
APPLE EXHIBIT 1102, Page 1 of 1048

§<::£:a9mm\

fisfiawfi i §¥€S$§$2§§

 if} \x 7-1:: £2 ,3;- §.
i \ -\.\\\-\\‘~

’2”?
’{IJIl/(Jtrlnn”nununuunuw, \. . .. a.“ x: \

\x NNK‘ :91}: EN? :‘a‘se'fihm _a - . ‘ ‘ . ‘ ‘. ' “v.fi\)\fi\nfi_\\y\\y___\i___\i_v\)1__\\:I___I_\\\\:I__\\:Ij|_\\p__\:|\‘\V'n‘\wh‘\V'n‘\w'n‘\V'n‘\V'n‘\V'n‘N\\\\\\N\\\\‘\\\\\‘\\\\\N\\\\N\\\\N\\\\‘\\\\‘h‘\\\\‘h‘\\\\\‘\\\\\‘\\\\\‘\\\\\‘\\\\\N\\\\‘\\\\\‘\\\\\N\\\\‘\\\\\‘\\\\\‘\\\v\\‘\\\\\‘\\\\‘h‘\\\\\\\\\\\\\\\\\\\\\\\\\k“

\w.«w.«WWW“a“m‘m‘vhanvwlnvhmmkuaems-aVIN“«\mxnwmwxnuxnu“\“an\wmwmwmvmvxxx‘rnxww ,
\ wu-W' c fl v»- .vuu .-.\(>.'“<§-\¢~.w\\._ \\“ a “\'\".\<‘-\< M
S “affirm mm‘ \w. 1mm ~ {haw-u: % Gov. i‘o‘wx-‘E: -
Fk‘mk‘mkwmkm‘hmwnun.n‘hwn‘hwmkm\\m\u\mihfimi\HMi\HMi‘1.“i\HMi‘1.“i‘1.“i\wv“\wv“var“\wv“\‘uM\wv“\H.“\Q-L\Xh\KW\KW\\“\\\\k\\\\k\\\“\\\“\\\‘3“Uh)“Sh)“\\\k\\\x\k\\Hw\‘hh\\\“\Uh»Nah»\‘hh\\\%\\“\\\“\\\“\\\“\\Hfi§\x\
§ .nun“.u.y“nu...-..u.“u“...u...-.“u...“..-..\.“u“u“u...u“...u..-...u...-...m.-.uu.-.m\‘\‘.V‘\
:.

1
1

 ~ xwg-gxw _\\

\o'hp: q : \r\o\-‘uV-“\'.r‘t- ..-c
‘ \‘ V .L i .\ YA ‘ M‘-{a \

 ..““.““.““qw

.y.my..."m,my.m,mm..."a},mmm,.m,...,,,..,,,...,,..,,,..,,,..,,,..mm. arr/”nfff/IIJ('1"ff/ffIJIIIIIIJIIIIJIII/

 . a“:u *- ‘““"W‘ n >‘\‘}'\ ‘ a}.“hm. “unfinfinhfiuyv

 “y‘“xu.1.,1“aH“xu.wmumumknukwra:-lnwm-nnn”.nu.»

"..,‘my‘my‘my‘my‘m.‘“x““xH~\.H.‘.»N..,m.wu..mm‘.\\H“w.v.H.1.H.1.H.1.H.uHw“u.Hu.“u.“u.“«nu—“NH“.M J
 Ac:- .‘ \ :3“;\:k:s.&.= :~.\upxv.a“x\u“x\a““a“x\u“x\u“x\u“x\1'“x\““m“m“wn\wu“wm~wn“wm‘wm‘v-m‘v-m‘v-mxvs«\Vx«\Vx\\\N\\\\“xv“xxx“iv“ivv'xxv“\wm““x““x““\wxv.“xxx“xxx“xxxmxvmxvmxwmxvmxwmxvmx““mmxvmxwmxvv‘xx

‘vaz 3 cuw.\ ‘ Emu».{ ‘

{lMMn‘thaz/Javr/Mrr'r'n‘d/r'rttrwyf‘trr;fin-1137’!!!

.ww

\
“
1 mu“

4w ‘ ~w»,w,

a.”“by.nu"mam”.u”"alum...”...A_4...,_l_/..,_,_u

 %'-\\' "‘“'i\"‘« "A '-. xrxiq n..- \
W W\%\\m\m m\\m\mmmmm\mxwmmw.wwmwmv N‘ \\\\ \\\\\v\\\ I\\\'\i\\\'Ip“'h\i\\'h\\\\\'|i\\a'I\\\'n\\\'n\\\m\\\n\\\'n\\\'n\\\'n\\\v“\‘\'I'I\\\1‘\\\m\\\'n\\\'n\\\'n\\\'n\\\'n\\\'n\\\“\\\“\\\“\\\“\\\“\\\“\

fix‘m
 Mm- humanity”.mmgfiwmMy,“N,wwwwmMy,My,M1,M~,M“M“M~mmM““N“NMHMH“.M.“mum“.“mm“.“mm“.“mum...m.m.m.“mm“.m.“mm“.m.m.m.m.m.m.m“

llmlw any”... ,u\MW‘“““\\\m§“ww\“wmy““mafiwmxx”w“\“x‘m‘uwmw‘._._\,._.M3.“Emma“?M~,M~‘M~‘M~.m~.,.m..m.m“m“n“...m“nmm~.,m“m“m~mmmum“m“m“mm“?mumunmmxmmmx
“ ‘ . . - “ . xii-1:13; ‘. {mm

. . Wm. “h \n‘"a r :3:‘ 3:1“? 3*:

 9W .\

a. "i‘ ‘t .21:

APPLE EXHIBIT 1102, Page 1 of 1048

APPLE EXHIBIT 1102, Page 2 of 1048

w .

uvu (nu

.\2.3‘....Rx..uAxxx\§§\§§x§tx\.§tx\§t\\$§$$¥d

“a“

5Iwe“we“.v-e-ev-MIL-A\w\w\m\m\\v€\\\\‘h\\v\\x\\\.

u\\.\\.\u\\.\\.\uxu\\.

Wm‘m\m“w.“w.“w.\mxmmw‘m\xmmxxmmmmmmmmmmwMmmmiwahx\\x\m\x\x\w“no.“om-m‘o-Mh\\.\x\\k\x\\k\x\\m\\\\\\\w\\H‘XVv-ha\\W\W\W\H\W\M\%\\\m\\%\‘

unv-unv-unv-~\\\\\\\\nunv-unv-hk\\h\\\w\mk\m\\\nkmk\wk‘ng“.5,w“,w“...

--\\w\\wuwuwuwu-m‘.‘.“.\“\.\Mu,A.“.‘.M\\.Mu.uu.u.1.“.1.“.1.H.1..,,.““.u.,,.“mu,a

xmumnxA.H.ummmmmwm“.s‘

“m“.uxvu‘ulnv.‘mmuWw.‘.“aw.“mu-nu.“MM\\A|A

“ww\

{\Stsktxxxxaxxxx..\\\\\\\\\\\§\M\\\\M\\\\\\§i\\\

\‘}t\}t\:t\:=l.

.‘NK\\‘N\\‘>mwmn>>xx»>mm»,\\\\mm imyw1\i___\\“h\ix__\ix__\h_\\\-\i_\\\-_\i\-\\-_\\x\)1_\\m\-__\\I_\\\-\)1__\'\:I__\\I________\\1_\i__\\\\\\um»~

3h1‘\\‘1‘\\kw\\xkw\\\kw_w\u.h\\\--h.u.-.n\\\-.n\\\-hw\\\h\\v.nah\-.nah\\r“\\bx\\\r“\\bx\\-\bx\\-\bx\\-\bx\\\bx\\\bx\\\bx\\-\bx\\-\bx\\-\bx\\-\5\\\-\h'\\\-\r\\\\r\v\\-\r\\\-\ryvtryv-xr‘v-xh‘v-xh“\\h\\\\h»\\\hyifi~hy‘\xh»\\\hy\\~.h\\\\h\\\fii\\\fii\\\fii\\\fii\\\fii\\\fii\\\

wipxm\fi1\\jnp\\““\y\“ ,

Ania-5...!lit-{flixxs‘txktx‘xxt‘xicx\.(««L\\\kw.xx\x\\\\\\\\\\\\\\\\\\\x}r.KEEN}!

'i\\I.“\\I.\.\\\I.u\\I.\\\\I.\.\\\In.\\\~n.\\\~n\\\~n.\\vw

wv um N\‘.\'\\‘~ .4 “w .‘-\«q“n.“n.“n.“n.“n.“n.n.“n.“n.“n.“n.“n.“n.“\-..“\-..““.“““u

1“A
H.mm.ixxu125;V.aR“.u$3u:1.“K“...«\N.)

\~.\4-un.‘-.uu-u--.-uivmuvmuv.\«qvmu‘~.\«-\~M-vmuvH-nHn‘H-nH-‘H'wvunn'w mmm -.

.w w

wmw..V‘\-u.\\\-u.\\\-u.\\\-n.\\\xh\\\-u.\\\-u.\\“a

ox“. IH\\1-H\\~ u-nxu-nt-A'ut-J'u

 wbktmrat: .~:\~ Ext-m“. \-

=.“. m3“2»

APPLE EXHIBIT 1102, Page 2 of 1048

APPLE EXHIBIT 1102, Page 3 of 1048

\xuxxt‘i2.3.a.

i‘

e\w\\\\‘\\\\‘\‘\‘-“\‘\\‘-“"'\“5\'\\\'|\\“Hi\\\i'K‘V-'K‘WK‘W\\\-\“"9“an“N“-\““““i.\‘PM)-\-PM)-.\-PM)-.‘-.‘h\H\\\\H\\\\\\\\\\\\\\\\‘w\\\\‘w\\‘\‘\‘w\\‘\\\\\'\\\\n\\\v\\\\\\\\\v'n‘\n\\\n\\\~n\\\“\\\1\\\\\1i\\\\pvqb‘yilsxypm»;h“\\\w\\m\W\m“\\\“\\gwme ‘
.0‘9

»s,ixh\‘<h\'k\\i\‘H\\\fi-h\\\\‘\\\-“\\\\N‘\\l“\\l\'i\ \‘x‘u“xv.«w.\Inu«w.«w.mawxWu.“w.“ww.mmm“ya-xwmmxmmmwmwmwfl\\w\\w\v~hflux-uu.v“u.v““up.“up.\M-‘wku-wwn“1““1“w.“v9“\m-..u'e&u.\&rc\wxuwunvwnwu.“

Vtxxxxxxxxtxxxtxxxtaxtxxx‘k‘stxxsxxx\x.tx\x‘\x\xx\a~s\\a~\\V\\\\V\\\\va\\x\\x\\\a\\\r\\\\\h:u\u...r{R-x¥wvxiwvvvxw§i~vr¥§§§>§~‘..,.

 \
.1

uum\ny\“\“x“

\‘.‘

3“.

EwMwmu:m:y._..nm..{0“n_...n.fin?nx5ya

wxNw\\uw\u\u“

u“\\nuuw.“w.“w.«nu-x“mun.“n.“-\‘\M\‘\M‘-‘\MWMWM)-‘M>.‘.V‘.-m‘v.-mxxmmxmxxxxxsxxx“\\\\\\\\\\w«\\\\“x“\“vm~n“~n“wu“wui\\'h\‘i\‘\'h\i“a,‘i.\\\\mmmxumxumxwxxw

%H\\¥\H\\\x~h\i\\\hw(«w«Nix\\\\\\\\\H\\\.\\“\\\u‘\\ '\' \-

un.uu

~

\.m.n

“~wMw_.xmm_.wm_.w“~~

-\\s\\s\s\\s\\\\r\\\-\h\\\\h\\\\h\\\\h\\\xhy\\..y\i-u“i~~n~\‘|‘n\\“iI no...

\\%\\%\\Hfi~~w~“‘n\“M\“V\\“V\\\‘\M\\‘-““-‘-‘~"‘-W\‘D-.‘- ".\‘!‘-.‘- ".".‘!‘-.‘- ‘5'!I‘-HRUN-hKEV-h'<(\"'\\‘€(\"'\\“\H)\\\K\\\\K\\\\K\\\\\\\\V\h\\\\h\\\\\\\\\\\\\\\\\\\fl“w.“‘5‘ bags. IK‘LhiiikhI‘mMI‘\’1.I‘\.\M\.\.w__\w__\mumm‘w‘““\\w\m\\“\“\\\m\\\““w‘\\\“\"“\““\

.:\:xx}.:§§2§§§2§\2‘3..~\\..~x\\..~x\\..~\\‘1‘\\\\.\\\\xx\\\x\\\\\\\\\\\\\v1§xw§vav$vs§s~.sv§s~¥<s~¥<s§x§§x§~¥<t\.

APPLE EXHIBIT 1102, Page 3 of 1048

APPLE EXHIBIT 1102, Page 4 of 1048

\
S5~
k

S5
g

leaxlixiix

\wxm\“a\“a\n\u\ua\\u

“_“.v_“.v_uu\v\“\m.n\“g\

uum.u..uw..yw..yw..;

anwumum“Kan-5"PF“”EN-h‘<~‘.\"-\\'<~‘.\"-\\‘(VN-h\\.\"-\\\\\K\\\\\._\\\‘§.__N\h\\\\h\\\\.\\\\\.\\\\\\\\\\\“w..“$9_-._u__-._“_‘_-..._“W_“_\,.._‘_.,, .WMW, _ _ Q”N_‘A““w““m“m““\“\vm\““\\w“\““Wm‘“m“\“““\““\““‘ wwwx\m~~~‘°

\

‘.\3:‘3:~\\\\\!-\\\\\\\\\\\\\
n..U1u1wu.1;

\“Hxx-w.mwmwmufiw‘“.-m.

Q“

“ ununuuufiuuvn

(v

Mk

\\\I\“\\\“\\\\)\\\\7-\\\an»>m\\m\m\m\m\m\\wxxwm“\“xx“x““\““ww.w““Nun-Lw\\M\\.M-n~%\\\Wr\.\wu.\wm.\wm.

w»“wanna-x“m“m“\\\m\v-\v-\\\\~u\\\m\\\m“\vmw-m~wmwn“\“““

\..\.\§\\\x\\\xx\\\\\\\

‘um\nn\n“\nL

APPLE EXHIBIT 1102, Page 4 of 1048

:3.

k

3.

mmmu.“nmu.u.1.w.no.\m.n.‘mnm..m...

.:::.::..\..

-.-\\\.\\‘\h\\\\h\\\\h\\\\-1H\\hy‘\\‘--\.H\\¥\.i~\\v‘a\\v‘a\\vn..yn..ym....‘..

a\\\\
:c: . ax

'\\'~u.-.«If?
\\\\~n\‘.\~'\\' \'~.\“\\~.\ ‘‘‘‘..‘\\\\1w\3\x~\SxN~\SxN~\SxN~§~§x§~§x-¥<§~¥<§§x§i§m‘innkxxtxxxuxxxxaxxx\\\\\\\\\\\n\\§\\§\\\§\xb‘§\k

APPLE EXHIBIT 1102, Page 5 of 1048

REMOTE UPDATE OF COMPUTERS BASED ON PHYSICAL DEVICE

RECOGNITION

[0001] This application claims priority to US. Provisional Application No. 61/220,092 which

was filed June 24, 2009 and which is fully incorporated herein by reference.

BACKGROUND

Field of the Invention

[0002] The present invention relates to computers and, in particular, to methods, apparatus

and systems for maintaining appropriate configuration updates to software/hardware

configuration through the use of physical device recognition to tailor configuration updates.

Description of the Related Art

[0003] Monitoring changes and updates to the plurality of computer programs resident on a

client device is a difficult task for the typical user to consistently perform. In addition, the latest

update from a vendor may not be appropriate consideiing the hardware, software or

physical/geo—location of the client device. Thus, there is a need in the art for a tool that will

automate the program configuration update process and optimize the suggested updated program

configuration to match the environment of the client device.

[0004] The present invention is directed toward a system, method and apparatus for remote

updating of the configuration of a computer. One embodiment of the invention is system for

remote updating a computer configuration, comprising: a client device configured to load a

computer program to perform a remote update; a processor, at the client device, configured to

perform physical device recognition on the client device to detemtine machine parameters,

wherein unique device identifiers are generated for the client device, at least in part, based on the

determined machine parameters; a transceiver configured to send the unique device identifiers to

at least one of an auditing sewer and an update sewer via lntemet; an update server configured

to collect the unique device identifiers from at least one client device; a processor, at the update

server, configured to analyzed the unique identifiers at the update server, wherein the analyzed

unique identifiers determine an updated program configuration; and a transceiver, at the update

server, configured to deliver the updated program configuration to the client device via lnternet.

APPLE EXHIBIT 1102, Page 5 of 1048

APPLE EXHIBIT 1102, Page 6 of 1048

[0005] In accordance with one aspect of the embodiments described herein, there is provided

an apparatus for remote update of a program, comprising: means for loading a client device with

a computer program configured to perform a remote update; means for performing physical

device recognition on the client device to determine machine parameters; means for generating

unique device identifier based at least in part on the determined machine parameters; means for

sending the unique device identifier to at least one of an auditing server and an update server;

and means for receiving an updated program configuration from the update server.

[0006] In accordance with another aspect of the embodiments described herein, there is

provided a method for remote update of a program, comprising: collecting unique identifiers

from at least one of an audit sewer and client device at an update server; analyzing the unique

identifiers; determining an updated program configuration for the client device from the

analyzed unique identifiers; and delivering the updated program configuration to the client.

[0007] In accordance with another aspect of the embodiments described herein, there is

provided a tangible computer readable medium having stored thereon, computer—executable

instructions that, if executed by a computing device, cause the computing device to perform a

method comprising: loading a client device with a computer program configured to perform a

remote update; performing physical device recognition on the client device to determine

machine parameters; generating unique device identifier based at least in part on the determined

machine parameters; sending the unique device identifier to at least one of an auditing server and

an update server; and receiving an updated program configuration from the update server.

[0008] In accordance with another aspect of the embodiments described herein, there is

provided an apparatus for remote updating of a program, comprising: means for collecting

unique identifiers from at least one of an audit server and client device; means for analyzing the

unique identifiers; means for determining an updated program configuration for the client device

from the analyzed unique identifiers; and means for delivering the updated program

configuration to the client.

[0009] In accordance with another asPect of the embodiments described herein, there is

provided a tangible computer readable medium having stored thereon, computer-executable

instructions that, if executed by a computing device, cause the computing device to perform a

method comprising: collecting unique identifiers from at least one of an audit sewer and client

APPLE EXHIBIT 1102, Page 6 of 1048

APPLE EXHIBIT 1102, Page 7 of 1048

device; analyzing the unique identifiers; determining an updated program configuration for the

client device from the analyzed unique identifiers; and delivering the updated program

configuration to the client.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] FIG. I is a schematic diagram of a system for remote updating of a client device by an

update server in accordance with an embodiment of the invention.

[0011] FIG. 2 is a flow diagram of a method for remote updating of a client device in

accordance with an embodiment of the invention implemented on the client device.

[0012] FIG. 3 is a block diagram of an apparatus according to the invention that may be

configured as a client device, or as a processor or similar device for use within a client device.

[0013] FIG. 4 is a flow diagram of a method for remote updating of a client device in

accordance with an embodiment of the invention implemented on the update server.

[0014] FIG. 5 is a block diagram of an apparatus according to the invention that may be

configured as an update server, or as a processor or similar device for use within an update

SBI'VEI'.

[0015] FIG. 6 is a block diagram of memory allocation for a unique device identifier used in

the various exemplary embodiments of the invention.

DETAILED DESCRIPTION

[0016] In accordance with the present technology, there is provided a system, method and

apparatus for the remote update of computer software licenses through the use of physical device

recognition. In particular, FIG. 1 shows an exemplary schematic diagram for a system for

remote updating of at least one client device 100 by an update server l20 in accordance with an

exemplary embodiment of the invention. In particular, FIG. I, shows an exemplary system

having at least one computing/network client device 100 that is in operative communication via

the Internet 102 with an audit server 110 and an update server 120. While only one client device

100 is illustrated in FIG. 1, it will be understood that a given system may comprise any number

of client devices and use any number of apparatuses and methods of the invention as described

herein. Further details regarding the system of FIG. 1 are provided below.

Ls.)

APPLE EXHIBIT 1102, Page 7 of 1048

APPLE EXHIBIT 1102, Page 8 of 1048

[0017] FIG. 2 provides an exemplary flow diagram of a method for remotely updating a client

device. In particular, in step 2l0 of FIG. 2, the loading of at least one client device with a

computer program for remote updating is peiformed. Physical device recognition of at least one

of a software, hardware and geo-location environment of the client device is performed to

determine machine parameters in step 220. Step 230 involves generating unique device

identifiers, at least in part, from the determined machine parameters. The unique device

identifiers are sent to at least one of an audit server 110 and an update server 120, as shown in

FIG. 1, in step 240. In step 250, the client device 100 receives an updated program configuration

from the update server 120, as shown in FIG. 1.

[0018] FIG. 3 illustrates an exemplary apparatus that may be configured as a client device,

comprising: a transceiver 304, a processor 306 and a memory 308; or as a processor 306; or as a

similar device for use within a client device 100, as shown in FIG. 1, which provides the means

for implementing the method, as disclosed in FIG. 2, on the client device 100. In particular,

apparatus 300 may comprise means for loading 320 a client device with a computer program for

perfonning a remote update. In addition, the apparatus 300 may comprise means for performing

320 physical device recognition of one or more machine parameters of the client device. The

machine parameters may comprise a combination of at least one user-configurable parameter and

at least one non—user—configurable parameter of the client device. Further, the apparatus 300 may

comprise a means for generating 340 a device identifier for the device based at least in part on

the collected one or more machine parameters. Furthermore, apparatus 300 may comprise means

for sending unique identifiers to at least one of an audit server and an update server. Moreover,

apparatus 300 may comprise means for receiving 360 an updated program configuration from the

update server.

[0019] In addition, apparatus 300 may further comprise a means for determining the geo—

location code for the device and for associating the geo-location code with a unique device

identifier; and a software identifier to generate an audit number. The geo—location code may

comprise, but is not limited to an Internet protocol (IP) address.

[0020] The apparatus 300 may further comprise a means for generating a device identifier by

implementing or executing at least one irreversible transformation such that the machine

APPLE EXHIBIT 1102, Page 8 of 1048

APPLE EXHIBIT 1102, Page 9 of 1048

parameters cannot be derived from the device identifier. Additionally, at least one of the

irreversible transformations may comprise, but is not limited to a cryptographic hash function.

[0021] It is noted that apparatus 300 may Optionally include a processor module 306 having at

least one processor, in the case of apparatus 300 configured as computing device, rather than as a

processor. Processor module 306, in such case, may be in operative communication with means

for determining the geo—location code; means for generating a device identifier by implementing

or executing at least one irreversible transformation and components thereof, via a bus 302 or

similar communication coupling. Processor 306 may effect initiation and scheduling of the

processes or functions performed by means for generating a device identifier by implementing or

executing at least one irreversible transformation, and components thereof.

[0022] In related aSpects, apparatus 300 may include a transceiver module 304 for

communicating with means for generating a device identifier by implementing or executing at

least one irreversible transformation, and components thereof. A stand alone receiver and/or

stand alone transmitter may be used in lieu of or in conjunction with the transceiver 304.

[0023] In addition, apparatus 300 may optionally include a means for storing information, such

as, for example, a computer readable medium or memory device/module 308. Further, the

memory device/module 308 may be operatively coupled to the other components of apparatus

300 via bus 302 or the like. The computer readable medium or memory device 308 may be

adapted to store computer readable instructions and data for effecting the methods of FIG. 2;

and, as shown in FIG. 3, the processes and behavior of means 320—360; means for determining

the geo-location code; means for generating a device identifier by implementing or executing at

least one irreversible, and components thereof; or processor 306 (in the case of apparatus 300

being configured as a computing device) or the methods disclosed herein.

[0024] In yet further related aspects, the memory module 308 may optionally include

executable code for the processor module 304 configured to: (a) determine machine parameters

of a client device, the machine parameters comprising a combination of at least one user—

configurable parameter and at least one non-user-configurable parameter of the device; (b)

generate a device identifier for the device based, at least in part, on the machine parameters; and

(c) determine whether an Internet connection is available for the client device. One or more of

APPLE EXHIBIT 1102, Page 9 of 1048

APPLE EXHIBIT 1102, Page 10 of 1048

steps (a)-(c) may be performed by a processor module in lieu of or in conjunction with the means

described above.

[0025] FIG. 4 shows an exemplary flow diagram of a method for remote updating of a client

device in accordance with an embodiment of the invention on the update server 120, as shown in

FIG. 1. In particular, in step 410 the unique identifiers are collected by update server 120 from

at least one of the audit server ”0 and the client device 100, as shown FIG. 1. The unique

identifiers are then analyzed on the update server in step 420. Step 430 involves determining an

updated program configuration for the client device from the analysis of the unique identifiers.

The updated program configuration is delivered to the client device in step 440.

[0026] FIG. 5 shows an exemplary apparatus that may be configured as either an update

server, or as a processor or similar device for use within the update server. an exemplary

apparatus diagram that may be configured as an update server comprising: a transceiver 504, a

processor 506 and a memory 508; or as a processor 506; or as a similar device for use within an

update server 120, as shown in FIG. I, which provides the means for implementing the method,

as disclosed in FIG. 4, on the update server 120, as disclosed in FIG. 1. In particular, apparatus

500 may comprise means for collecting 520 unique identifiers from at least one of an audit server

and at least one client device with a computer program for performing a remote update. In

addition, the apparatus 300 may comprise means for analyzing 530 the unique identifiers that are

determined, at least in part, from the machine parameter. The machine parameters may comprise

a combination of at least one user-configurable parameter and at least one non—user—configurable

parameter of the client device. Further, the apparatus 500 may comprise a means for

determining 540 an updated program configuration for the device based, at least in part, on the

collected one or more machine parameters. Furthermore, apparatus 500 may comprise means for

delivering the updated program configuration for the client device 100 from the update server

120, as shown in FIG. 1.

[0027] [t is noted that apparatus 500 may optionally include a processor module 506 having at

least one processor, in the case of apparatus 500 configured as a computing device, rather than as

a processor. In related aspects, apparatus 500 may include a transceiver module 504 for

communicating with means for generating a device identifier by implementing or executing at

APPLE EXHIBIT 1102, Page 10 of 1048

APPLE EXHIBIT 1102, Page 11 of 1048

least one irreversible transformation, and components thereof. A stand alone receiver and/or

stand alone transmitter may be used in lieu of or in conjunction with the transceiver 504.

[0028] In addition, apparatus 500 may optionally include a means for storing information, such

as, for example, a computer readable medium or memory device/module 508. Further, the

memory device/module 508 may be operatively coupled to the other components of apparatus

500 via bus 302 or the like. The computer readable medium or memory device 508 may be

adapted to store computer readable instructions and data for effecting the methods of FIG. 4;

and, as shown in FIG. 5, the processes and behavior of means 520-550, and components thereof;

or processor 506 (in the case of apparatus 300 being configured as a computing device).

[0029] In yet further related aspects, the memory module 508 may optionally include

executable code for the processor module 504 configured to: (a) collect unique identifiers from at

least one of an audit server and client device; (b) analyze the collected unique identifiers; (0)

determine an updated program configuration for the client device; and (d) deliver the updated

program configuration to the client device(s). One or more of steps (a)—(:d) may be performed by

a processor module in lieu of or in conjunction with the means described above.

[0030] FIG. 6, discloses, for one or more embodiments described herein, an exemplary format

for a unique device identifier 600, which may further include two components: (1) a variable key

portion; and (2) a system key portion. The variable key portion may be generated at the time of

registration of client device 100 by reference to a variable platform parameter, such as, but not

limited to: a reference to system time information, location and/or other parameters that are

variable in nature may be utilized in other embodiments. The system key portion may include

the above described parameters expected to be unique to the client device 100, that are for

example, but not limited to: hard disk volume name, user name, computer name, user password,

hard disk initialization date, or combinations thereof. The variable key portion andfor system

key portion may be combined with the IP address and/or other platform parameters of the client

device 100. It is noted that unique device identifiers, or‘ portions thereof, may be encrypted to

add an additional layer of specificity and security.

[0031] With respect to the system, method and apparatus of the invention, the following

paragraphs provide additional detail regarding the implementation of each of the embodiments

discussed above.

APPLE EXHIBIT 1102, Page 11 of 1048

APPLE EXHIBIT 1102, Page 12 of 1048

[0032] The machine parameters may further include, but are not limited to: user account

information, program information (e.g., serial number); location of a user within a given

application program, and features of the software/hardware the user is entitled to use. As shown

in FIG. 1, block 107, the updated program configuration delivered to the client device may

include, but is not limited to: binary, executables, paths, dlls, miss or assets.

[0033] The client device 100 may be, but is not limited to, a personal computer, a server

computer, a laptop computer, a tablet computer, a personal digital assistant, a mobile phone, a

wireless communication device, an onboard vehicle computer, a game console, or any other

machine/device capable of communication with a computer network, such as but not limited to

the Internet. In related aspects, in wireless communications, Over The Air (OTA) Push or the

like may be implemented to download onto or upgrade (:e.g., configuration/settings, etc.) client

network devices. OTA Push involves the use of wireless phone numbers (MS—ISDN) rather than

IP.

[0034] The client device 100 may comprise software (e.g., an operating system or other

applications) that requires a license to be authorized for use. The client device 100 may further

comprise an auditing tool or application. The auditing application may be any program or

application that collects identifying information regarding the client device 100 and/or software

on the client device 100. The auditing application may comprise a stand alone application or an

applet running within a web browser on the client device [00 (e.g., an applet comprising

executable code for a Java Virtual Machine).

[0035] The auditing application may be embedded in or associated with another software

application, including, but not limited to software. For example, the auditing application may be

embedded in or associated with a tool bar of a software application, for example, but not limited

to a web browser. The auditing application may prompt the user to register with an online

software registration service, or may run in the background with little or no interaction with the

user of the client device 100.

[0036] The auditing application may include a registration routine that collects infomiation

regarding client device 100 by checking a number of parameters which are expected to be unique

to the client device environment. The parameters checked may include, but are not limited to:

hard disk volume name, user name, device name, user password, hard disk initialization date, etc.

APPLE EXHIBIT 1102, Page 12 of 1048

APPLE EXHIBIT 1102, Page 13 of 1048

The collected information may include, but is not limited to: information that identifies the

hardware comprising the platform on which the web browser runs, such as, CPU number, or

other unique parameters associated with the firmware in use. The system information may

further include, but is not limited to: system configuration information, amount of memory, type

of processor, software or operating system serial number, etc.

[0037] In the alternative, or in addition, the parameters checked may include, but are not

limited to virtual machine specifications. Examples of virtual machine specifications may

include, but are not limited to: information relating to virtual processors, virtual BIOS, virtual

memory, virtual graphics, virtual lDE drives, virtual SCSI devices, virtual PCI slots, virtual

floppy drives, virtual serial (COM) ports, virtual parallel (LPT) ports, virtual keyboard, virtual

mouse and drawing tablets, virtual Ethernet card, virtual networking, virtual sound adapter, etc.

[0038] Based on the collected information, the auditing application may generate a device

identifier that is unique for the client device 100. In the alternative, or in addition, the auditing

application may gather and send the device parameters to a remote server, such as audit server

110, which in turn generates the device identifier. The device identifier may be stored in a

hidden directory of the client device 100 and/or at a remote location, such as the audit server

110. The device identifier may incorporate the device’s IP address and/or other gee-location

code (e.g., GPS data, cell site triangulation data, or the like, or combinations thereof) to add

another layer of specificity to client device’s unique identifier.

[0039] An application ('e.g., auditing application) running on the client device 100 or otherwise

having access to the hardware and file system of the client device 100 may generate a device

identifier (e.g., a unique device identifier) using a process that operates on data indicative of the

configuration and hardware of the client device 100. The device identifier may be generated

using a combination of user-configurable and non—user—configurable machine parameters as input

to a process that results in the device identifier, which may be expressed in digital data as a

binary number.

[0040] Each machine parameter is data determined by a hardware component, software

component, or data component specific to the client device 100. Machine parameters may be

selected based on the target device system configuration such that the resulting device identifier

APPLE EXHIBIT 1102, Page 13 of 1048

APPLE EXHIBIT 1102, Page 14 of 1048

has a very high probability (ea greater than 99.999%) of being a unique identifier of the client

device 100.

[0041] In addition, the machine parameters may be selected such that the device identifier

includes at least a stable unique portion up to and including the entire identifier that has a very

high probability of remaining unchanged during normal operation of the client device 100. As a

result, the device identifier should be highly specific, unique, reproducible and stable as a result

of properly selecting the machine parameters.

[0042] The application for generating the unique device identifier may also operate on the

collected parameters with one or more algorithms to generate the device identifier. This process

may include at least one irreversible transformation, such as, but not limited to a cryptographic

hash function. As a result, the input machine parameters cannot be derived from the resulting

device identifier. Thus, each device identifier, to a very high degree of certainty, cannot be

generated except by the suitably configured application operating or otherwise having had access

to the same client device for which the device identifier was first generated. Conversely, each

device identifier, again to a very high degree of certainty, can be successfully reproduced by the

suitably configured application operating or otherwise having access to the same client device

100 on which the device identifier was first generated.

[0043] The auditing application may operate by performing a system scan to determine a

present configuration of the client device. The auditing application may then select the machine

parameters to be used as input for generating the unique device identifier. Selection of

parameters may vary depending on the system configuration. Once the parameters are selected,

the application may generate the device identifier.

[0044] Further, generating the device identifier may also be described as generating a device

fingerpiint and may entail the sampling of physical, non—user configurable properties as well as a

variety of additional parameters such as uniquely generated hashes and time sensitive values.

During a standard operating lifetime, the process of passing electricity through the various

switches causes a computer chip to degrade. These degradations manifest as gradually slower

speeds that extend the processing time required to compute various benchmarking algorithms.

Physical device parameters available for sampling may include, but are not limited to: unique

manufacturercharacteristics, carbon and silicone degradation and small device failures.

10

APPLE EXHIBIT 1102, Page 14 of 1048

APPLE EXHIBIT 1102, Page 15 of 1048

[0045] The process of measuring carbon and silicone degradation may be accomplished by

measuring a chip's ability to process complex mathematical computations, and its ability to

respond to intensive time variable computations. These processes measure how fast electricity

travels through the carbon. Using valiable offsets to compensate for factors such as, but not

limited to: heat and additional stresses placed on a chip during the sampling process. This

approach allows for each and every benchmark to reproduce the expected values.

[0046] In addition to the chip benchmarking and degradation measurements, the process for

generating a device identifier may include measuring physical, non—user—configurable

characteristics of disk drives and solid state memory devices. Each data storage device has a

large variety of damage and unusable data sectors that are nearly unique to each physical unit.

The ability to measure and compare values for damaged sectors and data storage failures

provides a method for identifying storage devices.

[0047] Device parameter sampling, damage measurement and chip benchmarking make up just

a part of device fingerprinting technologies described herein. These tools may be further

extended by the use of complex encryption algorithms to convolute the device identifier values

during transmission and comparisons. Such encryption processes may be used in conjunction

with random sampling and key generations.

[0048] The device identifier may be generated by utilizing machine parameters associated

with, but not limited to, one or more of the following: machine model; machine serial number;

machine copyright; machine ROM version; machine bus speed; machine details; machine

manufacturer; machine ROM release date; machine ROM size; machine UUID; and machine

service tag. Further, the device identifier may also be generated by utilizing machine parameters

associated with, but not limited to, one or more of the following: CPU ID; CPU model; CPU

details; CPU actual speed; CPU family; CPU manufacturer; CPU voltage; and CPU external

clock.

[0049] The device identifier may also be generated by utilizing machine parameters associated

with, but not limited to, one or more of the following: memory model; memory slots; memory

total; and memory details. Further, the device identifier may also be generated by utilizing

machine parameters associated with, but not limited to, one or more of the following: video

model; video details; display model; display details; audio model; and audio details.

11

APPLE EXHIBIT 1102, Page 15 of 1048

APPLE EXHIBIT 1102, Page 16 of 1048

[0050] The device identifier may also be generated by utilizing machine parameters associated

with, but not limited to, one or more of the following: network model; network address;

Bluetooth address; BlackBox model; BlackBox serial; BlackBox details; BlackBox damage map;

BlackBox volume name; NetStore details; and NetStore volume name. Furthermore, the device

identifier may also be generated by utilizing machine parameters associated with, but not limited

to, one or more of the following: optical model; optical serial; optical details; keyboard model;

keyboard details; mouse model; mouse details; printer details; and scanner details.

[0051] The device identifier may also be generated by utilizing machine parameters associated

with, but not limited to, one or more of the following: baseboard manufacturer; baseboard

product name; baseboard version; baseboard serial number; and baseboard asset tag. Moreover,

the device identifier may also be generated by utilizing machine parameters associated with, but

not limited to, one or more of the following: chassis manufacturer; chassis type; chassis version;

and chassis serial number.

[0052] The device identifier may also be generated by utilizing machine parameters associated

with, but not limited to, one or more of the following: IDE controller; SATA controller; RAID

controller; and SCSI controller. Further, the device identifier may also be generated by utilizing

machine parameters associated with, but not limited to, one or more of the following: port

connector designator; port connector type; port connector port type; and system slot type.

[0053] The device identifier may also be generated by utilizing machine parameters associated

with, but not limited to, one or more of the following: cache level; cache size; cache max size;

cache SRAM type; and cache error correction type. Furthennore, the device identifier may also

be generated by utilizing machine parameters associated with, but not limited to, one or more of

the following: fan; PCMCIA; modem; portable battery; tape drive; USB controller; and USB

hub.

[0054] The device identifier may also be generated by utilizing machine parameters associated

with, but not limited to, one or more of the following: device model; device model lME]; device

model IMSI; and device model LCD. Moreover, the device identifier may also be generated by

utilizing machine parameters associated with, but not limited to, one or more of the following:

wireless 802.11; webcam; game controller; silicone serial; and PCI controller.

APPLE EXHIBIT 1102, Page 16 of 1048

APPLE EXHIBIT 1102, Page 17 of 1048

[0055] In one example, the device identifier may also be generated by utilizing machine

parameters associated with, but not limited to, one or more of the following: machine model,

processor model, processor details, processor speed, memory model, memory total, network

model of each Ethemet interface, network MAC address of each Ethernet interface, BlackBox

Model, BlackBox Serial (e.g., using Dallas Silicone Serial DS-2401 chipset or the like), OS

install date, nonce value, and nonce time of day.

[0056] Further, with reference once again to FIG. I the auditing application may also include a

registration routine that collects or receives information regarding the software on the client

device 100 by checking information which is expected to be unique to software, for example, but

not limited to the software serial number. The collected software identifier may include, but is

not limited to: the software serial number, product identification number, product key, etc. The

collected software identifier may include, but is not limited to: information regarding where the

software was sold or distributed, who the buyers, sellers, and/or distributors were, which stores

the software was sold in, etc.

[0057] The software identifier may be unique to particular c0py of software, such as when the

software is licensed to a single user. In the altemative, or in addition, the software identifier may

be unique to particular type or group of software, such as when the software is licensed to a

defined group of users.

[0058] The embodiments described herein comprise an auditing application that collects the

software identifier for software on the client devices. However, it will be understood that the

systems, methods and components described herein can be adapted to collect one or more types

of software identifiers for a plurality of software applications. The software identifier may be

stored in a hidden directory of the client device 100 and/or at a remote location, such as the audit

server 110. For example, in one approach, the software identifier, device identifier, and/or

combinations thereof may be hidden in multiple locations on the client device 100 and may be

crosschecked for tampering, corruption, etc. In another approach, the software identifier, device

identifier, and/or combinations thereof may be hidden in multiple locations, including one or

more remote locations/sewers, and may be crosschecked with each other to verify the integrity

of the identifiers.

APPLE EXHIBIT 1102, Page 17 of 1048

APPLE EXHIBIT 1102, Page 18 of 1048

[0059] The auditing application may also include a registration routine that collects or receives

information regarding the geo—location code of the client device 100. The geo—location code may

comprise, but is not limited to: the IP address, GPS data, cell site triangulation data, or the like

for the client device 100.

[0060] Auditing application may electronically send the device identifier and the software

identifier to the auditing server 1 10 or directly to the update server 120 via the Internet 102. In

the alternative, or in addition, a geo—location code may be associated with the device identifier

andfor the software identifier and may be sent to the auditing server 110 or directly to the update

server 120, via a secured network connection or via the Internet 102. Further, the client device

100 or the auditing server 1 10 may encrypt and store the. data, such as the device identifier, the

software identifier, and/or the geo-location code, received from the client device 100. In

addition, the auditing server 110 may receive such data from a plurality of client devices and

store the received data in an audit database.

[0061] In one embodiment, the auditing application may generate an audit number by

associating the software identifier with the device identifier and/or geo—location code, and may

send the generated audit number to the audit server 110 or store the audit number in the client

device 100.

[0062] In another embodiment, the. auditing application may send the device identifier, the

software identifier, and/or the geo—location code to the audit server 110 in a piecemeal manner.

The audit server 110 may in turn generate the audit number. The audit server 110 may receive or

generate audit numbers from a plurality of client devices 110 and store the received audit

numbers in the. audit database.

[0063] It is noted that the audit number may be generated from the device identifier, the

software identifier, and/or the geo—location code via any number of suitable approaches. For

example, the software identifier may be concatenated or linked with the device identifier and/or

geo—location code. It is also noted that the audit number may be. stored in a hidden directory of

the client device 100 and/or at a remote location, such as the audit server 110. It is further noted

that the device identifier, the software identifier, and/or the geo-location code may at a later time

be extracted from the audit number.

14

APPLE EXHIBIT 1102, Page 18 of 1048

APPLE EXHIBIT 1102, Page 19 of 1048

[0064] When a user of a client device, including but not limited to client device 110, installed

with auditing application, attempts to run software, the auditing application in response may

transmit the software identifier associated with the device identifier and/or the geo-location code

(or an audit number generated from such data) to the audit server 110, which in tum may store

the received data in the audit database.

[0065] With reference to the embodiment of FIG. I, the audit server l [0 may be in operative

communication with an upgrade server 120, which may be any device, for example, but not

limited to: personal computer, a server computer, a laptop computer, a tablet computer, a

personal digital assistant, a mobile phone, or a wireless communication device, that is capable of

communication with a computer network, such as the Internet. The upgrade server l20 may

comprise a remote update application, which may be any program or application, such as a stand

alone application or an application that is embedded or associated with another software

application, such as an applet running within a web browser on the upgrade server 120.

[0066] The remote update application may be adapted to allow a user, for example, but not

limited to a software manufacturer or distributor, to view the data collected and stored in the

audit database of the client device 100, audit server 110 or that is collected from the client device

100. The present embodiment will be described in the context of a software manufacturer

utilizing the remote update application. However, it will be understood that any user of the

remote update server 120 may utilize the remote update application.

[0067] The remote update application may present the data in the audit database or that which

is collected from the client device 100 in a manner that allows its user to better understand how

its software is being used, legitimately or otherwise.

[0068] While the present invention has been illustrated and described with particularity in

terms of preferred embodiments, it should be understood that no limitation of the scope of the

invention is intended thereby. Features of any of the foregoing methods and devices may be

substituted or added into the others, as will be apparent to those of skill in the art. It should also

be understood that variations of the particular embodiments described herein incorporating the

principles of the present invention will occur to those of ordinary skill in the art and yet be within

the scope of the invention.

15

APPLE EXHIBIT 1102, Page 19 of 1048

APPLE EXHIBIT 1102, Page 20 of 1048

97 h; 55 cc

[0069] As used in this application, the terms “component, module, system,” and the like

are intended to refer to a computer—related entity, either hardware, firmware, a combination of

hardware and software, software, or software in execution. For example, a component can be,

but is not limited to being, a process running on a processor, a processor, an object, an

executable, a thread of execution, a program, and/or a computer. By way of illustration, both an

application running on a computing device and the computing device can be a component. One

or more components can reside within a process and/or thread of execution and a component can

be localized on one computer and/or distributed between two or more computers. In addition,

these components can execute from various computer readable media having various data

structures stored thereon. The components can communicate by way of local and/or remote

processes such as in accordance with a signal having one or more data packets (:e.g., data from

one component interacting with another component in a local system, distributed system, and/or

across a network such as the Internet with other systems by way of the signal).

[0070] It is understood that the specific order or hierarchy of steps in the processes disclosed

herein in an example of exemplary approaches. Based upon design preferences, it is understood

that the specific order or hierarchy of steps in the processes may be rearranged while remaining

within the scope of the present disclosure. The accompanying method claims present elements

of the various steps in sample order, and are not meant to be limited to the specific order or

hierarchy presented.

[0071] Moreover, various aspects or features described herein can be implemented as a

method, apparatus, or article of manufacture using standard programming and/or engineeiing

techniques. The term “article of manufacture” as used herein is intended to encompass a

computer program accessible from any computer—readable device, carrier, or media. For

example, computer—readable media can include but are not limited to magnetic storage devices

(e.g., hard disk, floppy disk, magnetic strips, etc.), optical discs (e.g., compact disc (CD), digital

versatile disc (DVD), etc.), smart cards, and flash memory devices (e.g., Erasable Programmable

Read Only Memory (EPROM), card, stick, key drive, etc.), Additionally, various storage media

described herein can represent one or more devices and/or other machine—readable media for

storing information. The term “machine-readable medium” can include, without being limited

to, wireless channels and various other media capable of storing, containing, and/or carrying

instruction(s) and/or data.

16

APPLE EXHIBIT 1102, Page 20 of 1048

APPLE EXHIBIT 1102, Page 21 of 1048

[0072] Those skilled in the art will further appreciate that the various illustrative logical

blocks, modules, circuits, methods and algorithms described in connection with the examples

disclosed herein may be implemented as electronic hardware, computer software, or

combinations of both. To clearly illustrate this interchangeability of hardware and software,

various illustrative components, blocks, modules, circuits, methods and algorithms have been

described above generally in terms of their functionality. Whether such functionality is

implemented as hardware or software depends upon the particular application and design

constraints imposed on the overall system. Skilled artisans may implement the described

functionality in varying ways for each particular application, but such implementation decisions

should not be interpreted as causing a departure from the scope of the present invention.

1?

APPLE EXHIBIT 1102, Page 21 of 1048

APPLE EXHIBIT 1102, Page 22 of 1048

CLAIMS

What is claimed is:

l. A system for remotely updating a program configuration, comprising:

a client device configured to execute a computer program to perform a remote update, the

client device comprising:

a first processor coupled to memory storing the computer program which, when

executed by the processor (i) performs physical device recognition on the client device to

determine machine parameters, and (ii) generates unique device identifiers for the client

device, the unique device identifiers based at least in part on the determined machine

parameters; and

a first transceiver configured to send the unique device identifiers to at least one

server via Internet; and

an update server configured to collect the unique device identifiers from at least one

client device, the update server comprising:

a second processor coupled to memory and configured to analyze the unique

device identifiers at the update server, and to determine based on the analyzed unique

device identifiers an updated program configuration; and

a second transceiver configured to deliver via the Internet data representing the

updated program configuration to the client device for storage therein.

P0 The system of claim 1 wherein the unique device identifier comprises a hash code.

3. The system of claim 1 wherein the computer program when executed implements at least

one irreversible transformation such that the machine parameters cannot be derived from the

unique device identifier.

4. The system of claim 3 wherein the at least one irreversible transformation comprises a

cryptographic hash function.

5. The system of claim 1 wherein the unique identifiers further comprise software identifiers

and geo—location identifiers.

18

APPLE EXHIBIT 1102, Page 22 of 1048

APPLE EXHIBIT 1102, Page 23 of 1048

6. The system of claim 5 wherein at least one of the geo-location identifiers comprises an

Internet Protocol address of the client device.

7. The system of claim 1 wherein the machine parameters comprise information regarding

at least one of: a machine model number, a machine serial number, a machine ROM version, a

machine bus speed, machine manufacturer name, machine ROM release date, machine ROM

size, machine UUlD, and machine service tag.

8. The system of claim 1 wherein the machine parameters comprise information regarding

at least one of: CPU 1D, CPU model, CPU details, CPU actual speed, CPU family, CPU

manufacturer name, CPU voltage, and CPU external clock.

9. The system of claim I wherein the machine parameters comprise information regarding

at least one of: optical model, optical serial number, keyboard model, mouse model, printer

model, and scanner model.

10. The system of claim 1 wherein the machine parameters comprise information regarding

at least one of: baseboard manufacturer, baseboard product name, baseboard version, baseboard

serial number, and baseboard asset tag.

11. The system of claim I wherein the machine parameters comprise information regarding

at least one of: chassis manufacturer, chassis type, chassis version, and chassis serial number.

12. The system of claim I wherein the machine parameters comprise information regarding

at least one of: lDE controller, SATA controller, RAID controller, and SCSI controller.

13. The system of claim I wherein the machine parameters comprise information regarding

at least one of: port connector designator, port connector type, p011 connector port type, and

system slot type.

14. The system of claim 1 wherein the machine parameters comprise information regarding

at least one of: cache level, cache size, cache max size, cache SRAM type, and cache error

correction type.

19

APPLE EXHIBIT 1102, Page 23 of 1048

APPLE EXHIBIT 1102, Page 24 of 1048

15. The system of claim 1 wherein the machine parameters comprise information regarding

at least one of: fan, PCMCIA, modem, portable battery, tape drive, USB controller, and USB

hub.

16. The system of claim I wherein the machine parameters comprise information regarding

at least one of: device model, device model IMEI, device model IMSI, and device model LCD.

17. The system of claim I wherein the machine parameters comprise information regarding

at least one of: wireless 802.11, webcam, game controller, silicone serial, and PCI controller.

18. A method for remote update of a program, comprising:

collecting, at an update server, unique identifiers from at least one of an audit server and

client device;

analyzing the unique identifiers;

determining an updated program configuration for the client device based on the analyzed

unique identifiers; and

delivering the updated program configuration to the client device.

19. The method of claim 18 wherein the determining step comprises the update server

compafing each analyzed unique identifier to known identifiers stored in a database to determine

whether a match exists.

20. The method of claim 19 wherein the determining step further comprises the update server

generating the updated program configuration as data representing all matches yielded by the

comparing step.

APPLE EXHIBIT 1102, Page 24 of 1048

APPLE EXHIBIT 1102, Page 25 of 1048

ABSTRACT

A system for remotely updating a program configuration includes an update server in

communication with a client device configured to execute a remote update program. The client

device includes a first processor coupled to memory storing the program which, executed,

performs physical device recognition on the client device to determine its machine parameters,

and generates unique device identifiers based thereon, and a first transceiver configured to send

the identifiers to the update server. The update server is configured to collect the identifiers from

the client device, and includes a second processor for analyzing the identifiers and determining

an updated program configuration based on the collected identifiers matching known identifiers,

and a second transceiver configured to deliver data representing the updated program

conf1guration to the client device for storage therein.

APPLE EXHIBIT 1102, Page 25 of 1048

APPLE EXHIBIT 1102, Page 26 of 1048

‘IOO

 CLIENT j CLIENT PROGRAM j 107 "
DEVICE I DELIVERS THE .

' UPDATE TO THE
PROGRAM

UPDATE
DELIVERED VIA

NETWORK TO E CUSTOMER.
E UPDATES MAY BE
I BINARY e

CSMPEUNTTER r101 E EXECUTABLES,
J E PATCHES DLLS eLOADS SECOND I - E . , 2

OR THIRD g MSIS ORASSETS

PROGRAM 1 : -
E
E
E
E
E

CLIENT SIDE

PROGRAM SENDS -

DATA REGARDING

ACCOUNT! DEVICE, NETWORK/HTTP
AND PROGRAM INFO IHTT PS

FOR AN UPDATE

DELIVERY SERVER

PDATE

SERVER105

.lKw-Kw"(w"(wIKw-Kw-Kw"(w"(wIKw-Kw-Kw"(wlaw-leKw-qw-qw-qw-qw-:;-
DATA IS RECEIVED BY THE

UPDATE SERVER. THE INFO

SEND RE DEVICE, ACCOUNT,
GEO-LOCATION AND PROGRAM

ARE INSPECTED AND A SUITABLE

-=* UPDATE IS SELECTED.

ADDITIONAL DATA TO BE

CONSIDERED IS THE LOCATION

OF THE USER WITHIN A GIVEN

PROGRAM AN DIOR FEATURES

THE USER IS ENTITLED TO

AUDIT

SERVER

FIG. 1

APPLE EXHIBIT 1102, Page 26 of 1048

APPLE EXHIBIT 1102, Page 27 of 1048

210
LOADING CLIENT

DEVICE(S) WITH A '

COMPUTER PROGRAM j
FOR PERFORMING A .

REMOTE UPGRADE -

PERFORMING 220
PHYSICAL DEVICE _

RECOGNITION ON THE ‘ . "

CLIENT DEVICE(S) TO
DETERMINE MACHINE

PARAMETERS

230
GENERATING UNIQUE

DEVICE IDENTIFIERS,

AT LEAST IN PART,
FROM THE =

DETERMINED MACHINE f
PARAMETERS '

SENDING THE UNIQUE 240
IDENTIFIERS TO AT

LEAST ONE OF AN :

AUDIT SERVER AND AN

UPDATE SERVER

250

RECEIVING AN

UPDATED PROGRAM :
CONFIGURATION FROM :

THE UPDATE SERVER :

FIG. 2

APPLE EXHIBIT 1102, Page 27 of 1048

APPLE EXHIBIT 1102, Page 28 of 1048

320

MEANS FOR LOADING CLIENT DEVICE(S)
WITH A COMPUTER PROGRAM FOR

PERFORMING REMOTE UPDATE

MEANS FOR PERFORMING PHYSICAL

DEVICE RECOGNITION ON CLIENT

DEVICES TO DETERMINE MACHINE

PARAMETERS

340

MEANS FOR GENERATING UNIQUE

DEVICE IDENTIFIERS, AT LEAST IN PART,
FROM THE DETERMINED MACHINE

PARAMETERS

MEANS FOR SENDING UNIQUE

IDENTIFIERS TO AT LEAST ONE OF AN j
AUDIT SERVER AND AN UPDATE SERVER

PROCESSOR

.u........:360

MEANS FOR RECEIVING AN UPDATED

PROGRAM CONFIGURATION FROM THE

UPDATE SERVER
FIG. 3 308

APPLE EXHIBIT 1102, Page 28 of 1048

APPLE EXHIBIT 1102, Page 29 of 1048

COLLECTING UNIQUE

IDENTIFIERS FROM AT _
LEAST ONE OF THE

AUDIT SERVER AND

THE CLIENT DEVICE(S)

ANALYZING THE

UNIOU E IDENTIFIERS

DETERMINING AND

UPDATED PROGRAM

CONFIGURATION FOR

THE CLIENT DEVICES

DELIVERING THE

UPDATED PROGRAM

CONFIGURATION TO
THE CLIENT DEVICES

FIG. 4

410

420

430

440

APPLE EXHIBIT 1102, Page 29 of 1048

APPLE EXHIBIT 1102, Page 30 of 1048

MEANS FOR COLLECTING UNIQUE

IDENTIFIERS FROM AT LEAST ONE OF AN

AUDIT SERVICE AND CLIENT DEVICE(S)

" 53o

MEANS FOR ANALYZING

THE UNIQUE IDENTIFIERS

MEANS FOR DETERMINING AN UPDATED

PROGRAM CONFIGURATION FOR THE

CLIENT DEVICE(S)

.hAUAUAwflJJ
504

MEANS FOR DELIVERING THE UPDATED

PROGRAM CONFIGURATION FOR THE

CLIENT DEVICE(S)
wwuwwuwwuwwuwwuwwuwwuwwuwwuwwuwwuwwuwwuwwu“wuwwuwwuwwuwwuwwuwwuwwu

"U :«U O0 [TI (D (D O :U

wwwwwwwwwwwwwww
Vi }E P‘ . II au g: .gs I_‘5 ..z3I a,, a3. ag’

g: c5iG:u ‘zI4 . L

g i MEMORY

1 a 1 a 1

s :940Aqu»

FIG. 5

APPLE EXHIBIT 1102, Page 30 of 1048

APPLE EXHIBIT 1102, Page 31 of 1048

610

VARIABLE KEY SYSTEM KEY

PORTION PORTION

FIG. 6

APPLE EXHIBIT 1102, Page 31 of 1048

APPLE EXHIBIT 1102, Page 32 of 1048

Electronic Patent Application Fee Transmittal

Application Number:

Filing Date:

Title of Invention: Remote Update of Computers Based on Physical Device Recognition

First Named lnventorlApplicant Name: Craig S. Etchegoyen

Filer: Sean Dylan Burdick

Attorney Docket Number: U N-N P—AD-OB?

Filed as Small Entity

Utility under 35 USC111(a) Filing Fees

Basic Filing:

Ut‘lity filing Fee (EIECtron‘CIfiling) -——
Utility Search Fee 2111

Utility Examination Fee 231 1 1 110 1 10

Pages:

Claims:

Miscellaneous-Filing:

Petition:

Patent-Appea ls-and-l nterference:

APPLE EXHIBIT 1102, Page 32 of 1048

APPLE EXHIBIT 1102, Page 33 of 1048

Description Fee Code Quantity Amount SUE-Sng: in

Post-AIIowance-and-Post-Issuance:

Extension-of-Time:

Miscellaneous:

Total in USD (5) 462

APPLE EXHIBIT 1102, Page 33 of 1048

APPLE EXHIBIT 1102, Page 34 of 1048

Electronic Acknowledgement Receipt

EFS ID: 7848910

Application Number: 12818906

International Application Number:

Confirmation Number:

Title of Invention: Remote Update of Computers Based on Physical Device Recognition

First Named lnventorprplicant Name: Craig S. Etchegoyen

Customer Number: 96051

Filer: Sean Dylan Burdick

Filer Authorized By:

Attorney Docket Number: UN—NP—AD—037

Receipt Date: 18-JUN-2010

Filing Date:

Time Stamp: 1?:25201

Application Type: Utiiity under 35 USC111(a)

Payment information:

Submitted with Payment yes

Payment Type Credit Card

Payment was successfully received in RAM 5462

RAM confirmation Number 3970

Deposit Account

Authorized User

File Listing:

Document . . . File Size(Bytes)l Multi PagesD
Number ocument Description Flle Name Message Digest Part I.zip (ifappl.)

I, ageo IA

APPLE EXHIBIT 1102, Page 35 of 1048

506312

1 5b001_and_sb081.pdf — yes 4[932 i I DBSIJdS 0; 33950511 73890M L120d20 L
585 | i

Multipart DescriptioanDF files in .zip description

Document Description Start End

Power of Attorney

Oath or Deciaration filed

106951

specificationpdf

£1090 2637Dcl HJLIO 55 iaIaLZIJ J Uaneu'JbBfi
IJlan

Multipart Description/PDF files in .zip description

Document Description

Specification

366500

Drawings-only black and white iine
drawings figurespdf 2 D06 mmb [550] JObE-I'IcealJ 9&019ce90b

eleJ

Fee Worksheet (PTO-B75} fee-infapdf
i 79dMGMllnlddflSaOUdHZQ | *183e83d i l

773 302

APPLE EXHIBIT 1102, Page 35 of 1048

APPLE EXHIBIT 1102, Page 36 of 1048

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents,

characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a

Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C.111

Ifa new application is being filed and the application includes the necessary components for a filing date (see 37 CFR

1.53(bl-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this

Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371

Ifa timely submission to enter the national stage of an international application is compliant with the conditions of 35

U.S.C. 371 and other applicable requirements a Form PCTIDOIEOI903 indicating acceptance of the application as a

national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the U5PTO as a Receiving Office

Ifa new international application is being filed and the international application includes the necessary components for

an international filing date (see PCT Article 11 and MPEP1810), a Notification of the International Application Number

and of the International Filing Date (Form PCTIROI1 05) will be issued in due course, subject to prescriptions concerning

national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of

the application.

APPLE EXHIBIT 1102, Page 36 of 1048

APPLE EXHIBIT 1102, Page 37 of 1048

DocCode - SCORE

SCORE. Placeholder Sheet for IFW Content

Application Number: 12818906 Document Date: 6/18/2010

The presence of this form in the IFW record indicates that the following document type was received in
electronic fomiat on the date identified above. This content is stored in the SCORE database.

0 Drawings — Other than Black and White Line Drawings

Since this was an electronic submission, there is no physical artifact folder, no artifact folder is recorded in

PALM, and no paper documents or physical media exist. The TIFFImages in the IFW record Were created
from the original documents that are stored1n SCORE.

To access the documents in the SCORE database, refer to instructions developed by SIRA.

At the time of document entry (noted above):

- Examiners may access SCORE content via the eDAN interface.

0 Other USPTO employees can bookmark the current SCORE URL thug://es/ScoreAccessWeb/).
0 External customers may access SCOREcontent via the Public and Private PAIR interfaces.

Form Revision Date: February 8, 2006

APPLE EXHIBIT 1102, Page 37 of 1048 .

APPLE EXHIBIT 1102, Page 38 of 1048

FTOISBIOS (10-07)
Approved Tor use through uoI'JUlzuw. umu Ubai-Uuac

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995. no persons are required to respond to a collection of infometion unless it displays a valid OMB control number.

PATENT APPLICATION FEE DETERMINATION RECORD Application or Docket Number

Substitute for Form PTO-375 12/818,906

I APPLICATION AS FILED — PART I OTHER THAN
(Column 1) (Column 2) SMALL ENTITY OR SMALL ENTITY

—_
BASIC FEE

(37 CFR 1.1613). (b). or (cl) NM
SEARCH FEE

(37 CFR 1160:). (ii. ortmll M

(37 CFR 1.1610). In). ortqll

FEE 5 RATE 5

NM

FEE 3RATE 5

NM

N

'3:a:
MA MA

HI-lCLNM NM

X N at
ItTOTAL CLAIMS

(3? CFR 1.113(1))
INDEPENDENT CLAIMS
(3? CFR 115111))

0It

110=

It the specification and drawings exceed 100
sheets of paper, the application size lea due Is
5270 ($135 for small entity) for each additional
50 sheets or fraction thereof. See
as use. 4tfo)(1)(G) and 3? CFR

APPLICATION SIZE
FEE

(:11- CFR 1.151s»

 MULTIPLE DEPENDENT CLAIM PRESENT (37 CFR 1.160)) 195

" If the difference in column 1 is less than zero, enter "0" in column 2. TOTAL 462 TOTAL

APPLICATION AS AMENDED - PART II OTHER THAN
(Column 1) (Column 2) . (Column 3) SMALL ENTITY OR SMALL ENTITY

CLAIMS HIGHEST ADDI_ mmREMAININS NUMBER PRESENT

4 AFTER PREVIOUSLY EXTRA RATE (5) EEENS'; RATE (3) :33:
'5 AMENDMENT PAID FORLLI Total . 0R

3 ISTCFR1.16(ill---_ _ n-
g (37 CFR 1.16(h)t OR
< Applicauonsuereeisrcmmars» _ —_

FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM (37 CFR 1.166)} WA OR . HI'A _
TOTAL _ TOTAL
ADD'T FEE 0R ADD‘T FEE

(Column 1) (Column 2) (Column 3)

CLAIMS HIGHEST mmREMAININS NUMBER PRESENT

E AFTER PREVIOUSLY EXTRA RATE (5’ 23:3: RATE ‘5’ Egg;
: AMENDMENT PAID FOR

E m" _n (37 CFR 1.160))

5 (37 CFR 1.15(Ii))
< Application Size Fee (37 CFR 1.16(s)) —

FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM (37 CFR 1.150)) NM
TOTAL
ADD'T FEE

" If the entry in column 1 is less than the entry in column 2. write ‘0' in column 3.
“ If the 'Highest Number Previously Paid For' IN THIS SPACE is less than 20. enter “20'.

m If the “Highest Number Previously Paid For“ IN THIS SPACE is less than 3, enter '3'.
The 'Highest Number Previously Paid For” (Total or Independent) is the highest number found in the appropriate box In column I.

This collection of information is required by 37 CFR 1.16. The information is required to obtain or retain a benefit by the public which is to file (and by the
USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete.

.incJuding gathering. preparing. and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments
on the amount of time you require to complete this form andlor suggestions for reducing this burden. should be sent to the Chief Inlon'nation Officer. U.S. Patent
and Trademark Office, U.S. Department of CDmmerue, PO. Box 1450. Alexandn'a, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS
ADDRESS. SEND TO: Commissioner for Patents. PO. Box 1451}, Alexandria. VA 22313-1450.

if you need assistance in completing the farm. call t—EOO-PTO-Q‘IQQ and select option 2.

APPLE EXHIBIT 1102, Page 38 of 1048

APPLE EXHIBIT 1102, Page 39 of 1048

«Fm!»

fies:

2x

gUNI’I‘ED S'I‘A'I‘ES PA'I‘EN'I‘ AND TRADEWK OFFICE UN I'I'I‘II) S'I‘A'I'I‘IS IJI'II’A R'I‘MI'IV'I' DI“ ('OM M I". INTI‘I
United Status Patent nud Trndcmnrk Office.
Aritlmss'CC'MIN'IISSICINEE FOR PATENTSPI'I HM‘ | fin

Alexandnnfl'irgmra ems-wemm' mam gov

APPLICA'I ION I-‘IIJM; or our) AR 1'

37m; DA'I‘I‘I l"II.1-‘IiliRli(I'lJ Al"1"r’.l)()(IKIEILN()

12/818,906 06“ 8/20 I O 2447 462 UN—NP—AD—037 20 2

CONFIRMATION NO. 8831

96051 FILING RECEIPT
Uniloc USA Inc.

2151 Michelson Ste. 100 I|||I|I|II||IIIII|||||||IIIIIIIIIIIILILIIIIIIIIIIIIIIIIIIIIIIIIIIII||II|I|III|||II|II|||O 8 2
Irvine, CA 92612

Date Mailed: 07/02/2010

Receipt is acknowledged of this non-provisional patent application. The application will be taken up for examination

in due course. Applicant will be notified as to the results of the examination. Any correspondence concerning the

application must include the following identification information: the US. APPLICATION NUMBER, FILING DATE,

NAME OF APPLICANT, and TITLE OF INVENTION. Fees transmitted by check or draft are subject to collection.

Please verify the accuracy of the data presented on this receipt. If an error is noted on this Filing Receipt, please

submit a written request for a Filing Receipt Correction. Please provide a copy of this Filing Receipt with the

changes noted thereon. It you received a "Notice to File Missing Parts" for this application, please submit

any corrections to this Filing Receipt with your reply to the Notice. When the USPTO processes the reply

to the Notice, the USPTO will generate another Filing Receipt incorporating the requested corrections

Applicant(s)

Craig Stephen Etchegoyen, Irvine, CA;

Power of Attorney: The patent practitioners associated with Customer Number 96051

Domestic Priority data as claimed by applicant

This appln claims benefit of 61/220,092 06/24/2009

Foreign Applications

Permission to Access - A proper Authorization to Permit Access to Application by Participating OItices

(PTO/SB/39 or its equivalent) has been received by the USPTO.

If Required, Foreign Filing License Granted: 07/01/2010

The country code and number of your priority application, to be used for filing abroad under the Paris Convention,

is US 12/818,906

Projected Publication Date: 12/30/2010

Non-Publication Request: No

Early Publication Request: No
** SMALL ENTITY **

page 1 of 3

APPLE EXHIBIT 1102, Page 39 of 1048

APPLE EXHIBIT 1102, Page 40 of 1048

Title

Remote Update of Computers Based on Physical Device Recognition

Preliminary Class

709

PROTECTING YOUFI INVENTION OUTSIDE THE UNITED STATES

Since the rights granted by a US. patent extend only throughout the territory of the United States and have no

effect in a foreign country, an inventor who wishes patent protection in another country must apply for a patent

in a specific country or in regional patent offices. Applicants may wish to consider the filing of an international

application under the Patent Cooperation Treaty (PCT). An international (PCT) application generally has the same

effect as a regular national patent application in each PCT-member country. The PCT process simplifies the filing

of patent applications on the same invention in member countries, but does not result in a grant of "an international

patent" and does not eliminate the need of applicants to file additional documents and fees in countries where patent

protection is desired.

Almost every country has its own patent law, and a person desiring a patent in a particular country must make an

application for patent in that country in accordance with its particular laws. Since the laws of many countries differ

in various respects from the patent law of the United States, applicants are advised to seek guidance from specific

foreign countries to ensure that patent rights are not lost prematurely.

Applicants also are advised that in the mm of inventions made in the United States, the Director of the USPTO must

issue a license before applicants can apply for a patent in a foreign country. The filing of a US. patent application

serves as a request for a foreign filing license. The application's filing receipt contains further information and

guidance as to the status of applicant's license for foreign filing.

Applicants may wish to consult the USPTO booklet, "General Information Concerning Patents" (specifically, the

section entitled "Treaties and Foreign Patents") for more information on timeframes and deadlines for filing foreign

patent applications. The guide is available either by contacting the USPTO Contact Center at 800-786-9199, or it

can be viewed on the USPTO website at http://wwwuspto.govfweb/cfficesfpacfdcc/general/indexhtml.

For information on preventing theft of your intellectual property (patents, trademarks and copyrights), you may wish

to consult the US. Government website, http://www.stopfakes.gov. Part of a Department of Commerce initiative,

this website includes self-help "toolkits" giving innovators guidance on how to protect intellectual property in specific

countries such as China, Korea and Mexico. For questions regarding patent enforcement issues, applicants may

call the US. Government hotline at 1-866-999-HALT (1-866-999-4158).

LICENSE FOR FOREIGN FILING UNDER

Title 35, United States Code, Section 184

Title 37, Code of Federal Regulations, 5.11 8: 5.15

m

The applicant has been granted a license under 35 U.S.C. 184, if the phrase "IF REQUIRED, FOREIGN FILING

LICENSE GRANTED" followed by a date appears on this form. Such licenses are issued in all applications where

the conditions for issuance of a license have been met, regardless of whether or not a license may be required as

page 2 of 3

APPLE EXHIBIT 1102, Page 40 of 1048

APPLE EXHIBIT 1102, Page 41 of 1048

set forth in 37 CFR 5.15. The scope and limitations of this license are set forth in 37 CFR 5.15(a) unless an earlier

license has been issued under 37 CFR 5.15(b). The license is subject to revocation upon written notification. The

date indicated is the effective date of the license, unless an earlier license of similar scope has been granted under
37 CFR 5.13 or 5.14.

This license is to be retained by the licensee and may be used at any time on or after the effective date thereof u nless

it is revoked. This license is automatically transferred to any related applications(s) filed under 37 CFR 1.53(d). This
license is not retroactive.

The grant of a license does not in any way lessen the responsibility of a licensee for the security of the subject matter

as imposed by any Government contract or the provisions of existing laws relating to espionage and the national

security or the export of technical data. Licensees should apprise themselves of current regulations especially with

respect to certain countries, of other agencies, particularly the Office of Defense Trade Controls, Department of

State (with respect to Arms, Munitions and Implements of War (22 CFR 121—128)); the Bureau of Industry and

Security, Department of Commerce (15 CFR parts 730—774); the Office of Foreign AssetsControl, Department of

Treasury (31 CFR Parts 500+) and the Department of Energy.

W

No license under 35 U.S.C. 184 has been granted at this time, if the phrase "IF REQUIRED, FOREIGN FILING

LICENSE GRANTED" DOES NOT appear on this form. Applicant may still petition for a license under 37' CFR 5.12,

if a license is desired before the expiration of 6 months from the filing date of the application. If 6 months has lapsed

from the filing date of this application and the licensee has not received any indication of a secrecy order under 35

U.S.C. 181, the licensee may foreign file the application pursuant to 37' CFR 5.15(b).

page 3 of 3

APPLE EXHIBIT 1102, Page 41 of 1048

APPLE EXHIBIT 1102, Page 42 of 1048

'31).er
‘19-:N -

5&1?“ 4"“; UNITED S'J‘ATES PA'l‘EN'l‘ AND TRADEWK OFFICE UN I'I'I‘II) S'I‘A'I'I‘IS I]I“.P.—\ R'I‘MI'N'I' 01“ ('()M M H INTI‘I

Th a United Status Patent nud Trndcmnrk Office.

HRS'l' NAMED APPLICAM' I - Ayn: DOCKEI NO‘J1'1'1L1:

12/818,906 06/18/2010 Craig Stephen L’tchcgoycn UN-Nl’-AD-037
CONFIRMATION N0. 8831

96051 POA ACCEPTANCE LETTER

Uniloc USA Inc.

2151 Michelson Ste. 100 lllllllllllllllll11111111111111IllliIlllilliliIllflllllilillillllllillllllllliillllllilll000000042 0 757
Irvine, CA 92612

Date Mailed: 07/02/2010

NOTICE OF ACCEPTANCE OF POWER OF ATTORNEY

This is in response to the Power of Attorney filed 06/18/2010.

The Power of Attorney in this application is accepted. Correspondence in this application will be mailed to the

above address as provided by 37 CFFI 1.33.

/1111guycn/

Office of Data Management, Application Assistance Unit (571) 272-4000, or (571) 272-4200, or 1-888-786-0101

page 1 of 1

APPLE EXHIBIT 1102, Page 42 of 1048

APPLE EXHIBIT 1102, Page 43 of 1048

PTO/SB/Oaa (07-09)
Approved for use through 07/31/2010. OMB 0651 -0031

US Patent and Trademark O‘lfice; US. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act oi 1995. no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Complete if Known

121318.906

June 18.2010

Substitute tor form 1449J'F'TO

(modified by Applicant)

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT

reeeeeeeeeeeeeeeeeeeeeeee ——

U. S. PATENT DOCUMENTS

Examiner Cite Document Number Publication Date Name of Patentee or Pages, Columns, Lines, Where

Initials No. Number-Kind Code MW) MM-DD-YYYY Applicant of Cited Document RelevanEPuisgjieoerafielevant

US-4351982 09/28/1982 Miller et al.

US-4658093 04/14/1987 Hellman

US-4704610 11/03/1987 Smith et al.

-- US-4796220 01/03/1989 Wolfe
-- US—5210795 05/11/1993 Lipner et al.

