
versian
5 .2

Marshall Kirk McKusick
George V. Nevill -Neil

CSCO-1011
Page 1 of 43

LIBRARY OF CONGRESS

Already widely used for Internet services and firewalls, high-availability
servers, and general timesharing systems, the lean quality of
FreeBSD also suits the growing area of embedded systems. Unlike
Linux, FreeBSD does not require users to publicize any changes they

make to the source code.

111111111111111111111111 11l11l11i11i11il
9 780201 702453

ISBN 0-201-70245-2

$59.99 us
$86. 99 CANADA

Page 2 of 43

Page 3 of 43

Q

:5=83:.5.—51753.533=3$33:9333...min...
Page 3 of 43

Page 4 of 43

Page 4 of 43

Page 5 of 43

2%:

ownlvnalmx...

Page 5 of 43

Page 6 of 43

_. [a

Page 6 of 43

The Design and Implementation of the

Free BSD
Operating System

Marshall Kirk McKusick 1,

George V. Neville-Neil

.,,,6T Addison-Wesley

Boston • San Francisco • New York • Toronto • Montreal
London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Page 7 of 43

UNIX is a registered trademark of X/Open in the United States and other countries. Many
of the designations used by manufacturer and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and Addison-Wesley
was aware of a trademark claim, the designations have been printed with initial capital let-

ters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis
sions. No liability is assumed for incidental or consequential damages in connection with
or arising out o -of-the information or programs contained herein.

McKusick, Mars all Kirk.
The design and implementation of the FreeBSD operating system I Marshall

Kirk McKusick, George V. Neville-Neil.
p. cm.

Includes bibliographical references and index.
ISBN 0-201-70245-2 (he: alk. paper)
1. FreeBSD. 2. Free computer software. 3. Operating systems

(Computers) I. Neville-Neil, George V. II. Title.

QA 76.76.063M398745 2004
005.3--dc22

Copyright © 2005 by Pearson Education, Inc.

2004010590

All rights reserved. No part of this publication may be reproduced, stored in a retrieval sys
tem, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher. Printed in the United
States of America. Published simultaneously in Canada.

For information on obtaining permission for use of material from this work, please submit a
written request to:

Pearson Education, Inc.
Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116
Fax: (617) 848-7047

Text printed on recycled and acid-free paper.
ISBN 0-201-70245-2
123 4 5 6 7 8 9 10-CRW-0807060504
First Printing, July 2004

Page 8 of 43

. I -

Dedication

This book is dedicated to the BSD community.
Without the contributions of that community's members,

there would be nothing about which to write.

Page 9 of 43

Page 10 of 43

Page 10 of 43

Preface

This book follows the earlier authoritative and full-length descriptions of the
design and implementation of the 4.3BSD and 4.4BSD versions of the UNIX sys
tem developed at the University of California at Berkeley. Since the final
Berkeley release in 1994, several groups have continued development of BSD.
This book details FreeBSD, the system with the largest set of developers and the
most widely distributed releases. Although the FreeBSD distribution includes
nearly 1000 utility programs in its base system and nearly 10,000 optional utilities
in its ports collection, this book concentrates almost exclusively on the kernel.

UNIX-like Systems

UNIX-like systems include the traditional vendor systems such as Solaris and
HP-UX; the Linux-based distributions such as Red Hat, Debian, Suse, and
Slackware; and the BSD-based distributions such as FreeBSD, NetBSD, OpenBSD,
and Darwin. They run on computers ranging from laptops to the largest super
computers. They are the operating system of choice for most multiprocessor,
graphics, and vector-processing systems, and are widely used for the original pur
pose of timesharing. The most common platform for providing network services
(from FTP to WWW) on the Internet, they are collectively the most portable oper
ating system ever developed. This portability is due partly to their implementation
language, C [Kernighan & Ritchie, 1989] (which is itself a widely ported lan
guage), and partly to the elegant design of the system.

Since its inception in 1969 [Ritchie & Thompson, 1978], the UNIX system
has developed in several divergent and rejoining streams. The original developers
continued to advance the state of the art with their Ninth and Tenth Edition UNIX
inside AT&T Bell Laboratories, and then their Plan 9 successor to UNIX. Mean
while, AT&T licensed UNIX System V as a product before selling it to Novell.
Novell passed the UNIX trademark to X/OPEN and sold the source code and distri
bution rights to Santa Cruz Operation (SCO). Both System V and Ninth Edition

xix

Page 11 of 43

xx Preface

UNIX were strongly influenced by the Berkeley Software Distributions produced
by the Computer Systems Research Group (CSRG) of the University of California
at Berkeley. The Linux operating system, although developed independently of
the other UNIX vruiants , implements the UNIX interface. Thus, applications
developed to run on other UNIX-ha ed platforms can be easily ported to run on
Linux.

Berkeley Software Distributions

The di tributions from Berkeley were the first UNIX-based systems to introduce
many important features including the fclloWifig:

• Demand-paged virtual-memory support

•Automatic configuration of the hardware and 1/0 system

• A fast and recoverable filesystem

•The socket-based interprocess-communication (IPC) primitives

•The reference implementation of TCP/IP

The Berkeley release found their way into the UNIX systems of many vendors
and were used internally by the development groups of many other vendors. The
implementation of the TCP/IP networking protocol suite in 4.2BSD and 4.3BSD,
and the availability of those systems, played a key role in making the TCP/IP net
working protocol suite a world standard. Even the non-UNIX vendors such as
Microsoft have adopted the Berkeley socket design in their Winsock IPC interface.

The BSD releases have also been a strong influence on the POSIX (IEEE Std
1003. l) operating-system interface standard, and on related standards. Several
features-such as reliable signals, job control, multiple access groups per process,
and the routines for directory operations-have been adapted from BSD for
POSIX.

Early BSD releases contained licensed UNIX code, thus requiring recipients to
have an AT&T source license to be able to obtain and use BSD. In 1988, Berkeley
separated its distribution into AT&T licen ed and freely redistributable code. The
freely redistributable code was licensed sepru·ately and could be obtained, used,
and redistributed by anyone. The final freely redistributable 4.4BSD-Lite2 release
from Berkeley in 1994 contained nearly the entire kernel and all the important
libraries and utilities.

Two groups, NetBSD and FreeBSD, sprang up in 1993 to begin supporting and
distributing systems built from the freely redistributable releases being done by
Berkeley. The NetBSD group emphasized portability and the minimalist approach,
porting the systems to nearly forty platforms and pushing to keep the system lean
to aid embedded applications. The FreeBSD group emphasized maximal support
for the PC architecture and pushed to ease installation for, and market their system
to, as wide an audience as possible. In I 995, the OpenBSD group split from the
NetBSD group to develop a distribution that emphasized security. Over the years
there bas been a healthy competition among the BSD distributions, with many
ideas and much code flowing between them.

Page 12 of 43

Preface xxi

Material Covered in this Book

This book is about the internal structure of the FreeBSD 5.2 kernel and about the
concepts, data structures, and algorithms used in implementing FreeBSD's system
facilities. Its level of detail is similar to that of Bach's book about UNIX System v
[Bach, 1986]; however, this text focuses on the facilities, data structures, and algo
rithms used in the FreeBSD variant of the UNIX operating system. The book cov
ers FreeBSD from the system-call level down-from the interface to the kernel to
the hardware itself. The kernel includes system facilities, such as process man
agement, virtual memory, the I/O system, filesystems, the socket IPC mechanism,
and network protocol implementations. Material above the system-call level
such as libraries, shells, commands, programming languages, and other user inter
faces-is excluded, except for some material related to the terminal interface and
to system startup. Following the organization first established by Organick's book
about Multics [Organick, 1975], this book is an in-depth study of a contemporary
operating system.

Where particular hardware is relevant, the book refers to the Intel Personal
Computer (PC) architecture. Because FreeBSD has emphasized development on
the PC, that is the architecture with the most complete support, so it provides a
convenient point of reference.

Use by Computer Professionals

FreeBSD is widely used to support the core infrastructure of many companies
worldwide. Because it can be built with a small footprint, it is also seeing
increased use in embedded applications. The licensing terms of FreeBSD do not
require the distribution of changes and enhancements to the system. The licensing
terms of Linux require that all changes and enhancements to the kernel be made
available in source form at minimal cost. Thus, companies that need to control the
distribution of their intellectual property build their products using FreeBSD.

This book is of direct use to the professionals who work with FreeBSD sys
tems. Individuals involved in technical and sales support can learn the capabilitie
and limitations of the system; applications developers can learn how to effectively
and efficiently interface to the system; system administrators without direct expe
rience with the FreeBSD kernel can learn how to maintain, tune, and configure the
system; and systems programmers can learn how to extend, enhance, and interface
to the system.

