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Abstract

This paper proposes two heuristic tools for detecting viruses in a UNEX environment. The tools
would be used to detect infected programs prior to their installation. The tools use static analysis and
verification techniques. One tool, the detector, searches for duplication of operating system calls. A
program compiled and linked from source code (such as C) makes calls to standard library routines
for operating system services; relevant to detecting viruses are calls on files services, such as open and
write. Such object code will contain only one instance of the standard library subroutine for each type
of service requested by the program. A virus Would most likely carry along‘its own system calls; hence
an infected program would have duplicate calls to the file service and is easily caught by the detector.
The second tool, the filler, uses static analysis to determine all of the files which a program is capable
of writing to. By knowing what files a program can and cannot write, one can decide whether or not
that program is suspécious. The paper discusses the features and shortcomings of both tools and gives
some implementacion details related to the detection of UNlX viruses. in order to defeat these tools,
a virus would have to be quite complex and, if successful in avoiding detection by these tools, accept
limited propagation. The tools are also useful for detecting more general malicious code. such as Trojan
Horses.

1 Introduction

Ideallfione would like to be able to detect an infected program without having to execute it and
without noticeably impairing the performance of the system. Some virus detection techniques (see
[6] and [7D rely on run-time checking of program behavior, but employ auxiliary hardware to avoid
a performance penalty; the hardware can be viewed as a generalization of the familiar watchdog
timer. Howaver, these run—time methods potentially expose the syatem to a virus which is able
to‘do its. damage before being detected Other run-time techniques (see [2], [3], and [8]) do not
allow a program to execute if it fails to pass certain tests; these methods are useful, but they may
introduce an unacceptable amount of overhead to the execution time of programs. Typically, these
methods involve protecting programs stored on a, disk with cryptographic checksums. Another
method [10, 11} queries the users at runtime for all file modifications (it requires users to identify
the programs that can write to his files. Most virus detection techniques have serious limitations
because they detect and inhibit the spread of viruses, not their presence. They cannot be applied
to programs which are obtained from unreliable sources since they all rely upon having a clean
copy of the program available for cOmparlson, or they require user interaction at runtimo, or they
require access protection mechanism absent from most operating systems. Other approaches (eg. 
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virus scanners) cope only with known viruses or virus strains. Our approach attempts to identify
viruses through detecting their discerning characteristic in an infected program.

Our approach involves the analysis of a program prior to installation, the analysis attempting to
identify suspicious code. By statically analyzing a program, one can in principle determine whether
a program contains suspicious code; regardless of whether or not clean code is available. This paper
presents two static-analysis methods under implementation for detecting suspicious code indicative
of a virus. These methods are based on the following premises: ' ' '

0 Source programs are linked with the standard library during compilation. In most systems,
the operating system services, e.g. file open, file read, file write, are provided to‘the user in
the form of library functions. Hence a compiled and linkedpregeanseshould contain aLmost.
one instance of the trap instruction to the operating system for each system call. Simple
virusesa attaching» themselves to the beginning or end of a program, would carry along their
own trap instructions. Infected programs would have duplication of such trap instructions
for some system calls.

9 A program containing a virus will contain calls to write the virus to storage, e.g. to the
disk, operating system memory, or to uninfected files. Suspicious code, then, could cause the
program to Write to files the program under investigation is not expected to write to. By
enumerating all of the files a program can potentially open, the user of the program is alerted
to potentially suspicious code before he runs the program.

These two points form the basis of the two UNIX tools being presented here. The detector
tool examines a program to determine if it contains any duplicate instances of Operating system
services (such as file operations like read and write), while the fitter tool will examine a program
to ascertain which files the program can write. These tools are promising because they can detect
a large class of viruses and limit the propagation of others. Although these tools are limited by a
number of factors, they form a firm foundation upon which more sophisticated tools may be built.

To date, the detector tool has been implemented and tested on several programs with promis~
ing results; we have determined that all but one of the UNIX utilities on our Sun-3 workstation
running SunOS 3.4 have no duplicate trap instructions. Furthermore, the detector has detected a
handcrafted virus that is typical of UNIX viruses. A prototype of the filter is under development,
but it has been hand-simulated on several utility programs. a . *

The remainder of this paper discusses the basic approach of the detector and the filter tool.
The discussion includes the assumptions attendant to each tool as well as the implications of
these assumptions. The implementation of the detector is discussed, giving details about problems
and results of experiments performed with it. A discussion of a simple UNIX virus is also given
to facilitate the understanding of the implementation. Next, the concepts behind the filter are
explained in detail. The shortcomings of each tool are discussed and extensions of the tools are
suggested. as Work for the future; - '

2 The Detector

2.1 Basic Approach I

The purpose of the detector is to identify duplicate calls to operating system services; duplicated
calls might. be in an executable program and be indicative of a virus that has linked itself to the
program. The first step in the detector’s analysis is to disassemble a program into its equivalent
assembly language representation. The next step consists of finding all instances of code which,

perform some operating system servrce. If two different pieces of code are found to contain the
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same operating system services, then this condition is‘flagged as a duplication of services. For most
programs, it is reasonable (and necessary) to make the following assumptions:

1. The program uses a standard interface for communicating with the operating systems ,

{NJ . The program is geueratedCWith a compiler.

3. The source program does not call the operating system directly thmugh a. trap,‘instead it
'uses the operating system interface in the standard library.

