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Abstract

This paper proposes two heuristic tools for detecting viruses in a UNIX environment. The tools
would be used to detect infected programsprior to their installation, The tools use static analysis and
verification techniques. One tool, the detector, searches for duplication of operating system calls. A
program compiled and linked from source code (such as C) makes calls to standard library routines
for operating system services; relevant to detecting viruses are calls on files services, such as open and
write. Such object code will contain only one instance of the standard library subroutine for each type
of service requested by the program. A virus would mostlikely carry along its own system calls; hence
an infected program would have duplicate calls to the file service and is easily caught by the detector.
The second tool, the filter, uses static analysis to determineall of the files which a program is capable
of writing to. By knowing whatfiles a program can and cannot write, one can decide whether or not
that program is suspicious. The paper discusses the features and shortcomings of both tools and gives
some implementation details related to the detection of UNIX viruses, In order to defeat these tools,
a virus would have to be quite complex and, if successful in avoiding detection by these tools, accept
limited propagation. The tools are also useful for detecting more general malicious code, such as. Trojan
Horses.

1 Introduction

Ideally, one would like to be able to detect an infected program without having to execute it and
without noticeably impairing the performance of the system. Some virus detection techniques (see
(6] and [7]) rely on run-time checking of program behavior, but employ auxiliary hardware to avoid
a performance penalty; the hardware can be viewed as a generalization of the familiar watchdog
timer. However, these run-time methods potentially expose the system to a virus which is able
to'do its damage before being detected. Other run-time techniques (see [2], [3], and [8]) do not
allow a program to executeif it fails to pass certain tests; these methods are useful, but they may
introduce an unacceptable amount of overhead to the execution time of programs. Typically, these
methods involve protecting programs stored on a disk with cryptographic checksums. Another
method (10, 11] queries the users at runtime for all file modifications or requires users to identify
the programs that can write to his files. Most virus detection techniques have serious limitations
because they detect and inhibit the spread of viruses, not their presence. They cannot be applied
to programs which are obtained from unreliable sources since they all rely upon Having a clean
copy of the program available for comparison, or they require user interaction at runtime, or they
require access protection mechanism absent from most operating systems. Other approaches (e.g. 
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virus scanners) cope only with known viruses or virus strains, Our approach attempts to identify
viruses through detecting their discerning characteristic in an infected program.

Our approach involves the analysis of a program prior to installation, the analysis attempting to
identify suspicious code. By statically analyzing a program, one can in principle determine whether
a program contains suspicious code, regardless of whether or not clean code is available. This paper
presents two static-analysis methods under implementation for detecting suspicious code indicative
of a virus. These methods are based on the following premises: 7

* Source programsare linked with the standard library during compilation. In most systems,
the operating system services, e.g. file open, file read, file write, are provided tothe user in
the form of library functions. Hence a compiled and linkedprogramshould contain atmost.
one instance of the trap instruction to the operating system for each system call. Simple
viruses, attaching themselves to the beginning or end of a program, would carry along their
own trap instructions. Infected programs would have duplication of such trap instructions
for some system calls.

® A program containing a virus will contain calls to write the virus to storage, e.g. to the
disk, operating system memory,or to uninfected files. Suspicious code, then, could cause the
program to write to files the program under investigation is not expected to write to. By
enumerating all of the files a program can potentially open, the user of the program is alerted
to potentially suspicious code before he runs the program.

These two points form the basis of the two UNIX tools being presented here. The detector
tool examines a program to determine if it contains any duplicate instances of operating system
services (such as file operations like read and write), while the filter tool will examine a program
to ascertain which files the program can write. These tools are promising because they can detect
a large class of viruses and limit the propagation of others. Although these tools are limited by a
number of factors, they form a firm foundation upon which more sophisticated tools may be built.

To date, the detector tool has been implemented and tested on several programs with promis-
ing results; we have determined that all but one of the UNIX utilities on our Sun-3 workstation
running SunOS 3.4 have no duplicate trap instructions. Furthermore, the detector has detected a
handcrafted virus that is typical of UNIX viruses. A prototype of the filter is under development,
but it has been hand-simulated on several utility programs. |

The remainder of this paper discusses the basic approach of the detector and the filter tool.
The discussion includes the assumptions attendant to each tool as wellas the implicationsof
these assumptions. The implementation of the detectoris discussed, giving details about problems
and results of experiments performed with it. A discussion of a simple UNIX virusis also given
to facilitate the understanding of the implementation. Next, the concepts behind the filter are
explained in detail. The shortcomings of each tool are discussed and extensions of the tools are
suggested as work for the future. :

2 The Detector

2.1 Basic Approach |

The purpose of the detectoris to identify duplicate calls to operating system services; duplicated
calls might. be in an executable program and be indicative of a virus that has linked itself to the
program. Thefirst step in the detector’s analysis is to disassemble a program into its equivalent
assembly language representation. The next step consists of finding all instances of code which+

perform some operating system service. If two different pieces of code are found to contain the
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same operating system services, then this condition is flagged as a duplication of services. For most
programs, it is reasonable (and necessary) to make the following assumptions:

1. The program uses a standard interface for communicating with the operating system, —

2. The program is generated. with a compiler. | .
3. The source program does not call the operating system directly through a trap, insteadit

‘uses the operating system interface in the standard library.

