
CS-1020
Cisco Systems, Inc. v. Finjan, Inc.

 

IDENTIFYING AND CONTROLLING

UNDESIRABLE PROGRAM BEHAVIORS

 
Maria M. King*

MKing@Dockmaster.ncsc.mil

Abstract

This paper describes a new mechanism for comparing selected program properties against a poljicy, or
set of rules, that states allowable program behavior/2, 10]. The motivation for this work is the increased
need to control undesirable behaviors of programs, such as those inherent in Trojan horses and computer
viruses. This mechanism, called an Automatic Policy Checker (APC), is currently implemented under
SunOS'. This paper will discuss the design and implementation of the APC and the application of the
APCto the virus problem. Conclusions concerning anti-viral policy in light of the test results will also
be presented.

Introduction

The motivation for this work is the increased need for computer security mechanisms to control
undesirable activity of programs, such as those caused by computer viruses[i], Trojan horses and other
types of malicious logic.

The major contribution of this work is an automatic tool, called an Automatic Policy Checker (APC),
for comparing certain types of program behaviors against a policy that states allowable program behav-
iors, An important feature of the APC is that it does not implementany specific policy, clearly separating
the policy from the mechanism which enforces the policy[8]. Existing mechanisms either rely on the user
to specify their own policy[7] or embed an ad hoc policy in the mechanism[5]. The APC allows exper-
iments with policies intended to prohibit a variety of undesirable program behaviors. The APC does
not rely on any new architectural support, has minimal effect on performance, and does not require
user knowledge of threat. Furthermore, if the APC is used in conjunction with a filter mechanism as
described in [2, 6], reliance on some number of humansto act in a trustworthy manner, whichis often
required in many computer security mechanisms, is no longer needed.

This paper first describes a formal language based on regular expressions that was developed for
stating policies and certain types of program behaviors. A high-level overview of the design of the APC
is described here while [10] provides a more detailed discussion. The APC has been applied to the
computer virus problem. A study of anti-viral policies based on the viral property of file modification
was conducted and is described in the section on policies. Experiments were run and the empirical data
is discussed and results presented. 

High-Level Overview

The idea is to explicitly state a system’s policy regarding allowable program activity. Subsequently,
the APC is used to compare a selected program property against the policy, prior to installation. The
APC determines whether a program’s specified actions fall within the perimeter of a particular policy.

Definition 1 A policy ts a set of rules that formally states allowable program behavior, in a particular
system.

*Formerly Maria M. Pozzo.
1S$unOSis a trademark of Sun Microsystems, Incorporated.

283 Cs-1020
Cisco Systems,Inc. v. Finjan, Inc.

 
f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


 

 

 

 
  
 

to the Policy?

Does the Program
Correspond to
the Mini-Spec?

Figure 1: High-Level Overview

The term specification when applied to programsis usually taken to mean a general statement
of all of the functional and/or other relevant properties of a program. To distinguish this form
of specification from the more general use, the term mini-specis used.

Definition 2 A mini-spec formally states a selected subset of the functional properties of a program’s
behavior.

This paper discusses the question: “Does the mini-spec conform to the policy?” Of equal
concern is the correspondence between the mini-spec and the program it specifies. The scheme
described in [2] proposes the use ofafilter that will analyze a binary program and ensure that
it conforms to what is stated in the mini-spec (see Figure 1). Traditionally, such an analysis
has proven to bedifficult. However, the assumptionin [2] is that such programs should take full
advantage of good software engineering techniques and need not contain the types of actions that
are difficult to analyze, such as dynamic code generation, complicated computations for gener-
ating object names, and operating system manipulations. The basic premise is that reasonably
engineered programswill be analyzable[2]. A reasonably engineered program is one that at least
uses a structured methodology, is modular, and is written in a higher-level language. Current
research described in [6] has implementedafilter program such as the one proposed in [2]. The
filter approach appears promising.

An alternative methodfor verifying that the program conforms to the mini-spec is source code
to specification correlation. The code-to-spec correlation process would haveto bealtered slightly
since it is a one-to-one mapping between eachline of code and eachlineof the specification. The
mini-spec only states a subset of the program’s behavior and such a mapping does not exist.
However, verifying the source code against the mini-spec, as opposed to the binary, requires the
existence of a trusted means for generating the binary from the source code. Without a trusted
means, it would be possible to change the binary during the compilation stage.

The scope of this work is the specification of the mini-spec, development of policy, and the
conformance of the mini-spec to a policy. It is assumed that mechanisms exist for verifying a
program against its mini-spec, as described above. It is further assumed that once a program is
verified against its mini-spec, whether by a filter program or some other means, the program and

284

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


 

 

 

 

the associated mini-spec must be sealed or encapsulated in some way to prevent tampering. These
issues are well understood andwill not be addressed here. The APC accepts a program/mini-spec
pair that has been verified and properly sealed. The next section discusses the language used for
stating mini-specs and policies.

