US 20090037337A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2009/0037337 A1l

Baitalmal et al.

43) Pub. Date: Feb. 5, 2009

(54)

(76)

@

(22)

SOFTWARE LICENSING AND
ENFORCEMENT SYSTEM

Inventors: Ahmad Baitalmal, Renton, WA
(US); Daniel J. Kolke, North Bend,
WA (US); Jon K. Collette,
Normandy Park, WA (US); Casey
Tompkins, Woodinville, WA (US)

Correspondence Address:

MORGAN, LEWIS & BOCKIUS, LLP.

2 PALO ALTO SQUARE, 3000 EL. CAMINO
REAL

PALO ALTO, CA 94306 (US)

Appl. No.: 12/182,800

Filed: Jul. 30, 2008
200

| |Copy Prot, Data Sec. 22

|| Local Web Server 228

Related U.S. Application Data

(63) Continuation-in-part of application No. 12/102,854,
filed on Apr. 14, 2008.

(60) Provisional application No. 60/962.877, filed on Jul.

31, 2007.
Publication Classification
(51) Int.ClL
G06Q 99/00 (2006.01)
(52) US.ClL oo 705/59
57 ABSTRACT

In an embodiment, a computer implemented method is
described. The method is performed at one or more servers,
hosting a marketplace application. A software application is
received from a vendor for distribution. License terms are
generated in response to a selection by the vendor from
options provided by the marketplace application. The license
terms are associated with the software application. The soft-
ware application is made available for distribution through
the marketplace application, in accordance with the license
terms.

Client 210-A (networked mode)

| Network 120

Application Server
130

[LDAP |
| Gateway T 242

A

250

y
Auxiliary Web Server /
Services |« » Engine

246

-

User
Database
270

h

\ f280

E-Commerce Services
[Process payment 282 |

|Authenticate license 284 |

Serve Application &|

Synchronization, Access & Query
Engine 260
Conflict Management

Record Increment

!

Applications Database
262

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 1

Patent Application Publication Feb. 5,2009 Sheet1 of 178 US 2009/0037337 A1

Network 100

\

Client 110-B
. User B :

Client 110-A (112-B) Client 110-N
User A : User N
(112-A) Client ° (112-N)

Application
Client 114-B Client

Application Application

114-A 114-N
Network 120

Application Application Application
Server Server [] Server
130-A 130-B 130-N

Figure 1

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 2

Patent Application Publication Feb. 5,2009 Sheet2 of 178 US 2009/0037337 A1

| |Copy Prot, Data Sec. 226

200 |_ Client @ﬁo%og 1 Client 210-A (networked mode)
| LBrowser __ _ _ 2121 l | Browser 212
| Derweni 20 || GeReen an

[Local Application _ 214 | | | |z = ===~ =
__________ pplication 214 |
| |: Local Database 216 _ I | ;—_—_—_—_—_—_—_—_—_—_
| CZlSeoceis” T _ o hmeae sl |
Sinchonzetonap 220l | | |7 Steok2is _
| Gt mgenen 221 | | \Sovonzaionas 2
| Uiemsehuten, _ 281\ | T avagerment 222
|

— e —— ——— —— — — — —

Network 120
\ 4
Application Server | LDAP I
130 | Gateway T— 242
A 4
Auxiliary Web Server
Services |« > Engine
250 246

User

Database Synchronization, Access & Query
270 Engine 260

Conflict Management

| Record Increment |

A

A /280

E-Commerce Services y
| Process payment 282 |
[Authenticate license 284 | Applications Database
262
[Serve Application 286 | =

Figure 2

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 3

Patent Application Publication Feb. 5,2009 Sheet 3 of 178 US 2009/0037337 A1

/ App Name 330
/
Application / App Title 332
Database—g /
300 ,/ App Host 334
Application 1 302 App User 336
[Record 1 308 '\
N\ App Pass 338
® N\
[
[Record N 310
[
®
[]
Application 2 304 _
| Record 1 312 Record Metadata
\ 350
° \
hd \ Record Log 352
[Record N 314 |
. \ Record content 1
: \ 354-1
Application M 306 \ °
[Record 1 316 \ .
ry \
: \\ Record content N
| Record N 318 394-N

T oan 1

| Application Index 360 I

| TECRM 370 |
: Media Wiki 372 |
| (PhpBB3 374 |
| Projects 376

| Sugar CRM 378

: Wordpress 380

|

Figure 3

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 4

Patent Application Publication

User
Database\‘
400

Map
i

User ID”>

User Record
4021

Feb. 5,2009 Sheet4 of 178

User Rgcord 402

!
/

/| User ID 410

‘| User-Rule 1

User Metadata 412

User Record
402-2

Query/Contact List
414

User Record
402-N

User Client Device

470

(‘,

472

ID/Type 416
User Preferences
418

User Authentication
Information 420

User Personal
Information 422

\\\ User Rul
| 460-N

US 2009/0037337 Al

Rules for
contacts/queries;
Stored locally or

in separate
database

460-1

| Contacts

' Sales Opps

Filter DB info

Rules

Tasks

Appointments
®

User-Rule 2
460-2

O eoee

N

| User-Mgmt

Name 430
Phone 432
Email 434
Office 436
Department 438
User Enabled
Features 424
APP 1 440
APP N 442
EDE 444
Devkit 446
Schedule events
448
User Mgmt 450
AOP 452 |
Distribute 454
Integrate 456

462-1

User Admin
rights

User access
privileges

Figure 4

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 5

Patent Application Publication Feb. 5,2009 Sheet 5 of 178 US 2009/0037337 A1

Sync Engine
500 "
Server Side
Sync Data 502 Sync Operations 508
Fles 22 Create Acc 540
ADD 2 Create DBs 542
App Table 512 .
App Column 514 Create Acc Dir 544
Primary Key 516 Install EAS 546
Setup Scheduler
i 548
Conflict Management
504 Connect to EMS
Record Increment Client 290
2
— Setup 552
Schema 554
Files 556
Synch Rules 506
Rules 558
Developer Rules 522
Default Rules 524 Data 560
Figure 5

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 6

Patent Application Publication Feb. 5,2009 Sheet 6 of 178 US 2009/0037337 A1

Sync Engine
600 —
Client Side
Sync Data 602 Sync Operations 608
Create Acc 640
Files 662
Create DBs 642
App 610
Create Acc Dir 644
App Table 612
Install EAS 646
App Column 614
Setup Scheduler
Primary Key 616 648
Connect to EMS
Server 650
Setup 652
Schema 654
Files 656
Rules 658
Data 660

Figure 6

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 7

Patent Application Publication Feb. 5,2009 Sheet7 of 178 US 2009/0037337 A1

égf\lxlgf 388 Memory 710 _—, 711
Operating System s
Network Communication Module |~ 712
L ILDAP Gateway Module + 714
| D|7sgéay : Synchronization, Access & Query Module L~ 718
o2 . Synchronization Module |~ 718
Synchronize Files Module L~ 719
CPU(s)
702 Access Database Module |~ 720
—_ Search/Query Database Module |~ 722
708 Conflict Management Module 724
Record Increment Module |~ 726
User Database 728
Comms E-Commerce Services Module - 730
Interface Process Payment Module 732
704 Authenticate License Module L 734
i- _In;ut_ 1 Serve Application Module |~ 736
| Device | Web Server Engine Module | 738
| f05 | Web Development Environment Module |~ 740

LAMP (Linux, Apache, MySQL, PHP) |~ 741
Module etc.; also

WAMP (Windows, Apa, MySQL, PHP);
LAPP (Linux, Apa, PostgreSQL, PHP);
Tomcat; etc.

Python Module, Ruby, Ruby on Rails, etc. |~ 77124
Application Database Management Module -
| 746

Add/Delete Application Module
Synch Application Module |~ 748
Application Database Access Module L~ 750

User Database Management Module —f;gg
Add/Delete User Module —" 758
Edit User Information Module - 760
User Authentication Module s 762
User Permissions Module s

Application Database L~ 764

®
[]
®

Auxiliary Services Module(s)

Figure 7

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 8

Patent Application Publication Feb. 5,2009 Sheet 8 of 178 US 2009/0037337 A1

Clont800 oo 811
Operating System s
\ Network Communication Module |~ 812
DNS Support Module - 813
Display Receive and Process User Input Module |~ 814
806 Display Module |~ 815
Browser Engine Module |~ 816
CPU(s) Synchronization, Access & Query Module | 818
802 Synchronize Files Module L~ 819
808 —. Synchronization Module -Jf'_ ggg
Local Copy of Database Module
Edit Local Database Module -~ 824
E-Commerce Client Module |~ 826
Network Download & Enable Application Module |-~ ggg
Interface Authenticate License Module -
804 Copy Protection and Data Security Mod. |~ 832
Input Local Web Server Engine Module |~ 834
Device Web Development Envt. Module, |~ 836
804 Software Stack

LAMP (Linux, Apache, MySQL, PHP)
Module etc.; also

WAMP (Windows, Apa, MySQL, PHP); |~ 838
LAPP (Linux, Apa, PostgreSQL, PHP);
Tomcat; efc.

Framework Language Module

[Python Module, Ruby, Ruby on Rails |/~ 842

AOP Framework Module |~ 844
Traffic Management Module _~846
Local Application Database Module |~ 848
Add/Delete Record Module 850
Application Database Access Module 852
Application Database Query Module |~ 854
Local User Database Module 858
Add Delete User Module 860
Edit User Information Module I?Bi

User Authentication Module L
User Permissions Module |~ 866
Applications database L~ 868
| — 870

User database

Figure 8

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 9

Patent Application Publication Feb. 5,2009 Sheet9 of 178 US 2009/0037337 A1

900 Users and Groups

> User A Memberships

Table in

Belongs to Account
Group A

User B Administrator Group A
privileges
Is an Admin of User A's
Group A information is
added to the user
out log table for
User B.

This determines if
someone else can
see User A’s data.

E.g. Manager for
User A can see
contacts for sales
reps that report to
her.

Figure 9

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 10

Patent Application Publication Feb. 5,2009 Sheet 10 0of 178 US 2009/0037337 Al

1000
'-Application Server 1005 | /

I

I

I 3) Web-based Application
I 1006

I

I E.g., http://app1.com

I

Client 1001

@ E.g., hitp://app1.com

Browser Engine 1003

Network
120

I |
I |
I Web-based [
I Application I
| I
| I
| I

@ @ @ 1007

Software Stack 1004 (7

) Operating System 1002

Figure 10

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 11

Patent Application Publication Feb. 5,2009 Sheet 11 0f178 US 2009/0037337 Al

1100 ¢
@ At the client, with AOP running, receive a user input ~ 1102
¥
@ At the client, start a browser application. L~ 1104

At the client, receive a user request to visit a web page or web-based
@ application. L~ 1106

(Optional) At the client, detect if a connection cannot be made to the |
I web page or web-based application (e.g., the user may be offline and may not L/,/ 1108
: have Internet connection). I

@ At the client, local web server responds to request. 1110
g
[(Optional) At the client, run the web-based application locally on | _ 1112
: the client, using the client operating system. : -
|

-
|® (Optional) At the client, run open source software (e.g. Software _ 1114

Stack) in conjunction with the AOP framework.

r
| (Optional) At the client, receive a user request to navigate browser B 1116

|
to a web address :
: (e.g., a virtual AOP web address : http://app1.com.aop) :
| Navigate the browser to the local virtual instance of the web page :
: corresponding to the virtual AOP web address. [

S g

@ (Optional) At the client, detect when a connection can be made to 1118
/ :

emote web page or server corresponding to the local virtual instance.

Figure 11

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 12

Patent Application Publication Feb. 5,2009 Sheet 12 0f178 US 2009/0037337 Al

AOP Installation

1200 4
Install Software 1203
Download
So\:‘\fcware Python and Libraries
y Packages »| Apache @. Start AOP Install
1201 MySQL 1204
— PostgreSQL
@ Download AOP Tomeat

Package
1202 (Software stack f Create an Account
_l download to client) 1205

Y

Connect to Server 1207 Network Initialize account 12
Authenticate user 120 <

Verify AOP permissions C
—

(=4

6

©)

Process Request

AOP App Setup
1209

Figure 12

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 13

Patent Application Publication Feb. 5,2009 Sheet 1301178 US 2009/0037337 Al

1300 ¢

@ At the client, download software packages. 1301
At the client, download an AOP package including an installer for AOP | . 1302

framework. I~
@ At the client, install the software packages. L.~ 1303
@ At the client, start AOP package installation. 1304

Y

At the client, collect (e.g., from user) web application account 1305

information.

@ At the client, initialize account using AOP application. _ 1306
-~
h 4
At the client, connect to a server, authenticate web application account | 1307
information, and verify AOP permissions. —

Yy
At the client, receive from server information required to complete the B 1308
application setup. -

Y

At the client, complete the application setup process with the 1309
application fully synchronized with the web application on the server. -

Figure 13

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 14

Patent Application Publication Feb. 5,2009 Sheet 14 0f178 US 2009/0037337 Al

1400 ¢ AOP Initialize Account Connect to Server 1403
Authenticate user
Verify AOP permissions
Download 1408 Process Request
Download.Etelos.Com
-Download packages Synchronizer
-e.g., EAS, Zend,
-Famfamfam,
-phpMyAdmin,
-phpPGAdmin,
-WebSvn
® -
____________________ Network
© | i
I AOP Ini File 1406
IAOP 1401 Configuration vy
I -Authentication
-Appname
Vhost 1405 -Vhost
Write out -Database
.aopvhost.conf -Aliases
Files per domain -Domain

Packages 1414

Account 1404

@ Database
1408 1407
- Host file
@ L7 Write out
.aop
hostfile

0

EMS 1402 | Database
[synchronizer | > 1400

Software Stack 1410

Operating System

AOP application and
Figure 14 Software Stack are run
on client Operating
System

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 15

Patent Application Publication Feb. 5,2009 Sheet 1501178 US 2009/0037337 Al

At the client, configure virtual host (vhost) files to enable navigationto | - 1505
the application locally. i

1500 ‘/\“
@ At the client, install AOP framework. ~ 1501
@ At the client, set up EMS with its own database. L 1502
@ At the client, using AOP connect to the server and authenticate user | — 1503
permissions.
@ At the client, create an account inside EMS. 1504

At the client, save the AOP initialization (ini) file with additional 1506
configuration information. B

©)

At the client, modify the host file locally to communicate to the 1507
operating system that any local domains (e.g. *.aop) are run locally.

At the client, download packages from a server repository (e.g., ~1508
download.etelos.com) as required by the app configuration. B
| Example packages include EAS, Zend, fam fam fam, phpMyAdmin, | | 1509
] phpPGAdmin, WebSvn. _______________ |
T T T hetall the packages. | |-1510

Figure 15

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 16

Patent Application Publication Feb. 5,2009 Sheet 16 of 178 US 2009/0037337 Al

1600 ¢ AOP Application Installation

Connect to Server 1620

Authenticate user
Verify permission
Process Request

Synchronizer

Files Schema Data
* 1615 1616 1617
U D I ——————————— — — — — - - ﬂ
| AOP Framework 1601 [
| I
: Application 1602 File Transfer I
| e.g. SVN or J :
Network I |[vhost www || rSYNC Database | | |
120 | 11603 1604 |[1602 1606 |
| ¥ |
I
A | |Packages 1607 Database :
I I
| [Account 1608 rel <« Rules
| | [1618
I I
I Database
| [EMS 1609 “ 1611 |

-« Software Stack 161

Operating System 1614

AOP application and
Software Stack are run
on client Operating
System

Figure 16

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 17

Patent Application Publication Feb. 5,2009 Sheet170f178 US 2009/0037337 Al

1700 "¢

server.

@ At the client, download and install schema for the database from the

- 1701

@ At the client, download files using file transfer, e.g. SVN or rsync.

L~ 1702

@ At the client, download rules and insert them into the account database. |- 1703

At the client, download application data as part of the initial
4 synchronization process.

|- 1704

Figure 17

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 18

Patent Application Publication

1800 ¢

Connect to Server 1816

Authenticate user
Verify permission
Process Request

Synchronizer

A

Feb. 5,2009 Sheet 18 0of 178

Application (AOP) initial data synchronization

US 2009/0037337 Al

» Files » Data
1817 1818
r-r—-=—|-- - - - - T T T T T T |
I AOP Framework 1801 [
I icati Y I
| Application 1802 File Transfer y |
Network | | Vhost WWW e.g. SVN or Database || |
120 I 1803 1804 rsync 1805 | |1806 I
| i |
I I
1 | Packages 1807 Database |
| 1811 |
| Synchronizer I
| (1810 Account 1808 re |
| 2 ™ |
INO) |
| 3 Database |
I EMS 1809 41312 |
I I
< Software Stack 1813
Operating System 1814
Figure 18

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 19

Patent Application Publication Feb. 5,2009 Sheet190f178 US 2009/0037337 Al

1900

- 1901

@ At the client, start a synchronization process.

y £ 1902

@ At the client, retrieve synchronization rules from a database and flag
them for an initial synchronization operation.

Y 2~ 1903
At the client, send a synchronization request to the server, with
3 authorization to sunchronize.
Y 1904
4 Synchronize the files using file transfer
\ ~ 1905

@ Data is sent back to initially synchronize up the client application.

Figure 19

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 20

Patent Application Publication Feb. 5,2009 Sheet200f178 US 2009/0037337 Al

2000 ¢ How application (AOP) runs
Launch
Con negtO t1058erver Browser with
£Vlo Application
Authenticate @ runnlgg1k7>cally
Verify permission -
AOP Launch
P R t
rocess Reques I tortace @
A @M@ Open file request domain.aop A
T T TSP Framework 2001~ (1) T T |
I " I
Network I Application 2002 File Transfer I
120 | || vhost | [www e.g. SVNor Database || |
| 1|2003 2004 rsync 2005 | |2006 I
| |
| |
| |Packages 2007 Database I
| 2010 |
| |
User OFFLINE | |Account 2008 e :
I
| |
| [EMs 2009, . Database | |
| | Synchronize > 2011 I
e — F————————- '
Software Stack 2012 @
(7)
l vy
Operating System 2013 T—

Figure 20

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 21

Patent Application Publication Feb. 5,2009 Sheet210f178 US 2009/0037337 Al

2100 ~ \“

r1 At the client, start the AOP application running, in response to a user ~ 2101
selection. -

y

@ At the client, from within the AOP application, start the software stack. |~ 2102

@ At the client, from within the AOP application, start the EMS. - 2103
At the client, from within the AOP application, launch a user interface. 2104
: The interface includes a desktop interface. : 2109

—E—_——— e a1

@ At the client, list available application URLs in the AOP user interface. |-/~ 2105

~ 2106

|

6 At the client, detect user selection of an application, and navigate in a
browser window to the URL associated with that application.

7 At the client, using the host file, send the URL and any associated files | 2107
locally.

8 At the client, listen with using the Web Server and serve the application | 2108
locally to the browser window. I~

| The Web Server includes Apache. . |~ 2110

_E—_E——,— e,

Figure 21

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 22

Patent Application Publication Feb. 5,2009 Sheet220f178 US 2009/0037337 Al

2200 4
How the client serves up a local version of the webpage

Browser 2201

Domair@ +

Host File 2202

A
Web Server 2203

%@ (e.g. Apache)

Y
vhost file 2204

ONONO
J

Application 2205 @
y

Vhost WWW Database
2206 2207 2209

File Transfer

e.g. SVNor

rsync 2208

Y
Packages 2209

Figure 22

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 23

Patent Application Publication Feb. 5,2009 Sheet230f178 US 2009/0037337 Al

2300 T4
@ At the client, determine the IP address of the current domain. |~ 2301
A J
@ At the client, the OS Network Stack looks at the host file which was | - 2302
modified during application (AOP) startup.

y

@ At the client, address is returned. .-2303
o The address is 127.0.0.1 | -2310

¥
~ 4
4 The local web server listens at the address. L~ 230

¥
@ The local web server receives a request. 2305
The local web server compares the domain to the virtual host (vhost) | 2306

6 configuration file.

y

The local web server determines the local application web root. |~ 2307

to complete the request..

: The tools include framework, database, etc. |- 2311

e ———

The local application processes the request and loads appropriate tools | _ 2308

- 2309

@ The local web server serves up the local web page.

Figure 23

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 24

Patent Application Publication Feb. 5,2009 Sheet240f178 US 2009/0037337 Al

2400 ~4 High Level View of Synchronization
Server 2402
Client 2401 »| App 2406
T
|— App 2403 [* 4
Y
I
7 1 3 DB 2407
Y
o8 2404 :
| Y
3 6 " Conflicts Log 2408
Changes Log 2405
Figure 24

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 25

Patent Application Publication Feb. 5,2009 Sheet250f178 US 2009/0037337 Al

2500 ~ 4
@At the client, detect changes from the local database for an application. _ 2501
! Perform detection using polling and/or notification.]L 2508
y
2 .

O Collect changes from the local database in a changes log. | 2502

4
Send the collected changes log from the client to an application server, 2503

which includes corresponding database for the application. —_

y

Synchronize and apply the changes to the server database, keeping 2504

connection with client alive until the sync operation is finished. -

4
Detect conflicts in data on the server, and if any are found grant priority to the

@ server. | 2505

Resolve conflicting data and store conflict resolution data in a conflict
resolution log on the server.

6) Send conflict resolution log from the application server to the client. e 2506
4
@At the client, apply the conflict resolution log to the client local database. | - 2507
Figure 25

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 26

US 2009/0037337 Al

Feb. 5,2009 Sheet 26 of 178

Patent Application Publication

9Z 8Inbi

o)

®® ®

€09¢
asegeieq
uonealddy
Janes

O,

©0 6

¥09¢

sb0o JaAIeS

©®

019¢
$5900.d

u| Jealeg

H G09¢

$5900.d
NO JaAles

209z JaAleg uoneolddy

no

\
\1 ﬁ’
\

< 1380
N Oukg

VACE RN
2UAG

®@

609¢
$S900.d

o w9

@O

809¢ e

sbo juslD

D

109%¢
asegeleq
suoleolddy
sl

e 909¢

$88001d U] JUsI|D

L09¢ WSID

D
OROD

> 0092

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 27

Patent Application Publication Feb. 5,2009 Sheet270f178 US 2009/0037337 Al

2700 4
~ 2701
Detect changes in an application database, when a user uses the
1 application.
I __ Changes can be on server app database or local app database. _ __i
—2702
v _
Listen for changes and push changes to internal log on server.
Add a flag if an auto-increment rule is in force. | 2702a
__ |
v 2703
3 Synchronize data by pulling data from the internal log on server and
pushing it to an account log on the server.
v ~ 2704
Push the data from the account log on the server to the outbound log
on the server.
___________Keepthe synchronizer runningfast. _ __________]
v 2705
5 Pause the outbound log, and wait for a user to initiate sync with the
AOP application.
v —2706
6 Push data to a ‘server out process’ for outbound processing and add a
transaction identifier (e.g. “sync block ID”) to the data.

Figure 27A

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 28

Patent Application Publication Feb. 5,2009 Sheet28 0of 178 US 2009/0037337 Al

-~ 2707a
Za At “server out process”, perform filter function on data received.
\ - 2707b
-~ At “server out process”, map data to users.
\ - 2707c
- At “server out process”, push user data to user tables.
\ ~ 2707d
- At “server out process”, run a group management rules check.
-~ 2707e
- At “server out process”, identify administrator group memberships
€ relationships for a user.
[~ 2707f
- At “server out process”, map additional data to administrator users
based on group administrator of a particular user A.
.~ 2708
8 At the server, sort data by user out tables.
[T T T T T T T T T T T T s T e T T s e e e "
| Use one table per user to optimize speed. :
|
__ 1

Figure 27B

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 29

Patent Application Publication Feb. 5,2009 Sheet290f178 US 2009/0037337 Al

:;: - 2709

9 At client, receive data at AOP application and push it to “client in
process” for processing.
: - 2710a
At “client in process”, perform filter function on data received using auto
10a increment rules (flag).
I - 2710b
@@ At “client in process”, check auto increment flagged column for conflict.
Y ~ 2710c
K]OC At “client in process”, if there is no conflict found, move to insert the
data.
I ~ 2710d
At “client in process”, if a conflict is found, leave the data in the sync log
10d for the next session.
i —~2710e
At “client in process”, set auto-increment counter to the maximum plus
10e one.
i -~ 2710f
me At “client in process”, filter the data into insert, update and delete
operations.
v L~ 2710g
At “client in process’, sort the data by priority.
10g Tt T T T T ST T TTTTTT
I Insert operations takei Erl_o_nt_y_ol/gr_u_pggtg gge_rgh_opg _____ |
i ' 271 1
E1> Perform insert operations to push data into the application.
i ~ 2712
Ez) Push update and delete operations into the sync account log.
l ~ 2713
713 Process update and delete operations into the database from the log. 2713
v a
1 During insertion, disable a trigger on that “connection” like a session, I
: prevent the cycle from doubling back into an infinite loop. :
i < 2714
E4> The application has synchronized the received data at the client.
Y
Figure 27C

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 30

Patent Application Publication Feb. 5,2009 Sheet300f178 US 2009/0037337 Al

@ 2715

15 Monitor data in the applications database for changes.
v '// 271 6
16 At client, if the database changes, listen and push changes to internal
log.
i 2717
17 At client, synchronize by pulling data from the log and pushing it to the
account log.
2718
18 At client, push data from the account log to the outbound log.
] Keep the synchronizer running fast. _ _________ J
2719
19 At client, pause the outbound log and wait for the user to initiate sync
with the AOP application.
2720
20 At client, push data to a “client out process” for outbound processing
and add a transaction identifier (e.g.,“sync block ID”) to the data.
~2721a
21a At “client out process”, map data to a synchronization account.
:_ ______ User information is tied to synchronization account. _:
~2721b
21b At “client out process”, push data to synchronization account out log.
/,2722
22 At client, synchronize the out log broadcasts back to the server.
Y

®

Figure 27D

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 31

Patent Application Publication Feb. 5,2009 Sheet310f178 US 2009/0037337 Al

® 2723

A 4

@ At server, when User A is in table, push data to “server in process”.
i 2324a
At “server in process”, compare user in data and user out data to find
duplicate transactions.
\ -2724b
At “server in process”, analyze identifier (e.g., “ _eas_syncmap_id")
ded by trigger and identifier (e.g., “sync_block_id”) added by sync session.
\ —2724c
At “server in process”, if a conflict is detected, the server wins and
conflicts are deleted.
\ -2724d
At “server in process”, filter insert, update and delete operations.
At “server in process”, filter auto increment flags.
2724f
At “server in process”, insert records with no conflicts.
v // 27249
At “server in process”, where records have conflicts, increment to end
and insert.
) —2724h
24h At “server in process”, start trigger as new records make round trip
back to application database.
i Bample T
| ii. __eas_sync_map_id = __eas_sync_map_id I
i, Contact10 = contact10 I
: iv. Email = john@etelos vs email = john.smith@etelos.com :
Il V. Server would win on this record and delete duplicate entry... |
®
Figure 27E

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 32

Patent Application Publication Feb. 5,2009 Sheet320f178 US 2009/0037337 Al

@ 2725

@ At server, insert updates.
2726
@ At server, push updates and deletes to the sync account log.
\ s 2727
27) Atserver, process updates and deletes into the database from the sync
account log. 27272
i Disable trigger on the session’s connection when sync is inserted. :
|
' |
: Prevent the cycle from looping. :
o __________________
v 2728
28} At server, application has sync data, and the synchronization process is
complete.
l 2729

(29 2 At server, if auto increment conflict (AIC) rules, then take another pass
rough the process to update conflicted records at the “client in process”.

Add, process and synchronize records which were previously left out because
of conflict.

Figure 27F

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 33

Patent Application Publication Feb. 5,2009 Sheet 33 of 178

US 2009/0037337 Al

2800 Auto Increment Conflict Resolution
Before 2810
{1
Synchronize @New on Server
Synchronized New on AOP @
1% pass 2820
Synchronized Synchronized | New on Server
ullz —
(4)New for AOP (&)
Synchronized | @)\Iew on AOP V |
2" pass 2830
Synchronized On Server | Update on Server |
JL
pdate for AOP Updaté @

Synchronized | | New on Server | | New on AOP |
After 2840
Synchronized @

Synchronized
Figure 28

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 34

Patent Application Publication Feb. 5,2009 Sheet340f178 US 2009/0037337 Al

2900 ~ 4

@ At the start of a synchronization operation, identify data that matches | - 2901
on both server and client application (AOP) instance.

@ At the server, determine that new records have been added on the | — 2902
server.
v
3 At the client, add new records to the client application (AOP). 1/1903
"" 1 |- 2910

E—— e e —

@ At the server, send new records from server to the client application
(AOP) as new records.

Determine there is a conflict and that identifiers associated with the new |~ 2904

records already exist.
Pause the process and wait for a second pass before inserting records.

On the second pass, treat the records as an update.

5)At the client, send new records from client application (AOP) to the server. | ,—2905

©

6) Atthe server, add these records and create new identifiers for them, - ~2906
incrementing the sequence of identifiers in the database.

RC

At the server, log the changes and package as an update for those | 2907
records.
@ Process the updated records. | ~2908
9 All records match and are in synch with both the web server and the | 2909
client application (AOP).
Figure 29

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 35

Patent Application Publication Feb. 5,2009 Sheet350f178 US 2009/0037337 Al

3000

=4 3002
Provide on a computer system a local software stack configured to
provide local web services for dynamic, web-based applications that are executed
on the computer system when it is offline.

v

When the computer system is offline, execute on the computer system a first
dynamic, web-based application using the web services provided by the local
software stack, such that functionality of the first dynamic, web-based application
when the computer system is offline is substantially similar to functionality of the
first dynamic, web-based application when the computer system is online.

[T T T ——— | _H-3006

- 3004

A

\

An architecture of the first dynamic, web-based application isnot | }}-3008
| modified to provide the functionality when the computer system is offline I_/

3010

In response to detecting a network connection with an application server,
| synchronizing with the application server changes in information associated with
| the first dynamic, web-based application due to its offline execution.

[F——— e ——————— 1 3012
I In response to detecting a user instruction, initiating execution of the the flrst,“V

dynamic web-based application when the computer system is offline by directing a |
web browser on the first computer system to a specified universal resource |
locator (URL) that is associated with first computer system instead of a remote |
application server. |

____________________________ 3
|
I

mh - e
|1 The specified URL is associated with the computer system through a -'I_JI"'3O1 4
~ The specified URL is associated with the first computer system through a_ '1‘_/:—301 6

["The specified URL is associated with the first computer system througha 1_H-3018
dynamic naming server (DNS) record on the first computer system. I

re.- - — - — = T T 3020
The local software stack comprises: a web server responsive to browser-_}]

|
| issued commands, a database management system, and a dynamic scripting |
I language |

| IThe web server is Apache web server, the database management systemis | | 3055
I mySQL, and the dynamic scripting language is at least one of PHP, Python, L/:’

I Perl, or Ruby.

I
I The first dynamic, web-based application communicates with the local _'I—/f-3024

Figure 30

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 36

Patent Application Publication Feb. 5,2009 Sheet36 0of 178 US 2009/0037337 Al

3100 ¢

For a web-based application that is not designed to be used while a first 3102
computer system on which the web-based application executes does not have a
network connection to an application server:

2

Making changes to the web-based application while the first computer system 3104
does not have a network connection to the application server. 1

2
Tracking the changes made to the web-based application while the first 3105
computer system is disconnected from the application server. o

L 2
When the network connection between the first computer system and the |-3106
application server is reestablished: 1

2

Synchronizing changes for the web-based application made on the first 3107
computer system with the web-based application on the application server. [7]

v

Synchronizing changes for the web-based application made on the application -3108
server with the web-based application on the first computer system.

i_ Tracking the date and time when the changes to the web-based application Lf’3109

L e e weremade. _ _ _ _ _ _ _ _ _ _ _ |

i_ ?h;cﬁarﬁe; are ;yrEhr_oni_zeE when a network connection between the first | 3110
L _ _ _computer system and the application server Is reestablished. _ _ _

| The changes are synchronized between different types of database | 13112
| management systems (DBMS). I']

e e o o o o e — — —— — —— —— —— —— — — — — — — — — — — — —

| The changes are synchronized between the same types of database L3114
| management system (DBMS). |

e e e e o e — — —_— e o o —— o —— — — — —— —

| The changes are synchronized directly with a database management I_}—3116
| system (DBMS) associated with the web-based application. [

e e o o o o e — — —— — —— —— —— —— — — — — — — — — — — — —

| The changes are synchronized directly with file structures associated | _}-3118
| with the web-based application. [

e e o o o o e — — —— — —— —— —— —— — — — — — — — — — — — —

o e —

For a newly-installed instance of the web-based application on the first computer I
system, performing a complete synchronization of all records in the web-based I_f—31 20

| application on the application server with the web-based application on the first |
computer system.

- _ _ _ _ _ _ _ _ __ Gomputersystem. I
. The changes include one or more of: I

| changes to data in the web-based application; | | -3122
I changes to data structures in the web-based application; and I

L changes to files for the web-based application. |

Figure 31

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 37

Patent Application Publication Feb. 5,2009 Sheet370f178 US 2009/0037337 Al

3200 ¢
o . . i J-3202
For a web-based application that is being used on a first computer system
while the first computer system is disconnected from an application server,
in response to detecting a network connection to the application server:
J-3204

Synchronizing changes for the web-based application made on the first
computer system with the web-based application on the application server.

Y

Synchronizing changes for the web-based application made on the application _;'3206
server with the web-based application on the first computer system.

Fes-T T " " -"""-"""="""=""”"”"”"”""”"/"7"/"7/ 777 L -3208

: For a newly-installed instance of the web-based application on the first I
computer system, performing a synchronization of records in the web-based |

l application on the application server with the web-based application on the first |

| computer system.

| |

|r The changes include one or more of: IJ_321 0

changes to data in the web-based application;

l changes to data structures in the web-based application; and I

L changes to files for the web-based application. I
__________________________ -

Figure 32

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 38

Patent Application Publication Feb. 5,2009 Sheet380f178 US 2009/0037337 Al

3300 4

On a first computer system that is disconnected from an application server, | 3302
using a web-based application that is configured to interact over a network |-
connection with the application server to provide specified functionality.

When the network connection is reestablished, synchronizing changes made to | 3304
the web-based application while the first computer system was disconnected |-
from the application server.

L 2
If a conflict between the first computer system and the application server exists, | 3306
resolving the conflict so that both the first computer system and the application [
server are synchronized with each other.

| Determining that a conflict exists if the first computer system includes a first set |
of records that are not included on the application server, and

| Resolving the conflict so that both the first computer system and the application

| server are synchronized with each other, wherein resolving includes:

Sending the first set of records to the application server;

I Receiving new identifiers for the first set of records, wherein the new identifiers

I are assigned by the application server when the first set of records are added to

| the application server; and

I Updating all references to the old identifiers for the first set of records with the

I new identifiers for the first set of records.

™ Determining that a conflict exists if the application server includes a second set |

of records that are not included on the first computer system, and |
| Resolving the conflict so that both the first computer system and the application |
server are synchronized with each other includes: | L3310
I Receiving the second set of records from the application server;
| determining whether identifiers for the second set of records are already being |
| used by the first computer system; and
| [fthe identifiers for the second set of records are not being used by the first :

- 3308

—— =T -

————— ——— — — ———— — — — — — — — — — — — — — — — — —

| 1 the identifiers for the second set of records are already being used by the first |

| computer system: |

| Determining a third set of records that include identifiers that conflict with the I

I identifiers for the second set of records; |

| Sending the third set of records to the application server; | L3312
| Receiving new identifiers for the third set of records, wherein the new identifiers —/

are assigned by the application server when the third set of records are added

| to the application server;

I Updating all references to the old identifiers for the third set of records with the |
| new identifiers for the third set of records; and

I Inserting the second set of records. I

[7If a confiict between the first computer system and the application server does 1 | 3314
not exist, updating records on the first computer system so that the first
I computer system is synchronized with the application server.

Figure 33

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 39

Patent Application Publication Feb. 5,2009 Sheet390f178 US 2009/0037337 Al

3400

Creating a first set of records with a corresponding first set of identifiers | | 3402
in a first database. T

v
Synchronizing the first database with a second database. | 3404
v
If the corresponding first set of identifiers already exists in the second
database:
Receiving a new set of identifiers for the first set of records from the
second database, wherein the new set of identifiers is assigned tothe | | 3406

first set of records when the first set of records is added to the second 1/
database; and
Updating all references to the corresponding first set of identifiers for the
first set of records with the new set of identifiers for the first set of
records.

| If the corresponding first set of identifiers does not exist in the second |
| database, insert the first set of records into the second database using v
| the corresponding first set of identifiers. |

- 3408

| If the second database includes a second set of records that does not |
| exist in the first database: |
I Receive the second set of records from the second database; |
I Send the first set of records to the second database; |
I Receive new identifiers for the first set of records, wherein the new | L. 3410
| identifiers are assigned by the second database when the first set of TJ

I records are added to the second database; |
I Update all references to the old identifiers for the first set of records with |
I the new identifiers for the first set of records; and |
I Insert the second set of records. |

| The first database and the second database are used for a web-based | | 3415
| application that requires a network connection with an application server]
| to provide specified functionality.

-
| The web-based application is not designed to be used without a network | 4 3414

___________________________ iy =
: The first database is on a client computer system. 1J 3416
I T T T T e e T T T 113418
L The second database is on an application server. Tj

Figure 34

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 40

Patent Application Publication Feb. 5,2009 Sheet400f178 US 2009/0037337 Al

3500

Interacting over a network connection using a dynamic, web-based | ~3502
application with an application server to provide desired functionality.

v

Disconnecting the network connection from the application server. |

v

Continuing to use the web-based application while still providing the I'3506
desired functionality. ’

| ~3504

Figure 35

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 41

Patent Application Publication Feb. 5,2009 Sheet41 0f178 US 2009/0037337 Al

3600 ¢ 36%‘1-\
36@4 Auto Increment | | Create New Sync Rule

New Synchronization Rule Interface 3602

Application Interface 3604 Mass Create Interface 3608

Database 3610
F——————— Mass Create
I

— e —— —— — —

3628
3639\| Save | Close

Figure 36

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 42

Patent Application Publication Feb. 5,2009 Sheet420f178 US 2009/0037337 Al

3700 ¢

Auto Increment Definition Interface 3702

Application Interface 3704 Relationships Interface 3706
Application 1 3708 Create Primary Key
Reference
3714
Application 2 3710 Contact ID
3716

Primary Key 3712 Groups Description

3718

[save| | Cancel |
1 [\

MN3720 3722

3724

Figure 37

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 43

Patent Application Publication Feb. 5,2009 Sheet430f178 US 2009/0037337 Al

AOP Rule Creation

3800 ¢
Account Admin Interface | Rule Application
1 3802 Create 3814
3812 Database 3816
Select App and Database
2 3804 N A 1XOr
@ Mass 7 Trigger 3818
Select Table
% 3806 I W N Sync Map ID 3820
Select Column
2¢c 3808 ——> @
Auto Increment Flag
2d 3810 >
Account 3822

Database 3824

4 } VMap Sync Rule 3826

5 Al Flag 3828

Figure 38

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 44

Patent Application Publication Feb. 5,2009 Sheet44 0of 178 US 2009/0037337 Al

3900 ¢
3902
@ From the account administration interface:
. 3904
@ Select Application. "
v
@) Select Table. 3906
v
Select column (would need to select primary key in table row for | ~3908
proper sync at this specific level).
v
(Optional) Set auto increment flag (if relevant to DB configuration). 3910
v
@ Select create rules, call function to do next steps.. | 3912
v
. | 3914
4 Create sync vmap rule in account database.
v
@ Set Auto increment flag if appropriate for rule type. 3916
v
Add column for identifler (e.g., sync_map_id) to track sync | 3918
transaction and ensure data integrity.
¥ 2
G) Create trigger in database. 3920
v
Synchronization rules are now set up. | ~3922

Figure 39

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 45

Patent Application Publication Feb. 5,2009 Sheet450f178 US 2009/0037337 Al

Auto Increment Flag

4012 Application Table

4028

4000 “¢ Foreign Key Mapping

[————— — — = — = J
[I
| Parent |
| 4002 |
I I |- T T T T T = A
| I .
| | Child
I Identifier] 4020
[4004 Rl
[I
[I o
I Application Database | Idiggger
| Identifier | B
| (e.g., App_DB_ID) |
I 4006 :
: | > Parent Identifier
| — | 4024

Application Table I
: 4008 '
| : Application Database
I Application Column | Identifier
I 4010 (e.g., App_DB_ID)
I — ' 4026
[I
| I
| I
[I

I

Application Column
4030

Auto Increment Flag
4032

Figure 40

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 46

Patent Application Publication Feb. 5,2009 Sheet46 of 178 US 2009/0037337 Al

4100

In an account, create rules for auto-increment and relationships with | 4102
foreign keys.

A

Create Parent (e.g., table Contact, ID, Name, etc.) 4104
\ 4

Create Child (e.g., Groups ID, Contact.ID, Description, etc.) | 4106
\ 4

Update Parent Child Relationship (auto-inc = true) | 4108

A 4

Auto increment conflicts, and update parent child table relationships in | 4110
the data structure.

Figure 41

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 47

Patent Application Publication Feb. 5,2009 Sheet470f178 US 2009/0037337 Al
4400 ¢ Deploy Applications to an Account
Server 4430
Marketplace 4410 Account 4432
App 1 App 1 App 2
4412 \ L /| 4434 17| 4436
I I / /
I I
I I
App 2 Network
4414 | 4402 | EMS 4438
| | /!
I I
i L___I
Software Stack 4440
App N
4416 OS 4442

4420

Licensing Engine

Figure 44

T~

CLIENT SYSTEMS 445

APP 1
4462

EMS 4470 |

SOFTWARE STACK 4472 |

OS 4474 |

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 48

Patent Application Publication

Feb. 5,2009 Sheet 48 of 178

Multitenancy License Management

4500 /7\‘

Multi-tenancy
License
Management
4512

Licensing Engine 451

Lic for Server 4514

Lic for Server 451

Distributed Tenants

Hosting Server 452

| Account 4522

EMS 4524

Hosting Server 4530

[Account 4532

[EMS 4534

US 2009/0037337 Al

| Databases 452

[Databases 4536

Figure 45

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 49

Patent Application Publication Feb. 5,2009 Sheet49 of 178 US 2009/0037337 Al

4600 ¢ Web Application Marketplace and Hosting Infrastructure

Processor(s)
4604

I i

Memory storing programs with instructions for implementing:
(2)
' I

Marketplace _,@ LAJSGFI_S Vt\'/eb |
Distribution | pplication |
I

4612 4616

Internet
Access
4618

Y

Repository

4614 Billing 6
Y 4620
1

Deployer Licensing
4624 4622

4 3

Hosting Infrastructure
4630

— e —— —

Figure 46

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 50

Patent Application Publication Feb. 5,2009 Sheet 50 0f178 US 2009/0037337 Al

Web Application Marketplace and Hosting Infrastructure

~4702

User navigates the web (or accesses via a client), and visits the
application marketplace.

@

2 v 4704
User selects an application on the marketplace, and checks out.

(?

2 ~4706
The application is provisioned on demand to the hosting
infrastructure.

___________ L____________rr4708
The hosting infrastructure installs the application and sends I
I confirmation back to the marketplace. I

@ ___________ A ~4710
I A link is sent from the marketplace to the user's application. :

6 l 4712

The user accesses the application (hosted at the hosting

infrastructure) in their client or browser, and the application validates
the license with the licensing server.

Figure 47

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 51

Patent Application Publication Feb. 5,2009 Sheet510f178 US 2009/0037337 Al

4800 4 Marketplace Application Services
r-r-r-——"F"T=—">""f"™>"™""~>""Z ~"“—" e === |
I Server 4802 I
: Marketplace 4806 |
I » Listing Manager |
I Store Listings |
I Technical Articles/Information I
I Support Resources User's :
I Internet ¢ Application Repository Client or I
| | Access » » Licensing » Web I
I 4804 » Billing Application I
I e Accounts 4808 I
| e Users I
| e Deployer |
| e Updater |
I I
I A |
e S e —_— —

4810
[
Host Deployed Hosting 4 Hosting 7
Software1 4822
Hosting 2 Hosting 5 Hosting 8
4824
Hosting 3 Hosting 6 Hosting x
4826
Server A Server B Server C
4820 4830 4840

Figure 48

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 52

Patent Application Publication Feb. 5,2009 Sheet520f178 US 2009/0037337 Al

4900 ~4 Select License Options from Grid in Software Distribution System

: : Server 4902 : :

I— - —I I _____ .I I _W_A_ 0 i_ -0
| Receive S’'W | | Associate : | A\/Sa/ilablgﬁ‘)or : | Deploy S/W :
| Appfor | .| Licenseterms ST App to User
| Distribution |1 with SW App | ’: DI\'/T:r'E:tt"l’;‘C‘;” || ’: Account :
| 4920 | | 4922 ' | p 4928

| 4926 I |
|_‘ _____ I I_ e - — 4 I |

License Manager 493

License Grid Provides Terms To Determine User Permissions
for Installation, Activation and Access to Applications.

1
I
I
I
I
[4932 [4934 [4936 [4938 [4940 :
I
I
I
I
I
I

Open Closed | Object File | Source | Repacking
Source Code

Terms 1 Terms 1 Terms 1 Terms 1 Terms 1
Terms 2 | Terms 2 Terms 2 Terms 2 Terms 2

_'Ai______________A____T:___
_____ —_————— _——— _——— e ———— I
| Display License events | Repacking Terms
for the S/W App | Determine Whether a User
| Available for Distribution | is Permitted to Repackage
l Through the | and Redistribute the S/W

Marketplace.

I 4950 s ie TN
S b e e —_ I

| Select License | Vendor of SW App | “vendor's

|
| Terms from 4910 | ‘Hard’ License :
I Grid I I Terms
| ag12 | | 914 |
e e e e — J S S — J

Submits App for Distribution and Chooses License Terms.

Figure 49

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 53

Patent Application Publication Feb. 5,2009 Sheet530f178 US 2009/0037337 Al

5000 4 Dynamic Billing
R R I ——————,
| Server 5002 |
JONNNO, ®) ONN
I .

i I
I Receive S/W Associate Receive Deploy S/W ||
| . . Payment for
| App for License Price > S/W Aop on | App to User ||
|| Distribution with S/W App > Market%ﬁ’ace " Account ||
| 5010 5012 5014 3 5016 :
I 7\ |
I
| I
A 4 |
: Billing Manager 5030 |
I Open Closed | Object File | Source | Repacking —————n" |
I Source Code I Display | |
I 5032 5034 5036 5038 5040 | License | |
I , , : , - | Termsto 1 |
I Price 1 Price 2 Price 3 Price 4 Price 5 | User |
I 5042 5044 5046 5048 5050 | 5018 ||
| Subscription Fee 5052 L - :
: Payment/Registration Processing 5054 I
I A T I
I
r . e —_—_———— 1
| Ir Marketplace Administrator 5022 |
| I Sets Price per license type, | |
| subscription price, flat fee etc. | |
L i aphag E il |
i' _____________ |
| Vendor of S/W App 5020 I
I
: Sets Price per license type, |
I subscription price, flat fee etc. |
- - I
Figure 50

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 54

Patent Application Publication

Feb. 5,2009 Sheet 54 of 178

US 2009/0037337 Al

5100 4 Application Storer/Repository
I Server 5102 I
JONENO ONN
I — _———— e ————— -l -~ - ——— -~ ———— I
|1 : | | I Store I I Il
| | Receive S/W I | Package SIW | | Packaged S/W | | Deploy S/W | |
Il App for I—*: App for Ll App in I | App to User | |
I I Distribution | Distribution | | Application | | Account |1
I s110 | 5112 | | Repository | | 5116 ||
I | ' | 1 5114 | | N
| — — — L e - e — —— o=
I I I
' r——————————— - T e —————— I
I Application Packager 5120 I | Application Repository | |
| 11 G ogate i Proviously Deployea | | | ==~ ok —— - | |
L O App 512~ L1yl Packaged | '
by T A - | Application1 | | |
I 11 I Previously Deployed SIW | | | % 5142 || |
Loy App Required L1l I':::::::::: | |
Lo 5124 L Packaged || |
: L —————————— 1 | | | Application 2 | : :
& | Standalone Distribution 5126 | L | __ e |

——————————— ! °
by Software Applicationand | | | | ® | |
L1 | OneOrMore Patches | | | | ® ' |
Ly 5128 I .S I |
| L= —=—=———— .4 | || Packaged ! I

r—-——- - - —-—-—--_ - - . .
: :| Prepare for Distribution 5130 | : | : Applt';f‘rtéonN : : :
I 1! 1 Quality Assurance Test | [l — === ====1 I
N 5132 R R, SN —— L _
| || ====—=—=—==—=== | I Application Deployer 5150 I
| ! TechSupportMaterial | | | ||————————————— L
I || 5134 I | [| Retrieve Packaged App from I
I | ‘:—_—_—_—_—_—_—_—_—_: || | | Repository and Deploy to User l | |
| || : Specify Language, [|| | | Account 5152 : I

I . ich| ., |, TS TZoo 7" |
T S re L 1 D PushMenod 3isa 51|
, |l ZTTTTT-TT !
Ll — Ly Yy 17 Purmethod 5156 | VI
I Bttt I B S Tt ettt
| =~ =TT I} 1 HybridMethod 5158 | | !
l I _—oZ-z-z-z-ZZ1_.h
| N Iy
I —_— L .
| | License Terms | :
, I 5160 | |
e e e — — —_ —
Figure 51

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 55

Patent Application Publication Feb. 5,2009 Sheet550f178 US 2009/0037337 Al

5200 "4 Syndicated Deployment
Server 5202
Marketplace 5210 Syndicated Server 5230

| Licensing/Permissions |

| 5212 I

e sl | 2T A U I

I _[;aplo;ar_ T | Synd Server S/W I

| 5214 « Redquest | Distibution I

L o I Net | 5232 |
AT et- L __ |

Repository 5216 |

|

lf——— ———— | | Synd Server User
I

|

| Ready to Deploy I | Account :
| 5218 — | 5234
| ———————" I | I
I I Testing : : —_—————— I
' 5220 |

Figure 52

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 56

US 2009/0037337 Al

Feb. 5,2009 Sheet 56 of 178

Patent Application Publication

N-0GESQ
SEVNETS

1-0GESQ
SEINETS

_/

Pres
V uoneoiddy |41
pabeyoed

CPES 18101
JAiolsoday ddy

OVES eoe(dioxie

€G 2Inb1

L~

0€ey
uonedddy

A

pabeyoed

|[00] Jobeyoed

02¢cS Jabeyoerd

v1es
sobexoed

aJem)os
Aelixny

cles

> 00gS

0les
s9|ld
uoneoddy

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 57

US 2009/0037337 Al

Feb. 5,2009 Sheet 57 0of 178

Patent Application Publication

N-06%S
JoABg

\

.\

L-06%S
BETNEIS

/

oG

uonesiddy

2
| UOISIOA
uoljeslddy
pabeyoed

e 18101S
JAIojsoday ddy

| 81epdn v/

G @4nbi4

ocYs
arepdn <

uoneolddy

0F%G aoe(dioyien

|00 Jobexyoed

0¢¥S [00] a1epdn Jabeyoey

1252
sebeyoed

aIeMm)og
Aelixny
pajepdn

salld4

> 00vS

0lvS
s9li
uonesiddy

pajepdn

Apple v. Uniloc, IPR2017-2202

Uniloc's Exhibit 2002, page 58

US 2009/0037337 Al

Feb. 5,2009 Sheet 58 0of 178

Patent Application Publication

N-049GG
JoAlag

1-06GS
NETNEIS

\\

675G
Z UoISIBp
uoneolddy
pabeyoed

8¥s8
N ajepdn
uoneolddy

o9¥5S
| @1epdn
uoneolddy

¥¥ee
uoneolddy
pabexoed

ZYSG 40.018
JAI0lsoday ddy

GG ainbi4

0€ss
uonedddy
pabeyoed Jo
UOISISA MBN

07GG ooe|diax ey

[o0] Jabeyoed

0¢9s
|00 | Jobeyoed uolisiop maN

7168
sobeyord

21eMI0S
Aeljixny
pajepdn

A

> 00SS

AN
s34

eleq pajepdn

olLss

s34
pajepdn yum
uonedddy

Apple v. Uniloc, IPR2017-2202

Uniloc's Exhibit 2002, page 59

US 2009/0037337 Al

Feb. 5,2009 Sheet 59 of 178

Patent Application Publication

89S
Aojdaq

9¥9¢
asuaol

uswAed

A

9G 8.nbi4

A4
asM Jo swa]

SAI909Y

N 31

99
Lo

A

¥199

A

oS
noxosyD

€96 aulbug Buisusal

A

0r9s
Hed 0} ppy

asuaol

AJ1oad
A

¢l9g

7e9s |, 2c9S
N ddy | ddy
296G soe(diorpep

A

Buisuadi 10 POy

919%
| ddy

uoneolddy

abeyoe
A

0199
»| UONeo||ddy

> 0095

pIng

JOpUSA

Apple v. Uniloc, IPR2017-2202

Uniloc's Exhibit 2002, page 60

Patent Application Publication Feb. 5,2009 Sheet 60 of 178 US 2009/0037337 Al
9700 ~ "4 Security For Deployed Applications
Server 5702 :
Marketplace 5710 I
I
« Application Repository) |
¢ Licensing li\seli.s \/t\(eb |
WWW » Accounts pplication |
5720 I
Access »» Users »

5714 » Deployer User ID '
5722 :
— 7y |
Billing Manager 5712 |
Security I
5730 * s 5742 I
I

W
Instance Verifier Payment U:g: :
5732 Verifier 5736 | |—No-»»| 5744 |
I
Permission Shut Down I
Verifier 5738 if Multiple I
Account Enablement Failures |
Verifier Periodic 5746 I
5734 Verifier 5740 |
A | |
&~ 5772 :
App ID 1 5750 | App ID 2 5760 ¥ |
Host Deployed | Host Deployed Hosted I
Software 1 Software 2 Application I
5752 5762 Execution I
Engine for I
Running I
Deployed |
S/W I
5770 I
Server A Server B I
5754 5764 I
I
I

Figure 57

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 61

US 2009/0037337 Al

Feb. 5,2009 Sheet 61 0of 178

Patent Application Publication

0986 J19sN

O,

©

8G @.nbi

€586 SO

0686 XIElS SIEMYOS

818G SINS

vv8S

| ddy
278G 1u8I1D/19smoug

78G WalsAg juslD

¢£8G SO

0£89 %IElS SIEMYOS

¢8G SN

918%
g ddy

7185
| ddy

¢l8s
aJnjonJiseljuj

P31SOH

¥Z3%
| ddy

€8S JU3lQ/Iesmolg

0¢3S waisAg juslD

$821A8p 9|diyNw woJ suobo snosueyNWIS

118G
Jabeuepy

uobon
snosuejnwis

018S
aulbug Buisuadi

508G Jones

> __ 008S

Apple v. Uniloc, IPR2017-2202

Uniloc's Exhibit 2002, page 62

US 2009/0037337 Al

Feb. 5,2009 Sheet 62 0of 178

Patent Application Publication

6G ©nb1

w3 [] men [

pejgeus [X]

uwpy []

annoy [

L-¥€6S 19N

e §S800Y 9p0Y 82IN0S dov Julupy sneig N-C£6G uopealddy
w3 [] mean | peigeus | uwpy []| eamov [N-0¢6G J9sn
wpa X mein]| peigeuz []| uwwpy [X]| ennov [] Z-026G J9s
wpa [] mein []| peigeua [X]| wwpy []| eamov [X] [-0265 J49s

A
[oJ1u0D

18410

0lLes
$S900Yy 9p0D) 92.N0S

8064 dOV

9064 JUlWpy

Y065 SNiels

[-C06G uoieol|ddy

80BLI3)U| [0UO0D) SS8I3Y JBS()

> 0065

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 63

Patent Application Publication Feb. 5,2009 Sheet 63 0of 178 US 2009/0037337 Al

App N
6004
X
[]
[]

Figure 60

App 1
6002
X
[]
X

User Management Interface

User 6010-1
User 6010-2
User 6010-N

6000 ~ ¢

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 64

Patent Application Publication Feb. 5,2009 Sheet 64 of 178 US 2009/0037337 Al

Application
Server 6100

———
| Display |
| 6106 |

———

CPU(s)
6102

6108—,

Memory 6110 —

Operating System

Network Communication Module

r——=1
| Input |
| Device
| 6105 |

Comms
Interface
6104

Distribution Module

|~ 6120

Marketplace Module

|~ 6122

Listing Module

|_~ 6124

Licensing Module

|~ 6126

Permissions Module

| 6128

Billing Module

|~ 6130

Transactions Report Module

|~ 6132

Application Repository Module

|~ 6134

Packager Module

|~ 6136

Application Deployment Module

| 6150

Deployer Module

L/~ 6152

Hosting Module

User Accounts Module

| -6156

Deployment Security Module

|~ 6158

Syndicated Deployment Module

| 6160

Access Module

| 6170

User Account Access Module

L~ 6172

User Hosting Module

| 6174

Marketplace Database Management Module

| 6180

Licensing Database Management Module

L~ 6182

Deployment Database Management Module

| 6184

Billing Database Management Module

6186

User Account Database Management Module

/"~ 6188

Auxiliary Services Module(s)

|~ 6198

Figure 61

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 65

Patent Application Publication Feb. 5,2009 Sheet 650f178 US 2009/0037337 Al

Application Client

Memory 6210 —

6200 Operating System |~ 6211
k Network Communication Module |~ 6212
Receive and Process User Input Module |~ 6214
Display Client/Browser Display Module |~ 6215
6200 Browser Engine Module 6216
CPUs) Distribution Module |~ 6220
6202 Marketplace Module |~ 6222
—— Listing Module |~ 6224
6208~ Licensing Module |~ 6226
Permissions Module | 6228
Billing Module |~ 6230
Transactions Report Module |~ 6232
Comms Application Repository Module |~ 6234
In&ce Packager Module |~ 6236
Input Application Deployment Module 6250
Device Deployer Module -~ 6252
6205 Hosting Module |~ 6254
User Accounts Module 6256
Deployment Security Module — 6258
Syndicated Deployment Module |~ 6260
Access Module 6270
User Account Access Module 6272
User Hosting Module |~ 6274
Marketplace Database Management Module 6280
Licensing Database Management Module -/~ 6282
Deployment Database Management Module |-~ 6284
Billing Database Management Module 6286
User Account Database Management Module —/~ 6288
Cart/Checkout Module |~ 6290
Process Payment Module 6292
Select License Module —/ 6294
Submit License Terms Module -/ 6296
[]
.
Auxiliary Services Module(s) |~ 6298

Figure 62

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 66

US 2009/0037337 Al

Feb. 5,2009 Sheet 66 of 178

Patent Application Publication

€9 ainbi-

0G€9 SSINPON
Aseljixny

8¥c9
8|NPO\ Jesmolg

9v€9 SINPON
Buuoyiny

¥¥E9 SINpoN
SEYNEISYOETY

vE9
a|npol jlew

0vE9 MOEIS siemyos

N-8¢€9
|oJ1U0D
UOISIBA

N-¢¢£9
aseqeleq

N-7Z€9 ISOYA

I

|| T8cEe
|| 1oauoo
|| uoision
I

L-¢ce9
aseqejeq

L-¥Z€9 HmOc>.U

T-0¢¢9 uoneol|ddy

20¢9
SINPo
UONBZIUOJYIUAS
uoljealddy

91¢9 sabeyord 2/emyos

¥1£9 9seqejeqg

Z1¢9 Aloyoaaig Junodoy

A
Y0€9 8Seqgejeq

01 €9 JUNO22Y

ylomawel uoneolddy

> 009

Apple v. Uniloc, IPR2017-2202

Uniloc's Exhibit 2002, page 67

US 2009/0037337 Al

Feb. 5,2009 Sheet 67 of 178

Patent Application Publication

V9 @inbi4

0G19 HOEIS S.em)jog

| 5656 \@\
“ 8evd FAgze =
|03u0D aseqejeq
I'| uoisiap
|
| — e
PEPI 1SOUA 0E%9 co_Hmo__aQV\
/ \
8259 sulewoq \ <
\
wv 9270 sebeyoed aiemyiog
\
¥cP9 aseqejeq Z2h9 Alojoaulg Junoooy i \@\
0299 1unooay ol

I

L1

»

Y119 SiSouyA

809 seseqejeq

—(|

ZT+9 suoneoddy

90%9 S1UN0O2Y

T (O—

L~

¥OP9 s48sn ulpy

I%9 suiewoq

¢0v9 sseqejed SINT

sjusuodwo JUNo2IY

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 68

Patent Application Publication Feb. 5,2009 Sheet 68 of 178 US 2009/0037337 Al

6460 ¢
6462
(1) Create admin user record
v ~ 6464
@ Create account record and account directory
6466
(3) Create account “database” record and account database
6468
(4) Create domain name record
v 6470
@ Create application record and application directory
~B472

(6) Create application “database” record and application database
v 6474
@Create vhost record for account domain, a vhost directory, and a

version control repository for the vhost directory

v 6476
(8) Download and install software packages
v 6478
(9) Create configuration files for software stack
Figure 64B

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 69

Patent Application Publication Feb. 5,2009 Sheet 69 of 178 US 2009/0037337 Al

Application Synchronization

Server 6510

Application Framework 6512

Data
»| Framework |«
6519

Account 6514

Application 6516-1 Application 6516-2

I I
I I
I I
I
: Application Application I
| Database Database I
| 6518-1 6518-2 |
I 4)
I I
| - - - - - - - -- - oo --T---T-oTToooos |
A
@ AOP Sync

Y.

