
(12) United States Patent
Kidder et al.

US006880086B2

US 6,880,086 B2
Apr. 12, 2005

(10) Patent N0.:
(45) Date of Patent:

(54) SIGNATURES FOR FACILITATING HOT
UPGRADES OF MODULAR SOFTWARE
COMPONENTS

(75) Inventors: Joseph D. Kidder, Arlington, MA
(US); Michael B. Mahler, Boylston,
MA (US); Edward L. Perreault,
Dunstable, MA (US); Margaret
Stearns, Hollis, NH (US); Jim Hurley,
Acton, MA (US)

(73) Assignee: CIENA Corporation, Linthicum, MD
(Us)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 814 days.

(21) Appl. No.: 09/777,468

(22) Filed: Feb. 5, 2001

(65) Prior Publication Data

US 2004/0031030 A1 Feb. 12, 2004

Related U.S. Application Data

(63) Continuation-in-part of application No. 09/718,224, ?led on
Nov. 21, 2001, which is a continuation-in-part of application
No. 09/756,936, ?led on Jan. 9, 2001, which is a continu
ation-in-part of application No. 09/711,054, ?led on Nov. 9,
2000, which is a continuation-in-part of application No.
09/703,856, ?led on Nov. 1, 2000, which is a continuation
in-part of application No. 09/687,191, ?led on Oct. 12, 2000,
now abandoned, which is a continuation-in-part of applica
tion No. 09/669,364, ?led on Sep. 26, 2000, which is a
continuation-in-part of application No. 09/663,947, ?led on
Sep. 18, 2000, now abandoned, which is a continuation-in
part of application No. 09/656,123, ?led on Sep. 6, 2000,
now abandoned, which is a continuation-in-part of applica
tion No. 09/653,700, ?led on Aug. 31, 2000, now aban
doned, which is a continuation-in-part of application No.
09/637,800, ?led on Aug. 11, 2000, which is a continuation
in-part of application No. 09/633,675, ?led on Aug. 7, 2000,
which is a continuation-in-part of application No. 09/625,
101, ?led on Jul. 24, 2000, which is a continuation-in-part of
application No. 09/616,477, ?led on Jul. 14, 2000, which is
a continuation-in-part of application No. 09/613,940, ?led
on Jul. 11, 2000, which is a continuation-in-part of appli
cation No. 09/596,055, ?led on Jun. 16, 2000, which is a
continuation-in-part of application No. 09/593,034, ?led on
Jun. 13, 2000, now abandoned, which is a continuation-in
part of application No. 09/574,440, ?led on May 20, 2000,
now Pat. No. 6,654,903, and a continuation-in-part of appli
cation No. 09/591,193, ?led on Jun. 9, 2000, now Pat. No.

6,332,198, which is a continuation-in-part of application No.
09/588,398, ?led on Jun. 6, 2000, now abandoned, which is
a continuation-in-part of application No. 09/574,341, ?led
on May 20, 2000, and a continuation-in-part of application
No. 09/574,343, ?led on May 20, 2000, now Pat. No.
6,639,910.

(51) Int. Cl.7 G06F 9/00

(52) U.S. Cl. 713/191; 713/200; 713/177

(58) Field of Search 713/191, 200,
713/177

(56) References Cited

U.S. PATENT DOCUMENTS

4,750,136 A 6/1988 Arpin et al. 364/514
4,942,540 A 7/1990 Black et al. 364/514

(Continued)
FOREIGN PATENT DOCUMENTS

WO 9826611 6/1998
WO 9905826 2/1999

(Continued)
OTHER PUBLICATIONS

“The Abatis Network Services Contractor,” Abatis Systems
Corporation product literature, 1999.

(Continued)
Primary Examiner—Norman M. Wright
(74) Attorney, Agent, or Firm—Thomas J. Engellenner;
ReZa Mollaaghababa; Nutter, McClennen & Fish

(57) ABSTRACT

The present invention provides a method and apparatus for
facilitating hot upgrades of software components within a
telecommunications network device through the use of
“signatures” generated by a signature generating program.
After installation of a new software release within the
network device, only those software components whose
signatures do not match the signatures of corresponding and
currently executing software components are upgraded. Sig
natures promote hot upgrades by identifying only those
software components that need to be upgraded. Since sig
natures are automatically generated for each software com
ponent as part of putting together a new release a quick
comparison of two signatures provides an accurate assur
ance that either the software component has changed or has
not. Thus, signatures provide a quick, easy way to accurately
determine the upgrade status of each software component.

25 Claims, 269 Drawing Sheets

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 1

US 6,880,086 B2
Page 2

US. PATENT DOCUMENTS OTHER PUBLICATIONS

5,515,403 A 5/1996 SlOaIl et a1. 375/371 AtiMe—3E Data} Sheet, 1_—17 (Man 8, 2000)
5,638,410 A 6/1997 Kuddes 375/357 Black, 13-, “Bulldlng swltched Networks,” PP- 85—267
5,726,607 A 3/1998 Brede et a1. 331/2 Black, D, “Managing Switched Local Area Networks A
5,850,399 A 12/1998 Ganmukhi et a1. 370/412 Practical Guide” pp. 324—329.
5,903,564 A 5/1999 Ganmukhi et a1. 370/399 “Con?guration,” Cisco Systems Inc. webpage, pp. 1—32
5,905,730 A 5/1999 Yang et a1. 370/429 (Sep. 20, 1999).
5,926,463 A 7/1999 Ahearn etal 370/254 LerouX, P., “The New Business Imperative: Achieving
5,953,314 A 9/1999 Ganrnukhi et a1- ------- -- 370/220 Shorter Development Cycles while Improving Product

A Marconi Ct 8.1. - - -

Quality,” Software Systems webpage, 59917297 A 11/1999 Palnan et al' 370/389 NavisXtend Accounting Server, Ascend Communications,
5,995,511 A 11/1999 Zhou et al. .. 370/412 Inc' Product information (1997)'
6,008,805 A 12/1999 Land et al. .. 345/335 . . .
6,008,995 A 12/1999 Pusateri et a1. 361/796 NaV1SXt‘?nd Fault Server’ Ascend Commumcanons> Inc'
6,015,300 A 1/2000 Schmidt, Jr. et a1. 439/61 Prod?“ mformanf’? (1997)- _ _
6,021,116 A 2/2000 ChiuSsi et a1_ ____________ __ 370/236 NavisXtend Provisioning Server, Ascend Communications,
6,021,263 A 2/2000 Kujoory et a1. 395/200.62 Inc. product information (1997).
6,033,259 A 3/2000 Daoud 439/573 Network Health LAN/WAN Report Guide, pp. 1—23.

6,041,307 A 3/2000 Ahuja et a1. 705/8 “Optimizing Routing Software for Reliable Internet

A Fontana .. Growth,” product literature 6,049,671 A * 4/2000 Shvka et a1. 717/173 PMC_SieI-ra, Inc' Website (Man 24, 2000)'

6978595 A 6/2000 Jones et a1‘ " 370/503 Raddalgoda, M., “Failure—proof Telecommunications Prod
6,202,207 B1 * 3/2001 Donohue 717/173
6 327 617 B1 * 12 ucts: Changing Expectations About Networking Reliability

, , /2001 Fawcett 709/219 , , j,

6 425 126 B1 * 70002 Branson et at 717/168 With Microkernel RTOS Technology, QNX Software Sys
6,675,205 B2 * 1/2004 Meadway et a1. 709/219 tems Ltf1-WebPag@>(1999)

2002/0166001 A1 * 11/2002 Cheng et a1. 710/1 “ReaHlme Embedded Database Fault Tolerance on TWO
2003/0195949 A1 * 10/2003 Slivka et a1. 709/219 Single—board Computers,” Polyhedra, Inc. product litera
2004/0107349 A1 * 6/2004 Sasselli et al. 713/176 ture_

FOREIGN PATENT DOCUMENTS

9911095
9914876
9927688
9930530
9935577

3/1999
3/1999
6/1999
6/1999
7/1999

“Start Here: Basics and Installation of Microsoft Windows
NT Workstation,” product literature (1998).
Syndesis Limited product literature, 1999.
“Using Polyhedra for a Wireless Roaming Call Management
System,” Polyhedra, Inc., (prior to May 20, 2000).
Veritas Software Corporation webpage, 2000.
* cited by examiner

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 2

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 3

US 6,880,086 B2Sheet 1 of 269Apr. 12, 2005US. Patent

lllllllll__qlllllllJ
_______W

11_
_.mzmmx__-cam:_

:mNxcww_|II'14

Nv

mowwmoOmm

wOéOHw_._.2m._.w_mmm_n_

w.OE

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 3

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 4

US 6,880,086 B2Sheet 2 of 269Apr. 12, 2005US. Patent

mofimmfiéwAOmzoo

wa

whmommz

<20
<53=om<

:vmw Mm>mmmmopomjoo

02—000..

33
mmmézwhozmm

 mo_>moxmozflmz5.

x
/

x
/

/

<N.07...9,58%
Eimm/£2:5./<><a/Ema8mm,,

.

comm.6X. Eedmsz\
Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 4

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 5

US 6,880,086 B2Sheet 3 of 269Apr. 12, 2005US. Patent

\.

x_fl,

\:mm23\23\n
\

8mm33Egg/alIIIOC
/

/

//\\lllllllllWI-lII‘33X

\
\

zxIma\.£2_~25:26.\I\i.,x3mm,53/

\u?83/Ema /,/x23838mm,
\

/\//\\83;

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 5

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 6

US. Patent Apr. 12, 2005 Sheet 4 Of 269 US 6,880,086 B2

I
I
I

I I
I I
I 288 :I

: CHASSS :
I I

I

I 290 .292 : 2§QI
I

E 1:N SHELF 1:N SLOT :I
I 296a 294 g
I I

F F I

: - 3 . :
I ' I
I I

: SHELFFCZ 3028 1

I

; SHELFFANS - I

i 298 . EI

I SHELF PWR FUNC. BOARD 2 I
I - 300 I
I . 302n I
I . |

I 304a I
: FUNC.BOARDZ I
5 ' :
I : I
} 304n .I

I FUNC.BOARD :
I .

I I
I

l BOARD L
5 WI PORTS PHI/55;“ _ 35
i 308
, 306 312 314 :I

: SONET ;
: 310 PORT :
' IL __

FIG. 3A

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 6

U.S. Patent Apr. 12,2005 Sheet 5 of 269 US 6,880,086 B2

MANAGED IL‘ ____ T T T‘: T T T T T T T T T ' T T T T T T T T _ T ' T ' T T T T ' T "'

DEVICE 282 T 285
I

L 318

ATM

320 l 321 ' r 322

SOFT SOFT SOFT
PVP PVC ADDR

323 ‘I

CROSS CONNECTION

II

PVP I 324 PVC
CROSS CONNECT 325 J CROSS CONNECT

J 326 y 328
VIRTUAL
ATM IF VIRTUAL CIRCUIT LINK

327 1 I______‘
VIRTUAL ILMI
PATH LINK LOGG'NG REF PNN‘

- I k 329 L 330 L 331

ATM
IF
1 TRAFFIC

333 DESCRIPTOR

LOGICAL 1
SE 332

I 316

I

I
I
I
l
I
I
I
l
l
I
I
I
l
I
l
I
l
I
|
l
I
I
l
I
I
I
l
I
I
I
I
I
I
l
l
l
I
I
I
I
I
I
I
I
I
I
I
I
I
I
l
I
l
I
l
I 314

FIG. 3A CONTINUED

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 7

U.S. Patent Apr. 12,2005 Sheet 6 of 269 US 6,880,086 B2

mm .mvE :Pom

bmm 63

mg

a; k ,5

mmm

25m 65m

wooo

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 8

U.S. Patent Apr. 12,2005 Sheet 7 of 269 US 6,880,086 B2

3521

FIG. 3C

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 9

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 10

m

(uDn.m:m
80,

0movm
88,

6ESn2520mUV_
bmmw .

96

”AOQooontzos.wzmfi<
w

%6x3
aa<528WA0928w0229.202n,bmmwmoz<2m0umma

r.p

Av.2:
A3EmmanE<z_<_>_m.=n=>_ooZO_._.<O_..n_n_<HwZOmD.=Dm

US. Patent

89OZEOEZOESEE/x

8QOZEOEZO—ZmUZ<_>_mOn_mmn_

A3an?22:

DamnQmmwmwmw

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 10

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 11

US 6,880,086 B2Sheet 9 of 269Apr. 12, 2005US. Patent

Mn.OE

Now.5!ZOE/3.2.5;w0_>mo¥m0>>._.mz

5w

mun—45m._._¥

0O0
mo

.oEzoo.69am8x3

i2:me
mxm.

AEzv33
5x3mw>Eow4n=2AmxognE<SEQ8x3mm>Eo5:.<

8men54.kaOw8x3

mm>_moHwZOm

mmmwwmomcwwwmeowcannew

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 11

U.S. Patent Apr. 12,2005 Sheet 10 Of 269 US 6,880,086 B2

:5
A

A

mm .OE

Em
A

M

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 12

U.S. Patent Apr. 12, 2005 Sheet 11 of 269

874
NO

YES

CLIENT INFORMS SERVER OF
BOX TO BE MANAGED

I
SERVER CONSTRUCTS
OBJECT MODEL OF BOX

I
SERVER PROVIDES BOX

DETAILS TO CLIENT

I

r 875

r 876

877
I

CLIENT DISPLAYS
GUI TO USER

878
H’

CLIENT PASSES CON FIG
DATA TO SERVER

r 880

I

SERVER VALIDATES DATA

I
SERVER GENERATES

COMMANDS & SENDS TO

CONFIG. DB FILLS Ir 883
IN TABLES

I
ACTIVE QUERY OR QUERIES

SENT TO CONTROL PROGRAMS

L
CONTROL PROGRAMS
IMPLEMENT CONFIG.

r 881

r 882

884

r 885

_____—TI FIG. 36

US 6,880,086 B2

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 13

U.S. Patent Apr. 12,2005 Sheet 12 Of 269 US 6,880,086 B2

888

TEMPLATE

SELEEITION

889 ’\ COPY & RENAME TEMPLATE

CHANGE DEFAULT
890 x PARAMETER VALUES

T

891 LOAD RENAMED TEMPLATE
'\ INTO oss CLIENT

V

892 055 CLIENT NoTIPIEs
\ NMS SERVER

893

PROVISIONING
EXECUTION

TIME
7

YES 894 \
NMS SERVER SENDS SQL
COMMANDS TO CONFIG. DB

FIG. 3H

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 14

U.S. Patent Apr. 12, 2005 Sheet 13 of 269 US 6,880,086 B2

Mg Command Prompt [2] - enetcli EIEEIX]
Enetc|i>
Enetcli>
Enetcli>
Enetcli>
Enetc|i>
Enetcli>
Enetcli>
Enetc|i>
Enetc|i>
"netclb
Enetcli>
Enetcli>
Enetcli> help
Commands are:

bye
close
execute
help
load
manage
open
quit
showCurrent
showTemplate
set
status
writeCurrem
writeTemplate
Enetcli>
Enetcli>

1£netcli> showCurrent SPATH

Ir>

a.’ 1

FIG. 3| CONTINUED

FIG. 3|

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 15

U.S. Patent

F

916m

9174

Apr. 12, 2005 Sheet 14 of 269

FROM FIG. 3|

____l_/
ATMlfName=ATMlf11l1l1
Concatenated=false
Name=Path11l1l1
Operant=SPATH
Operator=Create
PortlD=1
P0silion=1
Service=ATM
ShelflD-1 1
SlotlD=1
Type=Terminated
Versi0n=V1_1_U_0
Width=STS3
Enetcli>

+Enetcli> showTemplate SPATH
ATMIfName=<String>[TerminatedOnly]
Concatenated=<truezfalse>
Name=<String>
Operant=SPATH
Operator=<CreatezReplace:Update:De|ete>
PortlD=<lnteger><1-16>
Position=<lnteger>
Service=<None :ATM>
ShelflD=<11ltop],13[b0ttom]>
SlotlD=<lnteger><1-8>
Type=<switched zTerminated>
Versi0n=V1_1_0_Q
Width=<STS1:STS3zSTS12zSTS48
Enetcli>

'Enetc|i> status
Not currently connected to server

FIG. 3| CONTINUED

Supporting templates: CONTROL, PVC, SPATH, SPVC,TD, and VAIF

US 6,880,086 B2

I

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 16

U.S. Patent Apr. 12,2005 Sheet 15 Of 269 US 6,880,086 B2

921a

NO

YES

9 1 035 CLIENT CONNTECTS
2 bx TO NMS SERVER

V
9210

MANAGE
?

YES

oss ISSUES CALL
921d \ To NMS SERVER

9218 -\ NMS SERVER OPENS
CONNECTION WITH
NETWORK DEVICE

921f

EXEEUTE

YES

oss EXECUTES TEMPLATE
9219 \ INSTRUCTIONS AND SENDS

CALLS TO NMS SERVER

921V‘ NMS SERVER RECEIVES
CALLS AND COMPLETES
PROVISIONING TASK

FIG. 3J

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 17

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 18

US. Patent Apr. 12, 2005 Sheet 16 of 269 US 6,880,086 B2

993 Command Prompt [2] - enetcli

Enetcli>

Enetcli>

Enetcli>

Enetcli>

Enetcli>

Enetcli>

Enetcli>

Enetcli>

Enetcli>

Enetcli>

Enetcli>

Enetcli>

Enetcli>

922 I Enetcli> showCurrent'CONTROL
I
l

input=Q:\nms\com\equipecom\nms\utils\enetcli
lnteractive=false

Operanl=CONTROL
923d 0 perator=Manage

923f Iutput=Q:\nms\com\equipecom\nms\uli|s\enetcli

9230 I Password=None
9239 I System=192.168.9.202
923D I ser=None
9239 , l Version=V1_1_fl_0
923a Server=localhost

Enetcli>_

FIG. 3K

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 18

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 19

US. Patent Apr. 12, 2005 Sheet 17 of 269 US 6,880,086 B2

BATCH

924

{-

Operant=BATCH

OperatOFExecute

Version=V1_1_0_0

924a «- VTASK1=execute-SPATH

924b ”\— TASK2=execute-PVC

9240 x TASK3=execute-SPVC

924d ’\— TASK4=load-SPVC-spvc1
9243 ’\- TASK5=execute-SPVC

92‘” ’x- TAs.K6=load-SPVC-spvc2
9246 ”k TASK7=execute-SPVC

9249 ’\ TASK50=set-SPATH-PortID-3
924“ ”\- TASK51=execute—SPATH

92‘“ ’\ TASK52=set-SPATH-SlotID-Z

924j ’\‘ TASK53=execute-SPATH

FIG. 3L

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 19

U.S. Patent Apr. 12,2005 Sheet 18 Of 269 US 6,880,086 B2

925
/

OperanFBATCH
Operator=Execute
Vcrsi0n=Vl_1__0__0

925a ’\ TASK] =exacute-CONTROL

925b'-\. TASK2=execute-SPATH
925¢’\ TASK3=set-SPATH-PortID-3

925d ’\ TASK4=execute-SPATH

O

925e ’\ TASK61=set-CONTROL-System-l92.168.9.201

9251f ’\ TASK62=executc-CONTROL

9259 ’\ TASK63=execute-SPATH

925h’\~ "i‘ASKl08=close
925i ’\ TASK109=set-CONTROL-Server-Server1

925] '\ TASKI10=set-CONTROL-System-192.168.8.200

925k ’\ TASKI 1 l=execute-CONTR()L

925' ’\ TASK112=execute-SPATH

FIG. 3M

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 20

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 21

Emu”mEEa

US 6,880,086 B2Sheet 19 of 269Apr. 12, 2005US. Patent

Sammoqnmr0EN88352:on.

mmw

(v.0_u_

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 21

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 22

mv.OE

3.3“2:91

US 6,880,086 B2Sheet 20 of 269Apr. 12, 2005US. Patent

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 22

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 23

US. Patent Apr. 12, 2005 Sheet 21 of 269 US 6,880,086 B2

I AddDeleteDeviceDlg

Enter device to add 8988

192.168.9203

[E Manage device in on-line mode

Add

898f 898d

 Device List

On-Line Device

FIG. 40

I AddDeleteDeviceDlg

Enter device to add 898e

[2’ Manage deviceIn on-iine mode

Add

 898f 898d

Device List

On-Line Device

192. 168.9.203

£9ng-_~elete-898h
898i

 8989

FIG. 40

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 23

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 24

US 6,880,086 B2Sheet 22 of 269Apr. 12, 2005US. Patent

I28.200mn50wiasson2can.£3280
2835858men—aw .2mE8_u>>

Eng“0505

03.009.va0.8.”memlfiswmdmfimvQBNewman—NEOM

mug”

gflm358mawE
2waman—Emma

wmm

mv.9”.

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 24

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 25

US 6,880,086 B2Sheet 23 of 269Apr. 12, 2005US. Patent

333ii
xcshfio

gnawF.F.Nmow.w.v.r.w.m.r
NCNddO-NE.

ma:mEZ<392:ExommShow53

Nowddc_..wa”EBgW

”32:8Eoumxw”D.Eoum>m“we;a:Em~m>m”mmmsgn:Emfi>m62.80..523565:00ESm>w”coitumwn.EEm>w“mEnZEBRW

82385032.5”85552.?32.53822534‘2.3.$29..835...sz
nmmwmmmwmwmm

nouddwfiwmrOh"HEdemrflmvO.£Nomddmfiwm—on."mml/nl\\lmuo~>oomamumm52%:"rpm“EmEooucmZEEchmmcms.MW.

“23wmums:E..6

9%.:2»830m.32mNON.¢.Q$F.NOF”gown-LN:uflz=fl>wm
{mam Ummw0mmwummwmmmwwmw

u?.OE

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 25

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 26

US 6,880,086 B2Sheet 24 of 269Apr. 12, 2005US. Patent

0v.OE

Ema“ween.mcl.:HmNNAdwfiwmp52$

haw

”$223Eofiwon:5296”SE.a:swim

“mum—EZn:Ewfiawwmw
60:30..6295

”63:00Eofi>w5Nm.mm...N90.Emew8N.m...mwr.vaO..5

“53.530539m

"252swimmwowQwfiwmflmE02355:5205322“TR.330

Nonm.m9.Nor.EsgmEEEEEENoamDmmm
Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 26

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 27

US 6,880,086 B2Sheet 25 of 269Apr. 12, 2005US. Patent

mowmommDomw

>23”2:059:15”avas—
égéEE.r.r.NNom._.

.368;no.SwimonnmmmnSEC.9...Egg»«emanatmmr“"363n.Evian”8.503E226"GS—EUEggm5x038355888aswim!222%;
2332.333.538:35ER3:...)

mowddm€wa”E2w>wEE

$3555ng5%9583880N

mNN.w.wo—Nm—”Siamwowddwfinmr0.3nomadwwdmrO.&

«added?un."Sow/\sgéflmEsoz{PEEaEwmncms.B.EEwawcms.MWE«25....$2
all!!!Halum£832..

E

Em.

mmmnwmm

Iv.QE

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 27

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 28

US 6,880,086 132Sheet 26 of 269Apr. 12, 2005US. Patent

now

EEofi>w«36%EE
€2.28”magzomE3m>m

fitfiofléécfno.528$cmnnmms“oEFa:Eofi>mNowddwtum—ummuhuB‘n:Emamzwm<..922”5:33Eggm<OwmszH.350Em~m>m
rmXOm

«8839.8.E996

85.252.95352\)1Qf/"\|\

m093wE25530Evggm”oEmzEzgm855828335%

ccuéo"£52mum.fimofiwmeuwZum538—3.0%"88.85%0.883.3520u.“m«88%2%882.88EuEummcmz6EwEmumcm—zBE3395aimE

Q"
n.—

5mg8.888%.!EH2%.:2»Brad.32m~o~.m.uo—.~22095.2$2.35M

mmw
vmonomwnmwm

1.q.0.”—

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 28

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 29

US 6,880,086 B2Sheet 27 of 269Apr. 12, 2005US. Patent

haw

mmmw-m

aEgg2:.55
B-

mmNmJ

9...9"

EEmfixw63m

038“85"

23¢

€3.33—.Human,We.r.m.n.r0882..NowddwflmmrExomm83amxomm.

«3.32.me”swimOvueu
x

0.:x

683.5£92m“D.Emfi>mBE;Q3Eggm”3223‘1.5995E333E296”63:00£93m”cozntomooEflmxmBENZEggm
Eggs”fieiméfiflg5%.

.cgfifimccoo

9“@u

my...9“

2.5.:0”ova:mum,—6wflue.ugomFowmdmfiwmr0EDmmw83.332OEV,Nomddmrdmro".-
8330m.2,75%?EchmncuZ520509:»:NYEmoEEn—f

 “In!!!

@x9.9“@u“Wag...

 EH Emg2.8m82:a:92.1.5.»83%saw.anNouddu:9uamwcufiuuz:u>mm

wmwDoomnmmm

2».07.

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 29

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 30

2B68

09E3”was“.35.558.2«$68ng:38
0I?I“%am_EE6€3.93$.02ch823w

S

UFfiuuomfivfimaé..o.Esgw
«endow...m?””363.n:6396E383Eofi>w

“63:00Eogn>mEmddwfima—QE9Amo~.m..mwfiwu—0.36pmxomw355303530£326.n3:52253%mwmw[\Mfiumfl“OMEnEomwcmzB.canmmcmZ31%2“week@|a Swimmer.N3.6396E
ehS

Mama

50m.

nIIIr..\I|//)..E..\\»..\I/\lo.\\IJ/:\|/Z\\“//ZDp\D»mod,»N,»Nu);\m),N»,0MWAso@8flag@fiéAQVflag@ng@va@QAJJM‘
9%..255.83amgum2m.«Ricard»rCongas.32%?»E

US. Patent

wmw00mmammo

Xv.GE

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 30

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 31

US 6,880,086 B2Sheet 29 of 269Apr. 12, 2005US. Patent

3qu"2:2."—xcjémo"30.335996v.—.NNOm.p.v.fimdé“O.:5quNowddm—fiap6mo€n<a.E296~o~.m.3...~m—“9:52E063
wowddwrdm—”5296a.22:2%Egg—NEE:5%Em:8.852523m.5.5:?8.8%M.-_._I_-_w9%Illlfl_.l._,_v_.DEKIHHEHEEEH

_ I
{I

9 Q 9 9

mm

tlflflm

L

E

9QQQQQQQ

'fl! QQQOMIQQ

9! I09!!!)

E! 99!!!!”

RI 901.!!!

NON.m.D®—.,Nmr0*.m/|\l80.50E,Emam«.923."$8EanuaanEEoEcmwcms.31%Been.fix.
all!!! SdeoEmrO.m._Dwmwnowmdwtwmr0EEula8.3292.BEE

lag
Ema

NON.n.wwr.Nmr“mewcuS—uwz=m>wm

wmwcomm

.:V.OE

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 31

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 32

m%

0,2vOE
%.

Jami“on”52.3..“wmmIE
S

U2N8.$53no.swim
«25¢thamen?a.seam!23......9538—3—0m.HID.E3%.35cmEofitummoE916madam—.3.oaf8359.8.H252299$1.838E.m01°50:me0.coEcomcms.BEoEommcmz$4.3....mmszchua;mommm?3—Egan.t.EeEmasseiizésgggfig52%.4m5.1.3”HI-HE!Smy....n.0,

m.“"WM.

0II2m97NnEHEEHEHHr.IIIIIIPMM1.1.91n11Mn.1111!Aa.nininin9.1.1.1111...a.aflginia991111111I.Q.njlQ1.3.:fl9"1'..19..I1....uufiflfiufin""111?o.o.1111a..11a.a.111......“..A..IInfle..Illl:55...Wa.N«IIM1.!HNa.iuti“18.82.111.820
a531m

«8.53:5.magma!2%EngMONddw—numrIowan-n5—ucz=fl>u@

US. Patent

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 32

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 33

US 6,880,086 B2Sheet 31 of 269Apr. 12, 2005US. Patent

_
a;9:0:.0f9”I.9‘00‘

ona"

0"u.nn
a"

annon,“9:

.Dt

.

wmmm Mom

wan» n.

09999309 '
2v.OE

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 33

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 34

m68

0,3.36E8.“—
%

a»I3.oxa
w,anEa2%Sx:_._.£mo”mugaowEo~m>wUtwdwomfivéddé“n:Eflflw

:83?"95»a:swimnowddwrdm—”3059‘n:E9m>m”5:53533m

9”69:00523mHmE03530Efigmf5st533m
023t

mEEEEEEE2.2»
S5002921r..

MUS. Patent

o:=.cONovos—mwwééofimmpquwm5N.wdwr.wm—AYE08.9mmfimmw0.8Nomddofimm—ou“8:3Eh.3%:gave
.cuEmmmcmE.325:39:55.a$32;@

Egygmwas.EH!2%32»8.5aEu2mNewdfiurda—£33.2232.33m
h5mm

Ov.0.”—

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 34

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 35

m68

0£8ween
,m

8,5m

6”322$5296mUn:€3m>w
“95...a:£835:32qun:2396E2503Eaawxm35802356

9.6.Suncowwn.Ew~w>m26szEufixw
f03

3Nomddwr.wa"529mwEEEEEEE.53
hS5002291r..

M

057:0"one:mmwédmfiwmwretumFouddwrdmwOhmnam‘m‘mwfiwm—0.5No~.m.mm=.ngI"

“833@EE02»:{FEgum—comma“:B.cmEammcns.may3.8;.®.
Eii

329:Esmmmg9.9om:@“am:2:82:8wage:~60:on.m:.29“_.

US. Patent

eon5.»8.3msawam«36.35?"Saunas.$5.25m.

00mm

n?.07.

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 35

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 36

m%

0,3.3seem£1563.2Rutgdm—23cm0?GE0§1;l‘
8

593m29?.
8,amI'll

6

Sunfituw8395U“o.Swim
BEE.a:Emfism“32%"n:5min”50:83E3w>w

”53:00EwawSuddenwmwO.fi9newmdfldm—0E%"SEEMSswimN333”?.uf”0:5250.96«0950mm.0£92»:£984EoEoumcms.*0EmeumcmfigfiMon.8%.”?menegmhmReagmmhwwEEEEE5%whH
S5002291r..

M

mNmm.23,82Gun..3525960:8v .4L..4.r.1.1
5

..‘4.a‘u.r‘sna,1pa}.r.r.v..v.a~\.4‘1.r.4.‘
.r.r

Ding".0L9“--.. ,{I.
2%3m3.5msew2mNowmdwrdm—2%»an32.33m

US. Patent

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 36

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 37

m68

0’25.:0Hove—2m-.—.aw—.Nm_.HEiwm
08

8,3w

6>
"39285%m

S

U6.523m
”95...a:Eofi>w”$053.4a.593m50:83E326

“62:00Emfi>mrowddmfimmpOhm9.x8mdd9dm—0.8%.csntunoo5%w83.832.u."f6szE39630:60ELM—0x8332$85EmEmnwcmEBEwEummcm—z“TB33.221$4.
thS500221r..

M

E638.32:ED2%32»33mm.32mmadden”?sumac»:32:26E

US. Patent

Comm

mv.OE

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 37

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 38

Nam

US 6,880,086 B2Sheet 36 of 269Apr. 12, 2005US. Patent

23—03530Earssnag;E(3:25

“o.swimEECa:E296M352n:Eem>mE2684599$33anE293ESE—ammo22263:52Eggm2:;.528”82.22:.520»nun-Eexam

52.3:de0E8383a0E

NOWmdw—awwron3038mm..522.cé.coEamwcmZ329:39.55.mw.&3:65$4a.uEI..

we“0‘.t.l.V.1mg"28m252.E9%2%Sim.3.2m~o~.m.3..~259:2282:25,.E

mmm

WV.9”.

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 38

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 39

.5».0E

057:0”0905.mmwédwwdm—uvaww

SmEEEIééE3%..ass..E!hmaIllgfiggg!Illggglflu!IIIEEEE!a???3llléggg!...&llggéalfl8”m8F«29.lagging!35mmlééélfin!€22an
EwEomacmz*02953:»:mm.332a

US 6,880,086 B2

£35.5;nag.2:a;gunman"aegisE3%:
m

Sheet 37 of 269Apr. 12, 2005

2.

m.29::95”3aommm2392Ba5235$8to”.eu: t88
nw

angiggumaPgin33.»83mmzuu2m
NON.Q.wO—..Nm—.UUDNCM-Zu6236>wWS.{mam

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 39

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 40

US 6,880,086 B2Sheet 38 of 269Apr. 12, 2005US. Patent

now993

%E%%3::lugg'gigéfi!luglahlggélfi-lflmflLEEEIEEIEE!_lalcscficaElana:IpwzomIEEaiSmElv—E:.lalafinilfillgoEleéssmElam:IEEEEEIEE!laélfilégéfiIaélflmlégéIfi-lfiflngéggglfila52.223
".3305.

.Nowmgtumtszgwwa)E“Snugsékiés88:35::23,.52888:95528«:8
oc__.:0”25293.wdwfimmwuuZowSwddmpdm—0.flnouddmfiwmw0.3

..‘.o.._..«338m.m.{0352{FEEoEommcms.yo25:53:»:51%Rest$1.mg”28¢82:nagson:2»035d:33mNauddmfinnpCongas.“02:55E

mmmm60mm

3v.0.“—
Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 40

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 41

>v.9“.

Eng5E9;0520"so:mNuédw—dmvumZom

Nam

2m".5885.25523léagglélfllglgégglélfillfiuléégglgmlfllélégggléag93mlgégglélfilglgggalégglgggélélfiglug35:538520.3IEE838520.4.
US 6,880,086 B2

£05»:£98EwEammcms..o.coEoumcoEflaw858;$4

, <.._.H,.,9.9"9:9...9:9_V“11.V.,onuea®19®n..mmmw‘
Sheet 39 of 269

63m

Apr. 12, 2005

comm

Egagaflasun59.35d.32mnowadmfiwm.comma»:82:26E
l/Immw

US. Patent

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 41

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 42

m600

0,E8"was“.051.558.2afiwmmwwm.union
0

00,o“:585E52%
6m

9SN0R:Nmrfiifl6newa3..N?0m...2nausea...mcm, {0202#29“E.8928aeggégééé.5595:.oacmEomucuz31%mmaze”.WENno”.anotwe.Esiw\N.vmwEgggamzowgnfigl.h22.3Ill-IIIS.
5002921r..

m

Eggégnsunas.»83cmgum2m«0.46.373—:omucszuwz=w>uE

US. Patent

>>v.0.”—

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 42

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 43

US 6,880,086 B2Sheet 41 of 269Apr. 12, 2005US. Patent

w,—.NNomé.v‘rddéoommnmwmauddwfimmr
 Exomm3:5”.

«843.23.,”593m

"ceantumooE3m>m

.53”mean25.558298.39.8—29:8
”mootcwmESmxm"D.£33m6:5.9..EBQAM“32qun:E396E0283E9w>w

.”5250299$Newa.$_..~m_OE
.og‘nwfig.OE

Nowddmfiwmr0"uoEmz529$mongoomflw
{98232:30chEEwEomwcmim.LML‘

20:03:00.52.;v‘l‘
Ummmowmmnwmm

xv.9“.

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 43

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 44

US 6,880,086 132Sheet 42 of 269Apr. 12, 2005US. Patent

3.3”2:2“.057.553.2muw.39.3wumzww
r.rANNom.—..v.w.w.m.w”0.£996

BEE.a:E3m>m«3.32.8.“8232m.E386E383Esgm

"55:00EBmxm~86dede0.m._
Fowddwvdm.‘0.3

3.538:5"coinageseam

Noudywmrdmr-a
mew”oEmzEwfixmwBSmomfim

{gamz...3.coEoumchB.coEnmwcflzMWE8&9;3L..

ENE,828
,8wcommE.mEmz23:5fidcfiEmu;EsmaoDoom

2858oEggsmagmma
mmmm

>v.OE

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 44

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 45

US 6,880,086 B2Sheet 43 of 269Apr. 12, 2005US. Patent

NV.OE

nwmm

8:933:00E035008meva£8nmficewocoo29.7.m2:3800ES?£3Ezow

 D25D:8DEm«8.38%”52%

:3:8:93:805mm520m89%:Hmz__m>mI

mvwm

8:520w

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 45

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 46

US 6,880,086 132Sheet 44 of 269Apr. 12, 2005US. Patent

Qmmm

b—t-I-b—wwwm22220000tor/untoEaégéaglélfimlagéa!...géfilaa:almzomInEascam.luEEIIEEIgi.523mEn.88mIE-.gaaa38:8maagfllafllms=llfiflllaau£32?“
§E8.325“Bars;ER33.5

g...Q“Q...@9999

95.60“Duos.mwwédofwmwugowSNddQFNmF0&«uMOdeome—O.fi

..o..uwa3>oom¢.8302any“.€qu3.52.oEoEuaucaEBE8.35a;

822.3Emom>35magma2H...255

m$8.5.8mas...IE!2%:2».8.5m.33m~o~.w.mw_..~m-"hwmncus.u02=n>mm

mommmomm

<m.9“.

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 46

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 47

2B6800,8

H,mm.oE
SU

mE5
2M

58292380E830o
4

aEi2:980.
e

%83-29.5886:98:0029%m9:380o
Emu;5mmEZOw

M0

n,9%“sowe:IEuIam
1

m.was$28A«8.38de”Swim
:3:-cozmSmccoO5mm..erOm:mmmcmS—EZ=m>wI

US. Patent

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 47

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 48

US 6,880,086 B2Sheet 46 of 269Apr. 12, 2005US. Patent

0Nkam
£355:39..5255853;52:an

Om.9".33EE):8E/avvmIIEEOE-mel233:2quPE:
032.5mm8:933:005830O9:380OEmN_>>5mmhmZOmm54pmzom

Swag?”seam ES:-cozmSmccoOEmahmzomcommcmS.H.wz__m>m_I
mvwmnvvm

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 48

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 49

US 6,880,086 B2Sheet 47 of 269Apr. 12, 2005US. Patent

Om.9...

8-meS

IIEEEi...E.§£!llEEEi...E-2§!llEEgi...E-N%n_!035NIIEEEI£453A
2an:61

$3$3.8:933:00E925Ov

EN55£385888829.6m239:8O

mvvm

89m

ovvm

 8-2mw.Emu;Enn—Hszm

.525558mE25ISn.B5m9%8535853., .2:Ezow$258.5Swagtum?”Swim

gm

 :3:-cozfizmccoo5mm—.erOw:mmmcmEamZ=m>mI

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 49

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 50

US 6,880,086 B2Sheet 48 of 269Apr. 12, 2005US. Patent

Mn.9“.33EE/:3E$3,

 IIEE.0.?3m..|2.3EEIE:
2an5mm.

#3mvvm:ozmsmzcooE226O3738£885:28:0029%m2:3800ES?5mm520w

0N_.-m._.mF

£23Eamon.a25.BEaI35:osmEmmmamm2:520mSE90Nomawede”22%
:3:-8:93:80can.520wummmcms.32:96I

mvvm

ovvm

mswm

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 50

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 51

US 6,880,086 B2Sheet 49 of 269Apr. 12, 2005US. Patent

mm.9“.

wvvmmvvm

El23as“;gml...E-3£gElEgal...E-E$gIéémfimggééegg;.5a;9,3
mam...5mm

0?me
7|8-wa.35Eva(8-wa_vvm(om-mhw

2qu._.szm8502?.mafiaHszmo_nm__m><8-3mF20:25“.
8:93:802280oGmwwpmv5885868829.5m@5380O933San.Hmzom

Slum

cvvm

£E>>coEwom

coszmmmammE33Iton.IEmE239095EzomNowmwofimfi”5296

:1:-8:933:00can.520m”585%625mE
mvvm

Sum

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 51

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 52

US 6,880,086 132Sheet 50 of 269Apr. 12, 2005US. Patent

523Samoa8:353.qu82390

Om.OIC$EEHTSEqual/E%ESExmvmlliiii€28..._§_8lliiii...E-E§..._w::_gma882Egg8%.,8a?
2an5mm

lflélélg83??”53%

:3:-83833805mm528“598623225Q
2.:.EZOm.

mmvm8mmvm

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 52

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 53

US 6,880,086 B2Sheet 51 of 269Apr. 12, 2005US. Patent

5.3“2:0505..

:0Hana}mNN.2.3:.me.Lvtww

omvm

muczooEun—hmZOm

 5mmwmw
Sum..waN9O.m..mew«.3138deo..a

 5N3Ifigal$2-2:zizazafimmmesggmnmmwmlfiggrls3-2....23:55.5{252%
29:035....3EmEamwcmzE35955.

Sm.m3—we.E§$\Nvm2232.80.25538:2....25..33.5g2.3520m33:2...520mBEE
gigsIIIII.Vb

Im.9“.

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 53

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 54

m6000,0

825-558.2wwwtmowwm.‘cecam
8,6

SN“.583552.2:

mg

m52.»me9%2”8338—GE0iliiS:fiEEiEEa5:.mwmm\./\assocman”.2=ilii:E.-E&.E<ImusSEroéoz{0.95EgggaigééEaééséasgEt$35.52:92:05a...%gymI\/N3333—3:on.a.hE5,55.5is3%.5:EEEE.,.S.
5002921r..

w

E25583?.EEE

US. Patent

.m.9...—

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 54

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 55

US 6,880,086 132Sheet 53 of 269Apr. 12, 2005US. Patent

057:0Buns.mNN.v.8...NmrC028

 323535:52386.5.on
E
g,—

8535aa: alug—fielast...»Ian25:amIIn”.gagglélfi'glg.EEflgéléglaIéggéllmzomElan:Sm.m.8...~m_0.8llszfioIii:Imalss.23mIlmzomElma:mam«8.33%owIéélmaas.88Iéggn....mmelulu-EEO35E...»gloves.29%llfizOmlinglmzs:.8mac.)...._:!g.325»géléagmwmwa_3mm.léégglégé{0202519mEEEEIEEEE.fiemoucmzs6053232B.
959...9:9039..29“e.9“9.9“

3.0E

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 55

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 56

2B6000,

0.%gm0:.
6,”5U

3w

0.10M

w8:839:005930O-
h

s23agamma!mags._8meka5383:98:000.95m@53500m93:5£3.Esz
2L,

m.33$0025Eton“65m13.:kmzommow.m.m$.~9“£236

N\m\rr.:o_u~._3mccoo5mmEZOmEmmmcmiu¢2=m>mE

US. Patent

vam23mnvvm

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 56

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 57

US 6,880,086 B2Sheet 55 of 269Apr. 12, 2005US. Patent

 .5.0E

5:183% 3mEE/33
EggIIEEomit,”i$31253:

8:933:00E920o33091w5V5%38:98:00297,m93:80o_93%ESE5mmkmzow
52sSeen.a25IEn.aam33cozficmmwammms:hmzom.833583%?”52%

NE:-5:93:80can.528uwmmcmz62.5%I
Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 57

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 58

US 6,880,086 B2Sheet 56 of 269Apr. 12, 2005US. Patent

Em.0.“—

IIEEEi...E.z§llEEgi...:Qe$IIEEEisigma02-3wIIEEEi_..E25..ééagégéé
$28.Emm—

9am

“Em.wvvm8:933:00E280o33EiEo691m5V5%85:28:0029%..a9:968o9.3Emu;Ema520m
£22,858;E33BEn.B35mgcoszmmmamm9.:Ezom$25920momdwmfimmr€wa

NE:-8:933:005?.520muwmmcms.52.55.I

UN7me

vvm

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 58

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 59

US 6,880,086 B2Sheet 57 of 269Apr. 12, 2005US. Patent

2m.9“.
3a2'”:3533EESE

 IIEE.0.3me..l.:3E3lfi:835805253v

0

821mEv58828388029%a9:880
ES?5?.528

5g;858;a.25H:8I5.0,coszmmmamm2:520m.8235N333?”52%
Q9:-CowmczmccooEmaHwZOmummmcmfiawzzm>wI

mvvmvvvmovvmnvvmmvvm

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 59

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 60

US 6,880,086 B2Sheet 58 of 269Apr. 12, 2005US. Patent

0000
“P‘? <><?WCDWU)
l—l—l—l—i—
UJUJCDEDU)

0000
‘?"P“?‘?mmww
I—I—l—l—
mmww

CD
'—
(D

O,—

U U U
‘1’ “3 "Pa) co m
r— r— r—
w a) a)

CD V N O (‘0 Ln£E>>coEmom8:888.qu:83an

On.OE

Es;E8-8mi$23533:fig3:3583:%8-3mS:35$3:
c.:.c.:

HiEiagiégFiFii

EEEE

55%a;IEEEa!IEEE3;2:8éflgaaégéé
was.Ema

mvwm

“Summvvm8:259:00E226o3383.985385:28:0029%a932.500—nvvmEmu;Emaszom

U)
.C*a
(U
Q.

mvvm

,ma:szOmNoamweg“swim3NE:-8:933:00can.Ezom53%:Hmz=m>mI
Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 60

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 61

US 6,880,086 B2Sheet 59 of 269Apr. 12, 2005

8 o?' m
{2 l—g) (D

0

US. Patent

”Suvamvvm0wWm._.mvm37meNN
onHm

£E>>coEmoacozmucmwwamm62590

mm.0E

33)E53%EfiigMIIEEII...E-2§NE:Ullfiégi...E.N5$éallfiggl...E-Ean_éIE..8§EE§§858:5.252can.a
2an5mm

.ovvm
oimfifl

om-w._.w Suva

omnmkw

8-meE.53um.Hmomlmhm
AUU<wfimm.Eszvmfioo=<ImfimmszowwEm=m>< xvvm328:38:939:60522.60

gapgag-llllnegg.8NF-m._.mv5886:28:0029%m93880nEmu;5mmHmzom

lfléléflgN832?”52%

:i:-8:93:80can.Ezow58%:Hmz=m>m@
ma:hmzom

mvvmsvvmEvaovwmnvvo$35Sum

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 61

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 62

US 6,880,086 B2Sheet 60 of 269Apr. 12, 2005US. Patent

wHE1505mmszom

Ilfigfiiéwéizimllagfiigzaa.5:in
III

IE;,3;I$.12::ézeim[HealE:-N3.2,55:.3IEE3.2"I5:2:$3223

mmmw

m:__.c058.2

man.rim—mgrumlow

..OJ.3Nwmm\(\"8:8mm.€03.024%.“.E38322.oEosowmcmz3.5mseenQ;E
83.82%o.m_.nwmmnomamedfi0.8

mam

Om.07.

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 62

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 63

US 6,880,086 B2Sheet 61 of 269Apr. 12, 2005US. Patent

nmw
hovmwwdumOovm08mnovamovm

 3.3seem£15582mumsdutufiBeam

0$50038.5“:—2.5

wmw

.Eudiumrum.083.12%:Egg3wa8”.mwe.«2o..m.—

3.:—25..s:g~35-osum

:2:N53.:2IE:2:asunwwww\|/\.mwoSmom.m:1:2.3..22a:2:-_,5mm50352"C.E
29.5932.0Eoswamcms.BE332..filfi.L

wva

asatflggigzs38:22::23a52%53.25528E.§.

mm.OE

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 63

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 64

_:3:gawk-5:3“83.25E<.2mNfitEE5.3fists9.500:3x

US 6,880,086 B2Sheet 62 of 269Apr. 12, 2005US. Patent

$3“255.“.Scan.0......:.can0.!“DNVm9can0...atom0.....mscan.0.!“Eon.o.....mecon.0i2.58..ta.»GE2m8%“TBmaimg,«86.832."Exam
m:=.c053.2

mum.fcwfimm.‘ucavwrowddwfimarOEnomddwfiumw0.“.“98m85:.an!2%..32%8.6agum2maouddofiumpcooncus..uz__u>um
mm.OE

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 64

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 65

US 6,880,086 B2Sheet 63 of 269Apr. 12, 2005US. Patent

km.07.

momm
Va:525!.2mEmumESmn.momtmE._>:.<_m:t_>.:1.P128;6:625mm:3:“toabgmgmsm~o~.m.m2.~mw-39:3555$.22

0mm

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 65

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 66

US 6,880,086 B2Sheet 64 of 269Apr. 12, 2005US. Patent

chum

fiiligf:seala—twm\/

Iguana—.0032:5naustSE2.:_u::_>Invent-E.§h<lug—an520mlance—c.520m

e».9"Q”9“Q“en9“Q"

aEu0;».NEmUm..5aUéEEG

2:7:0Hobos.mmmfiflmfiwm—”526wm$2:6.8m89...GEEaimis»83cmEM2m.«3.98$9ram—Ems.uwz=n>w1&1
3m.OE

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 66

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 67

m6000,00000,6S

Unn:on
$123.22Ox333.220..”

$

wq.3GE.2n.QwmL..m_.fa66DE“0F_o_m0.8.5chumZ«Rm«.96ntGm).wEgzéésgggnfig
hS

533:35339325083:25spa:55m:25".Ezow239:89 ..433.men
21r..

MUS. Patent

mum.'69..wa".0me..0‘s.o~.m.§.~2on.ncNddw—Nm—0.53260mm"{252{PaE2595:3E2835:mw.%mazes.a...E

mg”23m32..EEE9%..:3»8:3..32mNowddofifip5925232:86E
>m.07.

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 67

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 68

US. Patent Apr. 12, 2005 Sheet 66 of 269 US 6,880,086 B2

E] EvailNet Manager: 192.168.51.202 - Virtual Connection Wizard

Connection Topology

What type of connection do you want? 9528

©Eoint to Point 0 Point to Multipoint

Connection Type

Do you want to create a Virtual Path or a Virtual Channel?

© Virtual Path Connection (VPC) O Virtual Channel Connection (VCC)

DSofl (SPVPCISPVCC)

952D

 ‘ Welcome to

EQUIPE Communications

FIG. 5W

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 68

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 69

US. Patent Apr. 12, 2005 Sheet 67 of 269 US 6,880,086 B2

953

/

Source: 192.168.9202 Destination: 192.168.9202

End Point 1 End Point 1

2 86331014 I~strots

.Bfi Porti ‘{33'0” resad: ;.no ATMPath1_11/4i1 5‘33“”

953a

i EH3 ATM-Path2_11/4/1 , El53:31;
i g P Egg . BflATAAezghL1115/2

3 : i'"° o : 5 5 i
5 i L--. oPort 3 \953b i 5 5 jr---o ATM-Paih2_11/5/2
: Inuopon 4 E : ' ‘r---o ATM-Path5_1i/5/2

9536

Admin Status:

Customer Name:

End Point 1 Parameters:

VPI: “EULeAnyvaauergggg
vcr. mCi Use Any vcr ValueI

Transmit Traffic Descriptor.NamReceive Traffic Descriptor:m 953q
I Use the same Traffic Descriptor for both Transmit and Receive

9535

9539
 End Point 2 Parameters:

w»: “swig?
VC:| “—[:]Use Any vcr Value-r

Transmit Traffic Descriptor:mEmReceive Traffic Descriptor:M 953r
I Use the same Traffic Descriptor for both Transmit and Receive 953u 953w 953v
——_

FIG. 5X

 953i

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 69

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 70

US. Patent Apr. 12, 2005 Sheet 68 of 269 US 6,880,086 B2

NEW TRAFFIC

DESCRIPTOR

FIG. 5Y

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 70

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 71

m6

WOra-c0“032aNN.—..wwr.~mvtwiww
,08

8;:tom0:....62com0..-.
m

was253mm0.1{0502{PE0NDVGIEEI!".coEomwcmE.SSEwumcnz“mg9Egg—Egg;mma?a;M.33E,%33.0920033.533:352.5finesEgg.
hS5002291r..

M

Emg”28v.mama:HEB2%.26933dgnu2mNoNddedetuna—Es.32.33Wu

US. Patent

Nm.9“.

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 71

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 72

US 6,880,086 B2Sheet 70 of 269Apr. 12, 2005US. Patent

 ban”2:2“.

...Sm_>cmno1:E9.maniactanm
I-FO"utam

E

mam

<0.9“.

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 72

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 73

US. Patent Apr. 12, 2005 Sheet 71 of 269 US 6,880,086 B2

AddDeleteDeviceDlg .

Enter device to add 8986

192.168.9201

[E Manage device in on-line mode 898k898| Add 89‘“

Device List

On-Line Device

 898d

8989

FIG. SB

IAdd DeleteDeviceDlg

Enter device to add

1:] Manage device in on-Iine mode

Add

898d

Device List

On-Line Device

R 192.168.9201
898m

8989

FIG. 6C

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 73

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 74

US 6,880,086 132Sheet 72 of 269Apr. 12, 2005US. Patent

2385833.5

38:3...2b..32.5

EmaBEQQ“megawwE£m>mno.6236EEC.a3E3m>w8352a.£29m”5:80..2835“59:00seam30333....—Enfiuw

53.859“EganEggmcozmuEDEEoU“536m99:00.03

”oEwZ533m
:50.

95.5five—2mwm.«.99.de“Slow53320maximum8.15$2323325220d

.SwimwfimmraEENQSEEOm$0.60....m.mmmw<52szfa.aEmsmuncmzEEmEomacaz51%Queen.a...E

agesEmma

2mm2&1,8;..m.32mrOuddo—numr"humans—2uoz=a>wm4/

mmw

00.0E

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 74

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 75

US 6,880,086 132Sheet 73 of 269Apr. 12, 2005US. Patent

nmmwNoam

3:3652a

”332$Emfi>wUa.seamBEE,n3Eogm“$232n:899$”co—.80..Eggw"65:8599$"comatomwoE2u>muoEuzEmma

Fowfidw—vaHEBmzm”53an53.529:3...22.55EBin.hwzow38%!$28EE53%
057:0682www,fimwrdmv“.wachddwerw0mm82.852on.mmosonflm£0382paveEoEammchSEmeumcmEB183320.a...A.E

88ull..o_m.ommouea9.6.5chbnEm!
.‘l—88—8%

.21».39>838JMX«IE

Mm.07.

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 75

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 76

US 6,880,086 B2Sheet 74 of 269Apr. 12, 2005US. Patent

mwmwcomm

oc=pt0Eva:mum.w.m@rd?uwtuw

”nouEuwE336H:Emuflw”Eu..5E036

”30.62EE3m>mE2303Emiw

”—23:00E2m>w

Sdew—dmp0BNoflmdw—wa0%..30:69...m{9202Anna“860352BEchmucws.MTflmfluoia...E

 "Sun—.233ESw>m

HmEmZE295

Su.md$.~9“EofixwunumtSEEH<iaE>meantSE<=<2.5LmeOwunautfltzm20m
 5.23550_u::5

“.0.07.

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 76

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 77

m68

0,o=__.=o582333:3?union
w

5:533Emum£9vaa3,IE6.
S

UH95%
Hch.a:E2m>m“39691a.E836”c0380..Eggm”65:0052969rouddofimmwOB6£03ng629$uomddmfiwm—0%n"952swim3950mm.03.3325%.E522:39.05.3EoEamucmEa”It5N.o.not«3.EoEm. awEégggflma5%hcsuacsonI...

S5002921r..
w

|n.l._mI31>838Cgum.ol=u

US. Patent

5mmmwvm

00.9”.

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 77

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 78

US 6,880,086 B2Sheet 76 of 269Apr. 12, 2005US. Patent

,..Eo§m68M

E93530EEmzm

>23”9:8.“—orsio$.85.awn.flaw—Nap“.6sz
”wuoEumE235no.2563“95...9...5.2968,652a.E896E383E2m>m”35:00£33m

Non.ampmarOm.uBENZ699m3033.E..m.
Eofiwzan».E25933:BEmemmcms.E.seen.fixlean12>8.50Dawnof5N.m.mwr.Normewcwzuoz=w>wm

10.9“.

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 78

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 79

US 6,880,086 132Sheet 77 of 269Apr. 12, 2005US. Patent

5.0E

mumééwrdmwquow

“wongm523m“n:E295”we:a:5min83525829m“commasE3m>w

”63:00E3m>w

eondw—wa0aNcdewvdmvou“8.,on..E.m.éoEmZanpaEwEomucems.3.580%:as.”Tm.

303530553%

uoEmzEBQm

oofiaojaam/euvA@REVREE1(\I/l\\a«(ac/[Knu(.o

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 79

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 80

US. Patent Apr. 12, 2005 Sheet 78 of 269 US 6,880,086 B2

I Please select a Module '

@

Please select a Module from the list

. 896h
16 Port 003 Universal Port [i]

896}

FIG. 6J

I Please select 3 Module

Please select a Module from the list
896'”!

16 Port 003 Universal Port E

16 Port OCS Universal Port

16 Port 0012 Universal Port .
896l

 4 Port 0048 Universal Port

8 Port 0012 Universal Port

FIG. 6K

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 80

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 81

US 6,880,086 B2

.5.0E

0:556.32man.wdmwfimp"52$

$09sz599mno.Swim

HEPa:EEm>m“3069-.a.E2m>w

€9.83GEEW ”53:00£296

Emu83.352Om“maggomfl{0202{Pa“563952.0«coEommzus.$&8&2;$1.fig

 "congruuon.Swim 5szEggw

ESsSSo.22532:2...E...32.5g2...“.E28395.35528NEE.535

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 81

Sheet 79 of 269Apr. 12, 2005US. Patent

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 82

m6w

,Ema”9:95”ET—IOHIves.aNN33*.mequIm
w

w,-Eas
“322$E2m>w

S

UH:EBm>w
BEE.a:Ewum>w"mamasn:229$E0233639$”53:853969En.6”conntomoo23%Now.ma:S—o:.”HmEmzE2m>wmoo..>oo.Eam0E0332{FE0EoEwmmcmEBEmEmomcnzm.300ween.fl.4agE. 3E!6gives.ztaésggis5.mzomEEm.hgags.alllll

S

IJ{v

5002921r..
M

EEHWKOEEIIE

US. Patent

commmomm

55.0E

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 82

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 83

US 6,880,086 B2Sheet 81 of 269Apr. 12, 2005US. Patent

3mg"2:91"32meE295no.539$“05:.a:EEm>w"9662n:EufiiwE8835296”6380E33623963.n—EwgmxwuoEmzE$u>w

mc=.=0Haves.mum.—69.wauwtomaflmmqso265mm38.5022amsmmmfim.64

EE«Ragga.0m.30.30%..m{2292cum.6EchmacmE5«5800352NWEW
a8Hall--

5'again-E3m:33>8385mamyou.n.amp.«2.samuraiuoz=m>uML
Zm.07.

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 83

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 84

m68

0E3“was“.25558:mam—.839uozwm
0,

sI6685mm581mSno.2396U65¢a:£25m
"3052n:Esuxm”c2500..E896

”63:00E296nowddofiwm.@E
Swag—am.0n.

w£0.52".me539$Newman—N9OE26szEufi>w30381.E0EoEmmucmz.nEmEommcns.mE2$505a..._8It3Egg:Egggnflg5.3w9.555Illlll
h

Su5:\7.\..\IY
5002921r..

w

mmlI8—lésmIlo\ua§II_M_9m:32>83mm:33MSwddordmpcoma—5232:56Wu

US. Patent

00.0E

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 84

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 85

US 6,880,086 B2Sheet 83 of 269Apr. 12, 2005US. Patent

 OETCO“000—2

QNN._..8ENEuoaow

 €3.33M0223E2m>mw.fwuom.fiv.5.»;”n:E2w>wKama:BEE.a3Eoumxw~o~.m.$—.~mw”mama:a.65%283.59E
58.50955¢...o=_._-=o$252w...WQ.>ODEmmi:3833323

m5ws_z”c0230..Esgw

<Owwéz”58:85296
EXOmwwen—um

 WONddw—Nae0.8momddwufimro".u3350mm{9,520%.EEuEmomcm—z.oEwEmowcms.MW..E352“.33.mm!

“cozatowwoE2m>m”oEmzEng

nowddwfmop“Eoggwlog—5E.§b<Inn—mamzow

 Who—305.5033.5«89:3,...SEQ33:5moan—.25hszw

no.OE

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 85

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 86

m600

09>28559a2:15"one:mwmfiaogm..323
w

8,5w

6"£3szEwiwm“n:E296
EEKa:Esmhm“3223a.E9m>w

p.38352»F8335CE8380swim83.852Am.
moo—>3m

wE25330529$o2"fa.23:52Enumxm“55035.2.0EoEommcuEa
010

4u8gmEEEEEE5%. .v%llli
unfinu“yaw,N/nfiu‘I...“1.1.1.1.3%?agonagwe8%8%gm?£3chxomw

5002291r..
m

6.3m05!:—HIEcan:2»Exam.3.2m«36.352.“Emacs:32:?”E

US. Patent

wmwNow

<n.9“.

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 86

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 87

US. Patent Apr. 12, 2005 Sheet 85 of 269 US 6,880,086 B2

900

I EvailNet Manager: Fault - Event Summary

System: 192.132.65.150

Event Number

“Fan marginally functioning”1.1.55.6 Fan OverTemp

1.1.55.7 New Board Ins... -Newboard inserted"

FIG. 78

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 87

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 88

US 6,880,086 132Sheet 86 of 269Apr. 12, 2005US. Patent

“Eozmmmn.hsmszEB‘:48$5552....we:ccmEEoO$355500wtm2<0<mm“EEEEoo9mmmmcEw€552.00QEIW8N.m.mm_..um_.”Eflgm

H2:95097:0U2.5.).nouddwfiwmruotwm295352EEar—$952.~339E0?.33:8

E lias.:08I!8.8»as...HUEl2%25.»83amgum2m~o~ddwfi~8"Sagas.82.35@

ON.OE

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 88

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 89

US 6,880,086 B2Sheet 87 of 269Apr. 12, 2005US. Patent

Slag,.h:
Fouddmfwmpm5922E58.83amFOdew—Nme..‘.2.9..w9'

QQQDIQBQ

bung6E0...“—"muoEow52m”9EsgwBEE.33E53M352n:55%E833Eem>m"52:00E993"coitummoEggm”wEmzesfim
wmm

wouddmvdmw0.am580%anm4wwmmwfimocmgcotmn"5:5m9:583,9..“m58\~
Emma

8:833:00gm”._=3“.$1.1wammwAMddSNm..a“
“3.5mm.Emz{PEEwEwmwcms.3EwEumncmE“WEgees.$4

an.9“.

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 89

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 90

US 6,880,086 B2Sheet 88 of 269Apr. 12, 2005US. Patent

%3:8%HHESw.m.8_.~9”£396
(_

@33-

bfiq“2:8,".
anmmq

9mm“

mg '

“mm“NONddw—vaAYE(€38Mi._wwmw/ngnfiunANGIEhmmwgucwcaaouiQ:Ummwgcgsaoioo52029.530cat.INWWWAno;E296..
mEm>m1..

Qmmm

5.3%«.922E«$53222BE25952E832a3..“E
9%..29.»8.5.0.gum2mSuddordmr"Saunas.32:53Wu

mt..9“—

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 90

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 91

m6w

0,>umnu2c9n.“*N.o_l
%

Nem‘mdmwdm'0.8

m“mmwgztzocw«1.4"m
wwmw/Lucmctotonnun—:3”.mmewdacfig.VJ.mew|<:02n.=9coodimmcozmczmonnflhx."_“mwmmm3529$...“"

355LW._

wEmJ2Swddmfimmwnwpm$03onM.92.8.815.:55538335..Eufilam8.8.323Elma!£035sz9«3.8Etna—gaéuefigflcon.BaSIHM3.3.mntmmEglEosmmucanEanwmcasmw..00..moan...“—@aDhmwd..eEggs}unm-hH
S

I0.._W9,nm,9ainIQWI9o.

5Q99,0,MmV"aWm0”9a,92,9VAnW“na
7

.nn.nMErmnf9WmMrW».w3a«A,
son33»8.5mgum2mSuddufiumr:32»:.3596U

US. Patent

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 91

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 92

US 6,880,086 132Sheet 90 of 269Apr. 12, 2005US. Patent

2%la-!!g!__

_a“QL”'.mQ'I!_mag“

_....,

v,

NNNHHNEFNNden—

" .,.K.H‘n “Hum.

‘ .

Q! Q!

Hwam/-How.m.ww€wa0.3a:l.mwmm/u\3:m§HHMMMimwmew(95:283.9..Gmmwacozuamzcoo6..2022330am;Jmwmmm3EggwL
flcgw:—n«833.5E.u822.£9850:53:923E3595:”Ta.359....a...E

"28¢onus...BEEsonin.»SEQEM3.“Sudéwrdmp“Emacs:32:85E
0\..0E

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 92

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 93

Nam

US 6,880,086 B2Sheet 91 of 269Apr. 12, 2005US. Patent

 Ema6391

5.53%.omww.
”3223..EflgwNow.m.mo—.~m—0.8$3250361mwwmwgcwgoton"HTBWmmewgmczzsoonzDVLmmcofioéoofizrzlEn _mema

_n
6365:5.8“

w.«.chméééddfino.EEm>mvmmmmmow”9:2.32E2m>mEmddowdawM3591n:Eofixwm5942E383531w

. 5:85.200IVE~!55%ggvgguim6x08835”Succumuo525$mewENQwo—dm—nwésmddufiufl5525226“Hm”“WM.cwEaumcmEEEmEmomcws.MWB”ween.@h
in!!!

g3852.2.2.55)g3cm520m«85.35Ez0mBEEslim

3 .x 5' L A _n ‘

m ?. ..
“I”!!! 0 ”MM

In.OE

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 93

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 94

US 6,880,086 B2Sheet 92 of 269Apr. 12, 2005US. Patent

2.2..02n2

3.2m£69..252£280mcozumccoo.565.an
3.2%..”2

”2333538803:Sacco:20099.".27*n.“2.
aging—coo39.6Ein2285.35203

".83533cm£353:m82>onm.flAnna:.03532535232:2ngJupfl2.235095:325Eammcms.MWE.3505$2.E

.222ng5002”23.2332E3239“.BEL.
‘g99"Tag9agg9.0"

22

e
. .0w...22.5.

523wown—55sun32»53m:32m

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 94

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 95

US 6,880,086 B2Sheet 93 of 269Apr. 12, 2005US. Patent

 3.8”ween

uwmwSwmgfimfOm".wwmeztzgwm...”wucmeatua"BE_l/m:=:=ooo<9:“m.892m25%a.
._.

:uafinuccoofiftfiWin“.&v._mewu\5m.m.§.~m_Maw.
$2.39Em

Ialflléfifi!28%an2:.mg0gfifiéflfia€§omfiomfim€wa”Eoggm

aa

2563955.822.3962
“scanfir

E

999nm

some

b99999”

”mum

amen

2.07.

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 95

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 96

2B6

8.0,aficfiEoE
0

95mm33359986mmme/assmm;mSflaccwctotwn.nan—'3_U./m§§80<UL_wmmm
gnu—“Omccnvnwfizg‘"NmMbwmoKnocflamcgoowam.OQmQcmmw\.§Eu

wawmwEuddaam.Q2”Ragga,.{ozozaupaMIgmmlfil$553352;343.55fl:9a
tee

h.S.
.wwwm90...ac.

5.mm,
00

2Q99nmnmmr..Nw
pA

Egggaémfla9%..32.»35mEM2m—

U.S. Patent

vi.07.

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 96

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 97

US 6,880,086 B2Sheet 95 of 269Apr. 12, 2005US. Patent

I£3..53Uas:a.
856an3355:52Lon:”5n“.5:323”.353.3:.396D.3:.22239:63

Fowddofmmw”529$
,

a...'V.a.Q9.’ _#2

9D.9O.I.
I,

DI

.

25m.528D55m2.?U3.583u>n.5...:3%”giant3:32.83“5am53:38”328;,.3:0395D:0:02:023.355,meJ.9:3£33 .

womddofiwmw0.3:3I.wwmegfiwM,mi233}.I!52:33:00i_=3”.$46.mSwimm9.mm,0.63950IAN.x5362{FE
22.53%:B«cm—Banzai

waniElam.-u5.8m82:HEBson:2.»8.5mEfl2m58.3.9.3.”Emacs—z32.52..m
IE..OE

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 97

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 98

US 6,880,086 B2Sheet 96 of 269Apr. 12, 2005US. Patent

@202-mu39:55389.BahaaEuh£320 “Ba”63—-D
a.aeh*a.6.a.993999990

EmaBeen.-t“realm526m

2...5....iii.If!LQOQII\UcuczooniDr...Ummmdcofisgcooé$
ga.&rm;memA???am.

8033mm{0.32{v.6EmeumcmE5E2335:mm.mOEOK.a...mmmp

A$V=o=a2=:.:ao—mia_
”Ewenmam—EHER

xmmm_wmm_mmmcmmmmama

SK.9“.

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 98

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 99

US 6,880,086 B2Sheet 97 of 269Apr. 12, 2005US. Patent

uEEES525m

>83”ween.

935“.“39m

5mm|(\.u=._838<0,...mammmn(\sasegoj@am:5$5ammoI\EM.Q_8329%.
seaMm502»:C5.EoEmumcmzE«558532NVE3E3.$.mE

a;z9,.
.IW.m.n

0.

0.r9rap,.

xwmm_mmm_wmmcmmmmama

Zm.m:m

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 99

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 100

m68

0,53“2:2“.
089w6m

mwmw(35.5023My.:Emhwmm(Eu—583.071$Ummm)\§§§8éfi
n,gaugv.$%mewswimmfiwmr06.“mustang.w“m_-"nu-nuuun-uunuuuua-un._a:,gas:.--ngns.amn-amuauo...egszmwa8iEEEEIEgg“:.05532":$692_as»o>sF<8:853..”tSummer“?”522m53enmimsacm

eeh

S_
wm,w

suuA»0m, W,w0_9.0._0.2N .29.0,,0.D1;Wm”fluo0.porF9,99Pm,w.wA9.,99.
@@@®@@

6.8mmans:HEan5."—ZENwo_>0n—5.”2m—a~.me—.~o—".59“angal—Fayw.“

US. Patent

xwmm_mmm_mmmcmmmmama

nun.m:u

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 100

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 101

2B%

0,guano—ughl50_H_
%

00,hamxwmm
6

..—

S.565I.mm .wmmU$05.95._..mmm
wwmw(oucwgotomMOVESmmm5%6:22:820?.mmmmcmmmeéggcs4a.53§5w

9.m6mewsagfimp0.62moosoomflpmlili3:23.22v3.532firm.EEEEE.smegma“:.02332a:NYE”.So23mu>.2?$50K@LtSwdvmmfimm—“swimmeml/fifeonsewsgmE"mEEEEEESEZE.355..‘9,xaaWF_09e.,.aae.V
5n_%Wwm0pm0.0.2_fl2’aW9_,o01Wmm”W

a9e.,
r..,WWMW,pww“w,

A

2%26S833amgm_a~.o.$..~2comment32:2.»Wu

US. Patent

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 101

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 102

2B

6v8On0E
0,

0ham
8

8w,xmmm6.u38m83:355mm
wwmw(ScuEkfimflfHTBcwmmhwmwgaczczoooa‘DY...mewUmmwgcoaeaccoogm“

9EE6QmmwI\Sw.m.8fi~30mm2mangamfiupmu..3;ngzfafi0EEEEIEIHH2$236Easfioéiggma03555thE<O3.5.92:05a...1Budgwwfl“seamomwml/cm:“combsmgmcmatEEEEE3.5...:5EE.5wM,”nVw,W,WW.w.WW9a,.w,9e.,w.w
wW.an .Mn”,0., 0.293rGng0.W.2.WWPnen.we”.9.1.WWn...wwflzw..9o..a,:9.

F.9.1..22.."00.0-.9.».un14"IvgwpAWH
,_WW.WWW.@@.@@@

nma!”“28mKEEEEE. son22%833gum2m32.8.22.comment32:2:M
«(£3

US. Patent

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 102

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 103

US 6,880,086 132Sheet 101 of 269Apr. 12, 2005US. Patent

mmmw(mac—«EmMun—rm.bwmw{ace—5084‘Dr:386:88888.E88mew[\Holuddm390%
3225m.m€252"Cr—mEmEmumcm:6~coemumcm2$33505@i

25.39de“528$\lUmmmE
EEEE63°8436a.

9,on
ca.a9990909990

gator—o...—E<OSOflawE<=_82w2.5
88:88.2:flan-E

an@@@@

Elfin”28wcame.DEa3m:5m8.53.32m_a~.a.wa_.~3comment32:25E

xmmm_wmm_mmmcmmmmmmm

Eh.m:u

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 103

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 104

US 6,880,086 B2Sheet102 0f269Apr. 12, 2005US. Patent

Ivan—mglingo5a..Inm5=uulu3ua§80'33...
3

Swing?d9.Ecfi>m\Egsooa.555Egg09D
9,9",U:0.,

9abseeaeo

a,

fi§w

3.69"@591
.88:35:2SE.”coggmafizm

mwmw(mac—”Eaton“Ad....Bm..wmwl/\a:_..:=o8<Di.dwmw(5:93:500@:.3W:3“.§amQmmm5m32.N203
amusmom.m.#5stAnnaEwEouucus._oagEuuwcms.“v.53:55a...E

 2023533a.32mSwede—.2..—rmmnfiz$5.2“WL.

xmmm_mmm_mmmcmmmmwmm

mn.m:u

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 104

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 105

US 6,880,086 B2Sheet 103 of 269Apr. 12, 2005US. Patent

“*me\/Summmfifi“Emfimiégsgmfi3%99 99

99809999 99999900

858.2312.5.H

dW

V.5O.05n,19—9..1 .Q00..we3:9.,a9,0., 1..y9.0»HnW0 ,.._,r.0.0,.ya0.9.”,.,.s0.0V,,..._,a!fl@,...,_"a0.0.,.. _,I.9mu..wm.u.2n.,._9.9.7A

Eng6591
.88:2...schSN:—EonSofiEmzm

9999999 '90999909

gum$2.8mewSnag—Nor9mgEoEmumcms.8

8250mmx5382okraEoEwuucuSBrawwEoEa;E
2%E»8:3.32m

_aN.o.uo—.Nm—"Lam
.25232:53Wu

xmmm__mmm_wmmcmmmmama

.E.9“—

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 105

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 106

US 6,880,086 132Sheet 104 of 269Apr. 12, 2005US. Patent

mmmmsnaznaa.1/
500>mst?
E

#
.A

9e.a.990.9,0.69999698

mammgzn

loccactotom2(0" 99909869'
99909999

@ga
99¢0§é99""
99999090

>uma6:555035mFE

Nondwerw0.38095.5mcgfioccooUsummmmm(Badge—pol“a.“mhwmw625582UL"Gwmmecoficaacca£13
gum“.$53_ammwlxmmdm—aeGa.«8:50mamx8352firm”EoEwaacmz“a60:535.:31%moaoi@xmE

E8.8882..ana9%.25383mm:32m.S~.m.a£.~m.cyan—E:32.33m

xmmm_wmm_mmmcmmmmmmm

Dm.m:m

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 106

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 107

US 6,880,086 B2Sheet 105 of 269Apr. 12, 2005US. Patent

>\..9“.

Ema”059$

xwmm6mm6mm

mmmm(gaugtanr“8:8.1.me..wmwI<ucec=ooo<9....amemew(5:93:50$8W.gum”.$3Wmewsmdmtnmr0m.“
«wu_$om.m

.foiazflsafia-......3.-3...Egg!Es.e...2.:.2§§§m3.$822....:2353@LSmmm253.3<meExam53£83222».
so.23:25.35EREc_u>m25E

..e‘n...0.v”...h.W.9”.m49..9wn.W94., .M,mWW“ra._”m.m....w..,mm9.-....M....9.@.@@@@§

Infl—§8m89:.HEEcan26383ndgum2m32.313.53:2;32:2.»W

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 107

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 108

m6

WEma652m
,0

%3mEE
,6S

UaM.
SC.<..m.wwmm(mucgatom"8.3mhwmweugcagGrim_cmmmI/xsfiéé0%.

9as“.$1“.MID.mema\6M.m.8p.~m_.03plgasomfi0Eglgg;{ozmzfira6algléég.Ewsmuucms.62382923h.“030352939304g:22...»amoaoi@L1mfiLflt...
eeh

S.,
9,Q#..Mn,,w,,w.,W“

50..9u
Qn9.

00.90u2p29WW,_N1”Wn.MAr.in..w,w“wiwmwmm._

aiméflaw

Eulém”28m3%.EEE.2%.32»8.6agum2mSEES—.2.twang:$2.33M

US. Patent

xmmm_mmm_wmmcmmmmmmm

>>\|.OE

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 108

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 109

E3“2:05

hmm

US 6,880,086 B2

 mewduczcacugn?..cwmwlzxsasesOflw$msamu—§y2$mewI\6M.m.w$.u99m.
8230mm{0362{camEmEmumcmzB.cuqumcms.memmEEn.a...E

Sheet 107 of 269

99099 90999999

Apr. 12, 2005

99999999 99999099

_$@9@@@

malum“93“as:EIEcan322833gum2m_o~.o.u£.~n.comes:32:2:M

US. Patent

xmmm.wmm_wmmmemmwmm

Xn.m:m

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 109

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 110

ham

US 6,880,086 B2Sheet 108 of 269Apr. 12, 2005US. Patent

iifiII;28“man-IIHHu-lllllqagagzBrofining-é55
3,0

Egllmfiu
>50.50NO

iiiflill3E-...33fieséfiéé
99999999M_

99999999

99909999

9992995099

99999999

90999099

@m

NowddmwdwpO.Mm/|\L€=6omm....5:,<...mwmw(8:555th"a..Emem|(SE=§¢Drmew(5.65328$3ammwI\8M.o8tamnmmm
3350m.mass:cu.aEoEoumcmE.o.coEmuwcaza:.wmmfithl@.m

E998againacan32»83mm:3.am32.352552::$2.33WL.

xmmm.mmm_mmmcwmmmama

\IN..mu_nm

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 110

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 111

US 6,880,086 B2Sheet 109 of 269Apr. 12, 2005US. Patent

BEE-IE285%,.“a;$5335E;3.33%
 aim.0«3..gtombssmfiicm30:60ESE

99: 90

90 99.

