
A Case for Flash Memory SSD in Enterprise Database
Applications

Sang-Won Lee† Bongki Moon‡ Chanik Park§ Jae-Myung Kim¶ Sang-Woo Kim†

†School of Information & Communications Engr.
Sungkyunkwan University

Suwon 440-746, Korea
{wonlee,swkim}@ece.skku.ac.kr

‡Department of Computer Science
University of Arizona

Tucson, AZ 85721, U.S.A.
bkmoon@cs.arizona.edu

§Samsung Electronics Co., Ltd.
San #16 Banwol-Ri

Hwasung-City 445-701, Korea
ci.park@samsung.com

¶Altibase Corp.
182-13, Guro-dong, Guro-Gu

Seoul, 152-790, Korea
jmkim@altibase.com

ABSTRACT
Due to its superiority such as low access latency, low en-
ergy consumption, light weight, and shock resistance, the
success of flash memory as a storage alternative for mobile
computing devices has been steadily expanded into personal
computer and enterprise server markets with ever increas-
ing capacity of its storage. However, since flash memory ex-
hibits poor performance for small-to-moderate sized writes
requested in a random order, existing database systems may
not be able to take full advantage of flash memory without
elaborate flash-aware data structures and algorithms. The
objective of this work is to understand the applicability and
potential impact that flash memory SSD (Solid State Drive)
has for certain type of storage spaces of a database server
where sequential writes and random reads are prevalent. We
show empirically that up to more than an order of magni-
tude improvement can be achieved in transaction processing
by replacing magnetic disk with flash memory SSD for trans-
action log, rollback segments, and temporary table spaces.

Categories and Subject Descriptors
H. Information Systems [H.2 DATABASE MANAGE-
MENT]: H.2.2 Physical Design

General Terms
Design, Algorithms, Performance, Reliability
∗This work was partly supported by the IT R&D program
of MIC/IITA [2006-S-040-01] and MIC, Korea under ITRC
IITA-2008-(C1090-0801-0046). The authors assume all re-
sponsibility for the contents of the paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’08, June 9–12, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM 978-1-60558-102-6/08/06 ...$5.00.

Keywords
Flash-Memory Database Server, Flash-Memory SSD

1. INTRODUCTION
Due to its superiority such as low access latency, low en-

ergy consumption, light weight, and shock resistance, the
success of flash memory as a storage alternative for mobile
computing devices has been steadily expanded into personal
computer and enterprise server markets with ever increas-
ing capacity of its storage. As it has been witnessed in the
past several years, two-fold annual increase in the density
of NAND flash memory is expected to continue until year
2012 [11]. Flash-based storage devices are now considered
to have tremendous potential as a new storage medium that
can replace magnetic disk and achieve much higher perfor-
mance for enterprise database servers [10].

The trend in market is also very clear. Computer hard-
ware manufacturers have already launched new lines of mo-
bile personal computers that did away with disk drives alto-
gether, replacing them with flash memory SSD (Solid State
Drive). Storage system vendors have started lining up their
flash-based solutions in Terabyte-scale targeting large-scale
database servers as one of the main applications.

Adoption of a new technology, however, is often deterred
by lack of in-depth analysis on its applicability and cost-
effectiveness, and is even considered risky when it comes to
mission critical applications. The objective of this work is
to evaluate flash memory SSD as stable storage for database
workloads and identify the areas where flash memory SSD
can be best utilized, thereby accelerating its adoption as
an alternative to magnetic disk and maximizing the benefit
from this new technology.

Most of the contemporary database systems are config-
ured to have separate storage spaces for database tables and
indexes, log data and temporary data. Whenever a trans-
action updates a data object, its log record is created and
stored in stable storage for recoverability and durability of
the transaction execution. Temporary table space stores

1075
CSCO-1031 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

temporary data required for performing operations such as
sorts or joins. If multiversion read consistency is supported,
another separate storage area called rollback segments is
created to store previous versions of data objects.

