
Towards a Testbed for Malicious Code Detection

R. Lo, P. Kerchen, R. Crawford, W. Ho, J. Crossley, G. Fink, K. Levitt, R. Olsson, and M. Archer
Division of Computer Science
University of California,z Davis

Davis, CA 9561o

Abstract

This paper proposes an environment for detecting many
types of malicious code, including computer viruses,
Trojan horses, and time/logic bombs. This malicious
code testbed (MGT) is based upon both static and dy­
namic analysis tools developed at the University of Cal­
ifornia, Davis, which have been shown to be effective
against certain types of malicious code. The testbed ex­
tends the usefulness of these tools by using them in a
complementary fashion to detect more general cases of
malicious code. Perhaps more importantly, the MGT
allows administrators and security analysts to check a
program before installation, thereby avoiding any dam­
age a malicious program might inflict.
Keywords: Detection of Malicious Code, Static Analy­
sis, Dynamic Analysis.

1 Introduction

In the past five years, there has been an explosion in
the number of Trojan horses, time bombs, and viruses
that have been found on computers. Furthermore, the
ease with which one may write a virus or trapdoor is
certainly cause for concern: in his 'lUring Award lec­
ture, Ken Thompson demonstrated a simple trapdoor
program which was quite effective in subverting the se­
curity of a UNIX system. The situation is even less
encouraging in the personal computer arena: literally
hundreds of computer viruses, time bombs, and Trojan
horses exist for all of the major personal computers in
use today.

However, there are techniques for coping with these
problems. While one will never be able to distinguish a
cleverly disguised virus from legitimate code, one may
detect a not-so-cleverly hidden one. The same holds
true for all malicious code: stopping a large percentage
of destructive programs is considerably better than not
stopping any. This idea forms the basis for a malicious
code testbed (MCT) capable of detecting a large ma­
jority of current and future malicious programs. Such

CH2961-1/91/0000/0160$01.00@ 1991 IEEE
160

a testbed would allow one to examine a program to
ascertain if it is suspicious. In the following section,
we present a taxonomy of malicious code with exam­
ples. Following the taxonomy, we discuss many of the
known methods of coping with malicious code. We then
summarize the progress which has been made at UC
Davis. Finally, we propose the idea of the malicious
code testbed, which combines this previous work into a
more effective system.

2 Taxonomy of Malicious Code

Computer security should insure that no unauthorized
actions are carried out on a computer system. Security
is violated when someone succeeds in retrieving data
without authorization, destroying or altering data be­
longing to others, or locking up computer resources to
make them unavailable. Malicious programs are those
programs which cause such violations.

To categorize malicious activities, we may examine
the following aspects of a malicious program [Table 1].

What are the malicious actions?

A malicious program may not only directly retrieve
or alter confidential information, but it may also mod­
ify the security state of the computer system so that
an unauthorized person could access this information.
Therefore, malicious activities refer to all activities
leading to such consequences.

How do malicious programs obtain privilege?

Before any damage can be done, the malicious pro­
gram must obtain the required privilege from an autho­
rized user or from the operating system. A common
way is to act as a Trojan horse, claiming to perform
some useful functions, but performing others in addi­
tion or instead. A malicious program can also obtain
privilege from the operating system by exploiting sys­
tem bugs, taking advantage of administrative flaws, or
faking authentications.

Patent Owner Finjan, Inc. - Ex. 2017, p. 1f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Malicious Actions Obtain Privilege Distribution Chan- Triggers
nels

Covert channel Disclose Installed by pro- Useful information
information grammers found

Worm Exhaust resources, Writer starts it, Network
Any self-replication

Trojan horse Any User execution Exchange of soft- User execution
ware

Virus Infect programs, User execution, self- Contact with an in- Execution
Any replication fected system

Time/Logic Bomb Any Installed by pro- Time/date, condi-
grammers tions satisfied

Trapdoor Gain privilege Holes implanted by Started by attackers
programmers

Salami Attack Embezzlement Installed
grammers

Table 1. Types of Malicious Code

How do malicious programs euter a system?
Sometimes a malicious program is advertised as public
domain software available in public bulletin boards; se­
curity may be compromised if any user copies and exe­
cutes such programs on his computer. Another similar
example is that of the Christmas Virus, which repli­
cates by sending copies of itself to users and requesting
them to execute the message. In cases of planned at­
tacks, trapdoors previously implanted in the system are
used by the malicious programs.

How are the malicious actions triggered?

A malicious program may stay dormant for an indef­
inite period. It works normally until a scheduled mo­
mentor certain conditions are satisfied. For example, a
malicious program which exploits covert channels may
only be active when confidential information is being
displayed on a terminal; at other times, it may sleep or
perform some diversionary action.

3 Coping with Malicious Code

Presently, the majority of malicious code defenses are
concerned with computer viruses. However, some are
more broadly applicable to malicious code in general.
Table 2 shows the applicability of some of these meth­
ods. One can classify these methods into two classes:
preventive and detective. While prevention is impor­
tant, detection is preferable since it does not rely on
a program being in a "clean" state. Thus, detective
approaches appear to be more generally applicable.

