_{2} \mathrm{R}^{9}, \mathrm{NR}^{8} \mathrm{CO}_{2} \mathrm{R}^{8}$, or R^{1} is a 5 or 6 membered heterocycle with from 1 to 3 heteroatoms selected from oxygen, sulfur or nitrogen;
R^{2} and R^{3} are independently hydrogen, $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl or $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl substituted by 1 to 3 of hydroxy, $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkoxy, or halogen;
X is $\quad-\mathrm{CH}_{2}-,-\mathrm{CH}_{2}-\mathrm{CH}_{2}-,-\mathrm{CH}=\mathrm{CH}-$ or $-\mathrm{CH}_{2} \mathrm{O}-$;
R^{4} and R^{5} are independently hydrogen, $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, halogen, NHR8, OR8, $\mathrm{SO}_{2} \mathrm{R}^{9}$ or $\mathrm{NHSO}_{2} \mathrm{R}^{9}$;
R 6 is hydrogen or $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl;
R 7 is $\quad \mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, $\mathrm{C} 3-\mathrm{C} 8$ cycloalkyl, or $\mathrm{B}-\left(\mathrm{R}_{1}\right)_{\mathrm{n}}$;
B is phenyl, naphthyl, a 5 or 6 -membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, a benzene ring fused to a $\mathrm{C} 3-\mathrm{C} 8$ cycloalkyl ring, a benzene ring fused to a 5 or 6 -membered heterocyclic ring with from 1 to 3 heteroatoms selected from oxygen, sulfur or nitrogen or a 5 or 6 -membered heterocyclic ring with from 1 to 3 heteroatoms selected from oxygen, sulfur or nitrogen fused to a 5 or 6membered heterocyclic ring with from 1 to 3 heteroatoms selected from oxygen, sulfur or nitrogen;
R 8 is \quad hydrogen, $\mathrm{Cl}_{1}-\mathrm{C} 10$ alkyl, $\mathrm{C} 3-\mathrm{C} 8$ cycloalkyl, phenyl optionally substituted by 1 to 3 of halogen, C_{1}-C6 alkyl or $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkoxy, or $\mathrm{C}_{1}-\mathrm{C}_{10}$ alkyl substituted by 1 to 3 of hydroxy, halogen, $\mathrm{CO}_{2} \mathrm{H}, \mathrm{CO}_{2}-\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, $\mathrm{C} 3-\mathrm{C} 8$ cycloalkyl, $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkoxy, or phenyl optionally substituted by from 1 to 3 of halogen, $\mathrm{Cl}_{1-\mathrm{C}}$ alkyl or $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkoxy; R^{9} is $\quad R^{8}$, NHR 8 or NR 8 R 8 .

In the above structural formula and throughout the instant specification, the following terms have the indicated meanings:

The alkyl groups specified above are intended to include those alkyl groups of the designated length in either a straight or branched configuration. Exemplary of such alkyl groups are methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, tertiary butyl, pentyl, isopentyl, hexyl, isohexyl, and the like.

The alkoxy groups specified above are intended to include those alkoxy groups of the designated length in either a straight or
branched configuration. Exemplary of such alkoxy groups are methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, tertiary butoxy, pentoxy, isopentoxy, hexoxy, isohexoxy and the like.

The term "halogen" is intended to include the halogen atoms fluorine, chlorine, bromine and iodine.

Certain of the above defined terms may occur more than once in the above formula and upon such occurrence each term shall be defined independently of the other.

The preferred 5 and 6-membered heterocycles and fused heterocycles of A, B and R1 are those heterocycles with from 1 to 4 heteroatoms independently selected from one of oxygen or sulfur or 1 to 4 nitrogen atoms.

The preferred values of A and B are phenyl, naphthyl or the foregoing preferred 5 and 6 -membered heterocycles and fused heterocycles.

The more preferred values of A are phenyl, naphthyl, pyridyl, quinolinyl, pyrimidinyl, pyrrollyl, thienyl, imidazolyl, and thiazolyl.

The more preferred values of B are phenyl, naphthyl, quinolinyl, thienyl, benzimidazolyl, thiadiazolyl, benzothiadiazolyl, indolyl, indolinyl, benzodioxolyl, benzodioxanyl, benzothiophenyl, benzofuranyl, benzisoxazolyl, benzothiazolyl, tetrahydronaphthyl, dihydrobenzofuranyl, and tetrahydroquinolinyl.

Further preferred compounds of the instant invention are realized when in the above structural formula:
R^{2} and R^{3} are hydrogen or methyl;
X is $\quad-\mathrm{CH}_{2}-$
m is $\quad 1$;
r is $\quad 0-2$; and
$\mathrm{R}^{4}, \mathrm{R}^{5}$ and R^{6} are hydrogen.
Still further preferred compounds of the instant invention are realized when in the above structural formula:
A is phenyl, quinolinyl, or a 6-membered heterocyclic ring with 1 or 2 nitrogen atoms;
B is phenyl or quinolinyl;
R1 is $\quad \mathrm{NH}_{2}$, hydroxy, halogen, cyano, trifluoromethyl, phenyl, $\mathrm{NR}^{8} \mathrm{COR}^{9}, \mathrm{NR}^{8} \mathrm{CO}_{2} \mathrm{R}^{8}, \mathrm{Cl}-\mathrm{C} 6$ alkyl optionally substituted by hydroxy; and 0 or 2 .

Representative preferred antiobesity and antidiabetic compounds of the present invention include the following:

N-[4-[2-[[2-hydroxy-3-(4-hydroxyphenoxy)propyl]amino]ethyl]phenyl]benzenesulfonamide
N-[4-[2-[[2-hydroxy-3-(4-hydroxyphenoxy)propyl]amino]ethyl]phenyl]-4-iodobenzenesulfonamide
N-[4-[2-[[2-hydroxy-3-(4-hydroxyphenoxy)propyl]amino]ethyl]phenyl]-2-naphthalenesulfonamide
N-[4-[2-[[2-hydroxy-3-(4-hydroxyphenoxy)propyl]amino]ethyl]phenyl]-4-(benzo-2,1,3-thiadiazole)sulfonamide
N -[4-[2-[[2-hydroxy-3-(4-hydroxyphenoxy)propyl]amino]ethyl]phenyl]-2-phenylethanesulfonamide
N -[4-[2-[[3-(4-fluorophenoxy)-2-hydroxypropyl]amino]ethyl]phenyl]-4-benzenesulfonamide
N-[4-[2-[[3-[(2-amino-5-pyridinyl)oxy]-2-hydroxypropyl]amino]ethyl]-phenyl]-2-naphthalenesulfonamide
N -[4-[2-[[2-hydroxy-3-(4-hydroxyphenoxy)propyl]amino]ethyl]phenyl]-3-quinolinesulfonamide
N-[4-[2-[[2-hydroxy-3-(4-hydroxyphenoxy)propyl]aminolethyl]phenyl]-4-[(5-methoxycarbonyl)pentanoyl]amino]benzenesulfonamide N-[4-[2-[[2-hydroxy-3-(4-hydroxyphenoxy)propyl]amino]ethyl]phenyl]-4-[(5-hydroxycarbonyl)pentanoyl]amino]benzenesulfonamide
N -[4-[2-[[2-hydroxy-3-(4-hydroxyphenoxy)propyl]amino]ethyl]phenyl]-4-(hexylaminocarbonylamino)benzenesulfonamide
N-[4-[2-[(2-hydroxy-3-phenoxypropyl)amino]ethyl]phenyl]-4chlorobenzenesulfonamide

N-[4-[2-[[2-hydroxy-3-(3-cyanophenoxy)propyl]amino]ethyl]phenyl]-3quinolinesulfonamide
N-[4-[2-[[3-(4-amino-3-cyanophenoxy)-2-hydroxypropyl]amino]ethyl]-phenyl]-3-quinolinesulfonamide
N-[4-[2-[[2-hydroxy-3-[(3-hydroxymethyl)phenoxy]propyl]amino]-ethyl]phenyl]-3-quinolinesulfonamide
N-[4-[2-[[2-hydroxy-3-(3-pyridyloxy)propyl]amino]ethyl]phenyl]-3quinolinesulfonamide
N-[4-[2-[[2-hydroxy-3-(3-pyridyloxy)propyl]amino]ethyl]phenyl]-4iodobenzenesulfonamide
N-[4-[2-[[3-[(2-amino-5-pyridinyl)oxy]-2-hydroxypropyl]amino]ethyl]-phenyl]-4-isopropylbenzenesulfonamide.

The compounds of the instant invention all have at least one asymmetric center as noted by the asterisk in structural Formulae I and la. Additional asymmetric centers may be present on the molecule depending upon the nature of the various substituents on the molecule, in particular, R2 and R3. Each such asymmetric center will produce two optical isomers and it is intended that all such optical isomers, as separated, pure or partially purified optical isomers or racemic mixtures thereof, be included within the ambit of the instant invention. In the case of the asymmetric center represented by the asterisk in Formula I, it has been found that the compound in which the hydroxy substituent is above the plane of the structure, as seen in Formula Ia, is more active and thus more preferred over the compound in which the hydroxy substituent is below the plane of the structure.

Compounds of the general Formula I may be separated into diastereoisomeric pairs of enantiomers by, for example, fractional crystallization from a suitable solvent, for example methanol or ethyl acetate or a mixture thereof. The pair of enantiomers thus obtained may be separated into individual stereoisomers by conventional means, for example by the use of an optically active acid as a resolving agent.

Alternatively, any enantiomer of a compound of the general Formula I may be obtained by stereospecific synthesis using optically pure starting materials of known configuration.

The following stereospecific structure represents the preferred stereoisomers of the instant invention.
where the various substituents are as defined above.
The instant compounds can be isolated in the form of their pharmaceutically acceptable acid addition salts, such as the salts derived from using inorganic and organic acids. Examples of such acids are hydrochloric, nitric, sulfuric, phosphoric, formic, acetic, trifluoroacetic, propionic, maleic, succinic, malonic and the like. In addition, certain compounds containing an acidic function such as a carboxy or tetrazole, can be isolated in the form of their inorganic salt in which the counterion can be selected from sodium, potassium, lithium, calcium, magnesium and the like, as well as from organic bases.

The compounds (I) of the present invention can be prepared from epoxide intermediates such as those of formula II and amine intermediates such as those of formula III. The preparation of these intermediates is described in the following schemes.

where $\mathrm{n}, \mathrm{m}, \mathrm{r}, \mathrm{A}, \mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}, \mathrm{R}_{4}, \mathrm{R}_{5}, \mathrm{R}_{6}, \mathrm{R}_{7}$ and X are as defined above.

Compounds II can be conveniently prepared by a variety of methods familiar to those skilled in the art. One common route is illustrated in Scheme 1. Alcohol $\underline{1}$ is treated with base such as sodiurn hydride or potassium t-butoxide in a polar solvent such as anhydrous dimethylformamide. The resultant anion is alkylated with epoxide derivative 2 , wherein " L " is a leaving group such as a sulfonate ester or a halide, for 0.5 to 24 hours at temperatures of $20-100^{\circ} \mathrm{C}$ to provide compound II. The epoxide derivative $\underline{2}$ is conveniently the commercially available, enantiomerically pure ($2 S$) or ($2 R$)-glycidyl 3nitrobenzene sulfonate or $(2 R$) or ($2 S$)-glycidyl 4-toluenesulfonate, thus both the (S) and (R) enantiomers of epoxide II are readily available.

SCHEME 1

Many of the alcohols 1 are commercially available or readily prepared by methods described in the literature and known to those skilled in the art. R1 substituents on the alcohol 1 may need to be protected during the alkylation and subsequent procedures. A description of such protecting groups may be found in: Protective Groups in Organic Synthesis, 2nd Ed., T. W. Greene and P. G. M. Wuts, John Wiley and Sons, New York, 1991. A useful method for protecting the preferred alchohol 1 wherein $A(R 1)_{n}$ is 4-hydroxyphenyl as its tert-butyldimethylsilyl (TBS) derivative is illustrated in Scheme 2. Commercially available phenol $\underline{\underline{3}}$ is treated with a silylating

- 10 -
agent such as tert-butyldimethylsilyl chloride in the presence of a base such as imidazole in an aprotic solvent such as dimethylformamide. The benzyl group is then removed by catalytic hydrogenation to give the desired alcohol 5 .

SCHEME 2

Compounds III can be conveniently prepared by a variety of methods familiar to those skilled in the art. A convenient route for their preparation when $R 6$ is hydrogen is illustrated in Scheme 3. Compound $\underline{6}$ is selectively protected as a suitable carbamate derivative Ga with, for example, di-tert-butyl dicarbonate or carbobenzyloxy chloride. This compound is then treated with a sulfonyl halide, preferably the sulfonyl chloride 7 , and a base such as pyridine in an anhydrous solvent such as dichloromethane or chloroform for 0.5 to 24 hours at temperatures of -20 to $50^{\circ} \mathrm{C}$, preferably $0^{\circ} \mathrm{C}$, to provide the sulfonamide $\underline{8}$. The protecting group is then removed with, for example, trifluoracetic acid in the case of Boc or catalytic hydrogenation in the case of Cbz , to give the desired amine $\underline{9}$.

SCHEME 3

g

Compounds III where R6 is not hydrogen may be conveniently prepared as illustrated in Scheme 4. Sulfonamide 8. prepared as described above, is alkylated with an appropriate alkylating agent 10 in the presence of base to provide sulfonamide 11. Removal of the protecting group as above gives the desired compound $I I I$.

SCHEME 4

III

$$
\begin{aligned}
& \mathrm{G}=\mathrm{Boc} \text { or } \mathrm{Cbz} \\
& \mathrm{Y}=\mathrm{Cl}, \mathrm{Br}, \text { or } \mathrm{I}
\end{aligned}
$$

The sulfonyl chlorides 1 , many of which are commercially available, can also be readily prepared by a number of methods familiar to those skilled in the art. One suitable method involves the addition of an organolithium reagent or a Grignard reagent to sulfuryl chloride following the procedure of S. N. Bhattacharya, et. al., J. Chem. Soc. (C), 1265-1267 (1968). Another convenient method involves the treatment of a thiol with sulfuryl chloride and a metal nitrate according to the procedure of Y. J. Park, et. al., Chemistry Letters, 1483-1486 (1992). Sulfonic acids are also conveniently converted to the corresponding sulfonyl chloride by treatment with $\mathrm{PCl}_{5}, \mathrm{PCl}_{3}$ or SOCl_{2} (J. March, Advanced Organic Chemistry, 4th Ed., John Wiley and Sons, New York: 1992, p1297 and references cited therein). Alternatively, aromatic compounds may be treated with chlorosulfonic acid according to the procedure of Albert, et. al., J. Het. Chem. 15, 529 (1978), to provide the sulfonyl chlorides.

The diamines $\underline{6}$ are commercially available or readily prepared by methods described in the literature or known to those skilled in the art. Compound 6 where R^{2} or R^{3} is methyl can be prepared from the corresponding amino acid following the method of J . D. Bloom, et. al., J. Med. Chem., 35, 3081-3084 (1992). As illustrated in Scheme 5 for $\mathrm{R}^{3}=$ methyl, the appropriate (R) amino acid 12 is esterified, conveniently by treatment with methanolic hydrochloric acid, and then treated with di-tert-butyl dicarbonate to give compound 13 . The ester group is reduced with a hydride source such as lithium borohydride and the resultant alcohol is converted to a leaving group such as a mesylate. Removal of the Boc protecting groups gives diamine 14. This compound is subjected to catalytic hydrogenation in the presence of base such as sodium acetate to give the desired α-methyl amine 15. The other enantiomer is available through an analogous sequence starting with the corresponding (S) amino acid.

SCHEME 5

$12 \mathrm{R}^{5}$

2) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{NaHCO}_{3}$

1) LiBH_{4}
$\xrightarrow[\text { 3) TFA, } \mathrm{CH}_{2} \mathrm{Cl}_{2}]{\text { 2) } \mathrm{MeSO}_{2} \mathrm{Cl}, \mathrm{Et}_{3} \mathrm{~N}}$

14

15

Diamines $\underline{6}$ or sulfonamide amines $\underline{9}$ where X is $-\mathrm{CH}_{2} \mathrm{O}$ and m is I are also readily prepared by methods described in the literature or known to those skilled in the art. For example, as shown in Scheme 6, the sodium salt of 4-nitrophenol 16 is alkylated with 1-bromo-2-chloroethane, conveninetly in refluxing 2-butanone with a base such as potassium carbonate, to give chloro derivative 17 . The chloride is converted to the corresponding amine by treatment with lithium azide followed by reduction with, for example, triphenylphosphine in aqueous tetrahydrofuran. Protection of the resultant amine, conveniently as its t-butyl carbamate by treatment with di-tert-butyldicarbonate, gives
derivative 18. The nitro group is then reduced, for example, by catalytic hydrogenation to provide amine 19. Acylation of intermediate 19 with sulfonyl chloride $\underline{7}$, followed by deprotection with acid such as trifluoroacetic acid gives the desired intermediate 20.

10

15

1. $\mathrm{LiN}_{3}, \mathrm{DMF}, 60^{\circ}$
2. $\mathrm{PPH}_{3}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$,
3. BOC anthydride, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

16

SCHEME 6

18

$\underline{20}$
-16-
Alternatively, diamine $\underline{6}$ where X is $-\mathrm{CH}_{2} \mathrm{O}$ - and m is 1 is available from intermediate 19 by treatment with trifluoroacetic acid. This diamine may then be modified as illustrated in Scheme 3.

Diamines $\underline{6}$ and sulfonamide amines 9 where X is $-\mathrm{CH}_{2} \mathrm{CH}_{2}-$ and m is 1 are also readily prepared by methods described in the literature or known to those skilled in the art. For example, as shown in Scheme 7 , bromo derivative 21 is treated with sodium cyanide to provide nitrile 22. The nitro group is selectively reduced by treatment with hydrogen and catalytic palladium to provide amine 23. Amine 23 is acylated with sulfonyl chloride 7 to give the corresponding sulfonamide 24 . Reduction of compound 24 with cobalt chloride and sodium borohydride provides the desired amine 25 .

SCHEME 7

Alternatively, diamine 6 where X is $-\mathrm{CH}_{2} \mathrm{CH}_{2}$ - and m is 1 is available from intermediate 23 by reduction of the nitrile group with, for example, cobalt chloride and sodium borohydride. This diamine may then be modified as illustrated in Scheme 3.

Intermediates II and III are coupled by heating them neat or as a solution in a polar solvent such as methanol, acetonitrile, tetrahydrofuran, dimethylsulfoxide or N-methyl pyrrolidinone for I to 24 hours at temperatures of 30 to $150^{\circ} \mathrm{C}$ to provide compounds 1 as shown in Scheme 8. The reaction is conveniently conducted in refluxing methanol. Alternatively, a salt of amine III, such as the trifluoroacetate or hydrochloride salt, may be used. In these cases, a
base such as sodium bicarbonate or diisopropylethylamine is added to the reaction mixture. The product is purified from unwanted side products by recrystallization, trituration, preparative thin layer chromatography, flash chromatography on silica gel as described by W. C. Still, et. al., J. Org. Chem. 43, 2923 (1978), medium pressure liquid chromatography, or HPLC. Compounds which are purified by HPLC may be isolated as the corresponding salt. Purification of intermediates is achieved in the same manner.

SCHEME 8

hydrogenation in a polar solvent such as 1:1 acetic acid/methanol to provide compound 27 . Other examples of substituents on compound I which may be reduced to the corresponding amine by catalytic hydrogenation and methods commonly known to those skilled in the art include nitro groups, nitriles, and azides.

SCHEME 9

27

Scheme 10 illustrates an example of another such modification of the coupling product I . Acetamido derivative 28 , which is prepared as outlined in the Scheme 8 from the corresponding epoxide, is subjected to hydrolysis in a protic solvent such as methanol/water with added acid or base such as hydrochloric acid or sodium hydroxide to provide the corresponding aniline derivative 29 .

SCHEME 10

An alternate method for the synthesis of compound I is illustrated in Scheme 11. Epoxide II is coupled to amine $\underline{6}$ as described above for coupling intermediates II and III (Scheme 8) to give aniline derivative 31a. The secondary amine is selectively protected, for example, as a carbamate by treatment with di-tert-butyldicarbonate to provide carbamate 32. Alternatively, nitro amine 30 is used in the coupling reaction to provide 31 b . Following protection as described above, the nitro group is reduced, for example, by catalytic hydrogenation, to provide intermediate 32 . Treatment with a sulfonyl chloride in the presence of a base such as pyridine followed by removal of the protecting group with, in the case of a tert-butylcarbamate, acid such as trifluoroacetic acid or methanolic hydrogen chloride, provides the sulfonamide I.

SCHEME 11

In some cases, sulfonamide I from the reaction sequence illustrated in Scheme 11 may be further modified, for example, by the removal of protecting groups or the manipulation of substituents on, in particular, R1 and R7, as described above. In addition, manipulation of substituents on any of the intermediates in the reaction sequence illustrated in Scheme 11 may occur. An example of this is illustrated in

Scheme 12. N-Boc 4-nitrobenzenesulfonamide 33, which is prepared from intermediate 32 and 4-nitrobenzenesulfonyl chloride, is subjected to catalytic hydrogenation and the resultant aniline is acylated with, for example, an acid chloride in the presence of base to give $\underline{\mathrm{N}}-\mathrm{Boc}$ intermediate 34. Deprotection with acid such as trifluoroacetic acid or methanolic hydrogen chloride provides the desired sulfonamide 35 .

SCHEME 12

33

1) H_{2}, catalytic Pd / C
2) $\mathrm{R}^{8} \mathrm{COCl}$, pyridine

34
TFA or $\mathrm{HCl} / \mathrm{MeOH}$

As previously indicated, the compounds of the present invention have valuable pharmacological properties.

The present invention also provides a compound of the general Formula I or a pharmaceutically acceptable salt thereof for use as an active therapeutic substance.

In one aspect, the present invention provides a compound of the general Formula I or a pharmaceutically acceptable ester thereof: or a pharmaceutically acceptable salt thereof for use in the treatment of obesity in human or non-human animals.

The present invention further provides a compound of the general Formula I, or a pharmaceutically acceptable ester thereof; or pharmaceutically acceptable salt thereof, for use in the treatment of hyperglycemia (diabetes) in human or non-human animals.

The disease diabetes mellitus is characterized by metabolic defects in production and utilization of glucose which result in the failure to maintain appropriate blood sugar levels. The result of these defects is elevated blood glucose or hyperglycemia. Research on the treatment of diabetes has centered on attempts to normalize fasting and postprandial blood glucose levels. Treatments have included parenteral administration of exogenous insulin, oral administration of drugs and dietary therapies.

Two major forms of diabetes mellitus are now recognized. Type I diabetes, or insulin-dependent diabetes, is the result of an absolute deficiency of insulin, the hormone which regulates glucose utilization. Type II diabetes, or insulin-independent diabetes, often occurs in the face of normal, or even elevated levels of insulin and appears to be the result of the inability of tissues to respond appropriately to insulin. Most of the Type II diabetics are also obese.

In addition the compounds of the present invention lower triglyceride levels and cholesterol levels and raise high density lipoprotein levels and are therefore of use in combatting medical conditions wherein such lowering (and raising) is thought to be beneficial. Thus they may be used in the treatment of hypertriglyceridaemia, hypercholesterolaemia and conditions of low HDL (high density lipoprotein) levels in addition to the treatment of
atherosclerotic disease such as of coronary, cerebrovascular and peripheral arteries, cardiovascular disease and related conditions.

Accordingly, in another aspect the present invention provides a method of lowering triglyceride and/or cholesterol levels and/or increasing high density lipoprotein levels which comprises administering, to an animal in need thereof, a therapeutically effective amount of a compound of the formula (I) or pharmaceutically acceptable salt thereof. In a further aspect the present invention provides a method of treating atherosclerosis which comprises administering, to an animal in need thereof; a therapeutically effective amount of a compound of the formula (I) or pharmaceutically acceptable salt thereof. The compositions are formulated and administered in the same general manner as detailed below for treating diabetes and obesity. They may also contain other active ingredients known for use in the treatment of atherosclerosis and related conditions, for example fibrates such as clofibrate, bezafibrate and gemfibrozil; inhibitors of cholesterol biosynthesis such as HMG-CoA reductase inhibitors for example lovastatin, simvastatin and pravastatin; inhibitors of cholesterol absorption for example beta-sitosterol and (acyl CoA:cholesterol acyltransferase) inhibitors for example melinamide; anion exchange resins for example cholestyramine, colestipol or a dialkylaminoalkyl derivatives of a cross-linded dextran; nicotinyl alcohol, nicotinic acid or a salt thereof; vitamin E; and thyromimetics.

The compounds of the instant invention also have the effect of reducing intestinal motility and thus find utility as aiding in the treatment of various gastrointestinal disorders such as irritable bowel syndrome. It has been proposed that the motility of non-sphincteric smooth muscle contraction is mediated by activity at $\beta 3$ adrenoreceptors. The availability of a $\beta 3$ specific agonist, with little activity at β_{1} and β_{2} receptors will assist in the pharmacologic control of intestinal motility without concurrent cardiovascular effects. The instant compounds are administered generally as described below with dosages similar to those used for the treatment of diabetes and obesity.

It has also been found unexpectedly that the compounds which act as agonists at $\beta 3$ adrenoreceptors may be useful in the treatment of gastrointestinal disorders, especially peptic ulcerations, esophagitis, gastritis and duodenitis, (including that induced by $\underline{\mathrm{H}}$. pylori), intestinal ulcerations (including inflammatory bowel disease, ulcerative colitis, Crohn's disease and proctitis) and gastrointestinal ulcerations.

In addition, $\beta 3$ receptors have been indicated to have an effect on the inhibition of the release of neuropeptides in certain sensory fibers in the lung. As sensory nerves may play an important role in the neurogenic inflammation of airways, including cough, the instant specific $\beta 3$ agonists may be useful in the treatment of neurogenetic inflammation, such as asthma, with minimal effects on the cardiopulmonary system.
$\beta 3$ adrenoreceptors are also able to produce selective antidepressant effects by stimulating the $\beta 3$ receptors in the brain and thus an additional contemplated utility of the compounds of this invention are as antidepressant agents.

The active compounds of the present invention may be orally administered as a pharmaceutical composition, for example, with an inert diluent, or with an assimilable edible carrier, or they may be enclosed in hard or soft shell capsules, or they may be compressed into tablets, or they may be incorporated directly with the food of the diet. For oral therapeutic administration, which includes sublingual adminastration, these active compounds may be incorporated with excipients and used in the form of tablets, pills, capsules, ampules, sachets, elixirs, suspensions, syrups, and the like. Such compositions and preparations should contain at least 0.1 percent of active compound. The percentage of active compound in these compositions may, of course, be varied and may conveniently be between about 2 percent to about 60 percent of the weight of the unit. The amount of active compound in such therapeutically useful compositions is such that an effective dosage will be obtained. The active compounds can also be adminastered intranasally as, for example, liquid drops or spray.

The effective dosage of active ingredient employed may vary depending on the particular compound employed, the mode of administration, the condition being treated and the severity of the condition being treated.

When treating diabetes mellitus and/or hyperglycemia generally satisfactory results are obtained when the compounds of the present invention are administered at a daily dosage of from about 0.1 milligram to about 1 milligram per kilogram of animal body weight, preferably given in divided doses two to six times a day, or in sustained release form. For most large mammals, the total daily dosage is from about 3.5 milligrams to about 140 milligrams, preferably from about 3.5 milligrams to about 5 milligrams. In the case of a 70 kg adult human, the total daily dose will generally be from about 7 milligrams to about 70 milligrams. This dosage regimen may be adjusted to provide the optimal therapeutic response.

When treating obesity, in conjunction with diabetes and/or hyperglycemia, or alone, generally satisfactory results are obtained when the compounds of the present invention are administered at a daily dosage of from 1 milligram to about 10 milligrams per kilogram of animal body weight, preferably given in divided doses two to six times a day, or in sustained release form. For most large mammals, the total daily dosage is from about 35 milligrams to about 1,400 milligrams, preferably from about 35 milligrams to about 50 milligrams. In the case of a 70 kg adult human, the total daily dose will generally be from about 70 milligrams to about 700 milligrams. This dosage regimen may be adjusted to provide the optimal therapeutic response.

The tablets, pills, capsules, and the like may also contain a binder such as gum tragacanth, acacia, corn starch or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid; a lubricant such as magnesium stearate; and a sweetening agent such as sucrose, lactose or saccharin. When a dosage unit form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier such as a fatty oil.

Various other materials may be present as coatings or to modify the physical form of the dosage unit. For instance, tablets may be coated with shellac, sugar or both. A syrup or elixir may contain, in addition to the active ingredient, sucrose as a sweetening agent, methyl and propylparabens as preservatives, a dye and a flavoring such as cherry or orange flavor.

These active compounds may also be administered parenterally. Solutions or suspensions of these active compounds can be prepared in water suitably mixed with a surfactant such as hydroxypropylcellulose. Dispersions can also be prepared in glycerol, liquid polyethylene glycols and mixtures thereof in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.

The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. In all cases, the form must be sterile and must be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (e.g. glycerol, propylene glycol and liquid polyethylene glycol), suitable mixtures thereof, and vegetable oils.

The following examples are provided so that the invention might be more fully understood. They should not be construed as limiting the invention in any way.

EXAMPLE 1

(S)-2-[([4-Phenylmethoxy)phenoxylmethylloxirane

A solution of $1.54 \mathrm{~g}(7.72 \mathrm{mmol})$ of 4-benzyloxyphenol in 10 mL of dimethylformamide (DMF) was added dropwise via cannula to a mixture of 310 mg (7.72 mmol) of sodium hydride (60% dispersion in mineral oil). After the mixture was allowed to stir for 1 h , a solution of $2.00 \mathrm{~g}(7.72 \mathrm{mmol})$ of (2S)-glycidyl 3-nitrobenzene sulfonate in 10 mL of DMF was added via cannula. The reaction mixture was allowed to stir at room temperature for 4.5 h . It was diluted with ethyl acetate, washed with three portions of water, dried over magnesium sulfate, and concentrated. Purification by flash chromatography (silica gel, 20% ethyl acetate/hexane) gave 1.84 g (93%) of the title compound: ${ }^{1} \mathrm{H}$ NMR $(200 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.41-7.28$ (m, 5H), 6.90-6.80 (sym m, 4H), 4.99 ($\mathrm{s}, 2 \mathrm{H}$), 4.14 (dd, $1 \mathrm{H}, \mathrm{J}=3.2,11$ $\mathrm{Hz}), 3.89(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=5.6,11 \mathrm{~Hz}), 3.29(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=$ 5.1 Hz), 2.71 (dd, $1 \mathrm{H}, \mathrm{J}=2.6,5.1 \mathrm{~Hz}$); EI MS $m / z 256$ (M), 165, 91 .

EXAMPLE 2

A solution of $10.0 \mathrm{~g}(50.0 \mathrm{mmol})$ of 4-benzyloxyphenol, 9.04 g (60.0 mmol) of tert-butyldimethylsilyl chloride, and $4.42 \mathrm{~g}(65.0$ mmol) of imidazole in dimethylforamide (DMF) was allowed to stir at ambient temperature overnight. The mixture was then diluted with ethyl acetate, washed sequentially with water, 1 M aqueous sodium bisulfate solution, 1 M aqueous sodium hydroxide solution, and brine, dried over magnesium sulfate, and concentrated to give a white solid. The unpurified compound was dissolved in 40 mL of ethyl acetate and allowed to stir over 20% palladium hydroxide on carbon under an atmosphere of hydrogen overnight. The reaction mixture was then filtered through a pad of Celite and concentrated. The resultant phenol
was dissolved in 40 mL of DMF and added dropwise over a $30-\mathrm{min}$ period via cannula to a mixture of $2.60 \mathrm{~g}(65.0 \mathrm{mmol})$ of sodium hydride $\left(60 \%\right.$ dispersion in mineral oil) at $0^{\circ} \mathrm{C}$. A $10-\mathrm{mL}$ portion of DMF was added. After the mixture was allowed to stir at $0^{\circ} \mathrm{C}$ for 30 min , a solution of 14.3 g (55.0 mmol) of (2S)-glycidyl 3-nitrobenzene sulfonate in 40 mL of DMF was added dropwise over a $20-\mathrm{min}$ period. After the reaction was judged to be complete by TLC analysis, it was quenched with water, diluted with ethyl acetate, washed sequentially with water, 1 M aqueous sodium hydroxide solution, and brine, dried over magnesium sulfate, and concentrated. Purification by flash chromatography (silica gel, 10% ethyl acetate/hexane) gave $5.04 \mathrm{~g}(36 \%$ overall yield) of the title compound: 1H NMR ($400 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}$) δ $6.82(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.1 \mathrm{~Hz}), 6.74(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.1 \mathrm{~Hz}), 4.22(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.6$, $11.2 \mathrm{~Hz}), 3.79(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=6.2,11.2 \mathrm{~Hz}), 3.30(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{t}, \mathrm{IH}, \mathrm{J}=$ $4.6 \mathrm{~Hz}), 2.71(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.7,5.0 \mathrm{~Hz}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.15(\mathrm{~s}, 6 \mathrm{H})$.

EXAMPLE 3

2-(4-Aminophenyl)ethylcarbamic acid phenylmethyl ester

A solution of 5.00 g (36.7 mmol) of 2-(4-aminophenyl)ethylamine in 100 mL of chloroform was cooled to $0^{\circ} \mathrm{C}$ and 3.72 g ($5.20 \mathrm{~mL}, 36.8 \mathrm{mmol}$) of triethylamine was added. A solution of 6.26 g ($5.2 \mathrm{~mL}, 36.8 \mathrm{mmol}$) of benzyl chloroformate in 40 mL of chloroform was then added dropwise over a $30-\mathrm{min}$ period. The reaction was allowed to stir at $0^{\circ} \mathrm{C}$ for 2 h . It was diluted with 100 mL of chloroform, washed with $100-\mathrm{mL}$ portions of water and brine, dried over sodium sulfate and concentrated. The residue was dissolved in 50% ethyl acetate/hexane and stirred with 30 g of silica gel, filtered, and concentrated. Further purification by recrystallization from ethyl acetate/hexanes gave $4.82 \mathrm{~g}(49 \%)$ of the title compound as a white solid: 1 H NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $7.33(\mathrm{~s}, 5 \mathrm{H}), 6.94(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.2$
$\mathrm{Hz}), 6.60(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 4.84(\operatorname{broad} \mathrm{~s}, 1 \mathrm{H}), 3.55$ (broad s, 2H), $3.37(\mathrm{~m}, 2 \mathrm{H}), 2.67(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz})$. FAB MS $m / z 271$ ($\mathrm{M}+1$).

EXAMPLE 4

2-(4-Aminophenyl)ethylcarbamic acid 1,1-dimethylethyl ester
A solution of $817 \mathrm{mg}(6.00 \mathrm{mmol})$ of 2-(4-aminophenyl)ethylamine in 20 mL of tetrahydrofuran was treated with 1310 mg (6.00 mmol) of di-tert-butyl dicarbonate. After the reaction mixture was stirred at room temperature for 0.5 h , it was concentrated. Trituration from a solution of 5 mL of ether and 20 mL of hexane gave $1.04 \mathrm{~g}(73 \%)$ of the title compound as a pale yellow solid: 1H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.94(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}), 6.59(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz})$, $4.51($ broad $\mathrm{s}, 1 \mathrm{H}), 3.58($ broad s, 2 H$), 3.27(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=$ $7.0 \mathrm{~Hz}), 1.38(\mathrm{~s}, 9 \mathrm{H})$. FAB MS $m / z 237(\mathrm{M}+1)$.

EXAMPLE 5

$\mathrm{N}-[4-[2-[($ phenylmethoxycarbonyl)amino]ethyl]phenyl]benzenesulfonamide

A solution of $868 \mathrm{mg}(3.22 \mathrm{mmol})$ of Cbz amine from Example 3 in 15 mL of dichloromethane was cooled to $0^{\circ} \mathrm{C}$ and treated with $0.286 \mathrm{~mL}(3.54 \mathrm{mmol})$ of pyridine followed by $569 \mathrm{mg}(0.41 \mathrm{~mL}$, 3.22 mmol) of benzenesulfonyl chloride. The reaction mixture was stirred at room temperature for 2 h and then partitioned between chloroform and water. The organic phase was washed sequentially with 5% aqueous hydrochloric acid and saturated aqueous sodium
bicarbonate, dried over magnesium sulfate, and concentrated.
Purification by recrystallization from ethyl acetate/hexane gave 630 mg (48%) of the title compound as a white solid: 1H NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) 7.72(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 7.48(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~m}$, $5 \mathrm{H}), 7.02(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}), 6.95(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}), 6.55(\mathrm{~s}, 1 \mathrm{H})$, $5.06(\mathrm{~s}, 2 \mathrm{H}), 4.68($ broad s, 1H), $3.37(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz})$. FAB MS $m / z 411(M+1)$.

EXAMPLE 6

N-[4-(2-aminoethyl)phenyllbenzenesulfonamide
A solution of $600 \mathrm{mg}(1.46 \mathrm{mmol})$ of Cbz amine from Example 5 in 18 mL of methanol was stirred over 20% palladium hydroxide on carbon under an atmosphere of hydrogen for 2.5 h . The reaction mixture was filtered through a Celite pad and concentrated to give $360 \mathrm{mg}(89 \%)$ of a white solid: 1 H NMR $(400 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}) \delta$ 7.73 (d, 2H, J = 7.1 Hz), 7.52 (t, 1H, J $=7.4 \mathrm{~Hz}$), $7.44(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.5$ $\mathrm{Hz}), 7.04(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}), 6.99(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz}), 2.82(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=$ $7.3 \mathrm{~Hz}), 2.66(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz})$.

EXAMPLE 7

(S)- N -[4-[2-[[2-hydroxy-3-[(4-phenylmethoxy)phenoxy]propyl]amino]ethyllphenyllbenzenesulfonamide

A solution of $406 \mathrm{mg}(1.47 \mathrm{mmol})$ of amine from Example 6 in 8 mL of anhydrous methanol was treated with 280 mg (1.10 mmol)
of epoxide from Example 1. The solution was heated at reflux under nitrogen overnight, then cooled to room temperature and concentrated. Purification by flash chromatography (silica gel, 5:4:1 ethyl acetate:hexane: 10% methanolic ammonium hydroxide) gave 282 mg (48%) of the title compound: $\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}) \delta 7.71(\mathrm{~d}, 2 \mathrm{H})$, $7.52(\mathrm{~m}, 1 \mathrm{H}), 7.1-7.4(7 \mathrm{H}), 7.06(\mathrm{~d}, 2 \mathrm{H}), 7.00(\mathrm{~d}, 2 \mathrm{H}), 6.75(\mathrm{~d}, 2 \mathrm{H})$,
$6.70(\mathrm{~d}, 2 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 3.99(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~d}, 2 \mathrm{H}), 2.6-2.9(\mathrm{~m}, 6 \mathrm{H})$.

EXAMPLE 8

(S)-N-[4-[2-[[2-hydroxy-3-(4-hydroxyphenoxy)propyl]amino]ethyl]phenyllbenzenesulfonamide

A solution of $282 \mathrm{mg}(0.529 \mathrm{mmol})$ of benzyl ether from Example 7 in 5 mL of methanol and 5 mL of tetrahydrofuran was treated with 100 mg of 20% palladium hydroxide on carbon under an atmosphere of hydrogen for 2 h . It was then filtered and concentrated. Purification by flash chromatography (silica gel, 5:4:2 ethyl acetate:hexane: 10% methanolic ammonium hydroxide) gave 141 mg (60%) of the title compound as a foam: 1H NMR ($400 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}$) $7.71(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 7.52(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ $8.5 \mathrm{~Hz}), 6.99(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 6.75(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.1), 6.68(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ $9.1 \mathrm{~Hz}), 3.98(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=5.4 \mathrm{~Hz}), 2.6-2.9(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{FAB}$ MS $m / z 443(\mathrm{M}+1)$.

EXAMPLE 9

N -[4-[2-[[(1,1-dimethylethoxy)carbonyl]amino]ethyl]phenyl]-4iodobenzenesulfonamide

In a manner analogous to that of Example 5, the title compound was prepared from the Boc amine in Example 2 and 4iodobenzenesulfonyl chloride: ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}) \delta 7.86(\mathrm{~d}$,
$2 \mathrm{H}), 7.46(\mathrm{~d}, 2 \mathrm{H}), 7.07(\mathrm{~d}, 2 \mathrm{H}), 6.99(\mathrm{~d}, 2 \mathrm{H}), 3.27(\mathrm{t}, 2 \mathrm{H}), 2.76(\mathrm{t}, 2 \mathrm{H})$, iodobenzenesulfonyl chloride: $1 \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}) \delta 7.86(\mathrm{~d}$,
$2 \mathrm{H}), 7.46(\mathrm{~d}, 2 \mathrm{H}), 7.07(\mathrm{~d}, 2 \mathrm{H}), 6.99(\mathrm{~d}, 2 \mathrm{H}), 3.27(\mathrm{t}, 2 \mathrm{H}), 2.76(\mathrm{t}, 2 \mathrm{H})$, $1.38(\mathrm{~s}, 9 \mathrm{H})$.

EXAMPLE 11

(S) N - -4 -[2-[[2-hydroxy-3-[|4-[|(1,1-dimethylethyl)dimethylsily]]oxy]-phenoxylpropyllaminolethyllphenyll-4-iodo-benzenesulfonamide

In a manner analogous to that of Example 7, the title compound was prepared from the epoxide from Example 2 and the amine from Example 10: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}$) $\delta 7.82$ (d, 2 H , J $=8.6 \mathrm{~Hz}), 7.43(\mathrm{~d}, 2 \mathrm{H}, 8.6 \mathrm{~Hz}), 7.10(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 6.79(\mathrm{~d}, 2 \mathrm{H})$, $6.73(\mathrm{~d}, 2 \mathrm{H}), 4.01(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~d}, 2 \mathrm{H}), 3.91-2.69(\mathrm{~m}, 6 \mathrm{H}), 0.96(\mathrm{~s}$, $9 \mathrm{H}), 0.15(\mathrm{~s}, 6 \mathrm{H})$.

EXAMPLE 12

(S)-N-[4-[2-[[2-hydroxy-3-(4-hydroxyphenoxy)propyl]amino]ethyl]-phenyll-4-iodobenzenesulfonamide

A $182-\mathrm{mg}(0.266 \mathrm{mmol})$ sample of silyl ether from
Example 11 was treated with 3% methanolic hydrogen chloride (prepared by adding 1 mL of acetyl chioride to 19 mL of methanol at $0^{\circ} \mathrm{C}$). After the solution was allowed to stir at room temperature for 1 h , it was concentrated. Purification by flash chromatography (silica gel, 10% of $10: 1$ methanol:concentrated ammonium hydroxide in dichloromethane) gave $106 \mathrm{mg}(70 \%)$ of the title compound: ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}) \delta 7.82(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.43(\mathrm{~d}, 2 \mathrm{H}, 8.6 \mathrm{~Hz})$,
$7.10(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 6.99(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 6.74(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.0$ $\mathrm{Hz}), 6.68(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}), 4.00(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=5.5 \mathrm{~Hz})$, 3.34-2.67 (m, 6H); FAB MS $m / z 569(\mathrm{M}+1), 309,154$.

EXAMPLE 13

N-[4-[2-[(phenylmethoxycarbonyl)amino]ethyl]phenyl]-2-naphthalenesulfonamide

In a manner analogous to that of Example 5, the title
compound was prepared from the Cbz amine from Example 3 and 2naphthalenesulfonyl chloride: ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 8.32$ (s , $1 \mathrm{H}), 7.85(\mathrm{~m}, 3 \mathrm{H}), 7.71(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.8,8.7 \mathrm{~Hz}), 7.61-7.52(\mathrm{~m}, 2 \mathrm{H})$, $7.34-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.99(\mathrm{~s}, 4 \mathrm{H}), 6.77(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 2 \mathrm{H}), 4.65(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 3.33(\mathrm{brq}, 2 \mathrm{H}, \mathrm{J}=5.9 \mathrm{~Hz}), 2.68(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}) ;$ FAB MS $m / 2461(\mathrm{M}+1), 270$.

EXAMPLE 14

(S)-N-[4-[2-[[2-hydroxy-3-[(4-phenylmethoxy)phenoxy]propyl]amino]-ethyll]phenyll-2-naphthalenesulfonamide

The Cbz amine from Example 13 was deprotected as described in Example 6. In a manner analogous to that of Example 7, the title compound was prepared from the resultant amine and the epoxide from Example 1: 1H NMR ($400 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}) \delta 8.27(\mathrm{~s}, 1 \mathrm{H})$, $7.93-7.87(\mathrm{~m}, 3 \mathrm{H}), 7.71(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.9,8.7 \mathrm{~Hz}), 7.62-7.54(\mathrm{~m}, 2 \mathrm{H})$,
$7.39(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 7.34(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}), 7.27(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.1$ $\mathrm{Hz}), 7.04(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}), 7.01(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}), 6.88(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ $9.1 \mathrm{~Hz}), 6.79(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.1 \mathrm{~Hz}), 4.99(\mathrm{~s}, 2 \mathrm{H}), 3.96(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{J}=5.3 \mathrm{~Hz}), 2.80-2.63(\mathrm{~m}, 6 \mathrm{H}) ;$ FAB MS $m / z 583(\mathrm{M}+1)$.

EXAMPLE 15

(S)- N -[4-[2-[[2-hydroxy-3-(4-hydroxyphenoxy)propyl]amino]ethyl]-phenyl]-2-naphthalenesulfonamide

In a manner analogous to that of Example 8, the title compound was prepared from the benzyl ether from Example 14: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}$) $\delta 8.28(\mathrm{~s}, 1 \mathrm{H}), 7.95-7.89(\mathrm{~m}, 3 \mathrm{H}), 7.72(\mathrm{dd}$, $1 \mathrm{H}, \mathrm{J}=1.9,8.7 \mathrm{~Hz}), 7.62-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.01(\mathrm{~m}, 4 \mathrm{H}), 6.73(\mathrm{~d}, 2 \mathrm{H}$, $\mathrm{J}=9.0 \mathrm{~Hz}), 6.67(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}), 3.97(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=5.2$ $\mathrm{Hz}), 2.85-2.68(\mathrm{~m}, 6 \mathrm{H}) ;$ FAB MS $m / z 493(\mathrm{M}+1)$.

EXAMPLE 16

N-[4-[2-[[(1,1-dimethylethoxy)carbonyl]amino]ethyl]phenyl]- β styrenesulfonamide

In a manner analogous to that of Example 5, the title compound was prepared from the Boc amine from Example 4 and β styrenesulfonyl chloride: 1 H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$ $=15.4 \mathrm{~Hz}), 7.42-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.11(\mathrm{~s}, 4 \mathrm{H}), 6.77(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.4 \mathrm{~Hz})$,
$6.56(\mathrm{brs}, 1 \mathrm{H}), 4.48(\mathrm{brs}, 1 \mathrm{H}), 4.10(\mathrm{brm}, 2 \mathrm{H}), 2.72(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.1$ $\mathrm{Hz}), 1.39(\mathrm{~s}, 9 \mathrm{H})$.

EXAMPLE 17

N-[4-[2-[[(1,1-dimethylethoxy)carbonyl]aminolethyl]phenyl]-2phenylethanesulfonamide

A solution of $204 \mathrm{mg}(0.507 \mathrm{mmol})$ of Boc amine from Example 16 in methanol was stirred over 20% palladium hydroxide under an atmosphere of hydrogen overnight. The reaction mixture was then filtered and concentrated. Purification by flash chromatography (silica gel, 30% ethyl acetate/hexane) gave $168 \mathrm{mg}(82 \%)$ of the title compound as a white solid: 1 H NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.21$ $(\mathrm{m}, 3 \mathrm{H}), 7.15-7.06(\mathrm{~m}, 4 \mathrm{H}), 6.96(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 4.49$ (br s, 1H), 3.35-3.24 (m, 4H), 3.18-3.05 (m, 2H), $2.72(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.1$ Hz , $1.40(\mathrm{~s}, 9 \mathrm{H})$.

EXAMPLE 18

N-[4-(2-aminoethyl)phenyll-2-phenylethanesulfonamide
In a manner analogous to that of Example 10, the title compound was prepared from the Boc amine from Example 17: 1 H NMR ($400 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}$) $\delta 7.25-7.12(\mathrm{~m}, 7 \mathrm{H}), 7.11(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.8$ $\mathrm{Hz}), 3.26(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{~m}, 2 \mathrm{H}), 2.86(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}), 2.72(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}$ $=7.4 \mathrm{~Hz}$).

