


- 6; 20 Position -1 of 145°CL (precursor heavy chains) should be Phe.
- 15; 31 Pau and Paul are the same protein.

35

- 54; 204 The antibody specificities for 10K44-7A1 and 10K26-12A1 (mouse kappa 205 light chains) should by anti-p-azobenzene arsonate.
- 65; 13 SAPC178 and SAPC176 (mouse lambda light chains) should be named as S178 16 and S176.
- 65; 4 References for HOPC1, J698, H2061, S176, and H2020 (mouse lambda light 5 chains) should be Weigert, M., Cesari, I.M., Yonkovich, S.J. & Cohn, M. 6 (1970) Nature, 228, 1045-1047.
- 65; 7 References for W3159 and MOPC511 (mouse lambda light chains) should be 12 Cesari, I.M. & Weigert, M. (1973) Proc. Natl. Acad. Sci. U.S.A., 70, 2112-2116.
- 65; 2 J558, XS104, and S178 (mouse lambda light chains) were sequenced 3 completely, while HOPC1, J698, H2061, S176, H2020, W3159, and MOPC511 13 (mouse lambda light chains) were analyzed by amino acid sequence compositions.
- 66; 26 There is an additional reference to TEPC952 and MA8-13 (mouse lambda 27 light chains) i.e., Elliott, B.W., Jr., Steiner, L.A. & Eisen, H.N. (1981) Fed. Proc., 40, 1098.
- 67; The statement in the notes of mouse lambda light chains, "The order of the genes has been determined as V1-J3-C3-J1-C1-V2-J2-C2-J4-C4," should be replaced by "There are two linkage groups: J3-C3-J1-C1 and J2-C2-J4-C4."
- 111; 23 Positions 13 and 14 of CAM (human heavy chain subgroup III) should be Gln and Lys respectively.
- 168; 30 Position 171 of S43'CL (light constant chain) should be Asn.
- 168; 35 Positions 142 and 143 of MOPC315 (light constant chain) should be Ser and Gly respectively, based on the translation from nucleotide sequences (Bothwell, A.L.M., Paskind, M., Roth, M., Imanishi-Kari, T., Rajewsky, K. & Baltimore, D. (1982) Nature, 298, 380-382; Wu, G.E., Govindi. N., Hozumi, N. & Murialdo, H. (1982) Nucl. Acids Res., 10, 3831-3843).
- 185; 52 Positions 258 and 263 of MOPC173 (heavy constant chain) have been revised by the authors to Pro and Val respectively.
- 246; The position numbering for the codons of light chain variable region should read as 95, 95A, 95B, 95C, 95D, 95E, 95F, 96, and 97.

The human kappa J-segments (Hieter, P.A., Maizel, J.V., Jr. & Leder, P. (1982) J. Biol. Chem., 257, 1516-1522) are as follows:

Τ

	<u>J1</u>		<u>J2</u>	<u>J2</u>		<u>J3</u>		<u>J4</u>		<u>J5</u>	
96	TGG	TRP	TAC	TYR	TTC	PHE	CTC	LEU	ATC	ILE	
97	ACG	THR	ACT	THR	ACT	THR	ACT	THR	ACC	THR	
98	TTC	PHE	TTT	PHE	TTC	PHE	TTC	PHE	TTC	PHE	
99	GGC	GLY	GGC	GLY	GGC	GLY	GGC	GLY	GGC	GLY	
100	GAA	GLN	CAG	GLN	CCT	PRO	GGA	GLY	CAA	GLN	
101	GGG	GLY	GGG	GLY	GGG	GLY	GGG	GLY	GGG	GLY	
102	ACC	THR	ACC	THR	ACC	THR	ACC	THR	ACA	THR	
103	AAG	LYS	AAG	LYS	AAA	LYS	AAG	LYS	CGA	ARG	
104	GTG	VAL	CTG	LEU	GTG	VAL	GTG	VAL	CTG	LEU	
105	GAA	GLU	GAG	GLU	GAT	ASP	GAG	GLU	GAG	GLU	
106	ATC	ILE	ATC	ILE	ATC	ILE	ATC	ILE	ATT	ILE	
107	AAA	LYS	AAA	LYS	AAA	LYS	AAA	LYS	AAA	LYS	
108	CGT	ARG	CGT	ARG	CGT	ARG	CGT	ARG	CGT	ARG	

Tabulation and Analysis of Amino Acid and Nucleic Acid Sequences of Precursors, V-Regions, C-Regions, J-Chain, β_2 -Microglobulins, Major Histocompatibility Antigens, Thy-1, Complement, C-Reactive Protein, Thymopoietin, Post-gamma Globulin, and α_2 -Macroglobulin

1983

Elvin A. Kabat*, Tai Te Wu[†], Howard Bilofsky [‡], Margaret Reid-Miller [‡], and Harold Perry [‡]

- *Depts. of Microbiology, Human Genetics and Development, and Neurology, Cancer Center/ Institute of Cancer Research, College of Physicians and Surgeons, Columbia University, New York, NY 10032 and the National Institute of Allergy and Infectious Diseases, Bethesda, MD 20205
- [†]Depts. of Biochemistry, Molecular Biology, and Cell Biology, and Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60201 and the Cancer Center, Northwestern University Medical School, Chicago, IL 60611
- ‡Bolt Beranek and Newman Inc., Cambridge, MA 02238

The collection and maintenance of this data base is sponsored through Contract N01-RR-8-2118 by the following components of the National Institutes of Health, Bethesda, MD 20205:

Division of Research Resources
National Cancer Institute
National Institute of Allergy and Infectious Diseases
National Institute of Arthritis, Diabetes, Digestive and Kidney Diseases
National Institute of General Medical Sciences

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health (1983)

 $-1/\sqrt{}$

Our listing of sequences will be kept up to date. Investigators are invited to send additional sequence data when accepted for publication. Send two copies of the manuscript together with a letter of acceptance from a journal to:

Dr. E.A. Kabat National Institutes of Health Building 4, Room 337 9000 Rockville Pike Bethesda, Maryland 20205

If a computer tape is available, please send it to facilitate entering sequences.

When published, three reprints should be provided.

If any published sequences have been overlooked or if any errors are found, please bring them to our attention.

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

