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FIBER OPTIC SENSORS I/

Volume 798

INTRODUCTION

This conference is the second of the Optical Fiber Sensors series organized by the
ANRT and SPIE in Europe. The first was held in Cannes in November 1985.

The aim of the conference was to provide a forum for presentation and discussion
of the latest results in research and development in the optical fiber sensors field,
related technologies, and their applications. Physical and chemical parameter
sensing devices in which the fibers are used as a guiding structure or as a sensing
element, special fibers, and other passive components constitute other topics of
the conference. Particular attention was devoted to the different applications and
to distributed sensors and multisensors systems, as well as to signal processing
and detection techniques.

The conference began with an Opening Session and continued with sessions on
Distributed Sensors, Measurements of Pressure, Vibration, and Displacement,
Temperature Measurement, Signal Processing and Detection Technigues,
Chemical Sensors, Applications in Electrical Machinery, and Components and
Devices. This proceedings includes papers from the Plenary and Poster sessions.

The large number of papers distributed among the different sessions give a good
indication of the high level of interest and of activity dedicated to this particular
field of optical fiber application.

A. M. Scheggi
IROE-CNR, ltaly

A. L. Harmer
Battelle Geneva Research Centres, Switzerland
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Invited Paper

Signal Processing for Optical Fiber Sensors

A. Dandridge and A. D. Kersey™

Naval Research Laboratory, Code 6570, Washington, DC 20375-5000

Abstract

Presently there is considerable research interest in the development of all-fiber multi-sensor networks for use in arrays, and
applications where a large number of different measurands are of interest (i.e., process control). A number of optical and opto-
electronic multiplexing schemes have been developed for use with such networks in recent years. This paper will review this area
of OFS technology and discuss some recent development in the multiplexing of interferometric sensors.

Introduction

Recently there has been considerable interest in the
multiplexing of fiber optic sensors. This trend has been
driven by the realization that the generic sensing technology
base fiber optics provides may be used to construct efficient,
passive multi-sensor networks. The ability to couple fiber
sensor technology and fiber telemetry in applications where
the monitoring of a large number of different measurands is
required may be a major breakthrough in the acceptance of
fiber optic senmsors in industry. Application areas include
chemical plants, manufacturing plants, ships, offshore dril-
ling platforms, and aircraft.

In this paper the area of signal processing, multiplexing
and sensor networks will be considered. Initially, sensor
systems coupled to conventional telemetry systems will be
described, then specifically the multiplexing of intensity
based sensors, and finally the multiplexing of interferometric
sensors for higher performance arrays will be discussed in
detail.

Hybrid Conventional-Fiber Optic Schemes

During the past few years a number of fiber optic sen-
sors have become commercially available (see Figure 1).
Usually these sensors have been in the form of switches,
discrete point liquid level gauges, pressure set point, tem-
perature set point, etc. In contrast to the more expensive
analog fiber sensors, these items are moderately priced and
may be ready to incorporate into systems. These devices
have usually been designed to operate with a relatively short
fiber cable and, in general, little attention has been paid to
the multiplexing of these devices. However, to utilize this
presently available sensor base a number of companies have
considered the approach shown in Figure 2. Here, the opti-
cal outputs of the sensors are converted to an electrical sig-
nal which is then suitably formated for transmission along a
conventional fiber optic telemetry link. An advantage for
this approach is that a number of applications require a local
readout of the sensors at the signal conditioning module as
well as at the central control point. Disadvantages include
expense, reliability as well as the undesirability of having an
electro-optic interface in close proximity to the sensor.
However, the components for this approach are on the
market now.
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Figure 2. Fiber optic sensor-conventional telemetry system.

Intensity Sensors

In general multiplexing techniques for intensity based
sensors' ° may be classified as time, wavelength or fre-
quency division; typical configurations of these are shown in
Figure 3. For wavelength multiplexing, a broadband source
is split into N fibers by a 1 x N coupler, each output
traverses a band filter at the sensor to select the wavelength.
The various modulated wavelengths then leave the sensing
element and are recombined by the power splitter, thus the
power bus and the signal bus use a common fiber. Two
fiber implementations of this approach may also be used.
The example of time division multiplexing shows the modu-
lated source and the sensor network, the fiber lengths contri-
bute a time delay of 27 between sensors such that the series
of modulated pulses emerging from the signal bus carries, in
a predetermined time sequence, the information correspond-
ing to each sensor. An example of such a network is that
based on the microbend sensor, as proposed by Davis, er al.,
(see Figure 4). This approach may also be used in a reflec-
tive mode providing a single power and signal bus, as
employed in optical time domain reflectometry.* Major con-
siderations in the approaches concern optical power budget,
crosstalk, sensor bandwidth and the number of multiplexed
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Figure 4. Microbend sensor multiplexed system.

sensors. For networks employing switches obviously many
sensors may be multiplexed. There has been little work pub-
lished on practical multiplexed intensity sensor systems and,
therefore, data concerning performance features such as
crosstalk levels is sparse. The area of distributed fiber sens-
ing has however received more attention, at least at the
concept/experimental level.*> A current review of this area
has been made by Kist.®

Interferometric Sensors

Although there is much interest in relatively inexpensive
low performance sensor arrays, for certain applications there
is also interest in higher performance arrays. The generic
technology for high performance sensors appears to be the
interferometric sensor, hence the recent upsurge in interest in
multiplexing interferometric sensors. The remainder of this
paper will describe the various approaches, and review the
status of this field.

Although the response of the fiber (in terms of phase
shift) to a particular measurand may be linear, the resultant

output of the interferometer is non-linear and periodic. Con-
sequently, fading of this signal can occur, and much research
effort has been devoted to the development of demodulation
techniques which solve this problem. Many of the early
approaches employing active phase tracking homodyne tech-
niques required piezoelectric fiber stretchers in one arm of
the interferometer. Other techniques (heterodyne) required
Bragg cells in one arm of the interferometer. Methods
which allowed remote operation of single sensors were also
investigated. Although these techniques, some of which are
still used today, provided high performance laboratory proto-
types, they were not suitable for remote operation of arrays
of sensors.’ In the 1982 time frame, the use of passive tech-
niques for demodulation were investigated. = These
approaches are intrinsically more applicable to array applica-
tions and multiplexing. A number of the approaches allow
for **All Optical Interrogation,”” whereby the actual sensing
head can be remotely located from the source, detector and
electronics. Depending on the application, this distance can
vary between a few meters and tens of km.

At this point it is worthwhile pointing out the dual
requirements of a multiplexing approach for interferometric
sensor arrays; the approach must not only reduce the number
of fibers between the passive array of sensors and the elec-
trooptics module (i.e., provide some multiplexing gain) but
also allow for the demodulation of the interferometric sig-
nals. Initial approaches to multiplexing interferometric sen-
sors did not fulfill both these requirements. The three multi-
plexing approaches described for use with intensity based
sensor are also applicable here; namely, time, frequency and
wavelength. Although these approaches allow the various
signals from each sensor to the separated at the output, no
provision is made for the demodulation of the remote
sensors. It is obvious, however, that one can combine the
time multiplexing approach with a form of remote interroga-
tion, e.g., the phase generated carrier (PGC) or synthetic

heterodyne approach, employing a frequency modulated
source and slightly unbalanced interferometer (FMPGC).
Thus, time division provides the interrogation and multiplex-
ing, and FM PGC provides the demodulation. Multiplexing
of interferometric sensors must therefore be considered a two

stage process of demultiplexing (information division) and

subsequent demodulation, as shown schematically in Figure

5

The methods of remote demodulation suitable for use in
multiplexing schemes include.

1. Phase Generated Carrier using a Frequenc_y Modu-
lated source (FMPGC) and slightly unbalanced sensing inter-

ferometer.

2. Path—Matched Differential Interferometry (PMDI)
using matched unbalanced sensor and compensator (receiver)
interferometers.

3. Heterodyne detection using an unbalanced sensor
and a pulsed frequency modulated source.

In PMDI the demodulation is effected on the compensa-
tor interferometer; this allows practically any demodulation
scheme. whether passive (FMPGC) or active (PGC. P/Z

phase modulator) to be adopted.

SPIE Vol 798 Fiber Optic Sensors 11 (1987) 159
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Figure 5. Schematic representation of the two-stage (interogation
and demodulation) process involved in the multiplexing of inter-
ferometric sensors.

Table I — Interferometric Sensors

Interrogation / Demodulation Multiplexing

FM FREQUENCY
AM FREQUENCY
TIME
WAVELENGTH

Phase Generated Carrier - FM source,slightly
unbalanced interferometer : FMPGC

Path - Matched Differential Interferometry - COHERENCE
matched unbalanced sensor and compensator TIME
interferometer : PMDI AM FREQUENCY

Heterodyne Detection using an unbalanced TIME
sensor and pulsed FM source : HD

Although only time, frequency and wavelength division
have been mentioned so far, for interferometric sensors a
fourth type of multiplexing is available-coherence multiplex-
ing. This technigue is based on the fact that an interference
signal can only be generated if the mixed light is mutually
coherent. The various combinations of interrogation and
multiplexing approaches which have been experimentally
tested are shown in Table I. This is not meant as an exhaus-
tive description but just an indication of the possible combi-
nations.

Although the general concepts have been around since
approximately 1982, it is only recently that demonstrations
of multiplexing have been forthcoming. Consequently, a
number of experiments which show proof-of-principle have
only demonstrated single sensor operation (i.e.. the multi-
plexing of one sensor signal in a format that is expandable).
The following sections describe in more detail the principle
and reported experimental performance of the various multi-
plexing techniques. The general attributes that will be con-
sidered in characterizing multiplexing performance, will be
the number of sensors multiplexed. the noise floor of the
muitiplexed system in prad/~/Hz (at 1 kHz) and finally the
crosstalk between sensors.

160  SPIE Vol 798 Fiber Optic Sensors Il (1987)
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Coherence Multiplexing

The first paper published concerning the remote interro-
gation of an interferometer using coherence techniques was
by Al-Chalabi. er al.® Using two interferometers (bulk in
this instance) whose optical path differences were greater
than the coherence length of the source, these authors
showed that by matching the path imbalances, reasonable
fringe visibility of the combined interferometer network was
regained. The measurements were made with a super-
luminescent diode (SLD). hence pathshave to be balanced to
better than ~30 pm. No noise figures were quoted for this
system,

The first paper seriously addressing a coherence multi-
plexed all-fiber system was by Brooks, et al.? Their system
required matched sensing and receiving interferometers, the
latter being near the clectrooptic module, with the sensors
remotely located. A schematic of their experimental confi-
guration is shown in Figure 6. The technique requires that
the path imbalance of each sensor be significantly greater
than the coherence length of the source. The phase informa-
tion of the sensor is recovered by balancing the path differ-
ences of the sensing and receiving interferometer. A single-
mode laser diode was used as the optical source, which
required large (>20m) path imbalances to be used in the
sensor and receivers. The combined interferometer can then
be demodulated in a conventional manner using a PZT fiber
stretcher in the compensating interferometer. Even though
each interferometer has a path imbalance longer than the
coherence length of the source, the coherence of the laser is
still finite at these large path imbalances. This leads to siz-
able phase induced intensity noise in these coherence multi-
plexed systems.!” Early results where one sensor was “‘mul-
tiplexed”” led to noise levels of approximately 4000
urad/vVHz.? However, by combining coherence multiplexing
with high frequency (wavelength) modulation of the laser
diode, Kersey and Dandridge'' showed that the phase
induced intensity noise from the unbalanced paths can be
upconverted out of the signal band of interest. Interrogation
of single sensors using this technigque led to interferometer
noise of approximately 45 prad/~/Hz. An indication of the
performance of this technique is shown in Figure 7, where a
40 dB improvement over the conventional coherence multi-
plexed system was achieved. Further work with this tech-
nique'? demonstrated two multiplexed sensors. The modula-
tion technique showed improved crosstalk (~-15 dB prior to
modulation, ~-40 dB after modulation) and distortion per-
formance over the conventional operation of the sensors,

Sensors

Receivers

Figure 6. Coherence multiplexed system.
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Figure 7. Noise reduction in a coherence multiplexed system by
high frequency FM laser modulation: (a) without modulation, (b)
with modulation.

however, the noise floor deteriorated to 70 and 100
prad/vHz for the two multiplexed sensor system. This
represents the current state-of-the-art of coherence multi-
plexed systems.

Frequency Multiplexing

In fiber interferometric sensing there are two distinct
approaches that employ frequency modulation. The first
approach uses intensity modulation of the optical source,
which is then coupled with a remote demodulation approach
such as PMDI. Although components of this approach have
been tested at NRL, the noise floor would shown no
improvement over the 45 prad/~/Hz demonstrated by the sin-
gle sensor coherence multiplexed system.!?  The approach
has been used on a number of occasions to multiplex and
demultiplex two optical signals on a single sensor (both gyro
and temperature sensors). '

The second approach employing frequency modulation
relies not on an intensity modulation of a current-modulated
laser diode but on the frequency (FM) or wavelength modu-
lation of the emitted light. Typical laser diode sources have
modulation coefficients ¢ v/di in the 1-3 GHz/mA range for
frequencies between 100 Hz and 1 MHz (i.e., a 1 mA laser
current modulation would lead to ~1-3 GHz frequency
excursion). When this light is used as a source for an inter-
ferometer an optical phase shift is produced by the frequency
shift dv, which is given by

2anD
"

Agp =

dv (1

where D is the optical path difference in the interferometer,
n is the core effective index, and ¢ is the velocity of light.
This effect has been used in a number of demodulation
approaches. Two distinct approaches have been employed
for multiplexing: a) using a frequency ramped continuous
wave technique (FMCW)'" and b) using sinusoidal FM
modulation of the laser output.“’ This second approach is
based on that of the phase generated carrier aproach to
demodulation and will be referred to as FMPGC.