EXAMPLE 19

(S)-N-[4-[2-[[2-hydroxy-3-[(4-phenylmethoxy)phenoxy]propyl]amino]-ethyllphenyll-2-phenylethanesulfonamide

In a manner analogous to that of Example 7, the title compound was prepared from the amine from Example 18 and the epoxide from Example 1: 1H NMR ($400 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}$) $\delta 7.40-7.09$ $(\mathrm{m}, 14 \mathrm{H}), 6.88(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.2 \mathrm{~Hz}), 6.81(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.2 \mathrm{~Hz}), 4.00(\mathrm{~m}$, $1 \mathrm{H}), 3.85(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=5.3 \mathrm{~Hz}), 3.25(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{~m}, 1 \mathrm{H}), 2.91-2.78$ $(\mathrm{m}, 5 \mathrm{H}), 2.72(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.1,12.2 \mathrm{~Hz}) ;$ FAB MS $m / z 561(\mathrm{M}+1)$.

EXAMPLE 20

(S)-N-[4-[2-[[2-hydroxy-3-(4-hydroxyphenoxy)propyl]amino]ethyl]-phenvll-2-phenvlethanesulfonamide

In a manner analogous to that of Example 8, the title compound was prepared from the benzyl ether from Example 19: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.25-7.15(\mathrm{~m}, 7 \mathrm{H}), 7.11(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.0$ $\mathrm{Hz}), 6.75(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.1 \mathrm{~Hz}), 6.68(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.1 \mathrm{~Hz}), 4.05(\mathrm{~m}, 1 \mathrm{H})$, 3.89-3.83 (overlapping dd, 2 H), $3.26(\mathrm{~m}, 1 \mathrm{H}), 3.05-2.95(\mathrm{~m}, 4 \mathrm{H}), 2.88-$ $2.82(\mathrm{~m}, 3 \mathrm{H}) ;$ FAB MS $m / z 471(\mathrm{M}+1)$.

EXAMPLE 21

N-[4-[2-[(phenylmethoxycarbonyl)amino]ethyl]phenyl]-8-quinolinesulfonamide

In a manner analogous to that of Example 5, the title compound was prepared from the Cbz amine from Example 3 and 8quinolinesulfonyl chloride: ${ }^{1} \mathrm{H}$ NMR (400 MHz , d6-DMSO) 9.94 (s , $1 \mathrm{H}), 9.12(\mathrm{~m}, 1 \mathrm{H}), 8.49(\mathrm{dd}, 1 \mathrm{H}), 8.31(\mathrm{dd}, 1 \mathrm{H}), 8.24(\mathrm{dd}, 1 \mathrm{H}), 7.70$ $(\mathrm{m}, 2 \mathrm{H}), 7.2-7.4(\mathrm{~m}, 4 \mathrm{H}), 6.94(\mathrm{~d}, 2 \mathrm{H}), 6.88(\mathrm{~d}, 2 \mathrm{H}), 4.94(\mathrm{~s}, 2 \mathrm{H}), 3.04$ (m, 2H), $2.48(\mathrm{t}, 2 \mathrm{H})$. FAB MS $m / z 462(\mathrm{M}+1)$.

EXAMPLE 22

(S)-N-[4-[2-[[2-hydroxy-3-[(4-phenylmethoxy)phenoxy]propyl]amino]-ethyllphenyl]-8-quinolinesulfonamide

The Cbz amine from Example 21 was deprotected as described in Example 6. In a manner analogous to that of Example 7, the title compound was prepared from the resultant amine and the epoxide from Example 1: 1H NMR ($400 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}$) 9.12 (m, 1H), $8.49(\mathrm{~d}, 1 \mathrm{H}), 8.31(\mathrm{dd}, 1 \mathrm{H}), 8.24(\mathrm{dd}, 1 \mathrm{H}), 7.3-7.5(\mathrm{~m}, 7 \mathrm{H}), 7.07(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 6.99(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 6.75(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.1), 6.68(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{J}=9.1 \mathrm{~Hz}), 5.04(\mathrm{~s}, 2 \mathrm{H}), 3.98(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=5.4 \mathrm{~Hz})$, 2.5-2.9 (m, 6H). FAB MS $m / z 584(\mathrm{M}+1)$.

EXAMPLE 23

(S)-N-[4-[2-[[2-hydroxy-3-(4-hydroxyphenoxy)propyl]amino]ethyl]-phenyll-8-quinolinesulfonamide

In a manner analogous to that of Example 8, the title compound was prepared from the benzyl ether from Example 22: 1 H NMR (400 MHz, CD3OD) $9.95(\mathrm{~s}, 1 \mathrm{H}), 9.12(\mathrm{~m}, 1 \mathrm{H}), 8.48(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $6.9 \mathrm{~Hz}), 8.30(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}), 8.24(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}), 7.52(\mathrm{~m}$, $2 \mathrm{H}), 7.07(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz}), 6.99(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz}), 6.75(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ $9.1 \mathrm{~Hz}), 6.68(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.1 \mathrm{~Hz}), 3.98(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=5.4$ $\mathrm{Hz}), 3.34(\mathrm{~s}, 1 \mathrm{H}), 2.6-2.9(\mathrm{~m}, 6 \mathrm{H})$. FAB MS $m / z 494(\mathrm{M}+1)$.

EXAMPLE 24

N-[4-[2-[[(1,1-dimethylethoxy)carbonyl]amino]ethyl]phenyl]-5-(pyridin-2-y])-2-thiophenesulfonamide

In a manner analogous to that of Example 5, the title compound was prepared from the Boc amine from Example 4 and 5-(pyridin-2-yl)-2-thiophenesulfonyl chloride: 1H NMR (400 MHz , CD3OD) $8.48(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.2 \mathrm{~Hz}), 7.81(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.1$ $\mathrm{Hz}), 7.41(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 4 \mathrm{H}), 3.18(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz})$, $2.67(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 1.38(\mathrm{~s}, 9 \mathrm{H})$. FAB MS m/z $460(\mathrm{M}+1)$.

EXAMPLE 25

(S)- N -[4-[2-[[2-hydroxy-3-[[4-[[(1,1-dimethylethyl)dimethylsilyl]oxy]-phenoxy]propyl]aminolethyl]phenyl]-5-(pyridin-2-yl)-2-thiophene]-
sulfonamide
The Boc amine from Example 24 was deprotected as described in Example 10. In a manner analogous to that of Example 7, the title compound was prepared from the resultant amine and the epoxide from Example 2: $1^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}$) 8.48 (d, $1 \mathrm{H}, \mathrm{J}$ $=5.1 \mathrm{~Hz}), 7.80(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.1 \mathrm{~Hz}), 7.39(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.1$ $\mathrm{Hz}), 7.30(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}), 7.10(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.8 \mathrm{~Hz})$, $6.74(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}), 6.67(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}), 3.99(\mathrm{~m}, 1 \mathrm{H}), 3.82$ $(\mathrm{d}, 2 \mathrm{H}, \mathrm{J}=5.4 \mathrm{~Hz}), 2.7-2.9(\mathrm{~m}, 6 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 0.15(\mathrm{~s}, 6 \mathrm{H})$.

EXAMPLE 26

(S)-N-[4-[2-[[2-hydroxy-3-(4-hydroxyphenoxy)propyl]amino]ethyl]-phenyll-5-[2-(pyridin-2-yl)thiophenelsulfonamide

In a manner analogous to that of Example 12, the title compound was prepared from the silyl ether from Example 25: 1 H NMR ($400 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}$) $8.48(\mathrm{~m}, 1 \mathrm{H}), 7.80(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=4.0 \mathrm{~Hz}), 7.40(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.0 \mathrm{~Hz}), 7.29(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.8$ $\mathrm{Hz}), 7.10(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.8 \mathrm{~Hz}), 6.74(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.1 \mathrm{~Hz}), 6.68(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ $9.1 \mathrm{~Hz}), 3.99(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=5.4 \mathrm{~Hz}), 2.7-2.9(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{FAB}$ MS $m / z 526(\mathrm{M}+1)$.

N-[4-[2-I[(1,1-dimethylethoxy)carbonyl]aminolethyl]pheny]]-4-(benzo-
2.1,3-thiadiazole)sulfonamide

In a manner analogous to that of Example 5, the title compound was prepared from the Boc amine from Example 4 and benzo-2,1,3-thiadiazole-4-sulfonyl chloride: 1 H NMR (400 MHz , $\mathrm{CDCl} 3) 8.23(\mathrm{~m}, 2 \mathrm{H}), 7.71(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=7.1,8.7 \mathrm{~Hz}), 7.04(\mathrm{~m}, 4 \mathrm{H}), 3.16$
$(\mathrm{m}, 2 \mathrm{H}), 2.65(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}), 1.37(\mathrm{~s}, 9 \mathrm{H})$. FAB MS $m / z 435$ ($M+1$).

EXAMPLE 28

(S)-N-[4-[2-[[2-hydroxy-3-[[4-[[(1,1-dimethylethyl)dimethylsilyl]oxy]-phenoxy]propyl]amino]ethyl]phenyl]-4-(benzo-2,1,3-thiadiazole)sulfonamide

The Boc amine from Example 27 was deprotected as described in Example 10. In a manner analogous to that of Example 7, the title compound was prepared from the resultant amine and the epoxide from Example 2: 1H NMR ($400 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}$) 8.15 ($\mathrm{m}, 2 \mathrm{H}$), $7.69(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=7.2,8.7 \mathrm{~Hz}), 6.97(\mathrm{~s}, 4 \mathrm{H}), 6.73(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.1 \mathrm{~Hz})$, $6.69(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.1 \mathrm{~Hz}), 4.88(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=5.1 \mathrm{~Hz}), 2.6-$ $2.85(\mathrm{~m}, 6 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 6 \mathrm{H})$.

EXAMPLE 29

(S)-N-[4-[2-[[2-hydroxy-3-(4-hydroxyphenoxy)propyl]amino]ethyl]-phenyll-4-(benzo-2,1,3-thiadiazole)sulfonamide

In a manner analogous to that of Example 12, the title compound was prepared from the silyl ether from Example 28 :
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}$) 8.18 (m, 2H), 7.69 (dd, 1H, J = 7.1, 8.7
$\mathrm{Hz}), 6.97(\mathrm{~s}, 4 \mathrm{H}), 6.73(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.1 \mathrm{~Hz}), 6.67(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.1 \mathrm{~Hz})$,
$4.89(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=5.0 \mathrm{~Hz}), 2.6-2.8(\mathrm{~m}, 6 \mathrm{H})$. FAB MS m / z $501(M+1), 309$.

EXAMPLE 30

N-[4-[2-[(phenylmethoxycarbonyl)amino]ethyl]phenyl]cyclopentanesulfonamide

Cyclopentanesulfonyl chloride was prepared according to the procedure of S. N. Bhattacharya, et. al., J. Chem. Soc. (C), 12651267 as follows. To a solution of $2.7 \mathrm{~g}(1.6 \mathrm{~mL}, 20 \mathrm{mmol})$ of sulfuryl chloride in 5 mL of hexane at $0^{\circ} \mathrm{C}$ was added a solution of $5 \mathrm{~mL}(10$ mmol) of 2 M cyclopentylmagnesium chloride in ether over a $15-\mathrm{min}$ period. The reaction mixture was allowed to warm to room temperature and stir overnight. The mixture was recooled to $0^{\circ} \mathrm{C}$ and a $5-\mathrm{mL}$ portion of ether was added followed by a $10-\mathrm{mL}$ portion of water. The layers were separated and the organic phase was washed with water, dried over sodium sulfate and concentrated to give 1.12
(70%) of cyclopentanesulfonyl chloride. This compound was used without further purification to prepare the title compound from the Cbz amine from Example 3 in a manner analogous to that of Example 5: 1H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.13$ (s, 4H), 6.44 (br $\mathrm{s}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 4.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.50-3.39(\mathrm{~m}, 3 \mathrm{H}), 2.76(\mathrm{brt}, 2 \mathrm{H})$, 2.09-1.91 (m, 4H), 1.86-1.76 (m, 2H), 1.64-1.54 (m, 2H); FAB MS $m / z 403(\mathrm{M}+1)$.

EXAMPLE 31

(S)-N-[4-[2-[[2-hydroxy-3-(4-hydroxyphenoxy)propyl]amino]ethyl]phenyllcyclopentanesulfonamide

Following the procedures outlined in Examples 6, 7, and 8, the title compound was prepared from the Cbz amine from Example 30: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}$) $\delta 7.19(\mathrm{~s}, 4 \mathrm{H}), 6.75(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.1 \mathrm{~Hz}$), $6.68(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}), 4.02(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=5.3 \mathrm{~Hz}), 3.49$ (m, 1H), 2.95-2.73 (m, 6H), 2.03-1.86 (m, 4H), 1.79-1.71 (m, 2H), 1.64-1.53 (m, 2H); FAB MS m/z $435(\mathrm{M}+1)$.

EXAMPLE 32

(S)-N-[2-[4-(aminophenyl)]ethyl]-2-hydroxy-3-[4-[[(1,1-Dimethylethyl)dimethylsilylloxylphenoxylpropylamine

In a manner analogous to that of Example 7, the title compound was prepared from the epoxide from Example 2 and 2-(4-
aminophenyl)ethylamine. Purification by flash chromatography (silica gel, 10% methanol:dichloromethane) gave the title compound: 1H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.97(\mathrm{~d}, 2 \mathrm{H}), 6.72(\mathrm{~s}, 4 \mathrm{H}), 6.61(\mathrm{~d}, 2 \mathrm{H}), 3.98(\mathrm{~m}$, $1 \mathrm{H}), 3.87(\mathrm{~d}, 2 \mathrm{H}), 3.55(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.91-2.66(\mathrm{~m}, 6 \mathrm{H}), 2.00(\mathrm{br} \mathrm{s}, 3 \mathrm{H})$, $0.93(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 6 \mathrm{H})$.

EXAMPLE 33

(S)-N-[2-[4-(aminophenyl)]ethyl]-2-hydroxy-3-[4-[[(1,1-Dimethylethyl)dimethylsilylloxylphenoxylpropylcarbamic acid 1,1-dimethylethyl ester

To a solution of $2.14 \mathrm{~g}(1.12 \mathrm{mmol})$ of amine from
Example 32 in 50 mL of THF at $0^{\circ} \mathrm{C}$ was added a solution of di-tertbutyldicarbonate in 10 mL of THF. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 4.5 h , then concentrated. Purification by flash chromatography (silica gel, 40% ethyl acetate:hexanes) gave $2.23 \mathrm{~g}(84 \%)$ of the title compound as an oil: 1 H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.00-6.90$ (br m, 2 H), 6.73 ($\mathrm{s}, 4 \mathrm{H}$), $6.61(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}$), 4.06 (br m, 1H), 4.90-4.75 (br m, 2H), 3.44-3.28 (br m, 4H), 2.69 (m, 2H), 1.43 ($\mathrm{s}, 9 \mathrm{H}$), 0.95 (s , 9H), 0.14 ($\mathrm{s}, 6 \mathrm{H}$).

EXAMPLE 34

3-Ouinolinesulfonyl chloride
A solution of n-butyllithium (20 mL of 2.5 M in hexanes, 50 mmol) in 250 mL of anhydrous ether was cooled in a dry ice-acetone bath and treated over a 10 min period with a solution of 3 -
bromoquinoline ($5.0 \mathrm{~g}, 24 \mathrm{mmol}$) in 50 mL of ether. The resulting slurry was stirred for 15 min at $-78^{\circ} \mathrm{C}$, and was then rapidly cannulated into a solution of sulfuryl chloride ($7 \mathrm{~mL}, 100 \mathrm{mmol}$) in 500 mL anhydrous ether cooled to $-78^{\circ} \mathrm{C}$. The resulting orange slurry was stirred at $-78^{\circ} \mathrm{C}$ for 30 min , and was then warmed to $0^{\circ} \mathrm{C}$ over 30 min and concentrated under reduced pressure to a thick semisolid yellow mass, which was partitioned between water and ethyl acetate. After addition of sodium bicarbonate, the aqueous layer was removed and extracted with an additional 50 mL of ethyl acetate. The combined organic extracts were dried over sodium sulfate and concentrated to a yellow oil. Flash chromatography (5\%, then 25\% EtOAc-hexanes eluant) afforded ca. 2 g of a yellow oil, which crystallized upon standing. Trituration with hexanes gave 250 mg of title compound as a white solid. NMR ($400 \mathrm{MHz}, \underline{d}-6 \mathrm{DMSO}$) $9.42(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz}), 9.32$ $(\mathrm{s}, 1 \mathrm{H}), 8.45(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}), 8.28(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.8 \mathrm{~Hz}), 8.11$ (apparent $\mathrm{t}, 1 \mathrm{H}$), 7.94 (apparent $\mathrm{t}, 1 \mathrm{H}$).

EXAMPLE 35

(S)-N-[4-[2-[[2-hydroxy-3-(4-hydroxyphenoxy)propyl]amino]ethyl]-phenyll-3-quinolinesulfonamide

To a solution of the TBS-protected aniline from Example 33 ($260 \mathrm{mg}, 0.50 \mathrm{mmol}$) and pyridine ($50 \mu \mathrm{~L}, 0.60 \mathrm{mmol}$) in 4 mL of methylene chloride was added 3-quinolinesulfonyl chloride (118 mg , 0.52 mmol). The red solution was stirred at room temperature for one hour and was concentrated under reduced pressure. The residue was dissolved in 2 mL of methanol, and approximately 5 mL of a 3% solution of HCl in methanol was added. After stirring at room temperature for 2 h , the solution was concentrated, and the residue was
dissolved in 5 mL of 10% methanolic ammonium hydroxide. After removal of solvent in vacuo, the residue was applied directly to a silica gel column. Elution with 5:4:1 EtOAc:hexanes:10\% methanolic NH 4 OH afforded 186 mg ($0.38 \mathrm{mmol}, 76 \%$ yield) of the title compound as an off-white solid. NMR ($400 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}$) 9.02 (d, $1 \mathrm{H}, \mathrm{J}=2.1$ Hz), $8.67(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.1 \mathrm{~Hz}), 8.03(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.97(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ 7.9 Hz), 7.86 (apparent t, 1H), 7.66 (apparent t, 1H), 7.04 (two overlapping d, 4 H), $6.72(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.1 \mathrm{~Hz}), 6.67(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.1 \mathrm{~Hz})$, $3.98(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=5.4 \mathrm{~Hz}), 2.84(\mathrm{~m}, 3 \mathrm{H}), 2.72(\mathrm{~m}, 3 \mathrm{H})$. FAB MS $m / z 494(\mathrm{M}+1)$.

EXAMPLE 36

(S)- $\underline{N}-[4-[2-[[2-h y d r o x y-3-(4-h y d r o x y p h e n o x y) p r o p y l] a m i n o] e t h y l]-~$ phenyll-4-[(5-methoxycarbonyl)pentanoyllaminolbenzenesulfonamide Pyridine $0.314 \mathrm{~mL}(3.88 \mathrm{mmol})$ and 4-nitrobenzenesulfonyl chloride 454.3 mg (2.05 mmol) were added to a solution of BOC protected amine from Example $33(1 \mathrm{~g}, 1.94 \mathrm{mmol})$ in dichloromethane at $0^{\circ} \mathrm{C}$. Stirring was continued for 2 h , before diluting with EtOAc (40 ml), and washing with 3 M hydrochloric acid (2 x 10 ml), saturated sodium bicarbonate solution ($2 \times 10 \mathrm{ml}$), and brine (20 ml). The solution was dried over anhydrous magnesium sulphate, concentrated, dissolved in methanol (20 ml), and treated with 20% palladium hydroxide on carbon 350 mg , under an atmosphere of hydrogen for 16 h . The reaction was diluted with methanol (60 ml), filtered, concentrated, and purified by flash chromatography (silica gel, 2% methanol/ dichloromethane), to give the amine 888 mg (68%).

To amine, prepared above, $60.5 \mathrm{mg}(0.09 \mathrm{mmol})$ and pyridine $0.016 \mathrm{~mL}(0.2 \mathrm{mmol})$ in dichloromethane $(0.5 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$, was added a solution of monomethyl adipyl chloride (0.1 mmol , prepared from monomethyl adipate $0.015 \mathrm{~mL}(0.1 \mathrm{mmol})$, oxalyl chloride 0.050 mL (2 M solution in dichloromethane, 0.1 mmol), and DMF (1 drop) in dichloromethane at $0^{\circ} \mathrm{C}$ for 30 min). After 1 h the reaction was diluted with dichloromethane (10 ml), work up as above and purification by flash chromatography, using the same solvent system as above, yielded the desired amide 67 mg . The material was dissolved in THF (1 ml) and treated with tetrabutylammonium fluoride 0.088 mL (1 M in THF, 0.088 mmol). After stirring for 2 h , the solution was diluted with EtOAc (10 ml), washed with water (10 ml), back extracted with EtOAc ($2 \times 5 \mathrm{ml}$), washed with brine (10 ml), dried with anhydrous magnesium sulphate, concentrated and purified by flash chromatography (silica gel, 5% methanol/dichloromethane) to give the phenol $50 \mathrm{mg}(70 \%)$.

A portion $11 \mathrm{mg}(0.0157 \mathrm{mmol})$ was treated with 1 M hydrogen chloride in methanol (4.5 ml) at ambient temperature for 20 min , before concentration, and purification by preparative tlc (silica gel, 10% methanol (1% ammonium hydroxide)/dichloromethane) to give the title compound $5 \mathrm{mg}(53 \%)$. ${ }^{1} \mathrm{H}$ NMR (CD3OD) 7.66-7.62 (m, $4 \mathrm{H}), 7.08(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.6 \mathrm{~Hz}), 7.01(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.6 \mathrm{~Hz}), 6.74(\mathrm{~d}, 2 \mathrm{H}$, $\mathrm{J}=9.6 \mathrm{~Hz}), 6.67(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.6 \mathrm{~Hz}), 4.03-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.82(\mathrm{~m}, 2 \mathrm{H})$, $3.63(\mathrm{~s}, 3 \mathrm{H}), 2.90-2.70(\mathrm{~m}, 6 \mathrm{H}), 2.38-2.33(\mathrm{~m}, 4 \mathrm{H})$, and $1.72-1.60$ ($\mathrm{m}, 4 \mathrm{H}$).

EXAMPLE 37

(S)-N-[4-[2-[[2-hydroxy-3-(4-hydroxyphenoxy)propyl]amino]ethyl]-phenyl]-4-[(5-hydroxycarbonyl)pentanoyllaminolbenzenesulfonamide

To the BOC protected phenolic methyl ester from Example $3690 \mathrm{mg}(0.129 \mathrm{mmol})$ in $\mathrm{THF} /$ water ($2 \mathrm{ml}, 1 / 1$) was added lithium hydroxide monohydrate 27 mg (0.645 mmol), strirring was continued for 16 h , before the mixture was neutralised with 3 M hydrochloric acid, concentrated, and purified by mplc (35 water ($0.1 \% \mathrm{TFA}$)/ 65 methanol) to give the acid 86 mg . A portion $22 \mathrm{mg}(0.032 \mathrm{mmol})$ was treated with trifluoroacetic acid/ dichloromethane ($1 / 1,2 \mathrm{ml}$) at ambient temperature for 30 min , before concentration, and purification by mplc (60 water (0.1% TFA)/ 40 methanol) to give the title compound 17 mg (90%). 1H NMR (CD3OD) 7.67 (m, 4H), 7.18-7.05 (m, 4H), 6.80$6.68(\mathrm{~m}, 4 \mathrm{H}), 4.21-4.14(\mathrm{~m}, 1 \mathrm{H}), 3.98-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.27-3.10(\mathrm{~m}, 4 \mathrm{H})$, 2.95-2.89 (m, 2H), 2.42-2.28 (m, 4H), and 1.73-1.60 (m, 4H).

EXAMPLE 38

(S)-N-[4-[2-[[2-hydroxy-3-(4-hydroxyphenoxy)propyl]amino]ethyl]-phenyll-4-(hexylaminocarbonylamino)benzenesulfonamide

To a suspension of 4-chlorosulphonylbenzene isocyanate 50 $\mathrm{mg}(0.23 \mathrm{mmol})$ at $-40^{\circ} \mathrm{C}$ in chloroform (0.5 ml), was added hexylamine 0.23 ml (1 M solution in chloroform, 0.23 mmol). Stirring was continued with warming to ambient temperature for 16 h , then the mixture was cooled to $0^{\circ} \mathrm{C}$ and a solution of BOC protected amine from Example 33 ($100 \mathrm{mg}, 0.193 \mathrm{mmol}$) in dichloromethane (1 mL), containing pyridine $0.032 \mathrm{~mL}(0.4 \mathrm{mmol})$, was added. After 3 h the solution was diluted with EtOAc (10 ml), washed with water $(10 \mathrm{ml})$, back extracted with EtOAc ($2 \times 5 \mathrm{ml}$), washed with brine (10 ml), dried
with anhydrous magnesium sulphate, concentrated, and purified by preparative tlc (silica gel, 2% methanol/ dichloromethane) to give the urea 80 mg . This was treated with 1 M hydrogen chloride in methanol $(4.5 \mathrm{ml})$ at ambient temperature for 20 min , before concentration and purification by preparative tlc (silica gel, 15% methanol (1% ammonium hydroxide)/ dichloromethane) to give the title compound $53.6 \mathrm{mg}(47 \%)$. 1 H NMR (CD3OD) $7.58(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.42(\mathrm{~d}, 2 \mathrm{H}$, $\mathrm{J}=8 \mathrm{~Hz}), 7.09(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.01(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 6.78-6.65(\mathrm{~m}$, $4 \mathrm{H}), 4.06-4.00(\mathrm{~m}, \mathrm{H}), 3.89-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.15(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz})$, 2.87-265 (m, 6H), 1.53-1.46 (m, 2H), 1.40-1.27 (m, 6H), 0.92-0.88 (m, 3H).

Following the procedures outlined for Examples 1-38, the compounds listed in Tables 1 and 2 were prepared.

TABLE 1

5

Example	R	Selected 1H NMR (CD3OD) Data
1039	4-Me	2.34 (s, 3H)
40	4-OMe	$3.79(\mathrm{~s}, 3 \mathrm{H})$
41	4-Et	$\begin{aligned} & 2.65(\mathrm{q}, 2 \mathrm{H}, \mathrm{~J}=7.7 \mathrm{~Hz}), 1.19(\mathrm{t}, \\ & 3 \mathrm{H}, \mathrm{~J}=7.7 \mathrm{~Hz}) \end{aligned}$
1542	4-n-propyl	$\begin{aligned} & 2.60(\mathrm{t}, 2 \mathrm{H}, \mathrm{~J}=7.6 \mathrm{~Hz}), 1.60(\mathrm{hex}, \\ & 2 \mathrm{H}, \mathrm{~J}=7.5 \mathrm{~Hz}), 0.89(\mathrm{t}, 3 \mathrm{H}, \mathrm{~J}=7.4 \\ & \mathrm{Hz}) \end{aligned}$
43	4-tert-butyl	1.29 (s, 9H)
44	2,4,6-trimethyl	2.24 ($\mathrm{s}, 3 \mathrm{H}), 2.54(\mathrm{~s}, 6 \mathrm{H})$
2045	4-isopropyl	$\begin{aligned} & 1.21(\mathrm{~d}, 6 \mathrm{H}, \mathrm{~J}=6.8 \mathrm{~Hz}), 2.90 \\ & \text { (quint, } 1 \mathrm{H}, \mathrm{~J}=6.9 \mathrm{~Hz} \text {) } \end{aligned}$
46	$4-\mathrm{Cl}$	$\begin{aligned} & 7.67(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=8.6 \mathrm{~Hz}), 7.45(\mathrm{~d}, \\ & 2 \mathrm{H}, \mathrm{~J}=8.5 \mathrm{~Hz}) \end{aligned}$
47	3,4-dichloro	$\begin{aligned} & 7.82(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=2.0 \mathrm{~Hz}), 7.63-7.57 \\ & (\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$
2548	4-F	$\begin{aligned} & 7.77-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.19(\mathrm{t}, 2 \mathrm{H}, \mathrm{~J}= \\ & 8.7 \mathrm{~Hz}) \end{aligned}$
49	4-CF3	$\begin{aligned} & 7.89(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=8.3 \mathrm{~Hz}), 7.77(\mathrm{~d}, \\ & 2 \mathrm{H}, \mathrm{~J}=8.3 \mathrm{~Hz}) \end{aligned}$
50	3,5-bistrifluoromethyl	$8.18(\mathrm{~s}, 2 \mathrm{H}), 8.15$ (s, 1H)
51	$2-\mathrm{Cl}$	$\begin{aligned} & 7.99(\mathrm{dd}, 1 \mathrm{H}, \mathrm{~J}=1.5,8.7 \mathrm{~Hz}), 7.53- \\ & 7.49(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$
52	2-NO2	$\begin{aligned} & 7.85(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=7.9 \mathrm{~Hz}), 7.76(\mathrm{~d}, \\ & 1 \mathrm{H}, \mathrm{~J}=7.9 \mathrm{~Hz}), 7.69(\mathrm{t}, 1 \mathrm{H}, \mathrm{~J}=7.7 \\ & \mathrm{Hz}), 7.61(\mathrm{t}, \mathrm{1H}, \mathrm{~J}=7.7 \mathrm{~Hz}) \end{aligned}$

53 54	$3-\mathrm{NO}_{3}$	$\begin{aligned} & 8.50(\mathrm{t}, \mathrm{~J}=2.0 \mathrm{~Hz}), 8.37(\mathrm{dt}, 1 \mathrm{H}, \mathrm{~J} \\ & =1.1,8.2 \mathrm{~Hz}), 8.04(\mathrm{dd}, 1 \mathrm{H}, \mathrm{~J}= \\ & 1.6,7.9 \mathrm{~Hz}), 7.71(\mathrm{t}, 1 \mathrm{H}, \mathrm{~J}=8.0 \\ & \mathrm{Hz}) \end{aligned}$
54	$4-\mathrm{NO}_{2}$	$\begin{aligned} & 8.30(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=8.9 \mathrm{~Hz}), 7.93(\mathrm{~d}, \\ & 2 \mathrm{H}, \mathrm{~J}=9.0 \mathrm{~Hz}) \end{aligned}$
55	2-F	$\begin{aligned} & 7.79(\mathrm{dt}, 1 \mathrm{H}, \mathrm{~J}=1.8,7.8 \mathrm{~Hz}), 7.58 \\ & (\mathrm{~m}, 1 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$
$10 \quad 56$	3-CF3	$\begin{aligned} & 7.98-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.86(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}= \\ & 7.9 \mathrm{~Hz}), 7.68(\mathrm{t}, 1 \mathrm{H}, \mathrm{~J}=7.5 \mathrm{~Hz}) \\ & \hline \end{aligned}$
$\begin{array}{r}57 \\ 15 \\ \hline\end{array}$	$3-\mathrm{Cl}$	$\begin{aligned} & 7.70(\mathrm{t}, 1 \mathrm{H}, \mathrm{~J}=1.9 \mathrm{~Hz}), 7.61(\mathrm{dt}, \\ & 1 \mathrm{H}, \mathrm{~J}=1.3,8.0 \mathrm{~Hz}), 7.54(\mathrm{dq}, 1 \mathrm{H}, \mathrm{~J} \\ & =1.1,8.0 \mathrm{~Hz}), 7.43(\mathrm{t}, 1 \mathrm{H}, \mathrm{~J}=8.0 \\ & \mathrm{Hz}) \end{aligned}$
58	3-Me	$\begin{aligned} & 7.54(\mathrm{br} \mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=8.2 \\ & \mathrm{Hz}), 7.36-7.29(\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$
59	2,3,4,5,6-pentamethyl	$\begin{aligned} & 2.52(\mathrm{~s}, 6 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, \\ & 6 \mathrm{H}) \end{aligned}$
2060	4-Ph	$\begin{aligned} & \hline 7.78(\mathrm{~d}, 2 \mathrm{H}), 7.70(\mathrm{~d}, 2 \mathrm{H}), 7.60(\mathrm{~d}, \\ & 2 \mathrm{H}), 7.43(\mathrm{t}, 2 \mathrm{H}), 7.37(\mathrm{t}, 3 \mathrm{H}) \\ & \hline \end{aligned}$
61	2,5-dichloro	$7.95(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~s}, 2 \mathrm{H})$
62	2,4-dichloro	$\begin{array}{\|l} 7.94(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=8.5 \mathrm{~Hz}), 7.58(\mathrm{~s}, \\ \mathrm{lH}), 7.38(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=8.6 \mathrm{~Hz}) \end{array}$
2563	2,3-dichloro	$\begin{aligned} & 7.96(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=8.0 \mathrm{~Hz}), 7.70(\mathrm{~d}, \\ & 1 \mathrm{H}, \mathrm{~J}=8.0 \mathrm{~Hz}), 7.35(\mathrm{t}, 1 \mathrm{H}, \mathrm{~J}=8.1 \\ & \mathrm{Hz}) \end{aligned}$
64	4-CN	$\begin{aligned} & 7.85(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=8.6 \mathrm{~Hz}), 7.81(\mathrm{~d}, \\ & 2 \mathrm{H}, \mathrm{~J}=8.7 \mathrm{~Hz}) \end{aligned}$
$3 0 \longdiv { 6 5 }$	2-Cl, 3-F	$\begin{aligned} & \hline 7.81(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=6.8 \mathrm{~Hz}), 7.67-7.63 \\ & (\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{t}, 1 \mathrm{H}, \mathrm{~J}=8.8 \mathrm{~Hz}) \\ & \hline \end{aligned}$
66	3,4-dibromo	$\begin{aligned} & 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=8.4 \\ & \mathrm{Hz}), 7.52(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=8.5 \mathrm{~Hz}) \end{aligned}$

85	$4-\mathrm{NHCO}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CO}_{2} \mathrm{Me}$	$\begin{aligned} & 3.61(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{t}, 2 \mathrm{H}, \mathrm{~J}=8 \mathrm{~Hz}) \\ & 2.30(\mathrm{t}, 2 \mathrm{H}, \mathrm{~J}=8 \mathrm{~Hz}), 1.70-1.55(\mathrm{~m}, \\ & 4 \mathrm{H}), 1.40-1.30(\mathrm{~m}, 4 \mathrm{H}) \end{aligned}$
86	4-NHCOPh	$\begin{aligned} & 7.90(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=8 \mathrm{~Hz}), 7.61-7.57(\mathrm{~m}, \\ & 1 \mathrm{H}), 7.51-7.49(\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$
87	$4-\mathrm{NHCO}_{2} \mathrm{Me}$	$3.72(\mathrm{~s}, 3 \mathrm{H})$
88	$4-\mathrm{NHCO}_{2} \mathrm{Et}$	$\begin{aligned} & 4.66(4,2 H, J=8 H z), 1.28(t, 3 H, \\ & J=8 H z) \end{aligned}$
1089	$4-\mathrm{NHCO}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	7.4-7.27 (m, 5H), 5.16 ($\mathrm{s}, 2 \mathrm{H})$
90	$4-\mathrm{NHCO}_{2} \mathrm{CHMe}_{2}$	$\begin{aligned} & 4.97-4.88(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~d}, 6 \mathrm{H}, \mathrm{~J}= \\ & 7.2 \mathrm{~Hz}) \end{aligned}$
91	$4-\mathrm{NHCO}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$	4.68 ($\mathrm{s}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H})$
15	4-NHCONH-nPro	$\begin{aligned} & 3.13(\mathrm{t}, 2 \mathrm{H}, \mathrm{~J}=7.2 \mathrm{~Hz}), 1.55-1.48 \\ & (\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}, 3 \mathrm{H}, \mathrm{~J}=8 \mathrm{~Hz}) \end{aligned}$
93	4-NHCONHCHMe2	$\begin{aligned} & 3.90-3.80(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~d}, 6 \mathrm{H}, \mathrm{~J}= \\ & 6.4 \mathrm{~Hz}) \end{aligned}$
94	4-NHCONH-cHex	$3.53(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.15(\mathrm{~m}, 10 \mathrm{H})$
2095	$\begin{aligned} & \text { 4-NHCONH- } \\ & \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me} \end{aligned}$	3.95 ($\mathrm{s}, 2 \mathrm{H}), 3.72$ (s, 3H)
96	3-NHCOEt	$\begin{aligned} & 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=8 \mathrm{~Hz}), \\ & 7.34-7.43(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{q}, 2 \mathrm{H}, \mathrm{~J}= \\ & 8 \mathrm{~Hz}), 1.17(\mathrm{t}, 3 \mathrm{H}, \mathrm{~J}=8 \mathrm{~Hz}) \end{aligned}$
${ }_{25} 97$	3-NHCO-nPro	$\begin{aligned} & 2.32(\mathrm{t}, 2 \mathrm{H}, \mathrm{~J}=8 \mathrm{~Hz}), 1.70(\mathrm{~m}, 2 \mathrm{H}), \\ & 0.97(\mathrm{t}, 3 \mathrm{H}, \mathrm{~J}=8 \mathrm{~Hz}) \end{aligned}$
98	$3-\mathrm{NHCO}(\mathrm{CH} 2) 4 \mathrm{CO}_{2} \mathrm{Me}$	$\begin{aligned} & 3.63(\mathrm{~s}, 3 \mathrm{H}), 2.33-2.40(\mathrm{~m}, 4 \mathrm{H}), \\ & 1.60-1.74(\mathrm{~m}, 4 \mathrm{H}) . \end{aligned}$
3099	$3-\mathrm{NHCO}\left(\mathrm{CH}_{2}\right) 5 \mathrm{CO}_{2} \mathrm{Et}$	$\begin{array}{\|l} \hline 4.09(\mathrm{t}, 2 \mathrm{H}, \mathrm{~J}=8 \mathrm{~Hz}), 2.32(\mathrm{~m}, \\ 4 \mathrm{H} 0,1.67(\mathrm{~m}, 4 \mathrm{H}), 1.38(\mathrm{~m}, 2 \mathrm{H}), \\ 1.21(\mathrm{t}, 3 \mathrm{H}) \\ \hline \end{array}$
100	3-NHCOPh	$\begin{aligned} & 7.90(\mathrm{~s}, 2 \mathrm{H}, \mathrm{~J}=8 \mathrm{~Hz}), 7.57(\mathrm{~m}, \\ & 1 \mathrm{H}), 7.45-7.52(\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$

TABLE 2

5

Example	R	Selected 1H NMR (CD3OD) Data
10101	Me	2.89 (s, 3H)
102	Et	$\begin{aligned} & 3.02(\mathrm{q}, 2 \mathrm{H}, \mathrm{~J}=7.4 \mathrm{~Hz}), 1.27(\mathrm{t}, \\ & 3 \mathrm{H}, \mathrm{~J}=7.4 \mathrm{~Hz}) \end{aligned}$
103	n-propyl	$\begin{aligned} & 1.79(\mathrm{hex}, 2 \mathrm{H}, \mathrm{~J}=7.7 \mathrm{~Hz}), 0.98(\mathrm{t}, \\ & 3 \mathrm{H}, \mathrm{~J}=7.5 \mathrm{~Hz}) \end{aligned}$
104	n-butyl	$\begin{aligned} & 1.89(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{hex}, 2 \mathrm{H}, 7.5 \\ & \mathrm{Hz}), 0.88(\mathrm{t}, 3 \mathrm{H}, \mathrm{~J}=7.3 \mathrm{~Hz}) \\ & \hline \end{aligned}$
105	$\mathrm{CH}_{2} \mathrm{Ph}$	$\begin{aligned} & \text { HBr salt: } 7.32-7.24(\mathrm{~m}, 7 \mathrm{H}), 4.37 \\ & (\mathrm{~s}, 2 \mathrm{H}) \end{aligned}$
20106	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	7.24-7.10(m, 9H), 2.07 (m, 2H)
107	naphth-1-yl	$8.72(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}), 8.14(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}$), $8.06(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.3$ $\mathrm{Hz}), 7.95(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.67$ $(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}), 7.59(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=$ $8.0 \mathrm{~Hz}), 7.47(\mathrm{t} .1 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz})$
108	thiophen-2-yl	$7.68(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=0.9,4.4 \mathrm{~Hz}), 7.45$ $(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=5.3 \mathrm{~Hz}), 7.04(\mathrm{~m}, 1 \mathrm{H})$
109	pyridin-2-yl	$\begin{aligned} & 8.63(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=5.7 \mathrm{~Hz}), 7.95(\mathrm{~m}, \\ & 2 \mathrm{H}), 7.54(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$
$30 \quad 110$	pyridin-3-yl	$\begin{aligned} & 8.87(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=1.5 \mathrm{~Hz}), 8.74(\mathrm{dd} \\ & 1 \mathrm{H}, \mathrm{~J}=1.5,5.1 \mathrm{~Hz}), 8.26(\mathrm{~m}, 1 \mathrm{H}) \\ & 7.67(\mathrm{dd}, 1 \mathrm{H}, \mathrm{~J}=5.1,8.2 \mathrm{~Hz}) \end{aligned}$
111	2-methylthio-benzothiazol-5-yl	$\begin{aligned} & 8.09(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=2.8 \mathrm{~Hz}), 7.95(\mathrm{~d}, \\ & 1 \mathrm{H}, \mathrm{~J}=8.4 \mathrm{~Hz}), 7.69(\mathrm{dd}, 1 \mathrm{H}, \mathrm{~J}= \\ & 2.8,8.4 \mathrm{~Hz}), 2.79(\mathrm{~s}, 3 \mathrm{H}) \end{aligned}$

112	quinolin-6-yl	$8.95(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.7,4.3 \mathrm{~Hz}), 8.42$ $(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}), 8.37(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $2.0 \mathrm{~Hz}), 8.01(\mathrm{dd}, \mathrm{H}, \mathrm{J}=2.0,9.0$ $\mathrm{Hz}), 7.61(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.3,8.4 \mathrm{~Hz})$
113	1,2,3,4-tetrahydro-quinolin-6-yl	$\begin{aligned} & 7.71(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{~s}, \\ & 1 \mathrm{H}), 3.50(\mathrm{~m}, 2 \mathrm{H}), 2.80(\mathrm{~m}, 1 \mathrm{H}), \\ & 2.13(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{~m}, 1 \mathrm{H}) \\ & \hline \end{aligned}$
$10{ }^{114}$	indolin-5-yl	$\begin{aligned} & 7.32(\mathrm{~m}, 2 \mathrm{H}), 6.42(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=8.2 \\ & \mathrm{Hz}), 3.52(\mathrm{t}, 2 \mathrm{H}, \mathrm{~J}=8.7 \mathrm{~Hz}), 2.90 \\ & (\mathrm{t}, 2 \mathrm{H}, \mathrm{~J}=8.7 \mathrm{~Hz}) \end{aligned}$
115	1-acetylindolin-5-yl	$\begin{aligned} & 8.09(\mathrm{~d}, \mathrm{1H}, \mathrm{~J}=8.6 \mathrm{~Hz}), 7.55(\mathrm{~m}, \\ & 2 \mathrm{H}), 4.12(\mathrm{t}, 2 \mathrm{H}, \mathrm{~J}=8.7 \mathrm{~Hz}), 3.16 \\ & (\mathrm{t}, 2 \mathrm{H}, \mathrm{~J}=8.7 \mathrm{~Hz}), 2.20(\mathrm{~s}, 3 \mathrm{H}) \end{aligned}$
15116	3-acetylindolin-5-yl	$\begin{aligned} & 8.30 \text { (overlapping } \mathrm{s}, 1 \mathrm{H}, \text { and } \mathrm{d}, 1 \mathrm{H}, \\ & \mathrm{~J}=8.4 \mathrm{~Hz}), 7.81(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=1.7 \\ & \mathrm{Hz}), 7.57(\mathrm{dd}, 1 \mathrm{H}, \mathrm{~J}=1.7,8.4 \mathrm{~Hz}), \\ & 2.50(\mathrm{~s}, 3 \mathrm{H}) \end{aligned}$
$20 \quad 117$	oxindol-5-yl	$\begin{aligned} & 7.61(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=8.8 \\ & \mathrm{Hz}) .3 .34(\mathrm{~s}, 2 \mathrm{H}) \end{aligned}$
118	indol-5-yl	$\begin{aligned} & 8.00(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=1.7 \mathrm{~Hz}), 7.47(\mathrm{dd}, \\ & 1 \mathrm{H}, \mathrm{~J}=1.7,8.6 \mathrm{~Hz}), 7.40(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J} \\ & =8.6 \mathrm{~Hz}), 7.33(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=3.3 \mathrm{~Hz}), \\ & 6.52(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=3.3 \mathrm{~Hz}) \end{aligned}$
25119	benzothiophen-5-yl	$\begin{aligned} & 8.04(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=5.9 \mathrm{~Hz}), 7.97(\mathrm{~d}, \\ & 1 \mathrm{H}, \mathrm{~J}=5.9 \mathrm{~Hz}), 7.51(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=7.4 \\ & \mathrm{Hz}), 7.37(\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$
120	benzothiophen-2-yl	$\begin{aligned} & 7.86(\text { apparent } \mathrm{t}, 2 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), \\ & 7.41(\mathrm{~m}, 2 \mathrm{H}) \\ & \hline \end{aligned}$
$30 \quad 121$	benzofuran-2-yl	$\begin{aligned} & 7.64(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=7.8 \mathrm{~Hz}), 7.52(\mathrm{~d}, \\ & 1 \mathrm{H}, \mathrm{~J}=8.3 \mathrm{~Hz}), 7.43 \text { (apparent } \mathrm{dt}, \\ & 1 \mathrm{H}, \mathrm{~J}=1.3 .7 .2 \mathrm{~Hz}), 7.30(\mathrm{~m}, 2 \mathrm{H}) \\ & \hline \end{aligned}$
122	5,6,7,8-tetrahydro- naphth-2-yl	$\begin{aligned} & 7.40(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 2.76(\mathrm{~m}, \\ & 4 \mathrm{H}), 1.73(\mathrm{~m}, 4 \mathrm{H}) \end{aligned}$

123	1,3-benzodioxol-5-yl	$7.29(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8,2 \mathrm{~Hz}), 6.83(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 6.01(\mathrm{~s}, 2 \mathrm{H})$
5 l		
124	1,4-benzodioxan-6-yl	$7.19(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8$ $\mathrm{Hz}), 4.21(\mathrm{~m}, 4 \mathrm{H})$
125	1,2-benzisoxazol-5-yl	$7.8(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz})$
126	$2,3-$ dihydrobenzofuran-5- yl	$7.56(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.5$, $2 \mathrm{~Hz}), 4.8(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}) .3 .19(\mathrm{t}$, $2 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz})$

(S)- $\underline{N}-[4-[2-[($ phenylmethoxycarbonyl)amino]propyl]phenyl]benzenesulfonamide

A slurry of 3.00 g (16.6 mmol) of 4-amino-D-phenylalanine hydrate in 100 mL of methanol was heated at relux while gaseous hydrogen chloride was bubbled into the flask. After a 2-h period, the reaction mixture was cooled to room temperature, flushed with nitrogen, and concentrated. The residue was dissolved in 120 mL of a mixture of 140 mL of tetrahydrofuran (THF) and 50 mL of water and treated with $9.15 \mathrm{~g}(49.8 \mathrm{mmol})$ of sodium bicarbonate portionwise over a $20-\mathrm{min}$ period. A solution of 18 g of di-tert-butyl dicarbonate in remaining 70 mL of the THF -water mixture was added. The reaction mixture was allowed to stir at room temperature overnight and then was filtered and concentrated. The residue was partitioned between water and dichloromethane. The organic phase was dried over magnesium sulfate and concentrated. Purification by flash chromatography gave $5.17 \mathrm{~g}(79 \%)$ of the corresponding N-Boc methyl ester.

A $4.28-\mathrm{g}(10.9 \mathrm{mmol})$ portion of the above compound was dissolved in 50 mL of THF and treated with $11 \mathrm{~mL}(22 \mathrm{mmol})$ of a 2 M lithium borohydride solution in THF. After the reaction mixture was allowed to stir overnight, it was quenched by the addition of 5 mL of
saturated aqueous ammonium chloride solution and concentrated. The residue was partitioned between water and ethyl acetate. The aqueous phase was extracted with ethyl acetate and the combined organic phases were dried over magnesium sulfate and concentrated. The resultant material was dissolved in 50 mL of dichloromethane, cooled to $0^{\circ} \mathrm{C}$, and treated with 1.8 mL of triethylamine and 0.90 mL of methanesulfonyl chloride. After the reaction mixture was allowed to stir at $0^{\circ} \mathrm{C}$ for 1 h , it was washed sequentially with 5% aqueous hydrochloric acid and saturated aqueous sodium bicarbonate, dried over magnesium sulfate, and concentrated. The resultant semisolid was immediately dissolved in 150 mL of dichloromethane and treated with 30 mL of trifluoroacetic acid. After 1.5 h , the solution was concentrated. The residue was dissoved in 70 mL of ethanol and 5.0 g (49 mmol) of sodium acetate was added. The mixture was stirred over 1 g of 20% palladium hydroxide on carbon under hydrogen at 30 psi for 24 h . It was filtered through Celite and concentrated. Flash chromatography (4:1 dichloromethane: 10% concentrated ammonium hydroxide in methanol) to give 2.01 g of ($2 S$)-1-(4-aminophenyl)propyl-2-amine.

