
A Survey of Peer-to-Peer Storage Techniques for Distributed File Systems

Ragib Hasan
‡†

 Zahid Anwar
‡†

 William Yurcik
‡
 Larry Brumbaugh

‡
 Roy Campbell

†

‡
National Center for Supercomputing Applications

†
Department of Computer Science

University of Illinois at Urbana Champaign

{rhasan,anwar, byurcik, ljbrumb}@ncsa.uiuc.edu, roy@cs.uiuc.edu

Abstract

The popularity of distributed file systems continues

to grow. Reasons they are preferred over traditional

centralized file systems include fault tolerance,

availability, scalability and performance. In addition,

Peer-to-Peer (P2P) system concepts and scalable

functions are being incorporated into the domain of

file systems. This survey paper explores the design

paradigms and important issues that relate to such

systems and discusses the various research activities in

the field of Distributed Peer- to-Peer file systems.

1. Introduction

In the recent years, Peer-to-Peer system research

has grown significantly. Using a large scale distributed

network of machines has become an important element

of distributed computing due to the phenomenal

popularity of Peer-to-Peer (P2P) services like Napster

[19], Gnutella [10], Kazaa [14] and Morpheus [17].

Though these systems are more famous for file-

sharing, and related legal problems, P2P systems are

becoming a very promising and exciting area of

research. P2P systems offer a decentralized, self-

sustained, scalable, fault tolerant and symmetric

network of machines providing an effective balancing

of storage and bandwidth resources.

File Systems have been a basic element of Systems

research. Efforts have focused on providing a stable,

reliable, efficient central storage system with certain

performance constraints. Experience has shown that a

distributed approach is better for achieving these goals.

Early efforts included SUN NFS, CODA, Plan 9, XFS

and SFS. Initial efforts emphasized sharing data in a

secure and reliable way. Important features of these

systems included a client-server architecture that was

fundamental to their design caching, replication and

availability.

Internet growth resulted in a new approach, the

building of distributed file system. As the host nodes

storing the shared objects became more geographically

distributed and diverse, new criteria and performance

constraints like availability, fault tolerance, security,

robustness and location mechanisms became important

issues in designing distributed file systems.

In recent years, P2P systems have emerged as a

viable architecture for implementing distributed file

systems. In a P2P network, end users share resources

via direct exchange between computers. Information is

distributed among the member nodes instead of

concentrated at a single server. A pure peer-to-peer

system is a distributed system without centralized

control, where the software running at each node is

equivalent in functionality. A P2P system should be

highly scalable, available, distributed and more or less

symmetric. The attractive properties of a Peer-to-Peer

architecture have generated many research efforts in

building distributed P2P file systems. Because of the

success in this area, P2P systems are almost certain to

become a major part of current and future research

activities in file systems. This survey paper attempts to

explore the inherent properties of such systems and

analyze the characteristics of some major distributed

P2P file systems. Also, the comparative advantage and

disadvantages of each system are discussed in detail.

The rest of the paper is organized as follows:

Section 2 discusses the benefits of using P2P systems

over other distributed storage mechanisms. Section 3

explores design issues and desired properties of

distributed P2P file systems. Section 4 identifies major

research distributed P2P file systems, analyzing their

comparative suitability depending upon selected

criteria. Section 5 presents an analysis of the open

problems. A summary and conclusions follow in

Section 6.

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’05)
0-7695-2315-3/05 $ 20.00 IEEE

CSCO-1034
Page 1 of 9

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

2. Justification of Using P2P Architecture

for File System Design

The term Peer-to-Peer refers to a class of systems

and applications that employ distributed resources to

perform a function in a decentralized manner. Each

node potentially has the same responsibility. Shared

items can include CPU cycles (SETI@Home) or

Storage space (Napster [19], Gnutella [10], OceanStore

[15]).

Basic P2P system goals are decentralization, ad hoc

connectivity, reduced cost of ownership and

anonymity. P2P has more decentralized control and

data compared to alternatives. P2P is potentially more

scalable than centralized and client-server solutions.

The basic defining feature of a P2P system is that it is

characterized by direct access between peer computers,

not through a centralized server.

Androutsellis-Theotokis et al. [2] defined P2P as

“applications that take advantage of resources (storage,

cycles, content, human presence) available at the edges

of the Internet.” According to [2], “the “litmus test'”

for P2P is:

• Does it treat variable connectivity and temporal

network addresses as the norm?

• Does it give the nodes at the edges of the network

significant autonomy?"

In lieu of the above definition, a noticeable

characteristic of P2P systems is that they have

interesting self-organizing capacity, in that the

topology of a P2P network can often change as nodes

enter or leave the system. Important issues in a P2P

system are considerably different than in traditional

distributed systems, However, P2P systems provide

certain advantages over conventional file systems that

justify their usage in building distributed file system.

