
CS-1017
Cisco Systems, Inc. v. Finjan, Inc.
Page 1

Automated Assistance for Detecting Malicious Code *

R. Crawford, P. Kerchen, K. Levitt, R. Olsson, M. Archer, M. Casillas

Department of Computer Science

University of California, Davis

Davis1 CA 95616
Email: virus©cs.ucdavis.edu

Abstract

This paper gives an update on. our continuing work on the fifaficiom Code Testbed

(HGT). The MOT is a ami-aulmnated tool, operating in a simulated, clennmm en-
m‘rmmcmt, that is capable of detecting may type: of rolicious code, such as m.

Trojan horses. and time/logic W. The MOT allow security analyst: to check a
program before imiailafion, thereby deciding any damage a Widow pray-nun might
inflict.

Keywordis: Detecfinn of Malicious Code, Static Analysis, Dynamic Analyst.

1 Introduction

The Malicious Code Tutbed (MCI) was ofiginafly defined to use both static and
dynamic analysis tools developed It the University of California, Davis, that hm
henshmtobeefediulgfimmbintmofmfiduumde. Onegmlofflle

mbedkbenhuuthemoffimflutookbynfingfiminammpkmutuy
fashiontodetect more genealmeutf malicious code

haul-reporttothismnfaencelastyearflL‘lepruentedadsignmu-dewofthe
MCP.In1hcpmtpapu-,weteportononrmmdsnpgmdingtheMCT
envimnmentfordynamicanalysk.

Maughiuprindplq themfionofaflaficiocsGodeTestbed'nindepen-dentofm
Mammfluditectunlphfiommiuifidimpflemmuthnefiom
hufocusedonfimnlafingzDOSDPmfingayslmtuningonPCucfitectmThis

design dedsionwasmadepfimaflybeamethePCIDOSenvimnmentismwidmmd
uda-n‘bletointttsions:lhnsthfimfimmenlistheonetkathascngmduedthe
mustraluwoddmafidunscodemmusemchaflmgemdetecfinntechniqucs.

Sectionszandzpmfidebackgmudmtefialonmafidousmdeandmtdm
fimmethodekfionimfiewsthemeofmisindnamicuflyfistedmimmd
SectionSdescn'bstlleuchitectueoftheMCI‘.Secfionfimummemultsfiom
ourcxpefienceusingtbeMCI'onmafidousoode.

‘SPONSORS: hmfimWM.U5. Department-effigy

kapufomadundalhcansp:anspimofdieUS.DeparmmtofEuagy lawmanLivumaeNafiomlLabarmymderCommW—7405—Eng-48. by

I..- -i--

.a_u=_lu:._-..,

#0602133

OSTI

CS—1017

Cisco Systems, Inc. v. Finjan, Inc. -
Page 1

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

2 Malicious Code — A Brief Overview

In recent years, various forms of malicious code ham: appeared on virtually all major
families of computer platform. The prevalence of malicious code — Trojan horses. time
bombs. worms. and viruses — threatens the traditional I‘open systems" approach that
has evolved in the academic realm. as well as in much of the commercial sector.

The (Talent situation in the personal computer arena. may be indicative of future
trends in worlwtatiou and. mainframe environments. On PC systems — where literally
hundreds of computer Viruses. time bombs. and 'flojan horse-5 have proliferated —
the problem is caused by rogue program; that unWittingly are invited in to the system.
Thus malicious code may be inserted into almost any type ofcolnputer system Via these

same avenues — “shareware“ may he installed. or malicious code might be produced
in-honse by a disgruntled employee. or a. program containing malicious code might even
be purchased from a legitimate vendor of commercial software.

Our definition of what constitutes finalicious’ code shall address only the probable
efleclo of executing such code; we shall not eouoern ourselves with the “original intent"F
of the (possibly unknown] writer. Although the intentions ol' the writer may be crucial
in determining legal culpability — as" whether malice and forethought were present —
to include such considerations within the scope of our Working definition” for malicious
code would clearly rendei- the problem inoomputable

Yet even using our restricted, operational definition of 'malicioux code“, the prob-
lem of malicious code detection — in the most general case — is not decidable by
purely formal methods. This follows not merely from the results of [4] [2] [3], but
rather license the inherent aemantis of the problem statment demand that a value
judgement regarding the nature of the oode‘s probable effects be rendered. But because

doing so would require that the intentof the program’s potential users be considered.
uoarticleoffaithalcintoChurcllk'I'hesiscanservetobridgethegapbetweenour
intmtinesense of “malicious elfocte'. and algorithmic solutions. It would seem that. in

all but the most mud] rutfictcd programming mu'ironments. the problem statement
must remain a fuzzy one.