A $451 \mathrm{mg}(3.0 \mathrm{mmol})$ portion of the above compound was dissolved in 20 mL of chloroform and 2 mL of DMF and cooled to $0^{\circ} \mathrm{C}$. Triethylamine ($304 \mathrm{mg}, 0.420 \mathrm{~mL}, 3.0 \mathrm{mmol}$) was added followed by $512 \mathrm{mg}(0.428 \mathrm{~mL}, 3.0 \mathrm{mmol})$ of benzyl chloroformate, dropwise. The reaction mixture was allowed to stir at $0^{\circ} \mathrm{C}$ for 2 h and then allowed to warm to room temperature overnight. It was then partitioned between ethyl acetate and water. The organic phase was dried over magnesium sulfate and concentrated. Purification by flash chromatography (silica gel, 50% ethyl acetate/hexanes) gave 138 mg of the corresponding N Cbz derivative. This compound was treated with benzenesulfonyl chloride according to the procedure described in Example 5 to give the title compound: 1 H NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3) 7.70(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz})$, $7.2-7.5(\mathrm{~m}, 8 \mathrm{H}), 7.00(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}), 6.93(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}), 6.48$ $(\mathrm{s}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 2 \mathrm{H}), 4.51(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{~m}, 1 \mathrm{H}), 2.60$ $(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=6.8,13.5 \mathrm{~Hz}), 1.55(\mathrm{~s}, 1 \mathrm{H}), 1.04(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}) . F A B$ MS $m / z 425(\mathrm{M}+1)$.

EXAMPLE 128

EXAMPLE 129

(S,S)-N-[4-[2-[[2-hydroxy-3-(4-hydrox yphenoxy)propyl]amino]propyllphenyllbenzenesulfonamide

In a manner analogous to that of Example 8, the title compound was prepared from the benzyl ether from Example 128: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}) 7.71(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 7.52(\mathrm{~m}, 1 \mathrm{H}), 7.43$ $(\mathrm{m}, 2 \mathrm{H}), 7.06(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.00(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz}), 6.75(\mathrm{~d}, 2 \mathrm{H}$, $\mathrm{J}=9.0), 6.68(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}), 3.93(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=5.2$
$\mathrm{Hz}), 2.88(\mathrm{~m}, 2 \mathrm{H}), 2.66(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=6.6,13.2 \mathrm{~Hz}), 2.57(\mathrm{~m}, 2 \mathrm{H}), 1.04$ $(\mathrm{d}, 3 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz})$. FAB MS $m / z 457(\mathrm{M}+\mathrm{I})$.

EXAMPLE 130

(S)-N-[4-[2-[[2-hydroxy-3-(4-hydroxyphenoxy)propyl]amino]ethyl]-phenyll-4-aminobenzenesulfonamide

A solution of $67 \mathrm{mg}(0.14 \mathrm{mmol})$ of nitro derivative from Example 54 in 5 mL of methanol was stirred over 20% palladium hydroxide on carbon under an atmosphere of hydrogen for 30 min . The reaction mixture was filtered and concentrated to give 36 mg (59%) of the title compound: ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}) \delta 7.39(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.08(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.00(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 6.75$ $(\mathrm{d}, 2 \mathrm{H}, \mathrm{J}=9.1 \mathrm{~Hz}), 6.68(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}), 6.56(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.8 \mathrm{~Hz})$, $4.04(\mathrm{~m}, 1 \mathrm{H}), 3.89-3.82$ (overlapping dd, 2 H), 2.97-2.77 (m, 6H).

EXAMPLE 131

(S)-2-phenoxymethyloxirane

The title compound was prepared from phenol in a manner analogous to that of Example 1: 1 H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28(\mathrm{t}$, $2 \mathrm{H}), 6.96(\mathrm{t}, 1 \mathrm{H}), 6.91(\mathrm{~d}, 2 \mathrm{H}), 4.20(\mathrm{dd}, 1 \mathrm{H}), 3.96(\mathrm{dd}, 1 \mathrm{H}), 3.34(\mathrm{~m}$, $1 \mathrm{H}), 2.90(\mathrm{t}, 1 \mathrm{H}), 2.73$ (dd, 1H).

EXAMPLE 132

EXAMPLE 133

(S)- N -[2-[4-(aminophenyl)]ethyl]-2-hydroxy-3-phenoxypropylcarbamic acid 1,1-dimethylethyl ester

In a manner analogous to that of Example 33, the title
compound was prepared from the amine from Example 132 and di-tertbutyldicarbonate: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=8.0$ $\mathrm{Hz}), 6-96-6.87(\mathrm{~m}, 5 \mathrm{H}), 6.59(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}), 4.10(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 3.94$ (br m, 1H), 3.84 (br m, 1H), 3.56 (br s, 1H), 3.45-3.20 (m, 4H), 2.78 (br m, 2H), 1.55 (br s, 3H), $1.43(\mathrm{~s}, 9 \mathrm{H})$.

(S) N - 4 -[2-[(2-hydroxy-3-phenoxypropyl)amino]ethyl]-phenyl]-4chlorobenzenesulfonamide

To a solution of the BOC-protected aniline from Example 133 ($96 \mathrm{mg}, 0.25 \mathrm{mmol}$) and pyridine ($50 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$) in 5 mL of methylene chloride was added 4-chlorobenzenesulfonyl chloride (57 $\mathrm{mg}, 0.27 \mathrm{mmol}$). The reaction mixture was stirred at room temperature under nitrogen atmosphere overnight. The red solution was concentrated under vacuum and the residue was purified by preparative thin layer chromatography on silica gel (eluant $2: 3$ ethyl acetate/hexanes) to give 133 mg (98%) of an off-white solid. This N BOC sulfonamide ($130 \mathrm{mg}, 0.227 \mathrm{mmol}$) was dissolved in 3 mL of methylene chloride and 1 mL of trifluoroacetic acid was added. After stirring at room temperature for 1 h , the solution was concentrated and the residue was purified by preparative thin layer chromatography on silica gel (eluant 10:90:1 methanol/methylene chloride $/ 30 \%$ ammonium hydroxide) to give $130 \mathrm{mg}(99 \%)$ of the title compound. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}) \delta 7.71(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}), 7.47(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}), 7.27(\mathrm{t}$, $2 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}), 7.16(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.07(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 6.94(\mathrm{dd}$, $3 \mathrm{H}), 4.22(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{~m}, 2 \mathrm{H}), 3.21(\mathrm{~m}, 3 \mathrm{H}), 2.94(\mathrm{~m}, 2 \mathrm{H})$.

Following the procedures outlined for Examples 131-134, the compounds listed in Table 3 were prepared.

TABLE 3

5

	Example	R	Selected 1 H NMR (CD3OD) Data
10	135	Ph	$\begin{aligned} & 7.72(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=7.1 \mathrm{~Hz}), 7.52(\mathrm{t}, \\ & 1 \mathrm{H}, \mathrm{~J}=7.3 \mathrm{~Hz}), 7.44(\mathrm{t}, 2 \mathrm{H}, \mathrm{~J}=7.5 \\ & \mathrm{Hz}) \end{aligned}$
	136	4-fluorophenyl	$\begin{aligned} & 7.75(\mathrm{dd}, 2 \mathrm{H}, \mathrm{~J}=5.1,8.9 \mathrm{~Hz}), 7.17 \\ & (\mathrm{t}, 2 \mathrm{H}, \mathrm{~J}=8.8 \mathrm{~Hz}) \\ & \hline \end{aligned}$
15	137	4-bromophenyl	$\begin{aligned} & 7.62(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=9.1 \mathrm{~Hz}), 7.59(\mathrm{~d}, \\ & 2 \mathrm{H}, \mathrm{~J}=9.1 \mathrm{~Hz}) \end{aligned}$
	138	2,3-dihydrobenzo-furan-5-yl	$\begin{aligned} & 4.56(\mathrm{t}, 2 \mathrm{H}, \mathrm{~J}=9 \mathrm{~Hz}), 3.15(\mathrm{t}, 2 \mathrm{H}, \\ & \mathrm{J}=9 \mathrm{~Hz}) \end{aligned}$
20	139	1-acetylindolin-5-yl	$\begin{aligned} & 8.08(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=8.7 \mathrm{~Hz}), 7.52(\mathrm{~m}, \\ & 2 \mathrm{H}), 4.09(\mathrm{t}, 2 \mathrm{H}, \mathrm{~J}=8.7 \mathrm{~Hz}), 3.13(\mathrm{t}, \\ & 2 \mathrm{H}, \mathrm{~J}=8.7), 2.18(\mathrm{~s}, 3 \mathrm{H}) \end{aligned}$
	140	benzothiophen-2-yl	$\begin{aligned} & 7.87 \text { (apparent } \mathrm{t}, 2 \mathrm{H}, \mathrm{~J}=8.1 \mathrm{~Hz}), \\ & 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~m}, 2 \mathrm{H}) \\ & \hline \end{aligned}$

25

30

EXAMPLE 141

(S)-2-[(4-Fluorophenoxy)methylloxirane

The title compound was prepared from 4 -fluorophenol in a manner analogous to that of Example 1: NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3) 6.95$ $(\mathrm{m}, 2 \mathrm{H}), 6.84(\mathrm{~m}, 2 \mathrm{H}), 4.17(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=3.0,11.0 \mathrm{~Hz}), 3.88(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}$ $=5.7,11.0 \mathrm{~Hz}), 3.33(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.6,5.0$ Hz).

EXAMPLE 142

(S)- $\mathrm{N}-$-[4-[2-[[3-(4-fluorophenoxy)-2-hydroxypropyl]amino]ethyl]phenyllbenzenesulfonamide

In a manner analogous to that of Example 7, the title compound was prepared from the amine from Example 6 and the epoxide from Example 141: 1H NMR ($300 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}$): 2.93 (m, $2 \mathrm{H}), 3.1-3.28(\mathrm{~m}, 4 \mathrm{H}), 3.96(\mathrm{~m}, 2 \mathrm{H}), 4.2(\mathrm{~m}, 1 \mathrm{H}), 6.9-7.16(\mathrm{~m}, 8 \mathrm{H}), 7.5$ ($\mathrm{m}, 3 \mathrm{H}$), $7.74(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, \mathrm{lH}) ;$ FAB-MS $m / z 445(\mathrm{M}+1)$.

Following the procedures outlined for Examples 141-142, the compounds listed in Table 4 were prepared.

TABLE 4

5

Example	R	Selected 1 H NMR (CD3OD) Data
10	4-methylphenyl	$2.33(\mathrm{~s}, 3 \mathrm{H})$
143	4-methoxyphenyl	$7.63(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}), 3.79(\mathrm{~s}$, $3 \mathrm{H})$
145	4-nitrophenyl	$8.29(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}), 7.91(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz})$
15	$7.62(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.1 \mathrm{~Hz}), 7.67(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{J}=9.1 \mathrm{~Hz})$	
146	4-bromophenyl	$7.82(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}), 7.43(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz})$
148	4-iodophenyl	$9.01(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.3 \mathrm{~Hz}), 8.71(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz}), 8.06(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4$ $\mathrm{Hz}), 8.02(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.91$ $($ apparent td, H$), 7.71($ apparent t, $1 \mathrm{H})$
149		$7.27(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 6.97(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz})$

- 66 -

EXAMPLE 150

EXAMPLE 151

(S)-N-[4-[2-[[2-Hydroxy-3-(3-cyanophenoxy)propyl]amino]ethyl]phenyllamine

In a manner analogous to that of Example 7, the title compound was prepared from 2-(4-aminophenyl)ethylamine and the epoxide from Example 150: NMR ($400 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}$) $\delta 7.44(\mathrm{t}, 1 \mathrm{H})$, $7.27(\mathrm{~m}, 3 \mathrm{H}), 6.97(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 6.67(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}), 4.04(\mathrm{~m}$, $1 \mathrm{H}), 3.97(\mathrm{~m}, 2 \mathrm{H}), 2.81(\mathrm{~m}, 3 \mathrm{H}), 2.71(\mathrm{~m}, 3 \mathrm{H})$.

EXAMPLE 152

(S)- $\underline{N}-[2-[4-(A m i n o p h e n y l)] e t h y l]-2-h y d r o x y-3-(3-c y a n o p h e n o x y)-~$ propylcarbamic acid 1,1-dimethylethyl ester

In a manner analogous to that of Example 33, the title compound was prepared from the amine in the previous Example 151 and di-tert-butyldicarbonate: $\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}) \delta 7.44(\mathrm{t}, 1 \mathrm{H})$,

(S)- $\mathrm{N}-[4-[2-[[2-H y d r o x y-3-(3-c y a n o p h e n o x y) p r o p y l] a m i n o] e t h y l]-~$ phenyll-3-quinolinesulfonamide

In a manner analogous to that of Example 134, the title compound was prepared from the amine from Example 152 and 3quinolinesulfonyl chloride from Example 34. The crude product treated with trifluoroacetic acid to remove Boc group: NMR (400 $\mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}) \delta 9.01(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.2 \mathrm{~Hz}), 8.69(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.2 \mathrm{~Hz}), 8.05$ (dd, 2H), 7.90 (t, 2H), $7.70(\mathrm{t}, 1 \mathrm{H}), 7.42(\mathrm{t}, 1 \mathrm{H}), 7.26(\mathrm{~m}, 3 \mathrm{H}), 7.06$
$(\mathrm{dd}, 4 \mathrm{H}, \mathrm{J}=8.6,21.6 \mathrm{~Hz}), 4.03(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{~m}, 2 \mathrm{H}), 2.82(\mathrm{~m} .3 \mathrm{H})$, $2.73(\mathrm{~m}, 3 \mathrm{H})$. FAB-MS $m / z 503(\mathrm{M}+\mathrm{I})$.

EXAMPLE 154

3-Cyano-4-nitrophenol

To a $0^{\circ} \mathrm{C}$ solution of 578 mg (2.28 mmol) 5-phenyl-methoxy-2-nitrobenzonitrile, prepared according to the procedure of E . Elslager, et al., J. Heterocyclic Chem. 1972, 9, 759-773, in 5 mL of dichloromethane at $0^{\circ} \mathrm{C}$ was added $2.6 \mathrm{~mL}(2.62 \mathrm{mmol}, 1.15$ equiv) of a 1.0 M solution of boron tribromide in dichloromethane. After the reaction mixture was stirred for 3 h , it was diluted with ethyl acetate, washed sequentially with 1 N aqueous sodium hydrogen sulfate solution and saturated aqueous sodium chloride solution, dried over magnesium sulfate and concentrated to give 357 mg (96%) of the title compound which was used without further purification: 1 H NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.17(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.2 \mathrm{~Hz}), 7.03(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.7 \mathrm{~Hz}), 6.92(\mathrm{dd}$, $1 \mathrm{H}, \mathrm{J}=2.7,9.3 \mathrm{~Hz})$.

EXAMPLE 155

(S)-2-[(3-Cyano-4-nitrophenyl)methylloxirane

To a solution of 357 mg (2.18 mmol) of 3-cyano-4-
nitrophenol from Example 154 in 5 mL of DMF at $0^{\circ} \mathrm{C}$ was added 91.0 $\mathrm{mg}(2.28 \mathrm{mmol})$ of sodium hydroxide as a 60% dispersion in oil. After the mixture was allowed to stir for 30 min , a solution of 513 mg (1.98 mmol) of (2 2)-glycidyl 3-nitrobenzene sulfonate in 10 mL of DMF was
added via cannula. The reaction mixture was allowed to warm to room temperature and then heated at $55^{\circ} \mathrm{C}$ overnight. The reaction was cooled, quenched by the addition of saturated aqueous ammonium chloride solution, and poured into ethyl acetate. The organic phase was washed sequentially with two portions of water and one portion of saturated aqeous sodium chloride solution. The organic phase was dried over magnesium sulfate and concentrated. Purification by flash chromatography (silica, 40% ethyl acetate/hexanes) gave 287 mg (66%) of the title compound as a yellow solid: 1 H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.29(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.2 \mathrm{~Hz}), 7.36(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.8 \mathrm{~Hz}), 7.25(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.8$, $9.2 \mathrm{~Hz}), 4.47$ (dd, $1 \mathrm{H}, \mathrm{J}=2.3,11.3$), $4.00(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=6.2,11.4 \mathrm{~Hz})$, $3.37(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=4.3 \mathrm{~Hz}), 2.77(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.6,4.7 \mathrm{~Hz})$.

EXAMPLE 156

(S)- N -[4-[2-[[3-(4-Amino-3-cyanophenoxy)-2-hydroxypropyl]amino]ethyllphenyllbenzenesulfonamide

A solution of 75 mg (0.341 mmol) of the epoxide from
Example 155 and 122 mg ($0.443 \mathrm{mmol}, 1.3$ equiv) of amine from Example 6 were heated in methanol at reflux overnight. The mixture was concentrated. Purification by flash chromatography (silica, 5\% methanol: dichloromethane) gave 48 mg (28%) of the resultant amino alcohol. This was dissoved in ethanol and treated with 10% palladium on carbon under an atmosphere of hydrogen for 6 h . The reaction mixture was filtered and concentrated. Purification by flash chromatography (silica, $5 \% 10: 1$ methanol: concentrated aqueous ammonium hydroxide in dichloromethane) gave 15 mg of the title compound: 1 H NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.71(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}$), $7.53(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}), 7.44(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.07(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.6$
$\mathrm{Hz}), 7.01-6.98(\mathrm{~m}, 3 \mathrm{H}), 6.90(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.8 \mathrm{~Hz}), 6.77(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.0$ Hz).

EXAMPLE 157

(S)- N -[4-[2-[[3-(4-Amino-3-cyanophenoxy)-2-hydroxypropyl]amino]-ethyll-phenyll-3-quinolinesulfonamide

In a manner analogous to that of Example 156, the title compound was prepared from the epoxide from Example 155 and N -[4-(2-aminoethyl)phenyl]-3-quinolinesulfonamide: 1 H NMR (400 MHz , $\mathrm{CD} 3 \mathrm{OD}) \delta 9.01(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.3 \mathrm{~Hz}), 8.69(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.3 \mathrm{~Hz}), 8.06(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 8.02(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.90(\mathrm{~m}, 1 \mathrm{H}), 7.70(\mathrm{~m}, 1 \mathrm{H})$, $7.11(\mathrm{~d}, 2 \mathrm{H}), 7.04(\mathrm{~d}, 2 \mathrm{H}), 6.98(\mathrm{dd}, 1 \mathrm{H}), 6.89(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.0 \mathrm{~Hz}), 6.76$ $(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}), 3.98(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=5.5 \mathrm{~Hz}), 2.91-2.71$ (m, 6H).

EXAMPLE 158

(S)-2-[[3-(Hydroxymethyl)phenoxy]methyl]oxirane

The title compound was prepared from 3-hydroxybenzyl
alcohol in a manner analogous to that of Example 1: NMR (400 MHz , CDCL3) $\delta 7.26(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{~d}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 4.22$ $(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=3.2,11.0 \mathrm{~Hz}), 3.95(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=5.6,10.7 \mathrm{~Hz}), 3.33(\mathrm{~m}$, $1 \mathrm{H}), 2.90(\mathrm{t}, 1 \mathrm{H}), 2.75(\mathrm{~m}, 1 \mathrm{H})$.

EXAMPLE 159

(S)- $\mathrm{N}-[4-[2-[[2-H y d r o x y-3-[(3-h y d r o x y m e t h y l) p h e n o x y] p r o p y l] a m i n o]-~$ ethyllphenyllamine

In a manner analogous to that of Example 7, the title compound was prepared from 2-(4-aminophenyl)ethylamine and the epoxide from Example 158 above: NMR ($400 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}$) $\delta 7.22$ (t , $1 \mathrm{H}), 6.98(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=4.4 \mathrm{~Hz}), 6.96(\mathrm{~d}, 2 \mathrm{H}), 6.81(\mathrm{~d}, 1 \mathrm{H}), 6.67(\mathrm{~d}, 2 \mathrm{H}$, $\mathrm{J}=4.4 \mathrm{~Hz}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=5.4 \mathrm{~Hz}), 2.90$ (m, 3H), $2.71(\mathrm{~m}, 3 \mathrm{H})$.

EXAMPLE 160

(S)- $\mathrm{N}-[2-[4-$ (Aminophenyl)]ethyl]-2-hydroxy-3-[(3-hydroxymethyl)phenoxylpropylcarbamic acid 1,1-dimethylethyl ester

In a manner analogous to that of Example 33, the title compound was prepared from the amine from Example 159 and di-tertbutyldicarbonate: NMR ($400 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}$) $\delta 7.21(\mathrm{t}, 1 \mathrm{H}), 7.09$ (m, $1 \mathrm{H}), 6.92(\mathrm{~m}, 3 \mathrm{H}), 6.81(\mathrm{~m}, 1 \mathrm{H}), 6.66(\mathrm{~d}, 2 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 4.07(\mathrm{~m}$,
$1 \mathrm{H}), 3.89(\mathrm{~m}, 2 \mathrm{H}), 3.43(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{~m}, 2 \mathrm{H}), 2.69(\mathrm{t}, 2 \mathrm{H}), 1.40(\mathrm{~s}$, 9H).

EXAMPLE 161

(S)-2-(3-pyridyloxymethyl)oxirane

To a solution of $11.9 \mathrm{~g}(0.125 \mathrm{~mol})$ of 3-hydroxypyridine in 50 mL of DMSO at $15^{\circ} \mathrm{C}$ was added $120 \mathrm{~mL}(0.12 \mathrm{~mol})$ of a 1.0 M solution of sodium hexamethyldisilylazide in THF. After the reaction mixture was allowed to stir for $5 \mathrm{~min}, 25.9 \mathrm{~g}(0.10 \mathrm{~mol})$ of (2 S)glycidyl 3-nitrobenzene sulfonate was added in one portion. The
mixture was cooled with a room temperature water bath for 30 min . It was then quenched by the addition of 250 mL of water and extracted with three portions of ethyl acetate. The combined aqueous extracts were washed sequentially with water and brine, dried over sodium sulfate, treated with granular charcoal, filtered and concentrated to give $7.7 \mathrm{~g}(51 \%)$ of an orange oil which was used without further purification. An analytical sample was prepared by flash chromatography (silica gel, 80% ethyl acetate/hexane): 1H NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.31(\mathrm{~m}, 1 \mathrm{H}), 8.21(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.22(\mathrm{~m}, 2 \mathrm{H}), 4.29$ (dd, $1 \mathrm{H}, \mathrm{J}=1,6 \mathrm{~Hz}$), $3.95(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=3 \mathrm{~Hz})$, $2.75(\mathrm{~m}, 1 \mathrm{H})$.

EXAMPLE 163

(S)- $\underline{N}-[2-[4-$ (nitrophenyl)]ethyl]-2-hydroxy-3-pyridinyloxypropylcarbamic acid 1.1-dimethylethyl ester

A solution of $34.6 \mathrm{~g}(0.224 \mathrm{~mol})$ of epoxide from Example 162 in 300 mL of anhydrous methanol was treated with $38 \mathrm{~mL}(0.275$ $\mathrm{mol})$ of triethylamine and $55.7 \mathrm{~g}(0.275 \mathrm{~mol})$ of 4 -nitrophenethylamine hydrochloride. The solution was heated at reflux for 10 h , then cooled to room temperature and concentrated. The resultant mixture was suspended in 500 mL of dichloromethane and treated with 115 g of di-tert-butyldicarbonate in three portions ($90 \mathrm{~g}, 15 \mathrm{~g}, 10 \mathrm{~g}$) over 4 h . The reaction mixture was stirred overnight. Dilute brine was added and the mixture was extracted three times with dichloromethane. The combined organic extracts were dried over sodium sulfate and concentrated. Purification by flash chromatography (silica gel, $50 \%, 75 \%, 100 \%$ ethyl acetate/hexane) gave 38.0 g of the title compound: 1H NMR (400 $\mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}) \delta 8.23(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4 \mathrm{~Hz}), 8.12(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz})$, $7.71(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.52(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{~m}, 1 \mathrm{H})$,
$7.09(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz}), 7.00(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz}), 3.95-4.08(\mathrm{~m}, 3 \mathrm{H}), 2.69-$ $2.90(\mathrm{~m}, 6 \mathrm{H})$.

EXAMPLE 164

(S) \mathbf{S} - $-[2-[4-$ (Aminophenyl)]ethyl]-2-hydroxy-3-l(pyridin-3-yl)oxy]propylcarbamic acid 1,1-dimethylethyl ester

A $37.8-\mathrm{g}(0.09 \mathrm{~mol})$ portion of the nitro compound from
Example 163 was dissolved in 300 mL of ethyl acetate and hydrogenated over 7.1 g of 20% palladium hydroxide on carbon overnight. The mixture was filtered and concentrated to give the title compound, which was used without further purification.

EXAMPLE 165

(S)- \mathbf{N}-[4-[2-[[2-hydroxy-3-(3-pyridyloxy)propyl]amino]ethyl]phenyllbenzenesulfonamide

In a manner analogous to that of Example 7, the title compound was prepared from the epoxide from Example 162 and N -[4-(2-aminoethyl)phenyl]benzenesulfonamide (Example 6). Purification by preparative thin layer chromatography on silica gel (eluant 90:10:2 methylen chloride/methanol/30\% ammonium hydroxide) gave the title compound. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}$) $\delta 8.23(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4 \mathrm{~Hz}), 8.12$ ($\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz}$), $7.71(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.52(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.48(\mathrm{~m}$,
$3 \mathrm{H}), 7.35(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz}), 7.00(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz}), 3.95-$ $4.08(\mathrm{~m}, 3 \mathrm{H}), 2.69-2.90(\mathrm{~m}, 6 \mathrm{H})$.

EXAMPLE 166

(S)-N-[4-[2-[[2-hydroxy-3-(3-pyridyloxy)propyl]amino]ethyl]-phenyl]-3-quinolinesulfonamide

To a solution of the aniline ($1.0 \mathrm{~g}, 2.60 \mathrm{mmol}$) from Example 164 and pyridine ($0.21 \mathrm{~mL}, 2.60 \mathrm{mmol}$) in 15 mL of methylene chloride was added 3 -quinolinesulfonyl chloride (590 mg , 2.60 mmol) from Example 34. The pink solution was stirred at room temperature for 1.5 h and was concentrated under reduced pressure. The residue was dissolved in 20 mL of methanol, and approximately 8 mL of a 6 N HCl was added. After warming at reflux for 18 h , the cooled solution was concentrated in vacuo, and the residue was dissolved in 10 mL of 10% methanolic ammonium hydroxide. After removal of solvent in vacuo, the residue was applied directly to a silica gel column. Elution with $9: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}: 10 \%$ methanolic $\mathrm{NH}_{4} \mathrm{OH}$ afforded 0.84 g (1.78 $\mathrm{mmol}, 68 \%$ yield) of the title compound as an yellow solid. NMR (400 $\mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}) 9.01(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.2 \mathrm{~Hz}), 8.75(\mathrm{~d}, \mathrm{lH}, \mathrm{J}=2.2 \mathrm{~Hz}), 8.22$ (d, $1 \mathrm{H}, \mathrm{J}=2.9 \mathrm{~Hz}$), $8.12(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.3,4.7 \mathrm{~Hz}), 8.07(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.6$ Hz), $8.04(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz}$), 7.93 (apparent t, 1H), 7.72 (apparent t, $1 \mathrm{H}), 7.41(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.7,7.5 \mathrm{~Hz})$. FAB MS $m / z 479(\mathrm{M}$ +1).

EXAMPLE 167

(S)-N-[4-[2-[[2-hydroxy-3-(3-pyridyloxy)propyl]amino]ethyl]-phenyl|-

4-benzamidobenzenesulfonamide
To a solution of $1.00 \mathrm{~g}(2.58 \mathrm{mmol})$ of Boc aniline
derivative from Example 164 and 0.25 mL ($3.10 \mathrm{mmol}, 1.2$ equiv) of pyridine in dichloromethane at $0^{\circ} \mathrm{C}$ was added a solution of 572 mg (2.58 mmol) of 4-nitrobenzenesulfonyl chloride in 25 mL of dichloromethane via cannula. The reaction mixture was allowed to stir at $0^{\circ} \mathrm{C}$ for 1.5 h , then concentrated. Purification by flash chromatography (silica gel, ethyl acetate) gave $1.22 \mathrm{~g}(84 \%)$ of the resultant nitrobenzene sulfonamide. An $820-\mathrm{mg}$ portion was dissolved in 15 mL of ethyl acetate and stirred over 20% palladium hydroxide on carbon under an atmosphere of hydrogen overnight. The reaction mixture was then filtered and concentrated. Purification by flash chromatography (silica, ethyl acetate) gave $636 \mathrm{mg}(80 \%)$ of the corresponding 4 -aminosulfonamide. A $203-\mathrm{mg}(0.374 \mathrm{mmol})$ portion was dissolved in 4 mL of dichloromethane and treated with 36 mg ($0.036 \mathrm{~mL}, 0.45 \mathrm{mmol}$) of pyridine and $58 \mathrm{mg}(0.048 \mathrm{~mL}, 0.41 \mathrm{mmol})$ of benzoyl chloride. The reaction mixture was allowed to stir at $0^{\circ} \mathrm{C}$ for 45 min , and then 4 mL of trifluoroacetic acid was added. After 30 min , the reaction was concentrated. Purification by flash chromatography (silica, $7.5 \% 10: 1$ methanol: concentrated aqueous ammonium hydroxide in dichloromethane) gave $144 \mathrm{mg}(70 \%)$ of the title compound: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.21(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.9$ $\mathrm{Hz}), 8.11(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.3,4.6 \mathrm{~Hz}), 7.90(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}), 7.82(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{J}=8.9 \mathrm{~Hz}), 7.69(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.9 \mathrm{~Hz}), 7.58(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}), 7.49$ $(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}), 7.40(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}=1.3,2.9,8.5 \mathrm{~Hz}), 7.34(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}$
$=4.5,8.9 \mathrm{~Hz}), 7.10(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.02(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 4.06-$ 3.95 (m, 3H), 2.86-2.69 (m, 6H).

Following the procedures outlined for Examples 162-167, 5 the compounds listed in Tables 5 and 6 were prepared.

TABLE 5

10

15 Example	R	Selected 1H NMR (CD3OD) Data
168	$4-\mathrm{Br}$	7.60 (s, 4H)
169	4-I	$\begin{aligned} & 7.81(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=8.6 \mathrm{~Hz}), 7.44(\mathrm{~d}, \\ & 2 \mathrm{H}, \mathrm{~J}=8.6 \mathrm{~Hz}) \end{aligned}$
20170	4-NO2	$\begin{aligned} & 8.27(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=7.0 \mathrm{~Hz}), 7.93(\mathrm{~d}, \\ & 2 \mathrm{H}, \mathrm{~J}=6.8 \mathrm{~Hz}) \end{aligned}$
171	4-NH2	$\begin{aligned} & 7.38(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=8.7 \mathrm{~Hz}), 6.56(\mathrm{~d}, \\ & 1 \mathrm{H}, \mathrm{~J}=8.7 \mathrm{~Hz}) \end{aligned}$
172	4-NHCOMe	$\begin{aligned} & 7.65(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=9.2 \mathrm{~Hz}), 7.62(\mathrm{~d}, \\ & 2 \mathrm{H}, \mathrm{~J}=9.2 \mathrm{~Hz}), 2.10(\mathrm{~s}, 3 \mathrm{H}) \\ & \hline \end{aligned}$
25173	4-NHCO2Et	$\begin{aligned} & 4.16(\mathrm{q}, 2 \mathrm{H}, \mathrm{~J}=7.1 \mathrm{~Hz}), 1.27(\mathrm{t}, \\ & 3 \mathrm{H}, \mathrm{~J}=7.1 \mathrm{~Hz}) \end{aligned}$
174	4-NHCO2 ${ }^{\text {CHMe2 }}$	$\begin{aligned} & 4.08-3.96(\mathrm{~m}, 4 \mathrm{H}), 1.26(\mathrm{~d}, 6 \mathrm{H}, \mathrm{~J}= \\ & 6.2 \mathrm{~Hz}) \end{aligned}$
30175	$3-\mathrm{NHCO}\left(\mathrm{CH}_{2}\right) 4 \mathrm{CO}_{2} \mathrm{Me}$	$\begin{array}{\|l} 3.63(\mathrm{~s}, 3 \mathrm{H}), 2.33-2.40(\mathrm{~m}, 4 \mathrm{H}), \\ 1.60-1.73(\mathrm{~m}, 4 \mathrm{H}) \end{array}$
176	$4-\mathrm{NHCO}\left(\mathrm{CH}_{2}\right) 4 \mathrm{CO}_{2} \mathrm{Me}$	$\begin{aligned} & 3.63(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{q}, 2 \mathrm{H}, \mathrm{~J}=6.5 \\ & \mathrm{Hz}), 2.36(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~m}, 4 \mathrm{H}) \end{aligned}$

177	4-Propyl	$\begin{aligned} & 7.61(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=8.4 \mathrm{~Hz}), 7.26(\mathrm{~d}, \\ & 2 \mathrm{H}, \mathrm{~J}=8.5 \mathrm{~Hz}), 2.60(\mathrm{t}, 2 \mathrm{H}, \mathrm{~J}=7.7 \\ & \mathrm{Hz}), 1.60(\mathrm{hex}, 2 \mathrm{H}, \mathrm{~J}=7.5 \mathrm{~Hz}), \\ & 0.89(\mathrm{t}, 3 \mathrm{H}, \mathrm{~J}=7.4 \mathrm{~Hz}) \end{aligned}$
178	4-OH	$\begin{aligned} & 7.54(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=8.9 \mathrm{~Hz}), 6.76(\mathrm{~d}, \\ & 2 \mathrm{H}, \mathrm{~J}=8.9 \mathrm{~Hz}) \end{aligned}$
179	4-OMe	$\begin{aligned} & 7.64(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=9.0 \mathrm{~Hz}), 6.95(\mathrm{~d}, \\ & 2 \mathrm{H}, \mathrm{~J}=9.0 \mathrm{~Hz}), 3.80(\mathrm{~s}, 3 \mathrm{H}) \end{aligned}$

TABLE 6

15

EXAMPLE 185

EXAMPLE 186

(S)- $\mathbf{N}-[4-[2-[[2-h y d r o x y-3-[[2-(4-n i t r o b e n z e n a z o)-5-p y r i d i n y l] o x y]-~$ propyllaminolethyllphenyll-2-naphthalenesulfonamide

The Cbz amine from Example 13 was deprotected as described in Example 6. In a manner analogous to that of Example 7, the title compound was prepared from the resultant amine and the epoxide from Example 185: 1H NMR ($400 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}$) $\delta 8.43$ (d, $2 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}), 8.38(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.9 \mathrm{~Hz}), 8.28(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.8 \mathrm{~Hz}), 8.13$ $(\mathrm{d}, 2 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}), 7.98(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}), 7.93-7.88(\mathrm{~m}, 3 \mathrm{H}), 7.72$
(dd, $1 \mathrm{H}, \mathrm{J}=1.8,8.7 \mathrm{~Hz}), 7.63-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.07(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz})$, $7.03(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}), 4.16-4.06(\mathrm{~m}, 3 \mathrm{H}), 2.88-2.71(\mathrm{~m}, 6 \mathrm{H}) ;$ FAB MS $m / z 627(\mathrm{M}+1)$. ($M+1$).

EXAMPLE 188

(S)- N -[4-[2-[[3-[(2-amino-5-pyridinyl)oxy]-2-hydroxypropyl]amino]-ethyllphenyll-2-naphthalenesulfonamide

A solution of $31.1 \mathrm{mg}(0.0496 \mathrm{mmol})$ of the benzenazo derivative from Example 186 in 2 mL of acetic acid and 2 mL of methanol was stirred over 20% palladium hydroxide on carbon under an atmosphere of hydrogen for 1 h . It was then filtered and concentrated. Purification by flash chromatography (silica gel, 10% 10:1 methanol:concentrated ammonium hydroxide in dichloromethane) gave $19.0 \mathrm{mg}(78 \%)$ of the title compound: 1 H NMR (400 MHz , CD3OD) $\delta 8.27(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.8 \mathrm{~Hz}), 7.93-7.87(\mathrm{~m}, 3 \mathrm{H}), 7.72(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}$ $=1.8,8.7 \mathrm{~Hz}), 7.62-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=3.0,9.0 \mathrm{~Hz}), 7.06-$ 7.01 (overlapping d, 4 H), $6.55(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.2 \mathrm{~Hz}), 3.95(\mathrm{~m}, 1 \mathrm{H}), 3.86-$ 3.79 (overlapping dd, 2H), 2.82-2.63 (m, 6H); FAB MS m/z 493

2-Acetamido-5-hydroxypyridine
A mixture of $1.72 \mathrm{~g}(10.4 \mathrm{mmol})$ of 2 -acetamido- 5 methoxypyridine, prepared according to the procedure of J .

Lombardino, J. Med. Chem. 1981, 24, 39-42, and 2.54 g (51.8 mmol) of sodium cyanide in 10 mL of DMSO was heated at $165^{\circ} \mathrm{C}$ under nitrogen for 48 h . The mixture was concentrated under vacuum to remove the DMSO. Purification by flash chromatography (silica, crude product transferred to column in methanol, then diluted with dichloromethane and eluted with $10 \% 10: 1$ methanol:concentrated aqueous ammonium hydroxide in dichloromethane) gave 0.881 g (56%) of the title compound as a brown solid: 1 H NMR $(400 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}) \delta$ 7.84-7.81 (overlapping d, 2 H), 7.19 (dd, $1 \mathrm{H}, \mathrm{J}=2.9,8.9 \mathrm{~Hz}$), $2.12(\mathrm{~s}$, 3H).

EXAMPLE 189

 crystalline solid: 1 H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.1$ Hz), 7.98 (br s, 1 H), $7.95(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.9 \mathrm{~Hz}), 4.26(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.9$, $11.0 \mathrm{~Hz}), 3.92(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.8,11.0 \mathrm{~Hz}), 3.33(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=$ $4.5 \mathrm{~Hz}), 2.74(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.6,4.8 \mathrm{~Hz}), 2.16(\mathrm{~s}, 3 \mathrm{H})$.
EXAMPLE 190

(S)-N-[4-[2-[[3-[(2-amino-5-pyridinyl)oxy]-2-hydroxypropyl]amino]-ethyll-phenyll-4-isopropylbenzenesulfonamide

To a solution of the BOC-protected aniline from Example $190(1.16 \mathrm{~g}, 2.6 \mathrm{mmol})$ and pyridine ($300 \mu \mathrm{~L}, 3.64 \mathrm{mmol}, 1.4 \mathrm{eq}$) in 45 mL of methylene chloride was added 4 -isopropylbenzenesulfonyl chloride ($577 \mathrm{mg}, 2.6 \mathrm{mmol}$). The reaction mixture was stirred at room temperature under nitrogen atmosphere overnight. The pink solution was poured into brine (20 mL) and the organics were extacted with methylene chloride. The solution was washed with saturated ammonium chloride solution, water and brine and then dried over anhydrous magnesim sulfate. The solution was filtered and
concentrated under vacuum. Purification by flash column
chromatography (silica gel, ethyl acetate) gave 1.54 g (94.5%) of the corresponding N -acetyl derivative: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}$) δ $7.94-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.67(\mathrm{~m}, 2 \mathrm{H}), 7,37(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz}), 7.31(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz}), 6.98-7.08(\mathrm{~m}, 4 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H}), 3.89-4.00(\mathrm{~m}, 2 \mathrm{H})$, $3.35-3.50(\mathrm{~m}, 3 \mathrm{H}), 3.11(\mathrm{~m}, 1 \mathrm{H}), 2.91(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz})$, $2.13(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~d}, 9 \mathrm{H}), 1.20(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz})$.

A solution of the N -acetyl derivative ($1.54 \mathrm{~g}, 2.46 \mathrm{mmol}$) in 30 mL of methanol with 20 mL of 2 N hydrochloric acid was refluxed at $90^{\circ} \mathrm{C}$ for 20 h . The solvent was stripped under vacuum and the residue was purified by flash column chromatography (silica gel, 90:10:1 methylene chloride/methanol $/ 30 \%$ ammonium hydroxide) to give $970 \mathrm{mg}(83 \%)$ of the titled compound. 1 H NMR $(400 \mathrm{MHz}$, CD3OD) $\delta 7.64(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.60(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2 \mathrm{~Hz}), 7.32(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}$ $=8 \mathrm{~Hz}), 7.19(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2,10 \mathrm{~Hz}), 7.08(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.00(\mathrm{~d}, 2 \mathrm{H}$, $\mathrm{J}=8 \mathrm{~Hz}), 6.56(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz}), 3.98(\mathrm{~m}, 1 \mathrm{H}), 3.81-3.89(\mathrm{~m}, 2 \mathrm{H})$, 2.92 (hept, $1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}$), 2.65-2.86(m, 6H), $1.21(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=8$ $\mathrm{Hz})$.FAB-MS m/e $485(\mathrm{M}+1)$.

Following procedures outlined for Examples 185-191, the compounds listed in Table 7 were prepared.

TABLE 7

30

Example	R	Selected 1H NMR (CD3OD) Data
192	4-bromophenyl	$7.61(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.3 \mathrm{~Hz}), 7.59(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{J}=9.3 \mathrm{~Hz})$
193	4-iodophenyl	$7.83(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.43(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz})$

205	benzothiophen-2-yl	$7.83(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.2), 7.71(\mathrm{~s}, 1 \mathrm{H})$,
206	1,2-benzisoxazol-5-yl	$7.82-7.78(\mathrm{~m}, 3 \mathrm{H})$

This compound was converted to the title compound in a manner analogous to that of Example 1: 1 H NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 6.97(\mathrm{~s}$, $2 \mathrm{H}), 4.21(\mathrm{dd}, 1 \mathrm{H}), 3.86(\mathrm{dd}, 1 \mathrm{H}), 3.32(\mathrm{~m}, 1 \mathrm{H}), 2.91(\mathrm{t}, 1 \mathrm{H}), 2.73(\mathrm{dd}$, $1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H})$.

EXAMPLE 207
(S)-2-[(4-acetamido-3,5-dichlorophenoxy)methylloxirane

4-Acetamido-3,5-dichlorobenzenediazonium tetrafluoroborate was converted to the corresponding phenol according to the procedure of T. Cohen, et. all., J. Org. Chem., 42, 2053-2058 (1977). Thus, 22 g (94 mmol) of copper (II) nitrate was dissolved in 100 mL of water and 300 mg (0.94 mmol) of 4 -acetamido-3,5-dichlorobenzenediazonium tetrafluoroborate was added. Copper (I) oxide ($405 \mathrm{mg}, 2.8$ mmol) was added. The mixture was stirred for 35 min , then filtered through Celite, diluted with 1 N aqueous sodium bisulfate, and extracted with 4 portions of dichloromethane and 8 portions of ethyl acetate. The combined organic phases were dried over magnesium sulfate and concentrated. Purification by flash chromatography (silica, 50% ethyl acetate/hexanes) gave 72 mg (35%) of 4 -acetamido- 3,5 -dichlorophenol.

- 86 -

EXAMPLE 208

(S)-N-14-[2-[[2-hydroxy-3-(4-acetamido-3,5-dichlorophenoxy)propyl]-aminolethyllphenyll-2-naphthalenesulfonamide

The Cbz amine from Example 13 was deprotected as described in Example 6. In a manner analogous to that of Example 7, the title compound was prepared from the resultant amine and the epoxide from Example 207: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}$) $\delta 8.28$ (d , $1 \mathrm{H}, \mathrm{J}=1.7 \mathrm{~Hz}), 7.95-7.90(\mathrm{~m}, 3 \mathrm{H}), 7.72(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.9,8.7 \mathrm{~Hz}), 7.63-$ $7.57(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.02(\mathrm{~m}, 6 \mathrm{H}), 4.02(\mathrm{~m}, 1 \mathrm{H}), 3.97-3.88$ (overlapping $\mathrm{dd}, 2 \mathrm{H}), 2.89-2.72(\mathrm{~m}, 6 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H})$.

EXAMPLE 209

(S)-N-[4-[2-[[2-hydroxy-3-(4-amino-3,5-dichlorophenoxy)propyl]-aminolethyllphenyll-2-naphthalenesulfonamide

A solution of $28 \mathrm{mg}(0.016 \mathrm{mmol})$ of the acetamide from Example 208 in 5 mL of methanol and 0.24 mL of $2 \underline{\mathrm{~N}}$ aqueous hydrochloric acid was heated at reflux for 3 days. It was then cooled and concentrated. Purification by HPLC (ODS-3, 1:1 methanol:0.1\% aqueous trifluoroacetic acid) gave 6.7 mg (13%) the title compound as its bis trifluoracetate salt: ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}) \delta 8.31$ (d, 1 H , $\mathrm{J}=1.5 \mathrm{~Hz}), 7.96-7.90(\mathrm{~m}, 3 \mathrm{H}), 7.75(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.9,8.7 \mathrm{~Hz}), 7.65-$ $7.57(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~s}, 4 \mathrm{H}), 6.89(\mathrm{~s}, 2 \mathrm{H}), 4.12(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$
$5.0,9.9 \mathrm{~Hz}), 3.85(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=5.3,9.9 \mathrm{~Hz}), 3.23-3.11(\mathrm{~m}, 4 \mathrm{H} 0,2.90-$ $2.86(\mathrm{~m}, 2 \mathrm{H})$.

EXAMPLE 210

N-14-(3-aminopropyl)phenyllbenzenesulfonamide
A mixture of $0.5 \mathrm{~g}(2.17 \mathrm{mmol}) 4$-nitrophenethyl bromide and 0.134 g (2.71 mmol) of sodium cyanide in dry DMSO was stirred at room temperature for 2 h . The resulting reaction mixture was diluted with water (50 mL) and extracted with methylene chloride twice. The combined organic layers were washed with water, brine, dried over magnesium sulfate and concentrated. The product was isolated by column chromatography on silica gel (15% ethyl acetate/ 85% Hexanes) to give $0.32 \mathrm{~g}(84 \%)$ of the 4 -nitrophenethyl nitrile.

A 0.3 g -portion (1.7 mmol) of nitro compound in methanol was hydrogenated in the presence of 300 mg of $10 \% \mathrm{Pd} / \mathrm{C}$ until hydrogen uptake ceased. The reaction mixture was filtered and the solvent evaporated from the filtrate. The resultant amine (clean by ${ }^{1} \mathrm{H}$ NMR) was directly used in the next step without any purification.

To a stirred solution of $0.23 \mathrm{~g}(1.57 \mathrm{mmol})$ of the resultant amine in methylene chloride (10 mL) at room temperature was added $0.417 \mathrm{~g}(2.35 \mathrm{mmol})$ of benzenesulfonyl choride, followed by 0.25 g (3.14 mmol) of pyridine. After 6 h , the reaction mixture was concentrated and purified on silica (2% methanol/ 98 methylene chloride) to yield 0.32 g of the sulfonamide nitrile.

To a stirred mixture of $0.318 \mathrm{~g}(1.1 \mathrm{mmol})$ of sulfonamide nitrile and 0.53 g (2.22 mmol) of cobalt (II) chloride hexahydrate in methanol (10 mL) was added at room temperature in portions 0.42 g (11 mmol) of sodium borohydride (exothermic). The resulting reaction mixture (black) was stirred at room temperature for 5 h and acidified with $3 \underline{\mathrm{~N}}$ hydrochloric acid until the solution become clear. The reaction
mixture was concentrated and purified on silica (5% methanol/95 methylene chloride) to give 0.2 g of the amine. ${ }^{1} \mathrm{H} N \mathrm{NR}(400 \mathrm{MHz}$, CD3OD) $7.73(\mathrm{dd}, 2 \mathrm{H}), 7.54 \mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{~m}, 2 \mathrm{H}), 7.06-7.00\left(\mathrm{AA}^{\prime}\right.$, BB', 4H).

EXAMPLE 211

4-Nitrophenyl 2-chloroethyl ether
A solution of 1.611 g of 4-nitro sodium phenoxide (10 $\mathrm{mmol}), 2.15 \mathrm{~g}$ ($1.25 \mathrm{~mL}, 15.0 \mathrm{mmol}$) of 1-bromo-2-chloroethane, and 4.15 g (30.0 mmol) of potassium carbonate in 60 mL of methylethyl ketone was refluxed in an oil bath overnight under nitrogen atmosphere. The reaction was cooled and the solid was filtered off. The filterate was evaporated under vacuum and the residue was purified by flash column chromatography (silica gel, eluant $2: 1$ hexanes/ethyl acetate) to give $1.35 \mathrm{~g}(67 \%)$ of the title compound: ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18$ $(\mathrm{d}, 2 \mathrm{H}, J=9 \mathrm{~Hz}), 6.95(\mathrm{~d}, 2 \mathrm{H}, J=9 \mathrm{~Hz}), 4.29(\mathrm{t}, 2 \mathrm{H}, J=6 \mathrm{~Hz}), 3.82(\mathrm{t}, 2 \mathrm{H}$, $J=6 \mathrm{~Hz}$).

