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Abstract — Object localization is a key primitive in pervasive 
computing environments, where numerous applications depend 
on the rapid and accurate position estimation of objects.  We 
present a general RFID–based localization framework that 
reliably determines the positions of objects with unprecedented 
accuracy and speed.  This is achieved by varying the power levels 
of the RFID readers, calibrated against reference tags of known 
sensitivity.  Our implementation and experiments are able to 
localize objects to an accuracy of 15 cm within a few seconds, and 
this compares favorably with previous techniques. We also 
suggest several practical optimizations for further enhancing the 
speed and accuracy of the method. 
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I.  INTRODUCTION 
Radio frequency identification (RFID) technology is 

rapidly transforming pervasive computing applications by 
offering new capabilities and a richer user experience [13].  
Capabilities such as object identification, real time tracking, 
and object localization are at the heart of numerous innovative 
RFID applications [9] [11].  While RFID technology enables 
object identification and tracking, it does not normally include 
object localization (i.e., positioning) capabilities.  We propose 
to address this limitation by developing an RFID–based 
localization framework that accurately and quickly determines 
the positions of objects.  In other words, our system offers a 
GPS-like positioning capability in an RFID environment. 

Obstacles to localization accuracy, speed and reliability, 
include environmental interferences and occlusions (e.g., the 
presence of liquids and metals), orientation and spatial 
arrangement of tags, ambient RF noise, tag sensitivity 
variations, readers' locations, etc.  These factors can weaken, 
scatter, or occlude radio waves, and thus lead to unreliable 
detection and inaccurate positioning of objects [4] [5]. 

Several RFID-based localization techniques have been 
proposed, either focusing on mobile objects (e.g., a robot) or 
stationary objects (e.g., a wallet) [6] [7] [12] [14].  However, 
previous techniques tend to sacrifice speed and accuracy in 
localizing objects in order to obtain reliable estimates (i.e., 
repeated measurements should consistently yield the same 
outcome). Unfortunately, these resulting speed and accuracy 
degradations tend to reduce the efficacy of client applications. 

We propose a localization framework that enables accurate 
object position estimation, without compromising either speed 
or reliability.  Our localization method varies the power levels 
of the readers, calibrated against a set of reference tags of 
known sensitivity, to accurately estimate target tag positions 
in a region of interest. Although we initially tested this 

methodology indoors to localize stationary objects, our 
framework is quite general and can be applied to many other 
scenarios, including outdoor environments, 3D localization, 
moving objects, various tag types, different combinations of 
tags, antennas and readers, etc.  Our framework is highly 
scalable and can accommodate a wide range of requirements 
and tradeoffs among power, cost, accuracy and speed. 

We implemented, tested and evaluated the proposed 
framework, and experimentally confirmed its accuracy, speed 
and reliability in localizing objects. In order to ensure high 
reliability and accuracy in localization, our methodology 
addresses various practical issues such as “binning” the 
calibrated tags according to their detection sensitivities, which 
can vary significantly even among “identical” tags (due to 
manufacturing variability). 

This paper is organized as follows.  In Section II, we 
describe the proposed localization framework. We present 
several localization algorithms and heuristics in Section III.  
We experimentally evaluate the proposed framework in 
Section IV, and conclude in Section V with extensions and 
future directions. 

II.  THE LOCALIZATION FRAMEWORK 
The proposed localization method is based on continuously 

varying the power levels of the RFID readers in order to infer 
distance and position information about target tags.  We use 
reference tags at known locations to help calibrate the power 
vs. distance relationships, and we employ several readers in 
order to reduce the localization uncertainty when inferring the 
position of target tags, as illustrated in Figure 1. 
 

    RFID reader        Target tag        Reference tag 
     Radio wave         Localization error         Intersection region 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Working principle of the proposed localization method 
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Figure 1 depicts the intersection region covered by the 
lobes of radio waves emitted by different readers.  Based on 
the relative power level that is necessary for a reader to detect 
a target tag, we can infer the distance between that tag and the 
reader.  Moreover, several such power-distance correlations 
obtained from different readers can help localize a target tag 
with greater precision. 