For the purpose of performance tuning as well as recov-
erability, these distinct storage spaces are often created on
physically separate storage devices, so that I/O throughput
can increase, and I/O bottlenecks can be detected and ad-
dressed with more ease. While it is commonly known that
accessing data stored in secondary storage is the main source
of bottlenecks in database processing, high throughput of a
database system cannot be achieved by addressing the bot-
tlenecks only in spaces for tables and indexes but also in
spaces for log, temporary and rollback data.

Recent studies on database availability and architecture
report that writing log records to stable storage is almost
guaranteed to be a significant performance bottleneck [13,
21]. In on-line transaction processing (OLTP) applications,
for example, when a transaction commits, all the log records
created by the transaction have to be force-written to sta-
ble storage. If a large number of concurrent transactions
commit at a rapid rate, the log tail will be requested to be
flushed to disk very often. This will then lengthen the av-
erage wait time of committing transactions and delay the
release of locks further, and eventually increase the overall
runtime overhead substantially.

Accessing data stored in temporary table spaces and roll-
back segments also takes up a significant portion of total
I/O activities. For example, queries performing a table scan,
join, sort or hash operation are very common in a data ware-
housing application, and processing those queries (except
simple table scans) will require a potentially large amount
of intermediate data to be written to and read from tem-
porary table spaces. Thus, to maximize the throughput of
a database system, it is critical to speed up accessing data
stored in those areas as well as in the data space for tables
and indexes.

Previous work has reported that flash memory exhibits
poor performance for small-to-moderate sized writes requested
in a random order [2] and the best attainable performance
may not be obtained from database servers without elab-
orate flash-aware data structures and algorithms [14]. In
this paper, in contrast, we demonstrate that flash mem-
ory SSD can help improve the performance of transaction
processing significantly, particularly as a storage alternative
for transaction log, rollback segments and temporary table
spaces. To accomplish this, we trace quite distinct data ac-
cess patterns observed from these three different types of
data spaces, and analyze how magnetic disk and flash mem-
ory SSD devices handle such I/O requests, and show how
the overall performance of transaction processing is affected
by them.

While the previous work on in-page logging is targeted at
regular table spaces for database tables and indexes where
small random writes are dominant [14], the objective of this
work is to understand the applicability and potential impact
that flash memory SSD has for the other data spaces where
sequential writes and random reads are prevalent. The key
contributions of this work are summarized as follows.

• Based on a detailed analysis of data accesses that are

traced from a commercial database server, this paper
provides an understanding of I/O behaviors that are
dominant in transaction log, rollback segments, and
temporary table spaces. It also shows that this I/O
pattern is a good match for the dual-channel, super-
block design of flash memory SSD as well as the char-
acteristics of flash memory itself.

• This paper presents a quantitative and comparative
analysis of magnetic disk and flash memory SSD with
respect to performance impacts they have on transac-
tional database workloads. We observed more than an
order of magnitude improvement in transaction through-
put and response time by replacing magnetic disk with
flash memory SSD as storage media for transaction log
or rollback segments. In addition, more than a factor
of two improvement in response time was observed in
processing a sort-merge or hash join query by adopting
flash memory SSD instead of magnetic disk for tem-
porary table spaces.

• The empirical study carried out in this paper demon-
strates that low latency of flash memory SSD can alle-
viate drastically the log bottleneck at commit time and
the problem of increased random reads for multiversion
read consistency. With flash memory SSD, I/O pro-
cessing speed may no longer be as serious a bottleneck
as it used be, and the overall performance of query
processing can be much less sensitive to tuning param-
eters such as the unit size of physical I/O. The supe-
rior performance of flash memory SSD demonstrated in
this work will help accelerate adoption of flash mem-
ory SSD for database applications in the enterprise
market, and help us revisit requirements of database
design and tuning guidelines for database servers.