E,g,
9

9,9,
999mom

xmmm335mmEmmammmm

sank§fi$QmmwxmwgamrO"nulag6035201anEmEoumcmE“oucoEouwcnS$80.2%358.688.5.1fl..."0wmmvaBElm“snowmam—.5flagininEEG5m2m.a~.a.uo_.~m_twang!32:2:WU
{m8

(w.OE

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 111

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 112

US 6,880,086 132Sheet 110 of 269Apr. 12, 2005US. Patent

llllfilfi885.888III-IIIII-III...-III-IIIIIEIHII=IIIIIIIIIIIIIIIIIIIIIEglgomkfifixlizmg«savaméacmIlia!583.8585828simémigéfifi525.3%pomédw—.mm—“En—gm
99¢999909999999B

0.9.996..0T9my.IQ,,a,”_,5“ma“9A0”J9W89“H9.9,n1n.9,0.8“a.
A

+._.99.9E399.90.9,_,,0.O.‘9..,0.99”49.8.,.9.a0—0..,0L._.9.©.0.,.,,_I.

@@8
W

momddwrdmr0.8(2.58mWe."EMAILa303.5%...3250500.2.2..."mH
mwmm/lwocapcormm"3:5hwwm63:583.0!.”_Gwmmdcoasauccoo6:3Wsaun—$58mQmmm«\SMIISNQWE

mwosmoflaw$82£5E9535:35.3.0923;518026051aim
EEEEIII2%.:538:3Eu2m3822.3.conga:32:25N

xmmm_mmm_wmmcmmmmama

mm.9“.

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 112

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 113

nmw

US 6,880,086 B2Sheet 111 of 269Apr. 12, 2005US. Patent

_---.nun-nuunnnlm-nnunnl.uagus-ullilmmfiiIllEm:amazgauassegemgsawgammaa-nnaam-u9363999999999999.99

9%;9.52.3838!wsngégsm
9#Q09.9_99:9.390.0.9990.

_999099”

99999909

88:95 .Eofioccoo..2155...mH
WQQQ/Iwucmggomézfl“mam-/x\geag<mv1wUmmmecozflauccoo45_E3Qmmw\Mlumdo—NEnwfi

8350HawfioifizpupaEwEoumcflzBEmEoumcmzflaw350.1a;E

6.8manus.E2%.:28:60.32.$3.312.cumucaz32:25@

xwmm_wmm.mmm:mmmmama

0m.GE

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 113

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 114

haw

US 6,880,086 B2Sheet 112 of 269Apr. 12, 2005US. Patent

1

3EnI“!a.,H.mum,"mm2mm _
_m

”gamma.“555.563...38.5992...2.:9.55505.5550mtmzsufimI“E555831Signb.5555nzzm28,.99555:252:00nSZm

Nomddmrdm—9%“mama,“wwwGWleocuEhotwan5..m_m
_

mew.\u§§82DY.“m
mew

\cgfiamccaoiwEE”mmewxowmétue0m.
$3?

\{2292{1Eoanncsz329:09.52Mm.Eggs“,3;Enggun32%025m.32m8:832585282:2,“1
Ow.OE

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 114

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 115

2B

6lME29.mmom
0

85m
8,6S

UNomdéwfmaw9%
mew8:950tha“J.Wmwmww9.55084.91.4.m_wmml\,.__5:233:00gum.=8”.$2.N

w.\mefi§.~2M$230.50“Muf{0202u..30E2595:B.coEmamcws.B:.3.... 359mfi.uanm8.N2.223It .
ee

hASW
.o.aIn

5M
00

2Q3gnmoamm
A

EEEEEEEEson:2»8.5agnu2m
“

rouddufun_.coma—Es—uoz=n>m
US. Patent

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 115

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 116

US 6,880,086 132Sheet 114 of 269Apr. 12, 2005US. Patent

93”050i”muoEowSaw“0.EmfihwBE:..5E996Sqqmowufi"3222.n:295»m5MEZE330».EflwxwH.550seamExommEsau”5328352165:32EB»;

53dede“5296
5.2825032.5.83.?52.225885...32
2am520m32.5...528BEswimQ”N"

9“NmMGQNOQ

oc__.cOHobo:own.fincfimowcozommowdduHumpQBwcuddmrfimwO"u8033E.mage:{1.629:35sz8E2595:3woes".$4E

um:35..698.»was...4-525mmacaw—$55M

20.:a«aid.32mEuddutum_."Bangs.32.35@

<0.9”.

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 116

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 117

2B

6.8mm0E
0.,088.,6m962f0511teehS

i!‘we“w3.58is.u

Iianuaaum.
i02.sawu>2:2Fowddw@wa”Emfi>wCE:”toga—mxzwzm

21r.
M

wind@
US. Patent

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 117

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 118

880,086 132’US6Sheet 116 of 26920059
Apr. 12US. Patent

2.39mO>2.2{Q—r”tagwxzocw
E:2.82:;E?

2.ENGU>SIRSQ:”Combo—922m
Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 118

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 119

US 6,880,086 B2Sheet 117 of 2692005Apr. 12,US. Patent

“a

E

E

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 119

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 120

US 6,880,086 B2Sheet 118 of 269Apr. 12, 2005US. Patent

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 120

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 121

um.07.

US 6,880,086 B2Sheet 119 of 269Apr. 12, 2005US. Patent

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 121

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 122

US 6,880,086 B2Sheet 120 of 269Apr. 12, 2005US. Patent

“=22E3153:2ol_5283.825280982.8353:88HawmwegémggmQ
2_9meo>2.?

ENQSFNQ”E05?($3tOnSQmEmcw[EIiifi53351-22n:225:45322?J_E283Ea2mccoomwhma£8a838meHSwwwofiwmr”EwflgwAU
.50£meo>2.2

Sm.m.mm_..mm_.HEggmSQ:tombofiEmcmSoEmaE._.<
;

Om.OE
Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 122

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 123

2B680,08

8/O6.S.Uuncoomm:61$5
uncoomw5a260I ”28:NETEma-.22£23580wu..22“83nSwag?”seam

01

n.
5002n,

LpA

Iiifi2::22:5328mman260a83580
agavmeH52.0ng

Nona

US. Patent

SNEWEHMQs:.<0|—Sw.m.w$.m9a50£92mo>s:.<(NEtombgmsmcw
So39w2.?

Im.9”.
Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 123

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 124

US 6,880,086 B2Sheet 122 of 269Apr. 12, 2005US. Patent

Gena

E38mm.8$5283.8260
53N58.22

EN:vimEmm—_>_._.<
:E35mm:2V

vcoowmEn.250a:«EJéEiEg$3453:2JE83:88ESmddofiwmrQ
So39wo>s:.<SQ:tonne—wEmcw

So22m2.?

gmqgue€me
5.0E

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 124

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 125

2B680

0,ucoowmwanw=mo%£mn.2.26,I1IS:Q:m(Q:NSQ:_‘
U

9$58!
62f0321ae

%figmm
50022,1r.pA

Iiiflé:§-§
Smmdmfiwmr”£39m

NONm

US. Patent

FESIEEAs_._.<0|.Fowddmfiumw@Sowfimo>225:;tomDQwEmzw
SO32m2:

a.9”—

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 125

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 126

US 6,880,086 B2Sheet 124 of 269Apr. 12, 2005US. Patent

moum

E280m.8gm
958wan.£me
a

v5.0E

95_o>Eagxmzmi_o>SEES95HS5:55235_n_>E:E_:__>_
952$585:2FE:£83355

 Emu:.Eumm.5:.<OJ503mmo>22E:tensoagmzm
So9%2.2

ENQmmFNmF“E995
Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 126

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 127

US 6,880,086 B2Sheet 125 of 269Apr. 12, 2005US. Patent

9:005990um:Ectoz

IiiiEagizgpwouddwwdo—“EnugwIiiiEEE:"BE$3.53DaliaSwadmfiwfl€me

2.35w0>2.2:Q:”toggmiucm- .0:5332902.35mU)Eh<SE£83236
Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 127

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 128

US 6,880,086 B2Sheet 126 of 269Apr. 12, 2005US. Patent

9“0..5..a“a"a“a“0“a"a”a”9"w"a"a"0“

mm” MON

0

.O_n_
Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 128

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 129

US 6,880,086 B2Sheet 127 of 269Apr. 12, 2005US. Patent

”25!.“ 99.90999!

.188X?S?.WW

NowddmtwmrU_)_w._.w>mSawhofiwmruzwkw>w
_..Baas

51%an
Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 129

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 130

haw

US 6,880,086 B2Sheet 128 of 269Apr. 12, 2005US. Patent

3qu”2:959.5.50682mNN._..mm—..Nm_.cutom

 . .£5.33”832$E226r.wNNom.rifled;”D.EBu>m

3m¢~mm~wEEC.a:E$m>w

5N.m.mo_..Nm_."30.62a:Efiwhwmowddovfimn9%
reflddmfiwmpon.“

E333539$moo—>00m.ntoE«aEms—XI.“BB03mUQNQ«BE—ESE.“Exomm33w£03330Esmxm"nwnfi.mxOmmumEazEEfiwthmIl\m:oauc=onwW
E93»2...«5:53an32.353332Mm.E839.“.$1

«Odeo—Nmr”539$EEEEEEE25%E
swotum.«cospéofl

wmmmmhm

<9,.07.
Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 130

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 131

US 6,880,086 B2Sheet 129 of 269Apr. 12, 2005US. Patent

5mm

 !£55mfipduoméééddéH:EBmxm

Noflmdo—.~m_.

"acta:EEw>mFonddmfinmr”mmwfign:Eflgm

acacaos<DY.“8:833:00in.EmESm.m.8_.~20325m.Enm{c202.59:39:34SBoson—«cm:Mw
3:2".$4a

”c383Eflmxm

38:00Eflmxw Exomm8:6Eoficomooswim
wxOmm

 5:52:5qu

random—hump”EggmEass:2:.5;Es

m9..OE

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 131

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 132

US 6,880,086 B2Sheet 130 of 269Apr. 12, 2005US. Patent

nmw

Sm@EE_E§%E
Swarmm=o€o__8......2zwzw0....“:EmDEWaudio—NapMUSu.m.m9.~m."239$

fl

30:00:002.2333.8590.3

mg”
r0mmOrNM?0;.Jwousmomm.£22£8.5532“:BEcfimmgns.Bl“.moan:—$1.a

28m39...

Dov.9“.

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 132

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 133

US 6,880,086 132Sheet 131 of 269Apr. 12, 2005US. Patent

”5F.ommmkm

“0:950:00c:2w
3.5

mow.OEmmnm

H”mEmZ5302.00

828:3:52co=oo=OUonUU<

 aaaagnanamamII-III-III-Illaaasaaaamasma:uni-IIIIII-l-Iaaaaaag.n.-III-III...-$13333:aagamam-nammmaaagmunn-III-amInn-III..-nun-aaaaaaagagaaaunun-Inn...-III-gagsaaaumgaaa:III-III...-III-amgaaaaauuamam.Il.I-I-II-III-gaaaagynuaauaanaeu.-nun-n..-I...aaaagaaaunagnm-nngamamaaagugai_--:aIII-lllll-nl-naaaaaaHangman-Inuamaazau-au-.nlllmn.-.----.u...azaaugaagmaaanaa.---aganman.aai.--Mm
Nomddofiwar0.3wmfimEm.

 .n-n-nuuun.Inn-aasaasauuaauamnun-gagaamn-nu-II-Iamsysow$mHIIIEEIEE!E0352..sfi.fiEEEEEEE883228822“3

5N.m.3—.Na.Esgm

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 133

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 134

US 6,880,086 B2Sheet 132 of 269Apr. 12, 2005US. Patent

057:06005.WNN..mmordmpair—cw

AchozouccooEar—5

haw

532.4:wEEsi:32!“

2332.3}

2:959:”237..nEmUM“58:00£16fswU..
90mmSawv5%avtom0:...”

Eiggélfia9como-.._

EiIiEEEHHE-;E:-§§2.Egggglaia«E;Imountai—§h<

nwxb

2:Es5%:méEEE.

09‘.0E

mmm

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 134

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 135

US 6,880,086 B2Sheet 133 of 269Apr. 12, 2005US. Patent

m-€8fi~mr“530mIO?.0—K
3.1558.2

IIIEEIIIEEEi_§:-_55H€2,353IllfigfiiEEEEFSEZZEE:2EaiéFEES—:35EEEIE-EEE2.ElsaHEEEJEl:ESHEE55.58.32;RENE—IE:EEEE .._.:2Eglé291353235. ”2.3thggag—l”Effien:_§sa=§.amascomfiallagalails»;252,353{022.235.EEEEE.3:;EEEEEZEEEEE
$521mmal.

E
EIEEEE

ESE<<<

5”m.8..we.59%EEEC.:2E.)EE.2:2....5:8as?manBEE
5.23330.IEIIIsofl:2»02%EM2mSwag—grEmacs:“oz—Ha@

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 135

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 136

m6

W057:0“082mNNédw—NmrquNm
,

w«8El'28m—55605mmhmZOm

8,

6#262.m
:87."

Sm...u=.uw_.m.u....fiU3:33m...—
mocgatmn.ad:acacmcogBY.":25::504%

NE:gun«523922.35
9mils-n.mcefizgmfizw%mflrrupsun2852955501:Q:23..Eaasfizficm0SE:Eau251:x5555

431

aEgg2...nggaifiumm5532.8HEIII
S5002921r..

w

Emgagafififlflcan30%musvm:3;2mEnding?comucas.32:26E

US. Patent

5?.0E

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 136

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 137

US 6,880,086 B2Sheet 135 of 269Apr. 12, 2005US. Patent

<3.OE

mom

 aF.:mF.N:::aF:::l2::Eammfemmmm€350,lg$8522;8:E52mmEmucoomwEE_m>m._3:8383:88
ammcmzween.

oedowmwme”52%

mmEoi

8m:\

E5,.3:

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 137

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 138

US 6,880,086 B2Sheet 136 of 269Apr. 12, 2005US. Patent

.m:.OI
DmDZFZOOm:OEOH

 $55.2!”SomEF:o_mmwm.52...$8$250um<:mo.33a$8Uflnmflm“czoooxxI-
Bow

Eo‘swmmaumcmcdfloccmo5w:8-:2586:0;

88“Eogmwmn.stucco38m6526me80m.“889*_m>m._9.90
6:539

RomZ0$8”83580mwow..”GENCLQWD
.983

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 138

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 139

US 6,880,086 132Sheet 137 of 269Apr. 12, 2005US. Patent

OwomEwom:womBow

m:.0.“—EOE...—

OmDZ_._.ZOOm2‘.07.

Ea)?EIIEEElléég@IIEEEIll803858$8388mm“tom52%EmucoowmrNN.P.we.N9:wawmbmucoowm”ten.BaomEmEtaONNP.weNayumzowEmEtn.
995m

mwcm

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 139

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 140

“ton..mimwEmucoomwumamwbmucoomm”tom.mEommetaumimmmetn.

2B680a0

w.6,0:.OT.—
SU

EOCNOKO“mom
9II)

M.M

mFomm1mmomédwfimmws!moumfimotmmw
2n,mAUS. Patent

$038225w86:0;.928
Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 140

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 141

US. Patent Apr. 12, 2005 Sheet 139 of 269 US 6,880,086 B2

TrapPort

Timeout
3

A?
q:
0:

cameo

FIG.11D
READNVRITE equipe

C

public
MDevices READ

Policies 192.168.9202public
publ

192.168.9205 1921689216

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 141

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 142

2B680

000,._8mrrmzu
6,SU9m.f00MwhS.m02r..pAUS. Patent

$0st

”2026mm;£55065ng“$0091_m>m._3906:82.mEBmzo”cozatowmo”@509.me202336:0;3550

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 142

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 143

US 6,880,086 B2Sheet 141 of 269Apr. 12, 2005US. Patent

a:.0.“—mmSE—zgusomEFcofimmwhow:
$250um<cmoEm:Eumfimflmanoo<Danwmmn.omcmcoHoccmd6.5D

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 143

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 144

US. Patent Apr. 12, 2005 Sheet 142 of 269 US 6,880,086 B2

I—I

Look and Feel

6) Use System Look and Feel

0 Use Java Look and Feel
FIG. 11G

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 144

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 145

US 6,880,086 B2Sheet 143 of 269Apr. 12, 2005US. Patent

 DMDZFZOOI:.OEIE.07..
oh

$352gusomEc.:o_mwmw5w:xmom$250vm<:moWm:a$88335.2:82I-$82026mewmcmcw6:ch8m:a58m85:8

88,“Eogwmmn.85:0038”Eozrwwwn.88”$391_m>w.._96.0Boa6:5239.0886285pr$8.”wEmEmmD
@980

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 145

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 146

US 6,880,086 B2Sheet 144 of 269Apr. 12, 2005US. Patent

OMDZFZOOI:.07.
$8552-33EE$2352IEEE99EIll3038Uwomawom

80m.
.toa53mmEmvcoowm

Ewom,Emfimofiwfl”atomamucoowm5888”tomEammmetaommedofimowumtww6955

88

32mm

1:.9“.,EOmn—

mmom

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 146

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 147

US 6,880,086 B2Sheet 145 of 269Apr. 12, 2005US. Patent

_E..9“.

082382

 IIEEow:95I.:3EfiaHQ:

2an5m.”—

ON7me

5:933:00E930OONT._.lwwm5885:28:00295m2:880©Emus>can528

£E>>

HEl

539583me

53353852”swim
828a

9.:.Ezow

9Q:-cozmfimccooEmQFMZOw:mmmcmS.me=m>mI
mNooe

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 147

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 148

US 6,880,086 B2Sheet 146 of 269Apr. 12, 2005US. Patent

owoorcoszmwmamm.3890

£02a:.9“.6:82985EE)38FIlai35%,.!Ilaié£2
mzmh5mm

:ozmsgcoo533008m79%5835538829%m@5350OEmu;£3.Esz,msgkmzow

538$?”seam

9Q:-8:938:005mm520m598%..mz__m>mI
No9.

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 148

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 149

2B680,

0IIa“iEl6.mwmoemllfigll£3-2meSEDIIEE035i£3.25SE¢EIIEE085lmafia”.92:m.éaoo$29..a255mm.5235mm858;can.2525a;apm2an5mm
7M

W‘82va5£quEZOm3822«EmaHmzowosm=m><mP825:52,consamacoo5230®
1

A8meva£886:38:0029%m05380O

 Emu;5mmszOw

£23acumen.ceficmmmamm625920

 3.:.EZOm

Suwmeae“52%m5:-8:933:0053520m

:wmmcmé62=m>wm

US. Patent

x:.07.

moor

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 149

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 150

US. Patent Apr. 12, 2005 Sheet 148 of 269 US 6,880,086 B2

MANAGED RESOURCE GROUP TABLE 1008

1008b

1008C

MANAGED
DEVICE PID GROUP NAME

FIG. 11L

1008d

MANAGED RESOURCE TABLE 1007

1007b

MANAGE

RESOURCE 10070
GROUP LID

FIG. 11M

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 150

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 151

US. Patent Apr. 12, 2005 Sheet 149 of 269 US 6,880,086 B2

Add V-ATM Interface - 192.168.9201

Sheif/Slot/Port: 11/4/2 Path Name: Path2_11/4/2 1004

Virtual ATM Interface Parameters

Namemiasi _—
Connection Type:

Version: UNI Network 3 1 IE

Admin. Status:

Group Name: 1004b

FIG. 11N

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 151

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 152

US. Patent Apr. 12, 2005 Sheet 150 of 269 US 6,880,086 B2

(-1006

@ EvailNet Manager: 192.168.9201-Virtuai Connection Wizard
Source: 192.163.9201 Destination: 192.168.9201

End Point 1 End Point 1

@192.168.9.201 631921889201

331231 Shelf 11 IDShelr 11
ID Slot1 ‘~--o Shelf 13
if] Slot 2

.1213101313151 Slot 4

E 'r---o Port1

i EtflPon
r---- ATM—Path2_11I4/2

Connection Parameters

emmmwellllllllllllllllll
Admin Status: Up 1006b fl

mMm: CZZZZZZZZZZZBIMM£I

End Point 1 Parameters:

ve E:::::::jmmwwww
w E:::::::jamwwmm
Transmit Traffic Descriptor: |::___—EI—AddT_afficDescriptor...
Receive Traffic Descriptor: :::El
[1 Use the same Traffic Descriptor for both Transmit and Receive

I.»

 1006-

End Point 2 Parameters:

VPI: :]|:| Use Any VPI Value
C] Use Any VCI Value

Transmit Traffic Descriptor. |::::@_AddT_afficDescriptors...
Receive Traffic Descriptor: |::L_\Z]
[:1 Use the same Traffic Descriptor for both Transmit and Receive

10060

FIG. 110

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 152

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 153

US. Patent Apr. 12, 2005 Sheet 151 of 269 US 6,880,086 B2

USER TABLE 1 10
.—.~

101% 1010c 101od

GROUP LEVEL
USERNAME PASSWORD ACCESS

2012 DAVE MARBLE PROVISIONER

10108 10108

USER MANAGED DEVICE TABLE 1 12

1012b 1012c 1012d 10129

USER HOST '

FIG. 11Q

10128

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 153

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 154

US 6,880,086 B2Sheet 152 of 269Apr. 12, 2005US. Patent

1:49".m_>_<w._.N_>_<m._.P_2<m._.ll59.NONdwm—ummrmvomDmO>>ww<mDmogmm<mDm0>>ww<awwwm00<mmmm00<

mw>>w_>

$3.9.U39,Dior

30wm..m<._.m0_>moQm0<z<2ZO_._.<m._.w_Z=>_D<

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 154

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 155

US. Patent Apr. 12, 2005 Sheet 153 of 269 US 6,880,086 B2

ADD DELETE DEVICE DIg

1013a DEVICE HOST: 192.168.1202

1013b DEVICE PORT: 1521

10130 SNMP RETRY:

"”3" SNMP TIMEOUT:

10139 ADMIN. PASSWORD:

1°13f PROV. PASSWORD:
10139 VIEWER PASSWORD:

1013h ADD

CANCEL DELETE

FIG. 118

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 155

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 156

US. Patent Apr. 12, 2005 Sheet 154 of 269 US 6,880,086 B2

USER RESOURCE GROUP MAP TABLE 1016
~—

1016b

10160

FK3.11T

USER RESOURCE GROUP TABLE 101

1018b

HOST LID GROUP NAME

1018C

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 156

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 157

US 6,880,086 B2Sheet 155 of 269Apr. 12, 2005US. Patent

”2026me$2656533mm_m:o_m_>o_n_”9033mm.mew_:_Eu<”tommwmnmumo”500:5.n=22w”Emagazw”ten.umoI

memaoi83mmvmmmcms..552

mNoF

6:623.90owner”ten.ammor£onmNnor

255858mmEma

>rv.07.

5.me

mmmwwuaomEc.8onm3:gnawsome”0050ENS.ou2«ENEown?@585833nwwo.uwmmcmS.5m:
mam?

mNor

“anewmobsommmEm:“mEEn.5m:
nomovmomow

mas.Q3020@050me5m:
omor

“$0300ummmcmé“mam:965@050..meuwmmoo<_m>w._9.65”Eogwmmn.”wEmEmmD
mEoi5m:

NNOP

wNNoPUNNoVoNNovnNNorNNNOF

Apple v. Uniloc, |PR2017-2202

UnHodsExmbH2003,page157

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 158

US 6,880,086 B2Sheet 156 of 269Apr. 12, 2005US. Patent

>>—._..9“.
flNEEFOmzzoo-mwomo

6E:39;.95.Z_s_o<

wSF59;.odmum:

NSFwing?.32Mum:

Sowm4m<hI._.<n_520m

2b..m._m<._.n_<_>_dd”Em:

82.39:macaw.mS

.md.OEZOQ

mw<m<k<o£22

malm8mm

ozduduomamum:

$3,::63£2
.30

mw>mmm£22

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 158

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 159

US. Patent Apr. 12, 2005 Sheet 157 of 269 US 6,880,086 B2

IP ADDRESS:
FIG. 11X

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 159

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 160

US. Patent Apr. 12, 2005 Sheet 158 of 269 US 6,880,086 B2

 CONFIGURE08 Q

PERSISTENT STORAGE 21 <

S!

9u.

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 160

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 161

US. Patent Apr. 12, 2005 Sheet 159 of 269 US 6,880,086 B2

CARD TABLE 4_7_

VERSION

16b
0XF002

 SLOT

NO.

1 6e

0X6002

16H
51 3 OXF002

FIG. 12B

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 161

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 162

US. Patent Apr. 12, 2005 Sheet 160 of 269

PORT TABLE 13

US 6,880,086 B2

VERSION SLOT

44a

44b

44c

44d

44a

468

1600 00620

FIG. 12C

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 162

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 163

US. Patent Apr. 12, 2005 Sheet 161 of 269 US 6,880,086 B2

C:
(DF.

DD exe

16b

DD FIG13A

Lu

2a:
o

0:
LL!

2o:
o

n:
LIJ

6 a2144
1.140 D
b-<:

L00: 0:
as w
LUV) 2

a gm

9- 2

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 163

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 164

2B68

0,.mm?0E8,Egg.2:lfifi«2
U962f0261teehS

Ma0.m0<mOPm
2m>mm3m

29.025.Hzmhmfimmm
1r..pAUS. Patent

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 164

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 165

US 6,880,086 B2Sheet 163 of 269Apr. 12, 2005US. Patent

Dm<0OZ_Dm<>>mOm

No

09..07.

wk;

mug—mmmo‘romfiou

Dm<0OZ_Qm<>>mOn_

Smkm>mHIE

Dm<0HEOQ

mm>mwm02:45

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 165

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 166

mm;920Eon.6mm;or;m

mamawzom

US 6,880,086 B2Sheet 164 of 269

mama92:

Apr. 12, 2005

mokomjoo<20

US. Patent

02‘.07..

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 166

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 167

US. Patent Apr. 12, 2005 Sheet 165 of 269

SERVICE ENDPOINT TABLE 7_6

--

-—

.-
-

 78

80

82

84

86

88

90

92

94

168

LOGICAL TO PHYSICAL CARD TABLE mg

102 1 04

1

FIG. 14A

PRIMARY BACK-UP
PID PID

98

FIG. 14B

106

109

LOGICAL TO PHYSICAL PORT TABLE 1 1

102 10498

PR MARY BA - P

LID PID PID

1500 1600

FIG. 14C

 107

US 6,880,086 B2

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 167

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 168

US. Patent Apr. 12, 2005 Sheet 166 of 269 US 6,880,086 B2

ATM GROUP TABLE 1 8

FIG. 14D

ATM INTERFACE TABLE 114

ATM ATM

FIG. 14E

SOFTWARE LOAD RECORD 1288

CONTROL SHIM

FIG. 14F

130 132

 134

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 168

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 169

US 6,880,086 B2Sheet 167 of 269Apr. 12, 2005US. Patent

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 169

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 170

US. Patent Apr. 12, 2005 Sheet 168 of 269 US 6,880,086 B2

DEVICEDRIVER

0:
DJ

2
n:
D
Lu

2
>
UJ
D

FIG.16A

DEVICEDRIVER n:
Lu

2
n:
o
w

2
>
LU
o

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 170

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 171

2B68

0,.wm99”.
8,6SU

9%

mmzmomo_>m_o

2f0961teeh

SeI

5

0amaze558m.>>mzD.New
r.pA

tum@mvmaEk<
3N

US. Patent

 EMBEDm_0_>mn_
mew

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 171

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 172

US 6,880,086 B2Sheet 170 of 269Apr. 12, 2005US. Patent

1‘mowwwOOmm

_

MmommDOEZOO

_.N

m04?.O._.m.rzwhwammn.
Om:.07.

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 172

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 173

US. Patent Apr. 12, 2005 Sheet 171 of 269 US 6,880,086 B2

272

270

FIG. 160

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 173

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 174

US. Patent Apr. 12, 2005 Sheet 172 of 269 US 6,880,086 B2

PROCESSOR

(D
D
LLI
o:
a
9LI— .
2
o
U

ATM INTERFACE TABLE

PERSISTENT STORAGE

FIG.17

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 174

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 175

US. Patent Apr. 12, 2005 Sheet 173 of 269 US 6,880,086 B2

CD
06LU

g
g 6LI. 0')

E 8U C.)e OD:
D.

PERSISTENT STORAGE

FIG.18

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 175

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 176

US. Patent Apr. 12, 2005 Sheet 174 of 269 US 6,880,086 B2

oneD
Lu
0:
3

$2LL
2
O
o

PERSISTENT STORAGE

FIG.19

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 176

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 177

US. Patent Apr. 12, 2005 Sheet 175 of 269 US 6,880,086 B2

PACKAGING LIST 1200

863

860

SONET APP

864a

ATM DRIVER

864n

ATM APP

865a

MPLS DRIVER

866a _

867

FIG. 20A

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 177

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 178

US 6,880,086 B2Sheet 176 of 269Apr. 12, 2005US. Patent

mask/U20502.03402.FZmZOn=>_OOmm<>>km0w

mmD..<Z.U_mOm._.<mmzw0
mom.9”.

2<m00maOZ_._.<N_m_ZMOmeP/ngw

HZMZOQEOOmm<2CLOm

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 178

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 179

US. Patent Apr. 12, 2005 Sheet 177 of 269 US 6,880,086 B2

INSTALL 1212

1214

WELCOME

PLEASE PROVIDE THE

IP ADDRESS OF

THE NETWORK '

DEVICE FOR

INSTALLATION:

1213b

12130

1209

FIG. 200

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 179

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 180

DON.OE

US 6,880,086 B2

orN?ow

Emw<m4mm

Sheet 178 of 269

._._<sz_

Apr. 12, 2005US. Patent

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 180

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 181

US. Patent Apr. 12, 2005 Sheet 179 of 269 US 6,880,086 B2

INSTALL 1212

1215

NMS DATABASE IP ADDRESS:

DATABASE PORT

DATABASE PASSWORD

1209

FIG. 20E

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 181

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 182

US. Patent Apr. 12, 2005 Sheet 180 of 269 US 6,880,086 B2

‘_.P
Lu
U3

5 5ED _!
<1 LIJ
1— a:
_l
p—
2
U

RELEASE1.0

PERSISTENT STORAGE

FIG.21A
Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 182

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 183

US. Patent Apr. 12, 2005 Sheet 181 of 269 US 6,880,086 B2

SMS TABLE 132

1226 1228

IMAGE VERIFICATION UPGRADE
LID STATUS MODES

9623 PASSED X2348

‘I 227

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 183

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 184

US. Patent Apr. 12, 2005 Sheet 182 of 269 US 6,880,086 B2

1232

(-

AVAILABLE RELEASES

RELEASE 1.0

RELEASE 1.1 '

FIG. 21C

1230

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 184

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 185

US 6,880,086 B2Sheet 183 of 269Apr. 12, 2005US. Patent

 Di€225“.322.234?,2233...Em.m>m.mmowuE>32

“393$ESm>wno.Esgm65F03Emem

romddwv.wa“39091n:Ewggw

““355%Fowddwfimmr“angw

reflmdmfwmpoa”00500._.M_u.luEozfiEcEwomcuzSEE—woman:E
@J

moEEE

g855...2.::35“83.3...mzowE

9.699»

gamma

SEE?33>Eofi>mx863.3382D3zmwcmm.

I“3523EE.3%Hmm
FON.a.8...NowLama—.22a02=m>wm

arm.07.

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 185

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 186

US. Patent Apr. 12, 2005 Sheet 184 of 269 US 6,880,086 B2

IMAGE CONTROL

1238

1239 2

I RE-VERIFY 1236

1240 INSTALL
FIG. 21E

UPGRADE MODE

HOT

COLD

1245 ENTIRE CHASSIS 1242

1246 BOARD-BY—BOARD
1247

1243

1244

PATH-BY-PATH
FIG. 21F

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 186

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 187

US. Patent Apr. 12, 2005 Sheet 185 of 269 US 6,880,086 B2

UPGRADE CONTROL TABLE 1248

1252 1253 1255

IMAGE TIME FOR

9623 x2344 _-

FIG. 21G

1250

1251

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 187

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 188

US. Patent Apr. 12, 2005 Sheet 186 of 269 US 6,880,086 B2

FIG.22

RELEASE‘l.'|

RELEASE1.0

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 188

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 189

US 6,880,086 B2Sheet 187 of 269Apr. 12, 2005US. Patent

momaawizoo
.NYNV

Nw

wogohmszhwmmma

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 189

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 190

US 6,880,086 B2Sheet 188 of 269Apr. 12, 2005US. Patent

¢N.OE_llllllll1lllllll4IIIIIIIJ.__,_0______nu0me"8%”$8_TIIIIIIIA.IIIIIII4IIIIIIII________“.393_32%_wZ<4n_<._.<D“.2004__>:.<___"8N"«8.ulllllllllFlillIIITIIIIIIILIIIIIIII!___.uan:“mzfia405200_ .5E_n08flllllllllllrIIIIIIILIIIIIIIII
Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 190

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 191

US 6,880,086 B2Sheet 189 of 269Apr. 12, 2005US. Patent

mN.OE
we

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 191

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 192

US. Patent Apr. 12, 2005 Sheet 190 of 269 US 6,880,086 B2

LOCAL EVENTLOG LOCAL EVENTLOG

MASTER EVENTLOG

‘2 Iu. cn
m D.

o gU-fiLu
CE 0I)

9u.
2
O
0

L9
0_l
)—
2Lu
>
LLJ
.1
<
L)
O.1

FIG.26

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 192

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 193

US. Patent Apr. 12, 2005 Sheet 191 of 269 US 6,880,086 B2

FIG.27
Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 193

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 194

US. Patent Apr. 12, 2005 Sheet 192 of 269 US 6,880,086 B2

448

441

{—

CLASSSUB~CLASSaINSTANCE 446 FIG.28

444
442

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 194

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 195

“m
\

ii

QEtD

I‘ 03"”;:0 <

‘— L
(U
LOON

V :N mag

7’

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 196

US. Patent Apr. 12, 2005 Sheet 194 of 269 US 6,880,086 B2

- GROUP TABLE may

447 449

BACKUP

CARD LID

PRIMARY

CARD LID

GROUP

450

451

452

453

454

455

456

457

458

459

460

461

00 O ._x

O .L

(.0

.3

.46.;

A

A

(a)

CO
.A

(AN

.4 N 00 N

(A)(a)(A)w(A00O»)(.0NN—8OO (:300O.)(A)0303(.0(A)00co()0OONNNN
FIG. 30

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 196

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 197

US. Patent Apr. 12, 2005 Sheet 195 of 269 US 6,880,086 B2

464-467

468-471 476—479

464-467

®
468-471

FIG. 310

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 197

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 198

(mm.07.

US 6,880,086 B2

Ev0.;

Sheet 196 of 269Apr. 12, 2005US. Patent

@9193».novéov

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 198

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 199

US 6,880,086 B2Sheet 197 of 269Apr. 12, 2005US. Patent

thmnv.#2193 _

www.mmfimwwéww

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 199

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 200

US 6,880,086 B2Sheet 198 of 269Apr. 12, 2005US. Patent

0513?

Cum.9“—

2:».me

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 200

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 201

(mm.OE

US 6,880,086 B2Sheet 199 of 269Apr. 12, 2005

meowv

US. Patent

@
mNVva.

:7me

NEWS?

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 201

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 202

US 6,880,086 B2Sheet 200 of 269Apr. 12, 2005US. Patent

N8

Lovsvov,{93$va

mwTowv

mmm.9“.
@51va

thNnv
Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 202

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 203

US 6,880,086 B2Sheet 201 of 269Apr. 12, 2005US. Patent

0mm.07..

I
I
I
|
I
I
I
|
l
I
I
l
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
l
l
I
I
I
I
l
I
l
I
I
I
I
l
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
l
l
l
|
|
|
|
I
I
l
I
I
I
I
I
|
I
I
I

J

.Evubov#9“.-va~2EV-\\www~Nm¢ls¢©v‘\NmVI\svmv
Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 203

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 204

US 6,880,086 B2Sheet 202 of 269Apr. 12, 2005US. Patent

.rNVJwGV

0mm.O_u_
Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 204

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 205

US. Patent Apr. 12, 2005 Sheet 203 of 269 US 6,880,086 B2

FIG.34A
Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 205

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 206

US. Patent Apr. 12, 2005 Sheet 204 of 269 US 6,880,086 B2

FIG.34B
Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 206

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 207

880,086 132’Sheet 205 of 269 US 6Apr. 12, 2005US. Patent

930.50;J_<mmm>_z:om<o.Eon.4<mmm>_z:05.0Hmon—._<mmm_>_z:Qm<oLE9".._<mmm>_z:

mg.0:3%oh.om<ohmoa._<mm_m>_zzDEG55a.Emmmzzn9305.101._<mmm>_z:Qm<o.Eom4<mmm>_z:

\all._lIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIImeEmz52mmth81855
lllllllI\
Ylllllllllllllllllllllllllllllll4k

om<oozamgme5,3238%

<mm.OEmain:9oa<o2%,:oz_-555

ma..0:SSoi
om<o02.3338EEZBElllllllg

0146Hum—2200mmomo
4/

om<0.EOQ._<mw_m>_z:920.50;.Emmmzz:om<oEon.._<mmm>_z:om<oEOQ.Emmmzz:
mo.oizoo

om<o5.0;._<m~_m>_z:920.55.".._<m~*m>_z:ES503émfizzz,9205.9.W4<mmm>_z:mo<mo._.mhzmhmfimma

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 207

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 208

880,086 B2’US6Sheet 206 of 269. 12, 2005AprUS. Patent

9205.0;
.EmmmZz:93055;.EmmmZzz

9:5.50;._<m~_m>_z:

$30.55.”.imamaz:

om<o,EOQ
.EmmmEz:920.55;._<mmm>_z:om<u.EOm.memZz:

<3.07.3%EOE

mmm.OE

920

920._.sz200
025E219.Czézsomav

02.353892,3238”:

920Fan.om<o.EOm. ._<m~m_>_z=émmmzz:”
om<oEgon.om<o.EOm4<mmm>_2:._<ww_m>_z:

920.50;

4<mmm>_z: ,comm

920.55;9.558"émfizgEmmuaz:“new_

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 208

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 209

2B68

0,38

W(cm.OE
8,6SU962

M.mmammi2’83.a.29:m\S
S50022,1r..pA

om<ozo_5w,zzoo$05

US. Patent

mem

Qm<oPMOQ4<wmm>_23
Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 209

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 210

US 6,880,086 B2Sheet 208 of 269Apr. 12, 2005US. Patent

monm

 m8.9“.

..=2.2—mmmmOm

moho<mpxmo<o._><m

n:_>_._.<_mmmaoz

Dm<oOz_om<>>m0m
gm.0:Sam20m...5...

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 210

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 211

US 6,880,086 B2Sheet 209 of 269Apr. 12, 2005US. Patent

Dm<oOz_Dm<>>mOn_Qm<oZO_FOmZZOO-memU
Dm<o._.w_0n_4<mmw>_23amw<z<2E.<n_

m0<m0kmkzmbwfimmm
nm.O_n_

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 211

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 212

US. Patent Apr. 12, 2005 Sheet 210 of 269 US 6,880,086 B2

PATH TABLE ggg

PATH UP PORT TIME # OF TIME

LID LID SLOT SLOTS

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 212

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 213

US. Patent Apr. 12, 2005 Sheet 211 of 269 US 6,880,086 B2

SERVICE END POINT TABLE _7_6_’

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 213

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 214

US. Patent

407‘

5463

546b

546C

546d

5469

547

547

5508

550b

5500

550d

5506

Apr. 12, 2005

nguuuuuunununnDDDDODDDDDDDDD
DUUDDDDODDDUDDDDUDDUUDDDDDDDDUDDDDODD DODGEEDDBDDDDDDDUDD

DDODDDDDDDUUUD3000000DDDDDDDDDUUDDUUDDUDDUDDDDDUDDDDGDDDDDDODDDDDDODUD
UDDUUDODDDDDDD

DD

aaaaannaauann OUUDUDDUDDUU

Sheet 212 of 269

DDDDODDDDDUDDD

unanuuununanugDUDDDDHDUUSE%DDUDDDDDDDDDDUDDDUDDUUDDflDflDDDDflDDUUDU

um: DDDDDDD DEEDDDDDUDDDDDDDUU
DUDDDUDDDDODDDDDDDDDDDDDDDUDDDDDDDDUODODDD

FK3.40

US 6,880,086 B2

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 214

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 215

US. Patent

FK3.41A

Apr. 12, 2005

562b

X05628

546a

546b

545C

546d

5466

III.“II“Im' m

009>999
0.09..KAAAA

O O
0.9

09
000.9‘569r
’. AA

5508

550b

550C

550d

5508

5668

III.0“
566D ll0
542C

vv
'9:9...9.0..
0'.d}0;q,q;a;

.‘9‘$9i?99 ‘§
9

9.9 O’9'0000:

.

999990
~0¥¥V§ OO O O

.,.,.,.,.,§:§,§:§0¢:§,§:¢:¢:¢o¢:§:..w...
QO§.O.:.:. OOOOOOO 09900.09. 99Q

0 .900990900 O.9. 0.....99......0...‘..9...§§..000.9
’3§U§&fi#¥§fi§b 9 0

............

II“
X0

9'.Q?q; ‘9
z: z:

6 z: 0:
Q

¢vvwaawwwaa

90099090909999

. %fifi&&%flfifi’
3w?0.

Sheet213 0f269

l

IO mmlO IO

V5366§Vfi%&§fifififififififi%fifig‘§§§90099990099690
0 0.0.0.0.0.0.0.0.0.0.0.0.0
‘‘ ° 2:923:4.3.

O

..

18%?fifiwfiflfldfi!

'Q'Q'Q'O'Q'Q'Q'Q'Q'Q'9'Q'Q'Q'Q'Q'O'O'Q'O'O'Q'O'9"
"””%%%~V¥Vb”‘

99999g ,,
qfififip

09 0
$05

9
096

O O

9009

99999
$89

9999999 9999
9999gpq--5 .

9g;9
0

(3m 011 m“\\“_‘ Cam mI“III“
Imm'xO

§QV
99 99 9 9
$¥$fi$fifififi¢%fl%fi¥¢fi

%&%%%V¥
99999fi¢¢

O
9

90¢
90990099090909

Qfigfiéééééfififigguvwg
.a4%éfifihfiéflhaflflwhaflfifihfiéflhafié

US 6,880,086 B2

A4

1
C

632

5526

552d

5520

552b

5528

568b

5688

543C

636

O

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 215

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 216

US. Patent Apr. 12, 2005 Sheet 214 of 269 US 6,880,086 B2

BACK 620 628

MI 53

556h 7 554a

5569 ll ’ Ii 554b
556f I g I 554C
5568 I- g I. 554d

Illuuuuuu uuulll
556d '3 I I I I p p p p p I I o I p 5549

mm. a .====
556b III I 5549556a II. 5 'IIIII 554h

glll I a IIIIIII
MBA

5703 --= 542a
570a — -— 543a

570a g g s I I s g 57ob

I. 57%

560h II A a ll 558a5609 558b
560f I a I 5586

560e .- a I. 558d
IIIU uuuuuuuD p D p p p D D P p D D p D

560d I 5589
II. I...2385 =---- a ll... Egg;

560a III... ’ ill... 558h

?IIIII d Illllll/ FIB - MANAG ME// /A
r,'.'9'.'.'.‘9'.'.'9"'."""'.""‘.'.'9"'.'."
afififififififififififififififlfififififififififi09990099099999099900999902090000900999900999099990
Mhfifififififififlfiflfifififififififififivvv
&&&&&£i§£€$fifiéfi¢fi£fi§éfitfi¢

FIG. 41B

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 216

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 217

US. Patent Apr. 12, 2005 Sheet 215 of 269 US 6,880,086 B2

634

F0
POWER SUPPLY

5463 UPPER LAYER
PROCESSING

5508 i FC PROCESSOR
|-_-

5828 —XC NF

UPPER LAYER

PROCESSING

POWER SUPPLY

636

FIG. 41C

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 217

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 218

US. Patent Apr. 12, 2005 Sheet 216 of 269 US 6,880,086 B2

[-ij44p
£1440

644n

e44l

;644m

MD

EU

449[;:L [slushflawDemU64%U46;Dam'HamDame[LegD646644h

FlG.42A
644f 6448. 6
am
;6440

644b
U

448

648a' esob SFIC10SF 650a648b640a64ob' 6400640d
L1

6228

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 218

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 219

US 6,880,086 B2Sheet 217 of 269Apr. 12, 2005US. Patent

02

boom080OvmflEwmflxvmomeflwflgflwfl¥~Mfl¥Sumo
wa

cmmml
_vmwammoUmvm

meoUomw

va.OE_—mm——r
ammo_¢mdwwgmwmflwwgmgdwmgcvmm.hvmmwmmm“a

meo
comm

a
90mmommwowvw

OVmoW
$0

a
memo.

mvmo

onvm

mmmw

owmw\\——————mm——————

nmwm

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 219

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 220

US. Patent Apr. 12, 2005 Sheet 218 of 269 US 6,880,086 B2

J||||||||II'IIIIIIII
8‘3 gfi

28 «a

FIG.43

l!IIr!III—===

83'_l'~DSFIF589‘1

5466

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 220

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 221

US. Patent Apr. 12, 2005 Sheet 219 of 269 US 6,880,086 B2

0
V
1!)

669d

mm mmL0

509' 5.28!

D D D O

2‘: 25 E E

Q. U. U' Q.
< < < <

v— a— r— |--'<. <' (I <C) D D C]
L1. LL LI. L
(I) U') m U)

99%?

CTS 673

 SFCONTROLCARD667

" SFCONTROLCARD666

5F

9'
LL

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 221

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 222

US 6,880,086 B2Sheet 220 of 269Apr. 12, 2005US. Patent

 . mmv.9...mmv.OE(me..mUEfiwwsowaswas\oohImmv.9...E“:dmlm:2E52aEImac:gsmgmg.“025.2%:E 65%mma$95:55%255”:
Exams

name

A

m?.0:as593:fig085595“:ms NIEN”2E>mmA
mmv.QE

. m28_isEfiEdEEmmv0E>m.m%mEII. 2)::E8mmmlvhzaElzofimnam
“So8

m5

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 222

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 223

US 6,880,086 B2Sheet 221 of 269Apr. 12, 2005US. Patent

gladmmvGE.<9:<3d:ammoSEQES:Easfibgdamfi$929:alllI
a:ts:<7;2%,:

memmuoESumoE>5<_IE532$.5983-1053. -259mSEZSEBEEI8.5%by.AuIlull-8Aom>mo.x._oGoo—>—m>Smebm<§VImmiv.OE<m¢.OEamNE29:£822:Augas.A.Sam:882<3u:>2a5mmSEEAI aka:5<3d:ua>2E:5£329:
.«25VaA>3”mag:Eméw5m:

.$55Al>m.m Ql>._._>_._.o<Em8m. EdaF3.0;alwwmgWV.0:<3.3<2,.0:a8o29:m8:9:a29:$4829:m5
Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 223

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 224

2R”680,

0I%wv0:.$2.50\\,\6\\m\ESW9
women.26lllllVom2;8Emma

962f02

n//wwwfiw//3%h/a
S

328:?35>AiommcmIua
M8Emma05mm:m59

02

n.Ngmozfimou§mhommEImEag
A

55265.8».w3%

Inulllu'mbfimOpwUmOmEm

ouEmumEz.

US. Patent

 Him9\memo;amx\\.

ombfimEEmma

mHmz:zo

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 224

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 225

US 6,880,086 B2Sheet 223 of 269Apr. 12, 2005US. Patent

xxnfiV.mu_u

m;.0: m;.uEll.mvmn2.IF1N:EE>E<<E
_aI \:::||:>s1:|||Jmh¢.o:92%EIp12Sada”.l9.20II.>=>:u<FmmumV«mo<u:

m8:

i

mmwMur__mm”9aIexo>NNNNxsoomHomhmo
mm<zm

_m~m:.0:3ES.5955

 aElem
m:

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 225

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 226

US 6,880,086 B2Sheet 224 of 269Apr. 12, 2005US. Patent

m5».O_u_
40mm>m.~NIEOON

40mm>m.~NIEmN

av:.5“th>b>=o<$2.5me>.:>:.o<EaI.333:28..55onI2.I
33%mm

wm<>>om<zm5

>._._>:o<l_.mln_mx>._._>:.o<lElm—m

8.43m:

mmmemwmuowi

$550o2:9:<2..o:. >3NM:9:SK<5..9”.<3.GEH<2a:ass”:is:29:
m>o5l1

MON0o2.SEE<2».2“.
a29:

Ev.OE.5KEOE
Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 226

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 227

2B6

m.0,mvOE
008,6

S4/EmmmEzU//
//

Him9women.3m

9.IIIIIIMo.o55mM8Emma
522

wEcumsaa.3Esa.2
$

783.3.$8.439
Maam.321de321dembfim0p2,4/E59Smog3m\\1/\r.LEE3\ \P/\‘IIIIIIIIIIIvtoHim$8.132oNEEnEEmmaaEEmmaw$8.138aN_P”fin—mm”minim

s”U

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 227

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 228

US. Patent Apr. 12, 2005 Sheet 226 of 269 US 6,880,086 B2

3m
C'—
1‘
Ln

(U E
s 8| 3
Ln ‘9 8o|— _

o n: ’2
DJ a) 'O .2 _II <
o H- 0

o 5- 23& :HEEI E8 a U:U E

16H
HIIIIIIIFT:—|IIIIIHI

CTS m EX CTS 750

 CONTROLLER542D CONTROLLER543D
N
In 0')l‘ r~ IN

N U) m VI— c -
E on QU.

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 228

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 229

2B6800,

w.6,mom0:So»
U

oom.oE9NEE
62f0722

h_
S

at

8m.2“.Ola

Was.9$22.:Emma
2:5598>

21

mnA3
00m6:

mm»9It$.5meo2m5E

US. Patent

v3

(om.OE
QOSSEEm

Elk/E5

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 229

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 230

US 6,880,086 B2Sheet 228 of 269Apr. 12, 2005US. Patent

2.N:E:m52.E‘I
_.

mommm—uozm
>:>_._.o<lHEI...<~:.mmlEmEZIuth20>«mtg—2ImE.|_2I_

com.0;mlmME

08a;wlmlh2

new”

5E5E>E<5.0%EmmaE52ElamSPEC>.:>_.8<Emma>.:>:b<
mfl050..405200mm<>>om<zMaw—5.53:2oom.2”.amm2m5xm

<8.9“.EOE

mom.9“.

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 230

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 231

US 6,880,086 B2Sheet 229 of 269Apr. 12, 2005US. Patent

EmmIEEmcompm52%
EuwE>2

N222?

u52%
Eu2;>m.m 82Down”Gama50mP;>m.m

wEmmlzgm
.llamasNEIES32%

flow—F
Emmlzyfim>m.mN3

Oom.OE

mom.0:mow.0:mom.0:a29:mm20%.ole29:E52:Imafia;E58:2
oz>m.1:25:05<8o:mm:.29:

«Qa:g.l .N22:2.was<om0—“—5aEUI4%;2;Ba8m29:
88%

En.o:am:29:«hhh

son;aIt222%25N55o2E:m5m5550-:$5955
Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 231

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 232

US. Patent Apr. 12, 2005 Sheet 230 of 269 US 6,880,086 B2

781

I |

8kHz(PULSE)

19.44MHZi:
:l 75°'°125%|mI|I

lI

790

784

8kHZ(50%DUTY)——————-L—__——_'''——-—-—————L______ l I

77.76MHZTIME - FIG.51

1944MHZWITH EMBEDDED8kHZ
Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 232

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 233

US 6,880,086 B2Sheet 231 of 269Apr. 12, 2005US. Patent

Nm.OE

NIS.EEK

2%mel.mp0xm:5x.1Ja
N5388me

E$23.29.2
eF

08

82v8

9.34

mow

TONSOH#20mm>o._._0m

ou#202mz>>D<O._

 ou#20zmI>>P

33?:N550

6 E25i:53"#2quo2%;F
“max:$5£50£5NEE£2

-Ewas:83uvaquo2%;Vhave55$288
95m$03~55

th\

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 233

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 234

2B680000,

8,mm.or.
6SU

a:x38%atE.x:

w

2goodMEaN15.QEK
2n.

aw
mtaomazo:<mmzwoS2_MMkZDOODoomEmma9omm:mmfia#3

5

mszwmma52zmzz,2,98.3.:mm52):2,~55ammodzmIt;N123?n.mga:vamnmmmuEmBmoflammflmmkmM65xmv0252um0%.aw\mO._.O<m._.Xm_

US. Patent

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 234

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 235

US 6,880,086 B2Sheet 233 of 269Apr. 12, 2005US. Patent

9%.o:a9mgd:mmB

NIEdemPmoNIENNwmmw

 <¢m.OE

mum.uE0.—

59B:SEE.

mom”

warm_-«Ibis:

 «aVIIIEssamoNSmmwwfiéaN3298>_ nEu.uI.mmHnl$93:_mww_pmwh"Nm5nFNw,mn—r.llllllllllllllllllllllllll.
>ma

szvvm_

mm“wfim
msxm

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 235

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 236

US 6,880,086 B2Sheet 234 of 269Apr. 12, 2005US. Patent

AAZVEQImDmEOB
A

mp<mmzzAzrmmxphas;NISSAN.meaNzxwnEos

‘Nmn0mm>m.m

ommw

mwlmamaze50SUNg”Game50mtm.55an>m.m

9%.9“.

>:>_5<I$be

avEH850>:>.5<g5#8qu>:>:.o<-
060...5528mm<3om<z

 Nzxwammommsm.It;$23.9

IEd:3m29:

mg

$205.:>5Rm

4¢m2m002>m
amin.0:a.29:

mgm:E

gm.0:EOE

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 236

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 237

US 6,880,086 B2Sheet 235 of 269Apr. 12, 2005US. Patent

<mm.OE

mmm.u:o»Mmmd:Inn—II.02%|NE2.ozanzfimdfiEEm‘Ei.m:E158V:58:<
_lllllllllllllllllllllklllll

_._EEnhE:_EEO“H.w529:u8_ 5%.E
m:“mma_I.0mm.O_..._a"PmE“umhhNEZVVa—llN223:Hwas$93:

was0...

a:Sh HII E5:823:2:|_ulwIa:mum(SEE
_............ NW-----.,m-m£--ua:ea:

.>3”mma:Emm\.o._.IIis:m:57%E55
m55

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 237

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 238

US 6,880,086 B2Sheet 236 of 269Apr. 12, 2005US. Patent

mmm.OE

 new»Bum—o>._..>_.5<

z:E94IzoEszEu.213E:gm
2.E

maxi—mm

EmaImbm
#65

Emma>._._>_5<

Sumo>._._>_B<

acmmmoomm
2.3.5.4bxICES

ENE—o>:>:.o<

—mm|=|SEQEat:mm<21:I._.mm=.:.IO>own.=EV20.39:onI$552ats:|—“wwssoméIlllllln:22-a:I
6“53:3

EEEQJAEan.w:03.o:0?,.o:<2.o:aEa2mm2ll 29:mom»whoxm

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 238

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 239

US 6,880,086 B2Sheet 237 of 269Apr. 12, 2005US. Patent

zbaIEEm33uE26
50mE>m.m

NzEvvdw

comm
.52%.

50mp;>m.mn52.muzmo:40mE.>m.m

mEmuzafi
"IS?$1.5552%I v32;Ex:25>3Nmn

mmm.2...mmm.OEmmm.OEwasEO~E.wlmumEOEaEOEE>E<I.$155$56:2
2am
I‘-

a:
wig._.lE2550£232NEE:m20%

38%>3

5-52%.
so»:QM

295.“sz~55
E:m5sot:maximcm

0mm.0.”—
<mm.0:EOE<3.0:aEOE<36:am:EOE

wombm5xm

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 239

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 240

US 6,880,086 B2Sheet 238 of 269Apr. 12, 2005US. Patent

mum—<0OZ_Dw_<>>m0u_

DM<O.POMZZOOéwOmO

DK<OFEOQ

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 240

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 241

US 6,880,086 B2Sheet 239 of 269Apr. 12, 2005US. Patent

OM20025m<>>m0u01,10ZOFowZZOoumemo
Dm<0H10;4<wmw>_ZDmuo<z<215E

m0<mOPm._.Zm._.m_wmwa
hm.OE

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 241

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 242

US 6,880,086 B2Sheet 240 of 269Apr. 12, 2005US. Patent

mm.9“.lggllaglgailfigIHEIIEE
mm>_wommHmOQmgm<zmmvwvvm

10.5202

FIEEmfi1.2m5m:

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 242

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 243

US 6,880,086 B2Sheet 241 of 269Apr. 12, 2005US. Patent

>mOsm=2

mm.OE

:ovm

w%momeor.20007.200--mu_>moxaoghmzmo_>moxmozcmz
Hmmm<m<~<osz

owlmE052
Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 243

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 244

US. Patent Apr. 12, 2005 Sheet 242 of 269 US 6,880,086 B2

MANAGED DEVICE TABLE m

FIG BOB

SHELF TABLE _9_8_9

CHASSlS PID

FIG SOD

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 244

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 245

US. Patent Apr. 12, 2005 Sheet 243 of 269 US 6,880,086 B2

CARD TABLE 51’

VERSION SLOT

E -==
47a

FIG 60E

PORT TABLE _4___9’

FIG 60F

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 245

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 246

US. Patent Apr. 12, 2005 Sheet 244 of 269 US 6,880,086 B2

SONET PATH TABLE QQQ’

600D

PATH PORT TIME TIME
LID LID SLOT SLOTS

m“-

SERVICE ENDPOINT TABLE _7_§”

6003

FIG. BOG

ATM IF TABLE fl”

114D

ATM
ATM II= SE

114a

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 246

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 247

US. Patent Apr. 12, 2005 Sheet 245 of 269 US 6,880,086 B2

VIRTUAL ATM IF TABLE fl

ATM IF LID

5054

VIRTUAL CONNECTION TABLE 9&4;

993D

FIG 6OJ

994D

FIG 60L

CROSS-CONNECT TABLE §_9_6

FIG 60M

ATM NODE TABLE m
999b

MANAGED DEVICE PID

FIG SON

9990

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 247

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 248

US. Patent Apr. 12, 2005 Sheet 246 of 269 US 6,880,086 B2

PHYSICAL MANAGED OBJECT 991

ATTRIBUTE DATA

991a

 991b

FUNCTION CALLS

- GET PROXY ~991d

- GET PARENT -991e

- GET CHILDREN -991f

- GET CONFIG -991g

- SET CONFIG -991 h

 991C

FIG. 61A

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 248

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 249

US. Patent Apr. 12, 2005 Sheet 247 of 269 US 6,880,086 B2

PROXY &

ATTRIBUTE DATA

9928

992b

FUNCTION CALLS

9920

 - GET PARENT -_9_92_e

- GET CHILDREN gag

- GET CONFIG -g9_2g

- SET CONFIG —9_92b_

FIG. 618

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 249

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 250

US 6,880,086 B2Sheet 248 of 269Apr. 12, 2005US. Patent

Nm.0.“—s.._.<.u2m:_::w._.S:FFugmm

£5meo202©can..Ezow38:80
:ozméeg8:85.00

83.Ema.£355mm535:2£9”.£52539239mm.53Esz

mammotme“52%wtontfioa;wtwcw

Emakmzow360.2ummmcmEHmz=m>m
Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 250

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 251

US 6,880,086 B2Sheet 249 of 269Apr. 12, 2005US. Patent

Qm<uHmon—g<mmm>_zaom<o55¢._<wmm>_z:$2055;._<mw_m>_z:920.50;.Emmmzz:

.mme.0;£88»om<oPKG;._<mmm>_z:920Fan.._<mmm>_z:om<oHmon—._<mmm>_z:920.50;._<m~_m_>_z:

am<o02.9258£23228”:

(no.OE0E9:Oz_-IQESM

oz_om<>>~_o.._Cz<ozzommv

mmw.OEmemoCh.930FuelimmmZz:$30.55;._<mw_w>_z:Qm<oHMO;.EwmmZZDQEDPmoa._<mmm_>_z:

E.“....z--

uuuuuuuumeEmzHmzmmrhmomzotgm.......IIIIIIIIIIIIIIIIIIIIIIII.-Ir\
lllllllllll4.

mo.oEzOo

.

wo<mo._.m._.zm_hm_mmmm
930.55;._<m~_m>_z:055Fan.._<m~_m>_z:530HMOQ._<mmm>_z:om<oHmOQ4<mmm>_z:

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 251

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 252

US 6,880,086 B2Sheet 250 of 269Apr. 12, 2005US. Patent

926.Eon.
.EmmuZz:«<05.0.”.<mmm>_z:

9305.0;
4<w¢m>_z:om<o._.m_0n_._<m~_m>_z:

92.5551
._<wmm>_z:920500.;.Emmmzz:

om<o2.0;imam—22:

om<oban.4<mmm>_z:

<3.07.8%20m:

930

mmm.OE
ozaassme$252850v

r

025%ng£23228”;
\

920.EOQ

om<0hmoa.Ewmez:._<mmm>_z:oz<0.Eom._<mmm>_z:om<ohmomimam—22....9:5.50;._<m~_m>_z:

om<0.EOQ._<m~_m>_zs9205.0a4<mmw>_znom<o._.~_0n_._<mmw>_z:

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 252

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 253

US 6,880,086 132Sheet 251 of 269Apr. 12, 2005US. Patent

vm.07.a.QomoimmiomoimmE202,memmmmonzmmmmonz._<o_w>1n_._<o_w>:n_.>omn_5585.:E5”.E50:a

Mm>>m=>

.tVroF.mvvor.mgov

.30..m._m<._.m0_>wn_OmO<Z<§ZO_._.<NFm_Z__>_D<
Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 253

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 254

US 6,880,086 132Sheet 252 of 269Apr. 12, 2005US. Patent

83930Oz_om<>>moh_«a:mm>_mn_

mo_>~_mm00.—.253046

mm.9“.SE920025m<>>mou_
’!V‘mmmama;—122m

«.memm>mmm922

Mean920.50;
an;~5szIflflfllII!I

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 254

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 255

US 6,880,086 B2Sheet 253 of 269Apr. 12, 2005US. Patent

 3.36E?“—ac=vc0”Duos.mum.r.$«.m¢r:wtwm

$.25:8fi886Eam”E3005mmthOw

mam

53.8..8'o.m._Dmmm83.332OEan”

IIEIEEIEmammafiéflaIfiggl.3123.§{022.0qu.3EMEEEEEEE.seamszszfieé"5
$52....$1.

~o~.m.3w~2”eo§m\wwmI25:leases?)5.5.3555g23ms»EEEE
gigs”Ill-<

E5333.E223...:can32»83mmgum2m.~o~ddwfi~mp5955.32:5.”m$9(mam
<©©.OE

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 255

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 256

m600

0,$57.5Enos.@363..decoawm
000

8;m.ucaoomow—LEE.2._.<
6S

Umam.5:2.2:gala:..9Egg;5:25:on6$229»?ES!98m82.3&2o.2E:-..,E2:Egg3M3:22:22IE;mammamssaflm:z:25.:2I3:1:-:3".g€3.52ouFEMEEEEEIEEEEggfizsfiegggm32:8..£E<3505a].a~c~¢8t~9H5296aew.
hS500221r.

w

US. Patent

mmo.07.
Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 256

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 257

2B68

o,i03:25.3%
88a6m96

2ampmmuo_>mom.nw
.{Baez{FE

fiONVOHIE-“Egg;2.58395:3ace—nouns:5152figééfiafl359m$1.6w
ehS5002291LpA

«36.333"Sagas.52:5,”Wu

US. Patent

00m.9“.

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 257

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 258

2B680a

0gun.”2:91
8

s,llEldgg
6

S2:80LUaEn.Q-..”
acom9!.“

96

2”5-2.3-22o:fl.pmFc8813-;.
v.06U.

6vamggllglala"A...Eggagggmtwvml/e95.9.50.965
ehS5002291r..

MUS. Patent

mwm.flaw—.wap.023g£8.30m.m{882ff».EonuncuZ.0Echaucas.”WE3.5.1an“
Eggawe.HE~0~ddwfi~9”Basisumz=a>um

Dom.GE

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 258

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 259

US 6,880,086 132Sheet 257 of 269Apr. 12, 2005US. Patent

Nam

>536&2“.

€3.23”$223Efliw—_..mmom.3.had;“9Ewufim823285Fa:52%

3am‘2=8.9mto”.393.5ism'.Q 911?”!!!

«ON.m.we.war30053.m.E296E383EBm>m”52:006316EXOmm835“83:32..52%xomm$szE2m>w

Newddm.mwmv..EEm>m

3:.$28tonifigamma—g552m

pauuco"252mNNrdcfimww”5me..nouddmfiuar9mDwmwSuddenmmp0.5«and.3:.umw.u.mm®®/|\|m8_>oo'm.5532;_oE38232mMU—EEQ

c2528Hal-III.
____,_____,_.
1mm

‘2! QQQQQQQQ

luggsmafilll.3592...22..52>8300«EN2mNON.a.war.New.Emma—.55.u¢2=n>w0

wmwDoomnmNm

Mac.9“.
Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 259

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 260

US. Patent Apr. 12, 2005 Sheet 258 of 269 US 6,880,086 B2

10568

1056b

10560

1056d

10568

RESOURCE:

ATTRIBUTE:

THRESHOLD RULE:

SAMPLING FREQUENCY:

ACTION:

10560JD LOG

1056nJD NMS

CANCEL

1056p

FIG. 67

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 260

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 261

US 6,880,086 132Sheet 259 of 269Apr. 12, 2005US. Patent

onwhflmatuc.n:vv3.52%?n:EmoouméqoogzmmkfimmNAmo8838:8onzmmEmmmAmSmEF<n:
wvor

w._.&_>_m._l_.<4.2.0Ow.=<n_82m12%mmommmTEEEzwEEVmmommm22m52w12$mozoommm._m<.__<><z:
m4m<hDAOImmthO:>_<Z>n_

rowrown:momDmem

@982

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 261

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 262

US 6,880,086 B2Sheet 260 of 269Apr. 12, 2005US. Patent

(mo.OEou339E?u:«50:FoE<Exp.2200#355$8qv33952n:%mac:F0E<Exx.2200#355#3mrAMFDmEt<n:n:_>_._.<mmwwEmoouméaoogzwmzfimmmEsthu:8%NAmoEQSKémSwj<o05E:2
2%;memA95952n:

2Amomv33952n:mmwk82mm2":12.".$8a._mmoxmm5%520m

 . 82m12$15ENamwmommmSE52882m12$m._m<.__<><z:

0mm”.03miniZO_PO<OZ_.E_>_<mwk3m_m._.._.<mOmDOmmmnSOmO.11...L39somvorhavebvabwvophave.95?mjmxt.GAOIwwmIHO_S_<Z>Q

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 262

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 263

US. Patent Apr. 12, 2005 Sheet 261 of 269 US 6,880,086 B2

THRESHOLD GROUP TABLE 1052

THRESHOLD

RESOURCE ID GROUP up

10528 1052b

8313

8312

901

902

903

5054 8433
 7312 8542

FIG. 698

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 263

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 264

US 6,880,086 B2Sheet 262 of 269Apr. 12, 2005US. Patent

(on.9”.

mm;a»:”So:—oE<E.228NEE#355a~59:oE<E.228NEWIIIIIIIHEEEEEEEe....mEEt<L.:5.683Eng.”5835.:2mgIIEIIIIIHIIIa»:SEa:SE
23

EE262mTEEEE$802mEEEE_552.28:3I:oEao9.528mszOOm—m
:hauuaaa:SEa:..... ZO:.U<m...Dm.~_._n_.<momDOmwmADOZOm<_m<>m<_m<>m<_m_<>.m<_m<>m<E<>m<_~_<>.m<_m<>m.=..m023n=2<m.~=.:.

£93222:L32:3?:xmveFave339:;va:32:3qu:owvofnwve:ova:nmve:83?:wvoww..m<._.OJOIwmmIFO=2<Z>D

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 264

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 265

US. Patent Apr. 12, 2005 Sheet 263 of 269 US 6,880,086 B2

THRESHOLD RULE TABLE 1050

RULE LID EXPRESSION

9421 IF ATTRIBUTE > a

9422 IF ATTRIBUTE < a OR > I)

10508 1050b

10500

IF ATTRIBUTE > a

9423 BETWEEN b-C OR > d

BETWEEN e-f 9424 IF ATTRIBUTE < a

9425 IF ATTRIBUTE = 0

9426 RMON

IF ATTRIBUTE < a

9428 GO TO RULE LID b

FIG. 708

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 265

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 266

US 6,880,086 B2Sheet 264 of 269Apr. 12, 2005US. Patent

C..OEEl-lllllHEEI882:333"l-llllHEE
ommzz:\E,

lllllllllllllll
DEM—«EH.2200

ll-llllllIE.IIIIIIIIlllIllllllllllllIIIIHEEEEEEEE.... E1...2m.E.<"—

 III3::62mmi.q.2~meNamII.33mmomfiEEEzomI85E:SEIIE.a;9»:552n.528asmmommwI._.<DEEE:2;2a;mg5&3828%$2823Sm§<><z=-

:83:

“$562.=_muuam93SE.man;.m<_m<>—.m<_m<>.msms,.msmg.22;.m<_m<>.m<_m<>53.20:2@2255H.525:momaoflmfimflo3:39532:E.:wa95m2:Some?5m3:Emwvor52,39:23?.wvofiwvofimvfi$323638uafavormgm/E.OJOIwmmIPO_S_<Z>O

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 266

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 267

US 6,880,086 B2Sheet 265 of 269Apr. 12, 2005US. Patent

<Nm.OE
Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 267

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 268

US. Patent Apr. 12, 2005 Sheet 266 of 269 US 6,880,086 B2

FIG.72B
N
[\
O‘—

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 268

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 269

US. Patent Apr. 12, 2005 Sheet 267 of 269 US 6,880,086 B2

10828

1082b

10826

1082d

622b

Ball“

llmltlllll L“ —— FIG. 73c
’ -gr'.

0!s

\
M
4fl
0,v

'4‘\‘y’
.

.tA“'/t..//
1\

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 269

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 270

US 6,880,086 B2Sheet 268 of 269Apr. 12, 2005US. Patent

98801

FIG. 73B

1086I

10869

1086j

J/

10868

1"“mil“.%\«NV.wiaufiwxxxx1nulllllll..ll15‘"IA.«9%

1064a

1086a

1084

1064b

FIG. 73C

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 270

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 271

US. Patent Apr. 12, 2005 Sheet 269 of 269 US 6,880,086 B2

POWERSUPPLY
FIG.74

a:
o
co
m
m
o
O
o:
(1

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 271

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 272

US 6,880,086 B2

1
SIGNATURES FOR FACILITATING HOT
UPGRADES OF MODULAR SOFTWARE

COMPONENTS

RELATED APPLICATIONS

This application is a continuation-in-part of application
number

Ser. No. 09/756,936 files Jan. 9, 2001 which is a C-I-P of
Ser. No. 09/718,224 filed Nov. 21, 2001 which is a C-I-P of
Ser. No. 09/711,054 filed Nov. 9, 2000 which is a C-I-P of
Ser. No. 09/703,856 filed Nov. 1, 2000 which is a C-I-P of
Ser. No. 09/687,191 filed Oct. 12, 2000 now abandoned

which is a C-I-P of

Ser. No. 09/669,364 filed Sep. 26, 2000 which is a C-I-P of
Ser. No. 09/663,947 filed Sep. 18, 2000 now abandoned

which is a C-I-P of

Ser. No. 09/656,123 filed Sep. 6, 2000 now abandoned
which is a C-I-P of

Ser. No. 09/653,700 filed Aug. 31, 2000 now abandoned
which is a C-I-P of

Ser. No. 09/637,800 filed Aug. 11, 2000 which is a C-I-P of
Ser. No. 09/633,675 filed Aug. 7, 2000 which is a C-I-P of
Ser. No. 09/625,101 filed Jul. 24, 2000 which is a C-I-P of
Ser. No. 09/616,477 filed Jul. 14, 2000 which is a C-l-P of
Ser. No. 09/613,940 filed Jul. 11, 2000 which is a C-I-P of
Ser. No. 09/596,055 filed Jun. 16, 2000 which is a C-I-P of
Ser. No. 09/593,034 filed Jun. 13, 2000 now abandoned

which is a C-I-P of

Ser. No. 09/574,440 filed May 20, 2000 now US. Pat. No.
6,654,903 on Nov. 25, 2003 and

Ser. No. 09/591,193 filed Jun. 9, 2000 US. Pat. No. 6,332,
198 which is a C-I-P of

Ser. No. 09/588,398 filed Jun. 6, 2000 now abandoned which
is a C-I-P of

Ser. No. 09/574,341 filed May 20, 2000; and
Ser. No. 09/574,343 filed May 20, 2000 now US. Pat. No.

6,639,910 on Oct. 28, 2003.

BACKGROUND

The majority of Internet outages are directly attributable
to software upgrade issues and software quality in general.
Mitigation of network downtime is a constant battle for
service providers. In pursuit of five 9 s availability or
99.999% network up time, service providers must minimize
network outages due to equipment (i.e., hardware) and all
too common software failures.

Service providers not only incur downtime due to failures,
but also for upgrades (i.e., deployment of new or improved
software and/or hardware) or software and/or hardware
patches that are needed to correct current network problems.
A network outage can also occur after an upgrade has been
installed if the upgrade itself includes undetected problems
(i.e., bugs) or if the upgrade causes other software or
hardware to have problems. Data merging, data conversion
and untested compatibilities contribute to downtime.
Upgrades often result in data loss due to incompatibilities
with data file formats. Downtime may occur unexpectedly
days after an upgrade due to lurking software or hardware
incompatibilities.

Often, the upgrade of one process results in the failure of
another process. Sometimes one change can cause several
other components to fail; this is often called the ripple effect.
Typically, the software is assigned a version number and
each time the software is upgraded it is assigned a new
version number. To avoid compatibility problems, different
versions of the same software are not executed at the same
time.

10

15

20

25

30

35

40

45

50

55

60

65

2

Most computer systems are based on inflexible, mono-
lithic software architectures that consist of one massive

program or a single image. Though the program includes
many sub-programs or applications, when the program is
linked, all the subprograms are resolved into one image.
Monolithic software architectures are chosen because writ-

ing subprograms is simplified since the locations of all other
subprograms are known and straightforward function calls
between subprograms can be used. Unfortunately, the data
and code within the image is static and cannot be changed
without changing the entire image. Such a change is termed
an upgrade and requires creating a new monolithic image
including the changes and then rebooting the computer to
cause it to use the new image. Thus, to upgrade, patch or
modify the program requires that the entire computer system
be shut down and rebooted. Shutting down a network router
or switch immediately affects the network up time or avail-
ability. To minimize the number of reboots required for
software upgrades and, consequently, the amount of network
down time, new software releases to customers are often
limited to a few times a year at best. In some cases, only a
single release per year is feasible.

In addition, new software releases are also limited to a
few times a year due to the amount of testing required to
release a new monolithic software program. As the size and
complexity of the program grows, the amount of time
required to test and the size of the regress matrix used to test
the software also grows. Forcing more releases each year
may negatively affect software quality as all bugs may not
be detected. If the software is not fully tested and a bug is
not detected or even after extensive testing a bug is not
discovered and the network device is rebooted with the new

software, more network down time may be experienced if
the device crashes due to the bug or the device causes other
devices on the network to have problems and it and other
devices must be brought down again for repair or another
upgrade to fix the bug. In addition, after each software
release, the size of the monolithic image increases leading to
a longer reboot time. Moreover, a monolithic image requires
contiguous memory space, and thus, the computer system s
finite memory resources will limit the size of the image.

Unfortunately, limiting the number of software releases
also delays the release of new hardware. New hardware
modules, usually ready to ship between major software
releases, cannot be shipped more than a few times a year
since the release of the hardware must be coordinated with

the release of new software designed to upgrade the mono-
lithic software architecture to run the new hardware.

An additional and perhaps less obvious issue faced by
customers is encountered when customers need to scale and

enhance their networks. Typically, new and faster hardware
is added to increase bandwidth or add computing power to
an existing network. Under a monolithic software model,
since customers are often unwilling to run different software
revisions in each network element, customers are forced to
upgrade the entire network. This may require shutting down
and rebooting each network device.

Dynamic loading is one method used to address some of
the problems encountered with upgrading monolithic soft-
ware. The core or kernel software is loaded on power-up but
the dynamic loading architecture allows each application to
be loaded only when requested. In some situations, instances
of these software applications may be upgraded without
having to upgrade the kernel and without having to reboot
the system (i.e., “hot upgrade”). The software applications
are often assigned a version number to track the changes in
each application. The assignment of a version number is an

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 272

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 273

US 6,880,086 B2

3

administrative task that is generally completed by the person
changing the application and is a procedure prone to errors.
If an application is changed and a new version number is not
assigned or an incorrect version number is assigned, the
application may not be recognized as an upgraded applica-
tion and, thus, not hot upgraded with other upgraded appli-
cations. This may cause serious errors, including a network
device failure.

Unfortunately, even for dynamic loading, much of the
data and code required to support basic system services, for
example, event logging and configuration remain static in
the kernel. Application program interface (API) dependen-
cies between dynamically loaded software applications and
kernel resident software further complicate upgrade opera-
tions. Consequently, many application fixes or improve-
ments and new hardware releases, require changes to the
kernel code which, similar to monolithic software changes,
requires updating the kernel and shutting down and reboo-
ting the computer.

In addition, processes in monolithic images and those
which are dynamically loadable typically use a flat (shared)
memory space programming model. If a process fails, it may
corrupt memory used by other processes. Detecting and
fixing corrupt memory is difficult and, in many instances,
impossible. As a result, to avoid the potential for memory
corruption errors, when a single process fails, the computer
system is often re-booted.

All of these problems impede the advancement of
networks, a situation that is completely incongruous with the
accelerated need and growth of networks today.

SUMMARY

The present invention provides a method and apparatus
for facilitating hot upgrades of software components within
a telecommunications network device through the use of
“signatures” generated by a signature generating program.
After installation of a new software release within the

network device, only those software components whose
signatures do not match the signatures of corresponding and
currently executing software components are upgraded. Sig-
natures promote hot upgrades by identifying only those
software components that need to be upgraded. Since sig-
natures are automatically generated for each software com-
ponent as part of putting together a new release a quick
comparison of two signatures provides an accurate assur-
ance that either the software component has changed or has
not. Thus, signatures provide a quick, easy way to accurately
determine the upgrade status of each software component.