.' US—5291598 03/01/1994 GrundyUS-5414269 05/09/1995 Takahashi

-- US-5418854 05/23/1995 Kaufman et al.
US-5440635 08/08/1995 Bellovin et al.

US—5490216 02/06/1996 Richardson, I”

US—5666415 09/09/1997 Kaufman

US-5745879 04/28/1998 Wyman

US-5754763 05/19/1998 Bereiter

US-5790664 08/04/1998 Coley et al.

US-5925127 07/20/1999 Ahmad

-- US-5974150 10/26/1999 Kaish et al.
-- US—6009401 12/28/1999 Horstmann

.' US—6044471 03/28/2000 ColvinUS-6158005 12/05/2000 Bharathan et al.

-- US-6230199 05/08/2001 Revashetti et al.
US-6233567 05/15/2001 Cohen

US—6243468 06/05/2001 Pearce et al.

US—6294793 09/25/2001 Brunfeld et al.

US-6330670 12/11/2001 England et al.

Examiner Date

Signature Considered

EXAMINER: Initial lf relerence considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in
conformance and not considered lnclude copy of this form with next communication to applicant.

APPLE EXHIBIT 1102, Page 43 of 1048

APPLE EXHIBIT 1102, Page 44 of 1048

PTO/SB/oaa (07-09)
Approved for use through 07/31/2010. OMB 0651 -0031

US Patent and Trademark O‘lfice; US. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act oi 1995. no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Complete if Known

12/818,906

June 18.2010

Substitute tor form 1449J'F'TO

(modified by Applicant)

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT

reeeeeeeeeeeeeeeeeeeeeeee ——

U. S. PATENT DOCUMENTS

Examiner Cite Document Number Publication Date Name of Patentee or Pages, Columns, Lines, Where

Initials No. Number-Kind Code MW) MM-DD-YYYY Applicant of Cited Document RelevanEPuisgjieoerafielevant

US-6449645 09/10/2002 Nash

US-6536005 03/18/2003 Augarten

US-6785825 08/31/2004 Coivin

-- US-6859793 02/22/2005 Lambiase
-- US—6920567 07/19/2005 Doherty et al.

.' US—6976009 12/13/2005 Tadayon et al.US-7032110 04/18/2006 Su et al.

-- US-7069440 06/27/2006 Auil

US-7069595 06/27/2006 Cognigni et al.

US—7085741 08/01/2006 Lao et al.

US—7138241 03/06/2007 Cronce et al.

US-7203966 04/10/2007 Abburi et al.

US-7206765 04/17/2007 Gilliam et al.

US-7272728 09/18/2007 Pierson et al.

US-7319987 01/15/2008 Hoffman et al.

-- US-7337147 02/26/2008 Chen et al.
-- US—7343297 03/11/2008 Bergler et al.

.' US—7327230 02/05/2008 Bachelder et al.US-7463945 12/09/2008 KiESEI et al.

-- US-7653899 01/26/2010 Lindahi et al.
US-20010034712 10/25/2001 Colvin

US—20010044782 11/22/2001 Hughes et al.

US—20020019314 2/14/2002 Ganesan

US-20020082997 6/27/2002 Kobata et al.

Examiner Date

Signature Considered

EXAMINER: Initial lf relerence considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in
conformance and not considered. lnclude copy of this form with next communication to applicant.

APPLE EXHIBIT 1102, Page 44 of 1048

APPLE EXHIBIT 1102, Page 45 of 1048

PTO/SB/Oaa (07-09)
Approved for use through 07/31/2010. OMB 0651 -0031

US Patent and Trademark O‘lfice; US. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act oi 1995. no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Complete if Known

12/818,906

June 18, 2010

Substitute tor form 1449J'F'TO

(modified by Applicant)

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT
(Use as many sheets as neoessary) ——

U. S. PATENT DOCUMENTS

Examiner Cite Document Number Publication Date Name of Patentee or Pages, Columns, Lines, Where

Initials No. Number-Kind Code MW) MM-DD-YYYY Applicant of Cited Document RelevanEPuisgjieoerafielevant

US-20020161718 10/31/2002 Coley et al.

US-20030065918 04/03/2003 Willey

US-20030172035 09/11/2003 Cronce et al.

-- US-20040024860 02/05/2004 Sato et al.
-- US—20040030912 02/12/2004 Merkle et al.

.' US—20040059929 03/25/2004 Rodgers et al.US-20040143746 07/22/2004 Ligeti et al.

-- US-20040187018 09/23/2004 Owen et al.
US-20050108173 05/19/2005 Stefik et al.

US—20050138155 06/23/2005 Lewis

US—20050172280 08/04/2005 Ziegler et al.

US-20060072444 040/6/2006 Engel et al.

US-20060095454 05/04/2006 Shankar et al.

US-20060265337 11/23/2006 Wesinger,1r.

US-20060161914 07/20/2006 Morrison et al.

-- US-20060282511 12/14/2006 Takano et al.
-- US—20070168288 07/19/2007 Bozeman

.' US—20070198422 08/23/2007 Prahlad et al.US-20070203846 08/30/2007 Kavuri et al.

-- US-20070219917 09/20/2007 Liu et al.
US-20070282615 12/06/2007 Hamilton et al.

US—20080065552 03/13/2008 Elazar et al.

US—20080086423 04/10/2008 Waites

US-20080147556 06/19/2008 Smith et al.

Examiner Date

Signature Considered

EXAMINER: Initial lf relerence considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in
conformance and not considered. lnclude copy of this form with next communication to applicant.

APPLE EXHIBIT 1102, Page 45 of 1048

APPLE EXHIBIT 1102, Page 46 of 1048

PTO/SB/Oaa (07-09)
Approved for use through 07/31/2010. OMB 0651 -0031

US Patent and Trademark O‘lfice; US. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act oi 1995. no persons are required to respond to a collection of information unless it contains a valid OMB control number.

STATEMENT BY APPLICANT

(Use as many sheets as necessary) ——

Substitute lor form 1449J'F'TO

(modified by Applicant)

INFORMATION DISCLOSURE

U. S. PATENT DOCUMENTS

Examiner Cite Document Number Publication Date Name of Patentee or Pages, Columns, Lines, Where
MM-DD-YYYY Applicant of Cited Document Relevant Passages or Relevant

Fiures Auear

09/18/2008 Mashinsky

12/25/2008 Richardson

03/26/2009 Richardson

05/28/2009 Richardson

FOREIGN PATENT DOCUMENTS

iiiéism it? ”9‘9” Pa‘em ”mmem 113135393519 ”ififitiéfiaéigiid” Vflifiiséfiii‘érflié‘atifigsa T
Country Code — Number — Kind Code Document or Relevant Figures Appear

WO 9220022 11/12/1992 Digital Equip. Corp.

W0 9301550 1/21/1993 Infologic Software

.' W0 9535533 12/28/1995 Megalode Corp.AU 678985 6/19/1997 UniIOC Corp. Pty Ltd

-_ 11/9/2000 Trymedia Systems
-_ 11/10/2005 IPASS Inc.
-_ 3/22/2006 Microsoft Corp.

EP 1637958 3/22/2006 Microsoft Corp.

EP 1670188 6/14/2006 Alcatel

W02007060516 5/3 1/2007 L0

W02008013504 1/31/2008 Starhub Ltd

W02008157639 12/24/2008 Uniloc Corp.

W02009039504 3/26/2009 Uniloc Corp.

WO2009065135 5/22/2009 Uniloc Corp.

W02009076232 6/9/2009 Uniloc Corp.

W02009105702 8/27/2009 Etchegoyen

-_ nae/zone echegoyen

Examiner Date

Signature Considered

EXAMINER: Initial lf relerence considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in
confomtance and not considered. lnclude copy of this form with next communication to applicant.

APPLE EXHIBIT 1102, Page 46 of 1048

APPLE EXHIBIT 1102, Page 47 of 1048

PTOISB/Oaa (07-09)
Approved for use through 0751/2010. OMB 0651 -0031

US Patent and Trademark Office; US. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995. no persons are required to respond to a collection of information unless it contains a valid OMB control number.

_ Complete if KnownSubstitute Ior form 1449J'F'TO

(modified by Applicant) 12/818,906

June18.2010

INFORMATION DISCLOSURE Crai S. Etcheoo en

STATEMENT BY APPLICANT 2192

(Usesmanysheesasnemsaw ——
UN-NP-AD-OB?

FOREIGN PATENT DOCUMENTS

Examiner Cite Foreign Patent Document Publication Date Name of Patentee orInItIals No. MM-DD-YYYY Applicant of CIted

 Pages, Columns, Lines,
Where Relevant Passages
or Relevant Fl -ures Auear

 Countr Code — Number — Kind Code Document

 2009158525 12/30/2009 Uniloc USA, Inc.

NON PATENT LITERATURE DOCUMENTS

Examiner Cite Include name of the author (in CAPITAL LETTERS), title ofthe article (when appropriate), title of
Initials the item (book, magazine, journal, serial, symposium, catalog, etc), date page(s), volume-issue T

number s, -ublisher, cit and/or countr where -ublished.

--WILLIAMS R. ”A Painless Guide to CRC Error Detection Algorithms”, Ver. 3 Aug. 19 1993
ANGHA, F. et al., ”Securing Transportation Network Infrastructure with Patented Technology

of Device Locking — Developed By Uniloc USA", avail. at: http://www.dksassociates.com/

admin/paperfile/ITS%20Wor|d%20Paper%205ubmission_Uniloc%20_2_.pdf, Oct. 24, 2006.

ECONOLITE, ”Econolite and Uniloc Partner to Bring Unmatched Infrastructure Security to

Advanced Traffic Control Networks with Launch of Strongpoint", avail. at:

http://www.econolfte.com/docs/press/20080304_Econofite_5trongPofnt.pdf, Marc 4, 2008.

Examiner Date

Signature Considered

EXAMINER: Initial if relerence considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in
conformance and not considered. include copy of this form with next communication to applicant.

APPLE EXHIBIT 1102, Page 47 of 1048

APPLE EXHIBIT 1102, Page 48 of 1048

lll
AU9348113

(12) PATENT ABRIDGMENT (1 1) Document No AU~B~481 13/93
(19) AUSTRALIAN PATENT OFFICE (10) Acceptance No. 673935
N

(54) Title
SYSTEM FOR sortwans REGISTRATION

International Patent Classlfication<si
(5115 (30% 015/21 GoeF 009/44

(21) Application No. : 48113/93 (22) Application Date : 20.09.93

(37) PCT Publication Number : won/07204

(30) PriOrity Data

(31) Number (32) Date (33) Country
PL4842 21.09.92 AU AUSTRALIA
PL552'4 26.10.92 AU AUSTRALIA

(43) Publication Date: 12.04.94

(44) Publication Date of Accepted Application : 19.06.97

(71) Applicanl(s)
UNILOC CORPORATION PTY LIMITED

(72) Inventor(s) _
FIIC BAILIEH [RICHARDSON

(Ta) Attorney or Agent _
PETER MAXWELL a. ASSOCIATES , PO Box R1466 Royal Exchange, SYDNEY NSW 2000

(55) Prior Art Documents
us 5375240
us 5291593
wo 92/091150

(.57) Claim

1. A registration system for licensing execution of digital data in the use

mode, said digital data executable on a platform, said system including

local licensee unique 11:) generating means and remote licensee unique 1D

generating means, said system further including mode switching means

operable on said platform which permits use of said digital data in said use

mode on said platform only if a licensee unique ID first generated by said

local licensee unique ID generating means has matched a licensee unique ID

subsequently generated by said remote licensee unique ID generating

means; and wherein said remote licensee unique ID generating means

comprises software executed on a platform which includes the algorithm

etiliz‘ed by said local licensee unique it] generating means to produce said

licensee unique ID.

APPLE EXHIBIT 1102, Page 48 of 1048

APPLE EXHIBIT 1102, Page 49 of 1048

0P1 DATE12/04/94 APPLN. ID

(5!) International Patent Classification 5 :

(306F 15/21. 9/44

(2|) International Appiicatlon Number: PCT/AU93/00483

(22} International Filing Date: 20 September 1993 (20.09.93)

(.30) Priority data:
PL 4542
PL 5524

2! Sept-ember l992 (2|.09.92} AU
26 October I992 (26.10.92) AU

(Tl) Applicant {for AU unify}: L'NILOC CORPORATION PTY
LIMITED [AU/AU]: 32 Brookvale Avenue. Broom-ale.
NSW 2100 (AU).

(7|) Apnlieant [for a” designated Slater Heep: AU US): U NILOC
(SINGAPORE) PRIVATE LIMITED [SO/SO}; Six
Battery Road #JB-Ol. Singapore [HO-1 (SCI,

(72} Inventor: and
(75)]nventorprplicant (for US (min

Builier [AU/AU]; 32 Brookvale Avenue.
NSW 2100 (AU).

: RICHARDSON. Ric.
Brookwulc.

(54) Title: SYSTEM FOR. SOFTWARE REGISTRATION

(57} Abstract

A registration system for licensing execution of digital da
. said system including local license unique ID generating means

system further including mode switchin

43113/93

AOJP DATE 07/07/94 PCT NUMBER PCT/AU93/00483

(ll}lnternatinnal Publication Number:

(43) International Publication Date:

llllllllillllllllllllllilillllililliiiiililllillll
AU93£8113

WO 94/07204

3| March 19940111334}

(74)Agent: PETER MAXWELL & ASSOCIATES: 5 Ross
Street. North Parramalla. NSW 215l (AU).

(8|)Designated States: AT. AU. BB. BG. BR. B‘t’, CA, CH.
CZ, DE. DK. ES. FI. GB. HU, JP. KP, KR. KZ. LK,
LU. LV. MG. MN, MW. NL, NO. NZ, PL, PT. RD.
RU, SD, SE. SK. UA. US. UZ. VN. European patent
(AT, BE, CH. DE. DK, ES. FR. GB, GR. IE. IT, LUI
MC. NL. PT. SE). OAPI patent (BF. Ill. CF, C0. C1,.
CM. GA. GN. ML. MR, NE, SN, TD. T6).

5

Published
With inmmrm‘mml search report.

-78§

’4'

3‘

ta in a use mode. said digital data executable on a platform (l2),
(:4). and remote licensee unique ID generating means (14). said

3 means operable on said fllntfort‘n which permits. use of said digital data in said use made
on said platform only if a licensee unique ID generated by said local licensee unique ID generating means (l4) has matched a
licensee unique ID generated by said remote licensee unique ID generating means (l4).

APPLE EXHIBIT 71 102, Page 49 of 1048

APPLE EXHIBIT 1102, Page 50 of 1048

WO 94107204 PCT/AU93/00483

10

15

20

25

SYSTEM FOR SOFTWARE REGISTRATION

FIELD OF THE IHVENTION

This invention relates to improvements in systems for

software registration and, more particularly, to

improvements in arrangements where software is transferable

by media such as magnetic disks, CD ROMS and the like.

BACKGROUND ART

Much commercially available software is provided at

time of purchase (or licence} on a magnetic media,

typically a floppy disk. Frequently the only security

feature attached to the software is a simple registration

number stored on the-media. This registration number

identifies that particular capy of the software and it is

often required at the time of installation of the software

onto any given computer that the installer must provide the

registration number independently to the installation

routines.

However, such simple security arrangements for the

distribution of software on media suffer from at least two

disadvantages (1) each copy of the software made on any

given media at the time of manufacture must include an

individual, unique number. programmed into the media and,

(2) this arrangement does not prevent copying of the

software, onca installed on any given computer. to another

computer by means of file transfer (as opposed to

reinstaiiation).

W0 92/09.160 to Tau Systems Corporation discloses a

registration system which is relatively sophisticated which

_ _ APPLEEXHIBIT 1102, Page 50 of 1048

APPLE EXHIBIT 1102, Page 51 of 1048

t

W0 94/072114

10

15

2O

25

PCT/A 1,193/00483

relies for its security on a requirement that an intending

software licensee must obtain from a remote location by

file transfer significant and essential portions of the

programme which the licensee desires to execute. The

arrangement disclosed in W0 92/09,160 suffers from a number

of deficiencies including:—

(a)

(b)

(c)

(d)

the shell programme which the intending licensee

initially executes requires a unique identity

embodied within the shell prior to distribution

of the shell programme;

the shell programme is not, itself, a functional

programme - that is, it does not include all of

the code which the intending licensee wishes to

executet That programme must be obtained

remotely with all the delays, inconveniences and

possibilities of corruption during transit that

that entails;

the prior art system appears to require and

indeed. rely on, encryption to ensure that the

programme material which is communicated from a

remote location is not intercepted for

utilisation in an unauthorised manner;

it is unclear whether the system can accummodate

and react appropriately to the situation where

the programme. once registered, is transferred in

its entirety from one platform to another so as

to avoid the requirement for payment of a further

registration feet

.APPLE EXHIBIT-.1102, Page 51 of 1048 ,

APPLE EXHIBIT 1102, Page 52 of 1048

1

WO 94/07204 PCT/AU93/00433

ID

15

2D

25

0.3. 4,796,220, assigned to Pride Software

Development Corporation, discloses a system for unique

recognition of a platform on which licensed software is to

be executed. However, U.S. 4,795,220 does not contemplate

or disclose utilisation of information which is unique to

the user or intended licensee as part of the registration

process which is to be distinguished from identification of

the platform upon which the software is proposed to he run.

U.S. 4,633,169 to Joshi broadly discloses the same

principles as U.S. 4,796,220 in that it discloses a

computer software security system which relies for its

security on a "machine identification code unique to the

machine" upon which the software to be protected is to be

run. Again, the disclosure is limited to identification of

the platform and there is no suggestion or contemplation of

linking platform identification with unique user

identification.

Also this arrangement does not allow the flexibility

of transfer of copies of the programme from platform to

platform which can be run in a demonstration mode.

It is an object of the present invention to address

or reduce the abovementioned disadvantages.

W

Throughout this specification the term "software" is

to be interpreted broadly so as to include all forms of

digital data which are executable on a platform {as to be

later defined). The digital data comprising the software

can. for example. be code comprising a word processing

APPLE EXHIBIT 11.02, Page 52 of 1048

APPLE EXHIBIT 1102, Page 53 of 1048

WO 94/0?204 l’CT/AU93/00483

10

15

20

25

programme adapted to run on a PC or the like. The software

can also, for example, be digital data stored on a CD ROM

adapted for playback as music on a CD ROM audio drive. The

digital data can be displayable information or information

which is otherwise usable by a licensed user.

Throughout this specification the term "platform"

denotes an environment to be associated with a computing

device such as a microprocessor or other data processing

device which permits Execution of the digital data (to

which reference has previously been made in relation to the

term "software") whereby the computer can perform functions

on input and output devices associated therewith.

In some circumstances the "software" or digital data

may itself be the operating System environment. Typically,

but by no means exclusively, examples of operating system

environments include the Microsoft DOS operating system.

the IBM 05/2 operating systEm or the Macintosh System 7

environment. In the degenerate case of microcontrollers

operating from ROM the operating system environment may be

the microcode of the microcontroller which enables the

microcontroller tp execute machine code.

In this specification "use mode" refers to use of the

digital data or software by its execution on a platform so

as to fulfil the seller's/licensor's obligations in

relation to the sale or license of the right to execute the

digital data or software in the use mode. The use mode is

to be distinguished from what might generally be termed

unlicensed modes of operation [which is not to say

APPLE EXHIBIT 1102, Page 53 of 1048

APPLE EXHIBIT 1102, Page 54 of 1048

H

“’0 94/072114 PCT/AU93/00483

unauthorised modes of operation) as typified by the

demonstration modes later described in this specification.

DISCLOSURE OF THE INVENTION

In broad terms the system according to the invention

5 is designed and adapted to allow digital data or software

to run in a use mode on a platform if and only if an

approPriate licensing procedure has been followed. In

particular forms the system includes means for detecting

when parts of the platform on which the digital data has

10 been loaded has changed in part or in entirety as compared

with the platform parameters when the software or digital

data to be protected was for example last booted or run or

validly registered.

The system relies on digital data or code which forms

15 part of the digital data to be protected by the system.

This portion of the digital data which preferably is

integral to the digital data to be protected has been

termed the code portion 38 elsewhere in this specification.

The code portion includes an algorithm adapted to generate

20 a registration number which is unique to an intending

licensee of the digital data based on information supplied

by the licensee which characterises the licensee.

The algorithm in the code portion is duplicated at a

remote location on a platform under the control of the

25 licensor or its agents and communicatiOn between the

intending licensee and the licensor or its agent is

required so that a matching registration number can be

generated at the remote location for subsequent

APPLE EXHIBIT 1102, Page 54 of 1048

APPLE EXHIBIT 1102, Page 55 of 1048

I. .I’

Ion
I. ..

10

15

20

communication to the intending licensee as a permissive to licensed

_ operation of the digital data in a use mode.

Preferably the code portion is integral with the digital data and can

be identical for all copies of the digital data‘ It is the algorithm embedded

within the code portion (and which is duplicated at the remote location)

which provides a registration number which can be “unique" if the

information provided by the intending licensee upon which the algorithm

relies when executed upon the platform is itself "unique”.f

In any event in particular preferred forms a serial number (see further

on) is included in the registration number generation algorithm which

introduces an additional level of uniqueness into the registration number

calculation process.

Accordingly in one broad form of the ismention there is provided a

registration system for licensing execution all digital data in the use mode.

said digital data executable on a platform, said system including local

licensee unique ID generating means and remote licensee unique 10

generating means, said system further including mode switching means

operable on said platform which permits use of said digital data in said use

mode on said platform only if a licensee unique ID first generated by said

local licensee unique ID generating means has matched. a licensee uniQUe lD

subsequently generated by said remote licensee unique lD generating

means; and wherein said remote licensee unique ID generating means

comprises software executed on a platform which includes the algorithm

utilized" by said local licensee unique ID generating means to produce said

licensee unique ID.

Preferably said system further includes platform unique ID generating

means, wherein said mode switching means will permit said digital data to

APPLE EXHIBIT 1102,.Page 55 of 1048 , .

APPLE EXHIBIT 1102, Page 56 of 1048

IO.

10

15

20

run in said use mode in subsequent execution of said digital data on said

platform only if said platform unique ID has not changed.

Preferably said mode switching means permits operation of said

digital data in said use mode in subsequent execution of said digital data

only if said licensee unique ID generated by said local licensee unique ID

generating means has not changed.

Preferably said mode switching means inciudes part of said digital

data.

Preferabiy the information utilized by said local licensee unique iD

generating means to produce said licensee unique it) comprises prespective

licensee details, contact details and name.

Preferably said platform unique ID generating means forms part of

said digital data.

Preferably said platform unique ID generating means utilises hard disk

information and/or other computer hardware or firmware information to

determine said platform unique ID.

Preferably said platform comprises a computer operating system

environment.

Preferably said digital data comprises a software prdg-ramme adapted

to run under said operating system environment.

In a further broad form of the invention, there is provided a

registration system attachable to software to be protected, said registration

system generating a security key from information input to said software

which uniquely identifies an intended registered user of said software on a

computer on which said software is to be installed; and wherein said

registration system is replicated at a registration authority and used for the

purposes of checking by the registration authority that the information

, APPLEEXHIBIT 1102, Rage 56 of 1048

APPLE EXHIBIT 1102, Page 57 of 1048

I.I O
0 II.a
quI_i I II I II.

o
coon-o.-

o o

ItI q ou o a

10

15

20

unique to the user is correctly entered at the time that the security key is

generated by the registration system.

Preferably said security key is generated by a registration number

algorithm.

Preferably said registration number algorithm combines information

entered by a prospective registered user unique to that user with a serial

number generated from information provided by the environment in which

the Software to be protected is to run (eg system clock, last modify date,

user name).

Preferably said registration means checks at the time of boot of said

software as to whether it is a first boot of the software to be protected or

a subsequent boot. if a subsequent boot is detected then environment and

user details are compared to determine whether the programme reverts to a

demonstration mode and a new user registration procedure is to

commence, or a full version run.

Preferably said environment details comprise one or more of disc

volume name, user name or computer, initialisation date of hard disc,

hardware identifier (eg. ROM cheksum) or other elements which are

generally not user-configurable on the platform.

In a further broad form of the invention there is provided a method of

control of distribution of software, said method comprising providing mode-

switching means associated with said software adapted to switch said

software between a fully enabled mode and a partly enabled or

demonstration mode, said method further comprising providing registration

key generating means adapted to generate a registration key which is a

function of information unique to an intending user of the software; said

mode-switching means switching Said software into fully enabled mode

APPLE EXHIBIT 1102,__P_age 5] of 1048

APPLE EXHIBIT 1102, Page 58 of 1048

only if an enabling key provided to said mode-switching means by said

intending user at the time of registration of said software has matched

identically with said registration key; and wherein said enabling key is

communicated to said intending user at the time of registration of said

5 software; said enabling key generated by a third party means of operation

of a duplicate copy of said registration key generating means.

7 APPLE EXHIBIT _1_ 102, Page 5.8.of 1048

APPLE EXHIBIT 1102, Page 59 of 1048

I I O O O

I...

0"In.

P.

ItIn"

10

o
I

p a.

C c I

9.!fi‘!ll
Cl t.I I.

I
IIOI'I

I.0606O i

10

I F DE 1 THE

Embodiments of the invention will now be described with reference

to the accompanying drawings wherein:-

Fig'. 1 is a schematic diagram of the relaticmship and interaction

between an intending registered user and a registration

authority of software on media secured according to a

first embodiment of the invention,

Figs 2a, 2b, 2c are segments of a flow chart of the procedure to be

followed during registration of software by a user

according to a first embodiment of the invention,

Fig. 3 is a flow chart of alternative boot processes according to a

second embodiment of the invention,

APPLE EXHIB_IT_1102, Page 59 of 1.048.

APPLE EXHIBIT 1102, Page 60 of 1048

W0 94/07 20-:

code/Software.

PCT/AL93MNM83

_11-

is a personal information dialogue boxFig 4

relating to the procedure of Figs. 2a, 2b,

2c in accordance with a third embodiment.

Fig. 5 is a schematic diagram of a system

5 according to a fourth embodiment of the

invention.

Fig 6 is an implementation of the fourth

embodiment of Fig. 5 in relation to a CD

ROM drivet

10 Fig. 7 is a logic flow chart in relation to the

decoder box of Fig. 6.

Fig. 8 is a block diagram of a generalised system

according to a fifth embodiment of the

invention,

15 Fig. 9‘ is a block diagram indicating one

particular example of generation of a

registration number for the system of Fig.

3 and

Fig. 10 is a schematic diagram of a sixth

20 embodiment comprising a particular example

of the generalised system of Fig. 8.

MODES FOR CARRYING OUT THE INVENTION

It is to be understood that, in its various

embodiments, the invention is for the grotection of digital

25 code/software by control of permission to use the digital

A hardware platform and a remote

registration station implemented at least partially by

means of electronic hardware are reguired by the Various

._ ._ _.APPLE EXHIBIT .1102, Page 60 of 1048

APPLE EXHIBIT 1102, Page 61 of 1048

W0 94/117204 PC]? A L’93/00433

10

15

20

25

—.12..

embodiments.

The code/software to be protected requires at least

some adaption to be useable with the invention in its

various embodiments. The adaptation can be universal for

all copies of the code/sofware to be protected.

1. FIRST EMBODIMENT

With reference to Figs. 1 and 8 the system according

to embodiments of the invention is designed and adapted to

allow digital data 39 or software to run in a use mode on a

platform 31 if and only if an appropriate licensing

procedure has been followed. In particular forms the

system includes means for detecting when parts of the

platform 31 on which the digital data 39 has been loaded

has changed in part or in entirety as compared with the

platform parameters when the softWare er digital data to be

protected was for example last booted or run or validly

registered.

The system relies on digital data or code 38 which

forms part of the digital data to be protected by the

system. This portion of the digital data which preferably

is integral to the digital data to be protected has been

termed the code portion 38 eisewhere in this specification.

The code portion 38 includes an algorithm adapted to

generate a registration number 66 or local licensee unique

ID or registration key which is unique to an intending

licensee of the digital data based on information supplied

by the licensee which characterises the licensee. In this

instance the local licensee unique ID generator which

APPLE EXHIBIT 1102, Page 61 of 1048

APPLE EXHIBIT 1102, Page 62 of 1048

W0 94/0721“ PCT/A U93f00483

10

15

20

25

“13“

generates the registration number comprises the execution

of code 38 on platform 31.

The algorithm in the code portion is duplicated at a

remote location on a platform 67 under the control of the

licensor or its agents and communication between the

intending licensee and the licensor or its agent is

required so that a matching registration number or enabling

key can be generated at the remote location for subsequent

communication to the intending licensee as a permissive to

licensed operation of the digital data 39 in a use mode.

Execution of the duplicated code portion on platform

67 comprises, in this instance, the remote licensee unique

ID generating means.

Mode.ewitching means can comprise execution of the

code portion which additionally performs a comparison of

the locally and remotely generated registration numbers.

Preferably the code portion 33 is integral with the

digital data and can be identical for all copies of the

digital data. It is the algorithm embedded within the code

portion (and which is duplicated at the remote location)

which provides a registration number which can be “unique“

if the information provided by the intending litensee upon

which the algorithm relies when executed upon the platform

is itself "unique".

In any event in particular preferred forms a serial

number (see further on} ie included in the registration

number generation algorithm which introduces an additional

level of uniqueness into the registration number

APPLE EXHIBIT .1 102, Page .62.of 1048

APPLE EXHIBIT 1102, Page 63 of 1048

\V()94f07204 PfTT/AIJ93f00483

10

15

20

25

_.14...

calculation process.

With particular reference to Fig. 1 a programme

comprising digital data protected according to a first

embodiment of the invention is supplied recorded on a

magnetic disk 10.

Included as part of the software on that disk 10 is a

registration and reeregistration routine which executes

whenever the programme protected by the arrangement of the

first embodiment "boots".

With reference to Figs. 1 and Figs. 2a, 2b and 2c the

operation of the security routine will be.described on the

assumption that the programme on the disk 10 protected by

the registration routine has not been registered on the

platform or is otherwise being loaded for the first time.

The prospective new user 11 inserts disk 10 into the

user PC 12 so as to be read by PC 12.

As part of the software installation procedure the

registration routine is activated causing a series of

dialogue boxes to appear on the display 13 of the user PC

12. Having checked to ensure that the software has not

previously been registered on the PC 12 a dialogue box A

(in Fig. 2a) is displayed which provides the user with a

choice of either seeing a demonstration of the software

(which typically has features such as save andior print

disabled) or alternatively

an invitation to register ownership/license of the software

(after which all features of the software are made

available to the user).

APPLE EXHIBIT 1102, Page 63 of 1048

APPLE EXHIBIT 1102, Page 64 of 1048

W0 94f07204 PCT/A U93f00483

10

15

20

25

—15_

If the register option is selected or if the user

cancels the demonstration in favour of registration then a

contact dialogue box B (in Fig. 2a) is presented on the

display 13 which provides a list (stored on disk 10 as part

of the registration routine) which provides for example.

names and contact numbers of the software publishing

company together with other general product information.

Following the user's indication of agreement during

display of license details (box Bl} to proceed to register,

the user can contact the registration centre after filling

out the registration dialogue box C as detailed below.

After selecting "continue", the registration routine begins

the first step in the generation of a security key which

will be unique to the current copy of the software and to

certain features of the environment in which it runs.

As shown in Fig. 2b, the first step in the generation

of the security key comprises the generation of a serial

number generated from the current time on the system and.

in this example, the last modify date of the software and

other information from the.c°mputer environment. The

serial number is encrypted and rearranged and then

presented as a number in the registration dialogue box on

the display 13.

The registration dialogue box C (in Fig. 2b} prompts

the user for details unique to that user (including. for

example, name, company, address. state. contact number)

together with financial details for payment for the purpose

of becoming a registered user of the software protected by

APPLE EXHIBIT 1102, Page 64 of 1048

APPLE EXHIBIT 1102, Page 65 of 1048

W0 94/072114 PCT/AU93/00483

10

15

20

25

16.

the registration routine {for example Mastercard or

corporate account number details). This information,

unique to the user, is passed through a registration number

algorithm 14 (represented symboliCally in Fig. 1) which

generates a registration number or security key from the

information unique to the user together with the serial

number previously generated. The registration number or

security key is not made available to the user of the PC 12

by the PC 12.

An identical registration number algorithm 14 resides

on the registration authority PC 15. As an integral part

of the registration procedure the prospective new user 11

communicates the information unique to the user which was

entered by the user on the user PC 12, along with the

serial number generated by the user's algorithm, to the

registration authority 16. The registration authority

feeds this information into the registration authority PC

15 wherein the registration number algorithm 14 should

produce an identical registration number or security key to

that produced by the user PC 12 igrthe details communicated

to the registration authority by the prospective new user

11 match with the details that have been entered on the

user PC 12. Optionally the user can communicate the

information to the registration authority electronically

eg‘ by fax or modem or tone phone.

As a final stage in registration {refer Fig. 2c) the

registration authority 16 provides the registration number

generated by the registration authority PC 15 to the user

APPLE EXHIBIT 1102, Page 65 of 1048

APPLE EXHIBIT 1102, Page 66 of 1048

\‘VO 94f0720-l l'C'I'fAU93/00483

10

15

20

25

-17-

11. The user 11 enters the registration number into the

user PC 12 where the registration routine checks to see

whether the entered registration number matches the

calculated registration number. If the two match then a

valid registration has taken place and access is provided

by the registration routine to a full operating version of

the software protected by the registration routine. If

there is no match and a preference file (which stores the

user details) does not exist then a dialogue box D (Fig.

2c) appears on the display 13 of user PC 12 providing the

prospective new user 11 with the opportunity to check

his/her details or switch to the demonstration version of

the software prOtected by the registration routine.

Again, the registration authority PC 15 can provide

to PC 12 the registration number which it generates by

electronic means such as modem communication.

It will be evident that it is not obvious to the

prospective new user 11 that the registration number which

unlocks the full version of the software protected by the

registration routine is, in fact. generated from an

algorithm residing on the magnetic disk io-and that it

forms part of the software to which access is desired.

In.this manner the registration procedure outlined

above ensures that exactly the same details entered by the

prospective new user on his/her user PC 12 are those

details recorded by the registration authority 16. It will

also be evident that the procedure does not require each

magnetic disk: 10 containing a copy of the Software to be

APPLE EXHIBIT 1102, Page 66 of 1048

APPLE EXHIBIT 1102, Page 67 of 1048

WO 94/07204 PCT/AU93/004BJ

10

15

20

25

protected to have a unique registration number recorded on

the disk at the time of distribution of the disk. Each

copy has exactly the same registration number algorithm

located upon it. A unique registration number or “security

key" is generated only at the time of registration from the

details supplied by the prospective new user 11.

The registration routine behaves generally as follows

where any copy of the protected software boots. In this

situation, the registration routine checks at the time of

boot to see what registration details are present for that

particular copy of the software. If no details are present

then it is assumed that the PC is booting from a newly

distributed magnetic disk and registration is to occur for

the first time. The registration procedure in that case is

that followed in respect of Figs. 2a, 2b and 2c.

In the event that registration details are present

then the registration routine checks a number of parameters

which are expected to be unique to the environment in which

the software to be protected operates. In this embodiment

the parameters checked are hard disc volume name, user

name. and computer name and user password and hard disc

initialisation date {not generally user configurable on the

Apple Macintosh computer}. The registration routine then

checks these parameters against the corresponding details

that it finds from the operating environment of the

computer on which the software is running. If a designated

combination of these details matches then it is assumed

that a properly authorised and registered copy of the

APPLE EXHIBIT 1102, Page 67 of..1048

APPLE EXHIBIT 1102, Page 68 of 1048

WO 94/07204 PCT/AU93/00483

10

15

20

25

-19-

software is running and full access to the software is

allowed.

In this manner, it is quite in order for users to

provide other users with copies of the software protected

by the security routine. The security routine attached to

the software to be protected determines from the

environment in which it operates whether an additional

registration fee is required. If it is determined by the

registration routine that this is the case then the

registration routine has the capability to provide a fresh

registration number as part of an authorised registration

procedure pending which the protected software reverts to

demonstration mode.

2. 'SECOND EMBODIMENT (Auto re—registration)

According to a second embodiment a more sophisticated

procedure suitable for checking at first boot and at

subsequent boot is shown in flow chart form in Fig. 3.

This procedure incorporates redundancy to cope with

situations where the key file containing the information

from which the current use has been authorised may have

been deleted or does not exist on a.subsequent boot.

The distinction as against the first embodiment is

that a “key file" is created at the time of registration of

the software and a duplicate key file is also created at

the same time. The duplicate key file is arranged to be

stored on the computer at a location separate from the

programme to be protected. In the case of the Apple

Macintosh computer the duplicate key file can be stored in

APPLE EXHIBIT 1102, Page 68 of L048 ,

APPLE EXHIBIT 1102, Page 69 of 1048

WO 94/07204 PCT/A U93/00483

10

15

20

25

“20-

the "system" folder.

Both the key file (stored with the software) and the

duplicate key file are encrypted and both contain identical

information. The information contained comprises:

i. The user registration details including the

serial number,

2. The environment details of the computer, and

3. Details of the application protected by the

Security routine for which registration is to be

or has been obtained.

With reference to Fig. 3 whenever the protected

application boots a check is made by the registration

routine to determine whether registration details exist in

the key file of the protected application. If they do a

comparison is made by the registration routine between what

is stored in the key file and the environment to determine

whether a change has taken place to the environment as

compared with what is stored in the key file. If no change

is detected then the protected application is permitted to

run normally.

If there are no registration details present in the

key file or if the above referencad comparison betWeen the

key file contents and the application does not show a match

then the re-registration routine of Fig. 3 looks for the

existence of a duplicate key file within the environment.

If a duplicate key file exists then the information

contained within that duplicate key file is copied to the

application key file and comparisons as previously

- .. APPLEEXHIBIT 1102,. Page69 of 1048

APPLE EXHIBIT 1102, Page 70 of 1048

W0 94/07 204 PCT/A U93/00483

10

15

20

25

-21..

described as between the key file details and the

environment and application are made. If the comparison is

positive then the protected application is allowed to run

normally. If the comparison proves negative then the

protected application is permitted to run by the

registration routine in demonstration mode only. If a

duplicate key file is found not to exist at all and the

internal key file if present brings a negative result then

the protected application is allowed to run in

demonstration mode only.

This arrangement provides improved durability for the

registration routine in the sense that it is less likely

that the protected application will be caused to run in

demonstration mode for incorrect reasons.

3. THIRD EMBODIMENT - TRACKING SYSTEM

With reference to Fig. 4 a modified form of the

dialogue box C of Fig. 2b is shown which includes provision

for entry of "your user number" in box 21.

At the time a prospective new user enters his/her

details into the other boxes comprising the dialogue box C,

there is an option for the user to enter a user number into

box 21. The user number is provided by the registration

authority 16 as a number unique to that particular

registered user. If the box 21 has the user number details

inserted into it then the registration routine, when the

next copy of the protected application is mader will

transfer the user number details from box 21 to the "last

user number" be): 22. A similar transfer will take place-

MAPPLE EXHIBIT 1102, Page 70 of 1048

APPLE EXHIBIT 1102, Page 71 of 1048

W0 94/117204 I’CD’AU93/004B3

10

15

20

25

22

when next a copy is made of the protected application if

and only if the person wishing to register the next copy

enters their user number details in box 21. If they do

not, then the last user number details in box 22 remain as

before. In this manner a tracking system is available to

the registration authority in the form of a tree where any

given copy is identified by its ancestry based on current

and previous user number as entered into boxes 21 and 22.

4. SELF SERIALISATION ‘

In a particular embodiment a process termed "self

serialisation“ can be utilized to produce the serial number

50 which is displayable to the user/licensee as illustrated

in Fig. 4.

The serial number 50 is disguised by use of a random

or pseudo random number input to the algorithm which

generates the serial number at the time of first boot of

the software as part of the initial registration procedure.

For example the serial number, when generated by the self

serialisation process, can be generated by a random number

routine forming part of the registration software or it can

be generated by the registration software with reference to

data which is available in a-widely varying fashion on the

platform on which the software is located ~ for example a

time reference on the platform. The serial number 50

generated by the self serialisation process can be a

required input to the registratiOn algorithm from which the

registration number is generated. Clearly the serial

number 50 as determined and displayed to the user will then

._ m APPLEEXHIBIT 1.102, Page].1. of- 1048

APPLE EXHIBIT 1102, Page 72 of 1048

WO 94107204 PCT/AU93/00483

10

15

20

25

23

be required to be communicated to the registration

authority for input to the registration authority's

registration number generating algorithm.

It will be observed that a serial number 50 generated

in this manner is likely to be displayed as a different

number on each platform on which the software to be

protected is to be run and comprises a randomised input to

the registration algorithm which is determined and

determinable only at the time of registration.

5. FIFTH EMBODIMENT

With reference to Fig. 5 there is shown in schematic

form a microprocessor 30 adapted to operate under an

operating system or upon a platform 31 such as, for

example, Microsoft DOS or Macintosh System 7. The platform

31 allows relatively high level commands to be used to

cause the microprocessor 30 to interact with inputfoutput

devices such as keyboard 32, monitor 33. loudspeaker 34.

memory 35 and magnetic or CD ROM disc 35.

By way of example a word processing programme

comprising a length of code or digital data 37 has been

copied onto disc 36.

The digital data 37 includes registration code

portion 33 and use code portion 39.

The digital data 3? is arranged in such a way that

when microprocessor 30 seeks to first execute the digital

data 37 by way of operating system or platform 31 the

digital data comprising the registration code portion 38 is

caused to execute first in a manner previously fleecribed in

._ARELE.EXHIBIT..1_102, Page 72 of 1048- --

APPLE EXHIBIT 1102, Page 73 of 1048

WO 94107204 l’C'l‘fAL‘93/004B3

10

15

20

-24“

reference to the first embodiment of the invention. The

execution of the digital data comprising the registration

code portion 38 in conjunction with the operating system or

platform 31 comprises a mode switcher which will permit the

microprocessor 30 to execute the use code portion 39 of

digital data 37 only in a demonstration mode unless and

until registration involving reference to an external

registration authority is first completed-successfully.

This registration procedure is as previously described with

reference to the first embodiment.

The digital data 37 can comprise. for example, a word

processing programme such as Wordperfect 5.1 available from

Wordperfect Corporation. The registration code_portion 38

is integral with the digital data 3? comprising the word

processing programme. The registration code portion 38

includes the algorithm for calculation of the registration

number as previously described in reapect of other

embodiments of the invention.

It will be appreciated that the registration code

portion as effectively forms simply a part of the software

or digital data 37 to be protected/registered and that the

digital data 3? will be or can be identical for all copies

of the word processing programme produced. The

registration code portion 38 allows a unique link to be

made between the digital data 37 and an individual

authorised or licensed to use the digital data 37 by way of

initial execution of a copy of the digital data compriSing

registration code portion 35.

WAPPLE EXHIBIT 1.1.02, Page .73 of.1048

APPLE EXHIBIT 1102, Page 74 of 1048

“'0 94/072 0-! P C]? A U93/00483

10‘

15

20

25

-25-

With reference to Figs. 6 and 7 a specific

realisation of the fifth embodiment will be described.

With particular reference to Fig. 6 a decoder 51 is

interposed in the data path from the CD in CD player 52 and

a digital to analogue converter 53. The digital to

analogue converter 53 is the device by which digitally

encoded musical or video-information residing on CD ROM 54

is Converted to analogue form suitable for playback on

current mass produced television sets (video) or hi—fi sets

(audio).

The decoder 51 comprises part of the platform upon

which the digital data 37 is executed and includes means to

interpret the code portion 38 of the digital data 3?

whereby the registration system is implemented such that

the digital data 3? and, more particularly, the use code

portion 39 of that digital data 3? can be executed on the

platform in a use mode only if the registration.procedure

to which reference has been made in respect of previous

embodiments has been performed.

The registration code portion 38 can include.a

preview or demonstration related to a subset of the balance

of the digital data on the CD 5% which can be executed by

the platform without license.

The decoder 51 includes LCD display 55 and keypad 56

whereby the licensee can enter information via keypad 56

and receive information via the LCD display 55 for the

purpose of the registration procedure.

In addition a smart card {SHAH} 57 is receivable by

APPLE EXHIBIT 1102, Page 74 of 1048 ,

APPLE EXHIBIT 1102, Page 75 of 1048

WO 94107204 PCT/A U93/00483

10'

15

2O

25

—26“

the decoder 51 for the purpose of customising or amending

operation of the decoder 51.

With reference to Fig. 7 the registration procedure

following insertion of CD 54 into CD player 52 is as

follows. The user operates the play control and decoder 51

reads from CD 54 code portion 33 of digital data 37 located

thereon and executes this code so as to determine whether

the digital data is already licensed for the platform. If

not, a demonstration is communicated via digital to

analogue conVErter 53 whilst the user determines whether to

register as a licensee of the digital data 37 in the manner

indicated in the flow chart of Fig. 7.

6. SIXTH EMBODIMENT

With reference to Fig. 8 there is shown a block

diagram of a system according to a further embodiment of

the invention which is to be read in the context of the

earlier generaliSed description in respect of Fig. i.

The system illustrated in Fig. 8 operates in the

manner generally described in respect of previous

embodiments and as generally outlined in the diagram. In

the context of the block C illustrated in Fig. 4 and with

reference to Fig. 9 the algorithm which generates the

unique user identification and which is resident both as

the registration code portion 33 in digital data 37

integrally bound to use code portion 39 for execution on

local platform 31 and also as remote algorithm 61 attached

to registration database programme an for execution on the

remote platform 63.

APPLE EXHIBIT 1102, Page 76 of 1048

\V()94/07204

10

15

20

25

PCT! A USU/00483

-27-

The algorithm, in this embodiment, combines by

addition the serial number 50 with the software product

name 64 and customer information 65 and previous user

identification 22 to provide registration number 66.

As discussed earlier all of the items to be summed.

namely items 50, 64, 65 and 22 must be communicated to the

remote licensee unique ID generator 67 by the intending

licensee whereby algorithm 61 causes the production of a

registration number 66 which matches identically with the

locally-produced registration number» When mode switcher

68 verifies the match then the mode switcher 68 allows

execution on platform 31 of the full user programme 39.

Prior to allowing execution of the full programme

mode switcher 68 will also check whether platform ID 69 has

changed as provided to it by platform unique ID generator

70.

In this embodiment serial number 50 is comprised of

two components. namely system information 71 and a variable

key portion 72. The Variable key portion 72 provides the

characteristic of self serialisation described earlier in

the specification and, in this embodiment, is generated at

the time or registration on platform 31 by reference to a

variable platform parameter, in this case reference to

system time information although other parameters which are

Variable can be utilised in other embodiments.

System information 71 can include information which

identifies the hardware comprising the platform 31 on which

the user programme 39 is to be executed such as. for

_ APPLE EXHIBIT 1102, Page 76 of 1048

APPLE EXHIBIT 1102, Page 77 of 1048

WO 94107204 PCT/A U93l00483

10

15

20

25

-28...

example, CPU number (where available), or unique parameters

associated with the firmware in use. The system

information, optionally. can further include system

configuration information such as amount of memory. type of

processor etc,

It will be noted, therefore, that serial number 50

will appear to an intending licensee when it appears on

screen as per box C in Fig. 4 as an apparently random

variable having no obvious link to the platform 31 or the

user programme 39 ,

However. when the serial number 50 is communicated to

the remote licensee unique ID generator 67 a secondary

algorithm complementary to the algorithm which generated

the serial number including variable key portion 72 and

system information 7} is able to "decode" or otherwise

strip away the variable key portion T2 so as to make use of

the system information 71 if a110wable and desirable in the

circumstances.

Whether the system information 71 is utilised or not

the serial number 50 generated in this manner provides an

input to the algorithm which generates registration number

66 which presents as an apparently variable parameter

thereby rendering "cracking" of the software registration

system more difficult and unlikely.

7. SEVENTH EMBODIMENT

The schematic diagram of Fig. 10 illustrates a

substantially hardware implementation of the invention

applicable, for example, for implementation of the CD

, W APPLILEX}HBYT1102,Page77of1048-

APPLE EXHIBIT 1102, Page 78 of 1048

WO 94/07204 PCT/A U93/00483

10

15

20

-29-

arrangement of Fig. 6 or the more generalised arrangement

of Figs. 8 and 9.

In this embodiment a prospective user 80 of digital

code 61 on media 82 by its execution on platform 83 firstly

inserts the media 82 into an appropriate digital code

reading device within platform 33 (eg a floppy disk drive

or a CD ROM drive).

Customer information C is provided by uSer 80 both

direct to local encoder/decoder 84 and also to local adder

or summer 35.

Additionally product information P derived from media

82 (typically via platform 83) or else via the intermediary

of the user (signified by the small man symbol) is provided

to encoder/decoder B4 and to summer 85.

Finally. a serial number S derived from platform 83

is supplied either directly or via the intermediary of user

80 to encoder/decoder B4 and to summer 85.

Summer 35 acts as a local licensee unique ID

generating means by combining, by addition, customer

information C. product information P and serial number S in

order to provide a local licensee unique ID here designated

Y.

Encoder/decoder 84 transmits the serial number s, the

Customer information C and the product information P via

modems as, 87 over the public switched telephOne network to

a remote encoder/decoder as which, in turn, supplies

signals 5. C and P to the inputs of remote Summer 39.

Remote summer 39 combines these signals by addition

APPLE EXHIBIT 11.02, Page 78 of- 1-048

APPLE EXHIBIT 1102, Page 79 of 1048

WO 94/07204 PCT/AU93/00483

10

15

20

25

._30_

[thereby acting as a remote licensee unique ID generating

means} so as to provide a summed output here termed x which

represents a licensee unique ID or enabling key which

should match identically with the local licensee unique ID

or registration key or registration number Y if inputs 5, C

and P to summers 85 and 89 are identical.

The licensee unique ID termed X is transmitted back

via encoder/decoders and modems 84, 864 87, 88 to

comparator 90 which outputs a high signal if X equals Y.

This condition corresponds to the local licensee unique ID

matching with the licensee unique ID generated at the

remote location by the remote licensee unique ID genErating

means generally comprising summer 89.

Digital code 31 on media 82 comprises code identified

as a demonstration portion D together with code identified

as a use portion U. There may be other kinds of code

designated 0 as well.

Code 81 is executed on platform 83 {for example a

microprocessor or a substantially hardware based, dedicated

playback device such as a CD drive with the code being

passed through a mode switcher comprising first gate 91 and

second gate 92 together with relay 93.

First gate 91 energises relay 93 so as to permit

execution of code of type D but not code of any other type

such as of type U.

Second gate 92 permits execution of any kind of code

by closure of relay 93 prayided only that the output of

comparator 90 is high (which is to say that x equals 9 or

. .APPLE EXHIBIT 110257Page 79 of-1048

APPLE EXHIBIT 1102, Page 80 of 1048

W0 94/0720-‘1 PCI‘IAU93/00483

that the local licensee unique ID matches with the licensee

unique ID generated by the remote licensee unique ID

generating means comprising summer 89).

Comparator 90 together with gates 91, 92 and relay 93

5 comprise one particular form of mode switcher or switching

means suitable for recognizing and allowing execution on

platform 83 of various kinds of code such as the code of

types D and U.

INDUSTRIAL APPLICABILITY_

10 The aforementiOned may be applied either in dedicated

electronic hardware or by means of more generalised digital

computation devices such as microprocessors and the like in

order to regulate use of digital code.

The above describes only some embodiments of the

15 present invention and modifications, obvious to those

skilled in the art, can be made thereto without departing

from the scope and spirit of the present invention.

____APPLE EXHIBIT 1102, Page 80 of 1048

APPLE EXHIBIT 1102, Page 81 of 1048

32

We

1. A registration system for licensing execution of digital data in the use

mode. said digital data executable on a platform. said system including

local licensee unique ID generating means” and remote licensee unique iD

generating means, said system further including mode switching mean-s

operable on said platform which permits use of said digital data in said use

mode on said platform only if a licensee unique ID first generated, by said

lc-cal licensee unique ID generating means has matched a licensee unique ID

subsequently generated by said remote licensee unique ID generating
I. .-

means; and wherein said remote licensee unique ID generating means
a ' .=

"r"? comprises software executed on a platform which includes the algorithm

it? utilized by said local licensee unique ID generating means to produce said
3‘55: licensee unique ID.

i5“. 2. The system of claim 1, wherein said local licensee unique ID
335.: generating means generates said Iacal licensee unique ID by execution of a

. registration algorithm which combines information in accordance with said
1.": algorithm, said information uniquely descriptive of an intending licensee of

:": said digital data to be executed in said use mode.I-II-

3. The system of claim 2. wherein said mode switching means permits

operation of said digital data in said use mode in subsequent execution of

said digital data only if said licensee unique ID generated by said local

licensee unique ID generating means has not changed.

APPLE EXHIBIT 1102, Page --81 of 1048

APPLE EXHIBIT 1102, Page 82 of 1048

33

4. The system of claim 3, wherein said local licensee unique ID

generating means comprises part of said digital data when executed on said

platform.

5. The system of claim 4, wherein said mode switching means

comprises part of said digital data when executed on said platform.

6. The system of claim 5, wherein the information utilized by said local

licensee unique ID generating means to produce said licensee unique ID

comprises prospective licensee details including at least one of payment

details, contact details and name.

7. The system of claim 1, said system further including platform unique

it) generating means, wherein said mode switching means will permit said

digital data to run in said use mode in subsequent execution of said digital

data on said platform only if said platform unique ID has not changed.

8. The system of claim 7. wherein said platform unique it) generating

means comprises part of said digital data when executed on said platform.

9. The system of claim 3, wherein said platform unique lD generating

means utilizes hard disc or other platform information to determine said

platform unique ID.

10. The system of claim 1, wherein said platform comprises a computer

operating system environment.

_ APPLE EXHIBIT—1102, Page-82 of 1048 -- ' --

APPLE EXHIBIT 1102, Page 83 of 1048

iui.

34

11. The system of claim 10, wherein said digitai data comprises a

software program adapted to run under said operating system environment.

12. A registration system attachable to software to be protected, said

registration system generating a security key from information input to said

software which uniqueiy identifies an intended registered user of said

software on a computer on which said software is to be installed; and

wherein said registration system is replicated at a registration authority and

used for the purposes of checking by the registration authority that the

information unique to the user is correctly entered at the time that the

security key is generated by the registration system.

13. The registration system of claim 12, wherein said security key is

generated by a registration number algorithm.

14:. The registration system of ciaim 13 wherein said registration

number algorithm combines information entered by a prospective registered

user unique to that user with a Serial number generated from information

provided by the environment in which the software to be protected is to

run.

15. The registration system of ciaim 12, wherein said regiStration system

checks at the time of boot of said software as to whether it is a first boot

of the software to be protected or a subsequent boot, and, if a subsequent

boot is detected, then environment and user details are compared to

determine whether the program reverts to a demonstration mode and a

new user registration procedure is to commence or a foil version run.

APPLE EXHIBIT 1102, Page 83 of 1048- -

APPLE EXHIBIT 1102, Page 84 of 1048

35

16. The registration system of claim 1 5, wherein said environment

details comprise at least one element which is not user—configurable on the

platform.

17. A method of control of distribution of software, said method

comprising providing mode-switching means associated with said software

adapted to switch said software between a fully enabled mode and a partly

enabled or demonstration mode, said method further comprising providing

registration key generating means adapted to generate a registration key
. .. which is a function of information unique to an intending user of the

softWare: said mode-switching means switching said software into fully

enabled mode only if an enabling key provided to said mode—switching

:33} means by said intending user at the time of registration of said software
":5" has matched identically with said registration key; and wherein said

an". enabling key is communicated to said intending user at the time of
;"§°: registration of said software; said enabling key generated by a third party

means of operation of a duplicate copy of said registration key generating

means .

13. The method of claim 17, wherein said registration key is also a

function of the environment in which said software is installed.

19. A remote registration station incorporating remote licensee unique ID

generating means, said station forming part of a registration system for

licensing execution of digital data in a use mode, said digital data

executable on a platform, said system including local licensee unique ID

, a. APPLE EXHIBIT.1102,. Page 84 of 1048

APPLE EXHIBIT 1102, Page 85 of 1048

36

generating means, said system further including mode switching means

operable on said platform which permits use of said digital data in said use

mode on said platform only of a licensee unique ID generated by said local

licensee unique ID generating means has matched a licensee unique ID

generated by said remote licensee unique ID generating means; and

wherein said remote licensee unique ID generating means comprises

software executed on a platform which includes the algorithm utilized -by_

said local licensee unique ID generating means to produce said licensee

unique ID.

20. A method of registration of digital data so as to enable execution of

3.2.: said digital data in a use mode, said method comprising an intending
5;"; licensee operating a registration system for licensing execution of digital
:33: data in a use mode, said digital data executable on a platform, said system
“:3" including |o¢al licensee unique ID generating means and remote. licensee

H unique ID generating means, said system further including mode switching

E..;:: means operable on said platform which permits use of said digital data in

.. said use mode on said platform only if a— iicensee unique ID generated by

‘:"'5 said local licensee unique ID generating means has matched a licensee

.. unique ID generated by said remote licensee unique to generating means;
‘25": and wherein said remote licensee unique ID generating means comprises

software executed on a platform which includes the algorithm utilized by

said local licensee unique lD generating means to produce said licensee

unique ID.

19A

\ a)
w

.,_ . APPLE EXHIBIT 1102, Page 85 of 1048

APPLE EXHIBIT 1102, Page 86 of 1048

37

21. A registration system for licensing execution of digital data in the use

mode substantiatly as hereinbefore described with reference to the

accompanying drawings.

DATED this 3rd day of January, 1997.

UNILOC CORPORATION PTY LIMITED

by their Patent Attorney

PETER MAXWELL & ASSOCIATES.

APPLE EXHIBIT 1102, Page 86 of 1048

APPLE EXHIBIT 1102, Page 87 of 1048

\VC)94/0?204 P(TTIAIJ93/00483

LHSHBME:
1/12

FIG.I

. . APPLE EXHIBIT 1-102,- Page 8770f 1048- —

APPLE EXHIBIT 1102, Page 88 of 1048

WO 94107204 PCTIALI93/00483

2/12

 IS

THIS A NEW
COPY ?

(INTERNAL CHECKING
BY APPLICATION)

NO

GO TO

FIG. 30 OR 5b IYES

 DIALOG
BOX:

" DEMO OR

REGISTER"
7

DISPLAY PRODUCT
INFORMATION BOX:

e.g.. SOFTWARE
PUBLISHER DETAILS

I

T

I DEMO MODE OF APPLICATION: CANCEL CAESEL
INO SAVE OR PRINT CAPABILITY

LICENSE INFO. DIALOG BOX:
DETAILS OF NEW LICENSING

AGREEMENT

I

I CANC LA" CANCEL //C;Ff\
CONTINUE

’3

 i_D/’

I CONTINUE

FIG. 2C1 I
GO TO FIG. 2D

I sues-mum SHEET I

. . _. IAPPLE EXHIBIT 1102,--Page-88-o-f-1048

APPLE EXHIBIT 1102, Page 89 of 1048

WO 94107204 PCT/AU93/00483

3/12

FROM FIG. 2c:

FIG. 21‘)
A SERIAL NO. IS GENERATED

BY THE APPLICATION USING

INFORMATION FROM THE USER

ENVIRONMENT (E.G. TIME. MACHINE
TYPE. LAST MODIFICATION DATE)

SERIAL NO. IS ENCRYPTED,

REARRANGED A‘ND PRESENTED AS

A NUMBER IN THE SERIAL NO. FIELD

OF THE REGISTRATION DIALOG BOX..

 REGISTRATION DIALOG BOX: .USER MUST

ENTER DETAILS IN THE SPECIFIED

FIELDS IN ORDER TO REGISTER THE PRODUCT INCLUDING:
NAME. COMPANY, ADDRESS, CONTACT NUMBER (PHONE

AND CREDIT CARD DETAILS OR CORPORATE ACCOUNT NO.)

USER CALLS THE NEAREST ADMINISTRATION CENTER

(FROM CONTACT DIALOG BOX) AND COMMU-NICATES
THE REGISTRATION DETAILS AS WELL AS

THE SERIAL NO. GENERATED BY APPLICATION

 PUBLISHER USES

REGISTRATION DETAILS

PAYMENT IN UNLOCKING APPLICATION
DETAILS

CDNHRMED

(5.6, CREDrr CARD)

REGmTRAnDN ND. GENERATED
FROM USER DETNLS ADDED TO

SERML NO.|S ENCRYPTED

AND RE~ARRANGED_

APPLE EXHIBIT 1102, Page 89 of 1048

APPLE EXHIBIT 1102, Page 90 of 1048

i

“’0 94/07204 PCT/ALI93/00483

4/12

FROM FIG. 2!:

FIG. ZC

 USER TYPES IN

REGISTRATION NUMBER

APPLICATION USES UNLOCKING
ALGORITHM TO CHECK VALIDITY

ALERT DIALOG BOX: USER TOLD

THE REGISTRATION NO. IS INCORRECT

AND ASKED TO CALL THE OPERATOR FOR
ASSISTANCE IN' CHECKING REGISTRATION

DETAILS. USER GIVEN :5 ATTEMPTS TO

REGISTER AFTER WHICH THE PROGRAM
AUTOMATICALLY REVERTS TO DEMO VERSION

RUN FULL

VERSION

”RUNHDEMO

_ VERSION

sneer

APPLEEXHIBITll02, Page 90 of 1048

APPLE EXHIBIT 1102, Page 91 of 1048

W0 94107204 PCTIAU93/00483

5/12

FIG. 5

. DO

REGISTRATION

(KEY) DETAILS EXIS
IN APPLICATION7

 NO T YES

DO

REGISTRATION (KEY)
DETAILS MATCH

ENVIRONMENT.
‘7

LOOK FOR DUPLICATE NO
KEY FILE STORED '

ELSEWHERE ON MACHINE

YES

 DOES

DUPLICATE

KEY FILE
EXIST

0

YES

”COPT DUPLICATE
KEY FILE INFORMATION

TO APPLICATION

NO

, DO
REGISTRATION (KEY)

DETAILS MATCH

ENVIRONMENT
, ?

REMOVE KEY, NO YES RUN FULL
INFORMATION ‘ VERSION

IF IT EXISTS '

Y

RUN'DENOI

_ VERSION

_ swam SHEET

_ APPLE EXHIBIT 1102, Page 91 of 1048

APPLE EXHIBIT 1102, Page 92 of 1048

WO 94/07204 PCT/A USE/00483

6/12

220

NAME:

ORGANIZATION

ADDRESS

CITY

ZIP/POST CO DE
COUNTRY :
CREDIT CARD/ORDER#(__—T—__;;___—‘—':
EXPIRE DATE E:—:—_—"_fi__._.J

LAST USER N0.

SERIAL NO.

PRODUCT “0- E:
YOUR USER NO. -

REGISTRATION NO. L____—______—_:l

FIG.4

APPLEEXHIBIT 1171 02,—- Page 92 of 1048

APPLE EXHIBIT 1102, Page 93 of 1048

\VO 94/07204 PCTI'A U93/00483

7/12

34'

ENVIRONMENT/PLATFORM 3.5

32

-nm:ncrmu:l:n

DDCIDUUOOGDEZJ DUDE}
CJSIDDDDDUDUD DUDE
monumnunam Dunn
u Banzai 1:: Dual:

[-765

[90331-41012 sues-f!
, APPLE EXHIBIT 1102, Page 93 of 1048

APPLE EXHIBIT 1102, Page 94 of 1048

.-

WO 94/07204 PCT/AU93l00483

8/12

TV/HI Fl

FIG.6

; swam 93:sz

APPLE EXHIBIT. .1-1 02,- Page 94 of 1048 -

APPLE EXHIBIT 1102, Page 95 of 1048

WO 94107204 PCT/AU93/00483

9/12

PLAY

FIRST PIECE OF ENCODED

INFORMATION IS BROUGHT

INTO CONTROLLER INCLUDING

A PRODUCT IDENTIFIER.

IS

THE CURRENT

PRODUCT REGISTERE

FOR USE
‘3

_YES

 ALLOWS ACCESS TO

DEMONSTRATION RECORDINGS

THAT ARE NOT (ENCRYPTED. '

 REGISTRATION DATA

ENTRY eg: PAYMENT’
DETAILS AND

PERSONAL DATA

COMMUNICATION

' WITH REGISTRATION

' SERVICE PROVIDOR

STORE REGISTRATION .

SUPPLY OF NUMBER IN WRITABLE . ALLOWS ACCESS
REGISTRATION MEMORY OF LOCAL ' TO DAC AND

NUMBER TO CONTROLLER AND DECRYF‘TION
CUSTOMER WRITABLE STORAGE ENGINE

AREA OF SMART CARD.

FIG. 7

_ APPLE EXHIBIT 1102,7Page 95 .0f-1048

APPLE EXHIBIT 1102, Page 96 of 1048

i

b

W0 94i07204 PCT/A U93/00483

10/12

F""“‘"""""f""—1 r ————————————— 7
I LOCAL LICENSEE LOCATION ; I REMOTE REGISTRATION
1 INTERNAL : I DATABASE LOCATION

3.9 BOND 33 5/ 52

 REGISTRATION
DATABASE

- PROGRAM I

W

Ing.57 I I a
I EXECUTE ON PLATFORM I 1 EXECUTE ON PLATFORMI

67

 LOCAL REMOTE

I

| LICENSEE LICENSEE I

I , UNIQUE I UNIOUE I
LO. {:9 I-.D.

! GENERATOR I ! GENERATOR :
I I i I
l ' 1 1 l

1 PROGRAM : i ‘ :
SUBSET i a . 5 E

} (DEMO) . . _ I I 5 .

I o...___.__‘ MODE I I ® I1 ------- SWITCHER i I i

I 0‘L‘ ' I I Ii FUL ' i 1 I
| PROGRAM 5‘9 | | I
| '76? PLAT.‘ I l I

: PLATFORM LD : : :

. GENERATOR , i I

L. _____________ J L _____________ _.l'

. SUBSTITUTE SHETE

APPLE EXPHBIT,71L02,..Page..9.6 of 1048

APPLE EXHIBIT 1102, Page 97 of 1048

“’0 (Sid/07204 PCT/A. U93/00483

11/12

VARIABLE SYSTEM

KEY PORTION INFORMATION 50
.72 7/

r——~—fi /

5/

55

+ —W/
_ . . INFORMATION

22

./PREVIOUS USER
‘I— _ IDENTIFICATION

55

a.“ /REGISTRATION
-— _ NUMBER

APPLE EXHIBIT 1102, Page 97 0191048

APPLE EXHIBIT 1102, Page 98 of 1048

PCT/A USES/00483WO 94/07204

12/12

9m.

9.0E
mum

XHIBIT 1102, Page 98 of 1-048“APPLEE

APPLE EXHIBIT 1102, Page 99 of 1048

INTERNATIONAL SEARCH REPORT International application No.
' E’CTIAU 93100483

i

i A. CLASSIFICATION or SUBJECT MATTER
l tnt. (21.5 GOGF 15/21. 9144

According to International Patent Classification (lPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system [alloved by classification symbols)

IPC : GOfiF 15/21. 9144

Documentation searched other than minimum doeumenution to the extent that such documents are included in the fields searched
AU : [PC as above

Electronic data base consulted during the intemationat search (name of data base. and where practicable. search terms used)

Derweot : (REGIST: or LICEN: or PROTECT: or SECUR: or VALID: or AUTHORIS: or VERIFz)

Iapio : as above and (SOFTWARE: or PROGRAfl

DOCUi‘rI'ENTS CONSIDERED TO BE RELEVANT

- Category. Citation of document. with indication, where appropriate, of the relevant passages Relevant to Claim No.

WO.A, 92109160 (TAU SYSTEMS CORPORATION) 29 May 1992 (29.05.92)
See whole document

US,A. 4982430 (FREZIA et al) 1 January 1991 (01.01.91)
See whole document

US,A. 4796220 (WOLFE) 3 January 1989 (03.01.39)
See whole document

US.A, 4638169 (JCS-HI) 13 August 1987 (18.03.87)
See Whole document

IE1 Further documents are listed IE! See patent family annex.Ln the continuation of Box C.

'Special categories of cited documents : "T" later document published utter the internationll
' . _ filtng date or_pnontv date and not In conflict

"A" document defimn the cneru] state ofthe art which is wuh the appiicatronbut cited to understand the
not considered to e o ga‘rtrcular relo‘H'Inch pmctple or theory under! mg the invention"E" earlier document but u hshed on or after the "X" document of particular re evance; the claimed
international filing do . ‘ V Invention cannot be conetder'ediztovel or‘ cannot be

I‘L" document whteh may throw doubts on pricing clam-its) considered to involve-an Inventive step when theor which is cited to establish the publication ate at document is taken clone _
another citation or other spectral reason (as specified-J "Y" document of particular relevance; the claimed

"0" document rcfin-nng to an oral enclosure. use. invention cannot be coriander-ed to involve 9n
exhtbttton or other menus _ ' ‘ myentwe step when the document is eombtned

"'1'" document published. prior to the international filing date With one or more other such documents. such _
but later than the priority date claimed tCl-EMbrltnatmn betng'vobvtoue to e pemon “died InG .I

 document member of the come patent femily

Date of mailing of the international search re rt

30 ya: we; (10.12.93
Authorized officer

1 Date ofthe actual completion of the intemetional Search
16 December 1993 (16.12.93)

 Home and mailing address of the ISAIAU

AUSTRALIAN iNDUSTRlAL PROPERTY ORGANISATION-
PO BOX 300
WODEN ACT 2606
AUSTRALIA

_ Facsimile No. as 2853929

 M. E ASTHOPE

Telephone No. (06) 23322111 -

Form PCTIISAI‘ZIG (continuation of first sheet 12)) {July 1992} mp5“

. _. APPLEEXHIBIT. 1102, Page 99 of 1048

APPLE EXHIBIT 1102, Page 100 of 1048

I‘

.—__.......

INTERN’ATIONAL SEARCH REPORT lmcrnutinnul application No.
PCT/AU 931004-83

C(Conlinuationl. DOCUMENTS CONSIDERED TO BE RELEVANT

Category“

Citation of document, with indication, where appropriate of the relevant passages Relevant to Claim No.

USA, 4654799 (UGAKI at al) 31 March 1987 (31.03.87)
See whole document

Furl-n FETIISN110(continutiun of mud thatfluiy 1992‘.) :0ij

APPLE EXHIBIT 1102, Page 100 of 1048

APPLE EXHIBIT 1102, Page 101 of 1048

. IHTERNATIONAL SEARCH REPORT International application No.PCTIAU 93l00483
n u

Box i Observations where certain claims were found unsearchnble (Continuntmn of Item 1 of first sheet)

This international search report: has not established in respect of certain claim-s under Article 17(2Xn) for the following reasons:

1. Claims Nos.: 22-24 _ ‘
because they relate to subject matter not rcqutrcd to be searched by this Authority, namely:

Mere presentation of information

Ll Claim NOS; _ ‘ _ _

|:| because they relate to pans ofthe International appilcflllfln that do not comply with theprescnbod requirements to such an extent that no meanmgtul international search can be
carried out. specifically:

3. Claims Nos.: _ _

[:1 because they are dependent claims and are not drafted in accordance with the second and“1er sentences of Rule ISA-(a).

Observations where unity of invention h'iticking (Contintiation of item 2 01' first sheet)

This International Searching Authority found multiple inventions in this internitional application, as follows:

 As all required additional search fees were timely paid by the applicant. this international
search report. covers all searchabie claims

As all aearc‘hable claims could be searched without effort justifying an additional fee. this
Authority did not. mute payment of any additional fee.

A: only some of the required additional search fees were timelr paid by the applicant, thisinternational search report covers only those claims for which ees were paid. specifically
BEE]

claims Nose:

international search rcport is restricted to the invention first mentioned in the claims:4. D No required additional search fees_ were timely paidby the applicant. Consequently, thisit is covered by claims NDLJ

E] The additiemal search fees were accompanied by the applicant's protest.

[:1 No protest accompanied the payment of additional search fen.

Farm Pc'l‘llsmw [communion of first sheen 1})[Iuly £992} cupjne

,9, , ._ ,. t . APPLE EXHIBIT 11-02, Pago'101'of1048

APPLE EXHIBIT 1102, Page 102 of 1048

INTERNAIIONAL SEARCH REPORT I . I l i
‘ ‘ ‘lnlormmon on patent Iamuy members ernanonn npp icnl on No.PCTMU 93!!)0483

This Annex lists the known "A" publication level patent family members relating to the patent documents
cited in the above—mentioned international search report. The Australian Patent Office is in no way liable
for these particulars which are merely given for the purpose or information.

Patent Document

Cited in Search Patent Family Member

i Report

“'0 9209160 CA 2095723 EP 556305 US 5103476
US 5222134

US 4982430 CA [295412 DE 3679713 EP ‘ 200704
[JP 61243636

US 4796220

US 4683169

US 4654799

Furl-n PETIISMIMPIIeI-It family Ianluly 19923 cuppa

__M... ._ . APPLE EXHIBIT 1102, Page 1-02-of‘1048

APPLE EXHIBIT 1102, Page 103 of 1048

EP1637958A2

) ||||||||l|l|||ll|||l|l|||||l||lllllllllllll|l|||l|l|||l|||l|||||l|l|||l(19) 0 European Patent Office
Office européen des brevets (11) EP 1 637 958 A2

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication: (51) Int CL:
22.03.2006 Bulletin 2006I12 GOEF 1/00 (2995.01;

(21) Application number: 050213206

(22) Date of filing: 02.03.2004

(84) Designated Contracting States: - Alabraba, Fernidand, Jay
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Seattle,

HU IE IT LI LU MC NL PL PT RO SE SI SK TR Washington 98122 (US)
- Hughes, Aidan, T.

(30) Priority: 03.03.2003 US 373294 Bellevue.
Washington 98007 (US)

(62) Document number(s) of the earlier application(s) in
accordance with Art, 7'6 EPC: (74) Representative: Griinecker, Kinkeldey,
040048483 I1 455 258 Stockmair 8. Schwanhfiusser

Anwaltssozietfit

(71) Applicant: Microsoft Corporation Maximilianstrasse 58
Redmond WA 98052 (US) 80538 Mijnchen (DE)

(72) Inventors: Remarks:
. Gunyakti, Caglar This application was filed on 29 - 09 - 2005 as a

Sammamish, divisional application to the application mentioned
Washington 98074 (US) under lNID code 82.