The reference tags serve as a practical mechanism used to 
initially calibrate the power vs. distance relationships, in order 
to avoid relying on possibly erroneous formulas, unpredictable 
environmental conditions, etc.  This constitutes a “feedback 
mechanism” that enables our system to dynamically adapt to 
unknown variables (e.g., noise, occlusions, interferences, etc.) 
that may adversely affect tag readability and localization. 

While the use of reference tags ascertains the actual power-
distance relationships, it may also introduce errors in position 
estimates of target tags.  When target tags are detected by 
varying the reader power levels, positions of the reference tags 
detected at the same power-level are used to infer (by 
interpolation) the position of target tags.  This is a source of 
possible localization error, as depicted in above illustration.  
We apply different heuristics to minimize this error, based on 
the minimum reader power levels necessary to detect 
reference and target tags, as detailed in the next section. 

III.  ALGORITHMS AND HEURISTICS 
We now describe three localization algorithms that 

incorporate the basic principles of the proposed localization 
framework, discuss possible sources of localization error, and 
present heuristics to minimize the error. The proposed 
localization method uses varying reader power levels to infer 
the position of target tags.  We give three localization 
algorithms that control this key parameter (i.e., reader power 
level) in different ways in order to establish tradeoffs between 
accuracy and speed, as described below. 

A. Localization Algorithms 
In the first localization algorithm, we linearly increment the 

reader power level to determine the minimum power level at 
which reference (and therefore target) tags are detected.  The 
variable Power_Step determines the size of the power level 
increment.  The convergence time for the algorithm to find the 
minimum power level for tag detection is dependent on this 
Power_Step variable (i.e., the smaller this step size, the longer 
it may take to reach the desired detection  threshold, but could 
yield greater localization accuracy).  For example, if power 
level is varied between 0 and 33 dBm, and the Power_Step is 
0.25 dbm, then this algorithm will iterate up to (33 / 0.25) + 1 
= 133 times to ascertain the minimum detection power level. 

The algorithm varies the reader power level from lowest to 
highest to determine a minimum tag detection power level 
(other possible power varying strategies will be discussed 
later).  While this approach finds the minimum detection 
power levels, it may require too long to converge.  Optionally, 
we can instead vary the power level from highest to lowest, 
since tags are not typically located very near the reader, but 
rather are often found closer to the far end of the reader 

detection range.  Thus, stepping the power level down instead 
of up will tend to reduce the average number of iterations to 
determine the minimum detection power level. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Algorithm I: Linear search for the minimum power-level 

 
Figure 2 describes this algorithm, called “Algorithm I”.  

The algorithm takes as input a unique tag id (Tag_ID), power 
step (Power_Step), and increment direction flag 
(Direction_Flag), and returns the minimum reader power 
level at which that tag becomes detectable.  The time this 
algorithm requires to process a tag is linearly proportional to 
the number of distinct power levels used during the search.  
Thus, to process N tags using P power levels, this algorithm 
will run within time O(N⋅P) in the worst case. 

The overall running time can be further reduced by using a 
binary search on the power level instead of a linear search.  
This will enable a faster convergence on the minimum 
detection power level, requiring at most O(N⋅log P) steps to 
process N tags with a resolution of P power levels.  We call 
this binary–search based approach “Algorithm II”. 

Another efficiency optimization leverages the capability of 
an RFID reader to simultaneously detect a large number of 
tags during the same read cycle.  Therefore, instead of 
invoking Algorithm I separately for each tag ID, we can have 
it determine at each iteration all the tags that are detectable at 
that power level, and separately update the status of each one.   