Initial work on the FMCW technique in 1983 by Giles,
et al."” showed the output of two interferometers in series.
However, no attempt was made to fully demultiplex and
demodulate the outputs. The raw multiplexed signal outputs
of the system were noisy and intermodulation terms between

the two interferometers could be observed. Later work by
Economou, et al.'? using the FMCW technique gave better
results, where single interferometer operation gave approxi-
mately 200 prad/~'Hz. It should be noted for single sensor
remote operation, the FMCW technique operated as a
phase-generated pseudo-heterodyne demodulation technique,
with the use of smaller path differences, results in lower
noise (see Kersey, et ai)l The most current FMCW multi-
plexing work by Sakai, er al'® demonstrated the
multiplexing of two sensors (approximately 30 m and 50 m
path imbalances) with a noise level of > 1000 prad/~/Hz.
This work used a PZT fiber phase modulator to provide the
frequency modulation of the light rather than direct current
modulation of the laser.

The second FM multiplexing approach is based on the
phase generated carrier demodulation technique which was
first demonstrated in 1982 by Dandridge, er al. 16 The diode
laser source is modulated by a high frequency sinusoid(typi-
cally 20 kHz — 1 MHz) which, inconjunction with a slightly
unbalanced interferometer (few cm), provides th_e FMPG(;
(see Eq. 1). The array constructed with this type .ot
approach,as shown in Figure 8, is of the form of a ma[r:x.
Using this technique the multiplexing and demultlpleﬁng of
four interferometric sensors has been demonstrated.”” The
demultiplexing/demodulation was achieved by t_he standard
NRL PGC circuitry originally developed for m_ngle_ sensor
systems. The actual test configuration is s:’hown in Flgu.re 9,
the frequency spectrum on the signal bus is shown in F1g{ure
10. Test results indicated an approximately 18 n rad/\‘f Hz
noise level for both single sensor and four sensor operation.
This noise level corresponds to the phase noise of the laser
(note: emission frequency stabilization of the laser has bgen
shown to yield approximately 1-2 prad performarllce for sin-
gle sensors with approximately 3-cm path imbalance).
Measurement of crosstalk of the full demodulated sygtem (4
sensors and demodulators) indicated values of approximately
—60 dB sensor to sensor crosstalk and approximately -55 dB
between the array (3 sensors) and the monitored Qemodulator
output. Measurements of the performance of th1§ approach
using electronically generated interferometer signals (n.o
phase noise) gave 2 ,urad/\/ Hz noise level for the fomf m}ll[l-
plexed sensors and gave similar values of crosstalkl‘ indicat-
ing the origin of the crosstalk was in the electronics rather
than optics. This four channel system appears to be the
state-of-the-art of frequency division multiplexing.

A third approach to frequencyj multiplexing has been
demonstrated by Bucholtz, et al. 20" This appro‘ach was
developed specifically for low frequency applicat_xons apd
implicit in its operation is the use of so called ‘noglhnear dis-
placement to strain conversion’ (NDSC) sensors’ Whereas
all the other approaches described in this paper requu-e.at
least one interferometer per sensor, this approach uses a sin-
gle interferometer which provides the accurate phase meas-
urement for a number of sensors. The multiplexing of three
low frequency sensors (to detect magnetic field, displacement
and pressure) on a single interferometer has been demon-
strated using this approach, achieving better than 10
urad/vHz noise performance and better than -40 dB
crosstalk. This configuration employed an electrical input to
the nonlinear element in each sensor, however, Kersey ¢t al.
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Figure 10. Frequency spectrum of photodiode output obtained
with the four sensor FMPGC frequency multiplexed system (Note

components at f} 5 34 and 2f; 5 3 4).
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have demonstrated an all opucal version of this approach for
a single sensor operation.' By careful design of the non-
linear element, a multimode fiber could excite a number of
these sensors.

Time Multiplexing

As indicated in Table I, time division multiplexing itself
does not provide a direct means of remote demodulation;
however, coupled with FMPGC, PMDI or pulsed heterodyn-
ing this can be achieved. Experiments at NRL combining
time division multiplexing and FMPGC have indicated per-
formance in the 20 urad range, (three sensor opcrulion).22
Again the noise was due to the uncompensated laser phase
noise. The schematic for this system is basically that in Fig-
ure 11, with a 40 kHz carrier applied to the laser and a small
path imbalance (4 cm) in each of the sensors. The delay
coils between the sensors provided ~250 ns time delay,
allowing the input to be pulsed at a maximum repetition rate
of ~1.3 MHz (max duty cycle for whole array = 1, each
sensor 1/N). Due to the finite rise and fall times of the
input Bragg cell the pulse width was set at ~200 ns. Both
optical and electronic gating of the output pulses was investi-
gated as a means of demultiplexing the outputs. The three
sensor outputs obtained directly at the photodiode, and in
demodulated form are shown in Figure 12.

A more widely reported form of time division multi-
plexing employs path-matched differential interferometry
(PMDI) interrogation. One embodiment of this approach is
an extension of the coherence multiplexing described in the
relevant section. The initial motivation for this technique was
the avoidance of the phase noise terms which produced the
4000 prad/vHz’ of the coherence approach. The method
employs optical gating of the source, such that from a single
input pulse the output from the unbalanced sensor inter-
ferometers consists of two pulses. If the time delay (owing
to the different transit times of the two paths) between the
two pulses is greater than or equal to the width of the pulse
they do not overlap and, therefore, do not interfere. When
these pulses pass through the compensation interferometer
(of OPD matched to the sensor) and impinge on the photo-
detector, four pulses, two of which fully overlap, emerge,

delay cols
000 Q00

40kHz FM

PGC
Demodulator

Spectrum

Analyzer
et

Figure 11. Configuration for a three sensor
FMPGC-time-multiplexed system.
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Sensor #1 Sensor #2 Sensor #3 (l)
modulated modulated modulated

gate delay

Sensor #1 0
Sensor #2 250 ns
Sensor #3 500 ns

(i)
Figure 12. Three sensor FMPGC-time-multiplexed system; (i)
output pulses (ii) demodulated sensor outputs (each sensor driven
27 p-p at low frequency; 8 KHz, 2.8 KHz and 4 KHz for S, S,
and S;, respectively).

firstly the pulse which traversed the two short paths, fol-
lowed by the two pulses which tranversed the long and the
short (and the short and the long). Finally, the pulse
corresponding to the two long paths arrives. Consequently,
by using appropriate optical or electronic gating at the
receiver, the signal pulse can be recovered, while rejecting
the non-signal bearing pulses. Work from the Stanford group
has demonstrated two element multiplexed operation and by
using the NRL PGC approach (Figure 13) has achieved
approximately 10 prad/vHz noise performance.”* Crosstalk
measurements of this approach have been made, and indicate
sensor to sensor crosstalk of better than -40 dB.

Spectrum
Analyzer

Figure 13. Test configuration for a two sensor
PMDI-time-multiplexed system.

Another implementation of the time multiplexing,
PMDI interrogation approach uses low reflectance Fabry-
Perots®> as the sensing element rather than the Mach-
Zehnder used in the Stanford configuration. The sensor
response function does not resemble the high reflectivity

Fabry-Perots described by Petuchowski, er al.,?® but resem-
ble the response function of a two beam interferometer—
better described as an in-line Michelson as demonstrated by
Kersey, et al.?’ Unfortunately there has been little experi-
mental work on this configuration, although the noise floors
of this approach should be similar to that obtained by the
Mach-Zehnder configuration. There have been no measure-
ments of crosstalk of this approach, however, it is obvious
that an intrinsic level will exist due to multiple reflections.

The third variant of time multiplexing employs a pulsed
heterodyne method for remote interrogation of the sen-
sor.”®?? This method has been pioneered by Plessey and is
similar to the method described above. The basic array con-
figuration is shown in Figure 14. Here a long coherence
length gas laser is used as the source, and pairs of optical
pulses, generated by applying pulses of RF to the Bragg cell,
are launched into one end of the array. The first and second
pulses of each pair have slightly different frequencies (w,)
and (w,), respectively. As the launched pulses propagate
down the array, a small proportion is reflected back from
each partially-reflecting joint, and a series of reflections is
received on a photodiode. The delay between the two
transmitted pulses is chosen to be equal to the two-way pro-
pagation time through each sensing section, so that the
reflection of the first pulse from a particular joint is received
simultaneously with the reflection of the second pulse from
the preceding joint. The two therefore mix on the pho_to-
diode and generate a heterodyne signal, the phase of which
depends on the difference in optical paths followed by the
pulses. As their paths only differ by twic:&_e thc_a .length of the
fiber that separates the two relevant reflecting joints, changes
in the length of this ‘sensing’ fiber modulate the phz_ise of the
heterodyne signal. The photodiode output CORSIStS of- a
sequence of short bursts of phase-modulated hetgrodyne sig-
nals, each corresponding to a particular fiber sect_ion (sensor)
in the array. If the whole cycle is repeated continuously the
photodiode output consists of a set of phase—mgdulated car-
riers time-division-multiplexed together. The mgnal_from a
particular sensor can then be recovered by demultiplexing

and phase-demodulating photodiode output.

Plessey has been working on a numb_er of .Components
to enhance the practicality of this scheme, including 10w—los_s
partially reflecting joints (transmission losses of approxi-
mately 0.5 dB) and the development of ﬁb;r components to
make an all-fiber approach. They have fabricated a series of

Laser

Pulse
Generator

VL

3 Heterodyne output
Oprical p
Recever : - 0y

. Sensors
.~ Coils

Reflective =

Splices \

Fiber Prgtail

Figure 14. Test configuration for a pulsed heterodyne-
time-division multiplexed system.
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seven interferometers: however, the number of demodulated
channels, noise floors of the sensors and crosstalk measure-
ments, have not been published.

Wavelength Multiplexing

In the area of wavelength multiplexing very little practi-
cal work has been demonstrated, although this approach may
be used in conjunction with some of the previously men-
tioned approaches. The reason for the lack of attention in
this area is due to the uncertainty of the exact emission
wavelength of diode lasers, poor side mode suppression and
the consequences of the above to sensor to sensor crosstalk.
However, with the advent of DFB lasers, wavelength multi-
plexing may become more attractive in the future.

Shown in Table II is the current status of the various
multiplexing and interrogation approaches.

Table II — Interferometric Sensor Multiplexing

Interrogation Multiplexing Sensors Nowse Crosstalk

Demodulation (rad v Hz) dBy
PMDI Coherence 1 4000
PMDI  FM Coherence ' mod 1 45
PMDI FM Coherence  mod 2 T00 100 -0
FMCW Frequency 1 200
FMCW Frequency 2 1000 '
FMPGC Frequency 4 18(2) 60 -35
NDSC Frequency 3 10} 230
PMIDI lme 1 40°50
PMDIE PGC Time 2 20010y a0
FAPGC Time 3 o .35
Puise Heterods ne Lime

Summary

A number of multiplexing approaches for a variety of
optical fiber sensors have been described. The current status
of the multiplexing of interferometric sensors has been
described in detail.
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Abstract

Simultaneous optical fibre distributed strain and temperature _mcusu.rcmems
have been obtained. by measuring the spontaneous Brillouin intensity and
frequency shift, using the technique of microwave heterodyne det.cclmn.l
The enhanced stability from using a single coherent source combined with
optical preamplification results in a highly accurate sensor. Using this
sensor, distributed temperature sensing at 57 km and simultaneous

distributed strain and temperature sensing at 30 km were

achieved. the

longest reported sensing lengths to date for these measurements. As a
simultaneous strain and temperature sensor, a strain resolution of 100 yee

and temperature resolution of 4 “C were achieved.

Keywords: temperature, strain, coherent distributed fibre sensor, spontancous

Brillouin scattering, structural monitoring

1. Introduction

Distributed fibre sensing is currently attracting considerable
research interest due to its unrivalled capability to provide a
measured property of interest, such as strain or temperature, as
acontinuous function of linear position along the sensing fibre.
The ability to measure strain and temperature independently
over a long range with a high spatial resolution has many
applications, including those in the power and oil industries
and also in structural monitoring.

Several methods have been proposed and demonstrated
for distributed sensing measurements. One popular method
is the time-domain technjgue known as optical time-domain
reflectometry (OTDR), first demonstrated in 1976 by Barnoski
and Jensen [1], which utilizes the backscattered Rayleigh
signal to determine optical loss along a length of fibre. In an

sensing. using a frequency-domain approach. was perforim‘d
by Ghatoori-Shiraz and Okoshi [2]. The l'rcquency-donmiﬂ
unu[y:ﬂis is based on the measurement of a complex baseband
transfer function. which then provides the amplitude of both
pump and Stokes wave along a fibre leneth using a networ
analyser.  With (he frequency-domain uf)pmach.h distributed
temperature and strain measurements have been performe!
wulhgu spatial resolution of 3 m overa 1 km sensing range (3
Com;n)é:ii:;ry h:;ti[uiﬁ” R;l:t]uin ll?uckxcatlcr have pro\id
distributed lemper nlcu;urcI:;[iUn.wn.b B mrl{u'lg'l:l
approach of using conventiong] ]Ln“ Sl o t_he pr.ddql 1
the: SESINE. Blen oy Hm:\--c\&-a-hl Ica-based optical fibre

er. these sensors are unabl¢

to achieve measyr

Isureme .

. ) asurement of distributed strq; < o resull
anothei category of d strain.,  As a res

ature

sensors.

_;

have received much
lemperature and sy
since both its freque
of these quantities.

OTDR system, a pulse of light is transmitted down the fibre and
the light which is backscattered within the numerical aperture
of the fibre is detected and measured. The time between
sending the pulse of light and detecting the backscattered signal
gives a measure of the distance along the fibre, whilst the
intensity of the backscattered light provides information about
the measurand. An alternative, novel method for distributed

obtaining the backsc,
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In the case of stimulated

: : saatleringe,
nds of the sensing fibre,

OF Provision f
« required.  In either the Brillouin-oain
qmulated scattering mechanism,

deCess o hoth
an-end-reflection,
or Brillouin-loss
asured quantity s
which is found u-\inu

_ _ the me
asually just the Brillouin frequeney shirg

he interaction between counterprop:eatine : )
Propagatng pulsed and Cw

the Brillouin (v

) = < o N trequency
it (431 The frequency shift distribution i« determined
manimizing the increase (or decrease) of e ik :

cdiation, separated by approximatels

nal at cach

) this maximum oceurs
when the frequency ditference between the o

desired point along the sensing fibre:

wo lasers s equal

w0 the Brillouin frequencey shift at thar point. In this way. it

" p(mihl%‘ 10 mc;gurc cither strain or wemperature. provided
that the fibre is cither at a constant temperature or strain,
respectively. Simultaneous measurements using the Brillouin-
losstechnigue have been attempted. utilizing the Brillouin-loss
peak power as well as the frequency shift. However, this was
anly for a sensing length of S0 m of l“"i”'i/&lliﬂﬂ-m;linluimng
nbre and required a portion of this length to be kept at a known
emperature and strain. as a reference (6] Errors of 178 ¢
and 39 C were measured. tfor a spatial resolution of 3.5 .
over this 50 m length.