4. Virus code can only occur in the code (text) segment of a program. 
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Assumption one ensures that determination of duplication of services will be relative straight

forward. If all programs use the same format for using system services, the detector can always
determine what the service is. For instance, in most implementations of UNIX, system calls are

performed by pushing the system call number onto the stack and then executing a trap to the oper»
ating system If the system call numberis always pushed immediately before the trap is executed,
the detector simply has to examine the instruction preceding the trap to determine which service
is being used. If a program does not follow such a scheme but instead handles each system callin a
different way, the detector must then symbolically execute the program to determine the contents of
the stack at the time of the trap instruction—a more difficult and potentially intractable problem
Fortunately, most versions of UNIX use a standard calling scheme Thus this assumption is only

' restrictive for those programs which do not use the standard calling scheme, such as some programs

writtenin assembly language
The second and third assumption are necessary to ensure that a legflimate, umnfected program

will not have any duplication of services. Executable programs linked with the standard library
will have one routine which handles all requests for a given operating system service Any time

the program needs a service it effects the appropriate preoarations, such as pushing the other
information required for the call 1'eg arguments) onto the stack, and then calls the xoutine which
performs the service This technique to handle system service call18 verycommon and not confined
to UNIX ' .

For portability and upgrade compatibility reasons, a compiler does not generate code that
interface with the operating system directly Instead, the compiler will treat a system service call
as a subroutine provided by the standard library The actual operating system interface code, ie
the system trap, resides1n the library subroutine. Thereforethe actual interface should appear at
most once for each system Call111 any compiled program 3 '

, Finally, assumption £011r stems from a consideration of file formats and their related restrictions
under UNIX Typically, UNIX uses three file formats for executable files: OMAGIC ZMAGIC,
and NMAGIC. The first OMAGIC, is obsolete and rarely used In this format the text segment
is non—sharable and not write protected so the data segment is immediately contiguous with the
text segment. The second ZMAGIC is the default format produced by (d the link editor For
this format, the text and data sizes must both be multiples of the page size since the pages of the
file are brought into the running image as needed The third format1s similar to the second except
the data and text segments are not required to be multiples of the page size; the entire image
is preloaded into memory at run time Most versions of UNIX enforce segmentatiori of code and
data, meaning that executable code and nonexecutable data must reside strictly111 their respective
segments Furthermore the text segment15 hot writable during run time and execution of the data
segment is not allowed As a. result of these restrictions a virus which infects a program most

do so by placing all of its code into the text segment; it cannot hide any code in other yarts of
3’ln order to defeat; the deter:tor, a virus would have to use the operatirig systein calls of theprogram 1t is attempting

to infect, rather than trivially attaching itself to the beginning or end of the program Later, we discuss ways to
catch attempts to defeat the detector
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the file. NMAGIC and OMAGIC format files, therefore, are aeroew at more resident to Viruses
than ZMAGIC format files since no unused spaco is availa‘ole ioe a . Eleanor, a virus may
still be able to infect such files if it can somehow hide the increase lo a e eiee o: the host. program
(perhaps ,. through a. flaw in the. operating system or by compressing the original code to obtain
space). * MAGIC format files are-even more vulnerable. For instance, cinder 3:219:63 eat the page
size iseight kilobytes, meaning the’average ZMAGIC formatvprogramwillhave approximately four
kilobytes of zero—padded space in both its text, and data. sections. This space is large eaoogh to
hold afairly complex Virus wri-tten‘in assembly language. However, in, all three cases,» che virus-
code'must still appear in the text segment, making itdetectable by, the detector. lf all‘of these
conditions are met, then thedetector can be used to determine if the program under consideration
contains any duplication. of system calls. » . >

 

2.2 .Implementation‘ah‘d Results f

A prototype of the detector has been implemented on a Sun 3' workstation running SunOS 3.4.
and has been tested on several of the standard programs from /bin, filer/bin, and /u3r/ocb, but
its application is not limited to UNIX systems. This prototype, called Snitch, is written in the
C and Icon programming languages and consists of two major modules: the disassembler and the
analyzer. The first module, the disassembler, takes an executable program as input and produces
the equivalent Motorola 68020 assembly language representation as output. The second module,
the analyzer. takes the output from the disassembler and examines it for duplicated code.

For 813.1103 3.4, a system call is performed by pushing the system call number onto the» stack
and then executing a trap instruction. Because the call expects the top of the stack to contain the
number of the call to he made, determination of duplication of services becomes straightforward;
one only needs to backtrack from the point of the trap to determine the last item pushed on the
stack; that item will he the system call number. Furthermore, most of the standard library routines
push the syetem call number immediately before executing the trap, making the analysis. phase even.
simpler. The anayzer reports anyduplications found as. well as the number of occurrences of all
system calls. '

. The results of the experiments performed on Snitch are as follows. Approximately one hundred
programs (mostly UNIX utilities) were tested for duplication of services with some of them infected
with a simple virus (described in Section 3.2). All of the infected programs were found to have
duplicated system calls, while only one uninfected program was flagged as having dapllcation
of services: /bin/csh contained two instances each of the ’getgid and getuid system cells. One
may conjecture that such duplication occurred because of post—linking binary patching. Since the
duplicated services were not of a serioue nature; for a program as large as the C~shell, such an
occurrence should not be surprising or indicative of malicious coder ‘

2.3 A Simple Virus

'For purposes of testing Soitch, a. simple virus was created which infects SunOS 3.4 executables.
The virus is considered simple because it makes no effort to conceal itself and it does not use a
sophisticated method forreplication and propagation, although it is capable of avoiding multiple
infections of the same program. Basically, the'virus works ae follows: First, the virus determiaee
whether it has previously infected the target program. Under $111108, executables have a standard
header which contains format information, start-up code, a branch to the user’s code, and thee:

:cleaneup code. The format information tells in which format (OMAGIC, ZMAGIC, or NMAGECE
the file is arranged. The start-up code initializes environment variables and other constructs area
the clean—up code restores the old environment and makes a smooth return to the shell. All of t '
information is common to most executables and of a constant length. Therefore, the breach *5:
the main body of code always occurs at a certain offset from the beginning of the text 3e» '
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Furthermore, the user code always immediately follows the clean-up code, making the branch
address the same for all programs. Thus, to determine previous infection, the virus simply examines
the locatlon in the text segment where the branch instruction occurs (bytes 70-73) and determines if
the address is the standard address (ZOAO hexadecimal). Ifit is, the virus commences the infection
process.