In one aspect, the present invention provides a method for
operating a telecommunications network device including a
modular architecture, comprising operating the network
device using a first set of software components from a first
release, receiving a request for a hot upgrade to a second
release, determining if signatures for software components
in the first set of software components match signatures for
corresponding software components in a second set of
software components from the second release, continuing to
operate the network device using software components in
the first set of software components having signatures that
match the signatures of corresponding software components
in the second set of software components and operating the
network device using software components in the second set
of software components having signatures that did not match
the signatures of corresponding software components in the
first set of software components.

In another aspect, the present invention provides a method
for operating a telecommunications network device includ-

10

15

20

25

30

35

40

45

50

55

60

65

4

ing a modular architecture, comprising operating the net-
work device using a first set of software components from a
first release, receiving a request for a hot upgrade to a second
release, opening a first packaging list from the first release,
wherein the first packaging list includes a list of software
components in the first release and a list of corresponding
signatures for the software components in the first release,
opening a second packaging list from the second release,
wherein the second packaging list includes a list of software
components in the second release and a list of corresponding
signatures for the software components in the second
release, comparing, for each software component, the sig-
natures in the first packaging list to the signatures in the
second packaging list, continuing to operate the network
device using software components in the first set of software
components having signatures that match the signatures of
corresponding software components in the second set of
software components and operating the network device
using software components in the second set of software
components having signatures that did not match the signa-
tures of corresponding software components in the first set
of software components.

In yet another aspect, the present invention provides a
method for generating software for a telecommunications
network device including a modular architecture, compris-
ing creating a set of software components, generating a
signature for each software component using a signature
generating program, appending the signature for each soft-
ware component to each software component, generating a
packaging list including a list of each software component
and a list of the signatures for each software component and
building a release including the software components and
the packaging list.

In still another aspect, the present invention provides a
telecommunications network device, comprising a modular
software architecture including a first release, including a
first set of software components, for operating the network
device, a second release, including a second set of software
components, for operating the network device, a first process
capable of receiving a request for a hot upgrade from the first
release to the second release, a second process capable of
determining if signatures for software components in the
first set of software components match signatures for cor-
responding software components in the second set of soft-
ware components and a third process capable of continuing
to operate the network device using software components in
the first set of software components having signatures that
match the signatures of corresponding software components
in the second set of software components and capable of
operating the network device using software components in
the second set of software components having signatures
that did not match the signatures of corresponding software
components in the first set of software components.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a computer system with a
distributed processing system;

FIGS. 2a—2b are block and flow diagrams of a distributed
network management system;

FIG. 3a is a block diagram of a logical system model;

FIGS. 3b and 3d—3d are flow diagrams depicting a soft-
ware build process using a logical system model;

FIG. 3c is a flow diagram illustrating a method for
allowing applications to view data within a database;

FIG. 3g is a flow diagram depicting a configuration
process;

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 273

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 274

US 6,880,086 B2

5

FIGS. 3h and 31' are flow diagrams depicting template
driven network services provisioning processes;

FIGS. 31' and 3k—3m are screen displays of an OSS client
and various templates;

FIGS. 4a 42, 5a 52, 6a 6p, 7a 7y, 8a Se, 9a 911,
10a—10i, Ila—11k, lln—llo, 11s and 11x are screen displays
of graphical user interfaces;

FIGS. llL—llm are tables representing data in a configu-
ration database;

FIGS. llp—llr and llt—llu are tables representing data in
a network management system (NMS) database;

FIG. 11v is a block and flow diagram representing the
creation of a user profile logical managed object including
one or more groups;

FIG. 11w is a block and flow diagram of a network
management system implementing user profiles and groups
across multiple databases;

FIGS. 12a and 13a are block and flow diagrams of a
computer system incorporating a modular system architec-
ture and illustrating a method for accomplishing hardware
inventory and setup;

FIGS. 12b—12c and 14a—14f are tables representing data
in a configuration database;

FIG. 13b is a block and flow diagram of a computer
system incorporating a modular system architecture and
illustrating a method for configuring the computer system
using a network management system;

FIGS. 13c and 13d are block and flow diagrams of an
accounting subsystem for pushing network device statistics
to network management system software;

FIG. 15 is a block and flow diagram of a line card and a
method for executing multiple instances of processes;

FIGS. 16a—16b are flow diagrams illustrating a method
for assigning logical names for inter-process communica-
tions;

FIG. 166 is a block and flow diagram of a computer
system incorporating a modular system architecture and
illustrating a method for using logical names for inter-
process communications;

FIG. 16d is a chart representing a message format;
FIGS. 17—19 are block and flow diagrams of a computer

system incorporating a modular system architecture and
illustrating methods for making configuration changes;

FIG. 20a is a block diagram of a packaging list;
FIG. 20b is a flow diagram of a software component

signature generating process;
FIGS. 20c and 206 are screen displays of graphical user

interfaces;

FIG. 20d is a block and flow diagram of a network device
incorporating a modular system architecture and illustrating
a method for installing a new software release;

FIG. 21a is a block and flow diagram of a network device
incorporating a modular system architecture and illustrating
a method for upgrading software components;

FIGS. 21b and 21g are tables representing data in a
configuration database;

FIGS. 2lc—2lf are screen displays of graphical user
interfaces;

FIG. 22 is a block and flow diagram of a network device
incorporating a modular system architecture and illustrating
a method for upgrading a configuration database within the
network device;

FIG. 23 is a block and flow diagram of a network device
incorporating a modular system architecture and illustrating
a method for upgrading software components;

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 24 is a block diagram representing processes within
separate protected memory blocks;

FIG. 25 is a block and flow diagram of a line card and a
method for accomplishing vertical fault isolation;

FIG. 26 is a block and flow diagram of a computer system
incorporating a hierarchical and configurable fault manage-
ment system and illustrating a method for accomplishing
fault escalation.

FIG. 27 is a block diagram of an application having
multiple sub-processes;

FIG. 28 is a block diagram of a hierarchical fault descrip-
tor;

FIG. 29 is a block and flow diagram of a computer system
incorporating a distributed redundancy architecture and
illustrating a method for accomplishing distributed software
redundancy;

FIG. 30 is a table representing data in a configuration
database;

FIGS. 31a—31c, 32a—32c, 33a—33d and 34a—34b are
block and flow diagrams of a computer system incorporating
a distributed redundancy architecture and illustrating meth-
ods for accomplishing distributed redundancy and recovery
after a failure;

FIG. 35 is a block diagram of a network device;
FIG. 36 is a block diagram of a portion of a data plane of

a network device;

FIG. 37 is a block and flow diagram of a network device
incorporating a policy provisioning manager;

FIGS. 38 and 39 are tables representing data in a con-
figuration database;

FIG. 40 is an isometric view of a network device;

FIGS. 41a—41c are front, back and side block diagrams,
respectively, of components and modules within the network
device of FIG. 40;

FIG. 42 is a block diagram of dual mid-planes;
FIG. 43 is a block diagram of two distributed switch

fabrics and a central switch fabric;

FIG. 44 is a block diagram of the interconnections
between switch fabric central timing subsystems and switch
fabric local timing subsystems;

FIG. 45 is a block diagram of a switch fabric central
timing subsystem;

FIG. 46 is a state diagram of master/slave selection for
switch fabric central timing subsystems;

FIG. 47 is a block diagram of a switch fabric local timing
subsystem;

FIG. 48 is a state diagram of reference signal selection for
switch fabric local timing subsystems;

FIG. 49 is a block diagram of the interconnections
between external central timing subsystems and external
local timing subsystems;

FIG. 50 is a block diagram of an external central timing
subsystem;

FIG. 51 is a timing diagram of a first timing reference
signal with an embedded second timing signal;

FIG. 52 is a block diagram of an embeddor circuit;
FIG. 53 is a block diagram of an extractor circuit;
FIG. 54 is a block diagram of an external local timing

subsystem;
FIG. 55 is a block diagram of an external central timing

subsystem;
FIG. 56 is a block diagram of a network device connected

to test equipment through programmable physical layer test
ports;

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 274

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 275

US 6,880,086 B2

7

FIG. 57 is a block and flow diagram of a network device
incorporating programmable physical layer test ports;

FIG. 58 is a block diagram of a test path table;

FIG. 59 is a block and flow diagram of a network
management system incorporating proxies to improve NMS
server scalability;

FIGS. 60a—60n are tables representing data in a configu-
ration database;

FIG. 61a is a block diagram representing a physical
managed object;

FIG. 61b is a block diagram representing a proxy;

FIG. 62 is a screen display of a dialog box;

FIG. 63 is a block diagram of a network device connected
to an NMS;

FIG. 64 is a table representing data in an NMS database;

FIG. 65 is a block and flow diagram of a threshold
management system;

FIGS. 66a—66e are screen displays of a graphical user
interface;

FIG. 67 is a screen display of a threshold dialog box;

FIGS. 68, 69a—69b, 70a—70b and 71 are tables represent-
ing data in a configuration database;

FIG. 72a is a front, isometric view of a power distribution
unit;

FIG. 72b is a rear, isometric view of the power distribu-
tion unit of FIG. 72a without a cover;

FIG. 73a is a rear, isometric view of a network device
chassis including dual midplanes;

FIGS. 73b—73c are enlarged views of portions of FIG.
73a; and

FIG. 74 is a block and schematic diagram of a portion of
a module including a power supply circuit.

DETAILED DESCRIPTION
Modular Software

Amodular software architecture solves some of the more

common scenarios seen in existing architectures when soft-
ware is upgraded or new features are deployed. Software
modularity involves functionally dividing a software system
into individual modules or processes, which are then
designed and implemented independently. Inter-process
communication (IPC) between the processes is carried out
through message passing in accordance with well-defined
application programming interfaces (APIs) generated from
the same logical system model using the same code genera-
tion system. A database process is used to maintain a
primary data repository within the computer system/network
device, and APIs for the database process are also generated
from the same logical system model and using the same code
generation system ensuring that all the processes access the
same data in the same way. Another database process is used
to maintain a secondary data repository external to the
computer system/network device; this database receives all
of its data by exact database replication from the primary
database.

Aprotected memory feature also helps enforce the sepa-
ration of modules. Modules are compiled and linked as
separate programs, and each program runs in its own pro-
tected memory space. In addition, each program is addressed
with an abstract communication handle, or logical name.
The logical name is location-independent; it can live on any
card in the system. The logical name is resolved to a physical
card/process during communication. If, for example, a
backup process takes over for a failed primary process, it

10

15

20

25

30

35

40

45

50

55

60

65

8

assumes ownership of the logical name and registers its
name to allow other processes to re-resolve the logical name
to the new physical card/process. Once complete, the pro-
cesses continue to communicate with the same logical name,
unaware of the fact that a switchover just occurred.

Like certain existing architectures, the modular software
architecture dynamically loads applications as needed.
Beyond prior architectures, however, the modular software
architecture removes significant application dependent data
from the kernel and minimizes the link between software

and hardware. Instead, under the modular software
architecture, the applications themselves gather necessary
information (i.e., metadata and instance data) from a variety
of sources, for example, text files, JAVA class files and
database views, which may be provided at run time or
through the logical system model.

Metadata facilitates customization of the execution

behavior of software processes without modifying the oper-
ating system software image. A modular software architec-
ture makes writing applications—especially distributed
applications—more difficult, but metadata provides seam-
less extensibility allowing new software processes to be
added and existing software processes to be upgraded or
downgraded while the operating system is running (hot
upgrades and downgrades). In one embodiment, the kernel
includes operating system software, standard system ser-
vices software and modular system services software. Even
portions of the kernel may be hot upgraded under certain
circumstances. Examples of metadata include, customiza-
tion text files used by software device drivers; JAVA class
files that are dynamically instantiated using reflection; reg-
istration and deregistration protocols that enable the addition
and deletion of software services without system disruption;
and database view definitions that provide many varied
views of the logical system model. Each of these and other
examples are described below.

The embodiment described below includes a network

computer system with a loosely coupled distributed process-
ing system. It should be understood, however, that the
computer system could also be a central processing system
or a combination of distributed and central processing and
either loosely or tightly coupled. In addition, the computer
system described below is a network switch for use in, for
example, the Internet, wide area networks (WAN) or local
area networks (LAN). It should be understood, however, that
the modular software architecture can be implemented on
any network device (including routers) or other types of
computer systems and is not restricted to a network switch.

A distributed processing system is a collection of inde-
pendent computers that appear to the user of the system as
a single computer. Referring to FIG. 1, computer system 10
includes a centralized processor 12 with a control processor
subsystem 14 that executes an instance of the kernel 20
including master control programs and server programs to
actively control system operation by performing a major
portion of the control functions (e.g., booting and system
management) for the system. In addition, computer system
10 includes multiple line cards 16a—16n. Each line card
includes a control processor subsystem 18a—18n, which runs
an instance of the kernel 22a—22n including slave and client
programs as well as line card specific software applications.
Each control processor subsystem 14, 18a—18n operates in
an autonomous fashion but the software presents computer
system 10 to the user as a single computer.

Each control processor subsystem includes a processor
integrated circuit (chip) 24, 26a—26n, for example, a
Motorola 8260 or an Intel Pentium processor. The control

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 275

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 276

US 6,880,086 B2

9

processor subsystem also includes a memory subsystem 28,
30a—30n including a combination of non-volatile or persis-
tent (e.g., PROM and flash memory) and volatile (e.g.,
SRAM and DRAM) memory components. Computer system
10 also includes an internal communication bus 32 con-

nected to each processor 24, 26a—26n. In one embodiment,
the communication bus is a switched Fast Ethernet provid-
ing 100 Mb of dedicated bandwidth to each processor
allowing the distributed processors to exchange control
information at high frequencies. A backup or redundant
Ethernet switch may also be connected to each board such
that if the primary Ethernet switch fails, the boards can
fail-over to the backup Ethernet switch.

In this example, Ethernet 32 provides an out-of-band
control path, meaning that control information passes over
Ethernet 32 but the network data being switched by com-
puter system 10 passes to and from external network con-
nections 31a—31xx over a separate data path 34. External
network control data is passed from the line cards to the
central processor over Ethernet 32. This external network
control data is also assigned a high priority when passed
over the Ethernet to ensure that it is not dropped during
periods of heavy traffic on the Ethernet. In addition, another
bus 33 is provided for low level system service operations,
including, for example, the detection of newly installed (or
removed) hardware, reset and interrupt control and real time
clock (RTC) synchronization across the system. In one
embodiment, this is an Inter-IC communications (12C) bus.

Alternatively, the control and data may be passed over one
common path (in-band).
Network/Element Management System (NMS)

Exponential network growth combined with continuously
changing network requirements dictates a need for well
thought out network management solutions that can grow
and adapt quickly. The present invention provides a mas-
sively scalable, highly reliable comprehensive network man-
agement system, intended to scale up (and down) to meet
varied customer needs.

Within a telecommunications network, element manage-
ment systems (EMSs) are designed to configure and manage
a particular type of network device (e.g., switch, router,
hybrid switch-router), and network management systems
(NMSs) are used to configure and manage multiple hetero-
geneous and/or homogeneous network devices. Hereinafter,
the term “NMS” will be used for both element and network

management systems unless otherwise noted. To configure a
network device, the network administrator uses the NMS to
provision services. For example, the administrator may
connect a cable to a port of a network device and then use
the NMS to enable the port. If the network device supports
multiple protocols and services, then the administrator uses
the NMS to provision these as well. To manage a network
device, the NMS interprets data gathered by programs
running on each network device relevant to network
configuration, security, accounting, statistics, and fault log-
ging and presents the interpretation of this data to the
network administrator. The network administrator may use
this data to, for example, determine when to add new
hardware and/or services to the network device, to determine
when new network devices should be added to the network,
and to determine the cause of errors.

Preferably, NMS programs and programs executing on
network devices perform in expected ways (i.e.,
synchronously) and use the same data in the same way. To
avoid having to manually synchronize all integration inter-
faces between the various programs, a logical system model
and associated code generation system are used to generate

10

15

20

25

30

35

40

45

50

55

60

65

10

application programming interfaces (APIs)—that is integra-
tion interfaces/integration points—for programs running on
the network device and programs running within the NMS.
In addition, the APIs for the programs managing the data
repositories (e.g., database programs) used by the network
device and NMS programs are also generated from the same
logical system model and associated code generation system
to ensure that the programs use the data in the same way.
Further, to ensure that the NMS and network device pro-
grams for managing and operating the network device use
the same data, the programs, including the NMS programs,
access a single data repository for configuration information,
for example, a configuration database within the network
device. Referring to FIG. 2a, in the present invention, the
NMS 60 includes one or more NMS client programs
850a—850n and one or more NMS server programs
851a—851n, The NMS client programs provide interfaces for
network administrators. Through the NMS clients, the
administrator may configure multiple network devices (e.g.,
computer system 10, FIG. 1; network device 540, FIG. 35).
The NMS clients communicate with the NMS servers to

provide the NMS servers with configuration requirements
from the administrator. In addition, the NMS server provides
the NMS client with network device management
information, which the client then makes available to the
administrator. “Pushing” data from a server to multiple
clients synchronizes the clients with minimal polling.
Reduced polling means less management traffic on the
network and more device CPU cycles available for other
management tasks. Communication between the NMS client
and server is done via Remote Method Invocation (RMI)
over Transmission Control Protocol (TCP), a reliable pro-
tocol that ensures no data loss.

The NMS client and server relationship prevents the
network administrator from directly accessing the network
device. Since several network administrators may be man-
aging the network, this mitigates errors that may result if two
administrators attempt to configure the same network device
at the same time.

The present invention also includes a configuration rela-
tional database 42 within each network device and an NMS
relational database 61 external to the network device. The

configuration database program may be executed by a
centralized processor card or a processor on another card
(e.g., 12, FIG. 1; 542, FIG. 35) within the network device,
and the NMS database program may be executed by a
processor within a separate computer system (e.g., 62, FIG.
13b). The NMS server stores data directly in the configu-
ration database via JAVA Database Connectivity (JDBC)
over TCP, and using JDBC over TCP, the configuration
database, through active queries, automatically replicates
any changes to NMS database 61. By using JDBC and a
relational database, the NMS server is able to leverage
database transactions, database views, database journaling
and database backup technologies that help provide unprec-
edented system availability. Relational database technology
also scales well as it has matured over many years. An active
query is a mechanism that enables a client to post a blocked
SQL query for asynchronous notification by the database
when data changes are made after the blocked SQL query
was made.

Similarly, any configuration changes made by the network
administrator directly through console interface 852 are
made to the configuration database and, through active
queries, automatically replicated to the NMS database.
Maintaining a primary or master repository of data within
each network device ensures that the NMS and network

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 276

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 277

US 6,880,086 B2

11

device are always synchronized with respect to the state of
the configuration. Replicating changes made to the primary
database within the network device to any secondary data
repositories, for example, NMS database 61, ensures that all
secondary data sources are quickly updated and remain in
lockstep synchronization.

Instead of automatically replicating changes to the NMS
database through active queries, only certain data, as con-
figured by the network administrator, may be replicated.
Similarly, instead of immediate replication, the network
administrator may configure periodic replication. For
example, data from the master embedded database (i.e., the
configuration database) can be uploaded daily or hourly. In
addition to the periodic, scheduled uploads, backup may be
done anytime at the request of the network administrator.

Referring again to FIG. 2a, for increased availability, the
network device may include a backup configuration data-
base 42' maintained by a separate, backup centralized pro-
cessor card (e.g., 12, FIG. 1; 543, FIG. 35). Any changes to
configuration database 42 are replicated to backup configu-
ration database 42'. If the primary centralized processor card
experiences a failure or error, the backup centralized pro-
cessor card may be switched over to become the primary
processor and configuration database 42' may be used to
keep the network device operational. In addition, any
changes to configuration database 42 may be written imme-
diately to flash persistent memory 853 which may also be
located on the primary centralized processor card or on
another card, and similarly, any changes to backup configu-
ration database 42' may be written immediately to flash
persistent memory 853' which may also be located on the
backup centralized processor card or another card. These
flash-based configuration files protect against loss of data
during power failures. In the unlikely event that all copies of
the database within the network device are unusable, the
data stored in the NMS database may be downloaded to the
network device.

Instead of having a single central processor card (e.g., 12,
FIG. 1; 543, FIG. 35), the external control functions and the
internal control functions may be separated onto different
cards as described in US. patent application Ser. No.
09/574,343, filed May 20, 2000 and entitled “Functional
Separation of Internal and External Controls in Network
Devices”, which is hereby incorporated herein by reference.
As shown in FIGS. 41a and 41b, the chassis may support
internal control (IC) processor cards 542a and 543a and
external control (EC) processor cards 542b and 543b. In this
embodiment, configuration database 42 may be maintained
by a processor on internal control processor card 542a and
configuration database 42' may be maintained by a processor
on internal control processor card 543a, and persistent
memory 853 may be located on external control processor
card 542b and persistent memory 853' may be located on
external control processor card 543b. This increases inter-
card communication but also provides increased fault toler-ance.

The file transfer protocol (FTP) may provide an efficient,
reliable transport out of the network device for data inten-
sive operations. Bulk data applications include accounting,
historical statistics and logging. An FTP push (to reduce
polling) may be used to send accounting, historical statistics
and logging data to a data collector server 857, which may
be a UNIX server. The data collector server may then
generate network device and/or network status reports
858a—858n in, for example, American Standard Code for
Information Interchange (ASCII) format and store the data
into a database or generate Automatic Message Accounting
Format (AMA/BAF) outputs.

10

15

20

25

30

35

40

45

50

55

60

65

12

Selected data stored within NMS database 61 may also be
replicated to one or more remote/central NMS databases
854a—854n, as described below. NMS servers may also
access network device statistics and status information

stored within the network device using SNMP (multiple
versions) traps and standard Management Information Bases
(MIBs and MIB-2). The NMS server augments SNMP traps
by providing them over the conventional User Datagram
Protocol (UDP) as well as over Transmission Control Pro-
tocol (TCP), which provides reliable traps. Each event is
generated with a sequence number and logged by the data
collector server in a system log database for in place context
with system log data. These measures significantly improve
the likelihood of responding to all events in a timely manner
reducing the chance of service disruption.

The various NMS programs—clients, servers, NMS
databases, data collector servers and remote NMS
databases—are distributed programs and may be executed
on the same computer or different computers. The computers
may be within the same LAN or WAN or accessible through
the Internet. Distribution and hierarchy are fundamental to
making any software system scale to meet larger needs over
time. Distribution reduces resource locality constraints and
facilitates flexible deployment. Since day-to-day manage-
ment is done in a distributed fashion, it makes sense that the
management software should be distributed. Hierarchy pro-
vides natural boundaries of management responsibility and
minimizes the number of entities that a management tool
must be aware of. Both distribution and hierarchy are
fundamental to any long-term management solution. The
client server model allows for increased scalability as serv-
ers and clients may be added as the number of network
managers increase and as the network grows.

The various NMS programs may be written in the JAVA
programming language to enable the programs to run on
both Windows/NT and UNIX platforms, such as Sun
Solaris. In fact the code for both platforms may be the same
allowing consistent graphical interfaces to be displayed to
the network administrator. In addition to being native to
JAVA, RMI is attractive as the RMI architecture includes

(RMI) over Internet Inter-Orb Protocol (IIOP) which deliv-
ers Common Object Request Broker Architecture (CORBA)
compliant distributed computing capabilities to JAVA. Like
CORBA, RMI over IIOP uses IIOP as its communication
protocol. IIOP eases legacy application and platform inte-
gration by allowing application components written in C++,
SmallTalk, and other CORBA supported languages to com-
municate with components running on the JAVA platform.
For “manage anywhere” purposes and web technology
integration, the various NMS programs may also run within
a web browser. In addition, the NMS programs may inte-
grate with Hewlett Packard’s (HP’s) Network Node Man-
ager (NNMTM) to provide the convenience of a network
map, event aggregation/filtering, and integration with other
vendor’s networking. From HP NNM a context-sensitive
launch into an NMS server may be executed.

The NMS server also keeps track of important statistics
including average client/server response times and response
times to each network device. By looking at these statistics
over time, it is possible for network administrators to
determine when it is time to grow the management system
by adding another server. In addition, each NMS server
gathers the name, IP address and status of other NMS servers
in the telecommunication network, determines the number
of NMS clients and network devices to which it is

connected, tracks its own operation time, the number of
transactions it has handled since initialization, determines

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 277

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 278

US 6,880,086 B2

13

the “top talkers” (i.e., network devices associated with high
numbers of transactions with the server), and the number of
communications errors it has experienced. These statistics
help the network administrator tune the NMS to provide
better overall management service.

NMS database 61 may be remote or local with respect to
the network device(s) that it is managing. For example, the
NMS database may be maintained on a computer system
outside the domain of the network device (i.e., remote) and
communications between the network device and the com-

puter system may occur over a wide area network (WAN) or
the Internet. Preferably, the NMS database is maintained on
a computer system within the same domain as the network
device (i.e., local) and communications between the network
device and the computer system may occur over a local area
network (LAN). This reduces network management traffic
over a WAN or the Internet.

Many telecommunications networks include domains in
various geographical locations, and network managers often
need to see data combined from these different domains to

determine how the overall network is performing. To assist
with the management of wide spread networks and still
minimize the network management traffic sent over WANs
and the Internet, each domain may include an NMS database
61 and particular/selected data from each NMS database
may be replicated (or “rolled up”) to remote NMS databases
854a—854n that are in particular centralized locations.
Referring to FIG. 2b, for example, a telecommunications
network may include at least three LAN domains 855a—855c
where each domain includes multiple network devices 540
and an NMS database 61. Domain 855a may be located in
the Boston, Mass. area, domain 855b may be located in the
Chicago, Ill. area and domain 855C may be located in the
San Francisco, Calif. area. NMS servers 851a—851f may be
located within each domain or in a separate domain.
Similarly, one or more NMS clients may be coupled to each
NMS server and located in the same domain as the NMS

server or in different domains. In addition, one NMS client
may be coupled with multiple NMS servers. For example,
NMS servers 851a—851c and NMS clients 850a—850k may
be located in domain 856a (e.g., Dallas, Tex.) while NMS
servers 851d—851f and NMS clients 850m—850u may be
located in domain 856b (e.g., New York, NY). Each NMS
server may be used to manage each domain 855a—855c or,
preferably, one NMS server in each server domain
856a—856b is used to manage all of the network devices
within one network device domain 855a—8556. A single
domain may include network devices and NMS clients andservers.

Network administrators use the NMS clients to configure
network devices in each of the domains through the NMS
servers. The network devices replicate changes made to their
internal configuration databases (42, FIG. 2a) to a local
NMS database 61. In addition, the data collector server
copies all logging data into NMS database 61 or a separate
logging database (not shown). Each local NMS database
may also replicate selected data to central NMS database(s)
854a—854n in accordance with instructions from the net-

work administrator. Other programs may then access the
central database to retrieve and combine data from multiple
network devices in multiple domains and then present this
data to the network administrator. Importantly, network
management traffic over WANs and the Internet are mini-
mized since all data is not copied to the central NMS
database. For example, local logging data may only be
stored in the local NMS databases 61 (or local logging
database) and not replicated to one of the central NMS
database.

10

15

20

25

30

35

40

45

50

55

60

65

14

Logical System Model
As previously mentioned, to avoid having to manually

synchronize all integration interfaces between the various
programs, the APIs for both NMS and network device
programs are generated using a code generation system from
the same logical system model. In addition, the APIs for the
data repository software used by the programs are also
generated from the same logical system model to ensure that
the programs use the data in the same way. Each model
within the logical system model contains metadata defining
an object/entity, attributes for the object and the object’s
relationships with other objects. Upgrading/modifying an
object is, therefore, much simpler than in current systems,
since the relationship between objects, including both hard-
ware and software, and attributes required for each object
are clearly defined in one location. When changes are made,
the logical system model clearly shows what other programs
are affected and, therefore, may also need to be changed.
Modeling the hardware and software provides a clean sepa-
ration of function and form and enables sophisticated
dynamic software modularity.

Acode generation system uses the attributes and metadata
within each model to generate the APIs for each program
and ensure lockstep synchronization. The logical model and
code generation system may also be used to create test code
to test the network device programs and NMS programs.
Use of the logical model and code generation system saves
development, test and integration time and ensures that all
relationships between programs are in lockstep synchroni-
zation. In addition, use of the logical model and code
generation system facilitates hardware portability, seamless
extensibility and unprecedented availability and modularity.

Referring to FIG. 3a, a logical system model 280 is
created using the object modeling notation and a model
generation tool, for example, Rational Rose 2000 Modeler
Edition available from Rational Software Corporation in
Lexington, Mass. A managed device 282 represents the top
level system connected to models representing both hard-
ware 284 and data objects used by software applications
286. Hardware model 284 includes models representing
specific pieces of hardware, for example, chassis 288, shelf
290, slot 292 and printed circuit board 294. The logical
model is capable of showing containment, that is, typically,
there are many shelves per chassis (1:N), many slots per
shelf (1:N) and one board per slot (1:1). Shelf 290 is a parent
class generalizing multiple shelf models, including various
functional shelves 296a—296n as well as one or more system
shelves, for example, for fans 298 and power 300. Board 294
is also a parent class having multiple board models, includ-
ing various functional boards without external physical ports
302a—302n (e.g., central processor 12, FIG. 1; 542—543,
FIG. 35; and switch fabric cards, FIG. 35) and various
functional boards 304a—304n (e.g., cross connection cards
562a—562b and forwarding cards 546a—546e, FIG. 35) that
connect to boards 306 with external physical ports (e.g.,
universal port cards 554a—554h, FIG. 35). Hardware model
284 also includes an external physical port model 308. Port
model 308 is coupled to one or more specific port models,
for example, synchronous optical network (SONET) proto-
col port 310, and a physical service endpoint model 312.

Hardware model 284 includes models for all hardware

that may be available on computer system 10 (FIG.
1)/network device 540 (FIG. 35) whether a particular com-
puter system/network device uses all the available hardware
or not. The model defines the metadata for the system
whereas the presence of hardware in an actual network
device is represented in instance data. All shelves and slots

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 278

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 279

US 6,880,086 B2

15

may not be populated. In addition, there may be multiple
chassis. It should be understood that SONET port 310 is an
example of one type of port that may be supported by
computer system 10. Amodel is created for each type of port
available on computer system 10, including, for example,
Ethernet, Dense Wavelength Division Multiplexing
(DWDM) or Digital Signal, Level 3 (DS3). The NMS
(described below) uses the hardware model and instance
data to display a graphical picture of computer system
10/network device 540 to a user.

Service endpoint model 314 spans the software and
hardware models within logical model 280. It is a parent
class including a physical service endpoint model 312 and a
logical service endpoint model 316. Since the links between
the software model and hardware model are minimal, either
may be changed (e.g., upgraded or modified) and easily
integrated with the other. In addition, multiple models (e.g.,
280) may be created for many different types of managed
devices (e.g., 282). The software model may be the same or
similar for each different type of managed device even if the
hardware—and hardware models—corresponding to the dif-
ferent managed devices are very different. Similarly, the
hardware model may be the same or similar for different
managed devices but the software models may be different
for each. The different software models may reflect different
customer needs.

Software model 286 includes models of data objects used
by each of the software processes (e.g., applications, device
drivers, system services) available on computer system
10/network device 540. All applications and device drivers
may not be used in each computer system/network device.
As one example, ATM model 318 is shown. It should be
understood that software model 286 may also include mod-
els for other applications, for example, Internet Protocol (IP)
applications, Frame Relay and Multi-Protocol Label Switch-
ing (MPLS) applications. Models of other processes (e.g.,
device drivers and system services) are not shown for
convenience.

For each process, models of configurable objects man-
aged by those processes are also created. For example,
models of ATM configurable objects are coupled to ATM
model 318, including models for a soft permanent virtual
path (SPVP) 320, a soft permanent virtual circuit (SPVC)
321, a switch address 322, a cross-connection 323, a per-
manent virtual path (PVP) cross-connection 324, a perma-
nent virtual circuit (PVC) cross-connection 325, a virtual
ATM interface 326, a virtual path link 327, a virtual circuit
link 328, logging 329, an ILMI reference 330, PNNI 331, a
traffic descriptor 332, an ATM interface 333 and logical
service endpoint 316. As described above, logical service
endpoint model 316 is coupled to service endpoint model
314. It is also coupled to ATM interface model 333.

The logical model is layered on the physical computer
system to add a layer of abstraction between the physical
system and the software applications. Adding or removing
known (i.e., not new) hardware from the computer system
will not require changes to the logical model or the software
applications. However, changes to the physical system, for
example, adding a new type of board, will require changes
to the logical model. In addition, the logical model is
modified when new or upgraded processes are created.
Changes to an object model within the logical model may
require changes to other object models within the logical
model. It is possible for the logical model to simultaneously
support multiple versions of the same software processes
(e.g., upgraded and older). In essence, the logical model
insulates software applications from changes to the hard-
ware models and vice-versa.

10

15

20

25

30

35

40

45

50

55

60

65

16

To further decouple software processes from the logical
model—as well as the physical system—another layer of
abstraction is added in the form of version-stamped views.
A view is a logical slice of the logical model and defines a
particular set of data within the logical model to which an
associated process has access. Version stamped views allow
multiple versions of the same process to be supported by the
same logical model since each version-stamped view limits
the data that a corresponding process “views” or has access
to, to the data relevant to the version of that process.
Similarly, views allow multiple different processes to use the
same logical model.
Code Generation System

Referring to FIG. 3b, logical model 280 is used as input
to a code generation system 336. The code generation
system creates a view identification (id) and an application
programming interface (API) 338 for each process that
requires configuration data. For example, a view id and an
API may be created for each ATM application 339a—339n,
each SONET application 340a—340n, each MPLS applica-
tion 342a—342n and each IP application 341a—341n. In
addition, a view id and API is also created for each device
driver process, for example, device drivers 343a—343n, and
for modular system services (MSS) 345a—345n (described
below), for example, a Master Control Driver (MCD), a
System Resiliency Manager (SRM), and a Software Man-
agement System (SMS). The code generation system pro-
vides data consistency across processes, centralized tuning
and an abstraction of embedded configuration and NMS
databases (described below) ensuring that changes to their
database schema (i.e., configuration tables and relationships)
do not affect existing processes.

The code generation system also creates a data definition
language (DDL) file 344 including structured query lan-
guage (SQL) commands used to construct the database
schema, that is, the various tables and views within a
configuration database 346, and a DDL file 348 including
SQL commands used to construct various tables and SQL

views within a network management (NMS) database 350
(described below). This is also referred to as converting the
logical model into a database schema and various SQL
views look at particular portions of that schema within the
database. If the same database software is used for both the

configuration and NMS databases, then one DDL file may be
used for both.

The databases do not have to be generated from a logical
model for views to work. Instead, database files can be
supplied directly without having to generate them using the
code generation system. Similarly, instead of using a logical
model as an input to the code generation system, a MIB
“model” may be used. For example, relationships between
various MIBs and MIB objects may be written (i.e., coded)
and then this “model” may be used as input to the code
generation system.

Referring to FIG. 3c, applications 352a—352n (e.g.,
SONET driver 863, SONET application 860, MSS 866, etc.)
each have an associated view 354a—354n of configuration
database 42. The views may be similar allowing each
application to view similar data within configuration data-
base 42. For example, each application may be ATM version
1.0 and each view may be ATM view version 1.3. Instead,
the applications and views may be different versions. For
example, application 352a may be ATM version 1.0 and
view 354a may be ATM view version 1.3 while application
352b is ATM version 1.7 and view 354b is ATM view

version 1.5. A later version, for example, ATM version 1.7,
of the same application may represent an upgrade of that

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 279

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 280

US 6,880,086 B2

17

application and its corresponding view allows the upgraded
application access only to data relevant to the upgraded
version and not data relevant to the older version. If the

upgraded version of the application uses the same configu-
ration data as an older version, then the view version may be
the same for both applications. In addition, application 35211
may represent a completely different type of application, for
example, MPLS, and view 35411 allows it to have access to
data relevant to MPLS and not ATM or any other applica-
tion. Consequently, through the use of database views,
different versions of the same software applications and
different types of software applications may be executed on
computer system 10 simultaneously.

Views also allow the logical model and physical system to
be changed, evolved and grown to support new applications
and hardware without having to change existing applica-
tions. In addition, software applications may be upgraded
and downgraded independent of each other and without
having to re-boot computer system 10/network device 540.
For example, after computer system 10 is shipped to a
customer, changes may be made to hardware or software.
For instance, a new version of an application, for example,
ATM version 2.0, may be created or new hardware may be
released requiring a new or upgraded device driver process.
To make this a new process and/or hardware available to the
user of computer system 10, first the software image includ-
ing the new process must be re-built.

Referring again to FIG. 3b, logical model 280 may be
changed (280') to include models representing the new
software and/or hardware. Code generation system 336 then
uses new logical model 280' to re-generate view ids and
APIs 338' for each application, including, for example, ATM
version two 360 and device driver 362, and DDL files 344'

and 348'. The new application(s) and/or device driver(s)
processes then bind to the new view ids and APIs. Acopy of
the new application(s) and/or device driver process as well
as the new DDL files and any new hardware are sent to the
user of computer system 10. The user can then download the
new software and plug the new hardware into computer
system 10. The upgrade process is described in more detail
below. Similarly, if models are upgraded/modified to reflect
upgrades/modifications to software or hardware, then the
new logical model is provided to the code generation system
which re-generates view ids and APIs for each process/
program/application. Again, the new applications are linked
with the new view ids and APIs and the new applications
and/or hardware are provided to the user.

Again referring to FIG. 3b, the code generation system
also creates NMS JAVA interfaces 347 and persistent layer
metadata 349. The JAVA interfaces are JAVA class files

including get and put methods corresponding to attributes
within the logical model, and as described below, the NMS
servers use the NMS JAVA interfaces to construct models of

each particular network device to which they are connected.
Also described below, the NMS servers use the persistent
layer metadata as well as run time configuration data to
generate SQL configuration commands for use by the con-
figuration database.

Prior to shipping computer system 10 to customers, a
software build process is initiated to establish the software
architecture and processes. The code generation system is
the first part of this process. Following the execution of the
code generation system, each process when pulled into the
build process links the associated view id and API into its
image. For example, referring to FIG. 3d, to build a SONET
application, source files, for example, a main application file
859a, a performance monitoring file 859b and an alarm

10

15

20

25

30

35

40

45

50

55

60

65

18

monitoring file 8596, written in, for example, the C pro-
gramming language (.c) are compiled into object code files
(.0) 859a', 859b' and 8596'. Alternatively, the source files
may be written in other programming languages, for
example, JAVA (.java) or C++ (.cpp). The object files are
then linked along with view ids and APIs from the code
generation system corresponding to the SONET application,
for example, SONET API 340a. The SONET API may be a
library (.a) of many object files. Linking these files generates
the SONET Application executable file (.exe) 860.

Referring to FIG. 36, each of the executable files for use
by the network device/computer system are then provided to
a kit builder 861. For example, several SONET executable
files (e.g., 860, 863), ATM executable files (e.g.,
864a—864n), MPLS executable files (e.g., 865a—865n), MSS
executable files 866a—866n, MKI executable 873a—873n
files for each board and a DDL configuration database
executable file 867 may be provided to kit builder 861. The
OSE operating system expects executable load modules to
be in a format referred to as Executable & Linkable Format

(.elf). Alternatively, the DDL configuration database execut-
able file may be executed and some data placed in the
database prior to supplying the DDL file to the kit builder.
The kit builder creates a computer system/network device
installation kit 862 that is shipped to the customer with the
computer system/network device or, later, alone after modi-
fications and upgrades are made. To save space, the kit
builder may compress each of the files included in the
Installation Kit (i.e., .exe.gz, .elf.gz), and when the files are
later loaded in the network device, they are de-compressed.

Referring to FIG. 3f, similarly, each of the executable files
for the NMS is provided separately to the kit builder. For
example, a DDL NMS database executable file 868, an NMS
JAVA interfaces executable file 869, a persistent layer meta-
data executable file 870, an NMS server 885 and an NMS
client 886 may be provided to kit builder 861. The kit builder
creates an NMS installation kit 871 that is shipped to the
customer for installation on a separate computer 62 (FIG.
13b). In addition, new versions of the NMS installation kit
may be sent to customers later after upgrades/modifications
are made. When installing the NMS, the customer/network
administrator may choose to distribute the various NMS
processes as described above. Alternatively, one or more of
the NMS programs, for example, the NMS JAVA interfaces
and Persistent layer metadata executable files may be part of
the network device installation kit and later passed from the
network device to the NMS server, or part of both the
network device installation kit and the NMS installation kit.

When the computer system is powered-up for the first
time, as described below, configuration database software
uses DDL file 867 to create a configuration database 42 with
the necessary configuration tables and active queries. The
NMS database software uses DDL file 868 to create NMS

database 61 with corresponding configuration tables.
Memory and storage space within network devices is typi-
cally very limited. The configuration database software is
robust and takes a considerable amount of these limited

resources but provides many advantages as described below.
As described above, logical model 280 (FIG. 3b) may be

provided as an input to code generation system 336 in order
to generate database views and APIs for NMS programs and
network device programs to synchronize the integration
interfaces between those programs. Where a telecommuni-
cations network includes multiple similar network devices,
the same installation kit may be used to install software on
each network device to provide synchronization across the
network. Typically, however, networks include multiple

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 280

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 281

US 6,880,086 B2

19

different network devices as well as multiple similar net-
work devices. A logical model may be created for each
different type of network device and a different installation
kit may be implemented on each different type of network
device.

Instead, of providing a logical model (e.g., 280, FIG. 3b)
that represents a single network device, a logical model may
be provided that represents multiple different managed
devices—that is, multiple network devices and the relation-
ship between the network devices. Alternatively, multiple
logical models 280 and 887a—887n—representing multiple
network devices—may be provided, including relationships
with other logical models. In either case, providing multiple
logical models or one logical model representing multiple
network devices and their relationships as an input(s) to the
code generation system allows for synchronization of NMS
programs and network device programs (e.g., 901a—901n)
across an entire network. The code generation system in
combination with one or more logical models provides a
powerful tool for synchronizing distributed telecommunica-
tion network applications.

The logical model or models may also be used for
simulation of a network device and/or a network of many
network devices, which may be useful for scalability testing.

In addition to providing view ids and APIs, the code
generation system may also provide code used to push data
directly into a third party code API. For example, where an
API of a third party program expects particular data, the
code generation system may provide this data by retrieving
the data from the central repository and calling the third-
party programs API. In this situation, the code generation
system is performing as a “data pump”.
Configuration

Once the network device programs have been installed
on-network device 540 (FIG. 35), and the NMS programs
have been installed on one or more computers (e.g., 62), the
network administrator may configure the network device/
provision services within the network device. Hereinafter,
the term “configure” includes “provisioning services”.
Referring to FIG. 4a, the NMS client displays a graphical
user interface (GUI) 895 to the administrator including a
navigation tree/menu 898. Selecting a branch of the navi-
gation tree causes the NMS client to display information
corresponding to that branch. For example, selecting
Devices branch 898a within the tree causes the NMS client

to display a list 898b of IP addresses and/or domain name
server (DNS) names corresponding to network devices that
may be managed by the administrator. The list corresponds
to a profile associated with the administrator’s user name
and password. Profiles are described in detail below.

If the administrator’s profile includes the appropriate
authority, then the administrator may add new devices to list
898b. To add a new device, the administrator selects Devices
branch 898a and clicks the right mouse button to cause a
pop-up menu 898C (FIG. 4b) to appear. The administrator
then selects the Add Devices option to cause a dialog box
898d (FIG. 46) to appear. The administrator may then type
in an IP address (e.g., 192.168.9203) or a DNS name into
field 8986 and select an Add button 898f to add the device
to Device list window 898g (FIG. 4a) The administrator
may then add one or more other devices in a similar manner.
The administrator may also delete a device from the Device
list window by selecting the device and then selecting a
Delete button 898k, or the administrator may cancel out of
the dialog box without adding any new devices by selecting
Cancel button 8981'. When finished, the administrator may
select an OK button 8981' to add any new devices in Device
list 898g to navigation tree 898a (FIG. 46).

10

15

20

25

30

35

40

45

50

55

60

65

20

To configure a network device, the administrator begins
by selecting (step 874, FIG. 3g) a particular network device
to configure, for example, the network device corresponding
to IP address 192.168.9202 (FIG. 4f). The NMS client then
informs (step 875, FIG. 3g) an NMS server of the particular
network device to be configured. Since many NMS clients
may connect to the same NMS server, the NMS server first
checks its local cache to determine if it is already managing
the network device for another NMS client. If so, the NMS
server sends data from the cache to the NMS client. If not,
the NMS server using JDBC connects to the network device
and reads the data/object structure for the physical aspects of
the device from the configuration database within the net-
work device into its local cache and uses that information

with the JAVA interfaces to construct (step 876) a model of
the network device. The server provides (step 877) this
information to the client, which displays (step 878) a graphi-
cal representation 896a (FIG. 4f) of the network device to
the administrator indicating the hardware and services avail-
able in the selected network device and the current configu-
ration and currently provisioned services. Configuration
changes received by an NMS server—from either an NMS
client or directly from the network device’s configuration
database when changes are made through the network
device’s CLI interface—are sent by the NMS server to any
other NMS clients connected to that server and managing
the same network device. This provides scalability, since the
device is not burdened with multiple clients subscribing for
traps, and ensures each NMS client provides an accurate
view of the network device.

Referring to FIGS. 4f—4l, graphical representation 896a
(i.e., device view, device mimic) in graphic window 896b
may include many views of the network device. For
example, device mimic 896a is shown in FIG. 4f displaying
a front view of the components in the upper portion of
network device 540 (FIG. 35). The administrator may use
scroll bar 926a to scroll down and view lower portions of the
front of the network device as shown in FIG. 4g. The
administrator may also use image scale button 926b to
change the size of graphic 896a. For example, the admin-
istrator may shrink the network device image to allow more
of the device image to be visible in graphic window 896b,
as shown in FIG. 4h. This view corresponds to the block
diagram of network device 540 shown in FIG. 41a. For
instance, upper fan tray 634 and middle fan trays 630 and
632 are shown. In addition, forwarding cards (e.g., 546a and
5486), cross-connection cards (e.g., 562a, 562b, 564b, 566a,
561%), and external processor control cards (e.g., 542b and
543b) are shown.

GUI 895 also includes several splitter bars 895a—895c
(FIG. 4f) to allow the administrator to change the size of the
various panels (e.g., 896b, 897 and 898). In addition, GUI
895 includes a status bar 895d. The status bar may include
various fields such as a server field 8956, a Mode field 895f,
a Profile field 895g and an active field 895k. The server filed
may provide the IP address or DNS name of the NMS server,
and the profile field may provide the username that the
administrator logged in under. The active field will provide
updated status, for example, ready, or ask the administrator
to take particular steps. The mode field will indicate an
on-line mode (i.e., typical operation) or an off-line mode
(described in detail below).

Device mimic 896a may also provide one or more visual
indications as to whether a card is present in each slot or
whether a slot is empty. For example, in one embodiment,
the forwarding cards (e.g., 546a and 5486) in the upper
portion of the network device are displayed in a dark color

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 281

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 282

US 6,880,086 B2

21

to indicate the cards are present while the lower slots (e.g.,
928a and 9296) are shown in a lighter color to indicate that
the slots are empty. Other visual indications may also be
used. For example, a graphical representation of the actual
card faceplate may be added to device mimic 896a when a
card is present and a blank faceplate may be added when the
slot is empty. Moreover, this may be done for any of the
cards that may or may not be present in a working network
device. For example, the upper cross-connection cards may
be displayed in a dark color to indicate they are present
while the lower cross-connection card slots may be dis-
played in a lighter color to indicate the slots are empty.

In addition, a back view and other views of the network
device may also be shown. For example, the administrator
may use a mouse to move a cursor into an empty portion of
graphic window 896b and click the right mouse button to
cause a pop-up menu to appear listing the various views
available for the network device. In one embodiment, the
only other view is a back view and pop-up menu 927 is
displayed. Alternatively, short cuts may be set up. For
example, double clicking the left mouse button may auto-
matically cause graphic 896a to display the back view of the
network device, and another double click may cause graphic
896a to again display the front view. As another alternative,
a pull down menu may be provided to allow an administrator
to select between various views.

Device mimic 896a is shown in FIG. 41' displaying a back
view of the components in the upper portion of network
device 540 (FIG. 35). Again the administrator may use scroll
bar 926a and/or image scale button 926b to view lower
portions (FIGS. 41' and 4k) of the back of the network device
or more of the network device by shrinking the graphic
(FIG. 4l). These views correspond to the block diagram of
network device 540 shown in FIG. 41b. For example, upper
fan tray 628 (FIG. 41'), management interface (MI) card 621
(FIG. 41') and lower fan tray 626 (FIG. 4k) are shown. In
addition, universal port cards (e.g., 556k, 554a and 560k,
FIG. 4l), switch fabric cards (e.g., 570a and 570b) and
internal processor control cards (e.g., 542a and 543a) are
also shown. Again, graphic 896a may use a visual indicator
to clearly show whether a card is present in a slot or whether
the slot is empty. In this example, the visual indicator for
universal port cards is the display of the ports available on
each card. For example, universal port card 554a is present
as indicated by the graphical representation of ports (e.g.,
930, FIG. 4l) available on that card, while universal port
card 558a (FIG. 41b) is not present as indicated by a blank
slot 931.

Since the GUI has limited screen real estate and the

network device may be large and loaded with many different
types of components (e.g., modules, ports, fan trays, power
connections), in addition to the device mimic views
described above, GUI 895 may also provide a system view
menu option 954 (FIG. 4m). If an administrator selects this
option, a separate pull away window 955 (FIG. 411) is
displayed for the administrator including both a front view
955a and a back view 955b of the network device corre-

sponding to the front and back views displayed by the device
mimic. The administrator may keep this separate pull away
window up and visible while provisioning services through
the GUI. Moreover, the GUI remains linked with the pull
away window such that if the administrator selects a com-
ponent in the pull away window, the device mimic displays
that portion of the device and highlights that component.
Similarly, if the administrator selects a component within the
device mimic, the pull away window also highlights the
selected component. Thus, the pull away window may
further help the administrator navigate in the device mimic.

10

15

20

25

30

35

40

45

50

55

60

65

22

Device mimic 896a may also indicate the status of
components. For example, ports and/or cards may be green
for normal operation, red if there are errors and yellow if
there are warnings. In one embodiment, a port may be
colored, for example, light green or gray if it is available but
not yet configured and colored dark green after being
configured. Other colors or graphical textures may also be
used show visible status. To further ease a network admin-

istrator’s tasks, the GUI may present pop-up windows or
tool tips containing information about each card and/or port
when the administrator moves the cursor over the card or

port. For example, when the administrator moves the cursor
over universal port card 556f (FIG. 40), pop-up window
932a may be displayed to tell the administrator that the card
is a 16 Port 0C3 Universal Port Module in Shelf 11/Slot 3.

Similarly, if the administrator moves the cursor over uni-
versal port card 5566 (FIG. 4p), pop-up window 932b
appears indicating that the card is a 16 Port OC12 Universal
Port Module in Shelf 11/Slot 4, and if the cursor is moved

over universal port cards 556d (FIG. 4q) or 556C (FIG. 4r),
then pop-up windows 932C and 932d appear indicating the
cards are 4 Port OC48 Universal Port Module in Shelf

11/Slot 5 and 8 Port OC12 Universal Port Module in Shelf

11/Slot 6, respectively. If the administrator moves the cursor
over a port, for example, port 933 (FIG. 4s), then pop-up
window 9326 appears indicating the port is an OC12 in Shelf
11/Slot 4/Port 1.

The views are used to provide management context. The
GUI may also include a configuration/service status window
897 for displaying current configuration and service provi-
sioning details. Again, these details are provided to the NMS
client by the NMS server, which reads the data from the
network device’s configuration database. The status window
may include many tabs/folders for displaying various data
about the network device configuration. In one embodiment,
the status window includes a System tab 934 (FIG. 4s),
which is displayed when the server first accesses the net-
work device. This tab provides system level data such as the
system name 934a, System Description 934b, System Con-
tact 9346, System Location 934d, System IP Address 9346
(or DNS name), System Up Time 93413 System identification
(ID) 934g and System Services 934h. Modifications to data
displayed in 934a—934e may be made by the administrator
and committed by selecting the Apply button 935. The NMS
client then passes this information to the NMS server, which
then writes a copy of the data in the network device’s
configuration database and broadcasts the changes to any
other NMS clients managing the same network device. The
administrator may also reset the network device by selecting
the Reset System button 935b and then refresh the System
tab data by selecting the Refresh button 935C.

The status window may also include a Modules tab 936
(FIG. 4t), which includes an inventory of the available
modules in the network device and various details about

those modules such as where they are located (e.g., shelf and
slot, back or front). The inventory may also include a
description of the type of module, version number, manu-
facturing date, part number, etc. In addition, the inventory
may include run time data such as the operational status and
temperature. The NMS server may continuously supply the
NMS client(s) with the run time data by reading the network
device configuration database or NMS database. Device
mimic 896a is linked with status window 897, such that
selecting a module in device mimic 896a causes the Module
tab to highlight a line in the inventory corresponding to that
card. For example, if an administrator selects universal port
card 556d, device mimic 896a highlights that module and

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 282

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 283

US 6,880,086 B2

23

the Module tab highlights a line 937 in the inventory
corresponding to the card in Shelf 11/Slot 5. Similarly, if the
administrator selects a line in the Module tab inventory,
device mimic 896a highlights the corresponding module.
Double clicking the left mouse button on a selected module
may cause a dialog box to appear and the administrator may
modify particular parameters such as an enable/disable
parameter.

The status window may also include a Ports tab 938 (FIG.
414), which displays an inventory of the available ports in the
network device and various details about each port such as
where they are located (shelf, slot and port; back or front).
The inventory may also include a description of the port
name, type and speed as well as run time data such as
administrative status, operational status and link status.
Again, device mimic 896a is linked with status window 897
such that selecting a port within device mimic 896a causes
the Port tab to highlight a line in the inventory corresponding
to that port. For example, if the administrator selects port
939a (port 1, slot 4) on card 5566, then the Port tab
highlights a line 939b within the inventory corresponding to
that port. Similarly, if the administrator selects a line from
the inventory in the Port tab, device mimic 896a highlights
the corresponding port. Again double clicking the left mouse
button on a selected port may cause a dialog box to appear
and the administrator may modify particular parameters
such as an enable/disable parameter.

Another tab in the status window may be a SONET
Interface tab 940 (FIG. 4v), which includes an inventory of
SONET ports in the network device and various details
about each port such as where they are located (shelf and
slot; back or front). Medium type (e.g., SONET, Synchro-
nous Digital Hierarchy (SDH)) may also be displayed as
well as circuit ID, Line Type, Line Coding, Loopback, Laser
Status, Path Count and other details. Again, device mimic
896a is lined with status window 897 such that selecting a
port within device mimic 896a causes the SONET Interface
tab to highlight a line in the inventory corresponding to that
SONET port. For example, if the administrator selects port
941a (port 2, slot 5) on card 556d, then the SONET Interface
tab highlights line 941b corresponding to that port.
Similarly, if the administrator selects a line from the inven-
tory in the SONET Interface tab, device mimic 896a high-
lights the corresponding port. Again, double clicking the left
mouse button on a selected SONET interface may cause a
dialog box to appear and the administrator may modify
particular parameters such as an enable/disable parameter.

The System tab data as well as the Modules tab, Ports tab
and SONET Interface tab data all represent physical aspects
of the network device. The remaining tabs, including
SONET Paths tab 942 (FIG. 4w), ATM Interfaces tab 946,
Virtual ATM Interfaces tab 947 and Virtual Connections tab

948, display configuration details and, thus, display no data
until the device is configured. In addition, these configura-
tion tabs 942, 946—948 are dialog chained together with
wizard-like properties to guide an administrator through
configuration details. Through these tabs within the GUI
(i.e., graphical context), therefore, the administrator then
makes (step 879, FIG. 3g) configuration selections. For
example, to configure a SONET path, the administrator may
begin by selecting a port (e.g., 939a on card 5566, FIG. 5a)
within device mimic 896a and clicking the right mouse
button (i.e., context sensitive) to cause a pop-up menu 943
to be displayed listing available port configuration options.
The administrator may then select the “Configure SONET
Paths” option, which causes the GUI to display a SONET
Path configuration wizard 944 (FIG. 5b).

10

15

20

25

30

35

40

45

50

55

60

65

24

The SONET Path configuration wizard guides the admin-
istrator through the task of setting up a SONET Path by
presenting the administrator with valid configuration options
and inserting default parameter values. As a result, the
process of configuring SONET paths is simplified, and
required administrator expertise is reduced since the admin-
istrator does not need to know or remember to provide each
parameter value. In addition, the SONET Path wizard allows
the administrator to configure multiple SONET Paths
simultaneously, thereby eliminating the repetition of similar
configuration process steps required by current network
management systems and reducing the time required to
configure many SONET Paths. Moreover, the wizard vali-
dates configuration requests from the administrator to mini-
mize the potential for mis-configuration.

In one embodiment, the SONET Path wizard displays
SONET line data 944a (e.g., slot 4, port 1, OC12) and three
configuration choices 944b, 944C and 944d. The first two
configuration choices provide “short cuts” to typical con-
figurations. If the administrator selects the first configuration
option 944b (FIG. Sc), the SONET Path wizard creates a
single concatenated path. In the current example, the
selected port is an OC12, and the single concatenated path
is an STS-12c. The wizard assigns and graphically displays
the position 9446 and width 944f of the STS-12c path and
also displays a SONET Path table 944g including an inven-
tory having an entry for the SONET STS-12c path and each
of the default parameters assigned to that SONET path. The
position of each SONET path is chosen such that each path
lines up on a valid boundary based on SONET protocol
constraints.

If the administrator selects the second configuration
option 944C (FIGS. 5d and Se), the SONET Path wizard
creates one or more valid SONET paths that fully utilize the
port capacity. In the current example, where the selected port
is an OC12 port, in one embodiment, the second configu-
ration option 944c allows the administrator to quickly create
four STS-3c paths (FIG. 5a) or one concatenated STS-12c
(FIG. Se). The user may select the number of paths in
window 944s or the type of path in window 944t. Windows
944s and 944t are linked and, thus, always present the user
with consistent options. For example, if the administrator
selects 4 paths in window 944s, window 944t displays
STS-3c and if the administrator selects STS-12c in window

944f, window 944s displays 1 path. Again, the SONET path
wizard graphically displays the position 944d and width
944f of the SONET paths created and also displays them in
SONET Path table 944g along with the default parameters
assigned to each SONET path.

The third configuration option allows the administrator to
custom configure a port thereby providing the administrator
with more flexibility. If the administrator selects the third
configuration option 944d (FIG. 5f), the SONET Path wizard
displays a function window 944h. The function window
provides a list of available SONET Path types 944i and also
displays an allocated SONET path window 944j. In this
example, only the STS-3c path type is listed in the available
SONET Path types window, and if the administrator wishes
to configure a single STS-12c path, then they need to select
the first or second configuration option 944b or 9446. To
configure one or more SONET STS-3c paths, the adminis-
trator selects the STS-3c SONET path type and then selects
ADD button 944k. The SONET Path wizard adds STS-3c

path 9441 to the allocated SONET paths window and then
displays the position 9446 and width 944f of the SONET
path and updates Path table 944g with a listing of that
SONET path including the assigned parameters. In this

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 283

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 284

US 6,880,086 B2

25

example, two STS-3c paths 9441 and 944m are configured in
this way on the selected port. The administrator may select
an allocated path (e.g., 944m or 94411) in window 9441' and
then select the remove button 94411 to delete a configured
path, or the administrator may select the clear button 9440
to delete each of the configured paths from window 9441'.
Moreover, the administrator may select an allocated path
and use up arrow 94411 and down arrow 944v to change the
position 9446.

In any of the SONET Path windows (FIGS. 56—5f), the
administrator may select a path in the SONET path table and
double click on the left mouse button or select a modify
button 944p to cause the GUI to display a dialog box through
which the administrator may modify the default parameters
assigned to each path. The wizard validates each parameter
change and prevents invalid values from being entered. The
administrator may also select a cancel button 9441] to exit the
SONET path wizard without accepting any of the configured
or modified paths. If, instead, the administrator wants to exit
the SONET Path wizard and accept the configured SONET
Paths, the administrator selects an OK button 944r.

Once the administrator selects the OK button, the NMS
client validates the parameters as far as possible within the
client’s view of the device and passes (step 880, FIG. 3g)
this run time/instance configuration data, including all con-
figured SONET path parameters, to the NMS server. The
NMS server validates (step 881) the data received based on
its view of the world and if not correct, sends an error
message to the NMS client, which notifies the administrator.
Thus, the NMS server re-validates all data from the NMS
clients to ensure that it is consistent with changes made by
any other NMS client or by an administrator using the
network device’s CLI. After a successful NMS server

validation, the Persistent layer software within the server
uses this data to generate (step 882) SQL commands, which
the server sends to the configuration database software
executing on the network device. This is referred to as
“persisting” the configuration change. Receipt of the SQL
commands triggers a validation of the data within the
network device as well. If the validation is not successful,
then the network device sends an error message to the NMS
server, and the NMS server sends an error message to the
NMS client, which displays the error to the administrator. If
the validation is successful, the configuration database soft-
ware then executes (step 883) the SQL commands to fill in
or change the appropriate configuration tables.

As just described, the configuration process provides a
tiered approach to validation of configuration data. The
NMS client validates configuration data received from an
administrator according to its view of the network device.
Since multiple clients may manage the same network device
through the same NMS server, the NMS server re-validates
received configuration data. Similarly, because the network
device may be managed simultaneously by multiple NMS
servers, the network device itself re-validates received con-
figuration data. This tiered validation provides reliability
and scalability to the NMS.

The configuration database software then sends (step 884)
active query notices, described in more detail below, to
appropriate applications executing within the network
device to complete the administrator’s configuration request
(step 885). Active query notices may also be used to update
the NMS database with the changes made to the configura-
tion database. In addition, a Configuration Synchronization
process running in the network device may also be notified
through active queries when any configuration changes are
made or, perhaps, only when certain configuration changes

10

15

20

25

30

35

40

45

50

55

60

65

26

are made. As previously mentioned, the network device may
be connected to multiple NMS Servers. To maintain
synchronization, the Configuration Synchronization pro-
gram broadcasts configuration changes to each attached
NMS server. This may be accomplished by issuing reliable
(i.e., over TCP) SNMP configuration change traps to each
NMS server. Configuration change traps received by the
NMS servers are then multicast/broadcast to all attached

NMS clients. Thus, all NMS servers, NMS clients, and

databases (both internal and external to the network device)
remain synchronized.

Even a simple configuration request from a network
administrator may require several changes to one or more
configuration database tables. Under certain circumstances,
all the changes may not be able to be completed. For
example, the connection between the computer system
executing the NMS and the network device may go down or
the NMS or the network device may crash in the middle of
configuring the network device. Current network manage-
ment systems make configuration changes in a central data
repository and pass these changes to network devices using
SNMP “sets”. Since changes made through SNMP are
committed immediately (i.e., written to the data repository),
an uncompleted configuration (series of related “sets”) will
leave the network device in a partially configured state (e.g.,
“dangling” partial configuration records) that is different
from the configuration state in the central data repository
being used by the NMS. This may cause errors or a network
device and/or network failure. To avoid this situation, the
configuration database executes groups of SQL commands
representing one configuration change as a relational data-
base transaction, such that none of the changes are commit-
ted to the configuration database until all commands are
successfully executed. The configuration database then noti-
fies the server as to the success or failure of the configuration
change and the server notifies the client. If the server
receives a communication failure notification, then the
server re-sends the SQL commands to restart the configu-
ration changes. Upon the receipt of any other type of failure,
the client notifies the user.

If the administrator now selects the same port 9391: (FIG.
5a), clicks the right mouse button and selects the Configure
SONET Paths option in pop-up menu 943, the SONET path
wizard may be displayed as shown in FIG. 5f, or
alternatively, a SONET Path Configuration dialog box 945
(FIG. 5g) may be displayed. The SONET Path dialog box is
similar to the SONET Path wizard except that it does not
include the three configuration options 944b—944d. Similar
to the SONET Path wizard, dialog box 945 displays SONET
line data 9451: (e.g., slot 4, port 1, OC12), SONET Path table
945g and SONET path position 9456 and width 945f. The
administrator may modify parameters of a configured
SONET path by selecting the path in the Path table and
double clicking the right mouse button or selecting a Modify
button 945p. The administrator may also add a SONET path
by selecting an Add button 945k, which causes the SONET
path dialog box to display another SONET path in the path
table. Again, the administrator may modify the parameters
by selecting the new SONET path and then the Modify
button. The administrator may also delete a SONET path by
selecting it within the SONET Path table and then selecting
a Delete button 945m. The administrator may cancel any
changes made by selecting a Cancel button 94511, or the
administrator may commit any changes made by selecting
an OK button 9451*.

The SONET path wizard provides the administrator with
available and valid configuration options. The options are

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 284

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 285

US 6,880,086 B2

27

consistent with constraints imposed by the SONET protocol
and the network device itself. The options may be further
limited by other constraints, for example, customer subscrip-
tion limitations. That is, ports or modules may be associated
with particular customers and the SONET Path wizard may
present the administrator with configuration options that
match services to which the customer is entitled and no

more. For example, a particular customer may have only
purchased service on two STS-3c SONET paths on an OC12
SONET port, and the SONET Path wizard may prevent the
administrator from configuring more than these two STS-3c
SONET paths for that customer.

By providing default values for SONET Path parameters
and providing only configuration options that meet various
protocol, network device and other constraints, the process
of configuring SONET paths is made simpler and more
efficient, the necessary expertise required to configure
SONET paths is reduced and the potential for mis-
configurations is reduced. In addition, as the administrator
provides input to the SONET path configuration wizard, the
wizard validates the input and presents the administrator
with configuration options consistent with both the original
constraints and the administrator’s configuration choices.
This further reduces the necessary expertise required to
configure SONET paths and further minimizes the potential
for mis-configurations. Moreover, short cuts presented to the
administrator may increase the speed and efficiency of
configuring SONET paths.

If the administrator now selects SONET path tab 942
(FIG. 5h), GUI 895 displays an inventory including the two
STS-3c paths (942a and 942b) just configured. The SONET
path tab includes information about each SONET path, such
as SONET line information (e.g., shelf, slot and port), Path
Position, Path Width, Ingress Connection and Egress Con-
nection. It may also include Path Type and Service (e.g.,
Terminated ATM, Switched SONET), and a Path Name. The
SONET Path configuration wizard may automatically assign
the Path Name based on the shelf, slot and port. Parameters,
such as Path Name, Path Width, Path Number and Path
Type, may be changed by selecting a SONET path from the
inventory and double clicking on that SONET path or
selecting a Modify button (not shown) causing a dialog box
to appear. The administrator may type in different parameter
values or select from a pull-down list of available options
within the dialog box.

Similarly, if the administrator selects an ATM Interfaces
button 942C or directly selects the ATM Interfaces tab 946
(FIG. 51'), GUI 895 displays an inventory including two
ATM interfaces (946a and 946b) corresponding to the two
STS-3c paths just configured. The SONET Path configura-
tion wizard automatically assigns an ATM interface name
based again on the shelf, slot and port. The SONET Path
wizard also automatically assigns a minimum VPI bits and
maximum VPI bits and a minimum and maximum VCI bits.

Again, the ATM Interfaces tab lists information such as the
shelf, port and slot as well as the Path name and location of
the card. The ATM Interfaces tab also lists the Virtual ATM

(V-ATM) interfaces (IF) count. Since no virtual ATM inter-
faces have yet been configured, this value is zero and Virtual
ATM Interfaces tab 947 and Virtual Connections tab 948 do

not yet list any information. The administrator may return to
the SONET Paths tab to configure additional SONET paths
by selecting a Back button 946k or by directly selecting the
SONET Paths tab.

Referring to FIG. 51', instead of selecting a port (e.g.,
939a, FIG. 5a) and then selecting a Configure SONET Paths
option from a pop-up menu, the administrator may instead

10

15

20

25

30

35

40

45

50

55

60

65

28

select a path from the inventory of paths in SONET Inter-
faces tab 940 and then select a Paths button 940a to cause

SONET Path wizard 944 (FIG. 5k) to be displayed. For
example, the administrator may select line 949a correspond-
ing to port 941a on card 556d and then select Paths button
940a to cause SONET Path wizard 944 to be displayed. As
shown, SONET line data 944a indicates that this is port two
in slot 5 and is an OC48 type port. Again, the administrator
is presented with three configuration options 944b, 944C and
944d.

If the administrator selects option 944b (FIG. 51), then the
SONET Path Wizard creates a single STS-48c concatenated
SONET Path and inventories the new path in Path table 944g
and displays the path position 9446 and path width 944f. If
the administrator instead selects option 944C (FIGS. 5m—50),
the SONET Path wizard creates one or more valid SONET

paths that fully utilize the port capacity. For example, as pull
down window 944s (FIG. 511) shows one single concat-
enated STS-48c path (FIG. 511) may be created, four STS-
12c paths (FIG. 5m), or sixteen STS-3c paths (FIG. 50) may
be created. Instead, the administrator may select option 944d
(FIG. Sp) to custom configure the port. Again, function
window 944h is displayed including a list of Available
SONET Path types 944i and a list of Allocated SONET
Paths 944j. In this instance where the port is an OC48, both
an STS-3c and STS-12c are listed as available SONET Path

types. The administrator may select one and then select Add
button 944k to add a path to the Allocated SONET Paths list
and cause the wizard to display the path in Path Table 944g
and to display the path position 9446 and width 944f. In this
example, two STS-3c paths are added in positions 1 and 4
and two STS-12c paths are added in positions 22 and 34.

Now when the administrator selects SONET Paths tab

942 (FIG. Sq), the inventory of paths includes the four new
paths (9426—942f). Similarly, when the administrator selects
ATM Interfaces tab 946 (FIG. 5r), the inventory of ATM
interfaces includes four new interfaces (946c—946f) corre-
sponding to the newly created SONET paths. Instead of
selecting a port in device mimic 896a and then the Configure
SONET Paths option from a pop-up menu and instead of
selecting a SONET interface in the SONET Interfaces tab
and then selecting the Paths button, the SONET Path wizard
may be accessed by the administrator from any view in the
GUI by simply selecting a Wizard menu button 951 and then
selecting a SONET Path option 951a (FIG. Sq) from a
pull-down menu 951b. When the SONET path wizard
appears, the SONET line data (i.e., slot, port and type) will
be blank, and the administrator simply needs to provide this
information to allow the SONET path wizard to select the
appropriate port. If the administrator selects a port in the
Ports tab prior to selecting the SONET path option from the
wizard pull-down menu, then the SONET wizard will appear
with this information displayed as the SONET line data but
the administrator may modify this data to select a different
port from the SONET wizard.

To create virtual connections between various ATM

Interfaces/SONET Paths within the network device, the
administrator first needs to create one or more virtual ATM
interfaces for each ATM interface. At least two virtual ATM

interfaces are required since two discrete virtual ATM inter-
faces are required for each virtual connection. In the case of
a multipoint connection there will be one root ATM interface
and many leafs. To do this, the administrator may select an
ATM interface (e.g., 946b) from the inventory in the ATM
Interfaces tab and then select a Virtual Interfaces button

946g to cause Virtual Interfaces tab 947 (FIG. 5s) to appear
and display an inventory of all virtual interfaces associated

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 285

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 286

US 6,880,086 B2

29

with the selected ATM interface. In this example, no virtual
ATM interfaces have yet been created, thus, none are dis-
played.

The Virtual ATM Interfaces tab also includes a device

navigation tree 947a. The navigation tree is linked with the
Virtual Interfaces button 946g (FIG. 5r) such that the device
tree highlights the ATM interface (e.g., ATM-Path2i11/4,
FIG. 5s) that was selected when the Virtual Interfaces button
was selected. When the Virtual Interfaces button is selected,
the NMS client automatically requests virtual interface data
corresponding to the selected ATM interface from the NMS
server and then the NMS client displays this data in the
Virtual ATM Interfaces tab. This saves memory space within
the NMS client since only a small amount of data relevant
to the virtual ATM interfaces associated with the selected

ATM interface must be stored. In addition, since the amount
of data is small, the data transfer is quick and reduces
network traffic.

Instead the administrator may directly select Virtual ATM
Interfaces tab 947 and then use the device tree 947a to locate

the ATM interface they wish to configure with one or more
virtual ATM interfaces. In this instance, the NMS client may
again automatically request virtual interface data from the
NMS server, or instead, the NMS client may simply use data
stored in cache.

To return to the ATM Interfaces tab, the administrator may
select a Back button 947d or directly select the ATM
Interfaces tab. Once the appropriate ATM interface has been
selected (e.g., ATM-Path2i11/4/1) in the Virtual ATM Inter-
faces tab device tree 947a, then the administrator may select
an ADD button 947b to cause a virtual ATM (V-ATM)
Interfaces dialog box 950 (FIG. St) to appear.

GUI 895 automatically fills in dialog box 950 with default
values for Connection type 950a, Version 950b and Admin-
istration Status 9506. The administrator may provide a
Name or Alias 950d and may modify the other three param-
eters by selecting from the options provided in pull down
menus. This and other dialog boxes may also have wizard-
like properties. For example, only valid connection types,
versions and administrative status choices are made avail-

able in corresponding pull-down menus. For instance, Ver-
sion may be UNI Network 3.1, UNI Network 4.0, IISP User
3.0, IISP User 3.1, PNNI, IISP Network 3.0 or IISP Network
3.1, and Administration Status may be Up or Down. When
Down is selected, the virtual ATM interface is created but
not enabled. With regard to connection type, for the first
virtual ATM interface created for a particular ATM interface,
the connection type choices include Direct Link or Virtual
Uni. However, for any additional virtual ATM interfaces for
the same ATM interface the connection type choices include
only Logical Link. Hence the dialog box provides valid
options to further assist the administrator. When finished, the
administrator selects an OK button 9506 to accept the values
in the dialog box and cause the virtual ATM interface (e.g.,
9476, FIG. 514) to be inventoried in Virtual ATM tab 947.

The administrator may then select ADD button 947b
again to add another virtual ATM interface to the selected
ATM interface (ATM-Path2i11/4/1). Instead, the adminis-
trator may use device tree 947a to select another ATM
interface, for example, ATM path 946C (FIG. 5r) designated
ATM-Path1i11/5/2 (FIG. 5v) in device tree 947a. The
administrator may again select the ADD button or the
administrator may select port 941a on card 556d, click the
right mouse button and select the “Add Virtual Connection”
option from pop-up menu 943. This will again cause dialog
box 950 (FIG. St) to appear, and the administrator may again
modify parameters and then select OK button 9506 to
configure the virtual ATM interface.

10

15

20

25

30

35

40

45

50

55

60

65

30

To create a virtual connection, the administrator selects a

virtual ATM interface (e.g., 9476, FIG. 5v) and then selects
a Virtual Connections button 947d or a Virtual Connection

option 951C (FIG. 5q) from wizard pull-down menu 951b.
This causes GUI 895 to start a Virtual Connection configu-
ration wizard 952 (FIG. 5w). Just as the SONET Path
configuration wizard guides the administrator through the
task of setting up a SONET Path, the Virtual Connection
configuration wizard guides the administrator through the
task of setting up a virtual connection. Again, the adminis-
trator is presented with valid configuration options and
default parameter values are provided as a configuration
starting point. As a result, the process of configuring virtual
connections is simplified, and required administrator exper-
tise is reduced since the administrator does not need to know

or remember to provide each parameter value. In addition,
the wizard validates configuration requests from the admin-
istrator to minimize the potential for mis-configuration.

The Virtual Connection configuration wizard includes a
Connection Topology panel 952a and a Connection Type
panel 952b. Within the Connection Topology panel the
administrator is asked whether they want a point-to-point or
point-to-multipoint connection, and within the Connection
Type panel, the administrator is asked whether they want a
Virtual Path Connection (VPC) or a Virtual Channel Con-
nection (VCC). In addition, the administrator may indicate
that they want the VPC or VCC made soft (SPVPC/
SPVCC). Where the administrator chooses a point-to-point,
VPC connection, the Virtual Connection wizard presents
dialog box 953 (FIG. 5x).

The source (e.g., test1 in End Point1window 953a) for the
point-to-point connection is automatically set to the virtual
ATM interface (e.g., 9476, FIG. 5v) selected in Virtual ATM
Interface tab 947 when the virtual connection button 947d

was selected. The administrator may change the source
simply by selecting another virtual ATM interface in device
tree 953b, for example, test2. Similarly, the administrator
selects a destination (e.g., test3 in End Point 2 window 953C)
for the point-to-point connection by selecting a virtual ATM
interface in device tree 953d, for example, test3. If the
administrator had selected point-to-multipoint in Connec-
tion Topology panel 952a (FIG. 5w), then the user would
select multiple destination devices from device tree 953d or
the wizard may present the administrator with multiple End
Point 2 windows in which to select the multiple destination
devices. In addition, if within Connection Topology panel
952b (FIG. 5w) the administrator had elected to make the
VPC or VCC soft (SPVPC/SPVCC), then the user may
select in End Point 2 window 953C (FIG. 5x) a virtual ATM
interface in another network device.

The virtual Connection wizard also contains a Connec-

tions Parameters window 9536, an End Point 1 Parameters
window 953f and an End Point 2 Parameters window 953g.
Again for point-to-multipoint, there will be multiple End
Point 2 Parameters windows. Within the Connections

Parameters window, the administrator may provide a Con-
nection name (e.g., test). The administrator also determines
whether the connection will be configured in an Up or Down
Administration Status, and may provide a Customer Name
(e.g., Walmart) or select one from a customer list, which may
be displayed by selecting Customer List button 953k.