Thus. although no algorithm that identifies malicious codein all environments and
in all guiseacanenist. anumheroftechniqneealready existforcopingwithcertainre—
stricted forms ofmalicious code Since the problem cannot with certainty be prevented
in current programming environments. it must be managed instead.

This idea forms the hash of the Malicious Code Testbed — an automated assistant

whoue “on it '3 to perform the “gr-ant work” necmary to aid a. human analyst
in detecting not only currently known toms of malicious code. but also mutated or
entirely novel forms. Given the absence of a decision procedure for malicious code,

such atettbedwould allowouetoutaminenprogram toascertain whetherornotitis
auapiriotu.

We first discuss the most prevalent methods of coping with malicious code. and
then describe some ofonr previous work aimed at providing defenses against malicious
code. Thenwecrploreingreaterdetail theMelicim Code Testbed.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

3 A Sample of Current Methods for Coping

with Malicious Code

Presently, the majority of malicious code defenses are concerned with computer viruses.
However, some are more broadly applicable to malicious code in scum]. These ureth-
ods may be divided into two distinct classes depending on when they are applied: as
a. pare-execution check or at run time. Pie-accution techniques are applied to a. suspi-
cious program before it can he executed by a user. In contrast, run time methods are
actually applied to the program as it executes, in hopu of stopping the program before
it can cause dumageor allow a virus to propagate. Another taxonomy of malicious code
defenses divide; all methods into the categories of stutieor dynamic analys's. Although
most static analzmis technique are applied as pre-execution check. certain static anal-
ysis techniques can be applied at run time. Similarly. although most dynamic analysis
techniques are applied as run time checks, certain dynamic analysis techniques {such
as our own Malicious Code Testbed) can be applied as pmt‘lon duels.

Many of the more sophisticated Fire-execution methods rely on the prior existence of
a copy of the program that is assumed to be “clean”. perhaps bcuuse it was originally
written by a trusted programmer and then translated into an executable file by a trusted
compiler on a secure system- Onesuch method computa cryptographic checlmims that
are characteristic of that trusted executable file. and embeds them in that file- [6] The
file is then copied to an insecure environment, whose operating system will not allow a
user to mute any program until it has reocrnputed what those checlsums should he
and compared those value with the one; actually embedded in the program. In. this
my. most alterations made to a. trusted executable file after it loam the secure system

can be detected before the program is executed in the insecure environment.
It is important to note that this technique shares one important diaractefistic

in common with most other sophisticand pru-crocntion methods — ultimately, they
depend on the prior application of detection (or formal verification} techniques in order
tocertifyanexecutablefileas “dean” in thefirst place.

Keeping Ken Thompson’3 admonition "ion trusting trust” firmly'in mind [5]. how
should a security administrator proceed when faced with programs so large or complex
that “trust. but verify” is not a. feasible option? We suggest that — in the middle
ground between the two extremes ofexhaustively provable correctness and trust based
on nothing more substantial than personal familiarity with. or a background security
checkon. aprogrum’swfitu—theMCThctingtoamZt ahuxnan analyst) can provide
a. practical alternative basis for trust.

3.1 Simple Scanners and Monitors

Simple scanners such. as MeAfee’s Scanv or Norstad's Disinfectant are by and large
the most common pee-execution method in use today. Typially. the user will invoke
ascannertosearchthestaticteutol'abinary program‘lorfixed patterns (bitstringu)
thumarch thoseo‘l'lmown malicionsprograms. Ifnoneofthosebitstringsarefound.
themthenproceedsmuecutethepmgramnusthuemnflshaastavuygood
record in defending against known malicious programs. such. as polymorphic viruses

that use ahamfilutation Engine”. butthey annotlJeapplied ingeneral tofindiug
new malidons code. oreven tofinding familiar malicious code protected by a “Muta-

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

tion Engine” that is. itself. slightly mutated. Another popular approach uses simple

monitors to observe program execution and detect potentially malicious behavior at
run time. Such monitors usually sit astride the system call interface. e.g-. to watch
all disk accesses and ensure that no unauthorized writes are performed. Unfortunately

such techniques incur a substantial speed penalty during encution of normal programs,
and typically become quite a nu'ntance to the user.

To be efl'ective. these progruns must also err on the conservative side. resulting in
many false alarms which require user interaction. But in these interactions. current
techniques require the user to make relatively immediate [and usually uninformed)
decisions regarding whether the program should be allowed to promed. Such decisions
would benefit. immensely from the opportunity to explore a trace of the program's
history, as well as its then-current execution state.