With spontancous scattering. access o only one end
of the fibre 18 necessary.  Furthermore, measurement ot
the spontaneous backscattered Brillouin power ¢normalized
to the temperature- and strain-insensitive Ravleigh power)
along with the Brillouin frequency shitte allow s simultancous
measurement of temperature and straim over tens ot kilometres.
We focus on this tvpe of sensor in this paper. Techniques tor
spontaneous Brillouin backscatter measurement fall broadly
mtotwo categories: directdetection and coherent cheterodyne)
detection.  In direct detection. the Brilloumn signal must be
optically separated from the much larger. clastic. Rayleigh
component prior to detection. This has been done. forexample.
using Fabry—Perot [7.8] or fibre Mach Zehnder [9.10]
mterferometers. but these optical filters must necessarily be
highly stable due to the small frequency ditference between
Brillouin and Ravleigh components (-1 | GHz at 1.3 jm).
Simultaneous strain and temperature measurements have been
performed using direct detection. for asensing length of 15 km
and aspatial resolution of 10 m. with an RNS temperature error
of 4 Cand an RMS strain error of 290 je [10]. _

Coherent detection employs a strong. narrow linew idth,
optical local oscillator (OLO) which allows very vood
clectrical filtering of the Brillouin component and ~o
much greater [nlc}ancc of Rayleigh contamination than Ll‘ll'l.‘\-_'l
detection. Coherent detection also results ina greater dynamic
heat frequency.
has only a square root dependence on | Also.
since the RMS signal photocurrent is much higher than that
tor direct detection. due 1o optical mixing with ll_w OL.O. a
detector with a higher noise-equivalent power (NEP) may be
tsed. for instance a broader-bandwidth detector. [0 date.
is Brillouin backscatter hits

range. since the detector photocurrent. at the
anal power

coherent detection of spontancot >
heen achieved by arranging for the frequency shift between
the OLO and sensing I;u]scs to be ;1[?I7r(>ximulc[.\F"”“’l o
the Brillouin shift., bringine the Brillouin/OLO heat frequenct
“ithin the bandwidth (L)i' aI conventional heterodyne recenver.
This frequency shift has previously been attained using 4
Brillouin laser [11], an acousto-optic modulator (AOM) ring
“ireunt [12] and an electro-optic modulator (EOM) [13.14].

.\ll\'!'i\\ ave coherent distributed Brillouin sensing

A “technique  for obtaining  distributed
Brillouin backse

MICrow iy IS

spontancous
attered spectra. which emplovs an 11 GHz
| = heterodyne svstem in conjunction with optical
pPreamplification of the sienal. b

15 as recently been introduced

his sensor combines the advantages of’ coherent

detection and spontancous Brillouin me

: asurement. allowine
stmult 2

Ulancous single-ended measurement of temperature and
Mramoveralong range, but it also exhibits further advantages
due 1o the microwave detection frequency. I
sinee the expected range -
o

In particular,
] of Brillouin frequency shift (up
=200 MHz) Ties within a very small percentage of the
total handwidth of the detector (~20 GHz). the detector
gam s almost constant for the entire stenal.  Also. the
Il GHZ detection frequency allows independent observation
ol both Stokes and anti-Stokes spectra using the same optical
arrangement: the signals are separated in frequency due to the
shift of the AON and also tiltered optically by a narrow-band
fibre Bragge erating. Furthermore. since high-frequency optical
shifting elements are not required. as was the case in previous
heterodyne systems. the frequency stability of the sensor s
exceptonally cood.

A brief

and the technique for simultancous strain and temperature

overview of spontancous Brillouin scattering
measurements are provided i section 20 The construction
and operation of the sensor is deseribed in section 3 and the
results obtamed. icluding the first simultancous temperature
and strann measurements using this technigue, are presented
section - Section 3 contams i summary of our iindings.

2. Spontancous Brillouin scattering for temperature
and strain measurements

The mitial observaton of Brillouin scattering - bulk sihica
oceurred in 1930 [16]. It has been shown [6,17-19] that the
Brillouin backscattered intensity and frequency shift exhibit
both strain and temperature dependence. If the sensig fibre is
subjected o hoth temperature and strain effects 1t 1s necessary
o measure both the Brillouin intensity and frequency shift
alone the sensing tibre to obtain accurate information regarding
temperature and/or straim.

Spontancous Brillouin scattering results when a small
fraction of the incident light is nclastically scattered by
thermally excited acoustic waves (aeoustic phononsy in the
optical fibre. A periodic modulation of the dic]uclric constant
nd hence refractive index of the medim s cenerated due
to density variations produced by the acoustic wave.  The
\ulllurcul' licht undergoes @ Doppler frequency  shift and
has maximum scattering in the backwards direction. This
frequency shiftis gnen by

i,

T (1)
'y =
iy

!

where v, is the acoustic velocity n the fibre. s the refractive
index and 2, is the pump wavelength, The exponential decay

nature of the acoustic waves results in a Lorentzian spectral

profile.
The
approximately three orders (.vl'
Raman scattering, corresponding | ‘
oy involved in Brillouin scattermg (7 11 GHz

frequency  shift of the backscattered  signal 1s

maenitude smaller than for
o the much smaller acoustic

phonon frequenc
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for a pump wavelength in the 1.5 pm wavelength region),
which makes separation of the Brillouin from the Rayleigh
signal more difficult.

The change in Brillouin frequency shift and power due
to strain and temperature may be represented by the matrix

equation
Avg | | Cype Cupr :l [AE:I
[APB:, B I:CPHE Cpyr AT

where C,,. and C,,r are the strain and temperature
coefficients for frequency shift and Cp,. and Cp,; are
the coefficients for power variations. The two variables
of strain and temperature can be resolved by taking the
inverse of the above equation. If the inverse matrix is
non-singular, i.e. if C,,,Cp,; # C,,7Cp,e, then a solution
exists. For the values of the coefficients obtained in this
paper, C,,;Cp,7/Cy,7Cp,e = —19.3 and so simultaneous
distributed temperature and strain measurement is possible.
The inverse equation is given by

[o7]= e
AT |CopeCryr — CryeCuyrl

% C,u"',r‘ -C,.ﬁ'[ AU[}
_C.P”F Cl'nF A Pp
and the corresponding errors in the derived strain and
temperature measurements are given by [20]

(2)

(3)

e = 1C2arl18vi] +Coy 13 Py

2y

ICI'HFC-PMT = CPI}F CP;)TI (
Cpyelldvg| + Co,ell8P

18T | = I—"’_‘”_BI_'M (5)

ICIIBFCPHT - CPHFCVHTI -

3. Experimental arrangement

The experimental configuration for the microwave heterodyne
spontaneous Brillouin-based fibre sensor js shown in figure 1.

3.1. The source

Excellent frequency stability was ensured by deriving both the
sensing pulses and the local oscillator from the same seed laser-
a 100 W continuous wave, fibre-pigtailed laser, tunable from
~1520to 1560 nm. The source itself was designed to be of dual
nature. In one setting, used for the Brillouin measurements,
the source was narrowband, with the linewidth of the seed
laser (1 MHz); this was achieved with the fibre optic switch
in position 1, the seed laser being amplified by the erbium-
doped fibre amplifier, EDFAL. In the second setting, with
the switch in position 2, the source was broadband (~6 nm)
and partially polarized, due to ASE feedback into EDFA |
from a broadband reflecting mirror via a pigtailed polarizer.
The partial polarization of the ASE was necessary to aid its
subsequent passage through the polarization-sensitive electro-
optic modulator (EOM). The source output was ~12 mW in
either setting. Radiation from the source was split by a 3 dB
fibre coupler into pulse and local oscillator arms.

836

.2. Pulse formation N
: - formed by a 110 MHz, downsh1f1mg_

efore amplification by EDFA_Z to give
pulses up to 4.5 W peak power at 150 ns pulse width. 4,

- : M), of 5 dB insertion loss, wy
f}iﬁ?ﬁ&p&cozs ?l?clc}l;l(j]rsgjgl or)der to attenuate the throughpy
ofAS]é betwcéen pulses. The pulses Were t.hen pa%,;eg};hmugha
PZT-based polarization scrambler (insertion ‘l_oss' | A) to help
reduce polarization noise obser}/ed on th.: s‘lgn.d_ [ ‘SECond
polarization scrambler, also with 3 dB insertion loss, \_’Vax
placed in the local oscillator arm to further reduce the noise,
Using this arrangement, pulses of up to 3.50 mW could b
launched down the 30 km of sensing fibre using a 3 dB coupler
In these experiments, pulses of between 150 ar‘ld 169 mW ang
150 and 200 ns were chosen, since spectral distortion occyys
for much higher powers. A 95/5 fibre coupler was used g
a tap for 5% of the backscattered signal, enabling separae
direct detection of the Rayleigh trace, when operating in the
broadband mode.

Pulses were initially
fibre-pigtailed AOM b

3.3. Brillouin preamplification

In narrowband mode, due to the low sensitivity of the detection
system, the backscattered traces were preamplified using
EDFA3 (small signal gain of 26.4 dB). Both the Rayleigh
backscatter and the ASE from EDFA3 were then filtered
out by reflection from an in-fibre Bragg grating (FBG)
(reflectivity = 99.4%, % = 1533.1] nm, AX = 0.12 mm).
via a circulator. Either the anti-Stokes or Stokes signals
could be observed by tuning the narrowband source o
1533.20 nm or 1533.02 nm respectively. Contact with the
heavy metal optical bench and the use of air conditioning
both increased the stability of the grating and so no thermal
drift problems were encountered. Since a typical FBG centril
wavelength temperature sensitivity is 10-15 pm K~ and
the grating had a flat transmission peak of width 50 pm.
ambient temperature changes of a degree or two were tolerable.
Use of a thermally compensated grating package would have
reduced this problem gti]| further. The attenuation of the
5;3: i(elsggloilod‘?fo"fnf rendered negligible its behaviour 2s ¢
which the Raylajah enr . 1S 18 the principal method b
s S tﬁancdn anffec‘t the Brillouin signal and IS ml.lfh
Rayleigh powor 1. o .ali Lquwa_len[ ;?mou.nt of contaminating

rect detection, since it is the ratio of OLO

ower t : P . . ;
Il;rill © Rayleigh Power which is Important, not the ratio of
ouin power tg Rayleigh power

3.4, Detection Svstem

The amplif St
oscillatol?‘ gffvaﬁi;ued backscatter Was mixed with the locdl
dB coupler ang then detected using @
bear er (respons:\fj[y of 35 v w-!), The
RF spectrum analysétP :et'l] (;nwere Observeq using a 26.5 GHz
a time-domain traea :. “Cro span mode is mode:
frequency. The 1:::-(3 o obtained for . sel-ecltb ctlhllgf?l bel
of 5 MH SAMUmM avajigp)e RE racat . ;
Z Was selected, a]] o resolution bandwidth
be achieved. Th OWing dSpatial reg :
o ©¢- The spectra e builg e . CS0lution of 20m0
ackscatter traces for A o “tup by lakine ~domail
the expected r. OCTIES Of begy 1 .
pected range (f B"i“ouin %ﬁit‘t freQuencies, coverin
Since (he required
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Detector for
Rayleigh

[y

Scnsing fibre

Figure 1. Experimental arrangement of the MCTow
ps = polarization scrambler. AON = AOUSIO-apLic 1y
FBG = fibre Bragg grating.

Brillouin power was necessarily proportiong] 1o R pow er
the recorded traces were proportional 1o R}: wolties
of the data was necessary. Any dc¢ mnterpulse

but
Csquaring
level was then
wbtracted and processing of the spectra wis undertaken.

15 Spectrum processing

After each set of spectra was obtained. the frequency shift
and power of the Brillouin backscatter w s determined tor
each point of interest along the fibre. This wis done by
mting each individual spectrum 1o a Lorentzian curve, since
the spontaneous Brillouin line is known 1o be of this shape.
The Levenberg-Marquardt nonlinear least squares algorithm
was used for this purpose [21]. The total power, being
proportional to the area under the curve. was then found. For
the Lorentzian spectral profile. total power s proportional to
peak power multiplied by linewidth. Atcertain points along the
wensing fibre, where the frequency shifl changes significantly
over a distance smaller than the spatial resolution. a single
Lorentzian curve is insufticient to determine the backscatter
“haracteristics. To overcome these visible transitional hiccups.
4 double or even triple Lorentzian was fitted.

4. Distributed sensing results

Firstly, examples of the Lorentzian curve fitting are presented.
0 show the validity of the process.  After this. distributed
esults for 4 57 km sensing length are discussed. revealing
the range limit for this systern as 4 simultaneous temperature
nd strain SETSOF. A' calibration of the dependence of
hoth frequency shift and backscattered power on temperature
4 undertaken at this stage and the cocefticients compared
o Previously measured k\‘;lluc\. Finally. silT]LllI;lmalls
T]casuremem of temperature and strain are discussed for a
0km sensing fibre.

4. — _
I Lorentzjan curve firting

A sample ey of distributed anti-Stokes Brillouin spectrat s
O figure 2(a) for a 3.5 km section. located 25 km down
the ensing fibre. A 500 m heated portion (at 65 C) s clearly

¢ heterody ne “Pentancous Brillouin-hased tempey
wdulator, FON =

of Illinois at Urbana- Chanpai

optical detector svstem

Micro - o
o o —ﬁ—i—\ﬁ\i‘_‘,\i u\lErcnt distributed Brillouin sensine
e e e _— e
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L 12mW DUAL SO RCE !

. 1

| Broadband
: :

! mirror I

X |

. |

; I

X I

; |

. |

|I Fibre optic  !MHz linewidth

[ switch fibre-pigtailed |

: tunable laser !