4, Virus code can only occur in the code (text) segment of a program.  
Assumption one ensures that determinationof duplication of services will be relative straight-

forward. If all programs use the same format for using system services, the detector can always
determine what the service is. For instance, in most implementations of UNIX, system calls are
performed by pushing the system call number onto the stack and then executing a trap to the oper-
ating system. If the system call numberis always pushed immediately before the trap is executed,
the detector simply has to examine the instruction preceding the trap to determine which service
is being used. If a program does not follow such a scheme but instead handles each system call in a
different way, the detector must then symbolically execute the program to determine the contents of
the stack at the time of the trap instruction—a more difficult and potentially intractable problem.
Fortunately, most versions of UNIX use a standard calling scheme. Thus, this assumption is only

‘restrictive for those programs which do not use the standard calling scheme, such as some programs
written in assembly language.

The second and third assumption are necessary to ensure that a legitimate, uninfected program
will not have any duplication of services. Executable programs linked with the standard library
will have one routine which handles all requests for a given operating system service. Any time
the program needs a service, it. effects the appropriate preparations, such as pushing the other
information required for the call ((e.g. arguments) onto the stack, and then calls the routine which
performs the service. This technique to handle system service call is verycommon and not confined
to UNIX.

For portability and upgrade compatibility reasons, a compiler does not. generate code that
interface with the operating systemdirectly. Instead, the compiler will treat a system service call
as a subroutine provided by the standard library. The actual operating system interface code, i.e.
the system trap, resides in the library subroutine. Therefore,the actual interface should appear at
most once. for each system ¢all in any compiled program. ?

Finally, assumption four stemsfrom a consideration offile formats and their related restrictions
under, UNIX. Typically, UNIX uses three file formats for executable files: OMAGIC, ZMAGIC,
and NMAGIC. The first, OMAGIC, is obsolete and rarely used. In this format, the text segment
is non-sharable and not write protected, so the data segment is immediately contiguous with the
text segment. The second, ZMAGIC, is the default format produced by ld, the link editor. For
this format, the text and data sizes must both be multiples of the page size since the pages of the
file are brought into the running image as needed. The third formatis. similarto the secondexcept
the data and text segments are not required to be multiples: of the page size; the entire image
is preloaded into memory at run time. Most versions of UNIX enforce segmentation of code and
data, meaning that executable code and non-executable data must residestrictly in their respective
segments. Furthermore, the text segment is not writable during run time and execution of the data
segment is not allowed. As a result of these restrictions, a virus which infects a program must
do so by placing: all of its codeinto the text segment; it cannot hide any code in other parts of

“In order to defeat the dotector, a virus would have.to use the opérating svatem. calls of theprograinit is.attempting
to infect, rather than trivially attaching itselfto. the beginning or end of the program. Later, we discuss. ways to
catch attempts to defeat the detector.
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the file. NMAGIC and OMAGIC format files, therefore, are somewhat more resistant to viruses
than ZMAGIC formatfiles since no unused space is available for a . However, a virus may
still be able to infect such files if it can somehow hide the increase in the size of the host program
(perhaps through a flaw in the operating system or by compressing the original code to obtain
space). ZMAGIC format files are even more vulnerable. For instance, under SanO$ 4.0 the page
size is eight kilobytes, meaning theaverage ZMAGIC formatprogram willhave approximately four
kilobytes. of zero-padded space in both its text. and data sections. This space is large enangh to
hold a-fairly complex virus writtenin assembly language.. However, in all three cases, the virus
code must still appear in the text segment, making it detectable by. the detector. If all of these
conditions are met, then the. detector can be used to determine if the program under consideration
contains any duplicationof system calls. a

 
 

 

2.2 . Implementation and Results -
A prototype of the detector has been implemented on @ Sun 3 workstation running SunOS 3.4
and has been tested on several of the standard programs from /bin, /usr/bin, and /usr/ucb, but
its application is not limited to UNIX systems. This prototype, called Snitch, is written in the
C and Icon programming languages and consists of two major modules: the disassembler and the
analyzer. The first module, the disassembler, takes an executable program as input and produces
the equivalent Motorola 68020 assembly language representation as output. The second module,
the analyzer, takes the output from the disassembler and examines it for duplicated code.

For SunOS 3.4, a system call is performed by pushing the system call number onto the stack
and then executing a trap instruction. Because the call expects the top of the stack to contain the
number of the call to be made, determination of duplication of services becomes straightforward:
one only needs to backtrack from the point of the trap to determine the last item pushed on the
stack; that item will be the system call number. Furthermore, most of the standard library routines
push the system call number immediately before executing the trap, making the analysis phase even
simpler. The analyzer reports any duplications found as well. as the number of occurrences of all
system calls.

The results of the experiments performed on Snitch areas follows. Approximately one hundred
programs (mostly UNIX utilities) were tested for duplication of services with some of them infected
with a simple virus (described in Section 3.2). All of the infected programs were found to have
duplicated system calls, while only one uninfected program was flagged as having duplication
of services: /bin/csh contained two instances each of the getgid and getuid system calls. One
may conjecture that such duplication occurred because of post-linking binary patching. Since the
duplicated services were not of a serious nature; for a program as large as the C-shell, such an
occurrence should not be surprising or indicativeof malicious code.

