

Figure 802b. Allowing for advance and transfer.

- Plot a Slide Bar for Every Turn Bearing: If the ship is off track immediately prior to a turn, a plotting technique known as the slide bar can quickly revise a turn bearing. See Figure 802c. A slide bar is a line drawn parallel to the new course through the turning point on the original course. The navigator can quickly determine a new turn bearing by dead reckoning ahead from the vessel's last fix position to where the DR intersects the slide bar. The revised turn bearing is simply the bearing from that intersection point to the turn bearing NAVAID. Draw the slide bar with a different color from that used for the track in order to see the slide bar clearly.
- Label Distance to Go from Each Turn Point: At
 each turning point, label the distance to go until either
 the ship moors (inbound) or the ship clears the harbor
 (outbound). For an inbound transit, a vessel's captain is
 usually more concerned about time of arrival, so
 assume a speed of advance and label each turn point
 with time to go until mooring.
- Plot Danger Bearings: Danger bearings warn a navigator he may be approaching a navigational hazard too closely. See Figure 802d. Vector AB indicates a vessel's intended track. This track passes close to the indicated shoal. Draw a line from the NAVAID H tangent to the shoal. The bearing of that tangent line measured from the ship's track is 074.0°T. In other

- words, as long as NAVAID H bears *less than* 074°T as the vessel proceeds down its track, the vessel will not ground on the shoal. Hatch the side of the bearing line on the side of the hazard and label the danger bearing NMT (no more than) 074.0°T. For an added margin of safety, the line does not have to be drawn exactly tangent to the shoal. Perhaps, in this case, the navigator might want to set an error margin and draw the danger bearing at 065°T from NAVAID H. Lay down a danger bearing from any appropriate NAVAID in the vicinity of any hazard to navigation. Ensure the track does not cross any danger bearing.
- Plot Danger Ranges: The danger range is analogous to the danger bearing. It is a standoff range from an object to prevent the vessel from approaching a hazard too closely.
- Label Warning and Danger Soundings: To determine the danger sounding, examine the vessel's proposed track and note the minimum expected sounding. The minimum expected sounding is the difference between the shallowest water expected on the transit and the vessel's maximum draft. Set 90% of this difference as the warning sounding and 80% of this difference as the danger sounding. There may be peculiarities about local conditions that will cause the navigator to choose another method of setting warning and danger soundings. Use the above method if no

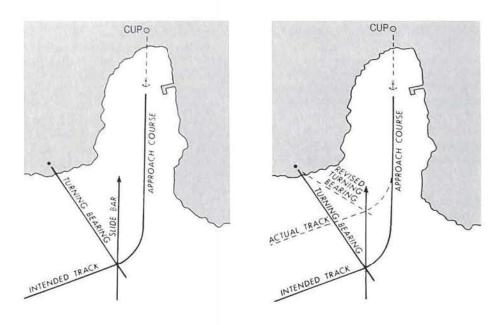


Figure 802c. The slide bar technique.

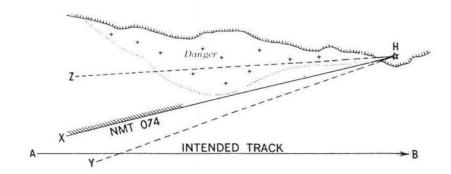


Figure 802d. A danger bearing, hatched on the dangerous side, labeled with the appropriate bearing.

other means is more suitable. For example: A vessel draws a maximum of 20 feet, and it is entering a channel dredged to a minimum depth of 50 feet. Set the warning and danger soundings at 0.9 (50ft. - 20ft) = 27ft and 0.8 (50ft. - 20ft.) = 24ft., respectively. Reevaluate these soundings at different intervals along the track, when the minimum expected sounding may change. Carefully label the points along the track between which these warning and danger soundings apply.