The rest of this paper is organized as follows. Section 2
presents a few key features and architecture of Samsung flash
memory SSD, and discusses its performance characteristics
with respect to transactional database workloads. Section 3
describes the experimental settings that will be used in the
following sections. In Section 4, we analyze the performance
gain that can be obtained by adopting flash memory SSD
as stable storage for transaction log. Section 5 analyzes the
patterns in which old versions of data objects are written
to and read from rollback segments, and shows how flash
memory SSD can take advantage of the access patterns to
improve access speed for rollback segments and the average
response time of transactions. In Section 6, we analyze the
I/O patterns of sort-based and hash-based algorithms, and
discuss the impact of flash memory SSD on the algorithms.
Lastly, Section 7 summarizes the contributions of this paper.

2. DESIGN OF SAMSUNG FLASH SSD
The flash memory SSD (Solid State Drive) of Samsung

Electronics is a non-volatile storage device based on NAND-
type flash memory, which is being marketed as a replacement
of traditional hard disk drives for a wide range of comput-
ing platforms. In this section, we first briefly summarize
the characteristics of flash memory as a storage medium for
databases. We then present the architecture and a few key

1076
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

features of Samsung flash memory SSD, and discuss its per-
formance implications on transactional database workloads.

2.1 Characteristics of Flash Memory
Flash memory is a purely electronic device with no me-

chanically moving parts like disk arms in a magnetic disk
drive. Therefore, flash memory can provide uniform ran-
dom access speed. Unlike magnetic disks whose seek and
rotational delay often becomes the dominant cost of reading
or writing a sector, the time to access data in flash mem-
ory is almost linearly proportional to the amount of data
irrespective of their physical locations in flash memory. The
ability of flash memory to quickly perform a sector read or
a sector (clean) write located anywhere in flash memory is
one of the key characteristics we can take advantage of.

On the other hand, with flash memory, no data item (or a
sector containing the data item) can be updated in place just
by overwriting it. In order to update an existing data item
stored in flash memory, a time-consuming erase operation
must be performed before overwriting. The erase operation
cannot be performed selectively on a particular data item
or sector, but can only be done for an entire block of flash
memory called erase unit containing the data item, which is
much larger (typically 128 KBytes) than a sector. To avoid
performance degradation caused by this erase-before-write
limitation, some of the data structures and algorithms of
existing database systems may well be reconsidered [14].

The read and write speed of flash memory is asymmetric,
simply because it takes longer to write (or inject charge into)
a cell until reaching a stable status than to read the status
from a cell. As will be shown later in this section (Table 1),
the sustained speed of read is almost twice faster than that
of write. This property of asymmetric speed should also be
considered when reviewing existing techniques for database
system implementations.

2.2 Architecture and Key Features
High bandwidth is one of the critical requirements for the

design of flash memory SSD. The dual-channel architecture,
as shown in Figure 1, supports up to 4-way interleaving to
hide flash programming latency and to increase bandwidth
through parallel read/write operations. An automatic inter-
leaving hardware logic is adopted to maximize the interleav-
ing effect with the minimal firmware intervention [18].

Figure 1: Dual-Channel Architecture of SSD

A firmware layer known as flash translation layer (FTL) [5,

12] is responsible for several essential functions of flash mem-
ory SSD such as address mapping and wear leveling. The
address mapping scheme is based on super-blocks in order
to limit the amount of information required for logical-to-
physical address mapping, which grows larger as the capac-
ity of flash memory SSD increases. This super-block scheme
also facilitates interleaved accesses of flash memory by strip-
ing a super-block of one MBytes across four flash chips. A
super-block consists of eight erase units (or large blocks) of
128 KBytes each. Under this super-block scheme, two erase
units of a super-block are allocated in the same flash chip.