EXAMPLE 213

4-nitrophenyl 2-azidoethyl ether

A solution of $1.12 \mathrm{~g}(5.55 \mathrm{mmol})$ of 4-nitro 2 -chloroethyl ether (Example 212) and lithium azide ($544 \mathrm{mg}, 11.1 \mathrm{mmol}$) in 3 mL of DMF was heated at $60^{\circ} \mathrm{C}$ in an oil bath overnight under nitrogen atmosphere. The reaction was poured into water and extracted with ethyl acetate. The organics were washed with water and brine and dried over anhydrous magnesium sulfate and concentrated to give 1.12 g (97%) of the product: ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18$ (d, 2 H , $J=9 \mathrm{~Hz}), 6.96(\mathrm{~d}, 2 \mathrm{H}, J=9 \mathrm{~Hz}), 4.21(\mathrm{t}, 2 \mathrm{H}, J=5 \mathrm{~Hz}), 3.63(\mathrm{t}, 2 \mathrm{H}, J=5 \mathrm{~Hz})$.

EXAMPLE 214

4-Nitrophenyl 2-aminoethyl ether

A solution of 4-nitro 2-aminoethyl ether ($610 \mathrm{mg}, 2.93$ mmol) from Example 213 in 10 mL of THF/water (9:1) was treated with triphenyl phosphine ($768 \mathrm{mg}, 3.0 \mathrm{mmol}$) at ambient temperature. After stirring for 3 h , the solvent was removed under vacuum and the residue was purified by flash column chromatography on silica gel (eluant 1:9 methanol/methylene chloride) to give 480 mg (95%) of the title compound: ${ }^{1} \mathrm{H}$ NMR ($\left.200 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}\right) \delta 8.18(\mathrm{~d}, 2 \mathrm{H}, J=9 \mathrm{~Hz}$), $6.96(\mathrm{~d}, 2 \mathrm{H}, J=9 \mathrm{~Hz}), 4.13(\mathrm{t}, 2 \mathrm{H}, J=5.5 \mathrm{~Hz}), 3.27(\mathrm{t}, 2 \mathrm{H}, J=5.5 \mathrm{~Hz})$.

EXAMPLE 215

2-(4-Nitrophenoxy)ethylcarbamic acid 1,1-dimethylethyl ester
A solution of $480 \mathrm{mg}(2.79 \mathrm{mmol})$ of amine from Example 214 in 20 mL of methylene chloride was treated with 610 mg (2.80 mmol) of di-tert-butyl dicarbonate. After stirring at room temperature for 40 min ., the reaction mixture was concentrated and the resulting yellow solid was used for the next step without further purification: ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.15(\mathrm{~d}, 2 \mathrm{H}, J=9 \mathrm{~Hz}), 6.90(\mathrm{~d}, 2 \mathrm{H}, J=9 \mathrm{~Hz})$, 4.94 (bs, $1 \mathrm{H}, \mathrm{N}-\underline{\mathrm{H}}$), 4.05 (bt, $2 \mathrm{H}, J=5.0 \mathrm{~Hz}$), $3.50(\mathrm{q}, 2 \mathrm{H}, J=5.0 \mathrm{~Hz}$).

EXAMPLE 216

2-(4-Aminophenoxy)ethylcarbamic acid 1,1-dimethylethyl ester
A solution of 775 mg (2.75 mmol) of nitro compound from Example 215 in 20 mL of methanol with 10% palladium on carbon (150 mg) was introduced hydrogen via balloon at room temperature for 4 h . The catalyst was filtered off through Celite, and the filterate was concentrated under vacuum to give 690 mg of the title compound: ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 6.69(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 6.58(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz})$, 4.94 (bs, 1H, N-H), 3.89 (bt, 2H, $J=5.0 \mathrm{~Hz}), 3.40(\mathrm{q}, 2 \mathrm{H}, J=5.0 \mathrm{~Hz}), 1.40$ ($s, 9 \mathrm{H}$).

EXAMPLE 217

EXAMPLE 218

(Sㅇ)- N -[4-[2-[[2-hydroxy-3-[[4-[[(1,1-dimethylethyl)dimethylsilyl]oxy]phenoxy]propyllaminolethyloxylphenyllbenzenesulfonamide

A solution of $248 \mathrm{mg}(0.632 \mathrm{mmol})$ of t -BOC amine from Example 217 in 2 mL of methylene chloride was treated with 1 mL of trifluoroacetic acid for 0.5 h and the reaction mixture was concentrated
under vacuum to give the resultant amine ($256 \mathrm{mg}, 100 \%$) as a trifluoroacetic acid salt. To a solution of this amine in 5 mL of dry methanol was added diisopropylethylamine ($90 \mathrm{mg}, .70 \mathrm{mmol}$) followed by the epoxide from example $2(70 \mathrm{mg}, .25 \mathrm{mmol}, 0.4$ equiv). The reaction was heated at reflux in an oil bath under nitrogen overnight and then cooled to room temperature and concentrated. Purification by preparative thin layer chromatography on silica (eluant 12:88 methanol/methylene chloride) gave 110 mg (77%) of the desired product as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65$ (dd, 2 H , $J=8,1 \mathrm{~Hz}), 7.39(\mathrm{t}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 7.38(\mathrm{t}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}), 6.89(\mathrm{~d}, 2 \mathrm{H}$, $J=9 \mathrm{~Hz}), 6.70(\mathrm{~s}, 4 \mathrm{H}), 6.69(\mathrm{~d}, 2 \mathrm{H}, J=9 \mathrm{~Hz}), 4.20(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{~m}, 2 \mathrm{H})$, $3.90(\mathrm{~m}, 2 \mathrm{H}), 3.20-3.0(\mathrm{~m}, 4 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H})$.

EXAMPLE 219

(S)- N -[4-[2-[[2-hydroxy-3-(4-hydroxyphenoxy)propyl]amino]ethoxy]phenyllbenzenesulfonamide

In a manner analogous to that of Example 12, the title compound was prepared from the silyl ether from Example 218: ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}) \delta 7.68(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 7.53(\mathrm{t}, 1 \mathrm{H}, J=8 \mathrm{~Hz})$, $7.43(\mathrm{t}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 7.0(\mathrm{~d}, 2 \mathrm{H}, J=9 \mathrm{~Hz}), 6.86(\mathrm{~d}, 2 \mathrm{H}, J=9 \mathrm{~Hz}), 6.79(\mathrm{~d}$, $2 \mathrm{H}, J=9 \mathrm{~Hz}), 6.69(\mathrm{~d}, 2 \mathrm{H}, J=9 \mathrm{~Hz}), 4.21(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~m}, 2 \mathrm{H}), 3.50(\mathrm{~m}$, 2 H), 3.40-3.20 (m, 4H), EI-MS: calculated for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S} 458$;
found $459(\mathrm{M}+1)$.

WHAT IS CLAIMED IS:

1. A compound having the formula:

1
where
n is $\quad 0$ to 7 ;
m is $\quad 0$ or l ;
r is $\quad 0$ to 3 ;
A is phenyl, naphthyl, a 5 or 6 -membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, a benzene ring fused to a $\mathrm{C} 3-\mathrm{C} 8$ cycloalkyl ring, a benzene ring fused to a 5 or 6 -membered heterocyclic ring with from 1 to 3 heteroatoms selected from oxygen, sulfur or nitrogen or a 5 or 6 -membered heterocyclic ring with from 1 to 3 heteroatoms selected from oxygen, sulfur or nitrogen fused to a 5 or 6 -
R^{1} is hydroxy, oxo, halogen, cyano, nitro, NR 8 R 8 , SR_{8} trifluoromethyl, $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkoxy, $\mathrm{C}_{3}-\mathrm{C}_{8}$ cycloalkyl, phenyl, $\mathrm{SO}_{2} \mathrm{R}^{9}, \mathrm{NHCOR} 9, \mathrm{COR}^{9}, \mathrm{NR}^{8} \mathrm{SO}_{2} \mathrm{R}^{8}$, $\mathrm{NR}^{8} \mathrm{CO}_{2} \mathrm{R}^{8}$, or $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl substituted by hydroxy, nitro, halogen, cyano, $\mathrm{NR}^{8} 8$ 8, SR^{8}, trifluoromethyl, $\mathrm{C} 1-\mathrm{C} 6$ alkoxy, $\mathrm{C}_{3}-\mathrm{C} 8$ cycloalkyl, phenyl, $\mathrm{NR}^{8} \mathrm{COR}^{9}, \mathrm{COR}^{9}$, $\mathrm{SO}_{2} \mathrm{R}^{9}, \mathrm{NR}^{8} \mathrm{SO}_{2} \mathrm{R}^{9}, \mathrm{NR}^{8} \mathrm{CO}_{2} \mathrm{R}^{8}$, or R^{1} is a 5 or 6 membered heterocycle with from 1 to 3 heteroatoms selected from oxygen, sulfur or nitrogen;
R^{2} and R^{3} are independently hydrogen, $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl or $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl substituted by 1 to 3 of hydroxy, $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkoxy, or halogen;

X is $\quad-\mathrm{CH}_{2}-,-\mathrm{CH}_{2}-\mathrm{CH}_{2}-,-\mathrm{CH}=\mathrm{CH}-$ or $-\mathrm{CH}_{2} \mathrm{O}-$;
R4 and R5 are independently hydrogen, $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, halogen, NHR8, OR8, $\mathrm{SO}_{2} \mathrm{R} 9$ or $\mathrm{NHSO}_{2} \mathrm{R}^{9}$;
R 6 is hydrogen or $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl;
R^{7} is $\quad \mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, $\mathrm{C}_{3}-\mathrm{C}_{8}$ cycloalkyl, or $\mathrm{B}-\left(\mathrm{R}_{1}\right)_{\mathrm{n}}$;
B is phenyl, naphthyl, a 5 or 6 -membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, a benzene ring fused to a $\mathrm{C} 3-\mathrm{C} 8$ cycloalkyl ring, a benzene ring fused to a 5 or 6 -membered heterocyclic ring with from 1 to 3 heteroatoms selected from oxygen, sulfur or nitrogen or a 5 or 6 -membered heterocyclic ring with from 1 to 3 heteroatoms selected from oxygen, sulfur or nitrogen fused to a 5 or 6membered heterocyclic ring with from 1 to 3 heteroatoms selected from oxygen, sulfur or nitrogen;
R^{8} is hydrogen, $\mathrm{C}_{1}-\mathrm{C}_{10}$ alkyl, $\mathrm{C}_{3}-\mathrm{C}_{8}$ cycloalkyl, phenyl optionally substituted by 1 to 3 of halogen, $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl or $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkoxy, or $\mathrm{C}_{1}-\mathrm{C}_{10}$ alkyl substituted by 1 to 3 of hydroxy, halogen, $\mathrm{CO}_{2} \mathrm{H}, \mathrm{CO}_{2}-\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, $\mathrm{C}_{3}-\mathrm{C} 8$ cycloalkyl, $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkoxy, or phenyl optionally substituted by from 1 to 3 of halogen, $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl or $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkoxy; $R 9$ is $\quad R 8, N H R 8$ or NR8R8.
2. A compound of Claim 1 wherein the 5 and 6membered heterocycles and fused heterocycles of A, B and R_{1} are those heterocycles with from 1 to 4 heteroatoms independently selected from one of oxygen or sulfur or 1 to 4 nitrogen atoms.
3. A compound of Claim 1 wherein A and B are independently phenyl, naphthyl, or a 5 or 6 membered heterocycle or fused heterocycle with from 1 to 4 heteroatoms independently selected from one of oxygen or sulfur or 1 to 4 nitrogen atoms.
4. A compound of Claim 3 wherein A is phenyl, naphthyl, pyridyl, quinolinyl, pyrimidinyl, pyrrollyl, thienyl, imidazolyl or thiazolyl.
5. A compound of Claim 3 wherein B is phenyl, naphthyl, quinolinyl, thienyl, benzimidazolyl, thiadiazolyl, benzothiadiazolyl, indolyl, indolinyl, benzodioxolyl, benzodioxanyl, benzothiophenyl, benzofuranyl, benzisoxazolyl, benzothiazolyl, tetrahydronaphthyl, dihydrobenzofuranyl, and tetrahydroquinolinyl.
6. A compound of Claim 3 wherein R^{2} and R^{3} are hydrogen or methyl; X is $-\mathrm{CH}_{2}-\mathrm{m}$ is $1 ; \mathrm{r}$ is $0-2$; and R^{5} and R^{6} are hydrogen.
7. A compound of Claim 3 wherein A is phenyl quinolinyl or a 6 -membered heterocyclic ring with 1 or 2 nitrogen atoms;
B is phenyl or quinolinyl;
R^{1} is NH_{2}, hydroxy, halogen, cyano, trifluoromethyl phenyl, $\mathrm{NR}^{8} \mathrm{COR}^{9}, \mathrm{NR}^{8} \mathrm{CO}_{2} \mathrm{R}^{8}, \mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl optionally substituted by hydroxy; and
r is 0 or 2 .
-96-
8. A compound of Claim 1 which is

N-[4-[2-[[2-hydroxy-3-(4-hydroxyphenoxy)propyl]amino]ethyl]phenyl]benzenesulfonamide

N-[4-[2-[[2-hydroxy-3-(4-hydroxyphenoxy)propyl]amino]ethyl]phenyl]-4-iodobenzenesulfonamide
N-[4-[2-[[2-hydroxy-3(4-hydroxyphenoxy)propyl]amino]ethyl]phenyl]-2-naphthalenesulfonamide
N-[4-[2-[[2-hydroxy-3-(4-hydroxyphenoxy)propyl]amino]ethyl]pheny]]-4-(benzo-2,1,3-thiadiazole)sulfonamide
N-[4-[2-[[2-hydroxy-3-(4-hydroxyphenoxy)propyl]amino]ethyl]phenyl]-2-phenylethanesulfonamide
N-[4-[2-[[3-(4-fluorophenoxy)-2-hydroxypropyl]amino]ethyl]phenyl]-4-benzenesulfonamide
N-[4-[2-[[3-[(2-amino-5-pyridinyl)oxy]-2-hydroxypropyl]amino]ethyl]-phenyl]-2-naphthalenesulfonamide
N -[4-[2-[[2-hydroxy-3-(4-hydroxyphenoxy)propyl]amino]ethyl]phenyl]-3-quinolinesulfonamide
N-[4-[2-[[2-hydroxy-3-(4-hydroxyphenoxy)propyl]amino]ethyl]phenyl]-4-[(5-methoxycarbonyl)pentanoyl]amino]benzenesulfonamide
N-[4-[2-[[2-hydroxy-3-(4-hydroxyphenoxy)propyl]amino]ethyl]phenyl]-4-[(5-hydroxycarbonyl)pentanoyl]amino]benzenesulfonamide
N-[4-[2-[[2-hydroxy-3-(4-hydroxyphenoxy)propyl]amino]ethyl]phenyl]-4-(hexylaminocarbonylamino)benzenesulfonamide
N-[4-[2-[(2-hydroxy-3-phenoxypropyl)amino]ethyl]phenyl]-4chlorobenzenesulfonamide
N-[4-[2-[[2-hydroxy-3-(3-cyanophenoxy)propyl]amino]ethyl]phenyl]-3quinolinesulfonamide
N-[4-[2-[[3-(4-amino-3-cyanophenoxy)-2-hydroxypropyl]amino]ethyl]-phenyl]-3-quinolinesulfonamide
N -[4-[2-[[2-hydroxy-3-[(3-hydroxymethyl)phenoxy]propyl]amino]-ethyl]phenyl]-3-quinolinesulfonamide
N-[4-[2-[[2-hydroxy-3-(3-pyridyloxy)propyl]amino]ethyl]phenyl]-3quinolinesulfonamide

N-[4-[2-[[2-hydroxy-3-(3-pyridyloxy)propyl]amino]ethyl]phenyl]-4iodobenzenesulfonamide
N -[4-[2-[[3-[(2-amino-5-pyridinyl)oxy]-2-hydroxypropyl]amino]ethyl]-phenyl]-4-isopropylbenzenesulfonamide.
9. A compound of Claim 1 with the structural formula:

la
where $\mathrm{n}, \mathrm{m}, \mathrm{r}, \mathrm{A}, \mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}, \mathrm{R}_{4}, \mathrm{R}_{5}, \mathrm{R}_{6}, \mathrm{R}_{7}$ and X are as defined in Claim 1.
10. A process for the preparation of a compound of Claim I which comprises treating a compound having the formula:

with a compound having the formula:

$\left(R_{1}\right)_{n}$
where $\mathrm{n}, \mathrm{m}, \mathrm{r}, \mathrm{A}, \mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}, \mathrm{R}_{4}, \mathrm{R}_{5}, \mathrm{R}_{6}, \mathrm{R}_{7}$ and X are as defined in Claim 1.
11. A method for the treatment of diabetes which comprises administering to a diabetic patient an effective amount of a compound of Claim 1.
12. A method for the treatment of obesity which comprises administering to an obese patient an effective amount of a compound of Claim 1.
13. A method for lowering triglyceride levels and cholesterol levels of raising high density lipoprotein levels which comprises administering to a patient needing lower triglyceride and cholesterol levels or higher high density lipoprotein levels an effective amount of a compound of Claim 1.
14. A method for decreasing gut motility which comprises administering to a patient in need of decreased gut motility, an effective amount of a compound of Claim 1.
15. A method for reducing neurogenic inflammation of airways which comprises administering to a patient in need of reduced neurogenic inflammation, an effective amount of a compound of Claim 1.
16. A method for reducing depression which comprises administering to a depressed patient an effective amount of a compound of Claim 1.
17. A method for treating gastrointestinal disorders which comprises administering to a patient with gastrointestinal disorders an effective amount of a compound of Claim 1.
18. A composition for the treatment of diabetes or obesity or for lowering triglyceride or cholesterol levels or increasing high density lipoprotein levels or for decreasing gut motility or for reducing neurogenic inflammation or for treating depression or for treating gastrointestinal disorders which comprises an inert carrier and an effective amount of a compound of Claim 1.

Patent docurnent cited in search report	$\begin{gathered} \text { Publicastion } \\ \text { date } \end{gathered}$	$\underset{\text { Paten }}{\substack{\text { men }}}$	fersily	Publication
W0-A-9000548	25-01-90	US-A-CA-A-EP-A-JP-T		$\begin{aligned} & 24-09-91 \\ & 29-03-94 \\ & 14-03-90 \\ & 11-04-91 \end{aligned}$
EP-A-0328251	16-08-89	$\mathrm{A} U-\mathrm{B}-$ AU-B- CA-A- JP-A- US-A-	614809 2843689 1326025 2001442 4999377	$\begin{aligned} & 12-09-91 \\ & 27-07-99 \\ & 11-01-94 \\ & 05-01-90 \\ & 12-03-90 \end{aligned}$
EP-A-0427480	15-05-91	$\begin{aligned} & \text { DE-D- } \\ & \mathrm{JPP}-\mathrm{A}- \\ & U S-A- \end{aligned}$	$\begin{array}{r} 69005984 \\ 3193747 \\ 5187190 \end{array}$	$\begin{aligned} & 24-02-94 \\ & 23-08-91 \\ & 16-02-93 \end{aligned}$
EP-A-0091749	19-10-83	JP-A-	58185554	29-10-83

Isosterism and Molecular Modification in Drug Design

Hy C. W. Thomber

DIVISHON, MERESIDA, ALDERLEY PARK, MACCLESFIELD.
CHESAIRE, SELO 1 TO

1 Introdoction

The idea of Isosterism goes hack to langmair ${ }^{1}$ in 1919. At that time the word isosterism was used to describe the similarity of moleculess or ions which have the same number of atoms and valence electrons e.g. $0^{2-}, \mathrm{F}$, , Ne. Clearly only those isosteres with the surse nett charge show similar chemical and physical properties. Grimsu" enunciated his hydride displacement law to describo the similaitity between groupa which have the same number of valence electrons but different numbers of atoms. For example some similarities are present in the sequence: $\mathrm{CH}_{3}, \mathrm{NHI}_{2}, \mathrm{OH}_{3}$, Hal.
Grixm's bydride displacenient haw points out some similarities of sizo in groupings based on elements in the same row of the periodic table. Other similarities to be found in the periodic table are within the groups; where chemical reactivities are similar but with electronegativity decreasing as atomic weight increases and 3jpophincity and polarizability increasing with the size of the atern. Other relationships exist in diagonall lines across the perioctic table where alocos or similar electrowergativity sweh as sitrogen and sulpher, coxygen azad cilorine are found.
lan trying to relate biological properties to the physical and cheruical propertics of atoms, eroups, or molecules, many physical and chemical parameters may be involved and the simple relationstips mentioned above are clearly inaluequate for this purposte. Friedrnam" introduced the term "bioisocterism" to describe the phenomeron it which cempounds whicha are related in structure have similar or antagonistic properties. The use of the word isosterizm has clearly outgrowns its original meanumg when used in medicinal chexuistry and a loose dexible definition could be adopted such as: "Bionsosteres are groups or molecules which have chemical and physical similarities producing broadly similar biological prow pertics".
The term not-classical isosterism is also used interchangenbly with bioisosterism, particulandy in connection with isosteres which do not have the same number of atoms but do produce a similarity in some key parancter of importance in

1H. G. Grimum, Z. Eledrochicm, 1925, 31, 474: 1928, 34, 430, 1934, 47, 53, 594.
H. L. Friedim ana "Halinetuce of lsostarien Replacements upon Liological Activity", National
 D.C, 1951, P. 295.

Lsosterism and Makculiar Modification in Drug Design
that series. For examplest the two β-adrenergic stimulants compounds (1) and (2) have simitar activity.

(${ }^{1)} \mathrm{pK}=9.6$

(2) PK 9.1

The concept of bioisosterism has been described in review by Burger, ${ }^{\text {sin }}$ Schatz," Foye," Xorolkovas, Ariens, ${ }^{\text {² }}$ and Mansch." This present review collates and exteads the carlier observations with more recent reports from the Jitereture and suqzests nsw techniques for exploiting the concept.
The 'classical' isosteres as defined by Burgens and Korolkovas' ame given in Table 1.

Table 1

1) Univalent ctoms and groups

OH	NH_{2}	Mc
SH	PEI	
1	nut	
Br	$\mathbf{P r}^{\mathbf{2}}$	

2) Bivalent erorss ard groups

$$
\begin{array}{llll}
0 & \mathrm{~s} & \mathrm{Se} & \mathrm{CH}_{2}
\end{array}
$$

3) Tervolent atoms and groups
$-\mathrm{N}=$
$-\mathrm{P}=$
4) Quadrivalens atoms

$-\mathrm{CH}=$
$-\mathrm{As}_{\mathrm{F}}=$

5) Ring equivalentry
$-\mathrm{CH}=\mathrm{CH}-\mathrm{S}$ e.g. benzene: thiophen $=\mathrm{C} \quad=\mathrm{N} \quad$ eg benzene: pyridise
*A. A. Lasson and P. M. Lish. Nature, 1964, 203, I283
 1976. York, 1960,
W. O. Foym "Principite of Meslicimal Chemintry", Iey and Febiger, Phikdelphin, 1970. A. Korokorms, "Esaeatials of Molecular Phamatolosy: Background for Drug Design", Wiky 1970.

- C. Harsch, Murs-Widence Chem, Rep. 1974, 2, 17.

564

2 Bioisosterispu in Molecutar Modification

In the process of developing a lead compound, an antagonist to a known agonist, or an anti-metaboite from a known substrate, a large number of systernatic molecular modifications will be made. The modern concept of bioisosterism can be an aid to the desiga of such modifications. In making a bioisosteric replacement the following parameters of the group being changed could be considered:
(a) Size.
(b) Shape (bond angles, hytridization).
(c) Electronic distribution (polarizability, inductive effects, charge, dipoles).
(d) Lipid solubility.
(e) Water solability.
(f) pK.
(g) Chemical reactivity (incfuding likelihood of metabolism).
(j) Mydrogen bonding capacity.

It is unlikely that any bioisosteric replacernent will leave all these parameters undisturbed. The extent to which the ntplacement is useful will depend upon which of these parameters is important and which ones the bioisostere can best minaic.

The element of a molecule being modified may have one or more of the following roles.
(i) Structural. If the moiety has a structural role in holding other functionalities in a particular geometry, paramelers such as size and bond angle will be important. The moiery may be buried deep in the molecule and have little contact with the external medium.
(ii) Receptor interactions. If the moiety to be replaced is concersed with a specific interaction with a receptor or enzyme its sfze, shape, electronic properties, $\mathrm{p} K_{n}$ chemical reactivity, and hydrogen bonding will be the important parameters.
(iii) Pharmacokinetics. The moicty to be replaced may be secessary for the absorption, transport, and excretion of the compound. In this case lipophilicity, hydrophilicily, hydrogen bonding, and $\mathrm{p} K_{\mathrm{h}}$ are likely to be important.
(iv) Metatolisns. The moicty may be involved in blocking or aiding metabolism. In this case chemical reactivity will be an important parameter. For example chloro and methyl substituents on a benzene ring may be interchangeable for certain purposes but the toluene derivative can be metabolized to a benzoic acid and may therffore have a shorter half-ijfe or unexpected side effects.
Usually one will not know which role(3) the varions parts of the molecule play(s) in its action and this deterinination will be part of the structure-activity study. However, from the simple considerations listed above it is clear that:-
(A) A given molecular modification nmay allow soxxe, but prohably not all of the parameters (a)-(h) to be lept the sampe.
(B) Whether the same or a different biological activity results from the replacement will be gaverned by the rokeds) which that movety fulfits in the mokeuk and whether paranncters affecting that role have been distentied.
(C) Frona (A) and (B) it follows that what proves to be a good hioiostaric replaccement in one series of compounds will not necessarity be useful in another.
Corupleteiy identical pwoperties are rarely sought and will in any case be diffkuth if not impessible to achisven. What we are more likely to be setking is is subtlie change in the molecule which will leave some propertics tho samee and some different in order to improve potency, selectivity, absorption, duration, and texicity. Hiotsosteric replacements allow molecular noofifications, in which the number of variables changed are himined, Ariens ${ }^{2}$ and Korolkovas ${ }^{2}$ bave trice to introduce the idea of partial biozosteric groups as those which turn an agonist into an antagonist. Although their lists of groups may be sugestive to the drug designer, the iden is probably incorcect because of the stateanent (C) above. An "antagonist' group in one molecula will oniy ammagonize a similar 'agonist' group in another wolecale if the agonist groups in both series are performing the same function. If an tsosteris rephacment resuhs in a molecule which has sonne propertiex simalar to the parent mokecule but some important property has changed, it may be possible to compensate for this undecirable change by modifcations elsewhare ta the molecule- For example a molecular modification may rectuce the lipid solubility of the molecale thereby affecting its absorption, transport, and apparent porcncy, Optirnum activity may beregained by inserting lipophilic groups into the mojecribe at some sterically undemanding sitite. Consequently the best compound in this paralel series of isosteres, such as for example furams and thiophens, are likely to have different substituext patterns,

3 The Mathematical Formulation
The anguments used above can be expressed in the mathematical forma used by Hanschs" for the case whexe a sixnple substituent is being varied, for example on a becruene ring. If the potexcy of a dros is a funcion of several parameters of the substituent then:

$$
\log \frac{1}{e}=A(\pi)+B(a)+C(E)
$$

where Hanscli's π value is used for the lipophilic character, Hammett's o value for the electronic property, Taft's steric parameter to denote the size of the group and c is the concentration of dugg required to achieve a given effect.

If such a relationship were found for a drus serien in which the constauts B and C were zero then the polency would be a function of π only. In this context groups would be bioisosteric it they have sumilar π valbes independent of their "C. Hansech, Accounts Chem. Rex. 1969, 2, 272.

c. W. Thember

0 and E_{0} vahucs. If however the three constants A, B, and Co are all significant a much more linnited range of cupivalent groups will be avainble
If a series of compocuxlis has more than one property, as is usual, theo more than one equation will be meoded to describe the effects of changing the suby stisuenti

$$
\begin{aligned}
& \log \frac{1}{c}=A(x)+A(0)+C\left(x_{0}\right) \\
& \text { Desinot activity } \\
& \log \frac{1}{c}=D(F)+E(0)+F(E) \\
& \text { side efficts. }
\end{aligned}
$$

Clearly if $A=D_{4} B=E_{s}$ and $C=F$, ,efc, no selectivity can be found within
 ant and m and a may bo optimized while redacing the walue of E_{n}, thereby reducing the side effects. This phenomenon of increasing selectivity by bioisosteric replacement relles opon the fact that sone desixabie properties in the molecule can be retained whea unimportant paramecters cax bo varied Ao unimporitant parameter for the liological acivity desired macy be a key pararuster in the sixde effect.
Thus bionosteric replacturents aro useful in scarching for potency, seletivity, absoxption, and daration. Followng the Hansch treatment one could produce a modern definition of bioisorterism based upon measorable paraminters such as
 "isolipophilie" for groups with the same z walue.

Table 2 shows some functional groups with sinnilar ellectron-withdrawing propertics. Ir dectroniceffects atowe infuence the biological activity it a seriss of trugs then these groups would be expivalent, If, however, the lipophisiticity and steric factors aro importand then absolute identity cannot be achieved.

Thalle 2

Frumetiomal Group	$\mathrm{orm}_{\text {m }}$	π	E
F	0.34	0.14	0.78
cl	0.37	0.71	9.21
Br	0.39	0.86	0.08
1	0.35	1.12	-0.16
CH	0.43	0.88	-1.16
SCFF	0.40	1.44	
COMe	0.31	-0.55	
CHO	0.36	-0.65	
COnMo	0.32	-0.01	
$\mathrm{CHzeCXH}-\mathrm{NO}_{3}$	0.32	0.11	

Inasterisu and Mokeculor Monification in Drug Design

Extensive tables of σ, x, and E. vahes arc now available ${ }^{11}$ These can be used to gain a more quantitative idea of some aspects of isosterism using the better known functional groups.

4 Chemical Resctivity
Biological eflects are gencrally produced by 'weak' interactions between the drug and the receptor but covalent booding does occasionally play a part, A serits of aspinim isoskeses (3) was reported in 1975, ${ }^{\text {12 }}$ The nitrogen, sulphur, and carbon

(J) $X=0, \mathrm{NH}$ S_{s} or CH_{2}

Ssosteres were all totally inactive despite the classical purity of the replacements tried. Now that it is known that aspirin is an acestylating ageat for prostaglandin syothetase this result is more readily understocin, whe agents are widely difter ont in their ability to ast as acylating agents unkess ofber stubstantial noodifica. tions are made in the molectiles.

5 Nonclassical lsosteres: Some Further Points
In considering bioisosterism in its widest sense it should be noted that similar effects in two furctional groups need not imply atom upon atorn overtap. Edurardsh bas pointed out that in common enayme or receptor interaction in yolyes hydrogen bonding to a earbonyl group. Strong hydrogen boads may be formed to the carbonyl oxygen by hydrogen atoms within a conc having an angle of about 60° at its apex. Two molecales RXH and RAXH, where A is an additional atom, may be able to bind to the active site withont identical positioning of the X or H . In addition the condermational mobility in both the drug and the receptor mokecule will allow essentially similar binding of two drigs without the need to consider that the binding groups on the druss are positioned in space int an identical manner.

Examples of Non-classical lsosteres.--The list shown in Table 3 is drawn from carlicr reviews ${ }^{\text {b- }}$ and from the examples given in Table 4 at the end of this
${ }^{21}$ Tables of substituent constanas cam be found in the following paperan C Hansets, Sin O.

$=\mathrm{G}$. J. Roth, N. Stinford, and P. W. Majenus, Hrot. Not. Acad, Sct, EV.S.A., 1975, 73, 3073.

C. W. Thornher

review, In addition a Few proposals ${ }^{25-17}$ which have not yet been realized in medicinal chemical work are included.

Table 3

Hydraxy-group

OH	NHCOR	$\mathrm{NHSO}_{2} \mathrm{R}$	$\mathrm{CH}_{2} \mathrm{OH}$	NHCONH_{2}
			$\mathrm{CH}(\mathrm{CN})_{1}$	
			ref. 16	

Carechol

Halogen
Halogen CF $\quad \mathrm{CN} \quad \mathrm{N}(\mathrm{CN})_{2} \quad \mathrm{C}(\mathrm{CN})_{7} \quad$ ref. 16,17
it K. Wallenfels, K. Friedrich, J. Rieser, W. Entel, and H. K. Thieme, Angew, Chemn Inrernat. Edh., 1976, 15, 261.
is H. von Kohler, B. Eichler, and R. Salewshi, Z. anorg. Chem., 1970, 379, 183, ako inchudas other possibilibes in the sewphar and piosphorus and nitro acid serics
${ }^{27}$ K. von Wallenfels, Chimia, 1966, 20, 303.

Inaxterim and Molecular Modification in Drug Dexign
Table 3 consinured
Thiouther

ref. 16 .
Thinureat

Pyrikine

Spares gropps

$$
-\left(\mathrm{CH}_{2}\right)_{2}-
$$

In udilition ring-openad forms of mollocules may be considered to be isosterice with the corresponding ring elosed forms although the conformation of the seco form will be unolike the parent molecult. However, if in ciag opening am atoro if removed a corformation simitar to the parent molkeule may bo possible.

6 Substructure Searching ani Biolsosterisuo

Alhough the classical Eansech approach is used hargely for ophimization within a series, molexular modifications based on bioisosterism principles can geaerato new series or even deveiop new leads if an agonist is used as tha starting point for the design of an antagonist. One aid to this process is the use of a compround collection and computer techniques for doing substructure searches, e.g- the

Cw. W. Thornber
Crossbow suite of programmes ${ }^{18}$ For example suppose that randoxa screening has turned up the lead (4). One may consider bioisoctaric replaccunents for the ring, the oxyges, the polymethylene chain, or the amidic moicty, and design a subutructure search for compounds of type (5). A vasp number of permutations are possible and from these compounds may be available for tests which result in new leads which have propectica worth exploiting, suck as perhaps (0).

(4)

(5) $\mathrm{X}=\mathrm{CH}=\mathrm{CH}, \mathrm{CH}=\mathrm{N}, \mathrm{S}, \mathrm{O}$, or NR $\gamma_{m} \mathrm{O}, \mathrm{S}_{4} \mathrm{SO}_{4} \mathrm{SO}_{m} \mathrm{Se}, \mathrm{MCN}$ or NCOR $n=2,3$ or 4
R wif or alkyl,including forming a aing $\mathrm{Z}=\mathrm{COR}, \mathrm{CO} R, \mathrm{SOR}, \mathrm{SO}, \mathrm{R}$, or $\mathrm{CO} / 4 \mathrm{HR}$
A $=\mathrm{B}=\mathrm{def}$ inned substituents

Examples.-The literature of medifinal chemistry is rich in exampites of the use of the concept of bioisosterism and the reader is referred to the revietus meationedfi* and the relerences quoted therein for examples reported before 1970. There follows in brict discussion of biovisonteras of sometindole-amines which has some nsefoul lessons, and Teble 4 lists examples culled from the literature sines 1970. Onty the structures are given in this Table as an illustration of the kinds of change which have been useflul. The reader is referned to the original papers for the foll details of biological activity and selectivity. The list is not compreherasive but tepresents some uses of more novel non-classical types. Rudinger ${ }^{23}$ has reviewed isosteric replacements in the field of peptide chemistry up to 1971 and some further discussions ${ }^{\text {Le }}$ have been poubdished recently.

Todole-animes--Cumpaigncan bas stodked and revierred the work on bioisosteres of 5-hydroxytryptamine (7) and one or two details of the work are instroctive. Whereas (8) was inactive as an agenist or anlagonist on therat uterus preparation, the corresponding tryplophan analogum (9) had weak activity as an enzyme inhibitor for 5 -hydroxytryptanize decarboxylase. ${ }^{2 n}$ This type biof biostere

 J. Mrd. Chem, 1975, 10, 29, 33.

Lsorverism und Molecular Modificotiom in Drisg Design

(7) $R=H$ (3-mydroxytryptamine) $(10) R=\mathrm{CO}_{8} \mathrm{H}$ (3-hydroxytryptopian)

(b) $R=H$ (9) $R=C O_{2} R$
loses all afinity for the s-hydroxytryptamion (S-HT) reecptor but retains it in part for ane eroyme system. Similarly, in the series of compounds 5-HT, (11), (12), and (13) activity bas beea measured against the rat findic strip preparation and on the enzyme caeruloplasmin. ${ }^{23}$ Whereas 5-HT is a substrate for the exzyme, compousd (11) intibated cacruloplasmin's oxidation of S-rTT and noradrenatine.

Rat ${ }^{\text {Fumult }}$ Strip				
NH_{3}		X	Intriswic ackivity	MD2
	Stir	NHE	1	7.6
	(11)	CH:	0.96	5.6
	(I2)	0	0.84	4.6
	(13)	\$	1.08	6.1

Compound (12) inhibiss only S-AT oxidation and compound (13) was hactive as a substrate or an antagonist. This would appear to demonstrato that for the enzyme systera the imino grouping at the 1 -position of the ring is essential.
On the rat fundic strip, howewer, all the analogues hiave full agonist activity though with reduced poteney, demonstrating that the 5 -frr ribeptor has a greater tolerance for loss of the inino nitrogen. These simple experiments demon: strate the role of bioisosteric replacements in exploring sefectivity between different receptors and enzymes.

[^10]
C. W. Thanker

Dihy witury

Whramine $\mathrm{H}-2$ antogomist

$X=\mathrm{NCN}$ or CHNO_{2} ref, 29

U H. Hagueht, Mol. Pharmacole, 1977, 13, 362

$23,2609$.
 $1977,30,649$.

Isostertisn and Molecular Modifination in Druy Design

Table 4 contimued

Neurroleptics

$x=\begin{aligned} & \mathrm{O} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \text { or } \mathrm{CH}-\mathrm{CN} \text { tef } 30\end{aligned}$
Anthelonimuicer

ref. 3

$\mathrm{X}=\mathrm{Si}$ or Se ral 32
A-Adrenergek biockers

${ }^{34}$ Pochinger, Sotin C. E., U.S.P. 4085 216.

P. Kulse B. O. Limp A. Lusi, E. Mulzerer, D. Milkowski, H. Mrozik, L, E Olen, H.
 Osteind, J. Med Chera, 1978, 21, 235

 Warden, J. Med Chick, 1977, 215, 1263

C. W. Tharwber

P-Adicenergit shimulanhs

$R=$ Me, $X=O M$ Adrtnaline
$\mathrm{R}=\mathrm{Bu}, \mathrm{X}=\mathrm{CH}_{z} \mathrm{OH}$
Salbutamol net. 34
$\mathrm{K} \Rightarrow \mathrm{Bu}^{2} \mathrm{X}=\mathrm{NH} \mathrm{CONH}$.
Carbuterol rel. 35
$\mathrm{R}=\mathrm{Pr}^{\mathrm{k}} . \mathrm{X}=\mathrm{NHSO} \mathrm{M}_{2} \mathrm{Me}$
Soterenol nef 36

ref. 38

ref. 39

Clembuterol ref. 37

rec. 39

 1970, 13, 674.

3WA. A. Lanscn, W, A. Govid, P, R. Roth, W.T. Cotner, A. H. Uloth, K. W. Dungath, nad P. M. Lish. J. Muit Csum, 1967. 1 , 462.

*H. W. R. Witianas, Camod, J. Chom, 1976, 54, 3371

Mosterisom and Molecular Modification in Drag Design

Table 4 confinuced

Vastobilitars

$$
\begin{aligned}
& \begin{array}{lll}
X=0, & Y=C O & \text { net. 42 } \\
X=x & Y=C O & \operatorname{ref} .43
\end{array}
\end{aligned}
$$

$\mathrm{X}=\mathrm{CO}_{3} \mathrm{Me} \quad$ ref. 44
$\mathrm{X}=\mathrm{SO}_{3} \mathrm{Me} \quad$ ref. 45
Androgens

${ }^{41}$ SmithKZint Corp. U.S.S. 4 417 12R.
4) E. M. Varghan Winiama and P. Folster, Europear J. Pharmacol., 1974, 25, 241; Unilsed

 -1 Fawhier, wow h. Charlier, Chim. Ther, 1972, 7, 37

ts Cu-Geigy B, P. 1464 324.
$\$ 76$
Ani-rafiamonatory

$\mathrm{X}=\mathrm{CO}_{2} \mathrm{H}$ or $-\frac{\mathrm{N}}{\mathrm{N}} \mathrm{N}$ ref, 49

$\operatorname{ref} 47$
$\mathrm{X}=\mathrm{CO}_{4} \mathrm{H} \quad$ refin 4
Orsithine decarbaxylase mhathitor

Gubergic agemts

P. F. Huty and T. W. Hudyma, I, Med Chem, 1369, 12, 306.

 Ruskey, O. W. Nuss, and C. A. Winter, I, Aperr. Chem, Soc., 1963, 85, 488.
"D. I. Drain, B. Davy, M. Hortiagion, J. G. B. Howct, I. M. Servion, and R. A. Sodway, I.
Tharms. Phormemeol, 197, 23, 857. .
 $1928,21,50$

 ${ }^{*}$ D. F. Cwitia nad D. C. Warkins, Noture, 1961, 191, 1010.

Leosterism and Molecrlar Moclificorlona in Drug Dexign

Table 4 continured
Prostaglandily ring sppiara

ref. 54

ref. 36

1tif. 60

$3 \times 1 / 54$

terf 57

2cir. 35

T2E 58

ref. 60

ref. 61

Chem, 1977, $20,1299.10$

J. Mred Chem., 1977, 2e, 44, 14 , A. Kumh,

578

ref 62

rett 66

rec. 69

ef. 70

ref. 72
 3. de Konnimg, and H. O. Huismat, Trerahedron Letrery, 1975, 4599; G. Bollinger and 1. M. Mumemowsd, Teitrahnafrow Lentery, 1975, 2931.

Cham, 1977, 29, 1292
M Merct, U.S.P, 4087433.

$*$ Beechaus, Belsian P. 861957 .
*P Mikes, USSP $4: 27612$

* Y, Vhates and L. Delfaverchix, Tevohechron Lervery, 1974, 4459.

${ }^{2}$ Tamabe Seijaku, G.Pu, 2229 225; R. M. Hawser and R, C. Huffinm, Tctrahedron Letterx.

Sorferimn and" Moleculor Macificotion in Drut Design

Takt 4 continqud
Prostaglandian ring system (conrinued)

 2t E. . du Pont de Nemours, B.P., 1428431.
wA. P. Beoder, S. Med. Chem 1975, 12, 1099: Lerrare, 1974, 2729

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Request for Supplemental)
Examination of:
U.S. Patent No. 6,346,532

Inventors: Tatsuya MARUYAMA et al.
Issued: February 12, 2002
For: AMIDE DERIVATIVES OR SALTS THEREOF

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450
Commissioner:

DECLARATION UNDER 37 C.F.R. § 1.132

I, Tetsuo Matsui, do hereby make the following declaration:

1. I am one of the co-inventors of the subject matter described and claimed in U.S. Patent No. 6,346,532 ("the '532 patent").

A. Personal and Professional Background

2. I am a current employee of Astellas. I have been employed with Astellas and its predecessor company, Yamanouchi Pharmaceutical Co., Ltd. ("Yamanouchi"), for 20 years. During that period, my job titles have included Senior Research Fellow, and my responsibilities have included Theme Leader of Adrenergic beta-3 agonist for Type 2 diabetes (1993-2000), Sub-group Leader (2000-2002), Group Leader (20032005), and Research Manager (2005-2012) of the Metabolic Diseases Group or Diabetic Complications Group in the Pharmacology Research Laboratories. My current
job title is Senior Manager, and my current responsibilities include being in charge of Translational Science in the Research Management Group.
3. My educational background and my work experiences prior to Astellas include a Ph.D. from the Pharmacology Department of Toyama Medical \& Pharmaceutical University (1990) and a position of Researcher of Aldose reductase inhibitors for diabetic complications at Sapporo Breweries LTD. (1990-1993). I am also a Japanese Pharmacological Society councilor (1992-).
4. I am one of the inventors of the ' 532 patent and am familiar with the work that led to the inventions claimed by the '532 patent.

B. Materials Reviewed and Considered

5. In connection with my work on this matter, I have reviewed and considered the following items of information:
6. U.S. Patent No. 6,346,532;
7. Table of testing data for compounds including those disclosed in Examples 1113 of U.S. Patent No. 6,346,532 ("Testing Data Table");
8. Materials for Astellas R\&D Meeting. Subcommittee on Development Theme Establishment, titled "YM178/Discontinuation of Development Theme for Diabetes Mellitus," dated October 27, 2003 ("R\&D Meeting Materials");
9. YM178 in Type 2 Diabetes Mellitus 178-CL003 Study Report ("Study Report");
10. Yamanouchi BAN Compound Evaluation System ("R\&D Flowchart");
11. Yamanouchi Monthly Research Progress Report, dated April 16, 1995 ("Monthly Progress Report");

C. The Testing Data Table for the Compounds Disclosed in Examples 1113 of the '532 Patent

6. I have reviewed the Testing Data Table, and by reviewing the original laboratory notebooks and other internal documents, I am satisfied the information
provided in the Table is accurate for the compounds disclosed in Examples 1-113 of the '532 patent. Column 1 of the Testing Data Table provides the internal Yamanouchi code (BAN) number for each of the compounds. Column 2 provides the example number from the '532 patent. Column 3 provides the chemical structure of the compound. Columns 4-6 provide the β-adrenergic receptor data for each compound as pD_{2} values and $\mathrm{IA} \%$ ("Intrinsic Activity" as compared to isoproterenol - numbers in parentheticals) using the CHO screening test. Column 7 provides ED_{30} data for several of the compounds based on hypoglycemic studies in KK mice. Column 8 provides β_{3} adrenergic receptor data determined using the SK-N-MC screening test. Column 9 provides the test report dates for these data in columns 4-8.
D. Efficacy of the Claimed Compounds to Treat Diabetes Mellitus
7. As is shown in the Testing Data Table, I and my co-inventors conducted a series of in vitro and in vivo studies before October 15, 1998, the date on which the PCT application leading to the issuance of the '532 patent was filed. From the results of these preliminary studies, we believed mirabegron (BAN-371, compound number 5) showed promise as an anti-diabetic medicine, and based upon the available information, the FDA approved commencement of Phase I clinical trials to determine appropriate dosages of mirabegron for Phase II clinical trials to assess efficacy for treating diabetes mellitus. (See Testing Data Table, Compound BAN 371, Cols. 4-9.)
8. Based on the results of the ensuing limited Phase lla clinical trials, performed after the '532 patent issued, it was decided internally within Yamanouchi that mirabegron did not demonstrate sufficient efficacy for the treatment of diabetes mellitus to be a commercially competitive drug, and so we decided not to pursue diabetes
mellitus as an indicated use. (See, e.g., R\&D Meeting Materials at p. 13 ("The results of the phase lla study of [mirabegron] administered at a dose of 200 mg in the fed state could not confirm the efficacy of [mirabegron] in terms of the primary end points $\left(\mathrm{HbA}_{1 \mathrm{c}}\right.$ and fasting blood glucose level)").)
9. Despite our decision to discontinue the development of mirabegron for the treatment of diabetes mellitus, we conducted a detailed analysis of the results of the Phase Ila clinical study prior to the discontinuance of the project, which revealed that mirabegron did have some efficacy in certain patient subgroups. For example, the Study Report states:

Some efficacy was found only when HbA1c at baseline was above 7\% (data from central laboratory; local data $7-8 \%$); responses of HbA1c and FPG to [mirabegron] were mainly found for female patients.

* * *

Changes in HbA1c were mainly detected in young patients; in elderly no difference between [mirabegron] and placebo could be found, even when baseline HbA1c was taken into account.
(Study Report at p. 11 (slides 21-22).)