- Label Demarcation Line: Clearly label the point on the ship's track where the Inland and International Rules of the Road apply. This is applicable only when piloting in U.S. ports.
- Mark Speed Limits Where Applicable: Often a harbor will have a local speed limit in the vicinity of piers, other vessels, or shore facilities. Mark these speed limits and the points between which they are applicable on the chart.
- Mark the Point of Pilot Embarkation: Some ports require vessels over a certain size to embark a pilot. If this is the case, mark the point on the chart where the pilot is to embark.
- Mark the Tugboat Rendezvous Point: If the vessel requires a tug to moor, mark the tug rendezvous point on the chart.
- · Mark the Chart Shift Point: If more than one chart

will be required to complete the passage, mark the point where the navigator should shift to the next chart.

- Harbor Communications: Mark the point on the chart where the vessel must contact harbor control. Also mark the point where a vessel must contact its parent squadron to make an arrival report (military vessels only).
- Tides and Currents: Mark the points on the chart for which the tides and currents were calculated.

803. Records

Ensure the following records are assembled and personnel assigned to maintain them:

- Bearing Record Book: The bearing recorders for the primary and secondary plots should record all the bearings used on their plot during the entire transit. The books should clearly list what NAVAIDS are being used and what method of navigation was being used on their plot. In practice, the primary bearing book will contain mostly visual bearings and the secondary bearing book will contain mostly radar ranges and bearings.
- Fathometer Log: In restricted waters, monitor soundings continuously and record soundings every five minutes in the fathometer log. Record all fathometer settings that could affect the sounding display.
- Deck Log: This log is the legal record of the passage.
 Record all ordered course and speed changes. Record all the navigator's recommendations and whether the navigator concurs with the actions of the conning officer.
 Record all buoys passed, and the shift between different Rules of the Road. Record the name and embarkation of any pilot. Record who has the conn at all times. Record any casualty or important event. The deck log combined with the bearing log should constitute a complete record of the passage.

804. Tides and Currents

Determining the tidal and current conditions of the port is crucial. This process is covered in depth in Chapter 9. In order to anticipate early or late transit, plot a graph of the tidal range for the 24-hour period centered on the scheduled time of arrival or departure. Depending on a vessel's draft and the harbor's depth, some vessels may be able to transit only at high tide. If this is this case, it is critically important to determine the time and range of the tide correctly.

The magnitude and direction of the current will give the navigator some idea of the set and drift the vessel will experience during the transit. This will allow him to plan in advance for any potential current effects in the vicinity of navigational hazards.

While printed tide tables can be used for predicting and plotting tides, it is far more efficient to use a computer with appropriate software, or the internet, to compute tides and print out the graphs. These graphs can be posted on the bridge at the chart table for ready reference, and copies made for others involved in the piloting process. NOAA tide tables for the U.S. are available at the following site http://co-ops.nos.noaa.gov/tp4days.html. Always remember that tide tables give predicted data, but that actual conditions may be quite different due to weather or other natural phenomena.

805. Weather

The navigator should obtain a weather report covering the route which he intends to transit. This will allow him to prepare for any adverse weather by stationing extra lookouts, adjusting speed for poor visibility, and preparing for radar navigation. If the weather is thick, consider standing off the harbor until it clears.

The navigator can receive weather information any number of ways. Military vessels may receive weather reports from their parent squadrons prior to coming into port. Marine band radio carries continuous weather reports. Many vessels are equipped with weather facsimile machines. Some navigators carry cellular phones to reach shoreside personnel and harbor control; these can also be used to get weather reports from NOAA weather stations. If the ship is using a weather routing service for the voyage, it should provide forecasts when asked. Finally, if the vessel has an internet connection, this is an ideal source of weather data. NOAA weather data can be obtained at: http://www.nws.noaa.gov. However he obtains the information, the navigator should have a good idea of the weather before entering piloting waters.