Input: Tag_ID, Power_Step, Direction_Flag 
Output: Minimum detection power level 
 
if (Direction_Flag = LOW_TO_HIGH) then 
     Power = MIN_POWER_LEVEL 
     repeat 
           if (Power > MAX_POWER_LEVEL) then  
               return NOT_FOUND 
           end 
           Set reader power-level to Power 
           Search for tags until successful or time-out 
           if Tag_ID is found then  
               return Power 
           end 
           Power = Power + Power_Step 
     end 
else 
     Power = MAX_POWER_LEVEL 
     Found_Power = NOT_FOUND 
     repeat 
           if (Power < 0) then  
               return NOT_FOUND 
           end 
           Set reader power-level to Power 
           Search for tags until successful or time-out 
           if Tag_ID is found then  
               Found_Power = Power 
           else  
               return Found_Power 
           end  
           Power = Power  – Power_Step 
     end 
end 
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Note that this is logically equivalent to running Algorithm I 
in parallel independently for each tag.  Assuming that the 
number of tags does not exceed the maximum simultaneous 
tag reading capacity of the reader, this strategy will require 
O(P) steps using a resolution of P power levels, independently 
of the number of tags.  We call this parallel–based approach 
“Algorithm III”. 

There are several sources of possible “localization errors”, 
including the “round off” error inherent in identifying a target 
tag with the “nearest” reference tag, as well as the errors 
inherent in the algorithms for estimating the minimum 
detection power level. We next discuss these errors and 
outline techniques to mitigate them. 

B. Localization Error Mitigation  Heuristics 
Apart from the errors discussed above, other factors that 

contribute to localization errors include variability in tag 
sensitivity and environmental interferences [5].  In Section IV, 
we discuss the impact of variability in tag sensitivity on 
localization errors, and suggest practical methods to reduce it.  
We now present eleven heuristics for mitigating localization 
errors, grouped into four broad categories as follows.  

1) Absolute Difference:  This heuristic takes into account 
the absolute difference between the minimum detection power 
levels for the neighbouring reference tags and the target tags.  
We suggest four heuristic variations of this type: 
 

          (1) 
 
 

          (2) 
 
 

          (3) 
 
 

 
          (4) 

 
 

2) Minimum Power Reader Selection: This heuristic 
employs the minimum detection power levels from two 
(orthogonal) readers to compute the absolute difference 
between the power levels of the neighbouring reference and 
target tags.  Two such heuristic variations are given as follows: 
 
 

          (5) 
 
 

          (6) 
 
 

 

3) Root Sum Square Absolute Difference: In these 
heuristics, we compute the square root of the sum of squares 
of the absolute difference between the minimum detection 
power levels of the neighbouring reference and target tags.  
The following heuristic variations are based on this approach: 
 

          (7) 
              

 
          (8) 

 
 

          (9) 
 
 
 
 

        (10) 
 
 

4)  All Heuristics Minimum:  This “meta-heuristic” 
computes for a given target tag the minimum of all the other 
heuristics, as follows: 

        (11) 
 

 
Where the following notation glossary applies to all of the 
above heuristics: 
 
T = Target tag 
RI = Reference tag I 
H = Heuristic 
Power = Minimum detection power level for a tag 
M  = Number of readers 
ΔΙ(R) = |Power(T) – Power(R)| 
S, Q, J, K= Iteration variables for neighbourhood tags 
I = Iteration variable for unmarked tag 
L = Heuristic iteration variable 
 

The above positioning heuristics are used as a post-
processing step in our localization algorithm, once the 
minimum detection power levels of the reference and target 
tags have been determined. By employing different 
combinations of localization algorithms and positioning 
heuristics, a desired level of accuracy can be achieved. 

A key feature of the proposed framework is the flexibility 
to incorporate new localization algorithms and heuristics that 
may be developed in the future, which can enable the 
framework to localize objects with higher accuracy and speed. 

