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Abstract
Solid-state disks (SSDs) have the potential to revolution-
ize the storage system landscape. However, there is little
published work about their internal organization or the
design choices that SSD manufacturers face in pursuit of
optimal performance. This paper presents a taxonomy of
such design choices and analyzes the likely performance
of various configurations using a trace-driven simulator
and workload traces extracted from real systems. We find
that SSD performance and lifetime is highly workload-
sensitive, and that complex systems problems that nor-
mally appear higher in the storage stack, or even in dis-
tributed systems, are relevant to device firmware.

1 Introduction

The advent of the NAND-flash based solid-state stor-
age device (SSD) is certain to represent a sea change in
the architecture of computer storage subsystems. These
devices are capable of producing not only exceptional
bandwidth, but also random I/O performance that is
orders of magnitude better than that of rotating disks.
Moreover, SSDs offer both a significant savings in power
budget and an absence of moving parts, improving sys-
tem reliability.

Although solid-state disks cost significantly more per
unit capacity than their rotating counterparts, there are
numerous applications where they can be applied to great
benefit. For example, in transaction-processing systems,
disk capacity is often wasted in order to improve oper-
ation throughput. In such configurations, many small
(cost inefficient) rotating disks are deployed to increase
I/O parallelism. Large SSDs, suitably optimized for ran-
dom read and write performance, could effectively re-
place whole farms of slow, rotating disks. At this writ-
ing, small SSDs are starting to appear in laptop comput-
ers because of their reduced power-profile and reliability
in portable environments. As the cost of flash continues
to decline, the potential application space for solid-state
disks will certainly continue to grow.

Despite the promise that SSDs hold, there is little in
the literature about the architectural tradeoffs inherent in

their design. Where such knowledge exists, it typically
remains the intellectual property of SSD manufacturers.
As a consequence, it is difficult to understand the archi-
tecture of a given device, and harder still to interpret its
performance characteristics.

In this paper, we lay out a range of design tradeoffs
that are relevant to NAND-flash solid-state storage. We
then analyze several of these tradeoffs using a trace-
based disk simulator that we have customized to char-
acterize different SSD organizations. Since we can only
speculate about the detailed internals of existing SSDs,
we base our simulator on the specified properties of
NAND-flash chips. Our analysis is driven by various
traces captured from running systems such as a full-scale
TPC-C benchmark, an Exchange server workload, and
various standard file system benchmarks.

We find that many of the issues that arise in SSD
design appear to mimic problems that have previously
appeared higher in the storage stack. In solving these
hard problems, there is considerable latitude for design
choice. We show that the following systems issues are
relevant to SSD performance:

• Data placement. Careful placement of data across
the chips of an SSD is critical not only to provide
load balancing, but to effect wear-leveling.

• Parallelism. The bandwidth and operation rate of
any given flash chip is not sufficient to achieve op-
timal performance. Hence, memory components
must be coordinated so as to operate in parallel.

• Write ordering. The properties of NAND flash
present hard problems to the SSD designer. Small,
randomly-ordered writes are especially tricky.

• Workload management. Performance is highly
workload-dependent. For example, design deci-
sions that produce good performance under sequen-
tial workloads may not benefit workloads that are
not sequential, and vice versa.

As SSDs increase in complexity, existing disk models
will become insufficient for predicting performance. In
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particular, random write performance and disk lifetime
will vary significantly due to the locality of disk write
operations. We introduce a new model for characterizing
this behavior based on cleaning efficiency and suggest a
new wear-leveling algorithm for extending SSD lifetime.

The remainder of this paper is organized as follows. In
the next section, we provide background on the proper-
ties of NAND-flash memory. Section 3 describes the ba-
sic functionality that SSD designers must provide and the
major challenges in implementing these devices. Sec-
tion 4 describes our simulation environment and presents
an evaluation of the various design choices. Section 5
provides a discussion of SSD wear-leveling and gives
preliminary simulator results on this topic. Related work
is discussed in Section 6, and Section 7 concludes.

2 Background

Our discussion of flash memory is based on the latest
product specifications for Samsung’s K9XXG08UXM
series NAND-flash part [29]. Other vendors such as
Micron and Hynix offer products with similar features.
For the remainder of this paper, we treat the 4GB Sam-
sung part as a canonical exemplar, although the specifics
of other vendors’ parts will differ in some respects.
We present the specifications for single-level cell (SLC)
flash. Multi-level cell (MLC) flash is cheaper than SLC,
but has inferior performance and lifetime.

