
CS-1011
Cisco Systems, Inc. v. Finjan, Inc.

A Testbed for Malicious Code Detection: A

Synthesis of Static and Dynamic Analysis
Techniques*

R. Crawford, R. Lo, J. Crossley, G. Fink, P. Kerchen, W. Ho,
K. Levitt, R. Olsson, and M. Archer

Division of Computer Science
University of California, Davis

Davis, CA 95616

Abstract

This paper proposes an environment for detecting many types of ma-
licious code, including computer viruses, Trojan horses, and time/logic
bombs. This Malicious Code Testbed (MCT)is based upon both static and
dynamic analysis tools developed at the University of California, Davis,
that have been shown to be effective against certain types of malicious code.
The testbed enhances the power of these tools by using them in a com-
plementary fashion to detect more general cases of malicious code. The
MCTallows administrators and security analysts to check a program be-
fore installation, thereby avoiding any damage a malicious program mightinflict.

Keywords: Detection of Malicious Code, Static Analysis, DynamicAnalysis.

1 Introduction

In the past five years, there has been an explosion in the number ofTro-
jan horses, time bombs, and viruses that have been found on computers,
Furthermore, the ease with which one may write a virus or trapdooris
certainly cause for concern: In his Turing Award lecture, Ken Thompson
demonstrated an elegant yet simple trapdoor program that was quite ef-
fective in subverting the security of a UNIX system [5]. The situation is
even less encouraging in the personal computer arena — literally hundredsre

“SPONSORS:National Comput-r Security Center, Lawrence Livermore National Labora-tory, Deloitte Touche

CS-1011

Cisco Systems,Inc. v. Finjan, Inc.

Departmentof Energy Computer Security Group (fo 17-1
14th Annual Conference Proceedings

4.2.1 Disassembly — Translation into Internal Form

To statically analyze the behavior of an executable machine code program,
we must first “disassemble” it, that is, translate its code into our internal
form. We have designed a set of procedures that, given a 2-tuple (Mem-
ory-Address, Memory.Contents), will disassemble its Memory.Contents,translating it into our internal form laneuage. Becanse not all assembler

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

of computer viruses, time bombs, and Trojan horses exist for all of the
major personal computers in use today.

Malicious code detection — in the most general case — is known to be
an undecidable problem. However, a number of techniques already exist
for coping with certain restricted forms of malicious code. Although no
algorithm thatidentifies malicious code in all its guises can exist, various
heuristics may be applied to detect, e.g., viruses that are not very cleverly
hidden in legitimate code. Such an approach to managing the problem
is valid toward all formsof malicious code: stopping a large percentage
of destructive programs is a considerable improvement over not stopping
any of them.

This idea forms the basis for a Malicious Code Testbed (MCT) ca-
pable of detecting a large majority of current and future malicious pro-
grams. Given the absence of a decision procedure for malicious code, such
a testbed would allow one to examine a program to ascertain whether or
notit is suspicious. The MCT will employ heuristics to analyze and sim-
plify a program. Although these techniques may not always succeed, they
should cover all “tricks” thought to be employed by malicious code.

We first discuss some of the known methods of coping with malicious
code, and then summarize previous work at UC Davis aimed at provid-
ing defenses against malicious code. Finally, we explore in greater detail
the idea of the Malicious Code Testbed that builds on our previous work,
and melds several different heuristic techniques into a more effective, in-
tegrated system.

2 A Sample of Current Methods for Cop-
ing with Malicious Code
Presently, the majority of malicious code defenses are concerned with
computerviruses. However, someare morebroadly applicable to malicious
code in general. Table 1 shows the applicabiity of some of these methods.
These methods can be divided into two distinct classes depending on when
they are applied: as a pre-ezecution check or at run lime. Pre-execution
techniques are applied to a suspicious program before it can be executed
by a user. In contrast, run time methods are actually applied to the
program as it executes, in hopes of stopping the program before it can
cause damage orallow a virus to propagate.