Readers who will benefit from this book include operating-system implemen
tors, system programmers, UNIX application developers, administrators, and curi
ous users. The book can be read as a companion to the source code of the system,
falling as it does between the manual pages and the code in detail of treatment.
But this book is neither exclusively a UNIX programming manual nor a user tuto
rial (for a tutorial, see Libes & Ressler [1988]). Familiarity with the use of some
version of the UNIX system (see, for example, Stevens [1992]) and with the C pro
gramming language (see, for example, Kernighan & Ritchie [1989]) would be
extremely useful.

Page 13 of 43

Page 14 of 43Page 14 of 43

CHAPTER

History and Goals

1.1 History of the UNIX System

The UNIX system has been in wide use for over 30 years and has helped to define
many areas of computing. Although numerous individuals and organizations have
contributed (and still contribute) to the development of the UNIX system, this book
primarily concentrates on the BSD thread of development.

• Bell Laboratories, which invented UNIX

•The Computer Systems Research Group (CSRG) at the University of California
at Berkeley, which gave UNIX virtual memory and the reference implementation
of TCP/IP

• The FreeBSD project, the NetBSD project, and the OpenBSD project, which con
tinue the work started by the CSRG

•The Darwin operating system at the core of Apple's OS X. Darwin is based on
FreeBSD.

Origins

The first version of the UNIX system was developed at Bell Laboratories in 1969
by Ken Thompson as a private research project to use an otherwise idle PDP-7.
Thompson was joined shortly thereafter by Dennis Ritchie, who not only con
tributed to the design and implementation of the system, but also invented the C
programming language. The system was completely rewritten into C, leaving
almost no assembly language. The original elegant design of the system [Ritchie,
1978] and developments of the first 15 years [Ritchie, 1984a; Compton, 1985]
have made the UNIX system an important and powerful operating system [Ritchie,
1987].

Page 15 of 43

4 Chapter l History and Goals

Ritchie, Thompson, and other early UNIX developers at Bell Laboratories had
worked previously on the Multics project [Peirce, 1985; Organick, 1975], which
had a strong influence on the newer operating system. Even the name UNIX is
merely a pun on Multics; in areas where Multics attempted to do many tasks,
UNIX tried to do only one task but do it well. The basic organization of the UNIX
filesystem, the idea of using a user process for the command interpreter, the gen
eral organization of the filesystem interface, and many other system characteristics

come directly from Multics.
Ideas from various other operating systems, such as the Massachusetts Institute

of Technology's (MIT's) CTSS, also have been incorporated. The fork operation to
create new processes comes from Berkeley's GENIE (SDS-940, later XDS-940)
operating system. Allowing a user to create processes inexpensively led to using
one process per command rather than commands being run as procedure calls, as

is done in Multics.

Research UNIX -----

The first major editions of UNIX were the Research systems from Bell Laboratories.
In addition to the earliest versions of the system, these systems include the UNIX
Time-Sharing System, Sixth Edition, commonly known as V6, which in 1976 was
the first version widely available outside of Bell Laboratories. Systems are identi
fied by the edition numbers of the UNIX Programmer's Manual that were current

when the distributions were made.
The UNIX system was distinguished from other operating systems in three

important ways.

1. It was written in a high-level language.

2. It was distributed in source form.

3. It provided powerful primitives normally found in only those operating sys
tems that ran on much more expensive hardware.

Most of the system source code was written in C rather than in assembly lan
guage. The prevailing belief at the time was that an operating system had to be
written in assembly language to provide reasonable efficiency and to get access to
the hardware. The C language itself was at a sufficiently high level to allow it to
be compiled easily for a wide range of computer hardware, without its being so
complex or restrictive that systems programmers had to revert to assembly lan
guage to get reasonable efficiency or functionality. Access to the hardware was
provided through assembly-language stubs for the 3 percent of the operating
system functions-such as context switching-that needed them. Although the
success of UNIX does not stem solely from its being written in a high-level lan
guage, the use of C was a critical first step [Kernighan & Ritchie, 1978; Kernighan
& Ritchie, 1989; Ritchie et al., 1978]. Ritchie's C language is descended [Rosler,
1984] from Thompson's B language, which was itself descended from BCPL
[Richards & Whitby-Strevens, 1980]. C continues to evolve [Tuthill, 1985; ISO,

1999].

Page 16 of 43

Section 1.1 History of the UNIX System

The second important distinction of UNIX was its early releasf' from Bell
Laboratories to other research environments in source form. By providing source,
the system's founders ensured that other organizations would be able not only to
use the system, but also to tinker with its inner workings. The ease with which
new ideas could be adopted into the system always has been key to the changes
that have been made to it. Whenever a new system that tried to upstage UNIX
came along, somebody would dissect the newcomer and clone its central ideas
into UNIX. The unique ability to use a small, comprehensible system, written in a
high-level language, in an environment swimming in new ideas led to a UNIX sys
tem that evolved far beyond its humble beginnings. Though recipients of the
source code had to be licensed, campuswide licenses were cheaply available to
universities. Thus, many people became versed in the way that UNIX worked, set
ting the stage for the open-source world that would follow.

The third important distinction of UNIX was that it provided individual users
with the ability to run multiple processes concurrently and to connect these pro
cesses into pipelines of commands. At the time, only operating systems running
on large and expensive machines had the ability to run multiple processes, and the
number of concurrent processes usually was controlled tightly by a system admin
istrator.

Most early UNIX systems ran on the PDP-11, which was inexpensive and
powerful for its time. Nonetheless, there was at least one early port of Sixth
Edition UNIX to a machine with a different architecture: the Interdata 7 /32
[Miller, 1978]. The PDP-11 also had an inconveniently small address space. The
introduction of machines with 32-bit address spaces, especially the VAX-111780,
provided an opportunity for UNIX to expand its services to include virtual memory
and networking. Earlier experiments by the Research group in providing UNIX
like facilities on different hardware had led to the conclusion that it was as easy to
move the entire operating system as it was to duplicate UNIX's services under
another operating system. The first UNIX system with portability as a specific
goal was UNIX Time-Sharing System, Seventh Edition (V7), which ran on the
PDP-11 and the Interdata 8/32 and had a VAX variety called UNIX/32V Time
Sharing, System Version 1.0 (32V). The Research group at Bell Laboratories has
also developed UNIX Time-Sharing System, Eighth Edition (V8); UNIX Time
Sharing System, Ninth Edition (V9); and UNIX Time-Sharing System, Tenth
Edition (VlO). Their 1996 system is Plan 9.

AT&T UNIX System III and System V

After the distribution of Seventh Edition in 1978, the Research group turned over
external distributions to the UNIX Support Group (USG). USG had previously di -
tributed internally such systems as the UNIX Programmer's Work Bench (PWB),
and had sometimes distributed them externally as well [Mohr, 1985].

USG's first external distribution after Seventh Edition was UNIX System ill
(System ill) in 1982, which incorporated feature of Seventh Edition, of 32V, and
also of several UNIX systems developed by groups other than the Research group.
Features of UNIX/RT (a real-time UNIX system) were included, as were many
features from PWB. USG released UNIX System V (System V) in 1983; that

Page 17 of 43

Chapter 1 History and Goals

system is largely derived from System ill. The court-ordered divestiture of the
Bell Operating Companies from AT&T permitted AT&T to market System V
aggressively [Bach, 1986; Wilson, 1985].

USG metamorphosed into the UNIX System Development Laboratory
(USDL), which released UNIX System V, Release 2 in 1984. System V,
Release 2, Version 4 introduced paging [Jung, 1985; Miller, 1984], including
copy-on-write and shared memory, to System V. The System V implementation
was not based on the Berkeley paging system. USDL was succeeded by AT&T
Information Systems (ATIIS), which distributed UNIX System V, Release 3, in
1987. That system included STREAMS, an IPC mechanism adopted from V8
[Presotto & Ritchie, 1985]. ATIIS was succeeded by UNIX System Laboratory
(USL), which was sold to Novell in 1993. Novell passed the UNIX trademark to
the X/OPEN consortium, giving the latter sole rights to set up certification stan
dards for using the UNIX name on products. Two years later, Novell sold UNIX
to The Santa Cruz Operation (SCO).