(54) Compact hardware identification for binding a software package to a computer system having

tolerance for hardware changes

(57) Systems and methodsfor generating a compact on the given computer system depending on the degree
hardware identification (CHWID) tor a given computer of hardware changes to the computer system. The com—

system are disclosed. The compact hardware identifica- pact hardware identification (CHWID) may be electroni-
tion (CHWID) may be used to control the use of software cally transmitted over limited bandwidth media, such as

a telephone.

«- ,,- _ 4
i 29 i

Svsnzu MEMORY 22 21 48

23

3"(nm1 2.

_ERA11NG3_5_veru
AFFLICATION1DDPROGRAM

PROGRAM 3
MODU LE5

125

51Hmo D5K SPERIM.DRIVE DISK DR:VE 095KI:‘ul-IEJRWEWTERFME lNTERFACE TERFAGE NTERFAL'E

Mom 42 2
FIG. 1 Mnmrssr 3 '

Printed by Jouve. 75001 PARIS {FR}

APPLE EXHIBIT 1102, Page 103 of 1048

APPLE EXHIBIT 1102, Page 104 of 1048

TD

15

20

25

30

35

4o

45

50

55

EP 1 637 958 A2

Description

FIELD OF THE INVENTlON

[0001] The present invention relates to systems and methods for generating a compact hardware identification
(CHWID)10ra given computer system. The compact hardware identification (CHWID) may be used to control the use
of software on the given computer system depending on the degree of hardware changes to the computer system. The
compact hardware identification (CHWID) may be electronically transmitted over limited bandwidth media, such as a
telephone.

BACKGROUND OF THE INVENTION

[0002] There has been considerable effortin recent years to prevent orminimize the unlawful use ofcomputersoftware.

Due to its reproducibility and ease of distribution, piracy of computer software and illegal use of computer software
beyond the scope of a license agreement are common occurrences, which significantly hurt software manufacturers.
[0003] Methods have been developed in an effort to reduce the occurrences of computer software piracy and illegal
use of computer software beyond the scope of a license agreement. However, such methods often cause problems for

legitimate software purchasers and users in the form otconsumerinconvenience. Forinstance, a userwho has upgraded
hisfher computer should be able to legitimately reinstall the software product on the upgraded machine. However,
presently available methods may either (i) not allow the software to be installed, or (ii) force the user (who is now

disgruntled) to call the software manufacturer for assistance.
[0004] Accordingly, there remains a need for improved technology solutions to piracy and illicit use, but which also
recognize and accommodate the needs and practices of a legitimate software purchaser and user.

SUMMARY OF THE INVENTlON

[0005] The present invention addresses some of the difficulties and problems discussed above by the discovery of
an improved hardware identification for a computersystem. The hardware identification of the present invention provides
a method of minimizing or preventing software piracy and the illegal use of computer software beyond the scope of a
license agreement, while allowing for machine upgrades by legitimate software users.
[0006] The hardware identification of the present invention, referred to herein as a "compact hardware identification"
(CHWID), identifies (1) a number of component classes typically used to build a hardware configuration for a computer

smtem, and (2) a single component device or instance within a given component class for a particular computer system.
By taking into account a single component device or instance within a select number of component class, a secure and
reliable compact hardware identification {CHW|D) fora particular computer system is generated, while enabling a degree
of tolerance for component changes to the hardware configuration of the particular computer system.
[0007] The compact hardware identification (CHWID) may be used when a limited amount of space is available to
identify a particular hardware configuration when initially loading a software product onto a computer. The compact
hardware identification (CHWID) may be stored forfuture use, such as (i) when the same software product is launched
on the same computer or a variation of the same computer, or (ii) when the same software product is reloaded onto a
variation of the same computer or a completely different computer. For example, when the same software product is

launched onthe same computer or avariation ofthe same computer, a second compact hardware identification [sCHW|D)
is generated and compared to [1) a previously stored compact hardware identification (iCHWID), or (2) a previously

stored verbose hardware identification (VHWID) described below. lf a desired number of matches exist between oom-
ponentclasses ofthe second compact hardware identification (sCHWID) and corresponding component classes of either
(1) the previously stored compact hardware identification (iCHWID), or (2) the previously stored verbose hardware
identification (VHWID), the method of the present invention allows the software product to be launched. However, if a
desired number of matches do not exist between component classes of the second compact hardware identification

(sCHWID) and corresponding component classes of either (1) the previously stored compact hardware identification
(iCl—lWiD), or (2) the previously stored verbose hardware identification (VHWID), the method of the present invention
will not allow the software product to be launched due to changes to the original hardware system beyond a desired
threshold.

[0008] Accordingly, the present invention is directed to a compact hardware identification (CHWID). and a method of

generating a compact hardware identification (CHWID). The present invention is further directed to a method for pre—

ventingthe use of software on acomputer system if an attempt to launch the software product generates a new compact
hardware identification (CHWID), which is out of tolerance when compared to either (1) a previously stored compact
hardware identification (iCHWlD), or (2) a previously stored verbose hardware identification (VHWID) due to one or more
hardware changes to the original computer system.

APPLE EXHIBIT 1102, Page 104 of 1048

APPLE EXHIBIT 1102, Page 105 of 1048

EP 1 637 958 A2

[0009] These and other features and advantages of the present invention will become apparent after a review of the

following detailed description of the disclosed embodiments and the appended claims.

BHIEF DESCRIPTION OF THE FIGURES

[0010]

FIG. 1 is aflow diagram ofsome ofthe primary components ofan exemplary operating environmentforimplementation

ofthe present invention:
70 FIG. 2 depicts an exemplary hardware configuration containing eight component classes and a total of 1 9 component

devices or instances distributed within the eight component classes;
FIGS. 3 depicts one possible verbose hardware identification (VHWID) and a corresponding compact hardware
identification (CHWID) for the exemplary hardware configuration shown in FIG. 2',

FIGS. 4-8 are a flow diagram showing exemplary steps in determining a compact hardware identification (CHWID)
T5 for a hardware configuration; and

FIGS. 9-10 are a flow diagram showing exemplary steps in determining whether a software product can be used
on a computer hardware system by comparing a newly generated compact hardware identification (CHWID) to

either (1) a previously stored compact hardware identification (iCHWlD), or (2) a previously stored verbose hardware
identification (VHWID).20

DETAILED DESCRIPTION OF THE INVENTION

[0011] To promote an understanding of the principles of the present invention, descriptions of specific embodiments
of the invention follow and specific language is used to describe the specific embodiments. it will nevertheless be

2‘5 understood that no limitation of the scope ofthe invention is intended by the use of specific language. Alterations, further
modifications, and such further applications of the principles of the present invention discussed are contemplated as
would normally occur to one ordinarily skilled in the art to which the invention pertains.
[0012] The present invention is directed to a method for identifying a hardware configuration of a given computer
system by a compact hardware identification (CHWID). The present invention is also directed to a method of generating

30 a compact hardware identification (CHWID) by identifying a single component instance within each of a selected number

of component classes. The present invention is further directed to a method of using a compact hardware identification
(CHWID) to determine whether a software product can be used on a computer hardware configuration.
[0013] The compact hardware identification (CHWID) may be generated for a computer system comprising a variety
of hardware components. An exemplary computer system may comprise a number of hardware components, which are

35 grouped into classes including, but not limited to, hard disk drives, optical disk drives network cards, display adapters,
read only memory (ROM), random access memory (RAM), and a basic input/output system (BIOS). An exemplary
computer system and exemplary operating environment for practicing the present invention is described below.

Exemplary Operating Environment
40

[0014] Exemplary embodiments of the present invention will hereinafter be described with reference to the drawings,
in which like numerals represent like elements throughout the several figures. FIG. 1 illustrates an exemplary operating

environmentfor implementation of the present invention. The exemplary operating environment includes a general-pur-
pose computing device in the form of a conventional personal computer20. Generally, a personal computer 20 includes

45 a processing unit 21 , a system memory 22, and a system bus 23 that couples various system components including the
system memory 22 to processing unit 21. System bus 23 may be any of several types of bus structures including a
memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures. The

system memory includes a read only memory (ROM) 24 and random access memory (RAM) 25. A basic input/output
system (BIOS) 26, containing the basic routines that help to transfer information between elements within personal

50 computer20, such as during start-up, is stored in ROM 24.
[0015] Personal computer 20 further includes a hard disk drive 27 for reading from and writing to a hard disk, not

shown, a magnetic disk drive 28 for reading from or writing to a removable magnetic disk 29, and an optical disk drive
30 for reading from or writing to a removable optical disk 31 such as a CD-ROM or other optical media. Hard disk drive
27, magnetic disk drive 28, and optical disk drive 30 are connected to system bus 23 by a hard disk drive interface 32,

55 amagnetic disk drive interface 33, and an optical disk drive interface 34, respectively. Although the exemplary environment
described herein employs hard disk 27, removable magnetic disk 29, and removable optical disk 31, it should be ap
preciated by those skilled in the art that othertypes of computer readable media, which can store data that is accessible
by a computer, such as magnetic cassettes, flash memory cards, digital video disks, Bernoulli cartridges, RAMs, ROMS,

APPLE EXHIBIT 1102, Page 105 of 1048

APPLE EXHIBIT 1102, Page 106 of 1048

TD

15

20

25

30

35

4o

45

50

55

EP 1 637 958 A2

and the like, may also be used in the exemplary operating environment. The drives and their associated computer

readable media provide nonvolatile storage of computer—executable instructions, data structures, program modules, and
other data for personal computer 20. For example, one or more data files 60 (not shown) may be stored in the RAM 25
and/or hard drive 27 of the personal computer 20.
[0016] A number of program modules may be stored on hard disk 27, magnetic disk 29, optical disk 31, ROM 24, or
RAM 25, including an operating system 35, an application program module 36, other program modules 37, and program

data 38. Program modules include, but are not limited to, routines, sub-routines, programs, objects, components, data
structures, etc., which perform particular tasks or implement particular abstract data types. Aspects of the present

invention may be implemented as an integral part of an application program module 36 or as a part of another program
module 37.

[0017] A user may enter commands and information into personal computer 20 through input devices, such as a
keyboard 40 and a pointing device 42. Other input devices (not shown) may include a microphone, joystick, game pad,
satellite dish, scanner, or the like. These and other input devices are often connected to processing unit 22 through a

serial port interface 46 that is coupled to the system bus 23, but may be connected by other interfaces, such as a parallel
port, game port, a universal serial bus (USB), or the like. A monitor 47' or other type of display device may also be
connected to system bus 23 via an interface, such as a video adapter 48. in addition to the monitor, personal computers
typically include other peripheral output devices (not shown), such as speakers and printers.

[0010] Personal computer 20 may operate in a networked environment using logical connections to one or more
remote computers 49. Remote computer 49 may be another personal computer, a server, a client, a router, a network
PC, a peer device, or other common network node. While a remote computer 49 typically includes many or all of the
elements described above relative to personal computer 20, only a memory storage device 50 has been illustrated in

FIG. ‘l.The logical connections depicted in FIG. 1 include a local area network (LAN) 51 and a wide area network (WAN)
52. Such networking environments are commonplace in offices, enterpriserwide computer networks, intranets, and the
internet.

[0019] When used in a LAN networking environment, personal computer 20 is connected to local area network 51
through a network interface oradapter 53. When used in a WAN networking environment, personal computer 20 typically
includes a modem 54 or other means for establishing communications over WAN 52, such as the lnternet. Modern 54,
which may be internal or external, is connected to system bus 23 via serial port interface 46. In a networked environment,
program modules depicted relative to personal computer 20, or portions thereof, may be stored in the remote memory
storage device 50. It will be appreciated that the network connections shown are exemplary and other means of estab-
lishing a communications link between the computers may be used.
[0020] Moreover, those skilled in the art will appreciatethatthe present invention maybe implemented in otheroomputer

smtem configurations, including handheld devices, multiprocessor systems, microprocessor based or programmable
consumer electronics, network person computers, minicomputers, mainframe computers, and the like. The present
invention may also be practiced in distributed computing environments, wheretasks are performed by remote processing
devices that are linked through a communications network. in a distributed computing environment, program modules
may be located in both local and remote memory storage devices.

implementation of Exemplary Embodiments of the Present invention

[0021] As described above, a computer systemtypically comprises multiple classes of hardware components. Further,

the computer system may comprise multiple components (e.g., two disk hard drives) within each class of hardware
components.

[0022] The compact hardware identification (CHWID) of the present invention takes into account a single component
device (also referred to herein as an “instance") within each desired class of hardware components used to determine
the CHWID. The compact hardware identification (CHWiD) of the present invention may also take into account the
absence of a component device within a given component class of a computer hardware system. For example, a
determination of the component classes to be used to identify a given computer hardware configuration may be made

prior to examining the given computer hardware configuration. The computer hardware configuration may or may not
contain a component instance for each of the selected component classes used to produce the compact hardware
identification (CHWID) of the computer hardware configuration.
[0023] An exemplary method of the present invention for generating a compact hardware identification (CHWID) is

given below. Further, an exemplary method of the present invention for using the compact hardware identification
(CHWID) as an anti-pirating tool is also described below.

i. Generating A Compact Hardware Identification (CHWID) ForA Computer System

[0024] A description of the components of an exemplary compact hardware identification (CHWID) is given below.

APPLE EXHIBIT 1102, Page 106 of 1048

APPLE EXHIBIT 1102, Page 107 of 1048

70

1‘5

20

25

30

35

4o

45

50

55

EP 1 637 958 A2

A. The Compact Hardware identification (CHWID)

[0025] The compact hardware identification (CHWID) of a given computer system desirably comprises two distinct
parts: (1) an optional version component and (2) a hash component. Each ofthe possible compact hardware identification
(CHWID) parts may be derived from the hardware configuration of a given computer system. An example of a computer
hardware configuration and the instances within each component class is shown in FIG. 2.

[0026] As shown in FIG 2, the exemplary computer hardware configuration 20 comprises 3 distinct component classes
21-28 having a total of 19 component instances 200 distributed among component classes 21-28. CDRom component

class 21 contains 4 component instances; IDE component class 22 contains 2 component instances; drive component
class 23 contains 1 component instance: display component class 24 contains 1 component instance; SCSI component
class 25 contains 2 component instances; disk component class 26 contains 6 component instances; network card
componentclass 27 contains 1 component instance; and processor (i.e., cpu) componentclass 28 contains 2 component
instances. Flow 29 in FIG. 2 depicts a string of numbers, which represent the number of component instances within

each of the 3 component classes 21-28.
[0027] it should be noted that the number of component instances within a given component claw may vary from 0

to as many as required to represent a given hardware configuration, although an implementation may arbitrarily limit the
number ofcomponent instances per component class. Typically, a given hardware configuration contains from 0 to about
6 component instances per component class. As described below, even when a component class does not contain a
component instance, the absence of acomponent instance withinthe component class contributes a piece of information,
which is incorporated into the compact hardware identification (CHWID).

[0028] An exemplary compact hardware identification (CHWID) is shown in FIG. 3. The exemplary compact hardware
identification (CHWID) 35 of FIG. 3 is one possible way to identify the computer hardware configuration shown in FIG.
2. As discussed above, the compact hardware identification (CHWID) 35 desirably comprises two separate components:
version component 31’ and hash portion 33’. Each of the two separate portions of compact hardware identification
(CHWID) 35 is depicted in FIG 3.

[0029] Version component 31 0 of headerportion 31 identifies a particularversion of the verbose hardware identification
(VHWID) 34 and its corresponding compact hardware identification (CHWID) 35 used to identify a given computer
system. For example, a particular version (e.g., version 'I") of a verbose hardware identification [VHWID] or compact
hardware identification (CHWID) may vary from another version (e.g., version '2") of a verbose hardware identification

(VHWID) or compact hardware identification (CHWID) by using one set of parameters to create version 1, while using
a separate, different set of parametersto create version 2. A variety of parameters may be used to create a given version
of a verbose hardware identification (VHWID) and its corresponding compact hardware identification (CHWID). Suitable

parameters include, but are not limited to, (1) the number of component classes represented in the compact hardware
identification (CHWID) 35; (2) the maximum and/or minimum number of component classes used to create verbose
hardware identification (VHWID) 34; (3) the maximum and/or minimum number of component instances to be considered
within a given VHWID component class; (4) the first hash function used to produce hash values for each component
instance in the verbose hardware identification (VHWID) 34; [5) the length of each hash result used to form the verbose
hardware identification {VHWID} 34; (6) the maximum length of the verbose hardware identification {VHW|D) 34; (7)
the maximum andlor minimum number of component class hash results used to create the compact hardware identifi-

cation (CHWID) 35; (8) the second hash function used to produce second hash values for each component instance:
[9) the length of each second hash result used to form the compact hardware identification (CHWID) 35; and (10) the

maximum length of the compact hardware identification (CHWID) 35.

[0030] Some component classes cannot have multiplecomponent instances and are known as single-instance classes.
Total system RAM is one example of a single-instance class. The datafor a single-instance class is hashed and truncated
if necessary, then stored in the truncated numerical portion 312 of the header part 31. Each single-instance class
represented in the header will have an associated truncated numerical portion 312.
[0031] Desirably, version component 31‘ of compact hardware identification (CHWID) 35 has a fixed length, which is
consistent for all compact hardware identifications having a particular version type (e.g., version 1 CHWIDs).

[0032] Count portion 32 comprises a string of n numbers, which represent the number of component instances within
each of the n component classes used to prepare the verbose hardware identification (VHWID) 34. As shown in FIG.
3, count portion 32 cemprises the string of numbers: "4 2 1 1 2 6 1 2", which corresponds to the component instances

within component classes 21 -28 shown in FIG. 2. It should be noted that if a component class does not contain a
component instance, count portion 32 contains a “0" for the particular component class.

[0033] Hash portion 33 used to create verbose hardware identification (VHWID) 34 comprises a concatenated string
of first hash values representing each of the 19 component instances within component classes 21-28 shown in FIG.
2. Each separate hash result may have a length of up to about 160 bits. Desirably, each separate hash result has a

length of from about 10 to about 20 bits, more desirably, about 16 bits.
[0034] Hash portion 33 of verbose hardware identification (VHWI D) 34 typically has a length, which varies depending

APPLE EXHIBIT 1102, Page 107 of 1048

APPLE EXHIBIT 1102, Page 108 of 1048

70

1‘5

20

25

30

35

4o

45

50

55

EP 1 637 958 A2

upon the number ofcomponent instances within n component classes of a given hardware configuration. The total length
of hash portion 33 is equal to the number of component instancestimes the desired hash result length for each component

instance hash result. In this example, the resulting hash portion 33 of verbose hardware identification (VHWID) 34 has
a desired total length of 304 bits (Le. 19 x16 = 304}.
[0035] Hash portion 33’ of compact hardware identification {CHWID) 35 differs from hash portion 33 used to create
verbose hardware identification (VHWID) 34. in one exemplary embodiment of the present invention, hash portion 33'
of compact hardware identification (C HWID) 35 comprises one component instance second hash value per component
class, resulting from a second hash function performed on one component instance first hash value per component
class. The component instance first hash value is selected from one or more of the n component classes used to create
hash portion 33 of verbose hardware identification [VHWID) 34. The method of choosing component instance first hash

values within hash portion 33 to be further processed through a second hash function may be (i) by a random selection
procedure or (ii) by a predetermined method. One exemplary predetermined method comprises selecti ng the first instance
within each component class as shown in FIG. 3.

[0036] The resu tting hash portion 33’ of compact hardware identification (CHWID) 35 comprises a concatenated string
of component instance second hash values (v’x) resulting from performing a second hash function on select component
instance first hash values of hash portion 33. Each separate component instance second hash value may have a length
of up to about 16 bits. Desirably, each separate component instance second hash value has a length of up to about 8

bits, more desirably, from about 3 to about 6 bits. Component instance second hash values (v’x) are shown in FIG. 3
and are derived by performing a second hash function on the following string of first hash values: v1, v5, v7, v3, v9, v11,
V1? and v13 to produce component instance second hash values: v’1,v’5,v’7,v'g, v’g, v31, if“ and ””18-
[0037] Hash portion 33’ of compact hardware identification (CHWID) 35 typically has a length of less than about 64

bits. The length of hash portion 33' may vary depending upon (i) the number of component instance first hash values
used to create hash portion 33’. and (ii) the second hash value length for each individual component instance second
hash value.

[0033] As shown in FIG. 3. verbose hardware identification (VHWID) 34 may be represented by a concatenated string
of header portion 31 , count portion 32 and hash portion 33. Similarly, compact hardware identification (CHWID) 35 may
be represented by a concatenated strlng of version component 31’ and hash portion 33’. An exemplary method of
determining a verbose hardware identification (VHWID) 34 and a compact hardware identification (CHWID) 35 for a
computer hardware configuration is described below.
[0039] it should be noted thatthe compact hardware identification (CHWID) of the present invention may only comprise

one of the above—described portions. In one exemplary embodiment of the present invention, the compact hardware
identification (CHWID) 35 of a given computer hardware configuration comprises hash portion 33’ alone. In this embod-
iment, the compact hardware identification (CHWID) 35 does not contain version component 31’.
[0040] Regardless of the components used to create compact hardware identification (CHWID) 35, compact hardware
identification (CHWID) 35 desirably has a total length of less than about 256 bits. In one exemplary embodiment of the
present invention, compact hardware identification (CHWID) 35 has a total length of from about 32 bits to about 64 bits.

5. Determining A Verbose Hardware Identification (VHWID) ForA Computer System

[0041] The VHWlD of the present invention may be determined by an exemplary method as shown in FIGS. 4-6. The

steps of the exemplary method may be performed by software code within a software product on a customer‘s computer,
similar to computer 20 described above with reference to FIG. 1. As shown in FIGS. 4-5, an exemplary determination

of a VHWID for a given computer hardware configuration (referred to herein as "HW1") begins with step 401, wherein
a number of component classes, n, is chosen to identify a given computer hardware configuration HW1. As discussed
above, a given computer system may include a variety of hardware components and classes of hardware components.
Exemplary hardware component classes include, but are not limited to, hard disk drives, logical disk partitions, optical
disks, network cards, display adapters, read only memory (ROM), random access memory (RAM), IDE devices, sound

cards, video cards, processors, SCSI devices and the system BIOS. Desirably, n, the number of hardware component
classes, is awhole number ranging from about 2 to about 16. In general, it is desirable for n to be as large as possible
in order (i) to more precisely identify a given computer system, and (ii) to more accurately measure the degree of tolerance
of a given computer system.
[0042] After choosing the number of component classes, n, in step 401, each component class is identified in step
402. The component classes may include any of the above-described component classes such as the class of disk hard

drives. An exemplary list of component classes used to identify sample hardware configuration HW1 is given below in
Table 1.

APPLE EXHIBIT 1102, Page 108 of 1048

APPLE EXHIBIT 1102, Page 109 of 1048

1‘0

1‘5

20

25

30

35

4o

45

50

55

EP 1 637 958 A2

Table 1. Exemplary List of Hardware Component Classes Used To Identify Sample Hardware Configuration HW1

Component Class No. Class Description Class Identifier

Cd Flom CdFlom device identifier

IDE devices IDE device identifier

Hard Disk Drive Drive partition serial number

Display adapter device Identifier

SCSI devices SCSI device identifier

Disk Devices Disk device identifier

Network Card MAC address

Processors Processor device identifier

[0043] As shown in Table 1, in this example, n equals 8, and the identified hardware component classes include: (1)
a CdFtom class; (2) an IDE devices class; [3) a drive class; (4) a display adapter device class; (5) a SCSI device class;
(6} a disk class; (7) a network card class; and (8) a CPU processor class
[0044] After each component class is identified in step 402, all devices orinstances within each hardware component
class are identified in step 403. The "count" lie, the number of component devices or instances within each component
class) is also determined in step 403. Desirably, each instance within a particular component class is identified by the
most unique identification string associated with the instance. For example, the hardware configuration may contain a
CdFtom manufactured by NEC Corporation and having an identification string of "N EC CDRW24 815." Any available

method for determining the most unique identification string of a given instance may be used in the present invention.
The step of assigning an identification string for each component instance is shown in step 404.
[0045] Once an identification string for each component instance is assigned, the header portion of the verbose

hardware identification (VHWID) is prepared in step 405. In step 406, a particular version of the verbose hardware
identification (VHWID) is inputted into the header to form header portion 310 (as shown in FIG 3). As described above,
the version number may represent one or more parameters used to deterrnlne the verbose hardware identification
(VHWID) and its corresponding compact hardware identification (CHWID).
[0046] In step 407, a component class to be represented in the header is identified. Typically, component classes
capable of having only a single component instance, or single instance classes, are represented in the header portion
of the VHWID. Suitable component classes, which may be represented in the header portion of the VHWID. included,
but are not limited to, a memory component class, a computer dockability component class (i.e., whether the computer

is dockable or not), the system BIOS, or a combination thereof. In one exemplary embodiment of the present invention,
the header portion of the VHWID comprises information from a single component class of the hardware configuration.
[0047] From step 407, the method proceeds to decision block 409. At decision block 409, a decision is made as to

whetherthe identification string of the component instance used to form a portion of the header is subjected to a hashing
function. The identification string may be subjected to a hash function or truncated to a desired number of bits. Although
not shown in FIG. 5 as an option, it should be noted that the identification string could be used verbatim as long as the
identification string has less than a desired maximum of characters, typically less than about 16 bits.
[0040] If the identification string is to be subjected to a hash function, the method proceeds to step 411, wherein a
hash function is periomted on the identification string of the component instance and truncated to a desired bit length.
Desirably, the hash resuit is truncated to a length of about 16 bits. In step 412, the truncated hash result is inputted into
the truncated nu merical portion 312 of header portion 31 (as shown in FIG. 3). If the identification string is not subjected

to a hash function, the method proceeds to step 410, where the identification string is truncated to a desired length and
inputted into the truncated numerical portion 312 of header portion 31. Desirably, the identification string is truncated to
a length of less than about 16 bits.
[0049] Once a truncated hash result from step 412 or a truncated identification string from step 410 is inputted into
truncated numerical portion 312 of header portion 31, the method proceeds to decision block 413. At decision block

413, a decision is made whether to add details of another component class to header portion 31 of the VHWID. If
additional details of another componentclass are to be added tothe header portion 31 of the VHWID, the method returns
to step 407 and proceeds as described above. If no further information is to be added to the header portion 31 of the
VHWID, the method proceeds to step 414, where the count portion 32 of the VHWID is prepared. As discussed above,

the count portion 32 of the VHWID comprises a numerical string of n numbers, which represent the number of component
instances within each of the n component classes used to form the VHWID. (See count portion 32 of FIG 3.)
[0050] In step 415, a first hash function is performed on the identification strings for each component instance reprer

APPLE EXHIBIT 1102, Page 109 of 1048

APPLE EXHIBIT 1102, Page 110 of 1048

1‘0

1‘5

20

25

30

35

4o

45

50

55

EP 1 637 958 A2

sented in the count portion 32 of the VHWID. If a given component class does not contain a component instance, a

special first hash result may be generated for use in the VHWID, wherein the special first hash result indicates that a
given component class did not contain a component instance. Alternatively, no first hash value may be stored and the
part of count potion 32 corresponding to the missing component class will be set to zero, indicating that the component
class is absent. Thetirsthash results for each componentinstance may betruncatedto a desired length. In one exemplary
embodiment of the present invention, each of the first hash function results are truncated to a length of from about 10
to about 20 bits, more desirably, about 15 bits.
[0051] Any known hash functions may be used in the present invention as long as the hash function is capable of

accepting an identification string of arbitrary length and producing a hash output or result having a fixed length of less
than about 160 bits. Examples ofsuitabie hash functions include, but are not limited to, hash function algorithms HAVAL,

MD2, MD4, MDS, and SHA71, all of which are known to those of ordinary skill in the art. Suitable hash functions and a

description thereof may be found in Applied Cryptography by Bruce Schneier, published by .John ‘Mley & Sons (ISBN
#0471117099), the disclosure of which is incorporated herein in its entirety.

[0052] in one embodiment of the present invention, a "salt value" may be added to the component instance identifier
priorto performing the first hash function for a given component instance. In this embodiment, adding a saltvalue enables
the production of different VHWIDs based on the same computer hardware configuration. Different VHWIDs for the

same hardware configuration may be beneficial when running different applications or different passes. One example
of a situation where different VHWIDs forthe same hardware configuration may be beneficial is discussed below.
[0053] For example, if a user activates multiple software packages from the same vendor, it may be possible to use
the VHWID to relate the separate activation records to build a picture of the software purchasing habits of the user. To
guard against this, different VHWle from the same machine may be made to appear unrelated by constructing each

separate hash using a hash function such as hashK = MD5[(salt value)X + ID string] where the salt value is different for
each software package.
[0054] in step 416, the first hash results for each component instance are concatenated to form hash portion 33 of
verbose hardware identification (VHWID) 34 (as shown in FIG. 3). in step 417, the final verbose hardware identification

(VHWID) 34 is assembled by concatenating header part 31 . count part 32, and hash part 33.
[0055] in step 418, the resulting verbose hardware identification (VHWID) for hardware configuration HW1 is stored
for future use. The verbose hardware identification (VHWID) for hardware configuration HW1 may be stored locally (e.g.,
in the registry, file system, or secure store), at an accessible remote location (e.g., database), or transmitted to a
clearinghouse server for license acquisition.

[0056] Although the exemplary method described above produces a verbose hardware identification (VHWID) con—
taining header part 31, count part 32, and hash part 33, in some embodiments of the present invention. the verbose
hardware identification (VHWID) for hardware configuration HW1 may only contain (i) hash portion 33 alone or (ii) count

part 32 in combination with hash portion 33, such as a VHWlD comprising countpart32concatenated with hash portion 33.

C. Determining A Compact Hardware identification (CHWI'D) ForA Computer System

[0057] The compact hardware identification (CHWID) of the present invention may be determined by as shown in

FIGS-3.18. The steps of the exemplary method forforming the compact hardware identification [CHWID] may be be rformed
by software code within a software product on a customer's computer, similar to computer 20 described above with
reference to FIG. 1. As shown in FIGS. 7-8, the exemplary method for forming one possible compact hardware identi-
fication (CHWID) for hardware configuration HW1 begins with step 420.

[0058] in step 420, a second hash function is pertorrned on one component instance first hash value from each of the
q component classes selected from one or more component classes, n, used to create hash portion 33 of verbose
hardware identification (VHWID) 34. As described above, the second hash function may be perlorrned on one or more
component instance first hash values, wherein the method of selecting component instance first hash values from one
or more of the n component classes is accomplished via (i) a random selection procedure or (ii) a predetermined method.
Desirably, one component instance first hash value is selected from at least (n - 5] component classes, more desirably,

from at least (n - 3) componentciasses, even more desirably. from at least (n - 2) component classes. In one exemplary
embodiment of the present invention, one component instance first hash value is selected from all of the n 00mponent
classes to form corresponding component instance second hash values.
[0059] As with the first hash function used to form the hash portion 33 of verbose hardware identification (VHWID)
34, any known hash function may be used in the present invention as long as the hash function is capable of accepting

a component instance first hash value of up to about 160 bits and producing a component instance second hash value
having a fixed length of less than about 32 bits. Examples of suitable second hash functions include, but are not limited
to, hash function algorithms HAVAL, MD2, MD4, MDE, and SHA71, all of which are known to those of ordinary skill in
the art as discussed above.

[0060] in one embodiment ofthe present invention, a "salt value" may be added to the component instance first hash

APPLE EXHIBIT 1102, Page 110 of 1048

APPLE EXHIBIT 1102, Page 111 of 1048

TD

15

20

25

30

35

4o

45

50

55

EP 1 637 958 A2

value prior to performing the second hash function for a given component instance first hash value. In this embodiment,
adding a salt value enables the production of different compact hardware identifications (CHWle) based on the same

computer hardware configuration. Different compact hardware identifications (CHWle) for the same hardware config—
uration may be beneficial when running different applications or different passes. One example of a situation where
different CHWle for the same hardware configuration may be beneficial is discussed below.
[0051] For example, if a user activates multiple software packages from the same vendor, it may be possible to use
the CHWlD to relate the separate activation records to build a picture of the software purchasing habits of the user. To
guard against this, different CHWle from the same machine may be made to appear unrelated by constructing each

separate hash using a hash function such as hashx = MD5[(salt value)X + ID string] where the salt value is different for
each software package.

[0052] In step 421 , the component instance second hash values are concatenated to form hash portion 33’ of compact
hardware identification (CHWlD) 35 (as shown in FIG. 3).
[0063] In step 427, the version component 31’ of the compact hardware identification (CHWlD) is concatenated with

the hash portion 33’ of the compact hardware identification (CHWlD) to form the final compact hardware identification
(CHWlD) for hardware configuration HW1. The method then proceeds to step 428. Returning to decision block 425
described above, if the compact hardware identification (CHWlD) does not comprise a version component 31’, the
method proceeds directly to step 428.

[0064] In step 428, the resulting compact hardware identification (CHWlD) for hardware configuration HW1 is stored
for future use. The compact hardware identification (CHWlD) for hardware configuration HW1 may be stored locally
(e.g., inthe registry, file system, orsecure store), or at an accessible remote location (e.g., database) as described below.
[0065] As discussed above, in some embodiments of the present invention, the compact hardware identification

(CHWlD) for hardware configuration HW1 may oniy contain hash portion 33‘.

ll. UsingA Compact Hardware identification (CHWlD) To Enable The Use OfA Software Product On A Computer System

[0066] The present invention is further directed to a method of using a compact hardware identification (CHWlD) to
enable the use of a software product on a computer system having a given computer hardware configuration. In one
embodiment of the present invention, the method of using a compact hardware identification (CHWlD) to enablethe use
of a software product on a computer system having a given computer hardware configuration is initiated (i) during any
installation of the software product on a computer other than an initial installation, (ii) during launching of a software
product or application already existing on a component of a computer hardware configuration, or (iii) both. An exemplary
method for using the compact hardware identification (CHWlD) is described in FIGS. 9-10. The steps of the exemplary

method may be performed by software code within a software product on a customer's computer, similar to computer
20 described above with reference to FIG. 1.

[0057] As shown in step 501 of FIG. 9, asoftware product is either loaded or launched on a computer having hardware
configuration HW2. Computer hardware configuration HW2 (i) may be identical to hardware configuration HW1 used to
produce an initial verbose hardware identification (referred to herein as iVl-IWID) or an initial compact hardware identi-
fication (referred to herein as iCHWID) or (ii) may be a completely different computer.
[0068] In step 502, a new compact hardware identification (referred to herein as nCHWl D) is generated for computer
hardware configuration HW2. The new compact hardware identification (nCHWlD) for computer hardware configuration
HW2 may be generated as described above and shown in FIGS. 4-0. Once a new compact hardware identification

(nCHWID) is generated for computer hardware configuration HW2, a stored verbose hardware identification (VHWID)
or a stored compact hardware identification (CHWlD) is retrieved in step 503. Typically, the stored verbose hardware

identification (VHWID) is the initial verbose hardware identification (iVHWID), which was generated on a first computer
hardware configuration HW1 during an initial software product installation onto HW1. Similarly, the stored compact
hardware identification (CHWlD) is typically the initial compact hardware Identification (iCHWID), which was generated
on a first computer hardware configuration HW1 during an initial software product installation onto HW1.
[0069] In decision block 504, a determination is made whetherthe previously stored hardware identification is a stored

compact hardware identification (CHWlD). If the previously stored hardware identification is a stored compact hardware
identification (sCHWID), the method proceeds to step 505, wherein the new compact hardware identification (nCHWID)
of hardware configuration HW2 is compared with the previously stored compact hardware identification (sCHWID) of
hardware configuration HW1. If the previously stored hardware identification is a stored verbose hardware identification
(sVHWlD), the method proceeds to step 509. In step 509, the new compact hardware identification (CHWlD) is compared

to the stored verbose hardware identification (VHWID). A second hash function is performed for each of the first hash
values in each component class of the stored verbose hardware identification (VHWID) and the results compared to the
second hash value associated with each component class in the new compact hardware identification (CHWlD). The

method then proceeds to decision block 506.
[0070] At decision block 506, a determination is made as to whether the number of component class matches equals

APPLE EXHIBIT 1102, Page 111 of 1048

APPLE EXHIBIT 1102, Page 112 of 1048

TD

15

20

25

30

35

4o

45

50

55

EP 1 637 958 A2

or exceeds a required number of component class matches, m, needed to enable the use of the software product on

hardware configuration HW2. If the number of component class matches equals or exceeds a required number of
component class matches, m, the method proceeds to step 507, wherein the method enables the use of the software
product on hardware configuration HW2. Ifthe number of component class matches is less than the required number
of component class matches, m. the method proceeds to step 508, wherein the method disables the use of the software
product on hardware configuration HW2.

[0071] in step 505, the comparison of new compact hardware identification (nCHWlD) of hardware configuration HW2
with (1) the previously stored compact hardware identification (CHWID) of hardware configuration HW1 or (2) the pre-
viously stored verbose hardware identification (VHWID) of hardware configuration HWf, collectively referred to herein
as ”the hardware identification (HWlD) of hardware configuration HW1," may involve one or more rules for determining

whether or not there is a match for a given component class. Desirably, the method of using a compact hardware
identification (CHWID) to enablethe use ofa software product comprises one ormore ofthe following rules fordetermining
the number of component class matches between a newly generated compact hardware identification (nCHWlD) for a

hardware configuration HW2 and the compact hardware identification (CHWID) or verbose hardware identification (VH-
WID) of hardware configuration HW1 :

(i) each componentinstance second hash result within new compact hardware identification (nCHWlD) representing

select component instances within one or more component classes of hardware configuration HW2 is compared
with each component instance second hash result within the corresponding one or more component classes in the
compact hardware identification (CHWID) or derived from the verbose hardware identification (VHWID) of hardware
configuration HW1;

(ii) a match exists between a component class of hardware configuration HW2 and a corresponding component
class of hardware configuration HW1 when one second component instance hash result within a component class
of new compact hardware identification (nCHWlD) for hardware configuration HW2 matches any one of the second
component instance hash results within the corresponding component class of the compact hardware identification

(CHWID) or derived from the verbose hardware identification (VHWID) of hardware configuration HWi;
(iii) asingle match exists between a component class of hardware configuration HW2 and acorrespon ding component
class of hardware configuration HW1 when one second component instance hash result within a component class
used to form new compact hardware identification (nCHWlD) for hardware configuration HW2 matches two or more
derived second component instance hash results within a corresponding component class used to form the verbose
hardware identification (VHWID) of hardware configuration HW1;
(iv) no match exists between a component class of hardware configurations HW2 and a corresponding component
class of hardware configuration HW1 when the component class in hardware configuration HW2 does not contain

asecond component instance hash result, and the corresponding component class in hardware configuration HW‘l
does contain a second component instance hash result;
(v) no match exists between a component class of hardware configuration HW2 and a corresponding component
class of hardware configuration HW1 when the component class in hardware configuration hardware configuration
HW2 contains asingie second component instance hash result, and the corresponding compo ne ntclass in hardware
configuration HW1 does not contain a second component instance hash resuft; and
(vi) a match exists between a component class of hardware configuration HW2 and a corresponding component
class of hardware configuration HW1 when the componentclass in hardware configuration hardware configuration

HW2 does notcontain asecond component instance hash result, and the corresponding component class in hardware
configuration HW1 does not contain a second component instance hash resuft; and

(vii) the number of required component classes matches, m, between hardware configuration HW2 and hardware
configuration HW1 may be predetermined and embedded in code on a given software product.

[0072] The number of required component class matches, m, is chosen depending on the degree of tolerance desired
for hardware configuration component changes. The number of required component class matches, m, may be (i) as

great as n, the total number of component classes considered during the determination of a verbose hardware identifi-
cation {VHWID), or (ii) as great as q, the total number of selected component classes considered during the determination
of the compact hardware identification (CHWID), or (iii) may be as small as 1. As m increases, the degree of tolerance
to computer hardware configuration changes decreases. For example, if the total number of component classes n is
equal to 1D and m is equal to 7', 7 out of 10 component classes must match at least one component instance to enable

the loading or running of a software product. if the number of component class matches is less than T, the software
product will not run or be loaded onto the computer hardware configuration.

[0073] The number of required component class matches, m, may be predetermined by a software manufacturer and
encoded into the software product code used to generate a compact hardware identification (CHWID). In one exemplary
embodiment of the present invention, m is desirably equal to (n - 3). More desirably, m is equal to (n , 2). In another

1!)

APPLE EXHIBIT 1102, Page 112 of 1048

APPLE EXHIBIT 1102, Page 113 of 1048

1‘0

1‘5

20

25

30

35

4o

45

50

55

EP 1 637 958 A2

exemplary embodiment of the present invention, m is desirably equal to (q - 3). More desirably, rn is equal to (q - 2).
However, as indicated above, m may range from 1 to n.

[0074] The method steps described above and illustrated in FIGS. 4-10 may be performed locally or at a remote
location. Typically, a customer purchases a software product that can run on a given computer, such as computer 20
shown in FIG. 1. The software product may be a shrink-wrap product having a software program stored on atransportable
computer-readable medium, such as a CD-ROM orfloppy diskette. Alternatively. the software product may be delivered
electronically over a network, such as a local area network (LAN) 51 or a wide area network (WAN) 52. The customer

loads the software product onto the computer 20 as a program stored in system memory 22.
[0075] During a software product installation, the customer is typically prompted to enter a portion of the software
product identification (PID) for the software product into computer 20. The PlD may be derived, for example, from a CD
key printed on a label of the shrinkrwrap package. The customer enters the PID, which is associated with a software
program of the software product. The PID is stored locally on computer 20 and/or remotely at an accessible location.
either on a local area network (LAN) 51 ora wide area network (WAN) 52 with athird party, such as an activation authority.

[0076] As described above, during installation or activation of the software product, a verbose hardware identification
(VHWID) and/or compact hardware identification (CHWID) is also generated using code within the software product or
triggered by the installation of the software product. The verbose hardware identification (VHWID) andr'or compact

hardware identification (CHWID) generated by the method of the present invention is associated with the software
product identification (PID) and stored along with the software product identification (PID) locally on computer 20 and/or
remotely at an accessible location, either on a local area network (LAN) 51 or a wide area network (WAN) 52, such as

with a third party activation authority.
[0077] As part of the installation process, the customer may be required to activate the software product with an
activation authority. This authority might be, for example, the product manufacturer or an authorized third party. The
activation process is intended to force the customer to activate the software product (i) for installation and use on a
specific computer or (ii) for installation and use according to terms of a product licensing agreement. Such an activation

process is described in detail in U.S. Patent No. 6,243,468, assigned to Microsoft Corporation (Redmond, WA), the
contents of which are hereby incorporated in its entirety by reference.
[0078] The verbose hardware identification (VHWID) and/or compact hardware identification (CHWID) generated by
the method of the present invention and the software product identification (PID) may be stored locally on computer 20
andlor remotely at an accessible location, either on a local area network (LAN) 51 or a wide area network (WAN) 52

with an activation authority. Desirably, the software product (i) stores (a) the verbose hardware identification (VHWID)
andforcompact hardware identification (CHWID) and (b) the associated software product identification (PID) on computer
20, and (ii) sends (a) the verbose hardware identification (VHWID) and/or compact hardware identification (CHWID) and

(b) the associated software product identification (PID) electronically over wide area network (WAN) 52 to an activation
server. Desirably, the software product automatically displays a graphical user interface (Ul) dialog window when it is
first launched, which prompt the userto initiate a connection with the activation server to activate. The activation server
maintains a database to store (a) received verbose hardware identifications (VHWle) and/or compact hardware idene
tifications (CHWle) and (b) the associated software product identifications (Ple).
[0079] The verbose hardware identification (VHWID) andror compact hardware identification (CHWID) and the asso—
ciated software product identification (PID) for a given software product may be stored for an indefinite period of time

until the software product is re-installed onto another computer or launched on the first computer (i.e., the computer
used during the initial installation). When the same software product is re-installed onto another computer or launched
on the firstcomputer, code on the software product initiates a method ofgenerating a new compact hardware identification

(CHWID) according to the present invention. The software product also retrieves the previously stored (a) verbose
hardware identification (VHWID) andfor compact hardware identification (CHWID) and (b) the associated software prod-
uct identification (PID) of the software product eitherfrom local computer 20 or from a remote location via a local area
network (LAN) 51 or a wide area network (WAN) 52. A comparison between the new compact hardware identification
(CHWID) and the previously stored compact hardware identification (CHWlD) is made as described above.

[0080] in an alternative manual case, a customer provides a service representative with a compact hardware identi-
fication (CHWID) over the phone and the service representative provides the customer with a confirmation identification
(CID) based on the compact hardware identification (CHWID). The customer enters the confirmation identification (CID)
via a Ul window.

[0081] When the use of a software product is denied due to significant changes in the hardware configuration of a first
computer (i.e., the computer used during the initial installation), a dialog box may be provided to the customer indicating
that the use of the software product is being denied. and that further infomation regarding future use of the software

product may be obtained from a given source.

11

APPLE EXHIBIT 1102, Page 113 of 1048

APPLE EXHIBIT 1102, Page 114 of 1048

TD

15

20

25

30

35

4o

45

50

55

EP 1 637 958 A2

Ht. Other Uses ofA Compact Hardware Identification (CHWID)

[0082] The compact hardware identification (CHWID) of the present invention may also be used for other purposes
than those described above. In one embodiment of the present invention the compact hardware identification (CHWID)
is used to create semi-unique installation ID to trackthe machine. In another embodiment of the present invention. the
compact hardware identification (CHWID) is used on a clearinghouse server when granting licenses to use software on

a customer‘s computer.
[0083] While the specification has been described in detail with respect to specific embodiments thereof, it will be
appreciated that those skilled in the art, upon attaining an understanding of the foregoing, may readily conceive of
alterations to, variations of. and equivalents to these embodiments. Accordingly, the scope of the present invention

should be assessed as that of the appended claims and any equivalents thereto.

The following is a list of further preferred embodiments of the invention:

[0084]

Embodiment 1. A method of generating a compact hardware identification (CHWID) for a first computer system

having a first hardware configuration, wherein the method comprises:

selecting n component classes;

identifying all component instances within each of the n component classes;

generating a plurality of component instance first hash results, wherein the plurality of component instance first
hash results comprises afirst hash result for each component instance and at least one first hash result forthe
n component classes;

generating a plurality of component instance second hash results, wherein the plurality of component instance
second hash results comprises second hash results resulting from performing a second hash function on select
component instance first hash results within one or more select component classes; and

concatenating the plurality of second hash results to form a hash portion, wherein the hash portion forms the
compact hardware identification (CHWID) for the first computer system.

Embodiment 2. The method of embodiment 1, further comprising:

concatenating (i) a version component and (ii) the hash portion of the compact hardware identification (CHWID}
to form the compact hardware identification (CHWID) for the first computer system.

Embod'ment 3. The method of embodiment 1, wherein n is a whole number up to about 16.

Embod'ment 4. The method of embodiment 2, wherein the version component comprises a version number.

Embod'ment 5. The method of embodiment 1, wherein at least one of the n component classes contains two or
more component instances.

Embod'ment 6. The method of embodiment 1, wherein each of the n component classes contains from 0 to 14
component instances.

Embod'ment 7. The method of embodiment 1, wherein each component instance first hash result is truncated to a
16 bit number,

Embod'ment 8. The method of embodiment 1, wherein each component instance second hash result is truncated

to a number having less than 8 bits.

Embod'ment 9. The method of embodiment 1, wherein the compact hardware identification {CHWID) for the first

computer system has a length of up to about 256 bits.

12

APPLE EXHIBIT 1102, Page 114 of 1048

APPLE EXHIBIT 1102, Page 115 of 1048

70

1‘5

20

25

30

35

4o

45

50

55

Embod'

comput

Embod'

product

Embod'

EP 1 637 958 A2

ment 10. The method of embodiment 9, wherein the compact hardware identification (CHWID) for the first
er system has a length of from about 32 to about 64 bits.

ment 1 1. The method of embodiment 1, wherein the method is initiated during a step of loading a software
onto the first computer system.

ment 12. A computing system containing at least one application module usable on the computing system;
wherein the at least one application module comprises application code for performing the method of embodiment 1.

Embod'

ing the

Embod'

ment 13. A computer readable medium having stored thereon computer-executable instructions for perform-
method of embodiment 1 _

ment 14. A method of determining whether a software product can be used on a second computer system

having a second hardware configuration, wherein the second computer system is identical to or differentfrom a first
comput
comput

er system having a first hardware configuration, the software product being initially installed on the first
er, wherein the method comprises:

generating a second compact hardware identification (sCHWlD) for the second hardware configuration;

comparing the second compact hardware identification (sCHWID) forthe second hardware configuration to (i)
afirst compacthardware identification (fCHWl D) forthe first hardware configuration or(ii) a first verbose hardware

identification (fVHWID) forthe first hardware configuration;

if a number of matches exists between component classes of the second hardware configuration and corre-
sponding component classes of the first hardware configuration, and the number of matches equals or exceeds

m, a number of required component class matches, loading the software product onto the second computer
system; and

if the number of matches is less than m, preventing the software product from being loaded onto the second
computer system.

Embodiment 15. The method of embodiment 14, wherein the second compact hardware identification (sCHWID) is

generated by a method comprising:

selecting n component classes of the second hardware configuration;

identifying all component instances within each ofthe n component classes ofthe second hardware co nfiguration;

generating a plurality of component instance first hash results, wherein the plurality of component instance first
hash results comprises afirst hash result for each component instance and at least one first hash result forthe

n component classes of the second hardware configuration;

generating a plurality of component instance second hash results, wherein the plurality of component instance
second hash results comprises second hash results resulting from performing a second hash function on select
component instance first hash results within one or more select component classes of the second hardware

configuration; and

concatenating the plurality of second hash results to form a hash portion, wherein the hash portion forms the
second compact hardware identification (sCHWID) tor the second hardware configuration.

Embodiment 16. The method of embodiment 14, wherein the first compact hardware identification (fCHWlD) is

generated by a method comprising:

selecting n component classes of the first hardware configuration;

identifying all component instances within each of the n component classes of the first hardware configuration;

generating a plurality of component instance first hash results, wherein the plurality of component instance first

13

APPLE EXHIBIT 1102, Page 115 of 1048

APPLE EXHIBIT 1102, Page 116 of 1048

70

1‘5

20

25

30

35

4o

45

50

55

EP 1 637 958 A2

hash results comprises afirst hash result for each component instance and at least one first hash result forthe

n component classes of the first hardware configuration;

generating a plurality of component instance second hash results, wherein the plurality of component instance
second hash results comprises second hash results resulting from performing a second hash function on select
component instance first hash results within one or more select component classes of the first hardware con-
figuration; and

concatenating the plurality of second hash results to form a hash portion, wherein the hash portion forms the
first compact hardware identification (fCHWlD) forthe first hardware configuration.

Embodiment 17. The method of embodiment 14, wherein the first verbose hardware identification (fVHWlD) is
generated by a method comprising:

selecting n component classes of the first hardware configuration;

identifying all component instances within each of the n component classes of the first hardware co nfiguration;

generating a plurality of component instance first hash results, wherein the plurality of component instance first

hash results comprises afirst hash result for each component instance and at least one first hash result forthe
n component classes of the first hardware configuration; and

concatenating the plurality of first hash results to form a hash portion, wherein the hash portion forms the first
verbose hardware identification (fVHWlD) for the first hardware configuration.

Embodiment 1B. The method of embodiment 1 4, wherein a match exists between a component class of the second
hardware configuration and a corresponding component class of the first hardware configuration when one second
component instance hash result within a component class ofthe second compact hardware identification [sCHWlDi
for the second hardware configuration matches any one of the second component instance hash results within a

corresponding component class of (i) the first compact hardware identification (fCHWID) for the first hardware
configuration or (ii) derived from thefirst component instance hashes of the verbose hardware identification [fVHWlDi
for the first hardware configuration.

Embodiment 19. The method of embodiment 14, wherein a single match exists between a component class 01 the
second hardware configuration and a corresponding component class of the first hardware configuration when one
second component instance hash result within a component class of the second compact hardware identification
(sCHWlD) for the second hardware configuration matches two or more second component instance hash results
derived from the first component instance hashes within a corresponding component class of the first verbose
hardware identification (fVHWlD) for the first hardware configuration.

Embodiment 20. The method of embodiment 14, wherein no match exists between a component class of the second

hardware configuration and a corresponding component class of the first hardware configuration (a) when the
component class in the first hardware configuration does not contain a component instance, and the corresponding

component class in the second hardware configuration does contain a component instance, and (b) when the
component class in the first hardware configuration contains a single component instance, and the corresponding
component class in the second hardware configuration does not contain a component instance.

Embodiment21. The method of embodiment 1 4, wherein a match exists between a component class of the second

hardware configuration and a corresponding component class of thefirst hardware configu ratio n wh en the component
class in the first hardware configuration does not contain a component instance, and the corresponding component
class in the second hardware configuration does not contain a component instance.

Embodiment 22. The method of embodiment 14, wherein m equals {n - 3), wherein n represents the number of

component classes within the second hardware configuration used to form the second compact hardware identifi—
cation {sCHWlD}.

Embodiment 23. A computing system containing at least one application module usable on the computing system,
wherein the at least one application module comprises application code for performing the method of embodiment 1 4.

14

APPLE EXHIBIT 1102, Page 116 of 1048

APPLE EXHIBIT 1102, Page 117 of 1048

EP 1 637 958 A2

Embodiment24. A computer readable medium having stored thereon computer-executable instructions for perform-

ing the method of embodiment 14.

Embodiment25. A computer readable medium having stored thereon computer—executable instructions for perform—
5 ing a method of generating a compact hardware identification (CHWID) for a first computer system having a first

hardware configuration, wherein the method comprises:

selecting n component classes;

70 identifying all component instances within each of the n component classes;

generating a plurality of component instance first hash results, wherein the plurality of component instance first
hash results comprises afirst hash result for each component instance and at least one first hash result forthe

n component classes;
15

generating a plurality of component instance second hash results, wherein the plurality of component instance
second hash results comprises second hash results resulting from performing a second hash function on select
component instance first hash results within one or more select component classes; and

20 concatenating the plurality of second hash results to form a hash portion, wherein the hash portion forms the
compact hardware identification (CHWID) for the first computer system.

Embodiment 25. The computer readable medium of embodiment 25, further comprising:

2‘5 concatenating (i) a version component and (ii) the hash portion of the compact hardware identification [CHW|D}
to form the compact hardware identification (CHWID) for the first computer system.

Embodiment 27. The computer readable medium of embodiment 25, wherein n is a whole number up to about 16.

30‘ Embodiment 28. The computer readable medium of embodiment 27, wherein the version component comprises a
version number.

Embodiment 29. The computer readable medium of embodiment 25, wherein at least one of the n component
classes contains two or more component instances.

35

Embodiment 30. The computer readable medium of embodiment 25, wherein each of the n component classes
contains from 0 to 14 component instances.

Embodiment 31 . The computer readable medium of embodiment 25, wherein the compact hardware identification
40 (CHWID) for the first computer system has a length of up to about 256 bits.

Embodiment 32. The computer readable medium of embodiment 25, wherein the method is initiated during a step
of loading a software product onto the first computer system.

45 Embodiment33. A computer readable medium having stored thereon computer-executable instructions for perform-
ing a method of determining whether a software product can be used on a second computer system having a second
hardware configuration, wherein the second computersystem is identical to or differentfrom a first computer system
having a first hardware configuration, the software product being initially installed on the first computer, wherein the
method comprises:

50

generating a second compact hardware identification (sCHWID) for the second hardware configuration;

comparing the second compact hardware identification (sCHWlD) for the second hardware configuration to (i)

afirst compacthardware identification (fCHW l D) forthe first hardware configuration or(ii) a firstverbose hardware

55 identification (fVHWID) forthe first hardware configuration;

if a number of matches exists between component classes of the second hardware configuration and corre
sponding component classes of the first hardware configuration, andthe number of matches equals or exceeds

15

APPLE EXHIBIT 1102, Page 117 of 1048

APPLE EXHIBIT 1102, Page 118 of 1048

EP 1 637 958 A2

m, a number of required component class matches, loading the software product onto the second computer
system; and

if the number of matches is less than m. preventing the software product from being loaded onto the second
5 computer system.

Embodiment 34. The computer readable medium of embodiment 33, wherein the second compact hardware iden-
tification (sCHWlD) is generated by a method comprising:

70 selecting rr component classes of the second hardware configuration;

identifying all component instances within each ofthe n component classes ofthe second hardware co nfiguration;

generating a plurality of component instance first hash results, wherein the plurality of component instance first
15 hash results comprises afirst hash result for each component instance and at least one first hash result forthe

n component classes of the second hardware configuration;

generating a plurality of component instance second hash results, wherein the plurality of component instance
second hash results comprises second hash results resulting from performing a second hash function on select

20 component instance first hash results within one or more select component classes of the second hardware
configuration; and

concatenating the plurality of second hash results to form a hash portion, wherein the hash portion forms the
second compact hardware identification (sCHWID) for the second hardware configuration.

25

Embodiment35, The computer readable medium of embodiment 33, wherein thefirstcompact hardware identification
(fCHWl D) is generated by a method comprising:

selecting n component classes of the first hardware configuration;so

identifying all component instances within each of the n component classes of the first hardware co nfiguration;

generating a plurality of component instance first hash results, wherein the plurality of component instance first
hash results comprises afirst hash result for each component instance and at least one first hash result forthe

35 n component classes of the first hardware configuration;

generating a plurality of component instance second hash results, wherein the plurality of component instance
second hash results comprises second hash results resulting from performing a second hash function on select
component instance first hash results within one or more select component classes of the first hardware con-

40 figuration; and

concatenating the plurality of second hash results to form a hash portion, wherein the hash portion forms the
first compact hardware identification (fCHWlD) forthe first hardware configuration.

45 EmbodimentSB. The computer readable medium of embodiment 33, wherein the firstverbose hardware identification
(fVHWID) is generated by a method comprising:

selecting n component classes of the first hardware configuration;

50 identifying all component instances within each of the n component classes of the first hardware configuration;

generating a plurality of component instance first hash results, wherein the plurality of component instance first
hash results comprises afirst hash result for each component instance and at least one first hash result forthe
n component classes of the first hardware configuration; and

55

concatenating the plurality of first hash results to form a hash portion, wherein the hash portion forms the first
verbose hardware identification (fVHWlD) for the first hardware configuration.

16

APPLE EXHIBIT 1102, Page 118 of 1048

APPLE EXHIBIT 1102, Page 119 of 1048

TD

15

20

25

30

35

4o

45

50

55

EP 1 637 958 A2

Embodiment 37. The computer readable medium of embodiment 33, wherein a match exists between e component

class of the second hardware configuration and a corresponding component class of the first hardware configuration
when one second component instance hash result within a component class of the second compact hardware
identification (sCHWID) forthe second hardware configuration matches any one of the second component instance
hash results within a corresponding component class of (i) the first compact hardware identification (fCHWID) for
the first hardware configuration or (ii) derived from the first component instance hashes of the verbose hardware
identification (fVHWlD) for the first hardware configuration.

Embodiment 38. The computer readable medium of embodiment 33, wherein a single match exists between a

component class of the second hardware configuration and a corresponding component class of the first hardware
configuration when one second component instance hash result within a component class of the second compact
hardware identification (sCHWID) tor the second hardware configuration matches two or more second component
instance hash results derived from the first component instance hashes within a corresponding component class of

the first verbose hardware identification (fVHWlD) for the first hardware configuration.

EmbodimentSQ. The computer readable medium of embodiment 33, wherein no match exists between a component

class of the second hardware configuration and a corresponding component class of the first hardware configuration
(a) when the component class in the first hardware configuration does not contain a component instance, and the
corresponding component class in the second hardware configuration does contain a component instance, and (b)

when the component class in the first hardware configuration contains a single component instance, and the cor-
responding component class in the second hardware configuration does not contain a component instance.

Embodiment 40. The method of embodiment 33, wherein a match exists between a component class of the second
hardware configuration and a con’espondi ng component class ofthefirst hardware configu ratio n wh en the component

class in the first hardware configuration does not contain a component instance, and the corresponding component
class in the second hardware configuration does not contain a component instance.

Embodiment41. The computer readable medium of embodiment 33, wherein m equals (n -3}, wherein n represents
the number of component classes within the second hardware configuration used to form the second compact
hardware identification (sCHWlD).

Embodiment 42. A computing system containing at least one application module usable on the computing system,
wherein the at least one application module comprises application code for pertorming a method of generating a
compact hardware identification (CHWID) for a first computer system having a first hardware configuration, wherein
the method comprises:

selecting it component classes;

identifying all component instances within each of the n component classes;

generating a plurality of component instance first hash results, wherein the plurality of component instance first
hash results comprises afirst hash result for each component instance and at least one first hash result forthe

n component classes;

generating a plurality of component instance second hash results, wherein the plurality of component instance
second hash results comprises second hash results resulting from performing a second hash function on select
component instance first hash results within one or more select component classes; and

concatenating the plurality of second hash results to form a hash portion, wherein the hash portion forms the
compact hardware identification (CHWID) for the first computer system.

Embodiment 43. The computing system of embodiment 42, further comprising:

concatenating (i) a version component and (ii) the hash portion of the compact hardware identification (CHWID)

to form the compact hardware identification (CHWID) for the first computer system.

Embodiment 44. The computing system of embodiment 42, wherein n is a whole number up to about 16.

1?

APPLE EXHIBIT 1102, Page 119 of 1048

APPLE EXHIBIT 1102, Page 120 of 1048

TD

15

20

25

30

35

4o

45

50

55

Embod'

EP 1 637 958 A2

'ment 45. The computing system of embodiment 43, wherein the. version component comprises a version

ment46. The computing system of embodiment42. wherein at least one of the n componentclasses contains
two or more component instances.

Embod'
0t014

Embod'

ment 4?. The computing system of embodiment 42, wherein each of the n component classes contains from
component instances.

ment 48. The computing system of embodiment 42, wherein the compact hardware identification (CHWID)
for the first computer system has a length of up to about 256 bits.

Embod'

ment 49. The computing system of embodiment 42, wherein the method is initiated during a step of loading

a software product onto the first computer system.

Embodi ment SD. A computing system containing at least one application module usable on the computing system,

wherein the at least one application module comprises application code for performing a method of determining
whether a software product can be used on a second computer system having a second hardware configuration,
wherein the second computer system is identical to or different from a first computer system having a first hardware
configuration, the software product being initially installed on the first computer, wherein the method comprises:

generating a second compact hardware identification (sCHWID) for the second hardware configuration;

comparing the second compact hardware identification (sCHWlD) forthe second hardware configuration to (i)

afirst compacthardware identification (fGHW lD) forthe first hardware configuration or(ii) a firstverbose hardware
identification (fVHWID) forthe first hardware configuration:

if a number of matches exists between component classes of the second hardware configuration and corre-
sponding component classes of the first hardware configuration, and the number of matches equals or exceeds
m, a number of required component class matches, loading the software product onto the second computer
system; and

if the number of matches is less than m, preventing the software product from being loaded onto the second
computer system.

Embodiment 51. The computing system of embodiment 50, wherein the second compact hardware identification
(sCHWID) is generated by a method comprising:

selecting n component classes of the second hardware configuration;

identifying all component instances within each ofthe n component classes ofthe second hardware co nfiguration;

generating a plurality of component instance first hash results, wherein the plurality of component instance first

hash results comprises afirst hash result for each component instance and at least one first hash result forthe
n component classes of the second hardware configuration;

generating a plurality of component instance second hash results, wherein the plurality of component instance
second hash results comprises second hash results resulting from performing a second hash function on select

component instance first hash results within one or more select component classes of the second hardware
configuration; and

concatenating the plurality of second hash results to form a hash portion, wherein the hash portion forms the
second compact hardware identification (SCHWID) for the second hardware configuration.

Embodiment 52. The computing system of embodiment 50, wherein the first compact hardware identification (fCHr

WID) is generated by a method comprising:

selecting n component classes of the first hardware configuration;

18

APPLE EXHIBIT 1102, Page 120 of 1048

APPLE EXHIBIT 1102, Page 121 of 1048

TD

15

20

25

30

35

4o

45

50

55

EP 1 637 958 A2

identifying all component instances within each of the n component classes of the first hardware configuration;

generating a plurality of component instance first hash results, wherein the plurality of component instance first
hash results comprises afirst hash resultfor each component instance and at least one first hash result forthe
n component classes of the first hardware configuration:

generating a plurality of component instance second hash results, wherein the plurality of component instance
second hash results comprises second hash results resulting from performing a second hash function on select

component instance first hash results within one or more select component classes of the first hardware con-
figuration; and

concatenating the plurality of second hash results to form a hash portion, wherein the hash portion forms the
first compact hardware identification (fCHWlD) forthe first hardware configuration.

Embodiment 53. The computing system of embodiment 50, wherein the first verbose hardware identification (NH-
WID) is generated by a method comprising:

selecting n component classes of the first hardware configuration;

identifying all component instances within each of the n component classes of the first hardware co nfiguration;

generating a plurality of component instance first hash results, wherein the plurality of component instance first
hash results comprises afirst hash result for each component instance and at least one first hash result forthe
n component classes of the first hardware configuration; and

concatenating the plurality of first hash results to form a hash portion, wherein the hash portion forms the first
verbose hardware identification (fVHWlD) for the first hardware configuration

Embodiment 54. The computing system of embodiment 50, wherein a match exists between a component class of

the second hardware configuration and a corresponding component class of the first hardware configuration when
one second component instance hash result within a component class of the second compact hardware identification

(sCHWlD) forthe second hardware configuration matches any one of the second component instance hash results
within acorresponding compon entclass of (i) th e first compact hardware identification [fCHWlD) forthe first hardware
configuration or (ii) derived from thefirst component instance hashes of the verbose hardware identification [fVHWlD]:
for the first hardware configuration.

Embodiment 55. The computing system of embodiment 50, wherein a single match exists between a component
class of the second hardware configuration and a corresponding component class of the first hardware configuration
when one second component instance hash result within a component class of the second compact hardware
identification (SCHWID) for the second hardware configuration matches two or more second component instance

hash results derived from the first component instance hashes within a corresponding component class of the first
verbose hardware identification (fVHWlD) for the first hardware configuration.

Embodiment 56. The computing system of embodiment 50, wherein no match exists between a component class
ofthe second hardware configuration and a corresponding component class of the first hardware configuration (a)
when the component class in the first hardware configuration does not contain a component instance, and the
corresponding component class in the second hardware configuration does contain a component instance, and (b)
when the component class in the first hardware configuration contains a single component instance, and the cor-

responding component class in the second hardware configuration does not contain a component instance.

Embodiment 57. The method of embodiment 50, wherein a match exists between a component class of the second
hardware configuration and a corresponding component class ofthefirst hardware configu ratio n wh en the component

class in the first hardware configuration does not contain a component instance, and the corresponding component
class in the second hardware configuration does not contain a component instance.

Embodiment 58. The computing system of embodiment 50, wherein m equals (n , 3), wherein n represents the
number of component classes within the second hardware configuration used to form the second compact hardware
identification (sCHWID).

19

APPLE EXHIBIT 1102, Page 121 of 1048

APPLE EXHIBIT 1102, Page 122 of 1048

TD

15

20

25

30

35

4o

45

50

55

EP 1 637 958 A2

important Note:

[0085] While the attached claims relate to a preferred aspect of the present invention, the applicant wishes to reserve
the right to file one or several further divisional applications at a later point in time for other aspects disclosed in the
application. Those further applications will be divided out from the present divisional application. By this statement. the
public is herewith informed that more divisional applications relating to different subject matter may follow.

Claims

1. A method of determining whether a software product can be used on a second computer system having a second
hardware configuration, wherein the second computersystem is identical to or differentfrom a first computer system
having a first hardware configuration, the software product being initially installed on the first computer, wherein the

method comprises:

generating (502) a second compact hardware identification for the second hardware configuration;
comparing (505, 509) the second compact hardware identification forthe second hardware configuration to (i)

a first compact hardware identification for the first hardware configuration or (ii) a first verbose hardware iden-
tification for the first hardware configuration;
if a number of matches exists between component classes of the second hardware configuration and corre-

sponding component classes of the first hardware configuration, and the number of matches equals or exceeds
m, a numberof requiredcomponent class matches, loading (50?) the software product onto the second computer
system; and
if the number of matches is less than m. preventing (508) the software product from being loaded onto the

second computer system.

2. The method of Claim 1 , wherein the second compact hardware identification is generated by a method comprising:

selecting n component classes of the second hardware configuration;

identifying all component instances within each ofthe n component classes of the second hardware co nfiguration;

generating a plurality of component instance first hash results, wherein the plurality of component instance first
hash results comprises afirst hash result for each component instance and at least one first hash result forthe
n component classes of the second hardware configuration;
generating a plurality of component instance second hash results, wherein the plurality of component instance
second hash results comprises second hash results resulting from performing a second hash function on select
component instance first hash results within one or more select component classes of the second hardware
configuration; and

concatenating the plurality of second hash results to form a hash portion, wherein the hash portion forms the
second compact hardware identification for the second hardware configuration.

3. The method of Claim 1, wherein the first compact hardware identification is generated by a method comprising:

selecting n component classes of the first hardware configuration;

identifying all component instances within each of the n component classes of the first hardware configuration;
generating a plurality of component instance first hash results, wherein the plurality of component instance first
hash results comprises afirst hash result for each component instance and at least one first hash result forthe
n component classes of the first hardware configuration;

generating a plurality of component instance second hash results, wherein the plurality of component instance
second hash results comprises second hash results resulting from performing a second hash function on select
component instance first hash results within one or more select component classes of the first hardware con-
figuration; and

concatenating the plurality of second hash results to form a hash portion, wherein the hash portion forms the
first compact hardware identification for the first hardware configuration.

4. The method of Claim 1, wherein the first verbose hardware identification is generated by a method comprising:

selecting n component classes of the first hardware configuration;
identifying all component instances within each of the n component classes of the first hardware configuration;

20

APPLE EXHIBIT 1102, Page 122 of 1048

APPLE EXHIBIT 1102, Page 123 of 1048

1‘0

1‘5

20

25

30

35

4o

45

50

55

5.

10.

11.

EP 1 637 958 A2

generating a plurality of component instance first hash results, wherein the plurality of component instance first

hash results comprises afirst hash result for each component instance and at least one first hash result forthe
n component classes of the first hardware configuration; and
concatenating the plurality of first hash results to form a hash portion, wherein the hash portion forms the first
verbose hardware identification for the first hardware configuration.

The method of Claim 1, wherein a match exists between a component class of the second hardware configuration
and a corresponding component class of the first hardware configuration when one second component instance

hash result within a component class of the second compact hardware identification for the second hardware con-
figuration matches any one of the second component instance hash results within a corresponding component class
of (i) the first compact hardware identification forthefirst hardware configuration ortii) derived fromthe firstcomponent
instance hashes of the verbose hardware identification for the first hardware configuration.

The method of Claim 1, wherein a single match exists between a component class of the second hardware config-
uration and a corresponding component class of the first hardware configuration when one second component
instance hash result within acomponentclass of the secondcompact hardware identification forthe second hardware

configuration matches two or more second component instance hash results derived from the first component
instance hashes within a corresponding component class of the first verbose hardware identification for the first
hardware configuration.

The method of Claim 1, wherein no match exists between a component class of the second hardware configuration
and a corresponding component class of the first hardware configuration (a) when the component class in the first
hardware configuration does not contain a component instance, and the corresponding component class in the
second hardware configuration does contain a component instance, and (b) when the component class in the first

hardware configuration contains a single component instance, andthe corresponding component class in the second
hardware configuration does not contain a component instance.

The method of Claim 1, wherein a match exists between a component class of the second hardware configuration
and a corresponding component class of the first hardware configuration when the component class in the first
hardware configuration does not contain a component instance, and the corresponding component class in the
second hardware configuration does not contain a component instance.

The method of Claim 1, wherein m equals (n , 3), wherein n represents the number of component classes within
the second hardware configuration used to form the second compact hardware identification.

A computer readable medium having stored thereon computereexecutable instructions for performing a method of
determining whether a software product can be used on a second computer system having a second hardware
configuration, wherein the second computer system is identical to or different from a first computer system having
afirst hardware configuration, the software product being initially installed on the first computer, wherein the method
comprises:

generating a second compact hardware identification for the second hardware configuration;

comparingthe second compact hardware identification forthe second hardware configurationto (i) a first compact
hardware identification for the first hardware configuration or (ii) a first verbose hardware identification for the
first hardware configuration;
it a number of matches exists between component classes of the second hardware configuration and corre-
sponding component classes of the first hardware configuration, and the number of matches equals or exceeds
m, a number of required component class matches, loading the software product onto the second computer

system; and
if the number of matches is less than m, preventing the software product from being loaded onto the second
computer system.

The computer readable medium of Claim 10, wherein the second compact hardware identification is generated by

a method comprising:

selecting n component classes of the second hardware configuration;
identifying all component instances within each ofthe n component classes of the second hardware co nfiguration;
generating a plurality of component instance first hash results, wherein the plurality of component instance first

21

APPLE EXHIBIT 1102, Page 123 of 1048

APPLE EXHIBIT 1102, Page 124 of 1048

EP 1 637 958 A2

hash results comprises afirst hash result for each component instance and at least one first hash result forthe

n component classes of the second hardware configuration;
generating a plurality of component instance second hash results, wherein the plurality of component instance
second hash results comprises second hash results resulting from performing a second hash function on select

5 component instance first hash results within one or more select component classes of the second hardware
configuration; and

concatenating the plurality of second hash results to form a hash portion, wherein the hash portion forms the
second compact hardware identification for the second hardware configuration.

70 12. The computer readable medium of Claim 10, wherein the first compact hardware identification is generated by a
method comprising:

selecting it component classes of the first hardware configuration;

identifying all component instances within each of the n component classes of the first hardware configuration;
15 generating a plurality of component instance first hash results, wherein the plurality of component instance first

hash results comprises afirst hash result for each component instance and at least one first hash result forthe

n component classes of the first hardware configuration;
generating a plurality of component instance second hash results, wherein the plurality of component instance
second hash results comprises second hash results resulting from performing a second hash function on select

20 component instance first hash results within one or more select component classes of the first hardware con-
figuration; and

concatenating the plurality of second hash results to form a hash portion, wherein the hash portion forms the
first compact hardware identification forthe first hardware configuration.