7 Next, the virus determines if it has enough space to infect the program Without overwriting
any legitimate code or increasing the size of the program. The only format which allows any zero-
padded space is the ZMAGIC format; if the file is not in ZMAGEC format the virus exits and passes
control‘to the legitimate code. Ifthe file is in ZMAGEC format, the virus determines Whether there
is zero-padded space at'the end of the text segment. This taskis accomplished by looking for
zero~padded space of length N between the end of program and the end of the text segment, which
is multiple of 8K bytes. N is the length of the virus code. ' '

Finally, assuming there is. enough room, the virus copies. itself from the host program into the
target program by copying the last N bytes from the host program’s text segment. It then changes
the branch instruction in the start~up code so that the virus code is executed after the start-up
code and before the legitimate code. Five system calls are used by this virus (open, lseek, read,
write, and close) and its length is approximately 150 bytes. A program infected with this virus is
easily detected by the detector.

2.4 Limitations of the Detector

The most obvious way of defeating the detector is simply to make the infected program not have
any duplication of actual interface to the operating system; if the virus uses the existing services
it cannot be detected with the detector. Use of existing services would be simplified if the symbol
table information was left in a. given program. In this case, a virus could determine the location
of the needed services and hook into them, thereby adding only that code which was not already
present in the host program. Even without thesymbol table, a virus could search the host program,
looking for the services it requires. Then, it wbuld import only those services which it could not
find.“ Also thevirus could escape detection by inserting a. dummy system call that is absent
from the uninfected program, pushing the system call number onto the stack and jumping to the
trap inStruction inserted. Such viruses would escape detection by the current detector, although
it could be extended to identify code that searches 3. program for system cells. We are currently
investigating these and other approaches to defeat the detector and to extend the detector to make
it more robust.

3 The Filter

3.1 Basic Approach

A virus filteris an automatic classifier which applies static analysis techniques to detect the presence
of a. virus. Since computer‘viruses multiply by implanting themselves in healthy programs, a.
necessary condition for propagation is their ability to modify executables. Our approach, although
based on the technique of formal verification differs from classical verification, Verificationentails
proving a. program with respect to a specification — a statement of what function the program is
intended to compute. For the purpose of detecting suspicious code, we. are assumingno specification
will be provided. Instead, programmed into the filter is a property to be determined of the program
under- analysis. For the current version'of the filter, the property is “the files that the program
could write to”. The basic approach is first to identify all open Calls in the program and then

”This may not be as easy as it sounds. hoWevergsince the virus must then know where each of its constituent
parts is located within its code as Well as how to extract them. ' ’ ‘
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to enumerate the possible fileneme arguments to these calls. As we demonstrate, the analysis is
feasible as only a small fraction of a program is involved in generating filenarnes. Upon being
presented with the names of files that the program could write, the user could determine if the
program is suspicious. Of course, a virus could still be present, but its propagation would be
severely limited -v essentially to just those files. Crochet and Pozzo (see [43) (hereafter abbreviated
to Crocker) proposed a virus filter based on formal specification and verification techniques“ But
throughthe following hypotheses, they conjecture that the analysis will be vastly simple than that
usually associated with program verification.

Hypothesis 1 It is possible to formulate restrictions for the maiority of useful programs such
that the restrictionis syntactically simple enough to be machine processable and fine~grained
enough to represent the full range of authorized modifications made by realprogremflfliri ,,
restriction isthe specification of the modifications 3. program makes It is created by a
program developer wishing to submit an executable program for potential use

Hypothesis 2 It15 possible, on the average to analyze benign programs in a straightforward way

Hypothesis 3 it is possible to classify modifications such that ordinary changes can be distin—
guished from suspicious ones.

Generally, we agree with Crocker’s hypotheses, but argue that for some programs (benign or
infected) the semantic analysis required. is more complicated than implied by these hypotheses.

In UNIX systems, the propagation of a. virus through direct access to files is through the
open, create rename, link and unlink system calls A virus mayopen and write to an executable
or replace an executable by its viral counterpart Using symbolic evaluation techniques, it is
sometimes possible to determine the arguments to these system calls and hence the names of
files being modified The enumeration of the files which may be modified by the program being
investigated provides clues to detecting viruses For example the program date does not write to
any files (except standard output) If the enumerated list of files thefilter identifies fer date is not
empty, it can be concluded that the date program is suspicious. The analysis of the benign date
program is very straightforward. Much less straightforwardis the split program Split reads a
file and writes it in ruline pieces to a setof output files The name of the first output file1s an
argument specified111 the command line with “aa” appended, the. second one with “ab” appended
and so on If no output file argument is given, “It” is used as default The program should only
create files starting with the prefix speczfiedin the command line or the default prefix Therefore,
we can say the split program is safe if the enumerated files sausfy this restriction

In general, s program is said to besuspicious when

1 The program ’8 acceptance criteriais not satmfied - there15 a high potential for a virus The
acceptance criteria states that the enumerated set of filenamesis acceptable to the user

2 The program is too complex to be evaluated by our filter. No defimtive answer is obtained
from the filter so the program is not accepted In practice it would he the responsibility of
the programmer to argue that a suspicious program is not contaminated

Otherwise the program is said to be safe.