E. Comparison of $\boldsymbol{\beta}_{3}$-Activity to $\boldsymbol{\beta}_{1}$ and $\boldsymbol{\beta}_{\mathbf{2}}$-Activities

10. As can be seen in the Testing Data Table, cols. 4-6, the compounds of Examples 1-113 of the '532 patent were tested using the $\mathrm{CHO} \beta_{1}, \beta_{2}$, and β_{3}-receptor stimulation screening tests. Although all of the compounds tested showed some level of β_{3}-receptor agonist activity, depending on whether the $\mathrm{IA} \%$ or pD_{2} test results are used, a number of the claimed compounds exhibited β_{3}-receptor agonist activities that were not as high as the corresponding β_{1} - or β_{2}-receptor agonist activities. (See Testing Data Table, Cols. 4-6; see also table below.) For example, although the compound of Example 1, designated BAN 404, showed β_{3}-receptor agonist activity greater than β_{1-}
receptor agonist activity in both the $\mathrm{I} \%$ and pD_{2} tests, it showed β_{3}-receptor agonist activity less than β_{2}-receptor agonist activity. (See id., Compound BAN 404.)

F. Yamanouchi's Internal $\boldsymbol{\beta}_{3}$-receptor Screening Criteria

11. As of time the ' 096 application was filed, and up to the time the ' 532 patent issued, we utilized certain internal screening criteria to determine whether a compound has sufficient β_{3}-receptor agonist activity and selectivity to warrant further evaluation for potential eventual submission as an anti-diabetic drug. As the R\&D Flowchart shows, in general, before a candidate compound qualified for further evaluation, our initial internal screen stated that a candidate compound should have an IA test result for β_{3}-receptor agonism of greater than 0.6 (or 60%) and a pD_{2} value for the β_{3}-receptor of greater than 6.5 , while at the same time having IA test results for β_{1} - and β_{2}-receptor agonism of less than 0.2 (or 20\%). (See R\&D Flowchart.)
12. The following data, excerpted from the Testing Data Table, provide examples of the claimed compounds that did not meet our initial β_{3}-receptor selectivity and/or activity criteria set forth in the R\&D Flowchart:

Chart \#	BAN \#	Example \#	Compound Covered By Claims	$\begin{aligned} & \text { IA \% } \beta 3 \\ & \text { IA } \% ~ \beta 2 \\ & \text { IA } \% \text { B1 } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{pD}_{2} \beta 3 \\ & \mathrm{pD}_{2} \beta 2 \\ & \mathrm{pD}_{2} \beta 1 \end{aligned}$
13	377	110	1,2,7,8,9,10,13,14	58.1	5.23
				22.7 2.7	5.65
19	390	105	1,2,7,8,9,10,13,14	24	6.3
				28	5.9
				17	5.3
21	395	88	1,2,7,8,9,10,13,14	18	5.9
				50	4.2
				20	<4.0
22	396	3	1,2,7,8,9,10,13,14	18	5.9
				27	4.2
				2	<4.0

Chart \#	BAN \#	Example \#	Compound Covered By Claims	$\begin{aligned} & \text { IA\% } \beta 3 \\ & \text { IA } \% ~ \beta 2 \end{aligned}$ $\mathrm{IA} \% \text { ß1 }$	$\begin{aligned} & \mathbf{p D}_{2} \beta 3 \\ & \mathbf{p D}_{2} \beta 2 \end{aligned}$ $\mathrm{pD}_{2} \beta 1$
23	398	96	1,2,7,8,9,10,13,14	$\begin{gathered} 27 \\ 17 \\ 9 \end{gathered}$	$\begin{aligned} & 5.6 \\ & 5.9 \\ & <4 \end{aligned}$
29	404	1	1,2,6,7,8,9,10,12,13,14	$\begin{gathered} 10 \\ 25 \\ 0 \end{gathered}$	$\begin{aligned} & 5.1 \\ & 5.4 \\ & <4 \end{aligned}$
30	405	2	1,2,7,8,9,10,13,14	$\begin{gathered} 11 \\ 18 \\ 0 \end{gathered}$	$\begin{aligned} & 6.0 \\ & 5.8 \\ & <4 \end{aligned}$
32	407	11	1,2,3,4,7,8,9,10,13,14	$\begin{gathered} 40 \\ 37 \\ 3 \end{gathered}$	$\begin{aligned} & \hline 6.4 \\ & 6.4 \\ & <4 \end{aligned}$
35	410	111	1,2,7,8,9,10,13,14	$\begin{aligned} & 32 \\ & 53 \\ & 14 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.6 \\ & 5.5 \\ & 5.6 \end{aligned}$
36	411	101	1,2,7,8,9,10,13,14	$\begin{aligned} & \hline 37 \\ & 50 \\ & 19 \end{aligned}$	$\begin{aligned} & 6.2 \\ & 5.4 \\ & 4.6 \end{aligned}$
39	414	112	1,2,7,8,9,10,13,14	$\begin{aligned} & 55 \\ & 89 \\ & 25 \end{aligned}$	$\begin{aligned} & 6.9 \\ & 6.6 \\ & 5.6 \end{aligned}$
49	435	36	1,2,3,4,7,8,9,10,13,14	$\begin{gathered} 14 \\ 27 \\ 5 \end{gathered}$	$\begin{aligned} & 6.2 \\ & 5.3 \\ & <4 \end{aligned}$
50	440	37	1,2,3,4,7,8,9,10,13,14	$\begin{gathered} 27 \\ 19 \\ 6 \end{gathered}$	$\begin{aligned} & <5.0 \\ & 5.4 \\ & <4 \end{aligned}$
53	447	8	1,2,7,8,9,10,13,14	$\begin{array}{r} 41 \\ 35 \\ 23 \\ \hline \end{array}$	$\begin{aligned} & 6.3 \\ & 5.2 \\ & 6.6 \\ & \hline \end{aligned}$
55	455	18	1,2,7,8,9,10,13,14	$\begin{aligned} & 49 \\ & 31 \\ & 69 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.8 \\ & 5.9 \\ & 4.4 \\ & \hline \end{aligned}$
61	478	113	1,2,7,8,9,10,13,14	$\begin{aligned} & 52 \\ & 49 \\ & 14 \end{aligned}$	$\begin{aligned} & 5.8 \\ & 6.4 \\ & 49 \end{aligned}$
109	548	15	1,2,3,4,5,7,8,9,10,11,13,14	$\begin{aligned} & 68 \\ & 36 \\ & 74 \end{aligned}$	$\begin{aligned} & 7.1 \\ & 5.4 \\ & 5.1 \\ & \hline \end{aligned}$

13. Thus, there are 17 claimed compounds shown in the table above that did not satisfy our internal criteria for further development based on either the pD_{2} or $\mathrm{IA} \%$ values.

G. Measurement of $\boldsymbol{\beta}_{3}$-selectivity and the '532 Patent Disclosure

14. As discussed in the ' 532 patent, I and the other inventors determined the β_{3}-stimulating action of the compounds of the invention by comparing the effects of the claimed compounds on the β_{1}, β_{2}, and β_{3}-receptor subtypes using cells expressing human-type receptors. The '532 patent indicates that we utilized an SK-N-MC cell system comprising human neuroblastoma cells permanently expressing the human β_{1-} and β_{3}-receptor to assess β_{3} activity, and CHO cell systems comprising Chinese hamster ovary cells permanently expressing either the human β_{1} - or β_{2}-receptors to assess β_{1} and β_{2} activities. (See the '532 patent, col. 11, line 56 to col. 12, line 11.) Stimulating activities of the compounds were investigated by incubating the cells with compounds of the invention and measuring production of cAMP. The effect of each compound was assessed by calculating the pD_{2} value (the negative logarithmic value of the concentration at which half of the maximal response is induced by the compound) or the EC_{50} (the concentration at which half of the maximal response is induced by the compound), and intrinsic activity ($1 \mathrm{~A} \%$, where the maximum reaction of $10^{-6} \mathrm{M}$ isoproterenol, a non-selective β-agonist, is defined as 100%). (See ld.)
15. However, as can be seen from the information provided in column 9 of the Testing Data Table, none of the compounds of Examples 1-113 in the '532 patent was tested for β_{3}-stimulating action using the SK-N-MC cell system until after the October 15 , 1998, filing date of the international application that led to the '532 patent (i.e.,

PCT/JP98/04671). Instead, we assessed the β_{3}-selectivity of all of the compounds disclosed in examples 1-113 of the ' 532 patent, using the CHO cell system.
16. The CHO cell system used to assess the β_{3}-selectivity of the compounds disclosed in examples $1-113$ was essentially the same as the CHO cell system we used to access the β_{1} - and β_{2}-selectivity of those same compounds, except the CHO cells permanently expressed the human β_{3}-receptors only.
17. We did use the SK-N-MC cell system to evaluate other potential antidiabetic compounds that were synthesized before the compounds of Examples 1-113 of the ' 532 patent, and we did consider the SK-N-MC cell system competent as a basis for assessing the β_{3}-selectivity of those compounds. We made a switch to the CHO cell system because the gene for the single human β_{3}-receptor became available and could be used to construct a CHO assay, whereas the cells in the SK-N-MC cell system also contained a β_{1}-receptor and required the use of a β_{1}-receptor blocker to mask any β_{1} effects. ('532 patent, col. 11, line 67 to col. 12, line 2.)
18. Before switching exclusively to the $\mathrm{CHO} \beta_{3}$-test we compared the $\mathrm{CHO} \beta_{3^{-}}$ cell test to the SK-N-MC cell test and concluded that the test results we obtained had significant correlation with each other for assessing β_{3}-stimulating action. (See Monthly Progress Report, page 2.)
19. We obtained the gene for the β_{3}-receptor from a foreign patent office based upon a foreign patent filing, and did not refer to the $\beta_{3}-\mathrm{CHO}$ cell system assay in the patent application that became the ' 532 patent because we were concerned that using that gene in an experimental assay might be asserted to be an act of patent infringement in Japan.

I further declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true, and further, that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Dated: $2013 / 11 / 21$
By :

Bib Data Sheet

SERIAL NUMBER $96 / 000,045$	FILING OR 371(c) DATE $11 / 21 / 2013$ RULE	CLASS	GROUP ART UNIT	ATTORNEY DOCKETNO. 07385.0042

AIA (First Inventor to File): YES

INVENTORS

6346532, Residence Not Provided;
ASTELLAS PHARMA INC., TOKYO, JAPAN;
PATENT OWNER, NEW YORK, NY;

APPLICANTS

6346532, Residence Not Provided;
ASTELLAS PHARMA INC., TOKYO, JAPAN;
PATENT OWNER, NEW YORK, NY;
** CONTINUING DATA
This application is a SER of 09/529,096 04/07/2000 PAT 6346532
which is a 371 of PCT/JP98/04671 10/15/1998
** FOREIGN APPLICATIONS

TITLE
AMIDE DERIVATIVES OR SALTS THEREOF

FILING FEE FEES: Authority has been given in Paper RECEIVED No. \qquad to charge/credit DEPOSIT ACCOUNT

\square All Fees
1.16 Fees (Filing)
1.17 Fees (Processing Ext of
tirme)

0.00	No. _ for following:	$\square 1.18$ Fees (Issue)
		\square Other
		\square Credit

Patent Assignment Abstract of Title

United States Patent and Trademark Office
UNTTED STCATES DAPARTMENT OF COMMFRCE United States Patent and Trademark Office Adress: COMMIGBIONER FOR PATENTS

Alexanidria, Vire
ww.uspto goy
Patent Owner's Name and Address:
Fitzpatrick Cella Harper \& Scinto
1290 Avenue of the Americas
New York, NY 10104-3800
Patent Number: 6346532
Control Number: 96/000,045
Date Mailed: 01/24/2014

NOTICE OF SUPPLEMENTAL EXAMINATION REQUEST FILING DATE

The patent owner is hereby notified that the filing date of the request for supplemental examination is $11 / 21 / 2013$, the date that a request meeting all of the applicable requirements of 37 CFR $\S \S 1.605,1.610$, and 1.615 was received by the Office.

A supplemental examination certificate will issue within three months from the filing date of the request for supplemental examination. See 37 CFR 1.625.

This notice is being sent to the official correspondence address of record which, in a supplemental examination proceeding, is the official correspondence address of record in the patent file. See 37 CFR 1.33.
/RBELL/

Central Reexamination Unit
(571) 272-1549, FAX NO. (571)273-9900

United States Pateni and Trademark Office

INITED STATES DRPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS P.O. Box 14.50

Alexandria, Virginia 22313-1450
wwhe.uspto.gov

APPLICATION NO.	FLINO DATE	FIRST NAMED INVENTOR	AT'TORNEY DOCKE'T NO.	CONFIRMATION NO.
96/000,045	11/21/2013	6346532	07385.0042	3506
F. 7590 . 01/31/2014			EXAMINER	
1290 Avenue of the Americas New York, NY 10104-3800			HUAVG, EVELYN MEI	
			ART UNIT	PAPER NUMBER
			3991	
			Mail date	DELIVERY MODE
			01/31/2014	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.
The time period for reply, if any, is set in the attached communication.

Art Unit: 3991

REASONS FOR SUBSTANTIAL NEW QUESTION OF PATENTABILITY DETERMINATION

A supplemental examination request under 35 U.S.C. $\S 257$ for claims 1-14 of US 6,346,532 was filed on 11/21/2013 and assigned Control No. 96/000,045.

US 6,346,532 is issued from US Application No. 09/529,096, which is a 371 of PCT/JP98/04671 filed on 10/15/1998, claiming the foreign priority date of 10/17/1997.

Item(s) of Information

The request includes only 12 items of information:

1. U.S. Patent No. $6,346,532$ ("the ' 532 patent").
2. Table of testing data for compounds including those disclosed in Examples 1-113 of U.S. Patent No. 6,346,532 ("Testing Data Table").
3. Materials for Astellas R\&D Meeting. Subcommittee on Development Theme Establishment, titled "YM178/Discontinuation of Development Theme for Diabetes Mellitus," dated October 27, 2003 ("R\&D Meeting Materials").
4. YM178 in Type 2 Diabetes Mellitus 178-CL003 Study Report, dated September 11, 2003 ("Study Report").
5. Yamanouchi BAN Compound Evaluation System ("R\&D Flowchart") with English-language translation.
6. Yamanouchi Monthly Research Progress Report, dated April 26, 1995 ("Monthly Progress Report") with English-language translation.
7. Excerpts of the prosecution history of U.S. Patent Application No. 09/529,096, the U.S. National Stage of PCT/JP98/04671, filed October 15, 1998, that resulted in U.S. Patent No. 6,346,532 ("the Prosecution File History").
8. Japanese Patent Application Kokai Publication No. H10-218861, "Novel Phenethanol Derivative or Salt Thereof," published August 18, 1998, and certified English-language translation thereof ("JP '861").
9. Blin, N. et al., "Structural and Conformational Features Determining Selective Signal Transduction in the $\beta 3$-Adrenergic Receptor," Molecular Pharmacology, 44:1094-1104 (1993) ("Blin").
10. PCT Publication WO 94/18161, published 18 August 1994 ("WO '161").
11. Thornber, C.W., "Isosterism and Molecular Modification in Drug Design," Chem. Soc. Rev. 18:563-580 (1979) ("Thornber").
12. Declaration by Dr. Tetsuo Matsui under 37 C.F ${ }^{\circ}$ R. $\S 1.132$ ("Matsui Dec.").

Claims of US 6,346,532

There are 14 claims in the issued patent.
Claims 1-6 and 9 are drawn to a compound. Claims 7,8 and 10-12 are drawn to a composition. Claims 13-14 are drawn to a method for treating diabetes mellitus and obesity respectively. Claim 1 is the only independent claim.

1. A compound of formula (I):
*)

in the formula, each of the symbols means as follows:

Ring B is a heteroaryl group, which may be unsubstituted or substituted and is optionally fused with a benzene ring;
X is a bond, or a lower alkylene or an alkenylene, both of which may be unsubstituted or substituted with hydroxy or a lower alkyl group, or X is a carbonyl or a group represented by $-\mathrm{NH}-$, and when X is a lower alkylene group which is substituted with a lower alkyl group, a carbon atom of the ring B optionally bonds with the lower alkyl group so that a ring is formed;

A is a lower alkylene or a group represented by -lower alkylene-O-;
$R^{1 a}$ and $R^{l b}$ are the same or different and each may be a hydrogen atom or a lower alkyl group;
R^{2} is a hydrogen atom or a halogen atom;
Z is a group represented by $=\mathrm{CH}-$.

Items of Information NOT Raising a Substantial New Question of Patentability

1. The Testing Data Table (Item 2), the Matsui Dec. (Item 12), R \& D Meeting Materials (Item 3) and the Study Report (Item 4) as presented in the request (pages 7-9) do not raise a substantial new question of patentability affecting claims 1-14.

Patent Owner (pages 7-9) submits that a substantial new question of patentability as to claims 1-14 is raised by the Testing Data Table (Item 2) the Matsui Dec. (Item 12), R \& D Meeting Materials (Item 3) and the Study Report (Item 4), which show that no claimed compounds proved sufficiently efficacious to be considered commercially competitive for the treatment of diabetes mellitus, the principal utility disclosed in the specification.

The Testing Data Table shows the results of a series of in vitro and in vivo studies before October 15, 1998, the date on which the PCT application leading to the issuance of the '532 patent was filed. The results therein for mirabegron (Compound No. 5, BAN 371; Example 41) showed promise as an anti-diabetic medicine and was approved by the FDA for Phase I clinical trials to determine appropriate dosages for Phase II clinical trials to assess efficacy for treating diabetes mellitus (Matsui Dec. IT 7). The limited Phase IIa clinical trials were performed after the '532 patent issue date of $2 / 12 / 2002$. As the results of the clinical trials, which was not available until mid-2003, show that mirabegron did not demonstrate sufficient efficacy to be a commercially competitive drug for the treatment of diabetes mellitus, the then current assignee, Yamanouchi Pharmaceutical Co., Ltd. ("Yamanouchi") decided not to pursue diabetes mellitus as an indicated use (Matsui Dec. $[\mid 8$; R\&D Meeting Materials, page 13). A detailed analysis of the results of the Phase IIa clinical study, however, revealed that mirabegron did have some efficacy in certain patient subgroups (Matsui Dec. II 9; Study Report, page 11).

Since claims 1-6 and 9 are drawn to a compound of formula (I) or (Ia), claims 7-8 and 10-12 are directed to a composition thereof, and claim 14 is drawn to a method of treating
obesity, a reasonable examiner would not consider the above information of Items 2-4 and 12, particularly the 2003 results of the clinical trials for treating diabetes mellitus, important in deciding the patentability of the claims 1-12 and 14.

Claim 13 is drawn to a method of treating diabetes mellitus.
The information provided by Items 2-4 and 12 may have shown that mirabegron (the compound of Example 41) is not "sufficiently efficacious to be considered commercially competitive for the treatment of diabetes mellitus", but the claim or the specification does not recite the efficacy of the method or that the compound has to be "commercially competitive" for the treatment of diabetes mellitus. That Yamanouchi stopped pursuing diabetes mellitus as an indicated use for mirabegron because it is not "commercially competitive" for such treatment is not indicative or suggestive of no utility, as submitted by the Patent Owner. In fact, mirabegron was shown to have some efficacy in certain patient subgroups upon a more detailed analysis of the results of the Phase IIa clinical study (Matsui Dec. $\mathbb{\pi} 9$; Study Report at page 11). As such, a reasonable examiner would not consider the information provided by Items 2-4 and 12 important in deciding whether claim 13 is patentable.

Accordingly, Items 2-4 and 12 do not raise a substantial new question of patentability as to claims 1-14.
2. The Testing Data Table (Item 2), Matsui Dec. (Item 12), R \& D Meeting Materials (Item 3), R \& D Flow Chart (Item 5), Monthly Progress Report (Item 6) and Prosecution File History (Item 7) as presented in the request (pages 10-20) do not raise a substantial new question of patentability affecting claims 1-14.
a. Patent Owner (page 12) submits that a substantial new question of patentability as to claims 1-14 is raised by the Testing Data Table (Item 2) showing that not all of the claimed compounds of Examptes 1-106 and 108-113 have selective β_{3} receptor activity as taught by the '532 Patent, as discussed in the Matsui Dec, at II 10 (Item 12).

The Testing Data Table shows that a number of the claimed compounds, such as compound BAN 404 (the compound of instant Example 1), exhibit lower β_{3} receptor activity than β_{2} and β_{1} receptor activity (page 11; Matsui Dec. $\mathbb{\|} 10$).

However, claims 1-6 and 9 are drawn to a compound of formula (I) or (Ia); claims 7-8 and 10-12 are directed to a composition thereof; claims 13-14 are drawn to a method of treating diabetes mellitus and a method of treating obesity respectively. These claims do not require that the compounds have greater β_{3} receptor activity than β_{2} and β_{1} receptor activity. Even so, the Testing Data Table shows that most of the claimed compounds exhibit selective β_{3} receptor activity, consistent with the disclosure of the specification. As such, a reasonable examiner would not consider the information provided by Items 2 and 12 important in deciding whether claims 1-14 are patentable.
b. Patent Owner (pages 13-15) submits that a substantial new question of patentability as to claims 1-14 is raised by the Testing Data Table (Item 2) showing that not all of the claimed compounds of Examples 1-106 and 108-113 met Yamanouchi's internal criteria for further development described in the R \& D Flowchart (Item 5), as discussed in Matsui Dec. at \$T/ 11-13 (Item 12).

The R\&D Flowchart shows that for further evaluation, a candidate compound should have an IA test result for β_{3}-receptor agonism of greater than 0.6 (or 60%) and a pD_{2} value for the β_{3}-receptor of greater than 6.5 , while at the same time having IA test results for β_{1} and β_{2} receptor agonism of less than 0.2 (or 20%). The Testing Data Table shows that 17 of the claimed compounds do not meet Yamanouchi's β_{3} receptor selectivity and activity criteria (Matsui Dec. gITy 11-13).

However, Yamanouchi's internal criteria for further development is not suggested or described in the specification or the claims. Importantly, claims 1-6 and 9 are drawn to a compound of formula (I) or (Ia); claims 7-8 and 10-12 are directed to a composition thereof; claims 13-14 are drawn to a method of treating diabetes mellitus and a method of treating obesity respectively. These claims do not require specific β_{3} receptor selectivity or activity in accordance to Yamanouchi's internal criteria. Even so, the Testing Data Table shows that many of the
claimed compounds exhibit selective β_{3} receptor activity and meet Yamanouchi's internal criteria for further development. As such, a reasonable examiner would not consider the information provided by Items 2,5 and 12 important in deciding whether claims 1-14 are patentable.
c. Patent Owner (pages 15-17) submits that a substantial new question of patentability as to claims 1-14 is raised by the incorrect identification of the assay for determining the β_{3} selectivity, as shown by the Testing Data Table (Item 2), R \& D Meeting Materials (Item 3), the Monthly Progress Report (Item 6), and Matsui Dec. at ITI 15-18 (Item 12).

Patent Owner submits that the specification incorrectly describes the use of the SK-NMC cell system (col. 11 , line 56 to col. 12, line 11) instead of the CHO cell system for evaluating the β_{3} activity of the inventive compounds. The Testing Data Table shows that the SK-N-MC cell system was used only after the October 15, 1998 filing date of the international application that led to the '532 patent (Matsui Dec. 515). At the time of the invention, the CHO cell system was used to assess the β_{3} activity (R \& D Meeting Materials, page 3; Matsui Dec. g[y 15-17). The SK-$\mathrm{N}-\mathrm{MC}$ cell system was actually used to evaluate other potential anti-diabetic compounds synthesized before the inventive compounds. A switch was made to the CHO cell system because the gene for the single human β_{3} receptor became available and could be used to construct a CHO assay (Matsui Dec. $9[17$). Both the $\mathrm{SK}-\mathrm{N}-\mathrm{MC}$ cell system and the CHO cell system provide test results that have "significant correlation" with each other for assessing β_{3} receptor activity (Matsui Dec. $\|_{[18 ; ~ M o n t h l y ~ P r o g r e s s ~ R e p o r t, ~ p a g e ~ 2) . ~}^{\text {2 }}$

However, claims 1-6 and 9 are drawn to a compound of formula (I) or (Ia); claims 7-8 and 10-12 are directed to a composition thereof; claims 13-14 are drawn to a method of treating diabetes mellitus and a method of treating obesity respectively. These claims do not recite β_{3} receptor activity, or the particular cell system to be used for its assessment. As such, a reasonable examiner would not consider the information provided by Items 2, 3, 6 and 12 important in deciding whether claims 1-14 are patentable. This is especially so as the results with the use of the incorrectly identified SK-N-MC cell system correlates well with the results of the CHO cell system (Matsui Dec. $\mathbb{T} 18$; Monthly Progress Report, page 2).
d. Patent Owner (pages 17-20) submits that a substantial new question of patentability as to claims 1-14 is raised by the Testing Data Table (Item 2) showing that not all of the claimed compounds of Examples 1-106 and 108-113 have $E D_{30}$ values ten times greater than the compounds of WO 95/29159, as described in the specification and argued by the Patent Owner during prosecution (The Prosecution File History, Item 7).

The specification (col. 11, lines 21-31) states that some of the inventive compounds exhibited a strong activity so that the ED_{30} value in the oral administration was $3 \mathrm{mg} / \mathrm{kg} / \mathrm{day}$ or less, whereas the compound of Example 90 and Example 92 of WO $95 / 29159$ had an $E D_{30}$ value of $30 \mathrm{mg} / \mathrm{kg} / \mathrm{day}$. During prosecution, Patent Owner also argued that the inventive compounds have ED_{30} values ten times better than the prior art compounds (The Prosecution File History, 5/4/2001 amendment, page 12). The Testing Data Table shows that 21 claimed compounds of Examples 1-106 and 108-113 have ED_{30} values of $>10 \mathrm{mg} / \mathrm{kg} /$ day, others have ED_{30} values between 3 to $10 \mathrm{mg} / \mathrm{kg} /$ day. Compounds No. 1 (BAN-358; Example 86) and Compound No. 3 (BAN-369A; Example 99) have ED_{30} values of $3 \mathrm{mg} / \mathrm{kg} /$ day or less.

However, claims 1-6 and 9 are drawn to a compound of formula (I) or (Ia); claims 7-8 and 10-12 are directed to a composition thereof; claims 13-14 are drawn to a method of treating diabetes mellitus and a method of treating obesity respectively. These claims do not recite ED_{30} value of $3 \mathrm{mg} / \mathrm{kg} / \mathrm{day}$ or less. Even so, the Testing Data Table shows that "some" of the claimed compounds exhibit ED_{30} values of $3 \mathrm{mg} / \mathrm{kg} /$ day or less as stated in the specification. As such, a reasonable examiner would not consider the information provided by Items 2 , and 7 important in deciding whether claims 1-14 are patentable.

Accordingly, Items 2-3, 5-7 and 12 do not raise a substantial new question of patentability as to claims 1-14.

In summary, the above issues 1-2 set forth in the Request do not raise a substantial new question of patentability as to claims 1-14. These issues will not be considered in the reexamination proceeding based on this Supplemental Examination. The patentee is advised that
it may be desirable to consider filing a reissue application provided that the patentee believes one or more claims to be partially or wholly inoperative or invalid based upon these issues.

Items of Information Raising a Substantial New Question of Patentability

3. JP '861 (Item No. 8) as presented in the request (pages 20-21) raises a substantial new question of patentability affecting claims 1-5, 7-11, 13 and 14.

JP '861 (page 2) generically discloses a compound of the following formula (I):
(\%)

Specific compounds are described in Tables 7-9. Compound 11 in Table 9 has the following formula:

The compound of formula (I) is useful as a therapeutic agent for diabetes. It possesses selective stimulatory effects on β_{3} adrenergic receptor and thus has anti-obesity effects and antihyperlipidemia effects (page 14, [0019]).

As such, a reasonable examiner would consider these teachings of JP "861 important in deciding whether claims $1-5,7-11,13$ and 14 are patentable.

Art Unit: 3991
4. JP '861 in combination with Blin (Items No. 8-9) as presented in the request (pages 21-23) raises a substantial new question of patentability affecting claims 1-5, 7-11, 13 and 14.

JP '861 is as discussed above.
Blin studies the structural and conformational features determining selective signal transduction in the β_{3} adrenergic receptor. Analysis of the structural-activity relationships of a large variety of compounds would determine the structural features responsible for the β_{3} adrenergic receptor potency and selectivity of ligands (page 1097). Potent β_{3} adrenergic receptor agonists may have one of the following minimal pharmacophores (page 1102, Fig. 7):

A

H

$\Delta(A)=384 \pm 0.31$
$d(A)=2.40 \times 0.02$
$d 3(A)=2.55 \leq 0.03$

$d S(A)=4.31=0.12$

As such, a reasonable examiner would consider the teachings of JP '861 and Blin important in deciding whether claims $1-5,7-11,13$ and 14 are patentable.
5. WO ' 161 in combination with Blin, Thornber and JP ' 861 (Items No. 8-11) as presented in the request (pages 23-26) raises a substantial new question of patentability affecting claims 1-5, 7-11, 13 and 14 .

WO'161 (pages 3-4) generically discloses a compound of formula I

Specific compounds are described. The compound of Example 8 (page 32) has the following structure:

The compound of Example 135 (page 63, Table 3) has the following structure:

wherein R is phenyl.

The compounds of formula I are sclectivo β_{3} agonists useful for treatment of diabetes and obesity (page 1, Title; page 2, lines 23-26).

Thornber teaches that bioisosteres are groups or molecules which have chemical and physical similarities that impart similar biological properties to a chemical compound. They are often used in the pharmaceutical arts to modify a lead compound and obtain compounds with similar properties (pages 563 and 565). As shown in Table 3 (page 569), a carbonyl group (-CO-) may be replaced with the bioisosteric sulfoxide group $\left(-\mathrm{SO}_{2^{-}}\right)$.

JP '861 and Blin are as discussed above.

Art Unit: 3991
As such, a reasonable examiner would consider the combined teachings of WO ' 161 , Thornber, Blin and JP '861 important in deciding whether claims 1-5, 7-11, 13 and 14 are patentable.

In summary, the above issues 3-5 set forth in the Request raise a substantial new question of patentability as to claims 1-5, 7-11, 13 and 14 . Accordingly, ex parte reexamination will be ordered pursuant to 35 U.S.C. 257.
/Evelyn Huang/
Patent Reexamination Specialist
CRU Art Unit 3991

Conferees:
/Padmashri Ponnaluri/
Patent Reexamination Specialist
CRU Art Unit 3991
/Deborah D Jones/
Supervisory Patent Examiner, Art Unit 3991

United States Pateni and Trademark Office

INITED STATES DRP ARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS P.O. Box 14.50

Alexandria, Virginia 22313-1450
www.uspto.gov

Please find below and/or attached an Office communication concerning this application or proceeding.
The time period for reply, if any, is set in the attached communication.

(12) SUPPLEMENTAL EXAMINATION CERTIFICATE

United States Patent
 Maruyama et al.

(10) Number: US 6,346,532 F1
(45) Certificate Issued:

Jan. 31, 2014
Control No.: 96/000,045
Filing Date: Nov. 21, 2013

Primary Examiner: Evelyn Huang

Abstract

A substantial new question of patentability affecting at least one claim of the patent is raised in the request for supplemental examination. See the Reasons for Substantial New Question of Patentability Determination in the file of this proceeding. Accordingly, ex parte reexamination will be ordered pursuant to 35 U.S.C. 257.

(56) Items of Information

U.S. PATENT DOCUMENTS

6,346,532 2/2002 Maruyama et al.

FOREIGN PATENT DOCUMENTS

JP	$10-218861 \mathrm{~A}$	$8 / 1998$
WO	$94 / 18161 \mathrm{Al}$	$8 / 1994$

OTHER DOCUMENTS
Table of testing data for compounds including those described in Examples 1-113 of US 6,346,532, 40 pages.
Materials for Astellas R\&D Meeting. Subcommittee on Development Theme Establishment, titled
"YM178/Discontinuation of Development Theme for Diabetes Mellitus," 16 pages, dated October 27, 2003.
YM178 in Type 2 Diabetes Mellitus 178-CL-003 Study Report, 11 pages, dated September 11, 2003.
Yamanouchi BAN Compound Evaluation System with English translation, 1 page.
Yamanouchi Monthly Research Progress Report with English translation, 2 pages, dated April 26, 1995.
Excerpts of the prosecution history of U.S. Patent Application No. 09/529,096, the U.S. National Stage of PCT/JP98/04671, filed October 15, 1998, that resulted in U.S. Patent No. 6,346,532.

Blin et al, "Structural and Conformational Features Determining Selective Signal Transduction in the beta-3Adrenergic Receptor," Molecular Pharmacology, 44:1094-1104 (1993).

Thornber, C. W., "Isosterism and Molecular Modilication in Drug Design," Chem. Soc. Rev. 18:563-580 (1979).
Declaration by Dr. Tetsuo Matsui under 37 C.F.R 1.132, dated November 21, 2013.

United States Pateni and Trademark Office

INITED STATES DRP ARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS P.O. Box 14.50

Alexandria, Virginia 22313-1450
wwhe.uspto.gov

Please find below and/or attached an Office communication concerning this application or proceeding.
The time period for reply, if any, is set in the attached communication.

Office Action in Ex Parte Reexamination	Control No. $96 / 000,045$	Patent Under Reexamination 6346532	
	Examiner EVELYN HUANG	Art Unit 3991	AIA (First Inventor to File) Status No

- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Responsive to the communication(s) filed on \qquad _.\square A declaration(s)/affidavit(s) under 37 CFR 1.130(b) was/were filed on \qquad
b.This action is made FINAL.A statement under 37 CFR 1.530 has not been received from the patent owner.
A shortened statutory period for response to this action is set to expire $\underline{2}$ month(s) from the mailing date of this letter. Failure to respond within the period for response will result in termination of the proceeding and issuance of an ex parte reexamination certificate in accordance with this action. 37 CFR 1.550(d). EXTENSIONS OF TIME ARE GOVERNED BY 37 CFR 1.550(c). If the period for response specified above is less than thirty (30) days, a response within the statutory minimum of thirty (30) days will be considered timely.

Part I THE FOLLOWING ATTACHMENT(S) ARE PART OF THIS ACTION:

1. \boxtimes Notice of References Cited by Examiner, PTO-892.
3.Interview Summary, PTO-474.
2.Information Disclosure Statement, PTO/SB/08.
2.

\qquad
Part II SUMMARY OF ACTION
1a. \triangle Claims $1-5,7-11,13$ and 14 are subject to reexamination.
1b. \triangle Claims 6 and 12 are not subject to reexamination.
2.Claims \qquad have been canceled in the present reexamination proceeding.
3. \square Claims \qquad are patentable and/or confirmed.
4. \boxtimes Claims 1-5,7-11,13 and 14 are rejected.
5.Claims \qquad are objected to.
6.The drawings, filed on \qquad are acceptable.
7.The proposed drawing correction, filed on \qquad has been (7a)approved (7b) \qquad disapproved.
8.Acknowledgment is made of the priority claim under 35 U.S.C. § 119 (a)-(d) or (f).
a)All b)Some* c)None of the certified copies havebeen received.not been received. 3been filed in Application No. \qquad .been filed in reexamination Control No. \qquad
5been received by the International Bureau in PCT application No \qquad -

* See the attached detailed Office action for a list of the certified copies not received.
9.Since the proceeding appears to be in condition for issuance of an ex parte reexamination certificate except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.
10.Other: \qquad

The present application is being examined under the pre-AIA first to invent provisions.

Reexamination

1. This is a Non-Final Office Action in the ex parte reexamination proceeding of claims 1-5, 7-11, 13 and 14 of US 6,346,532 issued to Maruyama on 2/12/2002.

Claims of US 6,346,532

2. There are 14 claims in the issued patent. Claims 6 and 12 are not under reexamination as no substantial new question of patentability has been raised as to these claims.

Claims 1-5, 7-11 and 13-14 are under reexamination.
Claims 1-5 and 9 are drawn to a compound. Claims 7,8 and 10-11 are drawn to a composition. Claims 13-14 are drawn to a method for treating diabetes mellitus and obesity respectively. Claims 1 and 5 are independent claims.

1. A compound of formula (I):
(\%)

in the formula, each of the symbols means as follows:
Ring B is a heteroaryl group which is unsubstituted or substituted and is optionally fused with a benzene ring;
X is a bond, or a lower alkylene or an alkenylene, both of which may be unsubstituted or substituted with hydroxy or a lower alkyl group, or X is a carbonyl or a group represented by -NH-, and when X is a lower alkylene group which is substituted with a lower alkyl group, a carbon atom of the ring B optionally bonds with the lower alkyl group so that a ring is formed;

A is a lower alkylene or a group represented by -lower alkylene-O-;
$R^{1 a}$ and R^{16} are the same or different and each may be a hydrogen atom or a lower alkyl group;
R^{2} is a hydrogen atom or a halogen atom;
Z is a group represented by $=\mathrm{CH}-$;
or a salt thereof
5. A compound of formula (Ia):

in the formula, each of the symbols means as follows:
Ring B is a heteroaryl group;
X is a bond or a lower alkylene group;

R is a hydrogen atom, a halogen atom, a lower alkyl group, amino group, an aryl lower alkyl group, or a halogeno aryl-lower alkyl group;
or a salt thereof.

Priority

3. US 6,346,532 is issued from US Application No. 09/529,096, filed on 4/7/2000, which is a 371 of PCT/JP98/04671, filed on 10/15/1998, published as WO 99/20607 on 4/29/1999. It claimed the foreign priority of JP 9-285778, filed on 10/17/1997.

JP 9-285778 fails to provide adequate support for claims 1-5, 7-11 and 13-14.
Particularly, in formula (I) of JP 9-285778, ring B is "a nitrogen-containing heteroaryl group", A is methylene, ethylene or $-\mathrm{CH}_{2} \mathrm{O}$-, and A is at a fixed position para to $-\mathrm{NHCO}-\mathrm{X}$-ring B . The instant claims 1 and 5, however, recite "a heteroaryl group" as ring B. Claim 1 further recites lower alkylene or -lower alkylene- O - as A , which position may vary with respect to - $\mathrm{NHCO}-\mathrm{X}$ ring B. Formula (I) of claim 1 and Formula (Ia) of claim 5 were described in PCT/JP98/04671

Art Unit: 3991
filed on 10/15/1998. Accordingly, the effective filing date for claims 1-5, 7-11 and 13-14 is 10/15/1998 rather than the 10/17/1997 filing date of JP 9-285778.

Cited References

4. Japanese Patent Application Kokai Publication No. H10-218861, "Novel Phenethanol Derivative or Salt Thereof," published August 18, 1998, and certified English-language translation thereof ('JP '861").

Blin, N. et al., "Structural and Conformational Features Determining Selective Signal Transduction in the $\beta 3$-Adrenergic Receptor," Molecular Pharmacology, 44:1094-1104 (1993) ("Blin").

PCT Publication WO 94/18161, published 18 August 1994 ("WO '161").
Thornber, C.W., "lsosterism and Molecular Modification in Drug Design," Chem. Soc. Rev. 18:563-580 (1979) ("Thornber").

Claim Rejections - 35 USC § 103
5. The following is a quotation of pre-AIA 35 U.S.C. 103(a) which forms the basis for all
obviousness rejections set forth in this Office action:
(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
6. Claims 1-5, 7-11 and 13-14 are rejected under pre-AIA 35 U.S.C. 103(a) as being unpatentable over JP ' 861 in view of Blin and WO ' 161 .

JP ‘861, published on 8/18/1998, is available as prior art under 102(a).

JP ‘861 (page 2) discloses a compound of formula (I) that possesses selective stimulatory effects on β_{3} adrenergic receptor and thus have anti-obesity effects and anti-hyperlipidemia effects. They are useful as therapeutic agents for treatment of diabetes (page 14, [0019]). The compound of formula (I) has the following structure:

Specific compounds of formula (I) are described in Tables 7-9. Compound 11 in Table 9 has the following structure:

Compound 12 of Table 9 has the same structure as compound 11 except that its amino-pyridinyl (B ring) is replaced with amino-thiazolyl.

Compound 11 or compound 12 of JP ' 861 has a hydroxyl-substituted terminal phenyl, whereas the compound of claims 1-5 has an unsubstituted terminal phenyl.

However, Blin studies the structural-activity relationships of a large variety of compounds to determine the structural features responsible for the β_{3} adrenergic receptor potency and selectivity of ligands (page 1097). Potent β_{3} adrenergic receptor agonists have the following minimal pharmacophore (page 1102, Fig. 7) wherein the terminal phenyl is unsubstituted:

A

$02(\mathrm{~A})=249 \mathrm{man}$

Blin thus teaches that the hydroxyl substitution on the terminal phenyl in the compound of JP '861 is not required for β_{3} adrenergic receptor agonist activity. Indeed, WO '161 (page 3) discloses a structurally similar β_{3} adrenergic receptor agonist compound, wherein the terminal phenyl may be unsubstituted (Table 3, Example 135) or substituted with hydroxyl (Example 8) or halogen (Example 142).

Accordingly, it would have been obvious to one of ordinary skill in the art to replace the hydroxyl-substituted phenyl of JP'861 with the unsubstituted phenyl to arrive at the compound of claims 1-5. In view of the teachings of JP'861, Blin and WO'161, there would have been a reasonable expectation of success in obtaining a compound with potent β_{3} adrenergic receptor agonist activity.

Claims 7 and 11 recite a composition comprising a pharmaceutically acceptable carrier and a compound of formula (I) or the salt thereof as claimed in one of claims 1 through 4 (claim 7) and as claimed in claim 5 (claim 11).

JP '861 also discloses a pharmaceutical composition comprising the compound of formula I and a pharmaceutically acceptable carrier (page 16).

Claim 9 dependent from claim 1 further recites that the compound of formula I is an optical isomer, a hydrate, or a solvate of the compound of formula I. Claim $\mathbf{1 0}$ recites that the compound of formula (I) of claim 1 in a composition is present as a polymorphic substance.

The compound of formula (I) described in JP '861 may be an optical isomer, a hydrate, a solvate of ethanol, or a polymorphic crystal (page 13).

Claims 13-14 are drawn to a method for treating diabetes mellitus and obesity respectively. Dependent claim 8 further requires that the amount of the compound of formula I in the composition of claim 7 be effective for treating diabetes mellitus in a human or an animal.

JP ' 861 further discloses that the compound of formula I is useful as a therapeutic agent for diabetes. It possesses selective stimulatory effects on β_{3} adrenergic receptor and thus has antiobesity effects and anti-hyperlipidemia effects (page 14, [0019]).
7. Claims 1-5, 7-11 and 13-14 are rejected under pre-AIA 35 U.S.C. 103(a) as being unpatentable over WO '161 in view of Blin, Thornber and JP '861.

WO'161 (pages 3-4) generically discloses compounds of formula I that are selective β_{3} agonists useful for treatment of diabetes and obesity (page 1, Title; page 2, lines 23-26).

Specific compounds with the following structure are described (page 55, Table 2):

wherein R is phenyl (page 32, Example 8), thiophenyl-2-yl (Example 108), pyridin-2-yl (Example 109) or pyridin-3-yl (Example 110). The compounds of Table 3 (page 63) have the following structure:

wherein R is phenyl (Example 135) or benzothiophen-2-yl (Example 140).
The compound of WO' 161 has phenyl- $-\mathrm{OCH}_{2}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{2}(\mathrm{NH})$ - instead of the instant phenyl- $\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{2}(\mathrm{NH})$-.

However, Blin studies the structural-activity relationships of a large variety of compounds to determine the structural features responsible for the β_{3} adrenergic receptor potency and selectivity of ligands (page 1097). Potent β_{3} adrenergic receptor agonists have one of the following minimal pharmacophores (page 1102, Fig. 7):

A

B2 (8) $\times 237 \pm 006$

B

$42(k)=1.40 \pm 002$
$03(A)=255 \pm 0.03$

$d 5(A)=431 \pm 0.12$

As such, phenyl- $\mathrm{OCH}_{2}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{2}(\mathrm{NH})$ - of WO ' 161 is an alternative to the instant phenyl-$\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{2}(\mathrm{NH})$-. Indeed, the β_{3} adrenergic receptor agonist compound of JP ' 861 has the alternative phenyl- $\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{2}(\mathrm{NH})$ - instead of the phenyl- $\mathrm{OCH}_{2}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{2}(\mathrm{NH})$ - of WO '161.

The compound of WO'161 has a - SO_{2}-heteroaryl instead of the instant -CO-heteroaryl.

However, Thornber teaches that sulfoxide group ($-\mathrm{SO}_{2}$-) may be replaced by a carbonyl group (-CO-), which is a bioisostere of $-\mathrm{SO}_{2}$ - (page 569 , Table 3). This is because bioisosteres are groups or molecules which have chemical and physical similarities that impart similar biological properties to a chemical compound. They are often used in the pharmaceutical arts to modify a lead compound and obtain compounds with similar properties (pages 563 and 565). . Indeed, the β_{3} adrenergic receptor agonist compound of JP ' 861 has the bioisosteric -CO- instead of the $-\mathrm{SO}_{2}$ - of WO ' 161 .

Accordingly, it would have been obvious to one of ordinary skill in the art to replace phenyl- $\mathrm{OCH}_{2}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{2}(\mathrm{NH})$ - of WO ' 161 with phenyl $-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{2}(\mathrm{NH})$ - and replace the SO_{2} - with the bioisosteric -CO- to arrive at the compound of claims $1-5$. There would have been a reasonable expectation of success in obtaining a potent β_{3} adrenergic receptor agonist compound, especially in view of the combined teachings of the prior art.

Claims 7 and 11 recite a composition comprising a pharmaceutically acceptable carrier and a compound of formula (I) or the salt thereof as claimed in one of claims 1 through 4 (claim 7) and as claimed in claim 5 (claim 11).

WO '161 describes a pharmaceutical composition comprising the compound of formula I and an inert carrier (page 25; page 99, claim 18). JP '861 also discloses a pharmaceutical composition comprising the compound of formula I and a pharmaceutically acceptable carrier (page 16).

Claim 9 dependent from claim 1 further recites that the compound of formula I is an optical isomer, a hydrate, or a solvate of the compound of formula I. Claim $\mathbf{1 0}$ recites that the compound of formula (I) of claim 1 in a composition is present as a polymorphic substance.

The compound of formula I of WO ' 161 contains at least one asymmetric center leading to formation of optical isomers (page 7, lines 14-22). The compound of formula I described in JP ' 861 may be an optical isomer, a hydrate, a solvate of ethanol, or a polymorphic crystal (page 13).

Art Unit: 3991
Claims 13-14 are drawn to a method for treating diabetes mellitus and obesity respectively. Dependent claim 8 further requires that the amount of the compound of formula I in the composition of claim 7 be effective for treating diabetes mellitus in a human or an animal.

WO'161 (pages 3-4) discloses compounds of formula I that are selective β_{3} agonists useful for treatment of diabetes and obesity (page 1, Title; page 2, lines 23-26; page 98, claims 11-12, 18). JP ' 861 further discloses that the compound of formula I is useful as a therapeutic agent for diabetes, It possesses selective stimulatory effects on β_{3} adrenergic receptor and thus has anti-obesity effects and anti-hyperlipidemia effects (page 14, [0019]).

Conclusion

8. Claims 1-5, 7-11 and 13-14 are under reexamination.

Claims 6 and 12 are not reexamined.
Claims 1-5, 7-11 and 13-14 are rejected.

Future Amendment

9. Patent owner is notified that any proposed amendment to the specification and/or claims in this reexamination proceeding must comply with 37 CFR 1.530 (d)-(j), must be formally presented pursuant to 37 CFR 1.52 (a) and (b), and must contain any fees required by 37CFR 1.20(c).

In order to ensure full consideration of any amendments, affidavits or declarations, or other documents as evidence of patentability, such documents must be submitted in response to this Office action. Submissions after the next Office action, which is intended to be a FINAL ACTION, will be governed by the requirements of 37 CFR 1.116 , which will be strictly enforced.

Ongoing Duty to Disclose

10. The patent owner is reminded of the continuing responsibility under 37 CFR 1.565 (a) to apprise the Office of any litigation activity, or other prior or concurrent proceeding, involving Patent No. 6,346,532 throughout the course of this reexamination proceeding.