____________ & g |
P 26.5GH, ! Data i
--------- ; RF i facquisitioni
fd G spectrum | and ¢
20GH analyser | i dVeraging i

Sretature and strain sensor,
clectro-opne modulator, EDE Y — crbium-doped fibre amplifier,

Visible due 1o its frequeney <hif from the unheated regions.
Figure 2cb) shows a single SPectrum from this 3.5 km section
and ats corresponding fited  Lorentian curve.

the goodness of it the value ¥

To estimulte
N owas caleulated. which is
detined h_\

' S I \*\—%1\ Filae, Yy
T = \ - (6)
G a-
for a data setof N pomnts, (v, vowath standard errors in

vota, o being modelled to g function £y, 7~ N should
e roughly equal o umty tor o4 cood fit with the expected
noise characteristios. with & Closer it being indicated by
lower value,  To obtiin an estimate in this case. the noise
on cach point was assumed to be identical and dominated by
clectrical noise, whichwas calculated as the standard deviation
of the nter-pulse. flate spectrum. The measured value of
X <IN for tigure bhyis .82 & ;1i1ni;uing the choice of spectral
profile.  Examples of double and triple curve fitting results
at 31 km down the sensing fibre are shown in figure 3.
77 N values for these two curves, measured in an identical
manner as betore. are 1.24and 0.86. again showing agreement
with the model. Of course. the inclusion of any additional
noise sources would decrease »- /N for any given measured
spectrum, since the \lilllll.ill'd crror used in equation t(-n would
he lareer. Automation of the processing may Iwr;u'hu-\'ud h__\_
iir\[]\&lilling to cach spectrum a4 single Lorentzian curve: if
P A is high, however.a double peak may then be tried. or a
triple peak. and soon, until cood fit s obtained.

5 57 By wersioe e
4.2 Measurements overd 22 knt sensing fihre

T » potential performance of the sensor,
In order to gauge the | I ¢

listributed anti-Stokes Brillouin spectra were obtained over a
s < . ‘ : }
57 km sensing fibre. the longest yet presented using single-
e} m sc & & e ‘ g SUEiE
of spontancous Brillouin backscatter.  The

ended detection auer. e
and backscattered power measurements are

frequency shift

n e
shown 1 figurc amed by ta .
{ 25 different buckscatter traces. cach separated by

J eTA0e ¢
o at 10.84 GHz: cach trace was averaged 4096
Luency measurements highlight the boundaries
bre sections, with the sharp troughs being

for this fibre. These were obtained by taking

4 series o
5 MHz. startin
times. The frequen

hetween different fi
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80 A 24km
:é 70 - — Fitted Lorentzian
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=
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Frequency shift / MHz
(b)

Figure 2. (1) Example distributed anti-Stokes Brillouin spectrum at
~25 km distance along the sensing fibre. A 500 m heated section at
65 C is clearly visible. (b) Sample fitted Lorentzian curve (solid
line) and the original data points (circles) for a single point at 24 km
along the fibre.

attributed to slack regions between wound drums. The sensing
fibre comprises five separate fibre lengths, 17 500 m, 17 500 m,
17500 m, 500 m and 4000 m, with the 500 m portion being
placed in an oven and unwound from the drum to ensure
the absence of strain and the rest of the fibre kept at the
room temperature of 22 “C. The frequency measurements show
clearly, at ~53 km along the fibre, the shift due to the 500 m
heated section, held at 40 °C. Each unheated fibre section has a
different frequency shift, which may arise from differences in
winding tension or intrinsic fibre properties (refractive index

or acoustic velocity). The power measurements show the

expected exponential decrease with fibre length, agreeing with

the predicted attenuation coefficient (~0.4 dB km~! double

pass at 1.53 pum).

The RMS noise in both the frequency shift and power
traces were found over 2 km sections (10 data points) located
at several positions along the fibre. The power values were
found after first normalizing the observed trace to a fitted
exponential function, one for each separate section of fibre.
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Figure 4. Distributed anti-Stokes Brillouin measurements for an

entire 57 km fibre length. Both frequency shift and power traces art
shown.

This information is plotted in figure 5(a) for the frequency
shift and figure 5(b) for the power. The noise levels increase 0
1.3 MHz and 5.8% at 50 km, corresponding to ~1.2 °C/28 i¢
and ~16"C/6500 pue respectively.

_ The power trace is clearly
too noisy to allow

) auseful simultaneous sensor at this distance
Figure 5(b) indicates that a |.5¢ RMS error would occ!
at 30 km, which brings the temperature error due to U
cror remains st an approximarery . C: The RMS poe
for the first 20 km of (h :dFi y-'mns{ﬂm Tl
il ? Lor © Sensing fibre, over which the
- POwer has decreased by ~8 4B This indicat®
that polarization noise, which may be ex ).‘ " ed
cor'nstam percentage value, has noy been 11”?%@(1 .to hav ’
s0 1mproved scrambling is necessary, for ¢ Y elimmatedlﬂ
For an unstrained fibre, the f ne 'p,l“.]?un_] resolutllﬂn'
¥ shift gives a diret!

Teque
measurement of temperature his ] i
Sapplication in mind:

and, with
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plotied

cdlibrated temperature measurements were obtamed for the
neated section at 53 km. The RMS noise was calculated 1o
ne less than 2 MHz over the heated portion tor cach oven
emperature: the traces are shown in higure 6iar. The eyvpected
wnear relationship between frequency <hitt and temperature

s clearly visible in ticure 6chy. with the coetticient bemny

LT = 0.06 MHz K agreemg in magnitude wath other
wources [22, 23],

i -

<3 Power measwrements over a 27 km sensing fibr

Power measurements are more comphicated 1o obtan than
the ~sensig length
7 S00 m.,

Tequency shift measurements.
Hmerely reduced to 27.4 km (tour sections of |
¥ ~ 3

W00 m. 500 moand 500 m.

edted). The same technique as betore was apphied cthis time

Inttially.
with the third scctuon bemng

r35 frequencies separated by 3 M/ starting at 1085 Gz
“Whaveraged 12 288 times) and « single Lorentzian was hiied
?"“’al‘h point along the fibre. Discontinuities m temperatire.
Owever, resulted in sharp spikes o the recorded power.
Ather side of the heated section. This is clearly visihlem
':gure Tta). which shows how the power measurements. at
.5 km, depend on temperature. Tenorng the anomabies o
“Mher end of the heated section. another linear relationship iy

ealed ang is shown in ticure 7thy. The coelficient relating
s caleulated
Yy

:hc v . °
(pEKLmagc change in power to temperature '
;} J.3631”_(H,} K ! quain aerceing with othersources [7.
o L : h AU e
Cartificy) peaks may be removed. however. by fitling
Ja. as In figure 8.

double . o
uble Lorentziun curve at the transitional porr ,
cos than 3.4 K

he RM< ‘ ; .
) .RMS CITOr In temperature was found to be |
“Quivalent ¢, 1.2% power error) il the heated section.

Microwe ¢
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Simultancous results were achieved with o shghtdy longer
fthre ot leneth 318 kme o length of 4000 m was mserted
between the first two secttons ot the previous sensing length
and a TS m stramable section, tollowed by w200 m length

ol unstramed fibre, was added at the end. In this manner,

the heated cunstramed) section (the same 300 m- length as
hetorer and the strained cunheated) section were arranged 1o
Lie between 304 kmoand 3160 km down the iibres The 115 m

fihre section was stramed by bemg passed round 11 panrs ot

pulley s, cach pair separated horizontally by 5 m. and loaded

by placing weights inside a plastic containet suspended at the
end ot the rie cheure 91 This contiguration mevitably resultsin

considerable difterential stram across the w hole T15 m length.

Sinee i spatial resolution of 20 m was used. the S moseparation
of the pulles s resulted m the appearance. n places. ot tniple

peahed spectri. requiring the titiing ot a triple Lorentzian

speatrum Although possible. no evidence of quadruple peaks
was found. Alsoosime
the manamum applice

wis considerably farger
75 C = %3MHz). this necessitated an merease

o the Brilloum trequencey shiftinduced by
I stram (a peiak ot 4000 210 Mz
than tor the maxmmum temperature

change used (7
in the frequency span ol
400 Nz sinee
O %0 traces were taken at 5 MHy
1085 GHz with 12288 averages per
) figure 1004

the collected traces. In fact. the span
was inereased to the degree of differential
orain was not known:
separation. starting at
The differential .
huted frequency shift for an applicd

U strain can casily be seenn |
e 1SUr extension of
plot ol distri
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Figure 7. Variation of normalized anti-Stokes power measurements

with temperature, for a 500 m heated section at 26.5 km along the

sensing fibre. (a) Time-domain traces—RMS error is ~1.2% .

Spikes are due to poor curve fitting of double peaks. (b) Calibration

of power change. yielding a coefficient of 0.36% €.
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Figure 8. Elimination of anomalous peaks at temperature
discontinuities, by fitting of a double Lorentzian curve, is
demonstrated using the data of figure T(a).

48.8 cm, corresponding to a strain of 4240 fte. In this case,
the peak-to-peak variation is approximately 50% of the average
strain. The frequency shift is determined by finding its average
value over the strained region; it is this value that is
to arise from a constant strain of 4240 pe.

Before simultaneous measurements were attempted,
however, both the frequency shift (figure 11) and power
(figure 12) were calibrated against strain, in order to determine
the two remaining coefficients required for the inverse matrix.

assumed

840
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T
fibre
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Figure 9. lllustration of the rig used to strain fibre for distributed

measurements.
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Figure 10. A frequency shift trace for 115 m of strained fibre

located 31.5 km along the sensing fibre. It is clear, since the fibre is

all at room temperature, that considerable differential strain is
present over the 115 m length.
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Figure 13 Measured (i) frequency Jhift and (h) normalized
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30 e located at 3() km along the sensing fibre.
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s i The 1S noise
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over the 500 m heated region.
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Figure 14, Dern ed distributed G stran and (hy tempery
ature

measurements, based upon the measured datam tieare |3 .;]

RALS Crror im sirain wis calculated B

as 100 s and the RAIS
temperature as -+ . )

CITor 1n

temperature and strain measurements are shown 1y fivure 14
[t cun be seen that there s little cross-talk between ‘*Jilin SR
temperature. It i« also clear that the noise onboth deriy e “._d‘”fl
i« dominated by thaton the measured power traee. lmicc‘l;k'\
cun be calculated using equations (Hand €3) that, for L_”_n: w4l
1 C and 100 e the noise on the power trace iy ['L"-Pwlh'\\:[ﬂ-
for 99.7¢ of the temperature error and 945 of the sirain urln )
Jhowing that the power measurements are by far e limiti ”
{actor 0N Sensor resolution. 1t can also be seen from - ]l]rl
that. with the heated section at 100 C.outside the !':nnk- kt_
temperatures used in the power and frequency shify c;ﬂilu#{‘ X

measurements, the heated temperature 1s measure l':mh‘j L:;;”
by the sensor. This indicates that the lincarity of the Brillo Y
frequency shift and power with [CmMperature is maingined o
(o this higher temperature. ceup

5. Conclusions

We have presented & spontancous Brilloumn-based distributed
fibre temperature and strain sensor that usey miL‘I'n\\-itt-
coherent  detection of the backscattered signgly o (1hL’
11 GHz Brillouin shift frequency. This technigue hcnuj'ut
from the advantages inherent o both coherent detection
and spontancous Brillouin measurement as well as 1 the
microwave nature of our detection system. Coherent operation
gives very good intrinsic electrical separation of the Brillouin
from the Rayleigh. which is hard to achieve using optical
filtering methods. Furthermore. the heterodyne 1:~‘Chlliquc
allows the usc of a broader-band detector, with 4 higher
NEP. since the signal photocurrent is increased by mi;ing

P ' HALLIBURTON, Exh. 1013, p. 0155 B4l
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Abstract

Simultaneous optical fibre distributed strain and temperature measurements
have been obtained, by measuring the spontaneous Brillouin intensity and
frequency shift, using the technique of microwave heterodyne detection.
The enhanced stability from using a single coherent source combined with
optical preamplification results in a highly accurate sensor. Using this
sensor, distributed temperature sensing at 57 km and simultaneous
distributed strain and temperature sensing at 30 km were achieved, the
longest reported sensing lengths to date for these measurements. As a
simultaneous strain and temperature sensor, a strain resolution of 100 pe

and temperature resolution of 4 °C were achieved.

Keywords: temperature, strain, coherent distributed fibre sensor, spontaneous

Brillouin scattering, structural monitoring

1. Introduction

Distributed fibre sensing is currently attracting considerable
research interest due to its unrivalled capability to provide a
measured property of interest, such as strain or temperature, as
a continuous function of linear position along the sensing fibre.
The ability to measure strain and temperature independently
over a long range with a high spatial resolution has many
applications, including those in the power and oil industries
and also in structural monitoring.

Several methods have been proposed and demonstrated
for distributed sensing measurements. One popular method
is the time-domain technique known as optical time-domain
reflectometry (OTDR), first demonstrated in 1976 by Barnoski
and Jensen [1], which utilizes the backscattered Rayleigh
signal to determine optical loss along a length of fibre. In an
OTDR system, a pulse of light is transmitted down the fibre and
the light which is backscattered within the numerical aperture
of the fibre is detected and measured. The time between
sending the pulse of light and detecting the backscattered signal
gives a measure of the distance along the fibre, whilst the
intensity of the backscattered light provides information about
the measurand. An alternative, novel method for distributed

0957-0233/01/070834+09$30.00 © 2001 IOP Publishing Ltd Printed in the UK

sensing, using a frequency-domain approach, was performed
by Ghafoori-Shiraz and Okoshi [2]. The frequency-domain
analysis is based on the measurement of a complex baseband
transfer function, which then provides the amplitude of both
pump and Stokes wave along a fibre length using a network
analyser. With the frequency-domain approach, distributed
temperature and strain measurements have been performed
with a spatial resolution of 3 m over a 1 km sensing range [3].