After sampling some Commonlyusedprograms Crocker concluded that the patterns of fileneme
generation could be classified as follows: -

ImpliedwwThere1s a fixed possibly empty, list of files to be modified For example,date modifies
no file vipw modifies wee/passed
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Parameters —- Filenames are passed to the program as command line arguments. For example,
* indent indents and formats 3 C program specified in the command line.

l

Transformations — Some programs such as compilers and editors create new files based on the
arguments in the {10111de line. For example, compress transforms f ilename to f ilename .2.

Temporary files e Newfilenames aregenerated independently. . Forexample, yi generates temr
porary files inthe/tmp directory. ' ‘ .7 . 1‘ ' . ‘ .

Dialogs « The'filename is provided by the near when the program'is running. For example, ooh
(a. standard UNIX Command interpreter)" file redirections are obtained from terminal input.

In all of tlleee classifications, the algorithms used to generate file'names are quite simple involve
a small fraction of the total program. Si‘nte most realistic programs are far too complex to be
analyzed in their entirety and most of the code is unrelated to fileneme processing,» our approach is
toisolate that part of the program concerned with filename generation and disregard the remaining
part. The simplicity of the resulting reduced program should make the static analysis tractable.

In summary, our filter tries to determine the names of all files which might be modified by the
program. By comparing the enumeration of names and the specified restriction, the virus filter can
claim the program is safe or is suspicious. The complexity of the programs in their entirety may
prohibit comprehensive analysis, 30 part of our method eliminates that part of the program not
related to filename processing. We call this method slicing. After slicing, the residual program. is
usually small in size and, thus, anelyzable. '

Ayirns in evprogram could escape detect-ion by the filter if it is content to contaminate only
those files for which the program has legitimate access. For example, a. virus hiding in the EMACS
editor’could infect a program beingvcreeted using the editor. HoWever, once infected this'ptogram
could infect only those programs its designer has given itanccess to. Any code in-the original virus

that would involve writes to [other files would be detected by the filter.

 
,7.
g,
l ,l2

13.2 Implementation and Results

This section ditcnsses the implementation of our approach. The ingot to the virus filter is a binary
executable. The output is the enumerated set of the files that may be modified by this executable.
Thevviruslfilter proceeds through sixsteps. The first five steps‘ are the preprocessings required
to extract; the program fragments which contribute to filename generation. The last step involves
symbolic execution and analysis. The sixcteps are as follows:"

1. Translation to an intermediate language - -

. Determination of basic block and life span

, Determinetion of data dependencies

2

3

V 4. Anti—aliasing,

5 Slicing I

6 . Symbolic evalnation and analysis:

. ' Given a, program to be analyzed, the virus filter first translates it into a. (Hike intermediate
language. Then the filter relabels variables in order to decouple semantically disjoint variables
sharing the some storage. Next, the data. dependencies are found by analyzing the program syn-
tactically. The filter performs anti—aliasing analysis to unify references to the some storage. Extra.
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dependencies are added to the data dependency graph when aliased storage is found“ Based on the
data. dependence graph, the program is. sliced into pieces, Finally, the pieces which are related to
filename processing are extracted and symbolically. executed. The filter also applies some theorem
proving techniques, primarily to derive inductive assertions for the few, if any, loops involved in
filename enumeration.

The folloWing simple example, written in our (Hike intermediate language, is used to illustrate
the'different steps of the virus filter. This example program consists of two independent fragments
of code which perform different operations although they share the same variables. It demonstrates
our method of decoupling variables by relabeling. Then, we separate it into two independent
program fragments by applying» slicing. After locating the appropriate fragment containing the
system calls, we apply symbolic evaluation and analysis to determine the filenames.

Example: We pick up this example after translation to an intermediate C-lilre language. 2: is a
filename string, i is an integer,’str() is a function converting an integer to a string. Not shown .
are the open system callshassumed to occur at any line in the program with filename argument X.

 
 

Line number

  
intermediate code

1 1 = l

2 x = “f”
3 x = x {l strCJ.) # string concatenation
4 i = 1 + i

{5_ . if ,(i <:. 3) gotovline 3‘ .
6 L print it ' ‘
7 i 3200 V , .
8 x : strCi) ' V ' l 
 

The filenames generated would be:

,f if the open system call follows line 2
> £1, £12, £123 follows line 5

\ £123 _ follows line 6 ’
200 ‘ l ' follows line 8.

3.2.1 Translation to Intermediate Language

The input to the virus filter is assumed to be a machine compiled binary program, not an arbitrary
assembly language program. in the first stage, the program is decompiled into a machine indepen«
dent, C-like, intermediate language We have designed the intermediate language such that analysis
attendant to stepsQ-(S is simplified. To be specific, the intermediate language contains at most one
assignment per statement and control is transferred by the goto statement only. The decompiler
recovers semantic information about variables which are lost during the compilation. The goal is
to partition memory into regions such that each region is the storage for a simple or structured
variable. All storage locations are made explicit and side effects are eliminated. Library calls,
like string assignments (string copy) and integer to string conversions, are replaced with defined
functions in the intermediate language. Thus the virus filter is more likely to produce intelligible
output through reference to higher level functions.