Future Correspondence

11. Any inquiry concerning this communication or earlier communications from the examiner should be directed to Evelyn Huang whose telephone number is 571-272-0686. The examiner can normally be reached on Tuesday-Friday.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Deborah Jones can be reached on 571-272-1535. The fax phone number for the organization where this application or proceeding is assigned is 571-273-9900.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

All correspondence relating to this ex parte reexamination proceeding should be directed:

By EFS: Registered users may submit via the electronic filing system EFS-Web at https:/efs.uspto.gov/efile/myporal/efs-registered

By Mail to: Mail Stop ex parte Reexam
Central Reexamination Unit
United States Patent \& Trademark Office
P.O. Box 1450

Alexandria, VA 22313-1450

Art Unit: 3991

By FAX to:	$571-273-9900$ Central Reexamination Unit
By Hand to:	Customer Service Window Randolph Building 401 Dulany St.
	Alexandria, VA 22314

/Evelyn Huang/
Patent Reexamination Specialist
CRU Art Unit 3991

Conferees: /Gary Kunz/
Patent Reexamination Specialist
CRU Art Unit 3991

/Deborah D Jones/
Supervisory Patent Examiner, Art Unit 3991

Notice of References Cited	Application/Control No. $96 / 000,045$	Applicant(s)/Patent Under Rexamination 6346532	
	Examiner	Art Unit EVELYN HUANG	3991

$*$		Document Number Country Code-Number-Kind Code	Date MM-YYY	Name	Classification
	A	US-			
	B	US-			
	C	US-			
	D	US-			
	E	US-			
	F	US-			
	G	US-			
	H	US-			
	I	US-			
	J	US-			
	K	US-			
	L	US-			
	M	US-			

FOREIGN PATENT DOCUMENTS

$*$		Document Number Country Code-Number-Kind Code	Date MM-YYY	Country	Name	Classification
${ }^{*}$	N	JP 10-218861	$08-1998$	JP		
$*$	O	WO 94/18161	$08-1994$	WO		
	P					
	Q					
	R					
	S					
	T					

NON-PATENT DOCUMENTS

*		Include as applicable: Author, Title Date, Publisher, Edition or Volume, Pertinent Pages)
*	U	Blin, N. et al., "Structural and Conformational Features Determining Selective Signal Transduction in the $\beta 3$-Adrenergic Receptor," Molecular Pharmacology, 44:1094-1104 (1993).
*	v	Thornber, C.W., "Isosterism and Molecular Modification in Drug Design," Chem. Soc. Rev. 18:563-580 (1979).
	w	
	x	

A copy of this reference is not being furnished with this Office action. (See MPEP § $707.05(\mathrm{a})$.)
Dates in MM-YYYY format are publication dates. Classifications may be US or foreign.

United States Patent and Trademark Office

Please find below and/or attached an Office communication concerning this application or procceding.
The time period for reply, if any, is set in the attached communication.

Ex Parte Rexamination Ordered Pursuant to 35 U.S.C. 257	Control No. $96 / 000,045$	Patent Under Reexamination
	Examiner EvELYN HUANG	Art Unit 3991

--The MAILING DATE of this communication appears on the cover sheet with the correspondence address--

The supplemental examination proceeding filed on 21 November 2013, concluded with the issuance of the supplemental examination certificate on $1 / 31 / 2014$. The certificate indicated that one or more items of information submitted as part of the request for supplemental examination raises a substantial new question of patentability. See the Reasons for Substantial New Question of Patentability Determination in the file of this proceeding.

Accordingly, ex parte reexamination of claim(s) 1-5,7-11,13 and 14 of U.S. Patent No. 6,346,532 is ordered. See 35 U.S.C. 257(b) and 37 CFR 1.625(b). This ex parte reexamination proceeding is hereby initiated by the mailing of this order. Ex parte reexamination under 35 U.S.C. 257 will be conducted in accordance with 37 CFR 1.530 through 1.570 , which govern ex parte reexamination, subject to the exceptions enumerated in 37 CFR 1.625 (d), and, in addition, to the exception that a patent owner's statement, including any amendment, under 37 CFR 1.530 (a)-(c) may not be filed. For this reason, no amendment in an ex parte reexamination proceeding ordered under 35 U.S.C. 257 may be filed until after the mailing of a first Office action on the merits.

This reexamination proceeding has been assigned to the art unit listed above. All future correspondence should be directed to the assigned art unit and should be identified by the control number listed above, which is identical to the control number assigned to the now-concluded supplemental examination proceeding.

Sawai Ex. 1007

Charles E. Van Hom, Reg. No. 40,266 Examiner/SPE Signature (202) 408-4000

Sawai Ex. 1007

Electronic Acknowledgement Receipt		
EFS ID:	18752556	
Application Number:	96000045	
International Application Number:		
Confirmation Number:	3506	
Title of Invention:	AMIDE DERIVATIVES OR SALTS THEREOF	
First Named Inventor/Applicant Name:	6346532	
Correspondence Address:	Fitzpatrick Cella Harper \& Scinto 1290 Avenue of the Americas New York NY US	10104-3800
Filer:	Charles E. Van Horn/Charlene Woods	
Filer Authorized By:	Charles E. Van Horn	
Attorney Docket Number:	07385.0042	
Receipt Date:	14-APR-2014	
Filing Date:	21-NOV-2013	
Time Stamp:	13:54:43	
Application Type:	Supplemental Examination	
Patent Number:		

Payment information:

Submitted with Payment	no

File Listing:

Document Number	Document Description	File Name	File Size(Bytes) Message Digest	$\begin{gathered} \text { Multi } \\ \text { Part /.zip } \end{gathered}$	Pages (if appl.)
1	Letter Requesting Interview with Examiner	Applicant_Initiated_Interview_ Request_Form.pdf		no	2
Warnings:					
Information:					
Total Files Size (in bytes):			83667		
This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.					
New Applications Under 35 U.S.C. 111					
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.					
National Stage of an International Application under 35 U.S.C. 371					
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.					
New International Application Filed with the USPTO as a Receiving Office					
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.					

United States Pateni and Trademark Office

INITED STATES DRP ARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS P.O. Box 14.50

Alexandria, Virginia 22313-1450
wwhe.uspto.gov

APPLICATION NO.	FLING DATE	FIRST' NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
$96 / 000,045$	6346532	07385.0042		

Please find below and/or attached an Office communication concerning this application or proceeding.
The time period for reply, if any, is set in the attached communication.

| Ex Parte Reexamination Interview Summary | Control No. | $96 / 000,045$ |
| :--- | :--- | :--- |$]$| Patent Under Reexamination |
| :--- |
| |
| | Examiner | EVELYN HUANG |
| :--- |

All participants (USPTO personnel, patent owner, patent owner's representative):
(1) Evelyn Huang, Gary Kunz
(3) Charles Van Horn
(2) Padmashri Ponnaluri
(4) Jason Okun

Date of Interview: 16 April 2014
Type: a) \square Telephonic b) \square Video Conference c) \boxtimes Personal (copy given to: 1) \square patent owner 2) \square patent owner's representative)

Exhibit shown or demonstration conducted: d) \square Yes e) \boxtimes No.
If Yes, brief description: \qquad
Agreement with respect to the claims f) \square was reached. g) \square was not reached. h) \boxtimes N/A.
Any other agreement(s) are set forth below under "Description of the general nature of what was agreed to..."
Claim(s) discussed: all pending claims.
Identification of prior art discussed: $\underline{J P}$ '861.
Description of the general nature of what was agreed to if an agreement was reached, or any other comments:
The discussion concerned amending the claims so that they have full support of the priority document filed on 10/17/1997, thereby removing JP '861 (published on 8/18/1998) as prior art.
(A fuller description, if necessary, and a copy of the amendments which the examiner agreed would render the claims patentable, if available, must be attached. Also, where no copy of the amendments that would render the claims patentable is available, a summary thereof must be attached.)

A FORMAL WRITTEN RESPONSE TO THE LAST OFFICE ACTION MUST INCLUDE PATENT OWNER'S STATEMENT OF THE SUBSTANCE OF THE INTERVIEW. (See MPEP § 2281). IF A RESPONSE TO THE LAST OFFICE ACTION HAS ALREADY BEEN FILED, THEN PATENT OWNER IS GIVEN ONE MONTH FROM THIS INTERVIEW DATE TO PROVIDE THE MANDATORY STATEMENT OF THE SUBSTANGE OF THE INTERVIEW (37 CFR $1.560(\mathrm{~b})$). THE REQUIREMENT FOR PATENT OWNER'S STATEMENT CAN NOT BE WAIVED. EXTENSIONS OF TIME ARE GOVERNED BY 37 CFR 1.550(c).

/Evelyn Huang/ Patent Reexamination Specialist AU 3991	/Padmashri Ponnaluri/ Patent Reexamination Specialist AU 3991	/Gary Kunz/ Patent Reexamination Specialist AU 3991
cc: Requester (if third party requester)		
U.S. Patent and Trademark Office PTOL-474 (Rev. 04-01)	Ex Parte Reexamination Interview S	Paper No. 20140416

Sawai Ex. 1007
Page 406 of 495

IN THE UNTTED STATTS PATENT AND TRADEMARK OFPTCE

In re Ex Parte Re-Examination of:)
US Pa
U. Patman $6,3,6,532$)

Issued: February 12, 2002
Control No: $96 / 000,045$
Filed: November 21,2013
Inventors: Tatsuya MARUYAMA et al.
For: AMIDE DERIVATIVES OR SALTS THEREOF

Mali Stop: Ex Parte Reexam
Commissioner for Patents
P. O. Box 1450

Alexandria, VA 22313-1450

AMENDMENT AND STA TEMENT OF THE SUBSTANCE OF TEE DNYR YEX

Sir:
In response to the Office Action dated March 6, 2014, please anend the abovecaptioned patent as follows and consider the following remarks.

CLATMS

Please amend the claims as follows.

1. (Amended) A compound of formula (I):

1(1)
in the formula, each of the symbols means as follows:
ring B is a nitrogen containing heteroaryl group which is uxswbstituted or substatuted and is optionaly fused with a benzene ring; X is [a bond, or a lower allylene or an alkenylene, both of which are unsubstituted or substituted with hydroxy or a lower alkyl group, or X is a carbonyl or a group represented by $-\mathrm{NH}-$, and when X is a lower alkylene which is substituted with a lower alkyl group, a carbon atom of the ring B optionally bonds with the lower alkyl group so that a ring is formed; A is methylene, ethylene, [a lower alkylene] or a group represented by -CH O - [Hower alkylene- $\mathrm{O}-] ; \mathrm{R}^{\text {ta }}, \mathrm{R}^{16}$ are the same or different and each is a hydrogen atom or a lower alky group; R^{2} is a hydrogen atom or a halogen atom; and Z is a growp represented by $=\mathrm{CH}-$; or a salt thereof.
2. (Cancelled)
3. (Amended) The compound of formula () or the salt thereof according to claim [claim 2], wherein the ring B is [a heteroaryl group which is] substituted with a substituent chosen from a halogen atom, lower alkyl, lower alkenyl, lower alkynyl, hydroxy, sulfanyl, halogeno lower alkyl, lower alkyl- $\mathrm{O}-$, lower alkyl-S-, lower alkyl- $\mathrm{O}-\mathrm{CO}-\mathrm{-}$, carboy, sulfonyl, sulfinyl, lower alkyl-SO-, lower alkyl-SO ${ }_{2}$-, lower alkyl-CO--., lower alkyl-CO-O- carbamoyl, lower alkyl-NH-CO-, dilower alkyl- CO , nitro, cyan, amino, lower alkyl-NH-, and di-lower alkyl-N-L, aryl-lower alkyl, halogen aryl-lower alkyl, guanidine, lower alkyl-CO-NH, and lower alkyl- $\mathrm{SO}_{2}-\mathrm{NH}-\mathrm{-}$]
4. (Amended) The compound of formula (I) or the salt thereof according to claim 3, wherein R^{2}, R^{12} and R^{16} are each a hydrogen atom, [and Z is $=C H-1$ A is methylene.
 is

5. (Amended) A compound of formal (la):

Fin the formula, each of the symbols means as follows:
ming B is a heteroaryl group; X is a bond or a lower alkylene group; K is a hydrogen atom, a halogen atom, a lower alkyl group, amino group, an aryl lower alkyl group, or a balogeno aryllower alkyl group; or a salt thereof,
6. A compound: (R) $4^{4} \cdot[2-[(2-H y d r o x y-2$ phenylethyl)amino $]$ ethyl $]-2$ pyridinecarboxyanilde, (R)-2-[1-(4-chlonobenzy) 1 H -imidazol-2-yl)-4'[2-1(2-hydroxy-2-phenylethyl)aminolethyl]-acetanilide, (R)-2-[1-(3,4-dichlorobenzy)-1H-tetrazol-5-yl]-4 $[2-[(2$ hydroxy-2-phenylethyl)aminolethyl]acetanilide, (R)-2n(2-aminothiazol-4-y) 4 - $[2-(2$-hydroxy-2phenylethyl)aminolethyl]acetanilide, (R)-2-(2-benzyl-1H-1,2,4-triazol-3-y) -4 -[2-[(2-hydroxy-2-phenylethyl)-aminolethyllacetanilide, (R)-2-(2-aminopyrdin-6-y) -4 - $[2-[(2$-hydroxy- 2 . phenylethyl)aminolethyl]acetanilide, (R$)-4-[2-[(2$-hydroxy- 2 -phenylethyl)aminolethyl $]-2$ (2pyridyl)acetanilide, (R)-4 [2-[(2-hydroxy-2-phenylethyl)-amino]ethyl)-2-(2. pyrazinyl)acetanilide, (R$)-4^{4}[2-[(2$ hydroxy 2 phenylethyl)aminolethyl $)-2$ - 2 -pyrimidinyl) acetanilide, or a salt of any of the foregoing.

7. (Cancelled)

8. (Cancelled)
9. The compound of formula () as claimed in clam 1, wherein the compound of formula (1) is an optical isoner, a hydrate, or a solvate of the compound of fomula ().
10. A composition comprising a compound of fombla (I) as claimed in claim I in a phamaceutically acceptable camier, wherein the compound of formula () is present as a polymorphic substance.
11. (Amended) A composition comprising [at least one] the compound of fomula [(O)] (La) or the salt thereof as clamed in claim 5, in a pharmaceutically acceptable camier.
12. A composition comprising at least one compound or the salt of any of the foregoing as clamed in clam 6 , in a phamaceutically acceptable carmer.
13. A method for treating diabetes mellitus in a human or animal patient in need of such treatment conprising administering to the patient an amount of a compound of formula (1) as clamed in clam 1, wherein the amount is an amome effective for such treatment.
14. A method for treating obesity in a human or animal patient in meed of such treament comprising edministering to the patient an amount of a compound of formula () as clamed in claim 1, wherein the anount is an amount effective for such treatment.
15. New) The compound according to claim 4 or the salt thereof which is an opticalisomer.
16. (New The compomd cocouing to chim 4 owhe salt hered wheh is a mixture of (R) and (S) opticalisomers.
17. Wew The compornd acorfing to Eam 16 or the ste thereof which is a racemic mixture
 the salt thereof as clamed in one of claims 1,3,4, and 15-17 in a pharmaceutically acceptable carrier.
 mellitus in a human or animal pation in need of such treating

STATEMENT OF THE SUBSTANCE OF THE INTERYIEW

Patent Owner and its atomeys, Charles E. Van Horn and Jason M. Okun, would Hke to thank Exammers Evelyn Huang, Gary Kma, and Padmashri Ponalum for the courtesies extended during a personal interview conducted on April 16, 2014. During the interview, potential chain changes were discussed that would make all claims fully supported by prionty Japanese Application No. 9.258778 , thereby antedating 3 P $10-218861\left(J P^{\prime} 861\right.$). It was agreed that if the claims were suppoted in the prionity application, eliminating JP ' 861 as prior art, all prior art rejections of record would be withdrawn. The Examiners indicated that a new search woud be conducted as required for any new or amended claims.

REMARKS

The clams are 1 and 36 , and $9-19$, with claims 1,5, and 6 being in independent form,

Clam 1 has been amended to better reflect the subject matter disclosed in prionity Japanese Application No. 9-258778 and to better define the intended invention. In particular, clam I has been anended to (i) specify that ring B is a nitrogen-containing heteroaryl group; (ii) specify that A is methylene, ethylene, or a group represented by $-\mathrm{CH}_{2} \mathrm{O}-$-; (iii) specify the position of atachment of A on the phenylene ring with respect to - $\mathrm{NHCO}-\mathrm{X}$-ring B ; and (iv) delete a bond from the list of options for X . Support for this anendment may be found, for example, in cancelled claim 2 and in the Examples, as well as in the priority application at paragraph $[0007]$ and in the Examples.

Clam 2 has been cancelled without prejudice or disclaimer.

Clam 3 has been amended to reflect the cancellation of clam 2 and to shorten the list of substituents for ring B based on the list provided in the priority application at paragraph [0010].

Claim 4 has been amended to recite specifically the first structure shown at col.

39 (Table 3) of the specification:
The prionity application supports this change, inter alia, in Example 41 and at paragraphs [0011] and [0026].

Claim 5 has been amended to recte specifically the structure of mirabegron, which is supported by Example 41 in both the instant specification and in the priority application, as well as by the recitation of the chemical name of this compound (R)-2-(2-aminothazol-4-y1) 4 -[2-(2-hydroxy-2-phenylethyl)amino]ethyl]acetanilide) in clam 6.

Claim 6 is not subject to reexamination.

Clams 7 and 8 have been cancelled without prejudice or disclaimer.

Clam 9 has not been changed. The priority application supports this clains, inter alia, at paragraphs [0011] and [0026].

Clam 10 has not been changed. The prionity application supports this clam, inter alia, at paragraphs [0011], [0026], [0031] and [0032].

Claim 11 has been amended to reflect the changes made in claim 5 . The priority application supports this claim, inter clid, at paragraphs [0031] ${ }^{2}$ and [0032].

Claim 12 is not subject to reexamination.

Claims 13 and 14 have nor been changed. The priority application supports these claims, inter alia, at paragraph [0027].

Claims $15-19$ have been added. Support for claims $15-17$ may be found, inter alla, in claims 4 and 9 and in the paragraph at col, 4, 11, 8-15 of the specification, as well as in the priority application at paragraphs [0011] and [0026].

[^11]Claim 18 is a re-presentation of patent claim 7 , which has been revised to reflect the cancellation of claim 2 and the addition of clams $15-17$. The priority application supports claim 18, inter ahia, at paragraphs [0031] and [0032].

Claim 19 is a representation of patent claim 8 , which has been revised to reffect the cancellation of clam 7 and to improve its form. The priority application supports clam 19 , inter alia, at paragraph [0027].

No new matter has been added. Based on the above amendments and the following remarks, Patent Owner respectully requests that the Examiner reconsider all outstanding rejections.

Chaims $1-5,7.11,13$, and 14 stand rejected under 35 U.S.C. $\$ 103($ a) as being allegedly unpatentable over JP 10218861 (TP 861 in view of the Blin article (Blin) and WO 94/18161 (WO'161). These clams also stand rejected under 35 U.S.C. 8103 (a) as being allegedy unpatentable over WO' 161 in wiew of Blin, the Thornber article (Thomber), and IP 861. These rejections are respectfully traversed.

The Office Action alleges that the claims in the instant patent are entitled only to the international filing date of October 15, 1998, because these claims are not adequately supported by priority Japanese Application No, 9-258778. Therefore, since JP '861 was published on August 18, 1998 , the Examiner cited this document as a reference under 35 U.S.C. \$102(a).

[^12]Patent Owner respectully submits that the instant clams, as amended above, are adequately supported by the aforementioned prionty application. In particular, the alleged discrepancies between the patent clains and the disclosure in the prionty application mentioned in the Office Action at page 3 have all been addressed by the above amendment. Therefore, the present claims are entitied to the October 17, 1997 filing date of the priority Japanese application, which is before the October 15, 1998 publication date of $3 P$ ' 861 . Accordingly, Jp ' 861 is not prior art. Since all of the above rejections are based, at least in part, on JP '861, these rejections cannot be maintained for at least this reason alone, and should be withdrawn, as agreed during the personal interview conducted on April 16, 2014.

CONCLUSION

For at least the reasons stated above, clams 1, 3-5,9-11, and 13-19, which are subject to recxamination, are patentable. Accordingly, Patent Owner respectully requests reconsideration of the rejections and that the claims be confirned and/or determined patentable. Should the Examiner beliove anything further is desirable in order to place the claims in even better condition, the Examiner is invited to contact Patent Owner's undersigned representative.

It is believed that no fees are necessary in connection with this Amendment.
However, in the event that the U.S. Patent and Trademark Office determines that fees are due, the Commissioner is hereby authorized to charge any such fees to the undersigned's Deposit Account No. 060916.

Dated: May 6, 2014
Respectfully submitted,
FINNEGAN, HENDERSON, FARABOW, GARRETT \& DUNNER, L LP.

Charles E, Van Hor
Reg. No. 40,266
(202) $408-4000$

Electronic Acknowledgement Receipt		
EFS ID:	18960329	
Application Number:	96000045	
International Application Number:		
Confirmation Number:	3506	
Title of Invention:	AMIDE DERIVATIVES OR SALTS THEREOF	
First Named Inventor/Applicant Name:	6346532	
Correspondence Address:	Fitzpatrick Cella Harper \& Scinto 1290 Avenue of the Americas New York NY US	10104-3800
Filer:	Charles E. Van Horn/Charlene Woods	
Filer Authorized By:	Charles E. Van Horn	
Attorney Docket Number:	07385.0042	
Receipt Date:	06-MAY-2014	
Filing Date:	21-NOV-2013	
Time Stamp:	18:18:48	
Application Type:	Supplemental Examination	
Patent Number:		

Payment information:

Submitted with Payment	no

File Listing:

Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	$\begin{gathered} \text { Multi } \\ \text { Part /.zip } \end{gathered}$	Pages (if appl.)
1		Amendment_and_Statement of_the_Substance_of_the_Inte rview.pdf		yes	13
Multipart Description/PDF files in .zip description					
	Document Description		Start	End	
	Amendment/Req. Reconsideration-After Non-Final Reject		1	1	
	Claims		2	7	
	Applicant summary of interview with examiner		8	8	
	Applicant Arguments/Remarks Made in an Amendment		9	13	
Warnings:					
Information:					
Total Files Size (in bytes):			454503		
This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.					
New Applications Under 35 U.S.C. 111					
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.					
National Stage of an International Application under 35 U.S.C. 371					
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.					
New International Application Filed with the USPTO as a Receiving Office					
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.					

Sawai Ex. 1007

Litigation Search Report CRU 3999

Resery skess \& 96/000,045

To: HUANG, Evelyn	From: Monica A. Graves
Locatom: Central Reexam Unit	Location: CRU 3999, MDW 4B31 Art Unit: 3991 Date: $6 / 16 / 14$
Phone: (571) 272-7253	
Case Serial Number: 96/000,045	monica.graves@uspto.gov

Sertery
Litigation search for U.S. Patent Number - 6,346,532

No Litigation Found

(See Attached)

1) I performed a KeyCite Search in Westlaw, which retrieves all history on the patent including any litigation.
2) I performed a search on the patent in Lexis CourtLink for any open dockets or closed cases.
3) I performed a search in Lexis in the Federal Courts and Administrative Materials databases for any cases found.
4) I performed a search in Lexis in the IP Journal and Periodicals database for any articles on the patent.
5) I performed a search in Lexis in the news databases for any articles about the patent or any articles about litigation on this patent.

Date of Printing: Jun 16, 2014
KEYCITE

* US PAT 6346532 AMIDF THFRVATTVES OR SALTS THEREOF, Assignce: Yamanouchi Pharmaceutical Co., Ltd. (Feb 12, 2002)

	History Direct History
\Rightarrow	1 AMIDE DERIVATIVES OR SALTS TIIEREOF, US PAT 6346532, 2002 WL 216985 (U.S. PTO Utility Feb 12, 2002)
	Patent Family
	2 NEW N-PHENYL HE'IEROAROMATIC CARBOXAMIDE BETA-3 RECEPTOR SIIMULANTS, USED E.G. FOR TREATING DIABETES AND OBESITY, Derwent World Patents Legal 1999-302703
	Assignments
	3 Action: CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Number of Pages: 040, (DATE RECORDED: Nov 16, 2005) 4 ACTION: ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). NJMBER OF PAGES: 003, (DATE RECORDED: Λ pr 07, 2000)
	Patent Status Files
	.. Certificate of Correction, (OG DATE: Aug 20, 2002)
	Prior Art (Coverage Begins 1976)
\%	6 AMIDE DERIVATIVES AND MEDICINAL COMPOSITIONS THEREOF, US PAT 6177454Assignee: Yamanouchi Pharmaceutical Co., Ltd., (U.S. PTO Utility 2001)
\%	7 AMIDE DERIVATIVES AND MEDICINAL COMPOSITIONS THEREOF, US PAT 6048884Assignee: Yamanouchi Pharmaceutical Co., Ltd., (U.S. PTO Utility 2000)
\%	8 METHOD FOR DETECTING SETTING ERRORS OF CLEARANCE BETWEEN ROLLERS IN UNIVERSAL ROLLING MILL, AND METHOD FOR ROLLING H- SHAPED STEEL HAVING FAVORABIE FI ANGF DIMFNSIONS UTII IZING SAME DFTECTING METHOD, US PAT 5553475 Assignee: Kawasaki Steel Corporation, (U.S. PTO Utility 1996)
\%	9 NEW QUATERNARY AMMONIUM COMPOUNDS, THEIR PREPARATION AND USE, US PAT 5223614Assignee: Boehringer Ingelheim GmbII, (U.S. PTO Utility 1993)
*	10 OXAZOLIDINEDIONE DERIV ATIVES AND THEIR USE, US PAT 5614544Assignee: Takeda Chemical Industries, Ltd., (U.S. PTO Utility 1997)

(C) 2014 Thomson Reuters. Nll rights reserved.

[^13]| Seamem fesult mimb | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Patent | Class | \$ummiass | Description | Cours | Dockek Number | Flaed | Dale
 Retrievad |

Total number of results: 0

Search Title	Patent Search 6346532 6/16/2014
Patent Number	6346532
Client Matter Code	\mathbf{t} swann

$529096(09) 6346532$ February 12,2002
UNGED STATES PATENT AMD TRADEMARK OFFICE GRANTED PATENT
6345532
Access PDF of Offcisl Patent * Order Patent Fle History / Wrapper from REEDFAX

Link to Clams Section

February 12, 2002
Amide dersatives or sats thereof
B Mentom: Marwama, Tatsuya ~Tsukuba, Japan (JP); Suzuki, Takaywk ~Tsukuba, Japan (JP) ; Onda, Kenich - Tsukuba, Japan (IP) ; Hayakawa, Masahko - Tsukuba, Jepan (PP): Moritomo, Hroywk - Tsukuba, Iapan (1p) ; Kimizuka, Tetsuya - Tsukuba, Japan (JP) ; Matsui, Tetsuo- Tsukuba Japan (3P)

OERT-GORFECTION:
July 30, 2002-a Certicate of Correction was issued for this patent (0.G. August 20, 2002) Tuly 30, 2002-a Certicate of Comection was issued for this patemt (0. © August 20, 2002)

APPL-NO:529096(09)
Fn mbobatm: Apri 7,2000
G解ATED.DATE: Febnary 12, 2002
grabmb F : October 17, $1997 \cdot 09285778$, Japan (9P)
ASSIGNEERPREMSSUE:
APR 7, 2000-ASSIGMMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETALS)., YAMANOUCHI PHARMACEUTICA CO. ITD. 3-11, NHONBASHI-HONCHO 2-CHOMECHUO-KU, TOKYO 103 -841, (1), Reel and Frame Number: $010808 / 0313$

Yamamouch phamaceutcal Con, kte, Toky, Japan (P), Foregn company or corporaton (03)
ASSRGNEm AFTEM- SSUE:
Novenber 36,2005 - Change Of NAME (SEE DOCUMENT FOR DETARS). ASTELAS PhARMA INC, 3-1 NHONBASHI-HONCHO 2-GHOME, CHUOKU, TOKYO, JAPAN (), Ree and Frame Number: 016784/0361

LEGAK Fage: Finnegan, Henderson, Farabow, Garret \& Dunner, kip.

Pug-comntry; Unted States of America (uS)

LEGKK-STATUS:

Apri 7,2000 - ASSIGNMENT
July 30, 2002 - CERTIFICATE OF CORRECTION
July 20,2005 - FEE PAYMENT
Noyember 16,2005 - ASSIGNMENT

JU 15, 2009 - FEE PAYMEKT
March 12, 2003 - Payor Mumber Assigned.
March 12, 2003 - Payer Number De-assigned.
Hiy 20,2005 ~ Payment of Mamenance Fee, 4 th Year, Large Entiby.
July 15,2009 - Payment of Mamtenance Fee, 8 h Year, Large Enthy.
March 13, 2013 ~ Payment of Mamtenance Fee, 12 th Year, Large Entity.
Fink
PUB- AANG: English (EN) (EVG)
PCTME EED-DATE: October 15, 1998
PCT APMR-NO: PCTHP1998 0004671
PCT-FUB-PATMO: WO\#99\#0607
BGT FUS-DATE: Apm 29,1999
US- $\mathrm{W}_{\mathrm{K}} \mathrm{A}$ N $\mathrm{CL}: 5144252.1$
US-ADOL-Ck: $5144256,544 \pi 330,544 \# 332,546 \# 1,546 \# 152,548 \# 186,548 \# 190$, $548+214,548 \# 252,548 \# 260$

CL: $514,544,546,543$
SCARGH FRG: $544 \# 330,544 \# 332,546 \# 1,546 \# 152,548 \# 190,548 \# 214,548 \# 186$, $548 \# 252,548 \# 260,514+2521,514 \% 256$

MC-ADDL CK: DIA6HKO3IH5O5
\&BCADOL-CL: [7] CO7O 239402
\&PCADOL-CL: [7]CO7D 213\#00
1F6-ADEL~CL: [7] CO7D 249400

PGGDDL-Cl: [8] C07C 233 芹65 (20060101) Advanced Inventive 20020810 (A LIB M RU)

\&PG-ABDL-CL: [8] C070 213\#81 (20060101) Advanced mventive 20051008 (A I R M EP)

Sawai Ex. 1007
Page 427 of 495

1PCAODLMCL: [9] CO7D 233\#26 (20060101) Advanced Inventive 20051008 (AI RMEP)

BKADELCL: [B] C07D 235\#30 (20060101) Advanced Inventive 20051008 (A5 M MEP)

1PO-ADOL-CIS [8] $0070257 \# 04$ (20060101) Advanced Inventive 20051008 (A IR M EP)

1PO-ADOLCL: [8] CO7D 277\#82 (20060101) Advanced Inventive 20051008 (A I R M EP)

PRiMMEXMR: Raymond, Richard L...
ASST-Exkm: Patel, Suchaker B.
BEF CITER:
5223614, June 29,1993 , Schromm et al., United States of America (US)
5541397 , Juy 30,1996 , Fisher et al., Unted States of America (US)
5553475, September 10,1996 , Hayash et al., United States of America (Us)
5614544 , March 25,1997 , Sohda et al, United States of America (US)
6048884, April 11, 2000, Maruyama at al, United States of America (US)
6177454, January 23, 2001, Maruyama et an, Unted States of America (US)
3743265 , June 29,1989 , Federal Republic of Gemany (DE)
10218861, August $38,1998,3$ apan (3p)
9529359, November 2. 1995 , Word Intellectwal Property Organization (WiPO) (WO)

NON-PATENTHTERATURE:

Konosu T, et al, "Triazole antf." Chem. Phamm, Bull, 39/10, 2581-9, Oct 1991.
Come TERWS: brs, ethy, amino, prime, acetanide, compound, solvent, dinydrochoride, hydrochlorde, residue, acid, evaporated, vacuo, receptor, hydrogen, atom, mixure, methanol, acetate, incuin, ensp, chromatography,] 4, stived, purfed, column, manufaturing, eluent, silica gel, chloroform

ENGLISH-A85T:

Amide derivaives represented by general formula (1) or sabs thereof wherein each symbol has the following meaning; ring B : an optionally substituted heteroary optionally fused with a benzene ring; X : a bond, lower alkylene or bwer akenylene optionaly substituted by hydroxy
or lower alky, carbony, or a group represented by -NH - (when X is lower alkyene optionally substutued by lower alky which may be bonded to the hydrogen atom bonded to a constuuent carbon atom of ring b to form lower alkylene to thereby form a ring); A: a bower alkybne or a group represented by (lower alkylene) $-0=$; $\mathrm{p}^{(10)}$ and $\mathrm{p}^{(4)}$: the same or diferent and each hydrogen or lower aky; $\mathrm{p}^{(2)}$; hyorogen or halogeno; and 2 : nitrogen or a group represented by $\& b o x H: C H-$. The compounds are useful as a diabetes remedy which not onfy functions to both accelerate the secretion of insulim and enhance insulin sensitivity but has an antiobestic action and an anthyperipemic action based on its selective stimulative action on a $\beta_{(3)}$ receptor.

EXUPLABABM:
NO-OF-FIGURES: 0
NO-DRWNGPG:0

TECHNBCAI FIELD

The present inventon redates to phammaceuthols and, more partioularly, it rebates to movel amide dervatives or sams therep amd also to therapeubic agents for dabetes mellitus containg them as effective componens.

BACRGROUND OF THE MWENGON

Oibetes melitus is a disease acompaned by continuous hyperglycmic state and sad to be resulted by action of many environmental factors and genetic factors. The main controlling factor for blood sugar is insulin, and it has been known that hyperglyceme is resulted by deficiency of msuln or by excess of factors whinh inhibt its action (such as genetic cause, back of exercise, obesty and stress).

Diabetes melitus is classified into two main types. One is insulin-dependent diabetes melitus (100 M) caused by a lowering of insuln-secretng function of pancreas due to autommune diseases, and another is nom-insulin-dependent diabetes melltus (MDDM), caused by a lowering of insulin-secreting function of pancrease due to pancreatic fatgue accompanied by contmous high insuln secretion. 95% or more of dabetic patients in Japan are said to suffer from NoDM, and an increase in the patients due to a change in daily life style is becoming a problem.

As to the therapy of dabetes mellitus, dietetic treatment, therapeuth exercise and remedy of obesity are mainly conducted in mild cases while, when the disease progresses, orai antidibbetic drugs (for example, insuln secretion promoters such as sulfonylurea compounds and insulin senstivity potentators which potentate the sensitivity of insulm) are admingtered. In severe cases, an insulin preparation is administered. However, there has been a brisk demand for creaton of the drugs whereby higher controf for bood sugar is possible, and development of amblabetc drugs having a new mechambm and having high wefuness has been demanded.
U.S. Pat. Nos. $4,396,627$ and $4,478,349$ descibe phemyethanolamine dematves and disclose that those compounds are useful as drugs for obesty and for hypergycemia. Action of those
compounds is reported to be due to a stimulating action to $\beta(3)$ receptors. Incidentaly, it has been known that β-adrenaline receptors are classified into $\beta_{(1)} \beta_{(2)}$ and $\beta_{(3)}$ sublypes, that stmutaton of $\beta_{(1)}$-receptor causes an inorease in heart rate, that stmulaton of $\beta_{(2)}$ receptor stmulates decomposition of glycogen in muscles, whereby synthesis of glycogen is inhbited, causing an action such as muscular tremor, and that stimulation of $\beta_{(3)}$ receptor shows an antiobesty and an ant-hyperghcemia acton (such as decrease in trigyceride, decrease in cholesterot and increase in WDL-cholesterol).

However, those $\beta_{(3)}$ agonsts also have actions caused by stmutatom of $\beta_{(1)}$ and $\beta_{(2)^{-}}$ receptors such as increase in hear rate and muscular tremor, and they have a problem in tems of side effects.

Recently, it was ascettained that β-receptors have dfferences to species, and it has been reported that even compounds having been confrmed to have a $\beta_{(O)}$ receptor selectivty in rodential anmals such as rats show an action due to stimulating action to $\beta_{(1)}$ and $\xi_{(2)}$ receptors in human being. In view of the above, investigatons for compounds having a stmulating action which is selective to $\varphi_{(3)}$-receptor in human being have been conducted recenty using human cells or cells where human receptors are expressed. For example, wo $95 / 29159$ describes substituted sulfonamide derivatives represented by the formula set forth below and discoses that due to their selective stmulating action to β_{3} receptors in human bemg, they are useful aganct obesity, hyperghcemia, et, However, the patent does not specificaly dsctose an inswin secretwn promoting action and an meulm senstrvity potemating action of those compounds.
(In the formula, the symbols should be refered to in the specfication of this patent.)
As such, there has been still a demand for creation of therapeutic agents for diabetes mellus of a new type which have a highy climica usefuness.

DISCLOSURE OF THE INVEMTION

The present mventors have conducted an intensive investigaton on compounds having both an insuin secretion promoting action and an insuln sensitivity potentiating action and found that novel amide derivatives show both a good msulin secretion pronoting action and a good insulin sensibvity potentating action and furthemmere show a sebective stmukang action to β_{Q}. receptors, leading to accomplishment of the present invention.

That is, the present invention relates to an amide derivatue represented by the generat tomula (i) set forth below or a satt thereof that is useful for the therapy of diabetes mellus, having both an insuln secretion promoting action and an insuln sensitivity potentiating action and further having anti-obesty and anti-hyperlipemia actions due to a selective stimulating action to $\beta_{(3)}$ receptors. The present invention also relates to a phamaceutical agent, particulary to a therapeutic agent for diabetes mellus containing the amide derivative or the sale thereof as an effective ingredient.
(in the formula, each of the symbols means as follows:
ring B: a heterony group which may be substituted and may be fused with a benzene ming:
X: a bond, bwer akyene or akenylene which may be substituted with hydroxy or a lower aky group, caroony, or a group represented by -NH- (when X is a lower akylene group which may be substituted with a lower alkyl group, the hyorogen atoms bonded to the carbon atom constuting the ring B may form a lower aky yene group together with the lower aky group so
that a ring is formed);
A: tower alkylene or a group represented by -lower alkylene-o-:
$\mathrm{R}^{(1 a)}, \mathrm{R}^{(1 b)}$; they may be the same or diferent and each is a hydrogen atom or a fower alky: group:
$R^{(2)}$: a hydrogen atom or a hatogen atom; and
2: a nitrogen atom or a groun represented by \&boxH:CH- .)
The compound of the genera\} fomula (1) is further ilhustrated as follows.
In the defimions used in the general formula in this spechication, the tem "lower" means a linear or branched hydrocarbon chan having from 1 to 6 carbon atoms unless otherwise specifed.

Specific examples of the "lower alky group" are methy, ethy, and inear or branched propyl, buty, pentyl and hexy, preferably an aky having from 1 to 4 carbon atoms, and particulary preferably methy, ethy, propy and isopropyl.

Examples of the "lower akyiene group" is a divalent group obtamed by removing an arbitary hydrogen atom(s) from the above "lower alky group", preferably an alkylene group having from 1 to 4 carbon atoms, and particularly preferably methylene, ethylene, propylene and butylene, Examples of the "lower alkenylene group" are vinylene, propenylene, butenylene; penteryiene and hexenyiene groups.

The "heteroaryl group which may be fused with a benzene ring" in the "heteroaryl group which may be substuted and may be fused with a benzene ming" means a ring group where a benzene ming is fused with a heteroary group as mentioned later or a non-fused heteroary) group.

Specife examples of the "ring group where the benzene ing is fused with a heteroaryl group" are fused-ying heteraary groups such as quinoly, isoquinoly, quinazoinyl, quinoldinyl. guinoxalmyl, cmnolnyl, benzimidazoly, imidazopyridy, benzofurany, benzotsoxazoly, benzoxazoly, benzothazoly, oxazolopyridyl, isothazolopyridyl, benzothenyl, etc; and oxoadoed rimos such as oxobenzoturay, etc.

Examples of the "heteroaryl group" are monocyclic heteroary groups such as fury, thenyl, pyroly, imidazoly, thezzoly, pyrazoly, isothiazoly, isoxazoly, pyridyl, pyrmidy, pyridaziny, pyrazinyl, thadiazoly, triazolyl, tetrazoly, etc; and bicyclic heteroaryl groups such as naphehylidinyl, pyridopyrmidnyl, etc.

The substuent in the "heteroary group which may be substituted and may be fused with a benzene ring" may be any group which can be usually substuted in this ring group. Prefered examples are a halogen atom and lower alky, lower akeny, bower alkyny, hydroxy, sulfany, hatogeno lower alky, lower alky-O-, lower alky-S--, lower alkymo-co-, carboxy, sulonyl,

 alkyene-O-.., etc. These substuents may further be substituted with a substuent such as an ary group, a heteroary group, a halogen atom, hyoroxy, sufonyl, halogeno lower alky, lower

 di-lower aky $\mathrm{N}-\mathrm{CO}-$, mitro, cyano, amino, guandimo, tower atky-CO-NH-, bower abyl-SO

heteroary group, etc. may further be substitued with a halogen atom, etc.
The "iower alkenyl group" is a linear or branched akenyl group having 2 to 6 carbon atoms. and its spedfic examples are vinyt, propenyl, buteny, pentenyl and hexenyl goups.

The "lower alkyny group" is a linear or branched alkynyl group having 2 to 6 carbon atoms, and its specific examples are ethynyl, propyny, butyny, pentynyl and hexynyl.

The "halogen atom" means a fuorme atom, a chorine atom, a bromine atom or an iodine atom, and the "halogeno lower alky group" means a group where an arbitrary hydrogen abom or atoms in the above-mentoned alky group is/are substituted with a halogen atom or atoms.

The case when x is a bond means that a carbon atom of the - Co - group is drecty bonded to the wing B.

The compound (1) of the present invention has at least one asymmetric carbon abom and therefore, there are optical somers such as (R)-compounds, (S)-compounds, etc, racemates, diastereomers, etc. The present invention includes all and each of isolated isomers and motures thereof. The present invention also includes hydrates, solvates (such as those with ethanol) and polymorphic substances of the compound (I).

The compound (1) of the present invention may form a salt with an acid. Examples of the salt are acid additon sats with mineral acids such as hyorochome acid, hydrobromic acid, hydrolodic acid, sufuric acid, nitric acid, phosphoric acid, etc; and those with organic acids such as fomic acid, aceric acid, propionic acid, oxalic acid, maknic acid, succinic acid, fumaric aid, maleic acid, botic acid, mall acid, citric acid, tartanic acid, cobonic acid, plocic acid, methanesufonic acid, ethanesulfonic acid, glutamic acid, etc.

Manufacturing Method

The compound of the present invention or the salt thereof may be manufactured by application of various synthetic methods utizing the characteristics of its fundamental skeleton or type of the substifent, Representative manufacuring methods are iflustrated as hereunder.

First Manufacturing Method

(In the formulae, $R^{(1 a)}, R^{(a b)}, R^{(2)}, A, B, x$ and Z have the same meanings as defined already; $\mathrm{R}^{(0)}$ is a protective group for amino; and $\gamma^{(1)}$ is a leaving group, and more specifically bydroxy, lower alkoxy or hallde.)

In this method, the compound (11) and the compound (w) are subtected to amidation, and the protective group is then removed therefrom to synthesize the compound (1) of the present invention.

The amidation in this mamufacturing method can be conducted by customery mamers.
The solvent may vary depending upon γ (t) of the compound (Th) and mosty, an mert sovent or an alcoholic solvent (such as isopropanol, etc.) may be applied.

When $Y^{(1)}$ is a hydroxy group, a method where the reaction is conducted in the abovementioned solvent in the presence of a condensing agent may be applied. Examples of the condensing agent are N, N\′-dicyclohexylcarbodimide (DCO), 4 -ethy- 3 - (3dimethylaminopropy)carbodimide (EDCl), $1,1 \& p r m e ;$-carbomyldmidazole (CDI), diphenylphosphorylazide (DPPA), dethylphosphory cyanide (DEPC), etc.

When $Y^{(1)}$ is lower akoxy, a method where the reaction is conducted under heatho or refuxing as it is or in the abovermentioned inert solvent may be applied.

When $\gamma^{(1)}$ is halde, a method where the reaction is conducted in the above-mentoned inert solvent in the presence of a base may be applied.

Examples of the hert solvent are dmethylformamide (DMF), dmethylaceramide, tetrachloroethane, dichoromethane, dichloroethane, choroform, carbon tetrachloride, tetrahydrofuan, doxane, dimethoxyethane, ethyl acetate, benaene, toluene, xyene, acetontrile, dmethyl sufoxide, etc, and mixed solvents thereof, and they may te appropriately selected cepending upon each reaction condition, Examples of the base are inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium camonate, ece; and organc bases such as N-methymorpholine, triethylamine, disopropylethylamine, pyridne, etc.

The protecive group of the ammo represented by R (o) means a protective group which is commonly used for ammo by those skilhed in the ark and its representative examples are acy such as fomyl, acery, propionyl, methoxyacetyl, methoxypropiony, benzoy, thenyacetyl, thazolyacety, tetrazolylacety, thazolylglyoxyloy, thenylglyoxyby, etc; bower alkoxycaroonyt such as methoxycarbonyl, ethoxycarbonyl, tert-butoxycarbonyl, etc, arakyoxy-carbonyl such as benzyloxycarbony, p-ntrobenzyloxycarbony, etc; ; lower alkanesulfonyl such as methanesufony, ethanesufony, etc; araky such as benzy, p-nirobenzy, benabydry, trity, etc; tri-(lower aiky)silyl such as trimethyisily, etc; and the like.

Removal of the protective group in this manufacturng method may be conducted by customary manmers. For example, the protective group for amino represented by $\mathrm{p}_{\text {(a) }}$ may be easily removed, for example, by i) a method where in case that the protective group is benchydry, pmethoxybenayl, trity, tertubutoxycamonyl, formyl, etc. treatment with an acid such as formic acd, thfuoroacetic acid, a thluorocetic acidmasole mixed sohtion, a hyoboromic acid-acetic acd mixed solution, a thedrochloric acid-doxane mixed solution, etc. is conducted; i) a method where in case that the protective group is benay, pnotrobenzy, benzhydry, trityl, etc, a cataytc reduction method using pabadum-camon or paladum hydroxide-carbon is conducted; and in) a method where in case that the protective group is a tri-(lower alky) siby or the like, treatment with water, fluoride anion (e.g., tetra-n-butyammonum fuoride, sodum fluoride, potassium fuoride, hydrofuoric acid), etc. is conducted.

Secona Manufacturing Method

In this manufacturing method, the compound (V) is reacted with the compound (V) to give the compound (1) of the present invention.

The amine compound (V) and the compound (V) are reacted under heating or refluxing for to 24 hours as they are or in an inert solvent, to give the compound (1) of the present invention.

Examples of the hert solvent are acetonitile, tetrahydrofuran, 2 -butanone, dimethyl sulfoxide and N-methyipymolidone. In the reaction, a base such as sodum bicarbonate, potassium carbonate or disopropytethylamine may be added to the reaction mixture.

Incidentally, in the above manuracuring methods, it is possible to purify the resultng substance by removing undesined by-groducts by means of reaystalization, pulverization, preparative thin layar chromatography, silla gel flash chromatography (as described in W. C . Sti, et al., J. Org. Chem, 43, 2923(1978)), medium-pressure bquid chromatography and HPlC. The compound produced through HPLC con be isolated as a coresponding salt.

The starting material used in the above mentioned manuacturng methods may be easiy manufactured by the methods which are known to those sklled in the art. One of the representative methods is shown as hereunder.

Manufacturing Method for the Starting Compound (i)
(In the formulae, $\mathrm{R}^{(1.3)}, \mathrm{R}^{(\mathrm{ab})}, \mathrm{R}^{(2)}, \mathrm{R}^{(a)}$, A and Z have the same meanimgs as defined already; $\mathrm{R}^{(b)}$ is a hydrogen atom or an arally-based protective group for amino; and $\mathrm{p}^{(c)}$ is epony, 2 . hatoacetyl or 1-carboxymethan-1-ol.)

This manufocturing method is composed of from step (a) to step (c) in which the step (a) is a step where the compound (VI) is reacted with the compound (VM), followed by reduction reaction to give the compound (vala) depending upon the type of p (c); the step (b) is a step where protection is conducted when $\mathrm{R}^{(0)}$ of the compound (VIMa) is a hydrogen atom, and the step (c) is a step where nitro is reduced to amino to give the compound (in).

Examples of the araky-based protective group for amino used in thas manuactumg method are benzy, pmimobenzy, benahydry, etc.
$\operatorname{step}(a)$
Hustration is made for the following three cases.

1) When $\mathrm{p}^{(c)}$ is epoxy, the compound (vi) may be reacted with the compound (van) by the same maner as in the above-mentioned second manufacturing method. Reacton conofions such as reaction temperature, solvent, etc, are the same as well.
2) When $\left.\mathrm{p}^{(\mathrm{c}}\right)_{\mathrm{s}} 2$-haloacety, the compound (v) is reacted with the compound (VI) in the presence of a base, followed by reduction reaction to prepare the compound (vma), The base is the same as that mentioned in the first mamuacturing method. The reduction reaction moy be conducted in the abovementoned inert solvent or in a sohvent of an alcohol type with stming in the presence of a reducing agent. Examples of the reducing agent are sodium borohydride, sodium cyanoborohyoride, tithium abminum hydride, borane, etc.
3) When $\mathrm{p}^{(\mathrm{c})}$ is incarboxymethan- 3 - l , the compound (VD) is reacted with the compound (Vn) in the presence of a condensing agent, followed by reducton reaction the same maner as in 2) to prepare the compound (VIMa). The condensing agent is the same as that mentioned in the first manufacturing method.
$\operatorname{sten}(b):$
When $n^{(b)}$ in the compound (VMa) is a hydrogen atom, the amino group is protected by customary manmers using ditertbuty dicabonate, etc, to prepare the compound (Vana).