Client 6530
_____________________________ -
: Application Framework 6532 I

Sync I
| Data 6540 |
| » Framework [« |
' 6539 |
: |
LT T T T T T T T T T e T T T T T 1l

I Account 6534 |1
| | 4 \ 4 |
I I Application 6536-1 Application 6536-2 |
I

I |
| | Application Application |l
I Database Database |
| 6538-1 6538-2
|| |
P I |
|| Il
.____ _ - I

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 70

Patent Application Publication Feb. 5,2009 Sheet 70 of 178 US 2009/0037337 Al

Application Synchronization
6600 ¢

G\ 6602
-/Detect changes in an application database for a first application,
when a user uses the first application

A 4 6604

O,

Push changes to an data framework

@\ v 6606
/ Synchronize changes with a second application
1 6608
Pull changes from the data framework
v | 6610
Apply synchronization rules to the changes
1 6612
Apply the changes to an application database for the second
application
4 L 4 6614
The second application has synchronized the changes
@ ___________ l_ ____________ 6616
Synchronize changes between server and client |

Figure 66

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 71

US 2009/0037337 Al

Feb. 5,2009 Sheet 71 0of 178

Patent Application Publication

| 9979 1n0 oufs :dov |
v
| 3979 u Jesn uenieg |

v

/9 @1nBi4

| 0779 usesn ssecoid |

2929 bo| auAsTunoooe
OlUI 818|NWNooe ALY

¥G.9
OUAG ddy

40 dOY

| 0975 u ouAs:dov |

%

[8525 1n0 Jesn enies Je—

%

[7773 wewsiou) oy

CZ19 SMOOH :ul” Jssn

9679 Bo| ouAs Buiobino
0jUl 91.|NWINJoE ABLIY

1 A
> GZ9 sddy €
9.9 punoginQ 3
v 9129
—— uolB|SUBI] Pl JoUMO
| Z$Z9 suesuipiyo | CTWE)
_ — _ uonejsue.| piJaumo G1.9s19)d
9770 SWasul Jusied
2219 sy 170
_ S¥/9 s818[ep pPIIyo _ 175 uswiebeuey Josn
— 7129 WX ——
| 7779 se1siep Jusied | Juswabeuely Jasn JuswaBeue oSN N | €rZ96ususoy |
_ £¥/.9 S919I9P |1V _ €129 buisusar _ _ €170 Buisuaol _ _ Z1Z0 s1epdn ejepyoeg _
| Zvioswesu |y | 1 €29 S00H 1229 SYOOH [TZ9 SY00H
_ 729 seepdn v _ 0€£9 91812 PUNOgINQ 0¢Z9 81epdn punoginO 129 LBsU| punogqing
7
0¥%Z9 J9pJO punoginQ 9 | 073 @1noex3 punoging | %
7

» Z0Z9 $5990.4 punogin |

uoneziuoJydsuAg uoneslddy

> _ 0029

Apple v. Uniloc, IPR2017-2202

Uniloc's Exhibit 2002, page 72

Patent Application Publication Feb. 5,2009 Sheet 72 0f 178 US 2009/0037337 A1
6800 ~ ¢ Application Synchronization
Application 6802-1
user apply user app database
6804-1 6806-1 6808-1 6810-1
user _id N id . app_id id
app_id app_id
user_id
owner_id
sync log entry 6816 1
i sync_:q sync_vmap_parent sync_vmap_child
ransaction 6812-1 6814-1
account_sync d d
sync_column
ooptle | | apoiae
broadcast_column 1 database _id arent_id
broadcast_database_id — P -
) translate
broadcast_action auto inc
broadcast_vmap_id imary k
datatypes primary xey
new_bool
old_bool
new text
old_text
group _ids
map_id
owner _id :
= sync_vmap_parent sync_vmap_child
backdata 68122 68142
from_aop . .
subscribe_action d d
. — . app_table app_table
subsczbe__gatatb;fe_ld < app_column «— app_column
subscribe_table database_id parent id
subscribe_column
deplov | ing id translate
eploy_ |cer]§|ng_| auto_inc
Vrsnp?epc_izlals primary key
T
Application 6802-2
user apply_user app database
6804-2 6806-2 6808-2 6810-2
user_id) id - app_id id
app_id app_id
user _id
owner_id
Figure 68

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 73

Patent Application Publication Feb. 5,2009 Sheet 7301178 US 2009/0037337 Al

6900 4
~ 6902
Determine whether app_column for subscribing database is a
vmap_parent or vmap_child of a parent that has “translate” set to
“true”
6904
No “translate”
set?
6906
Obtain owner_id from apply_user table for user of subscribed
database
4 6908
Replace app_column value with owner id from apply_user table
A 4 ~6910
> Contine with synchronization
Figure 69

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 74

US 2009/0037337 Al

Feb. 5,2009 Sheet 74 of 178

Patent Application Publication

0/ @Inb1

¢ = pIJasn
Z-+00/ ddy

© = pI”lasn
10}

900/ sel

€ = pI Jasn z-400/ ddy
pue ¢ = pi Jesn |00/ ddy
0} sdew g = pI” Jasn SNJ

¢ 002 L-¥00.
uonedlddy uonediddy

sJosn Buibiop

¥ = pI” Josn
L-$00/ ddy

¥ = pI Jasn
Jo}

900/ 3sel

> 000.

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 75

Patent Application Publication Feb. 5,2009 Sheet 7501178 US 2009/0037337 Al

Merging Users

7100 e

1 — 7102

Create user in applications o
@ v
/ Create users in EMS -~ 7104
. L ~- 7106
Apply EMS user_ids to applications -
v , ~ 7108
Set owner_id value -

3 l ~ 7110
Merge EMS users -

4 v 7112
Create task in application 2 -

° , l : ~ 7114
Synchronize task with EMS -

6 v _ 7116
Translate user_id in task -

7 ¥ _ . ~ 7118
Send task with translated user_id to application 1 -

(o) l
Create task with translated user_id in application 1 -

Figure 71

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 76

Patent Application Publication Feb. 5,2009 Sheet 76 of 178 US 2009/0037337 Al
Server 7200 Memory 7210 — 7211
Operating System = 7212
\ Network Communication Module -
=== EMS Module |~ 7213
' Display | EMS Database |~ 7214
L @ _| Application Synchronization Module |~ 7215
Data Framework |~ 7216
CPU(s) —
7202 [Synchronization Data Structure |~ 7217
Synchronization Rules [~ 7218
7208 Synchronization Logs L~ 7219
Filters [~ 7220
Hooks |~ 7221
Comms | |Account Framework " ;gg?
Interface Account Directory - 7932
7204 Account Database L~
| Input 1| Software Packages g ;gig 1
| Device | Application 1 L i
L 1225_| Application Database T 72411
vhost |~ 7242-1
Files |~ 7243-1
Version Control Repository L~ 72441
®
[]
®
Application N |~ 7240-2
Application Database [~ 7241-2
Files |~ 7243-2
Version Control Repository |~ 7244-2
Software Stack [~ 7250
Web Server [~ 7252
Authoring Module L~ 7253
Other Services |~ 7254
[
L]
[
Aucxiliary Services Module(s) |~ 7260

Figure 72

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 77

Patent Application Publication Feb. 5,2009 Sheet 77 0f178 US 2009/0037337 Al

Client 7300 Memory 7310 — 7311
Operating System - 310
\ Network Communication Module -
EMS Module |~ 7313
Display EMS Database |~ 7314
7306 Application Synchronization Module |~ 7315
Data Framework | _— 7316
CPU(s) —
7302 [Synchronization Data Structure |~ 7317
Synchronization Rules [~ 7318
7308 Synchronization Logs L~ 7319
Filters L~ 7320
Hooks L 7321
Comms ||Account Framework - ;gg?
Interface Account Directory -~ 7330
7304 Account Database s
Input Software Packages e ;gig 1
Device Application 1 - i
305 Application Database - 734
vhost |~ 7342-1
Files va 7343-1
Version Control Repository [/~ 73441
[]
L]
o
Application N |~ 7340-2
Application Database L~ 7341-2
Files |~ 7343-2
Version Control Repository |~ 7344-2
Software Stack s~ 7350
Email |~ 7351
Web Server L/~ 7352
Authoring Module |/~ 7353
Other Services [/~ 7354
Browser Module |~ 7356
:
Auxiliary Services Module(s) L/~ 7360

Figure 73

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 78

Patent Application Publication Feb. 5,2009 Sheet 78 of 178 US 2009/0037337 Al

Application Synchronization Module 7400

Sync Rules 7402 Sync Log 7410

Application 7404-1

Application 7404-2

Application 7404-N

Data Framework 7420

Sync Data Structure 7422

Filters 7430 Hooks 7440
owner_id Back Data Update
Translation 7431 7440

Licensing 7441

Outbound Insert

7450 User Management
Outbound Update 1442

7451

Auto Increment

Outbound Delete 7443

7452 —
Qutbound Process

7453 Inbound
Outbound Execute 7456

7454 AOP

Outbound Order 7457
7455

Figure 74

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 79

US 2009/0037337 Al

Feb. 5,2009 Sheet 79 of 178

Patent Application Publication

uo pajeald

[e1oads

pI aaJasaud

spl” dewa

pI” Buisusal| Aojdsp
uwiNjo9” 8qLIIsgns
a|ge) 8guIsgns

pl osegelep aqIosgns
uoioB 8qlIIsgns

doe™ wouy

elepyoeq

Pl 1ouUMO

pI dew

spl” dnoub

X8} p|o

X8 Mau

|oog pjo

[00q mau

sadAieiep

pI~dewA 1seopeolq
UonoE ™ 1SBOpPe0.g

Pl 9Segelep 1SBOPROIQ
ULIN[OY™ 1SBOPROUQ
9|gey 1SBOpRO.]
UWN[O3 JUAS
a|ger duAs

oUAS JUNOOoE
uonoesue.)

pl JUAS
punoqino

[X=]
(=]
0
~

G/ @b

pI dewa 1seapeolq
doe” wou
uaipjiyos 196

Pl JBUMO

spl” dnoib
sdno.b
asegelep ejepyoeq
uo polesly dde
1X3) mau

X8} plo

[00Q Mau

looq pjo

uwiNjoo ouAs
o|ge1 ouAs
uwnjoo dde
o|gey dde
adAieiep

uoioe

pI dew
Bjepsoeq

pI oseqgelep
JUAS JUNOJIR
uolnoesuel)

pI_ ouAs

uo pajeald
punoqui

1
(=
10
~

ualpiyo 106
Pl JOUMO
spl_ dnouf
IX9) mau
X8} pjo
|[00q mau
loog pjo
UWN[O2 JUAS
8|ge) JUAS
uwnjoo dde
o|gey dde
adAieiep
uoioe

pI dew

pI dewa
ysijgnd
BlEPYOE]
JUAS JUNOJoE
uoloesue.]
p!

uo pajealo

Z0GZ Bo| dde ouAs sea

> __ 0052

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 80

Patent Application Publication Feb. 5,2009 Sheet 80 0f 178 US 2009/0037337 Al

7600 ¢
s ’7602

Detect changes made to a first data set in a plurality of data sets

v 7604
Synchronize at least a first subset of the changes to a data
framework that facilitates data synchronization between the plurality
of data sets

| 7608

| Determine a mapping between data fields in a data structure
| for the first data set and data fields in a data structure for the |
| data framework |

T T T T T Yy, T 7608

r Synchronize the data fields in the data structure for the first T
data set corresponding to the at least the first subset of the
changes with the data fields in the data structure for the data
framework based on the mapping 7610

| Translate values for the data fields in the data structure |
| for the first data set to corresponding values for the data |
| fields in the data structure for the data framework based |
| on translation rules for the first data set |

| Synchronize at least a second subset of the synchronized changes
| from the data framework to a second data set in the plurality of data |
sets

I

| Determine a mapping between data fields in a data structure | |
| forthe second data set and data fields in a data structure for | |
[the data framework ||

Synchronlze the data fields in the data structure for the second
data set with the data fields in the data structure for the data
framework based on the mapping

| Translate values for the data fields in the data framework |
| to corresponding values for the data fields in the second |
| data set based on translation rules for the second data |

|
[
|
|
|
|
L
|
[
|
|
|
| | set |

1
| Synchronize at least a third subset of the synchronized changes |
I from the data framework to a second data framework |

Figure 76

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 81

Patent Application Publication Feb. 5,2009 Sheet 81 0f178 US 2009/0037337 Al

7700 ¢

Identify a first data set in a plurality of data sets that is to be
synchronized with a data framework

v - 7704

Determine a mapping between one or more data fields in a data
structure for the first data set and one or more data fields in a data
structure for the data framework

¥ 7706

Generate synchronization rules for the first data set based on the
determined mapping

r
| Identify at least a subset of the one or more data fields for the first

| data setthat include data values that are to be translated to

| corresponding data values for the data fields for the data framework |

r
| Generate translation rules for translating data values for the at least |
| the subset of the data fields for the first data set to corresponding |
I data values for the data fields for the data framework |

Figure 77

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 82

Patent Application Publication Feb. 5,2009 Sheet820f178 US 2009/0037337 Al

7800 ~ "4
7802

Detect changes made to a first data set for a first web-based
application in an account

v —7804

Identify at least a second data set for a second web-based
application in the account, wherein the second data set includes at
least a subset of the data included in the first data set

v ~7806

Apply synchronization rules to synchronize the second data set with
the first data set

Figure 78

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 83

US 2009/0037337 Al

Feb. 5,2009 Sheet 83 0f 178

6. @inbi4

sum doe

paseq dnol6 dewa
pI dnoib oy
anjeA” puod
Jojelsado” puod
uwiN[o2™ puod
uwnN|oo™ JBUMO
a|qer ouAs

UWNjo2 DUAS

o|qey dde

uwnjoo dde

uonoe

adoas

Aoy Auewud JUAS JUNOJoE

oulr oIne pI- anlasa.d
uwnjoo dde aje|sueln a|geus

a|qe; dde uwnjoo dde pi- Buisuagl| Aojdep

prriusied dewa 2uAs a|qe) dde prraseqeiep Aoy uibsiog
pIjuaJled plI_aseqgelep - pI esegejep dde

¢ p! p!

uo pojeald uo pojeald uo pojeald

906Z PIYyo dewa ouAfs ¥06Z 1uased dewa ouAhs Z06Z dewa suhs| > _ 0062

[
(=]
~

Patent Application Publication

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 84

Patent Application Publication Feb. 5,2009 Sheet 84 of 178 US 2009/0037337 Al

8000 ¢
=== e -—8002
I At one or more servers, hosting a marketplace application: :
I Receiving from a vendor a software application for distribution. |
: v |- 8004
I Associating license terms with the software application. :
: : '
| Making the software application available for distribution through the I 8006
I marketplace application. - JI/
I v I
| Deploying the software application to one or more user accounts onone or |-} 8008
: more hosting servers, in accordance with the license terms. |
___________________________ 48010
| @ Deploying in response to a user request to deploy the software 1 I
NS ___ __application. _ _ _ _ ______ 2
Yy _ o ______ NE 8012
: @ Downloading the software to the one or more user accounts. I :
|l
| Activating a flag associated with the software application in the one } |
I Or more user accounts. I
||l pom——— — — —— —— — — — ———————— — — -~ 1t 8016
I | The flag enables the software application for the user account. | r |
| __J_! |
I T 8018
| Activating a license for the software application in the one or more 1 |
I I useraccounts. _ _ _ _ _ _ _ _ _ _
My - - - - 1T 8020
| @ Providing the software application for hosting by a user on hosting I
I —/_ _ _ _ _ _ serversassociated withtheuser. _ _ _ _ _ _ _ |
My - - - - 1 8022
I Distribute through a website associated with the marketplace 1 |
||\ ____ _ _applicaton. __________ A,
| @‘ ~ Distrbute irough a dlient assodiated with the marketplace ~ — 1|1~ 8024
VN _applicaton. I
| | /= iie oneor miora tosing savers are physically separate Tom e 1| 8028
I [\=/_ _one or more servers hosting the marketplace application. _ _ _f |
M <------—-—-———————————————— 1] 8028
: Deploy using an application deployer. il
.
: Host the deployed software application for the one or more user 1 1-8030
I

____________ accounts_ _ _ _ _ _ __ _ __]I
R, ~(®)
Figure 80

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 85

Patent Application Publication Feb. 5,2009 Sheet850f178 US 2009/0037337 Al

8100 ¢ <;>

____________________________ ~ 8102
Ir Packaging the software application for distribution via the marketplace _|r
| application hosted by the one or more servers. |

——————————————————————————— 1 J[r8104
:@ Storing a packaged software application in an application repository. | |

|~ o __ | -8106

| Preparing an update to a previously deployed software application, 1
| I where the update requires the previously deployed software application
to function. 18108

from the group consisting of a push method, a subscription (pull) |
| | method, and a hybrid method, in accordance with the license terms |

— e — —— e —— — —— — —— — — — — — — — — — — — — — — — —

' |
————————————————————————— A-8112

| @ The standalone distribution includes a software application and I*JI I

| one or more patches to the application I I I

. ~ 77 " Making available is performed by a listing manager. T
I Tﬁeﬂsﬁng_ manager includes a store listing for licensing the software |
| .____________apﬁlic_ati_on;___________'\4/‘8”8
[

e e e — —— —— — —— — —— — — — — — — — — — — — — — — —

[Making the software application available for distribution includes at | |
[least one selected from the group consisting of: determining a user | |
I | account type, and based on the user account type, preparing to deploy| |
[| a software application to the user account, or generating a new user | I/
[| account compatible with the software application and preparingto |1
| L deploying the software application to the new user account. | |

—8120

_____________________________ 8122
@ The marketplace application includes technical support for the software }/

Figure 81

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 86

Patent Application Publication Feb. 5,2009 Sheet 86 of 178 US 2009/0037337 Al

8200 ¢

" — 1

| At one or more servers, hosting a marketplace application: [|8202

| Receiving from a vendor a software application for distribution. :

I

| — : v : |,-8204
Generating license terms in response to a selection by the vendor from |

: options provided by the marketplace application. I

I -

| Associating the license terms with the software application. |~ 8206

} I

I ¥ |

| Making the software application available for distribution through the |~ 8208

: marketplace application, in accordance with the license terms. [

| e e __ Y 4|821 0

Deploying the software application to one or more user accounts on
| one or more hosting servers, in accordance with the license terms. /|'8212
| @ Deploying is in response to a payment associated with the one or 1+ |
more user accounts.

The license terms include at least one of an open source license,a | |
osed license, a source code license, an executable license (object file), | [
and a repacking license. Iy

I

I
| @ The repacking license determines whether a user of the software L1y~ 8216
| application is permitted to repackage and redistribute the software I
: | application : : I
| | '_@ The repacking license has an associated royalty. LHIF 8218
I e e e e e e i
[| @ The associated royalty is one selected from the group |Jfr/l/4|(8220
| I | consisting of a wholesale royalty, a retail royalty, and a flat fee. | : I I
|\ W 1
bbb bbb I

| /S _ The license manager determines user permissions for instaliation, |-}~ 8222

| activation, and access to features of applications. |

____________________________ |/, 22
: Displaying licensing events for a respective software application made H 8226

available for distribution through the marketplace application. I

————— —

Figure 82

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 87

Patent Application Publication Feb. 5,2009 Sheet 87 0f178 US 2009/0037337 Al

| Storing a price associated with the software application at a licensing ‘l
: manager separately from the software application |

ITFe_prEe_is dynamically adjusted by the licensing manager in response 118304

At least one selected from the group consisting of access duration, I
features, and price, is dynamically adjusted by the licensing manager in |
response to a selection by the software vendor. |

_________________________ —_—
toring the one or more user accounts separately from the marketplace |
application. [

| @ Prior to processing a payment, receiving from the user a I
I] promotional code, and processing the payment based on the I
| promotional code. I

| e . L . 2 18314

I
| Prior to executing the deployed application, comparing a ri
| uSer identifier associated with the one or more user accounts |
11 and an application id associated with the deployed application | |
I against a billing manager to verify that a valid paymenthas | |
| I

I
|
|
|
|
|
I | been recorded. |
|

———————————————————————————— - 8318
erifying that the one or more user accounts has permission to execute [~
the deployed application, and in the event of a verification failure, warning|
I the user. |

:e_v&ifﬁng is performed periodically, and following a plurality of | J'(,/ 8320

| verification failures, preventing the one or more user accounts from | I
|| executing the deployed application. |

| LTSS T == T T T T T T T e T T — _V-—8322
Verlfymg includes checking for multiple instances of the software |
| T application being simultaneously executed by the one or more user | |
|1 accounts. | |

Preventing access by the user to data stored at the one or more |
I servers, upon determining that the one or more user accounts has been |
. disabled.

Figure 83

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 88

Patent Application Publication Feb. 5,2009 Sheet 88 of 178 US 2009/0037337 Al

8400 ¢
—mS—SN— A
|@9 At one or more marketplace servers hosting a marketplace application, | |—8402
| | in response to a request from a syndicated server to distribute a software |
| application from the marketplace, identifying one or more user accounts |
| associated with the request. |
I A" I
| Ve — 1,-8404
erifying that the one or more user accounts has permission to use the |
: software application. |
| |
I Deploying the software application to the one or more user accounts, in | 8406
I accordance with license terms associated with the software application. I
\— | 8408
I @ The software application is presented for deployment to a user. Iy
b ! ';~ 8410

I

I !
: @ Making the software application available for distribution through the ﬁl
| - I

@ Providing through an application deployer, across a network to the one | | - 8412
or more user accounts, a software application stored at the application |

repository. | :
~ Dépioying indludes selecting one of a plurality of software Ll 8414
y of software |
I applications, compatible with the one or more user accounts, from the |
I application repository. |
———————————————————————— | 18416

Storing in the application repository software applicationsina L
| — plurality of states, including at least one selected from the group |
I consisting of a ready to deploy state, an undergoing quality |
| assurance state, a ready to submit for quality assurance state, and |
[I

|
|
|
|
|
|
|
|
|
|
|
|
| an unfinished state. |
| o

Figure 84

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 89

Patent Application Publication Feb. 5,2009 Sheet890f178 US 2009/0037337 Al

| At one or more servers hosting a marketplace application:
making a software application available for distribution through the
marketplace application.

I

L |—8504
Receiving a user request to license the software application. |
¥ |

:/ 8506

|

|

|

|

|

|

I

| Providing the software application for deployment to one or more user | -
| accounts, hosted on one or more servers.
|

|

I

|

I

|

|

|

I
__________________________ 8508
Providing the software application for deployment includes providing ¥
| e software application across a network for deployment at one or more | I
L_servers associated with the user, hosting the one or more user accounts. | I
__________________________ |
Processing a selection by the user that includes adding the software .:,p’ 8510
| application to a cart associated with the user, and checking out the cart | |
|l --- - -""-"-"""—"“"¥“"¥""“"~""~"“~"¥“"¥“"¥“=—"¥“—"=—-"=—"=—"—-- |
| A —— — — — o — — — — — — — 1y 8512
I
I

~ The license terms are specified by a vendor associated with the |
software application. i 8514

I Specifying the license terms includes selecting the license terms | I
from a plurality of options provided by a licensing engine associated |
| with the one or more servers hosting a marketplace application.

|

|

|| 'Validating that the request to license the software application 11/’

|1 complies with the license terms. I
- - - - - - - - —-_— - I |

L=t | |

The request to license the software application includes a payment |
I~Selected from the group consisting of a cash payment, a credit payment, |
and a prospective future payment. |

Figure 85

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 90

US 2009/0037337 Al

Feb. 5,2009 Sheet 90 of 178

Patent Application Publication

10| aIinbi4

A 00L0L

b

90101 ¥0101 Z0l0lL

N

210l

o:or/

80101

=

.

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 91

US 2009/0037337 Al

Feb. 5,2009 Sheet 91 0of 178

Patent Application Publication

20| @inbi4

& 0020l

WODUNS 03 [00) SI4L 4B) PEORUD A0 WIOY 1SnW J0LDTRAR] pUB SBIX00D TION

\\\\\\\\\\\\\&\%\x

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 92

US 2009/0037337 Al

Feb. 5,2009 Sheet 92 of 178

Patent Application Publication

€0l ainbi4

& 00€0l

._wmmxumm gam 3o nQ bo

u\»;.“ k»«u B Y

Z0E0L \\\\ dde-|in; mau e sbeyded

. .o B» 4996 _ _ .

. .

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 93

US 2009/0037337 Al

Feb. 5,2009 Sheet 93 0of 178

Patent Application Publication

01 8.nbi —00%01

| AUIE SNpoUY DR
reledt sy g : Er=19% ‘
300 BOREDHOdE O 3AIRIRI §) Yied

¥Oor0lL
s3diios reuodo

<y ABPREY

L srzicav cpwepy ddy

coyol

\\\\\x\\\\\\%&%\\\\\\\ \\ T

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 94

US 2009/0037337 Al

Feb. 5,2009 Sheet 94 of 178

Patent Application Publication

GOl @Inbi4

00501
Y

e

. anpboy
sabevyaed gap o 1no Bog

A0 07 SDUIDT HRAET DU 48 BJBYL

e pampdn yEay apEaa Lt N4

A R

i

i i

ot

ide ue 0] arepdn ue abeydey

Apple v. Uniloc, IPR2017-2202

Uniloc's Exhibit 2002, page 95

US 2009/0037337 Al

Feb. 5,2009 Sheet 95 0f178

Patent Application Publication

901 84nbi-

| 0108 Japcuy oy

S Sy T g
3003 gonedydde 01 aneRl S Yt

v e

sydiiag jeuond

fZrddeswen ddy

. \\\.\.\\.\\.\\\\\\\\\\\\\ \\ \\\ 7 \\.\.\\.\\.\\\\\\\\\\\\

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 96

US 2009/0037337 Al

Feb. 5,2009 Sheet 96 of 178

Patent Application Publication

L01 8inbi4

»— 0020}

TUCHZURY G} {001 S1Y) SO} POIGPUR 24 Y30 J5mu 1duinsess] DU Sa00) [BI0N

Wi B0Y

PAAS SR BITCIR RN

SRTBLERE(] ROBIIDNIE

JUNOIOE 3I015 SO|ATF UOIIRUIISAP PBII3|DS INCA S0 S|ERUBPIID By} JBIUT

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 97

US 2009/0037337 Al

Feb. 5,2009 Sheet 97 of 178

Patent Application Publication

80

L 8Inbi4

A 0080l

&

LIS ST TR

G55

31} Bl 30 psing)

W BIAOSTDS T

TSOTIS 5. BTUEYD

G pagn

ARExd 40 300 B HM BIANOT RS 3144]

¢0801

GRS

Apple v. Uniloc, IPR2017-2202

Uniloc's Exhibit 2002, page 98

US 2009/0037337 Al

Feb. 5,2009 Sheet 98 of 178

Patent Application Publication

601 @inbi4

A& — 00601

®EH ABPU
S 80

.* .Ts..\AiQs,
\\\ 7 \\\\ \\\\l\\\\%

Apple v. Uniloc, IPR2017-2202

Uniloc's Exhibit 2002, page 99

US 2009/0037337 Al

Feb. 5,2009 Sheet 99 of 178

Patent Application Publication

Ol @inbi

| JHRR08 122)95

¥00L T\\

SAIELE
BBBLIBY

sajqe]

000LL

songil
sg0s 6
sagde™ B

e -

pnioth
A

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 100

Feb. 5,2009 Sheet 100 of 178 US 2009/0037337 Al

Patent Application Publication

:::::::: wum\

11 8Inbi4

A 00LLL

| WHDS JIOUY PRV

3004 uoneapdde o1 aARER S YIRd

$1diiog jeuondQ

* s3epdn abeydey pidwes:aweN ddy

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 101

Feb. 5,2009 Sheet 101 of 178 US 2009/0037337 Al

Patent Application Publication

pgy Soky

FRY

¢l

| @1nbi4

SR

00211
i B SR g
0zl h——— sajni ag mhum.£SMxM,mmU,mum.ﬂhm aseyeieg
B
20zLL —— 43INP3Y5

20

LI L

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 102

Feb. 5,2009 Sheet 102 of 178 US 2009/0037337 Al

Patent Application Publication

€11 ainbi

|| saigELEA 155

00ELL

piati Bsiony pRv

TP oG e O B T G g R e BUnSOUS BR T O R OB RS, S STy

o\\\\\\\\a i

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 103

Feb. 5,2009 Sheet 103 of 178 US 2009/0037337 Al

Patent Application Publication

11 8inbi-

#oovkL

Lg% L peu Bunsoyses radpy Aionsodas uss
AHBLLIDE 1S0/A

oo mmeTT udissed gp
2N RS qp

ISOUIE0] 11504 P

op saubis0osegEER0eLT BIU qp

A IDAUEY qR
Zovil ‘\\\

saubisogesegens s dde

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 104

Feb. 5,2009 Sheet 104 of 178 US 2009/0037337 Al

Patent Application Publication

Gl @inbi

9051 — |2

SEUSE THOOESY

»— 0051}

——— V0StL

__—¢0GL |

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 105

Feb. 5,2009 Sheet 105 of 178 US 2009/0037337 Al

Patent Application Publication

91

L 8Inbi4

N51 O} SEUINIDT DUARS O B2 B4

W dde aprgdn gy waum aéu.‘hm *

2205 e R)

c09Ll

i £ i

dde ue o1 arepdn ue aBeyoey

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 106

Feb. 5,2009 Sheet 106 of 178 US 2009/0037337 Al

Patent Application Publication

/11 ainbi4

B

‘,

Hugne SUDRIE S a4 O e etng
uyae S ap ORAS o eling 00ZL1

oot sue e TS T Usting

FHIINAE e R ap U aRAR oA REng

A ars LT ORAG 8

“rfing

12 snanae spedamnd AR DkAS
1S

ap | ORAS o BEng

DL

R A gy

TR A3 DRAS oA Ring

i AR GA efing
b A e et

W LNaas

iU IR i R g v

FEAE LA RN ar T oRAD oA REng

o=t Nl iakras: R R AS g PENG

o e R s g A e iRing
uapdunsan unuse amet ap 1 ohAR 64 BENE
BPMUBHT BS8D0E B R Y G Ok AE O g

bt ot ot Biet ax o4 s B TR A eing

i 3)

9LLLL—

... w{“ww\\\\wmwﬁ\m“\\w\k . \.\\\\\\N\xM\ ..
e

- s e : i o o

N

N

... - o
\\.\\\ “““ R R R R R R R A A SRS]
Fsp 4 3 WEES TaT £3) 31

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 107

Feb. 5,2009 Sheet 107 of 178 US 2009/0037337 Al

L

i

Patent Application Publication

-

811 ainbi-

Bipuns
SRBED

AR IREED
SHEEY

e s SIe 0D
SRteedianey

gaga diiny
iy

L
TSR
920y

HOLG " REICDY
SR R
SICHTE e T
S T

badiston i

.

Lt e Rl
SERSRT MUnCTIE

fcaen s datiesnad
Ficyat-Uhloc:

s

(o

Gttt
HATL T 25

%

AT
I

e B h\.\\x\
gsm ouks) R ey BursoyseR QT onn et W4

sk

’ i

.

008L1L

70811

c08L1

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 108

Feb. 5,2009 Sheet 108 of 178 US 2009/0037337 Al

Patent Application Publication

61

| @1nbi4

T coinian I 00611
R S AT
SECHPISIRE I R
MELE R IR
BEHEDY
an
gro it a
[Ty ste Sl
et
B
90611
70611
¢l6ll
0611
OL6L1L
80611

...

7 e i T el
o s s

-
-

4 mmm.vmkmﬁ 34355 B chwmm.‘m‘wwmam: ‘ mn 5

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 109

Feb. 5,2009 Sheet 109 of 178 US 2009/0037337 Al

Patent Application Publication

0¢| @inbi4

R R o R e R
. e~ 0002)
% % 7% 7 7 7% 7 s 7 G 7 % % 7 % i

i 7 7 7 7 7 i

PR Tt

Kyunpodels

s

Bk

14
s A bl)
WO ; s

Ry 7 80021

e

900¢1

F00C1

Z10ZL [AV T4

o0LozL

\&%\\%\&\\\\\x\\w\%\&&x\\?\\\\@\\\%\%
\\

e s T i i ““ = i S T

CoEn

cepuAs PR auE

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 110

Feb. 5,2009 Sheet 110 of 178 US 2009/0037337 Al

Patent Application Publication

121 8Inbi

. oLzl

14134

colcl

clici

.
onzL—4

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 111

Feb. 5,2009 Sheet 111 of 178 US 2009/0037337 Al

Patent Application Publication

R
N
R

olecl

14344"

clecl

...

o

i

RIS,

GRS

i s B ag.,ﬁ

v e i
o 7 z \R\\\\\\\\&M\\\ \\w\M\Wm\\W i

i

% 7 2 G \ \
e v\.$\\\\%“mmw\\\\m“mw§\.““.§ww.§ww.w§\.“m.§“mw§w.M§\.“m.§*mw§mwmw\\\\m&w\\\\\&ﬁ\\\\\&@w\\\\\&ﬁ\\\\\&wﬁ\\\\k&

dsa-dwadewaipe/ ¢ apsuBunsoyses 17aens/ Ssding

7 00¢cL

olLcel

30¢¢C!
90¢¢cL
Y02zl

cocel

.

s

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 112

Feb. 5,2009 Sheet 112 of 178 US 2009/0037337 Al

Patent Application Publication

¢zl ainbi4

i S R
i i i A

\‘ \E\é% . \E \%\%4
... . - . - »
i A i 7 00¢€2l

. - @ @ @ - @ @ @ @

7 i 7 i

R

_ —oiez

7

&\\

N
N

PR

N

N

N
NN
R

N

_

e

“\
7
7
7

i

s @O mn ¢l

¥0€CI

7
.

coeel

A W usipy
. \

7 7 o

. ...
. 7

o

%

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 113

1 ZARI R

7 > > > 7 s
s A
s Z i

A
i 7 7 7 7 7
i i i i ‘J

Feb. 5,2009 Sheet 113 0of 178 US 2009/0037337 Al

90¥Cl

140174" ZovelL

e N g i i 7 i o
. s e s B e s . .
ww&&&@ﬁ&&&&@ﬁﬁ&&ﬁ%x&W&&ﬁ%xﬁﬁ@&ﬁ&wﬁﬁ&&&&@&ﬁ&&ﬁ%ﬁﬁﬁ@&ﬁ@ﬁ&ﬁ&&ﬁ%ﬁ&& i &yﬁ§§§§¥ i
£ : g i 26 A SN A : frek ras 7
3 ; [EI LTS T4+ T4 1 i Frsding

Patent Application Publication

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 114

Feb. 5,2009 Sheet 114 of 178 US 2009/0037337 Al

Patent Application Publication

80S¢CI
906¢1

$0SCL

\cc

mN_\ m

.
%&\\

Sm_n_

00s¢cl

¢0sel

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 115

Feb. 5,2009 Sheet 115 0f178 US 2009/0037337 Al

Patent Application Publication

¥09¢1

)

J
. -

\\\\&\\\

ozl E:m_n_

\3 B A A

0092}

c09¢l

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 116

Feb. 5,2009 Sheet 116 of 178 US 2009/0037337 Al

Patent Application Publication

Py

7 R T

R
G i R

SR

R

i 3 e R o R

SREEE BEILT0RGE sl fereiel SoffERuR iz g
R e gEeT FFEED orunes

frai] ssfuBy e Weg

0cle _‘l\m LIZL |\

Sy AL
i Ry

o_‘NN_‘.\

viicl

velcl

zeLeL—

.

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 117

Feb. 5,2009 Sheet 117 of 178 US 2009/0037337 Al

pitnmsE T esEe

gty e

G nanne T eEsy

\\\\\\\\\\\\\\\\\\\ \\

}x&&&&&&&&&&&&&ﬁu&%@} s \c \.nc\.\c \c\c k. \c\ \\‘\ o G

%\\\ﬂ\\\\% %\\% o % \\\\&%\ﬁm\ \\\R\%%‘%&wi\%&w .
A

sefimu B

Patent Application Publication

008Z1L

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 118

Patent Application Publication Feb. 5,2009 Sheet 118 of 178 US 2009/0037337 Al

Bl
s Searrh

f R

g§§§?§§3iiﬁw§&xx\ .

.

L

i
i

N
RS

L

O

G

5b

My kastatlar
Bilfing History
1!

By Apps

Ry Acoounis

CHF Accounts
Crediv-Carg

Frofite

12900

Figure 129

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 119

Patent Application Publication Feb. 5,2009 Sheet 119 of 178 US 2009/0037337 Al

A T T

Chaase AR

Livdrses

Froduct info

Manketing
Featies
Damos
Biogs
Fags

Guiging Harted
Suppert

About Us
Uparades

My Styte

Suhmit

| < Cancel | Dejete || fiext 5> |

P TN EIE T

Figure 130

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 120

Feb. 5,2009 Sheet 120 of 178 US 2009/0037337 Al

Patent Application Publication

1€1 8Inbi4

A oolel

) saien o g 7

3 UG 1 JI0GTTY RPN RPN | 2T

L4, J%an) f enuiseid > U B

BB [

QlLel

Y0LEL

o (1= $391

) 9ovTSEA |
T

¢0LEL

03 B ddy 3500y

L e e

b
R s S

-

1

-

e

puagng
B1AYS Ay
saprifidn
S 1O
yoddng
paLEls BunmS
=0
sfoig
EOWBY
534nYeR 4
Buitovsy

Q] g

SAEUHIT

g xeeg

Sofap
%

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 121

Patent Application Publication

R

sinfos

.

Feb. 5,2009 Sheet 121 of 178 US 2009/0037337 Al

£

E
Basic Info

Chuvse Ape

Pradust Info
Markuiing
Feauires
Damos
Htogs

FaQs r'
Tatting Started 3

Registration Website Manager”

Yo A

Sepport

At Us

upgrages

My Steie

Swhmis

13206 —

13208 —

13210—
13212 —

13214 —
13216 —

13218 —w
13220
13222 —

13224 —
13226 —
13228—

13230—

13232—
13234 —
13236 —
13238 —
13240 —
13242 — ..
13244 —

Fard 4 -~ Elags &

g information SN

1 Save Crenges | Clene s Licgnse !

13200—«

Figure 132

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 122

Feb. 5,2009 Sheet 122 of 178 US 2009/0037337 Al

Patent Application Publication

- \\\\N\\\\W\\\\ . \§\§\\

c¢| a4nbi4

& ooeel

RS AN
sppeshdn

g _‘wri hEney

0} INOuR
ueddng

/gmﬂdnu.

Shvd

sBojg

AHLIBRONY I 0T BT AT G ST el

FRLARO 0y XDVIR|ZAT R, G it 3B W RSOG D Mgy A Gl 26T Rt AR]

UOHRMSIAY ATO FBIRE vy i SR Briagae
WOREAONEH0 T aTAITIT { $PARIS UORM| g DG

sasyan

ddy asooiy

EVIRS LTS

.

.

o0gel

——V0EEL

coeel

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 123

Feb. 5,2009 Sheet 123 of 178 US 2009/0037337 Al

Patent Application Publication

€1 ainbig

A 00¥cl

e g

O R

B3 ZORe T STGYIIEAT I9IRAYR} 9y pIeCHOD Oy
i SFREFCRORLODROBEFRLELTE ZOEST

TEIE 0FTBBERS

ROTETOF TR ‘TRUCSIHT
P mInaos axe [{HEd

,%,qmr\\ B}

ARG ¢

LS

BTG UOTITIAIGHY BunenITy

w5

f

kg \:a
Sapesfian

STy UGy
‘WO
paumg Bupisn
stw3

mmﬁu 2]

SOALEL]

SRANIEE]

GRuY PRApas
SA5RAT]

Sdy 35004

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 124

Feb. 5,2009 Sheet 124 of 178 US 2009/0037337 Al

Patent Application Publication

20sel

G¢l ainbi

ol fermod oy

S b7 5 } UOTET 3 HDT 7 i nol ROTRPUIOFU
FpFaoad PIHOYE KOTOT P AFUYD UIBTIRFEOT A AN
iiE. tEpDo aDinos auy 03 DADUTADS 98T QY JFuRR DoA S
EIDET 3O ¥ ansd Lo BR 7 sapesbn
Am.\”v....mm&zm‘nmﬂ 55 ey
naeking

panes Bueen

7 s673EaTyol

FERT XAl svd

SED;
YTRNGTRSEI0NTY g v 18
220U An-MOTIO] IoW0AEnD of sowsg

o AST
TS

2ETUTENY Auv smsTh 3 =
~BINATBT ¥ BT .

BusIHeN

why FaNpUag

SRSUT

gy asoouD

g

sey

i3

&»wnmmu BT Mg BINIEDS ..m.,.‘uﬁmmn..wh&

e A e A e

A B S SR B

SR S

- $0j0}3

31N

A 00S€)

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 125

Patent Application Publication Feb. 5,2009 Sheet 125 0of 178 US 2009/0037337 Al

55 R

Q‘:g\“
oot o
etafos
SN AR

fasicinin

Chiaase Ann
Licensas
#roduct into.
Marketng

Features

Blogs
FA0s
Getting Started

Suppot
Moot Us
Upgrades
My Seyle

13608 —

13600 —+¢

Figure 136

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 126

Feb. 5,2009 Sheet 126 of 178 US 2009/0037337 Al

Patent Application Publication

/€1 8inbi-

151 .,U,;Qm FTIIEG §BUATTE

B Ay

sapeifdn
SE N0
vlLielL ClLigEl 0Ll 1 In0gy
weddng
D XN USROARAG L BIURT
k g ; & ‘ parels Buien
Savd

S—

S— SRUIB0

/
e w0 s \G spanresd

SR T é

vy g Spul IPNELIG

EREUDT

gy 35004

G

-

B

SRR

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 127

Patent Application Publication Feb. 5,2009 Sheet 127 of 178 US 2009/0037337 Al

13804

Figure 138

F8s Tor Bielos CREPY

Freguasty Bobed Y

%?V-‘-/Hy-?,y-/” ey

- :
o -
2 £ 5 :
&= . =2 d, 8 28 gl
B Eog 8o g oy 2t 2% 3
& v B 3 - E 3 3 & &I
& = g = = & = & ;
e 2R &3 E3538 2 %8 F =
QQ\&\«% @ U a3 & D 3 oA x> X &
& : : !
(o]
o
3
o o
(o]
RQ
o
-

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 128

Patent Application Publication Feb. 5,2009 Sheet 128 of 178 US 2009/0037337 Al

R R R R R AR e R e e e e e e e e e e e e i s

Basic inlp
Chanss Apn

Licanses

Froduct Infa

Marketing

Fextures

Demas

Rlags

o B0 AEULALE PO BUCEUM. VOUT nEETNAI BN pRSSe

8y S

g

Suppan
Shaut Uz

Ungrades

My Styke

Latting Seauas Ko,

B F 1A

prs

Waetsonie

i RTEE Y

ioe e aClNate Yo

G 4 > Hversighorial

13900—+

Figure 139

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 129

Feb. 5,2009 Sheet 129 of 178 US 2009/0037337 Al

Patent Application Publication

0L @Inbi4

400071

SO S A TR s S e AR T Wm LD

BIARG Ay

PENTABAG = | |BIUEY B sapuabidpy

iU

[-TE- R

parieas Burnany

WG

sovd

T35 L AweeanE FAURR G T pafI0RE L REeD | SoUapP S U T S IO E b shiag
SR

e GRE Gy LR IARInR L RS " ROT G EART S BANE S JUOD BOTBA " samEay

AR Bunaien

R R LR

sBuaay

<, FIIOE- S0P ‘UHIEYE 1ATTEeyoyuog {wdpT 19ZTE-3u07, -

dey asnouyD

Ou) 25eE

s pumhivis w ul 3 SRR VR AT

b Uw SO3E33 &@mmﬁhwmw

Sy

: .w\\\u.\\\h\

s
e

G

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 130

Patent Application Publication Feb. 5,2009 Sheet 130 of 178 US 2009/0037337 Al

L
410

BasicInfe
Lheose App

.
LN Ehey About B Tek an Sy
Licenses N .
TN BN

Product Infa iEtelos

Barketing

Features

Demas

14112
/ 7 rin on wemes

o it (

Cening Started

Bloys

Suppoit

Upyrades

oy Style

14100—+4

Figure 141

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 131

Patent Application Publication Feb. 5,2009 Sheet 131 of 178 US 2009/0037337 Al

Choase 4pp

Licenses

Froduct Info r_1'4206

Masiasing Y Show tipprades Tab o N

Fgaturss

Bemas
Bingrs
FAQs

Geting Srartegd

14210

SUPPUrt

14218

fengrans

14200—+

Figure 142

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 132

Patent Application Publication

Feb. 5,2009 Sheet 132 of 178 US 2009/0037337 Al

(Etolos
\\\\\\ TRY

&gsic infa
Chease App
Licensas
Froduct info
Rarketing
Fratires
Damos

Blogs

FAE

Getting Started
Suppernt
Abaut Us

Upgrades

14304—

14306 ——

Bl

.

bse fusar

g n T KGRt

%

st ackaround -oping
el eheld

5. 00n/ ineQes ot eloE-sma)
e 2L
% beckgrow

mage s

maly
FF3E63E; "

ST

™~

sty les b

i eoiid;

border s oo lor:

CORR e

Figure 143

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 133

Patent Application Publication Feb. 5,2009 Sheet 133 0of 178 US 2009/0037337 Al

AR

S

R R AR
L

\\\\\\\\,}\\\\\\w 3 ‘\\\\“\“\\\\W

c Wb

Praduct Infa

Marketing

Features

Demas

sogs 14408

FADs e B el BERY

Supgors.
Abant Us

By Cart

My Siyle

Subymit

e 14414

tist of Cisrent Fridag

Maeoy | Parmngt | Auaay Us

Figure 144

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 134

Patent Application Publication Feb. 5,2009 Sheet 134 of 178 US 2009/0037337 Al

3

B

Y
i

.“

i

elos
\\Q@%\\\\\i\@@\\\\\i\“\\&\\\\\\\@&\\\\\\\\@\\\\\\\\\\?\\\k\\\\

Web Services "Post Bata® Selup

Basic info

Lizenseas

Product fndoe

demp, catip:

Marketiag ik ¢ v ste Ta . coam stor

Feézlures1 4504—\

Oeimos

poyst i

Bioys
FALLS

Geuting Stasted

Suppo

oreSphpne’ 425 o
EEECEIRERIR S

About lis

b SOeed 3G LR 7Ra 8,

200 ient i Eaktiy TES FAyS 2 irB-87EG " Teraduct Y 303 uuntiny R N itnee_cestriptine Ny Ang
e #e

My Siyie
Sutsemit

N S

Nl version v L0 e
TiTTaiages
<ATOUE ra'rc‘,etv:luss.‘s;mc FRUTIES

BIECE BT 7 ORIG L IUSIOMET IO

14500—7 Figure 145

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 135

Patent Application Publication Feb. 5,2009 Sheet 135 0f 178 US 2009/0037337 A1l

v

| Fuclos Suppor -
| Eossuppot

i

8y bnelabiatiang e

Billing Histary

By Storefronly

B
Wy Apps

My Aceaunts

LHF Avcounts

CregitCard

14600—o

Figure 146

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 136

Feb. 5,2009 Sheet 136 of 178 US 2009/0037337 Al

Patent Application Publication

/L 8Inbi

=i
3

LAY L SWUIRY § i

Rty B s,

wauumu dpRIBEn mmomJ{ wON.Vr

T°7A 53] SPpUIED

o RIWATAEIYT BRI TR AR T] T B0 U0 D tuEs

\\\\\\\\\\\\\§

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 137

Patent Application Publication Feb. 5,2009 Sheet 137 of 178 US 2009/0037337 Al

i e S

| trclos Suppont

o & N

e

v

i

My saliationsy

Bithing Histary 14802
My Ssnrefrants
My Sorelront
w HOC £<

CHF Accounis
Crexit Card My Boveloper Accounts

cons3R?