For example, compared to the client-server model, P2P

systems provide inherent scalability and availability of

resources. They take advantage of the redundancy of

the resources and construct a coherent view of the

system using decentralized, independent components.

The diverse nature of P2P systems and the large-scale

distributed structure ensures the fault tolerance and

resolute nature of P2P systems as compared with client

server systems. The sheer number of nodes

participating in P2P architecture contributes to

advantage such as being adaptable, scalable and self-

organizing. These essential features contrast distinctly

with traditional client-server approaches that are

limited by their lack of scalability and robustness in

cases of component failures.

To make ubiquitous computing become a reality,

the computing devices must become reliable, resilient

and have distributed access to data. With this view in

mind, the P2P system architecture appears to be most

suitable to ensure the changing storage requirements of

next-generation computing. The P2P architecture can

help reduce storage system costs and allow cost

sharing by using existing infrastructures and bundling

resources from different sites. Resource aggregation

adds value beyond the mere accumulation of resources

and provides a rich, robust platform on which to build

persistent storage systems. Considering all these

factors, the P2P model should be very useful in

designing the future generation distributed file

systems.

3. Design Issues in P2P File Systems

Peer-to-Peer systems have basic properties that

separate them from conventional distributed systems.

Inherently, P2P systems are loosely coupled, and no

performance guarantee can be provided; but the system

as a whole contains common characteristics that affect

its behavior in varying circumstances. This section

discusses different design issues of a P2P file system

and the potential effect of the issues on performance.

3.1 Symmetry

P2P systems are characterized by symmetry among

the roles of the participating nodes. It assumes no

special capability of certain nodes that would mark

them separate from the rest of the nodes. Conventional

client-server systems are asymmetric and the servers

are often more powerful than the clients. However, in

P2P systems, all peers are symmetric. They have the

ability to function both as a client and a server.

3.2 Decentralization

P2P systems are decentralized by nature. Hence,

P2P systems have mechanisms supporting distributed

storage, processing, information sharing, etc. This

allows increased extensibility, resilience to faults and

higher system availability [16]. However, getting a

global view of the system state is difficult. Also,

system behavior no longer remains deterministic.

Another problem is the issue of joining a group and

discovering the peers belonging to that group.

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’05)
0-7695-2315-3/05 $ 20.00 IEEE

Page 2 of 9f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

3.3 Operation with Unmanaged Volunteer

Participants

An important P2P design issue is that the

participation of a given element can neither be

expected nor enforced. System elements and storage

nodes are not managed by any centralized authority.

They are assumed to be prone to failure and removed

from the system at any time. The system should be

robust enough to survive the removal or failure of

nodes at any moment.

3.4 Fast Resource Location

One of the most important P2P design issues is the

method used for resource location. As resources are

distributed in diverse peers, an efficient mechanism for

object location becomes the deciding factor in the

performance of such systems. The mechanism should

be capable of adapting to a changing network topology.

Contrary to the P2P concept, Napster uses a

centralized directory of object locations that proves to

be a bottleneck. Gnutella [10] incorporates object

location using non-scalable flooding. Elaborate

schemes have been developed to solve this problem

efficiently. Notable currently used object location and

routing systems include Chord [26], Pastry [24],

Tapestry [27] and CAN [23]. Pastry and Tapestry uses

Plaxton [22] trees, basing their routing on address

prefixes. This approach is a generalization of

hypercube routing. However, Pastry and Tapestry add

robustness, dynamism and self-organizing properties to

the Plaxton scheme. Chord [26] uses the numerical

difference with the destination address to route

messages. This is unlike Pastry [24] or Tapestry [27]

that use successively longer address prefixes with the

destination. The Content Addressable Network or

CAN [23] uses a d-dimensional space to route

messages; with each node maintaining a O(d) sized

routing table and any node within O(dN1/d) hops and

the routing table does not grow with network size.

An important location strategy used in several

systems is Distributed Hash Table (DHT). It uses

hashing of file or resource names to locate the object.

Kelips [12] is a DHT based system, which has the

advantage of being efficient and scalable as well as

using O(n1/2) space per node and O(1) lookup times.

3.5 Load Balancing

Load balancing is an important issue in building

robust P2P file systems. The system should be able to

make optimal distribution of resources based on

capability and availability of node resources. The

system should have mechanisms for preventing the

build up of hotspots, locations where the load is

disproportionately high. Also, it should be possible to

rebalance the system based on usage patterns.

3.6 Churn Protection

Churn describes the fast oscillations in the P2P

system caused by the rapid joining and leaving of

nodes. It occurs when there is a node failure and

corresponding joining of new nodes at the same time.

Churn causes reduced performance in any distributed

system. One form of a denial of service attack is to

introduce churn in a system. Hence, a P2P distributed

file system should be able to resist the churn effect.

