
Computer Graphics Volume 18, Number 3 July 198,1

Manipulating Simulated Objects with Real-world Gestures
using a Force and Position Sensitive Screen

Margare t R. Minsky

Atari Cambridge Research
Cambridge, Massachusetts

Author's present address:
Media Laboratory

Massachusetts Institute of Technology
Cambridge, Massachusetts

Abstract

A flexible interface to computing environments can be
provided by gestural input. We describe a prototype
system that recognizes some types of single-finger gestures
and uses these gestures to manipulate displayed objects.. An
experimental gesture input device yields information about
single finger gestures in terms of position, pressure, and
shear forces on a screen. The gestures are classified by a
"gesture parser" and used to control actions in a
fingerpainting program, an interactive computing system
dcsigned for young children, and an interactive digital logic
simulation.

CR Categories and Subject Dcscriptors: 1.3.6 [Computer Graphics]
Methodology and Techniques - interaction techniques; H.1.2 [Models
and Principles]: User/Machine Systems - human information
processing: D.2.2 [Software Engineering] Tools and Techniques - user
interfaces; 1.3.1 [Computer Graphics] Hardware Architecture - input
devices

General Terms: Design, Experimentation, Languages

Additional Key Words and Phrases: gesture, touch-sensitive screen,
visual programming, computers and education, paint programs

One goal of this research is to make a natural general
purpose interface which feels physical. Another goal is to
extend some ideas from the Logo pedagogical culture
- where young children learn to program and control
computing environments [5] - to gestural and dynamic
visual representations of programming-like activities.

How could we introduce programming ideas to very young
children? They already know how to accomplish goals by
using motions and gestures. So we speculate, it would be
easier for them to learn new things if we can give them the
effect of handling somewhat abstract objects in our
displayed worlds. For this we need to find simple languages
of gesture that can be learned mostly by exploration, and to
find visual representations that can be manipulated and
program reed by these "gestu re languages".

The "Put-That-There" project at the MIT Architecture
Machine Group [2] has some goals and techniques in
common with this research. We also share some goals with
the "visual programnfing" research community.

1. Introduction

We want to create worlds within the computer that can be
manipulated in a concrete natural way using gesture as the
mode of interaction. The effect is intended to have a quality
of "telepresence" in the sense that, to the user, the
distinction between real and simulated physical objects
displayed on a screen can be blurred by letting the user
touch, poke, and move the objects around with finger
motions.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1 9 8 4 A C M 0 - 8 9 7 9 1 - 1 3 8 - 5 / 8 4 / 0 0 7 / 0 1 9 5 $ 0 0 . 7 5

We wanted multiple sources of gesture information
including position and configuration of the hand, velocity,
and acceleration to experiment with hand gestures. Our first
step was to build an experimental input device by mounting
a transparent touch-sensitive screen in a force-sensing
frame. This yields information about single finger gestures
in terms of position, pressure and shear forces on the
screen. Thus our system can measure the position of a
touch, and the direction and intensity of the force being
applied.

Sections 2, 3 and 4 of this paper describe environments that
we have built that are controlled through this kind of
gesture input, and our gesture classification. Section 5
decribes the hardware and signal processing we use to
recognize these gestures. Section 6 discusses the future
directions of this work.

195

Microsoft Ex. 1013
Microsoft v. Philips - IPR2018-00025

Page 1 of 9
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

@SIGGRAPH'84

2. Fingerpaint: A First Gesture Environment

To explore the issues involved in this kind &gestural input,
we first built a fingerpaint program. The program tracks the
motion of a finge~ (or stylus) on the screen and paints
wherever the finger moves. This application makes essential
use of the finger's pressure as well as its location. It also
uses the shear-force information to smooth the
interpretation of the gesture information.

The user's finger squooshes a blob of paint onto the screen
(Fig. 1).

Figure 1: Fingerpaint

If the user presses harder, he gets a bigger blob of paint
(Fig. 2).

Figure 1: Fingerpaint with Varying Pressure

The user can choose from several paint colors, and can also
paint with simulated spray paint (Fig. 3).

In one version of this program, brush "pictures" can be
picked up and stamped in other places on the screen.

Directions for a Gesture Paint Program

We would like to improve fingerpaint in the direction of
making a painting system that allows more artistic control
and remains sensually satisfying. At the same time we want
to avoid making the system too complex for young
beginners. We plan to implement a "blend" gesture, a set of
paint pots out of which to choose colors with the fingers,
and some brushstrokes which depend on the force contour
of the painting gesture.

The idea of magnification proportional to pressure used in
the paint program suggests use of pressure to scale objects
in other environments.

3. Parsing Gestures for Manipulating
Simulated Objects

The paint program follows the finger and implicitly
intel"prets gestures to spread paint on the screen. For
applications in which discrete, previously defined objects
are to be manipulated using gestures, we need more
complex gesture recognition. We want the user to be able to
indicate, by gestures, different actions to perform on
objects. The process of recognizing these gestures can be
though of as parsing the gestures of a "gesture language".

Our gesture parser recognizes the initiation of a new gesture
(just touching the screen after lifting off), then dynamically
assigns to it a gesture type. It can recognize three gesture
types: the "selection" gesture, the "move" gesture that
consists of motion along an approximate line, and the
"path" gesture that moves along a path with inflections.
We are planning to introduce recognition of a gesture that
selects an area of the screen. These gesture types, along with
details of their state (particular trajectory, nearest object,
pressure, pressure-time contour, shear direction, and so
forth) are used by the system to respond to the user's
motions.