Systems based on Raman backscatter have proved
commercially successful as instruments for performing
distributed temperature measurements, due to the practical
approach of using conventional silica-based optical fibre as
the sensing element. However, these sensors are unable
to achieve measurement of distributed strain. As a result,
another category of sensors, utilizing Brillouin scattering,
have received much attention. Simultaneous measurement of
temperature and strain is possible using Brillouin scattering
since both its frequency shift and power are dependent on both
of these quantities. Several techniques have been developed for
obtaining the backscattered Brillouin signal, in order to enable
the measurement of distributed strain and/or temperature. Both
stimulated and spontaneous Brillouin scattering regimes for
distributed sensing have previously been reported.

HALLIBURTON, Exh. 1013, p. 0164 834
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Microwave coherent distributed Brillouin sensing

In the case of stimulated scattering, access to both
ends of the sensing fibre, or provision of an end-reflection,
is required. In either the Brillouin-gain or Brillouin-loss
stimulated scattering mechanism, the measured quantity is
usually just the Brillouin frequency shift, which is found using
the interaction between counterpropagating pulsed and CW
radiation, separated by approximately the Brillouin frequency
shift [4,5]. The frequency shift distribution is determined by
maximizing the increase (or decrease) of the signal at each
desired point along the sensing fibre; this maximum occurs
when the frequency difference between the two lasers is equal
to the Brillouin frequency shift at that point. In this way, it
is possible to measure either strain or temperature, provided
that the fibre is either at a constant temperature or strain,
respectively. Simultaneous measurements using the Brillouin-
loss technique have been attempted, utilizing the Brillouin-loss
peak power as well as the frequency shift. However, this was
only for a sensing length of 50 m of polarization-maintaining
fibre and required a portion of this length to be kept at a known
temperature and strain, as a reference [6]. Errors of 178 ue
and 3.9 °C were measured, for a spatial resolution of 3.5 m,
over this 50 m length.

With spontaneous scattering, access to only one end
of the fibre is necessary. Furthermore, measurement of
the spontaneous backscattered Brillouin power (normalized
to the temperature- and strain-insensitive Rayleigh power)
along with the Brillouin frequency shift, allows simultaneous
measurement of temperature and strain over tens of kilometres.
We focus on this type of sensor in this paper. Techniques for
spontaneous Brillouin backscatter measurement fall broadly
into two categories: direct detection and coherent (heterodyne)
detection. In direct detection, the Brillouin signal must be
optically separated from the much larger, elastic, Rayleigh
component prior to detection. This has been done, for example,
using Fabry—Perot [7,8] or fibre Mach—Zehnder [9,10]
interferometers, but these optical filters must necessarily be
highly stable due to the small frequency difference between
Brillouin and Rayleigh components (~11 GHz at 1.5 um).
Simultaneous strain and temperature measurements have been
performed using direct detection, for a sensing length of 15 km
and a spatial resolution of 10 m, with an RMS temperature error
of 4°C and an RMS strain error of 290 e [10].

Coherent detection employs a strong, narrow linewidth,
optical local oscillator (OLO) which allows very good
electrical filtering of the Brillouin component and so a
much greater tolerance of Rayleigh contamination than direct
detection. Coherent detection also results in a greater dynamic
range, since the detector photocurrent, at the beat frequency,
has only a square root dependence on signal power. Also,
since the RMS signal photocurrent is much higher than that
for direct detection, due to optical mixing with the OLO, a
detector with a higher noise-equivalent power (NEP) may be
used, for instance a broader-bandwidth detector. To date,
coherent detection of spontaneous Brillouin backscatter has
been achieved by arranging for the frequency shift between
the OLO and sensing pulses to be approximately equal to
the Brillouin shift, bringing the Brillouin/OLO beat frequency
within the bandwidth of a conventional heterodyne receiver.
This frequency shift has previously been attained using a
Brillouin laser [11], an acousto-optic modulator (AOM) ring
circuit [12] and an electro-optic modulator (EOM) [13, 14].

A technique for obtaining distributed spontaneous
Brillouin backscattered spectra, which employs an 11 GHz
microwave heterodyne system in conjunction with optical
preamplification of the signal, has recently been introduced
[15]. This sensor combines the advantages of coherent
detection and spontaneous Brillouin measurement, allowing
simultaneous single-ended measurement of temperature and
strain over a long range, but it also exhibits further advantages
due to the microwave detection frequency. In particular,
since the expected range of Brillouin frequency shift (up
to ~500 MHz) lies within a very small percentage of the
total bandwidth of the detector (~20 GHz), the detector
gain is almost constant for the entire signal. Also, the
11 GHz detection frequency allows independent observation
of both Stokes and anti-Stokes spectra using the same optical
arrangement: the signals are separated in frequency due to the
shift of the AOM and also filtered optically by a narrow-band
fibre Bragg grating. Furthermore, since high-frequency optical
shifting elements are not required, as was the case in previous
heterodyne systems, the frequency stability of the sensor is
exceptionally good.

A brief overview of spontaneous Brillouin scattering
and the technique for simultaneous strain and temperature
measurements are provided in section 2. The construction
and operation of the sensor is described in section 3 and the
results obtained, including the first simultaneous temperature
and strain measurements using this technique, are presented in
section 4. Section 5 contains a summary of our findings.

2. Spontaneous Brillouin scattering for temperature
and strain measurements

The initial observation of Brillouin scattering in bulk silica
occurred in 1950 [16]. It has been shown [6, 17—19] that the
Brillouin backscattered intensity and frequency shift exhibit
both strain and temperature dependence. If the sensing fibre is
subjected to both temperature and strain effects it is necessary
to measure both the Brillouin intensity and frequency shift
along the sensing fibre to obtain accurate information regarding
temperature and/or strain.

Spontaneous Brillouin scattering results when a small
fraction of the incident light is inelastically scattered by
thermally excited acoustic waves (acoustic phonons) in the
optical fibre. A periodic modulation of the dielectric constant
and hence refractive index of the medium is generated due
to density variations produced by the acoustic wave. The
scattered light undergoes a Doppler frequency shift and
has maximum scattering in the backwards direction. This
frequency shift is given by

2nv,
Ap

Vg = ey
where v, is the acoustic velocity in the fibre, n is the refractive
index and A, is the pump wavelength. The exponential decay
nature of the acoustic waves results in a Lorentzian spectral
profile.

The frequency shift of the backscattered signal is
approximately three orders of magnitude smaller than for
Raman scattering, corresponding to the much smaller acoustic
phonon frequencies involved in Brillouin scattering (~11 GHz
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for a pump wavelength in the 1.5 um wavelength region),
which makes separation of the Brillouin from the Rayleigh
signal more difficult.

The change in Brillouin frequency shift and power due
to strain and temperature may be represented by the matrix

equation

[AUB] _ [c Co,r } [ As] )

APg Cp,e Cp,r || AT

where C,,. and C,,r are the strain and temperature
coefficients for frequency shift and Cp,, and Cp,r are
the coefficients for power variations. The two variables
of strain and temperature can be resolved by taking the
inverse of the above equation. If the inverse matrix is
non-singular, i.e. if C,,.Cp,7 # C,,7Cp,e, then a solution
exists. For the values of the coefficients obtained in this
paper, C,,:Cp,7/C,;7Cp,e = —19.3 and so simultaneous
distributed temperature and strain measurement is possible.
The inverse equation is given by

|37 ]= e
AT |C\JBSCPBT - CPBszBT|
Cpyr —Cur || Avp
X 3
[ ~Chye Cupe || AP ©)
and the corresponding errors in the derived strain and
temperature measurements are given by [20]

|Cpyrll8vpl +|Coyr|18 Pl
[CopeCryr — CppeCoprl

18| = “
|Cpyellévp] +1Cyelld Pl

8T | = )
|CopeCryr — CpueCoprl

(&)

3. Experimental arrangement

The experimental configuration for the microwave heterodyne
spontaneous Brillouin-based fibre sensor is shown in figure 1.

3.1. The source

Excellent frequency stability was ensured by deriving both the
sensing pulses and the local oscillator from the same seed laser:
a 100 ©W continuous wave, fibre-pigtailed laser, tunable from
~1520to 1560 nm. The source itself was designed to be of dual
nature. In one setting, used for the Brillouin measurements,
the source was narrowband, with the linewidth of the seed
laser (1 MHz); this was achieved with the fibre optic switch
in position 1, the seed laser being amplified by the erbium-
doped fibre amplifier, EDFA1. In the second setting, with
the switch in position 2, the source was broadband (~6 nm)
and partially polarized, due to ASE feedback into EDFA1
from a broadband reflecting mirror via a pigtailed polarizer.
The partial polarization of the ASE was necessary to aid its
subsequent passage through the polarization-sensitive electro-
optic modulator (EOM). The source output was ~12 mW in
either setting. Radiation from the source was split by a 3 dB
fibre coupler into pulse and local oscillator arms.

836

3.2. Pulse formation

Pulses were initially formed by a 110 MHz, downshifting,
fibre-pigtailed AOM before amplification by EDFA2 to give
pulses up to 4.5 W peak power at 150 ns pulse width. An
electro-optic modulator (EOM), of 5 dB insertion loss, was
then used to gate the pulses in order to attenuate the throughput
of ASE between pulses. The pulses were then passed through a
PZT-based polarization scrambler (insertion loss 3 dB) to help
reduce polarization noise observed on the signal. A second
polarization scrambler, also with 3 dB insertion loss, was
placed in the local oscillator arm to further reduce the noise.
Using this arrangement, pulses of up to 350 mW could be
launched down the 30 km of sensing fibre using a 3 dB coupler.
In these experiments, pulses of between 150 and 160 mW and
150 and 200 ns were chosen, since spectral distortion occurs
for much higher powers. A 95/5 fibre coupler was used as
a tap for 5% of the backscattered signal, enabling separate
direct detection of the Rayleigh trace, when operating in the
broadband mode.

3.3. Brillouin preamplification

In narrowband mode, due to the low sensitivity of the detection
system, the backscattered traces were preamplified using
EDFA3 (small signal gain of 26.4 dB). Both the Rayleigh
backscatter and the ASE from EDFA3 were then filtered
out by reflection from an in-fibre Bragg grating (FBG)
(reflectivity = 99.4%, A = 1533.11 nm, Ax = 0.12 nm),
via a circulator. Either the anti-Stokes or Stokes signals
could be observed by tuning the narrowband source to
1533.20 nm or 1533.02 nm respectively. Contact with the
heavy metal optical bench and the use of air conditioning
both increased the stability of the grating and so no thermal
drift problems were encountered. Since a typical FBG central
wavelength temperature sensitivity is 10-15 pm K~' and
the grating had a flat transmission peak of width 50 pm,
ambient temperature changes of a degree or two were tolerable.
Use of a thermally compensated grating package would have
reduced this problem still further. The attenuation of the
Rayleigh component rendered negligible its behaviour as a
weak secondary oscillator. This is the principal method by
which the Rayleigh can affect the Brillouin signal and is much
less significant than an equivalent amount of contaminating
Rayleigh power in direct detection, since it is the ratio of OLO
power to Rayleigh power which is important, not the ratio of
Brillouin power to Rayleigh power.

3.4. Detection system

The amplified, filtered backscatter was mixed with the local
oscillator via a 3 dB coupler and then detected using a
20 GHz optical detector (responsivity of 35 V. W~!). The
Brillouin/OLO beat spectra were observed using a 26.5 GHz
RF spectrum analyser, set in zero span mode. In this mode,
a time-domain trace is obtained for the selected RF beat
frequency. The maximum available RF resolution bandwidth,
of 5 MHz, was selected, allowing a spatial resolution of 20 m to
be achieved. The spectra were built up by taking time-domain
backscatter traces for a series of beat frequencies, covering
the expected range of Brillouin shifts. Since the required
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Figure 1. Experimental arrangement of the microwave heterodyne spontaneous Brillouin-based temperature and strain sensor.
PS = polarization scrambler, AOM = acousto-optic modulator, EOM = electro-optic modulator, EDFA = erbium-doped fibre amplifier,

FBG = fibre Bragg grating.

Brillouin power was necessarily proportional to RF power, but
the recorded traces were proportional to RF voltage, squaring
of the data was necessary. Any dc interpulse level was then
subtracted and processing of the spectra was undertaken.

3.5. Spectrum processing

After each set of spectra was obtained, the frequency shift
and power of the Brillouin backscatter was determined for
each point of interest along the fibre. This was done by
fitting each individual spectrum to a Lorentzian curve, since
the spontaneous Brillouin line is known to be of this shape.
The Levenberg—Marquardt nonlinear least squares algorithm
was used for this purpose [21]. The total power, being
proportional to the area under the curve, was then found. For
the Lorentzian spectral profile, total power is proportional to
peak power multiplied by linewidth. Atcertain points along the
sensing fibre, where the frequency shift changes significantly
over a distance smaller than the spatial resolution, a single
Lorentzian curve is insufficient to determine the backscatter
characteristics. To overcome these visible transitional hiccups,
a double or even triple Lorentzian was fitted.

4. Distributed sensing results

Firstly, examples of the Lorentzian curve fitting are presented,
to show the validity of the process. After this, distributed
results for a 57 km sensing length are discussed, revealing
the range limit for this system as a simultaneous temperature
and strain sensor. A calibration of the dependence of
both frequency shift and backscattered power on temperature
was undertaken at this stage and the coefficients compared
to previously measured values.  Finally, simultaneous
measurement of temperature and strain are discussed for a
30 km sensing fibre.

4.1. Lorentzian curve fitting

A sample set of distributed anti-Stokes Brillouin spectra is
shown in figure 2(a) for a 3.5 km section, located 25 km down
the sensing fibre. A 500 m heated portion (at 65 °C) is clearly

visible due to its frequency shift from the unheated regions.
Figure 2(b) shows a single spectrum from this 3.5 km section
and its corresponding fitted Lorentzian curve. To estimate
the goodness of fit, the value x> /N was calculated, which is
defined by

x* 1

N L Y
A IS () ©

i=1 9

for a data set of N points, (x;_y, ¥i..n), With standard errors in
y of o;._y, being modelled to a function f(x). x2/N should
be roughly equal to unity for a good fit with the expected
noise characteristics, with a closer fit being indicated by a
lower value. To obtain an estimate in this case, the noise
on each point was assumed to be identical and dominated by
electrical noise, which was calculated as the standard deviation
of the inter-pulse, flat, spectrum. The measured value of
x2/N for figure 2(b) is 0.82, validating the choice of spectral
profile. Examples of double and triple curve fitting results
at ~31 km down the sensing fibre are shown in figure 3.
x2/N values for these two curves, measured in an identical
manner as before, are 1.24 and 0.86, again showing agreement
with the model. Of course, the inclusion of any additional
noise sources would decrease x2/N, for any given measured
spectrum, since the standard error used in equation (6) would
be larger. Automation of the processing may be achieved by
firstly fitting to each spectrum a single Lorentzian curve; if
x2/N is high, however, a double peak may then be tried, or a
triple peak, and so on, until a good fit is obtained.