25 13. The computer readable medium of Claim 10, wherein the first verbose hardware identification is generated by a

method comprising:

selecting n component classes of the first hardware configuration;
identifying all component instances within each of the n component classes of the first hardware co nfiguration;

30‘ generating a plurality of component instance first hash results, wherein the plurality of component instance first
hash results comprises afirst hash result for each component instance and at least one first hash result forthe
n component classes of the first hardware configuration; and

concatenating the plurality of first hash results to form a hash portion, wherein the hash portion forms the first
verbose hardware identification forthe first hardware configuration.

35

14. The computer readable medium of Claim 10, wherein a match exists between a component class of the second

hardware configuration and a corresponding component class of the first hardware configuration when one second
component instance hash result within a component class of the second compact hardware identification for the
second hardware configuration matches any one of the second component instance hash results within a corre-

40 sponding component class of (i) the first compact hardware identification for the first hardware configuration or (ii)
derived from the first component instance hashes of the verbose hardware identification for the first hardware

configuration.

15. The computer readable medium of Claim 10, wherein a single match exists between a component class of the
45 second hardware configuration and a corresponding component class of the first hardware configuration when one

second component instance hash result within a component class of the second compact hardware identification
for the second hardware configuration matches two or more second component instance hash results derived from
the first component instance hashes within a corresponding component class of the first verbose hardware identi-

fication forthe first hardware configuration.50

16. The computer readable medium of Claim 10, wherein no match exists between a component class of the second
hardware configuration and a corresponding component class of the first hardware configuration (a) when the
component class in the first hardware configuration does not contain a component instance, and the corresponding

component class in the second hardware configuration does contain a component instance, and (b) when the
55 component class in the first hardware configuration contains a single component instance, and the corresponding

component class in the second hardware configuration does not contain a component instance.

17. The computerereadable medium of Claim 10, wherein a match exists between a component class of the second

22

APPLE EXHIBIT 1102, Page 124 of 1048

APPLE EXHIBIT 1102, Page 125 of 1048

TD

15

20

25

30

35

4o

45

50

55

EP 1 637 958 A2

hardware configuration and a corresponding component class ofthefirst hardware configu ratio n wh en the component

class in the first hardware configuration does not contain a component instance, and the corresponding component
class in the second hardware configuration does not contain a component instance.

18. The computer readable medium ofClaim ‘i 0, wherein m equals [n - 3), wherein n representsthe numberof component
classes within the second hardware configuration used to form the second compact hardware identification.

19. A computing system containing at least one application module usable on the computing system, wherein the at

least one application module comprises application code for performing a method of determining whether a software
product can be used on a second computer system having a second hardware configuration, wherein the second
computer system is identical to or different from a first computer system having a first hardware configuration, the
software product being initially installed on the first computer, wherein the method comprises:

generating a second compact hardware identification forthe second hardware configuration;
comparing the second compact hardware identification forthe second hardware config urationto (i) afirst compact
hardware identification for the first hardware configuration or (ii) a first verbose hardware identification for the
first hardware configuration;

if a number of matches exists between component classes of the second hardware configuration and corre-
sponding component classes of the first hardware configuration, and the number of matches equals or exceeds

m, a number of required component class matches, loading the software product onto the second computer
system; and

if the number of matches is less than m, preventing the software product from being loaded onto the second
computer system.

20. The computing system of Claim 19, wherein the second compact hardware identification is generated by a method
comprising:

selecting it component classes of the second hardware configuration;
identifying all component instances within each ofthe n component classes ofthe second hardware co nfigu ration;

generating a plurality of component instance first hash results, wherein the plurality of component instance first
hash results comprises afirst hash result for each component instance and at least one first hash result forthe
n component classes of the second hardware configuration;

generating a plurality of component instance second hash results, wherein the plurality of component instance
second hash results comprises second hash results resulting from performing a second hash function on select
component instance first hash results within one or more select component classes of the second hardware
configuration; and
concatenating the plurality of second hash results to form a hash portion, wherein the hash portion forms the
second compact hardware identification for the second hardware configuration.

21. The computing system of Claim 19, wherein the first compact hardware identification is generated by a method
comprising:

selecting n component classes of the first hardware configuration;

identifying all component instances within each of the n component classes of the first hardware configuration;
generating a plurality ot component instance first hash results, wherein the plurality of component instance first
hash results comprises afirst hash result for each component instance and at least one first hash result forthe
n component classes of the first hardware configuration;
generating a plurality of component instance second hash results, wherein the plurality of component instance

second hash results comprises second hash results resulting from performing a second hash function on select
component instance first hash results within one or more select component classes of the first hardware con-
figuration; and
concatenating the plurality of second hash results to form a hash portion, wherein the hash portion forms the
first compact hardware identification for the first hardware configuration.

22. The computing system of Claim 19, wherein the first verbose hardware identification is generated by a method

comprising:

selecting it component classes of the first hardware configuration;

23

APPLE EXHIBIT 1102, Page 125 of 1048

APPLE EXHIBIT 1102, Page 126 of 1048

TD

15

20

25

30

35

4o

45

50

55

23.

24.

25.

25.

27.

28.

29.

EP 1 637 958 A2

identifying all component instances within each of the n component classes of the first hardware configuration;
generating a plurality of component instance first hash results, wherein the plurality of component instance first

hash results comprises afirst hash result for each component instance and at least one first hash result forthe
n component classes of the first hardware configuration; and
concatenating the plurality of first hash results to form a hash portion, wherein the hash portion forms the first
verbose hardware identification for the first hardware configuration.

The computing system of Claim 19, wherein a match exists between a component class of the second hardware
configuration and a corresponding component class ofthe first hardware configuration when one second component
instance hash result within acomponentclass of the secondcompact hardware identification forthe second hardware

configuration matches any one of the second component instance hash results within a corresponding component
class of (i) the first compact hardware identification for the first hardware configuration or (ii) derived from the first
component instance hashes of the verbose hardware identification for the first hardware configuration.

The computing system of Claim 19, wherein a single match exists between a component class of the second
hardware configuration and a corresponding component class of the first hardware configuration when one second
component instance hash result within a component class of the second compact hardware identification for the

second hardware configuration matches two or more second component instance hash results derived from the first
component instance hashes within a corresponding component class of the first verbose hardware identification for
the first hardware configuration.

The computing system of Claim 19, wherein no match exists between a component class of the second hardware
configuration and a corresponding component class of the first hardware configuration (a) when the component
class in the first hardware configuration does not contain a component instance, and the corresponding component
class in the second hardware configuration does contain a component instance, and (b) when the component class

in the first hardware configuration contains a single component instance, and the corresponding component class
in the second hardware configuration does not contain a component instance.

The computing system of Claim 19, wherein a match exists between a component class of the second hardware
configuration and a corresponding component class of the first hardware configuration when the component class
in the first hardware configuration does not contain a component instance, and the corresponding component class
in the second hardware configuration does not contain a component instance.

The computing system of Claim 19, wherein m equals (n - 3), wherein n represents the number of component classes
within the second hardware configuration used to form the second compact hardware identification.

A method of generating a compact hardware identification for a first computer system having a first hardware
configuration, wherein the method comprises:

selecting n component classes;
identifying all component instances within each of the n component classes;

generating a plurality of component instance first hash results, wherein the plurality of component instance first
hash results comprises afirst hash result for each component instance and at least one first hash result forthe

n component classes;
generating a plurality of component instance second hash results, wherein the plurality of component instance
second hash results comprises second hash results resulting from performing a second hash function on select
component instance first hash results within one or more select component classes; and

concatenating the plurality of second hash results to form a hash portion, wherein the hash portion forms the
compact hardware identification for the first computer system.

A computer readable medium having stored thereon computer-executable instructions for performing a method of

generating a compact hardware identification for a first computer system having a first hardware configuration,
wherein the method comprises:

selecting it component classes;
identifying all component instances within each of the n component classes;

generating a plurality of component instance first hash results, wherein the plurality of component instance first
hash results comprises afirst hash resultfor each component instance and at least one first hash result forthe

24

APPLE EXHIBIT 1102, Page 126 of 1048

APPLE EXHIBIT 1102, Page 127 of 1048

TD

15

20

25

30

35

4o

45

50

55

EP 1 637 958 A2

n component classes;

generating a plurality of component instance second hash results, wherein the plurality of component instance
second hash results comprises second hash results resulting from performing a second hash function on select
component instance first hash results within one or more select component classes; and
concatenating the plurality of second hash results to form a hash portion. wherein the hash portion forms the
compact hardware identification for the first computer system.

30. A computing system containing at least one application module usable on the computing system, wherein the at
least one application module comprises application code for performing a method of generating a compact hardware
identification for a first computer system having a first hardware configuration, wherein the method comprises:

selecting n component classes;
identifying all component instances within each of the n component classes;

generating a plurality of component instance first hash results, wherein the plurality of component instance first
hash results comprises afirst hash result for each component instance and at least one first hash result forthe
n component classes;
generating a plurality of component instance second hash results, wherein the plurality of component instance

second hash results comprises second hash results resulting from performing a second hash function on select
component instance first hash results within one or more select component classes; and
concatenating the plurality of second hash results to form a hash portion, wherein the hash portion forms the
compact hardware identification for the first computer system.

25

APPLE EXHIBIT 1102, Page 127 of 1048

APPLE EXHIBIT 1102, Page 128 of 1048

EP 1 637 958 A2

...

a...flawzo:.<o:&<wewas:.....-..-.......0vD¢<Om>wx'mmADDOS.Dov2<100mm.mlnSuhmsrw
H6Ezo_._.<o_._&<02.5510

EEmwlwfilllmmsoo

...-An2..

m.mhm

mu

masons.Mm350:;

wU<u¢m._.2_mo<mmm_._.z_m0<mmmhz_...EOQNEEDv1.20mamm—29045mmw..(UrEO95204—2
medium»;

rm.m0<umm._.2_
56sz

mama:9035..

u..uI25.35._a?zo_._.<uz&<_1 5.5.6
mmuzzémao

mm.M.0“.3...... «Emma;-..+mm-

— ---—----——-...—......—.—-~-................_...

mHn<o<:2:.
///. ..89>ozammoomn..WNNlllm”motzos.avE{Mmcm.

26

APPLE EXHIBIT 1102, Page 128 of 1048

APPLE EXHIBIT 1102, Page 129 of 1048

EP 1 637 958 A2

Fig. 2

2?

APPLE EXHIBIT 1102, Page 129 of 1048

APPLE EXHIBIT 1102, Page 130 of 1048

EP 1 637 958 A2

 own

28

APPLE EXHIBIT 1102, Page 130 of 1048

APPLE EXHIBIT 1102, Page 131 of 1048

EP 1 637 958 A2

401

CHOOSE THE NWBER OF COMPONENT CIASSES, 1!,
TO USE TO FORM THE VHWID

IDENTIFY THE n COMPONENT CLASSES

IDENHFYALL INSTANCES WITHIN EACH

COMPONENT CLASS AND THE COUNT FOR EACH CLASS

402

403

404

ASSIGN AN IDENTIFICATION STRING FOR EACH

COMPONENT INSTANCE

405

PREPARE THE HEADER PORTION OF THE VHWID

406

IDENTIFY VERSION OF I’H'VWDAND

INPUTINTO HEADER
Fig. 4

29

APPLE EXHIBIT 1102, Page 131 of 1048

APPLE EXHIBIT 1102, Page 132 of 1048

EP 1 637 958 A2

407

IDENTIFY COMPONENT CLASS TO BE REPRESENTED IN

THE HEADER

 COLLPONENT

IDENTIFICATION SIRING TO

BE HASHED?

INPUT TR HNCATED

IDENTIFICATION STRING

INTO HEADER

YES
411

PERFORM A HASH FUNCTION ON THE

IDENTIFICATION STRING OF THE

COMPONENT“STANCE

412

 ADD DETAILS OF

ANOTHER COMPONENT CLASS

TO THE HEADER

Fig. 5

30

APPLE EXHIBIT 1102, Page 132 of 1048

APPLE EXHIBIT 1102, Page 133 of 1048

EP 1 637 958 A2

PREPARE THE COWPORTION OF THE VHWID

PERFORM A FIRSTHASH PWCTTON ON THE

IDENTIHCATTON STRING FOR EACH INSTANCE IN

THE REMAINING COMPONENT CLASSES

, ASSEMBLE T'HE HASH PORTION OF THE VHM'D BY

CONCATENATTNG THE FIRST HASH RESULTS FOR EACH

INSTANCE IN ORDER AS REPRESENTED IN THE COUNT

POR'ITON OF THE VHMD

ASSEMBLE THE VHMD BY CONCATENATTNG THE

HEADER PORTION, THE COLWTPORTTON AND THE

HASH PORTION OF THE VT-fl-WD

STORE THE VHMD FOR FUTURE USE

Fig. 6

31

APPLE EXHIBIT 1102, Page 133 of 1048

APPLE EXHIBIT 1102, Page 134 of 1048

EP 1 637 958 A2

®

PERFORM A SECOND HASH FUNCTION ON SELECT

COMPONENTINSTANCE FIRST HASH VALUES FROM

ONE OR MORE COMPONENT CLASSES WITHIN THE

HASH PORTION OFTHE VHW'ID

CONCATENATE THE COMPONENT INSTANCE

SECOND HASH VALUES TO FORM THE HASH PORTION

OF THE CHWID

32

APPLE EXHIBIT 1102, Page 134 of 1048

APPLE EXHIBIT 1102, Page 135 of 1048

NO

EP 1 637 958 A2

3
425

 DOES THE CHMD

COMPRISE A VERSION

COMPONENT? YES
426

PREPARE THE VERSION

COMPONENT OF THE

CHMD

CONGATENATE THE VERSION

COMPONENT OF 1711-? CHMD MTH

THE HASH PORTION OF THE

CHWID

STORE THE CHWID FOR

FUTURE USE

Pig. 8

33

APPLE EXHIBIT 1102, Page 135 of 1048

APPLE EXHIBIT 1102, Page 136 of 1048

EP 1 637 958 A2

501

LOAD OR LAUNCHA SOFTWARE PRODUCT

ON COMPUTER HARDWARE

CONFIGIHIAHONHM

502

GENERATE A COMPACT HARDWARE

IDENTIFICATION FOR COB/IPUTER

I-MRDWARE CONFIGURAHONHWZ

RETRIEVE A STORED VHWID OR A STORED CHWID,
WHICH WAS GENERATED ON A FIRST COMPUTER

HARDWARE CONFIGURATION HWI DURING AN METAL

SOFTWARE PRODUCT INSTALLATION ONTO HWI

 IS STORED 1D A CHWID?

COMPARE THE CHMVID OF

HM WITH THE

CHWID 01-" HWI

COMPARE THE CHWTD OF

HW2 WITHTHE VHMD OF

HWI

Pig. 9

34

APPLE EXHIBIT 1102, Page 136 of 1048

APPLE EXHIBIT 1102, Page 137 of 1048

EP 1 637 958 A2

DOES THE

NUMBER

or COMPONENT CLASS

MATCHES EQUAL on EXCEED A

REQUIRED NUMBER 01-“
NO COMPONENT CLASS

508

DISABLE THE USE OF ENABLE THE USE OF

THE SOFTWARE THE SOFTWARE

PRODUCT ON HW2 PRODUCT 0N HWZ

Fig. 10

35

APPLE EXHIBIT 1102, Page 137 of 1048

APPLE EXHIBIT 1102, Page 138 of 1048

EP1637961A2

) l||||||||l|||l|||||ll||l|l||||||||l|||||l|||||||||||l|||||||l|ll|||||l(19) 0 European Patent Office
Office européen dea brevets (11) EP 1 637 961 A2

(12) EUROPEAN PATENT APPLICATION

(43) Date 01 publication: (51) IntCI.:
22.03.2006 Bulletin 2006f12 GOEF ”00120955" GOEF 9/445(2W"0”

H04L eel/05‘3”“)

(21) Application number: 05108154.5

(22) Date oi filing: 06.09.2005

(84) Designated Contracting States: (72) Inventors:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR . Holladay, Martin L.
HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI 98052, Redmond (US)
SK TR - Karki, Mukesh

Designated Extension States: 98052, Redmond (US)
AL BA HR MK YU - Parthasarathy, Narayanan

90052, Redmond (US)

(30) Priority: 15.09.2004 us 941594

(7'4) Representative: Griinecker, Kinkeldey,
(71) Applicant: Microsoft Corporation Stockmair 81 Schwanhéusser

Redmond WA 98052 (US) Anwaltssozietfit
Mexirnilianstrasse 58

80538 moncnen (DE)

(54) Deploying and receiving software over a network susceptible to malicious communication

(57) Systems and/or methods that enable secure de—
ployment and/or receipt of an operating system and up-
dates for the operating system to a bare computer across
a network susceptible to malicious communication are

described. These systems and/or methods can. in one

embodiment, securely deploy an image having an oper- -‘ "1,—03: f" “"7
ating system and enable secure receipt of an update Ior " ‘
the operating system, both via a network susceptible to
malicious communication. They can also, in another em—
bodiment, enable a bare computer added to a network

to have an operating system deployed to it and updated

via the network before the bare computer is subJected to
malicious code communicated over the network.

Sail rut RACK.

l.>i_i‘i own]
S‘mfifi

 REF WHEAT:-
$ER \-'F'-

lit')

Sl—‘u'i-u

Prinled by Jouve. 75001 PARIS (FR)

APPLE EXHIBIT 1102, Page 138 of 1048

APPLE EXHIBIT 1102, Page 139 of 1048

1 EP 1 637 961 A2 2

Description

TECH NICAL FIELD

[0001] This invention relates to deploying and receiv-
ing software over a network.

BACKGROUND

[0002] One of the quickest and easiest ways to add a

new, bare server (a server not having an operating sys-
tem) to a network is to plug it into the network and use a
deployment server on the network to deploy an image of
the operating system to the bare sewer. The Dare sewer
can save this image to its hard disk drive or equivalent
storage and then reboot. Once it reboots, it can be run-

ning with the newly deployed operating system.
[0003] Operating systems deployed to bare servers
with an image are often out of date, however; they need
current updates to be optimally secure. A server with an

out-of-date operating system, if it is linkedtothe network,
can acquire these updates through the network, usually
from an Internet site or an intranet sewer having current
updates.
[0004] Butthe network. even ifit is an intranet. may be
susceptible to malicious communication, such as a virus
or other network—based attack. Because 01 this, the serv—

er often cannot acquire these updates before being at-
tacked by malicious code via the network. In the amount
of time between when the server is first running with its
operating system on the network and when it has down—
loaded and installed current updates. malicious code like
a virus or Troian horse can attack the server. This is a

real danger, as many malicious programs take less than
a second to corrupt a server running an out-of-date op-
erating system. The MS Blaster virus, for instance, can
corrupt a server without an appropriate software update
Within tenths of a second.

[0005] To partially combat this problem, a bare server
can be connected to a deployment server without being
connected to a network, such as by manually plugging a
cable into both servers. Through this cable, the deploy—

ment server can deploy an image having an operating
system to the bare server. The server can then be re-
booted with the operating system. Oncethis is done, up-
dates can be installed, usually by hand with compact
disks, to make the operating system optimally secure.

Once updated, the server can then be plugged into the
network. This partial solution may reduce the server's

vulnerability to attack, but it is time consuming. An infor-
mation technologyspecialistcan spend many hours con-
necting bare servers directly to a deployment server, de-
ploying images, installing updates, disconnecting the

servers fromthe deploymentserver, andthen connecting
them to the network.

[0006] Also to partially combat this problem, the oper
ating system and updates can be manually installed on
a bare server, usually with many compact disks, prior to

1‘0

1‘5

20

25

30

35

4o

45

50

55

connecting the servertothe network. Manually installing
an operating system and updates, however, is also time

consuming and tedious; it can takes hours for each serv—
er.

[0007] There is. therefore, a need for a secure way to
deploy an operating system and updates to a server over
a networkthat is susceptibieto malicious communication.

SUMMARY

[0008] Systems andfor methods ("tools") that enable
secure deploymentand/or receiptofan operating system
and updates forthe operating system to a bare computer
across a network are described. in one embodiment, for

instance, the tools securely deploy an image having an
operating system and enable secure receipt of an update
forthe operating system, both via a network that is sus-
ceptible to malicious communication. In a second em-

bodiment, for example, the tools deploy to a computer
across a network an operating system that, when run by

the computer, prohibits the computer from receiving ma-
licious andfor unsolicited communications via the net-

work. In athird embodiment, forinstance,the tools enable

a bare computer added to a nafwork to have an operating

system deployed toit and updated viathe network before
the bare computer is subjected to malicious code com—
municated overthe network.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009]

Fig. 1 illustrates an exemplary architecture having
exemplary servers, a network susceptible to malie
cious communication, and bare computers.
Fig. 2 sets forth aflow diagram ofan exemplary proc-
ess for creating a locked image having an operating
system.

Fig. 3 sets forth a flow diagram ofan exemplary proc-
ess for deploying and receiving a locked image and

updates via a network susceptible to malicious com—
mu nication.

[0010] The same numbers are used throughout the
disclosure and figures to reference like components and
features.

DETAILED DESCRIPTION

An Exemplary Architecture

[0011] Referring to Figure 1, an exemplary architec-
ture 100 is shown having a reference server 102, a de-

ploymentserver 104, an update server 106, and aserver
rack 108. The rate rence server, deployment server. and

update server are shown as three separate servers,
though they can be combined into one or more servers
in any combination. The deployment server comprises

APPLE EXHIBIT 1102, Page 139 of 1048

APPLE EXHIBIT 1102, Page 140 of 1048

3 EP 1 637 961 A2 4

computer-readable media capable of performing one or
more of the processes described below. These media

can comprise a deploymentapplication 110 and a locking
application 112, for instance. The locking application is
shown as part of the deployment application. though
each can be separate or combined. The update server
also comprises compute r-readable media, here capable
of deploying software patches, fixes, and the like, such
as to update an out-of-date operating system for improv-

ing its operation, e.g., its security capabilities.
[0012] Three exemplary bare computers are also
shown, a bare sewert 14 in rack 1 08, a bare standalone

server 116, and a bare desktop 118. Each of the bare
computers has a software or hardware application suffi-
cient to enable the bare computer to request, receive,
and follow basic instructions, such as from the deploy-
ment application 110.
[0013] The architecture 100 communicates across a
network 120. The network is a communication network

susceptible to malicious communication, such as net—
work-based attacks. This network can comprise an in-
tranet in communication with an insecure source. such

as the Internet or a corrupted computerwithin the intranet
capable of sending malicious code across the network.

Building a Locked image

[0014] Fleferring to Figure 2, an exemplary process
200 tor building a locked image is shown. This process
is illustrated as aseries of blocks representing individual
operations or acts perlormed by deployment sewer 1 04,
such as with locking application 1 12. This and other proc-
esses described herein may be implemented in any suit-
able hardware, software, firmware, orcombination there

of In the case of software and firmware, these processes
represent sets of operations implemented as compu-
ter—executable instructions.

[0015] At block 202, deployment server 104, using
locking application 112, instructs reference sewer 102
to prohibit communications with untrustworthy sources

but permit communication with at least one trustworthy
source, such as the deployment server. The prohibited

communications can comprise all communications that
are not solicited by the reference server or all communi-
cations, solicited or not (other than those permittedfrom
the trustworthy source).
[0016] In one embodiment, the locking application se-
lectively prohibits communication by instructing the ref-

erence server to enable a firewall prohibiting communi—
cation with any port other than the port used by the de-

ployment server. In another embodiment, the locking ap-
plication does so by instructing the reference server to
enable one or more protocols, such as IPSec ("Intemet
Protocol Security"), which can prohibit communication
with any computer other than the deployment server
(and, in some cases, update server 106). In both embodr
iments, the reference server is instructed to alter its set-

tings to operate securely but permit communication with

1‘0

1‘5

20

25

30

35

4o

45

50

55

at least one trustworthy source.
[0017] These settings are stored in the memory of the

reference server. Because of this, an image ofthe refer—
ence sewers memory can comprise the operating sys—
tem and these settings. A bare computer booting up this
image can run the operating system having these set-
tings, thereby prohibiting potentially dangerous commu-
nications but permitting communication with a trustwor-
thy source. If the bare computer that is to receive the

image is a desktop or other non-sewer computer, the
reference server can be a reference desktop or other
nonesewer reference computer.
[0018] At block 204, deployment server 10:1 receives
an image having an operating system. in one embodi—
ment, the deployment server performs blocks 204 and
206 and in another embodimentperfomts blocks 202 and
204. as set described below. This image can be received
tromthe reference serverot Figure1 oranotherreference
computer (not shown). if the image is locked, such as
resulting from the actions of block 202, the deployment

sewerdoes not proceed to block 206. If the image is not
locked, the deployment server proceeds to block 206. In
anotherembodiment,thedeploymentserverwaitsto lock
the image until after the image has been saved to the
bare sewer but before the bare server reboots (not

shown).
[0019] At block 206. the deployment sewer. through
locking application 112, edits an image having an oper-
ating system. This editing can comprise locking the im-
age by alten'ng a security setting to prohibit unsolicited
communications except from at least one trustworthy
source, such as deployment sewer 104. The prohibited

communications can comprise all communications that
are not solicited by the computer running the operating
system or all communications, solicited or not (otherthan
those permittedfrom thetrustworthysource). The locking
application can do so by editing the image’s security set—
ting{s) to add or turn on a firewall like the firewall de-
scribed in block 202. The locking application can also do
so, for instance, by editing the image’s security setting
(s) to comprise IPSec protocols, such as those described

in block 202. Thus, the locking application locks the im—

age to prohibit potentially dangerous communications by
a computer running the software in the image but permit
communication with a trustworthy source.

Deploying a Locked Image and Updating an Operating
System

[0020] Fleferring to Figure 3, an exemplary process
300 for securely deploying, via a network susceptible to
malicious communication, an image having an operating
system and enabling secure receipt of an update for the
operating system is shown. This process is illustrated as
a series of blocks representing individual operations or

acts performed by deployment sewer 1 04, such as with
deploying application 1 10. An exemplary process 302 for
securely receiving the locked image and updates to the

APPLE EXHIBIT 1102, Page 140 of 1048

APPLE EXHIBIT 1102, Page 141 of 1048

5 EP 1 637 961 A2 5

operating system is also shown. Process 302 is illustrat-
ed as a series of blocks representing operations or acts

performed by orto bare server 114.
[0021] At block 304, a bare computer is connected to
network 120. In the ongoing embodiment, bare server
114 is plugged intothe network via rack 1 08, though other
bare computers can instead be con nectedto the network,
such as stand-alone server 1 16 or desktop 118.
[0022] At block 303, the bare server communicates

across the network, requesting an operating system.
Without an operating system, the bare server often is not
yet vulnerable to malicious code on the network.
[0023] At block 308, deployment server 104 receives
the request for an operating system. At block 310, the
deployment server, through deployment application 1 1 0,
securely deplays a locked image having an operating
system to the bare server. At this block. the deployment
server can, in some embodiments, also deploy software
updates. The locked image can be the result of the proc—

ess 200. In the ongoing embodiment, the locked image
is one that, when run by the bare server (which will then
no longer be bare), will not permit receipt of unsolicited
communication from any source other than the deploys
ment server or any port otherthan the port used by the
deployment server.

[0024] At block 31 2. the bare server securely receives
the locked image viathe network and saves it to memory.
By securely receiving the locked image, the bare server
can receive the locked image without its being subject to

malicious communication during transmission. Secure
communication of this locked image can also prohibit it
from being intercepted or monitored by a third party. In
one embodiment. the bare server also receives updates

with or as part ofthe locked image. At block 31 4, the bare
server communicates that it has received the locked im-

age. At block 316, the deployment server receives the
communication from the bare server indicating that it has
received the locked image. At blockSi B, the deployment
server, through the deployment application. instructs the
bare server to boot the locked image.
[0025] At block 320, the bare server reboots, thereby

running the image with the operating system and its se—
cure settings. The bare server, now no longer bare as it

has an operating system, is running in a secure mode.
The bare server, because of settings andior software in
the image, can prohibit untrustworthy or potentially ma-
licious communications. The bare servercan operate se-
curely even though it is connected to network 120 and
potentially is operating with an out—of—date operating sys—
tem that could otherwise be vulnerable to maliCious com-
munication sent overthe network.

[0026] At block 322, bare server 1 i4 informs the de-

ployment server that the operating system is running
and/orthat the boot was successful.

[0027] At block 324, deployment server 104 receives

this information. At block 328, the deployment server,
through deployment application 110, instructs the bare
server to securely receive andior install updates. In the

5

1‘0

1‘5

20

25

30

35

40

45

50

55

ongoing embodiment, the deployment server instructs
the bare server to initiate communication with update

server 106. in another embodiment, the deployment
server securely sends updates to the bare server's op—
erating system and instructs it to add these updates with—
out use of a separate update source like the update serv-
er. In still another embodime nt, the updates are received
along with or as part of the image received at block 312
and sent at block 310. In this embodiment, the deploy-
mentserver instructs the bare serverto install the already

received updates. The updates received in any of these
embodiments can be effective to update the operating
system or other software on the bare server, and can
comprise software patches, fixes, and the like. These

updates can improve resistance to various malicious
code later received by thebare server, described in great-
er detail below.

[0028] At block 328, the bare server receives the in-
struction to securely receive updates. in the ongoing em—
bodiment, the bare server receives the instruction from

the deployment server.
[0029] At block 330, the bare server initiates secure
communication to securely receive updates. In the one
going embodiment, the bare server solicits communica-

tion from update server 106. The bare server's security
settings are configured to prevent receipt of unsolicited
communication, but the bare server is permitted to solicit
communication from the update server. By so doing, up-
dates and other information from the solicited update
server can be received by the bare server running the
operating system. Other, unsolicited information, can be
refused by the bare server because of its security set-
tings. thereby protecting the bare serverfrom unsolicited.

malicious code while enabling the bare serverto receive
updates.
[0030] At block 332, the bare serversecu rely receives
and applies updates to its operating system. These up—
dates can be received via the network from the update

serversoiicited atbiock330 orfrom the deployment serv-
er directly, for instance. This secure receipt of updates
enables the bare server to have an updated operating

system via a networkthatissusceptibleto malicious com—

munication without first being vulnerable to malicious
code communicated over the network.

[0031] At block 334, the bare server communicates
that it has updated its operating system. At block 336,
the deployment server receives this communication.
[0032] At block 338, the deployment server instructs

the bare server to commence potentially malicious com—
munication. Because the operating system is updated,
the bare server is better capable of defending itself
against malicious code and attacks communicated
across the network. In one embodiment, the deployment
server sends and/or instructs the bare server to install a

firewall or IPSec protocols to fu rlhersecu re the bare serv-

er‘s operations before commencing potentially malicious
communication.

[0033] At block 340, the bare server commences po-

APPLE EXHIBIT 1102, Page 141 of 1048

APPLE EXHIBIT 1102, Page 142 of 1048

7 EP 1 637 961 A2 8

tentially malicious communication overthe network, such
as by commencing a production mode of operation. The

bare server can do so by opening particular ports. for
instance. If the bare server is to be a webserver. for in-

stance. it can open port 8010 enable it to communicate
with other servers across the lnternet.

[0034] In the ongoing embodiment. most if not all of
the acts of the deployment server and the deployment
application can he performed automatically and without
user interaction. This enables a user to connect a bare

server or other bare computerto a network and, without
further interaction, have the bare server operating with
an updated operating system without having to subject
the bare server to malicious code via the network before

the operating system is updated.

Conclusion

[0035] The above—described tools enable secure de—
ployment andfor receipt of an operating system and up—

dates across a network that can be susceptible to mali-
cious communication. Although the invention has been
described in language specific to structural features
and/or methodological acts. it is to be understood that
the invention defined in the appended claims is not nec-

essarily limited to the specific features or acts described.
Rather, the specific features and acts are disclosed as
exemplary forms of implementing the claimed invention.

Claims

1. A method comprising:

receiving a locked image having an operating
system and security settings, the security set-
tings effective to prohibit unsolicited communi-
cation via a network that is susceptible to mali-
cious communication other than from a secure

source or via a secure port; and
securely deploying the locked image to a bare
computer via the network.

2. The method of claim t, further comprising:

instructing the bare computer to securely re-
ceive a software update.

3. The method of claim 2, wherein the software update

is capable of improving the operating system’s re-
sistance to malicious code.

4. The method of claim 2, further comprising receiving
an indication that the software update has been ap—
plied and instructing the bare computer to com-
mence potentially malicious communication via the
network.

10

1‘5

20

25

30

35

4o

45

.50

55

5.

10.

11.

12.

13.

14.

15.

16.

The method ofclaim 1 ,further comprising instructing
a reference server having the operating system to
prohibit unsolicited communication via the network
otherthan from the secure source or via the secure

port.

The method of claim 5, wherein the act of instructing
the reference servercomprises instructingthe refer-
ence server to enable a firewall.

The method of claim 1, wherein the bare computer
comprises a bare server.

One or more computer—readable media having com—
puter—readable instructions for performing the meth—
od recited in claim 1.

Asystem comprising means for performingthe meth-
od recited in claim t.

A method comprising:

receiving an image having an operating system
and a security setting via a network susceptible

to malicious communication, the security setting
effective to prohibit unsolicited and potentially
malicious communication via the network;

booting the image, effective to run the operating
system at the security setting;
receiving an updatetothe operating system; and
applying the update to the operating system.

The method of claim 10. wherein the security setting

is effective to permit unsolicited and secure commu
nication from a secure source or via a secure port.

The method of claim 1 1 , wherein the act of receiving

the update is via the network.

The method of claim 10, wherein the act of receiving
the update comprises receiving an instruction to so—
licit communication from an update source and so—
liciting the update source for the update.

The method of claim 10, further comprising:

permitting unsolicited and potentially malicious
communication via the network.

The method ofclaim 14, wherein the act of permitting
comprises altering the security setting to permit un-
solicited and potentially malicious communication.

The method ofclaim 1 0, wherein the acts of receiving

the image. booting the image, receiving the update.
and applying the update are performed without user
interaction.

APPLE EXHIBIT 1102, Page 142 of 1048

APPLE EXHIBIT 1102, Page 143 of 1048

17.

1B.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

9 EP 1 637 961 A2

A system comprising means for perfo rmingthe meth-
od recited in claim 10.

A method comprising:

securely deploying a locked image to a compu-
ter over a networksusceptible to malicious com-
munication;

instructing the computer to hoot the locked im-
age;

instructing the computer to solicit communica-
tion to receive a software update;
receiving from the computer an indication that
the software update has been received; and

instructing the computer to permit potentially
malicious communication over the network.

The method ofclaim18,1ur‘ther comprising instruct-
ing a reference server to prohibit unsolicited com—
mu nication via the network otherthan from a secure

source orvia a secure port and receiving the locked
image from the reference server.

The method ofciaim 19, wherein the act of instructing
the reference server comprises instructing the refer-
ence server to enable a firewall.

The method ofciairn 19, wherein the act of instructing

the reference server comprises instructing the refer-
ence serverto add lPSec protocols

The method of claim 18. wherein the locked image

is capable of prohibiting communication sent across
the network that is unsolicited and potentially malir
cious.

The method of claim 18, wherein the locked image
is capable of prohibiting unsolicited communication
other than from a source from which the locked im-

age was deployed.

The method otciaim 18, wherein the software update

is effective to improve an operating system’s resist-
ance to malicious code.

The method of claim 18, wherein the computer com-
prises a bare server.

The method ofciaim 18, wherein the act of instructing

the computer to solicit communication comprises in-
structing the computerto solicit communication from
an update server over the network.

The method of claim 18, wherein the indication indi—

catesthatthesoftwa re update has been successfully

applied.

The method ofclaim 18, wherein the act of receiving

1‘0

1‘5

20

25

30

35

4o

45

50

55

10

and the acts of instructing are communicated via the
network.

29. The method of claim 18. wherein the network com—

prises an intranet capable of communicating With the
internet.

30. One or more computer-readable media having com-

31.

putter-readable instructinnsfor performing the meth-
od recited in claim 18.

A system comprising means for performingthe meth
od recited in claim 18.

32. A method comprising:

securely receiving a locked image having an op-
erating system via a network susceptible to ma-
licious communication;

booting the locked image,the locked image hav—

ing security settings effective to prohibit unso-
licited communication other than from one or
more secure sources or via one or more secure

ports;

receiving instruction from the secure source(s)

or via the secure portts):
following the instruction to securely receive a
software update via the network;

applying the software update effective to im-
prove the security of the operating system; and
permitting potentially malicious communication
via the network.

33. The method of claim 32, wherein the locked image
and the instruction are received from a deployment
server via the network.

34. The method of claim 32, wherein at least four of the

acts of securely receiving, booting, receiving instruc-
tion, following the instruction, applying, and permit-
ting are performed without human interaction.

35. Asystem comprising means forperforrningthe meth-
Od recited in claim 32.

APPLE EXHIBIT 1102, Page 143 of 1048

APPLE EXHIBIT 1102, Page 144 of 1048

EP 1 637 961 A2

DEPI ()YMEN'I‘

APPLiCATiON

LOCKING APPLICATION 1 2
‘x ’ 104 f— 100

120
SERVER RACK

AND SERVERS102 DEPLOYMENT
SERVER

REFERENCE

SERVER

116

l 06

SERVER

UPDATE I 18

SERVER \ .
% D ESK'I‘UP

APPLE EXHIBIT 1102, Page 144 of 1048

APPLE EXHIBIT 1102, Page 145 of 1048

EP 1 637 961 A2

Instruct. Reference Server to

Prohibit Untrustworthy But Permit

Trustwerthy Communication

ReceiVe Image Having an

Operating System

206 m L

I Leek the Image IFNUI Yet Loeked I

Fig. 2

APPLE EXHIBIT 1102, Page 145 of 1048

APPLE EXHIBIT 1102, Page 146 of 1048

EP 1 637 961 A2

.500 DEPLO‘r‘Ml-TNT SERVER!
_ W DEE’LUYk-IEN'I' Al’E’LlC-t'l‘lON

I
I
I

________________________ _. _'
I
I
I
I
I
I

303 II

_ I
Rceelve Request

310 — —

DCpIO)‘ LOCkUCI Imagc 10 Bare Receive I ,oeked Image. and Save. to

SCI'VCI‘ Memory
316 .1

Receive Communication Communlcate Receipt Of locked
I ImageI

31 8 I
(—— II

Instruct Bun: Server [0 Reboot
I
|

24 5 I3 I.
I _ w _ ‘ _

Receive Request I Communlcdu. Thdt Boot
: Successful

326 »-~\ :

Instruct Bare Server To Securely : R , l r t'
Receive andx’or Install Updates E ecene m‘ we umI

I
I
I Initiate Communication [0 Receive

I UpdatesI
I
l

} Securely Receive andfor Apply
I U pdalcs to Operating System

336

. . . . Communicate Tim 0 "ratio 7
Reccwe (.ommumcauon It pt E

System Is updated

338 —\

INSIYUCL B'dTC SUN/CF l0 COIHHWHW Commence Potentially Malicious
Potentially .VIEIIICIOUS Communication Over the Network

Communication

Fig. 3

APPLE EXHIBIT 1102, Page 146 of 1048

314

340

APPLE EXHIBIT 1102, Page 147 of 1048

EP1670188A2

Europfiisches Paientamt

European Patent Office(19) ‘0)
Office européen dea brevets (11) EP1670188 A2

(12) EUROPEAN PATENT APPLICATION

(43) Date 01 publication:
14.06.2006 Bulletin 2006524

(21) Application number: 05301029.4

(22) Date 01 filing: 08.12.2005

(51) IntCi.:
H04L 12/459005“) H041. 29/05 (2006-01)

(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GFI
HU IE IS IT LI LT LU LV MC NL PL PT HO SE SI
SK TR

Designated szte nsion States:
AL BA HFI MK YU

(30) Priority: 10.12.2004 US 009917

(71) Applicant: Alcatel
75008 Paris (FR)

(72) Inventors:
. Krstulich, Zlatko

Ontario K2A 2V4. Ottawa (CA)
- Lee, Chang-Yin

Ontario K23 6A5, Ottawa (CA)

(74) Representative: Hervouet, Sylvie et al
Feray Lenne Conseil,
39l41, avenue Aristide Briand

92163 Anthony Cedex (FR)

(54) Methods and systems 'ior connection determination in a multi-point virtual private network

(57) Amethod and systemforconnecting acustomer
equipment (CE) communication device to avirtual private
network (VPN) is provided. A virtual private network

membership signal is generated at the customer equip-
ment and transmitted to service provider equipment. The

signal includes an identifier which identities thecustomer
equipment as a member of the virlual private network.
On receiving the signal, service provider equipment such

SERVICE PROVIDER

CUSTOMER NETWOR1KZELEMENTCOMMUNICATION

05%le 'IIFN CONFIGURATIONSECTION

CUSTOMER @
IDENTIFICATION CUSTOMER

DfiglgE IDENTIFIER VP" "1
g

m.137
CARRIER NETWORK CUSTOMER DEW E

IDENTIFIER 1 41C

as a network element verifies that the customer equip—
ment belongs to the virtual private network based on the
customer identitier and only connects the customer

equipment to the VPN if the verification is successful.
The membership signal may be generated by a customer
identification device distributed to the customer and in-

stalledin customerequipmentto be con nected to a virtual
private network.

r—IDD

SERVICE PRDIIIOER

NETWOIflI'IZglEMENT CUSTOMERCOMMUNICATION

IIPIII CONFIGURATION ”it?SECTION —
CUSTOMER

IDENTIFICATION

FIG. 3

Prinled by Jouve. 75001 PARIS [PHI

APPLE EXHIBIT 1102, Page 147 of 1048

APPLE EXHIBIT 1102, Page 148 of 1048

1 EP 1 670153 A2 2

Description

Field of the Invention

[0001] The present invention relates to methods and
systems for connecting customer communication devic-
es to a virtual private network and in particular, but not
limited to, methods and systems for connecting commu-
nication devices to a multi-point virtual private network
(mpVPN).

Background of the Invention

[0002] Virtual private networks allow predefined cus-
tomer communication devices to be interconnected

across a public networkto enable private communication
between devices which belong to the same VPN. Virtual
private networks can be configured and implemented in
a variety of different ways. For example, VPNs may be
implemented using a link layer protocol such as TDM,

FFi (frame relay) or ATM (asynchronous transfer mode).
These protocols allow point-to-point connectivity be-
tween two customer communication devices by forming
a direct private connection or dedicated virtual private
circuit (V PC) between the two devices. each connection

being configured manually However. VPNs based on
these protocols are not generally implemented to allow
multi-point connections, i.e. direct connections between
all devices on the same virtual private network, with the

service provider providing meshed connectivity.
[0003] A multi-point VPN is a service that implements
an Ethernet LAN over a virtual layer 2 or layer 3 VPN in
the carrier‘s domain. and typically connects numerous
endrcustomer sites.

[0004] When configuring a virtual private network, it is
important to ensure that only the intended subscriber
equipment is connected to the VPN so that the network
privacy and security of each customer is maintained.
VPNs based on TDM, FFi or ATM are less vulnerable to

improper connection or misconfiguration as they are
mostly point—to—point in nature and typically involve
uniquelycontigured orcustom data equipme nt atthe cus—
tomer premises. This implies that random misconnec-
tions would not result in an operational link and would

very likely result in network alarms or "trouble tickets".
[0005] In contrast, configuring multi-point VPNs cor-
rectly and maintaining the configuration as customer
drops are added and removed from the VPN instance

can be error prone as it involves a number of configura—
tion steps on carrierequipmentthat is shared across mul-
tiple end users, both at the physical layer (shared CPE
ordataterminating equipment) and the Operational Sup-
port System (OSS). The new generation of Ethernet/H3

mpVPNs that interconnectcustomer CPE equipment uti—
lize widely used and well standardized protocols and in-
terfaces so that unwanted connections or "joins" to an

mpVPN could easily go undetected and could provide a
viable connection to an unintended party. Since the serv-

TO

TE

20

25

30

35

4o

45

50

55

ice provider would likely offer mpVPN services to a great
number of clients such as enterprises and institutions.

the risk and adverse conseq uences of inadvertently con—
necting the host node of one client to another client’s
mpVPN cannot be overlooked.
[0006] U.S. Patent Application Publication No.
EGO-“#0093492 describes generating a digital certificate
defining a VPN by aggregating configuration parameters
from both aservice providerandthe customer. The digital
certificate is used by the VPN service provider orthe VPN

customer to verify the VPN configuration or associated
configuration logs by comparing information contained
in the certificate with data stored at a customer worksta-

tion or in the service provider database.

[0007] When a customer communication device is to
be connected to a VPN, there is a possibility that the
physical connection of the device interface and the pro-
vider edge node will be incorrectly implemented so that
for example the customer device becomes connected to
the VPN of another customer. Although the methods dis—

cussed above may allow such a misconfiguration to be
detected, none of these methods prevent a customer
communication device from being initially connected to
an incorrect VPN to thereby prevent any communication
between the device and the incorrect VPN.

[0008] U.S. Patent Application Publication No.
2004/0088542 (Daude et al.) describes a method for in—
terconnecting different VPNs. An interconnection device
analyzes information contained in digital certificates to
identify VPN properties of a device being connected and
comparesthese properties to those contained in another
digital certificate of another VPN.
[0009] The interconnection device implements the

VPN rules from one or both of the interconnecting VPNs
which are necessary to establish a secure interconnec-
tion. The interconnection device implements secure in-
terconnection between VPNs without the needfora com—

pletely centralized decision-making process.
[0010] Draft-lETF-BONICA-i3VPN-AUTH-03.tkt"CE
to CE Authentication from Layer 3 VPNs", June 2002.
and Draft—lETF—i 3VPN—13VPN—AUTH—00tkt "CE to CE

Member Verification_for Layer 3 VPNs“ September,
2003, are concerned with the problem of VPN miscon-

figurations. A customer equipment-based verification
mechanism is proposed in which each customer VPN

site sends a "magic coo kie" or token to the provider edge
(PE) router that supports it. Upon receiving the token.
the PE router con nectsthe site to the VPN and distributes

thetoken to othercustomer sites on the VPN, which verify

the validity ofthe token. If the token is not valid, an alarm
is raised at the customerVPN sites, and in this way mis-
configurations are detected and indicated to the custom-
er. As an optional variant, the first of these references
describes an authentication process in which a PE router
that receives a magic cookie from a GE transmits an au-
thentication request which includes the magic cookie to

a customer controlled server. If the server explicitly re-
jects the authentication reg uest, the PE routerterminates

APPLE EXHIBIT 1102, Page 148 of 1048

APPLE EXHIBIT 1102, Page 149 of 1048

3 EP 1 670153 A2 4

the authentication process and will neither accept traffic
from the CE nor send traffic to the CE. However, it the
customercontrolled se rver can not be contacted or sends

no response at all, the PE router nevertheless ioins the
CE to the VPN. On the other hand, in the CE to CE based
verification method disclosed in the second ofthese two

references. there is no customer controlled authentica-

tion server and the PE simply connects the site to the
VPN and immediately distributes tokens to other custom-
er sites on the VPN.

[0011] A shortcoming of both ofthese proposals is that
they are incapable of ensuring that a connection of none
VPN member equipment to a VPN is always prevented.
Instead, they allow misconfigu rations to be detected, and
require customer interaction to rectify a carrier error.

Summary of the Invention

[0012] According to one aspect of the present inven—
tion, there is provided a customer equipment communi—

cation device comprising signal forming means adapted
to term a virtual private network membership signal tor
transmission to and use by service provider equipment,
wherein the signal includes an identifier for identifying

said customer equipment as a member of a predeter-
mined virtual private network. and is conditioned to cause
said service provider equipment to verify that said com—
munication device is a member of said predetermined
virtual private network.

[0013] According to another aspect of the present in-
vention, there is provided an apparatus for controlling
connection of a customer communication device to a vir-

tual private communication network. comprising means

for receiving a signal from a customer communication
device, determining means for determining from the sig-
nal whether or not the customer communication device

is a member of a predetermined virtual private commu-
nication network, and controlling means for controlling
connection of the customer communication device to the

predetermined virtual private network based on the de-
termination made by the determining means.
[0014] According to another aspect of the present in—

vention, there is provided a method of controlling con-
nection of a customercommunication device to a virtual

private communication network, comprising the steps of
receiving at service provider equipment a signal from a
customer communication device, determining at the
service provider equipment whether or not the customer
communication device is a member of a predetermined

virtual private communication network based on informa-

tion contained in the signal, and controlling connection
of the customer communication device to the virtual pri-
vate network based on the result of the determination.

[0015] Advantageousiy. in this arrangement, a cus—
tomer communication device, such as a switch, router or

host transmits a signal containing a customer identifier
to service providerequipment responsible forconfiguring
one or more virtual private networks. The configuration

TO

TE

20

25

30

35

4o

45

50

55

section of the service provider equipment determines
from the customer identifier contained in the signal
whether or not the customer device is a member of a

predetermined virtual private network before connecting
the communication device to the VPN. Advantageously,
this arrangement enables an incorrect physical connec-
tion of a customer comm unication device at a provider
edge node to be detected before data communication
between the device and the virtual private network is en-
abled.

[0016] Fu rlhen'nore as the authentication process is
performed by equipment underthe control of the service
provider, ratherthan requiring a customer controlled au-
thentication server, acustomeridentitierbelongingtoone
VPN is not passed to the customer of another VPN, so
that each customer identifier can remain secret as be-
tween one customer and another.

[0017] Moreover, this arrangement allows the service

provider equipment to verify whether or not customer
equipment should be connected to a VPN so that, unlike

the prior art methodologies, the service provider equip-
ment can always ensure that a connection is prevented
if the authentication process fails.
[001 B] In one embodiment, the authentication process

is performed autonomously by the service provider net—
work elements, for example. provider edge nodes, which
areconnected directly tocustomerequipmentfrom which
the VPN request is transmitted. Advantageously, this ar-
rangement removes the need for element, network, or

088 management systems to partcipate in or orches-
trate the authentication process thereby removing the
need for modifying element, network or 088 systems to
conform to a specific implementation of the authentica-

tion process. The simplification provided by this embod
iment thereby makes the authentication process more
robust and reliable.

[0019] According to another aspect of the present in—
vention, there is provided a method of requesting con-
nection ot a customerequipment communication device

to a predetermined virtual private network, comprising
the steps of: forming atsaidcustomerequipment, avirtual
private network membership signal for transmission to

and use by service provider equipment, wherein the sig-
nal includes an identifier for identifying said customer
equipment as a member of said predetermined virtual
private network and is conditioned to cause said service
providerequipment to verifythat said communication de-
vice is a member of said predetermined virtual private
network, andtransmitting said signal from said customer

equipment communication device to said service provid-
er equipment.

[0020] According to another aspect of the present in-
vention, there is provided a method of controlling con-
nection of a customer communication device to a virtual

private communication network comprising: monitoring

at se rvice provider equipment, receipt of apredetermined
signal from a customer communication device, and con-
trolling connection of said customer communication de-

APPLE EXHIBIT 1102, Page 149 of 1048

APPLE EXHIBIT 1102, Page 150 of 1048

5 EP 1 670153 A2 5

vice to a predetermined virtual private communication
network based on whether or notsaid predetermined sig-

nal is received at said service provider equipment within
a predetermined time.

[0021] In some embodiments, where a connection be—
tween the customer communication device and the vir-

tual private communication network is previously estab-
lished, the step of controlling comprises disabling the
connection if the signal is not received within said pre-
determined time.

[0022] In some embodiments, where a connection be-
tween the customer communication device and the virr

tual private communication network is previously estab-
lished, the step ofcontrolling comprises continuing to en-
able the established connection if the signal is received

within said predetermined time.
[0023] In some embodiments, the controlling is per-
formed as part of a virtual private network configuration
process at the service provider equipment.
[0024] According to another aspect of the present in-

vention, there is provided an apparatus for controlling
connection of a customer communication device to a vir-

tual private communication network comprising: means
for receiving a signal from a customer communication
device. determining means fordeterminlng from informa-

tion in said signal whether or not said customer commu-
nication device is a member of a predetermined virtual
private communication network, and controlling means
for controlling connection of said customer communica-
tion device to said predetermined virtual private network
based on the determination made by said determining
means.

[0025] According to another aspect of the present in-

vention, there is provided a method of detecting member
equipment of a virtual private network comprising the

steps of: receiving signals which originate from customer
equipment communication devices, the signals each
containing acustomer identifier and a virtual private net-
work identifier, detecting the identifiers in the signals and

recording information based on each detected identifier.
[0026] According to another aspect of the present in—
vention,there is provided a customer identification device

comprising: a non-volatile memory forstoring acustomer
identifier, signal forming means forforrning a signal con-
ditioned for transmission to a virtual private network con-
figuration section of a predetermined carrier network and
for causing said configuration section to verify that said
device is a member of a predetermined virtual private
network, the signal containing said customer identifier,

and connection means for connecting said device to a
customer communication device.

[0027] According to another aspect of the present in-
vention, there is provided a method of controlling con-

nection of customer communication equipment to a vir—

tual private network. comprising the steps of: receiving
at service providerequipment a predeterminedcustomer
identifier associated with a virtual private network from a
customer equipment communication device, subse-

TO

TE

20

25

30

35

4o

45

50

55

quently receiving another customer identifier, determin-
ing whether the other customer identifier is sufficiently

similar to said predetermined customer identifier that
both identifiers belong to the same customer, and con—
trolling connection of service provider equipment based
on the result of said determining step.
[0028] According to another aspect of the present in-
vention, there is provided an apparatus for controlling
connectionsto one ormorevirtual private networks, com-
prising receiving means for receiving from a customer

equipment communication device a predetermined cus-
tomer identifier associated with a virtual private network.
and for receiving subsequent to receipt of said predeter-
mined customer identifier, another customer identifier,

and verification means for verifying whether the other
customer identifier is sufficiently similar to said predeter-
mined customer identifier that both identifiers belong to
the same customer, and connection control means for

controlling connection of customer communication
equipment to said virtual private network based on the

result of the verification by said verification means.
[0029] In some embodiments, the customer identifier
comprises afield of characters which is common to all
customer equipment of a predetermined customerto be

connected to the virtual private network.
[0030] The characters of the field may be selected by
the customer.

[0031] In some embodiments, the range of characters
from which each character can be selected and/or the

number of characters in the field, is sufficient to cause

the probability of any virtual private network customer of
the service provider selecting the same sequence of
characters to be less than a predetermined value, for

example less than 1 in a 1,000,000.

Brief Description of the Drawings

[0032]
tion will now be described with reference to the drawings
in which:

Examples of embodiments of the present inven-

Figure 1 shows a schematic diagram of acommuni—
cation network in which an embodiment of the

present invention is implemented;

Figure 2 shows an example of a customer identifi-
cation packet according to an embodiment of the
present invention;

Figure 3 shows a communication network in which
another embodiment of the present invention is im-
plemented;

Figure 4 shows a communication network in which
another embodiment of the present invention is im-
plemented; and

Figure 5 shows an embodiment of a customer iden-

APPLE EXHIBIT 1102, Page 150 of 1048

APPLE EXHIBIT 1102, Page 151 of 1048

7 EP 1 670153 A2 8

tification device according to an embodiment of the
present invention.

Description of Embodiments

[0033] Figure 1 shows a schematic diagram 01a com-
munication network in which an embodiment of the

presentinvention is implemented. In particular, Figure t
shows first andseccnd customercommunication devices

3, 5 which are to be connected to a virtual private network

7 overa carrier network 9 which is managed by a network
management system 11 . The customer communication
devices may comprise any communication device con-
nectable to a network, for example, a workstation, a host
computer, a switch or a router. A device 13, t5 is con-
nected to each customer communication device which

contains an identifier for the customer. The identifier is
transmitted from the customer communication device to

the carrier network 9 and is used by the carrier network
to verify' that the customer communication device is a

member of the virtual private netwon-c 7.
[0034] In one implementation, the carrier network 9 is
adapted to verify, using the customer identifier transmit
ted from the communication device, that the communi-
cation device is a member of the VPN before the carrier
network connects the customer communication device

3, 5 to the VPN 7. Alternatively, or in addition, the cus—
tomer identifier may be transmitted from the customer
communication device to the carrier network after the
customer communication device has been connected to

the VPN to verify that the communication device is an
authorized member of the VPN, and the signal may be
transmitted periodically.

[0035] The customer identification device 13. 15 may
comprise any suitable device that can be connected to
the customer communication device for transmitting, or
causing the customer communication device to transmit,
a customer identifier to the carrier network. The device

may include a memory for storing the customer identifier
and mayturtherinclude asignai generatorforgenerating
a signal which includes the customer identifierfor trans—
missionto the carriernetwork.Alternatively,thecustomer

identification device may be adapted to transmit the cus-
tomer identifier to a data communications processor i 7,
19 of the customer communication device and the proc-

essor may generate a signal containing the customer
identifier for transmission to the carrier network.

[0036] In this embodiment, the network management
system 1 1 includes a virtual private network configuration

section 21 which is responsible forthe connection of cus-

tomer communication devices to one or more virtual pri-
vate networks. The VPN configuration section 21 in-
cludes a table 23 containing customer identifiers and an
identification of each virtual private network with which
they are associated.
[0037] In one implementation, a message or packet

(or token) 25, 27 addressed to the VPN configuration
section of the carrier network is formed at the customer

TO

TE

20

25

30

35

4o

45

50

55

communication device, which includes the customer
identifier recorded in the customer identification device

13. 15, and is transmitted from the customercommuni—

cation device to the network management system 11. On
receiving the message, the VPN configuration section 21
checks thecustomeridentifieragainstthe list of customer
identifiers stored in the table 23, and if a match is found,

the VPN configuration section pemits the customer com-
munication device identified in the message to be con-
nected to the VPN associated with the customer identi-

fier. However, if the customer identifier in the message
does not match any customeridentifiers contained in the
table 23, the VPN configuration section prohibits con nec-
tion of the customer communication device to any VPN.
[0038] In another implementation, the packet 25, 27
transmitted from the customer communication device

may contain a request for the customer communication
device to be con nected to a particular VPN. In this case,
the packetcontains the VPN identifieridentifyingthe VPN
to which the customer communication device is to be

connected, and the customeridentitierwhich may include
a group identifier andfor an identification of the customer
communication device, such as its network address. On

receiving the request packet, the VPN configuration sec-
tion 21 checks the VPN ID and the customer identifier

contained in the packet with those stored in the table 23
and ifa match of both parameters is found, the VPN con—
figuration section 21 allows the customercommunication
device 3 to be connected to the VPN, othenivise con nec-
tion to the VPN is denied.

[0039] Advantageously, this arrangement, in which an
authentication signal is transmitted from a customer com-
munication device to a carrier network, allows the carrier

network to verify reliably whether or not the customer
communication device is a member of a predetermined
virtual private network before the device is connected to

the VPN, and therefore prevents VPN misconfigurations.
Furthermore, the customer communication device may
be adapted to periodically transmit similar packets con-
taining the customer ID to the carrier network to enable
the carriernetwork to periodically check that the custom—
er communication device continues to be a member of

the virtual private network after being connected thereto.
[0040] In one embodiment, if a customer communica-
tion device becomes disconnected from the VPN, and its

reconnection to the VPN is subsequently required, the
customer communication device transmits a reconnec-

tion request and the customer ID (either separately or
together) to the carrier network equipment responsible

for VPN membership verification and connection. On de-
tecting the request and customer ID, the carrier network
equipment authenticalesthe customer equipment as be-

longing to the VPN using the customer iD before allowing
reconnection.

[0041] The customer identifier may comprise any suit-
able identifier and may include several parts. In one arm

bodiment, the customer identifier may simply comprise
the name of the customer or another identifier which is

APPLE EXHIBIT 1102, Page 151 of 1048

APPLE EXHIBIT 1102, Page 152 of 1048

9 EP1670153A2 10

unique to the customer. The customer identifier may
comprise a common or group customer identifier which

is used by customer communication devices all belong-
ing to the same customer and a second identifier which
additionally identifies the particular customer communi—

cation device. The customer identifier may or may not
also be encrypted.
[0042] An example of a VPN membership verification
packet is shown in Figure 9. The membership verification
packet 41 includes a destination address which enables

the packet to be transmitted to the VPN configuration
section of the carrier network. The packet also includes
a number of fields 45, 47, 49 which, in this embodiment

contain the VPN identifier, a group identifier for the cus-
tomer, and an identifier identifying the particular commu-
nication device to be connected to the VPN. Together
with an appropriate query (e.g. one or more commands)
the customer communication device will transmit an ap-
propriate response containing the verification packet as
shown in Figure 2 enabling the customer communication

device to be verified by the service provider.
[0043] In other embodiments of the present invention,
authentication of a customer communication device to

be connected to a particular VPN may be performed by
network devices ofthe carrier network otherthan the net-

work management system. For example, authentication
may be performed by network elements or nodes of the
network such as a provider edge {PE} node ofthecarrier
network. An example of such an implementation is de-

scribed below with reference to Figure 3.
[0044] Fteferring to Figure 3, a carrier network 125 in—

cludes a plurality of PE nodes 127, 129, each of which
serves as both ingress and egress nodes to customer
communication devices 131, 133 connected thereto.

Each PE node 127, 129 includes a VPN configuration
section 135, 137 for configuring one or more virtual pri-
vate networks and which also authenticates customer

identification devices to be connected (or reconnected)
or which are already connected to a particular VPN.
[0045] Each customer communication device 1 31, 133
includes a customer identification device 139, 141 con—
nected thereto which transmits or causes transmission

of a customer identifier from the customer communica-
tion device to a PE node of the carrier network 125.

[0046] When first configuring a new VPN 107, a record
identifying the VPN and a customer identifier associated
with the VPN is created and stored in the VPN configu-
ration section of a PE node of the carrier network 125.

This record may be created in response to a VPN con—
figuration request transmitted from one of the customer
communication devices to be connected to the VPN. The

request may include the customer identifier and also a
VPN identifier which is to be created. Alternatively, the
VPN identifier may be determined by the carrier network
and transmitted to the customer communication device.

On receipt of the request. which includes the customer
identifier, the PE node stores the customer identifierto-

getherwith the VPN identifier and transmits both param-

TO

TE

20

25

30

35

4o

45

50

55

etersto one or more other PE nodes ofthe carrier network
125.

[0047] Each additional customer communication de—
vice which is connected to the VPN is provided with a
customer identification device which causes a message
or packet containing the customer identifier to be trans-
mitted to the PE node of the carrier network to which it
is connected to enable the PE node to authenticate the
customer communication device as a member of the
VPN. The customer identification device connected to

each customercommunication device may be similar to
any of the embodiments described above in connection
with Figure 1 and may operate in a similar manner.
[0048] The customer identifier generally includes an
identifier which is common to all members of the VPN

and may also include an additional identifier which
uniquely identifies the particular customer communica-
tion device. The customer identifier signal transmitted
from each customer communication device enables the

PE node to which it is connected to verify that the cus—
tomer device is a member of the VPN group before al-

lowing the connection, and this arrangement therefore
prevents incorrect communication devices from being
connected to the VPN. Furthermore, this arrangement
uses PE nodes to verify whether or not a particular cus—
tomer communication device should be connected to a

VPN without involving the element management, net—
work management, or the Operational Support System
(088), andtherefore does notinvolve and is independent

of higher layers of software applications. This arrange-
ment is also more robust as it does not rely upon the
success of communications to and from the 085 or upon
the 085 operating properly. orto have been so modified.

to provide the required verification. This arrangement ale
so does not require any pro-configuration regarding the
association of a group customer identification to a spe-
cific VPN.

[0049] Customeridentification devices may be provid-
ed to the customer for connection to the customer com-

munication devices when the customer subscribes to a

virtual private network service. For example, a quantity
of customer identification devices may be issued to the

customer by the service provider of the virtual private
network service and distributed to each customer site
which is to be connected to the service. A customer iden-

tification device is connected by authorized personnel
such as IT staff, to customer equipment at each site that
is to be connected to the VPN service. Each customer

identification device causes a customer lD signal to be

transmittedto the VPN configuration application or proc-
ess of the carrier network, which can then verify that the
customer equipment at each site should be connected
to the VPN before allowing the connection.
[0050] In an alternative embodiment, customer identi—
fication devices may be preinstalled in the customer com-
munication devices, for example by the manufacturer or

system integrator, rather than at a later time after the
communication devices have been installed at the cus-

APPLE EXHIBIT 1102, Page 152 of 1048

APPLE EXHIBIT 1102, Page 153 of 1048

11 EP1670153A2 12

tomersite. When a VPN service is required, the customer
identification devices could be activated to transmit or

cause transmission of the customer ID to the configura-
tion process of the carrier network. Knowledge of the
customer ID is independently passed tothe configuration
process of the carrier network to allow verification that
customer equipment should be connected to a VPN.
[0051] Since, in this embodiment, the group identifica-
tion may be known to a third party, i_e. the manufacturer
of the communication device with the preinstalled cus-
tomer identification device, the customer identification

signal may be suitably secured by any appropriate tech
nique such as encryption techniques of which public key
infrastructure (PKI)techniques are one example. In this
case, a key or customer signature is provided to the car-
rier networkto allow the carrier network to read and au-

thenticate the customer ID contained in the signal. It the
customer key or signature matches, the configuration

process ofthe carrier network allows the connection and
enables data communication, otherwise the connection
is denied.

[0052] Preinstallation of customer identification devlc-
esincustomerequipmentadvantageouslyeliminatesthe
need to separately distribute special ID devices that are

limited to one customer. thereby reducing inventory and
distribution concerns.

[0053] In another embodiment of the present inven—
tion, the customer may provide the service provider With
information that enables the service provider to query

and uniquely identify valid equipment before allowing
connection to the mpVPN. For example, the carrier net—

work may be provided with the MAC (Media Access Con-
trol) addresses of each customercommunication device

to be connected to a specific VPN instance, togetherwlth
an appropriate query(e.g. one ormore commands) which
causes the customer communication device to transmit

an appropriate response containing data which enables
the customer communication device to be verified by the
service provider as a valid member of that specific VPN.

The response signal may contain a unique customer
identifier and optionally other identifiers such as the VPN
identifierto which the communication device is to be con—

nected. In addition, the response signal may be secured,
for example, by encryption. On receipt of the response
signal by the VPN configuration process of the carrier
network, the configu ration process uses the signal to ver-
ify against its own verification data whether to connect
the communication device to the VPN instance and per-
mit data communication.

[0054] In other embodiments of the present invention,
when commissioning a new virtual private network for

the first time, the service provider equipment (eg. net-
work management system and/or network elements)

may be arranged to con nect the custom er communica—
tion device to the virtual private network from which the
customer Identifier associated with that VPN is first re

ceived by the customer equipment. Advantageously, in
this arrangement, the custom er equipment needs no pri-

1‘0

1‘5

20

25

30

35

4o

45

50

55

or knowledge of the customer identifier associated with
the VPN. On receiving subsequent requests from cus—

tomer equipment to be connected to that VPN, the VPN
configuration section of the service provider equipment
simply verifies whether the subsequently received IDs
match the first received customer ID and, if so, the con-
nection is allowed, othenivise the connection is denied.

[0055] When a new VPN is first commissioned, the
VPN configuration section may record the first received
customer ID for future use In verifying subsequently re-

quested connections. The record may be stored perma-
nently or temporarily for a limited time and then deleted.
In cases where no record of the customer ID is retained

by the service provider equipment, and a connection to
the VPN is subsequently requested, the service provider
equipment may be adapted to requestthe customer com-
munication device from which the customer ID was first

received, to retransmitthe customerlD to enabletheVPN

configuration section to compare this with the customer
ID in the subsequent request to determine whether to

allow the new requested connection.

[0056] Alternatively, the customer communication de-
vice first connected to the VPN may repeatedly transmit
the customeridentifier to the service provider equipment
to enable the VPN configuration section to use the re—

transmitted customer ID in verifying a subsequently re—
quested connection.
[0057] Advantageously, either of these two arrange-
ments obviates the need for the service provider equip-
ment to maintain a record of the customer identifier or

even needing to know what the customer ID is, thereby
significantly reducing the risk of the customer identifier
being revealed to unauthorized parties through the serv-

ice provider equipment.
[0058] The above-described VPN connection verifica-
tion process is based on acomparison ofcustomer Iden-
tifiers received from customerequipmentcommunication
devices, ratherthan with any record of a customer Iden-
tifier maintained by the service provider. The customer
identifier may be generated either by the customer orthe

service provider. Advantageously, if the customer Iden—
tifieris generated bythe customer, the customer identifier

need never be retained by the service provider equip-
ment, as the service provider equipmentsimply performs
an equivalency check between two customer identifiers
it receives. This also assists in making the customer ID
accessible to service provider personnel.
[0059] In any of the embodiments described above,

the customer identifier may comprise a plurality of char—
acters in which the range of characters from which each
character can be selected and/or the total number of

characters in the customer identifier is sufficiently large
that it would be improbable for any other VPN customer
of the same service provider to choose the same cus—
tomer ID. Forexample. the range or numberof characters

can be selected so that the probability is less than at least
1 in 50, preferably less than at least 1 in fOOO and more
preferably less than 1 in a million. This allows the cus-

APPLE EXHIBIT 1102, Page 153 of 1048

APPLE EXHIBIT 1102, Page 154 of 1048

13 EP1670153A2 14

tomer ID to be selected by the customer, ratherthan by
the service provider, in a similar manner to selecting a

PIN (Personal Identification Number) or password.
[0060] In any of the embodiments described herein,
the customer ID may comprise several parts, including
a predetermined field which is common to all equipment
of the same customer to be connected to a particular
VPN. In this case, the service provider equipment may
onlyI need to compare this predetermined field of one

customeridentifierwith the correspondingfield ofanother
customer identifier. In this way, the customer equipment
need only check that two customer identifiers are suffir
cientlysimilarto one another, andthere is no requirement
for the whole customer identifier to be the same as an-

other nor any need to check equivalency of the whole
customer identifier. The field or portion of the customer

ID selected for comparison must be that portion which is
unique to each customer. if the customer ID is selected
by the service provider, or othenrvise verified as unique,
the field may be relatively short. If the characters of the

field are selected by the customer, the field shall be suf-
ficiently long to ensure its uniqueness, as described
above.

[0061] In embodiments ofthe invention , more than one

customer identification device may be connected to or
installed in a customer communication device to provide
redundancy in case one customer ID device fails. This
is particularly beneficial when the continuation of an al-
lowed connection of a customer communication device

to a VPN, once a connection has been established, is

dependent on the continued transmission of the custom—
er identification signal from the customer equipment to
the carrier network. In this case. where failure to send

the signal would otherwise cause the carrier network to
disconnect the customer equipment from the VPN, the
provision of one or more additional customer identifica-
tion devices would allow continued transmission of the

signal andthereby prevent disconnection ofthecustomer
equipment should one customer ID device fail. Trans-
mission ofthe signal may be monitored bythe CPE equip-
ment so that failures can be detected and the auxiliary
or backup customer identification device activated, as
necessary.

[0062] Figure 4 shows an example of acommunication
network in which a customer communication device has

a plurality of customer identification devices to provide
redundancy. The components of Figure 4 are similar to
those shown in Figure 3, and like parts are designated
by the same reference numerals. In this embodiment,

each customercommunication device 131, 133 compris-
es a first customer identification device 139, 141 and a
second customer identification device 151. 153. The first

customeridentification device may constitute the normal-

ly active device which provides the customeridentifier to
the service provider network. and the second customer
identification device may constitute the redundant device
which is activated it the first customer identification de-
vice fails.

1‘0

1‘5

20

25

30

35

4o

45

50

55

[0063] Figure 5 shows a schematic diagram of a cus-
tomer identification device according to an embodiment

of the present invention. The communication device 201
comprises a memory 203 (e.g. a non-volatile memory)
which stores the customer identifier used by the service
provider equipment to authenticate whether the custom-
er equipment is member eq uipment of a predetermined
virtual private network. The memory may also contain
other data such as an identification of the virtual private
network to which the customer belongs and/or the ad-

dress of the service provider equipment which controls
authentication and connection to VPNs. The customer

identification device may also comprise a processor205
for generating a packet or other signal containing the
customer identifier used for authentication. A communi—

cation port 207 is also provided to connect the customer
identification device to customer communication equip-
ment at a customer site so that the signal generated by
the customer identification device is transmitted to the

service provider network. The port may comprise a uni—

directional outputportora bi-directional input/outputport.
The customer identification device may be powered by
either an internal or external power source, and in the
case of an external power source, the customer identifi-
cation device may be provided with suitable power re—

ceiving terrnlnals and connectors.
[0064] Another embodiment of the customer identifi—
cation device may comprise Simply a memory storing the

customer ID, and possibly other data as indicated above,
andasuitable porttorconnection to customerequipment.
The memory may comprise a non—volatile memory, so
that data can be held therein withoutthe needfora power
source. In this case. the customer equipment is adapted

to generate a suitable packet (or other signal] containing
the customer lD for transmission to the service provider
network.

[0065] Advantageously, the embodiments described
herein enable a physical connection of a customer corn-
munication device to a virtual private network to be de-
tected before data communication between the device

and the VPN is enabled. For example, an incorrect con—
nection may occur when VPN provider personnel phys—
ically connect a customer communication device intend-
ed to be connected to that customer's VPN to the VPN

of another customer, by for example, connecting the
communication iinkto an incorrectpcrt. However. before
data communication is enabled, the VPN configuration
section checks whetherthe customer identifiertransmit-
ted from the customer communication device corre—

sponds to the customer identifierfor the VPN associated

withthat port, and as the customercommunication device
is connected tothe incorrect port, the verification section
will deny the connection, and may also provide an indi-

cation of the denied connection to the VPN provider per—
sonnel so that the misconfiguration can be rectified.
[0066] Changes and modifications to the embodie

ments described herein will be apparent to those skilled
in the art.

APPLE EXHIBIT 1102, Page 154 of 1048

APPLE EXHIBIT 1102, Page 155 of 1048

15

Claims

1. A customer equipment communication device com-
prising signai forming means adapted to form a vir-
tual private network membership signal fortransmis—
sion to and use by service provider equipment,
wherein the signal includes an identifierfor identify-
ing said customer equipment as a member of a pre-
determinedvirtual private network andisconditioned
to cause said service provider equipment to verify
that said communication device is a memberof said

predetermined virtual private network.