Within the End Point 1 and 2 Parameters windows, the

administrator provides a Virtual Path Identifier (VPI) in
window 953i, 953j or selects a Use Any VPI Value indicator
953k, 953l. If the administrator chooses a VCC connection

in Connection Type window 952b (FIG. 5w), then the
administrator must also provide a Virtual Channel Indicator

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 286

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 287

US 6,880,086 B2

31

(VCI) in window 953m, 95311 or select a Use Any VCI Value
indicator 9530, 953p. The administrator also selects a Trans-
mit and a Receive Traffic Descriptor (e.g., Variable Bit Rate
(VBR)-high, VBR-low, Constant Bit Rate (CBR)-high,
CBR-low) from a pull down menu or selects an Add Traffic
Descriptor button 953q, 953r. If the administrator selects one
of the Add Traffic Descriptor buttons, then a traffic descrip-
tor window 956 (FIG. 5y) is displayed and the administrator
may add a new traffic descriptor by providing a name and
selecting a quality of service (QoS) class and a traffic
descriptor type from corresponding pull down menus.
Depending upon the QoS class and type selected, the admin-
istrator may also be prompted to input peak cell rate (PCR),
sustainable cell rate (SCR), maximum burst size (MBS) and
minimum cell rate (MCR), and for each PCR, SCR, MBS
and MCR, the administrator will be prompted for a cell loss
priority (CLP) value where CLP=0 corresponds to high
priority traffic and CLP=0+1 corresponds to combined/
aggregated high and low priority traffic. The traffic descrip-
tors indicate the priority of the traffic to be sent over the
connection thereby allowing parameterization of quality of
service. The administrator may select a Use the same Traffic
Descriptor for both Transmit and Receive indicator 953s,
953t (FIG. 5x).

Within the Virtual Connection wizard, the administrator

may select a Back button 95314 (FIG. 5x) to return to screen
952 (FIG. 5w) or a Cancel button 953v to exit out of the
wizard without creating a virtual connection. On the other
hand, if the administrator has provided all parameters and
wants to commit the virtual connection, then the adminis-
trator selects a Finish button 953w. The NMS client passes
the parameters to the NMS server, which validates the data
and then writes the data into the network device’s configu-
ration database. The data is validated again within the
network device and then through active queries modular
processes throughout the device are notified of the configu-
ration change to cause these processes to implement the
virtual connection. GUI 895 then displays the newly created
virtual connection 948a (FIG. 52) in a list within Virtual
Connections tab 948. The administrator may then create
multiple virtual connections between the various virtual
ATM interfaces, each of which will be listed in the Virtual
Connections tab 948. The administrator may also select a
Back button 948b to return to the Virtual ATM Interfaces tab

or select the Virtual ATM Interfaces tab directly.
The Virtual Connections tab also includes a device navi-

gation tree 948C. The device tree is linked with Virtual
Connections button 947d such that the device tree highlights
the virtual ATM interface that was selected in Virtual ATM
Interfaces tab 947 when the Virtual Connections button was

selected. The Virtual Connections tab then only displays
data relevant to the highlighted portion of the device tree.

As described above, the SONET Paths tab, ATM Inter-
faces tab, Virtual ATM Interfaces tab and Virtual Connec-
tions tabs are configuration tabs that are chained together
providing wizard-like properties. Both the order of the tabs
from right to left and the forward buttons (e.g., ATM
Interfaces button 942C) and back buttons (e.g., Back button
946k) allow an administrator to easily and quickly sequence
through the steps necessary to provision services. Although
device navigation trees were shown in only the Virtual ATM
Interface tab and the Virtual Connection tab, a device
navigation tree may be included in each tab and only data
relevant to the highlighted portion of the navigation tree may
be displayed.

In addition to the SONET Interface and SONET Paths

tabs, the status window may include tabs for other physical

10

15

20

25

30

35

40

45

50

55

60

65

32

layer protocols, for example, Ethernet. Moreover, in addi-
tion to the ATM Interfaces and Virtual ATM Interfaces tabs,
the status window may include tabs for other upper layer
protocols, including MPLS, IP and Frame Relay.
Importantly, other configuration wizards in addition to the
SONET Path configuration wizard and Virtual Connection
configuration wizard may also be used to simplify service
provisioning.
Custom Navigator

In typical network management systems, the graphical
user interface (GUI) provides static choices and is not
flexible. That is, the screen flow provided by the GUI is
predetermined and the administrator must walk through a
predetermined set of screens each time a service is to be
provisioned. To provide flexibility and further simplify the
steps required to provision services within a network device,
GUI 895, described in detail above, may also include a
custom navigator tool that facilitates “dynamic menus”.
When the administrator selects the custom navigator menu
button 958 (FIG. 4x), a pop-up menu 958a displays a list of
available “screen marks”. The list of screen marks may
include default screen marks (e.g., Virtual ATM IF 958b and
Virtual Connection 958C) and/or administrator created
screen marks (e.g., test 958d).

When the administrator selects a particular screen mark,
the custom navigator shortcuts the configuration process by
jumping forward past various configuration screens to a
particular configuration screen corresponding to the screen
mark. For example, if the administrator selects a Virtual
ATM IF screen mark 958b, the custom navigator presents
the Virtual ATM Interface tab (FIG. 514). The administrator
may then select an ATM interface from device tree 947a and
select Add button 947b to add a virtual ATM interface.

Similarly, the administrator may select a Virtual Connection
screen mark 958C, and the custom navigator automatically
presents Virtual Connection wizard 952 (FIG. 5w).

Moreover, the custom navigator allows the administrator
to create unique screen marks. For example, the adminis-
trator may provision SONET paths and ATM interfaces as
described above, then select an ATM interface (e.g., 946b,
FIG. Sr) in ATM interfaces tab 946 and select Virtual
Interfaces button 946g to display Virtual ATM Interfaces tab
947 (FIG. 5s), and as described above, the devices tree 947a
will highlight the selected ATM interface. If the administra-
tor believes they may want to return to the Virtual Interfaces
tab multiple times to provision multiple virtual ATM inter-
faces for the selected ATM interface or other ATM interfaces

near the selected ATM interface in device tree 947a, then the
administrator would select a screen mark button 959 to

create a screen mark for this configuration position. A dialog
box would appear in which the administrator enters the
name of the new screen mark (e.g., test 958d, FIG. 4x) and
this new screen mark name is added to the list of screen

marks 958a. The custom navigator then takes a “snap shot”
of the metadata necessary to recreate the screen and the
current configuration position (i.e., highlight ATM-Path2i
11/4/1). If the administrator now selects this screen mark
while another tab is displayed, the custom navigator uses the
metadata associated with the screen mark to present the
screen shot displayed in FIG. 5s to the administrator updated
with any other configuration changes made subsequent to
the creation of the screen mark. As a result, the administrator
is provided with configuration short cuts, both default short
cuts and ones created by the administrator himself. Many
other screen marks may be created through GUI 895, and in
each case, the screen marks may simplify the configuration
process and save the administrator configuration time.

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 287

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 288

US 6,880,086 B2

33
Custom Wizard

To provide additional flexibility and efficiency, an admin-
istrator may use a custom wizard tool to create unique
custom wizards to reflect common screen sequences used by
the administrator. To create a custom wizard, the adminis-
trator begins by selecting a Custom Wizard menu button 960
(FIG. 4y) to cause a pull-down menu 960a to appear and
then selecting a Create Wizard 960b option from the pull-
down menu. The administrator then begins using the par-
ticular sequence of screens that they wish to turn into a
custom wizard and the custom wizard tool records this

sequence of screens. For example, the administrator may
begin by selecting a port within device mimic 896a, clicking
the right mouse button and selecting the Configure SONET
Paths option to cause the SONET Path configuration wizard
944 (FIG. 5b) to appear. The custom wizard tool records the
first screen to be included in the new custom wizard as the

SONET Path configuration wizard screen 944. After filling
in the appropriate data for the current port configuration, the
administrator presses the OK button and the SONET Paths
tab 942 (FIG. 5h) appears. The custom wizard records the
SONET Paths tab screen as the next screen in the new

custom wizard. The administrator may then select Virtual
ATM interfaces tab 947 (FIG. 5s) to cause this tab to be
displayed. Again, the custom navigator records this screen as
the next screen in the new custom wizard.

The administrator may continue to select further screens
to add to the new custom wizard (for example, by selecting
an ATM interface from device tree 947a and then selecting
the Add button 947b to cause the Add V-ATM Interface

dialog box 950 (FIG. St) to appear) or, if the administrator
is finished sequencing through all of the screens that the
administrator wants added to the new custom wizard, the
administrator again selects Custom Wizard menu button 960
(FIG. 4y) and then selects a Finish Wizard option 960C. This
causes a dialog box 960d to appear, and the administrator
enters a name (e.g., test) for the custom wizard just created.

To access a custom wizard, the administrator again selects
Custom Wizard 960 menu button and then selects a Select

Wizard option 9606 to cause an inventory 960f of custom
wizards to be displayed. The administrator then selects a
custom wizard (e.g., test), and the custom wizard automati-
cally presents the administrator with the first screen of that
wizard. In the continuing example, the custom navigator
presents SONET Path configuration wizard screen 961 (FIG.
42). Since the administrator may start a custom wizard from
any screen within GUI 895, SONET Path wizard screen 961
is different from the screen 944 displayed in FIG. 5b because
SONET line data 961a (i.e., slot, port, type) is not provided.
That is, the administrator may not have selected a particular
SONET Path to configure prior to selecting the custom
wizard. Hence, the SONET line data is blank and the
administrator must fill this in. After the administrator enters

and/or modifies the SONET line data and any other data
within the first screen, the administrator selects a Next

button 961b (or an OK button) to move to the next screen in
the sequence of screens defined by the custom wizard. In the
next and subsequent screens, the administrator may also
select a Back button to return to a previous screen within the
custom wizard screen sequence. Thus, the custom wizard
tool allows an administrator to make their provisioning tasks
more efficient by defining preferred screen sequences for
each task.

Off-Line Configuration
There may be times when a network manager/

administrator wishes to jump-start initial configuration of a
new network device before the network device is connected

10

15

20

25

30

35

40

45

50

55

60

65

34

into the network. For example, a new network device may
have been purchased and be in the process of being delivered
to a particular site. Generally, a network manager will
already know how they plan to use the network device to
meet customer needs and, therefore, how they would like to
configure the network device. Because configuring an entire
network device may take considerable time once the device
arrives and because the network manager may need to get
the network device configured as soon as possible to meet
network customer needs, many network managers would
like the ability to perform preparatory configuration work
prior to the network device being connected into the net-
work.

In the current invention, network device configuration
data is stored in a configuration database within the network
device and all changes to the configuration database are
copied in the same format to an external NMS database.
Since the data in both databases (i.e., configuration and
NMS) is in the same format, the present invention allows a
network device to be completely configured “off-line” by
entering all configuration data into an NMS database using
GUI 895 in an off-line mode. When the network device is

connected to the network, the data from the NMS database
is reliably downloaded to the network device as a group of
SQL commands using a relational database transaction. The
network device then executes the SQL commands to enter

the data into the internal configuration database, and through
the active query process (described below), the network
device may be completely and reliably configured.

Referring to FIG. 6a, the network manager begins by
selecting Devices branch 898a in navigation tree 898, click-
ing the right mouse button to cause pop-up menu 898C to
appear and selecting the Add Devices option causing dialog
box 898d (FIG. 6b) to be displayed. The network manager
then enters the intended IP address or DNS name (e.g.,
192.168.9201) of the new network device into field 8986
and de-selects a Manage device in on-line mode option
898k—that is, the network manager moves the cursor over
box 8981 and clicks the left mouse button to clears box 8981.

De-selecting the Manage device in on-line mode option
indicates that the network device will be configured in
off-line mode. The network manager then selects Add button
898f to cause dialog box 898d to add the IP address to
window 898g (FIG. 66). However, in this example, box
898m is blank indicating the network device is to be con-
figured off-line.

Referring to FIG. 6d, the new network device (e.g.,
192.168.9201) is now added to the list of devices 898b to
be managed. However, the icon includes a visual indicator
89811 (e.g., red “X”) indicating the off-line status of the
device. To begin off-line configuration, the network manager
selects the new device. Since the NMS client and NMS

server are not connected to the actual network device, no
configuration data may be read from the network device’s
configuration database. The network manager must,
therefore, populate a device mimic with modules represent-
ing the physical inventory that the network device will
include. To do this, the network manager begins by clicking
on the right mouse button to display pop-up menu 8980, and
selects the Add Chassis option to cause a device mimic 896a
(FIG. 66) to be displayed in window 896b including only a
chassis. All slots in the chassis may be empty and visually
displayed, for example, in a gray or light color. Alternatively,
particular modules that are required for proper network
device operation may be automatically included in the
chassis. If more than one chassis type is available, a dialog
box would appear and allow the network manager to select

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 288

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 289

US 6,880,086 B2

35

a particular chassis. In the current example, only one chassis
is available and is automatically displayed when the network
manager selects the Add Chassis option. Again, the cursor
provides context sensitive pop-up windows. For example,
the network manager may move the cursor over a particular
slot (e.g., 8966, FIG. 66) to cause a pop-up window (e.g.,
896a) to appear and describe the slot (e.g., Empty Forward-
ing Processor Slot Shelf 3/Slot 1). The network manager
may then select an empty slot (e.g., 8966, FIG. 6f) to cause
the device mimic to highlight that slot, click the right mouse
button to cause a pop-up menu (e.g., 8966) to appear and
select the Add Module option. In this example, only one type
of forwarding card is available. Thus, it is automatically
added (visually indicated in dark green, FIG. 6g) to the
device mimic. This forwarding card corresponds to forward-
ing card 546a in FIG. 41a. The network manager may also
remove a module by selecting the module (e.g., 546a),
clicking the right mouse button to cause a pop-up menu 896t
to appear and then selecting the Remove Module option.

If there are multiple types of modules that may be inserted
in a particular slot, then a dialog box will appear after the
network manager selects the Add Module option and the
network manager will select the particular module that the
network device will include in this slot upon delivery. For
example, while viewing the back of the chassis (FIG. 6h),
the manager may select an empty universal port card slot
(e.g., 8961‘), click the right mouse button causing pop-up
menu 896g (FIG. 61') to appear and select the Add Module
option. Since multiple universal port cards are available,
selecting the Add Module option causes a dialog box 896h
(FIG. 61') to appear. The network manager may then select
the type of universal port card to be added into the empty slot
from an inventory provided in pull-down menu 8961' (FIG.
6k). Once the network manager selects the appropriate card
and an OK button 896j, the device mimic adds a represen-
tation of this card (e.g., 556k, FIG. 6l and see also FIG. 41b).

Typically, a network device may include many similar
modules, for example, many 16 port OC3 universal port
cards and many forwarding cards. Instead of having the
network manager repeat each of the steps described above to
add a universal port card or a forwarding card, the network
manager may simply select an inserted module (e.g., 16 port
OC3 universal port card 556k, FIG. 6L) by pressing down on
the left mouse button, dragging an icon to an empty slot
(e.g., 5561') also requiring a similar module and releasing the
left mouse button to drop a similar module (e.g., 16 port
OC3 universal port card 556g, FIG. 6m) into that empty slot.
Similarly, the network manager may drag and drop a for-
warding card module to an empty forwarding card slot and
other inserted modules into other empty slots. The network
manager may use the drag and drop method to quickly
populate the entire network device with the appropriate
number of similar modules. To add a different type of
universal port card, the network manager will again select
the empty slot, click on the right mouse button, select the
Add Module button from the pop-up menu and then select
the appropriate type of universal port card from the dialog
box.

Once the network manager is finished adding appropriate
modules into the empty slots such that the device mimic
represents the physical hardware that will be present in the
new network device, then the network manager may
configure/provision services within the network device. Off-
line configuration is the same as on-line configuration,
however, instead of sending the configuration data to the
configuration database within the network device, the NMS
server stores the configuration data in an external NMS

10

15

20

25

30

35

40

45

50

55

60

65

36
database. After the network device arrives and the network

manager connects the network device’s ports into the
network, the network manager selects the device (e.g.,
192.168.9201, FIG. 6n), clicks the right mouse button to
cause pop-up menu 8680 to appear and selects the Manage
On-line option.

The NMS client notifies the NMS server that the device

is now to be managed on-line. The NMS server first recon-
ciles the physical configuration created by the network
manager and stored in the NMS database against the physi-
cal configuration of the actual network device and stored in
the internal configuration database. If there are any mis-
matches, the NMS server notifies the NMS client, which
then displays any discrepancies to the network manager.
After the network manager fixes any discrepancies, the
network manager may again select the Manage On-Line
option in pop-up menu 8980. If there are no mis-matches
between the physical device tables in the NMS database and
the configuration database, then the NMS server reconciles
all service provisioning data in the NMS database against
the service provisioning data in the configuration database.
In this example, the network device is new and thus, the
configuration database has no service provisioning data.
Thus, the reconciliation will be successful.

The NMS server then instructs the network device to stop
replication between the primary configuration database
within the network device and the backup configuration
database within the network device. The NMS server then

pushes the NMS database data into the backup configuration
database, and then instructs the network device to switcho-
ver from the primary configuration database to the backup
configuration database. If any errors occur after the
switchover, the network device may automatically switch
back to the original primary configuration database. If there
are no errors, then the network device is quickly and
completely configured to work properly within the network
while maximizing network device availability.

In the previous example, the network manager configured
one new network device off-line. However, a network man-
ager may configure many new network devices off-line. For
example, a network manager may be expecting the receipt of
five or more new network devices. Referring to FIG. 60, to
simplify the above process, a network manager may select
an on-line device (e.g., 192.168.9202) or off-line device
(e.g., 192.168.9201) by pressing and holding the left mouse
button down, dragging an icon over to a newly added
off-line device (e.g., 192.168.203) and dropping the icon
over the newly added off-line device by releasing the left
mouse button. The NMS client notifies the NMS server to

copy the configuration data from the NMS database asso-
ciated with the first network device (e.g., 192.168.9202 or
192.168.9201) to a new NMS database associated with the
new network device and to change the data in the new NMS
database to correspond to the new network device. The
network manager may then select the new network device
and modify any of the configuration data, as described
above, to reflect the current network device requirements. As
a result, off-line mode configuration is also made more
efficient.

A network manager may also choose to re-configure an
operational device in off-line mode without affecting the
operation of the network device. For example, the network
manager may want to add one or more new modules or
provision services in a network device during a time when
the network sees the least amount of activity, for example,
midnight. Through the off-line mode, the network manager
may prepare the configuration data ahead of time.

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 289

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 290

US 6,880,086 B2

37

Referring to FIG. 6p, the network manager may select an
operational network device (e.g., 192.168.9202), click on
the right mouse button to cause pop-up menu 8980 to appear
and select the Manage On-Line option, which de-selects the
current on-line mode and causes the GUI to enter an off-line

mode for this device. Although the GUI has entered the
off-line mode, the network device is still operating normally.
The network manager may then add one or more modules
and/or provision services as described above just as if the
GUI were still in on-line mode, however, all configuration
changes are stored by the NMS server in the NMS database
corresponding to the network device instead of the network
device’s configuration database. Alternatively, when the
NMS server is notified that a network device is to be

managed off-line, the NMS server may copy the NMS
database data to a temporary NMS database and store all
off-line configuration changes there. When the network
manager is ready (i.e., at the appropriate time and/or after
adding any new modules to the network device) to download
the configuration changes to the operational network device,
the network manager again selects the network device (e.g.,
192.168.9202), clicks on the right mouse button to cause
pop-up menu 898a to appear and selects the Manage
On-Line option.

The NMS client notifies the NMS server that the device

is now to be managed on-line. The NMS server first recon-
ciles the physical configuration stored in the NMS database
(or the temporary NMS database) against the physical
configuration of the actual network device stored in the
internal configuration database. If there are any mis-
matches, the NMS server notifies the NMS client, which
then displays any discrepancies to the network manager.
After the network manager fixes any discrepancies, the
network manager may again select the Manage On-Line
option in pop-up menu 8980. If there are no mismatches
between the physical device tables in the NMS database and
the configuration database, then the NMS server reconciles
all service provisioning data in the NMS database (or the
temporary NMS database) against the service provisioning
data in the configuration database. If any conflicts are
discovered, the NMS server notifies the NMS client, which
displays the discrepancies to the network manager. After
fixing any discrepancies, the network manager may again
select the Manage On-Line option in pop-up menu 8980.

If there are no conflicts, the NMS server instructs the
network device to stop replication between the primary
configuration database within the network device and the
backup configuration database within the network device.
The NMS server then pushes the NMS database data into the
backup configuration database, and then instructs the net-
work device to switchover from the primary configuration
database to the backup configuration database. If any errors
occur after the switchover, the network device may auto-
matically switch back to the original primary configuration
database. If there are no errors, then the network device is
quickly re-configured to work properly within the network.

Off-line configuration, therefore, provides a powerful tool
to allow network managers to prepare configuration data
prior to actually implementing any configuration changes.
Such preparation, allows a network manager to carefully
configure a network device when they have time to consider
all their options and requirements, and once the network
manager is ready, the configuration changes are imple-
mented quickly and efficiently.
FCAPS Management

Fault, Configuration, Accounting, Performance and Secu-
rity (FCAPS) management are the five functional areas of

10

15

20

25

30

35

40

45

50

55

60

65

38

network management as defined by the International Orga-
nization for Standardization (ISO). Fault management is for
detecting and resolving network faults, configuration man-
agement is for configuring and upgrading the network,
accounting management is for accounting and billing for
network usage, performance management is for overseeing
and tuning network performance, and security management
is for ensuring network security. Referring to FIG. 7a, GUI
895 provides a status button 899a—899f for each of the five
FCAPS. By clicking on one of the status buttons, a status
window appears and displays the status associated with the
selected FCAPS button to the network administrator. For

example, if the network administrator clicks on the F status
button 899a, a fault event summary window 900 (FIG. 7b)
appears and displays the status of any faults.

Each FCAP button may be colored according to a hier-
archical color code where, for example, green means normal
operation, red indicates a serious error and yellow indicates
a warning status. Today there are many NMSs that indicate
faults through color coded icons or other graphics. However,
current NMSs do not categorize the errors or warnings into
the ISO five functional areas of network management—that
is, FCAPS. The color-coding and order of the FCAPS
buttons provide a “status bar code” allowing a network
administrator to quickly determine the category of error or
warning and quickly take action to address the error or
warning.

As with current NMSs, a network administrator may
actively monitor the FCAPS buttons by sitting in front of the
computer screen displaying the GUI. Unfortunately, net-
work administrators do not have time to actively monitor the
status of each network device—passive monitoring is
required. To assist passive monitoring, the FCAPS buttons
may be enlarged or “stretched” to fill a large portion of the
screen, as shown in FIG. 7c. The FCAPS buttons may be
stretched in a variety of ways, for example, a stretch option
in a pull down menu may be selected or a mouse may be
used to drag and drop the boarders of the FCAPS buttons.
Stretching the FCAPS buttons allows a network adminis-
trator to view the status of each FCAP button from a distance

of 40 feet or more. Once stretched, each of the five OSI
management areas can be easily monitored at a distance by
looking at the bar-encoded FCAPS strip. The “stretchy
FCAPS” provide instant status recognition at a distance.

The network administrator may set the FCAPS buttons to
represent a single network device or multiple network
devices or all the network devices in a particular network.
Alternatively, the network administrator may have the GUI
display two or more FCAPS status bars each of which
represents one or more network devices.

Although the FCAPS buttons have been described as a
string of multiple stretched bars, many different types of
graphics may be used to display FCAPS status. For example,
different colors may be used to represent normal operation,
warnings and errors, and additional colors may be added to
represent particular warnings and/or errors. Instead of a bar,
each letter (e.g., F) may be stretched and color-coded.
Instead of a solid color, each FCAPS button may repeatedly
flash or strobe a color. For example, green FCAPS buttons
may remain solid (i.e., not flashing) while red errors and
yellow warnings are displayed as a flashing FCAPS button
to quickly catch a network administrator’s attention. As
another example, green/normal operation FCAPS buttons
may be a different size relative to yellow/warnings and
red/errors FCAPS buttons. For example, an FCAPS button
may be automatically enlarged if status changes from good
operation to a warning status or an error status. In addition,

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 290

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 291

US 6,880,086 B2

39

the FCAPS buttons may be different sizes to allow the
network administrator to distinguish between each FCAPS
button from a further distance. For example, the buttons may
have a graduated scale where the F button is the largest and
each button is smaller down to the S button, which is the
smallest. Alternatively, the F button may be the smallest
while the S button is the largest, or the Abutton in the middle
is the largest, the C and P buttons are smaller and the F and
S buttons are smallest. Many variations are possible for
quickly alerting a network administrator of the status of each
functional area.

Referring to FIG. 7d, for more detailed FCAPS
information, the network administrator may double click the
left mouse button on a particular network device (e.g.,
192.168.9201) to cause device navigation tree 898 to
expand and display FCAPS branches, for example, Fault
branch 898p, Configuration branch 898q, Accounting
branch 8981; Performance branch 898s and Security branch
898r. The administrator may then select one of these
branches to cause status window 897 to display tabs/folders
of data corresponding to the selected branch. For example,
if Fault branch 898p is selected (FIG. 76), an Events tab
957a is displayed in status window 897 as well as tab
holders for other tabs (e.g., System Log tab 957b (FIG. 7f)
and Trap Destinations 957C (FIG. 7g)). If the administrator
double clicks the left mouse button on the Fault branch, then
device tree 898 displays a list 958a of the available fault
tabs. The administrator may then select a tab by selecting the
tab holder from status window 897 or device tree 898.

Events tab 957a (FIG. 76) displays an event number, date,
time, source, category and description of each fault associ-
ated with a module or port selected in device mimic 896a.
System Log tab 957b (FIG. 7f) displays an event number,
date, time, source, category and description of each fault
associated with the entire network device (e.g.,
1921689201), and Trap Destination tab 957C (FIG. 7g)
displays a system/network device IP address or DNS name,
port and status corresponding to each detected trap destina-
tion. Various other tabs and formats for displaying fault
information may also be provided. Referring to FIG. 7h, if
the administrator double clicks the left mouse button on

Configuration branch 898q, then device tree 898 expands to
display a list 958b of available configuration sub-branches,
for example, ATM protocol sub-branch 9586, System sub-
branch 958d and Virtual Connections sub-branch 9586.

When the device branch (e.g., 192.168.9.201), Configura-
tion branch 898q or System branch 958d is selected, System
tab 934, Module tab 936, Ports tab 938, SONET Interface
tab 940, SONET Paths tab 942, ATM Interfaces tab 946,
Virtual ATM Interfaces tab 947 and Virtual Connections tab

948 are displayed. These configuration tabs are described
above in detail (see FIGS. 4s—4z and 5a—52).

If ATM protocol branch 958C is selected, then tabs/folders
holding ATM protocol information are displayed, for
example, Private Network-to-Network Interface (PNNI) tab
959 (FIG. 71'). The PNNI tab may display PNNI cache
information such as maximum path (per node), maximum
entries (nodes), timer frequency (seconds), age out (seconds)
and recently referenced (seconds) data. The PNNI tab may
also display PNNI node information for each PNNI node
such as domain name, administrative status, ATM address
and node level. The PNNI cache and PNNI node information

may be for a particular ATM interface, all ATM interfaces in
the network device or ATM interfaces corresponding to a
port or module selected by the administrator in device mimic
896a. Various other tabs displaying ATM information, for
example, an Interim Link Management Interface (ILMI) tab,

10

15

20

25

30

35

40

45

50

55

60

65

40

may also be provided. In addition, various other upper layer
network protocol branches may be included in list 958b, for
example, MuliProtocol Label Switching (MPLS) protocol,
Frame Relay protocol or Internet Protocol (IP) branches,
depending upon the capabilities of the selected network
device. Moreover, various physical layer network protocol
branches (and corresponding tabs) may also be included, for
example, Synchronous Optical NETwork (SONET) protocol
and/or Ethernet protocol branches, depending upon the
capabilities of the selected network device.

If Virtual Connections branch 9586 is selected, then
tabs/folders holding virtual connection information are
displayed, for example, Soft Permanent Virtual Circuit
(PVC) tab 960a (FIG. 71') and Switched Virtual Circuits tab
960b (FIG. 7k). Soft PVC tab 960a may display information
relating to source interface, Virtual Path Identifier (VPI),
Virtual Channel Identifier (VCI), status, date and time.
Switched Virtual Circuits tab 960b may display information
relating to interface, VPI, VCI, address format, address,
status, date and time. The information in either tab may be
for a particular virtual connection, all virtual connections in
the network device or only those virtual connections corre-
sponding to a port or module selected by the administrator
in device mimic 896a. Various other tabs displaying virtual
connection information, for example, virtual connections
established through various different upper layer network
protocols, may also be provided, depending upon the capa-
bilities of the selected network device.

For detailed accounting information, the administrator
may select Accounting branch 898r (FIG. 7l). This will
cause one or more tabs/folders to be displayed which contain
accounting data. For example, a Collection Setup tab 961
may be displayed that provides details on a primary and a
backup archive host—that is, the system executing the Data
Collection Server (described above). The Collection Setup
tab may also provide statistics timer data and backup file
storage data. Various other tabs displaying accounting infor-
mation may also be provided. For example, a tab may be
created for each particular customer to track the details of
each account.

For detailed performance information, the administrator
may select Performance branch 898s (FIG. 7m) and double
click the left mouse button to review a list 958f of available
sub-branches, for example, ATM sub-branch 958g, Connec-
tions sub-branch 958k, Interfaces sub-branch 9581', System
sub-branch 958j, and SONET sub-branch 958k. Selecting
Performance branch 898s or System sub-branch 9581' pro-
vides general performance tabs in stats window 897, for
example, System tab 962a and Fans tab 962b (FIG. 7n).
System tab 962a may provide graphical representations of
various system performance parameters, for example, an
odometer style graphic may be used to display CPU Utili-
zation 962C and power supply voltage level 9626 and 962f
and a temperature gauge may be used to show Chassis
Temperature 962d. Fans tab 962b may provide graphical
representations of the status of the network device’s fans.
For example, fans may be colored green and shown spinning
for normal operation, yellow and spinning for a warning
status and red and not spinning for a failure status. Various
other graphical representations may be used, for example,
bar graphs or pie charts, and instead of graphical
representations, the data may be provided in a table or other
type of format. Moreover, the data in the other tabs displayed
in status window 897 may also be displayed in various
formats including graphical representations.

If the administrator selects ATM sub-branch 958g (FIG.
70), various tabs are displayed containing ATM related

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 291

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 292

US 6,880,086 B2

41

performance information, for example, ATM Stats In tab
963a, ATM Stats out tab 963b (FIG. 7p), Operations Admin-
istration Maintenance (OAM) Performance tab 963C (FIG.
7q), OAM Loopback tab 963d (FIG. 7r), ATM Switched
Virtual Circuit (SVC) In tab 9636 (FIG. 7s), ATM SVC Out
tab 963f (FIG. 7t), ATM Signaling ATM Adaptation Layer
(SAAL) In tab 963g (FIG. 714) and ATM SAAL Out tab 963k
(FIG. 7v). The data displayed in each of these tabs may
correspond to a particular ATM path (e.g., ATM-Pathlill/
2/1), to all ATM paths corresponding to a particular port or
module selected by the administrator in device mimic 896a
or to all the ATM paths in the network device. ATM Stats In
tab 963a (FIG. 70) and ATM Stats Out tab 963b (FIG. 7p)
may display, for example, the type, description, cells, cells
per second and bits per second for each ATM path. OAM
Performance tab 963C (FIG. 7q) may display, for example,
VPI, VCI, status, session type, sink source, block size and
end point statistics for each ATM path, while OAM Loop-
back tab 963d (FIG. 7r) may display, for example, VPI, VCI,
status, send count, send trap, endpoint and flow statistics for
each ATM path. ATM SVC In tab 9636 (FIG. 7s) and ATM
SVC Out tab 963f (FIG. 7t) may display, for example, type,
description, total, connected, failures, last cause and setup
Protocol Data Unit (PDU) data for each path, and ATM
SAAL In tab 963g (FIG. 714) and ATM SAAL Out tab 963k
(FIG. 7v) may display, for example, type, description, errors,
discards, begin PDUs, begin acknowledge, PDU begin and
End PDUs for each ATM path. Various other upper layer
network protocol sub-branches may also be displayed in list
958f, including a sub-branch for MPLS, Frame Relay and/or
IP, depending upon the capabilities of the selected network
device.

If the administrator selects Connections sub-branch 958k

(FIG. 7w), various tabs are displayed containing connection
related performance information, for example, ATM Con-
nection tab 964a and Priority tab 964b (FIG. 7x). ATM
Connection tab 964a may include, for example, connection
name, transmit, receive cell loss ratio, cell discard total and
throughput data for particular ATM connections. Priority tab
964b may include, for example, connection name, Cell Loss
Priority (CLP) 0 transmit, CLP1 receive, transmit total,
CLPO receive, CLP1 receive and receive total data for
particular ATM connections. The data in either tab may be
for a particular selected ATM connection, each ATM con-
nection in the network device or only those ATM connec-
tions corresponding to a particular port or module selected
by the administrator in device mimic 896a.

If the administrator selects Interfaces sub-branch 9581'

(FIG. 7y), various tabs are displayed containing interface
related performance information, for example, Interfaces tab
965. Interfaces tab 965 may include, for example, slot and
port location, description, type, speed, in octets, out octets,
in errors, out errors, in discards and out discards data for
particular ATM interfaces. The data in the tab may be for a
particular selected ATM interface, each ATM interface in the
network device or only those ATM interfaces corresponding
to a particular port or module selected by the administrator
in device mimic 896a.

Referring to FIG. 8a, if the administrator selects SONET
sub-branch 958k, various tabs are displayed containing
SONET related performance information, for example, Sec-
tion tab 966a, Line tab 966b (FIG. 8b) and Synchronous
Transport Signal (STS) Path tab 966C (FIG. Sc). Each of the
three tabs displays a shelf/slot/port location, port descriptor,
status, errored seconds, severely errored seconds and coding
violation data for each port. The data may correspond to a
particular port selected by the administrator, all ports in a

10

15

20

25

30

35

40

45

50

55

60

65

42

selected module or all ports in the entire network device.
Various other physical layer network protocol sub-branches
may also be displayed in list 958f, including a sub-branch for
Ethernet, depending upon the capabilities of the selected
network device.

Referring to FIG. 8d, if the administrator selects Security
branch 898g various tabs are displayed containing security
related information, for example, Simple Network Manage-
ment Protocol (SNMP) tab 967a and Configuration Changes
tab 967b (FIG. Se). SNMP tab 967a may display, for
example, read and read/write community strings and a
command line interpreter (CLI) administrator password for
the network device. Configuration Changes tab 967b may
display configuration changes made to the network device
including event, time, configurer and workstation identifi-
cation from where the change was made. Various other
security tabs may also be provided.
Dynamic Bulletin Boards

Graphical User Interface (GUTI) 895 described in detail
above provides a great deal of information to a network
administrator to assist the administrator in managing each
network device in a telecommunications network. As shown,
however, this information is contained in a large number of
GUI screens/tabs. There may be many instances when a
network administrator may want to simultaneously view
multiple screens/tabs. To provide network managers with
more control and flexibility personal application bulletin
boards (PABBs, i.e., dynamic bulletin boards) are provided
that allow the network administrator to customize the infor-

mation they view by dragging and dropping various GUI
screens/tabs (e.g., windows, table entries, dialog boxes,
panels, device mimics, etc.) from GUI 895 onto one or more
dynamic bulletin boards. This allows the administrator to
consolidate several GUI screens and/or dialog boxes into a
single view. The information in the dynamic bulletin board
remains linked to the GUI such that both the GUI and the

bulletin boards are dynamically updated if the screens in
either the GUI or in the bulletin boards are changed. As a
result, the administrator may manage and/or configure net-
work devices through the GUI screens or the dynamic
bulletin board. Within the dynamic bulletin boards, the
administrator may change the format of the data and,
perhaps, view the same data in multiple formats simulta-
neously. Moreover, the administrator may add information
to one dynamic bulletin board from multiple different net-
work devices to allow the administrator to simultaneously
manage and/or configure the multiple network devices. The
dynamic bulletin boards provide an alternative viewing
environment, and administrators can, therefore, choose what
they want to view, when they want to view it and how they
want to view it.

Referring to FIG. 9a, to open a dynamic bulletin board, a
network administrator selects a Bulletin Bd option 968a
from a view pull-down menu 968b. A bulletin board 970a
(FIG. 9b) is then displayed for the administrator. Instead, a
bulletin board may automatically be opened whenever an
administrator logs into an NMS client to access GUI 895.
Once the bulletin board is opened, the administrator may use
a mouse to move a cursor over a desired GUI screen, press
and hold down a left mouse button and drag the selected
item onto the bulletin board (i.e., “drag and drop”). If an
item within a GUI screen is capable of being dragged and
dropped (i.e., posted) to the bulletin board—that is, the
bulletin board supports/recognizes the GUI object—, a drag
and drop icon appears as the administrator drags the cursor
over to the bulletin board. If no icon appears, then the
selected item is not supported by the bulletin board. Thus,

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 292

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 293

US 6,880,086 B2

43

the administrator is provided with visual feedback as to
whether or not an item is supported by the PABB.

Referring to FIG. 9b, as one example, an administrator
may select ATM Stats In tab 963a corresponding to a
particular network device (e.g., system 1921689201) and
drag and drop (indicated by arrow 969a) that tab onto
bulletin board 970a. Since this is the first item dropped into
the bulletin board, the ATM Stats In tab is sized and

positioned to use the entire space (or a large portion of the
space) dedicated to the bulletin board. Instead of selecting
the entire ATM Stats In tab, the administrator may drag and
drop only one or only a few entries from the tab, for
example, entry 9631', and only those entries would then be
displayed in the bulletin board. An item in bulletin board
970a may be removed by clicking on delete button 971a.
The size of the bulletin board may be increased or decreased
by clicking on expand button 971b or by selecting, dragging
and dropping a bulletin board boarder (e.g., 9716—971f), and
the bulletin board may be minimized by clicking on mini-
mize button 971g.

The administrator may then select other GUI data to drag
and drop onto bulletin board 970a. Referring to FIG. 9c, for
example, the administrator may select ATM Stats Out tab
963b also corresponding to the same network device and
drag and drop (indicated by arrow 969b) that tab onto
bulletin board 970a. The bulletin board automatically splits
the screen to include both the ATM Stats In tab 963a and the

ATM Stats Out tab 963b. Now the administrator may view
both of these screens simultaneously, and since the bulletin
board and the screens it displays are linked to GUI 895, the
ATM Stats In and Out tabs are automatically updated with
information as the GUI itself is updated with information.
Thus, if the administrator changes any data in the items
dragged to the bulletin board, the GUI is automatically
updated and if any data in the GUI is changed, then any
corresponding screens in the bulletin board are also updated.
Again, instead of selecting the entire tab, the administrator
may select one or more entries in a tab and drag and drop
those entries onto the bulletin board. Also, the administrator
may delete any bulletin board entry by clicking on the
corresponding delete button 971a, and change the size of
any bulletin board entry using expand button 971b or
minimize button 971g.

The administrator may then select other GUI data from
the same network device (e.g., system 192.168.9201) to
drag and drop to the bulletin board or the administrator may
select a different network device (e.g., system
192.168.9.202, FIG. 9d) in navigation tree 898 and drag and
drop various GUI screens corresponding to that network
device to bulletin board 970a. For example, the administra-
tor may select ATM Stats In tab 972a and drag and drop
(indicated by arrow 969C) that tab to bulletin board 970a,
and the administrator may then select ATM Stats Out tab
972b (FIG. 96) corresponding to system 192.168.9.202 and
drag and drop (indicated by arrow 969a) that tab onto
bulletin board 970a. Consequently, the administrator is able
to simultaneously view multiple screens corresponding to
different network devices. The administrator may also
choose to drag and drop related screens. For example, ATM
Stats In and Out tabs 963a, 972a and 963b, 972b,
respectively, may represent two ends of an ATM connection
between the two network devices, and viewing these screens
simultaneously may assist the administrator in managing
both network devices.

As shown in FIGS. 9b—9e, when new items are dropped
onto the bulletin board, the bulletin board continues to
divide the available space to fit the new items and may

10

15

20

25

30

35

40

45

50

55

60

65

44

shrink the items to fit in the available space. Many more
items may be added to a bulletin board, for example eight to
ten items. However, instead of continuing to add items to the
same bulletin board, the administrator may choose to open
multiple bulletin boards (e.g., 970a—970n, FIG. 9f).

An administrator may wish to view an item dragged to a
bulletin board in a different format than that displayed in the
GUI. The different format may, for example, have more
meaning to them or provide more clarity to the task at hand.
For instance, after dragging and dropping ATM Stats In tab
963a to bulletin board 970a (FIG. 9g), the administrator may
then move the cursor over the ATM Stats In tab and double

click the right mouse button to cause a pull-down menu 973
displaying various format options to appear. A normal for-
mat option 973a may cause the item to appear as it did in the
GUI—that is, ATM Stats In tab 963a will appear as shown
in FIG. 9g. A list format option 973b may cause the data in
ATM Stats In tab 963a to be displayed as an ordered list
974a as shown in FIG. 9h. A graph option 973C may cause
the data in ATM Stats In tab 963a to be displayed as a pie
chart 974b (FIG. 91'), a bar graph 974C (FIG. 91') or any other
type of graph or graphical representation. A config option
973d may cause the data in the ATM Stats In tab 963a to be
displayed as a dialog box 974d (FIG. 9k) displaying con-
figuration data corresponding to a selected one of the ATM
paths within the ATM Stats In tab. The data in a bulletin
board entry may be displayed in a variety of different ways
to make the administrator’s tasks simpler and more efficient.

Referring to FIG. 9l, an administrator may wish to view
an item dragged to a bulletin board in multiple different
formats simultaneously. For example, the administrator may
move the cursor over ATM Stats In tab 963a in the bulletin

board, press down and hold the left mouse button and drag
the cursor (indicated by arrow 9696) over a blank area of the
bulletin board (i.e., drag and drop) to add a second copy of
ATM Stats In tab 963a to the bulletin board. The adminis-

trator may then move the cursor over the copied ATM Stats
In tab, double click the right mouse button to cause pull-
down menu 973 to appear and select a different format in
which to display the copied ATM Stats In tab. As a result, the
administrator is able to simultaneously view the normal
format while also viewing another format, for example, a pie
chart.

Although the above examples used the ATM Stats In and
Out tabs, it is to be understood that any of the tabs or entries
within tabs in status window 897 may be capable of being
dragged and dropped into one or more dynamic bulletin
boards. In addition, an administrator may drag and drop one
or more of the FCAPS buttons 899a—899e (FIG. 7a) to a
bulletin board.

Referring to FIG. 9m, in addition to dragging and drop-
ping items from status window 897 or the FCAPS buttons,
an administrator may drag and drop (indicated by arrow
969f) device mimic 896a onto bulletin board 970a. In this
example, the administrator has dragged and dropped the
device mimic corresponding to network device
192.168.9.201. As previously mentioned, the device mimic
may display ports and modules in different colors to indicate
status for those components, for example, green for normal
operation, yellow for warning status and red for failure
status. The administrator may then monitor the device mimic
in the bulletin board while continuing to use GUI 895 for
other configuration and management operations. Instead, the
administrator may only select, drag and drop portions of the
device mimic, for example, only one or more universal port
cards or one or more forwarding cards.

Referring to FIG. 9n, the administrator may also select a
different network device in navigation tree 898 and then drag

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 293

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 294

US 6,880,086 B2

45

and drop (indicated by arrow 969g) a device mimic 975
corresponding to that device onto bulletin board 970a. As a
result, the administrator may simultaneously view the device
mimics of both network devices (or more than two network
devices). In addition, the administrator may drag and drop
both a front and a back view of a device mimic such that all

of a network device’s modules may be visible. Instead, the
administrator may drag and drop a front and back view
955a, 955b (FIG. 411) from a separate pull away window
955.

A network administrator may save one or more dynamic
bulletin boards before exiting out of the NMS client, and the
NMS client may persist this data in the administrator’s
profile (described below). When the administrator logs in to
the same or a different NMS client and selects Bulletin Bd

option 968a (FIG. 9a), their profile may automatically open
up any saved dynamic bulletin boards or present the admin-
istrator with a list of saved dynamic bulletin boards that the
administrator may select to have opened. When saved
dynamic bulletin boards are re-opened, the NMS client
updates any items posted in those bulletin boards such that
the posted items are synchronized with the GUI. Instead, the
NMS client may automatically open any saved dynamic
bulletin boards as soon as the administrator logs on—that is,
without requiring the administrator to select Bulletin Bd
option 968.

Through saved bulletin boards, a senior administrator
may guide and instruct junior administrators through various
tasks. For example, a senior administrator may drag and
drop a sequence of GUI screens onto one or more bulletin
boards where the sequence of GUI screens represent a series
of steps that the senior administrator wants the junior
administrator to take to complete a particular task (e.g.,
provisioning a SONET path). In addition to providing the
series of steps, the senior administrator may fill in various
parameters (e.g., traffic descriptors) to indicate to junior
administrators the default parameters the senior administra-
tor wants them to use. The saved bulletin board may then be
added to the junior administrator’s profile or put in a master
profile accessible by multiple users. The junior administrator
may then use a saved bulletin board to interactively com-
plete provisioning tasks similar to the task shown in the
saved bulletin board. For example, the junior administrator
may use the saved SONET path bulletin board to provision
one or more different SONET paths. In effect, then saved
bulletin boards behave as custom wizards.

As described above, the dynamic bulletin boards allow a
network administrator to actively monitor—
simultaneously—specific information about one or more
operational network devices. This provides a powerful cus-
tomization tool for the administrator of large, complex
network devices in large, complex telecommunications net-
works. By customizing views of one or more devices, the
administrator may view only the data they need to see and
in a format that best meets their needs.

Custom Object Collections
As described above with respect to FCAPS management,

a network device (e.g., 10, FIG. 1 and 540, FIG. 35) may
include a large number (e.g., millions) of configurable/
manageable objects such as modules, ports, paths,
connections, etc. To provide flexibility and scalability, the
network management system (NMS) allows users to create
custom object collections. Thus, even though a network
device or multiple network devices in a telecommunication
network may include millions of objects, a network manager
may create a collection and add only objects of interest to
that collection. The objects may be of a similar or different

5

10

15

20

25

30

35

40

45

50

55

60

65

46

type and may correspond to the same or different network
devices. The network manager may also add and remove
objects from existing collections, create additional new
collections and remove existing collections. The network
manager may then view the various objects in each collec-
tion. In addition, the collections are linked to the NMS

graphical user interface (GUI), such that changes to objects
in either are updated in the other. Custom object collections
provide scalability and flexibility. In addition, custom object
collections may be tied to user profiles to limit access. For
example, a customer may be limited to viewing only the
collections of objects related to their account. Similarly, a
network manager may be limited to viewing only those
collections of objects for which they have authority.

Referring to FIG. 10a, when a user first logs into an NMS
client by supplying a username and password, a list of
network devices (e.g., 192.168.9201 and 192.168.9202) is
displayed in accordance with the user’s profile. Profiles are
described in more detail below. In addition, a list of collec-
tions that correspond with the user’s profile may also be
provided. For example, navigation tree 898 may include a
network branch 976a, and if the user double clicks the left
mouse button on the network branch a Collections branch

976b is displayed. Similarly, if the user double clicks the left
mouse button on the Collections branch, a list 976C is

provided of available collections (e.g., Testl, Newl,
Walmart, Kmart). Alternatively or in addition, the user may
select a Collections option 977a from a view pull-down
menu 977b to display list 976C of available collections. List
976C may include collections pre-defined by other users
(e.g., senior network administrator) and/or custom collec-
tions previously created by the user.

Referring to FIG. 10b, to view collections that include
objects corresponding to only one network device, the user
may select a network device (e.g., 192.168.9201) and select
a Collections option 958m. If the user double clicks the left
mouse button on Collections option 958m, a list 95811 (e.g.,
Testl and Newl) of available collections corresponding to
the selected network device is displayed. In addition, as the
user selects various FCAPS tabs, collections containing
objects from the selected tab may be displayed. For
example, collection Testl (FIG. 10c) in navigation tree 947a
may include objects selected from Virtual ATM Interfaces
tab 947 and is therefore displayed when the Virtual ATM
Interfaces tab is selected.

Referring to FIG. 10d, to add an object to an existing or
new collection, a network manager first selects the object
(e.g., Module object 978a) and then selects a Collection
button 979a to cause an Add to Collection option 97% and
a New Collection option 979C to appear. If the network
manager selects New Collection option 9796, then a dialog
box 979d (FIG. 106) appears and the network manager
inputs the name of the new collection. After inputting the
name of the new collection, the network manager selects OK
button 9796 and the object is automatically added to the
collection and dialog box 979d is closed. If the network
manager selects Add to Collection option 979b, a dialog box
979f (FIG. 10f) appears listing the available collections. The
user may then select one of the listed collections and then
select OK button 979g to add the object to the collection and
close dialog box 979f.

Alternatively, the network manager may add an object to
a collection by dragging and dropping an object from an
FCAPs tab onto a collection branch in a navigation tree.
Referring to FIG. 10g, for example, a network manager may
select an object 978b by pressing down on the left mouse
button, dragging (indicated by arrows 980a and 980b) the

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 294

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 295

US 6,880,086 B2

47

object to a collection and dropping the object on the col-
lection (i.e., drag and drop). For instance, object 978b may
be dragged and dropped on collection Test1 in either navi-
gation tree 947a or 898. An object may also be dragged and
dropped into a named collection in a pull down menu or
dialog box.

When a collection is selected by a network manager,
customer or other user, for example, by double clicking on
the collection name in a navigation tree or pull down menu,
the tabs in service status window 897 are changed to include
only objects in the selected collection. For instance, if the
collection includes only SONET path objects, then only the
SONET Paths tab will include objects once the collection is
selected and all other tabs will not include any objects.
Alternatively, the other tabs in service status window 897
may include objects corresponding to or related to the
objects in the selected collection.

Referring to FIG. 10h, when device 192.168.9201 is
selected and the SONET Paths tab is selected, a large
number of SONET paths may be displayed. Referring to
FIG. 101', when collection New1 is selected, the SONET
Paths Tab is changed to display only those SONET path
objects within the New1 collection. As a result, the user need
only view the objects in which they are interested.

To remove an object from a collection, the network
manager selects an object and then selects a Remove button
982. The network manager may also select an object and
double click the left mouse button to cause a dialog box to
appear. The network manager may edit certain parameters
and then exit from the dialog box. Any changes made to an
object in a collection are automatically updated in GUI 895.
Similarly, any changes made to an object in GUI 895 are
automatically updated in any and all collections including
that object.

Custom object collections allow a user to view only those
objects that are of interest. These may be a few objects from
an otherwise very large object list in the same FCAPS tab
(that is, the collection acts as a filter), and these may be a few
objects from different FCAPS tabs (that is, the collection
acts as an aggregator). Consequently, both flexibility and
scalability are provided through custom object collections.

Custom object collections may also be used to restrict
access to network objects. For example, a senior network
administrator may establish a collection of objects and
provide access to that collection to a junior network manager
through the junior network manager’s profile. In one
embodiment, the junior network manager may not be pro-
vided with the full navigation tree 898 (FIG. 10a) after
logging in. Instead, only a list of available collections may
be provided. Thus, the junior network manager’s access to
the network is limited to the objects contained in the
available collections and the FCAPS tabs will similarly only
include those same objects.

Similarly, collections may be created that include objects
corresponding to a particular customer, for example, Wal-
mart or Kmart. A customer profile may be established for
each customer and one or more collections containing only
objects relevant to each customer may be assigned to the
relevant customer profile. Consequently, each customer is
limited to viewing only those objects corresponding to their
own accounts and not the accounts of any other customers.
This permits Customer Network Management (CNM) with-
out breaching the security provided to each customer
account.
Profiles

Profiles may be used by the NMS client to provide
individual users (e.g., network managers and customers)

10

15

20

25

30

35

40

45

50

55

60

65

48

with customized graphical user interfaces (GUIs) or views
of their network and with defined management capabilities.
For example, some network managers are only responsible
for a certain set of devices in the network. Displaying all
network devices makes their management tasks more diffi-
cult and may inadvertently provide them with management
capabilities over network devices for which they are not
responsible or authorized to perform. With respect to
customers, profiles limit access to only those network device
resources in a particular customer’s network—that is, only
those network device resources for which the customer has

subscribed/paid. This is crucial to protecting the proprietary
nature of each customer’s network. Profiles also allow each

network manager and customer to customize the GUI into a
presentation format that is most efficient or easy for them to
use. For example, even two users with access to the same
network devices and having the same management capa-
bilities may have different GUI customizations through their
profiles. In addition, profiles may be used to provide other
important information, for example, SNMP community
strings to allow an NMS server to communicate with a
network device over SNMP, SNMP retry and timeout values,
and which NMS servers to use, for example, primary and
secondary servers may be identified.

A network administrator is typically someone who powers
up a network device for the first time, installs necessary
software on the new network device as well as installs any
NMS software on an NMS computer system, and adds any
additional hardware and/or software to a network device.

The network administrator is also the person that attaches
physical network cables to network device ports. The first
time GUI 895 is displayed to a network administrator, an
NMS client application uses a default profile including a set
of default values. Referring again to FIG. 7a, the adminis-
trator may change the default values in his profile by
selecting (e.g., clicking on) a profile selection 902 in a
navigation tree/menu 898. This causes the NMS client to
display a profiles tab 903 (FIG. 11a) on the screen. The
profile tab displays any existing profiles 904. The first time
the profile tab appears only the network administrator’s
profile is displayed as no other profiles yet exist.

To save a network manager’s time, the profiles tab may
also include a copy button 906. By selecting a profile 904
and clicking on the copy button, an existing profile is copied.
The network manager may then change the parameters
within the copied profile. This is helpful where two user
profiles are to include the same or similar parameters.

To change the parameters in the network administrator’s
profile or any other existing profile, including a copied
profile, the user double clicks on one of the profiles 904. To
add a new profile, the user clicks on an Add button 905. In
either case, the NMS client displays a profile dialog box 907
(FIG. 11b) on the screen. Through the profile dialog box, a
user’s user name 908a, password 908b and confirmed pass-
word 908c may be added or changed. The confirm password
field is used to assure that the password was entered properly
in the password field. The password and confirmed password
may be encrypted strings used for user authentication. These
fields will be displayed as asterisks on the screen. Once
added, a user simply logs on to an NMS client with this user
name and password and the NMS client displays the GUI in
accordance with the other parameters of this profile.

A group level access field 908d enables/disables various
management capabilities (i.e., functionality available
through the NMS client). Clicking on the group level access
field may provide a list of available access levels. In one
embodiment, access levels may include administrator, pro-

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 295

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 296

US 6,880,086 B2

49

visioner and viewer (e.g., customer), with administrator
having the highest level of management capabilities and
viewer having the lowest level of management capabilities
(described in more detail below). In one embodiment, users
can create profiles for other users at or below their own
group access level. For example, a user at the provisioner
access level can create user profiles for users at either the
provisioner or viewer level but cannot create an adminis-
trator user profile.

A description may be added in a description field 9086,
including, for example, a description of the user, phone
number, fax number and/or e-mail address. A group name
may be added to group field 908f, and a list of network
device IP addresses may be provided in a device list field
908g. Alternatively, a domain name server (DNS) name may
be provided and a host look up may be used to access the IP
address of the corresponding device. Where a group name is
provided, the list of network devices is associated with the
group such that if the same group name is assigned to
multiple user profiles, the users will be presented with the
same view—that is, the same list of network devices in
device list field 908g. For example, users from the same
customer may share a group name corresponding to that
customer. Awildcard feature is available for the group field.
For example, perhaps an * or ALL may be used as a wildcard
to indicate that a particular user is authorized to see all
network devices. In most instances, the wildcard feature will
only be used for a high-level network administrator. The list
of devices indicates which network devices the user may
manage or view, for example, configuration status and
statistics data may be viewed.

Within a profile certain policy flags (i.e., attributes) may
also be set. For example, a flag 908h may be set to indicate
that the user is not allowed to change his/her password, and
an account disable flag 9081' may be set to disable a par-
ticular profile/account. In addition, a flag 9081' may be set to
allow the user to add network device IP addresses to device

list field 908g, and a number may be added to a timeout field
908k to specify a number of minutes after which a user will
be automatically logged out due to inactivity. A zero in this
field or no value in this field may be used to indicate
unlimited activity, that is, the user will never be automati-
cally logged out.

The profile may also be used to indicate with which NMS
servers the NMS client should communicate. An IP address

or DNS name may be added to a primary server field 9081
and a secondary server field 908m. If the primary server
fails, the client will access the secondary server. A port
number may be added to primary server port field 90811 and
to secondary server port field 9080 to indicate the particular
ports that should be used for RMI connectivity to the
primary and secondary NMS servers.

As described below, the information provided in a user
profile is stored in tables within the NMS database, and
when a user logs onto the network through an NMS client,
the NMS client connects to an NMS server that retrieves the

user’s profile information and sends the information to the
NMS client. The NMS client automatically saves the NMS
server primary and secondary IP addresses and port numbers
from the user’s profile to a team session file associated with
the user’s username and password in a memory 986 (FIG.
11w) local to the NMS client. If the user logs into an NMS
client through a web browser, then the NMS client may save
the NMS server primary and secondary IP addresses and
port numbers to a cookie that is then stored in the user’s local
hard drive. The next time the user logs in to the NMS client,
the NMS client uses the IP addresses and port numbers

10

15

20

25

30

35

40

45

50

55

60

65

50
stored in the team session file or cookie to connect to the

appropriate NMS server. The first time a user accesses an
NMS client, however, no team session file or cookie will be
available. Consequently, during the initial access of the
NMS client, the NMS client may use a default IP address to
connect with an NMS server or a pop-up menu 1034 (FIG.
11x) may be displayed in which the user may type in the IP
address in a field 1034a of the NMS server they want the
NMS client to use or select an IP address from a pop-up
menu that appears when a dropdown button 1034b is
selected.

User profiles and team session files/cookies allow a
network administrator or provisioner to push down new
NMS server IP addresses, port numbers and other informa-
tion to users simply by changing those values in the user
profiles. For example, an NMS server may be over loaded
and a network administrator may wish to move some users
from this NMS server to another less utilized NMS server.

The administrator need only change the NMS server IP
addresses and port numbers in the users’ profiles to affect the
switch. The NMS server sends the new IP addresses and port
numbers to the one or more NMS clients through which the
users are logged in, and the NMS clients save the new IP
addresses and port numbers in each user’s team session file
or cookie. The next time the users log in, the NMS client(s)
use the new IP addresses and port numbers in the team
session files or cookies to access the appropriate NMS
server. Thus, the users selected by the administrator are
automatically moved to a different NMS server without the
need to notify those users or take additional steps. In
addition to saving IP addresses and perhaps port numbers in
team session files/cookies, other information from the user
profile may also be saved in team session files/cookies and
changes to that information may be pushed down by the
administrator simply by changing a user profile.

Referring again to FIG. 11b, additional fields may be
added to device list 908g to provide more information. For
example, a read field 908p may be used to indicate the
SNMP community string to be used to allow the NMS server
to communicate with the network device over SNMP. The

SNMP connection may be used to retrieve statistical data
and device status from the network device. In addition, a
read/write field 908q may be used to indicate an SNMP
community string to allow the NMS server to configure the
network device and/or provision services. The profile may
also include a retry field 908r and a timeout field 908s to
provide SNMP retry and timeout values. Many different
fields may be provided in a profile.

Instead of providing all the parameters and fields in a
single profile dialog box, they may be separated into a
variety of a tabbed dialog boxes (FIGS. llc—llf). The tabbed
dialog boxes may provide better scalability and flexibility
for future needs.

In one embodiment, an administrator level user has both
read and write access to the physical and logical objects of
the NMS client. Thus, all screens and functionality are
available to an administrator level user, and an administrator
after physically attaching an external network attachment to
a particular network device port may then enable that port
and provision SONET paths on that port. All screens are
available to a provisioner level user, however, they do not
have access to all functionality as they are limited to
read-only access of physical objects. For example, a provi-
sioner can see SONET ports available on a device and can
provision SONET paths on a port, but the provisioner cannot
enable/disable a SONET port. In other words, a provision-
er’s power begins at the start of logical objects (not physical

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 296

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 297

US 6,880,086 B2

51

objects), for example, SONET paths, ATM interfaces, virtual
ATM interfaces, and PVCs, and continues through all the
configuration aspects of any object or entity that can be
stacked on top of either a SONET path or ATM interface. A
viewer (e.g., customer) level user has read-only access to
logical entities and only those logical entities corresponding
to their group name or listed in the device list field. Aviewer
may or may not have access to Fault, Configuration,
Accounting, and Security categories of FCAPS relative to
their devices.

A customer may install an NMS client at a customer site
or, preferably, the customer will use a web browser to access
the NMS client. To use the web browser, a service provider
gives the customer an IP address corresponding to the
service provider’s site. The customer supplies the IP address
to their web browser and while at the service provider site,
the customer logs in with their username and password. The
NMS client then displays the customer level GUI corre-
sponding to that username and password.

Referring to FIG. 11g, a user preference dialog box 909
may be used to customize the GUI into a presentation format
that is most efficient or easy for a user to work with. For
example, show flags (i.e., attributes) may be used to add tool
tips (flag 910a), add horizontal grid lines on tables (flag
910b), add vertical grid lines on tables (flag 910C) and add
bookmarks/short cuts (e.g., create a short cut to a PVC
dialog box). Look and feel flags may also be used to make
the GUI appear as a JAVA GUI would appear (flag 911a) or
as a native application, for example, Windows, Windows/
NT or Motif, GUI would appear (flag 911b).

As an alternative to providing a Group Name 908f (FIG.
11b) or a Customer Name (FIG. 11c), when a profile is
created or changed the administrator or provisioner may
double click the left mouse button on a network device (e.g.,
192.168.9202, FIGS. 11b or 11f) in the device list to cause
a pop-up menu 1000 (FIG. 11h) to be displayed. The pop-up
menu provides a list 1000a of available groups correspond-
ing to the selected network device, and the administrator or
provisioner may select one or more groups (e.g., Walmart-
East, Walmart-West) from the list for which the user corre-
sponding to profile will be authorized to access.

Each group may include one or more configured resources
(e.g., SONET paths, VATM interfaces, ATM PVCs) within
the network device, and the resources in each group may be
related in some way. For instance, a group may include
resources configured by a particular provisioner. As another
example, a group may include configured resources pur-
chased by a particular customer. For instance, Walmart
Corporation may be a customer of a network service pro-
vider and each network device resource paid for/subscribed
to by Walmart may be included in a Walmart group. In
addition, if Walmart subscribes to a larger number of con-
figured resources, the network service provider may create
several groups within the same network device for Walmart,
for example, Walmart-East may include network device
resources associated with Walmart activities in the eastern

half of the United States and Walmart-West may include
network device resources associated with Walmart activities

in the western half of the United States. In addition, the
network service provider may create a Walmart-Total group
including all configured resources within the network device
paid for by Walmart. Various users may be given access to
one or more groups. For example, a Walmart employee
responsible for network service in the eastern half of the
United States may be given access to only the Walmart-East
group while another higher level Walmart employee is given
access to both the Walmart-East and Walmart-West groups.

5

10

15

20

25

30

35

40

45

50

55

60

65

52

In addition, the same group name may be used in multiple
network devices to simplify tracking. Through profiles mul-
tiple users may be given access to the same or different
groups of configured resources within each network device,
and users may be given access to multiple groups of con-
figured resources in different network devices.

When an administrator or a provisioner configures a
network device resource, they may assign that resource to a
particular group. For example, when an administrator or
provisioner configures one or more SONET paths, they may
assign each SONET path to a particular group. Referring to
FIGS. 11i—11k, within a SONET Path configuration wizard
1002, an administrator or provisioner may select a SONET
Path within the SONET path table 1002a and type in a group
name in field 1002b or select a group name from a pop-up
menu displayed when dropdown button 1002c is selected.
When the administrator/provisioner selects OK button
1002d or Modify button 10026, the NMS client sends the
SONET path data to the NMS server. The NMS server uses
this data to fill in a SONET path table (e.g., 600', FIGS. 11w
and 60g) in configuration database 42. A new row is added
to the SONET path table for each newly configured SONET
path, and data in existing rows are modified for modified
SONET paths.

In addition, the NMS server searches a Managed
Resource Group table 1008 (FIGS. 11L and 11w) within the
configuration database for a match with each assigned group
name. If no match is found for a group name, indicating the
group name represents a new group, then the NMS server
adds a row to the Managed Resource Group table, and the
NMS server assigns the group an LID (e.g., 1145) and
inserts the LID into an LID column 1008a. The NMS server

also inserts the Managed Device PID (e.g., 1) from column
983b in Managed Device table 983 (FIGS. 11w and 60a) in
the configuration database into a column 1008b and inserts
the group name in column 10086.

The NMS server also uses the SONET path data from the
NMS client to add a row in a Managed Resource Table 1007
(FIGS. 11m and 11w) in configuration database 42 for each
newly configured SONET path or to modify data in existing
rows for modified SONET paths. The NMS server assigns
an LID (e.g., 4443) to each row and inserts the assigned LID
into a column 1007a. The NMS server then inserts the

assigned SONET path LID (e.g., 901) from Path LID
column 600a (FIG. 60g) in the SONET path table into a
Resource LID column 1007b. The NMS server also inserts

the assigned group LID (e.g., 1145) from column 1008a in
Managed Resource Group table 1008 (FIG. 11L) into a
managed resource group LID column 10076.

Just as each SONET path may be assigned to a group,
each other type of configured resource/manageable entity
within the network device may be assigned to a group. For
example, when an administrator or provisioner configures a
virtual ATM (VATM) interface, they may also assign the
VATM interface to a group. Referring to FIG. 1111, within an
Add V-ATM Interface dialog box 1004, an administrator or
provisioner may type in a group name in a field 1004a or
select a group name from a pop-up menu displayed when
expansion button 1004b is selected. As another example,
when an administrator or provisioner configures an ATM
PVC, they may assign the ATM PVC to a particular group.
Referring to FIG. 110, in a virtual connection wizard 1006,
the administrator or provisioner may assign an ATM PVC to
a group by typing in a group name in a field 1006a or by
selecting a group name from a pop-up menu displayed when
expansion button (e.g., Group List) 1006b is selected. Again,
when the administrator or provisioner selects OK button

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 297

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 298

US 6,880,086 B2

53

1004c (FIG. 1111) or Finish button 1006c (FIG. 110), the
NMS client sends the relevant data to the NMS server. The

NMS server updates Virtual ATM Interface table 993 (FIG.
60]), a Virtual Connection table 994 (FIG. 60k), Virtual Link
table 995 (FIG. 60L) and Cross-Connect table 996 (FIG.
60m), as described below, and similar to the actions taken for
the configured SONET paths, the NMS server adds a row to
Managed Resource Group table 1008 (FIG. 11L) for each
new group and a row to Managed Resource table 1007 (FIG.
11m) for each new managed resource—that is, for each new
VATM interface and for each new ATM PVC. This same

process may be used to add any manageable entity to a
group.

Instead of using a Managed Resource Group table and a
Managed Resource table, the configured network device
resource tables (e.g., SONET path table, Virtual ATM IF
table, etc.) could include a group name field. However, the
Managed Resource Group adds a layer of abstraction, which
may allow each configured resource to belong to multiple
groups. Moreover, the Managed Resource table provides
scalability and modularity by not being tied to a particular
resource type. That is, the Managed Resource table will
include a row for each different type of configured resource
and if the network device is upgraded to include new types
of configurable resources, they too may be added to the
Managed Resource table without having to upgrade other
processes. If each configurable resource is limited to belong-
ing to only one group, then the Managed Resource Table
1007 (FIG. 11m) may include only Resource LID 1007b and
not LID 1007a.

Referring again to FIGS. 11b—11g, after adding or chang-
ing a user profile, the administrator or provisioner selects
OK button 908t. Selection of the OK button causes the NMS

client (e.g., NMS client 850a, FIG. 11w) to send the infor-
mation provided in the dialog box (or boxes) to an NMS
server (e.g., NMS server 851a), and the NMS server uses the
received information to update various tables in NMS data-
base 61. In one embodiment, for a newly added user, the
NMS server assigns a unique logical identification number
(LID) to the user and adds a new row in a User table 1010
(FIGS. 11p and 11w) in the NMS database including the
assigned LID 1010a and the username 1010b, password
1010c and group access level 1010d provided by the NMS
client. For example, the NMS server may add a new row
1010e including an assigned user LID of 2012, a username
of Dave, a password of Marble and a group access level of
provisioner.

The NMS server also adds a row to a User Managed
Device table 1012 (FIGS. 11g and 11w) for each network
device listed in the user profile. For each row, the NMS
server assigns a user managed device LID (e.g., 7892) and
inserts it in an LID column 1012a. The NMS server also

inserts a user LID 1012b, a host LID 10126, a retry value
1012d and a timeout value 10126. The inserted retry and
timeout values are from the user profile information sent
from the NMS client. The user LID 1012b includes the

previously assigned user LID (e.g., 2012) from column
1010a of User Table 1010. The host LID is retrieved from

an Administration Managed Device table 1014 (FIGS. 11r
and 11w).

The Administration Managed Device table includes a row
for each network device (i.e., managed device) in the
telecommunications network. To add a network device to the

network, an administrator selects an Add Device option in a
pop-up menu 898C (FIG. 6a) in GUI 895 to cause dialog box
1013 (FIG. 11s) to be displayed. The administrator enters the
intended IP address or DNS name (e.g., 192.168.9.202) of

10

15

20

25

30

35

40

45

50

55

60

65

54
the new network device into a device host field 1013a and

may also enter a device port (e.g., 1521) into a device port
field 1013b. The administrator also adds SNMP retry 1013c
and timeout 1013d values, which may be overridden later by
values supplied within each user profile. In addition, the
administrator adds a password for each user access level. In
one embodiment, the administrator adds an administrator
password 10136, a provisioner password 1013f and a viewer
password 1013g for the managed device.

The Administration Managed Device table, therefore,
provides a centralized set of device records shared by all
NMS servers, and since the records are centralized, the
Administration Managed Device table facilitates centralized
changes to the devices in the network. For example, a
network device may be added to the network by adding a
record and removed from the network by deleting a record.
As another example, a network device’s parameters (e.g., IP
address) may be changed by modifying data in a record.
Because the changes are made to centralized records
accessed by all NMS servers, no change notifications need
to be sent and the NMS servers may automatically receive
the changed data during the next access of the table.
Alternatively, the NMS server that makes a change to the
central database may send notices out to each connected
NMS client and other NMS servers in the network.

For newly added devices, after the information is input in
the dialog box, the administrator selects an Add button
1013h causing the NMS client to send the data from the
dialog box to the NMS server. Similarly, for changes to
device data, after the information is changed in the dialog
box, the administrator selects an OK button 1013i to cause
the NMS client to send the data from the dialog box to the
NMS server. For new devices, the NMS server uses the
received information to add a row to Administration Man-

aged Device table 1014 in NMS database 61, and for
existing devices, the NMS server uses the received infor-
mation to update a previously entered row in the Adminis-
tration Managed Device table. For each managed device/
row, the NMS server assigns a host LID (e.g., 9046) and
inserts it in LID column 1014a.

When the NMS server adds a new row to the User

Managed Device table 1012 (FIG. 11q), corresponding to a
managed device in a user profile, the NMS server searches
column 1014b in the Administration Managed Device table
1014 for a host address matching the IP address (e.g.,
192.168.9.202) provided in the user profile information sent
from the NMS client. When a match is found, the NMS

server retrieves the host LID (e.g., 9046) from column
1014a and inserts it in host LID column 1012c in the User

Managed Device table.
After receiving user profile information from an NMS

client, the NMS server also updates a User Resource Group
Map table 1016 (FIGS. III and 11w) in NMS database 61.
For each group identified in the user profile information—
one or more groups may be selected in each Group List
dialog box 1000 associated with each network device in the
user profile—the NMS server adds a row to the User
Resource Group Map table. The NMS server assigns an LID
(e.g., 8086) for each row and inserts the LID in a column
1016a. The NMS server then inserts the User LID (e.g.,
2012) into User LID column 1016b from User table 1010
column 1010a corresponding to the user profile. In addition,
the NMS server inserts a User Resource Group LID into
column 10166.

For each group name received by the NMS server, the
NMS server searches a User Resource Group table 1018
(FIGS. 1114 and 11w), group name column 1018c, for a

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 298

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 299

US 6,880,086 B2

55

match. If a match is not found, then the group is a new
group, and the NMS server adds a row to the User Resource
Group table. The NMS server assigns an LID (e.g., 1024) to
each row and inserts the assigned LID into an LID column
1018a. This User Resource Group LID is also added to
column 1016c in the User Resource Group Map table 1016
(FIG. 11t). Within the User Resource Group table 1018
(FIG. 1114), the NMS server also inserts the network device’s
host LID in a column 1018b from Administration Managed
Device table 1014 (FIG. 11r), column 1014a, and the NMS
server inserts the group name (e.g., Walmart-East) in column
1018c. Through the group name, the User Resource Group
table in the NMS database provides for dynamic binding
with the Managed Resource Group table 1008 (FIG. 11L) in
the configuration database, as described below.

After a user’s profile is created, the user may log in
through an NMS client (e.g., 850a, FIG. 11w) by typing in
their username and password. The NMS client then sends
the username and password to an NMS server (e.g., 851a),
and in response, the NMS server sends a query to NMS
database 61 to search User table 1010 (FIG. 11p) column
1010b for a username matching the username provided by
the NMS client. If the username is not found, then the user
is denied access. If the username is found, then, for addi-
tional security, the NMS server may compare the password
provided by the NMS client to the password stored in
column 1010c of the User table. If the passwords do not
match, then the user is denied access. If the passwords
match, then the NMS server creates a user profile logical
managed object (LMO).

In one embodiment, the user profile LMO is a JAVA
object and a JAVA persistence layer within the NMS server
creates the user profile LMO. For each persistent JAVA
class/object, metadata is stored in a class table 1020 (FIG.
11w) within the NMS database. Thus, the JAVA persistence
layer within the NMS server begins by retrieving metadata
from the class table in the NMS database corresponding to
the user profile LMO. The metadata may include simple
attributes and association attributes.

Referring to FIG. 11v, the metadata for a user profile LMO
1022 includes three simple attributes—username 1022a,
password 1022b and group access level 1022c —and two
association attributes—resource group maps 1022d and
managed devices 10226. The NMS server inserts the user-
name (e.g., Dave), password (e.g., Marble) and group access
level (e.g., provisioner) retrieved from the User table 1010
into the user profile LMO 1024 (FIG. 11w) being created.
The managed devices association attribute 1022e causes the
NMS server to create a user managed device properties
LMO 1026 for each network device in the user’s profile.

The NMS server first retrieves metadata from class table

1020 associated with the user managed device properties
LMO 1026. The metadata includes two simple attributes
(retry 1026b and timeout 1026c) and one association
attribute (managed device 1026a). The metadata causes the
NMS server to search User Managed Device table 1012
(FIG. 11q) column 1012b for a user LID (e.g., 2012)
corresponding to the user LID in column 1010a (FIG. 11p)
of User table 1010 in a row 1010e associated with the

username and password received from the NMS client. For
each row in the User Managed Device table having the
matching user LID (e.g., 2012), the NMS server creates a
user managed device properties LMO 1026 and inserts the
retry value from column 1012d as the retry simple attribute
1026b and the timeout value from column 10126 as the

timeout simple attribute 10266.
In response to the managed device associated attribute,

the NMS server retrieves metadata from class table 1020

5

15

20

25

30

35

40

45

50

55

60

65

56

associated with administration managed device properties
LMO 1028. The metadata includes a list of simple attributes
including host address 1028a, port address 1028b, SNMP
retry value 1028c, SNMP timeout value 1028d and a data-
base port address 10286 for connecting to the configuration
database within the network device. The metadata also

includes simple attributes corresponding to passwords for
each of the possible group access levels, for example, an
administrator password 1028f, a provisioner password
1028g and a viewer password 1028b.

The NMS server uses the host LID (e.g., 9046) from
column 1012c in the User Managed Device table (FIG. 11q)
as a primary key to locate the row (e.g., 1014c, FIG. 11r) in
the Administration Managed Device table 1014 correspond-
ing to the network device. The NMS server uses the data in
this table row to insert values for the simple attributes in the
Administration Managed Device LMO 1028. For example,
a host address of 1921689202 and a port address of 1521
may be inserted. The NMS server also selects a password
corresponding to the user’s group access level. For instance,
if the user’s group access level is provisioner, then the NMS
server inserts the provisioner password of, for example,
team2, from column 1014d into the Administration Man-
aged Device LMO.

The NMS server then inserts the newly created Admin-
istration Managed Device LMO 1028 into the corresponding
User Managed Device Properties LMO 1026, and the NMS
server also inserts each newly created User Managed
Devices Properties LMO 1026 into User Profile LMO 1022.
Thus, the information necessary for connecting to each
network device listed in the user profile is made available
within user LMO 1022.

The resource group maps association attribute 1022d
(FIG. 11v) within user LMO 1022 causes the NMS server to
create a user resource group map LMO 1030 for each group
in the user’s profile. The user resource group map LMO
1030 includes one simple attribute—user profile 1030a
—and one association attribute—user resource group 1030b.
The NMS server inserts the user LID (e.g., 2012) corre-
sponding to the user LID in column 1010a (FIG. 11p) in
User table 1010 associated with the username, password and
group access level received from the NMS client.