2.3. A Simple Virus

‘For purposesof testing Snitch, a simple virus was created which infects SunOS 3.4 executables.
The virus is considered simple because it makes no effort to conceal itself and it does not use a
sophisticated method for replication and propagation, although it-is capable of avoiding multiple
infections of the same program. Basically, the virus works a8 follows: First, the virus determines
whether it has previously infected the target program. Under SunOS, executables have a standard
header which contains format information, start-up code, a branch to the user’s code, and then

“clean-up code. The format information tells in which format (OMAGIC, ZMAGIC, or NMAGIC)
thefile is arranged. The start-up code initializes environment variables and other constructs while
the clean-up code restores the old eavironment and makes a smoothreturn to the shell, All of this
information is common to most executables and of a constant length. Therefore, the branch to
the main body of code always occurs at a certain offset from the beginning of the text seg t
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 Furthermore, the user code always immediately follows the clean-up code, making the branch
address the samefor all programs. Thus, to determine previous infection, the virus simply examines
the location in the text segment where the branch instruction occurs (bytes 70-73) and determinesif
the address is the standard address (20A0 hexadecimal). If it is, the virus commences the infection
process.

_ Next, the virus determinesif it has enough space to infect the program without overwriting
any legitimate code or increasing the size of the program. The only format which allows any zero-
padded space is the ZMAGIC format; if the fileis not in ZMAGIC format the virus exits and passes
controlto the legitimate code. Ifthefile isin ZMAGIC format, the virus determines whether there
is zero-padded space at the end of the text segment. This task is accomplished by looking for
zero-padded space of length N between the end of program and the end of the text segment, which
is multiple of 8K bytes. N is the length of the virus code.

Finally, assuming there is enough room, the virus copiesitself from the host program into the
target program by copying the last N bytes from the host program’s text segment. Tt then changes
the branch instruction in the start-up code so that the virus codeis executed after the start-up
code andbefore the legitimate code. Five system calls are used by this virus (open, lseek, read,
write, and close) and its length is approximately 150 bytes. A program infected with this virus is
easily detected by the detector.

2.4 Limitations of the Detector

The most. obvious way of defeating the detector is simply to make the infected program nothave
any duplication of actual interface to the operating system; if the virus uses the existing services
it cannot be detected with the detector. Use of existing services would be simplified if the symbol
table information wasleft in a given program. In this case, a virus could determine the location
of the needed services and hook into them, thereby adding only that code which was not already
present in the host program. Even without the symbol table, a virus could search the host program,
looking for the services it requires. Then, it would import only those services which it could not
find.* Also the virus could escape detection by inserting a dummy system call that is absent
from the uninfected program, pushing the system call numberonto the stack and jumping to the
trap instruction inserted. Such viruses would escape detection by the current detector, although
it could beextended to identify code that searches a program for system calls. We are currently
investigating these and other approaches to defeat the detector and to extend the detector to make
it more robust.

3 The Filter

3.1. Basic Approach

A virusfilter is an automatic classifier which applies static analysis techniques to detect the presence
of a virus. Since computer viruses multiply by implanting themselves in healthy programs, a
necessary condition for propagationis their ability to modify executables. Our approach, although
based on the technique of formal verification differs from classical verification. Verification entails
proving a program with respect to a specification - a statement of what function the program is
intended to compute. For the purpose of detectingsuspicious code, weare assumingno specification
will be provided. Instead, programmed intothefilter is a property to be determined of the program
under analysis. For the current. versionof the filter, the property is “the files that the program
could write to”. The basic approachis first to identify all open ¢alls in the program and then

4This may not be as easy as it sounds, however, since the virus inust. then know where each of its constituent
parts is located within its code as well as how to extract them. : ‘ :
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to enumerate the possible filename arguments to these calls. As we demonstrate, the analysis is
feasible as only a small fraction of a program is involved in generating filenames. Upon being
presented with the names of files that the program could write, the user could determine if the
program is suspicious. Of course, a virus could still be present, but its propagation would be
severely limited - essentially to just those files. Crocker and Pozzo (see [4/) (hereafter abbreviated
to Crocker) proposed a virus filter based on formal specification and verification techniques. But
through the following hypotheses, they conjecture that the analysis will be vastly simple than that
usually associated with program verification.

Hypothesis 1 It-is possible tto formulate restrictions ‘for the majority of nseful ‘programs such
that the restriction is syntactically simple enough to be machine processable and fine-grained
enough to represent the full range of authorized modifications made byreal programs.-A--—--  -——--
restriction is-the specification of the modifications a programmakes, It is created by a a
program developer wishing to submitan executable program for potential use.

Hypothesis 2 [tis“possible, on the average, to analyze benign programsin a straightforward way.
Hypothesis 3 It is possible to classify modifications such that ordinary changes can be distin-

guished from suspicious ones.

Generally, we agree with Crocker’s hypotheses, but argue that for some programs (benign or
infected) the semantic analysis required is more complicated than implied by these hypotheses.

in UNIXsystems, the propagation ofa virus through direct access to files is through the
épen, create, rename, link and unlink system calls: Avirus may open and write to an executable
or replace an executable by its: viral counterpart. Using symbolic evaluation techniques, it is
sometimes possible to determine the arguments to these system calls and hence the names of
files being modified. The enumeration of the files which may be modified by the program being
investigated provides clues to detecting viruses. For example, the program.date does not write to
any files (except standard output). If the enumerated list of files the filteridentifies for dateis not
empty, it.can be concludedthat the date program is suspicious. The analysis of the benign date
program is very straightforward. Much less straightforward is the split program. Split reads a
file and writes it in n-line pieces to a set.of output files. The name ofthe first output file is an
argument specified in the command line with“aa” appended, the.second one with “ab” appended,
and so on. If no output file argumentis given,“x*is used as default, The program should onlycreate files starting with the prefix specified in the command line or the default prefix. Therefore,
we can say the split program is safe if theenumerated files satisfy this restriction.