Figure 1 shows a schematic for a flash package. A
flash package is composed from one or more dies (also
called chips). We describe a 4GB flash-package consist-
ing of two 2GB dies, sharing an 8-bit serial I/O bus and
a number of common control signals. The two dies have
separate chip enable and ready/busy signals. Thus, one
of the dies can accept commands and data while the other
is carrying out another operation. The package also sup-
ports interleaved operations between the two dies.

Each die within a package contains 8192 blocks, orga-
nized among 4 planes of 2048 blocks. The dies can oper-
ate independently, each performing operations involving
one or two planes. Two-plane commands can be exe-
cuted on either plane-pairs 0 & 1 or 2 & 3, but not across
other combinations. Each block in turn consists of 64
4KB pages. In addition to data, each page includes a 128
byte region to store metadata (identification and error-
detection information). Table 1 presents the operational
attributes of the Samsung 4GB flash memory.

2.1 Properties of Flash Memory

Data reads are at the granularity of flash pages, and a typ-
ical read operation takes 25µs to read a page from the
media into a 4KB data register, and then subsequently
shift it out over the data bus. The serial line transfers

Page Read to Register 25µs
Page Program (Write) from Register 200µs
Block Erase 1.5ms
Serial Access to Register (Data bus) 100µs
Die Size 2 GB
Block Size 256 KB
Page Size 4 KB
Data Register 4 KB
Planes per die 4
Dies per package (2GB/4GB/8GB) 1,2 or 4
Program/Erase Cycles 100 K

Table 1: Operational flash parameters

data at 25ns per byte, or roughly 100µs per page. Flash
media blocks must be erased before they can be reused
for new data. An erase operation takes 1.5ms, which is
considerably more expensive than a read or write opera-
tion. In addition, each block can be erased only a finite
number of times before becoming unusable. This limit,
100K erase cycles for current generation flash, places a
premium on careful block reuse.

Writing (or programming) is also done at page granu-
larity by shifting data into the data register (100µs) and
then writing it out to the flash cell (200µs). Pages must be
written out sequentially within a block, from low to high
addresses. The part also provides a specialized copy-
back program operation from one page to another, im-
proving performance by avoiding the need to transport
data through the serial line to an external buffer.

In this paper, we discuss a 2 x 2GB flash package, but
extensions to larger dies and/or packages with more dies
are straightforward.

2.2 Bandwidth and Interleaving

The serial interface over which flash packages receive
commands and transmit data is a primary bottleneck
for SSD performance. The Samsung part takes roughly
100µs to transfer a 4KB page from the on-chip register to
an off-chip controller. This dwarfs the 25µs required to
move data into the register from the NAND cells. When
these two operations are taken in series, a flash pack-
age can only produce 8000 page reads per second (32
MB/sec). If interleaving is employed within a die, the
maximum read bandwidth from a single part improves
to 10000 reads per second (40 MB/sec). Writes, on the
other hand, require the same 100µs serial transfer time
per page as reads, but 200µs programming time. With-
out interleaving, this gives a maximum, single-part write
rate of 3330 pages per second (13 MB/sec). Interleaving
the serial transfer time and the program operation dou-
bles the overall bandwidth. In theory, because there are
two independent dies on the packages we are consider-
ing, we can interleave three operations on the two dies
put together. This would allow both writes and reads to
progress at the speed of the serial interconnect.
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Figure 1: Samsung 4GB flash internals

Interleaving can provide considerable speedups when
the operation latency is greater than the serial access la-
tency. For example, a costly erase command can in some
cases proceed in parallel with other commands. As an-
other example, fully interleaved page copying between
two packages can proceed at close to 100µs per page as
depicted in Figure 2 in spite of the 200µs cost of a single
write operation. Here, 4 source planes and 4 destination
planes copy pages at speed without performing simulta-
neous operations on the same plane-pair and while opti-
mally making use of the serial bus pins connected to both
flash dies. Once the pipe is loaded, a write completes ev-
ery interval (100µs).

Even when flash architectures support interleaving,
they do so with serious constraints. So, for example, op-
erations on the same flash plane cannot be interleaved.
This suggests that same-package interleaving is best em-
ployed for a choreographed set of related operations,
such as a multi-page read or write as depicted in Fig-
ure 2. The Samsung parts we examined support a fast in-
ternal copy-back operation that allows data to be copied
to another block on-chip without crossing the serial pins.
This optimization comes at a cost: the data can only be
copied within the same flash plane (of 2048 blocks). Two
such copies may themselves be interleaved on different
planes, and the result yields similar performance to the
fully-interleaved inter-package copying depicted in Fig-
ure 2, but without monopolizing the serial pins.