In response to user resource group associated attribute
1030b, the NMS server creates a User Resource Group LMO
1032. The NMS server begins by retrieving metadata from
class table 1020 corresponding to the User Resource Group
LMO. The metadata includes three simple attributes: host
address 1032a, port address 1032b and group name 10326.
The NMS server searches User Resource Group Map table
1016 (FIG. III) for the user LID (e.g., 2012) corresponding
to the username and password received from the NMS
client. The NMS server then uses the corresponding user
resource group LID (e.g., 1024) from column 1016c as a
primary key to locate a row (e.g., 1018d, FIG. 1114) in User
Resource Group table 1018. The NMS server inserts the
group name (e.g., Walmart-East) from the located row in
User Resource Group table 1018 as simple attribute 1032c
in user resource group LMO 1032. The NMS server then
uses the host LID (e.g., 9046) from the located row to search
column 1014a in the Administration Managed Device table
1014 (FIG. 11r) for a match. Once a match is found, the
NMS server uses data in the located row (e.g., 10146) to
insert the host address (e.g., 192.168.9.202) from column
1014b as simple attribute 1032a and the port address (e.g.,
1521) from column 10146 as simple attribute 1032b in user
resource group LMO 1032. The NMS server then inserts the
user resource group LMO 1032 into the user resource group

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 299

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 300

US 6,880,086 B2

57

map LMO 1030, and the NMS server inserts each of the user
resource group map LMOs 1030 into the user profile LMO
1022. Thus, the data (e.g., host and port address and group
name) required to locate each group included in the user
profile is inserted within user profile LMO 1022. The NMS
server sends data from the user profile LMO to the NMS
client to allow the NMS client to present the user with a
graphical user interface such as GUI 895 shown in FIG. 4a.
If the user selects one of the network devices listed in

navigation tree 898, the NMS server retrieves the group
level access (e.g., provisioner) and the password (e.g.,
team2) corresponding to that group level access from the
user profile LMO and then connects to the selected network
device. The NMS server then retrieves the network device’s

physical data as described below under the heading “NMS
Server Scalability.”

Alternatively, a more robust set of data may be sent from
the NMS server to the NMS client such that for each

transaction issued by the NMS client, the data provided with
the transaction eliminates the need for the NMS server to

access the user profile LMO in its local memory. This
reduces the workload of the NMS server, which will likely
be sent transactions from many NMS clients. In one
embodiment, the NMS server may send the NMS client the
entire user profile LMO. Instead, the server may create a
separate client user profile LMO that may present the data in
a format expected by the NMS client and perhaps include
only some of the data from the user profile LMO stored
locally to the NMS server. In the preferred embodiment, the
client user profile LMO includes at least data corresponding
to each device in the user profile and each group selected
within the user profile for each device. If the user selects one
of the network devices listed in navigation tree 898, the
NMS client includes the selected network device’s IP

address, the password corresponding to the user’s group
access level and the database port number in the “Get
Network Device” transaction sent to the NMS server. The
NMS server uses this information to connect to the network

device and return the network device’s physical data to the
NMS client.

If the user selects a tab in configuration status window 897
that includes logical data corresponding to configured net-
work device resources (e.g., SONET Paths tab 942 (FIG.
5q), ATM Interfaces tab 946 (FIG. 5r), Virtual ATM Inter-
faces tab 947 (FIG. 5s), Virtual Connections tab 948 (FIG.
52)), then the NMS server searches the user profile LMO for
group names corresponding to the selected network device
or the NMS client provides the group names in the trans-
action. The NMS server then retrieves data from the selected

network device for configured resources corresponding to
each group name and the selected tab. If no group names are
listed, the NMS server may retrieve data for all configured
resources corresponding to the selected tab.

For example, if a user selects SONET Paths tab 942 (FIG.
5q), then the NMS server searches the user profile LMO for
all group names corresponding to the selected network
device (e.g., Walmart-East) or the NMS client provides all
group names (e.g., Walmart-East) corresponding to the
selected network device to the NMS server as part of the
“Get SONET paths” transaction. The NMS server then
dynamically issues a where clause such as “where SONET
path is in group Walmart-East”. This causes group name
column 1008c in the Managed Resource Group table 1008
(FIG. 11L) in the network device’s configuration database
42 to be searched for a match with the group name of
Walmart-East. Additional where clauses may be dynami-
cally issued corresponding to other group names found in

10

15

20

25

30

35

40

45

50

55

60

65

58

the user profile LMO. If no match is found for a group name
in column 1008c, then the NMS server simply returns an
empty set to the NMS client. If a match is found for a group
name (e.g., Walmart-East), then the NMS server retrieves
the managed resource group LID (e.g., 1145) from column
1008a in the same row (e.g., row 1008a) as the matching
group name.

The NMS server then searches column 1007c in the

Managed Resource table 1007 (FIG. 11m) for one or more
matches with the retrieved managed resource group LID
(e.g., 1145). As described above, the Managed Resource
Table includes one row for each configured network device
resource in a particular group. For each match found for the
retrieved managed resource group LID (e.g., 1145), the
NMS server uses the resource LID (e.g., 901) from column
1007b as a primary key to a row in a table including the data
corresponding to the configured resource. In this example, a
resource LID of 901 corresponds to a row in SONET Path
Table 600' (FIG. 60g). Since the user selected the SONET
Paths tab, the NMS server retrieves the data in the corre-
sponding row and sends it to the NMS client. The NMS
client uses the data to update graphical user interface (GUI)
tables 985 in local memory 986, which causes GUI 895 to
display the SONET path to the user. Other SONET paths
may also be included in the group Walmart-East, and those
would be similarly located and retrieved by the NMS server
and sent to the NMS client for display to the user.

Since each group may include different types of config-
ured resources, the NMS server may locate configured
resources other than SONET paths, for example, VATMs or
ATM PVCs, in Managed Resource table 1007. If configured
resources are found that do not correspond to the tab selected
by the user, the NMS server does not retrieve the associated
data or send it to the NMS client. The NMS server follows

a similar process if the user selects another tab including
logical data, for example, ATM Interfaces tab 946 (FIG. 5r),
Virtual ATM Interfaces tab 947 (FIG. 5s) or Virtual Con-
nections tab 948 (FIG. 52). Although the above discussion
has used SONET paths, VATM interfaces and ATM PVCs as
examples of configurable resources that may be included in
a group, other configurable resources may also be included,
for example, configurable resources corresponding to dif-
ferent layer one or upper layer network protocols (e.g.,
Ethernet, MPLS, Frame Relay, IP).

When data is stored in tables within the same database,
references from one table to another may provide a direct
binding and referential integrity may be maintained by only
deleting the upper most record—that is, not leaving any
dangling records. Referential integrity prevents references
from being orphaned, which may lead to data loss or other
more severe problems, such as a system crash. In the current
embodiment, tables are stored across multiple databases.
Certain tables are stored in NMS database 61 and certain

other tables are stored in the configuration database within
each network device in the network. Direct binding between
tables cannot be maintained since a database may be
removed or a record deleted without maintaining referential
integrity. To address this issue, group names are used to
provide a “dynamic binding” between the User Resource
Group table 1018 (FIG. 1114) in the NMS database and the
Managed Resource Group table 1008 (FIG. 11L) in each
configuration database. Since there is no direct binding, if a
group name is not found in the Managed Resource Group
table, the NMS server simply returns an empty set and no
data is lost or other more serious problems caused. If the
group name is later added to the Managed Resource Group
table, then through dynamic binding, it will be found.

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 300

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 301

US 6,880,086 B2

59

Through a user profile, a user may log-on to the network
with a single, secure username and password through any
NMS client, access any network device in their user profile
and access configured resources corresponding to groups in
their user profile. Since the tables including the data neces-
sary for the creation of user profile LMOs are stored in the
NMS database, any NMS server capable of connecting to the
NMS database—that is, any NMS server in the network—
may access the tables and generate a user LMO. As a result,
users may log-on with a single, secure username and pass-
word through any NMS client that may be connected to an
NMS server capable of connecting to the NMS database.
Essentially, users may log on through any computer system/
workstation (e.g., 984, FIG. 11w) on which an NMS client
is loaded or remotely through internet web access to an NMS
client within the network and gain access to the network
devices listed in their user profile. Thus, each user need only
remember a single username and password to configure/
manage any of the network devices listed in their user profile
or any of the resources included within groups listed in their
user profile through any NMS client in the network.

In addition, user profiles provide a level of indirection to
better protect the passwords used to access each network
device. For example, access to the passwords may be limited
to only those users capable of adding network devices to the
network, for example, users with the administrator group
access level. Other users would not see the passwords since
they are automatically added to their user profile LMO,
which is not accessible by users. The level of indirection
provided by user profiles also allows network device pass-
words to be easily changed across the entire network.
Periodically the passwords for access to the network devices
in a network may be changed for security. The network
device passwords may be quickly changed in the Adminis-
tration Managed Device table 1014 (FIG. 11r), and due to
the use of profiles, each user does not need to be notified of
the password changes. The new passwords will be utilized
automatically each time users log in. This provides for
increased scalability since thousands of users will not need
to be notified of the new passwords. Moreover, if a rogue
user is identified, they can be quickly prevented from further
access to the network through any NMS client by simply
changing the user’s username and/or password in the user’s
profile or by deleting the user’s profile. Changing the
username and/or password in the user profile would cause
the NMS server to change the data in user table 1010 (FIG.
11p), and deleting a user profile would cause the NMS server
to remove the corresponding row in the User table. In either
case, the user would no longer be able to log in.

User profiles and group names also simplify network
management tasks. For example, if an administrator adds a
newly configured resource to a group, all users having
access to that group will automatically be able to access the
newly configured resource. The administrator need not send
out a notice or take other steps to update each user.

Group names in a user profile define what the user can
view. For instance, one customer may not view the config-
ured resources subscribed for by another customer if their
resources are assigned to different groups. Thus, groups
allow for a granular way to “slice” up each network device
according to its resources.

The user access level in a user profile determines how the
NMS server behaves and affects what the user can do. For

example, the viewer user access level provides the user with
read-only capability and, thus, prevents the NMS server
from modifying data in tables. In addition, the user access
level may be used to restrict access—even read access—to
certain tables or columns in certain tables.

10

15

20

25

30

35

40

45

50

55

60

65

60

Network Device Power-Up
Referring again to FIG. 1, on power-up, reset or reboot,

the processor on each board (central processor and each line
card) downloads and executes boot-strap code (i.e., minimal
instances of the kernel software) and power-up diagnostic
test code from its local memory subsystem. After passing the
power-up tests, processor 24 on central processor 12 then
downloads kernel software 20 from persistent storage 21
into non-persistent memory in memory subsystem 28. Ker-
nel software 20 includes operating system (OS), system
services (SS) and modular system services (MSS).

In one embodiment, the operating system software and
system services software are the OSE operating system and
system services from Enea OSE Systems, Inc. in Dallas,
Tex. The OSE operating system is a pre-emptive multi-
tasking operating system that provides a set of services that
together support the development of distributed applications
(i.e., dynamic loading). The OSE approach uses a layered
architecture that builds a high level set of services around
kernel primitives. The operating system, system services,
and modular system services provide support for the cre-
ation and management of processes; inter-process commu-
nication (IPC) through a process-to-process messaging
model; standard semaphore creation and manipulation ser-
vices; the ability to locate and communicate with a process
regardless of its location in the system; the ability to
determine when another process has terminated; and the
ability to locate the provider of a service by name.

These services support the construction of a distributed
system wherein applications can be located by name and
processes can use a single form of communication regard-
less of their location. By using these services, distributed
applications may be designed to allow services to transpar-
ently move from one location to another such as during a failover.

The OSE operating system and system services provide a
single inter-process communications mechanism that allows
processes to communicate regardless of their location in the
system. OSE IPC differs from the traditional LPC model in
that there are no explicit IPC queues to be managed by the
application. Instead each process is assigned a unique pro-
cess identification that all IPC messages use. Because OSE
IPC supports inter-board communication the process iden-
tification includes a path component. Processes locate each
other by performing an OSE Hunt call on the process
identification. The Hunt call will return the Process ID of the

process that maps to the specified path/name. Inter-board
communication is carried over some number of communi-

cation links. Each link interface is assigned to an OSE Link
Handler. The path component of a process path/name is the
concatenation of the Link Handler names that one must

transverse in order to reach the process.
In addition, the OSE operating system includes memory

management that supports a “protected memory model”.
The protected memory model dedicates a memory block
(i.e., defined memory space) to each process and erects
“walls” around each memory block to prevent access by
processes outside the “wall”. This prevents one process from
corrupting the memory space used by another process. For
example, a corrupt software memory pointer in a first
process may incorrectly point to the memory space of a
second processor and cause the first process to corrupt the
second processor’s memory space. The protected memory
model prevents the first process with the corrupted memory
pointer from corrupting the memory space or block assigned
to the second process. As a result, if a process fails, only the
memory block assigned to that process is assumed corrupted
while the remaining memory space is considered uncor-
rupted.

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 301

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 302

US 6,880,086 B2

61

The modular software architecture takes advantage of the
isolation provided to each process (e.g., device driver or
application) by the protected memory model. Because each
process is assigned a unique or separate protected memory
block, processes may be started, upgraded or restarted
independently of other processes.

Referring to FIG. 12a, the main modular system service
that controls the operation of computer system 10 is a
System Resiliency Manager (SRM). Also within modular
system services is a Master Control Driver (MCD) that
learns the physical characteristics of the particular computer
system on which it is running, in this instance, computer
system 10. The MCD and the SRM are distributed applica-
tions. Amaster SRM 36 and a master MCD 38 are executed

by central processor 12 while slave SRMs 37a—37n and
slave MCDs 39a—39n are executed on each board (central
processor 12 and each line card 16a—16n). The SRM and
MCD work together and use their assigned view ids and
APIs to load the appropriate software drivers on each board
and to configure computer system 10.

Also within the modular system services is a configura-
tion service program 35 that downloads a configuration
database program 42 and its corresponding DDL file from
persistent storage into non-persistent memory 40 on central
processor 12. In one embodiment, configuration database 42
is a Polyhedra database from Polyhedra, Inc. in the United
Kingdom.
Hardware Inventory and Set-Up

Master MCD 38 begins by taking a physical inventory of
computer system 10 (over the 12C bus) and assigning a
unique physical identification number (PID) to each item.
Despite the name, the PID is a logical number unrelated to
any physical aspect of the component being numbered. In
one embodiment, pull-down/pull-up resistors on the chassis
mid-plane provide the number space of Slot Identifiers. The
master MCD may read a register for each slot that allows it
to get the bit pattern produced by these resistors. MCD 38
assigns a unique PID to the chassis, each shelf in the chassis,
each slot in each shelf, each line card 16a—16n inserted in

each slot, and each port on each line card. (Other items or
components may also be inventoried.)

Typically, the number of line cards and ports on each line
card in a computer system is variable but the number of
chassis, shelves and slots is fixed. Consequently, a PID could
be permanently assigned to the chassis, shelves and slots and
stored in a file. To add flexibility, however, MCD 38 assigns
a PID even to the chassis, shelves and slots to allow the
modular software architecture to be ported to another com-
puter system with a different physical construction (i.e.,
multiple chassis and/or a different number of shelves and
slots) without having to change the PID numbering scheme.

Referring to FIGS. 12a—12c, for each line card 16a—16n
in computer system 10, MCD 38 communicates with a
diagnostic program (DP) 40a—40n being executed by the
line card’s processor to learn each card’s type and version.
The diagnostic program reads a line card type and version
number out of persistent storage, for example, EPROM
42a—42n, and passes this information to the MCD. For
example, line cards 16a and 16b could be cards that imple-
ment Asynchronous Transfer Mode (ATM) protocol over
Synchronous Optical Network (SONET) protocol as indi-
cated by a particular card type, e.g., 0XF002, and line card
166 could be a card that implements Internet Protocol (IP)
over SONET as indicated by a different card type, e.g.,
0XE002. In addition, line card 16a could be a version three
ATM over SONET card meaning that it includes four
SONET ports 44a—44d each of which may be connected to

10

15

20

25

30

35

40

45

50

55

60

65

62

an external SONET optical fiber that carries an OC-48
stream, as indicated by a particular port type 00620, while
line card 16b may be a version four ATM over SONET card
meaning that it includes sixteen SONET ports 46a—46f each
of which carries an OC-3 stream as indicated by a particular
port type, e.g., 00820. Other information is also passed to the
MCD by the DP, for example, diagnostic test pass/fail status.
With this information, MCD 38 creates card table (CT) 47
and port table (PT) 49 in configuration database 42. As
described below, the configuration database copies all
changes to an NMS database. If the MCD cannot commu-
nicate with the diagnostic program to learn the card type and
version number, then the MCD assumes the slot is empty.

Even after initial power-up, master MCD 38 will continue
to take physical inventories to determine if hardware has
been added or removed from computer system 10. For
example, line cards may be added to empty slots or removed
from slots. When changes are detected, master MCD 38 will
update CT 47 and PT 49 accordingly.

For each line card 16a—16n, master MCD 38 searches a

physical module description (PMD) file 48 in memory 40 for
a record that matches the card type and version number
retrieved from that line card. The PMD file may include
multiple files. The PMD file includes a table that corre-
sponds card type and version number with name of the
mission kernel image executable file (MKI.exe) that needs
to be loaded on that line card. Once determined, master
MCD 38 passes the name of each MKI executable file to
master SRM 36. Master SRM 36 requests a bootserver (not
shown) to download the MKI executable files 50a—50n from
persistent storage 21 into memory 40 (i.e., dynamic loading)
and passes each MKI executable file 50a—50n to a boot-
loader (not shown) running on each board (central processor
and each line card). The bootloaders execute the received
MKI executable file.

Once all the line cards are executing the appropriate MKI,
slave MCDs 39a—39n and slave SRMs 37a—37n on each line

card need to download device driver software corresponding
to the particular devices on each card. Referring to FIG. 13a,
slave MCDs 39a—39n search PMD file 48 in memory 40 on
central processor 12 for a match with their line card type and
version number. Just as the master MCD 36 found the name

of the MKI executable file for each line card in the PMD file,
each slave MCD 39a—39n reads the PMD file to learn the
names of all the device driver executable files associated

with each line card type and version. The slave MCDs
provide these names to the slave SRMs on their boards.
Slave SRMs 37a—37n then download and execute the device

driver executable files (DD.exe) 56a—56n from memory 40.
As one example, one port device driver 43a—43d may be
started for each port 44a—44d on line card 16a. The port
driver and port are linked together through the assigned port
PID number.

In order to understand the significance of the PMD file
(i.e., metadata), note that the MCD software does not have
knowledge of board types built into it. Instead, the MCD
parameterizes its operations on a particular board by looking
up the card type and version number in the PMD file and
acting accordingly. Consequently, the MCD software does
not need to be modified, rebuilt, tested and distributed with
new hardware. The changes required in the software system
infrastructure to support new hardware are simpler, modify
logical model 280 (FIG. 3a) to include: a new entry in the
PMD file (or a new PMD file) and, where necessary, new
device drivers and applications. Because the MCD software,
which resides in the kernel, will not need to be modified, the
new applications and device drivers and the new DDL files

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 302

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 303

US 6,880,086 B2

63

(reflecting the new PMD file) for the configuration database
and NMS database are downloaded and upgraded (as
described below) without re-booting the computer system
(hot upgrade).
Network Management System (NMS)

Referring to FIG. 13b, as described above, a user/network
administrator of computer system 10 works with network
management system (NMS) software 60 to configure com-
puter system 10. In the embodiment described below, NMS
60 runs on a personal computer or workstation 62 and
communicates with central processor 12 over Ethernet net-
work 41 (out-of—band). Instead, the NMS may communicate
with central processor 12 over data path 34 (FIG. 1,
in-band). Alternatively (or in addition as a back-up commu-
nication port), a user may communicate with computer
system 10 through a console interface/terminal (840, FIG.
2a) connected to a serial line 66 connecting to the data or
control path using a command line interface (CLI) protocol.
Instead, NMS 60 could run directly on computer system 10
provided computer system 10 has an input mechanism for
the user.

During installation, an NMS database 61 is established
on, for example, work-station 62 using a DDL executable
file corresponding to the NMS database. The DDL file may
be downloaded from persistent storage 21 in computer
system 10 or supplied separately with other NMS programs
as part of an NMS installation kit. The NMS database
mirrors the configuration database through an active query
feature (described below). In one embodiment, the NMS
database is an Oracle database from Oracle Corporation in
Boston, Mass.

The NMS and central processor 12 pass control and data
over Ethernet 41 using, for example, the Java Database
Connectivity (JDBC) protocol. Use of the JDBC protocol
allows the NMS to communicate with the configuration
database in the same manner that it communicates with its

own internal storage mechanisms, including the NMS data-
base. Changes made to the configuration database are passed
to the NMS database to ensure that both databases store the

same data. This synchronization process is much more
efficient, less error-prone and timely than older methods that
require the NMS to periodically poll the network device to
determine whether configuration changes have been made.
In these systems, NMS polling is unnecessary and wasteful
if the configuration has not been changed. Additionally, if a
configuration change is made through some other means, for
example, a command line interface, and not through the
NMS, the NMS will not be updated until the next poll, and
if the network device crashes prior to the NMS poll, then the
configuration change will be lost. In computer system 10,
however, command line interface changes made to configu-
ration database 42 are passed immediately to the NMS
database through the active query feature ensuring that the
NMS, through both the configuration database and NMS
database, is immediately aware of any configuration
changes.
Asynchronously Providing Network Device Management
Data

Typically, work-station 62 (FIG. 13b) is coupled to many
network computer systems, and NMS 60 is used to configure
and manage each of these systems. In addition to configuring
each system, the NMS also interprets management data
gathered by each system relevant to each system’s network
accounting data, statistics, security and fault logging (or
some portion thereof) and presents this to the user. In current
systems, two distributed carefully synchronized processes
are used to move data from a network system/device to the

5

10

15

20

25

30

35

40

45

50

55

60

65

64

NMS. The processes are synchronized with each other by
having one or both processes maintain the state of the other
process. To avoid the problems associated with using two
synchronized processes, in the present invention, internal
network device management subsystem processes are made
asynchronous with external management processes. That is,
neither the internal nor external processes maintain each
other’s state and all processes operate independently of the
other processes. This also minimizes or prevents data loss
(i.e., lossless system), which is especially important for
revenue generating accounting systems.

In addition, instead of having the NMS interpret each
network device’s management data in the same fashion,
flexibility is added by having each system send the NMS
(e.g., data collector server 857, FIG. 2a) class files 410
including compiled source code indicating how its manage-
ment data should be interpreted. Thus, the NMS effectively
“learns” how to process (and perhaps display) management
data from the network device via the class file. Through the
reliable File Transfer Protocol (FTP), management sub-
system processes 412 (FIG. 13b) running on central proces-
sor 12 push data summary files 414 and binary data files 416
to the NMS. Each data summary file indicates the name of
the class file the NMS should use to interpret a correspond-
ing binary data file. If the computer system has not already
done so, it pushes the class file to the NMS. In one
embodiment, the management subsystem processes, class
files and NMS processes are JAVA programs, and JAVA
Reflection is used to dynamically load the data-specific
application class file and process the data in the binary data
file. As a result, a new class file can be added or updated on
a network device without having to reboot or upgrade the
network device or the NMS. The computer system simply
pushes the new class file to the NMS. In addition, the NMS
can use different class files for each network device such that

the data gathered on each device can be particularized to
each device.

Referring to FIG. 13c, in one embodiment, the manage-
ment subsystem 412 (FIG. 13b) is broken into two pieces: a
usage data server (UDS) 412a and a file transfer protocol
(FTP) client 412b. The UDS is executed on internal proces-
sor control card 542a (see also FIGS. 41b and 42) while the
FTP client is executed on external processor control card
542b (see also FIGS. 41a and 42). Alternatively, in a
network device with one processor control card or a central
processor control card, both the UDS and FTP client may be
executed on that one card. When each device driver, for
example, SONET driver 415a—415n and ATM driver
417a—417n (only SONET driver 415a and ATM driver 417a
are shown for convenience and it is to be understood that

multiple drivers may be present on each card), within
network device 540 is built, it links in a usage data moni-
toring library (UDML).

When device drivers are first started, upgraded or
re-booted, the device driver makes a call into the UDML to
notify the UDML as to which statistical data the device
driver is able to gather. For example, an ATM device driver
may be able to gather virtual circuit (VC) accounting
statistics and Virtual ATM (VATM) interface statistics while
a SONET device driver may be able to gather SONET
statistics. The device driver then makes a call into the

UDML to notify the UDML as to each interface (including
virtual circuits) for which the device driver will be gathering
data and the types of data the device driver will provide for
each interface.

The UDML sends a registration packet to the UDS
providing one or more string names corresponding to the

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 303

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 304

US 6,880,086 B2

65

types of data that the UDML will send to the UDS. For
example, for ATM drivers the UDML may register “Accti
PVC” to track permanent virtual circuit statistics, “Accti
SVC” to track soft permanent virtual circuit statistics, “ViL
Intf” to track quality of service (QoS) statistics
corresponding to virtual interfaces, and “BwiUtil” to track
bandwidth utilization. As another example, for SONET
drivers the UDML may register “Section” to track section
statistics, “Line” to track line statistics and “Path” to track
path statistics. The UDML need only register each string
name with the UDS once, for example, for the first interface
registered, and not for each interface since the UDML will
package up the data from multiple interfaces corresponding
to the same string name before sending the data with the
appropriate string name to the UDS.

The UDML includes a polling timer to cause each driver
to periodically poll its hardware for “current” statistical/
accounting data samples 411a. The current data samples are
typically gathered on a frequent interval of, for example, 15
minutes, as specified by the polling timer. The UDML also
causes each driver to put the binary data in a particular
format, time stamp the data and store the current data sample
locally. When a current data sample for each interface
managed by the device driver and corresponding to a
particular string name is stored locally, the UDML packages
all of the current data samples corresponding to the same
string name into one or more packets containing binary data
and sends the packets to the UDS with the registered string
name. In addition, the UDML adds each gathered current
data sample 411a to a local data summary 411b. The UDML
clears the data summary periodically, for example, every
twenty-four hours, and then adds newly gathered current
data samples to the cleared data summary. Thus, the data
summary represents an accumulation of current data
samples gathered over the period (e.g., 24 hours).

The UDS maintains a list of UDMLs expected to send
current data samples and data summaries corresponding to
each string name. For each poll, the UDS combines the data
sent from each UDML with the same string name into a
common binary data file (e.g., binary data files 416a—416n)
associated with that string name in non-volatile memory, for
example, a hard drive 421 located on internal control pro-
cessor 542a. When all UDMLs in the list corresponding to
a particular string name have reported their current data
samples or data summaries, the UDS closes the common
data file, thus ending the data collecting period. Preferably,
the data is maintained in binary form to keep the data files
smaller than translating it into other forms such as ASCII.
Smaller binary files require less space to store and less
bandwidth to transfer.

If after a predetermined period of time has passed, for
example, 5 minutes, one or more of the UDMLs in a list has
not sent binary data with the corresponding string name, the
UDS closes the common data file, ending the data collecting
period. The UDS then sends a notice to the non-responsive
UDML(s). The UDS will repeat this sequence a predeter-
mined number of times, for example, three, and if no binary
data with the corresponding string name is received, the
UDS will delete the UDML(s) from the list and send a trap
to the NMS indicating which specific UDML is not respon-
sive. As a result, maintaining the list of UDMLs that will be
sending data corresponding to each string name allows the
UDS to know when to close each common data file and also

allows the UDS to notify the NMS when a UDML becomes
non-responsive. This provides for increased availability
including fault tolerance—that is, a fault on one card or in
one application cannot interrupt the statistics gathering from

10

15

20

25

30

35

40

45

50

55

60

65

66

each of the other cards or other applications on one card—
and also including hot swapping where a card and its local
UDMLs may no longer be inserted within the network
device.

Since a large number of UDMLs may be sending data to
the UDS, the potential exists for the data transfer rate to the
UDS to be larger than the amount of data that the UDS can
process and larger than local buffering can support. Such a
situation may result in lost data or worse, for example, a
network device crash. A need exists, therefore, to be able to
“throttle” the amount of data being sent from the UDMLs to
the UDS depending upon the current backlog of data at the
UDS.

In one embodiment, the UDML is allowed to send up to
a maximum number of packets to the UDS before the
UDML must wait for an acknowledge (ACK) packet from
the UDS. For example, the UDML may be allowed to send
three packets of data to the UDS and in the third packet the
UDML must include an acknowledge request. Alternatively,
the UDML may follow the third packet with a separate
packet including an acknowledge request. Once the third
packet is sent, the UDML must delay sending any additional
packets to the UDS until an acknowledge packet is received
from the UDS. The UDML may negotiate the maximum
number of packets that can be sent in its initial registration
with the UDS. Otherwise, a default value may be used.

Many packets may be required to completely transfer a
binary current data sample or data summary to the UDS.
Once the acknowledge packet is received, the UDML may
again send up to the maximum number (e.g., 3) of packets
to the UDS again including an acknowledge request in the
last packet. Requiring the UDML to wait for an acknowl-
edge packet from the UDS, allows the UDS to throttle back
the data received from UDMLs when the UDS has a large
backlog of data to process.

A simple mechanism to accomplish this throttling is to
have the UDS send an acknowledge packet each time it
processes a packet containing an acknowledge request.
Since the UDS is processing the packet that is a good
indication that it is steadily processing packets. If the
number of packets received by the UDS is large, it will take
longer to process the packets and, thus, longer to process
packets containing acknowledge requests. Thus, the
UDMLs must wait longer to send more packets. On the other
hand, if the number of packets is small, the UDS will quickly
process each packet received and more quickly send back
the acknowledge request and the UDMLs will not have to
wait as long to send more packets.

Instead of immediately returning an acknowledge packet
when the UDS processes a packet containing an acknowl-
edge request, the UDS may first compare the number of
packets waiting to be processed against a predetermined
threshold. If the number of packets waiting to be processed
is less than the predetermined threshold, then the UDS
immediately sends the acknowledge packet to the UDML. If
the number of packets waiting to be processed is more than
the predetermined threshold, then the UDS may delay send-
ing the acknowledge packet until enough packets have been
processed that the number of packets waiting to be pro-
cessed is reduced to less than the predetermined threshold.
Instead, the UDS may estimate the amount of time that it
will need to process enough packets to reduce the number of
packets waiting to be processed to less than the threshold
and send an acknowledge packet to the UDML including a
future time at which the UDML may again send packets. In
other words, the UDS does not wait until the backlog is
diminished to notify the UDMLs but instead notifies the

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 304

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 305

US 6,880,086 B2

67

UDMLs prior to reducing the backlog and based on an
estimate of when the backlog will be diminished.

Another embodiment for a throttling mechanism requires
polls for different statistical data to be scheduled at different
times to load balance the amount of statistical traffic across

the control plane. For example, the UDML for each ATM
driver polls and sends data to the UDS corresponding to
PVC accounting statistics (i.e., AcctiPVC) at a first time,
the UDML for each ATM driver polls and sends data to the
UDS corresponding to SPVC accounting statistics (i.e.,
AcctiSPVC) at a second time, and the UDML for each
ATM driver and each SONET driver polls and sends data to
the UDS corresponding to other statistics at other times. This
may be accomplished by having multiple polling timers
within the UDML corresponding to the type of data being
gathered. Load balancing and staggered reporting provides
distributed data throttling which may smooth out control
plane bandwidth utilization (i.e., prevent large data bursts)
and reduce data buffering and data loss.

Referring to FIG. 13d, instead of having each device
driver on a card package the binary data and send it to the
UDS, a separate, low priority packaging program (PP)
413a—413n may be resident on each card and responsible for
packaging the binary statistical management data from each
device driver and sending it to the UDS. Running the PP as
a lower priority program ensures that processor cycles are
not taken away from time-critical processes. Load balancing
and staggered reporting may still be accomplished by having
each PP send acknowledge requests in the last of a prede-
termined number of packets and wait for the UDS to send an
acknowledge packet as described above.

As mentioned, the UDML causes the device driver to
periodically gather the current statistical management data
samples for each interface and corresponding to each string
name. The period may be relatively frequent, for example,
every 15 minutes. In addition, the UDML causes the device
driver or separate packaging program to add the current data
sample to a data summary corresponding to the same string
name each time a current data sample is gathered. The
UDML clears the data summary periodically, for example,
every twenty-four hours. To reduce bandwidth utilization,
the data summary and corresponding string name is sent to
the UDS periodically but with an infrequent time period of,
for example, every 6 to 12 hours. The data summary
provides resiliency such that if any of the current data
samples are lost in any of the various transfers, the data
summary is still available. Local resiliency may be provided
by storing a backlog of both current data sample files and
summary data files in hard drive 421. For example, the four
most recent current data sample files and the two most recent
summary data files corresponding to each string name may
be stored.

If FTP client 412b cannot send data from hard drive 421

to file system 425 for a predetermined period of time, for
example, 15 minutes, the FTP client may notify the UDS and
the UDS may notify each UDML. Each UDML then con-
tinues to cause the device driver to gather current statistical
management data samples and add them to the data sum-
maries at the same periodic interval (i.e., current data
interval, e.g., 15 minutes), however, the UDML stops send-
ing the current data samples to the UDS. Instead, the UDML
sends only the data summaries to the UDS but at the more
frequent current data interval (e.g., 15 minutes) instead of
the longer time period (e.g., 6 to 12 hours). The UDS may
then update the data summaries stored in hard drive 421 and
cease collecting and storing current data samples. This will
save space in the hard drive and minimize any data loss.

10

15

20

25

30

35

40

45

50

55

60

65

68

To reduce the amount of statistical management data
being transferred to the UDS, a network manager may
selectively configure only certain of the applications (e.g.,
device drivers) and certain of the interfaces to provide this
data. As each UDML registers with the UDS, the UDS may
then inform each UDML with respect to each interface as to
whether or not statistical management data should be gath-
ered and sent to the UDS. There may be many circumstances
in which gathering this data is unnecessary. For example,
each ATM device driver may manage multiple virtual inter-
faces (VATMs) and within each VATM there may be several
virtual circuits. A network manager may choose not to
receive statistics for virtual circuits on which a customer has

ordered only Variable Bit Rate (VBR) real time (VBR-rt)
and VBR non-real time (VBR-nrt) service. For VBR-rt and
VBR-nrt, the network service provider may provide the
customer only with available/extra bandwidth and charge a
simple flat fee per month. However, a network manager may
need to receive statistics for virtual circuits on which a

customer has ordered a high quality of service such as
Constant Bit Rate (CBR) to ensure that the customer is
getting the appropriate level of service and to appropriately
charge the customer. In addition, a network manager may
want to receive statistics for virtual circuits on which a

customer has ordered Unspecified Bit Rate (UBR) service to
police the customer’s usage and ensure they are not receiv-
ing more network bandwidth than what they are paying for.
Allowing a network manager to indicate that certain appli-
cations or certain interfaces managed by an application (e.g.,
a VATM) need not provide statistical management data or
some portion of that data to the UDS reduces the amount of
data transferred to the UDS—that is, reduces internal band-
width utilization—, reduces the amount of storage space
required in the hard drive, and reduces the processing power
required to transfer the statistical management data from
remote cards to external file system 425.

For each binary data file, the UDS creates a data summary
file (e.g., data summary files 414a—414n) and stores it in, for
example, hard drive 421. The data summary file defines the
binary file format, including the type based on the string
name, the length, the number of records and the version
number. The UDS does not need to understand the binary
data sent to it by each of the device drivers. The UDS need
only combine data corresponding to similar string names
into the same file and create a summary file based on the
string name and the amount of data in the binary data file.
The version number is passed to the UDS by the device
driver, and the UDS includes the version number in the data
summary file.

Periodically, FTP client 412b asynchronously reads each
binary data file and corresponding data summary file from
hard drive 421. Preferably, the FTP client reads these files
from the hard drive through an out-of-band Ethernet
connection, for example, Ethernet 32 (FIG. 1). Alternatively,
the FTP client may read these files through an in-band data
path 34 (FIG. 1). The FTP client then uses an FTP push to
send the binary data file to a file system 425 accessible by
the data collector server and, preferably local to the data
collector server. The FTP client then uses another FTP push
to send the data summary file to the local file system. Since
binary data files may be very long and an FTP push of a
binary data file may take some time, the data collector server
may periodically search the local file system for data sum-
mary files. The data collector server may then attempt to
open a discovered data summary file. If the data collector
server is able to open the file, then that indicates that the FTP
push of the data summary file is complete, and since the data

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 305

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 306

US 6,880,086 B2

69

summary file is pushed after the binary data file, the data
collector server’s ability to open the data summary file may
be used as an indication that a new binary data file has been
completely received. Since data summary files are much
smaller than binary data files, having the data collector
server look for and attempt to open data summary files
instead of binary data files minimizes the thread wait within
the data collector server.

In one embodiment, the data collector server is a JAVA
program, and each different type of binary data file has a
corresponding JAVA class file (e.g., class file 410a) that
defines how the data collector server should process the
binary data file. When a device driver is loaded into the
network device, a corresponding JAVA class file is also
loaded and stored in hard drive 421. The FTP client peri-
odically polls the hard drive for new JAVA class files and
uses an FTP push to send them to file system 425. The data
collector server uses the binary file type in the data summary
file to determine which JAVA class file it should use to

interpret the binary data file. The data collector server then
converts the binary data into ASCII or AMA/BAF format
and stores the ASCII or AMA/BAF files in the file system.
The data collector server may use a set of worker threads for
concurrency.

As described, the data collector server is completely
independent of and asynchronous with the FTP client, which
is also independent and asynchronous of the UDS. The
separation of the data collector server and FTP client avoids
data loss due to process synchronization problems, since
there is no synchronization, and reduces the burden on the
network device by not requiring the network device to
maintain synchronization between the processes. In
addition, if the data collector server goes down or is busy for
some time, the FTP client and UDS continue working and
continue sending binary data files and data summary files to
the file system. When the data collector server is again
available, it simply accesses the data summary files and
processes the binary files as described above. Thus, there is
no data loss and the limited storage capacity within the
network device is not strained by storing data until the data
collector server is available. In addition, if the FTP client or
UDS goes down, the data collector server may continue
working.

An NMS server (e.g., NMS server 851a), which may or
may not be executing on the same computer system 62 as the
data collector server, may periodically retrieve the ASCII or
AMA/BAF files from the file system. The files may repre-
sent accounting, statistics, security, logging and/or other
types of data gathered from hardware within the network
device. The NMS server may also access the corresponding
class files from the file system to learn how the data should
be presented to a user, for example, how a graphical user
interface (GUI) should be displayed, what data and format
to display, or perhaps which one of many GUIs should be
used. The NMS server may use the data to, for example,
monitor network device performance, including quality of
service guarantees and service level agreements, as well as
bill customers for network usage. Alternatively, a separate
billing server 423a or statistics server 423b, which may or
may not be executing on the same computer system 62 as the
data collector server and/or the NMS server, may periodi-
cally retrieve the ASCII or AMA/BAF files from the file
system in order to monitor network device performance,
including quality of service guarantees and service level
agreements, and/or bill customers for network usage. One or
more of the data collector server, the NMS server, the billing
server and the statistics server may be combined into one

10

15

20

25

30

35

40

45

50

55

60

65

70

server. Moreover, management files created by the data
collector server may be combined with data from the con-
figuration or NMS databases to generate billing records for
each of the network provider’s customers.

The data collector server may convert the ASCII or
AMA/BAF files into other data formats, for example, Excel
spread sheets, for use by the NMS server, billing server
and/or statistics server. In addition, the application class file
for each data type may be modified to go beyond conversion,
including direct integration into a database or an OSS
system. For example, many OSS systems use a Portal billing
system available from Portal Software, Inc. in Cupertino,
Calif. The JAVA class file associated with a particular binary
data file and data summary file may cause the data collector
server to convert the binary data file into ASCII data and
then issue a Portal API call to give the ASCII data directly
to the Portal billing system. As a result, accounting,
statistics, logging and/or security data may be directly
integrated into any other process, including third party
processes, through JAVA class files.

Through JAVA class files, new device drivers may be
added to a network device without having to change UDS
412a or FTP client 412b and without having to re-boot the
network device and without having to upgrade/modify exter-
nal processes. For example, a new forwarding card (e.g.,
forwarding card 552a) may be added to an operating net-
work device and this new forwarding card may support
MPLS. An MPLS device driver 419, linked within the
UDML, is downloaded to the network device as well as a

corresponding class file (e.g., class file 4106). When the FTP
client discovers the new class file in hard drive 421, it uses
an FTP push to send it to file system 425. The FTP client
does not need to understand the data within the class file it

simply needs to push it to the file system. Just as with other
device drivers, the UDML causes the MPLS driver to
register appropriate string names with the UDS and poll and
send data to the UDS with a registered string name. The
UDS stores binary data files (e.g., binary data file 4166) and
corresponding data summary files (e.g., data summary file
4146) in the hard drive without having to understand the data
within the binary data file. The FTP client then pushes these
files to the file system again without having to understand
the data. When the data summary file is discovered by the
data collector server, the data collector server uses the binary
file type in the data summary file to locate the new MPLS
class file 4106 in the file system and then uses the class file
to convert the binary data in the corresponding binary data
file into ASCII format and perhaps other data formats. Thus,
a new device driver is added and statistical information may
be gathered without having to change any of the other
software and without having to re-boot the network device.

As described, having the data collector server be com-
pletely independent of and asynchronous with the FTP client
avoids the typical problems encountered when internal and
external management programs are synchronized.
Moreover, modularity of device drivers and internal man-
agement programs is maintained by providing metadata
through class files that instruct the external management
programs as to how the management data should be pro-
cessed. Consequently, device drivers may be modified,
upgraded and added to an operating network device without
disrupting the operation of any of the other device drivers or
the management programs.
Configuration

As described above, unlike a monolithic software archi-
tecture which is directly linked to the hardware of the
computer system on which it runs, a modular software

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 306

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 307

US 6,880,086 B2

71

architecture includes independent applications that are sig-
nificantly decoupled from the hardware through the use of a
logical model of the computer system. Using the logical
model and a code generation system, a view id and API are
generated for each application to define each application’s
access to particular data in a configuration database and
programming interfaces between the different applications.
The configuration database is established using a data defi-
nition language (DDL) file also generated by the code
generation system from the logical model. As a result, there
is only a limited connection between the computer system’s
software and hardware, which allows for multiple versions
of the same application to run on the computer system
simultaneously and different types of applications to run
simultaneously on the computer system. In addition, while
the computer system is running, application upgrades and
downgrades may be executed without affecting other appli-
cations and new hardware and software may be added to the
system also without affecting other applications.

Referring again to FIG. 13b, initially, NMS 60 reads card
table 47 and port table 49 to determine what hardware is
available in computer system 10. The NMS assigns a logical
identification number (LID) 98 (FIGS. 14b and 14c) to each
card and port and inserts these numbers in an LID to PID
Card table (LPCT) 100 and an LID to PID Port table (LPPT)
101 in configuration database 42. Alternatively, the NMS
could use the PID previously assigned to each board by the
MCD. However, to allow for hardware redundancy, the
NMS assigns an LID and may associate the LID with at least
two PIDs, a primary PID 102 and a backup PID 104. (LPCT
100 may include multiple backup PID fields to allow more
than one backup PID to be assigned to each primary PID.)

The user chooses the desired redundancy structure and
instructs the NMS as to which boards are primary boards and
which boards are backup boards. For example, the NMS
may assign LID 30 to line card 1611—previously assigned
PID 500 by the MCD—as a user defined primary card, and
the NMS may assign LID 30 to line card 1611—previously
assigned PID 513 by the MCD—as a user defined back-up
card (see row 106, FIG. 14b). The NMS may also assign LID
40 to port 44a—previously assigned PID 1500 by the
MCD—as a primary port, and the NMS may assign LID 40
to port 68a—previously assigned PID 1600 by the MCD—
as a back-up port (see row 107, FIG. 146).

In a 1:1 redundant system, each backup line card backs-up
only one other line card and the NMS assigns a unique
primary PID and a unique backup PID to each LID (no LIDs
share the same PIDs). In a 1:N redundant system, each
backup line card backs-up at least two other line cards and
the NMS assigns a different primary PID to each LID and
the same backup PID to at least two LIDs. For example, if
computer system 10 is a 1:N redundant system, then one line
card, for example, line card 1611, serves as the hardware
backup card for at least two other line cards, for example,
line cards 16a and 16b. If the NMS assigns an LID of 31 to
line card 16b, then in logical to physical card table 100 (see
row 109, FIG. 14b), the NMS associates LID 31 with
primary PID 501 (line card 16b) and backup PID 513 (line
card 1611). As a result, backup PID 513 (line card 1611) is
associated with both LID 30 and 31.

The logical to physical card table provides the user with
maximum flexibility in choosing a redundancy structure. In
the same computer system, the user may provide full redun-
dancy (1:1), partial redundancy (1:N), no redundancy or a
combination of these redundancy structures. For example, a
network manager (user) may have certain customers that are
willing to pay more to ensure their network availability, and

10

15

20

25

30

35

40

45

50

55

60

65

72

the user may provide a backup line card for each of that
customer’s primary line cards (1:1). Other customers may be
willing to pay for some redundancy but not full redundancy,
and the user may provide one backup line card for all of that
customer’s primary line cards (1:N). Still other customers
may not need any redundancy, and the user will not provide
any backup line cards for that customer’s primary line cards.
For no redundancy, the NMS would leave the backup PID
field in the logical to physical table blank. Each of these
customers may be serviced by separate computer systems or
the same computer system. Redundancy is discussed in
more detail below.

The NMS and MCD use the same numbering space for
LIDs, PIDs and other assigned numbers to ensure that the
numbers are different (no collisions).

The configuration database, for example, a Polyhedra
relational database, supports an “active query” feature.
Through the active query feature, other software applica-
tions can be notified of changes to configuration database
records in which they are interested. The NMS database
establishes an active query for all configuration database
records to insure it is updated with all changes. The master
SRM establishes an active query with configuration database
42 for LPCT 100 and LPPT 101. Consequently, when the
NMS adds to or changes these tables, configuration database
42 sends a notification to the master SRM and includes the

change. In this example, configuration database 42 notifies
master SRM 36 that LID 30 has been assigned to PID 500
and 513 and LID 31 has been assigned to PID 501 and 513.
The master SRM then uses card table 47 to determine the

physical location of boards associated with new or changed
LIDs and then tells the corresponding slave SRM of its
assigned LID(s). In the continuing example, master SRM
reads CT 47 to learn that PID 500 is line card 1611, PID 501
is line card 16b and PID 513 is line card 1611. The master
SRM then notifies slave SRM 37b on line card 1611 that it has

been assigned LID 30 and is a primary line card, SRM 376
on line card 16b that it has been assigned LID 31 and is a
primary line card and SRM 370 on line card 1611 that it has
been assigned LIDs 30 and 31 and is a backup line card. All
three slave SRMs 37b, 37c and 370 then set up active queries
with configuration database 42 to insure that they are
notified of any software load records (SLRs) created for
their LIDs. A similar process is followed for the LIDs
assigned to each port.

The NMS informs the user of the hardware available in

computer system 10. This information may be provided as a
text list, as a logical picture in a graphical user interface
(GUI), or in a variety of other formats. The user then uses
the GUT to tell the NMS (e.g., NMS client 8501:, FIG. 2a)
how they want the system configured.

The user will select which ports (e.g., 4411—4411, 46a—46f,
6811—6811) the NMS should enable. There may be instances
where some ports are not currently needed and, therefore,
not enabled. The user also needs to provide the NMS with
information about the type of network connection (e.g.,
connection 7011—7011, 7211—7213 7411—7411). For example, the
user may want all ports 4411—4411 on line card 1611 enabled to
run ATM over SONET. The NMS may start one ATM
application to control all four ports, or, for resiliency, the
NMS may start one ATM application for each port.
Alternatively, each port may be enabled to run a different
protocol (e.g., MPLS, IP, Frame Relay).

In the example given above, the user must also indicate
the type of SONET fiber they have connected to each port
and what paths to expect. For example, the user may indicate
that each port 4411—4411 is connected to a SONET optical

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 307

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 308

US 6,880,086 B2

73

fiber carrying an OC-48 stream. A channelized OC-48
stream is capable of carrying forty-eight STS-l paths, six-
teen STS-3c paths, four STS-12c paths or a combination of
STS-l, STS-3c and STS-12c paths. Aclear channel OC-48c
stream carries one concatenated STS-48 path. In the
example, the user may indicate that the network connection
to port 44a is a clear channel OC-48 SONET stream having
one STS-48 path, the network connection to port 44b is a
channelized OC-48 SONET stream having three STS-12c
paths (i.e., the SONET fiber is not at full capacity—more
paths may be added later), the network connection to port
446 is a channelized OC-48 SONET stream having two
STS-3c paths (not at full capacity) and the network connec-
tion to port 44d is a channelized OC-48 SONET stream
having three STS-12c paths (not at full capacity). In the
current example, all paths within each stream carry data
transmitted according to the ATM protocol. Alternatively,
each path within a stream may carry data transmitted accord-
ing to a different protocol.

The NMS (e.g., NMS server 851a—851n) uses the infor-
mation received from the user (through the GUI/NMS
client) to create records in several tables in the configuration
database, which are then copied to the NMS database. These
tables are accessed by other applications to configure com-
puter system 10. One table, the service endpoint table (SET)
76 (see also FIG. 14a), is created when the NMS assigns a
unique service endpoint number (SE) to each path on each
enabled port and corresponds each service endpoint number
with the physical identification number (PID) previously
assigned to each port by the MCD. Through the use of the
logical to physical port table (LPPT), the service endpoint
number also corresponds to the logical identification number
(LID) of the port. For example, since the user indicated that
port 44a (PID 1500) has a single STS-48 path, the NMS
assigns one service endpoint number (e.g. SE 1, see row 78,
FIG. 14a). Similarly, the NMS assigns three service end-
point numbers (e.g., SE 2, 3, 4, see rows 80—84) to port 44b
(PID 1501), two service endpoint numbers (e.g., SE 5, 6, see
rows 86, 88) to port 446 (PID 1502) and three service
endpoint numbers (e.g., SE 7, 8, 9, see rows 90, 92, 94) to
port 44d.

Service endpoint managers (SEMs) within the modular
system services of the kernel software running on each line
card use the service endpoint numbers assigned by the NMS
to enable ports and to link instances of applications, for
example, ATM, running on the line cards with the correct
port. The kernel may start one SEM to handle all ports on
one line card, or, for resiliency, the kernel may start one
SEM for each particular port. For example, SEMs 96a—96d
are spawned to independently control ports 44a—44d.

The service endpoint managers (SEMs) running on each
board establish active queries with the configuration data-
base for SET 76. Thus, when the NMS changes or adds to
the service endpoint table (SET), the configuration database
sends the service endpoint manager associated with the port
PID in the SET a change notification including information
on the change that was made. In the continuing example,
configuration database 42 notifies SEM 96a that SET 76 has
been changed and that SE 1 was assigned to port 44a (PID
1500). Configuration database 42 notifies SEM 96b that SE
2, 3, and 4 were assigned to port 44b (PID 1501), SEM 966
that SE 5 and 6 were assigned to port 446 (PID 1502) and
SEM 96d that SE 7, 8, and 9 were assigned to port 44d (PID
1503). When a service endpoint is assigned to a port, the
SEM associated with that port passes the assigned SE
number to the port driver for that port using the port PID
number associated with the SE number.

10

15

20

25

30

35

40

45

50

55

60

65

74

To load instances of software applications on the correct
boards, the NMS creates software load records (SLR)
128a—128n in configuration database 42. The SLR includes
the name 130 (FIG. 14f) of a control shim executable file and
an LID 132 for cards on which the application must be
spawned. In the continuing example, NMS 60 creates SLR
128a including the executable name atmicntrlexe and card
LID 30 (row 134). The configuration database detects LID
30 in SLR 128a and sends slave SRMs 37b (line card 16a)
and 370 (line card 1611) a change notification including the
name of the executable file (e.g., atmicntrlexe) to be
loaded. The primary slave SRMs then download and execute
a copy of atmicntrlexe 135 from memory 40 to spawn the
ATM controllers (e.g., ATM controller 136 on line card 16a).
Since slave SRM 370 is on backup line card 1611, it may or
may not spawn an ATM controller in backup mode. Software
backup is described in more detail below. Instead of down-
loading a copy of atmicntrlexe 135 from memory 40, a
slave SRM may download it from another line card that
already downloaded a copy from memory 40. There may be
instances when downloading from a line card is quicker than
downloading from central processor 12. Through software
load records and the tables in configuration database 42,
applications are downloaded and executed without the need
for the system services, including the SRM, or any other
software in the kernel to have information as to how the

applications should be configured. The control shims (e.g.,
atmicntrlexe 135) interpret the next layer of the application
(e.g., ATM) configuration.

For each application that needs to be spawned, for
example, an ATM application and a SONET application, the
NMS creates an application group table. Referring to FIG.
14d, ATM group table 108 indicates that four instances of
ATM (i.e., group number 1, 2, 3, 4)—corresponding to four
enabled ports 44a—44n—are to be started on line card 16a
(LID 30). If other instances of ATM are started on other line
cards, they would also be listed in ATM group table 108 but
associated with the appropriate line card LID. ATM group
table 108 may also include additional information needed to
execute ATM applications on each particular line card. (See
description of software backup below.)

In the above example, one instance of ATM was started
for each port on the line card. This provides resiliency and
fault isolation should one instance of ATM fail or should one

port suffer a failure. An even more resilient scheme would
include multiple instances of ATM for each port. For
example, one instance of ATM may be started for each path
received by a port.

The application controllers on each board now need to
know how many instances of the corresponding application
they need to spawn. This information is in the application
group table in the configuration database. Through the active
query feature, the configuration database notifies the appli-
cation controller of records associated with the board’s LID

from corresponding application group tables. In the continu-
ing example, configuration database 42 sends ATM control-
ler 136 records from ATM group table 108 that correspond
to LID 30 (line card 16a). With these records, ATM con-
troller 136 learns that there are four ATM groups associated
with LID 30 meaning ATM must be instantiated four times
on line card 16a. ATM controller 136 asks slave SRM 37b

to download and execute four instances (ATM 110—113,
FIG. 15) of atm.exe 138.

Once spawned, each instantiation of ATM 110—113 sends
an active database query to search ATM interface table 114

for its corresponding group number and to retrieve associ-
ated records. The datain the records indicates how many

Apple v. Uniloc, |PR2017-2202
Uniloc's Exhibit 2003, page 308

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 309

US 6,880,086 B2

75

ATM interfaces each instantiation of ATM needs to spawn.
Alternatively, a master ATM application (not shown) run-
ning on central processor 12 may perform active queries of
the configuration database and pass information to each
slave ATM application running on the various line cards
regarding the number of ATM interfaces each slave ATM
application needs to spawn.

Referring to FIGS. 146 and 15, for each instance of ATM
110—113 there may be one or more ATM interfaces. To
configure these ATM interfaces, the NMS creates an ATM
interface table 114. There may be one ATM interface
115—122 per path/service endpoint or multiple virtual ATM
interfaces 123—125 per path. This flexibility is left up to the
user and NMS, and the ATM interface table allows the NMS
to communicate this configuration information to each
instance of each application running on the different line
cards. For example, ATM interface table 114 indicates that
for ATM group 1, service endpoint 1, there are three virtual
ATM interfaces (ATM-IF 1—3) and for ATM group 2, there
is one ATM interface for each service endpoint: ATM-IF 4
and SE 2; ATM-IF 5 and SE 3; and ATM-IF 6 and SE 4.

Computer system 10 is now ready to operate as a network
switch using line card 16a and ports 44a—44d. The user will
likely provide the NMS with further instructions to config-
ure more of computer system 10. For example, instances of
other software applications, such as an IP application, and
additional instances of ATM may be spawned (as described
above) on line cards 16a or other boards in computer system
10.

As shown above, all application dependent data resides in
memory 40 and not in kernel software. Consequently,
changes may be made to applications and configuration data
in memory 40 to allow hot (while computer system 10 is
running) upgrades of software and hardware and configu-
ration changes. Although the above described power-up and
configuration of computer system 10 is complex, it provides
massive flexibility as described in more detail below.
Template Driven Service Provisioning:

Instead of using the GUI to interactively provision ser-
vices on one network device in real time, a user may
provision services on one or more network devices in one or
more networks controlled by one or more network manage-
ment systems (NMSs) interactively and non-interactively
using an Operations Support Services (OSS) client and
templates. At the heart of any carrier’s network is the OSS,
which provides the overall network management infrastruc-
ture and the main user interface for network managers/
administrators. The OSS is responsible for consolidating a
diverse set of element/network management systems and
third-party applications into a single system that is used, for
example, to detect and resolve network faults (Fault
Management), configure and upgrade the network
(Configuration Management), account and bill for network
usage (Accounting Management), oversee and tune network
performance (Performance Management), and ensure iron-
clad network security (Security Management). FCAPS are
the five functional areas of network management as defined
by the International Organization for Standardization (ISO).
Through templates one or more NMSs may be integrated
with a telecommunication network carrier’s OSS.

Templates are metadata and include scripts of instructions
and parameters. In one embodiment, instructions within
templates are written in ASCII text to be human readable.
There are three general categories of templates, provisioning
templates, control templates and batch templates. A user
may interactively connect the OSS client with a particular
NMS server and then cause the NMS server to connect to a

10

15

20

25

30

35

40

45

50

55

60

65

76

particular device. Instead, the user may create a control
template that non-interactively establishes these connec-
tions. Once the connections are established, whether inter-
actively or noninteractively, provisioning templates may be
used to complete particular provisioning tasks. The instruc-
tions within a provisioning template cause the OSS client to
issue appropriate calls to the NMS server which cause the
NMS server to complete the provisioning task, for example,
by writing/modifying data within the network device’s con-
figuration database. Batch templates may be used to con-
catenate a series of templates and template modifications
(i.e., one or more control and provisioning templates) to
provision one or more network devices. Through the client/
server based architecture, multiple OSS clients may work
with one or more NMS servers. Database view ids and APIs

for the OSS client may be generated using the logical model
and code generation system (FIG. 3b) to synchronize the
integration interfaces between the OSS clients and the NMSservers.

Interactively, a network manager may have an OSS client
execute many provisioning templates to complete many
provisioning tasks. Instead, the network manager may order
and sequence the execution of many provisioning templates
within a batch template to non-interactively complete the
many provisioning tasks and build custom services. In
addition, execution commands followed by control template
names may be included within batch templates to non-
interactively cause an OSS client to establish connections
with particular NMS servers and network devices. For
example, a first control template may designate a network
device to which the current OSS client and NMS server are

not connected. Including an execution command followed
by the first control template name in a batch template will
cause the OSS client to issue calls to the NMS server to
cause the NMS server to access the different network device.

As another example, a second control template may desig-
nate an NMS server and a network device to which the OSS

client is not currently connected. Including an execution
command followed by the second control template name
will cause the OSS client to set up connections to both the
different NMS server and the different network device.

Moreover, batch templates may include execution com-
mands followed by provisioning template names after each
execution command and control template to provision ser-
vices within the network devices designated by the control
templates. Through batch templates, therefore, multiple con-
trol templates and provisioning templates may be ordered
and sequenced to provision services within multiple network
devices in multiple networks controlled by multiple NMSs.

Calls issued by the OSS client to the NMS server may
cause the NMS server to immediately provision services or
delay provisioning services until a predetermined time, for
example, a time when the network device is less likely to be
busy. Templates may be written to apply to different types of
network devices.

A “command line” interactive interpreter within the OSS
client may be used by a network manager to select and
modify existing templates or to create new templates. Tem-
plates may be generated for many various provisioning
tasks, for example, setting up a permanent virtual circuit
(PVC), a switched virtual circuit (SVC), a SONET path
(SPATH), a traffic descriptor (TD) or a virtual ATM interface
(VAIF). Once a template is created, a network manager
change default parameters within the template to complete
particular provisioning tasks. A network manager may also
copy a template and modify it to create a new template.

Referring to FIG. 3h using the interactive interpreter, a
network administrator may provision services by selecting

Apple v. Uniloc, |PR2017-2202
Uniloc's Exhibit 2003, page 309

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 310

US 6,880,086 B2

77

(step 888) a template and using the default parameters
within that template or copying and renaming (step 889) a
particular provisioning template corresponding to a particu-
lar provisioning task and either accepting default parameter
values provided by the template or changing (step 890) those
default values to meet the administrator’s needs. The net-

work administrator may also change parameters and instruc-
tions within a copy of a template to create a new template.
The modified provisioning templates are sent to or loaded
into (step 891) the OS client, which executes the instructions
within the template and issues the appropriate calls (step
892) to the NMS server to satisfy the provisioning need. The
088 client may be written in JAVA and employ script
technology. In response to calls received from the OSS
client, the NMS server may execute (step 894) the provi-
sioning requests defined by a template immediately or in a
“batch-mode” (step 893), perhaps with other calls received
from the OSS client or other clients, at a time when network

transactions are typically low (e.g., late at night).
Referring to FIG. 31', at the interactive interpreter prompt

912 (e.g., Enetcli>) a network manager may type in “help”
and be provided with a list (e.g., list 913) of commands that
are available. In one embodiment, available commands may
include bye, close, execute, help, load, manage, open, quit,
showCurrent, showTemplate, set, status, writeCurrent, and
writeTemplate. Many different commands are possible. The
bye command allows the network manager to exit the
interactive interpreter, the close command allows the net-
work manager to close a connection between the OSS client
and that NMS server, and the execute command followed by
a template type causes the OSS client to execute the instruc-
tions within the loaded template corresponding to that
template type.

As shown, the help command alone causes the interactive
interpreter to display the list of commands. The help com-
mand followed by another command provides help infor-
mation about that command. The load command followed

by a template type and a named template loads the named
template into the OSS client such that any commands
followed by the template type will use the named/loaded
template. The manage command followed by an IP address
of a network device causes the OSS client to issue a call to
an NMS server to establish a connection between the NMS

server and that network device. Alternatively, a username
and password may also need to be supplied. The open
command followed by an NMS server IP address causes the
OSS client to open a connection with that NMS server, and
again, the network manager may also need to supply a
username and password. Instead of an IP address, a domain
name server (DNS) name may be provided and a host look
up may be used to determine the IP address and access the
corresponding device.

The showCurrent command followed by a template type
will cause the interactive interpreter to display current
parameter values for the loaded template corresponding to
that template type. For example, showCurrent SPATH 914
displays a list 915 of parameters and current parameter
values for the loaded template corresponding to the SPATH
template type. The showTemplate command followed by a
template type will cause the OSS client to display available
parameters and acceptable parameter values for each param-
eter within the loaded template. For example, showTemplate
SPATH 916 causes the interactive interpreter to display the
available parameters 917 within the loaded template corre-
sponding to the SPATH template type. The set command
followed by a template type, a parameter name and a value
will change the named parameter to the designated value

10

15

20

25

30

35

40

45

50

55

60

65

78

within the loaded template, and a subsequent showCurrent
command followed by that template type will show the new
parameter value within the loaded.

The status command 918 will cause the interactive inter-

preter to display a status of the current interactive interpreter
session. For example, the interactive interpreter may display
the name 919 of an NMS server to which the OSS client is

currently connected (as shown in FIG. 31', the OSS client is
currently not connected to an NMS server) and the interac-
tive interpreter may display the names 920 of available
template types. The writeCurrent command followed by a
template type and a new template name will cause the
interactive interpreter to make a copy of the loaded template,
including current parameter values, with the new template
name. The writeTemplate command followed by a template
type and a new template name, will cause the interactive
interpreter to make a copy of the template with the new
template name with placeholders values (i.e., <String>) that
indicate the network manager needs to fill in the template
with the required datatypes as parameter values. The net-
work manager may then use the load command followed by
the new template name to load the new template into the
OSS client.

Referring to FIG. 3j, from the interactive interpreter
prompt (e.g., Enetcli>), a network manager may interac-
tively provision services on a network device. The network
manager begins by typing an open command 921a followed
by the IP address of an NMS server to cause the OSS client
to open a connection 921b with that NMS server. The
network manager may then issue a manage command 921C
followed by the IP address of a particular network device to
cause the OSS client to issue a call 921d to the NMS server

to cause the NMS server to open a connection 9216 with that
network device.

The network manager may now provision services within
that network device by typing in an execute command 921f
followed by a template type. For example, the network
manager may type “execute SPATH” at the Enetcli> prompt
to cause the OSS client to execute the instructions 921g
within the loaded SPATH template using the parameter
values within the loaded SPATH template. Executing the
instructions causes the OSS client to issue calls to the NMS

server, and these calls cause the NMS server to complete the
provisioning task 921k. For example, following an execute
SPATH command, the NMS server will set up a SONET
path in the network device using the parameter values
passed to the NMS server by the OSS client from the
template.

At any time from the Enetcli> prompt, a network manager
may change the parameter values within a template. Again,
the network manager may use showCurrent followed by a
template type to see the current parameter values within the
loaded template or showTemplate to see the available
parameters within the loaded template. The network man-
ager may then use the set command followed by the template
type, parameter name and new parameter value to change a
parameter value within the loaded template. For example,
after the network manager sets up a SONET path within the
network device, the network manager may change one or
more parameter values within the loaded SPATH template
and re-execute the SPATH template to set up a different
SONET path within the same network device.

Once a connection to a network device is open, the
network manager may interactively execute any template
any number of times to provision services within that
network device. The network manager may also create new
templates and execute those. The network manager may

Apple v. Uniloc, |PR2gO17-2202
Uniloc's Exhibit 2003, page 310

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 311

US 6,880,086 B2

79

simply write a new template or use the writeCurrent or
writeTemplate commands to copy an existing template into
a new template name and then edit the instructions within
the new template.

After provisioning services within a first network device, 5
the network manager may open a connection with a second
network device to provision services within that second
network device. If the NMS server currently connected to
the OSS client is capable of establishing a connection with
the second network device, then the network manager may 10
simply open a connection to the second network device. If
the NMS server currently connected to the OSS client is not
capable of establishing a connection with the second net-
work device, then the network manager closes the connec-
tions with the NMS server and then opens connections with 15
a second NMS server and the second network device. Thus,
a network manager may easily manage/provision services
within multiple network devices within multiple networks
even if they are managed by different NMS servers. In
addition, other network managers may provision services on 20
the same network devices through the same NMS servers
using other 088 clients that are perhaps running on other
computer systems. That is, multiple 088 clients may be
connected to multiple NMS servers.

Instead of interactively establishing connections with 25
NMS servers and network devices, control templates may be
used to non-interactively establish these connections. Refer-
ring to FIG. 3k, using a showCurrent command 922 fol-
lowed by CONTROL causes the interactive interpreter to
display parameters available in the loaded CONTROL tem- 30
plate. In one embodiment, an execute control command will
automatically cause the OSS client to execute instructions
within the loaded CONTROL template and open a connec-
tion to an NMS server designated within the CONTROL
template. Since the OSS client automatically opens a con- 35
nection with the designated NMS server, the open command
may but need not be included within the CONTROL tem-
plate. In this example, the CONTROL template includes
“localhost” 923a as the DNS name of the NMS server with

which the OSS client should open a connection. In one 40
embodiment, “localhost” refers to the same system as the
OSS client. Ausername 923b and password 923C may also
need to be used to open the connection with the localhost
NMS server. The CONTROL template also includes the
manage command 923d and a network device IP address 45
9236 of 192.168.9202. With this information (and perhaps
the username and password or another username and
password), the OSS client issues calls to the localhost NMS
server to cause the server to set up a connection with that
network device. 50

The template may also include an output file name 923f
where any output/status information generated in response
to the execution of the CONTROL template will be sent. The
template may also include a version number 923g. Version
numbers allow a new template to be created with the same 55
name as an old template but with a new version number, and
the new template may include additional/different param-
eters and/or instructions. Using version numbers, both old
(e.g., not upgraded) and new 088 clients may use the
templates but only access those templates having particular 60
version numbers that correspond to the functionality of each
088 client.

Once connections with an NMS server and network

device are established (either interactively or non-
interactively through a control template), services within the 65
network device may be provisioned. As described above, a
network manager may interactively provision services by

80

issuing execute commands followed by provisioning tem-
plate types. Alternatively, a network manager may provision
services non-interactively through batch templates, which
include an ordered list of tasks, including execute com-
mands followed by provisioning template types.

Referring to FIG. 3L, a batch template type named
BATCH 924 includes an ordered list of tasks, including
execute commands followed by provisioning template types.
When a network manager issues an execute command
followed by the BATCH template type at the Enetcli>
prompt, the OSS client will carry out each of the tasks within
the loaded BATCH template. In this example, task1 924a
includes “execute SPATH” which causes the OSS client to

establish a SONET path within the network device to which
a connection is open, task2 924b includes “execute PVC” to
cause the OSS client to set up a permanent virtual circuit
within the network device, and task3 924C includes “execute
SPVC” to cause the OSS client to set up a soft permanent
virtual circuit within the network device.

If multiple similar provisioning tasks are needed, then the
network manager may use writeCurrent or writeTemplate to
create multiple similar templates (i.e., same template type
with different template names), change or add parameter
values within these multiple similar templates using the set
command, and sequentially load and execute each of the
different named templates. For example, SPVC is the tem-
plate type and task3 causes the 088 to execute instructions
within the previously loaded named template. Spvcl and
spvc2 are two different named templates (or template
instantiations) corresponding to the SPVC template type for
setting up soft permanent virtual circuits having different
parameters from each other and the loaded template to set up
different SPVCs. In this example, the BATCH template then
includes task4 924d including “load SPVC spvc1” to load
the spvc1 template and then task5 924e “execute SPVC” to
cause the OSS client to execute the loaded spvc1 template
and set up a different SPVC. Similarly, task6 924f includes
“load SPVC spvc2” and task7 9246 includes “execute
SPVC” to cause the OSS client to execute the loaded spvc2
template and set up yet another different SPVC.

Alternatively, the batch template may include commands
for altering an existing template such that multiple similar
templates are not necessary. For example, the loaded
BATCH template may include task50 924g “set SPATH
PortID 3” to cause the OSS client to change the PortID
parameter within the SPATH template to 3. The BATCH
template then includes task51 924k “execute SPATH” 924g
to cause the OSS client to execute the SPATH template
including the new parameter value which sets up a different
SONET path. A BATCH template may include many set
commands to change parameter values followed by execute
commands to provision multiple similar services within the
same network device. For example, the BATCH template
may further include task52 9241' “set SPATH SlotID 2”
followed by task53 924j “execute SPATH” to set up yet
another different SONET path. Using this combination of set
and execute commands eliminates the need to write, store
and keep track of multiple similar templates.

Batch templates may also be used to non-interactively
provision services within multiple different network devices
by ordering and sequencing tasks including execute com-
mands followed by control template types and then execute
commands followed by provisioning template types. Refer-
ring to FIG. 3M, instead of non-interactively establishing
connections with an NMS server and a network device using
a control template, a batch template may be used. For
example, the first task in a loaded BATCH template 925 may

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 311

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 312

US 6,880,086 B2

81
be task1 925a “execute CONTROL”. This will cause the

OSS client to execute the loaded CONTROL template to
establish connections with the NMS server and the network

device designated within the loaded CONTROL template
(e.g., localhost and 192.168.9202). The BATCH template 5
then includes provisioning tasks, for example, task2 925b
includes “execute SPATH” to set up a SONET path, and
task3 925C includes “set SPATH PortID 3” and task4 925d

includes “execute SPATH” to set up a different SONET path.
Many additional provisioning tasks for this network device
may be completed in this way.

The BATCH template may then have a task including a set
command to modify one or more parameters within a control
template to cause the OSS client to set up a connection with
a different network device and perhaps a different NMS
server. Where the network manager wishes to provision a 15
network device capable of being connected to through the
currently connected NMS server, for example, localhost,
then the BATCH template need only have task61 9256
including “set CONTROL System” followed by the IP
address of the different network device, for example, 20
192.168.9201. The BATCH template then has a task62 925f
including “execute CONTROL”, which causes the OSS
client to issue calls to the localhost NMS server to establish
a connection with the different network device. The BATCH

template may then have tasks including execute commands 25
followed by provisioning templates, for example, task63
925g including “execute SPATH”, to provision services
within the different network device.

If the network manager wishes to provision a network
device coupled with another NMS server, then the BATCH 30
template includes, for example, task108 925h including
“close” to drop the connection between the OSS client and
localhost NMS server. The BATCH template may then have,
for example, task109 9251' including “set CONTROL Server
Server1” to change the server parameter within the loaded 35
CONTROL template to Serverl and task110 9251' including
“set CONTROL System 192.168.8200” to change the net-
work device parameter within the loaded CONTROL tem-
plate to the IP address of the new network device. The
BATCH template may then have task111 925k including 40
“execute CONTROL” to cause the OSS client to set up
connections to the Serverl NMS server and to network

device 192.168.8200. The BATCH template may then
include tasks with execute commands followed by provi-
sioning template types to provision services within the 45
network device, for example, task112 925L includes
“execute SPATH”.

The templates and interactive interpreter/OSS client may
be loaded and executed on a central OSS computer system
(s) and used to provision services in one or more network 50
devices in one or more network domains. Anetwork admin-

istrator may install an OSS client at various locations and/or
for “manage anywhere” purposes, web technology may be
used to allow a network manager to download an OSS client
program from a web accessible server onto a computer at 55
any location. The network manager may then use the OSS
client in the same manner as when it is loaded onto a central

OSS computer system. Thus, the network manager may
provision services from any computer at any location.

Provisioning templates may be written to apply to differ- 60
ent types of network devices. The network administrator
does not need to know details of the network device being
provisioned as the parameters required and available for
modification are listed in the various templates.
Consequently, the templates allow for multifaceted integra- 65
tion of different network management systems (NMS) into
existing OSS infrastructures.

10

82

Instead of using template executable files and an OSS
client, network managers may prefer to use their standard
OSS interface to provision services in various network
devices. In one embodiment, therefore, a single OSS client
application programming interface (API) and a library of
compiled code may be linked directly into the OSS software.
The library of compiled code is a subset of the compiled
code used to create the OSS client, with built-in templates
including provisioning, control, batch and other types of
templates. The OSS software then uses the supported tem-
plates as documentation of the necessary parameters needed
for each provisioning task and presents template streams
(null terminated arrays of arguments that serialize the total-
ity of arguments required to construct a supported template)
via the single API for potential alteration through the OSS
standard interface. Since the network managers are com-
fortable working with the OSS interface, provisioning ser-
vices may be made more efficient and simple by directly
linking the OSS client API and templates into the OSS
software.

Typically, OSS software is written in C or C++ program-
ming language. In one embodiment, the OSS client and
templates are written in JAVA, and JAVA Native Interface
(JNI) is used by the OSS software to access the JAVA OSS
client API and templates.
Inter-Process Communication

As described above, the operating system assigns a
unique process identification number (prociid) to each
spawned process. Each process has a name, and each
process knows the names of other processes with which it
needs to communicate. The operating system keeps a list of
process names and the assigned process identification num-
bers. Processes send messages to other processes using the
assigned process identification numbers without regard to
what board is executing each process (i.e., process location).
Application Programming Interfaces (APIs) define the for-
mat and type of information included in the messages.

The modular software architecture configuration model
requires a single software process to support multiple con-
figurable objects. For example, as described above, an ATM
application may support configurations requiring multiple
ATM interfaces and thousands of permanent virtual connec-
tions per ATM interface. The number of processes and
configurable objects in a modular software architecture can
quickly grow especially in a distributed processing system.
If the operating system assigns a new process for each
configurable object, the operating system’s capabilities may
be quickly exceeded. For example, the operating system
may be unable to assign a process for each ATM interface,
each service endpoint, each permanent virtual circuit, etc. In
some instances, the process identification numbering
scheme itself may not be large enough. Where protected
memory is supported, the system may have insufficient
memory to assign each process and configurable object a
separate memory block. In addition, supporting a large
number of independent processes may reduce the operating
system’s efficiency and slow the operation of the entire
computer system.

One alternative is to assign a unique process identification
number to only certain high level processes. Referring to
FIG. 16a, for example, process identification numbers may
only be assigned to each ATM process (e.g., ATMs 240, 241)
and not to each ATM interface (e.g., ATM IFs 242—247) and
process identification numbers may only be assigned to each
port device driver (e.g., device drivers 248, 250, 252) and
not to each service endpoint (e.g., SE 253—261). A disad-
vantage to this approach is that objects within one high level

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 312

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 313

US 6,880,086 B2

83

process will likely need to communicate with objects within
other high level processes. For example, ATM interface 242
within ATM 240 may need to communicate with SE 253
within device driver 248. ATM IF 242 needs to know if SE

253 is active and perhaps certain other information about SE
253. Since SE 253 was not assigned a process identification
number, however, neither ATM 240 nor ATM IF 242 knows
if it exists. Similarly, ATM IF 242 knows it needs to
communicate with SE 253 but does not know that device
driver 248 controls SE 253.

One possible solution is to hard code the name of device
driver 248 into ATM 240. ATM 240 then knows it must
communicate with device driver 248 to learn about the

existence of any service endpoints within device driver 248
that may be needed by ATM IF 242, 243 or 244.
Unfortunately, this can lead to scalability issues. For
instance, each instantiation of ATM (e.g., ATM 240, 241)
needs to know the name of all device drivers (e.g., device
drivers 248, 250, 252) and must query each device driver to
locate each needed service endpoint. An ATM query to a
device driver that does not include a necessary service
endpoint is a waste of time and resources. In addition, each
high level process must periodically poll other high level
processes to determine whether objects within them are still
active (i.e., not terminated) and whether new objects have
been started. If the object status has not changed between
polls, then the poll wasted resources. If the status did
change, then communications have been stalled for the
length of time between polls. In addition, if a new device
driver is added (e.g., device driver 262), then ATM 240 and
241 cannot communicate with it or any of the service
endpoints within it until they have been upgraded to include
the new device driver’s name.

Preferably, computer system 10 implements a name
server process and a flexible naming procedure. The name
server process allows high level processes to register infor-
mation about the objects within them and to subscribe for
information about the objects with which they need to
communicate. The flexible naming procedure is used instead
of hard coding names in processes. Each process, for
example, applications and device drivers, use tables in the
configuration database to derive the names of other config-
urable objects with which they need to communicate. For
example, both an ATM application and a device driver
process may use an assigned service endpoint number from
the service endpoint table (SET) to derive the name of the
service endpoint that is registered by the device driver and
subscribed for by the ATM application. Since the service
endpoint numbers are assigned by the NMS during
configuration, stored in SET 76 and passed to local SEMs,
they will not be changed if device drivers or applications are
upgraded or restarted.