Since our filter is designed to work with binary executables, we need a decompiler to translate
machine codes to the intermediate language lntuitively, the intermediate language should contain
more information than the machine code, eg. concerning types and addresses of symbols. We
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should be able to locate extra information concerned with the high-level language from sources

such as the symbol table, Even if we cannotfind anything directly, we may still be able to deduce,
data types, procedure entries, etc, from the style izi’whi'ch the compiler generates code. '

32.2 Basic Block and Life Span Analysis

Variables are often} recycled in muddy programs in order to save storage or simply as a matter of
programmihg style. In many programs, variable i is a general purpose loop counter which is reused
in different, unrelated‘parts of the program. This recycling adds deoendencies to the datafiow
graph that can be eliminated. The elimination involves the renaming of the variables on the left
hand side of an assignment statements. “ ‘

After translating to the inter-mediate. language and rel‘abellng,the program is decompoeed into
basic blocks for life syan analysis‘ A basic block is a sequence of instructions in which

1. All control transfer statements are at the end of the block.

2. Only the head of a basic block can he the target of any control transfer statements.

The life span of a variable corresponding to an assignment is the span of validity of its value.
The life of a variable starts on its assignment and yropagates to, basic blocks that the current block
can lead to. We now pick up the example be derived as the filter starts in step 2. In line 4 of the
following table, the value of i at the right handseidemay be derivedrfrom three possible sources
because thereare 3 assignments to i (lines 1, 4, and 7) The purpose of life span analysis isto
eliminate impossible combinations; Le. if? can never be the L4 of line 4;,

Variables on the left hand side are relabeled uniquely by their name and line number. The
program is broken into three basicblocks. The, live variables are given in the rightmost columns.

 

Life of): l I Line number Intermediate code Life oil

  
 

 

  

*3: [l str(i)
i + 1 .. . ,

' ,< 3) 89m 11m '3
print X

 
 ‘oo-qcnmoo‘azor—x H H: A )4

x3 =‘ aura)"- 

3.2.3 Finding Date. Dependeheies’

Given the life span of the variables, thesyntactlc data deperldencies can. be determinedby datafiow
analysis. Consider, for example, statement 3 in the example after step 2: “32.3 .2 x [I etr(i)’l. ffhe \
variables x and i are referenced; 22.2 and x.3 are live when x is referenced; LI and L4 are live when
i is referenced;.x.3 is Written to. Thus x.3 depends on M, 1.4, x2, and x3.

Thus for step 3,_,the dependenciee are determined to be:
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11.3 s» x 2. /* x. 3 depends on x 2 */
x.3 (—w x.3

x.3 <—-— 1.1

Ix.3 +— 1.4
1.4 4—- 1.1

1A +— 1.4:
x.8 4w 1.7

The objective of the date dependency analysisis to slice. the program into independent portions
to simplify static analysis Since filenames are usually generated by simple algorithms, syntactic
dependencies are considered inStead of semantic (real) dependencies This simplifiedanalysisis
adequate for the worst casedependencies. In the above example, we can recursively trace back and
find all variables on which it depends at line 8 The dependency subsetis found to be “3:.8 +— i7”
The subset program is composed Of lines 7 and 8 as indicated by line numbersin the dependency
subset.

Similarly, the variables x33 ,.x3 i. l i4 are related to the computation of x at line 6 Lines 1 to
4 constitute the corresponding subset program

3.2.4 Performing Anti~aliaeing

We need to solve the aliasing problem which results from the possibility of referencing a memory

location directly through a variable or indirectly through a pointer. Such sharing of storage must
be identified before we can have a. correct data dependency graphv After the virus filter identifies
the aliases, additional dependency arcs are added into the graph. The aliasing is found by con-

sidering the pointer assignments. Let us call the variable on the left hand side of the assignment
statement the fhome’ variable. Reference through a pointer will add a dependency to this variable.
Modification through the pointer will add new labels to the home variable. Since the life of the

new label must be computed, the Virus filter may need to iterate through steps 2 to 4 several times‘
The iteration stops when no new dependencies are identified.

3.2.5 Slicing

After completing steps 1 to 4 we have the data dependency graph and the next step is slicing to
identify the program fragmentassociated witheach open system call A fragment terminates with
an implied system call the arguments of which are to be determined111 step 6 ‘

Continuing with example I, if the system call immediately follows line 8, the sliced fragment
would be: , »

7 i = 200

8 x = strCi)

If the syetem call immediately follows line 3, the slice fragment would be:
I i = 1

2 _ x = ‘‘f’ '

3 x z x [E 513(1)

To obtain the pertinent progrem fragment, the filter traces back from the system call through
the data dependency graph toobtain all of the variables the system call depends on, ie, the line

numbers of the relevant program statements Having the line numbers we can easily shoe out the
program fragment.
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3.2.6 Symbolic Evaluation and Analysis

The sliced program is then symbolically executed to identify filenames generated. Proceeding
forWard‘through the statements in a. program fragment, each variable obtains a. set of values, each
value in the set being a value the variable couid'be assigned in a. real execution

The symbolic evaluation is straightforward when the program haeno loops. For a, program
containing loops, more complicated techniques, as described by German and Wegbreit in [5], are
required.

» Given the'input and output assertions fore, loop, four methods to obtain inductive assertions
for the program have been proposed: (1) week interpretation, (2) using loop exit tests and gener-

, , elimtiggffi) predicaterrgropagetion, and (4) extracting information from unsuccessful proofs. The
first three methods can be used in our virus filter. They/last one is not applicable because it Works
backward from the output assertion, which we assume will not be available.

The followings are the salient pointe'of German and Wegbreit’s first three methodsva’s they bear
on the Virus filter: ' ' ' ‘ ‘ " ‘~ ' '

1. Symbolic evaluation in a weak interpretation.

P = start address of S;

{1: start address of 8 <= P <= and address of 8}
while (P < end address of S)
' ' {I} ' * '

P = P + i;

{I}

For example, Suppose P is a pointer variable and S is a string variable. P is initialized to the
start address of S on entry to a; loop; P is incremented on each pass through the loop, and
the loop is exited when P is greater than the end address of S. It follows that inside the loop,
the inductive assertion I wiil contain the expression: start address of S 3 P 3 end address of
S. Week interpretation attempts to derive simple facts of this kind; specifically, it considers
only simple lineerequalities or inequalities relating two variables.