4. Soft lnlplementations of Some Existing
Visually Oriented Systems

To support our experimentation, we built a fairly general
system to display the 2-D objects that are manipulated by
gestures.

The following sections describe environments built from
these components (gesture parser and 2-D object system),
and some anecdotal findings.

4.1 Button Box

The gesture system Button Box was inspired by some
experiments by Radia Perlman with special terminals
(called Button Box and Slot Machine) built for preliterate
children [6,7]. The Slot Machine is a plexiglass bar with

196

Microsoft Ex. 1013
Microsoft v. Philips - IPR2018-00025

Page 2 of 9
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Computer Graphics Volume 18, Number 3 July 1984

Figure 3: Fingerpaintings

Figure 4: Forward

~ '̧̧~I~̧ . 8

Figure 5: Arranging Buttons

Figure 6: A Button being Copied

197

Microsoft Ex. 1013
Microsoft v. Philips - IPR2018-00025

Page 3 of 9
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

~SIGGRAPH'84

slots to put cards in. Each card represents a program
command, for example, a Logo turtle command. A child
writes a program by putting the cards in the slots in the
order they want, then pushing a big red button at the end of
the bar. Each card in sequence is selected by the progam
counter (a light bulb lights up at the selected card) and that
card's command is run. This provides a concrete model of
computation and procedure. With various kinds of jump
and iteration cards, kids use this physical equipment to
learn about control structures and debugging.

The gesture system Button Box is even more flexible than
the original specially constructed hardware devices; since it
is software it can be modified and reconfigured. The
current implementation makes use of some force and
gesture information. It can be viewed as work in progress
toward making models of computation that are particularly
suited to having their pieces picked up, tapped upon, tossed
about, and smudged by finger gestures.

Pictures of buttons that control various actions appear on
the screen. In our example domain, the buttons are
commands to a Logo-style turtle [1]. For example, one
button is the FD (FORWARD) command, another is the RT
(RIGHT TURN) command. If the user taps a button rather
hard (think of hitting or pressing a mechanical button), the
button "does its thing". Whatever action the button
represents happens. If the FD button is tapped, the display
turtle moves forward (Fig. 4).

If the user selects a button by applying fairly constant
pressure to it for a longer time than a "tap" gesture, the
gesture is interpreted as a desire to move the selected
button on the screen. The button follows the finger until
the finger lifts off the screen, and the button remains in its
new position.

This allows the user to organize the buttons in any way that
makes sense to him, for example, the user may place
buttons in a line in the order in which they should be
tapped to make the turtle draw something (Fig. 5).

Some of these buttons control rather concrete actions such
as moving the turtle or producing a beep sound. Other
buttons represent more abstract concepts, for example, the
PU/PD button represents the state of the turtle's drawing
pen. When the PU/PD button is tapped it changes the state
of the turtle's pen, and it also changes its own label.

There are also buttons which operate on the other buttons.
The COPY button can be moved to overlap any other
button, and then tapped to produce a copy of the
overlapped button (Fig. 6).

Some concepts in programming are available in the button

box world. The environment lends itself to thinking about
the visual organization of actions. In our anecdotal studies
of non-programmers using the button box, most of our
subjects produced a library of copies of turtle commands
and arranged them systematically on the screen. They then
chose from the library the buttons that allowed them to
control the turtle in a desired way and arranged them at
some favored spot on the screen.

There are mechanisms fol explicitly creating simple
procedures. At this time, only unconditionally ordered
sequences of action represented by sequences of button
pushes are available; we are working on representations of
conditionals and variables, qhe user can specify a sequence
of buttons to be grouped into a procedure.

We have experimented with two ways of gathering buttons
into procedures: boxes and magic paint.

The first method uses boxes. The BOX button, when tapped,
turns into a box. The box is sU'etchy and its corners can be
moved, so it can be expanded to any size, and placed
around a group of buttons (or the user can move buttons
into the box). There are buttons which, when tapped, make
the system "tap" every button in the box in sequence (Fig.
7).

The second method uses "magic paint". Magic paint is a
genie button. As the user moves it, it paints. The user uses it
to paint over a sequence of buttons. The path created shows
the sequence in which buttons should be pushed. When the
end of the paint path is tapped, the system "goes along" the
path, tapping each button in sequence (Fig. 8).

The user can group buttons with either method and have
the system "push its own buttons". The user can also tell
the system to create a new button from this grouping. The
CLOSE button closes up a box and makes a new button. The
new button becomes part of the button box world with a
status equal to any other button. The new button appears
on the screen and can be moved and can be tapped like any
other. Thus it becomes a subroutine (Fig. 9).

Most of our experiments so far have used the box
metaphor. We plan to develop gesture semantics for magic
paint, which seems more promising because the paint path
makes the order of button pushes more explicit than the
box grouping. It feels more "gestural" to program by
drawing a swooping path.

4.2 Logic Design- Rocky's Boots

We have applied the same set of gestures to make a smooth
interface to another environment: a graphic logic-design
system based on Warren Robinett's program, Rocky's Boots
[Robinett 82].

198

Microsoft Ex. 1013
Microsoft v. Philips - IPR2018-00025

Page 4 of 9
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Computer Graphics Volume 18, Number 3 July 1984

Figure 7: Making a Box and Using it to Group Buttons

Figure 9: Creating a New Button by Closing a Box

Figure 8: Using Magic Paint to Group Buttons Figure 10: Logic objects:
Gates, HI input, clock input (blurred), output light

199

Microsoft Ex. 1013
Microsoft v. Philips - IPR2018-00025

Page 5 of 9
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