Many of the more sophisticated pre-execution methods rely on the
prior existence of a copy of the program tha;is assumed to be “clean”,
perhaps because it was originally written by a trusted programmer and
then translated into an executable file by a trusted compiler on a secure
system. One such method computes cryptographic checksums that are
characteristic of that trusted executable file, and embeds them inthatfile.
Thefile is then copied to an insecure environment, whose operating system
will not allow a user to execute any program until it has recomputed
what those checksums should be and compared those values with the ones

14 Department of Energy Computer Security Group
14th Arnual Conference Proceedings

stored in a table in the MCT.

4.2.3 Memory Model for the Data Segment

Cells in a suspicious Pprogram’s data memory can be represented by the
same structures as are used for its code, although at first it might appear
that only the (Memory_Address, Memory.Contents) fields are needed.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

DepartmentofEnergy

actually embedded in the program. In this way, most alterations made to
a trusted executable file after it leaves the secure system can be detected
before the program is executed in the insecure environment.

It is importantto note that this technique shares one important char-
acteristic in common with most other sophisticated pre-execution methods
— ultimately, they depend on the prior application ofdetection (or formal
verification) techniques in order to certify an executable file as “trusted”in the first place.

Table 1. Applicability of Defenses.

2.1 Simple Scanners and Monitors

Simple scanners such as McAfee’s Scanv or Norstad’s Disinfectant are by
and large the most common Pre-execution method in use today. Typically,
the user will invoke a scanner to search a binary program for patterns (bit-
strings) that match those of known malicious programs. If none of those
bitstrings are found, the user then proceedsto execute the program. Thus
these scanners boast a very good record in defending against known ma-
licious programs but they cannot be applied in gencral to finding new or
mutated malicious code. Another popular approach uses simple monitors
to observe program execution and detect malicious behavior at run time
Such monitors usually watch all disk accesses to ensure that no unautho-
tized writes are made. Unfortunately such techniques incur a substantial
speed penalty during execution. In addition, to be effective these pro-
grams must err on the conservative side, resulting in many false alarmswhich require user interaction.

Computer Security Group
14th Annual Conference Proceedings

4.3.1 Distinguishing “Code” from “Data”
Contrary to popular belief, disassembly can be a formidable task. In
general,it is formally undecidable to determine whether a region of “data”
could be executed as code (the so-called “state-entry problem” for Turing
machines), or to determine whether a region of “code” could ever betreated as data (the anestion of whether » civen Trine machine will aver

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

2.2 Program Access Control Lists
The next approach, program access control lists (PACL’s) [6], consists of
associating with each file in a system an access control list that specifies
what programs can modify the file. This preventive approach has the
effect of limiting damage that can be done by many malicious programs,
especially Trojan Horses unknowingly executed by the user. In contrast,
conventional ACL’s would be ineffective in such situations because they
only limit which users can modify the file. Although the PACL approach
can help to ensure integrity, it is ineffective against attacks exploiting
covert channels that only violate information security, not integrity.

2.3 Encryption & Watchdog Processors
Encryptionis another method of coping with the threat of malicious code.
Lapid, Ahituv, and Neumann (2) use encryption to defend against Tro-
jan horses and trapdoors. When correctly implemented, encryption tech-
niques are quite effective against many types of malicious code, but the
cost of such a system is high due to the required hardware. Similarly,
watchdog processors(3] also require additional hardware. Such processors
are capable of detecting invalid reads/writes from/to memory, but they
require additional support to effectively combat viruses. Also, both of
these methods are dependent on the prior existence of a “clean” version
of every program that is to be executed. As mentioned, to certify such
copies as “clean” in the first place requires either formal verification or
a malicious code detection capability, which is the subject of the present
paper.