Referring to FIG. 16b, for example, when device drivers
248, 250 and 252 are started they each register with name
server (NS) 264. Each device driver provides a name, a
process identification number and the name of each of its
service endpoints. Each device driver also updates the name
server as service endpoints are started, terminated or
restarted. Similarly, each instantiation of ATM 240, 241
subscribes with name server 264 and provides its name,
process identification number and the name of each of the
service endpoints in which it is interested. The name server
then notifies ATM 240 and 241 as to the process identifica-
tion of the device driver with which they should communi-
cate to reach a desired service endpoint. The name server
updates ATM 240 and 241 in accordance with updates from
the device drivers. As a result, updates are provided only

10

15

20

25

30

35

40

45

50

55

60

65

84

when necessary (i.e., no wasted resources), and the com-
puter system is highly scalable. For example, if a new device
driver 262 is started, it simply registers with name server
264, and name server 264 notifies either ATM 240 or 241 if
a service endpoint in which they are interested is within the
new device driver. The same is true if a new instantiation of

ATM—perhaps an upgraded version—is started or if either
an ATM application or a device driver fails and is restarted.

Referring to FIG. 166, when the SEM, for example, SEM
96a, notifies a device driver, for example, device driver
(DD) 222, of its assigned SE number, DD 222 uses the SE
number to generate a device driver name. In the continuing
example from above, where the ATM over SONET protocol
is to be delivered to port 44a and DD 222, the device driver
name may be for example, atm.se1. DD 222 publishes this
name to NS 220b along with the process identification
assigned by the operating system and the name of its service
endpoints.

Applications, for example, ATM 224, also use SE num-
bers to generate the names of device drivers with which they
need to communicate and subscribe to NS 220b for those

device driver names, for example, atm.se1. If the device
driver has published its name and process identification with
NS 220b, then NS 220b notifies ATM 224 of the process
identification number associated with atm.se1 and the name

of its service endpoints. ATM 224 can then use the process
identification to communicate with DD 222 and, hence, any
objects within DD 222. If device driver 222 is restarted or
upgraded, SEM 96a will again notify DD 222 that its
associated service endpoint is SE 1 which will cause DD 222
to generate the same name of atm.se1. DD 222 will then
re-publish with NS 220b and include the newly assigned
process identification number. NS 220b will provide the new
process identification number to ATM 224 to allow the
processes to continue to communicate. Similarly, if ATM
224 is restarted or upgraded, it will use the service endpoint
numbers from ATM interface table 114 and, as a result,
derive the same name of atm.se1 for DD 222. ATM 224 will
then re-subscribe with NS 220b.

Computer system 10 includes a distributed name server
(NS) application including a name server process
220a—220n on each board (central processor and line card).
Each name server process handles the registration and
subscription for the processes on its corresponding board.
For distributed applications, after each application (e.g.,
ATM 224a—224n) registers with its local name server (e.g.,
220b—22011), the name server registers the application with
each of the other name servers. In this way, only distributed
applications are registered/subscribed system wide which
avoids wasting system resources by registering local pro-
cesses system wide.

The operating system, through the use of assigned process
identification numbers, allows for inter-process communi-
cation (IPC) regardless of the location of the processes
within the computer system. The flexible naming process
allows applications to use data in the configuration database
to determine the names of other applications and config-
urable objects, thus, alleviating the need for hard coded
process names. The name server notifies individual pro-
cesses of the existence of the processes and objects with
which they need to communicate and the process identifi-
cation numbers needed for that communication. The

termination, re-start or upgrade of an object or process is,
therefore, transparent to other processes, with the exception
of being notified of new process identification numbers. For
example, due to a configuration change initiated by the user
of the computer system, service endpoint 253 (FIG. 16b),

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 313

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 314

US 6,880,086 B2

85

may be terminated within device driver 248 and started
instead within device driver 250. This movement of the

location of object 253 is transparent to both ATM 240 and
241. Name server 264 simply notifies whichever processes
have subscribed for SE 253 of the newly assigned process
identification number corresponding to device driver 250.

The name server or a separate binding object manager
(BOM) process may allow processes and configurable
objects to pass additional information adding further flex-
ibility to inter-process communications. For example, flex-
ibility may be added to the application programming inter-
faces (APIs) used between processes. As discussed above,
once a process is given a process identification number by
the name server corresponding to an object with which it
needs to communicate, the process can then send messages
to the other process in accordance with a predefined appli-
cation programming interface (API). Instead of having a
predefined API, the API could have variables defined by data
passed through the name server or BOM, and instead of
having a single API, multiple APIs may be available and the
selection of the API may be dependent upon information
passed by the name server or BOM to the subscribed
application.

Referring to FIG. 16d, a typical API will have a pre-
defined message format 270 including, for example, a mes-
sage type 272 and a value 274 of a fixed number of bits (e.g.,
32). Processes that use this API must use the predefined
message format. If a process is upgraded, it will be forced to
use the same message format or change the API/message
format which would require that all processes that use this
API also be similarly upgraded to use the new API. Instead,
the message format can be made more flexible by passing
information through the name server or BOM. For example,
instead of having the value field 274 be a fixed number of
bits, when an application registers a name and process
identification number it may also register the number of bits
it plans on using for the value field (or any other field).
Perhaps a zero indicates a value field of 32 bits and a one
indicates a value filed of 64 bits. Thus, both processes know
the message format but some flexibility has been added.

In addition to adding flexibility to the size of fields in a
message format, flexibility may be added to the overall
message format including the type of fields included in the
message. When a process registers its name and process
identification number, it may also register a version number
indicating which API version should be used by other
processes wishing to communicate with it. For example,
device driver 250 (FIG. 16b) may register SE 258 with NS
264 and provide the name of SE 258, device driver 250’s
process identification number and a version number one, and
device driver 252 may register SE 261 with NS 264 and
provide the name of SE 261, device driver 252’s process
identification number and a version number (e.g., version
number two). If ATM 240 has subscribed for either SE 258
or SE 261, then NS 264 notifies ATM 240 that SE 258 and
SE 261 exist and provides the process identification numbers
and version numbers. The version number tells ATM 240

what message format and information SE 258 and SE 261
expect. The different message formats for each version may
be hard coded into ATM 240 or ATM 240 may access system
memory or the configuration database for the message
formats corresponding to service endpoint version one and
version two. As a result, the same application may commu-
nicate with different versions of the same configurable
object using a different API.

This also allows an application, for example, ATM, to be
upgraded to support new configurable objects, for example,

10

15

20

25

30

35

40

45

50

55

60

65

86

new ATM interfaces, while still being backward compatible
by supporting older configurable objects, for example, old
ATM interfaces. Backward compatibility has been provided
in the past through revision numbers, however, initial com-
munication between processes involved polling to determine
version numbers and where multiple applications need to
communicate, each would need to poll the other. The name
server/BOM eliminates the need for polling.

As described above, the name server notifies subscriber
applications each time a subscribed for process is termi-
nated. Instead, the name server/BOM may not send such a
notification unless the System Resiliency Manager (SRM)
tells the name server/BOM to send such a notification. For

example, depending upon the fault policy/resiliency of the
system, a particular software fault may simply require that
a process be restarted. In such a situation, the name server/
BOM may not notify subscriber applications of the termi-
nation of the failed process and instead simply notify the
subscriber applications of the newly assigned process iden-
tification number after the failed process has been restarted.
Data that is sent by the subscriber processes after the
termination of the failed process and prior to the notification
of the new process identification number may be lost but the
recovery of this data (if any) may be less problematic than
notifying the subscriber processes of the failure and having
them hold all transmissions. For other faults, or after a
particular software fault occurs a predetermined number of
times, the SRM may then require the name server/BOM to
notify all subscriber processes of the termination of the
failed process. Alternatively, if a terminated process does not
re-register within a predetermined amount of time, the name
server/BOM may then notify all subscriber processes of the
termination of the failed process.
Configuration Change

Over time the user will likely make hardware changes to
the computer system that require configuration changes. For
example, the user may plug a fiber or cable (i.e., network
connection) into an as yet unused port, in which case, the
port must be enabled and, if not already enabled, then the
port’s line card must also be enabled. As other examples, the
user may add another path to an already enabled port that
was not fully utilized, and the user may add another line card
to the computer system. Many types of configuration
changes are possible, and the modular software architecture
allows them to be made while the computer system is
running (hot changes). Configuration changes may be auto-
matically copied to persistent storage as they are made so
that if the computer system is shut down and rebooted, the
memory and configuration database will reflect the last
known state of the hardware.

To make a configuration change, the user informs the
NMS (e.g., NMS client 850a, FIG. 2a) of the particular
change, and similar to the process for initial configuration,
the NMS (e.g., NMS server 851a, FIG. 2a) changes the
appropriate tables in the configuration database (copied to
the NMS database) to implement the change.

Referring to FIG. 17, in one example of a configuration
change, the user notifies the NMS that an additional path
will be carried by SONET fiber 70C connected to port 446.
A new service endpoint (SE) 164 and a new ATM interface
166 are needed to handle the new path. The NMS adds a new
record (row 168, FIG. 14a) to service endpoint table (SET)
76 to include service endpoint 10 corresponding to port
physical identification number (PID) 1502 (port 446). The
NMS also adds a new record (row 170, FIG. 146) to ATM
instance table 114 to include ATM interface (IF) 12 corre-
sponding to ATM group 3 and SE 10. Configuration database

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 314

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 315

US 6,880,086 B2

87

42 may automatically copy the changes made to SET 76 and
ATM instance table 114 to persistent storage 21 such that if
the computer system is shut down and rebooted, the changes
to the configuration database will be maintained.

Configuration database 42 also notifies (through the active
query process) SEM 966 that a new service endpoint (SE 10)
was added to the SET corresponding to its port (PID 1502),
and configuration database 42 also notifies ATM instantia-
tion 112 that a new ATM interface (ATM-IF 166) was added
to the ATM interface table corresponding to ATM group 3.
ATM 112 establishes ATM interface 166 and SEM 96c

notifies port driver 142 that it has been assigned SE10. A
communication link is established through NS 220b. Device
driver 142 generates a service endpoint name using the
assigned SE number and publishes this name and its process
identification number with NS 220b. ATM interface 166

generates the same service endpoint name and subscribes to
NS 220b for that service endpoint name. NS 220b provides
ATM interface 166 with the process identification assigned
to DD 142 allowing ATM interface 166 to communicate
with device driver 142.

Certain board changes to computer system 10 are also
configuration changes. After power-up and configuration, a
user may plug another board into an empty computer system
slot or remove an enabled board and replace it with a
different board. In the case where applications and drivers
for a line card added to computer system 10 are already
loaded, the configuration change is similar to initial con-
figuration. The additional line card may be identical to an
already enabled line card, for example, line card 16a or if the
additional line card requires different drivers (for different
components) or different applications (e.g., IF), the different
drivers and applications are already loaded because com-
puter system 10 expects such cards to be inserted.

Referring to FIG. 18, while computer system 10 is
running, when another line card 168 is inserted, master
MCD 38 detects the insertion and communicates with a

diagnostic program 170 being executed by the line card’s
processor 172 to learn the card’s type and version number.
MCD 38 uses the information it retrieves to update card
table 47 and port table 49. MCD 38 then searches physical
module description (PMD) file 48 in memory 40 for a record
that matches the retrieved card type and version number and
retrieves the name of the mission kernel image executable
file (MKI.exe) that needs to be loaded on line card 168. Once
determined, master MCD 38 passes the name of the MKI
executable file to master SRM 36. SRM 36 downloads MKI

executable file 174 from persistent storage 21 and passes it
to a slave SRM 176 running on line card 168. The slave
SRM executes the received MKI executable file.

Referring to FIG. 19, slave MCD 178 then searches PMD
file 48 in memory 40 on central processor 12 for a match
with its line card’s type and version number to find the
names of all the device driver executable files needed by its
line card. Slave MCD 178 provides these names to slave
SRM 176 which then downloads and executes the device

driver executable files (DD.exe) 180 from memory 40.
When master MCD 38 updates card table 47, configura-

tion database 42 updated NMS database 61 which sends
NMS 60 (e.g., NMS Server 851a, FIG. 2a) a notification of
the change including card type and version number, the slot
number into which the card was inserted and the physical
identification (PID) assigned to the card by the master MCD.
The NMS is updated, assigns an LID and updates the logical
to physical table and notifies the user of the new hardware.
The user then tells the NMS how to configure the new
hardware, and the NMS implements the configuration
change as described above for initial configuration.

10

15

20

25

30

35

40

45

50

55

60

65

88

Logical Model Change
Where software components, including applications,

device drivers, modular system services, new mission kernel
images (MKIs) and diagnostic software, for a new hardware
module (e.g., a line card) are not already loaded and/or if
changes or upgrades (hereinafter “upgrades”) to already
loaded software components are needed, logical model 280
(FIGS. 3a—3b) must be changed and new view ids and APIs,
NMS JAVA interface files, persistent layer metadata files and
new DDL files may need to be re-generated. Software model
286 is changed to include models of the new or upgraded
software, and hardware model 284 is changed to include
models of any new hardware. New logical model 280' is then
used by code generation system 336 to re-generate view ids
and APIs for any changed software components, including
any new applications, for example, ATM version two 360, or
device drivers, for example, device driver 362, and, where
necessary, to re-generate DDL files 344' and 348' including
new SQL commands and data relevant to the new hardware

and/or software. The new logical model is also used to
generate, where necessary, new NMS JAVA interface files
347' and new persistent layer metadata files 349'.

Each executable software component is then built. As
described above with reference to FIG. 3d, the build process
involves compiling one or more source code files for the
software component and then linking the resulting object
code with the object code of associated libraries, a view id,
an API, etc. to form an executable file. Each of the execut-
able files and data files, for example, persistent layer meta-
data files and DDL files, are then provided to Kit Builder
(861, FIG. 36), which combines the components into a
Network Device Installation Kit. As previously mentioned,
the Kit Builder may compress each of the software compo-
nents to save space. Each Installation Kit is assigned a
Global release version number to distinguish between dif-
ferent Installation Kits.

The Kit Builder also creates a packaging list 1200 (FIG.
20a) and includes this in the Installation Kit. The packaging
list includes a list of the software components in the Instal-
lation Kit and a list of “signatures” 1200a—1200n associated
with the software components.
Software Component Signatures

To facilitate upgrades of software components while the
network device (e.g., 10, FIG. 1; 540, FIG. 35) is running
(hot upgrades), a “signature” is generated for each software
component. After installation (described below) within the
network device of a new Installation Kit, only those software
components whose signatures do not match the signatures of
corresponding and currently executing software components
will be upgraded. For example, different signatures associ-
ated with two ATM components represent different versions
of those two ATM components.

Currently, software programmers assign a different ver-
sion number to a software component when they change a
software component. Since, the versioning process is con-
trolled by or requires human intervention, this process is
error prone. For example, if a changed software component
is not assigned a new version number, then it may not be
upgraded with other changed applications. If one or more of
the upgraded applications work with the application that was
not upgraded, errors and potentially a network device crash
may occur. To avoid versioning errors, instead of assigning
a version number, a signature is “machine generated” based
on the content of the software component.

A simple program such as a checksum or cyclic redun-

dancy checking (CRC) program may be used to generate the
signature. The concern with such a simple proggram is that it

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 315

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 316

US 6,880,086 B2

89

may generate the same signature for a current software
component and an upgrade of that component if the upgrade
changes are not significant. Instead, a more robust program,
such as a strong cryptographic program, may be used to
generate the signatures for each software component. In one
embodiment, the signatures are generated using the “Sha-1”
cryptography utility (often called the “sha1sum”). Informa-
tion regarding Sha-1, which is herein incorporated by
reference, and a copy of Sha-1 may be located by citizens or
permanent residents of the United States and Canada from
the North American Cryptography Archives at www.cryp-
tography.org. This web site also points to various other web
sites for access to cryptographic programs available outside
the United States and Canada.

The Sha-1 utility is a secure hash algorithm that uses the
contents of a software component to generate a signature
that is 20 bytes in length. The Sha-1 utility is robust enough
to detect even small changes to a software component and,
thus, generate a different signature. Due to the sensitivity of
the Sha-1 utility, the signature may also be referred to as a
“finger print” or a “digest”. Using the Sha-1 utility or
another signature generating program, eliminates the errors
often caused when humans generate version numbers.

Other signature generating programs may also be used.
For example, hash functions such as MD2, MD4, MD5 or
Ripemd128 or Ripemd160 may be used or a keyed hash
function, such as HMAC, may be used with any of these
hash functions. MD5 will produce a 128-bit “fingerprint” or
“message digest” for each software component. Information
regarding MD5, which is herein incorporated by reference,
may be gotten from the following web site: http://
userpages.umbc.edu/~mabzug1/cs/md5/md5.html. Rip-
emd128 produces a 16 byte digest and Ripemd169 produces
a 20 byte digest. Information regarding Ripemd128 or
Ripemd160, which is herein incorporated by reference, may
be found at the following web site: http://
www.esat.kuleuven.ac.be/~bosselae/ripemd160.html#What.

Referring to FIG. 20b, once a software component 1202
is built, it is passed to the signature generating program
1204, for example, the Sha-1 utility. The number generated
by the signature generating program is the signature 1206
for that software component and it is appended to the built
software component 1208. These steps are repeated for each
software component added to the packaging list, and as Kit
Builder 861 (FIG. 36) adds each software component to the
packaging list, it retrieves the signature appended to each
software component and inserts it in the packaging list
corresponding to the appropriate software component.

Often build programs, including the compiler and the
linker, insert a date and time or other extraneous data in a
built software component. In addition, other “profile” type
data may also be appended to each software component such
as the name of the user who executed the build, the Global
version number for the new release, the configuration speci-
fication used for the build and various other data. Such

extraneous data may cause the signature generating program
to generate different signatures for a software component
built at one time and then re-built at another time even if the

software component itself has not been changed. To avoid
this, the signature generating program may be given the built
software component with the extraneous data stripped out or
with the extraneous data blocked out such that the signature
generating program will not consider it when generating the
signature.

Certain software components are not built, such as meta
data files, for example, PMD file 48 (FIG. 12a). These
software components are also passed to the signature gen-

10

15

20

25

30

35

40

45

50

55

60

65

90

erating program, and the generated signature is appended to
the file. Similar to the built software components, the Kit
Builder adds these software components to the packaging
list, retrieves the signature appended to each software com-
ponent and inserts it in the packaging list corresponding to
the appropriate software component.

The signatures within the packaging list are used after
installation of the new Installation Kit within the network

device to determine which software components need to be
upgraded. Since each new Installation Kit may include all
software components required by the network device,
including unchanged and changed software components, a
hot upgrade is only practical if the changed software com-
ponents may be easily and accurately identified. For
example, an Installation Kit may include a large number of
software components, such as 50—60 load modules, 2—3
kernels and 10—15 meta data files. If changed software
components cannot be identified, then the network device
will need to be rebooted in order to implement all the
software components in the new Installation Kit. Signatures
allow for a quick and accurate determination as to which
components changed and, thus, need to be upgraded.
Installation

A customer/user may receive a new Installation Kit on a
CD, or the customer/user may be given access to a web site
where the new Installation Kit may be accessed. Whether a
CD is loaded into a CD player 1209 (FIG. 20c) or a web site
is accessed, an Install icon 1210 will be displayed on the
screen of the user’s computer 1212. Computer 1212 may be
the same computer (e.g., 62) that is running the NMS or a
different computer. To initiate installation, the user double
clicks their mouse on the Install icon to cause, for example,
a JAVA application 1216 (FIG. 20a), to perform the instal-
lation.

Initially, the JAVA application causes a dialog box 1214 to
appear to welcome the user and ask for an internet (IP)
address 1213a of the network device into which the new

Installation Kit is to be installed. For security, the dialog box
may also request a username 1213b and a password 1213c.
After verifying the username and password with the network
device, the JAVA application uses the supplied IP address to
download the new Installation Kit, for example, release 1.1
1218, including the packaging list, to a new sub-directory
1220 within an installation directory 1222 in configuration
database 42. Any previously loaded Installation Kits, which
have not been deleted, may be found in different sub-
directories, for example, release 1.0 may be loaded in
sub-directory1224.

In addition, if the configuration database schema (i.e.,
meta data/data structure) needs to be changed, the JAVA
application also causes a dialog box 1215 (FIG. 206) to
appear. Dialog box 1215 prompts the user for an NMS
database system ID 1215a, a database port address 1215b
and a database password 1215C. The JAVA application then
uploads the existing meta data (used by the NMS) and user
data 1221a from the network device’s configuration data-
base into a work area 1254 within the NMS database 61. The

JAVA application then performs the conversion in accor-
dance with the new meta data provided in the new release
and then downloads a DDL script 1221b into new sub-
directory 1220 within the network device.

The network device may then be rebooted (cold upgrade),
in which case, once rebooted the network device will use all
the software components, including the DDL script for the
converted configuration database, of release 1.1 in sub-
directory 1220. Instead, the DDL script for the converted
configuration database may reside in sub-directory 1220
until the user elects to make the upgrade, as described below.

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 316

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 317

US 6,880,086 B2

91

Upgrade
Upgrades are managed by a software management system

(SMS) service. Upgrades may be implemented while the
network device is running (hot upgrades), or upgrades may
be implemented by re-booting the network device (cold
upgrades). Hot upgrades are preferred to limit any disruption
in service provided by the network device. In addition,
certain upgrades may only affect certain services, and a hot
upgrade may be implemented such that the unaffected
services experience no disruption while the affected services
experience only minimal disruption. The SMS is one of the
modular system services, and like the MCD and the SRM,
the SMS is a distributed application. Referring to FIG. 21a,
a master SMS 184 is executed by central processor 12 while
slave SMSs 186a—186n are executed on each board (e.g., 12
and 16a—16n).

Master SMS 184 periodically polls installation directory
1222 for new sub-directories including new releases, for
example, release 1.1 1218 in sub-directory 1220. When the
master SMS detects a new release, it opens (and
decompresses, if necessary) the packaging list in the new
sub-directory and verifies that each software component
listed in the packaging list is also stored in the new sub-
directory. The master SMS then performs a checksum on
each software component and compares the generated
checksum to the checksum appended to the software com-
ponent.

Once all software components are verified, the master
SMS opens (and decompresses, if necessary) an upgrade
instruction file also included as one of the software compo-
nents loaded into sub-directory 1220 from the Installation
Kit. The upgrade instruction file indicates the scope of the
upgrade (i.e., upgrade mode). For instance, the upgrade
instruction file may indicate that the upgrade may be hot or
cold or must only be cold. The upgrade instruction file may
also indicate that the upgrade may be done only across the
entire chassis—that is, all applications to be upgraded must
be upgraded simultaneously across the entire chassis—or
that the upgrade may be done on a board-by-board basis or
a path-by-path basis or some other partial chassis upgrade.
A board-by-board upgrade may allow a network device
administrator to chose certain boards on which to upgrade
applications and allow older versions of the same applica-
tions to continue running on other boards. Similarly, path-
by-path or other service related upgrades may allow the
network administrator to chose to upgrade only the appli-
cations controlling particular services for particular
customers, for example, a single path, while allowing older
versions of the applications to continue to control the other
services. Various upgrade modes are possible.

The upgrade instructions file may also include more
detailed instructions such as the order in which each soft-

ware component should be upgraded. That is, if several
applications are to be upgraded, certain ones may need to be
upgraded before certain other ones. Similarly, certain soft-
ware components may need to be upgraded simultaneously.
Moreover, certain boards may need to be upgraded prior to
other boards. For example, control processor card 12 may
need to be upgraded prior to upgrading any line cards.

The master SMS then creates a record 1227 (FIG. 21b) in
an SMS table 192, which may also be termed an “image
control table.” The record includes at least a logical identi-
fication number (LID) field 1226, a verification status field
and an upgrade mode field. Similar to other LIDs described
above, LID field 1226 is filled in with a unique LID (e.g.,
9623) corresponding to the new release. If the SMS verifi-
cation of the new release’s software components completed

10

15

20

25

30

35

40

45

50

55

60

65

92

successfully, then the verification status field indicates that
verification passed, otherwise an error code is input into the
verification status field. The SMS then enters a code in the

upgrade mode field from the upgrade instructions file indi-
cating the scope of the upgrade. Alternatively, the SMS table
may include a field for each possible type of upgrade mode
and the master SMS would input an indication in the field or
fields corresponding to possible types of upgrades for the
new release.

The master SMS may then send a trap to the NMS or the
NMS may periodically poll the SMS table to detect new
records. In either case, the NMS creates a new record 1230

(FIG. 21C) in an Available Release window 1232. For
security, only certain users, such as administrators, will have
access to the Available Release window. Referring to FIG.
21d, to view this window, an administrator accesses a pull
down menu, for example, the view pull down menu, and
selects an Installation option 1234. The administrator may
select any entry in the Available Release window to cause an
Image Control dialog box 1236 (FIG. 216) to appear. If the
user selects a release (old or new) that is not currently
running, the user may select a Delete option 1238, a
Re-Verify option 1239 or an Install option 1240 in the Image
Control dialog box. Other options may also be available.

If the user selects the Install option and multiple upgrade
modes are possible for the selected release, then an Upgrade
Mode dialog box 1242 (FIG. 21f) will be displayed. The
Upgrade Mode dialog box may present only those options
available for the chosen release, or the Upgrade Mode dialog
box may present all upgrade options but only allow the user
to chose the options available for the chosen release. For
example, the dialog box may present a Hot option 1243 and
a Cold option 1244. If the upgrade for the chosen release can
only be completed as a cold upgrade, then the dialog box
may not allow the user to select the Hot option.

The Upgrade Mode dialog box may also present other
options such as entire chassis 1245, board-by-board 1246,
path-by-path 1247 or various other upgrade options. If the
user selects the board-by-board option or the path-by-path
option, other dialog boxes will appear to accept the admin-
istrator’s input of which board(s) or path(s) to upgrade. The
user may also select a Time for Installation option 1249 and
input a particular time for the installation. If the Time for
Installation option is not selected, then the default may be to
initiate the installation immediately.

Once the administrator has provided any required infor-
mation in the Upgrade Control dialog box and, in the case
of an upgrade, the Upgrade Mode dialog box, the NMS
creates a new record 1251 in an Upgrade Control table 1248
(FIG. 21g). The NMS inputs the Image LID (e.g., 9623) in
Image LID field 1250 of the record in the SMS table
corresponding to the release selected by the administrator
(e.g., release 1.1) in the Available Release window. The
NMS then inputs a code (e.g., x2344) in a Command field
1252 corresponding to the action requested by the admin-
istrator. For example, the code may represent a Delete
command indicating that the release selected by the admin-
istrator should be deleted from both the Install sub-directory
and the corresponding record removed from the SMS table.
Instead the code may represent a re-verify command indi-
cating that the software components in the Install sub-
directory corresponding to the release should be re-verified.
Similarly, the code may represent an upgrade command and,
specifically, a particular type of upgrade according to the
upgrade mode chosen by the user. Alternatively, instead of
having codes, the Upgrade Control table could include fields
for each command and each upgrade mode and the NMS

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 317

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 318

US 6,880,086 B2

93

would fill in the appropriate field(s). The NMS also fills in
a Time for Installation field 1253 with a future time or

indicates that the installation should proceed immediately.
When the NMS adds new record 1251 to the Upgrade

Control table, an active query is sent to the master SMS. If
an upgrade command is detected in Command field 1252,
the master SMS sends notices to all SMS clients that access

software components from the current release sub-directory
indicating that software components should now be accessed
from the new release sub-directory. SMS clients include, for
example, the Master Control Driver (MCD) and the program
supervisor module (PSM) within the mission kernel image
(MKI) on each board, which the slave SRM on each board
may ask to load upgraded software components. Having the
SMS clients point to the new sub-directory for the new
release eliminates the need for the SRM to have any release
specific details. For example, during an ATM upgrade, the
slave SRMs will simply ask the local PSM to load ATM
software components regardless of the release number,
however, since the PSM is pointed to the new release
directory, upgraded ATM software components will be
loaded.

The master SMS then opens up the packing list from the
sub-directory (e.g., 1224) of the currently running release
(e.g., release 1.0) and the sub-directory (e.g., 1220) of the
new release (e.g., release 1.1) and compares the signatures
of each software component to determine which software
components have changed and, thus, need to be upgraded,
and to determine if there are any new software components
to be installed. Thus, signatures promote hot upgrades by
allowing the SMS to quickly locate only those software
components that need to be upgraded.

Since signatures are automatically generated for each
software component as part of putting together a new release
and since a robust signature generating program is used, a
quick comparison of two signatures provides an accurate
assurance that either the software component has changed or
has not. Instead of comparing signatures, a full compare of
each running software component against each correspond-
ing software component in the new release may be run,
however, since many software components may be quite
long (e.g., 50—60 megabytes) this will likely take a consid-
erable amount of time and processor power. Instead, the
signatures provide a quick, easy way to accurately determine
the upgrade status of each software component.

If the new release requires a converted configuration
database and this was not implemented through a cold
upgrade, then the master SMS will find a script for converted
configuration database file 42' in the new release subdirec-
tory. The master SMS may terminate the currently executing
configuration database 42 and instantiate converted configu-
ration database 42'.

Referring to FIG. 22, instead of directly upgrading con-
figuration database 42 on central processor 12, a backup
configuration database 420 on a backup central processor 13
may be upgraded first. As described above, computer system
10 includes central processor 12. Computer system 10 may
also include a redundant or backup central processor 13 that
mirrors or replicates the active state of central processor 12.
Backup central processor 13 is generally in stand-by mode
unless central processor 12 fails at which point a fail-over to
backup central processor 13 is initiated to allow the backup
central processor to be substituted for central processor 12.
In addition to failures, backup central processor 13 may be
used for software and hardware upgrades that require
changes to the configuration database. Through backup
central processor 13, upgrades can be made to backup
configuration database 420 instead of to configuration data-
base 42.

10

15

20

25

30

35

40

45

50

55

60

65

94

Master SMS 184 tells slave SMS 1866 to cause backup
processor 13 to change from backup mode to upgrade mode.
Slave SMS 1866 then works with slave SRM 376 to cause

backup processor 13 to change from backup mode to
upgrade mode. In upgrade mode, backup processor 13 stops
replicating the active state of central processor 12. Slave
SMS 1866 then copies over the script for new configuration
database file 42' from sub-directory 1220, executes the script
to generate new configuration database 42', directs slave
SRM 376 to terminate backup configuration database 420
and execute the new configuration database 42'.

Once configuration database 42' is upgraded, a fail-over
or switch-over from central processor 12 to backup central
processor 13 is initiated. Central processor 13 then begins
acting as the primary central processor and applications
running on central processor 13 and other boards throughout
computer system 10 begin using upgraded configuration
database 42'. Central processor 12 may not become the
backup central processor right away. Instead, central pro-
cessor 12 with its older copy of configuration database 42
may stay dormant in case an automatic downgrade is nec-
essary (described below). If the upgrade goes smoothly and
is committed (described below), then central processor 12
will begin operating in backup mode and replace old con-
figuration database 42 with new configuration database 42'.

Existing processes using their view ids and APIs to access
new configuration database 42' in the same manner as they
accessed old configuration database 42. However, when new
processes (e.g., ATM version two 360 and device driver 362,
FIG. 3b) access new configuration database 42', their view
ids and APIs allow them to access new tables and data within

new configuration database 42'.
Once the configuration database is converted or if no

conversion of the configuration database is necessary, the
master SMS determines whether any meta data files, such as
the PMD file, have been upgraded—that is the signature of
a meta data file in the currently running release does not
match the signature of the same meta data file in the new
release. If yes, then the master SMS overwrites the current
meta data files with any changed, new meta data files. New
meta data files may also be loaded from the new release
sub-directory.

Referring to FIG. 23, if any other software components
have changed, then master SMS 184 first needs to determine
where the software components corresponding to the
changed software components are currently executing. Since
each slave SRM maintains information about which soft-

ware components are loaded on their local board, the master
SMS may call master SRM 36, which will ask each of the
slave SRMs 37a—37n, or the master SMS may ask each of
the slave SMSs 186a—186n, which will ask their local slave
SRMs 37a—37n. The master SMS upgrades the software
components in accordance with the upgrade instructions.
Thus, if the upgrade instructions indicate that all instantia-
tions of ATM across the entire chassis should be simulta-

neously upgraded, then the master SMS initiates and con-
trols a lock step upgrade. In most instances, all instantiations
of a distributed application will be upgraded simultaneously
to avoid conflicts between the different versions. However,
if an upgraded software component is compatible with its
corresponding, currently running software component, then
the upgrade need not be chassis wide.

After determining where software components, that need
to be upgraded, are currently being executed, master SMS
184 tells the appropriate slave SMSs, which tell their local
slave SRMs (which tell their local PSM within their local
MKI, not shown in FIG. 23 for clarity), to load the changed

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 318

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 319

US 6,880,086 B2

95

software components and the control shims for each of the
changed software components from new release sub-
directory 1220 onto the appropriate boards. For example, if
an ATM software component has changed, the master SMS
tells slave SMSs 186b—186n, which tell slave SRMs

3719—3711, to load ATM control shim (e.g., ATMiV2i
Cntrl.exe 204a—204n) and, for example, an ATM version 2
file (e.g., ATMiV2.exe 206a—206b) from the new release
1.1. If any control shim has been upgraded, then it must be
loaded from the new release, otherwise, it could be loaded
from the new release or control shim from the currently
executing release could be used. Typically, whether the
control shim has changed or not, it is loaded from the new
release since the changed software components are also
loaded from the new release. If necessary, the slave SRM
de-compresses each of the software components.

Once loaded, each control shim sends a message to the
slave SMS on its board including a list of upgrade instruc-
tions. Using the ATM example, ATM control shim 204a
loaded on line card 16a sends a message to slave SMS 186b
with a list of upgrade instructions. For distributed applica-
tions such as ATM, a lock step upgrade is initiated. That is,
when each slave SMS receives the upgrade instructions
message from the local control shim, it sends a notice to the
master SMS. When the master SMS receives notifications

from each of the appropriate slave SMSs, the master SMS
sends each slave SMS a command to execute the first
instruction. Each slave SMS then sends its local control shim

the first upgrade instruction from the upgrade instructions
message. After executing the first step, each control shim
notifies its local slave SMS, which sends a notice to the
master SMS that the first step is complete. When all appro-
priate slave SMSs have indicated that the first step is done,
the master SMS sends each slave SMS a command to

execute the next step. Again, each slave SMS sends its local
control shim the next upgrade instruction from the upgrade
instructions message, and again, when each control shim has
executed the next step it notifies its local slave SMS, which
sends a message to the master SMS indicating the step is
complete. This process is repeated until all steps in the
upgrade instructions message have been executed.

When the last upgrade instruction is completed, the con-
trol shim notifies the slave SMSs, which sends a message to
the master SMS indicating that the upgrade of that software
component is complete. If other software components need
to be upgraded, the master SMS then begins a similar
upgrade process for those additional software components.
Once all the software components are upgraded, the master
SMS writes a complete indication in status field 1255 (FIG.
21g) of Upgrade Control table 1248. The master SMS may
then send a trap to the NMS to indicate that the upgrade is
complete or the NMS may poll the status field of the
Upgrade Control table waiting for a complete status.

The first step in the upgrade instructions may be to stall
the currently executing software component. In the above
example, each line card is shown implementing one instance
of ATM, but as explained below, multiple instances of ATM
may be executed on each line card. Another upgrade instruc-
tion may cause the upgraded versions of ATM 204a—204n to
retrieve active state from the current versions of ATM
188a—188n. The retrieval of active state can be accom-

plished in the same manner that a redundant or backup
instantiation of ATM retrieves active state from the primary
instantiation of ATM. When the upgraded instances of ATM
are executing and updated with active state, the next upgrade
instruction may be to switchover to the upgraded version
and terminate the version that was executing. A “lock step

10

15

20

25

30

35

40

45

50

55

60

65

96

upgrade” indicates that each line card executing a particular
software component, such as ATM, is switched over to the
software component simultaneously.

There may be upgrades that require changes to multiple
applications and to the APIs for those applications. For
example, a new feature may be added to ATM that also
requires additional functionality to be added to the Multi-
Protocol Label Switching (MPLS) application. The addi-
tional functionality may change the peer-to-peer API for
ATM, the peer-to-peer API for MPLS and the API between
ATM and MPLS. In this scenario, the upgrade operation
must avoid allowing the “new” version of ATM to commu-
nicate with “old” version of ATM or the “old” version of

MPLS and vice versa. The master SMS will use the upgrade
instructions file to determine the requirements for the indi-
vidual upgrade. Again, the SMS would implement the
upgrade in a lock step fashion. All instances of ATM and
MPLS would be upgraded together. The simultaneous
switchover to new versions of both MPLS and ATM elimi-

nate any API compatibility errors.
The upgrade of an ATM software component described

above is by way of example, and it should be understood that
the upgrade of other software components, such as device
drivers, would be accomplished in the same manner.

Instead of storing all software components from a new
release in the new release sub-directory, only the changed
software components may be stored. That is, the master
SMS could open the packaging list in the currently execut-
ing release and compare the signatures of the components in
that packaging list to the signatures of the software compo-
nents in the packaging list for the new release and remove
any software components that had not changed. If all the
software components of a new release are not saved in the
new sub-directory and if an old release is deleted, however,
those software components that had not been upgraded
would need to be copied from the old release sub-directory
into the new release sub-directory prior to the deletion.

Instead of using the full signatures generated by the
signature generating program, the full signatures may be
converted into simple easy to read version numbers. To
accomplish this, however, a conversion database would need
to be maintained which would associate each signature with
a version number. This could be an automatic process, such
that each time a software component signature is generated,
the signature could be compared with all those in the
conversion database. If it is already listed, then the software
component did not change and the version number associ-
ated with the signature in the conversion database would be
appended to the software component instead of the full
signature. If the signature is not listed, a new version number
would be automatically generated, added to the conversion
database along with the new signature and then appended to
the new software component. Since software components
may be changed quite often, the conversion database may
become quite large. In addition, a conversion database may
need to be kept for each software component to insure that
in the unlikely event that two signatures from different
software components matched, the same version number
isn’t assigned to two different software components.

Once all software components have been upgraded, any
new hardware received by the user of computer system 10
may be inserted. The MCD would find information related
to the new hardware in the new PMD file and the newly
available MKI and any necessary device drivers and appli-
cations would be loaded.

Automatic Downgrade
Often, implementation of an upgrade, can cause unex-

pected errors in the upgraded software, in other applications
Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 319

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 320

US 6,880,086 B2

97

or in hardware. As described above, a new configuration
database 42' (FIG. 20) is generated and changes to the new
configuration database are made in new tables (e.g., ATM
interface table 114' and ATM group table 108', FIG. 20) and
new executable files (e.g., ATMv2.exe 189, ATMv2i
cntrl.exe 190 and ATMv2icnfgicntrl.exe 191) are down-
loaded to memory 40. Importantly, the old configuration
database records and the original application files are not
deleted or altered. In the embodiment where changes are
made directly to configuration database 42 on central pro-
cessor 12, they are made only in non-persistent memory
until committed (described below). In the embodiment
where changes are made to backup configuration database
420 on backup central processor 13, original configuration
database 42 remains unchanged.

Because the operating system provides a protected
memory model that assigns different process blocks to
different processes, including upgraded applications, the
original applications will not share memory space with the
upgraded applications and, therefore, cannot corrupt or
change the memory used by the original application.
Similarly, memory 40 is capable of simultaneously main-
taining the original and upgraded versions of the configu-
ration database records and executable files as well as the

original and upgraded versions of the applications (e.g.,
ATM 188a—188n). As a result, the SMS is capable of an
automatic downgrade on the detection of an error. To allow
for automatic downgrade, the SRMs pass error information
to the SMS. The SMS may cause the system to revert to the
old configuration and application (i.e., automatic
downgrade) on any error or only for particular errors.

As mentioned, often upgrades to one application may
cause unexpected faults or errors in other software. If the
problem causes a system shut down and the configuration
upgrade was stored in persistent storage, then the system,
when powered back up, will experience the error again and
shut down again. Since, the upgrade changes to the con-
figuration database are not copied to persistent storage 21
until the upgrade is committed, if the computer system is
shut down, when it is powered back up, it will use the
original version of the configuration database and the origi-
nal executable files, that is, the computer system will expe-
rience an automatic downgrade.

Additionally, a fault induced by an upgrade may cause the
system to hang, that is, the computer system will not shut
down but will also become inaccessible by the NMS and
inoperable. To address this concern, in one embodiment, the
NMS and the master SMS periodically send messages to
each other indicating they are executing appropriately. If the
SMS does not receive one of these messages in a predeter-
mined period of time, then the SMS knows the system has
hung. The master SMS may then tell the slave SMSs to
revert to the old configuration (i.e., previously executing
copies of ATM 188a—188n) and if that does not work, the
master SMS may re-start/re-boot computer system 10.
Again, because the configuration changes were not saved in
persistent storage, when the computer system powers back
up, the old configuration will be the one implemented.
Evaluation Mode

Instead of implementing a change to a distributed appli-
cation across the entire computer system, an evaluation
mode allows the SMS to implement the change in only a
portion of the computer system. If the evaluation mode is
successful, then the SMS may fully implement the change
system wide. If the evaluation mode is unsuccessful, then
service interruption is limited to only that portion of the
computer system on which the upgrade was deployed. In the

10

15

20

25

30

35

40

45

50

55

60

65

98

above example, instead of executing the upgraded ATMv2
189 on each of the line cards, the ATMv2 configuration
convert file 191 will create an ATMv2 group table 108'
indicating an upgrade only to one line card, for example, line
card 16a. Moreover, if multiple instantiations of ATM are
running on line card 16a (e.g., one instantiation per port), the
ATMv2 configuration convert file may indicate through
ATMv2 interface table 114' that the upgrade is for only one
instantiation (e.g., one port) on line card 16a. Consequently,
a failure is likely to only disrupt service on that one port, and
again, the SMS can further minimize the disruption by
automatically downgrading the configuration of that port on
the detection of an error. If no error is detected during the
evaluation mode, then the upgrade can be implemented over
the entire computer system.
Upgrade Commitment

Upgrades are made permanent by saving the new appli-
cation software and new configuration database and DDL
file in persistent storage and removing the old configuration
data from memory 40 as well as persistent storage. As
mentioned above, changes may be automatically saved in
persistent storage as they are made in non-persistent
memory (no automatic downgrade), or the user may choose
to automatically commit an upgrade after a successful time
interval lapses (evaluation mode). The time interval from
upgrade to commitment may be significant. During this
time, configuration changes may be made to the system.
Since these changes are typically made in non-persistent
memory, they will be lost if the system is rebooted prior to
upgrade commitment. Instead, to maintain the changes, the
user may request that certain configuration changes made
prior to upgrade commitment be copied into the old con-
figuration database in persistent memory. Alternatively, the
user may choose to manually commit the upgrade at his or
her leisure. In the manual mode, the user would ask the NMS
to commit the upgrade and the NMS would inform the
master SMS, for example, through a record in the SMS
table.

Independent Process Failure and Restart
Depending upon the fault policy managed by the slave

SRMs on each board, the failure of an application or device
driver may not immediately cause an automatic downgrade
during an upgrade process. Similarly, the failure of an
application or device driver during normal operation may
not immediately cause the fail over to a backup or redundant
board. Instead, the slave SRM running on the board may
simply restart the failing process. After multiple failures by
the same process, the fault policy may cause the SRM to take
more aggressive measures such as automatic downgrade or
fail-over.

Referring to FIG. 24, if an application, for example, ATM
application 230 fails, the slave SRM on the same board as
ATM 230 may simply restart it without having to reboot the
entire system. As described above, under the protected
memory model, a failing process cannot corrupt the memory
blocks used by other processes. Typically, an application and
its corresponding device drivers would be part of the same
memory block or even part of the same software program,
such that if the application failed, both the application and
device drivers would need to be restarted. Under the modu-

lar software architecture, however, applications, for example
ATM application 230, are independent of the device drivers,
for example, ATM driver 232 and Device Drivers (DD)
234a—234c. This separation of the data plane (device
drivers) and control plane (applications) results in the device
drivers being peers of the applications. Hence, while the
ATM application is terminated and restarted, the device
drivers continue to function.

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 320

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 321

US 6,880,086 B2

99

For network devices, this separation of the control plane
and data plane means that the connections previously estab-
lished by the ATM application are not lost when ATM fails
and hardware controlled by the device drivers continue to
pass data through connections previously established by the
ATM application. Until the ATM application is restarted and
re-synchronized (e.g., through an audit process, described
below) with the active state of the device drivers, no new
network connections may be established but the device
drivers continue to pass data through the previously estab-
lished connections to allow the network device to minimize

disruption and maintain high availability.
Local Backup

If a device driver, for example, device driver 234, fails
instead of an application, for example, ATM 230, then data
cannot be passed. For a network device, it is critical to
continue to pass data and not lose network connections.
Hence, the failed device driver must be brought back up (i.e.,
recovered) as soon as possible. In addition, the failing device
driver may have corrupted the hardware it controls,
therefore, that hardware must be reset and reinitialized. The
hardware may be reset as soon as the device driver termi-
nates or the hardware may be reset later when the device
driver is restarted. Resetting the hardware stops data flow. In
some instances, therefore, resetting the hardware will be
delayed until the device driver is restarted to minimize the
time period during which data is not flowing. Alternatively,
the failing device driver may have corrupted the hardware,
thus, resetting the hardware as soon as the device driver is
terminated may be important to prevent data corruption. In
either case, the device driver re-initializes the hardware
during its recovery.

Again, because applications and device drivers are
assigned independent memory blocks, a failed device driver
can be restarted without having to restart associated appli-
cations and device drivers. Independent recovery may save
significant time as described above for applications. In
addition, restoring the data plane (i.e., device drivers) can be
simpler and faster than restoring the control plane (i.e.,
applications). While it may be just as challenging in terms of
raw data size, device driver recovery may simply require
that critical state data be copied into place in a few large
blocks, as opposed to application recovery which requires
the successive application of individual configuration ele-
ments and considerable parsing, checking and analyzing. In
addition, the application may require data stored in the
configuration database on the central processor or data
stored in the memory of other boards. The configuration
database may be slow to access especially since many other
applications also access this database. The application may
also need time to access a management information base
(MIB) interface.

To increase the speed with which a device driver is
brought back up, the restarted device driver program
accesses local backup 236. In one example, local backup is
a simple storage/retrieval process that maintains the data in
simple lists in physical memory (e.g., random access
memory, RAM) for quick access. Alternatively, local backup
may be a database process, for example, a Polyhedra
database, similar to the configuration database.

Local backup 236 stores the last snap shot of critical state
information used by the original device driver before it
failed. The data in local backup 236 is in the format required
by the device driver. In the case of a network device, local
back up data may include path information, for example,
service endpoint, path width and path location. Local back
up data may also include virtual interface information, for

10

15

20

25

30

35

40

45

50

55

60

65

100

example, which virtual interfaces were configured on which
paths and virtual circuit (VC) information, for example,
whether each VC is switched or passed through segmenta-
tion and reassembly (SAR), whether each VC is a virtual
channel or virtual path and whether each VC is multicast or
merge. The data may also include traffic parameters for each
VC, for example, service class, bandwidth and/or delay
requirements.

Using the data in the local backup allows the device driver
to quickly recover. An Audit process resynchronizes the
restarted device driver with associated applications and
other device drivers such that the data plane can again
transfer network data. Having the backup be local reduces
recovery time. Alternatively, the backup could be stored
remotely on another board but the recovery time would be
increased by the amount of time required to download the
information from the remote location.
Audit Process

It is virtually impossible to ensure that a failed process is
synchronized with other processes when it restarts, even
when backup data is available. For example, an ATM
application may have set up or torn down a connection with
a device driver but the device driver failed before it updated
corresponding backup data. When the device driver is
restarted, it will have a different list of established connec-

tions than the corresponding ATM application (i.e., out of
synchronization). The audit process allows processes like
device drivers and ATM applications to compare
information, for example, connection tables, and resolve
differences. For instance, connections included in the driv-
er’s connection table and not in the ATM connection table

were likely torn down by ATM prior to the device driver
crash and are, therefore, deleted from the device driver
connection table. Connections that exist in the ATM con-
nection table and not in the device driver connection table

were likely set up prior to the device driver failure and may
be copied into the device driver connection table or deleted
from the ATM connection table and re-set up later. If an
ATM application fails and is restarted, it must execute an
audit procedure with its corresponding device driver or
drivers as well as with other ATM applications since this is
a distributed application.
Vertical Fault Isolation

Typically, a single instance of an application executes on
a single card or in a system. Fault isolation, therefore, occurs
at the card level or the system level, and if a fault occurs, an
entire card—and all the ports on that card—or the entire
system—and all the ports in the system—is affected. In a
large communications platform, thousands of customers
may experience service outages due to a single process
failure.

For resiliency and fault isolation one or more instances of
an application and/or device driver may be started per port
on each line card. Multiple instances of applications and
device drivers are more difficult to manage and require more
processor cycles than a single instance of each but if an
application or device driver fails, only the port those pro-
cesses are associated with is affected. Other applications and
associated ports—as well as the customers serviced by those
ports—will not experience service outages. Similarly, a
hardware failure associated with only one port will only
affect the processes associated with that port. This is referred
to as vertical fault isolation.

Referring to FIG. 25, as one example, line card 16a is
shown to include four vertical stacks 400, 402, 404, and 406.
Vertical stack 400 includes one instance ofATM 110 and one

device driver 43a and is associated with port 44a. Similarly,
Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 321

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 322

US 6,880,086 B2

101

vertical stacks 402, 404 and 406 include one instance of
ATM 111, 112, 113 and one device driver 43b, 43c, 43d,
respectively and each vertical stack is associated with a
separate port 44b, 44c, 44d, respectively. If ATM 112 fails,
then only vertical stack 404 and its associated port 446 are
affected. Service is not disrupted on the other ports (ports
44a, 44b, 44d) since vertical stacks 400, 402, and 406 are
unaffected and the applications and drivers within those
stacks continue to execute and transmit data. Similarly, if
device driver 43b fails, then only vertical stack 402 and its
associated port 44b are affected.

Vertical fault isolation allows processes to be deployed in
a fashion supportive of the underlying hardware architecture
and allows processes associated with particular hardware
(e.g., a port) to be isolated from processes associated with
other hardware (e.g., other ports) on the same or a different
line card. Any single hardware or software failure will affect
only those customers serviced by the same vertical stack.
Vertical fault isolation provides a fine grain of fault isolation
and containment. In addition, recovery time is reduced to
only the time required to re-start a particular application or
driver instead of the time required to re-start all the pro-
cesses associated with a line card or the entire system.
Fault/Event Detection

Traditionally, fault detection and monitoring does not
receive a great deal of attention from network equipment
designers. Hardware components are subjected to a suite of
diagnostic tests when the system powers up. After that, the
only way to detect a hardware failure is to watch for a red
light on a board or wait for a software component to fail
when it attempts to use the faulty hardware. Software
monitoring is also reactive. When a program fails, the
operating system usually detects the failure and records
minimal debug information.

Current methods provide only sporadic coverage for a
narrow set of hard faults. Many subtler failures and events
often go undetected. For example, hardware components
sometimes suffer a minor deterioration in functionality, and
changing network conditions stress the software in ways that
were never expected by the designers. At times, the software
may be equipped with the appropriate instrumentation to
detect these problems before they become hard failures, but
even then, network operators are responsible for manually
detecting and repairing the conditions.

Systems with high availability goals must adopt a more
proactive approach to fault and event monitoring. In order to
provide comprehensive fault and event detection, different
hierarchical levels of fault/event management software are
provided that intelligently monitor hardware and software
and proactively take action in accordance with a defined
fault policy. A fault policy based on hierarchical scopes
ensures that for each particular type of failure the most
appropriate action is taken. This is important because over-
reacting to a failure, for example, re-booting an entire
computer system or re-starting an entire line card, may
severely and unnecessarily impact service to customers not
affected by the failure, and under-reacting to failures, for
example, restarting only one process, may not completely
resolve the fault and lead to additional, larger failures.
Monitoring and proactively responding to events may also
allow the computer system and network operators to address
issues before they become failures. For example, additional
memory may be assigned to programs or added to the
computer system before a lack of memory causes a failure.
Hierarchical Scopes and Escalation

Referring to FIG. 26, in one embodiment, master SRM 36
serves as the top hierarchical level fault/event manager, each

10

15

20

25

30

35

40

45

50

55

60

65

102
slave SRM 37a—37n serves as the next hierarchical level

fault/event manager, and software applications resident on
each board, for example, ATM 110—113 and device drivers
43a—43d on line card 16a include sub-processes that serve as
the lowest hierarchical level fault/event managers (i.e., local
resiliency managers, LRM). Master SRM 36 downloads
default fault policy (DFP) files (metadata) 430a—430n from
persistent storage to memory 40. Master SRM 36 reads a
master default fault policy file (e.g., DFP 430a) to under-
stand its fault policy, and each slave SRM 37a—37n down-
loads a default fault policy file (e.g., DFP 430b—430n)
corresponding to the board on which the slave SRM is
running. Each slave SRM then passes to each LRM a fault
policy specific to each local process.

Amaster logging entity 431 also runs on central processor
12 and slave logging entities 433a—433n run on each board.
Notifications of failures and other events are sent by the
master SRM, slave SRMs and LRMs to their local logging
entity which then notifies the master logging entity. The
master logging entity enters the event in a master event log
file 435. Each local logging entity may also log local events
in a local event log file 435a—435n.

In addition, a fault policy table 429 may be created in
configuration database 42 by the NMS when the user wishes
to over-ride some or all of the default fault policy (see
configurable fault policy below), and the master and slave
SRMs are notified of the fault policies through the active
query process.

Referring to FIG. 27, as one example, ATM application
110 includes many sub-processes including, for example, an
LRM program 436, a Private Network-to-Network Interface
(PNNI) program 437, an Interim Link Management Inter-
face (ILMI) program 438, a Service Specific Connection
Oriented Protocol (SSCOP) program 439, and an ATM
signaling (SIG) program 440. ATM application 110 may
include many other sub-programs only a few have been
shown for convenience. Each sub-process may also include
sub-processes, for example, ILMI sub-processes
438a—438n. In general, the upper level application (e.g.,
ATM 110) is assigned a process memory block that is shared
by all its sub-processes.

If, for example, SSCOP 439 detects a fault, it notifies
LRM 436. LRM 436 passes the fault to local slave SRM
37b, which catalogs the fault in the ATM application’s fault
history and sends a notice to local slave logging entity 433b.
The slave logging entity sends a notice to master logging
entity 431, which may log the event in master log event file
435. The local logging entity may also log the failure in local
event log 435a. LRM 436 also determines, based on the type
of failure, whether it can fully resolve the error and do so
without affecting other processes outside its scope, for
example, ATM 111—113, device drivers 43a—43d and their
sub-processes and processes running on other boards. If yes,
then the LRM takes corrective action in accordance with its

fault policy. Corrective action may include restarting
SSCOP 439 or resetting it to a known state.

Since all sub-processes within an application, including
the LRM sub-process, share the same memory space, it may
be insufficient to restart or reset a failing sub-process (e.g.,
SSCOP 439). Hence, for most failures, the fault policy will
cause the LRM to escalate the failure to the local slave SRM.

In addition, many failures will not be presented to the LRM
but will, instead, be presented directly to the local slave
SRM. These failures are likely to have been detected by
either processor exceptions, OS errors or low-level system
service errors. Instead of failures, however, the sub-
processes may notify the LRM of events that may require

Apple v. Uniloc, |PR201q7-2202
Uniloc's Exhibit 2003, page 322

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 323

US 6,880,086 B2

103

action. For example, the LRM may be notified that the PNNI
message queue is growing quickly. The LRM’s fault policy
may direct it to request more memory from the operating
system. The LRM will also pass the event to the local slave
SRM as a non-fatal fault. The local slave SRM will catalog
the event and log it with the local logging entity, which may
also log it with the master logging entity. The local slave
SRM may take more severe action to recover from an
excessive number of these non-fatal faults that result in

memory requests.

If the event or fault (or the actions required to handle
either) will affect processes outside the LRM’s scope, then
the LRM notifies slave SRM 37b of the event or failure. In

addition, if the LRM detects and logs the same failure or
event multiple times and in excess of a predetermined
threshold set within the fault policy, the LRM may escalate
the failure or event to the next hierarchical scope by noti-
fying slave SRM 37b. Alternatively or in addition, the slave
SRM may use the fault history for the application instance
to determine when a threshold is exceeded and automatically
execute its fault policy.

When slave SRM 37b detects or is notified of a failure or

event, it notifies slave logging entity 435b. The slave log-
ging entity notifies master logging entity 431, which may log
the failure or event in master event log 435, and the slave
logging entity may also log the failure or event in local event
log 435b. Slave SRM 37b also determines, based on the type
of failure or event, whether it can handle the error without
affecting other processes outside its scope, for example,
processes running on other boards. If yes, then slave SRM
37b takes corrective action in accordance with its fault

policy and logs the fault. Corrective action may include
re-starting one or more applications on line card 16a.

If the fault or recovery actions will affect processes
outside the slave SRM’s scope, then the slave SRM notifies
master SRM 36. In addition, if the slave SRM has detected
and logged the same failure multiple times and in excess of
a predetermined threshold, then the slave SRM may escalate
the failure to the next hierarchical scope by notifying master
SRM 36 of the failure. Alternatively, the master SRM may
use its fault history for a particular line card to determine
when a threshold is exceeded and automatically execute its
fault policy.

When master SRM 36 detects or receives notice of a

failure or event, it notifies slave logging entity 433a, which
notifies master logging entity 431. The master logging entity
431 may log the failure or event in master log file 435 and
the slave logging entity may log the failure or event in local
event log 435a. Master SRM 36 also determines the appro-
priate corrective action based on the type of failure or event
and its fault policy. Corrective action may require failing-
over one or more line cards 16a—16n or other boards,
including central processor 12, to redundant backup boards
or, where backup boards are not available, simply shutting
particular boards down. Some failures may require the
master SRM to re-boot the entire computer system.

An example of a common error is a memory access error.
As described above, when the slave SRM starts a new
instance of an application, it requests a protected memory
block from the local operating system. The local operating
systems assign each instance of an application one block of
local memory and then program the local memory manage-
ment unit (MMU) hardware with which processes have
access (read and/or write) to each block of memory. An
MMU detects a memory access error when a process
attempts to access a memory block not assigned to that
process. This type of error may result when the process

10

15

20

25

30

35

40

45

50

55

60

65

104

generates an invalid memory pointer. The MMU prevents
the failing process from corrupting memory blocks used by
other processes (i.e., protected memory model) and sends a
hardware exception to the local processor. Alocal operating
system fault handler detects the hardware exception and
determines which process attempted the invalid memory
access. The fault handler then notifies the local slave SRM

of the hardware exception and the process that caused it. The
slave SRM determines the application instance within which
the fault occurred and then goes through the process
described above to determine whether to take corrective

action, such as restarting the application, or escalate the fault
to the master SRM.

As another example, a device driver, for example, device
driver 43a may determine that the hardware associated with
its port, for example, port 44a, is in a bad state. Since the
failure may require the hardware to be swapped out or
failed-over to redundant hardware or the device driver itself

to be re-started, the device driver notifies slave SRM 37b.
The slave SRM then goes through the process described
above to determine whether to take corrective action or
escalate the fault to the master SRM.

As a third example, if a particular application instance
repeatedly experiences the same software error but other
similar application instances running on different ports do
not experience the same error, the slave SRM may determine
that it is likely a hardware error. The slave SRM would then
notify the master SRM which may initiate a fail-over to a
backup board or, if no backup board exists, simply shut
down that board or only the failing port on that board.
Similarly, if the master SRM receives failure reports from
multiple boards indicating Ethernet failures, the master
SRM may determine that the Ethernet hardware is the
problem and initiate a fail-over to backup Ethernet hard-ware.

Consequently, the failure type and the failure policy
determine at what scope recovery action will be taken. The
higher the scope of the recovery action, the larger the
temporary loss of services. Speed of recovery is one of the
primary considerations when establishing a fault policy.
Restarting a single software process is much faster than
switching over an entire board to a redundant board or
re-booting the entire computer system. When a single pro-
cess is restarted, only a fraction of a card’s services are
affected. Allowing failures to be handled at appropriate
hierarchical levels avoids unnecessary recovery actions
while ensuring that sufficient recovery actions are taken,
both of which minimize service disruption to customers.
Hierarchical Descriptors

Hierarchical descriptors may be used to provide informa-
tion specific to each failure or event. The hierarchical
descriptors provide granularity with which to report faults,
take action based on fault history and apply fault recovery
policies. The descriptors can be stored in master event log
file 435 or local event log files 435a—435n through which
faults and events may be tracked and displayed to the user
and allow for fault detection at a fine granular level and
proactive response to events. In addition, the descriptors can
be matched with descriptors in the fault policy to determine
the recovery action to be taken.

Referring to FIG. 28, in one embodiment, a descriptor 441
includes a top hierarchical class field 442, a next hierarchical
level sub-class field 444, a lower hierarchical level type field
446 and a lowest level instance field 448. The class field

indicates whether the failure or event is related (or suspected
to relate) to hardware or software. The subclass field cat-
egorizes events and failures into particular hardware or

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 323

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 324

US 6,880,086 B2

105

software groups. For example, under the hardware class,
subclass indications may include whether the fault or event
is related to memory, Ethernet, switch fabric or network data
transfer hardware. Under the software class, subclass indi-
cations may include whether the fault or event is a system
fault, an exception or related to a specific application, for
example, ATM.

The type field more specifically defines the subclass
failure or event. For example, if a hardware class, Ethernet
subclass failure has occurred, the type field may indicate a
more specific type of Ethernet failure, for instance, a cyclic
redundancy check (CRC) error or a runt packet error.
Similarly, if a software class, ATM failure or event has
occurred, the type field may indicate a more specific type of
ATM failure or event, for instance, a private network-to-
network interface (PNNI) error or a growing message queue
event. The instance field identifies the actual hardware or

software that failed or generated the event. For example,
with regard to a hardware class, Ethernet subclass, CRC type
failure, the instance indicates the actual Ethernet port that
experienced the failure. Similarly, with regard to a software
class, ATM subclass, PNNI type, the instance indicates the
actual PNNI sub-program that experienced the failure or
generated the event.

When a fault or event occurs, the hierarchical scope that
first detects the failure or event creates a descriptor by filling
in the fields described above. In some cases, however, the
Instance field is not applicable. The descriptor is sent to the
local logging entity, which may log it in the local event log
file before notifying the master logging entity, which may
log it in the master event log file 435. The descriptor may
also be sent to the local slave SRM, which tracks fault
history based on the descriptor contents per application
instance. If the fault or event is escalated, then the descriptor
is passed to the next higher hierarchical scope.

When slave SRM 37b receives the fault/event notification

and the descriptor, it compares it to descriptors in the fault
policy for the particular scope in which the fault occurred
looking for a match or a best case match which will indicate
the recovery procedure to follow. Fault descriptors within
the fault policy can either be complete descriptors or have
wildcards in one or more fields. Since the descriptors are
hierarchical from left to right, wildcards in descriptor fields
only make sense from right to left. The fewer the fields with
wildcards, the more specific the descriptor. For example, a
particular fault policy may apply to all software faults and
would, therefore, include a fault descriptor having the class
field set to “software” and the remaining fields—subclass,
type, and instance—set to wildcard or “match all.” The slave
SRM searches the fault policy for the best match (i.e., the
most fields matched) with the descriptor to determine the
recovery action to be taken.
Configurable Fault Policy

In actual use, a computer system is likely to encounter
scenarios that differ from those in which the system was
designed and tested. Consequently, it is nearly impossible to
determine all the ways in which a computer system might
fail, and in the face of an unexpected error, the default fault
policy that was shipped with the computer system may cause
the hierarchical scope (master SRM, slave SRM or LRM) to
under-react or over-react. Even for expected errors, after a
computer system ships, certain recovery actions in the
default fault policy may be determined to be over aggressive
or too lenient. Similar issues may arise as new software and
hardware is released and/or upgraded.

Aconfigurable fault policy allows the default fault policy
to be modified to address behavior specific to a particular

10

15

20

25

30

35

40

45

50

55

60

65

106

upgrade or release or to address behavior that was learned
after the implementation was released. In addition, a con-
figurable fault policy allows users to perform manual over-
rides to suit their specific requirements and to tailor their
policies based on the individual failure scenarios that they
are experiencing. The modification may cause the hierarchi-
cal scope to react more or less aggressively to particular
known faults or events, and the modification may add
recovery actions to handle newly learned faults or events.
The modification may also provide a temporary patch while
a software or hardware upgrade is developed to fix a
particular error.

If an application runs out of memory space, it notifies the
operating system and asks for more memory. For certain
applications, this is standard operating procedure. As an
example, an ATM application may have set up a large
number of virtual circuits and to continue setting up more,
additional memory is needed. For other applications, a
request for more memory indicates a memory leak error. The
fault policy may require that the application be re-started
causing some service disruption. It may be that re-starting
the application eventually leads to the same error due to a
bug in the software. In this instance, while a software
upgrade to fix the bug is developed, a temporary patch to the
fault policy may be necessary to allow the memory leak to
continue and prevent repeated application re-starts that may
escalate to line card re-start or fail-over and eventually to a
re-boot of the entire computer system. A temporary patch to
the default fault policy may simply allow the hierarchical
scope, for example, the local resiliency manager or the slave
SRM, to assign additional memory to the application. Of
course, an eventual restart of the application is likely to be
required if the application’s leak consumes too much
memory.

A temporary patch may also be needed while a hardware
upgrade or fix is developed for a particular hardware fault.
For instance, under the default fault policy, when a particular
hardware fault occurs, the recovery policy may be to fail-
over to a backup board. If the backup board includes the
same hardware with the same hardware bug, for example, a
particular semiconductor chip, then the same error will occur
on the backup board. To prevent a repetitive fail-over while
a hardware fix is developed, the temporary patch to the
default fault policy may be to restart the device driver
associated with the particular hardware instead of failing-
over to the backup board.

In addition to the above needs, a configurable fault policy
also allows purchasers of computer system 10 (e.g., network
service providers) to define their own policies. For example,
a network service provider may have a high priority cus-
tomer on a particular port and may want all errors and events
(even minor ones) to be reported to the NMS and displayed
to the network manager. Watching all errors and events
might give the network manager early notice of growing
resource consumption and the need to plan to dedicate
additional resources to this customer.

As another example, a user of computer system 10 may
want to be notified when any process requests more memory.
This may give the user early notice of the need to add more
memory to their system or to move some customers to
different line cards.

Referring again to FIG. 26, to change the default fault
policy as defined by default fault policy (DFP) files
430a—430n, a configuration fault policy file 429 is created by
the NMS in the configuration database. An active query
notification is sent by the configuration database to the
master SRM indicating the changes to the default fault

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 324

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 325

US 6,880,086 B2

107

policy. The master SRM notifies any slave SRMs of any
changes to the default fault policies specific to the boards on
which they are executing, and the slave SRMs notify any
LRMs of any changes to the default fault policies specific to
their process. Going forward, the default fault policies—as
modified by the configuration fault policy—are used to
detect, track and respond to events or failures.

Alternatively, active queries may be established with the
configuration database for configuration fault policies spe-
cific to each board type such that the slave SRMs are notified
directly of changes to their default fault policies.

A fault policy (whether default or configured) is specific
to a particular scope and descriptor and indicates a particular
recovery action to take. As one example, a temporary patch
may be required to handle hardware faults specific to a
known bug in an integrated circuit chip. The configured fault
policy, therefore, may indicate a scope of all line cards, if the
component is on all line cards, or only a specific type of line
card that includes that component. The configured fault
policy may also indicate that it is to be applied to all
hardware faults with that scope, for example, the class will
indicate hardware (HW) and all other fields will include
wildcards (e.g., HVV...***). Instead, the configured fault
policy may only indicate a particular type of hardware
failure, for example, CRC errors on transmitted Ethernet
packets (e.g., HW.Ethernet.TxCRC.*).
Redundancy

As previously mentioned, a major concern for service
providers is network downtime. In pursuit of “five 9’s
availability” or 99.999% network up time, service providers
must minimize network outages due to equipment (i.e.,
hardware) and all too common software failures. Developers
of computer systems often use redundancy measures to
minimize downtime and enhance system resiliency. Redun-
dant designs rely on alternate or backup resources to over-
come hardware and/or software faults. Ideally, the redun-
dancy architecture allows the computer system to continue
operating in the face of a fault with minimal service
disruption, for example, in a manner transparent to the
service provider’s customer.

Generally, redundancy designs come in two forms: 1:1
and 1:N. In a so-called “1:1 redundancy” design, a backup
element exists for every active or primary element (i.e.,
hardware backup). In the event that a fault affects a primary
element, a corresponding backup element is substituted for
the primary element. If the backup element has not been in
a “hot” state (i.e., software backup), then the backup element
must be booted, configured to operate as a substitute for the
failing element, and also provided with the “active state” of
the failing element to allow the backup element to take over
where the failed primary element left off. The time required
to bring the software on the backup element to an “active
state” is referred to as synchronization time. A long syn-
chronization time can significantly disrupt system service,
and in the case of a computer network device, if synchro-
nization is not done quickly enough, then hundreds or
thousands of network connections may be lost which
directly impacts the service provider’s availability statistics
and angers network customers.

To minimize synchronization time, many 1:1 redundancy
schemes support hot backup of software, which means that
the software on the backup elements mirror the software on
the primary elements at some level. The “hotter” the backup
element—that is, the closer the backup mirrors the
primary—the faster a failed primary can be switched over or
failed over to the backup. The “hottest” backup element is
one that runs hardware and software simultaneously with a

10

15

20

25

30

35

40

45

50

55

60

65

108

primary element conducting all operations in parallel with
the primary element. This is referred to as a “1+1 redun-
dancy” design and provides the fastest synchronization.

Significant costs are associated with 1:1 and 1+1 redun-
dancy. For example, additional hardware costs may include
duplicate memory components and printed circuit boards
including all the components on those boards. The additional
hardware may also require a larger supporting chassis. Space
is often limited, especially in the case of network service
providers who may maintain hundreds of network devices.
Although 1:1 redundancy improves system reliability, it
decreases service density and decreases the mean time
between failures. Service density refers to the proportional-
ity between the net output of a particular device and its gross
hardware capability. Net output, in the case of a network
device (e.g., switch or router), might include, for example,
the number of calls handled per second. Redundancy adds to
gross hardware capability but not to the net output and, thus,
decreases service density. Adding hardware increases the
likelihood of a failure and, thus, decreases the mean time
between failures. Likewise, hot backup comes at the expense
of system power. Each active element consumes some
amount of the limited power available to the system. In
general, the 1+1 or 1:1 redundancy designs provide the
highest reliability but at a relatively high cost. Due to the
importance of network availability, most network service
providers prefer the 1+1 redundancy design to minimize
network downtime.

In a 1:N redundancy design, instead of having one backup
element per primary element, a single backup element or
spare is used to backup multiple (N) primary elements. As
a result, the 1:N design is generally less expensive to
manufacture, offers greater service density and better mean
time between failures than the 1:1 design and requires a
smaller chassis/less space than a 1:1 design. One disadvan-
tage of such a system, however, is that once a primary
element fails over to the backup element, the system is no
longer redundant (i.e., no available backup element for any
primary element). Another disadvantage relates to hot state
backup. Because one backup element must support multiple
primary elements, the typical 1:N design provides no hot
state on the backup element leading to long synchronization
times and, for network devices, the likelihood that connec-
tions will be dropped and availability reduced.

Even where the backup element provides some level of
hot state backup it generally lacks the processing power and
memory to provide a full hot state backup (i.e., 1+N) for all
primary elements. To enable some level of hot state backup
for each primary element, the backup element is generally a
“mega spare” equipped with a more powerful processor and
additional memory. This requires customers to stock more
hardware than in a design with identical backup and primary
elements. For instance, users typically maintain extra hard-
ware in the case of a failure. If a primary fails over to the
backup, the failed primary may be replaced with a new
primary. If the primary and backup elements are identical,
then users need only stock that one type of board, that is, a
failed backup is also replaced with the same hardware used
to replace the failed primary. If they are different, then the
user must stock each type of board, thereby increasing the
user’s cost.

Distributed Redundancy
A distributed redundancy architecture spreads software

backup (hot state) across multiple elements. Each element
may provide software backup for one or more other ele-
ments. For software backup alone, therefore, the distributed
redundancy architecture eliminates the need for hardware

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 325

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 326

US 6,880,086 B2

109

backup elements (i.e., spare hardware). Where hardware
backup is also provided, spreading resource demands across
multiple elements makes it possible to have significant
(perhaps full) hot state backup without the need for a mega
spare. Identical backup (spare) and primary hardware pro-
vides manufacturing advantages and customer inventory
advantages. A distributed redundancy design is less expen-
sive than many 1:1 designs and a distributed redundancy
architecture also permits the location of the hardware
backup element to float, that is, if a primary element fails
over to the backup element, when the failed primary element
is replaced, that new hardware may serve as the hardware
backup.
Software Redundancy

In its simplest form, a distributed redundancy system
provides software redundancy (i.e., backup) with or without
redundant (i.e., backup) hardware, for example, with or
without using backup line card 1611 as discussed earlier with
reference to the logical to physical card table (FIG. 14b).
Referring to FIG. 29, computer system 10 includes primary
line cards 16a, 16b and 166. Computer system 10 will likely
include additional primary line cards; only three are dis-
cussed herein (and shown in FIG. 29) for convenience. As
described above, to load instances of software applications,
the NMS creates software load records (SLR) 128a—128n in
configuration database 42. The SLR includes the name of a
control shim executable file and a logical identification
(LID) associated with a primary line card on which the
application is to be spawned. In the current example, there
either are no hardware backup line cards or, if there are, the
slave SRM executing on that line card does not download
and execute backup applications.

As one example, NMS 60 creates SLR 128a including the
executable name atmicntrlexe and card LID 30 (line card
16a), SLR 128b including atmicntrlexe and LID 31 (line
card 16b) and SLR 128C including atmicntrlexe and LID
32 (line card 166). The configuration database detects LID
30, 31 and 32 in SLRs 128a, 128b and 1286, respectively,
and sends slave SRMs 37b, 37c and 37d (line cards 16a, 16b,
and 16c) notifications including the name of the executable
file (e.g., atmicntrlexe) to be loaded. The slave SRMs then
download and execute a copy of atmicntrlexe 135 from
memory 40 to spawn ATM controllers 136a, 136b and 1366.

Through the active query feature, the ATM controllers are
sent records from group table (GT) 108' (FIG. 30) indicating
how many instances of ATM each must start on their
associated line cards. Group table 108' includes a primary
line card LTD field 447 and a backup line card LID field 449
such that, in addition to starting primary instances of ATM,
each primary line card also executes backup instances of
ATM. For example, ATM controller 136a receives records
450—453 and 458—461 from group table 108' including LID
30 (line card 16a). Records 450—453 indicate that ATM
controller 136a is to start four primary instantiations ofATM
464—467 (FIG. 29), and records 458—461 indicate that ATM
controller 136a is to start four backup instantiations of ATM
468—471 as backup for four primary instantiations on LID
32 (line card 166). Similarly, ATM controller 136b receives
records 450—457 from group table 108' including LID 31
(line card 16b). Records 454—457 indicate that ATM con-
troller 136b is to start four primary instantiations of ATM
472—475, and records 450—453 indicate that ATM controller
136b is to start four backup instantiations of ATM 476—479
as backup for four primary instantiations on LID 30 (line
card 16a). ATM controller 136C receives records 454—461
from group table 108' including LID 32 (line card 166).
Records 458—461 indicate that ATM controller 136C is to

10

15

20

25

30

35

40

45

50

55

60

65

110

start four primary instantiations of ATM 480—483, and
records 454—457 indicate that ATM controller 136C is to start

four backup instantiations of ATM 484—487 as backup for
four primary instantiations on LID 31 (line card 16b). ATM
controllers 136a, 136b and 136C then download atm.exe 138
and generate the appropriate number of ATM instantiations
and also indicate to each instantiation whether it is a primary
or backup instantiation. Alternatively, the ATM controllers
may download atm.exe and generate the appropriate number
of primary ATM instantiations and download a separate
backupiatmexe and generate the appropriate number of
backup ATM instantiations.

Each primary instantiation registers with its local name
server 220b—220d, as described above, and each backup
instantiation subscribes to its local name server 220b—220d

for information about its corresponding primary instantia-
tion. The name server passes each backup instantiation at
least the process identification number assigned to its cor-
responding primary instantiation, and with this, the backup
instantiation sends a message to the primary instantiation to
set up a dynamic state check-pointing procedure. Periodi-
cally or asynchronously as state changes, the primary instan-
tiation passes dynamic state information to the backup
instantiation (i.e., check-pointing). In one embodiment, a
Redundancy Manager Service available from Harris and
Jefferies of Dedham, Mass. may be used to allow backup and
primary instantiations to pass dynamic state information. If
the primary instantiation fails, it can be re-started, retrieve
its last known dynamic state from the backup instantiation
and then initiate an audit procedure (as described above) to
resynchronize with other processes. The retrieval and audit
process will normally be completed very quickly, resulting
in no discemable service disruption.

Although each line card in the example above is
instructed by the group table to start four instantiations of
ATM, this is by way of example only. The user could instruct
the NMS to set up the group table to have each line card start
one or more instantiations and to have each line card start a
different number of instantiations.

Referring to FIG. 31a-3lc, if one or more of the primary
processes on element 16a (ATM 464—467) experiences a
software fault (FIG. 31b), the processor on line card 16a
may terminate and restart the failing process or processes.
Once the process or processes are restarted (ATM 464'—467',
FIG. 31C), they retrieve a copy of the last known dynamic
state (i.e., backup state) from corresponding backup pro-
cesses (ATM 476—479) executing on line card 16b and
initiate an audit process to synchronize retrieved state with
the dynamic state of associated other processes. The backup
state represents the last known active or dynamic state of the
process or processes prior to termination, and retrieving this
state from line card 16b allows the restarted processes on
line card 16a to quickly resynchronize and continue oper-
ating. The retrieval and audit process will normally be
completed very quickly, and in the case of a network device,
quick resynchronization may avoid losing network
connections, resulting in no discernable service disruption.