4.2. Measurements over a 57 km sensing fibre

In order to gauge the potential performance of the sensor,
distributed anti-Stokes Brillouin spectra were obtained over a
57 km sensing fibre, the longest yet presented using single-
ended detection of spontaneous Brillouin backscatter. The
frequency shift and backscattered power measurements are
shown in figure 4 for this fibre. These were obtained by taking
a series of 25 different backscatter traces, each separated by
5 MHz, starting at 10.84 GHz; each trace was averaged 4096
times. The frequency measurements highlight the boundaries
between different fibre sections, with the sharp troughs being
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Figure 2. (a) Example distributed anti-Stokes Brillouin spectrum at 4 | 10875
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along the fibre.

attributed to slack regions between wound drums. The sensing
fibre comprises five separate fibre lengths, 17 500 m, 17 500 m,
17500 m, 500 m and 4000 m, with the 500 m portion being
placed in an oven and unwound from the drum to ensure
the absence of strain and the rest of the fibre kept at the
room temperature of 22 °C. The frequency measurements show
clearly, at ~53 km along the fibre, the shift due to the 500 m
heated section, held at 40 °C. Each unheated fibre section has a
different frequency shift, which may arise from differences in
winding tension or intrinsic fibre properties (refractive index
or acoustic velocity). The power measurements show the
expected exponential decrease with fibre length, agreeing with
the predicted attenuation coefficient (~0.4 dB km~! double
pass at 1.53 um).

The RMS noise in both the frequency shift and power
traces were found over 2 km sections (10 data points) located
at several positions along the fibre. The power values were
found after first normalizing the observed trace to a fitted
exponential function, one for each separate section of fibre.

838

Distance along fibre / km

Figure 4. Distributed anti-Stokes Brillouin measurements for an
entire 57 km fibre length. Both frequency shift and power traces are
shown.

This information is plotted in figure 5(a) for the frequency
shift and figure 5(b) for the power. The noise levels increase to
1.3 MHz and 5.8% at 50 km, corresponding to ~1.2°C/28 ue
and ~16°C/6500 pe respectively. The power trace is clearly
too noisy to allow a useful simultaneous sensor at this distance.
Figure 5(b) indicates that a 1.5% RMS error would occur
at 30 km, which brings the temperature error due to the
power measurement down to less than 5 °C. The RMS power
error remains at an approximately constant value of 0.7-0.8%
for the first 20 km of the sensing fibre, over which the
backscattered power has decreased by ~8 dB. This indicates
that polarization noise, which may be expected to have a
constant percentage value, has not been fully eliminated and
so improved scrambling is necessary, for optimum resolution.

For an unstrained fibre, the frequency shift gives a direct
measurement of temperature and, with this application in mind,
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Figure 5. RMS error, taken over a 2 km window, in both
(a) frequency shift and (b) power for the 57 km sensing fibre, plotted
at several points along the fibre length.
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calibrated temperature measurements were obtained for the
heated section at 53 km. The RMS noise was calculated to
be less than 2 MHz over the heated portion for each oven
temperature; the traces are shown in figure 6(a). The expected
linear relationship between frequency shift and temperature
is clearly visible in figure 6(b), with the coefficient being
1.07 £ 0.06 MHz K~!, agreeing in magnitude with other
sources [22,23].

4.3. Power measurements over a 27 km sensing fibre

Power measurements are more complicated to obtain than
frequency shift measurements. Initially, the sensing length
was merely reduced to 27.4 km (four sections of 17 500 m,
8900 m, 500 m and 500 m, with the third section being
heated). The same technique as before was applied (this time
for 25 frequencies separated by 5 MHz, starting at 10.85 GHz,
each averaged 12 288 times) and a single Lorentzian was fitted
for each point along the fibre. Discontinuities in temperature,
however, resulted in sharp spikes in the recorded power,
either side of the heated section. This is clearly visible in
figure 7(a), which shows how the power measurements, at
26.5 km, depend on temperature. Ignoring the anomalies at
either end of the heated section, another linear relationship is
revealed and is shown in figure 7(b). The coefficient relating
the percentage change in power to temperature was calculated
as0.3620.04% K~!, again agreeing with other sources [7, 22].
The artificial peaks may be removed, however, by fitting a
double Lorentzian curve at the transitional points, as in figure 8.
The RMS error in temperature was found to be less than 3.4 K
(equivalent to 1.2% power error) at the heated section.

Frequency shift / MHz

53.0 53.5

Distance along fibre / km

10935 ~

10925 -

10915 ~

10905 -

10895 -

Frequency shift / MHz

1 0885 T T T T T T T T 1
20 25 30 35 40 45 50 55 60 65
(b)

Temperature / °C
Figure 6. Variation of Brillouin frequency shift with temperature,
for a 500 m heated region at 53 km along the sensing fibre.
(a) Time-domain traces—RMS error is ~2 MHz. (b) Calibration of
shift, yielding a coefficient of 1.07 & 0.06 MHz°C~!.

4.4. Simultaneous strain and temperature measurement over
a 30 km sensing fibre

Simultaneous results were achieved with a slightly longer
fibre of length 31.8 km; a length of 4000 m was inserted
between the first two sections of the previous sensing length
and a 115 m strainable section, followed by a 200 m length
of unstrained fibre, was added at the end. In this manner,
the heated (unstrained) section (the same 500 m length as
before) and the strained (unheated) section were arranged to
lie between 30.4 km and 31.6 km down the fibre. The 115 m
fibre section was strained by being passed round 11 pairs of
pulleys, each pair separated horizontally by ~5 m, and loaded
by placing weights inside a plastic container suspended at the
end of therig (figure 9). This configuration inevitably results in
considerable differential strain across the whole 115 m length.
Since a spatial resolution of 20 m was used, the 5 m separation
of the pulleys resulted in the appearance, in places, of triple-
peaked spectra, requiring the fitting of a triple Lorentzian
spectrum. Although possible, no evidence of quadruple peaks
was found. Also, since the Brillouin frequency shift induced by
the maximum applied strain (a peak of 4600 e = 210 MHz)
was considerably larger than for the maximum temperature
change used (77.5 °C = 83 MHz), this necessitated an increase
in the frequency span of the collected traces. In fact, the span
was increased to 400 MHz, since the degree of differential
strain was not known; so 80 traces were taken at 5 MHz
separation, starting at 10.85 GHz with 12288 averages per
trace. The differential strain can easily be seen in figure 10, a
plot of distributed frequency shift for an applied extension of
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Figure 7. Variation of normalized anti-Stokes power measurements
with temperature, for a 500 m heated section at 26.5 km along the
sensing fibre. (a) Time-domain traces—RMS error is ~1.2%.
Spikes are due to poor curve fitting of double peaks. (b) Calibration
of power change, yielding a coefficient of 0.36% °C~!.
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Figure 8. Elimination of anomalous peaks at temperature
discontinuities, by fitting of a double Lorentzian curve, is
demonstrated using the data of figure 7(a).

48.8 cm, corresponding to a strain of 4240 pe. In this case,
the peak-to-peak variation is approximately 50% of the average
strain. The frequency shift is determined by finding its average
value over the strained region; it is this value that is assumed
to arise from a constant strain of 4240 ue.

Before simultaneous measurements were attempted,
however, both the frequency shift (figure 11) and power
(figure 12) were calibrated against strain, in order to determine
the two remaining coefficients required for the inverse matrix.

840

3
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of pulleys

Single pulley
Bucket for weights [ ]

Figure 9. Illustration of the rig used to strain fibre for distributed
measurements.
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Figure 10. A frequency shift trace for 115 m of strained fibre
located 31.5 km along the sensing fibre. It is clear, since the fibre is
all at room temperature, that considerable differential strain is
present over the 115 m length.
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Figure 11. Dependence of the Brillouin frequency shift on applied
strain. The coefficient of the dependence was measured to be
0.046 MHz pe™".

The frequency response was linear with a coefficient of
0.046 MHz ps~!; however the power measurement was less
conclusive due to the large noise present on the signal. Linear
regression of the power dependence gave a coefficient of
—845%x107*% pe~!. Bothof these values agree with previous
results [17, 19, 22].

For the simultaneous results, all power measurements
were referenced to the Rayleigh trace, obtained in broadband
mode, and all frequency shift measurements referenced to that
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Figure 13. Measured (a) frequency shift and (b) normalized
anti-Stokes power for a fibre section containing a 500 m heated
region at 100 °C and a 115 m strained region at an average strain of
730 pe, located at ~30 km along the sensing fibre.

observed with zero strain. The frequency shift and percentage
power change are shown in figure 13 for a heated section at
100°C and a strained section at 730 ue. The RMS noise
on the frequency shift trace, over the 500 m heated region,
is 0.3 MHz and the RMS noise on the power measurement,
over this same region, is 1.56%. From equations (4) and (5),
the corresponding errors in temperature and strain are given
by 4.1°C and 102 ue, respectively. As a corroboratory
measurement, the frequency shift and power RMS noise values
for the fibre section between the heated and strained regions
are 0.29 MHz and 1.49%, resulting in temperature and strain
errors of 3.9°C and 97.5 pe. It can be concluded that the
RMS noise on the temperature and strain traces at 31 km along
the fibre is ~4°C and ~100 pe. The corresponding derived
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Figure 14. Derived distributed (a) strain and (b) temperature
measurements, based upon the measured data in figure 13. The
RMS error in strain was calculated as 100 pe and the RMS error in
temperature as 4 °C.

temperature and strain measurements are shown in figure 14.
It can be seen that there is little cross-talk between strain and
temperature. Itis also clear that the noise on both derived traces
is dominated by that on the measured power trace. Indeed, it
can be calculated using equations (4) and (5) that, for errors of
4°C and 100 pe, the noise on the power trace is responsible
for 99.7% of the temperature error and 94% of the strain error,
showing that the power measurements are by far the limiting
factor on sensor resolution. It can also be seen from figure 14
that, with the heated section at 100 °C, outside the range of
temperatures used in the power and frequency shift calibration
measurements, the heated temperature is measured faithfully
by the sensor. This indicates that the linearity of the Brillouin
frequency shift and power with temperature is maintained up
to this higher temperature.

5. Conclusions

We have presented a spontaneous Brillouin-based distributed
fibre temperature and strain sensor that uses microwave
coherent detection of the backscattered signals at the
11 GHz Brillouin shift frequency. This technique benefits
from the advantages inherent to both coherent detection
and spontaneous Brillouin measurement as well as to the
microwave nature of our detection system. Coherent operation
gives very good intrinsic electrical separation of the Brillouin
from the Rayleigh, which is hard to achieve using optical
filtering methods. Furthermore, the heterodyne technique
allows the use of a broader-band detector, with a higher
NEP, since the signal photocurrent is increased by mixing
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with the strong optical local oscillator. Also the dynamic
range is increased due to the square root dependence of
detector photocurrent on signal power. In the spontaneous
scattering regime, access to only one end of the sensing fibre
is required, promoting sensor versatility. High-frequency
detection ensures that the total expected range of Brillouin
frequency shift lies within a very small percentage of the total
detector bandwidth, giving an almost constant gain for the
entire signal. Also, the 20 GHz bandwidth of the detector
allows both Stokes and anti-Stokes spectra to be observed
easily and independently. Furthermore, since high-frequency
optical shifting elements are not required, as was the case in
previous heterodyne systems, the frequency stability of the
sensor is excellent.

We have demonstrated frequency shift measurements
and power measurements which have temperature and strain
dependences closely agreeing with previously published
results. We have obtained long-range 57 km frequency shift
measurements with an RMS error of less than 3 MHz for the
entire length and less than 0.6 MHz for the first 40 km. A target
5°C error in power measurement limited the range used for
simultaneous temperature and strain measurements to 30 km.
These simultaneous results yielded a 4 °C RMS temperature
error and a 100 e RMS strain error at the end of this fibre for
a spatial resolution of 20 m.
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MULTIPLEXED FIBER OPTIC SENSORS

Alan D. Kersey

Optical Techniques Branch, Code 5670
Naval Research Laboratory
Washington, D.C. 20375

ABSTRACT

A wide range of multiplexing techniques for fiber optic sensors have been
proposed and demonstrated over the past 10 years. In many cases, systems
utilizing muliiplexed sensors have under gone field trails which have successfully
proven the technology. This paper reviews this technology, and discusses recent
research efforts in the area.

1. INTRODUCTION

The ability to multiplex sensors is an important issue in many of the proposed
application areas for fiber optic sensors. Whether the application involves high
sensitivity military sensor systems, industrial process control sensors, chemical
sensing, or environmental and structural sensing, the use of multiplexing
techniques can be beneficial in regard of a number of system aspects including
reduced component costs, lower fiber count in telemetry cables, ease of E/O
interfacing, and overall system immunity to EMI. The development of efficient
multiplexing techniques can thus be expected to lead to general improvements in
the competitiveness of fiber sensors compared with conventional technologies in a
broad range of application areas.

This paper reviews the development of multiplexing techniques for fiber sensors,
including simple serial arrays of sensors based on optical time domain
reflectometry (OTDR) processing concepts, to highly sophisticated
interferometric fiber sensors. Recent developments in the area are also discussed.