Though flash memory SSD is a purely electronic device
without any moving part, it is not entirely latency free for
accessing data. When a read or write request is given from
a host system, the I/O command should be interpreted and
processed by the SSD controller, referenced logical addresses
should be mapped to physical addresses, and if mapping
information is altered by a write or merge operation, then
the mapping table should be updated in flash memory. With
all these overheads added up, the read and write latency
observed from the recent SSD products is approximately 0.2
msec and 0.4 msec, respectively.

In order to reduce energy consumption, the one-chip con-
troller uses a small amount of SRAM for program code, data
and buffer memory.1 The flash memory SSD drives can be
interfaced with a host system through the IDE standard
ATA-5.

2.3 Flash SSD for Database Workload
Typical transactional database workloads like TPC-C ex-

hibit little locality and sequentiality in data accesses, a high
percentage of which are synchronous writes (e.g., forced-
writes of log records at commit time). Such latency hiding
techniques as prefetching and write buffering become less
effective for this type of workload, and the performance of
transactional database applications tends to be more closely
limited by disk latency than disk bandwidth and capac-
ity [24]. Nonetheless, for more than a decade in the past, the
latency of disk has improved at a much slower pace than the
bandwidth of disk, and the latency-bandwidth imbalance is
expected to be even more evident in the future [19].

In this regard, extremely low latency of flash memory
SSD lends itself to being a new storage medium that re-
places magnetic disk and improves the throughput of trans-
action processing significantly. Table 1 shows the perfor-
mance characteristics of some contemporary hard disk and
flash memory SSD products. Though the bandwidth of disk
is still two to three times higher than that of flash memory
SSD, more importantly, the read and write latency of flash
memory SSD is smaller than that of disk by more than an
order of magnitude.

As is briefly mentioned above, the low latency of flash
memory SSD can reduce the average transaction commit
time and improve the throughput of transaction processing
significantly. If multiversion read consistency is supported,
rollback data are typically written to rollback segments se-
quentially in append-only fashion and read from rollback
segments randomly during transaction processing. This pe-

1The flash memory SSD drive tested in this paper contains
128 KByte SRAM.

1077
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Storage hard disk† flash SSD‡

Average 8.33 ms 0.2 ms (read)
Latency 0.4 ms (write)

Sustained 110 MB/sec 56 MB/sec (read)
Transfer Rate 32 MB/sec (write)

†Disk: Seagate Barracuda 7200.10 ST3250310AS, average
latency for seek and rotational delay;

‡SSD: Samsung MCAQE32G8APP-0XA drive with
K9WAG08U1A 16 Gbits SLC NAND chips

Table 1: Magnetic disk vs. NAND Flash SSD

culiar I/O pattern is a good match for the characteristics of
flash memory itself and the super-block scheme of the Sam-
sung flash memory SSD. External sorting is another opera-
tion that can benefit from the low latency of flash memory
SSD, because the read pattern of external sorting is quite
random during the merge phase in particular.

3. EXPERIMENTAL SETTINGS
Before presenting the results from our workload analysis

and performance study in the following sections, we describe
the experimental settings briefly in this section.

In most cases, we ran a commercial database server (one
of the most recent editions of its product line) on two Linux
systems (kernel version 2.6.22), each with a 1.86 GHz In-
tel Pentium dual-core processor and 2 GB RAM. These
two computer systems were identical except that one was
equipped with a magnetic disk drive and the other with a
flash memory SSD drive instead of the disk drive. The disk
drive model was Seagate Barracuda 7200.10 ST3250310AS
with 250 GB capacity, 7200 rpm and SATA interface. The
flash memory SSD model was Samsung Standard Type
MCAQE32G8APP-0XA with 32 GB capacity and 1.8 inch
PATA interface, which internally deploys Samsung
K9WAG08U1A 16 Gbits SLC NAND flash chips (shown in
Figure 2). These storage devices were connected to the com-
puter systems via a SATA or PATA interface.