A communication device as claimed in claim 1,

wherein said identifier comprises at least one of an
identifier uniquely identifying said customer equip-
ment and an identifier used to identify a group of

equipment belonging to said virtual private network.

A communication device as claimed in claim 2,

wherein atieastone ofsaid uniqueidentifier and said

group identifier is encrypted.

A communication device as claimed in claim 1,
wherein said identifier includes an identifier of said

customer equipment and an identifier of said prede-
termined virtual private network.

Acommunication device as claimed in any preceding
claim, wherein said signal forming means is ar-
ranged to condition said signal for transmission to
service provider equipment adapted to configure
said virtual private network.

A communication device as claimed in claim 5,

wherein said service provider equipment comprises
at least one of a service provider network manage-
ment system and a network element at the edge of
said service provider network.

Acommunication device as claimed in any preceding
claim, wherein said signal forming means is adapted

to form said signal at least one of before and after
said communication device is connected to said vir-

tual private network by said service provider.

Acommunication deviceasclaimedin anypreceding
claim, comprising signal transmission means for
transmitting said signal to said service provider

equipment.

A communication device as claimed in claim 8,

wherein said signal transmission means is adapted
to transmitsaid signal at least one of before and after
said customer communication device is connected

to said virtual private network.

10. A communication device as claimed in claim 8,

TO

1‘5

20

25

30

35

4o

45

50

55

EP 1 670153 A2

11.

12.

13.

14.

15.

16.

17.

1B.

16

wherein said signal transmission means is adapted
to repeatedly transmit said signal periodically.

A communication deviceas claimed in any preceding
claim, further comprising a second signal forming
means adapted to form said virtual private network
membership signal.

A communication device as claimed in claim 11,fur-

thercomprising detection means for detecting afail-

ore of transmission of said virtual private network
membership signal from said customer communica
tion device and for causing a virtual private network
membership signal to be formed by said second sig—
nal forming means in response to said detected fail—
UTE.

A communication device as claimed in any one of
claims 8 to i2, further comprising second signal
transmission means fortransmitting said virtual pri—

vate network membership signal to said service pro-
vider.

A communication device as claimed in claim 13, fur-

thercomprising detection meansfordetectingfailure

of transmission of said signal by said signal trans—
mission means and means for causing said signal
to be transmitted by said second transmission

means in response to detection of said failure.

A communication deviceas claimed in any preceding
claim, wherein said signal forming means is one of

(1] preinstalled in said customer eq uipmentcommu-
nication device before said communication device is

first delivered to said customer and (2) connected to
said customer equipment communication device af-
ter said communication device is first delivered to
said customer.

A communication deviceas claimed in any preceding
claim, wherein said signal forming means comprises
a customer identification device which contains said
customer identifier.

A communication deviceas claimed in any preceding
claim, furthercomprising receiving means for receiv-
ing a predetermined signal from service provider
equipment and wherein said communication device
is adapted to transmit said virtual private network

membership signal to said service provider equip-
ment in response to said predetermined signal.

A method of requesting connection of a customer
equipment communication device to a predeter—
mined virtual private network, comprising the steps
of:

forming at said customer equipment, a virtual

APPLE EXHIBIT 1102, Page 155 of 1048

APPLE EXHIBIT 1102, Page 156 of 1048

19.

20.

21.

22.

23.

17

private network membership signal fortransmis-
sion to and use by service provider equipment,

wherein the signal includes an identifierforiden-
tifying said customer equipment as a member
of said predetermined virtual private network
and is conditionedto cause said service provider
equipmentto verifythat said communication de-
vice is a member 01 said predetermined virtual
private network, and transmitting said signal

from said customer equipment communication
device to said service provider equipment.

A method as claimed in claim 18, furthercomprising
the step of connecting a customer identification de-
vice to said communication device toform said virtual

private network membership signal.

A method of controlling connection of a customer
communication device to a virtual private communi—
cation network comprising the steps of:

receiving atservice provider equipment a signal
from a customer communication device,

determining at said service provider equipment
whether or not said customer communication

device is a member of a predetermined virtual
private communication network based on infor—
mation contained in said signal, and
controlling connection of said customercommu-
nication device to said virtual private network
based on the result of said determination.

A method as claimed in claim 20. wherein said cus-

tomer communication device initially is not connect
ed to said virtual private communication network,
and wherein the step of controlling connection com-
prises enabling connection ofthe custom er commu-
nication device to said virtual private communication
network it. by said determining step. the customer
communication device is determined to be a member

of the virtual private communication network.

A method as claimed in claim 20, wherein said cus-

tomer communication device is previously con nect-
edto said predetermined virtual private communica-
tion network, and the step of controlling connection
comprises at least one of (1) permitting continued
enablement of said connection it, by said detenni-
nation step, the customer device is determinedto be

a member of the predetermined virtual private com-
munication network, and [2) prohibiting aconnection
of said customer communication device to said pre-
determined virtual private communication network,
if by said determining step, the customer communi—
cation device is determined not to be a member of

said virtual private communication network.

A method as claimed in any one of claims 20 to 22,

EP 1 670153 A2

24.
TO

15 25.

20 26.

25

30 27.

35 2B.

40

29.

45

30.
so

55

31.

10

1B

furthercomprisingthe step of monitoring atsaid serv-
ice provider equipment receipt of a subsequent pre—

determined signal from said customer communica—
tion device, and controlling connection of said cus—
tomer communication device to said virtual private
communication network in response to said monitor-
ing.

A method as claimed in claim 23, wherein the step
of controlling said connection in response to said

monitoring comprises disabling said connection it
said further signal is not received within a predetera
mined time.

A method as claimed in any one of claims 20 to 24,
wherein said service provider equipment comprises
at least one of a network management system and
a provider edge network element.

A method as claimed in any one of claims 20 to 25,

further comprising the step of transmitting from said
service provider equipment a customer identifier
identifying said customer and a VPN identifier idene
tifying said predetermined virtual private network to

one or more provider edge network elements if. by
said determining step. said customer communica—
tion device is determined to be a member of said

predetermined virtual private network.

A method as claimed in any one of claims 20 to 26,
wherein said detemining step is performed as part

of a virtual private network configuration process in
said service provider equipment.

A method as claimed in claim 20, comprising receiv-
ing at said service provider equipment a signal re-
questing reconnection of a previously connected but
subsequently disconnected customer communica-
tion device, and subsequently performing said de-
termining and controlling steps in response to said
signal containing said information.

A method as claimed in any one of claims 20 to 31,
furthercomprising the step of providing said custom-
er with a customer identification device for use in

generating said signal from said customer commu-
nication device.

A method as claimed in claim 18, further comprising
providing first and second independently operable
customer identification devices each capable of

forming said virtual private network membership sig-
nal, monitoring said first customer identification de-

vice from said virtual private network membership
signal if said first customer identification device fails.

An apparatus for controlling connection of a custom-
ercommunication device to a virtual private commu-

APPLE EXHIBIT 1102, Page 156 of 1048

APPLE EXHIBIT 1102, Page 157 of 1048

32.

33.

34.

35.

36.

19

nication network comprising:

means for receiving a signal from a customer
communication device,

determining means for determining from infor—
mation in said signal whether or not said cus-
tomer communication device is a member of a

predetermined virtual private communication
network, and

controlling means for controlling connection of
said customer communication device to said

predetermined virtual private network based on
the determination made by said determining
means

An apparatus as claimed in claim 38, wherein said
controlling means is adapted to enable connection
of said customer communication device to said pre-
determined virtual private network if said determin—
ing means determines that the customer communi—
cation device is a member of said predetermined vir-

tual private communication network.

An apparatus as claimed in claim 31 or 32, wherein

said controlling means is adaptedto prohibitconnec-
tion of the customer communication device to said

predetermined virtual private network if said deter—
mining means determines that said customer com-
munication device is not a member of said predeter-
mined virtual private network.

An apparatus as claimed in any one of claims at to
33, wherein said information comprises at least one
of (1) a customeridentifier, and (2) an identifieridenr
tifying said predetermined virtual private communi-
cation network

An apparatus forcontrolli ng connection of a custom-
er communication device to a virtual private commu-
nication network comprising:

monitoringmeansformoniton'ng receipt ofapre—
determined signal trcm a customer communica-
tion device, and

controlling means for controlling connection of
said customer communication device to a pre-
determined virtual private communication net-
work based on whether or not said predeter-

mined signal is received within a predetermined
time.

An apparatus as claimed in claim 35, wherein said

controlling means is adapted to at least one of (i)
disable a previously established connection of said
customer communication device to said virtual pri-

vate network if said predetermined signal is not re
ceived within said predeterminedtime,and(2)permit
a previously established connection between a cus-

TO

TE

20

25

30

35

4o

45

50

55

11

EP 1 670153 A2 20

tomer communication device and said predeter-
mined virtual private network tc continue it said pre—

determined signal is received within said predeter—
mined time.

37. An apparatus as claimed in claim 35 or 36, further
comprising indicator means for providing an indica-
tion to an operatorifsaid predetermined signal is not
received within said predetermined time.

SB. A customer identification device comprising:

a non-volatile memory for storing a customer
identifier,signaitcmiingmeanstorfcrmingasig—
nal conditioned for transmission to a virtual pri—
vate network configuration section of a prede-
termined carrier network and for causing said
configuration section to verify that said device
is a member of a predetermined virtual private

network, the signal containing said customer
identifier, and

connection means for connecting said device to
a customer communication device.

39. Amethod of controllingconnection ofcustomeroom—

munication equipment to a virtual private network,
comprising the steps of:

receiving at service provider equipment a pre-
determined customer identifier associated with

a virtual private network from a customer equip—
ment communication device,

subsequently receiving another customer iden-
tifier,

determining whether the other customer identi-
fier is sufficiently similar to said predetermined
customer identifier that both identifiers belong
to the same customer, and

controlling connection ofservice provider equip-
ment based on the result of said determining
step.

40. A method as claimed in claim 39, wherein said pre-

41.

determined customer identifier is the first customer

identifier associated with said virtual private network

to be received, and con necting the customer equip-
ment communication device from which said first

customer identifier is received to said virtual private
network.

A method as claimed in claim 40, wherein said other
customer identifier is received from another custom-

er equipment communication device, and connect-
ing said other customer equipment communication
device to said virtual private network if said other
customer identifier is determined to be sufficiently

similar to said predetermined customer identifier.

APPLE EXHIBIT 1102, Page 157 of 1048

APPLE EXHIBIT 1102, Page 158 of 1048

42.

43.

44.

45.

45.

47.

4B.

49.

50.

21

A method as claimed in claim 40, wherein said other
customer identifier is received from another custom-

er equipment communication device. and denying
connection of said other customer equipment com-
munication device to said virtual private network if
the other customer identifier is determined to be in-

sufficiently similar to said predetermined customer
identifier.

A method as claimed in any one of claims 39 to 42,

further comprising requesting the customer equip-
ment communication device from which said preder
termined customer identifieris received to send said

predetermined customer identifier to said service
providereq uipment again in response to saidservice
provider equipment receiving said other customer

identifier, and wherein said determining step is per-
formed based on the retransmitted predetermined
customer identifier.

A method as claimed in any one of claims 39 to 43,
comprising repetitively receivingsaid predetermined
customer identifier which is retransmitted from said

customer equipment communication device and

wherein said determining step is performed based
on a retransmitted predetermined customer identifi-
er.

A method as claimed in any one of claims 39 to 44,
wherein said predetermined customer identifier in-
cludes a field of characters which is common to all

customer equipment of a predetermined customer
to be connected to a predetermined VPN.

A method as claimed in claim 45, wherein the char-

acters of said field are selected by said customer.

A method as claimed in claim 45 or 46, wherein at

least one of (a) the range of characters from which
each character in said field can be selected and (b)
the number of characters in said field is sufficient to

causethe probability of any othercustomer selecting

the same sequence of characters to be less than a
predetermined value.

A method as claimed in claim 47, wherein said pre-
determined value is 1 in a million.

A method as claimed in any one of claims 45 to 48,

wherein said determining step comprises comparing
saidfield with afield contained in said othercustomer
identifier.

Apparatus for controlling connections to one or more

virtual private networks. comprising receiving means
for receiving from a customer equipment communi
cation device a predetermined customer identifier
associated with a virtual private network, and for re-

TO

TE

20

25

30

35

4o

45

50

55

12

EP 1 670153 A2

51.

52.

53.

54.

22

ceiving subsequent to receipt of said predetermined
customer identifier, another customer identifier. and

verification means for verifying whether the other
customer identifier is sufficiently similar to said pre—
determined customer identifier that both identifiers

belongtothesamecustomer, andconnection control
means for controlling con nection of customer com-
mu nication equipmentto said virtual private network
based on the result of the verification by said verifi-
cation means.

An apparatus as claimed in claim 50, wherein said
connection control means is adapted to connect to
said virtual private network the customer equipment
communication device from which a customer iden-

tifier associated with said virtual private network is

first received by said apparatus.

An apparatus as claimed in claim 51, wherein said
connection control means is adapted to connect a

customer equipment communication device from
which said othercustomeridentifieris receivedifsaid
verification means determines thattheothercustome

eridentifier is sufficiently similarto said first received
customer identifier.

An apparatus as claimed in claim 52, further com—
prising transmitting means for transmitting to said
first connected customer communication device a

request for said predetermined customer identifier
in response to receiving said subsequent customer
identifier and wherein said verification means is

adapted to verify whether said other customer iden-
tifieris sufficiently similarto said predetermined cuss
tomer identifier transmitted from said customer

equipment in response to said request.

An apparatus as claimed in any one of claims 50 to

53,wherein said customeridentifiercomprises afield
ofcharacters which is common to all customer equip-
me nt of a predetermined custom er to be connected
to said virtual private network.

APPLE EXHIBIT 1102, Page 158 of 1048

APPLE EXHIBIT 1102, Page 159 of 1048

EP 1 670153 A2

H.05.—EmE_u__._.zm_o_28.25_“__._.zm_o_5.28.25 mmxmozflmz5.225mmammm—uommmacomm—commIEar—2mm:EEszuE_u__._.zm_:_mus—EmaI

mmmagma22:22:55.8MERE225222258mus—EmaEEEmzuEar—2mm:52:58
m225mm538sz2%flEmhm>mHamEmw<z<E£52.52

13

APPLE EXHIBIT 1102, Page 159 of 1048

APPLE EXHIBIT 1102, Page 160 of 1048

EP 1 670153 A2

PACKET

fl

VPN
CUSTOMER CUSTOMER

CONFIGURATION
EOUIPMENT ID GROUP ID ADDRESS

Q E Q
FIG. 2

14

APPLE EXHIBIT 1102, Page 160 of 1048

APPLE EXHIBIT 1102, Page 161 of 1048

EP 1 670153 A2

:335mmzquurEsz525%”.a55mm22:22:258mus—Ema

EECEE$5558
a22.5%zozamswzzou2%aEmzmdxmoabz$2.5m;wusfimDank

m.QEflEssa:EES

53:59EEDBB
a225%22:23:282%a._.__,_m_s_m_._m_xmopfimz$953....851%

a55%22525“...$5.053Fm—mean2232252285.25.53

15

APPLE EXHIBIT 1102, Page 161 of 1048

APPLE EXHIBIT 1102, Page 162 of 1048

EP 1 670153 A2

mm—MERE29.52;;sz—$59.532:mafia29.52;;sz—$55.53amean222223528$5553

Ifizzfie$5558
azo_._.om_mzEEmDGEZDU2%.3E55“€255:$285.65%

w.UHma:35:$53

5:55a2%52239a225mm222:8.sz2%ESEE53:2EEDE5.3%

a35:225.555mus—Emaameanzo_._.<u_n=._.zm_n__$55.58aSEQ3:523:58$5.33”.

16

APPLE EXHIBIT 1102, Page 162 of 1048

APPLE EXHIBIT 1102, Page 163 of 1048

EP 1 670153 A2

MEMORY

PROCESSOR!

205

FIG. 5

1?"

APPLE EXHIBIT 1102, Page 163 of 1048

APPLE EXHIBIT 1102, Page 164 of 1048

PCT WORLD IN'I‘ELLEC’IUAD PROPERTY ORGANIZATIONIn [emotional Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 i (11] International Publication Number: W0 00/157095

G06F 1100 A1 . .
(43) International Publication Date: 9 November 2000 (09.11.00)

(21) International Application Number: PC’J‘XUSOO/11545 (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, Fl, GB, GD,

(22) International Filing Date: 26 April 2000 (26.04.00) GE, GH, GM. HR, HU, ID, IL, IN, IS. JP. KE. KG, KP.
KR, KZ, LC, LK, LR, Ls, LT, LU, LV, MD, MG, MK,
MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, 31,

(30) Priority Data: SK, SL, TJ, TM, TR, T1", UA, U0, U2, VN, YU, 2A, ZW,
60/131,769 30 April 1999 (30.04.99) US ARIPO patent (Gll, GM, KE. LS. MW, SD, SL, SZ, TZ,
09l328,737 9 June 1999 (09.06.99) US UG, ZW). Eurasian patent (AM, AZ, BY, KG, KZ, MD,

RU. TJ. TM). European patent (AT, BE, CH, CY, DE, DK,
ES, FT, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI

(71) Applicant: TRYM’EDIA SYSTEMS [US/US]: 1516 Folsom patent (BF, Bi, CF, CG, CI, CM, GA, GN, GW, ML, MR,
Street, San Francisco, CA 94103 (US). NE, SN, TD, TG).

(72) Inventor: TORRUBlA—SAEZ, Andres; Rambla Mendez
Nunez, 34—1, E—03002 Alicante (ES). Published

With international search report.

(74) Agents: GLENN, Michael, A. et 3.1.; Glenn Patent Group, Suite Before the expiration of the time limit for amending the
L. 3475 Edison Way, Menlo Park. CA 94025 (US). claims and to be republished in the event of the receipt ofamendments.

(54) Title: METHODS AND APPARATUS FOR SECURE DISTRIBUTION OF SOP] WARE

(57) Abstract

Software is securely distributed with limited usage rights. The software may he an executable program and/or one or more data files
such as image or multimedia data files. The software includes an access control object which prevents at least some usage of the software
without use of a first access control code. The first access control code is produced based on selected information characteristic of the
user’s computer system. The access control code is produced in a server computer to which the user directs a request for the access control
code. The user makes a payment to receive the access control code. which is then dowuloaded to the user’s computer system.

APPLE EXHIBIT 1102, Page 164 of 1048

APPLE EXHIBIT 1102, Page 165 of 1048

AL
AM
AT
AU
AZ
"A
BB
HE
[IF
BG
1]]
BR
BY
CA
CF
CG
CH
CI
CM
CM
CU
CZ.
DE
DK

Albania
Armenia
Ausn-ia
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria
Benin
Brazil
Belarus
Canada

Central African Republic
Congo
Switzerland
Cfite d'ivoire
Cameroon
China
Cuba

Czech Republic
Germ any
Denmark
Estonia

ES
FI
FR
GA
GD
GE
CH
CH
GR
HU
IF.
I].
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI
LK

FOR THE PURPOSES OF INFORMATION ONLY

Spain
Finland
France
Gabon
Uniled Kingdom
Georgia
Ghana
Guinea
Greece
Hungary
Ireland
Israel
Iceland
Italy
Japan
Kenya
Kyrgyzstan
Democratic People‘s
Republic of Korea
Republic of Korea
Kazakstnn
Saint Lucia
Liechtenstein
Sri Lnnka
Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

[amino
Lithuania
LUJCmbourg
Latvia
Monaco

Republic of Moldova
Madagascar
The former Yugoslav
Republic of Macedonia
Mali

Mongolia
Mauritania
Malawi
Mexico
Niger
Netherlands
Norway
New Zenlaild
Poland
Portugal
Romania
Russian Federation
Sudan
Sweden
Singapore

APPLE EXHIBIT 1102, Page 165 of 1048

SI
SK
SN
5Z
TD
TG
TJ
TM
TR
TT
UA
UG
U S
UI
VN
YU
2.“?

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Slovenia
Slovakia
Senegal
Swaziland
Chad
Togo
Tajikistan
Turkmcuialéui
'llurkey
Trinidad and ’l‘obago
Ukraine
Uganda
United States of America.
Uzbekistan
Vial Nam

Yugoslavia
Zimbabwe

APPLE EXHIBIT 1102, Page 166 of 1048

10

15

20

W0 00/671195 PCT/USDO/l 1545

METHODS AND APPARATUS FOR SECURE

DISTRIBUTION OF SOFTWARE

Background of th e Invention

The present invention relates to secure methods for distributing software and

data objects, as well as to access-controlled software and data objects, and

computer systems which practice or utilize any of the foregoing.

Commercial distribution of software and data (such as media files and reports)

by data communication is a very rapidly growing form of commerce. It is both

efficient and convenient as compared to traditional distribution methods.

Distribution of software and data on a "Try and Buy“ basis permits the user to

run or "demo" the product before committing to buy it. This assumes that the

software licensor or media distributor somehow exercises control over the use of the

product at least until the recipient buys the right to use it. The widespread availability

of data communication. especially via the Internet, also emphasizes the need for the

software licensor and the media distributor to exercise control over their products.

One technique for controlting access to executables involves “wrapping" the

executable to be controlied within a second program, termed a "wrapper". In effect,

the executable to be controlled and the wrapper are joined into one executable, in

which the wrapper is executed first and controls access to the wrapped executable.

However, conventional software protection systems based on wrapping are

easily circumvented by class attacks which destroy the security otherwise afforded

by a given type of wrapper. This is achieved through a modification of only a singte

part of the wrapper which is identical in all wrappers of that type. Generic

unprotectors can easily be obtained via the Internet.

APPLE EXHIBIT 1102, Page 166 of 1048

APPLE EXHIBIT 1102, Page 167 of 1048

10

15

20

WO 00167095 2 PCTfUSOD/l 1545

Another form of attack is the so-called "dump attack" in which the attacker

waits for the wrapped application to be decompressed and/or decrypted in memory,

and then dumps it to a hard disk in its original, unprotected state. Programs to carry

out dump attacks also are easily obtained via the Internet.

A widely used security device injects new code into an existing executable in

order to control access to the latter. When the executable is run, a specially-

designed DLL executable is loaded for controlling access to the existing executable.

The presumed “security" afforded by this scheme is circumvented by eliminating the

call to the DLL or by modifying the DLL itself.

It has been proposed to package data objects with executables which carry

out such control functions.

A dedicated user program is required to decrypt. decompress and format the

data for display by a monitor and/or an audio reproduction device. Consequently, it

is necessary to provide a different user program for each data format which may be

encountered. For example, a different program is required to play an avi file than is

used to display a bmp or JPEG file.

It would, therefore, be desirable to provide methods, software and computer

systems which control access to data objects, but do not require different programs

to display or present objects in various formats. It would also be desirable to provide

methods, software and computer systems which control access to executables but

which are not subject to class attacks or dump attacks.

Summary of the Invention

As used in this application, the following terms shall have the indicated

meanings:

APPLE EXHIBIT 1102, Page 167 of 1048

APPLE EXHIBIT 1102, Page 168 of 1048

10

15

W0 Off/67095 3 PCTsttiO/11545

Software: includes both data and programming instructions.

Package: any software to be stored, accessed, loaded, assembled, prepared

for transmission or received as a unit.

file—ct: any software to be run, utilized or displayed as a unit.

Feature: a “feature” of an object is any function, instruction, capability, or

information included therein, or controlled or enabled thereby.

Computer System: includes a single computer or multiple cooperating

computers, and includes one or more PC’s, mainframes, digital processors,

workstations, DSP’s or a computer network or networks, or a computer internetwork.

Wrapping: joining one executable with another executable in a package, one

of the executables (termed the "Wrapper") being executed first and controlling

access to the other executable.

Watermark: includes information in software which either enables

identification of an owner, licensee, distributee or another having rights in or an

obligation in connection with the software, or enables identification of a version or

copy of the software. Usually, but not necessarily, the watermark is imperceptible

and preferably is difficult to remove from the software.

Padding Area: a space within a software object or package which does not

contain required code or data.

In accordance with an aspect of the present invention, a method of securely

distributing software with limited usage rights is provided. The method comprises:

supplying software for distribution to a user, the software including an access control

object for preventing at least some usage thereof on a computer system without the

use of a first access control code; producing the first access control code based on

APPLE EXHIBIT 1102, Page 168 of 1048

APPLE EXHIBIT 1102, Page 169 of 1048

10

15

20

W0 00167095 4 PCT/USOOI] 1545

selected information characteristic of the predetermined computer system; and

supplying the first access control code to the predetermined computer system to

enable the at least some usage of the software.

In accordance with another aspect of the present invention, an executable

object is provided, comprising: a first code portion comprising first predetermined

instructions; and a second code portion comprising loading instructions required for

loading the first code portion in a memory of a computer system to be programmed

thereby, the second code portion being operative to control the computer system to

erase the loading instructions from memory upon loading the first code portion in

memory.

In accordance with still another aspect of the invention. a software package is

provided, comprising: a first executable object, and a wrapper for the first executable

object, the wrapper being operative to erase predetermined software from the first

executable object when it has been loaded in running format in memory.

In accordance with a further aspect of the present invention, a computer

system is provided, comprising: a processor; a memory; an instruction input device;

and an executable stored in the computer system, the executable having a first code

portion comprising first predetermined instructions for execution by the processor,

and a second code portion including loading instructions, the processor being

operative upon receipt of a predetermined instruction from the instruction input

device to load the second code portion in the memory, the processor being

operative under the control of the loading instructions to load the first code portion in

the memory and operative under the control of the second code portion to erase the

loading instructions from the memory upon loading the first code portion in memory.

APPLE EXHIBIT 1102, Page 169 of 1048

APPLE EXHIBIT 1102, Page 170 of 1048

U1

10

15

W0 00/157095 5 PCT/U500” 1545

In accordance with yet another aspect of the present inventiOn, a software

package comprises: a first object providing a first set of a plurality of features; a

second object providing a second set of a plurality of features including some, but

less than all, of the features included in the first set; and an access control portion

affording selective access to the first software object and/or the second software

object.

In accordance with still another aspect of the present invention, a software

package is provided, comprising: a first executable object, and a wrapper for the first

executable object, the first executable object being operative, while running, to

access a feature of the wrapper; the wrapper being operative to supply the feature to

the first executable object when the feature is accessed thereby.

In accordance with yet another aspect of the invention, a software package is

provided, comprising: a first executable object, and a wrapper for the first executable

object, the first executable object being operative, while running, to access a feature

of the wrapper; the wrapper being operative to supply the feature to the first

executable object when the feature is accessed thereby.

In accordance with yet another aspect of the invention, a software package is

provided comprising: a first executable object, and a wrapper for the first executable

object, the first executable object being operative to call a predetermined feature

external thereto; the wrapper being operative upon a call of the predetermined

feature by the first executable object to transfer program execution control to a

predetermined address within the wrapper to control access by the first executable

object to the predetermined feature.

APPLE EXHIBIT 1102, Page 170 of 1048

APPLE EXHIBIT 1102, Page 171 of 1048

10

20

WO 00167095 6 PCTfUSU0111545

In accordance with a still further aSpect of the present invention, a computer

system is provided, comprising: a processor; a memory; an instruction input device;

and a software package stored in the computer system, the software package having

a first object providing a first set of a plurality of features, a second object providing

a sec0nd set of a plurality of features including some, but less than all, of the

features included in the first set, and an access control portion; the processor being

operative to load the software package in the memory, the processor being further

operative to request access to a selected one of the first and second objects in

response to a predetermined instruction from the instruction input device, the access

control portion being operative to selectively control access to the selected object.

In accordance with still another aspect of the present invention, a software

package is provided, comprising: a first object providing a first set of a plurality of

features, the first object being encrypted; and a second object providing a second set

of a plurality of features including some, but less than all, of the features included in

the first set, the second object being unencrypted.

in accordance with yet still another aspect of the present invention, a driver

executable is provided, comprising: first code for accessing a requested file from a

storage device; second code for detecting the presence of a predetermined identifier

in the accessed file; and decryption code for decrypting at least a portion of the

accessed file in response to detection of the identifier therein.

in accordance with a still further aspect of the invention, a software package is

provided, comprising: a software object having a first set of features and a second

set of features, the first set of features being encrypted and the second set of

APPLE EXHIBIT 1102, Page 171 of 1048

APPLE EXHIBIT 1102, Page 172 of 1048

10

15

20

25

we Oil/67095 7 PCT/U800/11545

features being unencrypted; and a signature readable by a predetermined

executable serving to control access to the encrypted first set of features.

In accordance with a yet still further aspect of the present invention, a

computer system is provided. The computer system comprises: a processor; a

memory; an instruction input device; a storage device storing a file; an operating

system; a driver executable: and a device driver serving to control access to the

storage device; the instruction input device being operative to input a first request for

access to the file; the operating system serving to control the processor to direct a

second request for the file to the driver executable in response to the first request for

access; the driver executable being operative in response to the second request to

control the processor to direct a third request for the file to the driver; the driver being

operative in response to the third request to control the processor to read the file

from the device to the memory and thereupon return control of the processor to the

driver executable; the driver executable being operative upon return of control

thereto to control the processor to examine the file in memory to detect the presence

of a predetermined identifier in the file and to decrypt at least a portion of the file in

response to detection of the predetermined identifier therein.

The foregoing. as well as further aspects of the invention and advantages

thereof. will be apparent in the following detailed description of certain illustrative

embodiments thereof which is to be read in connection with the accompanying

drawings forming a part hereof, and wherein correSponding parts and components

are identified by the same reference numerals in the several views of the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a block diagram of a computer system having a single CPU;

APPLE EXHIBIT 1102, Page 172 of 1048

APPLE EXHIBIT 1102, Page 173 of 1048

10

15

20

W0 (ID/67095 8 PCTfUSOO/l1545

Figure 2 is a flow diagram illustrating a method of producing software in the

form of a package including a first object, a second object produced from the first

object and usage authorization information governing use of the first and second

objects;

Figures 3A through 30 illustrate image objects to be included in a package

and produced in multiple versions each including a respectively different amount of

information, produced by varying the amounts of noise therein;

Figures 3D through 3F illustrate multiple versions of the same image object of

Figure 3A in which the amount of information in each version is varied by removing

lines and/or portions of lines from certain versions;

Figures 3G through 3| illustrate multiple versions of the image object of Figure

3A in which the amount of information in each version is varied by filtering certain

versions;

Figures SJ through 3L illustrate multiple versions of the image object of

Figure 3A in which the amount of information is varied by encrypting portions of

certain versions;

Figure 4A is a spectral diagram of a segment of an audio signal to be included

as a data object in a package. while Figure 4B is a spectral diagram of another

version of the segment having relatively less information than the segment of Figure

4A;

Figure 5A illustrates a data format for use in storing usage authorization

information governing the use of various objects in a package, while Figures SB and

APPLE EXHIBIT 1102, Page 173 of 1048

APPLE EXHIBIT 1102, Page 174 of 1048

10

15

20

WO 00167095 9 PCTfUSO0/11545

SC are tables providing examples of the types of data included in such usage

authorization information;

Figure 6 is a diagram illustrating a package produced according to the method

of Figure 2 wherein a first object whose use is restricted is encrypted;

Figure 7 is a flow diagram of another method for producing software in the

form of a package, wherein multiple objects are watermarked, compressed and

encrypted and usage authorization information is watermarked and encrypted;

Figures 8A through 8D are used to describe methods for watermarking

software carried out in the method of Figure 7; Figures 8A and 8E! schematically

illustrate a portion of an executable object and a portion of a code section, to be

watermarked; Figures BC and 8D schematically illustrate methods for watermarking

executable objects and code sections of the type illustrated in Figures 8A and BB;

Figures 9A through 9| are used to describe methods for compressing and

encrypting software carried out in the method of Figure 7',

Figure 10 is a diagram of software in the form of a package produced by the

method of Figure 7;

Figure 11A is a diagram of software in the form of a package including first

and seCOnd executable or program objects; Figure 118 is a diagram of an

executable notifier included in the package of Figure 11A, while Figure ‘l 10 is a

diagram of the compressed program objects and access control information of the

package of Figure 11A;

APPLE EXHIBIT 1102, Page 174 of 1048

APPLE EXHIBIT 1102, Page 175 of 1048

WO 00/67095 10 PCTMSOOIHSdS

Figure 12 is a flow diagram of a method for secure distribution of software by

data communication;

Figure 13 is a flow diagram of a method for secure distribution of software

stored in a storage medium;

5 Figure 14 is a schematic diagram illustrating the use of a driver executable for

controlling access to predetermined data objects in a computer system;

Figure 15 is a flow diagram of a method of printing a data object to which

access is controlled;

Figure 16 illustrates the software package of Figures 11A through 110 when it

10 is first loaded in the memory of a user's computer system;

Figure 17' illustrates portions of the software package of Figure 16 after the

executable notifier has loaded a selected one of the program objects in running

condition in the memory of the user's computer system; and

Figure 18 illustrates a method for controlling the usage of a given program by

15 means of code in the executable notifier.

DETAILED DESCRIPTION OF CERTAIN PREFERRED EMBODIMENTS

With reference to Fig. 1, a computer system 100 is illustrated schematically

having one or more central processing units (CPU) or processors 110. a display 120,

other input/output (l/O) apparatus 130 (such as a network or internet connection and

20 a keyboard and/or mouse), and a memory 140 in which executable files 150 and

data files 160 may be loaded for execution or use by processor 110. The computer

APPLE EXHIBIT 1102, Page 175 of 1048

APPLE EXHIBIT 1102, Page 176 of 1048

U":

10

15

20

W0 (JO/67095 11 PCTfUSOOIII545

system 100 also includes a non-volatile mass storage apparatus. such as a hard disk

drive (not shown for purposes of simplicity and clarity).

Computer system '100 functions to produce software and to distribute the

produced software to users, as well as to produce and distribute various other types

of executables and data for controlling access to the produced software and carry

out associated license purchasing transactions with users' computer systems. The

manner in which system 100 carries out these functions wiii be apparent from the

following discussion in connection with the associated drawings.

Figure 2 illustrates an exemplary method for producing a software package for

distribution either on a record medium or by data communication, for example, via

the world wide web or a dial-up service. The product thus generated includes

multiple objects which either are data objects, such as media or multi—media objects,

or are executable objects, such as games, applications or utilities. The method of

Figure 2 is especially useful for generating try-and-buy packages.

In the method of Figure 2, a first object is used to produce one or more

second objects in a step 2'10. In certain embodiments of this particular method, the

one or more second objects are produced by removing features from the first object.

In certain other embodiments, one or more first objects instead are produced from a

second object by adding features to the second object.

Various embodiments of step 210 are illustrated in Figures 3A through 3L in

which a first data object in the form of a digitized picture is used to produce multiple

second objects having progressively less picture information.

in a first embodiment, a first picture object 310 shown in Figure 3A is used to

produce a somewhat degraded version 316 as shown in Figure BB by the addition of

APPLE EXHIBIT 1102, Page 176 of 1048

APPLE EXHIBIT 1102, Page 177 of 1048

10

20

we Oil/67095 12 PCT/U500}! 1545

noise to object 310. A further degraded version of obiect 310 is illustrated in Figure

30 as picture object 320 which is produced either through the addition of noise to

object 310 or the addition of further noise to object 315.

A second embodiment of step 210 is illustrated in Figures 3D through 3F.

The first picture object 310 is shown again in Figure 3D and is used to produce the

moderately degraded version 325 as shown in Figure 3E by removing lines or

portions of lines from the data object 310. A further degraded version 330 of object

310 shown in Figure 3F is produced by removing a relatively greater number of lines

or portions of lines from object 310 or by removing still further lines from version 325.

in still other embodiments the degraded versions are produced by removing multiple

contiguous lines.

A further embodiment of step 210 is illustrated in Figures 3G through 3| in

which the object 310 is subjected to low-pass filtering in order to remove fine details,

such as the edges of objects. A moderately degraded version 335 as shown in

Figure 3H is produced by low~pass filtering of object 310 with a relatively high

frequency cut-off point, while a further degraded version 340 shown in Figure 3! is

produced by low—pass filtering of object 310 with a relatively lower frequency cut-off

point.

Yet another embodiment of the step 210 is illustrated in Figures 3J through 3L

in which the object 310 is used to produce a somewhat degraded version 345 shown

in Figure 3K by encrypting groups of contiguous horizontal lines with a first

encryption key. When the obiect is displayed without decryption, it will appear as

version 345 as shown in Figure 3K in which the encrypted portions are displayed as

noise. Additional portions are encrypted to produce the still further degraded version

APPLE EXHIBIT 1102, Page 177 of 1048

APPLE EXHIBIT 1102, Page 178 of 1048

10

15

20

WO 00167095 1 3 PCTfUSOtJ/11545

350 as shown in Figure 3L, the additional portions being encrypted with a second

key or with the same key used to encrypt the portions shown in Figure 3K.

Differently defined regions. such as blocks or vertical lines or regions. or else

arbitrarily defined regions, may be selected for encryption.

In still other embodiments. either one, three or more degraded versions of a

first picture object are produced.

In yet still further embodiments, further versions of a first picture object are

produced by adding features thereto. For example, new elements can be added to

the first picture object from other sources.

in other embodiments, the further versions are produced by substituting pixels

having further information, such as finer detail or additional picture elements.

An embodiment of step 210 for producing multiple versions of an audio object

is illustrated in Figures 4A and 4B. Figure 4A provides an exemplary spectral energy

distribution 410 for a segment of a first audio object. A modified or degraded version

of the Figure 4A segment is illustrated in the spectral energy distribution 420 of

Figure 4B. In Figure 4B, the hatched-line frequency bands 430 represent portions of

the energy spectrum which are removed, for example, by filtering, by remOVai of

certain energy bins from an FFT transformed version of the segment, by removal of

certain coefficients from a discrete cosine transformation of the segment, or

otherwise. In still other embodiments, subbands of the audio signal in MP3 format

are easily removed or encrypted to produce a degraded version thereof.

In the case of an executable object, step 210 is carried out in any of a number

of ways. In one embodiment, the overall coding of a first executable object is

modified to produce a modified executable object lacking one or more features of the

APPLE EXHIBIT 1102, Page 178 of 1048

APPLE EXHIBIT 1102, Page 179 of 1048

10

15

20

we 00f67095 l4 PCT/USfllJlllS45

first. This may be done by removing the routines necessary to perform the

disenabled features or bypassing such routines. In another embodiment, only one

section of the first executable object is modified. For example, executable objects

often are provided with resource sections which are readily modified to enable or

disable its functions.

in the method of Figure 2, once the first and second objects have been

prepared/obtained, the first object is encrypted to provide one means of controlling

access thereto. in a try-and-buy transaction, as will be seen in greater detail below,

the user is permitted free access to the second object having fewer than all of the

features he needs, in order to assess his interest in acquiring rights to the first object

which has all of the features he requires. Encryption is a relatively strong protection.

The encryption step 220 is carried out so that a unique key or decryption executable

is required to decrypt the first object. The key or decryption executable is produced

by a server using selected information characteristic of the user's computer system,

so that in order to decrypt the first obiect, both the key and decryption executable as

well as the selected information are required. This key or decryption executable is

stored in the system 100 and is not included in the package produced in the method

of Figure 2. Rather, once the user has purchased the right to use the first object, the

system 100 transmits the key or executable to the user's system which stores the

key or executable in a package other than that of the first object.

In Step 230 of the Figure 2 method, data specifying permitted uses for each

object and their price, if any, are produced and assembled according to each object.

That is, for each object included in the package (or external to the package and

APPLE EXHIBIT 1102, Page 179 of 1048

APPLE EXHIBIT 1102, Page 180 of 1048

U1

]0

15

20

we 00167095 15 PCT/0500111545

referenced thereby) and for each permitted user thereof, a record 510 such as that

illustrated in Figure 5A is produced or accessed from storage in the system 100.

In a first field 520 of the record 510, data is provided identifying the object to

which the record pertains. in a second field 530, the particular usage of the object

for which the record is provided is identified. Examples of various usage types which

can be identified in field 530 are listed in the table of Figure SB.

A third field 540 of the record 510 specifies the extent of the permitted usage

for the price specified in a fourth field 550 of the record 510. As indicated in the left-

hand column of the table provided in Figure SC, the extent of usage may be

expressed in various ways, for example, by duration of use or numbers of usages.

The price specified in the fourth field 550 corresponds to the authorized extent of

usage. as Can be seen from the table of Figure SC. For example, if the extent of

authorized usage is N times, the price may represent a specified amount of money

for each time or for a number of times.

In step 240 of Figure 2, the first and second objects, and the usage

authorization information are assembled in a package with a notifier section and, in

packages having data objects, a signature. An exemplary structure for the package

thus produced is illustrated in Figure 6, wherein the notifier, indicated as element 610

is arranged as the first section of the package.

The notifier 610 can take the form of one or more data objects or an

executable object, depending on the type of package. Where the package contains

data objects in the form of media objects such as digital images, video data or audio

data produced in a standard format, the notifier includes at least one unencrypted

and uncompressed image to be displayed to the user, as needed. As will be

APPLE EXHIBIT 1102, Page 180 of 1048

APPLE EXHIBIT 1102, Page 181 of 1048

10

WO 00167095 16 PCTfUS00l11545

explained in greater detail below, packages having data objects in standard formats

preferably are accessed in the user's system by means of a driver executable in

accordance with one aspect of the present invention. The first (or only) image stored

in the notifier provides a message to the user that he needs to download the driver

executable in order to make use of the data objects in the package. The notifier can

also include a version of an object in the package having less information than such

object, but which is unencrypted and readily displayed by the user's system. Once

the driver executable has been downloaded and installed, it presents a dialog box to

the user indicating the available objects, their authorized usages and the prices of

each.

The driver executable is able to detect the type of accessed package as one

including data objects requiring access control by the driver executable based on the

package's signature which, in the embodiment of Figure 6, is appended at the end of

the package. Where the driver executable detects that the accessed package has

no recognizable signature or instead includes executable objects, it simply passes

such packages on to the operating system without exercising any form of access

control.

Packages including executable objects have notifiers including executables

which serve both to control access to the executable objects in the package and to

display necessary images to the user. These functions of the executable notifiers

will be described in greater detail below. Since the driver executable is only required

for accessing packages having data objects, there is no need to include a signature

in a package having only executable objects.

APPLE EXHIBIT 1102, Page 181 of 1048

APPLE EXHIBIT 1102, Page 182 of 1048

VI

10

15

20

wo (IO/67095 17 PCTIU800111545

Figure 7 illustrates another method for producing a software package

including data or executable objects. In a first step 71 O of the Figure 7 method, it is

assumed that first, second and third objects, as well as an appropriate notifier and

usage authorization information have been provided. in step 710, a watermark is

placed in each of the foregoing objects, notifier and usage authorization information

to provide a means of identifying the licensed user if any of these should be

redistributed by him without authorization.

Data objects may be watermarked by any of a number of known methods

which add data to the objects or modify the original data in order to embed the data

of the watermark. However, watermarking of executable objects has, until now,

been impractical, since any change to the code in the objects will interfere with the

proper operation of the executable, and will likely render it inoperable. In addition, it

is necessary for any such watermarking methodology for executable objects to

enable the production of many variations in the watermark (at least one for each

user) and, thus, in the anatomy of the executable, but wherein each variation of the

executable is semanticaily equivalent to all other variations.

A further requirement is resistance to collusion attacks in which two or more

dishonest purchasers combine their versions of the executable to derive one copy

from which the watermark has been eliminated. To be considered resistant to such

attacks, the number of different buyers whose individual revisions are all required to

produce a watermark-free version or a version in which the watermark is useless,

should be made impractically large.

in a further aspect of the present invention, watermarks are embedded in

executable objects so that the watermarks are highly resistant to collusion attacks.

APPLE EXHIBIT 1102, Page 182 of 1048

APPLE EXHIBIT 1102, Page 183 of 1048

'J‘I

10

20

W0 00/157095 18 PCTfUSOOII 1545

Advantageous watermarking techniques in accordance with certain features

of the invention are illustrated in Figures 8A through 8D. in general. the method

comprises: determining a location of at least one padding area in an executable

object, and inserting a predetermined watermark in the at least one padding area. In

certain embodiments, the watermark is encoded. A particularly advantageous form

of encoding the watermark comprises including a plurality of software portions

copied from the executable object or which mimic the same in the padding area to

represent the encoded watermark.

Example of padding areas are provided with reference to Figures 8A and BB.

Figure 8A schematicaily illustrates a portion of an executabie object in a storage

medium, the object including a header 810. an executable code section 820 and a

data section 830. The executable object of Figure 8A is formatted so that each

section begins at a predetermined boundary. For example, the formats of an

executable in the Win 32 platform would align the beginnings of the sections 820 and

830 at a 4 Kbyte boundary. Similar alignment conventions have been devised for

other software formats, such as the Common Object File Format (COFF) used in

UNtX and the Portable Executable format (PE) which is an extension of the COFF

utilized in WindowsTM piatforms. The technique of aligning the beginning of each

section at a predetermined boundary is convenient for programming purposes.

As a result. padding areas 812, 822 and 832 are formed between the ends of

the sections 810, 820 and 830, respectively, and the following boundaries.

The padding areas either contain code or data which is unimportant or are

simply empty.

APPLE EXHIBIT 1102, Page 183 of 1048

APPLE EXHIBIT 1102, Page 184 of 1048

IO

15

20

WO 00167095 19 PCT/U800" 1545

Padding areas also exist within sections. With reference to Figure SE, a

schematic diagram of a code section is illustrated having instructions 1, 2, 3. n,

(n+1). .

In this example padding areas are located after instruction to as well as after

instruction (n+1). Such padding areas may be produced, for example, by a compiler

which is designed so that each routine or calling point is arranged according to

cache-line size. Codes designed to run on lntelTM processors include sequences of

opcodes 0 x 90 (NOP) in these padding areas, so that it is relatively easy to locate

such areas.

There are a number of ways to include watermarks in the padding areas as

shown in Figures 8A and BB. in certain embodiments, the watermark data is

inserted in the padding areas in an unencoded form. Less knowledgeable users and

licensees are not likely to take steps to locate and remove such watermarks.

However, in more secure embodiments, the watermark is generated as a random

number or selected as a pseudorandom number so that it is not easily recognized in

order to remove or alter it.

However, padding areas associated with executable code sections or routines

normally are filled with code which is not to be executed but rather serves only as

filler. To substitute a random number for such codes would likely arouse SUSpicion

by a would-be software pirate. Accordingly, in particularly advantageous

embodiments, the watermark is encoded in software which mimics software present

in the object before the watermark is inserted. An efficient way to carry out this

method is to copy portions of the preexisting software (code or data) to represent the

watermark. in certain embodiments the copied code is modified to encode the

APPLE EXHIBIT 1102, Page 184 of 1048

APPLE EXHIBIT 1102, Page 185 of 1048

10

15

20

W0 00/67095 20 PCT/USUOI11545

watermark. Preferably, however, the copied portions are unmodified, but rather are

selected to replace the existing contents of the padding area in a sequence

representing the watermark. This is carried out in certain embodiments by selecting

the copied portions according to their parities, so that a predetermined watermark

can be recovered from the watermarked object simply by calculating the parities of

the objects' contents until a known random or psuedo-random number constituting a

predetermined watermark, is found.

Examples of this encoding technique are illustrated in Figures 80 and BD.

Figure BC illustrates a technique for inserting watermarks in the padding areas 822

and 832 in the executable of Figure 8A. Once the padding areas 822 and 832 have

been located, their contents are substituted with software from the adjacent

segments B20 and 832 to encode the watermark. In order to encode the watermark

in padding area 822. the parities of various code blocks from the code section 820

are determined. Then the blocks are inserted in the padding area 822 based on their

parities, so that when the parities of these blocks are later determined, they reveal

the watermark, preferably a random-generated or pseudorandom number.

As an example, if the watermark to be inserted in area 822 is 1011, a block

823 is selected having a parity of "1" and is inserted in area 822. Then a block 824

having a parity of "O“ is inserted in the area 822, followed in turn by blocks 825 and

826 having parities "'1' and "f ", respectively. Similarly, blocks 833, 834, 835 and

836 are inserted in area 832 to continue the watermark.

Figure 8D provides an example of a method for encoding a watermark in the

padding areas between routines in a code section of the type illustrated in Figure BB.

Routines Q), l and 2, also identified by reference numerals 850, 860 and 870. are

APPLE EXHIBIT 1102, Page 185 of 1048

APPLE EXHIBIT 1102, Page 186 of 1048

10

15

wo 00/67095 21 PCTfUSOO/ll 545

separated by padding areas 852, 862 and 872. The watermark is inserted in the

identified padding areas 852, 862 and 872 by copying portion of the sections, 850,

880 and 870 and inserting these in the padding areas. in the example of Figure BD,

an initial portion of routine Q) is inserted in a first portion of padding area 852 and a

concluding portion of routine 1 is inserted in a final portion of padding area 852.

Similar selections and insertions are made in padding areas 862 and 872. In this

example, the watermark is encoded in the selection of the portions of the routines

inserted in the various padding areas.

Various other encoding techniques are available. In other embodiments, NOP

opcodes are replaced by 0pcodes having the same effect, just in case the NOP's are

actually executed. For example, opcodes such as [mov al, a1], [mov c1, 01} [mov

ah, ah] and [fnop] have the same effect as an NOP opcode and may be substituted

therefor in order to encode a watermark.

In still other embodiments, the lengths of the blocks and/or fake routines are

selected to encode all or part of the watermark.

In a subsequent step 720 of the method as illustrated in Figure 7, the first,

second and third objects are compressed in accordance with still another aspect of

the present invention. In a third step 730 of the method as shown in Figure 7, each

of the blocks and assembly information representing the compressed first. second

and third objects, as well as the Usage Authorization information is encrypted.

Preferably each is encrypted using a respective, unique key. The keys are not

included in the resulting software package, but are retained to be distributed

subsequently to authorized users.

APPLE EXHIBIT 1102, Page 186 of 1048

APPLE EXHIBIT 1102, Page 187 of 1048

10

15

20

W0 [ID/67095 22 PCT/U500/1 1545

The inventive compression technique carried out in step 720 of Figure 7, as

well as the encryption step 730 thereof, are illustrated in greater detail in Figure 9A.

As shown therein, software objects ithrough n, identified by 910, which may take the

form of separate software packages, are subject to an inventive macrocompression

method 920 to convert the objects l-n into one or more blocks 937 and assembly

information objects 935, one for each object l—n, each indicating how to reconstruct

the various strings of the respective one of the objects l-n from the one or more

blocks 93?. In summary, the macrocompression method 920, (1) produces matches

of reference strings within the software objects 910 with comparison strings therein,

the reference strings and the comparison strings having a predetermined minimum

length, each comparison string within the same package as a matching reference

string being separated therefrom by a predetermined minimum distance within the

package, (2) expands the sizes of matching strings by including adjacent, matching

software therein, and (3) forms compressed software objects comprising at least one

software block corresponding to a selected one of the expanded, matching strings

and assembly information indicating how to reconstruct others of the matching

strings from the at least one software block. In certain embodiments, the software

objects 910 comprise data. In other embodiments the software objects 910

comprise executables. While Figure 9A shows multiple objects I-n, the

macrocompression method 920 also serves to compress a single object in certain

embodiments.

The macrocompression method 920 is illustrated in greater detail in Figure

QB. String matching is carried out on the contents of the 1 through n objects 910, as

indicated in a step 932. In certain embodiments, the string matching step is

APPLE EXHIBIT 1102, Page 187 of 1048

APPLE EXHIBIT 1102, Page 188 of 1048

m

15

20

WO 00167095 23 PCT/11500111 545

facilitated by producing a hash head table grouping possible string matches together

according to their hashing functions.

A hashing function of a given string calculates a hashing value based on the

values of the bytes in the string. In certain embodiments of the present invention, a

minimum string length of n bytes is employed and a hashing function is selected to

calculate a hashing value for each string of n bytes. In general, the hashing value for

each string of n bytes in each of the objects to be compressed is carried out.

although this is not essential. In the general case, the hashing function is carried out

for each string in the object [p0, p.. pm]. [p._ be. . . .,p.], . . [pH pi_1 _____ pm], etc.

where pi represents a value of the i‘th byte in the object. As the hashing value of

each string having an offset] is determined. its offset] is added to a hash head table,

indexed according to its hash value.

An exemplary hash head table is illustrated in Figure 90 and stores data

identifying each string of n bytes in three objects MM M2. and IVI3 indexed according

to the hashing value of each string. As shown in Figure QC. all strings having a

hashing value h equal to zero are identified by offset and obiect numbers in an initial

record of the hash head table, and so on, until a final record is provided to identify

those strings whose hashing value is a maximum among all hashing values in this

case, hmax. It will be appreciated that the maximum possible number of different

hashing values in this case will be (Li-n) + (Lg—n) + (La-n) which will occur in the event

that each string yields a different hashing value. Accordingly, this is the maximum

possible length of the hash head table for which memory space need be set aside in

memory 140.

APPLE EXHIBIT 1102, Page 188 of 1048

APPLE EXHIBIT 1102, Page 189 of 1048

UI

Ix.) U1

W0 Oil/67095 24 PCTfUSOO/11545

A particularly advantageous hashing function calculates the hashing value of

each string of n bytes as a summatiOn of their values:

j+n-1

hm = . p.
i=1

Wherein h(j) represents the hashing value of the jth string in the object and pi is the

value of the i'th byte of the object. One advantage flows from the commutative

property of this function. That is, the function is commutative since it may be carried

out using the byte value pi in any arbitrary order. Consequently, in certain

advantageous embodiments. once the hash value h(j) has been calculated as above

for the string (p1r pi“, . . . pHM), the hashing value for the next string is determined

using relatively fewer operations (and processing time) as follows:

Ham = h ii: ' R + pi+n

Also, the contents of most objects yield hashing values which are clumped,

that is, unevenly distributed over the range of hashing values. This tends to reduce

the usefulness of the hashing function as a means of separating strings which do not

match from thosa which possibly do match. Where the invention implements a

hashing function of the type:

i+n-1

hm = __ . p..
IZJ

in certain embodiments utilizing this function, clumping is reduced by increasing the

range of hashing values. That is, where the hashing function is carried out in the

form illustrated above for the strings of length n bytes in an object having a total of L

APPLE EXHIBIT 1102, Page 189 of 1048

APPLE EXHIBIT 1102, Page 190 of 1048

wo 00/67095 25 PCTIUS00/1 1545

bytes, the maximum number of different hashing values is (L-n). In the presently

described embodiments, the hashing function is modified so that it takes the form:

h = K, hI (bytes a) + K2 h2 (bytes n-a),

wherein (bytes a) are the first (a) bytes within the string, so that acn; (bytes n-

5 a) represents the following (n-a) bytes within the same string; a selected one of K1

and K2 is equal to 1 and the other of K1 and K,2 is an integer greater than 1; the

function h, is calculated: h, = _ (bytes a); and the function h2 is calculated: h2 = _

(bytes n-a).

In a particularly advantageous form of this embodiment. memory space is

10 conserved by assigning the value (255a+‘l) to the other of K1 and K230 that the

maximum value of h,, which is (255a), immediately precedes the minimum non—zero

value of K2. which is (255a+1). As a consequence, there is no wasted memory

space between these two possible hashing values.

Still other types of hashing functions may be employed in place of the above-

15 described summation function. In particular, other commutative hashing functions

are similarly advantageous. For example, an appropriate commutative hashing

function h can take the form:

h(i) = D, x pm x x Pm,

or the form:

20 h(i) = pi EB pm 6 e pom-

Since these functions are commutative, they can also be implemented in a simplified

fashion as

H(i+1) = hit) (inv_0p) pi (Op) Pjin.

APPLE EXHIBIT 1102, Page 190 of 1048

APPLE EXHIBIT 1102, Page 191 of 1048

wo 00167095 26 PCT/050M 1545

where (op) represents a selected commutative operation (such as addition,

multiplication or exclusive OR) and (inv_op) represents the inverse of such

operation.

As noted above, the hash head table produces records containing possible

5 matches. So, once the table is produced, the string matching process continues by

searching for matches within each record of the table on the condition that, to qualify

as an acceptable match, two matching strings within the same package (such as

strings from the same file) must be separated by a predetermined minimum distance

within the package. The following Table 'l provides an example of a possible

10 sequence by byte values within a given package wherein each row of byte values is

a continuation of the preceding row of values:

TABLE 1

From Table 1 it will be seen that four different strings of five bytes each have the

hashing value h(j) = 24 where

APPLE EXHIBIT 1102, Page 191 of 1048

APPLE EXHIBIT 1102, Page 192 of 1048

U!

10

20

W0 fill/67095 27 PCTIUSOO/11545

namely, (a) the string (a) from row 1, column 2 to row 1, column 6 having the values

(2, 5, 1, 7, 9), (b) the string (b) from row 2, column 4 to row 2, column 8 having the

values (2, 5, 1, 7', 9), (c) the string (c) from row 3, column 3 to row 3, column 7

having the values (24, O, O, O, O), and the string (d) from row k, column 2 to row k,

column 6 having the values (2, 5, 1, 7, 9). While strings (a) and (c) have the same

hashing values, they clearly do not match. Also, since to qualify as an acceptable

match. the matching strings must be separated at least by a minimum distance if

within the same package, strings (a) and (b), while matching, will not qualify if the

minimum distance exceeds 11 bytes. Typically, the minimum distance will be

substantially greater than 1 1 bytes in order to provide the ability to compress further

through microcompression, as explained in greater detail beiow. If it is assumed that

the matching strings (a) and (d) are separated at least by such minimum distance,

therefore, strings (a) and (cl) form a qualifying match.

An example of a search for matching strings in multiple packages is now

provided with reference to Figure 9C. Packages M,, M2 and M, are illustrated therein

having two types of exemplary strings of length n bytes. strings A and B. Where

matching strings are contained in different packages, as in the case of strings B in

packages M1 and M3, there is no need to require a minimum distance between them,

as they would not be matched in the subsequent microcompression process.

However, if it is assumed that the minimum distance between strings is q bytes as

shown in Figure QC, then the two strings A in M, will not form a qualifying match as

they are offset by less than q bytes. However, the two strings A in M2 will form a

qualifying match as the strings of this pair are separated within package M2 by more

than q bytes.

APPLE EXHIBIT 1102, Page 192 of 1048

APPLE EXHIBIT 1102, Page 193 of 1048

10

20

WO 00167095 28 PCTIUSODII 1545

Once all of the qualifying matches of a given type of string have been found,

their identifiers are collected under a common group designation. When all of the

qualifying matches of each type of string in the package or package being

compressed, have been found and so grouped. the sizes of the matching strings are

expanded by including adjacent matching bytes therein. An exemplary string

expansion technique is explained in connection with Figure 9D which is a schematic

illustration of a portion of a package or object having various types of strings K, L, P

and Q, in which the matching process has located three qualified matching strings 1,

2 and 3 of type K. In order to expand these strings in one embodiment. each of the

strings 1. 2 and 3 is expanded to the right by one byte and then the various

combinations of matching string pairs (1 and 2, 2 and 3, t and 3) are compared for a

match. If a match is still found for a given pair, the strings of the matching pair are

repeatedly expanded by one byte and compared until a match is no longer found. At

that point the identity of the pair and its matching length is entered in a table of the

various string pair combinations, as shown in Figure 9E.

In other embodiments, the matching strings of each group instead are

expanded to the left, while in still other embodiments the matching string are

expanded in both directions.

Once the expanded matching pairs have been entered in the table of Figure

9E, they are removed from the hash head table.

When all of the matching strings have been expanded as explained above.

the software blocks and the assembly information constituting the compressed

package or packages are produced in a step 935 of Figure 9E3. Preferably,

representative ones of the largest expanded, matching strings are selected as the

APPLE EXHIBIT 1102, Page 193 of 1048

APPLE EXHIBIT 1102, Page 194 of 1048

U:

10

20

W0 DDI6'7095 29 PCT/U800” l 545

software blocks, represented schematically at 937 in Figure QB, and copied as

indicated in step 939. Then the assembly information is produced as information

referencing the remaining strings to all or a portion of each of the software blocks, as

their contents correspond. This step is illustrated by the example of Figures 9D

through 9F. As described above, in this example, the matches for each pair of

strings (1, 2), (1, 3) and (2, 3) as seen in Figure QD were separately expanded to

produce the data shown in the table of Figure 9E. From Figure 9E it will be seen that

the largest expanded, matching strings are strings 2 and 3. in this example, string 2

is selected as a software block for reference in reproducing each of the expanded

strings 1, 2 and 3, since the contents of each is either contained in or corresponds to

the contents of expanded string 2. The assembly information necessary to

reconstruct strings 1, 2 and 3 is arranged in the table in Figure 9F. For example,

string 1 is identified by its offset in the original package or object and its contents are

reproduced from string 2 (software block) as the source, based on the offset within

string 2 at which its contents is located (the source offset) and the length of such

contents within string 2‘ In this manner, relatively large blocks of data from the

original, uncompressed package or object can be represented as only a few bytes

within the assembly information in the compressed form thereof, resulting in

substantial reductions in the amount of data required to represent the package or

object when it has been compressed according to the macrocompression method of

step 920.

Where it is desired to remove information from a given package, for example,

in order to produce images such as those illustrated by Figures 3E and 3K, or a

sound segment such as that shown in Figure 48. a technique as illustrated in

APPLE EXHIBIT 1102, Page 194 of 1048

APPLE EXHIBIT 1102, Page 195 of 1048

ll)

20

we 00167095 3 0 PCT/1150M 1545

Figures 96 and 9H is advantageous. In Figure 9G, it is assumed that a segment B

is to be removed from a package P and substituted with zero values throughout, or

else by some other constant or by noise. As shown in Figure 9G. the segment B is

located at an offset 2 and has a length LB_ Segment B is flanked by a segment A

located at an offset 1 and a segment C located at an offset 3.

The desired result is illustrated in Figure 9H wherein the segment B is

replaced by zero-value data, represented by double cross—hatching. The resulting

package P' is achieved by specifying the source for each of the three segments, as

shown in the table T of Figure 9H, wherein the source for the segment at offset 2

extending for a length LB is specified as the constant value zero, which thus replaces

the original contents of segment B.

Once the new package P' has thus been specified, macrocompression is

carried out only for the first and third segments at offsets 1 and 3. This is achieved

preferably by constructing a hash head table only for the strings in the first and third

segments A and C, and prohibiting the use of any strings in the second segment in

producing the hash head table. Thereafter, both the macrocompressed segments at

offsets 1 and 3 and the uncompressed segment at offset 2, may be compressed by

microcompression as discussed below.

This technique is useful not only in producing degraded objects and

packages, but also for preparing a partially compressed package or object having an

uncompressed portion which is thus readily modified.

Returning to Figure 9A, after the macrocompression method 920 has been

carried out, the resulting blocks and assembly information are further compressed by

microcompression, as indicated by step 950. As used herein, microcompression

APPLE EXHIBIT 1102, Page 195 of 1048

APPLE EXHIBIT 1102, Page 196 of 1048

10

15

20

W0 Oil/67095 31 PCT/USDO/11545

identifies a software compression technique which compares strings having a

predetermined maximum size with other strings of the same size which are located

no more than a predetermined distance or window from one another in the same

package, in order to eliminate redundant strings. An example of a microcompression

executable is the PK ZipTM utility. The result of microcompression is further

compressed assembly information Al‘ and software blocks BLKS" as shown in

Figure 9A.

Preferably, the window used in the microcompression process is smaller than

the minimum distance between qualified matching blocks in the macrocompression

method of step 920. in this manner, different strings are compared in the two

compression techniques, thus affording more effective compression. in accordance

with another aspect of the invention, a method of compressing software in one or

more packages comprises: producing first compressed software by matching strings

selected so that matching strings within the same package are separated at least by

a minimum predetermined distance within the package, and producing second

compressed software by matching strings of the first compressed software within the

same package and within a maximum predetermined distance of one another.

Preferably, the minimum predetermined distance is greater than the maximum

predetermined distance.

The further compressed assembly information Al’ and software blocks BLKS",

along with the Usage Authorization Information, are then encrypted in a step 960 so

that the Usage Authorization information and the assembly information Al” for each

object 1 through n, is encrypted using a respectively different encryption key.

Preferably, each of the blocks BLKS‘ is also encrypted with a respectively different

APPLE EXHIBIT 1102, Page 196 of 1048

APPLE EXHIBIT 1102, Page 197 of 1048

]0

20

W0 00/057095 32 PCT/11800111545

encryption key. As will be explained in greater detail below, each encryption key is

produced based on information characteristic of the user‘s computer system, and so

that decryption requires the use of both the encryption key and such characteristic

information. This ensures that the encrypted information and software cannot be

decrypted using a system other than the user's particular system.

in accordance with a further aspect of the invention, a method of encrypting

software representing a plurality of compressed objects is provided. The software

includes at least one software block and assembly information for each of the

objects, the assembly information for each object enabling the reconstruction thereof

from the at least one software biock. The method comprises: encrypting each of the

software blocks with an encryption key; and encrypting the assembiy information for

each object using a respectively different encryption key. Preferably, a respectively

different encryption key is used to encrypt each of the software blocks.

The encrypted assembly information Al“ and the encrypted software blocks

BLKS”, together with the encrypted Usage Authorization Information, are formed

into a single composite package 970.

In a final step 7'40 of the method as shown in Figure 7, an appropriate notifier

and signature (if necessary) are added to the encrypted blocks, assembly

information and usage authorization information to compiete the software package.

An advantageous format for the software package is illustrated in Figure 10,

wherein the notifier 1010 is placed at the head of the package. Where the package

includes data objects, placing the notifier at the head of the package will result in the

display of the correct image when the package is first accessed. Where the package

includes executable objects, the first portion of the package may simply be a header

APPLE EXHIBIT 1102, Page 197 of 1048

APPLE EXHIBIT 1102, Page 198 of 1048

10

15

20

W0 00/157095 33 PCTfUSflfl/11545

indicating the entry point for an executable notifier located anywhere in the package.

Packages including data objects have a signature 1020 appended thereto. Placing

the signature at the end of the package enables the executable driver to readily

locate the signature in order to determine if it is to exercise access control over data

objects in the package as well as perform other functions, such as decryption and

decompression of the data objects. Although the signature 1020 is shown appended

at the end of the package, in the alternative, it may be located elsewhere, such as at

the beginning of the package or after the notifier.

Between the notifier 1010 and the signature 1020, the encrypted sections

1030 (indicated by cross-hatching) are arranged in a predetermined order to be

accessed by the driver executable or the executable notifier, as the case may be.

Figures 11A through 110 illustrate the structure of a software package

including multiple program objects. Figure 1 1A provides an overall view of the

software package illustrating the arrangement of an executable notifier 1110 at the

head of the package, an optional signature section 1120 at the end of the package,

with encrypted and compressed program objects 1 and 2 and encrypted access

control information 1130 arranged between the executable notifier 1110 and the

signature section 1120.

The executable notifier 1110 is illustrated in greater detail in Figure 118. As

shown therein, the executable notifier 1110 includes a header section 1135 at the

beginning of the software package, followed in turn by an executable code section

1140 and a data section 1145. The data section 1145 is followed sequentially by a

resource section 1150 and an import table 1155. The resource section 1150

supplies various resources which may be employed by the executable code of

APPLE EXHIBIT 1102, Page 198 of 1048

APPLE EXHIBIT 1102, Page 199 of 1048

10

15

20

W0 (DU/67095 3 4 PCTIUSOOII 1545

section 1140, such as dialog boxes or menus. The import table 1155 includes links

to various routines supplied by the operating system, such as print, copy, readfile,

createfile, etc.

Figure 110 illustrates the encrypted portions of the software package,

including the encrypted access control information 1160 and the compressed

program objects in the form of N blocks 1165 and respective assembly information

sections 1 170 for each program object.

With reference again to Figure 118, the executable code section 1140 of the

executable notifier 1110, in general, exercises control over access to the program

objects 1 and 2 and performs certain ancillary functions, as follows:

(1) When the user's system first loads the software package in memory, the

executable code section 1140 runs a setup routine utilizing displays and dialog

boxes supplied frOm the resource section 1150. The setup routine performs normal

setup functions, such as a display of the relevant user license and securing the

user's agreement to the license terms. The executable code section 1140 refers to

information in the operating system of the user's computer to determine the

language (e.g., English, French, German) in which the displays and dialog boxes are

presented.

(2) The executable code section 1140 solicits and evaluates the user's

requests for access to the program objects. This is achieved by displaying a dialog

box when the software package is accessed by the user. The dialog box explains

the user‘s options, such as which programs andfor program options are available

without charge. which are available for a fee and which of the latter have been

purchased and are still available to be used. To provide such a display, the

APPLE EXHIBIT 1102, Page 199 of 1048

APPLE EXHIBIT 1102, Page 200 of 1048

10

15

20

WO 00267095 35 PCTRJSDO/11545

executable code section references both the access control information section 1160

(after decrypting section 1160) and a purchase status file which is produced when

the user purchases rights to use one or more objects.

(3) Where a requested use is either free, or already purchased, it not free, the

executable code section 1140 decrypts and decompresses the relevant program or

data object, and then loads it in memory to be run so that the requested use may be

carried out. The section 1140 prevents access to unavailable uses by hooking the

functions referenced in the import table of the running program object to control

routines in the executable code section 1140, as explained below.

(4) The executable code section 1140 serves to deter dump attacks by

erasing from memory certain necessary information from the program object when it

loads the program object in running format in memory. Consequently, even if the

decrypted and decompressed program object is somehow copied from the memory

to some storage device, it could not be reloaded in running format in memory and,

thus, is useless after a dump attack.

It will be understood that the executable code section 1140 functions as a

"wrapper" or access control executable but without being susceptible to various

types of attacks that prior art wrappers have been subject to.

Fig 12 is a flow diagram of a method for secure distribution of software by

data communication. For the purposes of Figure 12, it will be assumed that a user's

computer has been connected to a server computer by a data communication

channel, such as the internet. According to an initial step 1210 in Fig. 12, the server

sends a software product, which is either an executable object or a data object, to

APPLE EXHIBIT 1102, Page 200 of 1048

APPLE EXHIBIT 1102, Page 201 of 1048

10

15

2O

WO 00/67095 36 PCTfUSOOfl 1545

the user's computer, in response to a request sent to the server from the user's

computer.

If the software product is a data object, the user's computer will require a

driver executable in order to make use of the data. If the user's computer lacks the

required driver executable, the user's attempt to access the data object will result

only in the display of a notification to download the driver executable from the server

computer. When the server computer receives such a request, it responds as

indicated in step 1220 by sending the driver executable to the user's computer where

it is installed to operate between its operating system and the appropriate disk or

other mass storage driver thereof, as explained below in connection with Figure 14.

Then, at step 1230. and in response to input from the user, an access control

executable portion of the software product (if an executable object) or of the driver

executable (if the software product is a data object) causes the user's computer to

transmit a purchase request for partial or full access to the software product, and the

server receives the purchase request. Step 1240 follows, at which the server sends

to the user‘s computer a program which generates system identification information

based on data that is specific to the user's computer. For example, the data used to

generate the system identification information may include serial numbers of such

components of the user's computer as the hard disk, the network interface card, the

motherboard, and so forth. The user's computer then sends to the server the

resulting system identification information, as well as information, such as a credit

card number, which is required to complete the transaction. This information is

received at the server, as indicated at step 1250.

APPLE EXHIBIT 1102, Page 201 of 1048

APPLE EXHIBIT 1102, Page 202 of 1048

10

15

20

wo [IO/67095 37 PCTI'USOUf11545

Following step 1250 is step 1260, at which the server validates the credit card

information and generates a decryption key and/or a decryption executable program

on the basis of the system identification information received from, and specific to,

the user‘s computer. According to one method of implementing the invention, the

required decryption key is split into two parts, of which one part is calculated in the

server, and the other is calculated in real time in the user's computer, using the data

which is specific to components of the user's computer. The decryption key and/or

decryption executable program are then transmitted to the user's computer from the

server, as indicated at step 1270. The decryption key and/or decryption executable

program are then used in the user's computer to decrypt the software object to which

the user has just purchased usage rights. In certain embodiments, a watermark is

added to the software object to store data indicative of the transaction in which the

usage rights were purchased.

According to certain embodiments of the invention, the software product sent

at step 1210 includes three objects, of which a first object has all of the features of a

second object plus at least one additional feature. A third of the three objects has all

of the features of the first object plus at least one additional object. Access to the

second object is free, but access to the first and third objects requires two separate

payments. If a payment arrangement is made for both of the first and third objects,

the server computer provides different access control codes, such as different

decryption keys, for the first and third objects, respectively. The different control

codes are based on different respective information characteristic of the user‘s

computer system.

APPLE EXHIBIT 1102, Page 202 of 1048

APPLE EXHIBIT 1102, Page 203 of 1048

10

20

WO 00/67095 3 S PCTIUSOOII 1545

Fig. 13 is a flow diagram of a method for secure distribution of software stored

in a storage medium.

According to a first step 1310 in Fig. 13, software which is distributed on a

storage medium is acquired by the user of a computer and installed on the user's

computer. This step 1310 may have taken place a substantial period of time prior to

the subsequent steps. Next, at step 1320, a server computer receives a request

from the user's computer to purchase partial or full access to a software object which

was installed on the user's computer in step 1310. It again is assumed that the

user‘s computer has been connected by a communication channel to the server.

Preferably the information received by the server at step 1320 includes an

identification code (such as a CD serial number) which identifies the particular

storage medium on which the software was distributed.

Following step 1320 are steps 1330, 1340, 1350 and 1360. These steps may

be identical to steps 1240-1270 which were described above in connection with Fig.

12. except that the decryption key generated by the server at step 1350 may be

based in part on the storage medium identification code. In view of the previous

discussion of the corresponding steps in Fig. 12, no further explanation of Fig. 13 is

necessary.

Fig. 14 is a schematic diagram illustrating the use of a driver executable

controlling access to data objects stored in a computer system. The software

architecture illustrated in Fig. 14 includes a media player application 1405 which is

provided to read or play data objects such as images. Also included is a

conventional operating system 1410 and a driver executable program 1415 of the

APPLE EXHIBIT 1102, Page 203 of 1048

APPLE EXHIBIT 1102, Page 204 of 1048

U]

10

15

20

WO 00/67095 39 PCT/USUOIIIS45

type referred to in connection with step 1220 in Fig. 12, or which is distributed on the

storage medium referred to at step 310 in Fig. 13.