Berkeley Software Distributions

The most influential of the non-Bell Laboratories and non-AT&T UNIX develop
ment groups was the University of California at Berkeley [DiBona et al., 1999].
Software from Berkeley was released in Berkeley Software Distributions
(BSD)-for example, as 4.4BSD. Berkeley was the source of the BSD name, and
their distributions were the first distinct identity for the BSD operating system.
The first Berkeley VAX UNIX work was the addition to 32V of virtual memory,
demand paging, and page replacement in 1979 by William Joy and Ozalp
Babaoglu, to produce 3BSD [Babaoglu & Joy, 1981]. The reason for the large vir
tual-memory space of 3BSD was the development of what at the time were large
programs, such as Berkeley's Franz LISP. This memory-management work con
vinced the Defense Advanced Research Projects Agency (DARPA) to fund the
Berkeley team for the later development of a standard system (4BSD) for DARPA's
contractors to use.

A goal of the 4BSD project was to provide support for the DARPA Internet
networking protocols, TCP/IP [Comer, 2000]. The networking implementation
was general enough to communicate among diverse network facilities, ranging
from local networks, such as Ethernets and token rings, to long-haul networks,
such as DARPA's ARPANET.

We refer to all the Berkeley VAX UNIX systems following 3BSD as 4BSD,
although there were really several releases: 4.0BSD, 4. lBSD, 4.2BSD, 4.3BSD,
4.3BSD Tahoe, and 4.3BSD Reno. 4BSD was the UNIX operating system of choice
for VAXes from the time that the VAX first became available in 1977 until the
release of System V in 1983. Most organizations would purchase a 32V license
but would order 4BSD from Berkeley. Many installations inside the Bell System
ran 4.lBSD (and replaced it with 4.3BSD when the latter became available). A
new virtual-memory system was released with 4.4BSD. The VAX was reaching
the end of its useful lifetime, so 4.4BSD was not ported to that machine. Instead,
4.4BSD ran on the newer 68000, SPARC, MIPS, and Intel PC architectures.

Page 18 of 43

Section 1.2 BSD and Other Systems

The 4BSD work for DARPA was guided by a steering committee that included
many notable people from both commercial and academic institutions. The culmi
nation of the original Berkeley DARPA UNIX project was the release of 4.2BSD in
1983; further research at Berkeley produced 4.3BSD in mid-1986. The next
releases included the 4.3BSD Tahoe release of June 1988 and the 4.3BSD Reno
release of June 1990. These releases were primarily ports to the Computer
Consoles Incorporated hardware platform. Interleaved with these releases were
two unencumbered networking releases: the 4.3BSD Netl release of March 1989
and the 4.3BSD Net2 release of June 1991. These releases extracted nonpropri
etary code from 4.3BSD; they could be redistributed freely in source and binary
form to companies that and individuals who were not covered by a UNIX source
license. The final CSRG release requiring an AT&T source license was 4.4BSD in
June 1993. Following a year oflitigation (see Section 1.3), the free-redistributable
4.4BSD-Lite was released in April 1994. The final CSRG release was 4.4BSD-Lite
Release 2 in June 1995.

UNIX in the World

The UNIX system is also a fertile field for academic endeavor. Thompson and
Ritchie were given the Association for Computing Machinery Turing award for
the design of the system [Ritchie, 1984b]. The UNIX system and related, specially
designed teaching systems-such as Tunis [Ewens et al., 1985; Holt, 1983], XINU
[Comer, 1984), and MINIX [Tanenbaum, 1987)-are widely used in courses on
operating systems. Linus Torvalds reimplemented the UNIX interface in his freely
redistributable Linux operating system. The UNIX system is ubiquitous in univer
sities and research facilities throughout the world, and is ever more widely used in
industry and commerce.

1.2 BSD _and Other Systems

The CSRG incorporated features from not only UNIX systems but from other oper
ating systems. Many of the features of the 4BSD terminal drivers are from
TENEX!fOPS-20. Job control (in concept-not in implementation) is derived from
TOPS-20 and from the MIT Incompatible Timesharing System (ITS). The virtual
memory interface first proposed for 4.2BSD, and finally implemented in 4.4BSD,
was based on the file-mapping and page-level interfaces that first appeared in
TENExtrOPS-20. The current FreeBSD virtual-memory system (see Chapter 5)
was adapted from Mach, which was itself an offshoot of 4.3BSD. Multics has
often been a reference point in the design of new facilities.

The quest for efficiency was a major factor in much of the CSRG's work.
Some efficiency improvements were made because of comparisons with the pro
prietary operating system for the VAX, VMS [Joy, 1980; Kashtan, 1980).

Other UNIX variants have adopted many 4BSD features. AT&T UNIX System
V [AT&T, 1987), the IEEE POSIX.l standard [Pl003.l, 1988), and the related

Page 19 of 43

Chapter I History and Goals

National Bureau of Standards (NBS) Federal Information Processing Standard
(FIPS) have adopted the following.

• Job control (Chapter 2)

•Reliable signals (Chapter 4)

• Multiple file-access permission groups (Chapter 6)

• Filesystem interfaces (Chapter 8)

The X/OPEN Group (originally con isting of only European vendors but now
including most U.S. UNIX vendors) produced the XIOPEN Portability Guide
[X/OPEN, 1987] and, more recently, the Spec 1170 Guide. These documents
specify both. the kernel interface and any of the utility programs available to
UNIX system users. When Novell purchased UNIX from AT&T in 1993, it trans
ferred exclusive ownership of the UNIX name to X/OPEN. Thus, all systems that
want to brand themselves as UNIX must meet the X/OPEN inte1face specifica
tions. To date, no BSD system has ever been put through the X/OPEN interface
specification tests, so none of them can be called UNIX. The X/OPEN guides
have adopted many of the POSIX facilities. The POSIX. l standard is also an ISO
International Standard, named SC22 WG15. Thus, the POSIX facilities have been
accepted in most UNIX-like systems worldwide.

The 4BSD socket interprocess-communication mechanism (see Chapter 11)
was designed for portability and was immediately ported to AT&T System ill,
although it was never distributed with that system. The 4BSD implementation of
the TCP/IP networking protocol suite (see Chapter 13) is widely used as the basis
for further implementations on systems ranging from AT&T 3B machines running
System V to VMS to embedded operating systems such as VxWorks.

The CSRG cooperated closely with vendors whose systems are based on
4.2BSD and 4.3BSD. This simultaneous development contributed to the ease of
further ports of 4.3BSD and to ongoing development of the system.

The Influence of the User Community

Much of the Berkeley development work was done in response to the user com
munity. Ideas and expectations came not only from DARPA, the principal
direct-funding organization, but also from users of the system at companies and
universities worldwide.

The Berkeley researchers accepted not only ideas from the user community
but also actual software. Contributions to 4BSD came from universities and
other organizations in Australia, Canada, Europe, Japan, and the United States.
These contributions included major features, such as autoconfiguration and disk
quotas. A few ideas, such as the fcntl system call, were taken from System V,
although licensing and pricing considerations prevented the use of any code from
System ill or System V in 4BSD. In addition to contributions that were included
in the distributions proper, the CSRG also distributed a set of user-contributed
software.

Page 20 of 43

' - _I _ _ _ _

Section 1.3 The Transition of BSD to Open Source

An example of a community-developed facility is the public-domain time
zone-handling package that was adopted with the 4.3BSD Tahoe release. It was
designed and implemented by an international group, including Arthur Olson,
Robert Elz, and Guy Harris, partly because of discussions in the USENET news
group comp.std.unix. This package takes time-zone-conversion rules completely
out of the C library, putting them in files that require no system-code changes to
change time-zone rules; this change is especially useful with binary-only distribu
tions of UNIX. The method also allows individual processes to choose rules rather
than keeping one ruleset specification systemwide. The distribution includes a
large database of rules used in many areas throughout the world, from China to
Australia to Europe. Distributions are thus simplified because it is not necessary
to have the software set up differently for different destinations, as long as the
whole database is included. The adoption of the time-zone package into BSD
brought the technology to the attention of commercial vendors, such as Sun
Microsystems, causing them to incorporate it into their systems.

1.3 The Transition of BSD to Open Source

Up through the release of 4.3BSD Tahoe, all recipients of BSD had to first get an
AT&T source license. That was because the BSD systems were never released by
Berkeley in a binary-only format; the distributions always contained the complete
source to every part of the system. The history of the UNIX system, and the BSD
system in particular, had shown the power of making the source available to the
users. Instead of passively using the system, they actively worked to fix bugs,
improve performance and functionabty, and even add completely new features.

With the increasing cost of the AT&T source licenses, vendors that wanted to
build stand-alone TCP/IP-based networking products for the PC market using the
BSD code found the per-binary costs prohibitive. So they requested that Berkeley
break out the networking code and utilities and provide them under licensing
terms that did not require an AT&T source license. The TCP/IP networking code
clearly did not exist in 32N and thus had been developed entirely by Berkeley and
its contributors. The BSD-originated networking , code and supporting utilities
were released in June 1989 as Networking Release 1, the first freely redis
tributable code from Berkeley.

