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Ivy: A Read/Write Peer-to-Peer File System 

Athicha Muthitacharoen, Robert Morris, Thomer M. Gil, and Benjie Chen 
{ athicha, rtm, thomer, benjie }@lcs.mit.edu 

MIT Laboratory for Computer Science 
200 Technology Square, Cambridge, MA 02139. 

Abstract 

Ivy is a multi-user read/write peer-to-peer file system. 
Ivy has no centralized or dedicated components, and 
it provides useful integrity properties without requiring 
users to fully trust either the underlying peer-to-peer stor
age system or the other users of the file system. 

An Ivy file system consists solely of a set of logs, one 
log per participant. Ivy stores its logs in the DHash dis
tributed hash table. Each participant finds data by con
sulting all logs, but performs modifications by appending 
only to its own log. This arrangement allows Ivy to main
tain meta-data consistency without locking. Ivy users can 
choose which other logs to trust, an appropriate arrange
ment in a semi-open peer-to-peer system. 

Ivy presents applications with a conventional file sys
tem interface. When the underlying network is fully 
connected, Ivy provides NFS-like semantics, such as 
close-to-open consistency. Ivy detects conflicting modi
fications made during a partition, and provides relevant 
version information to application-specific conflict re
solvers. Performance measurements on a wide-area net
work show that Ivy is two to three times slower than 
NFS. 

1 Introduction 

This paper describes Ivy, a distributed read/write net
work file system. Ivy presents a single file system im
age that appears much like an NFS [33] file system. In 
contrast to NFS, Ivy does not require a dedicated server; 
instead, it stores all data and meta-data in the DHash [9] 
peer-to-peer block storage system. DHash can distribute 
and replicate blocks, giving Ivy the potential to be highly 
available. One possible application of Ivy is to support 
distributed projects with loosely affiliated participants. 

Building a shared read-write peer-to-peer file system 
poses a number of challenges. First, multiple distributed 
writers make maintenance of consistent file system meta
data difficult. Second, unreliable participants make lock
ing an unattractive approach for achieving meta-data 
consistency. Third, the participants may not fully trust 
each other, or may not trust that the other participants' 

machines have not been compromised by outsiders; thus 
there should be a way to ignore or un-do some or all 
modifications by a participant revealed to be untrustwor
thy. Finally, distributing file-system data over many hosts 
means that the system may have to cope with operation 
while partitioned, and may have to help applications re
pair conflicting updates made during a partition. 

Ivy uses logs to solve the problems described above. 
Each participant with write access to a file system main
tains a log of changes they have made to the file sys
tem. Participants scan all the logs (most recent record 
first) to look up file data and meta-data. Each participant 
maintains a private snapshot to avoid scanning all but the 
most recent log entries. The use of per-participant logs, 
instead of shared mutable data structures, allows Ivy to 
avoid using locks to protect meta-data. Ivy stores its logs 
in DHash, so a participant's logs are available even when 
the participant is not. 

Ivy resists attacks from non-participants, and from 
corrupt DHash servers, by cryptographically verifying 
the data it retrieves from DHash. An Ivy user can cope 
with attacks from other Ivy users by choosing which 
other logs to read when looking for data, and thus which 
other users to trust. Ignoring a log that was once trusted 
might discard useful information or critical meta-data; 
Ivy provides tools to selectively ignore logs and to fix 
broken meta-data. 

Ivy provides NFS-like file system semantics when the 
underlying network is fully connected. For example, Ivy 
provides close-to-open consistency. In the case of net
work partition, DHash replication may allow participants 
to modify files in multiple partitions. Ivy's logs contain 
version vectors that allow it to detect conflicting updates 
after partitions merge, and to provide version informa
tion to application-specific conflict resolvers. 

The Ivy implementation uses a local NFS loop-back 
server [22] to provide an ordinary file system interface. 
Performance is within a factor of two to three of NFS . 
The main performance bottlenecks are network latency 
and the cost of generating digital signatures on data 
stored in DHash. 

This paper makes three contributions. It describes a 
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read/write peer-to-peer storage system; previous peer
to-peer systems have supported read-only data or data 
writeable by a single publisher. It describes how to de
sign a distributed file system with useful integrity prop
erties based on a collection of untrusted components. Fi
nally, it explores the use of distributed hash tables as a 
building-block for more sophisticated systems. 

Section 2 describes Ivy's design. Section 3 discusses 
the consistency semantics that Ivy presents to applica
tions . Section 4 presents tools for dealing with malicious 
participants. Sections 5 and 6 describe Ivy's implementa
tion and performance. Section 7 discusses related work, 
and Section 8 concludes. 

2 Design 

An Ivy file system consists of a set of logs, one log 
per participant. A log contains all of one participant's 
changes to file system data and meta-data. Each partic
ipant appends only to its own log, but reads from all 
logs. Participants store log records in the DHash dis
tributed hash system, which provides per-record repli
cation and authentication. Each participant maintains a 
mutable DHash record (called a log-head) that points to 
the participant's most recent log record. Ivy uses version 
vectors [27] to impose a total order on log records when 
reading from multiple logs . To avoid the expense of re
peatedly reading the whole log, each participant main
tains a private snapshot summarizing the file system state 
as of a recent point in time. 

The Ivy implementation acts as a local loop-back NFS 
v3 [6] server, in cooperation with a host's in-kernel NFS 
client support. Consequently, Ivy presents file system se
mantics much like those of an NFS v3 file server. 

2.1 DHash 

Ivy stores all its data in DHash [9]. DHash is a distributed 
peer-to-peer hash table mapping keys to arbitrary val
ues. DHash stores each key/value pair on a set oflntemet 
hosts determined by hashing the key. This paper refers to 
a DHash key/value pair as a DHash block. DHash repli
cates blocks to avoid losing them if nodes crash. 

DHash ensures the integrity of each block with one of 
two methods . A content-hash block requires the block's 
key to be the SHA-1 [10] cryptographic hash of the 
block's value; this allows anyone fetching the block to 
verify the value by ensuring that its SHA-1 hash matches 
the key. A public-key block requires the block's key to be 
a public key, and the value to be signed using the corre
sponding private key. DHash refuses to store a value that 
does not match the key. Ivy checks the authenticity of all 
data it retrieves from DHash. These checks prevent a ma
licious or buggy DHash node from forging data, limiting 

log-head 

....... .. JJ. ........ JJ ........ .JJ 

--v
log records 

Figure 1: Example Ivy view and logs. White boxes are DJiash 
content-hash blocks; gray boxes are public-key blocks. 

it to denying the existence of a block or producing a stale 
copy of a public-key block. 