Figure 2: Samsung NAND Flash SSD

When either magnetic disk or flash memory SSD was used
as stable storage for transaction log, rollback segments, or
temporary table spaces, it was bound as a raw device in
order to minimize interference from data caching by the op-
erating system. This is a common way of binding storage

devices adopted by most commercial database servers with
their own caching scheme. In all the experiments, database
tables were cached in memory so that most of IO activi-
ties were confined to transaction log, rollback segments and
temporary table spaces.

4. TRANSACTION LOG
When a transaction commits, it appends a commit type

log record to the log and force-writes the log tail to stable
storage up to and including the commit record. Even if a no-
force buffer management policy is being used, it is required
to force-write all the log records kept in the log tail to ensure
the durability of transactions [22].

As the speed of processors becomes faster and the memory
capacity increases, the commit time delay due to force-writes
increasingly becomes a serious bottleneck to achieving high
performance of transaction processing [21]. The response
time Tresponse of a transaction can be modeled as a sum
of CPU time Tcpu, read time Tread, write time Twrite and
commit time Tcommit. Tcpu is typically much smaller than
IO time. Even Tread and Twrite become almost negligible
with a large capacity buffer cache and can be hidden by
asynchronous write operations. On the other hand, commit
time Tcommit still remains to be a significant overhead, be-
cause every committing transaction has to wait until all of
its log records are force-written to log, which in turn can-
not be done until forced-write operations requested by other
transactions earlier are completed. Therefore, the amount of
commit-time delay tends to increase as the number of con-
current transactions increases, and is typically no less than
a few milliseconds.

Group commit may be used to alleviate the log bottle-
neck [4]. Instead of committing each transaction as it fin-
ishes, transactions are committed in batches when enough
logs are accumulated in the log tail. Though this group
commit approach can significantly improve the throughput
of transaction processing, it does not improve the response
time of individual transactions and does not remove the
commit time log bottleneck altogether.

Log records are always appended to the end of log. If a
separate storage device is dedicated to transaction log, which
is commonly done in practice for performance and recover-
ability purposes, this sequential pattern of write operations
favors not only hard disk but also flash memory SSD. With
no seek delay due to sequential accesses, the write latency
of disk is reduced to only half a revolution of disk spindle
on average, which is equivalent to approximately 4.17 msec
for disk drives with 7200 rpm rotational speed.

In the case of flash memory SSD, however, the write la-
tency is much lower at about 0.4 msec, because flash memory
SSD has no mechanical latency but only a little overhead
from the controller as described in Section 2.3. Even the
no in-place update limitation of flash memory has no nega-
tive impact on the write bandwidth in this case, because log
records being written to flash memory sequentially do not
cause expensive merge or erase operations as long as clean
flash blocks (or erase units) are available. Coupled with the
low write latency of flash memory, the use of flash memory
SSD as a dedicated storage device for transaction log can
reduce the commit time delay considerably.

1078
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

In the rest of this section, we analyze the performance
gain that can be obtained by adopting flash memory SSD
as stable storage for transaction log. The empirical results
from flash memory SSD drives are compared with those from
magnetic disk drives.

4.1 Simple SQL Transactions
To analyze the commit time performance of hard disk and

flash memory SSD drives, we first ran a simple embedded
SQL program on a commercial database server, which ran
on two identical Linux systems except that one was equipped
with a magnetic disk drive and the other with a flash mem-
ory SSD drive instead of the disk drive. This embedded
SQL program is multi-threaded and simulates concurrent
transactions. Each thread updates a single record and com-
mits, and repeats this cycle of update and commit continu-
ously. In order to minimize the wait time for database table
updates and increase the frequency of commit time forced-
writes, the entire table data were cached in memory. Conse-
quently, the runtime of a transaction excluding the commit
time (i.e., Tcpu + Tread + Twrite) was no more than a few
dozens of microseconds in the experiment. Table 2 shows
the throughput of the embedded SQL program in terms of
transactions-per-seconds (TPS).