The licensing terms were liberal. A licensee could release the code modified or
unmodified in source or binary form with no accounting or royalties to Berkeley.
The only requirements were that the copyright notices in the source file be left
intact and that products that incorporated the code include in their documentation
that the product contained code from the University of California and its contribu
tors. Although Berkeley charged a $1000 fee to get a tape, anyone was free to get
a copy from somebody who already had it. Indeed, several large sites put it up for
anonymous FTP shortly after it was released. Though the code was freely avail
able, several hundred organizations purchased tapes, which helped to fund the
CSRG and encouraged further development.

Page 21 of 43

10 Chapter 1 History and Goals

Networking Release 2

With the success of the first open-source release, the CSRG decided to see how
much more of BSD they could spring free . Keith Bostic led the charge by solicit
ing people to rewrite the UNIX utilities from scratch based solely on their pub
lished descriptions. Their only compensation would be to have their name listed
among the Berkeley contributors next to the name of the utility that they rewrote.
The contributions started slowly and were mostly for the trivial utilities. But as
the list of completed utilities grew, and Bostic continued to hold forth for contribu
tions at public events such as Usenix, the rate of contributions continued to grow.
Soon the list crossed 100 utilities, and within 18 months nearly all the important
utilities and libraries had been rewritten.

The kernel proved to be a bigger task because it could not easily be rewritten
from scratch. The entire kernel was reviewed, file by file, removing code that had
originated in the 32N release. When the review was completed, there were only
six remaining kernel files that were still contaminated and that could not be triv
ially rewritten. While consideration was given to rewriting those six files so that a
complete kernel could be released, the CSRG decided to release just the less con
troversial e-CSRG sought permission for the expanded release from folks
higher up in the university administration. After much internal debate and verifi
cation of the methods used for detecting proprietary code, the CSRG was given
permission to do the release.

The initial thought was to come up with a new name for the second freely
redistributable release. However, getting a new license written and approved by
the university lawyers would have taken many months. So, the new release was
named Networking Release 2, since that could be done with just a revision of the
approved Networking Release 1 license agreement. This second greatly expanded
freely redistributable release began shipping in June 1991. The redistribution
terms and cost were the same as the terms and cost of the first networking release.
As before, several hundred individuals and organizations paid the $1000 fee to get
the distribution from Berkeley.

Closing the gap from the Networking Release 2 distribution to a fully func
tioning system did not take long. Within six months of the release, Bill Jolitz had
written replacements for the six missing files. He promptly released a fully com
piled and bootable system for the 386-based PC architecture in January 1992,
which he called 386/BSD. Jolitz's 386/BSD distribution was done almost entirely
on the net. He simply put it up for anonymous FfP and let anyone who wanted it
download it for free. Within weeks he had a huge following.

Unfortunately, the demands of keeping a full-time job meant that Jolitz could
not devote the time needed to keep up with the flood of incoming bug fixes and
enhancements to 386/BSD. So within a few months of the release of 386/BSD, a
group of avid 386/BSD users formed the NetBSD group to pool their collective
resources to help maintain and later enhance the system. By early 1993 they were
doing releases that became known as the NetBSD distribution. The NetBSD group
chose to emphasize the support of as many platforms as possible and continued
the research-style development done by the CSRG. Until 1998, their distribution

Page 22 of 43

Section 1.3 The Transition of BSD to Open Source 11

was done solely over the net with no distribution media available. Their group
continues to target primarily the hard-core technical users.

The FreeBSD group was formed a few months after the NetBSD group with a
charter to support just the PC architecture and to go after a larger and less techni
cally advanced audience, much as Linux had done. They built elaborate installa
tion scripts and began shipping their system on a low-cost CD-ROM in December
1993. The combination of ease of installation and heavy promotion on the net and
at major trade shows, such as Comdex, led to a large, rapid growth curve.
FreeBSD quickly rose to have the largest installed base of all the Networking
Release 2-derived systems.

FreeBSD also rode the wave of Linux popularity by adding a Linux emulation
mode that allows Linux binaries to run on the FreeBSD platform. This feature
allows FreeBSD users to use the ever growing set of applications available for
Linux while getting the robustness, reliability, and performance of the FreeBSD
system.

In 1995, OpenBSD spun off from the NetBSD group. Their technical focus
was aimed at improving the security of the system. Their marketing focus was to
make the system easier to use and more widely available. Thus, they began pro
ducing and selling CD-ROMs, with many of the ease of installation ideas from the
FreeBSD distribution.

The Lawsuit

In addition to the groups organized to freely redistribute systems originating from
the Networking Release 2 tape, a company, Berkeley Software Design Incorporated
(BSDI), was formed to develop and distribute a commercially supported version of
the code. Like the other groups, it started by adding the six missing files that Bill
Jolitz had written for his 386/BSD release. BSDI began selling its system, includ
ing both source and binaries, in January 1992 for $995. It began running adver
tisements touting its 99 percent discount over the price charged for System V

source plus binary systems. Interested readers were told to call 1-800-ITS-UNIX.
Shortly after BSDI began its sales campaign, it received a letter from UNIX

System Laboratory (USL) (a mostly owned subsidiary of AT&T spun off to
develop and sell UNIX) [Ritchie, 2004]. The letter demanded that BSDI stop pro
moting its product as UNIX and in particular that it stop using the deceptive phone
number. Although the phone number was promptly dropped and the advertise
ments changed to explain that the product was not UNIX, USL was still unhappy
and filed suit to enjoin BSDI from selling its product. The suit alleged that the
BSDI product contained USL propr.ietary code and trade secrets. USL sought to get
an injunction to halt BSDI's sales until the lawsuit was resolved claiming that it
would suffer irreparable harm from the loss of its trade secrets if the BSDI distri
butions continued.

At the prelillrinary hearing for the injunction, BSDI contended that it was sim
ply using the sources being freely distributed by the University of California plus
six additional files. BSDI was willing to discuss the content of any of the six
added files but did not believe it should be held responsible for the files being

Page 23 of 43

- ---------------- -- ----------------

Page 24 of 43Page 24 of 43

CHAPTER 6

1/0 System Overview

6.1 VO Mapping from User to Device

Computers store and retrieve data through supponing peripheral 1/0 devices.
These devices typically include mass-storage devices, such as disk drives,
archival-sLorage devices, and network interfaces. Storage devices such as disks
are accessed through UO controllers that manage the operation of their attached
devices according to I/O requests from the CPU.

Many hardware device peculiarities are hidden from the user by high-level
kernel facilities, such as the filesystem and socket interfaces. Other such peculiar
ities are hidden from the bulk of the kernel itself by Lhe 1/0 system. The 110 sys
tem consists of buffer-caching systems, general device-driver code, and drivers for
specific hardware devices that must finally address peculiarities of the specific
devices. An overview of the entire kernel is shown in Figure 6. 1 (on page 216).
The bottom third of the figure comprises the various 110 systems.

There are three main kinds of UO in FreeBSD: the character-device interface,
thejilesystem, and the socket interface with its related network devices. The char
acter interface appears in the filesystem name space and provides unstructured
access to the underlying hardware. The network devices do not appear in the
fi lesystem; they arc accessible through only the socket interface. Character
devices are described in Section 6.2. The filesystem ls described in Chapter 8.
Sockets are described in Chapter 11.

A chan1cter-device interface comes in two styles that depend on the character
istics of the underlying hardware device. For some character-oriented hardware
devices, such as terminal multiplexers, the interface is truly character oriented,
although higher-level software, such as the terminal driver, may provide a line
oriented interface to appl ications. However, for block-oriented devices such as
disks, a character-device interface is an unstructured or raw interface. For this

215

..................... -
Page 25 of 43

216

active file entries

VNODE layer

special devices

uy

line
discipline

raw I
devices

character-device

Chapter 6 1/0 System Overview

system-call interface to the kernel

raw

disk

I
I

VM

swap·
~pace

mgmt.

active file enrries

OBJECT I VNODE layer]

l socket
locaJ naming (UFS) NF~S----'----<

FFS

page cache

network

protocols

GEOM layer

CAM layer I ATA layer
drivers

CAM device drivers l ATA device drivers

network

imerface

drivers

new bus

the hardware

Figure 6.1 Kernel 110 structure.

interface, 1/0 operations do not go through the fi lesystem or the page cache;
instead, they are made directly between the device and buffers in the application's
virtual address space. Consequently, the size of 1hc operalions musr be a multiple
of lhe underlying block size required by the device, and, on some machines, the
application's VO buffer must be aligned on a suitable boundary.