Also illustrated in Fig. 14 are a conventional driver program 1420 which is

provided for managing a storage device, and a storage device 1425 on which one or

more data objects are stored.

Fig. 14 also illustrates a process by which a data object stored on the storage

device 1425 is accessed by the media player application 1405, as well as a process

for requesting printing of the accessed object.

When the user of the computer system enters an input to request access to a

data object stored on the storage device 1425, a request to that effect is passed from

the media player application 1405 to the operating system 1410, as indicated at

reference numeral 1430 in Fig. 14. In response to the request 1430, the operating

system 1410 passes a second request (represented by reference numeral 1432) to

the driver executable 1415. In response to the request 1432, the driver executable

1415 passes a third request (reference numeral 1434) to the storage device driver

1420. In response to the request 1434, the storage device driver 1420 retrieves the

desired data object from the storage device 1425. The desired object is then passed

from the storage device driver 1420 to the driver executable 1415 either in encrypted

form, as indicated at 1436, or in unencrypted form. If the user has satisfied the

condition for access to the data object (e.g., by paying the purchase price for

access), then the driver executable decrypts the encrypted data object and passes

the decrypted data object to the operating system 1410, as indicated at 1438. The

decrypted data object is then passed from the operating system to the media player

application, as indicated at 1440.

APPLE EXHIBIT 1102, Page 204 of 1048

APPLE EXHIBIT 1102, Page 205 of 1048

10

15

20

W0 CID/67095 40 PCTIU500111545

If the user wishes to print the data Object, then a request 1442 is passed from

the media player application to the driver executable, which then passes another

print request 1444 to the operating system.

Fig. 15 is a flow diagram which shows additional details of a method of

printing a data object to which access is controlled. In response to input from the

user of the computer, the media player transmits the print request (reference

numeral 1442 in Fig. 14), as represented by step 1510 in Fig. 15, to the driver

executable. The driver executable then examines the object to determine whether

identifier data such as a signature is present in the object to indicate that printing of

the object is subject to some restriction (step 1520). if at step 1520 no such identifier

is found, then, as indicated at step 1530, the driver executable provides the data

object in an unmodified form to the operating system.

if at step 1520 the driver executable finds the signature which identifies the

object as one for which access is controlled, step 1540 follows. At step 1540 the

driver executable saves or modifies the target address in the media player

application to which the application directs calls for a print routine. Consequently, as

indicated at step 1550, when the media player calls a print routine, the call is

directed to the driver executable. However, if step 1540 has already been carried

out as a result of a previous print request from the media player, this step need not

be repeated.

At step 1560, and in response to the call for the print routine from the media

player application, the driver executable determines whether the customer has

satisfied the conditions required to authorize printing of the data object. If not, the

driver executable causes the computer system to display a suitable notice to indicate

APPLE EXHIBIT 1102, Page 205 of 1048

APPLE EXHIBIT 1102, Page 206 of 1048

U1

10

20

WO 00/67095 41 PCTfUSOO/11545

to the user that printing is denied, and to invite the user to purchase the right to print

the data object (step 1570), as described hereinabove.

If at step 1560 the driver executable determines that printing is authorized,

then the driver executable calls the print routine provided by the operating system

(step 1580).

Fig. 16 illustrates the software package of Figs. 11A-11C when the software

package is first loaded into the working memory of a user‘s computer system. As

before, the executable notifier 1110 is made up of a header section 1135, followed in

turn by a executable code section 1140, a data section 1145, a resource section

1150 and an import table 1155.

Following the executable notifier 1110 are the encrypted and compressed

program objects and encrypted access control information, all indicated by reference

numeral 1130, and the signature section 1120, which were referred to above in

connection with Fig.11A.

If the user requests access to one of the program objects, say object 1, and if

access to the object has been authorized, then the executable notifier decrypts and

decompresses the program object and causes the program object to be written in

executable form as indicated in Figure 17. As seen from Fig. 17, the decrypted,

decompressed program object includes a header section 1710, followed in turn by

an executable code section 1720. a data section 1730, a resource section 1740, and

an import table 1750.

After the program object has been written in memory in executable form as

shown in Fig. 17, the executable notifier modifies the program object in a manner to

defeat dump attacks. This is achieved by erasing or modifying certain portions of the

APPLE EXHIBIT 1102, Page 206 of 1048

APPLE EXHIBIT 1102, Page 207 of 1048

W0 [ID/67095 42 PCTfU800111545

program object after it is written in memory. In certain embodiments, one or more of

the program object‘s relocation information, directory pointers or its entry point

pointer are erased or modified for this purpose. In other embodiments, one or more

of the references to exterior routines in the import table of the program object are

5 modified to enable the executable notifier to control access to such routines. This

modification of the program object is referred to as "hooking" routine calls by the

program objects. This is done by modifying the import table 1750 so that routine

calls are routed through the executable notifier instead of directly to the operating

system. Details of the "hooking" process will now be described with reference to

10 Figure 18.

As indicated at 1810 in Fig. 18, the executable notifier erases portions of the

import table that identify the routines to be called by the corresponding virtual

address such as "read file", "create file". or "print". Instead of addresses to the

operating system routines, the executable notifier inserts virtual addresses in the

15 import table which cause jumps to the code section 1140 of the executable notifier.

The code section 1140 is programmed to interpret each jump to determine the

particular routine requested by the program object. The executable notifier then

determines whether the user has satisfied the conditions to perform the function in

question. if so, the executable notifier calls the appropriate routine in the operating

20 system. To elaborate details ofthe ”hooking" process shown in Fig. 18. the

executable notifier stores in an address record portion of the import tabie 1750

addresses within the executable notifier in place of the addresses of the relevant

routines in the operating system. Instead of erasing part of, and making

substitutions for, the import table 1750 of the program object, the executable notifier

APPLE EXHIBIT 1102, Page 207 of 1048

APPLE EXHIBIT 1102, Page 208 of 1048

W0 00/157095 43 PCT/USOD/11545

may erase and substitute for other portions of the program object, such as relocation

information. a directory pointer or an entry point pointer.

The above description of the invention is intended to be illustrative and not

limiting. Various changes or modifications in the embodiments described may occur

5 to those skilled in the art. These can be made without departing from the spirit or

scope of the invention.

APPLE EXHIBIT 1102, Page 208 of 1048

APPLE EXHIBIT 1102, Page 209 of 1048

10

15

20

W0 Oil/67095 44 PCT/U800” 1545

CLAIMS

1. A method of securely distributing software with limited usage rights,

comprising:

supplying software for distribution to a user, the software including an

access control object for preventing at least some usage thereof on a computer

system without the use of a first access control code;

producing the first access control code based on selected information

characteristic of a predetermined computer system; and

supplying the first access control code to the predetermined computer

system to enable the at least some usage of the software.

2. The method of claim 1, wherein the step of supplying software

comprises supplying the software to the predetermined computer system. the

software having a first object and a second object, 1the access control object

comprising an access control executable controlling access to the first and second

objects by referencing 1the first access control code and the selected information in

the computer system.

3. The method of claim 2, wherein the step of supplying the first access

control code comprises supplying a usage authorization package including the first

access control code and information identifying authorized usages of the software,

the access control executable being operative to reference the usage authorization

package in controlling access to the first and second objects, the software being

operative to store the usage authorization package apart from the first and second

objects.

APPLE EXHIBIT 1102, Page 209 of 1048

APPLE EXHIBIT 1102, Page 210 of 1048

10

15

20

W0 00167095 45 PCT/U800/11545

4. The method of claim 2, wherein the first object provides a first set of a

plurality of features, the second object provides a second set of a plurality of features

including some, but less than all. of the features included in the first set and the

access control executable is operative to prevent access to the first object in the

absence of the first access control code and the selected information but to enable

access to the second object without reference to the first access control code or the

selected information.

5. The method of claim 4. wherein the software includes a third object

providing the first set of a plurality of features together with a third set including at

least one feature not included in the first set, the executable being operative to

prevent access to the third object in the absence of a second access control code

different from the first access control code and further selected information

characteristic of the predetermined computer system, the second access control

code being produced based on the further selected information, the method further

comprising:

supplying the second access control code to the predetermined

computer system.

6. The method of claim 2, wherein the access control executable

comprises a wrapper for the first and seCOnd objects.

7. The method of claim 1, wherein the first access control code is a

decryption key produced from the selected information.

8. The method of claim 1, wherein the first access control code is an

executable required for decrypting at least a portion of the software.

APPLE EXHIBIT 1102, Page 210 of 1048

APPLE EXHIBIT 1102, Page 211 of 1048

U]

10

15

WO 00167095 46 PCT/USOO/l 1545

9. The method of claim 1, wherein the first access control code is a

watermark in an object supplied to the predetermined computer system.

10. The method of claim 1, wherein the software includes transaction

information relating to a transaction by which the software is supplied to the user,

and the access control object is operative to prevent the at least some usage of the

software in the absence of the transaction information in the software.

11. The method of claim 1, wherein the transaction information is supplied

as a watermark in the software.

12. The method of claim 1, further comprising the steps of storing the first

access control code at a location in the computer system apart from a location at

which the software is stored therein.

13. The method of claim 1, further comprising receiving at a server a

request from the user to purchase rights to predetermined usage of the software,

receiving at the server the selected information characteristic of the predetermined

computer system, obtaining payment information from the user assuring payment for

the rights and supplying the first access control code from the server to the

predetermined computer system in response to receipt of the payment information.

14. The method of claim 13, further comprising supplying a system

information collection code from the server to the predetermined computer system,

the system information collection code being operative to obtain the selected

information characteristic of the predetermined computer system.

APPLE EXHIBIT 1102, Page 211 of 1048

APPLE EXHIBIT 1102, Page 212 of 1048

10

15

20

we 00157095 47 PCT/USOOI11545

15. The method of claim 13. wherein the software includes data defining a

notifier which the software causes to be displayed by means of the predetermined

computer system, the notifier conveying information required by the user for ordering

rights to predetermined usage of the software and enabling entry of first transaction

information required for the purchase of the rights. the software being operative to

obtain the selected information from the predetermined computer system in

response to entry of the payment information and to cause the predetermined

computer system to transmit the selected information and the first transaction

information to the server.

16. The method of claim 15, wherein the software is operative to reference

information in an operating system of the predetermined computer system identifying

a language selected for providing outputs to a user and to cause the software to

provide such outputs in the selected language.

17. The method of claim '15, wherein the software is supplied as a software

copy on a storage medium for distribution to the user, the software including an

identification code identifying the software copy, the software is operative to transmit

the identification code to the server, the server being operative to produce the first

access control code based on the identification code.

18. The method of claim 15, wherein the software is supplied by data

communication from a server to the predetermined computer system in response to

a request, the request including second transaction information, the server being

operative to insert transaction identification information in the software based on the

second transaction information.

APPLE EXHIBIT 1102, Page 212 of 1048

APPLE EXHIBIT 1102, Page 213 of 1048

10

15

20

WO 00/67095 4 8 PCTIUSOOII 1545

19. The method of claim 18, wherein the server is operative to insert the

transaction identification information in the software as a watermark.

20. The method of claim 18, wherein the server is operative to produce the

first access control code based on the second transaction information.

21. The method of claim 20, wherein the server is operative to supply the

first access control code with an identifying watermark.

22. The method of claim 1, wherein the software comprises a first data

object.

23. The method of claim 22, wherein the first data object inciudes a first set

of features and a second set of features, the first set of features being encrypted and

the second set of features being unencrypted, and wherein the step of supplying

software comprises supplying a driver executable to the predetermined computer

system, the driver executable including first code for accessing the first data object

and decryption code for controlling decryption of the first data object.

24. The method of claim 22, wherein the first data object is encrypted, the

step of supplying software including supplying a driver executable to the

predetermined computer system, the driver executable including first code for

accessing the first data object and decryption code for decrypting the accessed first

data object.

25. The method of claim 24, wherein the driver executable is operative to

receive a request for the first data object from an operating system of the

predetermined computer system and to transfer the request to a preexisting driver of

APPLE EXHIBIT 1102, Page 213 of 1048

APPLE EXHIBIT 1102, Page 214 of 1048

U]

10

20

W0 00/157095 49 PCT/'USOOI] 1545

the predetermined computer system, the driver executable being further operative to

receive the first data object from the preexisting driver, to decrypt the first

predetermined object and supply the decrypted first predetermined object to the

operating system.

26. The method of claim 25, wherein the first data object includes a

predetermined identifier therein and the driver executable includes second code for

detecting the presence of the predetermined identifier in the first data object, the

decryption code being operative to decrypt the first data object in response to the

presence of the predetermined identifier therein.

27. The method of ciaim 26, wherein the driver executable is operative to

transfer a file from the preexisting driver to the Operating system without modification

in the absence of the predetermined identifier in the file as received from the

preexisting driver.

28. The method of claim 24 wherein the first data object provides a first set

of a plurality of features. the software further comprising a second data object

providing a second set of a plurality of features including some, but less than all, of

the features included in the first set, and a usage authorization package including

information identifying authorized usages of the first and second data objects, the

driver executable being operative to selectively enable usage of the first and second

data objects based on the usage authorization package.

29. The method of claim 28, wherein the driver executable is operative

upon a first request for access to the first or second data object to return a dialog box

APPLE EXHIBIT 1102, Page 214 of 1048

APPLE EXHIBIT 1102, Page 215 of 1048

W0 [IO/67095 50 PCT/USUD/11545

object for displaying a dialog box to the user, the dialog box providing the user with

options for accessing the first and second data objects on a pay and/or no—pay basis.

30. The method of claim 29, wherein the driver executable is operative

upon the first request for access to the first or second data object to reference

5 information in the operating system identifying a display language selected for

producing displays to a user and to provide the dialog box with text in the display

language.

3‘1. The method of claim 22, wherein only a portion of the first data object

is encrypted, and wherein the step of supplying software comprises supplying a

10 driver executable and a usage authorization package to the predetermined computer

system, the usage authorization package including information identifying authorized

usages of the first data object, the driver executable being operative to access the

first data object and to transfer the first data object to an operating system of the

predetermined computer system, wherein the driver executable selectively decrypts

15 the portion of the first data object before transferring the first data object to the

operating system based on the usage authorization package.

32. The method of claim 22, wherein the step of supplying software

comprises supplying a driver executable to the predetermined computer system, the

driver executable including first code for accessing the first data object in response

20 to a request from an operating system of the predetermined computer system and

being operative to determine whether a requested action utilizing the first data object

is authorized, the driver executable being operative to block execution of the

requested action when the same is not authorized.

APPLE EXHIBIT 1102, Page 215 of 1048

APPLE EXHIBIT 1102, Page 216 of 1048

WO 00167095 5] PCT/U8001l1545

33. The method of claim 32, wherein the driver executable is operative to

block execution of the requested action by hooking a routine of an external

executable required for performing the requested action.

34. The method of claim 22, wherein the software comprises a second

5 data object, wherein the method further comprises producing the second data object

from the first data object by reducing the information content of the first data object.

35. The method of claim 34, wherein the second data object is produced

by eliminating data from the first data object.

36. The method of claim 34, wherein the second data object is produced

10 by adding noise to the first data object.

37. The method of claim 34, wherein the second data object is

produced by filtering the first data object.

38. The method of claim 34, wherein the second data object is produced

by encrypting portions of the first data object.

15 39. The method of claim 22, wherein the software comprises a second

data object, and wherein the method further comprises producing the first data object

from the second data object by adding data to the second data object.

40. The method of claim 1, wherein the software comprises a first

executable object.

20 41. A software package comprising:

a first object providing a first set of a plurality of features;

APPLE EXHIBIT 1102, Page 216 of 1048

APPLE EXHIBIT 1102, Page 217 of 1048

W0 fill/67095 5 2 PCTIUSOD/1 1545

a second object providing a second set of a plurality of features

including some, but less than all, of the features included in the first set; and

an access control portion affording selective access to the first software

object and/or the second software object.

5 42. The software package of claim 41, wherein the first and second objects

are executables.

43. The software package of claim 41. wherein the first and second objects

are data objects.

44. A software package, comprising:

10 a first object providing a first set of a plurality of features, the first object

being encrypted; and

a second object providing a second set of a plurality of features

including some, but less than all, of the features included in the first set, the second

object being unencrypted.

15 45. A driver executable, comprising:

first code for accessing a requested file from a storage device;

second code for detecting the presence of a predetermined identifier in

the accessed file; and

decryption code for decrypting at least a portion of the accessed file in

20 re5ponse to detection of the predetermined identifier therein.

46. A software package, comprising:

a first executabie object; and

APPLE EXHIBIT 1102, Page 217 of 1048

APPLE EXHIBIT 1102, Page 218 of 1048

wo (JD/67095 53 PCTfUSDOII 1545

a wrapper for the first executable object, the wrapper being operative to

erase predetermined software from the first executable object when it has been

loaded in running format in memory.

47. The software package of claim 46, wherein the predetermined software

5 comprises an import table.

48. The software package of claim 46, wherein the predetermined software

comprises relocation information.

49. The software package of claim 46. wherein the predetermined software

comprises a directory pointer.

10 50. The software package of claim 46, wherein the predetermined software

comprises an entry point pointer.

51. The software package of claim 46, further comprising usage

information defining at least one permitted use of the first executable object, the

wrapper being operative to reference the usage information to control usage of the

15 first executable object.

52. The software package of claim 51, wherein the first executable object

is operative to access a file external to the software package and the wrapper is

operative to control usage of the first executable object to access the external file

based on the usage information.

20 53. The software package of claim 52, wherein the external file is

encrypted and the wrapper is operative to control decryption of the external file

APPLE EXHIBIT 1102, Page 218 of 1048

APPLE EXHIBIT 1102, Page 219 of 1048

W0 00(67095 54 PCTIUSOfl/l 1545

54. The software package of claim 51, wherein the wrapper is operative to

detect an unauthorized request for access to the external file and upon such

detection to control the display of a dialog box to a user soliciting payment for the

requested access.

5 55. A software package, comprising:

a first executable object; and

a wrapper for the first executable object;

the first executable object being operative. while running, to access a

feature of the wrapper;

10 the wrapper being operative to supply the feature to the first executable

object when the feature is accessed thereby.

56. The software package of claim 55, wherein the first executable object

is operative to access a print control feature of the wrapper, and the wrapper is

operative to controi execution of a print feature in response to access of the print

15 control feature thereof by the first executable object.

57. The software package of claim 55, wherein the first executable object

is operative to access a copy control feature of the wrapper, and the wrapper is

operative to control execution of a copy feature in response to access of the copy

controi feature thereof by the first executable object.

20 58. The software package of claim 55, wherein the first executable object

is operative to access a read-file control feature of the wrapper. and the wrapper is

APPLE EXHIBIT 1102, Page 219 of 1048

APPLE EXHIBIT 1102, Page 220 of 1048

wo 00167095 55 PCT/USOOIIIS45

operative to control execution of the read file feature in response to access of the

read-file control feature thereof by the first executable object.

59. The software package of claim 55. wherein the wrapper is operative to

control execution of a decryption feature in response to the access by the first

5 executable object.

60. The software package of claim 55, wherein the first executable object

includes at least one record storing an address of the wrapper, the first executable

object being operative to access the feature of the wrapper by transferring program

execution control to the address of the wrapper.

10 61. The software package of claim 60, wherein the wrapper is operated to

supply the feature by calling an executable routine external to the software package.

62. A software package, comprising:

a first executable object, and

a wrapper for the first executable object;

15 the first executable object being operative to call a predetermined

feature external thereto:

the wrapper being operative upon a call of the predetermined feature

by the first executable object to transfer program execution control to a

predetermined address within the wrapper to controi access by the first executable

20 object to the predetermined feature.

APPLE EXHIBIT 1102, Page 220 of 1048

APPLE EXHIBIT 1102, Page 221 of 1048

10

15

20

WO 00167095 56 PCT/'[JSOO/11545

63. The software package of claim 62, wherein the first executable object

stores an address record for an address of software providing the predetermined

feature, and the wrapper is operative to store an address of the wrapper in the

address record.

64. The software package of claim 63, wherein the first executable object

stores the address record in an import table including a plurality of address records

for calling a plurality of routines external to the software package, the wrapper being

operative to resolve the addresses of the plurality of routines and to insert a

predetermined one of the routine addresses as the address record in the import

table.

65. The software package of claim 64, wherein the wrapper is operative to

insert each of a plurality of the routine addresses in a respective one of the plurality

of address records in the import table.

66. A software package, comprising:

a software object having a first set of features and a second set of

features, the first set of features being encrypted and the second set of features

being unencrypted: and

a signature readable by a predetermined executable serving to control

access to the encrypted first set of features.

67. The software package of claim 66, wherein the software object

comprises an executable.

APPLE EXHIBIT 1102, Page 221 of 1048

APPLE EXHIBIT 1102, Page 222 of 1048

10

15

20

we 00167095 57 PCTm500/11545

68. The software package of claim 66, wherein the software object

comprises a data object

69. The software package of claim 68, wherein the data object comprises

music data.

70. The software package of claim 69, wherein the music data is encoded

as a plurality of frequency coefficients produced by a discrete cosine transform, the

coefficients including relatively low frequency coefficients and relatively high

frequency coefficients, the relatively high frequency coefficients being encrypted and

the relatively low frequency coefficients being unencrypted.

71. The software package of claim 69, wherein the music data is arranged

in a plurality of subbands. at least some of the subbands of data being encrypted

and others of the subbands being unencrypted.

72. The software package of claim 69, wherein the music data is frequency

domain data, at least some of the frequency domain data being encrypted and other

of the frequency domain being unencrypted.

73. The software package of claim 68, wherein the data object comprises

image data.

74. The software package of claim 73, wherein the image data is encoded

as a plurality of frequency coefficients produced by discrete cosine transform, the

coefficients including relatively low frequency coefficients and relatively high

frequency coefficients, the relatively high frequency coefficients being encrypted and

the relatively low frequency coefficients being unencrypted.

APPLE EXHIBIT 1102, Page 222 of 1048

APPLE EXHIBIT 1102, Page 223 of 1048

10

15

20

WO 00167095 58 PCT/USDOI] 1545

75. The software package of claim 73, wherein the image data comprises

color components, at least some of the color components being encrypted.

76. The software package of claim 75, wherein at least one of the color

components is unencrypted.

77. The software package of claim 75, wherein the image data further

comprises an unencrypted luminance component, and wherein all of the color

components are encrypted.

78. The software package of claim 73, wherein the image data comprises

line data, at least some of the line data being encrypted.

79. The software package of claim 73, wherein the image data is arranged

in a plurality of lines. at least portions of some of the lines being encrypted and at

least other portions of other lines being unencrypted.

80. The software package of claim 73, wherein the image data is arranged

at least in part as a plurality of blocks, at least one of the blocks being encrypted.

81. An executable object, comprising:

a first code portion comprising first predetermined instructions; and

a second code portion comprising loading instructions required for

loading the first code portion in a memory of a computer system to be programmed

thereby, the second code portion being operative to control the computer system to

erase the loading instructions from memory upon loading the first code portion in

memory-

APPLE EXHIBIT 1102, Page 223 of 1048

APPLE EXHIBIT 1102, Page 224 of 1048

WO 00167095 59 PCT/USDD/l 1545

82. A computer system, comprising:

a processor;

a memory;

an instruction input device; and

5 an executable object stored in the computer system, the executable

object having a first code portion comprising first predetermined instructions for

execution by the processor, and a second code portion including loading

instructions, the processor being operative upon receipt of a predetermined

instruction from the instruction input device to load the second code portion in the

10 memory, the processor being operative under the control of the loading instruCtions

to load the first code portion in the memory and operative under the control of the

second code portion to erase the loading instructions from the memory upon loading

the first code portion in memory.

83. A computer system, comprising:

15 a processor;

a memory;

an instruction input device; and

a software package stored in the computer system, the software

packing having a first object providing a first set of a plurality of features. a second

20 object providing a second set of a plurality of features including some, but less than

all, of the features included in the first set, and an access control portion; the

APPLE EXHIBIT 1102, Page 224 of 1048

APPLE EXHIBIT 1102, Page 225 of 1048

WO 00167095 60 PCT/USDOIIIS45

processor being operative to load the software package in the memory, the

processor being further operative to request access to a selected one of the first and

second objects in response to a predetermined instruction from the instruction input

device. the access control portion being operative to selectively control access to the

5 selected object.

84. A computer system, comprising:

a processor;

a memory;

an instruction input device;

10 a storage device storing a file;

an operating system;

a driver executable; and

a device driver serving to control access to the storage device;

the instruction input device being operative to input a first request for

15 access to the tile;

the operating system serving to control the processor to direct a

second request for the file to the driver executable in response to the first request for

access;

the driver executable being operative in response to the second

20 request to control the processor to direct a third request for the file to the driver;

APPLE EXHIBIT 1102, Page 225 of 1048

APPLE EXHIBIT 1102, Page 226 of 1048

WO 00167095 61 PCT/U800” 1545

the driver being operative in response to the third request to control the

processor to read the file from the device to the memory and thereupon return

control of the processor to the driver executable;

the driver executable being operative upon return of control thereto to

control the processor to examine the file in memory to detect the presence of a

predetermined identifier in the file and to decrypt at least a portion of the file in

response to detection of the predetermined identifier therein.

APPLE EXHIBIT 1102, Page 226 of 1048

APPLE EXHIBIT 1102, Page 227 of 1048

WO 00/67095 PCTIU800/11545

1/25

Executable FHes FIGJ
APPLE EXHIBIT 1102, Page 227 of 1048

APPLE EXHIBIT 1102, Page 228 of 1048

W0 [DO/67095 PCTfUSOO/11545

2/25

 Produce Second Object

from First Object, so

that Second Object
has fewer features

than First Object

Encrypt First

Object

Produce Usage
Authorization Information

Add Notifier and

Signature to Encrypted

First Object, Second

Object and Usage
Authorization information

210

220

230

240

FIG. 2

APPLE EXHIBIT 1102, Page 228 of 1048

APPLE EXHIBIT 1102, Page 229 of 1048

W0 CID/67095 PCTfUSOU/11545

3/25

370 315

FIG. 3A FIG. 3B

370 325 330

FIG. SD FIG. 3E FIG. 3F

310 335 340

F1030 FIGS}! FIG.3I

APPLE EXHIBIT 1102, Page 229 of 1048

APPLE EXHIBIT 1102, Page 230 of 1048

W0 (JO/67095 PCTfUSlm/l 1545

4/25

310

FIG. SJ FIG. 3L

Energy 410

Frequency
FIG. 4A

Frequency

APPLE EXHIBIT 1102, Page 230 of 1048

APPLE EXHIBIT 1102, Page 231 of 1048

W0 III/67095 PCT/U800” l 545

5/25

 E12229“

520 530 w 540 L550

FIG. 5A

_m

N 513
Times Each Time

X $

BOYS Each Day

N $
Hours Each Hour

APPLE EXHIBIT 1102, Page 231 of 1048

APPLE EXHIBIT 1102, Page 232 of 1048

W0 Oil/67095 PCT/USOO/11545

6f25

Notifier 670

Usage Authorization
Informofion

Encrypteg
First Ob 'ect

Second Object

FIG. 6

A

'7

APPLE EXHIBIT 1102, Page 232 of 1048

APPLE EXHIBIT 1102, Page 233 of 1048

W0 CID/67095 PCTfUSUDII 1545

7/25

710 Watermark First,
Second and Third

Object. Notifier and

Usage Authorization Information

720 Compress First, Second
and Third Objects to

yield multiple Blocks

and Assembly Info rmat ion

730 Encrypted Each of the

Blacks, the Assembly Information

and Usage Authorization information

740 Add Notifier and

Signature to Encrypted

Blocks, Assembly

Information and Usage

Authorization Information

FIG. 7

APPLE EXHIBIT 1102, Page 233 of 1048

APPLE EXHIBIT 1102, Page 234 of 1048

WO 00167095 PCT/USOOI11545

8/25

Instruction 1

——\v

Instruct ion 6

APPLE EXHIBIT 1102, Page 234 of 1048

APPLE EXHIBIT 1102, Page 235 of 1048

W0 DID/67095 PCTfUSOD/l1545

9/25

FIG. 8C

APPLE EXHIBIT 1102, Page 235 of 1048

APPLE EXHIBIT 1102, Page 236 of 1048

W0 00167095

850

860

870

10/25

Routine 0 start

Routine 0 end

Fake Routine 0 start

Fake Routine 1 end

Routine 1 start

Routine 1 end

Fake Routine 0 start

Fake Routine 2 end

Routine 2 start

Routine 2 end

Fake Routine 1 start

Fake Routine 0 end

FIG. 80

PCTIUS001'11545

APPLE EXHIBIT 1102, Page 236 of 1048

APPLE EXHIBIT 1102, Page 237 of 1048

W0 [DD/67095 PCT/11800111545

11/25

- 910

object i

. 920

\IF

— Assembly
930% Information BIOCkS ”"937

object 13”}
object n3.-.} 6 E

Usage 3
Authorization , . 950

Information Microcompressmn

i i

-
960/ ‘ \ key n

\i/

ComposHe

Package

FIG. 9A

APPLE EXHIBIT 1102, Page 237 of 1048

APPLE EXHIBIT 1102, Page 238 of 1048

W0 (JO/67095 PCT/11800111545

12/25

object n

Block

copier

\

92R /
932

939

 String

matching

1
935 Assembly

Information Blocks 937

FIG. QB

APPLE EXHIBIT 1102, Page 238 of 1048

APPLE EXHIBIT 1102, Page 239 of 1048

WO 00/67095 PCT/11800111545

13/25

Hash Head Tob1e

Offset & Object #3, h = o

Offset 8: Object #‘s, h = 3

"‘IIIIIIII'll-II-"IIIIIIIIIIIII

Hashing '
Values

h

 LNI‘QJC)

APPLE EXHIBIT 1102, Page 239 of 1048

APPLE EXHIBIT 1102, Page 240 of 1048

PCTfUSDO/l] 545WO 00267095

14/25

 hm.QNRNWm53%
J

 ma..S‘K.1.11.mmK

APPLE EXHIBIT 1102, Page 240 of 1048

APPLE EXHIBIT 1102, Page 241 of 1048

W0 [DO/67095 PCT/U500111545

15/25

LA LB
t————f————f—L+—+

_P
t t t

Offset 1 Offset 2 Offset 3

FIG. 96

Offset 1 Offset 2 Offset 3

Offset 1 Offset 1, P —LA

Offset 3 Offset 3, P

APPLE EXHIBIT 1102, Page 241 of 1048

APPLE EXHIBIT 1102, Page 242 of 1048

W0 00/671195 PCTIUSOOII] 545

16/25

Usage Aqthorizot ion
lnformot ion

Assembfy Information
(Third Object)

APPLE EXHIBIT 1102, Page 242 of 1048

APPLE EXHIBIT 1102, Page 243 of 1048

WO 00167095 PCT/USOO/l 1 545

17/25

 1110

 Executable

Notifier

Access

Control1130
Information

 Program

Object
1

Program

Object
2

FIG.11A

 1120

APPLE EXHIBIT 1102, Page 243 of 1048

APPLE EXHIBIT 1102, Page 244 of 1048

W0 00/671195

18/25

Executable Code

Import Table

M“
FIG. HB

7135

1140

1 145

 7150

7155

1160
Access Control lnfo

Block 1

Block 2

Block N

Assembly Information

Program Object 1

7170\

Assembly lnformation

Program Object 2

FIG.17C

APPLE EXHIBIT 1102, Page 244 of 1048

PCTKU800/11545

APPLE EXHIBIT 1102, Page 245 of 1048

WO 00/67095 PCTIUSDD/11545

19/25

Server Sends Software

Product at Request of User

7210

———————— 1

E Server Sends Driver V1220Executob Ie
——.._____.__—

Server Receives Purchase

Request Produced by Access
Control Executoble in Executable

Object or Driver Executable

Server Sends System
[B Generator

Server Receives Transaction

Information and System Information

7230

1240

 7250

Server Validates Credit and

Produces Decryption Key and/or
Decryption Executable Based

on System Information

1260

 Server Transmits Decryption 1270

Key and/or Decryption Executable

to User’s Computer System

FIG. 12

APPLE EXHIBIT 1102, Page 245 of 1048

APPLE EXHIBIT 1102, Page 246 of 1048

W0 (JO/67095 PCTfUSOO/11545

20/25

[— ________________ 1
I Buyer Acquires Software on I

| Storage Medium and Installs V1310
| on Computer System

Server Receives ”Buy” Request

Server Transmits System
ID Generator

Server Receives Transaction

Information & System Information

Server Vaiidates Credit and

Produces Decryption Key and/or
Decryption Executabie Based on

System Information

1320

 1330

1340

r1350

 Server Transmits Decryption 1360
Key and/or Decryption Executabie

to User’s Computer System

FIG. 13

APPLE EXHIBIT 1102, Page 246 of 1048

APPLE EXHIBIT 1102, Page 247 of 1048

WO 00/67095 PCT/USOOIIIS4S

21/25

1405

Med 10 Picyer

1430 1442

m 1440
Reqlugst -

1444 Print
1410 Ope rating System

2 1438MS I
7415

Driver for 1425
Storage -

APPLE EXHIBIT 1102, Page 247 of 1048

APPLE EXHIBIT 1102, Page 248 of 1048

WO 00/67095

22f25

1510 Media Player Requests

Print of Object

Driver Executable

1520 Examines Object for
Signature

Driver Executable

7540 Saves/Modifies
Address for Print

Routine in Media

Player

1550 Media Player

col Is Driver

Executable to ”Print"
Driver Executable N

1560 determines if 0
Print is Authorized

1580 D river Executob Ie

Calls Print

Routine
FIG.15

PCT/USOO/1154S

1530

Provide Object
Unmodified to

Operating System

1570

[

Disp lay Not'ice/
invite Purchase

APPLE EXHIBIT 1102, Page 248 of 1048

APPLE EXHIBIT 1102, Page 249 of 1048

WO 00167095

7130
APPLE EXHIBIT 1102, Page 249 of 1048

APPLE EXHIBIT 1102, Page 250 of 1048

WO 00/67095 PCTIUSOD/l 1545

24/25

 m.,//I/J.MA -

W/I/I/I/I/I/I/I/l.
Code

I/I/I/I/I/I/I/I/J

/I/I/I/I/I/I/I/I/
Resource

VII/I/I/I/I/I/I/

l/l/l/I/I/I/l/I/

1710

1720

1730PROGRAM1

,,fi1740

 1750

I/l/MI/I/l‘a/I/A.

I"l/‘l/I/I/I/I/I/l/l

V/I/I/A
FIG. 77

NOTNTER

APPLE EXHIBIT 1102, Page 250 of 1048

APPLE EXHIBIT 1102, Page 251 of 1048

WO 00167095 PCT/U800111545

25/25

0,./l/ I...
1740

Resource

- my-

1%40

Code

To Ex erncl

g ”IA 45 C056
g3 Data 17

FIG. 18

APPLE EXHIBIT 1102, Page 251 of 1048

APPLE EXHIBIT 1102, Page 252 of 1048

IDFFEHIDMAIT()DDAIA SIflAIlCEi IIEIWDIrr
 Into .tional Application No

PCT/US 00/11545

CLASSIFICATION 3F SUBJECT MATTERire 7 seer 0

According to International Patent Classification UPC} or to both national classification and lPC

Minimum documentation searched {classification system followed by classification symbols)
IPC 7 GOGF

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and. where practical, search terms used)

EPOHInternal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° Citation of document. with indication. where appropriate, of the relevant passages

US 5 758 068 A (BRAND ET AL.)
26 May 1998 (1998-05—26)

Flelevant to claim Ho.

column 2, line 5] —column 8, line 9;
figures

MARY TORK ROTH, PETER SCHWARTZ: "A

wrapper architecture for legacy data
sources"

IBM ALMADEN RESEARCH CENTER, ‘Online!
1997, pages 1—21, XP002145099
Retrieved from the Internet:

<URL:http://www.almaden.ibm.com/cs/gariic/
vidb97wraprj.ps> ‘retrieved on 2000-08—16!
the whole document

D Further documents are listed in the continuation of box C.
° Special categories oi cited documents:

"A' documerltdelinlng the general state at the ad which is not
considered to be at panicutar relevance

'E" earticr document but published on or alter the international
filing date

'L' document which may throw doubts on priorrtiir claimts) or
whim is cited to establish the publication date of another
citation or other special reason (as specliied)

"0“ document watching to an oral disclosure, use, exhibition orother means

'P" document published prior to the intamatlonai liling date but
later than the priority date claimed

Data at the actual completion or the intemetioi'iat search

16 August 2000

Name and mailing address of the ISA
European Patent Ofllce. RE 5516 Pateritlaan 2
ML - 2230 Hv Flliswljk

Tel. (4-31—70) 340—2040. Tit. :31 651 epo nl.
Fax: (4-31—70) 340-3016

Form PCTJISmt 0 (second diner) (Jul y roe-2|

E Patent family members are listed in annex.

'1'” later document published alter the rite rnatlonai iiiing date
or priority date and not in conflict with the application but
cited to understand the princ‘rple or theory underlying theinvention

"X" document of particular relevance: the claimed inventioncannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention
cannot be considered to Invorve an inventive step when the
documerl is contained with one or more other sum docu-
ments. such corrbination being obvioue to a person skilledin the art.

"8' dowmerit member oi the same patent tam lllf

Date oi melting oi the international search report

OY/UQ/EUOO

Authorized orilcer

Soier, J

APPLE EXHIBIT 1102, Page 252 of 1048

APPLE EXHIBIT 1102, Page 253 of 1048

INTERNATIONAL SEARCH REPORT
Information on patent lamiiy members

Patenl docu ment Publication Patent family Publication
cited in search report date membefls) data

US 5758068 A 26-05-1998 NONE

Ink ..tlonal Application No

PCT/US [DO/11545

Form Pcmswzw (palm! lamily ml} (July I 992)

APPLE EXHIBIT 1102, Page 253 of 1048

APPLE EXHIBIT 1102, Page 254 of 1048

 PCT WORLD INTELLECTUAL PROPERTY ORGANIZATIONInternational Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

WO 92/20022

12 November 1992 (12.11.92)

(51) International Patent Classification 5 -' (11) International Publication Number:

G06F1/00

 (43) International Publication Date:

(21) International Application Number: PCT/US92/03812 ‘ (74) Agents: NATI-I, Ram, B. el 511.; Mo Joyce D. Lange, Digi-
tal Equipment Corporation, 111 Powdermili Road, May-
nard, MA 10754 (US).

(22) International Filing Date: 6 May 1992 (06.05.92)

(81] Designated States: AT, AT (European patent), AU, BB, BE

(30) Priority data:

697,652 3 May 1991 (08.05.91) US (European patent), BF (OAPI patent), BG, BJ (OAPI
723,456 28 June 1991 (28.06.91) US patent), BR, CA, CF (OAPI patent), CG (OAPI patent),
722,340 23 June 1991(28.06.91) US CH, CH (European patent), CI (OAPI patent), CM
723,457 23 June 1991 (23.05.91) US (OAPI patent), cs, DE, DE (European patent), DK,

DK (European patent), ES, ES (European patent), FI,
FR (European patent), GA (OAPI patent), GB, GB (Eu-
ropean patent), GN {GAP} patent), GR (European pa-
tent). HU, IT (European patent), JP, KP, KR, 1K, LU,
LU (European patent), MC (EurOpean patent), MG, ML
(OAPI patent), MR (OAPI patent], MW, NL, NL (Euro-
pean patent), NO, PL, RO, RU, SD, SE, SE (European
patent), SN (OAPI patent), TD (OAPI patent), TG (OA—
PI patent).

(71) Applicant: DIGITAL EQUIPMENT CORPORATION
' [US/US]; 146 Main Street, Maynard, MA 01754 (US).

('72) Inventor: WYMAN, Robert, Mark; 410 Second Avenue,
South No. 108, Kirkland, WA 931133 (115).

 Published

With international search report.
Befiire the expiration of the time limit for amending the
claims and to be republished in the event aftke receipt ofamendments.

 (54) Title: MANAGEMENT INTERFACE AND FORMAT FOR LICENSE MANAGEMENT SYSTEM
It: meme 2?

a ___.._ cm Ill ”‘5'“

P sauces ““750” pp": g! I issurnl as

28 ISSUE 1: Hill - 25 12

tuner
19 carcass:

3t.
33
3: Lee 3

21 3‘1

__ it 15 u, 15 __

Littust ELEMTEE as 13 turns: I DELEWEE nus'3 ' HAHAGL' SEWER ”amp SERVER I
22 22

"in to 15 _ 11. 1a 16

um g a a a a
(PU

"is" on
19 19 n

:::::' 1.! 11‘1“: ‘5 in la

(57) Abstract _ Hffltfi 1? 1: ti L! 17

A distributed computer system employs a license management system to account for software product usage- A
management policy having a variety of alternative styles and contexts is provided. Each licensed product upon start-up

¥ makes a call to a license server to check on whether usage is permitted, and the license server checks a database of the
. licenses, called product use authorisations, that it administers. 1f the particular use requested is permitted, a grant is
‘ . returned to the requesting user node. The product use authorization is structured to define a license management policy

allowing a variety of license alternatives by values called “style", “context", “duration" and “usage requirements
determination method". The license administration may ‘be delegated by the license server to a subsection of the
organization, by creating another license management facility duplicating the main facility. The license server must
receive a license document [a product use authorization) from an issuer of licenses, where a license document generator is
prowdcd. A mechanism is provided for one user node to make a call to use a software product located on another user
node; this is referred to as a “calling card”, by which a user node obtains permission to make a procedure call to use a
program on another node, A management interface allows a license manager at a server to modify the license documents
1n the database maintained by the server, within the restraints imposed by the license, to make delegations, assignments
etc. The license documents are maintained in a standard format referred to as a license document interchange format SE:
the management system is portable and can be used by all adhering software vendors. A feature of the databasemanagement 13 the use of a filter function.

APPLE EXHIBIT 1102, Page 254 of 1048

APPLE EXHIBIT 1102, Page 255 of 1048

.r

I

FOR THE PURPOSES 0F INFORMTION ONLY

(“mlus used :0 identify Sluts: pamy In the PC] on lhc fumt pays of pamphlet: publishing internaliuna!
applications under [he PCI‘.

A'l Auhllhi ' l-inlmnl Milli
A [; Almmlm Hum: M {angel 1.:
BB Hdrhxlktub (mbun Muurilunia
BE Bull-Jam Umlcd Mnglimn Malawi
HF Bur-ind hm: (juinw Hulhcrlanm
HG liulgdrm Gruucu Norway
HJ Hymn Hungary Pul‘ll'ld
HR Hmh] . lrulamd Romain:
(TA “mania ' July Russian l-L'IJurullun
(.‘F ('unlrul African: Rupuhlh; Japan Sudan *
(‘6 ['nngu Umnuumllc People‘s Republic .‘iwmlul‘. - ,of hut-ca ' ' Sunugul

Sovicl Unlun
CH bvulru land
Cl {THC d'lulhu Rrpuhlit: 0f KUIUJ-l
CM l'amuruun I iuchlcnalcm
CS ('wullus!m.:ki.| . bri Lunlm
[IE (Jurmuuy Lummlmurg
UK Damn.er Mull-ICU

ES bpuil‘. Madngnxnr

(‘lmd

Tug!)
Unilud Sluts: of America

APPLE EXHIBIT 1102, Page 255 of 1048

APPLE EXHIBIT 1102, Page 256 of 1048

15

20

WO 92/20022 PCTIU392!03812

"1'-

MPNAGEMENT INTERFACE: AND FORM FOR LICENSE WW SYSTEM

BACKGROUND OF THE INVENTION

This invention relates to methods of operation of computer systems, and

more particularly to a method and system for managing the licensing of software

executed on computer systems.

In US. Patent 4,937,863, issued to Robert. Chase and Schafer and assigned

to Digital Equipment Corporation. the assignee of this invention. a Software

Licensing Management System is disclosed in which usage of licensed software

may be monitored in a computer system to determine if a use is within the scope

of a license. The system maintains a database of licenses for software products,

APPLE EXHIBIT 1102, Page 256 of 1048

APPLE EXHIBIT 1102, Page 257 of 1048

10

15

20

“'0 92120022

delivering the license document may be in the form of a network. or may be a

phone line using modems. or may include physical delivery by disks or CD ROMS.

for example. Likewise. the method of delivery of the software products being

licensed, i.e.. the applications programs 17 to be executed on the CPUs [6. is not

material to the license management facility of the invention; the products are

delivered by some appropriate means. e.g., the communications link 30 and the

networks 21 and 22, by CD ROMS or disks physically distributed. etc.

Although shown in Figure 1 as operating on a distributed system, in the

simplest case the license management facility of the invention may be Operated
on a single CPU. The license management program 11 and the applications

program 17 may be executing on the same CPU. in which case the license
document would be stored in a database 23 as before. on this CPU. and the calls

from the unit 18 to the license server would be local instead of RFCs. As in the

distributed system, however, the licensed product would still not have access to the

license document. but instead could only make inquires to the server program.

even if all are executing on the same CPU.

In operatiOn of the distributed system of Figure l, the producer 28 gives the

issuer 25 authority to grant licenses on its behalf (the producer and issuer can be

a single entity or multiple entities). The license document generator program 26.

under control of a user (a person). generates a license (usually the result of

negotiation between the user of program 26 and a user of the server 10). This
license is called a product use authorization. and it is transmitted by the link 30

to the server 10. The license management program in the server 10 stores the

product use authorization in the database 23, and, if delegation is an authorized

option. may distribute parts of the authorized use to the delegatee servers 13.

APPLE EXHIBIT 1102, Page 257 of 1048

PCT/1159210381 2

APPLE EXHIBIT 1102, Page 258 of 1048

10

15

20

WO 92120022 PCT/US92/0381 2

3

where it is likewise stored in a database. Thereafter. administration of the license

is only in response to inquiries from user nodes 16. When execution of a program

17 begins. the unit 18 is invoked to check on the availability of a license for this

particular node. The unit 18 sends (as by an RPC) a request to the license

management program 14 (or 11 if there is no delegatee), where the product use

authorization stored in database 23 is checked to see if use is authorized. If so.

a return is sent to the user node 16, granting permission to continue. When the

program 17 has finished executing, the unit 18 again is invoked to signal to the

license management program, again by an RPC, that the authorization is released.

so the license management program can take appropriate action. e.g., log the use

in log 24, etc.

To implement these operations, the license management program 11 or 14

contains several functions, including a client interface 31, a database interface 32.

a management interface 33. and an interserver interface 34 for communicating

with the delegatees 13 (if any). The client interface 31, as described below.

handles the requests received from the user nodes 16. and returns resulting from

these requests. The database interface 32 handles the storing and retrieval of

license information in the database 23, and logging license usage activity to log 24,

and retrieval of this data. The management interface 33 handles the tasks of

receiving the product use authorizations from the issuer 25 and maintaining the

database 23 via the database interface 32. The interserver interface 34 handles

the task of communicating with the delegatee servers 13. including transmitting the

assigned parts of the product use authorizations. or communicating with other

license servers that may be separately executing the license management function;

for example, calis for validating calling cards may be made to another such server.

APPLE EXHIBIT 1102, Page 258 of 1048

APPLE EXHIBIT 1102, Page 259 of 1048

10

15

20

PCT/[1592103812
W0 92l20022

If there are no delegatees or no other license servers, then of course the

interserver interface 34 has no function. and is idle.

The license document or "product use authorization" forming the basis for

the license management activity of the program 11 on the server 10 may be

illustrated as a data structure containing the information set forth in Figure 2: in

actual practice the product use authorization is preferably a more abstract data

arrangement, not in Such a rigidly structured format as illustrated. For example,

the product use authorization as well as similar documents stored in the database

23. or passed between components of the system of Figure 1. may be of the so-

called tag-length-value data format, where the data structure begins with an

identifying tag (e.g., PUA or product use authorization) followed by a field giving

the length, followed by the value itself (the content). One type of data treatrnent

using this tag-length-vaiue format is an international standard referred to as ASN.1

or Abstract Syntax Notation. In any event, the document 35 illustrated in Figure

2 is merely for discussing the various items of data, rather than representing the

way the information is stored. Some of the fields shown here exist at some times
and not others, and some are optional; the product use authorization may also

include additional fields not shown or discussed here. Also it should be noted that

copies of parts of this type of document are made for the delegatees, so this

representation of Figure 2 is a composite of several documents used in the system

of Figure 1. The document 35 includes fields 36 identifying the software product

by product name. producer, version numbers, release date. etc. The issuer 25 is
identified in field 3?. and the licensee (usually the owner of the license server 10)

identified in field 38. The essential terms of the license grant are then defined in

fields 40-46. The start date and end date are specified in fields 40: these store the

exact time (date, hour, minute, second, etc.) when the license becomes valid and

APPLE EXHIBIT 1102, Page 259 of 1048

APPLE EXHIBIT 1102, Page 260 of 1048

10

15

20

25

W0 92/201122 PCT/U592/03812

when it ends, so licenses may be granted to start at some future time and to end

at a particular time. Note that the previous practice has been to specify only the

ending date. rather than also a start date as employed here. Each of the nodes.

including issuer 25, servers 10 and 13, and user nodes 16. maintain a time value

by a local clock referenced to a standard, so inherent in the license management

facility is the maintaining of a time standard to compare with the start and end

date information in the fields 40. The units granted are specified in field 41; the

units are an arbitrary quantitative measure of program usage. In a delegatee

server 13, the units field 41 will have some subset of the units field in the original

product use authorization. As units are granted to users 16 or delegated, the

remaining units available for grant are indicated in a subfield 42 in the copy of the

document used by the server. The management policy occupies fields 43-46, and

includes style, context, duration and LURDM (license use requirements

determination method). as will be explained. The Style field 43 specifies whether

the licensed units are controlled by an "allocative' styie or "consumptive” style, or

some other "private" algorithm, where Styles are ways used to accOunt for the

consumption or allocation of the units. The context field 44 specifies the location

and environment in which product use or license management occurs, i.e.. a CPU

or an individual user or a network. etc. Duration field 45 indicates whether the

license granted to a user is by assignment, by transaction, or immediate. The

LURDM field 46 indicates the license use requirements determination method,

in some cases using a license use requirements table (LURT) seen as field 47, as

will be described.

Additional fields 48-54 in the product use authorization 35 of Figure 2

define features such as delegation authorization, calling authorization, overdraft

APPLE EXHIBIT 1102, Page 260 of 1048

APPLE EXHIBIT 1102, Page 261 of 1048

10

15

20

“’0 92/20022
PCP/USQZ/lflflll

authorization. combination authorization, token, signature. checksu :11, etc. These

will be described in the following paragraphs.

If the delegation field 48 is true, a license server 10 may distribute license

units to multiple servers 13. A time limit may be imposed, i.e., units can be

delegated to other hardware systems until they time out. Delegation allows an
administrator to distribute units to improve response time and increase the
resilience of the system. For example, the communication network 21 may include
a satellite link to a remote facility where the local server 13 has a number of
clients or users 16, in which case the calls to the server 13 would be completed
much quicker than would be the case if calls had to be made to the server 10.
Also, delegation may be used as a method of allocating licensed units within a
budget for administrative purposes. Usually the delegation authorization is a
feature that is priced by the issuer, i.e., a license granting 1000 units with
delegation authorization is priced higher than without this authorization.

The field 49 contains a calling authorization and/or a caller authorization.

If the caller authorization in field 49 is true, the product is permitted to receive
calls from other named products requesring use of the product. and if conditions

are met (identified caller is authorized) the server can grant a calling card, as
described below. If the calling authorization is true, the product can make calls

to other products. If neither is true. then the product can neither make or receive
calls using the calling card feature. Referring to Figure 1, if product 17a wishes
to make a remote procedure call to a feature of product 17b running on a
different user node 16, it makes a call to its server 13 including a request for a

calling card. and, if permitted, the return to product 17a includes a calling card
49a. The product 17a then makes a call to product 17b in the usual manner of

APPLE EXHIBIT 1102, Page 261 of 1048

APPLE EXHIBIT 1102, Page 262 of 1048

10

15

20

25

WO 92120022 PCTIU592!0331 2

RFCs. sending along the calling card 49a, which the product 17b then verifies by

a cat] to its server 13 before executing the called procedure and issuing its return

to product 173. The feature of calling cards is important for distributed

applications. For example. if a product is able to execute faster in a distributed

system by assigning tasks to other CPUs, then the issue is presented of which

license policy is needed, i.e., does every node executing a part of the task have to

be licensed and consume or receive allocation of a unit. or just the one managing

the task? This is resolved for most applications by use of this calling card concept.

The product use authorization for such a product has the calling authorization

field 49 enabled, so calling cards can be issued. This feature is typically separately

priced.

The combination authorization field 50 of Figure 2 determines whether or

not license requests from a user node 16 can be satisfied by combining units from

multiple product use authorizations. It may be advantageous to purchase licenses

with different policy values, and use units from certain product use authorizatiOns

only for overflow or the like. Or. for other reasons, it may be advantageous to

"borrow" and "lend“ units among delegated servers or user nodes. This functiOn

is permitted or denied by the content of field 50.

The overdraft field 51 determines whether or not a requeSted allocation

from a user node 16 will be nevertheless granted, even though the units available

field 42 is zero or too small to permit the requested use. Overdrafts can be

unlimited, or a specific overdraft pool can be set up by a server 10, for a

customer's internal adminisrrative purposes. That is, the overdraft value may be

unlimited in the original license. but limited or zero for internally distributed

copies of the license. Thus, the product use authorization sent by the issuer 25 to

APPLE EXHIBIT 1102, Page 262 of 1048

APPLE EXHIBIT 1102, Page 263 of 1048

10

15

20

W0 9230-022

the customer may have overdrafts permitted by the field 51, but the customer may

deny overdraft permission for its own budgeting purposes. in any event. if
overdraft is permitted, additional fees have to be paid to the issuer at some

accounting period, when the logged usage from log 24 indicates the available units
have been exceeded. if overdraft is denied, then the units 18 of the user nodes

making request allocations are structured to inform the products 17 that a license
grant is not available. The intent is not to prevent the application program from
running; the license server merely informs the application whether or not the
license manager determines that it is authorized to run. The application can itself
be Structured to shut itself down if not authorized to run, or it can be structured

to shut down certain functions (e.g., ability to save files, ability to print. etc.). or

it can be structured to continue in a fully functional manner. The purpose of the

license management facility is not that of enforcement, nor that of "copy

protection", but instead is merely that of license management.

An optional token field 52 is available in the product use authorization 35

of Figure 2. This field can contain comments or Other information desired by the
issuer or user. For example, a telephone support number may be included in the

token field, then when the product 17 shows its ”help screen" the number is

inserted. This number would be part of the argument, i.e.. data transmitted to the

user node 16, when the server 10 makes a return following a request allocation

message from the user. This field may also be used to Store information used in

a "private" style, where the information from this field returned to the user node

is employed by the application program 17 or the stub 19 to determine if the

application can be activated.

APPLE EXHIBIT 1102, Page 263 of 1048

PCT/USQZ/OBSIZ

APPLE EXHIBIT 1102, Page 264 of 1048

10

15

20

25

W0 92l20022

The signature field 53 in the product use authorization 35 is a part of a

validation mechanism which provides important features. This field contains a

digital signature encoded to reflect the data in the license itself, as well as other

encoding methods not known to customers, so it cannot be duplicated unless the

encoding algorithm is known. In a preferred embodiment, a so-called

"public/private key" system of encoding is used for the signature field 53. The

encoding algorithm used to generate the signature 53 is known to the issuer 25,

using a private key, and anyone knowing the public key can decode the signature

to determine if it is valid but cannot determine the encoding algorithm so it

cannot produce a forged signature. So, if the server 10 knows the public key

which is unique to the issuer 25. it can determine if a license document 35 is

genuine, but it cannot itself generate license documents. However, if the server

possesses a valid license document that gives it the right to delegate. then it will

be assigned its own private key (different from all other issuers or servers) and its

delegatees 13 will be able to determine if avalid delegated license is delivered to

them as they will be given the public key for the servers 13. The field 53 will

thus contain both the original signature from the issuer 25 and the license server’s

signature when delivered to a delegatee 13. The decoding algorithm using a

public key for any signatures is thus used by the license server 10 or delegatee 13

to make sure a product use authorization 35 is authentic before it is stored in the

database 23. Related to the digital signature 53 is a checksum field 54, which

merely encodes a value related by some known algorithm to the data in the

product use authorization 35 itself. This field may be used merely to check for

corruption of the data as it is stored, recalled, and transmitted within the system.

That is, the checksum is used for data validation rather than security.

APPLE EXHIBIT 1102, Page 264 of 1048

PCT/US92/03812

APPLE EXHIBIT 1102, Page 265 of 1048

10

15

20

PCTlU592/03812
W0 92I20022

-19..

Two concepts central to the license management sySLem implemented using

the license dOCument or product use authorization 35 of Figure 2 are the “license

units", specified in field 41 or 42 and the "context", specified in field 44. License

units are an abstract numerical measure of product use allowed by the license.

When a product 17 (or a function or feature of a product) makes a license-

checking request, the license management program 11 on server 10 computes how

many license units are required to authorize this particular use of the product, and

this is the license units requirement. in some cases using the LURDM field 46.

A "context" is a set of tagged values which define the location and environment

in which product use or license management occurs. Context values may be

specified in field 44 of the product use authorization 35 of Figure 2 to restrict the
environments in which the license may be managed and in which product use may

occur. A context template may also be specified in the field 44 to indicate which

parts of the complete context of product use (sub-contexts) are significant in

differentiating product uses for the purposes of unit allocation; when this is

specified, it allows separate product uses to share license units in a controlled way.

The two general types of policies specified in field 43 are allocative and

consumptive. An allocative policy grants to the holder a specific number of

license units (field 41) and specifies the policy which must be used to account for

the allocation of these units. A software product 17 which is being managed by

an allocative license will require verification that the appropriate number of

license units have been allocated to it prior to performing services to the user.

Typically, this allocation of units occurs either at the time of activation of the

product 17 or at the time that product use is enabled on a particular platform

(user CPU 16). The units typically remain allocated to the product 17 throughout

the period that the product is running or is enabled to run. Upon termination of

APPLE EXHIBIT 1102, Page 265 of 1048

APPLE EXHIBIT 1102, Page 266 of 1048

10

15

20

:25

W0 92/20022 PCI‘/ [5592/0381 2

-11-

processing or disabling. the allocated units are deallocated and made available for

allocation to other instances of the software product 17 (other users 16 activating

the product). In general, as long as any license units remain unallocated in field

42. the holder of the license is contractually authorized to increase his utilization

of the licensed product. The usage does not deplete the license, however, as the

units are returned to the units-available field 42 after a user is finished, and can

be granted again to another user.

A consumptive unit based license, indicated in policy field 43, grants to the

holder at specific number of initial license units (from field 42) and specifies the

policy used to account for the consumption of those units. A software product 17

which is being managed by a consumptive license will cause an appropriate

number of license units to be consumed to reflect the services provided by the

product. Once consumed, units cannot be reused. Thus, the number of units

available for future use declines upon every use of the licensed software product

17. This may also be referred to as a "metered" policy, being conceptually similar

to measured consumption of electricity, water, etc. When the number of available

units in field 42 reaches zero, the license may require that further use of the

product is prohibited. or. the agreement may permit continued decrementing of

the number of available units: the result is the accumulation of a negative number

of available units in the field 42. It is anticipated that most consumptive unit

based licenses will consider negative units to represent an obligation of the license

holder to pay the license issuer 25. The transaction log 24 maintains an audit trail

for providing a record of the units used in a consumptive license.

Referring to Figure 3. the major elements of the management poliq are

set forth in a table, where the possible entries for the fields 43, 44. 45 and 46 are

APPLE EXHIBIT 1102, Page 266 of 1048

APPLE EXHIBIT 1102, Page 267 of 1048

10

15

20

WO 92/20022
PCT/USQZIOSB] 2

..12-

iisted. For the style entry 43. the possibilities are allocativc and consumptive as

just described. plus a category called "private" which represents a style of
management undefined at present but instead to be created especially for a given

product. using its Own unique algorithm. It is expected that mosr licenses may be
administered using the named alternatives of Figure 3, but to allow for future

expansion to include alternatives not presently envisioned. or to permit special
circumstances for unique software, the "private" choices are included. which merely

mean that the product 17 will generate its own conditions of use. It is important

to note that. except for the "private“ alternative. the license management is totally

in control of the license management program 11 an the license server 10 (or

delegatee 13), rather than at the product 17. All the product 17 does, via the unit
18. is to make the request inquiry to the server 10 via the client interface 31, and

report when finished.

The context field 44 specifies those components (sub-contexts) of the

execution-context name which should be used in determining if unit allocations are

required. License data is always used or allocated within, or for the benefit of,
some named licensing context. and context can include "platform contexts" and

"application contexts". Platform contexts are such things as a specific network, an
execution dumain, a login domain, a node. a process [D or a process family, a user

name, a product name, an operating system. a specific hardware platform, as listed

in Figure 3. Applications contexts are information supplied from the application

(the product 17), such as may be used in a "private“ method of determining license

availability. The context name can use several of these. in which case the context

name is constructed by concatenating the values of all subcontexts into a single

context name, e.g.. a VAX 3100 platform using VMS operating system.

APPLE EXHIBIT 1102, Page 267 of 1048

APPLE EXHIBIT 1102, Page 268 of 1048

10

15

20

.25

W0 92f20022

-13...

The duration field 45 defines the duration of an allocation of license units

to a specific context or the duration of the period which defines a valid

consumptive use. For durations of type ‘Assignmentf' the specification of a

reassignment constraint is also provided for. as discussed below. There are three
It M

es of duration, these bein "transaction, assi em" and "immediate" as seengum

in Figure 3.

The transaction duration type, when specified for an allocative policy,

indicates that license units should be allocated to the specified context upon

receipt of a license request and that those units should be deallocated and

returned to the pool of available units upon receipt of a corresponding license

release from a user node 16. Abnormal termination of the process or context

having made the original license request will be semantically equivalent to a

license release. On the other hand, when specified for a consumptive policy, this

duration type indicates that license units should be allocated to the specified

context upon receipt of a license request and permanently removed froua the

available units pool (field 42) upon receipt of a license release which reflects

successful completion of the transaction. Upon receipt of a license release which

carries an error status or upon abnormal termination of the processor context

having made the original license request, the allocated units will be deallocated

and returned to the pool of available units (field 42).

The assignment duration type in Figure 3 (field 45 of Figure 2) imposes the

constraint that the required units must have been previously assigned to a specific

context. The sub-contexrs which must be specified in the assignment are those

given in the context-template. A "reassignment constraint" may be imposed, and

this is a limitation on howr soon a reassignment can be made. For example, a

APPLE EXHIBIT 1102, Page 268 of 1048

PCTlUS92/03812

APPLE EXHIBIT 1102, Page 269 of 1048

10

15

20

25

W0 92/201122
PCTIUSQIIOSSIZ

-14—

reassignment constraint of 30-days would require that units assigned to a specific
context could not be reassigned more often than every 30-days; this would prevent

skirting the intent of the license by merely reassigning units whenever a user of
another context made a request allocation call for the product. Related to this

assignment constraint, 3 "reallocation limit" may also be imposed, to state the
minimum duration of an allocation; where there is a context template of process,

the intent is to count the number of uses of the software product at a given time,

but where software runs in batch rather than interactive mode it may mn very

quickly on a powerful machine. so a very few concurrent uses may permit almosr
unlimited usage - by imposing a reallocation constraint of some time period. this

manner of skirting the intent of the license may be constrained.

The immediate duration type (field 45 of Figure 2) is used to indicate that

the allocation or consumption of an appropriate number of license units from the

pool of available units (field 42) should be perforated immediately upon receipt
of a license request. Receipt of license release or abnormal terminations will then

have no impact on the license management system. When specified as the
duration for an allocative policy, the effect will be simply to check if an

appropriate number of license units are available at the time of a license request.
When specified as the duration for a consumptive policy, the effect will be to

deduct the appropriate number of license units from the available pool at the time

of a license request. and, thereafter, abnormal termination. such as a fault at the
user CPU 16 or failure of the network link. will not reinstate the units.

The LURDM or license unit requirement determination method, field 46,

has the alternatives seen in Figure 3 and stores information used in calculating the

number of units that should be allocated or consumed in response to a license

APPLE EXHIBIT 1102, Page 269 of 1048

APPLE EXHIBIT 1102, Page 270 of 1048

10

15

20

25

W0 92/20022

-15..

request. If this field specifies a table lookup kind. this means license unit

requirements are to be determined by loolcup in the LURT (field 47) which is

associated with the current license. if a constant kind is specified, this indicates

that the license units requirements are constant for all contexts on which the

licensed product or product feature may run. A private LURDM specifies that

the license unit requirements are to be determined by the licensed product 17, not

by the license management facility 11. The license unit requirements tables

(LURTs) provide a means by which issuers of licenses can store information

describing the relatioa between context (or row selector) and unit requirements.

The license units requirements determination method (LURDM) must specify

"table lookup" for the LURT to be used. and if so a row selector must be

specified, where a valid row selector is any subcontext, e.g.. platform ID, user

name, time of day. etc. An example of an LURT fragment is shown in Figure 4,

illustrating the license unit requirements table mechanism. In this example. the

row selector is "platform-ID" so the platform-ID value determines which row is

used. The issuer of this LURT of Figure 4 has established three unit requirement

tiers for use in determining the unit requirements for that issuer’s products. The

reason for the tiers is not mandated by the license management system, but the

issuer 25 (actually the user of the program 26) would probably be establishing

three pricing tiers. each reflecting a different perspective on the relative utility of

different platforms in supporting the use of various classes of product 17. The

first column in Figure 4, Column A, specifies the use requirements for a class of

products whose utility is highly sensitive to the characteristics of the specific

platform on which they are run. This can be seen by observing that the unit

requirements are different for every row in Column A Products which use the

second column (Column B) appear to have a utility which is more related to the

class of platform on which they run. This is indicated by the fact that all the PC

APPLE EXHIBIT 1102, Page 270 of 1048

PCT/US92/03812

APPLE EXHIBIT 1102, Page 271 of 1048

10

15

20

W0 92f20022

16

platforms share a single value which is different from that assigned to the VAX
platform. The final column (Column C) is for use with a ciass of products which
is only supported on the VAX platform. Figure 4 is of course merely an example.
and the actual LL'RT created by the license document generator 26 and stored

in the license database 23 (as field 47 of the product use authorization 35) can be

of any content of this general format, as desired by the license issuer.

Instead of always selecting the rows in LU'RT tables according to the

platform ID of the execution platform, in order to handle the breadth of business
practices that need to be supported by the license management facility, the LURT
mechanism is extended by providing a "row selector" attribute in the LURT class

srructure. No default is provided although it is expected that the normal value for

the row selector attribute will be "platform ID."

In the syStem of patent 4,937,363, a concept similar to that of the LURT

of Figure 4 was provided, with rows selected by the platform ID and columns
selected by some arbitrary means, typically according to product type. The system

of this invention allows flexibility in the selection of both LURT row and column

while continuing to provide backwards compatibility for licenses defined within the

constraints of patent 4,937,863.

Some examples will illustrate potential uses for the row selector attribute.

A customer may only want to pay for the use of a product during one or two

months of the year; the product may be FORTRAN and the reason for this

request may be that the company has a fairly stable set of FORTRAN subroutines
that are given regular "annual maintenance" only during the months of May and
June. To handle this cuStomer’s needs, the FORTRAN product would generate

APPLE EXHIBIT 1102, Page 271 of 1048

PCTlUS92/03812

APPLE EXHIBIT 1102, Page 272 of 1048

10

15

20

25

WO 92/20022

—.17_

an application subcontext which would contain a value representing the month of

the year. Then. a LURT table would be defined with twelve rows. one for each

month of the year. In some column, probably column A. a negative one (-1)

would be placed in each month except for May and June. These two months

would contain some positive number. The product use authorization would then

have a LURDM field specifying a LURT for use to determine the units

requirement, and would name this custom LURT table. The effect would be that

the PUA could only be used during the months of May and June since negative

one is interpreted by license managers to mean "use not authorized." This

mechanism could also be used to do "time of day" charging. Perhaps charging

fewer units per use at night than during the day. Also, if a subcontext was used

that contained a year value, a type of license would be provided that varied in its

unit requirements as time passed. For instance, it might start by costing 10—units

per use in 1991 but then cost one unit-less every year as time passed, eventually

getting to the point where the unit requirement was zero.

Another example is font names. A specific customer may purchase a

license giving it the right to concurrent use of IOU-units of a large font collection;

some of the fonts may cost more to use than others. For instance, Times Roman

might cost 10—units per use while New Century Schoolbook costs ZO-units per use.

The problem is, of course. making sure that charges are properly made. The

solution is to build a LURT table with a specified application subcontext as its

row selector. A row is then created for each font in the collection and in Column

A of the LURT, the number of uniu required to pay for use of the font would be

specified. The print server would then specify the name of a font as the value of

the application subcontext whenever it does an lm_requesr_allocation() call. This

will allow charges to be varied according to font name.

APPLE EXHIBIT 1102, Page 272 of 1048

PCT/US92/03812

APPLE EXHIBIT 1102, Page 273 of 1048

10

15

20

WO 92/20022
PCT/U592!03812

-13-

A further example is memory size. Some products are more or less

yaluable depending on the size of memory available to support them. A software

vendor wishing to determine unit requirements based on memory size will be able

to do so by building LURT tables with rows for each reasonable increment of

memory (probably l-megabyte increments). Their applications would then sense

memory size (using some mechanism not part of the license management facility)

and pass a rounded memory size value to the license manager in a private context.

Other examples are environment and operating system. Some products

may be valued differently depending on whether they are being run in an
interactive mode or in batch. This can be accomplished by building LURT rows

for each of the standard platform subcontexts that specify environment.

Regarding operating system. it has been considered desirable by many to have a

single product use authorization permit the use of a product on any number of

operating systems. this conflicts with some vendors policies who do not want to
have to create a single price for a product that applies to all operating systems.

Thus, if an operating system independent license were offered for a C compiler,

the price would be the same on MS—DOS, VMS, and/or UNIX. Clearly. it can be

argued that the value of many products is, in part. dependent on the operating

system that supports them. By using a row selector of operating system (one of
the standard platform subcontexts), license designers could, in fact, require

different numbers of units for each operating system. However, it might be more

desirable to base the row selection on a private application subcontext that

normally had the same value as the operating system subcontext. The reason for
this is that the license designer might want to provide a default value for operating

system names that were unknown at the time the LURT rows were defined. If
this is the case, the product would contain a list of known operating systems and

APPLE EXHIBIT 1102, Page 273 of 1048

APPLE EXHIBIT 1102, Page 274 of 1048

10

15

20

WO 92/20022

b19—

pass the subcontext value of "Unknown" when appropriate. The LURT row for

"Unknown" would either contain a negative one (-1) to indicate that this operating

system was unsupported or it would contain some default unit requirement.

Anorher example is variable pricing within a group. One of the problems

with a "group" license is that there is only one unit requirements field on the PUA

for a group. Thus. all members of the group share a single unit requirement.

However, in those cases were all members of the group can be appropriately

licensed with a constant unit requirement yet it is desired to charge different

amounts for the use of each group member. a LURT can be built that has rows

defined for each grOup member. The row selector for such a group would be the

standard platform subcontext “product name."

Many different types of license can be created using different combinations

of contexts. duration and policy from the table of Figure 3. Asexamples, the

following paragraphs show some traditional licensing styles which can be

implemented using the appropriate values of the product use authorization fields

43-46.

A "system license" as it is traditionally designated is a license which allows

unlimited use of a product on a single hardware system. The correct number of

units must be allocated to the processor in advance and then an unlimited product

use is available to users of the system. The product use authorization would have

in the context field 44 a context template for a node name. the duration field

would be "assignment" and the policy style field 43 would be "allocative".

APPLE EXHIBIT 1102, Page 274 of 1048

PCT/U392/03812

APPLE EXHIBIT 1102, Page 275 of 1048

W0 92/201122 PCI'lUS92f03812

._20._

A "concurrent use" license is one that limits the number of simultaneous

uses of a licensed product. Concurrent use license units are Only allocated when

the product is being used and each simultaneous user of the licensed product
requires their own units. In this case the context template. field 44, is a process

5 ID. the duration field is "transaction" and the policy style 43 is "allocative".

A "personal use" license is one that limits the number of named users of
a licensed product. This style of licensing guarantees the members of a list of
users access to a product. Associated with a personal use type of product use

authorization there is a. list of registered users. The administrator is able to assign

10 these users as required up to the limit imposed by the product use authorization;
the number of units assigned to each user is indicated by the LURDM. It may be

a constant or it may vary as specified in a LURT. The context template is "user

name", the duration is "assigrunent". and the policy is “allocative”.

A "site license" is one that limits the use of a licensed product to a physical

15 site. Here the product use authorization contains for the context template either
"network name" or "domain name", the duration is "assignment" and the policy

style field 43 is "allocative".

Generally. a license to use a software product is priced according to how
much benefit can be gained from using the product. which is related to the

20 capacity of the machine it will run on. A license for unlimited use on a large
platform such as a mainframe, where there could be thousands of potential users
at terminals, would be priced at a high level. Here the style would be "allocarive".

the context template = "node". the duration = "assignment" and the LURDM may

be "Column A? - the units, however, would be large, e.g.. 1000. At the other end

APPLE EXHIBIT 1102, Page 275 of 1048

APPLE EXHIBIT 1102, Page 276 of 1048

10

15

20

W0 92/20022 PCT.’ U592!03812

21

of the scale would be a license for use on a single personal computer. where the

field values would be the same as for the mainframe except the units would be ""1

If a customer wanted to make the product available on the mainframe but yet

limit the cost. he could perhaps get a license that would allow only five users at

any given time to use the product; here the fields in the product use authorization

would be: units = 5; style = allocative; context template = process; duration =

transacrion: LURDM = constant. l-unit. This would still be priced fairly high

since a large number of users may actually use the product if a session of use was

short. A lower price would probably be available for a personal use license where

only five named persons could use the product, these being identified only in the

license server 10. not named by the license issuer 25. Here the fields in the

product use authorization are: units = 5', style = allocative; context template =

user name; duration = transaction; LURDM = constant, l-unit.