no. of concurrent hard disk flash SSD
transactions TPS %CPU TPS %CPU

4 178 2.5 2222 28

8 358 4.5 4050 47

16 711 8.5 6274 77

32 1403 20 5953 84

64 2737 38 5701 84

Table 2: Commit-time performance of an embedded
SQL program measured in transactions-in-seconds
(TPS) and CPU utilization

Regarding the commit time activities, a transaction can
be in one of the three distinct states. Namely, a transaction
(1) is still active and has not requested to commit, (2) has
already requested to commit but is waiting for other trans-
actions to complete forced-writes of their log records, or (3)
has requested to commit and is currently force-writing its
own log records to stable storage.

When a hard disk drive was used as stable storage, the
average wait time of a transaction was elongated due to
the longer latency of disk writes, which resulted in an in-
creased number of transactions that were kept in a state of
the second or third category. This is why the transaction
throughput and CPU utilization were both low, as shown in
the second and third columns of Table 2.

On the other hand, when a flash memory SSD drive was
used instead of a hard disk drive, much higher transaction
throughput and CPU utilization were observed, as shown in
the fourth and fifth columns of Table 2. With a much shorter
write latency of flash memory SSD, the average wait time of
a transaction was shortened, and a relatively large number
of transactions were actively utilizing CPU, which in turn
resulted in higher transaction throughput. Note that the
CPU utilization was saturated when the number of concur-

rent transactions was high in the case of flash memory SSD,
and no further improvement in transaction throughput was
observed when the number of concurrent transactions was
increased from 32 to 64, indicating that CPU was a limiting
factor rather than I/O.

4.2 TPC-B Benchmark Performance
In order to evaluate the performance of flash memory SSD

as a storage medium for transaction log in a more harsh envi-
ronment, we ran a commercial database server with TPC-B
workloads created by a workload generation tool. Although
it is obsolete, the TPC-B benchmark was chosen because it
is designed to be a stress test on different subsystems of a
database server and its transaction commit rate is higher
than that of TPC-C benchmark [3]. We used this bench-
mark to stress-test the log storage part of the commercial
database server by executing a large number of small trans-
actions causing significant forced-write activities.

In this benchmark test, the number of concurrent simu-
lated users was set to 20, and the size of database and the
size of database buffer cache of the server were set to 450
MBytes and 500 MBytes, respectively. Note that this set-
ting allows the database server to cache the entire database
in memory, such that the cost of reading and writing data
pages is eliminated and the cost of forced writing log records
remains dominant on the critical path in the overall perfor-
mance. When either a hard disk or flash memory SSD drive
was used as stable storage for transaction log, it was bound
as a raw device. Log records were force-written to the sta-
ble storage in a single or multiple sectors (of 512 bytes) at
a time.

Table 3 summarizes the results from the benchmark test
measured in terms of transactions-per-seconds (TPS) and
CPU utilization as well as the average size of a single log
write and the average time taken to process a single log
write. Since multiple transactions could commit together
as a group (by a group commit mechanism), the frequency
of log writes was much lower than the number of transac-
tions processed per second. Again, due to the group commit
mechanism, the average size of a single log write was slightly
different between the two storage media.

hard disk flash SSD

Transactions/sec 864 3045

CPU utilization (%) 20 65
Log write size (sectors) 32 30

Log write time (msec) 8.1 1.3

Table 3: Commit-time performance from TPC-B
benchmark (with 20 simulated users)

The overall transaction throughput was improved by a
factor of 3.5 by using a flash memory SSD drive instead of
a hard disk drive as stable storage for transaction log. Evi-
dently the main factor responsible for this improvement was
the considerably lower log write time (1.3 msec on average)
of flash memory SSD, compared with about 6 times longer
log write time of disk. With a much reduced commit time
delay by flash memory SSD, the average response time of
a transaction was also reduced considerably. This allowed

1079
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