Internal to the system, I/O devices are accessed through a sec of entry points
provided by each device's device driver. For a character-device interface, it
accesses a cdevsw structure. A cdevsw structure is created for each device as the
device is configured either at the time that the system is booted or later when the
device is attached to the system.

Di:vices are identified by a de1•ice number that is constructed from a mnjor
and a minor device number. The major device number uniquely identifies Lhe type
of device (really of the device driver). Historically it was used as the index of the
device's entry in the character-device table. FreeBSD 5.2 has no character-device
table. As devices are configured, emries are created for che device in the /dev
filesystem. Each entry in the /dev filcsystem has a direct reference to its corre
sponding cdevsw entry. FreeBSD 5.2 assigns a unique major device number to
each device when it is configured to provide compatibility for applicacions that
look at it. But it is not used internally by the kernel or the device driver.

The minor device number is selected and interpreted solely by the device
driver and is used by the driver to identify Lo which, of potentially many, hardware
devices an VO request refers. For disks, for example, minor device numbers

Page 26 of 43

Seclion 6.1 1/0 Mapping from User to Device 217

identifv a specific control ler, disk drive, and partition. T he minor device number
may aiso specify a section of a device-for example, a channel of a multiplexed

device, or optional handling parameters.

Device Drivers

A device driver is divided into three main seclions:

! . Autoconfiguration and initialization routines

2. Routines for servicing VO requests (the top half)

3. Interrupt service routines (the bottom halt)

The autoconfiguration portion of a driver is responsible for probing for a hardware
device to see whether the latter is present and to init ialize the device and any asso
ciated 5oftware state that is requ ired by the device driver. This portion of the
driver is typically called only once, either when the system is initialized or for
trnnsient devices when they are connected to the system. Autoconfiguration is
described in Section 14.4.

The section of a driver that services 1/0 requests is invoked because of system
calls or by the virtual-memory system. This portion of the device dri\1er executes
synchronously in the top half of the kernel and is permitted to block by calling the
sleep() routine. We commonly refer to this body of code as the top half of a de
vice driver.

Interrupt service routines are invoked when the system fields an interrupt
from a device. Consequently, these routines cannot depend on any per-process
state. Historically they did not have a thread context of their own. so they could
not block. In FreeBSD 5.2 an interrupt has its own thread context. so it can block
if it needs to do so. However, the cost of extra thread switches is sufficiently high
that for good performance device drivers shouJd attempt to avoid blocking. We
commonly refer to a device driver's interrupt service routines as the bot1om half of
a device driver.

In addition to these three sections of a device driver, an optional crash-dump
routine may be provided. This routine, if present, is invoked when the system rec
ognizes an unrecoverable error and wishes to record the contents of physical
memory for use in postmortem analysis. Most device drivers for disk controllers
provide a crash-dump routine. The use of the crash-dump routine is described in
Section 14.6.

110 Queueing

Device drivers typically manage one or more queues of UO requests in their nor
mal operation. When an inpuc or output request is received by the top half of the
driver, it is recorded in a data stmcture that is placed on a per-device queue for
processing. When an input or output operation completes. the device driver

-
Page 27 of 43

240 Chapter 6 110 System Overview

• A pointer to the thread whose data area is described by the uio structure (the
pointer is NULL if the uio structure describes an area within the kernel)

All UO within the kernel is described with io1'ec and uio structures. System calls
such as read and write that are not passed an iovec create a 11io to describe their
arguments; this uio structure is pasli\ed to the lower levels of the kernel to specify
the parameters of an 1/0 operation. Eventually. the uio structure reaches the part
of the kernel responsible for moving the data to or from the process address space:
the filesystem, the network, or a device driver. ln general, these parts of Lhe kernel
do not interpret uio structures dl:rettty. ilfsleacl,ihey arrange a kernel buffer to
hold the data and then use uiomOJ•e() to copy the data to or from the buffer or
buffers described by the uio structure. The uiomove() routine is called with a
pointer to a kernel data area. a data count, and a uio structure. As it moves data, it
updates the counters and pointers of the im,ec and uio structures by a corres1xmd
ing amount. If the kernel buffer is not as large as the areas described by the uio
structure. the uio structure will poinl to the part of the process address space just
beyond the location completed most recently. Thus, while servicing a request the
kernel may call uiomol'e(} multiple times, each time giving a pointer to a new ker
nel buffer for the next block of data.

Character device drivers that do not copy darn from the process generally do
not interpret the uio structure. Instead, there is one low-level kernel routine that
arranges a direct transfer to or from the address space of the process. Here, a sep
arate UO operation is done for each iovec element, call.ing back to the driver with
one piece at a time.

6.5 The Virtual-Filesystem Interface

In early UNIX systems. the file entries directly referenced 1he local filesystem
inode. An inode is a data structure that describes the contents of a file; it is more
fully described in Section 8.2. This approach worked fine when there was a ~mgle
filesystem implementation. However, with the advent of multiple fi lesystem
types, the architecture had to be generalized. The new architecture had to support
importing of filesystems from other machines including other machines that were
running different operating systems.

One alternative would have been to connect Lhe multiple filesystems in10 the
system as different file types. However, this approach would have required mas
sive restructuring of the internal workings of the system, because curren1 directo
ries, references to executables. and several other interfaces used inodes instead of
file entries as their point of reference. Thus. it was easier and more logical to add
a new object-oriented layer to the system below the file entry and above the inode.
This new layer was first implemented by Sun Microsystems, which called it the
virtual-node, or vnode, layer. interfaces in the system that had referred previously
to inodes were changed to reference generic vnodes. A vnode used by a local
filesystem would refer to a n inode. A vnode used by a remote fi lesystem would

Page 28 of 43

Section 6.5 The Virtual-Filesystem lnterface 241

refer to a protocol control block that described the location and naming
information necessary to access the remote ti le.

Contents of a Vnode

The vnode is an extensible object-oriented interface. h contains information that
is generically useful independent of the underlying filesystem object that it repre
sents. The information stored in a vnode includes the following:

•Flags are used for identifying generic attributes. An example generic attribute is
a Hag to show that a vnode represents an object that is the root of a filesystem .

• The various reference counts include the number of file entries that are open for
reading and/or writing that reference the vnode, the number of file entries that are
open for writing that reference the vnode, and the number of pages and buffers
that are associated with the vnode.

•A pointer to the mount structure describes the filesystem that contains the object
represented by the vnode.

•Various information to do fi le read-ahead.

•A reference to the vm_obju·t associated with the vnode.

• A reference to state about special devices, sockets, and fifos.

•A mutex to protect the flags and counters within the vnode.

•A Jock-manager lock to protect pans of the vnode that may change while it has
an 1/0 operation in progress.

• Fields u&ed by the name cache to track the names associated with the vnode.

•A pointer to the sel of vnode operations defined for the object. These operations
arc described in the next subsection.

•A pointer to private infonnation needed for the underlying object. For the local
filesystem, this pointer wiU reference an inode; for NFS, it will reference an
nfsnode.

•The type of the underlying object (e.g., regular file, directory, character device,
etc.) is given. The type information is not strictly necessary, since a vnode client
could always call a vnode operation to get the type of the underlying object.
However, because the type often is needed, the type of underlying objects does
not change, and it takes time lO call through the vnode interface, the object type is
cached in the vnode.

•There are clean and dirty buffers associated with the vnode. Each valid buffer in
the system is identified by its associated vnode and the starting offset of its data
within the object that the vnode represents. All the buffers that have been modi
fied but have not yet been written back are stored on their vnode dirty-buffer list.
All buffers that have not been modified or have been written back since they

-
Page 29 of 43

242 Chapter 6 UO System Overview

were last modified are stored on their vnode clean list. Having all the dirty
buffers for a vnode grouped onto a single list makes the cost of doing an /sync
system call to flush all the dirty blocks associated with a file proportional to the
amount of dirty data. Jn some UNIX systems. the cost is proportional to the
sma11er of the size of the file or the size of the buffer pool. The fat of clean
buffers is used to free buffers when a fiJe is deleted. Since the file will never be
read again, the kernel can immediately cancel any pending 1/0 on its dirty
buffers and reclaim all its clean and dirty buffers and place them at the head of
the buffer free list, ready for immediate reuse.

• A count is kept of the number of buffer write operations in progress. To speed
the flushing of dirty data. the kernel does this operation by doing asynchronous
writes on all the dirty buffers at once. For local ftlesystems, this simultaneous
push causes all the buffers to be put into the disk queue so that they can be sorted
into an optimal order to minimize seeking. For remote fi lesystems, this simulta·
neous push causes all the data to be presented to the network at once so that it
can maximize their throughput. System calls that cannot return until the da1a are
on stable slore (such as fsynl') can sleep on 1he count of pending output opera
tions. waiting for lhe count to reach zero.

