
CS-1023
Cisco Systems, Inc. v. Finjan, Inc.

PACL’s: An Access Control List Approach
to Anti-Viral Security*

David R. Wichers'’ Douglas M. Cook Ronald A. Olsson
John Crossley Paul Kerchen Karl N. Levitt Raymond Lo

Division of Computer Science
Departmentof Electrical Engineering and Computer Science

University of Califomia, Davis
Davis, CA 95616

(916) 752-7004

Abstract—Almostall attempts at anti-viral software have been a reaction to specific viruses that have in-
fected the user community. These solutions attemptto protect against a specific strain or strains of viruses
rather than provide general protection against a wide variety of viruses. This paper describes a new, con-
ceptually simple approach that provides a more general solution to the virus problem. Our approach asso-
ciates with eachfile in a system an access controllist (ACL) that explicitly specifies which programs can
modify the file. Thus, a virus cannot modify arbitrary files and its possible effects are greatly reduced.
Our approach is unique in the way it uses ACL’s to specify which programs can access a file; other
schemes use ACL’s to specify which users can accessa file and how. We use the acronym PACL’s,for
Program ACL’s, to refer to these ACL’s and to our scheme. To see how our ideas can be incorporated
into an existing operating system, we have designed an extension to the UNIX'TT kernel. We also con-
structed a simulator that has allowed us to gain operational experience with our ideas in a typical user en-
vironment. The results indicate that our scheme is a promising approach for preventing the spread of
viruses without being too intrusive on users.

* This research supported by Lawrence Livermore National Laboratory, the State of Califomia MICRO program, and
Deloitte, Haskins, and Sells, Inc.

tt David Wichers’ present address is: Arca Systems,Inc., 2841 Junction Ave, Suite 201 San Jose, CA 95134 (408) 434-
6633

ttt UNIX is a registered trademark of AT&T.

340 CS-1023
Cisco Systems, Inc. v. Finjan, Inc.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

1. Introduction

A computer virus is a program that can ‘infect’ other programs by modifying them to include a possibly
evolved copy ofitself [6]. One attribute of viruses that allows them to spread so casily is that a virus
inherits all of a user’s privileges when the user runs an infected program. Typical operating system pro-
tection schemes provide no help in such a case—theyprotect a user’s files from other users, but not from
him/herself. Thus, a virus can quickly infect all of a user’s files. Even worse, if the user has special sys-
tem privileges (e.g., ‘superuser’), the virus can infect all files on a given system.

A typical virus propagates itself by searching for an uninfected program and copying the viral part
of its code into that program so that when the newly infected program is run, the viral code will be exe-
cuted. To prevent propagation, viruses must be prevented from inserting themselves into other programs.
(We assume that the operating system prevents programs, including viruses, from writing dircetly to
disk.)

Two simple observations form the basis of our approach. First, the typical virus carricr is unrelated
to the programsthat it infects. Second, programs exccuting on behalf of a user have more privileges than
are necessary to complete their assigned task. For example, an infected game program might have the
privilege to aecess all of a user’s files. Yet it should only have access to those related to the game,¢.g., a
seore file. Our approach, then, is to restrict a program’s privileges to the minimum needcd to complete its
assigned task. Then,if a program is infeeted,it will not be able to infect unrelated programs (files).

To imposethis least privilege restriction, we associate an access control list (ACL) [7, 9] with each
file in the system. In our scheme,a file’s ACL contains the namesofall the programs that may modify
the file. We use the acronym PACL’s, for Program ACL’s, to refer to these ACL’s and to our scheme.
Thus, to modify (write, append, delete, etc.) the file, a program must be on thefile’s PACL. Our use of
PACL’s differs from that found in standard ACL schemes: westore names ofprograms, as opposedto the
names of users, that ean aecess eachfile.

