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Abstract
This paper considers replication strategies for storage systems
that aggregate the disks of many nodes spread over the Internet.
Maintaining replication in such systems can be prohibitively ex-
pensive, since every transient network or host failure could po-
tentially lead to copying a server’s worth of data over the Internet
to maintain replication levels.

The following insights in designing an efficient replication al-
gorithm emerge from the paper’s analysis. First, durability can
be provided separately from availability; the former is less ex-
pensive to ensure and a more useful goal for many wide-area ap-
plications. Second, the focus of a durability algorithm must be
to create new copies of data objects faster than permanent disk
failures destroy the objects; careful choice of policies for what
nodes should hold what data can decrease repair time. Third,
increasing the number of replicas of each data object does not
help a system tolerate a higher disk failure probability, but does
help tolerate bursts of failures. Finally, ensuring that the system
makes use of replicas that recover after temporary failure is crit-
ical to efficiency.

Based on these insights, the paper proposes the Carbonite
replication algorithm for keeping data durable at a low cost. A
simulation of Carbonite storing 1 TB of data over a 365 day
trace of PlanetLab activity shows that Carbonite is able to keep
all data durable and uses 44% more network traffic than a hy-
pothetical system that only responds to permanent failures. In
comparison, Total Recall and DHash require almost a factor of
two more network traffic than this hypothetical system.

1 Introduction
Wide-area distributed storage systems typically use repli-
cation to provide two related properties: durability and
availability. Durability means that objects that an applica-
tion has put into the system are not lost due to disk failure
whereas availability means that getwill be able to return
the object promptly. Objects can be durably stored but not
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immediately available: if the only copy of an object is on
the disk of a node that is currently powered off, but will
someday re-join the system with disk contents intact, then
that object is durable but not currently available. The pa-
per’s goal is to develop an algorithm to store immutable
objects durably and at a low bandwidth cost in a system
that aggregates the disks of many Internet nodes.

The threat to durability is losing the last copy of an ob-
ject due to permanent failures of disks. Efficiently coun-
tering this threat to durability involves three main chal-
lenges. First, network bandwidth is a scarce resource in
a wide-area distributed storage system. To store objects
durably, there must be enough network capacity to cre-
ate copies of objects faster than they are lost due to disk
failure. Second, a system cannot always distinguish be-
tween transient failures and permanent disk failures: it
may waste network bandwidth by creating new copies
during transient failures. Third, after recovery from tran-
sient failures, some replicas may be on nodes that the
replica lookup algorithm does not query and are thus ef-
fectively lost.

Since transient failures are common in wide-area sys-
tems, replication algorithms can waste bandwidth by mak-
ing unneeded replicas. For example, the initial replica-
tion algorithm [6] that the DHash distributed hash table
(DHT) [9] turned out to be inadequate to build storage ap-
plications such as UsenetDHT [34], Antiquity [11], and
OverCite [35, 36].

A problem with DHash was that its design was driven
by the goal of achieving 100% availability; this decision
caused it to waste bandwidth by creating new replicas in
response to temporary failures. Its design and similar ones
(such as Total Recall [3]) are overkill for durability. Fur-
thermore, users of many Internet applications can tolerate
some unavailability. For example, Usenet readers will see
all articles eventually, as long as they are stored durably.
Our experience with these DHT applications has led us to
the following insights:

• Durability is a more practical and useful goal than
availability for applications that store objects (as op-
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posed to caching objects).

• The main goal of a durability algorithm should be to
create new copies of an object faster than they are
destroyed by disk failures; the choice of how repli-
cas are distributed among nodes can make this task
easier.

• Increasing the replication level does not help tolerate
a higher average permanent failure rate, but it does
help cope with bursts of failures.

• Reintegrating returning replicas is key to avoiding
unnecessary copying.

Using these insights we have developed Carbonite, an
efficient wide-area replication algorithm for keeping ob-
jects durable. After inserting a set of initial replicas, Car-
bonite begins by creating new replicas mostly in response
to transient failures. However, over time it is increasingly
able to ignore transient failures and approaches the goal of
only producing replicas in response to permanent failures.