806. The Piloting Brief

Assemble the entire navigation team for a piloting brief prior to entering or leaving port. The vessel's captain and navigator should conduct the briefing. All navigation and bridge personnel should attend. The pilot, if he is already on the ship's company is briefed, the navigator should know the ship's maneuvering characteristics before minimum, the following:

 Detailed Coverage of the Track Plan: Go over the planned route in detail. Use the prepared and approved chart as part of this brief. Concentrate especially on all the NAVAIDS and soundings which are being used to indicate danger. Cover the buoyage system in use and

the port's major NAVAIDS. Point out the radar NAVAIDS for the radar operator. Often, a *Fleet Guide* or *Sailing Directions* will have pictures of a port's NAVAIDS. This is especially important for the piloting party that has never transited a particular port before. If no pictures are available, consider stationing a photographer to take some for submission to NIMA.

- Harbor Communications: Discuss the bridge-to bridge radio frequencies used to raise harbor control. Discuss what channel the vessel is supposed to monitor on its passage into port and the port's communication protocol.
- Duties and Responsibilities: Each member of the piloting team must have a thorough understanding of his duties and responsibilities. He must also understand how his part fits into the whole. The radar plotter, for example, must know if radar will be the primary or secondary source of fix information. The bearing recorder must know what fix interval the navigator is planning to use. Each person must be thoroughly briefed on his job; there is little time for questions once the vessel enters the channel.

807. Evolutions Prior to Piloting

The navigator should always accomplish the following evolutions prior to piloting:

- Testing the Shaft on the Main Engines in the Astern Direction: This ensures that the ship can answer a backing bell. If the ship is entering port, no special precautions are required prior to this test. If the ship is tied up at the pier preparing to get underway, exercise extreme caution to ensure no way is placed on the ship while testing the main engines.
- Making the Anchor Ready for Letting Go: Make the anchor ready for letting go and station a watchstander in direct communications with the bridge at the anchor windlass. Be prepared to drop anchor immediately when piloting if required to keep from drifting too close to a navigational hazard.
- Calculate Gyro Error: An error of greater than 1.0°
 T indicates a gyro problem which should be investigated prior to piloting. There are several ways to determine gyro error:
 - Compare the gyro reading with a known accurate heading reference such as an inertial navigator. The difference in the readings is the gyro error.
 - 2. Mark the bearing of a charted range as the range

NAVAID's come into line and compare the gyro bearing with the charted bearing. The difference is the gyro error.

- 3. Prior to getting underway, plot a dockside fix using at least three lines of position. The three LOP's should intersect at a point. Their intersecting in a "cocked hat" indicates a gyro error. Incrementally adjust each visual bearing by the same amount and direction until the fix plots as a pinpoint. The total correction required to eliminate the cocked hat is the gyro error.
- 4. Measure a celestial body's azimuth or amplitude, or Polaris' azimuth with the gyro, and then compare the measured value with a value computed from the Sight Reduction Tables or the Nautical Almanac. These methods are covered in detail in Chapter 17.

Report the magnitude and direction of the gyro error to the navigator and captain. The direction of the error is determined by the relative magnitude of the gyro reading and the value against which it is compared. When the compass is least, the error is east. Conversely, when the compass is best, the error is west. See Chapter 6.

808. Inbound Voyage Planning

The vessel's planned estimated time of arrival (ETA) at its mooring determines the vessel's course and speed to the harbor entrance. Arriving at the mooring site on time may be important in a busy port which operates its port services on a tight schedule. Therefore, it is important to plan the arrival accurately. Take the desired time of arrival at the mooring and subtract from that the time it will take to navigate to it from the entrance. The resulting time is when you must arrive at the harbor entrance. Next, measure the distance between the vessel's present location and the harbor entrance. Determine the speed of advance (SOA) the vessel will use to make the transit to the harbor. Use the distance to the harbor and the SOA to calculate what time to leave the present position to make the mooring ETA, or what speed must be made good to arrive on time.