If, instead of restarting a particular application, the soft-
ware fault experienced by line card 16a requires the entire
element to be shut down and rebooted, then all of the
processes executing on line card 16a will be terminated
including backup processes ATM 468—471. When the pri-
mary processes are restarted, backup state information is
retrieved from backup processes executing on line card 16b
as explained above. Simultaneously, the restarted backup
processes on line card 16a again initiate the check-pointing
procedure with primary ATM processes 480—483 executing

Apple v. Uniloc, |PR2017-2202
Uniloc's Exhibit 2003, page 326

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 327

US 6,880,086 B2

111

on line card 166 to again serve as backup processes for these
primary processes. Referring to FIGS. 3211—3326, the primary
processes executing on one line card may be backed-up by
backup processes running on one or more other line cards.
In addition, each primary process may be backed-up by one
or more backup processes executing on one or more of the
other line cards.

Since the operating system assigns each process its own
memory block, each primary process may be backed-up by
a backup process running on the same line card. This would
minimize the time required to retrieve backup state and
resynchronize if a primary process fails and is restarted. In
a computer system that includes a spare or backup line card
(described below), the backup state is best saved on another
line card such that in the event of a hardware fault, the
backup state is not lost and can be copied from the other line
card. If memory and processor limitations permit, backup
processes may run simultaneously on the same line card as
the primary process and on another line card such that
software faults are recovered from using local backup state
and hardware faults are recovered from using remote backup
state.

Where limitations on processing power or memory make
full hot state backup impossible or impractical, only certain
hot state data will be stored as backup. The level of hot state
backup is inversely proportional to the resynchronization
time, that is, as the level of hot state backup increases,
resynchronization time decreases. For a network device,
backup state may include critical information that allows the
primary process to quickly re-synchronize.

Critical information for a network device may include
connection data relevant to established network connections

(e.g., call set up information and virtual circuit information).
For example, after primary ATM applications 464—467,
executing on line card 1611, establish network connections,
those applications send critical state information relevant to
those connections to backup ATM applications 479—476
executing on line card 16b. Retrieving connection data
allows the hardware (i.e., line card 16a) to send and receive
network data over the previously established network con-
nections preventing these connections from being
terminated/dropped.

Although ATM applications were used in the examples
above, this is by way of example only. Any application (e.g.,
IP or MPLS), process (e.g., MCD or NS) or device driver
(e.g., port driver) may have a backup process started on
another line card to store backup state through a check-
pointing procedure.
Hardware and Software Backup

By adding one or more hardware backup elements (e.g.,
line card 1611) to the computer system, the distributed
redundancy architecture provides both hardware and soft-
ware backup. Software backup may be spread across all of
the line cards or only some of the line cards. For example,
software backup may be spread only across the primary line
cards, only on one or more backup line cards or on a
combination of both primary and backup line cards.

Referring to FIG. 33a, in the continuing example, line
cards 16a, 16b and 166 are primary hardware elements and
line card 1611 is a spare or backup hardware element. In this
example, software backup is spread across only the primary
line cards. Alternatively, backup line card 1611 may also
execute backup processes to provide software backup.
Backup line card 1611 may execute all backup processes such
that the primary elements need not execute any backup
processes or line card 1611 may execute only some of the
backup processes. Regardless of whether backup line card

10

15

20

25

30

35

40

45

50

55

60

65

112

1611 executes any backup processes, it is preferred that line
card 1611 be at least partially operational and ready to use the
backup processes to quickly begin performing as if it was a
failed primary line card.

There are many levels at which a backup line card may be
partially operational. For example, the backup line card’s
hardware may be configured and device driver processes
490 loaded and ready to execute. In addition, the active state
of the device drivers 492, 494, and 496 on each of the
primary line cards may be stored as backup device driver
state (DDS) 498, 500, 502 on backup line card 1611 such that
after a primary line card fails, the backup device driver state
corresponding to that primary element is used by device
driver processes 490 to quickly synchronize the hardware on
backup line card 1611. In addition, data reflecting the network
connections established by each primary process may be
stored within each of the backup processes or independently
on backup line card 1611, for example, connection data (CD)
504, 506, 508. Having a copy of the connection data on the
backup line card allows the hardware to quickly begin
transmitting network data over previously established con-
nections to avoid the loss of these connections and minimize

service disruption. The more operational (i.e., hotter) backup
line card 1611 is the faster it will be able to transfer data over

network connections previously established by the failed
primary line card and resynchronize with the rest of the
system.

In the case of a primary line card hardware fault, the
backup or spare line card takes the place of the failed
primary line card. The backup line card starts new primary
processes that register with the name server on the backup
line card and begin retrieving active state from backup
processes associated with the original primary processes. As
described above, the same may also be true for software
faults. Referring to FIG. 33b, if, for example, line card 16a
in computer system 10 is affected by a fault, the slave SRM
executing on backup line card 1611 may start new primary
processes 464'—467‘ corresponding to the original primary
processes 464—467. The new primary processes register with
the name server process executing on line card 1611 and
begin retrieving active state from backup processes 476—479
on line card 16b. This is referred to as a “fail-over” from

failed primary line card 16a to backup line card 1611.
As discussed above, preferably, backup line card 1611 is

partially operational. While active state is being retrieved
from backup processes on line card 16b, device driver
processes 490 use device driver state 502 and connection
data 508 corresponding to failed primary line card 16a to
quickly continue passing network data over previously
established connections. Once the active state is retrieved

then the ATM applications resynchronize and may begin
establishing new connections and tearing down old connec-
tions.

Floating Backup Element
Referring to FIG. 336, when the fault is detected on line

card 16a, diagnostic tests may be run to determine if the
error was caused by software or hardware. If the fault is a
software error, then line card 16a may again be used as a
primary line card. If the fault is a hardware error, then line
card 16a is replaced with a new line card 1611' that is booted
and configured and again ready to be used as a primary
element. In one embodiment, once line card 16a or 1611' is
ready to serve as a primary element, a fail-over is initiated
from line card 1611 to line card 16a or 1611' as described

above, including starting new primary processes 464"—467"
and retrieving active state from primary processes 464'—467‘
on line card 1611 (or backup processes 476—479 on line card

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 327

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 328

US 6,880,086 B2

113

16b). Backup processes 468"—471" are also started, and
those backup processes initiate a check-pointing procedure
with primary processes 480—483 on line card 166. This
fail-over may cause the same level of service interruption as
an actual failure.

Instead of failing-over from line card 1611 back to line card
16a or 1611' and risking further service disruption, line card
16a or 1611' may serve as the new backup line card with line
card 1611 serving as the primary line card. If line cards 16b,
16c or 1611 experience a fault, a fail-over to line card 16a is
initiated as discussed above and the primary line card that
failed (or a replacement of that line card) serves as the new
backup line card. This is referred to as a “floating” backup
element. Referring to FIG. 3311, if, for example, line card 166
experiences a fault, primary processes 480'—483' are started
on backup line card 16a and active state is retrieved from
backup processes 464'—467' on line card 1611. After line card
166 is rebooted or replaced and rebooted, it serves as the new
backup line card for primary line cards 16a, 16b and 1611.

Alternatively, computer system 10 may be physically
configured to only allow a line card in a particular chassis
slot, for example, line card 1611, to serve as the backup line
card. This may be the case where physically, the slot line
card 1611 is inserted within is wired to provide the necessary
connections to allow line card 1611 to communicate with

each of the other line cards but no other slot provides these
connections. In addition, even where the computer system is
capable of allowing line cards in other chassis slots to act as
the backup line card, the person acting as network manager,
may prefer to have the backup line card in each of his
computer systems in the same slot. In either case, where only
line card 1611 serves as the backup line card, once line card
16a (or any other failed primary line card) is ready to act as
a primary line card again, a fail-over, as described above, is
initiated from line card 1611 to the primary line card to allow
line card 1611 to again serve as a backup line card to each of
the primary line cards.
Balancing Resources

Typically, multiple processes or applications are executed
on each primary line card. Referring to FIG. 34a, in one
embodiment, each primary line card 16a, 16b, 16c executes
four applications. Due to physical limitations (e.g., memory
space, processor power), each primary line card may not be
capable of fully backing up four applications executing on
another primary line card. The distributed redundancy archi-
tecture allows backup processes to be spread across multiple
line cards, including any backup line cards, to more effi-
ciently use all system resources.

For instance, primary line card 16a executes backup
processes 510 and 512 corresponding to primary processes
474 and 475 executing on primary line card 16b. Primary
line card 16b executes backup processes 514 and 516
corresponding to primary processes 482 and 483 executing
on primary line card 166, and primary line card 166 executes
backup processes 518 and 520 corresponding to primary
processes 466 and 467 executing on primary line card 1611.
Backup line card 1611 executes backup processes 520, 522,
524, 526, 528 and 530 corresponding to primary processes
464, 465, 472, 473, 480 and 481 executing on each of the
primary line cards. Having each primary line card execute
backup processes for only two primary processes executing
on another primary line card reduces the primary line card
resources required for backup. Since backup line card 1611 is
not executing primary processes, more resources are avail-
able for backup. Hence, backup line card 1611 executes six
backup processes corresponding to six primary processes
executing on primary line cards. In addition, backup line

10

15

20

25

30

35

40

45

50

55

60

65

114

card 1611 is partially operational and is executing device
driver processes 490 and storing device driver backup state
498, 500 and 502 corresponding to the device drivers on
each of the primary elements and network connection data
504, 506 and 508 corresponding to the network connections
established by each of the primary line cards.

Alternatively, each primary line card could execute more
or less than two backup processes. Similarly, each primary
line card could execute no backup processes and backup line
card 1611 could execute all backup processes. Many alter-
natives are possible and backup processes need not be
spread evenly across all primary line cards or all primary
line cards and the backup line card.

Referring to FIG. 34b, if primary line card 16b experi-
ences a failure, device drivers 490 on backup line card 1611
begins using the device driver state, for example, DDS 498,
corresponding to the device drivers on primary line card 16b
and the network connection data, for example, CD 506,
corresponding to the connections established by primary line
card 16b to continue transferring network data.
Simultaneously, backup line card 1611 starts substitute pri-
mary processes 510' and 512' corresponding to the primary
processes 474 and 475 on failed primary line card 16b.
Substitute primary processes 510' and 512' retrieve active
state from backup processes 510 and 512 executing on
primary line card 1611. In addition, the slave SRM on backup
line card 1611 informs backup processes 526 and 524 corre-
sponding to primary processes 472 and 473 on failed pri-
mary line card 16b that they are now primary processes. The
new primary applications then synchronize with the rest of
the system such that new network connections may be
established and old network connections torn down. That is,
backup line card 1611 begins operating as if it were primary
line card 16b.

Multiple Backup Elements
In the examples given above, one backup line card is

shown. Alternatively, multiple backup line cards may be
provided in a computer system. In one embodiment, a
computer system includes multiple different primary line
cards. For example, some primary line cards may support
the Asynchronous Transfer Mode (ATM) protocol while
others support the Multi-Protocol Label Switching (MPLS)
protocol, and one backup line card may be provided for the
ATM primary line cards and another backup line card may
be provided for the MPLS primary line cards. As another
example, some primary line cards may support four ports
while others support eight ports and one backup line card
may be provided for the four port primaries and another
backup line card may be provided for the eight port prima-
ries. One or more backup line cards may be provided for
each different type of primary line card.
Data Plane

Referring to FIG. 35, a network device 540 includes a
central processor 542, a redundant central processor 543 and
a Fast Ethernet control bus 544 similar to central processors
12 and 13 and Ethernet 32 discussed above with respect to
computer system 10. In addition, network device 540
includes forwarding cards (FC) 54611—5466, 54811—5486,
550LZ—5506 and 552LZ—5526 that are similar to line cards

1611—1611 discussed above with respect to computer system
10. Network device 540 also includes (and computer system
10 may also include) universal port (UP) cards 554a—554h,
556a—556h, 558a—558h, and 560a—560h, cross-connection

(XC) cards 562a—562b, 564a—564b, 566a—566b, and
568a—568b, and switch fabric (SF) cards 570a—570b. In one
embodiment, network device 540 includes four quadrants
where each quadrant includes five forwarding cards (e.g

Apple v. Uniloc, |PR2017-2202
Uniloc's Exhibit 2003, page 328

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 329

US 6,880,086 B2

115

546a—546e), two cross connection cards (e.g., 562a—562b)
and eight universal port cards (e.g., 554a—554h). Network
device 540 is a distributed processing system. Each of the
cards includes a processor and is connected to the Ethernet
control bus. In addition, each of the cards are configured as
described above with respect to line cards.

In one embodiment, the forwarding cards have a 1:4
hardware redundancy structure and distributed software
redundancy as described above. For example, forwarding
card 5466 is the hardware backup for primary forwarding
cards 546a—546d and each of the forwarding cards provide
software backup. The cross-connection cards are 1:1 redun-
dant. For example, cross-connection card 562b provides
both hardware and software backup for cross-connection
card 562a. Each port on the universal port cards may be 1:1,
1+1, 1:N redundant or not redundant at all depending upon
the quality of service paid for by the customer associated
with that port. For example, port cards 554e—554h may be
the hardware and software backup cards for port cards
554a—554d in which case the port cards are 1:1 or 1+1
redundant. As another example, one or more ports on port
card 554a may be backed-up by separate ports on one or
more port cards (e.g., port cards 554b and 5546) such that
each port is 1:1 or 1+1 redundant, one or more ports on port
card 554a may not be backed-up at all (i.e., not redundant)
and two or more ports on 554a may be backed-up by one
port on another port card (e.g., port card 554b) such that
those ports are 1:N redundant. Many redundancy structures
are possible using the LID to PID Card table (LPCT) 100
(FIG. 14b) and LID to PID Port table (LPPT) as described
above.

Each port card includes one or more ports for connecting
to external network connections. One type of network con-
nection is an optical fiber carrying an OC-48 SONET
stream, and as described above, an OC-48 SONET stream
may include connections to one or more end points using
one or more paths. A SONET fiber carries a time division
multiplexed (TDM) byte stream of aggregated time slots
(TS). A time slot has a bandwidth of 51 Mbps and is the
fundamental unit of bandwidth for SONET. An STS-1 path
has one time slot within the byte stream dedicated to it, while
an STS-3c path (i.e., three concatenated STS-1s) has three
time slots within the byte stream dedicated to it. The same
or different protocols may be carried over different paths
within the same TDM byte stream. In other words, ATM
over SONET may be carried on an STS-1 path within a
TDM byte stream that also includes IP over SONET on
another STS-1 path or on an STS-3c path.

Through network management system 60 on workstation
62, after a user connects an external network connection to
a port, the user may enable that port and one or more paths
within that port (described below). Data received on a port
card path is passed to the cross-connection card in the same
quadrant as the port card, and the cross-connection card
passes the path data to one of the five forwarding cards or
eight port cards also within the same quadrant. The forward-
ing card determines whether the payload (e.g., packets,
frames or cells) it is receiving includes user payload data or
network control information. The forwarding card itself
processes certain network control information and sends
certain other network control information to the central

processor over the Fast Ethernet control bus. The forwarding
card also generates network control payloads and receives
network control payloads from the central processor. The
forwarding card sends any user data payloads from the
cross-connection card or control information from itself or

the central processor as path data to the switch fabric card.

10

15

20

25

30

35

40

45

50

55

60

65

116

The switch fabric card then passes the path data to one of the
forwarding cards in any quadrant, including the forwarding
card that just sent the data to the switch fabric card. That
forwarding card then sends the path data to the cross-
connection card within its quadrant, which passes the path
data to one of the port cards within its quadrant.

Referring to FIG. 36, in one embodiment, a universal port
card 554a includes one or more ports 571a—571n connected
to one or more transceivers 572a—572n. The user may
connect an external network connection to each port. As one
example, port 571a is connected to an ingress optical fiber
576a carrying an OC-48 SONET stream and an egress
optical fiber 576b carrying an OC-48 SONET stream. Port
571a passes optical data from the SONET stream on fiber
576a to transceiver 572a. Transceiver 572a converts the

optical data into electrical signals that it sends to a SONET
framer 574a.

The SONET framer organizes the data it receives from the
transceiver into SONET frames. SONET framer 574a sends
data over a telecommunications bus 578a to a serializer-

deserializer (SERDES) 580a that serializes the data into four
serial lines with twelve STS-1 time slots each and transmits
the four serial lines to cross-connect card 562a.

Each cross-connection card is a switch that provides
connections between port cards and forwarding cards within
its quadrant. Each cross-connection card is programmed to
transfer each serial line on each port card within its quadrant
to a forwarding card within its quadrant or to serial line on
a port card, including the port card that transmitted the data
to the cross-connection card. The programming of the cross-
connect card is discussed in more detail below under Policy
Based Provisioning.

Each forwarding card (e.g., forwarding card 5466)
receives SONET frames over serial lines from the cross-

connection card in its quadrant through a payload extractor
chip (e.g., payload extractor 582a). In one embodiment,
each forwarding card includes four payload extractor chips
where each payload extractor chip represents a “slice” and
each serial line input represents a forwarding card “port”.
Each payload extractor chip receives four serial line inputs,
and since each serial line includes twelve STS-1 time slots,
the payload extractor chips combine and separate time slots
where necessary to output data paths with the appropriate
number of time slots. Each STS-1 time slot may represent a
separate data path, or multiple STS-1 time slots may need to
be combined to form a data path. For example, an STS-3c
path requires the combination of three STS-1 time slots to
form a data path while an STS-48c path requires the com-
bination of all forty-eight STS-1 time slots. Each path
represents a separate network connection, for example, an
ATM cell stream.

The payload extractor chip also strips off all vestigial
SONET frame information and transfers the data path to an
ingress interface chip. The ingress interface chip will be
specific to the protocol of the data within the path. As one
example, the data may be formatted in accordance with the
ATM protocol and the ingress interface chip is an ATM
interface chip (e.g., ATM IF 584a). Other protocols can also
be implemented including, for example, Internet Protocol
(IP), Multi-Protocol Label Switching (MPLS) protocol or
Frame Relay.

The ingress ATM IF chip performs many functions
including determining connection information (e.g., virtual
circuit or virtual path information) from the ATM header in
the payload. The ATM IF chip uses the connection infor-
mation as well as a forwarding table to perform an address
translation from the external address to an internal address.

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 329

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 330

US 6,880,086 B2

117

The ATM IF chip passes ATM cells to an ingress bridge chip
(e.g., BG 586a—586b) which serves as an interface to an
ingress traffic management chip or chip set (e.g., TM
588a—588n).

The traffic management chips ensure that high priority
traffic, for example, voice data, is passed to switch fabric
card 570a faster than lower priority traffic, for example,
e-mail data. The traffic management chips may buffer lower
priority traffic while higher priority traffic is transmitted, and
in times of traffic congestion, the traffic management chips
will ensure that low priority traffic is dropped prior to any
high priority traffic. The traffic management chips also
perform an address translation to add the address of the
traffic management chip to which the data is going to be sent
by the switch fabric card. The address corresponds to
internal virtual circuits set up between forwarding cards by
the software and available to the traffic management chips in
tables.

The traffic management chips send the modified ATM
cells to switch fabric interface chips (SFIF) 589a—589n that
then transfer the ATM cells to switch fabric card 570a. The

switch fabric card uses the address provided by the ingress
traffic management chips to pass ATM cells to the appro-
priate egress traffic management chips (e.g., TM
590a—590n) on the various forwarding cards. In one
embodiment, the switch fabric card 570a is a 320 Gbps,
non-blocking fabric. Since each forwarding card serves as
both an ingress and egress, the switching fabric card pro-
vides a high degree of flexibility in directing the data
between any of the forwarding cards, including the forward-
ing card that sent the data to the switch fabric card.

When a forwarding card (e.g., forwarding card 546C)
receives ATM cells from switch fabric card 570a, the egress
traffic management chips re-translate the address of each cell
and pass the cells to egress bridge chips (e.g., BG
592a—592b). The bridge chips pass the cells to egress ATM
interface chips (e.g., ATM IF 594a—594n), and the ATM
interface chips add a re-translated address to the payload
representing an ATM virtual circuit. The ATM interface
chips then send the data to the payload extractor chips (e.g.,
payload extractor 582a—582n) that separate, where
necessary, the path data into STS-1 time slots and combine
twelve STS-1 time slots into four serial lines and send the

serial lines back through the cross-connection card to the
appropriate port card.

The port card SERDES chips receive the serial lines from
the cross-connection card and de-serialize the data and send

it to SONET framer chips 574a—574n. The Framers properly
format the SONET overhead and send the data back through
the transceivers that change the data from electrical to
optical before sending it to the appropriate port and SONET
fiber.

Although the port card ports above were described as
connected to a SONET fiber carrying an OC-48 stream,
other SONET fibers carrying other streams (e.g., OC-12)
and other types of fibers and cables, for example, Ethernet,
may be used instead. The transceivers are standard parts
available from many companies, including Hewlett Packard
Company and Sumitomo Corporation. The SONET framer
may be a Spectra chip available from PMC-Sierra, Inc. in
British Columbia. A Spectra 2488 has a maximum band-
width of 2488 Mbps and may be coupled with a 1xOC48
transceiver coupled with a port connected to a SONET
optical fiber carrying an OC-48 stream also having a maxi-
mum bandwidth of 2488 Mbps. Instead, four SONET optical
fibers carrying OC-12 streams each having a maximum
bandwidth of 622 Mbps may be connected to four 1xOC12

10

15

20

25

30

35

40

45

50

55

60

65

118

transceivers and coupled with one Spectra 2488.
Alternatively, a Spectra 4x155 may be coupled with four
OC-3 transceivers that are coupled with ports connected to
four SONET fibers carrying OC-3 streams each having a
maximum bandwidth of 155 Mbps. Many variables are
possible.

The SERDES chip may be a Telecommunications Bus
Serializer (TBS) chip from PMC-Sierra, and each cross-
connection card may include a Time Switch Element (TSE)
from PMC-Sierra, Inc. Similarly, the payload extractor chips
may be MACH 48 chips and the ATM interface chips may
be ATLAS chips both of which are available from PMC-
Sierra. Several chips are available from Extreme Packet
Devices (EPD), a subsidiary of PMC-Sierra, including PP3
bridge chips and Data Path Element (DPE) traffic manage-
ment chips. The switch fabric interface chips may include a
Switch Fabric Interface (SIF) chip also from EPD. Other
switch fabric interface chips are available from Abrizio, also
a subsidiary of PMC-Sierra, including a data slice chip and
an enhanced port processor (EPP) chip. The switch fabric
card may also include chips from Abrizio, including a
cross-bar chip and a scheduler chip.

Although the port cards, cross-connection cards and for-
warding cards have been shown as separate cards, this is by
way of example only and they may be combined into one or
more different cards.

Multiple Redundancy Schemes
Coupling universal port cards to forwarding cards through

a cross-connection card provides flexibility in data trans-
mission by allowing data to be transmitted from any path on
any port to any port on any forwarding card. In addition,
decoupling the universal port cards and the forwarding cards
enables redundancy schemes (e.g., 1:1, 1+1, 1:N, no
redundancy) to be set up separately for the forwarding cards
and universal port cards. The same redundancy scheme may
be set up for both or they may be different. As described
above, the LID to PID card and port tables are used to setup
the various redundancy schemes for the line cards
(forwarding or universal port cards) and ports. Network
devices often implement industry standard redundancy
schemes, such as those defined by the Automatic Protection
Switching (APS) standard. In network device 540 (FIG. 35),
an APS standard redundancy scheme may be implemented
for the universal port cards while another redundancy
scheme is implemented for the forwarding cards.

Referring again to FIG. 35, further data transmission
flexibility may be provided by connecting (i.e., connections
565) each cross-connection card 562a—562b, 564a—564b,
566a—566b and 568a—568b to each of the other cross-

connection cards. Through connections 565, a cross-
connection card (e.g., cross-connection card 562a) may
transmit data between any port or any path on any port on
a universal port card (e.g., universal port cards 554a—554h)
in its quadrant to a cross-connection card (e.g., cross-
connection card 568a) in any other quadrant, and that
cross-connection card (e.g., cross-connection card 568a)
may transmit the data to any forwarding card (e.g., forward-
ing cards 552a—552e‘) or universal port card (e.g., universal
port cards 560a—560h) in its quadrant. Similarly, any cross-
connection card may transmit data received from any for-
warding card in its quadrant to any other cross-connection
card and that cross-connection card may transmit the data to
any universal port card port in its quadrant.

Alternatively, the cross-connection cards in each quadrant
may be coupled only with cross-connection cards in one
other quadrant. For example, cross-connection cards in
quadrants 1 and 2 may be connected and cross-connection

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 330

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 331

US 6,880,086 B2

119

cards in quadrants 3 and 4 may be connected. Similarly, the
cross-connection cards in each quadrant may be coupled
with cross-connection cards in only two other quadrants, or
only the cross-connection cards in one quadrant (e.g., quad-
rant 1) may be connected to cross-connection cards in
another quadrant (e.g., quadrant 2) while the cross-
connection cards in the other quadrants (e.g., quadrants 3
and 4) are not connected to other cross-connection cards or
are connected only to cross-connection cards in one quad-
rant (e.g., quadrant 2). Many variations are possible.
Although these connections do not provide the flexibility of
having all cross-connection cards inter-connected, these
connections require less routing resources and still provide
some increase in the data transmission flexibility of the
network device.

The additional flexibility provided by inter-connecting
one or more cross-connection cards may be used to optimize
the efficiency of network device 540. For instance, a redun-
dant forwarding card in one quadrant may be used as a
backup for primary forwarding cards in other quadrants
thereby reducing the number of backup modules and
increasing the network device’s service density. Similarly, a
redundant universal port card or a redundant port on a
universal port card in one quadrant may be used as a backup
for primary universal port cards or ports in other quadrants.
As previously mentioned, each primary forwarding card
may support a different protocol (e.g., ATM, MPLS, IP,
Frame Relay). Similarly, each universal port card may
support a different protocol (e.g., SONET, Ethernet). A
backup or spare forwarding card or universal port card must
support the same protocol as the primary card or cards. If
forwarding or universal port cards in one quadrant support
multiple protocols and the cross-connection cards are not
interconnected, then each quadrant may need multiple
backup forwarding and universal port cards (i.e., one for
each protocol supported). If each of the quadrants includes
forwarding and universal port cards that support different
protocols then each quadrant may include multiple backup
forwarding and universal port cards further decreasing the
network device’s service density.

By inter-connecting the cross-connection cards, a for-
warding card in one quadrant may serve as a backup for
primary forwarding cards in its own quadrant and in other
quadrants. Similarly, a universal port card or port in one
quadrant may serve as a backup for a primary universal port
card or port in its own quadrant and in other quadrants. For
example, forwarding card 5466 in quadrant 1 that supports
a particular protocol (e.g., the ATM protocol) may serve as
the backup forwarding card for primary forwarding cards
supporting ATM in its own quadrant (e.g., forwarding cards
546a—546b) as well as for primary forwarding cards sup-
porting ATM in quadrant 2 (e.g., forwarding cards
548b—548C) or all quadrants (e.g., forwarding card 550C in
quadrant 3 and forwarding cards 552b—552d in quadrant 4).
Similarly, forwarding card 5486 in quadrant 2 that supports
a different protocol (e.g., the MPLS protocol) may serve as
the backup forwarding card for primary forwarding cards
supporting MPLS in its own quadrant (e.g., forwarding
cards 548a and 548a) as well as for primary forwarding
cards supporting MPLS in quadrant 1 (e.g., forwarding card
546C) or all quadrants (e.g., forwarding card 550a in quad-
rant 3 and forwarding card 552a in quadrant 4). Even with
this flexibility, to provide sufficient redundancy, multiple
backup modules supporting the same protocol may be used,
especially where a large number of primary modules support
one protocol.

As previously discussed, each port on a universal port
card may be connected to an external network connection,

10

15

20

25

30

35

40

45

50

55

60

65

120

for example, an optical fiber transmitting data according to
the SONET protocol. Each external network connection
may provide multiple streams or paths and each stream or
path may include data being transmitted according to a
different protocol over SONET. For example, one path may
include data being transmitted according to ATM over
SONET while another path may include data being trans-
mitted according to MPLS over SONET. The cross-
connection cards may be programmed (as described below)
to transmit protocol specific data (e.g., ATM, MPLS, IP,
Frame Relay) from ports on universal port cards within their
quadrants to forwarding cards within any quadrant that
support the specific protocol. Because the traffic manage-
ment chips on the forwarding cards provide protocol-
independent addresses to be used by switch fabric cards
570a—570b, the switch fabric cards may transmit data
between any of the forwarding cards regardless of the
underlying protocol.

Alternatively, the network manager may dedicate each
quadrant to a specific protocol by putting forwarding cards
in each quadrant according to the protocol they support.
Within each quadrant then, one forwarding card may be a
backup card for each of the other forwarding cards (1:N, for
network device 540, 1:4). Protocol specific data received
from ports or paths on ports on universal port cards within
any quadrant may then be forwarded by one or more
cross-connection cards to forwarding cards within the pro-
tocol specific quadrant. For instance, quadrant 1 may include
forwarding cards for processing data transmissions using the
ATM protocol, quadrant 2 may include forwarding cards for
processing data transmissions using the IP protocol, quad-
rant 3 may include forwarding cards for processing data
transmissions using the MPLS protocol and quadrant 4 may
be used for processing data transmissions using the Frame
Relay protocol. ATM data received on a port path is then
transmitted by one or more cross-connection cards to a
forwarding card in quadrant 1, while MPLS data received on
another path on that same port or on a path in another port
is transmitted by one or more cross-connection cards to a
forwarding card in quadrant 3.
Policy Based Provisioning

Unlike the switch fabric card, the cross-connection card
does not examine header information in a payload to deter-
mine where to send the data. Instead, the cross-connection
card is programmed to transmit payloads, for example,
SONET frames, between a particular serial line on a uni-
versal port card port and a particular serial line on a
forwarding card port regardless of the information in the
payload. As a result, one port card serial line and one
forwarding card serial line will transmit data to each other
through the cross-connection card until that programmed
connection is changed.

In one embodiment, connections established through a
path table and service endpoint table (SET) in a configura-
tion database are passed to path managers on port cards and
service endpoint managers (SEMs) on forwarding cards,
respectively. The path managers and service endpoint man-
agers then communicate with a cross-connect manager
(CCM) on the cross-connection card in their quadrant to
provide connection information. The CCM uses the connec-
tion information to generate a connection program table that
is used by one or more components (e.g., a TSE chip 563)
to program internal connection paths through the cross-
connection card.

Typically, connections are fixed or are generated accord-
ing to a predetermined map with a fixed set of rules.
Unfortunately, a fixed set of rules may not provide flexibility

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 331

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 332

US 6,880,086 B2

121

for future network device changes or the different needs of
different users/customers. Instead, within network device
540, each time a user wishes to enable/configure a path on
a port on a universal port card, a Policy Provisioning
Manager (PPM) 599 (FIG. 37) executing on central proces-
sor 542 selects the forwarding card port to which the port
card port will be connected based on a configurable provi-
sioning policy (PP) 603 in configuration database 42. The
configurable provisioning policy may take into consider-
ation many factors such as available system resources,
balancing those resources and quality of service. Similar to
other programs and files stored within the configuration
database of computer system 10 described above, the pro-
visioning policy may be modified while network device 540
is running to allow to policy to be changed according to a
user’s changing needs or changing network device system
requirements.

When a user connects an external network connection to

a particular port on a universal port card, the user notifies the
NMS as to which port on which universal port card should
be enabled, which path or paths should be enabled, and the
number of time slots in each path. The user may also notify
the NMS as to a new path and its number of time slots on
an already enabled port that was not fully utilized or the user
may notify the NMS of a modification to one or more paths
on already enabled ports and the number of time slots
required for that path or paths. With this information, the
NMS fills in a Path table 600 (FIGS. 37 and 38) and partially
fills in a Service Endpoint Table (SET) 76' (FIGS. 37 and
39).

When a record in the path table is filled in, the configu-
ration database sends an active query notification to a path
manager (e.g., path manager 597) executing on a universal
port card (e.g., port card 554a) corresponding to the univer-
sal port card port LID (e.g., port 1231, FIG. 38) in the path
table record (e.g., record 602).

Leaving some fields in the SET blank or assigning a
particular value (e.g., zero), causes the configuration data-
base to send an active query notification to Policy Provi-
sioning Manager (PPM) 599. The PPM then determines—
using provisioning policy 603—which forwarding card (FC)
port or ports to assign to the new path or paths. For example,
the PPM may first compare the new path’s requirements,
including its protocol (e.g., ATM over SONET), the number
of time slots, the number of virtual circuits and virtual circuit
scheduling restrictions, to the available forwarding card
resources in the quadrant containing the universal port card
port and path. The PPM also takes other factors into con-
sideration including quality of service, for example, redun-
dancy requirements or dedicated resource requirements, and
balancing resource usage (i.e., load balancing) evenly within
a quadrant.

As an example, a user connects SONET optical fiber 576a
(FIG. 36) to port 571a on universal port card 554a and wants
to enable a path with three time slots (i.e., STS-3c). The
NMS assigns a path LID number (e.g., path LID 1666) and
fills in a record (e.g., row 602) in Path Table 600 to include
path LID 1666, a universal port card port LID (e.g., UP port
LID 1231) previously assigned by the NMS and retrieved
from the Logical to Physical Port Table, the first time slot
(e.g., time slot 4) in the SONET stream corresponding with
the path and the total number of time slots—in this example,
3—in the path. Other information may also be filled into
Path Table 600.

The NMS also partially fills in a record (e.g., row 604) in
SET 76' by filling in the quadrant number—in this example,
1—and the assigned path LID 1666 and by assigning a

10

15

20

25

30

35

40

45

50

55

60

65

122

service endpoint number 878. The SET table also includes
other fields, for example, a forwarding card LID field 606,
a forwarding card slice 608 (i.e., port) and a forwarding card
serial line 610. In one embodiment, the NMS fills in these

fields with a particular value (e.g., zero), and in another
embodiment, the NMS leaves these fields blank.

In either case, the particular value or a blank field causes
the configuration database to send an active query notice to
the PPM indicating a new path LID, quadrant number and
service endpoint number. It is up to the PPM to decide which
forwarding card, slice (i.e., payload extractor chip) and time
slot (i.e., port) to assign to the new universal port card path.
Once decided, the PPM fills in the SET Table fields. Since
the user and NMS do not completely fill in the SET record,
this may be referred to as a “self-completing configuration
record.” Self-completing configuration records reduce the
administrative workload of provisioning a network.

The SET and path table records may be automatically
copied to persistent storage 21 to insure that if network
device 540 is re-booted these configuration records are
maintained. If the network device shuts down prior to the
PPM filling in the SET record fields and having those fields
saved in persistent storage, when the network device is
rebooted, the SET will still include blank fields or fields with
particular values which will cause the configuration database
to again send an active query to the PPM.

When the forwarding card LID (e.g., 1667)
corresponding, for example, to forwarding card 5466, is
filled into the SET table, the configuration database sends an
active query notification to an SEM (e.g., SEM 96i) execut-
ing on that forwarding card and corresponding to the
assigned slice and/or time slots. The active query notifies the
SEM of the newly assigned service endpoint number (e.g.,
SE 878) and the forwarding card slice (e.g., payload extrac-
tor 582a) and time slots (i.e., 3 time slots from one of the
serial line inputs to payload extractor 582a) dedicated to the
new path.

Path manager 597 and SEM 961' both send connection
information to a cross-connection manager 605 executing on
cross-connection card 562a—the cross-connection card

within their quadrant. The CCM uses the connection infor-
mation to generate a connection program table 601 and uses
this table to program internal connections through one or
more components (e.g., a TSE chip 563) on the cross-
connection card. Once programmed, cross-connection card
562a transmits data between new path LID 1666 on SONET
fiber 576a connected to port 571a on universal port card
554a and the serial line input to payload extractor 582a on
forwarding card 5466.

An active query notification is also sent to NMS database
61, and the NMS then displays the new system configuration
to the user.

Alternatively, the user may choose which forwarding card
to assign to the new path and notify the NMS. The NMS
would then fill in the forwarding card LID in the SET, and
the PPM would only determine which time slots and slice
within the forwarding card to assign.

In the description above, when the PPM is notified of a
new path, it compares the requirements of the new path to
the available/unused forwarding card resources. If the nec-
essary resources are not available, the PPM may signal an
error. Alternatively, the PPM could move existing forward-
ing card resources to make the necessary forwarding card
resources available for the new path. For example, if no
payload extractor chip is completely available in the entire

quadrant, one path requiring only one time slot is assigned
to payload extractor chip 582a and a new path requires

Apple v. Uniloc, IpPR2017-2202
Uniloc's Exhibit 2003, page 332

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 333

US 6,880,086 B2

123

forty-eight time slots, the one path assigned to payload
extractor chip 582a may be moved to another payload
extractor chip, for example, payload extractor chip 582b that
has at least one time slot available and the new path may be
assigned all of the time slots on payload extractor chip 582a.
Moving the existing path is accomplished by having the
PPM modify an existing SET record. The new path is
configured as described above.

Moving existing paths may result in some service disrup-
tion. To avoid this, the provisioning policy may include
certain guidelines to hypothesize about future growth. For
example, the policy may require small paths—for example,
three or less time slots—to be assigned to payload extractor
chips that already have some paths assigned instead of to
completely unassigned payload extractor chips to provide a
higher likelihood that forwarding card resources will be
available for large paths—for example, sixteen or more time
slots—added in the future.

Multi-Layer Network Device in One Telco Rack
Referring again to FIG. 35, in one embodiment, each

universal port card includes four ports, each of which is
capable of being connected to an OC-48 SONET fiber. Since
an OC-48 SONET fiber is capable of transferring data at 2.5
Giga bits per second (Gbps), each universal port card is
capable of transferring data at 10 Gbps (4x2.5=10). With
eight port cards per quadrant, the cross-connection card must
be capable of transferring data at 80 Gbps. Typically,
however, the eight port cards will be 1:1 redundant and only
transfer 40 Gbps. In one embodiment, each forwarding card
is capable of transferring 10 Gbps, and with five forwarding
cards per quadrant, the switch fabric cards must be capable
of transferring data at 200 Gbps. Typically, however, the five
forwarding cards will be 1:N redundant and only transfer
data at 40 Gbps. With four quadrants and full redundancy
(1:1 for port cards and 1:N for forwarding cards), network
device 540 is capable of transferring data at 160 Gbps.

In other embodiments, each port card includes one port
capable of being connected to an OC-192 SONET fiber.
Since OC-192 SONET fibers are capable of transferring data
at 10 Gbps, a fully redundant network device 540 is again
capable of transferring 160 Gbps. In the embodiment
employing one OC-192 connection per port card, each port
card may include one hundred and ninety-two logical DS3
connections using sub-rate data multiplexing (SDRM). In
addition, each port card may differ in its number and type of
ports to provide more or less data through put. As previously
mentioned, ports other than SONET ports may be provided,
for example, Ethernet ports, Plesiochronous Digital Hierar-
chy ports (i.e., DSO, DS1, DS3, E0, E1, E3, J0, J1, J3) and
Synchronous Digital Hierarchy (SDH) ports (i.e., STM1,
STM4, STM16, STM64).

The universal port cards and cross-connect cards in each
quadrant are in effect a physical layer switch, and the
forwarding cards and switch fabric cards are effectively an
upper layer switch. Prior systems have packaged these two
switches into separate network devices. One reason for this
is the large number of signals that need to be routed. Taken
separately, each cross-connect card 562a—562b, 564a—564b,
566a—566b and 568a—568b is essentially a switch fabric or
mesh allowing switching between any path on any universal
port card to any serial input line on any forwarding card in
its quadrant and each switch fabric card 570a—570b allows
switching between any paths on any forwarding cards.
Approximately six thousand, seven hundred and twenty
etches are required to support a 200 Gbps switch fabric, and
about eight hundred and thirty-two etches are required to
support an 80 Gbps cross-connect. Combining such high

10

15

20

25

30

35

40

45

50

55

60

65

124

capacity multi-layer switches into one network device in a
single telco rack (seven feet by nineteen inches by 24 inches)
has not been thought possible by those skilled in the art of
telecommunications network devices.

To fit network device 540 into a single telco rack, dual
mid-planes are used. All of the functional printed circuit
boards connect to at least one of the mid-planes, and the
switch fabric cards and certain control cards connect to both

mid-planes thereby providing connections between the two
mid-planes. In addition, to efficiently utilize routing
resources, instead of providing a single cross-connection
card, the cross-connection functionality is separated into
four cross-connection cards—one for each quadrant—(as
shown in FIG. 35). Further, routing through the lower
mid-plane is improved by flipping the forwarding cards and
cross-connection cards in the bottom half of the front of the

chassis upside down to be the mirror image of the forward-
ing cards and cross-connection cards in the top of the front
half of the chassis.

Referring to FIG. 40, a network device 540 is packaged in
a box 619 conforming to the telco standard rack of seven feet
in height, nineteen inches in width and 24 inches in depth.
Referring also to FIGS. 41a—41c, a chassis 620 within box
619 provides support for forwarding cards 546a—546e,
548a—54Se, 550a—SSOe and 552a—5526, universal port cards
554a—554h, 556a—556h, 558a—558h and 560a—560h, and
cross-connection cards 562a—562b, 564a—564b, 566a—566b
and 568a—568b. As is typical of telco network devices, the
forwarding cards (FC) are located in the front portion of the
chassis where network administrators may easily add and
remove these cards from the box, and the universal port
cards (UP) are located in the back portion of the chassis
where external network attachments/cables may be easily
connected.

The chassis also supports switch fabric cards 570a and
570b. As shown, each switch fabric card may include
multiple switch fabric (SF) cards and a switch scheduler
(SS) card. In addition, the chassis supports multiple central
processor cards (542 and 543, FIG. 35). Instead of having a
single central processor card, the external control functions
and the internal control functions may be separated onto
different cards as described in US. patent application Ser.
No. 09/574,343, filed May 20, 2000 and entitled “Functional
Separation of Internal and External Controls in Network
Devices”, which is hereby incorporated herein by reference.
As shown, the chassis may support internal control (IC)
processor cards 542a and 543a and external control (EC)
processor cards 542b and 543b. Auxiliary processor (AP)
cards 542C and 543C are provided for future expansion to
allow more external control cards to be added, for example,
to handle new upper layer protocols. In addition, a manage-
ment interface (MI) card 621 for connecting to an external
network management system (62, FIG. 35) is also provided.

The chassis also support two mid-plane printed circuit
boards 622a and 622b (FIG. 41C) located toward the middle
of chassis 620. Mid-plane 622a is located in the top portion
of chassis 620 and is connected to quadrant 1 and 2
forwarding cards 546a—546e and 548a—54Se, universal port
cards 554a—554h and 556a—556h, and cross-connection
cards 562a—562b and 564a—564b. Similarly, mid-plane 622b
is located in the bottom portion of chassis 620 and is
connected to quadrant 3 and 4 forwarding cards 550a—SSOe
and 552a—5526, universal port cards 558a—558h and
560a—560h, and cross-connection cards 566a—566b and
568a—568b. Through each mid-plane, the cross-connection
card in each quadrant may transfer network packets between
any of the universal port cards in its quadrant and any of the

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 333

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 334

US 6,880,086 B2

125

forwarding cards in its quadrant. In addition, through mid-
plane 622a the cross-connection cards in quadrants 1 and 2
may be connected to allow for transfer of network packets
between any forwarding cards and port cards in quadrants 1
and 2, and through mid-plane 622b the cross-connection
cards in quadrants 3 and 4 may be connected to allow for
transfer of network packets between any forwarding cards
and port cards in quadrants 3 and 4.

Mid-plane 622a is also connected to external control
processor cards 542b and 543b and management interface
card 621. Mid-plane 622b is also connected to auxiliary
processor cards 542C and 5436.

Switch fabric cards 570a and 570b are located in the back

portion of chassis 620, approximately mid-way between the
top and bottom of the chassis. The switch fabric cards are
connected to both mid-planes 622a and 622b to allow the
switch fabric cards to transfer signals between any of the
forwarding cards in any quadrant. In addition, the cross-
connection cards in quadrants 1 and 2 may be connected
through the mid-planes and switch fabric cards to the
cross-connection cards in quadrants 3 and 4 to enable
network packets to be transferred between any universal port
card and any forwarding card.

To provide for better routing efficiency through mid-plane
622b, forwarding cards 550a—5506 and 552LZ—5526 and
cross-connection cards 566a—566b and 568a—568b in quad-
rants 3 and 4, located in the bottom portion of the chassis,
are flipped over when plugged into mid-plane 622b. This
permits the switch fabric interface 589a—589n on each of the
lower forwarding cards to be oriented nearest the switch
fabric cards and the cross-connection interface 582a—582n

on each of the lower forwarding cards to be oriented nearest
the cross-connection cards in quadrants 3 and 4. This
orientation avoids having to cross switch fabric and cross-
connection etches in mid-plane 622b.

Typically, airflow for cooling a network device is brought
in at the bottom of the device and released at the top of the
device. For example, in the back portion of chassis 620, a fan
tray (FT) 626 pulls air into the device from the bottom
portion of the device and a fan tray 628 blows air out of the
top portion of the device. When the lower forwarding cards
are flipped over, the airflow/cooling pattern is reversed. To
accommodate this reversal, fan trays 630 and 632 pull air
into the middle portion of the device and then fan trays 634
and 636 pull the air upwards and downwards, respectively,
and blow the heated air out the top and bottom of the device,
respectively.

The quadrant 3 and 4 universal port cards 558a—558h and
560a—560h may also be flipped over to orient the port card’s
cross-connection interface nearest the cross-connection

cards and more efficiently use the routing resources. It is
preferred, however, not to flip the universal port cards for
serviceability reasons and airflow issues. The network man-
agers at the telco site expect network attachments/cables to
be in a certain pattern. Reversing this pattern could cause
confusion in a large telco site with many different types of
network devices. Also, flipping the port cards will change
the airflow and cooling pattern and require a similar airflow
pattern and fan tray configuration as implemented in the
front of the chassis. However, with the switch fabric and
internal control processor cards in the middle of the back
portion of the chassis, it may be impossible to implement
this fan tray configuration.

Referring to FIG. 42, mid-plane 622a includes connectors
638 mounted on the back side of the mid-plane (“back
mounted”) for the management interface card, connectors
640a—640d mounted on the front side of the mid-plane

10

15

20

25

30

35

40

45

50

55

60

65

126

(“front mounted”) for the quadrant 1 and 2 cross-connection
cards, and front mounted connectors 642a—642b for the
external control processor cards. Multiple connectors may
be used for each card. Mid-plane 622a also includes back
mounted connectors 644a—644p for the quadrant 1 and 2
universal port cards and front mounted connectors
646a—646j for the quadrant 1 and 2 forwarding cards.

Both mid-planes 622a and 622b include back mounted
connectors 648a—648d for the switch fabric cards and back
mounted connectors 650a—650d for the internal control

cards. Mid-plane 622b further includes front, reverse
mounted connectors 652a—652j for the quadrant 3 and 4
forwarding cards and back mounted connectors 654a—654p
for the quadrant 3 and 4 universal port cards. In addition,
mid-plane 622b also includes front, reverse mounted con-
nectors 656a—656d for the quadrant 3 and 4 cross-
connection cards and front mounted connectors 658a—658b

for the auxiliary processor cards.
Combining both physical layer switch/router subsystems

and upper layer switch/router subsystems in one network
device allows for intelligent layer 1 switching. For example,
the network device may be used to establish dynamic
network connections on the layer 1 network to better utilize
resources as service subscriptions change. In addition, net-
work management is greatly simplified since the layer 1 and
multiple upper layer networks may be managed by the same
network management system and grooming fees are elimi-
nated. Combining the physical layer switch/router and upper
layer switch/routers into a network device that fits into one
telco rack provides a less expensive network device and
saves valuable telco site space.

Splitting the cross-connection function into four separate
cards/quadrants enables the cross-connection routing
requirements to be spread between the two mid-planes and
alleviates the need to route cross-connection signals through
the center of the device where the switch fabric is routed. In

addition, segmenting the cross-connection function into
multiple, independent subsystems allows customers/
network managers to add functionality to network device
540 in pieces and in accordance with network service
subscriptions. When a network device is first installed, a
network manager may need only a few port cards and
forwarding cards to service network customers. The modu-
larity of network device 540 allows the network manager to
purchase and install only one cross-connection card and the
required number of port and forwarding cards.

As the network becomes more subscribed, the network
manager may add forwarding cards and port cards and
eventually additional cross-connection cards. Since network
devices are often very expensive, this modularity allows
network managers to spread the cost of the system out in
accordance with new service requests. The fees paid by
customers to the network manager for the new services can
then be applied to the cost of the new cards.

Although the embodiment describes the use of two mid-
planes, it should be understood that more than two mid-
planes may be used. Similarly, although the embodiment
described flipped/reversed the forwarding cards and cross-
connection cards in the lower half of the chassis,
alternatively, the forwarding cards and cross-connection
cards in the upper half of the chassis could be flipped.
Distributed Switch Fabric

A network device having a distributed switch fabric
locates a portion of the switch fabric functionality on cards
separate from the remaining/central switch fabric function-
ality. For example, a portion of the switch fabric may be
distributed on each forwarding card. There are a number of

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 334

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 335

US 6,880,086 B2

127

difficulties associated with distributing a portion of the
switch fabric. For instance, distributing the switch fabric
makes mid-plane/back-plane routing more difficult which
further increases the difficulty of fitting the network device
into one telco rack, switch fabric redundancy and timing are
also made more difficult, valuable forwarding card space
must be allocated for switch fabric components and the cost
of each forwarding card is increased. However, since the
entire switch fabric need not be included in a minimally
configured network device, the cost of the minimal configu-
ration is reduced allowing network service providers to more
quickly recover the initial cost of the device. As new
services are requested, additional functionality, including
both forwarding cards (with additional switch fabric
functionality) and universal port cards may be added to the
network device to handle the new requests, and the fees for
the new services may be applied to the cost of the additional
functionality. Consequently, the cost of the network device
more closely tracks the service fees received by network
providers.

Referring again to FIG. 36, as described above, each
forwarding card (e.g., 5466) includes traffic management
chips (e.g., 588a—588n and 590a—590b) that ensure high
priority network data/traffic (e.g., voice) is transferred faster
than lower priority traffic (e.g., e-mail). Each forwarding
card also includes switch fabric interface (SFIF) chips (e.g.,
589a—589n) that transfer network data between the traffic
management chips and the switch fabric cards 570a—570b.

Referring also to FIG. 43, forwarding card 5466 includes
traffic management (TM) chips 58811 and 590a and SFIF
chips 589, and forwarding card 550a includes traffic man-
agement chips 659a and 659b and SFIF chips 660. (FIG. 43
includes only two forwarding cards for convenience but it is
to be understood that many forwarding cards may be
included in a network device as shown in FIG. 35.) SFIF
chips 589 and 660 on both boards include a switch fabric
interface (SIF) chip 661, data slice chips 662a—662f, an
enhanced port processor (EPP) chip 664 and a local timing
subsystem (LTS) 665. The SFIF chips receive data from
ingress TM chips 58811 and 659a and forward it to the switch
fabric cards 570a—570b (FIG. 36). Similarly, the SFIF chips
receive data from the switch fabric cards and forward it to

the egress TM chips 590a and 65%.
Due to the size and complexity of the switch fabric, each

switch fabric card 570a—570b may include multiple separate
cards. In one embodiment, each switch fabric card
570a—570b includes a control card 666 and four data cards

668a—668d. A scheduler chip 670 on control card 666 works
with the EFF chips on each of the forwarding cards to
transfer network data between the data slice chips on the
forwarding cards through cross-bar chips 672a—672l (only
chips 672a—672f are shown) on data cards 668a—668d. Each
of the data slice chips on each of the forwarding cards is
connected to two of the cross-bar chips on the data cards.
Switch fabric control card 666 and each of the switch fabric
data cards 668a—668d also include a switch fabric local

timing subsystem (LTS) 665, and a switch fabric central
timing subsystem (CTS) 673 on control card 666 provides a
start of segment (SOS) reference signal to each LTS 665 on
each of the forwarding cards and switch fabric cards.

The traffic management chips perform upper level net-
work traffic management within the network device while
scheduler chip 670 on control card 666 performs the lower
level data transfer between forwarding cards. The traffic
management chips determine the priority of received net-
work data and then forward the highest priority data to SIF
chips 661. The traffic management chips include large

10

15

20

25

30

35

40

45

50

55

60

65

128

buffers to store lower priority data until higher priority data
has been transferred. The traffic management chips also
store data in these buffers when the local EPP chip indicates
that data transfers are to be stopped (i.e., back pressure). The
scheduler chip works with the EFF chips to stop or hold-off
data transfers when necessary, for example, when buffers on
one forwarding card are close to full, the local EPP chip
sends notice to each of the other EPP chips and the scheduler
to hold off sending more data. Back pressure may be applied
to all forwarding cards when a new switch fabric control
card is added to the network device, as described below.

The traffic management chips forward network data in
predefined segments to the SIF chips. In the case of ATM
data, each ATM cell is a segment. In the case of IP and
MPLS, where the amount of network data in each packet
may vary, the data is first arranged into appropriately sized
segments before being sent to the SIF chips. This may be
accomplished through segmentation and reassembly (SAR)
chips (not shown).

When the SIF chip receives a segment of network data, it
organizes the data into a segment consistent with that
expected by the switch fabric components, including any
required header information. The SIF chip may be a
PMC9324-TC chip available from Extreme Packet Devices
(EPD), a subsidiary of PMC-Sierra, and the data slice chips
may be PM9313-HC chips and the EFF chip may be a
PM9315-HC chip available from Abrizio, also a subsidiary
of PMC-Sierra. In this case, the SIF chip organizes each
segment of data—including header information—in accor-
dance with a line-card-to-switch two (LCS-2) protocol. The
SIF chip then divides each data segment into twelve slices
and sends two slices to each data slice chip 662a—662f. Two
slices are sent because each data slice chip includes the
functionality of two data slices.

When the data slice chips receive the LCS segments, the
data slice chips strip off the header information, including
both a destination address and quality of service (QoS)
information, and send the header information to the local
EPP chip. Alternatively, the SIF chip may send the header
information directly to the EFF chip and send only data to
the data slice chips. However, the manufacturer teaches that
the SIF chip should be on the forwarding card and the EFF
and data slice chips should be on a separate switch fabric
card within the network device or in a separate box con-
nected to the network device. Minimizing connections
between cards is important, and where the EFF and data slice
chips are not on the same card as the SIF chips, the header
information is sent with the data by the SIF chip to reduce
the required inter-card connections, and the data slice chips
then strip off this information and send it to the EFF chip.

The EPP chips on all of the forwarding cards communi-
cate and synchronize through cross-bar chips 674a—674b on
control card 666. For each time interval (e.g., every 40
nanoseconds, “ns”), the EFF chips inform the scheduler chip
as to which data segment they would like to send and the
data slice chips send a segment of data previously set up by
the scheduler and EPP chips. The EPP chips and the sched-
uler use the destination addresses to determine if there are

any conflicts, for example, to determine if two or more
forwarding cards are trying to send data to the same for-
warding card. If a conflict is found, then the quality of
service information is used to determine which forwarding
card is trying to send the higher priority data. The highest
priority data will likely be sent first. However, the scheduler
chips include an algorithm that takes into account both the
quality of service and a need to keep the switch fabric data
cards 668a—668d full (maximum data through put). Where a

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 335

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 336

US 6,880,086 B2

129

conflict exists, the scheduler chip may inform the EFF chip
to send a different, for example, lower priority, data segment
from the data slice chip buffers or to send an empty data
segment during the time interval.

Scheduler chip 670 informs each of the EFF chips which
data segment is to be sent and received in each time interval.
The EPP chips then inform their local data slice chips as to
which data segments are to be sent in each interval and
which data segments will be received in each interval. As
previously mentioned, the forwarding cards each send and
receive data. The data slice chips include small buffers to
hold certain data (e.g., lower priority) while other data (e.g.,
higher priority) data is sent and small buffers to store
received data. The data slice chips also include header
information with each segment of data sent to the switch
fabric cards. The header information is used by cross-bar
chips 672a—6721 (only cross-bar chips 672a—672f are
shown) to switch the data to the correct forwarding card. The
cross-bar chips may be PM9312-UC chips and the scheduler
chip may be a PM9311-UC chip both of which are available
from Abrizio.

Specifications for the EPD, Abrizio and PMC-Sierra chips
may be found at www.pmcsierra.com and are hereby incor-
porated herein by reference.
Distributed Switch Fabric Timing

As previously mentioned, a segment of data (e.g., an ATM
cell) is transferred between the data slice chips through the
cross-bar chips every predetermined time interval. In one
embodiment, this time interval is 40ns and is established by
a 25 MHZ start of segment (SOS) signal. Ahigher frequency
clock (e.g., 200 MHZ, having a 5 ns time interval) is used by
the data slice and cross-bar chips to transfer the bits of data
within each segment such that all the bits of data in a
segment are transferred within one 40 ns interval. More
specifically, in one embodiment, each switch fabric compo-
nent multiplies the 200 MHZ clock signal by four to provide
an 800 MHZ internal clock signal allowing data to be
transferred through the data slice and cross-bar components
at 320 Gbps. As a result, every 40 ns one segment of data
(e.g., an ATM cell) is transferred. It is crucial that the EFF,
scheduler, data slice and cross-bar chips transfer data
according to the same/synchronized timing signals (e.g.,
clock and SOS), including both frequency and phase. Trans-
ferring data at different times, even slightly different times,
may lead to data corruption, the wrong data being sent
and/or a network device crash.

When distributed signals (e.g., reference SOS or clock
signals) are used to synchronize actions across multiple
components (e.g., the transmission of data through a switch
fabric), any time-difference in events (e.g., clock pulse) on
the distributed signals is generally termed “skew”. Skew
between distributed signals may result in the actions not
occurring at the same time, and in the case of transmission
of data through a switch fabric, skew can cause data cor-
ruption and other errors. Many variables can introduce skew
into these signals. For example, components used to distrib-
ute the clock signal introduce skew, and etches on the
mid-plane(s) introduce skew in proportion to the differences
in their length (e.g., about 180 picoseconds per inch of etch
in FR 4 printed circuit board material).

To minimize skew, one manufacturer teaches that all

switch fabric components (i.e., scheduler, EPP, data slice
and cross-bar chips) should be located on centralized switch
fabric cards. That manufacturer also suggests distributing a
central clock reference signal (e.g., 200 MHZ) and a separate
SOS signal (e.g., 25 MHZ) to the switch fabric components
on the switch fabric cards. Such a timing distribution scheme

10

15

20

25

30

35

40

45

50

55

60

65

130

is difficult but possible where all the components are on one
switch fabric card or on a limited number of switch fabric
cards that are located near each other within the network

device or in a separate box connected to the network device.
Locating the boards near each other within the network
device or in a separate box allows etch lengths on the
mid-plane for the reference timing signals to be more easily
matched and, thus, introduce less skew.

When the switch fabric components are distributed, main-
taining a very tight skew becomes difficult due to the long
lengths of etches required to reach some of the distributed
cards and the routing difficulties that arise in trying to match
the lengths of all the etches across the mid-plane(s). Because
the clock signal needs to be distributed not only to the five
switch fabric cards but also the forwarding cards (e.g.,
twenty), it becomes a significant routing problem to distrib-
ute all clocks to all loads with a fixed etch length.

Since timing is so critical to network device operation,
typical network devices include redundant central timing
subsystems. Certainly, the additional reference timing sig-
nals from a redundant central timing subsystem to each of
the forwarding cards and switch fabric cards create further
routing difficulties. In addition, if the two central timing
subsystems (i.e., sources) are not synchronous with matched
distribution etches, then all of the loads (i.e., LTSs) must use
the same reference clock source to avoid introducing clock
skew—that is, unless both sources are synchronous and have
matched distribution networks, the reference timing signals
from both sources are likely to be skewed with respect to
each other and, thus, all loads must use the same source/
reference timing signal or be skewed with respect to each
other.

A redundant, distributed switch fabric greatly increases
the number of reference timing signals that must be routed
over the mid-planes and yet remain accurately synchronized.
In addition, since the timing signals must be sent to each
card having a distributed switch fabric, the distance between
the cards may vary greatly and, thus, make matching the
lengths of timing signal etches on the mid-planes difficult.
Further, the lengths of the etches for the reference timing
signals from both the primary and redundant central timing
subsystems must be matched. Compounding this with a fast
clock signal and low skew component requirements makes
distributing the timing very difficult.

The network device of the present invention, though
difficult, includes two synchronized central timing sub-
systems (CTS) 673 (one is shown in FIG. 43). The etch
lengths of reference timing signals from both central timing
subsystems are matched to within, for example, +/—50 mils,
and both central timing subsystems distribute only reference
start of segment (SOS) signals to a local timing subsystem
(LTS) 665 on each forwarding card and switch fabric card.
The LTSs use the SOS reference signals to generate both an
SOS signal and a higher frequency clock signal. This adds
components and complexity to the LTSs, however, distrib-
uting only the SOS reference signals and not both the SOS
and clock reference signals significantly reduces the number
of reference timing signals that must be routed across the
mid-plane on matched etch lengths.

Both electro-magnetic radiation and electro-physical limi-
tations prevent the 200 MHZ reference clock signal from
being widely distributed as required in a network device
implementing distributed switch fabric subsystems. Such a
fast reference clock increases the overall noise level gener-
ated by the network device and wide distribution may cause
the network device to exceed Electro-Magnetic Interference
(EMI) limitations. Clock errors are often measured as a

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 336

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 337

US 6,880,086 B2

131

percentage of the clock period, the smaller the clock period
(5 ns for a 200 MHZ clock), the larger the percentage of error
a small skew can cause. For example, a skew of 3 ns
represents a 60% error for a 5 ns clock period but only a
7.5% error for a 40 ns clock period. Higher frequency clock
signals (e.g., 200 MHZ) are susceptible to noise error and
clock skew. The SOS signal has a larger clock period than
the reference clock signal (40 ns versus 5 ns) and, thus, is
less susceptible to noise error and reduces the percentage of
error resulting from clock skew.

As previously mentioned, the network device may include
redundant switch fabric cards 570a and 570b (FIG. 36) and
as described above with reference to FIG. 43, each switch
fabric card 570a and 570b may include a control card and
four or more data cards. Referring to FIG. 44, network
device 540 may include switch fabric control card 666 (part
of central switch fabric 570a) and redundant switch fabric
control card 667 (part of redundant switch fabric 570b).
Each control card 666 and 667 includes a central timing
subsystem (CTS) 673. One CTS behaves as the master and
the other CTS behaves as a slave and locks its output SOS
signal to the master’s output SOS signal. In one
embodiment, upon power-up or system re-boot the CTS on
the primary switch fabric control card 666 begins as the
master and if a problem occurs with the CTS on the primary
control card, then the CTS on redundant control card 667
takes over as master without requiring a switch over of the
primary switch fabric control card.

Still referring to FIG. 44, each CTS sends a reference SOS
signal to the LTSs on each forwarding card, switch fabric
data cards 668a—668d and redundant switch fabric data

cards 669a—669b. In addition, each CTS sends a reference
SOS signal to the LTS on its own switch fabric control card
and the LTS on the other switch fabric control card. As

described in more detail below, each LTS then selects which
reference SOS signal to use. Each CTS 673 also sends a
reference SOS signal to the CTS on the other control card.
The master CTS ignores the reference SOS signal from the
slave CTS but the slave CTS locks its reference SOS signal
to the reference SOS signal from the master, as described
below. Locking the slave SOS signal to the master SOS
signal synchronizes the slave signal to the master signal such
that in the event that the master CTS fails and the LTSs

switchover to the slave CTS reference SOS signal and the
slave CTS becomes the master CTS, minimal phase change
and no signal disruption is encountered between the master
and slave reference SOS signals received by the LTSs.

Each of the CTS reference SOS signals sent to the LTSs
and the other CTS over mid-plane etches are the same length
(i.e., matched) to avoid introducing skew. The CTS may be
on its own independent card or any other card in the system.
Even when it is located on a switch fabric card, such as the
control card, that has an LTS, the reference SOS signal is
routed through the mid-plane with the same length etch as
the other reference SOS signals to avoid adding skew.
Central Timing Subsystem (CTS)

Referring to FIG. 45, central timing subsystem (CTS) 673
includes a voltage controlled crystal oscillator (VCXO) 676
that generates a 25MHZ reference SOS signal 678. The SOS
signal must be distributed to each of the local timing
subsystems (LTSs) and is, thus, sent to a first level clock
driver 680 and then to second level clock drivers 682a—682d

that output reference SOS signals SFCiBENCHiFB and
SFCiREFl-SFCiREFn. SFCiBENCHiFB is a local

feedback signal returned to the input of the CTS. One of
SFCiREFl-SFCiREFn is sent to each LTS, the other CTS,
which receives it on SFCiSYNC, and one is routed over a

10

15

20

25

30

35

40

45

50

55

60

65

132

mid-plane and returned as a feedback signal SFCiFB to the
input of the CTS that generated it. Additional levels of clock
drivers may be added as the number of necessary reference
SOS signals increases.

VCXO 676 may be a VF596ES50 25 MHZ LVPECL
available from Conner-Winfield. Positive Emitter Coupled
Logic (PECL) is preferred over Transistor-Transistor Logic
(TTL) for its lower skew properties. In addition, though it
requires two etches to transfer a single clock reference—
significantly increasing routing resources—, differential
PECL is preferred over PECL for its lower skew properties
and high noise immunity. The clock drivers are also differ-
ential PECL and may be one to ten (1:10) MC100 LVEP111
clock drivers available from On Semiconductor. A test

header 681 may be connected to clock driver 680 to allow
a test clock to be input into the system.

Hardware control logic 684 determines (as described
below) whether the CTS is the master or slave, and hardware
control logic 684 is connected to a multiplexor (MUX) 686
to select between a predetermined voltage input (i.e., master
voltage input) 688a and a slave VCXO voltage input 688b.
When the CTS is the master, hardware control logic 684
selects predetermined voltage input 688a from discrete bias
circuit 690 and slave VCXO voltage input 688b is ignored.
The predetermined voltage input causes VCXO 676 to
generate a constant 25 MHZ SOS signal; that is, the VCXO
operates as a simple oscillator.

Hardware control logic may be implemented in a field
programmable gate array (FPGA) or a programmable logic
device (PLD). MUX 686 may be a 74CBTLV3257 FET 2:1
MUX available from Texas Instruments.

When the CTS is the slave, hardware control logic 684
selects slave VCXO voltage signal 688b. This provides a
variable voltage level to the VCXO that causes the output of
the VCXO to track or follow the SOS reference signal from
the master CTS. Referring still to FIG. 45, the CTS receives
the SOS reference signal from the other CTS on SFCi
SYNC. Since this is a differential PECL signal, it is first
passed through a differential PECL to TTL translator 692
before being sent to MUX 697a within dual MUX 694. In
addition, two feedback signals from the CTS itself are
supplied as inputs to the CTS. The first feedback signal
SFCiFB is an output signal (e.g., one of SFCiREFl-
SFCiREFn) from the CTS itself which has been sent out to
the mid-plane and routed back to the switch fabric control
card. This is done so that the feedback signal used by the
CTS experiences identical conditions as the reference SOS
signal delivered to the LTSs and skew is minimized. The
second feedback signal SFCiBENCHiFB is a local signal
from the output of the CTS, for example, clock driver 682a.
SFCiBENCHiFB may be used as the feedback signal in a
test mode, for example, when the control card is not plugged
into the network device chassis and SFCiSB is unavailable.
SFCiBENCHiFB and SFCiFB are also differential PECL

signals and must be sent through translators 693 and 692,
respectively, prior to being sent to MUX 697b within dual
MUX 694. Hardware control logic 684 selects which inputs
are used by MUX 694 by asserting signals on REFiSEL
(1:0) and FBiSEL(1:0). In regular use, inputs 696a and
696b from translator 692 are selected. In test modes,
grounded inputs 695a, test headers 695b or local feedback
signal 698 from translator 693 may be selected. Also in
regular use (and in test modes where a clock signal is not
inserted through the test headers), copies of the selected
input signals are provided on the test headers.

The reference output 700a and the feedback output 700b
are then sent from the MUX to phase detector circuit 702.

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 337

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 338

US 6,880,086 B2

133

The phase detector compares the rising edge of the two input
signals to determine the magnitude of any phase shift
between the two. The phase detector then generates variable
voltage pulses on outputs 704a and 704b representing the
magnitude of the phase shift. The phase detector outputs are
used by discrete logic circuit 706 to generate a voltage on a
slave VCXO voltage signal 688b representing the magnitude
of the phase shift. The voltage is used to speed up or slow
down (i.e., change the phase of) the VCXO’s output SOS
signal to allow the output SOS signal to track any phase
change in the reference SOS signal from the other CTS (i.e.,
SFCiSYNC). The discrete logic components implement
filters that determine how quickly or slowly the VCXO’s
output will track the change in phase detected on the
reference signal. The combination of the dual MUX, phase
detector, discrete logic, VCXO, clock drivers and feedback
signal forms a phase locked loop (PLL) circuit allowing the
slave CTS to synchronize its reference SOS signal to the
master CTS reference SOS signal. MUX 686 and discrete
bias circuit 690 are not found in phase locked loop circuits.

The phase detector circuit may be implemented in a
programmable logic device (PLD), for example a
MACH4LV—32 available from Lattice/Vantis Semiconduc-

tor. Dual MUX 694 may be implemented in the same PLD.
Preferably, however, dual MUX 694 is an
SN74CBTLV3253 available from Texas Instruments, which
has better skew properties than the PLD. The differential
PECL to TTL translators may be MC100EPT23 dual differ-
ential PECL/TTL translators available from On Semicon-
ductor.

Since quick, large phase shifts in the reference signal are
likely to be the results of failures, the discrete logic imple-
ments a filter, and for any detected phase shift, only small
incremental changes over time are made to the voltage
provided on slave VCXO control signal 688b. As one
example, if the reference signal from the master CTS dies,
the slave VCXO control signal 688b only changes phase
slowly over time meaning that the VCXO will continue to
provide a reference SOS signal. If the reference signal from
the master CTS is suddenly returned, the slave VCXO
control signal 688b again only changes phase slowly over
time to cause the VCXO signal to re-synchronize with the
reference signal from the master CTS. This is a significant
improvement over distributing a clock signal directly to
components that use the signal because, in the case of direct
clock distribution, if one clock signal dies (e.g., broken
wire), then the components connected to that signal stop
functioning causing the entire switch fabric to fail.

Slow phase changes on the reference SOS signals from
both the master and slave CTSs are also important when
LTSs switch over from using the master CTS reference
signal to using the slave CTS reference signal. For example,
if the reference SOS signal from the master CTS dies or
other problems are detected (e.g., a clock driver dies), then
the slave CTS switches over to become the master CTS and

each of the LTSs begin using the slave CTS‘ reference SOS
signal. For these reasons, it is important that the slave CTS
reference SOS signal be synchronized to the master refer-
ence signal but not quickly follow large phase shifts in the
master reference signal.

It is not necessary for every LTS to use the reference SOS
signals from the same CTS. In fact, some LTSs may use
reference SOS signals from the master CTS while one or
more are using the reference SOS signals from the slave
CTS. In general, this is a transitional state prior to or during
switch over. For example, one or more LTSs may start using
the slave CTS’s reference SOS signal prior to the slave CTS
switching over to become the master CTS.

10

15

20

25

30

35

40

45

50

55

60

65

134

It is important for both the CTSs and the LTSs to monitor
the activity of the reference SOS signals from both CTSs
such that if there is a problem with one, the LTSs can begin
using the other SOS signal immediately and/or the slave
CTS can quickly become master. Reference output signal
700a—the translated reference SOS signal sent from the
other CTS and received on SFCiSYNC—is sent to an

activity detector circuit 708. The activity detector circuit
determines whether the signal is active—that is, whether the
signal is “stuck at” logic 1 or logic 0. If the signal is not
active (i.e., stuck at logic 1 or 0), the activity detector sends
a signal 683a to hardware control logic 684 indicating that
the signal died. The hardware control logic may immediately
select input 688a to MUX 686 to change the CTS from slave
to master. The hardware control logic also sends an interrupt
to a local processor 710 and software being executed by the
processor detects the interrupt. Hardware control allows the
CTS switch over to happen very quickly before a bad clock
signal can disrupt the system.

Similarly, an activity detector 709 monitors the output of
the first level clock driver 680 regardless of whether the CTS
is master or slave. Instead, the output of one the second level
clock drivers could be monitored, however, a failure of a
different second level clock will not be detected. SFCi
REFiACTIVITY is sent from the first level clock driver to
differential PECL to TTL translator 693 and then as

FABRICiREFiACTIVITY to activity detector 709. If
activity detector 709 determines that the signal is not active,
which may indicate that the clock driver, oscillator or other
component(s) within the CTS have failed, then it sends a
signal 683b to the hardware control logic. The hardware
control logic asserts KILLiCLKTREE to stop the clock
drivers from sending any signals and notifies a processor
chip 710 on the switch fabric control card through an
interrupt. Software being executed by the processor chip
detects the interrupt. The slave CTS activity detector 708
detects a dead signal from the master CTS either before or
after the hardware control logic sends KILLiCLKTREE
and asserts error signal 683a to cause the hardware control
logic to change the input selection on MUX 686 from 688b
to 688a to become the master CTS. As described below, the
LTSs also detect a dead signal from the master CTS either
before or after the hardware control logic sends KILLi
CLKTREE and switch over to the reference SOS signal
from the slave CTS either before or after the slave CTS
switches over to become the master.

As previously mentioned, in the past, a separate, common
clock selection signal or etch was sent to each card in the
network device to indicate whether to use the master or slave

clock reference signal. This approach required significant
routing resources, was under software control and resulted in
every load selecting the same source at any given time.
Hence, if a clock signal problem was detected, components
had to wait for the software to change the separate clock
selection signal before beginning to use the standby clock
signal and all components (i.e., loads) were always locked to
the same source. This delay can cause data corruption errors,
switch fabric failure and a network device crash.

Forcing a constant logic one or zero (i.e., “killing”) clock
signals from a failed source and having hardware in each
LTS and CTS detect inactive (i.e., “dead” or stuck at logic
one or zero) signals allows the hardware to quickly begin
using the standby clock without the need for software
intervention. In addition, if only one clock driver (e.g., 682b)
dies in the master CTS, LTSs receiving output signals from
that clock driver may immediately begin using signals from
the slave CTS clock driver while the other LTSs continue to

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 338

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 339

US 6,880,086 B2

135

use the master CTS. Interrupts to the processor from each of
the LTSs connected to the failed master CTS clock driver

allow software, specifically the SRM, to detect the failure
and initiate a switch over of the slave CTS to the master

CTS. The software may also override the hardware control
and force the LTSs to use the slave or master reference SOS

signal.
When the slave CTS switches over to become the master

CTS, the remaining switch fabric control card functionality
(e.g., scheduler and cross-bar components) continue oper-
ating. The SRM (described above) decides—based on a
failure policy—whether to switch over from the primary
switch fabric control card to the secondary switch fabric
control card. There may be instances where the CTS on the
secondary switch fabric control card operates as the master
CTS for a period of time before the network device switches
over from the primary to the secondary switch fabric control
card, or instead, there may be instances where the CTS on
the secondary switch fabric control card operates as the
master CTS for a period of time and then the software directs
the hardware control logic on both switch fabric control
cards to switch back such that the CTS on the primary switch
fabric control card is again master. Many variations are
possible since the CTS is independent of the remaining
functionality on the switch fabric control card.

Phase detector 702 also includes an out of lock detector

that determines whether the magnitude of change between
the reference signal and the feedback signal is larger than a
predetermined threshold. When the CTS is the slave, this
circuit detects errors that may not be detected by activity
detector 708 such as where the reference SOS signal from
the master CTS is failing but is not dead. If the magnitude
of the phase change exceeds the predetermined threshold,
then the phase detector asserts an OOL signal to the hard-
ware control logic. The hardware control logic may imme-
diately change the input to MUX 686 to cause the slave CTS
to switch over to Master CTS and send an interrupt to the
processor, or the hardware control logic may only send the
interrupt and wait for software (e.g., the SRM) to determine
whether the slave CTS should switch over to master.

Master/Slave CTS Control
In order to determine which CTS is the master and which

is the slave, hardware control logic 684 implements a state
machine. Each hardware control logic 684 sends an
IMiTHEiMASTER signal to the other hardware control
logic 684 which is received as a YOUiTHEiMASTER
signal. If the IMiTHEiMASTER signal—and, hence, the
received YOUiTHEiMASTER signal—is asserted then
the CTS sending the signal is the master (and selects input
688a to MUX 686, FIG. 45) and the CTS receiving the
signal is the slave (and selects input 688b to MUX 686).
Each IMiTHEiMASTER/YOUiTHEiMASTER etch is

pulled down to ground on the mid-planes such that if one of
the CTSs is missing, the YOUiTHEiMASTER signal
received by the other CTS will be a logic 0 causing the
receiving CTS to become the master. This situation may
arise, for example, if a redundant control card including the
CTS is not inserted within the network device. In addition,
each of the hardware control logics receive SLOTiID
signals from pull-down/pull-up resistors on the chassis mid-
plane indicating the slot in which the switch fabric control
card is inserted.

Referring to FIG. 46, on power-up or after a system or
card or CTS re-boot, the hardware control logic state
machine begins in INIT/RESET state 0 and does not assert
IMiTHEiMASTER. If the SLOTiID signals indicate that
the control card is inserted in a preferred slot (e.g., slot one),

10

15

20

25

30

35

40

45

50

55

60

65

136
and the received YOUiTHEiMASTER is not asserted

(i.e., 0), then the state machine transitions to the ONLINE
state 3 and the hardware control logic asserts IMiTHEi
MASTER indicating its master status to the other CTS and
selects input 688a to MUX 686. While in the ONLINE state
3, if a failure is detected or the software tells the hardware
logic to switch over, the state machine enters the OFFLINE
state 1 and the hardware control logic stops asserting
IMiTHEiMASTER and asserts KILLiCLKTREE. While

in the OFFLINE state 1, the software may reset or reboot the
control card or just the CTS and force the state machine to
enter the STANDBY state 2 as the slave CTS and the

hardware control logic stops asserting KILLiCLKTREE
and selects input 688b to MUX 686.