Ivy participants communicate only via DHash stor
age; they don't communicate directly with each other ex
cept when setting up a new file system. Ivy uses DHash 
content-hash blocks to store log records. Ivy stores the 
DHash key of a participant's most recent log record 
in a DHash block called the log-head; the log-head is 
a public-key block, so that the participant can update 
its value without changing its key. Each Ivy participant 
caches content-hash blocks locally without fear of us
ing stale data, since content-hash blocks are immutable. 
An Ivy participant does not cache other participants' log
head blocks, since they may change. · 

Ivy uses DHash through a simple interface: 
put (key, value) and get (key) . Ivy assumes 
that, within any given network partition, DHash provides 
write-read consistency; that is , if put (k, v) com
pletes, a subsequent get ( k) will yield v . The current 
DHash implementation does not guarantee write-read 
consistency; however, techniques are known which can 
provide such a guarantee with high probability [19] . 
These techniques require that DHash replicate data and 
update it carefully, and might significantly decrease 
performance. Ivy operates best in a fully connected 
network, though it has support for conflict detection 
after operating in a partitioned network (see Section 3.4). 

Ivy would in principle work with other distributed 
hash tables, such as PAST [32], CAN [29], Tapestry [41], 
or Kademlia [21]. 

2.2 Log Data Structure 

An Ivy log consists of a linked list of immutable log 
records. Each log record is a DHash content-hash block. 
Table 1 describes fields common to all log records. The 
prev field contains the previous record's DHash key. A 

participant stores the DHash key of its most recent log 
record in its log-head block. The log-head is a public
key block with a fixed DHash key, which makes it easy 
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Field Use 
prev DHash key of next oldest log record 
head DHash key of log-head 
seq per-log sequence number 
times tamp time at which record was created 
version version vector 

Table 1: Fields present in all Ivy log records. 

for other participants to find. 
A log record contains information about a single file 

system modification, and corresponds roughly to an NFS 
operation. Table 2 describes the types of log records and 
the type-specific fields each contains. 

Log records contain the minimum possible informa
tion to avoid unnecessary conflicts from concurrent up
dates by different participants. For example, a Write 
log record contains the newly written data, but not the 
file's new length or modification time. These attributes 
cannot be computed correctly at the time the Write 
record is created, since the true state of the file will only 
be known after all concurrent updates are known. Ivy 
computes that information incrementally when travers
ing the logs, rather than storing it explicitly as is done in 
UNIX i-nodes [30]. 

Ivy records file owners and permission modes, but 
does not use those attributes to enforce permissions. A 
user who wishes to make a file umeadable should instead 
encrypt the file's contents. A user should ignore the logs 
of people who should not be allowed to write the user's 
data. 

Ivy identifies files and directories using 160-bit i
numbers. Log records contain the i-number(s) of the files 
or directories they affect. Ivy chooses i-numbers ran
domly to minimize the probability of multiple partici
pants allocating the same i-number for different files. Ivy 
uses the 160-bit i-number as the NFS file handle. 

Ivy keeps log records indefinitely, because they may 
be needed to help recover from a malicious participant 
or from a network partition. 

2.3 Using the Log 

For the moment, consider an Ivy file system with only 
one log. Ivy handles non-updating NFS requests with a 
single pass through the log. Requests that cause modifi
cation use one or more passes, and then append one or 
more records to the log. Ivy scans the log starting at the 
most recently appended record, pointed to by the log
head. Ivy stops scanning the log once it has gathered 
enough data to handle the request. 

Ivy appends a record to a log as follows. First, it cre
ates a log record containing a description of the update, 

typically derived from arguments in the NFS request. 
The new record's prev field is the DHash key of the 
most recent log record. Then, it inserts the new record 
into DHash, signs a new log-head that points to the new 
log record, and updates the log-head in DHash. 

The following text describes how Ivy uses the log to 
perform selected operations. 

File system creation. Ivy builds a new file system by 
creating a new log with an End record, an Inode record 
with a random i-number for the root directory, and a log
head. The user then mounts the local Ivy server as an 
NFS file system, using the root i-number as the NFS root 
file handle. 

File creation. When an application creates a new file, 
the kernel NFS client code sends the local Ivy server an 
NFS CREATE request. The request contains the direc
tory i-number and a file name. Ivy appends an Inode 
log record with a new random i-number and a Link 
record that contains the i-number, the file's name, and the 
directory's i-number. Ivy returns the new file's i-number 
in a file handle to the NFS client. If the application then 
writes the file, the NFS client will send a WRITE request 
containing the file's i-number, the written data, and the 
file offset; Ivy will append a Write log record contain
ing the same information. 

File name lookup. System calls such as open () that 
refer to file names typically generate NFS LOOKUP re
quests. A LOOKUP request contains a file name and a di
rectory i-number. Ivy scans the log to find a Link record 
with the desired directory i-number and file name, and 
returns the file i-number. However, if Ivy first encoun
ters a Unlink record that mentions the same directory 
i-number and name, it returns an NFS error indicating 
that the file does not exist. 

File read. An NFS READ request contains the file's i
number, an offset within the file, and the number of bytes 
to read. Ivy scans the log accumulating data from Write 
records whose ranges overlap the range of the data to be 
read, while ignoring data hidden by SetAttr records 
that indicate file truncation. 

File attributes. Some NFS requests, including 
GETATTR, require Ivy to include file attributes in the 
reply. Ivy only fully supports the file length, file mod
ification time ("mtime"), attribute modification time 
("ctime"), and link count attributes. Ivy computes these 
attributes incrementally as it scans the log. A file's length 
is determined by either the write to the highest offset 
since the last truncation, or by the last truncation. Mtirne 
is determined by the time stamp in the most recent rel
evant log record; Ivy must return correct time attributes 
because NFS client cache consistency depends on it. Ivy 
computes the number of links to a file by counting the 
number of relevant Link records not canceled by Un-
1 ink and Rename records . 
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Type Fields Meaning 
I node type (file, directory, or symlink), i-m:mber, mode, owner create new inode 
Write i-number, offset, data write data to a file 
Link i-number, i-number of directory, name create a directory entry 
Unlink i-number of directory, name remove a file 
Rename i-number of directory, name, i-number of new directory, new file name rename a file 
Prepare i-number of directory, file name for exclusive operations 
Cancel i-number of directory, file name for exclusive operations 
SetAttrs i-number, changed attributes change file attributes 
End none end of log 

Table 2: Summary of Ivy log record types. 