Carbonite’s design assumes that the disks in the dis-
tributed storage system fail independently of each other:
failures of geographically distributed hard drives from dif-
ferent manufacturers are likely to be uncorrelated.

In a year-long PlanetLab failure trace, however, we ob-
serve some correlated failures because of coordinated re-
installs of the PlanetLab software. Despite this, an evalua-
tion using the PlanetLab failure trace shows that Carbonite
is able to keep 1 TB of data durable, and consumes only
44% more network traffic than a hypothetical system that
only responds to permanent failures. In comparison, To-
tal Recall and DHash require almost a factor of two more
network traffic than this hypothetical system.

The rest of this paper explains our durability models
and algorithms, interleaving evaluation results into the ex-
planation. Section 2 describes the simulated evaluation
environment. Section 3 presents a model of the relation-
ship between network capacity, amount of replicated data,
number of replicas, and durability. Section 4 explains
how to decrease repair time, and thus increase durabil-
ity, by proper placement of replicas on servers. Section 5
presents an algorithm that reduces the bandwidth wasted
making copies due to transient failures. Section 6 outlines
some of the challenges that face practical implementations
of these ideas, Section 7 discusses related work, and Sec-
tion 8 concludes.

2 System environment
The behavior of a replication algorithm depends on the
environment in which it is used: high disk failure rates or
low network access link speeds make it difficult for any
system to maintain durability. We will use the character-
istics of the PlanetLab testbed as a representative environ-
ment when evaluating wide-area replication techniques.

Dates 1 March 2005 – 28 Feb 2006
Number of hosts 632
Number of transient failures 21255
Number of disk failures 219
Transient host downtime (s) 1208, 104647, 14242
Any failure interarrival (s) 305, 1467, 3306
Disk failures interarrival (s) 54411, 143476, 490047

(Median/Mean/90th percentile)

Table 1: CoMon+PLC trace characteristics.

For explanatory purposes, we will also use a synthetic
trace that makes some of the underlying trends more vis-
ible. This section describes both environments, as well as
the simulator we used to evaluate our algorithm.

2.1 PlanetLab characteristics
PlanetLab is a large (> 600 node) research testbed [28]
with nodes located around the world. We chose this
testbed as our representative environment mainly because
it is a large, distributed collection of machines that has
been monitored for long periods; we use this monitoring
data to construct a realistic trace of failures in a mostly
managed environment.

The main characteristics of PlanetLab that interest us
are the rates of disk and transient failures. We use histor-
ical data collected by the CoMon project [25] to identify
transient failures. CoMon has archival records collected
on average every 5 minutes that include the uptime as re-
ported by the system uptime counter on each node. We
use resets of this counter to detect reboots, and we esti-
mate the time when the node became unreachable based
on the last time CoMon was able to successfully contact
the node. This allows us to pinpoint failures without de-
pending on the reachability of the node from the CoMon
monitoring site.

We define a disk failure to be any permanent loss of
disk contents, due to disk hardware failure or because its
contents are erased accidentally or intentionally. In or-
der to identify disk failures, the CoMon measurements
were supplemented with event logs from PlanetLab Cen-
tral [28]. This database automatically records each time
a PlanetLab node is reinstalled (e.g., for an upgrade, or
after a disk is replaced following a failure). The machine
is then considered offline until the machine is assigned a
regular boot state in the database. Table 1 summarizes the
statistics of this trace. Figure 7(a) visualizes how transient
and disk failures accumulate over time in this network.

2.2 Synthetic trace
We also generated synthetic traces of failures by drawing
failure inter-arrival times from exponential distributions.
Synthetic traces have two benefits. First, they let us sim-
ulate longer time periods, and second, they allow us to
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increase the failure density, which makes the basic under-
lying trends more visible. We conjecture that exponential
inter-failure times are a good model for disks that are in-
dependently acquired and operated at geographically sep-
arated sites; exponential intervals are possibly not so well
justified for transient failures due to network problems.