A Regular Expression Based Specification Language

This section discusses the formal language that was developed for writing mini-specs and
policies. The language is based on regular expression notation. The reasons for choosing regular
expressions are presented in the next section. The syntax and use of the language is provided in
Section , and the limitations of the language are discussed in Section .

WhyRegular Expressions?

At the level of an applications program, a system resource might correspondtoafile, device,
block of memory, an so on. An applications program requests system services through system
calls in which a system resource is referenced by a human-readable name. A name translation
mechanism converts the human-readable name to the actual page(s) on disk, memorylocation,
etc. The name translation mechanism assumes that the supplier of the name being translated has
appropriate access, leaving all access decisions to the access control mechanism, if one exists. The
problem is that conventional access control mechanisms are concerned with the access between
users and resources, no check is made concerning the access between programs and resources.
The example provided in [5] shows how the Fortran compiler only needs access to xyz.for and
xyz.obj but can easily gain access to login.com if allowed by the access control mechanism.

The APC controls the access between programs and system resources. The policy is a set
of rules which states allowable program behavior. There is one rule for each type of operation
under control. Each rule is a set of human-readable names of system resources accessible to that
operation. For example, the “modification rule” might be a set of names of directories where
modification is permitted on the system. A mini-spec is also a set of rules, one for each type
of operation that must be controlled in the particular system. Thus, a program’s “modification
tule” would be the set of human-readable names of system resources that the program might
attempt to modify.

The notion of regular expressions has long been used in the design of lexical analyzers for
grouping variable names and other tokens[4]. Other uses for regular expressions include text
editors, pattern matching programs, and various file-searching programs. Regular expressions
are well-suited for representing a set of strings such as the set of resource names, attribute
names, or system call names that can be manipulated by a program.

For ease of discussion, the remainder of this paper will discuss policies and mini-specs that
have only onerule, i.e., control a single operation. It is a simple matter to extend these ideas to
multiple rules.

Discussion

An alphabet, ©, is a finite set of symbols. A (formal) language, denoted L,is a set of strings
of symbols from a particular alphabet. The language =*is the set of all strings over a particular
alphabet 5; thus all languages L over © are a subset of D*. A regular expression, r, is a way of
describing these languages. The notation L(r) denotes the language described by r.

Let r; be the regular expression that denotes the mini-spec for a particular operation of
program i. Theset of strings denoted by7;is a finite-state language over some alphabet ©. The
language specified by r; is denoted as

L(r;) (1)

Let p be the regular expression that denotes the policy, and L(p)is the language denoted byp.
Determiningif the mini-specfor a given program is acceptable according to the policy of a specific

285

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


system then becomes a matter of determining if the language represented by the program’s mini-
spec is a subset of the language denoted by the policy, for each individual rule. More formally,
if

L(ri) © L(p) (2)

for each corresponding rule in the policy, then the mini-spec is acceptable according to the system’s
policy.

Theoretically, the answer to equation 2 is straightforward. Ultimately, we want to be able to compare
the two regular expressions without having to elucidate each element in the languages denoted by the
expressions. To show that this can be done, consider the following properties of regular expressions. 

1. First, the languages denoted by regular expressions are precisely those languages accepted by.fi-
nite automata; so L(r;) and L(p) are accepted by deterministic finite automata M(r;) and M(p),
respectively[4, 9]. The class of languages denoted by regular expressions is closed under complemen-
tation, i.e., the complement of a language denoted by a regular expression is also a language that
can be denoted by a regular expression. To showthis, let M = (Q,=,6,qo, F)? be a deterministic
finite automaton (DFA). Let L be the language over L accepted by M; so L € L*. Then, the
complementary language, &* — L, is accepted by the DFA M’ = (Q,5,6,90,Q — F). In other
words, M and M’are the same except that the final states are opposite.

2. Second, by definition the languages denoted by regular expressions are closed under union. There-
fore, given that the class of languages denoted by regular expressions are closed under complemen-
tation and union,it is simple to show that they are also closed under intersection. Let [, and L

be languages over the alphabet ©. Then Ji A Lo = Ty U Tp.

Returning to equation 2, to answer the question, consider the following equation:

(u* — Lip)) A Li(r) =O © (3)

Consider the language that is the complement of the language denoted by the policy. If the
language denoted by the program’s mini-spec, L(r;), has anything in common with the comple-
mentary language of the policy, 5* — L(p), then clearly, L(r;) is not a subset of L(p).

Although it can be shown theoretically that two regular expressions can be directly compared
to determine if one is a subset of the other, algorithmically the problem is considered PSPACE-
complete[3]. Solutions to many PSPACE-complete problems exist, and in fact, these algorithms
work well when certain constraints are applied. The APC currently implements one such algo-
rithm. The primary constraint is that the regular expressions that denote the mini-spec and the
policy, must be simple enough to be processed during a reasonable processing cycle. For regular
expressions that do not meet this constraint, two alternatives are available. A detailed discussion
of the algorithm, and these alternatives is providedin [10].