14800—+

Figure 148

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 138

Feb. 5,2009 Sheet 138 of 178 US 2009/0037337 Al

Patent Application Publication

611 @inbi

#4006V

pOBYL— o

LGS WD MR BUE SRR HO4 B4y W) BIBMBODR Mau Atk ARG

WO SALORENIBYF G L T HUAED o4 BIPMOST NG ¥ 318847

\

\\

.
\%\\\\ \\\\\\\\\w\\\ \“\ . x\\\\ww\\\x\\\\ \\&\\w\\\\ \\\\\\\\\\ \\w\m&w«wmx
LR \\W\\\\ ‘

%

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 139

Feb. 5,2009 Sheet 139 of 178 US 2009/0037337 Al

Patent Application Publication

0G| aInbi4

\3 “\\3 \3 \3
\§§ i \?ﬁ%\%@% §§ e

\\\\x\\\

. §%§§§§§w§k§v§§ -

. \
% I e \§MMM§WWW§MM§M\ \,\.\:\.\.\\,\.\Nmmwx‘\\..\\:\. o ,N\.\.J\\\
P SRt SRR DT RO A

7

R i

#0005

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 140

Feb. 5,2009 Sheet 140 of 178 US 2009/0037337 Al

Patent Application Publication

LG 8inbi

e

#00151

NEDNG

0ZLs1

—8LLSGL
~——9lLlGl
~—pLLSL

.

cLisL

m

g

m T i BT KOS PR FORAGY By gasagy wixdpiel | weniyty 4y w\“\\ .

o 3

R \§§§§§§§§\ A %\\\\\\\\\M\\\\\\\\\\\\\ . -

DT Sra L2942 S5 XA LR ST AL WD SO 2088 /101 52 7

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 141

Patent Application Publication Feb. 5,2009 Sheet 141 of 178 US 2009/0037337 Al

7

%
7
7

7

ﬁ%

,,

o
.
%

.
.

:// .

.
.

i

.

5

i

S

2

/% %

7

e

5

N
L
-
N
N
_‘.\ &
N -

4t

Figure 152

¥a3

[/
BN

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 142

Patent Application Publication Feb. 5,2009 Sheet 142 of 178 US 2009/0037337 Al

15314 15318
156322 15326

15306 15308 15310 15312

£

3300 R T 2

\\\\%&3‘ = e

15300 —

Figure 153

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 143

Patent Application Publication Feb. 5,2009 Sheet 143 of 178 US 2009/0037337 Al

x
TIF

= o8
tmﬁ\\\\\\@$\\w\§\:&\\ a0 \}\ s \\
L

L

-

S

| Ftelos Suppore -
e

\

Wy Instafiatiens s
Hitilng Mstory
My Storefronts

My Stusefrust

Steve Repaits Lo S0 pO0 man SO

My Avcounts

CHP Azcounts

Emdit Card

Profite

15414

15412(

15416
1541

T e

15400—o

Figure 154

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 144

Feb. 5,2009 Sheet 144 of 178 US 2009/0037337 Al

Patent Application Publication

0LsG1L

GSL @inbi

RS UZYER
BouliG P o RUE B U SO0V SHRIT LB A0 IRRDGEALS A3 DUR BRSO ST

UBLRINOHAT 1PRYSRYBISS ~ 05 SRR W BET S0IRT

tiedTy 3UY 0 SURD) BNRL B
‘tidy sy ping noy

* . 3 &Eaﬁﬁ&%\w

DU OF FUIO3MA ;0p .01 ddy Gap, aNOK PIBN NOK OP IBYM .

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 145

Patent Application Publication Feb. 5,2009 Sheet 145 0of 178 US 2009/0037337 Al

e . .

R -—_

Stelos

15600 —+«

Figure 156

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 146

Feb. 5,2009 Sheet 146 of 178 US 2009/0037337 Al

Patent Application Publication

/G| @inbi4

T

v0.S1

_ Z0.SL

| SPIBN SSSUISIIE INOA Of
| UDRNIOS PUBRIRR-UQ BYL PUK

ey @Mﬁ

4] O] QUIODfEMA 10p 03 ddy g N0z, PIaN NOA OP ICYM

7 7 7 7 7 7 7 i g
A A R R \\ \\\\ S A i
7 \\A\.N. TR & 7 \\ \\\»\\& e i N s 2 7 % \\\ o 7 7 27 \“.\\. A&&
R P A P R R 2 S
UG=GRYDIDIE NS R SRR/

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 147

Feb. 5,2009 Sheet 147 of 178 US 2009/0037337 Al

Patent Application Publication

8G| ainbi

A00851

P i, FEe

IPEDOL iRCOIBART $A 3

Y089

L

P

.

R

5033

k4

P

% e 3

7

90851

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 148

Feb. 5,2009 Sheet 148 of 178 US 2009/0037337 Al

Patent Application Publication

6G1 @inbi4

TR s

v16SL ZL6S1

7 7 I
D i §§

RN

%)

o e e

& 0086S1

Y0651

c06S1

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 149

Feb. 5,2009 Sheet 149 of 178 US 2009/0037337 Al

Patent Application Publication

oor E:m_u_

\\\\\\ \§ G \N\“\&R\N\\“\\\\\\ S \\\\W\\“\\\\N\\“\\\\W\\\\\\

\ 2

\ TR \\\\\\ \\\\\\ i \\\\\\ \\\\\\ \\\\\\ I \\\\\\ \\\\\\ S

#0009}

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 150

Feb. 5,2009 Sheet 150 of 178 US 2009/0037337 Al

Patent Application Publication

191 @inbi4

#— 0091

TARING TR YRR

P,

$BY 0 L. DRIISTT I5BL WED UM BRLRIS Buien

-

-

DR

‘ soja)s

PISSL RS

G
.

3
X
N
i

. \\x\\

o
z 7 k& N“ i x\\&“\“&‘&\
R T o s,

FRLBVERLITAS0E

3

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 151

Feb. 5,2009 Sheet 151 of 178 US 2009/0037337 Al

Patent Application Publication

291 ainbi4

Y | ST OO | ey | FORaA

SR PRI - IR TREIAT i

w e

7 7 G

3 5

. i

- . .

e

: & i e
3

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 152

Feb. 5,2009 Sheet 152 of 178 US 2009/0037337 Al

Patent Application Publication

€91 ainbi4

T R, R, R, R, R, R
s

s

e

s

3

o A 5

SAEGEN §07T ‘SUHA

SISO B7T

pm——
.

v

N

i

A

& 00e9L

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 153

Feb. 5,2009 Sheet 153 of 178 US 2009/0037337 Al

Patent Application Publication

91 aInbi4

if rrgsi 26wl s

TALTR B

7 5 ,m«\vw\%v.&\\w\x

i \\\.\.mw\ \vvv\“w\\\\\vvv\“w\mt\\\&w\\m\\\\&w\\\tvvvm\\\\\\g\\\\ \xw\\\%vxw\\\ \\\\“w\

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 154

Feb. 5,2009 Sheet 154 of 178 US 2009/0037337 Al

Patent Application Publication

WE T

e e - iy ” » 00591
DS e

FIEBLIIGT G | TOYoA B T DISCH fi T

Eonty

swapng SEing 1505

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 155

Feb. 5,2009 Sheet 155 0f 178 US 2009/0037337 Al

Patent Application Publication

»—00991

e e 20991

/ / o i i
. . \»\\ . ..

s
7 7 / /
7 A \§ 7 \\\.VN\\\.\ s \N.‘“\\\mw.\ .\\..ﬁxx\\..h \.\,\

A o : S
A R A 7

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 156

Feb. 5,2009 Sheet 156 of 178 US 2009/0037337 Al

Patent Application Publication

/9| aJnbi4

s

bl

A00.91

CERITIHPRS GOAEIATUIONE {we nod 2uaidwer B BUISTE0e0 Ay vauss pRSSEo0NC BUiDG ARG § JRRI0 A0,

[3

pfed 154 PROINI 0 3501 LON 0O ieanhes ined mmw«mw%&/{ 20/91

S0jayz

\t\\
#

“\Q\\\\\\ VW%«@N&\\ \u
. ..

‘%\\\\ i \\c\\\

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 157

Feb. 5,2009 Sheet 157 of 178 US 2009/0037337 Al

Patent Application Publication

wmv mSm_u_

e L e i

400891

\\\ e \\ \

\\

R

\\\\\\\

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 158

Feb. 5,2009 Sheet 158 of 178 US 2009/0037337 Al

Patent Application Publication

691 ainbi4

AiEorg
pse 1pary HF—00691

SPUTNCIY 4HD

8069 ——
90691

Seitty A

HAiIBIONE A
310G A

v0691

Adoysi BUHHE

eIsty A

FYEMIEDY Feiang

v W
\\\\\M\\\\\\\\\\\\\\ i

\\\\\\\\\\\\\\\\\\\
 odmsioms

o _

A

o

Tt iy

‘4o,

]

el pue Wi

. . .
R A IR

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 159

Feb. 5,2009 Sheet 159 of 178 US 2009/0037337 Al

Patent Application Publication

0.1 ®Inbi4

#0001

Bod
Pz R |

1300433501S A4 |

Asoysi Bl |

TP AN B RIARY

T
| eidsams

s

c00.41

%

it panlasy I T,

... .

e R A
%
jA3<3 IRpEBRUCH

.

¢
AL

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 160

Feb. 5,2009 Sheet 160 of 178 US 2009/0037337 Al

Patent Application Publication

1.1 8inbi4

9011

TR SRR, T WS

SLTTEEM HINYEE BEVE BROE TAANNNS

RATICEIE I A)

BIORES WIRVER WOROE IHOdans

»—00LLL

LSO A

E2

11 MORNIE 20 T BOP

A

BDYL L BB

TR
SR gDt s pfons

SESEREY:

tuossigs s

BEHIEEN HIRVES 30V LNV

T AR, L

cOLLL

STE B D

. == @ @ @@

\\ .

-
O z

A % 2

“ “\“\%\\\\.\\\\,..\\.\\\x\\.\\\\\“\\\
..
e e 7 o % o 5 7

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 161

Feb. 5,2009 Sheet 161 of 178 US 2009/0037337 Al

Patent Application Publication

2/ 1 24nbi

"
B o Y\w\\\\\\ﬁxw\\\\\\sw\\\\\\ﬁx\\\\&

H—002L1

902/l

¥0cLl

ReRBlg O peodaig | [Diddads andguany v

__zozll

e
mwmﬁmé
%

w§§%\§§\§§& i

i L L S
... . G i e

7
S

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 162

Feb. 5,2009 Sheet 162 of 178 US 2009/0037337 Al

Patent Application Publication

reen:

R L]

»—00€LL

i]

RIRD BP0

THNOITY GHT

W0 Ad

A0 RI0IT Ay

&smmy Buylig

ssuonejeIsyy A

oddns soliy

R A A e

M@m@.wmm
»‘N\ ”
%y :
g

.
pre s e

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 163

¥/ 8Inbi4

\\\ S

-

i

»—00vLL

i BUs Ty we Bty wEBu i £ i
AR, BERY wmmA MUY SOERET MBU 3L
SR BUNKE TEWE 0T 3N

Feb. 5,2009 Sheet 163 of 178 US 2009/0037337 Al

..
\\\\\\\\ \W\ .

Patent Application Publication

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 164

Feb. 5,2009 Sheet 164 of 178 US 2009/0037337 Al

Patent Application Publication

G/l @Inb

e Ao AR

D)
V)

it

paED NPT
A JADIBIDIL APg

Asusin Bups

Y MR
{eIsu o) Apeay
RPRGH MO

stEsy Buipug

0181

Dk

e
| weshsesn

2

>

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 165

Feb. 5,2009 Sheet 165 of 178 US 2009/0037337 Al

Patent Application Publication

9/l 8inbi4

B0
PAED) HpERLy
SIURDOMY dHY

SWBOLIY A
sy A

Ksoxsiy Buypg

IS 0 SR SIS AT ey Py oyl saii WO U0 RSN, EIE

¥

o odduc o
e

-

T

e

. »——009.L

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 166

Feb. 5,2009 Sheet 166 of 178 US 2009/0037337 Al

Patent Application Publication

L. @inbi4

R

A 00LLL

.
M 90..1 Y0.l.L

TAOFA

L

g \

o

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 167

Feb. 5,2009 Sheet 167 of 178 US 2009/0037337 Al

Patent Application Publication

g/l ainbi4

3oy s i Anaii

s Eg apgtin " ans s BEDLEGN SR TSRS RS A

gseg shpIaouy

BIREL SEMMENG K0 DU Bune

) i
§§§\\§§k i

T i

23

A5 R — B i,)
...... __________ _ ... @ @ @

A»—008.LL

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 168

Feb. 5,2009 Sheet 168 of 178 US 2009/0037337 Al

Patent Application Publication

o

A006L1

¢06.1

seBly Jinddng

BT TEr

WCRUNG S0RIT 1 BN

o

Y0611

R

|

sopas

s

i

-

%M«V\\\»V\\\%\\%%\ R s S A,
4 B

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 169

Feb. 5,2009 Sheet 169 of 178 US 2009/0037337 Al

Patent Application Publication

081 @inbi4

¢008|

Yy Burnposi
s PR

i 1 i

v,
/7 i
. v\ .

.

Y

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 170

181 8inbi-

Feb. 5,2009 Sheet 170 of 178 US 2009/0037337 Al

S

i 7
B
k\\u\\\mm \\ 7
L

Patent Application Publication

i

BYJOG ANy, FpEpiT]

w

7 iy
T

;3

Zivinly

oy
W

_

_
S

i

AUCIGBIDAG, A

AsorsiH Buispg |

Vi
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

o
_ \ .

.

T

.
7

o)

77 2 e 77
i
.

A00L81

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 171

Feb. 5,2009 Sheet 171 of 178 US 2009/0037337 Al

Patent Application Publication

=

Q\\.Wa\\ S

n\\c\\\\‘u\\“\(\\% i

L e

e

ETCR

3

WS
GO ALY

#0028l

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 172

Patent Application Publication Feb. 5,2009 Sheet 172 of 178 US 2009/0037337 Al

Figure 183

18300 —

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 173

Feb. 5,2009 Sheet 173 of 178 US 2009/0037337 Al

Patent Application Publication

-

e
iy

: 72 %
b &&&N\W&W\c

o0v8l

¥o¥8lL

cov8l

»—00¥81

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 174

Feb. 5,2009 Sheet 174 of 178 US 2009/0037337 Al

Patent Application Publication

\\\\\\\\\%&y\\\%&%\\\x

90481

A00S81

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 175

Feb. 5,2009 Sheet 175 0f 178 US 2009/0037337 Al

Patent Application Publication

981 ainbi

2% 7
L o

¢098}

. \\\&“\\\\\\\“\\A\Q\\\\\ \\\\\\\ v\mw\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"\\\\‘\w\\\\; \\ - \\ .
v e \%\,m \,\,\ . ,\«w\ o

A —0098|

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 176

Feb. 5,2009 Sheet 176 of 178 US 2009/0037337 Al

Patent Application Publication

/81 mSm_u_

S

H

R

#00.81

G BT A

\\\\\\\\\\
R

€048l

g

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 177

gg| ainbi

#0088

ST Ay fRA

Feb. 5,2009 Sheet 177 of 178 US 2009/0037337 Al

3 AT BT TR

S % s \wﬁm«.\.\\\m«.v\\mf\\\w\\mf\wmf\v\‘\\\\ S S I]
4B 7 = RIOESXD SR U

% S

Patent Application Publication

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 178

Feb. 5,2009 Sheet 178 of 178 US 2009/0037337 Al

Patent Application Publication

.
\\\\\\\m\\\ s %% ...

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 179

US 2009/0037337 Al

SOFTWARE LICENSING AND
ENFORCEMENT SYSTEM

RELATED APPLICATIONS

[0001] This application claims the benefit of and priority to
U.S. Provisional Patent Application Ser. No. 60/962,877 filed
on Jul. 31, 2007, the disclosure of which is hereby incorpo-
rated by reference in its entirety. This application is a con-
tinuation-in-part of U.S. patent application Ser. No. 12/102,
854, “System And Method For Resolving Conflicts Between
An Offline Web-Based Application And An Online Web-
Based Application” filed on Apr. 14, 2008, which application
is incorporated by reference herein in its entirety.

[0002] This application is related to U.S. patent application
Ser. No. 12/102,848, “System And Method For Synchroniz-
ing An Offline Web-Based Application With An Online Web-
Based Application” filed on Apr. 14, 2008, which application
is incorporated by reference herein in its entirety. This appli-
cation is related to U.S. patent application Ser. No. 12/102,
842, “System And Method For Running A Web-Based Appli-
cation While Offline” filed on Apr. 14, 2008, which
application is incorporated by reference herein in its entirety.
This application is related to U.S. patent application Ser. No.
, “System and Method for Synchronizing Applica-
tions” filed on the same date as this application, (Attorney
Docket Number 069904-5004), which application is incor-
porated by reference herein in its entirety. This application is
related to U.S. patent application Ser. No. , “Frame-
work for Synchronizing Applications” filed on the same date
as this application, (Attorney Docket Number 069904-5005),
which application is incorporated by reference herein in its
entirety. This application is related to U.S. patent application
Ser. No. , “Software Marketplace and Distribution
System” filed on the same date as this application, (Attorney
Docket Number 069904-5006), which application is incor-
porated by reference herein in its entirety.

TECHNICAL FIELD

[0003] The disclosed embodiments relate generally to
licensing and enforcement of software applications.

BACKGROUND

[0004] It is often difficult for developers or vendors of
software applications, particularly small software applica-
tions, to economically market and license their applications.
Furthermore, it is often difficult to enforce a license for a
small software application, because it may not be cost effec-
tive to pursue a violator of the license. It would be desirable to
have a system for marketing, licensing and enforcing of soft-
ware applications that permits a software developer or vendor
to concentrate on creating software applications without the
overhead of managing the business aspects of marketing and
licensing.

SUMMARY

[0005] Anembodiment of the present application relates to
amarketplace for software applications where, once licensed,
the software applications are hosted at a user account.

[0006] The present application describes some embodi-
ments of a software marketplace whereby software vendors
can easily upload and license software applications and
receive revenue in return. Among other advantages, this frees
software vendors from the need to manage financial and legal

Feb. 5, 2009

issues associated with licensing software applications to large
numbers of users. In one embodiment, the software market-
place is associated with a software platform provider (in one
example, Etelos) and the software vendors develop software
applications for this software platform. This arrangement
benefits both the software vendor (who can concentrate on
writing applications and receiving revenue for them) and the
software platform provider (who has a large number of devel-
opers supporting their software platform.

[0007] This arrangement is particularly attractive to ven-
dors of small software applications, where the revenue per
licensed application is small, and the number of licensees is
high. It may not be cost effective or time effective for the
software vendor to engage with large numbers of small pay-
ments and licensees, particularly when the licensees may be
spread around geographically, in different time zones, use
different currencies, etc. By combining ease of use, tight
integration, and transparent billing and licensing for the ven-
dors’ software applications, the software platform provider
can provide an attractive service for its customers

[0008] As the number of software vendors supporting the
software platform increases, the software vendors may pro-
vide custom application development to customers of the
software platform. In some embodiments, the software plat-
form provider can monitor this process and ensure quality. In
some embodiments, customers of the software platform may
place jobs (i.e., custom software specifications) out for bid,
where developers bid on the work. A software customer may
specify a bid based on a combination of cost, quality, delivery
time, and other factors.

[0009] Software vendors are commonly concerned about
the overhead of licensing their software applications, and
about enforcing their software licenses. Some embodiments
enable software vendors to specify a set of license terms (e.g.,
commonly used license types such as open source, propri-
etary, executable only, source code license, etc.) for a soft-
ware application, and prevent licensees of the software appli-
cation from misusing the software application outside the
terms of the license.

[0010] Some embodiments provide a method for detecting
changes made to a first data set in a plurality of data sets, and
synchronizing at least a first subset of the changes to a data
framework that facilitates data synchronization between the
plurality of data sets.

[0011] Insomeembodiments, atleast a second subsetofthe
synchronized changes from the data framework to a second
data set in the plurality of data sets is synchronized.

[0012] In some embodiments, at least a third subset of the
synchronized changes from the data framework to a second
data framework is synchronized.

[0013] Some embodiments provide a computer readable
storage medium storing one or more programs configured for
execution by a computer, the one or more programs including
instructions for detecting changes made to a first data setin a
plurality of data sets, and synchronizing at least a first subset
of the changes to a data framework that facilitates data syn-
chronization between the plurality of data sets.

[0014] Some embodiments provide a system including one
or more processors, memory, and one or more programs
stored in the memory, the one or more programs comprising
instructions to: detect changes made to a first data set in a
plurality of data sets; and synchronize at least a first subset of
the changes to a data framework that facilitates data synchro-
nization between the plurality of data sets.

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 180

US 2009/0037337 Al

[0015] Some embodiments provide a method for identify-
ing a first data set in a plurality of data sets that is to be
synchronized with a data framework, determining a mapping
between one or more data fields in a data structure for the first
data set and one or more data fields in a data structure for the
data framework, and generating synchronization rules for the
first data set based on the determined mapping.

[0016] Some embodiments provide a computer readable
storage medium storing one or more programs configured for
execution by a computer, the one or more programs including
instructions for identifying a first data set in a plurality of data
sets that is to be synchronized with a data framework, deter-
mining a mapping between one or more data fields in a data
structure for the first data set and one or more data fields in a
data structure for the data framework, and generating syn-
chronization rules for the first data set based on the deter-
mined mapping.

[0017] Some embodiments provide a system including one
or more processors, memory, and one or more programs
stored in the memory, the one or more programs comprising
instructions to: identify a first data set in a plurality of data
sets that is to be synchronized with a data framework, deter-
mine a mapping between one or more data fields in a data
structure for the first data set and one or more data fields in a
data structure for the data framework, and generate synchro-
nization rules for the first data set based on the determined
mapping.

[0018] Some embodiments provide a method for detecting
changes made to a first data set for a first web-based applica-
tion in an account, identifying at least a second data set for a
second web-based application in the account, wherein the
second data set includes at least a subset of the data included
in the first data set, and applying synchronization rules to
synchronize the second data set with the first data set.
[0019] Some embodiments provide a computer readable
storage medium storing one or more programs configured for
execution by a computer, the one or more programs including
instructions for detecting changes made to a first data set for
a first web-based application in an account, identifying at
least a second data set for a second web-based application in
the account, wherein the second data set includes at least a
subset of the data included in the first data set, and applying
synchronization rules to synchronize the second data set with
the first data set.

[0020] Some embodiments provide a system including one
or more processors, memory, and one or more programs
stored in the memory, the one or more programs comprising
instructions to: detect changes made to a first data set for a
first web-based application in an account, identify at least a
second data set for a second web-based application in the
account, wherein the second data set includes at least a subset
of the data included in the first data set, and apply synchro-
nization rules to synchronize the second data set with the first
data set.

[0021] Some embodiments provide a computer system
including one or more processors, memory, and one or more
programs and data structures stored in the memory, the one or
more programs and data structures including: an application
data structure configured to store data and program files for a
web-based application, an account data structure configured
to store one or more instances of the application data structure
for an account, wherein an instance of the application data
structure corresponds to an instance of a web-based applica-
tion, and a synchronization module configured to synchro-

Feb. 5, 2009

nize data between web-based applications within an account
based on synchronization rules.

[0022] Some embodiments provide a computer readable
storage medium storing one or more programs and data struc-
tures configured for execution by a computer, the one or more
data structures including: an application data structure con-
figured to store data and program files for a web-based appli-
cation, and an account data structure configured to store one
or more instances of the application data structure for an
account, wherein an instance of the application data structure
corresponds to an instance of a web-based application. The
one or more programs include instructions for synchronizing
data between web-based applications within an account
based on synchronization rules.

[0023] Inaccordance with some embodiments, acomputer-
implemented method is performed at a system. The com-
puter-implemented method includes at one or more servers
hosting a marketplace application: receiving from a vendor a
software application for distribution; associating license
terms with the software application; making the software
application available for distribution through the marketplace
application; and deploying the software application to one or
more user accounts on one or more hosting servers, in accor-
dance with the license terms.

[0024] Inaccordance with some embodiments, a computer-
implemented method is performed at a system. The com-
puter-implemented method includes at one or more servers
hosting a marketplace application: receiving from a vendor a
software application for distribution; generating license
terms in response to a selection by the vendor from options
provided by the marketplace application; associating the
license terms with the software application; and making the
software application available for distribution through the
marketplace application, in accordance with the license
terms.

[0025] Inaccordance with some embodiments, a computer-
implemented method is performed at a system. The com-
puter-implemented method includes at one or more servers
hosting a marketplace application, in response to a request
from a syndicated server to distribute a software application
from the marketplace: identifying one or more user accounts
associated with the request; verifying that the one or more
user accounts has permission to use the software application;
and deploying the software application to the one or more
user accounts, in accordance with license terms associated
with the software application.

[0026] Inaccordancewith some embodiments, acomputer-
implemented method is performed at a system. The com-
puter-implemented method includes at one or more servers
hosting a marketplace application: making a software appli-
cation available for distribution through the marketplace
application; receiving a user request to license the software
application; and providing the software application for
deployment to one or more user accounts, hosted on one or
more servers.

[0027] Inaccordance with some embodiments, a system for
distributing software applications is described. The system
comprises one or more processors, memory, and one or more
programs stored in the memory. The one or more programs
comprise instructions for implementing: a program module
configured to provide a software application for distribution
in response to an access request from a user; a program
module configured to receive and deploy the software appli-
cation from the marketplace module to an account on one or

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 181

US 2009/0037337 Al

more servers; and a program module configured to provide at
least one or more user accounts, from which the user accesses
the software application.

[0028] In accordance with some embodiments, a server
system comprises one or more processors, memory, and one
or more programs stored in the memory. The one or more
programs comprise instructions for at one or more servers
hosting a marketplace application: receiving from a vendor a
software application for distribution; associating license
terms with the software application; making the software
application available for distribution through the marketplace
application; and deploying the software application to one or
more user accounts on one or more hosting servers, in accor-
dance with the license terms.

[0029] Inaccordance with some embodiments, a computer
readable storage medium stores one or more programs con-
figured for execution by a computer. The one or more pro-
grams comprise instructions to, at one or more servers hosting
a marketplace application: receive from a vendor a software
application for distribution; associate license terms with the
software application; make the software application available
for distribution through the marketplace application; and
deploy the software application to one or more user accounts
on one or more hosting servers, in accordance with the license
terms.

[0030] In accordance with some embodiments, a server
system comprises one or more processors, memory, and one
or more programs stored in the memory. The one or more
programs comprise instructions for, at one or more servers
hosting a marketplace application: receiving from a vendor a
software application for distribution; generating license
terms in response to a selection by the vendor from options
provided by the marketplace application; associating the
license terms with the software application; and making the
software application available for distribution through the
marketplace application, in accordance with the license
terms.

[0031] Inaccordance with some embodiments, a computer
readable storage medium stores one or more programs con-
figured for execution by a computer. The one or more pro-
grams comprise instructions for, at one or more servers host-
ing a marketplace application: receiving from a vendor a
software application for distribution; generating license
terms in response to a selection by the vendor from options
provided by the marketplace application; associating the
license terms with the software application; and making the
software application available for distribution through the
marketplace application, in accordance with the license
terms.

[0032] In accordance with some embodiments, a server
system comprises one or more processors, memory, and one
or more programs stored in the memory. The one or more
programs comprise instructions for, at one or more market-
place servers hosting a marketplace application, in response
to a request from a syndicated server to distribute a software
application from the marketplace: identifying one or more
user accounts associated with the request; verifying that the
one or more user accounts has permission to use the software
application; and deploying the software application to the one
or more user accounts, in accordance with license terms asso-
ciated with the software application.

[0033] Inaccordance with some embodiments, a computer
readable storage medium stores one or more programs con-
figured for execution by a computer. The one or more pro-

Feb. 5, 2009

grams comprise instructions for, at one or more marketplace
servers hosting a marketplace application, in response to a
request from a syndicated server to distribute a software
application from the marketplace: identifying one or more
user accounts associated with the request; verifying that the
one or more user accounts has permission to use the software
application; and deploying the software application to the one
or more user accounts, in accordance with license terms asso-
ciated with the software application.

[0034] In accordance with some embodiments, a server
system comprises one or more processors, memory, and one
or more programs stored in the memory. The one or more
programs comprise instructions for at one or more servers
hosting a marketplace application: making a software appli-
cation available for distribution through the marketplace
application; receiving a user request to license the software
application; and providing the software application for
deployment to one or more user accounts, hosted on one or
more servers.

[0035] Inaccordance with some embodiments, a computer
readable storage medium stores one or more programs con-
figured for execution by a computer. The one or more pro-
grams comprise instructions for at one or more servers host-
ing a marketplace application: making a software application
available for distribution through the marketplace applica-
tion; receiving a user request to license the software applica-
tion; and providing the software application for deployment
to one or more user accounts, hosted on one or more servers.

BRIEF DESCRIPTION OF THE DRAWINGS

[0036] FIG. 1 presents a block diagram of a network,
according to embodiments of the present invention.

[0037] FIG. 2 presents a block diagram of a network,
according to embodiments of the present invention.

[0038] FIG. 3 presents a block diagram of an application
database, according to embodiments of the present invention.
[0039] FIG. 4 presents a block diagram of a user database,
according to embodiments of the present invention.

[0040] FIG. 5 presents a block diagram of a synchroniza-
tion engine on an application server, according to embodi-
ments of the present invention.

[0041] FIG. 6 presents a block diagram of a synchroniza-
tion engine on a client computer system, according to
embodiments of the present invention.

[0042] FIG. 7 presents a block diagram of an application
server, according to embodiments of the present invention.
[0043] FIG. 8 presents a block diagram of a client, accord-
ing to embodiments of the present invention.

[0044] FIG. 9 presents a block diagram illustrating exem-
plary group memberships for users for a given web-based
application, according to embodiments of the present inven-
tion.

[0045] FIG. 10 presents a block diagram of an exemplary
AOQOP framework that provides offline access to a web-based
application, according to embodiments of the present inven-
tion.

[0046] FIG. 11 illustrates an exemplary process of using an
AOP framework to run a web-based application while offline,
according to embodiments of the present invention.

[0047] FIG. 12 presents a block diagram of an exemplary
process of installing an instance of an AOP framework on a
client computer system, according to embodiments of the
present invention.

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 182

US 2009/0037337 Al

[0048] FIG. 13 illustrates an exemplary process of install-
ing an instance of an AOP framework on a client computer
system, according to embodiments of the present invention.
[0049] FIG. 14 presents a block diagram of an exemplary
process of initializing an AOP account on a client computer
system, according to embodiments of the present invention.
[0050] FIG. 15 illustrates an exemplary process of initial-
izing an AOP account on a client computer system, according
to embodiments of the present invention.

[0051] FIG. 16 presents a block diagram of an exemplary
process of installing a web-based application on a client com-
puter system, according to embodiments of the present inven-
tion.

[0052] FIG. 17 illustrates an exemplary process of install-
ing a web-based application on a client computer system,
according to embodiments of the present invention.

[0053] FIG. 18 presents a block diagram of an exemplary
process of performing an initial data synchronization for a
web-based application on a client computer system, accord-
ing to embodiments of the present invention.

[0054] FIG. 19 illustrates an exemplary process of perform-
ing an initial data synchronization for a web-based applica-
tion on a client computer system, according to embodiments
of the present invention.

[0055] FIG. 20 presents a block diagram of an exemplary
process of using the AOP framework on a client computer
system, according to embodiments of the present invention.
[0056] FIG. 21 illustrates an exemplary process of using the
AOQOP framework on a client computer system, according to
embodiments of the present invention.

[0057] FIG. 22 presents a block diagram of an exemplary
process for a client computer system determining how to
access aweb-based application, according to embodiments of
the present invention.

[0058] FIG. 23 illustrates an exemplary process for a client
computer system determining how to access a web-based
application, according to embodiments of the present inven-
tion.

[0059] FIG. 24 presents a block diagram of an exemplary
process for synchronizing a web-based application on a client
computer system with a web-based application on an appli-
cation server, according to embodiments of the present inven-
tion.

[0060] FIG. 25 illustrates an exemplary process for syn-
chronizing a web-based application on a client computer
system with a web-based application on an application server,
according to embodiments of the present invention.

[0061] FIG. 26 presents a block diagram of an exemplary
process for synchronizing a web-based application on a client
computer system with a web-based application on an appli-
cation server, according to embodiments of the present inven-
tion.

[0062] FIG. 27A illustrates an exemplary process for syn-
chronizing a web-based application on a client computer
system with a web-based application on an application server,
according to embodiments of the present invention.

[0063] FIG. 27B continues the process illustrated in FIG.
27A, according to embodiments of the present invention.
[0064] FIG. 27C continues the process illustrated in FIG.
278, according to embodiments of the present invention.
[0065] FIG. 27D continues the process illustrated in FIG.
27C, according to embodiments of the present invention.
[0066] FIG. 27E continues the process illustrated in FIG.
27D, according to embodiments of the present invention.

Feb. 5, 2009

[0067] FIG. 27F continues the process illustrated in FIG.
27K, according to embodiments of the present invention.

[0068] FIG. 28 presents a block diagram of an exemplary
process for resolving conflicts for web-based applications
that use auto-incrementing identifiers, according to embodi-
ments of the present invention.

[0069] FIG. 29 illustrates an exemplary process for resolv-
ing conflicts for web-based applications that use auto-incre-
menting identifiers, according to embodiments of the present
invention.

[0070] FIG. 30 presents a flowchart of an exemplary pro-
cess for providing access to a web-based application while
offline, according to embodiments of the present invention.
[0071] FIG. 31 presents a flowchart of an exemplary pro-
cess for synchronizing a web-based application on a client
computer system with a web-based application on an appli-
cation server, according to embodiments of the present inven-
tion.

[0072] FIG. 32 presents a flowchart of an exemplary pro-
cess for synchronizing a web-based application on a client
computer system with a web-based application on an appli-
cation server, according to embodiments of the present inven-
tion.

[0073] FIG. 33 presents a flowchart of an exemplary pro-
cess for resolving conflicts between a web-based application
on a client computer system and a web-based application on
an application server, according to embodiments of the
present invention.

[0074] FIG. 34 presents a flowchart of an exemplary pro-
cess for resolving conflicts between a web-based application
on a client computer system and a web-based application on
an application server which uses automatically incrementing
identifiers for database records, according to embodiments of
the present invention.

[0075] FIG. 35 presents a flowchart of an exemplary pro-
cess for providing access to a web-based application while
offline, according to embodiments of the present invention.
[0076] FIG. 36 presents a block diagram illustrating an
exemplary user interface for creating synchronization rules,
according to embodiments of the present invention.

[0077] FIG. 37 presents a block diagram illustrating an
exemplary user interface for generating auto-incrementing
identifiers, according to embodiments of the present inven-
tion.

[0078] FIG. 38 presents a block diagram illustrating an
exemplary process for creating synchronization rules,
according to embodiments of the present invention.

[0079] FIG. 39 presents a flowchart of an exemplary pro-
cess for creating synchronization rules, according to embodi-
ments of the present invention.

[0080] FIG. 40 presents a block diagram of an exemplary
foreign key mapping, according to embodiments of the
present invention.

[0081] FIG. 41 presents a flowchart of an exemplary pro-
cess for creating a foreign key mapping, according to embodi-
ments of the present invention.

[0082] FIG. 44 is a block diagram illustrating deploying
applications to a user account, according to some embodi-
ments.

[0083] FIG. 45 is a block diagram illustrating managing
licenses in a multi-tenancy environment, according to some
embodiments.

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 183

US 2009/0037337 Al

[0084] FIG. 46 is a block diagram illustrating a web appli-
cation marketplace and hosting infrastructure, according to
some embodiments.

[0085] FIG. 47 is a flow diagram illustrating a process for
selecting and deploying a software application in a user
account, according to some embodiments.

[0086] FIG.48isablockdiagram illustrating a marketplace
server and hosting infrastructure, according to some embodi-
ments.

[0087] FIG. 49 is a block diagram illustrating licensing
options in a software distribution marketplace, according to
some embodiments.

[0088] FIG. 50 is a block diagram illustrating dynamic
billing in a software distribution marketplace, according to
some embodiments.

[0089] FIG. 51 is a block diagram illustrating an applica-
tion manager and repository in a software distribution mar-
ketplace, according to some embodiments.

[0090] FIG. 52 is a block diagram illustrating syndicated
deployment across a network in a software distribution mar-
ketplace, according to some embodiments.

[0091] FIG. 53 is ablock diagram illustrating a packager in
a software distribution marketplace, according to some
embodiments.

[0092] FIG.54isablock diagram illustrating an alternative
embodiment of a packager in a software distribution market-
place, according to some embodiments.

[0093] FIG.55isablock diagram illustrating an alternative
embodiment of a packager in a software distribution market-
place, according to some embodiments.

[0094] FIG. 56 is a block diagram illustrating licensing a
software application in a software distribution marketplace,
according to some embodiments.

[0095] FIG. 57 is a block diagram illustrating providing
security for software applications, deployed to auser account,
in a software distribution marketplace, according to some
embodiments.

[0096] FIG. 58 is a block diagram illustrating multiple
logons to a software application in a software distribution
marketplace, according to some embodiments.

[0097] FIG. 59 is a block diagram illustrating a user access
control interface, in a software distribution marketplace,
according to some embodiments.

[0098] FIG. 60 is a block diagram illustrating a user access
control interface, in a software distribution marketplace,
according to some embodiments.

[0099] FIG. 61 is a system block diagram illustrating a
server hosting a software marketplace and licensing system,
according to some embodiments.

[0100] FIG. 62 is a system block diagram illustrating a
client interfacing with a software marketplace and licensing
system, according to some embodiments.

[0101] FIG. 63 isablock diagram illustrating an exemplary
application framework, according to some embodiments.
[0102] FIG. 64A is a block diagram illustrating exemplary
components of an account, according to some embodiments.
[0103] FIG. 64B is a flow diagram of an exemplary process
for creating an account and installing applications into the
account, according to some embodiments.

[0104] FIG. 65 is a block diagram of a server and a client,
according to some embodiments.

[0105] FIG. 66 is a flow diagram of an exemplary process
for synchronizing applications, according to some embodi-
ments.

Feb. 5, 2009

[0106] FIG. 67isablock diagram illustrating an exemplary
process for synchronizing applications, according to some
embodiments.

[0107] FIG. 68is ablock diagram illustrating an exemplary
process for handling parent-child relationships during a syn-
chronization process, according to some embodiments.
[0108] FIG. 69 is a flow diagram of an exemplary process
for translating owner 1Ds, according to some embodiments.
[0109] FIG. 70is ablock diagram illustrating an exemplary
process for merging users between applications, according to
some embodiments.

[0110] FIG. 71 is a flow diagram of an exemplary process
for merging users between applications, according to some
embodiments.

[0111] FIG. 72 presents a block diagram of an exemplary
server, according to some embodiments.

[0112] FIG. 73 presents a block diagram of an exemplary
client computer system, according to some embodiments.
[0113] FIG. 74 presents a block diagram illustrating an
exemplary application synchronization module, according to
some embodiments.

[0114] FIG. 75 presents exemplary synchronization data
structures, according to some embodiments.

[0115] FIG. 76 is a flow diagram of an exemplary process
for synchronizing applications, according to some embodi-
ments.

[0116] FIG. 77 is a flow diagram of an exemplary process
for generating synchronization rules that are used to synchro-
nize applications, according to some embodiments.

[0117] FIG. 78 is a flow diagram of an exemplary process
for synchronizing applications, according to some embodi-
ments.

[0118] FIG. 79 presents exemplary synchronization rules
data structures, according to some embodiments.

[0119] FIG. 80 is a flow diagram of a process for distribut-
ing a software application, according to some embodiments.
[0120] FIG. 81 is a flow diagram of a process for distribut-
ing a software application, according to some embodiments.
[0121] FIG. 82 is a flow diagram of a process for licensing
a software application, according to some embodiments.
[0122] FIG. 83 is a flow diagram of a process for distribut-
ing a software application, according to some embodiments.
[0123] FIG. 84 is a flow diagram ofa process for syndicated
deployment of a software application, according to some
embodiments.

[0124] FIG. 85 is a flow diagram of a process for licensing
and receiving payment for a software application, according
to some embodiments.

[0125] FIG. 101 is an exemplary screenshot 10100 of an
account user management interface.

[0126] FIG. 102 is an exemplary screenshot 10200 of an
application packager.

[0127] FIG. 103 is an exemplary screenshot 10300 of an
application packager.
[0128] FIG. 104 is an exemplary screenshot 10400 of an
application packager.
[0129] FIG. 105 is an exemplary screenshot 10500 of an
application packager.
[0130] FIG. 106 is an exemplary screenshot 10600 of an

application packager.

[0131] FIG. 107 is exemplary screenshot 10700 of an appli-
cation packager.

[0132] FIG. 108 is an exemplary screenshot 10800 of an
application packager.

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 184

US 2009/0037337 Al

[0133] FIG. 109 is an exemplary screenshot 10900 of an
application packager.

[0134] FIG. 110 is an exemplary screenshot 11000 of an
application packager.

[0135] FIG. 111 is an exemplary screenshot 11100 of an
application packager.

[0136] FIG. 112 is an exemplary screenshot 11200 of an
application packager.

[0137] FIG. 113 is an exemplary screenshot 11300 of an
application packager.

[0138] FIG. 114 is an exemplary screenshot 11400 of an
account information details screen.

[0139] FIG. 115 is an exemplary screenshot 11500 of a
development environment.

[0140] FIG. 116 is an exemplary screenshot 11600 of an
application packager.

[0141] FIG. 117 is an exemplary screenshot 11700 of an
AOQOP sync rules manager.

[0142] FIG. 118 is an exemplary screenshot 11800 of an
AOQOP sync rules manager.

[0143] FIG. 119 is an exemplary screenshot 11900 of an
AOQOP sync rules manager.

[0144] FIG. 120 is an exemplary screenshot 12000 of an
AOQOP sync rules manager.

[0145] FIG. 121 is an exemplary screenshot 12100 of an
AOQOP sync rules manager.

[0146] FIG. 122 is an exemplary screenshot 12200 of an
integration application group manager.

[0147] FIG. 123 is an exemplary screenshot 12300 of a
sync rules manager.

[0148] FIG. 124 is an exemplary screenshot 12400 of a
sync rules manager.

[0149] FIG. 125 is an exemplary screenshot 12500 of a
sync rules manager.

[0150] FIG. 126 is an exemplary screenshot 12600 of a
sync rules manager.

[0151] FIG. 127 is an exemplary screenshot 12700 of a
sync rules manager.

[0152] FIG. 128 is an exemplary screenshot 12800 of a
sync rules manager.

[0153] FIG. 129 is an exemplary screenshot 12900 of a
support page.

[0154] FIG. 130 is an exemplary screenshot 13000 of a
product/service basic information page.

[0155] FIG. 131 is an exemplary screenshot 13100 of a
staging application page.

[0156] FIG. 132 is an exemplary screenshot 13200 of an
edit licensing page.

[0157] FIG. 133 is an exemplary screenshot 13300 of a
setup marketing information page.

[0158] FIG. 134 is an exemplary screenshot 13400 of a
setup marketing full page.

[0159] FIG. 135 is an exemplary screenshot 13500 of a
setup features full page.

[0160] FIG. 136 is an exemplary screenshot 13600 of a
product demo page.

[0161] FIG. 137 is an exemplary screenshot 13700 of an
“Add a Blog” feed page.

[0162] FIG. 138 is an exemplary screenshot 13800 of a
setup frequently asked questions (FAQs) page.

[0163] FIG. 139 is an exemplary screenshot 13900 of a
setup getting started application page.

[0164] FIG. 140 is an exemplary screenshot 14000 of a
support page.

Feb. 5, 2009

[0165] FIG. 141 is an exemplary screenshot 14100 of an
“About us” page.

[0166] FIG. 142 is an exemplary screenshot 14200 of a
product upgrade page.

[0167] FIG. 143 is an exemplary screenshot 14300 ofa “my
store style” page.

[0168] FIG. 144 is an exemplary screenshot 14400 of a
pricing grid and purchase/license link setup page.

[0169] FIG. 145is an exemplary screenshot 14500 of a web
services “Post Data” setup page.

[0170] FIG. 146 is an exemplary screenshot 14600 of a
support page.

[0171] FIG. 147 is an exemplary screenshot 14700 of a
support page.

[0172] FIG. 148 is an exemplary screenshot 14800 of a
support page.

[0173] FIG. 149 is an exemplary screenshot 14900 of a
support page.

[0174] FIG. 150 is an exemplary screenshot 15000 of a
store product list.

[0175] FIG. 151 is an exemplary screenshot 15100 of a
store listing report.

[0176] FIG. 152 is an exemplary screenshot 15200 of a
store listing report.

[0177] FIG. 153 is a screenshot of an exemplary screenshot
15300 of a transactions report.

[0178] FIG. 154 is an exemplary screenshot 15400 of a
support page.

[0179] FIG. 155 is an exemplary screenshot 15500 of a
marketplace page.

[0180] FIG. 156 is an exemplary screenshot 15600 of a
hosting and development environment.

[0181] FIG. 157 is an exemplary screenshot 15700 of a
marketplace page.

[0182] FIG. 158 is an exemplary screenshot 15800 of a
licensing page.

[0183] FIG. 159 is an exemplary screenshot 15900 of a
support page.

[0184] FIG. 160 is an exemplary screenshot 16000 of a
shopping cart page.

[0185] FIG. 161 is an exemplary screenshot 16100 of a
CRM test listing page.

[0186] FIG. 162 is an exemplary screenshot 16200 of a
developer toolkit page.

[0187] FIG. 163 is an exemplary screenshot 16300 of a
support page.

[0188] FIG. 164 is an exemplary screen shot 16400 from
the bottom portion of the screenshot 16300.

[0189] FIG. 165 is an exemplary screenshot 16500 of a
support page.

[0190] FIG. 166 is an exemplary screenshot 16600 of an
installation page.

[0191] FIG. 167 is an exemplary screenshot 16700 of an
installation processing page.

[0192] FIG. 168 is an exemplary screenshot 16800 of an
installation processing page.

[0193] FIG. 169 is an exemplary screenshot 16900 of a
support page.

[0194] FIG. 170 is an exemplary screenshot 17000 of a
support page.

[0195] FIG. 171 is an exemplary screenshot 17100 of a
marketplace page.

[0196] FIG. 172 is an exemplary screenshot 17200 of a
marketplace page.

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 185

US 2009/0037337 Al

[0197] FIG. 173 is an exemplary screenshot 17300 of a
support page.

[0198] FIG. 174 is an exemplary screenshot 17400 of a
support page.

[0199] FIG. 175 is an exemplary screenshot 17500 of a
support page.

[0200] FIG. 176 is an exemplary screenshot 17600 of a
support page.

[0201] FIG. 177 is an exemplary screenshot 17700 of a
support page.

[0202] FIG. 178 is an exemplary screenshot 17800 of a
support page.

[0203] FIG. 179 is an exemplary screenshot 17900 of a
support page.

[0204] FIG. 180 is an exemplary screenshot 18000 of a
support page.

[0205] FIG. 181 is an exemplary screenshot 18100 of a
support page.

[0206] FIG. 182 is an exemplary screenshot 18200 of a
marketplace homepage.

[0207] FIG. 183 is an exemplary screenshot 18300 of a
marketplace page.

[0208] FIG. 184 is an exemplary screenshot 18400 of a
marketplace page.

[0209] FIG. 185 is an exemplary screenshot 18500 of a
marketplace page.

[0210] FIG. 186 is an exemplary screenshot 18600 of a
marketplace page.

[0211] FIG. 187 is an exemplary screenshot 18700 of a
marketplace page.

[0212] FIG. 188 is an exemplary screenshot 18800 of a
marketplace page.

[0213] FIG. 189 is an exemplary screenshot 18900 of a
marketplace page.

[0214] Like reference numerals refer to corresponding
parts throughout the drawings.

DESCRIPTION OF EMBODIMENTS
Definitions

[0215] A Remote Procedure Call (RPC) is a programming
interface that allows one program to use the services of
another program in a remote machine. The calling program
sends a message and data to the remote program, which is
executed, and results are passed back to the calling program.
Note that RPC refers to XML RPC.

[0216] A virtual host (vhost) is a server that includes mul-
tiple web sites, each with its own domain name. A <virtual-
host> . . . </virtualhost> is an Apache HTTP server directive
(instruction) that maps domain names to different directories
(and other instructions) on the filesystem. vhosts can be used
to define the boundaries of an application. Each web-based
application in an account on the client computer system must
have at least one virtual host in Apache. Note that there can be
more than one vhost, all pointing to the same shared direc-
tory/config. Also note that other web servers have similar
functions as the Apache virtualhost directive.

[0217] Vmap is a virtual database query map. A vmap is a
variable map, or a field map. It maps variables (columns,
fields) in one database to variables (columns, fields) in
another DB.

[0218] LAMP is a solution stack of software that is used to
run dynamic web sites. The LAMP solution stack typically
comprises open source software. The LAMP stack can refer

Feb. 5, 2009

to a suite of software that includes LINUX, Apache HTTP
server, MySQL and/or PostgreSQL, Perl, Python, Ruby,
Ruby on Rails, Apache Tomcat, and/or PHP.

[0219] A solution stack is a set of software subsystems or
components that are required to deliver a specified solution
(e.g., product or service).

[0220] A web application or a web-based application is an
application that can be accessed through the web over a
network (e.g., the Internet, etc.). Web-based applications
typically generate dynamic content. Dynamic content is con-
tent that can be generated when a request is received from a
user. For example, a user may request scores for one or more
sporting events. These scores can be retrieved and a page
listing the scores can be displayed to the user. Alternatively,
dynamic content can be periodically generated and cached.
When a user requests the dynamic content, the cached version
is displayed to the user. Web-based applications do not
require distribution because they are typically hosted on an
application server. Users who desire to use a web-based appli-
cation can use a browser to access the application server
hosting the web-based application. A client-server model
requires a specialized client program that serves as a user
interface to the server and that must be installed on each
computer system that is to access the server application. Any
upgrades to the server application typically require an update
to the client application. In contrast, web-based applications
use a browser engine, such as found in a web browser engine,
as an interface to the application server. In general, each page
delivered to the browser is a static document; however, the
static document is typically composed of a number of
dynamic elements that are embedded into the document prior
to being delivered to the browser. Web-based applications are
typically structured as a three-tier application with a browser
engine at the first tier, an engine that can process dynamic
content (e.g., scripting languages, etc.) in the second tier, and
a database in the third tier.

Overview

[0221] Presently, in order to receive the full functionality of
a web-based application, a client computer system must be
able to communicate with an application server hosting the
web-based application. Although some features of a web-
based application may be available while the client computer
system is not connected to an application server hosting the
web-based application, other features of the application
server may not function properly or may not function at all if
the client computer system is not connected to the application
server. For example, consider a user who wants to update a
contact in a web-based address book. Updating a contact in a
web-based address book typically requires updating data
records in a database or some other mechanism for storing
and managing data (e.g., files). Typically, the database is part
of the application server or accessible to the application
server through a network connection. Thus, in order to update
a contact in the web-based address book, the client computer
system for the user must be connected to the application
server hosting the web-based address book so that the update
to the contact can be made to in the database.

[0222] Thus, in some embodiments, a client computer sys-
tem is loaded with a framework that allows the client com-
puter system to access web-based applications locally with-
out requiring a network connection to an application server
hosting the web-based application. This framework is
referred to as the “Applications on a Plane” (AOP) framework

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 186

US 2009/0037337 Al

in this specification. This framework is useful for at least
traveling salespeople, drivers, business travelers (e.g., on air-
planes), etc. In these embodiments, while working on the
application locally, data can be added, modified, and changed
without the need to be connected to the application server
hosting the web-based application. The AOP framework
tracks the changes and when the network connection between
the client computer system and the application server is rees-
tablished, the changes can be synchronized between the client
computer system and the application server.

[0223] In some embodiments, the AOP framework can
include an application server and an account management
system. In some embodiments, the application server is the
Etelos Application Server (EAS). In some embodiments, the
account management system is the Etelos Management Sys-
tem (EMS). This specification may use the terms EAS and
EMS in the generic sense to refer to an application server and
an account management system, respectively.

[0224] In some embodiments, AOP framework installa-
tions can be split into two steps: installation of an open source
stack (e.g., Apache HTTP server, PHP, PostgreSQL, MySQL,
Python, etc.) and installation of the AOP framework (e.g., the
EAS and EMS installation). Other software stacks can be
used. For example, WAMP (Windows, Apache HTTP server,
MySQL, PHP) and/or LAPP (Linux, Apache HTTP server,
PostgreSQL, PHP).

[0225] In some embodiments, AOP synchronization is
managed at two levels. A user-based synchronization enables
the user to synchronize information that only the user is
allowed to see based upon a set of user-based synchronization
rules. A group administrative synchronization synchronizes
all changes in the web-based application for a user that a user
is allowed to see because of group administrative permis-
sions.

[0226] In some embodiments, the AOP framework allows
existing web-based applications to support offline use on a
client computer system (e.g., without a connection to an
application server that hosts the web-based application) with-
out changing the architecture and code for the web-based
application. For example, if a developer builds a web-based
application based on the Linux, Apache HTTP server,
MySQL, and PHP (LAMP) web development environment,
the web-based application can be used in the AOP framework
with little or no code changes. A developer can then use an
administrative tool to create rules for how the web-based
application is to be synchronized with client computer sys-
tems that have made changes to the web-based application
while offline. Note that in prior art systems, a developer must
re-architect (e.g., changing the data model) and/or recode the
web-based application to be able to run on a client computer
system without a network connection to an application server.
[0227] Insome embodiments, the AOP framework assigns
a local domain extension to a universal resource locator
(URL) for a web-based application so that a user can access
the web-based application on the client computer system
instead of on the application server. In doing so, a user can
choose when to access the web-based application locally and
when to access the web-based application on the application
server. For example, the local domain extension can be an
“.aop” suffix that is added to the end of the URL. If the URL
is http://appl.com, the modified URL is http://appl.com.aop.
If a user wants to run the web-based application on the AOP
framework on a client computer system, the user can access
the web-based application by entering the local URL (e.g.,

Feb. 5, 2009

http://appl.com.aop). Note that the “.aop” suffix is one
example of a suffix that can be appended to a URL. Any other
suffix can be appended to a URL. Alternatively, the URL can
be modified in other ways (e.g., completely rewriting the
URL, etc.) that can indicate local access is required. In some
embodiments, an entry in a hosts file is added to map the URL
with the appended suffix to the local client computer system.
In other embodiments, an entry in a domain naming service is
added to map the URL with the appended sutfix to the local
client computer system.