2. Combining assertions with loop exit information.

Suppose a loop is exited when some test D is true and that after the loop so ,e assertion P
, is to hold» Since P is to hold after the loop, the assertion {3 w, P (read D implies P) must be

true inside the loop and just before the exit test. it is very likely that D «e P is sufficiently
' strong a loop invariant for our purpose.

'3. Propagating valid assertions forward. through the yrogrem, modifying them as required by
the program transformations.

Whenever an essertion‘is known to be valid, it is useful to propagate it forward in the
program, deriving thestrongest consequences of the assertion downstream. Through sub-
stitutions, assertions are modified on passing through decisions and assignments to produce
their consequences.

Our preliminary analysis of the filter has determined that these 3 methods are adequate for
the analysis of loops involving file enumeration coder

 
3.3 Example: The Split and the Copy Programs

The program splitr is analyzed. The synopsis of split is
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split [bnumber] [infile] {ammo}.

In short, split reads a. file and writes it in n-lines pieces onto a set of output filer " ’ ,
the first outputlfile is anrargum‘ent specifiéd'in the command line with “aa” opgrerrxclk—zrig __ _ ; r m
one is outfile with “ab” appended, and so on; the name generated form a lexicograglzi:W
If no argument is given, “x” is used as default. The following is the sliced Split program“ r: L '
from applying-amps 115 of the filter. ' ” ‘ '

 
 

 

10 argo~= INPUT; 'argv = INPUT
16 outfile a "x” - ' ,1

21 for (i a 1; i < argc;=i++5
38 outfile - argvfi]
42 outfile = outfilo [I "aa" '

43 for (suffix.w outfile; *suffix l: 0; suffik++)
45 suffix"-

4? *suffix = ’a’ ~ 1

81 if (++*suffix ) ’2’)
82 #suffix a ’a’

83 ++*(suffix - 1)

87 creatCoutfile, 0644)

K

The slicing reduces the 104 line program to 12 lines. As we can see, the program fragment for
the generation of filenames is very small even though not terial compared with other programs We
have, considered. By symbolic evaluation, and tracing through the loop several times, the result is

(l’ifl' } argvffll [I "aa‘ll ”abf‘l D; I

_ Using German and Wegbreit"s méfhods for the deriiration‘of the loop invariant, we have the
conditions *suffix > ’z’, *(sufiix+1) > ’z’, *sufiix : ’a,‘ - 1, and *sufiix is not decromented in the
loop. From these conditions, the following represents possible value for the filenames.

(."x" l argVEfl) H a H b..

_~ Where “a” S a,‘b g “z”;

The user Would accept Split as Safe, as it writes only to files thatvhe expects.

A‘s ahotlier example; consider ’cp’ which copies files. The synopsis is

“(:9 filenamel filename?”
or

' " “cpfilename dimame”:

' In the firé‘r format, op ‘copies filenalmel to filenameé. In the socond format, cp copies the filename
to the directory dimame. The sliced program fragmont is like

39 Great (argv{2], soutstmode & 077?)

70 ptr= argvfargc - 1]'» ' '
71- dp w dirname ‘
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72 while (*ptr != 0) *dp++ = *ptr++

7Q *dp+* g 1/) l
?S ptr = argv[i]
78 while (*ptr !: O) ptr++‘ .
79 while (oer > arngi] && *ptrl!="/’) ptr-~
80 if (*ptr == ’/’) ptr++

81 while (#ptr != 0) *dp++ = *ptr++
82 *dp++ = O
84 creathirname, sbuf.stmode & 0777) .

The original program is 164 lines; lines. The sliced fragment is very small and most of the
programming statements are strings operations consisting offsma’il‘ loops.

3.4 Limitations of the Filter

Since static analysis techniques are crucial to the operation of the virus filter program, it is assumed
that the program being analyzed is constrained to good programming practice. That is, the code
segment cannot be altered and control may not be transferred to the data segment or the stack
segment. These constraints are satisfied for Sun UNIX 3.2 programs. Most programs do not
change their node segment or try to execute the data. segmen . Dynamic linking programs and
debuggers are exceptions, albeit important ones. Furthermore, our model assumes a single thread
of controll Modifications would be required for a parallel program with shared memory. Some
specific limitations of the current virus filter design are discussed below.

3.4,]. Pointer reference

There is no constraint on indirect memory references (any pointer or array reference) in our low-
level language. Whenever this kind of reference is associated with a. string of unknown. length or
with a' non—deterministic event (eg. a user input), any memory cell can potentially be modified.
The Wei-written cell can be anywhere, possibly a filename argument to system calls.

If the symbolic evaluator works conservatively, its output will be too pessimistic, as most storage
contains non-determined values. Otherwise the output of the evaluator could be incorrect and a

‘ virus could. slip into the system without being detected.

The following are common statements in 0 programs; see Figure 1.

while (flip-H =‘ *Q++); ~~~~~~~~~~~
l, . str _l<------- p

******************** l 3 r l
. .z , . . :~~~w~~~«~:

scanf€“\’/.d”, Sci); . l {or
strfiil e ’x’; I‘ file~ I

| name I

.‘ Figure 1; Two examples to illustrate the 'difiicultyvof deciding pointer references.

In the first example, if p points initially to a. variable ‘str’ and memory is allocated as shown, p
can overflow and, potentially, clobber storage that holds the fileneme argument to a future system
call. We potentially have todetermine all possible values of pointers in order to determine what
storage can be cicbbered. ‘ l ' '

‘ The n‘ndisciplined use of oointers severely hampers effective static enalysisebut also represents
bad programming style. In the first example; a. better alternative is to use

362'

 



 
etrncpflp, q, HARLEN).