Directory listings. Ivy handles READDIR requests 
by accumulating all file names from relevant Link log 
records, taking more recent Unlink and Rename log 
records into account. 

2.4 User Cooperation: Views 

When multiple users write to a single Ivy file system, 
each source of potentially concurrent updates must have 
its own log; this paper refers to such sources as partici
pants. A user who uses an Ivy file system from multiple 
hosts concurrently must have one log per host. 

The participants in an Ivy file system agree on a view: 
the set of logs that comprise the file system. Ivy makes 
management of shared views convenient by providing 
a view block, a DHash content-hash block containing 
pointers to all log-heads in the view. A view block also 
contains the i-number of the root directory. A view block 
is immutable; if a set of users wants to form a file system 
with a different set of logs, they create a new view block. 

A user names an Ivy file system with the content-hash 
key of the view block; this is essentially a self-certifying 
pathname [23]. Users creating a new file system must 
exchange public keys in advance by some out-of-band 
means. Once they know each other's public keys, one of 
them creates a view block and tells the other users the 
view block's DHash key. 

Ivy uses the view block key to verify the view block's 
contents; the contents are the public keys that name and 
verify the participants' log-heads. A log-head contains 
a content-hash key that names and verifies the most re
cent log record. It is this reasoning that allows Ivy to ver
ify it has retrieved correct log records from the untrusted 
DHash storage system. This approach requires that users 
exercise care when initially using a file system name; 
the name should come from a trusted source, or the user 
should inspect the view block and verify that the public 
keys are those of trusted users. Similarly, when a file sys
tems' users decide to accept a new participant, they must 
all make a conscious decision to trust the new user and to 

adopt the new view block (and newly named file system). 
Ivy's lack of support for automatically adding new users 
to a view is intentional. 

2.5 Combining Logs 

In an Ivy file system with multiple logs , a participant's 
Ivy server consults all the logs to find relevant infor
mation. This means that Ivy must decide how to order 
the records from different logs. The order should obey 
causality, and all participants with the same view should 
choose the same order. Ivy orders the records using aver
sion vector [27] contained in each log record. 

When an Ivy participant generates a new log record, 
it includes two pieces of information that are later used 
to order the record. The seq field contains a numeri
cally increasing sequence number; each log separat~ly 
numbers its records from zero. The version vector field 
contains a tuple U: V for each log in the view (including 
the participant's own log), summarizing the participant's 
most recent knowledge of that log. U is the DHash key 
of the log-head of the log being described, and V is the 
DHash key of that log's most recent record. In the follow
ing discussion, a numeric V value refers to the sequence 
number contained in the record pointed to by a tuple. 

Ivy orders log records by comparing the records' ver
sion vectors . For example, Ivy considers a log record 
with version vector (A:5 B:7) to be earlier in time than 
a record with version vector (A :6 B:7): the latter vec
tor implies that its creator had seen the record with (A :5 
8 :7). Two version vectors u and v are comparable if and 
only if u < v or v < u or u = v . Otherwise, u and v 
are concurrent. For example, (A:5 B:7) and (A:6 B:6) are 
concurrent. 

Simultaneous operations by different participants will 
result in equal or concurrent version vectors. Ivy orders 
equal and concurrent vectors by comparing the public 
keys of the two logs. If the updates affect the same file, 
perhaps due to a partition, the application may need to 
take special action to restore consistency; Section 3 ex-

5th Symposium on Operating Systems Design and Implementation USENIX Association 

Page 11 of 21



dirtctory inode directory inode block 

E 
............ name n I i-number ""Y 

snapshot block 

meta-data 

i-number a 

!./~ ........... 

H(D) ... / ~----~ 

file inode 

me map 
i-number -y H( F) 

F data block 

H(BJ) ............... 'ND 
H(Bl) ........... data block 

... ~ 

Figure 2: Snapshot data structure. H(A) is the DHash content
hash of A. 

plores Ivy's support for application-specific conflict res
olution. 

Ivy could have used a simpler method of ordering log 
records, such as a Lamport clock [ 17]. Version vectors 
contain more precise information than Lamport clocks 
about causality; Ivy uses that information to help fix con
flicting updates after a partition. Version vectors help pre
vent a malicious participant from retroactively changing 
its log by pointing its log-head at a newly-constructed 
log; other participants' version vectors will still point to 
the old log's records. Finally, version vectors from one 
log could be used to help repair another log that has been 
damaged. 

2.6 Snapshots 

Each Ivy participant periodically constructs a private 
snapshot of the file system in order to avoid traversing 
the entire log. A snapshot contains the entire state of the 
file system. Participants store their snapshots in DHash to 
make them persistent. Each participant has its own logi
cally private snapshot, but the fact that the different snap
shots have largely identical contents means that DHash 
automatically shares their storage. 

2.6.1 Snapshot Format 

A snapshot consists of a file map, a set of i-nodes, and 
some data blocks. Each i-node is stored in its own DHash 
block. An i-node contains file attributes as well as a list 
of DHash keys of blocks holding the file 's contents; in 
the case of a directory, the content blocks hold a list of 
name/i-number pairs. The file map records the DHash 
key of the i-node associated with each i-number. All 
of the blocks that make up a snapshot are content-hash 
blocks. Figure 2 illustrates the snapshot data structure. 

2.6.2 Building Snapshots 

In ordinary operation Ivy builds each new snapshot in
crementally. It starts by fetching all log records (from all 
logs in the view) newer than the previous snapshot. It 
traverses these new records in temporal order. For each 
i-number that occurs in the new log records, Ivy main
tains an i-node and a copy of the file contents. Ivy reads 
the initial copy of the i-node and file contents from the 
previous snapshot, and performs the operation indicated 
by each log record on this data . 

After processing the new log records, Ivy writes the 
accumulated i-nodes and file contents to DHash. Then it 
computes a new file map by changing the entries corre
sponding to changed i-nodes and appending new entries. 
Ivy creates a snapshot block that contains the file map 
and the following meta-data: a pointer to the view upon 
which the snapshot is based, a pointer to the previous 
snapshot, and a version vector referring to the most re
cent record from each log that the snapshot incorporates. 
Ivy stores the snapshot block in DHash under its content
hash, and updates the participant's log-head to refer to 
the new snapshot. 

A new user must either build a snapshot from scratch, 
starting from the earliest record in each log, or copy an
other (trusted) user 's snapshot. 

2.6.3 Using Snapshots 

When handling an NFS request, Ivy first traverses log 
records newer than the snapshot; if it cannot accumulate 
enough information to fulfill the request, Ivy finds the 
missing information in the participant's latest snapshot. 
Ivy finds information in a snapshot based on i-number. 