[0228] In some embodiments, a suffix is not appended to
the URL. In these embodiments, the URL itself is used to
direct the browser to the local web server on the client com-
puter system. In these embodiments, an entry in the hosts file
or in a DNS server on the client computer system associates
the URL with the client computer system. Note that since a
client computer system starts its search for an IP address
associated with the URL on the client computer system, if an
IP address is found in the hosts file or a local DNS server on
the client computer system, the client computer system uses
this IP address regardless as to whether or not another IP
address (e.g., the real IP address exists).

[0229] Allowing users to make changes to web-based
applications while disconnected from an application server
hosting the web-based application creates several problems
including synchronization of data between the client com-
puter system and the application server. As long as the client
computer system is connected to the application server, the
two systems can remain synchronized with each other by
periodically communicating with each other (e.g., through
polling or through triggers). However, offline use of web-
based applications can cause data conflicts because users can
be creating, modifying, and deleting records on different
instances of the web-based application. This problem is com-
pounded by the fact that most web-based applications use
automatically incrementing database identifiers to provide a
unique identifier for a given database record. For example, for
a user table, the user ID column may use an automatically
incrementing user ID generator. When a new user is added to
theusertable, the database determines the next unique user ID
from the automatically incrementing user 1D generator.
Since, each instance of the web-based application includes
the automatically incrementing user ID generator that incre-
ments the next user ID independently of the other instances of
the web-based application, it is possible that the user IDs
between all of the instances of the web-based application are
not unique. Thus, in some embodiments, the AOP framework
provides a synchronization technique that can solve the
above-described problems. The synchronization technique
can be separate from the web-based application so that the
code for the web-based application does not need to be modi-
fied. Not modifying the code is advantageous for at least the
reason that rearchitecting and recoding web-based applica-
tions can be a burdensome and time-consuming process.

[0230] Most applications that are designed for the web are
designed to run on a single large piece of infrastructure with
shared resources. This technique allows a “software as a
service” (SaaS) provider to scale the infrastructure as needed.
Since many users (e.g., companies) may be using the same
database separated only by differences in primary keys, con-
trol to applications and databases are set so that security is not
compromised. These security models are difficult to port to
existing systems that allow use of web-based applications
while disconnected from an application server. However, the

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 187

US 2009/0037337 Al

AOP framework solves these problems as described below. In
some embodiments, the AOP framework enables users to see
only their own data and not see data from other users. How-
ever, if a user is a part of an administrative group, the admin-
istrative user can see data for other users over which the
administrative user has administrative rights.

[0231] In some embodiments, the AOP platform provides
mechanisms for distribution of web-based applications
through a marketplace. These mechanism can facilitate bill-
ing services (e.g., for purchases, subscriptions, and other
licenses) and user management.

AQP

[0232] FIG. 1 presents a block diagram of network 100,
according to embodiments of the present invention. Network
100 includes clients 110-A to 110-N and application servers
130-A to 130-N. Clients 110-A to clients 110-N and applica-
tion servers 130-A to 130-N are connected to each other
through network 120. Network 120 can include, but is not
limited to, a local area network (LAN), a wide area network
(WAN), the Internet, an intranet, a wireless network, a mobile
network, a combination of networks, or any type of network
now known or later developed. Clients 110-A to 110-N can
not only communicate with application servers 130-A to
130-N through network 120, but can also communicate with
each other through network 120. Similarly, application serv-
ers 130-A to 130-N can communicate with each other through
network 120.

[0233] Insome embodiments, application servers 130-A to
130-N include one or more web-based applications. In some
embodiments, a web-based application is an application that
is hosted on an application server and that can be accessed by
clients that are connected to the application server through a
network. Although a web-based application may have a set of
functionality that can be used without a network connection
to the application server hosting the web-based application, a
web-based application typically has another set of function-
ality that cannot be used by a client computer system unless
the client computer system is connected to the application
server hosting the web-based application. For example, the
set of functionality that requires a network connection to the
application server can include functionality that requires
access to data stored in a database for the web-based appli-
cation.

[0234] FIG. 2 presents a block diagram of network 200,
according to embodiments of the present invention. Network
200 includes clients 210-A and 210-B, network 120, and
application server 130. Clients 210-A and 210-B may corre-
spond to any one of clients 110-A to 110-N illustrated in FIG.
1. Application server 130 may correspond to any one of the
application servers 130-A to 130-N illustrated in FIG. 1.

[0235] Clients 210-A and 210-B include browser 212,
TCP/IP communications module 220, local application 214,
local database 216, stack 218, synchronization application
220, traffic management module 222, license authentication
module 224, copy protection and data security module 226.
Browser 212 can include any application that can access data
and/or services on a remote computer system through a net-
work (e.g., network 120). In some embodiments, browser 212
is a web browser. TCP/IP communications module 220 pro-
vides procedures and routines that allow clients 210-A and
210-B to communicate with other computer system through
network 120 using the TCP/IP protocol.

Feb. 5, 2009

[0236] Local application 214 can include any application
that can be run on a client. In some embodiments, local
application 214 is an instance of a web-based application that
is hosted on an application server (e.g., application server
130).

[0237] Local database 216 can include a database that can
be used by local application 214. For example, local database
216 can include, but is not limited to, MySQL, PostgreSQL,
ORACLE, etc. In some embodiments, local database 216
includes a user database and an application database. The user
database is described in more detail below with reference to
FIG. 4. The application database is described in more detail
below with reference to FIG. 3.

[0238] Stack 218 can include a number of software pack-
ages that enable a web-based application to run on a client. In
some embodiments, the software packages can include, but
are not limited to, a web server (e.g., Apache HT'TP Server),
a database (e.g., MySQL, PostgreSQL, ORACLE), applica-
tion servers (e.g., Apache Tomcat), scripting languages (e.g.,
Python, Ruby, Ruby on Rails, etc.), and libraries. In some
embodiments, stack 218 includes open source software
(OSS) packages. In some embodiments, the OSS packages
include Apache HTTP server, MySQL, PostgreSQL, Apache
Tomcat, Python, and libraries. Stack 218 is described in more
detail below with reference to FIG. 12.

[0239] Synchronization application 220 can synchronize a
web-based application that is running on a client (e.g., clients
210-B) with a corresponding web-based application running
on an application server (e.g., application server 130). Syn-
chronization application 220 is described in more detail
below with reference to FIGS. 6 and 23-28.

[0240] Traffic management module 222 can manage net-
work traffic between the client and other computer systems.
For example, if a user using client 210-A enters a universal
resource locator (URL) into browser 212, traffic management
module determines an Internet protocol (IP) address for the
URL. In some embodiments, traffic management module 222
first looks at a hosts file for client 210-A. The hosts file can
map URLs to IP addresses. In some embodiments, for web-
based application that are installed on client 210-A, the hosts
file can include an entry that associates an IP address for client
210-A (e.g., 127.0.0.1) with the URL. If an entry for the URL
exists in the hosts file, traffic management module returns the
IP address associated with the URL. If an entry for the URL
does not exist in the hosts file, traffic management module
222 can query a dynamic naming service (DNS) server to
determine an IP address for the URL. The DNS server may be
on client 210-A or may be on a remote DNS server. Note that
if a network connection to a remote DNS server does not
exist, the client computer system may resort to using the local
hosts file and/or the local DNS server to resolve IP addresses.
If an entry for the URL is found in a DNS server, traffic
management module 222 returns the IP address associated
with the URL. If an IP address associated with the URL is not
found, an error message can be returned.

[0241] License authentication module 224 can be used to
verify whether a given user or a given client can use a web-
based application loaded on the given client. Copy protection
and data security module 226 can protect data that is located
in local database 216 and/or local application 214 from being
accessed by unauthorized users. For example, copy protec-
tion and data security module 226 can protect data by using
access control mechanisms to restrict access to data. Alterna-
tively, copy protection and data security module 226 can

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 188

US 2009/0037337 Al

protect data by encrypting the data. Copy protection and data
security module 226 can also work with license authentica-
tion module 224 to prevent users that have expired licenses
from accessing data stored in local database 216.

[0242] As illustrated in FIG. 2, client 210-B is operating in
an AOP mode whereas client 210-A is operating in a net-
worked mode. In a networked mode, a user on client 210-A
can access a web-based application on application server 130
through network 120. In contrast, a user on client 210-B does
not have a connection to application server 130, and thus
cannot access functionality for a web-based application that
requires a network connection to application server 130.
However, since client 210-B has the AOP framework
installed, client 210-B can operate in an AOP mode where the
full functionality of web-based application (including func-
tionality that normally requires a network connection to
application server 130) is available to the user. In some
embodiments, a local web server 228 runs web-based appli-
cation locally. In some embodiments, local web server 228
can be part of stack 218. Note that client 210-A can also
include local web server 228. If client 210-A loses a connec-
tion to network 120, client 210-A can load the AOP frame-
work and use a local web server to run the web-based appli-
cation locally until the network connection is restored.
[0243] Application server 130 can include one or more of:
lightweight directory access protocol (LDAP) gateway 242,
web server engine 246, auxiliary services 250, synchroniza-
tion, access and query engine 260, applications database 262,
user database 270, and ecommerce services 280. LDAP gate-
way 242 can provide directory services to clients through
network 120. Note that LDAP gateway 242 is optional in
some embodiments.

[0244] Web server engine 246 can respond to requests for
static web pages, dynamically generated web pages, and web-
based applications. These requests can come from clients
(e.g., 210-A and 210-B) or from other application servers. In
some embodiments, web server engine 246 is an open source
web server (e.g., Apache HTTP server). Web server engine
246 can access LDAP gateway 242, auxiliary services 250,
user database 270, synchronization, access, and query engine
260, and e-commerce services 280.

[0245] Auxiliary services 250 can include, but are not lim-
ited to: famfamfam (icon images), phpMyAdmin (php web-
based MySQL database management interface), phpPGAd-
min (php web-based PostgSQL database management
interface), WebSVN (php web-based Subversion interface),
ImageMagick (image manipulation library), ZendFrame-
work (php utility framework), IconCube Loaders (encrypted-
php decryption library), libpng (PNG manipulation library),
libjpeg (JPEG manipulation library), Neon (WebDAV client
library), merypt (encryption library), and FreeType (font
utilities library).

[0246] Synchronization, access, and query engine 260 can
synchronize data and files between a web-based application
hosted on application server 130 and a corresponding web-
based application hosted on a client (e.g., clients 210-A and
210-B). Synchronization, access, and query engine 260 can
include rules for conflict management and techniques for
handling automatically incrementing record identifiers in a
database for web-based applications. Synchronization,
access, and query engine 260 can access applications data-
base 262, which can include information about web-based
applications available on the application server and can
include data for the web-based applications. Synchroniza-

Feb. 5, 2009

tion, access, and query engine 260 is described in more detail
below with reference to FIGS. 5 and 23-28 below. Applica-
tions database 262 is described in more detail below with
reference to FIG. 3 below.

[0247] User database 270 can include information about
users. In some embodiments, user database 270 can be used to
track users that are allowed to access web-based applications
on application server 130. User database 270 is described in
more detail below with reference to FIG. 4.

[0248] E-commerce services 280 can provide payment and
order fulfillment services. In some embodiments, e-com-
merce services 280 includes process payment module 282,
authenticate license module 284, and serve application mod-
ule 286. Process payment module 282 can process payments
for goods and services. For example, process payment mod-
ule can authorize payments by credit card, debit cards, elec-
tronic funds transfers, or other payment mechanisms (e.g.,
credits, prepaid tokens, etc.). Authenticate license module
284 can verity that a user has a valid license for a specified
service and/or web-based application. E-commerce services
280 can access user database 270 to determine license infor-
mation and/or payment information. Serve application mod-
ule 286 can serve applications to a user after a product or
service has been purchased or after alicense has been verified.
[0249] FIG. 3 presents a block diagram of application data-
base 300, according to embodiments of the present invention.
Application database 300 includes records 302 to 306 for
application 1 to application M, respectively. In some embodi-
ments, applications 1 to application M are web-based appli-
cations hosted on an application server. Note that in general
there can be any number of applications stored in applications
database 300. Each application can have a number of records
associated with the application.

[0250] Record 302 for application 1 can include informa-
tion about an application hosted on an application server. For
example, record 302 can include, but is not limited to, appli-
cation name 330, application title 332, application host 334,
application user 336, and application password 338. Appli-
cation name 330 can be a name for the application. Applica-
tion title 332 can be a title for the application. Application
host 334 can be a URL and/or an IP address that is associated
with the application on the application server. Application
user 336 can be the user or group of users who can manage the
application. Application password 338 can be a password for
accessing the management features for the application on the
application server. Records 304 to 306 for application 2 to
application M, respectively, are similar to record 302 for
application 1.

[0251] Record 1312 for application 2 can include metadata
and content for application 2. For example, record 1 312 can
include, but is not limited to, record metadata 350, record log
352, and record content 1 354-1 to record content N 354-N.
Record metadata 350 can include information about a given
record. For example, the metadata can include, but is not
limited to, the date and time the record was created, the user
that created the record, and/or the IP address of the user who
created the record. Record log 352 caninclude a log forrecord
312. For example, record log 352 can be used when synchro-
nizing application 2 between the application server and a
client computer system. Record content 1 354-1 to record
content N 354-N can include content for record 1 312. In
some embodiments, record 1 312 to record N 314 can be in the
same table within application database 300. In other embodi-
ments, record 1 312 to record N 316 are in different tables

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 189

US 2009/0037337 Al

within application database 300 or in other databases linked
to application database 300. The other records 308-310 and
314-318 are similar to record 312.

[0252] Application index 360 is an index to the applications
available in application database 300 (e.g., applications 1, 2,
... M). For example, applications index can include exem-
plary applications such as Etelos CRM (ECRM) 370, Media
Wiki 372, phpBB3 374, Projects 376, Sugar CRM 378, and/or
Wordpress 380.

[0253] In some embodiments, each application hosted on
an application server is stored in a separate database. These
separate databases can be located on the application server or
on remote database servers.

[0254] Note that the discussion above is one example of an
application database. The information included in the appli-
cation database can include more or fewer records than what
are illustrated in FIG. 3.

[0255] FIG. 4 presents a block diagram of user database
400, according to embodiments of the present invention. User
database 400 includes a number of user records 402-1 to
402-N. User database 400 also includes map 470 that can map
user IDs to user records. For example, as illustrated in F1G. 4,
map 470 maps user ID 472 to user record 402-2.

[0256] User records 402-1 and 402-N are similar to user
record 402-2. Thus, the description of user record 402-2
below applies to user records 402-1 and 402-N. User record
402-2 includes, but is not limited to, user ID 410, user meta-
data 412, query/contact list 414, user client device ID/type
416, user preferences 418, user authentication information
420, user personal information 422, and user enabled features
424. In some embodiments, user ID 410 can be a unique
identifier for a user within user database 400. In other
embodiments, user ID 410 can be a unique identifier fora user
across a specified set of databases (e.g., all or a subset of the
database) in the AOP framework. User metadata 412 can
include metadata information about the user record. For
example, the metadata information can include, but is not
limited to, a date and time when the user record was created,
a user who created the user record, the IP address of the user
who created the user record, etc.

[0257] Query/contact list 414 can include queries that are
used to retrieve contact records for a user (e.g., user-rule 1
460-1 to user-rule 460-N). The user rules can also be used to
retrieve contact information, sales opportunities, filter data-
base information, rules, tasks, appointments, and other con-
tact-related information. For a given contact within query/
contact list 414, information related to the contact can be
stored in the contact records for the contact. For example, the
information can include contact information for the contact
(e.g., name, phone number, fax number, address, email
address, etc.), action items due to the contact, a last interac-
tion with the contact, etc.

[0258] User client device ID/type 416 can store informa-
tion about the type or IDs of computer devices that the user
has used to access applications on the application server. For
example, user client device ID/type 416 can indicate that a
user used a laptop and a PDA to access applications on the
application server. This information can then be used to gen-
erate a response that is substantially optimized for the com-
puter device that the user is using to access the application.
[0259] User preferences 418 can include preferences for
the user. These preferences can be used when generating
responses for the user. For example, the preferences can
include, font types and sizes, color schemes, etc. User authen-

Feb. 5, 2009

tication information 420 can be used to authenticate a user.
For example, the authentication information can be a user-
name/password combination for the user or can be a digital
certificate for the user.

[0260] User personal information 422 includes, but is not
limited to, name 430, phone number 432 (e.g., home, work,
mobile, pager, fax, etc.), email addresses 434, office informa-
tion 436 (e.g., company name, office address, phone number,
fax number, etc.), and/or department 438.

[0261] User enabled features 424 includes a list of features
on the application server that have been enabled for the user.
In some embodiments, user enabled features 424 are deter-
mined by the license (e.g., subscription, free, purchased, etc.)
granted to the user. In some embodiments, user enabled fea-
tures 424 are determined by the features that were purchased
by the user. In some embodiments, user enabled features 424
are determined by the web-based applications that are avail-
able on an application server. Exemplary user enabled fea-
tures 424 can include, but are not limited to, Application 1
440, Application N 442, EDE 444, Devkit 446, Schedule
events 448, user management 450, AOP framework 452, dis-
tribute 454, and integrate 456. User management 450
includes a list of rights and privileges for a user. For example,
user management 462-1 can include, but is not limited to,
administrative rights and access privileges for the user asso-
ciated with user record 402-2. In some embodiments, these
rights and privileges can be determined based on the applica-
tions available for the user and/or user enabled features 424.
Note that user admin rights and access privileges are
described in more detail below with reference to FIG. 9.
[0262] Note that the information in the user records can be
located within one or more tables of user database 400 and/or
in other associated databases. Also note that the discussion
above is one example of a user database. The information
included in the user database can include more or fewer
records than what are illustrated in FIG. 4.

[0263] In some embodiments, user database 400 is a dis-
tributed database. In some embodiments, user databases 400
can belocated on the application server or on remote database
servers.

[0264] FIG. 5 presents a block diagram of synchronization
engine 500 on an application server, according to embodi-
ments of the present invention. Synchronization engine 500
includes a synchronization data module 502, a conflict man-
agement module 504, synchronization rules 506, and syn-
chronization operations 508.

[0265] Synchronization data module 502 includes data
used by synchronization engine 500 to synchronize a web-
based application on a client computer system with a web-
based application on the application server. As illustrated in
FIG. 5, synchronization data module 502 includes files 562,
application 510, application table 512, application column
514, and primary key 516.

[0266] Conflict management module 504 resolves conflicts
between the application server and client computer systems.
These conflicts can arise when client computer systems oper-
ate web-based applications while not connected to the appli-
cation server. For example, if a web-based application uses an
automatically incrementing identifier for database records,
client computer systems that are not connected to the appli-
cation server can unknowingly use the same identifiers as the
application server for different data resulting in data conflicts.
Thus, in some embodiments, a record increment module 520
is provided to resolve conflicts for web-based application that

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 190

US 2009/0037337 Al

use automatically incrementing identifiers for database
records. Conflict management module 504 and record incre-
ment module 520 are described in more detail below with
reference to FIGS. 25-28 below.

[0267] Synchronization rules 506 are rules used by syn-
chronization engine 500 to determine how to synchronize
records between a client computer system and an application
server. These rules can include developer specified rules 522
and default rules 524.

[0268] Synchronization operations module 508 includes,
but is not limited to, create accounts module 540, create
databases module 542, create account directories module
544, install EAS module 546, setup scheduler module 548,
and connect to EMS client 550. Create accounts module 540
can be used to create accounts for web-based applications.
Create databases module 542 can be used to create the data-
bases for web-based applications and the AOP framework.
Create account directories 544 can be used to create the
directory structure of web-based applications. Install EAS
module 546 can be used to install an application server that
can be used to serve web-based applications to clients. In
some embodiments, the application server module is the Ete-
los Application Server (EAS) module. Setup schedule mod-
ule 548 can setup a synchronization schedule between the
application server and client computer systems.

[0269] Connect to EMS client module 550 can be used to
connect an application server with the EMS module on a
client computer system. Connect to EMS client module 550
can send data to an EMS module on the client computer
system to synchronize the web-based application between the
application server and the client computer system. The data
can include, but is not limited to, setup data 552, schema 554,
files 556, rules 558, and/or data 560.

[0270] FIG. 6 presents a block diagram of synchronization
engine 600 on a client computer system, according to
embodiments of the present invention. The modules in syn-
chronization engine 600 perform similar functions as the
modules in synchronization engine 500. For example, syn-
chronization data module 602 generally corresponds to syn-
chronization data module 502 and synchronization opera-
tions 608 generally corresponds to synchronization
operations 508. As a result, the discussion above for synchro-
nization engine 600 is not repeated.

[0271] In some embodiments, the file structures for a web-
based application in the application server and the client
computer system are similar.

[0272] FIG. 7 presents a block diagram of application
server 700, according to embodiments of the present inven-
tion. The application server 700 generally includes one or
more processing units (CPU’s) 702, one or more network or
other communications interfaces 704, memory 710, and one
or more communication buses 708 for interconnecting these
components. The communication buses 708 may include cir-
cuitry (sometimes called a chipset) that interconnects and
controls communications between system components. The
application server 700 may optionally include a display 706
and one or more input devices 705 (e.g., keyboard, mouse,
trackpoint, etc.). Memory 710 includes high-speed random
access memory, such as DRAM, SRAM, DDR RAM or other
random access solid state memory devices; and may include
non-volatile memory, such as one or more magnetic disk
storage devices, optical disk storage devices, flash memory
devices, or other non-volatile solid state storage devices.
Memory 710 may optionally include one or more storage

Feb. 5, 2009

devices remotely located from the CPU(s) 702. Memory 710,
or alternately the non-volatile memory device(s) within
memory 710, comprises a computer readable storage
medium. In some embodiments, memory 710 stores the fol-
lowing programs, modules and data structures, or a subset
thereof: operating system 711, network communication mod-
ule 712, LDAP gateway module 714 (optional), synchroniza-
tion, access and query module 716, user database 728, e-com-
merce services module 730, web server engine module 738,
application database management module 744, user database
management module 754, application database 764, and/or
auxiliary services modules 766.

[0273] Operating system 711 includes procedures for han-
dling various basic system services and for performing hard-
ware dependent tasks. Network communication module 712
can be used for connecting the application server 700 to other
computers via the one or more communication network inter-
faces 704 (wired or wireless) and one or more communication
networks, such as the Internet, other wide area networks,
local area networks, metropolitan area networks, and so on.
LDAP gateway module 714 can provides directory services
for application server 700 and other computer systems. In
some embodiments, LDAP gateway module 714 is optional.

[0274] Synchronization, access, and query module 716 can
provides synchronization procedures to synchronize a web-
based application on a client computer system with a web-
based application on an application server. Synchronization,
access, and query module 716 includes one or more of syn-
chronization module 718, synchronization files module 719,
access database module 720, query database module 722,
and/or conflict management module 724. Synchronization
module 718 can perform synchronization operations between
a client computer system and application server 700. Syn-
chronization files module 719 synchronizes files between the
client computer system and application server 700. Access
database module 720 performs read (e.g., select operations)
and write operations (e.g., insert, update, and delete opera-
tions) on databases. Query database module 722 performs
queries in the databases and returns results of the query.
Conflict management module 724 resolves conflicts between
application server 700 and client computer systems. Conflict
management module 724 can include record increment mod-
ule 726, which can handle conflicts that arise from automati-
cally incrementing identifiers for database records.

[0275] User database 728 includes user information as
described above with reference to FIGS. 2 and 4. Application
database 764 includes application data as described above
with reference to FIGS. 2 and 3.

[0276] E-commerce services module 730 can provide elec-
tronic commerce services. E-commerce services module 730
includes one or more of process payment module 732,
authenticate license module 734, serve application module
736. E-commerce services module 730 is described in more
detail above with reference to FIG. 2.

[0277] Web server engine module 738 can serve web pages
to client computer system or other application servers. In
some embodiments, web server engine module 738 includes
web development environment module 740, which provides
software and tools to build and serve web-based applications.
In some embodiments, web development environment mod-
ule 740 is LAMP module 741, which includes the LINUX
operating system, Apache HTTP server, the MySQL database
management system, and the PHP scripting language.

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 191

US 2009/0037337 Al

[0278] The components of LAMP module 741 can be sub-
stituted for other compatible technologies. In general, LAMP
module 741 includes an operating system, a web server, a
database, and support for a scripting language. For example,
LAMP module 741 can include WAMP (Windows, Apache
HTTP, MySQL, PHP) and/or LAPP (Linux, Apache HTTP,
PostgreSQL, PHP). LAMP module 741 can also include
Apache Tomcat. In some embodiments, web server engine
module 734 includes a Python module 742 that supports the
Python scripting language. Optionally, Python module 742
can also support Ruby, Ruby on rails, and/or any other lan-
guages.

[0279] Application database management module 744 pro-
vides an interface to manage and access an applications data-
base for web-based applications that are hosted on applica-
tion server 700. Application database management module
744 can include an add/delete application module 746, a
synchronize application module 748, and an application
access module 750. Add/delete application module 746
allows for the addition or deletion of web-based application
records in application database 764 on application server 700.
Synchronize application module 748 synchronizes applica-
tions database 764 with an application database on a client
computer system. Application access module 750 determines
whether a user is allowed to access a given application within
application server 700.

[0280] User database management module 754 provides an
interface to manage and access a user database for web-based
applications that are hosted on application server 700. Users
database management module 754 can include an add/delete
user module 756, an edit user information module 758, a user
authentication module 760, and/or a user permissions module
762. Add/delete user module 756 allows for the addition or
deletion of users in user database 728 on application server
700. Edit user information module 758 allows for the editing
ofuser information in user database 728. User authentication
module 760 authenticates users by checking user credentials
stored in user database 728 (e.g., by checking a username and
password for a user, or a digital certificate). User permissions
module 762 determines whether a user is allowed to access
specified resources and/or applications within application
server 700.

[0281] Auxiliary services module(s) 766 includes, but is
not limited to: famfamfam (icon images), phpMy Admin (php
web-based MySQL database management interface), phpP-
GAdmin (php web-based PostgSQL database management
interface), WebSVN (php web-based Subversion interface),
ImageMagick (image manipulation library), ZendFrame-
work (php utility framework), IconCube Loaders (encrypted-
php decryption library), libpng (PNG manipulation library),
libjpeg (JPEG manipulation library), Neon (WebDAV client
library), merypt (encryption library), and FreeType (font
utilities library).

[0282] Each ofthe above identified elements may be stored
in one or more of the previously mentioned memory devices,
and corresponds to a set of instructions for performing a
function described above. The above identified modules or
programs (i.e., sets of instructions) need not be implemented
as separate software programs, procedures or modules, and
thus various subsets of these modules may be combined or
otherwise re-arranged in various embodiments. In some
embodiments, memory 710 may store a subset of the modules

Feb. 5, 2009

and data structures identified above. Furthermore, memory
710 may store additional modules and data structures not
described above.

[0283] Although FIG. 7 shows an “application server,”
FIG. 7 is intended more as functional description of the vari-
ous features that may be present in a set of servers than as a
structural schematic of the embodiments described herein. In
practice, and as recognized by those of ordinary skill in the
art, items shown separately could be combined and some
items could be separated. For example, some items shown
separately in FIG. 7 could be implemented on single servers
and single items could be implemented by one or more serv-
ers. The actual number of servers used to implement an appli-
cation server and how features are allocated among them will
vary from one implementation to another, and may depend in
part on the amount of data traffic that the system must handle
during peak usage periods as well as during average usage
periods.

[0284] FIG. 8 presents a block diagram of client 800,
according to embodiments of the present invention. The client
800 generally includes one or more processing units (CPU’s)
802, one or more network or other communications interfaces
804, memory 810, and one or more communication buses 808
for interconnecting these components. The communication
buses 808 may include circuitry (sometimes called a chipset)
that interconnects and controls communications between sys-
tem components. The client 800 includes a display 806 and
one or more input devices 805 (e.g., keyboard, mouse, track-
point, etc.). Memory 810 includes high-speed random access
memory, such as DRAM, SRAM, DDR RAM or other ran-
dom access solid state memory devices; and may include
non-volatile memory, such as one or more magnetic disk
storage devices, optical disk storage devices, flash memory
devices, or other non-volatile solid state storage devices.
Memory 810 may optionally include one or more storage
devices remotely located from the CPU(s) 802. Memory 810,
or alternately the non-volatile memory device(s) within
memory 810, comprises a computer readable storage
medium. In some embodiments, memory 810 stores the fol-
lowing programs, modules and data structures, or a subset
thereof: operating system 811, network communication mod-
ule 812, DNS support module 813, receive and process user
input module 814, display module 815, browser engine mod-
ule 816, synchronization, access and query module 818,
e-commerce client module 826, local web server engine mod-
ule 834, local application database module 848, local user
database management module 858, application database 868,
and/or user database 870.

[0285] Operating system 811 includes procedures for han-
dling various basic system services and for performing hard-
ware dependent tasks. Network communication module 812
can be used for connecting the client 800 to other computers
via the one or more communication network interfaces 804
(wired or wireless) and one or more communication net-
works, such as the Internet, other wide area networks, local
area networks, metropolitan area networks, and so on. DNS
support module 813 provides DNS services for client 800.
Receive and process user input module 814 receives and
processes user inputs received from input devices 805. Dis-
play module 815 displays a user interfaces for applications
running on client 800. Browser engine module 816 can
include any application with a rendering engine that can
access data and/or services on a local or a remote computer
system and render the results so that a user can view the data

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 192

US 2009/0037337 Al

and/or interact with the services. In some embodiments,
browser engine module 816 is a web browser.

[0286] Synchronization, access, and query module 818 can
provides synchronization procedures to synchronize a web-
based application on a client computer system with a web-
based application on an application server. Synchronization,
access, and query module 818 includes one or more of syn-
chronize files module 819, synchronization module 820, local
copy of database module 822, and edit local database module
824. Synchronization module 820 can perform synchroniza-
tion operations between client 800 and an application server.
Local copy of database module 822 makes a local copy of
databases located on an application server. Edit local database
module 824 provides an interface to edit the local copy of the
databases.

[0287] E-commerce client module 826 can provide elec-
tronic commerce services that enable use of web-based appli-
cations on client 800. E-commerce client module 826
includes one or more of download and enable application
module 828, authenticate license module 830, and/or copy
protection and data security module 832. Download and
enable application module downloads and enables web-based
applications from an application server. Authenticate license
module 830 determines whether the license for a web-based
application is valid. If so, a user is allowed to access the
web-based application. Otherwise, a user is prevented from
accessing the web-based application. Copy protection and
data security module 832 can protect data that is located in
local databases (e.g., an application database or a user data-
base) from being accessed by unauthorized users. Copy pro-
tection and data security module 832 can work with authen-
ticate license module 830 to prevent users that have expired
licenses from accessing data stored in local databases.

[0288] Local web server engine module 834 can serve web
pages to client 800 or to other computer systems. In some
embodiments, local web server engine module 834 includes
web development environment module 836, framework lan-
guage module 840, AOP framework module 844, and/or traf-
fic management module 846. Web development environment
module 836 provides software and tools to build and serve
web-based applications. In some embodiments, web devel-
opment environment module 840 includes a number of open
source software (OSS) packages. Thus, web development
environment module is sometimes referred to as a software
stack. In some embodiments, web development environment
module 836 includes LAMP module 838, which includes the
LINUX operating system, Apache HTTP server, MySQL
database management system, and support for the PHP script-
ing language and Apache Tomcat. The components of LAMP
module 838 can be substituted for other compatible technolo-
gies (e.g., WAMP, LAPP, etc.). In general, LAMP module 838
includes an operating system, a web server, a database, and
support for a scripting language. Framework language mod-
ule 840 provides support for one or more programming lan-
guages used to implement the AOP framework. In some
embodiments, framework language module 840 includes
python module 842 which supports the Python, Ruby, and/or
Ruby on Rails scripting language. AOP framework module
844 provides data structures and procedures for running web-
based applications on a client computer system (e.g., client
800). AOP framework module 844 is described in more detail
below with reference to FIGS. 10-28. Traffic management
module 846 manages network traffic between client 800 and

Feb. 5, 2009

other computer systems. Traffic management module 846 is
described in more detail above with reference to FIG. 2.
[0289] Local application database management module
848 provides an interface to manage and access applications
database 868 for web-based applications that are hosted on
client 800. Local application database management module
848 can include an add/delete record module 850, an appli-
cation database access module 852, and/or an application
database query module 854. Add/delete record module 850
allows for the addition or deletion of web-based application
records in application database 868. Application database
access module 852 performs reads and writes into application
database 868. For example, application database access mod-
ule 852 can process requests for retrieving data, adding
records, deleting records, and editing records. Application
database query module 854 performs queries on and returns
results from application database 868.

[0290] Local user database management module 858 pro-
vides an interface to manage and access user database 870 for
web-based applications that are hosted on client 800. Local
user database management module 858 can include an add/
delete user module 860, an edit user information module 862,
a user authentication module 864, and/or a user permissions
module 866. Add/delete user module 860 allows for the addi-
tion or deletion of users in user database 870. Edit user infor-
mation module 862 allows for the editing of user information
in users database 868. User authentication module 864
authenticates users by checking user credentials stored in user
database 870 (e.g., by checking a username and password for
a user, or a digital certificate). User permissions module 866
determines whether a user is allowed to access specified
resources and/or applications within client 800.

[0291] Auxiliary services module(s) 864 includes, but is
not limited to: famfamfam (icon images), phpMyAdmin (php
web-based MySQL database management interface), phpP-
GAdmin (php web-based PostgSQL database management
interface), WebSVN (php web-based Subversion interface),
ImageMagick (image manipulation library), ZendFrame-
work (php utility framework), IconCube Loaders (encrypted-
php decryption library), libpng (PNG manipulation library),
libjpeg (JPEG manipulation library), Neon (WebDAV client
library), merypt (encryption library), and/or FreeType (font
utilities library).

[0292] Application database 868 is described in more detail
above with reference to FIGS. 2 and 3 above. User database
870 is described in more detail above with reference to FIGS.
2 and 4 above.

[0293] Each ofthe above identified elements may be stored
in one or more of the previously mentioned memory devices,
and corresponds to a set of instructions for performing a
function described above. The above identified modules or
programs (i.e., sets of instructions) need not be implemented
as separate software programs, procedures or modules, and
thus various subsets of these modules may be combined or
otherwise re-arranged in various embodiments. In some
embodiments, memory 810 may store a subset of the modules
and data structures identified above. Furthermore, memory
810 may store additional modules and data structures not
described above.

AQOP Framework

[0294] FIG. 10 presents a block diagram 1000 of exemplary
AOP framework 100 which provides offline access to web-
based application 1006, according to embodiments of the

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 193

US 2009/0037337 Al

present invention. In some embodiments, client computer
system 1001 is coupled to application server 1005 through
network 120. Network 120 can include, but is not limited to,
alocal area network (LAN), a wide area network (WAN), the
Internet, a mobile network, and/or a wireless network. Client
computer system 1001 includes operating system 1002,
browser 1003, and AOP framework 1010. As illustrated in
FIG. 1, AOP framework 1010 includes software stack 1004
and web-based application 1007. Software stack 1004 may be
comprised of open source software, commercial software, or
a combination of both. Note that the details of AOP frame-
work 1010 are described in more detail below with reference
to FIGS. 10B-28 below. Application server 1005 includes
web-based application 1006.

[0295] Consider a user who wants to access web-based
application 1006 located on application server 1005. For
example, the URL for the web-based application can be
http://appl.com. The user can use browser engine 1003 on
client computer system 1001 to access the URL http://appl.
com. When client computer system 1001 has a network con-
nection with application server 1005, application server 1005
can activate web-based application 1006 to respond to the
request from browser engine 1003.

[0296] On a client computer system without AOP frame-
work 1010, the user can only access the full functionality of
web-based application 1006 when there is a network connec-
tion between the client computer system and application
server 1005. However, since client computer system 1001
includes AOP framework 100, the user can access the full or
substantially the full functionality of web-based application
1006 when there is no network connection between client
computer system 1001 and the application server 1005. As
illustrated in FIG. 1, AOP framework 1010 includes web-
based application 1007, which is a local instance of web-
based application 1006. Software stack 1004 provides the
software required to execute web-based application 1006 on
client computer system 1001. In some embodiments, Soft-
ware stack 1004 is the same set of software used on applica-
tion server 1005 to run web-based application 1006.

[0297] When client computer system 1001 does not have a
network connection with application server 1005, AOP
framework 1010 can allow the user to continue having access
to the functionality of web-based application 1006 by acti-
vating web-based application 1007 on client computer sys-
tem 1001. Note that the loss of a network connection with
application server can result from the user manually discon-
necting the network connection (e.g., through software or
hardware) or can be a result of external factors (e.g., power
outages, network outages, etc.). In some embodiments, AOP
framework 1010 automatically activates web-based applica-
tion 1007 when the network connection to application server
1005 no longer exists. In other embodiments, after the net-
work connection to application server 1005 no longer exists,
AQP framework 1010 waits for the user to indicate that web-
based application 1007 should be activated.

[0298] FIG. 11 illustrates an exemplary process 1100 of
using AOP framework 1010 to run web-based application
1006 while offline, according to embodiments of the present
invention. Note that FIG. 11 corresponds to the block diagram
in FIG. 10. The process begins when client computer system
1001 receives an input from a user (1102). Client computer
system 1001 starts a browser application (1104). Client 1001
then receives a user request to visit a web page or an appli-
cation (1106). The user request can include a URL. Option-

Feb. 5, 2009

ally, client computer system 1001 then detects if a connection
cannot be made to the web page or the application (1108). For
example, the user may be offline and may not have an Internet
connection. If the connection cannot be made, then a web
server on client computer system 1001 responds to the request
(1110). Client computer system 1001 can then perform one or
more of the optional steps 1112-1118. Client computer sys-
tem 1001 can run the application locally using the client’s
operating system (1112). Client computer system 1001 can
run the software in conjunction with the AOP framework
(1114). Client computer system 1001 can receive a user
request to navigate the browser to a web address (e.g., a
URL). For example, the URL can be http://appl.com.aop.
Note that the extension “.aop” can be replaced with any other
extension. AOP framework 1010 can then respond to the
request for the specified URL and activates web-based appli-
cation 1007 to respond to the request. Client computer system
1001 can then detect when a connection can be made to a
remote web page or a server corresponding to the local virtual
instance (e.g., application server 1005) (1118). When the
network connection between client computer system 1001
and application server 1005 is reestablished, any changes
made in web-based application 1007 on client computer sys-
tem 1001 can be synchronized with web-based application
1006 on application server 1005. In some embodiments, cli-
ent computer system 1001 is synchronized with application
server 1005 using Network 120.

[0299] In some embodiments, the AOP framework modi-
fies the operating system’s network hosts file so that applica-
tion domains ending with a specified domain suffix are treated
as local domains served by a local web server. For example, if
the specified domain suffix is “.aop”, an application may have
the universal resource locator (URL) “appl.com.aop”. In
some embodiments, the local web server is on the same client
computer system as the client computer system running the
AOP framework. For example, if the AOP framework is run-
ning on a laptop, the laptop may also include a local web
server.

[0300] In some embodiments, when a user attempts to use
a browser to access an application that has the specified
domain suffix, the request is handled by a local web server
and control is delegated to the application associated with the
domain name on the client computer system.

[0301] Insomeembodiments, the AOP framework supports
web application development languages including, but not
limited to, PHP, Python, Ruby, and/or Ruby on Rails.
[0302] In some embodiments, the AOP framework deter-
mines all local changes made to applications on the client
computer system and synchronizes these changes with the
application server. In some embodiments, the synchroniza-
tion is performed on a predetermined frequency. In other
embodiments, the synchronization is performed on demand.

AQOP Installation

[0303] The AOP framework enables web-based applica-
tions to run locally without requiring a network connection to
an application server hosting the web-based application. As a
result, some embodiments install software packages on a
client computer system. These software packages can
include, but are not limited to a web server (e.g., Apache
HTTP Server), adatabase (e.g., MySQL, PostgreSQL), appli-
cation servers (e.g., Apache Tomcat), scripting languages
(e.g., Python), and libraries. In some embodiments, the soft-
ware package includes Apache HTTP server, MySQL, Post-

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 194

US 2009/0037337 Al

greSQL, Apache Tomcat, Python, and libraries. In other
embodiments, the software packages are included in the
package for the AOP framework.

[0304] FIG. 12 presents a block diagram 1200 of an exem-
plary process of installing an instance of an AOP framework
ona client computer system, according to embodiments of the
present invention. The installation process includes down-
loading OSS packages (1201) and an AOP package (1202),
installing the software packages (1203), installing the AOP
package (1204), creating an account (1205), initializing an
account (1206), connecting to the application server (1207),
downloading application files from the application server
(e.g., using RPC and SVN through Network 120), and setting
up an AOP application on the client computer system (1209).

[0305] FIG. 13 illustrates an exemplary process 1300 of
installing an instance of an AOP framework on a client com-
puter system, according to embodiments of the present inven-
tion. Note that FIG. 13 corresponds to the block diagram in
FIG. 12. The process begins when a user downloads software
packages (1301). The software packages can be included in a
single compressed file. The user also downloads the AOP
framework package (1302). The AOP framework package
can be included in a compressed file. In some embodiments,
the AOP framework package includes an installation utility.

[0306] The user then installs the software packages on the
client computer system (1303). If the software packages are
already installed on the client computer system, the software
packages are not reinstalled. In some embodiments, if the
software packages are already installed on the client com-
puter system, the versions of the software packages installed
on the client computer system are determined. The software
packages are either updated or not updated based on the
determined versions. For example, if a minor software ver-
sion update occurred for a software package installed on the
client computer system, the minor software version update
may not be applied. In some embodiments, if the software
packages are already installed on the client computer system,
the software packages may periodically check for updates
and apply the updates according to a set of rules. For example,
the set of rules can specify that certain software packages can
be updated without user intervention whereas others require
specified instructions from users and/or the developers of the
web-based application. After the software packages are
installed, the user starts the AOP package installation process
(1304). The AOP package installation process installs the
AOP framework. During the installation process, the user
enters account information about web-based applications that
the user desires to use (1305). For example, the account
information can include one or more of universal resource
locator (URL) for the web-based application, a username, and
a password.

[0307] The AOP framework then initializes the account
(1306). The account initialization operation is described in
more detail with reference to FIGS. 14-15 below.

[0308] After the account is initialized, the client computer
system connects to the application server so that the applica-
tion server can authenticate the user and verify AOP permis-
sions (1307). After the user has been verified, the application
server transfers information required to complete the instal-
lation of the web-based application on the client computer
system (1308). For example, the application server can trans-
fer files and data for the web-based application to the client
computer system. The client computer system then installs up

Feb. 5, 2009

the web-based application (1309). Step 1309 is described in
more detail below with reference to FIGS. 16-17.

AQOP Initialize Account

[0309] FIG. 14 presents a block diagram 1400 of an exem-
plary process of initializing an AOP account on a client com-
puter system, according to embodiments of the present inven-
tion. FIG. 14 includes AOP application 1401, vhost file 1405,
AOP initialization file 1406, database 1408-1409, packages
1414, account 1404, EMS 1402, software stack 1410, oper-
ating system 1412, host file 1407, download 1408, connect to
server 1403, and Network 120.

[0310] FIG. 15 illustrates an exemplary process 1500 of
initializing an AOP account on a client computer system,
according to embodiments of the present invention. Note that
FIG. 15 corresponds to the block diagram in FIG. 14. The
AOP framework is installed on the client computer system
(1501). After the AOP framework has been installed on the
client computer system, a database for an account manage-
ment system is installed (1502). In some embodiments, the
account management system is the Etelos Management Sys-
tem (EMS). Theterm EMS is used below to describe a generic
account management system. The AOP framework connects
to the application server and authenticates user permissions
(1503). If the user is authenticated, an account is created in the
account management system (1504).

[0311] The local web server instance within the AOP
framework is configured to enable navigation to the web-
based application that is installed on the client computer
system (1505). In some embodiments, a virtual hosts (vhost)
file is configured to map a specified URL to a location for the
web-based application on client computer system. For
example, the vhost file can map http://appl.com.aop to /web/
appl. As noted above, the “.aop” suffix can be any suffix.
[0312] An AOP initialization file that includes additional
configuration information is saved (1506). The specified
URL is then associated with the client computer system
(1507). In some embodiments, an entry is added to a hosts file
on the client computer system. The entry can be used to
redirect a request for the specified URL to the client computer
system. In other embodiments, an entry is added to a dynamic
naming service (DNS) server on the client computer system.
The entry can be used to redirect a request for the specified
URL to the client computer system.

[0313] Packages that are required by the web-based appli-
cation are then downloaded from a package repository onto
the client computer system (1508). These packages can
include packages such as EAS, Zend, fam fam fam, phpMy-
Admin, etc (1509). The packages are then installed (1510).
[0314] The account is initialized and the system will move
onto application installation.

Web-Based Application Installation

[0315] FIG. 16 presents a block diagram 1600 of an exem-
plary process of installing a web-based application on a client
computer system, according to embodiments of the present
invention. FIG. 16 includes AOP framework 1601, software
stack 1613, operating system 1614, files 1615, schema 1616,
data 1617, rules 1618, Network 120, and connect to server
1620. AOP Framework 1601 includes application 1602,
packages 1607, account 1608, EMS 1609, and databases

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 195

US 2009/0037337 Al

1610-1611. Application 1602 includes vhost 1603, web files
1604, file transfer 1605 (e.g., SVN, rsync, etc.), and database
1606.

[0316] FIG. 17 illustrates an exemplary process 1700 of
installing a web-based application on a client computer sys-
tem, according to embodiments of the present invention. Note
that FIG. 17 corresponds to the block diagram in FIG. 16. The
client computer system downloads and installs the schema of
the database for the web-based application from the applica-
tion server (1701). The client computer system also down-
loads the files required by the web-based application (1702).
For example, the files can be downloaded using Subversion
(SVN), which is a version control system, and/or rsync. The
client computer system then downloads synchronization
rules and inserts the rules into the database for the account
management system (1703). Next, the client computer sys-
tem downloads application data as part of the initial synchro-
nization process (1704). Step 1704 is described in more detail
below with reference to FIGS. 18-19.

Initial Data Synchronization

[0317] FIG. 18 presents a block diagram 1800 of an exem-
plary process of performing an initial data synchronization
for a web-based application on a client computer system,
according to embodiments of the present invention. FIG. 18
includes AOP framework 1801, software stack 1813, operat-
ing system 1814, files 1817, data 1818, Network 120, and
connect to server 1816. AOP Framework 1801 includes appli-
cation 1802, packages 1807, account 1808, EMS 1809, syn-
chronizer 1810, and databases 1811-1812. Application 1802
includes vhost 1803, web files 1804, file transfer 1805 (e.g.,
SVN, rsync, and other file transfer tools), and database 1806.
[0318] FIG. 19 illustrates an exemplary process 1900 of
performing an initial data synchronization for a web-based
application on a client computer system, according to
embodiments of the present invention. Note that FIG. 19
corresponds to the block diagram in FIG. 18. The initial data
sync can be a large and time consuming process because all
data records for the web-based application on the application
server are synchronized with the web-based application on
the client computer system. The synchronization rules pro-
cessing can be more simple because a new installation typi-
cally does not have conflicting data between the application
server and the client computer system.

[0319] The process begins when a synchronization engine
within the AOP framework on the client computer system
starts an initial data synchronization process (1901). The
synchronizer then retrieves initial data synchronization rules
from the database (1902). The synchronizer sends a requestto
the application server to synchronize with the application
server (1903). This request can include user authentication
information. Once the user is authenticated, the client com-
puter system synchronizes files for the web-based application
using a file transfer utility (1904). For example, the file trans-
fer utility can include Subversion (SNV), rsync, etc. The
application server then sends data records to the client com-
puter system (1905). In some embodiments, the data records
include all data records for the web-based application.

Using an the AOP Framework

[0320] FIG. 20 presents a block diagram 2000 of an exem-
plary process of using the AOP framework on a client com-
puter system, according to embodiments of the present inven-

Feb. 5, 2009

tion. FIG. 20 includes AOP framework 2001, software stack
2012, operating system 2013, Network 120, connect to server
2015, AOP launch interface 2016, launch browser with appli-
cation running locally 2017. AOP Framework 2001 includes
application 2002, packages 2007, account 2008, EMS 2009,
and databases 2010-2011. Application 2002 includes vhost
2003, web files 2004, file transfer 2005 (e.g., SVN, rsycn, and
other file transfer tools), and database 2006.

[0321] FIG. 21 illustrates an exemplary process 2100 of
using the AOP framework on a client computer system,
according to embodiments of the present invention. Note that
FIG. 21 corresponds to the block diagram in FIG. 20. The
AOQOP framework allows a user to use web-based applications
on a client computer system regardless of whether the client
computer system is connected to an application server that
hosts the web-based application. In order to use web-based
applications on the client computer system without a connec-
tion to the application server, the AOP framework must be
running. A user on a client computer system executes the AOP
framework on the client computer system (2101). The AOP
framework loads the software stack (2102) and the EMS
(2103). The AOP framework then loads a user interface
(2104) and web-based applications that are available on the
client computer system (2105). In some embodiments, the
user interface can include a desktop interface (2109). A user
can then select a web-based application to use. This selection
is detected and causes the browser to navigate to the URL
associated with the selected application (2106). The AOP
framework causes the client computer system to be directed
to a web server running on the client computer system (2107).
For example, an entry in a hosts file or an entry in a DNS
server on the client computer system can be used to direct the
client computer system to the web server running on the client
computer system. The web server on the client computer
system listens for connections and responds to a connection
request by serving the requested web-based application
(2108). In some embodiments, the web server includes
Apache HTTP server (2110).

[0322] A user that is using a web-based application on the
application server can later lose a network connection to the
application server. In some embodiments, if the client com-
puter system is running the AOP framework, the user can
continue using the web-based application without the net-
work connection to the application server. In these embodi-
ments, the AOP framework can seamlessly continue provid-
ing the services required by the web-based application so that
the user does not know that the network connection to the
application server is lost. After the network connection to the
application server is restored, any changes made on the client
computer system and the application server can be synchro-
nized with each other.

[0323] Insome cases, a network connection may be slow or
unreliable. Thus, in some embodiments, a user can use a
web-based application from the client computer system
regardless of whether a network connection to the application
server exists or not. In these embodiments, the AOP frame-
work periodically synchronizes changes made on the appli-
cation server and the client computer system with each other.
In doing so, a poor user experience that could result from a
low-quality or intermittent network connection can be
reduced or eliminated.

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 196

US 2009/0037337 Al

[0324] In some embodiments, a web browser is used to
access the web-based application.

Client Computer System

[0325] When a user requests a web-based application by
entering a URL into a browser, the client computer system
determines how to access the web-based application. FIG. 22
presents a block diagram 2200 of an exemplary process for a
client computer system determining how to access a web-
based application, according to embodiments of the present
invention. FIG. 22 includes browser 2201, host file 2202, web
server 2203, vhost file 2204, application 2205, and packages
2209. Application 2005 includes vhost 2206, web files 2207,
file transfer 2208 (e.g., SVN, rsycn, and other file transfer
tools), and database 2209.

[0326] FIG. 23 illustrates an exemplary process 2300 for a
client computer system determining how to access a web-
based application, according to embodiments of the present
invention. FIG. 23 corresponds to the block diagram in FIG.
22. The client computer system first determines an IP address
associated with the URL (2301). In some embodiments, the
URL includes a domain suffix “.aop”. The client computer
system first checks a local hosts file to determine whether the
URL is included in an entry in the hosts file (2302). Ifthe URL
is notincluded in an entry in the hosts file, the client computer
system checks one or more DNS servers to locate the IP
address associated with the URL. If the URL is included in an
entry in the hosts file, the client computer system retrieves the
1P address for the URL (2303). The IP address for the web-
based application is set to an address associated with the
client computer system (e.g., 127.0.0.1) (2310). In some
embodiments, the IP address associated with the URL for
web-based applications is set to an address associated with
the client computer system each time the AOP framework is
started on the client computer system. In other embodiments,
the IP address associated with the URL for web-based appli-
cations is setto an address associated with the client computer
system when the web-based application is installed on the
client computer system.

[0327] The web browser is then directed to the IP address
associated with the client computer system on which the web
server on the client computer system listens (2304). The local
web server receives the request (2305) and compares the
requested URL to a virtual host (vhost) configuration file
(2306) to determine where the files for the web-based appli-
cation are located on the client computer system (2307) (e.g.,
the local application web root). The web-based application
and tools required to complete the request are loaded (2308).
In some embodiments, the tools include the AOP framework,
database, etc (2311). The web server then returns a web page
with the results of the request (2309).

AOQOP Synchronization

[0328] FIG. 24 presents a block diagram 2400 of an exem-
plary process for synchronizing a web-based application
2403 on a client computer system 2401 with a web-based
application 2406 on an application server 2402, according to
embodiments of the present invention. As illustrated in FIG.
24, client computer system 2401 includes web-based appli-
cation 2403, database 2404, and changes log 2405. Applica-
tion server 2402 includes web-based application 2406, data-
base 2407, and conflicts log 2408. Web-based application

Feb. 5, 2009

2403 corresponds to web-based application 2406. Similarly,
database 2404 corresponds to database 2407.

[0329] FIG. 25 illustrates an exemplary process 2500 for
synchronizing a web-based application on a client computer
system with a web-based application on an application server,
according to embodiments of the present invention. FIG. 25
corresponds to the block diagram in FIG. 24. A synchroniza-
tion process (or a synchronizer module) on the client com-
puter system detects changes in a database 2404 for the client
computer system 2401 (2501). In some embodiments, the
synchronization process periodically polls database 2404 to
determine whether changes have been made (2508). In other
embodiments, the synchronization process listens for notifi-
cation messages which are sent when database 2404 has been
changed (2508).

[0330] The synchronization process then collects all the
changes from database 2404 into a changes log 2405 (2502).
The changes are sent to application server 2402 (2503). A
synchronization process (or synchronization module) on the
application server applies the changes received from the cli-
ent computer system 2401 to database 2407 (2504). In some
embodiments, the connection between client computer sys-
tem 2401 and application server 2402 is kept alive until the
synchronization process is completed.

