
CS-1017
Cisco Systems, Inc. v. Finjan, Inc.
Page 1

Automated Assistance for Detecting Malicious Code *

R. Crawford, P. Kerchen, K. Levitt, R. Olsson, M. Archer, M. Casillas

Department of Computer Science
University of California, Davis

Davis, CA 95616
Email: virus@cs.ucdavis.edu

Abstract

This paper gives an update on our continuing work on the Malicious Code Testbed
(ACT). The MCT is a semi-automated tool, operaiing in a simulated, cleanroom en-
cironment, that is capable of detecting rnany types of malicious code, such as viruses,
Trojan horses, and time/logic bombs. The MCT allows security analysts to check a
program before instailation, thereby avoiding any damage a malicious program might
inflict.

Keywords: Detection of Maidons Code, Static Analysis, Dynamic Analysis.

1 Introduction

The Malicous Code Testbed (MCT) was originally designed to use both static and
dynamic analysis tools developed at the University of California, Davis, that have
been shown to be effective against certain types of malicous code. One goal of the
testbed is to enhance the power of similar tools by using them in a complementary
fashion to detect more general cases of malicious code.

In our report to this conference last year [1], we presented a design overview of the
MCT. In the present paper, we report on our progress towards upereding the MCT
environment for dynamic analysis.

Although, in prindple, the notion of a Mahdous Code Testbed is independent of any
particular operating system or architectural platform, our initial implementation efforts
have focused on simulating a DOS operating system running on PC zrchitectures. This
design decision was made primarily because the PC/DOS ervironmentis so widespread
and accessible to intrusions; thus this environmentis the one that has engendered the
most real-world malicious code we can use to challenge our detection techniques.

Sections 2 and 3 provide backgrornd material on malicious code and current detec-
thon methods. Section 4 reviews the use of events in dynamic analysis techniques, and
Section S$ describes the architecture of the MCT. Section 6 presents some results from
our experience using the MCT on malicious code.

“SPONSORS: Lawrence Livermore National Laboratory, US. Department of Energy

Work performed under the auspices of the U.S. Department of EnergybyLawrenceLivermore National Laboratory under Contract W-7405-Eng-48. oy

m+
tt ope tp icy!
i eV yw Le

“AUG 02 £23

OSTI

CS-1017

Cisco Systems, Inc. v. Finjan, Inc. mi
Page 1

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

2 Malicious Code — A Brief Overview

In recent years, various forms of malicious code have appeared on virtually all major
families of computer platform. The prevalence of malicious code — Trojan horses, time
bombs, worms, and viruses — threatens the traditional “open systems” approach that
has evolved in the academic realm, as well as in much of the commercial sector.

The current situation in the personal computer arena may be indicative of future
trends in workstation and mainframe environments. On PC systems — where literally
hundreds of comprter viruses, time bombs, and Trojan horses have proliferated —
the problem is caused by rogue programs that unwittingly are muited in to the system.
Thus malicious code may be inserted into almost any type of compater system via these
same avenues — “shareware” may be installed, or malicious code might be produced
in-house by a disgrantled employee, or a program containing malidous code might even
be purchased from a legitimate vendor of commercial software.

Onr definition of what constitutes “malicious” code shall address only the probable
effects of executing such code; we shall not concern ourselves with the “original intent”
of the (possibly unknown) writer. Although the intentions of the writer may be crucial
in determining legal! culpability — ¢g., whether malice and forethought were present —
to include such considerations within the scope of our “working definition” for malicions
code would clearly render the problem incomputable.

Yet even using our restncted, operational definition of “malicious code”, the prob-
lem of malicious code detection — in the most general case — is not decidable by
purely formal methods. This follows not merely from the results of [4] [2] [3], bat
rather because the inherent semantics of the problem statement demand that a value
judgement regarding the nature of the code’s probable effects be remdered. But because
doing so would require that the ment of the program’s potential users be considered,
no article of faith akin to Church’s Thesis can serve to bridge the gap between our
intuitive sense of “malicious effects”, and algorithmic solutions. It would seem that, in
all but the most severely restricted programming environments, the problem statement
must remain a fuzzy one.

Thus, although no algorithm that identifies malicious code in all environments and
in all guises can exist, a number of techniques already exist for coping with certain re-
stricted forms of malidous code. Since the problem cannot with certainty be prevented
in current programming environments, it must be managed instead.