161

by pro- Execution

3.1 Program Access Control Lists

The first approach, program access control lists
(PACL's) [5], consists of associating with each file in
a system an access control list that specifies what pro­
grams can modify the file. This preventive approach
has the effect of limiting damage that can be done by
many malicious programs, but it is ineffective against
attacks such as covert channels which only violate in­
formation security, not integrity.

3.2 Static Analyzers

From Table 2, one can see that static analysis [1) can
be applied to a broad class of problems. By closely ex­
amining the binary or source code of a program, static
analysis attempts to detect the presence of suspicious
sections in that program. However, in the most general
case such detection is incomputable, resulting in a need
for more selective analysis techniques. Since malicious
code in general can be more smoothly integrated with
the code of the program it is infecting, detection must
be focussed on the strategic vulnerabilities of the oper­
ating system and underlying architecture in question.
In this way, more generalized detection is possible with­
out the full cost of program verification because slicing
[1) and other static and dynamic analysis tools will re­
duce the problem space to a tractable size.

3.3 Simple Scanners & Monitors

Simple scanners are by and large the most common
means of malicious code detection in use today. Typ-

Patent Owner Finjan, Inc. - Ex. 2017, p. 2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

PACL Static Ana- Simple
lyzer Scanner

Covert none low none
Channel
Worm high low none
Trojan high high low
Horse
Virus high high low

Time high high low
Bomb
Trapdoor none high none

Salami none low none
. .

Table 2. Apphcab1hty of Defenses .

ically, a scanner will search a program for patterns
which match those of known malicious programs. As
a result, these programs boast a very good record in
defending against known malicious programs but they
cannot be applied in general to finding new or mutated
malicious code. Another popular approach uses simple
monitors to observe program execution. Such monitors
usually watch all disk accesses to insure that no unau­
thorized writes are made. Unfortunately, for these pro­
grams to be effective, they must err on the conservative
side, resulting in many false alarms which require user
interaction.

3.4 Encryption & Watchdog Processors

Encryption is another method of coping with the threat
of malicious code. Lapid, Ahituv, and Neumann [2] use
encryption to defend against Trojan horses, trapdoors,
and other problems. When correctly implemented,
such a system would be quite effective against many
types of malicious code, but the cost of such a sys­
tem is high due to the required hardware. Similarly,
watchdog processors [3] also require additional hard­
ware. Such processors are capable of detecting invalid
reads/writes from/to memory but they would require
additional support to effectively combat viruses. Also,
both of these methods are preventive in that they re­
quire a "clean" version of every program which is to
be examined. In many instances, such clean copies are
not available, thereby limiting the usefulness of these
approaches.

3.5 Dynamic Analyzers

Finally, dynamic analysis offers a reasonable potential
for detection of a large class of malicious code. By ob-

162

Run-time Encryption Watchdog Dynamic
Monitor Processors Analyzer

limited high none high

low none none low

high low none high

high high high high

high low none high

none low none high

none none none high

serving a program at run-time in a controlled environ­
ment, one can determine exactly what it is trying to
do. However, like static analysis, this technique must
be used "off-line" to allow the analyzer to keep track
of the program's actions. As a result, clever programs
can elude the analyzer by only executing when they
"know" that they are not being watched.

Unlike most virus detection techniques, two types
of analysis attempt to peer inside a program to de­
tect what it is doing and how. Static analysis methods
can determine certain properties for some types of pro­
grams. Dynamic analysis methods attempt to learn
more about a program's behavior by actually running
it or by simulating its execution.

At UC Davis, three analysis tools have been devel­
oped which help in the determination of whether a pro­
gram has any potentially malicious code in it: VFl,
Snitch, and Dalek. VFl uses data flow techniques to
statically determine names of files which a program can
access. Snitch statically examines a program for dupli­
cation of operating system services. Dalek is a debugger
which forms the basis for a dynamic analyzer.

4 Static Analysis Tools

4.1 VFl

VFl is a prototype system that has been implemented
to determine the viability of applying static analysis
to the detection of malicious code; it uses a technique
called slicing. Slicing involves isolating the portions of
a program related to a particular property in which
one is interested. The sliced program can then be an­
alyzed to give information about that particular prop­
erty. VFl's target property is filename generation-in
particular, which files can be opened and written to by

Patent Owner Finjan, Inc. - Ex. 2017, p. 3f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

a given program. By knowing what files a program can
write to, one can determine if there is a possibility of
the program being a virus. For example, if a program
that does not need to write to files (e.g., Is, the UNIX
directory listing program), possesses code to open and
write any file, then one might be suspicious that the
program contains a virus.

VFl translates a program written in the C program­
ming language to a program expressed in a Lisp-like
intermediate form that is easier to analyze. This re­
sultant program can then be sliced with respect to any
given line of its body. That is, one can select a line
of the resultant program that performs an action one
is interested in (such as opening a file for writing) and
VFl will determine which statements of the resultant
program have bearing on that selected line.