[0331] Ifconflicts exist between the changes made on client
computer system 2401 and application server 2402, the data
on the server “wins” (2505). The conflicting data is resolved
at application server 2402 and conflict resolution data is col-
lected in a conflict resolution log 2408.

[0332] The synchronization process on application server
2402 then sends the conflict resolution log 2408 to client
computer system 2401 (2506). The conflict resolution log is
applied to database 2407 on client computer system 2401
(2507). Both client computer system 2401 and application
server 2402 are synchronized at this point.

[0333] FIG. 26 presents a block diagram 2600 of an exem-
plary process for synchronizing a web-based application on a
client computer system 2601 with a web-based application on
an application server 2602, according to embodiments of the
present invention. FIG. 26 includes client 2601 and server
2602. Client 2601 includes client in process 2606, client
applications database 2607, client logs 2608, and client out
process 2609. Application server 2602 includes server appli-
cations database 2603, server logs 2604, server out process
2605, and server in process 2610.

[0334] FIGS. 27A-27F illustrate an exemplary process
2700 for synchronizing a web-based application on a client
computer system 2601 with a web-based application on an
application server 2602, according to embodiments of the
present invention. FIG. 27 corresponds to the block diagram
in FIG. 26. A user makes changes to the web-based applica-
tion on application server 2602 (2701). For example, the user
can make changes to a database for a web-based application
by adding new records or modifying existing records in the
database.

[0335] Database triggers watch for changes in database
2603 and note these changes in an internal log (2702). In
some embodiments, if a rule type is “auto-increment,” then a
flag is added to the log (2730). A synchronization process on
application server 2602 then pulls data from the internal log
and sends the data to an account log (2703). The data in the
account log is then sent to an outbound log (2704). The
outbound log is used to speed up the synchronization process
because the outbound log can become large and slow to

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 197

US 2009/0037337 Al

process. The synchronization process then waits for a user to
initialize a synchronization operation with the application
server (2705).

[0336] Onceasynchronization operation is started, the data
is sent to server out process 2605 for outbound processing
(2706). In some embodiments, a transaction id called “sync
block ID” is added to the data. The server out process per-
forms several operations (2707), which can include, but are
not limited to: applying filters, mapping data to users, sending
user data to user tables, running group management rule
checks, identifying administrative group memberships rela-
tionships for users, and/or mapping additional data to admin
users based on a group admin of user A. The data is then
sorted by users (2708). In some embodiments, the data is
separated into separate “user out” tables, wherein each user
has a “user out” table. In doing so, the speed of the synchro-
nization can be optimized.

[0337] Client computer system 2601 receives the data and
sends the data to client in process 2606 for processing (2709).
Client in process 2606 performs a number of operations
(2710), including, but not limited to, filtering Auto Increment
Rules (flag), checking auto increment (Al) flagged column
for conflict, marking data as “insert” if there are no conflicts,
marking data in the sync log as “leave” (which are processed
in the next session) if there are conflicts (see 2724), setting an
auto-increment counter to max+1, filtering data into inserts,
updates and deletes, and/or sorting priorities (e.g., inserts
before updates).

[0338] The synchronization process then inserts data that is
marked as “insert” into client applications database 2607 for
the web-based application (2711). The synchronization pro-
cess then sends data that is marked as “update” or “delete” to
async account log (2712). The updates and deletes in the sync
account log are then processed by client applications database
2607 (2713). In some embodiments, when the synchroniza-
tion process inserts data, the synchronization process disables
triggers within a synchronization session to prevent doubling
back into an infinite loop (2713a). The web-based application
on client computer system 2601 is now synchronized with the
web-based application on application server 2602 (2714).
[0339] A user using web-based application on client com-
puter system 2601 changes data in client applications data-
base 2607 for the web-based application (2715). Database
triggers watch for changes in client applications database
2607 and notes these changes in an internal log (2716). A
synchronization process on client computer system 2601 then
pulls data from the internal log and sends the data to an
account log (2717). The data in the account log is then sent to
an outbound log (2718). The outbound log is used to speed up
the synchronization process because the outbound log can
become large and slow to process. The synchronization pro-
cess then waits for a user to initialize a synchronization opera-
tion with the application server (2719).

[0340] Onceasynchronization operation is started, the data
is sent to client out process 2609 for outbound processing
(2720). In some embodiments, a transaction id called “sync
block ID” is added to the data. Client out process 2609 per-
forms several operations (2721), including, but not limited to,
mapping data to sync account (user info is tied to sync acct)
and/or pushing data to the sync account out log. Sync account
out log is broadcast to application server 2601 (2722).
[0341] In some embodiments, every user has a table asso-
ciated with the user (e.g., “in-table”), which is used for
inbound processing. User in-tables (e.g., user A in-table, user

Feb. 5, 2009

B in-table) are pushed to server in process 2610 (2723).
Server in process 2610 performs a number of operations
(2724), including, but not limited to, comparing data—user
out and user in—duplicate transactions, based on _eas_syn-
cmap_id (added by trigger) and “sync_block _id” added by
sync session, server wins—so server deletes conflicts, filter-
ing inserts from updates and deletes, filtering auto increment
flags, inserting records with no conflict, and/or inserting
records with conflicts at the next unused record. Several
examples of conflicting records include: _eas_sync_map_
id=_eas_sync_map_id, Contact10=contact10, and
Email=john@etelos vs. email=john.smith@etelos.com.
[0342] Data records that are marked as “insert” are inserted
(2725). Data records that are marked as “update” or “delete”
are sent to a sync account log (2726). The updates and deletes
in the sync account log are then processed by server applica-
tions database 2603 (2727). In some embodiments, when the
synchronization process inserts data, the synchronization
process disables triggers this synchronization session to pre-
vent doubling back into an infinite loop (2732). The web-
based application on application server 2602 is now synchro-
nized with the web-based application on client computer
system 2601 (2728).

[0343] Ifthe automatic incrementing rules detect a conflict
between application server 2602 and client computer system
2601, another pass is taken through the process to update
conflicted records (2729). During this process, records that
were previously left out because of conflicts are synchro-
nized.

[0344] In some embodiments, the synchronization process
can be used to synchronize between different types of data-
base management systems (DMBSs). In some embodiments,
the synchronization process can be used to synchronize
between the same type of DBMSs. In some embodiments, the
changes are synchronized directly with a DBMS associated
with the web-based application. In all of these embodiments,
database drivers are used to perform the synchronization
between the DBMSs. The database drivers can handle the
translations of data between different types of DBMSs as well
as determining what changes occurred since the last synchro-
nization process.

[0345] In some embodiments, the synchronization process
synchronizes directly with the file structures associated with
the web-based applications. In these embodiments, a file syn-
chronization utility such as SVN or rsync can be used to
synchronize the file structures.

Auto Increment Conflict Resolution

[0346] Some web-based applications use automatically
incrementing identifiers in a database when a new record is
added to the database. In these web-based applications, con-
flicts can arise if multiple instances of the web-based appli-
cation (e.g., on the application server, on multiple client com-
puter systems, etc.) are all inserting new data records into a
database for that instance of the web-based application. Thus,
some embodiments provide a technique to resolve conflicts
for web-based application that use auto-increment identifiers.
[0347] FIG. 28 presents a block diagram 2800 of an exem-
plary process for resolving conflicts for web-based applica-
tions that use auto-incrementing identifiers, according to
embodiments of the present invention. FIG. 28 illustrates the
state of data on an application server and a client computer
system at several points in time (e.g., before synchronization,

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 198

US 2009/0037337 Al

after a first pass of synchronization, after a second pass of
synchronization, and after synchronization is complete).
[0348] FIG. 29 illustrates an exemplary process 2900 for
resolving conflicts for web-based applications that use auto-
incrementing identifiers, according to embodiments of the
present invention. FIG. 29 corresponds to the block diagram
in FIG. 28. As illustrated in FIG. 29, both the application
server and the client computer system have added new
records into their respective databases for the web-based
application. The application server and the client computer
system also have records that are already synchronized. Note
that in FIG. 29, the identifiers increase from left to right. Thus,
the new records on the application server and the client com-
puter system include a number of records that use the same
identifiers, resulting in conflicts.

[0349] At the start of a synchronization operation, the data
that is already synchronized on both the application server
and the client computer system (e.g., the AOP instance) is
identified (2901). The application server then determines that
new records have been added to the application server since
the last synchronization with the client computer system
(2902). The client computer system determines that new
records have been added to the client computer system since
the last synchronization with the application server (2903).
[0350] The conflict resolution process begins when the
application server sends its new records to the client computer
system (2904). Since there is a conflict between the identifiers
used in the application server and the client computer system,
the conflict resolution process waits for a second pass before
inserting the new records received from the application
server. On the second pass, the new records from the appli-
cation server are treated as an update.

[0351] The client computer system sends its new records to
the application server (2905). The application server assigns
new identifiers for these records and inserts these records into
the database for the web-based application (2906). The appli-
cation server can assign the new identifiers for these records
by using the automatically incrementing identifiers in the
database. The application server then generates an update log
that includes the changes for these records (2907). The appli-
cation server sends the update log to the client computer
system which then processes updates from that result from
these records and from the new records received from the
application server at step 2804 (2908). The records in both
databases are now synchronized (2909).

Users and Groups

[0352] FIG. 9 presents a block diagram illustrating exem-
plary group memberships for users for a given web-based
application, according to embodiments of the present inven-
tion. As illustrated in FIG. 9, user A is a member of group A.
This membership can be managed through a memberships
table. User B is amember of a group of administrators that are
administrators of group A. This administrator membership
can be managed through an admin table. In some embodi-
ments, changes to user A’s information are also added to auser
out log table for user B. Thus, user B can see changes that user
A has made. For example, a sales manager can view contacts
for sales representatives that report to the sales manager.

[0353] Insomeembodiments, a group sync app group filter
is used to indicate whether the web-based application sup-
ports group memberships. These rules can be setup in the
account database for the web-based application. The filter can
include information such as a data table (e.g., a contacts

Feb. 5, 2009

table), a membership table (e.g., the membership table), and
a group table (e.g., groups). This can be a one time setup that
a developer of a web-based application does to configure the
web-based application to synchronize with the AOP frame-
work. In some embodiments, the filter is setup when the
developer ports the application to the AOP framework envi-
ronment.

[0354] In some embodiments, the group filter sets flags in
database triggers to send memberships data with a log entry
so that the AOP framework knows what to use to filter in the
server out process. In other words, the group filter is used to
indicate which table includes user information, whether there
is a membership table for linking users to groups, and the
table that keeps track of groups.

Rules Setup

[0355] FIG. 36 presents a block diagram 3600 illustrating
an exemplary user interface 3600 for creating synchroniza-
tion rules, according to embodiments of the present invention.
User interface 3600 includes one or more of: new synchroni-
zation rule interface 3602, auto increment function 3622,
and/or create new sync rule function 3624. New synchroni-
zation rule interface 3602 includes one or more of: applica-
tion interface 3604, mass create interface 3608, save function
3626, and/or close function 3628.

[0356] Application interface 3604 includes one or more of
database function 3610, table function 3612, column function
3618, and/or primary key function 3620. Database function
3610 allows a user to select available databases. Table func-
tion 3612 allows a user to select tables within the available
databases. Column function 3618 allows a user to select col-
umns within the tables. Primary key function 3620 allows a
user to select primary keys for the tables. Using these func-
tions, a user can specify synchronization rules on one or more
of'the database level, the table level, the column level, and the
primary key level.

[0357] Mass create interface 3608 includes a mass create
function which allows a user to automatically create sync
rules for the AOP framework at every match for a specified
level. For example, a user can use the mass create function to
create sync rules for all database tables.

[0358] Auto increment function 3622 allows a user to
specify which columns on a given table use automatically
incrementing identifiers. Create new sync rule 3624 creates
the new synchronization rule specified by the user in user
interface 3600. Save function 3626 saves the new rule
whereas close function 3628 closes user interface 3600.
[0359] FIG. 37 presents a block diagram 3700 illustrating
an exemplary user interface 3700 for generating auto-incre-
menting identifiers, according to embodiments of the present
invention. User interface 3700 includes auto increment defi-
nition interface 3702, which includes one or more of appli-
cation interface 3704, relationships interface 3706, and/or
close function 3724. Application interface 3704 includes one
or more of application 1 3708, application 2 3710, and/or
primary key 3712. Primary key 3712 includes one or more of
a table selection function, a column selection function, save
function 3720, and/or cancel function 3722. Relationships
interface 3706 includes one or more of create primary key
reference function 3714, contact ID function 3716, groups
description function 3718, and an edit function.

[0360] FIG. 38 presents a block diagram 3800 illustrating
an exemplary process for creating synchronization rules,
according to embodiments of the present invention. FIG. 38

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 199

US 2009/0037337 Al

includes one or more of account admin interface 3802, select
application and database 3804, select table 3806, select col-
umn 3808, auto increment flag 3810, rule create 3812, appli-
cation 3814, and/or account 3822. Application 3814 include
one or more of database 3816, trigger 3818, and/or sync map
1D 3820. Account 3822 includes one or more of database
3824, vmap sync rule 3826, and Al flag 3828.

[0361] FIG. 39 presents a flowchart of an exemplary pro-
cess 3900 for creating synchronization rules, according to
embodiments of the present invention. FIG. 39 corresponds to
the block diagram in FIG. 38. From the account admin inter-
face (3902), a user can perform the following operations:
selecting an application (which inherently selects the associ-
ated databases) (3904), selecting a table (3906), selecting a
column (which can involve selecting a primary key in a table
row for proper synchronization at this specific level) (3908),
and/or optionally setting an auto increment flag (e.g., if rel-
evant to the database configuration) (3910). After the user
performs one or more of the previous options, the user can
select a create rules function (3912), which calls functions to
perform one or more of steps 3914-3922. Alternatively, the
user can refine the rules by using the account admin interface
to specify more rules.

[0362] After selecting the create rules function, a rules gen-
erator creates a sync vmap rule in the account database
(3914). The rules generator sets an auto increment flag if
appropriate for rule type (e.g., if the database table uses an
auto incrementing primary key column) (3916). The rules
generator adds a column for a sync_map_id, which tracks
sync transactions and ensures data integrity (3918). The rules
generator creates a trigger in the database (3920). The syn-
chronization rules are now setup at step 3922. Note that a user
can also select a “mass create” at one or more levels (e.g., all
tables, specific tables, specific columns, etc.) in the process
from now on that can automatically create sync rules for the
AOP framework at every match at that level.

Foreign Key Mapping

[0363] Foreign key mappings specify the relationships
between a parent table and a child table. These mappings are
used during the synchronization and conflict resolution pro-
cesses. FIG. 40 presents a block diagram 4000 of an exem-
plary foreign key mapping, according to embodiments of the
present invention. The foreign key mapping includes parent
4002 and child 4020. Parent 4002 includes one or more of
identifier 4004, application database identifier (e.g., App_
DB_ID) 4006, application table 4008, application column
4010, and auto increment flag 4012. Child 4020 includes one
or more of identifier 4022, parent identifier 4024, application
database identifier (e.g., App_DB_ID) 4026, application
table 4028, application column 4030, and auto increment flag
4032. Parent identifier 4024 for child 4020 corresponds to
identifier 4004 for parent 4002.

[0364] FIG. 41 presents a flowchart of an exemplary pro-
cess 4100 for creating a foreign key mapping, according to
embodiments of the present invention. In an account, rules for
auto increment and relationships with foreign keys are cre-
ated (4102). A parent is created (e.g., table Contact, ID,
Name, etc.) (4104). A child is created (e.g., Groups ID, Con-
tact.ID, Description, etc.) (4106). The parent-child relation-
ship is updated (auto-inc=true) (4108). Auto increment any

Feb. 5, 2009

conflicts that may arise and updated parent-child table rela-
tionships in the data structure (4110).

Summary of AOP

[0365] FIG. 30 presents a flowchart of an exemplary pro-
cess 3000 for providing access to a web-based application
while offline, according to embodiments of the present inven-
tion. The process begins by providing on a computer system
a local software stack configured to provide local web ser-
vices for dynamic, web-based applications that are executed
on the computer system when it is offline (3002). When the
computer system is offline, the computer system executes a
first dynamic, web-based application using the web services
provided by the local software stack, such that functionality
of the first dynamic, web-based application when the com-
puter system is offline is substantially similar to functionality
of the first dynamic, web-based application when the com-
puter system is online (3004). In some embodiments, the first
web-based application is a database-driven web-based appli-
cation (3006). In some embodiments, the architecture of the
first dynamic, web-based application is not modified to pro-
vide the functionality when the computer system is offline
(3008).

[0366] In some embodiments, in response to detecting a
network connection with an application server, the computer
system synchronizes with the application server changes in
information associated with the first dynamic, web-based
application due to its offline execution (3010).

[0367] In some embodiments, a user of the computer sys-
tem initiates execution of the first, dynamic web-based appli-
cation when the computer system is offline by directing a web
browser on the first computer system to a specified universal
resource locator (URL) that is associated with the computer
system instead of a remote application server (3012). The
specified URL can be associated with the computer system
through a modified hosts file on the first computer system
(3014). Moreover, the specified URL can be associated with
the computer system through a modified hosts file on the first
computer system (3016). Furthermore, the specified URL can
be associated with the first computer system through a
dynamic naming server (DNS) record on the first computer
system (3018).

[0368] In some embodiments, the local software stack
comprises: a web server responsive to browser-issued com-
mands, a database management system, and a dynamic script-
ing language (3020). In some embodiments, the web server is
Apache web server, the database management system is
mySQL, and the dynamic scripting language is at least one of
PHP, Python, Perl, or Ruby (3022). In some embodiments, the
first dynamic, web-based application communicates with the
local software stack using TCP/IP (3024).

[0369] FIG. 31 presents a flowchart of an exemplary pro-
cess 3100 for synchronizing a web-based application on a
client computer system with a web-based application on an
application server, according to embodiments of the present
invention. For a web-based application that is not designed to
beused while a first computer system on which the web-based
application executes does not have a network connection to an
application server (3102), changes are made to the web-based
application while the first computer system does not have a
network connection to the application server (3104). The
changes made to the web-based application while the first
computer system is disconnected from the application server
are tracked (3105). When the network connection between

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 200

US 2009/0037337 Al

the first computer system and the application server is rees-
tablished (3106), the changes are synchronized for the web-
based application made on the first computer system with the
web-based application on the application server (3107). The
changes are synchronized for the web-based application on
the application server with the web-based application on the
first computer system (3108).

[0370] In some embodiments, the date and time when the
changes to the web-based application were made are tracked
(3109). In some embodiments, the changes are synchronized
when a network connection between the first computer sys-
tem and the application server is reestablished (3110). In
some embodiments, the changes are synchronized between
different types of database management systems (DBMS)
(3112). In some embodiments, the changes are synchronized
between the same types of database management system
(DBMS) (3114). In some embodiments, the changes are syn-
chronized directly with a database management system
(DBMS) associated with the web-based application (3116).
In some embodiments, the changes are synchronized directly
with file structures associated with the web-based application
(3118). In some embodiments, for a newly-installed instance
of'the web-based application on the first computer system, the
method further comprises performing a complete synchroni-
zation of all records in the web-based application on the
application server with the web-based application on the first
computer system (3120). In some embodiments, the changes
include one or more of: changes to data in the web-based
application; changes to data structures in the web-based
application; and/or changes to files for the web-based appli-
cation (3122).

[0371] FIG. 32 presents a flowchart of an exemplary pro-
cess 3200 for providing synchronizing a web-based applica-
tion on a client computer system with a web-based applica-
tion on an application server, according to embodiments of
the present invention. For a web-based application that is
being used on a first computer system while the first computer
system is disconnected from an application server, in
response to detecting a network connection to the application
server (3202), changes made for the web-based application
on the first computer system are synchronized with the web-
based application on the application server (3204). The
changes made for the web-based application on the applica-
tion server are also synchronized with the web-based appli-
cation on the first computer system (3206).

[0372] In some embodiments, for a newly-installed
instance of the web-based application on the first computer
system, a synchronization of records is performed in the
web-based application on the application server with the
web-based application on the first computer system (3208).
[0373] In some embodiments, the changes include one or
more of: changes to data in the web-based application;
changes to data structures in the web-based application; and/
or changes to files for the web-based application (3210).
[0374] FIG. 33 presents a flowchart of an exemplary pro-
cess 3300 for resolving conflicts between a web-based appli-
cation on a client computer system and a web-based applica-
tion on an application server, according to embodiments of
the present invention. On a first computer system that is
disconnected from an application server, a web-based appli-
cation that is configured to interact over a network connection
with the application server to provide specified functionality
isused (3302). When the network connection is reestablished,
changes made to the web-based application while the first

Feb. 5, 2009

computer system was disconnected from the application
server are synchronized (3304). If a conflict between the first
computer system and the application server exists, the con-
flicts are resolved so that both the first computer system and
the application server are synchronized with each other
(3306).

[0375] In some embodiments, a conflict exists if the first
computer system includes a first set of records that are not
included on the application server, and wherein resolving the
conflict so that both the first computer system and the appli-
cation server are synchronized with each other involves:
sending the first set of records to the application server;
receiving new identifiers for the first set of records, wherein
the new identifiers are assigned by the application server
when the first set of records are added to the application
server; and updating all references to the old identifiers for the
first set of records with the new identifiers for the first set of
records (3308).

[0376] Insome embodiments, a conflict exists if the appli-
cation server includes a second set of records that are not
included on the first computer system, and wherein resolving
the conflict so that both the first computer system and the
application server are synchronized with each other involves:
receiving the second set of records from the application
server; determining whether identifiers for the second set of
records are already being used by the first computer system;
and/or if the identifiers for the second set of records are not
being used by the first computer system, inserting the second
set of records (3310).

[0377] Insome embodiments, if the identifiers for the sec-
ond set of records are already being used by the first computer
system, the following operations are performed: determining
a third set of records that include identifiers that conflict with
the identifiers for the second set of records; sending the third
set of records to the application server; receiving new identi-
fiers for the third set of records, wherein the new identifiers
are assigned by the application server when the third set of
records are added to the application server; updating all ref-
erences to the old identifiers for the third set of records with
the new identifiers for the third set of records; and inserting
the second set of records (3312).

[0378] Insomeembodiments, if a conflict between the first
computer system and the application server does not exist,
records are updated on the first computer system so that the
first computer system is synchronized with the application
server (3314).

[0379] FIG. 34 presents a flowchart of an exemplary pro-
cess 3400 for resolving conflicts between a web-based appli-
cation on a client computer system and a web-based applica-
tion on an application server that use automatically
incrementing identifiers for database records, according to
embodiments of the present invention. A first set of records
are created with a corresponding first set of identifiers in a first
database (3402). The first database is synchronized with a
second database (3404). If the corresponding first set of iden-
tifiers already exists in the second database, a new set of
identifiers is received for the first set of records from the
second database, wherein the new set of identifiers is assigned
to the first set of records when the first set of records is added
to the second database, and all references to the correspond-
ing first set of identifiers is updated for the first set of records
with the new set of identifiers for the first set of records
(3406).

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 201

US 2009/0037337 Al

[0380] Insome embodiments, if the corresponding first set
ofidentifiers does not exist in the second database, the first set
of records is inserted into the second database using the
corresponding first set of identifiers (3408).

[0381] In some embodiments, if the second database
includes a second set of records that does not exist in the first
database, the following operations are performed: receiving
the second set of records from the second database; sending
the first set of records to the second database; receiving new
identifiers for the first set of records, wherein the new identi-
fiers are assigned by the second database when the first set of
records are added to the second database; updating all refer-
ences to the old identifiers for the first set of records with the
new identifiers for the first set of records; and inserting the
second set of records (3410).

[0382] In some embodiments, the first database and the
second database are used for a web-based application that
requires a network connection with an application server to
provide specified functionality (3412). In some embodi-
ments, the web-based application was not designed to be used
without a network connection to the application server
(3414). In some embodiments, the first database is on a client
computer system (3416). In some embodiments, the second
database is on an application server (3418).

[0383] FIG. 35 presents a flowchart of an exemplary pro-
cess 3500 for providing access to a web-based application
while offline, according to embodiments of the present inven-
tion. A dynamic, web-based application configured to interact
over a network connection with an application server to pro-
vide desired functionality is used (3502). The network con-
nection is disconnected from the application server (3504).
The web-based application continues to be used while still
providing the desired functionality (3506).

[0384] In some embodiments, the dynamic, web-based
application is a database-driven web-based application. In
some embodiments, the architecture of the dynamic, web-
based application is not modified to provide functionality
when the computer system is offline. In some embodiments,
in response to detecting a network connection with an appli-
cation server, changes in information associated with the
dynamic, web-based application due to its offline execution
are synchronized with the application server. In some
embodiments, a user of the computer system initiates execu-
tion of the dynamic, web-based application when the com-
puter system is offline by directing a browser on the first
computer system to a specified universal resource locator
(URL) that is associated with the computer system instead of
a remote application server.

[0385] Marketplace and Licensing

[0386] FIG. 44 is a high-level block diagram 4400 of a
software marketplace, illustrating deployment of applica-
tions to a user account. A marketplace server 4410 makes
available for distribution a plurality of software applications
4412, 4414, 4416. A licensing engine 4420 associates licens-
ing terms with the software applications. In some embodi-
ments, the licensing engine 4420 is part of the marketplace
4410. In some embodiments, the marketplace server is
executed by a marketplace module 6122 (FIG. 61).

[0387] One or more software applications (e.g., application
4412 and application 4414) are deployed to an account 4432
hosted at a hosting infrastructure server 4430. An account is a
data structure associated with a user, maintained on a server
(e.g., the hosting infrastructure server 4430), where the
account data structure includes information regarding which

Feb. 5, 2009

software applications are licensed to the user. In some
embodiments the account may include license files, keys, etc.
associated with one or more software applications. In some
embodiments, applications licensed by a user are config-
urable to cross-synchronize, i.e. to synchronize data between
the applications associated with the user. In some embodi-
ments, the user associated with a user account could be an
individual or an organization.

[0388] In some embodiments, the hosting infrastructure
server is executed by a hosting module 6154 (FIG. 61). In
some embodiments, the deployment is across a network
4402, e.g., where the hosting infrastructure server is located
separately from the marketplace server 4410. Deployment
means the software application is associated with the user
account, such that the user associated with the user account is
permitted to access the software application. In some embodi-
ments, one or more files relating to the software application
are provided to the user account as part of the deployment.
[0389] In some embodiments, the hosting infrastructure
server 4430 and the marketplace server 4410 are logical serv-
ers on one physical system, for example application sever
6100 (FIG. 61). The deployment is performed in accordance
with the licensing terms, provided by licensing engine 4420,
in some embodiments executed by licensing module 6126
(FIG. 61). In some embodiments, the licensing engine con-
trols the deployment of and access to software applications,
and enforces license terms provided by the software vendor.
In some embodiments, the licensing module provides the
software code or executables to operate the licensing engine.
The hosting infrastructure server 4430 includes an account
management system (EMS) 4438 for managing the accounts
4432, executed by user accounts module 6156 (FIG. 61). A
user account allows a user (person licensed to use software
applications provided by the marketplace) to authenticate to
system services. The user account also provides a user with
the opportunity to be authorized to access deployed software
applications. Users may need to identify themselves for the
purposes of accounting, security, logging and resource man-
agement. In some embodiments, a user identifies him or her-
self using an account identifier and a username, and in some
embodiments the user also has a password.

[0390] A software stack 4440 and operating system 4442
provide the software architecture to support the account
framework and application execution. In some embodiments,
the network 4402 is the Internet or an intranet or local con-
nection between the marketplace 4410 and server 4340.

[0391] One or more client systems 4450, 4452, 4454 access
the hosting infrastructure server 4430 to execute the applica-
tions. In some embodiments, the client systems correspond to
application client 6200. In some embodiments, one or more
of applications 4434, 4436 are executed at the server 4430,
and results are displayed to the client through a client appli-
cation or browser, executed by client/browser display module
6215. In some embodiments, applications are run in a local
mode (e.g., AOP mode as described earlier) where a client
hosts and executes applications 4462 and 4464 associated
with an account 4460, corresponding to applications 4434
and 4436 hosted at hosting infrastructure server 4430. An
account management system (EMS) 4470 manages the
accounts at the client, in some embodiments executed by user
account access module 6272. A client-side software stack
4472 and operating system 4474 provide the software archi-
tecture to support the account framework and application
execution on the client.

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 202

US 2009/0037337 Al

[0392] FIG. 45 illustrates a block diagram 4500 of a soft-
ware marketplace illustrating management of licenses in a
multi-tenancy environment. A multi-tenancy environment is
one which allows multiple customers or users to access a
shared data model. In some embodiments, the software mar-
ketplace includes a licensing engine 4510, executed by
licensing module 6126, to control licensing for hosted infra-
structure servers (e.g., 4520, 4530). A hosted infrastructure
server is one that hosts user accounts, and in some embodi-
ments software applications associated with those user
accounts. In some embodiments, the hosted infrastructure
server may exist as a logical server on the same physical
hardware as the marketplace server. In some embodiments,
the hosted infrastructure server may be physically separate
from the marketplace server. A multi-tenant license manage-
ment engine 4512 generates and manages licenses (e.g.,
4514, 4516) for deployment and execution of software appli-
cations on hosted infrastructure servers. The licenses are gen-
erated in response to a selection by a software vendor from
options provided by the marketplace application. The license
terms are associated with a software application. Software
applications are deployed to the hosting infrastructure servers
in accordance with the licenses (4514, 4516).

[0393] Insome embodiments, hosted infrastructure servers
4520, 4530 are distributed tenants in a multi-tenant licensing
system. In a distributed tenant architecture, each user runs its
applications in a distributed-computing environment. In
some embodiments, the hosted infrastructure servers 4520,
4530 are logical servers on one or more physical servers. The
hosted servers include an account (4522, 4532) into which
applications are installed, and account management system
(EMS) (4524, 4534) for managing the accounts, and data-
bases (4526, 4536) for supporting the hosted infrastructure.
[0394] In some embodiments, the databases 4536 can
include relational database management systems such as
PostgreSQL, MySQL, and optionally Oracle, Microsoft
SQL, or any other Open Database Connectivity (ODBC)
interfacing database may be used.

[0395] FIG. 46 illustrates a server system 4600 for a web
application marketplace and hosting infrastructure. One or
more servers 4602 hosts the marketplace application. The one
or more servers include one or more processors 4604. The
processors include memory 4610 storing instructions for
implementing the marketplace application. In some embodi-
ments, the circled numbers of FIG. 46 correspond to steps
shown in the flow diagram of FIG. 47.

[0396] A marketplace application 4612 (executed in some
embodiments by marketplace module 6122, FIG. 61) receives
from a vendor a software application for distribution. The
vendor can include a developer, coder, broker, or licensee
with right to resell software. In some embodiments, the mar-
ketplace receives the application via an Internet (including in
some embodiments a world wide web) connection 4618.
License terms 4622 are associated with the software applica-
tion by a licensing module 6126 (FIG. 61). The associating
may include storing a license selection in a license manager,
with a link/pointer to the account storing the respective soft-
ware application. The software application is made available
for distribution through the marketplace application,
executed in some embodiments by the distribution module
6120 (FIG. 61). Making the software application available for
distribution can include displaying (via a listing manager) a
summary of the software application, price, license terms,
and a platform(s) or framework (s) on which the software

Feb. 5, 2009

application operates, in a catalog of software applications
hosted by the marketplace application. The distribution may
be initiated through the marketplace app, but the distribution
and deployment process do not have to take place through the
marketplace application.

[0397] Throughout this application, displaying means that
the server sends data for display to a client associated with the
user. Prior to display, the data for display may be formatted by
the server prior to sending to the client associated with the
user, or may be formatted by the client after receiving the
data, or may include a combination of these operations.
[0398] In some embodiments, the marketplace application
presents a description of the license terms to a user, via the
user’s web application or client 4616. This presenting may be
performed by the listing module 6122 (FIG. 61). The descrip-
tion can be a full or brief description (e.g., open source,
proprietary, source code, object file, repackaging, etc.) or an
icon indicating a license type associated with the software
application.

[0399] In response to a user selection of one or more soft-
ware applications from the marketplace 4612, the software
application is deployed by deployer 4624 to one or more user
accounts on one or more hosting servers 4630. In some
embodiments, a deployment confirmation is sent back to the
marketplace 4612. The hosting servers 4630 may be provided
by the marketplace operator, or may be provided by the user.
The hosting servers 4630 may be physical servers, or virtual
servers. The deployment is performed in accordance with the
license terms, executed by application deployment module
6150 (FIG. 61). In some embodiments, the deploying is asso-
ciated with a billing operation 4620. In some embodiments,
the one or more user accounts are accounts associated with
the user who made the request to deploy the software appli-
cation. Deploying includes at least one of the following:
downloading the software application to the one or more user
accounts, and/or enabling a flag associated with the software
application in the one or more user accounts, enabling a
license for the software application to the one or more user
accounts, where the application itself stays stored at the mar-
ketplace server.

[0400] Insomeembodiments, a software vendor provides a
license key to the marketplace application, whereby the mar-
ketplace application or a related application deploys/provi-
sions the license key to a user account, and makes an API call
to the software vendor at or after the time that the software
application is licensed by the user. An application program-
ming interface (API) is a set of declarations of the functions
(or procedures) that an operating system, library or service
provides to support requests made by computer programs. In
some embodiments, the purpose of the API call is to inform
the software vendor that a particular user or account has
licensed the software application, which version is licensed,
etc. In some embodiments, this information is beneficial to
the software vendor when responding to technical support
requests from the user.

[0401] In some embodiments, a software vendor may pro-
vide a license key associated with the software application to
the marketplace application, and the license key is deployed
to an account associated with a licensee. In some embodi-
ments, the deployed license key enables the account to access
or execute the software application. In some embodiments,
the purpose of the license key is to enforce licensing terms.
[0402] In some embodiments, a software vendor may pro-
vide a license key update to the marketplace application, and

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 203

US 2009/0037337 Al

the license key update is deployed to an account associated
with a licensee, where the license key update modifies an
already installed license key. In some embodiments, this
modification includes extending or shortening a period of
time during which the account may access the software appli-
cation. In some embodiments, this modification includes add-
ing or removing features that the account may access in the
software application. When the application is deployed to an
account associated with a user, in some embodiments confir-
mation is provided to the user, and then the user can access
and run the application deployed at hosting infrastructure
4630.

[0403] In some embodiments, the hosting infrastructure
servers are physically separate from the marketplace servers
hosting the marketplace application. In some embodiments,
the deploying of a software application is performed in
response to a user request to deploy the software application.
In some embodiments, the marketplace application deter-
mines a user account type, and based on the user account type,
prepares to deploy (via the deployer) a software applicationto
the user account.

[0404] Insomeembodiments, distribution to a user through
the marketplace application 4612 is performed through a
website (e.g., 4618) associated with the marketplace applica-
tion. In some embodiments, distribution to a user through the
marketplace application includes distribution through a client
associated with the marketplace application 4612, where the
client accesses the marketplace through a secure connection.
[0405] In some embodiments, the software application is
packaged, executed in some embodiments by packager mod-
ule 6136, FIG. 61, for distribution via the marketplace appli-
cation 4612 hosted by the one or more servers 4602. The
packaging can include one or more of parsing code for the
software application, performing quality control for the soft-
ware application, testing the software, packaging the soft-
ware application for distribution, and packaging an update to
the software application or packaging an update to the licens-
ing of an application. In some embodiments, the packaged
software application is stored in an application repository
4614.

[0406] In some embodiments, software applications are
presented, described and made available at the marketplace
application by a listing manager, executed by listing module
6124, FIG. 61. The listing manager performs one or more of
storing listings (sale details for software applications), stor-
ing technical articles and information, and storing support
resources (help, customer support, etc.). The listing manager
may also provide one or more of a search function, a list of
most popular software applications, a package deal for licens-
ing a suite of software applications, a customer review, and
other related functions. In some embodiments, the listing
manager includes a store listing for licensing the software
application. In some embodiments, the marketplace applica-
tion stores, or stores links to, technical support for the soft-
ware application. This technical support includes application
notes, instructional articles, datasheets, frequently asked
questions (FAQs), etc.

[0407] FIG. 47 illustrates a flowchart 4700 of operations for
selecting and deploying a software application in a user
account. A user navigates (1) the web (or accesses via a
client), and visits the application marketplace (4702). The
user selects an application from the marketplace (2), and
checks out (4704). The application is provisioned (3) (or
deployed) on demand to the hosting infrastructure (4706). In

Feb. 5, 2009

some embodiments, the hosting infrastructure installs the
application and sends confirmation (4) back to the market-
place (4708). In some embodiments, a link is sent (5) from the
marketplace to the user’s application (4710). The user
accesses the application (6) and the application validates the
license with the licensing server (hosted at the hosting infra-
structure) via their client or browser (4712).

[0408] FIG. 48 illustrates a system 4800 including a mar-
ketplace server 4802 and a hosting infrastructure 4810. The
hosting infrastructure includes one or more hosting servers
4820, 4830, 4840. The one or more hosting servers include
one or more deployed software applications 4822, 4824,
4826.

[0409] A user accesses a marketplace 4806 via a web con-
nection or client 4804. The user selects and checks out a
software application, as described. The software application
is hosted at the one or more hosting servers, e.g., deployed
software application 4822, at server 4820. The user accesses
the deployed software through a client or web connection
4808, as described. Each server may host one or more soft-
ware applications associated with one or more user accounts.
The servers may be physical servers or logical servers oper-
ating in one or more groups on a physical server. User
accounts are managed by user accounts module 6156 (FIG.
61).

[0410] Insomeembodiments, deploying an application (in
some embodiments executed by or under the control of a
deployer module 6152, FIG. 61) includes downloading the
software application to the one or more user accounts. User
account access is managed by user account access module
6172 (FIG. 61). In some embodiments, deploying an appli-
cation includes activating a flag associated with the software
application in the one or more user accounts that indicates
when the application is available to a user associated with the
account. In some embodiments, the flag enables the software
application for the user. In some embodiments, deploying an
application includes activating a license for the software
application in the one or more user accounts, which activation
renders the software application available to a user associated
with the corresponding account. In some embodiments,
deploying an application includes providing the software
application for hosting by a user on hosting servers associated
with the user, the hosting executed by user hosting module
6174 (FIG. 61).

[0411] FIG. 49 illustrates a server system 4900 for selecting
license options in a software distribution marketplace. This
figure shows operations at the server, under control of the
licensing manager, where a vendor may associate one or more
license terms with its software application. The server system
includes one or more servers 4902, hosting a marketplace
application. The server system is configured to receive from a
vendor 4910 a software application for distribution 4920. The
server system includes a licensing manager 4930 and is con-
figured to perform under control of the license manager 4930
anumber of operations 4920-4928 related to software vendor
selection of license terms associated with the software appli-
cation.

[0412] License manager 4930 is configured to generate
license terms in response to a selection by the vendor from
options provided by the marketplace application. The license
terms are associated 4922 with the software application. In
some embodiments, the license terms are stored in a licensing
manager.

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 204

US 2009/0037337 Al

[0413] The server is configured to make the software appli-
cation available for distribution (4926) through the market-
place application, in accordance with the license terms.
[0414] In some embodiments, the software application is
deployed 4928 to one or more user accounts on one or more
hosting servers, in accordance with the license terms. Deploy-
ing an application in accordance with the license terms means
that conditions specified by the software vendor in the license
terms (e.g., source code is to be hidden from the licensee) are
enforced when deploying and when granting access to the
software application. In some embodiments, a deployer
enables or disables functions or options within the deployed
software application, where this enabling or disabling is
determined by the license terms provided by the software
vendor.

[0415] Insome embodiments, the deploying is in response
to a payment associated with the one or more user accounts.
[0416] Insomeembodiments, the license terms are selected
by a vendor 4910 of the software application. In some
embodiments, the license terms are selected from a grid 4912
or set of options provided by the marketplace application. In
some embodiments, the license terms include at least one of
one or more open source licenses 4932, closed licenses 4934,
object file licenses 4936, source code licenses 4938, and
repacking licenses 4940. An open source license 4932 may
provide typical license terms for open source software, e.g., a
GNU license or BSD license, where the application source
code is available under terms that allow for modification and
redistribution without having to pay the original author. A
closed license 4934 (also known as a proprietary license) is
one that does not allow access to source code. An object file
license 4936 is one that allows a user to execute the software
application, but not to access any source code or object files.
The source code license 4938 is on that allows a user to access
the source code of the licensed software application, includ-
ing making changes to the source code, but only allows dis-
tribution of binary code. In some embodiments, a repacking
license 4940 determines whether a user of the software appli-
cation is permitted to repackage and redistribute the software
application, in accordance with repacking terms 4952. In
some embodiments, the repacking license has an associated
royalty. In some embodiments, the royalty is one selected
from a wholesale royalty, a retail royalty, or a flat fee. In some
embodiments, the vendor may upload its own term sheet(s)
for its software applications, and this term sheet is provided
with the software application.

[0417] In some embodiments, the license terms may
address (limit or permit) redeployment of software to a user
within the same organization as the licensing user. This might
be the case where a system administrator licenses a software
application, customizes it for her organization, and then redis-
tributes the customized software to users within her organi-
zation. In some embodiments, the license terms may allow
redeployment to the whole marketplace. This might be the
case where a developer can license a first software applica-
tion, write more code to add value to it, and resell the
enhanced software application to the marketplace. In this
situation, a licensee could be required to remit a royalty to the
vendor of the first software application or to the marketplace
administrator, or to some combination thereof.

[0418] In some embodiments, the license manager 4930
determines user permissions for installation, activation, and
access to features of applications. In some embodiments, the
license options provided by the marketplace application

Feb. 5, 2009

include an option to use license terms 4914 supplied by the
vendor. These vendor-supplied terms 4914 may be consid-
ered as ‘hard’ terms (i.e., a fixed termsheet provided by the
software vendor, rather than terms generated by the market-
place application in response to selections of terms by the
user), since they are not generated by the license manager in
response to a selection from the standard license options.
[0419] In some embodiments, the license manager 4930
includes a transaction reporter 4950 (executed in some
embodiments by transactions report module 6132, FIG. 61) to
display licensing events for a respective software application
made available for distribution through the marketplace
application. In some embodiments, this transaction reporter
shows transactions going through the marketplace for a
respective software application, including installation status,
user check-in status, payment status etc. In some embodi-
ments, the transaction reporter displays the licensing events
to arespective vendor associated with the respective software
application.

[0420] In some embodiments, a price associated with the
software application is stored at a licensing manager sepa-
rately from the software application. In some embodiments,
the price is dynamically adjusted by the licensing manager in
response to a selection by the software vendor, or by the
marketplace administrator, or by usage metrics triggers
embedded in the software application itself. In some embodi-
ments, an adjustment to the price is provided to the market-
place, which updates pricing information to charge the
adjusted price for licensed software applications.

[0421] Insomeembodiments, at least one selected from the
group consisting of access duration, features, and price, is
dynamically adjusted by the licensing manager in response to
a selection by the software vendor, or by the marketplace
administrator. The access duration includes a trial period for
the software application, or other promotional offers. The
features includes access to features (including new or pre-
mium features) within the software application. The price is
the price associated with the licensed software application of
features thereof. Vendors can also choose, bandwidth
allowed, disk space, users, record table max limits and/or if
ads are displayed in the application, among other things.
[0422] FIG. 50 illustrates a server system 5000 for perform-
ing dynamic billing in a software distribution marketplace.
This figure shows operations at the server, under control of the
billing manager, where a vendor may associate one or more
prices with its software application. The server system
includes a billing manager 5030, and is configured to perform
under control of the billing manager 5030 a number of opera-
tions (including 5010-5016, indicated on FIG. 50 as circled
numbers 1 to 4) related to user selection of license terms
associated with the software application.

[0423] The server system includes one or more servers
5002, hosting a marketplace application 4806 (FIG. 48) and a
billing manager 5030. The server system is configured to
receive from a vendor a software application for distribution
5010, and store it in an application repository, executed by
application repository module 6134 (FIG. 61). The system is
configured to associate a licensing price (stored in the billing
manager 5030) with the software application 5012, where the
license price is controlled by billing manager 5030, executed
by billing module 6130 (FIG. 61). The licensing management
is executed by licensing module 6126 (FIG. 61). The vendor
of'the software application provides a price per license 5020,
which may be stored by the server at the billing manager

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 205

US 2009/0037337 Al

5030. This price per license may be changed dynamically (i.e.
changed ‘on the fly’) by the vendor 5020 or by an adminis-
trator 5022 of the software distribution marketplace. The
billing manager 5030 updates the prices associated with each
license type (if more than one) for a software application.

[0424] In some embodiments, a first price 5042 is associ-
ated with an open source license 5032, a second price 5044 is
associated with a closed license 5034, a third price 5046 is
associated with an object file 5036, a fourth price 5048 is
associated with a source code license 5038, and a fifth price
5050 is associated with a repacking license 5040. In some
embodiments, there are more or fewer prices associated with
one or more of the license types. In some embodiments, a
subscription or ‘flat fee’ price 5052 is supported by the billing
manager. In some embodiments, the server 5002 receives a
payment 5014 for licensing the software application. In some
embodiments, the billing manager supports payment process-
ing (for paid licenses). In some embodiments, the billing
manager supports registration (where no payment required
for a license) 5054.

[0425] During the licensing process, (e.g., before a user
pays to license a software application), license terms associ-
ated with the software application, or a link to those license
terms, are displayed 5018 to the user. In some embodiments,
the license terms are provided to the user before executing the
software application. In some embodiments, the license terms
are provided as click-wrap license terms. The server is con-
figured to deploy 5016 the licensed software application to an
account associated with the user.

[0426] FIG. 51 illustrates a server system 5100 for manag-
ing an application repository and deployer in a software dis-
tribution marketplace. This figure shows operations at the
server, under control of the application repository and/or
deployer, where software applications provided by a software
vendor may be deployed to a user account associated with a
user. Server 5102 is configured to receive a software applica-
tion from a software vendor for distribution 5110. An appli-
cation packager 5120 (executed in some embodiments by a
packager module 6136, FIG. 61) packages 5112 the software
application for distribution. An application deployer 5150
deploys the software application to a user account 5116. The
packaged application is stored 5114 in an application reposi-
tory. In some embodiments, the application deployer serves
as a gateway between the user account and the application
repository 5140.

[0427] In some embodiments, the server 5102 hosts the
deployed software application for one or more user accounts.
The hosting includes executing the deployed software on
behalf of the associated users. In some embodiments, the
software application is hosted at a server separate from the
server 5102.

[0428] In some embodiments, the application packager
5120 prepares updates 5122 to previously deployed software
applications 5214. In some embodiments, this preparation
included one or more of testing the software application for
functionality and/or performance to ensure quality, providing
technical support material (e.g., a manual, product applica-
tion notes, etc.), and specifying a language and framework
associated with the software application.

[0429] In some embodiments, the previously deployed
function 5124 is required for the update 5122 to operate. Such
an update is sometimes referred to as a ‘mini application’ and
may include plugins or add-on features that can be bought

Feb. 5, 2009

from the store. In some embodiments, the ‘mini application’
may include updates to the applications.

[0430] In some embodiments, the application packager
5120 prepares updates to standalone distributions 5126. A
standalone distribution is one that does not require a previ-
ously deployed function to operate. In some embodiments,
the standalone distribution includes a software application
and one or more patches to the software application 5128.
[0431] In some embodiments, the application packager
5120 prepares applications or updates for distribution 5130
by performing a quality assurance test 5132. This test may be
automatic or may involve some human input. The application
packager 5120 includes technical support material 5134 with
the packaged application (e.g., areadme file). The application
packager 5120 may include instructions to specify what lan-
guage, framework, database, supporting packages and librar-
ies, or operating system the software application is compat-
ible with 5136.

[0432] In some embodiments, the application repository
5140 stores a plurality of packaged applications 5142, 5144,
to 5146. These packaged applications are those applications
that are ready for distribution and deployment to a user
account.

[0433] In some embodiments, the application deployer
5150 retrieves a packaged application from the repository
5140 if it does not exist in a local cache and then deploys it to
a user account (5152, 5116). The deployer can deploy an
application by a push method 5154 (where a user does not
have any choice about whether or not to receive the deployed
update or application), by a pull method 5156 (where the user
chooses to retrieve the deployed update), or by a hybrid
method 5158 (which may be a combination of the push and
pull methods, or another method). The application deployer
performs deployment in accordance with license terms 5160.
[0434] In some embodiments, the application deployer
5150 generates a new user account compatible with the soft-
ware application and deploys the software application to the
new user account. The account type can include one or more
of operating system, language, or framework associated with
the user account.

[0435] FIG. 52 illustrates a server system 5200 for perform-
ing syndicated deployment of a software application across a
network, executed by syndicated deployment module 6160
(FIG. 61). Server 5202 is configured to receive a request from
syndicated server 5230, across a network 120, as described.
In some embodiments, the request is received at marketplace
5210, including at deployer 5214. The server identifies one or
more user accounts associated with the request. The server
(including deployer 5214) checks licensing terms and per-
missions 5212, to determine if the syndicated server, includ-
ing syndicated server software distribution 5232 and syndi-
cated server user accounts 5234, have permission to receive
the deployed software application, and if the syndicated
deployment is in accordance with the license terms.

[0436] In some embodiments, deploying an application
includes providing through an application deployer, across a
network to one or more user accounts, a software application
stored at the application repository. The deployer accesses
repository 5216 and retrieves an application ready to deploy
5218. This application is deployed to syndicated server user
account 5234, in accordance with the license terms.

[0437] In some embodiments, deploying an application
includes presenting the software application for deployment
to a user or to a syndicated server associated with the user. In

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 206

US 2009/0037337 Al

these embodiments, the syndicated server deploys the pre-
sented software application into a user account associated
with the syndicated server. A syndicated server is a server that
is logically separate from the marketplace server. In some
embodiments, the syndicated server is also physically sepa-
rate from the marketplace server and is controlled by some-
one other than the controller of the marketplace and hosting
servers. In some embodiments, the syndicated server prima-
rily provides services other than the licensing of software
applications in a marketplace. In some embodiments, the
syndicated server offers to its users the ability to license
software applications from the marketplace by providing its
users with an interface (in some embodiments, implemented
using an API) by which to browse and/or license software
applications from the marketplace. In some embodiments, a
licensed application is deployed to an account associated with
the user, hosted by or under the control of the syndicated
server.

[0438] In some embodiments, the software application is
made available for distribution through the syndicated server.
In this embodiment, the syndicated server acts as a market-
place front for the software application, and the application is
licensed by a user through the syndicated server.

[0439] In some embodiments, deploying an application
includes selecting one of a plurality of software applications,
compatible with the one or more user accounts, from the
application repository. The selected software application is
deployed to an account associated with the user, hosted by the
hosting infrastructure server.

[0440] In some embodiments, the application repository
stores software applications in any one or more of a number of
states, including at least one state of a ready to deploy state, an
undergoing quality assurance state (undergoing testing
5220), a ready to submit for quality assurance state, and an
unfinished state. The ready to deploy state means that the
software application is fully tested and is ready for licensing
to a user. Only software applications in the ready to deploy
state can be listed on the marketplace and licensed to a user,
and thus only software applications in this state can generate
revenue. The undergoing quality assurance state means that
the software application is being tested and verified for qual-
ity, and is not yet ready for licensing to a user. The ready to
submit for quality assurance state means that the software
application code is written, but testing and quality assurance
has not yet been performed on it. The unfinished state means
that the software application is still in development.

[0441] FIG. 53 illustrates an embodiment of a server sys-
tem 5300 for packaging software applications for distribution
to auser account. The system 5300 includes a packager 5320,
executed in some embodiments by a packager module 6136
(FIG. 61).

[0442] The packager receives as input software application
files 5310, and prepares them for deployment. In some
embodiments, the packager also receives data files, local
install scripts 5312 and auxiliary software packages 5314
associated with the software application files 5310. The pack-
ager prepares one or more of the files 5310, 5312 and 5314,
and generates a packaged application 5330, which is stored in
application repository 5342 associated with marketplace
application 5340. Upon licensing by one ormoreusers 1to N,
the packaged application 5344 is deployed to one or more
accounts 1 to N associated with the users 1 to N, on hosting
application servers 5350-1 to 5350-N. This deploying is per-
formed by the application deployer.

Feb. 5, 2009

[0443] FIG. 54 illustrates an alternate embodiment of a
server system 5400 for packaging updates to software appli-
cations for distribution to a user account. The system 5400
includes a packager update tool 5420, which in some embodi-
ments is executed by the packager module 6136 (FIG. 61).

[0444] The packager receives as input updated software
application files 5410, updated data files, local install scripts
5412, and updated auxiliary software packages 5414 prepares
them for deployment, and generates an updated (patched)
application 5430. In some embodiments, the updated appli-
cation (patch) 5446 is stored in the application repository
5442 associated with marketplace application 5440, for
deployment to one or more servers 5450-1 to 5450-N. The
updated application (patch) is deployed to servers that already
have the original packaged application (e.g., version 1) 5444
installed.

[0445] FIG. 55 illustrates an alternate embodiment of a
server system 5500 for packaging updates together with soft-
ware applications for distribution to a user account. System
5500 includes packager 5520, executed by packager module
6136 (FIG. 61). Packager 5520 packages both software appli-
cations and updates files for the software applications sepa-
rately or together for distribution.

[0446] The packager receives as input software application
files 5510, updated data files 5512, and updated auxiliary
software packages 5514; prepares them for deployment either
together or separately; and generates a packaged new version
of an application 5530. In some embodiments, a packaged
new version of an application is stored in the application
repository 5542 associated with the marketplace application
5440, for deployment to one or more servers 5550-1 to 5550-
N. The packaged new version of the application 5549 is
deployed by the application deployer to one or more user
accounts associated with hosting infrastructure servers. In
some embodiments, the application repository 5542 stores
the original packaged application 5544, and updates 5546 to
5548 to the packaged application. In some embodiments,
when the packaged new version of the application 5549 is
placed in the application repository 5542, the older version
5544, and updates 5546 to 5548, may be removed from the
application repository.

[0447] FIG. 56 illustrates a method 5600 of licensing a
software application from a marketplace, for deployment to a
user account associated with a user, hosted at a hosting infra-
structure server. In this scenario, the licensing process
includes receiving a selection from the user for a software
application from the marketplace and adding the application
to a cart associated with the user, receiving the user’s request
to check out the cart and thereby the user’s request to license
the software application, providing the user with terms of use
associated with the software application, and receiving the
user’s agreement to the terms of use (in some embodiments,
receiving a payment from the user). In some embodiments,
upon licensing of the software application by the user, the
software application is deployed to an account associated
with the user.