Each synthetic trace contains 632 nodes, just like the
PlanetLab trace. The mean session time and downtime
match the values shown in Table 1; however, in order to
increase the failure density, we extended the length to two
years and reduced the average node lifetime to one year.
Each experiment was run with ten different traces; the fig-
ures show the averages from these experiments.

2.3 Simulation
We use the failure traces to drive an event-based simu-
lator. In the simulator, each node has unlimited disk ca-
pacity, but limited link bandwidth. However, it assumes
that all network paths are independent so that there are
no shared bottlenecks. Further it assumes that if a node is
available, it is reachable from all other nodes. This is oc-
casionally not the case on PlanetLab [14]; however, tech-
niques do exist to mask the effects of partially unreachable
nodes [1].

The simulator takes as input a trace of transient and
disk failure events, node repairs and object insertions. It
simulates the behavior of nodes under different protocols
and produces a trace of the availability of objects and the
amount of data sent and stored by each node for each hour
of simulated time. Each simulation calls put with 50,000
data objects, each of size 20 MB. Unless otherwise noted,
each node is configured with an access link capacity of
150 KBytes/s, roughly corresponding to the throughput
achievable under the bandwidth cap imposed by Planet-
Lab. The goal of the simulations is to show the percent-
age of objects lost and the amount of bandwidth needed
to sustain objects over time.

3 Understanding durability
We consider the problem of providing durability for a stor-
age system composed of a large number of nodes spread
over the Internet, each contributing disk space. The sys-
tem stores a large number of independent pieces of data.
Each piece of data is immutable. The system must have
a way to name and locate data; the former is beyond the
scope of this work, while the latter may affect the possi-
ble policies for placing replicas. While parts of the system
will suffer temporary failures, such as network partitions
or power failures, the focus of this section is on failures
that result in permanent loss of data. Section 5 shows how
to efficiently manage transient failures; this section de-
scribes some fundamental constraints and challenges in
providing durability.

3.1 Challenges to durability
It is useful to view permanent disk and node failures as
having an average rate and a degree of burstiness. To pro-
vide high durability, a system must be able to cope with
both.

In order to handle some average rate of failure, a high-
durability system must have the ability to create new repli-
cas of objects faster than replicas are destroyed. Whether
the system can do so depends on the per-node network
access link speed, the number of nodes (and hence ac-
cess links) that help perform each repair, and the amount
of data stored on each failed node. When a node n fails,
the other nodes holding replicas of the objects stored on n
must generate replacements: objects will remain durable
if there is sufficient bandwidth available on average for the
lost replicas to be recreated. For example, in a symmetric
system each node must have sufficient bandwidth to copy
the equivalent of all data it stores to other nodes during its
lifetime.

If nodes are unable to keep pace with the average fail-
ure rate, no replication policy can prevent objects from
being lost. These systems are infeasible. If the system is
infeasible, it will eventually “adapt” to the failure rate by
discarding objects until it becomes feasible to store the re-
maining amount of data. A system designer may not have
control over access link speeds and the amount of data to
be stored; fortunately, choice of object placement can im-
prove the speed that a system can create new replicas as
discussed in Section 4.

If the creation rate is only slightly above the average
failure rate, then a burst of failures may destroy all of an
object’s replicas before a new replica can be made; a sub-
sequent lull in failures below the average rate will not help
replace replicas if no replicas remain. For our purposes,
these failures are simultaneous: they occur closer together
in time than the time required to create new replicas of
the data that was stored on the failed disk. Simultaneous
failures pose a constraint tighter than just meeting the av-
erage failure rate: every object must have more replicas
than the largest expected burst of failures. We study sys-
tems that aim to maintain a target number of replicas in
order to survive bursts of failure; we call this target rL.