3 Application Semantics 

This section describes the file system semantics that Ivy 
provides to applications, focusing primarily on the ways 
in which Ivy's semantics differ from those of an ordi
nary NFS server. Sections 3.1, 3.2, and 3.3 describe Ivy's 
semantics when the network provides full connectivity. 
Sections 3.4 and 3.5 describe what happens when the net
work partitions and then merges. 

3.1 Cache Consistency 

In general, an update operation that one Ivy participant 
has completed is immediately visible to operations that 
other participants subsequently start. The exceptions are 
that Ivy can't enforce this notion of consistency during 
network partitions (see Section 3.4), and that Ivy pro
vides close-to-open consistency for file data (see below). 
Most Ivy updates are immediately visible because 1) an 
Ivy server performing an update waits until DHash has 
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acknowledged receipt of the new log records and the new 
log-head before replying to an NFS request, and 2) Ivy 
asks DHash for the latest log-heads at the start of ev
ery NFS operation. Ivy caches log records, but this cache 
never needs to be invalidated because the records are im
mutable. 

For file reads and writes, Ivy provides a modified 
form of close-to-open consistency (13]: if application Ai 
writes data to a file, then closes the file, and after the 
close has completed another application A 2 opens the 
file and reads it, A2 will see the data written by Ai. Ivy 
may also make written data visible before the close. Most 
NFS clients and servers provide this form of consistency. 

Close-to-open consistency allows Ivy to avoid fetch
ing every log-head for each NFS READ operation. Ivy 
caches file blocks along with the version vector at the 
time each block was cached. When the application opens 
a file and causes NFS to send an ACCESS request, Ivy 
fetches all the log-heads from DHash. If no other log
heads have changed since Ivy cached blocks for the file, 
Ivy will satisfy subsequent READ requests from cached 
blocks without re-fetching log-heads. While the NFS 
client's file data cache often satisfies READs before Ivy 
sees them, Ivy's cache helps when an application has 
written a file and then re-reads it; the NFS client can't de
cide whether to satisfy the reads from the cached writes 
since it doesn't know whether some other client has con
currently written the file, whereas Ivy can decide if that 
is the case by checking the other log-heads. 

Ivy defers writing file data to DHash until NFS tells 
it that the application is closing the file. Before allowing 
the close () system call to complete, Ivy appends the 
written data to the log and then updates the log-head. Ivy 
writes the data log records to DHash in parallel to reduce 
latency. This arrangement allows Ivy to sign and insert a 
new log-head once per file close, rather than once per file 
write. We added a new CLOSE RPC to the NFS client 
to make this work. Ivy also flushes cached writes if it 
receives a synchronous WRITE or a COMMIT. 

3.2 Concurrent Updates 

Ordinary file systems have simple semantics with respect 
to concurrent updates: the results are as if the updates 
occurred one at a time in some order. These semantics 
are natural and relatively easy to implement in a single 
file server, but they are more difficult for a decentralized 
file system. As a result, Ivy's semantics differ slightly 
from those of an ordinary file server. 

The simplest case is that of updates that don't affect 
the same data or meta-data. For example, two partici
pants may have created new files with different names in 
the same directory, or might have written different bytes 
in the same file. In such cases Ivy ensures that both up
dates take effect. 

If different participants simultaneously write the same 
bytes in the same file, the writes will likely have equal or 
concurrent version vectors. Recall that Ivy orders incom
parable version vector by comparing the participants' 
public keys. When the concurrent writes have completed, 
all the participants will agree on their order; in this case 
Ivy provides the same semantics as an ordinary file sys
tem. It may be the case that the applications did not 
intend to generate conflicting writes; Ivy provides both 
tools to help applications avoid conflicts (Section 3.3) 
and tools to help them detect and resolve unavoidable 
conflicts (Section 3.4). 

Serial semantics for operations that affect directory en
tries are harder to implement. We believe that applica
tions rely on the file system to provide serial semantics 
on directory operations in order to implement locking. 
Ivy supports one type of locking through the use of ex
clusive creation of directory entries with the same name 
(Section 3.3). Applications that use exclusive directory 
creation for locking will work on Ivy. 

In the following paragraphs, we discuss specific cases 
that Ivy differs from a centralized file system due to the 
lack of serialization of directory operations. 

Ivy does not serialize combinations of creation and 
deletion of a directory entry. For example, suppose one 
participant calls unlink ( II a II ) , and a second partici
pant calls rename ( "a" , "b" ) . Only one of these op
erations can succeed. On one hand, Ivy provides the ex
pected semantics in the sense that participants who sub
sequently look at the file system will agree on the or
der of the concurrent log records, and will thus agree on 
which operation succeeded. On the other hand, Ivy will 
return a success status to both of the two systems calls, 
even though only one takes effect, which would not hap
pen in an ordinary file system. 

There are cases in which an Ivy participant may read 
logs that are actively being updated and initially see only 
a subset of a set of concurrent updates. A short time 
later the remaining concurrent updates might appear, but 
be ordered before the first subset. If the updates affect 
the same meta-data, observers could see the file system 
in states that could not have occured in a serial exe
cution. For example, suppose application A1 executes 
create ( "x") and link ( 11 x", "y"), and applica
tion A2 on a different Ivy host concurrently executes 
remove ( 11 x" ) . A third application A3 might first see 
just the log records from Ai, and thus see files x and 
y; if Ivy orders the concurrent remove ( ) between the 
create () and link (),then A 3 might later observe 
that both x and y had disappeared. If the three applica
tions compare notes they will realize that the system did 
not behave like a serial server. 
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ExclusiveLink(dir-inum,file,file-inum) 
append a Prepare(dir-inum,file) log record 
if file exists 

append a Cancel(dir-inum,file) record 
return EXISTS 

if another un-canceled Prepare(dir-inum,file) exists 
append a Cancel(dir-inum,file) record 
backoff() 
return ExclusiveLink(dir-inum, file , file-inum) 

append Link(dir-inum,file,file-inum) log record 
return OK 

Figure 3: Ivy's exclusive directory entry creation algorithm. 

3.3 Exclusive Create 

Ordinary file system semantics require that most opera
tions that create directory entries be exclusive. For exam
ple, trying to create a directory that already exists should 
fail, and creating a file that already exists should return 
a reference to the existing file. Ivy implements exclusive 
creation of directory entries because some applications 
use those semantics to implement Jocks. However, Ivy 
only guarantees exclusion when the network provides 
full connectivity. 