In general, a program is said to be suspicious when

1, The program’s acceptance criteria is not satisfied — there is a high potential for a virus. The
acceptance criteria states that the enumerated set offilenames is acceptable to the user.

2. The program is too complex to be evaluated by our filter. No definitive answer is obtained
‘from the filter so the program is not accepted. In practice, it would be the responsibility of
the programmer toarene that a suspicious program is not contaminated.

Otherwise the program is said to be safe.
After sampling some commonly-used programs, Crocker concluded that the patterns of filename

generation could be classified aas follows:.
Implied -~ Thereis a fixed, possibly empty,list of files to be modified. For example,date modifies

no file. vipw modifies /etc/passwd.
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Parameters — Filenames are passed to the program as command line arguments. For example,
~dndent indents and formats a C program specified in the commandline,

Transformations — Some programs such as compilers and editors create new files based on the
arguments in the command line. For example, compress transforms filename to filename. Z.

Temporary files - New filenames are.generated independently. . For-example, vi generates tem-.
porary files in the. /tmp directory, 99° = cos .

Dialogs - The. filename is provided by the user when the programis running. For example, csh
(a standard UNIX command interpreter)file redirections are obtained from terminal input.

In all of these classifications, the algorithms used to generate filenames are quite simple involve
a small fraction of the total program. Since most realistic programs are far too complex to be
analyzed in their entirety and most of the codeis unrelated to filename processing, our approach is
to.isolate that part of the program concerned with filename generation and disregard the remaining
part. The simplicity of the resulting reduced program should make thestatic analysis tractable.

In summary, our filter tries to determine the namesofall files which might be modified by the
program. By comparing the enumeration of names and the specified restriction, the virus filter can
claim the program is safe or is suspicious. The complexity of the programs in their entirety may
prohibit comprehensive analysis, so part of our method eliminates that part of the program not
related to filename processing, We call this methodslicing. After slicing, the residual program. is
usually small in size and, thus, analyzable. , 7 a .

A virus in a program could escape detection by thefilter if it is content to contaminate only
those files for which the program has legitimate access. For example, a virus hiding in the EMACS
editor'couldinfect a program being created using the editor. However, once infectedthis program
could infect only those programsits designer has given it-access to. Any code in the original virus

that. would involve writes to otherfiles would be detected by the filter.

3.2. Implementation and Results

This section discusses the implementation of our approach. The input to the virusfilter is a binary
executable, The output is the enumerated set of the files that may be modified by this executable.
The virus filter proceeds through six steps. The fitst five steps are the preprocessings required
to extract the program fragments whichcontribute to filename generation. The last step involves
symbolic execution and analysis. The six steps are as follows:

1. Translation to an intermediate language

. Determination of basic block and life span

, Determination of data dependencies

. Anti-aliasing

. SlicingOo.kwwoN~

. Symbolic evaluation and analysis.

"Given a program to be analyzed, the virusfilter first translates it into a C-like intermediate
language. Then the filter relabels variables in order to decouple semantically disjoint variables
sharing the same storage. Next, the data dependencies are found by analyzing the program syn-
tactically. The filter performs anti-aliasing analysis to unify references to the same storage. Extra

356

 



dependencies are added to the data dependency graph when aliased storage is found. Based on thedata dependence graph, the program issliced into pieces. Finally, the pieces which are related tofilename processing are extracted and symbolically. executed. The filter also applies some theoremproving techniques, primarily to derive inductive assertions for the few, if any, loops involved in
filename enumeration.

The following simple example, written in our C-like intermediate language, is used to illustrate
the-different steps of the virus filter. This example program consists of two independent fragments
of code which perform different operations although they share the same variables. It demonstratesour method of decoupling variables by relabeling. Then, we separate it into two independent
program fragments by applyingslicing. After locating the appropriate fragment containing the
system calls, we apply symbolic evaluation and analysis to determine the filenames.

Example: We pick up this example after translation to an intermediate C-like language. x is afilename string, i is an integer, str() is a function converting an integer to a string. Not shown .
are the. open system calls, assumed to occur at any line in the program with filename argument X.
  Tine number intermediate code

 
 

1 ieil
2 x = “ff?
3 x = x || strG) # string concatenation
4 A= i+i

5o if (i <= 3) goto line 3°.
6 print x an
7 i = 200
8 x = str(i) |  

The filenames generated would be:

f if the open system call follows line 2
“fi, f12, fi2s follows line 5
_£123 follows line 6»
200 . , follows line 8.

3.2.1.Translation to Intermediate Language

The input to the virus filter is assumed to be a machine compiled binary program, not an arbitraryassembly language program. In the first stage, the program is decompiledinto a machine indepen-dent, C-like, intermediate language. We have designed the intermediate language such that analysisattendant to steps. 2-6 is simplified. To be specific, the intermediate language contains at most oneassignment per statement and control is transferred by the goto statement only. ‘The decompilerrecovers semantic information about vatiables which are lost during the compilation. The goal isto partition memory into regions such that, each region is the storage for a simple or structuredvariable. All storage locations are made explicit and side effects are eliminated. Library calls,like string assignments (string copy) and integer to string conversions, are replaced with definedfunctions in the intermediate language. Thus the virus filter is more likely to produce intelligible
output throughreference to higher level functions.

Since our filter is designed to work with binary executables, we need a decompiler to translatemachine codes to the intermediate language. Intuitively, the intermediate language should containmore information than the machine code, e.g. concerning types and addresses of symbols. We
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should be able to locate extra information concerned with the high-level language from sources
such as the symbol table. Even if we cannot find anything directly, we maystill be able to deduce ™
data types, procedure entries, etc, from the style in which the compiler generates code.