This idea forms the basis of the Malicious Code Testbed — an automated assistant

whose mission it is to perform the “grunt work” necessary to aid a homan analyst
in detecting not only currently known forms of malicious code, but also mutated or
entirely novel forms. Given the absence of a decision procedure for malicious code,
such a testbed would allow one to examine a program to ascertain whether or notit is
suspicious.

We first discuss the most prevalent methods of coping with malicious code, and
then describe some of onr previons work aimed at providing defenses against malidons
code. Then we explore in greater detail the Mclicious Code Testbed.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

3 A Sample of Current Methods for Coping
with Malicious Code

Presently, the majonty of malicious code defenses are concerned with computer viruses.
However, some are more broadly applicable to malicious code in general These meth-
ods may be divided into two distinct classes depending on when they are applied: as
& pre-ezecution check or at run time. Pre-execution techniques are applied to a suspi-
cious program before it can be executed by a user. In contrast, run time methods are
actually applied to the program as it executes, in hopes of stopping the program before
it can cause damage or allow a virus to propagate. Another taxonomy of malicious code
defenses divides all methods into the categories of staticor dyramic analysis. Although
most static analysis techniques are applied as pre-execution checks, certain static anal-
ysis techniques can be applied at run time. Similarly, although most dynamic analysis
techniques are applied as ran time checks, certain dynamic analysis techniques (such
as our own Malicions Code Testbed) can be applied as pre-execution checks.

Manyof the more sophisticated pre-execation methods rely on the prior existence of
2 copy of the program that is assumed to be “clean”, perhaps because it was originally
written by a trusted programmer and then translated into an executable file by a trusted
compiler on a secure system. One such method compntes cryptographic checksums that
are characteristic of that trusted executable file, and embeds them in that file. [6] The
file is then copied to an insecure environment, whose operating system will not allow a
user to execute any program until it has recomputed what those checksums should be
and compared those values with the ones actually embedded in the program. In this
way, most alterations made to a trusted executable file after it leaves the secure system

can be detected before the program is executed in the insecure environment.
It is important to note that this technique shares one important characteristic

in common with most other sophisticated pre-<xecution methods — ultimately, they
depend on the prior application of detection (or formal verification) techniques in order
to certify an executable file as “clean” in the first place.

Keeping Ken Thompson’s admonition “on trusting trnst” firmly in mind [5], how
should a security administrator proceed when faced with programs so large or complex
that “trust, but verify” is not a feasible option? We suggest that — in the middle
ground between the two extremes of exhanstively provable correctness and trust based
on nothing more substantial than personal familiarity with, or a background security
check on, a program's writer — the MCT (acting to assist 2 human analyst) can provide
&@ practical alternative basis for trust.

3.1 Simple Scanners and Monitors

Simple scanners such as McAfee’s Scanv or Norstad’s Disinfectant are by and large
the most common pre-execution method in use today. Typically, the user will invoke
a scanner to search the static text of a binary program for fixed patterns (bitstrings)
that match those of known malicious programs. If none of those bitstrings are found,
the user them proceeds to execute the program. Thus these scanners boast a very good
record in defending against known malicious programs, such as polymorphic viruses
that use a known “Mutation Engine”, but they cannot be applied in general to finding
new malicous code, or even to finding familiar malicious code protected by 2 “Mata-

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

tion Engine” thatis, itself, slightly mutated. Another popular approach uses simple
monitors to observe program execution and detect potentially malidous behavior at
Tun time. Such monitors usually sit astride the system call interface, e.g., to watch
all disk accesses and ensure that no unauthorized writes are performed. Unfortunately
such techniques incur a substantial speed penalty during execution of normal programs,
and typically become quite a nuisance to the user.

To be effective, these programs must also err on the conservative side, resulting in
many false alarms which require user interaction. But ir these interactions, current
techniques require the user to make relatively immediate (and usually uninformed)
decisions regarding whether the program should be allowed to pro_ced. Such decisions
would benefit immensely from the opportunity to explore a trace of the program’s
history, as well as its then-current execution state.