2. SERIAL POINT SENSOR (QUASI-DISTRIBUTED) NETWORKS

The simplest form of multiplexed sensor system involves the serial concatenation
of point or ‘quasi-point’ fiber sensors in a linear array. This type of system can be
interrogated using OTDR signal processing {1}, and is an extension of fully
distributed fiber sensing techniques (Dakin [2], these proceedings) to the
interrogation of a finite number of discrete sensors.  Figure 1 shows such an
implementation of a quasi-DFOS (QDFOS) system. Various sensing methods and
addressing techniques have been used to implement quasi-distributed sensor
systems. For example, modified fiber sections with sensitized optical properties
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Figure 1. Quasi-distributed serial array using OTDR processing

can be spliced into a long fiber at certain intervals to provide localized variations
in the loss, backscatter intensity, polarization, fluorescence intensity, etc. This is
different from intrinsic-distributed fiber sensing in that the measurand can be
determined at a finite number of locations only, and not continuously along the
fiber path. Alternatively, discrete non-fiber sensor elements which vary in
transmittance or reflectance with the measurand field can be incorporated into the
fiber line. Such an arrangement for distributed temperature sensing was
demonstrated at a early stage in the development of QDFOS technology [3]. This
system used ruby glass sensor elements, the attenuation of which increase with
temperature for light of wavelength ~ 600 to 620 nm ( absorption edge shift rate
~1.2 A/°C). OTDR type interrogation of the system was used to determine the
loss at each sensor element, and a second wavelength removed from the
absorption edge was used to provide a temperature independent reference
output. Other materials, such as semiconductors are also suitable for this
approach, as are fibers doped with certain elements, e.g. Hollium, Neodymium.
The major limitations of this system, and similar approaches [4,5] is the fact that
the attenuation is accumulative; the light levels at the most distal sensor thus
depends on the measurand at each sensor along the fiber. This places demanding
requirements on the dynamic range of the detection system and limits the number
of sensors which could be used in a practical system. This is also true, but to 2
lesser extent, for systems based on reflective sensing elements [6].

3. FIBER BRAGG-GRATING BASED SENSORS

Intra-core fiber Bragg grating (FBG) sensors have attracted considerable interest
over the past few years because of their intrinsic nature and wavelength-encoded
operation. The gratings are holographically written into Ge-doped fiber by side-
exposure to UV interference patterns [7-9]. Other means for producing such
gratings also exist, and other fiber dopants may be used to improve efficiency, or
HALLIBURTON, Exh. 1013, p. 0185
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Figure 2. Fiber Bragg grating sensor system

alter the required writing wavelength. These sensors will prove to be useful in a
variety of applications, in particular, in the area of advanced composite materials,
or ‘smart structures’ where fibers can be embedded into the materials to allow real
time evaluation of load, strain, temperature, vibration etc. Figure 2 shows the
generic sensing concept involved for a single sensor element. The fiber Bragg
grating (FBG) sensor is illuminated using a broadband source (BBS), such as an
edge-emitting LED, superluminescent diode, or superfluorescent fiber source. The
narrow wavelength component reflected by the sensor is determined by the Bragg
wavelength;

Ag= 20A, )

where n is the effective index of the core, and A is the period in the index
modulation of the core induced by the UV exposure. Measurand-induced
perturbation of the grating sensor changes the wavelength returned, which can be
detected and related to the measurand field (e.g. strain) at the sensor position. The
wavelength-encoded nature of the output has a number of distinct advantages over
other direct intensity based sensing schemes, most importantly, the self-
referencing nature of the output; the sensed information is encoded directly into
wavelength, which is an absolute parameter and does not depend on the total light
levels, losses in the connecting fibers and couplers or source power. The reported
dependence of the (normalized) shift in Bragg wavelength with fiber strain, €, is
(1/Ag)(dhp/de) = 0.74 x 10'%/ustrain, where 1 ustrain is a strain of 1 part in 108,
and a temperature dependence (1/Ag)(dAg/dT) of = 8.9 x 10°5/°C.

These FBG elements are ideal for multiplexed networks, and a variety of
configurations have been proposed [9,10]. Figure 3 shows a generalized concept
for multiplexing based on wavelength division addressing. Here, the gratings are
asigned a particular wavelength range, or ‘domain’ for operation which do not
overlap. The Bragg wavelengths of the individual grating can thus be determined
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by illuminating the system with a broadband source and using an optical spectrum
analyzer (spectrometer) to analyze the return signal. This simplest approach is
practical for only a limited number of devices, simply due to the fact that the
bandwidth of sources are limited, and can thus only accommodate a specific
number of grating operational wavelength bands.

A means to overcome this limitation is to adopt some form of time division
multiplexing (TDM) in conjunction with the inherent wavelength division
multiplexing (WDM) capability of the grating sensors. Figure 4 shows a
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Figure 4. FBG array based on time and wavelength division addressing.
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proposed concept using both TDM and WDM for addressing a large number of
elements [10,11]. This type of signal processing may allow a large number of
grating sensors to be interrogated in a serial array which would be of interest in
applications such as embedded sensor systems for smart structures.

4. INTENSITY-SENSOR BASED NETWORKS
4.1 General

The term ‘intensity based sensor’ is used to describe a generic class of sensors
which depend on monitoring changes some characteristic related to the detected
intensity at the sensor output. Examples include sensors based on attenuation,
reflectance, fluorescence signal, and modal modulation. A number of different
types of branching networks have been investigated for use with intensity-based
sensors, particularly those based on simple concepts such as attenuation. Sensors
can be addressed using schemes based on optical analogs of conventional
electronic time- and frequency- division multiplexing (TDM and FDM respec-
tively) techniques, or by using schemes devised for use in optical communications
systems such as wavelength-division multiplexing (WDM).

4.2 Time-division multiplexing

The first passive discrete-sensor network was proposed by Nelson et. al. [12] and
used TDM to address a number of reflective intensity-based sensors. These
sensors were spaced at different distances from the source and detector, such that
a single pulse, of appropriate duration at the input to the network produced a
series of distinct pulses at the output. These pulses represent time samples of the
sensor outputs interleaved in time sequence, as shown in Figure 5. The required
duration of the input pulse is determined by the effective optical delay of the fiber
connecting the sensor elements, and repetitive pulsing of the system allows
each sensor to be addressed by simple time-selective gating of the detector

intensity-based
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=
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Figure 5. Time division multiplexed intensity sensor array
HALLIBURTON, Exh. 1013, p. 0188



Ettachrrent 6a: Copy of Docunent 6 fromthe Massachusetts
Institute of Technol ogy Libraries

Network configurations for both transmissive and reflective intensity based
sensors were described. Spillman and Lord have reported a self-referencing
TDM intensity sensor network based on recirculating fiber loops [13]. This work
has also been extended to use frequency division addressing [14].

4.3 Frequency-division multiplexing

A number of novel concepts for frequency-domain-based multiplexing schemes
for intensity sensors have also been reported. Mlodzianowski et.al. [15] described
a scheme in which the individual sensor information is carried not by separate
beat or carrier frequencies, but by the phase and amplitude of an RF sub-carrier
amplitude modulation of source light returned from a number of sensor elements.
Interrogation of the system at a number of discrete modulation frequencies allows
the status of each sensor to be interpreted. A system comprising three sensors has
been demonstrated using this technique, and showed particularly good crosstalk
performance ( ~ -40 dB). In another approach, the radar-based FMCW technique
has also been used to allow frequency division addressing with a network of
intensity based sensors [16]. In this case a chirped RF intensity modulated source
is used to interrogate a number of simple reflective intensity sensors, and the
detector output is electrically mixed with a 'reference’ chirp signal. This produces
a beat frequency associated with each sensor element, allowing frequency
demultiplexing of the outputs.

4.4 Wavelength-division multiplexing

Demonstrations of wavelength division multiplexing in fiber communications
systems have been reported for many years [17-19]. The use of this technique in
sensor application has not, however, received much practical attention. Figure 6
shows the type of arrangement possible using WDM. The scheme, which is

reflective intensity-based
sensors

/7N O\

WDM
couplers

wavelength
demultiplexer

detectors

outputs

Figure 6. Wavelength division multiplexed sensor array
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essentially applicable to both intensity and interferometric sensor types, is
theoretically the most efficient technique possible, as all the light from a particular
source could in principle be directed to a particular sensor element and then onto a
corresponding photodetector with minimal excess loss. The reason for the lack of
practical demonstrations of this technique is due to the limited availability of
wavelength-selective couplers (splitters and recombiners) which are required to
implement the technique. This combined with the complexity of the WDM
fiber components (e.g. N x N star and 1 xN tree couplers) needed to build systems
based on a number of sensors and the limited wavelength-selectivity of such
devices are the major drawbacks of the approach. Consequently, apart from the
obvious use of WDM techniques in FBG systems (Section 3), wavelength
division multiplexing of large numbers of discrete intensity-based (or interfero-
metric) sensors utilizing common servicing fibers may not prove to be viable, in
terms of both cost and performance.

4.5 Subcarrier based multiplexing

Another technique for the multiplexing of fiber sensors which is based on
subcarrier signal processing has been demonstrated. In this case, each sensor in
the network is a transversal filter which consists of two fibers of unequal length
connected in parallel. In response to an RF intensity-modulated source the
recombined light at the output of such a filter exhibits a series of minima when the
differential delay in the two fiber paths corresponds to a half-integral number of
cycles of the modulation frequency. The normalized frequency response of a
single sensor is given by [20,21]

gi® = lcos (rAT; )|, )

where f is the frequency of the modulation and At; is the differential delay of
sensor i. For a linear array of sensors the frequency response of the combination
is given by G (f) = Il g; (f); ie., the product of the frequency response
functions of the individual elements in the array [22]. A system of three fiber-
optic differential-delay filters configured as temperature sensors based on this
approach has been experimentally demonstrated. The experimental arrangement
used is shown in Figure 7. Light from a SLD source, which was modulated by a
voltage-controlled oscillator (VCO), was input to a series of three differential
delay sensor elements. In Figure 8, curves (a) , (b) and (c) show the frequency
response from O to 20 MHz for each sensor independently operated with the
source and detection system, whereas the measured frequency response of the
three-sensor network is shown in curve (d) of Figure 2 from 0 to 20 MHz and in
curve (¢) from 10 to 16 MHz. In order to monitor temperature-induced shifts in
the null frequencies corresponding to each sensor, the null-tracking technique
detailed in [23] was used.
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5. INTERFEROMETRIC SENSOR MULTIPLEXING

5.1 General

Interferometric fiber sensors are being widely researched for use in a range of
application areas including acoustic pressure, and magnetic and electric fields
[24]. A number of different multiplexing topologies have been devised and tested
by research groups working in this field. Early work during the mid to late 1980s
concentrated on demonstrating the principle of operation of various multiplexing
approaches such as time-division (TDM), frequency-division (FDM) and
coherence multiplexing (Coh.M) using a relatively low number of sensors. In
more recent years, however, arrays with up to 10 sensors [25] multiplexed on a
common input/output fiber pair have been reported in the literature, representing
the first demonstrations of significant multiplexing gain achieved in practical
systems. Additionally, a system utilizing a hybrid TODM/WDM approach was
demonstrated with 14 sensor elements supported on a single input/output fiber
pair. Systems have also been taken beyond the laboratory environment: An array
comprising a total of 48 networked sensors based on a FDM scheme was tested at
sea in 1990.

A range of different multiplexing topologies continue to be investigated and tested
by research groups working in this field. Developments in the areas of frequency,
time, coherence, and code-division based systems continue to be made. The
following sections discuss these developments, and recent experimental results.

5.2 Frequency division multiplexing

One of the earliest approaches developed for the multiplexing of interferometric
sensors was based on the FMCW concept [26-28]. This scheme relies on the use
of unbalanced interferometers arranged in a serial (see Figure 9) or parallel
network illuminated by a frequency chirped optical source. Due to the inherent
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Figure 9. FMCW interferometric sensor multiplexing
HALLIBURTON, Exh. 1013, p. 0192



Ettachnent 6a: Copy of Docunent 6 fromthe Massachusetts
Institute of Technol ogy Libraries

sensitivity of an unbalanced sensor to input optical frequency, a beat frequency is
generated at each interferometer output, the period of which depends on the
frequency excursion of the chirp, the chirp rate, and the interferometer optical
path difference (OPD). Assigning a different OPD to each interferometer allows
the beat-frequencies associated with each sensor element to be distinct, and thus
separable using band filtering. One major problem which arises with this type of
multiplexing technique is cross-terms due to unwanted interferometric
components arising differentially or additively between sensors, or ‘ghost’
interferometers arising from connecting fiber paths in conjunction with the
interferometers. These cross-terms lead to sensor-to-sensor interference, or
crosstalk which is a problem in most applications where the full capability of an
interferometric sensor, in terms of the detection sensitivity and dynamic range, are
important. These ‘stray’ components can be minimized using certain topologies,
but cause significant design complexity for an array involving an appreciable
number of sensors elements. Little experimental work has been reported on this
approach since the demonstration of a three-sensor multiplexed system in 1986
[28].

A preferred FDM approach utilizes the spatial and frequency domain separation of
sensor signals shown in Figures 10. In Figure 10.a., the outputs from K sensor
elements all powered from a common source are ‘spatially-multiplexed’ onto
separate fibers. In Figure 10.b. the outputs from J sensors, which are
independently illuminated by separate sources, are combined onto a single output
fiber. Using phase-generated-carrier (PGC) interrogation [29], with each laser
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Figure 10. a) ‘Spatial’ and b) frequency domain addressing of interferometers
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Figure 12. Practical implementation of the JxK FDM matrix array system

operated at a different ‘carrier’ frequency, the sensor outputs in Fig 10.b can be
separated using synchronous detection or band-filtering. Combining these
techniques allows a matrix-type array [30] to be configured, which contains
N = JxK sensor elements, as schematically represented in Figure 11. This system
is somewhat unique in that the operation of the remote PGC interrogation
(demodulation) scheme automatically provides both the demodulation and
demultiplexing functions, provided the sources are modulated at different carrier
frequencies. Figure 12 shows a practical implementation of this type of array for
a 3x3 (9 sensor) system. This type of array has been shown to be capable of
providing good phase detection sensitivity and low crosstalk for systems
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involving up to eight sensor outputs combined onto a single output fiber.

This type of array is the most highly developed topology demonstrated to-date; an
array comprising 48 acoustic sensors was successfully demonstrated in a sea test
under a joint NUSC/NRL advanced technology demonstration program in 1990
[31].