[0448] At one or more servers hosting a marketplace appli-
cation 5620, one or more software applications 5622 to 5624
are made available for distribution through the marketplace
application. The marketplace server receives a user request to
license the software application. The marketplace server pro-
vides the software application for deployment 5648 to one or

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 207

US 2009/0037337 Al

more user accounts, hosted on the one or more servers, or
hosted at a hosting infrastructure server, as described regard-
ing FIG. 44.

[0449] In some embodiments, providing the software
application for deployment includes providing the software
application across a network for deployment at one or more
servers associated with the user, hosting the one or more user
accounts.

[0450] In some embodiments, the user request includes a
selection by the user to add the software application to a cart
5640 associated with the user, and to check out 5642 the cart.
[0451] Insomeembodiments, priorto deploying or prior to
receiving the user request, the marketplace server presents a
description of license terms of use associated with the soft-
ware application to the user 5644.

[0452] In some embodiments, the license terms are speci-
fied by a vendor 5614 associated with the software applica-
tion. The license terms may be specified before the software
application is presented for deployment, or the license terms
may be specified following deployment. In some embodi-
ments, the license terms may evolve after deployment. In
some embodiments, specifying the license terms includes
selecting (by the vendor) the license terms 5614 from a plu-
rality of options provided by a licensing engine 5630 associ-
ated with the one or more servers hosting a marketplace
application. In some embodiments, the licenses are stored
5632, 5634 at the licensing engine 5630. In some embodi-
ments, the licensing engine 5630 validates that the user
request to license the software application complies with the
license terms.

[0453] In some embodiments, the request to license the
software application includes a payment 5646 (e.g., credit
card or debit card payment, or bank transfer). In some
embodiments, the request may be associated with a prospec-
tive future payment (trial period). The prospective future
payment may include receiving a credit card number, but not
billing the credit card until some time in the future.e. g., at the
expiration of the trial period.

[0454] In some embodiments, prior to presenting an appli-
cation for deployment, the vendor builds 5610 and packages
5612 the software application 5616. In some embodiments,
the software application is a web-based software application,
executed at one or more servers.

[0455] FIG. 57 illustrates a system 5700 for providing secu-
rity for software applications, deployed to a user account. One
or more servers 5702 hosts a marketplace application 5710.
The marketplace application includes a billing manager
5712. The marketplace application is accessed by a web con-
nection or client 5714. The deployed application is accessed
by a user’s web application 5720, having an associated user
identifier 5722.

[0456] The server 5702 includes a security application
5730, executed by deployment security module 6158 (FIG.
61). In some embodiments, the security application 5730
verifies that only a licensed set of features and/or number of
copies of a deployed software application is running at a time
5732. These requirements may be provided by the software
vendor via the licensing manager (described in FIG. 49).
[0457] Insomeembodiments, the security application 5730
includes a payment verifier 5736 to compare a user identifier
5722 associated with the one or more user accounts and an
application id (e.g. 5750, 5760) associated with the deployed
application against the billing manager 5712 to verify that a
valid payment has been recorded. In some embodiments, this

Feb. 5, 2009

verification is performed prior to executing the deployed
application. The security application verifies that both the
user and application are associated with a valid transaction
before allowing a user to execute the software application.
[0458] Insomeembodiments, the security application 5730
includes a permission verifier 5738 to verify that the one or
more user accounts have permission to execute the deployed
application, and in the event of a verification failure, to warn
the user. The user account permissions are executed by per-
missions module 6128 (FIG. 61). In some embodiments, the
security application 5730 includes periodic verifier 5740 to
periodically (e.g., daily, weekly, monthly etc.) repeat one or
more of the verification steps described. Following one or
more verification failures, a shutdown application 5742
warns the user 5744, and/or prevents 5746 (in the event of
multiple failures) the one or more user accounts from execut-
ing the deployed application. The plurality of failures
includes factors such as the number of failures, the period of
time over which failures occur, IP addresses from which
attempted logons to the application are made, etc. In some
embodiments, the shutdown application 5742 prevents access
by the user to data stored at the one or more servers, upon
determining that the one or more user accounts has been
disabled. The user access is executed by access module 6170
(FIG. 61). The account enablement verifier 5734 verifies that
auser account has permission to access the deployed software
applications (e.g., 5752, 5762). In some embodiments, the
user permission/access is made available to the application
vendor through the licensing API to enable custom messaging
and actions by the vendor. Making available means that a list
of privileges or permissions associated with a the user is
provided to the software application vendor so the vendor can
understand what terms the user has agreed to when licensing
the software. This can assist the software vendor in resolving
a user’s problems. In some embodiments, when a user is
denied access, the user is redirected to the vendors market-
place storefront listing to resolve the issue.

[0459] Insome embodiments, the security application 5730
includes instance verifier 5732 to check for multiple instances
of'the software application being simultaneously executed by
the one or more user accounts. In some embodiments, for
some software applications (e.g., AOP) multiple logons to a
user account are permitted, but only one logon may use (ex-
ecute) a software application associated with the user account
at a time. As an example, a user can stay logged into her
account at work, but go home and access the account from her
home PC. Since she is using her work PC to execute applica-
tions while she is at home, she may execute a software appli-
cation while logged into her account from her home PC.
[0460] If the security application 5730 determines that the
user account is authorized to access a deployed software
application, a confirmation 5772 is provided to a hosted appli-
cation execution engine 5770 for running deployed software.
This engine executes one or more of the hosted deployed
software applications 5752, 5762, hosted on one or more
servers 5754, 5764.

[0461] FIG. 58 illustrates a system 5800 for allowing mul-
tiple logons by a user 5860 to a software application,
deployed to a user account. In an example, a user may require
multiple logons if he logged onto the software application
from his work computer, and left work and traveled home
forgetting to log out. If the user wants to access the software
application from his home computer (while still logged on
from work, having forgotten to log out) then the user may log

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 208

US 2009/0037337 Al

in from home (thus creating a simultaneous logon situation).
In another example, a user may be logged on to the software
application from his desk computer, and while in a meeting at
another location, may want to access the software application
using a handheld device (thus creating a simultaneous logon
situation). One or more servers 5805 hosts a licensing engine
5180. The licensing engine includes a simultaneous logon
manager 5811, executed by user account access module 6172
(FIG. 61). In some embodiments, the one or more servers
5805 also host a first 5814 and a second 5186 deployed
software applications, where a user has licenses to the first
and second deployed applications.

[0462] A first client system 5820 (e.g., an office PC)
executes a browser 5822 in which a first instance 5824 of first
software application 5814 is open and logged in. The first
client system also includes an account management system
(EMS) 5828, a software stack 5830, and an operating system
(OS) stack 5832. A second client system 5840 (e.g., a home
PC) executes a browser 5842, in which a second instance
5844 of first software application 5814 is open and logged in.
The second client system also includes an account manage-
ment system (EMS) 5848, a software stack 5850, and an OS
stack 5852.

[0463] When a client 5820 attempts to access a deployed
application 5814 (associated with a user account), the licens-
ing engine 5810 and logon manager 5811 determine if the
client 5820 has permission to access the application, and also
determine if another client is accessing that application, asso-
ciated with the user account. In some embodiments, the logon
manager 5811 will only permit (depending on the license
terms specified by the software vendor via the licensing man-
ager, described in FIG. 49) a single logon to an application
associated with a user account at a time. In some embodi-
ments, the logon manager 5811 will permit a plurality of
logons (e.g., by clients 5820 and 5840) to an application
associated with a user account, if the licensing terms so per-
mit. In some embodiments, the login manager 5811 will
permit multiple logons, as long as only one client system is
operating the application at a time. Operating means provid-
ing input to the application and/or receiving information from
the application.

[0464] FIG. 59 illustrates an exemplary user access control
interface 5900 for controlling user access to a software appli-
cation, deployed to a user account. This figure shows opera-
tions at the marketplace server, under control of the licensing
manager, where a system administrator (or in some embodi-
ments, a vendor) may view and/or change license terms asso-
ciated with the software application and associated with users
of those applications. This is useful because it gives the
administrator a ‘birds eye’ view of licensing permissions and
activity within the system.

[0465] A plurality of applications 5902-1 to 5932-N are
shown on the left hand column. Associated with each appli-
cation is one or more users 5920-1 to 5920-N, and 5934-1. For
each user, a status indicator 5904 determines if the user is
active (i.e., using) that particular application. An administra-
tor status 5906 determines if the user has administrator privi-
leges. An AOP status 5908 indicates if a user has permission
to run an application offline. A source code access status 5910
determines whether a user is allowed to view or edit source
code associated with an application. By changing the status
buttons or indicators, an administrator or vendor can change
the permissions associated with an application or with a user.

Feb. 5, 2009

Other control 5912 determines if a user can access other
features, in accordance with a particular embodiment.
[0466] FIG. 60 illustrates an exemplary user access control
interface 6000 for controlling user access to a software appli-
cation, deployed to a user account. One or more software
applications 6002 through 6004 are shown. For each software
application, one or more users 6010-1, 6010-2 through
6010-N may access the software application, where this
access is controlled by this interface.

[0467] FIG. 61 is a block diagram illustrating a server sys-
tem 6100 configured to host a software marketplace and
licensing system. The system 6100 generally includes one or
more processing units (CPU’s) 6102, one or more network or
other communications interfaces 6104, memory 6110, and
one or more communication buses 6108 for interconnecting
these components. The communication buses 6108 may
include circuitry (sometimes called a chipset) that intercon-
nects and controls communications between system compo-
nents. The system 6100 may optionally include a user inter-
face, for instance a display 6106 and input device (e.g., a
keyboard and/or mouse) 6105. Memory 6110 may include
high speed random access memory such as DRAM, SRAM,
DDR RAM or other random access solid state memory
devices; and may include non-volatile memory, such as one or
more magnetic disk storage devices, optical disk storage
devices, flash memory devices, or other non-volatile solid
state storage devices. Memory 6110 may include mass stor-
age that is remotely located from the central processing unit
(s) 6102.

[0468] Memory 6110, or alternately the non-volatile
memory device(s) within memory 6110, comprises a com-
puter readable storage medium. In some embodiments,
memory 6110 stores the following programs, modules and
data structures, or a subset thereof:

[0469] an operating system 6111 that includes proce-
dures for handling various basic system services and for
performing hardware dependent tasks;

[0470] a network communication module 6112 that is
used for connecting the server 6100 to other computers
via the one or more communication network interfaces
6104 (wired or wireless) and one or more communica-
tion networks, such as the Internet, other wide area net-
works, local area networks, metropolitan area networks,
and so on;

[0471] a distribution module 6120 that is used to market
and distribute software applications to users of the soft-
ware marketplace and licensing system;

[0472] amarketplace module 6122 that provides an elec-
tronic marketplace where software vendors can display,
and users can select, software applications for licensing;

[0473] alisting module 6124 that is used to generate and
display software application products within an elec-
tronic marketplace;

[0474] a licensing module 6126 that controls the distri-
bution of software applications, with license terms
selected or provided by a software vendor;

[0475] In some embodiments, a permissions module
6128 that enforces license terms during deployment;

[0476] abilling module 6130 that receives and processes
payment from a user associated with a licensed software
application;

[0477] atransaction report module 6132 for reporting on
distribution and licensing activity taking place within
the marketplace;

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 209

US 2009/0037337 Al

[0478] anapplication repository module 6134 for storing
and managing software applications ready for distribu-
tion;

[0479] a packaging module 6136 for preparing software

applications and updates for distribution;

[0480] a deployment module 6150, for managing
deployment of software applications to a user account,
and managing hosting of the software application;

[0481] a deployer module 6152 (in some embodiments
part of the deployment module 6150) for deploying a
software application to a hosted user account, or to a
user-controlled server for hosting the account;

[0482] a hosting module 6154 for hosting the software
application in a hosted user account and for executing
the software application;

[0483] a user account module 6156 for managing user
accounts, permissions and access;

[0484] asecurity module 6158 for managing deployment
and ensuring that a software application is deployed in
accordance with license terms, to authorized users, at
authorized servers;

[0485] a syndicated deployment module 6160 for per-
forming syndicated deployment (in some embodiments,
across a network) in response to a request from a syndi-
cated server;

[0486] an access module 6170 for controlling access to
deployed applications and to the marketplace;

[0487] a user account access module 6172 (in some
embodiments, part of user account module 6156 or
access module 6170) for controlling user access to
hosted applications;

[0488] a user hosting module 6174 (in some embodi-
ments, part of a hosting module 6154) for hosting the
deployed software application at a server controlled by
the user;

[0489] a marketplace database management module
6180 for managing a marketplace database;

[0490] a licensing database management module 6182
for managing a licensing database;

[0491] a deployment database management module
6184 for managing a deployment database;

[0492] a billing database management module 6186 for
managing a billing database; and

[0493] a user account database management module
6188 for managing a user account database.

[0494] In some embodiments, the database management
modules 6180, 6182, 6184, 6186, 6188 can be separate or
combined into one or more groups.

[0495] Each ofthe above identified elements may be stored
in one or more of the previously mentioned memory devices,
and corresponds to a set of instructions for performing a
function described above. The above identified modules or
programs (i.e., sets of instructions) need not be implemented
as separate software programs, procedures or modules, and
thus various subsets of these modules may be combined or
otherwise re-arranged in various embodiments. In some
embodiments, memory 6110 may store a subset of the mod-
ules and data structures identified above. Furthermore,
memory 6110 stores additional modules and data structures
not described above.

[0496] Although FIG. 61 shows a server system for soft-
ware application distribution, FIG. 61 is intended more as
functional description of the various features that may be
present in a set of servers than as a structural schematic of the

31

Feb. 5, 2009

embodiments described herein. In practice, and as recognized
by those of ordinary skill in the art, items shown separately
could be combined and some items could be separated. For
example, some items shown separately in FIG. 61 could be
implemented on single servers or single items could be imple-
mented by one or more servers. The actual number of servers
used to implement a software application distribution system
and the way in which features are allocated among them will
vary from one implementation to another, and may depend in
part on the amount of data traffic that the system must handle
during peak usage periods as well as during average usage
periods.

[0497] FIG. 62 illustrates a block diagram ofa client system
6200 for accessing a software marketplace and licensing sys-
tem, hosted at one or more servers. The client system 6200
generally includes one or more processing units (CPU’s)
6202, one or more network or other communications inter-
faces 6204, memory 6210, and one or more communication
buses 6208 for interconnecting these components. The com-
munication buses 6208 may include circuitry (sometimes
called a chipset) that interconnects and controls communica-
tions between system components. The system 6200 also
includes a user interface, for instance a display 6206 and input
device (e.g., akeyboard and mouse) 6205. Memory 6210 may
include high speed random access memory such as DRAM,
SRAM, DDR RAM or other random access solid state
memory devices; and may include non-volatile memory, such
as one or more magnetic disk storage devices, optical disk
storage devices, flash memory devices, or other non-volatile
solid state storage devices. Memory 6210 may include mass
storage that is remotely located from the central processing
unit(s) 6202.

[0498] Memory 6210, or alternately the non-volatile
memory device(s) within memory 6210, comprises a com-
puter readable storage medium. In some embodiments,
memory 6210 stores the following programs, modules and
data structures, or a subset thereof:

[0499] an operating system 6211 that includes proce-
dures for handling various basic system services and for
performing hardware dependent tasks;

[0500] a network communication module 6212 that is
used for connecting the client 6200 to a server hosting
software applications, via the one or more communica-
tion network interfaces 6104 (wired or wireless) and one
or more communication networks, such as the Internet,
other wide area networks, local area networks, metro-
politan area networks, and so on;

[0501] areceive and process user input module 6214 for
receiving input from input device(s) 6205, such as a
keyboard and mouse, and interpreting that input to con-
trol a client/browser;

[0502] aclient/browser module 6215 (including browser
engine module 6216) for providing a window by which
a user accesses the hosted software application, and
through which the user (or in some embodiments an
administrator) manages the hosted software application;

[0503] accessible through the client/browser module
6215: a distribution module 6220, application deploy-
ment module 6250 and access module 6270, each with
constituent modules, and database management mod-
ules 6280 through 6288, corresponding to modules in
FIG. 61 as described earlier;

[0504] accessible through the client/browser module
6215: a cart checkout/module 6290 for allowing a user to

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 210

US 2009/0037337 Al

place a software application in the cart, and checking out
the cart to license the software application;

[0505] accessible through the client/browser module
6215: a process payment module 6292 for processing a
payment associated with the licensed software applica-
tion;

[0506] accessible through the client/browser module
6215: a select license module 6294 for selecting a
license associated with a software application, prior to
licensing the application;

[0507] accessible through the client/browser module
6215: a submit license terms module 6296 for a vendor
to select license terms associated with the software
application, or to submit custom license terms provided
by the vendor (e.g., a text file); and

[0508] auxiliary services module(s) 6298 for providing
other features or services associated with the client.

[0509] Flowcharts for Marketplace and Licensing

[0510] FIG. 80 is a flowchart representing a server method
8000 for distributing a software application, according to
certain embodiments of the invention. Server method 8000
may be governed by instructions that are stored in a computer
readable storage medium and that are executed by one or
more processors of one or more servers. Each of the opera-
tions shown in FIG. 80 may correspond to instructions stored
in a computer memory or computer readable storage medium.
The computer readable storage medium may include a mag-
netic or optical disk storage device, solid state storage devices
such as Flash memory, or other non-volatile memory device
or devices. The computer readable instructions stored on the
computer readable storage medium are in source code,
assembly language code, object code, or other instruction
format that is interpreted by one or more processors.

[0511] At one or more servers hosting a marketplace appli-
cation (e.g., FIG. 129, marketplace storefront; FIG. 155, user
marketplace), a software application is received from a ven-
dor for distribution (8002). License terms (e.g., FIG. 133,
license terms) are associated with the software application
(8004). In some embodiments, the license terms are received
from the vendor of the software application, and are stored in
a database (e.g., by licensing database management module
6182, FIG. 61) with a pointer to the vendor’s software appli-
cation. Associated means that when the software application
is selected for licensing by a user, the vendor license terms
corresponding to that vendor’s software application are used
during licensing and distribution of the software application.
In some embodiments, a vendor may have different sets of
license terms per software application.

[0512] The software application is made available for dis-
tribution (e.g., FIGS. 129, 155) through the marketplace
application (8006). The software application is deployed
(e.g., FIG. 175, “My Installations™) to one or more user
accounts on one or more hosting servers, in accordance with
the license terms.

[0513] Insomeembodiments, the one or more hosting serv-
ers (e.g., FIG. 148, developer hosting accounts; FIG. 149
hosting sub-domains) are physically separate from the one or
more servers hosting the marketplace application (8026).
[0514] In some embodiments, the deploying is performed
after a user request (e.g., FIGS. 166,167, 168, download and
install) to deploy the software application (8101). In some
embodiments, the deploying includes downloading the soft-
ware to one or more user accounts (8012). In some embodi-
ments, deploying includes activating a flag associated with

Feb. 5, 2009

the software application in the one or more user accounts
(8014). In some embodiments, the flag enables the software
application for the user account (8016). In some embodi-
ments, the deploying includes activating a license for the
software application in the one or more user accounts (8018).
[0515] In some embodiments, the deploying includes pro-
viding the software application for hosting by a user on host-
ing servers (e.g., FIG. 148 developer hosting account, FIG.
149 sub-domains associated with an account) associated with
the user (8020).

[0516] Insomeembodiments, distribution to a user through
the marketplace application includes through a website (e.g.,
FIG. 155, marketplace storefront) associated with the mar-
ketplace application (8022). In some embodiments, distribu-
tion to a user through the marketplace application includes
distribution through a client associated with the marketplace
application (8024).

[0517] In some embodiments, the deploying is performed
(e.g., FIG. 175, “My Installations”) by an application
deployer (8028), such as the application deployer described
in FIG. 51, and/or the application deployer module 6152
(FIG. 61).

[0518] Insomeembodiments, the deployed software appli-
cation is hosted for the one or more user accounts (8030).
[0519] FIG. 81 is a flowchart 8100 continuing the server
method 8000 of FIG. 180.

[0520] In some embodiments, a description of the license
terms (e.g., FIG. 158, accept terms) is presented to a user
(FIG. 81, 8114).

[0521] In some embodiments, the software application is
packaged (e.g., FIG. 154, 173, My Packaged Applications)
for distribution via the marketplace application hosted by the
one or more servers (8102). In some embodiments, a pack-
aged software application is stored in an application reposi-
tory (8104). In some embodiments, the packaging includes
preparing an update (e.g., FIG. 103, update 10304) to a pre-
viously deployed software application, where the update
requires the previously deployed software application to
function (8106). This scenario might be where a patch update
(setoffixes to a previously deployed application) is deployed.
A patch generally requires the earlier deployed application to
function, since the patch only changes a small portion of the
deployed application, and thus the patch is not a standalone
application.

[0522] In some embodiments, the packaging includes pre-
paring a standalone distribution (e.g., FIG. 103, update
10302) for a software application (8110). In some embodi-
ments, the standalone distribution includes a software appli-
cation and one or more patches to the application (8112). In
some embodiments, the update is deployed to the one or more
user accounts selected from the group consisting of (e.g.,
FIG. 142, Product Upgrade) a push method, a subscription
(pull) method, and a hybrid method, in accordance with the
license terms (8108).

[0523] In some embodiments, the making available (e.g.,
FIG. 130, Product/Service Basic Information) is performed
by a listing manager (8116), executed by listing module 6124
(FIG. 61). In some embodiments, the listing manager
includes a store listing (e.g., FIGS. 130-153, store listing
details/setup, FI1G. 155 storefront) for licensing the software
application (8118). In some embodiments, the marketplace
application includes technical support (e.g., FIGS. 174, 177-
181, support and knowledge base) for the software applica-
tion (8122). By making available, the listing manager per-

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 211

US 2009/0037337 Al

forms one or more of storing and presenting software
application listings (sale details for software applications),
storing technical articles and information, and storing support
resources (help, customer support, etc.). The listing manager
may also provide one or more of a search function, a list of
most popular software applications, a package deal for licens-
ing a suite of software applications, a customer review, and
other related functions.

[0524] In some embodiments, making the software appli-
cation available for distribution can be done by determining a
user account type, and based on the user account type, pre-
paring to deploy a software application to the user account, or
generating a new user account (e.g., FIG. 169, developer
accounts) compatible with the software application and pre-
paring to deploy the software application to the new user
account (8120).

[0525] FIG. 82 is a flowchart representing a server method
8200 for licensing a software application, according to certain
embodiments of the invention. The server method 8200 may
be executed by licensing module 6126 (FIG. 61) and as
described earlier with regard to FIG. 49.

[0526] Atone or more servers, hosting a marketplace appli-
cation, a software application is received from a vendor for
distribution (8202). License terms (e.g., FIG. 132, license
selection) are generated (8204) in response to a selection by
the vendor from options provided by the marketplace appli-
cation. The license terms are associated with the software
application (8206). The software application is made avail-
able for distribution through the marketplace application (e.g.
FIG. 155, storefront), in accordance with the license terms
(8208).

[0527] In some embodiments, the software application is
deployed (e.g., FIG. 175, My Installations) to one or more
user accounts on one or more hosting servers, in accordance
with the license terms (8210). For example, the license terms
can influence an application in the following way. Deploying
an application in accordance with the license terms means
that conditions specified by the software vendor in the license
terms (e.g., source code is to be hidden from the licensee) are
enforced when deploying and when granting access to the
software application. In some embodiments, a deployer
enables or disables functions or options within the deployed
software application, where this enabling or disabling is
determined by the license terms provided by the software
vendor.

[0528] Insome embodiments, the deploying is in response
to a payment (e.g., FIG. 159, billing history) associated with
the one or more user accounts (8212).

[0529] Insomeembodiments, license terms include at least
one of (e.g., FIG. 132, part four) an open source license, a
closed license, a source code license, an executable (object
file) license, and a repacking license (8214). In some embodi-
ments, the repacking license (e.g., FIG. 132, part three) deter-
mines whether a user of the software application is permitted
to repackage and redistribute the software application (8216).
In some embodiments, the repacking license has an associ-
ated royalty (8218). In some embodiments, the associated
royalty is one selected from the group consisting of'a whole-
sale royalty, a retail royalty, and a flat fee (8220). In some
embodiments, the license manager determines user permis-
sions (e.g., FIG. 132, part four) for installation, activation,
and access to features of applications (8222). In some

Feb. 5, 2009

embodiments, the options provided by the marketplace appli-
cation includes an option to use license terms supplied by the
vendor (8224).

[0530] In some embodiments, licensing events (e.g., FIG.
153, transaction report) for a respective software application
are made available for distribution through the marketplace
application (8226). In some embodiments, the license events
are displayed (e.g., FIG. 151, store report) to a respective
vendor associated with the respective software application
(8228). In some embodiments, the license terms are stored in
a licensing manager (8230).

[0531] FIG. 83 is a flowchart 8300 continuing the server
method 8200 of FIG. 82.

[0532] In some embodiments, a price (e.g., FIG. 132, part
two; FIG. 144 pricing grid) associated with the software
application is stored at a licensing manager separately from
the software application (8302). In some embodiments, the
price is dynamically adjusted by the licensing manager in
response to a selection by the software vendor (8304). In
some embodiments the vendor selects a price by entering a
price (e.g., price in US dollars, Euros, Yen, or any other
currency) in the licensing manager 4930 (FIG. 49) or billing
manger 5030 (FIG. 50). In some embodiments, the vendor
selects a price by choosing a price from a set of options
provided by the marketplace. In some embodiments, at least
one selected from the group consisting of access duration,
features, and price, is dynamically adjusted by the licensing
manager in response to a selection by the software vendor
(8306).

[0533] In some embodiments, the one or more user
accounts are stored separately from the marketplace applica-
tion (8308).

[0534] In some embodiments, a payment (e.g., FIG. 159,
billing history) associated with the software application is
processed (8310). In some embodiments, prior to processing
a payment, a promotional code is received from the user, and
the payment is processed based on the promotional code
(8312). In some embodiments, a record of the processed
payment is stored in a billing record (8314).

[0535] In some embodiments, prior to executing the
deployed application, a user identifier associated with the one
or more user accounts and an application id associated with
the deployed application are compared against a billing man-
ager to verify that a valid payment has been recorded (8316).
In some embodiments, the system verifies that the one or
more user accounts has permission to execute the deployed
application, and in the event of a verification failure, warns
the user (8318). In some embodiments, the verifying is per-
formed periodically, and following a plurality of verification
failures, the one or more user accounts are prevented from
executing the deployed application (8320). In some embodi-
ments, the verifying includes checking for multiple instances
of'the software application being simultaneously executed by
the one or more user accounts (8322). In some embodiments,
the system prevents access by the user to data stored at the one
or more servers, upon determining that the one or more user
accounts has been disabled (8324).

[0536] FIG. 84 is a flowchart representing a server method
8400 for syndicated deployment of a software application,
according to certain embodiments of the invention. Server
method 8400 may be governed by instructions, as described
earlier.

[0537] At one or more marketplace servers hosting a mar-
ketplace application, in response to a request from a syndi-

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 212

US 2009/0037337 Al

cated server to distribute a software application from the
marketplace, one or more user accounts associated with the
request are identified (8402). The system verifies that the one
or more user accounts has permission to use the software
application (8404). The software application is deployed to
the one or more user accounts, in accordance with license
terms associated with the software application.

[0538] In some embodiments, the software application is
presented for deployment to a user (8408). In some embodi-
ments, the software application is made available for distri-
bution through the syndicated server. In some embodiments,
deploying includes providing through an application
deployer, across a network to the one or more user accounts,
a software application stored at the application repository
(8412).

[0539] Insomeembodiments, deploying includes selecting
one of a plurality of software applications, compatible with
the one or more user accounts, from the application repository
(8414). In some embodiments, the application repository
stores software applications in a plurality of states, including
at least one selected from the group consisting of a ready to
deploy state, an undergoing quality assurance state, a ready to
submit for quality assurance state, and an unfinished state
(8416).

[0540] FIG. 85 is a flowchart representing a server method
8500 for licensing and receiving payment for a software
application, according to certain embodiments of the inven-
tion. Server method 8500 may be governed by instructions, as
described earlier.

[0541] At one or more servers hosting a marketplace appli-
cation (e.g., FIGS. 129, 155), a software application is made
available for distribution through the marketplace application
(8502). A user request to license the software application is
received (8504). The software application is provided for
deployment to one or more user accounts, hosted on one or
more servers (8506). In some embodiments, the software
application is provided across a network for deployment at
one or more servers associated with the user, hosting the one
or more user accounts (8508).

[0542] In some embodiments, a selection by the user is
processed that includes adding the software application to a
cart (e.g., FIG. 160, 172, cart and checkout) associated with
the user, and checking out the cart (8510). In some embodi-
ments, prior to deploying, a description of license terms asso-
ciated with the software application is presented (e.g., FIG.
158, license) to the user (8512). In some embodiments, the
license terms are specified by a vendor (e.g., FIG. 132) asso-
ciated with the software application (8514). In some embodi-
ments, the license terms are selected from a plurality of
options provided by a licensing engine associated with the
one or more servers hosting a marketplace application (8516).
In some embodiments, the system validates that the requestto
license the software application complies with the license
terms (8518). In some embodiments, the request to license the
software application includes a payment (e.g., FIG. 170, pay-
ment info) selected from the group consisting of a cash pay-
ment, a credit payment, and a prospective future payment
(8520).

[0543] In some embodiments, the software application is a
web-based software application, executed at one or more
servers (8522).

Application Framework

[0544] Some embodiments provide an application frame-
work that facilitates synchronizing data between applica-

Feb. 5, 2009

tions. The application framework can include data structures
and a set of rules for synchronizing data between two appli-
cations. For example, consider a customer relationship man-
agement (CRM) application and an email application, both of
which include tasks for a user. The fields (or columns, etc.) to
be synchronized between the CRM application and the email
application are first mapped to application framework data
structure. For example, the task identifier fields for these two
applications can be mapped to the “identifier” field in the
application framework data structure. During a synchroniza-
tion operation between the CRM application and the email
application, the CRM application can first synchronize itself
with the application framework data structure. The email
application can then synchronize itself with the application
framework data structure. Synchronization rules can be used
to map the fields from the CRM application to the application
framework data structure and to map the fields of the appli-
cation framework data structure to fields for the email appli-
cation. Note that that the synchronization process can be
performed in both directions (e.g., from the CRM application
to the email application and from the email application to the
CRM application. Also note that in these embodiments, the
code and/or the architecture of the applications do not need to
be modified in order to synchronize data between the appli-
cations. In some embodiments, the data is synchronized
between the databases for the applications without using
explicit commands executed by the applications. In other
words, the synchronization of data occurs at the database
level, and not the application level.

[0545] FIG. 63 is ablock diagram illustrating an exemplary
application framework 6300, according to some embodi-
ments. In some embodiments, the application framework
6300 is located on one or more servers. For example, the
application framework 6300 can be located on a server such
as the servers 4420-4840 in FIG. 44, any one of the servers
4520-4530 in FIG. 45, the hosting infrastructure 4630 and/or
the server 4602 in FIG. 46, any one of the servers 4802 and/or
4830 in FIG. 48, the server 4902 in FIG. 49, the server 5002
in FIG. 50, the server 5102 in FIG. 51, any one of the server
5202 and/or the syndicated server 5230 in FIG. 52, any one of
the servers 5350, 5450, and 5550 in FIGS. 53-55, respec-
tively, and/or any one of the servers 5702, 5754, and 5764 in
FIG. 57. The one or more servers can include an end user
server maintained by an end user (e.g., a customer-provi-
sioned server, etc.) and a hosted server maintained by a ser-
vice provider (e.g., a software vendor, a web hosting com-
pany, etc.). In some embodiments, the application framework
6300 is located on one or more client computer systems. For
example, the application framework 6300 can be located on a
client computer system such as the client systems 4450-4454
in FIG. 44, and/or any one of the client systems 5820 and 5840
in FIG. 58.

[0546] In some embodiments, the application framework
6300 includes one or more of an account management system
(EMS) 6302 and/or a software stack 6340. Recall that “EMS”
is used to describe a generic account management system.
The EMS 6302 can create and manage accounts within the
application framework 6300, provide user authentication,
and/or synchronize applications within an account and/or
between account frameworks. The EMS 6302 can include one
or more of a database 6304 and/or an application synchroni-
zation module 6306. The database 6304 is described in more
detail with reference to FIGS. 64 and 72-73 below and the
application synchronization module 6306 is described in

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 213

US 2009/0037337 Al

more detail below with reference to FIGS. 65-79 below. Note
that although the discussion below refers to a single database,
multiple databases can be used. The software stack 6340 can
include one or more of: an email module 6342, a web server
module 6344, an authoring module 6346, a browser module
6348, and/or auxiliary modules 6350. The email module 6342
can include any electronic mail program. For example, the
email module 6342 can include email servers (e.g., Sendmail,
Postfix, and qmail, etc.), mail filtering programs (e.g., proc-
mail, SpamAssassin, etc.), client email programs (e.g., elm,
pine, Microsoft Outlook, etc.), etc. The web server module
6344 can include any application that can respond to client
requests for pages, data, graphics, videos, documents, etc,
hosted on a server coupled to clients and/or other servers via
a network. For example, the web server module 6344 can
include Apache HTTP Server, Microsoft Internet Information
Server, etc. The authoring module 6346 can include any
application that allows a developer or a user to generate
web-based applications. For example, the authoring module
6346 can include a text editor, a word processor, a web devel-
opment environment (e.g., Microsoft Expression Web, Adobe
Dreamweaver, etc.), etc. The browser module 6348 can
include any application with a rendering engine that can
access data and/or services on a local and/or a remote com-
puter system and render the results so that a user can view the
data and/or interact with the services. In some embodiments,
browser module 6348 is a web browser. The auxiliary mod-
ules 6350 can include other applications such as a Light-
weight Data Access Protocol (LDAP) interface module and/
or database, an Internet Message Access Protocol (IMAP)
module, a Post Office Protocol (POP) module, a Dovecot
module (e.g., an IMAP and POP server), a web server (e.g.,
Apache HTTP server, Microsoft IIS Server, etc.), one or more
database management systems (e.g., MySQL, PostgreSQL,
etc.), logging applications (e.g., Syslog-ng, etc.), authentica-
tion services (e.g., saslauthd, etc.). Note that although FIG. 63
illustrates a single module for each type of service, the soft-
ware stack 6340 can include any number of modules for a
given type of service. For example, two different email mod-
ules can be included within software stack 6340.

[0547] In some embodiments, the application framework
6300 includes one or more accounts. For example, as illus-
trated in FIG. 63, the application framework 6300 includes an
account 6310. The account 6310 can include one or more of:
an account directory 6312, and a database 6314. The account
directory 6312 can include a directory structure configured to
store one or more applications. The account database 6314
can include meta data for the account 6310. The meta data can
include descriptions for the software packages 6316, users
associated with the account 6310, and/or default synchroni-
zation hooks/rules (e.g., for user management, licensing,
etc.).

[0548] In some embodiments, the account 6310 includes
software packages 6316. For example, the software packages
6316 can include utilities (e.g., phpmyadmin, phppgadmin,
websvn, EDK, etc.), tools, and/or shared libraries (e.g., Zend,
PHPunit, famfamfam, the Etelos Application Server Frame-
work, etc.) used by applications within an account.

[0549] In some embodiments, the account 6310 includes
one or more applications 6320-1to 6320-N. For example, the
applications 6320 can include applications purchased
through the marketplace 4410 in FIG. 44. In some embodi-
ments, one or more of the applications 6320 are web-based
applications. In these embodiments, a user can interact with

Feb. 5, 2009

one or more of the applications 6320 using a browser engine
(e.g., the browser module 6348). In some embodiments, the
applications 6320 are located on a remote server separate and
distinct from a computer system and/or a server that includes
the browser module 6348. In these embodiments, the browser
module 6348 can access the applications 6320 that are
executed on the remote server via a network connection. In
some embodiments, the applications 6320 are located on the
same computer system that includes the browser module
6348. In these embodiments, the browser module 6348 can
access the applications 6320 that are executed on the local
computer system. In some embodiments, the applications
6320 are located both on a remote server separate and the
local computer system. In these embodiments, the browser
module 6348 can access the applications 6320 that are
executed on the remote server via a network connection. If a
connection to the remote server is not available (e.g., the
network connection is not available, the remote server is
unavailable, etc.), the browser module 6348 can access the
applications 6320 on the local computer system. These
embodiments are discussed above in reference to the AOP
mode of operation. In some embodiments, the browser mod-
ule 6348 can access the applications 6320 on the local com-
puter system and the remote server.

[0550] In some embodiments, a respective application
6320 includes one or more of: a database 6322, files 6326,
and/or a version control repository 6328. The databases 6322
can include data for the respective application 6320. The files
6326 can include application files for the respective applica-
tion 6320. For example, the files 6326 can include static
HTML files, scripts, graphics files, video files, XML files,
access control files, documents, etc. The version control
repository 6328 can include one or more versions of the files
6326. For example, the version control repository 6328 can
include repositories managed by version control systems
such as Subversion (SVN), Concurrent Version System
(CVS), Revision Control System (RCS), etc. In some
embodiments, the files 6326 can be modified by developers
through a version control interface (e.g., WebDAV). When
making changes to the files 6326, the version control system
maintains a history of the changes, which can be used to
generate patches, updates, and/or new versions of the files
6326 that can be distributed and deployed to other instances
of the respective application (e.g., the application can be
running on different account on a different server, etc.). In
some embodiments, the files 6326 and the version control
repository 6328 for a respective application are associated
with one or more vhosts 6324. A virtual host is a mechanism
that allows a web server to host one or more domains. For
example, www.example.com and www.example2.com can
both be hosted on the same web server using a virtual host
mechanism. Each virtual host may include a separate direc-
tory hierarchy within the web server and/or a separate data-
base (e.g., either on the web server or on a separate database
server or servers). A virtual host (e.g, vhost) for a respective
application can point to a different set of files that are owned
and/or used by the respective application.

[0551] In some embodiments, one or more of the applica-
tions 6320 are configured to use a specified email domain. In
these embodiments, the email module 6342 can be configured
by the applications 6320 to send and/or receive email on the
specified email domain.

[0552] Note that a newly-created account may not include
any applications. Also note that although FIG. 63 illustrates a

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 214

US 2009/0037337 Al

single account, the application framework 6300 can support
any number of accounts (e.g., 0, 1, 2, . . ., N). Moreover,
although components are grouped together in FIG. 63, these
groupings can be changed. For example, the software stack
6340 can include all or a subset of the software packages
6316.

[0553] FIG. 64A is a block diagram illustrating exemplary
components of an account 6420, according to some embodi-
ments. The account 6420 can be the account 6310 in FIG. 63.
The account 6420 can include one or more of an account
directory 6422, a database 6424, software packages 6426, and
applications 6430 (including one or more of databases 6432,
files 6436, version control repository 6438, and vhost 6434),
which correspond in general to the account components
described above with reference to FIG. 63. In some embodi-
ments, the account 6420 includes domains 6428, which
include one or more Internet domain names associated with
applications within the account 6420.

[0554] In some embodiments, an EMS database 6402
includes one or more of: a users table 6404, an accounts table
6406, a databases table 6408, a domains table 6410, an appli-
cations table 6412, and/or a vhosts table 6414. Recall that
“EMS” is used to describe a generic account management
system. The users table 6404 can include user records for one
or more users that can be associated with one or more
accounts. The accounts table 6406 can include account
records that can include information about accounts, loca-
tions of account directories, users associated with the
accounts, etc. The databases table 6408 can include “data-
base” records that can include information about databases
for the account 6420 (e.g., the database 6424, the database
6432, etc.). The domains table 6410 can include domain
records for one or more domains associated with the account
6420 and/or the applications 6430. The applications table
6412 can include application records that can include infor-
mation about the applications 6430, the files 6436 and direc-
tories within the account directory 6422, the version control
repositories 6438, and/or the vhosts 6434 associated with the
account 6420. The vhosts table 6414 can include virtual host
records that can include information associated with a vhost
directory, an account domain, and/or the version control
repository 6438.

[0555] FIG. 64A also includes a software stack 6450,
which can correspond to the software stack 6340 in FIG. 63.

[0556] FIG. 64B is a flow diagram of an exemplary process
6460 for creating an account and installing applications into
the account, according to some embodiments. Note that the
circled numbers in FIG. 64B correspond to the circled num-
bers in FIG. 64A. In some embodiments, an EMS (e.g., the
EMS 6302) performs these operations. The discussion of
FIG. 64B below describes the operations as being performed
by the EMS for the sake of clarity. However, it should be noted
that other modules can perform all or a subset of these opera-
tions. The process 6460 may be governed by instructions that
are stored in a computer readable storage medium and that are
executed by one or more processors of one or more servers.
Each of the operations shown in FIG. 64B may correspond to
instructions stored in a computer memory or computer read-
able storage medium. The computer readable storage medium
may include a magnetic or optical disk storage device, solid
state storage devices such as Flash memory, or other non-
volatile memory device or devices. The computer readable
instructions stored on the computer readable storage medium

Feb. 5, 2009

are in source code, assembly language code, object code, or
other instruction format that is interpreted by one or more
processors.

[0557] The EMS creates an admin user record for an admin
user in the admin users table 6404 (6462). In some embodi-
ments, an application synchronization operation and/or an
AOP synchronization operation cannot be performed for
admin users. Note that non-admin users associated with an
account can also be created in a separate process after the
account has been created. These non-admin users can be
stored in a “users” table (not shown). In some embodiments,
an application synchronization operation and/or an AOP syn-
chronization operation can be performed for non-admin
users.

[0558] Returning to FIG. 64B, the EMS creates an account
record in the accounts table 6406 and an account directory
that are associated with the admin user record (6464). The
EMS then creates an account database and an associated
“database” record in the databases table 6408 for the newly
created account database (6466). Next, the EMS creates a
domain record in the domains table 6410 (6468). The EMS
then creates an application directory and an application
record in the applications table 6412 associated with the
application directory (6470). The EMS then creates an appli-
cation database and a “database” record in the databases table
6408 associated with the application database (6472). Next,
the EMS creates a vhost directory, a version control reposi-
tory for the vhost directory, and/or a vhosts record in the
vhosts table 6414 (6474). Note that a given application (e.g.,
the application 6430) can have many virtual hosts (e.g., the
vhost 6434, etc.) associated with it. Thus, multiple vhost
directories, version control repositories, and/or vhosts
records can be associated with the given application. In some
embodiments, a virtual host (e.g., the vhost 6434) for an
application (e.g., the application 6430) can be associated with
a database. In these embodiments, a database connection
string, which indicates how the virtual host can connect to the
database, can be stored in the databases table 6408 and/or the
vhosts table 6414. The EMS then downloads and installs the
software packages 6426 (6476). The EMS then creates con-
figuration files for the modules in the software stack 6450
(6478).

[0559] Although FIG. 64B describes an exemplary process
for creating a new account and installing applications into the
new account, only a subset of the operations in FIG. 64B may
need to be performed. For example, if a user record for a given
user and an account record associated with the user already
exist in the EMS database 6402, then steps 6462-6466 can be
omitted when adding a new application to the existing
account.

Synchronizing Applications

[0560] Some embodiments provide techniques for syn-
chronizing data between applications. In these embodiments,
the code and/or the architecture of the applications do not
need to be modified in order to synchronize data between the
applications. In some embodiments, the data is synchronized
between the databases for the applications without using
explicit commands executed by the applications. In other
words, the synchronization of data occurs at the database
level, and not the application level. In some embodiments, the
application framework described above is used to facilitate
synchronizing data between applications. For example, the
data that can be synchronized between applications can

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 215

US 2009/0037337 Al

include tasks, contacts, calendar items, etc. The data is typi-
cally stored in tables within a database. The tables in which
the data is stored can be different for each application. For
example, a first application may store contact data in a “con-
tacts” table in a database for the first application, whereas a
second application may store contact data in an “email” table
in a database for the second application. In some embodi-
ments, one or more of the applications is a web-based appli-
cation.

[0561] FIG.65isablockdiagram 6500 ofa server 6510 and
a client 6530, according to some embodiments. In some
embodiments, the server 6510 includes an application frame-
work 6512. The application framework 6512 can include one
or more accounts. For example, the application framework
6512 can include an account 6514. The account 6514 can
include one or more applications 6516. The applications 6516
can be associated with application databases 6518, which can
store, update, delete, retrieve, query, and search for data in
application databases 6518. As illustrated in FIG. 65, the
account 6514 includes the applications 6516-1 and 6516-2
and the associated application databases 6518-1 and 6518-2,
respectively.

[0562] Insomeembodiments, a subset of the data stored in
the application databases 6518-1 and 6518-2 can be synchro-
nized with each other. For example, the subset of the data can
be data that has changed (e.g., new data, updated data, deleted
data, etc.). In some embodiments, the subset of the data stored
in the application databases 6518-1 and 6518-2 are first syn-
chronized with a data framework 6519 based on synchroni-
zation rules 6520. The synchronization rules 6520 are then
applied to the data that was synchronized to the data frame-
work 6519 to synchronize this data with the respective appli-
cation database. Alternatively, the synchronization rules can
be applied directly to synchronize the subset of the data stored
in the application databases 6518-1 and 6518-2 without using
the data framework 6519. The synchronization rules 6520 are
described in more detail below. In some embodiments, the
applications 6516-1 and 6516-2 can be applications that do
not have any built-in capabilities to synchronize data with
each other. These applications can include, but are not limited
to, email applications, CRM applications, calendar applica-
tions, etc. If these applications are standalone applications,
they may not be able to synchronize data with each other. For
example, GOOGLE™ calendar may not be able to synchro-
nize tasks with SUGAR CRM. In some embodiments, the
application databases 6518-1 and 6518-2 are synchronized
with each other directly. For example, a database that includes
contact information for GOOGLE™ calendar can synchro-
nize directly with a database that includes contact informa-
tion for SUGAR CRM. This synchronization can be per-
formed “outside” of the applications. In other words, the
applications do not need to be executing or active to perform
the synchronization.

[0563] In some embodiments, the client 6530 includes an
application framework 6532. The application framework
6532 can include one or more accounts. For example, the
application framework 6532 can include an account 6534.
The account 6534 can include one or more applications 6536.
The applications 6536 can be associated with application
databases 6538, which can store, update, delete, retrieve,
query, and search for data in application databases 6538. As
illustrated in FIG. 65, the account 6534 includes the applica-
tions 6536-1 and 6536-2 and the associated application data-
bases 6538-1 and 6538-2, respectively. For example, the

Feb. 5, 2009

applications 6536 can be GOOGLE™ calendar and SUGAR
CRM, respectively, and the databases 6538 can be databases
for GOOGLE™ calendar and SUGAR CRM, respectively.
[0564] Insome embodiments, a subset of the data stored in
the application databases 6538-1 and 6538-2 can be synchro-
nized with each other. For example, the subset of the data can
be data that has changed (e.g., new data, updated data, deleted
data, etc.). In some embodiments, the subset of the data stored
in the application databases 6538-1 and 6538-2 are first syn-
chronized with a data framework 6539 based on synchroni-
zation rules 6540. The synchronization rules 6540 are then
applied to the data that was synchronized to the data frame-
work 6539 to synchronize this data with the respective appli-
cation database. For example, if changes have occurred in
GOOGLE™ calendar, fields (or columns, etc.) in the data-
base for GOOGLE™ calendar first synchronized with the
data framework 6539, then the synchronization rules 6540 are
applied to the data framework 6539 to propagate/synchronize
the data from the data framework 6539 to the database for
SUGAR CRM. Alternatively, the synchronization rules can
be applied directly to synchronize the subset of the data stored
in the application databases 6538-1 and 6538-2 without using
the data framework 6539. The synchronization rules 6530 are
described in more detail below. In some embodiments, the
applications 6536-1 and 6536-2 can be applications that do
not have any built-in capabilities to synchronize data with
each other. In some embodiments, the application databases
6538-1 and 6538-2 are synchronized with each other directly.
[0565] Insome embodiments, the applications 6516 in the
account 6514 on the server 6510 can be synchronized with the
applications 6536 in the account 6534 on the client 6530. In
some embodiments, the data frameworks 6519 and 6539 are
first synchronized with each other, and then the synchroniza-
tion rules 6520 and 6540, respectively, are applied to the
synchronized data to synchronize the application databases
6518 and 6538, respectively. In some embodiments, the AOP
synchronization process described above is used to synchro-
nize the application databases 6518 on the server 6510 with
the application databases 6538 on the client 6530.

[0566] Note that although FIG. 65 illustrates a single
account in the server 6510 and a single account in the client
6530, more than one account can be included on the server
6510 and/or the client 6530. Furthermore, each account can
include any number of applications.

[0567] In some embodiments, the data frameworks 6519
and 6539 and the sync rules 6520 and 6540 are included in an
application synchronization module (e.g., the application
synchronization module 6306 in FIG. 63.

[0568] Although FIG. 65 illustrates that both the server
6510 and the client 6530 include application frameworks, in
some embodiments, either the server 6510 or the client 6530
may not include an application framework.

[0569] FIG. 66 is a flow diagram of an exemplary process
6600 for synchronizing applications, according to some
embodiments. Note that the circled numbers in FIG. 66 cor-
respond to the circled numbers in FIG. 65. The process 6600
may be governed by instructions that are stored in a computer
readable storage medium and that are executed by one or
more processors of one or more servers. Each of the opera-
tions shown in FIG. 66 may correspond to instructions stored
in a computer memory or computer readable storage medium.
The computer readable storage medium may include a mag-
netic or optical disk storage device, solid state storage devices
such as Flash memory, or other non-volatile memory device

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 216

US 2009/0037337 Al

or devices. The computer readable instructions stored on the
computer readable storage medium are in source code,
assembly language code, object code, or other instruction
format that is interpreted by one or more processors.

[0570] As illustrated in FIG. 66, changes are detected in an
application database (e.g., the application database 6518-1 in
FIG. 65) for a first application (e.g., the application 6516-1)
when a user uses the first application (6602). The changes are
then pushed to a data framework (e.g., the data framework
6519 in FIG. 65) (6604) and the changes are then synchro-
nized with a second application (e.g., the application 6516-2
in FIG. 65) (6606). The second application has synchronized
the changes (6614). In some embodiments, the changes are
synchronized between the server (e.g., the server 6510 in FIG.
65) and the client (e.g., the client 6530 in FIG. 65) (6616). In
these embodiments, the AOP synchronization technique
described above can be used.

[0571] In some embodiments, synchronizing the changes
with the second application includes pulling changes from the
data framework (6608), applying synchronization rules to the
changes (6610), and applying the changes to an application
database (e.g., the application database 6518-2 in FIG. 65) for
the second application (6612).

[0572] Note that the process 6600 can be performed at the
client 6530 and/or the server 6510 in FIG. 65. Moreover,
changes from any applications within an application frame-
work can be synchronized with other applications within the
application framework. For example, changes made in the
application 6516-2 can be synchronized with the application
6516-1 and changes made in the application 6516-1 can be
synchronized with the application 6516-2. Furthermore,
changes made in applications on a server/client can be syn-
chronized with applications on a client/server (e.g., using the
AOQOP synchronization technique described above).

[0573] FIG. 67isablock diagram illustrating an exemplary
process 6700 for synchronizing applications, according to
some embodiments. The process 6700 may be governed by
instructions that are stored in a computer readable storage
medium and that are executed by one or more processors of
one or more servers. Each of the operations shown in FIG. 67
may correspond to instructions stored in a computer memory
or computer readable storage medium. The computer read-
able storage medium may include a magnetic or optical disk
storage device, solid state storage devices such as Flash
memory, or other non-volatile memory device or devices. The
computer readable instructions stored on the computer read-
able storage medium are in source code, assembly language
code, object code, or other instruction format that is inter-
preted by one or more processors. In some embodiments, the
process is performed on a computer system that is to be
synchronized. For example, the computer system can be a
server or a client computer system.

[0574] An outbound process module 6702 receives an out-
bound order 6740, which includes changes to data for one or
more applications and an order that changes to data are
applied. Note that the changes to the data can be made to one
or more databases, one or more structured files, and/or one or
more documents. In some embodiments, the ordering of
changes to data in the outbound order 6740 can be: all updates
6741, all inserts 6742, all deletes 6743, parent deletes 6744,
child deletes 6745, parent inserts 6746, and child inserts
6747. The all updates 6741 includes all updates to existing
data. The all inserts 6742 includes all new data records that
are to be added. The all deletes 6743 includes all existing data

Feb. 5, 2009

records that are to be deleted. The parent deletes 6744 include
parent data records that are to be deleted. The child deletes
6745 include child data records that are to be deleted. The
parent inserts 6746 include parent data records that are to be
deleted. The child inserts 6747 include child data records that
are to be deleted.

[0575] Insomeembodiments, an outbound execute module
6704 receives the changes to the data for one or more appli-
cations and executes one or more of: an outbound insert
module 6710 that inserts new data records, an outbound
update module 6720 that updates existing data records, and an
outbound delete module 6730 that deletes existing data
records for one or more applications 6750. The one or more
applications 6750 can also receive changes to the data from an
AOP synchronization process through the user_in: Hooks
module 6772. The user_in:Hooks module 6772 can include
an auto increment module 6774, which is described in more
detail above with reference to FIGS. 27-29 above.

[0576] In some embodiments, the outbound insert process
6710 includes hooks 6711 and filters 6715. The hooks 6711
can include one or more of: hooks to a backdata update
module 6712 that performs an initial data synchronization
(e.g., as described in FIGS. 18 and 19 above), hooks to a
licensing module 6713 that verifies that licenses are valid
(e.g., as described in FIGS. 44 and 57 above), and/or hooks to
a user management module 6714 (e.g., as described in FIG.
57 above). Note that the term “hooks” refers to a mechanism
by which a given module can access another module. For
example, a hook can include a function, a procedure, and/or a
method within a given module that can access functions of
another module, an API function, procedure, and/or method,
etc. In some embodiments, the backdata update module 6712
requeues new data records (e.g., data records to be added) for
an application as updates that are updated in the outbound
update process 6720. The filters 6715 can include an owner id
translation filter 6716 that translates owner_ids between
applications. Note that the term “filter” refers to a mechanism
that can perform a specified operation on data. For example,
this operation can include a translation operation that trans-
lates data values, a selection operation that selects data values
based on specified criteria, etc.

[0577] Insome embodiments, the outbound update process
6720 includes hooks 6721 and filters 6724. The hooks 6721
can include one or more of: hooks to a licensing module 6713
that verifies that licenses are valid and/or hooks to a user
management module 6714. The filters 6722 can include an
owner_id translation filter 6716 that translates owner_ids
between applications.