The position of vnodes within the system was shown in Figure 6.1. The
vnode itself is connected into several other structures within the kernel, as shown
in Figure 6.7. Each mounted filcsystem within the kernel is represented by a
generic mount structure that includes a pointer to a filesystem-specific control
block. All the vnodes associated with a specific mount point are linked together
on a list headed by this generic mount strncture. Thus, when it is doing a sync
system call for a filesyslern, the kernel can traverse this list 10 visit a ll 1he files
active within that filesystem. Also shown in the figure are the lists of clean and
dirty buffers associated with each vnode. Finally, there is a free List that links
logether all the vnodes in the system Lha1 are inactive (not currently referenced).
The free list is used when a filesystem needs lo allocate a new vnode so that the
latter can open a new file: see Section 6.4.

Vnode Operations

Vnodes are designed as an object·oriented interface. Thus, the kernel manipulates
them by passing requests to the underlying object through a set of defined opera·
tions. Because of the many varied filesys1ems that are supported in FreeBSD, the
set of operations defined for vnodes is both large and extensible. Unlike the origi·
nal Sun Microsystems vnode implementation, the one in FreeBSD allows dynamic
addition of vnode operations either al system boot time or when a new filesystem
is dynamically loaded into the kernel. As part of activating a filesystem, it rcgis·
ters the sel of vnode operations that it is able to support. The kernel then builds a
table that lists the union of all operations supported by any filesystem. From that
table, it builds an operations vector for each filesystem. Supported operations are
filled in with the entry point registered by the filesystem. Filesyslems may opt to

Page 30 of 43

...................

"'nm

Section 6.5 The Virtual-Filesystem Interface

Figure 6.7 Vnode linkages. Key: 0---dirty buffer; C- dean buffer.

have unsupported operations filled in with either a default routine (typically a
routine to bypass the operation to the nexl lower layer; see Section 6.7) or a rou
tine that returns the characteristic error "operation not supported" [Heidemann &
Popek, 1994].

In 4.3BSD, the local filesystem code provided bmh the semantics of the hier
archical fi lesystem naming and the details of the on-disk storage management.
These functions are only loosely related. To enable experimentation with other
disk-storage techniques without having ro reproduce the entire naming semantics,
4.4BSD split the naming and storage code into separate modules. The vnode
levcl operations define a set of hierarchical filesystem operations. Below the
naming layer are a separate set of operations defined for storage of variable-sized
objects using a flat name space. About 60 percent of the traditional filesystem
code became the name-space management, and the remaining 40 percent became

a

Page 31 of 43

244 Chapter 6 1/0 System Overview

the code implementmg the on-disk file storage. The 4.4BSD system used this
division to support two distinct disk layouts: the traditional fast filesystem and a
log-structured filesystem. Support for the log-structured filesystem was dropped
in FreeBSD due to lack of anyone willing to maintain it but remains as a primary
filesystem in NetBSD. The naming and disk-storage scheme are described in
Chapter 8.

Pathname Translation

The translacion of a pathname requires a series of interactions between the vnode
interface and 1he underlying filesystems. The pathname-translation process pro
ceeds as follows:

I. The pathname to be translated is copied in from the user process or, for a
remme filesystem request, is extracted from the network buffer.

2. The starting point of lhe pathname is determined as either the root directory or
the currenL directory (see Section 2. 7). The vnode for the appropriate direc
tory becomes the lookup directory used in lhe next step.

3. The vnode layer calls the filesystem-specific lookup() operation and passes to
thac operation the remaining components of the pathname and the current
lookup directory. Typically, the underlying filesystem will search the lookup

directory for the next component of the pathname and will return the resulting
vnode (or an error if the name does not exist).

4. If an error is returned, the top level returns the error. If the pathname has been
exhausted, lhe pathname lookup is done, and the returned vnode is the result of
the lookup. If the pathname has nol been exhausted, and the returned vnode is
nol a directory. then the vnode layer returns Lhe "not a directory'' error. If
there are no errors, the top layer checks to see whether the returned directory
is a mount point for another filesystem. If it is, then the lookup directory
becomes the mounted filesystem; otherwise, the lookup directory becomes the
vnode returned by the lower layer. The lookup then iterates with step 3.

Although it may seem inefficient to caU through the vnode interface for ea..;h
palhname component, doing so usually is necessary. The reason is that the under
lying filesystem does nOL know which directories arc being used as mounl points.
Since a mount point will redirect the lookup to a new filesystem, it is important
that the current filesystem not proceed past a mounted directory. Although it
might be possible for a local fi tesystem to be knowledgeable about which directo
ries are mount points, it is nearly impossible for a server to know which of 1he
directories within its exported filesystems are being used as mount points by its
clients. Consequently, the conservative approach of traversing only a single path
name component per lookup() call is used. There are a few instances where a
filesystem wiJI know that there are no further mount points in the remaining path,

Page 32 of 43

Section 6.5 The Virtual-Filesystem Interface 245

and will traverse the rest of the pathname. An example is crossing into a portal,
described in Section 6.7.

Exported Filesystem Services

The vnode interface has a set of services that the kernel exports from all Lhe
filesystems supported under lhe interface. The first of these is the ability to sup
port rhe update of generic mount options. These options include the following:

1wexec Do not execute any files on the filesystem. This option is often used
when a server exports binaries for a different architecture that cannot
be executed on the server itself. The kernel will even refuse to execute
shell scripts; if a shell script is to be run, its interpreter must be invoked
explicitly.

11osuid Do not honor the set-user-id or set-group-id Hags for any executables
on the filesystem. This option is useful when a filesystem of unknown
origin is mounted.

nodev Do not allow any special devices on the filesystem to be opened. This
option is often used when a server exports device directories for a dif
ferent architecture. The filcsystem would be mounted with the nodev
option on the server, since the values of the major and minor numbers
are nonsensical to the server. The major and minor numbers are mean
ingful only on the clients that import them.

noatime When reading a file, do not update its access time. This option is use
ful on fi\esystems where there are many files being frequently read and
performance is more critical than updating the file access time (which

is rarely ever important).

sync Request that all 1/0 to the file system be done synchronously.

It is not necessary to unmount and remount the filesystem to change these
Hags; they may be changed while a filesystem is mounted. In addition. a filesys
tem that is mounted read-only can be upgraded to allow writing. Conversely, a
filesystem that allows writing may be downgraded to read-only provided that no
files are open for modification. The system administrator can forcibly downgrade
the fi\esystem to read-only by requesting that any files open for writing have their
access revoked.

Another service exported from the vnode interface is the ability to get infor
mation about a mounted filesystem. The :;tatfs system call returns a buffer that
gives the numbers of used and free disk blocks and inodes, along with the filesys
tem mount point, and the device, location, or program from which the filesystem
is mounted. The gerjsstat system call returns information about all the mounted
filesystems. This interface avoids the need to track. the set of mounted filesystems
outside the kernel, as is done in many other UNIX variants.

I

Page 33 of 43

---- -- --- -- - -

Page 34 of 43

Page 34 of 43

CHAPTER 8

Local Filesystems

!.I Hierarchical Filesystem Management

The operations defined for local filesystems are divided into two pans. Common
lo all local filesystems are hierarchical naming, locking, quotas, attribute manage
ment, and protection. These features, which are independent of how data are
stored, are provided by the UFS code described in the first seven sections of this
chapter. The other part of Lhe local filesystem, the filestore, is concerned with the
organization and management of the data on the storage media. Storage is man
aged by the datastore filesystem operations described in the final two sections of

this chapter.
The vnode operations defined for doing hierarchical filesystem operations are

shown in Table 8.1 (on page 296). The most complex of these operations is that
for doing a lookup. The filesystem-independent part of the lookup is described in
Section 6.5. The algorithm used to lookup a pathname component in a directory is

described in Section 8.3.
There are five operators for creating names. The operator used depends on

the type of object being created. The create operator creates regular files and also
is used by the networking code to create AF _LOCAL domain sockets. The link
operator creates additional names for existing objects. The symlink operator cre
ates a symbolic link (see Section 8.3 for a discussion of symbolic links). The
mknod operator creates character special devices (for compatibility with olher
UNIX systems that still use them); it is also used to create fifos. The mkdir opera
tor creates directories.

There are three operators for changing or deleting existing names. The
rename operator deletes a name for an object in one location and creates a new
name for the object in another location. The implementation of this operator is
complex when the kemel is dealing with the movement of a directory from one
pan of the filesystem tree to another. The remm•e operator removes a name. Jf the

295

Page 35 of 43

~ --- ~--- --- -

296 ChapLer 8 Local Fi lesystems

Table 8.1 Hierarchical filesystem operations.