3.2.2 Basic Block and Life Span Analysis

Variables are often recycled in many programsin order to save storage or simply as a matter of
programming style. In many programs, variable i is a general purpose loop counter whichis reused
in different, unrelated parts of the program. This recycling adds dependencies to the dataflow
graph that can be eliminated. The elimination involves the renaming of the variables on theleft
hand side of an assignment statements. __ .

After translating to the intermediatelanguage and relabeling, the program is decomposed into
basic blocks for life span analysis. A basic block is a sequence of instructions in which

1. All control transfer statements are at the end of the block.

2. Only the head of a basic block can be the target of any control transfer statements.

The life span of a variable corresponding to an assignment is the span of validity of its value.
The life of a variable starts on its assignment and. propagates tobasic blocks that the current block
can lead to. We now pick up the example be derived as the filter starts in step 2. In line 4 of the
following table, the value of i at the right hand: side may be derived from three possible sources
because there are 3 assignments to i (lines 1, 4, and.7). The purpose oflife span analysis is to
eliminate impossible combinations, i.e. i.7 can never be the i.4 of line 4.

Variables on the left hand side are relabeled uniquely by their name and line number. The
program-is broken into three basic blocks. Thelive variables are given in the rightmost columns.

 

Lite ofx - Intermediate code   
 

  
 

 

Line number Life of

 
 

ry =

2 x.2 5 S°F??

3 =x | str(i)
4 i4ei¢i. .

5 if (i.< 3) goto line 3
6 print x
7 1.7 = 200
8 x.8 = str(i) ©  

3.2.3 Finding Data Dependencies

Given the life span of the variables, the syntactic data dependencies canbe determinedby dataflow
analysis. Consider, for example, statement 3 in the example after step 2: “x.3 = x || str(i)”. The -
variables x and i are referenced; x.2 and x.3 are live when x is referenced; i.1 and i.4 arelive when
i is referenced;x.3 is written to. Thus x.3 depends on i.1, 1.4, x.2, and x.3.

Thus for step 3, the dependencies are determined to be:
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x.3 «+ x.2, /* x.3 depends on x.2 */
x.3 — x.3

x.3 e+ i.l

K.3 + 1.4
i.4 = i.l

1.4 — 1.4
x.8 — 1.7

The objective of the data dependencyanalysisis to slice theprogram into independent portions
to simplify static analysis. Since filenames are usually generated by simple algorithms, syntactic
dependencies are considered instead of semantic (real) dependencies. -This simplified-analysis-is
adequatefor the worst case dependencies. In the above example, we can recursively trace back and
find all variables on whichx depends at line 8. The dependency subset is found to be “x.8 — i.7”.
The subset program is composed oflines 7 and 8 as indicated by line numbers in the dependency
subset.

Similarly, the variables x.2, x.3, 1.1, 1.4 are related to the computation of x atTile 6. Lines 1 to
4 constitute the corresponding subset program.

3.2.4 Performing Anti-aliasing

We need to solve the aliasing problem which results from the possibility of referencing a memory
location directly through a variable or indirectly through a pointer. Such sharing of storage must
be identified before we can have a correct data dependency graph. After the virus filter identifies
the aliases, additional dependency arcs are added into the graph. The aliasing is found by con-
sidering the pointer assignments. Let us call the variable onthe left hand side of the assignment
statement the ‘home’ variable. Reference through a pointer will add a dependency to this variable.
Modification through the pointer will add new labels to the home variable. Since the life of the
new label must be computed, the virus filter may need to iterate through steps 2 to 4 several times.
The iteration stops when no new dependencies are identified.

3.2.5-Slicing

After completing steps 1 to 4, we have the data dependency graph and the next step is slicing to
identify the program fragment-associated witheach open system call. A fragment terminates with
an implied system call, the arguments of which are to be determined in step 6. ee

Continuing with example 1, if the system call immediately follows ine 8, the sliced fragmentwould ‘be:

7 i = 200

8 x = str(i)

If the system call immediately followsline 3, the slice fragment would be:
1 isl

2 x= fr?
3 9x = x I str(i)

To obtain the pertinent program fragment, the filter traces back from the system call through
the data dependency graphto.obtain all of the variables the system call depends on,i.e, the line

numbers of the relevant program statements. Having the line numbers, we can easily slice out the
program fragment. . =.
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3.2.6 Symbolic Evaluation and Analysis

The sliced program is then symbolically executed to identify filenames generated. Proceeding
forwardthrough the statements in a program fragment, each variable obtains a set of values, each
value in the set being a value the variable could’ be assigned in a real execution.

The symbolic evaluation is straightforward when the program has no loops. For a program
containing loops, more complicated techniques, as described by German and Wegbreit in (5], are
required.

. Given theinput and output assertions fora loop, four methods to obtain inductive assertions
for the program have been proposed: (1) weak interpretation, (2) using loop exit tests and gener-

__ alization,(3) predicatepropagation, and (4) extracting information from unsuccessful proofs. The
first three methods can be used in our virus filter. Thelast one is not applicable because it works
backward from the output assertion, which we assumewill not be available.