3.7 Anonymity

In a distributed storage system, anonymity is an

important issue to ensure resistance to censorship.

There is need for resistance to attempts by third parties

to deny access to information and provide anonymity

for both the producers and consumers of information.

3.8 Scalability

Scalability implies the ability of the system to

support millions of peers into a peer-to-peer system.

Traditional distributed systems usually are not scalable

beyond a few hundreds or thousands of nodes.

3.9 Persistence of Information

A P2P system should be able to provide persistent

access to data. Methods should be present to ensure

that even in the case of untrusted peers, the data stored

in the system is safe, protected against destruction, and

highly available in a transparent manner.

3.10 Security

Security from attacks and system failure are design

goals for every system. P2P systems are built on

unmanaged, geographically distributed hosts and data

security is the systems responsibility. Encryption,

different coding schemes, etc can help achieve this.

4. Some Existing Systems

Designing a P2P file system that can implement all

the properties described in Section 3 is exceedingly

difficult. Recently, a number of efforts have been made

to achieve most of the goals. However, most of these

systems utilize specific properties or mechanisms and

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’05)
0-7695-2315-3/05 $ 20.00 IEEE

Page 3 of 9f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

specialize in particular fields. This section discusses

some existing P2P based distributed file systems.

4.1 FreeNet

Freenet [3,7] is an adaptive peer-to-peer file system

that enables the publication, replication and retrieval of

data while protecting the anonymity of the authors,

data location and the readers. It uses probabilistic

routing to preserve the anonymity of its users, data

publishers, and data hosts. Basically, Freenet operates

as a location-independent distributed file system across

many individual computers that allow files to be

inserted, stored and requested anonymously. The

design goals of Freenet are: anonymity; deniability for

the storers of information; resistance to 3rd party

access; dynamic storage and routing; and decentralized

policy.

4.1.2 Location and Access Mechanisms Freenet

identifies files by keys obtained through a hash

function, Current implementations of Freenet use 160

bit SHA1 cryptographic function as the hashing

method. The key may be keyword signed key (KSK),

Signed Subspace key (SSK) or Content Hash Key

(CHK). Using any of the hash mappings, the source of

the search sends queries. The query may be locally

processed, or on failure may be routed to the

lexicographically closest matching node according to

the routing table. Communications by Freenet nodes

are encrypted and are routed through other nodes to

make it extremely difficult to determine who is

requesting the information and what its content is.

On receipt of an insert request, a node first checks

its own storage to see whether the key is already taken.

In case of collisions, the user tries again using a

different key. If the key is not found, the node looks up

the nearest key in its routing table and forwards the

insert request to the corresponding node that

propagates through the nodes until the hops-to-live

limit is reached. If there is no key collision, a success

message is propagated back to the original sender. The

data follows along the path established and is stored in

nodes along the way. Data is stored in an LRU fashion

and older unused information gradually fades away.

 Table 1. Freenet Tradeoffs

Advantages Disadvantages

Freenet attempts to provide

anonymity both for producers

and consumers of information.

Anonymity requirements limit

reliability and performance, since

the probabilistic routing
mechanism stops forming of any

coherent topology among servers.

Performance analysis shows: as
the network converges, median

An unpopular file might
disappear from the network if all

request path length drops. nodes decide to drop its copies.

Network is scalable up to a
million nodes with a median

path length of just 30.

Dictionary attacks to modify of
requested files en route is

possible for files stored under

keyword-signed keys.

Replicate popular data items
transparently near requesting

node. With time, the network

routing learns and remembers
requests for better performance.

Denial-of-Service attack through
insertion of a large number of

junk files.

The network is robust against

quite large failures.

The flat namespace produces

globally unique identifiers and
versioning might become a

problem as the system grows

The popularity of each site's

material causes the system to
actually alter its topology

Suffers from problems of

establishing initial network
connection.

Hashing renders Freenet

unusable for random searches

No search mechanism. A

standard search allows attacks to
take out specific content holders

Rewards popular material and

allows unpopular material to

disappear quietly.

Scalability, resilience testing in a

real world scenario is lacking.

4.2 CFS

Cooperative File System (CFS) [5] is a peer-to-peer

read only storage system developed at MIT with the

following design goals: provable guarantee for

efficiency, robustness, load balancing and scalability.

4.2.1 Mechanism. CFS uses Distributed Hash table

(Dhash) for storage of blocks. The file system is

designed as a set of blocks distributed over the CFS

servers. A file is divided into constituent blocks that

are stored among different nodes. CFS has 3 layers: FS

which interprets blocks as files and presents a file

system interface to applications, DHash, distributed

hash table that stores unstructured data blocks reliably

and Chord [26] which maintains routing tables for

lookup and query management

CFS is a read only system from the perspective of

the users. However, the publishers can update their

work. Key based authentication is used.