Operation done Operator names
pathname searching lookup
name creation create, mknod, link, symlink. mkdir
name change/deletion rename, remove, rmdir
attribute manipulati~. gctattr, seiattr
object imerpreta1ion open, readdir, rcadlink, mmap. close
process control advlock, ioctl, poll
object management lock, unlock, inactive, reclaim

removed name is the final reference to the object, the space associated with the
underlying object is reclaimed. The remove operator operates on all object types
except directories; they are removed using the rmdir operator.

Three operators are supplied for object attributes. The kernel retrieves
attributes from an object using the getactr operator and stores them using the setattr
operator. Access checks for a given user are provided by the access operator.

Five operators are provided for interpreting objects. The open and close opcr·
ators have only peripheral use for regular files, but when they are used on special
devices, they notify the appropriate device driver of device activation or shutdown.
The readdir operator converts the filesyscem-specific format of a directory to the
standard list of directory entries expected by an application. Note that the inter
pretation of lhe contents of a directory is provided by the hierarchical filesystem
management layer; the filestore code considers a directory as just another object
holding data. The read/ink operator returns the contents of a symbolic link. As
with directories, the filestore code considers a symbolic link as just another object
holding daLa. The mmap operator prepares an object to be mapped into the address
space of a process.

Three operators are provided to allow process control over objects. The poll
operator aJlows a process to find out whether an object is ready to be read or writ
ten. The ioctl operator passes control requests to a special device. The advlock
operator allows a process to acquire or release an advisory lock on an object.
None of these operators modifies the object in the filestore. They are simply using
the object for naming or directing the desired operation.

There are four operations for management of the objects. The inactive and
reclaim operators were described in Section 6.6. The lock and unlock operators
allow the callers of the vnode interface to provide hints to the code that implemen1
operations on the underlying objects. Stateless filesystems such as NFS ignore 1bese
hints. Stateful filesystems, however, can use hints to avoid doing extra work. For
example, an open system call requesting that a new file be created requires two
steps. First, a lookup call is done to see ir the file already exists. Before the
lookup is started, a lock request is made on the directory being searched. While
scanning through the directory checking for the name, the lookup code also

Page 36 of 43

·--~---·
Section 8.2 Structure of an I node 297

identifies a location within the directory tha1 contains enough space to hold the
new name. If the lookup returns successfully (meaning that the name does not
already exist), the open code verifies that the user has permission to create 1he file.
Jf the caller is not eligible to create the new file, then they are expected to call
imlock to release the Jock that they acquired during the lookup. Olherwise. the
creare operation is called. If the filcsystem is stateful and has been able 10 lock
the directory. then it can simply creale the name in the previously identified space,
because it knows that no other processes will have had access to the directory.
Once the name is created, an unlock request is made on the directory. If the
filesystem is stateless. then it cannot lock the directory, so the create operator must
rescan the directory to find space and 10 verify that the name has not been created
since Lhe lookup.

il Structure of an Inode

To allow files to be allocated concurrently and to provide random access within
files, FreeBSO uses the concept of an index node, or inode. The inode contains
information about the contents of the file; see Figure 8.1 (on page 298). This
infonnation includes Lhe folJowing:

•The type and access mode for the file

• The fi le's owner and group-access idemifiers

•The time that the file was created, when it was most recently read and written.
and when its inode was most recently updated by the system

•The size of the file in bytes

•The number of physical blocks used by the file (including blocks used to hold
indirect pointers and extended attributes)

•The number of directory entries that reference the fi le

•The kernel and user setable flags that describe characteristics of the file

•The generation number of the file (a randomly selected number assigned to the
inode each time that the latter is allocated to a new file; !he generation number is
used by NFS Lo detect references to deleted files)

'The blocksize of the data blocks referenced by the inode (typically the same as,
bu1 sometimes larger than, the filesystern blocksize)

•The Sile of the exte nded attribute information

Notably missing in the inode is the filename. Filenames are maintained in directo
ries rather than in inodes because a file may have many names. or links, and the
~ame of a file can be large (up to 255 bytes in length). Directories are described
in Section 8.3.

Page 37 of 43

298

mode

owners (2)

size

direct blocks

single indirect

extended
attribute
blocks

Figure 8.1 The structure or an inode.

Chapter 8 Local Filesystems

To create a new name for a file, the system increments the count of the num
ber of names referring to that inode. Then the new name is entered in a directory,
along w ith the number of the inode. Conversely, when a name is deleted, the entry
is deleted from a directory, and the name count for the inode is then decremented.
When the name count reaches zero, the system deallocates the inode by putting all
the inode's blocks back on a list of free blocks.

The inode also contains an array of pointers to the blocks in the file. The sys·
tern can convert from a logical block number to a physical sector number by
indexing into the array using the logical block oumber. A null array entry shows
that no block has been allocated and wiU cause a block of zeros to be returned on
a read. On a write of such an entry. a new block is allocated, the a.ITay entry is
updated with the new block number, and the data are written to the disk.

Page 38 of 43

Section 8.2 Structure of an I node 299

tnodes are fixed in size, and most files are small, so the array of pointers must
be small for efficient use of space. The first 12 array enuies are a11ocated in the
inode itself. For typical filesystems, this implementation allows the first 96 or J92
Kbyte of data to be located directly via a simple indexed lookup.

For somewhat larger files, Figure 8.1 shows that the inode contains a single
intlirecr pointer that points to a single indirect block of pointers to data blocks. To
find the JOOth logical block of a file, the system first fetches the block identified
by the indirect pointer and then indexes into the 881.h block (100 minus J 2 direct
pointers) and fetches that data block.

For files that are bigger than a few megabytes, the s ingle indirect block is
eventually exhausted; these files must resort to using a double indirect block,
which is a pointer to a block of pointers to pointers to data blocks. For files of
multiple Gbyte, the system uses a triple indirect block, which contains three levels
of pointer before reaching the data block.

Although indirect blocks appear to increase the number of disk accesses
required to get a block of daca, the overhead of the transfer is typically much
lower. ln Section 6.6, we discussed the management of the cache that holds
recently used disk blocks. The first time that a block of indirect pointers is
needed, it is brought into the cache. Further accesses to the indirect pointers find
the block already resident in memory; thus, they require only a single disk access
to get the data.

Changes to the !node Format

Traditionally. the FreeBSD fast filesystem (which we shall refer to in lhis book as
UFS I) {McKusick et al., 19841 and its derivatives have used 32-bit pointers to
reference the blocks used by a file on the disk. The UFSI filesystem was designed
in the early 1980s when the largest disks were 330 Mbytes. There was debate at
the time whether it was worth squandering 32 bits per block pointer rather than
using the 24-bit block pointers of the filesyslem that it replaced. Luckily the
futurist view prevailed, and the design used 32-bit block pointers. Over the 20
years since it has been deployed, storage systems have grown to hold over a tera
byte of data. Depending on the block size configuration, the 32-bit block pointers
of UFS I run out of space in the I to 4 terabyte range. Whjle some stopgap mea
sures can be used to extend the maximum-size storage systems supported by
UFS!, by 2002 it became clear the only long-term solution was to use 64-bit
block pointers. Thus, we decided to build a new filesystcm, UFS2, that would use
64-bit block (Xlinters.

We considered the alternatives between trying to make incremental changes to
the ex:isting UFSI filesystem versus importing another existing filesystem such as
XFS lSweeney et al., 19961, or ReiserFS [Reiser, 200 I]. We also considered writ
ing a new filesystem from scratch so that we could take advantage of recent
filesystem research and experience. We chose to extend the UFSI filesystem
because this approach allowed us to reuse most of the ex:isting UFS I code base.
The benefits of this decision were that UFS2 was developed and deployed quickly.

Page 39 of 43

300 Chapter 8 Local Filesystems

it became stable and reliable rapidly, and the same code base could be used to
support both UFS I and UFS2 filesystem formats. Over 90 percent of the code base
is shared, so bug fixes and feature or performance enhancements usually apply to
both filesystem formats.

The on-disk inodes used by UFSI are 128 bytes in siLe and have only two
unused 32-bit fields. Ir would not be possible to convert to 64-bit block pointers
without reducing the number of direct block pointers from 12 to 5. Doing so
would dramatically increase the amount of wasted space, since only direct block
pointers can reference fragments, so the only alternative is to increase the size of
the on-disk inode to 256 bytes.