An additional feature that may be provided for in the product use

authorization 35 is license combination. Where there are multiple authorizations

for a product. license checking requests sent by user nodes 16 may be satisfied by

combining units from multiple authorizations. Individual product use

authorizations may prohibit combined use. Thus, a licensee may have a license

to use a product 17 on an ailocative basis for a certain number of units and on a

consumptive basis for another number of units (this may be attractive from pricing

standpoint); there might not be enough units available for a particular context

from one of these licenses, so some units may be "borrowed" from the other

license (product use authorization), in which case a combination is made.

The interface between the program executing on the client or user 16 and

the license server 10 or its delegatees 13 includes basically three procedure calls:

APPLE EXHIBIT 1102, Page 276 of 1048

APPLE EXHIBIT 1102, Page 277 of 1048

10

20

WO 92/20022
PCT/US92/03812

22

a request allocation. a release allocation and a query allocation. Figure 5
illustrates in flow chart form some of the events occurring in this client interface.

The request allocation is the basic license checking function, a procedure call
invoked when a software product 17 is being instantiated. functioning to request

an allocation of license units. with the return being a grant or refusal to grant.

Note that a product may use request allocation calls at a number of points in

executing a program. rather than only upon start-up; for example, a request

allocation may be sent when making use of some particular feature such a special

graphics package or the like. The release allocation call is invoked when the user
no longer needs the allocation. e.g.. the task is finished, and this return is often

merely an acknowledge; if the style is consumptive, the caller has the opportunity
via the release allocation call to influence the number of units consumed, e.g.,

decrease the number due to some event. The query allocation call is invoked by

the user to obtain information about an existing allocation. or to obtain a calling

card, as will be described.

The request allocation, referred to as Im_reque.rt_al{0carian(), is a request

that license units be allocated to the current context. This function returns a grant

or denial status that can be used by the application programmer to decide whether

to permit use of the product or product feature. The status is based on the

existence of an appropriate product use authorization and any license management

policies which may be associated with that product use authorization. License
units will be allocated or consumed, if available, according to the policy statement

found on the appropriate product use authorization. The product would normally

call this function before use of a licensed product or product feature. The

funcrion will not cause the product’s execution to be terminated should the request

fail- The decision of what to do in case of failure to obtain allocatiOn of license

APPLE EXHIBIT 1102, Page 277 of 1048

APPLE EXHIBIT 1102, Page 278 of 1048

10

15

20

WO 92120022

-23...

units is up to the programmer. The arguments in a request allocation call are the

product name, producer name, version. release date, and request extension. The

product name, producer name, version and release date are the name of the

software producr, name of producer, version number and release date for

specifically identifying the producr which the user is requesting an allocation be

made. The request extension argument is an object describing extended attributes

of the request. such as units required, LURT column, private context. and

comment. The results sent back to the calling node are a return code, indicating

whether the function succeeded and, if not, why not, and a grant handle, returned

if the function completes successfully, giving an identifying handle for this grant

so it can be referred to in a subsequent release allocation call or query allocation

call, for example.

The release allocation, referred to as Im_re!ea.se_alloca.rion(), is an

indication from a user to the license manager'to release or consume units

previously allocated. This function releases an allocation grant made in response

to a prior call to request allocation. Upon release, the license management style

38 determines whether the units should be returned to the pool of available units

or consumed. If the caller had specified a request extension on the earlier call to

request allocation which contained a units-required-attribute, and the number of

units requested at that time are not the number of units that should be consumed

for the completed operation, the caller should state with the units-consumed

argument how many units should be consumed. The arguments of the release

allocation are: grant handle. units consumed, and comment. The grant handle

identifies the allocation grant created by a previous call to request allocation. The

units-consumed argument identifies the number of units which should be

consumed if the license policy is consumptive; this argument should only be used

APPLE EXHIBIT 1102, Page 278 of 1048

PCT/US92/03812

APPLE EXHIBIT 1102, Page 279 of 1048

10

15

20

W0 92/201122
PCI'IUS92/03312

-24...

in combination with an earlier call to request allocation which specified a units

requirement in a request extensiOn. Omission of this argument indicates that the
number of units to be consumed is the same as the number allocated previously.

The comment argument is a comment which will be written to the log file 24 if

release units are from a conSurnptive style license or if logging is enabled. The

result is a return code indicating if the function succeeded, and. if not, why not.

The query allocation, or Irn_query_aiiocation(), is used by licensed products
which have received allocations by a previous request allocation call. The query

is to obtain information from the server 10 or delegatee server 13 about the

nature of the grant that has been made to the user and the license data used in

making the grant. or to obtain a calling card (i.e., a request that a calling card be
issued). Typically. the item read by this query function is the token field 52 which
contains arbitrary information encoded by the license issuer and which may be

interpreted as required by the stub 19 for the licensed product software 17, usually
when a "private" allocation style or context is being employed. The arguments in

this procedure call are the grant handle, and the subject. The grant handle
identifies the allocation grant created by a previous call to request allocation. The

subject argument is either "product use authorization" or "calling card request"; if
the former then the result will contain a public copy of the product use

authorization. If this argument is a calling card request and a calling card which

matches the previous constraints specified in that request can be made available,
the result will contain a calling card. If the subject argument is omitted, the result

will contain an instance of the allocation. The results of the query allocation call

are (1) a return code, indicating whether the function succeeded, and, if not, why

not, and (2) a result, which is either an allocation, a product use authorization or

a calling card, depending on type and presence of the subject argument.

APPLE EXHIBIT 1102, Page 279 of 1048

APPLE EXHIBIT 1102, Page 280 of 1048

10

15

20

WO 92/20022 PCT/U592}0381 2

._25_

Referring to Figure 5, the flow chart shows the actions at the client in its

interface with the server. When the software product 17 is to be invoked, the unit

13 is first executed as indicated by the block 60. and the first action is to make a

request allocation call via the stub 19, indicated by the block 61. The client waits

for a return, indicated by the loop 62, and when a return is received it is checked

to see if it is a grant, at decision block 63. If not, the error code in the return is

checked at block 64, and if a return code indicates a retry is possible, block 65,

control passes back to the beginning, but if no retry is to be made then execution

is terminated. If the policy is to allow use of the product 17 without a license

grant, this function is separately accounted for. If the decision point 63 indicates

a grant was made, the grant handle is stored, block 66, for later reference. The

program 17 is then entered for the main activities intended by the user. During

this execution of product 17, or befiore or after, a query allocation call can be

made, block 67, though this is optional and in most cases not needed. When

execution of the program 17 is completed, the grant handle is retrieved, block 68,

and a release allocation call is made, block 69. A loop 70 indicates waiting for the

return from the server, and when the return received it is checked for an error

code as before, and a retry may be appropriate. If the release is successfully

acknowledged, the program exits.

Referring to Figure 6, the actions of the server 10 or delegatee server 13

in executing the license management program 11 or 14, for the client interface.

are illustrated in flow diagram form. A loop is shown where the server program

is checking for receipt of a request, release or query call from its clients. The call

would be a remote procedure call as discuSSed above, and would be a message

communicated by a network, for example. This loop shows the decision blocks 71.

72 and 73. If a release allocation call is received, a list of produas for which

APPLE EXHIBIT 1102, Page 280 of 1048

APPLE EXHIBIT 1102, Page 281 of 1048

10

15

20

WO 92120022

-25-

authorizations are stored is scanned, block 74, and compared to the product

identity given in the argument of the received Cali, block 75. if there is no match,
an error code is returned to the client, block 76, and control goes back to the

initial loop. if the product is found, the authorization is retrieved from the
database 2.3, block 7'? (there may be more than one authorization for a given

product, in which case all would be retrieved, but only one will be referred to
here) and all of the information is matched and the calculations made depending
upon the management policy of Figures 3 and 4, indicated by the decision block
78. If a grant can be made, it is returned as indicated at block 79. or if not an
error code is returned, block 80. [f a release allocation call is received. indicated

by a positive at the decision block 72, the grant handle in the argument is checked
for validity at block 81. If no match is found, an error code is returned, block 82,
and control passes back to the initial loop. If the handle is valid. the authorization
for this product is retrieved from the database 23 at block 83, and updated as
indicated by the block 84. For example, if the license management style is
allocative, the units are returned to the available pool. Or, in some cases, no

update is needed. The authorization is stored again in the database, block 85, and
a return made to the client, block 86, before control passes back to the initial

loop. [f the decision block 73 indicates that a queryr allocation call is received,
again the grant handle is checked at block 87, and an error code returned at block
88 if not valid. if the grant handle matches, the authorization is retrieved from

the database 23. at block 89. and a return is made to the client giving the

requested information in the argument, block 90.

The basic allocation algorithm used in the embodiment of the license

management system herein described, and implemented in the method of Figures
5 and 6. is very simple and can handle a very large proportion of known license

APPLE EXHIBIT 1102, Page 281 of 1048

PCTIU392/0381 2

APPLE EXHIBIT 1102, Page 282 of 1048

10

15

20

WO 92120022

-27..

unit allocatiori problems. However, it should be recognized that a more elaborate

and expanded algorithm could be incorporated. Additions could be made in

efforts to extend the allocation algorithm so that it would have specific support for

optimizing unit allocation in a wider variety of situations. Particularly, sources of

non-optimal allocations occurring when using the basic allocation algorithm are

those that arise from combination and reservation handling.

The first step is formation of full context. The client stub 19 is responsible

for collecting all specified platform and application subcontexts from the execution

environment of the product 17 and forwarding these collected subcontexts to the

license management server 13 or 10. The collection of subcontexts is referred to

as the "full context" for a particular license unit allocation request.

The next step is retrieval of the context template. When the license

manager receives an Im_request_al!ocarion(). it will look in its list of available

product use authorizations (PUA) to determine if any of them conform to the

product identifier provided in the Im__request_allacatt'ort0 call. The product

identifier is composed of: product name, producer, version. release date. If any

match is found. the license manager will extract from the matching PUA the

context template. This template is composed of a list of subcontexts that are

relevant to the process of determining unit requirements. Thus, a context

template may indicate that the node-ID subcontext of a specific full context is of

interest for the purposes of unit allocation. The context template would nut

specify any specific value for the node-ID; rather, it simply says that node-[D

should be used in making the allocation computation.

APPLE EXHIBIT 1102, Page 282 of 1048

PCT/US92I03812

APPLE EXHIBIT 1102, Page 283 of 1048

IO

15

20

WO 92120022
PCTIUS92/03812

#23—

The next step is masking the hill context. Having retrieved the context

template. the license manager will then construct an "allocation context" by
filtering the full context to remove all subcontexts which are not listed in the
context template. This allocation context is the context to be used in determining

allocation requirements.

Then follows the step of determining if the request is new. The license

manager maintains for each product use authorization a dynamic table which
includes the allocation contexts of all Outstanding allocations for that PUA (i.e..

allocations that have been granted but have not yet been released). Associated

with each entry in this table is some bookkeeping information which records the
number of units tdlocated, the full context. etc. To determine if a recent

Im_request_a!location() requires an allocation of units to be made, the license
manager compares the new allocation context with all those allocation contexts in
the table of Outstanding allocations and determines if an allocation has already

been made to the allocation context. If the new allocation context does n0t

already exist in the table, an attempt will be made to allocate the appropriate
number of units depending on the values contained in the LURDM structure of

the PUA and an}.' LURTs that might be required. If an allocation context similar

to that specified in the new allocation request does exist in the table. the license

manager will verify that the number of units previously allocated are equal to or

greater than the number of units which would need to be allocated to satisfy the
new allocation request. If so, the license manager will return a grant handle to

the application which indicates that the allocation has been made (i.e.. it is a
“shared allocation" - the allocated units are shared between two requests.) If not,

the license manager will attempt to allocate a number of units equal to the

APPLE EXHIBIT 1102, Page 283 of 1048

APPLE EXHIBIT 1102, Page 284 of 1048

10

15

20

W0 92l20022

-29..

difference between the number previously allocated and the number of units

required.

The Step of releasing allocations (Fig. 6, blocks 84-85) occurs when the

license manager receives an lm_release_allocation() call; it will remove the record

in its dynamic allocation table that corresponds to the allocation to be released.

Having done this. the license manager will then determine if the allocation to be

removed is being shared by any other allocation context. If so. the units

associated with the allocation being released will not be released. They will

remain allocated to the remaining allocation contexts. Some of the units might

be released if the license manager determines that the number of allocated units

exceeds the number needed to satisfy the outstanding allocation contexts. If this

is the case, the license manager will "trim" the number of allocated units to an

appropriate level.

In summary. the two things that make this algorithm work are (1) the basic

rule that no more than one allocation will be made to any single allocation

context. and (2) the use of the context template to make otherwise dissimilar full

contexts appear to be similar for the purposes of allocation.

The license designer’s task. when defining basic policy, is then to determine

which contexts shOuld appear to be the same to the license manager. if the

license designer decides that all contexts on a single node should look the same

(context template = node-ID), then any requests that come from that node will

all share allocations. On the other hand. a decision that all contexts should be

unique (l.e.. context template = procesa-ID) will mean that allocations are never

shared.

APPLE EXHIBIT 1102, Page 284 of 1048

PCT/US92/038‘l 2

APPLE EXHIBIT 1102, Page 285 of 1048

“’0 SIZIZOIJZZ PCT/U392!(I38 12

-30—

and stores a unit value indicating the number of licensing units for each product.

When a user wishes to use a licensed product, a message is sent to the central

license management facility requesting a license grant. In response to this

message, the facility accesses the database to see if a license exists for this

5 product, and. if so, whether units may be allocated to the user, depending upon
the user’s characteristics, such as the configuration of the platform (CPU) which

will execute the software product. If the license management facility determines

that a license can be granted, it sends a message to the user giving permission to

proceed with activation of the product. If not, the message denies permission.

10 While the concepts disclosed in the patent 4,937,863 are widely applicable,

and indeed are employed in the present invention, there are additional functions

and alternatives that are needed in some applications. For example, the license

management system should allow for simultaneous use of a wide variety of
different licensing alternatives, instead of being rigidly structured to permit only

15 one or only a few. When negotiating licenses with users, vendors should have

available a wide variety of terms and conditions, even though a given vendor may

decide to narrow the selection down toga small number. For example, a software

product may be licensed to a single individual for use on a single CPU, or to an

organization for use by anyone on a network, or for use by any users at terminals

20 in a cluster, or only for calls from another specific licensed product. or any of a

large number of other alternatives. A vendor may have a large number of

producrs, some sold under one type of license and some under others, or a

product may be a composite of a number of features from one or more vendors

having different .license policies and prices; it would be preferable to use the same

25 license management system for all such products.

APPLE EXHIBIT 1102, Page 285 of 1048

APPLE EXHIBIT 1102, Page 286 of 1048

10

15

20

'25

W0 92/20022 PCTIUS92/038] 2

-31-

Distributed computing systems present additional licensing issues. A

distributed system includes a number of processor nodes tied together in a

network of servers and clients. Each node is a processor which may execute

programs locally, and may also execute programs or features (subparts of

programs) via the network. A program executing on one node may make remore

procedure calls to procedures or programs on other nodes. In this case, some

provision need be made for defining a license permitting a program to be

executed in a distributed manner rather than separately on a single CPU, short of

granting a license for execution on all nodes of a network.

In a large organization such as a company or government agency having

various departments and divisions, geographically disPersed, a software license

policy is difficult to administer and enforce, and also likely to be more costly, if

individual licenses are negotiated, granted and administered by the units of the

organization. A preferred arrangement would be to obtain a single license from

the software producer, and then split this license into locally-administered parts

by delegation. The delays caused by network communication can thus be

minimized, as well as budgetary constraints imposed on the divisions or

departments. Aside from this issue of delegation, the license management facility

may best be operated on a network. where the licensing of products run on all

nodes of the network may be centrally administered. A network is not necessary

for use of the features of the invention however, since the license management can

be implemented on a single platform.

Software products are increasingly fragmented into specific functions. and

separate distribution of the functions can be unduly expensive. For example. a

Spreadsheet program may have separate modules for advanced color graphics. for

APPLE EXHIBIT 1102, Page 286 of 1048

APPLE EXHIBIT 1102, Page 287 of 1048

10

15

20

W0 92I20022
PCT/U592/03812

-32-

accessing a database, for printing or displaying an expanded list of fonts. etc.

Customers of the basic spreadsheet product may want some. none or all of these

added features. Yet. it would be advantageous to distribute the entire

combination as one package. then allow the customer to license the features

separately, in various combinations. or under differing terms. The customer may
have an entire department of the company needing to use the spreadsheet every

day, but only a few people who need to use the graphics a few days a month. It

is advantageous, therefore, to provide alternatives for varied licensing of parts or
features of software packages, rather than a fixed policy for the whole package.

Another example of distribution of products in their entirety, but licensing

in parts, would be that of delivering CD ROMs to a customer containing all of the
software that is available for a system. then licensing only those parts the customer

needs or wishes to pay fees for rights to use. Of course. the product need not be

merely applications programs, operating systems, or traditional executable code.
but instead could also include static objects such as printer fonts. for example. or

graphics images. or even music or other sound effects.

As will be explained below. calling and caller authorizations are provided

in the system according to one feature of the invention. in order to provide

technological support for a number of business practices and solve technical

problems which require the use of what is called "transitive licensing." By
"transitive licensing" is meant that the right to use one product or feature implies

a right to use one or more other products or features. Transitive licenses are

similar to group licenses in that both types of license consist of a single instrument

providing rights of use for a plurality of products. However. transitive licenses
differ from group licenses in that they restrict the granted rights by specifying that

APPLE EXHIBIT 1102, Page 287 of 1048

APPLE EXHIBIT 1102, Page 288 of 1048

10

15

20

25

W0 92l20022 PCT/US92IDJBI 2

-33.—

the licensed products can only be used together and by further specifying one or

more permitted inter-product calling/caller relationships. Some examples may

help to clarify the use and nature of a transitive license: the examples to be

explained are (1) two products sold together, (2) a give-away that results from

narrow choices of licensing alternatives, (3) a client licensing method in a

client/server environment, (4) impact of modular design, and (5) the impact of

distributed design.

A software vendor might have two products for sale: the first a mail

system, and the second a LEXlSm-like content-based text retrieval system. Each

of these products might be valued at $500 if purchased separately. Some

customers would be satisfied by purchasing the rights to use only one of these

products. others might find that they can justify use of both. In order to increase

the likelihood that customers will, in fact, purchase both products, it would not be

surprising if the software vendor offered his potential customers a volume

discount, offering the two products for a combined price of $800. The customers

who took advantage of this combined offer would find that they had received two

products, each of which could be exploited to its fullest capabilities independently

from the other. Thus, these customers would be able to use the content based

retrieval system to store and retrieve non-mail documents. However. from time

to time, the vendor may discover that particularly heavy users of mail wish to be

able to use the content based retrieval system only to augment the filing

capabilities provided by the standard mail offering. It is likely that many of these

potential customers would feel that $800 is simply too much to pay for an

extended mail capability. The vendor might then consider offering these

customers a license that grants mail users the right to use the content-based

retrieval system only when they are using mail and prohibits the use of content

APPLE EXHIBIT 1102, Page 288 of 1048

APPLE EXHIBIT 1102, Page 289 of 1048

10

15

20

25

W0 92I20022
PCT/US92/03812

-34-

based retrieval with any other application that might be available on the

customers system. This type of license is referred to below a "transitive license,"

and it might sell for 3600.

Another example is a relational database product (such as that referred to

as Rdbm) designed for use on a particular operating system. e.g., VMS. This
relational database product has two components: (1) A user interface used in

developing new databases, and (2) a "run-time" system which supports the use of

previously developed databases. The developers of the database product might

spend quite a bit of effort trying to get other products made by the vendor of the
database product to use it as a database instead of having those other products

build their own product-specific databases. Unfortunately, the other product

designers may complain that the cost of a run-time license for the database

product, when added to the cost of licenses for their products, would inevitably
make their products uncompetitive. Thus, some mechanism would be needed that
would allow one or another of the vendor’s products to use the run-time system

for the relational database product in a "private" manner while not giving
unlicensed access to products of other vendors. No such mechanism existed, prior

to this invention; thus, the vendor might be forced to sell the right to use its run-

time system for the database product with its proprietary operating system license.

Clearly, this combined license would make it possible for the vendor’s products to
use its database product without increasing their prices; however, it also would

make it possible for any customers and third—parties to use the database product

without paying additional license fees. However, had the system of the invention
been available, the vendor could have granted transitive licenses for the run-time

component of its database product to all the vendor's products. Essentially. these
licenses wOuld have said that the database run-time could be used without an

APPLE EXHIBIT 1102, Page 289 of 1048

APPLE EXHIBIT 1102, Page 290 of 1048

10

15

20

WO 92/20022

-35..

additional license fee if and only if it was used in conjunction with some other of

the vendor’s produCts. Any customer wishing to build a new relational database

application or use a third-party application that relied on the vendor’s database

product would have had to pay the vendor for its database run-time license.

A preposed client/server licensing method provides yet another example

of a problem which could be solved by transitive licensing. Typically, a client is

only used by one user at a time, while a server can support an arbitrary number

of clients depending on the level of client activity and the capacity of the machine

which is supporting the server. While traditionally, server/client applications have

been licensed according to the number of clients that a server could potentially

support, this may not be the most appropriate method for licensing when the

alternatives afforded by the invention are considered. The business model for the

proposed client/server method requires that each client be individually licensed

and no explicit licensing of servers is required to support properly licensed clients.

Such a licensing scheme makes it possible to charge customers only for the specific

number of clients they purchase. Additionally, it means that a single client can

make use of more than one server without increasing the total cost of the system.

The solution to this transitive licensing problem would be to provide a mechanism

that would allow the clients to obtain license unit allocations and then pass a

"proof“ of that allocation to any servers they may wish to use. Servers would then

support any clients whose proofs could be verified to be valid. On the other hand,

if a client that had not received a proof of allocation attempted to use a server,

the server would obtain a license allocation for that client session prior to

performing any services. Such a solution has not been heretofore available.

APPLE EXHIBIT 1102, Page 290 of 1048

PCTIU592]038] 2

APPLE EXHIBIT 1102, Page 291 of 1048

10

15

20

25

WO 92/20022
PCT/US92/03812

-36—

As the complexity and size of the software systems provided to customers

increases, it is found that the actual solution provided to customers is no longer

a single product. Rather, customers are more often now offered solutions which

are built up by integrating an increasing number of components or products, each

of which can often stand alone or can be part of a large number of other

solutions. In fact. a product strategy may rely almost exclusively on the vendor's

engineering and selling a broad range of specialized components that can only be

fully exploited when combined together with other components into a larger

system. Such components include the relational database runtime system
mentioned above, mail transport mechanisms, hyperinformation databases,

document format conversion services, time services, etc. Because these

components are not sold on their own merits, but rather on their ability to
contribute to some larger system, it is unlikely that any one customer will be

receiving the full abstract economic value of any one of the components once

integrated into a system. Similarly, it can be observed that the value of any

component once integrated into a larger system varies greatly from system to

system. Thus, it may be found that a mail transport mechanism contributes a

large part of a system whose primary-focus is mail, however, it will contribute
proportionally less of the mine of a system that provides a broader office
automation capability. As a result of these observations, the job of the business

analyst who is attempting to find the "correct" market price for each component

standing on its own, is more complex. In reality, the price or value of the

component can only be determined when considering the contribution of that

component to the full system or solurion in which it is integrated. Attempting to

sell the components at prices based on their abstract, independent values will

simply result in overpriced systems.

APPLE EXHIBIT 1102, Page 291 of 1048

APPLE EXHIBIT 1102, Page 292 of 1048

10

15

20

WO 92/20022 PCT/US92/03812

-37-

Transitive license styles are particularly suited to dealing with pricing of

modular components. since component prices can be clearly defined in relation

10 the other components or systems which they support. Nuts. a vendor can

charge a price of $100 for the right to use a mail transport system in conjunction

with one product, yet charge $200 for the use of the same mail transport system

when used by another product.

In addition to the "business" reasons for wanting to support transitive

licensing, there is also a very good technical reason that arises from the growing

tendency of developers to build "distributed products" as well as the drive toward

application designs that exploit either tightly or loosely coupled multiprocessor

systems; the availability and growing use of remote procedure calls has contributed

to this tendency. This technical problem can be seen to arise when considering

a product which has a number of components, each of which may run in a

different process space and potentially on a different computer system. Thus,

there might be a mail system whose user interface runs on one machine, its "file

cabinet" is supported by a second machine and its mail transport system runs on

yet a third machine. The simple question which arises is: "Which of the three

components should check for licenses?" Clearly it must be ensured that no single

component can be used if a valid license is not present. Thus. the answer to the

question will probably be that all three components should check for licenses.

However, the questiOn is then presented: "Where are the licenses to be located?".

This can become more complex.

Increasingly, the distributed systems being built are being designed so that

it is difficult to predict On which precise machine any particular component will

run. Ideally, networks are supposed to optimize the placement of functions

APPLE EXHIBIT 1102, Page 292 of 1048

APPLE EXHIBIT 1102, Page 293 of 1048

“’0 92120022 PCTIU592/0381 2

-38—

automatically so that the machine with the most available resource is always the

one that services any particular request. This dynamic method of configuring the

distribution of function servers on the network makes it very difficult for a system

or network manager to predict which machines will run any particular function

5 and thus very difficult for him to decide on which machines software licenses

should be loaded.

Even if a system manager could predict which machines would be running

the various application components and thus where the license units should be

loaded. the situation would still be less than ideal. The problem arises from the

10 fact that each of the components of the application would be independently

making requests for license unit allocations. This behavior will result in a difficult

problem for anyone trying to decide how many license units are required to
support any one product. Given the mail example, the problem wouldn't exist if
it were assumed that all three components (i.e., user interface, file cabinet. and

15 transport system) were required by the design of the mail system to be in use
simultaneously. If this were the case, it couid be simply assumed that supporting

a single activation of the mail system would require three units. However, in a
real mail system, it will be inevitably discovered that many users will only be using

just the uservinterface and file-cabinet components of the system at one time.
20 Thus, there will be some unused units available which could be used to authorize

additional users. This situation might not be what is desired by the software

vendon

The problem of providing license support to multi-component products

which are dynamically configured could be solved by viewing each of the product

25 components as a distinct licensable product and by treating the problem as one

APPLE EXHIBIT 1102, Page 293 of 1048

APPLE EXHIBIT 1102, Page 294 of 1048

10

15

20

WO 92/20022 PCT/115921038] 2

-39..

of transitive licensing. but a mechanism for accomplishing this has not been

available. Essentially, a single license document would be created that stated that

if any one of the components had successfully obtained a license to run, it could

use this grant to give it the right to exploit the other components. Thus, in the

example above, the user might start the mail system by invoking its user interface.

This user interface code would then query the license management facility for a

license allocation and once it has received that allocation, it would pass a proof

of allocation to the other mail components that it uses. Each of the other

components would request that the license management system validate that the

"proof“ is valid prior to performing any service; however, none of the other

components would actually require specific allocations to be made to them. In

this way, the complexity of licensing and managing networls of distributed

applications can be significantly reduced.

SUMMARY OF THE INVENTION

In accordance with one embodiment of the invention, a license

management system is used to account for software product usage in a cemputer

system. The system employs a license management method which establishes a

management policy having a variety of simultaneously-available alternative styles

and contexts. A license server administers the license, and each licensed product

upon start-up makes a call to the license server to check on whether usage is

permitted, in a manner similar to that of patent 4.937.863. The license server

maintains a store of the licenses, called product use authorizations, that it

administers. Upon receiving a call from a user, the license server checks the

product use authorization to determine if the particular use requested is

APPLE EXHIBIT 1102, Page 294 of 1048

APPLE EXHIBIT 1102, Page 295 of 1048

10

15

WO 92120022
PCI‘IUSQZIOBSIZ

-4o*

permitted, and, if 50. returns a grant to the requesting user node. The license
server maintains a database of product use authorizations for the licensed

products. and accesses this database for updating and when a request is received
from a user. While this license management System is perhaps of most utility on

a distributed computer system using a local area network, it is also operable in a

stand-alone or cluster type of system. In a distributed system. a license server

executes on a server node and the products for which licenses are administered

are on client nodes. However. the license management functions and the licensed

products may be executing on the same processor in some embodiments.

The product use authorization is structured to define a license management

policy allowing a variety of license alternatives by components called "style".
"context". "duration" and "usage requirements determination method". The style

may be allocative or consumptive. An allocative style means the units of the

license may be allocated temporarily to a user when a request is received, then

returned to the pool when the user is finished, so the units may be reused when

another user makes a request. A consumptive style means the units are deducted

from an available pool when a user node makes a valid request, and "consumed",

not to be returned for reuse. The context value defines the context in which the

use is to be allowed, such as on a particular network. by a particular type of CPU.

by a particular user name. by a particular process, etc. The duration value (used

in conjunction with the style component) concerns the time when the license units

are to be deducted from the available pool of units, whether at the time of

request, after a use is completed, etc. A usage requirements determination

method may be specified to define or provide information concerning the number

of license units charged in response to a license request from a user node; for

example, some CPU platforms may be charged a larger number of license units

APPLE EXHIBIT 1102, Page 295 of 1048

APPLE EXHIBIT 1102, Page 296 of 1048

10

15

20

25

WO 92/20022

than others. A table may be maintained of usage requirements, and the

determination method may specify how to access the table, for example. The

important point is that the user node (thus the software product) can only make

a request. identifying itself by user, platform. process, etc., and the license

management facility calculates whether or not the license can be granted (that is.

units are available for allocation), without the user node having access to any of

the license data or calculation. There is a central facility, the license server,

storing the license documents, and. upon request, telling the licensed products

whether they can operate under the license terms.

An important feature of one embodiment is that the license administration

may be delegated to a subsection of the organization1 by creating another license

management facility duplicating the main facility. For example, some of the units

granted in the product use authorization may be delegated to another server,

where the user nodes serviced by this server make requests and receive grants.

The license management facility cannot create a license itself, but instead

must receive a license document (a product use authorization) from an issuer of

licenses. As part of the overall license management system of the inventibn, a

license document generator is provided which creates the product use

authorizations under authority of the owner of the software, as negotiated with

customers. Thus. there are three distinct rights in the overall license management

facility of the inventionz-(l) the right to issue licenses, (2) the right to manage

licenses, and (3) the right to use the licensed products. Each one of these uses the

license document only in prescribed ways. The license issuer can generate a

license document; The license manager (or license server as referred to herein)

can grant products the right to use under the license, and can delegate parts of the

APPLE EXHIBIT 1102, Page 296 of 1048

PCT/USQZIMSI 2

APPLE EXHIBIT 1102, Page 297 of 1048

WO 92/20022 PCT/U592!03812

licensed units for management by another server, as defined by the license

document: the way of granting rights to products is by respOnding to certain

defined calls from the products. And, the licensed prodUClS can make certain calls

to the license server to obtain grants of rights based upon the license document.

5 inquire, or report, but ordinarily cannot access the document itself.

As explained above, transitive licensing is an important feature of one

embodiment. This is the provision of a mechanism for one user node to get

permission to use another software product located on another user node: this is
referred to as a calling authorization and a caller authorization. using a "calling

10 card." and these are examples of the optional features which must be specifically

permitted by the product use authorization. A user node must obtain permission
to make a procedure call to use a program on another node; this permission is

obtained by a request to the license server as before, and the permission takes the

form of a calling card. When a calling card is received by a second node (i.e.,

15 when the procedure call is made), a request is made by the second node to the

license server to verify (via the product use authorization) that the calling card is

valid, and a grant sent to the user node if allowed. In this manner. all nodes may
have use of a program by remote calls, but only one consumes license units.

Another important feature of one embodiment is a management interface

20 which allows a license manager to modify the license policy components of a

license document maintained by at a license server in its database. Usually the

license manager can only make modifications that restrict the license policy

components to be more restrictive than originally granted. Of course, the

management interface is used to make delegations and assignments. if these are

25 authorized.

APPLE EXHIBIT 1102, Page 297 of 1048

APPLE EXHIBIT 1102, Page 298 of 1048

10

15

W0 92/211022 PCT/US92I03812

..43-

The license document interchange format is an important feature. in that

it allows the license management system to be used with a wide variety of software

products from different vendors, so long as all follow the defined format. The

format uses data strucrures that are defined by international standards.

An important function is the filter function, used in the management

interface and also in the client interface to select among elements in the data

SII'U CIUICS.

BRIEF DESCRIPTION OF THE DRAMNGS I

The novel features believed characteristic of the invention are set forth in

the appended claims. The invention itself, however. as well as other features and

advantages thereof, will be best understood by reference to the detailed

description of specific embodiments which follows. when read in conjunction with

the accompanying drawings, wherein:

Figure l is a diagram in block form of a distributed computer sySIem which

may be used to implement the license management operations according to one

embodiment of the invention;

Figure 2 is a diagram of the content of a license document or "product use

authorization" generated by the license document generator and stored by the

license server in the syStem of Figure 1;

APPLE EXHIBIT 1102, Page 298 of 1048

APPLE EXHIBIT 1102, Page 299 of 1048

10

15

“’0 92/201122
PCT/US92/03312

Figure 3 is a diagram of the alternatives for license style. context and

duration making up the license management policy implemented in the system of

Figure 1. according to one embodiment of the invention;

Figure 4 is a diagram of an example of a fragment of a license use

requirements table (LURT) used in the system of Figure 1. according to one

embodiment of the invention;

Figure 5 is a logic flow chart of a program executed by a user node (client),

in the sysrem of Figure 1. according to one embodiment of the invention:

Figure 6 is a logic flow chart of a program executed by a license server. in

the system of Figure 1. according to one embodiment of the invention; and

Figure 7 is a diagram of the calls and returns made in an example of use

of calling cards in the system of Figure 1.

Figure 8 is a diagram of an LDiF document identifier, according to an
standard format:

Figure 9 is a syntax diagram of an LDlF document;

Figure 10 is a diagram of an LDIF document structure;

Figures 11, 13. 15. 17, 18, 19, 21-28 and 31-43 are syntax diagrams for

elements of various ones of the LDIF data structures;

APPLE EXHIBIT 1102, Page 299 of 1048

APPLE EXHIBIT 1102, Page 300 of 1048

10

15

'20

W0 92/201122 PCTIUS92/03812

_45,

Figure 16 is a diagram of a license data structure;

Figures 12, 14 and 20 are examples of descriptions of data elements using

a standard notation;

Figures 29 and 30 are examples of context templates used in the license

management 53516111;

Figures 44 and 45 are tables of attributes specific to filter and filter item

type; and

Figure 46 is notation in a standard format for an example of a filter.

DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

Referring to Figure 1, a license management facility according to one

example embodiment of the invention is centered around a license server 10,

which typically includes a CPU located in the customer’s main office and executing

a license management program 11 as will be described, under an operating system

12. The license server 10 communicates with a number of delegatees 13 which

likewise include CPUs in departments or divisions of the company or organization,

each also executing a license management program 14 under an operating system

15. The license management program 14 is the same as the program 1] executing

on the main server 10; the only difference in the functions of server 10 and servers

13 is that the latter have a delegated subset of the license units granted to the

server 10. as will be described. The CPUS 13 are in turn servers for a number of

APPLE EXHIBIT 1102, Page 300 of 1048

APPLE EXHIBIT 1102, Page 301 of 1048

10

15

20

W0 92l20022
PCT/US92/03812

-46‘

users 16, which are CPU nodes where the licensed programs 17 are actually

executed. The programs 17 executing on the user CPUs 16 are applications

programs (or operating systems, etc.) which have added to them units 18 and 19,

according to the invention, allowing them to make inquiry to the their server 13

(or 10) before executing and to report back after executing. using a client stub 19

in the manner of remate procedure calls, in one embodiment. A user node 16

may have many different programs 17 that may be executed, and the various user

nodes 16 would usually each have a set of programs 17 different from the other

user nodes, all of which would be administered by the license management

program 14 or 11. The terms "program" and “licensed product" are used in
reference to the element 17, but it is understood that the products being

administered may be segments of programs, or funCtions or features called by

another program, or even merely data (Such as printer fonts), as well as complete

stand-alone applications programs. The license server 10 communicates with the

delegatee servers 13 by a network 21, as is usual in large organizations, and the

deiegatee servers 13 each communicate with their user nodes 16 by networks 22;

these networks may be of the Ethernet, token ring. FDDI types or the like, or

alternatively, the user nodes 16 may —be merely a cluster of terminals on a

multiuser system with the delegatee being a host CPU. The particular hardware

construction of the user nodes. server nodes, communication networks, etc.. and

the operating systems 12 or 15. are of no concern regarding the utility of the

features of the invention, the only important point being that the user CPUs 16

of the software products 17 in question can communicate readily and quickly with

their respective server nodes 13 or 10. In one embodiment, remote procedure

calls (RPCs) are used as the communication medium for the interfaces between

components of the system, handling the inquiries and grants as will be described.

APPLE EXHIBIT 1102, Page 301 of 1048

APPLE EXHIBIT 1102, Page 302 of 1048

10

15

20

W0 92/20022 PCT/US92/0381 2

~47—

A remote procedure call is similar to a local procedure call but is made to a

procedure located on a remote node. by way of a communications network.

The function of the unit 19 is that of a client stub. in a remote procedure

call sense. The calls to the license server 10 are made through this stub 19, and

returns are received by the stub 19 and passed on to the program 17. The stub

19 is responsible for obtaining the network addresses of other nodes on the

network, such as the server 10. Also, the stub 19 is responsible for determining

the context (as defined below) for passing on to the server [0. The unit 18

functions to execute a "private" type of license availability determination if this is

used. rather than this task being done by the application program 17. but if the

ordinary method of determination is employed (using the license server) as is

usually the case. the unit 18 is merely code that starts the execution and passes

calls and returns back and forth between the program 17 and the unit 19.

The license server 10, using the license management program 11. maintains

a license data file 23 comprising a number of license documents or licenses

(product use authorizations), and also maintains a log 24 which is a record of the

usage activity of all of the user CPUs 16 of each of the licensed programs. The

delegatee servers 13 would maintain similar license databases and logs. The

license server 10 has no authority to originate a license, but instead must receive

a license from a license issuer 25. The issuer 25 is again a CPU executing a

license document generator program 26 under an operating system 27. The

license isSuer 25 may be under control of the producer 28 of the programs or

software products being licensed, or may be controlled by a distributor who has

received the authority to grant licenses from the producer or owner 28. The

communications link 30 between the license issuer 25 and the license server 10 for

APPLE EXHIBIT 1102, Page 302 of 1048

APPLE EXHIBIT 1102, Page 303 of 1048

WO 92120022 PCI‘IUS92l03812

-48-

This mechanism permits the system of the inventioo to dispose of the

cumbersome. explicit support of license types having different scope such as the

cluster licenses, node licenses, and process licenses found in prior license

management systems including that of patent 4.937.863. Instead of defining a
5 limited set of scopes (cluster, node, etc). the system of this invention provides a

general mechanism which allows an effectively unlimited range of allocation
scopes to be defined.

Transitive licensing. as referred to above. is supported by the system of the

invention by (1) calling authorizations, which are statements made in field 49 of

10 the product use authorization 35 for one product (the "caller") to permit that

product to call another product (the "callee"), and, (2) caller authorizations, which
are statements made in field 49 of the product use authorization for one product

(the "callee") to permit it to be called by another product (the "cailer").

If calling or caller authorizations are to be exploited by products. then

15 whenever one product calls another product. it must pass the callee a calling card

49a. This calling card 49a is an encoding of an identification of the caller as well

as a statement by the license management system that a license unit allocation has

been made to the caller which is passing the calling card. This calling card is then

passed by the callee to the license management system for validation and. if the

20 either the product use authorization of the caller carries an appropriate calling

authorization or the product use authorization of the callee carries an appropriate

caller authorization. the use of the callee by the caller will be authorized without

requiring any additional license unit allocations.

APPLE EXHIBIT 1102, Page 303 of 1048

APPLE EXHIBIT 1102, Page 304 of 1048

IO

15

20

WO 92/20022 PCT/US92/D3312

“49*

Referring to Figure 7, the intercomponent interactions that occur when

either calling or caller authorizations are being used are illustrated. This figure

shows a license management server 10. a caller product 17a named "Product-1"

and a callee product 17b named "Product-2". When Product-1 starts to run, it will

make an lm_requast_aflocarian() call to the license management server 10 to

obtain a grant handle for an allocation of some number of units of the Product-1

license. Either immediately, or at some later time. but always prior to making a

call to Product-2, Product-1 will call lm_query_a1locarion(), passing the grant

handle received earlier and specifying that it wants a calling card for the product

named "Product-2." If the field 49 of the product use authorization 35 used to

satisfy the grant represented by the grant handle carries a calling authorization in

field 49 naming "Product-2," the license manager will create a calling card 49a

which includes the statement that a calling authorization exists and pass this

calling card back to Product-1. If the calling authorization does not exist, the

calling card passed to Product-1 will contain a statement to thatreffect.

Once Product-1 has successfully obtained a calling card 49a from the

license manager, it will then make a call to Product-2, passing the calling card

along with any other initialization parameters that would normally be used when

starting Product-2. Product-2 will then pass that calling card to the license

manager as part of its lm_requesr_afloeatt'on() call and the license manager will

determine if the calling card is valid. Note that calling cards become invalid once

the process which received the calling card makes an lm_relea.re_allacarion() call

or terminates abnormally. If the calling card is valid. and it indicates that a calling

authorization is present, the license manager will verify this statement and if found

to be true. will return a grant handle to Product-2. If. on the other hand, the

calling card carries an indication that no calling authorization is present, the

APPLE EXHIBIT 1102, Page 304 of 1048

APPLE EXHIBIT 1102, Page 305 of 1048

10

15

20

W0 92f20022 PCT/US92/03812

-— 50"

license manager will attempt to find a product use authorization for Product-2 that

contains a caller authorization naming Product-1 as an authorized caller. if the

caller authorization is found, a grant handle will be passed back to Product-2. If

not, the license manager will ignore the calling card and proceed with the normal

im_requesr_allocarion () logic.

The requirement to be passing calling cards between products requires that

both the caller and the callee be “aware" of the fact that calling and caller

authorizations may be used. This is one of the few examples of a requirement for

a product 17 to become actively involved in the licensing problem when using the

licensing management system of the invention. However, since the use of

calling/caller authorizations if a fairly "sophisticated" and powerful feature, it is

considered acceptable to impose this burden on application coders.

MANAGEMENT INTERFACE

Referring to Figure 1.. the license management program 11 executing on a

server 10 includes a license management interface 33 which functions to allow a

user at a console for the server 10 CPU or at a remote terminal to implement

certain necessary operations. The management interface 33 is essentially the tools

or mechanisms available to the license manager at the licensee's site to (a) load

the various licenses received from issuers 2.5 into the database 23 and make them

available for request allocation calls from the users, (b) remove the licenses from

the machine when expired, (c) to make delegations if permitted. (d) to make

assignments. (e) to make reservations, etc. Whatever the license manager is

allowed to do to modify the license for his special circumstances (within the

APPLE EXHIBIT 1102, Page 305 of 1048

APPLE EXHIBIT 1102, Page 306 of 1048

10

15

20

W0 92/20022 PCI‘/U592}03812

-5: '

original grant. of course), he does it by the mechanism of the management

interface 33. Some licenses are not modified at all. but merely loaded. in a

multiple machine environment. as on a network, there is considerable modifica-

tion, as it is necessary to make sure the correct number of units are distributed

onto the correct machines, the right people have access, other people don't have

access, etc. Thus, in a network environment, there is extensive use of the

management interface 33.

In reference to the terminology used in describing the management

interface, as well as the license management system in general. it is helpful to note

that the documentation canventions, data declarations, macro declarations, etc..

for the object management used in one embodiment of the invention are

according to the Standards set forth in OS! Object Management AP! Specification,

Version 2.0. XAOO API Association and X/Open Company Limited, 24 August

1990, a published document. '

The specific operations available to the management interface 33 are to

allow a manager to Open and close a management session, register (load) objects

in the license database 23. obtain a list of objects in the license database 23. and

control a cursor (a cursor is a movable pointer to a member of a list of items).

Once an object in the license database 23 is identified with the cursor. certain

changes may be made in the object by a write function. For example, certain

fields of a license document of Figure 2 or an LURT of Figure 4 may be changed

in only specified ways as will be explained.

The operation of opening a session goes by the name of im_open_sessiorr()

and is used to establish a license management service session between 3

APPLE EXHIBIT 1102, Page 306 of 1048

APPLE EXHIBIT 1102, Page 307 of 1048

10

15

20

WO 92120022 PCT/US92/03812

“52‘

management client and the service. Opening a session also creates a workspace

to contain objects returned as a result of functions invoked within the session.

Object management Objects can be created and manipulated within this

workspace. Objects created within this workspace, and only such objects, may be

used as Object arguments to the other license management service management

functions used during the session established by a call to this function. More than

one session may exist simultaneously.

The arguments that go with a im_open_se.rst'on() call are (a) the binding

handle, which is binding information that defines one possible binding (a client-

server relationship), and (b) a comment which will be inserted in the log file 24

if logging is enabled. The results from a {mflopengessiono call are (a) a return

code indicating whether the function succeeded. and, if not. why not, (b) a session,

which is an established license management session between the management

client and the license management service, and (c) a workspace that will contain

all objects returned as a result of functions invoked in the session.

The close session call is referred to by lm_ciose_session() and functions to

terminate the lm session- This function terminates the license service manage-

ment session and makes the argument unavailable for use with other interface

functions. The arguments that go with a Im_ciose_sersion (J call are (a) the session

which identifies the established lm session between the management client and the

license management service, and (b) a comment which will be inserted in the log

file if logging is enabled. The result of the call is a return code indicating whether

the function succeeded. and, if not, why not.

APPLE EXHIBIT 1102, Page 307 of 1048

APPLE EXHIBIT 1102, Page 308 of 1048

10

15

20

25

WO 92120022 PCI'IUS92/038 I2

-53..

The list function returns a set of selected objects in the license database 23.

and uses the name im_list_licertrer(). This function is used to search the license

database 23 and return a cursor which represents the first of one or more objects

which match the specified filter. The specified filter will be applied to each object

in the license database 23; all objects for which the filter evaluates true will be

included in the object list accessible by the setncursor function. The arguments

that go with lm_ltlsr_li'ceme_t() are (a) session which identifies an established

session between the management client and the license management service. and

(b) a filter which is an object used to select license database 23 objects; license

database objects will only be included in the objeCt list headed by the cursor if

they satisfy the filter - the constant no-filter may be used as the value of this

argument if all license data objects are to be included in the object list. The

results of the lm_iist_licemes(,l call are (a) a return code indicating whether the

function succeeded, and, if not. why not. and (b) a license list upon successful

completion of this call containing a cursor which represents the first of one or

more objects in the current license database 23 for which the specified filter

evaluates true.

The register function is to register objects in the license database 23. and

uses the name lm_regirter(). This funCtion is used to register (i.e.. load or create)

new objects. or modify existing objects, in the license database 23; the objects

which may be registered include only those which are subclasses of the license

data class or history objects. The arguments are (a) session, which identifies an

eSIabiished session between the management client and the license management

service, (b) license data object which is to be registered; if this argument is

omitted, the comment argument is a required argument and a history object

containing the comment will be registered in the license database 23. and (c)

APPLE EXHIBIT 1102, Page 308 of 1048

APPLE EXHIBIT 1102, Page 309 of 1048

10

15

20

“'0 92120022
PCTIUS92/03812

comment. which will be inserted in the log file if logging is enabled. The result

is a return code indicating whether the function succeeded. and. if not, why not.

'Ihe errors possible when it does not succeed include data-expired. duplicate-

object. no-such-session. memory-insufficient, network-error, etc.. indicated by this

return code.

The set cursor function eStablishes a new cursor, and is called by

lm_.rer_cursor(). The arguments are (a) session. which identifies an established

session between the management client and the license management service. (b)

forward. which is a boolean value indicating if the direction in which the cursor

is to be moved is forward or reverse, (c) filter which is used to eliminate cursors

from the search for the next cursor that are not wanted; a new cursor will only be

set if it satisfies the filter - the constant no-filter may be used as the value of this

argument if any cursor is to be considered as the target cursor. and (d) the cursor

which is to be used as the starting point in searching for the new cursor. The

results are (a) a return code indicating whether the funcu'on succeeded, and. if

not. why not, and (b) next-cursor, which is the requested cursor. The error codes

in the return code may be end-of-list. riot-a-cursor, etc.

After a session is opened, and an object such as a product use authorization

or a LURT has been identified by the cursor. using the functions explained above,

the management interface 33 is able to execute certain object management

interface functions such as write or copy. By this mechanism. the management

interface can modify certain limited attributes. None of these attributes can be

modified in such a way that they reduce constraints established by corresponding

attributes in the license data objects. The more important attributes which can

be modified by the management interface 33 using this mechanism are:

APPLE EXHIBIT 1102, Page 309 of 1048

APPLE EXHIBIT 1102, Page 310 of 1048

10

15

20

25

WO 92190022 IPCT/US92/03812

~55'

(a) assignment: an assignment of some or all of the units granted on

the associated product use authorization;

(b) reservation: a reservation of some or all of the units granted on

the associated product use authorization;

(c) delegation: a delegation of the right to manage some or all of

the units granted on the associated product use authorization, or if the

associated license data is not a product use authorization, the delegation

is of the right to use that license data:

(d) backup delegation: a statement of the right to manage some or

all or the units granted on the associated product use authorization: this

right is only active at times when the delegating server is not available:

(e) allocation: an allocation of units to a specific context;

(1') allocation period: the minimum duration of a single allocation -

all allocated units cannot be allocated to a new context until a time period

equal to the allocation period has passed since the .units were last

allocated;

(g) termination date: a date which is to override the value specified

as the end date of the product—use authorization 40 - this date must be

earlier than Specified;

(h) delegation permitted: an override of the delegation permitted

flag of the associated license data;

(i) overdraft: the current overdraft level;

0') overdraft logging: an override of the overdraft logging attribute

of the associated product use authorization;

(1:) comment: a comment created by the licensee;

(1) extended info: information not defined by the architecture which

may be of use in managing the license data.

APPLE EXHIBIT 1102, Page 310 of 1048

APPLE EXHIBIT 1102, Page 311 of 1048

WO 92/20022 PCT/US92103812

—5e--

It will be noted that an assignment and a reservation are identical. the only

difference being that a reservation is something optional. while an assignment is

something that is required. If the duration is Assignment in the policy declaration

of Figure 3. the license manager must assign same or all of the units before units

5 can be allocated. Reservations, on the other hand, are made by the license

manager using the management interface, regardless of the policy.

Titus. there are certain attributes that can be changed by a license

administrator using the management interface at the server 10, but none of these

can result in obtaining more extensive rights to use than granted by the product

10 use authorization. In each case, the license administrator can limit the rights

which will be allocated to users in some way that may be appropriate for the

administrator for control purposes.

LICENSE DOCUMENT INTERCHANGE FORMAT

The major structural components of an ASN.1 encoded document which

15 conforms to the specifications for the license management system discussed above

will be described. The object identifier that is assigned to this data syntax.

according to one embodiment, is that specified in ASN.1 as seen in Figure 8. The

International Standards Organization or 150, as it is referred to, defines how bit

patterns are chosen to uniquely identify an object type. so the bit pattern set forth

20 in Figure 8 would preceed each document used in the license management system

so the document could be identified as being a document conforming to the

prescribed License Document Interchange Format.

APPLE EXHIBIT 1102, Page 311 of 1048

APPLE EXHIBIT 1102, Page 312 of 1048

W0 92/20022 PCT/US92/03812

A document encoded according to this format is represented by a value of

a complex data type called "license document interchange format document" of

LDIFDocument. in this embodiment. A value of this data type represents a single

document. This seif-describing data structure is of the syntax defined in the

5 international standard ASN.1 referred to above. The X/Open Standard referred

to above defines the conventions that must be used in employing this syntax, while

the syntax itself is described in an 051 (Open Systems Interconnect a standard

administered by 150) document identified as K409 (referenced in the X/Open

document identified herein).

10 The LDIFDocument data type consists of'an ordered sequence of three

elements: the document descriptor. the document header, and the document itself.

Each of these elements are in turn composed of other elements. The overall

structure of the LDIFDocument data type will be described, and the nature of the

document descriptor and document header types. Then. the document content

15 elements will be described in detail. as well as the various component data types

used in the definition of the descriptor, the header and the content.

The LDIFDocument represents a single license document, with the syntax

being shown in Figure 9 and the high-level structure of an LDIF document in

graphical form being seen in Figure 10. The DocumentDescriptor of Figure 9 is

20 a description of the document encoding, the DocumentHeader contains

parameters and processing instructions that apply to the document as a whole. and

the DocumentContent is the content of the document. all as explained below.

Referring to Figure 9. what this says is that an LDIFDocument is composed

of (:2: means "is composed of") a number of elements, the first thing in an

APPLE EXHIBIT 1102, Page 312 of 1048

APPLE EXHIBIT 1102, Page 313 of 1048

10

15

20

WO 92/20022
PCT/U592/03812

- 53..

LDIFDocument is a bit pattern (tag) according to an international Standard.

indicating a certain type of document follows. which is indicated here to be

"private" or vendor selected. the number 16373 in this case. Following the bit
pattern which functions as a "starting delimiter" it is "implicit" that a "Sequence"
of elements must follow, where a sequence is distinguished from a set. A

sequence is one or more of the elements to follow. whereas a set is exactly one
of the elements to be listed. Implicit means that any file identified as

LDIFDocument must have a sequence data type, rather than some other type. In

the case of Figure 9, the sequence is document-descriptor. document header and

document content; the document-content is mandatory, whereas the first two are

optional. If an element in the sequence begins with a "0" it is a document-

descn'ptor, "1" means a document-header, and "2" means it is a document-content.

Again, it is implicit that the data following is of the format DocumentDesci-iptor,
etc.. in each case. and these are defined in Figure 11, Figure 13 and Figure 15.

Each file is in the tag-length-value format'rnentioned above. and also each

element of a file containing multiple elements is of the tag-length-value format.

The data stream could be examined beginning at any point, and its content

determined by first looking for a tag, which will tell what data structure this is.

then a length field will say how long it is, then the content will appear. These

structures are nested within one another; a document containing several product-

use-authorizations would be an LDIFDocutnent of the format of Figure 9, with a

number of DocumentContettt elements of Figure 15 following, with the length

given for the LDIFDocument spanning the several PUAs. and the length given for

each PUA being for the one PUA.

APPLE EXHIBIT 1102, Page 313 of 1048‘

APPLE EXHIBIT 1102, Page 314 of 1048

10

15

20

WO 92/20022

“see

In Figure 11. the elements major-version and minor-version are seen to be

"implicit integer”. This means that becau5e the element is of the type major-

version, etc.. it must be an integer. Various other implicit types are given in Other

syntax diagrams. such as character-string, boolean, etc.

In Figure 15, the license body is identified as being of the type "choice"

meaning it can be one of PUA. LURT. GroupDefim'tion. KeyRegisrration, etc.

Thus. knowing this is a license-body does not mean the data type of the object is

known; it is a bit further where the kind of a license-body becomes known. The

defintion of a license body is not implicit, but instead is a chioce type.

The contents of the various data elements will now be described in detail

with reference to Figures 11-43. Using these detailed descriptions, the exact

format of each of the elements used in the LDIF can be interpreted.

The license document descriptor or DocumentDescriptor consisLs of an

ordered sequence of four elements which specify the version level of the LDIF

encoding and identify the software that encoded the document, with the syntax

being shown in Figure 11. An example of the way a product called PAKGEN

V1.0 is expressed in the DocumentDescriptor encoding is shown in Figure 12.

The fields in the DocumentDescriptor syntax are major-version, minor-version,

encoder-identifier and encoder-name. The major-version field is the primary

indicator of compatibility between LDIF processors and the encoding of the

present document; this major-version field is updated if changes are made to the

system encoding that are not backward compatible. The minor-version field is the

revision number of the system encoding. The encoder-identifier field is a

registered facility mnemonic representing the software that encoded the document;

APPLE EXHIBIT 1102, Page 314 of 1048

PCT/US9210381 2

APPLE EXHIBIT 1102, Page 315 of 1048

10

15

20

“’0 92120022

the encoder-identifier can be an acronym or abbreviation for the encoder name -

this identifier is constant across versions of the encoder. The encoder-identifier

should be used as a prefix to Named Value Tags in Named Value Lists to identify

the encoder of the named value. The encoder-name field is the name of the

product that encoded the document; the encoder-name string must contain the
version number of the product.

The document header or DocumentI-Ieader contains data that pertains to

the document as a whole. describing the document to processors that receive it:

the syntax is shown in Figure 13. An example of a document header is shown in
Figure 14, using the hypothetical product PAKGEN V1.0 of Figure 12. The
private-header-data contains the global information about the document that is nor
currently standardized; all interpretations of this information are subjeCt only to

private agreements between parties concerned, so a processor which does not
understand private header data may ignore that data. The Title field is the user-

visible name of the document. The Author field is the name of the person or

persons responsibie for the information content of the document. The Version
field is the character string used to distinguish this version of the document from

all other versions. The Date filed is the date associated with this document. Note

that the nature and significance of the Title, Author, Version. and Date fields can

vary between processing systems.

The content of an LDIF document is represented by a value of a complex

data type called DocumentContent. An element of this type contains one or more
LicenseData content element using a syntax as shown in Figure 15. There are no

restrictions on the number. ordering or context of LicenseData elements. The

structure of a LicenseData element is represented in Figure 16. No restriCtions

APPLE EXHIBIT 1102, Page 315 of 1048

PCT/US92/03812

APPLE EXHIBIT 1102, Page 316 of 1048

10

15

20

WO 92/20022

are made on the number, ordering, or context of LicenseData elements. The

license-data-header field of Figure 16 specifies that data, common to all types of

license data. which describes the parties to the licensing agreement, the term of

the agreement, and any constraints that may have been placed on the management

of the license data encoded in the license body. The license-body is an element

that contains one content element, including: product use authorizations, liCense

unit requirements tables, group definitions, key registrations, and various forms of

delegations. The Management-Info is an element that contains information

concerning the current state of the license data; this element is not encoded by

Issuers.

The license data header, called LicenseDataHeader, is represented as a

syntax diagram in Figure 17. The license-id field provides a potentially unique

identification of the encoded license data, so issuers of license data can generate

unique license-ids to distinguish each issuance of license data; however, the

architecture does not require this to be the case, since the only architectural

restriction is that no two objects in any single license management domain may

have the same value for license-id. The licensee field identifies the party who has

received the rights reflected in the license data; there are at least two parties

involved in all transfers of license data, first, the issuer of the license data. and

second, the licensee or recipient of that data - it is anticipated that individual

licensees will specify to those issuing them licenses what the licensee fields on

their license data should contain. the term field identifies the term during which

the license data may be used: the validity of license data can be limited by issuers

to specific time ranges with given starting and ending dates, which are carried in

the term element - attempts to use license data or products described by that data

either before the start date or after the end date will result in conforming license

APPLE EXHIBIT 1102, Page 316 of 1048

PCT/US92fD3812

APPLE EXHIBIT 1102, Page 317 of 1048

10

15

20

“’0 92/201122

-62..

managers denying access to the license. Management-constraints identifies
constraints placed on the right to manage the associated license data; these

constraints can include (a) limiting the set of contexts permitted to manage the

data. (b) limiting the set of platforms which may benefit from that management.

and (c) limiting the right to backup and delegate the managed data. The

signature provides the digital signature used by the issuer to sign the license data
and identifies the algorithm used in encoding the signature. issuer-comment is a

comment provided by the issuer and associated with the license data.

The IssuerComment is of an informational nature and does not impact the

process of authorizing product or feature use. This field is not included in the
fields used to generate the signature for a license, thus. even if specified by an

issuer, the IssuerComment can be omitted from a license without invalidating the

license. If specified, the IssuerComment should be stored in the appropriate
license data base with the associated license data. The IssuerComment can be

retrieved by products which use the system and may be of particular utility to

producm in the "Software Asset Management" domain which are intended to
extend or augment the administrative or accounting facilities or basic system

components. Some examples of potential uses for this field are order information,
additional terms and conditions, and support information. For order information.

some issuers may wish to include with their loadable license data some indication

of the purchase order or orders which caused the license data to be issued;
licensees may find it useful to include this data in their license databases to assist
in the license management process. For additional terms and conditions, the

system will never provide automatic means for the management of all possible
license terms and conditions, and so some issuers may wish to include summaries

of non-system managed terms and conditions in the comment as a reminder. For

APPLE EXHIBIT 1102, Page 317 of 1048

PCTIU592!03812

APPLE EXHIBIT 1102, Page 318 of 1048

10

15

20

W0 92/201122

63

support information. the IssuerComment could be used to record the phone

numbers or addresses of the responsible individuals within the issuing organization

who should be contacted if there are problems with the data as issued.

A product use authorization as previously discussed in reference to Figure

2 is used to express the issuance of a right to use some product, product feature,

or members of some product group. As such, it records the identity of the product

for which use is aUthorized and specifies the means that will be used by the

license manager to ensure that the licensee’s actual use conforms to the terms and

conditions of the license. Figure 18 illustrates a syntax diagram for a

ProductUseAuthorization. Product-id identifies the name of the producer of the

product or product feature of which usage rights are being granted as well as the

name of that product; in addition, issuers of produCt use authorizations may

specify a range of versions and/or releases whose use is controlled by the specific

product use authorization. Units-granted - Contains the number of units of

product use which are granted by the license. Management-policy defines the

policy which is to be used in managing the granted software usage rights; this

definition specifies the Style, Context-Template, Duration, and License Unit

Requirements Determination Method which must be used. The calling-

authorizations and caller-authorizations are as explained above in reference to

calling cards. The execution-constraints field identifies constraints placed on the

characteristics of execution contexts which may be authorized to benefit from the

units granted by this Product Use Authorization. The product-token filed contains

product specific data not interpreted in any way by any processors conformant

with the architecture; software product producers 28 use this array to augment the

capabilities of conforrnant license managers.

APPLE EXHIBIT 1102, Page 318 of 1048

PCT/US92/03812

APPLE EXHIBIT 1102, Page 319 of 1048

10

15

20

“’0 92/211022

-54-

Some anticipated uses of the token field include language support, detailed

feature authorizations, and product support number. For language support. a

token could be constructed which contains a list of local language interface

versions whose use is authorized; thus. if a product were available in English.

German. French and Spanish, a token could be constructed listing only English

and German as the authorized languages. For detailed feature authorizations,

some license issuers will wish to have very fine control over the use of features in

a complex product; however. they may not wish to issue a large number of
individual Product Use Authorizations to "turn on" each feature. so these vendors

could construct tokens which contain lists of the features authorized or whose use

is denied. For product support number. some issuers may wish to include on the

product use authorization. and thus make available to the running product. some

information concerning the support procedures for the product; for example, an

issuer might include the telephone number of the support center or a support

contract number, and the product could be designed to retrieve this data from the

license manager and display it as part of Help dialogues.

The LURTs or license use requirements tables of Figure 4 provide a

means by which issuers of licenses, whose LURDM is dependent on the type of

platform on which the product is run, can store information describing the

relationship between the platform type and unit requirements. A syntax diagram
for a LURT is shown in Figure 19. In Figure 20, an example of how the LURT

of Figure 4 might be encoded is illustrated. Lon-name specifies the name by
which the LURT is to be known to conforming license managers. The rows field

models a. list of multicolumn lurt rows. Platform-id identifies the platform for

which this LurtRow provides license unit requirements. The lurt-columns field

provides a list of one or more iurt column values; the first value provided is

APPLE EXHIBIT 1102, Page 319 of 1048

PCT/US92/D3812

APPLE EXHIBIT 1102, Page 320 of 1048

10

15

20

W0 92!20022

-65..

assigned to column-l of the lurt-row, the second value provided is assigned to

column-. etc. A lurt column value of -1 indicates that use of the product or

feature is not authorized, while a lurt column value of 0 or greater indicates the

number of units that must be allocated in order to authorize product use on the

platform described by this iurt-row. All unspecified columns (e.g.. columns whose

number is greater than the number of column values provided in the Inn columns

element) will be considered to contain the value .1_

In reference to Figure 19, to use the row-selector feature mentioned above,

the platform-ID element would be replaced with row-selector which would be

implicit of Context. Also, in Figure 34 described below, in the lurdrn-kind

elemenn row-selector would be included if the row-select feature is to be used.

As discussed above. Figure 4 provides an example of a hypothetical LURT.

illustrating the LURT mechanism. where the issuer of this LURT table has

established three unit requirement tiers for use in determining the unit

requirements for that issuer’s products. Figure 20 provides an example of how the

LURT presented in Figure 4 might be encoded.

A group definition is used to define and name a license group. Once so

defined, the name of this group can be used on product use authorizations in the

same manner as a product name. Since a single product use authorization

specifies the management policy for all members of the group, the members of

that group must be compatible in their licensing styles, Le, a personal use type

product can not be mixed with a concurrent use product in the same group.

Figure 21 shows a group definition syntax diagram. Group—name is the name

which must appear on Product Use Authorizations for this group. Group-versiOn

APPLE EXHIBIT 1102, Page 320 of 1048

PCT/US92/03812

APPLE EXHIBIT 1102, Page 321 of 1048

10

15

WO 92120022

-66—

specifies the current version of this group; the requirements for matching between
the version information on a product use authorization and that on a specified

group definition are the same as those rules which require matching between
produce use authorizations and the Release Date data provided by producrs.
GrOup-members lists those products or features which are components of the

named group.

and private key pair. The key registration identifies the public key which is to be
used by conforming license managers 10 in evaluating signatures 53 created by the
named issuer 25 or producer 23. A key registration syntax diagram is shown in

Figure 22. Key-owner-name provides the name which must be used in either of.
or both. of the Producer and Issuer fields of license data generated by the issuer;

the key-mutter-name must be identical to that specified in the Issuer field of the
header record. Key-algorithm identifies the registered algorithm that is to be used

when producing digital signatures with this key. Key-value identifies the public

key.

An issuer delegation is typically issued by a producer 28 and authorizes the

named issuer 25 to issue licenses for products produced by the produCer. An

issuer delegation syntax diagram is shown in Figure 23. Delegated-issuer-name

identifies the name which must appear in the Issuer field of any Product Use

Authorization generated using the License Issuer Delegation. Delegated-product-

id identifies the products whose licenses the named issuer is authorized to issue.

Delegated-units-granted, if specified, indicates that the use of this issuerDelegation
is to be managed in the style of a consumptive license; the value of this attribute

APPLE EXHIBIT 1102, Page 321 of 1048

PC]?U592/0381 2

APPLE EXHIBIT 1102, Page 322 of 1048

10

15

20

W0 92/20022

_ 67—

gives the number of units for which license documents may be generated (i.e.. if

granted 1000 units by 3 Producer, an Issuer can only issue 1000 units.) Template-

authorization provides a "template" Product Use AuthorizatiOn whose attribute

values must be included on any Product Use Authorization generated using this

lssuerDelegation; in the case of attributes which have a scalar value (i.e.. Version,

Release Date, etc.). the Issuer may issue licenses with more restrictive values than

those specified on the Template Authorization. Sub-license-permitted indicates

whether the Issuer identified on this IssuerDelegation may issue an

[ssuerDelegation for the delegated—product-id.

A license delegation. as shown in a syntax diagram of Figure 24, is used to

delegate the right to manage license data. Such delegations are created by the

licensee (by the license manager), if aurhorized by the issuer 28. A backup

delegation. also shown in Figure 24. is used by one license management facility to

authorize another to manage the delegated rights in the case that the delegating

license manager is n01 mnning. The delegated-units field specifies the number of

units whose management is being delegated; this may only be specified when a

product use authorization is being delegated. Delegation-distribution-control

defines the mechanisms by which the diatribution and refreshing of the delegation

will be accomplished. Delegatee-execation-constraints identifies any constraints

which are placed on the execution-context of the Delegatee; these constraints are

applied in addition to those which are a part of the delegated License Data.

Assignment-list identifies any assignments of the delegated units that must be

respected by the delegatee. Delegated-data stores a copy of the LicenseData

received from the issuer that is the subject of the delegation; the delegated data

is not provided when the LicenseDeiegation element is included in a

DelegationList.

APPLE EXHIBIT 1102, Page 322 of 1048

PCT/US92/03812

APPLE EXHIBIT 1102, Page 323 of 1048

10

15

20

“’0 92(20022

—68..

The management information or Managementinfo element records

information concerning the current state of the LicenseData with which it is

associated. A syntax diagram of the Managementlnfo element is shown in Figure

25. The assignments field identifies a list of one or more assignments which may

be outstanding for the units on the associated product use authorization.
Reservations identifies a list of one or more reservations which may be

outstanding for the units on the associated product use authorization. Delegations
identifies a list of all outstanding delegations. Backup-delegations identifies all

outstanding backup delegations. the allocations field provides detailed
information about outstanding allocations which involve units from the associated

product use authorization. Registration-date is the date on which the LicenseData
was registered in the license database. Registrar is the context which caused the
LicenseData to be registered. Local-comment is a comment field. Termination-

date means a license defined date after which the license data may not be used;

this date must be earlier than the end.date specified in the license data’s term

record. The extended-info fieid allows additional information concerning the state

of the LicenseData and its handling by the license manager that is not

Standardized.

The defined types of elements will now be described. These defined type
are:

Allocation ManagementPolicy

Assignment Member

Context NamedValue

DistributionControi NamedValue List

EiecutionConstraints ProductID

IntervaiTime Signature

APPLE EXHIBIT 1102, Page 323 of 1048

PCI'1' [1592/0381 2

APPLE EXHIBIT 1102, Page 324 of 1048

WO 92120022 PCWUS92/03812

-69—

LicenselD Term

LUD RM Version

ManagementConstraints

The allocation element records the information concerning a single unit

5 allocation, and is shown in a syntax diagram in Figure 26. Allocation~context

specifies the context to which the allocation was made. The allocation-1m field

specifies the license unit requirement which applies to the allocation-context; this

license unit requirement is calculated without consideration of any allocation

sharing which may be possible. The allocation-group-id field identifies the

10 "allocation-group" for the current allocation. in which an unshared allocation will

always have an allocation group id of 0; allocations which utilize shared units will

have an allocation group id which is shared by all other allocations sharing the

same uniLs.

The assignment element is shown in syntax diagram in Figure 2‘7.

15 Assigned-units identifies the number of units which are assigned. Assignment-

term identifies the start and end of the assignment period. Assignee identifies the

context to which the assignment is made.

The context element is shown in syntax diagram in Figure 28. The

SubContext-type field identifies the type of subcuntexl, and this type can be either

20 standard or private; if standard. the type value will be taken from the standard-

subcontext-type enumeration: (a) network-subcontext means the subcontext value

identifies a network; (b) execution-domain-subcontext means the subcontext value

is the name of the management domain within which the caller is executing; (d)

login-domain-subcontext means the subcontext value is the name of the

APPLE EXHIBIT 1102, Page 324 of 1048

APPLE EXHIBIT 1102, Page 325 of 1048

10

15

20

WO 92/20022

-70-

management domain within which the user of the caller was originally

authenticated or "logged in"; (d) node-subcontext means the subcontext value is

the name of a made; (e) process-family—subcontext means the subcontext value

is an implementation specific identifier for a group of related processes: (0

process-ID-subcontext means the subcontext value is an implementation specific

process identifier: (g) user-name-subcontext means the subcontext value is a user
name; (h) product-name-subcontext means the subcontext value is the same as

the product name found on the ProduCt Use Authorization; (i) operating-system-
subcontext means the subcontext value is a character string representation of the

name of the operating system; (j) platform-ID-subcontext means the subcontext

value is an identifier that describes the hardware platform supporting the context.

The subcontext-value field is the value of the subcontext.

As discussed above. license data is always used or allocated within, or for

the benefit of. some named licensing context. This context name is constructed

by concatenating the values of all subcontexrs into a single context name. A

Context Template specifies those components of the context name which should

be used in calculating license unit requirements. The management system

determines the need to perform a unit allocation each time license units are

requested. The full context on whose behalf the allocation should be made is
obtained for each requested authorization. The system will mask the full context

to exclude all sub-contexts not specified in the context template and then

determine if the resulting context already has uniu allocated to it. If not, units

will be allocated according to the specification of the LURDM. otherwise, the

units previously allocated will be shared by the new context. Thus. if a given

product authorization contains a context specification of NODE + USER_NAME,
each context which requests license unit allocations and which has a unique pair

APPLE EXHIBIT 1102, Page 325 of 1048

PCTIUS92f03812

APPLE EXHIBIT 1102, Page 326 of 1048

10

15

20

W0 92/20022 PCT/U592/03812

of NODE + USER_NAME subcontext values will require an explicit grant of

license units to be made. On the other hand, any contexts which share the same

pair of NODE and USER_NAME subcontext values will be able to "share" a

single allocation of license unis. The requirement for specific allocations of units

and the ability to share units is exhibited in Figure 29 which attempts to provide

a "snapshot" of the units allocated for the product FOOBAR V4.1 at a particular

instance. It is seen from the figure that although presented with five unique full

contexts, only four of them are unique when looking only at those portions of each

context which are described by the Context Template (ie: NODE +

USER_NAME). A unit allocation must be made for each of the four instances

of unique contexts, when masked by the Context Template. The fifth context can

share allocated units with another context. Thus, the total requirement to support

product use as described in this example would be 40-units (ie: four allocations of

ten units each). Significant changes in the unit requirements can be achieved by

making small modifications to the Context Template. Figure 30 shows the same

contexts as in Figure 29 but a Context_Template of NODE. The total unit

requirement for this example would be three units (three allocations of ten units

each) rather than the forty units required in the previous example.