3-2 Encryption 35 Watchdog Processors

Baa-yptr'on is another method of coping. With the threat of malicious code- Lapid.
Ahituv. and Neumann [1‘] use encryption to defend against Trojan horses and trapdoors.
When correctly implemented. encryption techniques are quite elfective against many
types of malicious code. but the cost of such a system is high due to the required
hardware. finial-13'. watchdog processors [8] also require additional hardwue. Such
processors are capable of detecting invalid readsfwrites from/to memory. but they

require additional support to effectively combat viruses. Also. both of these methods
are dependent on the prior existence at a. “clean" version of every program that is to
he executed. Asmentioned. tocertiiy such copieeas “clean' in thefimt place requires
either formal verifiution or a malidotts code detection npability. which is the subject

of the present paper.

4 Review of Dynamic Analysis using Events

Over the last few years, we have developed a powerful. state-ofthe-art debugger called
Dale]: [9]. Dale]: incorporatu two significant advances over traditional debuggers: it
features a fully-WMablc language for manipulating the debugging environment,
and it provide. extensive support for user-definable events.

The MCI‘ user’s environment was designed in accordance with the phiosophy un-
derlying the Dale]: debugger. and features analogous to there in Dalek have been incor-
porated into the Mcr. But we have also customized the MCT enVironmeut. in light
of its specific mission to help ferret out malicious code. We believe that “dynamic

analysis” (and the developmmt of appropriate methodologies for it] should be seen

as representing an extremely promming avenue ofInquiry rather than as being just a
fancy word for the sum of things people have always done with traditional debuggers.

By fully proyrmmoblmwnemeun the MCI' is an dendr'bleenoironmio asim-
ilar sense that the Emacs text-editor is extendihle. But due to the nature of the

MC’P's m‘meion, these general-pm language constructs have been fully integrated
with traditional application-specific debugging features such as breakpoints and single-
stepping-

Like the Dalel: debugger. the MCT also provides automated support for detecting
hierarchical emzts— occurrences of interesting activities during the execution of the

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

suspicious program. This capability allows the MCT to reprfient the suspicious pro-
gram’s behavior in terms of whatever higher-level abstractions have been defined by
the security analyst.

In some ways. an event is conceptually similar to a topic in a relational database
— once the structure of a particular database table ha been defined by the user. ever;
occur-fenced an event of that type that is detected by the MCT will have its attributes
recorded permanently, as fields in a. newly inserted triple. Thai. is, when the MCI‘
detects an event occurrence, it causes a corresponding tuple. (or record) to appear in
the appropriate database table. The attributes associated with an event should contain
information sufficient to characterize a particular occurrence of that event allowing it

to be distinguished from other instances of the same event. The code written by
a security analyst for art event's definition can cause it. upon activation to assign
valuis to thfie attributes Econ: variables'II]. the suspicious program from variables in
the “outer” MCT environment, or from computation based on a combination of such
variables.

In addition to defining an event as a template for passive data. the security analyst
also needs to define an active. procedural aspect for that event. This is accomplished
by writing a body of code in the MC’I"s language. and assodating it with that event.
The purpose of this code. when activated. 'n: to recognize exactly those conditions
in the suspicious program's execution state that the security analyst has specified as
constituting a valid occurrence of th'n particular type of event.

This event-recognition code can be executed manually by the security analyrt as
sfhe single-steps the suspicious program. or it can be executed automatically by the
MOT. if the analyst has bound that event's code to a breakpoint, or to a range of
breakpoint addresses Events whose code is activated in this manner are called primitive
events.

The MCI‘ also supports high-level events. When defining a. high-level event. one
most spcdfy the names of all lower—level events on which it amide. A high-level event
is not explicitly raised; instead. the MCI can automatically trigger a high-level event‘s
code into executing whenever an occurrence of a primitive event on which that high-
level event depends is successfully recognined. The high-level event’s code will have
accua to all the attribute of its lower-level. constituent events. as well as access to the

“raw” state of the suspicious program and to variants defined in the “outer” MCI
environment.

Note that the security analyst can define a high-level event whose recognition may
depend on lower-lac] constituent events whose occurrences are widely term-uteri in

time. For a concrete example of a network of events fled to detect self-propagating
code. see [1].

Viewed {torn the perspective ofa relational database. a high-level event is conceptu-
ally alrin to an ongoing query: In defining a high-level event, the security analyst poses
a query. The MCT then provides incremental answers to that activated query, as the

behavior of the snspicious program muses new occurrences of primitive eventfatrribnte
triples automatically to be inserted in the database.

The “execution history database“ maintains a record of all recognized event oc-
currences and their attributu. It may be browscd sclectivcly by the security analyst
in interactive mode. or accessed programmatiully via. accas {auctions written in the
MCTH: language.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