The followings are the salient pointsof German and Wegbreit’s first three methods as they bear
on the virus filter: | re ee

1. Symbolic evaluation in a weak interpretation.

P = start address of S$;
{I: start address of S <= P <= end address of $}
while (P < end address of 5)
oO {I} , SO

P=P+ 1;

{I}

For example, suppose P is a pointer variable and $ is a string variable. P is initialized to the
start address of $ on entry to aloop; P is incremented on each pass through the loop, and
the loop is exited when P is greater than the end address ofS. It follows that inside the loop,
the inductive assertion | will contain the expression: start address of S < P < end address of
S, Weak interpretation attempts to derive simple facts of this kind; specifically, it considers
onlysimple linearequalities or inequalities relating two variables.

2. Combining assertions with loop exit information.
Suppose a loop is exited when some test D is true and that after the loop some assertion P

_ is to hold. Since P is to hold after the loop, the assertion D -+ P (read D implies P) must be
true inside the loop and just before the exit test. It is very likely that D -+ P is sufficiently

' strong a loop invariant for our purpose.

3. Propagating valid assertions forward through the program, modifying them as required by
the program transformations.
Whenever an assertion is known to be valid, it is useful to propagate it forward in the
program, deriving the strongest consequences of the assertion downstream. Through sub-
stitutions, assertions are modified on passing through decisions and assignments to produce
their consequences.

Our preliminary analysis of the filter has determined that these 3 methods are adequate for
the analysis of loops involving file enumeration code.

 
3.3 Example: The Split and the Copy Programs.

The program split.c is analyzed. The synopsis of split is
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split [-number] [infile] [outfile].

Tn short, split reads a file and writes it in n-lines pieces onto a set of output les. 7%
the first outputfile is an argument specified in the commandline with “aa” appended, the serame
one is outfile with “ab” appended, and so on; the name generated form a lexicographic seozec+=.
If no argumentis given, “x” is used as default. The following is the sliced split program, regaitiny
from applying steps 1-5 of the filter.  ~ > .

 
 

 

10 arge = INPUT; argy =INPUT
16 outfile = x"°.

21 for (i = 4; i -< argo; i++)
38 outfile = argv[i]
42 outfile = outfile || "aa"
43 for. (suffix.= outfile; *suffix != 0; suffix++)
4&5 suffix--

47 “suffix = ’a? --f

81 if (++*suffix > ’2°)
82 *suffix = ’a’

83 +4+*(suffix - 1)
87 creat (outfile, 0644)

The slicing reduces the 104 line program to 12 lines. As we can see, the program fragment for
the generationoffilenamesis very small even though nottrivial compared with other programs we
haveconsidered. By symbolic evaluation, and tracing through the loop several times, the result is

a | argv [*]) I "aa" | "abi | ve LS
- Using German and Wegbreit’s methods for the derivation of the loop invariant, we have the

conditions *suffix > ’z’, *(suffix+1) > ’2’, “suffix = ’a’- 1, and *suffix is not decremented in the
loop. From these conditions, the following represents possible value for the filenames.

C("x" | argv[*]) fla dl b..

- where “a” < a,b < “z”,

‘The user would accept split as safe, as it writes only to files that he expects.

As another example, consider 'cp’ which copies files. The synopsis is

“ep filenamel filename2”
or

-” “ep filename ... dirname”.

In thefirst format, cp copies filendmel!to filename2. In the second format, cp copies the filename
... to the directory dirname. Thesliced program fragmentis like

39 creat (argv[2], sbuf.stmode & 0777)
70 ptr = argv(arge - 1]:
7i-dp = dirname ,
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72 while (#ptr != 0) *dp++ = *ptr++
74 xdp++ s #f>? :
75 ptr = argv[i]
78 while (*ptr != 0) ptr++_
79 while (ptr > argv[i] && *ptr !=’/?) ptr--
80 if (*ptr == °/?) ptr++
81 while (*ptr != 0) *dp++ = #ptr++
82 kdpt++ = 0
84 creat(dirname, sbuf.stmode & 0777) |

The original program is 154 lines. lines. The sliced fragment is very small and most of the
programming statements are strings operations consisting of smallloops.

3.4 Limitations of the Filter

Since static analysis techniques are crucial to the operation of the virus filter program, it is assumed
that the program being analyzed is constrained to good programming practice. That is, the code
segment cannot be altered and control may not be transferred to the data segment or the stack
segment. These constraints are satisfied for Sun UNIX 3.2 programs. Most programs do not
change their code segment or try to execute the data segment. Dynamic linking programs and
debuggers are exceptions, albeit important ones. Furthermore, our model assumes a single thread
of control. Modifications would be required for a parallel program with shared memory. Some
specific limitations of the current virus filter design are discussed below.

3.4.1 Pointer reference

‘There is no constraint on indirect memory references (any pointer or array reference) in our low-
level language. Whenever this kind of reference is associated with a string of unknownlength or
with a non-deterministic event (e.g. a user input), any memory cell can potentially be modified.
‘The overwritten cell can be anywhere, possibly a filename argument to system calls.

If the symbolic evaluator works conservatively, its output will be too pessimistic, as most storage
contains non-determined values. Otherwise the output of the evaluator could be incorrect anda

* yirus couldslip into the system without being detected.
The following are common statements in C programs; see Figure 1.

while (ept+ = #qtt);00°00trwrnanee
| str [kereeene Pp

senrecrerontroe [. |
Lot a [---n2---=]
scanf(‘‘\d??, &i); od Io.
str[i] =. ?x?; |. file- |

| name |

. Pigure 1. Two examples to illustrate the difficulty. of deciding pointer references.

In the first example, if p points initially to a variable ‘str’ and memoryis allocated as shown, p
can overflow and,potentially, clobber storage that holds the filename argument to @ future system
call. We potentially have to determineall possible values of pointers in order to determine what
storage can be clobbered. . ,

- The undisciplined use of pointers severely hampers effective static analysis, but also represents
bad programmingstyle. In the first example, a better alternative is to use
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strnepy(p, gq, MAXLEN).