Whenever Ivy is about to append a Link log record, it 
first ensures exclusion with a variant of two-phase com
mit shown in Figure 3. Ivy first appends a Prepare 
record announcing the intention to create the directory 
entry. This intention can be canceled by a Cancel 
record, an eventual Link record, or a timeout. Then, Ivy 
checks to see whether any other participant has appended 
a Prepare that mentions the same directory i-number 
and file name. If not, Ivy appends the Link record. If 
Ivy sees a different participant's Prepare, it appends 
a Cancel record, waits a random amount of time, and 
retries. If Ivy sees a different participant's Link record, 
it appends a Cancel record and indicates a failure. 

3.4 Partitioned Updates 

Ivy cannot provide the semantics outlined above if the 
network has partitioned. In the case of partition, Ivy's 
design maximizes availability at the expense of consis
tency, by letting updates proceed in all partitions. This 
approach is similar to that of Ficus [26]. 

Ivy is not directly aware of partitions, nor does it di
rectly ensure that every partition has a complete copy of 
all the logs. Instead, Ivy depends on DHash to replicate 
data enough times, and in enough distinct locations, that 
each partition is likely to have a complete set of data. 
Whether this succeeds in practice depends on the sizes 
of the partitions, the degree of DHash replication, and 
the total number of DHash blocks involved in the file 

system. The particular case of a user intentionally dis
connecting a laptop from the network could be handled 
by instructing the laptop's DHash server to keep replicas 
of all the log-heads and the user's current snapshot; there 
is not currently a way to ask DHash to do this . 

After a partition heals, the fact that each log-head was 
updated from just one host prevents conflicts within in
dividual logs; it is sufficient for the healed system to use 
the newest version of each log-head. 

Participants in different partitions may have updated 
the file system in ways that conflict; this will result in 
concurrent version vectors. Ivy orders such version vec
tors following the scheme in Section 2.5, so the partici
pants will agree on the file system contents after the par
tition heals. 

The file system's meta-data will be internally correct 
after the partition heals. What this means is that if a piece 
of data was accessible before the partition, and neither it 
nor any directory leading to it was deleted in any parti
tion, then the data will also be accessible after the parti
tion. 

However, if concurrent applications rely on file system 
techniques such as atomic directory creation for mutual 
exclusion, then applications in different partitions might 
update files in ways that cause the application data to be 
inconsistent. For example, e-mails might be appended to 
the same mailbox file in two partitions; after the parti
tions heal, this will appear as two concurrent writes to 
the same offset in the mailbox file. Ivy knows that the 
writes conflict, and automatically orders the log entries 
so that all participants see the same file contents after the 
partition heals . However, this masks the fact that some 
file updates are not visible, and that the user or applica
tion may have to take special steps to restore them. Ivy 
does not currently have an automatic mechanism for sig
naling such conflicts to the user; instead the user must 
run the le tool described in the next section to discover 
conflicts. A better approach might be to borrow Coda's 
technique of making the file inaccessible until the user 
fixes the conflict. 

3.5 Conflict Resolution 

Ivy provides a tool, le, that detects conflicting appli
cation updates to files; these may arise from concurrent 
writes to the same file by applications that are in different 
partitions or which do not perform appropriate Jocking. 
le scans an Ivy file system's log for records with concur
rent version vectors that affect the same file or directory 
entry. le determines the point in the Jogs at which the 
partition must have occurred, and determines which par
ticipants were in which partition. le then uses Ivy views 
to construct multiple historic views of the file system: 
one as of the time of partition, and one for each partition 
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just before the partition healed. For example, 

% ./ le - v / ivy / BXz4+udjsQm4tX63UR9w71SNPOc 
b e f o re : +WzW8s 7 fTEt6pehaB7isSfhkc68 
partitionl : 13qLDU5icVMRrbLvhxuJ1WkNvWs 
partition2: JyCKgcsAjZ4uttbbtIX9or+qEXE 
% cat /ivy / +WzW8s7fTEt6pehaB7isSfhkc68/filel 
o riginal content of filel 
% cat / ivy / 13qLDU5icVMRrbLvhxuJ1WkNvWs / filel 
ori gina l content o f filel , changed 
append on first partition 
% cat /ivy/ JyCKgcsAjZ4uttbbtIX9or+qEXE / filel 
original content of f ilel 
append on second partiti on 

In simple cases, a user could simply examine the ver
sions of the file and merge them by hand in a text edi
tor. Application-specific resolvers such as those used by 
Coda [14, 16] could be used for more complex cases. 

4 Security and Integrity 

Since Ivy is intended to support distributed users with 
arms-length trust relationships, it must be able to recover 
from malicious participants. The situation we envision is 
that a participant's bad behavior is discovered after the 
fact. Malicious behavior is assumed to consist of the par
ticipant using ordinary file system operations to modify 
or delete data. One form of malice might be that an out
sider breaks into a legitimate user 's computer and modi
fies files stored in Ivy. 

To cope with a good user turning bad, the other par
ticipants can either form a new view that excludes the 
bad participant's log, or form a view that only includes 
the log records before a certain point in time. In either 
case the resulting file system may be missing important 
meta-data. Upon user request, Ivy's i vycheck tool will 
detect and fix certain meta-data inconsistencies. ivy
check inspects an existing file system, finds missing 
Link and Inode meta-data, and creates plausible re
placements in a new fix log. i vycheck can optionally 
look in the excluded log in order to find hints about what 
the missing meta-data should look like. 

5 Implementation 

Ivy is written in C++ and runs on FreeBSD. It uses the 
SFS tool-kit [22] for event-driven programming and NFS 
loop-back server support. 

Ivy is implemented as several cooperating parts, illus
trated in Figure 4. Each participating host runs an Ivy 
server which exposes Ivy file systems as locally-mounted 
NFS v3 file systems. A file system name encodes the 
DHash key of the file system's view block, for ex
ample, I ivy / 9RYBbWyeDVEQnxeL95LGSjJjwa4 . 
The Ivy server does not hold private keys; instead, each 
participant runs an agent to hold its private key, and the 
Ivy server asks the participant's local agent program to 
sign log heads. The Ivy server acts as a client of a local 
DHash server, which consults other DHash servers scat
tered around the network. The Ivy server also keeps a 
LRU cache of content-hash blocks (e.g. log records and 
snapshot blocks) and log-heads that it recently modified. 