Step (c):

A method for the reduction of nitro to ammo may be conducted by customary maners such as metalic reduction using iron, zinc, etc, and catalytic reduction using a catalyst such as paladum-cabon, paladium hydroxide-carbon, Raney nickel, etc. Riabecomes a hydrogen atom depending upon the reducton condtons, but it may be protected agan by customary manners.

Manuacturing Mehod for Stanting Compound (IV)
(An the formulae, $R^{(1 a)}, R^{(1 b)}, R^{(b)}, A, B, X$ and $Y^{(1)}$ have the same meanings as defined already.)

This reaction is a reaction where the compound (IX) and the compound (II) are subected to amidabon reaction to give a compound (iva) and, when $\boldsymbol{p}^{(6)}$ is a protective group for amino, the protective group is removed to give a compound (V). The amdation reaction can be conducted by bhe same manner as in the abovementioned first manufacuring method, and the reaction conditions such as reaction temperature, solvent, etc, are the same as well.

This reaction is a reaction where the compound (X) and the compound (IL) are subjected to amdaton reaction and then to reduction reaction to give a compound (ivb) , The amoaton reaction can be conducted by the same manner as in the abovementioned first manutacturng method, and the reaction condions such as reaction temperature, solvent, eto, are the same as weth in the reduction reaction, the abovermentioned cotalyt reduction, or a method where reducton is conducted using sodum boronydide in the presence of cobalt chlonde, may be applied.

With regard to other compounds such as the compound (II), the compound (V), the compound (V), and the compound (VH), those which are avalable in the market or are appropriately synthesized by known methods (such as N-akyetan reaction, cychzation reacton, hydrotysis reaction, etc.) from the commercially avalable compounds may be used.

The compound (I) of the present invention which is manufactured as such is isolated and purfied as a free compound, a salt thereof obtaned by means of satt fomation by customary manners, a hydrate, a solyate with various solvents such as ethanol, ete, or polymomphic orystals, etc. The isolation and purfication may be conducted by applying common chemica operations such as extracton, concentration, evaporation, cystallzation, fitration, recrystallzation, various chromatographic methods, etc.

Vanous isomers may be solated by customary manners utizing the physion-hemical differences between the isomers. For example, the racemate can be converted to stereochemicaly pure isomers by common racemic resolution (such as a method where the racemate is changed to diasteremer sats with usual optically actue acid for example, tartaric acd), followed by opticat resolution, and the like). Incidentaly, a mixure of diastereomers may be separated by customary method swh as fractional crystalizaiton or chromatography, etc. In the case of an opticaly active compound, it may be mamfactured starting from an appropriate opticuly active materm.

Industral Applicabinty

The phenethanol dervative of the present invention represented by the general formula (1) or the salt thereo has both an msum secretion promoting acton and an insuln sensitivity potentiating action and aso has a selective β_{3}-receptor stimutating action, so that it is wseful as a therapeutic agent for diabetes mellitus.

As confimed by a ohcose tolerance test and a hypogycemic test in insuln-resisting mode animals as described later, the compound of the present mvention has both a good insum secretion promotng action and a good insultn sensitwty potentating action, so that its wsefuness in dabetes mellus is expected, Athough the $\beta_{(3)}$ receptor stmulating acton may have a possibity of partipating in expression of the insuln secretion promoting action and the
insulin sensitivity potentating action, other mechanism might also possibly partipate therein, and the detals thereof have been sull unknown yed. The $\beta_{(3)}$ receptor stmuating action of the compound of the present invention is sekective to $\beta_{(3)}$ receptors in human being. It has been known that the stmulation of $\beta_{(3)}$, receptor stimulates decomposition of fat (decomposition of the fat ticsue triglyceride mto glycerol and free faty acid), whereby a disappearance of fat mass is promoted. Therefore, the compound of the present invention has an antiobesity action and an ant hyperipemia action (such as trighceride towering action, cholesterok lowering action and HDt cholesterol increasing action) and is useful as a preventive and therapeutic agent for obesity and hyperipemia (such as hyperniglyceridemb, hyperchotesterolemia and hypo-HDL-hpoprotenemia; Those diseases have been known as animus factors in chaberes mellus, and amelionation of those diseases is useful for prevention and therapy of dabetes mellitus as well.

The conpound of the present mention is also useful as a preventive and herapeutc agent for other diseases where the improvement of symptom can be acheved by reducing the symptoms of obesity and hyperipemia such as ischemic coronary diseases such as arterioscherosis, myocardat marction, angina pectoris, etc. cerebral arterioscerosis such as cerebal inarcton, etc, or anebrysm, etc.

Further, the selective $\beta_{(3)}$-receptor stmulating action of the compound of the present invention is useful for prevention and therapy of s several diceases which have been reported to be improved by the stimulation of $\beta_{(3)}$ receptor. Examples of those diseases are shown as follows.

It has been mentioned that the $\beta_{(3)}$-receptor mediotes the mothty of non-sphincteral smooth musce contraction, and because it is believed that the selective $\beta_{(3)}$ receptor stimulating action assists the phamacological control of intestmal motilty without bemg acompanted by cardiovescular action, the compound of the present invention has a possibity of being usefut in therapy of the diseases caused by abnomal intestina motity such as various gastromtestmal diseases including irvibable colon symdrome. it is also useful as the therapy for peptic uicer. esophagite, gastritis and duodentis (including that induced byt pylor), entereloosis (such as inflammatory intestinal diseases, wherave colitis, chonal disease and proctis).

It is further shown that the $\left.\beta_{(}\right)$receptor affects the mhbition of retease of neuropeptide of some sensory foers in lung. The sensory nerve plays an important role in nevrogenic inflammation of respiratory tract including cough, and therefore, the specific $\beta_{(3)}$-agonist of the present imention is useful in the tharapy of newrogenic inflommation and in addition, has lifte action to cariopumonary system.

Moreover, the $\theta_{(3)}$ adrenaline receptor is capable of resulting in a selectwe antobepressant action due to stimulation of the $\beta_{(\beta)}$ receptor in bram, and accordingly, the compound of the present invention has a possibilty of being useful as an antidepressant.

The action of the compound of the present invention has been ascertamed to be selective to 3 (3) peceptors as a resut of experments using cells expressing human type receptors, and the adverse acton caused by other $\beta_{(3)}$ receptor stmulaton is low or none.

Effects of the compound of the present invention have been ascetained by the following tests.

1. Hypoghcemic Test in kk Mice (nsuln-resisting model; Obesity and Hyperglycema)

Mate kh mice (blood sugar level: not lower than 200 mgi) were subjected to a measurement of blood sugar level under feeding and then randomly classined into groups. The drug to be tested was compulsonly administered oraby or suboutaneously once daly for four days, and the
blood sugar level after 15 to 10 hours from the final administration was compared with that before the admintration ($n=6$). The blood was collected from a tall vem of the mice using a glass caphary (previously treated with hepami), the protein was removed therefrom, and the amount of ghacose in the supernatant houd (mg/d) was measured by calormetric determinaton by meens of a glucose oxidase method. Furber, a dose at which the blood sugar leyel was lowered by 30% as compared with that before the administration with the drug to be tested was expressed as an $E D(30)$ value.

As a result, the compound of the present invention signifantly lowered the blood sugar level as compared with that before the administration with the drug to be tested in both cases of oral and suboukameous amminstrations. in particular, some of the compounds of the present invention exhbited a strong activity so that the $\mathrm{EO}(30)$ value in the orat admmistration was 3 mgkg/tay or less. On the other hand, in the abovereferenced wo $95 / 29159$, the compound of Example go had an ED(30) value of $30 \mathrm{mg} / \mathrm{kg} / \mathrm{day}$ or more, and the compound of Example 92 had an $E D_{(30)}$ value of $30 \mathrm{mg} / \mathrm{kg} / \mathrm{day}$. From this fact, it has become clear that the compounds of the presemt invention have a superior potentiating action to insuin senstivity as compared with those of the above-referenced WO 95/29159.

2. Glucose Tolerance Test in Normai Rats

Mate rats of $5 D$ strain of seven weeks age were fasted for a whole day and nigh, then randomly classified mo groups and subjected to an ora glucose tolerance test (OGT) (n+4). The compound to be tested was admmistered orally or subcumaneously at 30 minutes before admmistation of glucose ($2 \mathrm{~g} / \mathrm{kg}$ by onal ammistration), The blood was collected from an abdominal aorta using a heparintreated glass symge from the rats which were anesthetized with pentobarbut ($65 \mathrm{mg} / \mathrm{kg}$), the proten was removed therefrom, and the amount of glucose in the supernatant liouid (mg/di) was measured by colormetric detemmation by means of a glucose oxidase method. The insuln value in blood was detemined by measurng the amount of insuln in plasma (ng/m) by means of radiommunoassay (RLA).

As a result, in a group where the compound of the present invention was administered oraly or subcutaneously, a signifant increase in the inculin value in blood was observed as compared with the group to which no drug was given. An increase in the sugar blood level after administration of glucose was signiticanty mhibited as well. From those results, it is apparent that the compound of the present invention has a good insulin secretion promoting action and a good hyperglycemia inhibiting action.

3. Stmalating Test to Hmman $\beta_{(3)}{ }^{*} \xi_{(2)}$ and $\xi_{(1)}$ receptors

Human $P_{(3)}$ stimutating action was investigated using an $5 k$ - 1 - MC cell system (cells in wheh human $\beta_{(3)}$ receptor and human $\beta_{(1)}$-receptor were permanenty expressed were purchased) white human $\xi_{(a)}$ and $\xi_{(1)}$ stmulating actions were investigeted using a CHO cell system (cells in which each of human $\beta_{(2)}$ and $\beta_{(1)}$-receptors was compusorly expressed were purchased). Stimulating action of the compound ($10^{(8 m i n t r ; 10)}$ to $10^{(8 m i n s ; 4)}$) were investigated by incubating $10^{(5)}$ cels/wel of each of the cells on a 24 n-well plate and checking under a subconthent state ater two days using a producing activity of cydic AMP (camp) as an index. Incidentaly, the human $\beta_{(3)}$ stmulating acton was mvestigated in the presence of a $\hat{\beta}_{(1)}$. receptor blocker (CGP20712A, to (3mins;b)M), Amount of production of camp in each cell (pmolmi) was measured by an RIA method using (25)T-cAMP. Intensity of action of each compound was compared by calcuating the pD2 value and the maximum activity ($1 . A .(\%)$ where the maximum reaction of 10 (kminus; 6 m isoproterenol was defned as 100% from the resulting dosereaction curve.

As a result, it has been ascertained that the compound of the present invention has a selective stmulaing acton to human $\beta_{(3)}$ receptor.

A phamaceutical composition containing one or more of the compound of the present invention or the sabt thereof as an effectue ingredient is grepared using common pharmaceutically acceptable vehcies. Administration of the phamaceutical composition according to the present invention may be elher by oral administration or by parenteral administration by, for example, injection, suppostory, subcutaneous agent, mhaling agent or intacystic infusion.

The dose may be appropriately decied depending upon each particular case while takg into consideration symptom, age, sex, ctc, of the patient but uswally, ts around 0.0 mg mg to $\mathbf{t o o}$ molkg per day for aduts in the case of oral adminstration, and that is administered at a time or by diving into 2 to 4 times a day. When intravenous injection is conducted depending upon the symptom, the dose is usualk around $0.00 \mathrm{mg} / \mathrm{kg}$ to $10 \mathrm{mg} / \mathrm{kg}$ per day for adults, and that is administered at a time or by dividing into two or more times a day,

Whe regard to a vehole for the preparaton, nontoxic sold or houid substances for phamacenticals may be used.

Examples of the solid composition for use by means of orat admmistration according to the present invention are tablets, pils, capsules, dhuted powder and granules. In such a solid composition, one or more active substances are mixed with at least one mert excipient such as lactose, manntol, ghoose, hydroxypropyl cellulose, microcystalline cetulose, starch, polywinypyrolidone, agar, pectin, magnesium metasilicate aluminate and magnesium alwminate, The composition may also contam additives other than the iner excipient such as fubricants such as magnesium stearate; disinegrants such as calcum celloose gycolata; stabizers such as bactose; and auklary solublizers such as ghtamic aci or aspartic acd by customary manners. Tablets and pills may, if necessary, be coated with sugar coat such as sucrose, gelath, hydroxypropy cellolose, hyoroxypropymethyl celluose phthatate, eto, or with film of gastric or enteric coating substances.

The iquid compostion for ora admintration includes pharmaceuticaly acceptable emulions, solutions, suspensions, syrups and elixirs and contains commonly used ment excipients such as purfied water or thanol. In addition to the inere excipient, the compostion may further contan awillary agents such as moistarizimg or suspending agents, sweeteners, tasting agents, aromatic agents and antseptic agents. The injection for parenteral administration moludes aseptic aqueous or non-aqueous solukons, suspensions and emusions. The non-aqueous solutions and sucpencions include, for example, distiled water for ingection and a physiological salne solution. Examples of the solvent for non-aqueous solution and suspension are propylene glycol; polyehylene glycot; plant olls such as cacao butter, olve of and sesame oil; alcohols such as ethano; gum arobic; and polysolvate 80 (trade name). Such a composition may futher contain auxiliary agents such as isotonizing agents; antiseptic agents; moisturizing agents; embliffers; dispersing agents; stabinzers such as lactose; and auxhary solubilaers such as glummic acid and aspartic acid). These may be starized, for example, by fitatom passing through a bacteria-preserving fiter or by compounding of or iradiation with a bactericide. These may also be used by manfacurng a sterile sold composition, followed by dissolving in sterle water or a sterile solvent for infecton before use.

Best Mode for Carying Our the Muention

DETDES

The present mventon is further hustrated by way of Examples as hereunder. Compound of the present invention are not hmited to those mentioned in the following Examples but cover all of the compoums represented by the above general formula (1), salts thereof, hydrates thereof,
geometic and optical isomers thereof and polymomphic toms thereof. Incidentaly, the case where the makeral whoh is used in the present inventon is novel is illustated by way of the following Referential Example.

REFERENTAAL EXAMPLE 1

To a mixed soluten of ethyl acetate and a 1 a aqueous sobtion of sodum hyoroxide was added 25.29 of 4 nitropheny ethyamine mydrochlorde, and the mixture was vigorously stimed. The organc layer was dried over anhydrous magnesium sulfate, and the solvent was evaporated. To the resuting restue were added 100 ml of 2 -propanol and 150 g of (R) styrene oxide successively, and the reaction mixture was heated to reflum for 12 hours. The solyent was evaporated in vacuo, and the residue was puribed by slica gel column chromatography (eluent: choroform/methanol $=100 / 1$ grarr; 10/1) The resuthg residue was agam subjected to sinca gel column chomatography (eluent: hexane/ethyl acetate/tiethylamine $=1 / 5 /$ trace) to give 8.059 of $(R)-1$-pheny $(2-[[2-(4-$ norophenyl) ehyl]aminojehanot.

REFERENTAAL EXAMPLE 2

A solution of 8.02 g of (R$)$-1-phenyl $2-[[2-(4$-ntrophenybethyl]ammolethanol and $6,30 \mathrm{~g}$ of ditertbutyl dicarbonate in 80 mi of tetrahydrofuran was stred for 12 hours at room temperature. The residue obtained by evaporation of the solvent was parfied by shica get column chromatography (eluent: hexane/ethylacetate $=3 / 1$) to give 10.8 g of tert-buty (P) M-(2-hydroxy-2-phemplethy)- $\mathrm{N}-[2-(4$-nitro-pheny)ethyloarbamate.

REFEREMTMALEXAMPLE 3

To a sohtion of terthutyl (R$)$ - $\mathrm{Nu}(2$-hydroxy- 2 -phenylethyl) $\mathrm{N}-[2 \sim(4$-nitropheny $)$ etmy $]$ carbamate in 200 m of ehanol was added 1.03 g of 10% palladum-carbon and the maxture was strred for wo hours at room temperature in a hyorogen atmosphere under atmospheric pressure. Insoluble matters were removed using Celte, and the filtrate was concentrated in vacuo to gue 9.54 g of tert-butyl (R)- m - 2 -(4-ammopheny)-N-(2-hydroxy- 2 -phenylethyl) ethyl] carbamate.

REFERENTMA. EXAMPIE 4

To a solution of 448 mg of tert-butyl (R)-N-[2-(4-ammopheny)-N-(2-nydroxy-2-phenytety) ethyllcamamate and 330 mg of triethybmine in 4 m of chloroform was added 146 m$\}$ of 2 pyridinecarbonyl chloride. The reaction solution was stired at room temperature for two hours, and the solvent was evaporated in vacuo. The residue was dituted with chorotom, and the organic byer was washed with a seturated aqueous solution of sodium hydrogen carbonate and dried over anhyoros magnesium sulfate. The residue obtained by evaporating the solvent in vacuo was purfied by slica gel column chromatography (chent hexane/ethyl acetate=1/3) to give 321 mg of tertbuty (R) N (2 -hydroxy- 2 -phenylethyl $\mathrm{N}=[2-[4-[(2$-pyridinecarbony) $)$ aminolohenyle etylacarbamate.

REFEREMTALEXAMPLES

 ethy]carbanate in 10 ml of tetrahydrofuran were added 203 mg of 1 -ethyl 3 - $(3-$ dimethylamopropyl)carbodimide hydrochloride, 143 mg of l-byoroxybenotrazobe and 202 mg of 8 -quinolinecarboxyic acid successively. The reaction solution was stirred at room temperature for 18.5 hours, and the solvent was evaporated in vacuo. The residue was diuted
whin ethyl acetate, and the organ tayer was washed with a saturated aqueous solution of sodium hydrogen caronate and dried over anhydrous magnesum suftate. The residue obtaned by evaporation of the sobent was purified by siba gel column chomatography (eluent:
 [4-[(8-quinolnecarbony)amino]phenylethyl]carbamate.

MEFERENTAAL EXAMPLE 6

To a solution of 403 mg of tert-buty (R) $-\mathrm{N}-(2$-hydroxy- 2 -phenyethy)- $-[2-[4-[(2-1 H-$ imidazol- 2 -yacetylaminolphemyluehylucatbamate in 10 miof acetonitrile were added 120 mg of potassum carbonate and 164 mg of 2 -fuorobenzy bromide successively at room temperature. The reaction solution was stimed at $50^{\circ} \mathrm{C}$, for 12 hours. Insolnble matters were flered of using celte, and the solvent was evaporated. The resuling residue was purfied by silica gel column chromatography to give 253 mg of tert-buty $\langle\mathbb{R})-\sqrt{3}-[2-[4-[2-[1-(2-$
 cabamate.

REFERENTAA. EXAMPAE7

To a solution of 13.4 g of (P) 2 [N benayl $\mathrm{N}[2 \times(4$ nitrophenyl)ethylaminoln 1 phenylethanol in 150 m of methanol were added 8.6 of iron powder and 40 m of a 2 N agueous hydrochoric acid solution. The reaction mixture was heated to reflux for two hours, a 1 N aqueous solution of sodium hydroxide was added thereto, and the insoluble matters thus produced were filered off using Celite. The fitrate was concentrated in vacuo to remove the methanol. The resulting aqueous phase was extracted with chloroform, the organic layer was dred over anhydrous magnesium sulfate, and the solvent was evaporated in vacuo. The resulting residue was purfied by silica gel colum chromatography (eluent hexane/ethy acetate-1/1) to give 11.45

REFERENTAL EXAMPLE

 336 mo of ethy $2-(3$-methylpyridin- 2 -yl)acetate and 10 ml of $x y \ln$. The reaction mixture was refluxed for nine hours, and the solvent was evaporated in vacuo. The resuling residue was purfied by silha gel column chromatography (cluent: hexane/ethy actate=1/3) to give 222
 methypyridn-z-vDacetanilide.

REFERENTAALEAMPLE 9

To a sofution of 0.969 of 2 fiworocetophenone in 20 mi of tetrahydrofuran was added 2.65 g of benzlumethylammonum tibromide. The reacton mixure was stired at room temperature for 30 mimutes, insohble matters were fitered off, and the solvent was concentrated in vacuo. The resuling residue was dissolved in 40 ml of 2 -butanone, then 1.81 g of N -benay 4 nitrophenethylamme and 0.92 g of disopropyl ehybmine were added, and the reacton mixure was heated to refux for one hour. The solvent was evaporated in vacuo, ethy acetate was added thereto, and the mixture was washed with water and a saturated salne solution successively. The organic layer was dried over anhydrous magnesium sulfte and evaporated in vacuo. The resulting residue was thssolved in 40 ml of methanol, $0,34 \mathrm{~g}$ of sodum borohydide was added thercto, and the reaction mixture was stired at room temperature for one hour. The solvent was evaporated in vacuo, ethy acetate was added, and the mixure was washed with water and a saturated saline solution successively. The organic layer was dried over amhyrous magnesium sufate and evaporated in vacuo. The resulting residue was punfed by silica gel
 niwopheny)ethy) amino]-3.-(2-fuorophenyl)ethanot.

REFEREMTAL EXAMPLE 10
A reaction mixture of 5.12 g of methyl 2 -pyridyacetate. 5.14 g of 4 -mmobenzy cyande and 50 mi of xylene was heated to reflux for 24 hours. An appropriate amount of the solvent was evaporated, dethyl cther was added to the residue, and the resulting crystals were taken by fitration to give 5.65 g of $48 p$ rime; -cyanomethy)- $2 \sim(2-p y$ idy)acetanibide.

REFERENTAL EXAMPIE II

To a solution of 640 mg of 48 mpm ;-cyanomethy- $2-(4,6-$ dimethy- 2 -pyridy)acetanide in a 5 mi of tetrahydrofuran was added 15 ml of an ethanolic suspension of a Raney nekel, and concentrated aqueous ammona was adced to adjust the pH of the mixture to about 10 . The mbture was stirred at room temperature for one hour in a hyorogen atmosphere under atmospheric pressure, The reaction mixture was fitered using Celite, and the solvent was evaporated in vacuo to give 640 mg of 4 kpmer- $(2-a m m o m e t h y)-2-(4,6-6 i m e t h y \mid-2-p y r i d y)$ acetanilide.

REFERENTMAL EXAMPLE 12

To a solution of 630 mg of 48 prime:- 2 -ammomethy) 2 - 4,6 -dimethy- 2 -pyridy)acetanide it 20 ml of tohene was added 0.27 ml of benzaldehyde, and the mixture was heated to reflux for three hours using a Dean-starke apparatus. The reaction mixture was fitered, and the sobent was evaporated in vacuo. A solution of the resulthg residue in 30 m of methanol was coled at $0^{\circ} \mathrm{C}, 63 \mathrm{mg}$ of sodum borohydride was added, and the moxture was strred at $0^{\circ} \mathrm{C}$. for one hous. About one-half of the solvent of the reaction mixture was evaporated in vacuo, water and ethyl acetate were added to the resdue, the organic layer was washed with a saturated same solution twice and dred over anhydrous magnesium sulfate and the solvent was evaporated in vacuo. To a solution of the resulting residue in 50 m of fopropanot was added 0.26 m of (R)styrene oxide, and the mixture was heated to teflum for 12 hours. The solvent was evaporated in vacuo, and the resulthe residue was purfied by shlica gel column chromatography (eluent:
 phenylethyl)-aminolethyl $-2-(4,6-d m e n y-2-p y r i d y) a c e t a n i l d e$.

EXAMPEE:

A 4 N hydrogen chlotde-ethy acetate solubn (10 mb) was added to 10 m of an ethanolic solution of 458 mg of tert butyl (R$)-\mathrm{N}$ - (2-hydroxy- 2 -phenylethy) $\mathrm{N}-[2-[4-[2$-pyridinecarbony) ammolphenyliethyparbamate. The reacton solution was stred at room temperature for three hours, and the solvent was then evaporated in vacuo. The obtaned crude crystals were recrystallized from methanol-ehanomethyl acetate to give 289 mg of (R)-4qprime: $[2 \sim(2$ -hydroxy-2-phenyl-ethybamolethyll-2-pyridnecarboxandide dhydrochoride.

The compounds of Examples 2 to 33 were prepared by the same manner as in Example 1.

EXAMPLE 2
 dimydrochoride

EXAMPES 3
(R) $41-[2-[(2-H y d r o x y-2$ phemylethyl)aminolethyl $]-8-g u m o l n e c a r b o x a n i b e$ dhydrochoride

EXAMPLE 4
 dinvarochlonde

EXAMPEE 5
 dibydrochonide

EXAMPLE 6
 acetanilide olinydrochoride

EXAMPLE 7
 hydrochloride

ExAmpde 8
 dibydrochoride

EXAMPIE9
 hydrochloride

EXAMPLE 10
 acetanilide hydrochloride

EXAMPLE11
 oxoaceanalide dimyrochloride

EXAMPEE12
 acetamilide dityorochloride

EXAMPLE 13
 aminolethyllacetantide hydrochoride

EXAMPLE 14
(R)-2-[(2-(3-Fworophenysmino) thiazol-4-y)-4\&prme; $[2-[(2-m y d r o x y-2-p h e m y t h y]) a m o]$ ethy]acetanilide dinydrochloride

EXAMPEE 15
 tydrochloride

EXAMPLE 16
(R)-2~[2-Benzyloxypyridm-6-yl)-4\′ (2n[(2-13ydroxy-2~phenylethy)amino]ethy] acetanilide hydrochloride

EXAMPEE 17
(R)-48prime; $[2-[(2$-hydrox- 2 -phenylethy)ammo $]$ ehyl $]-2-[1-(2$-methyl-3-propenyl)-1H-imidazol-2-y)acetanilide dihydrochloride

EXAMPLE 1 B
(R)-2-(1-Benzy-1H-imidazol-4-yl) 48 prime; $[2 \sim[(2-h y d r o x y-2 \sim$ phenylethyl)aminolethyl acetanilide dinydrochloride

EXAMPEE 19
(8)-2-[1-(2-Chorobenzyl)-1h-imidazol-4-y $]$-4\′-[2-[2-hydroxy-2-phenylethy)ammo $]$ ethyliacetanmode dinydrochloride

EXAMPLE 20
 ethylacetanitide dibydrochloride

EXAMPLE 21
 ethylacetamide dinydro-choride

EXAMPEE22
 ethy]acetamilde dhydrochlonde

EXAMPLE23
(R)-2-[1-(4-chorobenzy)-1f-imidazo-2-yl]-48pmme; $[2-[(2-$ hydroxy-2-phenylethy)ammo $]$ ethylacetanilide dinyorochloride

EXAMPLERA
 ethylacetanilde dinydrochoride

EXAMPLE 25
 y)acetanime dinydrochoride

EXAMPEE 26
 imidazol-2-yllacetanilide dinydrochoride

EXAMPLE 27
 acetanilide dibydrochloride

EXAMPLE 28
 aminolethyllacetanmide dihydrochoride

EXAMPLE 29
 aminolethyluacetanime dimydrochloride

EXAMPIE 30
(R)-2-[1-(4-flworobenzy)-1H-tetrazo-5-y]-4aprime;-[2-[(2-hydroxy-2-phenylethy)amino) ethyl]acetanilide hydrochloride

EXAMPLE 31
$(R)-2-[2-(3,4$ Dichorobenzy $)-1 H$-tetrazo $-5-y /]-48$ prime; $[2 \sim[2$ hydroxy-2-phenylethy)emino $]$ athyl]acetanilide hydrochoride

EXAMPLE 32
 ethylacetanilde hydrochoride

EXAMPLE 33
 ethylacetanilide hydrochionde

EXAMPLE 34

 ethyln (2 -hydroxy 2 -phenylethy) carbamate in 5 m of mefhanol was added 4 mi of a solution of 4 h hydrogen chloride in ethyl acedate. The mbuture was stired at room temperowre for three hours, the solvent was fitered off, and the resulting powder was washed with ethanol. The resulting powder was dried to give 125 mg of (R)-48prime; $[2-(2$-hydroxy- 2 phenylethyl)

The compounds of Examples 35 to 40 were prepared by the same manner as in Example 34.

EXAmpIE 35
 ethybacetanilide dhydrochloride

ש人AMPLE 36
(R)-2-(2-Acetamidothazol-4-y) -48prime:-[2-[(2-hydroxy-2-phenylethy)amino]ethy] acetanilide hyrochoride

EXAMPE 37
 ylbacetanilde hydrochoride

EXAMPLE 38
(P)-2~(2-Guandmothazol-4-yd)-48prime; [2-[(2-hydroxy-2-phenylethylaminolethyl] acetanilde dihydrochloride

Example 39
(R)-48prme;-[2-[(2-Hydoxy-2-phenylethy)ammothy]-2-(2-phenyaminomazol-4-y) acetamilde hyoromboride

EXAMPIE 40
 Yacetanilde hydrochoride

EXAMPEE41

To 690 mg of tert-buty $(R)-N-[2-[4-[2-(2-a m m o n t h a z o l-4-y) a c e t a m i n o] p h e n y l e t h y l)-N-(2-$ hydroxy-2-phenybethyloabamate were added 30 m of methanol and 15 m of a solution of 4 N hydrogen choride in ehyl acetate, and the mbuture was stired at room temperature for wo hours. The solvent was evaporated in vacuo, and the residue was pumfed by a reverses phase column chromatography (eluent: water/methanol $2 / 1$) to give 310 mg of (R)-2~(2~
 dmydrochomde.

The compounds of Examples 42 to 57 were prepared by the same manner as in Example 41 .

EXAMPLE 42
(R)-48pmme; [2-[(2-Hydroxy-2~phenylethylammo]ethyl] (2-ammo thizzol-4ny)carboxanide hydrochloride

Example 43
(E)-2-(2-Amino-5-methybhazol-4-y)-48prime;-2-[(2-hyoroxy-2-phenyethybamolethyl acetanilide dimydrochoride

EXAMPLE 44
 propionanilide hydrochoride

EXAMPLE 45
(R)-48prime; [2-[(2-Hydroxy-2-phenylethy)amino]ethy]-(2-amino-4,5,6,7-tetranyabonzothazob-4-y)canoxanilide dinyorochoride

EXAMPEEA6
 acetanilide mydrochoride

EXAMPLE 47
 acetanilide hydrochloride

EXAMPEE 48
(R)-2-(1-Benzy-3A-1,2,4-6iazol-3-y)-48prme;-[2-[(2-hydroxy-2-phenyethy)aminolethyl] acetanilide hydrochloride

EXAMPLE 49
 acetanilide hydrochioride

EXAMPLE 50
 caboxanilde dhyorochlomde

EXAMPLES1
 acetanilide dibydrochloride

EXAMPLE 52
 imidazol-2-ybocetanilide dhydrochoride

EXAMPEE 53
(R) 4 4prime; $2 \sim(2-H y d r o x y \sim 2$ phenylethy)amino]ethy $]-2 \sim[(1 \sim(4 \sim p h e n y b e n z y)-1 H$ imidazol 2-yliacetanilide dhyorochborde

EXAMPLE 54
(R)-2-[1-(2-Chorobenzy)-1f-imidazo-2-y]-48prime; $[2-[(2-$ hydroxy-2-phenylethy)ammo $]$ ethylacetanilide dinydrochloride

EXAMPEE55
(B)-2-[1-(3-Cnorobenzy)-14-imidazo-2-y]-4\′-[2-(2-hydroxy-2-phenylethy)ammo $]$ ethylacetanilde dinydrochoride

EXAMPLES6
 aminolethylacetanilide dinydrochoride

Examples
(R)-48prme; $[2-[(2-H y d r o x y-2-p h e n y l e t h y) a m m] e t h y]-2-[(1-(2-\beta y r i d y) m e h y-3 H-m i d a z o b-$ 2 -vlacetanilde dinydrochorde

The compound of Example 58 was prepared by the same manner as in Example t.
(Q)-2~(2-aminopyicin-6ry)-48pme; $[2 \sim[(2-1$ ydroxy 2 -phenylethylamino]ethy]acetanilide dinydrochoride

EXAMP\&ES9
To a solution of tert-buty (R) $\mathrm{N}-[2-[4-[2-(2-a m i n o-t h a z o l-4-y]-2-o x o a c e t y a m i n o l p h e n y]]$ ethyl N - $(2$-hydroxy 2 -phenylethy) carbamate in 30 m of methano was added 130 mg of sodum borohydride at room temperature. The reaction mixture was stmed at room temperature for three hours, and the solvent was evaporated in vacuo. The residue was dissoved in 5 mi of methanol, and to this reaction solution was added 10 m of a soluton of 4 N hydrogen choride-ethyl acetate. The reacton solution was stmed at room temperature for eight hours and the solvent was evaporated in vacuo. The residue was purhed by silca gel colum chromatography (eluent: chorofom/methano:=5/1). The resulting residue was purfied by reversed phase column chromatography (eluent: water/methanol=2/1) to give 77 mo of (R)-2-(2-aminowhazo $4-y)$ - 2 -hydroxy-4\′ $[2-(2$-hydroxy- 2 -phenylethyl)-amino $\}$ acetanilide hydrochloride.

EXAMPLE 60
To 349 mg of tert-buty (R)-N-[2-[4-[2-(2-benay3-oxypysim-6-yDacetylamolphenylethyl-N-(2-hydroxy-2-phenylethyl) carbamate were added 478 mg of pentamethybenzene and 5 m of trifluroacetic acid successively. The reaction solution was stirred at room temperature for four hours, and the solvent was evaporated in vacuo. To the residue were adted water and potassium carponate to make the solution basic, and he aqueows phase was extracted with a mexed solvent of chorofom and tetrahyorofuran. The organic layer was dried over anhydrous magnesium sulate, and the solvent was evaporated in vacuo. The residue was purifed by blica get column chromatography (eluent: chorofom/methanot $=10 / 18 \mathrm{arr} 5 / 1$). To an ethanolic solution of the resulthg residue was added 100 al of a $4 N$ Hyorogen chioride-athyl acetate solution, and then the solvent was evaporated in vacuo. The resulting crude crystals were recystalled from ethanol-ethy acetate to give 65 mg of (R)- 2 -(2 -benwyloxypyidin- $6-\mathrm{y}$).

The compounds of Examples 61 to 76,83 and 85 were prepared by the same maner as in Example 1: and the compounds of Examples 77 to 82 were prepared by the same maner as in Example 43.

EXAMPLE 61
(R) 48prime;-[2-[(2-hydroxy-2-phenylethy)aminolethy]-2-(2-methypropyl-ib-imidazol-2-yl) acetanilide ditydrochloride

EXAMPLEE 2
 ethylacetanilide dinyolrochloride
 acetanilde dinydrochoride

EXAMPRE64
(8)-2-[1-(2,4-0ifuorobenzy)-3H-imidazol-2-yl]-48prime;-[2-(2-hydroxy-2-phenylethy)amino $]$ ethylacetanilde dibydrochloride

EXAMPLE 63
(R)-2-[1-(2,6-Difuorobenzy)-1H-imidazol-2-y] 48 prime; $[2-(2$-hyoroxy-2-phenylethy)ammo $]$ ethylacetamide dhydrochloride

EXAMPLE 66
 acetanilide dimydrochloride

EXAMPLE 67
 aminolethyljacetanilide dinydrochloride

EXAMPLE 68
(R)-2-[1-(3.4-0huorobenzy)-1H-imdazol-2-y13-48pmime-[2-(2-hydroxy-2-phemyethy)amino] ethylacetanilde dhydrochloride

EXAMPLE 69
 imidazol-2-y]acetanmide dinydrochoride

EXAMPEPTO
 imidazol-2-yllacetanilide dinydrochoride

EXAMPLE 71
 midazol-2-yllacetanilde dihydrochloride

EXAMPLE 72
 1H-imidazol-2-yidacetanilde dimydrochloride

Example 73
(R)-48pmme; [2-[(2-Hydroxy-2nphenylethylemmo]ethy] 2 [1-(3miodobenzy)-1H-imidazol-2n ylacetanilide dihydrochloride

EXAmpIETA
 ethybacetanilide hydrochloride

EXAMPLE 75
 cthy]acetanilide dhyotrochloride

EXAMPLE 76
 yliacetanilide trihydrochoride

EXAMPLE 77
(R)-2-[1-(2-Choro-6-fuorobenzy)-1H-midazol-2-yn-48pmme: $[2-(2$-hydroxy- 2 -phenylethy) $)$ aminolethylacetanilide

EXAMPLE Z
 aminolethylacetanilide
 ethylacetanilide dhverochloride

CXAMPLE 90
(R)-48prime: $[2-[(2-H y d r o x y-2-p h e n y t h y) a m i n o] e t h y]-2-[1-(2,3,4$-trifuorobenzy $)-14-$ imidazol-2~ylacetanilide dinydrochloride

EXAMPEE 81
 imidazol-2-y]acetanilde dinydrochoride

EXAMPLEEZ
(R)-48prime; [2n[(2-Hydroxy-2~phenylethylamino]ethy] 2 [1n[(piperidine-i-carbony) benzy]-1H-imiozro- 2 -yllacetanilide dinvarochtorde

EXAMPIE 83
 hydrochloride

EXAMPLE 84
 dilyytrochoride

EXAMPLE 85
(R)-2-(2-Ammobenamidazol-1-yb-40prime;-f(2-[2-hydroxy-2-phenylehylamino]ethyl acetamilide dinydrochoride

EXAMPLE 86
 (2 -pymyl) acetanilde in 400 m of methanol was added 5.96 of 10% palladum-amon. The reaction solution was stired for sh hours in a hydrogen atmosphere under atmospheric pressure. Incoluble maters were filered of using celte and the flate was concentated in vacuo. To a methanolic solution of the resuting residue was added 10.8 m of a 4 h hadrogen chloride-ethy acetate solution, and the solvent was evaporated in vacuo. The resulting orude crysals were recrystalized from methano-ethanol to give (R)-48prime; [2 - (2 -hydroxy- 2 phenylethylamino $]$ ethyl $]-2 \sim(2$-pyridybacetamide hydrochonide.

The compounds of 97 to 90 were prepared by the same manner as in Example 86 .

EXAMPLE 87
 hydrochloride

EXAMPLE 88
(R)-48pmime: [2-[(2-Hydroxy-2-phenylethy)amino]ethy]-2-(4-pyridy)acednide tydrochloride

EXAMPLE 89
(P)-48prime:-[2-[(2-Hydroxy-2-phenylethylamino]ethy $]$ - 3 - 2 -pyridyl)propionanilde hydrochloride

Example 90
(R)-48prime; $[2-[(2-h y d r o x y-2$ phenylethylammo]ehyl]-2-[(1-phenylehy)-1m-imidazo-2-y) acetanilide ditydrochloride

EXAMPIE91
 ethylphenylacetanilde (240 mg) was tiscolved in 30 ml of ethanol, then 170 mg of 10% paliadum-carbon was added thereto and the mixture was stirred for nime hours in a hydrogen atmosphere under atmospheric pressure. The catalyst was fitered off, the solvent was evaporated in wacuo, and the residue was washed with ethanol-ethylacetate to give 200 mg of

The compounds of Examples 92 and 93 were prepared by the same manner as in Example 86.

EXAMPLE 92
(R)-4\&pmme:[2-[(2-Hydroxy-2-phenyethy)aminolethyl]-2-\{3-methypyridn-2-y]acetanibe hydrochloride

EXAMPLE 93
(R)-48phme; [2-[(2-Hydroxy-2-phenylethy)amino]ehy]-2-2-pyrazinyacetanilde mydrochloride
 1H-imidazol-2-y) acetanilde (350 mg) was dissolved in 20 ml of chanol, then 130 mg of 10% palladum-carbon was added thereto, and the mixture was stirred for 17.5 hours in a hydrogen atmosphere under atmospheric pressure. The catalyst was fitered off, the solvent was cvaporaced in vacuo, and the residue was purfied by silica gel column chromatography (eluent: chorofommethanol/concentrated aqueous ammonia $=200 / 10 / \mathrm{s}$). The resummo oly substance was dissolved in methanol, and 280μ of a $4 N$ hydrogen choride ethyl acetate solution was added thereto. The mixture was fitered atter addmg active carbon was added thereto, and the
 48prime: $[2$ - (2 -hydroxy- 2 -phenylethyaminolethylacetanilide dhydrochoride.

The compounds of Examples 95 and 97 were prepared by the same manner as in Example 91 ; the compounds of Examples 98 and 100 were prepared by the same manner as in Example 94 : and the compounds of Examples 99 and 101 to 103 were prepared by the same momer as in Example 86.

EXAMPLE 95

EXAMPLE 96
(R)-48pmme:-[2-[(2-Hydroxy-2-phenylethy)amino]ethy]-2-(5-methy 2 -pyridylacetanilide

EXAMPLE 97
(R) 48prime: $[2 \sim[(2-H y d r o x y-2-p h e n y l e t h y) a m o j e t h y]-2-(6-m e t h y-2-p y r i d y) a c e t a n i l d e ~$

EXAMPLE 98

48prime; $[(R)-2 \sim[(R)-2$ Hydroxy-2-phenylethy)amino]propy $]-2 \sim(2-p y$ ridybacetanilde hydrochloride

EXAMPLE 99

48pmas;-[(S)-2-[(R)-2-Hydroxy-2-phenylethy)ammopropyl]-2-(2-pyridy)acetanilde mydrochoride

EXAMPLE 100
$2-(3-B e n z y-1 H-\operatorname{midazol}-2-y)-48$ prime; $[(S)-2-[(R)-2$-hydroxy-2-phenylethyaminolpropyl] acetanilide mydrochtoride
 hydrochloride

С人AMFLE 102

48prme:- $2-[2+$ Hydroxy $2-(3$-fuoropheny $)$ ethy $]$ aminolethy $]-2$-(2-pyridybacetanime mydrochloride

EXAMPEETOS

4Qpmmer-[2-[2-Hydroxy-2-(4-fuoropheny)ethy)]amolethy]-2-(2-pyridyacetande mydrochloride

EXAMPEE 104

To a sohtion of 805 mg of 48 prime; cyanomethyl- $2-(2$-pyrimidiny $)$ actanide in 30 m of tetahydrofuran were added 30 m of an ethanolic solution of a Raney nickel and 3 m of concentrated aqueous ammonia. The reaction solution was strred for four hours in a hydrogen atmosphere under atmospheric pressure, then insoluble matters were fitered off using Celite, and the solvent was evaporated. To the resulting residue were added 10 ml of 2 -propanol, 300 mg of (R)-styrene oxide and 2 mi of methanol successively. The reaction mixture was beated to reflux for ten hours, and the solvent was evaporated. The residue was purifed by siba gel column thomatography (eluent: कhlorofom/methanol=10/1). To a methanolic solution of the resuting residue was added 150 w of $4 N$ hydrogen chloride-ethy aceate solution, and the olvent was evaporated in vacuo. The resultig residue was cystamea fom methanol-ethanolethyl acetate and then recystallzed from ethanob-dethyl ether to give 160 mg of (R)-
 mydrochoride.

The compounds of fxamples 105 to 108 were prepared by the same manner as in Example 104; and the compound of Example 109 was prepared by the same manner as in Example 9 .

EXAMPIE 105
(R)-48pme; $[2-[(2-H y d r o x y-2$ mhenylethy)amino]ethy]-2-(2-qumolylacetanibie hydrochloride

EXAMPLE 106
(R) 4\&phme; $[2 \sim[2-H y d r o x y-2 \sim(3-c h o r o p h e n y) e t h y l a m i n o]$ ethyl $2-(2$ pyridy $)$ acetanide hydrochloride
 hydrochloride

EXAMPEE 108
(8)-2-[1-(4-Chorobenzy)-1t-benzmidazol-2-yl]-48prime;-[2-[(2-hydroxy-2-phenylethyl) aminojethylacetanilide dimydrochloride

EXAMPLE 109

EXAMPLE 110
To 48prime: (3-aminopropy) 2 - (2-pyridylacetanilide were added 10 mi of 2 -propanol and 600 mg of (R) -styrene oxide successively. The reaction mixture was heated to reflux for four hours, and the solvent was evaporated. The residue was purified by silica gel columm chromatography (eluent: choroform/methanol=30/i80etta; 10/1). To a methanok solution of the resubing residue was added 100 w of a an hydrogen chloride-ethy acetate solution, and the solvent was evaporated in vacua. The resuling cude crystals were recrystalized from ethanof-dietmy ether to give 71 mg of (R)-48prime: $[3-1(2$-mydroxy- 2 phenylethyl)aminolpropyl]-2-(2-pyridy) acetanilide hydrochoride.

EXAMPEE 11 I

To a solution of 3.62 g of tert-butyl $\mathrm{N} \sim[2 \sim[4 \sim[2 \sim(2-p y r i d y b a c e t y] a m m o] p h e n o x y] e t h y]$ carbamate in 30 mi of methanol was added 50 m of a an hydrochorderethyl acetate solution. Atter the reaction solution was stred at room temperature for eight hours, the solvent was evaporated in vacuo. To the residue were added an aqueous sohtion of sodum hydrogen carbonate and potassum carbonate to adyst to ph about 12 . The resulthg agueous phase was extracted with a mixed solvent of chlorofom and tetrahyorofuran. The orgent layer was dried over anhydrous magnesium suffate and concentrated, the resulting residue was dissolved in 40 m of methanol, and 1.02 g of (R) syrene oxide was added thereto. After the reacton solution was heated to reflux for 26 hours, the solvent was evaporated in wacuo. The resulting residue was pumied by silica gel column chromatography (eluent:
choroform/methanol. $30 / 18 r a m: 10 / 1$) and dissolved in methanol, 0.59 m of a 4 N hyrogen choride-ethy acetate solution was added, and the solvent was evaporated in vacuo. The resuing crude crystals were secrystalized from methanofethanol to give 320 mg of (R)-

EXAMPLE 112
 ethy]-carbamate in 10 mi of mehanol was added 30 ml of a 4 N hydrochoride ethyl acetate solution, After the reaction solution was stirred at room temperature for eight hours, the solvent was evaporated in vacuo. To the residue were added an aqueous solution of sodium
hydrogen camonate and potassinm carbonate to adjust to pH about 12 . The resuting aqueous phase was extacted whe mixed solvent of chorofom and tetahychofuran, The organt layer was dried over anhydrous magnesium sulfate and concentrated, the recuting residue was dissoved in 2 mi of 2 propanol and 2 miof methanol, and 120 mg of (k) styrene oxide was added thereto. After the reaction solution was heated to reflux for 24 hours, the solvent was evaporated in vacuo. The resuling residue was purified by sifca gel column chromatography (eluent: chlorofom/methanol- $30 / 18$ rarris/1) and dissolved in methanol, 0.1 mi of a 4 N hydrogen chloride-ethys acetate solution was added, and the solvent was evaporated in vacuo. The resuting residue was purfied by silica gel column chromatography (eluent: chorofom/methanol $=5 / 1$) and a reversed phase column chromatography (eluent: water/methanol=2/1\}rar;i/1) to give 35 mg of (R)-48prime; - 2,2 -dmethyl- 2 [(2 -hydroxy- 2 phemylethylaminolethyl -2 - 2 -pyridybacetanilide hydrochoride.

The compound of Example 113 was prepared by the same manner as in Example 1.

EXAMPEE 113
(9)-1-(4-[2-[(2-Hydroxy-2-phenylethy)amino]etwhphenyd]-3-(2-pyridyburea dibydrochloride

As hereunder, physical and chemical properties of the compounds of the Referential twaples are given in Tables 1 and those of the compounds of the Examples are given in Tables 2 .

The symbols in the tables have the following meanings.
Rex: Referemtal Example No.
Ex.: Example No.
DATA: Physico-chemical properves
NMR: Nucleomagnetic resonance spectrum (TMS internal standard; DMSO-d was used as a solvent untess ohterwise spectied)
mp: metting point
dec: decompostion
MS (m/2): mass spectrogrophic data (m/2)
Stucure structural formada
Search terms may have been found within the contents of this table Please see the table in the orignal document.

Searh tems may mave been found with the contents of this table. Please see the table in the original document.

Search terms may fave been found with the contents of this tabe. Please see the table in the original document.

The compounds shown in Tables 4 and 5 together with chemical strucura fomulae can be easily manufacured by almost the same method as mentioned in the above Examples or

Manulacturng Methods or by the method to which some modifications known to the persons sklled in the art are appled. Incidentally, in some cases, there are tauboneric, geometric or opticas fomers for the compounds mentioned in Tables 4 and 5 , and the compounds of the present mvention cover each of the isolated isomers of the abovementioned ones or a mixture thereof.

Searh terms may have been found within the contents of this table, Please see the table in the original document.