[0578] Insome embodiments, the outbound delete process
6730 includes hooks 6731. The hooks 6731 can include one
ormore of: hooks to a licensing module 6713 that verifies that
licenses are valid and/or hooks to a user management module
6714.

[0579] Note that if the licensing modules 6713 determine
that a license for an application is not valid, the outbound
insert process 6710, the outbound update process 6720, and/
or the outbound delete process 6730, respectively, are not
performed. Similarly, if the user management modules 6714
determine that a user of an application does not have sufficient
privileges to change specified data for the one or more appli-
cations, the outbound insert process 6710, the outbound
update process 6720, and/or the outbound delete process
6730, respectively, are not performed.

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 217

US 2009/0037337 Al

[0580] Insomeembodiments, as changes to the data for the
one or more applications 6750 are detected by an inbound
module 6752, the changes can be accumulated for one or
more of an AOP synchronization process and an application
synchronization process. If the changes are being accumu-
lated for an application synchronization process (6754, App
Sync), the changes are accumulated into an account synchro-
nization log 6762, which is then used by an outbound process
6764. If the changes are being accumulated for an AOP syn-
chronization process (6754, AOP), the changes are accumu-
lated into an outgoing synchronization log 6756. Changes
from the outgoing_sync_log and the AOP user_in are then
separated into “user out” tables 6758 as described above with
reference to FIG. 27 above. The user_out tables are then
received by an AOP sync_in process 6760 on a receiving
system (e.g., a server if the changes were made on a client, or
a client if the changes were made on the server).

[0581] In some embodiments, an AOP sync_out process
6766 receives changes to data for applications on a transmit-
ting system made when the applications were operating in an
AOP mode (e.g., as described above). These changes can be
included in a user_in table 6768. The changes included in the
user_in tables are then processed 6770. In some embodi-
ments, the changes included in the user_in tables are received
by the outbound process 6764, which incorporates the
changes made to applications within a given computer system
(e.g., application synchronization) and changes made to
applications on different computer systems (e.g., AOP syn-
chronization). In some embodiments, the changes included in
the user_in tables are processed by the auto increment module
6774 as described above. After being processed by the auto
increment module 6774, the changes included in the user_in
tables are incorporated into the user_out tables 6758 and/or
the one or more applications 6750. Note that the changes
included in the user_in tables can be included in the user_out
tables because an application synchronization operation may
include changes both to the instance of the application on the
server and on the client.

[0582] FIG. 68isablock diagram illustrating an exemplary
process 6800 for handling parent-child relationships during a
synchronization process, according to some embodiments.
The exemplary process 6800 describes exemplary operations
performed by the owner_id translation module 6716 in FIG.
67. Parent-child relationships can be unenforced or can be
enforced using foreign keys. Parent-child relationships can be
used to associate records with each other. These associations
can include a one-to-one (e.g., one parent to one child), a
one-to-many (e.g., one parent to multiple children), and a
many-to-many (e.g., many parents to many children) rela-
tionship. As illustrated in FIG. 68, applications 6802 are
being synchronized with each other. The applications 6802
can be any of the applications described above (e.g., web-
based applications). The applications 6802 include users
tables 6804, apply_users tables 6806, applications tables
6808, and databases tables 6810. A user with a given id is
associated with an application with an associated id via the
apply_users table 6806. For example, the apply_user table
6806-1 can include foreign keys referring to a data record in
the users table 6804-1 associated with a given user (e.g.,
user_id) and a data record in the applications table associated
with a given application (e.g., app_id). The apply_user table
6806-1 can also include a unique record id (e.g., “id”) and an
owner_id value that corresponds to the given user’s instance

Feb. 5, 2009

within an application. The corresponding set of tables also
exist for the application 6802-2.

[0583] In some embodiments, the parent-child relation-
ships are defined in sync_vmap_parent tables 6812 and sync_
vmap_child tables 6814. The sync vmap_parent tables 6812
include an app_table field, an app_column field, a database_
id field, a translate field, an auto_inc field, and a primary key
field. The app_table and app_column fields specify an appli-
cation table and column, respectively. The database_id field
specifies the database_id in the databases table 6408 corre-
sponding to the database including the app_table and app_
column. The translate field specifies whether an owner_id
translation is to be performed for a given parent-child rela-
tionship defined in the sync_vmap_parent tables 6812. The
auto_inc field specifies that the parent value is an auto incre-
menting value (e.g. used in AOP sync). The primary key field
indicates that the parent value is a primary key of atable (e.g.,
used for AOP synchronization operations and application
synchronization operations). For application synchronization
operations, the primary key can indicate whether the EMS
needs to generate a unique identifier for a given field. For AOP
synchronization operations, the primary keys are required to
be the same on the server and the client. Thus, the primary key
can be used to reinforce the parent/child relationships. The
sync_vmap_child tables 6814 include the app_table field, an
app_column field, and a parent_id field.

[0584] In some embodiments, during a synchronization
process, the changes to the data are stored one or more sync
log entries. An exemplary sync log entry 6816 is illustrated in
FIG. 68. The exemplary sync log entry 6816 includes one or
more of: sync_id (e.g., a unique identifier for the sync log
entry), transaction (e.g., a unique identifier for a given data-
base transaction), account_sync (e.g., the type of synchroni-
zation data—AOP sync, application sync, etc.), sync_column
(e.g., the column to be synchronized), broadcast_table (e.g., a
table in the source database), broadcast_column (e.g., a col-
umn in a table that in the source database includes the
changed data), broadcast_database_id (e.g., a database_id in
the databases table 6408 corresponding to the source data-
base), broadcast_action (e.g., an action performed by the
source database—insert, update, delete, etc.), broadcast_v-
map_id (e.g., aunique identifier for a source vmap), datatypes
(e.g, the data type of the changed data), new_bool (e.g., ifa
column is a Boolean value and an Insert or an Update has
occurred, this stores the new Boolean value), old_bool (e.g.,
if a column is a Boolean value and an Update has occurred,
this stores the old Boolean value), new_text (e.g., if a column
is not a Boolean value and an Insert or an Update has
occurred, this stores the new value), old_text (e.g., ifa column
is not a Boolean value and an Update has occurred, this stores
the old value), group_ids (e.g., identifies ownership and
record filtering for AOP and/or application synchronization
operations when group ownership is declared), map_id (e.g.,
a unique identifier that is used to identify records across
applications), owner_id (e.g., an identifier for the user that
corresponds to the user’s instance with an application), back-
data (e.g., whether a backdata update is to be performed),
from_aop (e.g., whether the sync log entry resulted from an
AOP synchronization operation), subscribe_action (e.g., an
action to be performed by the subscribing database—insert,
update, delete, etc.), subscribe_database_id (e.g., a database_
id in the databases table 6408 corresponding to the subscrib-
ing database), subscribe_table (e.g., a table in the subscribing
database), subscribe_column (e.g., a column in a table that in

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 218

US 2009/0037337 Al

the subscribing database includes the changed data), deploy_
licensing_id (e.g., a unique identifier used to identify the
licensing model for a given application), vmap_ids (e.g., a
unique identifier for a destination/subscribing vmap), and
special (e.g., used to mark phrases—updating, complete,
etc.—for auto-increment).

[0585] Insomeembodiments, every tablein the application
used by the synchronizer includes a column “eas_sync_map_
id.” During a synchronization operation, the field “map_id”
includes the unique identifier that corresponds to the value in
eas_sync_map_id column. This column can include a 32
character unique identifier which is used to identify records
across applications. For example, when updating or deleting
a value during synchronization, the value in the eas_sync_
map_id column is used to match to the eas_sync_map_id in
the destination app.

[0586] In some embodiments, the sync log entry 6816
includes data that allows the lookup of parent/children rela-
tionships. This lookup can be performed while the sync log
entry is being processed. Note that the fields prefixed with
“broadcast_” include data pertaining to the source database
and the fields prefixed with “subscribe_" include data pertain-
ing to the destination database.

[0587] In some embodiments, if a subscribing database
includes a parent/child relationship defined on a subscribe_
table and/or a subscribe_column, the sync log entry is treated
as a special case and is handled in a different order. (e.g., see
the outbound order 6740 in FIG. 67). In some embodiments,
a subscribing database is a database that has requested to
receive changes to data made in another database. In some
embodiments, if a given sync log entry corresponds to a data
record that has a parent-child relationship and the data record
is marked as “translate” (e.g., via the sync_vmap_parent 6812
tables), the apply_user records for the source database are
queried to determine a user associated with the owner_id for
the changed data that the sync log entry is referencing. The
apply_user records for the subscribing database are also que-
ried to determine the owner_id for the subscribing database
associated with the determined user. The owner_id value of
the subscribing database can then be used to replace the value
of the owner_id in the sync log entry.

[0588] FIG. 69 is a flow diagram of an exemplary process
6900 for translating owner IDs, according to some embodi-
ments. The process 6900 may be governed by instructions
that are stored in a computer readable storage medium and
that are executed by one or more processors of one or more
servers. Each of the operations shown in FIG. 69 may corre-
spond to instructions stored in a computer memory or com-
puter readable storage medium. The computer readable stor-
age medium may include a magnetic or optical disk storage
device, solid state storage devices such as Flash memory, or
other non-volatile memory device or devices. The computer
readable instructions stored on the computer readable storage
medium are in source code, assembly language code, object
code, or other instruction format that is interpreted by one or
more processors. For example, the process 6900 can be per-
formed by the application synchronization module 6306
(e.g.,in a client and/or a server) in FIG. 63. The discussion of
FIG. 69 below describes the operations as being performed by
the application synchronization module 6306 of a computer
system (e.g., a client and/or a server) for the sake of clarity.
However, it should be noted that other modules can perform
all or a subset of these operations.

Feb. 5, 2009

[0589] InFIG. 69, the application synchronization module
6306 determines whether the app column for a subscribing
database is a vmap_parent or a vmap_child of a parent that
has the “translate” field set to “true” (6902). If the “translate”
field is set to “false” (6904, no), the application synchroniza-
tion module 6306 continues with the synchronization (6910).
If the “translate” field is set to “true” (6904, yes), the appli-
cation synchronization module 6306 obtains the owner_id
corresponding to the user of the subscribed database from the
apply_user table (6906). Next, the application synchroniza-
tion module 6306 replaces the app_column value with the
owner_id from the apply_user table (6908). The application
synchronization module 6306 then continues with the syn-
chronization (6910).

[0590] FIG. 70is ablock diagram illustrating an exemplary
process 7000 for merging users between applications, accord-
ing to some embodiments. FIG. 71 is a flow diagram of an
exemplary process 7100 for merging users between applica-
tions, according to some embodiments. It is desirable to
merge users between applications because a single user may
have different user identifiers (e.g., user_ids) in different
applications. For example, the same user may have a user
identifier of 2 in a first application and a user identifier of 6 for
a second application. It is therefore desirable to merge these
two users into a single user so that the synchronization of user
data can be facilitated. The process 7100 corresponds to the
process 7000 and are discussed together. Note that the circled
numbers in FIG. 70 correspond to the circled numbers in FI1G.
71. The process 7100 may be governed by instructions that
are stored ina computer readable storage medium and that are
executed by one or more processors of one or more servers.
Each of the operations shown in FIG. 71 may correspond to
instructions stored in a computer memory or computer read-
able storage medium. The computer readable storage medium
may include a magnetic or optical disk storage device, solid
state storage devices such as Flash memory, or other non-
volatile memory device or devices. The computer readable
instructions stored on the computer readable storage medium
are in source code, assembly language code, object code, or
other instruction format that is interpreted by one or more
processors.

[0591] FIG. 70 includes applications 7004-1 and 7004-2
and EMS 7008, which can be included in an application
framework (e.g., the application framework 6300) on a com-
puter system (not shown). A user is created in the applications
7004-1 and 7004-2 for a user 7002 (7102). For example, the
user can have a user_id of 4 in the application 7004-1 and a
user_id of 3 in the application 7004-2. A user is also created
in the EMS 7008 (7104). For example, the user can have a
user_id of 6 in the EMS 7008. In some embodiments, the
EMS user_ids are applied to the applications 7004-1 and
7004-1 (7106) and the owner_id values are set (7108). Note
that applying users to applications identifies the user’s rela-
tionship and access to the application. The user’s relationship
is the “owner_id,” which is the user’s unique identifier for the
application. Also note that a user cannot access an application
using AOP unless the user is applied to that application and
the user is allowed to use AOP (e.g., the AOP flag set for the
user). Furthermore, applications may use this record to
authenticate a user for an application. Thus, the application
can query the EMS to determine whether the user has permis-
sion to use the application.

[0592] Returning to FIGS. 70 and 71, the user_ids are
merged in the EMS (7110). Thus, user_id=4 for the applica-

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 219

US 2009/0037337 Al

tion 7004-1 and user_id=3 for the application 7004-2 corre-
spond to the same user_id=6 in the EMS 7008.

[0593] At a later time, the user 7002 creates a task 7006
associated with the user_id=3 in the application 7004-2
(7112). Note that although the task 7006 is described in this
example, other objects can be created (e.g., calendar items,
contacts, documents, etc.). Next, the task 7006 is synchro-
nized with the EMS 7008 (7114). In doing so, the EMS 7008
determines the EMS user_id corresponding to the user_id=3
for the application 7004-2 (e.g., user_id=6). The EMS 7008
then translates the user id in the task 7006 from user_id=3 for
the application 7004-2 to user_id=4 for the application
7004-1 (7116). The EMS 7008 then sends the task 7006 with
the translated user_id to the application 7004-1 (7118). The
application 7004-1 receives the task 7006 with the translated
user_id and creates a task in the database for the application
7004-1 corresponding to the task 7006 generated by the appli-
cation 7004-2 (7120).

[0594] FIG. 72 presents a block diagram of an exemplary
server 7200, according to some embodiments. The server
7200 generally includes one or more processing units
(CPU’s) 7202, one or more network or other communications
interfaces 7204, memory 7210, and one or more communi-
cation buses 7208 for interconnecting these components. The
communication buses 7208 may include circuitry (sometimes
called a chipset) that interconnects and controls communica-
tions between system components. The server 7200 may
optionally include a display 7206 and one or more input
devices 7205 (e.g., keyboard, mouse, trackpoint, etc.). The
memory 7210 includes high-speed random access memory,
such as DRAM, SRAM, DDR RAM or other random access
solid state memory devices; and may include non-volatile
memory, such as one or more magnetic disk storage devices,
optical disk storage devices, flash memory devices, or other
non-volatile solid state storage devices. The memory 7210
may optionally include one or more storage devices remotely
located from the CPU(s) 7202. The memory 7210, or alter-
nately the non-volatile memory device(s) within the memory
7210, comprises a computer readable storage medium. In
some embodiments, the memory 7210 stores the following
programs, modules and data structures, or a subset thereof:
operating system 7211, network communication module
7212, an EMS module 7213, an account framework 7230, a
software stack 7250, and/or auxiliary modules 7260.

[0595] The operating system 7211 includes procedures for
handling various basic system services and for performing
hardware dependent tasks. Network communication module
7212 can be used for connecting the server 7200 to other
computers via the one or more communication network inter-
faces 7204 (wired or wireless) and one or more communica-
tion networks, such as the Internet, other wide area networks,
local area networks, metropolitan area networks, and so on.
[0596] In some embodiments, the EMS module 7213
includes one or more of: an EMS database 7214 and/or an
application synchronization module 7215. The application
synchronization module can include one or more of: a data
framework 7216, synchronization rules 7218, synchroniza-
tion logs 7219, filters 7220, and hooks 7221. Note that these
components and/or modules are described in more detail with
reference to FIGS. 63-71, and 74-79. In some embodiments
the data framework 7216 includes a synchronization data
structure 7217 that can be used to synchronize data between
applications. The synchronization data structure 7217 is
described in more detail with reference to FIGS. 74-79.

Feb. 5, 2009

[0597] Insomeembodiments, the account framework 7230
includes one or more of: an account directory 7231, an
account database 7232, software packages 7233, and/or one
ormore applications 7240. The applications 7240 can include
one or more of: an application database 7241, files 7243, and
version control repository 7244. The files 7243 and the ver-
sion control repository 7244 can be associated with a vhost
7242. In some embodiments, the software packages 7233 can
include utilities (e.g., phpmyadmin, phppgadmin, websvn,
EDK, etc.), tools, and/or shared libraries (e.g., Zend, PHPu-
nit, famfamfam, the Etelos Application Server Framework,
etc.) used by applications within an account. These compo-
nents and/or modules are described in more detail with ref-
erence to FIGS. 63-71, and 74-79.

[0598] In some embodiments, the software stack 7250
includes one or more of: an email module 7251, a web server
module 7252, an authoring module 7253, and/or other ser-
vices 7254. Email module 7251 can include any electronic
mail program. For example, the email module 7251 can
include email servers (e.g., Sendmail, Postfix, and qmail,
etc.), mail filtering programs (e.g., procmail, SpamAssassin,
etc.), client email programs (e.g., elm, pine, Microsoft Out-
look, etc.), etc. The web server module 7252 can include any
application that can respond to client requests for pages, data,
graphics, videos, documents, etc, hosted on a server coupled
to clients and/or other servers via a network. For example, the
web server module 7252 can include Apache HTTP Server,
Microsoft Internet Information Server, etc. The authoring
module 7253 can include any application that allows a devel-
oper or a user to generate web-based applications. For
example, the authoring module 7253 can include a text editor,
a word processor, a web development environment (e.g.,
Microsoft Expression Web, Adobe Dreamweaver, etc.), etc.
The other services 7254 can include other applications such
as a Lightweight Data Access Protocol (LDAP) interface
module and/or database, an Internet Message Access Proto-
col (IMAP) module, a Post Office Protocol (POP) module, a
Dovecot module (e.g., an IMAP and POP server), a web
server (e.g., Apache HTTP server, Microsoft IIS Server, etc.),
one or more database management systems (e.g., MySQL,
PostgreSQL., etc.), logging applications (e.g., Syslog-ng,
etc.), authentication services (e.g., saslauthd, etc.). Note that
although FIG. 72 illustrates a single module for each type of
service, the software stack 7250 can include any number of
modules for a given type of service. For example, two differ-
ent email modules can be included within software stack
7250.

[0599] In some embodiments, the auxiliary services mod-
ule 7260 includes one or more of: famfamfam (icon images),
phpMyAdmin (php web-based MySQL database manage-
ment interface), phpPGAdmin (php web-based PostgSQL
database management interface), WebSVN (php web-based
Subversion interface), ImageMagick (image manipulation
library), ZendFramework (php utility framework), IconCube
Loaders (encrypted-php decryption library), libpng (PNG
manipulation library), libjpeg (JPEG manipulation library),
Neon (WebDAV client library), merypt (encryption library),
and FreeType (font utilities library).

[0600] Each ofthe above identified elements may be stored
in one or more of the previously mentioned memory devices,
and corresponds to a set of instructions for performing a
function described above. The above identified modules or
programs (i.e., sets of instructions) need not be implemented
as separate software programs, procedures or modules, and

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 220

US 2009/0037337 Al

thus various subsets of these modules may be combined or
otherwise re-arranged in various embodiments. In some
embodiments, the memory 7210 may store a subset of the
modules and data structures identified above. Furthermore,
the memory 7210 may store additional modules and data
structures not described above.

[0601] Although FIG. 72 shows a “server,” FIG. 72 is
intended more as functional description of the various fea-
tures that may be present in a set of servers than as a structural
schematic of the embodiments described herein. In practice,
and as recognized by those of ordinary skill in the art, items
shown separately could be combined and some items could be
separated. For example, some items shown separately in FIG.
72 could be implemented on single servers and single items
could be implemented by one or more servers. The actual
number of servers used to implement an application server
and how features are allocated among them will vary from
one implementation to another, and may depend in part on the
amount of data traffic that the system must handle during peak
usage periods as well as during average usage periods.
[0602] FIG. 73 presents a block diagram of an exemplary
client computer system 7300, according to some embodi-
ments. The client computer system 7300 generally includes
one or more processing units (CPU’s) 7302, one or more
network or other communications interfaces 7304, memory
7310, and one or more communication buses 7308 for inter-
connecting these components. The communication buses
7308 may include circuitry (sometimes called a chipset) that
interconnects and controls communications between system
components. The client computer system 7300 includes a
display 7306 and one or more input devices 7305 (e.g., key-
board, mouse, trackpoint, etc.). The memory 7310 includes
high-speed random access memory, such as DRAM, SRAM,
DDR RAM or other random access solid state memory
devices; and may include non-volatile memory, such as one or
more magnetic disk storage devices, optical disk storage
devices, flash memory devices, or other non-volatile solid
state storage devices. The memory 7310 may optionally
include one or more storage devices remotely located from
the CPU(s) 7302. The memory 7310, or alternately the non-
volatile memory device(s) within the memory 7310, com-
prises a computer readable storage medium. In some embodi-
ments, the memory 7310 stores the following programs,
modules and data structures, or a subset thereof: operating
system 7311, network communication module 7312, an EMS
module 7313, an account framework 7330, a software stack
7350, a browser module 7356, and/or auxiliary modules
7360.

[0603] The operating system 7311 includes procedures for
handling various basic system services and for performing
hardware dependent tasks. Network communication module
7312 can be used for connecting the server 7300 to other
computers via the one or more communication network inter-
faces 7304 (wired or wireless) and one or more communica-
tion networks, such as the Internet, other wide area networks,
local area networks, metropolitan area networks, and so on.
[0604] In some embodiments, the EMS module 7313
includes one or more of: an EMS database 7314 and/or an
application synchronization module 7315. The application
synchronization module can include one or more of: a data
framework 7316, synchronization rules 7318, synchroniza-
tion logs 7319, filters 7320, and hooks 7321. Note that these
components and/or modules are described in more detail with
reference to FIGS. 63-71 and 74-79. In some embodiments

Feb. 5, 2009

the data framework 7316 includes a synchronization data
structure 7317 that can be used to synchronize data between
applications. The synchronization data structure 7317 is
described in more detail with reference to FIGS. 74-79.
[0605] Insomeembodiments, the account framework 7330
includes one or more of: an account directory 7331, an
account database 7332, software packages 7333, and/or one
ormore applications 7340. The applications 7340 can include
one or more of: an application database 7341, files 7343, and
version control repository 7344. The files 7343 and the ver-
sion control repository 7344 can be associated with a vhost
7342. In some embodiments, the software packages 7233 can
include utilities (e.g., phpmyadmin, phppgadmin, websvn,
EDK, etc.), tools, and/or shared libraries (e.g., Zend, PHPu-
nit, famfamfam, the Etelos Application Server Framework,
etc.) used by applications within an account. These compo-
nents and/or modules are described in more detail with ref-
erence to FIGS. 63-71, and 74-79.

[0606] In some embodiments, the software stack 7350
includes one or more of: an email module 7351, a web server
module 7352, an authoring module 7353, and/or other ser-
vices 7354. Email module 7351 can include any electronic
mail program. For example, the email module 7351 can
include email servers (e.g., Sendmail, Postfix, and qmail,
etc.), mail filtering programs (e.g., procmail, SpamAssassin,
etc.), client email programs (e.g., elm, pine, Microsoft Out-
look, etc.), etc. The web server module 7352 can include any
application that can respond to client requests for pages, data,
graphics, videos, documents, etc, hosted on a server coupled
to clients and/or other servers via a network. For example, the
web server module 7352 can include Apache HTTP Server,
Microsoft Internet Information Server, etc. The authoring
module 7353 can include any application that allows a devel-
oper or a user to generate web-based applications. For
example, the authoring module 7353 can include a text editor,
a word processor, a web development environment (e.g.,
Microsoft Expression Web, Adobe Dreamweaver, etc.), etc.
The other services 7354 can include other applications such
as a Lightweight Data Access Protocol (LDAP) interface
module and/or database, an Internet Message Access Proto-
col (IMAP) module, a Post Office Protocol (POP) module, a
Dovecot module (e.g., an IMAP and POP server), a web
server (e.g., Apache HTTP server, Microsoft IIS Server, etc.),
one or more database management systems (e.g., MySQL,
PostgreSQL., etc.), logging applications (e.g., Syslog-ng,
etc.), authentication services (e.g., saslauthd, etc.). Note that
although FIG. 73 illustrates a single module for each type of
service, the software stack 7350 can include any number of
modules for a given type of service. For example, two differ-
ent email modules can be included within software stack
7350.

[0607] In some embodiments, the auxiliary services mod-
ule 7360 includes one or more of: famfamfam (icon images),
phpMyAdmin (php web-based MySQL database manage-
ment interface), phpPGAdmin (php web-based PostgSQL
database management interface), WebSVN (php web-based
Subversion interface), ImageMagick (image manipulation
library), ZendFramework (php utility framework), IconCube
Loaders (encrypted-php decryption library), libpng (PNG
manipulation library), libjpeg (JPEG manipulation library),
Neon (WebDAV client library), merypt (encryption library),
and FreeType (font utilities library).

[0608] In some embodiments, the browser module 7356
can include any application with a rendering engine that can

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 221

US 2009/0037337 Al

access data and/or services on a local and/or a remote com-
puter system and render the results so that a user can view the
data and/or interact with the services. In some embodiments,
browser module 7356 is a web browser.

[0609] Each ofthe above identified elements may be stored
in one or more of the previously mentioned memory devices,
and corresponds to a set of instructions for performing a
function described above. The above identified modules or
programs (i.e., sets of instructions) need not be implemented
as separate software programs, procedures or modules, and
thus various subsets of these modules may be combined or
otherwise re-arranged in various embodiments. In some
embodiments, the memory 7310 may store a subset of the
modules and data structures identified above. Furthermore,
the memory 7310 may store additional modules and data
structures not described above.

[0610] FIG. 74 presents a block diagram illustrating an
exemplary application synchronization module 7400,
according to some embodiments. The application synchroni-
zation module 7400 can be the application synchronization
module 6304 in FIG. 63. In some embodiments, the cross-
application synchronization module 7400 includes one or
more of: synchronization rules 7402, sync log 7410, data
framework 7420, filters 7430, hooks 7440, an outbound insert
module 7450, an outbound update module 7451, an outbound
delete module 7452, an outbound process module 7453, an
outbound execute module 7454, an outbound order 7455, an
inbound module 7456, and/or an AOP module 7457. These
components and/or modules are described in more detail with
reference to FIGS. 1-42 and 63-79.

[0611] In some embodiments, the synchronization rules
7402 include synchronization rules for one or more applica-
tions 7404. In some embodiments, the data framework 7420
includes a synchronization data structure 7422. The synchro-
nization data structure 7422 is described in more detail with
reference to FIG. 75. In some embodiments, the filters 7430
include an owner_id translation module 7431 (e.g., as
described in FIG. 67). In some embodiments, the hooks 7440
include one or more of: a hook to a back data update module
7440, a hook to a licensing module 7441, a hook to a user
management module 7442, and a hook to an auto increment
module 7443 (e.g., as described in FIG. 67).

[0612] FIG. 75 presents exemplary synchronization data
structures 7500, according to some embodiments. The syn-
chronization data structures 7500 include one or more of: an
eas_sync_app_logdata structure 7502, an inbound data struc-
ture 7504, and an outbound data structure 7506. The eas_
sync_app_log 7502 is used to store the changes made by the
application. These changes can be tracked using database
triggers on the tables and/or columns to be synchronized. The
inbound data structure 7504 includes data that is to be pro-
cessed by the application. This inbound data can be first
placed in a temporary table prior to being processed. The
outbound data structure 7506 includes data that is to be pre-
prossed and grouped together for outbound processing. This
processed data can them be placed in an outgoing_sync_log
and/or an account_sync_log. If the data is in an account_
sync_log, the data is to be outbound processed and sent to the
application databases. If the data is in the outgoing sync_log,
the data is to be sent to the user_out and/or the sync_out (for
AOQOP) table to wait for an AOP sync. The data can be placed
into the user_in or sync_in (for AOP) and processed as if it
was in the account_sync_log.

Feb. 5, 2009

[0613] FIG. 76 is a flow diagram of an exemplary process
7600 for synchronizing applications, according to some
embodiments. The process 7600 may be governed by instruc-
tions that are stored in a computer readable storage medium
and that are executed by one or more processors of one or
more servers. Each of the operations shown in FIG. 76 may
correspond to instructions stored in a computer memory or
computer readable storage medium. The computer readable
storage medium may include a magnetic or optical disk stor-
age device, solid state storage devices such as Flash memory,
or other non-volatile memory device or devices. The com-
puter readable instructions stored on the computer readable
storage medium are in source code, assembly language code,
object code, or other instruction format that is interpreted by
one or more processors.

[0614] As FIG. 76 illustrates, changes made to a first data
set in a plurality of data sets is detected (7602). At least a first
subset of the changes are synchronized to a data framework
(e.g., the data framework 7420) that facilitates data synchro-
nization between the plurality of data sets (7204). In some
embodiments, a data set and a data framework includes one or
more of: one or more databases, one or more structured files,
and one or more documents. The structured file can include
one of: an extensible markup language (XML) file, a hyper-
text markup language (HTML) file, and a file including values
separated by a delimiter. The delimiter can include one of: a
comma, and a tab break. A document can include one of: a
web document, a word processor document, a spreadsheet
document, a presentation document, and an electronic mail
message. In some embodiments, a change to a data set
includes one or more of: an update of data in the data set, an
addition of data to the data set, and/or a deletion of data from
the data set.

[0615] Insomeembodiments, synchronizing the atleast the
first subset of the changes to the data framework includes
determining a mapping between data fields in a data structure
for the first data set and data fields in a data structure for the
data framework (7606) and synchronizing the data fields in
the data structure for the first data set corresponding to the at
least the first subset of the changes with the data fields in the
data structure for the data framework based on the mapping
(7608). In some embodiments, synchronizing the data fields
includes translating values for the data fields in the data
structure for the first data set to corresponding values for the
data fields in the data structure for the data framework based
on translation rules for the first data set (7610). In some
embodiments, the translation rules and/or the mapping are
included in the synchronization rules (e.g., the synchroniza-
tion rules 6520, 6540 and 7218 in FIGS. 65 and 72, respec-
tively).

[0616] Insomeembodiments, atleast asecond subsetofthe
synchronized changes are synchronized from the data frame-
work to a second data set in the plurality of data sets (7612).
In some embodiments, synchronizing the at least the second
subset of the synchronized changes from the data framework
to a second data set in the plurality of data sets includes:
determining a mapping between data fields in a data structure
for the second data set and data fields in a data structure for the
data framework (7614) and synchronizing the data fields in
the data structure for the second data set with the data fields in
the data structure for the data framework based on the map-
ping (7616). In some embodiments, synchronizing the data
fields includes translating values for the data fields in the data
framework to corresponding values for the data fields in the

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 222

US 2009/0037337 Al

second data set based on translation rules for the second data
(7618). In some embodiments, the translation rules and/or the
mapping are included in the synchronization rules (e.g., the
synchronization rules 6520, 6540 and 7218 in FIGS. 65 and
72, respectively).

[0617] In some embodiments, at least a third subset of the
synchronized changes are synchronized from the data frame-
work to a second data framework (7620).

[0618] FIG. 77 is a flow diagram of an exemplary process
7700 for generating synchronization rules that are used to
synchronize applications, according to some embodiments.
The process 7700 may be governed by instructions that are
stored in a computer readable storage medium and that are
executed by one or more processors of one or more servers.
Each of the operations shown in FIG. 77 may correspond to
instructions stored in a computer memory or computer read-
able storage medium. The computer readable storage medium
may include a magnetic or optical disk storage device, solid
state storage devices such as Flash memory, or other non-
volatile memory device or devices. The computer readable
instructions stored on the computer readable storage medium
are in source code, assembly language code, object code, or
other instruction format that is interpreted by one or more
processors.

[0619] Asillustrated in FIG. 77, a first data set in a plurality
of data sets that is to be synchronized with a data framework
is identified (7702). A mapping between one or more data
fields in a data structure for the first data set and one or more
data fields in a data structure for the data framework is deter-
mined (7704). Synchronization rules for the first data set
based on the determined mapping are generated (7706).

[0620] Insomeembodiments, atleast a subset of the one or
more data fields for the first data set that include data values
that are to be translated to corresponding data values for the
data fields for the data framework are identified (7708).
Translation rules for translating data values for the at least the
subset of the data fields for the first data set to corresponding
data values for the data fields for the data framework are
generated (7710). In some embodiments, the translation rules
are included in the synchronization rules (e.g., the synchro-
nization rules 6520, 6540 and 7218 in FIGS. 65 and 72,
respectively).

[0621] Insome embodiments, the first data set and the data
framework include one or more of: one or more databases;
one or more structured files; and one or more documents. In
some embodiments, the first data set and the data framework
include one or more databases. The mapping can include a
mapping between columns of one or more database tables for
the first data set and columns of one or more database tables
for the data framework.

[0622] FIG. 78 is a flow diagram of an exemplary process
7800 for synchronizing applications, according to some
embodiments. The process 7800 may be governed by instruc-
tions that are stored in a computer readable storage medium
and that are executed by one or more processors of one or
more servers. Each of the operations shown in FIG. 78 may
correspond to instructions stored in a computer memory or
computer readable storage medium. The computer readable
storage medium may include a magnetic or optical disk stor-
age device, solid state storage devices such as Flash memory,
or other non-volatile memory device or devices. The com-
puter readable instructions stored on the computer readable

Feb. 5, 2009

storage medium are in source code, assembly language code,
object code, or other instruction for mat that is interpreted by
one Or More processors.

[0623] Asillustrated in FIG. 78, changes madeto afirst data
set for a first web-based application in an account are detected
(7802). At least a second data set for a second web-based
application in the account is identified (7804), wherein the
second data set includes at least a subset of the data included
in the first data set. Synchronization rules to synchronize the
second data set with the first data set are applied (7806).
[0624] In some embodiments, the synchronization rules
include: one or more rules to synchronize at least a subset of
data fields in a data structure for the first data set with data
fields in a data structure for a data framework, and/or one or
more rules to synchronize at least a subset of the data fields in
the data structure for the data framework with data fields in a
data structure for the second data set.

[0625] In some embodiments, the account includes a plu-
rality of data sets and corresponding web-based applications.
[0626] In some embodiments, the synchronization rules
include one or more of: a mapping between fields in the first
data set and fields in the second data set and/or rules for
resolving data conflicts between the first data set and the
second data set.

[0627] FIG. 79 presents exemplary synchronization rules
data structures 7900, according to some embodiments. The
synchronization rules data structures include a sync_vmap
data structure 7902, a sync_vmap_parent data structure 7904,
and a sync_vmap_child data structure 7906.

[0628] Screenshots

[0629] In the following figures (descriptions of screen-
shots), all references to modules (e.g., marketplace module
6122, user account access module 6172, deployer module
6152, packager module 6136, and marketplace database man-
agement module 6180) relate to modules shown in the system
of FIG. 61. These screen shots are exemplary screenshots of
user interfaces that display information for, and enable user
interaction with, the various applications and components of
the application marketplace of the present invention.

[0630] FIG. 101 is an exemplary screenshot 10100 of an
Account User Management Interface, generated by User
Account Access Module 6172. The information reflected here
is stored in a user database accessed by User Account Data-
base Management Module.

[0631] An Account User Management Interface allows a
user to activate services and application for different users.
Merging users together between applications enables better
synchronization of data between and across applications.
Field 10102 displays a user’s first name; field 10104 displays
a user’s last name; field 10106 displays a user’s phone num-
ber; field 10108 displays a user’s email address; field 10110
displays a user’s office; field 10112 displays a user’s depart-
ment; field 10114 is a matrix of user access information.
These are exemplary fields; in other embodiments different
fields may be created.

[0632] FIG. 102 is an exemplary screenshot 10200 of an
application packager, generated by Packager Module 6136.
The information reflected here is stored in a user database
accessed by User Account Database Management Module
6188.

[0633] The Application Packager allows a user to package
up the user’s application for distribution in the Marketplace or
move the application to another hosted solution (e.g. an Ete-

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 223

US 2009/0037337 Al

los hosted solution). Field 10202, and 10204 allow a user to
input the user’s Marketplace Username, and user’s Market-
place password respectively.

[0634] FIG. 103 is an exemplary screenshot 10300 of an
application packager, generated by Packager Module 6136.
The information entered here is stored in a database accessed
by Deployment Database Management Module 6184. Pack-
age a new full app (with the associated Begin button) 10302
allow a user to begin packaging a new application. Package an
update to an app 10304, allows a user to package an update to
an application.

[0635] FIG. 104 is an exemplary screenshot 10400 of an
application packager, generated by Packager Module. The
information entered here is stored in a database accessed by
Deployment Database Management Module 6184. Field
10402 allows a user to enter an application name which the
user wishes to package. Field 10404 allows a user to specify
a script associated with the package.

[0636] FIG. 105 is an exemplary screenshot 10500 of an
application packager, generated by Packager Module 6136.
The information entered here is stored in a database accessed
by Deployment Database Management Module 6184. Pack-
age a new full app (with the associated Begin button) 10502
allow a user to begin packaging a new application. Package an
update to an app, 10504, allows a user to package an update to
an application.

[0637] FIG. 106 is an exemplary screenshot 10600 of an
application packager, generated by Packager Module 6136.
The information entered here is stored in a database accessed
by Deployment Database Management Module 6184. Field
10602 allows a user to enter an application name which the
user wishes to package. Field 10604 allows a user to specify
other data.

[0638] FIG. 107 is an exemplary screenshot 10700 of an
application packager, generated by Packager Module 6136.
The information entered here is used by Permissions Module
6128 to verify the user’s credentials for a selected destination
store (e.g. an Etelos store).

[0639] FIG. 108 is an exemplary screenshot 10800 of an
application packager, generated by Packager Module 6136.
Field 10802 displays a set of icons associated with packaging
of a software application for distribution.

[0640] FIG. 109 is an exemplary screenshot 10900 of an
application packager, generated by Packager Module 6136.
Field 10902 shows a file structure for a packaged application.
[0641] FIG. 110 is an exemplary screenshot 11000 of an
application packager, generated by Packager Module 6136.
Field 11002 allows a user to view Binders and Tables associ-
ated with a packaged application. Field 11004 allows a userto
select a specific binder and/or table.

[0642] FIG. 111 is an exemplary screenshot 11100 of an
application packager, generated by Packager Module 6136
for specifying a script associated with a packaged application.
[0643] FIG. 112 is an exemplary screenshot 11200 of an
application packager, generated by Packager Module 6136.
Scheduler, 11202, allows a user to schedule software appli-
cations for packaging updates. Database Broadcast/Sub-
scribe rules, 11204, allows an administrator to specity broad-
casting and subscription rules for updates based on an
application’s license as stored in licensing database manage-
ment module 6182.

[0644] FIG. 113 is an exemplary screenshot 11300 of an
application packager, generated by Packager Module 6136.

Feb. 5, 2009

[0645] FIG. 114 is an exemplary screenshot 11400 of an
Account Information Details, generated by User Accounts
Module 6156.

[0646] Account Information Details shows the user the
detailed information associated with each application
installed on the user’s account. Field 11402 includes
examples of information that may be included in one embodi-
ment.

[0647] FIG. 115 is an exemplary screenshot 11500 of a
Development Environment that can be used to create or
modify applications. Files panel 11502 displays the file struc-
ture associated with an application. Binders panel 11504
displays Binders associated with the application. Panel 11506
can display the contents of selected files, folders, and/or
objects.

[0648] FIG. 116 is an exemplary screenshot 11600 of an
application packager, generated by Packager Module 6136
similar to FIG. 103.

[0649] FIG. 117 is an exemplary screenshot 11700 of an
AOP sync rules manager, generated by an application syn-
chronization module (e.g., the application synchronization
module 6306 in FIG. 63). The AOP sync rules manager 11702
displays current synchronization rules as defined by a user.
Column 11704 displays the Code associated with an applica-
tion. The code column includes the code to execute upon rule
execution. Column 11706 displays the status of a rule asso-
ciated with an application. Column 11708 displays names of
applications and/or database for which there is a sync rule
defined. Column 11710 and 11712 display a table and a
column, respectively, in the application database for which
there is a defined sync rule. Button 11714 opens an interface
to specify whether a given column in the application database
is an autoincrementing column. Button 11716 allows a user to
create a new sync rule.

[0650] FIGS. 118-121 are exemplary screenshots of an
AOP sync rules manager. FIG. 118 is an exemplary screen-
shot 11800 of an AOP sync rules manager, allowing a user to
define a new sync rule. Field 11802 allows a user to specify
the application and/or database for which the user wishes to
define a new sync rule. Field 11804 allows the user to choose
a table associated with the application and/or database for
which the user wishes to define a sync rule.

[0651] FIG. 119 is an exemplary screenshot 11900 of an
AOP sync rules manager, allowing a user to define a new sync
rule. Field 11902 allows a user to specify an application
and/or a database for which the user wishes to define a new
sync rule. Field 11904 allows the user to choose a table
associated with the application and/or database for which the
user wishes to define a new sync rule. Field 11906 allows the
user to specify a Column associated with the application
and/or database for which the user is defining a new sync rule.
Fields 11908, 11910, and 11912 allow a user to define a table
in the application framework (e.g., Framework Sync Table) to
which the table defined in field 11904 is synchronized, an
associated column (e.g., Framework Sync Column) in the
table defined in field 11904 to which the column defined in
field 11906 is synchronized, and a scope of the synchroniza-
tion rule, respectively.

[0652] FIG. 120 is an exemplary screenshot 12000 of an
AOP sync rules manager, allowing a user to define a new sync
rule. Field 12002 allows a user to specify an application
and/or a database for which the user wishes to define a new
sync rule. Field 12004 allows the user to choose a table
associated with the application and/or database for which the

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 224

US 2009/0037337 Al

user wishes to define a new sync rule. Field 12006 allows the
user to specify a Column associated with the application
and/or database for which the user is defining a new sync rule.
Field 12008 allows a user to select when and what types of
changes are synchronized. For example, changes can be syn-
chronized when there are one or more of the following: inserts
(e.g., new data added), and updates (e.g., existing data is
updated), deletes (e.g., existing data is deleted), etc. Fields
12010 and 12012 allow a user to define a table in the appli-
cation framework (e.g., Framework Sync Table) to which the
table defined in field 12004 is synchronized, and a scope of
the synchronization rule, respectively.

[0653] FIG. 121 is an exemplary screenshot 12100 of an
AOP sync rules manager, allowing a user to define a new sync
rule. Field 12102 allows a user to specify an application
and/or a database for which the user wishes to define a new
sync rule. Field 12104 allows the user to choose a table
associated with the application and/or database for which the
user wishes to define a new sync rule. Field 12106 allows the
user to specify a Column associated with the application
and/or database for which the user is defining a new sync rule.
Field 12108 allows a user to select when and what types of
changes are synchronized. Fields 12110, 12112, and 12114
allow a user to define a table in the application framework
(e.g., Framework Sync Table) to which the table defined in
field 12104 is synchronized, an associated column (e.g.,
Framework Sync Column) in the table defined in field 12104
to which the column defined in field 12106 is synchronized,
and a scope of the synchronization rule, respectively.

[0654] FIG. 122 is an exemplary screenshot 12200 of a
Group Manager, generated by an access module (e.g., the
access module 6170 in FIG. 61). In some embodiments, auser
may define an application and/or database 12202, group
12204, membership 12206, membership id 12208, data type
12210, group primary key 12212, membership group foreign
key 12214, and Data id 12216 associated with an application.
By clicking the Create button 12218 a user may create a group
definition associated with an application. By clicking the
Cancel button 12220, a user may cancel the group definition
associated with an application.

[0655] FIG. 123 is an exemplary screenshot 12300 of a
sync rules manager wherein a user generates an ID Transla-
tion Definition for parent-child relationships. The user may
define a Vmap Parent 12302 by defining a table 12304 and a
column 12306 for an application and/or a database that is a
parent for another column in a table. The user may save
changes by clicking the Save button 12308, or cancel changes
by clicking the Cancel button 12310.

[0656] FIG. 124 is an exemplary screenshot 12400 of a
sync rules manager wherein a user generates an ID Transla-
tion Definition. Field 12402 includes applications for which
there is an ID Translation Definition. Field 12404 can display
the Vmap parent relationships described in FIG. 123. The
button Edit 12406 allows a user to edit the relationships
information associated with an application.

[0657] FIG. 125 is an exemplary screenshot 12500 of a
sync rules manager wherein a user may use Task Editor 12502
to add scripts to a sync rule. The user may specify whether the
task is to be performed before or after syncing using field
12504. The user may also specify the type of scripts using the
field 12506 (e.g., SQL). The user may further specify in field
12508 whether the script is to evaluate or to execute.

Feb. 5, 2009

[0658] FIG. 126 is an exemplary screenshot 12600 of a
sync rules manager wherein a user may use Task Editor 12602
to add script details to a sync rule similar to FIG. 125.
[0659] FIG. 127 is an exemplary screenshot 12700 of a
sync rules manager wherein a user can manage synchroniza-
tion rules associated with an application. The user may access
help information by clicking the question mark button 12702.
The user may view a scope of a rule in field 12704, a code in
field 12706, a status of a rule in field 12708, when a rule is
applied in field 12710, an application and/or a database in
field 12712, an application table in field 12714, an application
column in filed 12716, an account table in field 12718, appli-
cation account in field 12720. The user may specify an ID
Translation by clicking on the plus button 12722, or create a
new sync rule by clicking on the plus button 12724.

[0660] FIG. 128 is an exemplary screenshot 12800 of a
sync rules manager wherein a user can manage synchroniza-
tion rules associated with an application similar to FIG. 127.
[0661] FIG. 129 is an exemplary screenshot 12900 of a
support page (e.g. an Etelos Support page) wherein a user
may use a Storefront 12902 (e.g. Etelos “My Storefront™) to
add product or services to a marketplace (e.g. an Etelos mar-
ketplace) generated by marketplace module 6122. Field
12904 displays a store listing; field 12906 displays a status of
an application; field 12908 displays a type of an application.
[0662] FIG. 130 is an exemplary screenshot 13000 of a
Product/Service Basic Information Page generated by listing
module 6124. A user may specify a product name in field
13002, short description in field 13004, product type in field
13006, and item status in field 13008. Store Item Details
appears in the field 13010. The user may create a Product/
Service Basic Information page by clicking on the button
Create A Copy 13012.

[0663] FIG. 131 is an exemplary screenshot 13100 of a
staging application page. In application file field 13102, a
user can specify an application file for e.g. the VBS registra-
tion website manager (in one embodiment, VBS is an
example software application listed in the marketplace). In
application size field 13104, a user can specify the application
size. In install time field 13106, a user can specify the esti-
mated install time for the application.

[0664] FIG. 132 is an exemplary screenshot 13200 of an
edit licensing page wherein a user may edit licensing for “a
registration website manager” 13202. The edit licensing for
“registration website” is generated by the licensing module
6126. The information entered on this page is stored by
licensing database management module 6182.

[0665] Field 13204 displays the name, description, or bill-
ing, retail, wholesale, and type (per account or per user)
information associated with a packaged application for which
the user may wish to edit licensing information. In field
13206, the user may select an install type for an application.
In field 13208, the user may type a description of the appli-
cation. In field 13210, the user may specity a license version.
In field 13212, the user may specify a type of license associ-
ated with the application. In field 13214, the user may specify
a quantity of licenses associated with the application (allow-
ance of application features like user groups, max records on
quantifiable items like tasks, documents, projects, sales reps,
etc. . ..). In field 13216, the user may specify whether the
license is a trial version. In field 13218, the user may specify
a billing type associated with a license associated with the
application. In field 13220, the user may specify whether the
application is hosted using bundled hosting. In field 13222,

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 225

US 2009/0037337 Al

the user may specify a hosting provider associated with the
application. In field 13224, the user may specify a retail
pricing associated with the application. In field 13226, the
user may specify a resale term to be associated with a license
associated with the application. In field 13228, the user may
specify a wholesale pricing associated with the application. In
field 13230, the user may specify a license type associated
with a source code associated with the application (e.g.
whether source code is licensed as an open source license,
etc.). In field 13232, the user may specify whether the source
code associated with the application is downloadable. In field
13234, the user may specity whether application synchroni-
zation (syncing) is enabled. In field 13236, the user may
specify whether the application is Application on Plane
(AOP) enabled. In field 13238, the user may specify whether
multiple instances of the application are allowed. In field
13240, the user may specify an external product ID associated
with the application. In field 13242, the user may specify
whether there is an ad server associated with the application.
In field 13244, the user may specity the status of a license
associated with the application (e.g. whether the license is on
or off). These fields are exemplary, other embodiments may
incorporate different fields and editing options concerning
licensing associated with an application.

[0666] FIG. 133 is an exemplary screenshot 13300 of a
setup marketing information page generated by the listing
module 6124. A product review and store categories page
13302 includes information used to display an application in
a catalog and search result. In field 13304, a user may upload
a product image to be displayed with an application. In field
13306, a user may specify a desired turnkey rating associated
with an application. In field 13308, a user may specify an
internet address associated with a provider of an application.
In field 13310, a user may specity different categories asso-
ciated with an application. In field 13312, a user may specify
store items related to an application. In field 13314, a user
may specify keywords for which an application may appear in
a search result. In field 13316, a user may specity a type of
hosting associated with an application.

[0667] FIG. 134 is an exemplary screenshot 13400 of a
setup marketing full page generated by the listing module
6124 whereby a user may describe his applications. In field
13402, a user may specify a web address to redirect a pur-
chaser to the user’s marketing material. In field 13404, a user
may write a description of an application which the user is
selling through marketplace module 6122.

[0668] FIG. 135 is an exemplary screenshot of a setup
product features full page 13500 generated by the listing
module 6124. In field 13502, a user may turn on WYSIWYG.
Infield 13504, a user may write a description of features in the
user’s application. The user’s application is available for sale
through marketplace module 6122.

[0669] FIG. 136 is an exemplary screenshot of a product
demo page 13600 generated by the listing module 6124. The
information entered here is stored by marketplace database
management module 6180. A user may access this product
demos page 13602 to upload screenshots, and videos associ-
ated with the user’s applications available through Market-
place module 6122. In field 13604, a user may add a descrip-
tive text describing the features of the user’s application. In
field 13606, a user may upload videos to be used as a demo
associated with an application. In field 13608, a user may
upload screenshots to be used as a demo associated with an

Feb. 5, 2009

application. In field 13610, a user may view previously
uploaded screenshots associated with an application.

[0670] FIG. 137 is an exemplary screenshot 13700 of an
“Add a Blog” feed page, executed by marketplace module
6122. A user can set up a blog feed for a store item using add
a Blog feed page 13702 (e.g. “add a Blog feed for Etelos
CRM”). In field 13704, a user may provide a feed link. In field
13708, a user may specify a feed status (e.g. on or off). In field
13708, a user may specify whether blogs should be displayed
on the user’s store. Using buttons 13710, 13712, and 13714,
a user may save changes, update feed, or review feed respec-
tively.

[0671] FIG. 138 is an exemplary screenshot 13800 of a
setup frequently asked questions (FAQs) page generated by
the listing module 6124. Information entered here is stored in
the Marketplace database management module 6180. In field
13802, a user may enter FAQs about the user’s application.
Using the checkbox 13804, a user can display the FAQ tab on
the user’s store in Marketplace module 6122.

[0672] FIG. 139 is an exemplary screenshot 13900 of a
setup getting started information page generated by the listing
module 6124. The information entered here is stored by mar-
ketplace database management module 6180. In field 13902,
an administrator may write a getting started page associated
with an application which a user will see when starting the
application. In field 13904, an administrator may write a
getting started email associated with an application which a
user will receive when the application is installed. In field
13906, an administrator may write a text associated with an
application. The text would only appear if a user has pur-
chased a trial version of the application.

[0673] FIG. 140 is an exemplary screenshot 14000 of a
support information page generated by marketplace database
management module 6180. In field 14002, an administrator
may write a support page to be displayed to the licensees of
the administrator’s application in Marketplace module 6122.
[0674] FIG. 141 is an exemplary screenshot 14100 of an
about us page generated by the listing module 6124. The
information entered here is stored by marketplace database
management module 6180. Icon 14102, Cart, enables a user
to access items in the user’s shopping cart. Icon 14104,
Account, enables a user to access the users account informa-
tion. In field 14106, an administrator may specify the admin-
istrator’s company name. In field 14108, an administrator
may specify the administrator’s company website link. In
field 14110, an administrator can specify a contact email
associated with the administrator’s application. In field
14112, an administrator may write an “about us” section to be
included with the administrator’s application by Marketplace
module 6122.

[0675] FIG. 142 is an exemplary screenshot 14200 of a
product upgrade page generated in some embodiments by the
listing module 6124, or in some embodiments by the licens-
ing module. The information entered here is stored by mar-
ketplace database management module 6180. Icon 14202,
Cart, enables an administrator to access items in the user’s
shopping cart. Cart icon 14204, and account icon 15204 oper-
ate as previously described. Using checkbox 14206, an
administrator may specify whether an upgrade tab should be
displayed in the administrator’s store by marketplace module
6122. In field 14208, an administrator can enter a name for an
upgrade. In field 14210, an administrator can write a descrip-
tion of an upgrade. In field 14212, an administrator may
specify upgrade licensing information, e.g., the version or

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 226

US 2009/0037337 Al

features of a license to upgrade to. In field 14214, an admin-
istrator may specify the status of an upgrade (e.g. if the
upgrade is active). Using button 14216, an administrator may
create the upgrade. Field 14218, displays upgrade informa-
tion for an application an administrator is currently viewing.
[0676] FIG. 143 is an exemplary screenshot 14300 of a
“My Store Style” page generated by the listing module 6124.
The information entered here is stored by marketplace data-
base management module 6180. An administrator can use the
“My store style” page to setup the look and feel of his regular
and/or syndicated store pages. For example, in one embodi-
ment, in field 14302, an administrator can specify page back-
ground color, page headings font color, body font color, and
general font. In field 14304, an administrator may write or
define a page header to be displayed in the administrator’s
store. In field 14306, an administrator may write or define a
page footer to be displayed in the administrator’s store in
Marketplace module 6122.

[0677] FIG. 144 is an exemplary screenshot 14400 of a
pricing grid and purchase/license link setup page generated
by the listing module 6124. The information entered here is
stored by marketplace database management module 6180.
Pricing grid and purchase/license link setup page 14402
enables an administrator to set up items that will appear in the
pricing grid on the Marketing page for a product in Market-
place module 6122. In field 14404, an administrator may
enter the name of an application for which the administrator
is setting up a pricing grid. In field 14406, an administrator
may enter a price associated with an application. In field
14408, an administrator may provide a web address to redi-
rect a prospective purchaser once the purchaser clicks a buy
now link. In field 14410, an administrator may choose the link
text. In field 14412, the administrator may enter sorting order
information. In field 14414, the administrator may specify a
status of a pricing grid (e.g. active). Using the create button
14416, an administrator can create the pricing grid the admin-
istrator has specified.