6 Evaluation 

This section evaluates Ivy's performance 1) in a purely 
local configuration, 2) over a WAN, 3) as a function of 
the number of participants, 4) as a function of the num
ber of DHash nodes, 5) as a function of the number of 
concurrent writers, and 6) as a function of the snapshot 
interval. The main goal of the evaluation is to understand 
the costs oflvy's design in terms of network latency and 
cryptographic operations. 

Ivy is configured to construct a snapshot every 20 
new log records, or when 60 seconds have elapsed since 
the construction of the last snapshot. Unless otherwise 
stated, Ivy's block cache size is 512 blocks. DHash nodes 
are PlanetLab [1] nodes, running Linux 2.4.18 on 1.2 
GHz Pentium III CPUs, and RON [2] nodes, running 
FreeBSD 4.5 on 733 MHz Pentium III CPUs. DHash was 
configured with replication turned off, since the replica
tion implementation is not complete; replication would 
probably decrease performance significantly. Unless oth
erwise stated, this section reports results averaged over 
five runs. 

The workload used to evaluate Ivy is the Modified An
drew Benchmark (MAB), which consists of five phases: 
(1) create a directory hierarchy, (2) copy files into these 
directories , (3) walk the directory hierarchy while read
ing attributes of each file, (4) read the files , and (5) com
pile the files into a program. Unless otherwise stated, the 
MAB and the Ivy server run on a 1.2 GHz AMD Athlon 
computer running FreeBSD 4.5 at MIT. 

6.1 Single User MAB 

Table 3 shows Ivy 's performance on the phases of the 
MAB for a file system with just one log. All the soft-

5th Symposium on Operating Systems Design and Implementation USENIX Association 

Page 15 of 21



Phase Ivy (s) NFS (s) 

Mkdir 0.6 0.5 
Create/Write 6.6 0.8 

Stat 0.6 0.2 
Read 1.0 0.8 

Compile 10.0 5.3 
Total 18.8 7.6 

Table 3: Real-time in seconds to run the MAB with a single 
Ivy log and all software running on a single machine. The NFS 
column shows MAB run-time for NFS over a LAN. 

Phase Ivy (s) NFS (s) 
Mkdir 11.2 4.8 

Create/Write 89.2 42.0 
Stat 65.6 47.8 

Read 65.8 55 .6 
Compile 144.2 130.2 

Total 376.0 280.4 

Table 4: MAB run-time with four DHash servers on a WAN. 
The file system contains four logs. 

ware (the MAB, Ivy, and a single DHash server) ran 
on the same computer. To put the Ivy performance in 
perspective, Table 3 also shows MAB performance over 
NFS; the client and NFS server are connected by a 100 
Mbit LAN. Note that this comparison is unfair to NFS, 
since NFS involved network communication while the 
Ivy benchmark did not. 

The following analysis explains Ivy 's 18.8 seconds of 
run-time. The MAB produces 386 NFS RPCs that mod
ify the Ivy log. 118 of these are either MKDIR or CRE
ATE, which require two log-head writes to achieve atom
icity. 119 of the 386 RPCs are COMMITs or CLOSEs 
that require Ivy to flush written data to the log. Another 
133 RPCs are synchronous WRITEs generated by the 
linker. Overall, the 386 RPCs caused Ivy to update the 
log-head 508 times. Computing a public-key signature 
uses about 14.2 milliseconds (ms) of CPU time, for a to
tal of 7 .2 seconds of CPU time. 

The remaining time is spent in the Ivy server (4.9 sec
onds), the DHash server (2.9 seconds), and in the pro
cesses that MAB invokes (2.6 seconds). Profiling indi
cates that the most expensive operations in the Ivy and 
DHash servers are SHA-1 hashes and memory copies. 

The MAB creates a total of 1.6 MBytes of file data. 
Ivy, in response, inserts a total of 8.8 MBytes of log and 
snapshot data into DHash. 

6.2 Performance on a WAN 

Table 4 shows the time for a single MAB instance with 
four DHash servers on a WAN. One DHash server runs 
on the same computer that is running the MAB. The av
erage network round-trip times to the other three DHash 
servers are 9, 16, and 82 ms. The file system contains 
four logs. The benchmark only writes one of the logs, 
though the other three log-heads are consulted to make 
sure operations see the most up-to-date data. The four 
log-heads are stored on three DHash servers. The log
head that is being written to is stored on the DHash 
server with a round-trip time of 9 ms from the local ma
chine. One log-head is stored on the server with a round
trip time of 82 ms from the local machine. The DHash 
servers' node IDs are chosen so that each is responsible 
for roughly the same number of blocks. 

A typical NFS request requires Ivy to fetch the three 
other log-heads from DHash; this involves just one 
DHash network RPC per log-head. Ivy issues the three 
RPCs in parallel, so the time for each log-head check is 
governed by the largest round-trip time of 82 ms. The 
MAB causes Ivy to retrieve log-heads 3,346 times, for a 
total of274 seconds. This latency dominates Ivy 's WAN 
performance. 

The remaining 102 seconds of MAB run-time are used 
in four ways. Running the MAB on a LAN takes 22 sec
onds, mostly in the form of CPU time. Ivy writes its log
head to DHash 508 times; each write takes 9 ms of net
work latency, for a total of 5 seconds. Ivy inserts 1,003 
log records, some of them concurrently. The average in
sertion takes 54 ms (27 ms for the Chord [37] lookup, 
then another 27 ms for the DHash node to acknowledge 
receipt) . This accounts for roughly 54 seconds. Finally, 
the local computer sends and receives 7 .0 MB ytes of data 
during the MAB run. This accounts for the remaining run 
time. During the experiment Ivy also inserts 358 DHash 
blocks while updating its snapshot; because Ivy doesn't 
wait for these inserts, they contribute little to the total run 
time. 

Table 4 also shows MAB performance over wide-area 
NFS . The round-trip time between the NFS client and 
server is 79 ms, which is roughly the time it takes Ivy to 
fetch all the log-heads. We use NFS over UDP because 
it is faster for this benchmark than FreeBSD's NFS over 
TCP implementation. Ivy is slower than NFS because Ivy 
operations often require more network round-trips; for 
example, some NFS requests require Ivy to both fetch 
and update log-heads, requiring two round-trips. 

6.3 Many Logs, One Writer 

Figure 5 shows how Ivy 's performance changes as the 
number of logs increases. Other than the number of logs, 
this experiment is identical to the one in the previous sec-
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Figure 5: MAB run-time as a function of the number of logs. 
Only one participant is active. 
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Figure 6: Average MAB run-time as the number of DHash 
servers increases. The error bars indicate standard deviation 
over different choices of PlanetLab hosts and different map
pings of blocks to DHash servers. 

tion. The number of logs ranges from 4 to 16, but only 
one participant executes the MAB - the other logs never 
change. Figure 5 reports results averaged over three runs. 