Search terms may have been found within the contents of this table, please see the table in the original document

EMGLSHCCLAHS:

Retum to Top of patent

What is chamed is:

1. A compound of formula (1):
in the formula, each of the symbols means as follows:

* -

ring a is a heteroaryl group which is unsubstituted or substituted and is optonaly fused with a benzene ring:

* -

X is a bond, or a lower alkyene or an alkenyene, both of which are unsubstruted or substuted with hydroxy or a lower aky group, or X is a camonyl or a group represented by -..NH..... and when X is a lower alkylene which is substuted with a lower alky group, a carbon atom of the ring 8 optionally bonds whith the lower alkyl group so that a ming is fommed;

* *

A is a lower alkytene or a group represented by lower alkylenewo-;

* -

$R^{(1 a)} R^{(10)}$ are the same or different and each is a hydrogen atom or a lower alky group;

- ~
$R^{(2)}$ is a hydrogen atom or a halogen atom: and
* -

2 is a group represented by boxh; $\mathrm{CH}-$; or a salt thereof.
2. The compound of formula (1) or the salt thereof acording to cam 1 , wherem A is methylene, chylene, or a group represented by $-\mathrm{CH}_{(2)} \mathrm{O}-$.
3. The compound of formula (1) or the satt thereof according to clam 2 , wherein the ring 8 is a heteroary group which is substituted with a substituent chosen from a halogen atom, lower alky, bwer alkenyt, bwer akyny, hydroxy, subfany, habogeno lower abyl, bwer aky-O-,

 halogeno ary-fower alky, guandino, lower alky-CO-MH, and lower alky-SO (2) MH-.
4. The compound of fombla (I) or the sat thereof according to clam 3 , wherem $\mathrm{p}^{(2)}$, $\mathrm{R}^{(1 a)}$ and $\mathrm{R}^{\text {ibl }}$ are each a hydrogen atom, and 2 is 8 boxH; CH . .
5. A compound of formula (a):
in the formuda, each of the symbols means as follows:

* -

ring s is a heteroary group:

* -

x is a bond or a lower akybene grong;

* -

R is a hydrogen atom, a halogen atom, a lower alky group, amino group, an ary lower aky group, or a halogeno ary-kower alky group; or a salt thereof.
6. A compound:

* ~
(9) 48 prime; $[2$ [2 -Hydroxy 2 -phenylethylaminolethyl-2-pyridinecarboxyamide,
* -

$[(2-h y d r o x y-2$ phenyethy)aminolethylacetanilide,

* -

(R)-2-(2-aminothazo-4-y)-4Qprime; $[2-\{2-$ bydroxy-2-phenylethybamolethyt acetanilide,

* -

(R)-2-(2-benzy-1H-1,2,4-triazol-3-y)-4sprimes-[2-[(2-hydroxy-2-phenylethy)-amino] ethyilacetanilide,

* -

 acetanilide,

- -

(R)-48prime; $[2$-[2 -hydroxy- 2 -phenylethyl)-amino $]$ ethyl $)$ - 2 (2-pyrazmy)acetanibe,
 or a salt of any of the foregoing.
7. A composithon comprsing at east one compound of formula (1) or the sat thereof as clamed in one of clams 1 throughon a pharmaceutically acceptable carrier.
8. The composition as clamed in clam 7 , wherein the at least one compound of formula (1) or the salt thereof is present in an amount effective for the treatimg of diabetes malitus in a human or animal patent in need of such treating.
9. The compound of formula (I) as chamed in clam 1, wheren the compound of formula (1) is an optical isomer, a hedrate, or a solvate of dse compound of formula (1).
10. A composition compring a compound of fomula (1) as clamed in clam 1 in a phamacenticaly acceptable carrier, wherein the compond of formula (i) is present as a polymorphic substance.
11. A composition comprising at least one compound of fomma (1) or the sat thereof as chamed in clam 5 , in a phamaceuticaly acceptable carrier.
12. A composition comprising at least one compound or the salt of any of the foregong as camed in cbim 6 , in a phamaceutcally acceptable carmer.
13. A method for treating diabetes melitus in a human or animal parient in need of such treatment comprising administering to the patient an amount of a compound of fombia (T) as clamed in clam 3 , wherein the amount is an amount effective for such treatment.
14. A method for treating obesity in a human or ammal patent in need of such treatment comprising adminctering to the patient an amount of a compound of formula (d) as clamed in clam 1 , wheren the amount is an amount effectuv for such treatment.

GOAB-DATE: APHi 6, 2013

```
Soure: Legatm Area of Law - Ey Topic s Patem Law s Fincl Patents = URHty, Desigm and
            plant Fatemts:1
Tems: PATNO=8348532 (Suggest Tems for My Search)
    view: Full
Dat/Tme: Monday, June 16, 2014-10:35 AM ETT
```

```
    1.79 FE 30622, NOtICOS, DEPARTMEMT OF HEALTHAND HUMAN SEEVICES (HHS) FOOD
        and Drug Admingtralon (FDA), [Docket Nos FDA-2013-E-04:0; FDA-2013-E-0411:
        FDA-2013-E-04121, Determinaton of Regulatory Peview Period tor Purooses of Patent
        Extension; MyPeETRIQ, Vew PDF of Federa Pegister Print Versom , Wednesday, May
        28,2014, AOTION: NOloe., FEDERAL REGISTEP Vol 79, No. 102 FEDEGAL REGISTER
        Vol.70, No. }10
    ... receved patent lem restoration applcations for MYMBETRIQ U.S Patent Nos.
    $,34夕,532;7,342, 177;7,750,020) from Astalas Pharma lra, and the Patent and
    Trademark Oifice requested FDA's ...
```



```
        Regulations
    Tems: 6386532 or 6,346,532 (Suggest Temms for My Search)
    View: Cite
Date/mme: Monday, Jne 16, 2014 - 10:37 AM EOT
```

Loxwhexfs About LexisNexis Privacy Policy Terms \& Conditions : Contact Us Copyright © 2014 LexisNexis, a divishon Reed Esevier lnc. All rights reserved

1. Food and Drug Adminstration Documents and Publications, May 28, 2014, FOOD AND DRUG ADMINISTRATION - FEGULATOAY DOCUHENTS, 1071 words, Determmaton of Hegulatory Peview Period on Furposes of Fatent Extension: MYBEETBIO
... recelved paten term restoration applications for MYREETRIQ (U.S. Patent Nos. 6,346,532; 7, $342,377,7,760,029$) fom Astellas Fhama 1 no., and the Fatent and Trademark Office requested FDA's ...
2. US Offical Newe, May 28,2014 Wednesday, 1087 words, Detemmation of Feguatory Peview Pariod for Purposes of Patent Extengion; MYRBETRIQ, Washingion
... recelved patent term restoration applications for MYABETRIQ (U.S Patent Nos. $6,346,532 ; 7,342,717 ; 7,760,029$) from Astellas Pharma 10 . and the Patent and Trademark Orlce requested FA's ...

Source: Combined Source Set 3 i人-Enghish Language News (Most recent Two Yeara)
Terms: 6346532 or 5,3A5,532 (Guggest Terms for My Search)
Vew: Cite
Datel Time: Monday, kne 16, 2014 - $10: 39$ AMEDT
 Copyright © 2014 Lexishexts, a division of Reed Esevier the. Al rights reserved

IN THE UNTED STATES PATEN: AND TRADEMAXK ORYYCE

In re Ex Parte Remexamination of:	
US Patent No.6346532	G
U,S.Patent Mo, 0,346,532	,
Issued: Febraary 12,2002	Examiner: Evelyn Huang
Control No: 961000,045	Confimation No. 3506
Filed November 21,2013	
hventors: Tatsua MARUYAMA et al,	
For: AMDE DERUATMES OR SALTS	
TmerEof	

Mail Stop: Ex Parte Reexam
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

SUPPLEMENTAL AMENDMENT

Sir:
In supplement to the response filed May 6,2014 , to the Office Action dated March 6, 2014, please amend the above-captioned patent as follows and consider the following remarks.

CLAMS

Please amend the clams as follows.

1. (Anonded) A compound of formula ())

in the formula, each of the symbols mean as follows:
xing B is a nitroger-containing hetroaryl group which is unsubstituted or substuted and is optionally fused with a benzene ming; X is [a bond, ori a lower alkylene or an alkenylene, both of which are unsubstuted or substituted with hydroxy or a lower akky group, or X is a carbonyl or a group represented by -NH -, and when X is a hower alkylene which is substituted with a lower alkyl group, a carbon atom of the ring B optionally bonds with the lower alkyl group so that a ring is formed; A is methylene, ethylene, [a lower alkylencl or a group represented by $-\mathrm{CH} O-[10 w e r$ akylene- $\mathrm{O}-], \mathrm{R}^{13}, \mathrm{R}^{\text {b }}$ are the same or diferent and each is a hydrogen atom or a lower alky group; R^{2} is a hydrogen atom or a halogen atom; and Z is a group represented by $=\mathrm{CH}-$ - or a salt thereof.

2. (Cancelled)

3. (Amended) The compound of fomma (T) or the salt thereof according to clam 1 [cam 2], wherein the ring B is [a heteroaryl group which is] substuted with a substitucat chosen from a halogen atom, lower alkyl, lower alkonyl, lower alkynyl, hydroxy, sulanyl, halogeno tower allyl, lower alkyh-O-, lower akyl-S-, lower alkylo $\mathrm{O}-\mathrm{CO}-$ carboxy, sulfonyl, suffinyl, lower alkyl- SO -, lower alkyl- $\mathrm{SO}_{2}-$, lower alkyl-CO-, tower alky-CO- - - carbamoy, lower alky NH CO- di-lower alkyl-N-CO-, nitro, cyano, amino, lower alkylNH-, and di-lower alkyl-N- [, aryl-lower alkyl, halogeno aryl-lower alkyl, guanidino, lower alkyl-CO- NH, and lower alkyl- $\mathrm{SO}_{2}-\mathrm{NH}-\mathrm{T}$.
4. (Amended) The compound of fommala (I) or the salt thereof according to claim 3, wherein $\mathbb{R}^{2}, \mathbb{R}^{1 a}$ and \mathbb{R}^{16} are each a hydrogen atom, [and Z is $\left.=C H-\right]$ As mehylene. and

is
 .
5. (Amended) A compound of formula (la):

(a),

[n the formula, each of the symbols means as follows:
ring B is a heteroaryl group; X is a bond or a lower alkylene group; R is a bydrogen atom, a halogen atom, a lower alkyl grone, amino group, an aryl lower alky, group, or a halogeno aryhbwer alkyt group, or a salt thereof.

 hydroxy 2 -phenylethyl)aminolethylacetanilde, (R$)$-2-(2-aminothiazol-4ny) 4 ' $[2$-(2-hydroxy-2~

 phenylethyl)aninolethyllacetanilide, (R)-4 $[2[(2$-hydroxy-2-phenylethy)aminolethyl $]-2$ (2pyidyl)acetanilide, (R) 4 4 $[2-[(2-h y d r o x y-2$ phenylethyl)-aminolethyl) 2 - 2 -
 acetanilide, or a salt of any of the foregoing,

7. (Cancelled)

8. (Cancelled)
9. The compound of fomula (I) as clamed h clam 1, wherein the compound of formula (I) is an optical isomen, a hydrate, or a solvate of the conpound of fomula (0).
10. A composition comprising a compound of formula () as clamed in clam I in a phamacentically acceptable carrer, wherein the compound of formula () is presen as a polymorphic substance.
11. (Amended) A conpositon comprising [at least one] the compound of fomma [(D)] (a) or the salt thereof as clamed in cham 5, in a phamaceutically acceptable cartier.
12. A composition comprising at least one compound or the sat of any of the foregong as clamed in clam 6 , in a phamneeutically acceptable canter.
13. A method for treating dabetes melitus in a human or animal patient in need of such treatment comprising administering to the patent an amount of a compound of fombla (T) as chamed in claim l, wherein the mount is an anount effective for sheh treament.
14. A method for treating obesity in a human or anmal patient in need of such treament comprising administering to the patient an amount of a componnd of fomula (i) as chamed in clam 1, wheren the amount is an amome effective for suck treament.
 goticalisomer,
15. (Cancelled)
16. (Cancelled)

 carver.

 mellitus ina human or ammal patient in nead of such reating

REMARKS

Clams 1, 3-6,9-15, and 18-19 remain pending.

Clams 16 and 37 have been canceled withont prejudice or disclaimer,

Pursumat to a tephone conference with Supervisory Examiner Jones regarding the clavity of the deletions to cains 1 and 5 , this supplemental amondment is being filed to improve the clanty of those deletions.

Prompt and avorable reconsideration is respectully requested.

It is believed that no fees are necessary in connection with this Amendment.
However, in the event that the U.S. Patent and Trademark Office determines that fees are due, the Commissioner is hereby authorzed to charge any such fees to the undersigned's Deposit Account No. 060916.

Dated: July 25,2014
Respectuily submitted,
FINNEGAN, GENDERSON, FARABOW, GARRETT \& DUNNER, LLP.

Electronic Acknowledgement Receipt		
EFS ID:	19685597	
Application Number:	96000045	
International Application Number:		
Confirmation Number:	3506	
Title of Invention:	AMIDE DERIVATIVES OR SALTS THEREOF	
First Named Inventor/Applicant Name:	6346532	
Correspondence Address:	Fitzpatrick Cella Harper \& Scinto 1290 Avenue of the Americas New York NY US	10104-3800
Filer:	Charles E. Van Horn/Charlene Woods	
Filer Authorized By:	Charles E. Van Horn	
Attorney Docket Number:	07385.0042	
Receipt Date:	25-JUL-2014	
Filing Date:	21-NOV-2013	
Time Stamp:	14:07:31	
Application Type:	Supplemental Examination	
Patent Number:		

Payment information:

Submitted with Payment	no

File Listing:

Document Number	Document Description	File Name	File Size(Bytes) $/$ Message Digest	Multi Part /.zip	Pages (if appl.)
1		Supplemental_Amendment. pof	247915	yes	7
Multipart Description/PDF files in .zip description					
	Document Description		Start	End	
	Supplemental Response or Supplemental Amendment		1	1	
	Claims		2	6	
	Applicant Arguments/Remarks Made in an Amendment		7	7	
Warnings:					
Information:					
Total Files Size (in bytes):			247915		

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371

If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office

If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.

United States Pateni and Trademark Office

INITED STATES DRP ARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS P.O. Box 14.50

Alexandria, Virginia 22313-1450
www.uspto.gov

Please find below and/or attached an Office communication concerning this application or proceeding.
The time period for reply, if any, is set in the attached communication.

Notice of Intent to Issue Ex Parte Reexamination Certificate	Control No. $96 / 000,045$	Patent Under Reexamination6346532	
	Examiner EVELYN HUANG	Art Unit 3991	AIA (First Inventor to File) Status No

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

1. \boxtimes Prosecution on the merits is (or remains) closed in this exparte reexamination proceeding. This proceeding is subject to reopening at the initiative of the Office or upon petition. Cf. 37 CFR 1.313 (a). A Certificate will be issued in view of
(a) \boxtimes Patent owner's communication(s) filed: 25 July 2014.
(b) \square Patent owner's failure to file an appropriate timely response to the Office action mailed: \qquad .
(c) \square Patent owner's failure to timely file an Appeal Brief (37 CFR 41.31).
(d) \square The decision on appeal by the \square Board of Patent Appeals and Interferences \square Court dated \qquad
(e) \square Other: \qquad _.
2. The Reexamination Certificate will indicate the following:
(a) Change in the Specification:Yes \triangle No
(b) Change in the Drawing(s): \square Yes \boxtimes No
(c) Status of the Claim(s):
(1) Patent claim(s) confirmed: \qquad .
(2) Patent claim(s) amended (including dependent on amended claim(s)): 1,3-5.9-11,13 and 14
(3) Patent claim(s) canceled: 2,7 and 8 .
(4) Newly presented claim(s) patentable: 15,18 and 19.
(5) Newly presented canceled claims: 16 and 17.
(6) Patent claim(s) \square previously \square currently disclaimed:
(7) Patent claim(s) not subject to reexamination: 6 and 12 .
3. \square A declaration(s)/affidavit(s) under 37 CFR 1.130(b) was/were filed on \qquad
4. \boxtimes Note the attached statement of reasons for patentability and/or confirmation. Any comments considered necessary by patent owner regarding reasons for patentability and/or confirmation must be submitted promptly to avoid processing delays. Such submission(s) should be labeled: "Comments On Statement of Reasons for Patentability and/or Confirmation."
5. \square Note attached NOTICE OF REFERENCES CITED (PTO-892).
6. \square

Note attached LIST OF REFERENGES CITED (PTO/SB/08 or PTO/SB/08 substitute).
7. \square The drawing correction request filed on \qquad is:approveddisapproved.
8. \boxtimes Acknowledgment is made of the priority claim under 35 U.S.C. § 119(a)-(d) or (f).
a) \boxtimes All b) \square Some* \quad c) \square None of the certified copies have \square been received. not been received.区 been filed in Application No. 09/529096. \square been filed in reexamination Control No. \qquad I. been received by the International Bureau in PCT Application No. \qquad -

* Certified copies not received: \qquad —.

9. \square Note attached Examiner's Amendment.
10. \square Note attached Interview Summary (PTO-474).
11. \square Other: \qquad
All correspondence relating to this reexamination proceeding should be directed to the Central Reexamination Unit at the mail, FAX, or hand-carry addresses given at the end of this Office action.

	EVELYN HUANG Primary Examiner Art Unit: 3991	
cc: Requester (if third party requester)		Part of Paper No 20140728
U.S. Patent and Trademark Office PTOL-469 (Rev. $08-13)$$\quad$ Notice of Intent to Issue Ex Parte Reexamination Certificate		

Sawai Ex. 1007

Art Unit: 3991
Claims 1-14 are in the issued patent. Claims 6 and 12 are not under reexamination.
By the amendment filed on $5 / 6 / 2014$, claims 2,7 and 8 are canceled, claims $1,3-5$ and 11 are amended, and new claims 15-19 are added.

By the supplemental amendment filed on $7 / 25 / 2014$, claims $16-17$ are canceled.
Claims 1, 3-5, 11, 13-14 and new claims 15, 18-19 are pending. These claims are determined to be patentable for the following reasons.

STATEMENT OF REASONS FOR PATENTABILITY AND/OR CONFIRMATION

The 103 (a) rejection for claims 1-5, 7-11 and 13-14 over JP'861, Blin and WO'161 and the 103 (a) rejection for claims 1-5, 7-11 and 13-14 over WO ' 161 , Blin, Thornber and JP'861 are withdrawn upon reconsideration in view of the amendments filed on 5/6/2014 and 7/25/2014. Particularly, the claims have been amended to delete the claimed subject matter not described in the priority document JP-9-285778, filed on 10/17/1997. The claims as amended are entitled to the priority date of $10 / 17 / 1997$. As such, JP'861, published on 8/18/1998, is no longer available as prior art under 102 (a), thereby obviating the 103 (a) rejections. Accordingly, claims 1, 3-5, 911, 13-14, and new claims 15, 18-19 dependent therefrom, are patentable over the prior art of record.

Any comments considered necessary by PATENT OWNER regarding the above statement must be submitted promptly to avoid processing delays. Such submission by the patent owner should be labeled: "Comments on Statement of Reasons for Patentability and/or Confirmation" and will be placed in the reexamination file.
/Evelyn Huang/
Patent Reexamination Specialist
CRU Art Unit 3991
/Padmashri Ponnaluri/
Patent Reexamination Specialist
CRU Art Unit 3991
/Deborah D Jones/
Supervisory Patent Examiner, Art Unit 3991

Reexamination	Application/Control No. 96000045	Applicant(s)/Patent Under Reexamination 6346532
	Certificate Date	Certificate Number C1

Fitzpatrick Celia Harper \& Scinto
1290 Avenue of the Americas
New York, NY 10104-3800

LITIGATION REVIEW \boxtimes	/EH/ (examiner initials)	07/28/2014 (date)	
none	Case Name		
Director Initials			

COPENDING OFFICE PROCEEDINGS	
TYPE OF PROCEEDING	
1. none	

BIB DATA SHEET

CONFIRMATION NO. 3506

SERIAL NUMBER$96 / 000,045$			$\begin{aligned} & 371(c) \\ & 13 \end{aligned}$	CLASS 514				ORNEY DOCKET NO. 07385.0042
APPLICANTS INVENTORS 6346532, Residence Not Provided; ASTELLAS PHARMA INC., TOKYO, JAPAN; PATENT OWNER, NEW YORK, NY;								
** CONTINUING DATA \qquad This application is a SER of 09/529,096 04/07/2000 PAT 6346532 which is a 371 of PCT/JP98/04671 10/15/1998								
Foreign Priorty claim 35 USC 119(a-d) con Verified and Acknowledged		$\begin{aligned} & \boldsymbol{\nabla} \text { Yes } \square \text { No } \\ & \square \text { Yes } \\ & \text { No } \\ & \text { gnature } \end{aligned}$	$\square{ }_{\text {Initials }}^{\substack{\text { Met } \\ \text { Allow }}}$	STATE OR COUNTRY				$\begin{aligned} & \text { INDEPENDENT } \\ & \text { CLAIMS } \end{aligned}$
Fitzpatrick Cella Harper \& Scinto 1290 Avenue of the Americas New York, NY 10104-3800								
TITLE								
FILING FEE RECEIVED 0.00	FEES: Authority has been given in Paper No. \qquad to charge/credit DEPOSIT ACCOUNT No. \qquad for following:					\square All Fees		
						1.16 Fees (Filing)		
						1.17 Fees (Processing Ext. of time)		
						1.18 Fees (Issue)		
						\square Other		
						\square Credit		

Issue Classification	Application/Control No. 96000045	Applicant(s)/Patent Under Reexamination 6346532
	Examiner EVELYN HUANG	Art Unit 3991

CPC					
Symbol				Type	Version
C07D	215	\#	48	1	2013-01-01
C07D	277	\%	82	1	2013-01-01
C07D	233	,	26	1	2013-01-01
C07D	235	*	30	1	2013-01-01
C07D	213	,	81	1	2013-01-01
C07D	401	*	04	1	2013-01-01
C07D	241	*	12	1	2013-01-01
C07D	277	»	36	1	2013-01-01
C07D	513	*	04	1	2013-01-01
C07D	231	*	12	1	2013-01-01
C07D	213	*	30	F	2013-01-01
C07D	257	*	04	1	2013-01-01
C07D	239	,	26	1	2013-01-01
C07D	213	*	56	1	2013-01-01
		\%.			

CPC Combination Sets				
Symbol	Type	Set	Ranking	Version
\%				

NONE (Assistant Examiner)	(Date)	Total Claims Allowed:12	
/EVELYN HUANG/ Primary Examiner. Art Unit 3991 (Primary Examiner)	7/28/2014 (Date)	O.G. Print Claim(s) 1	O.G. Print Figure none

Issue Classification	Application/Control No. 96000045	Applicant(s)/Patent Under Reexamination 6346532
	Examiner EVELYN HUANG	Art Unit 3991

US ORIGINAL CLASSIFICATION						INTERNATIONAL CLASSIFICATION									
CLASS			SUBCLASS			CLAIMED						NON-CLAIMED			
514			252.1			A	6	1	k	K	$31 / 495$ (200.0.0.01)				
CROSS REFERENCE(S)						A	6	1	k	k	31/505 (2006.01.01)				
						c	0	7	D	-	239102 (2000.0.1.01)				
CLASS	SUBCLASS (ONE SUBCLASS PER BLOCK)					c	0	7	D	,	$213 / 00$ (2000.01.01)				
514	256					c	0	7	D	D	$249 / 00$ (2000.0.0.01)				
544	${ }^{33}$	${ }^{332}$													
546	1	${ }_{1} 15$													
548	186	190	${ }^{2 / 4}$	252	260										
\square															
\square															
\square															

NONE		Total Claims Allowed:
(Assistant Examiner)	(Date)	12
(EVELYN HUANG/ Primary Examiner.Art Unit 3991 (Primary Examiner)	$7 / 28 / 2014$	O.G. Print Claim(s)
(Date)	O.G. Print Figure	

Issue Classification	Application/Control No. 96000045	Applicant(s)/Patent Under Reexamination 6346532
	Examiner evelyn huang	Art Unit 3991

区	Claims renumbered in the same order as presented by applicant							\square		CPA	- т.D.	- R.		R.1.47	
Final	Original														

NONE		
(Assistant Examiner)	(Date)	Total Claims Allowed:
EVELYN HUANG/ Primary Examiner.Art Unit 3991 (Primary Examiner)	$7 / 28 / 2014$	O.G. Print Claim(s)

Search Notes	Application/Control No. 96000045	Applicant(s)/Patent Under Reexamination 6346532
	Examiner EVELYN HUANG	Art Unit 3991

CPC- SEARCHED			
Symbol	Date	Examiner	

CPC COMBINATION SETS - SEARCHED			
Symbol	Date	Examiner	

US CLASSIFICATION SEARCHED				
Class	Subclass	Date	Examiner	

SEARCH NOTES			
Search Notes	Date	Examiner	
review prosecution history of the patented file	$1 / 24 / 2014$		
litigation search	$6 / 16 / 2014$		

INTERFERENCE SEARCH				
US Class/	US Subclass / CPC Group	Date	Examiner	
CPC Symbol				

	EVELYN HUANG/ Primary Examiner. Art Unit 3991

United States Pateni and Trademark Office

INITED STATES DRP ARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS P.O. Box 14.50

Alexandria, Virginia 22313-1450
wwhe.uspto.gov

Please find below and/or attached an Office communication concerning this application or proceeding.
The time period for reply, if any, is set in the attached communication.

UNITED STATES DEPARTMENT OF COMMERCE
U.S. Patent and Trademark Office

Address: COMMISSIONER FOR PATENTS
P.O. Box 1450

Alexandria, Virginia 22313-1450

APPLICATION NO. I CONTROL NO.	FILING DATE	FIRST NAMED INVENTOR I PATENT IN REEXAMINATION	ATTORNEY DOCKET NO.
$96 / 000,045$	21 November, 2013	6346532	07385.0042

		EXAMINER	
Fitzpatrick Cella Harper \& Scinto 1290 Avenue of the Americas New York, NY 10104-3800	EVELYN HUANG		
		ART UNIT	

DATE MAILED:

Please find below and/or attached an Office communication concerning this application or proceeding.

NOTICE:

In order to make the Items of Information in this concluded supplemental examination proceeding more easily viewable to the public, this Office action places the Items of Information on a "Notice of References Cited." Because a "Notice of Intent to Issue Ex Parte Reexamination Certificate" has already been mailed by the Office and unless expressly set forth otherwise by the Office, no additional response by patent owner is required.

For inquiries regarding this Notice, please contact Supervisory Patent Reexamination Specialist Andrew J. Fischer at (571) 272-6779. In his absence, please contact Supervisory Patent Reexamination Specialist Stephen Stein at (572) 272-1544

	/EVELYN HUANG/ Patent Rexamination Specialist CRU Art Unit 3991
PTO-90C (Rev.04-03)	

Notice of References Cited	Application/Control No. Declaratio	Applicant(s)/Patent Under Reexamination 6346532	
	Examiner EVELYN HUANG	Art Unit 3991	Page 1 of 3

$*$		Document Number Country Code-Number-kind Code	Date MM-YYY	Name	Classification
${ }^{*}$	A	US-6,346,532	$02-2002$	Maruyama et al.	$514 / 252.1$
	B	US-			
	C	US-			
	D	US-			
	E	US-			
	F	US-			
	G	US-			
	H	US-			
	I	US-			
	J	US-			
	K	US-			
	L	US-			
	M	US-			

FOREIGN PATENT DOCUMENTS

${ }^{*}$		Document Number Country Code-Number-Kind Code	Date MM-YYY	Country	Name	Classification
${ }^{*}$	N	JP-10218861 A	$08-1998$	JP		
${ }^{*}$	O	WO 94/18161 A1	$08-1994$	WO		
	P					
	Q					
	R					
	S					
	T					

NON-PATENT DOCUMENTS

$*$		Include as applicable: Author, Title Date, Publisher, Edition or Volume, Pertinent Pages)
$*$	U	Table of testing data for compounds including those described in Examples 1-113 of US 6,346,532, 40 pages.
$*$	V	Materials for Astellas R\&D Meeting. Subco~runittee on Development Theme Establishment, titled YYM 178/Discontinuation of Development Theme for Diabetes Mellitus," 16 pages, dated October 27, 2003.
$*$	W	YM178 in Type 2 Diabetes Mellitus 178-CL-003 Study Report, 11 pages, dated September 11, 2003.
$*$	X	Yamanouchi BAN Compound Evaluation System with English translation, 1 page.

*A copy of this reference is not being furnished with this Office action. (See MPEP \& 707.05(a).)
Dates in MM-YYYY format are publication dates. Classifications may be US or toreign.

Notice of References Cited	Application/Control No. $96 / 000,045$	Applicant(s)/Patent Under Reexamination 6346532	
	Examiner	Art Unit 3991	PVELY 2 of 3

$*$		Document Number Country Code-Number-Kind Code	Date MM-YYY	Name	Classification
	A	US-			
	B	US-			
	C	US-			
	D	US-			
	E	US-			
	F	US-			
	G	US-			
	H	US-			
	I	US-			
	J	US-			
	K	US-			
	L	US-			
	M	US-			

FOREIGN PATENT DOCUMENTS

\star		Document Number Country Code-Number-Kind Code	Date MM-YYYY	Country	Name	Classification
	N					
	O					
	P					
	Q					
	R					
	S					
	T					

NON-PATENT DOCUMENTS

$*$		Include as applicable: Author, Title Date, Publisher, Edition or Volume, Pertinent Pages)
$*$	U	Yamanouchi Monthly Research Progress Report with English translation, 2 pages, dated April 26, 1995.
$*$	V	Excerpts of the prosecution history of U.S. Patent Application No. 09/529,096, the U.S. National Stage of PCT/JP98/04671, filed October 15, 1998, that resulted in U.S. Patent No. 6,346,532.
$*$	W	Blin et al., "Structural and Conformational Features Determining Selective Signal Transduction in the beta-3- Adrenergic Receptor," Molecular Pharmacology, 44:1094-1104 (1993).
$*$	x	Thornber, C. W., "Isosterism and Molecular Modification in Drug Design," Chem. Soc. Rev. 18:563-580 (1979).

Notice of References Cited	Application/Control No. $96 / 000,045$		Applicant(s)/Patent Under Reexamination 6346532	
	Examiner			
	Art Unit 3991	Page 3 of 3		

U.S. PATENT DOCUMENTS

$*$		Dacument Number Country Code-Number-Kind Code	Date MM-YYY	Name	Classification
	A	US-			
	B	US-			
	C	US-			
	D	US-			
	E	US-			
	F	US-			
	G	US-			
	H	US-			
	I	US-			
	J	US-			
	K	US-			
	L	US-			
	M	US-			

FOREIGN PATENT DOCUMENTS

\star		Document Number Country Code-Number-Kind Code	Date MM-YYYY	Country	Name	Classification
	N					
	O					
	P					
	Q					
	R					
	S					
	T					

NON-PATENT DOCUMENTS

$*$		Include as applicable: Author, Title Date, Publisher, Edition or Volume, Pertinent Pages)
	U	Declaration by Dr. Tetsuo Matsui under 37 C.F.R 1.132, dated November 21, 2013.
	V	
	W	
	x	

*A copy of this reference is not being furnished with this Office action. (See MPEP $\$ 707.05(\mathrm{a})$.)
Dates in MM-YYYY format are publication dates. Classifications may be US or toreign.

(12) EX PARTE REEXAMINATION CERTIFICATE (25th)

 Ex Parte Reexamination Ordered under 35 U.S.C. 257United States Patent Maruyama et al.
(10) Number: US 6,346,532 C1
(45) Certificate Issued: Feb. 24, 2015
(54) AMIDE DERIVATIVES OR SALTS TIIEREOF

(75) Inventors:	Tatsuya Maruyama, Tsukuba (JP);
	Takayuki Suzuki, Tsukuba (JP);
	Kenichi Onda, Tsukuba (JP); Masahiko
	Hayakawa, Tsukuba (JP); Hiroyuki
	Moritomo, Tsukuba (JP); Tetsuya
	Kimizuka, Tsukuba (JP); Tetsuo
	Matsui, Tsukuba (JP)

Supplemental Examination Request:
No. 96/000,045, Nov. 21, 2013
Reexamination Certificate for:
Patent No.: $\quad \mathbf{6 , 3 4 6 , 5 3 2}$
Issued: Feb. 12,2002
Appl. No.: 09/529,096
PCT Filed: Oct. 15, 1998
PCT No.: PCT/JP98/04671
§ 371 (c) (1),
(2), (4) Date: Apr. 7, 2000

PCT Pub. No.: WO99/20607
PCT Pub. Date: Apr. 29, 1999
Certificate of Correction issued Jul. 13, 2002
(51) Int. CI.

AG1K 31/495	(2006.01)
A61K 31/505	(2006.01)
C07D 239/02	(2006.01)
C07D 213/00	(2006.01)
C07D 249/00	(2006.01)
C07D 215/48	(2006.01)
C07D 27782	(2006.01)
C07D 233/26	(2006.01)
C07D 235/30	(2006.01)
C07D 213/81	(2006.01)
C07D 401/04	(2006.01)
C07D 241/12	(2006.01)
C07D 277/36	(2006.01)
C07D 513/04	(2006.01)
C07D 231/12	(2006.01)
C07D 213/30	(2006.01)
C07D 257/04	(2006.01)
C07D 239/26	(2006.01)
C07D 213/56	(2006.01)

(52) U.S. Cl.

CPC C07D 213/30 (2013.01); C07D 215/48 (2013.01) C07D $277 / 82$ (2013.01); C07D) 233/26(2013.01); C07D 235/30 (2013.01);

C07D 213/81 (2013.01); C07D 401/04 (2013.01); C07D 241/12 (2013.01); C07D 277/36(2013.01); C07D 513/04 (2013.01);

C07D 231/12 (2013.01); C07D $257 / 04$ (2013.01); C07D 239/26 (2013.01); C07D $273 / 56(2013.01)$
USPC 514/252.1; 514/256; 544/330; 544/332; 546/1; 546/152; 548/186; 548/190; 548/214; 548/252; 548/260
(58) Field of Classification Search

None
See application file for complete search history.

References Cited

To view the complete listing of prior art documents cited during the supplemental examination proceeding and the resulting recxamination proccoding for Control Number $96 / 000,045$, please refer to the USPTO's public Patent Application Information Retrieval (PAIR) system under the Display References tab.

> Primary Examiner - Evelyn Huang

ABSTRACT

Amide derivatives represented by general frmula (I) or salts thereof wherein cach symbol has the following meaning: ring B: an optionally substituted heteroaryl optionally fused with a benzene ring; X : a bond, lower alkylene or lower alkenylene optionally substituted. by hydroxy or lower alkyl, carbonyl, or a group represented by - NH - (when X is lower alkylene optionally substituted by lower alkyl which may be bonded to the hydrogen atom bonded to a constituent carbon atom of ring B to form lower alkylene to thereby form a ring); A: a lower alkylene or a group represented by -(lower alkylene) $\mathrm{O} ; \mathrm{R}^{1 a}$ and $\mathrm{R}^{1 b}$: the same or different and each hydrogen or lower alkyl; R^{2} : hydrogen or halogeno; and Z : nitrogen or a group represented by $=\mathrm{CH}$ - The compounds are useful as a diabetes remedy which not only functions to both accelerate the secretion of insulin and enhance insulin sensitivity but has an antiobestic action and an antihyperlipemic action based on its selective stimulative action on a β_{3} receptor.

EX PARTE

REEXAMINATION CERTIFICATE

 ISSUED UNDER 35 U.S.C. 307THE PATENT' IS HEREBY AMENDED AS INDICATED BELOW.

Matter enclosed in heavy brackets [] appeared in the patent, but has been deleted and is no longer a part of the patent; matter printed in italics indicates additions made to the patent.

AS A RESULT OF REEXAMINATION, IT HAS BEEN DETERMINED THAT:

Claims 2, 7 and 8 are cancelled.
Claims 1, 3-5 and 11 are determined to be patentable as amonded.

Claims 9, 10, 13 and 14, dependent on an amended claim, 20 are determined to be patentable.
New claims 15-17 are added and determined to be patentable.
Claims 6 and 12 were not reexamined.

1. A compound of formula (T):

[

in the formula, cach of the symbols means as follows:
ring B is a nitrogen-containing heteradryl group which is unsubstituted substituted and is optionally fused with a benzene ring:
X is [a bond, or] a lower alkylene or an alkenylene, both of which are unsubstituted or substituted with hydroxy or a lower alkyl group, or X is a carbonyl or a group represented by -NH - , and when X is a lower alkylene which is substituted with a lower alkyl group, a carbon atom of the ring B optionally bonds with the lower alkyl group so that a ring is formed;
Λ is [a lower alkylene] methylene, ethylene, or a group represented by [-lower alkylene-O-] - $\mathrm{CH}_{2} \mathrm{O}$-;
$\mathrm{R}^{1 a}, \mathrm{R}^{1 b}$ are the same or different and each is a hydrogen atom or a lower alkyl group;
R^{2} is a hydrogen atom or a halogen atcm; and
Z is a group represented by $=\mathrm{CH}$ - or a salt thereof.
25
2. The compound of formula (I) or the salt thereof according to [claim 2] claim 1 , wherein the ring B is [a heteroaryl group which is] substituted with a substituent chosen from a halogen atom, lower alkyl, lower alkenyl, lower alkynyl,
5 hydroxy, sulfanyl, halogeno lower alkyl, lower alkyl-o lower alkyl-S-, lower alkyl-O-CO-, carboxy, sulfonyl, sulfinyl, lower alkyl- SO -, lower alkyl- $\mathrm{SO}_{2}-$, lower alkylCO - lower alkyl-CO-O-, carbamoyl, lower alkyl-NHCO - di-lower alkyl-N-CO-, nitro, cyano, amino, lower alkyl-NH—, and di-lower alkyl-N-[, aryl-lower alkyl, halogeno aryl-lower alkyl, guanidino, lower alkyl-CO NH , and lower alkyl- $\mathrm{SO}_{2}-\mathrm{NII}-\mathrm{]}$.
3. The compound of formula (I) or the salt thereof according to claim 3 , wherein $\mathrm{R}^{2}, \mathrm{R}^{1 \alpha}$ and $\mathrm{R}^{1 b}$ are each a hydrogen atom, [and Z is $=\mathrm{CH}-] A$ is methylene, and

4. A compound of formula (Ia):

30

[
35

40
in the formula, each of the symbols means as follows: ring IS is a heteroaryl group;
X is a bond or a lower alkylene group;
R is a hydrogen atom, a halogen atom, a lower alkyl group, amino group, an aryl lower alkyl group, or a halogeno aryl-lower alkyl group;] or a salt thereof.
11. A composition comprising [at least ono] the compound of formala [(I)] (Ia) or the salt thereof as clamed in claim 5, a pharmaceutically aceeptable carrier.
15. The compound according to claim 4 or the salt thereof; which is an optical isomer:
16. A composition comprising at least one compound of formula (I) or the sall thereof as claimed in one of claims 1,3 , 55 4, and 15 in a pharmaceutically acceptable carrier.
17. The composition as claimed in claim 16, wherein the at least one compound of formula (1) or the salt thereof is present in an anownt effective for treating diabetes mellitus in a human or animal patient in need of such treating.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Ex Parte Re-Examination of:
U.S. Patent No. 6,346,532

Control No.: 96/000,045

Inventors: TATSUYA MARUYAMA ET AL.

Filed: November 21, 2013

For: AMIDE DERIVATIVES OR SALTS THEREOF

Reexamination Certificate Issued: February 24, 2015
)
Examiner: Evelyn Mei Huang
)
) Art Unit 3991
) Conf. No.: 3506
)
) May 13,2016

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

CERTIFICATE OF CORRECTION
 UNDER RULE 322

Sir:
It is respectfully requested that a Certificate of Correction be issued by the Patent and Trademark Office due to errors which appear in the printed Ex Parte Reexamination Certificate as a result of Patent and Trademark Office mistakes. A Certificate of Correction form (Form $\mathrm{PTO} / \mathrm{SB} / 44$) is attached.

Patentees note that they previously provided the attached Form $\mathrm{PTO} / \mathrm{SB} / 44$ to the Certificates of Correction Branch via facsimile for entry into the official record at the request of
the Certificates of Correction Branch. However, to date, that paper does not appear to have been placed in the file and considered.

Patentees' undersigned attorney may be reached in our New York office by
telephone at (212) 218-2100. Correspondence should be directed to our address given below.
Respectfully submitted,
/Jason M. Okun/
Jason M. Okun
Attorney for Patentees
Registration No. 48,512

FITZP ATRICK, CELLA, HARPER \& SCINTO
1290 Avenue of the Americas
New York, New York 10104-3800
Facsimile: (212) 218-2200

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

```
PATENT NO.
DATED
INVENTOR(S)
```

 U.S. 6,346,532 C1
 February 24, 2015
 TATSUYA MARUYAMA ET AL.
 It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

COLUMN 1:

Line 40, "

(I)

1"
should read --I
(1

I--

Line 46, "unsubstituted substituted" should read --unsubstituted or substituted--

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO.
DATED INVENTOR(S)
U.S. 6,346,532 C1

February 24, 2015
TATSUYA MARUYAMA ET AL.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

COLUMN 2:

Line 20, "

is

should read --

is

Electronic Acknowledgement Receipt		
EFS ID:	25770978	
Application Number:	96000045	
International Application Number:		
Confirmation Number:	3506	
Title of Invention:	AMIDE DERIVATIVES OR SALTS THEREOF	
First Named Inventor/Applicant Name:	6346532	
Correspondence Address:	Fitzpatrick Cella Harper \& Scinto 1290 Avenue of the Americas New York NY US	10104-3800
Filer:	Jason M. Okun	
Filer Authorized By:		
Attorney Docket Number:	07385.0042	
Receipt Date:	13-MAY-2016	
Filing Date:	21-NOV-2013	
Time Stamp:	12:19:03	
Application Type:	Supplemental Examination	
Patent Number:		

Payment information:

Submitted with Payment	no

File Listing:

Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	$\begin{gathered} \text { Multi } \\ \text { Part /.zip } \end{gathered}$	Pages (if appl.)
1	Request for Certificate of Correction	CertificateofCorrectionExParteR eexamination02213003400.pdf		no	4
Warnings:					
Information:					
Total Files Size (in bytes):			184331		
This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.					
New Applications Under 35 U.S.C. 111					
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.					
National Stage of an International Application under 35 U.S.C. 371					
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.					
New International Application Filed with the USPTO as a Receiving Office					
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.					

UNITED STATES PATENT AND TRADEMARK OFFICE

 CERTIFICATE OF CORRECTION

 CERTIFICATE OF CORRECTION}

PATENT NO
APPLICATION NO.
DATED
INVENTOR (S)
: 6,346,532 C1
: 96/000045
: February 24, 2015
: Tatsuya Maruyama et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

COLUMN 1:

Line 40, "[
should read
(I)

Line 46, "unsubstituted substituted" should read --unsubstituted or substituted--.

COLUMN 2:

and

Line 20, "
is

$"$

Signed and Sealed this
Fifth Day of July, 2016
Michelle

Michelle K. Lee
Director of the United States Patent and Trademark Office
U.S. Pat. No. 6,346,532 C1

should read --

[^0]: 1 The Testing Data Table also contains data for three compounds that are not exemplified in the '532 patent: (a) BAN-371A (compound number 6), which is the free base equivalent of BAN-371 (compound number 5), which is exemplified in Example 041 ; (b) BAN-371B (compound number 7), which is the racemic equivalent of BAN-371; and (c) BAN-371C (compound number 8), which is the S-enantiomer equivalent of BAN. 371.

[^1]: ${ }^{3}$ As mentioned above, the compound of Example 107 is not a phenethanol derivative and, therefore, is not covered by the claims of the ' 532 patent.

[^2]: ${ }^{4}$ Testing Data Table shows other claimed compounds disclosed in examples $1-106$ and $108-113$ that are not listed in this table and that have $E D_{30}$ activities of between 3 and $10 \mathrm{mg} / \mathrm{kg}$.

[^3]: ${ }^{1}$ The structures depicted provide the structures of the free base, not the salt forms that may have been synthesized by the patent examples.
 ${ }^{2}$ Unless a specific value is provided, $\mathrm{ED}_{30}(\mathrm{mg} / \mathrm{kg}$) value is expressed as >10 (if the blood sugar level lowered is $\langle 30 \%$ at a dose of $10 \mathrm{mg} / \mathrm{kg} / \mathrm{day}$) or <10 (if the blood sugar level lowered is 30% at a dose of $10 \mathrm{mg} k \mathrm{~kg}$ day).

[^4]: ${ }^{3}$ A letter aiter a BAN number denotes an enantiomer of a conpound having that BAN number. For example, BAN-369A is an enamiomer of BAN-369.

[^5]: ${ }^{\prime}$ the S-enatiomer compound equivalent of the R-enantiomer compound BAN-371. Compound BAN-371C is not one of the syathesis examples in the patent specification. ${ }^{8}$ calaculated based on $\mathrm{EC}_{5 j}(\mathrm{MM})$ value of 790 , using $\mathrm{p} \mathrm{D}_{2}=-\log \left[\mathrm{EC}_{50}(\mathrm{M})\right]$

[^6]: -7.

[^7]: (Please use the back as well.)
 Yamanouchi Pharmaceutical Co., Ltd.
 Original Report Management Division \rightarrow Promotion Dept. 11,1993

[^8]: This work was supported by grants from the Centre National de la Recherche Scientifique，the Institut National de la Santé et de la Recherche Médicale，the Ministire de la Recherche et de l＇Eapace，the Univernitó Paris V，Bristol－Myera－ Squibb Company（Princeton，NJ），the Fondation pour la Recherche Medicale， the Aasociation pour le Développement de la Recherche sur le Cancor，and the Ligue Nationale Frangrise contre lo Cancer．

[^9]: receptor；IA，intrinsic activity；ICYP，iodocyanopindolol；MD，molecular dynamics；RMS，root mean square index；TM，transmembrane domein；ERL
 （3－indolyi）－1，1－dimethylethyi］amino）propoxy］benzonitrle hydrochloride；bupranolal，1－（2－chioro－5－methylphonoxy）－3－［（1，1－0imathyethyl）amino］－2－pro－ penol；CGP 12177A，（ \pm ）－4－（3－f－butylamino－2－hydroxypropoxy）benzimidazol－2－one；CGP 20712A，（土）－［2－（3－cmbemoy－4－hydroxyphenoxy）ethylemino］ 3－4－（1－mathy－4－tribuoromethyt－2－inidazohy）phenoxy］－2－propanolisopropytemino－2－propanol hydrochioride；cinaterol，2－amino－5－（1－hydroxy－2－（1－ mathylathyl）amino］ethyl）benzonitrile；clenbuterol，4－amino－3，5－dichloro－a－\｛（1，1－dimethylethyl）aminojbenzenemethanol；ICI 118551，0－（土）－1－（7－metit yinclan－4－yloxy－3－isopropylarninooutar－2－ol；ICl 201651，（R）－4－（2－hydroxy－3－phanoxypropylaminoethoxy）－N－（2－methoxyathylphenoxyacetic acid；LY
 pyrrolldine amide hydrobromide；SR 58611A，（RS）－N－［（2S）－7－athoxycarbonylmethoxy－1，2，3，4－tetrahydronaphth－2－yl）－（2R）－2－（3－chlorophenyl）－2－hy－ droxyethanamine hyotrochioride；PES，phosphate－buffered seine；HEPES， $4-(2$－hycroxyethyl $)$－1－piperazineethanasulfonic acid．

[^10]: 2881 .

[^11]: ${ }^{1}$ Starting from the last paragraph on page 29 of the Englim language translation of the priority application filed March 7, 2001 during the orginal prosecution of U.S. Patent No. 6,346,532.
 ${ }^{2}$ Starting from he last paragraph on page 29 of the English language trank lation of the priority application fled March 7, 2001 during the original prosecution of U.S. Patent No, 6,346,532.

[^12]: ${ }^{3}$ Starting from the last paragraph on page 29 of the English language translation of the priosity application filed March 7, 2001 during the original prosecution of U.S. Patent No. 6,346,532.

[^13]: 11 SLCONDARY AMINES, TIIEIR PREPARATION AND USE IN PIIARMACLUTICAL COMPOSITIONS, US PAT 4478849Assignee: Beecham Group I imited, (U.S. PTO Utility 1984) 12 SECONDARY AMINES, THEIR PREPARATION AND USE IN PHARMACEUTICAL COMPOSI'TIONS, US PAT' 4396627Assignee: Beecham Group Limited, (U.S. P'IO Utility 1983)
 \& 13 SUBSTITUTED SULFONAMIDES Λ S SELECTIVE<<beta>>3 4 GONISTS FOR THE TREATMENT OF DIABETES AND OBESITY, US PAT 5541 197Assignee: Merck \& Co., Inc., (U.S. PTO Utility 1996)