3 Ongoing Work at UC Davis
We are pursuing two families of analytical techniques that, unlike most
current virus prevention and detection methods, attemptto dissect a pro-
gram to determine whatit does and how. By examining the code, static
analysis techniques can determine certain properties for some types of
programs. Dynamic analysis techniques attempt to learn about a pro-
gram’s behavior by actually running it in a “cleanroom” environment or
by simulating its execution.

At UC Davis, three analysis tools have been developed to help in
determining whether a program has any potentially malicious codein it:
VF1, Snitch, and Dalek. VF1 uses data flow algorithms during static
analysis to determine the names ofall files that a program can access.
Snitch statically examines a program for duplication of operating system
services. Dalek is a debugger that forms the basis for a dynamic analyzer.

3.1 Static Analysis
From Table 1, one can see that static analysis [1] can be applied to a broad
class of security problems. By closely examining the binary or source code

14 3 Department of Energy Computer Security Group
14th Annual Conference Proceedings

data. As with many programming languages, this concept of “fail-
ure” may need to propagate outward (to other Memory_Addresses),
perhaps even requiring certain aspects of the static analysis to be
re-computed from scratch the next time the interpreter needs to rely
onafield computed by static analysis.

. Invoke the translator routines to disassemble the Memory.Contents
and record the resulting internal form syntax in the appropriate

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

of a program,static analysis attempts to detect the presence of malicious
sections in that program. However, in the most general case such de-
tection is known to be an undecidable problem, resulting in a need for
more selective analysis techniques aimed at limited subclasses of problem
instances. A generic virus designed to infect an arbitrary program will be
unlikely to evade detection. In contrast, malicious code intended for one
specific program can be more smoothly integrated with other sections of
that program, therebyeffectively camouflaging its presence. In such cases,
it is more cost-effective for the detection to focus on the services provided
by the operating system that might be exploited by the malicious code,
and on the strategic vulnerabilities of that operating system and underly-
ing architecture. Thus our approach avoids the prohibitive cost of formal
program verification in favor of slicing [1] and other static and dynamic
analysis methods that reduce the problem space to a more tractable size.

3.1.1 VFI

VF1is a prototype system that was implemented to determine the vi-
ability of applying static analysis to the detection of malicious code; it
uses a technique called slicing. Slicing involves isolating the portions of a
program related to a particular property in which one is interested. The
sliced program (which is greatly reduced in size compared to the original)
can then be analyzed to give information about that particular property.
VF1's target property is filename generation — in particular, whichfiles
can be opened and written to by a given program. By knowing whatfiles
& program can write to, one can determineif there is a possibility of the
program being a virus. For example, if a program that does not need
to write to files (e.g., Is, the UNIX directory listing program) possesses
code to open and write anyfile, then one might suspect that the programcontains a virus.

VFi translates a program written in the C programming language to
@ program expressed in a Lisp-like internal form thatis easier to analyze
This resultant program can then be sliced with respect to any given line
of its code. That is, one can select a line of the resultant program that
performs an interesting action (such as openingafile for writing), and have
VF1 determine which statements of the resultant program have bearingon that selected line.

3.1.2 Snitch

Snitch is a prototype that detects duplication of operating system access
routines in a program. Its strategy relies on the fact that most UNIX
programs contain at most one instance of any operating system service
(¢.g-, open, write, close). Since a simple virus cannotrely onall programs
possessing the services it needs, it usually carries each of these services
with it, inserting them into every program it infects. This will most likely
result in 3 duplication of some operating system services. When Snitch
is used to analyze an infected program, it will report this duplication

Department of Energy Computer Security Group | 44
14th Annual Conference Proceedings

behavior would be grounds for more extensive dynamic analysis. How
could dynamic analysis detect self-modifying code? Primarily for expos-
itory purposes, we first introduce a special case of self-modifying code
that builds on the two examples of the last section. Later, we describe
self-modifying code in a more general context.

Suppose thatin the second example of the previous section, the Mem-
ory.Address that was the target of a WRITE by the suspicious program

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