IV.  EXPERIMENTAL EVALUATION 
In this section, we present our experimental evaluation 

methodology, report results regarding tag sensitivity, 
localization accuracy and speed, and compare the overall 
approach to existing techniques. 
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A. Experimental Setup 
We evaluated the proposed localization framework to 

localize stationary objects in an indoor environment using one 
reader connected to four antennas.  Our goals for this 
evaluation were to first classify the tags based on their 
detection sensitivity (i.e., “binning” them by quality), then 
ascertain the localization accuracy and speed of the proposed 
method, and finally compare the overall performance with 
existing localization techniques.  Table I details the 
experimental setup used in our experiments. 

 
TABLE I 

EXPERIMENTAL SETUP DETAILS 

Type Technology Parameters 

Workstation 

CPU AMD Athlon 64 
@ 2 GHz OS WinXP 

RAM 1 GBytes Prog. 
Support C++/C# 

Hard Disk 100 GBytes API M4 LIB 

RFID 
Backend 

Reader ThingMagic M4 Protocol EPC 
Gen2 

Antenna Linear Readers 1 

Environment 

Sector  
Map Area 6 square meters Antennas 4 

Room 
Volume 41 cubic meters References 

Tags 32 

Tags Type 
EPC Gen2  

UHF passive 
tags (96 bit) 

Model 

Impinj 
“Dogbone 
Monza 3” 
93×23mm 

 
Our experiment was deployed in a rectangular region 

having an area of 6 square meters (2m × 3m).  This region was 
divided into eight equal sub-regions called “sectors”, each 
having an area of 0.75 square meters (1m × 0.75m).  
Furthermore, we divide each sector into four equal-sized sub-
sectors called “quadrants”, each having an area of 0.19 square 
meters (0.5m × 0.375m), as shown in Figure 3. 

One reference tag was placed in each quadrant, with a total 
of 32 reference tags evenly distributed throughout the entire 
region.  The tag type we used was an EPC Gen2 96-bit UHF 
passive tag, model “Dogbone Monza 3”, manufactured by 
Impinj, Inc. 

B. Binning Tags According to their Sensitivity 
Manufacturing variability can dramatically affect the 

detection sensitivity of tags (i.e., the minimum reader power-
level needed to successfully read a tag at a given location).  In 
fact, a small fraction of any commercially obtained batch of 
tags are typically even “dead” altogether. The accuracy of our 
localization methodology depends on the uniformity of the 
detection sensitivities across all tags, while the localization 
speed will increase with higher tag sensitivities.  As a pre-
processing quality-control check, we therefore tested and 
characterized the sensitivities of all the tags, to ensure that 
only tags with similar (and high) sensitivities are used in our 
localization experiments. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  The experimental region with sectors (S), quadrants (Q), reference 
tags (T), and reader antennas (R) 

 
Our experimental evaluation showed that tag sensitivity 

varied considerably across a group of 243 tags of the same 
type. We have characterized the tag sensitivities based on the 
read counts using different reader power levels. Thus, given a 
reader power level, if a tag has low read counts among its 
peers, we call it “non-sensitive”.  Similarly, tags with high 
read counts relative to their peers are labelled as “highly 
sensitive”, while tags having equal read count are called 
“equally sensitive”.  

We have performed two experiments to quantify tag 
sensitivities by varying the power levels and distances 
between the readers and the tags.  While these experiments 
used EPC Gen2 passive tags, our “tag binning” approach is 
equally applicable to other types of tags. We now describe 
these sensitivity analysis experiments in detail below. 