3.2 Encryption & Watchdog Processors

Encryption is another metiod of coping with the threat of malicious code. Lapid,
Ahituv, and Neumann [7] use encryption to defend against Trojan horses and trapdoors.
When correctly implemented, encryption techniques are quite effective against many
types of malicious code, but the cost of such a system is high due to the required
hardware. Similarly, wotchdog processors [8] also require additional hardware. Such
processors are capable of detecting imvalid reads/writes from/to memory, but they
require additional support to effectively combat viruses. Also, both of these methods
are dependent on the prior existence of a “clean” version of every program that is to
be executed. As mentioned, to certify such copies as “clean” in the first place requires
either formal verification or a malicious code detection capability, which is the subject
of the present paper.

4 Review of Dynamic Analysis using Events
Over the last few years, we have developed a powerful, state-of the-art debugger called
Dalek [9]. Dalek incorporates two significant advances over traditional debuggers: it
featnres a fully-prograrnmable language for manipulating the debugging environment,
and it provides extensive support for user-definable events.

The MCT user’s environment was designed in accordance with the philosophy un-
derlying the Dalek debugger, and features analogous to those in Dalek have been incor-
porated into the MCT. But we have also customized the MCT environment, in light
of its specific mission to help ferret ont malicious code. We believe that “dynamic

analysis” (and the development of appropriate methodologies for it) should be seen
as representing an extremely promising avenueofinquiry, rather than as being just a
fancy word for the sorts of things people have always done with traditional debuggers.

By folly programmable, we mean the MCT is an extendible environment, in a sim-
ilar sense that the Emacs text-editor is extendible. But due to the nature of the

MCT’s mission, these general-purpose language constructs have been fully integrated
with traditional appication-specific debagging features such as breakpoints and single-
stepping.

Like the Dalek debugger, the MCT also provides automated support for detecting
hierarchical events — occurrences of interesting activities during the execution of the

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

suspicious program. This capability allows the MCT to represent the suspideus pro-
gtam’s behavior in terms of whatever higher-level abstractions have been defined by
the security analyst.

In some ways, an event is conceptually similar to a tuple in a relational database
— once the structure of a particular database table has been defined by the user, every
oceurrence of an event of that type that is detected by the MCT will have its attributes
recorded permanently, as fields in a newly inserted tuple. That is, whem the MCT
detects an event occurrence, it causes a corresponding tuple (or record) to appear in
the appropriate database table. The attributes associated with an event should contain
information sufficient to characterize a particular occurrence of that event, allowing it
to be distinguished from other instances of the same event. The code written by
a security analyst for an event’s definition can cause it. upon activation, to assign
values to these attributes from variables in the suspicious program, from variables in
the “outer” MCT environment, or from computation based on a combination of such
variables.

In addition to defining an event as a template for passive data, the security analyst
also needs to define an active, procedural aspect for that event. This is accomplished
by writing a body of code in the MCT’s language, and associating it with that event.
The purpose of this code, when activated, is to recognize exactly those conditions
in the suspicious program's execution state that the security analyst has specified as
constituting a valid occurrence of this particular type of event.

This event-recognition code can be execnted mannally by the security analyst as
sfhe single-steps the suspicious program, or it can be executed automatically by the
MCT, if the analyst has bound that event’s code to a breakpoint, or to a range of
breakpoint addresses. Events whose code 1s activated in this manner are called primitive
events.

The MCT also supports high-level events. When defining a high-level event, one
must specify the names of all lower-level events on which it depends. A high-level event
is not explicitly raised; instead, the MCT can antomatically trigger a high-level event's
code into executing whenever an occurrence of a primitive event on which that high-
level event depends is successfully recognized. The high-level event’s code will have
access to all the attributes of its lower-level constitnent events, as well as access to the
“raw” state of the suspicious program and to variables defined in the “outer” MCT
environment.

Note that the secunty analyst can define a high-level event whose recognition may
depend on lower-level constituent events whose occurrences are widely separated im
time. For a concrete example of a network of events used to detect self-propagating
code, see [1].

Viewed from the perspective ofa relational database, a high-level event is conceptu-
ally akin to an ongoing query: In defining a high-level event, the security analyst poses
a query. The MCT then provides mcremental answers to that activated query, as the
behavior of the suspicious program canses new occurrences of primitive event/attnbute
tuples antomatically to be inserted in the database.

The “execution history database” maintains a record ofall recognized event oc-
currences and their attributes. It may be browsed selectively by the security analyst
in interactive mode, or accessed programmatically via actess functions written in the
MCT’s language.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