Language Syntax and Usage

Table 1 identifies the basic operators of the language. The precedenceis listed from highest to
lowest with the loop operator having the highest precedence. Parenthesis are used to override the
normal precedence order as the example in Table 1 shows. Thefirst four operators listed, loop,
concatenation, union, and parenthesis for grouping, are standard regular expression operators.
Note, however, that the loop operator indicates 0 < i whereiis limited by the maximum string
length on a particular machine. Thus, the expression a* denotes a finite language, whichdiffers
from the standard definition.

Nonterminal definitions provide user-friendliness by allowing a user to define commonly used
expressions. Nonterminal definition names are 1-8 characters in length, all small letters; the
definition itself is written in the operators of the language. Nonterminal definitions can be
referenced via the angle brackets (< >) operator and can be embedded. The depth of macro
definitions is machine dependentbut it is wise to keep a limit on it. Nonterminal definitions are

 

2Where Q is the set of all states in the DFA, © is the input alphabet, 6 represents the transition function, go is the initial
state, F is the set of final states, and go, F C Q.[4, 9]

286 
f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


 

 

 

 

Table 1: Syntax of Language
SYMBOL|MEANING EXAMPLE

concatenate
union

grouping (a | b)* => {a,65,aa, ab, ba, bb, ...}
a | b* => {a,b, bb, bbb, ...}

nonterminal id ::= (a | 6)*
definition

nonterminal <id>=> (a | 6)*
reference (1)
series (2) fa |b | c..J
current working|{cwd}/(a | 6) = {cwd/a,cwd/b}
directory
homedirectory {home}(a | 6) = {home/a,home/b}
define expression|files ::= <id>

(1) Nonterminals are 1-8 characters, all small letters.
(2) Series can be used with nonterminal definitions.

 
stored in files; example nonterminal definition files, called sysdefs and unixdefs, are shown in
Figure 2. A file of nonterminal definitions can be referenced via the “#include” mechanism of
Unix. The square brackets operator ([]) is used to define a long series such as all the lowercase
letters or all the digits. This operator is an implementation enhancement; parenthesis or nothing
can be used to represent the same thing, ie., (a | 6 | c) = a |b | c = [a | 6 | c]. An
improvement to the current language would be to allow [a — z] to indicate all the lowercase
letters.

The current working directory operator {cwd} and the home directory operator {home} can
be used in systems that have knowledge aboutfilesystem location, such as Unix or Multics. Ina
Unix system, for example, all directories in the system would include {cwd}/, {home}/, andall
other directory locations.

Policies and mini-specs are stored in files. Figure 2 shows the mini-spec for the modification
operation for the calendar program. Thelast line of a mini-spec or policy file must begin with
the “files” operator followed by the defines or goes into (::=) symbol as shown in the example in
Figure 2. The example showsthat the calendar program cancreate files in the current working
directory of the form “cal” followed by a string as defined in the unixdefs nonterminal file. The
grammar for the language just described is provided in [10].

Writing Policies and Mini-Specs for Real Programs

A mimi-spec is written either during program development by a user wishing to submit a
program for installation or it can be written for programs that already exist. Detailed information
must be available in order to write a mini-spec for an existing program. This information might
include source code, detailed design documentation, programmers notes, and test results.

Writing a policy requires knowledge about the particular threat, the system vulnerabilities,
and the desired environment. Although some users may have the sophistication for writing a
policy, in most cases the policy should be written by a security officer or other security personnel.
Section discusses the application of the APC to the virus problem, the developmentof anti-viral
policy, and presents results of using the APC to test for undesirable program behavior (in this
case viral behavior) in 125 Unix programs.

287

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Real-Time Litigation Alerts
  Keep your litigation team up-to-date with real-time  

alerts and advanced team management tools built for  
the enterprise, all while greatly reducing PACER spend.

  Our comprehensive service means we can handle Federal, 
State, and Administrative courts across the country.

Advanced Docket Research
  With over 230 million records, Docket Alarm’s cloud-native 

docket research platform finds what other services can’t. 
Coverage includes Federal, State, plus PTAB, TTAB, ITC  
and NLRB decisions, all in one place.

  Identify arguments that have been successful in the past 
with full text, pinpoint searching. Link to case law cited  
within any court document via Fastcase.

Analytics At Your Fingertips
  Learn what happened the last time a particular judge,  

opposing counsel or company faced cases similar to yours.

  Advanced out-of-the-box PTAB and TTAB analytics are  
always at your fingertips.

Docket Alarm provides insights to develop a more  

informed litigation strategy and the peace of mind of 

knowing you’re on top of things.

Explore Litigation 
Insights

®

WHAT WILL YOU BUILD?  |  sales@docketalarm.com  |  1-866-77-FASTCASE

API
Docket Alarm offers a powerful API 
(application programming inter-
face) to developers that want to 
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your 
attorneys and clients with live data 
direct from the court.

Automate many repetitive legal  
tasks like conflict checks, document 
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks 
for companies and debtors.

E-DISCOVERY AND  
LEGAL VENDORS
Sync your system to PACER to  
automate legal marketing.