The number of logs has relatively little impact on run
time because Ivy fetches the log-heads in parallel. There 
is a slight increase caused by the fact that the version 
vector in each log record has one 44-byte entry per par
ticipant. 

6.4 Many DHash Servers 

Figure 6 shows the averages and standard deviations of 
Ivy's MAB performance as the number ofDHash servers 
increases from 8 to 32. For each number of servers we 
perform ten experimental runs. For each run, all but one 
of the DHash servers are placed on randomly chosen 
PlanetLab hosts (from a pool of 32 hosts); new log-head 
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Figure 7: Average run-time of MAB when several MABs are 
running concurrently on different hosts on the Internet. The er
ror bars indicate standard deviation over all the MAB runs. 

public keys are also used to ensure the log-heads are 
placed on random DHash servers. One DHash server, 
the Ivy server, and the MAB always execute on a host 
at MIT. The round-trip times from the host at MIT to the 
PlanetLab hosts average 32 ms, with a minimum of 1 ms, 
a maximum of 78 ms, and a standard deviation of 27 ms. 
There are four logs in total; only one of them changes. 

The run-time in Figure 6 grows because more Chord 
messages are required to find each log record block in 
DHash. An average of 2.3, 2.9, 3.3, and 3.8 RPCs are re
quired for 8, 16, 24, and 32 DHash servers, respectively. 
These numbers include the final DHash RPC as well as 
Chord lookup RPCs. 

The high standard deviation in Figure 6 is due to the 
fact that the run-time is dominated by the round-trip 
times to the four particular DHash servers that store the 
log-heads. This means that adding more DHash servers 
doesn't reduce the variation. 

6.5 Many Writers 

Figure 7 shows the effect of multiple active writers. We 
perform three experiments for each number N of partic
ipants; each experiment involves one MAB running con
currently on each of N different Ivy hosts on the Internet, 
a file system with four logs, new log-head public keys, 
and 32 DHash servers. Each MAB run uses its own di
rectory in the Ivy file system. Each data point shows the 
average and standard deviation of MAB run-time over 
the 3N MAB executions. 

The run-time increases with the number of active par
ticipants because each has to fetch the others ' newly ap
pended log records from DHash. The run-time increases 
relatively slowly because Ivy fetches records from the 
different logs in parallel. The deviation in run-times is 
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Figure 8: MAB run-time a function of the interval between 
snapshots. For these experiments, the size of Ivy's block cache 
is 80 blocks. 

Phase Ivy (s) NFS (s) ssh (s) 
Commit 420.8 224.6 3.4 
Update 284.2 135.2 2.3 

Table 5: Run-times for the CVS experiment phases. DHash is 
running on 32 nodes on a wide-area network. 

due to each participant having different network round
trip latencies to the DHash servers. 

6.6 Snapshot Interval 

Figure 8 shows the effect on MAB run-time of the in
terval between snapshots. The experiments involve one 
MAB instance, four logs, and 32 DHash servers. The x
axis represents the number of new log records inserted 
before Ivy builds each a new snapshot. For these exper
iments, the size of Ivy's block cache is 80 blocks. The 
reason the run-time increases when the interval is greater 
than 80 is that not all the records needed to build each 
snapshot can fit in the cache. 

6.7 Wide-area CVS on Ivy 

To evaluate Ivy's performance as a source-code or doc
ument repository, we show the run-time of some oper
ations on a CVS [4] repository stored in Ivy. The Ivy 
file system has four logs stored on 32 wide-area DHash 
servers. The round-trip times from the Ivy host to the 

· DHash servers storing the log-heads are 17, 36, 70, and 
77 ms. The CVS repository contains 251 files and 3.3 
MBytes. Before the experiment starts, two Ivy partici
pants, X and Y, check out a copy of the repository to 
their local disks, and both create an Ivy snapshot of the 
file system. Each participant then reboots its host to en-

sure that no data is cached. The experiment consists of 
two phases. First, X commits changes to 38 files, a total 
of 4333 lines. Second, Y updates its local copy to re
flect X's changes. Table 5 shows the run-times for the 
two phases. For comparison, Table 5 shows the time to 
perform the same CVS operations over NFS and ssh; 
in both cases the client to server round-trip latency is 77 
ms. 

Ivy's performance with CVS is disappointing. During 
a commit or update, CVS looks at every file in the repos
itory; for each file access, Ivy checks whether some other 
participant has recently changed the file. CVS has locked 
the repository, so no such changes are possible; but Ivy 
doesn' t know that. During a CVS commit, Ivy waits for 
the DHash insert of new log records and an updated log
head for each file modified; again, since CVS has locked 
the repository, Ivy could have written all the log records 
in parallel and just a single updated log-head for the 
whole CVS commit. A transactional interface between 
application and file system would help performance in 
this situation. 

7 Related Work 

Ivy was motivated by recent work on peer-to-peer stor
age, particularly FreeNet [8], PAST [32], and CFS [9]. 
The data authentication mechanisms in these systems 
limit them to read-only or single-publisher data, in the 
sense that only the original publisher of each piece of 
data can modify it. CFS builds a file-system on top of 
peer-to-peer storage, using ideas from SFSRO [11]; how
ever, each file system is read-only. Ivy's primary contri
bution relative to these systems is that it uses peer-to
peer storage to build a read/write file system that multiple 
users can share. 

7.1 Log-structured File System 

Sprite LFS [31] represents a file system as a log of op
erations, along with a snapshot of i-number to i-node lo
cation mappings. LFS uses a single log managed by a 
single server in order to to speed up small write perfor
mance. Ivy uses multiple logs to let multiple participants 
update the file system without a central file server or lock 
server; Ivy does not gain any performance by use of logs. 

7 .2 Distributed Storage Systems 

Zebra [12] maintains a per-client log of file contents, 
striped across multiple network nodes. Zebra serializes 
meta-data operations through a single meta-data server. 
Ivy borrows the idea of per-client logs, but extends them 
to meta-data as well as file contents. This allows Ivy to 
avoid Zebra's single meta-data server, and thus poten
tially achieve higher availability. 
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xFS [3], the Serverless Network File System, dis
tributes both data and meta-data across participating 
hosts. For every piece of meta-data (e.g. an i-node) there 
is a host that is responsible for serializing updates to 
that meta-data to maintain consistency. Ivy avoids any 
meta-data centralization, and is therefore more suitable 
for wide-area use in which participants cannot be trusted 
to run reliable servers. However, Ivy has lower perfor
mance than xFS and adheres less strictly to serial seman
tics. 