3 SSD Basics

In this section we outline some of the basic issues that
arise when constructing a solid-state disk from NAND-

Source Plane 0

Dest Plane 0

Source Plane 2

Dest Plane 2

Source Plane 1
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Source Plane 3

Dest Plane 3

Read
Xfer

Write

Time

Figure 2: Interleaved page copying

flash components. Although we introduce a number of
dimensions in which designs can differ, we leave the
evaluation of specific choices until Section 4.

All NAND-based SSDs are constructed from an ar-
ray of flash packages similar to those described in the
previous section. Figure 3 depicts a generalized block
diagram for an SSD. Each SSD must contain host inter-
face logic to support some form of physical host interface
connection (USB, FiberChannel, PCI Express, SATA)
and logical disk emulation, like a flash translation layer
mechanism to enable the SSD to mimic a hard disk drive.
The bandwidth of the host interconnect is often a critical
constraint on the performance of the device as a whole,
and it must be matched to the performance available to
and from the flash array. An internal buffer manager
holds pending and satisfied requests along the primary
data path. A multiplexer (Flash Demux/Mux) emits com-
mands and handles transport of data along the serial con-
nections to the flash packages. The multiplexer can in-
clude additional logic, for example, to buffer commands
and data. A processing engine is also required to manage
the request flow and mappings from disk logical block
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Figure 3: SSD Logic Components

address to physical flash location. The processor, buffer-
manager, and multiplexer are typically implemented in a
discrete component such as an ASIC or FPGA, and data
flow between these logic elements is very fast. The pro-
cessor, and its associated RAM, may be integrated, as
is the case for simple USB flash-stick devices, or stan-
dalone as for designs with more substantial processing
and memory requirements.

As described in Section 2, flash packages export an
8-bit wide serial data interface with a similar number of
control pins. A 32GB SSD with 8 of the Samsung parts
would require 136 pins at the flash controller(s) just for
the flash components. With such a device, it might be
possible to achieve full interconnection between the flash
controller(s) and flash packages, but for larger configura-
tions this is not likely to remain feasible. For the mo-
ment, we assume full interconnection between data path,
control logic, and flash. We return to the issue of inter-
connect density in Section 3.3.

This paper is primarily concerned with the organiza-
tion of the flash array and the algorithms needed to man-
age mappings between logical disk and physical flash ad-
dresses. It is beyond the scope of this paper to tackle the
many important issues surrounding the design and layout
of SSD logic components.

3.1 Logical Block Map

As pointed out by Birrell et al. [2], the nature of NAND
flash dictates that writes cannot be performed in place as
on a rotating disk. Moreover, to achieve acceptable per-
formance, writes must be performed sequentially when-
ever possible, as in a log. Since each write of a single
logical-disk block address (LBA) corresponds to a write
of a different flash page, even the simplest SSD must
maintain some form of mapping between logical block
address and physical flash location. We assume that the

logical block map is held in volatile memory and recon-
structed from stable storage at startup time.

We frame the discussion of logical block maps us-
ing the abstraction of an allocation pool to think about
how an SSD allocates flash blocks to service write re-
quests. When handling a write request, each target log-
ical page (4KB) is allocated from a pre-determined pool
of flash memory. The scope of an allocation pool might
be as small as a flash plane or as large as multiple flash
packages. When considering the properties of allocation
pools, the following variables come to mind.

• Static map. A portion of each LBA constitutes a
fixed mapping to a specific allocation pool.

• Dynamic map. The non-static portion of a LBA is
the lookup key for a mapping within a pool.

• Logical page size. The size for the referent of a
mapping entry might be as large as a flash block
(256KB), or as small as a quarter-page (1KB) .

• Page span. A logical page might span related pages
on different flash packages thus creating the poten-
tial for accessing sections of the page in parallel.

These variables are then bound by three constraints:

• Load balancing. Optimally, I/O operations should
be evenly balanced between allocation pools.

• Parallel access. The assignment of LBAs to phys-
ical addresses should interfere as little as possible
with the ability to access those LBAs in parallel. So,
for example if LBA0..LBAn are always accessed at
the same time, they should not be stored on a com-
ponent that requires each to be accessed in series.