While in INIT/RESET state 0, if the SLOTiID signals
indicate that the control card is inserted in a non-preferred
slot, (e.g., slot 0), then the state machine will enter
STANDBY state 2 as the slave CTS and the hardware

control logic will not assert IMiTHEiMASTER and will
select input 688b to MUX 686. While in INIT/RESET state
0, even if the SLOTiID signals indicate that the control
card is inserted in the preferred slot, if YOUiTHEi
MASTER is asserted, indicating that the other CTS is
master, then the state machine transfers to STANDBY state
2. This situation may arise after a failure and recovery of the
CTS in the preferred slot (e.g., reboot, reset or new control
card).

While in the STANDBY state 2, if the YOUiTHEi

MASTER signal becomes zero (i.e., not asserted), indicating
that the master CTS is no longer master, the state machine
will transition to ONLINE state 3 and the hardware control

logic will assert IMiTHEiMASTER and select input 688a
to MUX 686 to become master. While in ONLINE state 3,
if the YOUiTHEiMASTER signal is asserted and SLOTi
ID indicating slot 0 the state machine enters STANDBY
state 2 and the hardware control logic stops asserting
IMiTHEiMASTER and selects input 688b to MUX 686.
This is the situation where the original master CTS is back
up and running. The software may reset the state machine at
any time or set the state machine to a particular state at any
time.

Local Timing Subsystem
Referring to FIG. 47, each local timing subsystem (LTS)

665 receives a reference SOS signal from each CTS on
SFCiREFA and SFCiREFB. Since these are differential

PECL signals, each is passed through a differential PECL to
TTL translator 714a or 714b, respectively. Afeedback signal
SFCiFB is also passed from the LTS output to both
translators 714a and 714b. The reference signal outputs
716a and 716b are fed into a first MUX 717 within dual

MUX 718, and the feedback signal outputs 719a and 71%
are fed into a second MUX 720 within dual MUX 718. LTS

hardware control logic 712 controls selector inputs REFi
SEL (1:0) and FBiSEL (1:0) to dual MUX 718. With regard
to the feedback signals, the LTS hardware control logic
selects the feedback signal that went through the same
translator as the reference signal that is selected to minimize
the effects of any skew introduced by the two translators.

A phase detector 722 receives the feedback (FE) and
reference (REF) signals from the dual MUX and, as
explained above, generates an output in accordance with the
magnitude of any phase shift detected between the two
signals. Discrete logic circuit 724 is used to filter the output
of the phase detector, in a manner similar to discrete logic
706 in the CTS, and provide a signal to VCXO 726 repre-
senting a smaller change in phase than that output from the
phase detector. Within the LTSs, the VCXO is a 200 MHZ

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 339

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 340

US 6,880,086 B2

137

oscillator as opposed to the 25 MHZ oscillator used in the
CTS. The output of the VCXO is the reference switch fabric
clock. It is sent to clock driver 728, which fans the signal out
to each of the local switch fabric components. For example,
on the forwarding cards, the LTSs supply the 200 MHZ
reference clock signal to the EFF and data slice chips, and
on the switch fabric data cards, the LTSs supply the 200
MHZ reference clock signal to the cross-bar chips. On the
switch fabric control card, the LTSs supply the 200 MHZ
clock signal to the scheduler and cross-bar components.

The 200 MHZ reference clock signal from the VCXO is
also sent to a divider circuit or component 730 that divides
the clock by eight to produce a 25 MHZ reference SOS
signal 731. This signal is sent to clock driver 732, which fans
the signal out to each of the same local switch fabric
components that the 200 MHZ reference clock signal was
sent to. In addition, reference SOS signal 731 is provided as
feedback signal SFCiFB to translator 714b. The combina-
tion of the dual MUX, phase detector, discrete logic, VCXO,
clock drivers and feedback signal forms a phase locked loop
circuit allowing the 200 MHZ and 25 MHZ signals generated
by the LTS to be synchronized to either of the reference SOS
signals sent from the CTSs.

The divider component may be a SY100EL34L divider by
Synergy Semiconductor Corporation.

Reference signals 716a and 716b from translator 714a are
also sent to activity detectors 734a and 734b, respectively.
These activity detectors perform the same function as the
activity detectors in the CTSs and assert error signals
refiailos or refibilos to the LTS hardware control logic
if reference signal 716a or 716b, respectively, die. On
power-up, reset or reboot, a state machine (FIG. 48) within
the LTS hardware control logic starts in INIT/RESET state
0. Arbitrarily, reference signal 716a is the first signal con-
sidered. If activity detector 734a is not sending an error
signal (i.e., refiailos is 0), indicating that that reference
signal 716a is active, then the state machine changes to
REFiA state 2 and sends signals over REFiSEL(1:0) to
MUX 717 to select reference input 716a and sends signals
over FBiSEL(1:0) to MUX 720 to select feedback input
719a. While in INIT/RESET state 0, if refiailos is
asserted, indicating no signal on reference 716a, and if
refibilos is not asserted, indicating there is a signal on
reference 716b, then the state machine changes to REFiB
state 1 and changes REFiSEL(1:0) and FBiSEL(1:0) to
select reference input 716b and feedback signal 719b.

While in REFiA state 2, if activity detector 734a detects
a loss of reference signal 716a and asserts refiailos, the
state machine will change to REFiB state 1 and change
REFiSEL(1:0) and FBiSEL(1:0) to select inputs 716b and
719b. Similarly, while in REFiB state 1, if activity detector
734b detects a loss of signal 716b and asserts refibilos, the
state machine will change to REFiA state 2 and change
REFiSEL(1:0) and FBiSEL(1:0) to select inputs 716a and
719a. While in either REFiA state 2 or REFiB state 1, if
both refiailos and refibilos are asserted, indicating that
both reference SOS signals have died, the state machine
changes back to INIT/RESET state 0 and change REFiSEL
(1:0) and FBiSEL(1:0) to select no inputs or test inputs
736a and 736b or ground 738. For a period of time, the LTS
will continue to supply a clock and SOS signal to the switch
fabric components even though it is receiving no input
reference signal.

When refiailos and/or refibilos are asserted, the LTS
hardware control logic notifies its local processor 740
through an interrupt. The SRM will decide, based on a
failure policy, what actions to take, including whether to

10

15

20

25

30

35

40

45

50

55

60

65

138

switch over from the master to slave CTS. Just as the phase
detector in the CTS sends an out of lock signal to the CTS
hardware control logic, the phase detector 722 also sends an
out of lock signal OOL to the LTS hardware control logic if
the magnitude of the phase difference between the reference
and feedback signals exceeds a predetermined threshold. If
the LTS hardware receives an asserted OOL signal, it
notifies its local processor (e.g., 740) through an interrupt.
The SRM will decide based on a failure policy what actions
to take.
Shared LTS Hardware

In the embodiment described above, the switch fabric data
cards are four independent cards. More data cards may also
be used. Alternatively, all of the cross-bar components may
be located on one card. As another alternative, half of the
cross-bar components may be located on two separate cards
and yet attached to the same network device faceplate and
share certain components. A network device faceplate is
something the network manager can unlatch and pull on to
remove cards from the network device. Attaching two
switch fabric data cards to the same faceplate effectively
makes them one board since they are added to and removed
from the network device together. Since they are effectively
one board, they may share certain hardware as if all com-
ponents were on one physical card. In one embodiment, they
may share a processor, hardware control logic and activity
detectors. This means that these components will be on one
of the physical cards but not on the other and signals
connected to the two cards allow activity detectors on the
one card to monitor the reference and feedback signals on
the other card and allow the hardware control logic on the
one card to select the inputs for dual MUX 718 on the other
card.
Scheduler

Another difficulty with distributing a portion of the switch
fabric functionality involves the scheduler component on the
switch fabric control cards. In current systems, the entire
switch fabric, including all EPP chips, are always present in
a network device. Registers in the scheduler component are
configured on power-up or re-boot to indicate how many
EPP chips are present in the current network device, and in
one embodiment, the scheduler component detects an error
and switches over to the redundant switch fabric control card

when one of those EPP chips is no longer active. When the
EFF chips are distributed to different cards (e.g., forwarding
cards) within the network device, an EPP chip may be
removed from a running network device when the printed
circuit board on which it is located is removed (“hot swap”,
“hot removal”) from the network device. To prevent the
scheduler chip from detecting the missing EPP chip as an
error (e.g., a CRC error) and switching over to the redundant
switch fabric control card, prior to the board being removed
from the network device, software running on the switch
fabric control card re-configures the scheduler chip to dis-
able the scheduler chip’s links to the EFF chip that is being
removed.

To accomplish this, a latch 547 (FIG. 40) on the faceplate
of each of the printed circuit boards on which a distributed
switch fabric is located is connected to a circuit 742 (FIG.
44) also on the printed circuit board that detects when the
latch is released. When the latch is released, indicating that
the board is going to be removed from the network device,
circuit 742 sends a signal to a circuit 743 on both switch
fabric control cards indicating that the forwarding card is
about to be removed. Circuit 743 sends an interrupt to the
local processor (e.g. , 710, FIG. 45) on the switch fabric
control card Software (e.g., slave SRM) being executed by

Apple v. Uniloc, |PR2017-2202
Uniloc's Exhibit 2003, page 340

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 341

US 6,880,086 B2

139

the local processor detects the interrupt and sends a notice to
software (e.g., master SRM) being executed by the proces-
sor (e.g., 24, FIG. 1) on the network device centralized
processor card (e.g., 12, FIG. 1, 542 or 543, FIG. 35). The
master SRM sends a notice to the slave SRMs being
executed by the processors on the switch fabric data cards
and forwarding cards to indicate the removal of the forward-
ing card. The redundant forwarding card switches over to
become a replacement for the failed primary forwarding
card. The master SRM also sends a notice to the slave SRM

on the cross-connection card (e.g., 562—562b, 564a—564b,
566a—566b, 568a—565b, FIG. 35) to re-configure the con-
nections between the port cards (e.g., 554a—554h,
556a—556h, 558a—558h, 560a—560h, FIG. 35) and the
redundant forwarding card. The slave SRM on the switch
fabric control card re-configures the registers in the sched-
uler component to disable the scheduler’s links to the EFF
chip on the forwarding card that’s being removed from the
network device. As a result, when the forwarding card is
removed, the scheduler will not detect an error due to a
missing EPP chip.

Similarly, when a forwarding card is added to the network
device, circuit 742 detects the closing of the latch and sends
an interrupt to the processor. The slave SRM running on the
local processor sends a notice to the Master SRM which then
sends a notice to the slave SRMs being executed by the
processors on the switch fabric control cards, data cards and
forwarding cards indicating the presence of the new for-
warding card. The slave SRM on the cross-connection cards
may be re-configured, and the slave SRM on the switch
fabric control card may re-configure the scheduler chip to
establish links with the new EPP chip to allow data to be
transferred to the newly added forwarding card.
Switch Fabric Control Card Switch-Over

Typically, the primary and secondary scheduler compo-
nents receive the same inputs, maintain the same state and
generate the same outputs. The EPP chips are connected to
both scheduler chips but only respond to the master/primary
scheduler chip. If the primary scheduler or control card
experiences a failure a switch over is initiated to allow the
secondary scheduler to become the primary. When the failed
switch fabric control card is re-booted, re-initialized or
replaced, it and its scheduler component serve as the sec-
ondary switch fabric control card and scheduler component.

In currently available systems, a complex sequence of
steps is required to “refresh” or synchronize the state of the
newly added scheduler component to the primary scheduler
component and for many of these steps, network data
transfer through the switch fabric is temporarily stopped
(i.e., back pressure). Stopping network data transfer may
affect the availability of the network device. When the
switch fabric is centralized and all on one board or only a
few boards or in its own box, the refresh steps are quickly
completed by one or only a few processors limiting the
amount of time that network data is not transferred. When
the switch fabric includes distributed switch fabric

subsystems, the processors that are local to each of the
distributed switch fabric subsystems must take part in the
series of steps. This may increase the amount of time that
data transfer is stopped further affecting network device
availability.

To limit the amount of time that data transfer is stopped
in a network device including distributed switch fabric
subsystems, the local processors each set up for a refresh
while data is still being transferred. Communications
between the processors take place over the Ethernet bus
(e.g., 32, FIG. 1, 544, FIG. 35) to avoid interrupting network

10

15

20

25

30

35

40

45

50

55

60

65

140

data transfer. When all processors have indicated (over the
Ethernet bus) that they are ready for the refresh, the pro-
cessor on the master switch fabric control card stops data
transfer and sends a refresh command to each of the pro-
cessors on the forwarding cards and switch fabric cards.
Since all processors are waiting to complete the refresh, it is
quickly completed. Each processor notifies the processor on
the master switch fabric control card that the refresh is

complete, and when all processors have completed the
refresh, the master switch fabric control card re-starts the
data transfer.

During the time in which the data transfer is stopped, the
buffers in the traffic management chips are used to store data
coming from external network devices. It is important that
the data transfer be complete quickly to avoid overrunning
the traffic management chip buffers.

Since the switch over of the switch fabric control cards is

very complex and requires that data transfer be stopped,
even if briefly, it is important that the CTSs on each switch
fabric control card be independent of the switch fabric
functionality. This independence allows the master CTS to
switch over to the slave CTS quickly and without interrupt-
ing the switch fabric functionality or data transmission.

As described above, locating the EFF chips and data slice
chips of the switch fabric subsystem on the forwarding cards
is difficult and against the teachings of a manufacturer of
these components. However, locating these components on
the forwarding cards allows the base network device—that
is, the minimal configuration—to include only a necessary
portion of the switching fabric reducing the cost of a
minimally configured network device. As additional for-
warding cards are added to the minimal configuration—to
track an increase in customer demand—additional portions
of the switch fabric are simultaneously added since a portion
of the switch fabric is located on each forwarding card.
Consequently, switch fabric growth tracks the growth in
customer demands and fees. Also, typical network devices
include 1:1 redundant switch fabric subsystems. However,
as previously mentioned, the forwarding cards may be 1:N
redundant and, thus, the distributed switch fabric on each
forwarding card is also 1:N redundant further reducing the
cost of a minimally configured network device.
External Network Data Transfer Timing

In addition to internal switch fabric timing, a network
device must also include external network data transfer

timing to allow the network device to transfer network data
synchronously with other network devices. Generally, mul-
tiple network devices in the same service provider site
synchronize themselves to Building Integrated Timing Sup-
ply (BITS) lines provided by a network service provider.
BITS lines are typically from highly accurate stratum two
clock sources. In the United States, standard T1 BITS lines

(2.048 MHz) are provided, and in Europe, standard E1 BITS
lines (1.544 MHz) are provided. Typically, a network service
provider provides two T1 lines or two E1 lines from different
sources for redundancy. Alternatively, if there are no BITS
lines or when network devices in different sites want to

synchronously transfer data, one network device may extract
a timing signal received on a port connected to the other
network device and use that timing signal to synchronize its
data transfers with the other network device.

Referring to FIG. 49, controller card 542b and redundant
controller card 543b each include an external central timing
subsystem (EX CTS) 750. Each EX CTS receives BITS
lines 751 and provide BITS lines 752. In addition, each EX
CTS receives a port timing signal 753 from each port card
(554a—554h, 556a—556h, 558a—558h, 560a—560h, FIG. 35),

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 341

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 342

US 6,880,086 B2

141

and each EX CTS also receives an external timing reference
signal 754 from itself and an external timing reference signal
755 from the other EX CTS.

One of the EX CTSs behaves as a master and the other EX

CTS behaves as a slave. The master EX CTS may synchro-
nize its output external reference timing signals to one of
BITS lines 751 or one of the port timing signals 753, while
the slave EX CTS synchronizes its output external reference
timing signals to the received master external reference
timing signal 755. Upon a master EX CTS failure, the slave
EX CTS may automatically switch over to become the
master EX CTS or software may upon an error or at any time
force the slave EX CTS to switch over to become the master
EX CTS.

An external reference timing signal from each EX CTS is
sent to each external local timing subsystem (EX LTS) 756
on cards throughout the network device, and each EX LTS
generates local external timing signals synchronized to one
of the received external reference timing signals. Generally,
external reference timing signals are sent only to cards
including external data transfer functionality, for example,
cross connection cards 562a—562b, 564a—564b, 566a—566b
and 568a—568b (FIG. 35) and universal port cards
554a—554h, 556a—556h, 558a—558h, 560a—560h.

In network devices having multiple processor
components, an additional central processor timing sub-
system is needed to generate processor timing reference
signals to allow the multiple processors to synchronize
certain processes and functions. The addition of both exter-
nal reference timing signals (primary and secondary) and
processor timing reference signals (primary and secondary)
require significant routing resources. In one embodiment of
the invention, the EX CTSs embed a processor timing
reference signal within each external timing reference signal
to reduce the number of timing reference signals needed to
be routed across the mid-plane(s). The external reference
timing signals are then sent to EX LTSs on each card in the
network device having a processor component, for example,
cross connection cards 562a—562b, 564a—564b, 566a—566b,
568a—568b, universal port cards 554a—554h, 556a—556h,
558a—558h, 560a—560h, forwarding cards 546a—546e,
548a—548e, 550a—5506, 552a—5526, switch fabric cards

666, 667, 668a—668d, 669a—669d (FIG. 44) and both the
internal controller cards 542a, 543a (FIG. 41b) and external
controller cards 542b and 543b.

All of the EX LTSs extract out the embedded processor
reference timing signal and send it to their local processor
component. Only the cross-connection cards and port cards
use the external reference timing signal to synchronize
external network data transfers. As a result, the EX LTSs
include extra circuitry not necessary to the function of cards
not including external data transfer functionality, for
example, forwarding cards, switch fabric cards and internal
controller cards. The benefit of reducing the necessary
routing resources, however, out weighs any disadvantage
related to the excess circuitry. In addition, for the cards
including external data transfer functionality, having one EX
LTS that provides both local signals actually saves resources
on those cards, and separate processor central timing sub-
systems are not necessary. Moreover, embedding the pro-
cessor timing reference signal within the highly accurate,
redundant external timing reference signal provides a highly
accurate and redundant processor timing reference signal.
Furthermore having a common EX LTS on each card allows
access to the external timing signal for future modifications
and having a common EX LTS, as opposed to different LTSs
for each reference timing signal, results in less design time,
less debug time, less risk, design re-use and simulationre-use.

10

15

20

25

30

35

40

45

50

55

60

65

142

Although the EX CTSs are described as being located on
the external controllers 542b and 543b, similar to the switch
fabric CTSs described above, the EX CTSs may be located
on their own independent cards or on any other cards in the
network device, for example, internal controllers 542a and
543a. In fact, one EX CTS could be located on an internal
controller while the other is located on an external controller.

Many variations are possible. In addition, just as the switch
fabric CTSs may switch over from master to slave without
affecting or requiring any other functionality on the local
printed circuit board, the EX CTSs may also switch over
from master to slave without affecting or requiring any other
functionality on the local printed circuit board.
External Central Timing Subsystem (EX CTS)

Referring to FIG. 50, EX CTS 750 includes a T1/E1
framer/LIU 758 for receiving and terminating BITS signals
751 and for generating and sending BITS signals 752.
Although T1/E1 framer is shown in two separate boxes in
FIG. 50, it is for convenience only and may be the same
circuit or component. In one embodiment, two 5431 T1/E1
Framer Line Interface Units (LIU) available from PMC-
Sierra are used. The T1/E1 framer supplies 8 KHz BITSi
REFO and BITSiREFl signals and receives 8 KHz BITSli
TXREF and BITSZiTXREF signals. A network
administrator notifies NMS 60 (FIG. 35) as to whether the
BITS signals are T1 or E1, and the NMS notifies software
running on the network device. Through signals 761 from a
local processor, hardware control logic 760 within the EX
CTS is configured for T1 or E1 and sends an T1E1iMODE
signal to the T1/E1 framer indicating T1 or E1 mode. The
T1/E1 framer then forwards BITSiREFO and BITSiREFl
to dual MUXs 762a and 762b.

Port timing signals 753 are also sent to dual MUXs 762a
and 762b. The network administrator also notifies the NMS

as to which timing reference signals should be used, the
BITS lines or the port timing signals. The NMS again
notifies software running on the network device and through
signals 761, the local processor configures the hardware
control logic. The hardware control logic then uses select
signals 764a and 764b to select the appropriate output
signals from the dual MUXs.

Activity detectors 766a and 766b provide status signals
767a and 767b to the hardware control logic indicating
whether the PRIiREF signal and the SECiREF signal are
active or inactive (i.e., stuck at 1 or 0). The PRIiREF and
SECiREF signals are sent to a stratum 3 or stratum 3E
timing module 768. Timing module 768 includes an internal
MUX for selecting between the PRIiREF and SECiREF
signals, and the timing module receives control and status
signals 769 from the hardware control logic indicating
whether PRIiREF or SECiREF should be used. If one of

the activity detectors 766a or 766b indicates an inactive
status to the hardware control logic, then the hardware
control logic sends appropriate information over control and
status signals 769 to cause the timing module to select the
active one of PRIiREF or SECiREF.

The timing module also includes an internal phase locked
loop (PLL) circuit and an internal stratum 3 or 3E oscillator.
The timing module synchronizes its output signal 770 to the
selected input signal (PRIiREF or SECiREF). The timing
module may be an MSTM-S3 available from Conner-
Winfield or an ATIMe-s or ATIMe-3E available from TF

systems. The hardware control logic, activity detectors and
dual MUXs may be implemented in an FPGA. The timing
module also includes a Free-run mode and a Hold-Over

mode. When there is no input signal to synchronize to, the
timing module enter a free-run mode and uses the internal

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 342

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 343

US 6,880,086 B2

143

oscillator to generate a clock output signal. If the signal
being synchronized to is lost, then the timing module enters
a hold-over mode and maintains the frequency of the last
known clock output signal for a period of time.

The EX CTS 750 also receives an external timing refer-
ence signal from the other EX CTS on STRATiSYNC 755
(one of STRATiREFl-STRATiREFN from the other EX
CTS). STRATiSYNC and output 770 from the timing
module are sent to a MUX 772a. REFiSEL(1:0) selection
signals are sent from the hardware control logic to MUX
772a to select STRATiSYNC when the EX CTS is the

slave and output 770 when the EX CTS is the master. When
in a test mode, the hardware control logic may also select a
test input from a test header 771a.

An activity detector 774a monitors the status of output
770 from the timing module and provides a status signal to
the hardware control logic. Similarly, an activity detector
774b monitors the status of STRATiSYNC and provides a
status signal to the hardware control logic. When the EX
CTS is master, if the hardware control logic receives an
inactive status from activity detector 774a, then the hard-
ware control logic automatically changes the REFiSEL
signals to select STRATiSYNC forcing the EX CTS to
switch over and become the slave. When the EX CTS is

slave, if the hardware control logic receives an inactive
status from activity detector 774b, then the hardware control
logic may automatically change the REFiSEL signals to
select output 770 from the timing module forcing the EX
CTS to switch over and become master.

AMUX 772b receives feedback signals from the EX CTS
itself. BENCHiFB is an external timing reference signal
from the EX CTS that is routed back to the MUX on the

local printed circuit board. STRATiFB 754 is an external
timing reference signal from the EX CTS (one of STRATi
REFl-STRATiREFN) that is routed onto the mid-plane(s)
and back onto the local printed circuit board such that is
most closely resembles the external timing reference signals
sent to the EX LTSs and the other EX CTS in order to

minimize skew. The hardware control logic sends FBiSEL
(1:0) signals to MUX 772b to select STRATiFB in regular
use or BENCHiFB or an input from a test header 771b in
test mode.

The outputs of both MUX 772a and 772b are provided to
a phase detector 776. The phase detector compares the rising
edge of the two input signals to determine the magnitude of
any phase shift between the two. The phase detector then
generates variable voltage pulses on outputs 777a and 777b
representing the magnitude of the phase shift. The phase
detector outputs are used by discrete logic circuit 778 to
generate a voltage on signal 779 representing the magnitude
of the phase shift. The voltage is used to speed up or slow
down (i.e., change the phase of) a VCXO 780 to allow the
output signal 781 to track any phase change in the external
timing reference signal received from the other EX CTS
(i.e., STRATiSYNC) or to allow the output signal 781 to
track any phase change in the output signal 770 from the
timing module. The discrete logic components implement a
filter that determines how quickly or slowly the VCXO’s
output tracks the change in phase detected on the reference
signal.

The phase detector circuit may be implemented in a
programmable logic device (PLD).

The output 781 of the VCXO is sent to an External
Reference Clock (ERC) circuit 782 which may also be
implemented in a PLD. ERCiSTRATiSYNC is also sent
to ERC 782 from the output of MUX 772a. When the EX
CTS is the master, the ERC circuit generates the external

10

15

20

25

30

35

40

45

50

55

60

65

144

timing reference signal 784 with an embedded processor
timing reference signal, as described below, based on the
output signal 781 and synchronous with ERCiSTRATi
SYNC (corresponding to timing module output 770). When
the EX CTS is the slave, the ERC generates the external
timing reference signal 784 based on the output signal 781
and synchronous with ERCiSTRATiSYNC
(corresponding to STRATiSYNC 755 from the other EX
CTS).

External reference signal 784 is then sent to a first level
clock driver 785 and from there to second level clock drivers

786a—786d which provide external timing reference signals
(STRATiREFl-STRATiREFN) that are distributed across
the mid-plane(s) to EX LTSs on the other network device
cards and the EX LTS on the same network device card, the
other EX CTS and the EX CTS itself. The ERC circuit also

generates BITSliTXREF and BITSZiTXREF signals that
are provided to BITS T1/E1 framer 758.

The hardware control logic also includes an activity
detector 788 that receives STRATiREFiACTIVITY from

clock driver 785. Activity detector 788 sends a status signal
to the hardware control logic, and if the status indicates that
STRATiREFiACTIVITY is inactive, then the hardware
control logic asserts KILLiCLKTREE. Whenever KILLi
CLKTREE is asserted, the activity detector 774b in the other
EX CTS detects inactivity on STRATiSYNC and may
become the master by selecting the output of the timing
module as the input to MUX 772a.

Similar to hardware control logic 684 (FIG. 45) within the
switch fabric CTS, hardware control logic 760 within the EX
CTS implements a state machine (similar to the state
machine shown in FIG. 46) based on IMiTHEiMASTER
and YOUiTHEiMASTER signals sent between the two
EX CTSs and also on slot identification signals (not shown).

In one embodiment, ports (e.g., 571a—571n, FIG. 49) on
network device 540 are connected to external optical fibers
carrying signals in accordance with the synchronous optical
network (SONET) protocol and the external timing refer-
ence signal is a 19.44 MHZ signal that may be used as the
SONET transmit reference clock. This signal may also be
divided down to provide an 8 KHZ SONET framing pulse
(i.e., JOFP) or multiplied up to provide higher frequency
signals. For example, four times 19.44 MHZ is 77.76 MHZ
which is the base frequency for a SONET 0C1 stream, two
times 77.76 MHZ provides the base frequency for an 0C3
stream and eight times 77.76 MHZ provides the base fre-
quency for an OC12 stream.

In one embodiment, the embedded processor timing ref-
erence signal within the 19.44 MHZ external timing refer-
ence signal is 8 KHZ. Since the processor timing reference
signal and the SONET framing pulse are both 8 KHZ, the
embedded processor timing reference signal may used to
supply both. In addition, the embedded processor timing
reference signal may also be used to supply BITSliTXREF
and BITSZiTXREF signals to BITS T1/E1 framer 758.

Referring to FIG. 51, the 19.44 MHZ external reference
timing signal with embedded 8 KHZ processor timing ref-
erence signal from ERC 782 (i.e., output signal 784)
includes a duty-cycle distortion 790 every 125 microseconds
(us) representing the embedded 8 KHZ signal. In this
embodiment, VCXO 780 is a 77.76 MHZ VCXO providing
a 77.76 MHZ clock output signal 781. The ERC uses VCXO
output signal 781 to generate output signal 784 as described
in more detail below. Basically, every 125 us, the ERC holds
the output signal 784 high for one extra 77.76 MHZ clock
cycle to create a 75%/25% duty cycle in output signal 784.
This duty cycle distortion is used by the EX LTSs and EX

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 343

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 344

US 6,880,086 B2

145

CTSs to extract the 8 KHZ signal from output signal 784, and
since the EX LTS’s use only the rising edge of the 19.44
MHZ signal to synchronize local external timing signals, the
duty cycle distortion does not affect that synchronization.
External Reference Clock (ERC) Circuit

Referring to FIG. 52, an embeddor circuit 792 within the
ERC receives VCXO output signal 781 (77.76 MHZ) at four
embedding registers 794a—794d, a 9720—1 rollover counter
796 and three 8 KHZ output registers 798a—798b. Each
embedding register passes its value (logic 1 or 0) to the next
embedding register, and embedding register 794d provides
ERC output signal 784 (19.44 MHZ external timing refer-
ence signal with embedded 8 KHZ processor timing refer-
ence signal). The output of embedding register 794b is also
inverted and provided as an input to embedding register
794a. When running, therefore, the embedding registers
maintain a repetitive output 784 of a high for two 77.76 MHZ
clock pulses and then low for two 77.76 MHZ which
provides a 19.44 MHZ signal. Rollover counter 796 and a
load circuit 800 are used to embed the 8 KHZ signal. The
rollover counter increments on each 77.76 MHZ clock tick

and at 9720—1 (9720—1 times 77.76 MHZ=8 KHZ), the
counter rolls over to zero. Load circuit 800 detects when the

counter value is zero and loads a logic 1 into embedding
registers 794a, 794b and 794C and a logic zero into embed-
ding register 794d. As a result, the output of embedding
register 794d is held high for three 77.76 MHZ clock pulses
(since logic ones are loaded into three embedding registers)
which forces the duty cycle distortion into the 19.44 MHZ
output signal 784.

BITS circuits 802a and 802b also monitor the value of the

rollover counter. While the value is less than or equal to
4860—1 (half of 8 KHZ), the BITS circuits provide a logic
one to 8 KHZ output registers 798a and 798b, respectively.
When the value changes to 4860, the BITS circuits toggle
from a logic one to a logic zero and continue to send a logic
zero to 8 KHZ output registers 798a and 798b, respectively,
until the rollover counter rolls over. As a result, 8 KHZ
output registers 798a and 798b provide 8 KHZ signals with
a 50% duty cycle on BITSliTXREF and BITS2iTXREF
to the BITS T1/E1 framer.

As long as a clock signal is received over signal 781
(77.76 MHZ), rollover counter 796 continues to count caus-
ing BITS circuits 802a and 802b to continue toggling 8 KHZ
registers 798a and 798b and causing load circuit 800 to
continue to load logic 1110 into the embedding registers
every 8 KHZ. As a result, the embedding registers will
continue to provide a 19 MHZ clock signal with an embed-
ded 8 KHZ signal on line 784. This is often referred to as “fly
wheeling.”

Referring to FIG. 53, an extractor circuit 804 within the
ERC is used to extract the embedded 8 KHZ signal from
ERCiSTRATiSYNC. When the EX CTS is the master,
ERCiSTRATiSYNC corresponds to the output signal 770
from the timing module 768 (pure 19.44 MHZ), and thus, no
embedded 8 KHZ signal is extracted. When the EX CTS is
the slave, ERCiSTRATiSYNC corresponds to the external
timing reference signal provided by the other EX CTS (i.e.,
STRATiSYNC 755; 19.44 MHZ with embedded 8 KHZ)
and the embedded 8 KHZ signal is extracted. The extractor
circuit includes three extractor registers 806a—806c. Each
extractor register is connected to the 77.76 MHZ VCXO
output signal 781, and on each clock pulse, extractor register
806a receives a logic one input and passes its value to
extractor register 806b which passes its value to extractor
register 806C which provides an 8 KHZ pulse 808. The
extractor registers are also connected to ERCiSRATi

10

15

20

25

30

35

40

45

50

55

60

65

146

SYNC which provides an asynchronous reset to the extrac-
tor registers—that is, when ERCiSTRATiSYNC is logic
zero, the registers are reset to zero. Every two 77.76 MHZ
clock pulses, therefore, the extractor registers are reset and
for most cycles, extractor register 806C passes a logic zero
to output signal 808. However, when the EX CTS is the
slave, every 8 KHZ ERCiSTRATiSYNC remains a logic
one for three 77.76 MHZ clock pulses allowing a logic one
to be passed through each register and onto output signal 808
to provide an 8 KHZ pulse.

8 KHZ output signal 808 is passed to extractor circuit 804
and used to reset the rollover counter to synchronize the
rollover counter to the embedded 8 KHZ signal within
ERCiSTRATiSYNC when the EX CTS is the slave. As a

result, the 8 KHZ embedded signal generated by both EX
CTSs are synchronized.
External Local Timing Subsystem (EX LTS)

Referring to FIG. 54, EX LTS 756 receives STRATi
REFiB from one EX CTS and STRATiREFiA from the
other EX CTS. STRATiREFiB and STRATiREFiA

correspond to one of STRATiREFl-STRATiREFN (FIG.
50) output from each EX CTS. STRATiREFiB and
STRATiREFiA are provided as inputs to a MUX 810a and
a hardware control logic 812 within the EX LTS selects the
input to MUX 810a using REFiSEL (1:0) signals. An
activity detector 814a monitors the activity of STRATi
REFiA and sends a signal to hardware control logic 812 if
it detects an inactive signal (i.e., stuck at logic one or zero).
Similarly, an activity detector 814b monitors the activity of
STRATiREFiB and sends a signal to hardware control
logic 812 if it detects an inactive signal (i.e., stuck at logic
one or zero). If the hardware control logic receives a signal
from either activity detector indicating that the monitored
signal is inactive, the hardware control logic automatically
changes the REFiSEL (1:0) signals to cause MUX 810a to
select the other input signal and send an interrupt to the local
processor.

Asecond MUX 810b receives a feed back signal 816 from
the EX LTS itself. Hardware control logic 812 uses
FBiSEL(1:0) to select either a feedback signal input to
MUX 810b or a test header 818b input to MUX 810b. The
test header input is only used in a test mode. In regular use,
feedback signal 816 is selected. Similarly, in a test mode, the
hardware control logic may use REFiSEL(1:0) to select a
test header 818a input to MUX 810a.

Output signals 820a and 820b from MUXs 810a and
810b, respectively, are provided to phase detector 822. The
phase detector compares the rising edge of the two input
signals to determine the magnitude of any phase shift
between the two. The phase detector then generates variable
voltage pulses on outputs 821a and 821b representing the
magnitude of the phase shift. The phase detector outputs are
used by discrete logic circuit 822 to generate a voltage on
signal 823 representing the magnitude of the phase shift. The
voltage is used to speed up or slow down (i.e., change the
phase of) of an output 825 of a VCXO 824 to track any phase
change in STRATiREFiA or STRATiREFiB. The dis-
crete logic components implement filters that determine how
quickly or slowly the VCXO’s output will track the change
in phase detected on the reference signal.

In one embodiment, the VCXO is a 155.51 MHZ or a 622
MHZ VCXO. This value is dependent upon the clock speeds
required by components, outside the EX LTS but on the local
card, that are responsible for transferring network data over
the optical fibers in accordance with the SONET protocol.
On at least the universal port card, the VCXO output 825
signal is sent to a clock driver 830 for providing local data
transfer components with a 622 MHZ or 155.52 MHZ clock
signal 831.

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 344

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 345

US 6,880,086 B2

147

The VCXO output 825 is also sent to a divider chip 826
for dividing the signal down and outputting a 77.76 MHZ
output signal 827 to a clock driver chip 828. Clock driver
chip 828 provides 77.76 MHZ output signals 829a for use by
components on the local printed circuit board and provides
77.76 MHZ output signal 829b to ERC circuit 782. The ERC
circuit also receives input signal 832 corresponding to the
EX LTS selected input signal either STRATiREFiB or
STRATiREFiA. As shown, the same ERC circuit that is
used in the EX CTS may be used in the EX LTS to extract
an 8 KHZ JOFP pulse for use by data transfer components on
the local printed circuit board. Alternatively, the ERC circuit
could include only a portion of the logic in ERC circuit 782
on the EX CTS.

Similar to hardware control logic 712 (FIG. 47) within the
switch fabric LTS, hardware control logic 812 within the EX
LTS implements a state machine (similar to the state
machine shown in FIG. 48) based on signals from activity
detectors 814a and 814b.

External Reference Clock (ERC) Circuit
Referring again to FIGS. 52 and 53, when the ERC circuit

is within an EX LTS circuit, the inputs to extractor circuit
804 are input signal 832 corresponding to the LTS selected
input signal either STRAT REFiB or STRATiREFiA and
77.76 MHZ clock input signal 829b. The extracted 8 KHZ
pulse 808 is again provided to embeddor circuit 792 and
used to reset rollover counter 796 in order to synchronize the
counter with the embedded 8 KHZ signal with STRATi
REFiA or STRATiREFiB. Because the EX CTSs that

provide STRATiREFiA and STRATiREFiB are
synchronous, the embedded 8 KHZ signals within both
signals are also synchronous. Within the EX LTS, the
embedding registers 794a—794d and BITS registers 798a
and 798b are not used. Instead, a circuit 834 monitors the
value of the rollover counter and when the rollover counter

rolls over to a value of zero, circuit 834 sends a logic one to
8 KHZ register 798C which provides an 8 KHZ pulse signal
836 that may be sent by the LTS to local data transfer
components (i.e., J0FP) and processor components as a local
processor timing signal.

Again, as long as a clock signal is received over signal
829b (77.76 MHZ), rollover counter 796 continues to count
causing circuit 834 to continue pulsing 8 KHZ register 7986.
External Central Timing Subsystem (EX CTS) Alternate
Embodiment

Referring to FIG. 55, instead of using one of the STRATi
REF1-STRATiREFN signals from the other EX CTS as an
input to MUX 772a, the output 770 (marked “Alt. Output to
other EX CTS”) of timing module 768 may be provided to
the other EX CTS and received as input 838 (marked “Alt.
Input from other EX CTS”). The PLL circuit, including
MUXs 772a and 772b, phase detector 776, discrete logic
circuit 778 and VCXO 780, is necessary to synchronize the
output of the VCXO with either output 770 of the timing
module or a signal from the other EX CTS. However, PLL
circuits may introduce jitter into their output signals (e.g.,
output 781), and passing the PLL output signal 781 via one
of the STRATiREFl-STRATiREFN signals from one EX
CTS into the PLL of the other EX CTS—that is, PLL to
PLL—may introduce additional jitter into output signal 781.
Since accurate timing signals are critical for proper data
transfer with other network devices and SONET standards

specifically set maximum allowable jitter transmission at
interfaces (Bellcore GR-253-CORE and SONET Transport
Systems Common Carrier Criteria), jitter should be mini-
mized. Passing the output 770 of the timing module within
the EX CTS to the input 838 of the other EX CTS avoids

10

15

20

25

30

35

40

45

50

55

60

65

148

passing the output of one PLL to the input of the second PLL
and thereby reduces the potential introduction of jitter.

It is still necessary to send one of the STRATiREFl-
STRATiREFN signals to the other EX CTS (received as
STRATiSYNC 755) in order to provide ERC 782 with a
19.44 MHZ signal with an embedded 8 KHZ clock for use
when the EX CTS is a slave. The ERC circuit only uses
ERCiSTRATiSYNC in this instance when the EX CTS is
the slave.

Layer One Test Port
The present invention provides programmable physical

layer (i.e., layer one) test ports within an upper layer
network device (e.g., network device 540, FIG. 35). The test
ports may be connected to external test equipment (e.g., an
analyzer) to passively monitor data being received by and
transmitted from the network device or to actively drive data
to the network device. Importantly, data provided at a test
port accurately reflects data received by or transmitted by
the network device with minimal modification and no upper
layer translation or processing. Moreover, data is supplied to
the test ports without disrupting or slowing the service
provided by the network device.

Referring to FIGS. 35 and 36, network device 540
includes at least one cross-connection card 562a—562b,
564a—564b, 566a—566b, 568a—568b, at least one universal
port card 554a—554h, 556a—556h, 558a—558h, 560a—560h,
and at least one forwarding card 546a—546e, 548a—548e,
550a—5506, 552a—552e. Each port card includes at least one
port 571a—571n for connecting to external physical network
attachments 576a—576b, and each port card transfers data to
a cross-connection card. The cross-connection card transfers

data between port cards and forwarding cards and between
port cards. In one embodiment, each forwarding card
includes at least one port/payload extractor 582a—582n for
receiving data from the cross-connection cards.

Referring to FIG. 56, a port 571a on a port card 554a
within network device 540 may be connected to another
network device (not shown) through physical external net-
work attachments 576a and 576b. As described above,
components 573 on the port card transfer data between port
571a and cross-connection card 562a, and components 563
on the cross-connection card transfer data on particular paths
between the port cards and the forwarding cards or between
port cards. For convenience, only one port card, forwarding
card and cross-connection card are shown.

For many reasons, including error diagnosis, a service
administrator may wish to monitor the data received on a
particular path or paths at a particular port, for example, port
571a, and/or the data transmitted on a particular path or
paths from port 571a. To accomplish this, the network
administrator may connect test equipment, for example, an
analyzer 840 (e.g., an Omniber analyzer available from
Hewlett Packard Company), to the transmit connection of
port 571b to monitor data received at port 571a and/or to the
transmit connection of port 571C to monitor data transmitted
from port 571a. The network administrator then notifies the
NMS (e.g., NMS 60 running on PC 62, FIG. 35) as to which
port or ports on which port card or port cards should be
enabled and whether the transmitter and/or receiver for each

port should be enabled. The network administrator also
notifies the NMS as to which path or paths are to be sent to
each test port, and the time slot for each path. With this
information, the NMS fills in test path table 841 (FIGS. 57
and 58) in configuration database 42.

Similar to the process of enabling a working port through
path table 600 (FIGS. 37 and 38), when a record in the test
path table is filled in, the configuration database sends an

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 345

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 346

US 6,880,086 B2

149

active query notification to the path manager (e.g., path
manager 597) executing on the universal port card (e g., port
card 5546) corresponding to the universal port card port LID
in the path table record. For example, port 571b may have
a port LID of 1232 (record 842, FIG. 58) and port 571b may
have a port LID of 1233 (record 843). An active query
notification is also sent to NMS database 61, and once the
NMS database is updated, the NMS displays the new system
configuration, including the test ports, to the user.

Through the test path table, the path manager learns that
the transmitters of ports 571b and 5716 need to be enabled
and which path or paths are to be transferred to each port. As
shown in path table 600 (FIG. 38), path LID 1666 corre-
sponds to working port LID 1231 (port 571a), and as shown
in test path table 841 (FIG. 58), path LID 1666 is also
assigned to test port LIDs 1232 and 1233 (ports 571b and
5716, respectively). Record 842 indicates that the receive
portion of path 1666 (i.e., “ingress” in Monitor column 844)
is to be sent to port LID 1232 (i.e., port 571b) and then
transmitted (i.e., “no” in Enable Port Receiver column 845)
from port LID 1232, and similarly, record 843 indicates that
the transmit portion of path 1666 (i.e., “egress” in Monitor
column 844) is to be sent to port LID 1233 (i.e., port 5716)
and then transmitted (i.e., “no” in Enable Port Receiver
column 845) from port LID 1233.

The path manager passes the path connection information
to cross-connection manager 605 executing on the cross-
connection card 5626. The CCM uses the connection infor-

mation to generate a new connection program table 601 and
uses this table to program internal connections through one
or more components (e.g., a TSE chip 563) on the cross-
connection card. After re-programming, cross-connection
card 5626 continues to transmit data corresponding to path
LID 1666 between port 5716 on universal port card 5546
and the serial line input to payload extractor 5826 on
forwarding card 5466. However, after reprogramming,
cross-connection card 5626 also multicasts the data corre-

sponding to path LID 1666 and received on port 5716 to port
571b and data corresponding to path LID 1666 and trans-
mitted to port 5716 by forwarding card 5466 to port 5716.

Analyzer 840 may then be used to monitor both the
network data received on port 5716 and the network data
being transmitted from port 5716. Alternatively, analyzer
840 may only be connected to one test port to monitor either
the data received on port 5716 or the data transmitted from
port 5716. The data received on port 5716 may be altered by
the components on the port card(s) and the cross-connection
cards before the data reaches the test port but any modifi-
cation is minimal. For example, where the external network
attachment 5766 is a SONET optical fiber, the port card
components may convert the optical signals into electrical
signals that are passed to the cross-connection card and then
back to the test ports, which reconvert the electrical signals
into optical signals before the signals are passed to analyzer
840. Since the data received at port 5716 has not been
processed or translated by the upper layer processing com-
ponents on the forwarding card, the data accurately reflects
the data received at the port. For example, the physical layer
(e.g., SONET) information and format is accurately
reflected in the data received.

To passively monitor both the data received and trans-
mitted by a particular port, two transmitters are necessary
and, thus, two ports are consumed for testing and cannot be
used for normal data transfer. Because the test ports are
programmable through the cross-connection card, however,
the test ports may be re-programmed at any time to be used
for normal data transfer. In addition, redundant ports may be

10

15

20

25

30

35

40

45

50

55

60

65

150

used as test ports to avoid consuming ports needed for
normal data transfer. Current network devices often have a

dedicated test port that can provide both the data received
and transmitted by a working port. The dedicated test port,
however, contains specialized hardware that is different
from the working ports and, thus, cannot be used as a
working port. Hence, although two ports may be consumed
for monitoring the input and output of one working port,
they are only temporarily consumed and may be
re-programmed at any time. Similarly, if the port card on
which a test port is located fails, the test port(s) may be
quickly and easily reprogrammed to another port on another
port card that has not failed.

Instead of passively monitoring the data received at port
5716, test equipment 840 may be connected to the receiver
of a test port and used to drive data to network device 540.
For example, the network administrator may connect test
equipment 840 to the receiver of test port 5716 and then
notify the NMS to enable the receiver on port 5716 to
receive path 1666. With this information, the NMS modifies
test path table 841. For example, record 844 (FIG. 58)
indicates that the receive portion of path 1666 (i.e., “ingress”
in Monitor column 844) is to be driven (i.e., “yes” in Enable
Port Receiver column 845) externally with data from port
LID 1233 (i.e., port 5716). Again, an active query notifica-
tion is sent to path manager 597. Path manager 597 then
disables the receiver corresponding to port LID 1231 (i.e.,
port 571 a) and enables the receiver corresponding to port
LID 1233 (i.e., port 5716) and passes the path connection
information to cross-connection manager 605 indicating that
port LID 1231 will supply the receive portion of path 1666.
The cross-connection manager uses the connection informa-
tion to generate a new connection program table 601 to
re-program the internal connections through the cross-
connection card. In addition, the network administrator may
also indicate that the transmitter of port 5716 should be
disabled, and path manager 597 would disable the transmit-
ter of port 5716 and pass the connection information to the
cross connection manager.

After re-programming, cross-connection card 5626 data is
sent from test equipment 840 to test port 5716 and then
through the cross-connection card to forwarding card 5466.
The cross-connection card may multicast the data from
forwarding card 5466 to both working port 5716 and to test
port 5716, or just to test port 5716 or just working port 5716.

Instead of having test equipment 840 drive data to the
network device over a test port, internal components on a
port card, cross-connection card or forwarding card within
the network device may drive data to the other cards and to
other network devices over external physical attachments
connected to working ports and/or test ports. For example,
the internal components may be capable of generating a
pseudo-random bit sequence (PRBS). Test equipment 840
connected to one or more test ports may then be used to
passively monitor the data sent from and/or received by the
working port, and the internal components may be capable
of detecting a PRBS over the working port and/or test
port(s).

Although the test ports have been shown on the same port
card as the working port being tested, it should be
understood, that the test ports may be on any port card in the
same quadrant as the working port. Where cross-connection
cards are interconnected, the test ports may be on any port
card in a different quadrant so long as the cross-connection
card in the different quadrant is connected to the cross-
connection card in same quadrant as the working port.
Similarly, the test ports may be located on different port

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 346

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 347

US 6,880,086 B2

151

cards with respect to each other. A different working port
may be tested by re-programming the cross-connection card
to multicast data corresponding to the different working port
to the test port(s). In addition, multiple working ports may
be tested simultaneously by re-programming the cross-
connection card to multicast data from different paths on
different working ports to the same test port(s) or to multiple
different test ports. A network administrator may choose to
dedicate certain ports as test ports prior to any testing
needing to be done or the network administrator may choose
certain ports as test ports when problems arise.

The programmable physical layer test port or ports allow
a network administrator to test data received at or transmit-

ted from any working port or ports and also to drive data to
any upper layer card (i.e., forwarding card) within the
network device. Only the port card(s) and cross-connection
card need be working properly to passively monitor data
received at and sent from a working port. Testing and
re-programming test ports may take place during normal
operation without disrupting data transfer through the net-
work device to allow for diagnosis without network device
disruption.
NMS Server Scalability

As described above, a network device (e.g., 10, FIG. 1 and
540, FIG. 35) may include a large number (e.g., millions) of
configurable/manageable objects. Manageable objects are
typically considered physical or logical. Physical managed
objects correspond to the physical components of the net-
work device such as the network device itself, one or more
chassis within the network device, shelves in each chassis,
slots in each shelf, cards inserted in each slot, physical ports
on particular cards (e.g., universal port cards), etc. Logical
managed objects correspond to configured elements of the
network device such as SONET paths, internal logical ports
(e.g., forwarding card ports), ATM interfaces, virtual ATM
interfaces, virtual connections, paths/interfaces related to
other network protocols (e.g., MPLS, IP, Frame Relay,
Ethernet), etc.

If multiple NMS clients request access to multiple differ-
ent network devices and the NMS server is required to
retrieve and store data for all managed objects correspond-
ing to each network device, then the NMS server’s local
memory will likely be quickly filled and repeated retrievals
of data from each network device will likely be necessary.
Retrieval of a large amount of data from each network
device limits the scalability of the NMS server and reduces
the NMS server’s response time to NMS client requests.

To improve the scalability of the NMS server and improve
data request response times, only physical managed objects
are initially retrieved from a selected network device and
logical managed objects are retrieved only when necessary.
To further increase NMS server scalability and response
time, proxies for managed objects (preferably physical man-
aged objects and only a limited number of global logical
managed objects) are stored in memory local to each NMS
client. Moreover, to increase NMS server scalability and
response time, unique identification numbers corresponding
to each managed object are also stored in memory local to
the NMS client (for example, in proxies or GUI tables) and
used by the NMS server to quickly retrieve data requested by
the NMS client. Each NMS client, therefore, maintains its
user context of interest, eliminating the need for client-
specific device context management by the NMS server.

Referring to FIG. 59, an NMS client 850a runs on a
personal computer or workstation 984 and uses data in
graphical user interface (GUI) tables 985 stored in local
memory 986 to display a GUI to a user (e.g., network

10

15

20

25

30

35

40

45

50

55

60

65

152

administrator, provisioner, customer) after the user has
logged in. In one embodiment, the GUI is GUI 895
described above with reference to FIGS. 4a—4z, 5LZ—52,
6a—6p, 7a—7y, 8a—8e, 9a—9n, 10a—10i and 11a—11g. When
GUI 895 is initially displayed (see FIG. 4a), only navigation
tree 898 is displayed and under Device branch 898a a list
898b of IP addresses and/or domain name server (DNS)
names may be displayed corresponding to network devices
that may be managed by the user in accordance with the
user’s profile.

If the user selects one of the IP addresses (e.g.,
192.168.9202, FIG. 4f) in list 898b, then the client checks
local memory 986 (FIG. 59) for proxies (described below)
corresponding to the selected network device and if such
proxies are not in local memory 986, the NMS client sends
a network device access request including the IP address of
the selected network device to an NMS server, for example,
NMS server 851a. The NMS server may be executed on the
same computer or workstation as the client or, more likely,
on a separate computer 987. The NMS server checks local
memory 987a for managed objects corresponding to the
network device to be accessed and if the managed objects
are not in local memory 987a, the NMS server sends
database access commands to the configuration database 42
within the network device corresponding to the IP address
sent by the NMS client. The database access commands
retrieve only data corresponding to physical components of
the network device.

In one embodiment, data is stored within configuration
database 42 as a series of containers. Since the configuration
database is a relational database, data is stored in tables and
containment is accomplished using pointers from lower
level tables (children) to upper level tables (parents). As
previously discussed with reference to FIGS. 12a—126, after
the network device is powered-up, the Master MCD (Master
Control Driver) 38 takes a physical inventory of the network
device (e.g., computer system 10, FIG. 1, network device
540, FIGS. 35, 59) and assigns a unique physical identifi-
cation number (PID) to each physical component within the
system, including the network device itself, each chassis in
the network device, each shelf in each chassis, each slot in
each shelf, each card inserted in each slot, and each port on
each card having a physical port (e.g., universal port cards).
As previously stated, the PID is a unique logical number
unrelated to any physical aspect of the component.

The MCD then fills in tables for each type of physical
component, such tables being provided by a default con-
figuration within the configuration database. Alternatively,
the MCD could create and fill in each table. In one

embodiment, the configuration database includes a managed
device table 983 (FIG. 60a), a chassis table 988 (FIG. 60b),
a shelf table 989 (FIG. 60c), a slot table 990 (FIG. 60a), a
card table 47' (FIG. 606), and a port table 49' (FIG. 60f). The
MCD enters the assigned unique PID for each physical
component in a row (i.e., record) in one of the tables.
Consequently, each unique PID serves as a primary key
within the configuration database for the row/data corre-
sponding to each physical component. Where available, the
MCD also enters data representing attributes (e.g., card type,
port type, relative location, version number, etc.) for the
component in each table row. In addition, with the exception
of the managed device table, each row includes a unique PID
corresponding to a parent table. The unique PID correspond-
ing to a parent table is a pointer and provides data “con-
tainment” by linking each child table to its parent table (i.e.,
provides a table hierarchy). The unique PID corresponding
to the parent table may also be referred to as a foreign key
for association.

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 347

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 348

US 6,880,086 B2

153

Referring to FIG. 60a, since the managed device is the top
physical level, managed device table 983 includes one row
983a representing the one managed device (e.g., 540, FIGS.
35 and 59) including a unique managed device PID 983b
(e.g., 1; i.e., primary key) and attributes Al—An correspond-
ing to the managed device but the managed device table does
not include a parent PID (i.e., foreign key for association).
In the current embodiment, chassis table 988 includes one

row 988a representing the one chassis (e.g., 620, FIGS.
41a—41b) in the managed device. Other network devices
may have multiple chassis and a row would be added to the
chassis table for each chassis and each row would include

the same managed device PID (e.g., 1). Each row in the
chassis table includes a unique chassis PID 988b (e.g., 2; i.e.,
primary key) and attributes Al—An corresponding to the
chassis and a managed device PID 988C (i.e., parent PID/
foreign key for association). Referring to FIG. 606, shelf
table 989 includes one row for each shelf in the chassis and

each row includes a unique shelf PID 989a (e.g., 3—18; i.e.,
primary key) and attributes Al—An corresponding to each
shelf and a chassis PID 989b (i.e., foreign key for
association). Since all the shelves are in the same chassis in
this embodiment, they each list the same chassis PID (e.g.,
2). Referring to FIG. 60d, slot table 990 includes one row for
each slot in the chassis and each row includes a unique slot
PID 990a (e.g., 20—116; i.e., primary key) and attributes
Al—An corresponding to each slot and a shelf PID 990b (i.e.,
foreign key for association). Since there may be many
shelves in the chassis, the shelf PID in each row corresponds
to the shelf in which the slot is located. For example, a row
990C includes slot PID 20 corresponding to a shelf PID of 3,
and a row 990d includes slot PID 116 corresponding to a
different shelf PID of 18.

Referring to FIG. 606, card table 47' includes one row for
each card inserted within a slot in the chassis and each row

includes a unique card PID 47a (i.e., primary key), attributes
(e.g., CWD Type, Version No., etc.) corresponding to each
card and a slot PID 47b (i.e., foreign key for association)
corresponding to the slot in which the card is inserted.
Referring to FIG. 601$ port table 49' includes one row for
each physical port located on a universal port card in the
chassis and each row includes a unique port PID 49a (i.e.,
primary key), attributes (e.g., port type, version no., etc.)
corresponding to each port and a card PID 49b (i.e., foreign
key for association) corresponding to the card on which the
port is located.

Even after initial power-up, master MCD 38 continues to
take physical inventories of the network device to determine
if physical components have been added or removed. For
example, cards may be added to empty slots or removed
from slots. When changes are detected, master MCD 38
updates the tables (e.g., card table 47' and port table 49')
accordingly, and through the active query feature, the con-
figuration database updates an external NMS database (e.g.,
61, FIG. 59) and notifies the NMS server. In one
embodiment, each time a physical component is changed,
the NMS server sends the NMS client a full set of updated
proxies to ensure that the NMS client is fully synchronized
with the network device. Alternatively, only those proxies
that are affected may be updated. As described below,
however, proxies may include pointers to both a parent
proxy and children proxies, and if so, even a change to only
one physical component requires changes to the proxy for
that component and any related parent and/or children
proxies.

In this embodiment, therefore, when the server sends
database access commands to the configuration database

10

15

20

25

30

35

40

45

50

55

60

65

154

within the network device to retrieve all data corresponding
to physical components of the network device, the database
access commands request data from each row in each of the
physical tables (e.g., managed device table 983, chassis table
988, shelf table 989, slot table 990, card table 47' and port
table 49'). The data from these tables is then sent to the NMS
server, and the server creates physical managed objects
(PMOl—PMOn, FIG. 59) for each row in each table and
stores them in local memory 987a.

Referring to FIG. 61a, each physical managed object 991
created by the NMS server includes the unique PID 991a
and the attribute data 991b associated with the particular
row/record in the configuration database table and function
calls 9916. With the exception of the managed device
physical managed object, the attribute data includes a
pointer (i.e., PID) for the corresponding parent physical
component, and with the exception of the port physical
managed objects, each managed object’s attribute data also
includes one or more pointers (i.e., PIDs) corresponding to
any children physical components. In this embodiment, the
port managed objects are the lowest level physical compo-
nent and, therefore, do not include pointers to children
physical components.

In one embodiment, all physical managed objects include
a “Get Parent” 9916 function call to cause the NMS server

to retrieve data corresponding to the parent physical com-
ponent. A Get Parent function call to the managed device
managed object receives a null message since the managed
device does not have a parent component. The Get Parent
function call may be used for constraint checking. For
example, prior to configuring a particular card as a backup
for another card, the Get Parent function call may be placed
twice by the NMS server to ensure that both cards are within
the same shelf—that is, the network device may have a
constraint that redundant boards must be within the same
shelf. The first Get Parent function call determines which
slot each card is in and the second Get Parent function call

determines which shelf each slot is in. If the shelves match,
then the constraint is met.

In one embodiment, all physical managed objects include
a “Get Children” 991f function call to cause the NMS server
to retrieve data from the configuration database for children
physical components related to the physical managed object.
A Get Children function call to a port managed object
receives a null message since the port does not have any
physical children components. The data retrieved with the
Get Children function call is used to fill in the tables in the

physical tabs (e.g., system tab 934 (FIG. 4s), module tab 936
(FIG. 4t), ports tab 938 (FIG. 414) and SONET Interfaces tab
940 (FIG. 412)) within configuration/status window 897
(FIG. Sq). Some or all of the data from each row in the
configuration database tables may be used to fill in these
tables.

In addition to Get Children and Get Parent function calls,
each physical managed object includes a “Get Config” 991g
and a “Set Config” 991k function call. The Get Config
function call is used to retrieve data for dialog boxes when
a user double clicks the left mouse button on an entry in one
of the tabs in status window 897. The Set Config function
call is used to implement changes to managed objects
received from a user through a dialog box.

Instead of a “Get Children” function call, the port man-
aged object includes a “Get SONET Path Table” function
call to cause the server to retrieve all SONET paths (logical
managed objects) configured for that particular port for
display in SONET Paths tab 942 (FIG. Sq). Since SONET
paths are children to a port, the “Get SONET Path Table”

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 348

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 349

US 6,880,086 B2

155

corresponds to the “Get Children” function call in the other
physical managed objects. However, the pointers (i.e., logi-
cal identification numbers (LIDs)) to the children are not
stored in the port managed object attribute data. This is
because the number of SONET paths that the SONET port
would need to point may be large and would have to be
regularly updated as SONET Paths are created and deleted.
The port managed object also includes a “Create SONET
Path” function call and a “Delete SONET Path” function call

to cause the server to create or delete, respectively, a SONET
path for that particular port. As described below, the port
managed object may also include other function calls related
to logical components.

Each managed object 991 also includes a “Get Proxy”
function call 991d, and after creating each managed object,
the NMS server places a get proxy function call to the
managed object. Placing the get proxy call causes the NMS
server to create a proxy (PX) for the managed object and
send the proxy (e.g., PXl—PXn) to memory 986 local to the
NMS client that requested the network device access. Refer-
ring to FIG. 61b, each proxy includes the PID 992a and
some or all of the attribute data 992b from the corresponding
managed object. The decision to include some or all of the
attribute data within the proxy may depend upon the size of
the memory 986 local to the NMS client. This may be a
static design decision based on the expected size of the
memory local to the typical NMS client, or this may be a
dynamic decision based on the actual size of the memory
local to the NMS client that requested access to the network
device. If sufficiently large, the proxy may include all the
attribute data. If not sufficiently large, then perhaps only
attribute data regularly accessed by users may be included in
the proxy. For example, for a port managed object perhaps
only the port name, connection type and relative position
within the network device is included in the proxy.

In addition, each proxy may include function calls 992C
similar to one or more function calls in the corresponding
managed object, with the exception of the “Get Proxy”
function call. Unlike the managed object function calls,
however, the proxy function calls cause the NMS client to
send messages to the NMS server in, for example, JAVA
RMI. For instance, the SONET Port proxy like the SONET
Port managed object includes the “Get SONET Path Table”,
“Create SONET Paths” and “Delete SONET Paths” function

calls. However, proxy function calls cause the NMS client to
send JAVA RMI messages to the NMS server to cause the
server to place similar function calls to the managed object.
The managed object function calls cause the server to
generate database access commands to the configuration
database in the network device.

Initially, the NMS client uses data from the received
proxies (PXl—PXn, FIG. 59) to update GUI tables 985
which causes the GUI to display device mimic 896a (FIG.
4f) in graphic window 896b and system tab 934 (FIG. 4s) in
configuration/service status window 897. Limiting the initial
data retrieval from the configuration database to only data
corresponding to physical components of the network
device—as opposed to both physical and logical
components—reduces the amount of time required to trans-
fer the data from the configuration database to the NMS
server and on to the NMS client. Thus, the NMS client is
able to display the device mimic and system tab more
quickly than if data corresponding to both the physical and
logical components were retrieved. To further increase the
speed with which the device mimic and system tab are
displayed, the NMS server may first transfer the proxies
necessary for the device mimic and the system tab and then

10

15

20

25

30

35

40

45

50

55

60

65

156

transfer the proxies corresponding to other physical tabs,
including module (i.e., card) tab 936 (FIG. 4t), port tab 938
(FIG. 414) and SONET Interfaces tab 940 (FIG. 4v).

If a user selects a different network device from naviga-
tion tree 898 (FIG. 5h) using NMS client 850a, NMS client
850a searches local memory 986 for proxies associated with
the selected network device and if not found, the NMS client
sends JAVA RMI messages to the NMS server to cause the
NMS server to retrieve all physical data from the selected
network device, create physical managed objects, store them
in local memory 987a, create proxies for each physical
managed object and send the proxies to the NMS client. If
memory 986 local to the NMS client is sufficiently large,
then the proxies for the first selected network device may
remain in memory along with the proxies for the second
selected network device. Consequently, if the user re-selects
the first selected network device, the proxies are located in
local memory by the NMS client, and the NMS client does
not have to access the NMS server.

In addition to reducing the time required to display
physical information through GUI 895, limiting the initial
data retrieval to only physical data reduces the amount of
memory 987a local to the NMS server required to store the
managed objects. Moreover, once the data from the proxies
are added to the GUI tables, the GUI can respond to a user
request for any of the device views within the mimic (as
shown in FIGS. 4f—4r) and to a user request for any physical
tab without having to send data requests to the NMS server.
Consequently, the GUI response time is increased, traffic
between the NMS client and server is reduced and the

burden on the server to respond to client requests is reduced.
If the proxies include all of the attribute data from the

managed objects, then once the proxies are transferred to the
NMS client, it is not necessary for the NMS server to
continue storing the corresponding physical managed
objects. If, however, a proxy includes only some of the
attribute data from its corresponding managed object, then
continuing to store the managed object at the NMS server
saves time if the user requests access to data not included in
the proxy. For example, a proxy may only include data for
attributes displayed in a tab in status window 897. If a user
desires more data, the user may double click the left mouse
button on an entry in the tab to cause a dialog box to be
displayed including additional attribute data. This causes the
NMS client to place a Get Config function call to the
corresponding proxy which causes the NMS client to send
JAVA RMI messages to the NMS server. If the managed
object is still in local memory 987a, then the response time
to the client is faster than if the server needs to access the

configuration database again to retrieve the data.
Maintaining the managed objects for a particular network

device in local memory 987a is also advantageous if another
NMS client requests access to the same network device. As
previously mentioned, when the NMS server receives a
network device access request, it first checks local memory
987a. If the managed objects are already present, then the
NMS server may respond more quickly than if the server
again needs to retrieve the data from the network device.

Due to the advantages described above, in one
embodiment, the NMS server does not automatically delete
managed objects from its local memory after proxies are
sent to the NMS client. However, because the NMS server’s
local memory is a limited resource, as clients request access
to more and more different network devices, it may become
necessary for the NMS server to overwrite managed objects
within local memory 987a such that they are no longer
available. As previously mentioned, sending proxies to the

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 349

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 350

US 6,880,086 B2

157

NMS clients allows the clients to display physical data
through GUI 895 without accessing the NMS server. Thus,
even when the NMS server is forced to overwrite corre-

sponding managed objects in local memory 987a, the client
is able to continue displaying physical data through GUI
895.

Importantly, through the unique PID and the function
calls, the proxies also provide an improved mechanism for
accessing logical data and physical data not included within
the proxies. As mentioned above, if the user requests access
to physical data not in the proxy, then the NMS client places
a Get Config function call to the NMS server. The function
call is made more efficient by including the unique PID
stored in the proxy. The NMS server uses the PID to first
search local memory 987a—perhaps the NMS server
searches a hash table in cache. If the PID is found, then the
NMS quickly sends the data from the corresponding man-
aged object to the NMS client. If the PID is not found in
local memory 987a, then the NMS server uses the PID as a
primary key to retrieve the physical data from the configu-
ration database within the network device and again builds
the corresponding physical managed object. The NMS
server then sends the data from the managed object to the
NMS client.

Without the PID, the NMS server would be forced to walk
through the hierarchical physical tables until the correct
physical component was found. For example, if the NMS
server needs data relevant to a particular port, the NMS
server would begin by locating the managed device, the
chassis, then the correct shelf within the chassis, then the
correct slot within the chassis, then the module within the
slot and then finally the correct port on the module. This will
likely take several database accesses and will certainly take
more time than directly accessing the port data using a
primary key that provides absolute context.

The process is similar if the data requested is logical. For
example, if a user selects a particular port (e.g., port 939a,
FIG. 5a) and then selects SONET Paths tab 942 (FIG. 5h),
the logical data associated with the SONET paths configured
for the selected port (e.g., SONET paths 942a and 942b) is
needed. To do this, the NMS client places a “Get SONET
Path Table” function call to the port proxy which causes the
NMS client to issue JAVA RMI messages to the NMS server
including a request for the SONET paths configured for the
physical port associated with the unique port PID stored in
the proxy. The NMS server first searches local memory 987a
for the PID. If a managed object including the PID is found
in local memory, then the NMS server places a similar “Get
SONET Path Table” function call through the port managed
object. If the PID is not found in local memory, then the
NMS server uses the port PID as a primary key to quickly
retrieve the data from the configuration database stored in
the table row corresponding to the selected port. The NMS
server again builds the managed object for the port and then
places the “Get SONET Path Table” function call through
the managed object. The Get SONET Path Table function
call within the managed object causes the NMS server to
generate database access commands to the configuration
database within the network device to retrieve data corre-

sponding to each SONET path configured for the selected
port. Only some of the data in each row may be necessary
to fill in the fields in the tab (e.g., SONET Paths tab 942,
FIG. 4w).

Similar to the physical data, logical data is stored in tables
within configuration database 42 (FIG. 59). The tables may
be provided as part of a default configuration within the
configuration database, or the tables may be created within

10

15

20

25

30

35

40

45

50

55

60

65

158

the configuration database as each different type of table is
needed. In one embodiment, configuration database 42
includes a SONET Path Table (e.g., 600', FIG. 60g), a
Service End Point Table (e.g., 76", FIG. 60h), an ATM
Interface Table (e.g., 114", FIG. 60;), a Virtual ATM Inter-
face Table (e.g., 993, FIG. 60j), a Virtual Connection Table
(e.g., 994, FIG. 60k), a Virtual Link Table (e.g., 995, FIG.
601) and a Cross-Connect Table (e.g., 996, FIG. 60m). Tables
corresponding to other physical layer or upper layer network
protocols may also be included within configuration data-
base 42.

The database access commands corresponding to the Get
SONET Path Table function call include the port PID (from
the proxy/JAVA RMI messages) associated with the selected
port. When the database access commands corresponding to
the Get SONET Path Table function call are received by the
configuration database, the configuration database locates
each row in SONET Path Table 600' (FIG. 60g) including
the selected port PID and returns to the NMS server the data
from each row necessary for the SONET Paths tab. Thus, the
retrieved data is limited to those rows/records corresponding
to the selected port and the data necessary for the tab. This
allows the NMS server and NMS client to quickly respond
to the user’s request for logical data. If all SONET paths
configured for all SONET ports within the network device
(or worse, all logical data) were retrieved, then the response
time would likely be much slower.

For each row of data the NMS server formats the data

according to the SONET Paths tab display and sends it to the
NMS client. The NMS client adds the data to the GUI tables

which causes the GUI tables to display the SONET paths
(e.g., 942a and 942b, FIG. 5h) configured for the selected
port. Along with the data necessary for the SONET Paths
tab, the NMS server also sends the LID for each logical
managed object (i.e., each SONET path) and the NMS client
saves the LID within the GUI tables, in one embodiment,
within a column hidden from the user.

As previously discussed, to retrieve additional attribute
data or change attribute data for a managed object, the user
may simply double click the left mouse button on an entry
in a tab in configuration/status window 897 (FIG. Sq) to
cause a dialog box to appear. When the user double clicks
the left mouse button on the entry, the NMS client places a
“Get Config” function call to the corresponding proxy and
simultaneously opens a GUI dialog 998 (FIG. 59) in local
memory 986. If the selected entry is for a physical compo-
nent of the network device, then the function call causes the
NMS client to populate GUI dialog 998 with attribute data
from the proxy. If the selected entry is for a logical com-
ponent of the network device, for example, a SONET path,
then the NMS client needs data from the configuration
database within the network device to populate GUI dialog
998.

For example, if a user selects SONET path 942a (FIG. Sq)
from SONET Paths tab 942 and double clicks the left mouse

button, the NMS client displays a SONET Path dialog box
997 (FIG. 62). To do this, when the user double clicks the
left mouse button on the entry, the NMS client places a “Get
Config” function call to the corresponding port proxy and
simultaneously opens a GUI dialog 998 (FIG. 59) in local
memory 986. The function call causes the NMS client to
send JAVA RMI messages to the NMS server including both
the port PID from the proxy and the SONET path LID from
the GUI table. The NMS server first searches local memory
987a for the port PID. If a managed object including the port
PID is found, then the NMS server issues a “Get Config”
function call to the managed object including the SONET

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 350

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 351

US 6,880,086 B2

159

Path LID. If the port PID is not found, then the NMS server
uses the port PID as a primary key into the configuration
database to retrieve data from the row/record corresponding
to the port. The NMS server then creates the port managed
object, stores it in local memory and issues the “Get Config”
function call. The function call causes the NMS server to

generate database access commands and send them to the
configuration database within the selected network device.

The database access commands cause the configuration
database to retrieve all the attribute data in the row in

SONET Path Table 600' (FIG. 60g) corresponding to the
SONET path LID. The server uses the retrieved data to build
a configuration object and sends the configuration object to
the NMS client. The NMS client then uses the configuration
object to populate GUI dialog 998 with the data which
causes the dialog box 997 (FIG. 62) to display the data to theuser.

If the user then selects a Cancel button 997a or OK button

997b, then the NMS client closes the dialog box. If the user
selects Cancel button 997a, then the NMS client closes and
deletes GUI dialog 998 and takes no further action. If the
user selects OK button 997b, then it is assumed that the user
made changes to one or more SONET path attributes and
now wants those changes implemented. To implement any
changes made to the SONET path attributes, when the NMS
client detects the selection of the OK button, the NMS client
places a “Set Config” function call to the corresponding port
proxy. The function call causes the NMS client to send JAVA
RMI messages to the NMS server including both the port
PID from the proxy and the SONET path LID from the GUI
table and the attributes for the SONET path. The NMS
server first searches local memory 987a for the port PID. If
a managed object including the port PID is found, then the
NMS server issues a “Set Config” function call to the
managed object including the SONET Path LID. If the port
PID is not found, then the NMS server uses the port PID as
a primary key into the configuration database to retrieve data
from the row/record corresponding to the port. The NMS
server then creates the port managed object, stores it in local
memory and issues the “Set Config” function call. The
function call causes the NMS server to generate database
access commands and send them to the configuration data-
base within the selected network device.

The database access commands cause the configuration
database to locate the row in SONET Path Table 600' (FIG.
60g) corresponding to the SONET path LID and replace the
attributes in that row with the attributes included in the

database access commands. As discussed in detail above,
when tables in the configuration database are updated an
active query feature is used to notify other processes of the
changes. For example, NMS database 61 (FIG. 59) is
automatically updated with any changes. NMS database 61
may be located within computer/workstation 987 or 984 or
within a separate computer/workstation 997. In addition, the
changes are sent to the NMS server which uses the data to
re-build the configuration object. The NMS server then
sends the configuration object to the NMS client. The NMS
client uses the configuration object as an indication that the
Set Config function call was successful. The NMS client
then closes and deletes GUI dialog 998 and uses the received
data to update the GUI tables 985.

Alternatively, proxies may be created for each logical
managed object and sent to the NMS client. In a typical
network device, however, there may be millions of logical
managed objects making storage of all logical proxies in
memory local to an NMS client difficult if not impossible.
Moreover, since logical managed objects change frequently

10

15

20

25

30

35

40

45

50

55

60

65

160

(as opposed to physical managed objects which do not
change as frequently), the stored logical proxies would need
to be updated frequently leading to an increased burden on
both the NMS server and NMS client. Thus, in the preferred
embodiment, only physical proxies are created and stored
local to the NMS client.

Using the unique PIDs as primary keys allows for faster
response times by the NMS server. First the PIDs are used
to quickly check local memory 987a—perhaps hash tables
in a cache. If the data is not in local memory, the PIDS are
used as primary keys to perform a fast data retrieval from
configuration database 42. If the PIDs were not used, the
NMS server would need to navigate through the hierarchy of
tables—possibly performing multiple database accesses—to
locate the data of interest and, thus, response time would be
much slower. As primary keys, the PIDs allow the NMS
server to directly retrieve required data (i.e., table rows/
records) without having to navigate through upper level
tables.

Since logical data corresponds to configured objects, rows
are added to the tables when logical objects are configured.
In addition, the NMS server assigns a unique logical iden-
tification number (LID) for each configured object and
inserts this within each corresponding row. The LID, like the
PID, is used as a primary key within the configuration
database for the row/data corresponding to each logical
component. The NMS server and MCD use the same num-
bering space for LIDs, PIDs and other assigned numbers to
ensure that the numbers are different (no collisions). In each
row, the NMS server also inserts a unique PID or LID
corresponding to a parent table (i.e., a foreign key for
association) to provide data “containment”.

As described above with reference to FIGS. Sal—Sp, a user
may select a port or a SONET interface and then access a
SONET path configuration wizard to configure SONET
paths on the selected port/interface. When the user selects
OK button 944;; the NMS client places a “Create SONET
Path” function call to the proxy corresponding to the
selected port/interface including the port PID in the proxy
and the parameters provided by the user through the SONET
path configuration wizard. The function call causes the NMS
client to send JAVA/RMI messages to the NMS server. The
NMS server first searches local memory 987a for the port
PID. If a managed object including the port PID is found,
then the NMS server issues a “Create SONET Path” function

call to the managed object including the port PID and the
parameters sent by the NMS client. If the port PID is not
found, then the NMS server uses the port PID as a primary
key into the configuration database to retrieve data corre-
sponding to the port. The NMS server then creates the port
managed object, stores it in local memory and then issues
the “Create SONET Path” function call. The function call

causes the NMS server to generate database access com-
mands and send them to the configuration database within
the selected network device.

The database access commands cause the configuration
database to add a row in SONET Path Table 600' (FIG. 60g)
for each SONET path created by the user. The NMS server
assigns a unique path LID 600a (i.e., primary key) to each
SONET path and inserts this within the corresponding row.
The NMS server also enters data representing attributes for
each SONET path (e.g., time slot, number of time slots, etc.)
and the unique port PID 600b (i.e., foreign key for
association) corresponding to the selected port.

As previously discussed, each SONET path corresponds
to a port (e.g., 571a, FIG. 36) on a universal port card (e.g.,
554a) and is connected through a cross-connection card

Apple v. Uniloc, |PR2017-2202

Uniloc's Exhibit 2003, page 351

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 352

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 353

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 354

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 355

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 356

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 357

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 358

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 359

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 360

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 361

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 362

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 363

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2003, page 364