Higher values of rL do not allow the system to survive a
higher average failure rate. For examples, if failures were
to arrive at fixed intervals, then either rL = 2 would always
be sufficient, or no amount of replication would ensure
durability. If rL = 2 is sufficient, there will always be time
to create a new replica of the objects on the most recently
failed disk before their remaining replicas fail. If creating
new replicas takes longer than the average time between
failures, no fixed replication level will make the system
feasible; setting a replication level higher than two would
only increase the number of bytes each node must copy in
response to failures, which is already infeasible at rL = 2.
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Figure 1: A continuous time Markov model for the pro-
cess of replica failure and repair for a system that main-
tains three replicas (rL = 3). Numbered states correspond
to the number of replicas of each object that are durable.
Transitions to the left occur at the rate at which repli-
cas are lost; right-moving transitions happen at the replica
creation rate.

3.2 Creation versus failure rate
It might seem that any creation rate higher than the av-
erage failure rate will lead to an unbounded number of
replicas, thus satisfying the burst constraint. However, this
intuition is false. To see why, let us model the number of
replicas of an object as a birth-death process using a con-
tinuous time Markov chain, which assumes independent
exponential inter-failure and inter-repair times. This as-
sumption is reasonable for independent disk failures.

An object is in state i when i disks hold a replica of the
object. There are thus rL + 1 possible states, as we start
with rL replicas and only create new replicas in response
to failures. From a given state i, there is a transition to
state i+ 1 with rate µi corresponding to repair, except for
state 0 which corresponds to loss of durability and state
rL which does not need repair. The actual rate µi depends
on how bandwidth is allocated to repair and may change
depending on the replication level of an object. There is a
transition to the next lower state i−1 with rate iλ f because
each of the i nodes holding an existing replica might fail.
Figure 1 shows this model for the case where rL = 3.

This model can be analyzed numerically to shed light
on the impact of rL on the probability of data loss; we will
show this in Section 3.3. However, to gain some intuition
about the relationship between creation and failure rates
and the impact this has on the number of replicas that can
be supported, we consider a simplification of Figure 1 that
uses a fixed µ but repairs constantly, even allowing for
transitions out of state 0. While these changes make the
model less realistic, they turn the model into an M/M/∞
queue [19] where the “arrival rate” is the repair rate and
the “service rate” is the per-replica failure rate. The “num-
ber of busy servers” is the number of replicas: the more
replicas an object has, the more probable it is that one of
them will fail.

This simplification allows us to estimate the equilib-
rium number of replicas: it is µ/λ f . Given µ and λ f , a

system cannot expect to support more than this number of
replicas. For example, if the system must handle coinci-
dental bursts of five failures, it must be able to support at
least six replicas and hence the replica creation rate must
be at least 6 times higher than the average replica fail-
ure rate. We will refer to µ/λ f as θ . Choices for rL are
effectively limited by θ . It is not the case that durability
increases continuously with rL; rather, when using rL > θ ,
the system provides the best durability it can, given its re-
source constraints. Higher values of θ decrease the time
it takes to repair an object, and thus the ‘window of vul-
nerability’ during which additional failures can cause the
object to be destroyed.

To get an idea of a real-world value of θ , we estimate µ
and λ f from the historical failure record for disks on Plan-
etLab. From Table 1, the average disk failure inter-arrival
time for the entire test bed is 39.85 hours. On average,
there were 490 nodes in the system, so we can estimate the
mean time between failures for a single disk as 490 ·39.85
hours or 2.23 years. This translates to λ f ≈ 0.439 disk fail-
ures per year.

The replica creation rate µ depends on the achiev-
able network throughput per node, as well as the amount
of data that each node has to store (including replica-
tion). PlanetLab currently limits the available network
bandwidth to 150 KB/s per node, and if we assume that
the system stores 500 GB of unique data per node with
rL = 3 replicas each, then each of the 490 nodes stores
1.5 TB. This means that one node’s data can be recreated
in 121 days, or approximately three times per year. This
yields µ ≈ 3 disk copies per year.

In a system with these characteristics, we can estimate
θ = µ/λ f ≈ 6.85, though the actual value is likely to be
lower. Note that this ratio represents the equilibrium num-
ber of disks worth of data that can be supported; if a disk
is lost, all replicas on that disk are lost. When viewed in
terms of disk failures and copies, θ depends on the value
of rL: as rL increases, the total amount of data stored per
disk (assuming available capacity) increases proportion-
ally and reduces µ . If λ f = µ , the system can in fact main-
tain rL replicas of each object.