• Block erasure. Flash pages cannot be re-written
without first being erased. Only fixed-size blocks of
contiguous pages can be erased.
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The variables that define allocation pools trade off
against these constraints. For example, if a large portion
of the LBA space is statically mapped, then there is little
scope for load-balancing. If a contiguous range of LBAs
is mapped to the same physical die, performance for se-
quential access in large chunks will suffer. With a small
logical page size, more work will be required to elimi-
nate valid pages from erasure candidates. If the logical
page size (with unit span) is equal to the block size, then
erasure is simplified because the write unit and erase unit
are the same, however all writes smaller than the logical
page size result in a read-modify-write operation involv-
ing the portions of the logical page not being modified.

RAID systems [26] often stripe logically contiguous
chunks of data (e.g. 64KB or larger) across multiple
physical disks. Here, we use striping at fine granular-
ity to distribute logical pages (4K) across multiple flash
dies or packages. Doing so serves both to distribute load
and to arrange that consecutive pages will be placed on
different packages that can be accessed in parallel.

3.2 Cleaning

Fleshing out the design sketched by Birrell et al. [2], we
use flash blocks as the natural allocation unit within an
allocation pool. At any given time, a pool can have one or
more active blocks available to hold incoming writes. To
support the continued allocation of fresh active blocks,
we need a garbage collector to enumerate previously-
used blocks that must be erased and recycled. If the log-
ical page granularity is smaller than the flash block size,
then flash blocks must be cleaned prior to erasure. Clean-
ing can be summarized as follows. When a page write
is complete, the previously mapped page location is su-
perseded since its contents are now out-of-date. When
recycling a candidate block, all non-superseded pages in
the candidate must be written elsewhere prior to erasure.

In the worst case, where superseded pages are dis-
tributed evenly across all blocks, N − 1 cleaning writes
must be issued for every new data write (where there are
N pages per block). Of course, most workloads produce
clusters of write activity, which in turn lead to multiple
superseded pages per block when the data is overwrit-
ten. We introduce the term cleaning efficiency to quantify
the ratio of superseded pages to total pages during block
cleaning. Although there are many possible algorithms
for choosing candidate blocks for recycling, it is always
desirable to optimize cleaning efficiency. It’s worth not-
ing that the use of striping to enhance parallel access for
sequential addresses works against the clustering of su-
perseded pages.

For each allocation pool we maintain a free block list
that we populate with recycled blocks. In this section and
the next, we assume a purely greedy approach that calls

for choosing blocks to recycle based on potential clean-
ing efficiency. As described in Section 2, NAND flash
sustains only a limited number of erasures per block.
Therefore, it is desirable to choose candidates for recy-
cling such that all blocks age evenly. This property is
enforced through the process known as wear-leveling. In
Section 5, we discuss how the choice of cleaning candi-
dates interacts directly with wear-leveling, and suggest a
modified greedy algorithm.

In an SSD that emulates a traditional disk interface,
there is no abstraction of a free disk sector. Hence, the
SSD is always full with respect to its advertised capacity.
In order for cleaning to work, there must be enough spare
blocks (not counted in the overall capacity) to allow
writes and cleaning to proceed, and to allow for block
replacement if a block fails. An SSD can be substan-
tially overprovisioned with such spare capacity in order
to reduce the demand for cleaning blocks in foreground.
Delayed block cleaning might also produce better clus-
tering of superseded pages in non-random workloads.

In the previous subsection, we stipulated that a given
LBA is statically mapped to a specific allocation pool.
Cleaning can, however, operate at a finer granularity.
One reason for doing so is to exploit low-level efficiency
in the flash architecture such as the internal copy-back
operation described in Section 2.2, which only applies
when pages are moved within the same plane. Since a
single flash plane of 2048 blocks represents a very small
allocation pool for the purposes of load distribution, we
would like to allocate from a larger pool. However, if an
active block and cleaning state per plane is maintained,
then cleaning operations within the same plane can be
arranged with high probability.

It might be tempting to view block cleaning as simi-
lar to log-cleaning in a Log-Structured File System [28]
and indeed there are similarities. However, apart from
the obvious difference that we model a block store as op-
posed to a file system, a log-structured store that writes
and cleans in strict disk-order cannot choose candidate
blocks so as to yield higher cleaning efficiency. And,
as with LFS-like file systems, it’s altogether too easy
to combine workloads that would cause all recoverable
space to be situated far from the log’s cleaning pointer.
For example, writing the same sets of blocks over and
over would require a full cycle over the disk content in
order for the cleaning pointer to reach the free space
near the end of the log. And, unlike a log-structured file
system, the disk here is always “full”, corresponding to
maximal cleaning pressure all the time.

3.3 Parallelism and Interconnect Density

If an SSD is going to achieve bandwidths or I/O rates
greater than the single-chip maxima described in Sec-
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