Once one is commined to changing to a new on-disk format for the inodes, it
is possible.to include other irrode-related changes that were not possible within the
constraints of the old inodcs. While it was tempting to throw in every1hing that
has ever been suggested over the last 20 years, we felt lhat it was best to limit the
addition or new capabilities to those that were likely to have a clear benefit. Every
new addition adds complexity that has a cost both in maintainability and perfor
mance. Obscure or little-used features may add conditional checks in frequently
executed code paths such as read and write, s lowing down the overall performance
of the filesystem even if they are not used.

Extended Attributes

A major addition in VFS2 is support for extended attributes. Extended attributes are
a piece of auxiliary data storage associated with an inode that can be used to store
auxiliary data that is separate from the contents of the file. The idea is similar to the
concept of data forks used in the Apple filesystem [Apple, 2003]. By integrating the
extended attributes into the inode itselr, it is p<Jssible to provide the same integrity
guaran1ees as are made for the contents of the file i1self. Specifically. the successful
completion of anfrync system call ensures that the file data, the extended <ittributes.
and aJI names and paths leading to the names of the file arc in stable store.

The current implementation has space in the inode to store up to two blocks
of extended attributes. The new UFS2 inode format had room for up to five addi
tional 64-bit pointers. Thus. the number of extended attribute blocks could have
been between one to five blocks. We chose ro allocate two blocks to the extended
attributes and ro leave the other three as spares for future use. By having two, all
the code had to be prepared to deal with an array of pointers, so ir the number got
expanded into the rcmajning spares in lhe future, the existing implementation will
work without changes to the source code. By saving three spares, we provided a
reasonable amount of space for future needs. And if the decision to allow only
two blocks proves to be too lirtle space, one or more of the spares can be used to

expand the size of the extended allributes in the future. If vastly more extended
attribute space is needed, a spare could be used as an indirect pointer to extended
attribute data blocks.

Figure 8.2 shows the format used for the extended attributes. The first field of
the header of each attribute is its length. Applications that do not understand the
name space or name can simply skip over the unknown attribute by adding the

Page 40 of 43

Section 8.2 SLructure of an I node 301

Size

Figure 8.2 Format of extended attributes. The header of each attribute has a 4-byte
Jcng1h. I-byte name-space class. 1-byte content pad length. I-byte name length, and name.
The name is padded so that the contents start on an 8-byte boundary. The contents are
padded ro the size shown by the "content pad length" field. The size of the contents can be
calculated by subtracting from the length the si1e of the header (including the name) and
the content pad length.

length to their current position to get to the next attribute. Thus. many different
applications can share the usage of the extended attribute space, even if they do
not understand each other's data types.

The first of two initial uses for extended attributes is to support an access co11-
1rol list. generally referred to as an ACL. An ACL replaces the group pennissions
for a file with a more specific list of the users that are permitted 10 access the files.
The ACL also includes a list of the permissions that each user is granted. These
permissions include the traditional read. write, and execute permissions along with
other properties such as the right to rename or delete the file [Rhodes, 2003).

Earlier implementations or ACLs were done with a single auxiliary file per
filesystem that was indexed by the inode number and had a small fixed-sized area
to store the ACL permissions. The smal l size was to keep the size of the auxil
iary file reasonable, since it had to have space for every possible inode in the
filesystem. There were two problems with this implementatioa. The fixed size
of the space per inode to store the ACL information meant that it was not possi
ble to give access to long lists of users. The second problem was that it was dif
ficult to atomically commit changes to the ACL list for a file, since an update
required that both the file inode and the ACL file be wricten to have 1he update
take effect [Watson, 2000].

Both problems with the auxiliary file implementation of ACLs are fixed by
storing the ACL information directly in the extended-attribute data area of the
ifloJe. Because of the large size of the extended attribute data area (a minimum of
8 Kbytes and typically 32 Kbytes), long lists of ACL information can be easily
stored. Space used to store extended attribute information is proportional to the
number of inodes with extended attributes and the size of the ACL lists that they
use. Atomic update of the information is much easier, since writing the inode will
update the inode attributes and the set of data that it references including the
extended attributes in one disk operation. While it would be possible to update the
old auxiliary file on every /sync system call done on the filesystem. the cost of
doing so would be prohibitive. Here. the kernel knows if the extended attribute
data block for an inode is dirty and can write just that data block during an fsync
call on the inode.

The second use for extended attributes is for data labeling. Data labels pro
vide permissions for a mandatory access contml (MAC) framework enforced by

Page 41 of 43

620 Glossary

a copy is made; the modification is made to the copy rather than to the
original. In virtual-memory management, copy-on-write is a common scheme
tbat the kernel uses to manage pages shared by multjple processes. All the
page-table entries mapping a shared page are set such that the first write refer
ence to the page causes a page fault When the page fault is serviced, the
faulted page is replaced with a private copy, which is writable.

core file A file (named procname.core) that is created by the system when cer
tain signals are deljvered to a process. The file contains a record of the state
of the process at the time the signal occurred. This record includes the con
tents of the process's virtual address space and, on most systems, the user
structure.

CPU See central processing unit.

crash Among computer scientists, an unexpected system failure.

crash dump A record of the state of a machine ar the time of a crash. This
record is usually written to a place on secondary storage that is thought 10 be
safe so that it carrbe saveduntilthe information can be recovered.

credential A structure that identifies a user. ll contains the real, effective, and
saved user and group identifiers. See also real user idemifier; real group
identifier; effective user identifier; effective group identifier; saved UID;
saved GID.

current working directory The directory from which relative pathnames are
interpreted for a process. The current working directory for a process is set
with the chdir or fchdir system call.

cylinder group ln the Fast Filesystem, a collection of blocks on a disk drive that
is grouped together to use localizing information. That is, the filesystem allo
cates inodes and data blocks on a per-cylinder-group basis. Cylinder group is
a historic name from the days when the geometry of disks was known.

daemon A Jong-lived process that provides a system-related service. There are
daemon processes that execute in kernel mode (e.g., the pagedaemon) and
daemon processes that execute in user mode (e.g., the routing daemon). The
Old English term daemon means "a deified being," as distinguished from the
term demon, which means "an evil spi rit."

DARPA Defense Advanced Research Projects Agency. An agency of the U.S.
Department of Defense that is responsible for managing defense-sponsored
research in the United States.

datagram socket A type of socket that supports an unreliable message transport
that preserves message boundaries.

data segment The segment of a process's address space that contains the initial
ized and uninitialized data portions of a program. See also bss segment; stack
segment; text segment.

decapsulation Jn network communication, the removal of the outennost header
information from a message. See also encapsulation.

Page 42 of 43

__J__-~----- - -

Glossary 621

demand paging A memory-management technique in which memory is divided
into pages and the pages are provided to processes as needed-that is, on
demand. See also pure demand paging.

demon See daemon.
denial of service attack Any attempt to overload a system suc'h I.hat it is unable

lO do work for legitimate users of the system. For example, sending a system
so many packets that it runs out of mbufs and so cannot process any other net
work traffic.

descriptor An integer assigned by the system when a file is referenced by the
open system call or when a socket is created with the socket, pipe, or
socketpair system calls. The integer uniquely identifies an access path to the
file or socket from a given process or from any of that process's children.
Descriptors can also be duplicated with the dup and/cm/ system calls.

descriptor table A per-process table that holds references to objects on which
1/0 may be done. UO descriptors are indices into this table.

device In UNIX, a peripheral connected to the CPU.

device driver A software module that is pan of the kernel and that supports
access to a peripheral device.

device Hags Data specified in a system configuration file and passed to a device
driver. The use of these flags varies across device drivers. Device drivers for
terminal devices use the flags to indicate the tenninal lines on which the
driver should ignore modem-control signals on input.

device number A number thal uniquely identifies a device within the character
device class. Historically, a device number comprises two parts: a major de
vice number and a minor device number. ln FreeBSD 5.2, device numbers are
assigned dynamically and are used only for backward compatibility with

older applications.
device special file A file through which processes can access hardware devices

on a machine. For example, a sound card is accessed through such a file.

direct memory access (DMA) A facility whereby a peripheral device can access
main memory without the assistance of the CPU. OMA is typically used to trans
fer contiguous blocks of data between main memory and a peripheral device.

directory I.n UNIX, a special type of file that contains entries that are references
to other files. By convention, a directory contains at least two entries: dot(.)
and dot-dot(..). Dot refers to the directory itself; dot-dot refers to the parent

di~ectory.

directory entry An entry that is represented by a variable-length record structure
in the directory file. Each structure holds an ASC[l string that represents the
filename, the number of bytes of space provided for the string, the number of
bytes of space provided for the entry, the type of the file referenced by the
entry, and the number of the inode associated with the filename. By conven
tion, a directory entry with a zero inode number is treated as una]located, and

the space held by the entry is available for use.

Page 43 of 43