The second example should have a conditional statement such as

“if ((i <0) [] Gi >= UPPER_BOUND)) input_error():;

before the array reference to avoid an out-of-bound array reference. Assuming these extra state-
ments, it-is possible tobound the pointer references to facilitate analysis.

We may beable to infer the range of pointers from the program and prove the pointers are
constrained with their associated variable. For example, during the life of a pointer P associated
with string 5, our filter proves the assertion {S < P < 8 + length(S)}.

Another difficulty with pointers is with respect to dynamic allocation of memory. It is almost
impossible to find the bounds of pointers pointing to dynamically allocated memory variables
because there is no way to determine their addresses statically. If we assume the worst case — all
pointers can share al] dynamically allocated storage ~ it is not likely that the filter can perform an
effective analysis of the program.

Although not acceptable in all situations, it appears that software users can impose a strict
programming style on their vendors to simplify the work of the virusfilter in pointer analysis.

3.4.2 Loops
As discussed before, the presence of loops makes symbolic evaluation much more complicated
because of the indefinite number of iterations. Several methods may suggest solutions to this .
problem. One of these is to determine the maximum number of iterations of the loop and have
the symbolic evaluator go through the loop that number of times. Other methods include the
determination of loop invariants to give significant representation for the loop. A method which

uses linear inequalities to constrain the variables may be useful (5). However, all existing solutions
are heuristics and do not workin all situations.

8.4.38 Structured Data Types

The symbolic evaluator needs to understand structured data such as strings and records. String
operations are common in generating filenames. The evaluator should be able to understand that
the codefragment while (*p++) is equivalent to moving the character pointer p to the end of the
string. Some heuristics are helpful in giving understandable reports to.a user. For instance, it is
preferable for the filter to output the statement, “A new string 51 is generated from 5 by appending
character ’c’ to it” rather than output the assertion

{ aj((Vi< 7: S[i!= 0 and S{j] == 0) and |
(Vi <j: S1fz] = Sfé]) and
Sly] =' e’ and

» $ifj +1] = 0) }.

In some situations, the complete filenames may not be generable in the absence of specific
details of the environment. For example, when a temporary file is generated with the constant
prefix /tmp/vi and the process-id, the symbolic evaluator is unable to give the exact filename
becausethe filename depends on the runtime environment. However, if the evaluator issufficiently
intelligent, it may give a partial result such as./imp/vi* as the generated filename. However, the
cost of having.such intelligence is not low as the evaluator needs to understand the semantics of
strings and essentially all possible operations on a string.

363



 

 
4 Conclusions and Future Work

There is a need for improved defenses against computer viruses. Defenses include
1. preventing the propagation of viruses. | -
2. detecting an infected program —
3. determining if a newly issued program contains a virus, |
This paper concentrates on (2) and (3). Our detector tool checks for duplication of services. A

program linked with the standard library, typical of UNIX systems, will contain no duplication of
system services, A simple virus would carry its own services and would beeasily detected by our
detectortool. The detector can be defeated, but only by a virusthat searchesfor the services in a
progtam; such avirus will be more complex than current viruses and might contain code that an
extension of the detector would flag as malicious.

The filter tool extends the concepts proposed by Crocker and Pozzo. It carries out a static
analysis of a given program to determine the capability of a program to modify files. A user of
the program under test could then determine if any unexpected files are written to, for example
those obtained by searching a directory. The filter uses verification techniques, but since only a
subset of a program is usually concerned with filename generation, the technique appears to be
more feasible than verification in general. We have simulated the behavior of the filter on typical
system programs, such as date, split and cp. Heuristics are required to generate loop invariants
-(but*the loops appear tobe quite simple) and. to demonstrate that pointers are well-behaved.
Implementation is underway.

The prototype of the virus filter will be tested on MINIX system utilities executing on a 80286-
based machine. MINIX is a UNIX-like operating system written by Tanenbaum (9]. The MINIX
programs are usually small, making them ideal for an initial evaluation of the virus filter. Also, the
assembly languageis quite simple, which will simplify the translation to the intermediate language.

The similarity between the detector tool and the filter tool is that both attempt to determine
if a program under test contains suspicious code. The difference lies in the suspicious code under
searching. The detector tool considers program structure, i.e. the way that system calls are made.
The.filter focuses on the arguments to the system calls. System calls are. interesting because a
program mayinteract with other objects in the system, hence cause damage, only through operating
system calls. , re Cotes a

Generalizations of the detector would involve more complex checks on program structure. For
example, the detector might look for the getdirentries (get directory entries) system call which is
useful to viruses, but not to most programs. Different compilers generate code in slightly different
ways. If the virus code is compiled with a foreign compiler, the detector may beable. to detect
it with statistical orpattern-matching methods. Furthermore, it is commonfor a virus to attach
itself to the beginning or the end.of a program. By looking at the pattern of flow controls, we may
obtain somehints to thepresence of viruses.. Co os ;

The filter tool uses symbolic evaluation and verification to determine the possible arguments
of the system calls. It can be extended to determine values of variables in the program;:-hence we
can prove'assertions composedof program variables, which characterize the program behavior. The
filter may. determine the input conditions which lead to execution of certain sections in the program.
For example, if we apply this technique to thelogin program and ask for the condition that the
setuid statement is executed, thefilter should find that a necessary condition is the matching of
passwords. | / . a oS :

‘The techniques described in this paper are not limited to the detection of viruses. Trojan Horses
are detected in similar way, albeit the detector and filter need to be programmed with different
properties.
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Because virus detection is undecidable (see {1]), these tools certainly cannot claim to have the
ability to detect all viruses. The detector tool can be defeated in at least one sure way by using
the existing services of a program. Similarly, thefilter canalso be defeated: a virus can propagate
through the files.to which the program has legitimateaccess. Although these tools cannot detect all
viruses, viruses have.to hide all the traits we are looking for. A virusdesigned with theseconstraints
is very complicated, cannot be very infective, and also veryhard to write. The merecomplexity of
sucha virus should lead to its early discovery by more common methods of debugging.