The second example should have a conditional statement‘such as

"if ((1 < 0) H (i 5: UPPERBGURDN inputwerrofl);

before the array reference to avoid an out~of«boun’d array reference Assuming these extra state
ments, itis’ possible tobound the pointer references to facilitate analysis.

We rnay be Able to infer the range of pointers from I the program and prove the pointers are
constrained with their associated variable. For example, during the life of a pointer P associated

with string 3, our filter proves the assertion {S g P g S + length(8)}.

Another difficulty With pointers is With respect to dynamic allocation of memory It is almost
impossible to find the bounds of oointers pointing to dynamically allocated memory variables
because thereIS no way to determine their addresses statically If we assume the worst case « all
pointers can share all dynamically allocated storage — it is not likely that the filter can perform an

effective analysis of the program.

Although not acceptable in all situations, it appears that software users can impose a strict

programming style on their vendors to simplify the work of the virus filter in pointer analysis.

3.4.2 Loops

As discussed before, the presence of loops makes symbolic evaluation much more complicated

because of the indefinite number of iterations. Several methods may suggest solutions to this .

problem. One of these is to determine the maximum number of iterations of the loop and have

the symbolic evaluator go through the loop that number of timee‘ Other methods include the
determination of loop invariants to give significant repreSentatiOn for the loop A method which

uses linear inequalities to constrain the variables may be useful [5] However, all existing solutions
are heuristics and do not workIn all situations

3.4.3 Struetured Data Types

The symbolic evaluate: needs to understand struetured data'such as strings and records. String

operations arecommon in generating filenames. The evaluator should be able to understand that
the code fragment while {*p++) is equivalent to moving the character pointer 19 tothe end of'the
string. Some heuristics are helpful in giving understandable reports to a user. For instance, it is
preferable for the filter‘to output the statement, “A new string 81 is generated from S by appending

character ’c’ to it” rather than output the assertion

{3j((W (j :Siillz: (i and SiJ]: :0) and
(Vi < j : 51M 2 SM) and
31m =' c’end

~‘ Sllj+ 1] :0) }

In Some situations, the completefi-lenames may not be generabie in the absence of specific
details of the environment. For example, when a. temporary file is generated with the constant

prefix Amp/vi and the process-id, the symbolic evaluator is unable to give the exact fileuame
because the filenamedepends on the mntime environment However, if the evaluator15sufficiently

intelligent, it may give a partial result such as /tmp/vi* as the generated filename However, the
cost of having such intelligence is not low as the evaluator needs to understand the Semantics of
strings and essentially all possible operations on a string
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4 Conclusions and Future Work

There is a need for improved defenses against computer viruses. Defenses include

1. preventing the propagation of viruses,

‘2. detecting an infected program .

3. determining if a newly issued program contains a virus.

This paper concentrates on (2) and (3). Our detector tool checks for duplication of services. A
program linked with the standard library, typical of UNIX systems, will contain no duplication of
system services, A simple virus would carry its own services and would ”be. easily detected by our
detector tool. The detector can be defeated, butonly by a virus-that searches for the services in a
program; such a virus will be more ,mmplex than current viruses and might contain code that an .
extension of the detector would flag as malicious.

The filter tool extends the concepts proposed by Crecker and Pozzo. It carries out a static
analysis of a given program to determine the capability of a program to modify files. A user of
the program under test could then determine if any unexpected files are written to, for example
thOSe obtained by searching a directory. The filter uses verification techniques, but since only a
subset of a program is usually concerned with filename generation, the technique appears to be
more feasible than verification in general. We have simulated the behavior of the filter on typical
system programs, such as date, split and op. Heuristics are required to generate loop invariants

1(but'Ith’ealoops appear toibe quite simple?- and to demonstrate that pointers are well-behaved.
Implementation is underway.

The prototype of the virus filter will be tested on MINIX system utilities executing on a. 80286w
based machine. MINIX is a UNIX—like operating system written by Tanenheum [9] The MINIX
programs are usually small, making them ideal for an initial evaluation of the virus filter. Also, the
assembly language is quite simple, which will simplify the translation to the intermediate language.

The similarity between the detector tool and the filter tool is that both attempt to determine
if a program under test contains suspicious code. The difference lies in the suspicious code under
searching. {The detector tool considers program structure, Le. the way that system calls are made.
The. filter focuses on the arguments tothe system calls. System calls areinteresting because 3.
program may interact with other objects in the system, hence cause damage, only through operating
system calls. ,_ . . . , . .

Generalizations of the detector Would involve more complex checks on'program structure. For
example, the detector might look for the getdirentries (get directory entries) system call which is
useful to viruses, but not to most programs. Different compilers generate code in slightly dlfierent
ways. If the virus code is compiled with a foreign compiler, the detector may be, ableto detect
it with statistical orpattern-matchiug methods; Furthermore, it is common for a virus to attach
itself to the beginning or theendof a program. By looking at the pattern of flow controls, we may
obtain some hintp to thepresence of viruses..

The filter tool uses symbolic evaluation and verification to determine the possible arguments
of the system cells. It can beextended to determine values of variables in the programphence'we
can prove-assertions composed. of program variables, which characterize the program behavior; The
filter may. determine the; input conditions which lead to execution of certain sections in the program.
For example, if We apply» this technique to the. login program and ask for, the condition that the
seized statement is executed, the filter should find that a necessary condition is the matching of
passwords. _ - .