1)  Constant Distance / Variable Power:  In this experiment, 
a batch of four tags was positioned at a distance of 2.5 meters 
from the reader’s antenna, while the reader power level was 
varied from 25.6 dBm to 31.6 dBm, in steps of 3 dBm. We 
recorded the cumulative read counts of each tag for 60 
seconds (3 read iterations lasting 20 seconds per iteration). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  Tag senstivity measurements for constant distance / variable power 
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Figure 4 shows that 114 out of 243 tags had cumulative 
read counts of zero at 25.6 dBm, with most of the tags having 
read counts in the range of 3 to 9 (with some tags having read 
counts as high as 12).  Moreover, at a reader power level of 
28.6 dBm, most of the tags had cumulative read counts in the 
range 6 to 12.  Finally, at 31.6 dBm, the cumulative read 
counts all ranged between 5 and 12.  Tags were labelled as 
non-sensitive if they had zero cumulative read counts at a 
power level of 25.6 dBm.  Tags were labelled as non-sensitive 
at 28.6 dBm only if they were also labelled as non-sensitive at 
25.6 dBm.  Similarly, we labelled tags as highly-sensitive at 
25.6 dBm only if they were labelled as highly-sensitive at 31.6 
dBm.  

Using this process, 89 out of 243 tags were marked as 
highly-sensitive, 133 tags as equally-sensitive, and the 
remaining tags were considered to be non-sensitive. Thus, this 
experiment classified all 243 tags into three sensitivity 
categories, based on reader power levels needed for detection. 

2)  Variable Distance / Constant Power: In the second tag 
sensitivity experiment, we fixed the reader power level to 31.6 
dBm and varied the distance between the tags and the reader 
from 1.27 meters to 3.81 meters, in steps of 1.27 meters. We 
labelled tags as non-sensitive if they had low read counts at 
1.27 meters.  Tags were labelled as non-sensitive at 2.54 
meters only if they were also labelled as non-sensitive at 1.27 
meters.  Similarly, we labelled tags as highly-sensitive at 1.27 
meters only if they were also labelled as highly-sensitive at 
3.81 meters.   

This approach classified 61 out of the 243 tags as non-
sensitive, 161 tags as equally-sensitive, and 21 tags as highly-
sensitive, based on the minimum detection distances between 
the tags and the reader.  Figure 5 gives the distribution of the 
cumulative read counts of the tags, taken over the three testing 
distances, for a duration of 60 seconds each. 

     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.  Tag senstivity measurements for variable distance / constant power 

Based on the combined outcomes of these two sensitivity 
experiments, we classified 133 tags as equally-sensitive (i.e., 
by taking the intersection of the equally-sensitive tag sets 
from each experiment).  In our ensuing localization 

experiments, we selected all reference and target tags from 
this equally-sensitive tag set. 

C. Localization Accuracy and Speed 
We measured localization accuracy by determining the 

effect of the parameter Power_Step on the minimum detection 
power levels.  This is accomplished by determining for a 
given target tag, the minimum detection power levels over 
different power steps.  These measurements are given below. 

 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 6.  Power level comparison for algorithms I, II, and III  

 
Figure 6 gives the minimum detection power levels of a tag 

for four different power steps, measured using the three 
localization algorithms using two orthogonally placed 
antennas.  Algorithm I (in low-to-high LTH mode) reports the 
lowest minimum detection power level, while Algorithm III 
(in high-to-low HTL mode) yields the highest minimum 
detection power level for the same tag for all the algorithms 
and power steps.  Since localization accuracy is based on 
determining minimum detection power levels, the Algorithms 
I, II, and III are able to trade off accuracy and speed. 

The time required for localization is heavily dependent on 
the time required to detect tags. Figure 7 gives the time 
required to detect tags placed at eight random locations in the 
region for all three algorithms (using two orthogonal reader 
antennas). The data confirms our hypothesis that varying the 
power levels from high to low is typically more efficient for 
localizing tags farther away from the reader.   

While Algorithm II consistently requires less time to find 
tags, it yields sub-optimal minimum detection power level 
estimates, due to the coarser granularity of the binary search 
as compared to the linear search of Algorithm I.  Also, 
Algorithm III requires the smallest search time to find tags, 
unless the tags are placed very near to the antennas, which 
then enables Algorithm I to find them more quickly.   

Thus, by combining different algorithms, we can choose 
appropriate application-driven tradeoffs between localization 
accuracy and localization speed. 
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