4.2 Snitch

Snitch is a prototype of a detector of duplication of op­
erating system calls. This detector makes use of the
fact that most UNIX programs contain at most one
instance of any operating system service (e.g., open,
write, close). Since a simple virus cannot rely on all
programs possessing the services it needs, it will carry
all of those services with it, inserting them into every
program it infects. This will most likely result in a
duplication of some OS services. When Snitch is used
to analyze the infected program, it will report this du­
plication as being suspicious. The Snitch prototype is
specific to Sun-3's running SunOS, but many of the
concepts underlying the prototype can be applied to
other architectures and operating systems.

Snitch consists of two major modules. The first mod­
ule, the disassembler, takes an executable program as
input and produces the equivalent Motorola 68020 as­
sembly language representation as output. The second
module, the analyzer, takes the output from the disas­
sembler and examines it for duplication of OS services,
reporting any such duplications as well as the number
of occurrences of all system calls.

5 Debug~er-based
Analysis

Dynamic

One obvious approach to dynamic analysis is to base
the analysis on a debugger. Over the last two years, a
debugger called Dalek has been developed at UC Davis
(4]. Dalek offers support for the notion of user-definable
events. The user defines an event template by writing
Dalek language code (e.g., employing IF or WHILE

161

statements) that will be executed by Dalek as it at­
tempts to recognize different occurrences of that event.
One typical form of primitive event might be defined
to capture certain details of a procedure's invocations,
e.g., the values of its actual parameters. Another typi­
cal form of primitive event might be defined to capture
the value of a particular variable every time it changes.

Hierarchical events can also be defined. High-level
events are used to correlate and combine (e.g., through
Dalek's IF or WHILE statements) the attributes from
instances of two or more primitive events that may have
occurred widely separated in time. In this way, the user
can construct behavioral abstractions - models or pat­
terns that characterize the activity of the application
program.

One can imagine how such capabilities might be ap­
plied to the detection and understanding of viruses or
other malicious code but it might seem that in real­
world situations, such event-based methods would be
ineffective against hostile or secretive programs. In the
first place, one would expect that the malicious code
would have been stripped of all (correct) symbolic infor­
mation. Thus the debugger would not know the names,
sizes, or locations of procedures or data structures.
However, most operating systems offer some assistance
in this regard, allowing a relatively complete behavioral
trace of all system-related activity initiated by a sus­
picious program to be obtained. Secondly, a malicious
program may alter its own code, making analysis dif­
ficult. Under Dalek, however, one may define events
to recognize such self-modifying behavior. Therefore,
self-modification does not present insurmountable dif­
ficulties for the debugger but it does increase its com­
plexity.

Figure 1 illustrates how high-level events can be used
to correlate attributes captured by lower-level events to
provide a characterization of a suspicious program's be­
havior represented in terms of whatever semantic mod­
els the user has determined are most relevant.

We envisage equipping Dalek with a library of prede­
fined events to capture suspicious and malicious behav­
ior, similar in spirit to the events shown in Figure 1.
For example, attempting to open (or change/inspect
the permissions on) all files in the current directory
might be considered suspicious. Writing the same block
of "data" to several different executable files would ap­
pear even more suspicious.

Patent Owner Finjan, Inc. - Ex. 2017, p. 4f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Figure 1. Interaction of Events in Dalek

6 Towards a Test bed

The malicious code testbed (MCT) under development
consists of a set of tools that will assist a user in de­
tecting viruses and Trojan horses and in identifying
programs which exploit security flaws within developed
software. It is based in part on the three tools men­
tioned above: Dalek, VFl, and Snitch.

The primary goal is to provide an environment and
tools to assist in the identification of malicious logic
in developed software. Since malicious code detection
is an incomputable problem, the tools will not be able
to give a yes-no answer. Instead, the software is ana­
lyzed and its properties summarized to allow the ana­
lyst to understand the effect of its execution. The tools
will identify suspicious code but it is up to the user to
make the final decision about whether or not the code
is malicious. For example, our tool may indicate that
a program would destroy all information in the current
directory. Most people would consider this a malicious
activity. However, the program is not malicious if the

164

intention of the user is to clean up his directory by
using such a program.

The other goal is to further examine a suspicious
program identified by the MCT. The purpose of this
further examination is to determine the severity of the
identified suspicious activity, locate other suspicious ac­
tivities, determine its triggering conditions, and pro­
duce signatures that may be used to locate the exis­
tence of identical or similar malicious logic in other
programs.

The MCT employs two kinds of analysis techniques:
static analysis and run-time, or dynamic, analysis.
Both techniques are necessary because they are applied
in different situations, thus complementing each other.
Compared with static analysis, dynamic analysis is less
computation intensive and able to follow any execu­
tion sequence even if the program modifies itself on the
fly. However, since only some executed sequences are
tested, dynamic analysis can certify only the existence
of certain activities, i.e. violation of security policy, but
it cannot indicate their non-existence. Therefore, both
are needed.

Patent Owner Finjan, Inc. - Ex. 2017, p. 5f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