To show the impact of θ , we ran an experiment with
the synthetic trace (i.e., with 632 nodes, a failure rate of
λ f = 1 per year and a storage load of 1 TB), varying the
available bandwidth per node. In this case, 100 B/s cor-
responds to θ = 1.81/rL. Figure 2 shows that, as θ drops
below one, the system can no longer maintain full repli-
cation and starts operating in a ‘best effort’ mode, where
higher values of rL do not give any benefit. The exception
is if some of the initial rL replicas survive through the en-
tire trace, which explains the small differences on the left
side of the graph.
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Figure 2: Average number of replicas per object at the
end of a two-year synthetic trace for varying values of
θ , which varies with bandwidth per node (on the x-axis)
and total data stored (rL). Where θ < 1, the system cannot
maintain the full replication level; increasing rL further
does not have any effect.

3.3 Choosing rL

A system designer must choose an appropriate value of
rL to meet a target level of durability. That is, for a given
deployment environment, rL must be high enough so that
a burst of rL failures is sufficiently rare.

One approach is to set rL to one more than the max-
imum burst of simultaneous failures in a trace of a real
system. For example, Figure 3 shows the burstiness of
permanent failures in the PlanetLab trace by counting the
number of times that a given number of failures occurs
in disjoint 24 hour and 72 hour periods. If the size of a
failure burst exceeds the number of replicas, some objects
may be lost. From this, one might conclude that 12 repli-
cas are needed to maintain the desired durability. This
value would likely provide durability but at a high cost.
If a lower value of rL would suffice, the bandwidth spent
maintaining the extra replicas would be wasted.

There are several factors to consider in choosing rL to
provide a certain level of durability. First, even if failures
are independent, there is a non-zero (though small) proba-
bility for every burst size up to the total number of nodes.
Second, a burst may arrive while there are fewer than rL
replicas. One could conclude from these properties that
the highest possible value of rL is desirable. On the other
hand, the simultaneous failure of even a large fraction of
nodes may not destroy any objects, depending on how the
system places replicas (see Section 4). Also, the workload
may change over time, affecting µ and thus θ .

The continuous time Markov model described in Fig-
ure 1 reflects the distributions of both burst size and object
replication level. The effect of these distributions is signif-
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Figure 3: Frequency of “simultaneous” failures in the
PlanetLab trace. These counts are derived from breaking
the trace into non-overlapping 24 and 72 hour periods and
noting the number of permanent failures that occur in each
period. If there are x replicas of an object, there were y
chances in the trace for the object to be lost; this would
happen if the remaining replicas were not able to respond
quickly enough to create new replicas of the object.

icant. An analysis of the governing differential equations
can be used to derive the probability that an object will be
at a given replication level after a given amount of time. In
particular, we can determine the probability that the chain
is in state 0, corresponding to a loss of durability.

We show the results of such an analysis in Figure 4; for
details, see [7]. To explore different workloads, we con-
sider different amounts of data per node. The graph shows
the probability that an object will survive after four years
as a function of rL and data stored per node (which affects
the repair rate and hence θ ).

As rL increases, the system can tolerate more simulta-
neous failures and objects are more likely to survive. The
probability of object loss at rL = 1 corresponds to using no
replication. This value is the same for all curves since it
depends only on the lifetime of a disk; no new replicas can
be created once the only replica of the object is lost. To
store 50 GB durably, the system must use an rL of at least
3. As the total amount of data increases, the rL required to
attain a given survival probability also increases. Experi-
ments confirm that data is lost on the PlanetLab trace only
when maintaining fewer than three replicas.

4 Improving repair time
This section explores how the system can increase dura-
bility by replacing replicas from a failed disk in parallel.
In effect, this reduces the time needed to repair the disk
and increases θ .

Each node, n, designates a set of other nodes that can
potentially hold copies of the objects that n is responsible
for. We will call the size of that set the node’s scope, and
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