The notion ofleast privilege fits well with common system usage. Users create files using a number
of different programs. These files are usually modified only by the programsthat create them. For exam-
ple, consider the typical steps involved in creating, compiling, and linking a C program. To create the
program, the user uses his/her favorite editor to create source files. During the entire life of those files,
they are only modified by the same editor that created them. Whenthese files are compiled, the compiler
generates object files. Each time the program is recompiled, these object files are written over by the
same compiler, and not by any other program. Similarly, the linker ereates the executable and writes over
the executable file cach time the program is relinked. This usage suggests that normal files are modified
by a small numberof programs, usually only one. Of coursc, more complicated usages exist, but they are
less common.

Since the number of programsthat need to modify a single file is usually very small, we can keep
track of these programs in order to prevent other programs from deliberately or accidentally modifying
files. This method is similar to existing computer protection mechanisms based on access controllists.
The standard ACL schemeis designed to control how each uscr’s files can be aecessed by otherusers.
Thatis, a file’s ACL indicates what users mayaccessthe files, and in what ways. If the ACL does not
explicitly state that a user is allowed to perform the function requested,then it is not allowed. The differ-
enee between this security problem and the virus problem is that a virus security system needsto protect a
user from him/herself, not from other users. The virus problem is inherently a problem ofintegrity, not
security. Our PACL-Integrity schemeis therefore simpler, associating with cachfile a list of all programs
that ean modify the file.

To see how our ideas can be incorporated into an existing operating system, we have designed an
extension to the UNIX kernel that incorporates our PACL seheme. We have also constructed a simulator
to allow us to gain experience with the PACL-Integrity model without requiring actual changes to the
kernel. The experience wehave gained showsthat the scheme seemsreasonable to implementandis not
too intrusive on the user.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

The remainderof this paper is organized as follows. Section 2 discusses our PACL-Integrity model
in more depth. Section 3 describes how the model can be realized in the UNIX kemel. Section 4 presents
the simulator and section 5 describes our experience using it. Section 6 discusses the tradeoffs involved
in our approach and outlines future work. Section 7 summarizes related work. Finally, section 8 contains
some concluding remarks.

2. The PACL-Integrity Model

The PACL-Integrity model associates a PACL with each file on the system. The PACL fora given file
names all programsthat have the privilege to modify the file. Whenafile is created, its PACL is set to
contain the name of the program that created the file. During the life of the file, the file’s PACL can be
changed only by a trusted utility program. This utility allows a userto tailor the protection mechanism to
meet his/her needs,

The success of a protection scheme depends on how intrusive users find it. A scheme that is too
intrusive will effectively render a system unusable. For example, requiring an explicit acknowledgement
from a user each time anyfile is to be accessed might be a secure scheme,butit is not usable. Moreover,
if a schemethat is too intrusive provides a means by whichthe user can disable it, then users will simply
run with security checks disabled, effectively rendering a system insecure.

To make our approach secure yet usable, we include a number of ‘user-friendly’ features. These
features simplify common usages of the PACL-Integrity mechanism. Thefirst feature is an inheritance
mechanism that allows a user to define a default PACL for a directory. Anyfile (or subdirectory) created
in this directory inherits the directory’s default PACL, as well as the name ofthe program that created the
file. This feature allows the userto tailor a directory to the type of work being donein it. An entire sys-
tem (or account) can be tailored in this manner by creating a default at the root (or home) directory and
then building directories belowit.

The second feature allows a user to specify a global inheritance policy. The user can define a
default PACL for any file based on its extension (suffix). For example, a UNIX objectfile is typically
created by an assembler or compiler and given the extension ‘.o’. Later, the linker reads in a numberof
object files, links them together, and generates executable code. Whenit has successfully generated an
executable, it sometimes will remove the objectfiles as they are no longer needed. Since the objectfiles
were created by the compiler, their PACL’s will contain the nameof the compiler, but notthat of ‘Id’ (the
linker). With the extension-based default mechanism, the user can define a default for ‘.o’ files that con-
tains ‘ld’, thereby allowing the linker to remove unwanted objectfiles after it has created the executable.