Consider these factors which might affect this decision:

- Weather: This is the single most important factor in harbor approach planning because it directly affects the vessel's SOA. The thicker the weather, the more slowly the vessel must proceed. Therefore, if heavy fog or rain is in the forecast, the navigator must allow more time for the transit.
- Mooring Procedures: The navigator must take more than distance into account when calculating how long it will take him to pilot to his mooring. If the vessel needs a

CHAPTER 12

LORAN NAVIGATION

INTRODUCTION TO LORAN

1200. History and Role of Loran

The theory behind the operation of hyperbolic navigation systems was known in the late 1930's, but it took the urgency of World War II to speed development of the system into practical use. By early 1942, the British had an operating hyperbolic system in use designed to aid in longrange bomber navigation. This system, named Gee, operated on frequencies between 30 MHz and 80 MHz and employed "master" and "slave" transmitters spaced approximately 100 miles apart. The Americans were not far behind the British in development of their own system. By 1943, the U.S. Coast Guard was operating a chain of hyperbolic navigation transmitters that became Loran A (The term Loran was originally an acronym for LOng RAnge Navigation). By the end of the war, the network consisted of over 70 transmitters providing coverage over approximately 30% of the earth's surface.

In the late 1940's and early 1950's, experiments in low frequency Loran produced a longer range, more accurate system. Using the 90-110 kHz band, Loran developed into a 24-hour-a-day, all-weather radionavigation system named Loran C. From the late 1950's, Loran A and Loran C systems were operated in parallel until the mid 1970's when the U.S. Government began phasing out Loran A. The United States continued to operate Loran C in a number of areas around the world, including Europe, Asia, the Med-

iterranean Sea, and parts of the Pacific Ocean until the mid 1990's when it began closing its overseas Loran C stations or transferring them to the governments of the host countries. This was a result of the U.S. Department of Defense adopting the Global Positioning System (GPS) as its primary radionavigation service. In the United States, Loran serves the 48 contiguous states, their coastal areas and parts of Alaska. It provides navigation, location, and timing services for both civil and military air, land, and marine users. Loran systems are also operated in Canada, China, India, Japan, Northwest Europe, Russia, Saudi Arabia, and South Korea.

The future role of Loran depends on the radionavigation policies of the countries and international organizations that operate the individual chains. In the United States, the Federal Government plans to continue operating Loran in the short term while it evaluates the long-term need for the system. The U.S. Government will give users reasonable notice if it concludes that Loran is no longer needed or is not cost effective, so that users will have the opportunity to transition to alternative navigation aids and timing services.

Current information on the U.S. Loran system, including Notices to Mariners, may be obtained at the U.S. Coast Guard Navigation Center World Wide Web site at http://www.navcen.uscg.gov/.

LORAN C DESCRIPTION

1201. Summary of Operation

The Loran C (hereafter referred to simply as Loran) system consists of **transmitting stations**, which are placed several hundred miles apart and organized into **chains**. Within a Loran chain, one station is designated as the **master station** and the others as **secondary stations**. Every Loran chain contains at least one master station and two secondary stations in order to provide two lines of position.

The master and secondary stations transmit radio pulses at precise time intervals. A Loran receiver measures the **time difference** (TD) between when the vessel receives the master signal and when it receives each of the secondary signals. When this elapsed time is converted to distance, the locus of points having the same TD between the master and

each secondary forms the hyperbolic LOP. The intersection of two or more of these LOP's produces a fix of the vessel's position.

There are two methods by which the navigator can convert this information into a geographic position. The first involves the use of a chart overprinted with a Loran time delay lattice consisting of hyperbolic TD lines spaced at convenient intervals. The navigator plots the displayed TD's by interpolating between the lattice lines printed on the chart, manually plots the fix where they intersect and then determines latitude and longitude. In the second method, computer algorithms in the receiver's software convert the TD's to latitude and longitude for display.

As with other computerized navigation receivers, a typical Loran receiver can accept and store waypoints.

173

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