[0678] FIG. 145 is an exemplary screenshot 14500 of a web
services “Post Data” setup page generated by the listing mod-
ule 6124. The information entered here is stored by Market-
place database management module 6180. In field 14502, an
administrator may specify a web address for a purchaser’s
purchase/license information to be posted to. Using radio
buttons 14504, an administrator may specify in what format
he prefers to receive a user’s purchase/license information.
Using the save changes button 14506, an administrator may
save the changes the administrator has created. In field 14508,
an administrator may provide a sample of the format in which
he prefers to receive a purchase/license information.

[0679] FIG. 146 is an exemplary screenshot 14600 of a
support page (e.g. an Etelos support page) wherein a user may
use a Storefront (e.g. Etelos “My Storefront™) to add product
or services to a marketplace (e.g. an Etelos marketplace)
generated by marketplace module 6122. Field 14602 displays
a store listing and link; field 14604 displays a status of an
application; field 14606 displays a type of an application;
field 14608 displays tools available to a user. For example a
user administrator can preview a store listing, number of
people who have purchased from the store, and other infor-
mation related to an application.

[0680] FIG. 147 is an exemplary screenshot 14700 of a
support page (e.g. an Etelos support page) generated by mar-
ketplace module 6122. Using drop down menu 14702, a user
may select which application the user would like to deploy to

Feb. 5, 2009

the user’s customers. Using drop down menu 14704, a user
may select which licenses the user would like to upgrade.
Using drop down menu 14706, a user may specify a server
filter. Using the begin upgrade button 14708, a user may start
an upgrade process.

[0681] FIG. 148 is an exemplary screenshot 14800 of a
support page (e.g. an Etelos support page) generated by mar-
ketplace module 6122. In field 14802, a user may add new
domains to the user’s account. A user may view an account
name in field 14804, its associated default domain name in
field 14806, and its status in field 14808. A user may add a
domain to an account by clicking on the button Add Domain
14810.

[0682] FIG. 149 is an exemplary screenshot 14900 of a
support page (e.g. an Etelos support page) generated by mar-
ketplace module 6122. A user may use the page “create a sub
domain for” 14902 to create a subdomain associated with an
account. In field 14904, a user may type a domain the user
would like to associate with the user’s account.

[0683] FIG. 150 is an exemplary screenshot 15000 of a
store product list generated by the marketplace module 6122.
The information reflected here is stored in marketplace data-
base management module 6180, including product name col-
umn 15002, store owner column 15004, company column
15006, status column 15008, and export option 15010.
[0684] FIG. 151 is an exemplary screenshot 15100 of a
store listing report (e.g. a store listing 15110, “Store listing
report for Etelos CRM”) generated by transactions report
module 6132. In one embodiment, the store listing report
15110 utilizes a table including the following rows and col-
umns. Column 15102 displays a running total for every row;
column 15104 displays a total year to date for every row;
columns in the field 15106 displays a total for a month;
column 15108 displays a total for financial quarter 1. Rows
15112 display various totals for store listings. Row 15114
displays accounts that are later cancelled or deactivated.
Rows in 15116 provide a break down between unused, dor-
mant, dry accounts, and active accounts. Rows in 15118 pro-
vide a number of registered users and accounts registered
without a registered user. Rows in 15120 provide a number of
billable users, free users, and a total number of users. These
columns and rows are exemplary, and in other embodiments
different information might be provided in a store listing
table.

[0685] FIG. 152 is an exemplary screenshot 15200 of a
store listing report (e.g. a store listing 15110, “Store listing
report for Etelos CRM”) generated by marketplace module
6122 similar to FIG. 151.

[0686] FIG. 153 is an exemplary screenshot 15300 of a
licensing transaction report (also known as a bottleneck
report) generated by transactions report module 6132. This
report includes all non-hosting services, non-cancelled, non-
automated billing items. In one embodiment, the report
includes the following information: field 15302, displays
when an item was created, field 15304 displays the name-
email, and company associated with an item; field 15306
displays a check mark if an item is store registered; field
15308 displays a check mark if an item is associated with a
credit card; field 15310 displays an item’s billing detail and
associated domain; field 15312 displays a check mark if an
item is checked out; field 15314 displays a check mark if an
item is processed; field 15316 displays a check mark and a
time stamp to indicate whether licensing terms associated
with an item are accepted; field 15318 displays a check mark

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 227

US 2009/0037337 Al

to indicate whether an item is downloaded; field 15320 dis-
plays a check mark if an installation for an item has started;
field 15322 displays a check mark to indicate whether an item
is licensed; field 15324 displays a check mark to indicate
whether an installation of an item is complete; and field 15326
displays a check mark to indicate whether a user associated
with an item is registered.

[0687] FIG. 154 is an exemplary screenshot 15400 of a
support page (e.g. an Etelos support page) generated by Mar-
ketplace module 6122 wherein a vendor or administrator may
edit an application information using the field 15402. Using
the field 15404, the vendor may view or select the vendor’s
packaged applications available for editing. Field 15406 dis-
plays the names of a vendor’s applications available for edit-
ing. Field 15408 indicates whether an application has been
deployed in Marketplace module 6122. Field 15410 indicates
an application type; field 15412 indicates a date where an
application was created; field 15414 indicates the grouping
information associated with an application; field 15416 indi-
cates an application’s version; field 15418 enables a user to
archive an application using a check box.

[0688] FIG. 155 is an exemplary screenshot of a Market-
place 15500 (e.g. an Etelos Marketplace) generated by Mar-
ketplace module 6122. Tab 15502 displays the available
storefronts stored by Marketplace database management
module 6180. Tab 15504 displays the categories of available
applications. Tab 15506 displays the most recent available
applications. Tab 15508 displays a list of featured applica-
tions. Box 15510 indicates the steps a user takes to install and
use the user’s applications in a Marketplace.

[0689] FIG. 156 is an exemplary screenshot 15600 of a
hosting and development environment (e.g. an Etelos Hosting
and Dev Environment for BT Web21C SDK 15602) wherein
a user may purchase/license an application available through
Marketplace module 6122. Tab 15604 displays a purchasing
information 15620 including purchasing options; tab 15606
displays available features of an application; tab 15608 dis-
plays available demos associated with an application; tab
15610 displays FAQs associated with an application; tab
15612 displays available forums associated with an applica-
tion; tab 15614 displays a support page associated with an
application. A user may purchase/license an application by
clicking the Buy Now button 15616. A user may obtain a free
trial of an application by clicking on a Free Trial button
15618.

[0690] FIG. 157 is an exemplary screenshot of a Market-
place 15700 (e.g. an Etelos Marketplace) generated by Mar-
ketplace module 6122. 15702 and 15704 are examples of
storefronts available through Marketplace database manage-
ment module 6180.

[0691] FIG. 158 is an exemplary screenshot 15800 of a
licensing page. Field 15802 includes licensing terms which a
user may accept by clicking the Accept button 15804, or
decline by clicking the decline button 15806.

[0692] FIG. 159 is an exemplary screenshot 15900 of a
support page (e.g. an Etelos support page) generated by Mar-
ketplace module 6122 including a user’s billing 15902 and
transaction 15904 history, including date 15906, order 1D
15908, name 15910, description 15912, and price 15914.

[0693] FIG. 160 is an exemplary screenshot 16000 of a
shopping cart page. Field 16002 displays a date when a pur-
chase/license is occurring; field 16003 provides a description;

Feb. 5, 2009

field 16004 displays a quantity of applications a user is pur-
chasing; field 16006 displays a total cost of items in a user’s
shopping cart.

[0694] FIG. 161 is an exemplary screenshot 16100 of a
Getting Started page for a CRM application listing (e.g. an
Etelos CRM test listing page) where a user can initialize an
application.

[0695] FIG. 162 is an exemplary screenshot 16200 of a
Getting Started page for a developer toolkit app (e.g. an
Etelos V6 developer toolkit page) where a user can initialize
a development environment generated by listing module
6124 to define an application.

[0696] FIG. 163 is an exemplary screenshot 16300 of a
support page (e.g. an Etelos support page) generated by mar-
ketplace module 6122. Field 16302 describes an exemplary
user idea called “Syndicated project management app”. This
description is stored by the marketplace database manage-
ment module 6180.

[0697] FIG. 164 is an exemplary screen shot 16400 from
the bottom portion of the screenshot 16300 in FIG. 163. In
field 16402, Add a Comment, a user may add a comment to a
user idea reflected in FIG. 163. To add a comment a user
enters the user’s email address in the field 16404, and the
user’s name in the field 16406. The user may include a web
address in the field 16408. The user can type acomment in the
field 16410. The user can add a comment by clicking on the
button Add A Comment 16412. These comments are stored
by the marketplace database management module 6180.

[0698] FIG. 165 is an exemplary screenshot 16500 of a
support page (e.g. an Etelos support page) generated by mar-
ketplace module 6122. Using button 16502, a user may start
anew idea. In field 16504, a user may view most popular ideas
as voted by other users.

[0699] FIG. 166 is an exemplary screenshot 16600 of an
installation page generated by application deployer module
1650. Installation in progress page 16602 displays which
applications are being installed, estimated install times, sta-
tus, and progress for each application installation. Field
16604 displays a name of an application being installed; field
16606 displays an estimated time for an application installa-
tion; field 16608 displays an installation status; field 16610
displays a progress bar associated with an application instal-
lation.

[0700] FIG. 167 is an exemplary screenshot 16700 of an
installation processing page generated by application deploy-
ment module 6150. A progress bar 16702 displays a progress
of'auser’s request for installation. This page is displayed to a
user during installation of a software application.

[0701] FIG. 168 is an exemplary screenshot 16800 of an
installation processing page similar to FIG. 166. This page
shows that the installation has completed (16806) and gives a
link to get started (16808) with the deployed application.

[0702] FIG. 169 is an exemplary screenshot 16900 of a
support page (e.g. an Etelos support page) generated by mar-
ketplace module 6122. This page is presented to a user when
configuring accounts and applications. My developer
accounts 16902 enables a user to select an account name to
edit its properties, or add an account manually. Drop down
menu 16904 enables a user to choose the type of account to
generate. Button “Build an App™ 16906 enables a user to build
an application for a particular account in the list of developer
accounts 16902. Button “Add Domain” 16908 enables a user
to add a domain associated with an application.

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 228

US 2009/0037337 Al

[0703] FIG. 170 is an exemplary screenshot 17000 of a
support page (e.g. an Etelos support page) generated by mar-
ketplace module 6122. This page is displayed to a user when
configuring their account to run software apps. Payment
information 17002 displays an account payment information.
In one embodiment payment information field 17004
includes the last four digits of a credit card number associated
with an account.

[0704] FIG. 171 is an exemplary screenshot 17100 of a
marketplace page, generated by marketplace module 6122.
This page is presented to a user searching for software appli-
cations in the marketplace. Marketplace search result 17102
displays the results for an exemplary search. Support forum
search results 17104 provides a link to search results in Mar-
ketplace forum stored in Marketplace database management
module 6180. Knowledge base search result 17106 provides
a link to search results in Marketplace knowledge base stored
in Marketplace database management module 6180.

[0705] FIG. 172 is an exemplary screenshot 17200 of a
marketplace shopping cart page, generated by marketplace
module 6122, similar to FIG. 141. This screen shows a shop-
ping cart with a software application for licensing, displayed
to a prospective licensee.

[0706] FIG. 173 is an exemplary screenshot 17300 of a
support page (e.g. an Etelos Support page) generated by Mar-
ketplace module 6122 displayed to a user, so the user can edit
an application or deploy an application. Field 17302 displays
names of available applications; field 17304 displays the
application type associated with an application; field 17306
displays the grouping information associated with an appli-
cation; field 17308 displays an application version managed
by the packager module 6136. A user may archive an appli-
cation by checking the checkboxes in field 17310.

[0707] FIG. 174 is an exemplary screenshot 17400 of a
support page (e.g. an Etelos Support page) generated by Mar-
ketplace module 6122, wherein a user can learn about an
application by reviewing the information in aknowledge base
(e.g. an Etelos knowledge base). This knowledge base infor-
mation is managed by marketplace database management
module 6180.

[0708] FIG. 175 is an exemplary screenshot 17500 of a
support page (e.g. an Etelos Support page) generated by Mar-
ketplace module 6122 wherein installation of software appli-
cation information associated with a user’s account is dis-
played. Field 17502 displays install dates; field 17504
displays product information; field 17506 displays licensing
information; field 17508 provides links to more installation
information; field 17510 includes buttons for a user to cancel
an installation or reinstall an installation.

[0709] FIG. 176 is an exemplary screenshot 17600 of a
support page (e.g. an Etelos Support page) similar to FIG. 129
generated by marketplace module 6122.

[0710] FIG. 177 is an exemplary screenshot 17700 of a
support page (e.g. an Etelos Support page) generated by mar-
ketplace module 6122. Discussion topics 17702 includes top-
ics available in a forum page stored by marketplace database
management module 6180. Column 17704 includes discus-
sion topics threads; column 17706 displays a date on which a
forum thread was last posted; column 17708 displays number
of replies to a forum thread; column 17710 displays number
of times a forum thread has been viewed; column 17712
enables a user to subscribe to a forum thread by checking a
checkbox.

Feb. 5, 2009

[0711] FIG. 178 is an exemplary screenshot 17800 of a
support page (e.g. an Etelos Support page) generated by Mar-
ketplace module 6122 that includes information on getting
started for business users. This page is displayed to a user
seeking support information regarding an application.
[0712] FIG. 179 is an exemplary screenshot 17900 of a
support page (e.g. an Etelos Support page) generated by Mar-
ketplace module 6122. Your installed applications 17902
enables a user to view the user’s installed applications. Field
17904 includes links to other support areas e.g. getting
started, account, forums, or knowledge base.

[0713] FIG. 180 is an exemplary screenshot 18000 of a
support page (e.g. an Etelos Support page) generated by Mar-
ketplace module 6122. Field 18002 includes information on
an exemplary web developing application called EASE made
available through Marketplace module 6122. This page is
accessed by an application developer/vendor using the mar-
ketplace (e.g. Etelos system).

[0714] FIG. 181 is an exemplary screenshot 18100 of a
support page (e.g. an Etelos Support page) generated by Mar-
ketplace module 6122 wherein a user can modify the user’s
profile information. The information entered here is stored by
user account access module 6172.

[0715] FIG. 182 is an exemplary screenshot 18200 of a
Marketplace homepage, generated by marketplace module
6122.

[0716] FIG. 183 is an exemplary screenshot 18300 of a
Marketplace page, generated by marketplace module 6122,
where an application is displayed for sale (e.g. Etelos Hosting
and Dev Environment for BT Web21C SDK). This page
shows reviews by users and a description of software appli-
cations.

[0717] FIG. 184 is an exemplary screenshot 18400 of a
Marketplace page, generated by marketplace module 6122,
where an application is displayed for sale (e.g. Etelos Hosting
and Dev Environment for BT Web21C SDK). In field
Reviews 18402, a user may post a review associated with an
application. In field 18404 the user may type a title for the
user’s review; in field 18406 the user may type the text of the
user’s review. Radio buttons 18408-18416 enable the user to
rate the user’s satisfaction with different aspects of Market-
place services.

[0718] FIG. 185 is an exemplary screenshot 18500 of a
Marketplace page, generated by marketplace module 6122,
where an application is displayed for sale (e.g. Etelos Hosting
and Dev Environment for BT Web21C SDK). A user may
purchase/license an application by clicking the button 18502
labeled Buy Now. A user may purchase/license a free trial of
an application by clicking the button 18504 labeled Free
Trial. The features tab 18506 is activated wherein information
about features of the application are displayed.

[0719] FIG. 186 is an exemplary screenshot 18600 of a
Marketplace page, generated by marketplace module 6122,
where an application is displayed for sale (e.g. Etelos Hosting
and Dev Environment for BT Web21C SDK). A demos tab
18602 shows videos or screenshots of the application. This
screen is displayed to a user looking for information about a
software application.

[0720] FIG. 187 is an exemplary screenshot 18700 of a
Marketplace page, generated by marketplace module 6122,
where an application is displayed for sale (e.g. Etelos Hosting
and Dev Environment for BT Web21C SDK) and the FAQs
tab 18702 is activated wherein user’s frequently asked ques-
tions associated with the application are displayed.

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 229

US 2009/0037337 Al

[0721] FIG. 188 is an exemplary screenshot 18800 of a
Marketplace page, generated by marketplace module 6122,
where an application is displayed for sale (e.g. Etelos Hosting
and Dev Environment for BT Web21C SDK) and the forum
tab 18802 is activated wherein forum discussions associated
with the application are displayed.

[0722] FIG. 189 is an exemplary screenshot 18900 of a
Marketplace page, generated by marketplace module 6122,
where an application is displayed for sale (e.g. Etelos Hosting
and Dev Environment for BT Web21C SDK) and the support
tab 18902 is activated wherein the support information asso-
ciated with the application is displayed.

[0723] The foregoing description, for purpose of explana-
tion, has been described with reference to specific embodi-
ments. However, the illustrative discussions above are not
intended to be exhaustive or to limit the invention to the
precise forms disclosed. Many modifications and variations
are possible in view of the above teachings. The embodiments
were chosen and described in order to best explain the prin-
ciples of the invention and its practical applications, to
thereby enable others skilled in the art to best utilize the
invention and various embodiments with various modifica-
tions as are suited to the particular use contemplated.

[0724] Start of 5006: Software Marketplace and Distribu-
tion System Support for Foreign Prosecution.

[0725] 1. A computer implemented method, comprising:
[0726] at one or more servers, hosting a marketplace appli-
cation:

[0727] receiving from a vendor a software application for
distribution;

[0728] associating license terms with the software applica-
tion;

[0729] making the software application available for distri-

bution through the marketplace application; and

[0730] deploying the software application to one or more
user accounts on one or more hosting servers, in accordance
with the license terms.

[0731] 2. The computer-implemented method of claim 1,
further comprising presenting a description of the license
terms to a user.

[0732] 3. The computer-implemented method of claim 1,
wherein the on one or more hosting servers are physically
separate from the one or more servers hosting the marketplace
application.

[0733] 4. The computer-implemented method of claim 1,
wherein the deploying is performed after a user request to
deploy the software application.

[0734] 5. The computer-implemented method of claim 1,
wherein the deploying includes downloading the software to
the one or more user accounts.

[0735] 6. The computer-implemented method of claim 1,
wherein the deploying includes activating a flag associated
with the software application in the one or more user
accounts.

[0736] 7. The computer-implemented method of claim 6,
where the flag enables for user the software application.
[0737] 8. The computer-implemented method of claim 1,
wherein the deploying includes activating a license for the
software application in the one or more user accounts.
[0738] 9. The computer-implemented method of claim 1,
wherein the deploying includes providing the software appli-
cation for hosting by a user on hosting servers associated with
the user.

Feb. 5, 2009

[0739] 10. The computer-implemented method of claim 1,
wherein distribution to a user through the marketplace appli-
cation includes through a website associated with the market-
place application.

[0740] 11. The computer-implemented method of claim 1,
wherein distribution to a user through the marketplace appli-
cation includes through a client associated with the market-
place application.

[0741] 12. The computer-implemented method of claim 1,
comprising packaging the software application for distribu-
tion via the marketplace application hosted by the one or more
servers.

[0742] 13.Thecomputer-implemented method of claim 12,
comprising storing a packaged software application in an
application repository.

[0743] 14.The computer implemented method of claim 12
wherein packaging includes preparing an update to a previ-
ously deployed software application, where the update
requires the previously deployed software application to
function.

[0744] 15. The computer implemented method of claim 12
wherein packaging includes preparing a standalone distribu-
tion for a software application.

[0745] 16. The computer implemented method of claim 15
wherein the standalone distribution includes a software appli-
cation and one or more updates to the application.

[0746] 17. The computer implemented method of claims
14, 15, 16 wherein the update is deployed to the one or more
user accounts selected from the group consisting of a push
method, a subscription (pull) method, and a hybrid method, in
accordance with the license terms.

[0747] 18. The computer-implemented method of claim 1,
wherein the making available is performed by a listing man-
ager.

[0748] 19. The computer implemented method of claim 18

wherein the listing manager includes a store listing for licens-
ing the software application.

[0749] 20. The computer-implemented method of claim 1,
wherein the deploying is performed by an application
deployer.

[0750] 21. The computer-implemented method of claim 1,
comprising hosting the deployed software application for the
one or more user accounts.

[0751] 22. The computer implemented method of claims 1
or 19 wherein the marketplace application includes technical
support for the software application.

[0752] 23.The computer implemented method of claims 1,
19 or 22, wherein making the software application available
for distribution includes at least one selected from the group
consisting of: determining a user account type, and based on
the user account type, preparing to deploy a software appli-
cation to the user account, or generating a new user account
compatible with the software application and preparing to
deploying the software application to the new user account.

[0753] 24. A server system, comprising:

[0754] one or more processors;

[0755] memory; and

[0756] one or more programs stored in the memory, the one

or more programs comprising instructions for at one or more
servers, host a marketplace application:

[0757] receiving from a vendor a software application for
distribution;

[0758] associate license terms with the software applica-
tion;

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 230

US 2009/0037337 Al

[0759] make the software application available for distri-
bution through the marketplace application; and

[0760] deploy the software application to one or more user
accounts on one or more hosting servers, in accordance with
the license terms.

[0761] 25. The server system of claim 24, further compris-
ing instructions to present a description of the license terms to
a user.

[0762] 26. The server system of claim 24, wherein the on
one or more hosting servers are physically separate from the
one or more servers hosting the marketplace application.
[0763] 27. The server system of claim 24, wherein the
instructions to deploy include instructions to deploy the soft-
ware application after a user request.

[0764] 28. The server system of claim 24, wherein the
instructions to deploy include instructions to download the
software to the one or more user accounts.

[0765] 29. The server system of claim 24, wherein the
instructions to deploy include instructions to activate a flag
associated with the software application in the one or more
user accounts.

[0766] 30. The server system of claim 29, where the flag
enables for user the software application.

[0767] 31. The server system of claim 24, wherein the
instructions to deploy include instructions to activate a
license for the software application in the one or more user
accounts.

[0768] 32. The server system of claim 24, wherein the
instructions to deploy include instructions to provide the soft-
ware application for hosting by a user on hosting servers
associated with the user.

[0769] 33. The server system of claim 24, wherein the
instructions to distribute to a user through the marketplace
application includes instructions to distribute through a web-
site associated with the marketplace application.

[0770] 34. The server system of claim 24, wherein the
instructions to distribute to a user through the marketplace
application includes instructions to distribute through a client
associated with the marketplace application.

[0771] 35. The server system of claim 24, comprising
instructions to package the software application for distribu-
tion via the marketplace application hosted by the one or more
servers.

[0772] 36. The server system of claim 35, comprising
instructions to store a packaged software application in an
application repository.

[0773] 37. The server system of claim 35 wherein instruc-
tions to package include instructions to prepare an update to
apreviously deployed software application, where the update
requires the previously deployed software application to
function.

[0774] 38. The server system of claim 35 wherein instruc-
tions to package include instructions to preparing a standal-
one distribution for a software application.

[0775] 39.The server system of claim 38 wherein the stan-
dalone distribution includes a software application and one or
more updates to the application.

[0776] 40. The server system of claims 37, 38 or 39 where
the update is deployed to the one or more user accounts
selected from the group consisting of a push method, a sub-
scription (pull) method, and a hybrid method, in accordance
with the license terms.

Feb. 5, 2009

[0777] 41. The server system of claim 24, wherein the
instructions to make available includes instructions for a list-
ing manager.

[0778] 42. The server system of claim 41 wherein the list-
ing manager includes a store listing for licensing the software
application.

[0779] 43. The server system of claim 24, wherein the
instructions to deploy include instructions for an application
deployer.

[0780] 44. The server system of claim 24, comprising
instructions to host the deployed software application for the
one or more user accounts.

[0781] 45. The server system of claim 24 or 42 wherein the
marketplace application includes technical support for the
software application.

[0782] 46. The server system of claim 24, 42, or 45,
wherein instructions to make the software application avail-
able for distribution includes instructions for at least one
selected from the group consisting of: determining a user
account type, and based on the user account type, preparing to
deploy a software application to the user account, or gener-
ating a new user account compatible with the software appli-
cation and preparing to deploying the software application to
the new user account.

[0783] 47. A computer readable storage medium storing
one or more programs configured for execution by a com-
puter, the one or more programs comprising instructions to at
one or more servers, hosting a marketplace application:

[0784] receive from a vendor a software application for
distribution;

[0785] associate license terms with the software applica-
tion;

[0786] make the software application available for distri-

bution through the marketplace application; and

[0787] deploy the software application to one or more user
accounts on one or more hosting servers, in accordance with
the license terms.

[0788] 48. A computer implemented method, comprising:

[0789] at one or more marketplace servers hosting a mar-
ketplace application, in response to a request from a syndi-
cated server to distribute a software application from the
marketplace:

[0790] identifying one or more user accounts associated
with the request;

[0791] verifying that the one or more user accounts has
permission to use the software application; and

[0792] deploying the software application to the one or
more user accounts, in accordance with license terms associ-
ated with the software application.

[0793] 49.Thecomputer-implemented method of claim 48,
wherein deploying includes presenting for deployment to a
user.

[0794] 50.The computer-implemented method of claim 48,
comprising making the software application available for
distribution through the syndicated server.

[0795] 51.The computer-implemented method of claim 48
or 49, wherein deploying includes providing through an
application deployer, across a network to the one or more user
accounts, a software application stored at the application
repository.

[0796] 52.Thecomputer-implemented method of claim 51,
wherein deploying includes selecting one of a plurality of
software applications, compatible with the one or more user
accounts, from the application repository.

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 231

US 2009/0037337 Al

[0797] 53.The computer-implemented method of claim 51
or 52, wherein the application repository stores software
applications in a plurality of states, including at least one
selected from the group consisting of a ready to deploy state,
an undergoing quality assurance state, a ready to submit for
quality assurance state, and an unfinished state.

[0798] 54. A server system, comprising:

[0799] one or more processors;

[0800] memory; and

[0801] one or more programs stored in the memory, the one

or more programs comprising instructions to at one or more
marketplace servers hosting a marketplace application, in
response to a request from a syndicated server to distribute a
software application from the marketplace:

[0802] identify one or more user accounts associated with
the request;
[0803] verify that the one or more user accounts has per-

mission to use the software application; and

[0804] deploy the software application to the one or more
user accounts, in accordance with license terms associated
with the software application.

[0805] 55. The server system of claim 54, wherein instruc-
tions to deploy include instructions to present for deployment
1o a user.

[0806] 56. The server system of claim 54, further compris-
ing instructions to make the software application available for
distribution through the syndicated server.

[0807] 57. The server system of claim 54 or 55, wherein
instructions to deploy include instructions to provide through
an application deployer, across a network to the one or more
user accounts, a software application stored at the application
repository.

[0808] 58. The server system of claim 57, wherein instruc-
tions to deploy include instructions to select one of a plurality
of software applications, compatible with the one or more
user accounts, from the application repository.

[0809] 59.The server system of claim 57 or 58, wherein the
application repository stores software applications in a plu-
rality of states, including at least one selected from the group
consisting of a ready to deploy state, an undergoing quality
assurance state, a ready to submit for quality assurance state,
and an unfinished state.

[0810] 60. A computer readable storage medium storing
one or more programs configured for execution by a com-
puter, the one or more programs comprising instructions for at
one or more marketplace servers hosting a marketplace appli-
cation, in response to a request from a syndicated server to
distribute a software application from the marketplace:
[0811] identifying one or more user accounts associated
with the request;

[0812] verifying that the one or more user accounts has
permission to use the software application; and

[0813] deploying the software application to the one or
more user accounts, in accordance with license terms associ-
ated with the software application.

[0814] Data Structure for purchasing, deploying, hosting
programs:

[0815] 61. A computer system, comprising:

[0816] one or more processors;

[0817] memory; and

[0818] one or more programs stored in the memory, the one

or more programs comprising instructions for implementing:

[0819] a program module configured to provide a soft-

ware application for distribution in response to an access
request from a user;

Feb. 5, 2009

[0820] a program module configured to receive and
deploy the software application from the marketplace
module to an account on one or more servers; and

[0821] a program module configured to provide at least
one or more user accounts, from which the user accesses
the software application.

[0822] 62.The system of claim 61, wherein the one or more
user accounts receives a link to the deployed software appli-
cation, wherein the link permits the one or more user accounts
to access the deployed software application.

[0823] 63. The system of claim 61, wherein the program
module configured to provide a software application for dis-
tribution is a marketplace module.

[0824] 64. The system of claim 61, wherein the program
module configured to provide at least one or more user
accounts is a one or more user accounts module

[0825] 65. The system of claim 61, wherein the program
module configured to receive and deploy a software applica-
tion to the one or more user accounts module is a deployment
module.

[0826] 66. The system of claim 61, comprising an applica-
tion repository storing software applications ready for distri-
bution.

[0827] 67. The system of claim 61, comprising a licensing
module configured to provide a license associated with the
software application, and to ensure that the deploying is per-
formed in accordance with the license.

[0828] 68. The system of claim 64, wherein the licensing
module is configured to verify user permission to access a
deployed software application prior to executing the applica-
tion.

[0829] 69. The system of claim 61, comprising a billing
module configured to receive payment associated with the
one or more user accounts for deployment of the selected
software application.

[0830] 70. The system of claim 69, wherein the billing
module is configured to receive subscription payments asso-
ciated with the one or more user accounts.

[0831] 71. The system of claim 69, wherein an amount of
the payment varies in accordance with license terms associ-
ated with the software application.

[0832] 72. The system of claim 69, wherein the billing
module is configured to receive from the user a promotional
code prior to processing a payment, and the billing module is
configured to process the payment based on the promotional
code.

[0833] 73. The system of claim 61, comprising a listing
manager module for managing marketplace content related to
the software application.

[0834] 74. The system of claim 61, comprising a deployer
module for accessing the software application from the appli-
cation repository and deploying the software application in
the hosting infrastructure module.

[0835] 75. The system of claim 61, wherein the access
request comprises a selection instruction for a software appli-
cation compatible with a framework associated with the one
or more user accounts.

[0836] 76. The system of claim 61, wherein the user
accesses the software application through a one or more user
accounts registered with the hosting infrastructure module.

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 232

US 2009/0037337 Al

[0837] 77. The system of claim 61, wherein following
installation, the hosting infrastructure module sends an instal-
lation confirmation to the marketplace module.

[0838] 78. The computer implemented method of any one
of claims 61 to 77, wherein the software application is a
web-based software application, executed at one or more
servers.

[0839] End of 5006: Software Marketplace and Distribu-
tion System Support for Foreign Prosecution.

[0840] Startof5007: Software Licensing and Enforcement
System support for Foreign Prosecution.

[0841] 1. A computer implemented method, comprising:
[0842] at one or more servers, hosting a marketplace appli-
cation:

[0843] receiving from a vendor a software application for
distribution;

[0844] generating license terms in response to a selection

by the vendor from options provided by the marketplace
application;

[0845] associating the license terms with the software
application, and

[0846] making the software application available for distri-
bution through the marketplace application, in accordance
with the license terms.

[0847] 2. The computer implemented method of claim 1,
further comprising deploying the software application to one
or more user accounts on one or more hosting servers, in
accordance with the license terms.

[0848] 3. The computer implemented method of claim 2,
where the deploying is in response to a payment associated
with the one or more user accounts.

[0849] 4. The computer implemented method of claim 1,
wherein the license terms include at least one of an open
source license, a closed license, a source code license, an
executable license, and a repacking license.

[0850] 5. The computer implemented method of claim 4,
wherein the repacking license determines whether a user of
the software application is permitted to repackage and redis-
tribute the software application.

[0851] 6. The computer implemented method of claim 5,
wherein the repacking license has an associated royalty.
[0852] 7. The computer implemented method of claim 6,
wherein the associated royalty is one selected from the group
consisting of a wholesale royalty, a retail royalty, and a flat
fee.

[0853] 8. The computer implemented method of claims 1,
4, or 5, wherein a license manager determines user permis-
sions for installation, activation, and access to features of
applications.

[0854] 9. The computer implemented method of claim 1
wherein the options provided by the marketplace application
includes an option to use license terms supplied by the ven-
dor.

[0855] 10. The computer implemented method of claims 1,
4,5, 8, or 9 including displaying licensing events for a respec-
tive software application made available for distribution
through the marketplace application.

[0856] 11.Thecomputer-implemented method of claim 10,
wherein displaying includes displaying the licensing events
to arespective vendor associated with the respective software
application.

[0857] 12. The computer-implemented method of claim 1,
comprising storing the license terms in a licensing manager.

Feb. 5, 2009

[0858] 13. The computer implemented method of claim 1,
wherein a price associated with the software application is
stored at a licensing manager separately from the software
application.

[0859] 14.The computer implemented method of claim 13,
wherein the price is dynamically adjusted by the licensing
manager in response to a selection by the software vendor.
[0860] 15. The computer implemented method of claim 1,
wherein at least one selected from the group consisting of
access duration, features, and price, is dynamically adjusted
by a licensing manager in response to a selection by the
software vendor.

[0861] 16. The computer implemented method of claim 1,
2, wherein the one or more user accounts are stored separately
from the marketplace application.

[0862] 17. The computer implemented method of claims 1
or 16 further comprising processing a payment associated
with the software application.

[0863] 18.The computer implemented method of claim 17,
further comprising, prior to processing a payment, receiving
from the user a promotional code, and processing the pay-
ment based on the promotional code.

[0864] 19.The computer implemented method of claim 17,
comprising storing a record of the processed payment in a
billing record.

[0865] 20.The computer implemented method of claim 19,
comprising prior to executing the deployed application, com-
paring a user identifier associated with the one or more user
accounts and an application id associated with the deployed
application against a billing manager to verify that a valid
payment has been recorded.

[0866] 21.The computer implemented methods of claims
1,16,17, or 20, comprising verifying that the one or more user
accounts has permission to execute the deployed application,
and in the event of a verification failure, warning the user.
[0867] 22.The computer implemented method of claim 21,
wherein the verifying is performed periodically, and follow-
ing a plurality of verification failures, preventing the one or
more user accounts from executing the deployed application.
[0868] 23.Thecomputer implemented method of claims 21
or 22, wherein the verifying includes checking for multiple
instances of the software application being simultaneously
executed by the one or more user accounts.

[0869] 24.The computer implemented method of claim 16,
comprising preventing access by the user to data stored at the
one or more servers, upon determining that the one or more
user accounts has been disabled.

[0870] 25.The computer implemented method of claim 16,
further comprising deploys a license key associated with the
software application to a user account associated with a lic-
ensee of the software application.

[0871] 26.The computer implemented method of claim 25,
further comprising communicating to the software vendor
that the software application has been licensed by the user.
[0872] 27.The computer implemented method of claim 26,
wherein the communicating is performed via an application
programming interface call.

[0873] 28. A server system, comprising:

[0874] one or more processors;

[0875] memory; and

[0876] one ormore programs stored in the memory, the one

or more programs comprising instructions for, at one or more
servers hosting a marketplace application:

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 233

US 2009/0037337 Al

[0877] receiving from a vendor a software application for
distribution;

[0878] generating license terms in response to a selection
by the vendor from options provided by the marketplace
application;

[0879] associating the license terms with the software
application, and

[0880] making the software application available for distri-
bution through the marketplace application, in accordance
with the license terms.

[0881] 29.The computer implemented method of claim 28,
further comprising deploying the software application to one
or more user accounts on one or more hosting servers, in
accordance with the license terms.

[0882] 30.The computer implemented method of claim 29,
where the deploying is in response to a payment associated
with the one or more user accounts.

[0883] 31.Thecomputer implemented method of claim 28,
wherein the license terms include at least one of an open
source license, a closed license, a source code license, an
executable license, and a repacking license.

[0884] 32.The computer implemented method of claim 28,
wherein the repacking license determines whether a user of
the software application is permitted to repackage and redis-
tribute the software application.

[0885] 33.The computer implemented method of claim 32,
wherein the repacking license has an associated royalty.
[0886] 34.The computer implemented method of claim 33,
wherein the associated royalty is one selected from the group
consisting of a wholesale royalty, a retail royalty, and a flat
fee.

[0887] 35. The computer implemented method of claims
28, 32, or 33, wherein a license manager determines user
permissions for installation, activation, and access to features
of applications.

[0888] 36. The computer implemented method of claim 28
wherein the options provided by the marketplace application
includes an option to use license terms supplied by the ven-
dor.

[0889] 37. The computer implemented method of claims
28, 32, 33, 35, or 36 including displaying licensing events for
a respective software application made available for distribu-
tion through the marketplace application.

[0890] 38.Thecomputer-implemented method of claim 37,
wherein displaying includes displaying the licensing events
to arespective vendor associated with the respective software
application.

[0891] 39.Thecomputer-implemented method of claim 28,
comprising storing the license terms in a licensing manager.
[0892] 40.The computer implemented method of claim 28,
wherein a price associated with the software application is
stored at a licensing manager separately from the software
application.

[0893] 41.The computer implemented method of claim 40,
wherein the price is dynamically adjusted by the licensing
manager in response to a selection by the software vendor.
[0894] 42.The computer implemented method of claim 28,
wherein at least one selected from the group consisting of
access duration, features, and price, is dynamically adjusted
by a licensing manager in response to a selection by the
software vendor.

[0895] 43.The computer implemented method of claim 29,
wherein the one or more user accounts are stored separately
from the marketplace application.

Feb. 5, 2009

[0896] 44.Thecomputer implemented method of claims 28
or 43 further comprising processing a payment associated
with the software application.

[0897] 45.The computer implemented method of claim 44,
further comprising, prior to processing a payment, receiving
from the user a promotional code, and processing the pay-
ment based on the promotional code.

[0898] 46. The computer implemented method of claim 44,
comprising storing a record of the processed payment in a
billing record.

[0899] 47.The computer implemented method of claim 44,
comprising prior to executing the deployed application, com-
paring a user identifier associated with the one or more user
accounts and an application id associated with the deployed
application against a billing manager to verify that a valid
payment has been recorded.

[0900] 48. The computer implemented methods of claims
28, 43, 44, and 47 comprising verifying that the one or more
user accounts has permission to execute the deployed appli-
cation, and in the event of a verification failure, warning the
user.

[0901] 49.The computer implemented method of claim 48,
wherein the verifying is performed periodically, and follow-
ing a plurality of verification failures, preventing the one or
more user accounts from executing the deployed application.
[0902] 50.Thecomputer implemented method of claims 48
or 49, wherein the verifying includes checking for multiple
instances of the software application being simultaneously
executed by the one or more user accounts.

[0903] 51.The computer implemented method of claim 43,
comprising preventing access by the user to data stored at the
one or more servers, upon determining that the one or more
user accounts has been disabled.

[0904] 52.The computer implemented method of claim 43,
further comprising deploys a license key associated with the
software application to a user account associated with a lic-
ensee of the software application.

[0905] 53.The computer implemented method of claim 52,
further comprising communicating to the software vendor
that the software application has been licensed by the user.
[0906] 54.The computer implemented method of claim 53,
wherein the communicating is performed via an application
programming interface call.

[0907] 55. A computer readable storage medium storing
one or more programs configured for execution by a com-
puter, the one or more programs comprising instructions for

[0908] at one or more servers, hosting a marketplace appli-
cation:

[0909] receiving from a vendor a software application for
distribution;

[0910] generating license terms in response to a selection

by the vendor from options provided by the marketplace
application;

[0911] associating the license terms with the software
application, and

[0912] making the software application available for distri-
bution through the marketplace application, in accordance
with the license terms.

[0913] 56. A computer implemented method, comprising:
[0914] at one or more servers hosting a marketplace appli-
cation:

[0915] making a software application available for distri-

bution through the marketplace application;

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 234

US 2009/0037337 Al

[0916] receiving a user request to license the software
application; and

[0917] providing the software application for deployment
to one or more user accounts, hosted on one or more servers.
[0918] 57.The computer implemented method of claim 56,
where providing the software application for deployment
includes providing the software application across a network
for deployment at one or more servers associated with the
user, hosting the one or more user accounts.

[0919] 58.The computer implemented method of claim 56,
further comprising processing a selection by the user that
includes adding the software application to a cart associated
with the user, and checking out the cart.

[0920] 59.The computer implemented method of claim 56,
comprising prior to deploying, presenting a description of
license terms associated with the software application to the
user.

[0921] 60. The computer implemented method of claim 57,
wherein the license terms are specified by a vendor associated
with the software application.

[0922] 61.The computer implemented method of claim 60,
wherein specifying the license terms includes selecting the
license terms from a plurality of options provided by a licens-
ing engine associated with the one or more servers hosting a
marketplace application.

[0923] 62. The computer implemented method of claim 57,
60, or 61 comprising validating that the request to license the
software application complies with the license terms.

[0924] 63. The computer implemented method of claim 56,
57, 60, 61 or 62 wherein the request to license the software
application includes a payment selected from the group con-
sisting of a cash payment, a credit payment, and a prospective
future payment.

[0925] 64.The computer implemented method of claim 56,
57, 60, 61, 62 or 63 wherein the software application is a
web-based software application, executed at one or more
servers.

[0926] 65. A server system, comprising:

[0927] one or more processors;

[0928] memory; and

[0929] one or more programs stored in the memory, the one

or more programs comprising instructions to at one or more
servers hosting a marketplace application:
[0930] make a software application available for distribu-
tion through the marketplace application;

[0931] receive a user request to license the software appli-
cation; and
[0932] provide the software application for deployment to

one or more user accounts, hosted on one or more servers.
[0933] 66. The server system of claim 65, wherein the
instructions to provide the software application for deploy-
ment includes instructions to provide the software application
across a network for deployment at one or more servers
associated with the user, hosting the one or more user
accounts.

[0934] 67. The server system of claim 65, further compris-
ing instructions to process a selection by the user that includes
adding the software application to a cart associated with the
user, and checking out the cart.

[0935] 68. The server system of claim 65, further compris-
ing instructions for prior to deploying, presenting a descrip-
tion of license terms associated with the software application
to the user.

Feb. 5, 2009

[0936] 69. The server system of claim 68, further compris-
ing instructions to receive license terms specified by a vendor
associated with the software application.

[0937] 70. The server system of claim 69, wherein receiv-
ing license terms specified by a vendor include receiving a
selection of license terms from a plurality of options provided
by a licensing engine associated with the one or more servers
hosting a marketplace application.

[0938] 71. The server system of claim 66, 69, or 70 further
comprising instructions to validate that the request to license
the software application complies with the license terms.
[0939] 72.Theserver system of claims 65, 66, 69, 70, or 71
wherein the request to license the software application
includes a payment selected from the group consisting of a
cash payment, a credit payment, and a prospective future
payment.

[0940] 73.The server system of claims 65, 66, 69, 70, 71, or
72 wherein the software application is a web-based software
application, executed at one or more servers.

[0941] 74. A computer readable storage medium storing
one or more programs configured for execution by a com-
puter, the one or more programs comprising instructions for at
one or more servers hosting a marketplace application:
[0942] making a software application available for distri-
bution through the marketplace application;

[0943] receiving a user request to license the software
application; and

[0944] providing the software application for deployment
to one or more user accounts, hosted on one or more servers.
[0945] End of 5007: Software Licensing and Enforcement
System Support for Foreign Prosecution.

What is claimed is:

1. A computer implemented method, comprising:

at one or more servers, hosting a marketplace application:

receiving from a vendor a software application for distri-

bution;

generating license terms in response to a selection by the

vendor from options provided by the marketplace appli-
cation;

associating the license terms with the software application,

and

making the software application available for distribution

through the marketplace application, in accordance with
the license terms.

2. The computer implemented method of claim 1, further
comprising deploying the software application to one or more
user accounts on one or more hosting servers, in accordance
with the license terms.

3. The computer implemented method of claim 2, where
the deploying is in response to a payment associated with the
one or more user accounts.

4. The computer implemented method of claim 1, wherein
the license terms include at least one of an open source
license, a closed license, a source code license, an executable
license, and a repacking license.

5. The computer implemented method of claim 4, wherein
the repacking license determines whether a user of the soft-
ware application is permitted to repackage and redistribute
the software application.

6. The computer implemented method of claim 5, wherein
the repacking license has an associated royalty.

7. The computer implemented method of claim 6, wherein
the associated royalty is one selected from the group consist-
ing of a wholesale royalty, a retail royalty, and a flat fee.

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 235

US 2009/0037337 Al

8. The computer implemented method of claim 1, wherein
a license manager determines user permissions for installa-
tion, activation, and access to features of applications.

9. The computer implemented method of claim 1 wherein
the options provided by the marketplace application includes
an option to use license terms supplied by the vendor.

10. The computer implemented method of claim 1, includ-
ing displaying licensing events for a respective software
application made available for distribution through the mar-
ketplace application.

11. The computer-implemented method of claim 10,
wherein displaying includes sending for display the licensing
events to a respective vendor associated with the respective
software application.

12. The computer-implemented method of claim 1, further
comprising storing the license terms in a licensing manager.

13. The computer implemented method of claim 1,
wherein a price associated with the software application is
stored at a licensing manager separately from the software
application.

14. The computer implemented method of claim 13,
wherein the price is dynamically adjusted by the licensing
manager in response to a selection by the software vendor.

15. The computer implemented method of claim 1,
wherein at least one selected from the group consisting of
access duration, features, and price, is dynamically adjusted
by a licensing manager in response to a selection by the
software vendor.

16. The computer implemented method of claim 1,
wherein the one or more user accounts are stored separately
from the marketplace application.

17. The computer implemented method of claim 1 further
comprising processing a payment associated with the soft-
ware application.

18. The computer implemented method of claim 17, fur-
ther comprising, prior to processing a payment, receiving
from the user a promotional code, and processing the pay-
ment based on the promotional code.

19. The computer implemented method of claim 17, fur-
ther comprising storing a record of the processed payment in
a billing record.

20. The computer implemented method of claim 19, fur-
ther comprising prior to executing the deployed application,
comparing a user identifier associated with the one or more
user accounts and an application id associated with the
deployed application against a billing manager to verify that
a valid payment has been recorded.

21. The computer implemented methods of claim 1, further
comprising verifying that the one or more user accounts has
permission to execute the deployed application, and in the
event of a verification failure, warning the user.

22. The computer implemented method of claim 21,
wherein the verifying is performed periodically, and follow-
ing a plurality of verification failures, preventing the one or
more user accounts from executing the deployed application.

23. The computer implemented method of claims 21,
wherein the verifying includes checking for multiple
instances of the software application being simultaneously
executed by the one or more user accounts.

24. The computer implemented method of claim 16, fur-
ther comprising preventing access by the user to data stored at
the one or more servers, upon determining that the one or
more user accounts has been disabled.

Feb. 5, 2009

25. The computer implemented method of claim 16, fur-
ther comprising deploying a license key associated with the
software application to a user account associated with a lic-
ensee of the software application.
26. The computer implemented method of claim 25, fur-
ther comprising communicating to the software vendor that
the software application has been licensed by the user.
27. The computer implemented method of claim 26,
wherein the communicating is performed via an application
programming interface call.
28. A server system, comprising:
one or More processors;
memory; and
one or more programs stored in the memory, the one or
more programs comprising instructions for, at one or
more servers hosting a marketplace application:

receiving from a vendor a software application for distri-
bution;

generating license terms in response to a selection by the

vendor from options provided by the marketplace appli-
cation;

associating the license terms with the software application,

and

making the software application available for distribution

through the marketplace application, in accordance with
the license terms.

29. The server system of claim 28, further comprising
instructions for deploying the software application to one or
more user accounts on one or more hosting servers, in accor-
dance with the license terms.

30. The server system of claim 29, where the deploying is
in response to a payment associated with the one or more user
accounts.

31. The server system of claim 28, wherein the license
terms include at least one of an open source license, a closed
license, a source code license, an executable license, and a
repacking license.

32. The server system of claim 28, wherein the repacking
license determines whether a user of the software application
is permitted to repackage and redistribute the software appli-
cation.

33. The server system of claim 32, wherein the repacking
license has an associated royalty.

34. The server system of claim 33, wherein the associated
royalty is one selected from the group consisting of a whole-
sale royalty, a retail royalty, and a flat fee.

35. The server system of claim 28, further comprising
instructions for license manager to determines user permis-
sions for installation, activation, and access to features of
applications.

36. The server system of claim 28 wherein the options
provided by the marketplace application includes an option to
use license terms supplied by the vendor.

37. The server system of claim 28, including instructions to
display licensing events for a respective software application
made available for distribution through the marketplace
application.

38. The server system of claim 37, wherein displaying
includes sending for display the licensing events to a respec-
tive vendor associated with the respective software applica-
tion.

39. The server system of claim 28, further comprising
instructions to store the license terms in a licensing manager.

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 236

US 2009/0037337 Al

40. The server system of claim 28, wherein a price associ-
ated with the software application is stored at a licensing
manager separately from the software application.

41. The server system of claim 40, wherein the price is
dynamically adjusted by the licensing manager in response to
a selection by the software vendor.

42. The server system of claim 28, wherein at least one
selected from the group consisting of access duration, fea-
tures, and price, is dynamically adjusted by a licensing man-
ager in response to a selection by the software vendor.

43. The server system of claim 29, wherein the one or more
user accounts are stored separately from the marketplace
application.

44. The server system of claim 28 further comprising
instructions to process a payment associated with the soft-
ware application.

45. The server system of claim 44, further comprising
instructions for, prior to processing a payment, receiving
from the user a promotional code, and processing the pay-
ment based on the promotional code.

46. The server system of claim 44, further comprising
instructions for storing a record of the processed payment in
a billing record.

47. The server system of claim 44, further comprising
instructions for prior to executing the deployed application,
comparing a user identifier associated with the one or more
user accounts and an application id associated with the
deployed application against a billing manager to verify that
a valid payment has been recorded.

48. The server system of claim 28, further comprising
instructions for verifying that the one or more user accounts
has permission to execute the deployed application, and in the
event of a verification failure, warning the user.

49. The server system of claim 48, wherein the verifying is
performed periodically, and following a plurality of verifica-
tion failures, preventing the one or more user accounts from
executing the deployed application.

50. The server system of claim 48, wherein the verifying
includes checking for multiple instances of the software
application being simultaneously executed by the one or more
user accounts.

51. The server system of claim 43, further comprising
instructions for preventing access by the user to data stored at
the one or more servers, upon determining that the one or
more user accounts has been disabled.

52. The server system of claim 43, further comprising
instructions for deploying a license key associated with the
software application to a user account associated with a lic-
ensee of the software application.

53. The server system of claim 52, further comprising
instructions for communicating to the software vendor that
the software application has been licensed by the user.

54. The server system of claim 53, wherein the communi-
cating is performed via an application programming interface
call.

55. A computer readable storage medium storing one or
more programs configured for execution by a computer, the
one or more programs comprising instructions for

at one or more servers, hosting a marketplace application:

receiving from a vendor a software application for distri-

bution;

generating license terms in response to a selection by the

vendor from options provided by the marketplace appli-
cation;

Feb. 5, 2009

associating the license terms with the software application,

and

making the software application available for distribution

through the marketplace application, in accordance with
the license terms.

56. A computer implemented method, comprising:

at one or more servers hosting a marketplace application:

making a software application available for distribution

through the marketplace application;

receiving a user request to license the software application;

and

providing the software application for deployment to one

or more user accounts, hosted on one or more servers.

57. The computer implemented method of claim 56, where
providing the software application for deployment includes
providing the software application across a network for
deployment at one or more servers associated with the user,
hosting the one or more user accounts.

58. The computer implemented method of claim 56, fur-
ther comprising processing a selection by the user that
includes adding the software application to a cart associated
with the user, and checking out the cart.

59. The computer implemented method of claim 56, fur-
ther comprising prior to deploying, presenting a description
of license terms associated with the software application to
the user.

60. The computer implemented method of claim 57,
wherein the license terms are specified by a vendor associated
with the software application.

61. The computer implemented method of claim 60,
wherein specifying the license terms includes selecting the
license terms from a plurality of options provided by a licens-
ing engine associated with the one or more servers hosting a
marketplace application.

62. The computer implemented method of claim 57, fur-
ther comprising validating that the request to license the
software application complies with the license terms.

63. The computer implemented method of claim 56,
wherein the request to license the software application
includes a payment selected from the group consisting of a
cash payment, a credit payment, and a prospective future
payment.

64. The computer implemented method of claim 56,
wherein the software application is a web-based software
application, executed at one or more servers.

65. A server system, comprising:

one or More processors;

memory; and

one or more programs stored in the memory, the one or

more programs comprising instructions to at one or
more servers hosting a marketplace application:

make a software application available for distribution

through the marketplace application;

receive a user request to license the software application;

and

provide the software application for deployment to one or

more user accounts, hosted on one or more servers.

66. The server system of claim 65, wherein the instructions
to provide the software application for deployment includes
instructions to provide the software application across a net-
work for deployment at one or more servers associated with
the user, hosting the one or more user accounts.

67. The server system of claim 65, further comprising
instructions to process a selection by the user that includes

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 237

US 2009/0037337 Al

adding the software application to a cart associated with the
user, and checking out the cart.

68. The server system of claim 65, further comprising
instructions for prior to deploying, presenting a description of
license terms associated with the software application to the
user.

69. The server system of claim 68, further comprising
instructions to receive license terms specified by a vendor
associated with the software application.

70. The server system of claim 69, wherein instructions to
receive license terms specified by a vendor include instruc-
tions to receive a selection of license terms from a plurality of
options provided by a licensing engine associated with the
one or more servers hosting a marketplace application.

71. The server system of claim 66, further comprising
instructions to validate that the request to license the software
application complies with the license terms.

Feb. 5, 2009

72. The server system of claim 65, wherein the request to
license the software application includes a payment selected
from the group consisting of a cash payment, a credit pay-
ment, and a prospective future payment.

73. The server system of claim 65, wherein the software
application is a web-based software application, executed at
one or more servers.

74. A computer readable storage medium storing one or
more programs configured for execution by a computer, the
one or more programs comprising instructions for at one or
more servers hosting a marketplace application:

making a software application available for distribution

through the marketplace application;

receiving a user request to license the software application;

and

providing the software application for deployment to one

or more user accounts, hosted on one or more servers.

sk sk sk sk sk

Apple v. Uniloc, IPR2017-2202
Uniloc's Exhibit 2002, page 238