The third feature allows the user to enable/disable the PACL mechanism fora particularfile. This
feature is provided by associating a flag with eachfile. If this flag is enabled, the normal PACL security
rules will be applied to that file. If the flag is disabled, then all PACL security rules for the file are
ignored and only the ‘normal’ security rules will be used whenthefile is accessed; i.e., any program with
appropriate access rights can modify the file.

The final feature allows a user to temporarily disable the PACL mechanism forall of his/herfiles. It
also allows the system administrator to temporarily disable the PACL mechanism for the entire system.
This feature is needed to facilitate programs that need to modify many orall of a user’s or system’sfiles.
For example, a utility program thatrestores files from backup tapes will typically modify manyfiles dur-
ing its execution.

These features are provided to allow the system to be tailored to meet each individual user’s needs.
Once defaults have been set up correctly, each user should be able to use the system while being protected
from viruses, without being unduly inconvenienced by the PACL mechanism,

The PACL-Integrity mechanism makesseveral basic assumptions about the underlying hardware
and operating system. The devices on which programsare stored (e.g., disk) must be protected so that
they can only be accessed by kemel code. Without such protection, a virus could wnite directly to a dev-
ice, bypassing all protection mechanisms. This requirement rules out the possibility that this type of

342
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

system would be viable in some personal computer environments where direct disk access is not pro-
tected, forexample. The operating system itself must checkall file accesses to make sure the PACL secu-
rity rules are enforced. It must also protect the PACL’s themselves from illegal modification. The
hardware and operating system must also protect against standard attacks, such as modifying system
buffers or kernel code.

3. A PACL-Integrity Model for UNIX

3.1. Overview

Our PACL-Integrity model can be implemented for UNIX by extending the keel. The PACL scheme
must be included in the kernel to ensure thatall file accesses are checked. The current UNIX protection
mechanisms, based on user names,are still enforced. If an attempt to write satisfies the existing security
rules, the PACL mechanism then further verifies the validity of the access.

Whena file is created, its PACL is created as well. A file’s PACL is stored as part of the header
information (i.e., inode) of the file, just like the mode bits, owner, size, date, and time fields. Since the
PACL is part ofa file’s inode, the PACL information forafile is removed whenthe file is deleted, which
simplifies the task of PACL maintenance.

The kerel builds the PACL for a new file from three items. Thefirst item put in the PACL is the
name of program that creates the file. In UNIX, a program’s nameis its complete pathname. For exam-
ple, the editor program ‘vi’ in the directory ‘/usr/ucb’ has the name‘/usr/ucb/vi’. The second item put in
the PACL is the default PACL of the directory in which the file is created. The final item put in the
PACL is the default, if any, for the new file’s extension. (Note that the defaults put in the PACL are those
in effect when the file is created; if the defaults are later changed, the PACL’s of existing files are not
modified automatically.)

The specific kinds of access for which the kernel must check include openinga file for writing and
unlinking a file, The former gives the program the privilege to modify the file in any manner while the
latter deletes the file. We consider deletion a form of modification.

3.2, New System Calls

Nine new system calls give programsthe ability to interact with the PACL mechanism. Thefirst system
call, setppriv(), is a privileged call that sets the state of the current process into a modethatallowsit to
call the other new system calls. (This method is analogous to a processsetting its user-id to root in regu-
lar UNIX.) Without executing this initial call, a process is not allowed to use any of the other system
calls that interact with the PACL’s, with one exception described below; in such a case, they simply
return an error to the calling process. The only programsthat are allowed to use setppriv() are the pro-
grams listed in the file ‘/etc/paclprivs’. One example of an entry in this file is the utility program
describedlater.

The second call, paclenable(), is used to enable or disable (based on its argument) the entire PACL
mechanism for the given process and its children. Ifthe initial system process (init) disables the PACL
mechanism, then the effect is that the PACL mechanism is disabled for the entire system since all
processes are children of init.