Table 2. CFS Tradeoffs

Advantages Disadvantages

Quota on publishers provides a

security advantage

Maintaining a single file in many

blocks introduce overhead of
fetching the blocks

Dividing a large file into

chunks removes the problem
that one node may not have the

capacity to store the whole file

To enhance performance, CFS

sacrifices anonymity. So, it does
not provide the same censorship-

resistance as Freenet

Caching and replications

decreases response time

Usage of Chord allows

logarithmic lookup times

Distributed storage of a file
allows parallel block retrieval

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’05)
0-7695-2315-3/05 $ 20.00 IEEE

Page 4 of 9f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

4.3 PAST

PAST [25] is a large scale P2P persistent storage

management system. It is comprised of self-organizing,

Internet Based overlay network of storage nodes which

route file queries in a cooperative manner, perform

replica storage and caching.

4.3.1 Mechanism. PAST is built on top of the Pastry

[24] lookup system. The nodes form an overlay

network. A 128-bit node identifier that is assigned

quasi-randomly uniquely identifies each node. This

uniformly chosen random identifier ensures load

balancing. Files also have a file id that is a SHA-1 hash

of the file name and the public key of the client. The

Pastry layer handles the lookup requests. Replications

enable fast lookup and transmission. To retrieve a file,

a client uses its fileID, and in some cases, the

decryption key. For the client, PAST provides three

main sets of operations.

• Insert: store a file replicated k times, k being a

user specified number,

• Lookup: reliably retrieve a copy of the file

identified by fileId if it exists in the PAST

• Reclaim: reclaim the storage occupied by k

copies of the file.

4.3.2 Security using Smart-Cards. The system uses

smart-card key based techniques for security, load

balancing and free storage re-allocation by replica

diversion.

Table 3. PAST Tradeoffs

Advantages Disadvantages

There is no restriction that

Pastry must to be used. Due to

modular design, Chord, CAN
or others can also be used.

PAST stores a single large file

without breaking it into smaller

chunks (as in CFS). This is not

efficient or fault tolerant.
Files in PAST are immutable,

so multiple files cannot have

the same fileId.

PAST is an archive and storage

system, rather than a general-

purpose file system utility.

Smart cards are not used in
other systems.

4.4 IVY

IVY [18] is a read/write peer-to-peer file systems

that is distributed and decentralized and able to support

multiple users concurrently. The system is based on a

set of logs and the DHash distributed hash. It provides

an NFS-like file system view to the users, while at the

same time; it can detect conflicting modifications and

recover from network failure.

4.4.1 Mechanism. The IVY file system is based on a

set of logs that each participant keeps to record the

changes made to the system. Each user scans and

synchronizes the logs. Snapshot mechanisms prevent

scanning of all but the most recent log. The logs are

themselves stored in DHash. IVY overcomes the

overhead of multiple accesses and locking. It also uses

version vectors for synchronization. Integrity of each

block is ensured by either content hash key or public

key. Since logs are stored indefinitely, recovery is

always possible in case of network partitions. The total

system state is a composite of all the individual logs.

Periodically, each participant takes snapshots to avoid

future scanning of the entire log.

Table 4. IVY Tradeoffs
Advantages Disadvantages

It enables writing with reading.

Other systems discussed so far
seem to be read only systems.

Slow. Ivy is 2 to 3 times slower

than NFS [18]

No need for explicit trust

between the hosts

Conflicting log records

generated. Explicit conflict
resolution tools have to be used.

4.5 OceanStore

OceanStore [15] is a proposed system to provide

distributed access to persistent nomadic data in a

uniform global scenario. It is designed using a

cooperative utility model in which consumers pay the

service providers certain fees to ensure access to

persistent storage. The service providers in turn use

utility model to form agreement and resource sharing.

Data stored in OceanStore

4.5.1 Mechanism. Using mainly untrusted servers,

OceanStore caches data anywhere in the network, with

encryption. This provides high availability and

prevention of denial-of-service type of attacks.

Persistent objects are uniquely identified by a Global

ID (GUID) and are located by either a non-

deterministic but fast algorithm (Attenuated Bloom

Filters) or a slower deterministic algorithm (Modified

Plaxton Trees [22]). OceanStore uses ACL for

restricting write access to data, while read access is

available with the key. Updates are achieved using the

Byzantine agreement protocol between the primary

replica and the secondaries. For high performance,

OceanStore also provides self-monitoring introspection

mechanisms for data migration based on access

patterns. This is also used to detect clusters and

improve routing performance.

Table 5. OceanStore Tradeoffs

Advantages Disadvantages

It is suitable for ubiquitous The system is still in the

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’05)
0-7695-2315-3/05 $ 20.00 IEEE

Page 5 of 9f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