5 Acknowledgments a
JohnM,Collins ofSt. Albans, Herts, England, wrotethe disassemblerusedin Snitch. We are

_also grateful to Steve Crocker, Maria Pozzo, Doug Mansur and his colleagues at the Lawerence
_ Livermore National Laboratory for many conversations on the virus problem. .

References

[1] Fred Cohen. “Computer Viruses: Theory and Experiments”, Computer Security: A Global
Challenge, J.H. Finch and E.G. Dougall (eds.) (1984)

[2] Fred Cohen. “A Cryptographic Checksum for Integrity Protection”, Computers & Security,
Vol. 6 pp. 505-510 (1987).

[3] Fred Cohen, “Models of Practical Defenses Against Computer Viruses”, Computers & Security,
Vol. 8 pp. 149-160 (1989) BS oo a

[4] Steve Crocker and Maria M. Pozzo. “A Proposal for a Verification-Based Virus Filter”, Proc.
_ of the 1989 IEEE Computer Society Symposium on Security and Privacy, May 1-3, Oakland,

' California, pp. 319-324 (1989) © ~

[5] Steven M. German and Ben Wegbreit. “A Synthesizer of Inductive Assertions,” IEEE Trans.
on Software Engineering, Vol. SE-1, No. 1 (1975)

(6] Mark K. Joseph and Algirdas Avizienis. “A Fault Tolerance Approach to Computer Viruses”,
_ Proc. IEEE, pp.52-58 (1988)
(7} Aamer Mahmood and E: J. McCluskey. “Concurrent Error Detection Using Watchdog

Processors—A Survey”, IEEE Transactions on Computers, Vol. 37, No. 2 pp. 160-174 (1988)

 

[8] Maria M. Pozzo and Terence E. Gray. “An Approach to Containing Computer Viruses”, Corn-
puters & Security, Vol.6 pp. 321-331 (1987)

[9} Andrew Tanenbaum. Operating Systems: Design and Implementation, Englewood Cliffs, N.J..
Prentice-Hall, Inc. (1987) ,

[10] Paul A. Karger, “Limiting the Damage Potential of Discretionary Trojan Horses”, Proc. of the
1987 IEEE Computer Society Symposium on Security and Privacy, Oakland, California, pp.
32-37 (1987) . — | os

[11] D.R. Wichers, D.M: Cook, R.A. Olsson,J. Crossley, P. Kerchen, K.N. Levitt, R. Lo. “PA
An Access Control List Approach to Anti-Viral Security”, to appear in Proc. of ihe Nat
Computer Security Conference, 1990. ae

 

365



 

366



 
 
     

 

 
  

   
 

  
 

   
 

 
   

   
  

  
   

  
 
  

    
       
 

             
    

 

 
 
    

     
 

    
 

        
  

  

           
 

 
    

      
 

 
 

    
 
      

  
  
 

 
 

  
 
 
  

 
 
  

     
   
     

  
 

   
     

   

 
     

 
 

         
 
 

  
 

  
   
    inal Math

tothe Future -
  

 
   

 
     

        
 

  
  

  
   
       

  
   

 
 

     
 
    

  6387  
              

   
       

 
               

                                                                                     
 

  
 

 
  

  
     



  

 
 

 

  
 

 Prof. Eugene Spaffordcapiapnaeat

368

 

 

 
  
 
 



Welcome!

The National Computer Security Center (NCSC). and the National Computer
Systems Laboratory (NCSL) are pleased to welcome youto the Thirteenth Annual
National Computer Security Conference. We believe that the Conference will

stimulate a vital and dynamic exchangeof information and foster an understanding
of emerging technologies.

The themefor this year’s conference, “Information Systems Security: Standards --
The Key to the Future,” reflects the continuing importance of the broader
information systems security issues facing us, At the heart of these issues are two
items which will receive special emphasis this week -- Information Systems Security
Criteria (and howit affects us) and Education, Training, and Awareness. We are
working together, in the Government, Industry, and Academe, in cooperative efforts
to improve and expandthestate-of-the-art technology to information systems
security. This year we are pleased to present a new track by the information security
educators. These presentations will provide you with some cost-effective as well as

innovativeideas in developing yourown on-site information-systems-security
education programs. Additionally, we will be presenting an educational program
which addresses the automated information security responsibilities. This
educational program will refresh us with the perspectivesof the past, and will
project directionsof the future.

Wefirmly believe that security awareness and responsibility are the cornerstone
of any information security program. For our collective success, we ask that you
reflect on the ideas and information presented this week, then share this

information with your peers, your management, your administration, and your
customers. By sharing this information,we will develop a stronger knowledge base
for tomorrow's foundations.

JAMES H. BURROWS ~ LeR. Kite;
Director Director |Na tional ComputerSystems Laboratory National Computer Security Center
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