The techniques described in this paper are not limited to the detection of viruses. TrojanHorses
are detected in similar way, albeit the detector and filter need to be programmed with different
properties.
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Because virus detection is undecidable (see (1]), these toolscerfainly cannot claim to have the
ability to detect all viruses. The detector tool can be defeated in at ieast one sure way by using
the existing services of a program. Similarly, the filter can also be defeated: a. virus can. propagate-

through the filesfio which the program has legxtimate access. Althbugh these tools cannot detect all
viruses, .viruses have to hide all the traits we are looking for. .A virus‘designed with theselconstzaints
is very complicateé, cannot be vexy infective, and also very: hard to write... The mere: complexity of
such, a virus should lead to its early discovery by morecommon methods of debugging.

5 Acknowledgments _;

John, M Gomns of. st; ,Albans,fiérts,,Eng1a.nd, wroteiche‘disaesemblecosed.in Snitch. We axe
, also goatofui to Steve; Crocker, .Maria, Pozzo, Doug_.Mensur and his colleagues at the LaWexence

. Livermoxe Netional’Leboratory for many conversations on the virus problem. . ,

References

[Z] Fred Cohen. “Computer Viruses: Theory and Experiments”, Computer Security: A Global
Challenge, J.H. Finch and E.G. Dougall (eds) (1984)

[2} Fred Cohen. “A Cryptographic Checksum for Integrity Protection”, Computers 69’ Security,
Vol. ,6 pp. 505-510 (1987)» . .

' [3] (”Fred (Cohen..“Mode1/somectical Defenses Against Computer Viruses”, Computers 69’ Security,
V01. 8 pp. 149460 (3.989) ' C V . . I

‘ (4] Steve Crockez and‘Maria. M. Pozzo. "‘A Proposal for a. VerificattiomBased Virus Finer”, Pmc.
. of the 1.989 IEEE Computer Society . ymposiom on Security and Privacy, May L8, Oakland,

' California, pp. 319324 (1989) ' ”

[5] Steven M. German ané Ben Wegbreit. “A Synthesizer of Inductive Assertions,” IEEE Trans.
on Software Engineering, Vol. SE—l, No. 1 (1975)

[6] Mark K. Joseph and Algirdas Avizienis. “A Fauit Tolerance Approach to Computer Viruses”,
_ , Proc. (IEEE, pp.52-_58 (1988) ‘

[7T Aamer Mahmood and 'E. J. McClfiskey. “Concurrent Error Detection Using Watchdog
Processors—A Survey”, IEEE Transaciioos on Computers, Vol. 37, No. 2 pp. 150~174 ($988)

[81 Maria. M. Pozzo and Terence B. Gray. “An Approach to Containing Computer Viruses” , Com.»
puters 69’ Security, Vol.6 pp. 32l~331 (1987)

[9]. Andrew Tanenboum. Operating Systems: Design and Implementation, Englevmod Cliffs, 3.3.,
Prentice4Hali, Inc. (1987) ' '

[10] Paul A. Karger, “Limiting the Damage POtential of Discretionary Tro§an Horses” ,VPrzoc. of f”!
1987 IEEE Computer-Society S’ympooium on Security and Privacy, Oakland, Califoreée, pg.
3237 (1937) V , . . _ .

[11] 133.8,. Wichers, BM. Cook, RA. Olsson, J. Crossley, P. Kerchen, KN. Levitt, R. Lo. “PA.
An ,AccessControl List Approach. to Anti-Viral Security”, to appear in Proc. of the So:
Computer Security Conference, 1990. ‘ ‘ . ‘

 

  

365 ,



 

366



 
 
     

 

 
  

   
 

  
 

   
 

 
   

   
  

  
   

  
 
  

    
 

      
 

        
 

   

 
    

 

 

 
     

     
 

 
   

 
        

  
  

             
    

      
 

 
 

    
 
        

  

 
 
 

  
 
 
  

 
 
  

     
   
     

  
 

   
 

    
   

  
   
 

 
        
 

 
 

  
 

  
   
      

 
   

 
    

 
        

 

   
  
   
   

  
 

 

 
   

 
 

     
 
   

    

 
  

   
l“-.- 1‘

x.--:.-5£.,_,

 

  

 

 
            

     
          

      
 

    
 

      
 

   
     

     
    

     
     
                                                           
   



  

 

  
  

 

368

 

 

 
  
 
 



Mus—«msmwms ”MMMMMMMA-rmwum.u AWN, ,, WA

Welcome!

The National Computer Security Center (NCSCJ-and the National Computer

Systems Laboratory (NCSL) are pleased to welcome you to the Thirteenth Annual

National Computer Security Conference, We believe that the Conference will

stimulate a vital and dynamic exchange ofintormation and foster an understanding

of emerging technologies.

The theme for this year’s conference, ”Information Systems Security: Standards -_

The Key to the Future, ” reflects the continuing importance otthe broader

information systems security issues facing us. At the heart of these issues are two

items which will receive special emphasis this week In formation Systems Security

Criteria (and how it affects us} and Education, Training, andAwareness. We are

working together, in the Government, Industry, and Academe, in cooperative efforts

to improve and expand the statevof—the—art technology to in formation systems

security. This year we are pleased to presenta new track by the information security

educators- These presentations will provide you with some cost-effective as well as

innovative ideas in developing your‘own onrsite information-systems'security

educationprograms. Additionally, we will be presenting an educationaiprogram
which addresses the automated in formation security responsibilities. This

educational program will refresh us with the perspectives of the past, and will
project directionsof the future.

We firmly believe that security awareness and responsibility are the cornerstone

of any information security program. For our collective success, we ask that you

reflect on the ideas and information presented this week; then share this

information with yourpeers, your management, youradministration, andyour

customers. By sharing this in formation, we will develop a stronger knowledge base
for tomorrow’s foundations.

wécjwflg ”W _ : is ,.lAMESHBURROWS' PATRICKR.fii—i , ,
V Director v Director ‘ ,

National Computer Systems Laboratory National Computer Security Center
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