5.3 Coherence multiplexing

The basic principle of the coherence multiplexing concept for interferometric
sensors is shown in Figure 13. Although there was initially significant interest in
coherence multiplexing [32-34], problems associated with crosstalk, excess phase
noise and poor power budget have limited the practical use of this approach with
interferometric sensors. Nevertheless, strong interest in the use of this approach
remains for other less demanding applications; for example, for use with
interferometric sensors configured to detected quasi-static (DC) measurands. A
two-clement multiplexed temperature sensor system based on a wavelength-
modulation scheme for monitoring interferometric OPD {35] has been reported.
In this case the ultra-high phase detection sensitivity normally attainable in
interferometric sensor systems is not required, and crosstalk levels of ~—40 dB
maybe tolerable. The coherence-addressing and multiplexing of polarimetric
sensors has also been recently reported [36,37].
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Figure 13. Coherence multiplexed interferometric array

5.4 Time division multiplexing (TDM)

Considerable interest has been directed towards the experimental demonstration
and evaluation of multiplexing topologies based on time division addressing [38-
45]. This work led to the development of a number of array architectures based
on serial and parallel topologies, of the type shown in Figures 14 and 15
respectively. The system of Figure 14.a, referred to as a reflectometric sensor
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array, was the first interferometric TDM array to be demonstrated. This configu-
ration utilized in-line partially-reflective fiber-splices, or in-fiber reflectors [38],
between fiber sensing coils each of length L, to form in-line interferometric
elements, which can be interrogated with pulsed operation of the source and a
compensating interferometer of delay equal to the round trip delay (T4 = 2L/nc)
between reflectors. Providing the width of the input pulse, 1, is less than Ty, an
interferometric signal from each element in the array can be generated in time
sequence at the compensator output. The initial demonstration of this concept
utilized a differential delay heterodyne interrogation approach, where two pulses
of differing optical frequencies and separated in time by Ty were launched into
the array, such that at the output pulses reflected from consecutive partial
reflectors in the array overlapped to produce heterodyne beat signals associated
with each sensing element, without the need for a compensating interferometer.
An array of six acoustic sensors based on this approach has been field tested [39].

A similar type of operation, but configured in a transmissive , was achieved using
the tapped serial array (TSA) [40,41] topology shown schematically in Figure
14.b. The system is based on the use of low-coupling ratio couplers which tap off
a fraction of the light in the input fiber to an output bus as shown. Fiber coils in
the input fiber serve both as delay and sensing elements. Pulses obtained from the
series of N+1 (for N sensors) tap points are separated in time if the delay in each
sensor coil is longer than the width of the input pulse (1) to the system. These
output pulses are then coupled to a compensating interferometer which splits the
fiber sensing
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Figure 14. Time division multiplexed serial arrays
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pulse stream into two components, delays one by a period equal to the sensor coil
delay T, and subsequently recombines the signals. This forces components of ad-
jacent pulses to overlap, resulting in interference signals which can be monitored
at the detector. An array of eight sensors has been experimentally demonstrated
using this approach [41].

Due to the possibility of multiple pulse reflections between partial reflectors, and
coupling between the input and output fibers at the tap points, both the
reflectometric and TSA array topologies give rise to multiple pulse interactions
which leads to crosstalk. Figure 16 shows an example of the origin if the type of
effect in the TSA system. This problem has been addressed both experimentally
and theoretically at NRL. We have found excellent agreement between predicted
and observed crosstalk levels between sensor elements in an eight sensor array
[41,42]. As shown in Figure 17, the results of this type of analysis shows that
time-average sensor-sensor crosstalk levels can be < 30 dB for an array of 25
sensors using couplers with a 0.25 % coupling ratio.

The ‘recursive lattice’ [43] array topology of Figure 14.c is functionally identical
to the reflectometric array, giving rise to the same crosstalk effects. This array
has not been experimentally tested to date.

More recent work in TDM systems has concentrated on ‘ladder’ array
configurations [25,44,45] of the form shown in Figure 15. A ten-clement array
based on the topology of Figure 15.a has been successfully demonstrated. This
topology does not lead to direct optical crosstalk between the sensor elements, and
phase detection sensitivities comparable to those obtained in single sensor systems
have been achieved. Interferometers which are slightly unbalanced to allow for
passive demodulation via frequency modulated Iaser based phase generated carrier
or synthetic heterodyne techniques are used. Phase detection sensitivities
obtained with the array ranged from 12to 18 prad/NHz at 1kHz. Crosstalk
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levels for the array were measured to be in the range -50 to -65 dB.

Naturally, Mach-Zehnder arrays are not the only possible system topologies which
can be used. Arrays based on Michelson interferometers have, for instance, been
proposed and demonstrated.  Figure 18 shows two Michelson configurations
based on discrete and non-discrete interferometer elements, which are analogous
to the Mach-Zehnder systems of Figures 15.a and 15.c.

Other developments in the area of TDM interferometric arrays include systems
based on the reflectometric system of Figure 14.a, but using low-reflectivity fiber
Bragg gratings as the partial reflectors [10] '

5.5 Code-division multiplexing

Spread spectrum (SS) and code division multiplexed (CDM) techniques [46] have
been applied to a variety of communications applications, including optical fiber
systems [47]. This type of signal processing has also been previously investigated
for optical time-domain reflectometry (OTDR) based sensing [48], and more
recently, has been proposed and tested as a means for multiplexing interferometric
sensors [49]. In this work, the interrogating laser source is modulated using a
pseudo-random bit sequence (PRBS) of length 2m -1 (maximal length sequence,
or m-sequence), and correlation is used to provide synchronous detection to iden-
tify specific sensor positions. A delay equal to an integer multiple of the bit (or
‘chip’) period separate the sensors. The received signals from the array are then
encoded by delayed versions of the PRBS, and correlation techniques can be used
to extract the individual signals.
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Figure 19 diagrammatically represents the principle of operation of the CDM
approach applied to an interferometric sensor array. The PRBS input optical
signal is fed to each the N sensors, delayed by a multiple, n;, of the bit period T,
where j denotes a specific sensor (1 <j < N). The total ou\!put signal comprises
the intensity sum of the overlapping delayed PBS sequences (each modified by
the appropriate sensor transfer function). This results in a complex up-down
staircase-like function at the optical detector which can be decoded using
synchronous correlation-detection involving multiplication of the received signal
with an appropriately delayed reference PRBS.

Although this method may provide advantages in terms of power budget for time-
division multiplexed systems, it would also seem to be limited by excess phase
noise effects arising due to mixing of time co-incident pulses from different
sensors, and relatively high crosstalk between sensors. Recent work addressed
these limitations of the technique, using a detection/signal processing approach
which yields improved crosstalk and noise performance [50]. In this work,
crosstalk levels lower than those expected from consideration of the code length
were obtained using a mix of bipolar and unipolar codes which produces an
improvement in the channel/channel isolation. This arises due to the correlation
function of a bipolar with unipolar m-sequence PRBS, shown in Figure 20, which
has a value 2{m-1) for an aligned code, but is zero for any asynchronous alignment
of the codes (this is in contrast to the conventional bipolar-bipolar auto-correlation
which has a value of (2m -1) for code alignment, but a value of -1 for
asynchronous alignment). This feature ensures good crosstalk can be obtained
without the need to utilize excessively long PRBS codes: indeed, low crosstalk
can be obtained providing the code length (2m -1) > N, where N is the number of
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2m_ |, withm= 4,

sensors in the array (assuming 2 one-bit time delay between sensors). Reduction
of the excess phase noise by modulation of the laser source was also demonstrated
in this work [50]

5.6 Power budget

Analysis shows that the power budget is a major factor determining the number of
sensors which may be multiplexed using time-division and frequency-division
schemes [51]. Calculations based on array loss models and input optical powers
of 10 mW suggest that ~ 25 to 30 sensors may be supported per laser source with
shot-noise equivalent phase detection sensitivities ~ 3 to 10 prad/VHz. This
limitation to the multiplexing gain (number of sensors supported per input/output
fiber) is due primarily to the relatively severe power recombinational losses
associated with the use of conventional singlemode directional couplers in star or
branching configurations. Generally, in a multiplexed fiber sensor array based on
discrete sensor elements, light from a source is equally divided into the N
sensors. On recombination of the sensor outputs onto a single monomode fiber,
the optical throughput per channel is 1/N (effective loss of -10log[N] dB). A
further effective power reduction factor of 1/N is encountered in time-division
multiplexed (TDM) systems due to the duty-cycle of the pulsed source. In
frequency division multiplexed (FDM) systems, a similar deleterious effect is
encountered due to the fact that each channel is measured against a background of
(N-1) other channels.

A novel singlemode/multimode (S/M) optical power combiner in multiplexed
fiber sensor applications [52] has been demonstrated for improved power budget
performance. This device allows a number of sensor outputs on single mode
fibers to be efficiently recombined onto a single multimode output fiber with
minimal effective insertion and excess loss.
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5.7 Hybrid TDM/WDM system

An alternative means of improving the multiplexing gain is to utilize a system
based on a hybrid of addressing approaches. A possible means for this is
combining time or frequency division addressing with wavelength division
multiplexing. Wavelength division multiplexing (WDM) has primarily been
considered for use in communications systems. Its extension to the field of fiber
sensors is obvious, and in principle the technique has the capability to allow a
number of sensors to be remotely addressed in a very efficient manner. However,
as discussed earlier, due to the complexity of the components, i.e.tree- or star-type
WDM-couplers, required to selectively tap certain wavelengths from a fiber bus
to sensors and recombine them onto a single output fiber, this approach has
received little experimental attention. Furthermore, the crosstalk between sensors
will be determined directly by the degree of wavelength isolation which can be
achieved with the WDM-couplers, which is typically only ~ 15 to 20 dB.
Consequently, WDM may not prove to be viable for the multiplexing of a
significant number of sensors. However, combining wavelength division
multiplexing concepts with time or frequency division addressing has the potential
to allow a several-fold improvement in the number of multiplexed sensors in an
array.

This type of system has been experimentally demonstrated [53]. The system,
which is shown schematically in Figure 21, is based on two time division
multiplexed systems which are addressed via common input and output fibers
using wavelength division multiplexing to produce an array of 14 sensor elements.
The source wavelengths are 835 nm and 790 nm, and the fiber WDM couplers
used were manufactured by Aster Inc. The two sub-arrays comprised a ten-
sensor system operating at 835 nm, and a four-sensor system designed for
operation at 790 nm.

WDM-Couplers

\xl,

Scope

Figure2l. Hybrid TDM/WDM array
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Figure 22. Outputs from the array configuration of Figure 20

Figure 21 shows the output pulse train observed with the system. Here, the top
trace shows the detector (APD) output with both sources in operation. To
provide a clearer visualization of the operation of the scheme, in this
demonstration the input pulses from the two lasers were delayed relative to each
other in order to separate in time the pulse trains produced by the two sub-arrays.
In the two lower traces in Figure 21, the 835 nm and 790 nm lasers were blocked
in turn to show the correct routing of the wavelengths in the system. Under
normal operation, further wavelength de-multiplexing of the signals prior to
detection would be utilized. Optical crosstalk levels < -25 dB (equivalent to < -50
dB electrical) between the two arrays were achieved with the components used.

5.8 Polarization fading

In recent years, considerable effort has been directed towards the development of
techniques which provide compensation for the effects of polarization fading in
interferometric sensor systems. Techniques based on the selection of a particular
output state of polarization (SOP) or set of SOPs [54,55] have been demonstrated,
which perform with limited success.

Very recently, a birefringence compensation approach has been used to develop a
polarization independent Michelson interferometer [56]. An array based on this
concept has also be demonstrated [57). The birefringence compensation method
is based on use of the "orthoconjugate reflector” of Edge and Stewart [S8] which
consists of a 45° Faraday rotator followed by a plane mirror. For an optical beam
which retraces its path in a fiber, Pistoni and Martinelli [S9] demonstrated that the
insertion of a Faraday rotator and mirror (FRM) results in a state of polarization
(SOP) at the exit which is orthogonal to the SOP at the input to the fiber. As
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Figure 23. Polarization independent Michelson interferometer configuration

depicted in Figure 23, when employed in a Michelson interferometer the SOP
from each of the device is returned orthogonal to the common input SOP.
Consequently they are aligned with each other and insure maximum fringe
visibility is obtained at the interferometer output. A four-sensor array
configuration based on the configuration of Figure 18.b with miniaturized
pigtailed FRMs as the reflectors has been built and tested. The fringe visibility
was estimated to be > 0.95 (fading < 0.5 dB) simultaneously for all of the sensors
under birefringence perturbations induced manually in the fiber leads [60].

6. TRANSDUCER MULTIPLEXING

The multiplexing techniques described in the foregoing section involve the
networking of interferometric sensors. It is also possible to multiplex the
transducer elements within a single interferometric sensor. Several fiber
transducers have been developed in which the strain imparted to a fiber in an
interferometer is proportional to the square to the applied measurand field.
Examples include magnetostrictive [61] and electrostrictive materials [62], and a
displacement sensing geometry [63] based on the lateral displacement of a fiber
supported at two fixed points.

In general, the fiber strain can be expressed as

e = CM?, 3

where C is a constant which depends on the material parameters, or the exact
geometrical arrangement of the transducer, and M is the measurand field (i.e. H, E
or z in the cases of magnetic, electric fields and displacement respectively). If M
comprises two components , M_ + AM sin ® t, where M _ is proportional to the
measurand field amplitude, and AM sin @ 4t 18 @ “dither’ signal, the component of
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Figure 24. Interferometer configuration with transducer multiplexing

the strain induced in the fiber at the fundamental (®,) of the dither is
e(wy) = 2CAMM,, 4)

which is linearly proportional to M _ and thus the measurand field of interest. This
strain can be detected using a fiber interferometer, and a number of such non-
linear transduction elements can be incorporated in a single interferometer system
by using different dither frequencies for each sensor, as shown schematically in
Figure 24. Using this basic concept, the multiplexing of transducers for pressure,
displacement and magnetic field [64] using a single interferometer has been
demonstrated. Other measurands such as acceleration, and remote optical
dithering have been demonstrated [65].

7. CONCLUSIONS

Work in the area of multiplexed fiber optic sensors has been reviewed. A key
area of interest has been in the development of multiplexing techniques for high
performance interferometric fiber sensor arrays, and the detailed coverage in this
paper reflects this interest.
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