Frangipani [40] is a distributed file system with two 
layers: a distributed storage service that acts as a virtual 
disk and a set of symmetric file servers. Frangipani main
tains fairly conventional on-disk file system structures, 
with small, per-server meta-data logs to improve perfor
mance and recoverability. Frangipani servers use locks 
to serialize updates to meta-data. This approach requires 
reliable and trustworthy servers. 

Harp [18] uses a primary copy scheme to maintain 
identical replicas of the entire file system. Clients send 
all NFS requests to the current primary server, which se
rializes them. A Harp system consists of a small clus
ter of well managed servers, probably physically co
located. Ivy does without any central cluster of dedicated 
servers-at the expense of strict serial consistency. 

7.3 Reclaiming Storage 

The Elephant file system [34] allows all file system op
erations to be undone for a period defined by the user, 
after which the change becomes permanent. While Ivy 
does not currently reclaim log storage, perhaps it could 
adopt Elephant's version retention policies; the main ob
stacle is that discarding log entries would hurt Ivy's abil
ity to recover from malicious participants. Experience 
with Venti [28] suggests that retaining old versions of 
files indefinitely may not be too expensive. 

7.4 Consistency and Conflict Resolution 

Coda [14, 16] allows a disconnected client to modify its 
own local copy of a file system, which is merged into 
the main replica when the client re-connects . A Coda 
client keeps a replay log that records modifications to 
the client's local copies while the client is in discon
nected mode. When the client reconnects with the server, 
Coda propagates client's changes to the server by replay
ing the log on the server. Coda detects changes that con
flict with changes made by other users, and presents the 
details of the changes to application-specific conflict re
solvers. Ivy's behavior after a partition heals is similar 
to Coda 's conflict resolution: Ivy automatically merges 
non-conflicting updates in the logs and lets application
specific tools handle conflicts. 

Ficus [26] is a distributed file system in which any 
replica can be updated. Ficus automatically merges non
conflicting updates from different replicas, and uses ver
sion vectors to detect conflicting updates and to signal 
them to the user. Ivy also faces the problem of conflicting 
updates performed in different network partitions, and 
uses similar techniques to handle them. However, Ivy's 
main focus is connected operation; in this mode it pro
vides close-to-open consistency, which Ficus does not, 
and (in cooperation with DHash) does a better job of au
tomatically distributing storage over a wide-area system. 

Bayou [39] represents changes to a database as a log 
of updates. Each update includes an application-specific 
merge procedure to resolve conflicts. Each node main
tains a local log of all the updates it knows about, both 
its own and those by other nodes. Nodes operate pri
marily in a disconnected mode, and merge logs pairwise 
when they talk to each other. The log and the merge 
procedures allow a Bayou node to re-build its database 
after adding updates made in the past by other nodes. 
As updates reach a special primary node, the primary 
node decides the final and permanent order of log en
tries. Ivy differs from Bayou in a number of ways. Ivy's 
per-client logs allow nodes to trust each other less than 
they have to in Bayou. Ivy uses a distributed algorithm to 
order the logs, which avoids Bayou's potentially unreli
able primary node. Ivy implements a single coherent data 
structure (the file system), rather than a database of inde
pendent entries; Ivy must ensure that updates leave the 
file system consistent, while Bayou shifts much of this 
burden to application-supplied merge procedures. Ivy 's 
design focuses on providing serial semantics to con
nected clients, while Bayou focuses on managing con
flicts caused by updates from disconnected clients. 

7.5 Storing Data on Untrusted Servers 

BFS [7], OceanStore [15], and Farsite [5] all store data 
on untrusted servers using Castro and Liskov's practical 
Byzantine agreement algorithm [7] . Multiple clients are 
allowed to modify a given data item; they do this by send
ing update operations to a small group of servers holding 
replicas of the data. These servers agree on which opera
tions to apply, and in what order, using Byzantine agree
ment. The reason Byzantine agreement is needed is that 
clients cannot directly validate the data they fetch from 
the servers, since the data may be the result of incremen
tal operations that no one client is aware of. In contrast, 
Ivy exposes the whole operation history to every client. 
Each Ivy client signs the head of a Merkle hash-tree [25] 
of its log. This allows other clients to verify that the log 
is correct when they retrieve it from DHash; thus Ivy 
clients do not need to trust the DHash servers to main
tain the correctness or order of the logs. Ivy is vulnerable 

5th Symposium on Operating Systems Design and Implementation USENIX Association 

Page 19 of 21



to DHash returning stale copies of signed log-heads; Ivy 
could detect stale data using techniques introduced by 
SUNDR [24]. Ivy's use of logs makes it slow, although 
this inefficiency is partially offset by its snapshot mech
anism. 

TDB [20), S4 [38], and PFS [36) use logging and (for 
TDB and PFS) collision-resistant hashes to allow modi
fications by malicious users or corrupted storage devices 
to be detected and (with S4) undone; Ivy uses similar 
techniques in a distributed file system context. 

Spreitzer et al. [35) suggest ways to use cryptograph
ically signed log entries to prevent servers from tam
pering with client updates or producing inconsistent log 
orderings; this is in the context of Bayou-like systems. 
Ivy 's logs are simpler than Bayou's, since only one client 
writes any given log. This allows Ivy to protect log in
tegrity, despite untrusted DHash servers, by relatively 
simple per-client use of cryptographic hashes and pub
lic key signatures. 

8 Conclusion 

This paper presents Ivy, a multi-user read/write peer-to
peer file system. Ivy is suitable for small groups of coop
erating participants who do not have (or do not want) a 
single central server. Ivy can operate in a relatively open 
peer-to-peer environment because it does not require par
ticipants to trust each other. 

An Ivy file system consists solely of a set of logs, one 
log per participant. This arrangement avoids the need 
for locking to maintain integrity of Ivy meta-data. Par
ticipants periodically take snapshots of the file system 
to minimize time spent reading the logs. Use of per
participant logs allows Ivy users to choose which other 
participants to trust. 

Due to its decentralized design, Ivy provides slightly 
non-traditional file system semantics; concurrent updates 
can generate conflicting log records. Ivy provides several 
tools to automate conflict resolution. More work is under 
way to improve them. 

Experimental results show that the Ivy prototype is 
two to three times slower than NFS. Ivy is available from 
http: //www.pdos.lcs.mit.edu/ ivy/. 
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