The distribution control element defines the mechanism that will be used

for distributing the subject delegation and records some status information

concerning the distribution of that delegation. A syntax diagram of the

distribution control element is shown in Figure 31. Distribution-method identifies

the means by which the delegation will be distributed, and the alternatives are

refresh-distribution, initial=distribution-only, and manual-distribution. Refresh-

distribution means the license manager shall be responsible for the initial

distribution of the delegation and for ensuring that refresh delegations are

APPLE EXHIBIT 1102, Page 326 of 1048

APPLE EXHIBIT 1102, Page 327 of 1048

10

15

20

W0 92(20022

“72‘

properly distributed. [nitial-distribution-only means the license manager shall be
responsible for the initial distribution of the delegation, however, distribution of
refresh delegations will be made by some other means. Manual-distribution
means the distribution of the delegation will be under the control of some other

mechanism (perhaps a license asset manager). Current-start-date is the time that
the last successful initial or refresh delegation distribution was performed.
Current-end-date identifies the last date on which the most recent delegation

distribution was performed. Refresh-interval identifies the period of time between

attempts to refresh the delegation; the refresh-interval may not be longer than the
maximum-delegation-period and should normally be less than that in order to

ensure that refresh delegations are distributed prior to the expiration of the

previous delegations that they are replacing. Retry-interval identifies the amount
of time to wait for an unsuccessful distribution attempt to try again. Maximum-

retry-count identifies the maximum number of times that an unsuccessful
distribution attempt may be retried. Retrles-attempted records the number of

unsuccessful retry attempts which have been made since the last successful initial
or refresh delegation distribution was performed.

The execution constraints elements place limits on the environments and

contexts which may receive allocations. A syntax diagram of the execution

constraints element is shown in Figure 32. Operating-system contains a list of zero

or more operating systems on which the use of the subject license is authorized;
if no operating systems are specified. it is assumed that license use is authorized
on all operating systems. Execution-context Specifies a list of zero or more full or
partial context names which identify the contexts within which products described
by the license data may be executed; if no context names are specified, the
licensed products may be executed in any context controlled by the licensee.

APPLE EXHIBIT 1102, Page 327 of 1048

PCTlU592!0381 2

APPLE EXHIBIT 1102, Page 328 of 1048

10

15

20

WO 92/20022

-73..

Environment-list identifies those environments within which the licensed product

may be used.

The interval time element is defined by the syntax IntervalTime ::=

UTCTime.

The license ID element uniquely identifies the license data it is associated

with. and is described by the syntax diagram of Figure 33. Here issuer uniquely

identifies the issuer of the license data as well as the name space within which the

LicenseID Number is maintained. While the issuer name will typically be the

same as the name of the issuer's company or personal name, this is not a

requirement. For instance: The issuer name for Digital Equipment Corporation

is "DEC." an abbreviation of the corporate name. Valid contents of the Issuer

field are maintained in the an Issuer Registry. The serial-number provides a

unique identification or serial number for the license data. The amendment field

is an integer which is incremented each time license data is amended by its issuer,

with the first version of any license data carries the amendment number 0; an

amendment can only be applied to license data if that license data has identical

Issuer and Number values and an amendment number less than the number of the

amendment to be applied.

The license units requirements determination method or LURDM element

is shown in syntax diagram in Figure 34. The combination-permitted field

indicates whether conforming license managers are permitted to combine together

into a common pool the units from different product use authorizations if those

produce use authorizations have the same product record value; for example, if

combination is permitted and a single license manager discovers in its database

APPLE EXHIBIT 1102, Page 328 of 1048

PCT/US92/03812

APPLE EXHIBIT 1102, Page 329 of 1048

ID

15

20

WO 92/20022
PCT/USQZ/IBSIZ

_..TL.I .—

two SOD-unit authorizations for the use of DEC Cobol. the license manager would

be permitted to combine these two authorizations into a logical grant of 1000

units. The overdraft-limit modifies the behavior of a conforming license

management facility in those cases where it is found that there are zero or fewer

license units available for use at the time of a request for the allocation or

consumption of additional license units. Operation of overdraft is different

depending upon whether allocative, or consumptive style is being used. In using

with allocative style, an allocation is granted even though the remaining units are

zero or less, up to the overdraft-limit. In using with consumptive style, the license

is authorized to accumulate a negative balance of license units, up to the

overdraft-limit. Overdraft-logging-tequired indicates whether all license grants
which are the result of overdraft use must cause a log record to be generated.

When the allocation-size field is non-zero, then all unit allocations and delegations

must be made in sizes which are whole number multiples of the allocation-size

value. Lurdm-kind identifies the method by which license unit requirements will

be calculated once the requirement for an allocation has been discovered, the

permitted alternatives being (a) LURT which specifies that license unit

requirements are to be determined by lookup in the LURT which is associated

with the current license. (b) Constant which specifies that license unit

requirements are constant for all platforms on which the licensed produCt or

product feature may run, and (c) Private-LURDM which specifies that license unit

requirements are to be determined by the licensed product, not by the license

management facility. The named-lurt-id specifies the name of the LURT table to

be used in determining license unit requirements if the LURDM-kind is specified

as LURT; if the LURDM-kind is specified as LURT and no table is explicitly

named. the name of the table to be used is constructed from the issuer name an

the product use authorization. Lurdrn-value specifies the LURT column to be

APPLE EXHIBIT 1102, Page 329 of 1048

APPLE EXHIBIT 1102, Page 330 of 1048

10

15

20

WO 92/20022

--75--

used when LURDM-kind = LURT: however, when LURDM-kind = Constant.

the Lurdm-value field contains the precise number of units to be allocated or

consumed. Default-unit-requirement specifies the unit requirement value to be

used when the appropriate LURT does not have a row corresponding to the

appropriate platform ID; when specified on a product use authorization with

Style = Allocative. the centext template will change to Process +

Product_Specific and the Duration will change to Transaction in cases of

unrecognized Platform ms.

The management constraints element is shown in a syntax diagram in

Figure 35. The management-context field specifies a list of zero or more partial

context names which identify the specific contexts within which the license data

may be managed. If no management contexts are specified, the license data may

be managed within any context controlled by the licensee. The contexts used in

specifying Management Context Constraints may only contain the Network.

Domain, and Node subcontexts. Specifying a list of management contexts does

not effect whether or not the license data can be used within other contexts. For

example, unless otherwise restricted, license data with a specified management

context can be remotely accessed from or delegated to other nodes in a network.

The management-scope field defines the maximum permitted size of the license

management domain within which the license data may be managed or distributed,

these being single-platform, management-domain, or entire-network. Single-

piatform constrains the license management domain for the subject license data

to be no larger than a single platform. Management-damain constrains the license

management domain for the subject license data to be no larger than a single

management domain. Entire-network constrains the license management domain

for the subject license data to be no larger than a single wide area network; that

APPLE EXHIBIT 1102, Page 330 of 1048

PCT/U592/03812

APPLE EXHIBIT 1102, Page 331 of 1048

10

15

20

25

W0 92(20022

“rs—

network which contains the platform on which the license units were initially

loaded. Although technology may not exist to detect the interorganizational

boundaries of a wide area network (i.e.. what is on the Internet as opposed to

being on a company’s own network), the assumption is that interorganization and
internetwork sharing of licenses will normally be considered a violation of license

terms and conditions. The backup-permitted field indicates if the Issuer has

authorized the use of backup delegations for this data. Delegation-permitted

indicates if the Issuer has authorized the licensee to deiegate this data.

Maximum-delegation-period identifies the longest interval during which a

delegation may be valid; by default, delegations have a life of 72-hours.

The major elements of the management policy specification are shown in

Figure 3, as previously discussed. A syntax diagram for the management policy
element is shown in Figure 36. For the Style field, three fundamental styles of

license management policy are supported, allocative, consumptive, and private-

style, as explained above. Only one of these styles may be assigned to any single

product use authorization. The Context-template specifies those components (sub-
contexts) of the execution—context name which should be used in determining if
unit allocations are required. The Duration defines the duration of an allocation

of license units to a specific context or the duration of the period which defines

a valid consumptive use. For durations of type 'Assignment," the specification of

a Reassignment Constraint is also provided for. Three types of Duration_Kind are

supported, these being Transaction. Assignment and Immediate, as explained
above. The lur-deterrnination-method stores information used in calculating the

number of units that should be allocated or consumed in response to a license

request. The allocation-sharing-lirnit identifies the largest number of execution
contexts that may share an allocation made under this management policy: an

APPLE EXHIBIT 1102, Page 331 of 1048

PCT/US92/03812

APPLE EXHIBIT 1102, Page 332 of 1048

10

15

20

W0 92/201122 PCT/US92/03812

—77*

allocation—sharing-limit of 0 indicates that the number of execution contexts that

may share an allocation is unlimited. The reassignment-constraint specifies a

minimum duration of assignment; although there is normally no constraint placed

on how frequently granted units may be reassigned, an issuer may constrain

reassignment by specifying this minimum duration of an assignment, in which case

reassignment of assigned units will not be supported until the amount of time

specified in the Reassignment Constraint has passed. If an assignment of some

particular set of units has been delegated and the delegation period for that

delegation has not terminated, cancellation of the delegation must be performed

prior to reassignment.

The member element identifies a specific licensed product which may be

part of a calling authorization or group definition. and is shown in syntax diagram

in Figure 37. Member—product identifies the product which is a member.

Member-signature is constructed from the product and token fields of the called

member structure as well as the product and issuer fields of the calling product.

Member-token provides the data which should be used as the product token for

this member.

Named values are data elements with a character string tag that identifies

the data element, and have a syntax as shown in Figure 38, which also shows the

syntax for ValueData and named value list. A named value list models a list of

named values. with an example being shown in Figure 39. In Figure 38, Value-

Name uniquely identifies the value; no standard value names are defined, and the

period character can be used as a part of the value name to form a hierarchical

tag registry at the discretion of the issuer. Value-data is the data that has been

named; data types are selected Erom the possible Value Data types, seen in the

APPLE EXHIBIT 1102, Page 332 of 1048

APPLE EXHIBIT 1102, Page 333 of 1048

10

15

20

W0 92l20022

-78-.

Figure. Value-boulean means the named data is a boolean value. Value-integer
means the named data is an integer value. Value-text means the named data is

a StringList value. Value-general means the named data is a stream of bytes in
any format. Value-list means the named data is a list of named data vaJues.

The product [D explicitly identifies the product which is the subject of the
license data with which it is associated, with the syntax for ProductID being shown

in Figure 40. The version and release date fields provide a mechanism for
defining which specific instances of the licensed product are described in the
associated license data. The Producer field is a registered name which identifies

the producer of the licensed feature; in the case of Group Names. the Producer
is always also the Issuer of the group. The Product-name identifies a licensed
software feature. The First-version identifies the earliest version of the product

whose use is authorized. The Last-version identifies the latest version of the

product whose use is authorized. The First-release-date identifies the earliest
release of the product whose use is authorized. The Last-release-date identifies

the latest release of the product whose use is authorized. Conforming license

managers are required to interpret the contents of these fields in the most

restrictive way possible. Thus, if a license is issued with Last-version = 3-0 and
a Last-releaseDate of 1-Jan-1991, then the use of version 2.0 of the licensed

product would be unauthorized if it had a release date of 2-1art-1991. If either a
First-version or First—release-date is specified without a matching Last-version or

Last—release-date, use of the produce is authorized for all versions or release dates

following that specified. Similarly, if either a last-version or Last-release-date is
specified without a matching Firstaversion or First-release-date, use of the produce
is assumed to be authorized for all versions or release dates prior to that specified.

Issuers should typically only specify one of either First-version or First-release-

APPLE EXHIBIT 1102, Page 333 of 1048

PCT/US92I03812

APPLE EXHIBIT 1102, Page 334 of 1048

10

15

20

WO 92120022

date. This is the case since it is anticipated that these fields will typically refer to

events which occurred prior to the moment of license data issuance. Thus, it

should normally be possible for the issuer to state unambiguously with only one

of these two fields which is the oldest implementation of the product that is to be

authorized. The architecture does permit, however, both fields to be used in a

single product authorization.

The signature element is used to establish the integrity and authorship of

the license data with which it is associated. A syntax diagram for the signature

element is shown in Figure 41. The Signature-algorithm field identifies the

registered algorithm that was used to produce the digital signature. Signature-

parameters are the values of the algorithms parameters that are to be used; the

need for and syntax of parameters is determined by each individual algorithm

Signature-value is an enciphered summary of the information to which the

signature is appended; the summary is produced by means of a one-way hash

function, while the enciphering is carried out using the secret key of the signer

(Issuer).

The term element defines an interval during which the license data is valid.

and is shown in syntax diagram form in Figure 42. The fields are start-date and

end-date. Stan-date identifies the first date of the term; if not specified, the

license data is considered valid on any date prior to the end-date. End-date

identifies the last date of the term; if not specified, the license data is considered

valid on any date after the Start-date. While the Start-date is always either

omitted or specified as an absolute date. the End-date can be either absolute or

relative. If the End-date is specified as a relative or "intenal" date and the Start-

date has been omitted, the date of license registration will be used as the effective

APPLE EXHIBIT 1102, Page 334 of 1048

PCT/US92/03812

APPLE EXHIBIT 1102, Page 335 of 1048

“'0 92/201122 PCT/US92/03812

-80..

start date in computing the valid term of the license data. It should be noted that

the system does not specify the mechanism by which system dates are maintained

by platforms supporting system components. Instead. the system always accepts
that system time returned to it as correct. Thus, the reliability of the management

5 of license data which specifies terms is dependent on the time management

function of the underlying platform.

The version eiernent identifies a four-part version of the licensed software

product or feature. A syntax diagram of the version element is shown in Figure
43. The schematics of each of the four parts is not detaiied, but it is required that

10 producers who wish to permit version ranges to be specified on product use
authorizations ensure that the collating significance of the four parts is maintained.

When comparing versions, Part-1 is considered first, then Part-2, then Part-3, and
finally, Part-4. Part-1 identifies a major modification to the versioned object.
Part-2 identifies a modification to the versioned object which is less significant

15 than a modification which would cause a change in the Part-1 value. Part-3
identifies a modification to the versioned object which is less significant than a

modification which would cause a change in the Part-2 value. Part-4 identifies a

modification to the versioned object which is less significant than a modification

which w0uld cause a change in the Part-3 value.

20 FILTERS

An important feature is the use of filters in the license management

program 11, including the client interface 31 and the management interface 33.
A filter is used is select itents in the license database 23. for example. Various

APPLE EXHIBIT 1102, Page 335 of 1048

APPLE EXHIBIT 1102, Page 336 of 1048

10

15

20

W0 92/20022 PCT/US92I03812

.. 8‘ _

selection mechanisms are used in picking Out or doing iookups in database

technology; filters are one of them. The filter engine used in the license

management system ll of Figure 1 is generally of a known construction, with the

exception of the select filter item type as will be described, which allows a

complex rather than a flat data format to be selected from. The feature that is

of importance to this embodiment is the way of specifying items as an input to the

filter function , rather than the filter function itself. Thus, there is described

below a template for specifying input to the filter engine. This is as if a form

were used as the input, with blanks on the form; by filing in certain blanks these

would be the items selected on. the blanks not filled in would be "don’t care".

An instance of the class filter is a basis for selecting or rejecting an object

on the basis of information in that object. At any point in time, a filter has a

value relative to every object - this value is false, true or undefined. The object

is selected if and only if the filter's value is true. This concrete class has the

attributes of its superclass - Object - and the specific attributes listed in the table

of Figure 44.

A filter is a collection of simpler filters and elementary filter-items together

with a Boolean operation. The filter value is undefined if and only if all the

component filters and filter-items are undefined. Otherwise, the filter has a

Boolean value with respect to any object, which can be determined by evaluating

each of the nested components and combining their values using Boolean

operation (components whose value is undefined or ignored). The attributes

specific to filter as shown in Figure 44 are (a) filter items which are a collection of

assertions, each relating to just one attribute of an object, (h) filters which are a

APPLE EXHIBIT 1102, Page 336 of 1048

APPLE EXHIBIT 1102, Page 337 of 1048

10

15

20

W0 92!20022
PCTIUS92lD3312

.. 92..

collection of simple filters. and (c) filler gape which is the filter’s type. of one of the
following values: And. Or. Not.

An insrance of the class filter item is a component of a filter. It is an

assertion about the existence or values of a single attribute of a license data object
or one or its subobjects. This concrete class has the attributes of its superclass -

object - and the specific attributes listed in the table of Figure 45.

The value of a filter item is undefined if: (a) the Attribute Types are

unknown. or (b) the syntax of the Match Value does not conform to the attribute
syntax defined for the attribute type, or (c) a required Attribute is not provided.
The attributes specific to filter item as shown in Figure 45 are (a) filter item type
which identifies the type of filter item and thereby the nature of the filter, and its

value must be one of

equality less

inequality present

greater or equal select

less or equal request candidates

greater simulate request

(b) attribute type which identifies the type of that attribute whose value or
presence is to be tested; the value of All Attributes may be specified, (c) match
value which is the value which is to be matched against the value of the attribute,

(d) filter which identifies the filter to be used in evaluating a selected subobject
of the current object; the filter is ignored if the filter item type is not select or if the

specified attribute type is not present in the object. and upon evaluation of the
filter the value of filter item will be set to that of the filter, (e) initial whirring, if
present, this is the substring to compare against the initial portion of the value of

APPLE EXHIBIT 1102, Page 337 of 1048

APPLE EXHIBIT 1102, Page 338 of 1048

10

15

20

W0 92/20022

-93-

the specified attribute type. (D substn'ng, if present, this is the subString(s) to

compare against all substrings of the value of the specified attribute type, (g) final

substn'ng, if present, this is the substring to compare against the final portion of the

value of the specified attribute type. and (h) license request, if present. this is

license request against which the appropriate license data objects sh0uld be

evaluated; this attribute may only be specified if the value of the filter item type

is either Request Candidates or Simulate Request.

An instance of enumeration syntax Filter Type identifies the type of a filter.

Its value is chosen from one of the following: (a)And means the filter is the

logical conjunction of its components; the filter is true unless any of the nested

filters or filter items is false. or if there are no nested components, the filter is

true; (b) 0r means the filter is the logical disjunction of its components; the filter

is false unless any of the nested filters or filter items is true, or, if there are no

nested components, the filter is false; (c) Not means the result of the filter is

reversed; there must be exactly one nested filter or filter item, and the filter is

true if the enclosed filter or filter item is false, and is false if the enclosed filter

or filter item is true.

An instance of enumeration syntax Filter Item Type identifies the type of a

filter item. Its value is chosen from one of the following: (a) Equality which

means the filter item is true if the object contains at least one attribute of the

specified type whose value is equal to that specified by Match Value (according

to the equality matching rule in force), and false otherwise; (b) Inequality which

means the filter item is true if the object contains at least one attribute of the

specified type whose value is not equal to that specified by Match Value

(according to the equality matching rule in force), and false otherwise; (c) Greater

APPLE EXHIBIT 1102, Page 338 of 1048

PCWUS92/0381 2

APPLE EXHIBIT 1102, Page 339 of 1048

10

15

20

“’0 92/200221

-84..

or Equal which means the filter item is true if the object contains at least one
attribute of the specified type whose value is equal to or greater than the value
specified by Match Value (according to the matching rule in force), and false
otherwise: (d) Less or Equal which means the filter item is true if the object
contains at least one attribute of the specified type whose value is equal or less
than the value specified by Match Value (according to the matching rule in force),
and false otherwise; (e) Greater which means the filter item is true if the object
contains at least one attribute of the specified type whose value is greater than the
value specified by Match Value (according to the matching rule in force), and
false otherwise; (f) Less which means the filter is true if the object contains at
least one attribute of the specified type, whose value is less than the value
specified by Match Value (according to the matching rule in force).and false
otherwise: (g) Present which means the filter item is true if the object contains at
3635: one attribute of the specified type. and false otherwise: (h) Select which
means the filter item is true if the object contains at least one attribute of the

specified type which has an object syntax and when the Filter is evaluated against
the attributes of that object the Filter is true, and false otherwise; (i) Request
Candidates which means the filter item is true if the object agairut which it is
evaluated is one which mid be used to provide some or all of the units requested
by the specified License Request; the evaluation is made independently of any
outstanding allocations or preallocations; and (j) Simulate Request which means
the filter item is true if the object against which it is evaluated is one which fluid
be used to provide some or all of the units requested by the specified License

Request.

The Request Candidates and Simulate Request filter item types are of
special use in testing and prototyping of systems by a license manager at a

APPLE EXHIBIT 1102, Page 339 of 1048

PCT/US92I03812

APPLE EXHIBIT 1102, Page 340 of 1048

10

15

20

W0 92/211022

-85..

licensee's site. For example, the license manager can simulate the effect of

potential assignments, the effect of a population of certain types on a network. etc.

As an example, Figure 46 shows how a filter may be constructed to identify

"All Product Use Authorizations issued by Digital for the Product ’Amazing

Graphics System’ which contains a calling authorization for Digital's ’Amazing

Database’ Product". This example is in the international standard format referred

to as X409 as mentioned above.

Filters can also used in a request allocation1 being specified in a request

extension as explained above. That is, a filter is one of the optional items in a

request extension. For example. if a user wanted to use a version of WordPerfect

with French language extension, and there were version with and without on the

network, his request allocation would have a request extension that specified a

filter for "French" in the token field. In this manner. a product can describe itself

more richly. The filter in the request extension can be a Required filter or a

Preferred filter, meaning the feature such as "French" is either absolutely

necessary, or merely the preferred.

While this invention has been described with reference to specific embodi-

ments, this description is not meant to be construed in a limiting sense. Various

modifications of the disclosed embodiments, as well as other embodiments of the

invention will be apparent to persons skilled in the art upon reference to this

description. It is therefore contemplated that the appended claims will cover any

such modifications or embodiments as fall within the true scope of the invention.

APPLE EXHIBIT 1102, Page 340 of 1048

PCT/US92/03812

APPLE EXHIBIT 1102, Page 341 of 1048

U'IU'IhLIJNI-l
'5]

10

11

12

13

14

15

16

17

13

19

20

21

22

“’0 92/204122 PCTI[1592/0381 2

#86.

WHAT IS CLAIMED IS:

1. A method of managing use of licensed software items, said

software items separately executable on a computer system or

accessible by said computer system, the computer system including

a processor and one or more nodes, comprising the steps of:

maintaining by said processor a store of license

authorizations for said software items; each license authorization

including an indication of license management policy for a software

item, said indication having a plurality of sets of policy

components, said sets of policy ccmponentsgranting alternatives of

specified restrictive rights to selectively access and execute said

software items in said system; said indication of license

management policy being in the format of an encoded document of a

data type consisting of an ordered sequence of elements,-

accessing said store by said processor to modify in said store

one or more of said specified restrictive rights of said policy

components of an identified license authorization;

accessing said store by said processo: using a filter to

obtain information from said license authorization for a selected

software item, in response to a request from a node, and

comparing an identification of said node and said software

item with said information, to produce and send to said node a

grant or refusal of said request.

2. A method according to claim 1 including the step of

receiving said license authorizations , for storing in said store,

APPLE EXHIBIT 1102, Page 341 of 1048

APPLE EXHIBIT 1102, Page 342 of 1048

N

(new

W0 92f20022 PCT/US92I03812

ST

from a license grantor external to said processor, and wherein said

step of accessing said store to modify in said store one or more of

said specified restrictive rights employs management functions

executable on said processor but not on said nodes or said license

grantor to identify a license authorization in said store.

3. A method according to claim 1 wherein said indication is

in the format of an encoded document of a data type consisting of

an ordered sequence of three elements, the three elements including

a document descriptor, a document header and the document content.

4. A. method according to claim 1 wherein said filter

specifies one or more of said attributes and a Boolean operator for

each selected attribute.

5. A method according to claim 2 wherein said step of

accessing said store to modify one or more of said policy

components is to allow grant of rights to use which are more

restrictive than said specified restrictive rights.

6. A method according to claim 2 including the steps of:

sending a request by a user of one of said software items to

obtain permission to use said software item; said request

identifying the user and said software item;

APPLE EXHIBIT 1102, Page 342 of 1048

APPLE EXHIBIT 1102, Page 343 of 1048

01I"U'lrh-DJMl—l
LIJNI-l

th

40:01

“’0 92I20022’. PCT/US92I03312

88

accessing said store to obtain information from said license

authorization for said software item, in response to said request,

and comparing said identification of said user and said software

item with said information, to produce a grant or refusal of said

request for sending to said user.

7. A method according to claim 6 wherein said store is

maintained by a license server, and said request is sent to said

server and wherein said request is in the form of a remote

procedure call, and said grant or refusal sent to said user is a

return of said procedure call.

3. A method according to claim 7 wherein said license

authorization is a data arrangement specified as a product use

authorization, and said product use authorization is received by

said server from an issuer, and wherein said server and said users

are nodes on a computer network.

9. A method according to claim 2 wherein said policy

components include a termination date, and said management

functions can modify said termination date to an earlier

termination date and wherein said policy components include a right

of delegation of a right to grant said requests to another server,

and said management functions can modify said right of delegation

to remove said right of delegation.

APPLE EXHIBIT 1102, Page 343 of 1048

APPLE EXHIBIT 1102, Page 344 of 1048

|_|

WM

W0 92(20022 PCTIUS92/03BI2

89

10. A method acc‘, ”ding to claim 2 including storing in

association with said license authorization a number of management

attributes, and said.management functions being able to modify said

management attribute s .

11. A method according to claim 10 wherein said management

attributes include a reservation of units of license use granted.by

said license authorization so that said units will not be granted

'to a user in response to said request, and wherein said management

attributes include an allocation of units of license use to a

specific context.

12. A method according to claim 10 wherein said management

attributes include an allocation period which is the minimum

duration of an allocation of units, and wherein said management

attributes include permission to enable a backup delegation of the

right to grant said requests.

13. A system for managing use of licensed software products,

Comprising: means for-maintaining a store of license documents, one

for each said product; each license document including an

indication of license policy having plurality of sets of policy

components granting specified restrictive rights to use said

software products, said policy components in each set providing

alternatives;

a management interface for accessing said store to modify

APPLE EXHIBIT 1102, Page 344 of 1048

APPLE EXHIBIT 1102, Page 345 of 1048

PLAIN

~4an

10

dmthhJH
m

WO 92/20022 PCTIU592]0381 2

96

selected ones of said components of an identified license

authorization.

14. A system according to claim 13 including:

means for sending' a request front a 'user of one of said

products to obtain permission to use said product; said request

identifying the user and said product;

means for accessing said store to obtain information from said

license document for said product, in response to said request, and

for comparing said identification of said user and said product

with said information, and with constraints imposed by said polio},r

components, to produce a grant or refusal of said request and send

said grant or refusal to said user.

15. A system according to claim 13 wherein said management

interface can modify said selected ones of said components to allow

grant of rights to use which are more restrictive than said

specified restrictive rights and wherein said means for

maintaining, and said means for accessing and sending to said user

are all located at a server on a distributed network, and said

means for sending a request is located at a user node on said

network .

16. A system according to claim 14 wherein said request is in

the form of a remote procedure call, and said grant or refusal sent

to said user is a return of said procedure call, and wherein said

APPLE EXHIBIT 1102, Page 345 of 1048

APPLE EXHIBIT 1102, Page 346 of 1048

mark-UM
.4

W0 92/20022 PCTfUSQ2/03812

9!

license document is a data arrangement specified as a product use

authorization, and said product use authorization is received by

said server from a license issuer.

17. A system according to claim 13 wherein said policy

components include a termination date, and said management

functions can modify said termination date to an earlier

termination date, and wherein said policy components include a

right of delegation of a right to grant said requests to another

server, and said management functions can modify said right of

delegation to remove said right of delegation.

18. A system according to claim 15 including means for storing

in association with said license authorization a number of

management attributes, wherein said management functions are able

to modify said management attributes and wherein said management

attributes include a reservation of units of license use granted by

said license authorization so that said units will not be granted

to a user in response to said request.

19. A system according to claim 18 wherein said management

attributes include an allocation of units of license use to a

specific content.

20. A system according to claim 18 wherein said management

attributes include an allocation period which is the minimum

APPLE EXHIBIT 1102, Page 346 of 1048

APPLE EXHIBIT 1102, Page 347 of 1048

WO 92/20022 PCTfU592!0381 2

92

duration of an allocation of units, and include permission to

enable a backup delegation of the right to grant said requests.

21. A method according to claim 3 wherein said document

descriptor includes an encoding method version number, and. encoder-

identifier and an encoder—name, and wherein said document—header

includes a title, an author, a version and a date for the software

item.

22. A method according to claim 3 wherein said document

content includes at least one of the following:

a product—use-authorization;

a license-use-requirements—table;

a group-definition;

a key-registration;

a delegation.

23. A method according to claim 3 wherein said document-

content includes a license-data—header, and said license-data-

header describes the parties to the license document, the term of

the agreement and constraints that may have been placed on

management of the license data-

24. A method according to claim 3 wherein said document-

content includes management-info, where the management—info may

include at least one of the following:

APPLE EXHIBIT 1102, Page 347 of 1048

APPLE EXHIBIT 1102, Page 348 of 1048

10

ll

12

13

14

W0 92/211022 PCT/US92I03812

93

an assignment;

a reservation;

a delegation;

a backup delegation;

an allocation;

a registration date;

a registrar;

a comment;

a termination—date.

25. A method according to claim 3 wherein:

said document descriptor includes an encoding method

version and a date for the software item;

said document Content may include at least one of the

following: a product-use-authorization, a license-use-requirements-

tableIr a group-definaticn, a key-registration, and a delegation;

said document-content selectively includes a license-

data-header, and said license-data-header describes the parties to

the license document, the term of the agreement and constraints

that may have been placed on management of the license data;

said document-content may have been placed on management

of the license data;

said document-content selectively includes management-

info, where the management—info may include at least one of the

following: an assignment, a reservation, a delegation, a backup

delegation, an allocation, a registration date, a registrar, and a

APPLE EXHIBIT 1102, Page 348 of 1048

APPLE EXHIBIT 1102, Page 349 of 1048

th

01th

UN

WO 92/20022 PCT/US92/038l2

94

comment .

26..A method according to clahm 3 wherein said store is

maintained by a license server, and said request is sent to said

server, and wherein said server and said users are nodes on a

computer network.

27. A method according to claim 3 wherein said request is in

the form of a remote procedure call, and.said grant or refusal sent

to said user is a return of said procedure call, and wherein said

license authorization is received by said server from an issuer.

28. A method according to claim 3 including the steps of:

sending a request by a user of one of said software items to obtain

permission to use said software item; said request identifying the

user and said software item;

sending said grant or refusal to said user.

29. Apparatus for managing use of licensed software itemsr

comprising:

means for maintaining a store of license authorizations

for said software items; each license authorization including an

indication of license management policy for a software item, said

indication being in the format of an encoded document of a data

type consisting of an ordered.sequence of three elements, the three

elements including a document descriptor, a document header and.the

APPLE EXHIBIT 1102, Page 349 of 1048

APPLE EXHIBIT 1102, Page 350 of 1048

l0

W0 92!20022 PCT/U592/03812

95

document content;

means for sending a request by a user of one of said

software items to obtain permission to use said software item; said

request identifying the user and said software item;

means for accessing said store to obtain information from

said license authorization for said software item, in response to

said request, and comparing said identification of said user and

said software item with said information, to produce a grant or

refusal of said request;

means for sending said grant or refusal to said user.

30. Apparatus according to claim 29 wherein said document

descriptor includes an encoding method version number, and an

encoder—identifier and an encoder-name, and wherein said document-

header includes a title, an author, a version and a date for the

software item.

31. Apparatus according to claim 29 wherein said document

content includes at least one of the following:

a product—use-authorization;

a license—use-requirements-table;

a group-definition;

a key-registration;

a delegation.

APPLE EXHIBIT 1102,_Rago_35_0_of_L048_

APPLE EXHIBIT 1102, Page 351 of 1048

DJMH
.L

uhUN
0':

'DCD-J
10

ll

12

H

01wa

“’0 92120022 PCT/U592/03812

‘36

32. Apparatus according to claim 29 wherein said document-

content includes a license-data-header, and said license-data-

header describes the parties to the license document, the term of

the agreement and constraints that may have been placed on

management of the license data.

33. Apparatus according to claim 29 wherein said document-

content includes management-info, where the management-info may

include at least one of the following:

an assignment;

a reservation;

a delegation;

a backup delegation,-

an allocation;

a registration date;

a registrar;

a comment;

a termination-date.

34. Apparatus according to claim 29 wherein:

said document descriptor includes an encoding method

version number, and encoder-identifier and an encoder-name;

said. document—header includes a 'title, an author, a

version and a date for the software item;

said document content may include at least one of the

following: a.product-use-authorizationr a 1ioense-use-requirements-

APPLE EXHIBIT 1102, Page 351 of 1048

APPLE EXHIBIT 1102, Page 352 of 1048

APPLE EXHIBIT 1102, Page 353 of 1048

APPLE EXHIBIT 1102, Page 354 of 1048

APPLE EXHIBIT 1102, Page 355 of 1048

APPLE EXHIBIT 1102, Page 356 of 1048

APPLE EXHIBIT 1102, Page 357 of 1048

APPLE EXHIBIT 1102, Page 358 of 1048

APPLE EXHIBIT 1102, Page 359 of 1048

APPLE EXHIBIT 1102, Page 360 of 1048

APPLE EXHIBIT 1102, Page 361 of 1048

APPLE EXHIBIT 1102, Page 362 of 1048

APPLE EXHIBIT 1102, Page 363 of 1048

APPLE EXHIBIT 1102, Page 364 of 1048

APPLE EXHIBIT 1102, Page 365 of 1048

APPLE EXHIBIT 1102, Page 366 of 1048

APPLE EXHIBIT 1102, Page 367 of 1048

APPLE EXHIBIT 1102, Page 368 of 1048

APPLE EXHIBIT 1102, Page 369 of 1048

APPLE EXHIBIT 1102, Page 370 of 1048

APPLE EXHIBIT 1102, Page 371 of 1048

APPLE EXHIBIT 1102, Page 372 of 1048

APPLE EXHIBIT 1102, Page 373 of 1048

APPLE EXHIBIT 1102, Page 374 of 1048

APPLE EXHIBIT 1102, Page 375 of 1048

APPLE EXHIBIT 1102, Page 376 of 1048

APPLE EXHIBIT 1102, Page 377 of 1048

APPLE EXHIBIT 1102, Page 378 of 1048

APPLE EXHIBIT 1102, Page 379 of 1048

APPLE EXHIBIT 1102, Page 380 of 1048

APPLE EXHIBIT 1102, Page 381 of 1048

APPLE EXHIBIT 1102, Page 382 of 1048

APPLE EXHIBIT 1102, Page 383 of 1048

APPLE EXHIBIT 1102, Page 384 of 1048

APPLE EXHIBIT 1102, Page 385 of 1048

APPLE EXHIBIT 1102, Page 386 of 1048

APPLE EXHIBIT 1102, Page 387 of 1048

APPLE EXHIBIT 1102, Page 388 of 1048

APPLE EXHIBIT 1102, Page 389 of 1048

APPLE EXHIBIT 1102, Page 390 of 1048

APPLE EXHIBIT 1102, Page 391 of 1048

APPLE EXHIBIT 1102, Page 392 of 1048

APPLE EXHIBIT 1102, Page 393 of 1048

APPLE EXHIBIT 1102, Page 394 of 1048

APPLE EXHIBIT 1102, Page 395 of 1048

APPLE EXHIBIT 1102, Page 396 of 1048

APPLE EXHIBIT 1102, Page 397 of 1048

APPLE EXHIBIT 1102, Page 398 of 1048

APPLE EXHIBIT 1102, Page 399 of 1048

APPLE EXHIBIT 1102, Page 400 of 1048

APPLE EXHIBIT 1102, Page 401 of 1048

APPLE EXHIBIT 1102, Page 402 of 1048

APPLE EXHIBIT 1102, Page 403 of 1048

APPLE EXHIBIT 1102, Page 404 of 1048

APPLE EXHIBIT 1102, Page 405 of 1048

APPLE EXHIBIT 1102, Page 406 of 1048

APPLE EXHIBIT 1102, Page 407 of 1048

APPLE EXHIBIT 1102, Page 408 of 1048

APPLE EXHIBIT 1102, Page 409 of 1048

APPLE EXHIBIT 1102, Page 410 of 1048

APPLE EXHIBIT 1102, Page 411 of 1048

APPLE EXHIBIT 1102, Page 412 of 1048

APPLE EXHIBIT 1102, Page 413 of 1048

APPLE EXHIBIT 1102, Page 414 of 1048

APPLE EXHIBIT 1102, Page 415 of 1048

APPLE EXHIBIT 1102, Page 416 of 1048

APPLE EXHIBIT 1102, Page 417 of 1048

APPLE EXHIBIT 1102, Page 418 of 1048

APPLE EXHIBIT 1102, Page 419 of 1048

APPLE EXHIBIT 1102, Page 420 of 1048

APPLE EXHIBIT 1102, Page 421 of 1048

APPLE EXHIBIT 1102, Page 422 of 1048

APPLE EXHIBIT 1102, Page 423 of 1048

APPLE EXHIBIT 1102, Page 424 of 1048

APPLE EXHIBIT 1102, Page 425 of 1048

APPLE EXHIBIT 1102, Page 426 of 1048

APPLE EXHIBIT 1102, Page 427 of 1048

APPLE EXHIBIT 1102, Page 428 of 1048

APPLE EXHIBIT 1102, Page 429 of 1048

APPLE EXHIBIT 1102, Page 430 of 1048

APPLE EXHIBIT 1102, Page 431 of 1048

APPLE EXHIBIT 1102, Page 432 of 1048

APPLE EXHIBIT 1102, Page 433 of 1048

APPLE EXHIBIT 1102, Page 434 of 1048

APPLE EXHIBIT 1102, Page 435 of 1048

APPLE EXHIBIT 1102, Page 436 of 1048

APPLE EXHIBIT 1102, Page 437 of 1048

APPLE EXHIBIT 1102, Page 438 of 1048

APPLE EXHIBIT 1102, Page 439 of 1048

APPLE EXHIBIT 1102, Page 440 of 1048

APPLE EXHIBIT 1102, Page 441 of 1048

APPLE EXHIBIT 1102, Page 442 of 1048

APPLE EXHIBIT 1102, Page 443 of 1048

APPLE EXHIBIT 1102, Page 444 of 1048

APPLE EXHIBIT 1102, Page 445 of 1048

APPLE EXHIBIT 1102, Page 446 of 1048

APPLE EXHIBIT 1102, Page 447 of 1048

APPLE EXHIBIT 1102, Page 448 of 1048

APPLE EXHIBIT 1102, Page 449 of 1048

APPLE EXHIBIT 1102, Page 450 of 1048

APPLE EXHIBIT 1102, Page 451 of 1048

APPLE EXHIBIT 1102, Page 452 of 1048

APPLE EXHIBIT 1102, Page 453 of 1048

APPLE EXHIBIT 1102, Page 454 of 1048

APPLE EXHIBIT 1102, Page 455 of 1048

APPLE EXHIBIT 1102, Page 456 of 1048

APPLE EXHIBIT 1102, Page 457 of 1048

APPLE EXHIBIT 1102, Page 458 of 1048

APPLE EXHIBIT 1102, Page 459 of 1048

APPLE EXHIBIT 1102, Page 460 of 1048

APPLE EXHIBIT 1102, Page 461 of 1048

APPLE EXHIBIT 1102, Page 462 of 1048

APPLE EXHIBIT 1102, Page 463 of 1048

APPLE EXHIBIT 1102, Page 464 of 1048

APPLE EXHIBIT 1102, Page 465 of 1048

APPLE EXHIBIT 1102, Page 466 of 1048

APPLE EXHIBIT 1102, Page 467 of 1048

APPLE EXHIBIT 1102, Page 468 of 1048

APPLE EXHIBIT 1102, Page 469 of 1048

APPLE EXHIBIT 1102, Page 470 of 1048

APPLE EXHIBIT 1102, Page 471 of 1048

APPLE EXHIBIT 1102, Page 472 of 1048

APPLE EXHIBIT 1102, Page 473 of 1048

APPLE EXHIBIT 1102, Page 474 of 1048

APPLE EXHIBIT 1102, Page 475 of 1048

APPLE EXHIBIT 1102, Page 476 of 1048

APPLE EXHIBIT 1102, Page 477 of 1048

APPLE EXHIBIT 1102, Page 478 of 1048

APPLE EXHIBIT 1102, Page 479 of 1048

APPLE EXHIBIT 1102, Page 480 of 1048

APPLE EXHIBIT 1102, Page 481 of 1048

APPLE EXHIBIT 1102, Page 482 of 1048

APPLE EXHIBIT 1102, Page 483 of 1048

APPLE EXHIBIT 1102, Page 484 of 1048

APPLE EXHIBIT 1102, Page 485 of 1048

APPLE EXHIBIT 1102, Page 486 of 1048

APPLE EXHIBIT 1102, Page 487 of 1048

APPLE EXHIBIT 1102, Page 488 of 1048

APPLE EXHIBIT 1102, Page 489 of 1048

APPLE EXHIBIT 1102, Page 490 of 1048

APPLE EXHIBIT 1102, Page 491 of 1048

APPLE EXHIBIT 1102, Page 492 of 1048

APPLE EXHIBIT 1102, Page 493 of 1048

APPLE EXHIBIT 1102, Page 494 of 1048

APPLE EXHIBIT 1102, Page 495 of 1048

APPLE EXHIBIT 1102, Page 496 of 1048

APPLE EXHIBIT 1102, Page 497 of 1048

APPLE EXHIBIT 1102, Page 498 of 1048

APPLE EXHIBIT 1102, Page 499 of 1048

APPLE EXHIBIT 1102, Page 500 of 1048

APPLE EXHIBIT 1102, Page 501 of 1048

APPLE EXHIBIT 1102, Page 502 of 1048

APPLE EXHIBIT 1102, Page 503 of 1048

APPLE EXHIBIT 1102, Page 504 of 1048

APPLE EXHIBIT 1102, Page 505 of 1048

APPLE EXHIBIT 1102, Page 506 of 1048

APPLE EXHIBIT 1102, Page 507 of 1048

APPLE EXHIBIT 1102, Page 508 of 1048

APPLE EXHIBIT 1102, Page 509 of 1048

APPLE EXHIBIT 1102, Page 510 of 1048

APPLE EXHIBIT 1102, Page 511 of 1048

APPLE EXHIBIT 1102, Page 512 of 1048

APPLE EXHIBIT 1102, Page 513 of 1048

APPLE EXHIBIT 1102, Page 514 of 1048

APPLE EXHIBIT 1102, Page 515 of 1048

APPLE EXHIBIT 1102, Page 516 of 1048

APPLE EXHIBIT 1102, Page 517 of 1048

APPLE EXHIBIT 1102, Page 518 of 1048

APPLE EXHIBIT 1102, Page 519 of 1048

APPLE EXHIBIT 1102, Page 520 of 1048

APPLE EXHIBIT 1102, Page 521 of 1048

APPLE EXHIBIT 1102, Page 522 of 1048

APPLE EXHIBIT 1102, Page 523 of 1048

APPLE EXHIBIT 1102, Page 524 of 1048

APPLE EXHIBIT 1102, Page 525 of 1048

APPLE EXHIBIT 1102, Page 526 of 1048

APPLE EXHIBIT 1102, Page 527 of 1048

APPLE EXHIBIT 1102, Page 528 of 1048

APPLE EXHIBIT 1102, Page 529 of 1048

APPLE EXHIBIT 1102, Page 530 of 1048

APPLE EXHIBIT 1102, Page 531 of 1048

APPLE EXHIBIT 1102, Page 532 of 1048

APPLE EXHIBIT 1102, Page 533 of 1048

APPLE EXHIBIT 1102, Page 534 of 1048

APPLE EXHIBIT 1102, Page 535 of 1048

APPLE EXHIBIT 1102, Page 536 of 1048

APPLE EXHIBIT 1102, Page 537 of 1048

APPLE EXHIBIT 1102, Page 538 of 1048

APPLE EXHIBIT 1102, Page 539 of 1048

APPLE EXHIBIT 1102, Page 540 of 1048

APPLE EXHIBIT 1102, Page 541 of 1048

APPLE EXHIBIT 1102, Page 542 of 1048

APPLE EXHIBIT 1102, Page 543 of 1048

APPLE EXHIBIT 1102, Page 544 of 1048

APPLE EXHIBIT 1102, Page 545 of 1048

APPLE EXHIBIT 1102, Page 546 of 1048

APPLE EXHIBIT 1102, Page 547 of 1048

APPLE EXHIBIT 1102, Page 548 of 1048

APPLE EXHIBIT 1102, Page 549 of 1048

APPLE EXHIBIT 1102, Page 550 of 1048

APPLE EXHIBIT 1102, Page 551 of 1048

APPLE EXHIBIT 1102, Page 552 of 1048

APPLE EXHIBIT 1102, Page 553 of 1048

APPLE EXHIBIT 1102, Page 554 of 1048

APPLE EXHIBIT 1102, Page 555 of 1048

APPLE EXHIBIT 1102, Page 556 of 1048

APPLE EXHIBIT 1102, Page 557 of 1048

APPLE EXHIBIT 1102, Page 558 of 1048

APPLE EXHIBIT 1102, Page 559 of 1048

APPLE EXHIBIT 1102, Page 560 of 1048

APPLE EXHIBIT 1102, Page 561 of 1048

APPLE EXHIBIT 1102, Page 562 of 1048

APPLE EXHIBIT 1102, Page 563 of 1048

APPLE EXHIBIT 1102, Page 564 of 1048

APPLE EXHIBIT 1102, Page 565 of 1048

APPLE EXHIBIT 1102, Page 566 of 1048

APPLE EXHIBIT 1102, Page 567 of 1048

APPLE EXHIBIT 1102, Page 568 of 1048

APPLE EXHIBIT 1102, Page 569 of 1048

APPLE EXHIBIT 1102, Page 570 of 1048

APPLE EXHIBIT 1102, Page 571 of 1048

APPLE EXHIBIT 1102, Page 572 of 1048

APPLE EXHIBIT 1102, Page 573 of 1048

APPLE EXHIBIT 1102, Page 574 of 1048

APPLE EXHIBIT 1102, Page 575 of 1048

APPLE EXHIBIT 1102, Page 576 of 1048

APPLE EXHIBIT 1102, Page 577 of 1048

APPLE EXHIBIT 1102, Page 578 of 1048

APPLE EXHIBIT 1102, Page 579 of 1048

APPLE EXHIBIT 1102, Page 580 of 1048

APPLE EXHIBIT 1102, Page 581 of 1048

APPLE EXHIBIT 1102, Page 582 of 1048

APPLE EXHIBIT 1102, Page 583 of 1048

APPLE EXHIBIT 1102, Page 584 of 1048

APPLE EXHIBIT 1102, Page 585 of 1048

APPLE EXHIBIT 1102, Page 586 of 1048

APPLE EXHIBIT 1102, Page 587 of 1048

APPLE EXHIBIT 1102, Page 588 of 1048

APPLE EXHIBIT 1102, Page 589 of 1048

APPLE EXHIBIT 1102, Page 590 of 1048

APPLE EXHIBIT 1102, Page 591 of 1048

APPLE EXHIBIT 1102, Page 592 of 1048

APPLE EXHIBIT 1102, Page 593 of 1048

APPLE EXHIBIT 1102, Page 594 of 1048

APPLE EXHIBIT 1102, Page 595 of 1048

APPLE EXHIBIT 1102, Page 596 of 1048

APPLE EXHIBIT 1102, Page 597 of 1048

APPLE EXHIBIT 1102, Page 598 of 1048

APPLE EXHIBIT 1102, Page 599 of 1048

APPLE EXHIBIT 1102, Page 600 of 1048

APPLE EXHIBIT 1102, Page 601 of 1048

APPLE EXHIBIT 1102, Page 602 of 1048

APPLE EXHIBIT 1102, Page 603 of 1048

APPLE EXHIBIT 1102, Page 604 of 1048

APPLE EXHIBIT 1102, Page 605 of 1048

APPLE EXHIBIT 1102, Page 606 of 1048

APPLE EXHIBIT 1102, Page 607 of 1048

APPLE EXHIBIT 1102, Page 608 of 1048

APPLE EXHIBIT 1102, Page 609 of 1048

APPLE EXHIBIT 1102, Page 610 of 1048

APPLE EXHIBIT 1102, Page 611 of 1048

APPLE EXHIBIT 1102, Page 612 of 1048

APPLE EXHIBIT 1102, Page 613 of 1048

APPLE EXHIBIT 1102, Page 614 of 1048

APPLE EXHIBIT 1102, Page 615 of 1048

APPLE EXHIBIT 1102, Page 616 of 1048

APPLE EXHIBIT 1102, Page 617 of 1048

APPLE EXHIBIT 1102, Page 618 of 1048

APPLE EXHIBIT 1102, Page 619 of 1048

APPLE EXHIBIT 1102, Page 620 of 1048

APPLE EXHIBIT 1102, Page 621 of 1048

APPLE EXHIBIT 1102, Page 622 of 1048

APPLE EXHIBIT 1102, Page 623 of 1048

APPLE EXHIBIT 1102, Page 624 of 1048

APPLE EXHIBIT 1102, Page 625 of 1048

APPLE EXHIBIT 1102, Page 626 of 1048

APPLE EXHIBIT 1102, Page 627 of 1048

APPLE EXHIBIT 1102, Page 628 of 1048

APPLE EXHIBIT 1102, Page 629 of 1048

APPLE EXHIBIT 1102, Page 630 of 1048

APPLE EXHIBIT 1102, Page 631 of 1048

APPLE EXHIBIT 1102, Page 632 of 1048

APPLE EXHIBIT 1102, Page 633 of 1048

APPLE EXHIBIT 1102, Page 634 of 1048

APPLE EXHIBIT 1102, Page 635 of 1048

APPLE EXHIBIT 1102, Page 636 of 1048

APPLE EXHIBIT 1102, Page 637 of 1048

APPLE EXHIBIT 1102, Page 638 of 1048

APPLE EXHIBIT 1102, Page 639 of 1048

APPLE EXHIBIT 1102, Page 640 of 1048

APPLE EXHIBIT 1102, Page 641 of 1048

APPLE EXHIBIT 1102, Page 642 of 1048

APPLE EXHIBIT 1102, Page 643 of 1048

APPLE EXHIBIT 1102, Page 644 of 1048

APPLE EXHIBIT 1102, Page 645 of 1048

APPLE EXHIBIT 1102, Page 646 of 1048

APPLE EXHIBIT 1102, Page 647 of 1048

APPLE EXHIBIT 1102, Page 648 of 1048

APPLE EXHIBIT 1102, Page 649 of 1048

APPLE EXHIBIT 1102, Page 650 of 1048

APPLE EXHIBIT 1102, Page 651 of 1048

APPLE EXHIBIT 1102, Page 652 of 1048

APPLE EXHIBIT 1102, Page 653 of 1048

APPLE EXHIBIT 1102, Page 654 of 1048

APPLE EXHIBIT 1102, Page 655 of 1048

APPLE EXHIBIT 1102, Page 656 of 1048

APPLE EXHIBIT 1102, Page 657 of 1048

APPLE EXHIBIT 1102, Page 658 of 1048

APPLE EXHIBIT 1102, Page 659 of 1048

APPLE EXHIBIT 1102, Page 660 of 1048

APPLE EXHIBIT 1102, Page 661 of 1048

APPLE EXHIBIT 1102, Page 662 of 1048

APPLE EXHIBIT 1102, Page 663 of 1048

APPLE EXHIBIT 1102, Page 664 of 1048

APPLE EXHIBIT 1102, Page 665 of 1048

APPLE EXHIBIT 1102, Page 666 of 1048

APPLE EXHIBIT 1102, Page 667 of 1048

APPLE EXHIBIT 1102, Page 668 of 1048

APPLE EXHIBIT 1102, Page 669 of 1048

APPLE EXHIBIT 1102, Page 670 of 1048

APPLE EXHIBIT 1102, Page 671 of 1048

APPLE EXHIBIT 1102, Page 672 of 1048

APPLE EXHIBIT 1102, Page 673 of 1048

APPLE EXHIBIT 1102, Page 674 of 1048

APPLE EXHIBIT 1102, Page 675 of 1048

APPLE EXHIBIT 1102, Page 676 of 1048

APPLE EXHIBIT 1102, Page 677 of 1048

APPLE EXHIBIT 1102, Page 678 of 1048

APPLE EXHIBIT 1102, Page 679 of 1048

APPLE EXHIBIT 1102, Page 680 of 1048

APPLE EXHIBIT 1102, Page 681 of 1048

APPLE EXHIBIT 1102, Page 682 of 1048

APPLE EXHIBIT 1102, Page 683 of 1048

APPLE EXHIBIT 1102, Page 684 of 1048

APPLE EXHIBIT 1102, Page 685 of 1048

APPLE EXHIBIT 1102, Page 686 of 1048

APPLE EXHIBIT 1102, Page 687 of 1048

APPLE EXHIBIT 1102, Page 688 of 1048

APPLE EXHIBIT 1102, Page 689 of 1048

APPLE EXHIBIT 1102, Page 690 of 1048

APPLE EXHIBIT 1102, Page 691 of 1048

APPLE EXHIBIT 1102, Page 692 of 1048

APPLE EXHIBIT 1102, Page 693 of 1048

APPLE EXHIBIT 1102, Page 694 of 1048

APPLE EXHIBIT 1102, Page 695 of 1048

APPLE EXHIBIT 1102, Page 696 of 1048

APPLE EXHIBIT 1102, Page 697 of 1048

APPLE EXHIBIT 1102, Page 698 of 1048

APPLE EXHIBIT 1102, Page 699 of 1048

APPLE EXHIBIT 1102, Page 700 of 1048

APPLE EXHIBIT 1102, Page 701 of 1048

APPLE EXHIBIT 1102, Page 702 of 1048

APPLE EXHIBIT 1102, Page 703 of 1048

APPLE EXHIBIT 1102, Page 704 of 1048

APPLE EXHIBIT 1102, Page 705 of 1048

APPLE EXHIBIT 1102, Page 706 of 1048

APPLE EXHIBIT 1102, Page 707 of 1048

APPLE EXHIBIT 1102, Page 708 of 1048

APPLE EXHIBIT 1102, Page 709 of 1048

APPLE EXHIBIT 1102, Page 710 of 1048

APPLE EXHIBIT 1102, Page 711 of 1048

APPLE EXHIBIT 1102, Page 712 of 1048

APPLE EXHIBIT 1102, Page 713 of 1048

APPLE EXHIBIT 1102, Page 714 of 1048

APPLE EXHIBIT 1102, Page 715 of 1048

APPLE EXHIBIT 1102, Page 716 of 1048

APPLE EXHIBIT 1102, Page 717 of 1048

APPLE EXHIBIT 1102, Page 718 of 1048

APPLE EXHIBIT 1102, Page 719 of 1048

APPLE EXHIBIT 1102, Page 720 of 1048

APPLE EXHIBIT 1102, Page 721 of 1048

APPLE EXHIBIT 1102, Page 722 of 1048

APPLE EXHIBIT 1102, Page 723 of 1048

APPLE EXHIBIT 1102, Page 724 of 1048

APPLE EXHIBIT 1102, Page 725 of 1048

APPLE EXHIBIT 1102, Page 726 of 1048

APPLE EXHIBIT 1102, Page 727 of 1048

APPLE EXHIBIT 1102, Page 728 of 1048

APPLE EXHIBIT 1102, Page 729 of 1048

APPLE EXHIBIT 1102, Page 730 of 1048

APPLE EXHIBIT 1102, Page 731 of 1048

APPLE EXHIBIT 1102, Page 732 of 1048

APPLE EXHIBIT 1102, Page 733 of 1048

APPLE EXHIBIT 1102, Page 734 of 1048

APPLE EXHIBIT 1102, Page 735 of 1048

APPLE EXHIBIT 1102, Page 736 of 1048

APPLE EXHIBIT 1102, Page 737 of 1048

APPLE EXHIBIT 1102, Page 738 of 1048

APPLE EXHIBIT 1102, Page 739 of 1048

APPLE EXHIBIT 1102, Page 740 of 1048

APPLE EXHIBIT 1102, Page 741 of 1048

APPLE EXHIBIT 1102, Page 742 of 1048

APPLE EXHIBIT 1102, Page 743 of 1048

APPLE EXHIBIT 1102, Page 744 of 1048

APPLE EXHIBIT 1102, Page 745 of 1048

APPLE EXHIBIT 1102, Page 746 of 1048

APPLE EXHIBIT 1102, Page 747 of 1048

APPLE EXHIBIT 1102, Page 748 of 1048

APPLE EXHIBIT 1102, Page 749 of 1048

APPLE EXHIBIT 1102, Page 750 of 1048

APPLE EXHIBIT 1102, Page 751 of 1048

APPLE EXHIBIT 1102, Page 752 of 1048

APPLE EXHIBIT 1102, Page 753 of 1048

APPLE EXHIBIT 1102, Page 754 of 1048

APPLE EXHIBIT 1102, Page 755 of 1048

APPLE EXHIBIT 1102, Page 756 of 1048

APPLE EXHIBIT 1102, Page 757 of 1048

APPLE EXHIBIT 1102, Page 758 of 1048

APPLE EXHIBIT 1102, Page 759 of 1048

APPLE EXHIBIT 1102, Page 760 of 1048

APPLE EXHIBIT 1102, Page 761 of 1048

APPLE EXHIBIT 1102, Page 762 of 1048

APPLE EXHIBIT 1102, Page 763 of 1048

APPLE EXHIBIT 1102, Page 764 of 1048

APPLE EXHIBIT 1102, Page 765 of 1048

APPLE EXHIBIT 1102, Page 766 of 1048

APPLE EXHIBIT 1102, Page 767 of 1048

APPLE EXHIBIT 1102, Page 768 of 1048

APPLE EXHIBIT 1102, Page 769 of 1048

APPLE EXHIBIT 1102, Page 770 of 1048

APPLE EXHIBIT 1102, Page 771 of 1048

APPLE EXHIBIT 1102, Page 772 of 1048

APPLE EXHIBIT 1102, Page 773 of 1048

APPLE EXHIBIT 1102, Page 774 of 1048

APPLE EXHIBIT 1102, Page 775 of 1048

APPLE EXHIBIT 1102, Page 776 of 1048

APPLE EXHIBIT 1102, Page 777 of 1048

APPLE EXHIBIT 1102, Page 778 of 1048

APPLE EXHIBIT 1102, Page 779 of 1048

APPLE EXHIBIT 1102, Page 780 of 1048

APPLE EXHIBIT 1102, Page 781 of 1048

APPLE EXHIBIT 1102, Page 782 of 1048

APPLE EXHIBIT 1102, Page 783 of 1048

APPLE EXHIBIT 1102, Page 784 of 1048

APPLE EXHIBIT 1102, Page 785 of 1048

APPLE EXHIBIT 1102, Page 786 of 1048

APPLE EXHIBIT 1102, Page 787 of 1048

APPLE EXHIBIT 1102, Page 788 of 1048

APPLE EXHIBIT 1102, Page 789 of 1048

APPLE EXHIBIT 1102, Page 790 of 1048

APPLE EXHIBIT 1102, Page 791 of 1048

APPLE EXHIBIT 1102, Page 792 of 1048

APPLE EXHIBIT 1102, Page 793 of 1048

APPLE EXHIBIT 1102, Page 794 of 1048

APPLE EXHIBIT 1102, Page 795 of 1048

APPLE EXHIBIT 1102, Page 796 of 1048

APPLE EXHIBIT 1102, Page 797 of 1048

APPLE EXHIBIT 1102, Page 798 of 1048

APPLE EXHIBIT 1102, Page 799 of 1048

APPLE EXHIBIT 1102, Page 800 of 1048

APPLE EXHIBIT 1102, Page 801 of 1048

APPLE EXHIBIT 1102, Page 802 of 1048

APPLE EXHIBIT 1102, Page 803 of 1048

APPLE EXHIBIT 1102, Page 804 of 1048

APPLE EXHIBIT 1102, Page 805 of 1048

APPLE EXHIBIT 1102, Page 806 of 1048

APPLE EXHIBIT 1102, Page 807 of 1048

APPLE EXHIBIT 1102, Page 808 of 1048

APPLE EXHIBIT 1102, Page 809 of 1048

APPLE EXHIBIT 1102, Page 810 of 1048

APPLE EXHIBIT 1102, Page 811 of 1048

APPLE EXHIBIT 1102, Page 812 of 1048

APPLE EXHIBIT 1102, Page 813 of 1048

APPLE EXHIBIT 1102, Page 814 of 1048

APPLE EXHIBIT 1102, Page 815 of 1048

APPLE EXHIBIT 1102, Page 816 of 1048

APPLE EXHIBIT 1102, Page 817 of 1048

APPLE EXHIBIT 1102, Page 818 of 1048

APPLE EXHIBIT 1102, Page 819 of 1048

APPLE EXHIBIT 1102, Page 820 of 1048

APPLE EXHIBIT 1102, Page 821 of 1048

APPLE EXHIBIT 1102, Page 822 of 1048

APPLE EXHIBIT 1102, Page 823 of 1048

APPLE EXHIBIT 1102, Page 824 of 1048

APPLE EXHIBIT 1102, Page 825 of 1048

APPLE EXHIBIT 1102, Page 826 of 1048

APPLE EXHIBIT 1102, Page 827 of 1048

APPLE EXHIBIT 1102, Page 828 of 1048

APPLE EXHIBIT 1102, Page 829 of 1048

APPLE EXHIBIT 1102, Page 830 of 1048

APPLE EXHIBIT 1102, Page 831 of 1048

APPLE EXHIBIT 1102, Page 832 of 1048

APPLE EXHIBIT 1102, Page 833 of 1048

APPLE EXHIBIT 1102, Page 834 of 1048

APPLE EXHIBIT 1102, Page 835 of 1048

APPLE EXHIBIT 1102, Page 836 of 1048

APPLE EXHIBIT 1102, Page 837 of 1048

APPLE EXHIBIT 1102, Page 838 of 1048

APPLE EXHIBIT 1102, Page 839 of 1048

APPLE EXHIBIT 1102, Page 840 of 1048

APPLE EXHIBIT 1102, Page 841 of 1048

APPLE EXHIBIT 1102, Page 842 of 1048

APPLE EXHIBIT 1102, Page 843 of 1048

APPLE EXHIBIT 1102, Page 844 of 1048

APPLE EXHIBIT 1102, Page 845 of 1048

APPLE EXHIBIT 1102, Page 846 of 1048

APPLE EXHIBIT 1102, Page 847 of 1048

APPLE EXHIBIT 1102, Page 848 of 1048

APPLE EXHIBIT 1102, Page 849 of 1048

APPLE EXHIBIT 1102, Page 850 of 1048

APPLE EXHIBIT 1102, Page 851 of 1048

APPLE EXHIBIT 1102, Page 852 of 1048

APPLE EXHIBIT 1102, Page 853 of 1048

APPLE EXHIBIT 1102, Page 854 of 1048

APPLE EXHIBIT 1102, Page 855 of 1048

APPLE EXHIBIT 1102, Page 856 of 1048

APPLE EXHIBIT 1102, Page 857 of 1048

APPLE EXHIBIT 1102, Page 858 of 1048

APPLE EXHIBIT 1102, Page 859 of 1048

APPLE EXHIBIT 1102, Page 860 of 1048

APPLE EXHIBIT 1102, Page 861 of 1048

APPLE EXHIBIT 1102, Page 862 of 1048

APPLE EXHIBIT 1102, Page 863 of 1048

APPLE EXHIBIT 1102, Page 864 of 1048

APPLE EXHIBIT 1102, Page 865 of 1048

APPLE EXHIBIT 1102, Page 866 of 1048

APPLE EXHIBIT 1102, Page 867 of 1048

APPLE EXHIBIT 1102, Page 868 of 1048

APPLE EXHIBIT 1102, Page 869 of 1048

APPLE EXHIBIT 1102, Page 870 of 1048

APPLE EXHIBIT 1102, Page 871 of 1048

APPLE EXHIBIT 1102, Page 872 of 1048

APPLE EXHIBIT 1102, Page 873 of 1048

APPLE EXHIBIT 1102, Page 874 of 1048

APPLE EXHIBIT 1102, Page 875 of 1048

APPLE EXHIBIT 1102, Page 876 of 1048

APPLE EXHIBIT 1102, Page 877 of 1048

APPLE EXHIBIT 1102, Page 878 of 1048

APPLE EXHIBIT 1102, Page 879 of 1048

APPLE EXHIBIT 1102, Page 880 of 1048

APPLE EXHIBIT 1102, Page 881 of 1048

APPLE EXHIBIT 1102, Page 882 of 1048

APPLE EXHIBIT 1102, Page 883 of 1048

APPLE EXHIBIT 1102, Page 884 of 1048

APPLE EXHIBIT 1102, Page 885 of 1048

APPLE EXHIBIT 1102, Page 886 of 1048

APPLE EXHIBIT 1102, Page 887 of 1048

APPLE EXHIBIT 1102, Page 888 of 1048

APPLE EXHIBIT 1102, Page 889 of 1048

APPLE EXHIBIT 1102, Page 890 of 1048

APPLE EXHIBIT 1102, Page 891 of 1048

APPLE EXHIBIT 1102, Page 892 of 1048

APPLE EXHIBIT 1102, Page 893 of 1048

APPLE EXHIBIT 1102, Page 894 of 1048

APPLE EXHIBIT 1102, Page 895 of 1048

APPLE EXHIBIT 1102, Page 896 of 1048

APPLE EXHIBIT 1102, Page 897 of 1048

APPLE EXHIBIT 1102, Page 898 of 1048

APPLE EXHIBIT 1102, Page 899 of 1048

APPLE EXHIBIT 1102, Page 900 of 1048

APPLE EXHIBIT 1102, Page 901 of 1048

APPLE EXHIBIT 1102, Page 902 of 1048

APPLE EXHIBIT 1102, Page 903 of 1048

APPLE EXHIBIT 1102, Page 904 of 1048

APPLE EXHIBIT 1102, Page 905 of 1048

APPLE EXHIBIT 1102, Page 906 of 1048

APPLE EXHIBIT 1102, Page 907 of 1048

APPLE EXHIBIT 1102, Page 908 of 1048

APPLE EXHIBIT 1102, Page 909 of 1048

APPLE EXHIBIT 1102, Page 910 of 1048

APPLE EXHIBIT 1102, Page 911 of 1048

APPLE EXHIBIT 1102, Page 912 of 1048

APPLE EXHIBIT 1102, Page 913 of 1048

APPLE EXHIBIT 1102, Page 914 of 1048

APPLE EXHIBIT 1102, Page 915 of 1048

APPLE EXHIBIT 1102, Page 916 of 1048

APPLE EXHIBIT 1102, Page 917 of 1048

APPLE EXHIBIT 1102, Page 918 of 1048

APPLE EXHIBIT 1102, Page 919 of 1048

APPLE EXHIBIT 1102, Page 920 of 1048

APPLE EXHIBIT 1102, Page 921 of 1048

APPLE EXHIBIT 1102, Page 922 of 1048

APPLE EXHIBIT 1102, Page 923 of 1048

APPLE EXHIBIT 1102, Page 924 of 1048

APPLE EXHIBIT 1102, Page 925 of 1048

APPLE EXHIBIT 1102, Page 926 of 1048

APPLE EXHIBIT 1102, Page 927 of 1048

APPLE EXHIBIT 1102, Page 928 of 1048

APPLE EXHIBIT 1102, Page 929 of 1048

APPLE EXHIBIT 1102, Page 930 of 1048

APPLE EXHIBIT 1102, Page 931 of 1048

APPLE EXHIBIT 1102, Page 932 of 1048

APPLE EXHIBIT 1102, Page 933 of 1048

APPLE EXHIBIT 1102, Page 934 of 1048

APPLE EXHIBIT 1102, Page 935 of 1048

APPLE EXHIBIT 1102, Page 936 of 1048

APPLE EXHIBIT 1102, Page 937 of 1048

APPLE EXHIBIT 1102, Page 938 of 1048

APPLE EXHIBIT 1102, Page 939 of 1048

APPLE EXHIBIT 1102, Page 940 of 1048

APPLE EXHIBIT 1102, Page 941 of 1048

APPLE EXHIBIT 1102, Page 942 of 1048

APPLE EXHIBIT 1102, Page 943 of 1048

APPLE EXHIBIT 1102, Page 944 of 1048

APPLE EXHIBIT 1102, Page 945 of 1048

APPLE EXHIBIT 1102, Page 946 of 1048

APPLE EXHIBIT 1102, Page 947 of 1048

APPLE EXHIBIT 1102, Page 948 of 1048

APPLE EXHIBIT 1102, Page 949 of 1048

APPLE EXHIBIT 1102, Page 950 of 1048

APPLE EXHIBIT 1102, Page 951 of 1048

APPLE EXHIBIT 1102, Page 952 of 1048

APPLE EXHIBIT 1102, Page 953 of 1048

APPLE EXHIBIT 1102, Page 954 of 1048

APPLE EXHIBIT 1102, Page 955 of 1048

APPLE EXHIBIT 1102, Page 956 of 1048

APPLE EXHIBIT 1102, Page 957 of 1048

APPLE EXHIBIT 1102, Page 958 of 1048

APPLE EXHIBIT 1102, Page 959 of 1048

APPLE EXHIBIT 1102, Page 960 of 1048

APPLE EXHIBIT 1102, Page 961 of 1048

APPLE EXHIBIT 1102, Page 962 of 1048

APPLE EXHIBIT 1102, Page 963 of 1048

APPLE EXHIBIT 1102, Page 964 of 1048

APPLE EXHIBIT 1102, Page 965 of 1048

APPLE EXHIBIT 1102, Page 966 of 1048

APPLE EXHIBIT 1102, Page 967 of 1048

APPLE EXHIBIT 1102, Page 968 of 1048

APPLE EXHIBIT 1102, Page 969 of 1048

APPLE EXHIBIT 1102, Page 970 of 1048

APPLE EXHIBIT 1102, Page 971 of 1048

APPLE EXHIBIT 1102, Page 972 of 1048

APPLE EXHIBIT 1102, Page 973 of 1048

APPLE EXHIBIT 1102, Page 974 of 1048

APPLE EXHIBIT 1102, Page 975 of 1048

APPLE EXHIBIT 1102, Page 976 of 1048

APPLE EXHIBIT 1102, Page 977 of 1048

APPLE EXHIBIT 1102, Page 978 of 1048

APPLE EXHIBIT 1102, Page 979 of 1048

APPLE EXHIBIT 1102, Page 980 of 1048

APPLE EXHIBIT 1102, Page 981 of 1048

APPLE EXHIBIT 1102, Page 982 of 1048

APPLE EXHIBIT 1102, Page 983 of 1048

APPLE EXHIBIT 1102, Page 984 of 1048

APPLE EXHIBIT 1102, Page 985 of 1048

APPLE EXHIBIT 1102, Page 986 of 1048

APPLE EXHIBIT 1102, Page 987 of 1048

APPLE EXHIBIT 1102, Page 988 of 1048

APPLE EXHIBIT 1102, Page 989 of 1048

APPLE EXHIBIT 1102, Page 990 of 1048

APPLE EXHIBIT 1102, Page 991 of 1048

APPLE EXHIBIT 1102, Page 992 of 1048

APPLE EXHIBIT 1102, Page 993 of 1048

APPLE EXHIBIT 1102, Page 994 of 1048

APPLE EXHIBIT 1102, Page 995 of 1048

APPLE EXHIBIT 1102, Page 996 of 1048

APPLE EXHIBIT 1102, Page 997 of 1048

APPLE EXHIBIT 1102, Page 998 of 1048

APPLE EXHIBIT 1102, Page 999 of 1048

APPLE EXHIBIT 1102, Page 1000 of 1048

APPLE EXHIBIT 1102, Page 1001 of 1048

APPLE EXHIBIT 1102, Page 1002 of 1048

APPLE EXHIBIT 1102, Page 1003 of 1048

APPLE EXHIBIT 1102, Page 1004 of 1048

APPLE EXHIBIT 1102, Page 1005 of 1048

APPLE EXHIBIT 1102, Page 1006 of 1048

APPLE EXHIBIT 1102, Page 1007 of 1048

APPLE EXHIBIT 1102, Page 1008 of 1048

APPLE EXHIBIT 1102, Page 1009 of 1048

APPLE EXHIBIT 1102, Page 1010 of 1048

APPLE EXHIBIT 1102, Page 1011 of 1048

APPLE EXHIBIT 1102, Page 1012 of 1048

APPLE EXHIBIT 1102, Page 1013 of 1048

APPLE EXHIBIT 1102, Page 1014 of 1048

APPLE EXHIBIT 1102, Page 1015 of 1048

APPLE EXHIBIT 1102, Page 1016 of 1048

APPLE EXHIBIT 1102, Page 1017 of 1048

APPLE EXHIBIT 1102, Page 1018 of 1048

APPLE EXHIBIT 1102, Page 1019 of 1048

APPLE EXHIBIT 1102, Page 1020 of 1048

APPLE EXHIBIT 1102, Page 1021 of 1048

APPLE EXHIBIT 1102, Page 1022 of 1048

APPLE EXHIBIT 1102, Page 1023 of 1048

APPLE EXHIBIT 1102, Page 1024 of 1048

APPLE EXHIBIT 1102, Page 1025 of 1048

APPLE EXHIBIT 1102, Page 1026 of 1048

APPLE EXHIBIT 1102, Page 1027 of 1048

APPLE EXHIBIT 1102, Page 1028 of 1048

APPLE EXHIBIT 1102, Page 1029 of 1048

APPLE EXHIBIT 1102, Page 1030 of 1048

APPLE EXHIBIT 1102, Page 1031 of 1048

APPLE EXHIBIT 1102, Page 1032 of 1048

APPLE EXHIBIT 1102, Page 1033 of 1048

APPLE EXHIBIT 1102, Page 1034 of 1048

APPLE EXHIBIT 1102, Page 1035 of 1048

APPLE EXHIBIT 1102, Page 1036 of 1048

APPLE EXHIBIT 1102, Page 1037 of 1048

APPLE EXHIBIT 1102, Page 1038 of 1048

APPLE EXHIBIT 1102, Page 1039 of 1048

APPLE EXHIBIT 1102, Page 1040 of 1048

APPLE EXHIBIT 1102, Page 1041 of 1048

APPLE EXHIBIT 1102, Page 1042 of 1048

APPLE EXHIBIT 1102, Page 1043 of 1048

APPLE EXHIBIT 1102, Page 1044 of 1048

APPLE EXHIBIT 1102, Page 1045 of 1048

APPLE EXHIBIT 1102, Page 1046 of 1048

APPLE EXHIBIT 1102, Page 1047 of 1048

APPLE EXHIBIT 1102, Page 1048 of 1048