The third call, clrppriv(), removes a process from PACL privileged mode. It allows the process to
relinquish its privilege when no longer needed. The twocalls setppriv() and clrppriv() allow programs to
create critical regions in their code where they have privilege to access PACL’s. Outside of these regions,
PACL privileges are not necessary and hence should not be enabled.

The fourth call, getppriv(), is the only call that will not retum an errorif setppriv() has not been pre-
viously called. It tells the currently running process whetherornot it is currently in PACL privileged
mode,i.e., the process successfully called setppriv() without calling a corresponding clrppriv().

343
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

The next two new system calls allow a program to manipulate PACL’s. Only the ownerofa file
can change its PACL. Thefirst, addpacl(), adds a program nameto a given file’s PACL. The second,
delpaci(), deletes a program name from a given file’s PACL. These system calls also allow a file’s owner
to enable/disable the PACL mechanism fora particularfile.

The remaining three system calls allow a program to query a file’s PACL in various ways. These
calls can only be executed by the file’s owner. Thefirst, getpaci(), retums a list of all the program names
ina file’s PACL. The second, verpaclm(), determines if a specified program hasthe privilege to modify a
given file. It compares the program name with those in the file’s PACL, handling links if the filename
provided is a link to anotherfile. The third, verpacir(), determines if the specified program has the
privilege to remove a given file. It is similar to verpaclm() except it does not traverse links because any
remove reference to a link would be removing the link, and not the file to which the link points.

3.3. The ch Utility

The above eight system calls provide the means for a system program to manage PACL’s. The utility
program, ch, described below uses these calls and is an example of a type of user interface that can be
provided for userinteraction with this mechanism.chis listed in ‘/etc/paclprivs’ so that it is authorized to
use these PACL system Calls on the user’s behalf.

To use the ch utility, the user must first enter his/her password. We make the assumption that a
virus Can assume a user’s login name butit does not know the user’s password. Otherwise, we cannot
distinguish a virus from a legitimate user.

ch allowsthe userto:

e add/remove program names from PACL’s;

e display the contents of PACL’s;

e set/clear the enable flag in PACL’s;

® modify the default PACL’s for directories and file extensions; and

® temporarily turn off the entire PACL mechanism (e.g., for that user during a single login session).

These features correspond to those described in section 2. Several additional features make the utility
more usable. One feature allows the userto traverse the directory structure; a user can, therefore, move to
different directories without exiting the utility. A second feature is that ch provides all the remove
privileges that exist in a normal shell. The ‘rm’ (remove) program may not have privilege to remove
most files; i.¢., it may not be in the PACL for every file. The utility, therefore, provides an ‘rm’ com-
mand with functionality equivalent to that of the ‘rm’ program. Without such a command, the user would
need to add the ‘rm’ program to a file’s PACL,exit the utility, and then use the ‘nm’ program to remove
the program. For the samereason, the utility also provides an ‘rmdir’ (remove directory) command,
Basically, ch provides a subset of the normal shell commands along with the features described above
that allow the userto tailor the PACL security system. If the user executes a program from within ch, a
new processis created to execute that program. This process is subject to the rules that apply to the new
program, not those that apply to the ch program. Otherutility programs can easily be generated by the
system administrator by writing programs using these system calls and then adding the program namesto
‘/etc/paclprivs’.

3.4. The Role of the Superuser

In existing UNIX systems, the superuser—e.g., the ‘root’ account—may bypass the normal protection
mechanisms. Having root privilege is not sufficient to override the PACL protection mechanism in our
system. In particular, a user (or would-be virus) executing as root can only disable the PACL mechanism
using the ch utility, for which it must give the root password. A program running as root must, therefore,
be listed in a file’s PACL in order for that program to havethe privilege to modify that particularfile.

344
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

